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To my wife, Jeannette



There are many branches of learning theory that have not yet been analyzed and that are important
both for understanding the phenomenon of learning and for practical applications. They are waiting
for their researchers.
—Vladimir Vapnik

Geometry is illuminating; probability theory is powerful.
—Pál Ruján
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Series Foreword

One of the most exciting recent developments in machine learning is the discovery
and elaboration of kernel methods for classification and regression. These algo-
rithms combine three important ideas into a very successful whole. From mathe-
matical programming, they exploit quadratic programming algorithms for convex
optimization; from mathematical analysis, they borrow the idea of kernel repre-
sentations; and from machine learning theory, they adopt the objective of finding
the maximum-margin classifier. After the initial development of support vector
machines, there has been an explosion of kernel-based methods. Ralf Herbrich’s
Learning Kernel Classifiers is an authoritative treatment of support vector ma-
chines and related kernel classification and regression methods. The book examines
these methods both from an algorithmic perspective and from the point of view of
learning theory. The book’s extensive appendices provide pseudo-code for all of the
algorithms and proofs for all of the theoretical results. The outcome is a volume
that will be a valuable classroom textbook as well as a reference for researchers in
this exciting area.

The goal of building systems that can adapt to their environment and learn from
their experience has attracted researchers from many fields, including computer
science, engineering, mathematics, physics, neuroscience, and cognitive science.
Out of this research has come a wide variety of learning techniques that have the
potential to transform many scientific and industrial fields. Recently, several re-
search communities have begun to converge on a common set of issues surround-
ing supervised, unsupervised, and reinforcement learning problems. The MIT Press
series on Adaptive Computation and Machine Learning seeks to unify the many di-
verse strands of machine learning research and to foster high quality research and
innovative applications.

Thomas Dietterich
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Preface

Machine learning has witnessed a resurgence of interest over the last few years,
which is a consequence of the rapid development of the information industry.
Data is no longer a scarce resource—it is abundant. Methods for “intelligent”
data analysis to extract relevant information are needed. The goal of this book
is to give a self-contained overview of machine learning, particularly of kernel
classifiers—both from an algorithmic and a theoretical perspective. Although there
exist many excellent textbooks on learning algorithms (see Duda and Hart (1973),
Bishop (1995), Vapnik (1995), Mitchell (1997) and Cristianini and Shawe-Taylor
(2000)) and on learning theory (see Vapnik (1982), Kearns and Vazirani (1994),
Wolpert (1995), Vidyasagar (1997) and Anthony and Bartlett (1999)), there is no
single book which presents both aspects together in reasonable depth. Instead,
these monographs often cover much larger areas of function classes, e.g., neural
networks, decision trees or rule sets, or learning tasks (for example regression
estimation or unsupervised learning). My motivation in writing this book is to
summarize the enormous amount of work that has been done in the specific field
of kernel classification over the last years. It is my aim to show how all the work
is related to each other. To some extent, I also try to demystify some of the recent
developments, particularly in learning theory, and to make them accessible to a
larger audience. In the course of reading it will become apparent that many already
known results are proven again, and in detail, instead of simply referring to them.
The motivation for doing this is to have all these different results together in one
place—in particular to see their similarities and (conceptual) differences.

The book is structured into a general introduction (Chapter 1) and two parts,
which can be read independently. The material is emphasized through many ex-
amples and remarks. The book finishes with a comprehensive appendix containing
mathematical background and proofs of the main theorems. It is my hope that the
level of detail chosen makes this book a useful reference for many researchers
working in this field. Since the book uses a very rigorous notation systems, it is
perhaps advisable to have a quick look at the background material and list of sym-
bols on page 331.



xviii Preface

The first part of the book is devoted to the study of algorithms for learning
kernel classifiers. This part starts with a chapter introducing the basic concepts of
learning from a machine learning point of view. The chapter will elucidate the ba-
sic concepts involved in learning kernel classifiers—in particular the kernel tech-
nique. It introduces the support vector machine learning algorithm as one of the
most prominent examples of a learning algorithm for kernel classifiers. The second
chapter presents the Bayesian view of learning. In particular, it covers Gaussian
processes, the relevance vector machine algorithm and the classical Fisher discrim-
inant. The first part is complemented by Appendix D, which gives all the pseudo
code for the presented algorithms. In order to enhance the understandability of the
algorithms presented, all algorithms are implemented in R—a statistical language
similar to S-PLUS. The source code is publicly available at http://www.kernel-

machines.org/. At this web site the interested reader will also find additional
software packages and many related publications.

