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§8 Decomposition of regular modules 134
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Introduction

We feel that new chapters of commutative algebra are needed to cope
with the extensions and derivates of algebraic geometry over promi-
nent fields like R, Qp, . . . and abstract versions of such geometries.
In particular, the real algebra associated with abstract semialgebraic
geometry, say the theory of real closed spaces (cf. [Sch], [Sch1]), is
still very much in its infancy. The present book is meant as a con-
tribution to such a commutative algebra.

Typically, the commutative rings naturally occurring in geometries as
above are not noetherian, but in compensation have other properties,
which make them manageable. These properties may look strange
from the viewpoint of classical commutative algebra with its center
in polynomial rings over fields, but can be quite beautiful for an eye
accustomed to them.

Valuations seem to play a much more dominant role here than in
classical commutative algebra. For example, if F is any ordered
field, then all the convex subrings of F are Krull valuation rings
with quotient field F for a trivial reason (cf. e.g. [BCR, p.249], [KS,
p.55]), and this fact is of primary importance in real algebra. Many
of the mysteries of real algebra seem to be related to the difficulty of
controlling the value group and the residue class field of such convex
rings. They are almost never noetherian.

Let us stay a little with real algebra. If F is a formally real field, it
is well-known that the intersection H of the real valuation rings of F
is a Prüfer domain, and that H has quotient field F . {A valuation
ring is called real if its residue class field is formally real.} H is the
so called real holomorphy ring of F , cf. [B, §2], [S], [KS, Chap.III
§12]. If F is the function field k(V ) of an algebraic variety V over
a real closed field k (e.g. k = R), suitable overrings of H in R can
tell us a lot about the algebraic and the semialgebraic geometry of
V (k).

These rings, of course, are again Prüfer domains. A very interesting
and – in our opinion – still mysterious role is played by some of these
rings which are related to the orderings of higher level of F , cf. e.g.
[B2], [B3]. Here we meet a remarkable phenomenon. For orderings of
level 1 (i.e. orderings in the classical sense) the usual procedure is to

M. Knebusch and D. Zhang: LNM 1791, pp. 1–6, 2002.

c© Springer-Verlag Berlin Heidelberg 2002



2 Introduction

observe first that the convex subrings of ordered fields are valuation
rings, and then to go on to Prüfer domains as intersections of such
valuation rings, cf. e.g. [B], [S], [KS]. But for higher levels, up to
now, the best method is to directly construct a Prüfer domain A in F
from a “torsion preordering” of F , and then to obtain the valuation
rings necessary for analyzing the preordering as localizations Ap of
A, cf. [B2, p.1956 f], [B3]. Thus there is two way traffic between
valuations and Prüfer domains.

Up to now, less is done for the function field F = k(V ) of an alge-
braic variety V over a p-adically closed field k (e.g. k = Qp). But
work of Kochen and Roquette (cf. §6 and §7 in the book [PR] by
Prestel and Roquette) gives ample evidence, that also here Prüfer
domains play a prominent role. In particular, every formally p-adic
field F contains a “p-adic holomorphy ring”, called the Kochen ring,
in complete analogy with the formally real case [PR, §6]. Actually,
the Kochen ring has been discovered and studied much earlier than
the real holomorphy ring ([Ko], [R1]).

If R is a commutative ring (with 1) and k is a subring of R, then we
can still define a real holomorphy ring H(R/k) consisting of those
elements a of R which can be bounded by elements of k on the
real spectrum of R (cf. [BCR], [B1], [KS]). {If R is a formally real
field F and k the prime ring of F , this ring coincides with the real
holomorphy ring H from above.} These rings H(R/k) have proven
to be very useful in real semialgebraic geometry. In particular, N.
Schwartz and M. Prechtel have used them for completing a real closed
space and, more generally, to turn a morphism between real closed
spaces into a proper one in a universal way ([Sch, Chap V, §7], [Pt]).

The algebra of these holomorphy rings turns out to be particularly
good-natured if we assume that 1+ΣR2 ⊂ R∗, i.e. that all elements
1 + a2

1 + · · · + a2
n (n ∈ N, ai ∈ R) are units in R. This is a natural

condition in real algebra. The rings used by Schwartz and Prechtel,
consisting of abstract semialgebraic functions, fulfill the condition
automatically. More generally, if A is any commutative ring (always
with 1) then the localization S−1A with respect to the multiplicative
set S = 1 + ΣA2 is a ring R fulfilling the condition, and R has the
same real spectrum as A. Thus for many problems in real geometry
we may replace A by R.
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Now, V. Powers has proved that if 1 + ΣR2 ⊂ R∗, then the real
holomorphy ring H(R/k), with respect to any subring k, is an R-
Prüfer ring, as defined by Griffin in 1973 [G2].∗) More generally she
proved that if 1 + ΣR2d ⊂ R∗, for some even number 2d, then every
subring A of R, containing the elements 1

1+q with q ∈ ΣR2d, is R-
Prüfer ([P, Th.1.7], cf. also [BP]).

An R-Prüfer ring is related to Manis valuations on R in much the
same way a Prüfer domain is related to valuations of its quotient
field. Why shouldn’t we try to repeat the success story of Prüfer
domains and real valuations on the level of relative Prüfer rings and
Manis valuations? Already Marshall in his important paper [Mar]
has followed such a program. He worked with “Manis places” in a
ring R with 1 + ΣR2 ⊂ R∗, and related them to the points of the
real spectrum SperR.

We mention that Marshall’s notion of Manis places is slightly mis-
leading. According to his definition, these places do not correspond
to Manis valuations, but to a broader class of valuations which we
call “special valuations”, cf.I, §1 below. But then V. Powers (and in-
dependently one of us, D.Z.) observed that in the case 1+ΣR2 ⊂ R∗,
the places of Marshall in fact do correspond to the Manis valuations
of R [P]. {In Chapter I, §1 below we prove that every special valua-
tion on R is Manis under a much weaker condition on R, cf. Theorem
1.1.}
The program to study Manis valuations and relative Prüfer rings in
rings of real functions has gained new impetus and urgency from the
fact, that the theory of orderings of higher level has recently been
pushed from fields to rings, leading to real spectra of higher level.
These spectra in turn have already proven to be useful for ordinary
real semialgebraic geometry. We mention an opus magnum by Ralph
Berr [Be], where spectra of higher level are used in a fascinating way
to classify the singularities of real semialgebraic functions.

It seems that p-adic semialgebraic geometry is accessible as well.
L. Bröcker and H.-J. Schinke [BS] have brought the theory of p-adic
spectra to a rather satisfactory level by studying the “L-spectrum”

∗)The definition by Griffin needs a slight modification, cf. Def.1 in I, §5
below.
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L-specA of a commutative ring A with respect to a given non-
archimedian local field L (e.g. L = Qp). There seems to be no
major obstacle in sight which prevents us from defining and study-
ing rings of semialgebraic functions on a constructible (or even pro-
constructible) subset X of L-spec A. Here “semialgebraic” means
definable in a model-theoretic sense plus satisfying a suitable con-
tinuity condition. Relative Prüfer subrings of such rings should be
quite interesting.

The present book is devoted to the study of relative Prüfer rings
and Manis valuations, with an eye towards applications in real and
p-adic geometry.

Currently, there already exists a rich theory of “Prüfer rings with
zero divisors”, also started by Griffin [G1], cf. the books [LM], [Huc],
and the literature cited there. But this theory does not seem to be
taylored to geometric needs. A Prüfer ring with zero divisors A is
the same as an R-Prüfer ring with R = QuotA, the total quotient
ring of A. While this is a reasonable notion from the viewpoint of
ring theory, it may be artificial coming from a geometric direction.
A typical situation in real geometry is the following: R is the ring of
(continuous) semialgebraic functions on a semialgebraic set M over a
real closed field k or, more generally, the set of abstract semialgebraic
functions on a proconstructible subsetX of a real spectrum (cf. [Sch],
[Sch1]). Although the ring R has very many zero divisors, we have
experience that in some sense R behaves nearly as well as a field,
cf. e.g. our notion of “convenient ring extensions” in I, §6 below.
Now, if A is a subring of R, then it is natural and interesting from
a geometric viewpoint to study the R-Prüfer rings B ⊃ A, while the
total quotient rings QuotA and QuotB seem to bear little geometric
relevance.

Except for a paper by P.L. Rhodes from 1991 [Rh], little seems to
be done on Prüfer extensions in general,∗) and in the original pa-
per of Griffin the proofs of important facts [G2, Prop.6, Th.7] are
omitted. Moreover, the paper by Rhodes has a gap in the proof of
his main theorem. {[Rh, Th.2.1], condition (5b) is apparently not a
characterization of Prüfer extensions. Any algebraic field extension

∗) The important work of Gräter [Gr-Gr3] and of Alajbegović and Močkoř
[Al-M] will be discussed in Part II of the book.
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is a counterexample.} Thus we have been careful about a foundation
of this theory.

In Chapter I we develop the basics of a theory of Prüfer extensions
and give some examples. Then in Chapter II we explicate the mul-
tiplicative ideal theory related to Prüfer extensions. At the end of
that chapter (§11, §12) we give a picture of what has been attained
so far in the case of noetherian rings. Here life is much less demand-
ing but also less interesting than in the general theory. Nevertheless
the reader may get the idea where we have to go and to work in the
general setting.

In Chapter III, the last one of the present volume, we take a closer
look at Manis valuations. We single out the all-important subclass
of PM-valuations (= Prüfer-Manis valuations) and study relations
between PM-valuations and other Manis valuations.

Anything else, in particular a more thorough working on examples,
has been left to Part II of the book. We cannot hope there to reach
the level of sophistication nowadays present in the theory of Prüfer
domains and documented for example by Fontana, Huckaba and Pa-
pick in the recent book [FHP], but what can be done will be enough
to intrigue the persistent reader.

We have been forced to change some of the terminology used by
ring theorists, say in the books of Larsen-McCarthy [LM] and of
Huckaba [Huc]. While these authors mean by a valuation on a ring
a Manis valuation, we use the word “valuation” in the much broader
sense of Bourbaki [Bo, Chap.VI, §3]. It is common belief that Manis
valuations are the right valuations for computations. But the central
notion is the Bourbaki valuation, since only with these valuations one
can build an honest spectral space, the valuation spectrum [HK].
Valuation spectra have already proven to be immensely useful both
in algebraic geometry (cf. [HK]) and rigid analytic geometry (e.g.
[Hu1], [Hu2]). The closely related real valuation spectra (cf. [Hu3,
§1]) seem to be the natural basic spaces for endeavours in real algebra
concerning valuations and Prüfer extensions.

The common belief just mentioned has been modified in the present
book. Manis valuations can show some pathologies, which are absent
for the valuations occuring in Prüfer extensions. These are the PM-
valuations mentioned above. We devote a good part of Chapter III
to their study.
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Fortunately, PM-valuations seem to suffice for an understanding
of the major part of the commutative algebra we have in mind
(see above). Thus our message is that in many situations the PM-
valuations, not the more general Manis valuations, are the really
useful ones. Nevertheless we also define “tight valuations” in Chap-
ter III. They form a broader class than the PM-valuations but are
still Manis. We introduce tight valuations in order to get a bet-
ter understanding of the good nature of PM-valuations. We do not
exclude the possibility that they deserve interest on their own.

In Chapter III we also construct and study various valuation hulls.
Given a ring A and a prime ideal p of A we find a unique maximal
ring extension A ⊂ C, such that there exists a (unique) PM-valuation
v on C with A = {x ∈ C | v(x) ≥ 0} and p = {x ∈ C | v(x) > 0}.
We call C the PM-hull of the pair (A, p). Similarly we construct a
“TV-hull” of (A, p), which does the same for tight valuations instead
of PM-valuations. Finally, in a more restricted setting, we construct
a “Manis valuation hull” of (A, p).

These valuation hulls may serve as a good illustration, beyond Prüfer
extensions, that it can be interesting to study valuations on rings
instead of fields. Every valuation v:R → Γ ∪ ∞ on a ring R can be
interpreted as a valuation v̂: k(q) → Γ ∪ ∞ on the residue class field
k(q) of a certain prime ideal q of R, namely the support of v (cf.I,
§1 below). Thus valuations on rings are in some sense nothing new,
compared to valuations on fields. But the point of view is different.
If we take the ring R into account instead of the field k(q), we have
the possibility to ask new questions and to look for new objects, such
as for example valuation hulls.

Some notations. In this book a “ring” always means a commuta-
tive ring with 1. For a ring A, we denote the group of units of A
by A∗. We denote the total quotient ring of A by QuotA. For p a
prime ideal of A we denote the field Quot (A/p) by k(p).

N = {1, 2, 3, . . . }, N0 = N ∪ {0}. If A and B are sets, then A ⊂ B
means that A is a subset of B, and A ⊂

= B means that A is a proper
subset of B. If two subsets M and N of some set X are given, then
M \N denotes the complement of M ∩N in M . The abbreviation
“iff” means “if and only if”.



Summary

We call a commutative ring extension A ⊂ R Prüfer, if A is an R-
Prüfer ring in the sense of Griffin (Can. J. Math. 26 (1974)). These
ring extensions relate to Manis valuations in much the same way as
Prüfer domains relate to Krull valuations. In the Introduction we
tried to explain why Prüfer extensions and Manis valuations deserve
attention from a geometric viewpoint. In Chapter I we develop a
basic theory of Prüfer extensions and give some examples. Then
in Chapter II we explicate the multiplicative ideal theory related to
Prüfer extensions. Finally, in Chapter III we take a closer look at
Manis valuations. We single out the all-important subclass of PM-
valuations (= Prüfer-Manis valuations) and study relations between
PM-valuations and other Manis valuations.

Prüfer extensions may be viewed as families of PM-valuations. This
viewpoint will dominate Part II of the book.

An earlier version of the Introduction and Chapter I has been pub-
lished in the electronic journal Documenta Mathematica 1 (1996),
149-197.

Acknowledgements. We thank Roland Huber and Niels Schwartz for
many helpful comments, and Rosi Bonn for very efficiently typing
countless versions of the manuscript.
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Chapter I:

Basics on Manis valuations and Prüfer
extensions

Summary:

In §1 and §2 we gather what we need about Manis valuations. Then
in §3 and §4 we develop an auxiliary theory of “weakly surjective”
ring homomorphisms. These form a class of epimorphisms in the cat-
egory of commutative rings close to the flat epimorphisms studied by
D. Lazard and others in the sixties, cf. [L], [Sa1], [A]. In §5 the up to
then independent theories of Manis valuations and weakly surjective
homomorphisms are brought together to study Prüfer extensions.
{We call a ring extension A ⊂ R Prüfer, if A is R-Prüfer in the sense
of Griffin.} It is remarkable that, although Prüfer extensions are de-
fined in terms of Manis valuations (cf. §5, Def.1 below), they can be
characterized entirely in terms of weak surjectivity. Namely, a ring
extension A ⊂ R is Prüfer iff every subextension A ⊂ B is weakly
surjective (cf. Th.5.2 below). A third way to characterize Prüfer
extensions is by multiplicative ideal theory, as we will explicate in
Chapter II.

Our first major result on Prüfer extensions is Theorem 5.2 giving
various characterizations of these extensions which sometimes make
it easy to recognize a given ring extension as Prüfer, cf. the examples
in §6. We then establish various permanence properties of the class
of Prüfer extensions. For example we prove for Prüfer extensions
A ⊂ B and B ⊂ C that A ⊂ C is again Prüfer (Th.5.6), a result
already due to Rhodes [Rh].

At the end of §5 we prove that any commutative ring A has a uni-
versal Prüfer extension A ⊂ P (A) which we call the Prüfer hull of
A. Every other Prüfer extension A ↪→ R can be embedded into
A ↪→ P (A) in a unique way. The Prüfer rings with zero divisors
are just the rings A with P (A) containing the total quotient ring
QuotA. Prüfer hulls mean new territory leading to many new open
questions. We will pursue some of them in part II of the book.

M. Knebusch and D. Zhang: LNM 1791, pp. 9–81, 2002.
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10 §1 Valuations on rings

In §6 we prove theorems which give us various examples of Manis
valuations and Prüfer extensions. We illustrate how naturally they
come up in algebraic geometry over a field k which is not algebraically
closed (§6, Example 7, Th.6.13, Th.6.17), and in real algebraic and
semialgebraic geometry (§6, Examples 3 and 13). Perhaps our best
result here is Theorem 6.16 giving a far-reaching generalization of an
old lemma by A. Dress (cf. [D, Satz 2′]). This lemma states for F a
field, in which −1 is not a square, that the subring of F generated
by the elements 1/(1 + a2), a ∈ F , is Prüfer in F . Dress’s innocent
looking lemma seems to have inspired generations of real algebraists
(cf. e.g. [La, p.86], [KS, p.163]) and also ring theorists, cf. [Gi1].

We finally prove in §7 for various Prüfer extensions A ⊂ R that,
if a is a finitely generated A-submodule of R with Ra = R, then
some power ad (with d specified) is principal. Our main result here
(Theorem 7.8) is a generalization of a theorem by P. Roquette [R,
Th.1] which states this for R a field (cf. also [Gi1]). Roquette used
his theorem to prove by general principles that the Kochen ring of a
formally p-adic field is Bezout [loc.cit]. Similar applications should
be possible in p-adic semialgebraic geometry. Roquette’s paper has
been an inspiration for our whole work since it indicates well the
ubiquity of Prüfer domains in algebraic geometry over a non alge-
braically closed field.

§1 Valuations on rings

Let R be a ring and Γ an (additive) totally ordered abelian group.
We extend Γ to an ordered monoid Γ ∪ ∞: = Γ ∪ {∞} by the rules
∞ + x = x+ ∞ = ∞ for all x ∈ Γ ∪ ∞ and x < ∞ for all x ∈ Γ. We
use the notations Γ+: = {x ∈ Γ | x ≥ 0} and Γ−: = {x ∈ Γ, x ≤ 0}.

Definition 1 (Bourbaki [Bo, VI. 3.1]).
A valuation on R with values in Γ is a map v:R → Γ ∪ ∞ such that:

(1) v(xy) = v(x) + v(y) for all x, y ∈ R.
(2) v(x+ y) ≥ min{v(x), v(y)} for all x, y ∈ R.
(3) v(1) = 0 and v(0) = ∞.

If v(R) = {0,∞} then v is said to be trivial, otherwise v is called
non-trivial.
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We recall some very basic facts1) about valuations on rings and fix
notations.
Let v:R → Γ ∪ ∞ be a valuation on R.
The subgroup of Γ generated by v(R)\{∞} is called the value group
of v and is denoted by Γv. The set v−1(∞) is a prime ideal of R.
It is called the support of v and is denoted by supp v. v induces a
valuation v̂: k(supp v) → Γ ∪ ∞ on the quotient field k(supp v) of
R/supp v. We denote the valuation ring of k(supp v) corresponding
to v̂ by ov, its maximal ideal by mv, and its residue class field by
κ(v), κ(v) := ov/mv. Notice that v̂(ov) = (Γv)+ ∪ {∞}.

We further denote the set {x ∈ R | v(x) ≥ 0} by Av and the set
{x ∈ R | v(x) > 0} by pv. Clearly Av is a subring of R and pv is
a prime ideal of Av. We call Av the valuation ring of v and pv the
center of v.

Definition 2. Two valuations v, w on R are said to be equivalent,
in short, v ∼ w, if the following equivalent conditions are satisfied:
(1) There is an isomorphism f : Γv ∪ {∞} → Γw ∪ {∞} of ordered

monoids with w(x) = f(v(x)) for all x ∈ R.
(2) v(a) ≥ v(b) ⇐⇒ w(a) ≥ w(b) for all a, b ∈ R.
(3) supp v = suppw and ov = ow.

By abuse of language we will often regard equivalent valuations as
“equal”.

Definition 3. a) The characteristic subgroup cv(Γ) of Γ with respect
to v is the smallest convex subgroup of Γ (convex with respect to the
total ordering of Γ) which contains all elements v(x) with x ∈ R,
v(x) ≤ 0. Clearly cv(Γ) is the set of all γ ∈ Γ such that v(x) ≤ γ ≤
−v(x) for some x ∈ R with v(x) ≤ 0.
b) v is called special,2) if cv(Γv) = Γv. (We replaced Γ by Γv.)

If H is any convex subgroup of Γ containing cv(Γ) then we obtain
from v a new valuation v|H:R → Γ∞ putting (v|H)(x) = v(x) if
v(x) ∈ H and v(x) = ∞ else. Taking H = cvΓ we obtain from v a
special valuation w = v|cvΓ. Notice that Aw = Av, pw = pv.

1) For this we refer to [Bo, VI.3.1] and [HK, §1]
2) The word “special” alludes to the fact that such a valuation has no

proper primary specialization in the valuation spectrum of R, cf. [HK, §1].
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Definition 4 (cf. [M]). v is called a Manis valuation on R, if v(R) =
Γv ∪ ∞.3)

Manis valuation will be in the focus of the present paper. Notice
that every Manis valuation is special, but that the converse is widely
false.

Example. Let R be the polynomial ring k[x] in one variable x over
some field k. Consider the valuation v:R → Z ∪ ∞ with v(f) =
−deg f for any f ∈ R \ {0}. This valuation is special but definitely
not Manis.

One of our primary observations is that nevertheless there are many
interesting rings, on which every special valuation is Manis. For
example this holds if for every x ∈ R the element 1 + x2 is a unit in
R. More generally we have the following theorem.

Theorem 1.1. Let k be a subring of R. Assume that for every
x ∈ R \ k there exists some monic polynomial F (T ) ∈ k[T ] (one
variable T ) with F (x) ∈ R∗. Then every special valuation v on R
with Av ⊃ k is Manis.

Proof. We may assume that v is non trivial. Let x ∈ R be given
with v(x) = 0,∞. We have to find some y ∈ R with v(y) = −v(x).
Since v is special there exists some a ∈ R with v(ax) < 0. Let
F (T ) = T d + c1T

d−1 + · · · + cd be a polynomial with c1, . . . , cd ∈ k
and F (ax) ∈ R∗. Since v(ax) < 0, but v(ci) ≥ 0 for i = 1, . . . , d, we
have v(F (ax)) = dv(ax). The element y: = adxd−1

F (ax) does the job.4)

We return to valuations in general. Up to the end of this section we
will keep the following

Notations. v:R → Γ ∪ ∞ is a valuation on some ring R, A: = Av,
p: = pv, q: = supp v, R̄: = R/q, Ā: = A/q, p̄: = p/q. π:R → R̄ is
the evident epimorphism from R to R̄. We have a unique valuation
v̄: R̄ → Γ ∪ ∞ on R̄ such that v̄ ◦ π = v.

3) Since we often identify equivalent valuations we have slightly altered the
definition in [M]. Manis demands that v(R)=Γ∪∞.

4) We are indebted to Roland Huber for this simple argument.
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We have Av̄ = Ā, pv̄ = p̄, supp v̄ = {0}, Γv̄ = Γv, ov = ov̄. It is
evident that v is special iff v̄ is special, and that v is Manis iff v̄ is
Manis. Looking at the valuation v̂ on the quotient field k(q) of R̄
(which extends v̄) one now obtains by an easy exercise

Proposition 1.2.

a) v is Manis iff k(q) = R̄ · o∗
v.

b) v is special iff k(q) = R̄ · ov.
Here R̄ · o∗

v (resp. R̄ · ov) denotes the set of products xy with x ∈ R̄,
y ∈ o∗

v (resp. ov). The set R̄ ·ov is also the subring of k(q) generated
by R̄ and ov.

Definition 5. v is called local if the pair (A, p) is local, i.e. p is the
unique maximal ideal of A.

Proposition 1.3 (cf. [G2, Prop. 5]). The following are equivalent.

i) v is Manis and local.
ii) The pair (R, q) is local.
iii) v is local and q is a maximal ideal of R.

Proof. i) ⇒ ii): Let x ∈ R\q be given. Since v is Manis there exists
some y ∈ R with v(xy) = 0. Since v is local this implies that xy is a
unit of A, hence also a unit of R. Thus x is a unit of R.
ii) ⇒ i): v̄ is a valuation of the field R̄. Thus v̄ is Manis, which
implies that v is Manis. Let x ∈ A \ p be given. Then x is a unit in
R. We have v(x−1) = −v(x) = 0. Thus x−1 ∈ A, x ∈ A∗.
i), ii) ⇒ iii): trivial.
iii) ⇒ i): v̄ is a valuation of the field R̄. From this we conclude again
that v is Manis.

If S is any multiplicative subset of R with S ∩ q = ∅ then we denote
by vS the unique “extension” of v to a valuation on S−1R, defined
by

vS

(a
s

)
= v(a) − v(s) (a ∈ R, s ∈ S).

For w = vS we have Γw = Γv and cw(Γ) ⊃ cv(Γ). Thus if v is Manis
then vS is Manis and if v is special then vS is special. vS has the
support S−1q.
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We now consider the special case S = A \ p. Then

vS

(a
s

)
= v(a) (a ∈ R, s ∈ S).

Thus for w = vS we now have Aw = S−1A = Ap and pw = S−1p =
pp, and we see that vS is a local valuation. Moreover A \ p is the
smallest saturated multiplicative subset S of R such that vS is local.
We write S−1R = Rp.

Definition 6. The valuation vS with S = A \ p is called the local-
ization of v, and is denoted by ṽ.

We have ṽ(Rp) = v(R), Γṽ = Γv, cvΓ = cṽΓ. Thus v is Manis iff ṽ
is Manis, and v is special iff ṽ is special. Applying Proposition 3 5)

to ṽ we obtain

Proposition 1.4. The following are equivalent.
i) v is Manis.
ii) q is the unique ideal of R which is maximal among all ideals of

R which do not meet A \ p.
iii) q is maximal among all ideals of R which do not meet A \ p.

If S is a (non empty) multiplicative subset of R then we denote by
SatR(S) the set of all elements of R which divide some element of S
(“saturum of S in R”). Recall from basic commutative algebra that,
if T is a second multiplicative subset of R, then S−1R = T−1R iff
SatR(S) = SatR(T ).

The following characterization of Manis valuations can be deduced
from Proposition 4, but we will give an independent proof.

Proposition 1.5. The following are equivalent.
i) v is Manis.
ii) SatR(A \ p) = R \ q.
iii) Rp = Rq.

Proof. The multiplicative set R \ q is saturated. Thus the equiva-
lence ii) ⇐⇒ iii) is evident from what has been said above.

5) Reference to Prop.1.3 in this section. In later sections we will refer to
this proposition as “Prop.1.3”, instead of “Prop.3”.
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i) ⇐⇒ ii): v is Manis ⇐⇒ For every x ∈ R\q there exists some y ∈ R
with v(x) + v(y) = 0, i.e. with xy ∈ A \ p ⇐⇒ R \ q = SatR(A \ p).

Proposition 1.6. If v is Manis then ov = Āp̄.

Proof. We may pass from v to v̄. Thus we assume without loss of
generality that q = 0. We have ov = oṽ and v is Manis iff ṽ is Manis.
Thus we may assume without loss of generality that v is also local.
Now R is a field (cf. Prop. 3), and ov = A = Ap.

Definition 7. We say that v has maximal support if q is a maximal
ideal of R.

Proposition 1.7. v has maximal support iff v̄ is local and Manis.
Then v is also a Manis valuation on R.

Proof. If v has maximal support, then v̄ is a valuation on the field
R̄. Thus v̄ is certainly Manis and local. Since v̄ is Manis, also v is
Manis.

If v̄ is local and Manis then, applying Proposition 3 to v̄, we learn
that the pair (R̄, {0}) is local. This means that q is a maximal ideal
of R.

Definition 8. An additive subgroup M of R is called v-convex, if
for any elements x ∈ M , y ∈ R with v(x) ≤ v(y)(≤ v(0) = ∞) it
follows that y ∈ M .

If M is a v-convex additive subgroup of R, then certainly ax ∈ M
for any a ∈ A, x ∈ M , i.e. M is an A-submodule of R. We now have
a closer look at the v-convex ideals of A.

Clearly q is a v-convex ideal of A and is contained in any other v-
convex ideal of A. Also p is v-convex and I ⊂ p for every v-convex
ideal I = A.

Proposition 1.8. If v has maximal support then everyA-submodule
of R containing q is v-convex.

Proof. Let I be an A-submodule of R containing q, and Ī := I/q.
It is easy to see that I is v-convex iff Ī is v̄-convex. Since v has
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maximal support, v̄ is a valuation on the field R̄ := R/q. From
classical valuation theory we conclude that Ī is v̄-convex.

Corollary 1.9. If v is a local Manis valuation then everyA-submodule
of R containing q is v-convex.

Proof. By Proposition 3 we know that v has maximal support.

Proposition 1.10. [M, Prop. 3]. Assume that the valuation v is
Manis. Then a prime ideal r of A is v-convex iff q ⊂ r ⊂ p.

Proof. Replacing v by v̄ we assume without loss of generality that
q = 0. Since v(A \ p) = {0} it is evident that the v-convex prime
ideals r of A correspond uniquely with the ṽ-convex prime ideals r′

of Ap via r′ = rp. Thus we may pass from v to ṽ and assume without
loss of generality that v is local. All prime ideals (in fact, all ideals)
of A are v-convex (Cor. 9).

Proposition 1.11. Assume that v is a non-trivial Manis valuation.
The following are equivalent.

i) Every ideal I of A with q ⊂ I ⊂ p is v-convex.
ii) Any two ideals I, J of A with q ⊂ I ⊂ p and q ⊂ J ⊂ p are

comparable by inclusion.
iii) Ā is a (Krull)valuation domain.
iv) p is the unique maximal ideal of A containing q.
v) v has maximal support.
vi) Every ideal I of A containing q is v-convex.
vii) IR = R for every ideal I ⊃

= q of A.

Proof. For proving the equivalence of the conditions i) – vi) we find
it convenient to assume that q = {0}, which we can do without loss
of generality. Now R is an integral domain.

i) ⇒ ii) is evident, since for any two v-convex ideals I and J of A
we have I ⊂ J or J ⊂ I. (This holds more generally for v-convex
additive subgroups I, J of R.)

ii) ⇒ iii): We verify: If x ∈ A, y ∈ A then Ax ⊂ Ay or Ay ⊂ Ax.
This will imply that A is a valuation domain. We assume without loss
of generality that v(x) ≤ v(y). If x ∈ p then also y ∈ p. The ideals
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Ax and Ay are comparable by our assumption ii). There remains
the case that x ∈ p. We choose an element c = 0 in p. Then xc ∈ p
and v(xc) ≤ v(yc). As we have proved this implies Ayc ⊂ Axc or
Axc ⊂ Ayc. Since R is a domain we conclude that Ay ⊂ Ax or
Ax ⊂ Ay.

iii) =⇒ iv): Trivial. iv) =⇒ v) is evident by Proposition 7, and
v) =⇒ vi) is evident by Proposition 8. Clearly vi) ⇒ i).

v) ⇒ vii): IR is an ideal of R with q ⊂
= IR. Thus IR = R.

vii) ⇒ v): Let x ∈ R \ q be given. We verify that q + Rx = R.
Then we will know that q is a maximal ideal of R. Now q + Rx is
not contained in A, since q is the conductor of A in R. We choose
y ∈ R with q + yx ∈ A, hence yx ∈ A. Then we choose z ∈ p with
zyx ∈ A \ p. This is possible since v is Manis. q + Azyx is not
contained in p. Thus certainly q + Azyx ⊃

= q. By our assumption
vii) we conclude that q +Rzyx = R. A fortiori q +Rx = R.

Definition 9. A valuation w:R → Γ′ ∪ ∞ is called coarser than v
(or a coarsening of v) if there exists an order preserving homomor-
phism6) f : Γv → Γw such that, for all x ∈ R, w(x) = f(v(x)) (put
f(∞) = ∞).

If H is a convex subgroup of Γ then the quotient Γ/H is a totally
ordered abelian group in such a way that the natural projection from
Γ to Γ/H is an order preserving homomorphism. We have (Γ/H)+ =
(Γ+ + H)/H. From v we obtain a coarsening w:R → (Γ/H) ∪ ∞
putting w(x): = x + H for all x ∈ R. (Read ∞ + H = ∞.) This
valuation w is denoted by v/H.

Remarks 1.12. a) v/H has the center pH : = {x ∈ R | v(x) > H},
and this is a v-convex prime ideal of A. {v(x) > H means v(x) > γ
for every γ ∈ H}. If Γ+ ⊂ v(R) (e.g. v is Manis and Γ = Γv) then
the v-convex prime ideals r of A correspond uniquely with the convex
subgroups H of Γ via r = pH . {If necessary, we denote the ideal pH
more precisely by pv,H .}
b) Assume (without loss of generality) that Γ = Γv. The coarsenings
w of v correspond, up to equivalence, uniquely with the convex sub-
groups H of Γ via w = v/H. We have A ⊂ Aw, p ⊃ pw, suppw = q,

6) This means f is a homomorphism of abelian groups with f(α)≥f(β) if
α≥β. The homomorphism f is necessarily surjective.
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ŵ = v̂/H, w̄ = v̄/H, w̃ = (ṽ/H)∼. If S is a multiplicative subset of
R with S ∩ q = ∅ then vS/H = (v/H)S . If v is special then v/H is
special. If v is Manis then v/H is Manis.

All this is either trivial or can be verified in a straightforward way.

How do we obtain the ring Aw from Av = A if w = v/H? In order
to give a satisfactory answer, at least in special cases, we need a
definition which will be widely used also later on.

Definition 10. Let B be a subring of R, let S be a multiplicative
subset of B and let jS :R → S−1R denote the localization map x �→ x

1
of R with respect to S. For any B-submodule M of R we define

M[S]: = j−1
S (S−1M).

Clearly M[S] is the set of all x ∈ R such that sx ∈ M for some s ∈ S.
We call M[S] the saturation of M (in R) by S.7) In the case S = B\r
with r a prime ideal of B we usually write jr and M[r] instead of jS ,
M[S].

Notice that B[S] is a subring of R and M[S] is a B[S]-submodule of
R. If M is an ideal of B then M[S] is an ideal of B[S]. If M is a
prime ideal of B with M ∩ S = ∅ then M[S] is a prime ideal of B[S].

Proposition 1.13. Let S be a multiplicative subset of A \ q, and
let H denote the convex subgroup of Γ generated by v(S), i.e. the
smallest convex subgroup of Γ containing v(S). Let w: = v/H and
r: = pH . Then

Aw = A[S] = A[r],

pw = r = {x ∈ R | v(x) > v(S)}.

Proof. We already stated above that pw = pH = r. This ideal
coincides with the set of all x ∈ R with v(x) > v(S). It is evident
that A[S] ⊂ Aw. Let now x ∈ Aw be given. There exists some
element γ ∈ H+ with v(x) ≥ −γ, and some element s ∈ S with

7)
M[S] is called the “S-component of M” in [LM]. To be more precise, we

sometimes write MR
[S] instead of M[S].
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γ ≤ v(s). We obtain v(xs) ≥ 0, i.e. xs ∈ A. This proves that
Aw = A[S]. We have S ⊂ A \ r, thus A[S] ⊂ A[r]. Let x ∈ A[r] be
given. We choose y ∈ A \ r with xy ∈ A. There exists some γ ∈ H+
with v(y) ≤ γ and some s ∈ S with γ ≤ v(s). We have

0 ≤ v(x) + v(y) ≤ v(x) + v(s) = v(sx).

Thus sx ∈ A, x ∈ A[S]. This proves A[S] = A[r].

Remark. If v is Manis then a converse to Proposition 13 holds, cf.
Theorem 2.6.ii below.

Corollary 1.14. Assume that Γ+ ⊂ v(R) (e.g. v Manis and
Γv = Γ). Let H be a convex subgroup of Γ, w: = v/H and r: = pH .
We have Aw = A[r] and pw = r.

Proof. Apply Prop. 13 to the set S: = {x ∈ R | v(x) ∈ H+}.

Proposition 1.15. Let I be an A-submodule of R with q ⊂ I.
Assume that v is Manis. Then I is v-convex iff I = I[p].

Proof. Assume first that I is v-convex. We have I ⊂ I[p]. Let
x ∈ I[p] be given. We choose d ∈ A \ p with dx ∈ I. We have
v(x) = v(dx). Since I is v-convex this implies x ∈ I. Thus I = I[p].

Assume now that I = I[p]. This means I = j−1
p (Ip) with jp the

localization map from R to Rp. As always, let ṽ:Rp → Γ∪∞ denote
the localization of v. We have Aṽ = Ap, supp ṽ = qp. Since ṽ
is local and Manis, every Ap-submodule of Rp containing qp is ṽ-
convex (Cor.9). In particular Ip is ṽ-convex. Since I = j−1

p (Ip) and
v = ṽ ◦ jp, we conclude that I is v-convex.

We briefly discuss a process of restriction, which gives us special
valuations on subrings of R.

Let B be a subring of R. The restriction u = v|B:B → Γ ∪ ∞ of
the map v:R → Γ ∪ ∞ is a valuation on B. Let ∆: = cu(Γ) and
w: = u|∆. Then w:B → ∆ ∪ ∞ is a special valuation on B.

Definition 11. We call w the special restriction of v to B, and
denote this valuation by v|

B
.



20 §1 Valuations on rings

For w = v|
B

we have Aw = A ∩ B, pw = p ∩ B, suppw ⊃ q ∩ B.
Notice also that v|

B
= (v|cvΓ)|

B
. Thus in essence our restriction

process deals with special valuations.

In the case that v is Manis the question arises, under which condi-
tions on B the special restriction v|

B
is again Manis. We need an

easy lemma.

Lemma 1.16. If v:R → Γ ∪ ∞ is special and (Γv)+ ⊂ v(R), then v
is Manis.

Proof. This is a consequence of Proposition 2. By that proposition
k(q) = R̄ov. From (Γv)+ ⊂ v(R) = v̄(R̄) we conclude that ov ⊂ R̄o∗

v,
hence k(q) = R̄o∗

v, and this means that v is Manis.

Proposition 1.17. Assume that v is Manis and that B is a subring
of R containing p = pv. Then the special restriction v|

B
:B → ∆∪∞

of v is again Manis. If v is surjective (i.e. Γ = Γv) then v|
B

is
surjective.

Proof. We assume without loss of generality that v is surjective. Let
u: = v|B and w: = v|

B
. Let γ ∈ ∆ be given with γ > 0. There exists

some a ∈ pv with v(a) = γ. Since pv ⊂ B we have a ∈ B, hence
v(a) = u(a) = w(a). {Recall that for any x ∈ B with u(x) ∈ ∆ we
have w(x) = u(x).} This proves that ∆+ ⊂ w(B). Now Lemma 16
tells us that w is Manis.

Scholium 1.18. Let v:R → Γ ∪ ∞ be a Manis valuation and H a
convex subgroup of Γ. Let w: = v/H and B: = Aw. We have8)

Aw = {x ∈ R | v(x) ≥ h for some h ∈ H} =:AH
pw = {x ∈ R | v(x) > h for all h ∈ H} =: pH .

Let vH :B → ∆ ∪ ∞ denote the special restriction v|
B

of v. Here
∆ = cv|B(Γ) ⊂ H. vH has support pH , hence gives us a Manis

8) If necessary, we will write more precisely Av,H and pv,H instead of AH

and pH .
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valuation vH :AH/pH → ∆ ∪ ∞ of support zero. If v is surjective
then ∆ = H.

The proof of all this is a straightforward exercise. Later we will prove
a converse to these statements (Prop. 2.8).

Using Lemma 16 from above we can prove a converse to Proposi-
tion 6.

Proposition 1.19. Assume that the valuation v on R is special and
that ov = Āp̄ (cf. notations above). Then v is Manis.

Proof. Replacing A by Ā = A/q and v by v̄ we assume without
loss of generality that q = 0. Now R is an integral domain, and
A ⊂ R ⊂ K with K the quotient field of R. We also assume without
loss of generality that Γ = Γv. The valuation v:R → Γ ∪ ∞ extends
to the valuation v̂:K −→−→ Γ ∪ ∞, and v̂ has the valuation ring ov.
We have v(A \ p) = {0}, hence v(A) = v̂(Ap) = v̂(ov) = Γ+. By
Lemma 16 we conclude that v is Manis.

We turn to a construction of “direct limits” of Manis valuations.
This construction will not be used seriously before Chapter III, §5,
thus may safely be skipped by the reader until then.

Let (Bi | i ∈ I) be an inductive system of subrings of a given ring R,
i.e. I is a partially ordered index set, such that for any two indices
i, j ∈ I there exists some k ∈ I with i ≤ k, j ≤ k, and Bi ⊂ Bj if
i ≤ j. Assume that for every i ∈ I there is given a surjective Manis
valuation vi:Bi −→−→ Γi ∪ ∞, such that vj |Bi

is equivalent to vi if
i < j. Then we construct a valuation v on the ring C: =

⋃
i∈I

Bi as

follows.

Construction 1.20. If i < j we have a unique monomorphism
σji: Γi → Γj of ordered abelian groups with convex image σji(Γi) ⊂
Γj , such that vj(x) = σji ◦ vi(x) for every x ∈ Bi with vi(x) = ∞.
The σji fit together to an inductive system (Γi | i ∈ I) of ordered
abelian groups with transition maps σji for i < j. Let Γ: = lim−→ Γi.
This is again an ordered abelian group and comes with order pre-
serving monomorphisms σi: Γi → Γ, such that σi = σj ◦ σji if i < j.
The subgroups σi(Γi) are convex in Γ.
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We define a map v:C → Γ ∪ ∞ as follows. Let x ∈ C. If x ∈ A, we
choose some i ∈ I with x ∈ Bi and put v(x): = σi(vi(x)). If x ∈ A
and vi(x) = ∞ for every i ∈ I, we put v(x) = ∞. Otherwise we
choose some i ∈ I with vi(x) = ∞ and put again v(x): = σi(vi(x)).
One easily verifies that v is a well defined valuation with support
supp v =

⋂
i∈I

supp vi and v(C \ supp v) = Γ. Thus v is Manis. One

further checks that v|
Bi

= σi ◦ vi for every i ∈ I. Notice that v and
all the vi have the same valuation ring Av = Avi

and the same center
pv = pvi

.

§2 Valuation subrings and Manis pairs

As before let R be a ring (commutative, with 1).

Definition 1. a) A valuation subring of R is a subring A of R such
that there exists some valuation v:R → Γ ∪ ∞ with A = Av. A
valuation pair in R (also called “R-valuation pair”) is a pair (A, p)
consisting of a subring A of R and a prime ideal p of A such that
A = Av, p = pv for some valuation v of R.
b) We speak of a Manis subring A of R and a Manis pair (A, p) in
R respectively if here v can be chosen as a Manis valuation of R.

Two bunches of questions come to mind immediately. 1) How can
a valuation subring or a Manis subring of R be characterized ring
theoretically? Ditto for pairs.
2) How far is a valuation v determined by the associated ring Av or
pair (Av, pv)?

As stated in §1 the pair (Av, pv) does not change if we pass from v
to the associated special valuation v|cvΓ. Thus we will concentrate
on special valuations.

If A = R then a special valuation v with Av = A must be trivial,
and any prime ideal p of R occurs as the center (= support) of such
a valuation v. The valuation v is completely determined by (R, p)
and is Manis. These pairs (R, p) are called the trivial Manis pairs in
R.
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If A = R and A is a valuation subring of R then clearly R \ A is
a multiplicatively closed subset of R. P. Samuel started an investi-
gation of such subrings of R. We quote one of his very remarkable
results.

Definition 2. Let A be a subring of R with A = R and S: = R \A
multiplicatively closed. We define the following subsets pA and qA of
A. pA is the set of all x ∈ A such that there exists some s ∈ S with
sx ∈ A, and qA is the set of all x ∈ A with sx ∈ A for all s ∈ R \A.

Clearly qA ⊂ pA. Also qA = {x ∈ R | rx ∈ A for all r ∈ R}. Thus
qA is the biggest ideal of R contained in A, called the conductor of
A in R.1)

Theorem 2.1. [Sa, Th.1 and Th.2]. Let A be a proper subring of
R with R \A multiplicatively closed.

i) pA is a prime ideal of A and qA is a prime ideal both of A and
R.

ii) A is integrally closed in R.
iii) If R is a field then A is a valuation domain, and R is the quotient

field of A.

If v is a special nontrivial valuation then the support of v is deter-
mined by the ring Av alone. More precisely we have the following
proposition, whose proof is an easy exercise.

Proposition 2.2. Let v be a non-trivial valuation onR and A: = Av.
Then qA ⊃ supp v. The valuation v is special iff qA = supp v.

We cannot expect that a special valuation v is determined up to
equivalence by the pair (A, p): = (Av, pv), as is already plausible from
the example in §1. (We will give a counterexample later, III.7.2.)
But this holds if v is Manis. Indeed, if v is also non-trivial, then
we see from Prop. 2 and Prop.1.6 that ov = Āp̄ with Ā = A/qA,
p̄ = p/qA. Even more is true. The following proposition implies that
v is determined up to equivalence by A alone. The proof is again an
easy exercise.

Proposition 2.3. Let v be a non-trivial valuation onR and A: = Av.
Then pA ⊂ pv. If v is Manis then pA = pv.

1) If necessary, we more precisely write pR
A,q

R
A instead of pA,qA.
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We have the following important characterization of Manis pairs.

Theorem 2.4 ([M, Prop. 1], or [Huc, Th. 5.1]). Let A be a subring
of R and p a prime ideal of A. The following are equivalent.

i) (A, p) is a Manis pair in R.
ii) If B is a subring of R and q a prime ideal of B with A ⊂ B and

q ∩A = p then A = B. 2)

iii) For every x ∈ R \A there exists some y ∈ p with xy ∈ A \ p.

For the proof we refer to the literature [loc.cit.]. There also exists
a satisfying characterization of the valuation subrings of R in ring
theoretic terms, due to Samuel and Griffin [e.g.Huc, Th.5.5], but we
do not need this here.

We give a characterization of local Manis pairs (i.e. Manis pairs
corresponding to local Manis valuations) in a classical style.

Theorem 2.5. Let A ⊂ R be a ring extension, A = R.
i) The following are equivalent
(1) Every x ∈ R \A is a unit in R and x−1 ∈ A.
(2) A has a unique maximal ideal p (hence is local) and (A, p) is

Manis in R.
ii) If (1), (2) hold, then R is a local ring with maximal ideal q: = qA,
and Aq = Rp = R. Moreover, p = q ∪ {x−1|x ∈ R \A}.

Proof. Assume that (1) holds. Then R \ A is closed under muplti-
plication. Indeed, let x, y ∈ R \ A be given. Then (xy)y−1 ∈ R \ A,
but y−1 ∈ A, hence xy ∈ R \ A. We introduce the prime ideals
p: = pA and q: = qA (cf. Def. 2). If M is any maximal ideal of R
then M ∩ (R \ A) = ∅, since R \ A ⊂ R∗. Thus M ⊂ A. It follows
that M is contained in the conductor q of A in R, and we conclude
that M = q. Thus q is the only maximal ideal of R. Let K denote
the field R/q and A the subring A/q of K. For every z ∈ K \A the
inverse z−1 is contained in A. Thus A is a valuation domain with
quotient field K. We conclude that A is Manis in R, and then, that
(A, p) is a Manis pair in R (cf. Prop. 3). Since (R, q) is local we
learn from Proposition 1.3 that (A, p) is local.

2) In [M] and [Huc] it is not assumed that q is a prime ideal. It can be
proved easily that their condition can be changed to our condition (ii).
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Now assume that (2) holds. We know from Proposition 1.3 that R
is local with maximal ideal q: = qA. Thus R \A ⊂ R \ q = R∗. Since
(A, p) is Manis in R we have x−1 ∈ p ⊂ A for every x ∈ R \ A, and
it is also clear that p = q ∪ {x−1|x ∈ R \A}.

Since A \ q ⊂ R∗, we have Aq ⊂ R. If x ∈ R \ A then x = 1
y with

y ∈ A \ q. Thus x ∈ Aq. This proves that Aq = R. Since A \ p = A∗,
it is trivial that Rp = R.

Let v : R −→ Γ ∪ ∞ and w be valuations on R. We have called w
coarser than v if w is equivalent to v/H for some convex subgroup H
of v (§1, Def. 9 and Remark 1.12). How can the coarsening relation
be expressed in terms of the pairs (Av, pv), (Aw, pw) if both v and w
are Manis?

Theorem 2.6 (cf. [M, Prop.4] for a weaker statement). Assume
that v : R −→ Γ ∪ ∞ and w are two non-trivial Manis valuations of
R, and (without loss of generality) that Γ = Γv.
i) The following are equivalent:
(1) w is coarser than v.
(2) supp (v) = supp (w) and ov ⊂ ow.
(3) Av ⊂ Aw and pw ⊂ pv.
(4) pw is an ideal of Av contained in pv.
ii) Let A := Av, p := pv, and let r be a prime ideal of A with
supp v ⊂ r ⊂ p. There exists a convex subgroup H of Γ with r = pH
and v(A \ r) = H+. For the valuation w: = v/H we have pw = r and
Aw = A[r] = AH .3) Also Aw = {x ∈ R | xr ⊂ r}.

Proof: i): (1) ⇐⇒ (2): We may assume in advance that supp v =
suppw. It is now evident that w is coarser than v iff ŵ is coarser
than v̂. By classical valuation theory this holds iff the valuation ring
ov of v̂ is contained in ow.

(2) =⇒ (3): Replacing R by R/supp v we assume without loss of
generality that supp v = suppw = {0}. In the quotient field K of R
we have ov ∩R = Av, ow ∩R = Aw, mv ∩R = pv and mw ∩R = pw.
By assumption ov ⊂ ow. This implies mv ⊃ mw. We conclude that
Av ⊂ Aw and pv ⊃ pw.

3) Recall the notations from 1.12 and 1.18.
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(3) =⇒ (2): We verify first that supp (v) = supp (w). We know that
supp (v) = {x ∈ R | xR ⊂ Av} and supp (w) = {x ∈ R | xR ⊂ Aw}
(cf. Proposition 2). Using the assumption Av ⊂ Aw we conclude
supp v ⊂ suppw. Since v, w are Manis valuations, it is also evident
that supp (v) = {x ∈ R | xR ⊂ pv} and supp (w) := {x ∈ R | xR ⊂
pw}. Using the assumption pv ⊃ pw we conclude that supp v ⊃
suppw. Thus indeed supp (v) = supp (w).

In order to prove that ov ⊂ ow we may replace R by R/supp v. Thus
we may assume that supp v = suppw = {0}. Now we know from
Proposition 1.6 that ov = (Av)pv and ow = (Aw)pw . The inclusions
Av ⊂ Aw and pv ⊃ pw imply that ov ⊂ ow.

(3) =⇒ (4): trivial.

(4) =⇒ (3): Since w is Manis we have Aw = {x ∈ R | xpw ⊂ pw}.
Now pw is an ideal of Av. Thus Av ⊂ Aw.

ii): We know from Prop.1.10 that the ideal r is v-convex. Thus
there exists a unique convex subgroup H of Γ such that r = {x ∈
R | v(x) > H} = pH . {Here we use that Γ = Γv.} Since v(A) =
Γ+ ∪ ∞, it follows that v(A \ r) = H+. For w: = v/H we have
pw = pH and Aw = AH (cf.1.18). Since r = pw and w is Manis it is
obvious that Aw is the set of all x ∈ R with xr ⊂ r.

It remains to prove that B: = Aw coincides with A[r]. Let x ∈ A[r]
be given. We choose some d ∈ A \ r with dx ∈ A. Since A ⊂ Aw
and r = pw, we have w(dx) ≥ 0, w(d) = 0, hence w(x) ≥ 0, i.e.
x ∈ B. This proves that A[r] ⊂ B. Let now x ∈ B be given.
Suppose that x ∈ A[r]. Since x ∈ A there exists some x′ ∈ p with
xx′ ∈ A \ p ⊂ A \ r ⊂ A. Since x ∈ A[r] we have x′ ∈ r. Thus xr ⊂ r.
This is a contradiction, since r is an ideal of B and x ∈ B. Thus
x ∈ A[r]. We have proved B = A[r].

Corollary 2.7. Let v : R → Γ ∪ ∞ be a Manis valuation and
A := Av, p = pv. The coarsenings w of v correspond uniquely, up to
equivalence, with the prime ideals r of A between supp v and p via
r = pw. Also A[r] = Aw.

Proof. If v is trivial then supp v = p, and all assertions are evident.
Assume now that v is not trivial. For the trivial coarsening t of v
we have pt = supp t = supp v and A[pt] = R. If w is a non-trivial
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coarsening of v then pw is an ideal of A with supp v ⊂
= pw ⊂ p

(cf. Th.6.i). This ideal is prime in A since it is prime in the ring
Aw ⊃ A. Conversely, if r is a prime ideal of A with supp v ⊂

= r ⊂ p
then, by Theorem 6.ii, there exists a coarsening w of v with pw = r,
Aw = A[r], and w is not trivial. Finally, if w and w′ are two nontrivial
coarsenings of v with pw = pw′ = r, then Aw = {x ∈ R | xr ⊂ r} =
Aw′ , and we learn from (3) in Theorem 6.i (or by a direct argument)
that w ∼ w′.

We establish a converse to the construction 1.18.

Proposition 2.8. Let w be a non-trivial Manis valuation on R and
u a Manis valuation on Aw/pw. Let A and p denote the preimages of
Au and pu in Aw under the natural homomorphism ϕ:Aw → Aw/pw.

i) (A, p) is a Manis pair in R iff suppu = {0}.
ii) If this holds, let v:R −→−→ Γ ∪ ∞ be a surjective valuation with

Av = A, pv = p. Then Γ has a convex subgroup H, uniquely
determined by w and u, such that w is equivalent to v/H. The
valuation u is equivalent to vH (cf. 1.18).

Proof. We have pw ⊂ p ⊂ A ⊂ Aw ⊂ R.

a) We assume that suppu = {0} and prove that the pair (A, p) is
Manis in R. Let x ∈ R \ A be given. By Theorem 4 we are done if
we find some y ∈ p with xy ∈ A \ p.

Case 1: x ∈ Aw. Since ϕ(x) ∈ Au there exists some y ∈ p with
ϕ(x)ϕ(y) ∈ Au \ pu, hence xy ∈ A \ p.

Case 2: x ∈ R \Aw. Since w is Manis there exists some y ∈ pw with
xy ∈ Aw \ pw. We have ϕ(xy) = 0. Since u has support zero there
exists some z ∈ Aw with ϕ(xy)ϕ(z) ∈ Au \ pu, hence xyz ∈ A \ p.
Clearly yz ∈ pw ⊂ p.
b) Assume now that (A, p) is Manis in R, and that v:R −→−→ Γ ∪ ∞
is a surjective valuation with Av = A, pv = p. We verify that u has
support zero and prove the second part of the proposition. Since w
is not trivial, we know from Theorem 6 that w is a coarsening of
v. There is a unique convex subgroup H of Γ with w ∼ v/H, and
Aw = AH , pw = pH (notations from 1.18). We obtain from v and H
a Manis valuation vH :Aw −→−→ H ∪∞ with support pw, as explained
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in 1.18. The pair associated to vH is (A, p). Thus vH ∼ u ◦ ϕ and
vH ∼ u. In particular suppu = supp vH = {0}.

We now consider the following situation: A is a subring of R and
p is a prime ideal of A. We are looking for criteria that the pair
(A[p], p[p]) (cf. §1, Def. 10) is Manis.

We need an easy lemma.

Lemma 2.9. a) Rp = R(p[p]).
b) If M is an A-submodule of R then Mp = (M[p])p[p] .
c) If M is an A-submodule of R and r is a prime ideal of A contained
in p, then

M[r] = (M[p])[r[p]].

Proof. We have Rp = S−1R and R(p[p]) = T−1R with S = A \ p,
T = A[p] \ p[p]. Notice that S ⊂ T . Let x ∈ T be given. Choose
some d ∈ S with dx ∈ A. Then dx ∈ A \ p = S. This proves that
SatR(S) = SatR(T ), and we conclude that S−1R = T−1R.

If M is an A-submodule of R, then M[p] is an A[p]-submodule of R,
and Mp = S−1M , (M[p])p[p] = T−1M[p]. Clearly S−1M ⊂ T−1M[p].
(N.B. Both are subsets of S−1R = T−1R.) Also T−1M[p] = S−1M[p].
Let z ∈ S−1M[p] be given. Write z = x

s with x ∈ M[p], s ∈ S. We
choose some d ∈ S with dx = m ∈ M . We have z = m

sd ∈ Mp. This
proves part b) of the lemma. The last statement c) follows from the
obvious equality Mr = (Mp)rp by taking preimages under the various
localization maps.

Proposition 2.10. (A[p], p[p]) is a Manis pair in R iff (Ap, pp) is a
Manis pair inRp. In this case, if (A[p], p[p]) comes from the Manis val-
uation v onR, then (Ap, pp) comes from the localization ṽ of v defined
in §1 (Def. 6). {Recall from the lemma that Ap = (A[p])p[p] , pp =
(p[p])p[p] .} With q: = A ∩ supp v we have supp v = q[p], supp ṽ = qp.

Proof. a) Assume first that there exists a Manis valuation v:R →
Γ ∪ ∞ with Av = A[p], pv = p[p]. Let ṽ:Rpv → Γ ∪ ∞ denote the
localization of v. Then ṽ is again Manis and Aṽ = (Av)pv , pṽ =
(pv)pv , supp ṽ = (supp v)pv (cf. §1). By part a) of the lemma above
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we have Rpv
= Rp, Aṽ = Ap, pṽ = pp. Let q: = A∩ supp v. Certainly

q[p] ⊂ supp v. Let x ∈ supp v be given. We have x ∈ Av = A[p].
We choose some d ∈ A \ p with dx ∈ A. Then v(dx) = ∞, thus
dx ∈ A ∩ supp v = q, x ∈ q[p]. This proves supp v = q[p]. Using part
b) of the lemma we obtain supp ṽ = qp.
b) Assume finally that w:Rp → Γ ∪ ∞ is a Manis valuation with
Aw = Ap, pw = pp. Let jT :R → Rp denote the localization map of
R with respect to T : = A[p]\p[p]. Let v denote the valuation w◦jT on
R. We have v(T ) = {0}. Thus v(R) = w(Rp) = Γw, and we conclude
that v is Manis. Also Av = j−1

T (Aw) = A[p], pv = j−1
T (pw) = p[p],

and w coincides with the localization ṽ of v.

Proposition 2.11. Let r be a prime ideal of A contained in p.
Assume that v:R → Γ ∪ ∞ is a valuation with Av = A[p], pv = p[p],
A∩supp v ⊂ r. Let H denote the convex subgroup of Γ generated by
v(A \ r) and let w: = v/H. Then Aw = A[r], pw = r[p] = r[r]. Thus,
if (A[p], p[p]) is a Manis pair in R the same holds for (A[r], r[r]).

Proof. By the last statement in Prop. 10 we have supp v ⊂ r[p].
It follows from Proposition 1.13 and part c) of lemma 9 above that
Aw = A[r], pw = r[p]. It is evident that r[p] ⊂ r[r] ⊂ pw. Thus
r[p] = r[r].

We state a criterion which will play a key role for the theory of Prüfer
extensions in §5.

Theorem 2.12. Assume that A is integrally closed in R. The
following are equivalent.

i) (A[p], p[p]) is a Manis pair in R.
ii) For each x ∈ R there exists some polynomial F [T ] ∈ A[T ] \ p[T ]

with F (x) = 0.

Proof. i) ⇒ ii): We first consider the case that x ∈ A[p]. We choose
some s ∈ A \ p with sx = a ∈ A. The polynomial F (T ): = sT − a
fulfills the requirements. Let now x ∈ R \ A[p]. Since (A[p], p[p]) is
a Manis pair there exists some y ∈ p[p] with xy ∈ A[p] \ p[p]. We
choose elements s and t in A \ p with ty ∈ p, sxy ∈ A. We have
sxy ∈ A \ p. Put a0: = sty ∈ p, a1: = −stxy ∈ A \ p. The polynomial
F (T ): = a0T + a1 fulfills the requirements.
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ii) ⇒ i): We verify the property (iii) in Theorem 4. Let x ∈ R \A[p]
be given. We look for an element y ∈ p[p] with xy ∈ A[p] \ p[p]. Let

F (T ): = a0T
n + a1T

n−1 + · · · + an

be a polynomial of minimal degree n ≥ 1 in A[T ]\p[T ] with F (x) = 0.
From F (x) = 0 we deduce that b: = a0x is integral over A. Thus
b ∈ A. Since x ∈ A[p] we conclude that a0 ∈ p. Suppose that n > 1.
We put G(T ): = a0T − b in the case b ∈ p, and

G(T ): = (b+ a1)Tn−1 + a2T
n−2 + · · · + an

in the case b ∈ p. In both cases G(T ) ∈ A[T ] \ p[T ] and G(x) = 0.
This contradicts the minimality of n. Thus n = 1, F (T ) = a0T +a1.
Since a0 ∈ p, certainly a1 ∈ A \ p. For y: = a0 we have y ∈ p[p],
xy ∈ A[p] \ p[p].

Essentially as a consequence of Theorems 4 and 12 we derive still
another criterion for a pair (A[p], p[p]) to be Manis in R. In the case
of Krull valuation rings (i.e. R a field) such a criterion had been
observed by Gilmer [Gi, Th. 19.15]. We need (a special case of) an
easy lemma.

Lemma 2.13. Let (B, r) be a Manis pair in R. Let I be a B-
submodule of R with I ∩B ⊂ r. Then I ⊂ r.

Proof. Suppose there exists an x ∈ I with x ∈ r, hence x ∈ B.
Since (B, r) is Manis there exists some y ∈ B with xy ∈ B \ r. Then
xy ∈ I. On the other hand x ∈ I and y ∈ B, a contradiction.

Theorem 2.14 (cf. [Gi, Th. 19.15] for R a field). Assume that A is
integrally closed in R, and let p be a prime ideal of A. The following
are equivalent.

i) (A[p], p[p]) is a Manis pair in R.
ii) If B is a subring of R containing A[p] and q, q′ are prime ideals

of B with q ⊂ q′ and q ∩A[p] = q′ ∩A[p] ⊂ p[p], then q = q′.
ii′) If B is a subring of R containing A[p] and q ⊂ q′ are prime ideals

of B lying over p[p], then q = q′.
iii) If B is a subring of R containing A and q, q′ are prime ideals of

B with q ⊂ q′ and q ∩A = q′ ∩A ⊂ p then q = q′.
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iii′) If B is a subring of R containing A and q ⊂ q′ are prime ideals
of B lying over p then q = q′.

iv) There exists only one Manis pair (B, q) in R over (A, p), i.e.
with A ⊂ B and q ∩A = p.

v) For every subring B of R containing A there exists at most one
prime ideal q of B over p.

vi) For every Manis pair (B, q) in R over (A, p) the field extension
k(p) ⊂ k(q) is algebraic.

Proof. The implication i) ⇒ ii) is evident by the preceding lemma.
The implications ii) ⇒ ii′) and iii) ⇒ iii′) are trivial.
ii′) ⇒ iii′): If q and q′ are prime ideals of B over p with q ⊂ q′, then
q[p] and q′

[p] are prime ideals of B[p] over p[p] with q[p] ⊂ q′
[p]. Thus

q[p] = q′
[p]. Intersecting with B we obtain q = q′. ii) ⇒ iii): The

proof is similar.
iii′) ⇒ i): Suppose that (A[p], p[p]) is not Manis in R. By Theorem 12
there exists some x ∈ R such that F (x) = 0 for every polynomial
F (T ) ∈ A[T ]\p[T ]. We introduce the subring B: = A[x] of R and the
surjective ring homomorphism ϕ:A[T ] −→ B over A with ϕ(T ) = x.
The kernel of ϕ is contained in p[T ]. This implies that the ideals q
and q′ of B defined by

q: = ϕ(p[T ]) = p[x] = pB, q′: = ϕ(p + TA[T ]) = p + xB = q + xB,

both are prime and lie over p. Since q = q′ this contradicts the
assumption iii′). Thus (A[p], p[p]) is Manis in R.
i) ⇒ iv): Let (B, q) be a Manis pair in R over (A, p). It is easily
verified that (B, q) is a pair over (A[p], p[p]). Since (A[p], p[p]) is Manis
in R we conclude by Theorem 4 that (B, q) = (A[p], p[p]).
iv) ⇒ v): Assume that B is a subring of R containing A and q1, q2
are prime ideals of B over p. We extend the pairs (B, q1) and (B, q2)
to maximal pairs (C, q′

1) and (D, q′
2) in R. These pairs are Manis in

R by Theorem 4. They both lie over (A, p), hence (C, q′
1) = (D, q′

2).
Intersecting with B we obtain q1 = q2.
v) ⇒ iii′): trivial.
i) ⇒ vi): Since (i) and (iv) hold we know that (B, q): = (A[p], p[p]) is
the only Manis pair in R over (A, p). We have k(p) = k(q).
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vi) ⇒ iii′): Suppose that (B, q1) and (B, q2) are pairs in R over (A, p)
with q1

⊂
= q2. We choose a maximal pair (C, r) in R over (B, q1).

Then (C, r) is Manis, hence k(r) is algebraic over k(p). It follows
that k(q1) is algebraic over k(p). We choose an element x ∈ q2 \ q1.
Since k(q1) is algebraic over k(p) we have a relation

(∗)
n∑
i=0

aix
i = b

with a0, a1, . . . , an ∈ A, an ∈ p, b ∈ q1. Let B′ denote the subring
A[b, anx] of B, and q′

1: = q1 ∩ B′, q′
2: = q2 ∩ B′. We have q′

1
⊂
= q′

2,
since anx ∈ q′

2 \ q′
1. But q′

1 ∩ A = q′
2 ∩ A = p. We learn from

the relation (∗) that B′/q′
1 is integral over A/p. But the ring B′/q′

1
contains the prime ideal q′

2/q
′
1 = {0} with (q′

2/q
′
1)∩A/p = {0}. Such

a situation is impossible in an integral ring extension (cf. [Bo, V §2,
no 1]). Thus (iii′) is valid.

§3 Weakly surjective homomorphisms

In section §5 we will start our theory of “Prüfer extensions”. In the
terminology developed there the Prüfer rings (with zero divisors)
of the classical literature (e.g. [LM], [Huc]) are those commuta-
tive rings A which are Prüfer in their total quotient rings QuotA.
In the present section and the following one we develop an auxil-
iary theory of “weakly surjective” ring extensions. It will turn out
later (cf.Th.5.2 below) that the Prüfer rings (with zero divisors) are
precisely those commutative rings A, such that for every subring B
of QuotA containing A the inclusion mapping A ↪→ B is weakly
surjective.

Definition 1. i) Let ϕ:A → B be a ring homomorphism. We
call ϕ locally surjective if for every prime ideal q of B the induced
homomorphism ϕq:Aϕ−1(q) → Bq is surjective. We call ϕ weakly
surjective (abbreviated: ws) if for every prime ideal p of A with
pB = B the induced homomorphism ϕp:Ap → Bp is surjective.
ii) If A is a subring of a ring B, then we say that A is locally surjective
in B (resp. weakly surjective in B) if the inclusion mapping A ↪→ B
is locally surjective (resp. ws).
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At first glance “locally surjective” seems to be a more natural notion
than “weakly surjective”, but it is the latter notion which will be
needed below.

Of course, a surjective homomorphism is both weakly surjective and
locally surjective. We now prove that weak surjectivity is a stronger
property than local surjectivity.

Proposition 3.1. If ϕ:A → B is weakly surjective then ϕ is locally
surjective.

This follows from

Lemma 3.2. Let ϕ:A → B be a ring homomorphism. Let q be
a prime ideal of B and p: = ϕ−1(q). Assume that ϕp:Ap → Bp is
surjective. Then the natural map Bp → Bq is an isomorphism, in
short, Bp = Bq. Furthermore pBp = pBq = qBq.

Proof of the lemma. One easily retreats to the case that A is a
subring of B and ϕ is the inclusion A ↪→ B. Now p = q ∩ A and
Ap = Bp. We have pAp = pBp ⊂ qBp. Since pAp is the maximal
ideal of Ap and (qBp)∩B = q, hence qBp = Bp, we have pBp = qBp.
The natural homomorphism B → Bp maps B \ q into the group of
units of Bp, hence factors through a homomorphism from Bq to Bp.
This homomorphism is inverse to the natural map from Bp to Bq.

Example 3.3. If S is a multiplicative subset of a ring A then the
localization map A → S−1A is weakly surjective.

Example 3.4. Let K be a field. The diagonal homomorphism K →
K ×K, x �→ (x, x), is locally surjective but not weakly surjective, as
is easily verified.

Proposition 3.5. If ϕ:A → B is locally surjective and B is an
integral domain then ϕ is weakly surjective.

Proof. Let p be a prime ideal of A with pB = B. We choose
a prime ideal q of B containing pB. Let r: = ϕ−1(q). We have a
natural commuting triangle
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ϕq is surjective, since ϕ is locally surjective. On the other hand ψ is
injective since B is a domain. Thus ψ is bijective and ϕr is surjective.
(We have Br = Bq, ϕr = ϕq.) Since p ⊂ r also ϕp is surjective.

