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Author’s Preface to the Second Edition

For a working mathematician, it is much more important to know what
questions are not answered so far and failed to be solved by the methods already
available, than all lists of numbers already multiplied, and than the erudition in
the ocean of literature that has been created by previous generations of researchers
over twenty thousand years.

To tell the students about the most (in the author’s opinion) interesting
unsolved problems—this is the purpose of the present book which is composed
of problems formulated at seminars in Moscow and Paris starting from 1958. The
main body of the book is formed by comments of my former students about the cur-
rent progress in the problems solution (featuring bibliography inspired by them).

The observed half-life of the problem (of its more or less complete solu-
tion) is about seven years on average. Thus, many problems are still open, and
even those that are mainly solved keep stimulating new research appearing every
year in journals of various countries of the World.

The invariable peculiarity of these problems was that Mathematics was
considered there not as a game with deductive reasonings and symbols, but as a
part of natural science (especially of Physics), that is, as an experimental science
(which is distinguished among other experimental sciences primarily by the low
costs of its experiments).

Problems of binary type admitting a “yes-no” answer (like the Fermat
problem) are of little value here. One should rather speak of wide-scope programs
of explorations of new mathematical (and not only mathematical) continents,
where reaching new peaks reveals new perspectives, and where a preconceived
formulation of problems would substantially restrict the field of investigations that
have been caused by these perspectives. It is not sufficient to know whether there
is a river beyond the mountain; it does remain to cross this river! Evolution is
more important than achieving records.
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In the raw cases where the imperatives of simplicity and beauty contradict-
ed each other, the author usually has chosen the latter, having in mind that it was
the beauty rather than the utility of science (including Mathematics) that historical-
ly played the role of the main engine leading researchers to the discoveries proved
to be most useful nowadays (such as the conic sections for space navigation, or the
Maxwell equations for television and radar).

I would wish the reader not to be held back by the fact that such appli-
cations are not evident at the beginning: if a result is truly beautiful then it will
certainly be of use in due course!

V.I Arnold
Moscow, 2003



Le monde est soutenu
par les enfants
qui étudient.

Roger Peyrefitte
Les juifs. Paris: Flammarion, 1965, p. 281

Author’s Preface to the First Edition

Moscow has a long-standing fame for its mathematical seminars. At the
beginning of each academic term I formulate problems, usually a dozen or two.
The future analysis shows that the average half-life of a problem (after which it
would be more or less solved) is about seven years.

Poincaré used to say that precise formulation, as a question admitting a
“yes or no” answer, is possible only for problems of little interest. Questions that
are really interesting would not be settled this way: they yield gradual forward
motion and permanent development.

In Poincaré’s opinion, the main essence of any problem is to understand
what is definitive in its formulation, and what can be varied (like boundary condi-
tions in an elliptic problem).

I. G. Petrovskii, who was one of my teachers in Mathematics, taught me
that the most important thing that a student should learn from his supervisor is that
some question is still open. Further choice of the problem from the set of unsolved
ones is made by the student himself. To select a problem for him is the same as to
choose a bride for one’s son.

Mainly, I did not write my problems down, especially in the sixties; there-
fore most of them are probably lost. Some problems are included in my papers and
books. Sometimes I reconstructed my problems to the seminar from conversations
with my colleagues and friends. I hope that below the authors are quoted in most
of such situations.

There are two principal ways to formulate mathematical assertions (prob-
lems, conjectures, theorems, ...): Russian and French. The Russian way is to
choose the most simple and specific case (so that nobody could simplify the for-
mulation preserving the main point). The French way is to generalize the statement
as far as nobody could generalize it further.
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I assume that this division more or less coincides with the division of peo-
ple into the right-hemisphere resolvers of posed problems, and the left-hemisphere
authors of research programs.

Once, when I was a younger student, I asked R. L. Dobrushin (who was a
graduate student) a question. “A fool can ask so many questions that a hundred of
intellectuals could not answer them,” Dobrushin said. As for me, questions should
nevertheless be published. By the way, it turned out that the question that I had
asked Dobrushin that time—whether the perimeter of a rectangle can increase as
the result of a sequence of foldings and unfoldings—remains open and is treated
as folklore (although, seems to me, I published it, say, 40 years ago).

Ya. B. Zeldovich thought that posing a problem is a much finer art than its
solution. “Once you formulate a precise question, he said, there already appears
a mathematician able to solve it. In fact, mathematicians are like flies, fit to walk
on the ceiling!”

This had led him to a well-known struggle, where Pontryagin and Logunov
tried to criticize the mathematical rigor of his theories. It resulted in the following
phrase in Pontryagin’s book: “Some physicists think that one can make a correct
use of the mathematical analysis without full knowledge of its foundation. And I
do agree with them.”’

Zeldovich was offended by this phrase. “Why hasn’t he named me?”
Yakov Borisovich said to me then.

I am deeply indebted to a large number of my former and present students
who have written this book. I tried to quote them appropriately.

Mathematical training in Moscow usually begins before the school age.
Here is a couple of excercises (children 4-5 years old would have solved them in
half an hour):

1) From a barrel of wine, a spoon was poured into a cup of tea, and then
the same spoon of the obtained (nonhomogeneous!) mixture was poured from the
cup back into the barrel. Where did the amount of the foreign beverage become
greater?

2) On a chess board, two opposite angle squares (al, h8) are cut off. Can
the 62 remaining squares be covered by 31 domino pieces (without overlaps), every
piece covering two (neighboring) squares?

Leibnitz thought that a curve intersects its curvature circle at four coinci-
dent points and that d(ab) = (da)(db).

Hilbert argued that a really interesting work in mathematics rarely happens
to be correct. For example, in his survey of relativity theory, he affirmed that
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“simultaneity exists by itself.” His description of geometry of numbers from the
article dedicated to Minkowski is beyond any critics at all.

A. Weil wrote that his famous dissertation had been read only by two op-
ponents; but even they understood too little because of their lack of proficiency
(the work was erroneous). And this is yet one of the most important works of our
century (1926-1928) in number theory.

Errors committed by Poincaré himself are too widely known to be recalled
here: he confused homology with homotopy and missed the 3-manifold of dodec-
ahedral lens type which is now named after him. Many questions in the theory
of differential equations, dynamical systems, and celestial mechanics “solved” by
him still remain open.

Descartes wrote to Huygens: “If I see any vacuum in Nature, it is only in
Pascal’s head.”

Mathematician N refused to correct misprints while re-editing his book, in
order not to rob the reader of pleasure in finding errors.

It seems, Napoleon said that a person, who is unable to think, cannot also
be taught anything.

I hope that the present book will teach at least anybody to think (by the
above problems 1 and 2 though).

V.1 Arnold
Garches (France), 1999



Editorial to the Second Edition

You are looking at the second edition of the title “Amold’s Problems,”
which is now in English. Its size has noticeably grown compared with the first Rus-
sian edition of 2000—by more than a one third; for new problems and comments
have appeared, and some old comments have been supplemented. The number of
authors of comments has doubled, from 29 to 59.

The format of the comments has also been modified. The name of the
comment’s author is now shown at the beginning of the comment (beside the prob-
lem’s number), no longer at its end. If there are several comments to a problem,
then the problem number in every comment is preceded by a symbol indicating if
this comment is the first one (V), an intermediate one (A) or the last one (»). Each
comment is opened by a notatlon indicating its nature: the letter - i means that
the comment is historic, and .. means that the comment is devoted to the results
of the research on the problem.

Just as in the first (Russian) edition of this book, twin problems appear here
(see the explanation on page XIII).

For the problems appearing in the first edition, the numbers have been pre-
served. In cases when problems of the preceding years forgotten in the former
edition have since been discovered, they are appended at the end of the list of
problems of the corresponding year.

We also point out a feature of the bibliography. If an article was published
in a journal in Russian that is translated into English on a regular basis (cover-
to-cover), then its bibliographical description includes only the translation of the
article (since the original is easily found in this case). In the cases when it might
be difficult to find respectively the English translation or the Russian original of an
article, the references to both of them are provided.



XII Editorial to the Second Edition

We acknowledge our pleasant duty to thank Professors M. S. P. Eastham,
A. G.Khovanskii, L. P. Kotova, M. B. Sevryuk, and O. V. Sipacheva who have con-
tributed to this edition by improving the English text.

All formulations of the problems and all the comments have been checked
by Vladimir Igorevich Arnold. Some comments, in comparison with the first edi-
tion, have been reduced by excluding the descriptions of unpublished and unver-
ified results. Unfortunately, not all potential authors of comments accepted our
suggestion to write comments to the problems they had studied. Now we keep
on inviting all the colleagues to participate in commenting Amold’s Problems.
For more information, see the Internet site http://www.phasis.ru.

In order to make the author’s famous Russian original edition accessible to
readers worldwide, PHASIS and Springer-Verlag have collaborated in the publica-
tion of this enlarged and updated English edition using the know-how, experience
and abilities of both publishers.

V. Philippov
M. Peters A. Yakivchik

Heidelberg, 2004 Moscow, 2004



To ask the right question
is harder than to answer it.

Georg Cantor

Editorial to the First Edition

The present title represents the problems that have been posed by Vladimir
Igorevich Amold during a period of over 40 years.

This is principally a fairly complete list of problems presented by him at
his seminar on the theory of singularities of differentiable mappings, twice a year
at the beginning of each academic term. (This famous seminar has been working
at the Department of Mechanics and Mathematics of Moscow State University for
over 30 years and deserves the title of one of the leading World centers of mathe-
matical science.) In addition, there are problems published by Vladimir Igorevich
in his numerous papers and books. It is clear, however, that not all Amold’s prob-
lems have been collected so far, and we would be grateful to those readers who
will report to us any problems not appearing in the present volume.

The book consists of two parts. The first part comprises the formulations
of the problems; brief explanations that are italicized there are due to the author.
The second part is a collection of comments including a survey of results on the
given problem or, in some cases, a historic reference. Almost all the comments are
signed by their authors (which are mostly the former students of Vladimir Igore-
vich); the brief unsigned comments belong either to the author or to the editor. In
a few cases, the authors include a description of their unpublished and unverified
results in their comments, sometimes even those on classical problems; such as-
sertions should be regarded as conjectures. The bibliography to all comments has
been carefully checked by the editor.

For the sake of historic certainty, we preserve the so-called twin problems,
i. e., the problems that date back to different years but are almost identical in their
essence. Only one of these problems (and not always the earliest) is commented
on in such a case, the other twin problems being supplied with a reference: “See
the comment to problem (number).” Such references are used in some other cases
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when information from the comment to one problem applies to another problem
as well.

All mathematical notations appearing in the book are commonly used.
However, the notations for spheres and balls of various dimensions must be clar-
ified. Non-parallelizable n-dimensional spheres (i. e., for n ¢ {0,1,3,7}) are al-
ways denoted by S". The spheres of dimensions » = 0,1, 3,7 are generally denot-
ed by S", but in some exceptional cases (either pointed out by V.I1. Amold or, for
example, in dealing with the bouquet of spheres 52 v §!) also by S”. The closed
ball of dimension n > 3 is denoted by B". For the two-dimensional ball (disk)
the notation D? is mainly used. Finally, the one-dimensional ball (line segment)
{x € R |a<x< b} is denoted by [a;b].

We hope the reader appreciates the tough work that we had to perform
while preparing this title, and we would like to thank all participants in this project,
especially the authors of comments. We are not entirely satisfied by the quality of
our own efforts, but our main desire was the early appearance of the book. Many
problems have been left without comments; with several exceptions this means
only that nobody has undertaken the task to write such a comment so far.

At the same time, we believe that the work on this project is still only at
its first steps, and we would be indebted to everybody who will contribute to the
next edition of this title with remarks, suggestions, corrections, new comments or
historic references.

V. B. Philippov
M. B. Sevryuk

Moscow, 1999
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Et 4 quoi bien exécuter des projets,
puisque le projet est en lui-méme
une jouissance suffisante?

Charles Baudelaire

Le spleen de Paris, XXIV (Les projets)

The Problems



2 The Problems 1956-1

1956-1. “The rumpled dollar problem: is it possible to increase the perimeter of
a rectangle by a sequence of foldings and unfoldings?

1958-1. Let us consider a partition of the closed interval [0;1] into three inter-
vals A1, Ay, Az and rearrange them in the order A3, Ay, A;. Explore the resulting
dynamical system [0; 1] — [0; 1]: is it true that the mixing rate and similar ergod-
ic characteristics are the same for almost all lengths (Aj,Ap,As) of the partition
intervals?

An analogous question may be asked for n intervals and for arbitrary per-
mutations as well (changing the orientation of some intervals also being allowed).

1958-2. Let all four faces of a tetrahedron have equal areas. Prove that the lengths
of opposite edges are equal (and all faces are congruent!). The idea is quite simple:
cut along three edges from a vertex and develop.

1958-3. Find a multidimensional version of the Hilbert conjecture on the number
of limit cycles of a polynomial vector field. For instance, one is interested in the
number of integral curves connecting two algebraic or invariant manifolds and
sufficiently “monotone.”

1959-1. Let the biholomorphic mapping z +— z+a+bsinz mod 27 of the circle
Imz = 0 onto itself be not conjugate analytically to a rotation but have an irrational
rotation number. Is it true that in any neighborhood of the circle, there is a periodic
orbit?
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..... o v = w4

1963-1. Is there true instability in multidimensional problems of perturbation the-
ory where the invariant tori do not divide the phase space?

1963-2. Prove the presence of nondegenerate hyperbolic points (and separatrix
splitting) in any neighborhood of an elliptic fixed point 0 of a generic analytic
area-preserving mapping (R2,0) «.

1963-3. Are there bounded motions filling up a set of positive measure in the
three (and n) body problem, for any values of the masses and for the distances
comparable with each other? Does there exist a critical value of the perturbation
parameter | at which the invariant torus with given Diophantine frequency vector
breaks up?

1963-4. Let T be an orientation-preserving analytic diffeomorphism of a circle
onto itself with Diophantine rotation number ®. Can one always turn T into the ro-
tation Ty through the angle 27t via an analytic change of variables §: STS™! = T,?

1963-5. Consider a system of linear differential equations with quasi-periodic
coefficients

g=0, x=A(q)x g € T*=R¥/2rZ*, xeR",

where ® € R is a constant vector with Diophantine components while A : T —
gl(n,R) is an analytic function. Is such a system always reducible fork > 1,n > 1?

1963-6. Let I be a (generally noncommutative) group with finitely many gener-
ators ay, ..., d;. By a dynamical system with the “time” I" we shall mean an action
of the group I" on a space with measure by measure-preserving transformations
Ay (Y € ). For such a system, time averages may be defined as follows. Let us
consider the set I, of elements of I" that can be obtained by » (but not less than n)

multiplications from a; ,al—l, ...,as,a; !, and let N(n) be the number of such ele-
ments. Then define the “time average” f, of a function f as
1
=== Y flap), xeQ.

N(n) e
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Now let Q be a homogeneous space, with a transitive action of a compact Lie
group G on it; and let the transformations Ay (y € I') belong to G.

Are the ergodic theorems of Birkhoff and von Neumann true for such dy-
namical systems with a noncommutative time?

The next three problems also concern dynamical systems (Q,G,T") with a
noncommutative time I".

1963-7. For some groups I" the sequence of points Ayx is uniformly distributed
in its closure, if the closure is connected. In other words, the time averages f,(x)
of a continuous function converge to the space average over the closure W of a
trajectory Ayx (Y€ I):

, 1
lim f,(x) = - /F_(x_)f ) au(y).

Examples are given by the free group I" with two generators a, b and the group I"
with generators a, b, ¢ and the relation abc = e.
Does this result extend to arbitrary groups I" with finitely many generators?

1963-8. Does the result mentioned in the previous problem extend to the non-
compact case? (For instance, let Q be the Euclidean plane or the Lobachevskian
plane.)

1963-9. What is the generalization of the result mentioned in problem 1963-7 to
the case where a Lie group, e. g., the isometry group of the Lobachevskian plane,
is considered as time?

1963-10. In what cases is the monodromy group of the system dx = [A(z) dz|x
of linear differential equations on a Riemann surface M bounded? Here z € M,
x € C", and A(z) dz is a matrix of differentials which are analytic in z except for a
finite set of singular points.

1963-11. Consider a system of linear differential equations dx/dz = A(z)x, where
z € CP!, x € C", and A is a matrix which depends on z analytically, except for three
singular points zj, z, z3 on the Riemann sphere CP!. Denote CP!\ {z1,22,23}
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by Z. If the monodromy group of the system dx/dz = A(z)x is bounded, then this
system has a single-valued first integral (B(z)x, X) = const, where B(z) is a positive
definite self-adjoint matrix, single-valued for z € Z.

Is it true that the surface depicting the solutions of this system in the
(2n+ 1)-dimensional manifold M,: (Bx,X) = c, is uniformly distributed with re-
spect to the following metric: on Z, we introduce a metric of constant negative
curvature, and on C"(z) the metric is defined by the scalar product (B(z)x,y)?

1963-12. The system dx/dz = A(z)x from the previous problem can be consid-
ered as a dynamical system where the role of the time is played by the universal
covering of Z, i.e., by the Lobachevskian plane. But an ordinary dynamical sys-
tem with continuous time can also be related to this system. In order to do so,
consider a new phase space whose points are the points (z,x) € M, together with
the direction & of a vector tangent to Z at z. The motion is defined in the following
way: the point z is moving uniformly along the geodesic in the direction of &, and
x over z is moving according to the equations dx/dz = A(z)x. The metric and the
invariant measure are defined as in the previous problem.

This construction allows us to “multiply” the flow defined on a manifold
by a group of automorphisms (which is a representation of the fundamental group
of the manifold). The problem is in the study of the resulting “products.”

& J.“L(‘.- y 8 v
A, . S

1965-1. LetA: Q — Q be a globally canonical homeomorphism of the 2n-dimen-
sional toroidal annulus Q = T" x B", where T" = R"/2nZ" denotes the n-torus
while B" C R" is a domain in R"” homeomorphic to a closed n-dimensional ball.
Let pg be an interior point of B*, and T C Q be the torus T" x {pg}. Do T and AT
always intersect at not less than n+ 1 (geometrically distinct) points?

In this problem and the subsequent two problems, a mapping A : Q — Q,
where Q = T" x B",

T"={q=(q1,-..,q») modd2rn}, B"CR"={p=(p1,...,pn)},

is said to be globally canonical if it is homotopic to the identity transformation and

j{pdq=]{ pdq
Y Ay
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(pdq = p1dq1+---+ pndqy) for any closed curve y C Q (not necessarily homol-
ogous to zero).

1965-2. Let A: Q — Q be a globally canonical diffeomorphism of the 2n-dimen-
sional toroidal annulus Q = T" x B", where T" = R"/2rZ" denotes the n-torus
while B" C R" is a domain in R"” homeomorphic to a closed n-dimensional ball.
Let po be an interior point of the domain B" and let T C Q, the torus T" X {po}.
Do T and AT always intersect at not less than 2" points (counting multiplicities)?

1965-3. Let A: Q — Q be a globally canonical diffeomorphism of the 2n-dimen-
sional toroidal annulus Q = B" x T", where B" C R" is a domain in R” homeo-
morphic to a closed n-dimensional ball while T" = R"/2rZ" denotes the n-torus.
Suppose that, for any g € T", the spheres $"~'(g) = 0B" x {q} and AS"~!(qg) are
linked in 0B" x R" where R" — T" is the universal covering. Is it true that, in this
set-up, the diffeomorphism A possesses at least 2" fixed points in the annulus Q
(counting multiplicities)?

{

1966-1. What is the connection between the /-component /() of the solution of
the system
do/dt = o(I)+ef(l,9), dI/dt=¢eF(I,¢)

(p € T, I € R}, 0 < € < 1) and the solution J(t) of the “evolution equation”

dl/dt =€F(J), F(J):= (—2;—)k ]gr F(1,9)dg

with the same initial data on the interval 0 < ¢ < 1/€?

1966-2. What is the behavior of orbits in the complement to the union of the in-
variant tori of a nearly integrable Hamiltonian system? Is it true, in particular, that
these orbits exhibit no evolution in the s-th approximation, i.e., [I(t) —J(t)| < 1
for 0 <t < 1/€°? Here I denotes the vector of the action variables, J(z) is the solu-
tion of the s-th order “evolution equation” with the initial conditions J(0) = 1(0),
while 0 < € < 1 is the perturbation parameter.
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1966-3. Prove or disprove the following conjecture. Consider a nearly integrable
Hamiltonian system with k£ > 3 degrees of freedom and with the Hamilton function
Hy(I) +¢€H,(1,9), where (I,) are the action—angle variables. Then “generically”
for every pair of neighborhoods of the tori I =I', I =I" with Hy(I') = Hy(I"),
there is an orbit passing through both neighborhoods provided that € is sufficiently
small.

1966-4. Let a diffeomorphism A: g — g+ f(g) of the torus T? = {(q1,42)
modd 2n} preserve the measure dg; A dg, and the center-of-mass:

fwf(Q) dqidgqy = 0.

Prove that A has at least 4 fixed points counting multiplicities and at least 3 geo-
metrically distinct fixed points.

1966-5. Let Q = T x B (T* = {g modd2n}, B* = {p € R, |p| < 1}) be
the toroidal annulus equipped with the canonical structure ®' = pdg, and let
A: Q — Q be a canonical diffeomorphism homotopic to the identity transforma-
tion and such that each sphere {g} x dBF is linked with its image on the covering
of the boundary T* x dB¥. Then A possesses at least 2* fixed points counting
multiplicities and at least k + 1 geometrically distinct fixed points.

1966-6. Investigate the ergodic properties of motions in the complement of the
union of the invariant tori of a nearly integrable Hamiltonian system. In particular,
is the entropy of such a system positive?

1968-1. What collections of numbers By, B, By, ... can be realized as col-
lections of Morse numbers By = My, By = My — My, B, = My — M + My, ...
for a polynomial in n variables of degree d?

1968-2. What topological characteristics of a real (complex) polynomial are com-
putable from the Newton diagram (and the signs of the coefficients)?
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1969-1. An embedding of a torus into R is given. Can it have nontrivial (at least
infinitesimal?) isometric deformations? The question is connected with small de-
nominators, taking into account the dynamical system defined by the asymptotic
lines on the parabolic curve. This system itself is worth examining.

1969-2. Given a function in the plane (a germ at 0), is it possible to find a func-
tion, that is smoothly equivalent to the given function, and is the Gaussian curva-
ture function of (a germ of) a surface z = f(x,y) in R*? Can merely the original
function in the plane be itself realized in this form? The answer may depend on
the singularity at 0: for example, it may happen that finite multiplicity, | < oo,
is required.

1970-1. Construct versal unfoldings of endomorphisms (of vector spaces and
groups).

1970-2. Is the problem of distinguishing a center from a focus algebraically triv-
ial? What about the general problem of the algebraic classification of the equilib-
rium points of a system of ordinary differential equations x = v(x) in R"?

1970-3. Investigate the connection between the rotation numbers of a Hamiltoni-
an system and the property that the Hamiltonian is single-valued.

1970-4. Carry over Poincaré’s Last Theorem about an annulus (and its conjec-
tural generalizations) to the case of multi-valued Hamiltonians.

1970-5. Study the Diophantine approximations on generic submanifolds (and the
bifurcations in k-parameter families).
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1970-6. Explore the equations in variations along a stationary solution of the Eu-
ler hydrodynamic equation (for example, the existence of conjugate points), in
particular, for the Kolmogorov flow and for the flow on the torus with the stream
function siny.

1970-7. Compute the curvatures of the groups SDiff($%) and SDiff(T?).

1970-8. Investigate the birth of discrete spectrum at the point of maximum speed,
from the viewpoint of genericity: non-degenerate case, bifurcations, etc. (in par-
ticular, for flows on the torus with the stream function f at the critical points of the
function v = f’).

1970-9. Investigate the inertia indices of the stationary points of the kinetic ener-
gy on an orbit of the co-adjoint representation (from the viewpoint of bifurcations
and genericity!).

1970-10. Prove that a divergence-free vector field on S? has at least two zeros.
Prove an analogous statement for the mappings S2 — S? preserving oriented area
(verify beforehand that the index of a fixed point of an area- and orientation pre-
serving diffeomorphism of a plane does not exceed 1).

1970-11. What can one say about to(CP"\ V), where V is a generic hypersurface
of degree m?

1970-12. Evaluate the fundamental groups and the homologies of the spaces
of curves with the simplest singularities that split completely into lines in CP?
(the spaces of surfaces that split into planes in CP?, etc.).

1970-13. Evaluate the topological invariants of the manifold of nonsingular cubic
curves in CP?.

1970-14. Evaluate the fundamental group of the space of embeddings of a circle
into a solid torus (the answer is a knot invariant!).
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1970-15. Investigate topological properties of the stratification of the space of
meromorphic functions on a Riemann surface (rational functions in the case of 2).

1970-16. Is the problem of Lyapunov stability of an equilibrium of the system
x = v(x), x € R" algebraically trivial? What about the problem of asymptotic
stability? Does there exist an analytic Lyapunov function for this system?

1971-1. Let A be a germ of a diffeomorphism, A: (R",0) <, or A: (C",0) «—.
Let A = B*. Does this imply that A commutes with some diffeomorphism C such
that C¥ = id? This is true for the formal power series. Is this true for the diffeo-
morphisms of the circle?

1971-2. Bifurcations of invariant manifolds in neighborhoods of singular points:
see the conjecture on page 3 in the paper: ARNOLD V.I. Remarks on singular-
ities of finite codimension in complex dynamical systems. Funct. Anal. Appl.,
1969, 3(1), 1-5 [the Russian original is reprinted in: Vladimir Igorevich Amold.
Selecta—60. Moscow: PHASIS, 1997, 129-137].

1971-3. The algebraic unsolvability of the problem of stability of the equilib-
rium and of the problem of topological classification of dynamical systems in a
neighborhood of a fixed point. See the papers: ARNOLD V. 1. Local problems of
analysis. Moscow Univ. Math. Bull., 1970, 25(2), 77-80; ARNOLD V. 1. Algebraic
unsolvability of the problem of stability and the problem of topological classifica-
tion of singular points of analytic systems of differential equations. Uspekhi Mat.
Nauk, 1970, 25(2), 265-266 (in Russian); ARNOLD V.I. Algebraic unsolvability
of the problem of Lyapunov stability and the problem of topological classification
of singular points of an analytic system of differential equations. Funct. Anal.
Appl., 1970, 4(3), 173-180.

1971-4. Prove the instability of the equilibrium O of an analytic system X =
—0U /dx in the case where the isolated (in C"?) critical point O of the potential U
is not a minimum.
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1971-5. A smooth map A : M — M is called coarse if any map B that is close to A
(with derivatives) is topologically equivalent to A (that is, B = CAC™!). Are the
coarse maps dense in the space of all smooth maps S! «?

1971-6. Do there exist singular points of a vector field of finite codimension
that do not allow a topologically versal unfolding with the number of parameters
equal to the codimension (or with a finite number of parameters)? The conjec-
tural example in dimension 3: two pairs of imaginary roots with ratio 3 (thesis of
R.J. Sacker).

1971-7. Is it true that the set of germs of vector fields at a singular point, whose
topological type cannot be determined by any jet of finite order, has infinite codi-
mension? The same question—for Lyapunov stability and asymptotic stability.

1971-8. Investigate the pathology of the decomposition of the space of finite order
jets of diffeomorphisms at a singular point, into topological equivalence classes.
Conjecturally, if the dimension and the codimension are large enough, then:

1) the set of the equivalence classes is infinite and even continual,

2) there exists a manifold in the space of jets such that each jet from this
manifold defines the topological type of its germs, but this type changes along the
manifold so that for any point in the manifold there are points of another topolog-
ical type in its neighborhood.

Investigate analogous questions for the decomposition into Lyapunov
(asymptotically) stable and unstable jets. Is the number of connected compo-
nents of the sets of stability and unstability in the space of jets infinite?

1971-9. Generalize the Hilbert problem on limit cycles to systems with discrete
time.

1971-10. Explore the system of biocenos evolution without predators: X; =
X (A,' [exp (Zk [_}\'ikxk]) — 1] )

1971-11. Find (upper and lower?) estimates for the Hausdorff dimension of
Navier-Stokes attractors in terms of the Reynolds number.
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1972-1. Investigate the topology of the complement of the caustic £3 in C: is it
true that this complement is a K(x, 1) space?

1972-2. Investigate the monodromy group of the singularity x> +y* + 2z (and also
the topology of the complement of the discriminant).

1972-3. Is it true that min, F(x,y) is topologically equivalent to a smooth func-
tion: a) for a generic F, b) always?

1972-4. Investigate the local convexity of the boundary of the stability domain
(in the families of matrices and polynomials).

1972-5. Prove the uniform estimate for an oscillatory integral: how can one cal-
culate the uniform index for a neighborhood in terms of the phase at the degenerate
point?

1972-6. Is it true that the only singularities whose intersection form is positive or
negative definite are A, D, E?

1972-7. Is the following conjecture on transversality of the stratification of a
space of quadratic forms true: the manifold of quadratic forms in a Hilbert space
that are determined by oscillations of arbitrary membranes is transversal to the
stratified manifold of quadratic forms with multiple eigenvalues?

1972-8. Find “the most probable” representations of symmetry groups.

1972-9. Investigate the error of the method of averaging in the case of two fre-
quencies, when in average the ratio of the frequencies changes with nonzero rate
in the averaged motion (although the instantaneous rate of change in some fast
phases changes its sign).
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1972-10. Investigate the error of the method of averaging in generic multi-fre-
quency systems under the assumption of passing through a resonance.

1972-11. Evaluate the cohomology of the braid groups of the series D and E.

1972-12. Classify the singularities of convex hulls of generic submanifolds in a
vector space.

1972-13. Find the number of moduli for the Brieskorn singularities ¥, x".

1972-14. Is it true that the complement of a bifurcation diagram is always a
K(m, 1) space?

1972-15. Prove that simple orbits coincide with orbits that are adherent only to
orbits of smaller codimension (but not to unions of orbits of greater codimension).

1972-16. Find all the self-consistent gravitational potentials on the straight line
(the stationary points, possibly generalized, of the Poisson—Vlasov equation).

1972-17. Prove that a diffeomorphism of the two-dimensional torus homotopical
to the identity has at least four fixed points (counting multiplicities) and at least
three of them are geometrically distinct, whenever this diffeomorphism preserves
areas and leaves the center-of-mass invariant.

1972-18. Show that any orientation- and area-preserving diffeomorphism of the
two-dimensional sphere onto itself has at least two geometrically distinct fixed
points.

1972-19. Are the structurally stable maps of S! into itself dense?

1972-20. Straightening the circle diffeomorphisms (by a smooth change of vari-
ables) for almost all the rotation numbers (solved by M. R. Herman) and the topo-
logical obstacle to analytic straightening: the existence of periodic orbits arbitrar-
ily close to the real circle (maybe, even in a neighborhood of any point of the
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circle?). The similar obstacle to prolonging the reducibility annulus to a rotation
by a holomorphic change of variables or the reducibility disk in Siegel’s problem.

1972-21. The Floquet theory over the torus.

1972-22. A sufficiently curved submanifold is extremal in the Diophantine sense
(with probability 1, the Diophantine exponent is the same as in the ambient space).

1972-23 (R. Thom). A gradient vector field with a singular point has a trajectory
entering the singular point with tangency to some straight line.

1972-24. Investigate the connections between the invariants of a singularity of a
plane complex curve and the local fundamental group of its complement.

1972-25. Action of the monodromy M on the homology of the Milnor fiber. De-
compose the singularity having included it in the family f(z) — pz where p € C"
is a parameter. Examine the bifurcation manifold £ = {p,& : € is a critical value
of the function z — f(z) — pz} C C**!. (This manifold is determined by the equa-
tion € = H(p), where H is the Legendre transform of f.) Consider m;(C"*'\ Z)
(germs at 0). Conjecturally, the properties of M (nilpotency, etc.) reflect the prop-
erties of my. For example, if a path €0e'®, 0 < ¢ < 2nN, commutes with all the
generators of m;, then is it true that it does not shift vanishing cycles (so that
MN =1)?

1972-26. What are the restrictions imposed on the topology of a manifold by the
hypothesis that the manifold is a degree n algebraic hypersurface in R” (in RP™)?

1972-27. Is it possible to represent an algebraic function z(a,b,c), z' +az> +
bz?> +cz+ 1 =0, as one of the components of a superposition of algebraic func-
tions in two variables? Find the conditions on the fundamental group, the adja-
cency of the strata, monodromy, and other topological invariants under which the
algebraic function is not representable as a component of a superposition (conjec-
turally, these topological invariants are more complicated for the functions that are
not representable in such a form).
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In this problem algebraic functions can be replaced by “pseudoalgebra-
ic” functions, which are topologically (or combinatorially) equivalent to them—
conjecturally the nonrepresentability persists even for superpositions of such pseu-
doalgebraic maps.

1972-28. Find the three-dimensional characteristic class of the foliation of either
P(x,y) = C or Pdx+ Qdy = 0 in CP? ) (singular points). (Here P and Q are
polynomials.)

The following three problems are related to this class.
1972-29. Determine if this class is integral (for example, in the real case).

1972-30. Determine the conditions on the deformations of the coefficients or on
the cobordisms that preserve this cocycle.

1972-31. Try to relate this class to limit cycles (not simply-connected fibers).
1972-32. Are the Boardman classes X! topologically invariant?

1972-33. Prove that a symplectic diffeomorphism of a compact symplectic mani-
fold M onto itself possesses at least as many fixed points as a smooth function on M
has critical points, whenever this diffeomorphism is homologous to the identity.

1973-1. Describe the typical singularities appearing in the problems on differen-
tial games.

1973-2. Find the typical singularities of convex hulls.
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1973-3 (S. Smale - J. Debreux). Apply the singularity theory to economic models.

1973-4. Prove that the equilibria points stability problems and the problems about
limit cycles are algorithmically unsolvable.

1973-5. Explore the normal forms of implicit differential equations unresolved
with respect to derivatives, and their bifurcations.

1973-6. Investigate three-parameter bifurcations of the topological type of the
dynamics in a neighborhood of a singular point of a vector field (the zero and
an imaginary pair, etc.).

1973-7. The problem of smoothness of the stratum p = const.
1973-8. The problem of semicontinuity of the modality (the number of moduli).

1973-9. Investigate the lower deformations of the critical points of functions
(a generalization of the theory of algebraic hypersurfaces!): the structure of dis-
criminants, fundamental groups, vanishing cycles, etc.

1973-10. Prove the “(2,2)” formula for the number of moduli of a I'-nondegen-
erate function in two variables, and deduce analogous “stereometric”’ formulae for
the other invariants (|, etc.).

1973-11. Generalize the classification of the admissible types of quasihomogene-
ity of nondegenerately-quasihomogeneous critical points (which is known only in
the case of two and three variables). The question is related to the theory of cyclo-
tomic polynomials.

1973-12. Is it true that the complement of the discriminant of a function’s singu-
larity of finite multiplicity is K(x,1)?

1973-13. Investigate the topological invariants of bifurcation diagrams of func-
tions (at least within the scope of tables, in order to work out general conjectures!)
in the real and the complex case.
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1973-14. What restrictions on the coexistence of singularities (on the same fiber,
on different fibers) are imposed by the condition that the singularities belong to a
versal unfolding of a given singularity of finite multiplicity (the problem is related
to the 16th Hilbert problem)?

This is the problem that formed the basis of the semicontinuity of the spec-
trum of a singularity, estimates for the number of Morse points on a hypersurface,
etc.

1973-15. Develop the theory of cobordisms of the critical points of functions.

1973-16. Carry over the achievements of the theory of critical points of functions
to the study of smooth complex maps into spaces of greater dimension.

1973-17. Describe completely the stratification of the space of functions in two
variables.

1973-18. Is there any relation between the Minakshisundaran—Pleijel coefficients
and the coefficients of the polynomial whose value is the volume of the e-neigh-
borhood (e. g., for an isoperimetric embedding into RY)?

1973-19. Does each function have Morsifications with any number of critical
values, from 1 to n? How many distinct critical values are necessary in the real
case?

1973-20. Find the transformation group preserving the ratio of the forms [ u? dx
and [(u')? dx in the space of functions u.

1973-21. Construct Dynkin diagrams for simple singularities as the quivers of
some subspaces of local rings (derive the quivers from the structure of ideals?).
A. N. Shoshitaishvili suggested a construction that solves this problem for all cases
except E7, which is, therefore, unsatisfactory.

1973-22. The Jacobian of the map (;) = () Zy is degenerate on the line x = 0,

and the line u = 0 is not covered by this map (with the exception of the point 0).
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The Lyashko-Looijenga map for (unimodal) parabolic singularities has an anal-
ogous property. What is the general formulation of the corresponding conserva-
tion law: the more degeneracy in the domain, the more is uncovered in the range
(or: the less is covered in the range, the more singularities are in the domain)?

1973-23. Is the asymptotic Hopf invariant (or helicity) of a divergence-free vector
field in S? invariant under volume-preserving homeomorphisms?

1973-24. Study the relation between the asymptotic Hopf invariant and the Rei-
demeister (Ray—Singer) torsion.

1973-25. A.D.Sakharov’s conjecture: if a frozen-in vector field has linked or
knotted trajectories, it cannot relax to arbitrarily small energies by the action of
SDiff(B3).

1973-26. The relaxation paradox: one cannot believe that formerly non-inte-
grable fields have to relax to the eigenfields of the operator rot. What happens
to them? Does the limit field encounter singularities? Or there is no limit field
at all?

1973-27. Consider the mapping C* — CF associating to a point in a versal de-
formation the polynomial whose roots are the critical values of the corresponding
function. For the versal deformation of the singularity A the multiplicity of this
ramified covering, (k+ 1)¥~!, is equal to the number of trees with k 4+ 1 numbered
vertices. Give a similar interpretation to the multiplicity of this mapping for other
simple singularities (which is, according to O. V. Lyashko, k! h*/|W|, where h is
the Coxeter number, and |W| is the order of the Weyl group of the singularity).

1973-28. Consider a random set of points in R” with density p. Let V(d) be the
d-neighborhood of this set. Consider the averaged Betti numbers

i bi(V(d) N (ball of radius R))
Rl—r»r:o R"

= Bi(d)p)'

Investigate these functions.



1974-1. The reconstruction of a quasihomogeneous Lie algebra from its root sys-
tem. Consider a collection of positive exponents (weights) of quasihomogeneity w;
of the coordinates x; in C" (i = 1,...,n). A generator of a quasihomogeneous Lie
algebra is a monomial x™d/dx; of weight zero (m € Z", m; > 0, Yw,m; = w;).
A root of this generator is a vector m =m—1; € Z""! = {m: Lw;m; = 0}. Is
it possible to reconstruct the Lie algebra generated by these generators (up to an
isomorphism of Lie algebras) from the system of its roots, considered up to a lin-
ear transformation of the hyperplane R"~! that does not necessarily preserve the
coordinate hyperplanes m; = 0 in R*~1?

The system of weights cannot be reconstructed, but the algebra is almost
reconstructible (modulo the signs of some structural constants). In all the exam-
ples ever considered, different choices of these signs result in isomorphic algebras.
But it is unclear whether this is always the case.

1974-2. In the theory of the duality of convex polyhedra there appears a La-
grangian or Legendrian manifold with singularities. In the same way, in opti-
mal control theory there appear generalizations of Hamiltonian systems with non-
smooth Hamiltonians (a manifold of phase curves can pass through one point, as
in the case of the Hamiltonian H = |p;1| + |p2|). Nevertheless, their “flows” in
some sense satisfy the Liouville theorem and should be considered as generalized
symplectomorphisms (which are, most probably, not maps but Lagrangian sub-
manifolds with singularities in the product space).

Develop a theory of Lagrangian manifolds with singularities, and general-
ized symplectomorphisms applying to such situations (and even obtain estimates
from below for the number of intersection points of exact Lagrangian manifolds,
and for the number of fixed points of exact symplectomorphisms, generalizing the

£ <<

Poincaré “geometric theorem”).

1974-3. Find all singular values of the moduli of parabolic singularities (that
change the topological or the combinatorial type of the projection of the mani-
fold of the discriminant’s singularities onto the bifurcation diagram of functions,
i.e., the set of clauses for a decomposition of a critical point into several clusters
of simpler critical points on (generally) several critical levels, realized by small
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deformations of the function). What are the elliptic curves corresponding to these
values of moduli celebrated for?

1974-4. Find the classification problem of the theory of Lagrangian (Legendri-
an?) singularities, the answer to which would be in natural bijection with the list
of Coxeter reflection groups.

1974-5. Find applications of the (Shephard—Todd) complex reflection groups to
singularity theory.

1974-6. Symplectize the topology: Poincaré’s index theory of singular points,
apparently, turns into the theory of fixed points of symplectomorphisms and gen-
eralizations of Poincaré’s last geometric theorem (i. e., to a generalization of the
Morse theory). Do other topological theories have symplectizations? Similarly to
a noticeable difference between Z; and its complexification Z, the symplectization
can also be as far from the initial object as the Coxeter group Cy is from Ay.

1974-7. Classify the simple singularities of functions on a manifold with an ac-
tion of a group (for example, finite) up to equivariant diffeomorphisms (commuting
with the group action).

1974-8. Investigate the typical perestroikas of a wave front moving with time
(and of the corresponding Legendrian map).

1974-9. Give a topological classification of the Legendrian singularities corre-
sponding to the parabolic critical points of functions.

1974-10. A conic singularity over a given base carries topological invariants of
the base into the singular point. For non-conic singularities (e. g., quasihomoge-
neous?) one may try to find traces of the discrete invariants of the base (e. g., the
rank and the signature of the Milnor fiber?) in the local algebra of the singularity.

What algebraic objects are encountered in this way? What happens to the
characteristic classes and numbers?
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1975-1. Every interesting discrete invariant of a generic singularity with Newton
polyhedron I is an interesting function of the polyhedron. Study: the signature,
the number of moduli, the singularity index, the integral monodromy, the variation,
the Bernstein polynomial, and ; (for generic sections).

1975-2. Is it possible to reconstruct the Newton polyhedron I" from a I'-nonde-
generate function f € m3? In the quasihomogeneous case, is it possible to recon-
struct the exponents? Is the main term reconstructible (or are those on the faces)?

1975-3. Let f be a quasihomogeneous but degenerate function. Is it possible
to make the Newton polyhedron of f smaller by a quasihomogeneous coordinate
transform? This is a particular case of the question of whether any function with
WL < oo is stably equivalent to a I'-nondegenerate one.

1975-4. Let a function f be ['-nondegenerate. Is it true that there exists a correct
upper basis {e;} such that f ~ fy+ Y cxex? Does there exist a correct upper basis
serving for all sums fy with upper summands? (If yes, then the answer to the first
question is positive.)

1975-5. Let (04,1) and (02, 1) be two types of quasihomogeneity with affinely
equivalent patterns (i. e., sets of integers m > 0 of the hyperplane {m: (m,a) =1}).
Is it true that the upper patterns {m > 0: (m,a) = 1+ B} are mutually equivalent
(with a non-monotone re-enumeration By — ), and that the upper basis of the
first singularity is mapped to the upper basis of the other one?

1975-6. The stratum p = const of a quasihomogeneous function in the standard
versal deformation is linear and generated by weakly upper monomials. Does
this hold for a I'-nondegenerate function? (Generally—is the stratum [l = const
smooth?)

1975-7. Can the complex singularities belonging to distinct strata |t = const be
topologically equivalent?
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1975-8. Is the singularity index semicontinuous?

1975-9. Is it true that the number s(p) of the strata L = const with u =32 is a
power of 2? For p =1, 2, 4, 8, 16 we have s(u) = 1, 1, 2, 4, 32, respectively.
Is there a logical pattern in the sequence s(n) =1,1,1,2,2,3,3,4,4,7, 11, 15,
14, 17, 22, 32, where the boldface numbers are the values of s(|L) that correspond
top=1,24,8,167

1975-10. Is the set of non-equivalent quasihomogeneous patterns with a given
number n of variables finite? The equivalence is the combinatorial (or affine?)
type of the convex hull of the pattern {m € Z" : m > 0, (m,a) = 1}.

1975-11. Is it true that in the complex case the complement of the bifurcation
diagram of a function is always a K(m, 1) space? Are the components contractible
in the real case? Conjecturally no, although R. Thom had thought that yes!

1975-12. Does every real-valued function have a real Morsification (with [ real
critical points)?

1975-13. What is the minimal number of critical values obtained by a perturba-
tion of a critical point of multiplicity p with p Morse critical points? Conjecturally
it is n+ 1, where n is the number of variables (or corank).

1975-14. Is the corank a topological invariant?

1975-15. What singularities can absorb A;? split A off? Why is every stratum
L = const connected to the stratum A; by a chain of strata of all codimensions?

1975-16. Suppose f® g ~ f B h (f, g, h are isolated singularities). Is it true then
that g ~ h?

1975-17. Give an “objective” definition of a series of singularities.

1975-18. List all decompositions of simple singularities.
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1975-19. Calculate the stable cohomology ring of the complement of bifurcation
diagrams: a) of functions of n variables, b) stable over n — oo,

1975-20. Compose a list of simple singularities of maps from m-dimensional
manifolds to n-dimensional ones.
How does the A—D-F classification show up in this list?

1975-21. Express the main numerical invariants of a typical singularity with a
given Newton diagram (e. g., the signature, the genus of the 1-dimensional Milnor
fiber) in terms of the diagram.

1975-22. The problem of stabilization of invariants: investigate the behavior of
the main invariants of a singularity when adding squares of new variables.

1975-23. Compare the stratifications of real and complex singularities of func-
tions. Distinguish M-singularities among real forms. Compare real and complex
modalities. Is a complex stratification always the complexification of a real one?

1975-24. Investigate the stratum p = const (defined by the condition that the codi-
mension of the orbit is constant). Is the stratum smooth (for algebraic group ac-
tions, for natural problems of the singularity theory, e. g., for the classification of
singularities of caustics and wave fronts)?

Is it true that every such stratum becomes irreducible in the base of the
complex versal deformation of some suitable “deeper” singularity?

Does the cohomology ring of the complement of the stratum stabilize in
this “growing” base?

1975-25. Investigate the Lagrangian singularities of bifurcating caustics from the
cosmological “pancake theory” of Zeldovich (in particular, taking into account the
gravitation and particle fusion, and for nonpotential flows).

1975-26. Evaluate the normal forms of versal deformations of matrices of vari-
ous types (symmetric, unitary, etc.), and investigate the corresponding bifurcation
diagrams and cohomology rings.



24 The Problems 1975-27

1975-27. Explore the asymptotics of oscillatory integrals (in particular, find uni-
form estimates near singularities of caustics and calculate the highest individual
singularity indices appearing unremovable in typical families with a given number
of parameters).

Carry over these estimates to integrals of the saddle-point method.

1975-28. Investigate the singularities of envelopes of typical families of subman-
ifolds from the viewpoint of the symplectic and contact theory of Lagrangian and
Legendrian maps.

1975-29. Explore the singularities of solutions of generic variational problems
(as well as those appearing in typical families with prescribed or not prescribed
finite number of parameters).

1975-30. Investigate the singularities of implicit differential equations (both or-
dinary and partial).
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1976-1. Given a system of Newton polyhedra, is there a system of real polyno-
mials with these polyhedra which has the correct number of real roots (i.e., the
same as for a system with generic complex coefficients)?

1976-2. Consider two plane polynomial vector fields of degrees m and n, respec-
tively. Is it possible to estimate the number of intersection points of their limit
cycles in terms of n and m (find a sharp attainable estimate)?

1976-3. Investigate the convergence of the normal forms of equations of the form

Y'=Fx»Y).

1976-4. Build a theory of the “non-Desargues curvature form” (that measures
local non-equivalence to a linear equation) for y” = f(x,y,y').
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1976-5. Construct a symplectic (or contact) version of the asymptotic Hopf in-
variant: H: M?" — R, o is a symplectic structure, ®|g—; = do, p=aAe" ! €
Q=1 [ B = const is a symplectic analog of the Hopf invariant. Given a
Hamiltonian vector field, study how to measure the average rate of evolution of
a Lagrangian subspace of the tangent space under the flow.

1976-6. Elaborate a theory of CP!-neighborhoods in complex manifolds (similar
to the theory of neighborhoods of elliptic curves already constructed, and preced-
ing the theory of neighborhoods of higher genera curves).

1976-7 (A. Tresse). Justify the finiteness theorems of differential invariant theory.

1976-8. Consider a function with Newton diagram I'. Is it true that each of its
singularities of finite multiplicity is stably equivalent to a I-nondegenerate one?

1976-9. Classify the typical singularities of synthesis in a generic problem of
optimal control given by a typical indicatrix field—a generic family of mappings
of a fixed manifold into all tangent spaces to the base manifold (with the point of
the base as a parameter).

1976-10. Investigate the asymptotic behavior of the measure of deviated trajec-
tories in the problem of a generic perturbation of a generic k-frequency condition-
ally-periodic system with m slow variables.

1976-11. For a given plane vector field with a singular point, construct an alge-
braic complex whose homology describes the limit cycles vanishing at the singular
point.

1976-12 (A. G. Kushnirenko). The Descartes rule implies that the number of real
roots of a polynomial has the number of its monomials as an upper bound. Extend
this observation to polynomials of several variables: the simplicity of a formula
implies bounds on the topology of the variety defined by it. A theory of “fewno-
mials” has been elaborated by K. A. Sevast'yanov and A. G. Khovanskii, but the
estimates obtained in the multidimensional case probably are strongly nonsharp.
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1976-13. Is the stratum P = const smooth? The smoothness of the stratum would
follow from an affirmative solution to the following question.

Given an algebraic action of a complex algebraic group on a finite-dimen-
sional affine space (e. g., a linear representation), consider the set of all points
whose stationary subgroups have a fixed dimension. Is this set a smooth manifold?

1976-14. Does the real modality of a real-valued function coincide with the com-
plex one?

1976-15. For which weights o, = A;/N does there exist a nondegenerate quasi-
homogeneous function of degree 1?

1976-16. Evaluate the modality of a I"-nondegenerate function in terms of its
Newton diagram I'. In particular, prove that for semi-quasihomogeneous functions
the modality is equal to the number of monomials in a basis of the local ring on
the diagram and above it.

1976-17. Evaluate the signature of the quadratic form defined by the intersection
index in the middle-dimensional homology of a local nonsingular level set of a
[-nondegenerate function of » variables when n =3 (mod 4).

1976-18. Find a normal form for all the I"-nondegenerate functions with a given
Newton diagram I".

1976-19. Find the Jordan canonical form of the monodromy operator of a I"-non-
degenerate function with a given Newton diagram I".

1976-20. Let f be the Morsification of a real-valued function with a given sin-
gularity (say, [*-nondegenerate). What is the maximum number of components a
local real level set of f can have?

1976-21. Chebyshev polynomials of several variables. With every critical point
of a function of finite multiplicity, one can associate a “Chebyshev polynomial,”
which is the Morsification of this function with the least possible number of criti-
cal values. (The usual Chebyshev polynomials come from one-variable functions
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of the form z".) Which of the nice properties of Chebyshev polynomials in one
variable hold for the above defined polynomials of several variables?

1976-22. Uniform estimates for oscillatory integrals. An oscillatory integral has
the form

n

103)= [ PP ax, h—o, m

where ¢ is a smooth function concentrated at a sufficiently small neighborhood of
the origin; F is a real-valued deformation of the function f = F(-,0) depending
smoothly on the parameter A; h is a small parameter; F(0,0) = 0. The uniform
index P of the singularity of the function f in the point 0 is the infimum of y such
that for any deformation F

(R, A)| < C(@)[h|2"T @)

for all sufficiently small |A].

The content of the problem is to evaluate the index B (say, for ["-nondegen-
erate functions f).

For every pair of integers n and [ the universal uniform index B(n,l) can
be defined as the infimum of ¥ such that the oscillatory integral (1) has an esti-
mate (2) which is uniform in A for all families F of functions of » variables x and
I parameters A except a meager subset in the function space.

The problem of evaluating rational numbers B(n,!) appears to be very dif-
ficult, because it seems to be almost equivalent to the problem of the full classifi-
cation of all singularities.

For a fixed I and n — oo, the numbers B(n, ) stabilize:

B(n,I) = B(eo,1) = B(I), ifn is large enough.

The rational number B(I) is the greatest singularity index among singularities of
codimension /.

A problem for optimists: find all B(I). A problem for pessimists: find
B(1000).

1976-23. Uniform estimates of preimage variations. Let g be the germ of a dif-
feomorphism (R",0;) — (R",03) or (C",0;) — (C", 03), and let [ be the multi-
plicity of the point g(O;) = O,. The preimages of O, can merge in different ways
depending on the type of the singularity of g at O;. Investigate the asymptotic
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behavior of various geometric characteristics of the preimage of a small ball of
radius & centered at O, as 8 | 0. Thus, describe the different ways in which the
preimages of O, can merge.

An example of such a characteristic could be the so-called variations of all
dimensions.

The variation o (D) of a sufficiently good set D C R”" is the mean value of
the k-dimensional volume of the orthogonal projection of D onto a k-dimensional
subspace L, over all subspaces L C R". The volume is counted with multiplici-
ties, i.e., the number of connected components that are projected into one point.
In particular, 6,(D) is the volume of Dm and 6,(D) is the number of its connected
components.

1976-24. The A, D, E problem. Surprisingly, the Dynkin diagrams

Ay - (k vertices, k > 1)

Dy —— —_< (k vertices, k > 4)

appear while solving various classification problems, such as the classification of:

1) critical points of a function;

2) regular polytopes (or finite orthogonal groups) in R3;

3) categories of vector spaces and linear maps;

4) caustics;

5) wave fronts;

6) groups generated by reflections (or Weyl groups with roots of equal
norm);

7) simple Lie groups;

8) singularities of algebraic hypersurfaces with positive or negative definite
intersection form of a neighboring smooth fiber.

Some connections between these objects are known. However, in most
cases, no explanation of the same answer for different problems has been given.
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The A, D, E problem: Find a general classification theorem from which
the solutions to all of the above problems would follow.

1976-25. The K(m,1) problem. In the case of simple singularities A, D, E the
complement of the bifurcation manifolds of a function and the complement of the
bifurcation varieties of its level set are the Eilenberg-MacLane K (7, 1) spaces.
Can this result be generalized to the case of nonsimple singularities?

More general problem: investigate topological properties of the comple-
ments of the bifurcation subsets of differentiable maps.

1976-26. Complete to a commutative diagram:

Constructing Constructing quasihomogeneous
simple singularities —— two-dimensional singularities
from regular polyhedra from automorphic forms
Constructing

bifurcation diagrams — ?

of simple singularities

1976-27. Complete to a commutative diagram:

Morse Theory — Generalized Whitehead groups
Picard-Lefschetz Theory —— ?

1976-28. The stable cohomology ring. One can associate with a critical point of
a holomorphic function f the cohomology ring H*(f) of the complement of the
bifurcation diagram of the level sets in the base of a versal deformation.

Let f> be the germ of a function from a versal deformation of f;. Then the
transversal to the stratum corresponding to f> in the base of the versal deformation
defines an inclusion of the complements, and hence a homomorphism of the coho-
mology rings H*(f1) — H*(f>). For example, if f; =x" and f, = x"~! then H* are
the cohomology rings of the braid groups with » and n — 1 threads, respectively.
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Moreover, the homomorphism induces the stabilization of the cohomology rings
of the braid groups as n — co.

Does a similar situation appear in general? If yes, what would be the stable
cohomology ring?

Similar questions arise for the complements of the bifurcation diagrams of
functions.

1976-29. The converse of the Lagrange-Dirichlet theorem. Prove that the equi-
librium O of a Newton system X = — grad U is unstable whenever the critical point 0
of the polynomial (or arbitrary analytic function) U (x1,...,x,) is not a point of
local minimum.

1976-30 (R. Thom). Let U : R” — R be a polynomial. Prove that at least one
phase curve of the system x = gradU meets the critical point 0 with tangency to
some straight line.

1976-31. Algorithmic insolvability of the problem of stability. Is the problem of
stability of the equilibrium O of a system x; = P(x) algorithmically unsolvable?
Here P;(x), k= 1,...,n, are polynomials with rational coefficients.

There are closely related problems whose algorithmic insolvability might
imply the algorithmic insolvability of the previous one:

1) The problem of existence of a limit cycle for the system x = P(x,y),
y = Q(x,y), where P, Q are polynomials with rational coefficients.

2) The problem of positiveness of a real Abelian integral ¢ R(x,y) dx along
an oval P(x,y) = 0, where P, R are polynomials with rational coefficients.

1976-32. Typical singularities of solutions of variational problems. It is known
that variational problems lead to discontinuities and singularities even when ev-
erything is smooth in the setting of the problem. The singularities that appear can
be pathologically complex because of infinite degeneracies. Is it possible to avoid
the pathology by considering generic problems?

Examples: the problem of bypassing an obstacle; the problem of the quick-
est path with bounded velocity x € F;, C T,R", Vx € R"; the problem of attainable
points. If we replace the indicatrix F; with its convex hull, then we get the follow-
ing problem: describe the singularities of the convex hull of a generic k-dimen-
sional submanifold in R”.
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1976-33. Singularities in the theory of partial differential equations. Consider a
generic partial differential equation with smooth initial data and smooth boundary
conditions. Describe the nature of singularities of solutions of the system on sur-
faces, curves, and at points in space, that are responsible for the situation when a
solution is not smooth but belongs to some functional space.

1976-34. Compositions of algebraic functions. Consider an algebraically closed
field k and n independent variables xi, ..., x, over k. Let K be the algebraic closure
of the field k(x1, ..., x,). For every natural number r < n define the subfield M, C K
of all elements of K that can be obtained by a composition with not more than s — 1
iterations of algebraic functions of r variables. Clearly, M\ C M C ---C M, =K.

Can it happen that M, = K for some r < n? More generally, how many
distinct fields are there among Mj,...,M,? How many distinct fields are there
among M;, where M; C M, C K is the subfield of all elements of K that can be
obtained by a composition of not more than s — 1 algebraic functions of r variables.
For example,

—kX1, X UMs

Find the minimal M, (or M}) which contains an element f satisfying
fn'Jf'xlfn_1 +--- +xn—1f+xn =0.

Similar questions make sense for the field k(x;,x2, ... ) with an infinite number of
variables x;.

1976-35. How many connected components can the complement of a degree n
algebraic hypersurface in RP* have? This is unknown already for k = 3.

1976-36. What are the possible arrangements of ovals of a plane projective curve
of degree d such that the number of ovals is maximal possible, i.e., equal to
1+3(d-1)(d-2)?

1976-37. Can a planar vector field defined by two quadratic polynomials have
more than 3 limit cycles?

1976-38. Determine the singularities and other analytic properties of thermody-
namic functions when the interaction potential is known.
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1976-39. Does a symplectic diffeomorphism of the two-dimensional torus have
a fixed point whenever this diffeomorphism is homologous to the identity?

1976-40. What could be the mathematical equivalent of the physical notion of
turbulence? One of the aspects of this question: find “good” theorems of existence
and uniqueness for the 3-dimensional Navier-Stokes equations.

1976-41. Find mechanical (physical, chemical, etc.) phenomena which can be
described by systems with exponential repulsion of trajectories and with internally
unstable attracting modes.

1976-42. The numerical qualitative or ergodic investigation of multidimensional
dynamical systems (and, in particular, of limit modes in these systems) relies on
posing questions that are realistic, rather than those that usually appear in abstract
classification theorems. The high-priority problems here are:

1) teach a computer how to determine whether a trajectory enters a neigh-
borhood of an attracting invariant set;

2) if it does enter, teach a computer how to determine the dimension of this
set and, if possible, its topology;

3) teach a computer how to find the ergodic characteristics of motion on
this set; first of all how to determine whether the trajectories have exponential
instability on this set (i. e., whether the entropy is positive).

1977-1. Investigate the connection between the spectral sequence of the Newton
filtration and the mixed Hodge structure of a I'-nondegenerate singularity.

1977-2. Deduce generalizations of Petrovskil’s inequalities for curves with sin-
gularities from the mixed Hodge structures (hypersurfaces, etc.).

1977-3. Give a classification of unimodal boundary singularities.
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1977-4. Give a classification of the simple singularities in the presence of a fixed
singular hypersuface (or another algebraic subvariety).

1977-5. Explore the discriminant of H3.

1977-6. Axiomatize the theory of complete and linearized invariants convolu-
tions.

1977-7. Determine and investigate the indices of singular points of 1-forms on
singular varieties.

1977-8. How do the Reidemeister and Ray-Singer torsion appear in singularity
theory?

1977-9. Give a classification of nondegenerate quasihomogeneous maps C* —
C3 and C? — C? (similar to the decomposition of the space of maps C2 — C? into
three types, and of the space of maps C> — C3 into seven types).

1977-10. Prove Lyashko’s statements about the Poincaré polynomial of a quasi-
homogeneous map f : C" — C" with weights A; in the domain and D; in the range:

1 — st s—stP sds
1) = (—1)m = LP-LA |
p() =(=1) +£g(S)Hs—stAfH1—stDil—s

e ]

Form—n=1,
11 =P . A _
p(t)=HEl—_,A,;D:’ P 1] 4R

—¢hi
p() = T(1 _t ) (Y2~ Y A 4 1 4(EP-EA] _ ID-TA,
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If m~n=1, then p(t) = tLP~L4h(t), where h is the Poincaré polynomial
of the Hamm-Gruel filtration:

sthi4+ 1 stPi—s ds
h(t)=(—=1)"""|-1
(6) = +reSHtAi—1 1-[stD"+1s(s+1)
Qrel — Qm_”/de_"_l +df/\gm—n—1
(the slash here means “modulo”).
For m —n = 2 this fails: Dy =Dy =2, Aj = --- = Ag = 1, h(t) = 3t* + 413,

p(t) =2t72 4471+ 1. If m—n =2, then k(1) = p(1). It is not known whether
this is the case if m —n > 2.

1977-11. Investigate the mapping that associates with each (unordered) set of
critical points (of a function from a versal deformation) the (unordered) set of
critical values. Investigate also the corresponding maps: (ordered sets of critical
points) ~ (unordered sets of critical values). Find the discriminants, fundamental
groups and other invariants of branched coverings. How do the critical points
rearrange after a circuit around a caustic?

1977-12. Investigate the bifurcations (with the parameters Re€, Imeg) of the fam-
ily of vector fields on the plane z = €2+ Az|z|? + Z° if the values of A are generic.
(Conjecturally, they are the topologically versal deformations of Z4-symmetric
fields for each of the 48 domains in the A-plane.)

et S T —
2| ) 4 »
wsak :':SA-—- x

1978-1. Investigate the topological properties of functions f(x) = max, F(x,y).

1978-2. Explore the singularities of the boundary of the attainability manifold
in a typical controlled system.

1978-3. Explore the singularities of the Nekhoroshev steepness indices (the strat-
ification of the variety of Hamilton functions with respect to the indices). Calculate
the indices of a typical system with 1, 2, 3 degrees of freedom at all the points.
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1978-4. Let {I,} be a collection of first integrals of a Hamiltonian system. As-
sume that {I,} is closed under taking Poisson brackets, so that (I, I3) = Fop(I).
Is it possible to replace {Io,} with {Jq} such that (Jo,/p) = ):/YCZLBJY? (If not, what
deformations of the initial terms Lie algebra are not equivalent to each other?)

1978-5. Formalize the principle: whatever is good, is also delicate.
1978-6. Relaxed Hilbert 16th problem.

1978-7. What resonances in a three-frequency Hamiltonian system are strong (the
strong resonances in a two-frequency system are |@|: [@z|=1:1,1:2,1:3,2:3,
1:4,3:4,2:5,4:5)?

1978-8. Describe the boundary singularities B, and C, that appear in the problem
of bypassing an obstacle.

1978-9. How many cycles emerge from generic two-parameter bifurcations when
eigenvalues pass through +i®;, +im; (in the corresponding slow system, i. e., for
a vector field in the plane that is tangent to the sides of an angle, from a bifurcation
with nonzero eigenvalues) in a two-parameter family of such fields, or—which is
the same—for (Z, x Z;)-equivariant fields in the plane?

1978-10. Investigate the stratification of the manifold of linear elements of gener-
ic surfaces near each of the 10 strata.

1978-11 (V.L.Popov). Find a connection between the theory of singularities and
the quotients of C2 by finite subgroups of U(2) (not SU(2)!).

1978-12. Investigate geometric (topological?) properties of p-real submanifolds
in CV or in a Kihler manifold (with a restriction on the dimensions of the intersec-
tions of the tangent planes with the tangent planes multiplied by i).

1978-13. Investigate the relations between Smith’s theory of complex conjuga-
tions and the mixed Hodge structure on a manifold.
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1978-14. Investigate Lie subsemigroups (e.g., of SL(2,R)) and their tangent
cones at 1.

1978-15. How many limit cycles can emerge from a zero of a ['-nondegenerate
vector field with a given Newton diagram I'? Is it true that their number is less
than some constant N(I")?

1978-16. Investigate the singularities of Gaussian maps globally.

1978-17. Investigate the theory of symmetric hyperbolic systems of partial dif-
ferential equations in the framework of singularities.

1978-18. Construct explicitly the local topological classification of Lagrangian
and Legendrian maps in the cases where the smooth classification has modules,
or even functional modules. The smooth classification has been described by
V. M. Zakalyukin (it contains functional parameters) up to dimension 10, inclusive
of the mapped Lagrangian or Legendrian manifold.

But the following is not clear:

a) Does the Zakalyukin class define the topological type of the Lagrangian
(Legendrian) map? That is, is this type constant along each class?

b) Does this class define the topology of the decomposition into simpler
classes of a neighborhood in the space of jets? That is, are the bifurcation dia-
grams locally diffeomorphic or at least homeomorphic?

¢) Here the bifurcation diagram can be interpreted as:

— A: discriminant (a bifurcation diagram of zeros);

— B: bifurcation diagram of functions (in the truncated base);

— C: the projection of A onto B;

— D: the decomposition into Lagrange classes in the space of jets;,
— E: the decomposition into Legendre classes.

d) Similar questions for multi-jets.

e) In order to apply transversality arguments to these stratifications of uni-
versal objects we need to know whether Whitney’s A and B conditions are satisfied.
(Conjecturally no, hence Zakalyukin’s “stratification” is subject to a refinement!).

1978-19. Investigate the bifurcations of type Ds in the 3-space topologically
(the problem has been studied by V. I. Bakhtin).
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1978-20. Investigate the singularities of bicaustics of type Ds, up to diffeo-
morphisms.

1978-21. Investigate the process of sweeping the bicaustic Dy, up to equiva-
lence (strong equivalence): given three smooth curves @; : (R,0) — (R2,0) starting
from 0 with the same velocity v # 0, in all other generic. The equivalence is pro-
vided by the diagrams

(R,0) —— (R%,0)
L J»
(R,0) —— (R%,0)

(where the diffeomorphisms 1 and 4 are independent of 7); the strong equivalence
is: 7(t) =t + const.

1978-22. What is the behavior of the mixed Hodge structure of a singularity un-
der the action of a complete monodromy group? (This can distinguish subgroups
in m ?)

1979-1. How can one construct the quivers A, D, E from the singularities A, D, E
(and their local rings)?

1979-2. Show that, for a generic function F, the function min, F(x,y) is a topo-
logically Morse function.

1979-3. Prove the semicontinuity of the spectrum of a singularity. Is it the spec-
trum of an oscillating system with i degrees of freedom? In this case its interlacing
by the spectrum of a close system with . — 1 degrees of freedom would follow from
the Rayleigh—Courant-Fisher theory.



38 The Problems 1979-4

1979-4. Construct a “complexification” of the homology theory (replacing a
boundary with a two-sheet branched covering). What is the complexification of
orientation? (Apparently, it assigns an element of Z = m; (U(n)) to a loop?)

1979-5. Construct the characteristic classes of Lagrangian singularities from the
stable cohomology ring of complements of caustics.

1979-6. Do the real and the complex modality for a critical point of a function
always coincide?

1979-7. Analyze the theory of envelopes in the framework of the theory of sin-
gularities. Find versal unfoldings, bifurcation diagrams, and the connection with
symplectic and contact geometry.

1979-8. Why are caustics irreducible? How many irreducible components does
the singularity manifold of a caustic have?

1979-9. Investigate the properties of the discriminants of non-quasihomogeneous
Legendrian singularities. No topological classification has been found, even in the
cases where a smooth classification (with moduli) is available.

1979-10. Describe the mixed Hodge structures of superpositions of functions.

1979-11. Investigate typical singularities of the boundary of the time-like attain-
ability domain.

1979-12. Investigate the singularities of the time of shortest bypass of an obstacle.

1979-13. Is it true that the singularities of the boundary of the attainability do-
main in a generic controlled system are the same as those of a generic projection of
a manifold with boundary? More generally, a “parameter” in optimization prob-
lems is a choice of control from a function space (which can have a boundary
or other singularities). Are the singularities of the boundary of attainability in
this case the same as those of a generic projection of finite-dimensional boundary
manifolds with the same singularities?
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1979-14. Is it true that the function of the shortest time within the attainable set
has the same type of singularities as the minimum min, F(x,y) of a generic family
of functions?

1979-15. Investigate the bifurcations of the phase portrait in two-parameter
generic systems of vector fields in the plane for the fields which are tangent to:
a) a line, b) a pair of intersecting lines. (The normal forms for the eigenvalues are
0, +im and +im;, +im,.)

1979-16. Study the number of zeros of the integral I(h) = §, (Pdx+ Qdy),
where 1, is a closed curve from the (continuous) family of periodic orbits of a
polynomial vector field [e. g., Y, = {x,y : H(x,y) = h}, say, for H = y* + x> — x]—
an infinitesimal version of the Hilbert 16th problem on cycles. What can be the
maximal number of roots of (k) when I(h) is not identically zero?

1979-17. Give an asymptotically sharp bound for the number of connected com-
ponents of the space of nonsingular real algebraic hypersurfaces of degree d.

1979-18. Is the equality in the Petrovskii-Oleinik inequality attainable?

1979-19. Does the Ragsdale conjecture hold? One may reformulate this conjec-
ture as follows. Let f(x,y,z) be a homogeneous polynomial of an even degree,
F: = f+1? and RV, is the local level surface Fi. = +¢. The Ragsdale conjecture
is in the estimates of the number of components

bo(RV,) < HP(Fy), bo(RV_) < K2 (F_)+1

in terms of the mixed Hodge structure (if f has appropriate sign).

1979-20. Give the best possible estimates (through the degree or a Hodge num-
ber) for the individual Betti numbers of real algebraic hypersurfaces, in particular,
for the number of components bg. Probably, it is easier to estimate the numbers
bo, bo — b1, bo — b1 + by, ..., etc. and the combinations of the local type Morse
numbers Mg, Mo — M1, My — M1+ M, ... (M; is the number of critical points
of index i merging at zero for some Morsification of the homogeneous equation
of a hypersurface).



40 The Problems 1979-21

1979-21. What is the maximal number of handles that a component of an alge-
braic surface of degree n in RP? can have?

1979-22. Estimate the number of ovals of a curve with a fewnomial equation,
through the number of its terms.

1979-23. How many nonconvex ovals can a plane algebraic curve of degree n
have?

1979-24. Does the isotopy type of the pair (plane M-curve, its complex orienta-
tion) determine a connected component in the space of nonsingular projective real
curves of a given degree?

1979-25. Explore the fundamental group m; of the complement of the set of sin-
gular hypersurfaces in the complex projective space of all hypersurfaces of a fixed
degree in CP™. Find the corresponding monodromy group (a representation of m;
by automorphisms of the homology group of a hypersurface).

1979-26. Consider the system x = P(x,y), y = Q(x,y) where P, Q are polyno-
mials of the second degree, and let H(x,y) be a first integral of this system (not
necessarily a polynomial one). How many limit cycles can emerge from com-
ponents of level curves of H by small variations of P, O leaving them quadratic
polynomials?

1979-27. In the system of differential equations X = P(x,y), y = Q(x,y), let P, Q
be power series starting with homogeneous polynomials P,, O, of degree n. Is
it true then that for almost all pairs (P,, 0,) the number of limit cycles emerging
from the origin by a small perturbation of the system, is bounded by a constant
depending only on n?
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1980-1. 1(h) = §_,(Pdx+ Qdy). Find an upper bound for the number of zeros
of the function I.

1980-2. The boundary value problem for % = P(x,e"), x(2rt) = x(0): the number
of solutions.

1980-3. The number of limit cycles emerging in the “Lotka—Volterra” system

i=x(ot+PBx+yy+--)
y=y(B+ex+Gy+--)

near o = 8 = 0. In particular, integrals along xPy17" =h,z=1—x—1y.

1980-4 (E. A. Demékhin). Explain the strange bifurcations of 2n-periodic solu-
tions of the equation &°x!'Y 4 kx + %2 = 0 as the parameter k varies.

1980-5. Investigate the structural stability of contact fields in R.

1980-6. Apply the mixed Hodge structures to the Jacobian problem (in both cases
analyticity differs from algebraicity!).

1980-7. Construct a theory of caustic cobordisms (different from that of La-
grangian cobordisms).

1980-8. In the theory of singularities (e. g., critical points of functions), why is the
codimension in the real case the same as in the complex case? Compare with the
R- and C-modality and with the (co)dimension of the prolonged self-intersection
line of the swallowtail or the umbrella.

1980-9. Apply mixed Hodge structures to real algebraic geometry. For example,
for estimation of topological invariants of real Morsifications, and for investigation
of the topology of discriminants.
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1980-10. Apply mixed Hodge structures to problems concerning superposi-
tions—for they “remember” the dimension of the smooth algebraic cycle from
which a given (co)cycle originates (say, on the graph, or on the discriminant,
or on the complement).

1980-11. Prove the semicontinuity of the spectrum of singularity. If the singular-
ity S is adjacent to a simpler singularity S’ with p’ < p, then jy <[, fork=1,...,p".

1980-12. Complexify the homology theory.

1980-13. Do there exist any formulae for the complete invariants convolution
in terms of the linearized convolution (similar to the Campbell-Hausdorff formula
representing multiplication in a Lie group via the commutator of its Lie algebra)?

1980-14. What is the complex analog of the generalized Whitehead groups in
algebraic K-theory? One of the candidates is the “quasiresolvent” of the funda-
mental group of the complement of the bifurcation diagram of a singularity.

1980-15. The embedding of the base C*' of a versal unfolding of a simpler singu-
larity S’ into the base C* of a versal unfolding of a more complicated singularity S
(1L > ') induces a homomorphism

H*(C*\I) - H*(C¥\¥)

of the cohomology rings of complements of the corresponding bifurcation dia-
grams.

Are these homomorphisms canonical? Is it possible to define the stable
cohomology ring?

1980-16. Does the real modality of a real singularity with finite multiplicity
f:(R",0) — (R,0) always coincide with the complex modality?

1980-17. Show that the function F = max, f(x,-) is topologically equivalent to a
Morse function for a generic family f.
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f}

1981-1. Lannér schemes (Coxeter schemes for the groups generated by reflec-
tions in the walls of simplices in the Lobachevskian space).

o— — —0 o——0—0—o0 (e 0 (e, 0 [e: O O0———0 o]
O—0—C—=0 o——0 O 0} C: O——(C—0
AD O——0—0=—=0 o——o0 o——o0 [e—0¢; -O——0—=0

a b c

Simplices in the Lobachevskian space: a) the series on the plane, b) 9 simplices in
the three-dimensional space, c) 5 simplices in the four-dimensional space.
Find applications of these schemes in singularity theory.

1981-2. Calculate the worst Nekhoroshev indices for generic Hamiltonians with
n degrees of freedom (or at least the asymptotics of these indices for n large).

1981-3. Let
I(A) = / SN/ hg(x \) dx,
x€Rk

where S is a generic function. Prove that there is the following bound for A such
that S(-,A) is a Morse function:

-1/2
det @

< CHrI2
(M) < Chr )3 =

x € critS(-,A) Nsuppa(-,A)

b




44 The Problems 1981-3

where crit is the set of critical points of a function, and supp is its support. Y. Colin
de Verdiere proved this for simple or parabolic singularities.

1981-4. Does there exist an exact Lagrangian embedding of T? into the standard
symplectic space R*?

1981-5. Will a nonstandard contact structure of R3 remain nonstandard after an
arbitrary complexification?

1981-6. Evaluate the cohomology rings L; = lim &, ;T A,,, where A, are the tau-
n—oo

tological Grassmann bundles over U(rn)/O(n) or over U(n)/SO(n), and T is the
Thom space.

1981-7. A quasifunction is an exact Lagrangian embedded submanifold of T*V
that is isotopic to the zero section in the class of such embeddings. Critical points
are intersections with the zero section. Conjecture: the number of critical points
for a quasifunction is not less than for a function.

1981-8. What function on the collar can be extended over the ball without critical
points?

1981-9. Consider closed contractible (bounding a disk on the universal covering)
curves of constant geodesic curvature K # 0 on a surface M2. There are at least as
many such curves as critical points of a function on M2, Counterexample: horo-
cycles on a surface of constant negative curvature. However, for T and S? this
conjecture has not been disproved.

1981-10. Construct a bifurcation theory for optical caustics, in particular, prove
that “flying saucers” caustics do not exist.

1981-11. Find a Lagrangian singularity related to the hypericosahedron group Hy.

1981-12. Find the (Zariski) relations between the (Zariski) relations of swallow-
tails (and, in general, explore “syzygies,” or “noncommutative resolvents” of the



1981-12 The Problems 45

fundamental groups of complements of algebraic hypersurfaces, associated with
the sequence of complete flags of generic projections, and with generators and re-
lations of the sequence of the fundamental groups of complements of discriminants
of those projections).

1981-13. Evaluate the fundamental group of the space of nondegenerate plane
curves of fixed degree d.

1981-14. Investigate the singularities of the density of a gravitationally evolving
dust-like medium, if the initial potential field of velocities is generic (even on the
line!).

1981-15. Can the barycenter of a convex part of a closed convex surface coincide
with the barycenter of the surface?

1981-16. Is it true that a polynomial vector field on the plane has only finitely
many limit cycles? H. Dulac committed an error proving it.

1981-17. Investigate the winding number of an analytic diffeomorphism of S!
(x+— x+a+ bsinx, etc.) as the limit (as Ima — 0) of the modules of elliptic curves
formed by the orbit space for Ima # 0. What are the singularities of the analytic
extension of the rotation number as a function of a?

1981-18. Is there a kinematic magnetic dynamo in the topology of the three-di-
mensional ball B3?

1981-19. Give a contact version of the problem of bypassing an obstacle.

1981-20. Is it true that the singularities of the increment of a generic family of
matrices (polynomials) are topologically equivalent to convex polyhedral or at
least Morse functions (possibly, polyhedrally convex, Morse modified along the
parameters, on which everything depends smoothly)?

1981-21. Explore singularities in typical controlled systems.
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1981-22. Develop the theory of versal unfoldings of differential forms f(x)(dx)%.

1981-23. Evaluate the number of different “inflections” of algebraic surfaces of
degree d in CP>.

1981-24. Investigate what the mixed structures and the spectra can provide for
the Bruce problem about the maximum number of Morse points on a hypersurface
of degree d.

1981-25. Work out a monodromy theory (of a representation of ®; of the com-
plement to a bifurcation diagram) for complete intersections (not only for hyper-
surfaces): one should consider flags of hypersurfaces and sequences of Dynkin
diagrams.

1981-26. Explore the effects of singularities (inflections of various types) on the
asymptotics of the numbers of integer points on submanifolds of the Euclidean
space and inside its domains (as well as the effects on the Diophantine approxima-
tions).

1981-27. Construct a theory of self-intersections of Lagrangian and Legendrian
manifolds. To what extent are the self-intersections topologically inevitable (lo-
cally and globally)?

1981-28. Investigate the singularities of the convex hulls of M> in R* (especially
their modules).

1981-29. Elliptic coordinates in R":

a) a “magnet” generalization of the Ivory theorem (to forms);

b) infinite-dimensional versions (with either discrete or continuous spec-
trum): what happens to the Jacobi formulae? in particular, to the surprising duality
between the expression of impulses in the elliptic coordinates and the inversion
formula of the coordinates;

c) elliptic coordinates and the Hilbert transformation;

d) equations of mathematical physics, integrable with the help of b).
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1982-1. Is the symplectic structure of a neighborhood of the Lagrangian opening
of the swallowtail standard?

1982-2. The Morse-Darboux super-lemma.

1982-3. Give a description of the liftable diffeomorphisms and fields in terms of
their behavior on the singularities in the base.

1982-4. In the theory of integrable systems, Coxeter groups A, D, E appear
(A.M. Perelomov and others). In the theory of integrable systems with a boundary
(E.K. Sklyanin), do H3 4 also appear?

1982-5. Describe the shapes of the resonance zones for torus mappings defined
by trigonometric polynomials which perturb a translation (Mathieu type systems).

1982-6. Study the asymptotics of solutions of the thermoconductivity equation on
differential forms with transfer (“dynamo”): uniqueness of the stationary solution
in a given homology class.

1982-7. Investigate the singularities of the boundaries of the manifolds of elliptic
and hyperbolic polynomials.

1982-8. 1t is known that the first sheet of a hyperbolic surface is convex. What
can be said in this vein about the second, third etc. sheet?

1982-9. What happens to Legendre transforms (fronts) if the initial functions (hy-
persurfaces) depend on parameters and become singular for some parameter val-
ues? What perestroikas of dual objects take place there?
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1982-10. Supplement the formal analysis of normal forms performed in the paper
ARNOLD V.I. Reconstructions of singularities of potential flows in a collision-
free medium and caustic metamorphoses in three-dimensional space. Trudy Semin.
Petrovskogo, 1982, 8, 21-57 (in Russian); the English translation: J. Sov. Math.,
1986, 32(3), 229257, by a study of smooth and analytic normal forms.

1982-11. Prove that taking gravitation into account in a dust-like medium does
not affect the topological features of caustic perestroikas (with typical initial po-
tential flow).

1982-12. Given a stratum p = const, what maximal value of | do the adherent
singularities have? For instance, the adjacency P; — Eg exists whereas P3 — A7
and Py — D7 do not.

1982-13. Find normal forms for a typical contact structure in a neighborhood of
the swallowtail (and investigate the hierarchies arising from the constraints on the
ranks along submanifolds or on their tangent planes at the singularity).

1982-14. Develop the algebraic (analytic?) symplectic (contact) geometry that
treats all the things in terms of ideals. Example: replace df = O with 3k : the
Poisson bracket of f and % is 1. Some theorems known in the nonsingular situation
may happen to be more general (say, for isolated singularities?).

1982-15. Let s
=7 r
/g z“‘k——l = ;prz
(Ar and N are natural numbers) be a polynomial with nonnegative coefficients p,.
Consider the number B(a) = Y.(p, : aN < r < (a+ 1)N).

Increase the fractions N /A (so that the coefficients of the polynomial re-
main nonnegative). Prove that the number B(a) will then also increase (possibly
nonstrictly).

In the n-dimensional case, Ay /N are the weights of a quasihomogeneous
function with an isolated singularity at 0.

1982-16. Consider a Newton polyhedron A in R" and the number pL(A) = n!V —
Y(n—1)!Vi+ Y (n—2)!V;;—---, where V is the volume under A, V; is the volume
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under A on the hyperplane x; = 0, V;; is the volume under A on the hyperplane
x; =x; =0, and so on.

Then p(A) grows (non strictly monotonically) as A grows (whenever A
remains coconvex and integer?). There is no elementary proof even for n = 2.

1982-17. Consider the boundary value problem Au = 0 in the domain bounded
by a quadric (say, a hyperbola in the plane, with the boundary value 1 on one
component and O on the other). Then there exists a “natural” solution (moreover,
there is a natural condition at the infinity which selects it).

Does there exist any reasonable filtration for harmonic functions and forms
in the case of generic (hyperbolic?) algebraic hypersurfaces that yields a one-to-
one correspondence between (relative) homology classes and harmonic representa-
tives (for quadrics, the answers of Vainshtein and Shapiro would appear)? Is there
a real version of the mixed Hodge structure?

1982-18. Develop the singularity theory for mappings between symplectic (con-
tact) manifolds (a singularity is a violation of symplecticity).

1982-19. Explore symplectic correspondences, i. e., multivalued symplectomor-
phisms
X2 C (A% x B™), (W@, +hop)|x2n is symplectic.

Find the hierarchy of the germs of such correspondences.

1982-20. Study the rationality of Poincaré series in natural analytic classifica-
tion problems, e. g., for the germs of typical mappings in the worst dimensions
where functional moduli are inevitable (virtually excluding the germs from a set
of infinite codimension). Another example: apply this to the classification of the
equations y” = F(x,y,y').