The second part of the book is devoted to the theoretical study of learning algo-
rithms, with a focus on kernel classifiers. This part can be read rather independently
of the first part, although I refer back to specific algorithms at some stages. The first
chapter of this part introduces many seemingly different models of learning. It was
my objective to give easy-to-follow “proving arguments” for their main results,
sometimes presented in a “vanilla” version. In order to unburden the main body,
all technical details are relegated to Appendix B and C. The classical PAC and
VC frameworks are introduced as the most prominent examples of mathematical
models for the learning task. It turns out that, despite their unquestionable gener-
ality, they only justify training error minimization and thus do not fully use the
training sample to get better estimates for the generalization error. The following
section introduces a very general framework for learning—the luckiness frame-
work. This chapter concludes with a PAC-style analysis for the particular class of
real-valued (linear) functions, which qualitatively justifies the support vector ma-
chine learning algorithm. Whereas the first chapter was concerned with bounds
which hold uniformly for all classifiers, the methods presented in the second chap-
ter provide bounds for specific learning algorithms. I start with the PAC-Bayesian
framework for learning, which studies the generalization error of Bayesian learn-
ing algorithms. Subsequently, I demonstrate that for all learning algorithms that
can be expressed as compression schemes, we can upper bound the generalization
error by the fraction of training examples used—a quantity which can be viewed
as a compression coefficient. The last section of this chapter contains a very re-
cent development known as algorithmic stability bounds. These results apply to all
algorithms for which an additional training example has only limited influence.



xix Preface

As with every book, this monograph has (almost surely) typing errors as well
as other mistakes. Therefore, whenever you find a mistake in this book, I would be
very grateful to receive an email at herbrich@kernel-machines.org. The list of
errata will be publicly available at http://www.kernel-machines.org.

This book is the result of two years’ work of a computer scientist with a
strong interest in mathematics who stumbled onto the secrets of statistics rather
innocently. Being originally fascinated by the the field of artificial intelligence, I
started programming different learning algorithms, finally ending up with a giant
learning system that was completely unable to generalize. At this stage my interest
in learning theory was born—highly motivated by the seminal book by Vapnik
(1995). In recent times, my focus has shifted toward theoretical aspects. Taking
that into account, this book might at some stages look mathematically overloaded
(from a practitioner’s point of view) or too focused on algorithmical aspects (from
a theoretician’s point of view). As it presents a snapshot of the state-of-the-art, the
book may be difficult to access for people from a completely different field. As
complementary texts, I highly recommend the books by Cristianini and Shawe-
Taylor (2000) and Vapnik (1995).

This book is partly based on my doctoral thesis (Herbrich 2000), which I wrote
at the Technical University of Berlin. I would like to thank the whole statistics
group at the Technical University of Berlin with whom I had the pleasure of
carrying out research in an excellent environment. In particular, the discussions
with Peter Bollmann-Sdorra, Matthias Burger, Jörg Betzin and Jürgen Schweiger
were very inspiring. I am particularly grateful to my supervisor, Professor Ulrich
Kockelkorn, whose help was invaluable. Discussions with him were always very
delightful, and I would like to thank him particularly for the inspiring environment
he provided. I am also indebted to my second supervisor, Professor John Shawe-
Taylor, who made my short visit at the Royal Holloway College a total success.
His support went far beyond the short period at the college, and during the many
discussions we had, I easily understood most of the recent developments in learning
theory. His “anytime availability” was of uncountable value while writing this
book. Thank you very much! Furthermore, I had the opportunity to visit the
Department of Engineering at the Australian National University in Canberra. I
would like to thank Bob Williamson for this opportunity, for his great hospitality
and for the many fruitful discussions. This book would not be as it is without the
many suggestions he had. Finally, I would like to thank Chris Bishop for giving all
the support I needed to complete the book during my first few months at Microsoft
Research Cambridge.