Proposition 3.6. Every weakly surjective homomorphism is an
epimorphism in the category of rings (commutative, with 1).∗)

Proof. Assume that ϕ:A → B is ws, and that ψ1:B → C, ψ2:B →
C are two ring homomorphisms with ψ1◦ϕ = ψ2◦ϕ. We have to prove
that ψ1 = ψ2. By general principles (cf. [Bo, Chap.II, §3]) it suffices
to verify that j ◦ ψ1 = j ◦ ψ2 with j:C → Cr the localisation map
for an arbitrary prime ideal r of C. Thus we may assume in advance
that the ring C is local. Let m denote the maximal ideal of C, and let
q1: = ψ−1

1 (m), q2: = ψ−1
2 (m), p: = ϕ−1(q1) = ϕ−1(q2). By Lemma

2 we know that the natural maps Bp → Bq1 and Bp → Bq2 are
isomorphisms. This implies that the prime ideals q1 and q2 coincide,
q1 = q2 =: q. Again by Lemma 2 we know that the localisation
ϕp:Ap → Bp = Bq of ϕ with respect to p is surjective. We have
natural commuting diagrams (j = 1, 2)

and ψ̃1 ◦ϕp = ψ̃2 ◦ϕp, since ψ1 ◦ϕ = ψ2 ◦ϕ. From this we conclude
that ψ̃1 = ψ̃2 and then that ψ1 = ψ2.

We now verify that this class of epimorphisms has pleasant formal
properties.

∗) In [KZ, p.170] we erroneously stated that locally surjective homomor-
phisms are epimorphisms. Example 4 above is a counterexample.
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Proposition 3.7. Let ϕ:A → B and ψ:B → C be ring homomor-
phisms.
a) If both ϕ and ψ are ws then ψ ◦ ϕ is ws.
b) If ψ ◦ ϕ is ws then ψ is ws.

Proof. a): Let p be a prime ideal of A with pC = C. We choose a
prime ideal r of C containing pC. Let q: = ψ−1(r) and p̃: = ϕ−1(q).
The map ϕp̃:Ap̃ → Bp̃ is surjective. By Lemma 2 we know that
Bq = Bp̃. Thus also Cp̃ = C⊗AAp̃ = C⊗B (B⊗AAp̃) = C⊗BBp̃ =
C ⊗B Bq = Cq, and ψp̃ = ψq, which is surjective. We conclude that
(ψ◦ϕ)p̃ = ψp̃◦ϕp̃ is surjective. Since p ⊂ p̃, also (ψ◦ϕ)p is surjective.
b): Let q be a prime ideal of B with qC = C. Let p: = ϕ−1(q). The
map ψp ◦ ϕp = (ψ ◦ ϕ)p is surjective. Thus ψp is surjective. Since
ϕ(A \ p) ⊂ B \ q, also ψq is surjective.

Proposition 3.8. If ϕ:A → B and ψ:B → C are ring homomor-
phisms and ϕ is ws then ψϕ(A) is ws in ψ(B).

Proof. We have a commuting square

with i an inclusion mapping and surjections p and q. Since ϕ and q
are ws, the composite q ◦ ϕ = i ◦ p is ws. Thus also i is ws.

Corollary 3.9. Let ϕ:A → B a ring homomorphism. ϕ is ws iff
ϕ(A) is ws in B.

Proof. Applying Proposition 8 with ψ = idB we see that weak
surjectivity of ϕ implies weak surjectivity of the inclusion mapping
i:ϕ(A) ↪→ B. Conversely, if i is ws, then ϕ is ws, since ϕ = i◦p with
p a surjection.

It is also easy to verify the corollary directly by using Definition 1.
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Proposition 3.10. Let

be a commuting square of ring homomorphisms. Assume that ϕ is
ws and D = β(B) · ψ(C). Then ψ is ws.

Proof. Let q ∈ SpecC be given with ψ(q)D = D, and let p: =
α−1(q). The commuting square above “extends” to a commuting
square

with ϕ̃ = ϕp, ψ̃ = ψq. We have pB = B. The map ϕ̃ is surjective.
We are done, if we verify that ψ̃ is surjective.

Let ξ ∈ Dq be given. Write ξ = x
s with x ∈ D, s ∈ C \ q. Since

D = β(B)ψ(C) we have an equation

x =
∑
i∈I

β(bi)ψ(ci)

with finite index set I, bi ∈ B, ci ∈ C. This equation gives us

ξ =
∑
i∈I

β̃
(bi

1
)
ψ̃

(ci
s

)
.

Since ϕ̃ is surjective we have elements ai ∈ A (i ∈ I) and an element
t ∈ A \ p with bi

1 = ϕ̃(ai

t ) for every i ∈ I. Then

ξ = ψ̃
( y

sα(t)
)

with y: =
∑
α∈I

α(ai)ci. This proves that ψ̃ is surjective.

In order to understand weakly surjective homomorphisms it suffices
by Cor. 9 to analyse weakly surjective ring extensions.
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In the following R is a ring and A is a subring of R.

Definition 2. An R-overring of A is a subring B of R with A ⊂ B.

Proposition 3.11.
a) Let B1 and B2 be R-overrings of A. If A is ws both in B1 and

B2 then A is ws in B1B2.
b) There exists a unique R-overring M(A,R) of A such that A is

ws in M(A,R) and M(A,R) contains every R-overring of A in
which A is ws.

Proof. a) Since A ↪→ B1 is ws, the inclusion B2 ↪→ B1B2 is ws, as
follows from Proposition 10. Since also A ↪→ B2 is ws, the composite
A ↪→ B2 ↪→ B1B2 is ws (Prop. 7).
b) Let A denote the set of all R-overrings of A in which A is ws.
Then A is an upward directed system of subrings of R. Let M(A,R)
denote the union of all these subrings, which is again a subring of
R. A is ws in M(A,R) by the following general remark, which is
immediate from Definition 1.

Remark 3.12. Let (Bi|i ∈ I) be an upward directed system of
R-overrings of A. If A is ws in each Bi then A is ws in

⋃
i∈I

Bi.

Definition 3. We call M(A,R) the weakly surjective hull of A in R.

We now derive criteria for a homomorphism to be weakly surjective.
Without essential loss of generality we concentrate on ring exten-
sions. Let R be a ring and A a subring of R. Recall from §2 that for
p a prime ideal of A we denote by A[p] the preimage of Ap under the
localization map R → Rp.

Notation. If x ∈ R then (A:x) denotes the ideal of A consisting of
all a ∈ A with ax ∈ A.

Theorem 3.13 (cf. [G1, Prop. 10] in the case R = QuotA). Let B
be an R-overring of A. The following are equivalent.

(1) A is weakly surjective in B.
(2) B[q] = A[q∩A] for every prime ideal q of B.
(2′) B[q] = A[q∩A] for every maximal ideal q of B.
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(3) B ⊂ A[p] for every prime ideal p of A with pB = B.
(4) (A:x)B = B for every x ∈ B.
(5) (A:x)B = (B:x) for every x ∈ R.

Proof. (1) ⇐⇒ (3): We verify the following: For any p ∈ SpecA

B ⊂ A[p] ⇐⇒ Bp = Ap.

Then we will be done according to Def. 1.

⇒: If B ⊂ A[p], then Bp ⊂ (A[p])p = Ap, hence Bp = Ap.
⇐: If Bp = Ap then the preimage A[p] of Ap under the localization

map R → Rp contains B.

(3) ⇒ (2): Let q ∈ SpecB and p: = q ∩A. Of course, A[p] ⊂ B[q]. In
order to prove the converse inclusion we first remark that pB ⊂ q,
hence pB = B. By hypothesis B ⊂ A[p]. Let x ∈ B[q] be given.
Choose b ∈ B \ q with bx =: b1 ∈ B. We then have elements a, a1
in A \ p with ab ∈ A, a1b1 ∈ A. Since a ∈ B \ q, also ab ∈ B \ q,
hence ab ∈ A ∩ (B \ q) = A \ p. Also a1ab ∈ A \ p. From (a1ab)x =
a(a1bx) = a(a1b1) ∈ A we see that x ∈ A[p].

(2) ⇒ (2′): trivial.

(2′) ⇒ (4): Let x ∈ B be given. Suppose that (A:x)B = B. We
choose a maximal ideal q of B containing (A:x)B. Let p: = q ∩ A.
Then (A:x) ⊂ p. But it follows from (2′) that x ∈ A[p], i.e. (A:x) ⊂
p. This contradiction proves that (A:x)B = B.

(4) ⇒ (3): Let p be a prime ideal of A with pB = B. Suppose
there exists some x ∈ B with x ∈ A[p]. Then (A:x) ⊂ p. Thus
(A:x)B ⊂ pB ⊂

= B. This contradicts the assumption (4). We
conclude that B ⊂ A[p].

(5) ⇒ (4): trivial.

(4) ⇒ (5): Let x ∈ R be given. Of course, (A:x)B ⊂ (B:x). We
pick some b ∈ (B:x) and verify that b ∈ (A:x)B. Let u: = bx ∈
B. By assumption we have (A: b)B = B and (A:u)B = B, hence
(A: b)(A:u)B = B, which implies [(A: b) ∩ (A:u)]B = B. We thus
have a relation

1 =
N∑
i=1

aici
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with ai ∈ A, ci ∈ B, aib ∈ A, aiu ∈ A for every i ∈ {1, . . . , N}. This

gives us b =
N∑
i=1

(bai)ci. Now bai ∈ A and baix = aiu ∈ A, hence

bai ∈ (A:x). We conclude that indeed b ∈ (A:x)B.

Remarks. In the case of domains Richman [Ri, §2] has studied the
properties (3), (4) under the name “good extensions”. If A ⊂ B and
B is a domain then good means the same as weakly surjective and as
locally surjective. Theorem 13 has a close relation to work of Lazard
[L, Chap. IV] and Akiba [A], cf. Theorem 4.4 in the next section.

Definition 4. [Lb, §2.3]. a) An ideal a of a ring C is called dense
in C if its annulator ideal AnnC(a) is zero.
b) A ring of quotients of A is a ring B ⊃ A such that (A:x)B is

dense in B for every x ∈ B.

We recall the following important fact from Lambek’s book [Lb, §2.3].
For any ring A there exists a ring of quotients Q(A) of A, explicitly
constructed in [Lb], such that for any other ring of quotients B of
A there exists a unique homomorphism from B to Q(A) over A.
Every such homomorphism is injective. Q(A) is called the complete
ring of quotients of A. Of course Q(A) contains the total quotient
ring Quot (A) {also called the “classical” quotient ring of A}. For A
noetherian it is known that QuotA = Q(A), cf. [A, Prop. 1], but in
general these two extensions of A may be different.

From condition (4) in Theorem 13 it is clear that, if A ⊂ B is a
weakly surjective ring extension, then B is a ring of quotients of A.
Thus every weakly surjective ring extension of A embeds into Q(A)
in a unique way.

Definition 5. The weakly surjective hull M(A) of A is defined as
the ws hull M(A,Q(A)) of A in Q(A).

From our discussion of the hulls M(A,R) above the following is evi-
dent.

Proposition 3.14. For every weakly surjective ring extension A ⊂
B there exists a unique homomorphism B → M(A) over A, and this
is a monomorphism.
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Thus, without serious abuse, we may regard any ws extension A ⊂ B
as a subextension of A ⊂ M(A). In particular, A ⊂ QuotA ⊂ M(A).

Remark 3.15. If C is any subring of M(A) containing A then
M(C) = M(A). In particular, MM(A) = M(A).

Proof. Since C is ws in M(A) we have embeddings C ⊂ M(A) ⊂
M(C). Now A is ws inM(A) andM(A) is ws inM(C), hence A is ws
in M(C). Due to the maximality of M(A) we have M(C) = M(A).

Caution. In general, if C is a subring of M(A) containing A, then
A is not necessarily ws in C (cf. §5).

Corollary 3.16. Let A ⊂ B1 and A ⊂ B2 be weakly surjective
extensions. Then there exists at most one homomorphism λ:B1 →
B2 over A, and λ is injective.

Proof. We have unique homomorphisms µi:Bi → M(A) over A (i =
1, 2), and they both are injective. If λ:B1 → B2 is a homomorphism
over A, this implies that µ2 ◦ λ = µ1. Thus λ is injective and is
uniquely determined by µ1 and µ2.

Of course, the uniqueness of λ is a priori clear, since A ↪→ B1 is an
epimorphism (Prop. 6).

We briefly discuss relations between weakly surjective extensions and
integral extensions.

Proposition 3.17 (cf. [G1, Prop. 11]). If a ring homomorphism
ϕ:A → B is both weakly surjective and integral then ϕ is surjective.

Proof. Replacing A by ϕ(A) we assume without loss of generality
that A ⊂ B and ϕ is the inclusion mapping. We have to prove that
A = B.

Suppose there exists an element x ∈ B \ A. Then (A:x) is a proper
ideal of A. Since B is integral over A, this implies that (A:x)B = B.
This contradicts property (4) in Theorem 13. Thus A = B.
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Proposition 3.18. ([Ri, §4] for R a field, [G1, Prop. 11] for R =
QuotA). Assume that A ⊂ B ⊂ R are ring extensions, and that A
is weakly surjective in B. For the integral closures Ã and B̃ of A
and B in R the following holds.

i) B̃ = Ã ·B.
ii) Ã is weakly surjective in B̃.

Proof. The argument in [Ri] (p.797, proof of Prop.1) extends to our
more general situation. We repeat this argument for the convenience
of the reader. Of course B̃ ⊃ ÃB. Let x ∈ B̃ be given. We have an
equation

(∗) xn + b1x
n−1 + · · · + bn = 0

with b1, . . . , bn ∈ B. Let ai: = (A: bi) (1 ≤ i ≤ n) and
a: = a1 ∩ · · · ∩ an.

By Theorem 13 we have aiB = B for every i. This implies

(a1 . . . an)B = B

and then aB = B. Given an element a ∈ a we multiply the relation
(∗) by an and learn that ax is integral over A. Thus ax ⊂ Ã, and
xB = xaB ⊂ ÃB, i.e. x ∈ ÃB. This proves ÃB = B̃. Using Prop.10
we conclude that Ã is ws in B̃.

§4 More on weakly surjective extensions

Having set the stage we discuss some properties of weakly surjective
ring extensions. We are mainly interested in functorial properties
and the behavior of ideals.

Proposition 4.1. Every weakly surjective ring extension A ⊂ B is
flat (i.e., B is a flat A-module).

Proof. Let α:M ′ → M be an injective homomorphism ofA-modules.
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We verify that α⊗A B:M ′ ⊗A B → M ⊗A B is again injective. Let
q be a prime ideal of B and p: = q ∩A. Then Ap = Bq, thus

(α⊗A B)q = (α⊗A B) ⊗B Bq = α⊗A Bq = α⊗A Ap.

Since A → Ap is flat the homomorphism (α⊗AB)q is injective. Since
this holds for every q ∈ SpecB we conclude that α⊗AB is injective.

Proposition 4.2. Let A ⊂ B1 and A ⊂ B2 be weakly surjective
ring extensions.
a) Then the natural map A → B1 ⊗A B2 is injective and weakly

surjective, hence may be regarded as a ws extension.
b) If both A ⊂ B1 and A ⊂ B2 are subextensions of a ring ex-

tension A ⊂ R, then the natural map B1 ⊗A B2 → B1B2 is an
isomorphism, in short, B1 ⊗A B2 = B1B2.

Proof. a) Since B1 is flat over A the natural map B1 → B1 ⊗A B2
is injective. Also B2 → B1 ⊗A B2 and A → B1 ⊗ B2 are injective.
We regard A,B1, B2 as subrings of B1 ⊗A B2 and conclude from
Propositions 3.7.a and 3.10. that A is ws in B1 ⊗B2.
b) In the situation B1 ⊂ R, B2 ⊂ R the ring A is also ws in B1B2.
The natural map λ:B1⊗AB2 → B1B2 is a surjective homomorphism
over A. By Cor.3.16 λ is also injective, hence is an isomorphism.

Example 4.3. If ϕ:A → B is a weakly surjective homomorphism
then the natural map B⊗AB −→ B, x⊗y �−→ xy, is an isomorphism.

This follows from the proposition since B ⊗A B = B ⊗ϕ(A) B. The
statement is just a reformulation of the fact, already known to us
(Prop. 3.6), that ϕ is an epimorphism, cf. e.g. [St, p. 380] or
Appendix A below.

We now invoke the important work of Lazard in his thesis [L] and
of Akiba [A]. We have seen that every injective weakly surjective
homomorphism is a flat epimorphism (in the category of rings). By
[L, IV. Prop. 2.4] or [A, Th.1] the converse also holds.

Theorem 4.4 (Lazard, Akiba). An injective homomorphism ϕ is
weakly surjective iff ϕ is a flat epimorphism.
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For the convenience of the reader we will reproduce Lazard’s proof
in Appendix A. Up to very minor points also the results to follow,
up to Proposition 10, are contained in Lazard’s thesis [L], and many
more. We give short proofs in the present frame work.

We assume, up to Proposition 10, that A ⊂ B is a ws ring extension.

Proposition 4.5. (cf. [L, IV, Cor.3.2]) Let C be a subring of B
containing A. Then A ⊂ C is weakly surjective iff C is flat over A.

Proof. We know already that weak surjectivity of A ↪→ C implies
flatness. In order to prove the converse we look at the following
commuting square of natural maps:

m1

j

m2

i

B .B ⊗A B

CC ⊗A C

Here i denotes the inclusion map from C to B and j the induced
map from C ⊗A C to B ⊗A B. Finally m1 and m2 denote the ”mul-
tiplication maps” x ⊗ y �→ xy. We know from 4.3 that m2 is an
isomorphism. Assume that C is flat over A. Then j is injective.
This implies that m1 is injective, hence an isomorphism. It follows
that the two maps C−→−→C ⊗A C, x �→ x⊗ 1, x �→ 1 ⊗ x, are equal,
which means that A ↪→ C is an epimorphism. Now Theorem 4 tells
us that A ↪→ C is ws.

As before we are given a ws extension A ⊂ B.

Proposition 4.6. Let b be an ideal of B and a: = b ∩ A. Then
b = aB.

Proof. Let c: = aB. Then c ⊂ b and c ∩ A = a. We have a
commuting triangle of natural homomorphisms

α

β

λ

B/b

B/c

A/a
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with α and β injective (and λ surjective). Both α and β are ws. Thus
λ is injective (hence an isomorphism) by Cor. 3.16. This means that
c = b.

The nil radical of a ring C will be denoted by NilC.

Example 4.7. NilB = (NilA)B.

Indeed, we have (NilB) ∩A = NilA.

Theorem 4.8. Let p be a prime ideal of A with pB = B. Then
q: = pB is a prime ideal of B. This is the unique prime ideal of B
lying over p. If B is given as a subextension of an extension A ⊂ R,
then B ⊂ A[p] and q = p[p] ∩B.

Proof. We have Ap = Bp. Thus pBp is the unique maximal ideal
of Bp. Let q denote the preimage of pBp under the localization map
B → Bp. From the natural commuting triangle

Ap = Bp

BA

we read off that q ∩ A = p. By Prop. 6 we have pB = q. Thus pB
is a prime ideal. Now assume that A ⊂ B ⊂ R. Then B ⊂ A[p]
by Theorem 3.13. q′: = p[p] ∩ B is a prime ideal of B with q′ ∩ A =
p[p] ∩A = p. Thus q′ = q.

Remark 4.9. If pB = B then certainly pB = p[p] ∩B.

Let X(B/A) denote the image of the restriction map q �→ q∩A from
SpecB to SpecA. We endow X(B/A) with the subspace topology
in SpecA. It follows from Theorem 8 that X(B/A) is the set of all
p ∈ SpecA with pB = B.

Proposition 4.10. The restriction map SpecB → SpecA is a home-
omorphism from SpecB to X(B/A). The set X(B/A) is procon-
structible and dense in SpecA. It is closed under generalizations in
SpecA.
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Proof. We use the framework of spectral spaces, cf. [Ho] or e.g.
[KS, Chap. III]. The restriction map SpecB → SpecA is spectral.
Thus X(B/A) is proconstructible in SpecA, hence is itself a spectral
space. Again by Theorem 8 the restriction map r: SpecB → X(B/A)
is bijective. If x, y ∈ SpecB and r(y) is a specialization of r(x) then
y is a specialization of x. Since r is spectral this implies that r is a
homeomorphism.

Since A is a subring of B, the image X(B/A) of the restriction map
contains all minimal prime ideals of A and is dense in SpecA. If
p ∈ SpecA and pB = B, then rB = B for the prime ideals r of A
contained in p. Thus X(B/A) is closed under generalizations. {This
already follows from the fact that A ↪→ B is flat, hence the “going
down theorem” holds for prime ideals.}

We finally look again at the relation between the notions “weakly
surjective” and “locally surjective” (cf. §3, Def.1).

Proposition 4.11 (N. Schwartz [Sch4]). Given a ring homomor-
phism ϕ:A → B, the following are equivalent:
(1) ϕ is weakly surjective.
(2) ϕ is locally surjective and the map Spec(ϕ): SpecB → SpecA is

a homeomorphism onto its image.

Proof. ϕ has a factorisation A −→
π
A/a ↪→

ϕ
B with a the kernel of ϕ

and π the natural map from A to A/a. For π both the properties (1)
and (2) are true. Thus it suffices to prove everything for ϕ instead of
ϕ. In the following we assume that A is a subring of B and ϕ = i is
the inclusion map from A to B. We know already from Proposition
10 and Proposition 3.1 that (1) implies (2).

Assume now that A is locally surjective in B and Sper (i) is a home-
omorphism of SpecB onto its image in SpecA. Let p be a prime
ideal of A with pB = B. We have to prove that the localised ho-
momorphism ip:Ap → Bp is an isomorphism. We choose a prime
ideal q ⊃ pB of B. Let p̃: = q ∩ A. Then p̃ ⊃ p. It suffices to verify
that ip̃ is an isomorphism, since ip is a localisation of ϕp̃. Thus we
may assume without loss of generality that q ∩ A = p. We have a
commuting triangle of natural maps
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ip 

j

!

k

Bq .

BpAp

Here j is an isomorphism, since i is locally surjective. Of course, ip
is injective. Thus we will be done, if we verify that k is injective.

Let f = Sper (ϕ): SpecB → SpecA and X: = Imf . As usual we
regard SpecBp and SpecAp as topological subspaces of SpecB and
SpecA respectively. Then SpecAp is the set of generalisations of
the point p ∈ SpecA. We have f(SpecBp) = X ∩ SpecAp, and
f(q) = p. Since f maps SpecBp homeomorphically onto X∩SpecAp,
we conclude that SpecBp consists of the generalisations of the point
qBp ∈ Spec(Bp). This means thatBp is a local ring with the maximal
ideal qBp. It is now evident that the map k in the triangle above
even is an isomorphism.

§5 Basic theory of Prüfer extensions

Let R be a ring and A a subring of R.

Definition 1 [G2, §4] ∗) A is called an R-Prüfer ring, or a Prüfer
subring of R, if (A[p], p[p]) is a Manis pair in R for every maximal
ideal p of A. We then also say that A is Prüfer in R, or that R is
Prüfer over A, or that R is a Prüfer extension of A.

N.B. According to Prop. 2.10 this holds iff (Ap, pp) is a Manis pair
in Rp for every maximal ideal p of A. In particular, if R is a field,
we arrive at the classical notion of a Prüfer domain.

Proposition 5.1. Assume that A is Prüfer in R.

∗) It turned out that Griffin’s definition is not quite “correct”. He only
demands that the A[p] are Manis subrings of R. For a reasonable theory it is
necessary to include a condition on the p[p], cf. also [Gr, p.285].
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i) For every prime ideal p of A the pair (A[p], p[p]) is Manis in R, and
the pair (Ap, pp) is Manis in Rp.
ii) If S is a multiplicative subset of A then S−1A is Prüfer in S−1R.
iii) The following are equivalent.

(1) A is a Manis subring of R.
(2) A is a valuation subring of R.
(3) R \A is multiplicatively closed, i.e. (R \A)(R \A) ⊂ R \A.

Moreover, if A = R and (1) – (3) hold, then (A, pA) is a Manis pair
of R. {pA had been defined in §2, Def.2.}

Proof. Let p be a prime ideal of A. We choose a maximal ideal
m ⊃ p. There exists a Manis valuation v on R with Av = A[m], pv =
m[m]. If A ∩ supp v ⊂ p, then we choose some s ∈ (supp v) ∩ (A \ p).
We have sR ⊂ A[m] ⊂ A[p], and we conclude that A[p] = R. Thus
(A[p], p[p]) is certainly Manis in R in this case. Assume now that
A ∩ supp v ⊂ p. Then it follows from Prop.2.11 that (A[p], p[p]) is
Manis in R, and Prop.2.10 tells us that (Ap, pp) is Manis in Rp. This
proves assertion (i). Assertion (ii) is an immediate consequence of
(i).

In assertion (iii) the implications (1) ⇒ (2) ⇒ (3) are trivial. We
prove (3) ⇒ (1). We may assume A = R. Let p: = pA. Let x ∈ A[p]
be given. There exists some d ∈ A \ p with dx ∈ A. If x ∈ A this
would imply d ∈ p by definition of p = pA. Thus x ∈ A. This proves
A[p] ⊂ A, i.e. A[p] = A. Then p[p] ⊂ A, hence p = p[p] ∩ A = p[p].
Since A is Prüfer in R we conclude that the pair (A, p) is Manis in
R.

The following theorem gives a bunch of criteria for a given ring ex-
tension A ⊂ R to be Prüfer. It is here that the theory of Manis
valuations and the theory of weakly surjective ring extensions, dis-
played in §1, §2 and in §3, §4 respectively, come together.

Theorem 5.2. The following are equivalent.

(1) A is an R-Prüfer ring.
(2) A is weakly surjective in every R-overring.
(2′) A is weakly surjective in A[x] for every x ∈ R.
(3) If B is any R-overring of A then (A:x)B = B for every x ∈ B.
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(3′) If B is any R-overring of A then (A:x)B = (B:x) for every
x ∈ R.
(4) Every R-overring of A is integrally closed in R.
(5) A is integrally closed in R, and A[x] = A[xn] for every x ∈ R and
n ∈ N.
(5′) A is integrally closed in R, and A[x] = A[x2] for every x ∈ R.
(6) A is integrally closed in R. For every x ∈ R there exists a

polynomial F [T ] =
d∑
i=0

aiT
i with all ai ∈ A, aj = 1 for at least one

index j, such that F (x) = 0.
(7) A is integrally closed in R. For every x ∈ R and every maximal
ideal p of A there exists a polynomial Fx,p(T ) ∈ A[T ]\p[T ] such that
Fx,p(x) = 0.
(8) (A:x) + x(A:x) = A for every x ∈ R.
(9) A is integrally closed in R. For every overring B of R the restric-
tion map SpecB → SpecA is injective.
(9′) A is integrally closed in R. If B is an R-overring of A and q ⊂ q′

are prime ideals of B with q ∩A = q′ ∩A then q = q′.
(10) A is integrally closed in R. For every prime ideal p of A there
exists a unique Manis pair (B, q) in R over (A, p), i.e. with A ⊂ B,
q ∩A = p.
(11) For every R-overring B of A the inclusion map A ↪→ B is an
epimorphism (in the category of rings).
(11′) For every x ∈ R the inclusion map A ↪→ A[x] is an epimor-
phism.

Remarks. The equivalence of (1), (2), (3), (4) had already been
stated by Griffin [G2, Prop.6, Th.7], but he made additional as-
sumptions and did not present the proofs. On the other hand, Grif-
fin weakened our hypothesis that the rings have unit elements. The
equivalence of (1), (4), (8) has been proved by Eggert for R = Q(A),
the complete ring of quotients of A [Eg, Th.2]. The equivalence of
(1) and any of the conditions (4) - (7) is a generalization of classi-
cal results for R a field (cf. e.g. [E, Th.11.10]). The equivalence
of (1) and (11) for R a field has been proved by Storrer [St1]. The
equivalence of (1), (2), (4), (8) has been stated in full generality by
Rhodes [Rh, Th.2.1]. Unfortunately his proof contains a gap (cf. our
Introduction). E.D. Davis studied extensions A ⊂ R with property
(4) under the name “normal pairs”. In the case of domains some of
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our results in this section can be read off from his paper [Da].

Proof. (1) ⇒ (2): Let B be an R-overring of A and q a prime ideal
of B. Let p: = q ∩ A. We verify that A[p] = B[q] and then will be
done by Theorem 3.13. Of course, A[p] ⊂ B[q]. Let x ∈ R \ A[p] be
given. We prove that x ∈ B[q], and then will be done.

Since (A[p], p[p]) is a Manis pair in R there exists an element y of
p[p] with xy ∈ A[p] \ p[p]. We choose elements a and c in A \ p
with a(xy) ∈ A and cy ∈ p. We have a(xy) ∈ A \ p. Suppose that
x ∈ B[q]. Then there exists some b ∈ B \ q with bx ∈ B. We have
a(bx)(cy) ∈ q. On the other hand, a(bx)(cy) = bc(axy) ∈ B \ q. This
contradiction proves that x ∈ B[q].
(2) ⇒ (2′): trivial.
(2) ⇔ (3) ⇔ (3′): Clear from Th. 3.13.
(2′) ⇒ (3): Let x ∈ B. Then (A:x)A[x] = A[x]. A fortiori
(A:x)B = B.
(2) ⇒ (4): Let B be an R-overring of A, and let C = B̃ denote the
integral closure of B in R. By (2) A is ws in C. Thus B is ws in C
(Prop. 3.7.b). Prop. 3.17 tells us that C = B, i.e. B is integrally
closed in R.
(4) ⇒ (5): x is integral over A[xn]. By assumption (4) the subring
A[xn] is integrally closed in R. Thus x ∈ A[xn].
(5) ⇒ (5′): trivial.

(5′) ⇒ (6): For every x ∈ R we have a relation x =
m∑
i=0

aix
2i with

m ∈ N0, ai ∈ A.
(6) ⇒ (7): trivial.
(7) ⇒ (1): Theorem 2.12 tells us that (A[p], p[p]) is a Manis pair in
R for every p ∈ SpecA.
(1) ⇒ (8): Suppose there exists some x ∈ R with I: = (A:x) +
x(A:x) = A. We choose a maximal ideal m of A containing I. Then
x ∈ R \ A[m] since (A:x) ⊂ m. By (1) and Theorem 2.4 (iii) there
exists some x′ ∈ m[m] with xx′ ∈ A[m] \ m[m]. We then choose some
d ∈ A\m with dx′ ∈ m and dxx′ ∈ A\m. It follows that dx′ ∈ (A:x)
and dxx′ ∈ x(A:x) ⊂ m, a contradiction. Thus (8) holds.
(8) ⇒ (1): We prove for a given prime ideal p of A that the pair
(A[p], p[p]) is Manis in R by verifying condition (iii) in Theorem 2.4.
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Let x ∈ R \A[p]. Then (A:x) ⊂ p. By (8) we know that x(A:x) ⊂ p.
Thus there exists some x′ ∈ (A:x) ⊂ p with xx′ ∈ A \ p ⊂ A[p] \ p[p].

The equivalence of (1), (9), (9′), (10) is evident from Theorem 2.14.
The implication (2′) ⇒ (11′) follows from the fact that every weakly
surjective map is an epimorphism (cf. Prop.3.6).
(11′) ⇒ (11): Suppose there exists an R-overring B of A such that
the inclusion map A ↪→ B is not an epimorphism. Then there exist
two ring homomorphisms ϕ1, ϕ2 from B to some ring C with ϕ1|A =
ϕ2|A but ϕ1 = ϕ2. We choose some x ∈ B with ϕ1(x) = ϕ2(x). The
restrictions ϕ1|A[x] and ϕ2|A[x] are different, but ϕ1|A = ϕ2|A. This
contradicts the assumption (11′).
(11) ⇒ (4): Let B be an R-overring of A, and let x ∈ R be integral
over B. We want to prove that x ∈ B. The inclusion A ↪→ B[x] is an
epimorphism. Thus (for purely categorial reasons) also the inclusion
B ↪→ B[x] is an epimorphism. By an easy proposition of Lazard
[L, Chap. IV, Prop.1.7], B[x] = B. We will state and prove this
proposition in Appendix A.

From condition (4) in this theorem one obtains immediately

Corollary 5.3. Let B be an R-overring of A. If A is Prüfer in R
then B is Prüfer in R and A is Prüfer in B.

From condition (8) in the theorem we obtain

Corollary 5.4. If A is Prüfer in R then for any x ∈ R the ideal
(A:x) is generated by two elements.

Indeed, we have elements a and b in (A:x) with 1 = a + xb. If
u ∈ (A:x) then u = ua+ (ux)b. Thus (A:x) = Aa+Ab.

Theorem 2 contains the fact that every R-Prüfer ring is integrally
closed in R. The reader might ask for a more direct proof of this
statement. Indeed this follows from the definition of R-Prüfer rings
and an elementary fact which holds without any assumption about
our subring A of R.

Remark 5.5. If I is an A-submodule of R, then

I =
⋂

p∈M
(A[p]I) =

⋂
p∈M

I[p],
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with M denoting the set of maximal ideals of A. In particular
A =

⋂
p∈M

A[p].

Proof. Of course, I ⊂ A[p]I ⊂ I[p] for every p ∈ M . Let x ∈ ⋂
p∈M

I[p]

be given. Consider the ideal a: = {a ∈ A | ax ∈ I}. For every p ∈ M
the intersection a ∩ (A \ p) is not empty, i.e. a ⊂ p. Thus a = A, i.e.
x ∈ I.

We now look for permanence properties of Prüfer extensions.

Theorem 5.6 [Rh, Prop.3.1.3]. Assume that A is a Prüfer subring
of B and B is a Prüfer subring of C. Then A is Prüfer in C.

Proof (cf. [Rh, loc.cit]). We verify for a given prime ideal p of A
that the pair (Ap, pp) is Manis in Cp. Replacing A,B,C by Ap, Bp,
Cp we assume without loss of generality (cf. Prop.1.ii) that A is local
and p is the maximal ideal of A. We will apply Theorem 2.5. By this
theorem (or Prop.1.3) B is local, and the maximal ideal q of B is
contained in p. Let x ∈ C \ A be given. If x ∈ B then, by Theorem
2.5, x ∈ B∗ and x−1 ∈ p. If x ∈ B then, by the same theorem,
x ∈ C∗ and x−1 ∈ q ⊂ p. Thus in both cases x is a unit in C and
x−1 ∈ A. We conclude, again by Theorem 2.5, that (A, p) is Manis
in C.

Proposition 5.7. Assume that A is a Prüfer subring of a ring R.
Then, for any ring homomorphism ϕ:R → D the ring ϕ(A) is Prüfer
in ϕ(R).

Proof. Let C ′ be a subring of ϕ(R) containing ϕ(A). We verify that
ϕ(A) is weakly surjective in C ′, and then will be done by condition
(2) in Theorem 2. Indeed, C: = ϕ−1(C ′) is a subring of R containing
A. Thus A is weakly surjective in C. By Proposition 3.8 ϕ(A) is
weakly surjective in ϕ(C) = C ′.

This proof relied on our study of ws extensions in §3. We give a
second proof, which may be more direct. It relies on the criterion
(8) in Theorem 5.2.
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2. Proof. Let x ∈ ϕ(R) be given. We have to verify that (ϕ(A):x)+
(ϕ(A):x)x = ϕ(A). We choose some x ∈ R with ϕ(x) = x. We
have (A:x) + (A:x)x = A, since A is Prüfer in R. Applying ϕ, we
obtain ϕ((A:x)) + ϕ((A:x))ϕ(x) = ϕ(A). If a ∈ (A:x), i.e. a ∈ A
and ax ∈ A, then ϕ(a)ϕ(x) ∈ ϕ(A), hence ϕ(a) ∈ (ϕ(A):x). Thus
ϕ((A:x)) ⊂ (ϕ(A):x). It follows that (ϕ(A):x)+(ϕ(A):x)x = ϕ(A),
as desired.

Also for other claims to follow different proofs are possible, since
Theorem 2 provides us with many criteria for a ring extension to be
Prüfer.

Proposition 5.8 [Rh, Prop.3.1.1]. Let A ⊂ R be a ring extension
and I an ideal of R contained in A. Then A is Prüfer in R iff A/I is
Prüfer in R/I.

Proof. If A is Prüfer in R then the preceding proposition tells us
that A/I is Prüfer in R/I. Assume now that the latter holds. We
verify condition (4) in Theorem 2 and then will be done.

Let B be an R-overring of A. Then B/I is an R/I-overring of A/I.
Thus B/I is integrally closed in R/I. Let x ∈ R be integral over B.
Then x+ I ∈ B/I. Since I ⊂ B we conclude that x ∈ B. Thus B is
integrally closed in R.

Theorem 5.9. Let ϕ:R → R′ be an integral ring homomorphism.
Let A be a Prüfer subring of R, and let A′ denote the integral closure
of ϕ(A) in R′. Then A′ is a Prüfer subring of R′, and R′ = A′ ·ϕ(R).

Proof. We verify condition (7) in Theorem 2. Let an element x of
R′ and a prime ideal q of R′ be given. Let p: = ϕ−1(q). We look
for a polynomial G(T ) ∈ A[T ] \ p[T ] with Gϕ(x) = 0, where Gϕ(T )
denotes the polynomial obtained from G(T ) by applying ϕ to the
coefficients.

We start with a polynomial

F (T ) = Tn + u1T
n−1 + · · · + un ∈ R[T ]

such that Fϕ(x) = 0. Such a polynomial exists since ϕ is integral.
Let v:R −→−→ Γ∪∞ denote the Manis valuation on R with Av = A[p],
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pv = p[p]. We choose an index r ∈ {1, . . . , n} with

v(ur) = Min{v(ui) | 1 ≤ i ≤ n}.

We distinguish two cases.

Case 1: v(ur) = ∞. Now certainly ui ∈ A[p] for i = 1, 2, . . . , n.
We choose some d ∈ A \ p with dui ∈ A for all i. The polynomial
G(T ): = dF (T ) does the job.

Case 2: v(ur) < ∞. We choose some b ∈ R with v(bur) = 0.
This is possible since v is Manis. We have bui ∈ A[p] for every
i ∈ {1, . . . , n} and bur ∈ p[p]. We choose some c ∈ A \ p with
cbui ∈ A for i = 1, . . . , n. The polynomial G(T ): = cbF (T ) does the
job. Since ϕ(A) is weakly surjective in ϕ(R) (Prop.3.8), we conclude
from Prop.3.18 that R′ = A′ · ϕ(R).

Theorem 5.10. Let A be a subring of R and B,C be two R-
overrings of A. Assume that A is Prüfer in B and weakly surjective
in C. Then C is Prüfer in BC.

Proof. We pick a prime ideal q of C and verify that (Cq, qq) is a
Manis pair in (BC)q.

Let p: = q ∩ A. Then Ap = Cp = Cq and qq = qp = pp (cf.
Lemma 3.2). Thus C \ q is the saturum of the multiplicative set
A \ p in C. Notice also that BC = B ⊗A C (Prop. 4.2). Thus
(BC)p = Bp ⊗Ap Cp = Bp. More precisely, the subrings (BC)p

and Bp of Rp are equal. We conclude that (Cq, qq) = (Ap, pp) and
(BC)q = (BC)p = Bp. Since A is Prüfer in B, the pair (Cq, qq) is
Manis in (BC)q.

Corollary 5.11. Let A be a subring of R and B,C be two R-
overrings of A. If A is Prüfer in B and in C, then A is Prüfer in
BC.

Proof. This follows from theorems 10 and 6.

Counterexample 5.12. If A ⊂ B is a Prüfer extension and A ⊂ C
is a flat ring extension then C is not necessarily Prüfer in B ⊗A C.
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Here is a simple example: Let A be a non trivial valuation ring of a
field K. Then A is Prüfer in K, but the polynomial ring A[T ] in one
variable T is not Prüfer in K[T ].

Indeed, let m be the maximal ideal of A and let M : = m + TA[T ],
which is a maximal ideal of C: = A[T ]. In the extension K[T ] of C
we have C[M ] = C, M[M ] = M , as is easily verified. The pair (C,M)
is not Manis in K[T ].

Proposition 5.13. Let (Rα | α ∈ I) be a direct system of rings
with transition homomorphisms ϕαβ :Rα → Rβ (α, β ∈ I, α < β).
Assume that for every α ∈ I there is given a subring Aα of Rα which
is Prüfer in Rα. Assume further that ϕαβ(Aα) ⊂ Aβ if α < β. Then
A: = lim−→α

Aα is a Prüfer subring of R: = lim−→α
Rα.

Proof. A is clearly a subring of R. We verify that the extension
A ⊂ R has the property (5′) in Theorem 2. For every α ∈ I we
have a canonical homomorphism ϕα:Rα → R. Let x be an element
of R which is integral over A. We choose some α ∈ I and xα ∈ Rα
with ϕα(xα) = x. There exists an index β > α such that ϕβα(xα)
is integral over Aβ , as is easily verified. Since Aβ is integrally closed
in Rβ we have ϕβα(xα) ∈ Aβ , and we conclude that x = ϕα(xα) =
ϕβ(ϕβα(xα)) ∈ A. Thus A is integrally closed in R.

Let now x be any element of R. Again we choose some α ∈ I and
xα ∈ Rα with ϕα(xα) = x. By Theorem 2 we have xα ∈ Aα[x2

α].
Applying ϕα to this relation we see that x ∈ A[x2].

Remark 5.14. As a very special case of Proposition 13 we mention
that, if A ⊂ R is a ring extension and (Bi|i ∈ I) is an upward
directed family of R-overrings of A with A Prüfer in each Bi, then
A is Prüfer in

⋃
i∈I

Bi.

We now have the means to establish a theory of “Prüfer hulls” anal-
ogous to the theory of weakly surjective hulls in §3.

Theorem 5.15. Let A ⊂ R be a ring extension. Then there exists
a unique R-overring P (A,R) of A, such that A is Prüfer in P (A,R)
and P (A,R) contains every R-overring of A in which A is Prüfer.
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Proof. Let P denote the set of all R-overrings B of A with A Prüfer
in B. We regard P as a partially ordered set, the ordering being
given by the inclusion relation. By Remark 14 and Zorn’s lemma it
is clear that P has a maximal element C. Now, if B is any element
of P, then BC ∈ P by Corollary 11. Thus BC = C, i.e. B ⊂ C.

Definition 2. We call P (A,R) the Prüfer hull of A in R.

Of course, P (A,R) is contained in the weakly surjective hullM(A,R)
of A in R, and P (A,R) = P (A,C) for every R-overring C with
C ⊃ P (A,R). More generally, if C is any R-overring then P (A,C) =
C ∩ P (A,R). Also P (A,R) = P (B,R), if B is any R-overring of A
contained in P (A,R).

Definition 3. For any ring A the Prüfer hull P (A) of A is defined
as the Prüfer hull of A in the complete quotient ring Q(A) (cf. §3),
P (A): = P (A,Q(A)).

Remarks 5.16. P (A) is contained in the weakly surjective hull
M(A). The classical Prüfer rings (with zero divisors) are precisely
the rings A with QuotA ⊂ P (A). If A′ is a weakly surjective ring
extension of A, contained in M(A) without loss of generality, then
A′ · P (A) ⊂ P (A′) by Theorem 10 above. If A ⊂ B is any Prüfer
extension, it is clear by Proposition 3.14 that there is a unique ho-
momorphism ϕ:B → P (A) over A, and ϕ is injective.

Example 5.17. Assume that A is Prüfer domain (in the classical
sense), i.e. A is an integral domain, and for every maximal ideal p the
ring Ap is a Krull valuation ring of the quotient field K = QuotA.
Then A ⊂ K is a Prüfer extension. Since we have K = Q(A), we
conclude that P (A) = K. In particular, if A is a Dedekind domain
then P (A) = Q(A) = QuotA. If A is any integral domain, then
clearly A is a Prüfer domain if and only if A is Prüfer in QuotA.

Example 5.18. Assume that A is a ring with Krull dimension
dimA = 0. Then P (A) = A.

This can be seen as follows. Let R: = P (A) and suppose that R = A.
We choose a maximal ideal m of A with Am = Rm. Then we have
a nontrivial Manis valuation v of Rm with Av = Am. In Am we
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have the two different prime ideals supp v ⊂

=

pv. Thus dimAm ≥ 1,

contradicting dimA = 0. It follows that R = A.

Example 5.19. Let V be an affine algebraic variety over some real
closed field k. The ring R of (k-valued, continuous) semialgebraic
functions on the set V (k) of rational points of V is “Prüfer closed”,
i.e. P (R) = R. This has been proved recently by Niels Schwartz
[Sch2] within the framework of his theory of real closed rings (cf.
[Sch2, Example 5.13]. His proof would take us here too far afield.

Let d be a natural number. We will see that R is Prüfer over the
subring A = k

[ 1
1+x2d |x ∈ R

]
generated by k and the elements 1

1+x2d ,
x ∈ R, cf. below §6, Example 12. Thus R = P (A).

We now briefly discuss the behavior of Prüfer extensions under for-
mation of direct products. Let (Ai ⊂ Ri | i ∈ I) be a family of ring
extensions. This gives us a ring extension A ⊂ R with A: =

∏
i∈I

Ai

and R: =
∏
i∈I

Ri.

Proposition 5.20. A is Prüfer in R iff Ai is Prüfer in Ri for every
i ∈ I.

Proof. We use the criterion (8) in Theorem 2. Let x = (xi|i ∈
I) ∈ R be given. We clearly have (A:x) =

∏
i∈I

(Ai:xi) and x(A:x) =∏
i∈I

xi(Ai:xi). If Ai is Prüfer in Ri for every i ∈ I, then we have

equations 1i = ui + xivi with 1i the unit element of Ai, and ui, vi
elements of (Ai:xi). With u: = (ui|i ∈ I) and v: = (vi|i ∈ I) this
gives us an equation 1 = u + xv with u and v elements of (A:x).
Thus A is Prüfer in R.

Conversely, if we have an equation 1 = u+xv with u, v ∈ (A:x) then
we obtain equations 1 = ui + xivi with ui, vi ∈ (Ai:xi) for every
i ∈ I. Thus, if A is Prüfer in R, then Ai is Prüfer in Ri for every
i ∈ I. (This is also clear from Proposition 7.)

Proposition 5.21. Let (Ai|i ∈ I) be a family of rings. For every
i ∈ I we have the Prüfer hull Ai ⊂ P (Ai). Then A: =

∏
i∈I

Ai has the
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Prüfer hull P (A) =
∏
i∈I

P (Ai) (where, of course, we regard A as a

subring of
∏
i∈I

P (Ai) in the obvious way).

Proof. It is well known, that Q(A) =
∏
i∈I

Q(Ai), cf. [Lb, p.41 and

p.100]. By the preceding proposition the extension A ⊂ ∏
i∈I

P (Ai) is

Prüfer. Thus we have a chain of inclusions

A =
∏
i∈I
Ai ⊂ ∏

i∈I
P (Ai) ⊂ P (A) ⊂ ∏

i∈I
Q(Ai).

Fixing some j ∈ I let πj denote the natural projection map from∏
i∈I

Q(Ai) to Q(Aj). We have πj(A) = Aj and πj(
∏
i∈I

P (Ai)) =

P (Aj), hence
Aj ⊂ P (Aj) ⊂ πj(P (A)).

Now Aj is Prüfer in πj(P (A)) by Proposition 7. Thus also P (Aj)
is Prüfer in πj(P (A)) (cf. Cor.3). This forces P (Aj) = πj(P (A)).
Since this holds for every j ∈ I, we conclude that

∏
i∈I

P (Aj) = P (A).

We will say more about Prüfer hulls in II, §5 and in Part II of the
book.

§6 Examples of Prüfer extensions and convenient
ring extensions

In this section R is a ring and A is a subring of R. We are looking
for handy criteria which guarantee that A is Manis or Prüfer in R,
and we will discuss examples emanating from some of these criteria.

Theorem 6.1. Assume that A is integrally closed in R. Assume
further that for every x ∈ R \ A there exists a monic polynomial
F (T ) ∈ A[T ] and a unimodular polynomial G(T ) ∈ A[T ] (i.e. the
ideal of A generated by all coefficients of G(T ) is A), such that
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F (x) ∈ R∗, degG < degF and G(x)/F (x) ∈ A. Then A is Prüfer in
R.

Proof. We verify that for a given element x of R and a given maxi-
mal ideal m of A there exists a polynomial H(T ) ∈ A[T ] \ m[T ] with
H(x) = 0, and then will be done by Theorem 5.2.

If x ∈ A we take H(T ) = T − x. Now let x ∈ R \ A. We choose
polynomials F (T ), G(T ) as indicated in the theorem. We put b: =
G(x)/F (x) ∈ A and take H(T ): = bF (T ) − G(T ). Then H(x) = 0.
If b ∈ m then H(T ) ∈ m[T ], since G(T ) is unimodular. If b ∈ m then
again H(T ) ∈ m[T ], since degG < degF and F is monic.

Definition 1. We call a valuation v on R a Prüfer-Manis valuation
(or PM-valuation, for short), if v is Manis and Av is Prüfer in R.

We call a subring B of R a Prüfer-Manis subring of R if B = Av for
some Prüfer-Manis valuation v on R. We then also say that the ring
B is Prüfer-Manis (or PM, for short) in R, or that the extension
A ⊂ B is PM.

If A is Prüfer in R and B is an R-overring of A which is Manis in
R, then, of course, B is PM in R. Thus the valuations which really
matter in the theory of relative Prüfer rings are the PM-valuations
and not just the Manis valuations. We defer a systematic theory of
PM-subrings of R to Chapter III, but now look for examples of such
rings.

Theorem 6.2. Assume that A = R and the set S: = R \ A is
multiplicatively closed. Assume further that for every x ∈ R \ A
there exists a monic polynomial F (T ) ∈ A[T ] of degree ≥ 1 with
F (x) ∈ R∗. Then A is PM in R.

Proof. We verify that A is Prüfer in R and then will be done
by Prop. 5.1.iii. We know from Theorem 2.1 that A is integrally
closed in R. Let x ∈ R \ A be given. We choose a polynomial
F (T ) ∈ A[T ] as indicated in the theorem. Certainly F (x) ∈ R \ A,
since A is integrally closed in R. We conclude from the equation
1 = F (x) · F (x)−1 that 1/F (x) ∈ A, since otherwise we would get
the contradiction 1 ∈ R \ A. Now Theorem 1 tells us that A is
Prüfer.
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Definition 2. a) Let k be a subring of R. We say that R is conve-
nient over k, if every R-overring A of k which has a multiplicatively
closed complement R \A is PM in R.
b) We call the ring R convenient, if R is convenient over its prime
ring Z · 1.

Example 1. Every field is a convenient ring.

The idea behind Definition 2 is that, as far as valuations are con-
cerned, a convenient ring is nearly as “convenient” as a field. If R
is only convenient over some subring k then at least this should be
true for the (special) valuations v with Av ⊃ k. In particular we
expect that for a convenient ring extension k ⊂ R we have a theory
of R-Prüfer rings A ⊃ k nearly as good as in the field case.

We now look first for examples of convenient rings, then for the –
still interesting – case of convenient ring extensions.

Example 2 (Generalization of Example 1). If R has Krull dimension
zero then R is convenient.

Proof. Let A be a subring of R with A = R and R \ A multiplica-
tively closed. We prove that A is Prüfer in R. Then it will follow
from Prop. 5.1.iii that A is also Manis in R.

The ring A is integrally closed in R by Theorem 2.1.ii. Given an
element x ∈ R we prove that there exists a unimodular polynomial
F (T ) ∈ A[T ] with F (x) = 0. Then we will be done by Theorem 5.2.

If x ∈ A take F (T ) = T − x. Now let x ∈ R \ A. There exists
some n ∈ N and y ∈ R with xn+1y = xn, cf. [Huc, Th.3.1]. Then
(xy)n+1 = (xy)n. Since A is integrally closed in R, this implies
xy ∈ A. Since R \A is closed under multiplication we conclude that
y ∈ A. The polynomial F (T ) = yTn+1 − Tn fits our needs.

Example 3. Every ring R with 1 + ΣR2 ⊂ R∗ is convenient.∗)

Indeed, it suffices to know that 1 + R2 ⊂ R∗ in order to conclude
that R is convenient.

∗) 1+ΣR2 denotes the set of elements 1+x2
1+···+x2

n with n∈N,xi∈A.
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Comment. This is the most important class of rings we have in
mind for use in real algebra. Recall that for every ring A the local-
ization Σ−1A with respect to the multiplicative set Σ: = 1 + ΣA2 is
such a ring, and that A and Σ−1A have the same real spectrum. For
many problems in real algebra we may replace A by Σ−1A and thus
arrive at a convenient ring. {If A is not real, i.e. −1 ∈ ΣA2, then
Σ−1A is the null ring, but this does not bother us.}

Subexample 3 bis. If A is any ring and X is a proconstructible
subset of the real spectrum SperA then the ring CS(X,A) of abstract
semialgebraic functions on X (i.e. the real closure of A on X, cf.
[Sch] or [Sch1]) is convenient, since in this ring R we have 1+ΣR2 ⊂
R∗. In general CS(X,A) has very many zero divisors.

Example 4. If more generally R is a ring such that, for every
x ∈ R, there exists a natural number d with 1 + xd ∈ R∗, then R is
convenient.

Such rings (with d even) seem to be important in the theory of
orderings of higher level and higher real spectra (cf. e.g. [B2], [B3],
[P], [BP], [Be]).

Using some more elementary commutative ring theory we can gen-
eralize Example 2 greatly. We start with a well known lemma.

Lemma 6.3. Assume that dimR = 0 and Nil R = 0, i.e. R is von
Neumann regular. For every a ∈ R there exists some c ∈ R such
that ac = 0 and a+ dc ∈ R∗ for every d ∈ R∗.

Proof. There exists some b ∈ R such that a2b = a. Taking c: = 1−ab
we see that ac = a − a2b = 0. For every prime ideal m of R either
a ∈ m or c ∈ m. If a ∈ m then ab ∈ m, which yields c ∈ m, hence
a+ dc ∈ m for every d ∈ R∗. If a ∈ m, then c ∈ m, hence a+ dc ∈ m
for every d ∈ R∗. This proves a+ dc ∈ R∗ for every d ∈ R∗.

Let J denote the Jacobson radical of R.

Definition 3 (cf. [G2]). We say that R has large Jacobson radical,
if R/J has Krull dimension zero.

Proposition 6.4 (G2, Prop.19]. The following are equivalent (for
R any ring).
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(1) R has large Jacobson radical.
(2) For every x ∈ R there exists some y ∈ R such that xy ∈ J and

x+ dy ∈ R∗ for every d ∈ R∗.
(3) For every x ∈ R there exists some y ∈ R with xy ∈ J and

x+ y ∈ R∗.

Proof. (1) ⇒ (2) follows from the preceding lemma, and (2) ⇒ (3)
is trivial.
(3) ⇒ (1): Suppose there exist prime ideals p,m of R with J ⊂ p ⊂


= m.

We choose some x ∈ m \ p and have by assumption some y ∈ R with
xy ∈ J and x+ y ∈ R∗. Since xy ∈ p but x ∈ p, we have y ∈ p. This
implies x+ y ∈ m, a contradiction. Thus dimR/J = 0.

Theorem 6.5. If R has large Jacobson radical then R is convenient.

Proof. Let A be a subring of R such that R \ A is multiplicatively
closed. Let x ∈ R \ A be given. By Theorem 2 we are done if we
find a monic polynomial F [T ] ∈ A[T ] of degree ≥ 1 with F (x) ∈ R∗.
By the preceding proposition 4 there exists some y ∈ R such that
x+ dy ∈ R∗ for every d ∈ R∗.
Case 1: y ∈ A. Now the polynomial F (T ) = T + y fits our needs.
Case 2: y ∈ A. Now xy ∈ A, hence 1 + xy ∈ A. But 1 + xy ∈ R∗

since xy ∈ J . Take d: = 1
1+xy ∈ R∗. We have d ∈ A since (1+xy)d =

1 ∈ A, but 1 + xy ∈ A. From xyd = 1 − d ∈ A it follows in the same
way that yd ∈ A. The polynomial F (T ) = T + yd fits our needs.∗)

Examples 5. If R is semilocal, i.e. has only finitely many maximal
ideals, then it is obvious that R has large Jacobson radical. Thus
every semilocal ring is convenient. Slightly more generally, if R′ is
an integral extension of a semilocal ring R, then R′ has large Ja-
cobson radical, hence is convenient. In particular the infinite Galois
extensions of R (cf. e.g.[K], there called infinite “coverings” of R)
are convenient rings, as well as the finite ones.

Proposition 6.6. Assume there exists a family (ϕα:Rα → R | α ∈
I) of homomorphisms from convenient rings Rα to R such that R is
the union of the subrings ϕα(Rα). Then R is convenient.

∗) In fact we proved that the ring extension A⊂R is “additively regular”,
cf. Def.3 in Chapter III, §3 below.



62 §6 Examples of Prüfer extensions . . .

Proof. Let A be a subring of R such that the set R \ A is multi-
plicatively closed and not empty. We verify that A is Prüfer in R.
Then we will know that A is also Manis in R by Prop.5.1.iii.

We will use criterion (5′) in Theorem 5.2. We know from Theorem
2.1 that A is integrally closed in R. Let x ∈ R be given. We choose
some α ∈ I and xα ∈ Rα such that ϕα(xα) = x. Let Aα: = ϕ−1

α (A).
Then Rα \Aα is closed under multiplication. Since Rα is convenient,
it follows that Aα is Prüfer (even PM) in Rα. Thus xα ∈ Aα[x2

α]
by Theorem 5.2. Applying ϕα to this relation we obtain x ∈ A[x2].
This proves that A is Prüfer in R.

Remark 6.7. In particular, every homomorphic image of a ring
with large Jacobson radical is convenient.

Example 6. Let (Xα | α ∈ I) be an inverse system of quasipro-
jective schemes over some field k with transition maps fαβ :Xβ →
Xα (α, β ∈ I, α < β). Assume that for every α ∈ I we are
given a finite set of points Sα ⊂ Xα such that fαβ(Sβ) ⊂ Sα if
α < β. We introduce the semilocal rings Rα: = OXα,Sα (α ∈ I). If
α, β ∈ I and α < β then fαβ :Xβ → Xα gives us a ring homomor-
phism ϕαβ :Xα → Xβ . Thus we obtain a direct system (Rα, ϕαβ)
of semilocal rings. Let R: = lim−→α

Rα be the associated direct limit.

R is convenient by Theorem 5 and Proposition 6. Such rings may
be useful in the business of resolution of singularities and related
matters.

We now give examples of convenient ring extensions. From Theo-
rem 2 we extract

Scholium 6.8. Let k be a subring of R with the following property.
(∗) For every x ∈ R \ k there exists some monic polynomial Fx(T ) ∈
k[T ], Fx = 1, with Fx(x) ∈ R∗.
Then R is convenient over k.

Example 7. Let A be an affine algebra over a field k which is not
algebraically closed. Let V (k) denote the set of rational points of
the associated k-variety V . {We may identify V (k) = Homk(A, k).}
Let U be a k-Zariski-open subset of V (k). {In other words, U is
open in the subspace topology of V (k) in SpecA.} Let finally S be
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the multiplicative set consisting of all a ∈ A with a(p) = 0 for every
p ∈ U . Then S−1A is convenient over k.

Proof. We choose a monic polynomial F (T ) ∈ k[T ], F = 1, in one
variable T which has no zeros in k. Let x ∈ S−1A be given. Write
x = a

s with a ∈ A, s ∈ S, and write F (T ) = T d + c1T
d−1 + · · · + cd.

We have F (x) = b
sd with b = ad + c1a

d−1s + · · · + cds
d ∈ A. For

every point p ∈ U we have b(p)
s(p)d = F

(a(p)
s(p)

) = 0, hence b(p) = 0.
Thus b ∈ S and F (x) is a unit in S−1A.

Definition 4. We call this ring S−1A the ring of regular functions
on U .

If the field k is real closed and U = V (k) then S is the set of divi-
sors of the elements in Σ: = 1 + ΣA2, as is well known (e.g. [BCR,
Cor. 4.4.5.], [KS, p.142]). Thus S−1A = Σ−1A, and we are back to
Example 3.

Example 8. Assume that R is the total quotient ring of A, R =
QuotA. The ring A is called additively regular [Huc, p.32], if for
every x ∈ R there exists some a ∈ A such that x + a is a “regular
element”, i.e. a unit in R. Of course, then condition (∗) is satisfied
for k: = A, and thus R is convenient over A. As Huckaba observes
[Huc, p.32 f], if A is noetherian or, more generally, if the set of zero
divisors of A is a union of finitely many prime ideals, then A is
additively regular [Huc, p.32 f].

Example 9. Assume again that R = QuotA. The ring A is called a
Marot ring [Huc, p.31], if each ideal of A, which contains a nonzero
divisor, is generated by a set of non zero divisors. Marot rings form a
very broad class of rings. In particular, every additively regular ring
is Marot [Huc, p.33 f]. If A is Marot, QuotA is convenient over A,
cf. [Huc, Th.7.7 and Cor.7.8] and III, §3 below. But now condition
(∗) may be violated, as we can show by examples.

As before R denotes a ring and A a subring of R. We return to the
search for Prüfer subrings of R which are not necessarily Manis in
R.

Example 10. If A is Prüfer in R then R is convenient over A.



64 §6 Examples of Prüfer extensions . . .

This in essence is the content of Proposition 5.1.iii

If R is a field then the intersection of finitely many valuation subrings
of R is Prüfer in R, as is well known [Gi, p.280f]. Does the same
hold if k ⊂ R is a convenient extension and if all the valuation rings
contain k? Or does this at least hold if the extension k ⊂ R fulfills
the stronger condition (∗) in 6.8? We can only prove partial results,
which nevertheless seem to deserve interest.

Lemma 6.9. Let k be a subring ofR, and let v1, . . . , vn be valuations
on R with Avi

⊃ k for every i ∈ {1, . . . , n}. Given an element x of
R, there exists a monic polynomial F (T ) ∈ k[T ] with F (0) = 0 and
the following property:
If G(T ) ∈ k[T ] is any monic polynomial of degree ≥ 1 with ab-
solute term G(0) ∈ k∗, then vi(G(F (x))) = 0 if vi(x) ≥ 0, and
vi(G(F (x))) < vi(x) if vi(x) < 0 (1 ≤ i ≤ n).

Proof. For every i ∈ {1, . . . , n} we choose a monic polynomial
Fi(T ) ∈ k[T ] with vi(Fi(x)) > 0, if such a polynomial exists. Oth-
erwise we put Fi(T ) = 1. We claim that the polynomial F (T ): =
T 2F1(T ) . . . Fn(T ) fulfills the requirements of the lemma.

Clearly F (T ) is monic and F (0) = 0. Let G(T ) ∈ k[T ] be a monic
polynomial of degree ≥ 1 with G(0) ∈ k∗, and let H(T ): = G(F (T )).
Case 1. vi(x) < 0. Now vi(H(x)) = deg(H) vi(x), since H(T )
is monic and has coefficients in Avi . We have degH ≥ 2, hence
vi(H(x)) < vi(x).
Case 2. vi(x) ≥ 0. We have vi(H(x)) ≥ 0. Suppose that
vi(H(x)) > 0. Then vi(Fi(x)) > 0, due to our choice of Fi(T ), hence
vi(F (x)) > 0. Since G(T ) is monic with coefficients in Avi and
absolute term in A∗

vi
, we have vi(H(x)) = vi(G(F (x))) = 0. This is

a contradiction. We conclude that vi(H(x)) = 0.

Theorem 6.10 [G2, Prop.22]. Assume that R has large Jacobson
radical. Let v1, . . . , vn be special valuations on R. Then the vi are

PM and A: =
n⋂
i=1

Avi is Prüfer in R.

Proof. Let Ai: = Avi . We may assume that Ai = R for every i.
Theorem 5 tells us that the vi are PM. Let x ∈ R be given. We
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prove that there exists a monic polynomial H(T ) ∈ A[T ] of degree
≥ 1 with H(x) ∈ R∗ and 1/H(x) ∈ A. Then we know by Theorem 1
that A ⊂ R is Prüfer. We apply the preceding Lemma with k the
prime ring Z · 1R in R and G(T ) = T + 1. Thus we have a monic
polynomial F (T ) ∈ Z[T ] with F (0) = 0 and vi(1 + F (x)) = 0 if
vi(x) ≥ 0, vi(1 + F (x)) < vi(x) if vi(x) < 0.

Let y: = 1 + F (x). We have vi(y) ≤ 0 for every i ∈ {1, . . . , n}. Since
R has large Jacobson radical J there exists some z ∈ R such that
yz ∈ J and y + dz ∈ R∗ for every d ∈ R∗ (cf. Prop.4 above).
We will show that there exists an element d ∈ R∗ with vi(dz) > 0 for
1 ≤ i ≤ n. Then we can finish as follows: dz ∈ A, and y + dz ∈ R∗.
Taking H(T ): = F (T ) + 1 + dz ∈ A[T ], we have H(x) = y+ dz ∈ R∗

and vi(H(x)) = vi(y) ≤ 0 for 1 ≤ i ≤ n, hence 1/H(x) ∈ A.
In order to exhibit an element d ∈ R∗ with vi(dz) > 0 for 1 ≤ i ≤ n it
suffices to find for every i ∈ {1, . . . , n} an element di ∈ R∗ with di ∈
A and vi(diz) > 0. Then d = d1 . . . dn has the required properties.
Case 1. vi(z) > 0. Take di = 1.
Case 2. vi(z) ≤ 0. Now vi(yz) ≤ 0. We choose some u ∈ R
with vi(u) < 0. This is possible since Ai = R. Applying Lemma
9 to the element uyz we obtain a monic polynomial Φ(T ) ∈ k[T ]
with Φ(0) = 0, such that vi(Φ(uyz) + 1) < vi(uyz) < vi(z) and
vj(Φ(uyz)+1) ≤ 0 for every j ∈ {1, . . . , n}. The element Φ(uyz)+1
is a unit in R since it is of the form cyz + 1 with c ∈ R and since
yz ∈ J . We take di: = 1

Φ(uyz)+1 . Then di ∈ A ∩R∗ and vi(diz) > 0.

Starting from Theorem 10 we obtain a new class of examples of
Prüfer extensions as follows.

Corollary 6.11. Assume there exists a family (ϕα:Rα → R | α ∈ I)
of ring homomorphisms such that R is the union of the subrings
ϕα(Rα), i ∈ I, and every Rα has large Jacobson radical. Assume
further that W is a set of valuations on R such that for every α ∈ I
the set of valuations {w ◦ ϕα | w ∈ W} on Rα is finite. Then the
intersection A of the rings Aw, w ∈ W , is Prüfer in R.

Proof. We verify condition (5′) in Theorem 5.2. The ring A is
integrally closed in R. Let x ∈ R be given. We choose some α ∈
I and xα ∈ Rα with ϕα(xα) = x. Due to Theorem 10 the ring
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Aα: = ϕ−1
α (A) is Prüfer in Rα. Thus xα ∈ Aα[x2

α] by Theorem 5.2.
Applying ϕα to this relation we obtain x ∈ A[x2]. Again by Theorem
5.2 we conclude that A is Prüfer in R.

Theorem 6.12. Let k be a subring of R with the following property.
(∗∗) For every x ∈ R \ k there exists a monic polynomial Φx(T ) ∈
k[T ], Φx = 1, with Φx(x) ∈ R∗ and constant term Φx(0) ∈ k∗.

Let v1, . . . , vn be valuations on R with Avi
⊃ k for all i. Then the

intersection A of the rings Avi is Prüfer in R.

Proof. A is integrally closed in R and k ⊂ A. Let x ∈ R \ A be
given. We prove that there exists a monic polynomial H(T ) ∈ k[T ]
of degree ≥ 1 with H(x) ∈ R∗ and 1/H(x) ∈ A, and then will be
done by Theorem 1.

We choose a polynomial F (T ) ∈ k[T ] for x as indicated in Lemma
9. Let y: = F (x). Certainly y ∈ A, since x ∈ A and A is integrally
closed in R. A fortiori y ∈ k. The polynomial H(T ): = Φy(F (T ))
fits our needs, due to Lemma 9.

Notice that, for k a subfield of a ring R, the previous condition (∗)
(cf. 6.8) implies (∗∗). In particular (∗∗) holds in Example 7 above.
(∗∗) holds also in the examples 1, 3, 4 for k the prime ring in R.