1982-21. What happens to the Givental triads when the quadraticity condition is
violated (generically)?

1982-22. Can a divergence-free vector field tangent to the layers of Rieb’s folia-
tion have an exponential repulsion of trajectories?
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1982-23. Investigate the singularities in the problem of bypassing an obstacle
when the latter is not a hypersurface in the ambient space (e. g., for curves in R3).

1982-24. Can the center of mass of a convex domain in a homogeneous sphere
coincide with the center of the sphere? Since it cannot, it makes sense to try to
prove the existence of two closed curves (magnetic trajectories) of constant posi-
tive geodesic curvature on the sphere as follows. Fiber the space of convex disks
over S by associating to a disk its “center” point on the sphere. Find constrained
critical points along fibers using variational methods, and then apply Morse theory
techniques to look for critical points along the base.

W

1983-1. How many points (curves, ... ) of inflections of various types are merged
at a singular point of a hypersurface (subjected to a generic diffeomorphism)?
J. Pliicker: 6 inflections meet in Ay, and 8 in A3.

1983-2. Courant’s theorem says that the zeros of the n-th eigenfunction of the
Dirichlet problem for the Laplace equation divide the domain into at most » parts.
Carry over Courant’s theorem to the case of systems (when the zeros form a set of
codimension greater than 1).

1983-3. Can one carry over the Conley—Zehnder theory to reversible systems (the
latter resemble Hamiltonian systems so much that one would like to treat the prop-
erty of being Hamiltonian as a variety of “superreversibility”)?

1983-4. Let N lines be given in the real plane, and their complement be chess-like
painted black and white. What is the greatest difference between the number of
black and white regions?

1983-5. How many points of maximum can a polynomial of degree d in two (n)
variables have? In particular, what would it be if all (d — 1)? critical points are real?
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1983-6. Find local contact classification of pairs of surfaces in J! (R, R) (in C*).

1983-7. How many nondegenerate periodic orbits can a diffeomorphism of S!
have if it is given by a trigonometric polynomial of degree n? The same question
for a smooth map which is onto, or for a diffeomorphism which is given trigono-
metrically-rationally.

1983-8. Investigate real forms of reflection groups.

1983-9. Is it true that the number of periodic trajectories of a diffeomorphism
of S! is bounded by the integers which are the invariants (e. g., genera, bidegrees)
of the algebraic self-correspondence that is the complexification of the diffeomor-
phism?

1983-10. Consider a projection R"=)? — R*=)2 and the preimage of the integral
points Z*=)2_ that are parallel lines (subspaces of dimension n — k) in R("=)3,
Consider a generic curve (manifold of dimension k — 1) yin R("=)3 and its linking
number with all the parallel lines (subspaces of dimension # — k). Investigate the
behavior of the linking number under dilations of ¥ in terms of inflection points
of v. (If n = k then this is a question about the number of integral points in a
domain!)

1983-11. Is it true that the integrals I(h) = §;,_, (P dx+ Q dy) with varying poly-
nomials P, Q form a Chebyshev system (or, at worst, the number of zeros is not
too much greater)? Here, for instance, H is a cubic polynomial ¥y +x3—x. Asim-
ilar question is also interesting about perturbations of other integrable polynomial
systems of the Lotka—Volterra type [where H = x*y#zY, z = 1 —x —y, with the
corresponding (non-polynomial) P, Q].

1983-12. Carry over the relation of indeterminacies (which connects projections
of a Lagrangian manifold onto p- and g-subspaces) to Lagrangian manifolds with
singularities and to the duality of convex polytopes. For example, the stronger
is a singularity of an oscillatory integral (as the wave length h — 0), the less is
the number of points (in the A-space) with this asymptotic (since S(x,A) — Ax is a
Morse function in (x,\)). But one can probably say more!
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1983-13. De Rham mixed structure theory: Define filtrations in a neighborhood
of a singularity of a form in the real case in terms of the type of the singularity.

1983-14. Describe the Gibbs distribution of the density evolution under the action
of a small diffusion € and a flow v with multivalued potential U on a non-simply
connected manifold as € — 0: u, + (uv)x = €Au, v = —gradU (e. g., v is a pseu-
doperiodic function on R?, v = ax + by + periodic part, and u is a function on a
torus R? /periods). Describe how the limit is being approached (for a generic U).

1983-15. Is it true that the singularities of the ellipticity and hyperbolicity bound-
aries in generic families are the same (topologically, smoothly) as the singularities
of graphs of functions max, F(x,y) for generic families F?

1983-16. Is it true that the number of limit cycles emerging from a singular point
of an analytic system, is bounded (except for systems forming a set of codimension
infinity, or possibly except for the integrable ones only)?

1984-1. Examine the singularities of the boundary of the space of Chebyshev
systems of functions.

1984-2. Construct a Morse theory with nonholonomic constraints, say, for higher
derivatives.

1984-3. Investigate global topological restrictions on caustics implied by the con-
dition that the eiconal is positive definite.

1984-4. Prove that on T? there are (generically) at least four closed (on the uni-
versal covering) curves of constant geodesic curvature K > 0.
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1984-5. Consider the circle x> +y* = 1 and a quadratic function with parabol-
ic level lines intersecting the circle not more than twice [e.g., y + (x — a)?,
|a| > ag, where the value ag > 0 is determined by the condition that the parabola
y + (x — ap)? = co has a point of cubic tangency with the circle under a suitable
choice of cg]. Consider the correspondence permuting the intersection points.
The product of two such correspondences changing orientation (the second, for
example, changes the sign of y or of x) determines an orientation-preserving diffeo-
morphism of the circle onto itself. Is the number of cycles (periodic trajectories)
of this diffeomorphism bounded by a constant independent of a?

1984-6. Classify the germs of “generic” Poisson structures in R>. The term
“generic” needs to be defined. The situation is the same as in classifying Lie
algebras or commuting pairs of functions on the symplectic plane and in similar
problems: the initial infinite-dimensional space is not smooth and, generally, may
have components of “different dimensions.”

1984-7. Build the theory of versal deformations of Fuchsian systems. Is it true
that regular singularities are isomonodromic limits of (confluent) Fuchsian points?
Which matrices from the monodromy group converge to the Stokes matrices in the
irregular case?

1984-8. Give an axiomatic definition of skew-symmetric versions of the mon-
odromy groups of simple singularities (which would lead to their classification,
similar to the classification of reflection groups or Weyl groups in the symmet-
ric case). Apply this definition to complete intersections (considering a flag of
embedded hypersurfaces and sequences of root systems).

1984-9. Is the number of Dynkin diagrams (of strongly distinguished bases) of a
fixed singularity finite?

1984-10. Describe variational and symplectic properties of Picard-Fuchs equa-
tions (the Gauss—Manin connection). Are they not the Euler equations for an ap-
propriate group?

1984-11. Translate the relative Morse theory into the symplectic language of the
theory of Lagrangian intersections or Legendrian links.
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1984-12. Carry over the asymptotic ergodic definition of the Hopf invariant of a
divergence-free vector field to S. P. Novikov’s theory generalizing the Whitehead
product in homotopy groups.

1984-13. Does there exist a mapping RP> — R? with only one Whitney cusped
singularity? Yes; solved by Yu. V. Chekanov on October 23, 1984.

1984-14. What is known about C-contact structures in C3?

1984-15. How can we extract information independent of the choice of generat-
ing loops in the successive fundamental groups of complements of points on the C
fibers of successive bundles from the “resolutions” of the fundamental groups of
complements of algebraic hypersurfaces?

1984-16. Study the equation dy/dx = f(x,y) where x and y are angular coordi-
nates on the circle while f is a trigonometric polynomial: How many limit cycles
can occur for a given Newton polygon?

1984-17. Prove that the standard symplectic space R* contains no exact embed-
ded Lagrangian torus.

1984-18. Complexify the Rolle theorem: if the image of the boundary of a disk
equals 0 modulo 2, then the disk contains a critical point inside.

1984-19. Classify the umbrellas in a contact space (that is, germs at the vertex
up to contactomorphisms).

1984-20. Calculate the number of vanishing inflections (of type A,) at a singular
point of a hypersurface A, in C? (in C") subjected to a generic diffeomorphism
(if n = 2 then there are 8 inflection points of type A,—Pliicker’s formula).

1984-21. Consider a “generalized Bernoulli scheme”—a network of identical au-
tomata with finite radius of action (and memory) in Z" (n = 17?). Can one derive
from their work a difference approximation to something non-Gaussian (i. e., not
to the equation of heat conductivity)? Just to what?
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1984-22. Does there exist a finite number (as R. Thom assumed) of various
(germs of) bifurcations of the phase portrait of a gradient system, generically de-
pending on 4 parameters? R. Thom stated that there are T types of such systems.
According to B. A. Khesin, there are at least 13 of them, but probably their number
is infinite?

1984-23. Develop a ‘“‘supertheory” whose even component corresponds to re-
versible systems, and odd one to Hamiltonian systems.

1985-1. Examine the singularities on the boundary of the space of fundamental
systems of solutions to n-th order linear ordinary differential equations.

1985-2. Examine the singularities on the boundary of the space of Chebyshev
systems of functions.

1985-3. Study the topological properties of the stability boundary of n-th order
linear ordinary differential equations and of the graph of increment.

1985-4. Given the equation
U+ (UV)x = Ellyy, v is a potential field,

on the circle x mod2x, investigate the eigenfunctions of this equation with the
eigenvalues close to zero, as € — 0 (also study the case of a multivalued potential).

1985-5. Given a contact structure (say, the standard one) on S? and a curve being
a Legendrian knot of a certain type. How many characteristic chords of the knot
are ensured (for an arbitrary contact form)?

1985-6. Transfer the Ragsdale conjecture to singularity theory (express the right-
hand sides of the Ragsdale-type inequalities for Morsifications of a singularity
in terms of the invariants of the singularity rather than in terms of degree). Even
for x"+y", a new theory is obtained because of upper deformations.
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1985-7. Prove theorems on the stabilization of various objects: the cohomology
rings of complements of bifurcation diagrams (in C and R?), the multiplicities of
strata adjacency, the increment, the boundary of hyperbolicity, Vassiliev’s complex
of strata, etc.

1985-8. Develop R- and C-theories of vanishing inflections (and flattenings).

1985-9. Give an axiomatic description of the Poisson structures arising from
mappings of periods of general forms (even for Ay): a) determine the ranks (e. g.,
the Lagrangian property) on tangent spaces of various strata of discriminants,
b) classify all Poisson structures with given ranks. The example of a usual swal-
lowtail in C? has been cleared up.

1985-10. Is it true that the singularities of the hyperbolicity boundary include the
singularities of the ellipticity boundary (at least stably)?

1985-11. How is the informal complexification of the notion of orientation relat-
ed to the spinor structures?

1985-12. Are the Picard-Fuchs equations Hamiltonian with respect to some nat-
ural symplectic structure, and do they possess a positive Lagrangian responsible
for some kind of non-oscillatory behavior?

1985-13. Can the awful formulae of representation theory (Klebsch—-Gordan co-
efficients, etc.) be simplified by the aid of the theory of convex polyhedra? Volumes
of sections and numbers of lattice points in them are expressed in an equally com-
plicated way via, say, equations of faces or coordinates of vertices of a polyhedron,
but conceptually these are simple objects. Maybe one will feel easier if awful for-
mulae are replaced with these simple geometric constructs. In particular—what is
the geometry of the 6 j-symbol (it is nonzero if a tetrahedron can be formed with
6 lengths): won’t integer volumes appear there?

1985-14. Develop the theory of uniform estimates for both oscillatory and expo-
nential multidimensional integrals (Laplace’s method) depending generically on
parameters.
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1985-15. Create either a symplectic or a contact version of Shcherbak’s theory
of Hs and Hy, bypassing an obstacle being replaced in it with a general symplectic
construction (similar to the way R. B. Melrose interpreted the billiard problem).

1985-16. Rewrite the Jacobi formulae of the theory of elliptic coordinates for
the infinite-dimensional case (assuming that the spectrum is discrete and the axes
lengths have the asymptotics required for the series to converge).

1985-17. Is the preservation of the intersection form of a singularity of a function
under the stabilizing addition of four squares related to the Bott 8-periodicity?
(Under the stabilization, an 8-fold suspension of the Milnor fiber occurs.)

1985-18. Study the behavior of the mixed Hodge structures under superpositions
of algebraic functions.

1985-19. Is the moment map which sends an n-tuple of points x; < xp < --- < xp
with given masses m; > 0 into the n-tuple of momentaM; =Y ; m,-xf.‘ k=1,2,...,n)
a homeomorphism of a convex polyhedron onto its image?

1985-20. Homotopy classification of nondegenerate homogeneous vector fields
of fixed degree: how many connected components does this space have? For ex-
ample, cubic fields in R3: What is the maximal index of such vector fields?

1985-21. Does the Courant theorem on the zeros of the n-th eigenfunction of the
Laplace operator admit a complexification (provided that the values are complex
and the zeros do not divide the space)?

1985-22. Investigate the topology of the Maxwell set of simple real and complex
singularities; is there a stabilization of cohomology rings of complements?

1985-23. How many Whitney cusped singularities does a generic mapping
52 — 52 of degree n necessarily have?
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1985-24. Let an open swallowtail lying in a discriminant (either as a multiple
self-intersection or as an A/, stratum) be Lagrangian in some symplectic struc-
ture. Classify the extensions of these structures over the entire discriminant.

1985-25. How is the stratification of the univalence boundary in the space of
holomorphic mappings of the disk to the plane organized? Have the strata of small
codimensions and the bifurcation diagrams been described?

1985-26. J. M. Ball’s conjecture: Consider the pyramid inside the swallowtail,

n+l
{xn+1 _I_alxn_l +...+an = H(x_xi)’ X; € R} C Rn.
i=1

Restrict it by the condition |a;| < 1. Then for any two points of the bounded do-
main obtained, there is a curve of length less than Cd (d being the distance between
points in R") connecting these points inside the domain, where the constant C is
independent of the points.

More generally: How can one describe the semialgebraic sets possessing
such property of pseudoconvexity (called the Whitney property)?

1986-1. Consider the space of Lagrangian tori in T*T? that are isotopic to the
zero section among all the tori. How many connected components does it have?

1986-2. Consider a Hamiltonian in T*T? quadratically convex with respect to
momenta, Suppose that the tori mentioned in the preceding problem lie on its
level-1 hypersurface (deformations are then applied to pairs torus—Hamiltonian).
How many connected components are there in the space of such pairs (topologi-
cally trivial)?

1986-3. A rigid body is controlled by a momentum of a given intensity; the ori-
entation of the momentum with respect to the body (satellite) can be taken as a
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controlling parameter. It is required to turn the body from one state to another
(perform a rotation in SO(3)) as fast as possible, say, at zero initial and final angu-
lar velocity.

Describe the optimal control (first and foremost, the topology of the mani-
fold of the discontinuity of this control on SO(3)).

1986-4. To a purely imaginary pair of a vectorfield’s eigenvalues there corre-
sponds, generally speaking, a Lyapunov invariant surface. Explore the perestroikas
(bifurcations) of these surfaces at resonances.

1986-5. Transfer the Smale-Hirsch theory to the Lagrangian and Legendrian
bands (germs of Lagrangian and Legendrian manifolds along curves belonging to
these manifolds) or to the corresponding framed curves.

1986-6. Is the diameter of the symplectomorphism group of the ball B2* bound-
ed? Conjecturally, no. (In the two-dimensional case this was proved by A. I. Schni-
relmann. In the higher-dimensional case, thanks to non-simple-connectedness
of the group of symplectic matrices (X = Z), one can strongly twist a central
ball, and the corresponding diffeomorphism is conjecturally rather far from the
identity.)

1986-7. Find the asymptotic form of the number of meanders with n — co bridges.
1986-8. Study the singularities of the apparent contours of convex bodies.

1986-9. In optimization theory, there occur situations where a nonconstant (say,
periodic) control gives better (on average over a long time) results than any fixed
parameter.

Study these situations from the viewpoint of genericity and bifurcations.
The situation resembles a phase transition. Generally, the regime optimal on the
average may be more complex than a periodic one!

1986-10. Reformulate the theorem about three inflection points of a projective
curve and about four vertices of a Euclidean curve in terms of symplectic or contact
topology.
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1986-11. In addition to models with internal degrees of freedom along a small
fiber of a bundle over space-time, models of the surface tension type are conceiv-
able, where the fundamental laws of hydrodynamics act in a larger space but an
observer on the surface only sees their manifestations in a smaller space (the dif-
ference in the dimensions can even be greater than 1). What common features do
the models of this type have—what is the structure of their equations of motion?

1986-12. Study the singularities of the level ¥ = 0 for a function u of two vari-
ables satisfying the (Euler stationary) equation: there exists a function f such that
Au = f(u). Investigate the typical cases and bifurcations of codimensions 1 and 2.

P—— S—

1987-1. Carry over the theory of the Gibbs distribution (for the one-dimensional
evolution u, + (uv), = €uyy) to the case of a discrete time (a map S! — S!, close
to the identity, is being perturbed by a small diffusion). What is an analog of the
theory of eigenvalues close to zero that correspond to the point attractors of the
field v?

1987-2. Symplectize the nonoscillation theory (including the Pélya theorem con-
cerning factorization on an interval).

1987-3. The transformation z — 2z sends the trajectories of small oscillations to
the Newton ellipses. And what about the transformation z +— z*?

1987-4. Consider hypersurfaces in RP" of constant signature, e. g., of signature
(1,1) in RP? (a compactification of the Hilbert problem on embedding a surface
of everywhere negative curvature into R?).

a) Is it true that the space of such hypersurfaces is connected?

b) Is it true that any such surface separates two lines (in the case of a hy-
persurface of signature (k, ), separates RP* and RP! in RP*t/*1)? The answer is
positive for k = 0: any convex hypersurface is affine.
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¢) Is it true that any such hypersurface is a two-fold covering of RPF x RP/
(or, better, that the subspaces RP* and RP separated by the hypersurface can be
chosen in such a way that any line joining them intersects the hypersurface at
exactly two points)? This is true for k = 0: a convex hypersurface is star-like with
respect to any point of the domain bounded by this hypersurface.

d) The “maximum principle”: consider a hyperbolic surface lying in the
strip |z| < 1 in R? and tangent to the cone x* +y* = z° along the circles z = +1.
Prove that the surface does not intersect the interior z2 > x* +y? of the cone. Gen-
eralize to other boundary conditions.

1987-5. Examine the global topological properties of the caustics and fronts of
Legendrian manifolds (and, separately, of optical manifolds; their properties may
be different!).

1987-6. Evaluate m3(C"\ Z"~2), where £"~2 is the cuspidal edge of the swallow-
tail. Of course, here also the similar questions in R" and for strata of greater
codimension and higher T; are assumed.

1987-7. How many connected components does the complement of the trail of a
complete flag in a neighborhood of this flag in R" have? There are two for n =2
and six forn =3.

1987-8. How many connected components are possessed by the complements
of (i) bifurcation diagrams of functions and (ii) discriminants of (at least) simple
singularities in spaces of real versal deformations?

1987-9. Is M. E. Kazarian’s list of the Young diagrams of simple singularities a
solution to some other classification problem?

1987-10. How does the number of critical points of the N-th eigenfunction of the
Laplacian in an n-dimensional domain increase as N — o? Like N1/*2

1987-11. What singularities are encountered in solutions of the variational prob-
lem to minimize the Dirichlet integral [(Vu)? dx over all functions u obtained
from a given one by the action of area-preserving diffeomorphisms of the domain
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(say, of the disk)? If a given function vanishes on the boundary of the disk and
has one maximum inside, then the extremum in the above problem is a centrally-
symmetric function on the disk such that the area of the set where the latter function
is less than a number equals the area of the set where the former given function is
less than the same number. If the initial function has two maxima, similar to the
two summits of Elbrus, and a saddle, then physicists observed in numerical exper-
iments that the extremal function has singularities along the segment replacing the
saddle.

1987-12. Study the decomposition of the space of linear complex equations
with singularities into isomonodromy classes (of special interest are the limits of
isomonodromic systems with merged singular points, namely, their versal defor-
mations, bifurcation diagrams, etc.).

1987-13. Study the degeneracies of symplectic structures in the space of closed
2-forms, namely, the stratification of the boundary of the manifold of symplectic
structures, the bifurcation diagrams at the points of finite-codimensional strata on
the boundary, ...

1987-14. Do there exist smooth hypersurfaces in R” (other than the quadrics in
odd-dimensional spaces), for which the volume of the segment cut by any hyper-
plane from the body bounded by them is an algebraic function of the hyperplane?
For these quadrics the volume is an algebraic function (Archimedes), and the area
of segments of plane curves is never algebraic (Newton).

1987-15. Define the “asymptotic Sturm invariant” describing the mean La-
grangian oscillations of variational equations for a Hamiltonian system (in the
same sense as the asymptotic Hopf invariant counts the mean number of zeros
(with signs) for solutions to normal variational equations; the latter assertion also
needs be formalized).

1987-16. Study the boundary of the set of second order linear equations with al-
ternating roots of solutions (and carry over the results to the Lagrangian alternation
in Hamiltonian systems with n degrees of freedom). Roots alternation property of
a second order equation means: in the interval between any two roots of any solu-
tion there exists a root of any other solution.
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1987-17. Are the transformations of phase flows of contact fields in S dense
among the contactomorphisms from the identity component?

sy

-

1988-1. Classify the singularities of contact-Poisson structures.

1988-2. What is the maximum difference between the number of maxima and the
number of minima for an n-th degree polynomial in R?? The same question for
the R-Morsification of singularities.

1988-3. Investigate normal forms of a quadratic cone in the contact space R>
(R3) with respect to C™ and analytic germs of contactomorphisms at the vertex.

The question is related to the theory of wave transfomation and relaxation
oscillations (see the paper: ARNOLD V. 1. Surfaces defined by hyperbolic equa-
tions. Math. Notes, 1988, 44(1), 489-497; the Russian original is reprinted in:
Vladimir Igorevich Arnold. Selecta—60. M.: PHASIS, 1997, 397-412).

1988-4. What is the maximum number of periodic orbits for the diffeomorphism
of S! which is determined by elliptic functions similar to x — x+a + €snx?

1988-5. Find the upper bound for the Holder exponent of a continuous (“Peano”)
mapping of the square to the cube (is 2/3 attained?). Solved by E. V. Shchepin.

1988-6. Can the number of intersection points of the image of a circle—under
the n-th iteration of an analytic diffeomorphism of a surface—with another (fixed)
circle grow faster than any exponent of n? Solved by O. S. Kozlovski.

1988-7. Can the number of periodic trajectories of a real analytic mapping of a
surface to itself grow faster than any exponent of the period?
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1988-8. Can various topological invariants of the intersection (A"X*)NY* as well
as the Milnor numbers and other local characteristics of the tangency of germs
(A"X* 0) and (¥',0), given that A(0) = 0, grow faster than any exponent of n?

1988-9. Prove the stabilization for )L — oo of the homotopy type of the com-
plement R* \ Ay where A is the corresponding stratum of the discriminant A,
(of codimension k).

1988-10. Prove the analogous stabilization for complexifications, C* \ ©4;.

1988-11. Carry over the four-vertex theorem from planar curves to curves on the
sphere S.

1988-12. If the Jacobian of a germ of a mapping R? — R? is identically zero, then
the mapping can be factored through a curve as R? — K! — R?. Give a precise
meaning to this assertion (algebraize it); for instance, begin with formal series and
end by C™.

1988-13. Prove that, in R?", there are no (nonconvex) algebraically integrable
hypersurfaces (i. e., the volume of the part cut off by a hyperplane cannot be an
algebraic function of the hyperplane). Proved by Newton for n = 1.

1988-14. Give a formal definition of integrability of a differential equation de-
termined by a vector field on a manifold (the definition must be independent of
the algebraic and similar structures on the manifold, i. e., the integrability prop-
erty must be invariant under diffeomorphisms of the manifold). Prove the non-
integrability in this sense for, e. g., typical Hamiltonian systems close to generic
integrable systems.

1988-15. Transfer the four-umbilical-point theorem from surfaces to the sym-
plectic or contact topology of Lagrangian or Legendrian singularities (prove the
inevitability of D*).

1988-16. The theory of second braids: Consider a hypersurface I'y: 2! +
MZ* U+ + 2, =0 in C*'! and a sequence of projections CH! — C* —
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CH*=1 — ... (along the axes z,Ay,Ay_1,...). The discriminant of the projection of
the hypersurface I'y onto C* is a hypersurface I'; in C*. The fundamental group
of the complement of I'; is the braid group.

Let us define recursively hypersurfaces I'y in C**+1= as the discriminants
of the projections of T'y_; from C**+2% onto CH+1-*,

Study these hypersurfaces. Are their complements K(x, 1) spaces? What
are their fundamental groups? Can we describe the fundamental group of such a
complement as the group of “Zariski relations” between Zariski relations in the
preceding fundamental group?

The cases k = 1 (where the braid group is described as a subgroup of the
automorphism group of a free group) and k = 2 (where the fundamental group of
the complement of the bifurcation diagram is described) have been examined, but
the case k = 3 still remains to be studied, even for small \. Though, perhaps, it
would be more in spirit of the description of fundamental groups of the complement
by Zariski relations to replace the given flag of projections by a generic flag (for
our flag, some strata are projected on the same submanifold).

1988-17. Consider the “‘stochastic web”

{x eR?: icos(x,v,-) = c}

i=1

(where the vectors v; form a regular pentagon). Is it true that the diameters of this
curve’s closed components with interior point 0 are bounded above?

1988-18. Consider the mapping T = AB of the plane to itself, where B(x,y) =
(x,y +¢€sinx) and A is the rotation through the angle 2r/5. Consider the closed
invariant curves of T bounding a domain with interior point 0. Are their diameters
bounded above?

1988-19. Parametric Morse inequalities for A3 and other singularities. Consider a
generic smooth function on the space of a smooth bundle (for instance, with fiber
the circle and with two-dimensional base). Over certain points of the base, the
restrictions of the function to the fiber have non-Morse singularities, such as A2 on
some hypersurface in the base (on a caustic), A3 on a stratum of codimension 2 in
the base (at certain points of the base in the case of two-dimensional base, namely,
at cusps of a caustic).
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Study the relations between the nontriviality of a bundle (e. g., the differ-
entials in its spectral sequence) and the inevitable singularity strata on the base
(for instance, the minimum number of cusps of caustics when the base is two-
dimensional).

1988-20. Consider a diffeomorphism of the boundary of a manifold to itself,
which extends to a diffeomorphism of the manifold. Can this diffeomorphism
be always extended as a volume-preserving diffeomorphism? What properties of
the diffeomorphism of the boundary guarantee the existence of fixed points of the
volume-preserving extension? Example: S! x D?.

1988-21. Consider a field of directions on S>. Can these directions be includ-
ed in planes in such a way that the obtained distribution of planes be invariant
with respect to the flow of a vector field v of given direction? (3a,p: alv =0,
do=0aAP.)

1988-22. Consider a field of divergence 0 on S>. Does there exist a contact
structure in which this field is Legendrian? Or such a structure diffeomorphic
to standard?

1988-23. Transfer the construction of Pontryagin and Thom from cobordism
theory to real algebraic functions. The Serre property for bundles corresponds
to the possibility of covering a typical deformation of the set of real roots of a
polynomial (which can vanish in pairs) by a deformation of the polynomial itself.
The Pontryagin isomorphism between the homotopy groups of spheres and the
cobordism groups of framed manifolds corresponds to the isomorphism between
the homotopy groups of the space of functions with moderate singularities and the
cobordism groups of plane curves without horizontal inflectional tangent lines in
the theory of real algebraic functions in one variable (see ARNOLD V. 1. Spaces of
functions with moderate singularities. Funct. Anal, Appl., 1989, 23(3), 169-177;
the Russian original is reprinted in: Vladimir Igorevich Amold. Selecta-60.
Moscow: PHASIS, 1997, 455-469). This example suggests that the similari-
ty extends much farther and can be formalized as the corresponding calculus
of singularities. This similarity had first been explicitly mentioned and used in
ARNOLD V. 1. Braids of algebraic functions and the cohomology of swallowtails.
Uspekhi Mat. Nauk, 1968, 23(4), 247-248 (in Russian); reprinted in: Vladimir
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Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 125-127, and especial-
ly in ARNOLD V.I. Cohomology classes of algebraic functions invariant under
Tschirnhausen transformations. Funct. Anal. Appl., 1970, 4(1), 74-75; the Rus-
sian original is reprinted in: Vladimir Igorevich Arnold. Selecta—60. Moscow:
PHASIS, 1997, 151-154.

1988-24. Quadratic forms in the Euclidean space R" having a multiple eigenvalue
constitute a variety of codimension two in the space of all the forms. Can one
represent the corresponding discriminant as the sum of squares of two functions
(polynomials, power series)? This is so for n = 2.

For the Hermitian case, the codimension (and the number of squares?) is
three. For the hyper-Hermitian case of SU(2)-invariant quadratic forms in R*", the
codimension is five.

1988-25. Consider a (possibly, anti-) commutative graded ring (or, better, an R-
or C-algebra) with Poincaré series 1+ 412 +-- - (having one additive generator of
each degree). Classify such rings (algebras) with given degrees of multiplicative
generators.

In the simplest nontrivial case of a commutative ring with three multiplica-
tive generators of degrees 1, 2, and 3, the number of such algebras is 5. In the
general case, it is not clear for what sets of degrees the object is simple (admits no
moduli): presumably, this is always so for three multiplicative generators.

1988-26. The eccentricity of a Hilbert space. Let R(N) be the minimum number
such that N balls of radius R(N) can cover the unit ball in R”, and let #(N) be the
maximum number such that N balls of radius 7(N) contained in the unit ball in R”"
can be disjoint. As N increases, the ratio R(N)/r(N) = p(N) tends to a limit p
called the eccentricity of the space R". Examine the asymptotic behavior of the
eccentricity as the dimension » increases. Possibly, '}1_{2 p=12.

1988-27. Let K: T? — R, be an arbitrary smooth positive-valued function on a
Riemannian torus. Consider the motion of a charged particle on this torus in the
presence of a magnetic field K normal to the torus, i. €., its motion along curves on
the torus such that their geodesic curvatures at each point are a prescribed (for this
point of the torus) positive number K.
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Suppose that the metric on the torus is flat. The motion of the particle
(at velocity 1) is described by a curve in T?> = T T2. The standard metric deter-
mines a parallelization, namely, the decomposition T> = S! x T2, The positivity
of the curvature K implies that the phase curves on T* are transversal to the fibers
{¢} x T?. Thus, we obtain a Poincaré mapping of the fiber {0} x T? to itself. This
mapping is a symplectomorphism homologous to the identity symplectomorphism
for a suitable symplectic structure on {0} x T2.

Prove that such a Poincaré mapping is homologous to the identity mapping
also in the case of motion on a torus with an arbitrary Riemannian metric close
to flat.

1988-28. Prove that, in the situation considered in the preceding problem, the
Poincaré mapping is homologous to the identity mapping for a motion on the
torus T2 with an arbitrary Riemannian metric provided that the geodesic curva-
ture K is sufficiently large.

1988-29. Consider the torus T? with an arbitrary metric and an arbitrary positive-
valued function K on T2. Does there exist a Poincaré mapping or even a surface
transversal to the vector field of the motion of a charged particle on T in the
magnetic field K and isotopic to a section of the bundle T;T? — T??

1988-30. Prove the existence of the expected number of closed trajectories of
the motion of a charged particle in a magnetic field on an arbitrary surface, at
least in the cases where the field K is sufficiently strong or where the metric is
close to that of constant curvature. I believe that it is expedient to directly apply
the “hyperbolic Morse theory” rather than to reduce the problem to examining
fixed points of a symplectomorphism. In the case of a sufficiently strong magnetic
field K, this conjecture is proved: the number of closed orbits is not less than 2g + 2
on surfaces of genus g; cf. problem 1994-14,

1988-31. Generalization of the preceding problem: Consider a nontrivial bundle
M3 — N? with fiber S! endowed with a connection (specified by a field of two-
dimensional planes transversal to the fibers). Let T denote some volume element
on M?, and let v be a divergence-free (with respect to T) vector field transversal
to the plane of the connection. Is the number of closed orbits of such a vector
field bounded below by the minimum number of critical points of functions on the
surface N? (supposed to be an oriented surface without boundary)?
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1988-32. A special case of the preceding problem: Is it true that an arbitrary
divergence-free vector field on S® making an acute angle with the Hopf field at
each point has at least two geometrically different closed orbits?

1989-1. Classify the simple singularities of functions on supermanifolds.

1989-2. Can the number of fixed points of the n-th iteration of an infinitely
smooth mapping of a compact manifold to itself grow, as » increases, faster than
any prescribed sequence a,, (for some subsequence of time values n;)?

1989-3. Calculate m;(the complement of the stratum A3 of the swallowtail in R")
for non-stable dimensions .

1989-4. Study the cohomology rings of the complements of bifurcation diagrams
of functions A in C¥~! (including the stabilization as k — oo, the behavior under
the Lyashko-Looijenga mapping, and the relation to stratum diagrams). This is the
cohomology of the “second braid group,” because the complement of a bifurcation
diagram in Ck1is K(m, 1).

1989-5. What functions on manifolds can serve as Jacobians?

1989-6. Give a relative version of the Moser theorem on symplectic structures
(fix a submanifold and a 2-form on it).

1989-7. Carry over the inequalities of Harnack, of Petrovskii, etc. to the pseu-
doperiodic hypersurfaces determined by sums of (incommensurable) harmonics
of the form Acos((k,x) +a) in R” (study the densities of topological objects in
unit volumes). For instance, we can divide by R" the number of maxima, or the
Betti numbers, or the Euler characteristic of the domain f < c in a large ball
of radius R and send R to infinity; it is required to estimate the limit “density of
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maxima,” or “density of Betti numbers,” or “density of the Euler characteristic”
from above in terms of the number of harmonics (or, if possible, of the Newton
polyhedron).

1989-8. Nonconvex Minkowski problem. Given a generic mapping $> — S2 of
degree 1, consider its Jacobian as a (set-valued) function on the image sphere.
What conditions on this function ensure the existence of a Gauss mapping (of a
sphere immersed in R?) with such a Jacobian?

In the absence of singularities, the only condition is that the center of grav-
ity of the corresponding mass distribution on the sphere should be at zero (the
Minkowski theorem).

1989-9. Classify the flags in a symplectic space and simple symplectic quivers.

1989-10. Study the systems of fronts and of rays defined by hyperbolic varia-
tional principles near typical singularities of the surface of zeros of the symbol
(for two- and three-dinensional physical spaces).

1989-11. Classify the neighborhoods of Riemann curves of genus g on complex
surfaces. The case of an elliptic curve, g = 1, is studied in detail, e. g., in the
Jfollowing book: ARNOLD V.I. Geometrical Methods in the Theory of Ordinary
Differential Equations, 2nd edition. New York: Springer, 1988 (Grundlehren der
Mathematischen Wissenschaften, 250); the Russian original 1978.

1989-12. The infinitesimal version of the problem about periodic orbits of cor-
respondences: Let A: S' — S! be a diffeomorphism of a real oval for an algebra-
ic curve such that its analytic continuation is a correspondence on a Riemanni-
an surface and A¥ = id. How many periodic orbits (of period n) can arise under
a small perturbation of this diffeomorphism (in the class of real algebraic self-
correspondences of the same bigenus and bidegree)? Is this number bounded by
a function of n of by a constant independent of »n (uniformly over perturbations or
at least in the first approximation of perturbation theory)?

1989-13. In the problem of bypassing an obstacle, examine the asymptotics as
the obstacle diffuses and turns into a steep potential.
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1989-14. In the space of polynomials R" = {x"*! +gyx"~1 4 ...+ a,}, consider
the subvariety A; (of codimension 2) consisting of the polynomials with three-
fold roots. The fundamental group of the complement of this subvariety is Z. The
polynomial in two variables x**! +a; (y)x"~! + .- +a,(y) naturally defines a curve
in R™. A generic curve does not intersect the subvariety A3. Fixing the boundary
conditions for y — o0, we can associate with such a curve an integer [an element
of w1 (R" \ A3) =~ Z] called the index and counting the number of rotations of the
curve around As.

Find the minimal degree of the polynomial in two variables (or of polyno-
mials a; in y) for which a given value i of this index is realized.

Investigation of this question led V. A. Vassiliev to the problem on the min-
imal degree of a polynomial mapping R — R3 realizing a fixed knot. The inves-
tigation of the arising knot invariant led him to the theory of invariants of finite
order.

1989-15. What is the maximum number of parts into which the sphere can be
divided by the zeros of a spherical function being a polynomial of degree n?

The well-known Courant theorem gives the upper bound of n*/2 + O(n)
(for the 2-sphere), and examples of V. N. Karpushkin give the lower bound of
n?/4+ O(n).

What is the largest number of maxima for such a function?

1989-16. Find the number of components in the space of nondegenerate homo-
geneous equations x = P(x), where x € R" and the components of P are second-
degree homogeneous polynomials having no common zeros but the origin.

The geometric problem (for n = 4) reduces to studying deformations of
quadruples of quadrics (ellipsoids) in the projective space. The quadrics are al-
lowed to degenerate and even vanish, but they are forbidden to have a point com-
mon to all of them. The question is, how many quadruples are there that cannot
be so deformed into each other? (For n =3, triples of ellipses should be consid-
ered; in this case, the answer is 2: the ellipses from one triple are disjoint, and in
the other triple, each ellipse separates the two intersection points of the two other
ellipses.)

1989-17. How many limit cycles can arise under a small polynomial (of degree )
perturbation of an integrable polynomial system of degree n?
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The question reduces to exploring the number of zeros of the integral

= § Pt

along ovals H = h of the system x = X (x,y), y =Y (x,y) with integrating factor M,
where X, Y, P, Q are polynomials of degree n. It is unsolved even for n = 2 and
even in the case M = 1 where H is a polynomial. In the case where M = 1 and
H, P, Q are polynomials of a fixed degree, there is a uniform upper bound for the
number of zeros (A. N. Varchenko, A. G. Khovanskii) but it is ineffective.

1989-18. The sequence of meandric numbers 1, 1, 2, 3, 8, 14, 42, 81, ... is
defined as follows. Suppose an infinite river running from south-west to north-east
intersects an infinite straight road going from the west to the east under » bridges
numbered 1, ...,n in the order from west to east. The order of the bridges along the
river determines a meandric permutation of the numbers 1,...,n. The meandric
number M, is the number of meandric permutations on » elements.

Meandric numbers possess many remarkable properties; for example, M,
is odd iff n is a power of 2 (S. K. Lando). Find the asymptotics of M, as n — co.
It is known that ¢ 4" < M,, < C 16" for some constants c, C.

1989-19. Is it true that the minimum Hausdorff dimension of a minimal attractor
of the Navier-Stokes equation (on the 2-torus, say) increases with the Reynolds
number?

Even the existence of some minimal attractors of dimensions growing with
the Reynolds number is not proved; only upper estimates for the dimensions of
all attractors by powers of the Reynolds number (obtained by Yu. S. Il 'yashenko,
M. I. Vishik, and A. V. Babin) are known.

1989-20 (V. P. Kostov). Describe the singularities of the pseudo-Stokes hypersur-
face of a typical family of polynomials. The pseudo-Stokes hypersurface of the
family of polynomials X +a\x" %2 + - - +ay_y (x, a; € C) is the set of values of the
coefficients a; for which two of the roots have the same real part.
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1990-1. Let A: (C2,0) — (C?,0) be a germ of a mapping of finite multiplicity
holomorphic in a neighborhood of 0. Let also X and Y be complex straight lines (or
holomorphic curves) passing through 0. Let L denote the intersection multiplicity.
Is the multiplicity n(A"X,Y) majorized by an exponent of n? All the multiplicities
W(A"X,Y) are assumed to be finite.

1990-2. Translate the classification of umbilical points into the language of sym-
plectic toplogy of Lagrangian singularities (possibly optical) and at least formulate
conjectures on their topological necessity.

1990-3. The caustic of a point on the convex sphere 5> (the manifold of points
conjugate to the initial point along the geodesics from this point) is naturally par-
titioned into connected components (of its preimage in the tangent space at the
initial point under the geodesic exponent mapping). We can partition it into the
first caustic (generated by the first conjugate points), the second, and so on.

Can we divide the caustic of a point on S (or §*) into infinitely many con-
nected components? For example, under a sufficiently small perturbation of the
standard metric of the sphere $°, the first N components having the form of a dou-
ble sphere S apparently give precisely N connected components, each consisting
of two copies of 52 attached to each other at several (how many?) conic points (of
type D4). But it is not improbable that, starting with some (very large) N, these
two-sphere components begin to merge (I know no examples!) or even form in-
finite chains (all the more, no examples!), even if the perturbation is very small.
Maybe, it is easier to obtain examples on S rather than on S> [when each pair of
spheres S? is replaced by n — 1 copies of §"~!; by the way, the precise arrangement
of the D4-point bridges connecting these copies (note that the D4 points form a set
of codimension 2 on §"~!) is not calculated even in the framework of the first ap-
proximation of perturbation theory; this question is apparently related to caustics
(focal sets) of ellipsoids in R*].

1990-4. A hypersurface in RP” is k-quasiconvex if, at each point, its second
quadratic form has constant signature {k,!}, where k +1 = n—1 (the set {k,} is
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not ordered: the hypersurfaces are not co-oriented and may be non-co-orientable!).
For k = 0, this is the usual convexity.

Is it true that any (connected) k-quasiconvex closed hypersurface embed-
ded in RP” is disjoint from certain subspaces in RP* and RP* (this is so for k = 0)?

1990-5. What topological invariants of a submanifold in a Euclidean space do
admit an upper bound in terms of the complete absolute curvature (the volume of
the manifold of tangent planes of this submanifold in the Grassmannian bundle
over the Euclidean space)?

The sum of Betti numbers can be estimated, and so can the Morse num-
ber, while the lengths of relations in the fundamental group, apparently, cannot!
It seems that the set of admissible homotopy types of submanifolds whose complete
curvatures fall in a fixed range is infinite (at what (co)dimensions of the submani-
Jold and the space?).

1990-6. Prove that a typical Hamiltonian system on the torus with pseudoperiodic
Hamiltonian ap + bq + (periodic function) having critical points involves mixing.
Solved by K. M. Khanin and Ya. G. Sinat.

1990-7. Consider a family of analytic diffeomorphisms x — x +a+ b f(x) of the
circle, where f is a periodic function. Is the multiplicity of periodic points arising
at infinitely small b bounded (uniformly with respect to a)?

1990-8. Two conducting (k-dimensional) surfaces with potential difference 1
move toward each other (in R”) until the distance between them becomes € (the
charge distribution is electrostatic). Determine the asymptotic behavior of the
force of attraction between the surfaces in terms of the singularities of their tan-
gency at € = 0 (for a pair of cylinders in R3, this is a problem of A. D. Sakharov).

1990-9. Give a precise meaning to the assertion (of M. Berry) that the asymp-
totics of an oscillatory integral, after all terms polynomial in the wave length are
subtracted, exhibits exponentially small “jumps” of the universal form erf.

1990-10. Make a precise sense of the statement (due to V.V.Fock) that the
asymptotics of slowly decaying eigenfunctions in the problem on small diffu-
sion in a potential dynamical system with several attractors [u, + (uv), = €Au,
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v = —gradU] have “jumps” of the universal form erf at the borders of the attractor
basins.

1990-11. Give the exact meaning of the statement (of A.D. Sakharov) affirming
that the average number of vertices of the polygonal pieces, into which a planar
domain is divided by many lines, is equal to 4. Generalize it to the multidimen-
sional case. According to E Aicardi, the mean number of faces of any dimension
of the pieces in R" is the same as for the n-dimensional cube. But a rigorous
probabilistic proof seems to be lacking.

1990-12. Consider the manifold of non-negative functions on a manifold M.
Study the singularities of this manifold (stratification, stabilization, bifurcation di-
agrams, homological properties of the stratification, reconstruction of M). A gener-
ic point of the boundary is a function with a single Morse minimum. The manifold
of such functions is fibered over M with a contractible fiber.

1990-13. Study the singularities of the boundary of the manifold of contact struc-
tures on a (three-dimensional?) manifold and of the boundary of the manifold of
contact forms for a given structure.

1990-14. The “Hopf invariant” [oAdo or [a A (do)” on a contact manifold
does not require the condition H? =0 or m, = 0. Therefore, on a contact mani-
fold, one can try to define a Morse—Floer type complex in a non-simply-connected
and/or higher-dimensional case, hoping to get an invariant of the contact structure.

1990-15. Does the signature of the Milnor fiber of a function in C* has an ex-
pression in the form of an integral over the 3-knot of a singularity? Can we “drag
over” pj to this 3-manifold (possibly, with the use of its contact structure)?

1990-16. Which of the knot invariants can be “diffused” to invariants of diver-
gence-free vector fields (and, apparently, of Legendrian fields on a contact man-
ifold)? Can one calculate the “linking” of diffused Legendrian submanifolds in
higher dimensions?

1990-17. Let f: M" — S" be a smooth mapping of a closed manifold to the unit
sphere in R™*! and let T be the volume element on M. Under what conditions does
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there exist an immersion i : M" — R™+! such that f = goi, where g is the Gauss
mapping, and 1 coincides with the volume element of the Riemannian metric on M
induced (via the immersion i) by the Euclidean metric on R"*+1?

1990-18. Find the group m2(Gg) = m2(Gs), where G, is the space of real polyno-
mials x" +a;x*~% + - - - 4+ a,_; having no real roots of multiplicity higher than 2.

1990-19. Let X be one of the types of critical points of holomorphic functions
which forms a set of codimension k in the space of functions in k variables. By an
inflection point of type X of a hypersurface in a projective space we shall mean a
point at which the pair (hypersurface, its tangent hyperplane) is diffeomorphic to
the pair (graph of the function, its tangent hyperplane) at a critical point of type X.
Let also Y be a type of critical points of functions in k4 1 variables. Find the
number of inflections of type X on a level hypersurface of a generic function of
type Y (in k+ 1 variables) “vanishing” (i. e., merged) at the critical point.

1990-20. Let f be a germ of a C™-mapping of a real space onto itself at a fixed
point of finite multiplicity. Assume that this point is a fixed point of finite multi-
plicity for all the iterations f” of the mapping f. Is it true that the multiplicity of
this fixed point for the iteration f” is majorized by some exponential function ae*?

1990-21. Is it true that the number of isolated cycles of periods < T of an ana-
lytic vector field on a compact manifold is majorized by some exponential func-
tion ae7?

1990-22. Describe the neighborhoods of Riemannian spheres in holomorphic
surfaces with positive self-intersection numbers.

1990-23. An algebraic correspondence of an algebraic curve to itself is an alge-
braic curve in the Cartesian product of the initial curve with itself. The discrete
invariants of such a correspondence are the genus of the initial curve, the genus of
the correspondence, and the “bidegree” of the correspondence (i. e., the intersec-
tion numbers of the correspondence and the factors). Suppose that a correspon-
dence is the graph of a diffeomorphism of the circle in a real domain. Is it true
that the number of isolated cycles of this diffeomorphism is bounded above by a
constant depending only on the aforesaid discrete invariants?
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1990-24. How large can the number of isolated zeros of the complete Abelian
integral

I(h) = ?i (Pdx+Qdy)

be, where vy, is a closed component of the level curve {(x,y) : H(x,y) = h}, if
P, Q, H are polynomials of given degrees?

1990-25. Let g be a natural number > 2 and U(x) a fixed polynomial of degree
2g + 2. Consider the family of hyperelliptic integrals of the first kind,

I(h) = }4% ’%") dx,

where vy, is a closed component of the level curve {(x,y) : y> 4 U (x) = h}, and P(x)
an arbitrary polynomial of degree < g. Is this family of integrals a Chebyshev one
(i.e., is it true that for any P the number of isolated zeros of the function I is
at most g — 1)?

1990-26. A full flag in R" consists of vector subspaces
{0}=vocvic---CV,=R"

of all dimensions. Two flags are called transversal if their constituent subspaces
of complementary dimensions are transversal. The set of flags not transversal to a
given flag is called the trail of this flag. Find the number of connected components
into which the trail of a flag divides a neighborhood of this flag.

1990-27. An ovaloid in R" (that is, a closed hypersurface bounding a convex
body) is said to be algebraically integrable if the volume cut off by a hyperplane
from this ovaloid is an algebraic function of the hyperplane. Do there exist alge-
braically integrable smooth ovaloids different from ellipsoids in R” with odd »?

1990-28. Since Poincaré, a “nonintegrable dynamical system” is usually under-
stood to be a dynamical system having no analytic first integrals. However, we can
suggest a number of other meanings of the term non-integrability, such as

1) the absence of invariant hypersurfaces (principal ideals),

2) the absence of invariant closed 1-forms (multivalued first integrals),
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3) the absence of invariant distributions of tangent subspaces (invariant
Pfaffian modules),

4) the absence of invariant foliations (invariant completely integrable Pfaf-
fian systems).

Consider a dynamical system with discrete time (a diffeomorphism on a
compact manifold) and an object of one of these types (function, ideal, closed
1-form, ...). The images of this object under the iterations of the diffeomorphism
can form a finite set (if they are periodically repeated) or an infinite set, and they
can generate a finite- or infinite-dimensional space. These properties reflect the
“degree of chaos” in the dynamical system. Prove the non-integrability (in the
sense of each of the four definitions given above) of all dynamical systems from
some open set in the space of dynamical systems on manifolds of sufficiently high
dimension.

1991-1. Consider the rotation field of a three-dimensional ball around an axis.
Is it possible to decrease its energy to arbitrarily small values by acting on this
field by volume-preserving diffeomorphisms? Sakharov’s conjecture (1973): it is
possible for this field, but not for a field with at least one knotted trajectory or with
at least one pair of linked trajectories.

1991-2. The Bemoulli—Euler sequence (1, 1, 1,2, 5, 16, 61, 272, 1385, ... ) gives
the numbers of topologically different Morsifications of the singularities A, (i.e.,
the numbers of connected components in the complements of their bifurcation
diagrams). What is the nonformal complexification of this theory? The nonformal
complexification of Wy is Ty. Therefore, the answer is apparently the Lyashko—
Looijenga covering.

1991-3. Consider the recurrent sequence of degree n (say, 3)
Xmin = AXmin-1+- - +apxm (m=0,1,2,...).

Suppose that the number of zeros among the x; is finite (the sequence is then said
to be nonresonant). How many zeros can there be? Is their number bounded for a
given n?
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1991-4. Study the singularities of the manifold of normal operators.

1991-5. Study the singularities of the exponential mappings of Lie algebras
(at least, of the matrix algebra) to groups (including the stratifications of singu-
larity manifolds and uncovered parts of the groups, stabilization, local and global
homotopy and homology groups of the complements of uncovered sets).

1991-6. Do the open umbrellas possess the Petrovskii M-property (do the sums
of Betti numbers of their complements in the real case equal those in the complex
case)?

1991-7. Does the manifold of singular n-th degree polynomials in two variables
possess the Petrovskii M-property? Singular = having less than (n — 1)? different
critical values.

1991-8. Consider a linear operator A : C" «— and two planes X and Y of comple-
mentary dimensions. Describe explicitly the conditions guaranteeing the existence
of infinitely many integers n such that the space (A"X)NY is of positive dimension.

1991-9. Construct a theory of connections with singularities. Deform (in the
sense of some equivalence) a given connection into a connection which is flat
almost everywhere and its all the curvature is concentrated on a certain special
submanifold. Then extract the invariants from the combinatorics of these singular-
ities (and, possibly, from the “residues” of the connection at the singular points).

1991-10. Is it true that a (smooth) pseudoperiodic curve in R? has only one un-
bounded connected component? Negatively solved by D. A. Panov.

A pseudoperiodic curve is defined as the preimage of a point under a pseu-
doperiodic mapping f: R3 — R?, where f = (linear) + (Z*-periodic) and the in-
commensurability conditions ker(linear) = R, ker(linear) NZ> = {0} hold (they
almost always hold).

1991-11. Consider the convex hull of the set of integer points in the pyramid
z>ax+by, x>0,y > 0(a, b are arbitrary positive numbers). Examine the asymp-
totics of the polyhedral surface bounding this convex hull (for example, the mean
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number of edges in a vertex or on a face, the mean number of integer points on an
edge; the probability that a random face is a triangle, a quadrangle, ...).

Generalize Gaussian distribution of continued fraction elements by trans-
ferring it to trihedral (general?) pyramids in the space R? containing 73. In this
situation, prove the multidimensional generalization of Lagrange’s theorem on the
periodicity of continued fractions: topological periodicity is present if and only
if planes are eigenplanes of a lattice-preserving operator. The two-dimensional
case shows that the boundary of the convex hull should be colored (where colors
correspond to affine SL(2,Z)-types of stars of vertices or generalized r-stars con-
taining vertices connected to a given one by a path of at most r edges). In the
two-dimensional case, 1-stars determine integer-valued angles of the boundary
polygonal line; these, together with integer-valued edge lengths, are the elements
of the continued fraction. The generalization of Lagrange’s theorem to dimen-
sion 3 states that the topological periodicity of the coloring implies the pyramid’s
provenance from the eigenplanes of an SL(3,Z) operator.

1991-12. Consider bundles whose fibers are surfaces, namely, the Milnor bundle
for the A, singularities of a function in two variables or the tautological bundle over
the moduli space of curves of given topological type. The fundamental group of the
base is represented by automorphisms of homology groups of the fiber (by means
of the monodromy). Can it be represented directly into the group of diffeomor-
phisms (rather than of their isotopy classes)? A similar question can be asked for
higher dimensions and symplectomorphisms.

In the case of A1 and symplectomorphisms, the answer is affirmative for
all dimensions: there are the symplectic Dehn twists. In the case of Ay and curves,
there also exists an explicit construction. According to V. V. Fock, there is no rep-
resentation into the homeomorphisms of a fiber for the A>4 curve singularities.

1991-13. Examine the topological properties of the manifold of the Legendrian
curves (immersed or embedded) disjoint from a given Legendrian knot (find its
fundamental group and cohomology).

According to A. B. Givental, the space of all Legendrian submanifolds is
similar to.a Lagrangian Grassmannian, and the submanifold of those intersecting
a given submanifold is similar to the trail of a Lagrangian plane (formed by the
Lagrangian planes intersecting it nontransversally).
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1991-14 (S.P.Novikov). A submanifold of the Euclidean space R" is called
Z'-periodic if it is invariant under translations by the vectors of some integral
sublattice Z" C R". Consider a generic irrational (affine) planar section of a
Z3-periodic surface (Fermi-surface) in R3. Is it true then that every unbounded
component of this curve lies in the R-neighborhood (with a finite R > 0) of some
straight line?

1992-1 (B. Teissier). Consider a function f in R" with a critical point of index
zero. Is it possible to change f in an arbitrarily small neighborhood of this point
so that the critical point disappears?

Suppose that the critical point of index zero has finite multiplicity. Is it
true that there is a function in the class of versal deformations of f without critical
points?

1992-2. Study the natural action of the braid group on the manifold of full flags
and on the spaces of their cotangent bundles, which arises from the coadjoint repre-
sentation of the group SL(n,C). Construct a monodromy and variation theory for
non-isolated singularities which takes into account the tower of boundary condi-
tions near strata of various dimensions intersecting the boundary of a ball centered
at the point under consideration (instead of the condition that the monodromy is
fixed on the boundary of the Milnor fiber).

The obtained theory must apply to the mapping that assigns characteristic
polynomials to matrices. It must generalize the Brieskorn—Grothendieck descrip-
tion of simple singularities for the A, D, E surfaces over nonquasiregular elements
of Lie algebras (thus, the theory must apply to the family of four-dimensional in-
tersections of general orbits with the local transversal to the corresponding non-
general orbit).

1992-3. Study the analytic continuation of elliptic curves embedded in the orbit
space of a holomorphic mapping of a complex curve to itself. What singularities
does the continuability boundary have? How large is this boundary (and the corre-
sponding Riemannian surface)? For instance, for the mappings z — z+ ®+ €sinz
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and z — z+ 0+ €%, where z € C mod 2%, we should consider continuation with
respect to the parameters ® and € such that € = 0 and Imw # 0 [in this case,
the curve is C/(21Z + oZ)].

1992-4. Draw the discriminant of the family of odd polynomials x” +ax> + bx> +
cx. Study the topological properties of this discriminant (such as the fundamental
group, the number of components in the complement, stabilization, cohomology,
etc.) in the R and C cases.

1992-5. Consider several elements ay, .. .,a (e. g., with k = 2) in the semigroup
of germs of holomorphic mappings (or formal series) from (C,0) to itself [from
(CN,0) to itself]. Compose all words s of length » from the letters a;. Suppose that
every equation s(x) = x has a root of finite multiplicity p(s) at zero. Consider the
maximum M(n) of this multiplicity over all (nontrivial) words s of length n. Can
the function M (n) grow faster than an arbitrary prescribed function A(#n) as n — oo
(at least, on some subsequence of the » values) under a suitable choice of a;’s?

Or, maybe, we always have M(n) < Cn or M(n) < Ce™" with a constant C
(depending on a;) for analytic a;7 It is natural to ask similar questions about
infinitesimal maps, that is, germs of vector fields at a point. It is then reasonable
to compose words from multiple Poisson brackets of given fields (or even from their
sums and differences) and estimate the order of zero in the field obtained.

All these problems, which are nontrivial even on the straight line (N = 1),
arise in studying bifurcations of limit cycles in relation to the Hilbert 16th problem,
which is, in particular, concerned with estimating their number.

1992-6. The Milnor fiber (say, of a simple singularity) has a natural symplectic
structure (originating from the coadjoint representation). The vanishing cycles ¢;
are Lagrangian. Is it possible to represent the covanishing cycles (var~! ¢; € H*) as
Lagrangian submanifolds of the Milnor fiber such that their boundaries are Legen-
drian in the natural contact structure of the singularity knot? Can the intersection
matrix (or even variation) of the Milnor fiber be described in terms of the obtained
Legendrian link?

1992-7. Write explicitly an analytic (polynomial? trigonometric polynomial?)
vector field without singular points in R> such that its smooth manifold of tra-
jectories is homeomorphic but not diffeomorphic to the standard 4-space R*.
Such a manifold is called a “fake” space R*.
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1992-8. The double factorial appears as an answer in the classification problem of
symplectic flags and in the list of Vassiliev diagram in knot theory. Is there a direct
map, associating a symplectic flag to a diagram or a knot? A natural symplectic
structure on the space of knots (and even on the space of immersions with double
points) does exist (J.-L. Brylinski): a curve representing a knot can be regarded as
a point of a degenerate coadjoint orbit of the hydrodynamical group SDiff(R?).

1992-9. Does the Goresky—MacPherson theory of perverse sheaves have a dis-
tributed version where the constraints are imposed on ranks of chains with respect
to the symplectic (contact) structure (or merely to the distribution) everywhere
rather than only at the points of stratification?

It is easy to invent a lot of definitions for, say, curves or surfaces in a
symplectic or contact space (they are more likely to lead to cobordisms rather
than to homologies, but we might try to set conditions at singular points too). The
versions are so numerous that we need a rule for selecting suitable definitions.

1992-10. Calculate the moduli spaces of germs for hyper-Kéhler structures; are
their Poincaré series almost always (except for spaces of germs of infinite codi-
mension) rational functions?

1992-11. Consider the Navier-Stokes equation (say, on the 2-torus) with external
force proportional to the viscosity (Kolmogorov’s model). Is it true that, as the
viscosity tends to O (i.e., the Reynolds number grows), there appear attractors
of dimensions increasing with the Reynolds number (and containing no smaller
attractors)?

Is it true that, moreover, the minimum dimension of all attractors unbound-
edly increases with the Reynolds number?

A. N. Kolmogorov suggested (in 1958) that the answer to the first question
was affirmative, but he doubted that so was the answer to the second because of
the experiments on delaying loss of stability.

1992-12. Prove exponential upper estimates (with probability 1) for topological
invariants of the intersections (A"X)NY in the case where A is not a diffeomor-
phism, as in the note ARNOLD V. 1. Dynamics of complexity of intersections. Bol.
Soc. Brasil. Mat. (N. S.), 1990, 21(1), 1-10; the Russian translation in: Vladimir
Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 489499, but an arbitrary
smooth mapping.
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1992-13. Prove exponential upper estimates (with probability 1) for the number
of periodic trajectories of period n of a typical diffeomorphism (or a smooth map-
ping of a manifold to itself).

1992-14. Does there exist, for any increasing sequence of positive integers
a, — oo, a polynomial vector field on R™ (entering the spheres {|x| = r > 1}),
which has more than a, periodic orbits of periods < n; for some increasing
sequence n; — oo (provided that all the periodic orbits are nondegenerate)?

1992-15. How large can the set of elliptic curves in the space of orbits of a poly-
nomial vector field (or of a polynomial mapping, or of an algebraic correspondence
with fixed discrete invariants, such as genera or degrees) be?

%

1993-1. Carry over the theory of neighborhoods of elliptic curves in holomor-
phic surfaces to pseudoholomorphic surfaces (develop theories of normal forms,
resonances, bifurcations, series divergence, ... ).

1993-2 (G.Moore). Is there a relation between the invariants J*, St of plane
curves and polynomials in the areas of the components of curves’ complements
and their exponents arising in the theory of dual asymptotics of multiplicative
integrals over Wilson loops (V. A. Kazakov, Yu. M. Makeenko, ...)? Solved by
M. B. Polyak in 1997.

1993-3. Study the surface of changing four vertices for six in general families of
curves fgp(x,y) = c on the Euclidean plane with parameters a, b, c such that, at
a = b =0, the function f has critical point of minimum ¢ with symmetric second
differential K(dx? + dy?).

The supposed answer: a “dish” whose horizontal section has the form of
a six-vertex hypocycloid and vertical sections through the axis are parabolic. But,
morve likely, there are functional moduli.
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1993-4. Study vanishing flattenings in general families of curves in C" given as
preimages of a general mapping f: C* — C"~!. Find the numbers of vanishing
flattenings, bifurcation diagrams, and so on.

Certainly, the normal form of the mapping f does not give an answer by it-
self: the preimage should be subjected to a general diffeomorphism. For instance,
at n =2, the normal form f = xy gives no planar points on the curve xy = ¢ # 0.
The correct (Pliicker) answer —6 vanishing inflection points—is only given by the
equivalent mapping f = x> — y* —y*.

1993-5. Find all weight systems of multiplicative generators of a commutative
N-graded C-algebra with the simplest Poincaré series 1 ++t2+ - - -, for which the
classification of such algebras with respect to a) isomorphism of algebras, b) iso-
morphism of graded algebras is simple (has no modules).

For three generators, and any weights 1 < u < v, the number of algebras
is 2(a1 +ay+---) + 1 where v/u = ag+ 1/a; + --- is a continued fraction. In
the case of four generators, there are Sturmfels’ examples of a nonsimple weight
system, for instance, (1,3,4,7), (1,3,4,9), (1,4,5,6). Unfortunately, the complete
list of weights for which there are no modules is unknown even for 4 generators.

1993-6. Describe the Fintushel-Stern numbers related to the Floer numbers of
quasihomogeneous knots of homology 3-spheres in terms of Newton polyhedra
(admitting a multidimensional generalization).

According to FINTUSHEL R., STERN R.J. Integer graded instanton ho-
mology groups for homology three-spheres. Topology, 1992, 31(3), 589-604, the
Poincaré polynomials of the Floer homology of the manifolds x* +y? +y° =0,
|x|2 + [y + |z|* = 1 have the form

235 t47 237 71478

2311 t+83+P+1 2313 t7 14148348
2317 t+834+20+17 41 2319 2t '4t+4283 445
2323 1420342054207 441 2325 2 42t 4283428

2329 t4+P2+3854+27+200+¢11 2331 20V 42t 4+3834+25+17

1993-7. If the class of a plane curve (the orbit of a typical immersion S' — R?
under the action of the groups of orientation-preserving diffeomorphisms of S!
and R?) is symmetric (invariant) with respect to a symmetry (reflection of S! or R2,
or both), then this class has a representative which is a symmetric curve (instead
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of the diffeomorphisms, we can take the second-order isometries; they transform
the immersion into itself).

A similar assertion is valid for atypical curves, that is, for various other or-
bits or strata of the manifold of immersions. But in different cases (it seems, even
for curves in R3), there occur symmetric classes without symmetric representa-
tives. Is there a simple criterion for the existence of such symmetric representatives
(in the classification problem for maps, immersions, embeddings, ...)?

1993-8. Vanishing Chern classes. In addition to vanishing inflections, we can
consider other, non-point, strata of singularities on the dual hypersurface. They
correspond to (singular) submanifolds of the initial hypersurface with various di-
mensions enumerated by the types of critical points of functions. The germs of
these submanifolds at a singular point determine their infinitesimal analogues in
the local ring of the singularity. The problem is to give an algebraic description
(e. g., in the form of a flag or quiver of ideals in the local ring) and calculate the dis-
crete invariants of the obtained algebraic objects for each singularity of the initial
hypersurface.

1993-9. Can we join the curves % and X in the class of fronts of the Legendrian
immersions in ST*R? having two (or having at most two) cusps?

1993-10. Consider two plane immersed curves in the same J* class. Join them
by a generic path in the space of immersions, along which no perestroikas J*
happen (i. e., no equally oriented self-tangencies). Consider the minimal number
of the (other) perestroikas on such a path. Is this number bounded by a constant
depending only on the complexity (the number » of double points) of the initial
curves? If yes, how does this function grow with n? May be, it is not computable
because of its growing faster than any computable function?

Is the problem of determining whether two curves belong to the same
J*-component algorithmically solvable (probably, not)?

Similar questions arise for all classification problems considered at the
seminar; for example, for St-classes, for fronts, for fronts with a fixed or an upper
bounded number of cusps, etc.

1993-11. Do the periodic continued fractions satisfy the Gauss statistics for the
elements? For instance:
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A) One can consider random matrices in SL(2,Z) or in GL(2,7Z) in a large
ball of radius R, expand them in continued fractions, and explore

a) the statistic of the elements of these periodic fractions;

b) the statistic of the period length.

Does the limit of the distribution as R — oo exist, and does it coincide with
the Gauss distribution? Is this limit the same for any homothetically widening
domains in place of balls?

B) One can also consider random trinomials A2 4+ a\ + b (with real roots)
in the domain a® + b*> < R? in Z? and explore the statistics over these trinomials
(one may also use other domains, e. g., |a| <R, |b| <R).

C) One can even start with rational fractions p/q, expand them in continued
fractions, and try to calculate the limit of the statistics for Pt + q:" < R%: R — oo
again, one may replace the disks with other domains. Conjecturally, the answer
is independent of the shape of the domains and, in all the cases, it is the same, as
the Gauss invariant measure of the endomorphism x — 1/x— [1/x] of the interval
(0; 1) into itself indicates.

1993-12. Describe the action of the braid group (and of its subgroups correspond-
ing to various non-isolated singularities of fibers) on the homology of generic or-
bits, i. e., of the manifold T*F,_| (F,, is the space of full flags in (C”“), specified
by the coadjoint representation A, = SL(n+ 1,C):

manifold C¥'+2 5 nonsingular fiber ~ T*F,
of (n+ 1)-matrices with trace O = nonsingular orbit
mapping J J fbraton
- . noncritical values
characteristic polynomials D

= complement to the swallowtail

1993-13. Does there exist any planar not necessarily symplectic connection in the
Milnor stratification at least for A2? In other words, can one choose Dehn twists
along a parallel and a meridian on a torus with hole V so that they satisfy the
relation aba = bab in the group DiffV [or better in the group Diff(V,dV) leaving
all points of the boundary stationary], but not in 7y(Diff V' )?

1993-14. In COHEN P.-B., WOLFART J. Dessins de Grothendieck et variétés
de Shimura. C. R. Acad. Sci. Paris, Sér.1 Math., 1992, 315(10), 1025-1028,
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the Lobachevskii triangles with angles Z, g,andg and the groups generated by

these triangles are considered. We know that among these triangles, there are 14
especially remarkable ones (physicists’ “mirror symmetry” = the “strange duali-
ty” between the Gabrielov-Dolgachev numbers). The question is, whether or not
these 14 triangles are somehow distinguished in the arithmetic-topological theory
of Galois—-Grothendieck—Shabat, too.

1993-15. In a paper by Mourtada [MOURTADA F. -Z. Familles génériques a qua-
tre parametres de champs de vecteurs quadratiques dans le plan. Singularité a
partie linéaire nulle. C. R. Acad. Sci. Paris, Sér.1 Math., 1993, 316(7), 673-678]
(presented by R. Thom to the PDE section for some reason), bifurcations of phase
portraits are given, and the abstract of the paper claims that all portraits in domains
contained in the complement of the bifurcation diagram are considered, while in
the text (at the end), it is mentioned that the limit cycles are not studied. It is
necessary to finish the study of limit cycles in the context of this paper (at least,
determine their number!) and describe their bifurcations.

1993-16. Pierre-Louis Lions has recently been awarded a prize for a study of the
influence of small viscosity on the Hamilton—Jacobi—Bellman equation; the prize
announcement says that he invented viscous solutions and proved their conver-
gence to shock waves in an appropriate sense.

As far as I remember, some work in this direction has been done before
Lions (in particular, by S. N. Kruzhkov). How is this work related to Lions’ results?
What new contribution has Lions made?

1993-17. Is there the following fact in popular literature: The binomial coeffi-
cient C} coincides modulo p? (p is an odd prime) with the value of a degree x
polynomial in i having integer coefficients if x < p?

1993-18. In C. R. Acad. Sci. Paris, Sér.1 Math., 1993, 316(5), 513-518, a
weird paper [FLIESS M., LEVINE J., MARTIN PH., ROUCHON P. Défaut
d’un systeme non linéaire et commande haute fréquence] about employing rapidly
oscillating actions in control is published. The authors criticize the notions of
complete controllability etc. and suggest something instead. This paper needs be
thoroughly investigated, because the authors appeal to differential algebra, which
by no means can be relevant. Have the authors obtained new results concerning the
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considered problems about inverted ordinary and double pendulums with rapidly
oscillating suspension points?

1993-19. In C. R. Acad. Sci. Paris, Sér.1 Math., 1993, 316(6), 573-577 there is
the paper POLLACK R., RoY M. -F. On the number of cells defined by a set of
polynomials, where for n variables and s equations of degree d in R", the number
of components of sets determined by s equations or inequalities for any sign choice
is estimated: < O((sd/n)"). The only reference is WARREN H. E. Lower bounds
for approximation by nonlinear manifolds. Trans. Amer. Math. Soc., 1968, 133,
167-178.

Does this result follow from Petrovskii-Oleinik theory? What is known
in the case of full intersection: how many components are there if no inequalities
are present? Or—for the complement of the union of s hypersurfaces—what is
a hypersurface of degree sd? What is the reason for (sd/n)" here? In standard
inequalities for a hypersurface of degree sd = D, one may rather expect D" /n. For
example, if d = 1 and n = 2 then the number of domains ~ s2/2 but not s%/4;
by integration, it seems, in R” for d = 1 we get: roughly speaking, s"/n!, more
precisely, ¢"(s/n)" +--- > §" /n" which contradicts the result of the paper. Maybe
the authors mean O for n fixed? Why do they then take all of n"?

1993-20. Is it possible to evaluate the Casson invariant of knots of singularities
(at least, for the Brieskorn singularities x7 + yb + z¢, whose associated knots are
not homology spheres) [the definition can be found in the paper LESCcop C. Sur
I’invariant de Casson—Walker: formule de chirurgie globale et généralisation aux
variétés de dimension 3 fermées orientées. C. R. Acad. Sci. Paris, Sér.1 Math.,
1992, 315(4), 437-440] by analogy with the evaluations performed by R. Fintushel
and R. Stern for homology spheres? Can we obtain the signature of the Milnor
fiber?

1993-21. In DAX J.-P. Points singuliers normaux, points singuliers normaux
simples et modeles d’élimination. C. R Acad. Sci. Paris, Sér.1 Math., 1992,
315(3), 315-319, a classification of maps X — Y taking A C X inside BC Y is
given. What is this, mapping diagrams or quite a new problem?

1993-22. In PECKER D. Courbes gauches ayant beaucoup de points multiples
réels. C. R. Acad. Sci. Paris, Sér.1 Math., 1992, 315(5), 561-565, unicursal space
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curves with maximum number of double points are constructed; they all turn out
to be real. Thus, in the problem about space curves, as opposed to plane curves,
everything can be realized in a real domain (including any sets of double points and
cusps?). Is there a general phenomenon, namely, that the singularities of mappings
to multidimensional spaces can be “driven” into real domains (i. e., realized at
R-points for R-mappings)?

1993-23. 1.Ekeland et al. have recently proved that each centrally symmetric
(quadratically) convex closed surface in R” has an elliptic (probably, nonhyper-
bolic and non-Jordan?) closed geodesic [DELL’ANTONIO G., D’ONOFRIO B.,
EKELAND I. Les systémes hamiltoniens convexes et pairs ne sont pas ergodiques
en général. C. R. Acad. Sci. Paris, Sér.1 Math., 1992, 315(13), 1413-1415].

Is there an example of a nonsymmetric surface without elliptic (in the same
sense) closed geodesics? In particular, is it true that any closed surface close to
a sphere has an elliptic closed geodesic? If a surface is close to a triaxial ellip-
soid, then this, seemingly, follows from the Poincaré-Birkhoff theorem (but I have
not verified whether this does indeed—points with negative eigenvalues also have
positive indices).

What can we do when the surface is close to a sphere? Probably, we could
perform averaging over great disks and again apply the Poincaré theorem—has
anybody done this? It is convenient to define the metric by a function of the form
f - the standard metric.

The question is, how does the center of the instantaneous great disk ap-
proximating the trajectory move in this averaged motion? Probably, there arises
a Hamiltonian system on the sphere specified in terms of f, and the Hamiltonian
function is related to the integrals of f over the great disks; what functions are
obtained under such an integration?

1993-24. Study the “caustic-Maxwell stratum” duality.

1993-25. Jiirgen Moser has recently found a new version of KAM-type theo-
rems: Consider the complex torus C"/(I" ~ Z*") with, say, n = 2 and the foliation
W1 dz1 + @2 dz; = 0, generally nonresonant. The complex structure is perturbed
into an almost complex one.

Question: What becomes of holomorphic foliations? The answer is as fol-
lows: For the directions of complete Lebesgue measure, they survive (in higher
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dimensions of leaves, which are left unstudied, the foliation is also quasiholo-
morphic, i.e., the tangent plane is invariant with respect to the almost complex
structure J : T,M «, J*> = —E; but the one-dimensional leaves are complex rather
than only almost complex).

Question: What becomes of my theory of bifurcations of elliptic curves on
complex surfaces when the surfaces are almost complex? This topic is quite exten-
sive, because everything needs to be explored from the very beginning, including
normal forms of normal bundles, neighborhoods with positive, zero, and negative
self-intersection numbers, resonances, their realization, the Grauert theorem on
negative neighborhoods, and so on.

1993-26. Study the singularities of the manifold of normal matrices.

There is yet another excellent unexplored manifold, the Taylor series of
one-to-one mappings of the disk |z| < 1 to the plane (“the coefficient problem
for univalent functions™): stratify the boundary and investigate the singularities of
small codimensions in the space of series.

1993-27. Second, third, and succeeding braid groups: noncommutative resol-
vents. This is a very old problem, and it is time to clear it up.

Consider a general projection of a hypersurface o in C" onto the hyper-
plane C"~! (germ at zero). The discriminant is a hypersurface £; in C*~! over
which the number of preimages is less than the degree of X in 0. We obtain the
chain of the discriminants T; C C"~/ of the projections p;: C"~*1 — C"~ and the
chain of the groups I; = 71, (C"~*+1\ I;_1,b;) (near 0), where b; € C"~'*1. We
have I'; = F;/R;, where F; is the group generated by loops around Z;_; in the fiber
pi Y(p;b;) and R; is the normal closure in F; of the subgroup generated by the prod-
ucts (Aef)f!; here f € F; and Ay is the action on F; of the groups Fi.; by the
braids (@ € Fi11).

Clearly, the generators of I';;; (denoted by ¢ above) correspond to relations
in I';. Moreover, the generators o of the group I';;, correspond to relations from
Riy1 in ;1 and, therefore, to “relations between relations” in ;.

Thus, the relations (elements of R;;1) in I';; correspond to the generators
(elements of Fi;,) of the group I'iy5. If & € Fiy, is such a generator, then Ay acts
as a braid on F;; and takes @ to Aq®; the element £ = (Aq@)9~! € Fi;1 acts now
on F;. We obviously have the following ‘“Poincaré’s d? =0 lemma”:

Af=f VE=(Au9)9™' VfEF.
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Fig. 1: The sequence of discriminants X; and groups I';

Question: To what degree is R;4; less than the subgroup §i+1 of the braid
group acting on Fj; that is defined by

Rip1= {0 €Br(Fiu1) | V&= (09)9 ' € Fuy VFEF Acf = f}?
This is a general question referring to any germ of a hypersurface at a point.

Now, let £y be a swallowtail in C*=" (it can be obtained from X_; = {x,A |
XML AH—1 4. + Ay = 0} by projecting along the x axis in C**!). Then I'p =
Z, Ty =Br(u+1),and, = F, /R, = R,.

Urgent question: Is it true that I'; = F3 /Ry = §3? or §3 D R3? How can
we describe I'3? Should we take quasihomogeneous, rather than general, projec-
tions p;?

1993-28. Yet another old topic which it is timely to recall is singularities in
“Cartan’s geometric theory of PDE.” The subject matter is systems of differential
equations, that is, submanifolds in finite-order jet spaces, or, which is the same,
modules of consequences.
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1993-29. Suppose that v is a vector field in R" which has a singular point and the
real parts of the eigenvalues of its Jacobi matrix are negative (everywhere, rather
than only at the given singular point). Is it true that the basin of attraction of this
singular point is the entire space R"?

Perhaps, the condition will look less embarrassing if we consider the con-
trol system x = v(x) + u; for an arbitrary u, the fixed point of this system is an
attractor (with negative Lyapunov exponent).

1993-30. Compare the studies of the normal forms of Stokes surfaces performed
by A. I Neishtadt and S. K. Lando.

1993-31. M.R. Herman has presented a nice construction of an area-preserving
diffeomorphism of a disk with positive Lyapunov exponents in the whole domain
(see below). Is it possible to adapt this construction for solution of Sakharov’s
problem on fast ideal dynamo?

Recall that the collection of objects {A: B> — B? satisfying detA, = 1
and a divergence-free field v on the ball B} is called a fast ideal dynamo if
[/f5|A%v|?dx > CexpAn, A > 0.

The construction communicated by Herman: Let A: T> — T2 be an
Anosov map, say, (7 1), and o: T2 — T be a holomorphic involution with 4 fixed
points [e. g., the covering w? = P4(z) of an elliptic curve over S?]. In R?/Z?,
4 points (0,0), (0,1/2), (1/2,0), (1/2,1/2) remain fixed under the action of A
(since (0,0) is fixed under A, and the other points permute). Therefore, A® acts on
the sphere (with 4 fixed points) as an Anosov system. Now it remains to resolve
these 4 points.

1993-32. Multidimensional continued fractions and A-algebras.

D. Eisenbud has recently constructed an example (see below) of an A-alge-
bra over C with moduli (not “simple”). Recall that an A-algebra is graded and has
a Poincaré series 1+t + 2+ --- of polynomials in one variable. The degrees of
multiplicative generators are determined uniquely: 1 = up < u; < up < --- (y; fills
the first lacuna in the degrees of monomials in lower-degree generators).

Thus, we can compose a Young diagram; for example, the anomaly o; =
u—igives 1 =0 <oy <ayp <---. Is there a relation between the presence of
moduli in A-algebras with given anomaly and in flattenings?

Eisenbud hopes to prove transversality at the Weierstrass points.
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Certainly, most likely, there is no relation, but nevertheless, the simplicity
(the absence of moduli) selects simple ones among all Young diagrams, and of in-
terest is the list of Young diagrams simple in this sense. The bifurcation diagrams
also might deserve attention (though I do not know what they are, for the space
of A-algebras is not linear). Maybe, we should consider one-dimensional exten-
sions of the ready Ay-algebra (of dimension | over C), because if an algebra has
moduli, then they manifest themselves for the first time somewhere in the chain of
extensions, and the space of extensions is less singular (it is not improbable that it
is even not singular at all for one-dimensional extensions).

Eisenbud’s example: The generators are x;, x2, X3, X4, X5, Y6, Y7, V8, and
x17 (the subscripts indicate their degrees); the relations are x;x; = 0, x;yjyx = 0,
and x;y; = xpy; = 0; the relations between y; are the same as between yi (e.g.,
Y6y = y%; the multiplication by y; acts on x3, x4, and x5 as

X3y7 = X4Y6, X4yg = xs5y7 = xs5y8 = 0, x17yi =0,
X3Y8 = X5Y6, X4y7 = axX3yg = axsye.

We claim that a is a modulus. Indeed, multiplying the generator of degree i by A;
for various i, we obtain that

x3y7 = X4Y6 implies A3h7 = AgAs

impli = (MA7 = A3A3) = a is a modulus!
y6y3=y% 1mp11es16xgzx% } (Aah7 3Ag)

1993-33. Explore the asymptotic properties of random integer planes: Is their
statistics similar to the Gauss statistics for continued fractions?

1993-34. Model the spectral sequence of a bundle by singularities in the same

fashion as the homology complex is modeled by the Morse complex; namely, put

geometric objects in correspondence with differentials and obtain “Morse inequal-

ities,” i. e., express the existence of some singularities (and bound characteristics of

these singularities from below) in terms of differentials from the spectral sequence.
A concrete question: For the bundle

S2n+ 1

Plsl

cp?
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and a generic function f on $%"t1, specify the necessary multiplicity p of a crit-
ical point of the restriction of f to a fiber p~!(b) for the worst fiber; the word
“necessary”’ means “minimum over all generic f.”

1993-35 (S. P. Novikov). Consider a cyclic covering of a compact manifold and
a general pseudoperiodic smooth Morse function f on the covering space (the
differential of f is lifted from the initial compact manifold). Let +1 denote the
action of the group Z on the covering space, and let f(x+ 1) = f(x)+ 1. Suppose
that f has critical points p and g of indices i and i — 1, respectively. Consider the
“Instantons” (trajectories of the field grad f) joining the points p and g — n. Is the
number of such instantons bounded by the exponent of »n?

1993-36. Take a neighborhood U of a hyperbolic fixed point 0 of a diffeomor-
phism of the plane A. The order of a homoclinic point p (i. e., such that A”p — 0
as m — =o0) is the number of the points on the orbit of p that fall outside U':

ord(p) =#{meZ|A"p ¢ U}.

Is the number of homoclinic points of given order n bounded by the exponent of n?

1993-37. A connected smooth hypersurface in the real projective space is said to
be locally hyperbolic if its second quadratic form is everywhere nondegenerate.
Is it true that all closed connected locally hyperbolic nonconvex surfaces in RP3
are quasiconvex and separate pairs of projective subspaces, having just two inter-
section points with every straight line connecting these subspaces (see problem
1990-47

1993-38. Is the set of closed connected locally hyperbolic nonconvex surfaces
in RP? connected? Is it true that any such surface has a convex plane section?

1993-39. Is it true that the generic caustic formed by the r-th conjugate points
along the geodesics from a given point on the sphere S? has at least four cusps for
any Riemannian metric on $2?

1993-40. Is it true that the generic caustic formed by the r-th conjugate points
along the geodesics from a given point on the sphere S* has at least four D4-type
singularities for any Riemannian metric on S*?
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1993-41. This problem and the six subsequent ones are devoted to critical points
and Lagrangian singularities.

Let us consider a generic convex smooth closed curve ¥ on R? and its nor-
mal lines. The unit vectors on these lines determining the same orientation as
internal normals to y form a Lagrangian submanifold M of the space T*R? (we
identify tangent and cotangent vectors using the Euclidean metric of the plane).
Whitney cusped singularities of the projection of this Lagrangian submanifold on-
to the plane—they are the curvature centers of yfor its vertices—are singular points
of the caustic I" consisting of the curvature centers of ¥ for all its points.

The manifold M is diffeomorphic to a cylinder. Unit vectors applied out-
side a large disk containing the caustic form two “collars” (semicylinders) on M.
These collars are projected into the plane diffeomorphically, and the middle part
of the cylinder—with singularities (the set of critical values is the caustic I).