xx Preface

During the last three years I have had the good fortune to receive help from
many people all over the world. Their views and comments on my work were
very influential in leading to the current publication. Some of the many people I
am particularly indebted to are David McAllester, Peter Bartlett, Jonathan Bax-
ter, Shai Ben-David, Colin Campbell, Nello Cristianini, Denver Dash, Thomas
Hofmann, Neil Lawrence, Jens Matthias, Manfred Opper, Patrick Pérez, Gunnar
Rätsch, Craig Saunders, Bernhard Schölkopf, Matthias Seeger, Alex Smola, Pe-
ter Sollich, Mike Tipping, Jaco Vermaak, Jason Weston and Hugo Zaragoza. In
the course of writing the book I highly appreciated the help of many people who
proofread previous manuscripts. David McAllester, Jörg Betzin, Peter Bollmann-
Sdorra, Matthias Burger, Thore Graepel, Ulrich Kockelkorn, John Krumm, Gary
Lee, Craig Saunders, Bernhard Schölkopf, Jürgen Schweiger, John Shawe-Taylor,
Jason Weston, Bob Williamson and Hugo Zaragoza gave helpful comments on the
book and found many errors. I am greatly indebted to Simon Hill, whose help in
proofreading the final manuscript was invaluable. Thanks to all of you for your
enormous help!

Special thanks goes to one person—Thore Graepel. We became very good
friends far beyond the level of scientific cooperation. I will never forget the many
enlightening discussions we had in several pubs in Berlin and the few excellent
conference and research trips we made together, in particular our trip to Australia.
Our collaboration and friendship was—and still is—of uncountable value for me.
Finally, I would like to thank my wife, Jeannette, and my parents for their patience
and moral support during the whole time. I could not have done this work without
my wife’s enduring love and support. I am very grateful for her patience and
reassurance at all times.

Finally, I would like to thank Mel Goldsipe, Bob Prior, Katherine Innis and
Sharon Deacon Warne at The MIT Press for their continuing support and help
during the completion of the book.



1 Introduction

This chapter introduces the general problem of machine learning and how it re-
lates to statistical inference. It gives a short, example-based overview about super-
vised, unsupervised and reinforcement learning. The discussion of how to design a
learning system for the problem of handwritten digit recognition shows that kernel
classifiers offer some great advantages for practical machine learning. Not only are
they fast and simple to implement, but they are also closely related to one of the
most simple but effective classification algorithms—the nearest neighbor classi-
fier. Finally, the chapter discusses which theoretical questions are of particular, and
practical, importance.

1.1 The Learning Problem and (Statistical) Inference

It was only a few years after the introduction of the first computer that one
of man’s greatest dreams seemed to be realizable—artificial intelligence. It was
envisaged that machines would perform intelligent tasks such as vision, recognition
and automatic data analysis. One of the first steps toward intelligent machines is
machine learning.

The learning problem can be described as finding a general rule that explains
data given only a sample of limited size. The difficulty of this task is best compared
to the problem of children learning to speak and see from the continuous flow of
sounds and pictures emerging in everyday life. Bearing in mind that in the early
days the most powerful computers had much less computational power than a cell
phone today, it comes as no surprise that much theoretical research on the potential
of machines’ capabilities to learn took place at this time. One of the most influential
works was the textbook by Minsky and Papert (1969) in which they investigate
whether or not it is realistic to expect machines to learn complex tasks. They
found that simple, biologically motivated learning systems called perceptrons were
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incapable of learning an arbitrarily complex problem. This negative result virtually
stopped active research in the field for the next ten years. Almost twenty years later,
the work by Rumelhart et al. (1986) reignited interest in the problem of machine
learning. The paper presented an efficient, locally optimal learning algorithm for
the class of neural networks, a direct generalization of perceptrons. Since then,
an enormous number of papers and books have been published about extensions
and empirically successful applications of neural networks. Among them, the most
notable modification is the so-called support vector machine—a learning algorithm
for perceptrons that is motivated by theoretical results from statistical learning
theory. The introduction of this algorithm by Vapnik and coworkers (see Vapnik
(1995) and Cortes (1995)) led many researchers to focus on learning theory and its
potential for the design of new learning algorithms.