Definition 5. Let F (T ) ∈ R[T ] be a nonconstant monic polynomial.
Let v be a valuation on R. We call v an F -valuation, if v(c) ≥ 0 for
every coefficient c of F and F (T ) has no zero in the residue class field
κ(v) = ov/mv. {Of course, this means that the image polynomial
F̄ (T ) ∈ κ(v)[T ] has no zero in κ(v).}

Theorem 6.13. Let (vi| i ∈ I) be a family of valuations on R.
Assume that A is the intersection of the valuation rings Avi (i ∈ I).
Assume also that for each x ∈ R \A there exists a monic polynomial
Fx(T ) ∈ A[T ] of degree dx ≥ 1, such that Fx(x) ∈ R∗ and every vi
is an Fx-valuation. Then A is Prüfer in R.

Proof. A is integrally closed in R. By Theorem 1 we are done if we
verify that 1/Fx(x) ∈ A for each x ∈ R \ A, i.e. vi(Fx(x)) ≤ 0 for
x ∈ R \A and i ∈ I. If vi(x) < 0 then vi(Fx(x)) = dx · vi(x) < 0. If
v(xi) ≥ 0 then x ∈ Avi , and vi(Fx(x)) = 0 since vi is an Fx-valuation.
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Here we quote the seminal paper [R] by Peter Roquette, which in
the case, that R is a field, bears close connection to Theorem 13.
Roquette also obtained results on class groups which allow to con-
clude in important cases that A has trivial class group, hence is a
Bézout domain. Our Theorem 13 generalizes the first part of [R,
Theorem 1]. The second part, dealing with the class group of A, will
be generalized in §7.

Example 11. Let R be any ring and let q be a power of a prime
number p. Let us call a valuation v on R a q-valuation, if the residue
class field κ(v) is a finite field having pr elements with pr ≤ q. As-
sume that R admits at least one q-valuation v0. Then xq −x−1 = 0
for every x ∈ R, since v0(xq − x − 1) ≤ 0. Assume further that
xq − x − 1 ∈ R∗ for every x ∈ R. (If R has not this property, re-
place R by R

[
1

xq−x−1

∣∣ x ∈ R
]
. Notice that every q-valuation on R

extends to a q-valuation of this ring.) Now it follows from Theorem
13 that the intersection of the valuation rings Av of all q-valuations
on R is Prüfer in R. In particular, the q-valuations on R are PM.

This observation generalizes the well known fact, important in the
theory of formally p-adic fields, that for K a formally p-adic field the
so called γ-Kochen ring o[γK] is Prüfer in K (cf. [PR, §6]; o[γK] is
even Bezout).

We now aim at criteria that A is Prüfer in R, which do not assume
in advance that A is integrally closed in R. A prototype of the
criteria to follow is a lemma by A. Dress, which states for R a field of
characteristic not 2, that the subring of R generated by the elements
1/(1 + a2) with a ∈ F , a2 = −1, is Prüfer in R, cf. [D, Satz 2′], [KS,
Chap III §12], [La, p.86].∗)

Theorem 6.14. Assume that for every x ∈ R \A there exists some
monic polynomical F (T ) ∈ A[T ] of degree ≥ 1 with F (x) ∈ R∗,

1
F (x) ∈ A, x

F (x) ∈ A. Then A is Prüfer in R.

Proof. Let B be an R-overring of A and S: = A ∩ B∗. We verify
that B = S−1A. Then we know that A is weakly surjective in every
R-overring, and will be done by Theorem 5.2.

∗) Actually Dress made the slightly stronger assumption that -1 is not a
square in F .
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Of course, S−1A ⊂ B. Let x ∈ B \ A be given. We choose a
polynomial F (T ) as indicated in the theorem. s: = 1

F (x) ∈ A ⊂ B.
Also F (x) ∈ B, hence s ∈ S. By assumption a: = x

F (x) ∈ A. Thus
x = a

s ∈ S−1A.

The following remark sheds additional light both on Theorem 14 and
Theorem 1.

Remark 6.15. Assume that A is integrally closed in R (e.g. A is
Prüfer in R). Let x ∈ R and let F (T ) ∈ A[T ] be a monic polynomial
of degree n ≥ 1 with F (x) ∈ R∗ and 1

F (x) ∈ A. Then xr

F (x) ∈ A for
0 ≤ r ≤ n.

Proof (cf. [Gi, p.154 ]). We proceed by induction on r. For r = 0
the assertion is trivial. Assume that 1 ≤ r ≤ n and that xs

F (x) ∈ A

for 0 ≤ s < r.
We write

F (T )r = Tnr +
n∑
j=1

hj(T )T (n−j)r

with polynomials hj(T ) ∈ A[T ] of degree < r. The relation

1
F (x)n−r =

F (x)r

F (x)n
=

( xr

F (x)
)n +

n∑
j=1

1
F (x)j−1

hj(x)
F (x)

· ( xr

F (x)
)n−j

proves that xr

F (x) is integral over A, since by induction hypothesis
hj(x)
F (x) ∈ A for every j ∈ {1, . . . , n}. Thus xr

F (x) ∈ A.

Theorem 14 and this remark imply an improvement of Example 11
as follows.

Example 12. Let again R be a ring and q a power of a prime
number. Let ε = +1 or ε = −1. We assume that xq − x + ε ∈ R∗

for every x ∈ R. Let A denote the subring of R generated by the
elements 1

xq−x+ε and B denote the subring of R generated by the
elements 1

xq−x+ε ,
x

xq−x+ε , with x running through R in both cases.
B is Prüfer in R by Theorem 14. In particular B is integrally closed
in R. Remark 15 tells us that B is integral over A. Thus B is
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the integral closure of A in R. It is evident that A and hence B
is contained in the intersection H of the valuation rings Av with v
running through all q-valuations of R.

Theorem 6.16. Let k be a subring of R. (We will often choose for
k the prime ring in R.) Let F (T ) ∈ k[T ] be a monic polynomial of
degree d ≥ 1. Assume that d! ∈ R∗ and that F (x) ∈ R∗ for every
x ∈ R with F (x) ∈ k. The subring A of R generated by k, the
element 1/d! and the set {1/F (x)|x ∈ R, F (x) ∈ k} is Prüfer in R.

Proof. a) Let B: = Ã, the integral closure of A in R. By Theorem 1
B is Prüfer in R. We now verify that for a given prime ideal p of
A we have B ⊂ A[p]. Then we may conclude (Remark 5.5) that
B ⊂ ⋂

p∈SpecA
A[p] = A ⊂ B, i.e. B = A, and will be done.

b) We first prove that for any x ∈ B we have F (x) ∈ A[p]. Put y: =
F (x)−1. Suppose F (x) ∈ A[p], hence y ∈ A[p]. Clearly F (x) ∈ k. By
hypothesis 1+y = F (x) ∈ R∗ and 1

1+y ∈ A. Also y
1+y = 1− 1

1+y ∈ A.
Since y ∈ A[p] we conclude that 1

1+y ∈ p, hence y
1+y = 1 − 1

1+y ∈ p.
But y

1+y ∈ (pB) ∩ A = p, since B is integral over A, contradiction!
Thus indeed F (x) ∈ A[p].

c) For  = 0, 1, 2, . . . we successively define polynomials ∆	F (T ) by

∆0F (T ): = F (T ), ∆	+1F (T ): = ∆	F (T + 1) − ∆	F (T ).

For every x ∈ B we have F (x) ∈ A[p], thus also ∆	F (x) ∈ A[p] for
any  ∈ N. But ∆d−1F (T ) = d!T + c with c ∈ k. Thus (d!)x ∈ A[p]
for every x ∈ B. Since 1/d! ∈ A ⊂ A[p], we conclude that B ⊂ A[p].

Example 13. We denote the prime ring in R by Z · 1. Let d ∈ N.
Assume that d! ∈ R∗ and 1 + xd ∈ R∗ for all x ∈ R with xd ∈ Z · 1.
The subring A of R generated by 1/d! and the elements 1/(1 + xd)
with x ∈ R, xd ∈ Z · 1 is Prüfer in R.

N.B. For d = 2 and R a field this example states a slight improvement
of Dress’s lemma cited above.

Remark. The condition d! ∈ R∗ cannot be omitted. For example, let
R: = F2[T ]/(1 + T 2) with F2 the field consisting of 2 elements. Let
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A be the subring of R generated by the elements 1/(1 + x2) for all
x ∈ R with x2 = 1. Then A = F2, and this not Prüfer in R, since F2
is not integrally closed in R.

As an illustration what has been done so far we return to Example 7.
Thus let V be an affine variety over some field k which is not alge-
braically closed. Let U be a k-Zariski-open subset of V (k), and let R
be the ring of regular functions on U . We choose a monic polynomial
F (T ) ∈ k[T ], F = 1, which has no zeros in k.

Let B be any subring of R containing k (e.g. B = k). Let H0 denote
the subring B[ 1

F (x) | x ∈ R] of R generated by B and the elements
1

F (x) for all x ∈ R. Let H denote the integral closure of H0 in R.

Theorem 6.17. i) H is Prüfer in R.
ii) H is the set of all x ∈ R such that v(x) ≥ 0 for every Manis

F -valuation v on R with v(b) ≥ 0 for all b ∈ B.
iii) H = B[ xi

F (x) | x ∈ R, 0 ≤ i ≤ 1].
iv) If the characteristic of k is zero or exceeds d, then H = H0.

Proof. H is an R-Prüferring by Theorem 1. Thus H is the inter-
section of the valuation rings Av with v running through the set Ω
of all Manis valuations on R with Av ⊃ H.

Let v be a Manis valuation on R. Then v ∈ Ω iff Av ⊃ H0. This
means that Av ⊃ B and v

( 1
F (x)

) ≥ 0 for every x ∈ R. If x ∈ Av

then v(F (x)) < 0, hence v
( 1
F (x)

)
> 0 automatically. Let x ∈ Av.

Then v
( 1
F (x)

) ≥ 0 iff v(F (x)) = 0 iff F̄ (x̄) = 0 for F̄ (T ) the image
of F (T ) in κ(v)[T ] and x̄ the image of x in κ(v). Thus Ω is the set
of all Manis F -valuations v on R with Av ⊃ B.

The ring H ′: = B
[
xi

F (x) | x ∈ R, 0 ≤ i ≤ 1
]

is Prüfer in R by
Theorem 14. Every valuation v ∈ Ω has nonnegative values on H ′.
Thus H0 ⊂ H ′ ⊂ H. Since H ′ is integrally closed in R, we have
H ′ = H. If d! ∈ k∗, then we know from Theorem 16 that H0 is
Prüfer in R and conclude that H0 = H.

We finish with some examples from real algebra, using standard no-
tions from that area, cf. [BCR], [KS]. The uninitiated reader may
safely skip the following paragraphs. {For part II of the book we plan
a whole section on real algebra. There we will be more explicit.}
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Definition 6. We call a ring R totally real if, for every maximal
ideal m of R, the field R/m is formally real.

Notice that R/m is formally real iff m ∩ (1 + ΣR2) is empty. Thus R
is formally real iff 1 + ΣR2 ⊂ R∗.

For any ring R we denote by H(R) the real holomorphy ring of R.
This is the ring of all f ∈ R such that there exists some natural
number n with −n ≤ f ≤ n on the real spectrum SperR of R, cf.
[BP].

Proposition 6.18 [BP, Th.5.13]. If R is totally real then H(R) is
Prüfer in R.

Proof. We know from Example 13 that the subring H0(R): =
Z

[
1

1+f2 | f ∈ R
]

of R is Prüfer in R. Clearly H0(R) ⊂ H(R). Thus
H(R) is Prüfer in R.

We give a more explicit description of the real holomorphy ring in
some cases.

Examples 14. a) Let X be any topological space. Clearly the ring
R: = C(X) of continuous R-valued functions on X is totally real. We
claim thatH(R) is the ring Cb(X) of bounded continuous functions∗)

on X. Indeed, every x ∈ X gives us a point in the real spectrum of
R, and thus H(R) ⊂ Cb(X).∗∗) On the other hand, if f ∈ Cb(X) is
given, choosing some n with |f | ≤ n on X, we have n2 − f2 = g2

with some g ∈ C(X). Thus f2 ≤ n2 on SperR, and we conclude
that f ∈ H(R). Thus Cb(X) is Prüfer in C(X). Of course, this
can be deduced directly from Example 13 without referring to real
holomorphy rings.
b) Let k be a real closed field and M a semialgebraic subset of kN for
some N ∈ N. The ring R: = CS(M) of continuous semialgebraic k-
valued functions on M is clearly totally real. By the same argument
as in a) we see that H(R) is the ring CSb(M) of bounded continuous

∗) In the classical algebraic literature (cf. [GJ]) this ring is denoted by
C∗(X). We have to avoid this notation due to our convention that R∗ denotes
the group of units of R.

∗∗) The reader my consult [Sch3] for information about SperC(X).
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semialgebraic functions on M . Thus CSb(M) is Prüfer in CS(M).
N. Schwartz has proved that CS(M) is the Prüfer hull of CSb(M)
except in the case that the semialgebraic set M “has no end points”,
i.e. there does not exist a point x ∈ M which has a neighbourhood U
in M which admits an semialgebraic isomorphism onto the halfopen
interval [0, 1[ in k mapping x to 0, cf. [Sch2, Example 5.13].

c) Let A be any ring and R the ring of abstract Nash functions N(A)
on SperA, i.e. R = NA(SperA) with NA the Nash structure sheaf
on SperA, cf. [R]. One verifies again, as in a), that H(R) is the ring
Nb(A) of bounded Nash functions. {Now choose n ∈ N such that
|f | < n, and use the fact that a Nash function h > 0 on SperA has
a square root.} Thus Nb(A) is Prüfer in N(A).

d) Let U be an open subset of RN . As in c) one sees the following:
Let R denote the ring Cr(U) of real Cr-functions on U , with r ∈
N0 ∪ {∞, ω}. {As usual, Cω(U) denotes the ring of real analytic
functions on U .} Then R is totally real and H(R) is the subring
Crb (U) of bounded functions in Cr(U). Thus Crb (U) is Prüfer in
Cr(U).

e) Analogously, if U is a semialgebraic open subset of kN for k a real
closed field and r ∈ N0∪{∞}, we can introduce the ring R: = CSr(U)
of semialgebraic Cr-functions on U with values in k. If r = ∞ this
is the ring N(U) of Nash functions on U , cf. [BCR, §2.9]. {In good
cases, in particular if k = R, one can also define analytic k-valued
semialgebraic functions, but then observes that Cω(U) = N(U), cf.
[Br, p.265], [K1, §4]}. In all these cases one sees again, as above,
that R is totally real and H(R) is the subring CSrb (U) of bounded
semialgebraic Cr-functions on U .

Remark 6.19. In the situation of Proposition 19 it is easily seen
that H(R) is totally real. Moreover, if for every f ∈ R with f > 0
on SperR there exists a square root

√
f in R, then H(R) coincides

with H0(R) = Z
[

1
1+f2 | f ∈ R

]
. Indeed, let a ∈ H(R) be given.

Choose n ∈ N with −n < a < n. Then 2n + 1 > a + n + 1 > 0 on
SperR. Set b: = a+n+1

2n+1 . Then 0 < b < 1 on SperR. By the strict
Positivstellensatz (e.g. [BCR, Prop.4.4.7.ii], [KS, p.141]) it follows
from b > 0, that b divides an element of 1+ΣR2, hence b ∈ R∗. Now
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b−1 > 1 implies

b =
1

1 +
(√
b−1 − 1

)2 ,

hence b ∈ H0(R) and a ∈ H0(R).

In particular, in all the examples R = C(X), CS(M), N(A), . . .
above we have H(R) = H0(R).

§7 Principal ideal results

We start out for a generalization of the second half of Roquette’s the-
orem 1 in [R] mentioned in §6. We will rely on techniques developed
by Alan Loper in the case of subrings of fields [Lo1], [Lo2].

In the following we fix a ring A and a monic polynomial F (T ) ∈ A[T ]
of degree d ≥ 1.

Definition 1 (cf. [Lo1]). Let ϕ:A → B be a ring extension of A.
We call the polynomial F unit valued in B (abbreviated: uv in B),
if F (b) ∈ B∗ for every b ∈ B. {Of course, F (b): = Fϕ(b) with Fϕ(T )
the image polynomial of F (T ) in B[T ].}
More precisely we then should call F “uv with respect to ϕ”, but in
the following it will be always clear which homomorphism ϕ from A
to B is taken. We do not demand ϕ to be injective.

N.B. If F is uv in some extension B of A different from the null ring
then certainly d ≥ 2.

Proposition 7.1 (cf. [Lo1, Prop.1.14]). Let m be a maximal ideal
of A. Then F (T ) is uv in Am iff F (A) ⊂ A \ m.

Proof. If there exists some a ∈ A with F (a) ∈ m, then certainly
F (T ) is not uv in Am. Assume now that F (A) ⊂ A \ m. Suppose
that F (T ) is not uv in Am. We have some a ∈ A, s ∈ A \ m with
F

(
a
s

) ∈ mAm. Since the ideal m is maximal there exists some t ∈ A
with st ≡ 1 mod m. Then in Am
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F (at)
1

≡ F
(a
s

) ≡ 0 mod mAm,

hence F (at) ∈ m. This contradiction proves that F (T ) is uv in Am.

Corollary 7.2. F (T ) is uv in A iff F (T ) is uv in Am for every
maximal ideal m of A.

We write F (T ) = T d + c1T
d−1 + · · · + cd with ci ∈ A, and introduce

the homogenization G(X,Y ) ∈ A[X,Y ] of F ,

G(X,Y ): = Y dF
(X
Y

)
= Xd + c1X

d−1Y + · · · + cdY
d.

Proposition 7.3. Let p be a prime ideal of A. The following are
equivalent.

i) F is uv in Ap.
ii) F is uv in k(p) = Quot (A/p), i.e. F has no zero in k(p).
iii) If x, y ∈ A and G(x, y) ∈ p, then y ∈ p.
iv) If x, y ∈ A and G(x, y) ∈ p, then x ∈ p and y ∈ p.

Proof. i) ⇔ ii) is evident. iv) ⇒ iii) is trivial, and iii) ⇒ iv) is
evident, since the form G(X,Y ) contains the term Xd.
i) ⇒ iii): Let x, y ∈ A and G(x, y) ∈ p. Suppose y ∈ p. Then we
have in Ap

F
(x
y

)
=
G(x, y)
yd

∈ pAp.

This contradicts the assumption that F is uv in Ap.
iii) ⇒ i): Let a ∈ A, s ∈ A \ p be given. Then G(a, s) ∈ A \ p. Thus

F
(a
s

)
=
G(a, s)
sd

∈ A∗
p.

Proposition 7.4 (cf. [Lo2, Cor.2.3] for R a field). Assume that
(A, p) is a Manis pair in some ring R. Let v denote a Manis valuation
on R with Av = A, pv = p. The following are equivalent.

i) F is uv in Ap.
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ii) v is an F -valuation.
iii) v(G(x, y)) = dmin(v(x), v(y)) for all x, y ∈ R.

Proof. The equivalence i) ⇔ ii) is clear from i) ⇔ ii) in Proposi-
tion 3.
i) ⇒ iii): Let x, y ∈ R be given. The formula is a priori valid if
v(x) < v(y), since G(X,Y ) contains the term Xd. It is also valid if
v(x) = v(y) = ∞. Assume now that v(x) ≥ v(y) = ∞. We choose
some z ∈ R with v(yz) = 0. This is possible since v is Manis. Then
v(xz) ≥ 0. Thus xz ∈ A and yz ∈ A\p. We know from Prop. 3 that
G(xz, yz) = zdG(x, y) ∈ A \ p. Thus v(G(x, y)) = −dv(z) = dv(y).
iii) ⇒ i): Let x, y ∈ A and G(x, y) ∈ p. Then the formula in iii) tells
us that x ∈ p and y ∈ p. Thus F is uv in Ap by Proposition 3.

We now study finitely generated A-submodules a of R with Ra = R.
These submodules should be viewed as analogues of the finitely gen-
erated fractional ideals in the classical case that A is a domain and
R its quotient field. In Chapter II we will study the set of these sub-
modules a in a systematic way. Just now we are looking for criteria
that some power ad is a principal module, i.e. ad = Rb with some
b ∈ R∗.

Definition 2. Let (a1, . . . , an) be a finite sequence in R. The F -
transform of this sequence is the sequence (b1, . . . , bn) in R defined
inductively by

b1: = a1, bi: = G(bi−1, a
di−2

i ) (i > 1).

In the following lemmas (a1, . . . , an) is a sequence inR and (b1, . . . , bn)
is its F -transform.

Lemma 7.5. Assume that all ai ∈ A. Let p be a prime ideal of A
such that F is uv in Ap. Then Aa1 + · · · +Aan ⊂ p iff bn ∈ p.

Proof. If x, y ∈ A and t ∈ N, then Ax + Ay ⊂ p iff Ax + Ayt ⊂ p.
By Proposition 3 the latter is equivalent to G(x, yt) ∈ p. The lemma
follows from this by induction on n.
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Lemma 7.6 (cf. [Lo2, Cor.2.4]). Assume that A is the valuation
ring Av of a Manis valuation v on some ring R which is also an
F -valuation. Then

v(bn) = dn−1 min{v(a1), . . . , v(an)}.
The proof goes by induction on n using the formula in Proposition
4.iii.

Lemma 7.7. Let a: = Aa1 + · · · +Aan. Assume that F is uv in R.
Then

Ra = R ⇐⇒ bn ∈ R∗.

Proof. ⇐: This is evident since bn ∈ a.
⇒: Suppose bn ∈ R∗. We choose a maximal ideal M of R containing
bn. Our polynomial F is uv in R hence uv in RM by Corollary 2.
Now Lemma 5, applied to F as a polynomial over R, tells us that
Ra1 + · · · + Ran ⊂ M. This contradicts the assumption Ra = R.
Thus bn ∈ R∗.

Now we are prepared to prove a generalization of the theorem by
Roquette mentioned in §6.

Theorem 7.8 (cf. [R, Th.1] for R a field). Assume that S is a set of
Manis valuations on a ring R and that A =

⋂
v∈S

Av. Assume further

that there exists a monic polynomial F (T ) ∈ A[T ] of degree d ≥ 1
with the following two properties:
(i) F (T ) is uv in R.
(ii) Every v ∈ S is an F -valuation.

Then A is Prüfer in R. If a is any finitely generated A-submodule
of R with Ra = R then there exists some t ∈ N such that ad

t

is
principal. More precisely, if a1, . . . , an is a system of generators of a
and (b1, . . . , bn) is the F -transform of the sequence (a1, . . . , an), then

ad
n−1

= Abn.

Proof. Theorem 6.5 tells us that A is Prüfer in R. Let a1, . . . , an
be a system of generators of a and (b1, . . . , bn) the F -transform of
(a1, . . . , an). Lemma 7 tells us that bn ∈ R∗.
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It is evident that bn ∈ ad
n−1

. The module ad
n−1

is generated over A
by the monomials ae11 . . . aen

n with ei ≥ 0, e1 + · · · + en = dn−1. We
now verify that

v(ae11 . . . aen
n ) ≥ v(bn) (∗)

for every such monomial and every v ∈ S. It then follows that
ae11 . . . aen

n /bn is an element of Av for every v ∈ S, hence of A, and
we conclude that ad

n−1
= Abn.

The verification of (∗) is immediate by use of Lemma 6. Let γ: =
min{v(a1), . . . , v(an)}. Then v(ae11 . . . aen

n ) ≥ (e1 + · · · + en)γ =
dn−1γ = v(bn).

In Chapter II we will see that for A a Prüfer subring of a ring R
the finitely generated A-submodules a of R with Ra = R form an
abelian group. The quotient of this group by the subgroup of prin-
cipal modules should be called the class group of A in R. Starting
with Theorem 8 it is possible to get bounds on the torsion of the
class group in good cases in much the same way as Roquette has ex-
plicated for R a field [R]. Here we only quote the following theorem
which is an immediate consequence of Theorem 8.

Theorem 7.9 (cf.[R, Th.2]). Assume again that A =
⋂
v∈S

Av for

a set S of Manis valuations on some ring R. Assume further that
there exist nonconstant monic polynomials F1(T ), . . . , Fr(T ) with
coefficients in A (r ≥ 1), such that for every j ∈ {1, . . . , r} the
following holds
(1) Fj is uv in R.
(2) Every v ∈ S is an Fj-valuation.

Let d denote the greatest common divisor of the degrees of F1, . . . , Fr.
Then A is Prüfer in R, and for each finitely generated A-submodule
a of R with Ra = R there exists some t ∈ N such that ad

t

is principal.

Example 7.10. Let R be a ring such that Xd + 1 is uv in R for
some (even) d ∈ N and d! is a unit in R. Let A be a subring of R
which contains 1/d! and the elements 1/(1+xd) for all x ∈ R. Then
A is Prüfer in R by Example 11 in §6. For every finitely generated
A-submodule a of R with aR = R there exists some t ∈ N with ad

t

principal.



78 §7 Principal ideal results

Proof. A is the intersection of the rings A[m] with m running through
the maximal ideals of A (Remark 5.5). These rings are Manis in R.
The polynomial Xd + 1 is uv in Am for every m (Cor.2), and thus
the Manis valuations giving the rings A[m] are (Xd + 1)-valuations.
Theorem 8 applies.

In an important more special situation this result can be improved.
Assume that 1 + ΣRd ⊂ R∗. A subring A of R containing the
elements 1/(1+q) with q ∈ ΣRd is Prüfer in R. If a = Ax1+· · ·+Axn
is a finitely generated submodule of R with Ra = R, then ad =
A(xd1 + · · · + xdn). This has been proved by E. Becker and V. Powers
[BP, Cor. 5.11, Cor.5.13].

A slight expansion of the techniques used so far will give us a theorem
containing the result of Becker and Powers as a special case, together
with a proof which is rather different from the one in [BP].

Definition 3. Let H(X1, . . . , Xn) ∈ A[X1, . . . , Xn] be a form, i.e. a
homogeneous polynomial over A in n ≥ 2 variables. Let ϕ:A → K
be a homomorphism into a fieldK. We callH isotropic over K, if the
image form Hϕ(X1, . . . , Xn) ∈ K[X1, . . . , Xn] is isotropic, i.e. has a
non trivial zero in Kn, and we call H anisotropic over K otherwise.

In the following it will be always clear which homomorphism ϕ is
under consideration. Thus the impreciseness in this definition will
do no harm.

Theorem 7.11. Let S be a set of Manis valuations on a ring R and
A: =

⋂
v∈S

Av. Assume there is given a form H(X1, . . . , Xn) over A in

n variables of degree d, n ≥ 2, d ≥ 1, with the following properties:
i) For every maximal ideal M of R the form H is anisotropic over
R/M.

ii) For every v ∈ S the form H is anisotropic over κ(v).

Then A is Prüfer in R. If a is an A-submodule of R generated by n
elements x1, . . . , xn and Ra = R then ad = H(x1, . . . , xn)A.

Proof. a) We start with a proof of the second claim. Suppose
that H(x1, . . . , xn) is not a unit in R. Then there exists a maximal
ideal M of R with H(x1, . . . , xn) ∈ M. Since Rx1 + · · · + Rxn =
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R we conclude that H is isotropic over R/M, in contradiction to
assumption (i) above. Thus H(x1, . . . , xn) ∈ R∗.
b) Let v ∈ S be given. We verify that

(∗) v(H(x1, . . . , xn)) = dmin{v(x1), . . . , v(xn)}.

This is obvious if v(xi) = ∞ for all i ∈ {1, . . . , n}. Assume now that
γ: = min{v(x1), . . . , v(xn)} < ∞. We choose some z ∈ R with
v(z) = −γ, which is possible, since v is Manis. Then v(zxi) ≥ 0
for all i ∈ {1, . . . , n} and v(zxi) = 0 for at least one i. Since H
is anisotropic over κ(v) we conclude that v(H(zx1, . . . , zxn)) = 0,
hence v(H(x1, . . . , xn)) = −dv(z) = dγ, as desired.
c) Now we see, as in the proof of Theorem 8, that

v(xe11 . . . xen
n ) ≥ v(H(x1, . . . , xn))

for any integers ei ≥ 0 with e1 + · · · + en = d and any v ∈ S, and
we conclude that xe11 . . . xen

n /H(x1, . . . , xn) ∈ A. This proves that
ad = H(x1, . . . , xn)A.
d) Let

G(X,Y ): = H(X, . . . ,X, Y ) = c0X
d + c1X

d−1Y + · · · + cdY
d.

c0 = H(1, . . . , 1, 0) is a unit in A, since the elements 1, . . . , 1, 0 gen-
erate the ideal a = A and ad = H(1, . . . , 1, 0)A. We consider the
monic polynomial

F (T ): = c−1
0 G(T, 1) ∈ A[T ].

F is uv in R, since H(x, . . . , x, 1) ∈ R∗ for every x ∈ R. If v(x) ≥ 0
for some v ∈ S, then v(H(x, . . . , x, 1)) = v(1) = 0. Thus every v ∈ S
is an F -valuation. We conclude by Theorem 6.5 that A is Prüfer in
R.

Remark. The multiplicative ideal theory in Chapter II will give a
more natural proof that A is Prüfer in R.

In order to exploit Theorem 11 in the real algebraic setting, we need
an easy lemma.
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Lemma 7.12. Let H(X1, . . . , Xn) be a form over a ring A of degree
d in n variables with d ≥ 1, n ≥ 2. For each i ∈ {1, . . . , n} we define

Fi(T1, . . . , Tn−1): = H(T1, . . . , Ti−1, 1, Ti, . . . , Tn−1).

The following are equivalent
(1) H is anisotropic over A/m for every maximal ideal m of A.
(2) Fi(x1, . . . , xn−1) ∈ A∗ for all x1, . . . , xn−1 ∈ A and 1 ≤ i ≤ n.

Proof. (1) =⇒ (2): Let x1, . . . , xn−1 ∈ A and i ∈ {1, . . . , n}. Then
H(x1, . . . , xi−1, 1, xi, . . . , xn−1) ∈ m for every maximal ideal m of A.
Thus Fi(x1, . . . , xn−1) ∈ A∗.
(2) =⇒ (1): Suppose there exists a maximal ideal m of A such that
H is isotropic over A/m. Then there exist elements a1, . . . , an ∈
A with H(a1, . . . , an) ∈ m but ai ∈ m for some i. We choose an
element bi ∈ A with aibi ≡ 1 mod m. We have bdiH(a1, . . . , an) =
= H(a1bi, . . . , anbi) ≡ Fi(a1bi, . . . , ai−1bi, ai+1bi, . . . , anbi) mod m.
Thus Fi(a1bi, . . . , ai−1bi, ai+1bi, . . . , anbi) ∈ m, a contradiction.

Corollary 7.13 (cf. [BP]). Let d ∈ N and let R be a ring with
1 + ΣR2d ⊂ R∗. Then the subring

H: = Hd(R) = Z
[ 1
1 + q

|q ∈ ΣR2d]
is Prüfer in R. For each finitely generated H-submodule a = Hx1 +
· · · +Hxn of R with aR = R we have a2d = (x2d

1 + · · · + x2d
n )H.

Proof. Applying Theorem 6.16 with F (T ) = 1+T 2d we see thatH is
Prüfer in R (cf. §6, Example 13). For every maximal ideal m of H we
choose a Manis valuation v on R with Av = H[m], pv = m[m]. Let S
denote the set of these valuations. Then H =

⋂
v∈S

Av (cf. 5.5). Now,

if v ∈ S, Av = H[m], then H/m = H[m]/m[m], as is easily checked,
and we learn from Proposition 1.6 that κ(v) is the quotient field of
H/m. Since H/m is already a field, we have κ(v) = H/m. Let n ≥ 2.
Using Lemma 12 we see that the form X2d

1 + · · ·+X2d
n is anisotropic

in R/M for every maximal ideal M of R, and also anisotropic in
H/m for every maximal ideal m of H. Now Theorem 11 gives the
second claim above.
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Becker and Powers have proved that 1+ΣR2d ⊂ R∗ implies 1+ΣR2 ⊂
R∗, and that then H: = Hd(R) coincides with H1(R) and the “real
holomorphy ring” of R [BP, Prop.5.1 and Prop.5.7]. Thus, if a is a
finitely generated H-submodule of R with Ra = R, then already a2

is a principal submodule.



Chapter II: Multiplicative ideal theory

Summary:

In this chapter we study Prüfer extensions avoiding valuations as
much as possible. Instead we develop and apply “multiplicative ideal
theory”. In contrast to the classical theory of Prüfer domains we will
not use a notion of fractional ideal, but either will work with “regular
modules” (see below) or with invertible modules.1) Valuations will
play a role only in §1, up to Proposition 1.8, and in the last sections
§11 and §12. From Chapter I we will mainly use the sections §3 – §5.

As already said in the Introduction, Prüfer extensions are useful since
they give us “families of valuations”. On the other hand suitable
valuations help us to understand Prüfer extensions. Thus it may be
good at times to work solely in the framework of ring extensions and
submodules, as we will do now, and good at other times to focus on
valuations, as we will do in Chapter III.

In §1 we explain that Prüfer extensions have a pleasant multiplicative
ideal theory. This will be easy. It is more demanding to characterize
Prüfer extensions by suitable conditions from multiplicative ideal
theory. Such characterizations are given in §2 and §5. We have been
ambitious to make the conditions as weak as possible, which then
gives strong theorems. We advise the reader to skip some proofs
in §2 at first reading. The sections §3 – §9 add various facets to
the axiomatics and the theory of A-submodules of a given Prüfer
extension A ⊂ R, in particular of R-overrings of A, i.e. subrings of
R containing A. Then in §10 we discuss a special class of Prüfer
extensions, the Bezout extensions. These are the Prüfer extensions
in which every invertible ideal is principal.

The final sections §11 and §12 deal with the Prüfer extensions of a
noetherian ring, drawing conclusions in this case from much what
has been done before in Chapters I and II.

1) A useful notion of fractional ideal will be developed in part II of the
book.

M. Knebusch and D. Zhang: LNM 1791, pp. 83–176, 2002.
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§1 Multiplicative properties of regular modules

Let A be a subring of a ring R. In the case that R is the total
quotient ring QuotA of A and A is Prüfer in R it is well known that
a good “multiplicative” theory exists for the ideals of A which are
“regular”, i.e. contain a nonzero divisor. Moreover here one has a
satisfying theory of regular fractional ideals, similar to the classical
multiplicative ideal theory of Prüfer domains [Gi]. Our goal in the
present section is to establish analogous ideal theoretic results for A
a Prüfer subring of an arbitrary ring R.

Definition 1. An A-submodule I of R is called regular in R (or
R-regular) if IR = R. It is called strongly regular in R (or strongly
R-regular) if I ∩R∗ = ∅.2)

Example 1. Assume that R = QuotA. Then A-module I is strongly
R-regular iff I contains a nonzero divisor of A. This is the notion
of regularity used traditionally in the multiplicative ideal theory of
rings with zero divisors, cf. [LM], [Huc]. Moreover, now regularity
and strong regularity means the same. Indeed, assume that IR = R.
In R = QuotA we have an equation

1 =
r∑
i=1

xi
s
ai

with ai ∈ I, xi ∈ A, s ∈ R∗. We conclude that s =
r∑
1
xiai ∈ R∗ ∩ I.

In this chapter and also the later ones regularity will play a key role,
but strong regularity will only rarely be needed. Nevertheless we
give one more example, where regularity and strong regularity mean
the same.

2) Rhodes [Rh, p. 3424] uses a slightly weaker notion of R-regularity. If A is
weakly surjective in R both definitions are equivalent. On the other hand, the
notion of R-regularity used by Griffin [G2] means for rings with unit element
strong R-regularity in our sense. (Griffin also admits certain rings without unit
element.)
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Example 2. If R is semilocal (i.e. the set of maximal ideals MaxR
is finite), every R-regular ideal I of A is strongly R-regular.

Proof. Let M1, . . . ,Mr denote the maximal ideals of R. Suppose
that I ∩ R∗ = ∅. Then every x ∈ I is contained in some Mi, hence
I ⊂ M1 ∪ · · · ∪ Mr. By a well known lemma [Bo, II §1 Prop. 2]
there exists some i ∈ {1, . . . , r} with I ⊂ Mi, hence IR ⊂ Mi. This
contradicts the assumption that IR = R. Thus I ∩R∗ = ∅.

Notice that the argument fails if more generally I is an R-regular
A-submodule of R. We needed that I is closed under multiplication.

Definition 2. If I and J are A-submodules of R then [I:R J ] denotes
the A-submodule of R consisting of all x ∈ R with xJ ⊂ I, and
(I:A J) denotes the ideal of A consisting of all x ∈ A with xJ ⊂ I,
(I:A J) = A∩ [I:R J ]. We usually omit the subscripts A and R here,
if no ambiguity is possible.

Notice that, if I and J are ideals of A, then (I:A J) does not depend
on R but is defined by I, J,A alone.

Our multiplicative theory of A-submodules of R for A Prüfer in R is
based on the following three lemmas.

Lemma 1.1. Let I and J be A-submodules of R

a) I = J iff Ip = Jp for every maximal ideal p of A.
b) (I ∩ J)p = Ip ∩ Jp, (I + J)p = Ip + Jp, and (IJ)p = IpJp for

every p ∈ SpecA.
c) If the A-module J is finitely generated, then [I:R J ]p = [Ip:Rp Jp]

for every p ∈ SpecA.
d) If I and J are ideals of A and J is finitely generated, then

(I:A J)p = (Ip:Ap Jp) for every p ∈ SpecA.

Here the statements a), b), d) are special cases of general facts about
the localization of modules, cf. [Bo II, §3]. {Notice that (I:A J) is
the annulator ideal of I + J/I.} Statement c) can be verified in a
straightforward way.

Lemma 1.2. Assume that A is the valuation ring Av of a local Manis
valuation v on R. Let I be an A-submodule of R. The following are
equivalent.
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i) I is strongly regular in R
ii) I is regular in R
iii) I ⊂ supp v
iv) supp v ⊂

= I
v) I is v-convex, I = supp v.

Proof. Let q: = supp v, p: = pv. A is a local ring with maximal
ideal p, and R is a local ring with maximal ideal q (Prop.I.1.3.),
hence A∗ = A \ p, R∗ = R \ q. We have I ∩ R∗ = ∅ iff I ⊂ q iff
IR ⊂ q iff IR = R. This proves the equivalence of (i), (ii), (iii). The
implication (iv) ⇒ (iii) is trivial.
(iii) ⇒ (iv): It suffices to verify that q ⊂ Ax for every x ∈ R\q. But
this is obvious: If y ∈ q then y = (yx−1)x and yx−1 ∈ q ⊂ A.
(iv) ⇒ (v) holds by Corollary I.1.9. The reverse implication is trivial.

Lemma 1.3. Assume again that v is a local Manis valuation on
R and A = Av. Let I be a finitely generated A-submodule of R,
I = Ax1 + · · · +Axr with v(x1) ≤ v(x2) ≤ · · · ≤ v(xr).
i) For any two elements x, y ∈ R with v(x) = ∞ we have Ay ⊂ Ax
iff v(x) ≤ v(y).
ii) The following are equivalent
a) v(x1) = ∞,
b) x1 ∈ R∗,
c) I is R-regular.

If these properties hold then I = Ax1.

Proof. i) Since v(x) = ∞ and v is local and Manis, the element
x is a unit in R (Prop.I.1.3.). Let z: = yx−1. Clearly Ay ⊂ Ax iff
Az ⊂ A. This means that z ∈ A, i.e. v(z) ≥ 0, and is equivalent to
v(y) ≥ v(x).
ii) The equivalence a) ⇐⇒ b) is clear from Prop.I.1.3. The implica-
tions b) =⇒ c) and c) =⇒ a) are trivial. If a) holds then we know
from part i) that I = Ax1.

Theorem 1.4. Assume that A is a Prüfer subring of R. Let I, J,K
be A-submodules of R.
(1) If at least one of the modules I, J,K is R-regular, then

I ∩ (J +K) = (I ∩ J) + (I ∩K).
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(2) If either I is R-regular, or both J and K are R-regular then
(I + J) ∩ (I +K) = I + (J ∩K).

(3) If I is R-regular and K is finitely generated then (I + J :K) =
(I:K) + (J :K).

(4) If I or J is R-regular then I(J ∩K) = (IJ) ∩ (IK).
(5) If I is R-regular then (I + J)(I ∩ J) = IJ.
(6) If I ⊂ J , and if J is finitely generated and R-regular, then

J(I:J) = I.
(7) If I is finitely generated and R-regular, and if IJ = IK, then

J = K.
(8) Assume that J is R-regular and both J and K are finitely gen-

erated. Then (I:J ∩K) = (I:J) + (I:K).

Proof. We first deal with the assertions (1) – (7). By Lemma 1
it suffices to prove these statements for Rp, Ap, Ip, Jp, Kp with p
running through the prime ideals of A. (The maximal ideals would
suffice.) Each such ring Ap is a local Manis subring of Rp with
maximal ideal pp. If one of the modules I, J,K is regular or finitely
generated then the same holds for the localized module. Thus it
suffices to prove the assertions in the case that A = Av with v a
local Manis valuation on R. Let q = supp v. By Lemma 2 an A-
submodule I of R is either contained in q or it properly contains
q, and the modules I ⊃

= q are precisely the R-regular A-modules of
R. They form a chain, since they are v-convex. Observing also that
a finitely generated A-submodule J of R with J ⊂ q is generated
by a unit of R (Lemma 3), it is an easy exercise to verify all the
statements (1) – (7) except (4) by case distinctions.

Concerning (4) there is a small problem in the case that neither J
nor K is R-regular. Now I is R-regular, hence v-convex and different
from q. If I is finitely generated, then Lemma 3 tells us that I = Ax1
with x1 ∈ R∗. In this case (4) is again evident. In general we argue
as follows. In order to prove the nontrivial inclusion (IJ) ∩ (IK) ⊂
I(J ∩K), we pick an element x ∈ (IJ)∩(IK). There exists a finitely
generated R-regular A-module I0 ⊂ I such that x ∈ (I0J) ∩ (I0K).
Since, as observed, (I0J) ∩ (I0K) = I0(J ∩ K), we conclude that
x ∈ I0(J ∩K) ⊂ I(J ∩K).

We turn to the proof of (8). Here we have to be more careful, since
we do not know whether J ∩K is finitely generated. For every prime
ideal p of A,
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(I:J ∩K)p ⊂ (Ip: (J ∩K)p) = (Ip:Jp ∩Kp).

Since Kp ⊂ Jp or Jp ⊂ Kp we further have

(Ip:Jp ∩Kp) = (Ip:Jp) + (Ip:Kp) = [(I:J) + (I:K)]p.

Thus (I:J ∩K) ⊂ (I:J) + (I:K). The reverse inclusion is trivial.

We discuss a consequence of assertion (5) in this theorem.

Lemma 1.5. Assume that A is Prüfer in R. Let I and J be A-
submodules of R with I ∩ J = A. Then IJ = I + J .

Proof. IJ = (I + J)(I ∩ J) = (I + J)A = I + J .

Proposition 1.6. Assume again that A is Prüfer in R. Let B1 and
B2 be R-overrings of A. Then B1B2 = B1 +B2.

Proof. One applies the preceding lemma to the Prüfer extension
B1 ∩B2 ⊂ R and the (B1 ∩B2)-modules B1 and B2.

We expand this proposition to a new characterization of Prüfer
extensions.

Theorem 1.7 (cf. [Rh, Th.2.1]). Let A ⊂ R be a ring extension
with A integrally closed in R. The following are equivalent.
(1) A is Prüfer in R.
(2) For any two R-overrings B and C of A the sum B + C is a

subring of R, i.e. B + C = BC.
(3) xy ∈ A[x] +A[y] for any two elements x, y of R.

Proof. The implication (1) ⇒ (2) is covered by the preceding propo-
sition, and (2) ⇒ (3) is trivial.
(3) ⇒ (1): Let x ∈ R be given. Then x5 = x2 · x3 ∈ A[x2] + A[x3].
Condition (6) in Theorem I.5.2 is fulfilled, and we conclude by that
theorem that A is Prüfer in R.

Proposition 1.8. Assume that A is Prüfer in R, and that I1, . . . , Ir
are A-submodules of R with I1 + · · · + Ir being R-regular. Then, for
every n ∈ N,
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(I1 + · · · + Ir)n = In1 + · · · + Inr .

Proof. By Lemma 1 it suffices to prove this in the case A = Av
with v a local Manis valuation on R. Let q: = supp v. By Lemma
2 for every j ∈ {1, . . . , r} either q ⊂

= Ij or Ij ⊂ q, and the first
case happens at least once, since q ⊂

= I1 + · · · + Ir. Moreover, if
q ⊂

= Ij , q ⊂
= Ik then Ij ⊃ Ik or Ik ⊃ Ij , since Ij and Ik both are

v-convex. After a change of numeration we may assume that I1 ⊃ Ij
for j = 2, . . . , r. Now the claim of the proposition is evident.

Again we can expand this proposition to a characterization of Prüfer
extensions.

Proposition 1.9. Let A ⊂ R be a ring extension with A integrally
closed in R. Let an integer n ≥ 2 be given. The following are
equivalent.

(1) A is Prüfer in R.
(2) xy ∈ A+Axn +Ayn for every x, y ∈ R.
(3) x ∈ A+Axn for every x ∈ R.

Proof. The implication (2) ⇒ (3) is obvious. (Take y = 1.) The
implication (1) ⇒ (2) follows by applying the preceding Proposition
8 with r = 3, I1 = A, I2 = Ax, I3 = Ay. Finally condition (3)
implies condition (6) in Theorem I.5.2, hence (1).

Remark. The implication (1) ⇒ (3) can also be proved as follows. If
A is Prüfer in R and x ∈ R, then A = (A:x)(A + Ax) by Theorem
I.5.2. From this we deduce for any m ∈ N

A = (A:x)m(A+Ax)m ⊂ (A:x)m
m∑
k=0

Axk ⊂ (A:x) + (A:x)mxm,

since (A:x)mxk ⊂ (A:x) for 0 ≤ k < m.
Multiplying by x we obtain

Ax ⊂ A+ (A:x)mxm+1,
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which is slightly sharper than condition (3) for n = m+ 1.

Definition 3. An A-submodule I of R is called R-invertible (or
invertible in R), if there exists an A-submodule J of R with IJ = A.

Remarks 1.10. a) In this situation the A-module I is finitely gen-

erated and J = [A: I]. Indeed, we have an equation 1 =
r∑
i=1

xiyi with

xi ∈ I, yi ∈ J , from which one concludes easily that I =
r∑
i=1

Axi.

Let K: = [A: I]. Then J ⊂ K, thus IK = A. We get

J = (KI)J = K(IJ) = K. We also have J =
r∑
i=1

Ayi.

b) The argument in a) also shows the following: If I is R-invertible
and is generated by r elements, then [A: I] is generated by r elements.
c) Let x ∈ R. The A-module Ax is R-invertible iff x ∈ R∗. Then
[A:Ax] = Ax−1.
d) If I is R-invertible then I is R-regular. Indeed, from IJ = A we
get IR = R by multiplying with the A-module R.
e) If A is the valuation ring Av of a local Manis valuation v on R,
then I is R-invertible iff I is finitely generated and R-regular, as is
evident from Lemma 3 above and the preceding remarks a), c), d).
In this case I = Ax with some x ∈ R∗.

Definition 4. If an A-submodule I of R is R-invertible then we call
[A: I] the inverse of I (in R).

For later use we quote a general lemma on invertible modules.

Lemma 1.11. Let A ⊂ R be any ring extension. Assume that a
and b are A-submodules of R and that a is R-invertible.

a) [A: a]b = [b: a], and a[b: a] = b.
b) If b ⊂ a then [b: a] = (b: a).

Proof. a): Let x ∈ [A: a] and b ∈ b. For any a ∈ a we have
a(xb) = (ax)b ∈ Ab ⊂ b. Thus xb ∈ [b: a]. This proves that [A: a]b ⊂
[b: a]. In order to verify the reverse inclusion we start with a relation

1 =
n∑
i=1

airi, with ai ∈ a, ri ∈ [A: a]. Let x ∈ [b: a]. Then bi: = xai ∈
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b (1 ≤ i ≤ n). Thus x =
n∑
i=1

biri ∈ b[A: a].

Multiplying the relation [A: a]b = [b: a] by a we obtain b = a[b: a].
b): Let x ∈ [b: a]. Then Ax = [A: a]ax ⊂ [A: a]b ⊂ [A: a]a = A, hence
x ∈ A. Thus [b: a] = (b: a).

We turn back to Prüfer extensions.

Example 1.12. If A is Prüfer in R then, for every x ∈ R, the ideal
(A:x) of A is the inverse of the A-module A + Ax. Thus (A:x) is
R-invertible. It is generated by 2 elements.

Proof. Clearly (A:x) = [A:A + Ax]. The implication (1) ⇒ (8) in
Theorem I.5.2 gives us the first claim. Then Remark 10.b tells us
that (A:x) is generated by two elements.

Theorem 1.13. If A is Prüfer in R then every finitely generated
R-regular A-submodule of R is R-invertible.

Proof. Let I be a finitely generated R-regular A-submodule of R,
and let J : = [A: I]. By Remark 10.e above and Lemma 1 we have
IpJp = Ap for every p ∈ SpecA. Thus IJ = A.

Corollary 1.14. Assume that A is Prüfer in R. Let I and J be fi-
nitely generated R-regular A-submodules of R. Then the A-modules
I ∩ J , [I:J ] and (I:J) are R-invertible.

Proof. By Th. 13 the modules I, J , and I + J are R-invertible.
The claim follows from the identities IJ = (I + J)(I ∩ J) (Th. 4),
J [I:J ] = I (Lemma 11), and (I:J) = A ∩ [I:J ].

For R-regularity instead of R-invertibility similar statements hold in
a more general setting.

Proposition 1.15. Assume that A is ws in R.

a) If I and J are R-regular A-submodules of R then I ∩ J is R-
regular.

b) If, in addition, J is finitely generated then also [I:J ] and (I:J)
are R-regular.
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Proof. a): There exist finitely generated A-submodules I0 ⊂ I,
J0 ⊂ J , such that RI0 = R and RJ0 = R. If I0 is generated by

elements x1, . . . , xr, then a: =
r∏
i=1

(A:xi) is an R-regular ideal of A

with aI0 ⊂ A. For the same reason there exists an R-regular ideal
b of A with bJ0 ⊂ A. We have R(abI0J0) = R. Now abI0J0 =
(aI0)(bJ0) ⊂ (aI0) ∩ (bJ0) ⊂ I0 ∩ J0 ⊂ I ∩ J . Thus R(I ∩ J) = R.
b): We choose an R-regular ideal a with aJ ⊂ A. Then aIJ ⊂ I,
hence aI ⊂ [I:J ]. The module aI is R-regular. Thus [I:J ] is R-
regular. As already proved, it follows that the intersectionA∩[I:J ] =
(I:J) is R-regular.

Corollary 1.16. If A is ws in R then an A-submodule I of R is
R-regular iff the ideal A ∩ I of A is R-regular.

We have seen in Chapter I that for A ⊂ R a Prüfer extension every R-
overring B of A is integrally closed in R (Th.I.5.2). We now expand
this result considerably.

Let A ⊂ R be any ring extension.

Definition 5. Let L be an A-submodule of R. We call an element
x ∈ R integral over L, if there exists a relation

(∗) xn + l1x
n−1 + · · · + ln−1x+ ln = 0

with li ∈ Li (1 ≤ i ≤ n), and we call the set L̃ consisting of these
elements x the integral closure of L in R. If L̃ = L, then we say that
L is integrally closed in R.

Remark. The set L̃ is an Ã-submodule of R, with Ã denoting the
integral closure of A in R. This can be derived from the following.
Let t be an indeterminate over R. In R[t] we consider the subring
B: =

∑
i∈N0

Liti, reading L◦: = A. As is easily checked, a given element

x of R is integral over L iff tx is integral over B. Thus tL̃ = B̃∩(tR),
with B̃ the integral closure of B in R[t].

Theorem 1.17. If A ⊂ R is Prüfer and L is an R-regular A-
submodule of R then L is integrally closed in R.
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For the proof we need two lemmas which are valid for an arbitrary
ring extension A ⊂ R.

Lemma 1.18. Let L be an A-submodule of R, and assume that
x ∈ R is integral over L. Then, for every y ∈ R, the element xy is
integral over Ly.

Proof. We multiply an integrality relation (∗), as given in Defini-
tion 5, by yn and obtain the relation

(xy)n + (l1y)(xy)n−1 + · · · + (ln−1y
n−1)(xy) + · · · + lny

n = 0,

which proves the claim.

Lemma 1.19. Let (Lα | α ∈ Λ) be a direct system of A-submodules
Lα of R and L: = lim−→α∈Λ

Lα =
⋃
α
Lα. Then the integral closure L̃ of L

is the union of the integral closures L̃α.

We omit the easy proof.

Proof of Theorem 17. Using Lemma 19 we easily retreat to the
case that the A-module L is finitely generated. Now L is R-invertible.
Let x ∈ R be integral over L. Given some y ∈ L−1, the element xy
is integral over Ly by Lemma 18. A fortiori, xy is integral over
LL−1 = A. Since A is Prüfer in R this implies xy ∈ A (cf. Th.I.5.2).
We now have proved that xL−1 ⊂ A. Multiplying by L we obtain
xA ⊂ L, i.e. x ∈ L.

§2 Characterisation of Prüfer extensions by the
behavior of their regular ideals

The definition of Prüfer extensions in I, §5 involves Manis valuations.
But, as explained in the Introduction, we are very much interested
in criteria for a given ring extension A ⊂ R to be Prüfer, which do
not mention valuations either explicitly or implicitly. Such criteria
have been given in §5 and §6 of Chapter I and then in §1 of the
present chapter (cf. Th.1.7, Prop.1.9). The criteria in §1 are charac-
terizations of Prüfer extensions within the class of extensions A ⊂ R
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with A integrally closed in R. We now strive for characterizations in
the class of ws (= weakly surjective) extensions. Sometimes we will
be forced to replace this class by the more narrow class of “tight”
extensions to be defined now.

As before R is a ring and A a subring of R.

Definition 1. We say that A is tight in R, or that R is a tight
extension of A, if for every x ∈ R \ A there exists an R-invertible
ideal I of A with Ix ⊂ A.∗)

Notice that this implies (A:x)R = R for every x ∈ R. Thus a tight
extension is a weakly surjective extension (cf. Th.I.3.13). Notice also
that in the case R = QuotA the ring A is always tight in R since
then (A:x) ∩ R∗ = ∅ for every x ∈ R. If A is Prüfer in R then, of
course, A is tight in R.

We postpone a study of tight extensions to §4, but already now use
this class of extensions.

Theorem 2.1. The following are equivalent for the subring A of R.

(1) A is Prüfer in R.
(2) (a) A is weakly surjective in R. (b) Every finitely generated

R-regular ideal I of A is R-invertible.
(3) (a) A is tight in R. (b) Every finitely generated ideal of A which

contains an R-invertible ideal of A is itself R-invertible.
(4) (a) A is tight in R. (b) For any R-invertible ideal I of A and

any a ∈ A the ideal I +Aa is again R-invertible.

Proof. The implications (1) =⇒ (2) and (1) =⇒ (3) are evident
from the above and Theorem 1.13.
(2) or (3) =⇒ (1): Given a prime ideal p of A and an element
x in R \ A[p] we verify that there exists an element x′ ∈ p with
xx′ ∈ A \ p. This will prove that (A[p], p[p]) is a Manis pair in R
(Th.I.2.4), and we are done. First assume that (2) holds. We have

an equation
n∑
i=1

airi = 1 with ai ∈ (A:x), ri ∈ R. Let I denote the

∗) In the literature (e.g. [AB], [Eg], [Rh]) these extensions run under the
name “invertible transforms”. This sounds misleading to us.
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ideal (a1, a2, . . . , an, a1x, a2x, . . . , anx) of A. It is R-regular, hence
I[A: I] = A by (2) (b). Thus we have an equation

1 =
n∑
i=1

aibi + x(
n∑
i=1

aici)

with bi, ci ∈ [A: I]. If b ∈ [A: I] then bai ∈ A, baix ∈ A, hence bai ∈ p

for every i ∈ {1, . . . , n}, since x ∈ A[p]. We put x′ =
n∑
i=1

aici, y =
n∑
i=1

aibi. Then x′ ∈ p, y ∈ p, xx′ = 1 − y ∈ A \ p, as desired.

Now assume that (3) holds. Then (A:x) contains an R-invertible
ideal (a1, . . . , an). Let I: = (a1, . . . , an, a1x, . . . , anx). By (3) (b) we
again have I[A: I] = A, and we can finish as before.

It is obvious that (3) implies (4). Now assume that (4) holds. Let
I = (a1, . . . , an) be a finitely generated ideal of A containing an R-
invertible ideal I0 of A. Then we may write I = I0 +Aa1 + · · ·+Aan.
Applying (4) (b) n times we see that I is R-invertible. Thus (4)
implies (3).

Theorem 2.2. Assume that A is tight in R. The following are
equivalent.
(1) A is Prüfer in R.
(2) A is integrally closed in R. For any finitely many elements

a1, . . . , an of A which generate an R-regular ideal (a1, . . . , an)
of A,

(a1, . . . , an)2 = (a2
1, . . . , a

2
n)

(3) A is integrally closed in R. For any finitely many elements
a1, . . . , an of A which generate an R-regular ideal (a1, . . . , an)
of A, there exists some integer m ≥ 2 with

(a1, . . . , an)m = (am1 , . . . , a
m
n ).

Proof. We know from §5 that an R-Prüfer ring is integrally closed
in R. Thus the implication (1) =⇒ (2) {and (1) =⇒ (3) as well} is
covered by Proposition 1.8. The implication (2) =⇒ (3) is trivial.
(3) =⇒ (1): In order to prove that A is Prüfer in R we verify condi-
tion (6) in Theorem I.5.2. Let x ∈ R\A be given. Since A is tight in
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R there exists an invertible ideal I ⊂ (A:x). Write I = (a1, . . . , an)

with finitely many ai ∈ A. We have 1 =
n∑
i=1

airi with some ri ∈ [A: I].

Let J : = (a1, . . . , an, a1x, . . . , anx). This ideal of A is regular in R.
By assumption (3) there exists some integer m ≥ 2 with

Jm = (am1 , . . . , a
m
n , a

m
1 x

m, . . . , amn x
m).

Let Λ denote the set of multiindices α = (α1, . . . , αn) ∈ Nn0 with

α1+· · ·+αn = m. For any α = (α1, . . . , αn) ∈ Λ we put aα: =
n∏
i=1

aαi
i ,

rα =
n∏
i=1

rαi
i .

Now observe that aαx ∈ Jm for every α ∈ Λ. Thus we have an
equation

(1) aαx =
n∑
j=1

bαja
m
j + xm

n∑
j=1

cαja
m
j

for every α ∈ Λ with elements bαj , cαj ∈ A. Raising the relation

1 =
n∑
i=1

airi to the m-th power we have

(2) 1 =
∑
α∈Λ

(
m

α

)
aαrα.

Combining (1) and (2) we obtain

x =
∑
α∈Λ

(
m

α

)
rαaαx = b+ xmc

with b: =
∑
α∈Λ

n∑
j=1

(
m
α

)
bαjr

αamj , c: =
∑
α∈Λ

m∑
j=1

(
m
α

)
cαjr

αamj .

Since ri ∈ [A: I] for i = 1, . . . , n, we have rαamj ∈ A for every α ∈ Λ,
and we conclude that b ∈ A, c ∈ A. Thus x ∈ A + Axm, and
condition (6) in Theorem I.5.2 is fulfilled.

The now proved theorems 1 and 2 leave something to be desired. For
a given ring extension A ⊂ R it will be often much more difficult to
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verify that A is tight in R than that A is ws in R. Thus it will pay to
understand the notion of R-invertibility of an ideal I of A in terms
of R-regularity and A-intrinsic properties of I. Fortunately this is
possible, even in various ways.

Definition 2. Let A be any ring (commutative, with 1, as always)
and M an A-module.
a) M is called a multiplication module, if for every submodule N of
M there exists an ideal I of A with N = IM , cf. [Ba1]. Notice that
then we may choose I = (N :M): = {a ∈ A | aM ⊂ N}.
b) M is called locally principal, if for every p ∈ SpecA the Ap-
module Mp is generated by one element. {It suffices to know this for
the maximal ideals p of A.}
In the following we will apply this terminology to A-submodules a of
R for A ⊂ R a ring extension. (The word “locally principal” alludes
to the idea, that we regard such modules as something like fractional
ideals.)

Proposition 2.3. (cf. [Bo, II §5, Th.4] in the case R = S−1A.) Let
a be an R-regular A-submodule of R. The following are equivalent.

(1) a is R-invertible.
(2) a is a multiplication module.
(3) a is finitely generated and locally principal.

Assume either that R is a ring of quotients of A (cf. I §3, Def.4) or
that a ⊂ A. Then (1), (2), (3) are equivalent to:

(4) a is a projective A-module of rank 1.
(5) a is a projective A-module.

Proof. The implication (1) =⇒ (2) is covered by Lemma 1.11.
(2) =⇒ (3): We first verify that a is finitely generated, using an ar-
gument from [LS, p.4358f]. Since a is multiplicative, we have Aa =
(Aa: a)a for every a ∈ a. We introduce the ideal r: =

∑
a∈a

(Aa: a) of A.

We infer that ar = a. From this we want to conclude that r = A. We
choose elements b1, . . . , bn in a such that b =

n∑
i=1

Abi is R-regular.

For every i ∈ {1, . . . , n} we have Abi = (Abi: a)a = (Abi: a)ra = rbi.
We choose elements ci ∈ r with bi = cibi (1 ≤ i ≤ n). Then



98 §2 Characterization of Prüfer extensions . . .

b ·
n∏
i=1

(1 − ci) = 0. Since b is R-regular, this implies
n∏
i=1

(1 − ci) = 0.

Thus 1 ∈ r.

We now choose elements a1, . . . , am ∈ a and xj ∈ (Aaj : a) with

1 =
m∑
j=1

xj . We have a ⊂
m∑
j=1

xja ⊂
m∑
j=1

Aaj , hence a =
m∑
j=1

Aaj . This

proves that a is finitely generated.

Given a prime ideal p of A, it remains to verify that the Ap-module

ap is principal. From the equation 1 =
m∑
j=1

xj above we conclude

that there is some index j ∈ {1, . . . ,m} such that xj

1 ∈ Ap is a
unit in Ap, hence (Aaj : a)p = Ap. Let dj : =

aj

1 ∈ ap. We have (cf.
Lemma 1.1.d) (Apdj : ap) = (Aaj : a)p = Ap, hence ap = 1·ap ⊂ Apdj .
Thus ap = Apdj .
(3) =⇒ (1): For every p ∈ SpecA we have ap = Apup with some
up ∈ Ap. Since a is finitely generated, we have [A: a]p = [Ap: ap].
Thus

(a[A: a])p = ap[Ap: ap] = Apup ·Ap(up)−1 = Ap

for every p ∈ SpecA. We conclude that a[A: a] = A.
(1) =⇒ (4): This is clear by first principles of the theory of projective
modules, cf. [Bo, II §5 Th.1] and also Lemma 4.1 below. For this
implication we do not need the additional assumption made in the
middle of the proposition.
(4) =⇒ (5) is trivial. (5) =⇒ (1): Since a is projective there exists
a family (ϕi | i ∈ I) of A-linear maps from a to A and a family
(ai | i ∈ I) of elements of a such that, for every x ∈ a, ϕi(x) = 0
for almost all i ∈ I and x =

∑
i∈I

ϕi(x)ai, cf. e.g. [CE, Chap.VII,

Prop.3.1]. Since a is R-regular there further exists a finite subset K
of I and a family (rk | k ∈ K) in R such that 1 =

∑
k∈K

akrk. We now

choose a finite subset J of I such that ϕi(ak) = 0 for every i ∈ I \ J
and k ∈ K. Then

1 =
∑
k∈K

(
∑
j∈J

ϕj(ak)aj)rk.

Introducing the elements bj : =
∑
k∈K

ϕj(ak)rk for j ∈ J we have 1 =∑
j∈J

ajbj . We are done, if we verify that the bj are elements of [A: a].

We need the following fact, which we will prove below.
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(∗) If ϕ: a → A is an A-linear map then, ϕ(x)y = xϕ(y) for any two
elements x, y of a.

For each i ∈ I we have

aibj =
∑
k∈K

aiϕj(ak)rk =
∑
k∈K

ϕj(ai)akrk = ϕj(ai) ∈ A.

Thus indeed bj ∈ [A: a] for every j ∈ J .

Proof of (∗): If a ⊂ A, then clearly ϕ(x)y = ϕ(xy) = xϕ(y). Assume
now that R is a ring of quotients of A. Then the ideals (A:x)R and
(A: y)R are dense in R. Thus also cR is dense in R for c: = (A:x) ∩
(A: y). If c ∈ c we have c[ϕ(x)y − xϕ(y)] = ϕ(x)(cy) − (cx)ϕ(y) =
ϕ(xcy) − ϕ(cxy) = 0. We conclude that ϕ(x)y = xϕ(y).

In the following we will apply Proposition 3 in the case that a is
an ideal of A. Later we will need Proposition 3 for more general
A-modules. Then it will be important to know that R is a ring of
quotients of A.

As before (I, §3) we denote the complete ring of quotients of a ring
A by Q(A).

Definition 3. We call an ideal a of A invertible, if a is Q(A)-
invertible.∗)

Proposition 2.4. An ideal a of A is invertible iff a is a finitely gen-
erated projective A-module and a dense ideal. Then a is projective
of rank 1.

Proof. We may assume in advance that a is finitely generated. If
a is Q(A)-invertible then a is projective of rank 1 by the preceding
proposition, and certainly (0: a) = 0. Assume now that a is dense
in A and projective. Let a1, . . . , an be generators of the ideal a. We

have A-linear forms ϕi: a → A (i = 1, . . . , n) with x =
n∑
i=1

ϕi(x)ai

for all x ∈ A. The ϕi can be interpreted as elements of Q(A) [Lb,

∗) This definition differs from the one given in Huckaba’s book [Huc, p.
29].
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§2.3]. Then 1 =
n∑
i=1

aiϕi, and ϕi ∈ [A: a] for every i. Thus a is

invertible in Q(A).

From the last two propositions we infer

Scholium 2.5. Let A ⊂ R be a ring extension and a an ideal of A.
Then a is R-invertible iff a is invertible and aR = R.

We now can improve a part of Theorem 1 as follows.

Theorem 2.6. Given a ring extension A ⊂ R the following are
equivalent.
(1) A is Prüfer in R.
(2) A is weakly surjective in R. Every finitely generated R-regular

ideal I of A is locally principal.
(3) A is weakly surjective in R. Every finitely generated R-regular

ideal I of A is a multiplication ideal.

Proof. This is evident from Proposition 3 and the equivalence (1)
⇔ (2) in Theorem 1.

We will give two more characterizations of Prüfer extensions within
the class of ws extensions. For this we need the following easy lemma.

Lemma 2.7. Let I be a finitely generated ideal of a local ring C.
Assume that there exists some a ∈ I such that I = Ca+ I2. Then I
is principal.

Proof. If I = C this is evident. We now assume that I = C. Then
I is contained in the maximal ideal m of C. We have I = Ca+ Im.
By Nakayama’s lemma this implies that I = Ca.

Definition 4 [Fu]. A ring C is called arithmetical, if the lattice of its
ideals is distributive, i.e. I∩(J+K) = (I∩J)+(I∩K) for any three
ideals I, J,K of C. {Equivalently, I + (J ∩K) = (I + J) ∩ (I +K)
for all I, J,K.}
We will use basic results about arithmetical rings, which in full gen-
erality are due to C.U. Jensen [J1]. For the convenience of the reader
we reproduce the proofs of these results in Appendix B.
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Theorem 2.8. (cf. [AP, Th.2] for R = QuotA). Assume that A is
ws in R. The following are equivalent.
(1) A is R-Prüfer.
(2) The lattice of R-regular ideals of A is distributive, i.e.

I ∩ (J +K) = (I ∩ J) + (I ∩K) for any three R-regular ideals
I, J,K of A.

(3) For every finitely generated R-regular ideal I of A the ring A/I
is arithmetical.

Proof. The implication (1) =⇒ (2) is covered by Theorem 1.4, and
the implication (2) =⇒ (3) is trivial.

(3) ⇒ (1): We verify condition (2) in Theorem 6. Let I be a finitely
generated R-regular ideal of A and m a maximal ideal of A. We
have to prove that the ideal J : = Im of the local ring C: = Am is
principal. We may assume that J = C. By hypothesis (3) the ring
A/I2 is arithmetical. Thus also C/J2 is arithmetical, and is local.
According to [J1, Th.1] (cf. App.B, Th.1) this implies that the set
of ideals of C/J2 is totally ordered by inclusion. It follows that the
ideal J/J2 is principal. Lemma 7 now tells us that J is principal.

Here is a variant of Theorem 8 for tight extensions.