Can the middle part of the cylinder M be replaced with another Lagrangian
embedding, so that the resulting projection of the embedded Lagrangian cylinder
into the plane has no Whitney cusped singularities (and coincides with the original
projection on the collars)?

1993-42. A relaxed vesrion of the previous problem: can the middle part of the
cylinder M be replaced with a Lagrangian immersion, so that the resulting projec-
tion of the immersed Lagrangian cylinder into the plane has no Whitney cusped
singularities (and coincides with the original projection on the collar)?

1993-43. The cylinder M mentioned in problem 1993-41 is optical, i. e., it lies in
the hypersurface p? = 1.

Can we replace this cylinder (the boundary collars being left intact) with
an optical immersed (or embedded) Lagrangian cylinder whose projection on the
plane has no Whitney cusped singularities?

1993-44. The topological invariants of the space of Morse functions on a giv-
en compact manifold (or of the space of functions whose critical points are not
more complex than singularities from a given class) are interesting invariants of
smooth manifolds; cf. ARNOLD V. 1. Spaces of functions with moderate singular-
ities. Funct. Anal. Appl., 1989, 23(3), 169-177; the Russian original is reprinted
in: Vladimir Igorevich Amold. Selecta—60. Moscow: PHASIS, 1997, 455-469.
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Are the homotopy types of these function spaces determined by the topo-
logical type of the initial manifold, or do they indeed depend on the smooth
structure?

1993-45. Consider a Morse function on a connected compact manifold. A suit-
able diffeomorphism sends all critical points of this function into a small ball in
the manifold. The restriction of our function to a neighborhood of the boundary of
this ball determines a Lagrangian (or Legendrian) collar, that is, the set of the first
differentials of the function or its 1-jet at the points of a spherical annulus.

Is it possible to reconstruct a manifold from its Lagrangian collar? For
what pairs of manifolds M} and M3 do there exist functions f;: M{ — R and
f2: M} — R that coincide on balls containing all critical points?

1993-46. Consider a family of smooth functions as a function on the space of a
smooth bundle (with compact base and fibers). Can the numbers of degenerate
critical points (of different types) of the restrictions of this function to the fibers be
estimated from below in terms of the topology of the bundle?

1993-47. Consider a smooth function in a neighborhood of a critical point O of
finite multiplicity. Suppose that the index of the corresponding gradient vector
field at O is zero. Consider the Lagrangian collar determined by the restriction
of this function to a neighborhood of a sphere dB centered at 0. Does this collar
bound a Lagrangian disk (or other Lagrangian manifold embedded in the cotangent
bundle of the ball B) disjoint from the zero section?

1993-48 (M. B. Sevryuk). Let a smooth involution G: M — M of an N-dimen-
sional manifold M possess an invariant n-torus L C M, L = T", the restriction G|,
being conjugate to the transformation ¢ — —@ (¢ denotes the angular coordinate
on T") and therefore having 2" isolated fixed points. What types of involution G
can be at these points?

If a € M is a fixed point of the involution G then by definition the type of
involution G at this point is (p,N — p), whenever the linear part of G at the point a
is a reflection in an (N — p)-dimensional plane. If

(pt,N—=p1),--.,(pan,N — pn)
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are the types of involution G at fixed points ay,...,ay on the torus L, then
n < p; <N foralli. Do all the collections of numbers p; meeting these inequalities
indeed occur?

1994-1. We use the term pseudofunction for an immersion S! — $? bounding
half the sphere area and homotopic to an embedding of the equator in the class
of immersions such that no subloop smaller than the entire curve bounds half the
sphere.

Prove that a pseudofunction intersects any equator. Proved by A. B. Given-
tal’ even for Lagrangian RP" in the symplectic CP".

1994-2. Prove that the number of inflections of a pseudofunction is at least four.

1994-3. Consider the cylinder S! x I. An immersion of S! into this cylinder is
called a O-pseudofunction if it bounds half the cylinder area and is homotopic to an
embedding of the boundary of an embedded disk in the class of immersed curves
bounding half the cylinder area and containing no subloops bounding such an area.

Prove that a 0-pseudofunction intersects the equator. Study the existence of
four inflection points for a 0-pseudofunction. A curve on the cylinder x* +y* = 1,
|z| < 1 can be projected onto the sphere x* +y* +z* = 1 either from the center or
by the horizontal radii from the points on the vertical axis of the cylinder (i. e., by
means of the Archimedean symplectomorphism). The former projection transforms
the inflection points on the cylinder into inflection points on the sphere. The latter
transforms the inflection points into points of double tangency with projections of
great circles. The perturbations of the cylinder equator that, together with the
equator, bound zero area have four inflection points in both senses.

1994-4. If a curve embedded in S? meets the great circle 2k times, then it has
at least 2k inflection points. Find the symplectic (or contact) setting of this geo-
metric theorem and transfer it to general Chebyshev systems.
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1994-5. A curve (immersed circle S!) in R?" is called convex if no hyperplane
intersects it in more than 2n points (counting multiplicity). Is it true that any
convex curve in R?" has a convex projection on R¥*=29 or is a projection of a
convex curve in R¥"t2? A similar question for projective convex curves in RP™
with not necessarily even m is also interesting.

1994-6. Smooth curves in R? close to plane convex curves have at least four
flattening points. To give a contact formulation of this assertion (in the spirit of
the Morse-Chekanov Legendrian theory), it would be useful to understand how
large can a deformation be while still preserving the lower bound of four flattening
points. Is it sufficient to assume that the initial curve as well as the dual curve
remain trivial (embedded and unknotted) in a deformation?

1994-7. Consider the Legendrian self-linking numbers L; of a Legendrian curve
in the solid torus ST*R2. Are they contact-invariant (i. e., are they preserved by
the contactomorphisms of the solid torus onto itself that preserve the orientation
of the basis circle and the co-orientations of the contact planes)?

Solved affirmatively by E. Giroux. A positive answer would follow from
the connectedness of the contactomorphism group described above, but this con-
nectedness is not proved. It is only proved that the contactomorphisms of the
above-mentioned type cannot change the type of trivialization of a torus bundle
“at infinity” (x? +y? > 1) and over the basis circle.

1994-8. What is the analog of the Bennequin inequality for Legendrian curves in
ST*M*?

1994-9. Does the universal Milnor fibration of surfaces for A, in C3 (x> + Aix +
A2 +y? +z%2 = 0) have a symplectic flat connection?

For curves in C2, such a connection is constructed as follows: an elliptic
curve with a marked point is identified with a neighboring elliptic curve with a
marked point by a real linear realification transformation of the covering plane
which maps the basis of the initial period lattice to the basis of a close lattice.

1994-10. How does the number of isotopy classes of plane (or spherical) curves
with n double points grow? What is the distribution of these curves in the index
(whether the limit distribution is the Gaussian one)?
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Here is the empirical distribution for the plane curves having n = 5. 26,
133, 290, 364, 290, 133, 26.

1994-11. Examine the singularities of the curvature form of the natural (adiabat-
ic) connection of the bundle of the Hermitian matrix eigenvalue manifold near the
discriminant of multiple eigenvalues.

1994-12. Compare the versal deformation’s curves of the mappings (R,0) —
(R?,0) with the classification of long curve immersions on the plane: What class-
es are realized; what are the bifurcation diagrams (remember stabilization!); how
many connected components does the complement of a bifurcation diagram have;
does the smooth type of a long curve determine the connected component of the
complement; what are the expressions of the values that the invariants (J*, J~, St,
and others) take on in terms of the local algebra of the singularity; what becomes of
all this theory under complexifications, that is, for the mappings (C,0) — (C?,0)?

1994-13. Consider a particle in a magnetic field on a surface M2. Study Legen-
drian divergence-free vector fields on ST*M? and, in particular, their closed orbits.
More generally, consider divergence-free Legendrian vector fields on S* for some
(standard?) contact structure. Does there exist a counterexample to the Seifert con-
jecture (that a divergence-free field without singular points has at least two closed
trajectories) in this class of vector fields?

1994-14. Consider a particle in a magnetic field on a Riemannian manifold of
an arbitrary dimension. The magnetic field is given by a closed two-form on the
manifold, twisting the symplectic form of the phase space. In the case of a strong
magnetic field (large curvature trajectories) apply the averaging method and, at
least, formulate conjectures on topological lower bounds for the number of peri-
odic orbits. These conjectures should generalize the theorem on the existence of
2g + 2 curves of large geodesic curvature on a surface of genus g.

1994-15. Is it true that a projective curve which does not intersect any more with
its osculating hyperplanes is convex (that is, the number of intersection points of
this curve with any hyperplane, counted with their multiplicities, does not exceed
the dimension of the ambient space)? Investigate the number of connected com-
ponents and the boundary of the manifold of convex curves in RP” (stratification,
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bifurcation diagrams, stabilization, ...). There is a single connected component if
the orientation is not taken into account (S. S. Anisov).

1994-16. Prove that a curve in RP” that is projectively dual to a convex one is
convex itself. Proved by B. A. Khesin and V. Yu. Ovsienko, a simpler proof was
given by M. E. Kazarian.

1994-17. Find all projective curves projectively equivalent to their duals. The
answer seems to be unknown even in RP?,

1994-18. Examine the boundary of the manifold of Mébius curves in RP? (the
Mobius curves are those from the connected component of the space of curves
having at least three inflection points, that contains all the curves close to RP').

1994-19. Examine the boundary of the manifold of tennis immersions S' — 52 (a
tennis immersion is an immersion from the connected component of the space of
immersions that halve the area and have at least four inflection points, that contains
all curves halving the area and close to equator in the space of curves in §2).

1994-20. Explore the singularities of the caustic of an ellipsoid in R* (or in R",
n > 4). Conjecturally these singularities are topologically inevitable: caustics of
other (convex?) surfaces have not less singularities, and this is true even for the
Lagrangian collapse on R" (V. M. Zakalyukin's conjecture).

1994-21. Is it true that any knot in ST*R? = S! x R? can be realized as a Legen-
drian knot of an immersion S! — R2? Yes; solved by A. Shumakovich.

1994-22. Prove that a convex curve in RP?" is affine (does not intersect a hyper-
plane). Proved by S. S. Anisov (and others).

1994-23. Consider the front of a convex curve in RP”" (its points are the hyper-
planes tangent to the curve). Are the fronts of different convex curves homeomor-
phic? diffeomorphic? Describe the topology (combinatorics) of a front: find the
number of connected components in the complement, and so on. This is interesting
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even for the simplest curve x; = coskx, y; = sinkx (k= 1,...,n) in R*" (and even
if the answer for other curves is different). This problem has given rise to studies
of complex and real trigonometric polynomials, the Lyashko—Looijenga—Laurent
mapping, and graph combinatorics, but it is still unsolved itself.

1994-24. Are the Poincaré series of numbers of moduli in jet spaces rational func-
tions in the majority of local problems in analysis? For instance, is it true for al-
most all f (that is, for all f not belonging to some subset of infinite codimension
in the space of Taylor series) in the following classification problems:

— classification of the Riemannian (or Einsteinian) metrics f in a neigh-
borhood of a point in a space modulo local diffeomorphisms of this space that
leave this point fixed,

— classification of the vector fields f on a manifold in a neighborhood of a
singular point of a field modulo local diffeomorphisms of this manifold that leave
this point fixed,

— classification of the smooth mappings f: M™ — N" in a neighborhood
of a point x € M modulo local diffeomorphisms of M and N that leave x and f(x)
fixed,

— classification of the Hamiltonian vector fields f in a neighborhood of
a singular point of a field modulo local symplectomorphisms that leave this point
fixed,

— local classification of the second order differential equations y" =

flyy');

— classification of the germs f of hyper-Kdhler structures on a 4n-mani-
fold modulo local diffeomorphisms?

Recall that the Poincaré series of numbers of moduli for a given (local)
object is the series M(t) = Yoo m(k)t, where m(k) is the number of moduli of the
k-jet of this object (i. e., the dimension of the moduli space).

1994-25. Is it possible to construct a theory of sufficient jets for expansions with
logarithmic terms?

1994-26. Does there exist a minimal attractor for a system of Navier-Stokes
equations whose dimension unboundedly increases as the viscosity diminishes
(dim — o as v — 0)?
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1994-27. Is it true that the minimum dimension of an attractor of a Navier-Stokes
system unboundedly increases as the viscosity diminishes?

1994-28 (Ya.B. Zeldovich). Does there exist a divergence-free field v on a three-
dimensional torus T> such that a magnetic field B satisfying the system

oB .

> +{v,B} =pAB, divB=0,
grows exponentially as ¢ increases for some initial field By? Is there a divergence-
free vector field v on T> which is a fast kinematic dynamo?

1994-29 (Ya.B. Zeldovich— A. D. Sakharov). Does there exist a volume-preserv-
ing diffeomorphism of the three-dimensional ball B3, whose iterations make the
energy of some initial divergence-free vector field grow exponentially with the
number of iterations?

1994-30. Consider a smooth function ug defined on the disk x> +y? < 1. Find the
infimum of the Dirichlet integral

= ()3 o

over the set of all smooth functions # obtained from uy by an area-preserving
diffeomorphism of the disk.

1994-31. Consider a dust-like gravitating medium in the standard Euclidean
3-space. Describe the singularities of the caustic hypersurfaces and the particle
density in the physical space after the formation of the first caustics. Is it true
that the singularities of the solution to the Vlasov—Poisson equations for generic
initial distributions concentrated along generic smooth Lagrangian sections of the
cotangent bundle have the same topological structure as for the Vlasov equation
(where the gravitational interaction is not taken into account)? Do the density
singularities in neighborhoods of points on caustics and of caustic singularities
have the same orders as those for non-interacting particles?

1994-32. Calculate the asymptotic behavior of the maximum oscillation indices
B(p) and B,(p) encountered in general p-parameter families of oscillatory inte-
grals of functions in n variables.
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1994-33. Consider a generic analytic nearly integrable Hamiltonian system: H =
Hy(p) +eH1(p,q,¢€), where the perturbation H; is 2n-periodic in the angle vari-
ables (q1, .. .,q,) and where the unperturbed Hamilton function Hy depends on the
action variables (py,...,p,) generically. Let n be greater than two.

Prove or disprove the following conjecture. For any two points p’, p” on
the same connected component of a level hypersurface of function Hy in the action
space, there exist orbits connecting an arbitrarily small neighborhood of the torus
p = p' with an arbitrarily small neighborhood of the torus p = p”, provided that
€ # 0 is sufficiently small and H is generic.

1994-34. Prove or disprove the following conjecture: An equilibrium point 0 of
a general analytic Hamiltonian system is Lyapunov unstable if the quadratic part
of the Hamiltonian function at 0 is neither positive nor negative definite.

1994-35. Find lower bounds for the number of periodic orbits of a charge in a
magnetic field, where the motion of the charge is confined to a surface and the
magnetic field is orthogonal to the surface. Conjecturally, on a surface of genus g,
a charge should generically have at least 2g + 2 periodic orbits. From a math-
ematical perspective, this is a problem about closed curves with given positive
geodesic curvature on the surface. When the magnetic field is sufficiently strong,
the conjecture is proved, cf. problem 1994-14.

1994-36. Consider g vectors (ki,...,k;) applied to the origin in the Euclidean
plane such that their endpoints are the vertices of a regular g-gon. Consider the sum
of g equal intensity harmonic waves with these wave vectors. If g # 1, 2, 3, 4, 6
(say, if g = 5), then this sum is not a periodic function (though it is quasiperiodic).
Example: ¢ =5,H(xr) = 22:1 cos(k;,r).

Is it true that all closed components of the level lines H = k that bound
regions containing the origin lie in a bounded neighborhood of the origin?
Does a Hamiltonian system with Hamiltonian function H have an unbounded
phase curve?

1994-37. Is the problem of the stability of an equilibrium point for a vector
field whose components are polynomials with integer coefficients algorithmical-
ly solvable?
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1994-38. This and the following four problems are concerned with the analytical
(and geometric) solvability of analytical problems.

Let us introduce sets of “feasible manifolds” and “feasible mappings” with
the following properties:

— the arithmetical spaces R"” and C" are feasible for any n;

— any rational mapping is feasible;

— the image and preimage of a feasible manifold under a feasible mapping
are feasible manifolds;

— the intersection, union, and mutual complements of two feasible mani-
folds is a feasible manifold,;

— the superposition of two feasible mappings is a feasible mapping;

— if f(x,y) is a feasible function, then its derivative with respect to x and
its primitive function determined by its value at some feasible point are feasible.

Now, consider an analytical problem specified by some choice of functions
(components of vector fields, or Hamiltonian functions, etc.), which may depend
on parameters. These functions are the data of the problem. A feasible set of the
problem is a minimal feasible set containing the problem data. A problem is called
analytically solvable if its solution is a feasible function of parameters.

Prove or disprove the following conjecture: There exist a number M and
two functions N and D such that the problem of the stability of an equilibrium
point O for a vector field in R” whose components are n-th degree polynomials is
not analytically solvable

a) if n and d are greater than M,

b) if d > 1 and n is greater than N(d),

¢)if n > 2 and d is greater than D(n).

1994-39. Prove or disprove the following conjecture: The problem of the inte-
grability of a differential equation specified by a vector field in a space of dimen-
sion n > 1 whose components are polynomials of degree d > 1 is not analytically
solvable.

1994-40. Prove or disprove the following conjecture: The problem of the com-
plete integrability of a canonical Hamiltonian system specified by a polynomial
Hamiltonian of degree d > 2 in a space of dimension 2n > 2 is not solvable ana-
lytically.
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1994-41. Definition: A problem is geometrically unsolvable if there are no ana-
lytically solvable problems among the problems obtained from the given one by
diffeomorphic changes in the parameter space. Conjecture: The problems men-
tioned in 1994-38—-1994-40 are geometrically unsolvable.

1994-42. Definition: A problem involving a function as a parameter is almost
solvable if the function space contains a decreasing sequence of exceptional sub-
manifolds of increasing codimensions such that the problem is solvable outside
each of these submanifolds. Conjecture: There are no almost solvable problems
among those mentioned in 1994-38—-1994-40.

1994-43. Consider a vector field in the Euclidean space R®. The manifold of or-
bits of such a field (suitably chosen) can be made diffeomorphic to an arbitrary
fake manifold R* (that is, a differentiable manifold homeomorphic but not diffeo-
morphic to the vector space R*).

Can we obtain a fake R* from a vector field with polynomial components?
trigonometric? analytic? elementary? Can we explicitly write at least one such
vector field?

1994-44. A pseudoperiodic mapping is the sum of two mappings, a linear and a
periodic one. A pseudoperiodic manifold is a point’s inverse under a pseudope-
riodic mapping. Consider a pseudoperiodic (but not periodic) curve in R* (with
respect to the fixed period lattice Z"). Suppose that the rank of the linear part of
the corresponding mapping is maximal (i. e., equals n — 1). In that case, evidently,
the curve contains an infinite branch (finitely distant from some straight line).

Is it true that a noncompact component of such a pseudoperiodic curve is
always unique? Solved in the negative by D. A. Panov.

1994-45. Let A: M — M be an analytic diffeomorphism of a compact analytic
manifold (e. g., of the torus T?). Is it true that the number of periodic points of
period n of such a diffeomorphism is majorized by an exponential function of n?

It is assumed here that periodic points x are nondegenerate (i. e., that 1 is
not an eigenvalue of the derivative of the mapping A" at x). Generic diffeomor-
phisms A have no degenerate periodic points.
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1994-46. Is it true that the number of periodic orbits of periods at most T of a
polynomial vector field on a compact ball in R™ is majorized by an exponential
function of 7'?

1994-47. Conjecture: The number of periodic points of a mapping of class C*
grows almost always not faster than some exponential function of the period.

Here “almost always” means “for almost all (in the sense of the Lebesgue
measure) the parameter values in each typical family of mappings depending on
sufficiently many parameters.”

1994-48. Consider two compact submanifolds X* and ¥/ in a compact mani-
fold M™. Let A: M — M be a differentiable mapping. Consider the successive
images of the manifold X under the iterations A" of the mapping A. To mea-
sure their complexity (which grows as n increases), one studies their intersections
Z(n) = (A"X)NY with a fixed manifold Y. These intersections Z(n) are, as a rule,
smooth manifolds of dimension s =k+[—m.

Explore the asymptotic behavior of topological complexity |Z(n)| of the
manifold Z(n) as a function in time ~.

In particular, is it true that for manifolds and mappings of class C™, the
topological complexity of the intersection Z(n) is almost always majorized by
some exponential function of time n? As the topological complexity measure one
might consider the sum of the Betti numbers, the characteristic numbers, the Morse
and Ljusternik—Schnirelmann numbers, the numbers of the generators and of the
relations of the fundamental group, and so on.

1994-49. Consider two germs of holomorphic curves passing through the origin
of the plane C2:
(X,0) = (C*,0) < (7,0),
and a germ of a holomorphic mapping leaving the origin invariant:
A: (C?*,0) — (C2,0).

We shall apply the iterations of A to X and study the intersections of A”X with Y.
The Milnor number \(n) is by definition the multiplicity of the intersection of
curves A"X and Y at the origin.
Do the Milnor numbers [1(7) admit an upper bound exponential in time n?
It is assumed here that A is a mapping of finite multiplicity and that, for
each n, the curves A”X and Y do not coincide.
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1994-50. Consider an algebraic filtration
Viovuo>¥zo ...
of the space Vy = J* of infinite jets of pairs of holomorphic mappings
f:(Ck0) - (C™0), g:(C'0)— (C™0)

at the origin. The varieties V; are algebraic subvarieties in J*, i. e., each of these va-
rieties is defined by polynomial equations on a finite number of Taylor coefficients.
This finite number however depends on i. The generalized Milnor number \(f,g)
is by definition the maximum over numbers i for which the pair (f,g) belongs
to V;.

Now consider holomorphic embeddings

(x*,0) — (C™,0) — (¥',0)
and a germ of a holomorphic mapping
A: (C™0) — (C™)0).

Conjecture: The generalized Milnor numbers [L(n) of the pairs (A"X,Y)
admit an upper estimate exponential in n (provided that A is a mapping of finite
multiplicity, and that all its Milnor numbers are finite).

1994-51. Infinitesimal version of the Hilbert 16th problem. Assume that a poly-
nomial vector field on the plane admits a first integral whose level curves are cycles
(filling at least some annulus in the plane). Consider small polynomial perturba-
tions (of prescribed degree) of this vector field. The location of the limit cycles
appearing in this perturbation is given in the first approximation by zeros of a cer-
tain integral (found by Poincaré) along nonperturbed closed curves (which are the
level curves of the first integral).

Is the number of zeros of the Poincaré integral bounded (by a constant
depending only on the degree of the perturbation)?

1994-52. A partial case of the previous problem: consider the full Abelian
integral

nm:%@a+Q@)

along an oval of an algebraic curve H(x,y) = h. The polynomials P(x,y) and
Q(x,y) represent an infinitesimal variation of the Hamiltonian vector field, and
I(h) is the Poincaré integral. Find an upper bound for the number of real zeros of
the function / for all polynomials (P, Q) of a fixed degree.
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1994-53. Materialization of resonances in holomorphic dynamics. Consider
a holomorphic mapping of a neighborhood G of the circle S! (in the complex
plane C) onto another neighborhood of the same circle:

A: (G,S") - (G,sh).

Suppose that A induces a diffeomorphism of the circle S! conjugate to rotation R,
through the angle 2wA, the conjugating diffeomorphism B being holomorphic in
some neighborhood of the circle: A = BRyB~!. Assume that the Poincaré rotation
number A is irrational.

Suppose that the maximal disc M (diffeomorphic to S! x R), where the
mapping A is conjugate to the rotation, is contained in the neighborhood G of the
circle S! together with its boundary oM.

Is it true that any neighborhood of each point of the boundary dM contains
a point in a periodic orbit of the mapping A, this orbit lying in an arbitrarily small
neighborhood of the boundary? Is this true at least generically?

1995-1. Explore the topology of the stratification of the space of trigonometric
(real and complex) polynomials modulo topological equivalence.

1995-2. Investigate mappings of Lyashko-Looijenga type for rational functions,
especially in the cases of two poles (Laurent polynomials) and three poles (“mod-
ular polynomials™), when the set of poles has no moduli and the answer does not
depend on the location of poles.

Evaluate the multiplicities of these mappings on various strata of the dis-
criminant (generalizing Cayley’s formula for the number of trees).

1995-3. Prove that a surface dual to a small perturbation of the projective plane
in RP? has at least four connected cuspidal edges (Aicardi’s conjecture), even at
the level of infinitesimal perturbations.

B. Segre proved that this is true for a cubic surface, and attempts to find
counterexamples by the aid of higher order spherical harmonic functions were un-
successful. The number of swallowtails on the dual surface is found to be not less
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than 6. If the decomposition of the perturbation into spherical harmonic functions
does not contain cubic harmonics and starts with fifth order harmonics then, ac-
cording to Aicardi’s examples, one obtains at least 8 connected cuspidal edges and
at least 14 swallowtails.

Counterexample: D. Panov, 1997 (published in: PANOV D.A. Parabolic
curves and gradient mappings. Proc. Steklov Inst. Math., 1998, 221, 261-278):
there exist smooth perturbations of the projective plane in RP? having only one
parabolic line.

1995-4. A point on a smooth plane curve is called an n-inflection point if the
order of tangency with a suitable algebraic curve of degree n at this point is higher
than usually. For example, the 1-inflection points are the ordinary inflection points
(where the multiplicities of the intersections of the curve with its tangents are at
least 3). The multiplicity of the intersection with the nearest curve of degree n
usually equals (n% +3n)/2.

How many 4-inflection points does a plane curve carry if it is sufficiently
smoothly close to a) a circle, b) a cubic oval, ¢) an oval of a fourth-degree curve?
Similar questions can be asked for any ».

Any convex curve carries at least six 2-inflection points (the intersections at
these points have multiplicity 6; for this reason, such points are called sextactic).
A curve smoothly close to a circle has at least eight 3-inflection points (and there
exist such curves with precisely eight points of nondegenerate 3-inflection). But a
curve smoothly close to an oval of a cubic curve has not less than ten 3-inflection
points (the intersections with suitable cubics are of multiplicity 10 at these points).
It is interesting to determine where the boundary between the “closeness to an
oval of a cubic” and the “closeness to a circle” passes, and what happens on
this boundary. Possibly, when the higher derivatives are taken into account, the
circle becomes an insufficiently convex curve, and there exists an interesting class
of n-convex plane curves with specially good properties for each n.

1995-5. The caustic of a general Lagrange collapse over R has at least three cusp
edges (a conjecture of V. M. Zakalyukin). Three edges are realized in an ellipsoid’s
caustic; thus, the conjecture asserts that the case of an ellipsoid is minimally com-
plicated: the encountered singularities are topologically necessary.

1995-6. Construct a parametric Morse theory that substantiates the topological
necessity of the presence of complex critical points of functions on the fiber under
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certain parameter values, in terms of the topological complexity of the bundle on
the total space of which the initial smooth function is defined. Carry over this
theory to set-valued functions (that is, Lagrangian intersections).

1995-7. Study the singularities of the manifold of real projective curves com-
pletely decomposable into real lines.

The Maxwell-Sylvester theory of spherical harmonics asserts that this
strange submanifold of the projective space of n-th degree curves is “linked” with
the complementary projective space of curves containing the imaginary circle
x*+y? + 2% = 0 as a component in a surprising way (namely, through each point
of the complement of both spaces, there passes precisely one straight line joining
them and intersecting each of them at one point). Do there occur other such
“links”?

1995-8. Find the simplest (i. e., with the minimal number of singularities) pairs of
positively co-oriented curves immersed in the plane having equal Legendrian knots
in ST*R?, for which no regular homotopy without equally directed self-tangencies
has been constructed (and try to prove that the latter does not exist).

1995-9. Find the simplest pairs of positively co-oriented curves (or fronts) im-
mersed in the plane for which equipped knots coincide but Legendrian equiva-
lence of knots in ST*R? has not been proved (and try to prove Legendrian non-
equivalence).

1995-10. Find the simplest front with zero Maslov index whose Legendrian knot
in ST*R? has not been realized by a Legendrian curve with smooth front (and try
to prove that such a realization does not exist).

1995-11. How can we evaluate the minimum number of inflection points on re-
alizations of a given class for immersions of the circle into the plane (sphere, pro-
jective plane, surface of genus g with the Lobachevskian metric)? For example,
the figure eight has not less than two inflection points on the plane, and it can have
none on the sphere.

There is a paper by B. Z. Shapiro on this topic; cf. the dissertation of E. Fer-
rand (who proved the symplectic or contact equivalence of the family of curves of
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an Hadamard manifold to a standard one; in particular, for the Lobachevskian
plane, this gives all four-vertex-type results).

1995-12. Transfer the theory of completely integrable Hamiltonian systems from
symplectic geometry to contact geometry (where, e. g., the Lagrangian invariant
manifolds with their natural affine structures determined by Lagrangian fibrations
must be substituted by Legendrian invariant manifolds with their natural projective
structures determined by Legendrian fibrations). Carry over the Liouville theorem
to this context and find applications to the infinite-dimensional case (where the
equations of characteristics are partial differential).

1995-13. Is the “last geometric theorem”™ of Jacobi valid, according to which
the first caustic (the set of first conjugate points to an arbitrary “pole” along all
geodesics starting from it) of a typical ellipsoid has exactly four cusps?

& £
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1996-1. The Eisenbud-Levin formula for the index of a vector field singularity
“drives” a global topological invariant (mapping degree) into the local algebra of
the singularity. What becomes of the other global invariants, such as character-
istic classes and numbers, under a similar localization (both in the complex and,
especially, in the real case)?

1996-2. Calculate the cohomology and fundamental groups of complements of
strata of codimension 2 (and higher) in the space of immersed plane curves. In
the case of higher codimensions of strata the homotopy (and hence homology)
groups probably are trivial. It is interesting to compare the results with those
for analogous problems concerning the spaces of versal deformations of germs of
maps (R,0) — (R?,0) (stabilization over the growing complexity of singularities).

1996-3. Prove that the n-th symmetric power of RP? is RP?".
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1996-4. Prove that the caustic is diffeomorphic to the Maxwell stratum for the
singularity B4 and transfer this result to higher singularities By (taking into account
the symplectic or contact structures). The symplectic version was constructed by
F. Napolitano in NAPOLITANO F. Duality between the generalized caustic and
Maxwell stratum for the singularities By, and Cy. C. R. Acad. Sci. Paris, Sér.1
Math., 1997, 325(3), 313-317.

1996-5 (P. G. Grinevich). Let f(x) be a real Fourier integral,
0= [ F®ear, F(-k=FB,

with vanishing low-frequency harmonics [F (k) = O for |k| < @]. Then the limiting
averaged number of zeros of f on long intervals is not less than the averaged
number of zeros of the function cos @x (i. e., the limiting density of zeros is not less
than ®/).

For a Fourier series the number of its sign changes on the circle is not
less than the number of zeros for the lowest Fourier harmonic that has a non-zero
coefficient in the series.

1996-6 (F. Aicardi). Compare the following one-parameter families of hypersur-
faces in the Euclidean space R given by a positive definite quadratic form f: a) the
family of equidistants from the ellipsoid f = 1; b) the family of “quadraticoids”
defined by the support functions f + ¢ on the unitary sphere.

Calculations show that in these families, when ¢ varies, the perestroikas
are topologically equivalent for corresponding (different) forms (and, moreover,
the bifurcation diagrams in the spaces of the parameters defining the forms are
diffeomorphic).

Explain this equivalence of families, by constructing the natural mapping
between them. Does it hold in R"?

A quadraticoid and an equidistant, for two chosen corresponding forms,
define the same fields of crosses on the Gauss sphere (images under the Gauss
map of the fields of principal directions).

Question: Is the entire set of perestroikas occurring in these families topo-
logically necessary for the eversion of a front realized by the Legendrian collapse
(or even by any Legendrian isotopy)?
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1996-7. Consider a typical function z = f(x,y) of two variables. The asymptotic
directions (d%f = 0) on its graph determine a field of crosses in the hyperbolic do-
main of negative Hessian determinant (with standard singularities on the boundary,
which consists of the parabolic points where the Hessian determinant vanishes and
the crosses degenerate into straight lines). What restriction on the topology of the
field of crosses (i.e., on the section of the corresponding bundle over the hyper-
bolic set) are imposed by the hypothesis that this field arises from a function as the
field of asymptotic directions?

1996-8. Investigate the multiplicities and the transversal multiplicities of the
Lyashko-Looijenga mapping for polynomials, Laurent polynomials, modular
polynomials on various strata and pairs of strata. For polynomials the solution has
been given by D. Zvonkine, the transversal multiplicities are the same in all cases.

1996-9. M. Bamer defines a strongly convex curve in RP" as a curve such that
for every n — 1 of its points there is a hyperplane passing through them and not
intersecting the curve elsewhere. For example, a curve whose projection from
a point to a hyperplane is convex in RP"~! is strongly convex in Barner’s sense
in RP".

Investigate the manifold of strongly convex curves: the number of its con-
nected components, singularities of the boundary, properties of dual curves, the
existence of strongly convex projections and suspensions.

1996-10. Let us say that a plane of codimension 2 in the projective space RP?"
is interior with respect to a convex curve if each hyperplane containing this plane
intersects the curve at 2n points. Do there exist interior planes? What are the
topological invariants of the manifold of such planes? For n =1, the interior
planes are the points in the region bounded by the curve. The problem has been
solved (affirmatively) by S. S. Anisov and S. M. Gusein-Zade.

1996-11. Let us say that a straight line in the projective space RP?" is exteri-
or with respect to a convex curve if, through every point of this line, 2n tangent
hyperplanes pass. Do there exist exterior lines? What are the topological invari-
ants of the manifold of such lines? For n = 1, the exterior lines are those disjoint
from the curve. The problem has been solved (affirmatively) by S. S. Anisov and
S. M. Gusein-Zade.
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1996-12. Evaluate the cohomologies of the subgroups of the braid group corre-
sponding to the coverings L2 (Lyashko-Looijenga) and L3 (Lyashko-Looijenga—
Laurent) of the complement of the swallowtail.

The classifying K(n,1) spaces of these groups are known: they are the
complements of the bifurcation diagram of the spaces of ordinary and Laurent
polynomials, respectively.

1996-13. Investigate the variety of rational functions with three poles and the
mapping L4 on it (taking a function to the set of its critical values).

1996-14. Define and explore the Morse complex of a solenoidal vector field in S
(determined by the function on the space of closed curves whose value on a curve
equals the field’s flow through a surface bounded by this curve).

The extremals of this functional are closed trajectories of the field. The
second differential has infinitely many both positive and negative squares, but one
may try to examine “index difference” for a pair of closed trajectories with the
help of bifurcation theory. If, moreover, the field is Legendrian with respect to
some contact structure, then one may try to calculate such difference of indices of
two closed trajectories using the geometry of the restriction of the contact 1-form
to a surface whose boundary is the difference of these trajectories.

1996-15. Consider a discrete subgroup of the isometry group of the Lobachev-
skian plane [for example, the modular group SL(2,Z)]. This group acts not only on
the Lobachevskian plane but also in the de Sitter world (represented by the hyper-
boloid x? + y* — 72 = 1 of one sheet in the Klein model, where the Lobachevskian
plane is modeled by a sheet of the two-sheeted hyperboloid x? 4+ y? — 72 = —1).

To the metric of the Lobachevskian plane, there corresponds an invari-
ant Lorentzian metric on the de Sitter hyperboloid. In the projective model, the
Lobachevskian plane corresponds to the interior of the unit disk, and the de Sitter
world, to its exterior; in both cases, the geodesics are the straight lines and the
isometries are the projective transformations of the plane that leave the separating
circle invariant.

How is the dense orbit of a point in the de Sitter world under the action of
the discrete group under consideration (e. g., of the modular group) distributed? Is
it possible to define pseudo-fundamental domains, replacing the Voronoi polygonal
domains on the Lobachevskian plane, for this world? The question is provoked by
works of E. Brieskorn and his successors on monodromy groups.
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1996-16 (Generalization of the Chevalley theorem?). The Coxeter group D(n)
acts on the space (CP!)" as follows: to a permutation of coordinates in R”, there
corresponds a permutation of factors, and to the change of sign of a coordinate,
there corresponds the antipodal involution of a factor. The manifold of orbits of
this action is diffeomorphic to S27 (this is the Maxwell-Sylvester theorem of the
theory of spherical functions). We obtain a real linear action of a (2n — 1)-dimen-
sional Lie group in C2* with smooth orbit manifold R2"*!. How can we describe
all such actions?

1996-17. Consider a sign-changing generic smooth function F on the plane
2-torus. Study the motion of a charged particle with small energy in such a
magnetic field (that is, the curves of geodesic curvature F /€ with € — 0 at each
point).

In the region where F # 0, the particle experiences a Larmor rotation along
a circle of small radius €/F the center of which slowly drifts along a level line of
the function F. The trajectories intersecting the line F = 0 consist of loops with
alternating orientation joined by segments of a trajectory whose inflection points
lie on the curve F = Q. It is required to write the corresponding asymptotic formu-
lae in a neighborhood of the curve F = 0 (Where the assumptions of the standard
averaging method are violated) and, in particular, evaluate the drift direction.

Would these evaluations lead to counterexamples for the problem about
four closed phase trajectories homotopic to a fiber of the sphericized (co)tangent
bundle of the torus in the case where the magnetic field F changes its sign?

1996-18. Consider a generic positive smooth function F on the standard sphere
S2. Study the motion of a charged particle at velocity 1 in such a magnetic field
(i.e., examine the curves of geodesic curvature F at every point). Do there ex-
ist (two?) closed trajectories whose phase curves are homotopic to a fiber of the
sphericized (co)tangent bundle of the sphere?

Such trajectories exist if the function F is sufficiently large. Is it true that
they always exist for a zero-divergence Legendrian vector field of the natural con-
tact structure in ST*S? without singular points? Our phase velocity field does have
these properties, and, in addition, it is transversal to the field of planes in ST*S?
determined by the Riemannian connection. The situation seems to be similar to
that in the conjecture of A. Weinstein, which was proved by C. Viterbo, and can be
modeled with the use of fields on S? instead of ST*S?.
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1996-19. Study the asymptotic curves on cubic surfaces in RP? (for example,
on those close to the plane RP?). Is this dynamical system integrable or chaotic?
What is the design of the first return function on a parabolic curve? (To each point
on the parabolic curve, this function assigns the next point where the asymptotic
line returns to the parabolic curve.)

The 27 (complex) lines on a cubic surface are asymptotic lines, so we can
learn something by applying the theory of normal forms nearby.

1996-20 (M. B. Sevryuk). Introduce the following definition. A symplectic struc-
ture is said to be r-exact if its r-th exterior power is exact whereas the (r — 1)-th
power is not (r € N). In particular, 1-exact structures are just exact ones.

Given a fixed number r, do systems Hamiltonian with respect to r-exact
symplectic structures possess any special properties?

1996-21 (M.B. Sevryuk). Does there exist a smooth vector field on R” irre-
versible with respect to any phase space involution but such that its time 1 flow
map is reversible?

If the answer to this question is affirmative then: Does there exist a
smooth vector field V on R" possessing the following properties: 1) the field V is
irreversible with respect to any phase space involution, 2) for each Ty > 0, there is
T € (0;7p) such that the time T flow map of the field V is reversible?

1997-1. Study the combinatorics of the bifurcation diagram of the space of real
trigonometric polynomials outside the set of M-polynomials (all critical points of
which are real). For the M-polynomials of degree n, there is an explicit polyhedral
model. For example, at n =2, the bifurcation diagram reduces to an astroid with
diagonals, and the model is a square with diagonals.

1997-2. We define a selector to be a piecewise linear function in R” with coor-
dinates (xi,...,x,), which coincides, in every region where all the coordinates are
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different, with one of the coordinates. Examples are given by Matov selectors, de-
fined by expressions like max(xy,x2, min(x;, max(x4,xs,%s)),...) (each argument
enters once).

How many selectors exist in all, and how many Matov selectors? How can
we recognize whether a selector is a Matov selector?

V. I. Matov proved that, if fi, ..., f, are generic smooth functions on a man-
ifold M, and S is a Matov selector, then the function S(f1,..., fn): M — R is topo-
logically equivalent to a Morse function (and described the possible indices in
terms of the selector). Does any other selector satisfy this property?

According to calculations of F. Aicardi, the numbers of Matov selectors for
n=1,2,...are equal to 1, 2, 8§ 52, 472, 5504, 78416, 1320064, 25637 824,
564275712, ...

1997-3 (A. A. Agrachev — M. Ya. Zhitomirskii). Let o be a 1-form nondegenerate
on the boundary of a disk and vanishing at its tangent vectors, and let do. = ot A B.
Then df necessarily vanishes somewhere. The authors claim that this is not so for
surfaces with boundary different from disks.

1997-4. In the theory of wave front propagation, all deformations of a Legendri-
an manifold under which it remains non-self-intersecting are usually considered
admissible. In real-life problems on the propagation of a co-oriented front, the
front can only move forward (in the direction determined by its co-orientation) and
cannot move backward. The introduction of this constraint changes the problem
setting both in the theory of wave fronts and in immersion theory. For instance,
we can consider the oriented graph where the vertices are classes of curves and
two classes A and B are joined by an arrow from A to B if A has a representative
(together with its motion forward) such that, moving forward, this representative
arrives at the class B.

Calculate the part of this graph that corresponds to immersions (fronts)
with small numbers of self-intersections (and, for fronts, cusps). Does there exist a
perestroika of 'X into X (with a different co-orientation) in the class of fronts with
two cusps?

1997-5. Is the problem of the possibility of connecting two immersions of the
circle into the plane by a path in the space of immersions without direct self-
tangencies algorithmically solvable? The conjecture is that it is not solvable, be-
cause in its framework, the problem of knot equivalence can (?) be modeled.
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1997-6 (D. A. Panov). Does a generic function exist on the plane, whose Hessian
is positive in a region, bordered by a smooth connected curve, and the field of
asymptotic directions d? f = 0 on this parabolic curve has only one special elliptic
point? Is it true that the number of hyperbolic special points on such a curve is not
less than the number of elliptic ones?

I recall the definition of elliptic (and hyperbolic) special points on a
parabolic curve.

The special points are the points of tangency of the asymptotic direction
of the graph with the parabolic curve. Over the hyperbolic region, the field of
asymptotic directions defines a two-sheeted covering surface in the manifold of the
non-oriented tangent elements (each point of the hyperbolic domain of the plane
is lifted to the two asymptotic directions at that point).

For generic functions, this surface is smoothly continued by the asymptotic
directions at the parabolic points. The critical line of the projection of this surface
to the plane lies above the parabolic curve.

The asymptotic directions at the hyperbolic points are lifted to a field of
directions on the surface constructed above. This field of directions on the surface
is smoothly continued to the critical line, except for those “special” points of the
parabolic curve, where the asymptotic direction is tangent to this curve.

For generic functions a special point is a singular point (a zero) of a smooth
generic vector field (in a neighborhood of the point in question on the surface
constructed above). A special point can be a saddle (index —1), and in this case
is called hyperbolic, either a node or a focus (index +1), and in this case is called
elliptic.

1997-7 (D. A. Panov). Consider a generic smooth function F on the 2-torus. Let
us construct the mapping of the torus to RP? which takes each point of the torus
to the point with homogeneous coordinates [Fy, : Fy, : Fy|. Is it true that every
point of the projective plane has no less than four preimages under this mapping
T? — RP??

For a generic function, all the three derivatives cannot vanish simulta-
neously. The parabolic points are mapped to points on the zero Hessian circle
AC = B? (A = F, B=F,, C=F,). Each point on this circle indeed has not
less than four preimages. This follows from the Morse inequality for functions on
a circle: For each translation-invariant vector field ad/dx + bd/dy on the torus,
consider the derivative of F along this field. This derivative has four critical
points, which give four preimages of the point on the circle of parabolic points
that corresponds to the direction of the field.
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1997-8. Stability of pyramids. Solutions to many problems of singularity theo-
ry (such as bifurcation diagrams or caustics) have the form of a pyramid in the
3-space whose horizontal section is (more or less) akin to a hypocycloid on the
plane contracting to a point as the section plane approaches the critical “zero”
position.

Example 1. Consider a general one-parameter family of surfaces in the Euclidean
space R? that passes through the “North pole” N and contains the usual sphere
(corresponding to the zero parameter value). Let us mark out the first caustic of
the North pole N on each surface. On the sphere, this is the South pole S. On
nearby surfaces, these caustics are small curves with four (for generic families)
cusps. Together, all such caustics sweep out a surface. It has the shape of the
pyramid described above.

Example 2. Consider a generic positive function F (magnetic field) on the plane.
Let charged particles move from the point 0 in all possible directions on the plane
at a small initial velocity v. If the function F were constant, the trajectories of
the particles would be Larmor circles of small radius v/F. The corresponding
phase curves would form an exact Lagrangian torus in the phase space such that
its projection into the plane would have two envelopes, a degenerate inner point
caustic at the initial point O and an outer caustic being a circle of radius twice the
Larmor radius. The entire picture depends on the parameter v.

If F is not constant, then the interior caustic is no longer a point. It turns
into a small closed envelope of the perturbed trajectories of the particles moving
from O at an initial velocity of given magnitude v.

This envelope has (for a generic F) four cusps and is small together with
the initial velocity v. Let us place each envelope in the separate plane v = const in
the 3-space. All these envelopes sweep out a pyramid-shaped surface.

A similar pyramid was obtained by A. A. Agrachev as the caustic of a sim-
plest system with nonholonomic constraint in control theory (the example of mag-
netic field fits in this scheme).

Example 3. Consider the four-parameter family of trigonometric polynomials
Fpapc(t) =Acos2t+acost +bsint +c.

The caustic of this family consists of the parameters values (A,a,b) such
that the corresponding function has a degenerate critical point. This surface in
the 3-space has the form of a pyramid whose horizontal sections (A = const) are
hypocycloids with four cusps, being small for small A.
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Example 4. Consider a typical two-parameter family of functions for which 0 is
a point of zero minimum [e. g., H, p(x,y) = x>+ + a(x®> — y*) + 2bxy + Ax> +
Bx*y + Cxy* + Dy*].

Consider the three-parameter family of vanishing cycles

Yabec = {X,y : Ha,b(xay) = C}‘

The number of vertices (extrema of the curvature) of a curve y with a very
small c is almost always four. However, at the point a = b = ¢ = 0 of the parameter
space, a narrow tongue of the locus of curves with six vertices reaches generically
the plane ¢ = 0.

This set of curves intersects the plane ¢ = const > 0 in a small plane region
bounded by a curve with six cusps, similar to a hypocycloid. As ¢ approaches zero,
this “hypocycloid” contracts to a point. The entire boundary of the tongue of the
locus of curves with six vertices in the parameter space has the shape of a pyramid
near the pointa=»b=c=0.

The problem is to determine the stability of the pyramid singularities men-
tioned above. In all cases, the question reduces to examining families of functions
on the circle.

The conjectured answers are: the caustic (and the corresponding family of
functions on the circle) is stable (with respect to the analytic or smooth deforma-
tions of the condition of the problem and, respectively, to the analytic or smooth
normalizing diffeomorphisms) in a “conic neighborhood” of the corresponding
pyramid in the parameter space. This “conic neighborhood” of the pyramid is it-
self bounded by a larger pyramid with the same vertex. Such a “neighborhood”
contracts to one point at the vertex of the pyramid (and, therefore, the diffeomor-
phism reducing the caustic to normal form becomes only a homeomorphism at the
vertex).

1997-9. The mathematical trinities. In addition to the pairs (an object, its com-
plexification) in various mathematical theories, one often encounters triples of ob-
jects. The conjecture is that it is not a coincidence, and all the triples are related by
commutative diagrams. The arrows joining two such triples usually form a natural
triple themselves. The problem is to verify this conjecture and to study such triples
systematically.
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Here are several examples of such triples:

R C H

Eg Eq Eg

P X9 Jio

Az B3 Hj

D, F, Hy

tetrahedron  octahedron icosahedron

6=2-3 12=3-4 30=5-6

60°,60°,60° 45°,45°,90° 30°,60°,90°

s &5 SN SN

coverings connections  ?

monodromy curvature 7

wi Ci pi

usual trigonometric modular

polynomials polynomials polynomials

usual trigonometric elliptic

numbers numbers numbers

cohomology K-theory elliptic
cohomology

The symbol ? denotes a conjectural “hyperconnection”; probably the latter
is some quaternionic thing turning into the connection of a fibering over complex
curves in the base which, however, has many complex structures over whose curves
these connections have some discordance.

The symbol ?? should denote a conjectural hypercurvature 4-form (which
most probably measures the extent of violation of some generalization of the
Bianchi identity by a hyperconnection).

1998-1. Combine E. Cartan’s theory of differential systems with singularity the-
ory. One should distinguish two higher (and infinite) codimension exceptions from
the generic cases studies, while in the present form the Cartan theory, like the
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algebraic geometry, is more interested in “general statements” (like the Hilbert
finiteness theological theorem) admitting no exceptions (in the analytic category),
while to extend these to the smooth categories one should distinguish different de-
grees of degeneration, whose representatives might behave quite differently.

1998-2. Consider a generic smooth surface in the three-dimensional real projec-
tive space. Can this surface have less than six special parabolic points (where the
asymptotic direction is tangent to the parabolic curve, and the dual surface has a
swallowtail)? If the number of special points is less than six, can the number of
connected parabolic curves be less than four? The number of special points in
Panov’s example with only one parabolic line is equal to 12,

1998-3. Consider a smooth parabolic curve of constant multiplicity on a surface
in the projective 3-space. Into how many parabolic curves of multiplicity one does
it decompose under a small generic perturbation?

The question is open even for the surfaces whose equations in affine co-
ordinates have the form z = f(x,y) and whose parabolic curves are the infinitely
distant straight line. In this case, the multiplicity is even (and equals two in the sim-
plest situation), and the conjectured number of multiplicity-one parabolic curves
of the perturbed surfaces is three.

Is it true that a general surface close to the surface specified by the equa-
tion z = 1/(x® 4+ y%) [z = x/(x* + ¥*)] in affine coordinates has not less than three
[respectively, two] parabolic curves in a neighborhood of infinity?

1998-4. The spherical second differential of a function on the sphere is the
quadratic form on the tangent space that measures the difference between the
given function and the nearest restriction to the sphere of a function linear in the
ambient space.

A function is called hyperbolic if its spherical second differential is hy-
perbolic everywhere except at finitely many points (where the function can have
singularities).

Can an odd hyperbolic function on the 2-sphere have less than six logarith-
mic poles?

Can an odd function obtained from an odd hyperbolic function on the
2-sphere by a generic smoothing have less than eight parabolic curves (along which
the spherical second differential degenerates)?



124 The Problems 1998-5

1998-5. Does there exist a surface z = f(x,y) whose Gaussian curvature [at ev-
ery point (x,y, f(x,y))] is the given function g(x,y)? Here, f and g are functions
smooth in a neighborhood of the given point.

Answering a similar question for the Hessian requires solving the equation
fexfyy — fxzy = h(x,y), where h is a function defined in a neighborhood of the given
point.

What singularities can a parabolic curve (A = 0) of a smooth surface have
in a neighborhood of its flattening point (where df = 0 and d* f = 0)?

1998-6. Let us consider a curve specified by the equations x = cost, y = sint,
z = cos3¢t. This curve has six flattening points (of zero torsion). Is it possible to
annihilate all these flattening points by an admissible regular homotopy of a curve?

A regular homotopy is called admissible if, in course of the deformation,
there are no events of

a) self-intersections of the curve (changes of the knot type);

b) self-intersections of the dual curve (formed by osculating planes of the
initial curve in the dual space).

¢) inflection points (zero-curvature points);

d) tangencies of the dual curve with the surface of the front (formed by
tangent planes to the initial curve).

1998-7. The curves admitting a convex projection in the projective space form a
domain in the space of curves. Examine the boundary of this domain, namely, its
stratification, the singularities of the intersection of the boundary with the transver-
sals to its strata, and the complex of its strata.

Similar questions for convex curves themselves and for “strongly convex”
Bamner curves (see problem 1996-9) are also interesting.

1998-8. Study the cohomology rings of the complements of the bifurcation
diagrams of holomorphic functions: Is it true that these complements are the
Eilenberg-MacLane K(m,1) spaces? What are their stable Betti numbers (and
cohomology rings)?

1998-9. To an entire algebraic function, in addition to its braid group, there are
related a series of the groups of its second, third, etc. braids. These groups are de-
fined as the fundamental groups of local complements of successive discriminants,
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each being the set of atypical values of the projection of the preceding discriminant
along the fibers of a generic one-dimensional bundle. As the initial “discriminant,”
we take the graph of the function treated as a hypersurface in the product of the
domain of the function by its range fibered over the domain.

These groups, discriminants, their complements, the cohomologies of
these complements, and the corresponding monodromies remain absolutely un-
explored even for the simplest algebraic function z(a) specified by the equation
" +alz"_1 +---4+a,=0.

Even a description of generators and relations in these groups is of inter-
est. In addition to generic projections, it is interesting to consider the sequence of
projections successively forgetting a,,ap,_1,.- ..

1998-10. How to complexify braid theory? the Maslov index? the theory of
Vassiliev’s knot invariants?

1998-11. When the number m is large, what is the behavior of the greatest mul-
tiplicity (Milnor number) of a critical point of a holomorphic function in two vari-
ables depending generically on m parameters?

1998-12. Can an asymptotic line on the surface z = f(x,y) all of whose points
are hyperbolic be closed?

1998-13. Does the Euler equation for an ideal fluid have new conservation laws
in addition to the classical ones? Are there such conservation laws along coadjoint
orbits of the group of volume-preserving diffeomorphisms of the domain?

1998-14. How can we complexify the ring Z? On the set of homotopy classes of
the mappings of a Lie group into itself that leave the identity fixed, two generally
noncommutative operations act: “addition,” defined by (a +b)(g) = a(g)b(g), and
“multiplication,” defined by (ab)(g) = a(b(g)).

For instance, we obtain the ring Z from the group U(1) = SO(2) and the
field Z, from the group O(1). What is obtained from SO(3)? from Spin(4)? from
other groups?

1998-15. What is the quaternionic analogue of the determinant?
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1998-16. How can we complexify the notions of one-dimensional holomorphic
bundle and of its connection and curvature? What becomes of the theories of
quantum Hall effect and of Berry phase under such a complexification?

1998-17. Contactize the symplectic Liouville theorem on completely integrable
Hamiltonian systems.

1998-18. A vector field v of divergence zero on a 3-manifold is called Hofer if
it is the field of kemnels of a 2-form having contact potential [this means that the
field v is specified by the condition i, (da.) = 0, where o A do. nowhere vanishes].

Consider the motion of a charged point on a surface under the action of a
magnetic field orthogonal to the surface. Under what conditions is the correspond-
ing vector field on the 3-manifold of unit tangent vectors to the surface Hofer?
Even the case of a nonvanishing field on the sphere with standard metric is inter-
esting.

1998-19. The Heisenberg indeterminacy relation leads to the following conjec-
ture. Let I' be a closed subgroup of the commutative group of the Euclidean
space R” such that the quotient space by I" is compact (e. g., a lattice).

Suppose that a ball of radius r is contained in the complement of I'. Then in
the dual Euclidean space there is a nonzero “wave vector” k of length not exceed-
ing c¢/r such that the scalar product (k,x) takes only integer values when x is in I'.

Here c is a constant depending only on ».

1998-20. Classify the simple curve singularities in a contact space.

1998-21. The following problem about Legendrian links was communicated to
me by R. Penrose.

Consider the space-time R?>*! (with pseudo-Riemannian metric of signa-
ture + + — positive definite on the isochrones ¢ = const).

The manifold of light rays in such a space has a natural contact structure.
The rays from one point of the space-time form a Legendrian submanifold in this
manifold.

The problem is to study the relation between the causality (the possibility
of joining two points in the space-time by a time-like curve) and the linking of the
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corresponding Legendrian manifolds of dimension n— 1 in the (2n+ 1)-dimen-
sional space of rays in the (n+ 1)-dimensional space-time.

1998-22. Consider an n-edge polygonal knot in R? or in S3. How does the min-
imum number of simplices in a triangulation of this space whose 1-skeleton con-
tains the most complex n-edge knot grow with increasing n?

1998-23 (N. A. Nekrasov). Consider the quotient space of the space of (germs of)
pairs of functions with zero Poisson bracket modulo the group of (germs of) sym-
plectomorphisms. We claim that this “manifold” has a natural symplectic structure
and is endowed with a natural discriminant of complex codimension one.

The problem is to study the fundamental group of the complement of this
discriminant. Is this complement an Eilenberg—MacLane space? What is its coho-
mology ring?

1998-24 (A.N. Varchenko). The equation wxt? + tyu2 — 2uzttsuty, = 0 has the
property that, if u is its solution, then so is f(#). What other operators have sim-
ilar invariance properties (and how can they be used to construct hydrodynamical
analogues, topological invariants, topological variational principles, etc.)?

1998-25. The problem on Jordan matrices by M. L. Kontsevich. Consider the
space of square complex matrices of a fixed size. Can one choose one represen-
tative of each class of conjugate matrices so that all these representatives form a
collection of affine subspaces of the matrix space?

1999-1. Compile a complete list of the adjacencies of simple curve singularities
inCV,

This and the following six problems are concerned with complex curves,
that is, germs (C,0) — (CV,0); however, the same questions for real curves, that
is, germs (R,0) — (RY,0), also make sense.
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1999-2. Compile a list of the semigroups of simple curve singularities in CV.

a) Does a semigroup determine the type of a (simple) singularity?

b) What pairs of semigroups exclude the adjacency of the corresponding
singularities (probably, simplicity is not essential here)?

c) Are the remaining adjacencies realized for some pair of singularities
(simple? not simple?) with given semigroups?

1999-3. Is it true that the simple curve singularities in CV are precisely those
stably simple singularities that can be realized in CV?

1999-4. Compile a list of the filtered Artin algebras of simple singularities for the
curves f: (C,0) — (CV,0).

a) Does such a filtered algebra (or its action on m! /A by operators) deter-
mine the type of a simple singularity (or its semigroup)? Here, m! is the maximal
ideal in the space of germs of functions (C,0) — (C,0) and 4y is the ideal gener-
ated by the components of the mapping f.

b) Does the semigroup of a singularity determine its Artin algebra or the
filtration?

1999-5. Resolution of singularities of simple curves in CV.

a) Compile a list of resolution graphs. How are they related to question a)
in problem 1999-2?

b) Is it true that moduli of curves arise precisely when moduli of resolutions
do (in the case of 4 points on P!, etc.)?

1999-6. Stabilization of curves. Consider the base CM() of versal deformation
of a more complex singularity containing the stratum X of a simpler singularity.

a) How many (locally) irreducible components does the stratum X have?

b) In what sense do the topological (homological? homotopy?) properties
of the complement CM)\  stabilize as N — co?

c) In what sense do these properties of the complement (whether or not
it stabilizes as N — o) stabilize when the type of the simpler singularity is fixed
and the type of the initial more complex singularity (simple? any?) becomes more
complicated?
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1999-7. The stratum \ = const for curves. Consider the “manifold” of singulari-
ties of given codimension [ of the orbit in the function space as a submanifold in
the base C* of its versal deformation.

a) Is this “manifold” smooth? irreducible?

b) How can its dimension m in C* (“number of internal moduli”) be eval-
uated (with the use of the semigroup? algebra? resolution?) or at least estimated?

¢) Is it true that m is semicontinuous with respect to the choice of the initial
singularity, i. e., coincides with its usual modality?

1999-8. Fix a positive integer n > 3 and consider n positive integers ay,az, .. .,a,.
Their sums (linear combinations with integer non-negative coefficients) constitute
the semigroup S(a) of positive integers:

S(a) = {(k,a) | ke Z }

(Z+ = {0;1;2;...}). Suppose that gcd(aj,az,...,a,) = 1. Then, starting from
certain K(a) € Z,, all the non-negative integers lie in S(a). For instance, K (a) =
(a1 —1)(az — 1) for n = 2. Note that this value of K(a) is always even (since the
numbers a1 and ay are relatively prime they cannot be even simultaneously). The
problem of calculating K(a) for n large is called the Frobenius problem.

Explore the statistics of K(a) for typical large vectors a. Conjecturally,

K(a)~c"\/aiaz---an, c="3/(n—1)".

The subsequent three problems are devoted to the statistics of the semi-
groups of positive integers S(a) for relatively prime ay,az, ... ,a, as well. All these
problems are intended mainly for a computer experiment—with the prospects of
concluding with proofs. The case n =3 is already interesting.

1999-9. For n =2, a number N € Z belongs to the semigroup S(a) if and only if
the number K(a) — 1 — N does not (J. J. Sylvester). Thus, for n =2 the semigroup
S(a) occupies precisely one half of the segment [0;K (a) — 1] (recall that, for n =2,
the number K (a) — 1 is always odd).

Determine what fraction of the segment [0;K(a) — 1] is occupied by the
semigroup S(a) for n > 3 and for large vectors a. Conjecturally, this fraction is
asymptotically equal to 1 /n (with overwhelming probability for large a).



130 The Problems 1999-10

1999-10. Examples show that S(a) fills the right half of the segment [0;K(a) — 1]
more densely.

Find the typical density of filling the segment [0; K(a) — 1] asymptotical-
ly for large vectors a. The conjectured behavior of the density p(N) at a point

N < K(a) is -
)~ (2)

Such a distribution would immediately imply that the semigroup S(a) occupies
1/n-th of the segment [0;K(a) — 1]:

K
/0 (N/K)"™ dN =K /n

(the triangle fills one half of the rectangle, the parabolic triangle fills one third,
and so on).

1999-11. Consider the density of the semigroup S(a) with multiplicities taken
into account (each point is counted as many times as it has representations in the
form (k,a) with k € Z1}).

Find this density P(N) asymptotically for large vectors a. The conjecture
is that P(N) ~ N"~! fot all N (rather than only for N < K(a)). Note that, for n =
2, both densities (taking and not taking account of multiplicities) asymptotically
coincide for N < K(a). It is not clear whether such a coincidence takes place for
n>3.

1999-12. Complexify the group Z of integers employing the fact that Z is a braid
group for two threads and, simultaneously, a dyed braid group for two threads.
The conjectured alternatives are 7. and 72.

1999-13. Reflection groups and oscillatory integrals. Consider the oscillatory
integral

n

I(h,\) = / PN /o) dx,  F: (R"xR™,0) — (R,0), h—0,

where ¢ : R" — R is a smooth function concentrated in a sufficiently small neigh-
borhood of the origin. The singularity index B of a singularity of the func-
tion F(-,0) at 0 is the infimum of the numbers 7y such that

1(h,2)| < C(@)|h|2"Y
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at all sufficiently small |A| under an arbitrary deformation of F (the value § — % is
then called the oscillation index).
For simple singularities, the singularity index equals

L1 (1)

2 N’
where N is the Coxeter number of the corresponding Coxeter group (which is
a finite irreducible group generated by reflections in R*); see ARNOLD V.I.
Remarks on the stationary phase method and Coxeter numbers. Russian Math.
Surveys, 1973, 28(5), 19-48:

s | b=l | w2 [5]47
2n+) |2=1) | 12| 9 | 15
N p+l | 2(m—1) |12 |18 30

Formula (1) is also valid for boundary singularities (recall that the Coxeter number
of By equals 2).

Problem: Construct a theory of oscillatory integrals and find a similar
formula for the remaining (noncrystallographic) Coxeter groups Fy, G», H3, Ha,
and L (p) (whose Coxeter numbers are 12, 6, 10, 30, and p, respectively).

1999-14. Consider a family of smooth surfaces z = f;(x,y) in R3. Suppose that
the surface corresponding to t = 0 is convex and, at some ¢ = £, > 0, a hyperbol-
ic region arises. In the computer experiment performed by A.Ortiz-Rodriguez,
the line formed by the inflection points of the asymptotic curves in the hyperbolic
region (tacnodal line) at small ¢ —t, > 0 had the shape of the figure eight tangent to
the boundary of the hyperbolic region at two singular points. Construct a rigorous
theory of such figures eight.

1999-15. Products of matrices can be calculated by Strassen’s fast matrix mul-
tiplication formula (for example, multiplying two 2 x 2 matrices by this formula
involves 7 rather than 8 multiplications). How is this formula related to the trinity
R-C-H?
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1999-16. On the plane R?, consider a configuration of  curves diffeomorphic to
straight lines. It is assumed that no two curves intersect at more than 1 point, and
that all intersections of the curves are transversal.

What configurations of curves are realized by straight lines? Starting from
what number » of curves do deviations occur?

1999-17. Definition. The plane curve {x,y | x~2+y~2 = 1} is called an anticir-
cle.

Theorem 1. The curve projectively dual to the anticircle is the astroid
{p,q| PP+ =1}.
Theorem 2. The set of normals to an ellipse is the anticircle.

Question 1. Is there an astroid among the equidistant curves of an el-
lipse? According to F Aicardi, among the equidistant curves of an ellipse there
are no curves orthogonally equivalent to the astroid. Furthermore, according to
M. E. Kazarian and R. Uribe, there are no curves either projectively or affinely
equivalent to the astroid!. Moreover, they proved the following: consider the
affine transformation sending the four cusps of the equidistant curve to the four
verticies of a fixed square. In the family obtained this way there is exactly one
curve with the symmetry of a square. This only “candidate” tends to the astroid
as the eccentricity of the ellipse tends to zero.

Question 2. Are there multidimensional analogues of the anticircle and the
astroid?

Question 3. Move the tangents to the ellipse along the normals at dis-
tance s. What are the properties of the resulting curve in the dual plane? According
to F. Aicardi, it has no cuspidal points.

2000-1 (A. Ortiz-Rodriguez). How many parabolic curves (closed curves or all
the curves—these are two different questions) can lie on the graph of a real poly-
nomial of degree D in two variables? This is unknown even for D = 4 (is it possible
that there are 4 closed components?).

! In the Russian edition of this book, the contrary was affirmed here, which was an error.



2000-2 The Problems 133

2000-2 (A. Ortiz-Rodriguez). How many parabolic curves can lie on a projective
algebraic surface of degree D in RP3: even the asymptotics for large D is of interest
(the coefficients at D? in the examples I know and in the known upper estimate
differ by a factor of 20).

2000-3. Consider the space of hyperbolic [with the second differential of sig-
nature (+,—) everywhere except at the origin] homogeneous polynomials of de-
gree D in two real variables. How many connected components does this space
consist of? (For D = 3 or 4 there is only one component, for D = 6 there are at
least two components, the conjectural answer grows probably with a linear rate as
D increases, i. €., the number of the components is of the order of D for D large.)

2000-4. Consider a generic collection of # straight lines in RP2. How much does
the number of topological classes of such collections differ from the number of
topological types of collections of » noncontractible circles embedded generically
in RP??

Similar questions are not trivial even for the affine plane, both in the case
of embeddings of affine straight lines and in the case of circles—in the presence of
a fixed number of intersections as well as even without intersections.

Of course, the question makes sense for straight lines in the three-dimen-
sional space too, provided that the complexity of topological knotting of the curve
configurations to be compared is bounded above.

2000-5. The observers assert that the number of the eruptions of the volcano
of Piton de la Fournaise with the emission of volume less than V grows like
V—3/2 as V decreases [LAHAIE F., GRASSO J. -R., MARCENAC P., GIROUX S.
Modélisation de la dynamique auto-organisée des éruptions volcaniques: applica-
tion au comportement du Piton de la Fournaise, Réunion. C. R. Acad. Sci. Paris,
Sér.11a Sci. Terre Planétes, 1996, 323(7), 569-574]. Are there reasonable grounds
for this scaling law, similarly to the turbulence laws?

2000-6. The observers assert that the metabolic rate in similar organisms (such
as men of different stature) is proportional to the 3/4 power of the mass (rather
than to the 2/3 power, as the ratio of the reaction surface area to the reaction
volume suggests). Are there reasonable explanations for such a fractal behavior
WEST G.B., BROWN J.H., ENQUIST B.J. A general model for the origin of
allometric scaling laws in biology. Science, 1997, 276(5309), 122-126]?
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2000-7. There are observations that the number of the species (of animals, in-
sects, birds, ... ) on an island of area S is proportional to § 1/4 whereas the number
of the cell types in an organism with the genome of N genes grows with N like
N'/2_ How can one explain these exponents? Compare with the Kolmogorov law,
according to which the radius of the minimal but still typical brain or comput-
er of N elements grows like N'/2 (rather than like N'/3, as the volume argument
suggests).

2000-8. Let a mapping of a complex projective space (or vector space) onto itself
send all the complex subspaces to complex subspaces. Are there such transforma-
tions other than complex projective ones (linear ones) and their products with the
complex conjugation?

There are no other diffeomorphisms, but I do not know the answer for the
case of homeomorphisms (hopefully, there are no other homeomorphisms as well).
One may ask the same question even for the set-theoretic bijections (which are not
forced to be homeomorphisms).

2000-9. Let I C R? be a real algebraic plane curve and g: R? — R be a polyno-
mial. To this pair, assign the caustic which is a curve C in another plane equipped
with orthonormal coordinates (A, B). The caustic consists of the points (A,B) for
which the restriction of the function

Gap=g+Ax+By

(x and y being the coordinates in R?) to the curve I” possesses a degenerate critical
point. For a nonsmooth curve I" given by the equation f(x,y) = 0, the critical
points are defined as the zeros of the derivative VG, while the degenerate critical
points are the zeros of both VG and the second derivative V2G; here V is the
Hamiltonian vector field

] ]
fyg“fxa—y

If I is a circle (x> +y* = 1) then the caustic has at least 4 cusps, and its
alternated length (the sum of the lengths of the segments between the cusps with
alternating signs) vanishes. This follows from the Sturm—Hurwitz theorem which
states that the number of zeros of the sum of a real Fourier series

F(t) =Y [ancos(nt) + bysin(nt)]

n>k
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is at least the number of zeros of the lowest harmonics entering the series with a
nonzero coefficient (i. e., at least 2k + 2 zeros over the period). For instance, if the
integral of F vanishes (k = 0) then there are at least two zeros (moreover, these
zeros are the critical points of the primitive of F). This Sturm theorem proved
by Hurwitz is a generalization of the Morse inequality (for the circle), because
the function F in the theorem can be viewed as the image of a (primitive in the
extended sense) periodic function H under a differential operator of degree 2k + 1:

F=LH

where

L=0(0*+1)(0*+4)---(0*+4&*), 9=(d/dr).

Thus, one can regard the zeros of the function F as generalized critical points of
the “potential” H: S' — R.

The problem is to carry over the Sturm—Hurwitz theorem (and the state-
ments on the properties of the caustic) to the case of algebraic curves I other than
a circle. How many singular points of the caustic are inevitable for curves I" of a
given genus? This question arises even for singular curves I" of genus zero, e. g.,
for the degenerate elliptic curve y> = x2 +x3.

2000-10. Consider a controlled dynamical system x = v(x,u) on a compact phase
space (x € M) with a compact manifold of the values of the controlling parameter u.
Let f: M — R be a smooth “goal function.”

Explore the phase transitions of the controls optimal on the average (i. e.,
those maximizing the temporal mean

—either for the fixed initial point x(0) or while maximizing over this parameter
as well).

A phase transition here is defined as a nonsmooth dependence (of both
the optimal strategy and the attained maximal value of the mean) on additional
parameters on which the initial data of the problem (i. e., the controlled system v
and the goal function f) depend smoothly.

Such nontrivial phase transitions are encountered even in the simplest one-
dimensional case where M = S! and u € S1.
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2000-11. Study the phase transitions of the maximal mean value f[p] of a smooth
goal function f: M — R over the choices of the mass distribution p dx (with den-
sity p with respect to the Riemannian volume dx) on M, under the condition that
the density is bounded above and below by given positive smooth functions:

0 < r(x) < p(x) S R(x) < oo

on M. Here the mean value is defined by the formula

f[p]=(/prdx)/(/Mpdx)-

2000-12. Given an integer matrix A of order three with determinant 1 [A €
SL(3,Z)], construct three eigenplanes assuming that all the eigenvalues are real,
positive, and irrational. The integer points in one of the octants bounded by these
three planes constitute a commutative semigroup in R* while their convex hull is
bounded by an infinite polyhedral surface whose vertices are integer (this surface
is called the sail of the corresponding cubic irrational numbers).

The symmetry group of the sail in SL(3,Z) has been proved to be Z2, so
that the quotient of the sail by the action of these symmetries turns out to be a
two-torus divided into the images of the faces of the sail under the factorization
(moreover, on each face that is a convex integer polygon, there were integer points
which define distinguished points on the torus as well).

The problem is to calculate explicitly (e. g., using a computer and perhaps
the data on cubic irrationalities published by B. N. Delone, D. K. Faddeev, and oth-
ers) these torus triangulations with the images of the integer points upon them—
e. g., for the first hundred of not so large matrices. The simplest example is the

. (321 . . . .
matrix (% % L ) of the “three-dimensional golden section,” the conventional golden

section corresponds to the matrix (3 1).!

The interest of this “experimental” activity is due to the hope of noticing, in
the result tables, some regularities which can become theorems in the sequel—for
instance, on the statistics of such triangulation properties as the amount of trian-
gular faces and other faces, the proportions of the integer lengths of the edges,
those of the numbers of the edges with a common vertex, and so on. Then one

! The greater of the eigenvalues of this 2 x 2 matrix is ¢ +2, where ¢ = (v/5—1) /2 is the golden
section number.
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would be able to compare such statistics with analogous statistics for other trian-
gulations, e. g., for the sails of random octants or for the convex hulls of the sets of
all the integer points in the domains bounded by random smooth surfaces, even by
large spheres or ellipsoids. One may also compare the results with the partitions
of the plane into the “Voronoi polygons™ of random (arbitrary or integer) points: a
Voronoi polygon of such a system of points is constituted by all the points on the
plane for which the nearest point of the system is fixed.

By the way, while averaging in this problem, one can count the contribu-
tions of different polygons to the mean either with equal weights (which leads to an
unjustifiably large contribution of small polygons since there are plenty of them)
or with weights proportional to the polygon areas (which seems more reasonable
to me).

Moreover, besides the distributions of the areas, the perimeter lengths, and
the numbers of the vertices of the polygons (or the numbers of the sail edges with
a common vertex), their joint distributions and correlations are also of interest, as
well as the distributions of dimensionless parameters, €. g., the ratio of the area to
the perimeter length squared (and the correlation between this ratio and the number
of the vertices of the polygon).

2001-1 (A. Ortiz-Rodriguez). Given a real polynomial f in two variables x and y,
denote by P(f) the set of parabolic points on the surface {z = f(x,y)}, i.e., the
zero set of the Hessian H[f] = fufyy — fxzy. Determine the maximal number of

a) compact connected components,

b) all the connected components
of the set P(f) over all the polynomials f of given degree d. How can these
connected components be mutually arranged? The first case where the answer is
unknown is d = 4.

The Hessian H(f] of a polynomial f of degree d is a polynomial of degree
< m = 2d — 4. The Harnack inequality ensures that the parabolic set P(f) has at
most N compact connected components, where

v (m=1)(m=2)
2

+1=(d-3)(2d-5)+1.
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For general polynomials of degree 2d — 4, this estimate is attained. However, it is
not clear whether this estimate is attained for polynomials of degree 2d — 4 that
are Hessians. The problem is the simplest case of Hessian topology.

There are examples of polynomials f of degree d for which the number of
compact connected components of P(f) is at least

(d-1)d-2)
@2

So, for d large, the maximal number of compact connected components of P(f)
lies asymptotically between d*/2 and 2d*. What is the true asymptotic of this
number?

Similar questions on the parabolic curves are also open for such surfaces
in R? as the graphs of rational functions and for the graphs of the odd degree roots
of real polynomials in two variables, as well as for the graphs of other single-
valued real algebraic functions of a fixed degree d.

2001-2 (A. Ortiz-Rodriguez). Given a smooth algebraic surface M C RP?, denote
by P(M) the set of parabolic points on M. Determine the maximal number of

a) connected components of the set P(M) diffeomorphic to S',

b) all the connected components of the set P(M)
over all the smooth surfaces M of given degree d. How can these connected com-
ponents be mutually arranged?

This problem is a generalization of the previous one. It is known that the
number of connected components of P(M) diffeomorphic to S! is at most

10d° — 284d% +4d — 3.

On the other hand, there are examples of surfaces M of degree d for which the
number of connected components of P(M) diffeomorphic to S! is at least

d(d—1)(d —-2)
5 .
So, for d large, the maximal number of connected components of P(M) diffeomor-

phic to S! lies asymptotically between d° /2 and 10d®. What is the true asymptotic
behavior of this number?

2001-3. Let D be areal number and (r,@) polar coordinates in the real plane. De-
note by Hyp(D) the set of smooth functions F : S! — R such that the homogeneous
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function f(r,¢) = rP F(¢) of degree D is hyperbolic, i. €., its second quadratic form
d*f is of signature (+,—) everywhere for r > 0.

For D > 0 integer, f is a homogeneous polynomial of degree D in x =
rcos¢, y = rsin@ if and only if F is a trigonometric polynomial of degree D and
F(g+m) = (~1)PF(9).

Determine the connected components a) of the set Hyp(D) b) of the subset
Hypp, (D) of Hyp(D) corresponding to f polynomial (for D > 0 integer).

The set Hypp,(4) is connected (V.1. Amnold, F Aicardi), while the set
Hyppe (6) consists of at least two connected components (ARNOLD V.1. Astroidal
geometry of hypocycloids and the Hessian topology of hyperbolic polynomials.
Russian Math. Surveys, 2001, 56(6), 1019-1083; Moscow: Moscow Center for
Continuous Mathematical Education Press, 2001 (in Russian)). Conjecturally, the
number of connected components of Hypp, (D) grows like const-D as D — oo
The set Hyp(D) of smooth functions has infinitely many connected components.
In the polynomial case, even the number of connected components of the subset
Hyppg (D) is unknown, already for D = 6.

2001-4. Let g:S' — R be a smooth function. Its caustic is by definition the plane
curve

c={(,B) e R? | the function ¢ — g(¢®) + Acos @+ Bsin@ is non-Morse}

(see ARNOLD V.1. Astroidal geometry of hypocycloids and the Hessian topolo-
gy of hyperbolic polynomials. Russian Math. Surveys, 2001, 56(6), 1019-1083;
Moscow: Moscow Center for Continuous Mathematical Education Press, 2001 (in
Russian)). Recall that G: S! — R is said to be non-Morse if there exists a point
¢ € S! such that G'(¢) = G"(0) = 0. For instance, for g(¢) = cos(2¢) the caustic C
is the astroid

A=—4cos’p, B=4sin’9 (peSh).

In this parametric equation of C, ¢ is just the point where both the first and second
derivatives of cos(2¢) + Acos @+ Bsin @ vanish.

What curves on R? are the caustics of periodic functions? That C is a
caustic imposes some restrictions on the curve C:

1. A caustic has at least 4 cusps.

2. The number of cusps is even.

3. The alternated length of a caustic (we change sign after each cusp)
is zero.
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4. Through any point of the plane, there pass at least two tangents to the
caustic.

5. A caustic possesses no inflection points.

One can also show that the caustic of a trigonometric polynomial is an
algebraic curve of genus zero (see the paper cited above).

The problem is to describe the set of restrictions complete in the following
sense: each curve satisfying those restrictions is a caustic.

This problem can be generalized in several directions. First, one may con-
sider the so-called hypercaustic in R?", i.e., the curve

C= {(Al,...,An,Bl,...,Bn) € R*" | the function
n
G:o—g(o Z Arcos(k@) + By sin(kg)] has a critical point ¢

where the derivatives G = G" = --- = G =0 all vanish}.

Second, instead of the circle S! and trigonometric polynomials

Z [Akcos(kp) + Bysin(kg)],
k

one can consider respectively an arbitrary curve I' C R? and polynomials on R?
restricted to I".

Apart from that, it is also possible to consider exact Lagrangian subman-
ifolds in T*S! in place of functions (a closed curve L C T*S! is called an exact

Lagrangian submanifold if the difference between L and the zero section is the
boundary of a chain of area zero).

2001-5. Set
yon-l — {(Al, ...,An,By,...,B,) € R?" | the trigonometric polynomial
n
cos[(n+1)¢ Z Agcos(k9) + Bgsin(kg)] is non-Morse}. )

The discriminant £ divides R** = {(Ay,...,An,B1,...,B,)} into n+ 1 domains
G, Gy, ..., Gany2 according to the number of critical points of polynomial (1).
Explore the topology and the singularities combinatorics of these domains.
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The domain Gy of trigonometric M-polynomials (1) (in the terminology
of 1. G. Petrovskil') was examined in the paper ARNOLD V.I. Topological clas-
sification of real trigonometric polynomials and cyclic serpents polyhedron. In:
The Arnold-Gelfand Mathematical Seminars: Geometry and Singularity Theo-
ry. Editors: V.1. Arnold, 1. M. Gelfand, V. S. Retakh and M. Smirnov. Boston, MA:
Birkhduser, 1997, 101-106; the Russian translation in: Vladimir Igorevich Arnold.
Selecta—60. Moscow: PHASIS, 1997, 619-625. This particular domain has a con-
vex polyhedral model (simply a square for n = 1). It is conjectured that all these
domains have polyhedral models in terms of the affine Coxeter group mirrors, sim-
ilar to the descriptions of the swallowtails pyramids polyhedral models in terms of
the Springer cones decompositions into the Weyl chambers for the linear Coxeter
group case. But this conjecture is not confirmed yet even for small values of n.

2001-6. Leth: R, — R, be a smooth function, #(R) > 0 for R > 0 and #(0) = 0.
Consider a curve F on R? with a semicubic cusp O. Denote by £p the part of the
normal to F at point P where F is smooth containing the center of curvature. Let
Rp be the radius of curvature of F at P. Let I1p be the parabola with vertex P and
axis £p whose radius of curvature at the vertex is equal to A(Rp).

Study the envelope of the family of the parabolas {Ilp}. If F is an astroid
and h(R) = %R, then the family {Ilp} has a smooth envelope which is tangent to F
at cusp O. Does the family of the parabolas {ITp} possess a smooth envelope for
other curves F (for, possibly, other functions h)? If the envelope is smooth at O, it
is tangent to F there.

Similar problems are also interesting for the families of generic smooth
curves instead of the parabolas (of curves having the same properties of the tan-
gency to F and of the curvature radius at the tangency points).

S

2002-1. Let f: R? — R be a polynomial of degree D. Find the maximal number
of connected components and the maximal number of closed components of the
parabolic curve Par(f) of its graph (where fix fyy = fxzy):

bo(Par(f)) =?, bi(Par(f))="7.
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Even for D = 4, it is not known whether by attains the value 4, and the
constants C in the lower and the upper bounds for large degrees D, by ~ CD?,
differ by a factor of order of 4

(D—1)(D—-2)/2<b; < (2D—-5)(D—3)+1.

2002-2. Let M C RP? be a smooth algebraic surface of degree D. Find the max-
imal number of connected components of its parabolic line.

The constants C in the lower and the upper bounds CD? differ by a factor
of order of 20:

D(D—1)(D—2)/2 < by < 10D*> —28D? +4D+ 3.

The lower estimates in problems 2002-1 and 2002-2 mean the existence of sur-
faces with many closed parabolic curves.

2002-3. Let f:S' — R be a smooth function; it is called D-hyperbolic if the
second differential d2 f of the homogeneous function f(x,y) = r° F(¢) (where x =
rcos @, y = rsin®) is hyperbolic (has signature (+,—)) everywhere in R? \ {0}.

Find the connected components of the space of D-hyperbolic functions: is
the index (equal to the number of rotations of the cross d?f = 0 when the point
(x,y) makes one revolution around the origin) the unique invariant of the connected
component? The set of the values attained by the index is infinite and unbounded
below (but bounded above).

2002-4. For the polynomial case (where F is a trigonometric polynomial and f is
an ordinary homogeneous polynomial of degree D), find the number of connected
components of the set of D-hyperbolic polynomials. Is it growing linearly with D
when the latter is high?

2002-5. Consider a controlled dynamical system x = v(x,u), where x is a point
of a compact phase manifold M and u belongs to a compact controlling parameter
manifold U. Let f: M — R be a smooth goal function.

Study the mean optimization problem, maximizing the time average f:
limr_, 4o T7! fOT f(x(2)) dt by a clever choice of the control u(t) (and eventually
of the initial state x(0)).
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If the problem (i. e., the pair formed by v and f) depends generically on
some exterior parameters, then the optimization strategy and the optimal average
might have singularities (“phase transitions™) at the points of a hypersurface of
phase transitions in the manifold P of the values of the exterior parameter.