The learning problem can be stated as follows: Given a sample of limited
size, find a concise description of the data. If the data is a sample of input-
output patterns, a concise description of the data is a function that can produce
the output, given the input. This problem is also known as the supervised learning
problem because the objects under considerations are already associated with target
values (classes, real-values). Examples of this learning task include classification of
handwritten letters and digits, prediction of the stock market share values, weather
forecasting, and the classification of news in a news agency.

If the data is only a sample of objects without associated target values, the
problem is known as unsupervised learning. A concise description of the data
could be a set of clusters or a probability density stating how likely it is to
observe a certain object in the future. Typical examples of unsupervised learning
tasks include the problem of image and text segmentation and the task of novelty
detection in process control.

Finally, one branch of learning does not fully fit into the above definitions:
reinforcement learning. This problem, having its roots in control theory, considers
the scenario of a dynamic environment that results in state-action-reward triples
as the data. The difference between reinforcement and supervised learning is that
in reinforcement learning no optimal action exists in a given state, but the learning
algorithm must identify an action so as to maximize the expected reward over time.
The concise description of the data is in the form of a strategy that maximizes the
reward. Subsequent subsections discuss these three different learning problems.

Viewed from a statistical perspective, the problem of machine learning is far
from new. In fact, it can be related to the general problem of inference, i.e., go-
ing from particular observations to general descriptions. The only difference be-
tween the machine learning and the statistical approach is that the latter considers
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description of the data in terms of a probability measure rather than a determin-
istic function (e.g., prediction functions, cluster assignments). Thus, the tasks to
be solved are virtually equivalent. In this field, learning methods are known as es-
timation methods. Researchers long have recognized that the general philosophy
of machine learning is closely related to nonparametric estimation. The statistical
approach to estimation differs from the learning framework insofar as the latter
does not require a probabilistic model of the data. Instead, it assumes that the only
interest is in further prediction on new instances—a less ambitious task, which
hopefully requires many fewer examples to achieve a certain performance.

The past few years have shown that these two conceptually different approaches
converge. Expressing machine learning methods in a probabilistic framework is
often possible (and vice versa), and the theoretical study of the performances of
the methods is based on similar assumptions and is studied in terms of probability
theory. One of the aims of this book is to elucidate the similarities (and differences)
between algorithms resulting from these seemingly different approaches.

1.1.1 Supervised Learning

In the problem of supervised learning we are given a sample of input-output pairs
(also called the training sample), and the task is to find a deterministic function
that maps any input to an output such that disagreement with future input-output
observations is minimized. Clearly, whenever asked for the target value of an object
present in the training sample, it is possible to return the value that appeared
the highest number of times together with this object in the training sample.
However, generalizing to new objects not present in the training sample is difficult.
Depending on the type of the outputs, classification learning, preference learning
and function learning are distinguished.

Classification Learning

If the output space has no structure except whether two elements of the output
space are equal or not, this is called the problem of classification learning. Each
element of the output space is called a class. This problem emerges in virtually
any pattern recognition task. For example, the classification of images to the
classes “image depicts the digit x” where x ranges from “zero” to “nine” or the
classification of image elements (pixels) into the classes “pixel is a part of a cancer
tissue” are standard benchmark problems for classification learning algorithms (see
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Figure 1.1 Classification learning of handwritten digits. Given a sample of images from
the four different classes “zero”, “two”, “seven” and “nine” the task is to find a function
which maps images to their corresponding class (indicated by different colors of the
border). Note that there is no ordering between the four different classes.

also Figure 1.1). Of particular importance is the problem of binary classification,
i.e., the output space contains only two elements, one of which is understood
as the positive class and the other as the negative class. Although conceptually
very simple, the binary setting can be extended to multiclass classification by
considering a series of binary classifications.