Theorem 2.9. Assume that A is tight in R and that for every R-
invertible ideal I of A the ring A/I is arithmetical. Then A is Prüfer
in R.

Proof. We verify condition (3) in Theorem 1. Let I be a finitely
generated ideal of A containing an R-invertible ideal a of A. We have
to prove that I itself is R-invertible. By hypothesis the ring Ā: =
A/a2 is arithmetical. The ideal Ī: = I/a2 of Ā is finitely generated.
It contains the ideal ā: = a/a2 of Ā. By a well known theorem about
arithmetical rings ([J1, Th.2], cf. App.B, Th.4) there exists an ideal
J of A containing a, such that ā = Ī · J̄ , with J̄ : = J/a2. Since
a2 ⊂ IJ , this implies a = IJ . Since a is R-invertible, also I is
R-invertible.

Theorem 2.10 (cf. [AP, Th.4] for R = QuotA, [Rh, Th.2.1] for A
tight in R). Assume that A is ws in R. Let F denote the set of
R-regular ideals of A. The following are equivalent.
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(1) A is Prüfer in R.
(2) If I, J,K ∈ F and K is finitely generated, then (I + J):K =

(I:K) + (J :K).
(3) If I, J,K ∈ F and both J and K are finitely generated, then

I: (J ∩K) = (I:J) + (I:K).
(4) For ideals I, J ∈ F with I ⊂ J , J finitely generated, there exists

an ideal K of A with I = JK.

Proof. The implications (1) ⇒ (2) – (4) are covered by Theorem 1.4.
(2) or (3) ⇒ (1): Let a be an R-regular ideal of A. From (2) or
(3) one obtains analogous statements for the ideals of A/a, with the
word “R-regular” cancelled. It is well known that these statements
imply that A/a is arithmetical ([J1, Th.3], cf. App.B, Th.5). It
follows from Theorem 8 that A is Prüfer in R.
(4) ⇒ (1): Let I be a finitely generated R-regular ideal of A. We
prove that the ring A/I is arithmetical and then again will be done
by Theorem 9. According to Theorem 2 in [J1], (cf. App.B, Th.4) it
suffices to verify for a given finitely generated ideal J ⊃ I of A that
J/I is a multiplication ideal of A/I. This is clear from hypothesis
(4).

Remark. We mention another proof of the implication (4) ⇒ (1):
Let again I be a finitely generated R-regular ideal of A. Then I/I2

is a multiplication ideal of A/I2 by hypothesis (4). By a well known
theorem on multiplication ideals [An]∗) it follows that I/I2 is locally
principal. Now Lemma 7 tells us that the ideal I of A is locally
principal, and Theorem 6 tells us that A is Prüfer in R.

Under the stronger condition that A is tight in R we find more mul-
tiplicativity conditions on ideals of A which are equivalent to the
conditions (1) – (4) in the just proved theorem. The proof of the new
equivalences will be somewhat harder than the preceding proofs, but
the new conditions are cute.

Theorem 2.11 (cf. [Rh, Th.2.1]). Let A ⊂ R be tight extension. As
before, let F denote the set of R-regular ideals of A. The following
are equivalent.

∗) Every finitely generated multiplication ideal a of a ring A is locally
principal, cf. [An, Th.3].
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(1) A is Prüfer in R.
(5) If I, J,K ∈ F , IJ = IK, and I is finitely generated, then J = K.
(6) I(J ∩K) = (IJ) ∩ (IK) for all I, J,K ∈ F .
(7) (I + J)(I ∩ J) = IJ for all I, J ∈ F .

Proof. The implications (1) ⇒ (5) – (7) are covered by Theorem 1.4.
(5) =⇒ (1): We verify condition (2) of Theorem 2. We first prove
that A is integrally closed in R. Let x ∈ R be integral over A. We
have

xm+1 + c1x
m + c2x

m−1 + · · · + cm = 0

with some m ∈ N and ci ∈ A. Let J : = A+ Ax+ · · · + Axm. Then
J2 = J . We choose an R-invertible ideal I ⊂ (A:x). This is possible
since A is tight in R. Let K: = ImJ . Then Im ⊂ K ⊂ A. Thus K
is an R-regular ideal of A. We have K2 = I2mJ2 = I2mJ = ImK.
By assumption (5) this implies K = Im, i.e. ImJ = Im. Since I is
R-invertible we conclude that J = A, i.e. x ∈ A.

Let (b1, . . . , bn) be an R-regular ideal of A. We have

(b1, . . . , bn)n+1 = (b1, . . . , bn)n−1(b21, . . . , b
2
n).

By (5) this implies (b1, . . . , bn)2 = (b21, . . . , b
2
n). Condition (2) of

Theorem 2 is fulfilled.
(6) =⇒ (7): A priori we have (I + J)(I ∩ J) ⊂ IJ . From (6) we
obtain

(I + J)(I ∩ J) = [(I + J)I] ∩ [(I + J)J ] ⊃ IJ.

(7) =⇒ (1): We verify condition (4) in Theorem 1. Let a be an
R-invertible ideal of A and a ∈ A. We have to prove that a + Aa
is again R-invertible. We use the following complicated lemma, the
proof of which will be given below.

Lemma 2.12. Let A ⊂ R be a ring extension. Assume that I is an
R-invertible ideal and J is a finitely generated ideal of A. Assume
further that

(I + J)(I ∩ (I2 + J)) = I(I2 + J).

Then, for every p ∈ SpecA, either Ip ⊂ Jp or Jp ⊂ Ip.
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We apply this lemma to I: = a and J : = Aa. This is possible by (7).
Let p ∈ SpecA be given.
Case 1. Jp ⊂ Ip. Now (I + J)p = Ip, which is invertible in Rp.
Case 2. Ip ⊂ Jp = Ap · a1 . The Ap-module Ip is Rp-regular, since it
is invertible in Rp. Thus also Jp is Rp-regular. This means a

1 ∈ R∗
p.

We conclude that (I + J)p = Jp is again invertible in Rp. Thus
(I + J)p is invertible in Rp for every p ∈ SpecA. It follows that
I + J = a +Aa is invertible in R.

Proof of the lemma. Since I∩(I2+J) = I2+I∩J , it follows from
our assumption that (I + J)(I2 + I ∩ J) = I(I2 + J). Multiplying
both sides with [A: I] we obtain

I2 + J = (I + J)(I + (I ∩ J)[A: I]).

We expand the right hand side:

I2 + J = I2 + JI + I ∩ J + J(I ∩ J)[A: I].

By Lemma 6 we have (I ∩ J)[A: I] = (I ∩ J : I).
We obtain

I2 + J = I2 + I ∩ J + J(I ∩ J : I).

Since I2(I ∩ J : I) ⊂ I(I ∩ J) ⊂ I ∩ J , we may also write

(∗) I2 + J = I2 + I ∩ J + (I2 + J)(I ∩ J : I).

Let now p ∈ SpecA be given. Assume that Ip ⊂ Jp. Then Ip ⊂
(I ∩J)p = Ip ∩Jp. Thus the ideal (Ip ∩Jp: Ip) of Ap is different from
Ap, hence contained in pp.

From (∗) we obtain by Lemma 1.1

(I2 + J)p = (I2
p + Ip ∩ Jp) + (I2 + J)p(Ip ∩ Jp: Ip).

Since the Ap-module (I2 + J)p is finitely generated, Nakayama’s
lemma gives us I2

p + Ip ∩ Jp = (I2 + J)p, so

Jp ⊂ I2
p + Ip ∩ Jp ⊂ Ip.
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§3 Describing a Prüfer extension by its lattice of
regular ideals

Let A ⊂ B be any ring extension. We denote the set of ideals of A
by J (A) and the subset of B-regular ideals of A by F(B/A). The
ordering by the inclusion relation makes J (A) a lattice with meet
a ∧ b = a ∩ b and join a ∨ b = a + b. As a further operation on J (A)
we have the multiplication (a, b) �→ ab. It is of interest to study the
relations between multiplication and the lattice operations.

Clearly the subset F : = F(B/A) of J (A) has the following four
properties:

R0. A ∈ F .
R1. If I ∈ F and I ⊂ J then J ∈ F .
R2. If I ∈ F and J ∈ F then IJ ∈ F .
R3. For every I ∈ F there exists a finitely generated ideal I0 ⊂ I
with I0 ∈ F .

One verifies easily that, if F is any subset of J (A) fulfilling R0 – R3,
then also the following properties hold:

R4. If I ∈ F and J ∈ F then I ∩ J ∈ F .
R5. If I ∈ J (A) and

√
I ∈ F then I ∈ F .∗)

In particular F is a filter on J (A). It is also true that, if F is a filter
on J (A) with the properties R3 and R5 then R2 holds. But let us
stop here looking in general at the axiomatics of filters on J (A) with
such properties. {We will continue with this business in volume II.}
Let Y (B/A) denote the set SpecA ∩ F(B/A) of B-regular prime
ideals of A. As before (I, §4) let X(B/A) denote the image of the re-
striction map from SpecB to SpecA. Clearly X(B/A) and Y (B/A)
are disjoint.

Lemma 3.1. Let a be an ideal of A. The following are equivalent.

i) a ∈ F(B/A).
ii) If p is a prime ideal of A containing a then p ∈ Y (B/A).
iii) If p is a prime ideal of A containing a then p ∈ X(B/A).

∗) We use the notion
√
I={x∈A | xn∈I for some n}.
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Proof. The implications i) ⇒ ii) ⇒ iii) are trivial. iii) ⇒ i): Suppose
that aB = B. Then there exists a prime ideal q of B containing aB.
The prime ideal q ∩A of A is an element of X(B/A) and contains a,
a contradiction. Thus aB = B, i.e. a ∈ F(B/A).

According to Lemma 1 the lattice F(B/A) is determined both by
the sets X(B/A) and Y (B/A). If A is weakly surjective in B then
we know in addition from Theorem I.4.8 that

Y (B/A) = SpecA \ X(B/A). (∗)

Lemma 3.2. Assume that A is weakly surjective in B and that
X(B/A) = SpecA. Then B = A.

Proof. Suppose there exists some x ∈ B with x ∈ A. Then (A:x) =
A. We choose a maximal ideal m of A containing (A:x). Since A
is weakly surjective in B we have (A:x)B = B, hence mB = B,
i.e. m ∈ Y (B/A). This contradicts our hypothesis that X(B/A) =
SpecA.

Theorem 3.3. Let A ⊂ R be a ring extension. Let B and C be
R-overrings of A, and assume that A is weakly surjective both in B
and C. The following are equivalent.

i) B ⊂ C.
ii) X(B/A) ⊃ X(C/A).
iii) F(B/A) ⊂ F(C/A).

Proof. The implication i) ⇒ ii) is trivial. The implications ii) ⇔ iii)
are evident from Lemma 1 and statement (∗) above. We now prove
that ii) implies i). Let D: = B · C. We will verify that D = C using
Lemma 2, and then will be done.

Let q ∈ SpecC be given, and p: = q ∩ A. Then p ∈ X(C/A) ⊂
X(B/A). Thus there exists a prime ideal r of B with r ∩ A = p.
{In fact r = pB and q = pC, as we know from Th.I.4.8.} Now
D = B ⊗A C by Prop.I.4.2. The prime ideals r and q of B and C
both lie over the same prime ideal p of A. Thus there exists a prime
ideal P of D lying over r and q. This implies q ∈ X(D/C). We have
proved that X(D/C) = SpecC, and we conclude by Lemma 2 that
D = C.
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In particular, choosing R = Q(A) or R = M(A) in the theorem, we
see that a weakly surjective extension B of a ring A is determined up
to isomorphism by the lattice of ideals F(B/A). Which sublattices
of J (A) occur here? How can a weakly surjective extension B of A
be described starting from the corresponding lattice F = F(B/A)?
We will answer these questions for Prüfer extensions.

It has already been proved by Lazard that a weakly surjective (=
flat epimorphic) extension B of A is classified by the subset X(B/A)
of SpecA [L, Prop. IV.2.5].

Lemma 3.4 (cf. [Eg, Cor. 4]). Let A ⊂ R be a ring extension and

I an R-invertible ideal of A. Pick a relation 1 =
n∑
i=1

aixi with ai ∈ I,

xi ∈ [A: I]. Then I =
n⋂
i=1

(A:xi).

Proof. We have Ixi ⊂ A, hence I ⊂ (A:xi) for every i. Thus

I ⊂ ⋂
i

(A:xi). If a ∈ ⋂
i

(A:xi) is given then a =
n∑
i=1

ai(axi) ∈ I. This

proves the claim.

Theorem 3.5. Let A ⊂ R be a ring extension. Assume that F is a
subset of J (A) with the properties R0, R1, R2 from above. Assume
that also the following holds:

P1. For every I ∈ F there exists an R-invertible ideal I0 ⊂ I with
I0 ∈ F .

P2. F satisfies one of the conditions (2) – (7) listed in Theorems
2.10 and 2.11, or one of the following ones:

(i) A is integrally closed in R. If a1, . . . , an ∈ A and
(a1, . . . , an) ∈ F then there exists some natural number
d ≥ 2 such that (a1, . . . , an)d = (ad1, . . . , a

d
n).

(ii) The lattice F is distributive.
(iii) For every finitely generated I ∈ F the ring A/I is arith-

metical.
(iv) Every finitely generated ideal I ∈ F is R-invertible.

Then A[F ]: = {x ∈ R | (A:x) ∈ F} is an R-overring of A. The ring
A is Prüfer in A[F ], and F is the set of A[F ]-regular ideals of A.
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Remark 3.6. Conversely, if B is an R-overring of A, in which A is
Prüfer, then F : = F(B/A) fulfills R0 – R2, the condition P1, and all
the conditions listed under P2, as we know from §1. Thus B = A[F ]
by Theorem 3 and the present theorem.

Proof of Theorem 5. a) It follows from R1 that

A[F ] = {x ∈ R | ∃I ∈ F with Ix ⊂ A}.

Using R0 and R2 it is easily verified that A[F ] is a subring of R
containing A.
b) In the sequel we denote the R-overring A[F ] of A by B. We now
prove: If I ∈ F and I is R-invertible, then I is B-invertible. In order

to do this we pick a relation 1 =
n∑
i=1

aixi with ai ∈ I and xi ∈ [A:R I].

By Lemma 4 we know that I =
⋂
i

(A:xi). Thus (A:xi) ∈ F for

i = 1, . . . , n, which means that xi ∈ B for i = 1, . . . , n. Our relation
1 =

∑
i

aixi now shows that I is B-invertible.

c) We prove that A is tight in B. Let x ∈ B be given, thus (A:x) ∈ F .
By hypothesis P1 there exists an R-invertible ideal I0 ⊂ I with
I0 ∈ F . As proved above, I0 is B-invertible.
d) We prove that F = F(B/A). Let an ideal I ∈ F be given.
Again by hypothesis P1 there exists an R-invertible ideal I0 ⊂ I
with I0 ∈ F . As proved in step b), I0 is B-invertible. This implies
that I is B-regular, i.e. I ∈ F(B/A).

Let now an ideal I ∈ F(B/A) be given. Since I is B-regular, we
have a relation

1 =
n∑
i=1

aixi (∗)

with ai ∈ I, xi ∈ B. All the ideals (A:xi) are elements of F . By R4
also

⋂
i

(A:xi) ∈ F . For any a ∈ ⋂
i

(A:xi) we have

a =
n∑
i=1

ai(axi) ∈ I

by relation (∗) above. Thus
⋂
i

(A:xi) ⊂ I, and I ∈ F by R1.
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e) We finally prove that A is Prüfer in B.
If F has one of the properties (2) – (7) of Theorems 2.10 and 2.11,
this is clear by those theorems. If F has property P2(i) or P2(ii) or
P2(iii), A is Prüfer in B by Theorem 2.2 or Theorem 2.8 respectively.
Assume finally that F has property P2(iv). We now verify for F =
F(B/A) the condition (4) in Theorem 2.10 and then will be done.
Let I and J be elements of F with I ⊂ J and J finitely generated.
J is R-invertible by hypothesis P2(iv). We infer from Lemma 1.11
that I = JK with K = (I:J).

§4 Tight extensions

In §2 we obtained various characterizations of Prüfer extensions by
multiplicative ideal theory within the class of tight extensions. In
order to make these criteria more useful we now develop a somewhat
constructive view of tight extensions.

In this section A is a ring and A ⊂ R is a ring extension. We start
with some observations on R-invertible A-submodules of R, more or
less all well known.

Lemma 4.1. Every R-invertible A-submodule I of R is a projective
A-module of rank 1. {If I ⊂ A or I ⊃ A, we know this already from
Prop. 2.3.}

Proof. We choose elements a1, . . . , ar in I, x1, . . . , xr in [A:R I] with

a1x1 + · · · + arxr = 1. (∗)

Every xi gives us a homomorphism ϕi: I → A, ϕi(z): = xiz and, for

every x ∈ A, x =
r∑
i=1

aiϕi(x). Thus I is projective [CE, Chap. VII,

Prop. 3.1].

We consider the special case that A is local with maximal ideal m.
At least one of the summands aixi in (∗) is not an element of m, say
a1x1 ∈ m. Then u: = a1x1 is a unit of A, and y: = u−1x1 ∈ [A:R I],
a1y = 1. This implies that I is a free A-module generated by a1. In
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general we conclude for every p ∈ SpecA that Ip is a free Ap-module
of rank 1.

Starting from Lemma 1 it is easy to verify the following remarks.

Remarks 4.2. Assume that I and J are invertible A-submodules
of R.
a) The A-module homomorphism I ⊗A J → IJ , sending a tensor

x⊗A y to xy, is an isomorphism.
b) The naturalA-module homomorphism Φ: [A:R I] −→ HomA(I, A),

Φ(x)(z): = xz, is an isomorphism.
c) More generally, the natural A-module homomorphism

Ψ: [A:R I] −→ HomA(IJ, J), Ψ(x)(z): = xz, is an isomorphism.

If A ⊂ R is a ring extension and J is an A-submodule of R containing
A, then the union of the sets Jn, n ≥ 0, is the R-overring of A
generated by J ,

A[J ] =
⋃
n≥0

Jn.

(We put J0 = A.) We are interested in the special case that J =
[A:R I] for some R-invertible ideal I of A. The following proposition
tells us, that the extension A ⊂ A[J ] is, up to canonical isomorphism,
determined by A and I alone.

Proposition 4.3. Assume that I is an ideal of A and that A ⊂ R,
A ⊂ T are ring extensions in both of which I is invertible. Let
J : = [A:R I], K: = [A:T I]. There exists a unique ring homomorphism
ϕ:A[J ] → T over A. It is injective and has the image A[K]. It maps
J onto K.

Proof. For any n ∈ N0 we define ϕn:Jn
∼−→ Kn as the unique

A-module isomorphisms which makes the triangle

ϕn

HomA(In, A)

KnJn
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commuting. Here the oblique arrows are canonical isomorphisms, cf.
Remark 2.b above. For x ∈ Jn, a ∈ In, we have ϕn(x) · a = x · a.
We claim that ϕn(x) = ϕm(x), if x ∈ Jn and n < m.

Let a ∈ Im. Then a ∈ In and ϕn(x)a = xa = ϕm(x)a. Since the
ideal Im is dense in A (i.e. has zero annullator), this implies that
ϕn(x) = ϕm(x).

Let ϕ:A[J ] → A[K] denote the A-module homomorphism with
ϕ(x) = ϕn(x) for x ∈ Jn, n ∈ N0. It is evident that ϕ is bijec-
tive, since ϕ maps Jn bijectively onto Kn for every n. We verifiy
that ϕ is a ring homomorphism. Let x, y ∈ A[J ] be given. We
choose n,m ∈ N0 with x ∈ Jn, y ∈ Jm. For a ∈ In+m we have
ϕ(y)a = ya ∈ Im, and then

ϕ(x)ϕ(y)a = xya = ϕ(xy)a.

Since In+m is dense in A we conclude that ϕ(x)ϕ(y) = ϕ(xy).

If ψ:A[J ] → T is any ring homomorphism over A and x ∈ Jn, then
we have for a ∈ In

ψ(x)a = ψ(x)ψ(a) = ψ(xa) = xa = ϕ(x)a,

and we conclude that ψ = ϕ.

Definition 1. Let I be an invertible ideal of A, i.e. I is invertible
in the complete quotient ring Q(A) of A (cf. §2, Def. 3). We denote
the inverse [A:Q(A) I] of I in Q(A) by I−1, and then have the Q(A)-
overring A[I−1] of A.

Convention 4.4. If A ⊂ R is a ring extension in which I is invertible
and J : = [A:R I], then we usually identify J = I−1, A[J ] = A[I−1].
This is justified by Proposition 3.

Using this convention we may state: If the ideal I is invertible in
R then A[I−1] ⊂ R. In other words, A[I−1] is the universal ring
extension in which I becomes invertible.

Proposition 4.5. Assume that I is invertible in the extension A ⊂
R, hence A[I−1] ⊂ R.

i) A[I−1] is the set of all x ∈ R with Inx ⊂ A for some n ∈ N.
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ii) The extension A ⊂ A[I−1] is tight.

Proof. We have A[I−1] =
⋃
n
Jn with J : = I−1 = [A:R I]. If x ∈ Jn

then Inx ⊂ A, and In is invertible in A[I−1]. This proves that A is
tight in A[I−1] (Recall §2, Def. 1). If x ∈ R and Inx ⊂ A for some
n, then x ∈ [A:R In] = (In)−1 = Jn.

Proposition 4.6. Assume that I and J are R-invertible ideals of
A. Then the R-overring A[I−1, J−1] of A generated by I−1 and J−1

coincides with both A[(IJ)−1] and A[I−1] ⊗A A[J−1].

Proof. Clearly A[I−1, J−1] is the smallest R-overring B of A in
which both I and J become invertible. But this is also the smallest
R-overring in which IJ becomes invertible. Thus A[I−1, J−1] =
A[(IJ)−1]. Since A is weakly surjective in A[I−1] and A[J−1] we
have A[I−1] ⊗A A[J−1] = A[I−1, J−1], cf. Prop. I.4.2.

Definitions 2. a) We denote the set of invertible ideals of A by
InvA and the set of R-invertible ideals of A by Inv(A,R). {Thus
InvA = Inv(A,Q(A)) and Inv(A,R) ⊂ InvA.}
b) The tight hull T (A,R) of A in the ring extension A ⊂ R is de-
fined as the union of the R-overrings A[I−1] with I running through
Inv(A,R).
c) The tight hull T (A) of A is the union of the Q(A)-overrings A[I−1]
of A with I running through Inv(A), i.e. T (A) = T (A,Q(A)).∗)

This terminology is justified by the following theorem.

Theorem 4.7. i) A is tight in T (A,R). If A ⊂ B is any tight
subextension of A ⊂ R then B ⊂ T (A,R).
ii) If A ⊂ B is any tight ring extension then there exists a unique
homomorphism ϕ:B → T (A) over A. Moreover, ϕ is injective.

Proof. a) If I, J ∈ Inv(A,R) then both A[I−1] and A[J−1] are
contained in A[(IJ)−1]. This proves that the set T (A,R) is a subring
of R. If x ∈ T (A,R) then there exists some I ∈ Inv(A,R) with

∗) Caution: In the literature T (A) often stands for the total quotient ring
of A. We denote this ring by Quot(A).
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x ∈ A[I−1], hence Inx ⊂ A for some n ∈ N, i.e. In ⊂ (A:x). The
ideal In is invertible in A[I−1], hence invertible in T (A,R). This
proves that A ⊂ T (A,R) is tight.

b) Let now B be an R-overring of A in which A is tight. Let x ∈ B.
There exists a B-invertible ideal I of A with Ix ⊂ A. Of course, I is
also invertible in R, and x ∈ A[I−1] by Prop. 5. Thus x ∈ T (A,R).
This proves that B ⊂ T (A,R).

c) Let A ⊂ B be any tight extension of A. Since this extension is
weakly surjective, there exists a unique homomorphism ϕ:B → Q(A)
over A, and ϕ is injective (cf. I, §3). A is tight in ϕ(B) and thus
ϕ(B) ⊂ T (A,Q(A)) = T (A).

Remarks 4.8. i) In I, §3 we introduced the weakly surjective hull
M(A,R), and in I, §5 we introduced the Prüfer hull P (A,R) of A in
R. It is now evident that

P (A,R) ⊂ T (A,R) ⊂ M(A,R).

Taking R = Q(A) we obtain P (A) ⊂ T (A) ⊂ M(A).
ii) We observed in §1 that the extension A ⊂ QuotA is tight. Thus
Quot(A) ⊂ T (A).

Example 4.9. If A is semilocal, i.e. has only finitely many maximal
ideals, then T (A) = QuotA.

Proof. Let x ∈ T (A) be given. There exists an invertible ideal I of
A with Ix ⊂ A. We know that the A-module I is projective of rank 1
(Lemma 4.1 or Prop.2.3). Since A is semilocal, this implies I = As
with s a non-zero divisor of A. We have sx ∈ A and x ∈ QuotA.

We now generalize our construction of T (A,R).

Definition 3. a) We call a set G of ideals of A multiplicative if it
is not empty and closed under multiplication (I ∈ G, J ∈ G ⇒ IJ ∈
G).

b) Let G be a multiplicative subset of Inv(A,R). Then we denote
the union of the subsets I−1 of R, with I running through G, by
AR[G]. In the case R = Q(A) we denote this set more briefly by AG.
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c) The saturation Ĝ of a multiplicative subset G of InvA is defined
as the set of all I ∈ InvA such that I ⊃ J for some J ∈ G. We call
G saturated if G = Ĝ.

Notice that Ĝ is again multiplicative and that AR[G] = AR
[Ĝ]

. Notice
also that Inv(A,R) is a saturated multiplicative subset of InvA, and
that for G = Inv(A,R) we have AR[G] = T (A,R). In particular,
A InvA = T (A). If I is an invertible ideal of A then, taking G: =
{In|n ≥ 0}, we obtain AG = A[I−1].

Proposition 4.10. Let G be a multiplicative subset of Inv(A,R).
a) AR[G] is a subring of R containing A, and A is tight in AR[G]. This

subring is the set of all x ∈ R with Ix ⊂ A for some I ∈ G.
b) If A ⊂ T is another ring extension of A with G ⊂ Inv(A, T ) then

there exists a unique ringhomomorphism ϕ:AR[G] → T over A.
It is injective and has the image AT[G].

The proof of these facts goes by straightforward arguments, most of
which have been used above (cf. the proofs of Prop. 5 and Th. 7).

We now can state a classification theorem for tight extensions as
follows.

Theorem 4.11. i) IfA ⊂ B is a tight extension thenB is canonically
isomorphic to AInv(A,B) over A.

ii) If G is a multiplicative subset of Inv(A) then Inv(A,AG) = Ĝ.
Thus the isomorphism classes of tight extensions of A correspond
uniquely with the saturated multiplicative subsets of InvA.

Proof. i) Let G: = Inv(A,B). Let x ∈ B be given. Since A is tight
in B there exists some I ∈ G with Ix ⊂ A. Thus x ∈ AB[G], and we
conclude that B = AB[G]. Proposition 10 tells us that B is canonically
isomorphic to AG over A.
ii) Let now G be any multiplicative subset of InvA and B: = AG. Of
course, Ĝ ⊂ Inv(A,B). We have to prove equality. Let I ∈ Inv(A,B)
be given. The A-module I−1 = [A:B I] is finitely generated. We
choose generators x1, . . . , xn of I−1. Then we choose ideals Jk ∈ G
with xk ∈ J−1

k (1 ≤ k ≤ n). Let J : = J1 . . . Jn ∈ G. We have
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xk ∈ J−1 for every k, hence I−1 ⊂ J−1, hence J ⊂ I. This proves
Ĝ = Inv(A,B).

Corollary 4.12. Let A ⊂ B and A ⊂ C be tight subextensions of
A ⊂ R. Then B ⊂ C iff Inv(A,B) ⊃ Inv(A,C).

For finitely generated tight extensions we obtain the following more
precise classification theorem.

Theorem 4.13. i) The finitely generated tight extensions of A are
(up to isomorphism) the extensions A[I−1] with I running through
InvA.
ii) Let I and J be invertible ideals of A. Then A[J−1] ⊂ A[I−1] (as
subrings of Q(A)) iff

√
I ⊂ √

J . {We use the notation
√
I: = {x ∈

A | xn ∈ I for some n ∈ N}.}

Proof. a) If I is an invertible ideal of A then the ideal I−1 is finitely
generated, say by elements x1, . . . , xr. These elements also generate
the ring A[I−1] over A.
b) Assume now that A ⊂ R is a finitely generated tight extension.
Let x1, . . . , xr be generators of the ring R over A. For each xk we
choose an ideal Ik ∈ Inv(A,R) with xk ∈ I−1

k . (Recall Th. 11.i). Let
I: = I1I2 . . . Ir. Then I ∈ Inv(A,R) and xk ∈ I−1 for k = 1, . . . , r.
Thus A[I−1] contains all the xk. We conclude that A[I−1] = R.
c) Let I and J be invertible ideals of A. We have A[I−1] = AG with
G: = {In|n ≥ 0}. Now A[J−1] ⊂ A[I−1] iff J ∈ Inv(A,AG) iff J ∈ Ĝ
(by Theorem 11). This means that J ⊃ In for some n ∈ N, and that
is equivalent to

√
J ⊃ √

I, since I is finitely generated.

Corollary 4.14. Let I be an invertible ideal of A. The following
are equivalent.
a)

√
I =

√
As for some s ∈ A.

b) There exists a non-zero-divisor s of A with A[I−1] = A[s−1].
c) There exists a multiplicative subset S of A, consisting of non-

zero-divisors, with A[I−1] = S−1A.

Proof.
√
I =

√
As means that In ⊂ As ⊂ Im for some natural

numbers m ≤ n. Then s is certainly a non-zero-divisor, hence As
is an invertible ideal. Theorem 13.ii now gives the equivalence of
a) and b). It remains to verify that c) implies b). If A[I−1] =
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S−1A then there exists some s ∈ S with I−1 ⊂ As−1, since I−1 is
a finitely generated A-module. This implies that A[I−1] ⊂ A[s−1].
But trivially A[s−1] ⊂ S−1A = A[I−1]. Thus b) holds.

From Theorem 13 and its corollary we immediately obtain a charac-
terization of the ring extensions A ⊂ R for which every R-overring
of A is of the form S−1A. In the case that R is a field this criterion
is well known and runs under the name “Pendleton’s criterion”, cf.
[Pe].

Proposition 4.15 (Rhodes, [Rh, p. 3439]). Let A ⊂ R be a ring
extension. The following are equivalent.
(1) Every R-overring B of A has the form B = S−1A with some

multiplicative subset S of A (consisting of non-zero-divisors).
(2) A is Prüfer in R. For every finitely generated R-regular ideal I

of A there exists some element s of A with
√
I =

√
As.

Proof. (1) ⇒ (2): A is Prüfer in R since condition (2) in Theorem
I.5.2 holds. If I is a finitely generated R-regular ideal then I is R-
invertible, hence A[I−1] ⊂ R. We conclude from our assumption (1)
and Corollary 14 that I =

√
As for some s ∈ A.

(2) ⇒ (1): It suffices to consider the R-overrings of A which are
finitely generated over A. If B is one of these then A ⊂ B is Prüfer,
hence tight. By Theorem 13 we have B = A[I−1] with I an R-
invertible ideal of A. We conclude by our assumption (2) and Corol-
lary 14 that B = A[s−1] with some non-zero-divisor s of A.

We mention an important special case.

Proposition 4.16. Let A ⊂ R be a ring extension, and assume that
every projective A-module of rank 1 is free (e.g. A is semilocal).
i) A is tight in R iff there exists a multiplicative subset S of A with
R = S−1A.
ii) A is Prüfer in R iff for every R-overring B of A there exists a
multiplicative subset S1 of A with B = S−1

1 A.

N.B. Of course, the multiplicative sets S and S1 are forced to consist
of nonzero divisors.

Proof. If I is an invertible ideal of A then we learn from Proposition
2.3 that I = As with some nonzero divisor S of A. {We used this
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argument already in 4.9.} Now Theorem 11 gives us the first claim i).
If we already know that A ⊂ R is tight then it follows from Theorem
I.5.2 that A ⊂ R is Prüfer iff every subextension A ⊂ B of A ⊂ R is
tight. This gives the second claim.

We learned in §3 that a tight extension A ⊂ R is characterized by the
set F(R/A) of R-regular ideals in A. (More generally this holds for
A ⊂ R weakly surjective, cf. Th. 3.3.) We learned now that A ⊂ R
is characterized by the set Inv(A,R) of R-invertible ideals. How is
F(R/A) related to Inv(A,R)?

Proposition 4.17. Assume that A ⊂ R is tight. Then F(R/A) is
the set of all ideals a of A which contain some ideal I ∈ Inv(A,R).

Proof. Of course, if I is R-invertible and a ⊃ I then a is R-regular.
Let now an R-regular ideal a be given. We choose elements a1, . . . , ar

in a, x1, . . . , xr in R with 1 =
r∑
i=1

aixi. Then we choose an ideal

I ∈ Inv(A,R) such that xi ∈ I−1 for 1 ≤ i ≤ r. This is possible

since A is tight in R. Let a0: =
r∑
i=1

Aai. We have A ⊂ a0I
−1, hence

I ⊂ a0. Since a0 ⊂ a, we conclude that I ⊂ a.

Conversely we know for any ring extension A ⊂ R from Scholium 2.5
that

Inv(A,R) = Inv(A) ∩ F(R/A).

How can we describe the Prüfer hull P (A,R) of A in R using theorem
11?

Definition 4. We call an ideal I of A Prüfer if I is invertible and
A is Prüfer in A[I−1]. Given an extension A ⊂ R we say that I is
R-Prüfer if in addition I−1 ⊂ R, i.e. I is R-invertible. We denote
the set of all Prüfer ideals by Π(A) and the set of R-Prüfer ideals by
Π(A,R). We have Π(A,R) = Π(A) ∩ Inv(A,R).

It is evident from the theory of Prüfer hulls (I, §5) that Π(A) =
Inv(A,P (A)) and Π(A,R) = Inv(A,P (A,R)). It is clear that Π(A,R)
is multiplicative and saturated.
Theorem 11 tells us that



118 §4 Tight extensions

P (A) = AΠ(A), P (A,R) = AR[Π(A,R)].

Thus a good description of the Prüfer hulls hinges on a good insight
into Prüfer ideals.

Just now we can state two criteria for an ideal I to be Prüfer.

Theorem 4.18. Let I be an ideal of A. I is Prüfer iff every finitely
generated ideal of A containing some power In is invertible.

Proof. We may assume in advance that I is invertible. Let a be
any ideal of A. Applying Theorem 11.ii to G: = (In|n ≥ 0) we learn
that a is invertible in A[I−1] iff a is invertible and a ⊃ In for some
n ∈ N. Now Theorem 2.1, applied to the extension A ⊂ A[I−1], tells
us, that I is Prüfer iff every finitely generated ideal of A containing
some power In (n ≥ 1) is invertible.

Theorem 4.19. An ideal I of A is Prüfer iff the following two
conditions hold:
a) Every finitely generated ideal a ⊃ I of A is invertible.
b) (a + I)(a ∩ I) = aI for every (finitely generated) ideal a of A

with a ⊃ In for some n ∈ N.

Proof. If I is Prüfer then certainly a) holds, and (a+ I)(a∩ I) = aI
for every ideal a of I, as follows from Theorem 1.4 (5). Assume
now that both conditions a) and b) are fulfilled. Let a be a finitely
generated ideal of A with a ⊃ In for some n ∈ N. We verify by in-
duction on n that a is invertible. Then we will know by the preceding
theorem 18 that I is Prüfer.

Nothing has to be done for n = 1. Assume that n > 1. The ideal
a + I is finitely generated, hence is invertible by condition a). Also
I is invertible by condition a). We now work in the ring A[I−1].
From I ⊃ a ∩ I ⊃ In we conclude that A ⊃ (a ∩ I)I−1 ⊃ In−1.
Thus (a ∩ I)I−1 is an ideal of A. It is finitely generated. Using
the induction hypothesis we see that (a ∩ I)I−1 is invertible. By
condition b) we have a = (a + I)(a ∩ I)I−1, and we conclude that a
is invertible.

Remark 4.20. If I is a Prüfer ideal of A and A ⊂ C a weakly
surjective ring extension, then IC is a Prüfer ideal of C.
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Indeed, the ideal IC of C is invertible with (IC)−1 = I−1C. We have
C[I−1C] = C·A[I−1], and C is Prüfer in C·A[I−1] by Theorem I.5.10.

In particular, for every multiplicative subset S of A the ideal S−1I
of S−1A is again Prüfer.

§5 Distributive submodules

In this whole section A is an arbitrary ring (as always, commutative
with 1).

One of our major problems is to obtain a good understanding of
the Prüfer hull P (A) of A, or – what is nearly the same – a good
understanding of the Prüfer ideals (cf. §4, Def. 4) of A. In this
section we will approach such an understanding by the notion of
“distributivity”.

Definition 1. a) Let M be an A-module. An A-submodule N of
M is called distributive in M (or a distributive submodule of M) if

N ∩ (N ′ +N ′′) = (N ∩N ′) + (N ∩N ′′)

for any two submodules N ′, N ′′ in M .

b) An ideal I of A is called distributive if I is distributive in the
A-module A.

Example 5.1. If A ⊂ R is a Prüfer extension then every A-
submodule I of R with IR = R is distributive in R, as has been
shown in §1 (Th.1.4). In particular, every R-regular ideal of A is
distributive. Taking R = P (A) we conclude that every Prüfer ideal
of A is distributive.

C.U. Jensen has studied distributive ideals under the name of “D-
ideals” [J2]. He obtained rather complete results in the case that A
is noetherian.

Proposition 5.2 ([J2], [Gr3] for M = A). Let M be an A-module
and N an A-submodule of M . The following are equivalent.
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(1) N is distributive in M .
(2) If N ′ and N ′′ are submodules of M , then N + (N ′ ∩ N ′′) =

(N +N ′) ∩ (N +N ′′).
(3) If N ′ and N ′′ are submodules of M , then N ′ ∩ (N + N ′′) =

(N ′ ∩N) + (N ′ ∩N ′′).
(4) If N ′ and N ′′ are submodules of M , then N ′ + (N ∩ N ′′) =

(N ′ +N) ∩ (N ′ +N ′′).
(5) For every maximal ideal m of A and every submodule N ′ of M

the Am-modules Nm and N ′
m are comparable, i.e. Nm ⊂ N ′

m or
N ′

m ⊂ Nm.

Proof. (5) ⇒ (1): Let N ′ and N ′′ be submodules of M . It suffices
to verify for any maximal ideal m of A that

Nm ∩ (N ′
m +N ′′

m) = (Nm ∩N ′
m) + (Nm ∩N ′′

m).

This can be easily done by case distinctions, since both N ′
m and N ′′

m

are comparable with Nm.
(1) ⇒ (5): We may assume that A is local with maximal ideal m.
In order to prove comparability of N with any submodule N ′ of M
it suffices to consider the case that N ′ is monogenic, N ′ = Am with
some m ∈ M . Assume that m ∈ N . We have to verify that N ⊂ N ′.
Let n ∈ N be given. Let N ′′: = A(m+ n). Then

m ∈ (N +N ′) ∩ (N +N ′′) = N + (N ′ ∩N ′′).

Thus m = n0 + am, am = b(m + n) with n0 ∈ N , a ∈ A, b ∈ A.
From the equation (1 − a)m = n0 we conclude that 1 − a ∈ m, since
m ∈ N . Thus a ∈ A∗. From the equation (a − b)m = bn we then
conclude that a − b ∈ m for the same reason. Thus b ∈ A∗ and
n = b−1(a− b)m ∈ N ′. This proves that N ⊂ N ′.
The implications (2) ⇔ (5), (3) ⇔ (5), (4) ⇔ (5) can be proved in
the same way. {We will not need the conditions (2), (3), (4) in the
sequel.}
If N1 and N2 are submodules of an A-module M then we define

(N1:N2) = (N1:AN2): = {x ∈ A | xN2 ⊂ N1}.
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Proposition 5.3 ([J2] for M = A).
Let M be an A-module and N a finitely generated submodule of M .
The following are equivalent.

(1) N is distributive in M .
(2) (N :N ′) + (N ′:N) = A for every finitely generated submodule

N ′ of M .
(3) (N :Ax) + (Ax:N) = A for every x ∈ M .

Proof. We may retreat to the case that A is local. (1) ⇒ (2): By
Proposition 2 we have N ⊂ N ′ or N ′ ⊂ N . Thus (N ′:N) = A or
(N :N ′) = A, which implies in both cases that (N ′:N)+(N :N ′) = A.
(2) ⇒ (3) is trivial. (3) ⇒ (1): We prove condition (5) in Propo-
sition 2. It suffices to verify that N ⊂ Ax for a given x ∈ M with
x ∈ N . By hypothesis we have elements a ∈ (N :Ax) and b ∈ (Ax:N)
with a+ b = 1. Now a is not a unit of A, since x ∈ N . Thus b ∈ A∗

and N ⊂ Ax.

Theorem 5.4. A ring extension A ⊂ R is Prüfer iff A is distributive
in the A-module R.

Proof. We know from Theorem I.5.2 that A is Prüfer in R iff (A:x)+
x(A:x) = A for every x ∈ R. Now x(A:x) = Ax∩A = (Ax:A). The
claim follows from the preceding Proposition 3.

In the special case R = QuotA this theorem has already been proved
by T.M.K. Davison [Dvs, Prop.4.1].

The theorem implies a characterization of Prüfer ideals by distribu-
tivity. We need two easy lemmas.

Lemma 5.5. Assume that (Mλ | λ ∈ Λ) is a directed family of
submodules of an A-module M with

⋃
λ∈Λ

Mλ = M . Let N be a

finitely generated submodule of M and let γ ∈ Λ be chosen with
N ⊂ Mγ . Then N is distributive in M iff N is distributive in Mλ

for every λ ≥ γ.

This is evident from property (3) in Proposition 3. {We could equally
well use other properties from above which characterize distributivity.}
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Lemma 5.6. Let I and J be distributive ideals of A. Assume that
I is also invertible. Then the ideal IJ is distributive.

Proof. We may assume that A is local. Let K be any ideal of A.
We verify that K is comparable with IJ . (Recall (1) ⇔ (5) in Prop.
2.) If K ⊃ I then, of course, K ⊃ IJ . Otherwise K ⊂ I. The
ideals KI−1 and J are comparable, and thus the ideals K and IJ
are comparable.

Theorem 5.7. An ideal I of A is Prüfer iff I is invertible and
distributive.

Proof. We may assume in advance that I is invertible. That I is
Prüfer means by definition that A is Prüfer in A[I−1] =

⋃
n≥1

I−n. By

Theorem 4 this holds iff A is distributive in A[I−1], and by Lemma
5 this means that A is distributive in I−n for every n ∈ N. Now
M �→ InM is a bijection from the set of submodules M of I−n

onto the set of ideals of A, and this bijection preserves the inclusion
relation. Thus A is distributive in I−n iff In = InA is distributive
in A = InI−n. We conclude that I is Prüfer iff In is distributive in
A for every n ∈ N. By Lemma 6 this holds if I is distributive in A.

This theorem, together with Theorems 1.4 and 1.13 implies the fol-
lowing remarkable fact.

Corollary 5.8. If I is an invertible distributive ideal ofA, then every
finitely generated ideal J ⊃ I is again invertible and distributive.

Second proof of Corollary 8 (more direct). It suffices to consider
the case J = I +Aa with one element a ∈ A. We first verify that J
is locally principal. Let m be a maximal ideal of A. Then the ideals
Im and aAm of Am are comparable. Thus Jm = Im or Jm = aAm. In
both cases Jm is generated by one element.

We now know that J is invertible (cf. Prop.2.3). LetK: = J−1I ⊂ A.
The A-module (= ideal) I is distributive in A. A fortiori I = JK is
distributive in K. By a similar argument as in the proof of Theorem
7 we conclude that J is distributive in A, since K is invertible.
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It is clear from Lemma 5.6 that the invertible distributive ideals of
A form a multiplicative set. We have just proved in a direct way
that this multiplicative set of invertible ideals is saturated. Thus we
have obtained a second proof that the set Π(A) of Prüfer ideals is
multiplicative and saturated, a fact already stated and proved in §4.
Recall from §4 that P (A) = AΠ(A).

Definition 2 [Dvs, p.31]. An element t of A is called a strong divisor
in A, if t is not a zero divisor in A and for every b ∈ A either At ⊂ Ab
or Ab ⊂ At. We denote the set of strong divisors in A by sd(A).

Remark 5.9. It has been proved by T.M.K. Davison [Dvs, p.31]
that the set sd(A) is multiplicatively closed and saturated in A. If
t ∈ sd(A), the ideal At is clearly invertible and distributive, hence
Prüfer. Thus A is Prüfer in sd(A)−1A.

Proposition 5.10. If the ring A is local then P (A) = sd(A)−1A.
More generally, every Prüfer extension of A has the form R = S−1A
with S a multiplicative subset of sd(A).

Proof. Every Prüfer ideal I of A is principal, since I is a projective
A-module of rank one (cf.Prop.2.3), and now such modules are free.
Thus I = At with some nonzero divisor t of A. Condition (5) in
Proposition 2 tells us that t is a strong divisor in A. Now the claims
of the proposition are obvious.

§6 Transfer theorems

If E and L are subfields of some field with E ∩ L Galois in E then
a well known theorem, running in the classical (at least German)
literature under the label “transfer theorem” (“Translationssatz”),
tells us that the extension L ⊂ EL is again Galois and the restriction
homomorphism Gal(EL/L) → Gal(E/L ∩ E) between the Galois
groups is an isomorphism, hence the fields F between E ∩ L and E
correspond uniquely with the field F ′ between L and EL via F ′ = LF
and F = F ′ ∩ E.
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We will prove in this section theorems on Prüfer extensions of similar
flavour, which we again will call transfer theorems.

Definition 1. If A ⊂ R is a ring extension then D(A,R) denotes
the set of R-invertible A-submodules of R. We regard D(A,R) as an
ordered abelian group with multiplication (I, J) �→ IJ , and ordering
I ≤ J iff I ⊂ J . The submonoid of “negative” elements is the set
Inv(A,R) of R-invertible ideals of A, since the neutral element is the
A-module A.

Remarks 6.1. If A is Prüfer in R then D(A,R) is a distributive
lattice ordered group (cf. e.g. [BKW]), with the lattice operations
I ∧ J = I ∩ J and I ∨ J = I + J . Indeed, we know from §1 that
if I and J are R-invertible A-modules then I + J and I ∩ J are
again R-invertible and, as in any lattice ordered group, IJ = (I ∨
J)(I ∧ J) (cf.Th.1.4). In particular, the group D(A,R) is generated
by Inv(A,R). In explicit terms, if I ∈ D(A,R) then I = K1K

−1
2

with K1 = I ∩ A, K2 = (I + A)−1. It is also evident that, for any
I, J ∈ D(A,R) we have (I + J)−1 = I−1 ∩ J−1 and (I ∩ J)−1 =
I−1 + J−1. Distributivity is clear by Theorem 1.4.

We will exploit the fact that D(A,R) is lattice ordered more thor-
oughly only later.

We now look at the following situation: R and C are subrings of
some ring T and A is a subring of both R and C. {Later we will
assume that A ⊂ R is Prüfer and A ⊂ C is ws.}
We want to compare the ring extensions A ⊂ R and C ⊂ RC. We
have an evident homomorphism

ϕ:D(A,R) −→ D(C,RC), ϕ(I): = CI,

of abelian groups which is compatible with the orderings. Indeed, if
I is an R-invertible A-module in R, then (IC) · (I−1C) = C. Thus
IC is an RC-invertible C-module with (IC)−1 = I−1C.

Lemma 6.2. If R ∩ C = A then ϕ is injective.

Proof. Let I ∈ D(A,R) be given with IC = C. Then I ⊂ C ∩R =
A. Also I−1C = C, hence I−1 ⊂ A, hence A ⊂ I. Thus I = A.
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Lemma 6.3. Assume that A ⊂ R is Prüfer and R ∩ C = A. Let
J be an RC-invertible C-submodule of RC and I an R-regular A-
submodule of R with IC = J . Then I is R-invertible and I = J ∩R.

Proof. J is a finitely generated C-module. Thus we can choose an
R-regular finitely generated A-module I0 ⊂ I with I0C = J . Since
A is Prüfer in R, the module I0 is R-invertible. (Recall Th.1.13.)
We have I0 ⊂ I ⊂ J ∩ R. We claim that I0 = J ∩ R, and then will
be done. Let x ∈ J ∩R be given. The module I1: = I0 +Ax is again
finitely generated and R-regular, hence R-invertible. I1C = J =
I0C. Lemma 2 tells us that I1 = I0, i.e. x ∈ I0. Thus J ∩R = I0.

Starting from now we nearly always assume in this section that A ⊂
R is Prüfer and A ⊂ C is ws. Notice that then C ⊂ RC is again
Prüfer (Th.I.5.10). Recall also that, if A ⊂ R and A ⊂ C are any
ws extensions, we may imbed both R and C over A in a unique way
into the weakly surjective hull M(A). Thus RC has a completely
unambiguous meaning, RC = R⊗A C, cf. I, §3 and §4.

Theorem 6.4 (Transfer theorem for invertible modules).
Assume that A is Prüfer in R and ws in C. Assume in addition that
R∩C = A. Then the homomorphism ϕ:D(A,R) → D(C,RC) is an
isomorphism of lattice ordered groups. The preimage of an element
J ∈ D(C,RC) is ϕ−1(J) = J ∩R.

Proof. It is clear that the homomorphism ϕ respects the lattice
operation I1 ∨ I2 = I1 + I2. Since (I1 ∩ I2)(I1 + I2) = I1I2, it also
respects the lattice operation I1 ∧ I2 = I1 ∩ I2. By Lemma 2 ϕ is
injective. Moreover, if I ∈ D(A,R), J ∈ D(C,RC), and ϕ(I) = J ,
then Lemma 3 tells us that I = J ∩R. Thus it only remains to prove
that ϕ is surjective. Since D(C,RC) is generated by Inv(C,RC), it
suffices to verify for a given RC-regular ideal J of C that there exists
an R-regular ideal I of A with IC = J .

Let I: = J ∩C. Since A ⊂ C is ws, we have IC = J (cf. Prop.I.4.6).
We now verify that I is R-regular. Then it will follow from Lemma
3 that I is R-invertible, and we will be done.

We choose finitely many elements x1, . . . , xr in R such that J−1 ⊂
Cx1 + · · ·+Cxr, which is possible since J−1 ⊂ RC. Then A+Ax1 +
· · ·+Axr is an R-invertible A-submodule of R, since A ⊂ R is Prüfer.
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Let K: = (A+Ax1+· · ·+Axr)−1. We have J−1 ⊂ K−1C = (KC)−1,
hence KC ⊂ J . It follows that K ⊂ J ∩ A = I. This implies that I
is R-regular.

Theorem 6.5 (Transfer theorem for regular modules).
Assume that R ∩ C = A, and that A is Prüfer in R and ws in C.
I �→ IC is a bijection from the set of R-regular A-submodules of R
to the set of RC-regular C-submodules of RC. The inverse mapping
is J �→ J ∩R.

Proof. a) If I is an R-regular A-submodule of R then, of course, IC
is an RC-regular C-submodule of RC. Let now J be an RC-regular
C-submodule of RC and I: = J ∩ R. We prove that I is the unique
R-regular A-submodule K of R with KC = J , and then will be done.
b) Of course, IC ⊂ J . Let x ∈ J be given. We choose a finitely
generated RC-regular C-submodule J0 of J with x ∈ J0. Then J0
is RC-invertible since the extension C ⊂ RC is Prüfer. By Theorem
4 we know that J0 = (J0 ∩ R)C, and J0 ∩ R is R-invertible. Since
J0 ∩ R ⊂ I, we conclude that I is R-regular. Moreover x ∈ (J0 ∩
R)C ⊂ IC. Thus IC = J .
c) Let finally K be an R-regular A-submodule of R with KC = J .
Then K ⊂ J ∩ C = I. Let x ∈ I be given. We have x ∈ J = KC.
We choose a finitely generated R-regular A-submodule K0 of K with
x ∈ K0C. Now K0 is R-invertible since A ⊂ R is Prüfer. Applying
again Theorem 4 we obtain x ∈ (K0C) ∩R = K0 ⊂ K. This proves
that K = I.

Corollary 6.6 (Transfer theorem for overrings).
As before, assume that A is Prüfer in R and ws in C. The R-overrings
B of R ∩ C correspond uniquely with the RC-overrings E of C via
E = BC and B = E ∩R.

Proof. R ∩ C is Prüfer in R and ws in C. Thus, replacing A by
R ∩ C, we may assume that R ∩ C = A. If B is an R-overring of A
then BC is an RC-overring of C, and if E is an RC-overring of C
then E ∩ C is an R-overring of A. The claim follows from Theorem
5, since overrings are regular modules.

Remark. It is possible to deduce this corollary directly from Theorem
4 instead of Theorem 5, since an R-overring B of A is classified by
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the submonoid Inv(A,B) of Inv(A,R) and an R-overring E of C is
classified by the submonoid Inv(C,E) of Inv(C,RC), cf. Theorem
3.11. We do not give the – rather obvious – details but mention
that such a proof is more parallel to Galois theory than our present
one. The analogy becomes even closer if we work with the subgroups
D(A,B) of D(A,R) and D(C,E) of D(C,RC), which is possible as
well.

Corollary 6.7. Assume that R ∩ C = A and, as before, that A
is Prüfer in R and ws in C. The R-regular prime ideals p of A
correspond uniquely with the RC-regular prime ideals q of C via
q = pC, p = q ∩A.

Proof. If p is an R-regular prime ideal of A then Theorem 5 tells
us that pC is an RC-regular ideal of C and pC = C. Since A is ws
in C it follows that pC is a prime ideal of C and (pC) ∩ A = p, cf.
Th.I.4.8. If q is an RC-regular prime ideal of C then the prime ideal
q∩A of A is R-regular by Theorem 5, and (q∩A)C = q, as is already
clear from Theorem I.4.8.

Corollary 6.8. Assume that A is Prüfer in R and ws in C.

a) If I is an R-regular A-submodule of R, then R∩ (IC) = I(R∩C).
b) The homomorphism ϕ:D(A,R) → D(C,RC), ϕ(I): = IC, is sur-
jective and has the kernel D(A,R ∩ C).

Proof. a) Let J : = I(R ∩ C). Then IC = JC, hence R ∩ (IC) = J
by Theorem 5.

b) Let J ∈ D(C,RC) be given, and K: = J ∩ R. Then K ∈ D(R ∩
C,R) and KC = J by Theorem 5. It is easy to find an R-regular
finitely generated A-submodule I of R with I(R ∩ C) = K. Since
A ⊂ R is Prüfer, the module I is R-invertible. We have ϕ(I) = J .
This proves the surjectivity of ϕ.

If I ∈ D(A,R) is given then, again by Theorem 5 (or Theorem 4),
IC = C if and only if R ∩ (IC) = R ∩C. But R ∩ (IC) = I(R ∩C).
Thus IC = C iff I(R ∩ C) = R ∩ C.

We give some formulas on regular modules which will be useful here
and then.



128 §6 Transfer theorems

Proposition 6.9. Assume that A is Prüfer in R and ws in C, and
that R∩C = A. If I1 and I2 are R-regular A-submodules of R then
(I1 ∩ I2)C = (I1C) ∩ (I2C).

Proof. This holds if I1 and I2 are R-invertible A-modules, since then
our map ϕ:D(A,R) → D(C,RC), ϕ(I) = IC, is an isomorphism of
lattice ordered groups (Th.4). In general, it is trivial that (I1∩I2)C ⊂
(I1C) ∩ (I2C). Let x ∈ (I1C) ∩ (I2C) be given. We choose finitely
generated R-regular A-modules K1 ⊂ I1 and K2 ⊂ I2 with x ∈ K1C
and x ∈ K2C. Since A ⊂ R is Prüfer, both K1 and K2 are R-
invertible. Thus

x ∈ (K1C) ∩ (K2C) = (K1 ∩K2)C ⊂ (I1 ∩ I2)C.

Corollary 6.10. Under the same assumptions on A,R and C, if I1
and I2 are R-regular A-submodules of R and J is any C-submodule
of RC, then (I1 ∩ I2)J = (I1J) ∩ (I2J).

Proof. (I1 ∩I2)J = (I1 ∩I2)CJ = [(I1C)∩ (I2C)] ·J = (I1J)∩ (I2J)
by the preceding proposition and Theorem 1.4 (4).

Proposition 6.11. Assume again that A is Prüfer in R and ws in
C, and that R ∩ C = A. Let I be an A-submodule of R and J an
RC-regular C-submodule RC. Then
(1) [J + (IC)] ∩R = (J ∩R) + I.
If in addition I is R-regular, then
(2) J ∩ (IC) = (J ∩ I)C,
(3) (JI) ∩R = (J ∩R)I.

Proof. We will use Theorem 5 constantly. Let K: = J ∩ R. Then
J = KC. We have J + (IC) = (KC) + (IC) = (K + I)C. Since
K + I is R-regular, it follows that K + I = [J + (IC)] ∩R, i.e. (1).

Assume now that I is R-regular. Since also K is R-regular it follows
from Proposition 9 that (K ∩ I)C = J ∩ (IC), i.e. (2). Finally
JI = (KI)C, and KI is R-regular. Thus KI = (JI) ∩R, i.e. (3).

We now state a proposition which in some sense gives converses to
the transfer theorem for overrings (Corollary 6).

Proposition 6.12. Let A ⊂ T be any ring extension, and let R
and C be T -overrings of A. We consider the map ψ from the set
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of R-overrings B of A to the set of RC-overrings of C defined by
ψ(B): = BC.
a) If A ⊂ R is Prüfer and ψ is surjective, then C ⊂ RC is Prüfer.
b) If C ⊂ RC is Prüfer and ψ is injective, then A ⊂ R is Prüfer and
C ∩R = A.

Proof. a): We verify for a given RC-overring D of C that C is ws
in D, and then will be done by Theorem I.5.2. By assumption there
exists an R-overring B of A with BC = D. Since A ⊂ B is ws also
C ⊂ BC is ws, cf. Prop.I.3.10.
b): From AC = (R∩C)C = C we conclude that A = R∩C. We now
verify for a given R-overring B of A that B is integrally closed in
R, and then will be done, again by Theorem I.5.2 (using a different
part of that theorem). Let B̃ denote the integral closure of B in R.
Then B̃C is integral over BC. Since C ⊂ RC is Prüfer we conclude
that B̃C = BC. Since ψ is injective it follows that B̃ = B.

§7 Polars and factors in a Prüfer extension

In the whole section A ⊂ R is a Prüfer extension. We start with a
lemma of general nature.

Lemma 7.1. Let (Iλ | λ ∈ Λ) be a family of A-modules in R and
also J an A-module in R. Assume that either J or at least one of
the Iλ is R-regular. Then (

∑
λ∈Λ

Iλ) ∩ J =
∑
λ∈Λ

(Iλ ∩ J).

Proof. Given an element x in (
∑
λ

Iλ)∩J we have to verify that x ∈∑
λ

(Iλ ∩ J). We choose a finite set S ⊂ Λ such that x ∈ (
∑
λ∈S

Iλ) ∩ J .

If J is R-regular then we obtain from Theorem 1.4.(1) by an easy
induction that (

∑
λ∈S

Iλ)∩J =
∑
λ∈S

(Iλ ∩J), and we are done. Assume

now that there exists some λ0 ∈ Λ such that Iλ0 is R-regular. Then
we may add λ0 to the set S, hence assume that λ0 ∈ S. Now we
obtain again from Theorem 1.4.(1) that (

∑
λ∈S

Iλ) ∩ J =
∑
λ∈S

(Iλ ∩ J)

by an induction, which runs over sets S′ ⊂ S containing λ0.
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Proposition 7.2. Let I be an A-module in R with A ⊂ I. Then
there exists an A-module J in R, such that I ∩ J = A and every
A-module K ⊂ R with I ∩K ⊂ A is contained in J .

Proof. Let J denote the sum of all A-modules K in R with I ∩K ⊂
A. Then I ∩ J ⊂ A by the preceding lemma. But A ⊂ J , hence
I ∩ J = A.

Definition 1. We call the maximal module J occuring in Proposi-
tion 2 the polar of I (in R), and denote it by I◦. If necessary, we
will use the more precise notation I◦,R instead.

Proposition 7.3. Let again I be an A-submodule of R containing
A. Then I◦ is the set of all x ∈ R with I ∩ (Ax) ⊂ A.

Proof. Let x ∈ R be given. Then x ∈ I◦ iff Ax ⊂ I◦ iff A+Ax ⊂ I◦

iff I ∩ (A+Ax) = A. Since I ∩ (A+Ax) = (I ∩A) + [I ∩ (Ax)] and
I ∩A = A, the claim follows.

Remark 7.4. If B is an R-overring of A and I is an A-submodule
of B containing A then I◦,B = B∩I◦,R, as follows immediately from
Proposition 2 or Proposition 3.

Remarks 7.5. It is obvious that for two A-modules J1 ⊂ J2 in R
with A ⊂ J1 we have J◦

1 ⊃ J◦
2 . If I is any A-module in R containing

A then I ⊂ I◦◦. Here we have written I◦◦: = (I◦)◦. From this it
follows in the usual way that I◦◦◦ = I◦.

Proposition 7.6. Let (Iλ | λ ∈ Λ) be a family of A-modules in R,
all containing A. Then (

∑
λ∈Λ

Iλ)◦ =
⋂
λ∈Λ

I◦
λ.

Proof. Let J : =
⋂
λ∈Λ

I◦
λ. It is obvious that (

∑
λ∈Λ

Iλ)◦ ⊂ J . On

the other hand, Lemma 1 tells us that (
∑
λ∈Λ

Iλ) ∩ J = A. Thus

J ⊂ (
∑
λ∈Λ

Iλ)◦.

Theorem 7.7. The polar I◦ of any A-submodule I of R with A ⊂ I
is a subring of R, hence an R-overring of A.
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Proof. It suffices to verify the following: Let J1 and J2 be finitely
generated A-modules inR with I∩J1 = I∩J2 = A. Then I∩(J1J2) =
A.

Since A is Prüfer in R, the module J1 is R-invertible (cf. Th.1.13).
Using Theorem 1.4.(3) we obtain J−1

1 (I ∩ (J1J2)) = (J−1
1 I) ∩ J2.

Now J−1
1 ⊂ A, hence J−1

1 I ⊂ I. Thus J−1
1 (I ∩ (J1J2)) ⊂ I ∩J2 = A.

Multiplying by J1 we obtain I ∩ (J1J2) ⊂ J1. Intersecting with I,
we obtain I ∩ (J1J2) ⊂ I ∩ J1 = A. We have A ⊂ J1J2, hence
I ∩ (J1J2) = A.

If again I is an A-module in R containing A then, as usual, let A[I]
denote the ring generated by I over A in R. Notice that A[I] is the
subring of R generated by I alone since A ⊂ I, and that A[I] is the
union of the modules In with n running through N.

Corollary 7.8. Let I be an A-module in R containing A. Then
I◦ = A[I]◦ = (In)◦ for every n ∈ N.

Proof. A priori we have I◦ ⊃ (In)◦ ⊃ A[I]◦. But I◦◦ is a subring
of R by the preceding theorem. It contains I, hence A[I]. From
A[I] ⊂ I◦◦ we obtain A[I]◦ ⊃ I◦◦◦ = I◦.

Proposition 7.9. Let I be an R-invertible ideal of A, and C: =
A[I−1]◦. Then Inv(A,C) is the set of all R-invertible ideals J of
A with I + J = A, and C is the union of the rings A[J−1] with J
running through these ideals.

Proof. Let J ∈ Inv(A,R) be given. Then J is C-invertible iff
J−1 ⊂ C, which means that A[I−1] ∩ J−1 = A. Since A[I−1] is
the union of the modules I−n(n ∈ N), the latter condition means
I−n ∩ J−1 = A for all n ∈ N. Taking inverses we see that this is
equivalent to In + J = A for all n ∈ N. But I + J = A implies
In + J = A for every n ∈ N. Thus Inv(A,C) is the set of all
J ∈ Inv(A,R) with I + J = A. The last claim is now obvious (cf.
Theorem 4.11.i).

If B is an R-overring of A then BB◦ = B +B◦, cf. Proposition 1.6.
It may happen that BB◦ = R. We strive for a good understanding
of this situation.
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Lemma 7.10. Let I, J1, J2 be A-modules in R. Assume that at least
one of these modules is R-regular, and that I ∩ J1 ⊂ J2, I + J1 ⊂
I + J2. Then J1 ⊂ J2.

Proof. J1 = (I+J1)∩J1 ⊂ (I+J2)∩J1 = (I ∩J1)+(J2 ∩J1) ⊂ J2.
Here we have used Lemma 1 (or Th. 1.4.(1)).

Definition 2. Let I and J be A-submodules of R, and assume that
A ⊂ I. We call J a complement of I in R (over A) if I ∩ J = A and
I + J = R.

Theorem 7.11. Let I be an A-module in R with A ⊂ R.
i) Then I has at most one complement J in R.
ii) If I has a complement J then J = I◦ and I = J◦. Both I and

J are R-overrings of A.

Proof. The first assertion is evident by Lemma 10. Assume now
that J is a compelement of I. Then I ∩J = I ∩ I◦ = A, and J ⊂ I◦,
hence also I+J = I+I◦ = R. Thus I◦ is a complement of A, and we
conclude that J = I◦. Also I is a complement of J , and we conclude
that I = J◦. By Theorem 7 both I and J are subrings of R.

Definition 3. a) We call an R-overring B of A a factor of R (over
A), if the A-module B has a complement, i.e. BB◦ = B + B◦ = R.
We then also say that the extension A ⊂ B is a factor of the Prüfer
extension A ⊂ R.
b) If B is a factor of R over A with complement C then we write
R = B ×A C. We call such a decomposition of R a factorisation of
R over A.
c) A factor B of R over A is called trivial if B = A or B = R. The
Prüfer extension A ⊂ R is called reducible if it has a nontrivial factor.
It is called irreducible if it is nontrivial but does not have a nontrivial
factor. We then also say that R is reducible (resp. irreducible over
A) .

Remarks 7.12. If B is any R-overring of A then D: = BB◦ = B +
B◦ is the largest R-overring of B such that B is a factor of D over A.
Also, if C is a second R-overring of A, then BC = B+C = B×B∩CC.
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We want to prove that, if B1 and B2 are factors of R over A then
B1B2 and B1 ∩B2 are again factors of R over A.

Lemma 7.13. Let B be a factor of R over A and let C be an R-
overring. Then B ∩ C is a factor of C over A with the complement
B◦ ∩ C.

Proof. We have (B ∩ C) ∩ (B◦ ∩ C) = A. From B + B◦ = R we
deduce that C = C ∩ (B +B◦) = (B ∩ C) + (B◦ ∩ C).

Proposition 7.14. If B1 and B2 are factors of R over A then
also B1 ∩ B2 and B1B2 are factors over A. The complements are
(B1B2)◦ = B◦

1 ∩B◦
2 and

(B1 ∩B2)◦ = B◦
1 +B◦

2 = (B◦
1 ∩B2) +B◦

2 = (B◦
2 ∩B1) +B◦

1 .

Proof. Lemma 13 tells us that B1 ∩ B2 + B1 ∩ B◦
2 = B1 and B◦

1 ∩
B2 + B◦

1 ∩ B◦
2 = B◦

1 . Inserting this in B1 + B◦
1 we obtain that

(B1 ∩B2) + J = R with

J : = (B1 ∩B◦
2) + (B◦

1 ∩B2) + (B◦
1 ∩B◦

2).

One readily verifies that (B1 ∩B2)∩J = A. Thus B1 ∩B2 is a factor
with complement J . Clearly J = (B◦

1 ∩B2) +B◦
2 = (B◦

2 ∩B1) +B◦
1 .

Now J ⊂ B◦
1 + B◦

2 and (B1 ∩ B2) ∩ (B◦
1 + B◦

2) = A. Thus also
B◦

1 +B◦
2 is a complement of B1 ∩B2, which forces J = B◦

1 +B◦
2 . It

follows that (B◦
1 + B◦

2)◦ = J◦ = B1 ∩ B2. Applying all this to B◦
1 ,

B◦
2 instead of B1, B2 we learn that B1 + B2 is a factor of R over A

with complement B◦
1 ∩B◦

2 . Notice that B1 +B2 = B1B2.

Proposition 7.15. Let D be an R-overring of A. Assume that
R = B×AC. Then D = (B∩D)×A(C∩D) and R = (BD)×D (CD).

Proof. (B ∩ D) ∩ (C ∩ D) = A ∩ D = A, and (BD) ∩ (CD) =
(B ∩ C)D = AD = D. On the other hand, R = B + C, hence
D = D ∩ (B + C) = (D ∩ B) + (D ∩ C), and R = BD + CD. Here
we have used parts (1) and (4) of Theorem 1.4.