Find the generic phase transitions in the mean optimization problem, at
least when the dimensions of the manifolds M, U, P are not large. The problem
is open even when all these manifolds are 1-dimensional where there are already
some nontrivial stable singularities (see the paper ARNOLD V. 1. Optimization in
mean and phase transitions in controlled dynamical systems. Funct. Anal. Appl.,
2002, 36(2), 83-92).

2002-6. Let f: M — R be a smooth function on a compact Riemannian mani-
fold, and 0 < r < R < oo be two smooth functions on M. Study the mean value
optimization problem for the space average

7o ( | f@pt) dx) / ( / o dX>

for the mass distribution defined by a density function p with respect to the Eu-
clidean volume element dx provided that this density is restricted by the inequali-
ties r < p < R everywhere on M.

Study the generic phase transitions for the case where f, r, and R depend
smoothly on exterior parameters.

It is known that the optimal strategy is {to choose p = r where f(x) < ¢
and p = R where f(x) > c for some constant c}, but the study of phase transitions
requires the investigation of the influence of some strange logarithmic singulari-
ties and of their regularizations in the case of even-dimensional manifolds M, as
in many physical problems. See the paper ARNOLD V.I1. On a variational prob-
lem related to the phase transitions of the averages in controlled dynamical sys-
tems. In: Nonlinear Problems in Mathematical Physics I. In honour of Professor
0. A.Ladyzhenskaya. Editors: M. Sh. Birman, S.Hildebrandt, V. A. Solonnikov
and N.N. Ural'tseva. Dordrecht: Kluwer Acad. Publ., 2002, 23-34 (Internat.
Math. Ser., 1).

2002-7. Let ug: M* — R be a smooth “initial” function on a Riemannian mani-
fold M (the case of a 2-dimensional ball B? is already relevant). Study the min-
imization problem for the Dirichlet integral |, M(Vu)2 dx, where the function u is
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obtained from the initial function up by an area-preserving diffeomorphism of M
onto itself (by an “incompressible fluid motion™).

The extremal function u is smooth if the smooth initial mountain ug : B> —
R, vanishing on the boundary of the ball, has just one nodegenerate (Morse) max-
imum inside the ball. In this case, the extremal function u is the symmetrization
of ug (depending only on the distance from the center of the ball).

But for the initial smooth mountain uy having (like the Elbrus mountain)
two local maxima separated by a saddle point, the extremal function seems to have
a singularity of type |x| along a curve with unknown extremal function singularities
at its endpoints. The problem is to study such singularities for generic ug.

2002-8. The (C,B,A)-permutation of the set {1,2,... ,n} transports to the last
place the subset A = {1,2,...,a} preceded by the transported set B= {a+1, ...,
a+ b} while the starting position is occupied by C = {a+b+1, ..., n}.

Some of these (n— 1)(n — 2)/2 permutations permute cyclically (like the
addition of a constant to the residues mod ), and some of these cyclic permutations
are transitive (like the addition of the constant 1).

Find the proportion of both the cyclic and the transitive cyclic permutations
among the (C,B,A)-permutations for large n.

More generally, starting from a permutation of k elements, one defines a
permutation of the set {1,...,n} from its decomposition into k segments {a; +
1, ..., aiy1—1}. The problem is to study the statistics of the Young diagrams
formed by the cycle lengths of the resulting permutations, for the case of large n
and random decompositions of # into k parts.

2002-9. A mapping C* — C" (or CP" — CP") is called a pseudocomplex map-
ping if it sends complex subspaces to complex subspaces (one may consider sepa-
rately the cases of vector, affine or projective subspaces——all the three versions are
interesting).

A real diffeomorphism CP? — CP? is pseudocomplex if and only if either
it, or its product with the complex conjugation, is a complex projective mapping
(and similarly for the other versions and other »’s).

Do there exist other pseudocomplex homeomorphisms? Other pseudocom-
plex bijections?

These questions should have been studied by Hilbert as a part of axiomat-
ic projective geometry, but his school seems to have missed these foundational
problems.
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2002-10. To formulate quaternionic versions of the questions in problem 2002-9,
one should distinguish the left subspaces and the right subspaces. I would suggest
studying those mappings which send left and right subspaces onto left and right
subspaces (with a left one sent onto a right one also permitted).

2002-11. The complexification and quaternionization paradigm had been used by
me many times starting from its invention in ARNOLD V. I. Distribution of ovals of
real plane algebraic curves, involutions of four-dimensional smooth manifolds, and
the arithmetic of integral quadratic forms. Funct. Anal. Appl., 1971, 5(3), 169-
176; the Russian original is reprinted in: Vladimir Igorevich Arnold. Selecta—60.
Moscow: PHASIS, 1997, 175-187 (see, for instance, ARNOLD V. 1. Polymathe-
matics: is mathematics a single science or a set of arts? In: Mathematics: Frontiers
and Perspectives. Editors: V.I. Amold, M. Atiyah, P. Lax and B. Mazur. Provi-
dence, RI: Amer. Math. Soc., 2000, 403—416, and ARNOLD V. 1. Symplectization,
complexification and mathematical trinities. In: The Amoldfest. Proceedings of a
conference in honour of V. 1. Amold for his sixtieth birthday (Toronto, 1997). Ed-
itors: E. Bierstone, B. A. Khesin, A. G. Khovanskif and J. E. Marsden. Providence,
RI: Amer. Math. Soc., 1999, 23-37 (Fields Inst. Commun., 24)).

For instance, it is now proved that the complex version of the tetrahedron
is the octahedron: CA; = B3, see ARNOLD V. 1. Complexification of tetrahedron
and pseudoprojective transformations. Funct. Anal. Appl., 2001, 35(4), 241-246.

Now the problem is to prove my old conjecture that its quaternionic version
is the icosahedron:

HA3 = Hj3, CB3 = Hj.

Perhaps one should start with the easier plane versions:
CA2=B;, "Ay=H,, “B,=H,

relating the symmetry groups of the triangle, the square, and the pentagon.

The difficulty of all this subject lies in its nonmathematical character: the
problem is to find the definition of the informal quaternionization operation rather
than to prove any ready mathematical statement.

2002-12. The caustic of a periodic function g : S' — R is the curve in the plane R?
of the functions

Gag:S' =R, Gpp(0)=g(@)+Acos@+Bsing,
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consisting of those functions which are not Morse:
{(A,B) €R*: 39: G} 5(9) =G} 5(¢) =0}.

The caustics of generic periodic functions have many peculiar properties:
for instance, each caustic has at least four cusps, and its alternative length (the
alternating sum of the lengths of its segments between the cusps) vanishes. The
cusps of a caustic having just 4 cusps form a parallelogram (and the barycenters of
the odd and of the even cusps coincide if there are more than 4 cusps).

The problem is to replace smooth periodic functions in this theory with
exact Lagrangian submanifolds of the phase cylinder 7*S!. Such a submanifold
corresponding to a function is the graph of its differential. A general Lagrangian
submanifold needs not be a section of the cotangent bundle, and the graph of the
corresponding “multivalued potential” function needs not be an immersed curve:
it may have cusps.

It is interesting to understand, which would be the four-cusp property ver-
sion for the caustics of such exact Lagrangian submanifolds, and what would hap-
pen to the Sturm-Hurwitz theorem on the zeros of Fourier series (being the in-
finitesimal version of the caustics’ cusps theorem) for such extended “multivalued
periodic functions.”

2002-13. The theory of caustics of periodic functions and Lagrangian submani-
folds discussed in problem 2002-12 depends on the functions x = cos¢ and y =
sin@ on the circle x* + y?> = 1. Replacing the circle with a different curve, say,
with an algebraic curve C: f(x,y) = 0, and g with the restriction to C of a function
on the plane, say, of a polynomial P(x,y), we define the C-caustic (as the curve of
non-Morse restrictions of the functions P+ Ax + By to C).

The problem is now to extend the Sturm-Hurwitz theorems on Fourier se-
ries (as well as their extensions described in problem 2002-12 and, in more detail,
in the works ARNOLD V.I. Astroidal geometry of hypocycloids and the Hes-
sian topology of hyperbolic polynomials. Russian Math. Surveys, 2001, 56(6),
1019-1083; Moscow: Moscow Center for Continuous Mathematical Education
Press, 2001 (in Russian)) to the C-caustics associated with more general curves C
than the circle used in problem 2002-12.

2002-14. Study the triangulations of the torus T2 associated with cubic algebra-
ic number fields (by the theory of higher-dimensional continued fractions). One
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starts with a matrix A € SL(3,Z) having 3 positive eigenvalues. The 3 correspond-
ing invariant planes divide R* into 8 invariant octants. Each open octant contains
the semigroup of its integer points. The boundary of the convex hull of this set of
integer points, Z3 N octant, is called the sail. The sail is invariant under A. It is
an (infinite) polyherdal surface whose faces are bounded by convex compact poly-
gons. It had been proved (by Dirichlet and H. Tsuchihashi—see TSUCHIHASHI H.
Higher-dimensional analogues of periodic continued fractions and cusp singulari-
ties. Tohoku Math. J., Ser. 2, 1983, 35(4), 607-639) that the sail is invariant under
the action of the commutative subgroup Z? of SL(3,Z) formed by the matrices
with the same eigenvalues.

The torus dealt with in this problem is the quotient space
T? = (the sail of A) /Z>.

It is divided into the images of the faces of the sail under factorization. Each image
contains some “integer points” (the images of the integer points of the face). Thus,
we have associated a geometric object to A: a decomposition of T? into “convex
polygons” containing “integer points.”

The problem is to understand which decompositions of T? (and which sets
of “distinguished integer points”) can be obtained in this way from various matri-
ces A.

2002-15. While comparing problem 2002- 14 with the situation for ordinary con-
tinued fractions (where there are no restrictions on “a triangulation of the torus”
and on “its distinguished points,” since every finite sequence of integers is a peri-
od of some quadratic irrational number), I must repeat the old interesting problem
(see problem 1993-11) to compare the statistics of elements of the period of a ran-
dom irrational number with that of the eigenvalues of a random matrix in SL(2, Z)
with real eigenvalues.

I mean first to consider integer points (p,q) defining quadratic equations
x* 4+ px+ q = 0 whose roots are real, such that p? + g*> < N. Among the elements of
the period of the continued fractions of the roots of this equation, we consider the
proportion of 1’s, of 2’s, and so on. The limit of the proportion of £’s for N tending
to infinity is called the k’s statistic for random quadratic irrational numbers.

The statistic for periods of the eigenvalues of random matrices is defined
similarly, starting with those integer matrices (%) for which ad —bc = 1, the
eigenvalues are real and a® + b* + c¢® +d*> < N.
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2002-16. The modular group SL(2,Z) acts on the Lobachevskian plane as well
as on the de Sitter world (the exterior domain of the disk of the Klein model for the
Lobachevskian plane), see problem 1996-15 and book ARNOLD V. 1. Arithmetics
of Binary Quadratic Forms, Symmetry of Their Continued Fractions, and Geome-
try of Their de Sitter World. Moscow: Moscow Center for Continuous Mathemat-
ical Education Press, 2002; Bol. Soc. Brasil. Mat. (N. S.), 2003, 34(1), 1-42. The
orbits of this group are discrete in the Lobachevskian plane (but accumulate to the
“absolute” circle) and are everywhere dense in the de Sitter world.

a) How precisely does an orbit inside the “absolute” circle accumulate to
this circle?

b) How is an orbit outside the “absolute” circle distributed? Is there any
kind of ergodicity and equipartition, as for the products of 2 rotations of the sphere
or of the plane (see problems 1963-6—1963-12 for the details)?

The relation of the Lobachevsky and de Sitter geometry to the arithmetic
and albegra of groups SL(2,Z,) is described in the paper ARNOLD V.I. Fermat
dynamics, matrix arithmetics, finite circles and finite Lobachevsky planes. Funct.
Anal. Appl., 2004, 38(1), 20 pp., where, for instance, the finite Lobachevky plane
mod p and “upper” half-plane containing p(p — 1)/2 points are treated.

2002-17. The modular group SL(2,Z) acts on the set Z> of binary quadratic
forms mx? 4 ny? + kxy with integer coefficients m, n, k. The number 4(D) of orbits
of this action on the set of the forms with a fixed negative value of the determinant
D = 4mn — K is finite, see Theorem 13 in the book ARNOLD V. I. Arithmetics of
Binary Quadratic Forms, Symmetry of Their Continued Fractions, and Geometry
of Their de Sitter World. Moscow: Moscow Center for Continuous Mathemat-
ical Education Press, 2002. Explore the function h(D). What is the asymptotic
behavior of h(D) as D — —oo?

2002-18. A binary quadratic form f(x,y) = mx> + ny* + kxy with integer coeffi-
cients m, n, k is said to be perfect if the set § = f(Z?) C Z of the values of this
form on Z? is a multiplicative semigroup (i.e., uv € S whenever u € S and v € S).
Perfect quadratic forms were studied in the book ARNOLD V. 1. Arithmetics of
Binary Quadratic Forms, Symmetry of Their Continued Fractions, and Geometry
of Their de Sitter World. Moscow: Moscow Center for Continuous Mathemati-
cal Education Press, 2002. What is the probability that a randomly chosen binary
quadratic form with integer coefficients is perfect? If this form is perfect, what can
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one say about the structure of the semigroup of its values? The product of three
values is always a value, as it was proved in the book quoted above.

2002-19. If positive integers a and n > 1 are mutually prime then g®" = |
mod n where @(n) is the number of positive integers that are less than n and mu-
tually prime with » (the Euler theorem). Explore the following problem: For what
divisors N of @(n) does the relation a®"/¥ =1 mod n take place? The relation
a®™/N = _1 mod n? The case a = 2 (and n odd) is already highly nontrivial.

2002-20. Let two positive integers a and n be mutually prime. To what extent is
the sequence ¢ — a' mod n (¢ > 1 integer) random?

2002-21. Examine the sequence @(n)/n (n > 1 integer) where the Euler function
¢(n) is the number of positive integers that are less than » and mutually prime
with n.

According to Gauss, the probability of that two randomly chosen integers
are mutually prime is equal to 6/7. This implies that ¢(n)/n tends to 6 /7% as n —
oo in a certain weak sense [which is also confirmed by calculations of @(n)/n for
not so large n]. Determine a rigorous meaning of this statement and prove it. What
are the “oscillations” and the “variance” (and other probabilistic characteristics) of
the sequence @¢(n)/n?

2002-22 (the Fermat—Euler dynamical system). Let n be a large odd integer, and
let I' = I'(n) be the set of the @(n) residues mod n that are mutually prime with »,
¢ being the Euler function.

The doubling mapping x — 2x acts on I with N orbits of equal lengths,
I =@(n)/N. Is the set of | residues forming one orbit asymptotically random if n
becomes large?

For a truly random finite sequence of | elements of a set of m elements,
the absence of any repetition seems rather probable for short sequences, where
12 is small with respect to m, and seems rather improbable for long sequences, I
being large with respect to m. Indeed, the number of choices of | distinct elements
isC=m(m—1)(m—2)---(m—1+1), while the total number of the unrestricted
choices is T = m'. Hence, C/T = Hi;lo(l —k/m), n(C/T) = Zi_:%) In(1—k/m) ~
~Lilok/m e~ —12/2m.

Thus, the ratio of the orbit period | = ¢(n)/N and the number ¢(n) of all
the possible values of elements of the orbit might indicate the randomness degree
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of the geometric progression {2'} modn: large values of I* with respect to ¢(n)
(i. e., the smallness of the divisor N(n) of ¢(n) with respect to the square root of n)
would indicate some nonrandomness.

The calculations of N(n) for odd integers n < 512 show rather an average
linear growth (say, N(511) = 48 while ¢(511) = 432).

For more details on the Fermat—Euler dynamical system see: ARNOLD V. 1.
Fermat—FEuler dynamical systems and the statistics of arithmetics of geometric
progressions. Funct. Anal. Appl., 2003, 37(1), 1-15; ARNOLD V. 1. Ergodic and
arithmetic properties of geometric progression’s dynamics. Moscow Math. J.,
2004, to appear, ARNOLD V. 1. Euler Groups and the Arithmetic of Geometric
Progressions. Moscow: Moscow Center for Continuous Mathematical Education
Press, 2003 (in Russian); ARNOLD V. I. Topology and statistics of formulae of
arithmetics. Russian Math. Surveys, 2003, 58(4), 637-664; ARNOLD V.1. The
topology of algebra: combinatorics of squaring. Funct. Anal. Appl., 2003, 37(3),
177-190; ARNOLD V. 1. Fermat dynamics, matrix arithmetics, finite circles and
finite Lobachevsky planes. Funct. Anal. Appl., 2004, 38(1), 20 pp.

\ WA W

I hope the problems of the list below might be useful even for beginners,
being however open and allowing both experimental discoveries of new facts and
creation of general theories.

2003-1. Fermat—Euler statistics and number-theoretic turbulence. Consider

the sequence {d'}, r = 1,2,..., of residues modn (where the integers a and n
are relatively prime, (a,n) = 1). Fermat and Euler proved that this sequence is
periodic. Denote by T'(n,a) its (minimal) period such that a¥ = 1 (mod n). It

behaves very irregularly.
Examples: 7(509,2) =508, T'(511,2) = 9.

Billions of experiments (mostly by F.Aicardi) showed that the average
growth rate of T(n) (as n — o) is asymptotically Cn/logn. For smaller values
of n, the slower growth rate Cn’/® was observed.

The problem is to prove (or disprove) this asymptotic behavior (at least for
a = 2, n being odd).
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The words “average growth rate of A(n) is asymptotically equal to B(n)”

mean that
n

Y A(k)

£l =1

lim ~;
n—o0
Y B(k)
k=1
One also says in this case that B is the Cesaro asymptotic of A.

Example: The Cesaro asymptotic of sin®(mn/2) is 1/2.

A discussion of this problem can be found in the article: ARNOLD V. I.
Topology and statistics of formulae of arithmetics. Russian Math. Surveys, 2003,
58(4), 637-664. This article also contains a discussion of the relation of the study
of this average growth to the discovery of turbulence laws by Kolmogorov: his
methods were used in Aicardi’s work.

2003-2. Randomness of arithmetic progressions. Consider the sequence {at},
t=1,2,...,T, of residues modn (a and n being relatively prime, (a,n) = 1). The
problem is to study the statistics of the distribution of this sequence of T elements
in the finite circle Z, = Z/nZ of residues modn.

As a randomness characteristic of a set of T points of the finite circle of
n points, we consider the sum of the squares of the lengths of the T arcs into which
the circle is divided by T chosen points,

T
R= Za,-z, Za,- =n.
i=1

To avoid the influence of the scale n, we consider the reduced dimensionless

number
R 1

= — —<r<lI.
nz’ T_ —_

r

To eliminate the influence of the parameter T, we reduce the randomness charac-
teristic once more, dividing r by its minimal value:

5= =Tr, 1<s<T.

These characteristics were introduced and studied in the article quoted in problem
2003-1.
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Example: The minimal value sy = 1 of the binormalized randomness pa-
rameter s is attained by the choice of the T vertices of a regular T-gon (an army line
distribution of points at equal distances). The maximal value s; = T corresponds
to the degenerate choice of a cluster of T points at the same place.

The random choice (of independent uniformly distributed points in a cir-
cle) leads to the “freedom-liking” value s, = 2T /(T + 1) of the birandomness
parameter, which is close to 2 when there are many points.

Measuring the value of s for a given set, one can evaluate some kind of
degree of its randomness. Namely, the observation s < s, is a sign of some mutual
repulsion of points of the set (reaching the minimal value so = 1 of the parameter s
for maximal repulsion, leading to an army line formation).

Similarly, the observation of larger values of the binormalized randomness
parameter, s > sy, is a sign of some mutual attraction of points of the set (reaching
the maximal value of the parameter s = T for the strongest attraction, leading to a
cluster formation).

Intermediate values of the binormalized randomness parameter s (close
to s,) are a sign of independence of the T points of the set which is, in this case,
“more random” than in the cases of repulsion or attraction.

It is interesting to compare the values of the binormalized randomness pa-
rameter s for different sets of residues modn. The experiments with the full peri-
ods T of geometric progressions of residues, discussed above in problem 2003-1,
have shown mostly some repulsion (s = 1.5), but no theorem on such a repulsion
is known.

Problem 2003-2 is to study (at least experimentally) the values of the bi-
normalized randomness parameter s for the T points of the arithmetic progression
{at}, t =1,2,...,T, of residues modulo n (integers a and n being relatively prime).

Remark: One may predict a significant difference in the answers depend-
ing on the choice of the length T of the progression, at least in the following
two cases.

1) One may choose T randomly, say between 1 and n/2, and study the
distribution of the values s(n,a,T) for large values of n and random independent
choices ofaand T.

2) One may choose T'(n,a) to be one of the denominators of the continued
fraction approximation of the number

a 1
; ZXQ-f-—-————l— = [xo,xl,xz,...].

X1+

xZ+...
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The approximation is provided by the truncated continued fraction

Pk
— = [X(),xl, . ,xk],
VL3
and the proposal is to choose T = g (for some randomly chosen k).

One might conjecture that there is more repulsion and army line structure
in the second case, but there are yet no theorems confirming it, and it would be
interesting to verify this conjecture by numerical experiments.

One proposal is to calculate s(n,a,k) for all the continued fraction k-ap-
proximations of all the fractions a/n, 1 < n <N, trying to guess the behavior of
the distribution of the values of s for N — oo.

One might also try to suggest the natural science conjectures on these be-
haviors (in both cases 1) and 2)), using the Gauss—Kuz'min distribution of the
elements x; of the continued fractions of random real numbers. It would be diffi-
cult to deduce the behavior of s from this distribution in a rigorous way; therefore
I suggest rather a semi-empirical study in which one uses such intuitively probable
things as the independence of different prime numbers with no proof (which might
rely on deep number theory involving the Riemann zeta function conjecture).

Nonrigorous deductions freely using these unproved properties of num-
ber theory sometimes would become correct proofs many years later (as it hap-
pened to Legendre’s discovery of the distribution of prime numbers proved only
by Hadamard and Vallée Poussin).

Continuing with numerical experiments, one might also study many other
sequences of residues of, say, (T subsequent prime numbers) mod(n = 100). The
choice n = 100 facilitates finding these residues in the tables of primes.

For the theory of continued fractions, one might see, for instance, the book
ARNOLD V.I. Continued Fractions. Moscow: Moscow Center for Continuous
Mathematical Education Press, 2001, 40 pp. (in Russian).

One might try to apply the Gauss—Kuz'min statistics of continued fractions
to the study of geometric progressions of residues, for example, {2’ (mod n)},
reducing it to the arithmetic progression of logarithms {¢In2} and investigating
their distribution in the “random” intervals (Inn+ Ink;Inn+In(k+ 1)) of lengths
b=In((k+1)/k)~1/k.

Supposing the randomness of the real number (In2)/b and applying its
continued fraction statistics, one might come to some (empirical) conjectures on
the distributions of elements of arithmetic progressions of logarithms in the above
“random” interval of length b (for random k). The properties of these distribu-
tions might be interpreted (while exponentiating) as those of the distributions of
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the residues {2 (mod #n)} (which should then be compared with the numerically
observed properties).

The proofs of the “randomness” properties conjectured for these studies
might be much more difficult than their fearless applications, which might imme-
diately lead to the conjectures to be verified numerically (ignoring missing foun-
dations, such as “randomness” proofs, which might appear centuries later, as hap-
pened to the Legendre statistics of the prime numbers distribution).

2003-3. Modular groups and their Kepler cubes. Consider the group G =
SL(2,Zp) consisting of the matrices of order 2, whose elements are residues mod p
and determinant is equal to 1. This group consists of p(p* — 1) matrices.

We associate with a finite group a directed graph (called its monad), whose
vertices are elements of the group and arrows lead just from each element to its
square (one arrow leaving each vertex).

Example: The monad of the cyclic group Z4 of order 4 is

1

N

2—»0:)

/

3

(denoting the elements additively as the residues mod 4).

Problem: Find the monad of the group G = SL(2,Z,) (for any prime
number p).

Example: For p = 3, the monad [G] consists of five components: one
rooted tree 71,16 and four components A;.

) ) ) ) ) )
\\\\\o / o o C o o
o T1’1,6 A2

@)
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Each A,-graph is a cycle of length 2 with trees of length 1 attached to its ver-
tices. The T-component is a subgroup isomorphic to the group {+1,+i,+j,+k}
of quaternionic units.

For p =5, the monad [G] consists of 17 components: one rooted tree with
32 vertices, 10 components A;, and 6 components A4 (the directed graph A,, being
a cycle of length m with trees of length 1 attached to each of its vertices, thus
having in all 2m vertices):

[G] = T1,1,30U (104;) LI (6As).

The 5 Kepler cubes are inscribed in a dodecahedron. The vertices of any
Kepler cube are some 8 of the 20 vertices of the dodecahedron. The 12 edges of
any Kepler cube are 12 diagonals of the 12 pentagonal faces of the dodecahedron
(one diagonal of each face).

The group G = SL(2,Zs) contains 5 “Hamilton subgroups” isomorphic
to the Hamilton group of the eight quaternionic units {#1,=4i,+j,+k}. These
subgroups lie in the tree 77,1 30 of the monad. Each Hamilton subgroup consists of
the lower floor elements 1, —1 of the tree and of six elements of order 4 lying on
the highest floor. These 5 disjoint sextuples cover all 30 elements of the highest
floor of the tree.

The vertices of the dodecahedron associated with G are the 20 third or-
der elements of G (forming the cycles of the 10 components A, of the monad).
The pentagonal faces of the dodecahedron correspond to the Sth (and 10th) order
elements of G (forming the A4-components of the monad).

The 5 Kepler cubes are related to the 5 Hamilton subgroups in the follow-
ing way. Fix a Hamilton subgroup. Consider the subgroup of G formed by the
elements such that, conjugating G by these elements, one transforms the chosen
Hamilton subgroup into itself. This isotropy subgroup contains 24 elements: the
8 elements of the Hamilton subgroup, 8 elements of order 3, being the vertices of
the Kepler cube associated with the chosen Hamilton subgroup, and 8 elements of
order 6, forming an opposite cube (whose matrices are obtained from the Kepler
cube matrices, multiplying them by —1). All vertices of the Kepler cubes belong
to the ten Ay-components of the monad.

The vertices of any Kepler cube are obtained from one of them, conjugating
it by the elements of the corresponding Hamilton subgroup. These 8 conjugations
provide 4 of the 8 vertices of the cube; the other 4 are the inverses of these (or their
squares, since all elements of the Kepler cube are of order 3).
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One may say that the preceding construction interprets the mysterious in-
formal expression of the Kepler cube vertices in terms of one of them, A, as being
the 8 matrices A”, h € {#1,+i,4j,4k}. Namely, s =1 and h = —1 provide A and
A~1, while the meaning of A’ and of the others is explained by the above construc-
tion of conjugations generating the Kepler cube from the corresponding Hamilton
subgroup.

Let us return to the part of the problem devoted to p-Kepler cubes. It
requires to extend the theory of Kepler cubes of the group G = SL(2,Zs) described
above, replacing 5 by a larger prime number p.

One of the first results in this direction is the following study of tree com-
plexity. Consider a chain of k consecutive squarings,

Ag, A1=A%, Ay=A% ..., A=Al =1
It is represented in the monad as a chain
Ag— A1 — Ay — o A=11

of length k (containing k + 1 elements of the group).

Theorem: A nondegenerate chain of length k in G = SL(2,Z),) exists if
and only if p= 41 (mod 2¥).

The nondegeneracy means the absence of the matrix 1 (except at the last
place): Ay 1 # 1,Ar=1.

Example: Chains with k = 2 exist for p = 5,11,13. Chains with k =4
exist for p = 17,47.

Perhaps, these chains of squarings provide the generalizations of Kepler
cubes to the case p > 5.

The combinatorics of some generalized Kepler cubes for p =7 is described
in the article ARNOLD V. 1. Topology and statistics of formulae of arithmetics.
Russian Math. Surveys, 2003, 58(4), 637-664. This article also explains the rela-
tion of the combinatorics of these cubes to the generalized four-color problem on a
toroidal surface and to some Riemannian surfaces associated with the monad of G.

The Riemannian surface of the monad of G is constructed as a complex
of dimension 2, whose vertices are the third order elements of G, but a relevant
interpretation of complex structure in terms of combinatorial group theory of G is
still missing.
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It would also be interesting to extend this study of monads and Rieman-
nian surfaces to the case of complex versions of finite modular groups, Gc =
SL(2,CZ,), where CZ,, is the ring of complex integers modulo p:

CZ,={a+bi:a€Zy bel,}.

2003-4. Matrix version of Fermat’s small theorem. This recent theorem asserts
the congruence of traces:

(trA)P — tr(AP) = pF,

here p is a prime number, A is any unimodular matrix of integers, A € SL(n,Z),
the ratio F (the result of the division of the difference by p) being a polynomial in

the variables o1, ...,0, with integer coefficients, where o; are the coefficients of
the characteristic polynomial of A at the terms of degree < p:
O] =Z7\,i, 0'222}\,,'}\,1', ey O'p.
i i<j

An equivalent statement is the formula
M+ AP =M+ 4+ M) = pF(a1(A),...,0,(N)).

The proofs are available in the paper: ARNOLD V. I. Matrix Fermat theorem, finite
circles and finite Lobachevsky plane. Funct, Anal. Appl., 2004, 38(1), 20 pp.

Example 1: The “cube of the sum” formula
(a+b)°—(a®+b°) =3(a+b)ab
can be extended to the identity
(a+b+ 42— @+ +---+22) =3UV-W),

where U =61 =a+ - +z, V=0, =ab+ - +yz, W =03 =abc+ -+ xyz.

Example 2: For the identity matrix A = 1 of order n, our congruence takes
the form
n? —n = pF,

implying Fermat’s small theorem: n?~! =1 (p) if (n,p) = 1.
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The Newton polynomials F with integer coefficients have (in the cases
p <7 for which I have explicitly calculated them) rather small coefficients, mostly
equal to £1 (neglecting the O coefficients implied by the weighted homogeneity of
the polynomial F, the weight of its variable o; being equal to i). Another rather
curious property of these coefficients is the equilibrium between the numbers of
positive and negative coefficients (+UV and —W above) whose total sum is 0 for
p>2

The present problem is to develop the theory of these strange polynomi-
als F and to generalize the traces congruence to other symmetric functions, for
instance, to the congruences for the other coefficients of the characteristic poly-
nomial of the power AP (or, in a matrix-free formulation, to other Tschirnhausen
transformations).

The Euler extension of Fermat’s small theorem, replacing the prime p by
any integer m and replacing the Fermat congruence a?~! =1 (p) by the Euler
congruence a™ = a™ %™ (m), might also have matrix versions, which would be
interesting even as conjectures guessed from calculating many examples. The sim-
plest example in this direction replaces the prime p by any integer m and the differ-
ence (a+b)P — (aP 4 bP) by Y Cka*b™*, the integer k in the sum being relatively
prime with m: (k,m) = 1. The claim is the set of the congruences: C¥ is divisible
by m, C*~! is divisible by k (provided that (k,m) = 1).

Example: For m = 9, the binomial coefficients Cé =1,9,36,84,126,126,
84,36,9,1 are divisible by 9 if k #£ 0,3, 6,9.

For k = 3, the binomial coefficients C,2n_1 =1,3,6,10,15,21,28,36,... are
divisible by 3 if m #£ 3,6,9, ...

Proof of the congruences CX, = 0 (m) and C"!, = 0 (k): Consider a
subset X of k elements in the set Z,, of residues modm. The translations ¢, : x —
x+a(a=1,...,m)move X into other subsets of k elements, which are all different
if (k,m) = 1, since otherwise we would obtain a bijection #, of X to itself whose
period T would be a common divisor of m and k. Thus we get a free action ¢, of the
group Z, on the set of its subsets X of k elements, whose number C¥, is therefore
divisible by m.

The divisibility of C5~} by  follows, since C¥, = 2C%~! and (k,m) = 1.

The question is therefore to generalize these results from the binomial case
to the multinomial coefficients of (a+---+2z)™.
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Among recent peculiar discoveries in this direction, we note the strange de-
gree x(a,b) of the prime p, to whose power the difference of binomial coefficients
is divisible,

CPb — b = p*@bl;  (where (p,z) =
P —Ca pz)=1).

It seems (empirically) that x is an averagely growing function, but its

asymptotic behavior is known only empirically, showing also the strange (and un-

proved) independence of the values x(p™ + 1,b) (and sometimes of x(pm + 1,5))
of the value b of the second argument.

Example: For p = 3, the starting values of the degree x(a, b) form a Pascal-
type triangle (the rows a = 2,3,...,7 being shown, b= 1,...,a—1 in each row a):

3

The double periodicity,
x(a+p,b) = x(a,b) =x(a+p,b+p),

observed in this table, is partially preserved for other prime numbers p.
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For p =7, the rows (a = 2,3,..., 15) of the values x(a,b) are:
3
3 3
3 3
3 3 3 3
3 3 3 3
5 5 5 5 5 5
4 4 4 4 4
3 4 4 4 4 4 4 3
3 3 4 4 4 4 3
3 3 3 4 4 4 4 3 3 3
3 3 3 3 4 4 3 3 03
3 3 3 3 3 4 4 3 3 3 3 3
5 5 5 5 5 6 5 5 5 5 5
4 4 4 4 4 4 4 4 4 4 4 4 4 4

The functions x(mp”+ 1,b) of m and r are rather peculiar, and I leave to the
reader the pleasure of finding them, thus continuing, at least empirically, the Fer-
mat experimental way of discovery of mathematical facts (see the tables below).

All these facts can be extended from the binomial coefficients to the multi-
nomial ones, as well as to the coefficients K of the Newton—Girard formula (taking
into account that, for p = 2, one should replace the difference c;,’ﬁ — Cf,’ by the

twisted difference c;,’Z —(—1)bch.

The table of the first values of x(p” + 1,b) (independent of b) is:

r £ 2 3 5 7 9 11 13 17 19 23
112 3 4 4 4 4 4 4 4 4
2y3 4 5 5 5 5 5 5 5 5
314 5 6 6 6 6 6 6 6 6
415 6 7 17 1 7 71 71 7T 1
56 7 8 8 8 8 8 8 8 8
6|7 8 9 9 9 9 9 9 9 9
718 9 10 10 10 10 10 10 10 10
8 9 10 11 11 11 11 11 11 11 11
9110 11 12 12 12 12 12 12 12 12

We see that x(p" + 1,b) = r+3 for p > 3 (being r+ 2 for p =3 and r+ 1 for
p = 2), but this is proved only by some millions of examples.
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The tables of the first values of x(mp” + 1, ) (independent of ) are given
and discussed below (for p = 3,5,7,11).

Case p=3:
r
m 1 2 3 4 5 6 7 8 9 10
1{3 4 5 6 7 8 9 10 11 12
23 4 5 6 7 8 9 10 11 12
314 5 6 7 8 9 10 11 12 13
413 4 5 6 7 8 9 10 11 12
5(3 4 5 6 7 8 9 10 11 12
64 5 6 7 8 9 10 11 12 13
713 4 5 6 7 8 9 10 11 12
8( 3 4 5 6 7 8 9 10 11 12
9 5 6 7 8 9 10 11 12 13 14
10 3 4 5 6 7 8 9 10 11 12
1My 3 4 5 6 7 8 9 10 11 12
12,4 5 6 7 8 9 10 11 12 13
133 4 5 6 7 8 9 10 11 12
14,3 4 5 6 7 8 9 10 11 12
1514 5 6 7 8 9 10 11 12 13
Case p=25:
r
m 1 2 3 4 5 6 7 8 9 10
14,6-9,11-14| 4 5 6 7 8 9 10 11 12 13
510,15 5 6 7 8 9 10 11 12 13 14

Case p=T7:

r
mN\] 1 2 3 4 5 6 7 8 9 10

1-6,8-13,15( 4 5 6 7 8 9 10 11 12 13
7,145 6 7 8 9 10 11 12 13 14
Case p=11:
r
m 1 2 3 4 5 6 7 8 9 10
1-10,12-15| 4 5 6 7 8 9 10 11 12 13
1y s 6 7 8 9 10 11 12 13 14
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One sees that x(mp" + 1,b) = r+ 3 for (m,p) =1,p > 3.
Here is the table of the function y(a,b) defined by the twisted difference

CE—(-1)bct =20z (2,2) =1

(the rows correspond toa = 2,3,...,20,1 < b < a):

3 5 4 5 3

7 8 7 9 7 8 17
1 4 3 4 2 4 3 4
3 6 5 6 4 6 5 6 3
1 2 1 4 2 3 2 4 1 2
5 6 5 8 6 7 6 8 5 6 5
1 3 2 3 1 4 3 4 1 3 2 3
3 5 4 5 3 6 5 6 3 5 4 5 3
1 2 1 3 1 2 1 4 1 2 1 3 1 2
9 10 9 11 9 10 9 12 9 10 9 11 9 10 9
1 5 4 5 3 5 4 5 2 5 4 5 3 5 4 5
37 6 75 7 6 7 4 7 6 75 7 6 7 3
1 21 5 3 4 3 5 2 3 2 5 3 4 3 5 1 2
5 6 597 8 7 95 76 97 87 95 6 5

The apparent “double periodicity” of this function would relate to y(a, b) the values
y(a+8,b) and y(a+8,b+8), but y(16,1) =9 # 7 =y(8,1).

It is, for instance, formally unknown whether the values x(a, b) are bounded
or unbounded (neither for a fixed prime p nor totally) and whether the small values
(like 2) appear finitely or infinitely many times. Such questions are also open for
the multinomial coefficients (where, sometimes, the answers might be different
and the results might be easier than for the particular case of binomial coefficients).

2003-5. Weak asymptotics of Frobenius numbers. The Frobenius number
K(ay,...,as), defined by s integers a; having no common divisor altogether, is
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the least integer which, together with all greater integers, belong to the additive
semigroup A of integers generated by the summands a;:

A= {k1a1+---+ksas 1k; >0, k,‘EZ}.
Example: For s =2, a; = 3, a; = 5 the semigroup is
A ={0,3,5,6,8,9,10,...},

hence the Frobenius number is K(3,5) = 8.

The Frobenius number of two (relatively prime) numbers was calculated
by J.J. Sylvester: K(a,b) = (a—1)(b— 1) (Educational Times, 1884, 41, p. 21).

The problem is to find the asymptotic behavior of the very irregular func-
tion K(a) of s > 2 variables for large vectors a € Z°.

The conjectural averaged behavior is

K~C - y/[Jai, €=V (s—1)!

(for instance, K(a,b, ¢) ~ v/ 2abc).

The averaging means the following construction (or its generalization). Let
us replace the vector a by a neighborhood U of radius r of the scaled vector Na €
7. Now replace the value K(a) by the (arithmetic) mean Ky of the values K (b)
of Frobenius number at the points b of the neighborhood U whose components b;
have no common divisor greater than 1.

The conjecture is that, for growing values of N, the mean values I?N have a
limit (probably provzded by the conjectured formula above): 11m KN should grow
as const - (Ha,) for large a.

I have fixed above the averaging radius r, but one might also choose some
growth rate r(N), where r(N) /N tends to O when N tends to infinity.

More on the weak asymptotic behavior is provided in the article:
ARNOLD V.I. Weak asymptotics for the numbers of solutions of Diophantine
problems. Funct. Anal. Appl., 1999, 33(4), 292-293. Applications of Frobenius
numbers to representation theory are discussed in the article: ARNOLD V.I.
Frequent representations. Moscow Math. J., 2003, 3(4), 14 pp.

2003-6. Frequent representations. Consider a unitary representation of a finite
group in Hermitian space CV. The representation is called frequent, if the dimen-
sion of the variety of those representations in the same space, which are unitary
equivalent to the given one, has the maximal possible value.
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I have proved that the multiplicities of irreducible summands in a frequent
representation of a finite group are asymptotically proportional to their dimensions
when N tends to infinity.

The problem is to find similar asymptotic proportions for orthogonal (and
quaternionic) representations of finite groups.

One might also try to extend the result to the case of infinite groups, taking
into account the decomposition of the regular representation in the space of func-
tions on the group (which contains, for a finite group, each irreducible component
as many times as its dimension).

Regular representations might be decomposed into irreducible ones in the
case of an infinite group too, and one might try to replace sums by infinite series
(in the discrete case) or by integrals (in the case of compact Lie groups).

As an intermediate problem in this direction, one might study the asymp-
totic behavior of the multiplicities of irreducible representations in the spectrum
of the Laplace operator on such groups as SO(3) or §* = Spin(3) = SU(2).

The rotated eigenfunction remains an eigenfunction (with the same eigen-
value), and therefore the function space is decomposed as the orthogonal sum of
spaces of irreducible representations, corresponding to different eigenvalues.

Considering the first M eigenvalues, one obtains a set of multiplicities of
irreducible components, and the problem is to find the behavior of the ratios of
these multiplicities for M tending to infinity.

In the case of a finite symmetry group, this proportion seems to be asymp-
totically the same as in a frequent representation (I observed it for millions of
eigenfunctions, studying quasimodes in 1972 and working in magnetohydrody-
namics in the 1980s). This choice of frequent representations (made by Nature,
arranging the eigenfunctions symmetry) seems to take place for any elliptic system
with a (finite) symmetry, say, for the Laplace operators on compact Riemannian
manifolds having a symmetry group such as the ordinary ellipsoids.

However, some attempts of my students (to whom I had shown this phe-
nomenon discovered by me in many examples) to prove it as a general theorem
were not very successful, and therefore I repeat here the natural representation fre-
quency conjecture for eigenfunctions of symmetric systems as a problem to work on
(even in the case of finite groups and unitary representations where it is simpler).

The first examples of frequent representations are published in the article:
ARNOLD V. 1. Modes and quasimodes. Funct. Anal. Appl., 1972, 6(2), 94-101;
the Russian original is reprinted in: Vladimir Igorevich Amold. Selecta-60.
Moscow: PHASIS, 1997, 189-202.
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Magnetohydrodynamical applications (to the Sakharov—Zeldovich fast dy-
namo problem) are published in the paper: ARNOLD V.I. Evolution of a mag-
netic field under the action of drift and diffusion. In: Some Problems in Modern
Analysis. To the memory of V.M. Alexeev. Editor: V.M. Tikhomirov. Moscow:
Moscow University Press, 1984, 8-21 (in Russian). See also the survey article:
ARNOLD V.I. Remarks on the perturbation theory for Mathieu type problems.
Russian Math. Surveys, 1983, 38(4), 215-233.

The dimensions of the spaces of eigenfunctions considered numerically in
these studies reached many millions, the symmetry group being that of the cube in
the magnetohydrodynamical paper.

A recent study of frequent unitary representations, providing the proof of
the asymptotic proportion of irreducible components for the case of finite groups
is published in the article: ARNOLD V.I. Frequent representations. Moscow
Marh. J., 2003, 3(4), 14 pp.

2003-7. Symmetric group representations and asymptotic statistics of Young
diagrams. Irreducible representations of the finite symmetric group S(n) are
labeled (by Frobenius) by their Young diagrams of area n, representing the
partitions

n=ay+- - +as

of the parameter » into natural summands. One usually orders the summands, sup-
posing thata; >a; > --- > as, representing a partition by its Young diagram D con-
sisting of » unit squares in the plane. The first (longest) row consists of a; squares
filling the rectangle

0<x<a, -1<y<0

The next row (below the first one) consists of a; squares filling the rectangle
0<x<a, —2<y<-l
and so on, up to the last (shortest) row filling the rectangle
0<x<a;, —s<y<-—s+1.

The corresponding unitary irreducible representation lies in the Hermitian
space C*P) its dimension a(D) being equal to the number of monotonic fillings
of the n squares of the diagram D by n numbers {1,...,n}. A filling is monotonic
if these numbers are decreasing along rows and columns of the diagram (that is,
while x or —y are growing in our notation).
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Example: The partition 5 = 3 + 2 provides 5 monotonic fillings

543 542 541 532 531

21 ’ 31 ’ 32 )7 41 ’ 42 )
therefore a(3 +2) = 5. The maximal value of the dimension of the representation
is attained at the partition 5 = 3+ 1+ 1 and is equal to 6.

Vershik and Kerov proved a remarkable property of the maximal dimension
value @(n) (of the dimensions a(D) of the representations corresponding to all
Young diagrams D of area n):

Theorem: The asymptotic behavior of the maximal dimension value a(n)
for n — oo coincides with that of the average dimension value, taking the averaging
along all Young diagrams D of area n weighted with weights w proportional to the
squares of the dimensions of representations, w(D) ~ a*(D).

This theorem on the coincidence of the maximum with the average implies
that there exist a lot of Young diagrams D for which the dimension a(D) is very
close to the maximal value @(n).

The problem is to evaluate the number of Young diagrams D of area n
for which

a(D) >a(n)—C

(at least asymptotically for large n, at least averaging in n, and eventually with
some dependence of C on n, for instance, counting the diagrams D satisfying the
condition a(D) > a(n)(1 —c1)).

The goal of these studies is to apply them to understanding the asymptot-
ic behavior of decompositions of frequent representations into irreducible ones,
for which one also needs to study, using the Frobenius numbers, the semigroup
generated by the dimensions of irreducible representations (see problem 2003-5).

The Vershik—Kerov theorem is proved in the article: VERSHIK A. M.,
KEROV S. V. Asymptotics of maximal and typical dimensions of irreducible rep-
resentations of a symmetric group. Funct. Anal. Appl., 1985, 19(1), 21-31.

A more or less classical explicit formula for generalized Catalan numbers
a(D) is proved, for instance, in the article: ARNOLD V. 1. Frequent representa-
tions. Moscow Math. J., 2003, 3(4), 14 pp. Its strange proof is based on singularity
theory (and on the Euler—Jacobi complex residue formula asserting the vanishing
of the sum of the inverse values of the Jacobian of a mapping C" — C" over all
preimages of a generic point).
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The answer is

D) = iy Ty,

n' il

where h; = a; + s — i are the lengths of “hooks.”

Most results of the study of symmetric groups admit natural extensions to
all Coxeter groups (at least to the 4 classical series Ay, By, Ci, Dy, but in many cases
to other crystallographic groups Eg, E7, Eg, F4, G, and even to noncrystallographic
ones I,(p), Hs, Hy).

Unfortunately, neither the Vershik—Kerov theorem quoted above nor other
remarkable results of Vershik’s theory on the asymptotic statistics of represen-
tations of symmetric groups were extended to the case of other Coxeter groups.
See, for instance, the recent survey book: Asymptotic Combinatorics with Ap-
plications to Mathematical Physics (St. Petersburg, 2001). Editor: A.M. Vershik.
Berlin: Springer, 2003 (Lecture Notes in Math., 1815).

I propose therefore as a problem the suggestion to find conjectural forms
of these extensions (at least for the 4 classical series A, B, C, D). Such an extension
might provide a better understanding of the results which are already known for
the classical series A of symmetric groups.

For instance, Vershik discovered that a typical Young diagram of large
area n, being observed from a distant location, looks in most cases like a stan-
dard universal curvilinear astroidal triangle

{(x): f®)+ ) <1, x>0,y >0}

for some special function f (explicitly calculated by him) growing from f(0) =0
to f(1)=1.

Namely, the image of the Young diagram under some motion and homoth-
ety (reducing its area n to the constant area of universal astroidal triangle) almost
coincides with this triangular domain, the difference being small for large n.

Here the majority (of “typical” Young diagrams) is understood in the sense
of weighting, whose weights w(D) are proportional to a*(D), as in the Vershik—
Kerov theorem.

The problem is to find universal domains of this type for other Coxeter
groups (or complex simple Lie algebras).
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2003-8. Elliptic integrals and functions, their topological nonelementarity
and topological Galois theory. The fact that elliptic functions and elliptic in-
tegrals do not belong to the set of elementary functions is well known. The prob-
lem is to prove that this event has a topological nature: they are not topologically
equivalent to any elementary function.

I proved in 1963 the corresponding version of the Abel theorem on the
unsolvability of algebraic equations of degree 5 (or higher). These equations (for
instance, the equation x* +ax + 1 = 0) are topologically unsolvable in radicals: no
one (complex) function, topologically equivalent to the algebraic 5-valued func-
tion x(a), is a finite combination of radicals and univalent functions (for instance,
rational functions).

The topological proof of this topological unsolvability theorem (based on
the topological complexity of the monodromy group and on the topology of Rie-
mannian surfaces) was proved in my lectures of 1964 for Moscow high school stu-
dents (which started with the definitions of complex numbers, fundamental groups
and Riemannian surfaces). Notes of these lectures were later published by one of
the students as the book: ALEXEEV V. B. Abel’s Theorem in Problems. Moscow:
Nauka, 1976 (in Russian); the French translation: Cassini, to appear.

In my lectures, I attributed these topological results to Abel, mentioning
also his parallel results on topological unsolvability of differential equations and
on topological nonelementarity of integrals (proved by the topological complexity
of the branchings of the corresponding multivalued complex functions).

However, my students, trying to find the exact statements and proofs in
Abel’s works, never discovered them, and thus the problem of proving the topolog-
ical nonelementarity of elliptic integrals and functions remains open.

An elliptic integral is sampled by, for instance, the time function for the
Newton equation with cubic potential,

X dx 3

t(X)=/ , f(x)=x"+ax+b
0 /f(x)

(say, fora=1,b=0).

The claim is that this multivalued function of X is not topologically equiva-
lent to any elementary function (which is a finite combination of rational functions,
radicals, exponential or logarithmic functions, trigonometric or inverse trigono-
metric functions), and that this remains true even if one also allows any univalent
functions in combination.

An elliptic function is a meromorphic doubly periodic function, such as the
Weierstrass go-function g = X () (inverse to the preceding elliptic integral).
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My 1963 conjecture (attributed by me to Abel) claims that this function is
also topologically nonequivalent to any elementary function (and that this remains
true even if one extends the class of elementary functions by adding combinations
with any univalent functions of a finite number of variables).

Both statements (on elliptic integrals and elliptic functions) are different,
and I am unable to reduce one of them to the other.

My 1963 reasoning provides a topological proof of the nonelementary
character of the dependence of the periods of integrals on parameters (such as
a and b above). Namely, the (modular) monodromy group of this multivalued
function is not possible for any elementary function (and hence for any function
topologically equivalent to an elementary one).

I would also mention a project of an (ugly) proof of the topological nonele-
mentarity of an elliptic function. Suppose that g is reduced to an elementary func-
tion f by a homeomorphism 4 (so that f(x) = (k(z))). Then one should prove
that 2 must be holomorphic (since f and g are). Next, one should deduce from the
Riemann classification of holomorphic simply connected domains that # should be
an affine transformation, and therefore that f is an elliptic function (whenever it is
topologically equivalent to such a function). The final step is to use the well known
fact of the nonelementarity of the elliptic function g itself (whose ugly proof ought
to be replaced by a topological one, still missing).

To study the left-right topological nonequivalence of elliptic functions to
elementary ones, one should first prove that an action of the group Z? on a complex
plane domain by holomorphic diffeomorphisms, which is topologically equivalent
to the standard action by the translations, is in fact holomorphically equivalent to
an (eventually different) action by some translations.

Such a reasoning forces any meromorphic function, which is topologically
left-right equivalent to an elliptic function, to be genuinely elliptic (and hence
nonelementary).

Similarly, for an algebraic mapping a : X — Y between closed Riemannian
surfaces, one should try to prove that any perturbed holomorphic mapping belongs
to the same family of algebraic mappings @: X — .

Applying this algebraicity result to the “automorphic mapping” f: G — Y,
f=aon(n: G— X being a covering), one hopes to deduce the automorphic char-
acter of the perturbed meromorphic mapping f : G — ¥, f = do#, provided that it
is left-right topologically equivalent to the nonperturbed automorphic mapping f.

On the other hand, one might suppose that the situation is different in high-
er dimensions and that the automorphic character of the nonperturbed mapping f
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might be disturbed by a perturbation f preserving the left-right topological equiv-
alence class of f, the perturbed mapping f being no longer automorphic.

In 1964, 1 attributed the preceding theory to Abel, asking my students to
publish the resulting “Topological Galois Theory” formally, but they have not suc-
ceeded yet.

2003-9. Cubic irrationals and tori triangulations related to higher-dimen-
sional continued fractions. Consider a unimodular matrix with integer elements,

A€G=SL(n7Z),

whose eigenvalues are different positive irrational numbers. The n eigenplanes
divide the space R” into 2" ortants invariant under the action of A.

This action also preserves the integer lattice Z" C R”, and hence preserves
its intersection with each ortant.

Each of these intersections is an additive semigroup of integer vectors. Its
convex hull is bounded by an infinite polyhedral surface called the sail.

The sail is invariant under the action of A, but it is also invariant under the
action of other linear mappings belonging to G and having the same eigenplanes
(with positive eigenvalues). Such mappings form a commutative symmetry group
H of the sail (isomorphic to Z"~1); I use to call it “the integer version of the Cartan
subgroup,” since its matrices are diagonal matrices with the same eigenbasis.

Now consider the quotient variety (the sail)/H. For n =2, it is a circle
divided into segments s1,...,5, and each segment is equipped with the “integer
points” (being the images of lattice points of the sail). Let s; be decomposed by
these integer points into a; void arcs. Then the sail is associated with the periodic
continued fraction with period [ay,...,a], equal to the number A = a; +1/(az +
e+ 1/ (@ +1/h) ).

This number A describes the eigendirection of the second order matrix A in
suitable SL(2, Z)-integer coordinates of R? D Z2.

Similarly, for n > 2 we obtain a decomposition of a torus 7"~ ! into faces
(which are the images of convex faces of the sail) and their intersections, each
containing “integer points” (being the images of those of the sail). This structure is
called “the (n— 1)-dimensional periodic continued fraction” (of the initial operator
Ac ().

The problem is to find out, which “triangulations” (decompositions into

faces) and which sets of “integer points” are possible for the matrices of order 3,
A € SL(3,7Z).
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In the case of ordinary continued fractions (n = 2), any period [ay, . .., ak] is
possible, but the situation becomes less clear already for cubic irrationals (n = 3).

Example: The golden ratio matrix (%) has a natural extension to an
arbitrary dimension n, which is the matrix

for n = 3 and similarly

n n—1 n-—-2
n—1 n—1 n-2
A= p_2 n=2 n-2

for any n. The corresponding triangulation (for n = 3) divides the 2-torus T? into
2 triangles represented by the decomposition of the square by a diagonal: !Z]
There are no integer points other than the four vertices of the square (representing
a single point of the torus).

The problem involves three questions on these T-triangulations associated
with cubic irrationals (being the eigenvalues of the characteristic polynomial of A).

1) Which triangulations are possible (first forgetting the integer points, but
then taking them into account in the classification of triangulated structures)?

2) Which triangulations are typical (also either forgetting the integer points
or taking them into account)?

For instance, consider all those matrices in G whose elements are not too
large (say, ||A]| < R) and eigenvalues are all positive.

Count the numbers of the triangles, quadruples, pentagons (and so on) of
their triangulated structures. What is the asymptotics (for R tending to infinity) of
the ratios of these numbers? Are there more triangles than quadrangles?

Similar statistics are interesting for the numbers of integer points (on faces
and edges), for the number of faces meeting at a vertex, for integral lengths of
edges, integral areas of faces, integral dihedral angles between the faces along an
edge, integral solid angles at vertices, and so on.

Even without a study of asymptotics for R — oo (which might, however,
be easier than a detailed study for fixed R which is, say, less than 10), the tables
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of answers to the preceding questions on frequency might be interesting even for
small values of R.

Later, one might compare these empirical tables with the universal statistics
for the sails of arbitrary triangular pyramids described by Kontsevich and Sukhov,
with no relation to integer matrices A: it would be interesting to see whether the
proportions described above converge, as R — oo, to the proportions for random
pyramids (whose existence and independence of a pyramid for almost all pyramids
was proved by Kontsevich and Sukhov). Unfortunately, they present no values for
these proportions (such as the ratio of the frequency of the triangular case to that
of the quadrangular case), whose existence was proved in their article.

Details of these studies are described in the book: Pseudoperiodic Topol-
ogy. Editors: V. Amnold, M. Kontsevich and A.Zorich. Providence, RI: Amer.
Math. Soc., 1999 (AMS Transl., Ser. 2, 197, Adv. Math. Sci., 46).

The first study of periodic higher-dimensional continued fractions is pub-
lished in the paper: TSUCHIHASHI H. Higher-dimensional analogues of periodic
continued fractions and cusp singularities. Téhoku Math. J., Ser. 2, 1983, 35(4),
607-639.

The simplest triangulations of T2 (into two triangles) were described by
E. Korkina in: KORKINA E. I. Two-dimensional continued fractions. The simplest
examples. Proc. Steklov Inst. Math., 1995, 209, 124-144.

More discussions of higher-dimensional continued fractions (and of their
relations to many objects, such as the classification of graded commutative alge-
bras and to the theory of Grobner bases) are in the book ARNOLD V. 1. Contin-
ued Fractions. Moscow: Moscow Center for Continuous Mathematical Education
Press, 2001, 40 pp. (in Russian) (“Mathematical Education” Library, 14).

To the preceding questions on possible triangulations and frequent triangu-
lations, I add the following question on equivalence:

3) What are common features of those triangulations which correspond to
isomorphic fields of algebraic numbers?

Knowing a triangulation (equipped with the “integer points”), how to
describe all the triangulations associated with matrices A having the same char-
acteristic polynomial (or isomorphic fields of algebraic numbers)? Is the num-
ber of such “algebraically equivalent” triangulations finite (for a given initial
triangulation)?

Anyway, the explicit calculation of algebraic invariants of the field, gen-
erated by the eigenvalues of A, in terms of the corresponding triangulation might
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be useful for many purposes, even if it does not answer the preceding equivalence
question.

For instance, one might study the arising combinatorial invariants of sails
also for the nonperiodic case, where the algebraic invariants of the periodic case
might generate interesting ergodic geometry type asymptotics of the finite part of
the sail combinatorics.

In the case of usual continuous fractions, the celebrated Lagrange theorem
says that the periodicity of the continued fraction of a number is equivalent to the
fact that it is a quadratic irrational number.

For the case of higher-dimensional continued fractions, the deduction of
periodicity from algebraic origin (based on the Dirichlet theorem on the units) is
provided in Tsuchihashi’s article quoted above.

The inverse theorem is available at present only partially. In the article
KORKINA E. 1. La périodicité des fractions continues multidimensionnelles. C. R.
Acad. Sci. Paris, Sér.1 Math., 1994, 319(8), 777-780, some theorem, implying the
deduction of the algebraic origin of a pyramid from the topological periodicity of a
sail’s structure, is announced, but, unfortunately, its complete proof is still missing.

I am mentioning this theorem here (trying also to urge the publication of
the proof), since the derivation of the matrix A from the period of the sail’s trian-
gulation, leading to the proof of this theorem of Korkina, might help to understand
which triangulated structures (on T?2) can be obtained from suitable matrices A
of order 3.

The first steps and first numerical experiments in the direction of questions
1)-3) posed above were made by O. Karpenkov (Moscow State University, 2003).
He mostly studied Sylvester matrices

0
A=10
1

Q O~
S O

finding a lot of triangulations. He proved, however, that some of the relevant
matrices cannot be reduced to any Sylvester form (it is unknown whether such
matrices are exceptional or rather typical).

It is formally unknown neither whether the number of topologically
nonequivalent triangulations of T2, associated with the matrices corresponding
to isomorphic cubic fields, is finite or infinite, nor whether the number of fields
corresponding to isomorphic triangulations is finite or infinite.

Even the infiniteness of the total set of the triangulations classes associated
to all the matrices of SL(3,Z) is (formally) unproved.
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The triangulations that do not correspond to any such matrix are (formally)
unknown: are they typical or exceptional?

It is also formally unknown which of the classification problems discussed
above are algorithmically solvable, and which ones are not (even for the reducibil-
ity of the Frobenius form).

There is no published information on the (undoubtedly existing) correla-
tions between the sails in different ortants, into which the 3 eigenplanes divide R3
(between the 27! different sails in the 2" ortants of R”, for n > 2).

Even if some of the questions formulated above happen to be not difficult,
the subjects are so fundamental that the answers should be published.

2003-10. Extensions of Courant’s theorem on the topological structure of
eigenfunction nodes. Let u be an eigenfunction of the Laplace operator, Au = Au,
on a connected compact manifold (eventually with a boundary and suitable bound-
ary conditions).

The Courant theorem asserts that, ordering the eigenfunctions by decrease
of eigenvalues (tending to —eo), one has the following restriction on the topological
structure for the n-th eigenfunction: the number of connected components, into
which the zeros hypersurface of the n-th component divides the manifold, is at
most n:

bo({x : un(x) #0}) <n.

Problem: Extend this theorem to the case of systems of equations, describ-
ing oscillations of the sections of fibrations whose fiber has dimension m > 1.

In this case, the zeros set would be generically a submanifold of codimen-
sion m, and one might study the dependence of its homology or homotopy proper-
ties on the number n, ordering the eigenvalues, such as by ({x : u,(x) # 0} or 7y, for
m = 2; this corresponds to H™~! in the general case. The system of two equations

Au=2Au, Av=DM, for (u(x,y),v{x,y)),

is the simplest example where one might even try to imitate arguments from
Courant’s proof, connecting points of common zeros by curves along which the
vectors (u(x,y),v(x,y)) are parallel, and replacing, in the domains bounded by
these curves, the eigenvector (u,v) by its “reflected” version.

Similarly, one might consider the case of one independent variable and two
dependent ones, trying to majorize, for a fixed number of the eigenvalue, the ro-
tation number of the plane vector (u(x),v(x)) along the base circle {x (mod 27)}
(supposing the normal fibration of an oscillating circle to be trivial).
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Similar homotopic questions occur every time when the dimension of the
normal bundle (fiber) exceeds the dimension of the base (space of independent
variables); in this case, the zeros set of the eigenvector is generically empty, but
the homology or homotopy class of the spherical bundle section might be evaluated
in terms of the number of the eigenvalue.

2003-11. Generalizations of gravitational and Coulomb fields. Consider the
space of Hermitian matrices of order n as a real vector space RV where N = n?.
We consider them as matrices of Hermitian operators in the Hermitian space C".

Consider the subvariety £ C R¥ formed by the matrices having a multiple
eigenvalue. The codimension of this real algebraic variety is equal to 3 (look at the
case n = 2 where T is the set of real scalar matrices).

The complement of £ in R" is the base space of the n eigenvectors fibra-
tions (we normalize the eigenvectors to have norm 1, making each fiber a circle S'):
they are formed by the normalized eigenvectors of the base space operator.

These fibrations have natural “adiabatic connections,” transporting an
eigenvector to the closest vector of the neighboring fiber (corresponding to a
perturbed operator).

Take, for instance, the case n = 2 reducing the space R* of Hermitian ma-
trices to the space R of traceless ones. In this 3-space, the multiple spectrum
variety X is reduced to one point (the origin), and the connection’s curvature is a
closed 2-form in R3\ .

This 2-form might be interpreted as a divergence-free vector field (using
the volume element in R?). This vector field is smooth in R? outside the origin; at
the origin, it has a singularity. The latter is a Newton or Coulomb type singularity:
the vector is directed along the radius-vector and its length is inverse proportional
to the squared distance to the origin.

The problem is to extend this field to the case of matrices of higher order n.
Say, if n = 3 the space of traceless matrices is R®, and the variety of multiple
spectrum operators X, in it is 5-dimensional. It contains a subvariety X3 of the
operators having triple eigenvalues, which is just the origin.

The cone ¥, can be described in terms of its intersection with the sphere S”,
bounding a neighborhood of X3. This 4-dimensional intersection consists of two
components (defined by the equations A; = A, and A, = A3 for the usual ordering
A1 <Ay < A3 of the eigenvalues).

The three curvature 2-forms of the three eigenvectors fibrations define the
product closed 6-form corresponding to a vector field. This field has Newton or
Coulomb singularities along X5, but it has a worse singularity at the triple spectrum
variety X3.
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Hence we arrive at the problem: study these X3-generalizations of Newton
or Coulomb forces (as well as their higher-dimensional versions for » > 3 and their
quaternionic versions associated with multiple spectra of hyper-Hermitian forms).

The study of stratification singularities of Hermitian forms started in
the article ARNOLD V.I. Modes and quasimodes. Funct. Anal. Appl., 1972,
6(2), 94-101; the Russian original is reprinted in: Vladimir Igorevich Amold.
Selecta—60. Moscow: PHASIS, 1997, 189-202. More details are described in the
articles: ARNOLD V.I. Remarks on eigenvalues and eigenvectors of Hermitian
matrices, Berry phase, adiabatic connections and quantum Hall effect. Selecta
Math. (N. S.), 1995, 1(1), 1-19; the Russian translation in: Vladimir Igorevich
Amold. Selecta—60. Moscow: PHASIS, 1997, 583-604; ARNOLD V.I. Rel-
atives of the quotient of the complex projective plane by complex conjugation.
Proc. Steklov Inst. Math., 1999, 224, 46-56; ARNOLD V.I. Polymathematics:
is mathematics a single science or a set of arts? In: Mathematics: Frontiers and
Perspectives. Editors: V.I. Amold, M. Atiyah, P. Lax and B. Mazur. Providence,
RI: Amer. Math. Soc., 2000, 403-416; CEREMADE (UMR 7534), Université
Paris-Dauphine, Ne 9911, 10/03/1999.

The suggestion to study X3-generalized Newton or Coulomb vector fields
originated from M. Berry, while he was discussing the results of the above paper
in Selecta Math. with the author who had related the Radon adiabatic connection
(1918) to the theories of Berry phase described by Rytov (1938) and Ishlinsky
(1952): RyTtov S.M. Sur la transition de I’optique ondulatoire a 1’optique
geométrique. C. R. (Dokl.) Acad. Sci. USSR (N.S.), 1938, 18(2), 263-266;
ISHLINSKY A.YU. Mechanics of special gyroscopic systems. Kiev: Academy
of Sciences of Ukrainian SSR, 1952 (in Russian); reproduced in: Orientations,
Gyroscopes and Inertial Navigation. Moscow: Nauka, 1976, p. 195.

2003-12. Finite order projective line geometry. The finite projective line P(Z,)
(p being a prime number) is formed by the one-dimensional subspaces of the 2-di-
mensional vector space le,:

2
Z2\0

P(ZP) - m)

Z,=17/pL.

It consists of p + 1 points which can be denoted by an affine coordinate taking the
values

x€{0,1,...,p— l;00}.
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The finite p-projective line P consists of p 4 1 points:
P(Zp) = ZpLi{=o}.

It is decomposed here into the affine part and the completing point at infinity.
This decomposition depends on the coordinate choice and is not included in the
structure of the projective line.

The group of unimodular p-matrices of order 2,

G =SL(2,Z,),

acts on P(Z,) permuting one-dimensional vector subspaces of the plane Zf,. This
action is naturally reduced to the action of the quotient projective group

PG =PSL(2,Z,) = G/{+1},

which is half as large as G (having only p(p? — 1)/2 elements).

The permutations of the p + | points of P forming the projective group
PG are even, but they form a small subgroup of the group of all (p+ 1)!/2 even
permutations of the p 4 1 points of P.

Example: For p = 5, there are 360 even permutations of the 6 points of P,
and only 60 elements in the projective group PG.

The problem is to combinatorially describe the projective permutations (or
the geometric structure of P preserved by these permutations of its p+ 1 elements).
The projective transformations preserving one point of P form a subgroup
of the p-affine transformations, having naturally the structure of p-Lobachevskian
plane. In the affine coordinate, the fixed point being co, these affine transformations
are
(x> ax+b}, a=c?, c#£0.

Their number is p(p — 1)/2. The condition that the coefficient a is a quadratic
residue is the mod p version of the choice of upper half-plane (a > 0) in the re-
al Lobachevskian plane model. Inequalities should be replaced by the quadratic
residue properties in p-calculus.

The combinatorial properties of these special (affine) permutations are not
too difficult to understand in terms of the Lobachevsky geometry.

However, to transfer this description to the case of other choices of fixed
points (better to avoid mentioning the fixed points in the description) is not easy,
and I needed long explicit calculations to do it even for p = 5, which case leads
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to nice answers. In this case, the projective group permuting the 6 points of P is
isomorphic to the group of even permutations of some 5 objects (which are the
Kepler cubes of the corresponding dodecahedron surface).

But I do not know whether one might find such a nice description of the
group of projective permutations of a finite projective line for greater values of p,
except p =7 where one is led to the theory of non-simply-connected regular poly-
hedra instead of the dodecahedron.

The ratio of the order of the group of even permutations of the p + 1 points
of P to the order of the group of projective permutations on P is equal to

(p+1)! p(P*+1)
2 2

= (p—2)‘,

which might be interpreted as the number of cyclic orders of p— 1 elements.

It would therefore be nice to find a set X of p — 1 elements associated with P
whose cyclic order is preserved by the projective permutations (being disturbed by
other even permutations of the p 4 1 points of P acting naturally on X).

To construct X, one might delete some two chosen points of P. The affine
coordinate, for which the two chosen points are 0 and oo, provides the natural cyclic
order on X (preserved by the projective permutations fixing the chosen points).

For a different choice of two points, one obtains a new cyclic order on a
new set of p — 1 points of P. The problem is to combinatorially describe this new
cyclic order in terms of the old one.

One can relate the dodecahedron structure associated with the group G =
SL(2,Zp), p =5, to the finite projective line P by the following construction start-
ing with any choice of a prime number p.

Let us find the elements of order p in G. An example is given by the Jordan

matrix
J= L1 JP =1 inG
=0 1) = inG.

The solutions of the equation A? =1 in G are just the matrices with trace 2 in G.
Their number is p? (including the p? — 1 matrices of order p and the identity ma-
trix 1). The elements of order p =5 describe the rotations of the pentagonal faces
of the dodecahedron constructed from G with p = 5. One should generalize this
geometry to the case p > 5. For p =7, the dodecahedron must be replaced by a
polyhedral surface of genus 3.

All elements of order p in G are conjugated either to J (there are (p?> —1)/2
such matrices) or to J?, b being a quadratic nonresidue mod p (the same number of
matrices).
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An element of order p is sent to a point of the finite p-projective line P,
the element being associated with the direction of its eigenvector. The preimage
of a point contains p — 1 elements of order p and is equipped with a natural cyclic
order.

In the case p = 5, the six points of P are interpreted as the six pairs of par-
allel faces of the dodecahedron. However, to obtain the combinatorial description
of their projective permutations (for p = 5), one has to permute the five Kepler
cubes which are missing in the general case p > 5 (except the case p = 7 studied
in my paper in Russian Math. Surveys, 2003 quoted above).



You are never sure
whether or not a problem is good
unless you actually solve it.

Mikhail Gromov

Comments
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v 1956-1
Na This is a problem mentioned in the author’s preface to the first (Russian)
edition, see page VIII. It was thoroughly examined in the paper [1] where its origin
was nevertheless affirmed as unknown.

[1] YASCHENKO I.V. Make your dollar bigger now!!! Math. Intelligencer, 1998, 20(2),
38-40.

A 1956-1 — N. P. Dolbilin

%, Alexei Tarasov has shown [1] that a rectangle admits a realizable folding
with arbitrarily large perimeter. A realizable folding means that it could be real-
ized in such a way as if the rectangle were made of infinitely thin but absolutely
nontensile paper. Thus, a folding is a map f : B — R? which is isometric on every
polygon of some subdivision of the rectangle B. Moreover, the folding f is real-
izable as a piecewise isometric homotopy which, in turn, can be approximated by
some isotopy of space (which corresponds to the impossibility of self-intersection
of a paper sheet during the folding process).

[1] TArRASOV A. On Arnold’s problem on a “folded rouble”, in preparation.

v 1958-1 — V.1 Arnold

g
o This problem was published in the paper [1] (p.178). Some asymptotics
have even been calculated explicitly up to the present date (by A.V.Zorich and
M. L. Kontsevich, see [2, 3]).

One might consider the purely combinatorial version of the problem,
studying the (C,B,A)-permutations of the finite sets {1,2,...,n} (where A =
{1,2,...,a},B={a+1,a+2,...,a+b},C={a+b+1,...,n}).
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The total number of such permutations is equal to (n—1)(n— 2)/2. Some
of them are rotations (isomorphic to the addition of a constant to the residues
modn). But it is not clear what proportion of those rotations are isomorphic to
(C,B,A)-permutations (and of those which are transitive, i. e., have only one orbit
and are isomorphic to the addition of 1).

For small values of n, the numbers of such (C, B,A)-permutations are:

n 3 45 6 7 8 9 10 11
all (C,B,A)-permutations [ 1 3 6 10 15 21 28 36 45
rotations 0 2 2 8 6 16 16 26 22
transitive rotations 0 2 2 8 6 14 16 24 22

The number of all transitive rotations is only 1/n-th of the number n! of
all permutations of » elements and, it seems, most of these (n— 1)! rotations are
transitive. But the statistics for the (C,B,A)-permutations looks differently from
that for the general ones.

[11 ARNOLD V.I. Small denominators and problems of stability of motion in classical
and celestial mechanics. Russian Math. Surveys, 1963, 18(6), 85-191.

[2] KONTSEVICH M. L. Lyapunov exponents and Hodge theory. In: The Mathematical
Beauty of Physics (Saclay, 1996). A memorial volume for Claude Itzykson. Editors:
J.M. Drouffe and J. B. Zuber. River Edge, NJ: World Scientific, 1997, 318-322. (Adv.
Ser. Math. Phys., 24.)

[3] ZORICH A.V. How do the leaves of a closed 1-form wind around a surface? In:
Pseudoperiodic Topology. Editors: V. Arnold, M. Kontsevich and A.Zorich. Provi-
dence, RI: Amer. Math. Soc., 1999, 135-178. (AMS Transl., Ser. 2, 197; Adv. Math.
Sci., 46.)

@ 1958-1 — M. L. Kontsevich

The subject has a long history, with several examples given by A. Katok,
and a general theorem of H. Masur and W. Veech which says that for generic length
of intervals the transformation is ergodic.

A 1958-1 — A. V. Zorich

P

. A map of an interval to itself obtained by cutting the initial interval X in-
to n subintervals and putting them on X in a different order without overlaps and
preserving the orientation of pieces is called now an interval exchange transforma-
tion. The problem was suggested by V. A. Rokhlin (with a reference to V. I. Arnold)
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in 1959 to the members of the seminar of V. A.Rokhlin and Ya.G. Sinai. The
first progress was obtained by V.I. Oseledets who observed that interval exchange
transformations may have quite unexpected spectral properties (see below). As a
matter of fact, the term “interval exchange transformation” first appears in the pa-
per of V. 1. Oseledets [15] of 1966; however, this notion was translated into English
differently.

An interval exchange transformation is a parabolic dynamical system and,
in particular, it has rather moderate chaotic behavior. It is never mixing (A. Katok,
about 1975, see [6]), though typically topologically weakly mixing (A. Nogueira
and D. Rudolph [14], 1997).

Up to the end of the 1960s interval exchange transformations were mostly
discussed in folklore, often under different names. For example, in his paper [19]
of 1969, W. A. Veech studies skew products over rotation of the circle and, morally,
gives a particular example of an interval exchange T which is minimal (every orbit
of T is dense in the interval), but which is not uniquely ergodic (some orbits prefer
to stay in one subset of the interval, while the other orbits prefer to stay in the
complementary subset).

Interval exchange transformations attracted considerable interest in the
middle of the 1970s. One of the challenges was the following conjecture of
M. Keane of 1975. By definition, an interval exchange transformation T preserves
the Lebesgue measure on the interval. M. Keane conjectured in [7] that, under
almost any choice of lengths of subintervals, the interval exchange transformation
is ergodic with respect to the Lebesgue measure; moreover, he conjectured that the
Lebesgue measure generically is unique ergodic measure. Here one assumes, of
course, some natural constraints on the permutation © which rearranges the order
of subintervals under exchange. Several examples (of V.. Oseledets, and the one
of W. A. Veech mentioned above; an example of H. Keynes and D.Newton [9],
1976, and of M. Keane [7], 1977) showed that minimal and non uniquely ergodic
interval exchange transformations do really exist. The number of ergodic measures
is, however, always bounded (the initial result of V.I. Oseledets was sharpened by
W. A. Veech [20], 1978; see also the works of A.Katok [5] (upper bound), 1973,
and E. Sataev [17] (sharpness), 1975, for the analogous result concerning surface
flows).

The developments in the study of surface flows and surface foliations in-
fluenced, in particular, by the works of W. Thurston, and a clear understanding
that surface flows and foliations are intimately related to the interval exchange
transformations, gave additional motivation for further research in this area. Con-
sidering the first return map defined by a conservative flow on a torus to an interval
transversal to the flow (as in the paper of V.I. Amold [1] of 1963) one gets an
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interval exchange transformation of 2 or 3 intervals. Considering the first return
map for conservative flows on surfaces of higher genera one gets general interval
exchange transformations. Conversely, constructing a suspension over an interval
exchange transformation one can always realize an interval exchange transforma-
tion as a first return map defined by a surface flow. The genus of the surface (and
even more subtle topological information) are completely determined by the per-
mutation T.

The conjecture of M. Keane was proved independently by H. Masur [12]
and by W. A. Veech [21] in 1982. Both proofs are based on applying some renor-
malization procedure. In the proof by W. A, Veech, it is the Rauzy induction,
introduced by G. Rauzy [16], 1979. The renormalization procedure in this context
is a dynamical system acting on the space of all interval exchange transformations
sharing the same combinatorics. The key point is that the action is ergodic with
respect to some natural measure on the space of interval exchange transformations.
Actually, this dynamical system is in its turn very closely related to the Teichmiiller
geodesic flow on the moduli spaces of Abelian differentials.

The use of Teichmiiller theory and the fundamental result of H. Masur [12]
and W. A. Veech [21] on ergodicity of the Teichmiiller geodesic flow proved to
be an extremely powerful instrument in the study of interval exchange transfor-
mations in the subsequent two decades. As an example one can consider the fol-
lowing description of the error term for the ergodic averages of almost all interval
exchange transformations. Let the length of the interval be normalized to one,
|X| = L. Consider a long piece of an orbit x, T'(x), T?(x),. .., T"~!(x) of an interval
exchange transformation. By ergodicity of T, the number of visits of this trajec-
tory to a subinterval X; equals approximately - |X;|. It is proved (A. Zorich [22],
1997) that the error term is about n¥, where the number v < 1 depends neither
on the point x, nor on the lengths |X;| of the subintervals. It depends only on the
permutation © and, actually, the number 1 + v is the second Lyapunov exponent of
the Teichmiiller geodesic flow. A more precise statement of the error term involves
the higher Lyapunov exponents, A. Zorich [23], 1999.

Huge classes of permutations, so-called extended Rauzy classes, share the
same values of v;. The extended Rauzy classes correspond naturally to connect-
ed components of the moduli spaces of Abelian differentials; they are classified
by M. Kontsevich and A.Zorich [11], 2002. Surprisingly, the sums v{ +---+V,
of Lyapunov exponents give rational numbers (conjecture of M. Kontsevich [10],
1997, strongly supported now by numerous implicit rigorous computations). Re-
cently G. Forni [4], 2002, proved the conjecture of M. Kontsevich and A. Zorich
that the top g Lyapunov exponents are strictly positive; he also generalized the
topological statement concerning the deviation of a trajectory from its asymptotic
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direction (A. Zorich [23], 1999) getting a similar result for the ergodic averages
along surface flows.

The topological dynamics of a measured foliation on a surface and the
dynamics of a corresponding interval exchange transformation are almost equiva-
lent. Studying fopological dynamics, one parametrizes the leaves of a foliation (or
trajectories of a flow) by the length in some Riemannian metric, or by some equiv-
alent parametrization. Note that, working with a flow defined by a multivalued
Hamiltonian, one uses a completely different parametrization of trajectories, which
may drastically change the dynamics of the flow. For example, K. M. Khanin and
Ya. G. Sinal [18], 1992, proved that in Hamiltonian parametrization some wide
class of flows on a torus has components where the flow is mixing, while the first
return map of such flow to a closed transversal corresponds to a rotation of the
circle, which is never mixing.

There are some interesting results concerning dynamics of interval ex-
change transformations when the lengths of the subintervals under exchange have
special arithmetic properties, see, for example, the Ph. D. thesis of P. Arnoux [2],
1981, and the paper of M. Boshernitzan and C. Carroll [3], 1997.

Interval exchange transformations with flips, when the map changes the
orientation of at least one subinterval, turned out to be less interesting in the follow-
ing sense: A.Nogueira [13], 1989, proved that almost all such interval exchange
transformations have an open domain of periodic points.

I could not mention many interesting results in this area for it is huge: an
incomplete bibliography already contains more than a hundred papers, and the
theory of interval exchange transformations continues to develop.

[1] ARNOLD V.I. Small denominators and problems of stability of motion in classical
and celestial mechanics. Russian Math. Surveys, 1963, 18(6), 85-191.

[2] ARNOUX P. Theése, Université de Reims, 1981.

[3] BOSHERNITZAN M. D., CARROLL C.R. An extension of Lagrange’s theorem to in-
terval exchange transformations over quadratic fields. J. Anal. Math., 1997,72,21-44,

[4] ForNI G. Deviation of ergodic averages for area-preserving flows on surfaces of
higher genus. Ann. Math., Ser. 2, 2002, 155(1), 1-103.

[5] KATOK A. Invariant measures of flows on orientable surfaces. Sov. Math. Dokl.,
1973, 14, 1104-1108.

[6] KATOK A.B., SINAI YA. G., STEPIN A. M. Theory of dynamical systems and gen-
eral transformation groups with invariant measure. In: Itogi Nauki i Tekhniki VINITI.
Mathematical Analysis, Vol. 13. Moscow: VINITI, 1975, 129-262 (in Russian). [The
English translation: J. Sov. Math., 1977,7, 974-1065.]

[71 KEANE M. Interval exchange transformations. Math. Z., 1975, 141, 25-31.
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[8] KEANE M. Non-ergodic interval exchange transformations. Israel J. Math., 1977,
26(2), 188-196.

[9] KEYNES H., NEWTON D. A “minimal,” non-uniquely ergodic interval exchange
transformation. Math. Z., 1976, 148(2), 101-105.

[10] KONTSEVICH M. L. Lyapunov exponents and Hodge theory. In: The Mathematical
Beauty of Physics (Saclay, 1996). A memorial volume for Claude Itzykson. Editors:
J. M. Drouffe and J. B. Zuber. River Edge, NJ: World Scientific, 1997, 318-322. (Adv.
Ser. Math. Phys., 24.)

[11] KONTSEVICH M. L., ZORICH A. V. Connected components of the moduli spaces
of Abelian differentials with prescribed singularities.
[Internet: http://www.arXiv.org/abs/math.GT/0201292]

[12] MASUR H. Interval exchange transformations and measured foliations. Ann. Math.,
Ser.2, 1982, 115(1), 169-200.

[13] NOGUEIRA A. Almost all interval exchange transformations with flips are nonergod-
ic. Ergod. Theory Dynam. Systems, 1989, 9(3), 515-525.

[14] NOGUEIRA A., RUDOLPH D. Topological weak-mixing of interval exchange maps.
Ergod. Theory Dynam. Systems, 1997, 17(5), 1183—-1209.

[15] OSELEDETS V. 1. The spectrum of ergodic automorphisms. Sov. Math. Dokl., 1966,
7, 776-179.

[16] RaUZY G. Echanges d’intervalles et transformations induites. Acta Arithm., 1979,
34(4), 315-328.

[17] SATAEV E. A. On the number of invariant measures for flows on orientable surfaces.
Math. USSR, Izv., 1975, 9, 813-830.

[18] SINAT YA. G., KHANIN K. M. Mixing for some classes of special flows over rota-
tions of the circle. Funct. Anal. Appl., 1992, 26(3), 155-169.

[19] VEECH W. A. Strict ergodicity in zero dimensional dynamical systems and the
Kronecker—Weyl theorem mod 2. Trans. Amer. Math. Soc., 1969, 140, 1-33.

[20] VEECH W. A. Interval exchange transformations. J. Anal. Math., 1978, 33, 222-272.

[21] VEECH W. A. Gauss measures for transformations on the space of interval exchange
maps. Ann. Math., Ser. 2, 1982, 115(1), 201-242.

[22] ZORICH A. V. Deviation for interval exchange transformations. Ergod. Theory Dy-
nam. Systems, 1997, 17(6), 1477-1499.

[23] ZORICH A.V. How do the leaves of a closed 1-form wind around a surface? In:
Pseudoperiodic Topology. Editors: V. Arnold, M. Kontsevich and A.Zorich. Provi-
dence, RI: Amer. Math. Soc., 1999, 135-178. (AMS Transl., Ser. 2, 197; Adv. Math.
Sci., 46.)
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vV 1958-2 — S.A. Bogatyl

A word will not be lost and obsolete
if the’re still many people for its repeat.