Preference Learning

If the output space is an order space—that is, we can compare whether two
elements are equal or, if not, which one is to be preferred—then the problem of
supervised learning is also called the problem of preference learning. The elements
of the output space are called ranks. As an example, consider the problem of
learning to arrange Web pages such that the most relevant pages (according to a
query) are ranked highest (see also Figure 1.2). Although it is impossible to observe
the relevance of Web pages directly, the user would always be able to rank any pair
of documents. The mappings to be learned can either be functions from the objects
(Web pages) to the ranks, or functions that classify two documents into one of three
classes: “first object is more relevant than second object”, “objects are equivalent”
and “second object is more relevant than first object”. One is tempted to think that
we could use any classification of pairs, but the nature of ranks shows that the
represented relation on objects has to be asymmetric and transitive. That means, if
“object b is more relevant than object a” and “object c is more relevant than object



5 Introduction

Figure 1.2 Preference learning of Web pages. Given a sample of pages with different
relevances (indicated by different background colors), the task is to find an ordering of the
pages such that the most relevant pages are mapped to the highest rank.

b”, then it must follow that “object c is more relevant than object a”. Bearing this
requirement in mind, relating classification and preference learning is possible.

Function Learning

If the output space is a metric space such as the real numbers then the learning
task is known as the problem of function learning (see Figure 1.3). One of the
greatest advantages of function learning is that by the metric on the output space
it is possible to use gradient descent techniques whenever the functions value
f (x) is a differentiable function of the object x itself. This idea underlies the
back-propagation algorithm (Rumelhart et al. 1986), which guarantees the finding
of a local optimum. An interesting relationship exists between function learning
and classification learning when a probabilistic perspective is taken. Considering
a binary classification problem, it suffices to consider only the probability that a
given object belongs to the positive class. Thus, whenever we are able to learn
the function from objects to [0, 1] (representing the probability that the object is
from the positive class), we have learned implicitly a classification function by
thresholding the real-valued output at 1

2 . Such an approach is known as logistic
regression in the field of statistics, and it underlies the support vector machine
classification learning algorithm. In fact, it is common practice to use the real-
valued output before thresholding as a measure of confidence even when there is
no probabilistic model used in the learning process.
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Figure 1.3 Function learning in action. Given is a sample of points together with asso-
ciated real-valued target values (crosses). Shown are the best fits to the set of points using
a linear function (left), a cubic function (middle) and a 10th degree polynomial (right).
Intuitively, the cubic function class seems to be most appropriate; using linear functions
the points are under-fitted whereas the 10th degree polynomial over-fits the given sample.

1.1.2 Unsupervised Learning

In addition to supervised learning there exists the task of unsupervised learning. In
unsupervised learning we are given a training sample of objects, for example im-
ages or pixels, with the aim of extracting some “structure” from them—e.g., iden-
tifying indoor or outdoor images, or differentiating between face and background
pixels. This is a very vague statement of the problem that should be rephrased bet-
ter as learning a concise representation of the data. This is justified by the following
reasoning: If some structure exists in the training objects, it is possible to take ad-
vantage of this redundancy and find a short description of the data. One of the most
general ways to represent data is to specify a similarity between any pairs of ob-
jects. If two objects share much structure, it should be possible to reproduce the
data from the same “prototype”. This idea underlies clustering algorithms: Given a
fixed number of clusters, we aim to find a grouping of the objects such that similar
objects belong to the same cluster. We view all objects within one cluster as being
similar to each other. If it is possible to find a clustering such that the similarities of
the objects in one cluster are much greater than the similarities among objects from
different clusters, we have extracted structure from the training sample insofar as
that the whole cluster can be represented by one representative. From a statistical
point of view, the idea of finding a concise representation of the data is closely re-
lated to the idea of mixture models, where the overlap of high-density regions of the
individual mixture components is as small as possible (see Figure 1.4). Since we
do not observe the mixture component that generated a particular training object,
we have to treat the assignment of training examples to the mixture components as
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first feature

second feature

density

Figure 1.4 (Left) Clustering of 150 training points (black dots) into three clusters (white
crosses). Each color depicts a region of points belonging to one cluster. (Right) Probability
density of the estimated mixture model.

hidden variables—a fact that makes estimation of the unknown probability mea-
sure quite intricate. Most of the estimation procedures used in practice fall into the
realm of expectation-maximization (EM) algorithms (Dempster et al. 1977).