Proposition 7.16 (Transfer principle for polars and factors). Let
A ⊂ C be a ws ring extension. We regard R and C as subrings of
RC = R⊗A C. Assume that R ∩ C = A.
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(i) Let I be an A-submodule of R containing A. Let I◦ denote the
polar of I in R and (IC)◦ denote the polar of the C-module IC in
RC. Then (IC)◦ = (I◦)C.
(ii) Let B be an R-overring of A. Then B is a factor of R over A iff
BC is a factor of RC over C. In this case RC = (BC) ×C (B◦C).

Proof. Statement (i) is obvious from the fact that we have an iso-
morphism J �→ JC from the lattice of R-regular A-submodules J of
R to the lattice of RC-regular C-submodules of RC, as follows from
Theorem 6.5. If B is an R-overring of R over A then (BC)◦ = B◦C,
as just proved, and BC + B◦C = (B + B◦)C = RC. In view of
Theorem 6.5 this gives us the second claim (ii).

We will continue our study of polars and factors in part II of the
book.

§8 Decomposition of regular modules

In this section we assume again that A ⊂ R is a Prüfer extension. We
further assume that B and C are R-overrings of A with B ∩C = A.

Theorem 8.1. a) Let I be a BC-regular A-submodule of BC.
Then there exists a unique pair (J,K), consisting of a B-regular A-
submodule J of B and a C-regular A-submodule K of C, such that
I = (JC) ∩ (BK). We have J = (IC) ∩B and K = (IB) ∩ C.
b) Conversely, if J is a B-regular A-submodule of B and K is a C-
regular A-submodule of C then I: = (JC) ∩ (BK) is a BC-regular
A-submodule of BC.

Proof. Assertion b) of the theorem is trivial. Assume now that I
is a BC-regular A-submodule of BC. Then IC is a BC-regular C-
submodule of BC. We define J : = B∩(IC). This is an A-submodule
of B. According to the transfer theorem 6.5 the module J is B-
regular and JC = IC. By the same theorem K: = C ∩ (IB) is an
A-regular submodule of C and IB = KB. We have (JC) ∩ (KB) =
(IC) ∩ (IB) = I(C ∩B), by using Theorem 1.4.(4).

Let now J ′ be any B-regular A-submodule of B and K ′ any C-
regular A-submodule of C such that I = (J ′C)∩(BK ′). Then, again
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by Theorem 1.4.(4), IB = [(J ′C) ∩ (K ′B)]B = (J ′CB) ∩ (K ′B) =
(BC)∩(K ′B) = K ′B = KB, and Theorem 6.5 tells us that K ′ = K.
By the same argument J ′ = J .

Definition 1. In the situation of Theorem 1.a we call J the B-
component and K the C-component of the given BC-regular A-
module J . Notice that J is the unique B-regular A-module in B
with JC = IC, and K is the unique C-regular A-module in C with
KB = IB.

Example 8.2. Let I be an A-submodule of BC with A ⊂ I. Then
I has the B-component I ∩ B and the C-component I ∩ C, and
I = (I ∩B)(I ∩ C) = (I ∩B) + (I ∩ C).

Proof. Applying Theorem 1.4.(4) we learn that (I ∩B)C = (IC) ∩
(BC) = IC. The A-module I ∩ B is certainly B-regular, since it
contains A. Thus I ∩ B is the B-component of I. For the same
reason I ∩ C is the C-component of I. We have

I = I ∩ (B + C) = (I ∩B) + (I ∩ C)

by Theorems 1.4.(1) and (1.7), and then I = (I ∩ B)(I ∩ C), since
I ∩B ∩ C = A, cf. Th.1.4.(5).

Remark 8.3. Assume that J is the B-component and K is the C-
component of a BC-regular A-submodule I of BC. Then J ∩K =
A ∩ I.

Proof. J ∩K = (IC) ∩ B ∩ (IB) ∩ C = (IB) ∩ (IC) ∩ A = [I(B ∩
C)] ∩ A = (IA) ∩ A = I ∩ A, where we again have used Theorem
1.4.(4).

For BC-regular ideals of A we have the following simpler decompo-
sition theorem.

Theorem 8.4.
a) Let I be a BC-regular ideal of A. Then there exists a unique pair
(J,K) consisting of a B-regular ideal J of A and a C-regular ideal
K of A such that I = J ∩K. The A-module J is the B-component
of I and K is the C-component of A.
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b) Conversely, if J is a B-regular ideal of A and K is a C-regular
ideal of A then J ∩K is a BC-regular ideal of A. Also J +K = A
and J ∩K = JK.

Proof. a): Assume that I is a (BC)-regular ideal of A. We define
the A-modules J and K as the B-component and the C-component
of I respectively. Remark 3 tells us that I = J ∩ K. We have
JC = IC ⊂ C, hence J = (JC) ∩ B ⊂ A, and also K ⊂ A, and we
know that J is B-regular and K is C-regular.

Let now J ′ be any B-regular ideal of A and K ′ be any C-regular
ideal of A with J ′ ∩K ′ = I. Then (J ′C) ∩ (K ′B) = (J ′B) ∩ (J ′C) ∩
(K ′B) ∩ (K ′C) = [J ′(B ∩ C)] ∩ [K ′(B ∩ C)] = J ′ ∩ K ′ = I, and
Theorem 1 tells us that J ′ = J , K ′ = K.

b): Let J be a B-regular and K a C-regular ideal of A. Then both
J and K are BC-regular, hence JK and J ∩K are BC-regular. We
have (JK)B = (JB)(KB) = KB and (J ∩ K)B = (JB) ∩ KB =
B∩KB = KB. Thus (JK)B = (J∩K)B. Also (JK)C = (J∩K)C.
As just proved, this implies JK = J∩K. Also (J+K)B = B+KB =
B = AB and (J +K)C = AC, hence J +K = A.

Remark 8.5. Notice that C ⊂ B◦. Assume that I is a BC-regular
A-submodule of BC. Then I is also BB◦-regular. Thus I has a
B-component J = (IC) ∩ B and a C-component K = (IB) ∩ C.
But I has also a B-component J ′ = (IB◦) ∩B and a B◦-component
K ′ = (IB) ∩B◦. Fortunately J = J ′ and K = K ′.

Proof. Both J and J ′ areB-regular and JB◦ = (JC)B◦ = (IC)B◦ =
IB◦ = J ′B◦. Theorem 6.5 tells us that J = J ′. Also KB = IB =
K ′B, and both K,K ′ are B◦-regular. Thus, by the same theorem,
K = K ′.

Thus we can say, that the B-component and the C-component of I
only depend on A,B, and I, as long as I is BC-regular.

Remarks 8.6. Assume that I1 and I2 are BC-regular A-submodules
of BC. Let J1, J2 denote the B-components and K1,K2 denote the
C-components of I1 and I2 respectively.

a) I1 ⊂ I2 iff J1 ⊂ J2 and K1 ⊂ K2.
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b) I1 + I2 has the B-component J1 + J2 and the C-component
K1 +K2.

c) I1 ∩I2 has the B-component J1 ∩J2 and the C-component K1 ∩
K2.

d) I1I2 has the B-component J1J2 and the C-component K1K2.

Proof. It suffices to prove the claims about the B-components. We
have I1C = J1C, I2C = J2C, hence (I1 + I2)C = (J1 + J2)C,

(I1 ∩ I2)C = (I1C) ∩ (I2C) = (J1C) ∩ (J2C) = (J1 ∩ J2)C,

and (I1I2)C = (J1J2)C. In view of the tranfer theorem 6.5, applied
to the extensions A ⊂ B and A ⊂ C, now all claims are evident.

Proposition 8.7. Let I be a (BC)-regular ideal of A. The B-
component J of I is the smallest B-regular ideal of A containing I.

Proof. Let K denote the C-component of I. Then I = J ∩K ⊂ J .
Let now a be B-regular ideal of A with I ⊂ a. Then a is BC-regular.
The trivial equation a = a ∩ A tells us that a has the B-component
a and the C-component A. It follows by Remark 8.6.a that J ⊂ a.

Proposition 8.8. Let I be a BC-regular A-submodule of BC, and
let J,K denote the B- and C-component of I respectively. Then I
is BC-invertible (i.e. finitely generated) iff J is B-invertible and K
is C-invertible. In this case I−1 has the B-component J−1 and the
C-component K−1.

Proof. The A-module A has the B-component A and the C-com-
ponent A. The claim now follows easily from Remark 6.d.

Recall from §6, that D(A,R) denotes the group of R-invertible A-
modules in R, and from §4, that Inv(A,R) denotes the submonoid
of R-invertible ideals of A.

Theorem 8.9. The map ϕ:D(A,B) × D(A,C) → D(A,BC),
ϕ(J,K): = (JC)∩(BK), is an isomorphism of lattice ordered abelian
groups. Here the ordering on D(A,B)×D(A,C) is given by (J,K) ≤
(J ′,K ′) iff J ⊂ J ′ and K ⊂ K ′.
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Proof. This is evident from Theorem 1, Remarks 6, and Proposi-
tion 8.

Scholium 8.10. Notice that, by this theorem, the map (J,K) �→
J ∩K = JK,

Inv(A,B) × Inv(A,C) −→ Inv(A,BC),

is an isomorphism of lattice ordered abelian semigroups. The inverse
map sends a BC-ideal I of A to the pair (J,K) consisting of the B-
component J and the C-componentK of I. We have I−1 = (J−1C)∩
(BK−1) = J−1K−1, but J−1 ∩K−1 = A. Also I−1 = J−1 +K−1,
as is evident from I = J ∩K, and also from Lemma 1.5.

Theorem 8.11. Let p be a BC-regular prime ideal of A. Then
p is either B-regular or C-regular. p has the B-component p and
C-component A in the first case, and the B-component A and C-
component p in the second case.

Proof. Let J be the B-component and K the C-component of p.
We have J = (pC) ∩ B, K = (pB) ∩ C, and p = J ∩ K. Since p is
prime, either J ⊂ p or K ⊂ p. If J ⊂ p then p is B-regular, and
K = A, hence p = J ∩ A = J . If K ⊂ p then p is C-regular, and
p = K.

Corollary 8.12. If R = BC, i.e. R = B ×A C, the set Y (R/A)
of R-regular prime ideals of A is the disjoint union of Y (B/A) and
Y (C/A).

We give an application of this corollary which will be very useful
later on. Recall that for any R-overring D of A the restriction map
SpecD → SpecA is a bijection onto its image X(D/A), and that
X(D/A) is the complement of Y (D/A) in SpecA. {This holds more
generally if A is ws in R, cf. §3 and I, §4.}

Theorem 8.13. As before we assume that A is Prüfer in R. Let
(Bi | 1 ≤ i ≤ r) be a finite family of R-overrings of A. Then

a) X(B1B2 . . . Br/A) =
r⋂
i=1

X(Bi/A),
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b) X(
r⋂
i=1

Bi/A) =
r⋃
i=1

X(Bi/A).

Proof. It suffices to verify this for r = 2. We first work in the
special case that B1 ∩ B2 = A. Then Corollary 12 tells us that
Y (B1/A) ∪ Y (B2/A) = Y (B1B2/A) and Y (B1/A) ∩ Y (B2/A) = ∅.
Taking complements in SpecA we obtain a) and b). If A′: = B1 ∩
B2 is different from A, then we obtain a) and b) by applying the
restriction map SpecA′ → SpecA to the equations X(B1B2/A

′) =
X(B1/A

′) ∩X(B2/A
′) and SpecA′ = X(B1/A

′) ∪X(B2/A
′).

We return to the situation that A ⊂ R is Prüfer and B,C are R-
overrings of A with B ∩ C = A.

Proposition 8.14. Let I be a BC-regular A-submodule of BC and
let I1 be an A-submodule of B. Let J denote the B-component and
K denote the C-component of I. The BC-regular module I + I1
has the B-component J + I1 and the C-component K + (I1 ∩A). In
particular, if I1 is an ideal of A, then I + I1 has the B-component
J + I1 and the C-component K + I1.

Proof. (I + I1)C = IC + I1C = JC + I1C = (J + I1)C, and J + I1
is a B-regular A-submodule of A. Thus J + I1 is the B-component
of I + I1. The C-component is [(I + I1)B] ∩C = (IB + I1B) ∩C =
[(IB) ∩ C] + [(I1B) ∩ C] = J + (I1 ∩ C) = J + (I1 ∩ A), since
I1 ∩ C ⊂ B ∩ C = A.

If both I and I1 are BC-regular ideals of A, we have the following
funny consequence. (Recall Remark 6.b.)

Corollary 8.15. Let I and I1 be BC-regular ideals of A. Let J
and J1 denote the B-components of I and I1 respectively. Then
J + I1 = I + J1 = J + J1.

Corollary 8.16. Let J be the B-component of a (BC)-regular ideal
I of A. Let a be any B-regular ideal of A with a ⊂ J . Then J = a+I.

Proof. Take I1 = a in the preceding corollary.
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§9 Prüfer overmodules

We enlarge and deepen some results of §5 by working with “over-
modules” of rings instead of ring extensions. This means some sort
of linearisation of the basic theory of Prüfer extensions.

In the following A is a ring (commutative, with 1, as always).

Definition 1. An overmodule of A is an A-moduleM which contains
the ring A as an A-submodule. Such an overmodule M is called
Prüfer if (A:m) + (A:m)m = A for every m ∈ M . Alternatively
we then say that A is Prüfer in M . Here (A:m) denotes the ideal
{a ∈ A | am ∈ A} of A.

Notice that if A ⊂ R is a ring extension then R may be also regarded
as an overmodule of A. The A-overmodule R is Prüfer iff the ring
extension A ⊂ R is Prüfer, as we know from the implication (1) ⇔
(8) in Theorem I.5.2.

Theorem 9.1. Let M be an overmodule of A. Then A is Prüfer in
M iff A is a distributive submodule of M .

This can be proved in exactly the same way as Theorem 5.4 (which
is a special case of the present theorem).

It turns out that every Prüfer overmodule of A can be embedded
over A in the complete ring of quotients Q(A) (cf.I, §4) in a unique
way. In order to prove this we need a lemma.

Definition 2. Let N be an overmodule of A. We call an ideal I of
A dense in N , if In = 0 for every element n = 0 of N .

Lemma 9.2. If M is a Prüfer overmodule of A then, for every
m ∈ M , the ideal (A:m) is dense in M (hence also dense in A).

Proof. We may assume thatm ∈ M\A, since otherwise (A:m) = A.
From (A:m) + (A:m)m = A we conclude that (A:m) is dense in A
and also that (A:m)m = 0, since otherwise (A:m) = A, which would
imply m ∈ A.

Let n be a nonzero element of M . We want to prove that
(A:m)n = 0. We know already that (A:n)n = 0. Since (A:n)n ⊂ A
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and (A:m) is dense in A, it follows that (A:m)(A:n)n = 0. This
implies (A:m)n = 0

Lemma 9.3. Let M be an overmodule of A. Assume that for
every m ∈ M the ideal (A:m) is dense in A, and that (A:m)m = 0
if m = 0. Then there exists a unique A-module homomorphism
ϕ:M → Q(A) with ϕ(a) = a for every a ∈ A, and ϕ is injective.

Proof. Q(A) is the inductive limit of the A-modules HomA(a, A)
with a running through the dense ideals of A. Since the natural
maps HomA(a, A) → Q(A) are injective, we feel free to regard any
A-linear form h: a → A, with a a dense ideal of A, as an element of
Q(A).

For every m ∈ M we introduce the A-linear form m̂: (A:m) → A,
m̂(a): = am, and we define ϕ:M → Q(A) by ϕ(m): = m̂.

If m,n ∈ M we have (m̂+ n̂)(x) = (m+n)∧(x) for any x ∈ (A:M) ·
(A:N). Since this ideal is dense in A, we conclude that m̂ + n̂ =
(m+n)∧ in Q(A). Similarly one proves that (am)∧ = a·m̂ for a ∈ A,
m ∈ M . Thus ϕ:M → Q(A) is A-linear. If m ∈ M , m = 0, then
by assumption (A:m)m = 0. This means that m̂ = 0. Thus ϕ is
injective. Finally, if a ∈ A then â coincides with a under the natural
identification of A with a subring of Q(A).

If ψ:M → Q(A) is a second A-module homomorphism over A, then
we have, for every m ∈ M ,

(A:m)ψ(m) = ψ((A:m)m) = (A:m)m = (A:m)ϕ(m),

and we conclude that ψ(m) = ϕ(m), since (A:m) is dense in A.

From these two lemmas we conclude

Theorem 9.4. Every Prüfer overmodule M of A embeds into Q(A)
over A in a unique way.

Definition 3. Let A ⊂ R be a ring extension. An R-overmodule of
A is an A-submodule M of R which contains A.

Theorem 4 tells us that, studying Prüfer overmodules of A, it suffices
to look at Q(A)-overmodules of A.
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Previous work in §2 now gives us the possibility to express the Prüfer
property of overmodules in other ways.

Scholium 9.5. Let A be a ring and M be a Q(A)-overmodule of A.
The following are equivalent.
(1) A is Prüfer in M .
(2) For every x ∈ M the A-module A+Ax is invertible (i.e. Q(A)-

invertible).
(3) For every x ∈ M the A-module A+Ax is locally principal.
(4) For every x ∈ M the A-module A + Ax is a mulitplication

module.

Proof. Let x ∈ M be given. Then [A:Q(A)A + Ax] = (A:x) (cf.
Remark 4.2). Thus the condition (A:x) + (A:x)x = A means that
A+Ax is Q(A)-invertible. This explains (1) ⇔ (2). The equivalence
of (2), (3), (4) is stated in Proposition 2.3.

Theorem 9.6. A Q(A)-overmodule M of A is Prüfer iff the sub-
extension A ⊂ A[M ] of A ⊂ Q(A) is Prüfer.

Proof. If A ⊂ A[M ] is Prüfer then it follows from Theorem 1 (and
Theorem 5.4, if you insist), that A is Prüfer in M . Alternatively we
can work with Definition 1 and condition (8) in Theorem I.5.2.

Assume now that A is Prüfer in M . The ring A[M ] is the union of
the rings Am: = A[(A:m)−1] with m running through M . By the
criterion (8) in Theorem I.5.2 it suffices to verify that A is Prüfer in
Am for every m ∈ M .

Let m ∈ M be fixed and I: = (A:m). The ideal I is invertible (in
Q(A)) and I−1 = A + Am, since we have (A:m) + (A · m)m = A.
Moreover the A-submodule A of I−1 is distributive in I−1 since A
is distributive in M by Theorem 1 and I−1 ⊂ M . We have an order
preserving bijection a �→ aI−1 from the partially ordered set of ideals
a of A to the partially ordered set of A-submodules of I−1. Under
this bijection I corresponds to A. We conclude that I is distributive
in A.∗) We conclude from Theorem 5.7 that I is a Prüfer ideal of A,
which means that A is Prüfer in A[I−1].

∗) Such an argument had already been used in the proof of Theorem 5.7.
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Corollary 9.7. Let M be a Prüfer overmodule of A. Every finitely
generated A-submodule J of M with A ⊂ J is projective of rank
one.

Proof. We may assume that M is an overmodule in Q(A). Then we
may regard J as an R-regular A-submodule of R = A[M ] ⊂ Q(A).
Since A is Prüfer in R by Theorem 6, we know that J is R-invertible,
hence Q(A)-invertible. The claim follows by Proposition 2.3.

Corollary 9.8. An ideal I of A is Prüfer iff I is invertible and A is
Prüfer in I−1.

Proof. We may assume in advance that I is invertible. The claim
follows from Theorem 6, applied to M : = I−1.

We add still another characterization of Prüfer ideals.

Theorem 9.9. Let I be an invertible ideal of A. Then I is Prüfer
iff the ring A/I2 is arithmetical.

Proof. If I is Prüfer then A is Prüfer in R: = A[I−1], and I is R-
invertible. Also I2 is R-invertible, and we infer from Theorem 2.8
that A/I2 is arithmetical. {More generally A/In is arithmetical for
every n ∈ N.}
Assume now that A/I2 is arithmetical. Let x ∈ I−1 be given. We
want to verify that A + Ax is invertible. Then we will know that
(A:x) + (A:x)x = A. This will prove that A is Prüfer in I−1 which
will imply that the ideal I is Prüfer by the preceding corollary.

Let J : = I(A + Ax). It suffices to prove that J is invertible. We
have I ⊂ J ⊂ A. The A-module J/I2 is locally principal, since A/I2

is arithmetical. Thus also J/J2 is locally principal. It follows by
Lemma 2.7 that the ideal J of A is locally principal, hence invertible
(cf. Prop.2.3).

If we only know that A/I is arithmetical then we cannot conclude
that the ideal I is Prüfer, as the following example shows.

Example 9.10. Let A = k[x, y] be the polynomial ring in two
variables x, y over a field k. The ideal I: = (x) of A is invertible (in
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Q(A) = QuotA). The ring A/I ∼= k[y] is arithmetical. But A/I2 is
not arithmetical, and thus I is not a Prüfer ideal of A. Indeed, taking
J : = I2 + Ay K: = I2 + A(x + y), we have I ∩ (J + K) = I = (x),
while I ∩J = I ∩K = (x2, xy), as is easily verified. Thus I ∩ (J+K)
is different from (I ∩ J) + (I ∩K).

Definitions 4. If N is any A-module then a distributive module
extension N ⊂ M is an A-module M containing N as a submodule
which is distributive in M , cf. [Ba2]. A distributive hull of N has
been defined by Barnard as a distributive module extension N ⊂
D(N) such that for any distributive module extension N ⊂ M there
exists an A-module monomorphism ϕ:M → D(N) with ϕ(n) = n
for n ∈ N [loc.cit.].

It follows from Theorem 5.4 together with Theorems 4 and 6 above
that, for any ring A, the Prüfer hull A ⊂ P (A) is a distributive hull
of the A-module A, in short P (A) = D(A). Moreover we know in
this case that for every distributive extension A ⊂ M there exists a
unique homomorphism ϕ:M → P (A) over A (and ϕ is injective).

Already V. Erdogdu [Er], building on the work of Barnard [Ba1] and
Davison [Dvs], has proved that the A-module A has a distributive
hull with this additional property. {N.B. Not every A-module has a
distributive hull, cf. [Ba1], [Dvs].}

§10 Bezout extensions

An integral domain A is called a Bezout domain, if every finitely
generated ideal of A is principal. Such a domain is well known to
be a Prüfer domain. Indeed, every finitely generated ideal I = 0 of
A is invertible in QuotA. Thus the extension A ⊂ QuotA is Prüfer
(cf. Th.2.1). In the classical literature Bezout domains appear at
prominent places. For example, the ring of all algebraic integers is
clearly a Bezout domain. Also the ring of holomorphic functions
on a given subdomain of the complex plane is a Bezout domain, cf.
[Re, p.122]. Various p-adic holomorphy rings are Bezout domains,
cf. [PR, §6 and §7].
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We now look for a generalization of Bezout domains in the framework
of Prüfer extensions. We start with the following rather narrow
minded definition of “Bezout extensions”, and then will prove that
two other off hand possibilities to define Bezout extensions give the
same class of ring extensions, cf. (2), (3) in Theorem 2 below.

Definition 1. We call a ring extension A ⊂ R Bezout if A ⊂ R is
Prüfer and every R-invertible ideal of A is principal. We then also
say that A is Bezout in R.

Notice that, using this terminology, an integral domain A is Bezout
iff the extension A ⊂ QuotA is Bezout.

Proposition 10.1. If A ⊂ R is a Bezout extension, every finitely
generated R-regular A-submodule of R is principal, i.e. generated
by one element.

Proof. Let I be an R-regular finitely generated A-submodule of R.
Since A ⊂ R is Prüfer, we have

(∗) I = (A ∩ I) · (A+ I),

cf. Th.1.4, (5). Moreover I and A + I are R-invertible, since both
these R-modules are finitely generated and R-regular. Thus A∩ I is
R-invertible. Since A ⊂ R is Bezout, we have A∩ I = As with some
s ∈ A. For the same reason (A + I)−1 = At with some t ∈ A. We
have Rt = R, hence t ∈ R∗. Equation (∗) now gives us I = Ast−1.

Theorem 10.2. Let A ⊂ R be a ring extension. The following are
equivalent.
(1) A ⊂ R is Bezout.
(2) A ⊂ R is ws, and every finitely generated R-regular ideal of A

is principal.
(3) For every x ∈ R there exists some y ∈ R with A+Ax = Ay.
(4) A ⊂ R is Prüfer, and (A:x) is principal for every x ∈ R \A.

Proof. (1) ⇒ (2): A ⊂ R is Prüfer, hence ws. If I is a finitely gen-
erated R-regular ideal of A, then I is R-invertible, hence principal.
(2) ⇒ (1): Theorem 2.6 (or Th.2.1) tells us that A ⊂ R is Prüfer.
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(1) ⇒ (3): This follows from Proposition 1.
(3) ⇒ (1): We first verify condition (8) in Theorem I.5.2, and then
will know that A is Prüfer in R. Let x ∈ R be given. We have
A + Ax = Ay with some y ∈ R. Then Ry = R, hence y ∈ R∗, and
(A:x) = [A:A + Ax] = [A:Ay] = Ay−1. It follows that (A:x)(A +
Ax) = Ay−1 ·Ay = A. Thus (A:x) + (A:x)x = A.

We now prove that for finitely many elements x1, . . . , xn of R the
A-module A+Ax1 + · · ·+Axn is principal. We proceed by induction
on n, the case n = 1 being done. Let n > 1. Then A + Ax1 +
· · · +Axn−1 = As with some s ∈ R∗ by induction hypothesis. Thus
A+Ax1+· · ·+Axn = As+Axn = (A+Axns−1)s. There exists some
t ∈ R with A+Axns−1 = At, and we have A+Ax1+· · ·+Axn = Ast.

Let finally an R-invertible ideal I of A be given. Then I−1 ⊃ A,
and I−1 is finitely generated. Thus there exist elements x1, . . . , xn
in I−1 such that I−1 = A + Ax1 + · · · + Axn. As we have proved
this implies I−1 = Ay with some y ∈ R∗, hence I = Ay−1. This
completes the proof that A is Bezout in R.

(1) ⇒ (4): This is evident.
(4) ⇒ (3): Let x ∈ R \ A be given. Since A ⊂ R is Prüfer, we
have (A:x) + (A:x)x = A. By assumption, (A:x) = Aa with some
a ∈ A, and (A + Ax)a = A. It follows that a is a unit in R and
A+Ax = Aa−1.

Example 10.3. If v is a local Manis valuation on a ring R, i.e. v is
Manis and A: = Av is a local ring with maximal ideal pv (cf. I,§1),
then Av is Bezout in R.

Proof. We know by Proposition I.1.3 that the ring R is local with
maximal ideal supp v. Let A: = Av and let x ∈ R \ A be given.
Certainly x ∈ supp v. Thus x ∈ R∗. We have A+Ax = (Ax−1+A)x.
Now v(x) < 0, hence v(x−1) > 0, i.e. x−1 ∈ p. We conclude that
A+Ax = Ax. According to Theorem 2 this proves that A is Bezout
in R.

If A is a local ring with maximal ideal m, and A ⊂ R is a ring
extension, then it is evident from the definiton of Prüfer extensions
in I, §5 that A ⊂ R is Prüfer iff (A,m) is Manis in R. This gives
us a second proof of 10.3: Every R-invertible ideal of A is principal,



Chapter II: Multiplicative ideal theory 147

since A is local (cf. Prop.2.3). Thus A ⊂ R is Bezout. We may
summarize:

Scholium 10.4. Let A be a local ring with maximal ideal m and
A ⊂ R a ring extension. The following are equivalent:

(1) (A,m) is Manis in R.
(2) A ⊂ R is Prüfer.
(3) A ⊂ R is Bezout.

Notice the close relation of our observation here to the last para-
graphs of §5.

Expanding on Example 10.3 and Scholium 10.4 we ask what it means
in general for a Manis valuation, or better a PM-valuation∗) v:R →
Γ∪∞, that Av is Bezout in R. We assume without loss of generality
that v is surjective, i.e. Γ = Γv. For any γ ∈ Γ we denote the
Av-module {x ∈ R | v(x) ≥ γ} by Iγ .

Lemma 10.5. Let v:R −→−→ Γ ∪ ∞ be a surjective Manis valuation.
Assume that Av is Bezout in R. Then v(R∗) = Γ.

Proof. Let γ ∈ Γ be given with γ > 0. We choose some x ∈ R with
v(x) = −γ. There exists some y ∈ R with A + Ax = Ay. We have
Ry = R, hence y ∈ R∗, and v(y) = v(x) = −γ, v(y−1) = γ.

Lemma 10.6. Assume again that v:R −→−→ Γ ∪ ∞ is a surjective
Manis valuation. The following are equivalent.

(1) v(R∗) = Γ.
(2) Iγ is principal for every γ ∈ Γ.
(2−) Iγ is principal for every negative γ ∈ Γ.

Proof. (1) ⇒ (2): Given γ ∈ Γ there exists some y ∈ R∗ with
v(y) = γ. If x ∈ Iγ then v(xy−1) ≥ 0, hence xy−1 ∈ A. Thus
x ∈ Ay. This proves Iγ = Ay.
(2) ⇒ (2−): trivial.

∗) We will analyze in Chapter III thoroughly what it means for a Manis
valuation to be PM.
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(2−) ⇒ (1): Let γ be a positive element of Γ. Then I−γ = Ay with
some y ∈ R. Since v is surjective, we have v(y) = −γ. Now 1 ∈ Iγ .
Thus there exists some a ∈ A with ay = 1, and v(a) = γ.

Proposition 10.7. Let v:R −→−→ Γ∪∞ be a surjective PM-valuation.
The following are equivalent:
(1) v(R∗) = Γ.
(2) Iγ is principal for every γ ∈ Γ.
(2+) Iγ is principal for every positive γ ∈ Γ.
(2−) Iγ is principal for every negative γ ∈ Γ.
(3) Av is Bezout in R.

Proof. Let A: = Av. We know that (3) implies (1) by Lemma 5,
and the equivalence of (1), (2), (2−) by Lemma 6. The implication
(2) ⇒ (2+) is trivial. We prove that (2+) implies (3) and then will
be done.

We verify condition (4) in Theorem 2. It is here that we need to
know in advance that A is Prüfer in R. Let x ∈ R \ A be given.
Then v(x) = −γ with some γ > 0. For any a ∈ A we have ax ∈ A iff
v(a) ≥ γ. Thus (A:x) = Iγ . This ideal is principal by assumption.

Definition 2. We call a valuation v:R → Γ ∪ ∞ Bezout-Manis, or
BM for short, if v is Manis and the extension Av ⊂ R is Bezout.

Proposition 7 tells us that the BM-valuations form a very tame and
agreeable subclass of the PM-valuations. They will play only a small
role in the following as compared with PM-valuations. Nevertheless
they seem to deserve interest on their own. Notice that every local
Manis valuation is BM, as has been stated in 10.3. Some further
study of BM-valuations will be made in Chapter III.

Looking for more examples of Bezout extensions we go back to the
Prüfer extensions given at the end of I, §6 (I.6.14). We can readily
verify that two of them are in fact Bezout extensions.

Examples 10.8. Assume either that R = C(X) for some topological
space X and A = Cb(X), or that R = CS(M) and A = CSb(M) for
some semialgebraic set M ⊂ kN with k a real closed field and some
N ∈ N. Then A is Bezout in R.
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Proof. We consider the case R = C(X), A = Cb(X). In the other
case R = CS(M), A = CSb(M) the proof runs exactly the same
way.

We have an obvious partial ordering on R: f ≥ g iff f(x) ≥ g(x)
for every x ∈ X. This makes R a lattice ordered ring ([BKW]).
In particular, for each f ∈ R we have at hands the element |f |: =
f ∨ (−f). Of course, |f |(x) = |f(x)| for every x ∈ X. We call an
additive subgroup L of R absolutely convex in R, if for every f ∈ L
and g ∈ R with 0 ≤ |g| ≤ |f | we have g ∈ L. Notice that A is
absolutely convex in R. The claim that A is Bezout in R will now
be verified by the following chain of easy observations.
a) We know already from I.6.14 that A is Prüfer in R.
b) For every f ∈ R the ideal (A: f) of A is absolutely convex in R.
Indeed, if a ∈ (A: f) and b ∈ R is given with 0 ≤ |b| ≤ |a|, then b ∈ A
and 0 ≤ |bf | ≤ |af | ∈ A, hence bf ∈ A, i.e. b ∈ (A: f).
c) Every R-invertible ideal I of A is absolutely convex in R. Indeed,

the A-module J : = I−1 is finitely generated, J =
n∑
i=1

Afi with some

fi ∈ R. Since I ⊂ A, we have I = [A:J ] = (A:J) =
n⋂
i=1

(A: fi). Each

(A: fi) is absolutely convex in R, hence I too.

d) Let f1, . . . , fn be elements of A, and assume that and I: =
n∑
i=1

Afi

is regular. Then the intersection
n⋂
i=1

Z(fi) of the zero sets Z(fi) =

{x ∈ X | fi(x) = 0} is empty. Indeed 1 = Σfigi we have an equation

1 =
n∑
i=1

figi with gi ∈ R, and this implies that the Z(fi) have empty

intersection. {Remark: If conversely this holds, then g: =
n∑
i=1

f2
i is a

unit in R and
n∑
i=1

fi(fig−1) = 1, hence I is R-regular.}
e) Every R-invertible ideal I of A is principal. Indeed, let f1, . . . , fn

be a system of generators of I. Then |fi| ∈ I by c) and
n⋂
i=1

Z(fi) = ∅
by d). It follows that g: = |f1| + · · · + |fn| ∈ R∗ ∩ I. For every
i ∈ {1, . . . , n} we have

∣∣ fi

g

∣∣ ≤ 1, hence fi

g ∈ A. Thus I = Ag.
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Returning to general theory we write down some permanence prop-
erties of the class of Bezout extensions in a similar style as done in
I, §5 for Prüfer extensions.

Proposition 10.9. If A ⊂ R is a Bezout extension and ϕ:R → D
is any ring extension, then ϕ(A) ⊂ ϕ(R) is again Bezout.

Proof. We verify condition (3) of Theorem 2 for the extension
ϕ(A) ⊂ ϕ(R). Let x ∈ R be given. There exists some y ∈ R
with A+Ax = Ay. Applying ϕ we obtain
ϕ(A) + ϕ(A)ϕ(x) = ϕ(A)ϕ(y).

Proposition 10.10. Let A ⊂ R be a ring extension. Assume that
there exists a family (Aλ ⊂ Rλ |λ ∈ Λ) of Bezout extensions together
with ring homomorphisms ϕλ:Rλ → R such that ϕλ(Aλ) ⊂ A for
each λ ∈ Λ and R =

⋃
λ∈Λ

ϕλ(Rλ). Then A is Bezout in R.

Proof. We verify condition (3) of Theorem 2. Let x ∈ R be given.
We choose some λ ∈ Λ and xλ ∈ Rλ with x = ϕλ(xλ). There exists
some yλ ∈ Rλ such that Aλ+Aλxλ = Aλyλ. Applying ϕλ we obtain
ϕλ(Aλ)+ϕλ(Aλ)x = ϕλ(Aλ)y with y: = ϕλ(yλ). Since ϕλ(Aλ) ⊂ A,
this implies A+Ax = Ay.

Notice that the assumptions of Proposition 10 are remarkably more
general than the assumptions in its counterpart Proposition I.5.13
for Prüfer extensions, and the proof is so easy.

Proposition 10.11. Let A ⊂ B and B ⊂ R be ring extensions.
Then A is Bezout in R iff A is Bezout in B and B is Bezout in R.

Proof. a) Assume first that A is Bezout in R. We know from I, §5
that A is Prüfer in B and B is Prüfer in R. If I is a B-invertible
ideal of A then I is R-invertible, hence principal. This proves that
A is Bezout in B.

We now verify condition (3) of Theorem 2 for the extension B ⊂ R,
and then will know that this extension is also Bezout. Let x ∈ R be
given. There exists some y ∈ R with A + Ax = Ay. It follows that
B +Bx = By.
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b) Assume that both extensions A ⊂ B and B ⊂ R are Bezout. In
order to prove that A ⊂ R is Bezout we again appeal to condition
(3) of Theorem 2. Let x ∈ R be given. Since B ⊂ R is Bezout, there
exists some y ∈ R with B + Bx = By. We have some b ∈ B with
by = 1. Multiplying by b we obtain Bb + Bbx = B. Thus bx ∈ B,
and the A-submodule Ab+Abx of B is B-regular. By Proposition 1
there exists some s ∈ B with Ab + Abx = As. Multiplying by y be
obtain A + Ax = Asy. Thus the extension A ⊂ R fulfills condition
(3) of Theorem 2, and we conclude that A is Bezout in R.

Proposition 10.12. Assume that R and C are overrings of a ring
A in some ring extension T . Assume further that A is Bezout in R
and ws in C. Then C is Bezout in the subring RC of T .

Proof. We may replace A by the overring R ∩ C, since R ∩ C is
Bezout in R by Proposition 11 and ws in C by Proposition I.3.7.b.
Thus we assume without loss of generality that A = R ∩ C. We
know by Theorem I.5.10 that C is Prüfer in RC. Let J be an RC-
invertible ideal of C. We know by Theorem 6.4 that I: = R ∩ J is
an R-invertible ideal of A and J = IC. Since A is Bezout in R, the
ideal I is principal. Thus also J is principal. We conclude that C is
Bezout in RC right from Definition 1.

We now have the means at hand to prove that, given a ring extension
A ⊂ R, there exists a “Bezout hull” of A in R in complete analogy
to the Prüfer hull P (A,R) established in I, §5. We insert one more
proposition, whose proof now is very easy.

Proposition 10.13. Let A ⊂ R be any ring extension, and assume
that B1, B2 are overrings of A in R such that A is Bezout both in
B1 and B2. Then A is Bezout in B1B2.

Proof. B2 is Bezout in B1B2 by Proposition 12, since A is ws
in B1 and Bezout in B2. Furthermore A is Bezout in B2. Now
Proposition 11 gives the claim.

Theorem 10.14. Let A ⊂ R be any ring extension. There exists a
unique R-overring C of A, such that A is Bezout in C and C contains
every R-overring of A in which A is Bezout.
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Proof. This can be proved in exactly the same way as the analogous
result for Prüfer extensions (Proof of Theorem I.5.15), now using
Propositions 10 and 13.

Definition 3. We call the ring C described in Theorem 14 the
Bezout hull of A in R, and write C = Bez(A,R). If A is any ring,
the Bezout hull of A is defined as the Bezout hull Bez(A,Q(A)) of
A in its complete quotient ring Q(A). We denote it more briefly by
Bez(A).

Remarks 10.15. i) If A ⊂ B is any Bezout extension, there ex-
ists a unique ring homomorphism ϕ:B → Bez(A) over A, and ϕ is
injective, as is clear by Proposition I.3.14.
ii) If R is any overring of A in Q(A), then Bez(A,R) = R ∩ Bez(A).
iii) If A ⊂ B and B ⊂ R are ring extensions, the first one being
Bezout, then Bez(A,R) = Bez(B,R), as follows from Proposition 11
above.
iv) If x is an element of Bez(A), then A+Ax = Ay with y a unit of
Bez(A), hence ay = 1 for some nonzero divisor a of A. This proves
that Bez(A) ⊂ QuotA. We conclude that Bez(A) is the Bezout hull
of A in QuotA.
v) Of course, also Bez(A) = Bez(A,P (A)) = Bez(A,M(A)).
vi) An integral domain A is a Bezout domain iff Bez(A) = QuotA.
vii) If A is a local ring then Bez(A) = P (A), as is clear from 10.4 (or
from the proof of Prop.5.10).

Proposition 10.16. If A is a Bezout extension then R = S−1A
with S: = R∗ ∩A.

Proofs. This follows immediately from Proposition 4.15. A more
direct proof runs as follows. Let x ∈ R be given. Then A+Ax = Ay
with some y ∈ R∗. Let s: = 1

y . We have As = (A + Ax)−1 ⊂ A,
hence s ∈ A. Thus x = a

s with some a ∈ A and s ∈ S.

If more generally A ⊂ R is any ring extension, we may ask for the
multiplicative set A ∩ Bez(A,R)∗. In particular, in order to un-
derstand all the Bezout extensions of A, one should study the set
A ∩ Bez(A)∗.

Definition 4. We call an ideal I of a ring A a Bezout ideal, if it
is invertible and A is Bezout in A[I−1]. Then I = As with some
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non-zero-divisor s of A. We call such an element s a Bezout element
of A, and we denote the set of Bezout elements of A by β(A).

Thus β(A) consists of all non-zero-divisors s of A such that A is
Bezout in A

[ 1
s

]
. Clearly β(A) = A∩ Bez(A)∗. In particular β(A) is

a multiplicative subset of A, a submonoid of the monoid of all non-
zero-divisors of A. This submonoid is saturated, i.e., if a ∈ β(A) and
b ∈ A is a divisor of a (a = bc with some c ∈ A), then b ∈ β(A),
as follows from Proposition 11. It contains the saturated submonoid
sd(A) of strong divisors introduced at the end of §5. If A is local, we
have sd(A) = β(A).

If every non-zero-divisor of A is a product of finitely many irreducible
elements, for example if A is noetherian, then the abelian monoid
β(A) is generated by irreducible elements and the group A∗. In this
case, in order to understand the Bezout extensions of A, it suffices
to know the irreducible Bezout elements of A.

Example 10.17. Assume that A is a Dedekind domain. Then the
irreducible Bezout elements of A are the prime elements p of A. {An
element p of A\{0} is called prime, if p|ab implies p|a or p|b, i.e. if the
idealAp is prime.} Let Ω1 denote the set of maximal ideals of A which
are principal, and let Ω2 denote the complement MaxA\Ω1. We have
(cf. Prop.1.6) QuotA =

∑
p∈MaxA

A[p−1], BezA =
∑

p∈Ω1

A[p−1], and, in

the notation of §7, QuotA = BezA ×A C with C: =
∑

p∈Ω2

A[p−1]. It

follows by Proposition 12 that C is Bezout in R.

If s is a non-zero-divisor of a ring A, then, in order to conclude that
s is a Bezout element of A, then it is by no means sufficient that As
is a Prüfer ideal, as shows the following

Example 10.18. Let A be a subring of a number field, which is not
a principal ideal domain. Then A is a Dedekind domain, hence A is
Prüfer in its quotient field F . If I is any ideal = 0 of A then, as is well
known, there exists some n ∈ N such that In is principal, In = As.
We have A[I−1] = A[s−1]. We conclude that every overring of A in
F is of the form S−1A with S some multiplicative subset of A. {We
have analyzed this situation in Prop.4.15.} But nevertheless A is not
Bezout in F .
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In general we have the following characterization of Bezout elements.

Proposition 10.19. Let A be any ring and let s be a non-zero-
divisor in A. Then s is a Bezout element of A iff for every b ∈ A the
ideal As+Ab is principal.

Proof. Let R: = A[1s ] ⊂ QuotA. For every b ∈ A the ideal As+ Ab
is regular in R, hence R-invertible. Thus, if A is Bezout in R, this
ideal is principal.

Assume conversely that As+Ab is principal for every b ∈ A. Given
any x ∈ R \A we verify that A+Ax is principal, and then will know
that A is Bezout in R by Theorem 2.

We have x = b
sn with n ∈ N and b ∈ A, and A+Ax = (Asn+Ab)s−n.

We prove that Asn + Ab is principal for every n ∈ N and b ∈ A by
induction on n, and then will be done. The claim holds for n = 1 by
assumption. Assume the claim for some n ≥ 1. There is some d ∈ A
with As + Ab = Ad. We write s = td, b = ud with t, u ∈ A. Then
At+Au = A, and

Asn+1 +Ab = d(Asnt+Au).

By a very well known easy argument the equation Au + At = A
implies Au+Aa = Au+Aat for every a ∈ A. Thus

Asn+1 +Ab = d(Asn +Au),

and this is principal by induction hypothesis.

Corollary 10.20. Let m be a maximal ideal of a ring A. Then m is
a Bezout ideal iff m can be generated by one element s, and s is not
a zero divisor.

Proof. Clearly these conditions are necessary for m to be a Bezout
ideal (cf. Def.4). Proposition 19 tells us that they are also sufficient.

Going back to I, §5 we realize that for Bezout extensions we did not
yet establish analogues of the permanence properties stated in I.5.8,
I.5.9, I.5.20 for Prüfer extensions. Now, the off hand analogue of
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I.5.9 for Bezout extensions is clearly false. We will prove below an
analogue of I.5.8 for Bezout extension under a restricted hypothesis.
Concerning Proposition I.5.20, and also Proposition I.5.21, things
are very easy.

Proposition 10.21. Let (Ai ⊂ Ri | i ∈ I) be a family of ring
extensions, and let A: =

∏
i∈I

Ai, R: =
∏
i∈I

Ri. The extension A ⊂ R

is Bezout iff each extension Ai ⊂ Ri, with i running through I, is
Bezout.

Proof. This can be easily verified in a similar way as Prop.I.5.20,
using the condition (3) in Theorem 2.

Proposition 10.22. Let (Ai | i ∈ I) be a family of rings, and A: =∏
i∈I

Ai. Then Bez(A) =
∏
i∈I

Bez(Ai). Also β(A) =
∏
i∈I

β(Ai).

Proof. One proceeds as in the proof of Prop.I.5.21.

Proposition 10.23. Assume that A ⊂ R is a ring extension and
I is an ideal of R contained in A and in the Jacobson radical of R.
Then A is Bezout in R iff A/I is Bezout in R/I.

Proof. If A is Bezout in R then it is clear by Proposition 9 that
A/I is Bezout in R/I. Assume now that the latter holds. Let x ∈ R
be given. Condition (3) of Theorem 2 for the extension A/I ⊂ R/I
tells us that there exists some y ∈ R with A+Ax = Ay+I. We have
an equation 1 = ay + b with a ∈ A and b ∈ I. Since I is contained
in the Jacobson radical of R, it follows that ay ∈ R∗, hence y ∈ R∗.
Now

A+Ax = (A+ Iy−1)y ⊂ (A+ I)y = Ay,

since I is an ideal of R contained in A. Thus A+Ax = Ay. Condition
(3) of Theorem 2 holds, hence A is Bezout in R.

By use of Proposition 21 and 23 and the corresponding propositions
in I, §5 we dispose of a way to build new Bezout extensions and
Prüfer extensions from old ones.

Proposition 10.24. Assume that (Ai | 1 ≤ i ≤ n) is a finite family
of subrings of a ring R. Assume further that there exists a family
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(ai | 1 ≤ i ≤ n) of ideals of R such that ai ⊂ Ai and ai + aj = R for

i = j. Let A: =
n⋂
i=1

Ai and a: =
n⋂
i=1

ai.

a) If Ai is Prüfer in R for each i ∈ {1, . . . , n}, then A is Prüfer in R.
b) If Ai is Bezout in R for each i ∈ {1, . . . , n}, and a is contained in
the Jacobson radical radR, then A is Bezout in R.

Proof. 1) The natural map ϕ:R/a →
n∏
i=1

Ri/ai is an isomorphism

of rings according to the Chinese remainder theorem. We claim that

ϕ(A/a) =
n∏
i=1

Ai/ai. In order to prove this, we choose elements

e1, . . . , en of R such that ei ≡ 1 mod ai and ei ≡ 0 mod aj , for
i = j. Given elements ai ∈ Ai (1 ≤ i ≤ n), we have eiai ≡ ai

mod ai and eiai ≡ 0 mod aj for j = i. Then eiai − ai ∈ ai ⊂ Ai,
hence eiai ∈ Ai, and also eiai ∈ Aj for j = i. Thus eiai ∈ A. It
follows that

ϕ(
n∑
i=1

eiai + a) = (ai + ai | 1 ≤ i ≤ n).

Thus ϕ maps A/a onto
n∏
i=1

Ai/ai.

2) Assume that Ai is Prüfer in Ri for each i ∈ {1, . . . , n}. Then

Ai/a is Prüfer in R/a by Proposition I.5.7, and
n∏
i=1

Ai/ai is Prüfer

in
n∏
i=1

R/ai by Proposition I.5.20. Applying ϕ−1 we see that A/a is

Prüfer in R/a. Now Proposition I.5.8 tells us that A is Prüfer in R.
3) If each Ai is Bezout in R and a is contained in radR, one ob-
tains that A is Bezout in R by fully analogeous arguments, using
Propositions 9, 21, 23.

Example 10.25. Let m1, . . . ,mn be finitely many maximal ideals of
a ring R. Assume that on each field R/mi there is given a valuation
wi:R/mi → Γi ∪ ∞. Let vi denote the associated valuation on R
with supp vi = mi, i.e. the composite of wi with the residue class

map R → R/mi. The intersection A: =
n⋂
i=1

Avi of the valuation rings

of the vi is Prüfer in R. If R is semilocal and the mi are all the
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maximal ideals of R, then A is Bezout in R. In general we can

say that S−1A is Bezout in S−1R with S: = A \
n⋃
i=1

mi, since S−1R

is semilocal with maximal ideals S−1mi (1 ≤ i ≤ n) and each vi
extends to a valuation of S−1R in the obvious way (cf. I, §1).

We now strive for a theory of “Bezout modules” analogous to the
theory of Prüfer modules in §9. In the following A is a fixed ring.

Definition 4. We call an overmodule M of A (cf. §9) Bezout, if for
every x ∈ M there exists some y ∈ M with A+ Ax = Ay. We then
also say that A is Bezout in M .

Proposition 10.26. If an overmodule M of A is Bezout then M is
Prüfer.

This follows immediately from Scholium 9.5. Here is a more direct
Second proof. Let x ∈ M be given. We have to verify that (A:x)+
(A:x)x = A (cf. §9, Def.1). There exists some y ∈ M with A+Ax =
Ay. Clearly (A:x) = (A: y). Since 1 ∈ Ay, there exists some a ∈ A
with ay = 1. In particular a ∈ (A: y). If b ∈ (A: y) is given, then
by = c ∈ A. Multiplying by a we obtain b = ca. This proves that
(A: y) = Aa, and we have

(A:x) + (A:x)x = (A:x)(A+Ax) = Aa ·Ay = A.

Given a Bezout overmodule M of A we now know by Theorem 9.4
that M embeds into Q(A) over A in a unique way. This in studying
Bezout overmodules of A we may restrict to Q(A)-overmodules i.e.
A-submodules of Q(A) which contain the ring A.

Theorem 10.27. Assume that M is a Q(A)-overmodule of A. Then
A is Bezout in M iff A is Bezout in the ring A[M ] generated by M
over A.

Proof. a) If A ⊂ A[M ] is a Bezout extension, then it is clear by
Theorem 2 that A[M ] is a Bezout overmodule of A. Since M is an
A-submodule of A[M ] containing A, it follows that M is a Bezout
overmodule of A.
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b) We assume that A is Bezout in M . Let R: = A[M ]. We verify that
M ⊂ Bez(A,R). This will imply that Bez(A,R) = R, i.e. A ⊂ R is
Bezout.

Let x ∈ M be given. There exists some y ∈ M with A + Ax = Ay.
We have an element s ∈ A with sy = 1. Then s ∈ R∗ ∩ A and
y = s−1. Let b ∈ A be given. Then bs−1 ∈ Ay ⊂ M . There exists
some z ∈ M with A+A b

s = Az. We have z = c
s with c ∈ A, and we

conclude that As + Ab = Ac. Proposition 19 now tells us that s is
a Bezout element of R, i.e. A is Bezout in A

[ 1
s

]
= A[y]. It follows

that A + Ax = Ay ⊂ A[y] ⊂ Bez(A,R), hence x ∈ Bez(A,R). This
finishes the proof that M ⊂ Bez(A,R).

Corollary 10.28. Let M be a Bezout overmodule of A. Then every
finitely generated submodule J of M with A ⊂ J is free of rank one.

Theorem 27 gives us the means for a new description of relative
Bezout hulls, as follows.

Theorem 10.29. Let A ⊂ R be any ring extension and x an element
of R. The following are equivalent.
(1) A is Bezout in A[x] {i.e. x ∈ Bez(A,R)}.
(2) For every a ∈ A the module A+Aax is principal.

Proof. Of course, (1) implies (2). To prove the converse, let x ∈ R
be given obeying (2). Without loss of generality we assume that
R = A[x]. Let S: = A∩R∗. We have A+Ax = Ay with some y ∈ R.
In particular, 1 = sy with some s ∈ A, hence s ∈ S. It follows that
sx ∈ A and then, that for every z ∈ A[x] there is some n ∈ N such
that snz ∈ A. We conclude that R = S−1A ⊂ QuotA.

Now we are in business to apply Theorem 27. If z ∈ A + Ax, we
have z = b + ax with some a, b ∈ A, and A + Az = A + Aax. This
module is principal. Thus the overmodule A + Ax of A is Bezout.
Theorem 27 tells us that the extension A ⊂ A[x] is Bezout.
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§11 The Prüfer extensions of a noetherian ring

The multiplicative ideal theory developed so far amply suffices to
classify the Prüfer extensions of a noetherian ring.

We start with a lemma on local rings.

Lemma 11.1 [J2, Lemma 1]. Assume that (A,m) is a local ring1)

and
⋂
n∈N

mn = {0}. Assume further that I is a distributive ideal of

A and I = {0}. Then I = mn for some n ∈ N0. If in addition I is
invertible (hence Prüfer by Th.5.7) and I = A, then A is a discrete
valuation ring (hence an integral domain).

Proof. [loc.cit]. There exists some n ∈ N0 with I ⊂ mn but
I ⊂ mn+1. Since I is distributive, it follows that mn+1 ⊂ I (cf.
Prop.5.2.). Suppose that I = mn. We choose elements a ∈ mn \ I
and b ∈ I \ mn+1. Again using Proposition 5.2 we conclude that
Ab ⊂ I ⊂ Aa, hence b = ac with some c ∈ A. Certainly c ∈ A∗, since
Ab = Aa. Thus c ∈ m. But this implies b ∈ mn+1, a contradiction.
We have I = mn.

Assume in addition that I is also invertible and I = A. Then m
is invertible. We have m = At with t a nonzero divisor of A (cf.
Prop.2.3). If a is any element of A\{0}, then we have a ∈ mr \mr+1

for some r ∈ N0, and we conclude that a = εtr with some ε ∈ A∗.
Thus A is a discrete valuation ring.

Recall that, if (A,m) is a noetherian local ring, then
⋂
n∈N

mn = {0}
(Krull’s intersection theorem). Thus Lemma 1 applies to noetherian
local rings.

In the following we assume that A is a noetherian ring.

Lemma 11.2. Let p be a maximal ideal of A. Then p is Prüfer iff
p is dense in A and Ap is a discrete valuation ring.

Proof. If Ap is a discrete valuation ring then pAp is a free Ap-
module of rank one. If m is a maximal ideal of A different from p

1) This means that A is a local ring with maximal ideal m
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then pAm = Am. We conclude by Proposition 2.4 that p is invertible,
and by Proposition 5.2 that p is distributive in A. {Condition (5) in
Prop. 5.2 holds.} Thus p is a Prüfer ideal (cf. Th.5.7).

Assume conversely that p is a Prüfer ideal of A. Then pAp is a Prüfer
ideal of Ap (cf. Remark 4.20). Lemma 1 tells us that Ap is a discrete
valuation ring.

Lemma 11.3 [J2, Th.1]. If I is a distributive ideal of A and I = A,
there exist pairwise different maximal ideals m1, . . . ,mr of A and
natural numbers k1, . . . , kr such that

I = mk1
1 mk2

2 . . .mkr
r .

The ideals m
kj

j , 1 ≤ j ≤ r, are again distributive. The set of these
ideals is uniquely determined by I.

Proof. Let I =
r⋂
j=1

Ij be a minimal primary decomposition of I

(which exists since A noetherian). Thus
√
Ij = mj , 1 ≤ j ≤ r, with

pairwise different prime ideals mj of A. Let p be one of the ideals mj .
The ideal Ip of Ap is distributive. Lemma 1 tells us that Ip = (pAp)k

with some k ∈ N0. Since I ⊂ p, we have k ≥ 1.

If m is a maximal ideal of A containing p then for the same reason
Im = (mAm)l with some l ∈ N. In the ring Am we have

√
Im = mAm,

and in the localization Ap we have
√
Ip = pAp. This forces p = m.

Thus p ∈ MaxA.

If q ∈ MaxA is different from p then pkAq = Aq, hence trivially
pkAq is distributive in Aq. Also pkAp = Ip is distributive in Ap. We
conclude by Proposition 5.2 that pk is distributive in A.

We now have proved that the ideals m1, . . . ,mr from above are max-
imal in A, that (Ij)mj

= m
kj

j Amj
with some kj ∈ N, and that m

kj

j

is distributive in A (1 ≤ j ≤ r). We have (Ij)m = (mkj

j )m for every

m ∈ MaxA, hence Ij = m
kj

j . Also mki
i + m

kj

j = A for i = j, since
mi,mj are different maximal ideals. Thus

I =
r⋂
j=1

m
kj

j =
r∏
j=1

m
kj

j .
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Assume finally that p1, . . . , ps are pairwise different maximal ideals

of A and that also I =
s∏
j=1

p
lj
i with natural numbers l1, . . . , ls. We

have I =
s⋂
j=1

p
lj
j , and this is again a primary decomposition of I. By

a well known uniqueness result of primary decompositions without
“embedded components” (cf. [AM, Prop.4.6]) it follows that r = s

and the p
lj
j coincide with the m

kj

j up to numeration. Actually in the
present situation this can be proved very easily by first observing
that p1, . . . , ps are all the maximal ideals of A containing I, and
then studying the localizations Am with m running through these
ideals.

Definition 1. Let Ω(A) denote the set of all dense maximal ideals
p of A such that Ap is a discrete valuation ring.

By Lemma 2 we know that

Ω(A) = Max(A) ∩ Π(A)

with Π(A) the set of Prüfer ideals of A (cf. §4, Def.4).

From Lemma 2 and Lemma 3 we read off the following theorem.

Theorem 11.4. If I is a Prüfer ideal of A and I = A, there exist
finitely many different ideals p1, . . . , pr ∈ Ω(A) and natural numbers
k1, . . . , kr ∈ N such that

I = pk11 . . . pkr
r .

The pi and ki are uniquely determined by I.

Corollary 11.5. Let I be a product of finitely many ideals pk with
p ∈ Ω(A), k ∈ N0. Then every ideal J of A with I ⊂ J is again such
a product.

Proof. Since A noetherian, the ideal J is finitely generated. It
follows from Corollary 5.8 that J is Prüfer. Now Theorem 4 gives
the claim.

Definition 2. If M is a subset of Ω(A) then let A(M) denote
the subring of Q(A) generated by the family of rings A[p−1] with p
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running through M . Notice that, if M is finite, then A(M) = A[I−1]
with I the product of all p ∈ M , and if M is infinite, then A(M)
is the union of the sets A(M ′) with M ′ running through the finite
subsets of M .

Theorem 11.6. i) The ring extensions A ⊂ A(M) with M ⊂ Ω(A)
are precisely all Prüfer subextensions of A ⊂ Q(A). In particular
P (A) = A(Ω(A)).
ii) If M ⊂ Ω(A) is given, then M is the set of all A(M)-regular prime
ideals of A, in short, M = Y (A(M)/A). The subsemigroups 〈M〉 of
Π(A) generated by M is the set of all A(M)-invertible ideals of A,
in short,

Inv(A,A(M)) = 〈M〉.

Proof. 1) Let M ⊂ Ω(A) be given. The ideals in 〈M〉 are all Prüfer.
Thus A(M) is a Prüfer extension of A. Clearly 〈M〉 ⊂ Inv(A,A(M)).
2) Let now A ⊂ R be a Prüfer subextension of A ⊂ Q(A), and
N : = Y (R/A). If p ∈ N , then p is a finitely generated prime ideal
of A, since A is noetherian, and further pR = R. Thus p is R-
invertible by Theorem 1.13. This means that p is invertible in Q(A)
and A[p−1] ⊂ R. It follows that the extension A ⊂ A[p−1] is Prüfer,
i.e. p is Prüfer. Theorem 4 now tells us that p ∈ Ω(A).

This proves that N ⊂ Ω(A) and A(N) ⊂ R. Moreover,
N ⊂ Y (A(N)/A). But Y (A(N)/A) ⊂ Y (R/A) = N . Thus N =
Y (A(N)/A) = Y (R/A), and we conclude by Theorem 3.3 that R =
A(N). {Recall that for any ws extension A ⊂ B the set X(B/A) is
the complement of Y (B/A) in SpecA.}
3) Let R = A(M) for some M ⊂ A. Then M ⊂ N : = Y (R/A),
and R = A(N), as we have proved. If p ∈ N is given there exists
finitely many elements p1, . . . , pr of M and some n ∈ N with p−1 ⊂
(p1 . . . pr)−n, since p−1 is finitely generated. Thus (p1 . . . pr)n ⊂ p.
It follows that p is one of the ideals p1, . . . , pr. We have M = N .

Theorems 4 and 6 imply

Corollary 11.7. If A ⊂ R is a Prüfer extension, then the group
D(A,R) of R-invertible A-submodules of R is a free abelian group
with basis Y (R/A).
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We still have to describe D(A,R) as a lattice ordered group. This is
easily done. We first consider the case R = P (A).

Let D(A): = D(A,P (A)). This is an abelian group with basis Ω(A).
If I ∈ D(A) and p ∈ Ω(A) we have IAp = pnAp with some n ∈ Z.
We denote this number n by vp(I). We thus obtain a homomorphism

vp:D(A) −→ Z

compatible with the ordering of D(A) opposite to the inclusion rela-
tion and the natural ordering of Z, i.e.

I ⊂ J =⇒ vp(J) ≤ vp(I).

From the theorems 4 and 6 and their corollaries, and from the def-
inition of the homomorphisms vp, one now reads off the following
facts.

Scholium 11.8.
i) For every I ∈ D(A) we have vp(I) = 0 for only finitely many

p ∈ Ω(A), and
I =

∏
p∈Ω(A)

pvp(I).

ii) For any I, J ∈ D(A) we have I ⊂ J iff vp(J) ≤ vp(I) for every
p ∈ Ω(A).

iii) For any I, J ∈ D(A) and p ∈ Ω(A) we have

vp(I + J) = min(vp(I), vp(J)),
vp(I ∩ J) = max(vp(I), vp(J)),

and, of course,
vp(IJ) = vp(I) + vp(J).

iv) Thus the lattice ordered group D(A) is isomorphic to the direct
sum Z(Ω(A)) of copies of Z indexed by Ω(A).

v) We also conclude that, for every I ∈ D(A), p ∈ Ω(A),

vp(I−1) = −vp(I).

vi) If A ⊂ R is any Prüfer subextension of A ⊂ P (A), then D(A,R)
is a lattice ordered subgroup of D(A) and

D(A,R) = {I ∈ D(A) | vp(I) = 0 for every p ∈ Ω(A)\Y (R/A)}.
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Remark 11.9. If I and J are invertible ideals of A, then we can
check by the formulas in 11.8.iii that I−1J−1 ⊂ I−2 + J−2. This
gives us again the fact, observed already in Proposition 1.6, that for
any overrings B and C of A we have BC = B + C. It follows that,
for any M ⊂ Ω(A),

A(M) =
∑
p∈M

A[p−1].

Proposition 11.10. Let M and N be subsets of Ω(A). Then
A(M ∩ N) = A(M) ∩ A(N) and A(M)A(N) = A(M) + A(N) =
A(M ∪N).

Proof. This follows immediately from Theorem 6 (and the remark
just made), since by that theorem every overring B of A in P (A) is
of the form B = A(L) with some L ⊂ Ω(A), uniquely determined by
B, and, for any subsets L,L′ of Ω(A), A(L) ⊂ A(L′) iff L ⊂ L′.

Let A ⊂ R be any subextension of A ⊂ P (A), hence R = A(X) with
some set X ⊂ Ω(A). Let further A ⊂ B a subextension of A ⊂ R,
hence B = A(M) with M ⊂ X. We want to determine the polar B◦

of B in R (cf. §7). If N is a second subset of X then Proposition 10
tells us that A(M) ∩ A(N) = A iff M ∩ N = ∅. The largest such
subset N is X \ M , and we have A(M)A(X \ M) = R, again by
Proposition 10. Thus we have proved

Proposition 11.11. Let M ⊂ X ⊂ Ω(A). The polar A(M)◦ of
A(M) in R: = A(X) is A(X \M), and A(X) = A(M)×AA(X \M).
(Recall §7, Def.3.) Thus every overring of A in R is a factor of R
over A.

Corollary 11.12. The irreducible Prüfer extensions of A in P (A)
are precisely the rings A[p−1] with p running through Ω(A).

Although in this chapter we usually avoid working with valuations,
we now look for a relation between the set Ω(A) and the set of
Manis valuations v on P (A) with Av ⊃ A. More generally we are
interested in a description of the Manis valuations v on R for any
Prüfer extension A ⊂ R with Av ⊃ A.
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Definition 3. If A ⊂ R is a Prüfer extension then Ω(R/A) denotes
the set of all p ∈ Ω(A) with pR = R, i.e.

Ω(R/A) = Ω(A) ∩ Y (R/A),

while ΩR(A) denotes the set of all p ∈ Ω(A) with pR = R, i.e.

ΩR(A) = Ω(A) ∩X(R/A).

Notice that Ω(A) is the disjoint union of these two sets (cf.§3). Notice
also that for R = P (A) we have Ω(R/A) = Ω(A), ΩR(A) = ∅, while
for R = A we have Ω(R/A) = ∅, ΩR(A) = Ω(A).

Theorem 11.13. Let A ⊂ R be Prüfer.

i) The nontrivial Manis valuations v on R with Av ⊃ A correspond,
up to equivalence, bijectively with the prime ideals p ∈ Ω(R/A) via
p = pv ∩A, (Av, pv) = (A[p], p[p]). They all have the value group Z.
ii) Ω(R/A) = Y (R/A).
iii) If p ∈ Ω(R/A) then Rp = Quot(Ap).

Proof. a) We know from the definition of Prüfer extensions (I,
§5) that the Manis valuations v on R with Av ⊃ A are given by
(Av, pv) = [A[p], p[p]] with p running through Spec (A) = X(R/A) ∪
Y (R/A). If p ∈ X(R/A), i.e. pR = R, then A[p] = R (cf.Th.I.3.13,
there with B = R), thus v is trivial.
b) Let now p ∈ Y (R/A), i.e. Rp = R. The ideal p is finitely
generated since A is noetherian. Thus p is R-invertible (cf.Th.1.13).
We have A[p−1] ⊂ R. In particular p is a Prüfer ideal. Theorem 4
tells us that p ∈ Ω(A), hence p ∈ Ω(A) ∩ Y (R/A) = Ω(R/A).
c) If p ∈ Ω(R/A) thenAp ⊂ Rp is a Prüfer extension (cf.e.g.Th.I.5.10),
and certainly Ap = Rp. Since Ap is a discrete valuation ring, it fol-
lows that Rp = Quot(Ap). We have a discrete valuation
ṽ:Rp −→−→ Z∪∞ with (Aṽ, pṽ) = (Ap, pAp). This gives us a valuation
v:R → Z ∪ ∞ with (Av, pv) = (A[p], p[p]). Thus v is the Manis val-
uation on R with Av ⊃ A corresponding to p. Since v is nontrivial,
we have v(R) = Z ∪ ∞.

Definition 4. Let p ∈ Ω(A). We denote the Manis valuation on
P (A) corresponding to p by the theorem (there with R = P (A)) by
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vp, and the valuation induced by vp on the quotient field P (A)p of
Ap by ṽp. (This is in harmony with I, §1, Def.6.)

Corollary 11.14. If A ⊂ R is a subextension of A ⊂ P (A), then,
for any p ∈ Ω(A), the valuation vp|R is non trivial iff pR = R,
i.e. p ∈ Ω(R/A). In this case vp|R is the Manis valuation v on R
with Av ⊃ A corresponding to p, as described in Theorem 13, and
Rp = P (A)p = P (Ap).

Proof. v: = vp|R is a Manis valuation on R with Av = (AP (A)
[p] )∩R =

AR[p], pv = (pP (A)
[p] ) ∩R = pR[p].

∗) If pR = R, then AR[p] = R, thus v is
trivial. If pR = R then AR[p] = R, as we know from Theorem 13. Now
v is non trivial and is the Manis valuation on R corresponding to p.
The ring Rp coincides with P (A)p, since both rings are the quotient
field of Ap by part iii of Theorem 13. We also have Quot(Ap) =
P (Ap).

Proposition 11.15. Let R be an overring of A in P (A).

i) The Manis valuations v on P (A) with Av ⊃ R are (up to equiv-
alence) precisely the valuations vp with p ∈ ΩR(A).

ii) We have a bijection Ω(R) ∼−→ ΩR(A), which maps q ∈ Ω(R) to
q ∩A.

iii) If q ∈ Ω(R), p = q ∩ A, then Ap = Rq, A
P (A)
[p] = R

P (A)
[q] , and

vp = vq.