— Hesiodes

g
. The theory of equihedral! tetrahedra (i.e., tetrahedra with congruent
faces) provides numerous arguments and statements in elemetary solid geometry
which are themselves a wonderful beauty and moreover give a basis for vari-
ous criteria for the isometry property of a mapping of a Euclidean space (of any
dimension > 3) into itself.

At the moment, over 100 equivalent conditions are known that determine
equihedral tetrahedra and deal with various elements of a tetrahedron. Let us rec-
ollect some of them.

Theorem. For a tetrahedron, the following are equivalent:
(1) the lengths of skew edges are equal,
(2) all four faces are congruent,
(3) all four faces have equal perimeters,
(4) the products of edge lengths for each face are equal,
(5) all four faces have the same area,
(6) the circumscribed radii for all faces are equal,
(7) the lengths of edges meeting at each vertex have the same sum,
(8) the sum of planar angles at each vertex equals 180°,
(9) the development of the tetrahedron is an acute-angled triangle with drawn
lines joining the midpoints of sides,
(10) the tetrahedron has three symmetry axes,
(11) the sum of cosines of all dihedral angles of the tetrahedron equals 2,
(12) the sum of cosines of the dihedral angles adjoining each face is 1,
(13) the sum of cosines of the dihedral angles adjoining each vertex is 1,
(14) alternate dihedral angles are equal,
(15) all four trihedral angles of the tetrahedron are congruent,
(16) all four trihedral angles of the tetrahedron have the same solid measure,
(17) the circumscribed sphere center coincides with the barycenter,
(18) the circumscribed sphere center coincides with the Fermat—Torricelli point,
(19) the centers of the circumscribed and the inscribed sphere coincide,

1 This term seems to be more appropriate than the term “isosceles” that is commonly used for such
tetrahedra; they apparently conform to equilateral (regular) triangles rather than to isosceles ones.
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(20) the barycenter coincides with the Fermat-Torricelli point,

(21) the barycenter coincides with the inscribed sphere center,

(22) the inscribed sphere touchs each face at its circumscribed center,

(23) every escribed sphere touchs the corresponding face at its orthocenter,

(24) all four escribed spheres have equal radii,

(25) the planes that pass through each edge parallel to the skew edge form a
rectangular parallelepiped (called circumscribed),

(26) the four new vetrices of the circumscribed parallelepiped are the four es-
cribed sphere centers,

(27) for every edge, the ratio of its length and the sine of the adjoint dihedral
angle is the same,

(28) for each face, the circumscribed center is the midpoint of the segment join-
ing the orthocenter of this face and the projection of its opposite vertex,

(29) there exists a homothety that takes each vertex of the tetrahedron to the
center of the corresponding escribed sphere,

(30) if a point is equidistant from the planes of all faces of the tetrahedron, then
it is the center either of the inscribed sphere or of one of escribed spheres.

Now it is difficult to find out the real authorship of various discoveries in
the theory of equihedral tetrahedra, especially after they have been involved in the
geometry course of the Kolmogorov school at Moscow University. Apparently,
the book [4] contains the first substantive exposition of the theory of equihedral
tetrahedra. Just after their discovery equihedral tetrahedra gained a wide knowl-
edge [1,2,7,10,12, 14,16, 17]. For instance, already in 1959 and 1960 problems
on equihedral tetrahedra appeared at the written entrance exams to the Moscow In-
stitute of Physics and Technology [6] (p. 108, Problem 111; p. 209, Problem 127),
and in 1974 and 1994 such problems were similarly used at the Faculty of Comput-
er Science of Moscow University [11,15].% The theory of equihedral tetrahedra
spread widely over the World; in 1964 it was included in the monograph [1] on
solid geometry, and this book is now usually quoted as the origin. In connection
with condition (6) one should note that there exists a non-equihedral tetrahedron
whose faces have equal inscribed radii [5]. Condition (10) readily yields that in an
equihedral tetrahedron every point depending symmetrically on the vertices (e. g.,

2 1 had certainly once proposed this problem on equihedral tetrahedra to the High School Moscow
Mathematical Olympiad in the 1950s, knowing no predecessors, and it was solved there by many
students. — V. I. Arnold.
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the point for which the square root sum of the distances to the vertices is mini-
mal) coincides with the intersection point of medians. This condition also plays an
important role in the study of equihedral tetrahedra in the Lobachevskian space.

¢

»/ % Starting from works by J. A. Lester [9] and H. Lenz [8], equihedral tetra-
hedra are used to obtain nontraditional characterizations of isometries of the
Euclidean space, see also [3, 13]. For example: If a mapping f: R" — R",
where 4 < n < oo, takes every three points forming a regular triangle of area 1
to three points forming a triangle of area 1, then f is an isometry. If a mapping
f:R"® = R", where 3 < n < oo, takes every three points forming a triangle of
area 1 to three points forming a triangle of area 1, then f is an isometry. If a map-
ping f:R" — R", where 3 < n < oo, takes every three points forming a regular
triangle of perimeter 1 to three points forming a triangle of perimeter 1, then f is
an isometry.

The theory of equihedral tetrahedra is an exclusively three-dimensional
phenomenon. This is, to some extent, a manifestation of the fact that the full graph
with four vertices has a unique nontrivial partition into nonseparable homogeneous
subgraphs. The question on the “correct” many-dimensional analog of the theory
of equihedral tetrahedra seems to be open; in particular, the extensions of relevant
theorems to the case of higher dimension do not have such a perfect form.

[1] ALTSCHILLER-COURT N. Modern Pure Solid Geometry. New York: Chelsea, 1964.

[21 BoGATYT S. A. Equihedral Tetrahedra. Moscow: Moscow Center for Continuous
Mathematical Education Press, to appear.

[3] BOGATAYA S.1., BOGATYI S. A., FROLKINA O.D. Affinity of volume-preserving
mappings. Moscow Univ. Math. Bull., 2001, 56(6), 8—13.

[4] COUDERC P., BALLICIONI A. Premier livre du tétraédre. Paris: Gauthier-Villars,
1953.

[51 DuUBROVSKII V.N. One more definition of an equihedral tetrahedron? Kvant, 1983,
Ne7, 51, 63 (in Russian).

[6] KALININ A.YU., TERESHIN D. A. Stereometry—11. Moscow: Moscow Institute of
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perimeter case. J. Geometry, 1986, 27(1), 29-35.
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[13] PRASOLOV V. V., TIKHOMIROV V.M. Geometry. Moscow: Moscow Center for
Continuous Mathematical Education Press, 1997 (in Russian).

[14] Problem M9. Kvant, 1970, Ne 10, 42—44 (in Russian).

[15] SHARYGIN L. F. Adding on a tetrahedron. Kvant, 1976, Ne 1, 61-64 (in Russian).

[16] SHARYGIN L. F. Problem M353. Kvant, 1976, Ne 7, 31-32 (in Russian).

[17] VASIL’EV N.B. Problem M319. Kvant, 1975, Ne 12, 39-41 (in Russian).

@ 1958-2 — S. M. Gusein-Zade

Now this problem is used in exercise books on analytic geometry for the
first year students. See, e. g., [1], Problem 131.

[1] Problem Book in Analytic Geometry and Linear Algebra. Editor: Yu. M. Smirnov.
Moscow: Physical and Mathematical Literature Publ., 2000 (in Russian).

A 1958-2 — M. L. Kontsevich

. ' This problem was used as a “killer problem” given to Jewish candi-
dates to the Mekh-mat. In [1] this problem was listed with the authorship of
Yu. V. Nesterenko, and the year of the first appearance is 1974. The solution of the
problem can be found in the preprint [2] by Ilan Vardi.

[1]1 SHEN’' A. Entrance examinations to the Mekh-mat. Math. Intelligencer, 1994, 16(4),
6-10.

[2] VARDI I. Mekh-mat entrance examinations problems. Preprint, Institut des Hautes
Etudes Scientifiques, M/00/06.
[Internet: http://www.ihes.fr/PREPRINTS/M00/M00-06.ps.gz]

1958-3 — 8. Yu. Yakovenko

Jd

This question reappeared with some modification in [1], see also [2,3], in
connection with the problems on complexity of dynamical intersections.
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In one of the formulations it is suggested to estimate the number of inter-
sections between a fixed variety Y and the saturation of another variety X by trajec-
tories of length < N of a polynomial vector field in R”, with dimX +dimY =n—1.

3

This problem was solved for dimX = 0, when it reduces to the question
on the number of intersections between an integral curve of a polynomial vec-
tor field, and an algebraic hypersurface. The bound, obtained by D. Novikov and
S. Yakovenko [4, 5], depends polynomially on the magnitude of the coefficients
and the “size” of the integral curve, while the power exponent is a computable but
enormously fast growing function of the dimension » and the degree of the field.

This result also holds in the complex space and can be applied to Picard-
Fuchs equations for Abelian integrals. This yields some explicit bounds for the
infinitesimal Hilbert problem, see the comment to problem 1978-6.

[1] ARNOLD V.I. Dynamics of complexity of intersections. Bol. Soc. Brasil. Mat.
(N. S.), 1990, 21(1), 1-10. [The Russian translation in: Vladimir Igorevich Arnold.
Selecta—60. Moscow: PHASIS, 1997, 4890-499.]

[2] ARNOLD V.I. Dynamics of intersections. In: Analysis, et cetera. Research papers
published in honor of Jiirgen Moser’s 60th birthday. Editors: P. H. Rabinowitz and
E. Zehnder. Boston, MA: Academic Press, 1990, 77-84.

[3] ARNOLD V.I. Bounds for Milnor numbers of intersections in holomorphic dynam-
ical systems. In: Topological Methods in Modern Mathematics. Proceedings of the
symposium in honor of John Milnor’s sixtieth birthday (Stony Brook, NY, 1991).
Editors: L.R.Goldberg and A.V.Phillips. Houston, TX: Publish or Perish, 1993,
379-390.

[4] Novikov D.I., YAKOVENKO S. YU. Meandering of trajectories of polynomial vec-
tor fields in the affine n-space. Publ. Mat., 1997, 41(1), 223-242.

[5] Novikov D.I1., YAKOVENKO S. YU. Trajectories of polynomial vector fields and
ascending chains of polynomial ideals. Ann. Inst. Fourier (Grenoble), 1999, 49(2),
563-609.

'S =N "

1959-1

++ %  See the comment to problem 1972-20.
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v 1963-1
;\ This is a problem in paper [1] (p. 179: Problem I).

[11 ARNOLD V.I. Small denominators and problems of stability of motion in classical
and celestial mechanics. Uspekhi Mat. Nauk, 1963, 18(6), 91-192 (in Russian). [The
English translation: Russian Math. Surveys, 1963, 18(6), 85-191.]

@ 1963-1 — V.1 Arnold

5

7% At the Kolmogorov centenary conference in Moscow (June 2003) Jonh
Mather announced his new results on the diffusion genericity in systems with
2-dimensional Kolmogorov tori in the 5-dimensional space (for positive definite
twisting quadratic forms), but his proofs are not yet published. However, he has
recently sent me a very interesting preprint [1] saying:

“We announce a proof of the existence of Armold diffusion for a large class
of small perturbations of integrable Hamiltonian systems with positive normal tor-
sion in the case of time periodic systems in two degrees of freedom and in the case
of autonomous systems in three degrees of freedom.”

[1] MATHER J. Arnold diffusion I: Announcement of the results. Preprint, Princeton
University, November 25, 2002, 20 pp.

o 1963-1 — M. B. Sevryuk Also: 1966-3, 1994-33
~%. According to the Kolmogorov—Armold—Moser (KAM) theory, the action
variables in nearly integrable Hamiltonian systems with 1% or 2 degrees of free-
dom! change slightly during infinite time intervals (provided that the unperturbed
integrable system satisfies appropriate nondegeneracy conditions) and just undergo
oscillations with an amplitude of the order of /€ where 0 < € < 1 is the perturba-
tion parameter. On the other hand, in nearly integrable Hamiltonian systems with

! Recall that a Hamiltonian system with n + % degrees of freedom (n € N) is by definition either
a symplectomorphism of a 2rn-dimensional symplectic manifold or a nonautonomous Hamiltonian
system of differential equations with the 2n-dimensional phase space and right-hand side periodic
in time.
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k> 2% degrees of freedom, the action variables I may a priori exhibit consider-
able changes: for some solutions, the difference |I(t) —I(0)| can attain large values
(of the order of 1) for |¢| large. In 1964, V.1. Arnold [1] constructed his famous
example of an analytic Hamiltonian system (close to a nondegenerate integrable
system) with 2% degrees of freedom where such an evolution does take place.?
B. V. Chirikov [18] coined, for this evolution, the physical term the Arnold diffu-
sion. In preprint [18], the first general estimates for the diffusion rate were also
evaluated, confirmed in numerical experiments reported in [34].3

The diffusion rate in Arnold’s example is of the order of exp(—1/+1/€),
i.e., is exponentially small with respect to the perturbation parameter. According
to the Nekhoroshev theorem (see the comment to problem 1966-2), the averaged
diffusion rate in analytic systems is always majorized by a quantity of the order
of exp(—€~7) for some a > 0, provided that suitable nondegeneracy conditions
are met. For systems with n € N degrees of freedom (n > 3), this estimate holds
fora = z—ln

For almost 40 years which have elapsed since paper [1] was published, the
phenomenon of the Arnold diffusion has been studied and discussed by many au-
thors and has been examined in various numerical experiments. Of the works
of a physical nature considering the Amold diffusion and related questions of
the evolution in degenerate systems, mention is made here of the articles and
books [19-21, 34, 47, 62, 73, 79-83] while “more mathematical” works are ex-
emplified by papers [28, 41, 42, 48-50, 53, 54, 61, 71] (of all these works, pa-
pers [19,28,41,50,61] have contributed greatly to the development of our ideas on
instability in nearly integrable Hamiltonian systems). In more recent several years,
attention to the Arnold diffusion has increased considerably, leading to numerous
interesting results and papers. Many of them have given rise to intensive discus-
sions in mathematical periodicals, at conferences and on the Internet, see [3-11,
13-17,22-25,29-33,35-40,44-46,51, 52, 55-60,63-66,70,72,74-78] (this list is
definitely incomplete). For simplified diffusion models see, e. g., [12,26].

Some of the recent papers devoted to the diffusion problem are in er-
ror, see, €.g., Math. Reviews 97g:58063, 98i:58094, 99f:58175, 2000b:37062,
2001j:37101. In particular, in review 99f:58175 of article [66] in Math. Reviews
written by one of the authors (M.Rudnev), a “serious mistake” in the paper is
pointed out: estimate (67) which is key for the proof of Theorem 2.1 is in error.

2 See also [2], Ch. 4, §23; p. 109114,

3 Note also that the descriptive term the KAM theory was first used in works [43,80]. The author of
the present comment is very grateful to Professor Chirikov for this information on the origin of the
terms “Arnold diffusion” and “KAM theory.”
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Several counterexamples to the homoclinic splitting claimed in [66] are presented
in note [38] (see also the erratum to [66] as well as papers [67,68]). Preprint [52]
(a supplement to paper [51]) contains a critical survey of some recent papers de-
voted to the Arnold diffusion; see also Featured Reviews [69] (this is the review of
paper [16]) and [27] (this is the review of paper [59]) in Math. Reviews.

Despite the efforts of many authors, the presence of diffusion in gener-
ic systems with k > 2% degrees of freedom has not, as far as the author of this
comment knows, been proved yet. In particular, the conjecture stated in problems
1966-3 and 1994-33 has been neither proved nor disproved although no expert is
in serious doubt about its rightness.
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v 1963-2
A
a- % This is a problem in paper [1] (p. 179-180).

[1] ARNOLD V.I. Small denominators and problems of stability of motion in classical
and celestial mechanics. Uspekhi Mat. Nauk, 1963, 18(6), 91-192 (in Russian). [ The
English translation: Russian Math. Surveys, 1963, 18(6), 85-191.]

A 1963-2 — M. B. Sevryuk

S The presence of infinitely many periodic orbits in each neighborhood of the
elliptic fixed point 0 of a generic analytic area-preserving mapping (R2,0) < was
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established no later than in 1927 by G. D. Birkhoff [1] (Ch. 6, §§ 1-4; p. 150-165).
In 1955, J. Moser [4] proved that by an arbitrarily small change of the coefficients
of the Taylor series at the elliptic fixed point O of any analytic area-preserving
mapping (R?,0) «—, one can obtain an analytic area-preserving diffeomorphism
which has infinitely many isolated—hyperbolic and elliptic—periodic orbits in
each neighborhood of the point 0.

The complete solution of the problem was presented in 1973 by E. Zehn-
der [6]. He proved that diffeomorphisms having infinitely many homoclinic points
in each neighborhood of the point O constitute a residual (in the Baire sense) set
in the space (equipped with some natural topology) of area-preserving mappings
(R2,0) « of an arbitrary fixed smoothness class C", 1 < r < , with the elliptic
fixed point 0. Recall that a homoclinic point is by definition a point of transversal
intersection of stable W*(p) and unstable W*(q) separatrices of hyperbolic period-
ic points p and g lying in the same orbit of the mapping in question. The presence
of homoclinic points is equivalent to separatrix splitting. Recall also that a subset
of a topological space is said to be residual (in the sense of Baire) if this subset
contains a countable intersection of open everywhere dense sets. Elements of such
subset are sometimes said to be Baire generic. The inequality 1 < r < o includes
the cases r € N, r = o0, and r = ® (C® means real analyticity).

In paper [3], Zehnder’s result was carried over to the spaces of analytic
area-preserving mappings (R%,0) « with prescribed eigenvalues e*2™* of the
linearization at the elliptic fixed point 0. This paper contains also an analogous
result for diffeomorphisms possessing so-called nondegenerate cantori (Aubry—
Mather sets) in each neighborhood of the point 0.

Of survey works on this topic, we mention the book [5] (especially Ch. III,
§ 6; p. 99-107) and the paper [2].

[1] BIRKHOFF G.D. Dynamical Systems, 2nd edition. Providence, RI: Amer. Math.
Soc., 1966. (Amer. Math. Soc. Colloquium Publ., 9.) [ The first edition 1927.]

[2] CHENCINER A. La dynamique au voisinage d’un point fixe elliptique conservatif:
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[4] MOSER J. Nonexistence of integrals for canonical systems of differential equations.
Commun. Pure Appl. Math., 1955, 8(3), 409-436.
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[5] MOSER J. Stable and Random Motions in Dynamical Systems, with Special Empha-
sis on Celestial Mechanics. Princeton, NJ: Princeton University Press, 1973. (Ann.
Math. Studies, 77.)

[6] ZEHNDER E. Homoclinic points near elliptic fixed points. Commun. Pure Appl.
Math., 1973, 26(2), 131-182.
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This is a problem in paper [1] (p. 180: Problem II).

[1] ARNOLD V.I. Small denominators and problems of stability of motion in classical
and celestial mechanics. Uspekhi Mat. Nauk, 1963, 18(6), 91-192 (in Russian). [The
English translation: Russian Math. Surveys, 1963, 18(6), 85-191.]

A 1963-3 — M. B. Sevryuk
B

% The perturbation sizes allowed by the rigorous (or, as one says, “‘analyt-
ic”) proofs of various theorems in the KAM theory are, as a rule, very small—
they are usually orders of magnitude smaller than the true perturbation threshold
L« (which can be found numerically or from a combination of computer calcu-
lations and ““analytic” reasoning) above which most invariant tori break up, see,
e.g., [1,2,5-8,11-22,24-29,37,38,40,41]. This circumstance sometimes gives
rise to the assertion that the KAM theory is not very suitable for practical purpos-
es [38,39], and one even speaks of its “numerical inadequacies” ([38], p. 135).
In V.I. Amnold’s papers [3, 4], bounded motions in planetary systems were con-
structed for the case where the masses and eccentricities of the planets are suffi-
ciently small. J.Poschel emphasized: “Concerning the Solar System Arnold [4]
demonstrated the prevalence of quasi-periodic motions—provided the planets are
of the size of tennis balls. Strictly speaking, the stability question is still open”
([391, p. 13).

A justification for the KAM theory from this viewpoint can be found in,
e. g., [10], Section 2.7 (also see, e. g., [9], § 1.2). One of the most important conclu-
sions of the KAM theory is that in the phase space of a generic Hamiltonian system
with n degrees of freedom, Cantor families of invariant tori of various dimensions
2 < m < n can occur, the 2m-dimensional Hausdorff measure (the Lebesgue mea-
sure for m = n) of the union of these tori being positive. The existence of such
families of tori requires no integrability, no special symmetries, and no conditions
of the “equality type.” Roughly speaking, the presence of families of invariant tori
carrying quasi-periodic flows is a “codimension zero” property. In particular, the
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conjecture on the ergodicity of a generic Hamiltonian system on the energy level
hypersurfaces (widespread in the physical literature up to the sixties) fails, cf. [34].
The statement that a certain property is of “codimension zero” cannot be verified
by any computer calculations. Of course, one can often easily find invariant tori in
the given system numerically, but in this case, one cannot guarantee that the invari-
ant manifolds detected are genuine (e. g., that the action variables corresponding
to an initial point on such a torus are indeed preserved for ever rather than just for
a very long time). In turn, to establish the “typicality” of the families of tori, a
precise estimate of the perturbation magnitude ., for which many invariant tori of
the initial integrable system still survive is entirely irrelevant. The only important
fact is that p, > 0.

On the other hand, if we already know that the existence of families of
invariant tori is a property of “codimension zero,” then it is more suitable and
expedient to look for the answers to all the quantitative questions (like the adequate
estimate of |1,) numerically.

The scenario of the decay of the invariant torus with the given frequen-
cy vector as the perturbation grows is rather complicated and includes, e. g., the
gradual loss of smoothness of the torus in question and its transformation into a
so-called cantorus. Apart from papers [1,2,5-8, 11-22,24-29,37,38,40,41], we
quote here just several surveys [23,30-33,35,36] treating the break-up of invariant
tori and the increase in chaos in Hamiltonian systems.
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1963-4

This is a problem in paper [1] (p. 180-181: Problem III).

[1] ArRNoOLD V.I. Small denominators and problems of stability of motion in classical
and celestial mechanics. Uspekhi Mat. Nauk, 1963, 18(6), 91-192 (in Russian). [The
English translation: Russian Math. Surveys, 1963, 18(6), 85-191.]

«/ % See the comment to problem 1972-20.

1963-5

- This is a problem in paper [1] (p. 181-182: Problem IV).

[11 ARNOLD V.I. Small denominators and problems of stability of motion in classical
and celestial mechanics. Uspekhi Mat. Nauk, 1963, 18(6), 91-192 (in Russian). [ The
English translation: Russian Math. Surveys, 1963, 18(6), 85-191.]

4

% See the comment to problem 1972-2].

v 1963-6
This is a problem in paper [1a] (§ 4, 1°; see also [1b], p. 52).

[1a] ARNOLD V.I., KrRYLOV A.L. Uniform distribution of points on a sphere and some
ergodic properties of solutions of linear ordinary differential equations in a complex
region. Dokl. Akad. Nauk SSSR, 1963, 148(1), 9-12 (in Russian). [ The English trans-
lation: Sov. Math. Dokl., 1963, 4(1), 1-5.]

Reprinted in:
[1b] Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 47-53.
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5 1963-6 — V.LArnold
,» Let me briefly recollect only some of the extensions of the discussed prob-
lem that I dealt with (here open questions are of a great interest).

0. The asymptotics of interval permutations (1963, see [1]).

1. Estimates for the error of averaging method (my main accomplishments
are presented in paper [2]). The research was continued by A.I Neishtadt and
V. 1. Bakhtin, for the survey see books [4,17].

2. Ergodic treatment of the Hopf invariant of a magnetic field and its
applications to magnetic hydrodynamics [3]; continued by S.P.Novikov [21],
B. A.Khesin, M. Freedman and others, for the survey see book [16] and paper [9].

Here is an interesting open question—give an ergodic (with averaging on
four foliations) treatment for Novikov’s generalization of the Hopf invariant to the
Whitehead pseudoproduct: starting from two 2-forms o, § on M* satisfying the
relations o2 = B2 = aff = 0, he constructs “products” which should be interpreted
as ergodic type averages describing the 2-foliation a = 0, the 2-foliation = 0, the
1-foliation o0 = p = 0, and the 3-foliation of the distribution (ot = 0) & (B = 0).

3. Dynamics of complexity of intersections A"X* N Y' in M¥+3 for
n — o [7]. Here, for example, generalizations of the results from diffeomor-
phisms A : M — M to smooth mappings still are only conjectures (probably a lot
of them hold for the growth of the number of periodic points, A"p = p, for n — oo,
but has not been proved).

The major ideas here are averaging on parameters in combination with the
asymptotics on the growth of the “time” n. Here many things remain conjectural
for the asymptotics of the number of homoclinic points. There are even local tough
problems (see [8]).

4. Averaging in pseudoperiodic topology and phase transitions of the de-
pendence of these averages on parameters. This was initiated in paper [5] (see
also [6]), and continued by S. M. Gusein-Zade [18, 19]. Recently, in [14], I pub-
lished Harnack type upper estimations of the averaged topological invariants of
pseudoperiodic functions and varieties in terms of the periodic part Newton poly-
hedra (trigonometric polynomials degrees).

5. Averaging of the statistic of a sail (the convex hull of the set of lattice
points in a simplicial cone) on the ball dimension.

This problem was reduced to ergodic theory of the action of (R*)"~! on
SL(n+1,R)/SL(rn+ 1,Z) by M. L.Kontsevich and Yu. M. Sukhov [20]. Unfor-
tunately, they proved only the existence of answers to my problems (and their
invariance of an “almost arbitrary” cone), and the principal “physical” question on
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the behavior of the averages (and their comparison with those for more random
polyhedra, for instance, on the mean number of lattice points on the edges of a
sail) remained open. See the survey in my book [12].

6. Analogous “ergodic” questions seem to be still open for “random”
quadratic irrationalities, say, on the statistic of elements of the period of a con-
tinued fraction A [for A2+ pA+¢ =0, p? + 4% < N?, (p,q) € Z?, N — oo, or for
det(A —A1) =0, A € SL(2,Z), ||A|| £ N — oo} in both cases A € R].

Conjecturally, the averages are the same as those for “random” A € R; but
even the existence of a limit for N — oo has not been proved.

It goes without saying that the same questions are interesting for algebraic
numbers of degree n and matrices from SL(n,Z), but for item 6 even computer
experiments have not been made (for example, what triangulations of the torus T2
can be obtained by factorization on the symmetry group Z? from a sail in R? or
from cubic fields).

7. There are also several works on “optimal control on the average”—phase
transitions of its ergodic asymptotics etc., such as [13,15]. Only ergodically simple
cases are considered there (say, the dynamics on S!), but crafty phase transitions
already appear. And for more complicated ergodic properties, welcome are proofs
even of the existence that reveal neither essential matter nor phase transitions . ..

8. There is a new large-scope section of the theory of averaging, with not
so many theorems yet, but, in my opinion, with new important views on problem
statements (however, V. V. Kozlov affirms that similar statements had already been
suggested by Poincaré for the purpose of justification of thermodynamics).

I gave this trend the name “theory of weak asymptotics” and propagated it
in paper [10]. Probably numerous conjectures are the most interesting here.

9. I can also recall ergodic type conjectures and theorems on the distri-
butions of the first digits of the areas of countries in the World (the distribution
observed here is the same as that of the first digits of the deuce powers—about
30 % of units, 16 % of deuces and so on).

For example, if a country of area S after each time period 1 splits into
two countries of area S/2 with probability p, and unites with another country of
area S with probability g, then this very distribution establishes itself (rather rapid-
ly) even if decays and unifications are given by more complicated matrices (split-
ting into three S/3, or into an S/2 and two §/4 etc.; and even if only neighbors
can be united—precise formulations with the evolution of the neighbor graphs are
available). A survey can be found in [11].

[17 ARNOLD V.I. Small denominators and problems of stability of motion in classical
and celestial mechanics. Russian Math. Surveys, 1963, 18(6), 85-191.
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& 1963-6 — R. I Grigorchuk
|
.+ . These theorems fail for the given way of averaging [1]. They become
true if: the sequence of averages f, is replaced with the sequence of Cesaro av-
erages % ;‘;0' fi, and the group I is free or close to free (say, hyperbolic), and
some additional constraints providing regular asymptotics of the growth func-
tion N(n) [2—4, 8] are imposed. Further information (and bibliography) about er-

godic theorems for noncommutative transformation groups is contained in [5-7,9].
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[71 NEvO A. On discrete groups and pointwise ergodic theory. In: Random Walks and
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v 1963-7

e

W This is a problem in paper [1a] (§ 4, 2°; see also [1b], p. 52).

[1a] ARNOLD V.I., KRYLOV A.L. Uniform distribution of points on a sphere and some
ergodic properties of solutions of linear ordinary differential equations in a complex
region. Dokl. Akad. Nauk SSSR, 1963, 148(1), 9-12 (in Russian). [ The English trans-
lation: Sov. Math. Dokl., 1963, 4(1), 1-5.]

Reprinted in:
[1b] Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 47-53.

A 1963-7 — R.I. Grigorchuk

It is unknown if the result extends to arbitrary (infinite) finitely generated
groups (probably yes!). However, it is proved that it extends on hyperbolic groups
satisfying certain conditions that yield the asymptotic form Ca”™ where a, ¢ are the
constants from the growth function N(n) of the group I [1].

[1] GRIGORCHUK R.I. On the uniform distribution of orbits of actions of hyperbolic
groups, in preparation.
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v 1963-8
This is a problem in paper [1a] (§ 4, 3°; see also [1b], p. 52).

[1a] ARNOLD V.I., KrRYLOV A. L. Uniform distribution of points on a sphere and some
ergodic properties of solutions of linear ordinary differential equations in a complex
region. Dokl. Akad. Nauk SSSR, 1963, 148(1), 9-12 (in Russian). [ The English trans-
lation: Sov. Math. Dokl., 1963, 4(1), 1-5.]

Reprinted in:
[1b] Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 47-53.

o 1963-8 — R.I. Grigorchuk

P

Probably yes, although there are only preliminary results in this direction
for the case of the Euclidean plane [1-3]. Unfortunately, in all these papers the
group G generated by two motions A, B of the plane is considered either as the free
semigroup with four generators A, A~!, B, B~! (in [1,2]) or as the free group with
two generators A, B, whereas I'/N is a solvable group (N is the action’s kernel).
Hence, the action of I" is not exact, and each point of an orbit contributes according
to its multiplicity. One of substantial difficulties concerning the complete solution
of the problem on uniform distribution on the plane lies in the question on the
asymptotic behavior for n — o of the growth function N(n) of a 2-generated free
solvable group of length 2.

[1] GUIVARCH Y. Equirepartition dans les espaces homogenes. In: Théorie er-
godique (Actes Journées Ergodiques, Rennes, 1973/1974). Editors: J. P. Couze and
M. S. Keane. New York: Springer, 1976, 131-142. (Lecture Notes in Math., 532.)

[2] KAZHDAN D. A. The uniform distribution on the plane. Trudy Moskov. Mat. Ob-
shch., 1965, 14, 299-305 (in Russian).

[3] VOROBETS YA. B. On the uniform distribution of orbits of free group and semigroup
actions on a plane. Proc. Steklov Inst. Math., 2000, 231, 59-89.

v 1963-9

.gar:’

This is a problem in paper [1a] (§ 4, 4°; see also [1b], p. 52).

[1a] ARNOLD V.I., KRYLOV A. L. Uniform distribution of points on a sphere and some
ergodic properties of solutions of linear ordinary differential equations in a complex
region. Dokl. Akad. Nauk SSSR, 1963, 148(1), 9-12 (in Russian). [ The English trans-
lation: Sov. Math. Dokl., 1963, 4(1), 1-5.]
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Reprinted in:
[1b] Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 47-53.

o 1963-9 — R. I Grigorchuk

Ty

.#%. " For the case where G is the isometry group of the n-dimensional hyperbol-
ic space, the individual ergodic theorem for radial averagings was proved in [2];
for Heisenberg groups—in [5S]; for simple Lie groups of real rank 1—in [4]; for
semisimple Lie groups with finite center and without compact factors having Kazh-
dan’s T-property—in [3]; for connected semisimple groups with finite center and
without nontrivial compact factors—in [1]. In all these papers, various versions of
individual ergodic theorems in the spaces L? are proved; here p runs over differ-
ent intervals but always p > 1. There they mostly use averaging on a sequence of
sets projecting into spheres or balls of the space G/K (with respect to the invariant
Riemannian metric) where K is the maximal compact subgroup. The case p = 1
seems to remain open.

[11 MARGULIS G. A., NEvO A., STEIN E. Analogs of Wiener’s ergodic theorems for
semisimple Lie groups, II. Duke Math. J., 2000, 103(2), 233-259.

[2] NEvO A. Pointwise ergodic theorems for radial averages on simple Lie groups, I.
Duke Math. J., 1994, 76(1), 113-140.

[3] NEvO A. Pointwise ergodic theorems for radial averages on simple Lie groups, II.
Duke Math. J., 1997, 86(2), 239-259.

[4] NEvo A., STEIN E. Analogs of Wiener’s ergodic theorems for semisimple
groups, II. Ann. Math., Ser. 2, 1997, 145(3), 565-595.

[S] NEvO A., THANGARELU S. Pointwise ergodic theorems for radial averages on the
Heisenberg group. Adv. Math., 1997, 127(2), 307-334.

1963-10
This is a problem in paper [1a] (§ 4, 5°; see also [1b], p. 52).

[1a] ARNOLD V.I., KRYLOV A. L. Uniform distribution of points on a sphere and some
ergodic properties of solutions of linear ordinary differential equations in a complex
region. Dokl. Akad. Nauk SSSR, 1963, 148(1), 9-12 (in Russian). [ The English trans-
lation: Sov. Math. Dokl., 1963, 4(1), 1-5.]

Reprinted in:
[1b] Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 47-53.
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1963-11
This is a problem in paper [1a] (§ 4, 6°; see also [Lb], p. 53).

[1a] ARNOLD V.I., KrRYLOV A.L. Uniform distribution of points on a sphere and some
ergodic properties of solutions of linear ordinary differential equations in a complex
region. Dokl. Akad. Nauk SSSR, 1963, 148(1), 9--12 (in Russian). [ The English trans-
lation: Sov. Math. Dokl., 1963, 4(1), 1-5.]

Reprinted in:
[1b] Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 47-53.

1963-12

e
»+ % This is a problem in paper [la] (§ 4, 7°; see also [1b], p. 53).

[1a] ARNOLD V.I., KRYLOV A. L. Uniform distribution of points on a sphere and some
ergodic properties of solutions of linear ordinary differential equations in a complex
region. Dokl. Akad. Nauk SSSR, 1963, 148(1), 9-12 (in Russian). [ The English trans-
Iation: Sov. Math. Dokl., 1963, 4(1), 1-5.]

Reprinted in:
[1b] Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 47-53.

1965-1
.
~ . This is a problem in paper [la] (Remarque A; see also [1b], p.85: Re-
mark A).

[1a] ARNOLD V.I. Sur une propriété topologique des applications globalement canon-
iques de la mécanique classique. C. R. Acad. Sci. Paris, 1965, 261(19), 3719-3722.
The Russian translation in:

[1b] Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 81-86.

/" See the comment to problem 1972-33.
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1965-2

<. This is a problem in paper [1a] (Remarque C; see also [1b], p.85: Re-
mark C).

A

[1a] ARNOLD V.I. Sur une propriété topologique des applications globalement canon-
iques de la mécanique classique. C. R. Acad. Sci. Paris, 1965, 261(19), 3719-3722.
The Russian translation in:

[1b] Vladimir Igorevich Arnold. Selecta~60. Moscow: PHASIS, 1997, 81-86.

£

See the comment to problem 1972-33.

1965-3

/"L This is a problem in paper [1a] (Remarque D; see also [1b], p.86: Re-
mark D).

[1a] ARNOLD V.I. Sur une propriété topologique des applications globalement canon-
iques de la mécanique classique. C. R. Acad. Sci. Paris, 1965, 261(19), 3719-3722.

The Russian translation in:
[1b] Vladimir Igorevich Arnold. Selecta~60. Moscow: PHASIS, 1997, 81-86.

e
E

See the comment to problem 1972-33,

1966-1
" This is a problem in paper [1a] (§ 2, Problem 2; see also [1b], p. 97).

[1a] ARNOLD V.I. The stability problem and ergodic properties of classical dynamical
systems. In: Proceedings of the International Congress of Mathematicians (Moscow,
1966). Moscow: Mir, 1968, 387-392 (in Russian). [The English translation: AMS
Transl., Ser. 2, 1968, 70, 5-11.]

The original is reprinted in:
[1b] Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 95-101.

&

.+ See the comments to problems 1972-9 and 1972-10.
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v 1966-2
« L This is a problem in paper [1a] (§ 2, Problem 2; see also [1b], p. 97).

[1a] ARNOLD V.I. The stability problem and ergodic properties of classical dynamical
systems. In: Proceedings of the International Congress of Mathematicians (Moscow,
1966). Moscow: Mir, 1968, 387—392 (in Russian). [The English translation: AMS
Transl., Ser. 2, 1968, 70, 5-11.]

The original is reprinted in:
[1b] Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 95-101.

A 1966-2 — M. B. Sevryuk

In analytic nearly integrable Hamiltonian systems, the evolution of the ac-
tion variables vanishes generically in any order of the perturbation theory and,
moreover, it is exponentially small with respect to the perturbation parameter.
This result constitutes the famous Nekhoroshev theorem [47,49-51] and is some-
times called effective stability of the action variables (cf. [15,17,22,32,35] as well
as [29]). One can formulate this theorem more precisely as follows. Consider a
Hamiltonian system with n degrees of freedom and the analytic Hamilton function

H=Ho(1)+€H1(I,(P,E), (D

where (I,9) € G x T" are the action—angle variables (G being a domain in R")
while 0 < € < 1 is the perturbation parameter. Let the unperturbed Hamilton func-
tion Hy(I) satisfy certain nondegeneracy conditions called steepness. Then there
exist positive constants a, b, R,, K., and &, such that for any solution @(z), I(¢) of
the Hamiltonian system of equations

dt ol ol )
ﬂ__eaHl(I,(P,E) @
dr 09

afforded by Hamilton function (1), the inequality
[I(2) —I(0)] < R.e® for |r] < exp(K.e™%) 3)

holds provided that 0 < € < g,.
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The constants a and b in inequality (3) are called the stability exponents, of
them, exponent a being the most important one. These exponents depend on the
number n of degrees of freedom and the so-called steepness indices of the function
Hy(I) and vanish as n — c. One usually calls the quantity 7'(€) = exp(K,&~?) the
stability time, the distance R(g) = R.£? the radius of confinement, and the constant
&, the threshold of validity.

This theorem was announced by N.N.Nekhoroshev [47] in 1971. The
complete proof was given in papers [50, 51]. In Nekhoroshev’s works, the ex-
ponent a had asymptotics const/n?. In the mid eighties, G. Benettin, L. Galgani,
G. Gallavotti, and A. Giorgilli [10, 11, 23] examined the case of convex functions
Hy(I) (see below) in more detail. In 1993, J.Poschel [58] obtained the value
a = 1/(2n) for quasi-convex functions Hy(I) (see below). On the other hand,
P. Lochak published in 1992 an essentially new proof of the Nekhoroshev theo-
rem for quasi-convex unperturbed Hamilton functions (see [38, 40, 41] as well).
In the works by A.Delshams and P. Gutiérrez [16, 17], the Kolmogorov theorem
on the persistence of invariant tori and the Nekhoroshev theorem are proved in
parallel.

The steepness condition is very weak: the nonsteep functions Ho(I) con-
stitute a set of infinite codimension in an appropriate functional space [48, 50].
For the precise definition and/or detailed discussion of the steepness property, see
Nekhoroshev’s papers [47-51]. Yu. S. Il'yashenko [31] obtained the following suf-
ficient condition for steepness:

Theorem [31]. Let the unperturbed analytic Hamilton function Hy(I) be defined in
some neighborhood of the closure of a bounded domain G C R". Assume that Hy
does not possess critical points while the restriction of Hy to any affine subspace
of the space R" of each dimension from 1 to n — 1 has C-isolated critical points
only. Then the function Hy is steep in G.

Up to now, the precise values of the steepness indices have been deter-
mined for typical functions Hy(I) only in the cases of two and three degrees of
freedom [36] (see the comment to problem 1978-3).

Among all steep functions Hy(I), the “steepest” ones are convex and quasi-
convex functions.

Definition. An unperturbed Hamilton function Hy(I), for which the frequency
vector ®(1) = 0Hy(I)/dI nowhere vanishes, is said to be convex if there exists a

constant ¢ > 0 such that
a(\)(l) > | |2 4
n, A n)=cn 4)
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for all I € G and 1 € R" (the angular brackets here denote the scalar product in
R™). A function Hy(I) is said to be quasi-convex if there exists a constant ¢ > 0
such that inequality (4) holds whenever I € G, n € R”, and (®(I),1) = 0.

One easily verifies that quasi-convexity of a function Hy means convexity
of its level hypersurfaces { Hy = const}.

For quasi-convex unperturbed Hamilton functions, the Nekhoroshev esti-
mate (3) turns out to hold fora= b = 1/(2n) [16,17,38,40,41,58]. Moreover, one
can take " PTR

o Tt
for any 0 < 1 < 1 [38,58]. These values of the stability exponents seem to be
optimal (cf. [64]). On the “physical level of rigor,” the value a =~ 1/(2n) was
obtained no later than in 1979 in paper [14]. On the other hand, the estimates
of the stability exponents a and b can be improved considerably near resonant
unperturbed tori [37,38] (see [40,41,49,58] as well).

For nonsteep unperturbed Hamilton functions, the action variables / in sys-
tem (2) can change with rate ~ € [5S0]. However, exponential estimates on the
evolution rate for the action variables may sometimes be obtained for highly de-
generate (and even linear) functions Hy(I) as well, provided that the perturbation
“removes” the degeneracy [39]. To be more precise, paper [39] treats Hamilton
functions (1) of the form

H(Ia(Pa 8) = HO(I) +8H1,1(I) +82H1,2(I7(P)

with Ho(I) linear and H,1(I) convex. An exponential estimate on the evolution
rate for variables I in the case of the linear function Hy(I) = (wp,I) takes place
also when the perturbation is arbitrary but the constant frequency vector @y is
Diophantine [11,15,22].

Exponential estimates on the evolution rate for the action variables in the
case of degenerate unperturbed Hamilton functions are especially important in the
problems of Celestial Mechanics. Of numerous recent works devoted to employing
various analogues of the Nekhoroshev theorem in the studies of the stability of
the Solar System, we mention [8, 12, 13, 19, 25, 26, 30, 34, 35, 46, 54, 55,63]. In
papers [54,55], the Lochak method was used.

The estimates of Nekhoroshev’s original papers [47,50,51] were somewhat
refined in preprints [61, 62].

Another aspect of the effective absence of evolution of the action variables
in nearly integrable Hamiltonian systems is the so-called superexponential “stick-
iness” of the Kolmogorov tori discovered by A. Morbidelli and A. Giorgilli [45] in
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1995. It turns out that if the unperturbed Hamilton function is quasi-convex then
all the trajectories in a perturbed system, starting at a distance 0 < p < p, from a
Kolmogorov torus with a Diophantine frequency vector, remain close to this torus
for an exceedingly long time of the order of

oo 3]

provided that € is sufficiently small. Here p, > 0 is a certain constant independent
of €, while r > 0 is another constant determined by the arithmetical properties of
the frequency vector of the torus in question. Note that the small parameter here is
the initial distance from the invariant torus rather than the perturbation magnitude.

In earlier works [43,57] devoted to the “stickiness” of the Kolmogorov tori,
the authors obtained only an exponential estimate on the “confinement time.” In
papers [21,24,42,44], A. Morbidelli and A. Giorgilli established the presence of a
hierarchy of domains { G }meN, Gm+1 C Gy, for each m, with increasing stability
characteristics in the phase space G = G x T”" of a nearly integrable Hamiltonian
system. The exponential “stickiness” of invariant tori of dimensions smaller than
the number of degrees of freedom was proved in works [18,21, 22,28, 33, 56, 60].

Very recently, the so-called “analytically filtered Fourier analysis” of chaot-
ic motions in analytic nearly integrable Hamiltonian systems was introduced
([271, see also [29]) which has led to a spectral formulation of the Nekhoroshev
theorem [27,29].

The Nekhoroshev theorem can be carried over mutatis mutandis to infinite
dimensional Hamiltonian systems. Here, we would confine ourselves to pointing
out several important references: [1-7,9,20, 52, 53, 59].

[1] BAMBUSI D. A Nekhoroshev-type theorem for the Pauli-Fierz model of classi-
cal electrodynamics. Ann. Institut Henri Poincaré, Physique théorique, 1994, 60(3),
339-371.

[2] BAMBUSI D. Exponential stability of breathers in Hamiltonian networks of weakly
coupled oscillators. Nonlinearity, 1996, 9(2), 433-457.

[3] BAMBUSI D. Long time stability of some small amplitude solutions in nonlinear
Schrodinger equations. Commun. Math. Phys., 1997, 189(1), 205-226.

[4] BAaMBUSI D. Nekhoroshev theorem for small amplitude solutions in nonlinear
Schrodinger equations. Math. Z., 1999, 230(2), 345-387.

[51 BAMBUSI D. On long time stability in Hamiltonian perturbations of non-resonant
linear PDEs. Nonlinearity, 1999, 12(4), 823-850.

[6] BAMBUSI D., GIORGILLI A. Exponential stability of states close to resonance in
infinite-dimensional Hamiltonian systems. J. Stat. Phys., 1993, 71(3—4), 569—606.
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1966-3

This is a problem in paper [1a] (§ 3, Conjecture; see also [1b], p. 98).

[1a] ARNOLD V.I. The stability problem and ergodic properties of classical dynamical
systems. In: Proceedings of the International Congress of Mathematicians (Moscow,
1966). Moscow: Mir, 1968, 387-392 (in Russian). [The English translation: AMS
Transl., Ser. 2, 1968, 70, 5-11.]

The original is reprinted in:
[1b] Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 95-101.

«' ' See the comment to problem 1963-1.

1966-4
s s
++ % This is a problem in paper [1a] (§4; see also [1b], p.99). The conjectures
on the number of fixed points of symplectomorphisms were first formulated by
V.1. Amold in paper [2a] (see also [2b]), see problems 1965-1-1965-3.

[1a] ARNOLD V.I. The stability problem and ergodic properties of classical dynamical
systems. In: Proceedings of the International Congress of Mathematicians (Moscow,
1966). Moscow: Mir, 1968, 387-392 (in Russian). [The English translation: AMS
Transl., Ser. 2, 1968, 70, 5-11.]

The original is reprinted in:
[1b] Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 95-101.

[2a] ARNOLD V.I. Sur une propriété topologique des applications globalement canon-
iques de la mécanique classique. C. R. Acad. Sci. Paris, 1965, 261(19), 3719-3722.
The Russian translation in:

[2b] Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 8§1-86.

P
»/ %  See the comment to problem 1972-33.

1966-5
This is a problem in paper [1a] (§ 4; see also [1b], p. 99). The conjectures
on the number of fixed points of symplectomorphisms were first formulated by
V.I. Amold in paper [2a] (see also [2b]), see problems 1965-1-1965-3.
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[1a] ARNOLD V.I. The stability problem and ergodic properties of classical dynamical
systems. In: Proceedings of the International Congress of Mathematicians (Moscow,
1966). Moscow: Mir, 1968, 387-392 (in Russian). [The English translation: AMS
Transl., Ser.2, 1968, 70, 5-11.]

The original is reprinted in:

[1b] Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 95-101.

[2a] ARNOLD V.I. Sur une propriété topologique des applications globalement canon-
iques de la mécanique classique. C. R. Acad. Sci. Paris, 1965, 261(19), 3719-3722.
The Russian translation in:

[2b] Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 81-86.

]

See the comment to problem 1972-33.

1966-6

e

L. Thisisa problem in paper [1a] (§ 4, Problem; see also [1b], p. 100).

[1a] ARNOLD V.I. The stability problem and ergodic properties of classical dynamical
systems. In: Proceedings of the International Congress of Mathematicians (Moscow,
1966). Moscow: Mir, 1968, 387-392 (in Russian). [The English translation: AMS
Transl., Ser.2, 1968, 70, 5-11.]

The original is reprinted in:

[1b] Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 95-101.

1968-2

"L See the comment to problem 1976-12 by S. L. Tabachnikov.
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1969-1 — V. D. Sedykh

: The invariance of the volume of any polyhedron under its flexure was
proved in [2] (the idea belongs to 1. Sabitov who proved previously the indicat-
ed conjecture for polyhedra that are homeomorphic to a sphere [3]).

The same issue of the journal Beitrdge ... contains paper [1] by V. A. Alek-
sandrov where a counterexample to the analogous statement in the spherical space
is given.

[1] ALEKSANDROV V. A. Anexample of a flexible polyhedron with nonconstant volume
in the spherical space. Beitrige zur Algebra und Geometrie, 1997, 38(1), 11-18.

[2] CONNELLY R., SABITOV I., WALZ A. The bellows conjecture. Beitriige zur Alge-
bra und Geometrie, 1997, 38(1), 1-10.

[3] SaBITOV I.KH. On the problem of the invariance of the volume of a deformable
polyhedron. Russian Math. Surveys, 1995, 50(2), 451-452.

1969-2

See the comment to problem 1998-5.

1970-1 — M. B. Sevryuk

.- For every pair (M,G) with M a manifold and G a Lie group acting on this
manifold, one can define the concept of a versal unfolding (also called versal de-
formation) of an arbitrary element m € M with respect to the action of the group G.
The problem concemns the simplest (but very important) case where M is a subset
of the space gl(N,D) = DV of matrices of order N over a (not necessarily com-
mutative) field D while G is a subgroup of the group GL(N,D) of nonsingular
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matrices of order N (it is supposed that G acts by conjugation and leaves M in-
variant). Below we list the most important works devoted to versal unfoldings of
matrices.

Versal unfoldings of arbitrary complex matrices, i. e., for

M=gl(N,C), G=GL(N,C)

were constructed by V.I. Arnold in paper [1] and are discussed in detail in his
works [2,3] as well.
Versal unfoldings of arbitrary real matrices:

M=gl(N,R), G=GL(N,R)

were constructed by D. M. Galin in note [10].
The author of the present comment has failed to find a description of versal
unfoldings of arbitrary quaternionic matrices:

M =gl(N,H) =u*(2N), G =GL(N,H)=U*(2N)

in the literature. Note, however, that one should apply the standard concepts of
matrix algebra to quaternionic matrices with care since the field of quaternions is
not commutative. The space gl(N,H) is a Lie algebra over R.

Before proceeding to versal unfoldings of the elements of the classical Lie
and Jordan algebras, recall some definitions. Let I be one of the fields R, C,
or H. Let also 6: D — I be either the identity transformation, or the complex
conjugation involution

G.z=a-+bi—Z=a—-bi
(in the case D = C), or the quaternionic conjugation involution
o:r=a+bit+cj+dk—F=a—-bi—cj—dk
(in the case D = H). Consider the following involutions acting on gl(N,D):
L— LF =o(L")
(the superscript t means taking the transposed matrix) and

L o(L) =KL°K™!,  Kisnonsingular, K°=¢K, e==I
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(K € GL(N,DD) being a fixed matrix subject to the conditions indicated). The space
of a-skew-symmetric matrices

M_={X €gl(N,D) | a(X) = —X}

is closed with respect to commutation [X,¥] = XY —YX and is isomorphic to one
of the classical Lie algebras listed in the table below. The space of ¢-symmetric
matrices

M, = {X € gl(N,D) | o(X) = X}

is closed with respect to symmetrized multiplication X oY = XY + YX and is
isomorphic to one of the classical Jordan algebras. Recall that a Jordan alge-
bra! is a commutative (but not necessarily associative) algebra with the identity
(x%y)x = x?(yx). Any associative algebra becomes a Jordan algebra if one proceeds
to the new multiplication x oy = xy 4 yx, just as any associative algebra becomes a
Lie algebra if one proceeds to the new multiplication [x,y] = xy — yx. The space

G={AeGL(N,D)|a(4)=A"")

is closed with respect to matrix multiplication and is a Lie group. Both the
spaces M_ and M are invariant with respect to the action of G on gl(N,D) by
conjugation.

All the possible involutions o up to the natural equivalence relation and the
corresponding nomenclature of the classical Lie algebras M_ and Lie groups G are
presented in the table (the last column of this table shows the field {n € D | o(n) =
N} over which one has to consider the given Lie algebra and the corresponding
Jordan algebra).

field D | o(n) € | signature K | algebraM_ | group G N | field Fixo
R n 1 (p,a) | o(p,q) O(p,a) |P+aq R
R n | -1 sp(2n,R) SP(2n,R) | 2n R
C M 1 o(N,C) O(N,C) N C
C 1] -1 sp(2n,C) SP(2n,C) | 2n C
C il 1 (pq) u(p,q) U(p,q) |p+gq R
H 7 1 (P,q) sp(p,q) SP(p,q) | P+gq R
H i | -1 0*(2n) O*(2n) n R

All the necessary details and proofs (or references) are given in papers [5,6,19,23]
(the table above is reproduced from [6]).

1 The theory of Jordan algebras is expounded in detail in books [4, 14].
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Note that one often writes just sp(2n) instead of sp(2n,R), whereas the
notations o(N,0) and u(N,0) are often replaced with o(N) and u(N), respectively
(similar conventions hold for the corresponding Lie groups as well).

Versal unfoldings of real Hamiltonian matrices:
M =sp(2n,R), G=SP(2n,R)

(M is the space of real Hamiltonian matrices of the given even order 2n, while
G is the group of real symplectic linear operators) were found independent-
ly by D.M.Galin, by three Canadian mathematicians and physicists J. Patera,
C.Rousseau, D. Schlomiuk, and by H. Kocak. Papers [11, 15] were devoted ex-
clusively to the algebra sp(2n,R). It is worthwhile to note that the formulae for
the number of parameters in miniversal unfoldings pointed out in these two works
seem to be different but are in fact equivalent. In paper [20], versal unfoldings
for the elements of all the classical real Lie algebras o(p,q), sp(2n,R), u(p,q),
sp(p,q), and 0*(2n) were constructed.

Versal unfoldings for the elements of all the classical complex Lie algebras
o(N,C) and sp(2n,C) were found by J. Patera and C. Rousseau [17].

Versal unfoldings for the elements of all the classical Jordan algebras cor-
responding to the classical Lie algebras o(p,q), sp(2n,R), o(N,C), sp(2n,C),
u(p,q), sp(p,q), and 0*(2n) were constructed in paper [18].

Versal unfoldings of real equivariant Hamiltonian matrices [in this case,
M C sp(2n,R) is the space of the real Hamiltonian matrices of order 2n that com-
mute with the action on R?” of the given compact Lie group I preserving the sym-
plectic structure, while G C SP(2n,R) is the group of the real symplectic linear
operators that commute with the action of I'] were described in work [16].

Versal unfoldings of real infinitesimally reversible matrices (here M is the
space of the real matrices that anti-commute with the given involutive matrix R,
while G is the group of the linear operators that commute with R) were constructed
independently by M. B. Sevryuk [21] and C.-W. Shih [22].

Versal unfoldings of matrices that are simultaneously Hamiltonian and in-
finitesimally reversible (one assumes that the reversing linear involution R is anti-
symplectic, i. e., satisfies the identity (Rx,Ry) = —(x,y), where (-,-) is the linear
symplectic structure) were found in work [24].

Versal unfoldings of Hamiltonian matrices, infinitesimally reversible ma-
trices, and matrices that are simultaneously Hamiltonian and infinitesimally re-
versible were treated from a unified viewpoint by 1. Hoveijn [13].
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In works [9, 12], M. I. Garcia and co-authors constructed versal unfoldings
of pairs of complex matrices of sizes n x n and n X m with respect to a certain
action of the so-called state feedback group.

In work [7] (see also [8]), the authors found versal unfoldings of pairs of
complex matrices (A, B) of the same size m X n, i. e., those of matrix pencils A—AB

with respect to the natural action of the group GL(m, C) x GL(n,C): A—AB B2,
P~1(A—AB)Q, where P € GL(m,C), Q € GL(n,C).

[1] ARNOLD V.I. On matrices depending on parameters. Russian Math. Surveys, 1971,
26(2), 29-43. [The Russian original is reprinted in: Vladimir Igorevich Arnold.
Selecta—60. Moscow: PHASIS, 1997, 155-173.]

[2] ARNOLD V.I. Lectures on bifurcations and versal families. Russian Math. Surveys,
1972, 27(5), 54-123.

[3] ARNOLD V.I. Geometrical Methods in the Theory of Ordinary Differential Equa-
tions, 2nd edition. New York: Springer, 1988, § 30. (Grundlehren der Mathematischen
Wissenschaften, 250.) [The Russian original 1978.]

[4] BRAUN H., KOECHER M. Jordan-Algebren. Berlin: Springer, 1966.

[S] BURGOYNE N., CUSHMAN R. Conjugacy classes in linear groups. J. Algebra, 1977,
44(2), 339-362.

[6] Diokovi¢ D.Z., PATERA J., WINTERNITZ P., ZASSENHAUS H. Normal forms
of elements of classical real and complex Lie and Jordan algebras. J. Math. Phys.,
1983, 24(6), 1363-1374.

[71 EDELMANA., ELMROTHE., KAGSTROM B. A geometric approach to perturbation
theory of matrices and matrix pencils. Part I: versal deformations. SIAM J. Matrix
Anal. Appl., 1997, 18(3), 653—692.

[8] EDELMAN A., ELMROTH E., KAGSTROM B. A geometric approach to perturba-
tion theory of matrices and matrix pencils. Part II: a stratification-enhanced staircase
algorithm. SIAM J. Matrix Anal. Appl., 1999, 20(3), 667-699.

[9] FERRER J., GARCiA M.I., PUERTA F. Brunowsky local form of a holomorphic
family of pairs of matrices. Linear Algebra Appl., 1997, 253, 175-198.

[10] GALIN D. M. On real matrices depending on parameters. Uspekhi Mat. Nauk, 1972,
27(1), 241-242 (in Russian).

[11] GALIN D. M. Versal deformations of linear Hamiltonian systems. Trudy Semin. Pet-
rovskogo, 1975, 1, 63-74 (in Russian). [ The English translation: AMS Transl., Ser. 2,
1982, 118, 1-12.]

[12] GARCIA-PLANAS M.I. Versal deformations of pairs of matrices. Linear Algebra
Appl., 1992, 170, 194-200.

[13] HOVELN I. Versal deformations and normal forms for reversible and Hamiltonian
linear systems. J. Differ. Equations, 1996, 126(2), 408-442.
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[14] JACOBSON N. Structure and representations of Jordan algebras. Providence, RI:
Amer. Math. Soc., 1968. (Amer. Math. Soc. Colloquium Publ., 39.)

[15] KogAK H. Normal forms and versal deformations of linear Hamiltonian systems.
J. Differ. Equations, 1984, 51(3), 359-407.

[16] MELBOURNE I. Versal unfoldings of equivariant linear Hamiltonian vector fields.
Math. Proc. Cambridge Phil. Soc., 1993, 114(3), 559-573.

[17] PATERA J., ROUSSEAU C. Complex orthogonal and symplectic matrices depending
on parameters. J. Math. Phys., 1982, 23(5), 705-714.

[18] PATERA J., ROUSSEAU C. Versal deformations of elements of classical Jordan al-
gebras. J. Math. Phys., 1983, 24(6), 1375-1380.

[19] PATERA J., ROUSSEAU C., SCHLOMIUK D. Dimensions of orbits and strata in
complex and real classical Lie algebras. J. Math. Phys., 1982, 23(4), 490-494.

[20] PATERA J., ROUSSEAU C., SCHLOMIUK D. Versal deformations of elements of
real classical Lie algebras. J. Phys. A: Math. Gen., 1982, 15(4), 1063-1086.

[21] SEVRYUK M. B. Linear reversible systems and their versal deformations. J. Sov.
Math., 1992, 60(5), 1663-1680. [ The Russian original: Trudy Seminara im. I. G. Pet-
rovskogo, 1991, 15, 33-54.]

[22] SHIH C.-W. Normal forms and versal deformations of linear involutive dynamical
systems. Chinese J. Math., 1993, 21(4), 333-347.

[23] WALL G.E. On the conjugacy classes in the unitary, symplectic and orthogonal
groups. J. Austral. Math. Soc., 1963, 3(1), 1-62.

[24] WAN Y. -H. Versal deformations of infinitesimally symplectic transformations with
antisymplectic involutions. In: Singularity Theory and its Applications, Part IL. Ed-
itors: M. Roberts and I. Stewart. Berlin: Springer, 1991, 301-320. (Lecture Notes in
Math., 1463.)

1970-2

+. «  According to [3], the “center—focus” problem is trivial (and, moreover,
from 1. Bendixson’s results it follows that the general problem of topological clas-
sification of equilibria of systems x = v(x) in R" is trivial for n = 2); see also
papers [1,2].

[1] ARNOLD V.I. Algebraic unsolvability of the problem of Lyapunov stability and the
problem of topological classification of singular points of an analytic system of dif-
ferential equations. Funct. Anal. Appl., 1970, 4(3), 173-180.

[2] ARNOLD V.I. Algebraic unsolvability of the problem of stability and the problem of
topological classification of singular points of analytic systems of differential equa-
tions. Uspekhi Mat. Nauk, 1970, 25(2), 265-266 (in Russian).

[3] ARNOLD V.I. Local problems of analysis. Moscow Univ. Math. Bull., 1970, 25(2),
77-80.



232 Comments 1970-3

1970-3 — V.I. Arnold

.. Let (M?",w?) be a symplectic manifold. In paper [1], the following ques-
tion is posed: does every Hamiltonian field on m with the rotation class 0 have
a single-valued Hamiltonian? Equivalent statements are: does every homology
class Hy(M,R) contain a Hamiltonian field? and is the operator of multiplication
by ()" an isomorphism H'(M,R) — H?"~1(M,R)? The answer is positive if
(M,®?*) admits a Kihler structure.

The problem has been solved by W. Thurston: the mapping H! — H?"~! ~
H! need not be an isomorphism (for example, if dim H; = 2k).

[1] ARNOLD V.I. One-dimensional cohomologies of Lie algebras of nondivergent vec-
tor fields and rotation numbers of dynamic systems. Funct. Anal. Appl., 1969,
3(4), 319-321. [The Russian original is reprinted in: Vladimir Igorevich Arnold.
Selecta—60. Moscow: PHASIS, 1997, 147-150.]

1970-5 — M. B. Sevryuk

Given an arbitrary point x € R", denote by W (x) the set of numbers w > 0
such that the inequality

lg-x+qo| <lg|™ M
has infinitely many integer solutions (g € Z"\ {0}, qo € Z), where

q-Xx=q1x1+ " +qnkn
means the scalar product of vectors and

|q| = maX(|41|a---,|‘1n|) 21

is the l.-norm of vector g. On the other hand, denote by 7 (x) the set of numbers
T > 0 for which there exists ¥ > 0 (dependent on t) such that the inequality

|9-x+q0l 2 Vg|™" 2
holds for all (g € Z"\ {0}, g0 € Z). One easily verifies that
supW (x) = inf T (x)

for each x € R". Denote the number supW (x) = inf7(x) by v(x). The classical
Dirichlet theorem (of 1842) on simultaneous approximations implies that n € W (x)
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for all x € R", so that the inequality v(x) > n is always valid. On the other hand,
for almost all x € R” (in the sense of the Lebesgue measure), the equality v(x) = n
holds (this easily follows from the Borel-Cantelli lemma). For the corresponding
proofs and bibliography see, e. g., works [12, 14,15].

The points x € R" with v(x) < 4o are said to be Diophantine (or Diophan-
tine normal). As was explained above, almost all the points x € R”" are Diophantine
(with the Diophantine “exponent” v(x) = n). The linear dependence of numbers
X1,-..,Xn, 1 over Q is a sufficient (but not necessary) condition for the equality
V(x) = +eo [which means that W (x) coincides with the set of all positive numbers
whereas T (x) is empty].

Many problems in mathematics and mathematical physics involving “small
divisors” require examining the Diophantine approximations on the submanifolds
of space R". This thesis was first formulated by V.I. Amold in 1968 in his lecture
“Diophantine approximations in analysis” at a symposium on number theory in
the city of Vladimir, see [10]. The following statement holds:

Theorem 1. Almost all the points of a generic smooth submanifold M in R" (of
any positive dimension) are Diophantine. To be more precise, there exists a number
Vi, B < Vi < oo, such that v(x) < Vi for almost all the points x € M.

This theorem was first proved by A. S. Pyartli in paper [11] (one of the main
lemmas in this article was due to G. A. Margulis). In numerous works following
Pyartli’s landmark paper, the genericity conditions imposed on the submanifold M
were refined, the estimates of vy were improved, and analogues of inequalities (1)
and (2) for the quantities |g-x| as well as |g-x+qo+ f(x)| and |g-x+ f(x)| (f being
a smooth function on the submanifold) were considered, see, e. g., [2-4,6, 13, 16].

The Diophantine approximations on submanifolds were first exploited in
the KAM theory by I. O. Parasyuk in paper [9] (Parasyuk used Pyartli’s results)
and in the averaging theory, by V.I. Bakhtin in paper [2], see also a discussion in
book [1].

Theorem 1 (and all its versions where the question of the optimal value
of quantity vy, is not raised) is rather easy. The precise value of v, is usual-
ly inessential for dynamical applications (it affects only the necessary smooth-
ness of the right-hand sides of the equations). In the works by V.I. Bakhtin,
V.1.Bemik, H. W. Broer, G. B. Huitema, A. S. Pyartli, M. B. Sevryuk, and Zh. Xia
[2-4,6,11,13,16] cited above, the problem of calculating the optimal value of vy,
was not considered. In fact, for generic analytic submanifolds M C R", the equal-
ity vy = n holds (i. e., the Diophantine “exponent” is the same as in the ambient



234 Comments 1970-5

space). Moreover, the conjecture is very likely that this equality is valid for suffi-
ciently smooth non-analytic generic submanifolds as well. However, even for spe-
cial classes of submanifolds M, the proof of the equality vy = n is immeasurably
more complicated than just an existence proof for some vy, < +eo is. Submani-
folds M C R" with vy, = n (they are said to be extremal) are treated in problem
1972-22.

The author of the present comment is unaware of any works studying the
connections of Diophantine approximations on submanifolds with bifurcations of
those submanifolds in k-parameter families.

Note finally that the sets of points x subject to inequalities of form (1) or (2)
can be investigated not only from the viewpoint of the Lebesgue measure but also
from the viewpoint of the Hausdorff dimension, see book [5]. For open domains
of the Euclidean space, such a problem was considered in detail in paper [8] and
on submanifolds, in paper [7].

[1] ARNOLD V.I. Geometrical Methods in the Theory of Ordinary Differential Equa-
tions, 2nd edition. New York: Springer, 1988, § 18. (Grundlehren der Mathematischen
Wissenschaften, 250.) [ The Russian original 1978.]

[2] BAKHTIN V.I. Averaging in multifrequency systems. Funct. Anal. Appl., 1986,
20(2), 83-88.

[3] BAKHTIN V.I. Diophantine approximations on images of mappings. Dokl. Akad.
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[5] BERNIK V.I., MEL'NICHUK YU. V. Diophantine Approximations and Hausdorff
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1970-6 — A.M. Lukatskii

S A study of the equations in variations for the hydrodynamical Euler
equation was performed by G.Misiotek. He distinguished the cases where the
geodesics have no conjugate points. According to his theorem of 1993 [3], flows
of an ideal incompressible fluid with constant pressure over a Riemannian man-
ifold of nonpositive curvature are characterized by geodesics without conjugate
points on the group of volume-preserving diffeomorphisms. Typical examples
of that kind are flows with velocity vector fields—simple harmonic on tori. The
existence of conjugate points for geodesics on the group of volume-preserving
diffeomorphisms of a compact manifold is usually due to two-dimensional direc-
tions passing through the initial velocity field of the geodesic and having positive
sectional curvatures.

Such an example of geodesic with conjugate points was also firstly con-
structed by Misiotek [4] for the flow on a 2-torus having the stream function
cos 6xcos 2x (the existence of two-dimensional directions with negative section-
al curvature had been already pointed out by Amold in [1]). Misiotek also noticed
the existence two-dimensional directions with positive sectional curvatures for the
ABC-flows on a 3-torus.

For manifolds with nonvanishing curvature, an example of a flow with con-
jugate points is given by a rotation of a 2-sphere, which has been also proved by
Misiotek (the existence of two-dimensional directions with positive sectional cur-
vatures for that flow was established by Lukatskif [2]).
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[1] ARNOLD V.I. Sur la géométrie différentielle de groupes de Lie de dimension in-
finie and ses applications a I’hydrodynamique des fluides parfaits. Ann. Inst. Fourier
(Grenoble), 1966, 16(1), 319-361.

[2] LUKATSKIT A. M. Curvature of groups of diffeomorphisms preserving the measure
of the 2-sphere. Funct. Anal. Appl., 1979, 13(3), 174-177.

[3] MISIOLEK G. Stability of flows of ideal fluids and the geometry of the group of
diffeomorphisms. Indiana Univ. Math. J., 1993, 42(1), 215-235.

[4] MisioLEK G. Conjugate points in Du('ﬂ’2). Proc. Amer. Math. Soc., 1996, 124(3),
977-982.

1970-7 — A. M. Lukatskii

The sectional curvatures of the group SDiff(S2) were firstly calculated by
Lukatskii [3] for the vector field A of a rotation around the axis Z and for the
generalized tradewind flow zh on S2. He proved the non-negativeness (and, in a
regular, the positiveness) of the sectional curvatures of two-dimensional directions
passing across h. In the case of the generalized tradewind flow, on the contrary, the
analogous curvatures generally are negative. Then, during the calculation of the
curvature tensor of diffeomorphism groups, Lukatskii established the negativeness
of sectional curvatures for a wider class of vector fields on $2, e.g. for vector
fields of the form f(z)h. Then Arakelyan and Savvidy calculated the sectional
curvatures of the group SDiff(S?) using the Klebsch-Gordan coefficients. Rather
recently, K. Yoshida performed the most complete analysis of sectional curvatures
of this group [6].

For the n-dimensional torus the sectional curvatures of the group SDiff(T")
have been calculated firstly by Lukatskif, as well as the Ricci curvature of this
group [4]. For the 3-dimensional torus T. Kambe, F. Nakamura and Y. Hattori in-
vestigated the curvature of the ABC-field on T>. They established that such sec-
tional curvatures do not depend on the values of parameters A, B, C.

[1] ARAKELYAN T. A., SAVVIDY G. K. Geometry of a group of area-preserving dif-
feomorphisms. Phys. Lett. B, 1989, 223(1), 41-46.

[2] KAMBE T., NAKAMURA F., HATTORI Y. Kinematical instability and line-stretch-
ing in relation to the geodesics of fluid motion. In: Topological Aspects of the Dy-
namics of Fluids and Plasmas. Editors: H. K. Moffatt, G. M. Zaslavsky, P. Comte and
M. Tabor. Dordrecht: Kluwer Acad. Publ., 1992, 493-504. (NATO Adv. Sci. Inst.
Ser.E Appl. Sci., 218.)

[3] LUKATSKIT A.M. Curvature of groups of diffeomorphisms preserving the measure
of the 2-sphere. Funct. Anal. Appl., 1979, 13(3), 174-177.
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[5]1 LUKATSKIT A. M. Structure of the curvature tensor of the group of measure-preserv-
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29(6), 947-951.

[6] YosHIDA K. Riemannian curvature on the group of area-preserving diffeomor-
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1970-8
See paper [1].

[1] FADDEEV L.D. On the theory of stability for stationary plane-parallel currents of
an ideal fluid. Zap. Nauch. Semin. Leningrad. Otd. Mat. Inst. Steklova, 1971, 21,
164—172 (in Russian). (Boundary Problems of Mathematical Physics and Related
Questions of the Function Theory, 5.)

1970-9 — A.M. Lukatskii

« % Intwo-dimensional hydrodynamics, sufficient conditions for the fixed sign
of the second variation of the energy form 8*(E) were established in Amold’s
papers (for example, for the currents with plane-parallel section). See [1], Ch.II,
Sect. 4.

The question about the indices in the two-dimensional case remains open.
In the three-dimensional, case the second variation of the energy form 8%(E) is not
definite (the indices of inertia are equal to (e, )), see [1], Ch. I, Sect. 5.

[1] ARrRNOLD V.I., KHESIN B. A. Topological Methods in Hydrodynamics. New York:
Springer, 1998. (Appl. Math. Sci., 125.)

1970-10 — V.1. Arnold, B. A. Khesin
N. A. Nikishin [1] and C.P.Simon [2] independently proved that an arbi-
trary symplectomorphism of the sphere S has at least two geometrically different
fixed points (this had been conjectured by A. I. Schnirelmann). In both papers [1,2]
the main lemma is the statement that the index of an isolated fixed point O of a
symplectomorphism (R2,0) — (R?,0) does not exceed 1.
In paper [2] it is also mentioned that any gradient or divergence-free vector
field on a two-dimensional sphere S? has at least two (geometrically different)
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singular points. The latter fact is almost evident. Indeed, a smooth divergence-free
vector field on a two-dimensional sphere is Hamiltonian. Any potential (for the
case of a gradient field) or Hamiltonian function (for the case of a Hamiltonian
field) on a compact manifold has at least two critical points, corresponding to its
maximum and minimum. Therefore the corresponding gradient or Hamiltonian
(i.e., skew-gradient) field has at least two singular points.

[1] NIkISHIN N. A. Fixed points of diffeomorphisms of two-dimensional spheres pre-
serving oriented area. Funct. Anal. Appl., 1974, 8(1), 77-19.

[2] SimMoN C.P. A bound for the fixed-point index of an area-preserving map with ap-
plications to mechanics. Invent. Math., 1974, 26(3), 187-200.

1970-11 — V. A. Vassiliey
/% This group is trivial if n # 2, and is isomorphic to ZV, N = (m — 1)3, for
n = 2. More generally, for any k > 2 the group m;(CP" \ V) is isomorphic to the
k-th homotopy group of the wedge of (m — 1)"*! n-dimensional spheres.

Proof. Let W C C"*! be the conical hypersurface, such that V is the pro-
jectivization of W. Then the space C"*1\ W is homeomorphic to (CP"\ V) x C*.
Indeed, we have the fiber bundle C"*!\ W — CP"\ V with fiber C*. The unique
obstruction to the triviality of this bundle is the first Chern class of the tautological
bundle over CP", whose restriction to CP" \ V is, of course, trivial.

In particular, T (CP"\ V) = m (C"* 1\ W) if k > 1.

Also, we have the Milnor fibration C"*!\ W — C* given by the homoge-
meous function f distinguishing the cone W. The exact sequence of this fibration
gives us 7 (C"* 1\ W) = m(f~1(1)) for k > 1. But f~1(1) is the Milnor fiber ho-
motopy equivalent to the wedge of (m — 1)"+! copies of the n-dimensional sphere.

1970-13 — V. A. Vassiliev Also: 1981-13

'y

The rational cohomology ring of this space is the same as of the group
PGL(CP?), in particular its Poincaré polynomial is equal to (1+3)(1+¢°). This
group acts on this space with at most finite stationary groups; the embedding of

any orbit of this action into entire space is a (rational) homology equivalence.
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More generally, let P(d,n) be the Poincaré polynomial of the homology
group of the space of nonsingular hypersurfaces of degree d in CP". Then we
have:

P(3,2)=(1+3)(14+17)  (see above),

P(3,3) = (1+3)(1+°)(1+17)
(i. e., we again have the homology equivalence with the corresponding projective
linear group),

P(4,2) = (1+)(1+2)(1+15),
P(52)=(1+3)(1+7).

The first three formulae are proved in [4], the formula for P(5,2) is an
unpublished result of A. Gorinov, 2001.

This calculation uses the topological study of discriminant sets (initiated
in [1]), i. e., of the complementary sets of singular objects.

The additional generator of degree 6 in the formula for P(4,2) is induced
from a homology class of the moduli space of curves of genus 3 (calculated in [3]).

A “real” counterpart of this problem is the rigid isotopy classification of
algebraic hypersurfaces. For some results in this theory, also based on the theory
of discriminants, see [2].

[1] ARNOLD V.I. On some topological invariants of algebraic functions. Trans. Moscow
Math. Soc., 1970, 21, 30-52.

[2] KHARLAMOV V.M. Rigid isotopy classification of real plane curves of degree 5.
Funct. Anal. Appl., 1981, 15(1), 73-74.

[3] LOOLENGA E.J.N. Cohomology of Mj and ﬂ\/[31. In: Mapping Class Groups
and Moduli Spaces of Riemann Surfaces (Gottingen/Seattle, WA, 1991). Edi-
tors: C.-F. Bodigheimer and R.M. Hain. Providence, RI: Amer. Math. Soc., 1993,
205-228. (Contemp. Math., 150.)

[4] VASSILIEV V. A. How to calculate homology groups of spaces of nonsingular alge-
braic projective hypersurfaces. Proc. Steklov Inst. Math., 1999, 225, 121-140.

v 1970-14 — M. L. Kontsevich

Spaces of knots seem to have homotopy types of a finite CW-complex.
A. Hatcher conjectured in [2] that the space of knots in S3 of a given knot type K
is homotopoically equivalent to a finite-dimensional manifold of the form (Xx x
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SO(4))/Tx where I'k is a finite group and Xy is the product of a torus of some
dimension and a number of configuration spaces C, of ordered n-tuples of distinct
points in R?. In general, for knots with hyperbolic complements the space will be
SO(4)/T'x where Tk is the finite group of isometries of S* — K, and configuration
spaces appear for composite and satellite knots.

In general, I conjectured in the 1990s (as a comment to the Thurston classi-
fication program in 3-dimensional topology) that for any connected compact 3-di-
mensional manifold M whose boundary contains S?asa component, the classify-
ing space BDiff(M,rel$?) of the diffeomorphisms identical on the given S?-com-
ponent of the boundary, has the homotopy type of a finite CW-complex. A version
of this conjecture for the case of irreducible 3-manifolds was proved by A. Hatcher
in [1].

[1] HATCHER A., MCCULLOUGH D. Finiteness of classifying spaces of relative
diffeomorphism groups of 3-manifolds. Geometry & Topology, 1997, 1, 91-109
(electronic).

[Internet: http:/www.arXiv.org/abs/math.GT/9712260]

[2] HATCHER A. Spaces of knots.
[Internet: http: /www.arXiv.org/abs/math.GT/9909095]

A 1970-14 — V. A. Vassiliev

The fundamental groups of spaces of toric knots in S> were calculated by
D. Goldsmith [1].

A. Hatcher [2] has calculated the homotopy types (in particular fundamen-
tal groups) of all components of spaces of toric knots and hyperbolic knots in S°.
His work contains also nice conjectures concerning other components of spaces
of knots.

A general approach to the calculation of cohomology groups of spaces of
knots in R", n > 3, was proposed in [4]; if n > 3 it calculates all these groups.
However the real calculations in higher dimensions are of the same complexity as
in the initial classical case concerning invariants of knots in R3.

The first such non-trivial one-dimensional cohomology class of finite
degree (equal to 3) was found in a computer experiment by D.Teiblum and
V. Turchin, see [5].

For further results on such cohomology classes see [3, 6].

The results of [3] prove that the simultaneous study of all cohomology
classes of spaces of knots is a more natural problem than just the study of knot
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invariants. Indeed, the rings of finite degree cohomology classes of these spaces
admit an elegant algebraic description, from which the O-dimensional part (respon-
sible for the invariants) is obtained by easy factorization.

[1] GoLDsMITH D. Motions of links in the 3-sphere. Bull. Amer. Math. Soc., 1974, 80,
62—66; Math. Scand., 1982, 50, 167-205.

[2] HATCHER A. Topological moduli spaces of knots.
[Internet: http://www.math.cornell.edu/ hatcher/Papers/]

[3] TOURTCHINE V. Sur I'homologie des espaces des nceuds non-compacts.
[Internet: http: /www.arXiv.org/abs/math.QA/0010017]

[4] VASSILIEV V. A. Cohomology of knot spaces. In: Theory of Singularities and its
Applications. Editor: V.I. Arnold. Providence, RI: Amer. Math. Soc., 1990, 23-69.
(Adv. Sov. Math,, 1.)

[5] VASSILIEV V.A. Topology of two-connected graphs and homology of spaces
of knots. In: Differential and Symplectic Topology of Knots and Curves. Editor:
S. Tabachnikov. Providence, RI: Amer. Math. Soc., 1999, 253-286. (AMS Transl.,
Ser. 2, 190; Adv. Math. Sci., 42.)

[6] VASSILIEV V. A. Combinartorial formulae for cohomology of knot spaces. Moscow
Math. J., 2001, 1(1), 91-123.

v 1970-15 — V. V. Goryunov
Also: 1995-1, 1995-2, 1996-8, 1996-13

Ji Singularity theory provides rather convenient realizations of certain Hur-
witz spaces. The very first example of this kind is the miniversal deformation of
the function singularity Ay which coincides with the space of rational functions
with just one pole, of order k+ 1. See [1-3] for some other models of similar type.

The dimension of the moduli space of meromorphic functions on curves of
fixed genus and with fixed orders of poles is equal to the number of finite critical
values of a generic function of this kind. One of reflections of this in singulari-
ty theory is the coincidence of the Milnor and Tyurina numbers for functions on
curves in C* proved by D. Mond and D. van Straten [4]. These numbers also coin-
cide in the case of functions on Gorenstein curves in C* [5].

[1] GoRrYUNOV V. V. Functions on space curves. J. London Math. Soc., Ser.2, 2000,
61(3), 807-822.

[2] GoryuNov V. V. Simple functions on space curves. Funct. Anal. Appl., 2000, 34(2),
129-132.
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[3] GoryuNov V. V., LANDO S. K. On enumeration of meromorphic functions on the
line. In: The Arnoldfest. Proceedings of a conference in honour of V.I. Arnold for his
sixtieth birthday (Toronto, 1997). Editors: E. Bierstone, B. A. Khesin, A. G. Khovans-
kii and J. E. Marsden. Providence, RI: Amer. Math. Soc., 1999, 209-223. (Fields Inst.
Commun., 24.)

[4] MoND D., VAN STRATEN D. Milnor number equals Tjurina number for functions
on space curves. J. London Math. Soc., Ser. 2,2001, 63(1), 177-187.
[S] VAN STRATEN D. Private communication.

@ 1970-15 — S.K. Lando
Also: 1995-1, 1995-2, 1996-8, 1996-13

~#*_ This group of problems is related to the geometry of spaces of meromor-
phic functions on complex curves, and to the topological classification of mero-
morphic functions. The problem of topological classification of meromorphic
functions with fixed branching data was first posed by A.Hurwitz [13]. Two
holomorphic functions f; : C; — CP!, Hh:C— CP?, where Cj, C, are connected
smooth closed complex curves, are considered to be isomorphic if there exists a
homeomorphism 4 : C; — G, such that f; = f, o h. Obviously, isomorphic mero-
morphic functions are defined on complex curves of the same genus, and they have
the same degree, coinciding branching points in the image (critical values), and
coinciding branching data at each of these points. If we fix branching data, then
the set of isomorphism classes becomes finite. Hence the problem of topological
classification can be understood as the enumeration problem for these classes.

There are different languages in which the problem can be expressed: it
can be reformulated as an enumeration problem for sets of permutations belong-
ing to given conjugacy classes in the symmetric group with the identity product, an
enumeration problem for graphs on surfaces [7,14,22] (for example, the classifica-
tion of generic polynomials gives a proof of the Cayley theorem on enumeration of
marked trees, see [15]), or a problem about the degree of the Lyashko-Looijenga
mapping. The Lyashko—Looijenga mapping [2,15, 16] associates to a meromor-
phic function the set of its critical values. It is closely related to the geometry
of the spaces of meromorphic functions. The idea of using this mapping in the
classification problem for meromorphic functions belongs to Amold [1].

In [13] A. Hurwitz enumerated (without proof) meromorphic functions on
rational curves such that all their critical values but one are simple. This result
was rediscovered in [10] (in terms of permutations), and another proof, based on
the geometry, is given in [8] (the reader must be careful, however: the proof con-
tains a serious gap). Meromorphic functions with one degenerate critical value
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on curves of arbitrary genera are enumerated by means of the intersection theory
on the moduli space of curves [5, 6, 12]. The corresponding formula leads to the
explicit generalization of the Hurwitz result for the case of genus 1 (see also [11]).
An enumeration formula for the general case expressing the required number as a
certain sum over all characters of the symmetric group is givenin [17, 18], but it is
too cumbersome to make use of.