1.1.3 Reinforcement Learning

The problem of reinforcement learning is to learn what to do—how to map situa-
tions to actions—so as to maximize a given reward. In contrast to the supervised
learning task, the learning algorithm is not told which actions to take in a given sit-
uation. Instead, the learner is assumed to gain information about the actions taken
by some reward not necessarily arriving immediately after the action is taken. One
example of such a problem is learning to play chess. Each board configuration, i.e.,
the position of all figures on the 8 × 8 board, is a given state; the actions are the
possible moves in a given position. The reward for a given action (chess move) is
winning the game, losing it or achieving a draw. Note that this reward is delayed
which is very typical for reinforcement learning. Since a given state has no “op-
timal” action, one of the biggest challenges of a reinforcement learning algorithm
is to find a trade-off between exploration and exploitation. In order to maximize
reward a learning algorithm must choose actions which have been tried out in the
past and found to be effective in producing reward—it must exploit its current
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Figure 1.5 (Left) The first 49 digits (28 × 28 pixels) of the MNIST dataset. (Right)
The 49 images in a data matrix obtained by concatenation of the 28 rows thus resulting in
28 · 28 = 784–dimensional data vectors. Note that we sorted the images such that the four
images of “zero” are the first, then the 7 images of “one” and so on.

knowledge. On the other hand, to discover those actions the learning algorithm has
to choose actions not tried in the past and thus explore the state space. There is no
general solution to this dilemma, but that neither of the two options can lead ex-
clusively to an optimal strategy is clear. As this learning problem is only of partial
relevance to this book, the interested reader should refer Sutton and Barto (1998)
for an excellent introduction to this problem.

1.2 Learning Kernel Classifiers

Here is a typical classification learning problem. Suppose we want to design a
system that is able to recognize handwritten zip codes on mail envelopes. Initially,
we use a scanning device to obtain images of the single digits in digital form.
In the design of the underlying software system we have to decide whether we
“hardwire” the recognition function into our program or allow the program to
learn its recognition function. Besides being the more flexible approach, the idea of
learning the recognition function offers the additional advantage that any change
involving the scanning can be incorporated automatically; in the “hardwired”
approach we would have to reprogram the recognition function whenever we
change the scanning device. This flexibility requires that we provide the learning
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Figure 1.6 Classification of three new images (leftmost column) by finding the five
images from Figure 1.5 which are closest to it using the Euclidean distance.

algorithm with some example classifications of typical digits. In this particular case
it is relatively easy to acquire at least 100–1000 images and label them manually
(see Figure 1.5 (left)).

Our next decision involves the representation of the images in the computer.
Since the scanning device supplies us with an image matrix of intensity values at
fixed positions, it seems natural to use this representation directly, i.e., concatenate
the rows of the image matrix to obtain a long data vector for each image. As a
consequence, the data can be represented by a matrix X with as many rows as
number of training samples and as many columns are there are pixels per image
(see Figure 1.5 (right)). Each row xi of the data matrix X represents one image of
a digit by the intensity values at the fixed pixel positions.

Now consider a very simple learning algorithm where we just store the training
examples. In order to classify a new test image, we assign it to the class of the
training image closest to it. This surprisingly easy learning algorithm is also known
as the nearest-neighbor classifier and has almost optimal performance in the limit
of a large number of training images. In our example we see that nearest neighbor
classification seems to perform very well (see Figure 1.6). However, this simple
and intuitive algorithm suffers two major problems:

1. It requires a distance measure which must be small between images depicting
the same digit and large between images showing different digits. In the example
shown in Figure 1.6 we use the Euclidean distance

∥∥x− x̃
∥∥ def=

√√√√ N∑
j=1

(
x j − x̃ j

)2
,
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where N = 784 is the number of different pixels. From Figure 1.6 we already
see that not all of the closest images seem to be related to the correct class, which
indicates that we should look for a better representation.

2. It requires storage of the whole training sample and the computation of the
distance to all the training samples for each classification of a new image. This be-
comes a computational problem as soon as the dataset gets larger than a few hun-
dred examples. Although the method of nearest neighbor classification performs
better for training samples of increasing size, it becomes less realizable in practice.