Proof. If v is a Manis valuation on P (A) with Av ⊃ R then Av ⊃ A,
hence v = vp for some p ∈ Ω(A). We have p = A ∩ pv. Also v = vq

with q: = R ∩ pv. This implies p = q ∩ A. It follows that q = Rp
(cf.Prop.I.4.6). In particular p ∈ ΩR(A).

If we start with some p ∈ ΩR(A), then q: = pR ∈ Spec (R), and
q ∩A = p. Let v = vp. We have Av = A

P (A)
[p] , and this ring coincides

with RP (A)
[q] (cf.Th.I.3.13). In particular Av ⊃ R. We have (pv ∩R)∩

A = p, which implies pv ∩R = q. Thus q ∈ Ω(R) and v = vq. Since

∗) We indicate by the superscripts P (A), respectively R, in which ring
extension the pair (A[p],p[p]) has been taken, cf. the footnote in I, §1.
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A ⊂ R is ws, the natural map Ap → Rq is surjective. Now both
rings are discrete valuation rings. It follows that Ap = Rq.

For I ∈ D(A), i.e. I a P (A)-invertible A-submodule of P (A), and
p ∈ Ω(A) we previously defined a number vp(I) ∈ Z without speaking
about valuations. Since Ip ∈ D(Ap), we also have such a number
related to the Prüfer extension Ap ⊂ P (A)p = P (Ap), which we
denote by ṽp(Ip). We now relate these numbers to the valuations vp

and ṽp.

Proposition 11.16. Let p ∈ Ω(A) and I ∈ D(A). Then vp(I) =
vp̃(Ip), and vp(I) = min{vp(x) | x ∈ I} = min{ṽp(y) | y ∈ Ip}.

Proof. It is evident that min{vp(x) | x ∈ I} = min{ṽp(y) | y ∈ Ip}.
Let us denote this number by n. We have Ip = tAp with some
t ∈ Ap. Clearly n = ṽp(t). We also have pAp = πAp with ṽp(π) = 1.
Now, by definition, the number m: = vp(I) is given by Ip = pmAp =
(pAp)m = πmAp. Thus m = n.

Scholium 11.17. As before let R be an overring of A in P (A). By
the general theory, say, in §6, we have a surjective homomorphism
D(A) → D(R), I �→ IR, from the group D(A) of P (A)-invertible
A-submodules of P (A) to the group D(R) of P (A)-invertible R-
submodules of P (A) = P (R). The kernel of this homomorphisms
is the group D(A,R) of R-invertible A-submodules of R.

Let I ∈ D(A). One easily deduces from the theory developed so far
that vp(I) = vpR(IR) for every p ∈ ΩR(A), and that I ∈ D(A,R) iff
vp(I) ≥ 0 for every p ∈ ΩR(A). Also I ⊂ R iff vp(I) ≥ 0 for every
p ∈ ΩR(A).

We may summarize that, up to now, we have obtained a picture com-
pletely analogous to a large part of the classical theory of Dedekind
domains. {N.B. This is the special case where A is a noetherian
domain and P (A) = Quot(A).}

We return to the theory of overrings of A in P (A). Let X be a
subset of Ω(A) and R: = A(X). We pick an element p ∈ X and then
have a unique subset M of X such that AR[p] = A(M). We want to
determine this set M .
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Proposition 11.18. For every p ∈ X we have AR[p] = A(X \ {p}).
The rings AR[p] with p running through X are precisely all maximal
proper subrings of R containing A. For every p ∈ X

R = A[p−1] ×A A
R
[p].

Proof. Let p ∈ X be given and v: = vp|R. Then Av = AR[p]. For
a prime ideal q ∈ X we have A[q−1] ⊂ AR[p] iff v(A[q−1]) ≥ 0 iff
v(q−1) ≥ 0. But anyway v(q−1) = −v(q) ≤ 0. Thus A[q−1] ⊂ AR[p]
iff v(q) = 0. We have pv ∩ A = p. Thus v(q) = 0 iff q ⊂ p iff
q = p. From the theory above (cf. Remark 9) it is now evident that
AR[p] = A(X \ {p}). The other statements in the proposition now are
obvious by Theorem 6 and Proposition 11.

Up to now we did not make use of the contents of §10 on Bezout ex-
tensions. There remains the task to describe the Bezout hull Bez(A)
of a given noetherian ring A in the present framework. This is indeed
possible. The following proposition in essence is a straightforward
generalization of the observations in 10.17 about Bezout extensions
of Dedekind domains.

Let Ω1 denote the set of principal ideals p ∈ Ω(A), and let Ω2 denote
the complement Ω(A) \ Ω1. {N.B. We know by Corollary 10.20 that
the p ∈ Ω1 are just all maximal ideals of A which are principal and
dense in A.}

Proposition 11.19. The Bezout ideals I of A with I = A are the
products pk11 . . . pkr

r of powers of finitely many elements p1 . . . pr of
Ω1. The Bezout hull of A is

Bez(A) = A(Ω1) =
∑

p∈Ω1

A(p−1).

Further P (A) = Bez(A) ×A C with C: = A(Ω2) =
∑

p∈Ω2

A(p−1), and

also P (A) = Bez(C).

The proof is by now easy and can safely be left to the reader.
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§12 Invertible hulls for modules over noetherian
rings

As before we assume that A is a noetherian ring. We retain the
notations Ω(A), Ω(R/A), ΩR(A) etc. from §11.

We now study A-submodules of P (A) which no longer have to be
P (A)-invertible. But we always assume that these modules are
finitely generated. Notice that this is not a restriction of general-
ity for a module contained in A (= ideal of A), since A is noetherian.
We will exhibit a class of such modules, called “amenable modules”,
such that every module in this class has an “invertible hull” a∗. This
is an P (A)-invertible A-module containing a and closely related to a,
see below. For technical reasons we will have to work more generally
in an arbitrary Prüfer extension A ⊂ R instead of the maximal one
A ⊂ P (A).

Definition 1. If a is a finitely generated A-submodule of P (A) and
p ∈ Ω(A) we define

vp(a): = min{vp(x) | x ∈ a} ∈ Z ∪ ∞.

Notice that this minimum exists: If a = Ax1 + · · · +Axr, then

vp(a) = min{vp(xi) | 1 ≤ i ≤ r}.

Notice also, that, if a is P (A)-invertible, then this number vp(a) is the
same as the number vp(a) defined in §11, due to Proposition 11.16.
In particular then vp(a) ∈ Z.

Remark 12.1. If p ∈ Ω(A) then, for every finitely generated Ap-
submodule b of P (Ap) = Quot(Ap), we have a number ṽp(b) ∈ Z∪∞,
applying Definition 1 to pAp ∈ Ω(Ap). Clearly ṽp(b) = n < ∞ iff
b = pnAp, and ṽp(b) = ∞ iff b = 0. It is also evident that, for a as
above, we have vp(a) = ṽp(a).

Proposition 12.2. Let a be any finitely generated A-submodule of
P (A).

i) There exist only finitely many p ∈ Ω(A) with vp(a) < 0.
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ii) a ⊂ A iff vp(a) ≥ 0 for every p ∈ Ω(A).
iii) If R is an overring of A in P (A) then a ⊂ R iff vp(a) ≥ 0 for

every p ∈ ΩR(A).

Proof. i): A + a is a finitely generated P (A)-regular A-submodule
of P (A), hence a P (A)-invertible module. Thus vp(A + a) = 0 for
only finitely many p ∈ Ω(A). Since vp(A+ a) = min(vp(A), vp(a)) =
min(0, vp(a)), this gives the first claim.
ii): We know from I, §5 (Remark I.5.5) that A is the intersection of
the rings AP (A)

[p] with p running through Max(A). If p ∈ Ω(A) we

have AP (A)
[p] = P (A), while, if p ∈ Ω(A), we have AP (A)

[p] = Avp . This
gives the second claim.
iii) We have a bijection ΩR(A) −̃→ Ω(R) which sends p ∈ ΩR(A)
to pR. Moreover the valuations vp and vpR on P (A) are the same
(cf.Prop.11.15). Finally vp(a) = vpR(aR). Thus the third claim iii)
follows from the second one.

Given a Prüfer extension A ⊂ R we now strive for a description
of the class of all finitely generated A-modules a ⊂ R such that
vp(a) < ∞ for every p ∈ Ω(R/A) and vp(a) = 0 for only finitely many
p ∈ Ω(R/A). Notice that the P (A)-invertible A-modules belong to
this class.

Definition 2. For every p ∈ Ω(A) we define a new prime ideal p̃ by

p̃: =
⋂
n∈N

pn = A ∩ supp vp.

Remarks 12.3. i) Of course, p̃ ⊂

= p.

ii) The valuation vp|A:A → Z∪∞ is the composite of the localisation
map A → Ap with the valuation ṽp|Ap:Ap → Z ∪ ∞. Since Ap

is a discrete valuation ring, it follows that p̃ = ker(A → Ap). In
particular p̃Ap = 0. If A is an integral domain, this forces p̃ = 0.
iii) The support of the valuation vp is the ideal p̃[p] of A[p], and –
for the same reason as before – p̃[p] is the kernel of the natural map
A[p] → Ap.
iv) If q is a prime ideal of A with q ⊂


= p, then q = p̃. This follows

from the fact that dimAp = 1. Indeed, we have qAp ⊂

= pAp, hence

qAp = 0 = p̃Ap. Taking preimages in A we obtain q = p̃.
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We fix a Prüfer extension A ⊂ R.

Definition 3. i) We call an A-submodule a of R amenable in R,
(or R-amenable) if a is finitely generated and a ⊂ p̃ for every p ∈
Ω(R/A), i.e. vp(a) < ∞ for every p ∈ Ω(R/A).
ii) In the case R = P (A) we call an R-amenable module more briefly
“amenable”.

Example 12.4. If A is an integral domain, then p̃ = 0 for every
p ∈ Ω(A). Thus, if a ⊂ R is finitely generated and a = 0, then a is
amenable in R.

Proposition 12.5. If a is amenable in R, then vp(a) = 0 only for
finitely many prime ideals p ∈ Ω(R/A).

Proof. We know from Proposition 2 that vp(a) < 0 for only finitely
many p ∈ Ω(A). In order to prove that vp(a) > 0 for only finitely
many p ∈ Ω(R/A), we may replace a by a∩A, and now assume that
a ⊂ A.

If p ∈ Ω(R/A) and vp(a) > 0 then a ⊂ p. But a ⊂ p̃ since a is
amenable. Thus p is minimal among the prime ideals containing a.
Since A/a is noetherian, there exist only finitely many such p.

Definition 4. For every R-amenable A-submodule a of R we define
an invertible A-submodule IR(a) by

IR(a): =
∏

p∈Ω(R/A)
pvp(a).

Notice that this makes sense by the preceding proposition. We call
IR(a) the R-invertible hull of a. This terminology will be justified
by Theorem 8 below.

Convention. If there is no doubt, which Prüfer extension A ⊂ R is
under consideration, then we usually write more briefly a∗ instead of
IR(a). This we also do now.

Remarks 12.6. i) If a is R-invertible, i.e. a ∈ D(A,R), then
Scholium 11.8 (cf. there i) and vi)) tells us that a∗ = a. Conversely,
if a = a∗ then a ∈ D(A,R).
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ii) If a and b are finitely generated A-submodules of R, then clearly
the statements ii), iii) in Scholium 11.8 remain true for a, b instead
of I, J there. Thus, if a and b are R-amenable, we have the following
facts:
a) a ⊂ b ⇒ a∗ ⊂ b∗

b) (a + b)∗ = a∗ + b∗

c) (a ∩ b)∗ = a∗ ∩ b∗

d) (ab)∗ = a∗b∗.

Lemma 12.7. If I ∈ D(A,R), then I = {x ∈ R | vp(x) ≥ vp(I) for
every p ∈ Ω(R/A)}.

Proof. Certainly I is contained in the right hand set. Let now
x ∈ R be given with vp(x) ≥ vp(I) for every p ∈ Ω(A). Then
vp(xI−1) = vp(x) − vp(I) ≥ 0 for every p ∈ Ω(R/A) (cf. Scholium
11.8.v). Thus xI−1 ⊂ A (cf. Prop.2.ii), which implies x ∈ I.

Theorem 12.8. Let a be an R-amenable A-submodule of R.
i) The R-invertible hull a∗ is the smallest module I ∈ D(A,R)

containing a.
ii) (a∗)−1 = [A:R a]. Also a∗ = [A:R [A:R a]].

Proof. i): By the preceding lemma we have

a∗ = {x ∈ R | vp(x) ≥ vp(a) for every p ∈ Ω(R/A)}.

Thus certainly a ⊂ a∗. If I ∈ D(A,R) and a ⊂ I then a∗ ⊂ I∗ = I.
ii): Let x ∈ R be given. Then x ∈ [A:R a] iff ax ⊂ A. This holds iff
vp(xa) ≥ 0 for every p ∈ Ω(R/A) (cf. Lemma 7 with I = A). Now
vp(xa) = vp(x)+vp(a). Thus x ∈ [A:R a] iff vp(x) ≥ −vp(a) for every
p ∈ Ω(R/A). Let J : = (a∗)−1. We have vp(J) = −vp(a) for every
p ∈ Ω(R/A). Invoking again Lemma 7, we see that x ∈ [A:R a] iff
x ∈ J . This proves J = [A:R a]. Applying this to the ideal J instead
of a, we obtain [A:R J ] = (J∗)−1 = J−1 = a∗.

Here is a converse of Theorem 8.

Proposition 12.9. Let a be a finitely generated A-submodule of R.
Assume there exists a minimal I ∈ D(A,R) containing a. Then a is
amenable in R and I = a∗.
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Proof. Let b: = aI−1. This is an ideal of A such that there does
not exist an R-invertible ideal J = A of A with b ⊂ J . It follows
that b ⊂ p, hence vp(b) = 0, for every p ∈ Ω(R/A). We see from
Definitions 3 and 4 that b is R-amenable and b∗ = A. It follows that
a is R-amenable and a∗ = (Ib)∗ = I∗b∗ = I.

Proposition 12.10. Let A ⊂ B be a subextension of A ⊂ R, and
let C denote the polar B◦ of B with respect to R. Thus R = B×AC
(cf. Prop.11.11). Let a be an R-amenable A-submodule of B. Then
IR(a) ⊂ B. Both the A-modules a and IR(a) are B-amenable and
IB(a) = IBIR(a). IB(a) is the B-component (cf. §8, Def.1) of IR(a).

Proof. 1) The ring B is the union of modules I−1 with I running
through the set Inv(A,B) of B-invertible ideals of A. If I and J are
such ideals then IJ ∈ Inv(A,B) and (IJ)−1 contains both I−1 and
J−1. Since a is finitely generated, it follows that a ⊂ I−1 for some
I ∈ Inv(A,B). This implies IR(a) ⊂ I−1, as we have proved above,
hence IR(a) ⊂ B.
2) Since Ω(B/A) ⊂ Ω(R/A) we have a ⊂ p̃ for every p ∈ Ω(B/A).
Thus a is B-amenable. For the same reason, IR(a) is B-amenable.
Now vp(a) = vp(IR(a)) for every p ∈ Ω(B/A). Thus IB(a) =
IBIR(a).
3) We have IR(a) =

∏
p∈Ω(R/A)

pvp(a) and IB(a) =
∏

p∈Ω(B/A)
pvp(a). As is

clear from §11 (Prop.11.11, Th.11.13.ii), Ω(R/A) is the disjoint union
of Ω(B/A) and Ω(C/A). Let c: =

∏
p∈Ω(C/A)

pvp(a). Then IR(a) =

IB(a) · c. If p ∈ Ω(C/A) then pC = C. Thus cC = C. This gives us
IR(a)C = IB(a)C. Also IB(a)B = B. Recalling just Definition 1 of
§8, we see that IB(a) is the B-component of IR(a).

We now add some items to the transfer theory from §6 in the present
noetherian situation. Let A ⊂ C be a ws extension. Both C and
P (A) have unique embeddings over A into Q(A). We regard them
as overrings of A in Q(A). The subring T : = CP (A) = C ⊗A P (A)
of Q(A) is Prüfer over C, hence T ⊂ P (C).

The ring C is again noetherian. Indeed, if J is an ideal of C, then
J ∩ A is finitely generated and J = C(J ∩ A) by Proposition I.4.6.
Thus also J is finitely generated.
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We first want to analyze the relations between the sets of prime
ideals Ω(C) and Ω(A) and the Manis valuations corresponding to
these prime ideals. Notice that, in the special case that C ⊂ P (A),
this has already been done in §11, cf. in particular Proposition 11.15.

Definition 5. Let ΩC(A) denote the set of all p ∈ Ω(A) with pC =
C, i.e. ΩC(A) = Ω(A) ∩X(C/A).

Theorem 12.11. (Recall that T : = C · P (A).)
i) Let q ∈ Ω(T/C). Then p: = q ∩ A ∈ ΩC(A). The natural map
Ap → Cq is an isomorphism, in short Ap = Cq. Also P (A)p = Tq =
P (C)q = Quot(Ap). The valuation vp:P (A) → Z ∪ ∞ (cf. §11,
Def.4) is the restriction of vq:P (C) → Z ∪ ∞ to the subring P (A) of
P (C), and ṽp = ṽq.
ii) The map Ω(T/C) → ΩC(A), q �→ q∩A, is a bijection with inverse
map p �→ pC.
iii) If P (A) ∩ C = A then ΩC(A) = Ω(A).
iv) If a is any finitely generated A-submodule of P (A) then vp(a) =
vpC(aC) for every p ∈ ΩC(A).

Proof. a) We start with a prime ideal q ∈ Ω(T/C). Let w: = vq|T
be the corresponding Manis valuation on T . We have Aw = CT[q],
pw = qT[q]. The localization Cq is a discrete valuation ring. Moreover
Tq = P (C)q = Quot(Cq), as has been stated in Corollary 11.14.

Let p: = q ∩A and v: = vq|P (A). We have pv ∩A = (pw ∩ C) ∩A =
q∩A = p. Thus v is non trivial. Since w has the value group Z, also
v has the value group Z, and v(P (A)) = Z∪{∞}. We conclude that
p ∈ Ω(A) and that v is the valuation vp on P (A) corresponding to
p. Further pC = q, in particular p ∈ ΩC(A).
b) Conversely let p ∈ ΩC(A) be given. Then q: = pC is a prime
ideal of C. The natural map ϕp:Ap → Cq is surjective, since A ⊂ C
is ws. Ap is a discrete valuation ring and P (A)p is its quotient
field. The epimorphism ϕp:Ap −→−→ Cq extends to a homomorphism
ψp:P (A)p → Tq. Now ψp is injective, since P (A)p is a field and
Tq = {0}. Thus also ϕp is injective, hence an isomorphism. In short,
Ap = Cq. It now is also clear that ψp is surjective. (Recall that
T = P (A) · C.) Thus ψp is an isomorphism. In short, P (A)p = Tq.

We have qT = T , since P (A)p = P (A). Thus q is dense in C. We
claim that q is a maximal ideal of C. Indeed, let m be a maximal
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ideal of C containing q. Then m ∩ A ⊃ p. Since p is maximal, we
have m ∩A = p, and this forces m = C(m ∩A) = q.

We conclude (just recalling Definitions 1 and 3 in §11) that q ∈
Ω(T/C). From Proposition 11.15 we know that Tq = P (C)q. Thus
P (A)p = P (C)q. We conclude that ṽp = ṽq. For a a finitely gener-
ated A-submodule of P (A) we have vp(a) = ṽp(aAp) = ṽq(aCq) =
vq(aC).
c) Assume finally that P (A) ∩ C = A. By the transfer theory in
§6 we know that we have a bijection Inv(A,P (A)) → Inv(C, T ),
I �→ IC. Thus for p ∈ Ω(A) certainly pC = C. This means that now
ΩC(A) = Ω(A).

Remark 12.12. We learned in §6 that we have a surjective group
homomorphism from D(A) = D(A,P (A)) to D(C, T ), sending I ∈
D(A) to IC. It is now clear from Theorem 11 that for any p ∈ ΩC(A)
and associated q: = pC ∈ Ω(T/C) we have vp(I) = vq(IC).

Proposition 12.13. Let p ∈ ΩA(C). Then (pC)∼ = p̃C.

Proof. Let q: = pC. We have vp = vq|P (A), hence

p̃: = A ∩ supp (vp) = A ∩ (C ∩ supp vq) = A ∩ q̃.

This implies q̃ = p̃C (cf.Prop.I.4.6).

Let A ⊂ R be a fixed subextension of A ⊂ P (A). Then C ⊂ RC is
a subextension of C ⊂ T .

Proposition 12.14. Assume that a is an R-amenable A-submodule
of R. Then aC is an RC-amenable C-submodule of RC and
IRC(aC) = IR(a)C.

Proof. Due to Theorem 11.ii we have a bijection ΩC(A) −̃→ Ω(T/C),
p �→ pC. The set ΩC(R/A): = ΩC(A) ∩ Ω(R/A) is mapped onto the
subset Ω(RC/C) of Ω(T/A), since for p ∈ ΩC(A) we have pR = R
iff pRC = RC, as can be easily deduced from Theorem 6.5. The A-
module a is R-amenable iff vp(a) < ∞ for every p ∈ Ω(R/A). Now
vp(a) = vpC(aC) for every p ∈ ΩC(A), as has been stated in Theorem
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11.iv. Thus vq(aC) < ∞ for every q ∈ Ω(RC/C), i.e. aC is RC-
amenable. {N.B. This could also be deduced from Proposition 13.}
If p ∈ Ω(R/A) \ ΩC(A) then pC = C. We thus obtain

IRC(aC) =
∏

p∈ΩC(R/A)
(pC)vpC(aC) =

∏
p∈ΩC(R/A)

(pC)vp(a) =

= (
∏

p∈ΩC(R/A)
pvp(a)) · C = (

∏
p∈Ω(R/A)

pvp(a)) · C = IR(a)C.

We have reached a point where we can give an argument why it seems
to be necessary to study invertible hulls IR(a) for R an overring of
A in P (A) instead of just R = P (A): Let A ⊂ C be a ws extension,
as before. If a is an amenable (= P (A)-amenable) A-submodule of
P (A) then aC is a T -amenable C-submodule of T : = P (A)C, and
IT (aC) = IP (A)(a) · C by the proposition just proved. But there
seems to be no reason in general, why aC should be amenable in
P (C). Thus we cannot even define IP (C)(aC).

How about a theory of invertible hulls if A is no longer noetherian?
The results obtained here, in particular the formulas in Theorem 8.ii,
strongly suggest that a good such theory is possible. We defer this
to part II of the book, when more tools are available.



Chapter III:
PM-valuations and valuations of weaker
type

Summary:

In this chapter we study valuations. Our primary goal is to under-
stand PM-valuations (PM = “Prüfer-Manis”, cf.I §6, Def.1). From
an algebraic viewpoint these are the really good valuations on rings,
while Manis valuations still allow some pathologies. A non trivial
PM-valuation v:R → Γ ∪ ∞ is characterized, up to equivalence, by
the ring extension Av ⊂ R. {More generally this holds for Manis
valuations, cf. I §2.} We had named these Prüfer extensions Av ⊂ R
“PM-extensions” (I, §6). Given a Prüfer extension A ⊂ R we in §1
study the family of all R-overrings B of A which are PM in R. But
then we stop to look more closely at the families of PM-valuations
arising here, deferring this central topic to part II of the book. In-
stead we try to elucidate the structure of a single PM-valuation in
§2 and §3.

Many arguments and results in §1 – §3 can already be found in
Griffin’s seminal paper [G2] (often presented there in a very brief
way). We usually have refrained from documenting this in detail.

In §4 we introduce the class of “tight” valuations. These are a spe-
cial sort of Manis valuations which are still more general than PM-
valuations. Various arguments about PM-valuations seem to become
more transparent if we separate what is true more generally for tight
valuations, and where we really need the stronger PM-property.

Given a pair (A, p) consisting of a ring A and a prime ideal p of A, we
prove in §5 the existence of a unique maximal ring extension A ⊂ C
such that there lives a (unique) PM-valuation v on C with A = Av
and p = pv. We call C the PM-hull of (A, p) and write C = PM(A, p).
Analogously we construct a TV-hull TV(A, p) of (A, p), where v is
a tight valuation instead of a PM-valuation, and, under a necessary
restriction on (A, p), a Manis valuation hull MV(A, p, R) within a
given ring extension A ⊂ R. In sections §6 – §8 we explore and
describe these valuation hulls in various ways.

M. Knebusch and D. Zhang: LNM 1791, pp. 177–250, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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In §6 – §8 we also discuss the possibility to improve a given valuation
v:R → Γ ∪ ∞ successively to a Manis, a tight, and a PM-valuation
by special restriction (cf. Def.11 in I, §1) to rings between Av and
R. Then, in §9, we study what happens if we compose such a val-
uation with a ring homomorphism. Finally, in the last section §10,
we resume the topic of transfer principles from II, §6, now studying
valuations.

In this chapter up to §9 only easy parts of Chapter II will be used:
II, §1, the beginnings of II, §3, and some elementary facts about
tight extensions from II, §4. In the last section III, §10 we have to
rely on II, §6 of course. (To be honest, there is one further excep-
tion, Theorem 3.5, which relies on the difficult Theorem II.2.8. But
Theorem 3.5 will not be used later in Chapter III.)

§1 The PM-overrings in a Prüfer extension

In this section A ⊂ R is a fixed ring extension, which usually will be
weakly surjective. Recall that an R-overring of A means a subring B
of R with A ⊂ B. Recall also that we use the abbreviation “ws” for
“weakly surjective” (I, §3) and the abbreviation “PM” for “Prüfer-
Manis” (I, §6).

We start with two easy lemmas, the first one being evident.

Lemma 1.0. Let v be a valuation on R and A: = Av, p: = pv. Then
A = A[p] and p = p[p].

Lemma 1.1. Assume that A is ws in R. Let p be a prime ideal of
A. Then pR = R iff A[p] = R. In this case pR = p[p].

Proof. p[p] is a prime ideal of A[p] and p[p] ∩A = p. If A[p] = R then
we conclude from I, §4 (Prop.I.4.6) that p[p] = pR and in particular
pR = R. Conversely, if pR = R then we learn from Theorem I.3.13,
there with B = R, that R = A[p].

Theorem 1.2. Assume that A is Prüfer in R. Then the map p �→
A[p] from the set Y (R/A) ofR-regular prime ideals of A into the set of
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R-overrings of A is a bijection from Y (R/A) to the set of proper PM-
subrings B of R containing A. {Here “proper” means that B = R.}
If B is such a subring of R then B = A[p] with p: = pB ∩A.

Proof. For every prime ideal p of A the ring A[p] is PM in R
(as stated already in I, §6), and if p ∈ Y (R/A) then A[p] = R
by Lemma 1. Let p ∈ Y (R/A) and q ∈ Y (R/A) be given with
A[p] = A[q] =:B. Then the pairs (B, p[p]) and (B, q[q]) are Manis in
R. We conclude from I, §2 that p[p] = pB = q[q].∗) Intersecting back
with A we obtain p = A ∩ pB = q. This proves the injectivity of our
map.

Let B be a proper subring of R which contains A and is PM in R.
Let q: = pB and p: = q ∩ A. The pair (B, q) is Manis in R. By
Theorem I.3.13 (2) we have A[p] = B[q], and by Lemma 0 we have
B[q] = B. Thus B = A[p]. Again by Lemma 1, p ∈ Y (R/A).

Theorem 1.3. Assume that (A, p) is a Manis pair in R and A is
Prüfer in R. Then every R-regular prime ideal r of A is contained in
p, and r = r[r] = r[p].

Proof. The pair (A[r], r[r]) is Manis in R. Let v and w be Manis
valuations on R with Av = A, pv = p, Aw = A[r], pw = r[r]. We want
to prove that pw ⊂ p. Then we can conclude from r[r] ⊂ p ⊂ A and
r ⊂ r[p] ⊂ r[r] that r = A ∩ r[r] = r[r] ⊂ p and r = r[p], and we will be
done.

Since r is R-regular, Aw = R. It follows that the support qw of w is
different from pw, thus pw ⊂ qw. Suppose that pw ⊂ p. Then there
exists some a ∈ pw with a ∈ qw, a ∈ p. {For this conclusion we only
need that pw, qw, p are additive subgroups of R.} We have w(a) > 0,
w(a) = ∞.

Since w is Manis we can pick some a′ ∈ R with aa′ ∈ A[r] \ r[r]. We
choose d ∈ A \ r with daa′ ∈ A. Since a ∈ p we have v(a) ≤ 0.
But v(daa′) ≥ 0. Thus v(da′) ≥ 0, i.e. da′ ∈ A, and a′ ∈ A[r], i.e.
w(a′) ≥ 0. This contradicts the fact that w(a′) = −w(a) < 0. We
conclude that pw ⊂ p.

∗) Recall the notation pB from Definition 2 in I, §2.
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Corollary 1.4. If A is PM in R, A = R, then pA is the unique
R-regular maximal ideal of A and A[pA] = A.

Proof. Let p: = pA. By Lemma 0 we have A[p] = A = R. By
Lemma 1 we conclude that p is R-regular. Now Theorem 3 tells us
that p is the unique R-regular maximal ideal of A.

Theorem 3 also gives us a supplement to Theorem 2. Namely, it
turns out that the bijection considered there is an anti-isomorphism
of partially ordered sets, both orderings being given by the inclusion
relation.

Proposition 1.5. Assume that A is Prüfer in R. Let p and q be
prime ideals of A. Assume that q is R-regular. Then A[p] ⊂ A[q] iff
q ⊂ p.

Proof of the nontrivial direction. Assume that A[p] ⊂ A[q]. Let
q′: = A[p] ∩ q[q]. This is a prime ideal of A[p] with q′ ∩ A = q,
hence q′ = qA[p] by Theorem I.4.8. {Alternatively we may invoke
Prop.I.4.6.} From qR = R we conclude that q′R = R. Now Theorem
3 tells us that q′ ⊂ p[p]. Intersecting with A we obtain q ⊂ p.

In connection with this proof we state

Remark 1.6. If A is Prüfer in R and p, q are prime ideals of A with
q ⊂ p, then qA[p] = q[p] = q[q] ∩A[p].

Proof. q ⊂ (qA[p]) ∩ A ⊂ q[p] ∩ A ⊂ q[q] ∩ A[p] ∩ A = q. Thus
(qA[p]) ∩ A = q[p] ∩ A = q[q] ∩ A[p] ∩ A. The claim follows from
Proposition I.4.6, since A is ws in A[p].

Definition 1. For any ring extension A ⊂ R we denote by Ω(R/A)
the set of maximal ideals of A which are R-regular, i.e. Ω(R/A): =
MaxA ∩ Y (R/A).

Notice that Ω(R/A) is the set of maximal elements of Y (R/A) under
the inclusion relation.

If A is ws in R then Y (R/A) is empty iff A = R (cf. Lemma II.3.2).
We start out for a characterization of the Prüfer extensions A ⊂ R
such that Ω(R/A) consists of one element.
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Proposition 1.7. Assume that A is ws in R and A = R. Then,
with Ω: = Ω(R/A),

A =
⋂
p∈Ω

A[p].

Proof. A is the intersection of the rings A[p] with p running through
MaxA (cf. I.5.5). But if p ∈ Ω then A[p] = R (cf. Lemma 1).

Theorem 1.8. Assume that A is Prüfer in R and A = R. The
ring A is Manis in R iff Ω(R/A) consists of one element p, and then
p = pA.

Proof. If A is Manis in R then Corollary 4 above tells us that
Ω(R/A) = {pA}. Conversely, if Ω(R/A) = {p}, then Proposition 7
tells us that A = A[p]. It follows that p = p[p]. The pair (A, p) =
(A[p], p[p]) is Manis in R by the definition of Prüfer extensions. Thus
p = pA.

In passing we state an amplification of Proposition 7 to A-modules,
which will be useful later.

Lemma 1.9. Assume that A ⊂ R is ws and that I is an R-regular
A-submodule of R. Then, for every prime ideal p of A which is not
R-regular, we have I[p] = IA[p] = R.

Proof. Let p ∈ SpecA, pR = R. By Lemma 1 (or by I, §3) we have
A[p] = R. Thus IA[p] = IR = R. Since IA[p] ⊂ I[p], also I[p] = R.

Proposition 1.10. Assume that A is ws in R and A = R. For every
R-regular A-submodule I of R we have, with Ω: = Ω(R/A),

I =
⋂
p∈Ω

IA[p] =
⋂
p∈Ω

I[p].

Proof. It is trivial to state that I ⊂ ⋂
Ω
IA[p] ⊂ ⋂

Ω
I[p]. By the

preceding lemma and by I.5.5 we have
⋂
Ω
I[p] =

⋂
p∈MaxA

I[p] = I. This

gives the result.
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Remark 1.11. Assume again that A is ws in R and A = R. Then,
for any A-submodule I of R,

I =
⋂
p∈Ω

IA[p] = IR ∩
⋂
p∈Ω

I[p].

Proof. For every p ∈ MaxA we have I ⊂ IA[p] ⊂ I[p], and I is the
intersection of the sets I[p] (cf. I.5.5). Since A[p] = R for p ∈ Ω, it
follows that

I =
⋂

p∈MaxA

IA[p] =
⋂
p
∈Ω

IR ∩
⋂
p∈Ω

IA[p] =
⋂
p
∈Ω

IR ∩
⋂
p∈Ω

I[p].

Since Ω is not empty we may omit IR in the third term.

We finally write down a consequence of Theorem 8 and our theory
of distributive ideals in II, §5.

Proposition 1.12. Let I be a maximal ideal of a ring A which is
also invertible. Then A is PM in A[I−1].

Proof. Let m be any maximal ideal of A. If m = I then Im = Am. If
m = I then Im is the unique maximal ideal of Am. Proposition II.5.2
now tells us that the ideal I of A is distributive, since clearly condi-
tion (5) there is fulfilled. We conclude by Theorem II.5.7 that I is a
Prüfer ideal, i.e. A is Prüfer in R: = A[I−1].

R is the union of the sets I−n, n ∈ N. Thus, if m is an R-regular
maximal ideal of A, we have some n ∈ N such that 1 ∈ mI−n, hence
In ⊂ m. It follows that I ⊂ m, hence I = m. Thus m is the unique
R-regular maximal ideal of A, and we conclude by Theorem 8 that
A is PM in R.

§2 The regular modules in a PM-extension

Notations. In the following v is a valuation on a ring R with value
group Γ, and A: = Av, p: = pv. For every γ ∈ Γ we denote the set of
all x ∈ R with v(x) ≥ γ by Iγ .∗)

∗) We will write more precisely Iγ,v instead of Iγ , if necessary.
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Notice that Iγ is a v-convex A-submodule of R. If x ∈ R \A, hence
v(x) = −γ with γ > 0, we have

(A:x) = {a ∈ A | v(a) + v(x) ≥ 0} =
= {a ∈ A | v(a) ≥ γ} = Iγ .

Thus the ideals (A:x) with x ∈ R \ A are precisely the A-modules
Iγ with γ > 0. Recalling Theorem I.3.13 we obtain the following

Proposition 2.1. A is ws in R iff IγR = R for every γ ∈ Γ with
γ > 0. Then every v-convex A-submodule I of R different from
supp v is R-regular.

Indeed, the last statement is evident, since every such module I
contains Iγ for some γ > 0.

We strive for an understanding of all R-regular A-submodules of R
in the case that v is PM.

If v is Manis then we know from Chapter I (Prop. I.1.15) that an
A-submodule I of R is v-convex iff I contains supp v and I[p] = I.

Theorem 2.2. If the valuation v is PM, then the R-regular A-
submodules of R are precisely all v-convex submodules I of R with
I = supp v.

Proof. We know from Proposition 1 that the v-convex submodules
I = supp v are R-regular. Let now an R-regular A-module I ⊂ R be
given. Then I is the intersection of the modules I[q] with q running
through Ω(R/A) (Prop. 1.10). But in the present case Ω(R/A) =
{p}, as we have seen in §1 (Cor. 1.4). Thus I = I[p], and we conclude
that I is v-convex.

Definition. For M an additive subgroup of R we denote by Mv the
v-convex hull of M , i.e. the smallest subset of R which is v-convex
and contains M .

Clearly Mv is the set of all z ∈ R with v(z) ≥ v(x) for some x ∈ M .
Observe that Mv is an A-submodule of R. For any x ∈ R with
v(x) = γ = ∞ we have (Ax)v = Iγ . From Theorem 2 we obtain
immediately
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Corollary 2.3. Assume that v is PM. Let I be an additive subgroup
of R with IR = R. Then Iv = AI.

Proof. Of course, AI ⊂ Iv. But AI is an R-regular A-submodule
of R. Thus AI is v-convex. This forces AI = Iv.

Notice also that Proposition I.1.15, cited above, implies the following

Remark 2.4. Assume that the valuation v is Manis. If I is any
A-submodule of R, then Iv = (I + supp v)[p].

We now expound the rather striking information provided by Theo-
rem 2 for the special classes of prime ideals and invertible modules
in a PM-extension.

Theorem 2.5. Assume that v is PM. Let r be a prime ideal of A.
The following are equivalent.

(1) r is R-regular.
(2) r is v-convex and r = supp v.
(3) supp v ⊂

= r ⊂ p.
(4) r ⊂ p, but r ⊂ supp v.

Proof. The equivalence of (1) and (2) is covered by Theorem 2. The
implications (2) ⇒ (3) ⇒ (4) are evident. We now prove (4) ⇒ (2)
as follows, cf. [G2, p.415].

Let x ∈ r \ supp v and y ∈ A be given with v(y) ≥ v(x). We verify
that y ∈ r. The we will know that r is v-convex. There exists
some s in R \ supp v with v(sx) = 0, i.e. sx ∈ A \ p. This implies
v(sy) ≥ 0, i.e. sy ∈ A. It follows that (sx)y = (sy)x ∈ r. Since
sx ∈ A \ p ⊂ A \ r, we conclude that y ∈ r.

Theorem 2.6. If v is PM, the R-invertible A-submodules of R are
precisely the sets Iγ , γ ∈ Γ. We have I−1

γ = I−γ .

Proof. For any γ ∈ Γ we have IγI−γ ⊂ A. From Proposition 1 we
know that Iγ and I−γ are R-regular. Thus also IγI−γ is R-regular,
hence v-convex by Theorem 2. Since IγI−γ contains an element x
with v(x) = 0 this forces IγI−γ = A.
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Conversely, if I is an R-invertible A-module then I is certainly R-
regular, hence v-convex. I is also finitely generated. Thus I = (Ax)v

for some x ∈ I. We have I = Iγ with γ = v(x).

Remark. Part of this theorem can be generalized greatly, cf. Propo-
sition 4.6 below.

Corollary 2.7. Assume again that v is PM. Let γ, δ be elements of
Γ with γ ≤ δ, and let x be an element of R with v(x) = γ. Then
Iδ +Ax = Iγ .

Proof. Iδ is R-invertible. Since A is Prüfer in R, also Iδ + Ax is
R-invertible (cf. Th. II.1.13). Theorem 6 tells us that Iδ +Ax = Iγ .
{We can also argue as follows: Iδ + Ax is v-convex in R by Prop.1
and Th.2. This implies Iδ +Ax = Iγ .}
We now start out to prove a statement about the A-modules Iγ which
is much sharper than Corollary 7. We need an easy lemma, valid for
an arbitrary valuation v.

Lemma 2.8. Let x ∈ A and v(x) = ∞, and let y be an element of
R with v(y) = −v(x). Then (Ax)v = [A:A+Ay] = (A: y).∗)

Proof. [A:A + Ay] = {z ∈ R | z(A + Ay) ⊂ A} = {z ∈ A | zy ∈
A} = {z ∈ A | v(z) + v(y) ≥ 0} = {z ∈ A | v(z) ≥ v(x)} = (A: y).

Theorem 2.9. Assume again that v is PM. Let γ and δ be elements
of Γ with γ ≤ δ. Let x be an element of R with v(x) = γ. Then
there exists some u ∈ Iδ with Au+Ax = Iγ .

Proof. a) We first consider the case γ > 0. We choose y ∈ R with
v(y) = −γ. By Corollary 7 we have Iδ + Axy = A. Thus there
exists u ∈ Iδ and a ∈ A with u + axy = 1. Since v(u) > 0 we have
v(axy) = 0. Thus z: = ay has the value v(z) = −γ. By Lemma
8, Iγ = (Ax)v = [A:A + Az] = (A + Az)−1. Now the relation
u · 1 + x · z = 1 gives us the claim Au + Ax = Iγ (cf. Remark
II.1.10.a.)

∗) Recall the definition of [A:I]=[A:RI] from II, §1.
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b) We deal with the remaining case γ ≤ 0. If v is trivial, there is
nothing to be proved. Thus we may assume without loss of generality
that δ > 0. Corollary 7 tells us that Iδ +Ax = Iγ . We choose c ∈ A
with v(c) = δ− γ. As already proved above there exists some u ∈ Iδ
with Au+Acx = Iδ. This implies Iγ = Iδ +Ax = Au+Ax.

Comment. A guiding line for our study here is the idea that PM-
valuations are “nearly as good” as valuations on fields, and in this
respect are considerably better than just Manis valuations. The-
orem 9 gives an illustration that this idea is not completely silly.
Recall that, if R is a field, then for two elements x, y of R we have ei-
ther Ax ⊂ Ay or Ay ⊂ Ax, and Ax ⊂ Ay iff v(x) ≤ v(y). Also every
finitely generated A-submodule of R is generated by just one ele-
ment. The simplicity of these properties seems to be a major reason
why valuations on fields are loved and used much in algebraic and
analytic geometry, and even more in real algebraic and real analytic
geometry.

Now, ifR is a ring, things are not that simple. Of course, we may pass
from v to the valuation v̂ on the residue class field Quot (R/supp v),
but then subtle phenomena in the relation between v̂ and R tend to
be hidden. Now, if v is PM, we have some comfort in working with v
instead of v̂. Due to Theorem 9 every finitely generated R-regular A-
submodule I ofR is generated by two elements x, u, where in addition
x can be choosen to be any element of R with v(x) = Min

z∈I
v(z), and

then u can be choosen such that v(u) ≥ δ for any δ ∈ Γ. Also, if x, y
are elements of R with v(x) ≤ v(y), then Ay ⊂ Ax + Iδ with δ ∈ Γ
being as big as we want. Thus Ay is “nearly” contained in Ax. Of
course, the word “nearly” here is to be understood with a big grain
of salt. The valuation v cannot distinguish elements in supp v.

§3 More ways to characterize PM-extensions, and
a look at BM-extensions

In §1 (Theorem 1.8) we obtained an important new characterization
for a ring extension to be PM (already knowing that the extension
is Prüfer). We now add more characterization theorems for the PM
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property as a consequence of previous results. After that we study
a special class of PM extensions and use this for still another char-
acterization of PM-extensions. Finally we work on Bezout-Manis
extensions, to be defined below.

Theorem 3.1. Let A ⊂ R be a ring extension with A integrally
closed in R. Then A is PM in R iff the set of R-overrings of A is a
chain, i.e. is totally ordered by inclusion.

Proof. i) Assume that A is PM in R. Let B and C be R-overrings
of A. Then B and C are R-regular A-modules. Both B and C are
v-convex in R by Theorem 2.2. Thus B ⊂ C or C ⊂ B.
ii) Assume now that any two R-overrings of A are comparable. Given
two elements x, y of R we have A[x] ⊂ A[y] or A[y] ⊂ A[x]. This
implies that xy ∈ A[x]+A[y]. Now Theorem II.1.7 tells us that A ⊂
R is Prüfer. If p and q are R-regular prime ideals of A then A[p] ⊂
A[q] or A[q] ⊂ A[p]. This implies that q ⊂ p or p ⊂ q (Prop. 1.5).
In particular A has only one maximal R-regular ideal. Theorem 1.8
tells us that A is PM in R.

Corollary 3.2. If A is PM in R then every R-overring B of A is
again PM in R.

Proof. TheR-overrings ofA form a chain. Thus also theR-overrings
of B form a chain.

Theorem 3.3. Let A ⊂ R be a ring extension. The extension
A ⊂ R is PM iff for every R-overring B of A (with B = R) the set
R \B is multiplicatively closed.

Proof. If A ⊂ R is PM then, as just proved, every R-overring B of
A is PM in R and thus R \B is multiplicatively closed. Conversely,
if B = R and R \ B is multiplicatively closed, then B is integrally
closed in R, as has already been stated in Theorem I.2.1. If this holds
for every R-overring B of A then A ⊂ R is Prüfer by Theorem I.5.2.

Theorem 3.4. Let v be a non trivial Manis valuation on a ring R
with value group Γ. Let A: = Av, p: = pv, and Iγ : = {x ∈ R | v(x) ≥
γ} where γ ∈ Γ. The following are equivalent.
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(1) A is Prüfer in R (hence PM).
(2) For every x ∈ R the A-module A+Ax is v-convex in R.
(3) A is ws in R and p is the unique R-regular maximal ideal of A.
(3′) A is ws in R and p is the unique R-regular maximal ideal of A

containing supp v.
(4) The R-regular ideals of A are precisely the v-convex ideals dif-

ferent from supp v.
(5) If γ ∈ Γ, γ > 0, and x ∈ A, v(x) = 0, then Iγ +Ax = A.
(6) For every R-overring B of A we have B[p] = B.
(7) If m is a maximal ideal of A different from p, and r is a prime

ideal of A contained in m ∩ p, then r ⊂ supp v.

Proof. Implication (1) ⇒ (2) is clear from §2 (Th.2.2), (1) ⇒ (3) is
clear from §1 (Cor. 1.4), and (1) ⇒ (4) is again clear from §2 (Th.
2.2). The implication (4) ⇒ (5) is evident (cf. Cor.2.7), and (3) ⇒
(3′) is trivial.
(2) ⇒ (1): The A-modules A+Ax, with x running through R, form
a chain, since they are v-convex. From this one deduces easily that
the R-overrings of A form a chain. {If B,C are A-overrings with
B ⊂ C and x ∈ B \C then C ⊂ A+Ax.} Theorem 1 tells us that A
is PM in R.
(3′) ⇒ (1): Let x ∈ R\A be given and I: = (A:x)+x(A:x). Clearly
supp v ⊂ I. We verify that I = A and then will be done by Theorem
I.5.2. Since A is ws in R, the ideal (A:x) is R-regular. A fortiori I is
R-regular. Since v is Manis there exists some y ∈ p with xy ∈ A \ p.
We have y ∈ (A:x). Thus x(A:x) ⊂ p, a fortiori I ⊂ p. Since by
assumption p is the only R-regular maximal ideal of A, we conclude
that I = A.

(5) ⇒ (1): Let x ∈ R \ A be given.We again verify that (A:x) +
x(A:x) = A, and then will be done. We have (A:x) = Iγ with
γ = −v(x) > 0 (cf. the beginning of §2). We choose z ∈ (A:x)
with v(z) = γ. Then v(xz) = 0. By assumption (5) it follows that
Iγ +Axz = A, hence Iγ + xIγ = A.

(3) ⇒ (6): Let B be an R-overring of A. For every x ∈ B the A-
module A+Ax is v-convex in R. It follows that B is v-convex in R.
According to Proposition I.1.15 (or 2.4) this means B = B[p].

(6) ⇒ (1): Let B be an R-overring of A. We have B = B[p], and this
means that B is v-convex. Since all R-overrings of A are v-convex,
they form a chain. Theorem 1 tells us that A is PM in R.



Chapter III: PM-valuations and valuations of weaker type 189

(1) ⇒ (7): Let m be a maximal ideal of A different from p, and r a
prime ideal of A contained in m ∩ p. The ideal m is not R-regular
(cf.(3)), hence r is not R-regular. But r ⊂ p. Theorem 2.5 tells us
that r ⊂ supp v.

(7) ⇒ (1) (cf. [G2, p.418 f]): The pair (A[p], p[p]) = (A, p) is Manis
in R. Let m be a maximal ideal of A different from p. We prove that
A[m] = R, which implies that (A[m],m[m]) is again a (trivial) Manis
pair in R. Then we will know that A ⊂ R is Prüfer.

Let x ∈ R be given. We have to verify that x ∈ A[m]. This is trivial
if x ∈ A. Assume now that x ∈ R \A, i.e. v(x) < 0. The set

H: = {γ ∈ Γv | n|γ| ≤ −v(x) for every n ∈ N}
is a convex subgroup of Γv, and H = Γv. Let r denote the corre-
sponding v-convex prime ideal of A, i.e.

r = {a ∈ A | v(a) ∈ H} = {a ∈ A | ∃n ∈ N with v(an) > −v(x)}.
We have r = supp v and r ⊂ p. By assumption (7) this implies r ⊂ m.
We choose some s ∈ r \ m and then some n ∈ N with v(sn) > −v(x).
We have snx ∈ A, hence x ∈ A[m].

Remark. The implication (1) ⇒ (7) can also be proved in the follow-
ing different way. Let m be a maximal ideal of R different from p and
r a prime ideal contained in m∩p. Since m is not R-regular, we have
A[m] = R. Suppose that r ⊂ supp v. We choose some x ∈ r \ supp v
and then some y ∈ R with xy ∈ A \ p. We finally choose some
s ∈ A \ m with sy ∈ A, which is possible since A[m] = R. Now
xsy = x(sy) ∈ r. On the other hand, xsy = (xy)s ∈ A \ r, since
xy ∈ A \ p ⊂ A \ r and s ∈ A \ m ⊂ A \ r. This contradiction proves
that r ⊂ supp v.

In Theorem 4 the criteria (5) and (7) deserve special interest, since
they do not involve the extension R of A but only the restriction
v|A:A → Γ+ ∪ ∞ of the valuation v. In the next section we will
see how the extension R of A and the valuation v can be recovered
from v|A. The criteria (3), (3′), (4), (7) are essentially contained in
Griffin’s paper [G2], cf. there Propositions 12 and 14.

Using a major result from Chapter II we obtain still another criterion
for a ring extension to be PM.
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Theorem 3.5. A ws ring extension A ⊂ R is PM iff the set of
R-regular ideals of A is a chain.

Proof. If A ⊂ R is PM with associated PM-valuation v, the R-
regular ideals of A are v-convex, as just stated (Theorem 4), and
thus form a chain.

Assume now that A ⊂ R is ws and the set F of R-regular ideals of A
is a chain. Then F is a distributive lattice, and Theorem II.2.8 tells
us that A ⊂ R is Prüfer. A has a unique R-regular maximal ideal.
It follows that A ⊂ R is PM, since condition (3) in Theorem 4 holds.
{Alternatively we may argue by Prop. 1.7 that A = A[p], with p the
maximal R-regular ideal of A, and thus A is Manis in R.}
In I, §1 we have studied the class of valuations with maximal support,
i.e. valuations v:R → Γ∪∞ such that supp v = q is a maximal ideal
of R. Every such valuation is Manis, since the associated valuation
v:R/q → Γ ∪ ∞ is a valuation on a field. In Proposition I.1.11
we have characterized valuations with maximal support within the
broader class of Manis valuations in various ways. We now can add
an interesting facet to this.

Proposition 3.6. Let v:R → Γ ∪ ∞ be a valuation, A: = Av,
p: = pv, q: = supp v. Then q is a maximal ideal of R iff v is Manis
and q +Ax = A for every x ∈ A \ p. Every such valuation is PM.

Proof. a) Assume first that v has maximal support q. Then v is
Manis, A/q is a Krull valuation domain, and p/q is the maximal ideal
of the local ring A/q. It follows that Ax+ q = A for every x ∈ A \ p.
This implies condition (5) in Theorem 4 above. We conclude that v
is PM.
b) Assume now that v is Manis and Ax+ q = A for every x ∈ A \ p.
It follows that every ideal I = A of A with q ⊂ I is contained in p.
Thus p is the unique maximal ideal of A containing q. Proposition
I.1.11 tells us that q ∈ MaxR.

Remark 3.7. That a valuation v with maximal support q is PM
can be also seen as follows, applying only results from Chapter I:
We use the same notations as before. v:R/q → Γ ∪ ∞ is a Krull
valuation with valuation ring A/q. Certainly v is Manis, hence v is
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Manis. Also A/q is a Prüfer domain, hence the extension A/q ⊂ R/q
is Prüfer. This implies that A ⊂ R is Prüfer by Proposition I.5.8.

The valuations with maximal support are the “easy” PM-valuations.
On a given ring R one gets them all by “pulling back” the valuations
on the residue class fields of the maximal ideals to the ring R. Con-
dition (5) in Theorem 4 above, which characterizes PM valuations in
general, is a much more subtle matter than the condition Ax+q = A
for x ∈ A \ p.

It is not difficult now to give examples of PM-valuations which do not
have maximal support. With a little more theory this will be even
easier. We postpone an example to §10 (Ex.10.6). The contents of
§4 – §9 are not necessary to understand that example.

In Proposition I.1.11 we gave various characterizations of valuations
with maximal support. We want to add still another criterion. For
this we need a beautiful lemma due to McAdam [McA] (in the case
of domains).

Lemma 3.8. Let A ⊂ R be a ring extension and x an element of
R. Assume that A is integrally closed in A[x]. Assume further that
the ideal I: = (A:x) of A is finitely generated and dense in A {i.e.
Iy = 0 for every y = 0 in A}. Assume finally that Ix ⊂ √

I. Then
x ∈ A.

Proof. Since the ideal Ix of A is again finitely generated, there
exists some n ∈ N with (Ix)n ⊂ I. We proceed by induction on n.
If n = 1, then Ix ⊂ I, and we conclude by a well known key fact
from commutative algebra that x is integral over A, hence x ∈ A
(cf. [Bo, V §1, Th.1]). Assume now that n > 1. From I(In−1xn) ⊂
I we infer that every element in In−1xn is integral over A, hence
(Ix)n−1x ⊂ A. Thus (Ix)n−1 ⊂ (A:x) = I, and it follows by the
induction hypothesis that x ∈ A.

Proposition 3.9. Let A ⊂ R be a ring extension with A = R. Let
p be a prime ideal of A and q the conductor of A in R. The following
are equivalent.

i) (A, p) is PM in R and q is a maximal ideal of R.
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ii) A is ws and integrally closed in R, and A[p] = A. For every
x ∈ R the ideal (A:x) is finitely generated. The set of prime
ideals of A containing q is totally ordered by inclusion.

Proof. The implication (i) ⇒ (ii) is by now obvious {cf. Prop.I.1.11
for the last statement in (ii)}.
ii) ⇒ i): All the conditions in (ii) remain true if we replace A, p, R
by A/q, p/q, R/q, and if we know (i) for A/q, p/q and R/q then
(i) follows for A, p, R. {Notice that A/q has in R/q the conductor
{0}, and that (A:x)/q = (A/q : x) for any x ∈ R and x its image
in R/q.} Thus we may assume that q = {0}. Now the set SpecA
of prime ideals is totally ordered by inclusion. In particular, A is a
local domain. We denote its maximal ideal by m.

We first prove for a given x ∈ R \A that x ∈ R∗ and x−1 ∈ A. The
ideal I: = (A:x) is finitely generated and IR = R. Thus I is dense
in A. The ideals

√
I and

√
Ix of A are prime, hence comparable.

Suppose that
√
Ix ⊂ √

I. Then Ix ⊂ √
I, and Lemma 8 applies.

It follows that x ∈ A, a contradiction. Thus
√
I ⊂ √

Ix. We have
IR = R, hence

√
IxR = R. A fortiori

√
IxR = R, hence IxR = R.

This implies xR = R, i.e. x ∈ R∗.

One easily verifies that (A:x−1) = Ix. Indeed, if a ∈ A is given, then
ax−1 ∈ A iff a ∈ Ax iff a ∈ (Ax) ∩ A, i.e. a ∈ (A:x)x. The ideal
J : = (A:x−1) is finitely generated and dense in A by hypothesis (ii),
and Jx−1 = I ⊂ √

Ix =
√
J . Applying Lemma 8 anew we see that

x−1 ∈ A.

Now Theorem I.2.5 tells us that (A,m) is Manis in R and m \ {0}
is the set of inverses x−1 of all x ∈ R \ A. But if x ∈ R \ A then
(A:x) = Ax−1 ⊂ p, since A[p] = A. Thus m = p. From Proposition
I.1.11 we conclude that q is a maximal ideal of R. As said above this
implies that A is Prüfer in R.

From this Proposition one easily deduces a general criterion for a
valuation to be PM.

Theorem 3.10. Let v be a special valuation on a ring R and A: =
Av, p: = pv, q: = supp v. Then v is PM iff the following holds:
a) A is ws in R. b) For every x ∈ R the ideal (A:x) is finitely
generated. c) p is the unique R-regular maximal ideal of A containing



Chapter III: PM-valuations and valuations of weaker type 193

q. d) The set of prime ideals r of A with q ⊂ r ⊂ p is totally ordered
by inclusion.

Proof. We may assume that v is not trivial, i.e. A = R. If v is PM
then certainly the conditions a) – d) are fulfilled.

Let us now assume that a) – d) are true. Since v is special, the
conductor of A in R is q (Prop.I.2.2). By Theorem 4 above it suffices
to verify that v is Manis. {Use condition (3′) there.} This means the
same as that the localisation ṽ of v, i.e. the valuation induced by v
on Rp, is Manis. We have Aṽ = Ap, pṽ = pp, supp ṽ = qp, and we
see immediately that ṽ fulfills again the conditions a) – d). Thus we
may assume that A is local with maximal ideal p. It is then clear
that all the conditions (ii) in Proposition 9 are fulfilled. We obtain
that q is a maximal ideal of R {and that (A, p) is PM in R}. It is
now evident that v is Manis (cf. Proposition 6 above or Prop.I.1.7).

One may well ask whether all conditions a) – d) in the theorem are
necessary to conclude that v is PM. In particular, is it possible to
omit condition d), i.e. is d) a consequence of a) – c)? We do not
know the answer.

In the proof of Theorem 10 we have arrived at the following result,
which should be noted separately.

Corollary 3.11. Let v be a special valuation on a ring R and
A: = Av, p: = pv, q: = supp v. Assume that for every x ∈ R the ideal
(A:x) is R-regular and finitely generated. Assume further that the
prime ideals r with q ⊂ r ⊂ p form a chain. Then v is Manis.

Already in I, §2 we observed that a nontrivial Manis valuation v
on a ring R is uniquely determined by the subring Av of R, up to
equivalence. We now write down a stronger uniqueness statement
for PM-valuations.

Theorem 3.12. Let v be a non-trivial PM-valuation on a ring R.
If w is a special valuation on R with Aw = Av, then w is equivalent
to v.

Proof. Let A: = Av = Aw. We have pv = pA: = {x ∈ R | ∃ y ∈ R \A
with xy ∈ A}, and certainly pw ⊃ pA. Since v is PM, we know by
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Corollary 1.4 that pA is a maximal ideal of A. This forces pw = pA.
Since both v and w are special, we also have supp v = suppw = qA
(in the notation of I, §2, cf. there Proposition I.2.2).

We now verify that w is Manis. Then we will know by I, §2 that
w ∼ v. Let x ∈ R be given with w(x) = ∞, hence also v(x) = ∞.
Since v is Manis, there exists some y ∈ R with v(y) = −v(x). We
have xy ∈ Av \pv = Aw \pw. Thus w(xy) = 0, hence w(y) = −w(x).
This proves that w(R) \ {∞} is a group.

In the following we focus on the special class of PM-extensions corre-
sponding to the BM-valuations (= Bezout-Manis valuations) intro-
duced in II, §10.

Definition 1. We call a ring extension A ⊂ R Bezout-Manis (or
BM for short), if there exists a BM-valuation v on R with Av = R.
In other terms, A ⊂ R is BM iff A ⊂ R is Bezout and PM.

It seems desirable to extract characterizations of BM-extensions from
the various characterizations of PM-extensions gained up to now.
Many such characterizations can be readily written down. For ex-
ample, if we add to the conditions a) – d) in Theorem 10 the further
condition that (A:x) is principal for every x ∈ R, then we have ob-
tained a characterization of BM-extensions due to Theorem II.10.2
and Theorem 10 above.

We now give a characterization of BM-extensions which adds new
facets to the contents of II, §10. We start with the notion of “Marot
extensions”.

Definition 2. We call a ring extension A ⊂ R Marot, if for every
x ∈ R (or x ∈ R \A) the A-module A+Ax is generated by a set of
units of R. We then also say that the ring A is Marot in R.

If A ⊂ R is a Bezout extension and x ∈ R, we have A + Ax = Ay
with some y ∈ R∗. Thus Bezout extensions certainly are Marot.
Notice also that, if A is Marot in R, then every R-overring of A is
Marot in R.

The rings A with A Marot in QuotA are the “Marot rings”, as de-
fined for example in Huckaba’s book [Huc], cf. there §7. Marot rings
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have been introduced by Jean Marot in the late sixties under the
label “rings with property (P )”, cf. [Ma1], [Ma2]. They nowadays
play a prominent role in multiplicative ideal theory, as is testified
by Huckaba’s book [Huc]. (We have mentioned Marot rings briefly
in Chapter I, §6, Example 9.) Maybe the more general Marot ex-
tensions are useful as well. We refrain here from a systematic study
of these extensions, employing them only as a mean for a better
understanding of BM-extensions, in particular their relation to PM-
extensions.

Theorem 3.13 (cf. [Huc, p.35f] for R = QuotA). Let A ⊂ R be a
Marot extension. The following are equivalent.

(1) A is BM in R.
(2) A is PM in R.
(3) There exists a valuation v on R with Av = A.
(4) R \A is closed under multiplication.
(5) s−1 ∈ A for every unit s of R with s ∈ A.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) are trivial.
We prove (5) ⇒ (1) in several steps.
a) If s, t ∈ R∗ then As ⊂ At or At ⊂ As, since either s

t ∈ A or t
s ∈ A.

b) If x ∈ R \ A, the A-module A + Ax is principal. Indeed, since
A ⊂ R is Marot, we have units s1, . . . , sn of R with A + Ax =
As1 +As2 + · · · +Asn. By a) we know that any two of the modules
Asi are comparable. Thus A + Ax = Asi for some i ∈ {1, . . . , n}.
This proves that A is Bezout in R.
c) Let M1 and M2 be two R-overmodules of A. We verify that
M1 ⊂ M2 or M2 ⊂ M1. Assume that M1 ⊂ M2. There exist a
finitely generated A-overmodule M ′

1 ⊂ M1 with M ′
1 ⊂ M2. Since A

is Bezout in R, we have M ′
1 = As with some s ∈ R∗. We can write

M2 =
⋃
i∈I

Li, where each Li is a finitely generated R-overmodule of

A, hence Li = Ati with ti ∈ R∗. Since M ′
1 ⊂ M2 we have M ′

1 ⊂ Li
for each i ∈ I. By step a) we conclude that Li ⊂ M ′

1 for each i,
hence M2 ⊂ M ′

1. A fortiori M2 ⊂ M1.
d) In particular any two R-overrings of A are comparable. Now
Theorem 1 tells us that A is PM in R. Since A is also Bezout in R,
we conclude that A is BM in R.

Corollary 3.14. Every Marot extension is convenient.
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Proof. If A ⊂ R is Marot and B is an R-overring of A, then B ⊂ R
is Marot. If in addition R \ B is closed under multiplication, then
we know by Theorem 13 that B ⊂ R is PM.

We mentioned this fact already in I, §6, Example 9 in the special
case R = QuotA.

We will use Theorem 12 for giving examples of BM-valuations. This
needs some preparations. We first exhibit a class of ring extensions
which are easily seen to be Marot.

Definition 3. We call a ring extension A ⊂ R additively regular, if
for every x ∈ R there exists some a ∈ A such that x+ a is a unit in
R.

This definition generalizes the notion of an additively regular ring
occuring in the literature. A ring A is called additively regular if,
in our terminology, the extension A ⊂ QuotA is additively regu-
lar, cf. [Huc, p.32]. We mentioned additively regular rings in I, §6,
Example 8.

Remark 3.15 (cf. [Huc, Th.7.2]). Every additively regular extension
A ⊂ R is Marot. Indeed, if x ∈ R is given, and a is an element of A
with x + a ∈ R∗, then A + Ax is generated as an A-module by the
units 1 and x+ a.

Given any ring R we introduce a certain overring R(x) of the ring
R[x] of polynomials in one variable x in its total rings of quotients
QuotR[x], cf. e.g. [Gi, §33]. The definition runs as follows. The
contents c(f) of a polynomial f = a0 + a1x+ · · · + anx

n is the ideal

generated by its coefficients, c(f) =
n∑
i=0

Rai. The polynomial f is

called unimodular if c(f) = R. Given two polynomials f, g ∈ R[x],
we have the general formula

c(f)m+1c(g) = c(f)mc(fg)

with m: = deg g, cf. [Gi, Th.28.1]. By this formula it is evident,
that the set S of unimodular polynomials in R[x] is closed under
multiplication, and also, that every f ∈ S is a nonzero divisor. R(x)
is defined as the subring S−1R[x] of QuotR[x].
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Proposition 3.16. Let R0 denote the prime subring Z · 1R of R.
The extension R0[x] ⊂ R(x) is additively regular, hence Marot.

Proof. Let ξ ∈ R(x) be given. We write ξ = f
g with f, g ∈ R[x],

c(g) = R. Let n: = deg f . Then

f

g
+ xn+1 =

f + xn+1g

g

is a unit in R(x), since c(f + xn+1g) = c(f) + c(g) = R.

Given a valuation v:R → Γ ∪ ∞ on R, we extend v to a valuation
v′:R[x] → Γ ∪ ∞ on R[x] by the formula

v′(
n∑
i=0

aix
i) = min(v(a0), . . . , v(an))

cf. [Bo, Chap.VI, Lemma 10.1)]. {The proof there, that v′ is a val-
uation, works over any ring R instead of a field.} If f is a unimodu-
lar polynomial then certainly c(f) is not contained in supp v, hence
v′(f) = ∞. Thus v′ extends uniquely to a valuation v∗:R(x) → Γ∪∞
by the formula

v∗(
f

g
) = v′(f) − v′(g)

with f, g ∈ R[x], c(g) = R (cf. I, §1).

Proposition 3.17. If the valuation v is special, then v∗ is Bézout-
Manis.

Proof. It is evident that v′ is special, and then, that v∗ is special.
We have v∗(x) = 0. Thus R0[x] is certainly contained in Av∗ . It
now follows from Lemma 15, that Av∗ is Marot in R(x), and then
by Theorem 13, that Av∗ is BM in R(x). Since v∗ is special, we
conclude by Theorem 12 that v∗ is Manis, hence BM.

Thus every special valuation on a ring R can be extended to a BM-
valuation on R(x) in a natural way.
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In all our arguments for proving Proposition 16, starting with the
proof of Proposition 15, we can replace the ring R(x) by the subring
R〈x〉 consisting of the fractions f

g with f, g ∈ R[x] and g monic (i.e.
having highest coefficient 1). We thus see that R0[x] is Marot in
R〈x〉, and then obtain as above:

Corollary 3.18. For every special valuation v on a ring R the
restriction v∗|R〈x〉 of the valuation v∗ from above is BM.

§4 Tight valuations

Definition 1. We call a valuation v on a ring R tight, if for every
x ∈ R with v(x) = ∞ the Av-module {y ∈ R | v(y) ≥ v(x)} is
R-invertible.

Examples 4.1 a) Every PM-valuation is tight, cf. Theorem 2.6.
b) Every valuation v:R → Γ∪∞ with v(R∗) = Γ is tight. Indeed, let
x ∈ R be given with v(x) = γ = ∞. Choose y ∈ R∗ with v(y) = γ.
Then {z ∈ R | v(z) ≥ γ} = Avy. This Av-module is R-invertible,
(Avy)−1 = Avy

−1.
c) Let A be any factorial domain, e.g. a polynomial ring k[x1, . . . , xn]
over a field k. Let p be a prime element of A, and let R denote
the localization A[ 1p ], which is a subring of the quotient field K: =
QuotA. Let finally v:A[ 1p ] → Z ∪ ∞ be the restriction of the p-adic
valuation on K to A[ 1p ]. Thus v(pnf) = n, if n ∈ Z and f ∈ A is
not divisible by p. We have v(R∗) = Z. Thus v is tight. Clearly
Av = A, pv = pA. If pA is not a maximal ideal of A, then certainly
v is not PM (cf.Cor.1.4). If A is the polynomial ring k[x1, . . . , xn]
from above and n ≥ 2, this holds for every prime element p.
d) Let k be an integral domain and L a finitely generated projective
k-module of rank one. For any n ∈ N we denote the n-fold tensor
product L ⊗k L ⊗k · · · ⊗k L by Ln. Further we set L◦: = k, L−1: =
Homk(L, k), L−n: = (L−1)n for n ∈ N. We build the Z-graded k-
algebra R: =

⊕
n∈Z

Ln with the obvious multiplication coming from

the natural isomorphisms Ln ⊗k L
m ∼−→ Ln+m. The multiplication

is commutative, as can be seen by localizing at the prime ideals
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of k, and R is a domain. Let A: =
⊕
n≥0

Ln, I: =
⊕
n>0

Ln = LA.