An explicit answer in the case of more than one degenerate critical value is
known only in few cases. In particular, all polynomials with given branching data
at finite points are classified [9] (see also a geometric proof in [14]). Formulas for
the transversal multiplicity of the Lyashko-Looijenga mapping are given in [23].
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@ 1970-15 — S. M. Natanzon
Also: 1995-1, 1995-2, 1996-8, 1996-13

« & The space H,, of all meromorphic functions (f: P — CP!) of degree n
on Riemann surfaces P of genus g (dim¢ Hy , = 2g + 2n —2) is called a Hurwitz
space. We assume here that functions (f: P — CP!) and (f: P — CP!) are the
same if and only if there exist holomorphic maps v : P — P and Vv, : CP! —
CP! such that fy; = \yzf. The connection of the Hurwitz space was proved by
Hurwitz in [6]. It has different compactifications: algebra-geometric [S], function-
theoretic [2], geometric [16], stable [8]. In [16] the Euler characteristic of the
geometric compactification N ,, of Hy , was found.

The correspondence “a meromorphic function” — “the set of its critical
values” generates the Lyashko-Looijenga map @ : Ng , — CP™. The natural strat-
ification of CP™ by Schubert cells generates (by means of ¢) the stratifications
of Ng, and H,,. Connected components of these stratifications are classes of
topological equivalence [10]. We assume here that functions f: P — CP! and
f: P— CP!) are topological equivalences if and only if there exist homeomor-
phisms y; : P — P and y, : CP! — CP! such that fy; = wgf.

An automorphism « € Aut(CP!) acts on any connected component M of
the stratification by the rule: o(f : P— CP') = (a.f : P— CP'). According to[12],
M/ Aut(CP') =2 R™ /Mody, where Mody is a discrete group of homeomorphisms.
For spaces of trigonometric polynomials this was proved in [1]. A description of
the group Mody, for the spaces of meromorphic functions in general position is
contained in [10]. Generalisations of these theorems for arbitrary morphisms of
Riemann surfaces f: L; — P, are contained in [14].

A special role belongs to the subset Hg ,(n1,...,nt) C Hgp, that is, the
set of all meromorphic functions with simple finite critical values and divisors of
poles in form of nyp; + --- +mpx (pi # p;). According to [3] Hgn(n1,...,nk)
has a natural structure of Frobenius manifold. The connections of Hg ,(n1,...,n)
was proved in [9, 11]. In [17] there are described all connected components of
the spaces Hg n(n1,...,n | my,...,m,) C Hgp, that is, the set of all meromorphic
functions with simple finite nonzero critical values and divisors in the form of
(mig1+---+meg,) — (mp1+-- -+ mepr). In [4] a homotopical type of the space
of rational functions Hy , is found. Connected components of the space of polyno-
mials were investigated in [7].

A real analog of Hg ,, is a space RHj , of all real meromorphic functions of
genus g and degree n. By definition a real meromorphic function is (P, 7, f), where
(f:P— CP®) C Hy, andt: P — P is a antiholomorphic involution such that f1 =
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f . All connected components of RH; , are found in [11]. A theorem of Sturm-
Hurwitz type (in the sense of Amold) about real zeros for real functions from
Hg n(n1,...,n) is contained in [13]. A real analog of the space Hg ,(ns,...,n |
my,...,m,) and its connected components was found in [15].

[11 ARrRNOLD V.I. Topological classification of trigonometric polynomials and combina-
torics of graphs with an equal number of vertices and edges. Funct. Anal. Appl., 1996,
30(1), 1-14.

[2] Di1Aaz S., EDIDIN D. Towards the homology of Hurwitz spaces. J. Differ. Geom.,
1996, 43(1), 66-98.

[3] DUBROVIN B. A. Geometry of 2D topological field theories. In: Integrable Sys-
tems and Quantum Groups (Montecatini Terme, 1993). Editors: M. Francaviglia and
S. Greco. Berlin: Springer, 1996, 120-348. (Lecture Notes in Math., 1620.)

[4] GUESTM. A., KOZLOWSKI A., MURAYAMA M., YAMAGUCHI K. The homotory
type of the space of rational functions. J. Math. Kyoto Univ., 1995, 35(4), 631-638.

[S] HARRISJ., MUMFORD D. On the Kodaira dimension of the moduli space of curves.
Invent. Math., 1982, 67(1), 23-86.

[6] HURWITZ A. Uber Riemann’sche Flichen mit gegebenen Verzweigungspunkten.
Math. Ann., 1891, 39(1), 1-61.

[7] KHOVANSKIT A.G., ZDRAVKOVSKA S. Branched covers of S? and braid groups. J.
Knot Theory Ramifications, 1996, 5(1), 55-75.

[8] KONTSEVICH M., MANIN YU. Gromov—Witten classes, quantum cohomology and
enumerative geometry. Commun. Math. Phys., 1994, 164(3), 525-562.

[9] NATANZON S.M. Spaces of real meromorphic functions on real algebraic curves.
Sov. Math. Dokl., 1984, 30(3), 724-726.

[10] NATANZON S.M. Uniformization of spaces of meromorphic functions. Sov. Math.
Dokl., 1986, 33(2), 487-490.

[11] NATANZON S.M. Topology of 2-dimensional coverings and meromorphic func-
tions on real and complex algebraic curves. Trudy Semin. Vekt. Tenz. Anal., 1988,
23, 79-103 (in Russian) [The English translation: Selecta Math. Sov., 1993, 12(3),
251-291.]

[12] NATANZON S. M. Spaces of meromorphic functions on Riemann surfaces. In: Topics
in Singularity Theory. V.I. Arnold’s 60th Anniversary Collection. Editors: A.Kho-
vanskii, A.Varchenko and V. Vassiliev. Providence, RI: Amer. Math. Soc., 1997,
175—-180. (AMS Transl., Ser. 2, 180; Adv. Math. Sci., 34.)

[13] NATANZON S. M. Moduli of real algebraic surfaces and their superanalogues. Dif-
ferentials, spinors and Jacobians of real curves. Russian Math. Surveys, 1999, 54(6),
1091-1147.

[14] NATANZON S. M. Moduli of Riemann surfaces, Hurwitz-type spaces, and their su-
peranalogues. Russian Math. Surveys, 1999, 54(1), 61-117.
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[15] NATANZON S. M., SHADRIN S. V. Topological classification of unitary functions of
arbitrary genus. Russian Math. Surveys, 2000, 55(6), 1163-1164.

[16] NATANZON S. M., TURAEV V. G. A compactification of the Hurwitz space. Topol-
ogy, 1999, 38(4), 889-914.

[17] WAINRYB B. Orbits of Hurwitz action for coverings of a sphere with two special
fibers. Indag. Math. (N. S.), 1996, 7(4), 549-558.

A 1970-15 — D. A. Zvonkine
Also: 1995-1, 1995-2, 1996-8, 1996-13

' The space of meromorphic functions f of degree n on a Riemann surface
of genus g is stratified according to the multiplicities of critical points and values.
The first question on the geometry of the discriminant is to find the multiplicity
of the generalized Lyashko-Looijenga map (the LL map) on a given stratum of
the discriminant, or the transversal multiplicity of a less degenerate stratum with
respect to a more degenerate one.

The transversal multiplicity is easier to calculate, because it does not de-
pend on the global structure of the strata, and it is known in all cases (see [8]).

The multiplicity of the LL map is explicitly known in two cases: first, for
polynomials (g = 0, the function f has a unique pole—see [5]), and second, for
rational functions with any poles, but only simple critical values (g = 0, f has poles
of arbitrary multiplicities, but only simple critical values—see [3]).

Finding the multiplicity of the LL map is equivalent to counting ramified
covers of the sphere with given ramification type, or to counting some labeled
graphs embedded into the Riemann surface, or to counting lists of permutations
with given lengths of cycles and a given product.

In the two above cases where the multiplicity is known, the labeled graphs
can be counted by combinatorial methods. For the case of polynomials, see [2].
For rational functions with simple critical values, the answer was first given by
Hurwitz without a proof. For a combinatorial proof, see [3].

The multiplicity of the LL map can also be found by algebro-geometric
methods. For meromorphic functions with simple critical values (but any poles)
on Riemann surfaces of arbitrary genus, the multiplicity can be expressed as an
intergal of Chern classes of some vector bundles over the moduli space of Riemann
surfaces [1]. This is due to the fact that the space of meromorphic functions on a
Riemann surface is itself a vector bundle over the moduli space.

Combining algebra-geometric and combinatorial approaches, A.Okoun-
kov and R. Pandharipande obtained a new proof of Witten’s conjecture (see [7]),
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and some new results on Gromov-Witten invariants of the Riemann sphere are to
appear shortly.

Finally, computing the multiplicity of the LL map using lists of permuta-
tions, leads to a general formula, applicable in all cases, that expresses the multi-
plicity as a sum over all the irreducible representations of the symmetric group S,
(see [6]).

Using this formula, a more explicit result was obtained for meromorphic
functions with a unique pole and arbitrary multiplicities of critical values on sur-
faces of any genus [4].

[1] EKEDAHL T., LANDO S., SHAPIRO M., VAINSHTEIN A. Hurwitz numbers and
intersections on moduli spaces of curves. Invent. Math., 2001, 146(2), 297-327.

[2] GOULDEN L. P., JACKSON D. M The combinatorial relationship between trees, cacti
and certain connection coefficients for the symmetric group. European J. Combina-
torics, 1992, 13(5), 357-365.

[3] GOULDEN L.P., JACKSON D. M. Transitive factorization into transpositions, and
holomorphic mappings on the sphere. Proc. Amer. Math. Soc., 1997, 125(1), 51-60.

[4] GOUPIL A., SCHAEFFER G. Factoring n-cycles and counting maps of given genus.
European J. Combinatorics, 1998, 19(7), 819-834.

[S] LANDO S.K., ZVONKINE D. A. On multiplicities of the Lyashko—Looijenga map-
ping on the discriminant strata. Funct. Anal. Appl., 1999, 33(3), 178-188.

[6] MEDNYKH A.D. Nonequivalent coverings of Riemann surfaces with a prescribed
ramification type. Sib. Math. J., 1984, 25(4), 606-625.

[77 OKOUNKOV A., PANDHARIPANDE R. Gromov—Witten theory, Hurwitz numbers,
and matrix models, I.

[Internet: http://www.arXiv.org/abs/math.AG/0101147]

[8] ZVONKINE D. A. Transversal multiplicities of the Lyashko-Looijenga map. C. R.

Acad. Sci. Paris, Sér. 1 Math., 1997, 325(6), 589-594.

1970-16
. . Thisisa problem in paper [3], see also [1,2].

[1] ARNOLD V.I. Algebraic unsolvability of the problem of Lyapunov stability and the
problem of topological classification of singular points of an analytic system of dif-
ferential equations. Funct. Anal. Appl., 1970, 4(3), 173-180.

[2] ARNOLD V.I. Algebraic unsolvability of the problem of stability and the problem of
topological classification of singular points of analytic systems of differential equa-
tions. Uspekhi Mat. Nauk, 1970, 25(2), 265-266 (in Russian).

[3] ARNOLD V.I. Local problems of analysis. Moscow Univ. Math. Bull., 1970, 25(2),
77-80.
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=

1971-1 — R.I. Bogdanov

~%  In note [1] this problem was considered for generic diffeomorphisms
(R2,0) « (to be more precise, diffeomorphisms with finite modality) of class C*.
The answer to the question posed in the problem is positive for the case k = 2.

[1] BOGDANOV R.I. Factorization of diffeomorphisms over phase portraits of vector
fields on the plane. Funct. Anal. Appl., 1997, 31(2), 126-128.

1971-2 — M. B. Mishustin

The conjecture was proved by A.S.Pyartli in [9] for simple resonances
with heavy restrictions on eigenvalues. Bruno in [4] suggested necessary con-
ditions for the conjeccture’s validity, as well as counterexamples to it. Many
cases are covered neither by Pyartli’s sufficiency nor by Bruno’s necessity.
Yu. S. Il'yashenko and A.S.Pyartli in [6] construct invariant manifolds in some
of these cases.

In [2] Amold establishes a relation between bifurcation of invariant mani-
folds and geometry of neighborhoods of elliptic curves. Book [3] contains (in its
Sections 27 and 36) surveys of this theory and of its applications.

Since that time bifurcations of invariant manifolds have been studied in
many works for particular and neighbor cases, see, say, [5,8] to mention justtwo. ..
Unfortunately, the author of the present comment cannot point to works either
somehow classifying this activity or generalizing results of [9] and [4].

There were also numerical methods developed, studying invariant mani-
folds, for example, see [7] or a scientific report of Siberian Branch of Russian
Academy of Sciences in 2000 [10]. Some of them appear in mathematical pack-
ages, for example, DDE-BIFTOOL for MathLab. So, the conjecture of invariant
manifolds can now be regarded much more like a method of research.

[1] ARNOLD V.I. Remarks on singularities of finite codimension in complex dynamical
systems. Funct. Anal. Appl., 1969, 3(1), 1-5. [The Russian original is reprinted in:
Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 129-137.]

[2] ARNOLD V.I. Bifurcations of invariant manifolds of differential equations and nor-

mal forms in neighborhoods of elliptic curves. Funct. Anal. Appl., 1976, 10(4),
249-259.
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[3] ARNOLD V.I. Geometrical Methods in the Theory of Ordinary Differential Equa-
tions, 2nd edition. New York: Springer, 1988. (Grundlehren der Mathematischen Wis-
senschaften, 250.) [ The Russian original 1978.]

[4] BRUNO A.D. Normal form of differential equations with a small parameter. Math.
Notes, 1974, 16, 832-836.

[5] BURLAKOVA L. A., IRTEGOV V.D., NOVIKOV M. A. Stability and bifurcations
of invariant manifolds of systems of bodies in Newton force field. In: International
Acrospace Congress (Moscow, 1994). Moscow: Petrovka, 1994, 232-236.

[6] IL’YASHENKO YU.S., PYARTLI A. S. Materialization of Poincaré resonances and
divergence of normalizing series. Trudy Semin. Petrovskogo, 1981, 7, 349 (in Rus-
sian). [ The English translation: J. Sov. Math., 1985, 31, 3053-3092.]

[7] JoHNSON M.E., JoLLY M.S., KEVREKIDIS I.G. Two-dimensional invariant
manifolds and global bifurcations: some approximation and visualization studies. Nu-
merical Algorithms, 1997, 14(1-3), 125-140.

[8] LLIBRE J., NUNES A. Separatrix surfaces and invariant manifolds of a class of in-
tegrable Hamiltonian systems and their perturbations. Mem. Amer. Math. Soc., 1994,
107, viii + 191 pp.

[9] PYARTLI A.S. Birth of complex invariant manifolds close to a singular point of a
parametrically dependent vector field. Funct. Anal. Appl., 1972, 6(4), 339-340.

[10] Siberian Branch of Russian Academy of Sciences. Physical and Mathematical Sci-
ences. Scientific report, 2000 (in Russian).

[Internet: http://www.sbras.ru/win/sbras/rep/2000/fiz-mat/fmnl.html]

1971-3
In addition to the papers listed in the problem statement, see also paper [1].

[1] ARNOLD V.I. Problemes résolubles et problemes irrésolubles analytiques et
géométriques. In: Passion des Formes. Dynamique Qualitative Sémiophysique et In-
telligibilité. Dédié a R. Thom. Fontenay-St Cloud: ENS Editions, 1994, 411-417; In:
Formes et Dynamique, Renaissance d’un Paradigme. Hommage a René Thom. Paris:
Eshel, 1995. [The Russian translation in: Vladimir Igorevich Arnold. Selecta-60.
Moscow: PHASIS, 1997, 577-582.]

1971-4 — M. B. Sevryuk Also: 1976-29
Ty
' This is the problem on the converse of the classical Lagrange-Dirichlet
theorem: The equilibrium O of the system ¥ = —0U /0x, x € R", is stable if the
potential U attains a strict local minimum at the critical point O (proof: one
can take the total mechanical energy as a Lyapunov function). The question
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whether the converse theorem holds was raised by A.M. Lyapunov, see [11]
(Ch.1, n°16 and Ch.II, n°25) and [12]. Generally speaking, the hypothe-
ses of the Lagrange-Dirichlet theorem are not necessary for stability even for
one-degree-of-freedom systems, and the Painlevé-Wintner C*-counterexample
{U(x) = exp(—x~2)cosx~! for x # 0 and U(0) = 0} is well known. The prob-
lem on the converse of the Lagrange—Dirichlet theorem makes therefore sense
only under one or another additional assumptions (e. g., that of analyticity of the
potential).

The problem on the converse of the Lagrange—Dirichlet theorem is con-
sidered in a rich body of literature, see, e. g., monographs and surveys [1,2,9, 15,
16]. Here we mention only important works by V. V. Kozlov and V. P. Palamodov
[3-8,10,13,14]. In particular, in paper [13], V.P.Palamodov proved the converse
Lagrange—Dirichlet theorem for systems with two degrees of freedom in the case
of analytic potentials U or infinitely differentiable potentials for which the criti-
cal point 0 is of finite multiplicity. In work [14], Palamodov announced (along
with a sketch of the proof) a complete solution of the problem on the converse of
the Lagrange—Dirichlet theorem in the case of analytic potentials for an arbitrary
number of degrees of freedom.

The statement on the instability of equilibria of systems with harmonic po-
tentials U (i. e., potentials satisfying the Laplace equation AU = 0) is a particular
case of the converse Lagrange-Dirichlet theorem. In particular, the following Irn-
shaw theorem holds (see, €. g., [17]): An equilibrium of a system of electric charges
in a stationary electric field is always unstable.

[1] ARNOLD V.I., KozLoV V.V., NEISHTADT A.I. Mathematical Aspects of Clas-
sical and Celestial Mechanics, 2nd edition. Berlin: Springer, 1993, Ch.7, § 5. (Ency-
clopzdia Math. Sci., 3; Dynamical systems, III.) [The Russian original 1985.] [The
second, revised and supplemented, Russian edition 2002.]

[2] KARAPETYAN A.V., RUMYANTSEV V. V. Stability of Conservative and Dissipa-
tive Systems. Itogi Nauki i Tekhniki VINITI. General Mechanics, Vol. 6. Moscow:
VINITI, 1983 (in Russian).

[3] KozLov V. V. Instability of an equilibrium in a potential field. Russian Math. Sur-
veys, 1981, 36(1), 238-239.

[4] KozLov V. V. On the instability of an equilibrium in a potential field. Russian Math.
Surveys, 1981, 36(3), 256-257.

[S]1 KozrLov V. V. A conjecture on the existence of asymptotic motions in classical me-
chanics. Funct. Anal. Appl., 1982, 16(4), 303-304.

[6] KozLov V. V. Asymptotic solutions of the equations of classical mechanics. J. Appl.
Math. Mech., 1982, 46(4), 454-457.
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[71 KozLov V.V. Asymptotic motions and the problem on the converse of the
Lagrange-Dirichlet theorem. J. Appl. Math. Mech., 1986, 50(6), 719-725.

[8] Kozrov V.V. Ona problem by Kelvin. J. Appl. Math. Mech., 1989, 53(1), 133-135.

[9] KozLov V.V., FURTA S.D. Asymptotics of the Solutions of Strongly Nonlinear
Systems of Differential Equations. Moscow: Moscow University Press, 1996 (in Rus-
sian).

[10] KozLov V. V., PALAMODOV V.P. On the asymptotic solutions of the equations of
classical mechanics. Sov. Math. Dokl., 1982, 25(2), 335-339.

[11] LYAPUNOV A. M. The General Problem of the Stability of Motion. London: Taylor
& Francis, 1992. [The Russian original 1892.] [The first French translation 1907.]

[12] LYAPUNOV A. M. On the instability of an equilibrium in some cases where the force
function is not a maximum. In: Collected Papers, Vol.II. Moscow-Leningrad: the
USSR Academy of Sciences Press, 1956, 391-400 (in Russian). [ The original publi-
cation 1897.]

[13] PALAMODOV V. P. On the stability of an equilibrium in a potential field. Funct. Anal.
Appl., 1977, 11(4), 277-289.

[14] PALAMODOV V. P. Stability of motion and algebraic geometry. In: Dynamical Sys-
tems in Classical Mechanics. Editor: V. V. Kozlov. Providence, RI: Amer. Math. Soc.,
1995, 5-20. (AMS Transl., Ser. 2, 168; Adv. Math. Sci., 25.)

[15] ROUCHE N., HABETS P., LALOY M. Stability Theory by Liapunov’s Direct
Method. New York: Springer, 1977. (Appl. Math. Sci., 100.)

[16] RUMYANTSEV V. V., SOSNITSKII S. P. On the instability of an equilibrium of holo-
nomic conservative systems. J. Appl. Math. Mech., 1993, §7(6), 1101-1122.

[17] TAMM 1. E. Basic Electricity Theory, 10th edition. Moscow: Nauka, 1989, Ch.I, § 19
(in Russian).

1971-9 — 8. Yu. Yakovenko
1))
{ One of the possible variants is the dynamics of intersections discussed
in problem 1988-6 (commentary), see also problems 1988-7, 1989-2, 1990-1,
1990-20, 1990-21, 1992-12—-1992-14, 1994-45-1994-50, where mostly the case
of generic smooth maps is considered [1-3].

Yet it is the algebraicity of the discrete time dynamical system that should
also play an important role. The straightforward generalization, “estimate the num-
ber of periodic points of period # in terms of the degree and »n,” is trivial: the union
of all n-periodic orbits is an algebraic subvariety for any finite n, and its complex-
ity can be easily estimated. For instance, if this set is discrete, than the number of
its points grows exponentially in n by virtue of the Bézout theorem.
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It is the nonalgebraicity of solutions (limit cycles) of planar polynomial
vector fields, that makes them so difficult to track. Thus a “proper” Hilbert-type
question for discrete time systems should involve infinite aperiodic orbits of poly-
nomial maps. In particular, one might try to begin by estimating “nonalgebraicity”
of infinite orbits. To do this, a numeric measure for this is to be introduced and
bounded from above in terms of the degree of the polynomial map.

One such characteristic can be easily described. What can be the maximal
time during which an orbit may stay on a given algebraic subvariety, without being
forced to stay on it forever? This question is a discrete time analog of the question
on the maximal order of tangency between trajectories of a polynomial vector field
and an algebraic hypersurface, the problem posed by J.-J. Risler in connection with
control problems [6].

The discrete time problem was solved by D.Novikov and S. Yakovenko
in [5] for dimension-preserving polynomial maps. The continuous time problem
was solved by A. Gabrielov and A. Khovanskii [4] who gave an exponential bound
for the maximal order of tangency.

[11 ArRNOLD V.I. Dynamics of complexity of intersections. Bol. Soc. Brasil. Mat.
(N. S.), 1990, 21(1), 1-10. [ The Russian translation in: Vladimir Igorevich Arnold.
Selecta—60. Moscow: PHASIS, 1997, 489—499.]

[2] ArNOLD V.I. Dynamics of intersections. In: Analysis, et cetera. Research papers
published in honor of Jiirgen Moser’s 60th birthday. Editors: P. H. Rabinowitz and
E. Zehnder. Boston, MA: Academic Press, 1990, 77-84.

[3] ArNoLD V.I. Bounds for Milnor numbers of intersections in holomorphic dynam-
ical systems. In: Topological Methods in Modern Mathematics. Proceedings of the
symposium in honor of John Milnor’s sixtieth birthday (Stony Brook, NY, 1991).
Editors: L.R.Goldberg and A.V.Phillips. Houston, TX: Publish or Perish, 1993,
379-390.

[4] GABRIELOV A.M., KHOVANSKII A.G. Multiplicity of a Noetherian intersection.
In: Geometry of Differential Equations. Editors: A. G. Khovanskii, A.N. Varchenko
and V. A. Vassiliev. Providence, RI: Amer. Math. Soc., 1998, 119-130. (AMS Transl.,
Ser. 2, 186; Adv. Math. Sci., 39.)

[51 Novikov D.I., YAKOVENKO S. YU. Trajectories of polynomial vector fields and
ascending chains of polynomial ideals. Ann. Inst. Fourier (Grenoble), 1999, 49(2),
563-609.

[6] RISLER J.-J. A bound for the degree of nonholonomy in the plane. Theoret. Comput.
Sci., 1996, 157(1), 129-136.
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1971-11 — A. M. Lukatskit
Also: 1989-19, 1992-11, 1994-26, 1994-27
7. There are two Kolmogorov’s 1958 conjectures on the behavior of the di-
mension of minimal attractors (i. e., the attractor which does not contain a smaller
attractor) when its Reynolds number R tends to the infinity:
a) weak

max dimminAttr — o~ forv — 0;
min Attr

b) strong

min dimminAttr — o forv —0;
minAttr

(see [1], Ch.I) where v is the (kinematic) viscosity of a current.

The primary upper bound (by Ladyzhenskaya, II'yashenko, and Chetaev
[3-5, 8]) of the dimension of a maximal attractor for the Navier-Stokes equation
on two-dimensional torus by means of the viscosity v had the form:

const

dimAttr < T
v

Also, Témam’s estimate [9] in an arbitrary two-dimensional domain M is known:

: [1£1l.2
dim Attr < ¢(M)R, R= AV
(here f is the exterior force and A; is the first eigenvalue of the Stokes operator),
which was then rewritten by I'yin in another form [6] (see also [2]).
The best known upper bound of the dimesion of a maximal attractor was
obtained by I'yin [7] (for the Navier-Stokes equation in a two-dimensional do-
main M in the presence of an exterior force f) and has the following form:

. 1 vol(M)
dim Attr S E ”f“L2 -—\’2— .
Additional literature is given in book [1].

[1] ArRNoOLD V.I., KHESIN B. A. Topological Methods in Hydrodynamics. New York:
Springer, 1998. (Appl. Math. Sci., 125.)

[2] CHEPYZHOV V.V., VISHIK M.I. A Hausdorff dimension estimate for kernel sec-

tions of nonautonomous evolution equations. Indiana Univ. Math. J., 1993, 42(3),
1057-1076.



1971-11 Comiments 255

3]

(4]

(5]

[6]

(7]

(8]

(9]

(1]

(2]

IL'YASHENKO YU. S. Weakly contracting systems and attractors of the Galerkin ap-
proximations of the Navier-Stokes equations on a two-dimensional torus. Uspekhi
Mekhaniki, 1982, 5(1-2), 31-63 (in Russian). [The English translation: Selecta Math.
Sov., 1992, 11(3), 203-239.]

IL’YASHENKO YU.S. On the dimension of attractors of k-contracting systems in an
infinite-dimensional space. Moscow Univ. Math. Bull., 1983, 38(3), 61-69.
IL'YASHENKO YU.S., CHETAEV A.N. On the dimension of attractors for a class
of dissipative systems. J. Appl. Math. Mech., 1983, 46(3), 290-295.

IL'YIN A. A. Partly dissipative semigroups generated by the Navier-Stokes system
on two-dimensional manifolds, and their attractors. Sb. Math., 1994, 78(1), 47-76.
IL'YIN A. A. Attractors for Navier-Stokes equations in domains with finite measure.
Nonlinear Anal., 1996, 27(5), 605-616.

LADYZHENSKAYA O. A. The finite-dimensionality of bounded invariant sets for the
Navier-Stokes system and other dissipative systems. Zap. Nauch. Semin. Leningrad.
Otd. Mat. Inst. Steklova, 1982, 115, 137-155 (in Russian). (Boundary Problems in
Mathematical Physics and Related Questions of the Function Theory, 14.)

TEMAM R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics.
New York: Springer, 1988. (Appl. Math. Sci., 68.)

1972-2 — 8. V.Chmutov

The problem was solved by A. M. Gabrielov [1] and E. Looijenga [2].

GABRIELOV A. M. Intersection matrices for certain singularities. Funct. Anal. Appl.,
1973, 7(3), 182-193.

LOOIIENGA E.J.N. On the semi-universal deformation of a simple-elliptic hyper-
surface singularity. II. The discriminant. Topology, 1978, 17(1), 23-40.

1972-3 — V.D. Sedykh Also: 1978-1, 1979-2, 1980-17

T3
% Problem a) was solved by L. N. Bryzgalova for n < 6 and by V. I. Matov for
any n where n is the dimension of the parameter x (see [6], and also [1-5]).

(1]

ARNOLD V.I. Lectures on bifurcations in versal families. Russian Math. Surveys,
1972, 27(5), 54-123.
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[2] ARNOLD V.I. Catastrophe Theory. Berlin: Springer, 1992, Sect. 10. [The Russian
original 1990.]

[3] ARNOLD V.I., VASSILIEV V. A., GORYUNOV V. V., LYASHKO O. V. Singular-
ities. I. Local and Global Theory. Berlin: Springer, 1993, Sect. 3.3. (Encyclopadia
Math. Sci., 6; Dynamical Systems, V1.) [ The Russian original 1988.]

[4] ARNOLD V.I., GUSEIN-ZADE S.M., VARCHENKO A.N. Singularities of Differ-
entiable Maps, Vol.I: The classification of critical points, caustics and wave fronts.
Boston, MA: Birkhauser, 1985, Sect. 10.3.5. (Monographs in Math., 82.) [The Rus-
sian original 1982.]

[5] LEVANTOVSKII L. V. Singularities of the boundary of the stability domain. Funct.
Anal. Appl., 1982, 16(1), 34-37.

[6] MATOV V.I. The topological classification of germs of the maximum and minimax
functions of a family of functions in general position. Russian Math. Surveys, 1982,
37(4), 127-128.

1972-5 — V. N. Karpushkin
' The uniform singularity index in terms of a phase in a degenerate point is
calculated through the individual index of the singularity of an oscillatory integral.
Concerning individual singularity indices, see [1,9, 10, 15]. Conjectures about
uniform estimates of oscillatory integrals with individual singularity index and
about the semicontinuity of singularity index were first formulated in [1].

Uniform estimates of oscillatory integrals with individual singularity index
for analytic phases depending on two variables were obtained in [5, 6]. These
results generalize those achieved by 1. M. Vinogradov for phases depending on one
variable [16], and by J. Duistermaat for simple singularities [3].

The results of Colin de Verdiere from [2] were partially extended by
V.N. Karpushkin for a phase in two variables [8].

D. A. Popov disproved Colin de Verdiere’s result for A3 [14]. Estimates
regarding partial perturbations of a phase were obtained in [7].

The conjecture about uniform estimates of oscillatory integrals with indi-
vidual singularity index is equivalent to the conjecture about the semicontinuity
of singularity index, for a linear perturbation of an R-nondegenerate semiquasi-
homogeneous phase in three variables, see [11]. A.N. Varchenko showed that the
conjecture about the semicontinuity of singularity index fails for R-nondegenerate
semiquasihomogeneous polynomials in R"” (n > 3), see [15]. Everything stated
above applies to volumes (areas, lengths) when a coordinate of the intersection
point of the line x; = - - - = x, with the bound of the Newton polyhedron of a phase
is greater than one [13].
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Uniform estimates of volumes (areas) with individual singularity indices
are true for all 0-modal and unimodal phases [4]. Uniform estimates with individ-
ual singularity indices probably hold for all unimodal phases except some phases
of series P,,, m > 8, and except phases of series R,,, see [1,4-6,9, 10, 15].

Uniform estimates of oscillatory integrals with the index being the maxi-
mum of individual singularity indices from all adjoining singularities are true for
the unimodal phases of series R, see [12].

[1] ARNOLD V.I. Remarks on the stationary phase method and Coxeter numbers. Rus-
sian Math. Surveys, 1973, 28(5), 19-48.

[2] CoLIN DE VERDIERE Y. Nombre de points entiers dans une famille homothétique
de domaines de R". Ann. Sci. Ecole Norm. Sup., Sér. 4, 1977, 10(4), 559-575.

[3] DUISTERMAAT J. Oscillatory integrals, Lagrangian immersions and unfolding of
singularities. Commun. Pure Appl. Math., 1974, 27(2), 209-281.

[4] KARPUSHKIN V. N. Uniform estimates of integrals with unimodal phase. Uspekhi
Mat. Nauk, 1983, 38(3), 128 (in Russian).

[5] KARPUSHKIN V.N. Uniform estimates of oscillatory integrals with a parabolic or
hyperbolic phase. Trudy Semin. Petrovskogo, 1983, 9, 1-39 (in Russian). [ The English
translation: J. Sov. Math., 1986, 33, 1159-1188.]

[6] KARPUSHKIN V. N. A theorem concerning uniform estimates of oscillatory integrals
when the phase is a function of two variables. Trudy Semin. Petrovskogo, 1984, 10,
150169 (in Russian). [ The English translation: J. Sov. Math., 1986, 35, 2809-2826.]

[71 KARPUSHKIN V. N. Uniform estimates for oscillatory integrals and volumes under a
partial deformation of a phase. In: Geometry and the Theory of Singularities in Non-
linear Equations. Voronezh: Voronezh University Press, 1987, 151-159 (in Russian).
(Novoe v Global'nom Analize, 7.)

[8] KARPUSHKIN V. N. Uniform estimates for some oscillating integrals. Sib. Math. J.,
1989, 30(2), 240-249.

[91 KARPUSHKIN V. N. Oscillatory integrals and volumes with semiquasihomogeneous
phase. Funct. Anal. Appl., 1992, 26(1), 46-48.

[10] KARPUSHKIN V. N. Dominant term in the asymptotics of oscillatory integrals with
a phase of the series T. Math. Notes, 1994, 56(6), 1304-1305.

[11] KARPUSHKIN V.N. A remark about uniform estimates and counterexample of
A.N.Varchenko. In: Some Problems of Fundamental and Applied Mathematics,
Moscow: Moscow Instintute of Physics and Technology Press, 1998, 74-79 (in Rus-
sian).

[12] KARPUSHKIN V. N. Uniform estimates of oscillatory integrals with phase from the
series Ry, Math. Notes, 1998, 64(3), 404-406,

[13] KARPUSHKIN V. N. Uniform estimates of volumes. Proc. Steklov Inst. Math., 1998,
221, 214-220.
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[14] Porov D. A. Estimates with constants for some classes of oscillatory integrals. Rus-
sian Math. Surveys, 1997, 52(1), 73-145.

[15] VARCHENKO A. N. Newton polyhedra and estimation of oscillating integrals. Funct.
Anal. Appl., 1976, 10(3), 175-196.

[16] VINOGRADOV I. M. The Method of Trigonometric Sums in the Number Theory.
Moscow: Nauka, 1971 (in Russian).

1972-6 — S.M. Gusein-Zade

In [1] it was indicated that this result had been proved in [2].

[1] ARNOLD V.I. Remarks on the stationary phase method and Coxeter numbers. Rus-
sian Math. Surveys, 1973, 28(5), 19—48.

[2] TYURINA G.N. The topological properties of isolated singularities of complex
spaces of codimension one. Math. USSR, Izv., 1968, 2, 557-571.

v 1972-7

The transversality conjecture was formulated by V. 1. Amnold in paper [1].

[11 ARNOLD V.I. Modes and quasimodes. Funct. Anal. Appl., 1972, 6(2), 94-101. [The
Russian original is reprinted in: Vladimir Igorevich Arnold. Selecta—60. Moscow:
PHASIS, 1997, 189-202.]

A 19727 — Ya. M. Dymarskit
% Sufficient conditions for the validity of this conjecture were obtained in

[3,5] (for a family of membranes) and in [1,2] (for a family of oscillating systems
parametrized by the potential). In [4], there is an example of a membrane family
for which the above-mentioned conditions from [3, 5] are not satisfied.

The first theorems substantiating the conjecture were proved in [6] for var-
ious one-dimensional families of oscillating systems.

Diverse aspects of the conjecture were considered by the author of the
present comment in his talk at V.1. Arnold’s seminar (Moscow, September 26,
2000).

[11 DYMARSKII YA. M. On manifolds of self-adjoint elliptic operators with multiple
eigenvalues. Methods Funct. Anal. Topology, 2001, 7(2), 68-74.
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[2] DYMARSKII YA. M. Manifolds of eigenfunctions and potentials of a family of peri-
odic Sturm-Liouville problems. Ukrain. Math. J., 2002, 54(8), 1251-1264.

[3] Lupo D., MICHELETTI A. M. On multiple eigenvalues of selfadjoint compact op-
erators. J. Math. Anal. Appl., 1993, 172(1), 106-116.

[4] Lupo D., MICHELETTI A. M. A remark on the structure of the set of perturbations
which keep fixed the multiplicity of two eigenvalues. Revista Mat. Apl., 1995, 16(2),
47-56.

[5] Lupo D., MICHELETTI A. M. On the persistence of the multiplicity of eigenvalues
for some variational elliptic operator depending on the domain. J. Math. Anal. Appl.,
1995, 193(3), 990-1002.

[6] UHLENBECK K. Generic properties of eigenfunctions. Amer. J. Math., 1976, 98(4),
1059-1078.

1972-8 — V.N. Karpushkin

Let G be a finite group, and let F be the set of all orthogonal representa-
tions of the group G in RY. The set F is a union of some connected components
of different dimension. Each of these connected components is a smooth manifold
and represents a class of equivalent representations. The problem is to investigate
components of the set F having maximal dimension. Representations correspond-
ing to these components are called “the most probable,” see [1].

Itis, however, worthwhile to mention that Theorems 1 and 3 from [3] about
the “most probable” representations of a finite group are actually not substantiated
in that the author has not succeeded to prove Lemma 5 of the latter paper.

P.S. (V. I. Arnold): See also [2] for newer results on unitary representations.

[1] ARNOLD V.I. Modes and quasimodes. Funct. Anal. Appl., 1972, 6(2), 94-101. [The
Russian original is reprinted in: Vladimir Igorevich Arnold. Selecta—60. Moscow:
PHASIS, 1997, 189-202.]

[2] ARNOLD V.I. Frequent representations. Moscow Math. J., 2003, 3(4), 14 pp.

[3] KARPUSHKIN V.N. On the asymptotic behavior of eigenvalues of symmetric man-
ifolds and on most probable representations of finite groups. Moscow Univ. Math.
Bull., 1974, 29(2), 136-139.
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1972-9 — A. I Neishtadt Also: 1966-1

% This is the question about the application of the averaging method to the
systems of the form

j:€f(1,(p,€), IER",
¢=€0(1)+€g(1,(p,€), (peTm'

Here € > 0 is a small parameter, and the righthand side of the system is 27t-periodic
with respect to all components @; of the vector ¢. The variables I are called slow
variables, and the variables ¢ are called fast variables or phases. The components
of the vector ® are called frequencies. The system under consideration is called a
perturbed system in the standard form of the averaging method or a system with
rotating phases.

For an approximate description of the evolution of slow variables I on time
intervals of lengths of order 1/¢, the averaging method prescribes to replace the
slow component I(¢) of the solution I(¢), @(t) of the system with rotating phases
by the solution J(¢), J(0) = I(0) of the averaged system

2n
J=¢F(J), 2n o " £0,0,0)d91 ..do.

The value sup |I(t)—J(¢)| is the error of the averaging method for the initial
0<t<l/e

data 1(0), ¢(0) on the time interval [0;1/€].

In the two-frequency case (m = 2) under the assumption that the ratio of
frequencies is changing with nonzero velocity along the solutions of the averaged
system, the following estimates are valid.

For any x > c+/€ one can choose a set of “bad” initial conditions of mea-
sure at most X in such a way that, outside this set, the error of the averaging
method is O(y/€lnk) on the time interval 0 <¢ < 1/¢ provided that some addi-
tional nondegeneracy condition (the so-called condition B) is satisfied [5, 6]. Here
c is some positive constant. For some set of initial data of measure ~ /€ the aver-
aging method may not work at all (i.e., it gives an error ~ 1) because of captures
into resonances. The further fate of phase points captured into resonance can also
be described [7]. There are estimates for the cases when condition B is replaced
by weaker nondegeneracy conditions [8]. If none of these nondegeneracy condi-
tions is satisfied, then for any ¥ > c\/€ one can choose a set of initial conditions
of measure at most K in such a way that, outside this exceptional set, the error



1972-9 Comments 261

of the averaging method is O(y/€/+/X); for analytic systems this estimate was ob-
tained in [9], and for the case of finite smoothness it follows from a union of results
of [5, 6] and [3, 4] (the case when there is only one slow variable was considered
in [5,6]). All estimates pointed out above cannot be improved. Detailed discussion
of the results expounded above is contained in books [1,2].

[1] ARNOLD V.I. Geometrical Methods in the Theory of Ordinary Differential Equa-
tions, 2nd edition. New York: Springer, 1988. (Grundlehren der Mathematischen Wis-
senschaften, 250.) [The Russian original 1978.]

[21 ARNOLD V.I., KozLOv V. V., NEISHTADT A.I. Mathematical Aspects of Clas-
sical and Celestial Mechanics, 2nd edition. Berlin: Springer, 1993. (Encyclopzdia
Math. Sci., 3; Dynamical Systems, III.) [The Russian original 1985.] [The second,
revised and supplemented, Russian edition 2002.]

[3] BAKHTIN V.I. Averaging method in multi-frequency systems. Ph.D. Thesis,
Moscow State University, 1986 (in Russian).

[4] BAKHTIN V.I. Averaging in a general-position single-frequency system. Differ.
Equations, 1991, 27(9), 1051-1061.

[5] NEISHTADT A.I. On some resonant problems in nonlinear systems. Ph. D. Thesis,
Moscow State University, 1975 (in Russian).

[6] NEISHTADT A.I. Passage through a resonances in the two-frequency problem. Sov.
Phys. Dokl., 1975, 20(3), 189-191.

[7]1 NEISHTADT A.I. Scattering by resonances. Celest. Mech. Dynam. Astron., 1996/97,
65(1-2), 1-20.

[8] PRONCHATOV V. E. An error estimate for the averaging method in the two-frequency
problem. Math. USSR, Sb., 1985, 50(1), 241-258.

[9] PrONCHATOV V.E. On an error estimate for the averaging method in the
two-frequency problem. Math. USSR, Sb., 1989, 62(1), 29-40.

1972-10 — A. I. Neishtadt Also: 1966-1

+'% The problem has been solved for two-frequency systems, see [1] and prob-
lem 1972-9. So, now “multi-frequency” means that number of frequencies is
greater than 2.

The possibility of using the averaging method in the multi-frequency case
follows from the general result about averaging in systems with slow and fast mo-
tions [2] (see also [5]). Estimates for the error of the averaging method for dif-
ferent relations between the number of slow variables n and the number of fast
variables m (which is equal to the number of frequencies) are contained in [3,4,6].
In particular, if n > m and the frequency map I — () is nondegenerate, then
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for any ¥ > c\/€ one can choose a set of initial data of measure at most ¥ in
such a way that, outside this set, the error of the averaging method is O(\/€/x)
on the time interval 0 < ¢ < 1/e [6] (the notations are the same as in the com-
ment to problem 1972-9). The same estimate is valid if n > m — 1 and the map
I— (@{I):0(I): - : 0n(I)) from the space of slow variables to the projective
space of ratios of frequencies is nondegenerate.

For n < m the image of the domain of the slow variables space for the
frequency map I — () is a surface M of positive codimension in the frequency
space. The deduction of the estimates for the averaging method error in this case
is based on results about Diophantine approximations on M, see problem 1970-5.
For n < m — 1 it is reasonable to consider also an analogous surface M’ in the space
of ratios of frequencies.

For any m and n the above-mentioned estimate of the averaging method
error is valid for almost all members of a generic family of frequency maps de-
pending on a sufficiently large number of parameters [3]. This estimate is also
valid, if M satisfies some curvature condition given in [4]. It is shown in [3] that
for generic maps ® outside some exceptional set of initial data of measure < K
(with prescribed K > c1/€) the error of the averaging method is O(e!/(P+1) /x) on
the time interval 0 < ¢ < 1/¢ provided that CZ, p = h+m. The required genericity
condition for ® is presented in [3] in an explicit form. Maps ® that do not comply
with this condition belong to a codimension 1 surface in the functional space of all
maps ®. The above-mentioned estimates cannot be improved in the class of power
estimates and under conditions that were used to derive these estimates. These
conditions are imposed only on the map ®. It seems plausible that it may be pos-
sible to improve these estimates, if we impose some condition of generic mutual
disposition of resonant surfaces k- @ = 0, k € Z™, and vector field of the averaged
system (as it was made for two-frequency case, cf. problem 1972-9). Therefore,
the problem under discussion cannot currently be considered as a solved one.

[1] ARNOLD V.I. Conditions for the applicability and estimate of the error of an aver-
aging method for systems which pass through the states of resonance in the course of
their evolution. Sov. Math. Dokl., 1965, 6, 331-334. [ The Russian original is reprinted
in: Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 69-74.]

[2] ANosov D. V. Averaging in systems of ordinary differential equations with rapid-
ly oscillating solutions. Izv. Akad. Nauk SSSR, Ser. Mat., 1960, 24(5), 721-742 (in
Russian).

[3] BAKHTIN V.I. Averaging in multi-frequency systems. Funct. Anal. Appl., 1986,
20(2), 83-88.
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[4] DoODSON M.M., RYNNE B.P., VICKERS J. A.G. Averaging in multi-frequency
systems. Nonlinearity, 1989, 2(1), 137-148.

[5] KASUGA T. On the adiabatic theorem for the Hamiltonian system of differential
equations in the classical mechanics, I; II; III. Proc. Japan. Acad., 1961, 37(7),
366-371; 372-376; 377-382.

[6] NEISHTADT A.I. Averaging in multi-frequency systems, IL. Sov. Phys. Dokl., 1976,
21(2), 80-82.

1972-11 — V. A. Vassiliev

The cohomology rings of braid groups of series D and C were calculated by
V. V. Goryunov [1], and of all other braid groups (including E) by M. Salvetti [2].

[1] GorYUNOV V.V. Cohomology of braid groups of series C and D. Trans. Moscow
Math. Soc., 1982, 42, 233-241.

[2] SALVETTI M. The homotopy tupe of Artin groups. Math. Res. Lett., 1994, 1(5),
565-5717.

1972-12 — V.D. Sedykh Also: 1973-2, 1976-32, 1981-28
» + Let M be a smooth closed k-dimensional submanifold in R”. The convex
hull of a manifold M is the intersection of all half-spaces containing M. A germ of
the convex hull at a point of its boundary is called a singularity of the convex hull.
Two singularities are said to be equivalent if one singularity can be transferred to
the other by a suitable diffeomorphism of R".

We consider the classification of singularities of the convex hulls of generic
submanifolds with respect to this equivalence. Generic submanifolds are defined
by embeddings M — R”" which belong to a certain open dense subset in the space
of all embeddings of M into R” equipped with the C*-topology.

Except the trivial cases k = 0, n = 1, n = 2, the indicated classification is
obtained only for n = 3.

Theorem [3,5]. Singularities of the convex hull of a smooth closed generic curve
in R> are equivalent to germs at zero of the sets

220, z2xl, z>|,
z>min(* +u’ +yr),  z>min’(x,y,0),  {z>min’(x,,0), x+y > 0}.
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Theorem [11]. Singularities of the convex hull of a smooth closed generic surface
in R? are equivalent to germs at zero of the sets

220, z>xlxl,  z>pi(xy)

where p(x,y) is the distance from a point (x,y) to the angle y > o|x|, & > 0, ot # 1.

The number o is a module (continuous invariant): singularities with differ-
ent o are not equivalent. For n > 3, singularities of convex hulls have moduli as
well.

Theorem [8]. For n > 5, there are smooth closed submanifolds of codimension
1 and 2 in R" such that some singularities of their convex hulls have functional
moduli which cannot be removed by small deformations of a submanifold.

Theorem [4,6,7]. Foranyn >4 and k=1,...,n—3, and for any natural num-
ber N, there are smooth closed k-dimensional submanifolds in R" such that some
singularities of their convex hulls have at least N functional moduli (of k variables)
which can not be removed by small deformations of a submanifold.

Singularities of convex hulls of smooth closed two-dimensional and three-
dimensional generic surfaces in R* have moduli (see [4, 6]). Normal forms of
some singularities of convex hulls in these dimensions were obtained in [1,9, 10].
Moreover, it is proved in [1] that singularities of convex hulls of smooth closed
generic hypersurfaces in R* have no functional moduli. I think that singularities
of convex hulls of smooth closed generic two-dimensional surfaces in R* have no
functional moduli as well (see [6]).

Problem 1972-12 is connected with the problem on the smoothness of the
boundary of the vector sum of two convex bodies which are bounded by smooth
hypersurfaces. For some results on this problem see [2].

[1] BOGAEVSKY I. A. Singularities of convex hulls of three-dimensional hypersurfaces.
Proc. Steklov Inst. Math., 1998, 221, 71-90.

[2] KISELMAN C. O. How smooth is the shadow of a smooth convex body. J. London
Math. Soc., Ser. 2, 1986, 33(1), 101-109; Serdica Math. J., 1986, 12(2), 189-195.

[3] SEDYKH V.D. Singularities of the convex hull of a curve in R3. Funct. Anal. Appl.,
1977, 11(1), 72-73.

[4] SEDYKH V. D. Moduli of singularities of convex hulls, Russian Math. Surveys, 1981,
36(5), 175-176.

[5] SEDYKH V.D. Structure of the convex hull of a space curve. Trudy Semin. Petrov-

skogo, 1981, 6, 239-256 (in Russian). [The English translation: J. Sov. Math., 1986,
33, 1140-1153.]
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[6] SEDYKH V.D. Singularities of convex hulls. Sib. Math. J., 1983, 24(3), 447—-461.

[7] SEDYKH V.D. Convex hulls and the Legendre transform. Sib. Math. J., 1983, 24(6),
923-933.

[8] SEDYKH V.D. Functional moduli of singularities of convex hulls of manifolds of
codimension 1 and 2. Math. USSR, Sb., 1984, 47(1), 223-236.

[91 SEDYKH V.D. Stabilization of singularities of convex hulls. Math. USSR, Sb., 1989,
63(2), 499-505.

[10] SEDYKH V.D. The sewing of a swallowtail and a Whitney umbrella in a
four-dimensional controlled system. In: Proceedings of Gubkin State Oil and Gas
Academy. Moscow: Neft' i Gaz, 1997, 58—68 (in Russian).

[11] ZAKALYUKIN V. M. Singularities of convex hulls of smooth manifolds. Funct. Anal.
Appl., 1978, 11(3), 225-227.

1972-13 — V. A. Vassiliev

.” For any isolated semiquasihomogeneous function singularity, the modality
equals the number of linearly independent elements of the local ring whose quasi-
homogeneous degrees are greater than or equal to the degree of the principal part
of the function.

This equality consists of two inequalities. One of them (the modality is not
less than this number) was proved in [1], where it also was conjectured that this
estimate is sharp. This conjecture was later proved in [3].

In particular, for the Brieskorn singularity Y7, x{, this number is equal to
the number of points (ki,...,k,) of the integral lattice Z; satisfying the conditions
ki<a;—2foranyiand ¥} ki/a; > 1.

A related result for [-nondegenerate isolated singularities of two variables:
the modality of such a singularity equals the number of integral lattice points in
the domain bounded by the Newton diagram and two rays issuing from the point
(2,2) and parallel to positive coordinate rays. This formula was also conjectured
in [1] and then proved in [2].

[1] ARNOLD V.I. Normal forms of functions in neighborhoods of degenerate critical
points. Russian Math. Surveys, 1974, 29(2), 10-50.

[2] KUSHNIRENKO A. G. Polyedres de Newton et nombres de Milnor. Invent. Math.,
1976, 32(1), 1-31.

[3] VARCHENKO A.N. A lower bound for the codimension of the stratum | = const in
terms of the mixed Hodge structure. Moscow Univ. Math. Bull., 1982, 37(6), 30-33.
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v 1972-14 — V.V. Goryunov
% H.Knorrer showed in [5] that the complement of the discriminant of the
simple zero-dimensional complete intersection x> = y> = 0 in C? has a non-triv-
ial second homotopy group. Perhaps this is the only negative example known
up to now.

On the other hand, there exist many positive examples (see [1,2] for some
of them), provided mainly by simple singularities of various classifications. The
only positive examples coming from non-simple cases are those by P. Jaworski of
the bifurcation diagrams of functions of the parabolic function singularities [4].

One of the interesting related problems is that of whether the discriminants
of Shephard-Todd groups [7] possess the K(x,1) property. At the moment, the
question remains open just in 6 cases (groups nos. 24, 27, 29, 31, 33 and 34 of [7])
and has been answered positively in all the others [6]. The G3; discriminant is
depicted in [3].

[1] ARNOLD V.I., VASSILIEV V. A., GORYUNOV V. V., LYASHKO O. V. Singulari-
ties. I. Local and Global Theory. Berlin: Springer, 1993, Ch. 2, Sect. 5. (Encyclopadia
Math. Sci., 6; Dynamical Systems, V1.) [ The Russian original 1989.]

[2] ARNOLD V.I., VASSILIEV V. A., GORYUNOV V.V., LYAsHKO O.V. Singulari-

ties. II. Classification and Applications. Berlin: Springer, 1993, Ch. 1. (Encyclopadia
Math. Sci., 39; Dynamical Systems, VIIL) [ The Russian original 1989.]

[3] GoryuUNOV V.V., BAINES C.E. Cyclically equivariant function singularities and
unitary reflection groups G(2m,2,n), Gy and Gj3). St. Petersburg Math. J., 2000,
11(5), 761-774.

[4] JAwWORSKI P. Distribution of critical values of miniversal deformations of parabolic
singularities. Invent. Math., 1986, 86(1), 19-33.

[5] KNORRER H. Zum K(=,1)-Problem fiir isolierte Singularititen von vollstindigen
Durchschnitten. Compos. Math., 1982, 45(3), 333-340.

[6] NAKAMURA T. A note on the K(%, 1) property of the orbit space of the unitary re-
flection group G(m, I, n). Sci. Papers College Arts Sci. Univ. Tokyo, 1983, 33(1), 1-6.

[71 SHEPHARD G.C., TopD J. A. Finite unitary reflection groups. Canad. J. Math.,
1954, 6, 274-304.

A 1972-14 — V. A. Vassiliev

./~ For many classification problems the complements of suitably defined bi-
furcation diagrams of simple (i. e., 0-modal) objects turn out to be K(x, 1)-spaces;

see, in particular, [1-6,8,9].

Et
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However, for singularities of complete intersections C> — C2 this is not
the case: H. Knorrer showed in [7] that the complement of the discriminant of the
complete intersection (x2,y?) in C? has non-trivial group 7t,.

For non-simple singularities nothing is known to me.

[11 BRIESKORN E. Sur les groupes de tresses [d’aprés V. 1. Arnold]. In: Séminaire Bour-
baki, 24eme année (1971/1972), Exp. No. 401. Berlin: Springer, 1973, 21-44. (Lec-
ture Notes in Math., 317.)

[2] DELIGNE P. Les immeubles de groupes de tresses généralisés. Invent Math., 1972,
17, 273-302.

[3]1 GORrRYUNOV V. V. Geometry of bifurcation diagrams of simple projections onto the
line. Funct. Anal. Appl., 1981, 15(2), 77-82.

[4] GOryYuUNOV V. V. Projection of 0-dimensional complete intersection onto a line and
the K(m, 1)-conjecture. Russian Math. Surveys, 1982, 37(3), 206-208.

[51 GoryuUNoOV V. V. Singularities of projections of complete intersectrions. In: Ito-
gi Nauki i Tekhniki VINITI. Current Problems in Mathematics, Vol. 22. Moscow:
VINITI, 1983, 167-206 (in Russian). [ The English translation: J. Sov. Math., 1984,
27, 2785-2811.]

[6] GORYUNOV V. V. Vector fields and functions on the discriminants of complete inter-
sections, and bifurcation diagrams of projections. In: Itogi Nauki i Tekhniki VINITI.
Current Problems in Mathematics. Newest Results, Vol. 33. Moscow: VINITI, 1988,
31-54 (in Russian). [ The English translation: J. Sov. Math., 1990, 52(4), 3231-3245.]

[71 KNORRER H. Zum K(=, 1)-Problem fiir isolierte Singularititen von vollstandigen
Durchschnitten. Compos. Math., 1982, 45(3), 333-340.

[8] LoonENGA E.J.N. The complement of the bifurcation variety of a simple singular-
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1972-16 — V.I. Arnold

% The corresponding phase curve is given by the equation > +3p? + |p|* =4
in the phase plane (in suitable coordinates); see papers [1-3].

[11 ROYTVARF A. A. The motion of a continuous medium in the force field with a rooted
singularity. Moscow Univ. Mech. Bull., 1987, 42(1), 24-21.

[2] ROYTVARF A. A. Two-valued velocity field with a square root singularity. Moscow
Univ. Mech. Bull., 1988, 43(3), 16-19.

[3] ROYTVARF A. A. On the dynamics of a one-dimensional self-gravitating medium.
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1972-17

s This is a problem in V.I. Amold’s comment [1] to H.Poincaré’s paper
“On a geometric theorem” (“Sur un théoreme de géométrie”). The conjectures
on the number of fixed points of symplectomorphisms were first formulated by
V. 1. Amold in paper [2a] (see also [2b]); see problems 1965-1-1965-3.

[1] ARNOLD V.I. A comment to H. Poincaré’s paper “Sur un théoréme de géométrie.”
In: POINCARE H. Selected Works in Three Volumes (in Russian). Editors: N. N. Bo-
golyubov, V.I1. Arnold and I. B. Pogrebysskil. Vol.II. New methods of celestial me-
chanics. Topology. Number theory. Moscow: Nauka, 1972, 987-989 (in Russian).

[2a] ARNOLD V.I. Sur une propriété topologique des applications globalement canon-
iques de la mécanique classique. C. R. Acad. Sci. Paris, 1965, 261(19), 3719-3722.
The Russian translation in:

[2b] Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 81-86.

See the comment to problem 1972-33.

1972-18

This is a problem in V.I. Amold’s comment [1] to H.Poincaré’s paper
“On a geometric theorem” (“Sur un théoréme de géométrie™).

[11] ARNOLD V.I. A comment to H.Poincaré’s paper “Sur un théoréme de géométrie.”
In: POINCARE H. Selected Works in Three Volumes (in Russian). Editors: N.N,Bo-
golyubov, V.I. Arnold and I B. Pogrebysskii. Vol.II. New methods of celestial me-
chanics. Topology. Number theory. Moscow: Nauka, 1972, 987-989 (in Russian).

See the comment to problem 1970-10.

1972-20 — A. A. Glutsyuk, M. B. Sevryuk
Also: 1959-1, 1963-4, 1994-53

" This problem has a rich history starting from the works by H. Poincaré
and A.Denjoy. The great progress achieved in examining the questions pointed
out in the problem for the last 40 years has been primarily due to V.I. Amold,
M. R. Herman, J.-C. Yoccoz, and R. Pérez-Marco. In this brief comment, we shall
confine ourselves to a list of their main works dealing with the topics under
consideration. !

! In these works, the history of the problem is expounded and references to papers and books by
other authors are given as well.
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V.I1. Amold proved in 1958 (see [1,3,4] and the preliminary publication [2])
that any orientation preserving analytic diffeomorphism of a circle with Diophan-
tine? rotation number p, sufficiently close to the rotation through the angle 27,
is analytically reducible to this rotation. He also formulated the conjecture on the
existence of a subset M C [0;1] of measure 1 such that any analytic diffeomor-
phism of a circle with rotation number L € M (not necessarily close to a rotation)
is analytically reducible to the rotation through the angle 2np1. The history of this
discovery is described by V.1. Amold in his recollections [6].

Arnold’s conjecture (as well as its modified version stating the smooth re-
ducibility of smooth—of class C” with ry < r < +eo—diffeomorphisms of the cir-
cle) was proved by M.R. Herman in 1976 [8, 10, 12]. The set M dealt with in
Armmold’s conjecture is the set of Diophantine numbers. Some preliminary results
were obtained by Herman in [7,9, 11]. In 1985, Herman found a much simpler
proof of the theorem on the reducibility to a rotation of circle diffeomorphisms
(close to a rotation) with almost every rotation number [15]. Of Herman’s other
papers concerning the reducibility of circle diffeomorphisms and related questions,
we mention [13, 14].

M.R. Herman’s results on circle diffeomorphisms were refined and im-
proved essentially by his student J.-C. Yoccoz in works [30-34,37].3

The remaining items of the problem (those on topological obstacles to an-
alytically straightening a circle diffeomorphism, to prolonging the annulus of re-
ducibility of a circle diffeomorphism to a rotation, and to prolonging the reducibil-
ity disk in Siegel’s problem on linearizing germs of holomorphic mappings of the
complex plane;* here one can add the question on topological obstacles to the
linearization itself in Siegel’s problem) pertain to the so-called materialization of
resonances in holomorphic dynamics. Conjectures on the existence of topological
obstacles (in the form of periodic orbits) to reducibility of analytic circle diffeo-
morphisms and linearization of germs of holomorphic mappings (C,0) — (C,0)
were formulated by V. 1. Arnold in 1958 (see a detailed discussion in [5] as well

2 Recall that a number p € R is said to be Diophantine if there exist positive constants T and y such
that |gi — p| > y/4° for all rational p/q (p € Z, g € N). In particular, all the Diophantine numbers
are irrational. The converse is not true, but non-Diophantine numbers constitute a set of measure
zZero.

3 See also papers [19,28] by K. M. Khanin and Ya. G. Sinat, paper [29] by J. Stark, and papers [17,
18] by Y. Katznelson and D. S. Ornstein.
4 The classical results in the latter problem were obtained by C.L.Siegel and A.D.Bruno, see

Herman’s detailed survey [16] as well as the references in J.-C. Yoccoz’s and R.Pérez-Marco’s
works [20-27, 35, 36] cited below.
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as recollections [6]). These conjectures have been proved in part and disproved in
part by R. Pérez-Marco and J.-C. Yoccoz.

In note [20], R. Pérez-Marco constructed examples of germs of holomor-
phic mappings (C,0) — (C,0), z — e*™%z+ O(z?), with o irrational, that are re-
duced to the rotation w — ¢?™%w by no local holomorphic transformation w =
z+ O(z?) and, at the same time, have no periodic orbits other than the origin in
a neighborhood of the origin. Moreover, paper [20] described all the numbers
o € [0;1]\ Q for which there exist germs with the properties indicated. The set
of all such o is of measure zero. These examples were expounded in more de-
tail in work [23] where Pérez-Marco constructed also examples of analytic cir-
cle diffeomorphisms with irrational rotation number L that are not reduced to
the rotation through the angle 2wy by an analytic change of variables and, at
the same time, have no periodic orbits in a complex neighborhood of the cir-
cle. In paper [26], Pérez-Marco constructed examples of conformal mappings
(C,0) — (C,0), z — €*™%z+ O(z?), that are holomorphically reducible to a ro-
tation in a neighborhood of the origin, are one-sheeted in a neighborhood of the
disk of reducibility to a rotation, and have no periodic orbits other than the origin.
Moreover, the boundary of the reducibility disk in these examples is a C”-smooth
Jordan curve. As far as the authors of the present comment know, the question
whether the numbers o for which such mappings exist constitute a set of measure
zero is still open.

Of other papers by Pérez-Marco, as well as of Yoccoz’s papers devoted to
the problems of the linearization and structure of germs of holomorphic mappings
of the complex plane, we mention [21,22,24,25,27,35,36].

All the holomorphic nonreducibility examples with no neighboring period-
ic orbits, constructed by Pérez-Marco, seem to be exceptional, i. e., to belong to a
very small set of those holomorphic mappings which have a given rotation number.
But the corresponding exceptionality theorem has not yet been formally proved.

[1] ArRNOLD V.I. On mappings of the circle onto itself. Diploma Thesis, Faculty of
Mechanics and Mathematics of Moscow State University, 1959 (in Russian).

[2] ARNOLD V.I. On analytic mappings of the circle onto itself. Uspekhi Mat. Nauk,
1960, 15(2), 212-214 (in Russian).

[3] ARNOLD V.I. Small denominators I. Mappings of the circumference onto itself. Izv.
Akad. Nauk SSSR, Ser. Mat., 1961, 25(1), 21-86; corrigenda: 1964, 28(2), 479—480
(in Russian). [The English translation: AMS Transl., Ser. 2, 1965, 46, 213-284.]

[4] ARNOLD V.I. Geometrical Methods in the Theory of Ordinary Differential Equa-

tions, 2nd edition. New York: Springer, 1988, §§ 11-12. (Grundlehren der Mathema-
tischen Wissenschaften, 250.) [ The Russian original 1978.]
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1972-21 — M. B. Sevryuk Also: 1963-5

.~ This problem deals with systems of ordinary differential equations of the
form
¢=0, i=A(Qx; ¢eT' =R"/2rZ", xeR", 1)

where ® is a constant vector with rationally independent components while A is
a smooth matrix-valued function on T”. Such systems are called linear equa-
tions with quasi-periodic coefficients. The manifold {x = 0} is an invariant n-
dimensional torus of system (1) which carries quasi-periodic motions with fre-
quency vector ®. The question is under what conditions system (1) is reducible,
i. e., there exists a smooth change of variables x = B(¢)y turning (1) into a linear
equation with constant coefficients

(p:(l), y:Cy

In the case of periodic coefficients n = 1 (i.e., where {x = 0} is a closed
trajectory of period 2%/|®|), the classical Floquet theorem guarantees the exis-
tence of the desired change of variables x = B(¢)y provided that the matrix-valued
function B(@) is allowed either to range in GL(N,C) or to be 4n-periodic. The
conditions on A(¢) under which the function B(¢) can be chosen to be real-valued
and 2x-periodic are also known. On the other hand, our knowledge of the much
more difficult case n > 1 is still far from being exhaustive in spite of the rich body
of literature devoted to this case. The reducibility problem for linear equations
with quasi-periodic coefficients is discussed in the general context of the theory
of quasi-periodic motions in dynamical systems in V. 1. Amold’s works [2, 3] (in
book [3], a proof of the Floquet theorem is given).

In the case n > 1, the reducibility problem is usually considered under the
following additional condition: There exist positive constants T and 7y such that
|g- ®| > v|q|™" for all g € Z"\ {0} where g-® = q1@; + -+ + ¢,®, and |g| =
max(|q1],-..,|gn|). If this condition is met the frequency vector ® is said to be
Diophantine. Apart from that, one often assumes that the function A(¢) is analytic.
For N =1 and ® Diophantine, system (1) is always reducible; a detailed proof of
this statement for A(¢) analytic is presented in, e. g., book [5].
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Reducible systems are typical. For each N > 2 and for a fixed Diophan-
tine vector ®, the reducible functions A(@) fill up a certain domain in the function-
al space of all the analytic matrix-valued functions on the n-torus. This was first
shown in papers [1, 15].

Irreducible systems are typical. For N > 2, irreducible functions A(¢)
fill up a domain as well—at least for some vectors (it is unknown whether there
are Diophantine vectors among such vectors ®)—in the functional space of all the
matrix-valued functions (even in the C%-topology). This was proved in works [6,
8,9]. Moreover, the irreducible systems (1) considered in [6, 8, 9] are reduced to
a linear equation with constant coefficients not only by no linear quasi-periodic
change of variables (with the same frequency vector ® or its multiple) but also by
no linear almost periodic change of variables. ! Putting it another way, there is no
smooth almost periodic matrix-valued function B = B(t), B: R — GL(N, R) such
that the matrix

C=B"'A(wt)B— B! dB/dt

is independent of t. On the other hand, the author of the present comment has
failed to find in the literature examples of systems (1) irreducible in the usual sense
(by quasi-periodic changes of coordinates with the same frequency vector ®) but
reducible by some almost periodic change of coordinates.

One of the generalizations of the concept of reducibility for systems (1)
is almost reducibility. A system x = A(t)x, t € R, x € R, with an arbitrary
continuous coefficient matrix A(¢) is said to be almost reducible (in the sense of
B. F Bylov) if there exists a constant matrix C’ € gl(N, R) such that, for any & > 0,

~

there is a differentiable change of coordinates x = Bs(t)y satisfying the conditions
Bs| < +oo,  |Bg!|<+oo,  |dBs/dt| < +oo

(such linear changes are called Lyapunov changes) and casting the system x =

—~

A(t)x to the system y = [C' + W5(r)]y with |[W5| < 8. Here

M| = supm{gx IM;;(t)| for M:R — gl(N,R).
1eR bi=1

For the general theory of almost reducible systems of differential equations see,
e. g., monograph [7] (cf. also [14]).

' A function on R is said to be almost periodic (in the sense of H. Bohr) if it belongs to the closure
of the space of trigonometric polynomials in the metric of uniform convergence.
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Not all the systems are almost reducible. In paper [28], examples of
systems (1) were constructed for all n > 1, N > 1 for which the system x = A(wt)x
is not almost reducible.

Almost reducible systems are typical. In the space of linear differential
equations with almost periodic coefficients, almost reducible systems are typical.
For the precise formulation and a proof of this statement, see paper [29].

Irreducible systems of type (1) with discrete time (diffeomorphisms) were
constructed in works [16,17,37]. In a recent paper [19], an interesting numerical
method for exploring the linearized normal behavior of invariant curves of diffeo-
morphisms is invented, the rotation numbers of the curves being assumed to be
irrational. In some cases, this method can detect the irreducibility of the linearized
system.

The reducibility problem for systems (1) is closely connected with the
asymptotic behavior of integrals of quasi-periodic functions. For simplicity, con-
sider, e. g., the case N = 1. If a coordinate change x = §(t)y reduces an equation
% = A(t)x to the form y = Cy with C = const (here x € R, y € R), then the “gen-
eral solution” of the equation % = A (¢ )x has the form x(1) = c;e/®) = ¢,B(r)e
where

1) = /0 ' A(wr) dr.

If the mean value of the function A(¢) over the torus T" vanishes then I(z) = o()
as t — oo according to H. Wey!’s theorem on the coincidence of the temporal mean
and spatial mean. Then C = 0 (provided that the change x = By is almost periodic).
In turn, this implies that I(z) = O(1) as t — co. On the other hand, for many classes
of non-Diophantine vectors ® € R”", there are known examples of smooth functions
A:T" — R with zero mean and unbounded (as ¢ — oo) integral I(¢), see, e. g., [34].
If the mean value of the function A vanishes but the integral /(z) is not bounded as
t — oo, then system (1) is reduced to an equation with constant coefficients by no
almost periodic change of coordinates.

Among the latest works dealing with asymptotic properties of integrals of
quasi-periodic functions, we mention papers [31-33].

Many works have been devoted to exploring the reducibility of system (1)
for a nearly constant matrix A(¢). Among those works, we mention mono-
graph [4], and among the recent works, papers [14,21,22]. In work [18], sufficient
conditions for the reducibility of system (1) are given without the assumption that
the matrix A(¢@) is close to a constant one.
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In the case of Hamiltonian systems, the reducibility problem is closely
connected with the presence of sufficiently many first integrals, see [27].

In paper [20], the so-called effective reducibility of systems (1) is consid-
ered. In this work, it is supposed that A = Ay + €0(¢,€) where the matrix Ag
is constant and € is a small parameter, and the question is examined of reducing
system (1) to the form

¢=0, y= [AE(E) +R*((p,€)]y

with the remainder R* (¢, €) exponentially small with respect to € as € — 0.

For a “singular” dependence of the matrix A on the small parameter €, the
effective reducibility of systems (1) was explored earlier. The cases A = eQ(9,€)
and A = ¢~1Q(¢, &) were considered, e. g., in paper [35] and in paper [36], respec-
tively.

One of the important particular cases of the reducibility problem for sys-
tems (1) is the reducibility of the one-dimensional Schrodinger equation with a
quasi-periodic potential. This problem was treated in, e. g., papers [10, 11, 14, 30,
36], whereas its discrete analogue was treated in works [12, 13].

Note finally that the reducibility problem can be formulated for systems of
the form

=0, i=A(9)x eeT", xe€G; A:T"—g=T,G, )

where G is an arbitrary compact Lie group and g is its Lie algebra (e being the
unit of G). Here A(¢@)x should be understood as (DR,)A(¢) where R,: G — G
denotes the right shift of the group G generated by x, while DR,: g — T,G is
the induced mapping of the tangent spaces. For the results on the reducibility of
systems (2) and their discrete time analogues, see, e. g., R. Krikorian’s works [23-
26] and L. H. Eliasson’s recent paper [14]. The case G = SL(2,R) corresponds in
fact to one-dimensional Schrddinger operators with quasi-periodic coefficients.
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1972-22 — M. B. Sevryuk

A smooth submanifold M C R”" is said to be extremal if, for almost all the
points x € M (with respect to the Lebesgue measure on M), the supremum of the
set of numbers w > 0 such that the inequality

lg-x+qo| <lg|™ (1)

possesses infinitely many integer solutions (g € Z"\ {0}, qo € Z) is equal to n
[here g-x = q1x1 + - +quxn and |g| = max(|q1|, ..., |gn|)]. Diophantine inequali-
ties of type (1) are considered in more detail in the comment to problem 1970-5. 1
It is easy to show that every open domain of the space R” is extremal. K. Mahler’s
famous conjecture of 1932 (to be more precise, the “real” part of that conjecture)
consisted in that the curve {{t,#2,...,t") |t € R} is extremal. Mahler’s conjecture
was proved by V. G. Sprindzuk, see [11, 12].

' That almost all the points of a generic smooth submanifold M C R” of any positive dimension are
Diophantine was first proved (without extremality) by A. S. Pyartli [9].
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The first theorem on the extremality of general submanifolds was due to
W. M. Schmidt who proved in work [10] that planar C3-curves whose curvature
is positive almost everywhere are extremal. The analogous theorem for curves in
three-dimensional space was obtained 30 years later in papers [1,2].

The extremality of generic submanifolds M™ C R” for each n and m > n/2
was proved in works [4, 13, 14], and for m(m +3)/2 > n in papers [5, 6].

A detailed survey of the theory of extremal manifolds up to the end of the
seventies is presented in V. G. SprindZuk’s book [14] and in his paper [15]; for an
up-to-date survey see book [3] by V.I. Bernik and M. M. Dodson.

The extremality of generic submanifolds M™ C R" without any restrictions
on m and n was established in work [8] using ideas from the ergodic theory of
flows on lattices. The results by D. Ya. Kleinbock and G. A. Margulis [8] and other
recent achievements in the theory of Diophantine approximations are discussed in
detail in book [3], in book [16], Ch.IV, and in survey [7].
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v 1972-23 — A.A. Glutsyuk Also: 1976-30

The statement of problem 1972-23 is the gradient conjecture formulated
by R. Thom [4]. It was proved in the joint work by K.Kurdyka and T. Mostow-
ski (announced in [1]) and published in the joint paper by the same authors and
A. Parusinski [2].

N For the historical review of the problem and previous results see pa-
pers [2,3] and the bibliography to them.

[1] KurRDYKA K. On the gradient conjecture of R. Thom. In; Seminari di Geometria.
1998-1999 (Bologna, 1997). Editor: S.Coen. Bologna: Univ. Studi Bologna, 2000,
143-151.

[2] KUuRDYKA K., MOSTOWSKI T., PARUSINSKI A. Proof of the gradient conjecture
of R. Thom. Ann. Math., Ser. 2, 2000, 152(3), 763-792.

[3] Moussu R. Surladynamique des gradients. Existence de variétés invariantes. Math.
Ann., 1997, 307(3), 445-460.

[4] THOM R. Problémes rencontrés dans mon parcours mathématique: un bilan. Inst.
Hautes Etudes Sci. Publ. Math., 1989, 70, 199-214.
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A 1972-23 — D. I Novikov Also: 1976-30

Let x(¢) be a trajectory of the gradient vector field Vf of a real analytic
function f: R" — R, and suppose that lim,_, ;.. x(t) = xo is a critical point of f.
The “gradient conjecture of R. Thom” claims that there exists a limit of secants to
this trajectory:

. x(t)—xp

lim ———.

1= [x(t) — x|
The conjecture was proved recently in [1]. In fact, the authors prove that the tra-
jectory x(t) has finite length after a standard blow-up with center xq, by using
essentially only a F.ojasiewicz’s inequality. The proof is motivated by the classic
proof of Lojasiewicz of the finitenes of the length of x(t).

The conjecture on the limit existence of the tangent to a trajectory

L VAG()
ZE0)

is stronger: even if the derivative exists at a point, the limit of the derivatives might
not exist at that point. It is still open, as well as the following (stronger) finiteness:
the trajectory x(¢) intersects any analytic set A in a finite number of points (or stays
in A).

[11 KURDYKA K., MosTOWSKI T., PARUSINSKI A. Proof of the gradient conjecture
of R. Thom. Ann. Math., Ser. 2, 2000, 152(3), 763-792.

v 1972-26 — V.M. Kharlamov

A similar question is found in the sixteenth Hilbert problem. The beginning
of the 70s, when Amold includes it into his list, marks a turning point in topology
of real algebraic varieties influenced, to a great extent, first, by Gudkov’s classi-
fication of real plane sectics and Gudkov’s general conjectures based on it, and,
second, by Amold’s illuminating paper on arrangements of ovals of real algebraic
plane curves (see the comment to problem 1976-36).

To get an idea of the achievements in this domain, one can see surveys
[1-5].

As an example, let us state two basic, rather sharp, bounds on the Betti
numbers, noticing that, however, even for Betti numbers the whole range of their
values is far from being well understood (for more details and references one can
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look, for example, at the survey by Degtyarev and Kharlamov [2]). For simplici-
ty, consider a compact nonsingular hypersurface A in R™. Denote by RA the set
of its real points and by CA the set of its complex points. The so-called Petro-
vskii-Oleinik inequality bounds the Euler characteristic of RA. According to it,
if m is odd, |1 —x(IRA)| is bounded by some explicit polynomials in »n of de-
gree m. These polynomials count the number of integral points which belong to
the layer 4(m—1)n < xi+ -+ X < 4(m+1)n of the open cube |0; n[". The oth-
er bound, the so-called Smith-Thom inequality, states that the total Betti number
Y b;(RA;Z/2) is bounded by some other polynomials, which count the number
of integral point in |0;»n[™ with ¥ x; not congruent to 0 modulo n and are equal,
in fact, to ¥ b;(CA;Z/2). (It is rather interesting that for compact hypersurfaces
these bounds remain true even if the hypersurfaces become singular.)

[11 ARrRNOLD V.1., OLEINIK O. A. Topology of real algebraic varieties. Moscow Univ.
Math. Bull., 1979, 34(6), 5-17.

[2] DEGTYAREV A., KHARLAMOV V. Topological properties of real algebraic varieties:
Rokhlin’s way. Russian Math. Surveys, 2000, 55(4), 735-814.

[31 Gupkov D. A. The topology of real projective algebraic varieties. Russian Math.
Surveys, 1974, 29(4), 1-79.

[4] VIRO O.YA. Progress in the topology of real algebraic varieties over the last six
years. Russian Math. Surveys, 1986, 41(3), 55-82.

[S] WILSON G. Hilbert’s sixteenth problem. Topology, 1978, 17(1), 53-73.

o 1972-26 — V.I.Arnold Also: 1976-35, 1976-36, 1979-17
& For more information on the subject, see problems 1979-17-1979-23,
1980-9, 1981-23, 1983-4, 1983-5, 1985-6, 1988-2, 1989-7, 1990-5, 1991-7,
1993-8, 1993-19, 2001-1-2001-3, 2002-1, 2002-2, 2002-4, and especially prob-
lems 1979-19 and 1985-6 on the Ragsdale conjecture.

1972-27 — F. Napolitano Also: 1976-34

The cohomology classes of the complement of the discriminant of the uni-
versal algebraic functions *+aiF 1+ -+ ay_1z+ ax = 0 of k variables were
described by Arnold [1,2]. These classes give obstructions to the representation of
algebraic functions by complete superposition. The results of Arnold imply that
the universal algebraic function of k variables is not representable by complete su-
perposition of algebraic functions of less than k — D, (k) variables, where D, (k)
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is the number of units in the binary representation of k [3]. This result has been
latter improved by Lin to k — | using different methods [5,6]. Comments on this
problem and its relations with other problems can be found in [4].

[1] ARNOLD V.I. On some topological invariants of algebraic functions. Trans. Moscow
Math. Soc., 1970, 21, 30-52.

[2] ARNOLD V.I. Cohomology classes of algebraic functions invariant under Tschirn-
hausen transformations. Funct. Anal. Appl., 1970, 4(1), 74-75. [The Russian origi-
nal is reprinted in: Vladimir Igorevich Arnold. Selecta~60. Moscow: PHASIS, 1997,
151-154.]

[31 ARNOLD V.I. Topological invariants of algebraic functions, II. Funct. Anal. Appl.,
1970, 4(2), 91-98.

[4] ARNOLD V.I. From Hilbert’s superposition problem to dynamical systems. In: The
Arnoldfest. Proceedings of a conference in honour of V.I. Arnold for his sixtieth
birthday (Toronto, 1997). Editors: E. Bierstone, B. A. Khesin, A. G. Khovanskii and
J.E. Marsden. Providence, RI: Amer. Math. Soc., 1999, 1-18. (Fields Inst. Commun.,
24.)

[5] LiIN V. YA. On superpositions of algebraic functions. Funct. Anal. Appl., 1972, 6(3),
240-241.

[6] LIN V.YA. Superpositions of algebraic functions. Funct. Anal. Appl., 1976, 10(1),
32-38.

1972-32 — V. A. Vassiliev Also: 1975-14

«/ % Nothing is known to me.

v 1972-33

This is a problem in V.I. Amold’s comment [1] to H.Poincaré’s paper
“On a geometric theorem” (“Sur un théoréme de géométrie”).

[1] ARNOLD V.I. A comment to H. Poincaré’s paper “Sur un théoréme de géométrie.”
In: POINCARE H. Selected Works in Three Volumes (in Russian). Editors: N. N. Bo-
golyubov, V.I. Amold and I. B. Pogrebysskii. Vol.II. New methods of celestial me-
chanics. Topology. Number theory. Moscow: Nauka, 1972, 987-989 (in Russian).

A 1972-33 — M. B. Sevryuk
Also: 1965-1-1965-3, 1966-4, 1966-5, 1972-17, 1976-39

This problem is the famous Arnold conjecture about the number of fixed
points of symplectomorphisms (i. e., symplectic diffeomorphisms) homologous to
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the identity ' . Various statements on fixed points of symplectomorphisms homolo-
gous to the identity were formulated by V.1. Arnold as conjectures in the mid 1960s
and later in the 1970s in a series of works [1] (see problems 1965-1-1965-3), [2]
(see problems 1966-4 and 1966-5), [3] (the present problem as well as problems
1972-17 and 1972-18; see also problem 1970-10), [4] (see problem 1976-39), [5]
(see problem 1976-39), and [9]. All these conjectures are discussed in detail in
Armold’s works [6-9,11]. The best known conjecture is given in the formulation of
the present problem: a symplectomorphism F of a closed? symplectic manifold M
onto itself possesses at least as many fixed points as a smooth function on M must
have critical points, whenever F is homologous to the identity. This conjecture can
be understood both “algebraically” (the numbers of the fixed/critical points are
calculated counting multiplicities) and “geometrically” (one counts the numbers
of geometrically distinct fixed/critical points). For instance, any center-of-mass-
preserving symplectomorphism of the standard symplectic torus T?" is expected
to possess at least 2n+ 1 geometrically distinct fixed points, and at least 4" fixed
points counting multiplicities. Amold [1] proved his conjectures for symplecto-
morphisms which are not too far from the identity mapping. These proofs showed
that these conjectures are some extensions of the Morse inequality.

Both the “algebraic” and “geometric” versions of the Amold conjecture
admit weakened forms. The weakened “algebraic” form asserts that the number
of fixed points of F' counting multiplicities is at least the sum of the Betti numbers
(over Z) of manifold M. The weakened “geometric” form states that the number
of geometrically distinct fixed points of F is at least the Ljusternik—Schnirelmann
category of manifold M.

The Amold conjecture has affected greatly the development of the sym-
plectic geometry and topology in the subsequent years. The first noticeable step
towards proving the conjecture was Ya. M. Eliashberg’s announcement [23] of a
proof for all the closed two-dimensional surfaces. Eliashberg announced also
similar statements for surfaces with boundary and for nonorientable surfaces. In
their milestone paper [21] (see also [22]), C.C. Conley and E. Zehnder proved the
Amold conjecture (in both the “algebraic” and “geometric” versions) for tori T
of all the even dimensions with the standard symplectic structure. Conley and
Zehnder introduced in [21] a new technique of constructing a certain action func-
tional on the space of contractible loops on the manifold. This technique can be

1" Recall that a symplectomorphism F of a symplectic manifold M is said to be homologous to the
identity (or to preserve the center-of-mass, or to be exactly homotopic to the identity) if F = g(l)
where gf, are the phase flow maps for the time interval from 0 to ¢ for a certain (generally speaking,
nonautonomous) Hamiltonian vector field on M.

2 i.e., compact and without boundary
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regarded as a hyperbolic analogue of the Morse theory for positive functionals.
During several subsequent years, the Arnold conjecture was proved for some oth-
er symplectic manifolds and classes of manifolds by many authors [6, 7, 82] (see,
e.g., [12-17,26,33-35,40, 41, 45, 73-76, 78-81] as well as [18]; some of these
papers contain also proofs of more general versions of the Arnold conjecture—
see below).

In the late 1980s, A.Floer published a series of very important papers
[29-32] (see also his earlier works [27,28]) where he, apart from other achieve-
ments, combined the variational approach by Conley and Zehnder [21, 22] with
M. L. Gromov’s elliptic methods [39] and defined what has become known as the
Floer (co)homology theory. This enabled him to prove the Amold conjecture for
the so-called positive, or monotone, symplectic manifolds [31]. Afterwards, Flo-
er’s landmark result was generalized by H. Hofer and D. A. Salamon [42] and by
K. Ono [62] to semi-positive, or weakly monotone, manifolds (in particular, to all
the symplectic manifolds of dimensions < 6), and by G. C. Lu [51-53], to products
of weakly monotone manifolds (and the so-called Calabi-Yau manifolds).

A quite different approach to the Amold conjecture was proposed by
B. Fortune [34] (see also [35, 79]) who proved it for projective spaces CP" with
the standard symplectic structure. This proof was based on the fact that CP” is the
reduced symplectic manifold of C**! under the Hopf S!-action (the symplectic
quotient C**! //S!) and any Hamiltonian system on CP” is the Marsden-Weinstein
reduction of an appropriate Hamiltonian system on C"*!. A.B. Givental [38] car-
ried over Fortune’s techniques to general toric manifolds, i. €., symplectic quotients
C™//T*. L. A. Ibort and C. Martinez Ontalba [44] showed that Fortune’s method is
in fact universal: the fixed point problem for a symplectomorphism (homologous
to the identity) of every closed symplectic manifold can be translated into a critical
point problem with symmetry on loops in the space R*¥ (for suitable N) endowed
with the standard symplectic structure.

Of numerous papers by other authors devoted to the Arnold conjecture, we
would quote here [47,54,56,64,70]. Many results related to the Amold conjecture
are described in, e. g., books [43, 55].

A further extension of Floer’s ideas and the theory of the so-called
Gromov—Witten invariants have recently led K.Fukaya-K.Ono, H.Hofer—
D.A.Salamon, J.Li—G.Liu—G.Tian, Y.B.Ruan, and B. Siebert to a complete
proof of the weakened algebraic Amold conjecture in the nondegenerate case. So,
the number of fixed points of any center-of-mass-preserving symplectomorphism
F:M — M of an arbitrary closed symplectic manifold M is no less than the
sum B(M) of the Betti numbers of M provided that all the fixed points of F are
nondegenerate. Some papers with the proofs have not appeared yet. We would
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confine ourselves here to eight references [36,37,48-50,66,71,72] (see also brief
survey [63]).

On the other hand, Yu. B. Rudyak and J. F. Oprea [67-69] proved the ge-
ometric Arnold conjecture for an arbitrary closed symplectic manifold M sub-
ject to the condition 0)2|n2(M) = 0 where ®? is the symplectic structure on M
[this condition means that @? vanishes on the image of the Hurewicz homomor-
phism @ : m(M) — H(M,Z) or, in simpler terms, that the integral of ®? vanishes
over the image of every smooth mapping S> — M]. So, the number of geomet-
rically distinct fixed points of any center-of-mass-preserving symplectomorphism
F: M — M is no less than the minimal number of geometrically distinct critical
points of a smooth function on M, provided that the closed symplectic manifold
(M, ®?) satisfies the condition 0|y, (s = 0.

More general variants of the Arnold conjecture refer to the number of in-
tersection points for two Lagrangian submanifolds of a symplectic manifold. >
Namely, one conjectures that, under suitable additional hypotheses, a closed La-
grangian submanifold L of a symplectic manifold X and the image A(L) of L under
a symplectomorphism A : K — K possess at least as many intersection points as a
smooth function on L must have critical points (both “algebraically” and “geomet-
rically”), provided that A is homologous to the identity.* The following ‘addi-
tional hypothesis’ seems to be sufficient: the integral of the symplectic structure
vanishes on every disk whose boundary lies in L (see [6,7]).

Arnold [1] proved his conjectures on the Lagrange intersections of exact
Lagrangian manifolds which are not too far one from the other. He showed that
this version of the Lagrange intersection theory is some extension of the Morse
inequalities.

3 Let (M, mz) be an arbitrary symplectic manifold and p;, p; be the projections of M x M onto the
first and second factors, respectively. Then ®? = p}w? — p3? is a symplectic structure on M x M
(the so-called twisted product form), and it is very easy to verify that a mapping F: M — M is a
symplectomorphism if and only if its graph I'r = {(m, F (m)) | m € M} is a Lagrangian submanifold
of M x M with respect to this symplectic structure (see [6,7]). In particular, the diagonal g =
{(m,m) | m € M} in M x M is a Lagrangian submanifold. On the other hand, the intersection points
of I'r and T4 are just the points (m,m) for which F(m) = m. Thus, the question of the number of
fixed points of symplectomorphisms is a particular case of the question of the number of intersection
points for Lagrangian submanifolds (cf. the comments to problem 1988-6).

4 This conjecture does imply the conjecture on fixed points of symplectomorphisms, if one forgets
about the ‘additional hypotheses’ required, Indeed, in the notation of the previous footnote, a map-
ping (my,my) — (my,F(my)) of M x M onto itself is a center-of-mass-preserving symplectomor-
phism (with respect to ®?) whenever the mapping F: M — M is a center-of-mass-preserving sym-
plectomorphism (with respect to ?). The reason is that if V is a Hamiltonian vector field on (M, w?)
with a Hamilton function H : M — R, then (0,V) is a Hamiltonian vector field on (M x M, ®?) with
the Hamilton function —H o p;,
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Here we would confine ourselves to several key references. Some conjec-
tures on Lagrangian intersections were stated already in Amold’s landmark pa-
per [1] (see problems 1965-1 and 1965-2), cf. a detailed discussion in [6, 7, 9].
The special case of the general conjecture formulated above in which K is the
cotangent bundle (with the canonical symplectic structure) of a torus and L is the
zero section was proved by C. C. Conley and E. Zehnder [21] and by M. Chaper-
on [12] (see also survey [16]). For the situation where K is the cotangent bun-
dle of an arbitrary closed manifold (and L is still the zero section) the conjec-
ture was then proved by H. Hofer [40], F. Laudenbach and J.-C. Sikorav [45], and
J.-C. Sikorav [76]. The particular case of the previous result where A is CP%close
to the identity was independently considered by A. Weinstein [78,80, 81]. Further
achievements are due to H. Hofer [41], A.Floer [30,32], and J.-C. Sikorav [77].
Floer’s (co)homology theory for Lagrangian intersections [30, 32] was essential-
ly extended by Y.-G. Oh [57-61]. Important estimates were recently obtained by
Yu. V. Chekanov [19,20] and P. E. Pushkar’ [65]. Surveys of the theory are given
in [24,25].

Proofs of other generalizations of the Amold conjecture—given by
Yu. V. Chekanov [17, 18]—concern the number of critical points of the so-called
quasifunctions [6,7, 18]. A quasifunction on a closed manifold W is defined as
a Legendrian submanifold of J'(W,R) homotopic to the zero section j'0, here
J'(W,R) denotes the space (equipped with the canonical contact structure) of
1-jets of functions W — R. One more example is the recent proof by Chekanov
and Pushkar’ of the theorem on the minimal number of singularities necessary for
the reversion of a wave front on the plane (see [10]).

An analogue of the Amold conjecture can be proved for symplectomor-
phisms non homologous to the identity [46]. Of course, in this case fixed points
may be absent, but, however, one can estimate their number in terms of the so-
called Novikov homology. Similar results for the more general problem of La-
grangian intersections were obtained even earlier by Sikorav [75].

[1] ARNOLD V.I. Sur une propriété topologique des applications globalement canon-
iques de la mécanique classique. C. R. Acad. Sci. Paris, 1965, 261(19), 3719-3722.
[The Russian translation in: Vladimir Igorevich Arnold. Selecta—60. Moscow:
PHASIS, 1997, 81-86.]

[2] ARNOLD V.I. The stability problem and ergodic properties of classical dynamical
systems. In; Proceedings of the International Congress of Mathematicians (Moscow,
1966). Moscow: Mir, 1968, 387-392 (in Russian). [The English translation: AMS
Transl., Ser.2, 1968, 70, 5-11.] [The original is reprinted in: Vladimir Igorevich
Arnold. Selecta—60. Moscow: PHASIS, 1997, 95-101.]



1972-33 Comments 289

[3] ARNOLD V.I. A comment to H.Poincaré’s paper “Sur un théoréme de géométrie.”
In: POINCARE H. Selected Works in Three Volumes (in Russian). Editors: N. N. Bo-
golyubov, V.I. Arnold and I. B. Pogrebysskii. Vol.II. New methods of celestial me-
chanics. Topology. Number theory. Moscow: Nauka, 1972, 987-989 (in Russian).

[4] ARNOLD V.I. Fixed points of symplectic diffeomorphisms. In: Problems of present
day mathematics. Editor: E E. Browder. In: Mathematical Developments Arising from
Hilbert Problems (Northern Illinois University, 1974). Part 1. Editor: E E. Browder.
Providence, RI: Amer. Math. Soc., 1976, 35-79; see XX, p. 66. (Proc. Symposia Pure
Math., 28.)

[5] ArRNOLD V.I. Some problems in the theory of differential equations. In: Unsolved
Problems of Mechanics and Applied Mathematics. Moscow: Moscow University
Press, 1977, 3-9 (in Russian).

[6] ARNOLD V.I. The first steps of symplectic topology. Russian Math. Surveys, 1986,
41(6), 1-21. [The Russian original is reprinted in: Vladimir Igorevich Arnold.
Selecta—60. Moscow: PHASIS, 1997, 365-389.]

[7] ARNOLD V.I. First steps of symplectic topology. In: VIIIth Intern. Congress on
Mathematical Physics (Marseille, 1986). Editors: M. Mebkhout and R. Sénéor. Sin-
gapore: World Scientific, 1987, 1-16.

[8] ARNOLD V.I. On some problems in symplectic topology. In: Topology and Geome-
try. Rohlin Seminar. Editor: O. Ya. Viro. Berlin: Springer, 1988, 1-5. (Lecture Notes
in Math., 1346.) [ The Russian translation in: Vladimir Igorevich Arnold. Selecta—60.
Moscow: PHASIS, 1997, 425-429.]

[9] ARNOLD V.I. Mathematical Methods of Classical Mechanics, 2nd edition. New
York: Springer, 1989, Appendix 9. (Graduate Texts in Math., 60.) [ The Russian orig-
inal 1974.]

[10] ARNOLD V.I. Topological Invariants of Plane Curves and Caustics. Dean Jacqueline
B. Lewis Memorial Lectures, Rutgers University. Providence, RI: Amer. Math. Soc.,
1994. (University Lecture Series, 5.)

[11] ARNOLD V.I. Symplectic geometry and topology. J. Math. Phys., 2000, 41(6),
3307-3343.

[12] CHAPERON M. Quelques questions de géométrie symplectique (d’ apres, entre autres,
Poincaré, Arnold, Conley et Zehnder). In: Séminaire Bourbaki, 1982-83; Astérisque,
1983, 105-106, 231-249.

[13] CHAPERON M. Une idée du type “géodésiques brisées” pour les systemes hamil-
toniens. C. R. Acad. Sci. Paris, Sér. 1 Math., 1984, 298(13), 293-296.

[14] CHAPERON M. An elementary proof of the Conley—Zehnder theorem in symplectic
geometry. In: Dynamical Systems and Bifurcations. Proc. Intern. Workshop at the
Groningen University (Groningen, 1984). Editors: B. L. J. Braaksma, H. W. Broer and
F. Takens. Berlin: Springer, 1985, 1-8. (Lecture Notes in Math., 1125.)



290 Comments 1972-33

[15] CHAPERON M. Questions de géométrie symplectique. In: Géométrie Symplectique
et Mécanique (Balaruc, 1983). Editor: J.-P. Dufour. Travaux en Cours. Paris: Her-
mann, 1985, 30-45.

[16] CHAPERON M., ZEHNDER E. Quelques résultats globaux en géométrie symplec-
tique. In: Séminaire Sud-Rhodanien de Géométrie. III (Lyon, 1983). Géométrie Sym-
plectique et de Contact: autour du Théoréme de Poincaré-Birkhoff. Editors: P. Dazord
and N. Desolneux-Moulis. Travaux en Cours. Paris: Hermann, 1984, 51-121.

[17] CHEKANOV Yu. V. Legendrian Morse theory. Uspekhi Mat. Nauk, 1987, 42(4), 139
(in Russian).

[18] CHEKANOV Yu. V. Critical points of quasifunctions, and generating families of Leg-
endrian manifolds. Funct. Anal. Appl., 1996, 30(2), 118-128.

[19] CHEKANOV YU. V. Hofer’s symplectic energy and Lagrangian intersections. In:
Contact and Symplectic Geometry (Cambridge, 1994). Editor: C. B. Thomas. Cam-
bridge: Cambridge University Press, 1996, 296~306. (Publ. Newton Inst., 8.)

[20] CHEKANOV Yu. V. Lagrangian intersections, symplectic energy, and areas of holo-
morphic curves. Duke Math. J., 1998, 95(1), 213-226.

[21] CONLEY C.C., ZEHNDER E. The Birkhoff-Lewis fixed point theorem and a con-
jecture of V.1. Arnold. Invent. Math., 1983, 73(1), 33-49.

[22] CoNLEY C.C., ZEHNDER E. A global fixed point theorem for symplectic maps
and subharmonic solutions of Hamiltonian equations on tori. In: Nonlinear Func-
tional Analysis and its Applications (University of California, 1983). Part 1. Editor:
E E. Browder. Providence, RI: Amer. Math. Soc., 1986, 283-299. (Proc. Symposia
Pure Math., 45.)

[23] ELIASHBERG YA. M. Estimates of the number of fixed points of area-preserving
transformations. Deposited in VINITI on January 30, 1979, Ne374-79, 104 p. (in
Russian), see also Ref. Zh. Mat., 1979, 5A491 (in Russian).

[24] ELIASHBERG YA.M., GRoOMoV M. L. Lagrangian intersections and the stable
Morse theory. Boll. Un. Mat. Ital. B, Ser. 7, 1997, 11(2), suppl., 289-326.

[25] ELIASHBERG YA.M., GRoMoVv M. L. Lagrangian intersection theory: finite-di-
mensional approach. In: Geometry of Differential Equations. Editors: A. G. Khovan-
skii, A.N. Varchenko and V. A. Vassiliev. Providence, RI: Amer. Math. Soc., 1998,
27-118. (AMS Transl., Ser. 2, 186; Adv. Math. Sci., 39.)

[26] FLOER A. Proof of the Arnold conjecture for surfaces and generalizations to certain
Kahler manifolds. Duke Math. J., 1986, 53(1), 1-32.

[27] FLOER A. Holomorphic curves and a Morse theory for fixed points of exact symplec-
tomorphisms. In: Séminaire Sud-Rhodanien de Géométrie. VI (Lyon, 1986). Aspects
Dynamiques et Topologiques des Groupes Infinis de Transformation de la Mécanique.
Editors: P. Dazord, N. Desolneux-Moulis and J.-M. Morvan. Travaux en Cours, 25.
Paris: Hermann, 1987, 49-60.

[28] FLOER A. Morse theory for fixed points of symplectic diffeomorphisms. Bull. Amer.
Math. Soc. (N.S.), 1987, 16(2), 279-281.



1972-33 Comments 291

[29] FLOER A. An instanton-invariant for 3-manifolds. Commun. Math. Phys., 1988,
118(2), 215-240.

[30] FLOER A. Morse theory for Lagrangian intersections. J. Differ Geom., 1988, 28(3),
513-547.

[31] FLOER A. Symplectic fixed points and holomorphic spheres. Commun. Math. Phys.,
1989, 120(4), 575-611.

[32] FLOER A. Cuplength estimates on Lagrangian intersections. Commun. Pure Appl.
Math., 1989, 42(4), 335-356.

[33] FLOER A., ZEHNDER E. Fixed point results for symplectic maps related to the
Arnold conjecture. In: Dynamical Systems and Bifurcations. Proc. Intern. Work-
shop at the Groningen University (Groningen, 1984). Editors: B.L.J. Braaksma,
H. W. Broer and F. Takens. Berlin: Springer, 1985, 47-63. (Lecture Notes in Math.,
1125.)

[34] FORTUNE B. A symplectic fixed point theorem for CP". Invent. Math., 1985, 81(1),
29-46.

[35] FORTUNE B., WEINSTEIN A. A symplectic fixed point theorem for complex pro-
jective spaces. Bull. Amer. Math. Soc. (N. S.), 1985, 12(1), 128-130.

[36] FUKAYA K., ONO K. Arnold conjecture and Gromov—Witten invariant. Topology,
1999, 38(5), 933-1048.

[37] FUKAYA K., ONO K. Arnold conjecture and Gromov—Witten invariant for gener-
al symplectic manifolds. In: The Arnoldfest. Proceedings of a conference in hon-
our of V.I. Arnold for his sixtieth birthday (Toronto, 1997). Editors: E.Bierstone,
B. A. Khesin, A. G. Khovanskii and J. E. Marsden. Providence, RI: Amer. Math. Soc.,
1999, 173-190. (Fields Institute Commun., 24.)

[38] GIVENTAL A.B. A symplectic fixed point theorem for toric manifolds. In: The Flo-
er Memorial Volume. Editors: H. Hofer, C. H. Taubes, A. Weinstein and E. Zehnder.
Basel: Birkhduser, 1995, 445-481. (Progr. Math., 133.)

[39] GROMOV M. L. Pseudo holomorphic curves in symplectic manifolds. [nvent. Math.,
1985, 82(2), 307-347.

[40] HOFER H. Lagrangian embeddings and critical point theory. Ann. Institut Henri
Poincaré, Analyse non linéaire, 1985, 2(6), 407—462.

[41] HOFER H. Ljusternik—Schnirelman theory for Lagrangian intersections. Ann. Institut
Henri Poincaré, Analyse non linéaire, 1988, 5(5), 465-499.

[42] HOFER H., SALAMON D. A. Floer homology and Novikov rings. In: The Flo-
er Memorial Volume. Editors: H. Hofer, C. H. Taubes, A. Weinstein and E. Zehnder.
Basel: Birkhiuser, 1995, 483-524. (Progr. Math., 133.)

[43] HOFER H., ZEHNDER E. Symplectic Invariants and Hamiltonian Dynamics. Basel:
Birkhéuser, 1994, Ch. 6.

[44] IBORT L. A., MARTINEZ ONTALBA C. Arnold’s conjecture and symplectic reduc-
tion. J. Geom. Phys., 1996, 18(1), 25-37.



292 Comments 1972-33

[45] LAUDENBACH F., SIKORAV J.-C. Persistance d’intersection avec la section nulle
au cours d’une isotopie hamiltonienne dans un fibré cotangent. Invent. Math., 1985,
82(2), 349-357.

[46] LE H. V., ONo K. Symplectic fixed points, the Calabi invariant and Novikov ho-
mology. Topology, 1995, 34(1), 155-176.

[47] LE H. V., ONO K. Cup-length estimates for symplectic fixed points. In: Contact and
Symplectic Geometry (Cambridge, 1994). Editor: C. B. Thomas. Cambridge: Cam-
bridge University Press, 1996, 268—295. (Publ. Newton Inst., 8.)

[48] L1J., T1IAN G. Virtual moduli cycles and Gromov-Witten invariants of general sym-
plectic manifolds. In: Topics in Symplectic 4-Manifolds (Irvine, CA, 1996). Editor:
R.]J. Stern. Cambridge, MA: Intern. Press, 1998, 47-83. (First Intern. Press Lecture
Series, 1.)

[49] L1J., TIAN G. Comparison of algebraic and symplectic Gromov—Witten invariants.
Asian J. Math., 1999, 3(3), 689-728.

[50] L1u G., TIAN G. Floer homology and Arnold conjecture. J. Differ. Geom., 1998,
49(1), 1-74.

[511Lu G. C. Arnold conjecture for product of monotone manifolds. Adv. Math. (China),
1993, 22(5), 463—465.

[52] Lu G. C. The Arnold conjecture for a product of weakly monotone manifolds. Chi-
nese J. Math., 1996, 24(2), 145-157.

[S31Lu G.C. The Arnold conjecture for a product of monotone manifolds and
Calabi-Yau manifolds. Acta Math. Sinica (N. S.), 1997, 13(3), 381-388.

[54] McCoRrD C., OPREA J. Rational Ljusternik—Schnirelmann category and the Arnold
conjecture for nilmanifolds. Topology, 1993, 32(4), 701-717.

[55] McDUFF D., SALAMON D. A. Introduction to Symplectic Topology, 2nd edition.
New York: Clarendon Press, Oxford University Press, 1998, Ch. 11.

[56] OH Y.-G. A symplectic fixed point theorem on T?" x CP*. Math. Z., 1990, 203(4),
535-552.

[571 OH Y. -G. Floer cohomology and Arnold—Givental’s conjecture on Lagrangian inter-
sections. C. R. Acad. Sci. Paris, Sér.1 Math., 1992, 315(3), 309-314.

[S8] OH Y.-G. Floer cohomology of Lagrangian intersections and pseudo-holomorphic
disks. I. Commun. Pure Appl. Math., 1993, 46(7), 949-993; addendum: 1995, 48(11),
1299-1302.

[59] OH Y. -G. Floer cohomology of Lagrangian intersections and pseudo-holomorphic
disks. II. (CP", RP"). Commun. Pure Appl. Math., 1993, 46(7), 995-1012.

[60] OH Y.-G. Floer cohomology of Lagrangian intersections and pseudo-holomorphic
disks. III. Arnold-Givental conjecture. In: The Floer Memorial Volume. Editors:
H.Hofer, C.H.Taubes, A.Weinstein and E.Zehnder. Basel: Birkhauser, 1995,
555-573. (Progr. Math., 133.)



1972-33 Comments 293

[61] OH Y. -G. Relative Floer and quantum cohomology and the symplectic topology of
Lagrangian submanifolds. In: Contact and Symplectic Geometry (Cambridge, 1994).
Editor: C.B.Thomas. Cambridge: Cambridge University Press, 1996, 201-267.
(Publ. Newton Inst., 8.)

[62] ONO K. On the Arnold conjecture for weakly monotone symplectic manifolds. In-
vent. Math., 1995, 119(3), 519-537.

[63] ONO K. On Arnold’s conjecture for symplectic fixed points. In: Homotopy and Ge-
ometry (Warsaw, 1997). Editors: J. Oprea and A. Tralle. Warsaw: Polish Academy of
Sciences, Institute of Mathematics, 1998, 13—-24. (Banach Center Publ., 45.)

[64] PUSHKAR' P.E. Generating functions of symplectomorphisms. Funct. Anal. Appl.,
1994, 28(3), 198-201.

[65] PUSHKAR' P. E. Lagrangian intersections in a symplectic space. Funct. Anal. Appl.,
2000, 34(4), 288-292.

[66] RUAN Y.B. Virtual neighborhoods and pseudo-holomorphic curves. Turkish J.
Math., 1999, 23(1), 161-231.

[67] RUDYAK YU. B. On analytical applications of stable homotopy (the Arnold conjec-
ture, critical points). Math. Z., 1999, 230(4), 659-672.

[68] RUDYAK YU. B. On strict category weight, gradient-like flows, and the Arnold con-
jecture. Internat. Math. Res. Notices, 2000, 5, 271-279.

[69]1 RUDYAK YU. B., OPREA J. On the Ljusternik—Schnirelmann category of symplectic
manifolds and the Arnold conjecture. Math. Z, 1999, 230(4), 673-678.

[70] SCHWARZ M. A quantum cup-length estimate for symplectic fixed points. Invent.
Math., 1998, 133(2), 353-397.

[71] SIEBERT B. Algebraic and symplectic Gromov—Witten invariants coincide. Ann. Inst.
Fourier (Grenoble), 1999, 49(6), 1743—-1795.

[72] SIEBERT B. Symplectic Gromov—Witten invariants. In: New Trends in Algebraic
Geometry (Warwick, 1996). Editors: K. Hulek, F Catanese, C. Peters and M. Reid.
Cambridge: Cambridge University Press, 1999, 375-424. (London Math. Soc. Lec-
ture Note Ser., 264.)

[73] S1IKORAV J. -C. Points fixes d’un symplectomorphisme homologue a I’identité. C. R.
Acad. Sci. Paris, Sér.1 Math., 1984, 299(8), 343-346.

[74] SIKORAV J. -C. Points fixes d’une application symplectique homologue a I’identité.
J. Differ. Geom., 1985, 22(1), 49-79.

[75] SikoRrAvV J. -C. Un probleme de disjonction par isotopie symplectique dans un fibré
cotangent. Ann. Sci. Ecole Norm. Sup., Sér. 4, 1986, 19(4), 543-552.

[76] SikoRrAV J. -C. Problemes d’intersections et de points fixes en géométrie hamiltoni-
enne. Comment. Math. Helvetici, 1987, 62(1), 62-73.

[77] SIKORAV J. -C. Quelques propriétés des plongements lagrangiens. Mém. Soc. Math.
France (N. S.), 1991, 46, 151-167.



294 Comments 1972-33

[78] WEINSTEIN A. C° perturbation theorems for symplectic fixed points and La-
grangian intersections. In: Séminaire Sud-Rhodanien de Géométrie. III (Lyon, 1983).
Géométrie Symplectique et de Contact: autour du Théoréme de Poincaré-Birkhoff.
Editors: P.Dazord and N.Desolneux-Moulis. Travaux en Cours. Paris: Hermann,
1984, 140-144.

[79] WEINSTEIN A. Symplectic reduction and fixed points. In: Géométrie Symplectique
et Mécanique (Balaruc, 1983). Editor: J.-P. Dufour. Travaux en Cours. Paris: Her-
mann, 1985, 140-148.

[80] WEINSTEIN A. Critical point theory, symplectic geometry and Hamiltonian systems.
In: Proceedings of the 1983 Beijing Symposium on Differential Geometry and Dif-
ferential Equations. Editors: Shan Tao Liao and S.S. Chern. Beijing: Science Press,
1986, 261-289.

[81] WEINSTEIN A. On extending the Conley—Zehnder fixed point theorem to other man-
ifolds. In: Nonlinear Functional Analysis and its Applications (University of Cali-
fornia, 1983). Part 2. Editor: F. E. Browder. Providence, RI: Amer. Math. Soc., 1986,
541-544. (Proc. Symposia Pure Math., 45.)

[82] ZEHUNDER E. The Arnold conjecture for fixed points of symplectic mappings and
periodic solutions of Hamiltonian systems. In: Proceedings of the International
Congress of Mathematicians (Berkeley, 1986), Vol. 2. Editor: A. M. Gleason. Prov-
idence, RI: Amer. Math. Soc., 1987, 1237-1246.

1973-2

% See the comments to problems 1972-12 and 1981-28.

1973-3 — V.M. Zakalyukin

Several more specific problems involving singularity theory and mathemat-
ical economy were formulated recently by P. Chiappori and I. Ekeland. In a series
of papers (see, e.g., [1,2]) they applied the techniques of differential forms and
theory of Pfaffian systems to various models of market economy.

In particular, one of I. Ekeland’s questions (related to the desaggregation
problem) was to find a minimal possible number of terms in the Darboux formula
Y pidgq; for a given germ of differential 1-form provided that g; are concave and p;
are positive.
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The question was answered (except very degenerate cases) in [3] basing on
an unexpected application of the theory of Lagrangian and Legendrian mappings.
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1973-4 Also: 1976-31, 1994-37

% See papers [1-4].

[1] ARNOLD V.I. Algebraic unsolvability of the problem of Lyapunov stability and the
problem of topological classification of singular points of an analytic system of dif-
ferential equations. Funct. Anal. Appl., 1970, 4(3), 173-180.

[2] ARNOLD V.I. Algebraic unsolvability of the problem of stability and the problem of
topological classification of singular points of analytic systems of differential equa-
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1973-5 — A. A. Davydov

Implicit ordinary differential equations are important in the description of
fields of characteristic directions of linear second order partial equations with two
independent variables, fields of asymptotic directions and of principal curvature
directions on a surface smoothly embedded in R3, a slow motion of relaxation
type equation and others [1-4, 8, 14,19].

For a generic first order implicit differential equation there are found its
smooth (analytic, topological) normal forms near its folded regular points [6] and
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near its folded elementary singular points [7, 9, 10, 14] and the presence of in-
variants (moduli) in normal forms even under C%-diffeomorphisms near a pleated
singular point [7].

Recently there were found normal forms of corank one singularities of im-
plicit equations of the form A(x)x = v(x), where A is a smooth square matrix func-
tion and (x,v(x)) € R” (see[11,12,16-18,20]).

The implicit first order differential equations appearing in the study of the
net of asymptotic lines and the field of principal curvature directions on a smooth
surface in R have singular points of special types. The respective normal forms
and the bifurcations observed in generic one parametric families of such equations
are described in [4, 5].

Implicit high order differential equations are not studied so well. Only
some types of generic singularities of second order equations have been described
[13,15].
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[14] Kuz'MIN A.G. Nonclassical Equations of Mixed Type and Their Applications to
Gas Dynamics. Basel: Birkhéuser, 1992. (Internat. Ser. Numer. Math., 109.)

[15] LEMASURIER M. Singularities of implicit second order differential equations. Ph.D.
Thesis, University of Georgia, 1998.

[16] MEDVED M. Qualitative properties of generalized vector. Rivista Mat. Pura Appl.,
1994, 15, 7-31.

[17] PAz1) N.D. Normal forms of transversally singular quasilinear Sobolev systems.
Differ. Equations, 1996, 32(6), 850-852.

[18] PAzI) N.D. Ph.D. Thesis, Chelyabinsk State University, 1999 (in Russian).

[19] TAKENS F. Geometric aspects of non-linear R.L.C. networks. In: Dynamical

Systems—Warwick 1974. Editor: A. Manning. Berlin—Heidelberg: Springer, 1975,
305-331. (Lecture Notes in Math., 468.)

[20] ZHITOMIRSKIT M. YA. Local normal forms for constrained systems on two mani-
folds. Bol. Soc. Brasil. Mat. (N. S.), 1993, 24(2), 211-232.

1973-7 — S. M. Gusein-Zade
Also: 1975-6, 1975-24, 1976-13

«» % The smoothness of the stratum pL = const has been proved for functions of
two variables (J. Wahl, 1971; see [1]). On the other hand, for functions of more
than two variables the smoothness of the stratum p = const, generally speaking,
does not take place [2]. This result and related questions are discussed in book [3].

[1] BRIESKORN E. Special singularities-resolution, deformation and monodromy. Lec-
ture notes prepared in connection with the Summer Institute on Algebraic Geometry
held at Humboldt State University in Arcata, California. Providence, RI: Amer. Math.
Soc., 1974.

[2] LUENGO 1. The p-constant stratum is not smooth. Invent. Math., 1987, 90(1),
139-152.

[3] ARNOLD V.I., VASSILIEV V. A., GORYUNOV V.V., LYASHKO O. V. Singular-
ities. I. Local and Global Theory. Berlin: Springer, 1993, Ch.2, Sect. 1.11. (Ency-
clopzdia Math. Sci., 6; Dynamical Systems, VI1.) [The Russian original 1988.]
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1973-8 — S. M. Gusein-Zade

The semicontinuity of the (proper) modality was proved by A. M. Gabri-
elov [1].

[1] GABRIELOV A.M. Bifurcations, Dynkin diagrams, and modality of isolated singu-
larities. Funct. Anal. Appl., 1974, 8(2), 94-98.

1973-10 — V.1.Arnold

g % The problem was solved by Kushnirenko and Gabrielov, see references
in [1,2].

[1] ARNoOLD V.I. Remarks on the stationary phase method and Coxeter numbers. Rus-
sian Math. Surveys, 1973, 28(5), 19-48.

[2] ARNOLD V.I. Normal forms of functions in neighborhoods of degenerate critical
points. Russian Math. Surveys, 1974, 29(2), 10-50.

1973-11 — V.I1. Arnold Also: 1976-15

The conjecture that there exists a nondegenerate quasihomogeneous func-
tion with the given weights whenever the coefficients of the Poincaré polyno-
mial are nonnegative was disproved by B. M. Ivlev’s example with the weights
(1,24,33,58,265), cf. [1].

[1] ARNOLD V.I., VASSILIEV V. A., GORYUNOV V. V., LYAsHko O. V. Singulari-
ties. I. Local and Global Theory. Berlin: Springer, 1993, Ch. 1, Sect. 3.4. (Encyclopz-
dia Math. Sci., 6; Dynamical Systems, VI.) [The Russian original 1988.]

) 1973-15 Also: 1984-11

o & See papers [1-3].

[1] ARNoLD V.I. Critical points of functions on a manifold with a boundary, the simple
Lie groups By, Ci, F4 and singularities of evolutes. Russian Math. Surveys, 1978,
33(5), 99-116.

[2] ARNOLD V.I. Lagrange and Legendre cobordisms, I; II. Funct. Anal. Appl., 1980,
14(3), 167-177; 14(4), 252-260.

[3] BARANNIKOV S. A. The framed Morse complex and its invariants. In: Singulari-

ties and Bifurcations. Editor: V.I. Arnold. Providence, RI: Amer. Math. Soc., 1994,
93—-115. (Adv. Sov. Math., 21.)
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1973-16

See the comments to problem 1975-20.

v 1973-17 — S. M. Gusein-Zade

The description of this stratification does not exist. The decomposition into
strata L = const discussed in V. A. Vassiliev’s comment (below) is not a stratifica-
tion. The example showing this can be found in [1].

[1] GUSEIN-ZADE S.M., NEKHOROSHEV N.N. On adjacencies of singularities Ay
to points of the p = const stratum of a singularity. Funct. Anal. Appl., 1983, 17(4),
312-313.

A 1973-17 — V. A. Vassiliev

The space of all isolated singularities of two variables naturally splits into
the L = const strata.

In the case of complex variables these strata are exactly the collections
of irreducible germs of curves with fixed Puiseux exponents of corresponding
components and equal tangency numbers between corresponding components.
(This result was obtained independently by many authors, uncliding J. Wahl and
A.N. Varchenko, athough probably in a different statement it was known much
earlier.) All these strata are smooth. However the splitting of the space of func-
tions into )L = const strata is not a Whitney stratification and even not a primary
stratification because of effects found in [3,4]: one of such strata can approach
some particular points of another one but not approach its other points.

In the case of real functions R — R, all the strata L = const are the real
forms of complex ones. They can be characterized by the additional information
on which components of the corresponding complex curve are real (i. e., have one-
dimensional intersection with R?) and which are not (and hence are mapped by the
complex conjugation to some other component of the curve).

Any complex pL = const stratum of functions C2 — C contains a completely
real representative (i. e., a germ of a complex curve whose components are all real
in this sense), see [1,2].

[11 A’CAMPO N. Le groupe de monodromie du déploiement des singularités isolées de
courbes planes, 1. Math. Ann., 1975, 213(1), 1-32.
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[2] GUSEIN-ZADE S.M. Dynkin diagrams for singularities of functions of two vari-
ables. Funct. Anal. Appl., 1974, 8(4), 295-300.

[3] GUSEIN-ZADE S.M., NEKHOROSHEV N.N. On adjacencies of singularities A
to points of the u = const stratum of a singularity. Funct. Anal. Appl., 1983, 17(4),
312-313.

[4] GUSEIN-ZADE S.M., NEKHOROSHEV N.N. Singularities of type A; on plane
curves of a chosen degree. Funct. Anal. Appl., 2000, 34(3), 214-215.

1973-19 — V. A. Vassiliev
.. By atheorem of A’Campo [1], a complex function singularity has Morsifi-
cations with exactly two critical values if and only if it is simple (of one of classes
Ay, Dy, Eg, E7, Eg). On the other hand, the real simple singularity D;“k has no
real Morsifications (i. e., Morsifications with only real critical points) with only 2
critical values.

The (non)existence of Morsifications with < k critical values should say
much on the intersection form of the singularity and thus have nice algebraic char-
acterizations.

A related question: does any singularity has arbitrary (not neseccarily
Morse) perturbations with all numbers of critical values?

[1] A’CAamMPO N. Le groupe de monodromie du déploiement des singularités isolées
de courbes planes. II. In: Proceedings of the International Congress of Mathemati-
cians (Vancouver, 1974), Vol. 1. Montreal: Canadian Mathematical Congress, 1975,
395-404.

1973-20

See the comment to problem 1986-12.

1973-23 — V.I1.Arnold, B. A. Khesin

The topological invariance of the asymptotic Hopf invariant [1] (or helicity)
for a field on S3 is still an open problem. J. Gambaudo and E. Ghys in [3] (see also
the survey in [2]) have established such an invariance for a certain class of vector
fields in a solid torus.

One should also mention paper [4] by T. Vogel where a modified notion of
the system of short paths (used in the definition of asymptotic Hopf invariant) was
suggested. Namely, all limits in the definition are to be understood in the L!-sense,



1973-23 Comments 301

rather than pointwise almost everywhere. With this modification one readily shows
that, e. g., the system of shortest geodesics on a manifold is a system of short paths
for any vector field. Thus paper [4] resolves the question emphasized in [2]: the
existence of a short paths system for any (in particular, non-generic) vector field.

[1] ARNOLD V.I. The asymptotic Hopf invariant and its applications. In: Proceedings
of the All-Union School on Differential Equations with Infinitely Many Indepen-
dent Variables and on Dynamical Systems with Infinitely Many Degrees of Freedom
(Dilizhan, May 21 —June 3, 1973). Yerevan: AS of Armenian SSR, 1974, 229-256
(in Russian). [The English translation: Selecta Math. Sov., 1986, 5(4), 327-345.]
[The Russian original is reprinted and supplemented in: Vladimir Igorevich Arnold.
Selecta—60. Moscow: PHASIS, 1997, 215-236.]

[2] ArNoLD V.I., KHESIN B. A. Topological Methods in Hydrodynamics. New York:
Springer, 1998. (Appl. Math. Sci., 125.)

[3] GAMBAUDO J.-M., GHYS E. Enlacements asymptotiques. Topology, 1997, 36(6),
1355-1379.

[4] VOGEL T.1. On the asymptotic linking number. Commun. Math. Phys., to appear.
[Internet: http://www.arXiv.org/abs/math.DS/0011159]

1973-24 — B. A. Khesin Also: 1977-8
./ The relation of the Hopf invariant to the Ray-Singer torsion was discussed
by A. Schwarz in [2], see also book [1].

[1] ARNOLD V.I., KHESIN B. A. Topological Methods in Hydrodynamics. New York:
Springer, 1998. (Appl. Math. Sci., 125.)

[2] ScHWARZ A.S. The partition function of degenerate quadratic functional and
Ray-Singer invariants. Lett. Math. Phys., 1977/78, 2(3), 247-252.

1973-25 — B.A. Khesin, A. M. Lukatskit Also: 1991-1

In [1, 5] it was shown that the energy of a divergence-free field is bounded
from below by its asymptotic Hopf invariant (or helicity), where the latter measures
the average linking of the field trajectories. Thus the presence of linked trajectories
prevents a relaxation of the given field to a field with arbitrarily small energy.

On the other hand, the rotation field in the ball is an example of a field with
all trajectories pairwise unlinked. A.D.Sakharov and Ya. B. Zeldovich suggested
that this rotation field can be transformed by a volume-preserving diffeomorphism
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to a field whose energy is less than any given € and gave a heuristic construction of
the transformations. This conjecture was proved by M. Freedman in 1991, see [3].

The question remains whether the presence of a linked closed trajectory
for a field could provide an energy lower bound (even if the averaged linking of
all trajectories totals zero) and therefore could prevent a relaxation of the field to
arbitrarily small energies. Apparently, one of the the best results in this direction
is as follows [4]: if a field £ in R> has an invariant torus T forming an essential
knot of type K, then

16 1/3 )
L - ) o
nvolume(T)) | Flux§|*(2genus(K) — 1),

EE)> (

where Flux& is the flux of & through a crossection of T, volume(T) is the volume
of the solid torus, and genus(K) is the genus of the knot K. (In particular, for a
nontrivial knot genus(K) > 1 and hence E(§) > 0.)

In particular, it is sufficient for the field to have closed linked trajectories
of the elliptic (generic) type. Such a field has a nearby invariant torus (as a matter
of fact, many tori, by the KAM theory) and its energy has a nonzero lower bound.
For the fields with closed linked hyperbolic trajectories or with ergodic behavior
the question about the lower energy bound is still open. See details and references
in[2].

[1] ARNOLD V.I. The asymptotic Hopf invariant and its applications. In: Proceedings
of the All-Union School on Differential Equations with Infinitely Many Indepen-
dent Variables and on Dynamical Systems with Infinitely Many Degrees of Freedom
(Dilizhan, May 21 —June 3, 1973). Yerevan: AS of Armenian SSR, 1974, 229-256
(in Russian). [The English translation: Selecta Math. Sov., 1986, 5(4), 327-345.]
[The Russian original is reprinted and supplemented in: Vladimir Igorevich Arnold.
Selecta—60. Moscow: PHASIS, 1997, 215-236.]

[2] ARNOLD V.I., KHESIN B. A. Topological Methods in Hydrodynamics. New York:
Springer, 1998. (Appl. Math. Sci., 125.)

[3] FREEDMAN M. Zeldovich’s neutron star and the prediction of magnetic froth. In:
The Arnoldfest. Proceedings of a conference in honour of V.I. Arnold for his six-
tieth birthday (Toronto, 1997). Editors: E. Bierstone, B. A. Khesin, A. G. Khovanskii
and J. E. Marsden. Providence, RI: Amer. Math. Soc., 1999, 165-172. (Fields Inst.
Commun., 24.)

[4] FREEDMAN M. H., HE Z. -X. Divergence-free fields: energy and asymptotic cross-
ing number. Ann. Math., Ser. 2, 1991, 134(1), 189-229.

[5] MOFFATT H. K. The degree of knottedness of tangled vortex lines. J. Fluid Mech.,
1969, 35, 117-129.
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1973-26 — B. A. Khesin, A. M. Lukatskii
"% The relaxation paradox is discussed in [1]. It turns out that the limiting
fields for the energy relaxation either have invariant tori or they are eigenfields
for the curl operator. Usually, the latter fields are non-integrable. (Example: the
ABC-fields on T3, where A, B,C # 0.) Since the fields cannot change their topology
during the relaxation process, it is not clear what could be the limit of a generic
field without invariant surfaces.

One possible way to resolve the relaxation paradox is to allow weak com-
pressibility of the fluid, and then to consider the “incompressible limit,” see [3].
Singularities of the fields that are the extremals of the incompressible variational
problem have been studied by H. K. Moffatt and his school. See also the comment
to problem 1986-12, as well as the survey and references in [2].

[1] ARNOLD V.I. The asymptotic Hopf invariant and its applications. In: Proceedings
of the All-Union School on Differential Equations with Infinitely Many Indepen-
dent Variables and on Dynamical Systems with Infinitely Many Degrees of Freedom
(Dilizhan, May 21 —June 3, 1973). Yerevan: AS of Armenian SSR, 1974, 229-256
(in Russian). [The English translation: Selecta Math. Sov., 1986, 5(4), 327-345.]
[The Russian original is reprinted and supplemented in: Vladimir Igorevich Arnold.
Selecta~60. Moscow: PHASIS, 1997, 215-236.]

[2] ARNOLD V.I., KHESIN B. A. Topological Methods in Hydrodynamics. New York:
Springer, 1998. (Appl. Math. Sci., 125.)

[3] MORGULIS A., YUDOVICH V.I1., ZASLAVSKY G.M. Compressible helical flows.
Commun. Pure Appl. Math., 1995, 48(5), 571-582.

1973-27 — A.A. Glutsyuk, S. K. Lando

The authors of the present comment do not know whether any solution of
the problem has been published.

For the singularity A, the statement was proved by E.Looijenga [4] and
independently by O.V.Lyashko (see [1, 5, 6]). The analogous problem for the
space of polynomials symmetric with respect to the action of a cyclic group was
solved in a joint unpublished work by 1. M. Pak and A.E.Postnikov, and a little
later separately by A. A. Glutsyuk [3] (see also the bibliography there). The prin-
cipal result of each paper is a combinatorial interpretation of the covering taking
each (normalized) cyclically-symmetric polynomial to the set of its critical values
and calculation of its degree. The combinatiorial interpretations obtained in each
paper are completely different.
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The series D corresponds to the case of trigonometric polynomials with
one pole of degree 1 (see [2]), and it causes no problems. The singularities of
the series E correspond to some strata in an appropriate space of trigonometric
polynomials. The corresponding graphs were not described explicitly, a general
description can be found, e.g., in [7]. Additional bibliography is given in the
comments to problem 1970-15.

[1] ArNoLD V.I. Critical points of functions and the classification of caustics. Uspekhi
Mat. Nauk, 1974, 29(3), 243-244 (in Russian). [Reprinted in: Vladimir Igorevich
Arnold. Selecta—60. Moscow: PHASIS, 1997, 213-214.]

[2] ARrRNOLD V.I. Topological classification of trigonometric polynomials and combina-
torics of graphs with an equal number of vertices and edges. Funct. Anal. Appl., 1996,
30(1), 1-14.

[3] GLUTSYUK A. A. An analogue of Cayley’s theorem for cyclic symmetric connected
graphs with one cycle that are associated with generalized Lyashko—Looijenga cover-
ings. Russian Math. Surveys, 1993, 48(2), 182-183.

[4] LOOBENGA E.J.N. The complement of the bifurcation variety of a simple singular-
ity. Invent. Math., 1974, 23(2), 105-116.

[5]1 LYASHKO O. V. The geometry of bifurcation diagrams. Russian Math. Surv., 1979,
34(3), 209-210.

[6] LyAsHKO O.V. Geometry of bifurcation diagrams. In: Itogi Nauki i Tekhniki
VINITI. Current Problems in Mathematics, Vol. 22. Moscow: VINITI, 1983, 94129
(in Russian). [The English translation: J. Sov. Math., 1984, 27, 2736-2759.]

[71 ZvONKINE D. A., LANDO S. K. On multiplicities of the Lyashko—Looijenga map-
ping on discriminant strata. Funct. Anal. Appl., 2000, 33(3), 178—-188.

1974-2

See paper [1].

[1] GIVENTAL A. B. Lagrangian imbeddings of surfaces and unfolded Whitney umbrel-
la. Funct. Anal. Appl., 1986, 20(3), 197-203.
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1974-4 — V. 1. Arnold

" . Such a problem—on the classification of simple singularities of Lagrangian
projections of singular Lagrangian manifolds—was discovered by A.B. Given-
tal [1]. O.P. Shcherbak was the first who introduced noncrystallographic Coxeter
groups in the singularity theory [2].

[1] GivENTAL A.B. Singular Lagrangian manifolds and their Lagrangian maps. In:
Itogi Nauki i Tekhniki VINITI. Current Problems in Mathematics. Newest Results,
Vol. 33. Moscow: VINITI, 55-112 (in Russian). [The English translation: J. Sov.
Math., 1990, 52(4), 3246-3278.]

[2] SHCHERBAK O.P. Wavefront and reflection groups. Russian Math. Surveys, 1988,
43(3), 149-194,

1974-5 — V. V. Goryunov

Many of Shephard-Todd’s finite unitary reflection groups [6] were recent-
ly realized as monodromy groups of equivariant versions of the ordinary simple
function singularities [1-4]. See [7] for an elegant explanation of this observation,
based on the classification of Springer regular elements of the Weyl groups, as well
as on the fact that the discriminants of the equivariant singularities coincide with
the discriminants of the related Shephard-Todd groups.

As a by-product, the results of [1-4] have demonstrated that a shorter clas-
sification of elliptic singularities is in certain cases more natural than a longer one
of simple singularities.

At the moment, work is in progress on realizations of some of Popov’s
affine complex reflection groups [5] as monodromy groups of equivariant Pg, Xg
and Jy (V. V. Goryunov and S. H. Man).

[1] BAINES C. E. Topics in functions with symmetry. Ph, D. Thesis, University of Liv-
erpool, 2000.

[2] GoryuUNoOv V. V. Unitary reflection groups associated with singularities of functions
with cyclic symmetry. Russian Math. Surveys, 1999, 54(5), 873-893.

[3] GoryUNoOv V. V. Unitary reflection groups and automorphisms of simple hypersur-
face singularities. In;: New developments in singularity theory (Cambridge, 2000).
Editors: D. Siersma, C. T, C. Wall and V. Zakalyukin. Dordrecht: Kluwer Acad. Publ.,
2001, 305-328. (NATO Sci. Ser. I Math. Phys. Chem,, 21.)

[4] GoryuNov V.V., BAINES C. E. Cyclically equivariant function singularities and

unitary reflection groups G(2m,2,n), Gg, G31. St. Petersburg Math. J., 2000, 11(5),
761-774.
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[51 Porov V.L. Discrete complex reflection groups. Commun. Math. Inst., Rijksuniv.
Utrecht, 1982, 15, 89 pp.

[6] SHEPHARD G.C., TopD J. A. Finite unitary reflection groups. Canad. J. Math.,
1954, 6, 274-304.

[71 Srobowy P. Simple singularities and complex reflections. In: New Developments
in Singularity Theory (Cambridge, 2000). Dordrecht: Kluwer Acad. Publ., 2001,
329-348. (NATO Sci. Ser. II Math. Phys. Chem., 21.)

1974-6 — V.I1.Arnold, B. A. Khesin

The progress in this area achieved up to the present date is described in
works [1-8].

[1] ARNOLD V.I. The first steps of symplectic topology. Russian Math. Surveys, 1986,
41(6), 1-21. [The Russian original is reprinted in: Vladimir Igorevich Arnold.
Selecta—60. Moscow: PHASIS, 1997, 365-389.]

[21 ARNOLD V.I. First steps of symplectic topology. In: VIIIth International Congress
on Mathematical Physics (Marseille, 1986). Editors: M. Mebkhout and R. Sénéor.
Singapore: World Scientific, 1987, 1-16.

[3] ARNOLD V.I. Mysterious Mathematical Trinites. The Topological Economy Princi-
ple in Algebraic Geometry. Moscow: Moscow Center for Continuous Mathematical
Education Press, 1997 (in Russian).

[4] ARNOLD V.I. Symplectization, complexification and mathematical trinities. In: The
Arnoldfest. Proceedings of a conference in honour of V.I. Arnold for his sixti-
eth birthday (Toronto, 1997). Editors: E. Bierstone, B. A. Khesin, A.G.Khovanskii
and J. E.Marsden. Providence, RI: Amer. Math. Soc., 1999, 23-37. (Fields Insti-
tute Commun., 24.); CEREMADE (UMR 7534), Université Paris-Dauphine, Ne 9815,
04/03/1998.

[Internet: http://www.pdmi.ras.ru/“arnsem/Arnold/arn-papers.html]

[5] ARNOLD V.I. Polymathematics: is mathematics a single science or a set of arts?
In: Mathematics:; Frontiers and Perspectives. Editors: V.I. Arnold, M. Atiyah, P. Lax
and B.Mazur. Providence, RI: Amer. Math. Soc., 2000, 403—416; CEREMADE
(UMR 7534), Université Paris-Dauphine, Ne 9911, 10/03/1999.

[Internet: http://www.pdmi.ras.ru/“arnsem/Arnold/arn-papers.html]

[6] KHESIN B. A. Informal complexification and Poisson structures on moduli spaces.
In: Topics in Singularity Theory. V.1 Amold’s 60th Anniversary Collection. Edi-
tors: A. Khovanskii, A. Varchenko and V. Vassiliev. Providence, RI: Amer. Math. Soc.,
1997, 147-155. (AMS Transl., Ser. 2, 180; Adv. Math. Sci., 34.)

[71 KHESINB. A., ROSLY A. A. Polar homology and holomorphic bundles. Phil. Trans.
Roy. Soc. London, Ser. A, 2001, 359, 1413-1427.
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(8]

KHESIN B. A., ROSLY A. A. Symplectic geometry on moduli spaces of holomor-
phic bundles over complex surfaces. In: The Arnoldfest. Proceedings of a conference
in honour of V.I. Arnold for his sixtieth birthday (Toronto, 1997). Editors: E. Bier-
stone, B. A. Khesin, A. G. Khovanskii and J. E. Marsden. Providence, RI: Amer. Math.
Soc., 1999, 311-323. (Fields Inst. Commun., 24.)

1974-7 — 8. V. Chmutov

For the group Z, the problem was solved in [1]. In this case the problem

is equivalent to the classification of singularities on the manifold with boundary.
I. G. Shcherbak found [6] an interesting duality on the set of boundary singularities.
These results were generalized to the action of the group Z’; in [7]. For dihedral
groups the problem was solved by O.V.Lyashko in [4]. In some cases the clas-
sification is related to the finite groups generated by reflections (see [3-5]). The
list of unimodal singularities from [4] was completed by M. B. Sevryuk [2] (the
completion refers to the case of the group A, and critical point As). Concerning
equivariant singularities, see also [8-10].

(1]

(2]

(3]

(6]

(7]

(8]

ARNOLD V. 1. Critical points of functions on a manifold with boundary, the simple
Lie groups By, Ci, Fy, and singularities of evolutes. Russian Math. Surveys, 1978,
33(5), 99-116.

ARNOLD V.I., VASSILIEV V. A., GORYUNOV V. V., LYASHKO O. V. Singularity
Theory. II. Classification and Applications. Berlin: Springer, 1993. (Encyclopadia
Math. Sci., 39; Dynamical Systems, VIII.) [The Russian original 1989.]

CHMUTOV S. V., VARCHENKO A. N. Finite irreducible groups, generated by reflec-
tions, are monodromy groups of appropriate singularities. Funct. Anal. Appl., 1984,
18(3), 171-183.

LYASHKO O. V. Classification of critical points of functions on a manifold with sin-
gular boundary. Funct. Anal. Appl., 1983, 17(3), 187-193.

ROBERTS R.M., ZAKALYUKIN V.M. Symmetric wavefronts, caustic and Cox-
eter groups. In: Singularity Theory (Trieste, 1991). Editors: D.T.Lg, K. Saito and
B. Teissier. River Edge, NJ: World Scientific, 1995, 594-626.

SHCHERBAK I. G. Duality of boundary singularities. Russian Math. Surveys, 1984,
39(2), 195-196.

SHCHERBAK I.G. Singularities in the presence of symmetries. In: Topics in Sin-
gularity Theory. V.1. Arnold’s 60th Anniversary Collection. Editors: A. Khovanskif,
A.Varchenko and V. Vassiliev. Providence, RI: Amer. Math. Soc., 1997, 189-196.
(AMS Transl., Ser. 2, 180; Adv. Math. Sci., 34.)

WALL C. T. C. A note on symmetry of singularities. Bull. London Math. Soc., 1980,
12(3), 169-175.
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[91] WALL C.T.C. A second note on symmetry of singularities. Bull. London Math. Soc.,
1980, 12(5), 347-354.

[10] WASSERMAN G. Classification of singularities with compact abelian symmetry. Re-
gensburg Math. Schrift, 1977, 1, 284 pp.

1974-8 — I. A. Bogaevsky

A moving wave front can reconstruct (undergo a perestroika) in the course
of time. For instance, let us consider a perturbation spreading with a unit velocity
into an ellipse. In this case, fronts are interior ellipse equidistant curves. Such
a front is reconstructing as follows: it is a smooth curve at the beginning, then
it acquires four cusps and two self-intersection points, these two points disappear
soon, and then they appear again. After this the front becomes smooth again.

It is necessary to examine local perestroikas of a wave front moving in the
n-dimensional space and depending on time generically. This problem was solved
for n < 5 in [1]. It turned out that, with this restriction, the number of perestroikas
is finite modulo diffeomorphisms of the ambient space smoothly depending on
time and time shifts. Pictures of perestroikas for n = 2 and n = 3 can be found
in [2-4].

A perestroika of the type Pg (notations of Section 21.8 in [4] are used)
appears for n = 6 in a stable way. This perestroika is certain to have one number
modulus; however it is not known whether it has functional moduli or not. Some
of the perestroikas that appear stably in the case n > 6 were studied in [6, 7], but
the perestroika Pg is not among them.

In applications, there often is a case where a moving front does not have a
generic time dependence, but it is determined uniquely by the current time moment
and an initial condition, i. e., a wave front at a particular moment. These front sets
are called evolutionary. For example, equidistants of a smooth hypersurface form
evolutionary front sets depending on the distance and this hypersurface (the initial
condition) itself. A theorem of transversality often used in applications was proved
in [5]; it states that a wave front evolving in time for » < 5 and a typical initial con-
dition undergoes only perestroikas described in [1]. However, a list of perestroikas
realized in this evolutionary set for given n could be less than a general one. For
example, if a front does not depend on time, there are no perestroikas at all.

In conclusion, let us give some rigorous definitions. A smooth manifold
with a tangent hyperplane field satisfying a condition of maximal non-integrability
at each point is called contact. A Legendrian submanifold of a contact manifold
is a smooth integral submanifold of the maximal possible dimension (equal to the
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half of the dimension of a contact hyperplane). A Legendrian fibration is a smooth
fibration whose space has a contact structure, and the fibers are Legendrian sub-
manifolds. Let L{’_l C E>"~1 be a Legendrian submanifold in the space of the
Legendrian fibration 7t: E2*~! — B", depending smoothly on time ¢. A hypersur-
face set w(L; _1) C B" (generally speaking, singular) is called the front set depend-
ing on time. A theorem proved in [1] is valid, if the set of Legendrian manifolds
L'! generically depends on time; and the theorem proved in [5] is applicable if
L=y (Lg’l), where Lg_l C E*~lis a typical Legendrian submanifold (an ini-
tial condition), and g, : E2"~! — E?"~! is a given set of smooth diffeomorphisms
preserving a contact structure and depending on time smoothly.

[1] ARNOLD V.I. Wave front evolution and equivariant Morse lemma. Commun. Pure
Appl. Math., 1976, 29(6), 557-582; correction: 1977, 30(6), 823. [The Russian
translation in: Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997,
289-318.]

[2] ARNOLD V.I. Singularities of Caustics and Wave Fronts. Dordrecht: Kluwer Acad.
Publ., 1990. (Math. Appl., Sov. Ser., 62.)

[3] ARNOLD V.I. Catastrophe Theory. Berlin: Springer, 1992. [The Russian original
1990.]

[4] ARNOLD V.I., GUSEIN-ZADE S. M., VARCHENKO A. N. Singularities of Differ-
entiable Maps, Vol.I: The classification of critical points, caustics and wave fronts.
Boston, MA: Birkhduser, 1985. (Monographs in Math., 82.) [The Russian original
1982.]

[5] BOGAEVSKY L. A. Perestroikas of fronts in evolutionary families. Proc. Steklov Inst.
Math., 1995, 209, 57-72.

[6] ZAKALYUKIN V.M. Reconstructions of wave fronts depending on one parameter.
Funct. Anal. Appl., 1976, 10(2), 139-140.

[7]1 ZAKALYUKIN V.M. Reconstructions of fronts and caustics depending on a param-
eter and versality of mappings. In: Itogi Nauki i Tekhniki VINITI. Current Problems
in Mathematics, Vol.22. Moscow: VINITIL, 1983, 56-93 (in Russian). [The English
translation: J. Sov. Math., 1984, 27, 2713-2735.]

1975-6 — A. M. Gabrielov

; For homogeneous functions, see [1]. See also the comments to problems
1973-7 and 1976-16.
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[1] GABRIELOV A.M., KUSHNIRENKO A. G. Description of deformations with con-
stant Milnor number for homogeneous functions. Funct. Anal. Appl., 1975, 9(4),
329-331.

1975-7 — V. A. Vassiliev
Yes, they can. In paper [1] two L = const strata of function singularities
C3 — C were constructed, that do not intersect the set of real functions (i. e., com-
plexifications of functions R3 — R). The complex conjugation sends these two
strata one into the other, in particular they are topologically equivalent.

[11 VASSILIEV V. A., SERGANOVA V. V. On the number of real and complex moduli of

singularities of smooth functions and matroid realizations. Math. Notes, 1991, 49(1),
15-20.

1975-8 — S. V. Chmutov

This is a particular case of problems 1979-3 and 1980-11. It was solved
by A.N. Varchenko (see reference [4] in the comment to problem 1980-11).

1975-9 — V.I1.Arnold

The worst singularity indices p = % — % also feature a curious numerology:

k=3 k=3 k>3

101 234 5 6 7 8 9 10 11 10
N|[2 3 4 6 8 12 o o -24 —-16 —-12 -8 -6
=N 1

(here [ is the number of parameters, and k is the number of variables), see Theo-
rem XX in [1] (and [2], p. 256).

Neither results on the value s(32) nor investigations of the numerology of
the sequence s(JL) are known to me.

[1] ARNOLD V.I. Critical points of smooth functions and their normal forms. Russian
Math. Surveys, 1975, 30(5), 1-75.

[2] Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997.
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1975-12 — S. M. Gusein-Zade

It is proved that, if the zero level curve {f = 0} of a (real) function germ f
is real (i. e., does not have pairs of complex conjugate components), then f has a
real morsification (S. M. Gusein-Zade [1], N. A’Campo [2]).

[1] GUSEIN-ZADE S.M. Dynkin diagrams for singularities of functions of two vari-
ables. Funct. Anal. Appl., 1974, 8(4), 295-300.

[2] A’CAMPO N. Le groupe de monodromie du deploiement des singularités isolées de
courbes planes, [. Math. Ann., 1975, 213(1), 1-32.

1975-13 — S. V. Chmutov
o The problem is closely related to 1973-19. If the number of critical values
of the perturbation is 2, then the singularity is simple (N. A’Campo, see the refer-
ence in the comment to problem 1973-19). The similar question can be formulated
for polynomials. Suppose that all (d — 1)? critical points of a polynomial of de-
gree d in n variables are Morse critical points. What is the minimal number of its
critical values? The problem is solved only for n = 2. The answer is 3 (see [1,2]).

[1] CHMuTOV S.V. Spectrum and equivariant deformations of critical points. Uspekhi
Mat. Nauk, 1984, 39(4), 113~114 (in Russian).

[2] CamuTOV S. V. Extremal distributions of critical points and critical values. In: Sin-
gularity Theory (Trieste, 1991). Editors: D. T. L&, K. Saito and B. Teissier. River Edge,
NJ: World Scientific, 1995, 192-205.

1975-14

See the comment to problem 1972-32.

1975-15 — S. M. Gusein-Zade Also: 1982-12

For a singularity of two variables, sufficient conditions which guarantee
the possibility to split off a singularity A; were described in [1].

[1] GUSEIN-ZADE S. M. On singularities from which an A can be split off. Funct. Anal.
Appl., 1993, 27(1), 57-60.
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v 1975-17 — V.V.Goryunov

A limit of a series of function germs of finite multiplicity is a function of
infinite multiplicity. This approach led D. Siersma to the consideration of func-
tions with non-isolated singularities [4]. Later on the direction has been developed
mainly by himself [5,6] and R. Pellikaan [2,3], as well as by M. Tibar, A. Zaharia,
T. de Jong, G.Jiang (see [7] for a rather complete reference list). Some of their
classificational, algebraic and topological results were surveyed in [1]. In addi-
tion, in [1] there was introduced a different viewpoint on the classification, which
allows deformation of the singular set. This provided some new discriminant sets
possessing the K(m, 1) property.

[1] ARNOLD V.I., VASSILIEV V. A., GORYUNOV V. V., LYASHKO O. V. Singulari-
ties. II. Classification and Applications. Berlin: Springer, 1993, Ch. 1, Sect. 4. (Ency-
clopadia Math. Sci., 39; Dynamical Systems, VIIL.) [The Russian original 1989.]

[2] PELLIKAAN R. On hypersurface singularities which are stems. Compos. Math.,
1989, 71(2), 229-240.

[3] PELLIKAAN R. Series of isolated singularities. In: Singularities (Iowa City, IA,
1986). Editor: R. Randell. Providence, RI: Amer. Math. Soc., 1989, 241-259. (Con-
temp. Math., 90.)

[4] SIERSMA D. Isolated line singularities. In: Singularities. Part 2 (Arcata, CA, 1981).
Editor: P. Orlik. Providence, RI: Amer. Math. Soc., 1983, 485—496. (Proc. Symposia
Pure Math., 40.)

[5] SIErRSMA D. Singularities with critical locus a 1-dimensional complete intersection
and transversal type A, Topology Appl., 1987, 27(1), 51-73.

[6] SIERSMA D. Variation mappings on singularities with a 1-dimensional critical locus.
Topology, 1991, 30(3), 445-469.

[7]1 SIERSMA D. The vanishing topology of non isolated singularities. In: New Develop-
ments in Singularity Theory (Cambridge, 2000). Editors: D. Siersma, C.T. C. Wall
and V.Zakalyukin. Dordrecht: Kluwer Acad. Publ., 2001, 447-472. (NATO Sci.
Ser. IT Math. Phys. Chem., 21.)

A 1975-17 — S. M. Gusein-Zade

An explanation of the notion of a series of singularities can be found in [1].

[1] SIERSMA D. Periodicities in Arnold’s lists of singularities. In: Real and Complex
Singularities (Oslo, 1976). Editor: P. Holm. Alphen aan den Rijn: Sijthoff & Noord-
hoff, 1977, 497-524.
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1975-18 — V. A. Vassiliev

% This problem was solved by O. V. Lyashko [1].

[1]1 LYASHKO O.V. Decompositions of simple singularities of functions. Funct. Anal.
Appl., 1976, 10(2), 122-128.

1975-19 — V. A. Vassiliev

These cohomology rings have not been calculated; I expect that the answers
are quite complicated.

In the case n = 1 N. A. Nekrasov [1] proved that these stable groups are
well defined and finitely generated in any particular dimension. The similar result
for arbitrary n (and also stable over n — oo) is also true. This follows from almost
the same considerations plus the theorems on stabilization of discriminant strata
from [2, 3], and some facts on cohomology of configuration spaces.

Similar facts hold also for the stabilization of cohomology rings of caustics
of isolated function singularities.

See also the comments to problems 1975-24, 1976-28, 1980-15, 1985-7,
1985-22, and 1998-8.

[1] NEKRASOV N.A. On the cohomology of the complement of the bifurcation diagram
of the singularity A,. Funct. Anal. Appl., 1993, 27(4), 245-250.

[2] VASSILIEV V. A. Stable cohomologies of the complements of the discriminants of
deformations of singularities of smooth functions. In: Itogi Nauki i Tekhniki VINITL.
Current Problems in Mathematics. Newest Results, Vol. 33. Moscow: VINITI, 1988,
3-29 (in Russian). [ The English translation: J. Sov. Math., 1990, 52(4), 3217-3230.]

[3] VASSILIEV V. A. Complements of Discriminants of Smooth Maps: Topology and
Applications, revised edition. Providence, R1: Amer. Math. Soc., 1994. (Transl. Math.
Monographs, 98.)

v 1975-20 — V.I. Arnold Also: 1973-16

For the curves (m = 1), the list consists of 1) all mappings with nonze-
ro square term of the Taylor series at the singular point (an infinite series num-
bered with one index), 2) all mappings with zero square term, but nonzero cu-
bic term, of the Taylor series (two series with three indices), 3) mappings with
6-jet (¢4,£°,0,...,0) (seven series with one index), 4) thirty-two “sporadic” curves,
see [3].
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The case of plane curves (m = 1, n = 2) was investigated by Bruce and
Gaffney [4].

Now something is known about both the symplectic and the contact version
of the problem [1,2].

[1] ARNOLD V.I. First steps of local symplectic algebra. CEREMADE (UMR 7534),
Université Paris-Dauphine, Ne 9902, 20/01/1999; In: Differential Topology, Infinite-
Dimensional Lie Algebras, and Applications. D. B. Fuchs’ 60th Anniversary Collec-
tion. Editors: A. Astashkevich and S. Tabachnikov. Providence, RI: Amer. Math. Soc.,
1999, 1-8. (AMS Transl., Ser. 2, 194; Adv. Math. Sci., 44.)

[Internet: http://www.pdmi.ras.ru/ arnsem/Arnold/arn-papers.html]

[2] ARNOLD V.I. First steps of local contact algebra. CEREMADE (UMR 7534), Uni-
versité Paris-Dauphine, Ne 9909, 10/02/99; Canad. J. Math., 1999, 51(6), 1123-1134.

[3] ARNOLD V.I. Simple singularities of curves. CEREMADE (UMR 7534), Université
Paris-Dauphine, Ne 9906, 09/02/1999; Proc. Steklov Inst. Math., 1999, 226, 20-28.
[Internet: http://www.pdmi.ras.ru/"arnsem/Arnold/arn-papers.html]

[4] BRUCE J.W., GAFFNEY T.J. Simple singularities of mappings (C,0) — (C2,0).
J. London Math. Soc., Ser. 2, 1982, 26(3), 465-474.

A 1975-20 — V. V. Goryunov Also: 1973-16

« w Bothreal and complex classifications of simple map-germs between m- and
n-dimensional manifolds, m > n, were obtained in [2] (see also Appendix to [3] for
a reduction of arbitrary mappings to projections). Moreover, paper [2] allows the
source to be a complete intersection with an isolated singularity. A considerable
part of the classification is indeed based on the A-D-E function singularities and
their versal deformations.

As for the case of m < n, in addition to V.I1. Armnold’s comment, I have
to mention that the complete classifications of simple singularities have been ob-
tained by now just in three more cases: for curves in the 3-space [1], for R? - R3
(by D.Mond in [7, 8]) and for R — R* (by K. Houston and N. Kirk in [6]). All
simple germs in these cases have corank at most 1. Of course, the complex classi-
fications are also contained in the last three papers. Also some work has been done
on classifying multi-germs and corank 1 maps [4,5,9].

[1] GiBsoN C.G., HoBBS C.A. Simple singularities of space curves. Math. Proc.
Cambridge Phil. Soc., 1993, 113(2), 297-310.



1975-20 Comments 315

[2] GorYUNOV V.V. Singularities of projections of complete intersections. In: Ito-
gi Nauki 1 Tekhniki VINITI. Current Problems in Mathematics, Vol.22. Moscow:
VINITI, 1983, 167-206 (in Russian). [The English translation: J. Sov. Math., 1984,
27, 2785-2811.]

[3] GorYUNOV V.V. Projections of generic surfaces with boundaries. In: Theory of
Singularities and its Applications. Editor: V.1. Arnold. Providence, RI: Amer. Math.
Soc., 1990, 157-200. (Adv. Sov. Math.,, 1.)

[4] HousToN K. On the classification and topology of complex multi-germs of corank
one and codimension one. Preprint, University of Leeds, December 2001.

[S] HousToN K. On the classification of real mono-germs of corank one and codimen-
sion one. Preprint, University of Leeds, February 2002.

[6] HousToN K., KIRK N. On the classification and geometry of corank 1 map-germs
from three-space to four-space. In: Singularity Theory (Liverpool, 1996). Editors:
B.Bruce and D.Mond. Cambridge: Cambridge University Press, 1999, 325-351.
(London Math. Soc. Lecture Note Ser., 263.)

[7] MoND D. On the classification of germs of maps from R? to R3. Proc. London Math.
Soc., Ser. 3, 1985, 50(2), 333-369.

[8] MonD D. Singularities of mappings from surfaces to 3-space. In: Singularity theo-
ry (Trieste, 1991). Editors: D. T.Lé, K. Saito and B. Teissier. River Edge, NJ: World
Scientific, 1995, 509-526.

[91 WIK ATIQUE R. On the classification of multi-germs of maps from C? to C? un-
der A-equivalence. In: Real and Complex Singularities (Sad Carlos, 1998). Editors:
J. W.Bruce and F. Tari. Boca Raton, FL: Chapman and Hall, 2000, 119-133. (Chap-
man and Hall/CRC Res. Notes in Math., 412.)

1975-21

% One can treat this problem as solved in principle, see survey [1] (the section

¥y €

on Khovanskii’s “geometry of formulae”).

[1] ARNOLD V.I., VARCHENKO A.N., GIVENTAL A.B., KHOVANSKIT A. G. Singu-
larities of functions, wave fronts, caustics and multidimensional integrals. In: Math-
ematical Physics Reviews, Vol. 4. Editor: S. P. Novikov. Chur: Harwood Acad. Publ.,
1984, 1-92. (Sov. Sci. Rev., Sect. C: Math. Phys. Rev., 4.)

1975-22

"% This question on the structure of twofold branched coverings is mainly
solved (see, e. g., [1]).
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[1] ARNOLD V.I., GUSEIN-ZADE S.M., VARCHENKO A.N. Singularities of Dif-
ferentiable Maps, Vol. II: Monodromy and Asymptotics of Integrals. Boston, MA:
Birkhaduser, 1988. (Monographs in Math., 83.) [The Russian original 1984.]

1975-23 — V.1. Arnold

For M-singularities, see survey [2]. I am unaware of whether the question
on the existence of M-singularities in any C-equivalence class is solved (maybe
even it is answered negatively).

The real modality and the complex one can be different for algebraic group
actions (the example was shown by E. B. Vinberg, see paper [1]).

The answer in the case of complex stratification seems to be negative, be-
cause some strata in the complex problem may not appear in the real domain at all
(like the self-intersection lines of the “pyramid” Dy, though in this very case there
exists the “purse” real form where they do appear).

See also the comment to problem 1979-6.

[1] ARNOLD V.I. On some problems in singularity theory. In: Geometry and Analysis.
Papers dedicated to the memory of V. K. Patodi. Bangalore: Indian Acad. Sci., 1980,
1-9. [Reprinted in: Proc. Indian Acad. Sci. Math. Sci., 1981, 90(1), 1-9.]

[2] ArRNOLD V.I., OLEINIK O. A. Topology of real algebraic varieties. Moscow Uniy.
Math. Bull., 1979, 34(6), 5-117.

1975-24 — V. A. Vassiliev

The L = const stratum of an isolated function singularity can be nons-
mooth, see the comment to problem 1973-7.

Such a stratum with a fixed value of L is irreducible in the bifurcation dia-
gram of any isolated singularity with trivial ()L+ 1)-jet, i.e., whose Taylor expan-
sion begins with the terms of order > L+ 2, see [1]. Moreover, for any finite col-
lection of U = const strata K1, . .., K}, with Milnor numbers l,..., L, the stratum
of the bifurcation diagram of the function f = Y7, x, N > n(m(2 + max ;) — 1),
consisting of all functions having m critical points of these types with zero critical
value, also is irreducible, see [1, 3].

Let A be any closed semialgebraic Diff(C")-invariant subvariety of the jet
space J¥(C",C) with some k (e. g., the closure of a |1 = const stratum considered as
a subset of such a jet space with k > [L+ 1). Then the cohomology rings of comple-
ments of the corresponding strata of bifurcation diagrams of function singularities
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stabilize to the cohomology ring of the iterated loop space Q2*(J%(C",C)\ A),
see [2,3].
See also problems 1975-19, 1976-28, 1980-15, 1985-7, and 1985-22,

[1] VASSILIEV V. A. Stable cohomologies of the complements of the discriminants of
deformations of singularities of smooth functions. In: Itogi Nauki i Tekhniki VINITI.
Current Problems in Mathematics. Newest Results, Vol. 33. Moscow: VINITI, 1988,
3-29 (in Russian). [ The English translation: J. Sov. Math., 1990, 52(4), 3217-3230.]

[2] VASSILIEV V. A. Topology of complements to discriminants and loop spaces. In:
Theory of Singularities and its Applications. Editor: V.I. Arnold. Providence, RI:
Amer. Math. Soc., 1990, 9-21. (Adv. Sov. Math., 1.)

[3] VASSILIEV V. A, Complements of Discriminants of Smooth Functions: Topology
and Applications, revised edition. Providence, RI: Amer. Math. Soc., 1994, (Transl.
Math. Monographs, 98.)

1975-25 — V.I. Arnold

The first part of the problem is principally solved, see papers [1,6,8,10,13].
Only a little is known on the second part (cf. papers [2-5,7,9,11, 12, 14-16]).
See also the comment to problem 1981-14.

[11 ARNOLD V.I. Wave front evolution and equivariant Morse lemma. Commun. Pure
Appl. Math., 1976, 29(6), 557-582; correction: 1977, 30(6), 823. [ The Russian trans-
lation in: Vladimir Igorevich Arnold. Selecta—60. Moscow, PHASIS, 1997, 289-318.]

[2] ARNOLD V.I. Lagrange and Legendre cobordisms, I; II. Funct. Anal. Appl., 1980,
14(3), 167-177; 14(4), 252-260.

[3] ARNOLD V.I. On some nonlinear problems. In: Crafoord Prize in Mathematics,
1982. Crafoord Lectures. Stockholm: The Royal Swedish Academy of Sciences,
1982, 1-7. [The Russian translation in: Vladimir Igorevich Arnold. Selecta—60.
Moscow: PHASIS, 1997, 335-344.]

[4] ARNOLD V.I. On the Newton attraction of gatherings of dust-like particles. Uspekhi
Mat. Nauk, 1982, 37(4), 125 (in Russian).

[51 ARNOLD V.I. On the Newton potential of hyperbolic layers. Trudy Tbilis. Univ.,
Ser. Mat., Mekh., Astron., 1982, 232/233(13-14), 23-29 (in Russian). [ The English
translation: Selecta Math. Sov., 1985, 4(2), 103-106.]

[6] ARNOLD V.I. Reconstructions of singularities of potential flows in a collision-free
medium and caustic metamorphoses in three-dimensional space. Trudy Semin. Pet-
rovskogo, 1982, 8, 21-57 (in Russian). [ The English translation: J. Sov. Math., 1986,
32(3), 229-257.]
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[71 ARNOLD V.I. Some algebro-geometrical aspects of the Newton attraction theory. In:
Arithmetic and Geometry. Papers dedicated to I.R. Shafarevich, Vol.II: Geometry.
Basel: Birkhauser, 1983, 1-3. (Progr. Math., 36.)

[81 ARNOLD V.I. Singularities of Caustics and Wave Fronts. Dordrecht: Kluwer Acad.
Publ., 1990. (Math. Appl., Sov. Ser., 62.)

[9]1 ARNOLD V.I. Mathematical problems in classical physics. In: Trends and Perspec-
tives in Applied Mathematics. Editors: F. John, J. E. Marsden and L. Sirovich. New
York: Springer, 1994, 1-20. (Appl. Math. Sci., 100.) [The Russian translation in:
Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 553-575.]

[10] ARNOLD V.I., BARYSHNIKOV YU.M., BOGAEVSKII I. A. Supplement 2 in:
GURBATOV S.N., MALAKHOV A.N., SAICHEV A.I. Nonlinear Random Waves
and Turbulence in Nondispersive Media: Waves, Rays, Particles. Translated from
Russian. Manchester: Manchester University Press, 1991. (Nonlinear Science: Theo-
ry and Applications.)

[11] ARNOLD V.I., ZELDOVICH YA.B., SHANDARIN S. F. Elements of the large scale
structure of the Universe. Uspekhi Mat. Nauk, 1981, 36(3), 244-245 (in Russian).

[12] ARNOLD V.I., ZELDOVICH YA.B., SHANDARIN S.F. The large scale structure
of the Universe. I. General properties. One- and two-dimensional models. Geophys.
Astrophys. Fluid Dynamics, 1982, 20(1-2), 111-130.]

[13] BAKHTIN V. I. Topologically normal forms of caustic transformations of Dy -series.
Moscow Univ. Marh. Bull., 1987, 42(4), 63—66.

[14] ROYTVARF A. A. The motion of a continuous medium in the force field with a rooted
singularity. Moscow Univ. Mech. Bull., 1987, 42(1), 24-217.

[15] ROYTVARF A. A. On the dynamics of a one-dimensional self-gravitating medium.
Physica D, 1994, 73(3), 189-204.

[16] STANCHENKO S. V. Arbitrary deformations of Lagrangian and Legendrian mappings
Proc. Steklov Inst. Math., 1995, 209, 191-202.

1975-26 — V.I.Arnold

In addition to the papers cited in the comment to problem 1970-1, one
should mention works [1-11,13], as well as papers [1,12,14,15] on the degeneracy
of the spectral sequence for the natural stratification of the Hermitian matrix space
by the multiplicities of eigenvalues and on the ring of curvature forms.

[11 ARNOLD V.I. Remarks on eigenvalues and eigenvectors of Hermitian matrices,
Berry phase, adiabatic connections and quantum Hall effect. Selecta Math. (N. S.),
1995, 1(1), 1-19. [ The Russian translation in: Vladimir Igorevich Arnold. Selecta—60.
Moscow: PHASIS, 1997, 583-604.]
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[2] ARNOLD V.I. Relatives of the quotient of the complex projective plane by complex
conjugation. Proc. Steklov Inst. Math., 1999, 224, 46-56.
[Internet: http://www.pdmi.ras.ru/ arnsem/Arnold/arn-papers.html]

[3] ARNOLD V.I. Symplectization, complexification and mathematical trinities. In: The
Arnoldfest. Proceedings of a conference in honour of V.I. Arnold for his sixti-
eth birthday (Toronto, 1997). Editors: E. Bierstone, B. A. Khesin, A. G. Khovanskii
and J. E.Marsden. Providence, RI: Amer. Math. Soc., 1999, 23-37. (Fields Insti-
tute Commun., 24.); CEREMADE (UMR 7534), Université Paris-Dauphine, Ne 9815,
04/03/1998.

[Internet: http://www.pdmi.ras.ru/ arnsem/Arnold/arn-papers.html]

[4] ARNOLD V.I., KozLoVv V.V., NEISHTADT A.I. Mathematical Aspects of Clas-
sical and Celestial Mechanics, 2nd edition. Berlin: Springer, 1993. (Encyclopadia
Math. Sci., 3; Dynamical Systems, IIL.) [The Russian original 1985.] [The second,
revised and supplemented, Russian edition 2002.]

[5] MAILYBAEV A.A. On cones tangent to the stability domain of a family of real ma-
trices. Vestnik Moskov. Univ. Ser. Mat. Mekh., 1998, Ne 6, 51-54 (in Russian, for the
English translation see Moscow Univ. Math. Bull.).

[6] MAILYBAEV A.A. A method for reducing families of matrices to normal forms.
Dokl. Math., 1999, 60(1), 39-43.

[71 MAILYBAEV A. A. Reducing families of matrices to their normal forms and an ap-
plication to the stability theory. Fundam. Prikl. Mat., 1999, 5(4), 1111-1133 (in Rus-
sian).

[8] MAILYBAEV A. A. Singularities of the boundaries of stability domains: analysis and
applications. Ph. D. Thesis, Moscow State University, 1999 (in Russian).

[9] MAILYBAEV A.A., SEIRANYAN A.P. On singularities of the boundary of the do-
main of stability. Dokl. Phys., 1998, 43(4), 248-252.

[10] MAILYBAEV A. A., SEIRANYAN A.P. Singularities of the boundaries of stability
domains. J. Appl. Math. Mech., 1998, 62(6), 909-920.

[11] MAILYBAEV A.A., SEIRANYAN A.P. The stability domains of Hamiltonian sys-
tems. J. Appl. Math. Mech., 1999, 63(4), 545-555.

[12] POSTNIKOV A.E., SHAPIRO B.Z., SHAPIRO M. Z. Algebras of curvature forms
on homogeneous manifolds. In: Differential Topology, Infinite-Dimensional Lie Al-
gebras, and Applications. D.B. Fuchs’ 60th Anniversary Collection. Editors: A. As-
tashkevich and S. Tabachnikov. Providence, RI: Amer. Math. Soc., 1999, 227-235.
(AMS Transl., Ser. 2, 194; Adv. Math. Sci., 44.)

[13] SEIRANYAN A.P., MAILYBAEV A.A. On singularities of the stability domain

boundaries of Hamiltonian and gyroscopic systems. Dokl. Phys., 1999, 44(4),
251-255.

[14] SHAPIRO M.Z., VAINSHTEIN A.D. Stratification of Hermitian matrices and the
Alexander mapping. C. R. Acad. Sci. Paris, Sér. 1 Math., 1995, 321(12), 1599-1604.