Then A is a subring of R, and I is an R-invertible ideal of A with
I−1 = L−1A =

⊕
n≥−1

Ln. For every x ∈ R we put v(x): = sup{n ∈
Z |x ∈ In} ∈ Z ∪ ∞. It is easily checked that v is a valuation on R
with Av = A, pv = I, supp v = {0}. {Notice that, if x ∈ In \ In+1,
y ∈ Im \ Im+1, then xy ∈ In+m \ In+m+1.} We have In,v = In for
every n ∈ Z. Thus v is tight. If k is not a field, then I is not a
maximal ideal of A, hence v is certainly not PM.

The last two examples seem to indicate, that already a valuation the-
ory over rings fitting the needs of classical algebraic geometry should
not restrict to PM-valuations but sometimes admit tight valuations.

We will prove soon that every tight valuation is Manis. Thus tight
valuations have their place between Manis and PM-valuations. We
here regard tight valuations as an auxiliary notion to understand
better the nature of PM-valuations, starting from Manis valuations.
Our first major goal is to make explicit that a tight valuation v is
completely determined by its restriction to Av, cf. Scholium 4.7 and
Theorem 4.8 below. After that we will study coarsenings and special
restrictions (cf. I, §1) of a tight valuation v. In the special case that
v is PM this will give us a valuation theoretic description of the rings
B with Av ⊂ B ⊂ R.

We return to the notations at the beginning of §2: v is a valuation on
a ring R with value group Γ, A: = Av, p: = pv, Iγ : = {x ∈ R | v(x) ≥
γ} for γ ∈ Γ. We denote the support of v by q.

Proposition 4.2. Let γ ∈ Γ be given. Assume that there exists
some x ∈ R with v(x) = γ. Assume further that Iγ is R-invertible.
Then I−1

γ = I−γ , and there exists some y ∈ R with v(y) = −γ. Also
IγIα = Iγ+α for every α ∈ Γ, and Iγq = q.

Proof. a) It is obvious that IγIα ⊂ Iγ+α for every α ∈ Γ. In
particular IγI−γ ⊂ A. Thus I−γ ⊂ I−1

γ . On the other hand, xI−1
γ ⊂

A. Since v(x) = γ, we conclude that v(z) ≥ −γ for every z ∈ I−1
γ ,

i.e. I−1
γ ⊂ I−γ . This proves I−1

γ = I−γ .
b) The A-module I−1

γ is finitely generated, I−1
γ = Ay1 +Ay2 + · · · +

Ayr with v(y1) ≤ v(y2) ≤ · · · ≤ v(yr). As just proved, v(y1) ≥ −γ.
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Suppose that v(y1) > −γ. Then v(z) > −γ for every z ∈ I−1
γ , hence

v(a) > γ + (−γ) = 0 for every a ∈ IγI
−1
γ . But 1 ∈ IγI

−1
γ . This

contradiction proves that v(y1) = −γ.
c) For every α ∈ Γ we have IγIα ⊂ Iγ+α. Also I−γIγ+α ⊂ Iα.
Multiplying by Iγ we obtain Iγ+α ⊂ IγIα. Thus Iγ+α = IγIα.
d) We have Iαq ⊂ q for every α ∈ Γ. In particular Iγq ⊂ q and
I−γq ⊂ q. Multiplying the second inclusion relation by Iγ we obtain
q ⊂ Iγq, hence Iγq = q.

Corollary 4.3.

i) If v is tight then v is Manis.
ii) Conversely, if v(R) ⊃ Γ+ and Iγ is R-invertible for every γ ∈ Γ+,

then v is tight.
iii) Also, if v(R) ⊃ Γ− and Iγ is R-invertible for every γ ∈ Γ−, then

v is tight.

Proof. If v is tight, it is evident from the second statement in
Proposition 2 that v(R) \ {∞} is a group. Assertions (ii) and (iii)
follow from the first and second statement in Proposition 2.

Corollary 4.4. If v is tight then R is the union of the subrings
A[I−1

γ ] with γ running through Γ ∩ v(A), and A is tight∗) in R.

Proof. R is the union of the sets I−1
γ = I−γ with γ running through

Γ ∩ v(A). Thus R is also the union of the subrings A[I−1
γ ] with

γ ∈ Γ ∩ v(A). A is tight in each extension A[I−1
γ ], hence in R.

We give an example of a Manis valuation which is not tight.

Example 4.5. Let k be a field and R: = k[x, y] with two indetermi-
nates x, y. We take on the subring k[x] of R the valuation u: k[x] → Z
corresponding to the prime element x of k[x], i.e. u(xnf(x)) = n if
x � f(x). Then we define a valuation v:R → Z ∪ ∞ by the formula

v(
n∑
i=0

fi(x)yi) = min
0≤i≤n

{u(fi(x)) − i}

∗) Recall Definition 1 in II, §2.



Chapter III: PM-valuations and valuations of weaker type 201

and, of course, v(0) = ∞, cf. [Bo, VI §10, Lemma 1]. Since v(x) = 1
and v(y) = −1 we have v(R\{0}) = Z. Thus v is Manis. LetA: = Av,
p: = pv. One easily verifies that p = Ax. We have Rp = Rx = R.
Thus A is not ws in R (cf. Prop.2.1). A fortiori, v is not tight.

We add an observation which will be useful later on.

Proposition 4.6. Assume that v is any valuation. Let I be an R-
invertible A-submodule of R. Then there exists some γ ∈ Γ ∩ v(R)
with I = Iγ .

Proof. We have IR = R. Thus I is not contained in the conductor
q of A in R. Write I = Ax1 + · · · +Axr with v(x1) ≤ v(x2) ≤ · · · ≤
v(xr). We have γ: = v(x1) = ∞. If y ∈ R is given, then yI ⊂ A iff
v(y) ≥ −γ. Thus I−1 = [A: I] = I−γ . Write I−1 = Ay1 + · · · + Ays
with −γ ≤ v(y1) ≤ v(y2) ≤ · · · ≤ v(ys). We have −γ = v(y1)
since otherwise II−1 would be contained in p, a contradiction. Now
Proposition 2 tells us that I = Iγ .

Definition 2. If v is any valuation then H(v) denotes the set of v-
convex ideals (Ax)v of A: = Av with x running through A \ q. Thus
H(v) = {Iγ | γ ∈ Γ+ ∩ v(R)}.

Scholium 4.7. If v is Manis the system H(v) is completely de-
termined by the triple (A, p, q). Indeed, for every x ∈ A we have
(Ax)v = (Ax + q)[p] = {y ∈ A | sy ∈ Ax + q for some s ∈ A \ p}
(Remark 2.4). If v is tight, then Proposition 6 tells us that H(v) coin-
cides with the set Inv (A,R) of all R-invertible ideals of A. Moreover
the extension R of A is canonically isomorphic over A to the subring
A[H(v)] of the tight hull T (A) (cf. notations in II, §4, Def.3), as is
now evident from II, §4.

We conclude that if v1 and v2 are tight valuations on extensions
R1 ⊂ T (A), R2 ⊂ T (A) of a given ring A, and if A = Av1 =
Av2 , pv1 = pv2 , supp v1 = supp v2, then R1 = R2. Moreover, the
valuations v1 and v2 are equivalent, since they both give the same
Manis pair (A, pv1) in R1. Thus a tight valuation v is determined by
the triple (Av, pv, supp v) in a strong sense.

Theorem 4.8. Let u:A → Γ ∪ ∞ be a valuation on a ring A
with u(A) = Γ+ ∪ ∞. Assume that for every γ ∈ Γ+ the ideal
Jγ : = {x ∈ A | u(x) ≥ γ} of A is invertible.



202 §4 Tight valuations

i) Then JαJβ = Jα+β for all α, β ∈ Γ+. Thus H(u) is a multiplicative
subset of InvA.
ii) Let R denote the tight subextension A[H(u)] of the tight hull T (A)
(cf. II, §4). The valuation u extends in a unique way to a valuation
v:R → Γ ∪ ∞. This valuation is tight, and v(R) = Γ ∪ ∞, Av = A.

Assertion i) in this theorem is evident from Proposition 2. In order
to prove assertion ii) we need an easy lemma (which will be also
useful later on).

Lemma 4.9. Let u:A → Γ ∪ ∞ be a valuation on a ring A and
q: = suppu. Let A ⊂ B be any ring extension. Then u extends in a
unique way to a valuation w:AB[q] → Γ ∪ ∞ on the saturation AB[q] of
A in B with respect to the multiplicative set A \ q (I, §1, Def.10).

Proof. u gives us a valution ũ:Aq → Γ ∪ ∞ in a natural way (I, §1,
Def. 6). Composing ũ with the natural homomorphism AB[q] → Aq

we obtain a valuation w extending u. If x ∈ AB[q] there exists some
s ∈ A \ q with sx ∈ A. Thus u(sx) = u(s) +w(x). We conclude that
w is the only valuation on AB[q] extending u.

Proof of Theorem 4.8.ii. a) We work in the ring extension T (A)
of A. Let q denote the support of u and A[q]: = A

T (A)
[q] . For every

γ ∈ Γ+ we have J−1
γ ⊂ A[q]. Thus R = A[H(u)] ⊂ A[q]. By Lemma

9 above u extends to a valuation w:A[q] → Γ. The restriction v of
w to R is a valuation on R extending u. We see as in the proof of
Lemma 7, that v is the only such valuation.
b) We verify that Av = A. Let x ∈ Av be given. There exists some
γ ∈ Γ+ with x ∈ J−1

γ . If y ∈ Jγ then xy ∈ A. Since v(x) ≥ 0,
we have u(xy) = v(x) + u(y) ≥ γ. We conclude that xJγ ⊂ Jγ .
Multiplying by J−1

γ we obtain xA ⊂ A, hence x ∈ A.
c) For γ ∈ Γ let Iγ : = {x ∈ R | v(x) ≥ γ}. Since Av = A we have
Iγ = Jγ if γ ∈ Γ+. Thus Iγ is R-invertible for these γ. Corollary 3
tells us that v is tight.

We now study the processes of coarsening and special restriction (cf.
I, §1) for a tight valuation.

Notations 4.10. Let v:R → G ∪ ∞ be any valuation and H a
convex subgroup of G. We denote the subring of R consisting of all
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x ∈ R with v(x) ≥ h for some h ∈ H by Av,H and the prime ideal
of Av,H consisting of all x ∈ R with v(x) > h for every h ∈ H by
pv,H . We further denote the special restriction of v to Av,H (cf. I, §1,
Def.11) by vH . Thus vH(x) = v(x) if x ∈ Av,H \ pv,H , i.e. v(x) ∈ H,
and vH(x) = ∞ if x ∈ pv,H .

Remarks 4.11. These rings Av,H are precisely the v-convex sub-
rings of R. Notice that Av,H is the valuation ring Aw of the coars-
ening w = v/H of v and pv,H is the center pw of w. If the special
restriction vH is Manis then Av,H = AR[pv,H ], as is checked easily. vH
has the support pv,H and v/H has the same support as v. If v is Ma-
nis with value group G then the v-convex subrings of R correspond
bijectively with the convex subgroups H of G, and vH is Manis with
value group H for every such H.

Proposition 4.12. Assume that v:R −→−→ Γ∪∞ is a tight surjective
valuation and H is a convex subgroup of Γ. Let B: = Av,H . Then
w: = v/H is a tight valuation on R with Aw = B, pw = pv,H , and
u: = vH = v|

B
is a tight valuation on B with Au = Av, pu = pv.

Proof. We know already that (Aw, pw) = (Av,H , pv,H) and (Au, pu) =
(Av, pv). It is clear from the definitions and Proposition 2 that

B =
⋃

h∈H+

I−h,v =
⋃

h∈H+

I−1
h,v ,

and, for any γ ∈ Γ, that

Iγ+H,w =
⋃
h∈H

Iγ+h,v =
⋃

h∈H+

Iγ−h,v = IγB.

The B-module IγB is R-invertible, since (IγB)(I−γB) = B. Thus
w is tight. We have u(B) = H ∪ ∞ and Au = Av, Ih,u = Ih,v for
h ∈ H. The Av-modules Ih,v with h ∈ H are B-invertible. Thus u
is tight.

Theorem 4.13. Assume again that v:R −→−→ Γ ∪ ∞ is a tight
surjective valuation. Let B be an overring of Av in R. The following
are equivalent.

i) The extension Av ⊂ B is tight.
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ii) B is v-convex in R.
iii) There exists a (unique) convex subgroup H of Γ with B = Av,H .

Proof. The equivalence ii) ⇔ iii) has been stated above (cf. Re-
mark 11).
iii) ⇒ i): We have just seen (Prop.12) that there exists a tight valu-
ation u on B with Au = Av. This implies that extension Av ⊂ B is
tight.
i) ⇒ iii): We look at the set Φ consisting of all γ ∈ Γ+ with I−γ : =
I−γ,v ⊂ B. It is evident that 0 ∈ Φ and Φ is convex in Γ+. If γ and
δ are elements of Φ then I−γ−δ = I−γI−δ ⊂ Φ. Thus Φ is closed
in Γ under addition. We conclude that Φ = H+ with H a convex
subgroup of Γ, and Av,H ⊂ B. If an element x ∈ B\Av is given there
exists a B-invertible ideal I of Av with x ∈ I−1 , since Av ⊂ B is
tight (cf. II, §2, Def.1). A fortiori I is R-invertible, and Proposition
6 above tells us that I = Iγ for some γ ∈ Γ+. We have x ∈ I−γ ⊂ B.
Thus γ ∈ H+ and x ∈ Av,H . We conclude that Av,H = B.

Corollary 4.14. Assume that v is a PM-valuation on R with value
group Γ. The R-overrings B of Av correspond uniquely with the
convex subgroups H of Γ and with the coarsenings w of v (up to
equivalence) via B = Av,H = Aw.

Proof. This is immediate from Theorem 13 since Av is tight in every
R-overring B.

From the corollary it is evident that the overrings in a PM-extension
form a chain, a fact already proved in §3 in a different way (Th.3.1).

Scholium 4.15. Let A ⊂ R be a non trivial PM extension and
v a Manis (hence PM) valuation on R with Av = A. Let p: = pv,
q: = supp v. Recall from I, §2 that p = pRA, q = qRA {cf. Def. 2 in
I, §2; we write more precisely pRA, qRA instead of pA, qA}. Let B be
an R-overring of A and w the coarsening of v with B = Aw. We
have B = A[r] with r: = pw, and these ideals r are precisely the v-
convex prime ideals of A. The special restriction u: = v|B is PM and
Au = A, pu = p, suppu = r. Thus u and w are the PM-valuations
corresponding to the PM-extensions A ⊂ B and B ⊂ R. {We know
a priori from Theorem 3.1 that the extensions A ⊂ B and B ⊂ R
are PM}. We have pBA = p, qBA = r, pRB = r, qRB = q. Recall also that
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the prime ideals r occuring here are precisely all prime ideals r of A
with q ⊂ r ⊂ p. (Prop. I.1.10).

§5 Existence of various valuation hulls

In the following (A, p) is a pair consisting of a ring A and a prime
ideal p of A, and A ⊂ R is a ring extension of A.

Definition 1. We call (A, p) tightly valuating (abbreviated: tv) in
R if (A, p) is Manis in R and the associated Manis valuation of R is
tight. We call (A, p) Prüfer-Manis (abbreviated: PM) in R if (A, p) is
Manis in R and A is Prüfer in R, i.e. the associated Manis valuation
is PM. We then also say that (A, p) is a TV-pair resp. PM-pair in
R.

We start out to prove that there exists a unique maximal R-overring
C of A such that (A, p) is PM in C. Later we will prove the same
fact for “tv” instead of “PM”.

Looking for an extension A ⊂ R′ such that (A, p) is PM in R′ we
may always assume in advance that p is a maximal ideal of A, since
otherwise the PM property forces A = R′ (cf. Cor.1.4).

Proposition 5.1. Let A ⊂ B1 and A ⊂ B2 be subextensions of
A ⊂ R such that (A, p) is PM both in B1 and B2. Then B1 ⊂ B2 or
B2 ⊂ B1.

Proof. We may assume that A = B1 and A = B2. Then p is a
maximal ideal of A. Let B: = B1B2. We prove that (A, p) is PM
in B. Then the claim of the proposition will follow since the B-
overrings of A form a chain (Th.3.1). We know from I, §5 that A is
Prüfer in B (Cor.I.5.11). Since A is ws in B and A = B there exist
prime ideals of A which are B-regular (cf. Lemma II.3.2). Let q be
such a prime ideal. We verify that q ⊂ p. It then will follow that
p is the unique B-regular maximal ideal of A, and we are done by
Theorem 1.8.

Suppose that qB1 = B1 and qB2 = B2. Since A is ws both in B1
and B2 it follows that B1 ⊂ A[q] and B2 ⊂ A[q] (cf.Th.I.3.13), hence
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B ⊂ A[q]. This contradicts the assumption qB = B. We conclude
that qB1 = B1 or qB2 = B2. Now Theorem 1.3 tells us that q ⊂ p.

Lemma 5.2. Let B be a chain of R-overrings of A and C the union
of the rings B ∈ B. If (A, p) is Manis in every B ∈ B then (A, p) is
Manis in C.

This follows immediately from the construction in I.1.20. Another
proof of the lemma runs as follows.

Proof. Let x ∈ C \A be given. We choose some B ∈ B with x ∈ B.
Since (A, p) is Manis in B there exists some x′ ∈ p with xx′ ∈ A \ p.
This proves that (A, p) is Manis in C (Th.I.2.4).

Theorem 5.3. There exists an R-overring C of A such that the
following holds: If B is any R-overring of A then (A, p) is PM in B
iff B ⊂ C.

Proof. Let B denote the set of all R-overrings B of A such that
(A, p) is PM in B. We have A ∈ B, thus B is not empty. Let C
denote the union of the sets B ∈ B. Proposition 1 tells us that B is a
chain. Thus C is a subring of R containing A. Lemma 2 tells us that
(A, p) is Manis in C. Every B ∈ B is contained in the Prüfer hull
P (A,R) of A in R (cf. I, §5). Thus C ⊂ P (A,R), and we conclude
that A is Prüfer in C and (A, p) is PM in C. If B is a C-overring of
A then (A, p) is Manis in B and A is Prüfer in B, hence B ∈ B.

Definition 2. We call this ring C the PM-hull of (A, p) in R and
denote it by PM(A, p, R). For the PM-hull of (A, p) in the complete
ring of quotients Q(A) we write more briefly PM(A, p). We call
PM(A, p) the PM-hull of the pair (A, p).

Notice that PM(A, p) is also the PM-hull of (A, p) in the Prüfer hull
P (A) (and in T (A) or M(A) as well). Of course, if p is not maximal
in A, then PM(A, p) = A.

From Theorem 3 and the theory of weakly surjective hulls in I, §3
(Prop.I.3.14) the following is obvious.

Scholium 5.4. Let A ⊂ B be any ring extension such that (A, p)
is PM in B. Then there exists a unique homomorphism ϕ:B →
PM(A, p) over A, and ϕ is injective.
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We now give a description “from above” of the PM-hull PM(A, p, R)
in the case that A ⊂ R is Prüfer.

Theorem 5.5. Assume that A is Prüfer in R and p is a maximal
ideal of A. Then PM(A, p, R) is the intersection of the subrings A[m]
of R with m running through all (R-regular) maximal ideals of A
different from p. {This means PM(A, p, R) = R if there are no such
ideals m.}

Proof. If p is the only maximal ideal of A then A is local, hence
(A, p) is PM in R (cf. e.g. Th.1.8), and PM(A, p, R) = R. Assume
now that A has maximal ideals m = p, and let C denote the inter-
section of the rings A[m] with m running through these ideals. We
will prove directly, i.e. without using Theorem 3, that (A, p) is PM
in C and that C contains every R-overring B of A with (A, p) PM
in B.

If m ∈ MaxA, m = p, then C ⊂ A[m], hence mC = C. If also
pC = C, then A has no C-regular maximal ideals, and we conclude
that C = A (cf. §1 or Lemma II.3.2). In this case certainly (A, p)
is PM in C. Otherwise p is the only C-regular maximal ideal of A.
Then we know by Theorem 1.8 that (A, p) is PM in C.

Let now B be an R-overring of A, such that (A, p) is PM in B and
A = B. Then p is the only B-regular maximal ideal of A. Thus
B ⊂ A[m] for every maximal ideal m = p of A (cf. Th.I.3.13), and
we conclude that B ⊂ C.

Remark 5.6. If A ⊂ R is any ring extension then, applying the
proof of Theorem 5 to the extension A ⊂ P (A,R), we obtain a new
proof of Theorem 3.

Still another proof of Theorem 3 will be given in part II of the book.

Lemma 5.7. Assume that B1 and B2 are overrings of A in R and
that there exist Manis valuations v1 and v2 on B1, B2 respectively
with Av1 = Av2 = A, pv1 = pv2 = p.
i) Then B1[p] ⊂ B2[p] or B2[p] ⊂ B1[p].
ii) Assume that B1[p] ⊂ B2[p]. Then H(v1) ⊂ H(v2) (cf. Def. 2 in §4)
and supp v1 ⊃ supp v2.
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Proof. We assume without loss of generality that the valuations
vi(i = 1, 2) are surjective, vi(Bi) = Γi ∪ ∞. Let ṽi: (Bi)p � Γi ∪ ∞
denote the localization of vi and v′

i: (Bi)[p] � Γi∪∞ the “restriction”
of ṽi to (Bi)[p], which is the unique extension of vi to (Bi)[p]. Of
course, all these valuations are again Manis, and ṽ1, ṽ2 even are
PM. {N.B. Every local Manis valuation is PM, as follows right from
the definition of Prüfer extensions I, §5, Def.1.} Proposition 1 tells
us that B1p ⊂ B2p or B2p ⊂ B1p, and this implies that B1[p] ⊂
B2[p] or B2[p] ⊂ B1[p]. We assume that B1[p] ⊂ B2[p]. We use the
new notations C: = B1[p], D: = B2[p], w: = v′

2. The valuation v′
1 is

equivalent to the special restriction u: = w|C , since also u is Manis
(cf. Prop.I.1.17) and Au = Aw (= A[p]), pu = pw (= p[p]). Replacing
v1 by an equivalent valuation we assume that v′

1 = u. Now Γ1 is a
convex subgroup of Γ2. Let I ∈ H(v1) be given. We have an element
α ∈ (Γ1)+ with I = Iα,v1 . Then (Iα,v1)[p] = Iα,u = Iα,w = (Iα,v2)[p].
But both ideals Iα,v1 and Iα,v2 of A are saturated in A with respect
to the multiplicative set A \ p. Thus Iα,v1 = Iα,v2 . This proves that
H(v1) ⊂ H(v2). Since supp vi is the intersection of all ideals in H(vi),
it follows that supp v1 ⊃ supp v2.

Proposition 5.8. Let B1 and B2 be R-overrings of A. Assume that
(A, p) is tv both in B1 and B2. Then B1 ⊂ B2 or B2 ⊂ B1.

Proof. Let vi denote the tight valuation on Bi corresponding to the
pair (A, p) (i = 1, 2). By the preceding lemma we may assume that
H(v1) ⊂ H(v2). Since vi is tight we have Bi: = AR[H(vi)] (cf. Scholium
4.7). Thus B1 ⊂ B2.

Lemma 5.9. Assume that B is a non empty set of R-overrings of
A and that (A, p) is tv in every B ∈ B. let C denote the union of
the sets B ∈ B. Then C is an R-overring of A and (A, p) is tv in C.

Proof. Proposition 8 tells us that B is totally ordered by inclusion.
Thus C is a subring ofR containing A. For notational convenience we
choose an indexing (Bi | i ∈ I) of the set B with I a totally ordered
index set and Bi ⊂ Bj whenever i < j. For every i ∈ I we choose
a tight valuation vi:Bi � Γi ∪ ∞ with (Avi , pvi) = (A, p). Using
the construction in I.1.20 we obtain a surjective Manis valuation
v:C � Γ ∪ ∞ such that v|

Bi
∼ vi for every i ∈ I. We now replace
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vi by v|
Bi

for every i ∈ I. Then we have v|
Bi

= vi, and Γi is convex
subgroup of Γ for every i ∈ I. Moreover, if i < j then Γi ⊂ Γj , and
Γ is the union of the subgroups Γi.

Let γ ∈ Γ be given with γ ≤ 0. We choose some i ∈ I with γ ∈
Γi, and then have Iγ,v = Iγ,vi

. Since vi is tight, the ideal Iγ,v is
invertible. Now Corollary 4.3 (or already Prop.4.2) tells us that v is
tight. Thus (A, p) is tv in C.

Choosing for B the set of all R-overrings B of A such that (A, p) is
tv in B we obtain

Theorem 5.10. There exists an R-overring C of A such that the
following holds: (A, p) is tv in C, and C contains every other R-
overring B of A such that (A, p) is tv in B.

Definition 3. We call this ring C the tight valuation hull (abbrevi-
ated: TV-hull) of (A, p) in R, and we denote it by TV(A, p, R) . In
the case R = Q(A) we write more shortly TV(A, p) for this extension
of A and call it the tight valuation hull of the pair (A, p).

Of course, TV(A, p) = TV(A, p, T (A)) = TV(A, p,M(A)). If A ⊂ B
is any ring extension such that (A, p) is tv in B then there exists a
unique homomorphism ϕ:B → TV(A, p) over A, and ϕ is injective.

We add observations on the transitivity of the properties PM and
tv.

Proposition 5.11. Let B and C be subrings of R with A ⊂
= B ⊂

= C.
Let q denote the conductor of A in B and r the conductor of B in
C. Assume that (A, p) is Manis in B and (B, q) is Manis in C.

i) Then (A, p) is Manis in C and r is the conductor of A in C.
ii) If (A, p) is PM in B and (B, q) is PM in C, then (A, p) is PM

in C.
iii) If (A, p) is PM in B and (B, q) is tv in C, then (A, p) is tv in C.

Proof. A moment of reflection on Proposition I.2.8 reveals that
assertion (i) follows from that proposition. But we prefer to give
another proof of (i), actually a variation of some of the arguments in
the proof of I.2.8, which perhaps can be grasped more easily.
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Let x ∈ C \ A be given. We look for some y ∈ p with xy ∈ A \ p.
If x ∈ B then such an element y exists since (A, p) is Manis in B.
Assume now that x ∈ C \B. Since (B, q) is Manis in R there exists
some u ∈ q with xu ∈ B \ q. Since q is the conductor of A in B and
(A, p) is Manis in B there exists some v ∈ B \ q with xuv ∈ A \ p.
We have uv ∈ q ⊂ p, and we are done. Thus (A, p) is Manis in R.
Let r′ denote the conductor of A in C. We have r′ ⊂ r. On the other
hand r ⊂ q ⊂ A. Thus r ⊂ r′. We conclude that r′ = r.

Assertion (i) being proved, assertion (ii) is now evident, since the
extension A ⊂ C is Prüfer if both A ⊂ B and B ⊂ C are Prüfer (cf.
Th.I.5.6).

It remains to prove assertion (iii). Let v:C � Γ ∪ ∞ be a surjective
Manis valuation, unique up to equivalence, with Av = A, pv = p,
supp v = r. Let further w be a Manis valuation on R with Aw = B,
pw = q. Theorem I.2.6 tells us that w is coarser than v. Replacing
w by an equivalent valuation we have w = v/H with H a convex
subgroup of Γ. On the other hand, the special restriction u: = v|

B
=

vH is a Manis valuation on B with Au = A, pu = p, suppu = q. We
have suppw = supp v = r.

We now assume that u is PM and w is tight. Let γ ∈ Γ be given.
We have to verify that Iγ : = Iγ,v is C-invertible, and then will know
that v is tight.

For every h ∈ H we have Ih,v = Ih,u. Thus Ih: = Ih,v is B-invertible,
a fortiori C-invertible. We conclude by Proposition 4.2 that IγIh =
Iγ+h, I−γIh = I−γ+h, for every γ ∈ Γ. {Of course, I−γ : = I−γ,v}. It
now follows that Iγ+H,w = IγB and I−γ+H,w = I−γB (cf. the proof
of Prop.4.12). Since w is tight, we obtain IγI−γB = B. We choose
finitely generated A-submodules J1 of Iγ and J2 of I−γ such that
J1J2B = B and moreover J1 contains an element x with v(x) = γ.
Then J1J2 is a finitely generated B-regular ideal of A. Since A is
Prüfer in B, this ideal is B-invertible (Th.II.1.8), hence C-invertible.
Thus J1 is C-invertible. It follows by Proposition 4.6 that J1 = Iα
with some element α ≥ γ of Γ. But J1 contains the element x with
v(x) = γ. Thus J1 = Iγ , and we conclude that Iγ is C-invertible.

Proposition 5.12. Assume that B is an R-overring of A different
from A. Let q denote the conductor of A in B.
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i) If (A, p) is tv in B then (B, q) is tv in TV(A, p, R), and
TV(A, p, R) ⊂ TV(B, q, R).

ii) If (A, p) is PM in B then TV(A, p, R) = TV(B, q, R) and
PM(A, p, R) = PM(B, q, R).

Proof. We prove the assertions about the TV-hulls, leaving the
(easier) proof of the assertion on the PM-hulls to the reader. Let
C: = TV(A, p, R) and D: = TV(B, q, R). Assume that (A, p) is tv in
B. Then B ⊂ C. Since the extension A ⊂ B is tight, we conclude
from Theorem 4.13 and Proposition 4.12 that (B, q) is tv in C. Thus
C ⊂ D. If (A, p) is PM in B then we know by Proposition 11 that
(A, p) is tv in D, hence D ⊂ C, and we conclude that C = D.

How about the existence of a “Manis valuation hull” in analogy to
the hulls PM(A, p, R) and TV(A, p, R)? We are only able to deduce
a weaker result.

Definition 4. We call the pair (A, p) saturated in R if AR[p] = A,
hence also pR[p] = p.

Notice that, if there exists a valuation v on R with Av = A, pv = p,
then (A, p) is saturated in R.

Lemma 5.13. Let B be an R-overring of A, such that (A, p) is
saturated in B. Then (A, p) is Manis in B iff (Ap, pp) is Manis in
Bp.

Proof. If v:B � Γ ∪ ∞ is a Manis valuation on B with Av = A,
pv = p then, of course, the localization ṽ:Bp � Γ ∪ ∞ is a Manis
valuation with Aṽ = Ap, pṽ = pp. On the other hand, if w:Bp �
Γ ∪ ∞ is a Manis valuation on Bp with Aw = Ap, pw = pp then the
composition v: = w◦ϕ with the natural map ϕ:B → Bp is a valuation
with v(B) = Γ ∪ ∞, hence v is Manis. We have Av = AB[p] = A,
pv = pB[p] = p, since (A, p) is assumed to be saturated in B.

Theorem 5.14. Assume that (A, p) is saturated in R. Let C denote
the preimage of the PM-hull PM(Ap, pp, Rp) in R under the natural
homomorphism R → Rp. If B is any R-overring of A then (A, p) is
Manis in B iff B ⊂ C.
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Proof. Let D: = PM (Ap, pp, Rp). It is easily verified that Cp = D.
By Lemma 13 we know that (A, p) is Manis in C. It follows that
(A, p) is Manis in any R-overring B of A contained in C. On the
other hand, if B is an R-overring of A with (A, p) Manis in B then
(Ap, pp) is Manis in Bp. Since this pair is local, it is even PM in Bp.
Thus Bp ⊂ D, and we conclude that B ⊂ C.

Definition 5. If (A, p) is saturated in R then we call the maximal
overring C of A in R with (A, p) Manis in C the Manis valuation
hull of (A, p) in R and denote it by MV(A, p, R).

Contrary to the cases PM and TV we do not know how to find an
“absolute” Manis valuation hull of a given pair (A, p), since we do not
have some sort of “universal” extension A ⊂ R′ with (A, p) saturated
in R′ at our disposal.

We want to prove a result for MV-hulls similar to Proposition 12
above. For this we insert some elementary observations on Manis
pairs, which may be also useful later on.

Proposition 5.15. Let B be an R-overring of A different from A.
Let q denote the conductor of A in B. Assume that (A, p) is Manis
in B. Then (A[p], p[p]) is Manis in B[q], and B[q] = B[p] = A[q],
q[q] = q[p]. {Here B[q] and q[q] mean the saturations of B and q in
R with respect to the multiplicative set B \ q, while A[q] means the
saturation of A in R with respect to A \ q.}

Proof. Let v:B � Γ ∪ ∞ be a surjective Manis valuation with
Av = A, pv = p. This valuation extends uniquely to a valuation
v′:B[q] � Γ ∪ ∞ (cf. Lemma 4.9) which, of course, is again Manis.
We have A[p] ⊂ Av′ and p[p] ⊂ pv′ . Let x ∈ Av′ be given. We choose
s ∈ B \ q with sx ∈ B. Then we choose t ∈ B with v(t) = −v(s).
We have st ∈ A \ p and v(stx) = v′(x) ≥ 0, hence stx ∈ A. Thus
x ∈ A[p]. If x ∈ pv′ then v(stx) > 0, hence stx ∈ p and x ∈ p[p].
This proves that Av′ = A[p] and pv′ = p[p]. Let x ∈ B[q] be given.
We choose s ∈ B \ q with sx ∈ B. Then we choose t ∈ B with
v(t) = −v(s). We have st ∈ A \ p and stx ∈ B. Thus x ∈ B[p].
This proves that B[q] = B[p]. If stx ∈ A then x ∈ A[p]. If stx ∈ A
there exists u ∈ A with v(u) = −v(stx). We have u ∈ A \ q, hence
ust ∈ A\q, and ustx ∈ A. Thus x ∈ A[q] in both cases. We conclude
that B[q] = A[q].
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This proposition gives us, among other things, the following addi-
tional information on MV(A, p, R).

Corollary 5.16. Assume that (A, p) is saturated in R. Let C: =
MV(A, p, R), and let q denote the conductor of A in C if A = C.
Otherwise put q: = p. Then (C, q) is saturated in R, and C = A[q].
Also MV(C, q, R) = C.

Proof. We know from the preceding Proposition that (A, p) is Manis
in C[q]. By the maximality property of C we have C[q] = C. Let
D: = MV(C, q, R). The pair (A, p) is Manis in D by Proposition
11.i. This implies D ⊂ C, i.e. D = C.

Proposition 5.17. Assume that (A, p) is Manis inR with associated
surjective Manis valuation v:R � Γ∪∞. Let B be an R-overring of
A different from A, and let q denote the conductor of A in B. Then
there exists a convex subgroup H of Γ with A[q] = B[q] = Av,H and
q = q[q] = pv,H (cf. Notations 4.10). Thus (B[q], q) is Manis in R
and v/H is the associated Manis valuation. {Here q[q] means the
saturation of q in R with respect to B \ q.}

Proof. Let Φ denote the set of values v(x) ≤ 0 with x running
through B \ A. There is a convex subgroup H of Γ such that H−
is the convex hull of Φ in Γ. Let x ∈ A be given. Then x ∈ q iff
Bx ⊂ p iff v(bx) > 0 for all b ∈ B \ A. This means that v(x) > −γ
for every γ ∈ Φ and implies v(x) > h for every h ∈ H. Thus
q = pv,H . It is now immediate that B[q] ⊂ Av,H . On the other hand
Av,H = A[pv,H ] = A[q] (cf. Prop.I.1.13). Thus also Av,H = B[q]. If
x ∈ q[q] then there exists some s ∈ B \ q with sx ∈ q. We have
v(sx) > H, but v(s) ≤ h for some h ∈ H. Thus v(x) > H, i.e.
x ∈ pv,H = q. This proves q[q] = q.

Proposition 5.18. Let B be an R-overring of A different from
A, and let q denote the conductor of A in B. Assume that (A, p)
is Manis in B. Then MV(A[p], p[p], R) = MV(B[q], q[q], R). Also
B[q] = B[p] = A[q] and q[q] = q[p].

Proof. We use the notations A′: = A[p], p′: = p[p], B′: = B[q], and
q′: = q[q]. Proposition 15 tells us that (A′, p′) is Manis in (B′, q′),
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and that B′ = B[p] = A[q] and q′ = q[p]. Clearly q′ is the conduc-
tor of A′ in B′. Let C: = MV(A′, p′, R) and D: = MV(B′, q′, R).
Since (A′, p′) is Manis in B′ and (B′, q′) is Manis in D we know by
Proposition 11 above that (A′, p′) is Manis in D. Thus D ⊂ C. On
the other hand A′ ⊂ B′ ⊂ C, (A′, p′) is Manis in C, and (B′, q′) is
saturated in C, hence (B′, q′) is Manis in C by Proposition 17. Thus
C ⊂ D. We conclude that C = D.

§6 Inside and outside the Manis valuation hull

As before let A ⊂ R be a ring extension and p a prime ideal of
A. Having proved the existence of the valuation hulls PM(A, p, R),
TV(A, p, R) and – for (A, p) saturated – MV(A, p, R), we turn to
the question how to decide for a given element x of R whether it is
contained in any of these hulls.∗) This will occupy the present and
the next two sections. Of course, we may assume in advance that
x ∈ A.

Theorem 6.1. Let x be an element of R \ A. The following condi-
tions are equivalent.

(1) (A, p) is Manis in A[x].
(2) For every a ∈ A with ax ∈ A there exists some y ∈ p with

yax ∈ A \ p.
(3) px ⊂ p. For every a ∈ p with ax ∈ A there exists some y ∈ p

with yax ∈ A \ p.

Proof. The implications (1) ⇒ (2) ⇒ (3) are evident.
(2) ⇒ (1): We have to verify the following (cf. Th.I.2.4): If f(T ) is
a polynomial in A[T ] with f(x) ∈ A, there exists some b ∈ p with
bf(x) ∈ A \ p. Then we will be done by Theorem I.2.4.

We proceed by induction on the degree d of f(T ). Let d = 1, f(T ) =
a1T+a0. We have a1x+a0 ∈ A, hence a1x ∈ A. By hypothesis there

∗) Here we do not mean criteria which are useful in any practical sense,
but only criteria of theoretical interest. Questions of effectivity will be not
touched.
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exists some y ∈ p with ya1x ∈ A \ p, hence yf(x) ∈ A \ p. Assume
now d ≥ 2, f(T ) = adT

d + ad−1T
d−1 + · · · + a0. We distinguish two

cases.

Case 1. adx ∈ A. We introduce the polynomial

g(T ): = (adx+ ad−1)T d−1 + ad−2T
d−2 + · · · + a0 ∈ A[T ].

We have g(x) = f(x) ∈ A. By induction hypothesis there exists
some y ∈ p with yg(x) ∈ A \ p.

Case 2. adx ∈ A. There exists some c ∈ p with cadx ∈ A \ p. Let
y: = cdad−1

d ∈ p. The element

yf(x) = (cadx)d + cad−1(cadx)d−1 + · · · + cdad−1
d a0

lies in A \ p since the first term on the right lies in A \ p while the
others lie in p.

(3) ⇒ (2): Let a ∈ A \ p be given with ax ∈ A. We have to find an
element y of p with yax ∈ A \ p.

Case 1: px ⊂ A. We choose a0 ∈ p with a0x ∈ A. By our assumption
there exists some y0 ∈ p with y0a0x ∈ A \ p. We have (a0y0)(ax) ∈
A \ p and a0y0 ∈ p.

Case 2: px ⊂ A. Since px ⊂ p, there exists some y ∈ p with
yx ∈ A \ p. Then yax = a(yx) ∈ A \ p.

In the following we assume always that (A, p) is saturated in R. Let
C denote the Manis valuation hull MV(A, p, R), and let q denote the
conductor of A in C if A = C. If A = C then we put q: = p and,
abusing language, we call this ideal still the conductor of A in C.

Corollary 6.2. An element x of R \ A lies in the Manis valuation
hull C iff it fulfills one of the following equivalent conditions:

(A) For every a ∈ A with ax ∈ A there exists some b ∈ A (hence
b ∈ p) with bax ∈ A \ p.

(B) px ⊂ p. For every a ∈ p with ax ∈ A there exists some b ∈ A
(hence b ∈ p) with bax ∈ A \ p.

Proof. Notice that x ∈ C iff A[x] ⊂ C iff (A, p) is Manis in A[x].
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In Appendix C we will give a direct proof of the existence of Manis
valuation hulls and of this corollary without using anything about
Prüfer extensions.

Here is another description of the Manis valuation hull C.

Theorem 6.3. Let x ∈ R\A be given. The following are equivalent
(1) x ∈ C
(2) (Ax) ∩ A ⊂ p. If x′ is any element of A with xx′ ∈ A \ p and y

is an element of R \A with x′y ∈ A then (Ay) ∩A ⊂ p.
(3) There exists an element x′ of A with the following properties:

xx′ ∈ A. If y ∈ R \A and yx′ ∈ A then (Ay) ∩A ⊂ p.

Proof. (1) ⇒ (2): We have C = A[q] (cf. Cor.5.16). Let x′ ∈ A and
y ∈ R \ A be given with xx′ ∈ A \ p and yx′ ∈ A. Since Cq ⊂ p we
have x′ ∈ A \ q. From yx′ ∈ A we conclude that y ∈ A[q] = C. Since
(A, p) is Manis in C it follows that (Ay)∩A ⊂ p. Also (Ax)∩A ⊂ p.
(2) ⇒ (3): This implication is trivial.
(3) ⇒ (1): Suppose that x ∈ C. By Corollary 2 above there exists
some a ∈ A with ax ∈ A and (Aax)∩A ⊂ p. Let x′ be an element ofA
with the properties indicated in our hypothesis (3). We have axx′ ∈
A, hence (Aax) ∩ A ⊂ p according to (3). This is a contradiction.
We conclude that x ∈ C.

We now give a description of the conductor q of A in C of similar
style, but under a restriction on the extension A ⊂ R. Notice that
C = A[q], as has been stated in Cor.5.16. Thus a good knowledge of
q implies a good knowledge of C = MV(A, p, R).

Theorem 6.4. Assume that R \ A is closed under multiplication.
Let x ∈ A be given. The following are equivalent.
(1) x ∈ q.
(2) Either (Rx)∩A ⊂ p, or there exist elements x′ ∈ R, y ∈ A with

xx′ ∈ A \ p, yx′ ∈ p, and (Ry) ∩A ⊂ p.
(3) Either (Rx)∩A ⊂ p, or, for every x′ ∈ R with xx′ ∈ A\p, there

exists an element y in A with yx′ ∈ A and (Ry) ∩A ⊂ p.

Proof. The implication (3) ⇒ (2) is trivial.
(2) ⇒ (1): Let u:C � Γ∪∞ denote the Manis valuation withAu = A
and pu = p. It has the support q. If (Rx) ∩ A ⊂ p, then a fortiori
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(Cx) ∩ A ⊂ p. This implies u(x) = ∞, i.e. x ∈ q. Now assume
that there exist elements x′ ∈ R, y ∈ A with xx′ ∈ A \ p, yx′ ∈ p,
(Ry) ∩ A ⊂ p. We have (Cy) ∩ A ⊂ p, hence u(y) = ∞. Suppose
that u(x) = ∞. Then x′ ∈ A[q] = C (cf.5.16) and u(x′) = −u(x).
From yx′ ∈ p we conclude that u(y) ≤ u(x). This contradicts the
fact that u(y) = ∞. Thus u(x) = ∞, i.e. x ∈ q.
(1) ⇒ (3): Assume that (Rx) ∩ A ⊂ p. Let x′ ∈ R be given with
xx′ ∈ A \ p. Then x′ ∈ C, since xC ⊂ q ⊂ p. By Corollary 2
above there exists y ∈ A with yx′ ∈ A and (Ayx′) ∩A ⊂ p. Suppose
that (Ry) ∩ A ⊂ p. We choose y′ ∈ R with yy′ ∈ A \ p. Then
xx′yy′ ∈ A \ p. Since (Ayx′) ∩ A ⊂ p we conclude that xy′ ∈ A. It
follows that xy′yx′ ∈ A, since R \ A is multiplicatively closed. But
xx′yy′ ∈ A, a contradiction. We conclude that (Ry) ∩A ⊂ p.

We recall some facts from I, §2.

Scholium 6.5. Let again u denote the Manis valuation on C with
Au = A, pu = p. The prime ideals r of A with q ⊂ r ⊂ p form a chain,
since they are precisely the u-convex prime ideals of A. The rings
A[r] are the u-convex subrings of C, and A has in A[r] the conductor
r.

All this is clear from Theorem I.2.6, if we replace A[r] = AR[r] by AC[r].
But AR[r] ⊂ AR[q] = C (cf. Cor.5.16), and thus indeed AR[r] = AC[r].

We now study the Manis valuation hull in the special case that a
valuation v:R → G ∪ ∞ is given, and A = Av, p = pv. Notice that
then (A, p) is saturated in R and R \ A is closed under multiplica-
tion. How is the Manis valuation on MV(A, p, R), which is given by
the pair (A, p), related to v? We start with the following general
observation.

Proposition 6.6. If B is an R-overring of A = Av, such that
(A, p) = (Av, pv) is Manis in B, the associated Manis valuation on
B is (up to equivalence) the special restriction v|B .

Proof. We may assume that A = B. Let u: = v|B , and let w be a
Manis valuation on B with Aw = A, pw = p. Also Au = A, pu = p.
By Proposition I.2.2 the valuations u and w have the same support,
namely the conductor r of A in B.
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Let x ∈ B\r be given. Since w is Manis there exists some y ∈ B with
w(x) +w(y) = 0, i.e. xy ∈ A \ p. This implies that u(x) + u(y) = 0.
We conclude that u(B \ r) is a group, i.e. u is Manis.

Due to this proposition C = MV(A, p, R) is the unique maximal
subring B of R containing A such that v|B is Manis.

Corollary 2 and also Theorem 3 tells us that, in the present situation,
there exists a subset U of G such that an element x of R \ A lies in
C iff v(x) ∈ U . In other terms, the value v(x) of a given element x
of R decides already whether x is in C or not.

It seems to be worthwile to make this observation more explicit. In
the following proposition one should have in mind the example that
G is as above and M is the set of values v(R) \ {∞}.

Proposition 6.7. Let G be an ordered abelian group and M be a
submonoid of G {i.e. M ⊂ G, 0 ∈ M , M + M ⊂ M}. We use the
notations M+: = M ∩G+, M−: = M ∩G−, G0: = M ∩ (−M). Notice
that G0 is the largest subgroup of G contained in M . Let U denote
the subset of all g ∈ M with g < 0 and the following property: For
every a ∈ M+ with a+ g < 0 we have −a− g ∈ M , i.e. a+ g ∈ G0.

i) Γ: = U ∪ (−U) ∪ {0} is a subgroup of G0.
ii) An element g of G+ lies in Γ (i.e. g ∈ (−U) ∪ {0}) iff g ∈ M

and [0, g] ∩M ⊂ G0
1) . Thus Γ is the maximal subgroup H of

G0 such that H+ is convex in M+.
iii) An element g of G− lies in Γ iff g ∈ M and [g, 0]∩M ⊂ G0. Thus

Γ is the maximal subgroup H of G0 such that H− is convex in
M−.

iv) Γ is the maximal subgroup of G0 which is convex in M .

Proof. i): We have U ⊂ G0 hence Γ ⊂ G0. Let elements g1 and g2
of U be given. We prove the following:

a) g1 + g2 ∈ U ,
b) If g1 < g2, then g1 − g2 ∈ U .

Once we know this it is immediate that U ∪{0}∪(−U) is a subgroup
of G0.

1) As usual [0,g] denotes the interval {a∈G | 0≤a≤g}.
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a): We have g1 +g2 ∈ M . Let h ∈ M+ be given with g1 +g2 +h < 0.
We have to verify that g1 + g2 + h ∈ G0.

Case 1: g2+h < 0. Now g2+h ∈ G0, g1 ∈ G0, hence g1+g2+h ∈ G0.

Case 2: g2 + h ≥ 0. Now g2 ∈ G0 ⊂ M , h ∈ M , thus g2 + h ∈ M+.
Since g1 ∈ U we have again g1 + g2 + h ∈ G0.

b): We have g1 − g2 ∈ G0 ⊂ M . Let h ∈ M+ be given with g1 − g2 +
h < 0. Now −g2 ∈ G0 ⊂ M , and −g2 + h > 0, thus −g2 + h ∈ M+.
Since g1 ∈ U we conclude that g1 − g2 + h ∈ G0.

ii): Let V denote the set of all g ∈ M+ with [0, g] ∩ M ⊂ G0. We
have to verify that V = Γ+.

a) Let g ∈ Γ+ be given. Then g ∈ G0 ⊂ M . If a ∈ M and 0 ≤ a < g,
then −g ∈ Γ− and −g + a < 0. Thus −g + a ∈ G0 by the definition
of Γ. Since also g ∈ G0, we have a ∈ G0. We conclude that g ∈ V .
b) Let g ∈ V be given. We verify that −g ∈ Γ, hence g ∈ Γ. We
may assume that g = 0, hence −g < 0. Let a ∈ M+ be given with
−g + a < 0. Then 0 ≤ a < g. Since g ∈ V we have a ∈ G0. Also
g ∈ G0. Thus −g + a ∈ G0. This proves that −g ∈ Γ.

iii): Let g ∈ G− be given. We may assume in advance that g ∈ M−.
Write g = −γ with γ ∈ M+.

Assume first that g ∈ Γ. Let a ∈ M+ be given with −γ ≤ −a ≤ 0.
We have to verify that a ∈ G0. But this is evident from part ii) since
0 ≤ a ≤ γ ∈ Γ.

Assume now that [g, 0] ∩ M ⊂ G0 and, without loss of generality,
that g = 0. We have to verify that g ∈ U . Let h ∈ M+ be given with
g + h < 0. Then g + h ∈ [g, 0] ∩M . Thus g + h ∈ G0. This proves
that g ∈ U .
iv): Since Γ is the maximal subgroupH of G0 such that H+ is convex
in M+, and also such that H− is convex in M−, it is evident that Γ
is the maximal subgroup H ′ of G0 with H ′ convex in M .

Definition. We call this group Γ = U ∪ (−U) ∪ {0} the Manis
subgroup of G with resepct to the submonoid M and denote it by
MS(G,M).

Up to the end of this section we stay with a valuation v:R → G∪∞
and use the following notations, if nothing else is said.
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Notations 6.8. A: = Av, p: = pv. M : = v(R)\{∞}. M+: = M∩G+,
M−: = M ∩ G−. Γ: = MS(G,M). G0: = M ∩ (−M), i.e. G0 is
the largest subgroup of G contained in the submonoid M . C: =
MV(A, p, R), u: = v|

C
. q: = qCA = the conductor of A in C if C = A,

while q: = p if C = A. By abuse of language we call q the conductor
of A in C also if A = C.

Theorem 6.9. i) u is a Manis valuation with value group Γ. An
element x of R \A lies in C iff v(x) ∈ Γ. If B is an R-overring of A
then v|B is Manis iff B ⊂ C.
ii) q is the set of all x ∈ R with v(x) > Γ { i.e. v(x) > γ for every
γ ∈ Γ}.
iii) C is the set of all x ∈ R with v(x) ≥ γ for some γ ∈ Γ. In
particular, C is v-convex in R.
iv) Let Γ̂ denote the convex hull of Γ in G. The coarsening w: = v/Γ̂
of v has the valuation ring Aw = C and the center pw = q.

Proof. Part i) is obvious from Corollary 2 (Condition A), Proposi-
tion 7.iii, and the meaning of the Manis valuation hull. The conduc-
tor of A in C is, of course, the support of u. Let an element x in R be
given. Observe that u(x) = v(x) if x ∈ C and u(x) = ∞, since u is
the special restriction of v to C. If v(x) > Γ then x ∈ A ⊂ C, and we
conclude that u(x) = ∞. On the other hand, if x ∈ C and u(x) = ∞,
then x ∈ q, hence xC ⊂ A, and this implies that v(x) + γ ≥ 0 for
every γ ∈ Γ, i.e. v(x) > Γ. Thus q = {x ∈ R | v(x) > Γ}. We have
v(C \ q) = Γ. Assertions iii) and iv) now follow from Proposition
I.1.13, since C = A[q] (cf. Cor.5.16).

Corollary 6.10. An element x of A lies in A \ q iff v(y) ∈ G0 for
every y ∈ A with v(y) ≤ v(x).

We also arrive at a pleasant description of the conductor q of A in
C.

Corollary 6.11. q is the smallest v-convex ideal of A which contains
all elements y of A with v(y) ∈ −M .

Proof. We have q = {x ∈ A | v(x) > Γ} (cf.Th.9). Thus q is
v-convex in A. Let x ∈ q be given. By Corollary 10 there exists
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some y ∈ A with v(y) ≤ v(x) and v(y) ∈ G0. Now v(y) ∈ G0 iff
v(y) ∈ −M . The claim follows.

A look at the previous Theorem 4 reveals that these corollaries are
contained in that theorem. But we have gained some additional
insight via the “abstract” Proposition 7.

Some part of Theorem 9 easily generalizes to convex subgroups of Γ
instead of Γ itself. We leave the proof of the following proposition
to the reader (cf. Prop.5.18 for the last statement there).

Proposition 6.12. Let H be a convex subgroup of Γ. Let pH
denote the set of all x ∈ R with v(x) > H, and let AΓ,H denote the
set of all x ∈ R with v(x) ∈ Γ and v(x) ≥ h for some h ∈ H. Then
AΓ,H is a subring of C containing A. The special restriction of v
to Av,H is a Manis valuation with value group H. If H = {1} then
AΓ,H = A and pH is the conductor of A in AΓ,H , while AΓ,H = A
and pH = p if H = {1}. In both cases (AΓ,H , pH) is saturated in R
and AΓ,H = A[pH ]. Moreover AΓ,H \ pH is the set of all x ∈ R with
v(x) ∈ H.2) Finally, let Ĥ denote the convex hull of H in G, and
w: = v/Ĥ. Then Aw = AΓ,H , pw = r, and MV(AΓ,H , r) = C.

Instead of starting with a convex subgroup H of Γ we may start with
an C-overring B of A and look for a convex subgroup of Γ associated
to B.

Proposition 6.13. Let B be an R-overring of A contained in the
Manis valuation hull C = MV(A, p, R). Let r denote the conductor
of A in B if A = B. Otherwise let r = p. Then there exists a unique
convex subgroup H of Γ with r = pH (cf. notations in Prop. 12).
We have H = v(B \ r), and A[r] = B[r] = B[p] = AΓ,H . Also r = r[r].
{Here B[r] and r[r] denote the saturations of B and r in R with
respect to B \ r, while A[r] denotes the saturation of A in R with
respect A \ r.}

Proof. We have suppu = q ⊂ r ⊂ p = pu. By Theorem I.2.6.ii
there exists a convex subgroup H of Γ such that u(A \ r) = H+ and

2) If necessary, we will write more systematically Av,Γ,H and pv,H instead
of AΓ,H and pH .
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r = pu,H . Since u′: = u|B is Manis and suppu′ = r, Au′ = A, we have
u(B \ r) = u′(B \ r) = H. It follows that v(A \ r) = H+, r = pv,H ,
and v(B \ r) = H. Proposition 5.18 tells us that B[r] = B[p] = A[r].
Clearly B[r] ⊂ Av,Γ,H . Let x ∈ Av,Γ,H be given. There exists some
h ∈ H with v(x) ≥ h and some s ∈ B \ r with v(s) = −h. We have
v(sx) ≥ 0, hence sx ∈ A ⊂ B. Thus x ∈ B[r], and we conclude that
B[r] = Av,Γ,H . Clearly v(x) > H for every x ∈ r[r]. Thus r[r] = r.

§7 The TV-hull in a valuative extension

Definition 1. We call a ring extension A ⊂ R valuative if there
exists a valuation v on R with Av = R. We then also say that A is
valuative in R.

Remark. In Huckaba’s book [Huc] and related literature another ter-
minology is used: If A is valuative in R there A is called a paravalu-
ation ring in R, and v is called a paravaluation. We have explained
in the introduction why we do not follow this terminology.

Griffin has given an intrinsic characterization of valuative extensions,
cf. [Huc, Th.5.5]. We will have no occasion to use his result.

Notice that the set R \ A is closed under multiplication if A is val-
uative in R. If in addition A = R then the set pA: = pRA: = {x ∈
A | xy ∈ A for some y ∈ R \ A} is a prime ideal of A, and also the
conductor qA = qRA of A in R is a prime ideal, as has been stated in
Theorem I.2.1.

Remark 7.1. Assume that A ⊂ R is a valuative extension, A = R,
and v:R → G ∪ ∞ is a valuation on R with Av = A. Let v∗: = v|R
denote the special restriction of v to R, i.e. the special valuation
v|cv(G) associated to v (cf. I, §1). Then Av∗ = A and pv = pv∗ ⊃ pA.

For a valuative extension A ⊂
= R there may be (up to equivalence)

more than one special valuation v on R with Av = A, cf. the example
below. But, if v is a Manis valuation on R with Av = A and A =
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R, then pv = pA, and v is the only special valuation on R (up to
equivalence) with Av = A, as is clear from I, §2 and Theorem 3.12.

Example 7.2. Let G be an ordered abelian group and H a convex
subgroup ofG withH = G. We choose an element ξ ofG with ξ > H.
Let k be a domain and u: k → H∪∞ be a valuation with suppu = 0.
We extend u to a valuation v:R → G ∪ ∞ on the polynomial ring
R: = k[x] in one indeterminate x over k by the formula

v(
n∑
i=0

aix
i) = min

0≤i≤n
(u(ai) − iξ)

cf. [Bo, VI, §10, Lemma 1]. v is special. We have Av = Au, pv = pu,
and supp v = 0.

We now iterate this construction. Let G be an ordered abelian group
containing two convex subgroups H1

⊂
= H2

⊂
= G. Choose ξ ∈ H2

and η ∈ G with ξ > H1 and η > H2. We start with a valuation
u: k → H1 ∪ ∞ which has support zero. We then extend u to a
valuation w1: k[x] → H2 ∪∞ in the same way as above with w1(x) =
−ξ and then extend w1 to a valuation v1: k[x, y] → G ∪ ∞ with
v1(y) = −η, again in the same way. On the other hand we extend u
to w2: k[y] → H ′ ∪ ∞ in this way with w2(y) = −ξ and then extend
w2 in this way to a valuation v2: k[x, y] → G ∪ ∞ with v2(x) = −η.
Both valuations v1 and v2 are special and have Av1 = Av2 = Au,
pv1 = pv2 = pu, supp v1 = supp v2 = 0. But v1 and v2 are not
equivalent.

Definition 2. Let A ⊂ R be a ring extension and p a prime ideal
of A. We say that the pair (A, p) is valuative in R if there exists a
valuation v on R with Av = A and pv = p.

In the following (A, p) is a pair which is valuative in a given extension
R of A. We will give somewhat explicit descriptions of the TV-hull
TV(A, p, R). These descriptions can be used in principle if more
generally (A, p) is saturated in R since then we may replace R in
advance by the Manis valuation hull MV(A, p, R), which we have
described in §6. The general case, where (A, p) is an arbitrary pair
in a ring R, will remain open.
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Notations 7.3. We choose a valuation v:R → G ∪ ∞ with Av = A
and pv = p. M : = v(R) \ {∞}, M+: = M ∩ G+, M−: = M ∩ G−,
G0: = M ∩ (−M).

It follows from Proposition 6.6, that TV(A, p, R) (resp. PM(A, p, R))
is the unique maximal R-overring B of A such that the special re-
striction v|B is tight (resp. PM).

Lemma 7.4. Let B be an R-overring of A, u: = v|B , N : = u(B) \
{∞}, and N−: = N ∩G−. Then N− = v(B \ A). The following are
equivalent.
(1) Iγ,v = Iγ,u for every γ ∈ N−.
(2) B is v-convex in R.
(3) Iγ,v = Iγ,u for every γ ∈ N .

Proof. We may assume that B = A. It is evident from the definition
of u = v|B that v(B \A) = N−.
(1) ⇒ (2): B is the union of the sets Iγ,u with γ running through
N−. Since Iγ,u = Iγ,v for these γ the sets Iγ,u are v-convex. Thus B
is v-convex.
(2) ⇒ (3): Let γ ∈ N be given. We choose x ∈ B with v(x) = γ.
We pick some y ∈ R. If v(y) ≥ v(x) then y ∈ B, since B is v-convex.
We conclude that u(y) ≥ v(y) ≥ γ. This proves that Iv,γ ⊂ Iu,γ . On
the other hand, if y ∈ B and u(y) ≥ γ, then either v(y) > H with
H the characteristic group of v|B (cf. I, §1, Def.3) or v(y) = u(y).
In the first case certainly v(y) > N , since N is contained in this
characteristic subgroup. Thus v(y) ≥ γ in both cases. This proves
that Iu,γ ⊂ Iv,γ .
The implication (3) ⇒ (1) is trivial.

Proposition 7.5. Assume that B is an R-overring of A such that
the special restriction u: = v|B is tight. Then B is v-convex in R.

Proof. Let x ∈ B\A be given and γ: = u(x), hence γ < 0. We verify
that Iγ,u = Iγ,v, and then will be done by the preceding lemma.
The A-module Iγ,u is B-invertible. Proposition 4.2 tells us that
I−1
γ,u = I−γ,u, and that there exists some z ∈ A with u(z) = −γ.

Then v(z) = −γ. We have I−γ,u = I−γ,v|A = I−γ,v. Thus I−γ,v
is B-invertible and a fortiori R-invertible. We conclude, again by
Proposition 4.2, that I−1

−γ,v = Iγ,v. Thus Iγ,v = Iγ,u.
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Lemma 7.6. Let x ∈ R \ A, γ: = v(x). Assume that Iα,v is
R-invertible for every α ∈ [γ, 0[ with α − γ ∈ M . Then x ∈
MV(A, p, R).

Proof. Let a ∈ A be given with ax ∈ R \A. According to Corollary
6.2 it suffices to verify that there exists some y ∈ A with yax ∈ A\p.
Let α: = v(ax). Then γ ≤ α < 0 and α − γ = v(a) ∈ M . Thus
Iα,v is R-invertible. By Proposition 4.2 there exists some y ∈ A with
v(y) = −α. We have yax ∈ A \ p.

We are ready for a description of the tight valuation hull TV(A, p, R).
Since this hull is v-convex in R (Prop.5) we know that for an element
x ∈ R the value v(x) alone decides whether x is in this hull or not.

Theorem 7.7. Let x ∈ R \ A be given, and γ: = v(x). Then
x ∈ TV(A, p, R) iff for every α ∈ [γ, 0[∩M the A-module Iα,v is
R-invertible.∗)

Proof. Let U denote the set of all γ ∈ M such that γ < 0 and Iα,v is
R-invertible for every α ∈ M with γ ≤ α < 0. We define a subset D
of R by D: = A∪{x ∈ R | v(x) ∈ U}. Notice that [γ, 0[ ∩M ⊂ U for
every γ ∈ U , hence D = A∪ ⋃

γ∈U
Iγ,v. {If U = ∅ then D =

⋃
γ∈U

Iγ,v.}

Assume that x ∈ D \ A, hence γ: = v(x) ∈ U . Let β ∈ G be
given with γ ≤ β < 0 and β − γ ∈ M . Then γ ∈ M , β ∈ M ,
and Iβ,v is invertible by the definition of U . Lemma 6 tells us that
x ∈ C: = MV(A, p, R). Thus D ⊂ C. We will now prove directly
the following:
(1) D is a subring of R.
(2) The valuation v|D is tight.
(3) If B is any R-overring of A with v|B tight then B ⊂ D.

Then the claim of the theorem will be evident. The proof will not
use in advance the existence of TV(A, p, R), but will give this anew
for valuative extensions.
(1): By definition the set D is v-convex in R. Let elements x1 and
x2 of D be given, and γ1: = v(x1), γ2: = v(x2). We have to verify
that x1 + x2 ∈ D and x1x2 ∈ D.

∗) [γ,0[ denotes the half open interval {α∈G | γ≤α<0}.
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We assume without loss of generality that γ1 ≤ γ2. We have v(x1 +
x2) ≥ γ1. Since D is v-convex it follows that x1 + x2 ∈ D. If x1 ∈ A
or x2 ∈ A then v(x1x2) ≥ γ1, and we conclude again that x1x2 ∈ D.

In the following we assume that γ1 < 0 and γ2 < 0. Let y ∈ R be
given with γ1 + γ2 = v(x1x2) ≤ v(y) < 0. Let α: = v(y). We verify
that Iα,v is R-invertible. Then we will know that γ1 + γ2 ∈ U , hence
x1x2 ∈ D.

If α ≥ γ1 then Iα,v is R-invertible since γ1 ∈ U . Assume now that
α < γ1. Then γ1 +γ2 ≤ α < γ1, hence γ2 ≤ α−γ1 < 0. The element
x1 is contained in C. Since v|C is Manis we have −γ1 ∈ v|C(C),
hence −γ1 ∈ v(C) ⊂ v(R). Thus α − γ1 ∈ v(R). Since γ2 ∈ U it
follows that Iα−γ1,v is invertible. Thus also Iα,v = Iα−γ1,v · Iγ1,v (cf.
Prop.4.2) is R-invertible.
(2): We now know that D is a subring of R with A ⊂ D ⊂ C. Let
u: = v|D. Since v|C is Manis, also u = (v|C)|D is Manis. We have to
prove that u is tight. For this it suffices to verify for a given element
x ∈ D \ A that the A-module Iγ,u with γ: = u(x) is D-invertible.
Since D is v-convex we know by Lemma 4 that Iγ,u = Iγ,v. Since
γ ∈ U , it follows that Iγ,v is R-invertible. From Proposition 4.2
we know that I−1

γ,v = I−γ,v. Since −γ > 0 the A-module I−γ,v is
contained in A, hence in D, and we conclude that Iγ,u = Iγ,v is
D-invertible, as desired.
(3): Let finally B be an R-overring such that u′: = v|B is tight. Then
B is v-convex by Proposition 5. Let x ∈ B \ A be given. We have
to verify that x ∈ D, i.e. γ: = v(x) ∈ U . Let α ∈ [γ, 0[∩v(R) be
given, α = v(y) for some y ∈ R \ A. Now v(x) ≤ v(y) < 0. Since
B is v-convex it follows that y ∈ B, and α = u′(y). Lemma 4 tells
us that Iα,u′ = Iα,v. Since u′ is tight we know that the A-module
Iα,v is B-invertible. A fortiori Iα,v is R-invertible. This proves that
γ ∈ U , as desired.

Corollary 7.8. Assume that v is Manis. Let x ∈ R \ A be given.
Then x lies in TV(A, p, R) iff (A: ax) is R-invertible for every a ∈ A
with ax ∈ A.

Proof. We assume without loss of generality that v(R) = G ∪ ∞.
Let γ: = v(x) < 0. We are done by the theorem if we prove that the
following two assertions are equivalent.
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i) The ideal (A: ax) is R-invertible for every a ∈ A with ax ∈ A.
ii) The ideal Iα: = Iα,v is R-invertible for every α ∈ [γ, 0[.

Assume that a ∈ A and ax ∈ A. Let β: = v(a) ≥ 0. Then γ+ β < 0,
and (A: ax) = I−γ−β . Since v(R) = G ∪ ∞, every α ∈ [γ, 0[ is of the
form γ+β with such an element β, and Proposition 4.2 tells us that
Iα is invertible iff I−α is invertible. The equivalence of i) and ii) is
evident.

We add a description of TV(A, p, R) and its value group in the style
of Proposition 6.7 and Theorem 6.9.

Proposition 7.9. Let D: = TV(A, p, R).
i) The set G1 of all g ∈ M with Ig,v invertible in R is a subgroup of
G0.
ii) Let ∆ denote the maximal subgroup H of G1 such that H− is
v-convex in M−. Then D is the set of all x ∈ R with v(x) ≥ γ for
some γ ∈ ∆, and v(D) = ∆ ∪ ∞.
iii) ∆+ is the set of all g ∈ M+ with [0, g] ∩M ⊂ G1. Thus ∆ is the
maximal subgroup H of G1 such that H+ is v-convex in M+.
iv) ∆ is the maximal subgroup of G1 which is v-convex in M , hence
in G0.