320 Comments 1975-26

[15] SHAPIRO B.Z., SHAPIRO M.Z. On ring generated by Chern 2-forms on SL,/B.
C. R. Acad. Sci. Paris, Sér. 1 Math., 1998, 326(1), 75-80.

v 1975-27 — V.I. Arnold

g Y

B

« A survey of progress in this area can be found, for example, in paper [1]
and in book [2], and a list of open questions—in paper [3]. A significant con-
tribution to the investigation of asymptotic of oscillatory integrals was made by
A.N. Varchenko [5] and V. N. Karpushkin [4]. Integrals of the saddle-point method
were studied in works of V. A. Vassiliev [6] and Yu. M. Baryshnikov.
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& 1975-27 — V. N. Karpushkin

-

w Concerning uniform estimates of oscillatory integrals and volumes, see the
comments to problems 1972-5 and 1976-22.

1975-28 — V.I. Arnold
o
ot The singularities of envelopes of families of submanifolds were studied
from the given viewpoint in works [1-12].
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1975-29 — A.A.Agrachev, V.1. Arnold, A. A. Davydov

% The problem is far from its complete solution. The questions related to it
were considered in papers and books [1-49].

The information on typical singularities in variational problems with non-

holonomic constraints, in particular, in sub-Riemannian problems, can be found
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in papers [1-8, 30, 32,3740, 46,47]. Sub-Riemannian problems are defined on
Riemannian manifolds endowed with non-involutive distributions (treated as non-
holonomic constraints). The problem is to find a shortest curve connecting two
points in the manifold among all integral curves of the distribution. An important
feature of these problems is that the family of arbitrary short extremals started from
a fixed point have envelops and self-intersections so that the initial point belongs
to the closure of the caustic and the cut locus.

Typical singularities are classified in the case of the contact distribution on
the 3-dimensional manifold (see [2,6,37]) and, partially, in the case of the quasi-
contact distribution on the 4-dimensional manifold (see [32]). One of the tools is
a careful study of versal deformations of the families of functions on the circle,
which links the subject with many actual problems of the singularities theory.

In general, sub-Riemannian singularities are rather racy. In particular, sub-
Riemannian distance for generic analytic rank & distribution on the n-dimensional
real-analytic Riemannian manifold is not a subanalytic function if

kK> 5k
n_>_(k——1) <?+—6—+1>;

the level sets of such a function (sub-Riemannian balls) are subanalytic for £ > 3
and arbitrary n (see [8]).
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1975-30 — V.I. Arnold

The problem was first posed already by Oskar II, the King of Sweden, in
1884 as one of the four challenge problems for the Prix (see [6]).

For ordinary differential equations it was mainly solved 100 years later by
A. A.Davydov [11] after preliminary works of R. Thom [12] and L. Dara [10], see
also papers [2-6,8] and books [1,7,9]. In the case of partial differential equations,
not much is known yet. Particular results have been obtained by V. V. Lychagin
and M. Ya. Zhitomirskii.

[1] ARNOLD V.I. Geometrical Methods in the Theory of Ordinary Differential Equa-
tions, 2nd edition. New York: Springer, 1988. (Grundlehren der Mathematischen Wis-
senschaften, 250.) [The Russian original 1978.]

[2] ARNOLD V.I. Implicit differential equations, contact structures, and relaxation os-
cillations. Uspekhi Mat. Nauk, 1985, 40(5), 188 (in Russian).

[3] ARNOLD V.I. Catastrophe theory. In: Itogi Nauki i Tekhniki VINITL Current Prob-
lems in Mathematics, Vol. 5. Moscow: VINITI, 1986, 219-277 (in Russian). [ The En-
glish translation in: Bifurcation Theory and Catastrophe Theory. Editor: V. 1. Arnold.
Berlin: Springer, 1994, 207-264. (Encyclop&dia Math. Sci., 5; Dynamical Systems,
Vol

[4] ARNOLD V.I. Contact structure, relaxation oscillations and singular points of im-
plicit differential equations. In: Geometry and the Theory of Singularities in Nonlin-
ear Equations. Voronezh: Voronezh University Press, 1987, 3—8 (in Russian). (Novoe
v Global'nom Analize, 7.) [Reprinted in: Vladimir Igorevich Arnold. Selecta—60.
Moscow: PHASIS, 1997, 391-396.]



1975-30 Comments 327

[5] ARNoOLD V.I. Bifurcations and singularities in mathematics and mechanics. In: The-
oretical and Applied Mechanics (XVII IUTAM Congress, Grenoble, August 21-27,
1988). Editors: P. Germain, M. Piau and D. Caillerie. Amsterdam: North-Holland,
1989, 1-25.

[6] ARNOLD V.I. Contact geometry: the geometrical method of Gibbs’s thermody-
namics. In: Proceedings of the Gibbs Symposium (Yale University, 1989). Editors:
D. G. Caldi and G.D.Mostow. Providence, RI: Amer. Math. Soc. and New York:
American Institute of Physics, 1990, 163-179.

[71 ArRNOLD V.I. Lectures on Partial Differential Equations, 2nd supplemented edition.
Moscow: PHASIS, 1997 (in Russian).

[8] ARNOLD V.I., AFRAIMOVICH V.S., IL'YASHENKO YU.S., SHIL'NIKoV L.P.
Bifurcation theory. In: Itogi Nauki i Tekhniki VINITL. Current Problems in Math-
ematics, Vol. 5. Moscow: VINITI, 1986, 5-218. [The English translation in: Bifur-
cation Theory and Catastrophe Theory. Editor: V.I. Arnold. Berlin: Springer, 1994,
1-205. (Encyclopadia Math. Sci., 5; Dynamical Systems, V.)]

[91 ARNOLD V.I., VASSILIEV V. A., GORYUNOV V. V., LYASHKO O. V. Singulari-
ties. IL. Classification and Applications. Berlin: Springer, 1993, Ch. 1. (Encyclopzdia
Math. Sci., 39; Dynamical Systems, VIIL.) [The Russian original 1989.]

[10] DARA L. Singularités génériques des équations différentielles multiformes. Bol. Soc.
Brasil. Mat., 1975, 6(2), 95-128.

[11] DAVYDOV A. A. Normal form of a differential equation, not solvable for the deriva-
tive, in a neighborhood of a singular point. Funct. Anal. Appl., 1985, 19(2), 81-89.

[12] THOM R. Sur les équations différentielles multiformes et leurs intégrales singuliéres.
Bol. Soc. Brasil. Mat., 1972, 3(1), 1-11.

L\
e N

1976-2

See the comment to problem 1978-6.

1976-4 — 8. L. Tabachnikov

% A detailed discussion of this problem can be found in [1].
The question is closely related to differential geometry of pairs of trans-
verse fields of directions in 3-space, in particular, when the distribution generated
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by these fields is completely non-integrable. One can construct differential invari-
ants which are Cartan connections. See [2] for a differential-geometric study of
Legendrian 2-webs.
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v 1976-5 — B.A.Khesin

The question is still open. Some related results can be found in papers [2,3]
and in Section 7 of Chapter III in book [1].
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o 1976-5 — 8. L. Tabachnikov

; A somewhat related definition of an asymptotic Bennequin invariant was
introduced in [1]. Recall that the Bennequin (or Bennequin—Thurston) invariant
of a Legendrian knot K in, say, a contact 3-sphere, is its linking number with the
knot obtained from K by a small translation in a direction, transverse to the contact
structure. Likewise, one defines the Bennequin invariant of a knot, transverse to
the contact structure. Similarly to the asymptotic Hopf invariant, in the definition
of an asymptotic Bennequin invariant, the knot X is replaced by a vector field that
may be tangent to a contact distribution or transverse to it.

[1] TABACHNIKOV S.L. Two remarks on the asymptotic Hopf invariant. Funct. Anal.
Appl., 1990, 24(1), 74-75.

1976-6 — M. B. Mishustin

For neighborhoods in complex surfaces the problem was solved in [1]; for
the general case see the comment to problem 1989-11.
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[1] MisHUSTIN M.B. Neighborhoods of the Riemann sphere in complex surfaces.
Funct. Anal. Appl., 1993, 27(3), 176-185.

1976-8

This is a problem in paper [1] (p. 5: Problem 3), see also the English trans-
lation [2].
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1976-9 — A.A. Davydov

« % The problem is not solved in this general formulation.

However, for generic bidynamical control systems on the plane, the exis-
tence of a regular synthesis is proved for the time optimal problem in analytic and
smooth cases (see [8] and the bibliography there). The corresponding classifica-
tions of singularities are presented in [4,6,7].

The existence of a regular synthesis for a generic smooth system with
closed quadratically convex indicatrices with phase space of dimension n < 4 fol-
lows from the classifications of singularities of wave front evolutions [1-3,9, 10].
In this case the classification of singularities for the time optimal problem follows
from [5].
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289-318.]

[2] ARNOLD V.I., GUSEIN-ZADE S. M., VARCHENKO A. N. Singularities of Differ-
entiable Maps, Vol. I: The Classification of Critical Points, Caustics and Wave Fronts.
Boston, MA: Birkhduser, 1985. (Monographs in Math., 82.) [The Russian original
1982.]

[3] BOGAEVSKY L. A. Perestroikas of fronts in evolutionary families. Proc. Steklov Inst.
Math., 1995, 209, 57-72.
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[4] BRESSAN A., PICCOLI B. A generic classification of time-optimal planar stabilizing
feedbacks. SIAM J. Control Optim., 1998, 36(1), 12-32.

[5] DAVYDOV A.A., ZAKALYUKIN V.M. The coincidence of generic singularities
of solutions of extremal problems with constraints. In: Proceedings of the Inter-
national Conference Dedicated to the 90th Birthday of L.S.Pontryagin (Moscow,
1998), Vol. 3: Geometic Control Theory. Itogi Nauki i Tekhniki VINITI. Contempo-
rary Mathematics and its Applications. Thematic Surveys, Vol. 64. Moscow: VINITI,
1999, 118-143 (in Russian).

[6] PiccoLl B. Classification of generic singularities for the planar time-optimal syn-
thesis. SIAM J. Control Optimization, 1996, 34(6), 1914—1946.

[7] PiccoLl B. Regular time-optimal syntheses for smooth planar systems. Rend. Semin.
Mat. Univ. Padova, 1996, 95, 59-79.

[8] PiccoLri B., SUSSMANN H.J. Regular synthesis and sufficient conditions for opti-
mality. SIAM J. Control Optimization, 2000, 39(2), 359-410.

[9] ZAKALYUKIN V. M. Reconstructions of fronts and caustics depending on a param-
eter and versality of mappings. In: Itogi Nauki i Tekhniki VINITL. Current Problems
in Mathematics, Vol.22. Moscow: VINITI, 1983, 56-93 (in Russian) [The English
translation: J. Sov. Math., 1984, 27, 2713-2735.]

[10] ZAKALYUKIN V.M. Envelopes of families of wave fronts and control theory. Proc.
Steklov Inst. Math., 1995, 209, 114-123.

v 1976-10

P

" % This is a problem in paper [1] (§ 3).

[1] ARNOLD V.I. Some unsolved problems in the theory of differential equations. In:
Unsolved Problems in Mechanics and Applied Mathematics. Moscow: Moscow Uni-
versity Press, 1977, 3-9 (in Russian).

& 1976-10 — A. I Neishtadt

This problem involves systems with rotating phases, see the comment to
problem 1972-9. The question is: what is the measure of the set of initial data
for which the error of description of slow variables evolution by means of the
averaging method exceeds a given value? The results concerning this problem are
described in the comment to problem 1972-10.

v 1976-12

A survey of the contemporary state of the theory of fewnomials can be
found in books [1, 2].
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[1] KHOVANSKII A. G. Fewnomials. Providence, RI: Amer. Math. Soc., 1991. (Transl.
Math. Monographs, 88.)

[2] KHOVANSKII A. G. Fewnomials. Moscow: PHASIS, 1997 (in Russian). (Mathemati-
cian’s Library, 2.)

A 1976-12 — 8. L. Tabachnikov Also: 1968-2
CEy
.~ % A recent survey of the subject can be found in [3]. A conjectural multi-
variable Descartes’ rule was proposed by I. Itenberg and M. Roy in [1]; then it was
disproved in [2].

[1] ITENBERG I.V., ROy M. Multivariate Descartes’ rule. Beitrige zur Algebra und
Geometrie, 1996, 37(2), 337-346.

[2] L1 T., WANG X. On multivariate Descartes’ rule—a counterexample. Beitrige zur
Algebra und Geometrie, 1998, 39(1), 1-5.

[3] STURMFELS B. Polynomial equations and convex polytopes. Amer. Math. Monthly,
1998, 105(10), 907-922.

1976-13

% Thisisa problem in paper [1] (p. 5: Problem 1), see also the English trans-
lation [2].

[1] ARNOLD V.I. Some open problems in the theory of singularities. In: The Theory of
Cubature Formulae and Applications of Functional Analysis to Problems of Mathe-
matical Physics. Editor: S. V. Uspenskii. Novosibirsk: Press of the Institute of Math-
ematics of the Siberian Branch of the USSR Academy of Sciences, 1976, 5-15 (in
Russian). (Trudy Seminara S.L. Soboleva, 1.)

[2] ARNOLD V.I. Some open problems in the theory of singularities. In: Singularities.
Part 1 (Arcata, CA, 1981). Editor: P. Orlik. Providence, RI: Amer. Math. Soc., 1983,
57-69. (Proc. Symposia Pure Math., 40.)

See the comment to problem 1973-7.

1976-14
Ve
./ % This is a problem in paper [1] (p. 5: Problem 2), see also the English trans-
lation [2].
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[11 ARNOLD V.I. Some open problems in the theory of singularities. In: The Theory of
Cubature Formulae and Applications of Functional Analysis to Problems of Mathe-
matical Physics. Editor: S. V. Uspenskii. Novosibirsk: Press of the Institute of Math-
ematics of the Siberian Branch of the USSR Academy of Sciences, 1976, 5-15 (in
Russian). (Trudy Seminara S. L. Soboleva, 1.)

[2] ARNOLD V.I. Some open problems in the theory of singularities. In: Singularities.
Part 1 (Arcata, CA, 1981). Editor: P. Orlik. Providence, RI: Amer. Math. Soc., 1983,
57-69. (Proc. Symposia Pure Math., 40.)

See the comment to problem 1979-6.

1976-15
\ This is a problem in paper [1] (p.5-6: Problem 4), see also the English
translation {2].

[11 ARNOLD V.I. Some open problems in the theory of singularities. In: The Theory of
Cubature Formulae and Applications of Functional Analysis to Problems of Mathe-
matical Physics. Editor: S. V. Uspenskii. Novosibirsk: Press of the Institute of Math-
ematics of the Siberian Branch of the USSR Academy of Sciences, 1976, 5-15 (in
Russian). (Trudy Seminara S. L. Soboleva, 1.)

[2] ARNOLD V.I. Some open problems in the theory of singularities. In: Singularities.

Part 1 (Arcata, CA, 1981). Editor: P. Orlik. Providence, RI: Amer. Math. Soc., 1983,
57-69. (Proc. Symposia Pure Math., 40.)

See the comment to problem 1973-11.

1976-16

This is a problem in paper [1] (p. 6: Problem 5). The English translation [2]
of that paper contains V.I. Amold’s comments of October 5, 1981, and March 3,
1982.

[1] ARNOLD V.I. Some open problems in the theory of singularities. In: The Theory of
Cubature Formulae and Applications of Functional Analysis to Problems of Mathe-
matical Physics. Editor: S. V. Uspenskii. Novosibirsk: Press of the Institute of Math-
ematics of the Siberian Branch of the USSR Academy of Sciences, 1976, 5-15 (in
Russian). (Trudy Seminara S. L. Soboleva, 1.)

[2] ARNOLD V.I. Some open problems in the theory of singularities. In: Singularities.
Part 1 (Arcata, CA, 1981). Editor: P. Orlik. Providence, RI: Amer. Math. Soc., 1983,
57-69. (Proc. Symposia Pure Math., 40.)
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1976-17

This is a problem in paper [1] (p. 6: Problem 6). The English translation [2]
of that paper contains V. I. Amold’s comment of October 5, 1981.

[1] ARNOLD V.I. Some open problems in the theory of singularities. In: The Theory of
Cubature Formulae and Applications of Functional Analysis to Problems of Mathe-
matical Physics. Editor: S. V. Uspenskii. Novosibirsk: Press of the Institute of Math-
ematics of the Siberian Branch of the USSR Academy of Sciences, 1976, 5-15 (in
Russian). (Trudy Seminara S. L. Soboleva, 1.)

[2] ARNOLD V.I. Some open problems in the theory of singularities. In: Singularities.
Part 1 (Arcata, CA, 1981). Editor: P. Orlik. Providence, RI: Amer. Math. Soc., 1983,
57-69. (Proc. Symposia Pure Math., 40.)

1976-18

.+ _ Thisis a problem in paper [1] (p. 6: Problem 7). The English translation [2]
of that paper contains V.I. Amold’s comment of October 5, 1981.

[1] ARNOLD V.I. Some open problems in the theory of singularities. In: The Theory of
Cubature Formulae and Applications of Functional Analysis to Problems of Mathe-
matical Physics. Editor: S. V. Uspenskii. Novosibirsk: Press of the Institute of Math-
ematics of the Siberian Branch of the USSR Academy of Sciences, 1976, 5-15 (in
Russian). (Trudy Seminara S. L. Soboleva, 1.)

[2] ARNOLD V.I. Some open problems in the theory of singularities. In: Singularities.
Part 1 (Arcata, CA, 1981). Editor: P. Orlik. Providence, RI: Amer. Math. Soc., 1983,
57-69. (Proc. Symposia Pure Math., 40.)

1976-19
\ This is a problem in paper [1] (p. 6: Problem 8). The English translation [2]
of that paper contains V.I. Amold’s comment of October 5, 1981.

[1] ARNOLD V.I. Some open problems in the theory of singularities. In: The Theory of
Cubature Formulae and Applications of Functional Analysis to Problems of Mathe-
matical Physics. Editor: S. V. Uspenskii. Novosibirsk: Press of the Institute of Math-
ematics of the Siberian Branch of the USSR Academy of Sciences, 1976, 5-15 (in
Russian). (Trudy Seminara S. L. Soboleva, 1.)

[2] ARNOLD V.I. Some open problems in the theory of singularities. In: Singularities.
Part 1 (Arcata, CA, 1981). Editor: P. Orlik. Providence, RI: Amer. Math. Soc., 1983,
57-69. (Proc. Symposia Pure Math., 40.)
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1976-20

This is a problem in paper [1] (p. 7: Problem 9). The English translation [2]
of that paper contains V. 1. Amold’s comment of October 5, 1981.

[1] ARNOLD V.I. Some open problems in the theory of singularities. In: The Theory of
Cubature Formulae and Applications of Functional Analysis to Problems of Mathe-
matical Physics. Editor: S. V. Uspenskii. Novosibirsk: Press of the Institute of Math-
ematics of the Siberian Branch of the USSR Academy of Sciences, 1976, 5-15 (in
Russian). (Trudy Seminara S. L. Soboleva, 1.)

[2] ARNOLD V.I. Some open problems in the theory of singularities. In: Singularities.
Part 1 (Arcata, CA, 1981). Editor: P. Orlik. Providence, RI: Amer. Math. Soc., 1983,
57-69. (Proc. Symposia Pure Math., 40.)

1976-21
& " This is a problem in paper [1] (p.7: Problem 10), see also the English
translation [2].

[1] ARNOLD V.I. Some open problems in the theory of singularities. In: The Theory of
Cubature Formulae and Applications of Functional Analysis to Problems of Mathe-
matical Physics. Editor: S. V. Uspenskii. Novosibirsk: Press of the Institute of Math-
ematics of the Siberian Branch of the USSR Academy of Sciences, 1976, 5-15 (in
Russian). (Trudy Seminara S. L. Soboleva, 1.)

[2] ARNOLD V.I. Some open problems in the theory of singularities. In: Singularities.

Part 1 (Arcata, CA, 1981). Editor: P. Orlik. Providence, RI: Amer. Math. Soc., 1983,
57-69. (Proc. Symposia Pure Math., 40.)

v 1976-22
. Thisis a problem in paper [1] (p.7-8: Problem 11). The English trans-
lation [2] of that paper contains V.1 Amold’s comment of October 5, 1981. The
problem on evaluation of the indices B(!) appears in paper [3] (XVI(E), p. 58).

[1] ARNOLD V.I. Some open problems in the theory of singularities. In: The Theory of
Cubature Formulae and Applications of Functional Analysis to Problems of Mathe-
matical Physics. Editor: S. V. Uspenskii. Novosibirsk: Press of the Institute of Math-
ematics of the Siberian Branch of the USSR Academy of Sciences, 1976, 5-15 (in
Russian). (Trudy Seminara S. L. Soboleva, 1.)
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[2] ARNOLD V.I. Some open problems in the theory of singularities. In: Singularities.
Part 1 (Arcata, CA, 1981). Editor: P. Orlik. Providence, RI: Amer. Math. Soc., 1983,
57-69. (Proc. Symposia Pure Math., 40.)

[3] Problems of present day mathematics. Editor: F. E. Browder. In: Mathematical Devel-
opments Arising from Hilbert Problems (Northern Illinois University, 1974). Part 1.
Editor: F. E. Browder. Providence, RI: Amer. Math. Soc., 1976, 35-79. (Proc. Sym-
posia Pure Math., 28.)

A 1976-22 — V.N. Karpushkin

P

S g
34"’
Hal

The tables of indices 3(n,) presented below follow from works [1-6] (for
notations, see the formulation of the current problem).

I [ 12345 ]6]7] 8 9 [ 10
n=31/6|1/4|1/3|3/8|5/12|1/2|1/2|13/24 |9/16 | 7/12
n>4|1/6|1/4|1/3[3/85/12|1/2|1/2|13/24|9/16 | 2/3

I [ 1] 2]3[4] 5 6[7][8] 9] 101112
n=2|1/6|1/4|1/3(3/8(5/12[4/9[1/2[1/2[8/15[11/20]9/16]|3/5

[1] ARNOLD V.I. Remarks on the stationary phase method and Coxeter numbers. Rus-
sian Math. Surveys, 1973, 28(5), 19-48.

[2] KARPUSHKIN V. N. Uniform estimates of oscillatory integrals with parabolic or hy-
perbolic phase. Trudy Semin. Petrovskogo, 1983, 9, 1-39 (in Russian). [ The English
translation: J. Sov. Math., 1986, 33, 1159-1188.]

[3] KARPUSHKIN V. N. A theorem concerning uniform estimates of oscillatory integrals
when the phase is a function of two variables. Trudy Semin. Petrovskogo, 1984, 10,
150-169 (in Russian). [ The English translation: J. Sov. Math., 1986, 35, 2809-2826.]

[4] KARPUSHKIN V. N. Dominant term in the asymptotics of oscillatory integrals with
a phase of the series T. Math. Notes, 1994, 56(6), 1304-1305.

[S] KARPUSHKIN V. N. Uniform estimates of oscillatory integrals with phase from the
series R,,. Math. Notes, 1998, 64(3), 404—406.

[6] VARCHENKO A.N. Newton polyhedra and estimation of oscillating integrals. Funct.
Anal. Appl., 1976, 10(3), 175-196.

1976-23

g This is a problem in paper [1] (p. 8-9: Problem 12). The English transla-
tion [2] of that paper contains V. 1. Arnold’s comment of October 5, 1981.
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[1] ARNOLD V.I. Some open problems in the theory of singularities. In: The Theory of
Cubature Formulae and Applications of Functional Analysis to Problems of Mathe-
matical Physics. Editor: S. V. Uspenskii. Novosibirsk: Press of the Institute of Math-
ematics of the Siberian Branch of the USSR Academy of Sciences, 1976, 5-15 (in
Russian). (Trudy Seminara S. L. Soboleva, 1.)

[2] ARNOLD V.I. Some open problems in the theory of singularities. In: Singularities.
Part 1 (Arcata, CA, 1981). Editor: P. Orlik. Providence, RI: Amer. Math. Soc., 1983,
57-69. (Proc. Symposia Pure Math., 40.)

1976-24

This is a problem in papers [1] (p.7: Problem 9) and [2] (VIIL, p. 46).
The English translation [3] of the former paper contains V.I1. Arnold’s comment of
October 5, 1981.

[1] ARNOLD V.I. Some open problems in the theory of singularities. In: The Theory of
Cubature Formulae and Applications of Functional Analysis to Problems of Mathe-
matical Physics. Editor: S. V. Uspenskii. Novosibirsk: Press of the Institute of Math-
ematics of the Siberian Branch of the USSR Academy of Sciences, 1976, 5-15 (in
Russian). (Trudy Seminara S.L. Soboleva, 1.)

[2] Problems of present day mathematics. Editor: F. E. Browder. In: Mathematical Devel-
opments Arising from Hilbert Problems (Northern Illinois University, 1974). Part 1.
Editor: F. E. Browder. Providence, RI: Amer. Math. Soc., 1976, 35-79. (Proc. Sym-
posia Pure Math., 28.)

[3] ARNOLD V.I. Some open problems in the theory of singularities. In: Singularities.

Part 1 (Arcata, CA, 1981). Editor: P. Orlik. Providence, RI: Amer. Math. Soc., 1983,
57-69. (Proc. Symposia Pure Math., 40.)

1976-25

This is a problem in paper [1] (p. 10: Problem 14). The English transla-
tion [2] of that paper contains V.I. Arnold’s comment of October 5, 1981. The
more general statement of the problem is given in paper [3] (XVI(F), p. 58-59).

[1] ARNOLD V.I. Some open problems in the theory of singularities. In: The Theory of
Cubature Formulae and Applications of Functional Analysis to Problems of Mathe-
matical Physics. Editor: S. V. Uspenskii. Novosibirsk: Press of the Institute of Math-
ematics of the Siberian Branch of the USSR Academy of Sciences, 1976, 5-15 (in
Russian). (Trudy Seminara S. L. Soboleva, 1.)
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[2] ARNOLD V.I. Some open problems in the theory of singularities. In: Singularities.
Part 1 (Arcata, CA, 1981). Editor: P. Orlik. Providence, RI: Amer. Math. Soc., 1983,
57-69. (Proc. Symposia Pure Math., 40.)

[3] Problems of present day mathematics. Editor: E. E. Browder. In: Mathematical Devel-
opments Arising from Hilbert Problems (Northern Illinois University, 1974). Part 1.
Editor: F. E. Browder. Providence, RI: Amer. Math. Soc., 1976, 35-79. (Proc. Sym-
posia Pure Math., 28.)

1976-26

. This is a problem in paper [1] (p. 10: Problem 15). The English transla-
tion [2] of that paper contains V.I. Amold’s comment of October 5, 1981.

[1] ARNOLD V.I. Some open problems in the theory of singularities. In: The Theory of
Cubature Formulae and Applications of Functional Analysis to Problems of Mathe-
matical Physics. Editor: S. V. Uspenskii. Novosibirsk: Press of the Institute of Math-
ematics of the Siberian Branch of the USSR Academy of Sciences, 1976, 5-15 (in
Russian). (Trudy Seminara S.L. Soboleva, 1.)

[2] ARNOLD V.I. Some open problems in the theory of singularities. In: Singularities.
Part 1 (Arcata, CA, 1981). Editor: P. Orlik. Providence, RI: Amer. Math. Soc., 1983,
57-69. (Proc. Symposia Pure Math., 40.)

1976-27

£
This is a problem in paper [1] (p. 10-11: Problem 16). The English trans-
lation [2] of that paper contains V. I. Ammold’s comment of October 5, 1981.

[1] ARNOLD V.I. Some open problems in the theory of singularities. In: The Theory of
Cubature Formulae and Applications of Functional Analysis to Problems of Mathe-
matical Physics. Editor: S. V. Uspenskii. Novosibirsk: Press of the Institute of Math-
ematics of the Siberian Branch of the USSR Academy of Sciences, 1976, 5-15 (in
Russian). (Trudy Seminara S.L. Soboleva, 1.)

[2] ARNOLD V.I. Some open problems in the theory of singularities. In: Singularities.
Part 1 (Arcata, CA, 1981). Editor: P. Orlik. Providence, RI: Amer. Math. Soc., 1983,
57-69. (Proc. Symposia Pure Math., 40.)

1976-28

. This is a problem in paper [1] (p. 10: Problem 15). The English transla-
tion [2] of that paper contains V. 1. Arnold’s comment of October 5, 1981.
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[1] ArRNOLD V.I. Some open problems in the theory of singularities. In: The Theory of
Cubature Formulae and Applications of Functional Analysis to Problems of Mathe-
matical Physics. Editor: S. V. Uspenskil. Novosibirsk: Press of the Institute of Math-
ematics of the Siberian Branch of the USSR Academy of Sciences, 1976, 5-15 (in
Russian). (Trudy Seminara S. L. Soboleva, 1.)

[2] ARNOLD V.I. Some open problems in the theory of singularities. In: Singularities.

Part 1 (Arcata, CA, 1981). Editor: P. Orlik. Providence, RI: Amer. Math. Soc., 1983,
57-69. (Proc. Symposia Pure Math., 40.)

See also other related problems and the comments to them: 1975-19,
1975-24, 1980-15, 1985-7, 1985-22, and 1998-8.

1976-29

This is a problem in papers [1] (p.12: Problem 18a), [2] (XVII(C),
p. 59-60), and [3] (§4). The English translation [4] of the first paper contains
V.I1. Amold’s comment of October 5, 1981.

[1] ARrRNOLD V.I. Some open problems in the theory of singularities. In: The Theory of
Cubature Formulas and Applications of Functional Analysis to Problems of Mathe-
matical Physics. Editor: S. V. Uspenskil. Novosibirsk: Press of the Institute of Math-
ematics of the Siberian Branch of the USSR Academy of Sciences, 1976, 5-15 (in
Russian). (Trudy Seminara S.L. Soboleva, 1.)

[2] Problems of present day mathematics. Editor: F. E. Browder. In: Mathematical Devel-
opments Arising from Hilbert Problems (Northern Illinois University, 1974). Part 1.
Editor: E E. Browder. Providence, RI: Amer. Math. Soc., 1976, 35-79. (Proc. Sym-
posia Pure Math., 28.)

[3] ARNOLD V.I. Some problems in the theory of differential equations. In: Unsolved
Problems of Mechanics and Applied Mathematics. Moscow: Moscow University
Press, 1977, 3-9 (in Russian).

[4] ARNOLD V.I. Some open problems in the theory of singularities. In: Singularities.
Part 1 (Arcata, CA, 1981). Editor: P. Orlik. Providence, RI: Amer. Math. Soc., 1983,
57-69. (Proc. Symposia Pure Math., 40.)

See the comment to problem 1971-4.

1976-30

This is a problem in paper [1] (p. 5: Problem 2), see also the English trans-
lation [2].
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[1] ArNOLD V.I. Some open problems in the theory of singularities. In: The Theory of
Cubature Formulae and Applications of Functional Analysis to Problems of Mathe-
matical Physics. Editor: S. V. Uspenskii. Novosibirsk: Press of the Institute of Math-
ematics of the Siberian Branch of the USSR Academy of Sciences, 1976, 5-15 (in
Russian). (Trudy Seminara S. L. Soboleva, 1.)

[2] ArNOLD V.I. Some open problems in the theory of singularities. In: Singularities.
Part 1 (Arcata, CA, 1981). Editor: P. Orlik. Providence, RI: Amer. Math. Soc., 1983,
57-69. (Proc. Symposia Pure Math., 40.)

; See the comments to problem [972-23.

1976-31

| This is a problem in papers [1] (p. 12: Problem 19), [2] (XVII(B), p. 59),
and [3] (§4). The English translation [4] of the first paper contains V.1. Arold’s
comment of October 5, 1981.

[1] ARNOLD V.I. Some open problems in the theory of singularities. In: The Theory of
Cubature Formulas and Applications of Functional Analysis to Problems of Mathe-
matical Physics. Editor: S. V. Uspenskii. Novosibirsk: Press of the Institute of Math-
ematics of the Siberian Branch of the USSR Academy of Sciences, 1976, 5-15 (in
Russian). (Trudy Seminara S.L. Soboleva, 1.)

[2] Problems of present day mathematics. Editor: F. E. Browder. In: Mathematical Devel-
opments Arising from Hilbert Problems (Northern Illinois University, 1974). Part 1.
Editor: F. E. Browder. Providence, RI: Amer. Math. Soc., 1976, 35-79. (Proc. Sym-
posia Pure Math., 28.)

[3] ARNOLD V.I. Some problems in the theory of differential equations. In: Unsolved
Problems of Mechanics and Applied Mathematics. Moscow: Moscow University
Press, 1977, 3-9 (in Russian).

[4] ARNOLD V.I. Some open problems in the theory of singularities. In: Singularities.
Part 1 (Arcata, CA, 1981). Editor: P. Orlik. Providence, RI: Amer. Math. Soc., 1983,
57-69. (Proc. Symposia Pure Math., 40.)

See the comment to problem 1973-4.

1976-32

This is a problem in paper [1] (p. 12-13: Problem 20). The English trans-
lation [2] of that paper contains V.I. Arnold’s comments of October 5, 1981, and
March 3, 1982.
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[1] ARNOLD V.I. Some open problems in the theory of singularities. In: The Theory of
Cubature Formulae and Applications of Functional Analysis to Problems of Mathe-
matical Physics, Editor: S. V. Uspenskii. Novosibirsk: Press of the Institute of Math-
ematics of the Siberian Branch of the USSR Academy of Sciences, 1976, 5-15 (in
Russian). (Trudy Seminara S. L. Soboleva, 1.)

[2] ARNOLD V.I. Some open problems in the theory of singularities. In: Singularities.
Part 1 (Arcata, CA, 1981). Editor: P. Orlik. Providence, RI: Amer. Math. Soc., 1983,
57-69. (Proc. Symposia Pure Math., 40.)

e

See the comments to problems 1972-12 and 1981-28.

1976-33

.. % Thisis a problem in paper [1] (p. 13-14: Problem 21), see also the English
translation [2].

[1] ARNOLD V.I. Some open problems in the theory of singularities. In; The Theory of
Cubature Formulae and Applications of Functional Analysis to Problems of Mathe-
matical Physics. Editor: S. V. Uspenskii. Novosibirsk: Press of the Institute of Math-
ematics of the Siberian Branch of the USSR Academy of Sciences, 1976, 5~15 (in
Russian). (Trudy Seminara S. L. Soboleva, 1.)

[2] ARNOLD V.I. Some open problems in the theory of singularities. In: Singularities.
Part 1 (Arcata, CA, 1981). Editor: P. Orlik. Providence, RI: Amer. Math. Soc., 1983,
57-69. (Proc. Symposia Pure Math., 40.)

1976-34

. Thisis a problem in paper [1] (VII, p.45-46). The problem was posed

jointly with G. Shimura.

[1] Problems of present day mathematics. Editor: F. E. Browder. In: Mathematical Devel-
opments Arising from Hilbert Problems (Northern Illinois University, 1974). Part 1.
Editor: F. E. Browder. Providence, RI: Amer. Math. Soc., 1976, 35-79. (Proc. Sym-
posia Pure Math., 28.)

See the comment to problem [972-27.

v 1976-35

This is a problem in paper [1] (XIII, p. 50).
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[1] Problems of present day mathematics. Editor: F. E. Browder. In: Mathematical Devel-
opments Arising from Hilbert Problems (Northern Illinois University, 1974). Part 1.
Editor: F. E. Browder. Providence, RI: Amer. Math. Soc., 1976, 35-79. (Proc. Sym-
posia Pure Math., 28.)

@ 1976-35 — V.M. Kharlamov

Rough general bounds can be easily obtained by means of the Morse the-
ory. For example, the number in question is bounded by (n—1)"+ (n—1)""1 +
-+ 4+ 1. The only dimensions where we know a sharp bound is m < 2. In the
case of plane curves the maximal number of connected components of the com-
plementis 1+ ﬂ"z"—l) This number of connected components is attained for n lines
in general position. The bound itself follows from the Hamack—Klein bound
b1(RA) < (d—"1¥ﬁ + 1 for irreducible real plane curves of degree d and the re-
current relation b (RAURB) — 1 < b (RA) — 1 + b1 (RB) — 1) + degAdegB. For
surfaces in RP? the answer is unknown for degree 5 and higher (for lower degrees
from 1 to 4 the answers are 1, 2,4, 11).

In fact, this Amold’s problem is related to an erroneous theorem of Courant
and Hermann on zeros of linear combinations of eigenfunctions of the Laplace
operator. In the case of the Laplace operator the theorem would give the bound
1+ (n +$_2) in the Amold problem. In dimension 2 this bound coincides with the
above sharp bound. But in dimension 3 for degree 5 and higher it is no longer true,
as it was shown by O. Viro (see [2]) who found examples of nonsingular surfaces
with (n® — 2n? + 4) /4 components for each even n.

For nonsingular hypersurfaces it is easy to show, using the Viro patchwork-
ing method, that for m fixed the number c,(m) in question grows like cn™ with
ceR: "lli_rgocn(m)n"'" = c¢. The precise value of c is unknown. For m = 3, it lies

between ;—g and % (the lower bound follows from the Smith-Thom and Petrov-
skii—-Oleinik inequalities, see the comment to problem 1972-26; the upper bound
is due to F. Bihan [1]. For the class of arbitrary, not only nonsingular, hypersur-
faces there are similar bounds, but I do not know how one can prove the fact that
the corresponding sequence is equivalent to cn™ for n increasing to infinity.

Let me point out another related problem: if a subset of R"™ is defined by
an inequality p > 0 where p is a polynomial in m variables of given degree n, how
many connected components can it have?

[1] BIiHAN F. Asymptotics of Betti numbers of real algebraic surfaces. Comment. Math.
Helvetici, 2003, 78(2), 227-244.
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[2] VIRO O.YA. Construction of multicomponent real algebraic surfaces. Sov. Math.
Dokl., 1979, 20, 991-995.

A 1976-35

See the comment to problem 1972-26 by V.1. Amold.

v 1976-36
«+ . This is a problem in paper [1] (XIIL, p. 50).

[1] Problems of present day mathematics. Editor: F. E. Browder. In: Mathematical Devel-
opments Arising from Hilbert Problems (Northern Illinois University, 1974). Part 1.
Editor: F. E. Browder. Providence, RI: Amer. Math. Soc., 1976, 35-79. (Proc. Sym-
posia Pure Math., 28.)

5 1976-36 — V.M. Kharlamov

Similar to problems 1972-26, 1976-35, and many other problems of the
classical real algebraic geometry, this problem is algorithmically solvable. How-
ever, to my knowledge, no nontrivial results in this direction were obtained via
computer implementation of an algorithm.

A complete solution is known only up to degree 7, and in degree 8 there
remain only a few uncertain arrangements (in degree 6 the classification was com-
pleted by D. A. Gudkov [3] (see also [4]) and in degree 7, by O. Viro [10]; for
most recent published results on degree 8 and further references see [2]; for some
information on the growth of the number of arrangements see [7].

Up to degree 5 the solution is quite easy. For example, all the prohibitions
on arrangements of ovals of curves of degree < 5 can be deduced from the Bézout
theorem. First spectacular specific properties of M-curves (that is, the curves with
the maximal number of ovals) were noticed by Hilbert in the case of curves of de-
gree 6 and included by him as a conjecture in the sixteenth problem of his famous
list. This Hilbert’s discovery was corrected and proved by D. A. Gudkov. Gudkov
was probably the first who noticed that the Hilbert conjecture in question reflects
some periodicity phenomenon (contrary to the more usual interpretations as sole
bounds). Gudkov [5] conjectured, in turn, that for any even degree d = 2k the
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number p of even and the number n of odd ovals of an M-curve satisfy the congru-
ence p—n = k* (mod 8) (an oval is even if it lies inside an even number of other
ovals, otherwise it is called odd).

This Gudkov’s conjecture, proved in a weakened form by Arnold [1] and
in its full generality by Rokhlin [9], influenced considerably the subsequent de-
velopment of the subject and led to a bunch of other congruences in real algebraic
geometry. In particular, the Gudkov congruence became a special case of a general
Gudkov—Arnold-Rokhlin congruence, which is one of the extremal properties of
the Smith—Thom (Harmmack) bound; see the comments to problem 1972-26. In the
case of even dimensional hypersurfaces it states that (RA) = sign(CA) mod 16
(sign is the signature) as soon as Y. b;(RA;Z/2) = Y b;(CA;Z/2).

For M-curves of even degree d the inequality p < %d (d—2)+1 (equivalent
in this case to n > 1(4 — 1) (4 —2)) conjectured by V. Ragsdale in 1907 [8] is still
neither proved nor disproved. It is curious to notice that among her conjectures this
was the only one that she discussed in detail and that she found worthy of the name
“theorem,” while pointing out explicitly that she had no proof of it. As to the other
laws observed by Ragsdale in examples, the bound n < %d(d —2) for M-curves
was refuted by O. Viro, who constructed M-curves with n = 2d(d —2) +1, and
for non-M-curves both the bounds p < %d(d —2)+1and n < 3d(d —2) were
disproved by I Itenberg. For M-curves the bound n < %d(d —2) +1 is neither
proved nor disproved. (For more information on the Ragsdale conjectures see [6].)

[1] ArRNOLD V.I. Distribution of ovals of real plane algebraic curves, involutions of
four-dimensional smooth manifolds, and the arithmetic of integral quadratic forms.
Funct. Anal. Appl., 1971, 5(3), 169-176. [The Russian original is reprinted in:
Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 175-187.]

[2] CHEVALLIER B. Four M-curves of degree 8. Funct. Anal. Appl., 2002, 36(1), 76-78.

[3] Gupkov D.A. Complete topological classification of the disposition of ovals of
a sixth order curve in the projective plane. Uchen. Zap. Gor'kov. Univ., 1969, 87,
118-153 (in Russian).

[4] GuDKov D. A. Position of the circuits of a curve of sixth order. Sov. Marh. Dokl.,
1969, 10, 332-335.

[5] GupKkov D. A. Construction of a new series of M-curves. Sov. Math. Dokl., 1971,
12, 1559-1563.

U Gudkov verified this conjecture for many particular cases (proving both the existence of some
confirming curves and the nonexistence of curves forbidden by the congruence violation) in his
thesis. But he did not formulate the general conjecture, which was first formulated (and called
Gudkov conjecture) in my talk at the defence of Gudkov’s thesis where I was an opponent. —
V.1. Arnold.



344 Comiments 1976-36

[6] ITENBERG L. V., VIRO O. YA. Patchworking algebraic curves disproves the Rags-
dale conjecture. Math. Intelligencer, 1996, 18(4), 19-28.
[Internet: http://www.math.uu.se/ oleg/preprints.html]

[71 KHARLAMOV V.M., OREVKOV S. YU. Growth order of the number of classes of
real plane algebraic curves as the degree grows. Zap. Nauch. Semin. St. Peterburg. Ot-
del. Mat. Inst. Steklova, 2000, 266, 218-233 (in Russian). (Theory of representations
of dynamical systems. Combinatorial and algorithmic methods, 5.)

[8] RAGSDALE V. On the arrangement of the real branches of plane algebraic curves.
Amer. J. Math., 1906, 28, 377-404.

[91 ROKHLIN V. A. Congruences modulo 16 in Hilbert’s sixteenth problem. Funct. Anal.
Appl., 1972, 6(4), 301-306.

[10] VIRO O. YA. Curves of degree 7, curves of degree 8, and the Ragsdale conjecture.
Sov. Math. Dokl., 1980, 22, 566-570.

A 1976-36

.. See the comment to problem 1972-26 by V.1. Arnold.

v 1976-37
This is a problem in papers [1] (XIII, p. 51) and [2] (§ 5).

[1] Problems of present day mathematics. Editor: F. E. Browder. In: Mathematical Devel-
opments Arising from Hilbert Problems (Northern Illinois University, 1974). Part 1.
Editor: F. E. Browder. Providence, RI: Amer. Math. Soc., 1976, 35-79. (Proc. Sym-
posia Pure Math., 28.)

[2] ARNOLD V.I. Some problems in the theory of differential equations. In: Unsolved
Problems of Mechanics and Applied Mathematics. Moscow: Moscow University
Press, 1977, 3-9 (in Russian).

A 1976-37 — 8. Yu. Yakovenko

«+ % The question is apparently motivated by Bautin’s famous result [1] assert-
ing that in a quadratic perturbation of the linear center (the Hamiltonian linear
vector field corresponding to the Hamiltonian H(x,y) = x* +y?) not more than
3 limit cycles can be born. The original proof was obtained by somewhat mysteri-
ous calculations. Simplified proofs were obtained in [3] and [4].

It was long believed that this result implies that quadratic vector fields can-
not have more than 3 limit cycles. In 1980 Shi Song Ling [2] constructed a coun-

terexample with 4 limit cycles by explicitly perturbing a quadratic system with
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an ultra-ultra-weak focus at the origin (generating three small limit cycles in the
perturbation) and one more “large” limit cycle far away.

[1] BAUTIN N.N. On the number of limit cycles which appear with the variation of
coefficients from an equilibrium position of focus or center type. AMS Transl., 1954,
100, 19 pp.

[2] LING S.S. A concrete example of the existence of four limit cycles for plane quadrat-
ic systems. Sci. Sinica, 1980, 23(2), 153-158.

[3] YAKOVENKO S. A geometric proof of the Bautin theorem. In: Concerning the Hilbert
16th Problem. Editors: Yu.Il'yashenko and S. Yakovenko. Providence, RI: Amer.
Math. Soc., 1995, 203-219. (AMS Transl., Ser. 2, 165; Adv. Math. Sci., 23.)

[4] ZorADEK H. Quadratic systems with center and their perturbations. J. Differ. Equa-
tions, 1994, 109(2), 223-273.

1976-38
s This is a problem in paper [1] (XVI(D), p. 58).

[1] Problems of present day mathematics. Editor: F. E. Browder. In: Mathematical Devel-
opments Arising from Hilbert Problems (Northern Illinois University, 1974). Part 1.
Editor: F. E. Browder. Providence, RI: Amer. Math. Soc., 1976, 35-79. (Proc. Sym-
posia Pure Math., 28.)

1976-39
4
This is a problem in papers [1] (XX, p.66) and [2] (§ 6). The conjectures
on the number of fixed points of symplectomorphisms were first formulated by
V.1. Amold in paper [3a] (see also [3b]), see problems 1965-1—1965-3.

[1] Problems of present day mathematics. Editor: F. E. Browder. In: Mathematical Devel-
opments Arising from Hilbert Problems (Northern Illinois University, 1974). Part 1.
Editor: F. E. Browder. Providence, RI: Amer. Math. Soc., 1976, 35-79. (Proc. Sym-
posia Pure Math., 28.)

[2] ARNOLD V.I. Some problems in the theory of differential equations. In: Unsolved
Problems of Mechanics and Applied Mathematics. Moscow: Moscow University
Press, 1977, 3-9 (in Russian).

[3a] ARNOLD V.I. Sur une propriété topologique des applications globalement canon-
iques de la mécanique classique. C. R. Acad. Sci. Paris, 1965, 261(19), 3719-3722.
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The Russian translation in:
[3b] Vladimir Igorevich Arnold. Selecta—60. Moscow: PHASIS, 1997, 81-86.

See the comment to problem 1972-33.

1976-40

#
§

This is a problem in paper [1] (XXI(E), p. 67-68).

[1] Problems of present day mathematics. Editor: F. E. Browder. In: Mathematical Devel-
opments Arising from Hilbert Problems (Northern Illinois University, 1974). Part 1.
Editor: F. E. Browder. Providence, RI: Amer. Math. Soc., 1976, 35-79. (Proc. Sym-
posia Pure Math., 28.)

1976-41
«+ % This is a problem in paper [1] (§ 1).
[1] ARNOLD V.I. Some problems in the theory of differential equations. In: Unsolved

Problems of Mechanics and Applied Mathematics. Moscow: Moscow University
Press, 1977, 3-9 (in Russian).

1976-42
« . Thisis a problem in paper [1] (§ 2).

[1] ARNOLD V.I. Some problems in the theory of differential equations. In: Unsolved
Problems of Mechanics and Applied Mathematics. Moscow: Moscow University
Press, 1977, 3-9 (in Russian).

TRy v

1977-3 — V. V. Goryunov
" Both uni- and bimodal boundary function singularities were classified by
V.1.Matov [1,2].
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[1] MATtov V.I. Singularities of the maximum function on a manifold with boundary.
Trudy Semin. Petrovskogo, 1981, 6, 195-222 (in Russian). [The English translation:
J. Sov. Math., 1986, 33, 1103-1127.]

[2] MATOV V.I. Unimodal and bimodal germs of functions on a manifold with bound-
ary. Trudy Semin. Petrovskogo, 1981, 7, 174-189 (in Russian). [ The English transla-
tion: J. Sov. Math., 1985, 31, 3193-3205.]

1977-4 — S. M. Gusein-Zade
This was done in paper [1].

[1] LyasHKO O. V. Classification of critical points of functions on a manifold with sin-
gular boundary. Funct. Anal. Appl., 1983, 17(3), 187-193.

1977-7 — S.M. Gusein-Zade

.~ This was (partially) done in [1,2]. Related results for indices of vec-
tor fields can be found in a number of papers by J. A. Seade, X. Gémez-Mont,
A. Verjovsky, P. Mardesi¢, and others.

[1] EBELING W., GUSEIN-ZADE S.M. On the index of a holomorphic 1-form on an
isolated complete intersection singularity. Dokl. Math, 2001, 64(2), 221-224.

[2] EBELING W., GUSEIN-ZADE S. M. Indices of 1-forms on an isolated complete in-
tersection singularity.
[Internet: http://www.arXiv.org/abs/math.AG/0105242]

v 1977-8 — V. A. Vassiliev

«/ & Consider a complicated function singularity f : (R”,0) — (R,0) and two of
its non-discriminant Morsifications f,, f;. How to prove rapidly that they belong to
different components of the complement of the discriminant? An obvious invariant
of this sort is the homotopy type of the local set of negative values

(f71(=8,0)NBe)/(f; 1 (—8) NBe)

or, more effectively, its homology group, which can be calculated via the Morse
complex of critical points of f, with negative critical values. However, a more
refined invariant probably can be defined in the terms of the Whitehead torsion of
this complex. A similar invariant (calculated over all critical points) probably can
distinguish different real forms of one and the same complex singularity.
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A 1977-8

A~y

"L See the comment to problem [973-24.

1977-9 — V.I. Arnold (1977)

. % A setof weights {A;,D;}, 1 <s<m, 1< j<n, is nondegenerate if there
exists a quasihomogeneous mapping f: C" — C" with u(f) < e, weights Ay in
the domain, and weights D; in the range. Here @ = dim ¢ M/I is the dimension of
the versal deformation base: M is the free module of column vectors o« =} ; j%,
M~A", A=C[x1,...,Xs,...,Xm]|, I C M is the submodule with generators f; 9/dy;
and df /dx;. I am unaware of whether [l < oo is the same for all f with | < e in the
case of C3 — C2, but for C2 — C2 there is a counterexample (A1 =A;=1,D1 =2,
Dy = 3: u(x%,5%) =7, u(xy,x> +y*) = 6). Therefore, a mapping f; is called fully
nondegenerate if \( fo) = min on all f with given weights {A;,D;}. Conjecturally,
in the case of C> — C2 this minimum is equal to

D D
Malg :=1— %Z (Ya-Y D) (for Ct—Cr— %Z) :

For C? — C2, the equality Wmin(A, D) = Waig(A, D) is disproved by the fol-
lowing example:
A1=5, A=2, fi=x7,
D=9, D;=10, f=x>+y,

Mmin = 10, “alg = %% =9.
Conjecturally Wyin > Hayg for all m > n as well.

1977-10 — V. V. Goryunov
L These Lyashko conjectures concerning isolated complete intersection sin-
gularities were published in [3].
€1
«# % They were proved by A.G. Aleksandrov in [1, 2].

[1] ALEKSANDROV A.G. The de Rham complex of a quasihomogeneous complete in-
tersection. Funct. Anal. Appl., 1983, 17(1), 48-49.

[2] ALEKSANDROV A.G. Cohomology of a quasihomogeneous complete intersection.
Math. USSR, Izv., 1986, 26, 437-477.

[3] ARNOLD V.I. On some problems in singularity theory. In: Geometry and Analysis.

Papers dedicated to the memory of V. K. Patodi. Bangalore: Indian Acad. Sci., 1980,
1-9. [Reprinted in: Proc. Indian Acad. Sci. Math. Sci., 1981, 90(1), 1-9.]
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1977-12 — A.I. Neishtadt
j The equation under consideration is the truncated and rescaled normal form
for the following stability loss problem. A periodic solution x = x(z) of a system
of differential equations loses its stability when a pair of complex conjugate mul-
tipliers of this periodic solution crosses the unit circle near the points +i (and
hence there is an approximate resonance 1 : 4 between the period of x(z) and the
period of oscillations in the system linearized near x(¢)). The complex variable z
characterizes the deviation from the periodic solution, and the complex parame-
ter € characterizes the deviation of the multiplier from the point i (for € # 0 it is
possible to make |€| = 1 by rescaling). After [1,2] the problem was studied, in
particular, in [4-7, 10-13] and the summary of results is contained in [3, 8, 9].

It was shown numerically that the plane of the complex parameter A is di-
vided by piecewise smooth curves (called bifurcation curves) into 48 regions. Each
of these regions corresponds to a sequence of bifurcations of the phase portrait of
the equation considered; these bifurcations occur when the parameter € circum-
scribes the unit circle (there are 12 essentially different regions, the others can be
obtained by symmetries). Many of the bifurcation curves and bifurcation sequen-
cies are obtained analytically; however, the complete analytic theory is lacking.
One of the unsolved problems is the study of bifurcations for values of the param-
eter A close to i (at the point i, several bifurcation curves meet).

[1] ARNOLD V.I1. Loss of stability of self-oscillations close to resonance and versal de-
formations of equivariant vector fields. Funct. Anal. Appl., 1977, 11(2), 85-92.

[2] ARNOLD V.I. Geometrical Methods in the Theory of Ordinary Differential Equa-
tions, 2nd edition. New York: Springer, 1988. (Grundlehren der Mathematischen Wis-
senschaften, 250.) [ The Russian original 1978.]

[3] ARNOLD V.I., AFRAIMOVICH V.S., IL’YASHENKO YU.S., SHIL'NIKOV L.P.
Bifurcation theory. In: Itogi Nauki i Tekhniki VINITI. Current Problems in Mathe-
matics, Vol. 5. Moscow: VINITI, 1986, 5-218 (in Russian). [ The English translation:
Bifurcation Theory and Catastrophe Theory. Editor: V.I. Arnold. Berlin: Springer,
1994, 1-205. (Encyclopzdia Math. Sci., 5; Dynamical Systems, V.)]

[4] BEREZOVSKAYA F.S., KHIBNIK A.I. On the problem of bifurcations of auto-
oscillations near a 1 : 4 resonance. Preprint, Research Computing Center of the USSR
Academy of Sciences, Pushchino, 1979 (in Russian).

[S] BEREZOVSKAYA F.S., KHIBNIK A.I. On bifurcations of separatrices in the prob-
lem of loss of stability to auto-oscillations near a 1 : 4 resonance. J. Appl. Math. Mech.,
1981, 44, 663-667.

[6] CHENG CH. -Q. Hopf bifurcations in nonautonomous systems at points of resonance.
Science in China, Ser. A, 1990, 33(2), 206-219.
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[7] CHENG CH.-Q., SUN Y. -S. Metamorphoses of phase portraits of vector field in the
case of symmetry of order 4. J. Differ. Equations, 1992, 95(1), 130-139.

[8] CHow S.-N., L1 C., WANG D. Normal Forms and Bifurcation of Planar Vector
Fields. Cambridge: Cambridge University Press, 1994.

[9] KRAUSKOPF B. Bifurcation sequences at 1 : 4 resonance: an inventory. Nonlinearity,
1994, 7(3), 1073-1091.

[10] NEISHTADT A.1. Bifurcations of the phase portrait of a system of equations arising
from the problem of loss stability of an auto-oscillations close to a 1 : 4 resonance.
J. Appl. Math. Mech., 1979, 42, 896-907.

[11] WAN Y. -H. Bifurcation into invariant tori at points of resonance. Arch. Rat. Mech.
Anal., 1978, 68(4), 343-357.

[12] WANG D. Hopf bifurcation at the nonzero foci in 1 : 4 resonance. Acta Math. Sinica
(N.S.), 1990, 6(1), 10-17.

[13] ZEGELING A. Equivariant unfoldings in the case of symmetry of order 4. Serdica
Math. J., 1993, 19(1), 71-79.

1978-1

oy

.- See the comment to problem 1972-3.

1978-2 — A. A. Davydov

: The problem has been solved completely for generic control systems on
a closed surface. In that case the closure of the attainable set (= positive orbit)
of a generic point (a generic initial submanifold) is a manifold with boundary
having only standard singularities from the finite list up to a diffeomorphism [1,3].
Moreover, this set is asymptotically stable, and, for an orientable phase space, a
generic system is structurally stable in the classical Andronov—Pontryagin sense
(= for a generic system and any one being sufficiently close to it, the orbits of
points for one of the systems can be carried to the orbits of points of the other by

homeomorphism of the phase space which is close to identity) [3].
For a generic multidimensional control system the boundary of attainable
set is a hypersurface satisfying Holder condition [2]. The respective classifica-
tion of singularities is unknown even for a three-dimensional control system with
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quadratically convex indicatrix. For a generic control system with quadratically
convex indicatrices (for example, for simple motion with the drift (x —v(x))? < 1,
x € R") this classification has to include all generic singularities of the bound-
ary of the domain of the relative minimum under the equality constraints (for low
dimensions the singularities of such a minimum were investigated in [4]).

[1] ARNOLD V.I. Catastrophe theory. Berlin: Springer, 1992. [The Russian original
1990.]

[2] Davypov A.A. The quasi-Holder nature of the boundary of attainability. Trudy
Semin. Vekt. Tenz. Anal., 1985, 22, 25-30 (in Russian). [ The English translation: Se-
lecta Math. Sov., 1990, 9(3), 229-234 ]

[3] DavyDOv A.A. Qualitative Theory of Control Systems. Providence, RI: Amer.
Math. Soc., 1994. (Transl. Math. Monographs, 141.)

[4] DAvYDOV A.A., ZAKALYUKIN V.M. The coincidence of generic singularities
of solutions of extremal problems with constraints. In: Proceedings of the Inter-
national Conference Dedicated to the 90th Birthday of L.S.Pontryagin (Moscow,
1998), Vol. 3: Geometic Control Theory. Itogi Nauki i Tekhniki VINITI. Contempo-
rary Mathematics and its Applications. Thematic Surveys, Vol. 64. Moscow: VINITI,
1999, 118-143 (in Russian).

1978-3 — M. B. Sevryuk

For typical integrable Hamiltonian systems with no more than three de-
grees of freedom, the steepness indices were calculated by E. E. Landis (see [1]).
In [1], the following definitions of the local steepness indices were used.

Definition 1. A number k(f) is called a steepness index of a function f: (R",0) —
(R, 0) if there exist constants C > 0 and & > 0 such that for all €, 0 < € < §, there is
a sphere Sp~! := {|x| = p < &} in the ball {|x| < €} such that |grad f(x)| > cekf)
forallx € Sg‘l.

Definition 2. A number K(F) is called a uniform steepness index of a family
F(x,A), x e R", Ae U C R™ if, for all A € U, the number K(F) is a steepness
index of the function F(-,A) with the same C and d.

Theorem [1]. Given a family F(x,\), let the origin be a simple critical point of
the function f(x) = F(x,0). Then, of all the possible indices k(f) and K(F), the
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minimal ones for A small enough are listed in the following table (therein, fy is the
stable normal form of a function f):

the type of f AH DH E¢ E; Eg
fo A4 y? | 24y | P+ [ P+
k(f) 18 n—2 3 3.5 4
K(F) 18 n—1 ? ? ?

Conjecture [1]. For E,, the question marks are to be replaced with L. —2 (L =
6,7, 8).

A brief survey of the Nekhoroshev theory is presented in the comment to
problem 1966-2.

[1] LANDIS E. E. Uniform steepness indices. Uspekhi Mat. Nauk, 1986, 41(4), 179 (in
Russian).

1978-5 — S. M. Gusein-Zade
This means a generalization of a number of observations like the following
one. Let R* be the base space of the real versal deformation of the singularity Ay,
and let C be the set of points of R* for which all the critical points of the corre-
sponding function are real. Then C is a very tiny pyramid with the vertex at the
origin. The ratio of its volume in the e-neighborhood of the origin to the whole
neighborhood volume tends to zero as € — 0.

1978-6 — S. Yu. Yakovenko Also: 1976-2, 1979-16,
1980-1, 1983-11, 1989-17, 1990-24, 1990-25, 1994-51, 1994-52

. The problem on zeros of Poincaré integrals, known also as the infinitesi-
mal Hilbert 16th problem, is one of the most recurring in Amold’s lists. It was
published in [4], reappeared in the list [5] and rather recently the expanded for-
mulation was again given in [3]. Two very closely related problems, 1979-26 and
1980-3, which could well be included in the list, are singled out because they are
essentially solved. Some related questions are discussed in problems [984-10,
1985-12.
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Origins and preliminary remarks. The problems on zeros of the Poin-
caré integral

I=I(lH,0)= ¢ Mo,
T n
Yo C{H=h},  ©=P(x,y)dx+Q(xy)dy,

for the polynomial perturbation
MdH +e0 =0, )

in particular, complete Abelian integrals corresponding to M = | and a polynomi-
al H, appeared as an attempt to find an amenable relaxation of the Hilbert problem
on limit cycles.

As a function of h, I(h) is the first variation of the Poincaré return map with
respect to the small parameter €, at € = 0. Thus the problem on zeros of integrals of
the form (1) becomes a localized (better to say, linearized or infinitesimal) version
of the Hilbert 16th problem on the number of limit cycles of planar polynomial
vector fields, for systems infinitesimally close to integrable ones.

Probably, the question was also inspired by the works by I. G. Petrovskif
and E. M. Landis [33-35] who tried to reduce the Hilbert 16th problem stated in
full generality, to perturbations of integrable systems.

It should be stressed that vanishing of the Poincaré integral is only a nec-
essary condition for appearance of limit cycles, and it works only for limit cycles
born out of nonsingular level curves of the first integral. Description of limit cy-
cles born from separatrix polygons (carrying singular points of the non-perturbed
vector field) is a considerably more delicate subject, which admits a satisfactory
solution only in the simplest case of a separatrix loop carrying one nondegenerate
saddle (R.Roussarie [37,38]).

Further, identical vanishing of the Poincaré integral (1) does not mean in
general that the family (2) consists of integrable systems only: higher variations
in € may still be nonzero and it is their zeros that will determine the number and lo-
cation of limit cycles born in the perturbation. However, for Abelian integrals this
is impossible: in [14] Yu. Il'yashenko proved that, for a sufficiently generic polyno-
mial Hamiltonian H, the integral of a form of degree deg ® = max(deg P, degQ)+1
no greater than degH vanishes identically if and only if ® itself is exact on R2,
Clearly, in this case the system is Hamiltonian for all €. This result, generalized
by L. Gavrilov [10] for higher degree forms and by I. Pushkar’ [36] for higher di-
mensions, provides an effective criterion for nontriviality of the perturbation (2).
Everywhere below only isolated zeros of the Abelian integrals are counted.
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From the very beginning it should be said that general results for pertur-
bations of conservative non-Hamiltonian systems are practically absent, with few
exceptions concerning perturbed Lotka—Volterra systems. Therefore we will most-
ly discuss the problem on zeros of Abelian integrals with H € R[x,y] and M = 1.

Brief history. The first nontrivial case (for H quadratic the Abelian inte-
grals are rational functions of /) corresponds to cubic Hamiltonians. R. Bogdanov
studied the complete elliptic integral

I(h):fﬁ (atbx)ydx, H(x,y) = 3" +3x° —x 3)
H

and proved that it has at most one real isolated zero. His results, announced with no
details of the proof in [1], were published with a proof in [6], and later were redis-
covered by F. Takens [39]. This problem appeared in connection with construction
of the versal deformation of what is known today as the cuspidal singularity of
Bogdanov-Takens [7]. Later, in [15] Il'yashenko suggested another proof of the
same result, based on the complexification of the Abelian integral as a function of
t € C ramified over the collection of critical values of the complexified Hamilto-
nian H(x,y) € C|x,y]. Since then, complexification became a primary tool in the
investigation of complete Abelian integrals.

Shortly after that, a number of different particular cases of elliptic integrals
were studied, but the major breakthrough occurred in the works by G. Petrov. He
proved that for the standard elliptic Hamiltonian as in (3), integrals of all polyno-
mial forms of arbitrarily high degree form a nonoscillating, or Chebyshev, family:
the maximal number of real isolated zeros is by one less than the dimension of
this family considered as a vector space over R [31]. Later Petrov proved that the
same non-oscillatory property holds also for complex isolated zeros counted in a
slit plane [32]. These proofs rely substantially on the fact that the elliptic integrals
$ydx and § xy dx satisfy an explicitly written system of Picard-Fuchs linear ordi-
nary differential equations with rational coefficients, so that their ratio satisfies a
Riccati equation. On the other hand, these two integrals generate the space of all
Abelian integrals over the ring of polynomial functions of 4. The results of Petrov
settle the particular question raised in problem 1979-16 and give an affirmative
answer to problem 1983-11 in the part related to the elliptic integrals.

Earlier, simultaneously and independently, A.Khovanskii [18] and
A. Varchenko [40] proved the general finiteness result: for any combination
of degrees n and d, the number of isolated zeros of all Abelian integrals of forms
of degree < d over the level curves of Hamiltonians of degree < n is uniformly
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bounded by a constant C(n,d) depending only on n and d. Their proofs, how-
ever, gave no idea of how to estimate the constant C(n,d): its mere existence is
ultimately derived from compactness arguments.

This result remains until nowadays the only general assertion valid for all
Hamiltonians and all forms without restriction. Since it was achieved, the empha-
sis moved to computability of the bounds.

It Digression: fewnomials theory and Pfaffian manifolds. The proof of
the Khovanskii—Varchenko theorem is based on a beautiful geometric theory of
Pfaffian manifolds, developed by Askold Khovanskii. The central idea behind this
theory can be described roughly as follows: a real affine variety, defined by a mix-
ture of algebraic and Pfaffian equations, shares many properties of real algebraic
varieties provided that it “looks like an algebraic variety” topologically. A simple
example is that of integral trajectories of planar polynomial vector fields. If these
trajectories are not spirals (they should subdivide the real plane into two parts, in
particular, being limit cycles), then the number of isolated intersections of these
trajectories, say with straight lines, is explicitly bounded in terms of the degree of
the planar vector field. This observation immediately allows one to solve problem
1976-2.

The constructions in the Pfaffian manifolds theory, especially the Pfaffian
elimination, are explicit and efficient. Geometrically they could be described as a
multidimensional generalization of the Rolle theorem on alternation between roots
of a smooth function of one real variable, and roots of its derivative.

One of the most spectacular achievements of this theory is an upper bound
for the number of isolated solutions of a system of algebraic equations, given not in
terms of the degrees of this equation as in the Bézout theorem, but rather through
the number of different monomial terms occurring in the equations, uniformly over
all degrees. This explains the alternative code name “fewnomials theory” used to
designate the entire toolkit. A typical fewnomials theory result is described in
problem 1979-22.

Applications of the Pfaffian manifolds theory can sometimes be very un-
expected. Thus, if the resonant Poincaré-Dulac formal normal form [2] for all
singular saddle points of an analytic planar vector field is convergent, then any
polycycle carrying only these points cannot accumulate near itself an infinite num-
ber of limit cycles of this field. This particular case of the finiteness theorem (see
the comment to problem 1981-16) was discovered by R. Moussu and C.Roche
in [22]. Their key argument is integrability of the resonant normal form which
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in turn implies the fact that the Poincaré map can be described by a mixture of
Pfaffian and analytic equations.

This theory, together with its numerous ramifications, is expounded in
book [19]. The revised Russian edition [20] contains new applications to Hardy
fields, complexity problems, Tarski problem, etc.

Recent achievements: low degree cases. Despite their diversity, recent
results related to the infinitesimal Hilbert 16th problem can be organized into sev-
eral clusters.

The most abundant group of results deals with particular cubic or quartic
Hamiltonians and special choices of low degree (usually the same) perturbation
forms. If the number of essential parameters is small enough, sometimes bifur-
cation diagrams of zeros can be constructed. Usually problems of this type ap-
pear in connection with bifurcations of limit cycles in families of vector fields
exhibiting certain resonances. Though it is impossible to mention all results,
probably the most spectacular single recent achievement in this direction is due
to L. Gavrilov [11], see problem 1979-26. Gavrilov proved that for a real cubic
Hamiltonian with 4 distinct (complex) critical values, the number of zeros of any
integral of a quadratic 1-form can be at most 2.

The advantage of cubic Hamiltonians is that their level curves are elliptic,
thus the corresponding integrals can be in some sense reduced to elliptic inte-
grals. The Picard-Fuchs system satisfied by these integrals, admits as a factor
the 2-dimensional linear system reducible to a Riccati equation similar to that
from [31]. Zeros of functions obtained as rational combinations of solutions of
a Riccati equation, can be produced using the “fewnomials” technique introduced
by Khovanskii [19]. This idea after an appropriate (rather sophisticated) elabora-
tion was used to prove that, for any cubic Hamiltonian and any polynomial form
of degree deg ® < d, the number of isolated zeros can be at most 54 + 10 (Horozov
and Iliev, see [12]).

In the same paper it is shown that a generic cubic Hamiltonian admits a
quartic 1-form ® yielding 5 isolated zeros to the integral (2). This gives a gener-
ally negative answer to the question raised in problem 1983-11, whether Abelian
integrals are always non-oscillating (as was the case in the standard elliptic case).
Yet the conjecture from problem 1990-25 about non-oscillation of hyperelliptic
integrals, remains open.

Note added in proof. In February 2002 Chengzhi Li and Zenghua Zhang
showed that the genericity condition appearing in the Gavrilov theorem [11] is in
fact obsolete. For more details see problem 1979-26.
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Asymptotic bounds. The roles played by the Hamiltonian H and the poly-
nomial 1-form ® are clearly unequal. Ignoring the origins of the infinitesimal
Hilbert problem, one may further relax it by fixing the Hamiltonian and inves-
tigating how the bound on the number of zeros may depend on the form. This
suggestion is tacitly made in the formulations of problems 1994-51 and 1994-52.

First results in this direction were obtained by Yu.Il'yashenko, D. Novikov
and S. Yakovenko. Assuming that the Hamiltonian is generic, they proved in [16,
25, 26] that, as deg® = d — oo, the number of isolated zeros may grow at most
as O(expcd), where ¢ = c¢(H) is a constant depending only on H. The demonstra-
tion leaves a theoretical opportunity to compute c(H) in terms of the monodromy
group of H and a geometry of its critical values, but the result of the computation
must necessarily explode as some of the critical values of H approach each other.
The key idea behind the proof is to exploit the irreducibility of the monodromy
group of the Picard-Fuchs equation in the complex domain.

An asymptotically accurate answer was obtained by Petrov and Khovan-
skif in 1996. They proved that the number of isolated zeros can grow at most as
Ki(n) d+Ko(H), where K, (n) is an explicit constant depending only on the degree
n = degH while Ko(H) is independent of ® but depends on H. Apparently, one
can prove that this constant is uniformly bounded over all Hamiltonians of degree
n by some Ky (n), but the bound Ky(n) is absolutely non-efficacious exactly as the
Varchenko-Khovanskii bound C(n,d) mentioned above. Though the proof is not
yet formally published, some of its ingredients were already incorporated in other
constructions [28,41].

This result to a certain extent answers the question as it is formulated in
problem 1994-52. Though the constant K;(n) is greater than 1, still the relative
excess of this upper estimate over the lower estimate guaranteed by the dimen-
sionality arguments, is bounded uniformly over all forms of all degrees (for fixed
deg H), thus partially corroborating the conjecture that appeared in the earlier prob-
lem 1983-11.

Algorithmically constructive bounds. The fewnomials theory applies to
functions defined by planar polynomial differential equations, such as the Riccati
equation mentioned above, describing their zeros in terms of the degrees of the
defining equations.

There is no such “fewnomials theory” for polynomial vector fields in R”
or C" with n > 2 [24]. However, one may compute an explicit upper bound on
the number of isolated intersections between integral trajectories of a polynomial
vector field and an arbitrary algebraic hypersurface in the n-space, not solving the
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equations. The answer depends (polynomially) on the magnitude of coefficients of
the vector field, as well as on its degree and dimension (as a tower function, i.e., an
iterated exponent). This result (the “meandering theorem™), obtained by Novikov
and Yakovenko [27,29], can be applied to Picard-Fuchs systems of linear ordinary
differential equations with rational coefficients, satisfied by Abelian integrals.

A precondition for such application is an explicit knowledge of the mag-
nitude of the coefficients of the system. An explicit derivation of Picard-Fuchs
equations allowing to bound their coefficients, was achieved in [30], see also [23].

The construction in the hyperelliptic case has an especially transparent
form. Application of the meandering theorem in this case yields an explicitly com-
putable upper bound in the form of a tower function (iterated exponent) of #, on the
number of zeros of hyperelliptic integrals, under the additional technical assump-
tion that all critical values of the potential are real (Novikov and Yakovenko [28]).

Actually, the result on zeros of hyperelliptic integrals is obtained as a par-
ticular case of the following general principle. A collection of (analytic multival-
ued) functions fi(z),..., fu(¢) on the Riemann sphere, satisfying a Fuchsian system
of linear equations, behaves algebraically if the monodromy group of this system
possesses certain spectral properties. The quasialgebraicity property mentioned
above means that the question on the number of (complex isolated) zeros of any
function f from the differential Picard-Vessiot extension field C(fj, ..., f,) can be
explicitly answered in terms of the complexity of f in this field. See [41] for the
exact formulations and discussion.

Restricted problems. Various approaches to obtaining asymptotic or algo-
rithmic bounds on the number of zeros of Abelian integrals are based on different
properties of Abelian integrals (usually in the complex domain). For instance, the
exponential asymptotic bounds from [16] are based on the irreducibility of the
monodromy group of the Abelian integrals, whereas the key results from [41] are
valid for any complex analytic functions satisfying Fuchsian systems of differen-
tial equations with bounded residue matrices.

These methods, though not giving a complete answer for the problem in
full generality, sometimes allow for explicit upper bounds for almost all Hamilto-
nians, except for a proper semialgebraic subset of zero measure. As a rule, the es-
timates explode to infinity when approaching this exceptional “bad” subset, while
the number of zeros remains in fact bounded by the Varchenko—Khovanskii theo-
rem. Yet the explicit nature of the estimates for a “large” portion of Hamiltonians
is of obvious interest. Following Yu. Il'yashenko, we call such problems restrict-
ed versions of the infinitesimal Hilbert problem. Expanding the meaning of the
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“restrictedness,” one can include in this class also the problem of majorizing the
number of isolated zeros of Abelian integrals in some specific domains (e. g., on a
specified distance from the set of critical values of H).

In this restricted sense the infinitesimal Hilbert problem is in principle
solved in [30]: for any H with a properly normalized principal homogeneous part
and any € > 0, one can place an explicit upper bound for the number of isolated
zeros of all Abelian integrals, at least €-distant from the critical values of H (the
bound depends on H and €). Moreover, for all Hamiltonians with the principal
homogeneous part normalized as above, and pairwise distant critical values, the
number of all isolated zeros of all integrals can be bounded uniformly in terms of
n, d and the (inverse) minimal distance between the critical values. The bounds
are given by tower functions of height 4.

Very recently A. Glutsyuk and Yu. Il'yashenko achieved considerable prog-
ress towards solving the restricted infinitesimal problem for the particular class of
Hamiltonians of the form H(x,y) = p(x) + g(y) with two monic polynomials of
the same degree degp = degg = n+ 1. Using different ideas partly stemming
from [16,17], in [13] they obtained an explicit upper bound for the number of iso-
lated zeros, growing as exp(2435n*), provided that all n? critical points of H are
in the disk of radius 2 but at least (1/n?)-distant from each other.

Non-Hamiltonian case. As was already remarked, the case of general
Poincaré integrals with nontrivial integrating factors is much more complicate. To
begin with, merely a classification of integrable polynomial systems is very com-
plicated. While all center conditions in the quadratic case are known since the work
by Dulac [8], the analogous problem for cubic systems is not solved. Thus, as sug-
gested in problem 1983-11, one should begin with a certain typical (or simplest)
class of integrable systems. A natural candidate is the class of Darboux integrable
systems M dH = 0, where H(x,y) = F{" --- F® is the first integral equal to the
product of polynomials F; € R[x,y] in real powers o; €R,and M = F; --- F,H™ ! is
the nontrivial integrating factor. The famous Lotka—Volterra system corresponds
to three linear terms F; = x, F, = y and F3 = 1 — x—y, and seems to be one of the
two simplest examples (the other one is a product of two terms with F; linear and
F, quadratic).

It is much more difficult to describe the analytic continuation of the
Poincaré integrals, since the “level curves” H = h after complexification will
not be affine Riemann surfaces continuously depending on A, but rather essentially
noncompact leaves of the holomorphic foliation {M dH = 0} with singularities
on CP?. This makes it very difficult (if possible at all) to apply complex analytic
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methods that were the main tools of research in the Hamiltonian case. As a con-
sequence, it is not possible to exhibit a finite-dimensional system of Picard-Fuchs
equations (an infinite system was derived for the Darbouxian case by H. Zotadek
in [9]).

Concerning the particular low-degree cases, one should mention paper [42]
by Zoladek; see problem 1980-3. In most other results concerning specific per-
turbations of the Lotka—Volterra system, usually monotonicity of some ratios of
“monomial” Poincaré integrals is obtained by using very specific methods that
do not admit generalizations for the general Darbouxian case or perturbations of
higher than second degree. This monotonicity implies uniqueness of zero of the
corresponding “binomial” linear combination of integrals. A useful tool for estab-
lishing such monotonicity for systems with the first integral of the form H(x,y) =
®(x) +¥(y) was discovered by Chengzhi Li and Zhifen Zhang [21]: despite its
seemingly artificial form, it proves to be working in many independently arising
particular cases.
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1978-7 — A. I Neishtadt, M. B. Sevryuk

« The precise statement of the problem is probably as follows. Consider a
smooth (C**) Hamiltonian system with n > 2 degrees of freedom and equilibri-
um 0. Let all the eigenvalues of the system linearized at O be distinct (in particular,
different from zero) and purely imaginary. Then, for each N > 2, the Hamilton
function can be represented in a neighborhood of 0 in the form (up to an additive
constant)

H=Jo(pt+q})++30.(P+q3) + Hy+ Hy+ - +Hy
+0 (|P|N+1 + |q|N+l) ’

where p = (p1,...,pn) and g=(q1,. .., qy) are suitable canonically conjugate vari-
ables while H is a form of degree s in pj, g;. The coefficients ®; are the eigen-
frequencies of the system (and +i®; are the eigenvalues of the linearized system).
A resonance relation (or just a resonance) is by definition an equality of the form
hop+ -+ 1,0, =0 with I = (I1,...,1,) € Z"\ {0} an irreducible integer vector.
The number |I| = |l1] + - - + |I] is called the resonance order.

Given an irreducible integer vector k = (ki,...,k,) € Z"\ {0} with |k| =
|ki]+ -+ +|ka| <N, assume that the frequencies ®; satisfy resonance relations only
of orders greater than N, with the possible exception of the relation kj®; + --- +
k,®, = 0. Then in some neighborhood of 0, one can reduce the Hamilton function
to a k-resonant normal form up to the terms O (|P|N*! +|Q|¥+!) by a canonical
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change of variables (p,q) — (P, Q) that differs from the identity transformation in
the terms O (|P|* +|Q|?), see, e. g., book [1]. This means that, in the expansion of
the Hamilton function in variables P;, Q;, the sum of all the terms of orders <N,
if written in the symplectic polar coordinates p, @;:

Pj=+/2pjcosQj, Q;j=+/2pjsing;, 1<j<n,

depends on the angles @; via their combination ¥ = k1 @1 + - - - + k,@, only. Af-
ter having cut off the terms O (|P|**+! +|Q|¥+1) in the Hamilton function, one
obtains a truncated Hamilton function of the form

H = @p1+-+ OuPu+ F(py,...,pn) +BpltV2. pll/2

cos(¥+ o).
Here F is a polynomial in p; of degree < |k|/2 without the constant and linear
terms while B and g are certain constants. The system afforded by the Hamilton
function # is integrable.

Indeed, introduce the new angular variables W, %1,...,Xn-1, SO that the
change

(('pl""7(‘pn) = (W7X17"'7Xn—l)

is given by an integer unimodular matrix. Let J, 1y, . ..,I,- be the momenta canon-
ically conjugate to the angles ¥,%1,...,Xs—1 (these momenta are linear combina-
tions of the quantities py,...,p, with integer coefficients). In the new variables,
the Hamilton function A does not depend on 1, ...,Xs—1. Therefore, I,...,I,_;
are first integrals for the system with Hamilton function #, whereas for J,y, one
obtains a one-degree-of-freedom Hamiltonian system whose Hamilton function
depends on I}, ...,I,—1 as on parameters. In the studies of the motion near the res-
onance, the dependence on one more parameter, namely, the resonance detuning
d =k + -+ - + k,®,, is of importance. The partition of a neighborhood of the
origin in the space of parameters d,1y,...,I,_ into the subsets corresponding to
different types of the phase portraits on the (J,y)-plane is called the bifurcation
diagram of Hamilton function # (the rest of the parameters entering the Hamilton
function—B and the coefficients of the polynomial F—are treated as being fixed
and meeting some genericity conditions ! ).

1 To different values of these parameters, there may correspond different bifurcation diagrams. Con-
sequently, each resonance is characterized, generally speaking, by a finite collection of diagrams
rather than by a single diagram.
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A similar analysis can be made also in the case where all the eigenvalues
of the linearized Hamiltonian system are different from zero and purely imaginary
but, among them, multiple eigenvalues are allowed. Within the framework of the
problem in question, however, this case is important for n = 2 only, the corre-
sponding resonances manifesting themselves already in the quadratic terms of the
Hamilton function.

What is called the strong resonances in the formulation of the problem is
probably the resonances of the minimal order generating topologically different
bifurcation diagrams. For the case of two degrees of freedom (n = 2), all the
bifurcation diagrams are known, and the results have been compiled in book [1];
the strong resonances are listed in the formulation of the problem. As far as the
authors of the present comment know, the problem is still open for the case of three
degrees of freedom (n = 3).

The following question is of great interest: What are the connections be-
tween the bifurcations—as the system passes through the resonance—of the phase
portrait of the system with the truncated Hamilton function # and that of the ini-
tial system with the complete Hamilton function H. In general, the bifurcations of
smooth one-parameter families of periodic trajectories in the system with Hamil-
ton function # correspond to the same bifurcations of smooth one-parameter fam-
ilies of periodic trajectories in the system with Hamilton function H. On the
other hand, the bifurcations of smooth V-parameter families of invariant v-tori
in the system with Hamilton function # (the motion on those tori being paral-
lel) for v > 2 correspond, generally speaking, to the bifurcations of Cantor—due
to nonintegrability—V-parameter families of invariant v-tori in the system with
Hamilton function H (the motion on these tori being quasi-periodic).

One-parameter families of periodic trajectories in Hamiltonian systems
near and at the instant of resonance are examined in a very rich body of litera-
ture. Many works were briefly surveyed in thesis [17] and in book [16]. Of the
most important sources, we mention [1,7,12, 15]. A detailed study of the bifur-
cations of families of periodic trajectories in the important particular case of the
three body problem is made in monograph [6].

On the other hand, the bifurcations of Cantor v-parameter families of in-
variant v-tori (v > 2) as the Hamiltonian system passes through a resonance have
hardly been explored even in the case of two degrees of freedom. Such bifurca-
tions pertain to the so-called quasi-periodic bifurcation theory. Up to now, the
latter has been developed mainly for general (non-Hamiltonian) systems [2—5] (of
the first works on the quasi-periodic bifurcation theory for Hamiltonian system,
we mention paper [11]).
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An extensive literature is devoted to the study of the dynamics near reso-
nant equilibria of Hamiltonian systems as a whole. Here we point out, just as an
illustration, only six recent works [8-10,13,14,18]. In [8-10, 13, 18], multiple res-
onances (|@1] : |@y] : |03] = my : my : m3) are considered as well and the relevant
bibliography is given.
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