Proof. i): It follows from Proposition 4.2 that G1 + G1 ⊂ G1,
and that −γ ∈ G1 for every γ ∈ G1. Thus G1 is a subgroup of G
contained in M , hence in G0.
ii): Theorem 7 now tells us that an element x ∈ R \ A lies in D iff
v(x) ∈ ∆. Since v|D is Manis, the assertions in ii) follow.
iii): Let V denote the set of all g ∈ M+ with [0, g] ∩ M ⊂ G1. We
have to verify that V = ∆+.
a) Let g ∈ ∆+ be given, and assume without loss of generality that
g = 0. If a ∈ M and 0 ≤ a < g, then −g ∈ ∆− and −g ≤ −g+a < 0.
Since −g + a ∈ M , it follows that −g + a ∈ G1. Also g ∈ G1. We
conclude that a ∈ G1. This proves that g ∈ V .
b) Let g ∈ V be given and, g = 0. We verify that −g ∈ ∆, hence
g ∈ ∆. If a ∈ M and −g ≤ a ≤ 0 then 0 ≤ g + a ≤ g. We have
g + a ∈ M . It follows that g + a ∈ G0. Also g ∈ G0. (Take a = 0.)
Thus a ∈ G0. We conclude that g ∈ ∆+.
iv): Since ∆ is the maximal subgroup H of G1 with H− v-convex in
M and also the maximal subgroup H of G1 with H+ v-convex in M ,
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it follows that H is the maximal subgroup of G1 which is v-convex
in M .

§8 Principal valuations

In II, §10 we had introduced BM-valuations (BM = Bezout-Manis,
cf. II, §10 Def.2) as a special class of PM-valuations. We now define
“principal” valuations. They turn out to be a special class of tight
valuations, related to BM-valuations in an analogous way as tight
valuations are related to PM-valuations.

Definition 1. We call a valuation v:R → Γ ∪ ∞ on a ring R
principal, if v is Manis and the Av-module Iγ : = Iγ,v is principal for
every γ ∈ Γv, i.e. Iγ = Avx with x ∈ R. {Recall that Iγ denotes the
set of all z ∈ R with v(z) ≥ γ.}
We have briefly studied such valuations in II, §10. We read off from
II, Lemma 10.6 and its proof:

Proposition 8.1. Let v:R → Γ ∪ ∞ be a valuation.
a) The following are equivalent:
(1) v is principal.
(2) v is Manis, and Iγ is a principal Av-module for every γ ∈ Γv

with γ < 0.
(3) v(R∗) = Γv.

b) If v is principal, then for every γ ∈ Γv there exists a unit x of
R such that Iγ = Avx. Moreover, if γ ≤ 0, every generator of the
Av-module Iγ is a unit.

Remarks 8.2. i) It follows that every principal valuation is tight,
since an Av-submodule I = Avx of R with x ∈ R∗ is clearly invert-
ible, I−1 = Avx

−1. More precisely, the principal valuations are just
those tight valuations v, for which the modules Iγ,v with γ running
through Γv are principal.
ii) The BM-valuations, introduced in II, §10, Def.2, are the principal
valuations which are also PM.
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Examples 8.3. The valuation described in 4.1.c is principal but not
BM, if the ideal pA there is not maximal. The valuation described in
4.1.d is tight but neither principal nor PM, if the k-module L there
is not free and k is not a field.

Proposition 8.4. Assume that v:R � Γ∪∞ is a principal surjective
valuation.
a) If H is a convex subgroup of Γ, then w: = v/H is a principal
valuation on R with Aw = Av,H , pw = pv,H , and u: = vH = v|

Av,H

is a principal valuation on Av,H with Au = Av, pu = pv.
b) The rings Av,H with H a convex subgroup of Γ (i.e. the v-convex
R-overrings of Av) are precisely the R-overrings B of A such that
the extension A ⊂ B is tight.

Proof. a): Of course Au = Av, pu = pv, Aw = Av,H , pw = pv,H
(cf. I, § 1). It follows from v(R∗) = Γ that w(R∗) = Γ/H. If
γ ∈ H is given, there exists some x ∈ R∗ with v(x) = γ. This
implies that x ∈ Av,H and x−1 ∈ Av,H . Thus x is a unit of B and
u(x) = v(x) = γ. Thus u(B∗) = H, hence u is tight.
b): This is clear by Theorem 4.13, since principal valuations are
tight.

Since a principal valuation v:R → Γ ∪ ∞ is Manis, it is – up to
equivalence – uniquely determined by the pair (Av, pv). This leads
us to the following definition. Recall that in our terminoloy here a
“pair” (A, p) consists of a ring A and a prime ideal p of A. It is a
“pair in R”, if A is a subring of R.

Definition 2. Let R be a ring. We say that a pair (A, p) in R is
principally valuating (abbreviated: pv) in R if there exists a principal
valuation v on R with Av = A, pv = p. We say that (A, p) is BM (=
Bezout-Manis) in R if in addition A is Prüfer in R, i.e. the valuation
v is BM.

Scholium 8.5. Assume that (A, p) is pv in R and A = R. Then,
since (A, p) is Manis in R, we have p = pRA. (Recall the notation
in I, §2, Def.2). Let B be an R-overring of A with B = R. From
Proposition 4 we read off the following: (A, p) is pv in B iff the
extension A ⊂ B is tight. In this case (B, pRB) is pv in R, and pRB
coincides with the conductor qBA of A in B.



230 §8 Principal valuations

Expanding on Proposition 5.11.i we present a transivity result for
principal valuations. It is more satisfying than the result on tight
valuations in 5.11.iii.

Proposition 8.6. Let A ⊂
= B ⊂

= C be ring extensions and p a prime
ideal of A. Let q denote the conductor of A in B. Assume that (A, p)
is pv in B and (B, q) is pv in C. Then (A, p) is pv in C.

Proof. We know by Proposition 5.11.i that (A, p) is Manis in C. Let
v:C � Γ∪∞ be a surjective Manis valuation with (Av, pv) = (A, p).
As explained in the proof of Prop.5.11.iii, there exists a convex sub-
group H of Γ such that w: = v/H has the valuation ring Aw = B
and the center pw = q. The special restriction u: = v|

B
= vH is a

Manis valuation on B with Au = A, pu = p. By hypothesis both w
and u are principal. We have to verify that v is principal.

Let γ ∈ Γ be given. By Proposition 1 there exists some s ∈ C∗ with
w(s) = γ +H, i.e. v(s) = γ + h with some h ∈ H. Since u has the
value group H, there also exists some t ∈ B∗ with u(t) = −h, hence
v(t) = −h. It follows that v(st) = γ. This proves that v is principal
(cf. Prop.1).

Corollary 8.7. In the situation of Proposition 8.6 assume that
(A, p) is BM in B and (B, q) is BM in C. Then (A, p) is BM in C.

Proof. This follows from Proposition 6 and the fact that A is Prüfer
in C (cf. Cor.I.5.3).

We mention that Corollary 7 is also a consequence of Prop.5.11.i and
the transivity result for Bezout extensions stated in Prop.II.10.11.

Given a pair (A, p) in a ring R, we want to establish and study a
“PV-hull” PV(A, p, R) and a “BM-hull” BM(A, p, R) of A in R in
full analogy to the TV-hull TV(A, p, R) and PM-hull PM(A, p, R)
introduced in §5. In the case “BM” all the work is already done.

Definition 3. a) Given a pair (A, p) in R, we define the BM-
hull BM(A, p, R) of (A, p) in R as the intersection of the PM-hull
PM(A, p, R) and the Bezout-hull Bez(A,R) (cf. II, §10),

BM(A, p, R) = Bez(A,R) ∩ PM(A, p, R).
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b) Given any pair (A, p), we define the BM-hull of (A, p) as

BM(A, p): = BM(A, p, Q(A)).

Proposition 8.8. Let (A, p) be a pair in a ring R.
i) BM(A, p, R) is the unique maximal overring B of A in R such that
(A, p) is BM in R.
ii) If B is an R-overring of A and (A, p) is BM in B, there exists a
unique homomorphism ϕ:B → BM(A, p) over A, and ϕ is injective.
iii) BM(A, p) = BM(A, p,QuotA) = BM(A, p, P (A))
iv) If the ideal p is not maximal in A, then BM(A, p, R) = A.

Proof. i) and ii) follow immediately from the analogous properties
of PM-hulls and Bezout-hulls (cf. §5 and II, §10). Claim ii) follows
from the facts that Bez(A) ⊂ QuotA (cf. II, 10.15) and Bez(A) ⊂
P (A). {N.B. Also PM(A, p) ⊂ P (A).} Claim iv) is evident, since
for a non trivial PM-valuation v on R the ideal pv is maximal in Av
(cf. Cor.1.4), hence PM(A, p, R) = A.

Theorem 8.9. Let (A, p) be a pair in a ring R. Assume that B
is a set of R-overrings B of A such that (A, p) is pv in B for every
B ∈ B. Then B is totally ordered by inclusion, hence the union C
of all B ∈ B is again an R-overring. The pair (A, p) is pv in C.

Proof. Proposition 5.8 tells us that B is totally ordered by inclusion,
since (A, p) is tv in every B ∈ B. Now we run again through the
proof of Lemma 5.9. In the setting explained there we have for
every γ ∈ Γ with γ ≤ 0 some i ∈ I with Iγ,v = Iγ,vi . Since the
valuation vi is principal, the A-module Iγ,v is principal. It follows
by Proposition 1 that v is principal. Thus (A, p) is pv in C.

Choosing for B the set of all R-overrings B of A with (A, p) pv in B
we obtain

Corollary 8.10. Given a pair (A, p) in a ring R there exists a unique
maximal R-overring C of A such that (A, p) is pv in C. It contains
every other R-overring B of A with (A, p) pv in B.

Definition 3. a) We call this ring C the principal valuative hull (or
PV-hull for short) of (A, p) in R, and we write C = PV(A, p, R).
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b) If (A, p) is any pair we denote the ring PV(A, p, Q(A)) more briefly
by PV(A, p), and we call PV(A, p) be principal valuative hull (= PV-
hull) of (A, p).

Scholium 8.11. a) If (A, p) is any pair, we have

PV(A, p) = PV(A, p,QuotA) = PV(A, p, T (A)).

b) Given a pair (A, p) in some ring R we have the following diagram
of inclusions

PV(A, p, R) ⊂ TV(A, p, R)⋃ ⋃
BM(A, p, R) ⊂ PM(A, p, R),

and BM(A, p, R) = PV(A, p, R) ∩ PM(A, p, R).

Assume now – as in most of §7 – that there is a given valuation
R → G ∪ ∞ and A = Av, p = pv. We are interested in a description
of D: = PV(A, p, R) in terms of the valuation v. This makes sense,
since the special restriction v|

D
is the principal valuation u onD with

(Au, pu) = (A, p), hence D is v-convex in R according to Proposi-
tion 7.5. Thus for any x ∈ R the value v(x) ∈ G decides whether x is
an element of D or not. This ist just as in the case D = TV(A, p, R)
studied in §7. Running again through the arguments in the second
half of §7 one obtains a description of PV(A, p, R) completely anal-
ogous to the description of TV(A, p, R) there. We state:

Observation 8.12. Theorem 7.7, Corollary 7.8 and Theorem 7.9 re-
main true if we replace there everywhere TV(A, p, R) by PV(A, p, R)
and the word “R-invertible” (or: “invertible in R”) by “R-invertible
and principal”.
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§9 Descriptions of the PM-hull

In the following A ⊂ R is a ring extension and x is a given element of
R. We look for a handy criterion that x is contained in the PM-hull
PM(A,R, p) for a given prime ideal p of A. We may always assume
without loss of generality that x ∈ A. We first need a new description
of relative Prüfer hulls and an easy lemma about regularity of prime
ideals.

Theorem 9.1. The following are equivalent.
(i) A is Prüfer in A[x] {i.e. x ∈ P (A,R)}.
(ii) For every a ∈ A the A-module A+Aax is invertible.
(iii) (A: ax) + ax(A: ax) = A for every a ∈ A.

Proof. If y ∈ R and the A-module A+Ay is invertible, then A+Ay
is R-invertible, since (A+Ay)−1 ⊂ A ⊂ R. Now the equivalence (ii)
⇔ (iii) is evident, since [A:A+ Aax] = (A: ax). The implication (i)
⇒ (iii) is covered by Theorem I.5.2. {(i) ⇒ (ii) is also covered by
Theorem II.1.13.}
(iii) ⇒ (i): Let B: = A[x] and let p be a prime ideal of A. We verify
that the pair (AB[p], p

B
[p]) is Manis in B. Replacing R by B we assume

without loss of generality that R = A[x].

Let A′: = A[p], p′: = p[p]. We have R = A′[x] and can apply Theorem
6.1. By that theorem it suffices to verify that, for a given z ∈ A′

with zx ∈ A′, there exists some y ∈ p′ with yzx ∈ A′ \ p′.

We choose d ∈ A \ p with dz ∈ A. Since zx ∈ A′ we have dzx ∈ A.
By our assumption (iii) we have (A: dzx) + dzx(A: dzx) = A. Now
(A: dzx) ⊂ p, since d ∈ A \ p and zx ∈ A[p]. We conclude that
there exists some y0 ∈ (A: dzx) ⊂ p with y0dzx ∈ A \ p. Then
y: = y0d ∈ p ⊂ p′ and yzx ∈ A \ p ⊂ A′ \ p′.

Remark 9.2. We mention that a proof of (ii) ⇒ (i) is possible ap-
plying Theorem II.9.6 about Prüfer modules instead of Theorem 6.1.
One argues in the same way as in the proof of Proposition II.10.29
on Bezout extensions, first observing that there exists an invertible
ideal I of A with Ix ⊂ A. This implies that the extension A ⊂ A[x]
is tight, hence may be viewed as subextension of the tight hull T (A)
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and then of Q(A). For every z ∈ A+Ax we have A+Az = A+Aax
with some a ∈ A. Thus A + Az is invertible. We conclude that the
Q(A)-overmodule A+Ax is Prüfer. Now Theorem II.9.6 tells us that
the extension A ⊂ A[x] is Prüfer.

Lemma 9.3. Let A ⊂ R be a weakly surjective ring extension and
p be a prime ideal of A.
i) p is R-regular iff there exists some x ∈ R with (A:x) ⊂ p.
ii) If x ∈ R is given, then p is A[x]-regular iff (A:x) ⊂ p.

Proof. i): We know by Lemma 1.1 that p is R-regular iff A[p] = R.
This means that there exists some x ∈ R with (A:x) ⊂ p.
ii): Replacing R by A[x] we may assume that R = A[x]. Now A[p] =
R iff x ∈ A[p], and this means again that (A:x) ⊂ p.

Theorem 9.4. Assume that x ∈ R \A and p is a prime ideal of A.
The following are equivalent.

(1) x ∈ PM(A, p, R).
(2) (A, p) is saturated in A[x], and the A-module A+Aax is invert-

ible for every a ∈ A.
(3) (A, p) is saturated in A[x], and (A: ax)+ax(A: ax) = A for every

a ∈ A (with ax ∈ A).
(4) p is the unique prime ideal of A containing (A:x), and A+Aax

is invertible for every a ∈ A.

Proof. The implications (1) ⇒ (2) ⇔ (3) are by now trivial. {Notice
that (1) means that (A, p) is PM in A[x].}
(3) ⇒ (1): The extension A ⊂ A[x] is Prüfer by Theorem 1. Thus
(A, p) = (A[p], p[p]) is Manis in A[x]. We conclude that (A, p) is PM
in A[x].
(1) ⇔ (4): We know by Theorem 1.8 that A is PM in A[x] iff A
is Prüfer in A[x] and p is the unique R-regular maximal ideal of A.
The claim now follows from Theorem 1 and Lemma 3.ii.

This theorem gives a criterion for membership in the PM-hull based
on the modules A + Aax. We now look for a criterion based on
the ideals (A: ax) instead. Notice that for the TV-hull in a Manis
extension such a criterion has been given in Corollary 7.8.
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Lemma 9.5. Let p be a prime ideal of A and x an element of R\A.
Assume that A is integrally closed in B: = A[x]. Then (AB[p], p

B
[p]) is

Manis in B iff for each a ∈ A with ax ∈ A there exists a polynomial
F (T ) ∈ A[T ] \ p[T ] with F (ax) = 0.

Proof. Replacing R by B we assume without loss of generality that
R = A[x]. If (A[p], p[p]) is Manis in R then such polynomials exist
by Theorem I.2.12.

Assume now that conversely the polynomial condition is fulfilled.
Let a ∈ A be given with ax ∈ A[p]. By Theorem 6.1 it suffices to
verify that there exists some y ∈ p[p] with yax ∈ A[p] \ p[p]. This
can be done by arguing precisely as in the proof of the direction
(ii) ⇒ (i) in the proof of Theorem I.2.12, always working with ax
instead of x.

Proposition 9.6. Assume that A is integrally closed in A[x]. The
following are equivalent.

(1) A is Prüfer in A[x].
(2) For every a ∈ A (with ax ∈ A) the ideal (A: ax) of A is invertible

in A[ax].
(2′) For every a ∈ A (with ax ∈ A) the ideal (A: ax) is regular in

A[ax].
(3) For every a ∈ A (with ax ∈ A) the extension A ⊂ A[ax] is

weakly surjective.
(4) For every p ∈ SpecA and every a ∈ A with ax ∈ A there exists

some polynomial F (T ) ∈ A[T ] \ p[T ] with F (ax) = 0.

Proof. The implication (1) ⇒ (2) is covered by Theorem 1 (or by
I, §5), and (1) ⇔ (4) is covered by Lemma 5. The implication (1)
⇒ (3) is evident by the theory of Prüfer extensions in I, §5, and (3)
⇒ (2′) is evident by the theory in I, §3 (cf. Th.I.3.13). (2) ⇒ (2′) is
trivial.

We prove (2′) ⇒ (4), and then will be done. Let p ∈ SpecA and
a ∈ A with ax ∈ A be given.

Case 1: ax ∈ A[p]. We choose b ∈ A \ p with bax = c ∈ A. Then
F (T ): = bT − c does the job.
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Case 2: ax ∈ A[p], i.e. (A: ax) ⊂ p. Since (A: ax) is A[ax]-regular,
we have a relation

1 =
n∑
i=0

ai(ax)i

with n ∈ N0 and all coefficients ai ∈ (A: ax) ⊂ p. Now the polyno-
mial F (T ): = (a0 − 1) + a1T + · · · + anT

n does the job.

We turn to the special case that the pair (A, p) is valuative in R (§7,
Def. 2). Thus there is given a valuation v:R → G∪∞ with A = Av,
p = pv. Notice that A is integrally closed in R and (A, p) is saturated
in R.

If A is Prüfer in A[x] then A is PM in A[x], cf. the proof of (3) ⇒
(1) in Theorem 4. Thus the PM-hull PM(A, p, R) coincides with the
Prüfer hull P (A,R).

Theorem 9.7. Let x ∈ R\A be given. The following are equivalent.
(1) A is Prüfer in A[x] (i.e. x ∈ PM(A, p, R)).
(2) (A: ax) + ax(A: ax) = A for every a ∈ A.
(2′) The A-module A + Aax is invertible for every a ∈ A (hence

invertible in A[ax]).
(3) The ideal (A: ax) of A is invertible in A[ax] for every a ∈ A.
(3′) The ideal (A: ax) of A is regular in A[ax] for every a ∈ A.
(4) A is weakly surjective in A[ax] for every a ∈ A.
(5) (A+Aax)(A ∩Aax) = Aax for every a ∈ A (with ax ∈ A).
(5′) For every a ∈ A (with ax ∈ A) there exists some n ∈ N such

that (ax)n(A: ax) + (ax)n+1(A: ax) = A(ax)n.
(6) The A-module A+Ay is invertible for every y ∈ A[x].
(7) The A-module A+Ay is v-convex in R for every y ∈ A[x].
(7′) The A-module A+Aax2 is v-convex in A[x] for every a ∈ A.
(7′′) The A-module A+A(ax)2 is v-convex in A[ax] for every a ∈ A.
(8) A[ax] = A[(ax)2] for every a ∈ A.
(8′) For every a ∈ A (with ax ∈ A) there exists some n ∈ N, n ≥ 2,

with A[ax] = A[(ax)n].

Proof. The equivalence of (1), (2), (2′) is covered by Theorem 1, and
the equivalence of (1), (3), (3′), (4) is covered by Proposition 6. The
implication (1) ⇒ (5) is covered by Theorem II.1.4,(4). Since A ∩
Aax = ax(A: ax), the equation in (5) can also be read as ax(A: ax)+
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(ax)2(A: ax) = Aax. Thus the implication (5) ⇒ (5′) is trivial (and
the implication (2) ⇒ (5) as well).
(5′) ⇒ (1): Let a ∈ A be given with ax ∈ A. We have a relation

c0(ax)n−1 + c1(ax)n+1 = (ax)n

with c0, c1 ∈ A. Thus condition (4) in Proposition 6 holds, and we
conclude by that proposition that A is Prüfer in A[x].
(1) ⇒ (6): This is evident by Theorem II.1.13.
(6) ⇒ (7): By Proposition 4.6 we have A + Ay = Iγ,v with some
γ ∈ G. Thus A+Ay is v-convex.
The implications (7) ⇒ (7′), (7) ⇒ (7′′), (8) ⇒ (8′) are trivial.
(7′) ⇒ (8): Let a ∈ A be given with ax ∈ A. Then
v(ax2) < v(x) < 0. Since A + Aax2 is assumed to be v-convex, we
conclude that x ∈ A + Aax2. This implies ax ∈ A + A(ax)2 and
A[ax] = A[(ax)2].
(7′′) ⇒ (8): The proof is similar.
(8′) ⇒ (1): We can apply (4) ⇒ (1) in Proposition 6.

Remarks 9.8. i) In condition (2) of the theorem it is important
to insist that (A: ax) is invertible in A[ax]. We cannot replace
here A[ax] by R, since otherwise we would confuse our criteria for
membership in PM(A, p, R) with the criterion 7.8 on membership
in TV(A, p, R) (in the case that v is Manis). This can be illus-
trated well by our example 4.1.c. There we have R = A[x−1] and
(A: ax−1) = Ax for every a ∈ A with ax−1 ∈ A. Thus (A: ax−1)
is R-invertible for every such a. But (A: ax−1) is not invertible in
A[ax−1]. Thus x does not lie in the PM-hull of (A, p) in R. Indeed,
v is tight, hence TV(A, p, R) = R, but PM(A, p, R) is forced to be
A, since the only proper subgroup of Γv = Z is the trivial group.
ii) It may be tempting to replace conditions (7) and (7′) in the the-
orem by the condition that A + Aax is v-convex in A[x] (or in R)
for every a ∈ A with ax ∈ A. But this condition is too weak, as the
following example shows.

Let k be a field and v:R → Z∪∞ be the valuation on the polynomial
ring R: = k[X] with v(k∗) = 0 and v(X) = −1. Then A: = Av = k
and A + AaX = k + kX for each a ∈ A \ 0. It is easy to see that
A + AaX is v-convex in R for every a ∈ A. But A is not Prüfer in
R, not even weakly surjective in R.
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We draw some profit from Proposition 6 and Theorem 7 for the
theory of Bezout extensions started in II, §10.

Proposition 9.9. a) Assume that A is integrally closed in R. Let
x ∈ R \A be given. The following are equivalent.
(1) A is Bezout in A[x].
(2) For every a ∈ A the ideal (A:Aax) is generated by an element

of A ∩A[x]∗.
b) Under the more special assumption, that there exists a valuation
v on R with Av = A, the conditions (1), (2) are also equivalent to
(3) For every a ∈ A the A-module A+Aax2 is principal.

N.B. Without any assumption on the extension A ⊂ B we know by
Theorem II.10.29 that (1) is equivalent to
(4) For every a ∈ A the A-module A+Aax is principal.

Proof. We assume without loss of generality that R = A[x]. It is
clear by II, §10 that (1) implies (2) and (3).
(2) ⇒ (1): We verify condition (4). We know by Proposition 6 that
A is Prüfer in A[x]. Let a ∈ A. The A-module A+Aax is invertible
and (A + Aax)−1 = (A: ax). By assumption, (A: ax) = As with
s ∈ A ∩R∗. It follows that A+Aax = As−1.
(3) ⇒ (1): Now A = Av for some valuation v on R. We again
verify condition (4). Let a ∈ A be given. Assume ax ∈ A without
loss of generality. By assumption (3) there exists some y ∈ R with
A + Ax2 = Ay. Clearly y ∈ R∗ and v(x2) = v(y). Now v(xy ) > 0,
hence certainly x = cy with c ∈ A. Also y = a1 + a2x

2 with a1, a2 ∈
A. Thus

A+Aax = A+Aac(a1 + a2x
2) = A+Aaca2x

2,

and this is principal by (3).

We did not succeed to establish a criterion similar to (7′′) in Theo-
rem 7 for A to be Bezout in A[x].

The criteria in Theorem 7 leave something to be desired. We know by
Proposition 7.5 that PM(A, p, R) is v-convex in R. In particular, for
a given x ∈ R, the value v(x) alone decides whether x ∈ PM(A, p, R)
or not. But this is reflected by none of these criteria.
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Notations 9.10. As before v:R → G∪∞ is an arbitrary valuation,
and A: = Av, p: = pv. Let E: = PM(A, p, R) = P (A,R), and let
q denote the conductor of A in E. This is the support of the PM-
valuation u: = v|E . Let Σ denote the subgroup v(E \ q) of G. If
g ∈ G, and nothing else is said, then Ig: = Ig,v.

Of course, Σ = Γu. Since E is v-convex we have

E = {x ∈ R | v(x) ≥ γ for some γ ∈ Σ} = A
v,Σ̂ ,

q = {x ∈ R | v(x) > γ for all γ ∈ Σ} = p
v,Σ̂ ,

with Σ̂ the convex hull of Σ in G (cf. Notations 4.10). We start out
to determine the group Σ. Here the criterion (5) in Theorem 3.4 will
be of help for us.

Lemma 9.11. Let s ∈ A \ p be given, and let Φs denote the set of
all g ∈ G+ with Ig+As = A. There exists a unique convex subgroup
Ψs of G with Φs = (Ψs)+.

Proof. Clearly 0 ∈ Φs, and Φs is convex in G+. We verify that
Φs + Φs ⊂ Φs, and then will be done.

Let γ, δ ∈ Φs be given. We have Iγ + As = A and Iδ + As = A.
Thus IγIδ + Iγs = Iγ , and IγIδ + Iγs+ As = A. Since IγIδ ⊂ Iγ+δ
and Iγ ⊂ A, it follows that Iγ+δ +As = A, hence γ + δ ∈ Φs.

Theorem 9.12. The value group Σ of the PM-hullE = PM(A, p, R)
is the intersection Ψ ∩ Γ of Ψ: =

⋂
s∈A\p

Ψs and the value group Γ of

the Manis valuation hull C = MV(A, p, R). {Γ has been described
in §6, cf. Th.6.9.}

Proof. v′: = v|C is a Manis valuation with value group Γ. If γ ∈ Γ
then Iγ,v = Iγ,v′ , since C is v-convex in R (Th.6.9). We obtain

(Ψ ∩ Γ)+ = {γ ∈ Γ | Iγ,v′ +As = A for every s ∈ A \ p}.

We have E = PM(A, p, C). Thus we may replace in our proof R by
C and v by v′. From now on we assume without loss of generality
that v is Manis with value group Γ.
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The group Ψ is convex in Γ. Let B: = Av,Ψ =
⋃

γ∈Ψ+

I−γ , and u: =

v|B = v|Ψ (cf. Notations 4.10). We prove directly:
(1) The valuation u:B � Ψ ∪ ∞ is PM.
(2) If B′ is an R-overring of A with u′: = v|B′ PM , then B′ ⊂ B.
Then the claim of the theorem will be obvious.

(1): u is Manis. Let s ∈ A\p and z ∈ A be given with γ: = u(z) = ∞.
By Theorem 3.4 (condition 5) it suffices to verify that Iγ,u+As = A.
Now γ = v(z), Iγ,u = Iγ,v, and γ ∈ Ψ+ ⊂ Φs,+. Thus Iγ,u+As = A,
as desired.
(2): Consider γ = u′(z) = ∞ for some z ∈ A not in the support of
u′. We have γ = v(z) > 0 and Iγ,v = Iγ,u′ . Let s ∈ A \ p be given.
Since u′ is PM we know by Theorem 3.4 (or 2.7) that Iγ,u′ +As = A,
hence Iγ,v +As = A. This proves that γ ∈ Ψ+.

Let now x ∈ B′ \ A be given. Since u′ is Manis there exists some
z ∈ A with γ: = u′(z) = −u′(x). We have γ ∈ Ψ+ and x ∈ I−γ,u′ =
I−γ,v ⊂ B. Thus B′ ⊂ B.

Corollary 9.13. An element x of A lies in the conductor qEA of E: =
PM(A, p, R) iff either x is in the conductor qCA of C: = MV(A, p, R),
or v(x) = γ ∈ Γ, but Iγ is contained in some maximal ideal m = p of
A. {The ideal qCA had been described in §6, cf. Th.6.4 and Th.6.9.}.

Indeed, Iγ ⊂ m for some maximal ideal m = p of A iff there exists
some s ∈ A \ p with Iγ +As = A.

§10 Composing valuations with ring homomorphisms

In this section we are given a surjective ring homomorphism
ϕ:R −→−→ R. Let N denote the kernel of ϕ.

If w:R → Γ ∪ ∞ is a valuation on R then w ◦ ϕ:R → Γ ∪ ∞ is a
valuation on R. Both valuations w and v: = w ◦ ϕ have the same
value group Γv = Γw, and clearly Av = ϕ−1(Aw), pv = ϕ−1(pw),
supp v = ϕ−1(suppw). In particular supp v ⊃ N . Since v(R) =
w(R), it is also evident that v is Manis iff w is Manis, and that v is
special iff w is special.
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Conversely, if v is a valuation on R and N ⊂ supp v, there exists a
unique valuation w on R such that v = w ◦ ϕ, as is easily seen.

Proposition 10.1. The nontrivial special valuations w on R corre-
spond bijectively with the nontrivial special valuations v on R, such
that N ⊂ Av, via v = w ◦ ϕ. The valuation v is Manis (resp. PM)
iff w is Manis (resp. PM).

Proof. Assume that v is a special valuation on R with N ⊂ Av = R.
Proposition I.2.2 tells us that supp v is the conductor of Av in R.
Since N is an ideal of R, it follows that N ⊂ supp v. As said above,
this implies v = w ◦ ϕ with w a special valuation on R, of course
uniquely determined by v. We also observed that v is Manis iff w is
Manis.

It remains to prove the claim concerning “PM”. We have ϕ(Av) = Aw
and ϕ−1(Aw) = Av. Proposition I.5.8 tells us that Av is Prüfer in R
iff Aw is Prüfer in R. Thus v is PM in R iff w is PM in R.

We draw consequences from Proposition 1 for the PM-hulls and Ma-
nis valuation hulls introduced in §5. The easy proofs are left to the
reader.

Corollary 10.2. (As before, ϕ:R → R is a surjective ring homo-
morphism.) Assume that A is a subring of R and p a prime ideal of
A. Let A: = ϕ−1(A) and p: = ϕ−1(p).

a) PM(A, p, R) = ϕ−1(PM(A, p, R)).
b) (A, p) is saturated in R iff (A, p) is saturated in R. In this case,

MV(A, p, R) = ϕ−1(MV(A, p, R)).

In order to derive similar results for tight valuations and tight val-
uation hulls, we first study invertible ideals and tight extensions in
general. {We could have done this study in Chapter II, §4.} As
before, ϕ:R → R is a surjective ring homomorphism.

Lemma 10.3. Let A be a subring of R and A: = ϕ(A).

a) If I is an R-invertible A-submodule of R then ϕ(I) is an R-
invertible A-submodule of R, and ϕ(I)−1 = ϕ(I−1).
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b) Assume that N ⊂ A, i.e. A = ϕ−1(A). Assume further that I is
an A-submodule of R with N ⊂ I, and that the A-submodule ϕ(I)
of R is R-invertible. Then I is R-invertible.

Proof. a): This claim is evident.
b): Let I: = ϕ(I) and J : = ϕ−1(I

−1
). Then I = ϕ−1(I) and ϕ(IJ) =

I I
−1

= A. We prove that N ⊂ IJ . Then it will follow that IJ = A.

We have ϕ(IR) = I R = R and N = NR ⊂ IR, hence IR = R.
Further IN = IRN = RN = N , and N ⊂ J . Thus indeed IJ ⊃ N .

Proposition 10.4. Let again A be a subring of R and A: = ϕ(A).

a) If A is tight in R, then A is tight in R.
b) Assume that A = ϕ−1(A), and that A is tight in R. Then A is
tight in R.

Proof. a): This claim is evident from part a) of Lemma 3.

b): Let x ∈ R \ A be given. We have to find an R-invertible ideal I
of A such that Ix ⊂ A.

There exists an R-invertible ideal I of A such that Iϕ(x) ⊂ A. Let
I: = ϕ−1(I). Since A = ϕ−1(A) we have Ix ⊂ A. Lemma 3b tells us
that I is R-invertible.

Lemma 10.5. (As before, ϕ:R → R is a surjective ring homo-
morphism.) Let w be a valuation on R and v: = w ◦ ϕ. For any
γ ∈ Γv = Γw the Av-module Iγ,v is invertible in R iff the Aw-module
Iγ,w is invertible in R.

Proof. Clearly ϕ−1(Iγ,w) = Iγ,v. ThusN ⊂ Iγ,v and ϕ(Iγ,v) = Iγ,w.
Also ϕ−1(Aw) = Av. Lemma 3 gives the claim.

From this Lemma we obtain immediately

Proposition 10.6. Let w be a valuation on R and v: = w ◦ϕ. Then
v is tight iff w is tight.

As a consequence of this proposition one proves easily
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Corollary 10.7. Assume that A is a subring of R and p a prime
ideal of A. Let A: = ϕ−1(A) and p: = ϕ−1(p). Then

TV(A, p, R) = ϕ−1(TV(A, p, R)).

We return to PM-valuations.

Proposition 10.8. Assume that A is a subring of R which is PM
in R. Then ϕ(A) is PM in R.

We give two proofs of this fact, the first one very short, the second
one giving also information about the associated PM-valuations.

First proof. ϕ(A) ⊂ R is Prüfer by Proposition I.5.7. The subrings
of R containing ϕ(A) form a chain, since this holds for the subrings
of R containing A. This gives the claim by Theorem 3.1.

Second proof. We may assume that A = R. Let v denote the
PM-valuation on R with Av = A. Since Av ⊂ ϕ−1(A) = A + N ,
there exists a unique PM-valuation v′ on R such that Av′ = A+N .
It is a coarsening of v. Proposition 1 now tells us that there exists a
PM-valuation w on R, unique of course, with v′ = w ◦ ϕ. We have
ϕ−1(Aw) = Av′ , hence Aw = ϕ(Av′) = ϕ(A+N) = A.

These proofs may serve as an illustration of the good natured be-
haviour of PM-valuations. We are not able to deduce analogous
results for Manis or tightly valuating extensions.

§11 Transfer of Valuations

We return to the situation in the main part of II, §6: Let A ⊂ R be
a Prüfer extension and A ⊂ C a ws extension. We regard both R
and C as subrings of R⊗A C = RC.

We know already from I, §5 that C is Prüfer in RC, and we have
various transfer theorems at our disposal concerning overrings, reg-
ular ideals etc., cf.II, §6. These give us relations between valuations
on R and on RC.
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As a starting point for explaining this we mention a fact which could
have been proved much earlier.

Proposition 11.1. (We assume that A ⊂ R is Prüfer.) Let v be a
special valuation on R with Av ⊃ A, and p: = pv ∩A. Then v is PM
and (Av, pv) = (A[p], p[p]).

Proof. The set R \Av is (empty or) multiplicatively closed. Propo-
sition I.5.1.iii tells us that A ⊂ R is Manis. Applying Proposi-
tion 6.6 (there with B = R) we see that v is Manis, hence PM
since Av ⊂ R is Prüfer. We have Av ⊃ A[p] and pv ⊃ p[p]. On
the other hand, since A ⊂ Av is ws and pAv = Av, it follows from
Theorem I.3.13 that Av ⊂ A[p]. Thus Av = A[p]. Now we conclude
from pv ∩A = p[p] ∩A = p, say by Prop. I.4.6, that pv = p[p].

Theorem 11.2. Let p be a prime ideal of A with P: = pC = C,
hence P a prime ideal of C. Let C[P]: = CRC[P] , P[P]: = PRC

[P] , A[p]: =
AR[p], and p[p]: = pR[p]. Then C[P] = C · A[p] and C[P] ∩ R = A[p].
Moreover P[P] = C · p[p] and P[P] ∩R = p[p]. If w is a PM-valuation
of RC with Aw = C[P], pw = P[P], and R ∩ C = A, the restriction
v: = w|R is a PM-valuation on R with Av = A[p], pv = p[p]. The
ideal P is RC-regular iff p is R-regular.

Proof. a) Let A′: = R ∩ C. The extension A ⊂ A′ is ws and the
ideal p′: = pA′ is different from A′, hence a prime ideal of A′ with
p′ ∩A = p, and p′ is R-regular iff p is R-regular. Also p′C = pC = P,
and A′R

[p′] = A[p] by Theorem I.3.13. Thus we may replace the pair
(A, p) by (A′, p′). We assume henceforth that R ∩ C = A.

b) Since the extension A ⊂ RC is ws we have ARC[p] = CRC[P] , again
by Theorem I.3.13. Intersecting with R we see that R ∩ C[P] =
R ∩ ARC[p] = A[p]. We introduce the notations Ã: = A[p], C̃: = C[P],

p̃: = p[p], P̃: = P[P]. Thus A ⊂ Ã ⊂ R, C ⊂ C̃ ⊂ RC, and C̃∩R = Ã.
The transfer theorem for overrings (Cor.II.6.6) tells us that ÃC = C̃.

We have a 2-step ladder of ring extensions
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A

C

Ã

ÃC = C̃

R

RC = RC̃

Here the verticals represent Prüfer extensions and the oblique lines
represent ws extensions. The ideal p is R-regular iff Ã = R and P
is RC-regular iff C̃ = RC, cf. Lemma 1.1. Since C̃ ∩ R = Ã these
conditions are equivalent (cf.II.6.6). If Ã = R then C̃ = RC, p̃ = Rp,
P̃ = RCP = Cp̃, P̃ ∩ R = p̃ (cf. Prop.I.4.6 or Th.I.4.8), and the
assertions in the theorem about w and v are trivially true. Starting
from now we assume that Ã = R, hence C̃ = RC.
c) The pair (Ã, p̃) is PM in R, and (C̃, P̃) is PM in RC. Thus p̃ is
the unique R-regular maximal ideal of Ã and P̃ is the unique RC-
regular maximal ideal of C̃ (cf. Cor.1.4). It is clear by the transfer
theorem for regular modules (Th.II.6.5), or by Corollary II.6.7, that
P̃ = C̃p̃ = CÃp̃ = Cp̃ and P̃ ∩ R = p̃. Let w denote “the” PM-
valuation on RC with Aw = C̃, (hence) pw = P̃, and let v: = w|R.
We have Av = R ∩ Aw = Ã and pv = R ∩ P̃ = p̃. We want to
verify that v is special. Then we will know by Proposition 1 that v is
Manis, and everything will be proved. That v is special means that
supp v coincides with the conductor q of Ã in R (Prop.I.2.2). Let
Q denote the conductor of C̃ in RC. We have Q = suppw, hence
R ∩ Q = supp v. Now Q is the set of all x ∈ C̃ with RC̃x ⊂ C̃, i.e.
Rx ⊂ C̃. If x ∈ R then Rx ⊂ C̃ means that Rx ⊂ R ∩ C̃ = Ã. Thus
Q ∩R is the conductor q of Ã in R, i.e. supp v = q. The theorem is
proved.

Corollary 11.3. In the situation of Theorem 2 we have suppw =
(supp v) · C.
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Proof. Let q: = supp v, Q: = suppw. We have Q∩R = q. Applying
Theorem I.4.8 (or Prop. I.4.6) to the ws extension R ⊂ RC, we
obtain Q = Cq.

Theorem 11.4. The R-overrings B of R ∩ C, such that B is PM
in R (resp. R ∩C is PM in B), correspond bijectively with the RC-
overrings D of C such that D is PM in RC (resp. C is PM in D) via
D = BC, B = R∩D. If w is a PM-valuation on RC with Aw = BC,
then the restriction w|R is a PM-valuation v on R with Av = B. If
u is a PM-valuation on BC with Au = C, then the restriction u|B
is a PM-valuation v on B with Av = R ∩ C.

Proof. We may assume in advance that R ∩ C = A. Now the R-
overrings B of A correspond bijectively with the RC-overrings D of
C via D = BC, B = R ∩D (Cor. II.6.6). The ring A is PM in B iff
the rings between A and B form a chain, and the ring C is PM in
D iff the rings between C and D form a chain (Th. 3.1). Since the
rings between A and B correspond with the rings between C and D
by the above bijective correspondence, it is clear that A is PM in B
iff C is PM in D. For the same reason B is PM in R iff D is PM in
RC. (This can also be read off from Theorem 2.)

Let some B of A in R be given, and let D: = BC. If there exists a
PM-valuation w on RC with Aw = D, Theorem 2 tells us that w|R is
a PM-valuation on R and Aw|R = B. If there exists a PM-valuation
u on BC, then, applying this to the extensions A ⊂ B, A ⊂ C, and
the B-overring A of A, we learn that u|B is a PM-valuation on B
and Au|B = A.

Theorem 4 implies a result on PM-hulls (cf. §5 for the definiton of
such hulls). Let A ⊂ R and A ⊂ C be subextensions of a ring
extension A ⊂ T . We still assume that A ⊂ C is ws but now do not
assume that A ⊂ R is Prüfer.

Corollary 11.5. Let p be a prime ideal of A with PM(A, p, R) = A.
Assume that R ∩ C = A. Then pC = C and PM(A, p, R) · C ⊂
PM(C, pC,RC).

Proof. Let B: = PM(A, p, R) andD: = BC. We have B∩C = A. By
Theorem 4 the extension C ⊂ D is PM. Moreover, by that theorem,
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if w is the Manis valuation on D with Aw = C, then v: = w|B is
the Manis valuation on B with Av = A. We have pw ∩ A = pv = p.
Since A ⊂ C is ws, this implies pw = pC. Thus pC is a prime ideal
of C, and (C, pC) is PM in D, hence D ⊂ PM(C, pC,RC).

We hasten to give an example of a PM-valuation which does not have
maximal support, as promised in §3.

Example 11.6. We choose a Prüfer domain A with quotient field K
and a valuation w on K with Aw ⊃ A and of rank one. This means
that Γw = 1, but Γw has no nontrivial proper convex subgroups. We
assume that there is given a subring B ofK with A ⊂ B but Aw ⊂ B,
B ⊂ Aw. It is easy to create such a situation. For example, let u
and w be valuations of a field K with w of rank 1, u not trivial, and
Au ⊂ Aw, i.e. w is not a coarsening of u. Then take A = Au ∩ Aw
and B = Au. It is well known that A is Prüfer in K (cf. Th.I.6.10).

Replacing A by Aw ∩ B we assume without loss of generality that
A = Aw ∩ B. We have A = B and BAw = K, since BAw is an
overring of Aw in K different from Aw. Now Theorem 4 tells us,
that the restriction v: = w|B of w is a PM valuation on B with
Av = A. We have suppw = {0}, hence supp v = {0}. Suppose that
supp v is a maximal ideal of B. Then B would be a field. Since
B ⊂ K is Prüfer, this forces B = K, contradicting our assumption
Aw ⊂ B. Thus v does not have maximal support. It is clear that
Γv = Γw, since QuotB = K and supp v = {0}.

Is it possible to obtain a transfer theorem near to Theorem 4 for
valuations of weaker type than PM-valuations, say tight valuations?
Here we run into difficulties. Anyway, we have the following theorem,
where instead of A,C,R only a ws extension R ⊂ T is given.

Theorem 11.7. Assume that R ⊂ T is a ws ring extension and
v:R → Γ ∪ ∞ is a valuation with (supp v) · T = T .

i) v extends uniquely to a valuation w:T → Γ ∪ ∞, and Γv = Γw,
(supp v) · T = suppw. If v is Manis, then w is Manis.

ii) Assume that v is tight. Then w is tight, and Iγ,w = Aw · Iγ,v
for every γ ∈ Γv = Γw. Also pw = Aw · pv. If v is principal then
w is principal.
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Proof. a) Let q: = supp v. We have qT = T . Since R ⊂ T is ws,
this implies that T = RT[q], cf. Th.I.3.13. Now Lemma 4.9 tells us
that v extends to a valuation w:T → Γ ∪ ∞ in a unique way, and,
looking at the proof of this easy lemma, we see that Γv = Γw. We
have R ∩ suppw = q. Since R ⊂ T is ws, this implies suppw = T · q
(cf. Prop.I.4.6). Of course, if v is Manis, i.e. v(R \ q) = Γv, then w
is Manis.
b) Let v be tight. We assume without loss of generality that Γv =
Γw = Γ. Let γ ∈ Γ be given. The Av-module Iγ,v is invertible in
R. This implies that the Aw-module Aw · Iγ,v is invertible in Aw ·R,
hence in T . Proposition 4.6 tells us that Aw · Iγ,v = Iδ,w for some
δ ∈ Γ. Of course, Aw · Iγ,v ⊂ Iγ,w. Thus δ ≥ γ. On the other hand,
there exists some x ∈ Aw ·Iγ,v, namely x ∈ Iγ,v, with w(x) = γ. This
forces δ = γ. We have proved for every γ ∈ Γ that Iγ,w = Aw · Iγ,v.
Since the ideal pv (resp. pw) is the union of the ideals Iγ,v (resp.
Iγ,w) with γ running through the positive elements of Γ, it follows
that pw = Aw · pv. If Iγ,v is principal for some γ ∈ Γ, then the same
holds for Iγ,w. This gives the last claim.

Discussion 11.8. a) In the situation of Theorem 7 let us assume in
addition that v is PM. We would like to conclude that w is PM. But
this seems to be impossible. We only know (from Theorem 7) that
w is tight.

More can be said about the restriction u: = w|RAw. This valuation
is Manis, since u(R) = Γv ∪ ∞ = Γw ∪ ∞, hence u(AwR) = Γw ∪ ∞.
We have Au = Aw, and the extension Aw ⊂ RAw is Prüfer since
Av ⊂ R is Prüfer (cf. Th.I.5.10). Thus u is PM.

b) We return to a setting similar to the one used in the main body
of this section: We are given two subextensions A ⊂ R and A ⊂ C
of a ring extension A ⊂ T . We assume that A ⊂ C is ws, but we no
longer assume that A ⊂ R is Prüfer. Let v:R → Γ ∪ ∞ be a Manis
valuation on R and q: = supp v. We assume that qRC = qC = RC.
Since R ⊂ RC is ws (cf. Prop. I.3.10), we know by Theorem 7 that v
extends uniquely to a Manis valuation w:RC → Γ∪∞, and Γw = Γv,
suppw = qC.

Now assume in addition that Av ⊃ A. Let p: = pv ∩A. Assume also
that pC = C. Then C = AC[p] (cf. Th. I.3.13), hence C ⊂ Aw. We
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have (pw ∩ C) ∩ A = pw ∩ A = pv ∩ A = p, and we conclude that
pw ∩ C = pC (cf. Prop. I.4.6).

We also have AvC ⊂ Aw, and Av ⊂ AvC is again ws. Further
pw ∩ Av = pv, hence pv(AvC) ⊂ pw ∩ (AvC), which is a prime ideal
of AvC, hence pv(AvC) = AvC. Replacing A and C by Av and AvC,
we see that pw ∩ (AvC) = pv(AvC) = pvC.

This is all very fine, but one major question remains open: Is AvC =
Aw? We have AvC ⊂ Aw and Aw∩R = Av. In the case, that Av ⊂ R
is Prüfer, i.e. v is PM, we can conclude by our transfer theory in
II, §6 from this, that indeed AvC = Aw, but now we do not have
such a sharp tool at our disposal. If v is tight, then w is tight by
Theorem 7, but even then there seems to be no way to prove that
AvC = Aw without further assumptions.

We return to PM-valuations. We now prove some sort of generaliza-
tion of Theorem 4, relaxing there the overall assumption, that the
extension A ⊂ R is Prüfer, to the weaker assumption, that A ⊂ R is
convenient (cf.I, §6 for the definition and examples of convenience).
The following theorem also adds details to Theorem 4 in the case
that A ⊂ R Prüfer.

Theorem 11.9. Let A ⊂ R and A ⊂ C be subextensions of a ring
extension A ⊂ T . Assume that A ⊂ R is convenient and A ⊂ C is
ws. Then the extension C ⊂ RC is convenient. The PM-valuations
w on RC with Aw ⊃ C correspond bijectively (up to equivalence)
with the PM-valuations v on R with Av ⊃ A and (pv ∩ A)C = C,
via v = w|R and Aw = AvC. The valuations v and w have the same
value group Γv = Γw, and suppw = (supp v)C, pw = pvC. Also
Iγ,w = Iγ,vC for every γ ∈ Γw.

Proof. Let D be an overring of C in RC with D = RC and (RC)\D
closed under multiplication. We want to verify that RC is PM over
D. The ring B: = R ∩D is an R-overring of A, and R \ B is closed
under multiplication. Since R is convenient over A the extension
B ⊂ R is PM. We have BC ⊂ D. The extension B ⊂ BC is ws
by Proposition I.3.10, and B ⊂ R ∩ (BC) ⊂ R ∩ D = B, hence
B = R ∩ (BC). Now we know by Theorem 4, applied to the Prüfer
extension B ⊂ R and the ws extension B ⊂ BC, that BC ⊂ RC
is PM, and moreover BC = D, since BC and D have the same
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intersection B with R. Let w be a PM-valuation on RC with Aw =
BC, and v: = w|R. Theorem 4 also tells us that v is PM and Av = B.
We thus have proved that the extension C ⊂ RC is convenient, and
also, that every PM-valuation w on RC with C ⊂ Aw restricts to a
PM-valuation v on R. Of course Av ⊃ A. Also pw ∩ Av = pv. This
implies pw = pvAvC = pvC, since Av is ws in AvC. In particular,
pvC = AvC, hence (pv ∩A)C = C.

Let now a PM-valuation v on R be given with A ⊂ Av. The extension
Av ⊂ AvC is ws. Applying Theorem 4 to the extensions Av ⊂ R and
Av ⊂ AvC, we see that AvC is PM in RC. We have AvC = RC.
Let w′ be a PM-valuation on RC with Aw′ = AvC. Further let
B: = R∩AvC. As already proved, B = Av′ with v′: = w′|R. We have
Av ⊂ Av′ , hence supp v ⊂ supp v′. Since (supp v′)C = suppw′ =
RC, it follows that (supp v)C = RC.

By Theorem 7.i the valuation v extends uniquely to a Manis val-
uation w on RC. Assume now in addition that (pv ∩ A)C = C.
Running through the discussion 10.9 above, part b, we learn that
AvC = Aw and pw = pvC. In particular Aw ⊃ C. Since RC is con-
venient over C, the valuation w is PM. {We could also argue that
AvC is Prüfer in RC, since Av is Prüfer in R.} Theorem 7.ii tells
us that Iγ,w = Iγ,vC for every γ ∈ Γv. {This could also be deduced
from Th.II.6.4, since clearly Iγ,w ∩R = Iγ,v.}



Appendix A (to I, §4 and I, §5): Flat epimorphisms

In this appendix all morphisms are meant in the category of rings
(commutative, with 1, as always). In order to prove Theorem I.4.4
we need some basic facts about epimorphisms.

Let ϕ:A → B be a ring homomorphism. Related to ϕ we set up the
following morphisms.

i1: B → B ⊗A B , x �→ x⊗ 1;
i2: B → B ⊗A B , x �→ 1 ⊗ x;
m: B ⊗A B → B , b1 ⊗ b2 �→ b1b2.

Clearly, m ◦ i1 = m ◦ i2 = idB . Notice also that i1 = ϕ ⊗A B and
i2 = B ⊗A ϕ.

Lemma A.1 (cf. [L, Lemma 1.0]). The following are equivalent:
(i) ϕ is an epimorphism.
(ii) i1 = i2.
(iii) i1 is an isomorphism.
(iv) m is an isomorphism.

Proof. (i) ⇒ (ii): i1 ◦ ϕ = i1 ◦ ϕ implies i1 = i2.
(ii) ⇒ (i): Let g1, g2:B → C be two morphisms with g1 ◦ϕ = g2 ◦ϕ.
There is a unique morphism g1 ⊗A g2:B ⊗A B → C such that gk =
(g1 ⊗A g2) ◦ ik for k = 1, 2. Now i1 = i2 implies g1 = g2.
(ii) ⇒ (iii): From m ◦ i1 = idB it follows that i1 is injective. Since
i1 = i2 and B ⊗A B is generated as a ring by the images of i1 and
i2, we see that i1 is surjective. Hence i1 is an isomorphism.
(iii) ⇒ (iv): Since m ◦ i1 = idB and i1 is an isomorphism, m is an
isomorphism.
(iv) ⇒ (ii): Since m ◦ i1 = idB = m ◦ i2 and m is an isomorphism,
we have i1 = i2.

Lemma A.2 (cf. [L, Lemma 1.2]). A faithly flat epimorphism is an
isomorphism.

Proof. Let ϕ:A → B be a faithfully flat epimorphism, and K: =
Kerϕ, L: = Cokerϕ. Since ϕ is flat, we have a natural exact sequence

0 −→ K ⊗A B −→ A⊗A B
ϕ⊗AB−→ B ⊗A B −→ L⊗A B −→ 0.

M. Knebusch and D. Zhang: LNM 1791, pp. 251–256, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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Lemma 1, (i) ⇒ (iii), tells us that ϕ⊗A B is an isomorphism. Thus
K⊗AB = 0, L⊗AB = 0. Since ϕ is faithfully flat, we conclude that
K = 0, L = 0.

Theorem I.4.4 (Lazard, Akiba). An injective homomorphism
ϕ:A → B is weakly surjective iff ϕ is a flat epimorphism.

Proof. If ϕ is ws, we know by Prop.I.3.6, that ϕ is an epimorphism,
and by Prop.I.4.1, that ϕ is flat.

Conversely, let ϕ be a flat epimorphism. Given a prime ideal p of
A with pB = B, we have to verify that ϕp:Ap → Bp is injective
according to the definition of weak surjectivity in I, §3. It is easy
to see that ϕp:Ap → Bp is a flat epimorphism. Since pB = B, it
follows that ϕp is faithfully flat [Bo, I §3, Prop.8]. Lemma 2 gives us
that ϕp is an isomorphism.

The following proposition is needed in the proof of Theorem I.5.2,
(11) ⇒ (4).

Proposition A.3 [L, Prop.1.7]. A finite epimorphism is surjective.

Proof. Let ϕ:A → B be a finite epimorphism. Let p be a prime
ideal of A and let k(p) denote the residue class field Quot(A/p). One
verifies in a straightforward way that ϕ⊗Ak(p): k(p) → B⊗Ak(p) is
an epimorphism. Since k(p) is a field, this epimorphism is faithfully
flat [Bo, loc.cit.]. Lemma 2 tells us that ϕ⊗Ak(p) is an isomorphism.
Since ϕ is finite, it now follows by Nakayama’s lemma that ϕp:Ap →
Bp is surjective. Since this holds for every prime ideal p of A, ϕ is
surjective [Bo, Chap.II, §3].

Appendix B (to II, §2): Arithmetical rings

In the following A is a ring (always commutative, with 1) and J (A)
denotes the set of ideals of A, partially ordered by inclusion. J (A)
is a lattice. The ring A is called arithmetical, if the lattice J (A)
is distributive, i.e. (a + b) ∩ c = (a ∩ c) + (b ∩ c), or equivalently,
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a + (b ∩ c) = (a + b) ∩ (a + c) for any three ideals a, b, c of A. We
reproduce some results of C.U. Jensen [J1].

Theorem B.1 [J1, Th.1]. A is arithmetical iff, for every maximal
ideal p of A, the set J (Ap) is totally ordered.

Proof. If J (Ap) is totally ordered then, of course, the lattice J (Ap)
is distributive. If this holds for every p ∈ MaxA then clearly J (A)
is distributive.

Assume now that the lattice J (A) is distributive. Let p ∈ MaxA be
given. Also J (Ap) is distributive. Thus we may assume without loss
of generality that A is a local ring. We verify in this case that for
any two elements a, b of A either a|b or b|a. Then it will follow that
J (A) is totally ordered. {Indeed, if I, J ∈ J (A) and I ⊂ J , then
choosing x ∈ I \J , we have y � x for every y ∈ J , hence Ay ⊂ Ax for
every y ∈ J , and J ⊂ Ax ⊂ I.} We have

Aa = Aa ∩ (Ab+A(a− b)) = (Aa ∩Ab) + (Aa ∩A(a− b)).

Thus a = t+(a−b)c with t ∈ Aa∩Ab and (a−b)c ∈ Aa, i.e. bc ∈ Aa.
If c ∈ A∗ then it follows that b ∈ Aa. Otherwise 1 − c ∈ A∗, and we
conclude from the equation a(1 − c) = t− bc that a ∈ Ab.

Corollary B.2. If A is arithmetical and p is a prime ideal of A then
the set of generalizations of p in SpecA is totally ordered.

Corollary B.3. If A is arithmetical, and p1, p2 are prime ideals of
A with p1 ⊂ p2 and p2 ⊂ p1, then A = p1 + p2.

Theorem B.4 [J1, Th.2]. The following are equivalent:
(1) A is arithmetical.
(2) Given ideals a ⊂ b of A with b finitely generated, there exists

an ideal c of A such that a = bc.∗)

(3) Ditto for ideals a ⊂ b, with a principal and b generated by two
elements.

Proof. (1) ⇒ (2): We verify that a = b(a: b). Since b is finitely gen-
erated, it suffices to verify, for any p ∈ MaxA, that ap = bp(ap: bp), cf.

∗) i.e. b is a multiplication ideal (II, §2, Def.2).
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Lemma II.1.1. Since J (Ap) is totally ordered (Th.1 above) and bp is
finitely generated, the ideal bp is principal, bp = Apx. From ap ⊂ bp

we conclude that ap = Ix = Ibp with I = (ap:Apx) = (ap: bp).
(2) ⇒ (3): trivial.
(3) ⇒ (1): For every p ∈ MaxA the property (3) is inherited by the
ring Ap. Thus we may assume that A is local with maximal ideal
m, and we have to prove that J (A) is totally ordered. It suffices to
very for any two elements a, b′ of A that a|b′ or b′|a. Let a = Aa and
b = Aa+Ab′. By assumption (3) we have a = bc, i.e. Aa = ac + b′c,
with c: = (a: b). This means, there exist elements x, y in A with
a = ax + b′y, b′x ∈ Aa, b′y ∈ Aa. If x ∈ A∗ then Ab′ ⊂ Aa.
Otherwise x ∈ m, and we conclude from a(1−x) = b′y that Aa ⊂ Ab′.

Theorem B.5 [J1, Th.3]. The following are equivalent:
(1) A is arithmetical.
(2) If a, b, c are ideals of A, and c is finitely generated, then

(a + b): c = (a: c) + (b: c).
(2′) Ditto for a, b principal ideals and c = a + b.
(3) If a, b, c are ideals of A with a and b finitely generated, then

c: (a ∩ b) = (c: a) + (c: b).

(3′) Ditto for a, b principal ideals and c = a ∩ b.

Proof. We constantly use Lemma II.1.1.
(1) ⇒ (2): We may assume that the ring A is local, replacing A by
Ap for any prime (or maximal) ideal p of A. Now the set J (A) is
totally ordered (cf. Th.B.1). Thus a ⊂ b or b ⊂ a, and (2) is obvious.
(1) ⇒ (3): We proceed exactly as at the end of the proof of Theorem
II.1.4. Let p ∈ SpecA be given. Then (c: a ∩ b)p ⊂ (cp: ap ∩ bp). We
have ap ⊂ bp or bp ⊂ ap. Thus certainly (cp: ap ∩ bp) = (cp: ap) +
(cp: bp) = [(c: a) + (c: b)]p. This proves (c: a ∩ b) ⊂ (c: a) + (c: b). The
reverse inclusion is trivial.
(2′) ⇒ (1): Again we may assume that A is local. Let a and b ∈ A be
given. We verify that Aa ⊂ Ab or Ab ⊂ Aa. Then we will know that
A is arithmetical. We have (Aa:Aa+Ab) = (Aa:Ab), (Ab:Aa+Ab) =
(Ab:Aa). Thus, by assumption (2′), A = (Aa:Ab) + (Ab:Aa). We
have elements x, y ∈ A with bx ∈ Aa, ay ∈ Ab and x + y = 1. If
x ∈ A∗ then Ab ⊂ Aa. Otherwise y ∈ A∗ and Aa ⊂ Ab.



Appendix C 255

(3′) ⇒ (1): Let a, b ∈ A be given and c: = (Aa)∩(Ab). By assumption
A = (c:Aa)+(c:Ab) = (Ab:Aa)+(Aa:Ab). Let p ∈ SpecA be given.
Then we conclude, as before, that in the ring Ap either Ap · b1 ⊂ Ap · a1
or Ap · a1 ⊂ Ap · b1 . This implies that A is arithmetical (cf. Th.B.1).

Appendix C (to III, §6): A direct proof of the existence of
Manis valuation hulls

Let A ⊂ R be a ring extension with A = R and p a prime ideal of
A. Assume that the pair (A, p) is saturated in R (cf. §5, Def. 4).
We prove the following proposition in a pedantic way but directly,
i.e. without using anything from the theory of Prüfer extensions.

Proposition C.1. Let U denote the set of all x ∈ R\A such that for
every a ∈ A with ax ∈ A there exists some a′ ∈ A with a′ax ∈ A \ p.
The set C: = A ∪ U is a subring of R, and the pair (A, p) is Manis
in C.

Proof. Let elements x1 and x2 of C be given.

a) We verify that x1x2 ∈ C. We may assume in advance that x1x2 ∈
A. Let a ∈ A be given with ax1x2 ∈ A. We have to find an element
a′ ∈ A with a′ax1x2 ∈ A \ p.

Case 1. x1 ∈ A, x2 ∈ A, ax1 ∈ A. We choose b ∈ A with bax1 ∈
A \ p. Then (bax1)x2 ∈ A, since A[p] = A. We choose c ∈ A with
c(bax1)x2 ∈ A\p. The element a′: = bc lies in A and a′ax1x2 ∈ A\p.

Case 2. x1 ∈ A, x2 ∈ A, but ax1 ∈ A. Since x2 ∈ U there exists
a′ ∈ A with a′(ax1)x2 ∈ A \ p.

Case 3. x1 ∈ A, x2 ∈ A. Since x2 ∈ U there exists a′ ∈ A with
a′(ax1)x2 ∈ A \ p.

Consideration of these cases suffices to see that x1x2 ∈ C.

b) We verify that x1 + x2 ∈ C. We may assume in advance that
x1 + x2 ∈ A. Let a ∈ A be given with a(x1 + x2) ∈ A. We have to
find an element a′ of A with a′a(x1 + x2) ∈ A \ p.
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Case 1. ax1 ∈ A, ax2 ∈ A. We choose a′ ∈ A with a′ax1 ∈ A \ p.
Since A[p] = A we have a′ ∈ p, and a′a(x1 + x2) = a′ax1 + a′ax2 ∈
A \ p.
Case 2. ax1 ∈ A, ax2 ∈ A. We choose b ∈ A with bax1 ∈ A \ p.
Subcase 2a. bax2 ∈ A. We are in Case 1 for the elements x2, x1, ba
instead of x1, x2, a. Thus there exists c ∈ A with c(ba)(x2 + x1) ∈
A \ p. The element a′: = bc does the job.
Subcase 2b. bax2 ∈ A. We have (bax1)(ax1 + ax2) = cax1 with
c: = bax1 + bax2 ∈ A. Now bax1 ∈ A \ p and ax1 + ax2 ∈ A. Thus
cax1 ∈ A. We choose d ∈ A with dcax1 ∈ A \ p, i.e. (dbax1)(ax1 +
ax2) ∈ A \ p. The element a′: = dbax1 does the job.

Consideration of these cases suffices to see that x1 + x2 ∈ C.
c) We now know that C is a subring of R. Let x ∈ U = C \ A be
given. There exists x′ ∈ A with x′x ∈ A \ p. Since A[p] = A we have
x′ ∈ p. This proves that (A, p) is Manis in C (cf. Th.I.2.4).

It is evident (again by Th.I.2.4) that C contains every R-overring B
of A with (A, p) Manis in B. Thus we have constructed the Manis
valuation hull of (A, p) and also obtained anew the description (A)
of this hull in Corollary 6.2. {Recall that the equivalence (A) ⇔ (B)
there is a straightforward matter.}
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26 (1974), 412–429.

[HV] D. K. Harrison, M. A. Vitulli, V-valuations of a commutative
ring. J. Algebra 126 (1989), 264–292.

[Ho] M. Hochster, Prime ideal structure in commutative rings.
Trans. Amer. Math. Soc. 142 (1969), 43–60.

[Hu1] R. Huber, Bewertungsspektrum und rigide Geometrie. Ha-
bilitationsschrift, Univ. Regensburg, 1990.

[Hu2] R. Huber, Continuous valuations. Math. Z. 212 (1993), 455–
477.

[Hu3] R. Huber, Semirigide Funktionen. Preprint Univ. Regens-
burg 1990.

[HK] R. Huber, M. Knebusch, On valuation spectra. Contempo-
rary Mathematics 155 (1994), 167-206.



260 References

[Huc] J. A. Huckaba, Commutative rings with Zero Divisors. Mar-
cel Dekker, New York, 1988.

[J1] C. U. Jensen, Arithmetical rings. Acta Sci. Acad. Hungar.
17 (1966), 115–123.

[J2] C. U. Jensen, A remark on the distributive law for an ideal in
a commutative ring. Proc. Glasgow Math. Assoc. 7 (1966),
193–198.

[K] M. Knebusch, Real closures of commutative ring I. J. Reine
& Angew. Math. 274/275, 61–89.

[K1] M. Knebusch, Isoalgebraic geometry: First steps. In: Sem-
inaire de Theorie des Nombres Paris 1980-81 (M.-J. Bertin,
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[Sa1] Séminaire d’algebre commutative dirigé par P. Samuel, Les
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Prüfer subring, 46
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special, 11
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Valuation ring, 11, 22
Valuative extension, 222
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Weakly surjective (= ws), 32
Weakly surjective hull, 37
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k(V ) the function field of an algebraic variety V over a
field k, 1

H(R/k) the real holomorphy ring of R over k, 2
R∗ the group of all units of R, 3
Γv the value group of v, 11
supp (v) the support of a valuation v, 11
v̂ the valuation on the quotient field k(supp v) ofR/supp v

induced by v, 11
ov the valuation ring of v̂ , 11
Av the valuation ring of v, 11
pv the center of v, 11
cv(Γ) the characteristic subgroup of Γ with respect to v :

R → Γ ∪ {∞}, 11
ṽ the localization of v, 14
v/H, pH the coarsening of v, 17
M[S] the saturation of M in R by S, 18
v|
B

the special restriction of V to B, 19
(A[p], p[p]) (cf. §1, Def. 10), 28
M(A,R) the weakly surjective hull of A in R, 37
(A:x) the ideal of A consists of all a ∈ A with ax ∈

A, 37
Q(A) the complete ring of quotients of A, 39
P (A,R) the Prüfer hull of A in R, 55
P (A) the Prüfer hull of A, 55
[I:R J ] (:= {x ∈ R | xJ ⊂ I}), 85
(I:A J) (:= {a ∈ A | aJ ⊂ I}), 85
F(B/A) the set of all B-regular ideals of A, 105
Y (B/A) := SpecA ∩ F(B/A), 105
X(B/A) the image of the restriction map from SpecB to

SpecA, 105
Inv(A,R) the set of R-invertible ideals of A, 112
T (A,R) the tight hull of A in R, 112
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T (A) the tight hull of A, 112
Π(A) the set of all Prüfer ideals of A, 117
Π(A,R) the set of all R-Prüfer ideals of A, 117
D(A,R) the set of R-invertible A-submodules of R, 124
I◦ the polar of I, 130
R = B ×A C a factorisation of R over A, 132
Bez(A,R) the Bezout hull of A in R, 152
Bez(A) the Bezout hull of A, 152
β(A) the set of Bezout elements of A, 153
Ω(A) := Max(A) ∩ Π(A), 161
Ω(R/A) := Ω(A) ∩ Y (R/A), 165
ΩR(A) := Ω(A) ∩X(R/A), 165
IR(a) = a∗ the R-invertible hull of a, 171
H(v) the set of v-convex ideals (Avx)v with x ∈ Av \

supp (v), 201
PM(A, p, R) the PM-hull of (A, p) in R, 206
TV(A, p, R) the tight valuation hull of (A, p) in R, 209
MV(A, p, R) the Manis valuation hull of (A, p) in R, 212
MS(G,M) Manis subgroup of G with resepct to the submonoid

M , 219
BM(A, p, R) the BM hull of (A, p) in R, 230
BM(A, p) the BM hull of (A, p), 231
PV(A, p, R) the principal valuative hull of (A, p) in R, 231
PV(A, p) the principal valuative hull of (A, p), 232
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