In order to address the second problem, we introduce ten parameterized functions
f0, . . . , f9 that map image vectors to real numbers. A positive number fi (x) indi-
cates belief that the image vector is showing the digit i ; its magnitude should be
related to the degree with which the image is believed to depict the digit i . The
interesting question is: Which functions should we consider? Clearly, as compu-
tational time is the only reason to deviate from nearest-neighbor classification, we
should only consider functions whose value can quickly be evaluated. On the other
hand, the functions should be powerful enough to approximate the classification as
carried out by the nearest neighbor classifier. Consider a linear function, i.e.,

fi (x) =
N∑

j=1

w j · x j , (1.1)

which is simple and quickly computable. We summarize all the images showing
the same digit in the training sample into one parameter vector w for the function
fi . Further, by the Cauchy-Schwarz inequality, we know that the difference of
this function evaluated at two image vectors x and x̃ is bounded from above by
‖w‖·∥∥x− x̃

∥∥. Hence, if we only consider parameter vectors w with a constant norm
‖w‖, it follows that whenever two points are close to each other, any linear function
would assign similar real-values to them as well. These two properties make linear
functions perfect candidates for designing the handwritten digit recognizer.

In order to address the first problem, we consider a generalized notion of a
distance measure as given by

∥∥x− x̃
∥∥ =

√√√√ n∑
j=1

(
φ j (x)− φ j

(
x̃
))2

. (1.2)

Here, φ = (φ1, . . . , φn) is known as the feature mapping and allows us to
change the representation of the digitized images. For example, we could con-
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sider all products of intensity values at two different positions, i.e. φ (x) =
(x1x1, . . . , x1xN , x2x1, . . . , xN xN ), which allows us to exploit correlations in
the image. The advantage of choosing a distance measure as given in equation
(1.2) becomes apparent when considering that for all parameter vectors w that
can be represented as a linear combination of the mapped training examples
φ (x1) , . . . ,φ (xm),

w =
m∑

i=1

αiφ (xi ) ,

the resulting linear function in equation (1.1) can be written purely in terms of a
linear combination of inner product functions in feature space, i.e.,

f (x) =
m∑

i=1

αi

n∑
j=1

φ j (xi ) · φ j (x)︸ ︷︷ ︸
k(xi ,x)

=
m∑

i=1

αi k (xi , x) .

In contrast to standard linear models, we need never explicitly construct the param-
eter vector w. Specifying the inner product function k, which is called the kernel, is
sufficient. The linear function involving a kernel is known as kernel classifier and
is parameterized by the vector α ∈ �m of expansion coefficients. What has not yet
been addressed is the question of which parameter vector w or α to choose when
given a training sample. This is the topic of the first part of this book.

1.3 The Purposes of Learning Theory

The first part of this book may lead the reader to wonder—after learning so many
different learning algorithms—which one to use for a particular problem. This
legitimate question is one that the results from learning theory try to answer.
Learning theory is concerned with the study of learning algorithms’ performance.
By casting the learning problem into the powerful framework of probability theory,
we aim to answer the following questions:

1. How many training examples do we need to ensure a certain performance?

2. Given a fixed training sample, e.g., the forty-nine images in Figure 1.5, what
performance of the function learned can be guaranteed?
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3. Given two different learning algorithms, which one should we choose for a
given training sample so as to maximize the performance of the resulting learning
algorithm?

I should point out that all these questions must be followed by the additional phrase
“with high probability over the random draw of the training sample”. This require-
ment is unavoidable and reflects the fact that we model the training sample as a
random sample. Thus, in any of the statements about the performance of learning
algorithms we have the inherent duality between precision and confidence: The
more precise the statement on the algorithm’s performance is, e.g., the prediction
error is not larger than 5%, the less confident it is. In the extreme case, we can say
that the prediction error is exactly 5%, but we have absolutely no (mathematical)
confidence in this statement. The performance measure is most easily defined when
considering supervised learning tasks. Since we are given a target value for each
object, we need only to measure by how much the learned function deviates from
the target value at all objects—in particular for the unseen objects. This quantity is
modeled by the expected loss of a function over the random draw of object-target
pairs. As a consequence our ultimate interest is in (probabilistic) upper bounds on
the expected loss of the function learned from the random training sample, i.e.,

P (training samples s.t. the expected loss of the function learned ≤ ε (δ)) ≥ 1− δ .

The function ε is called a bound on the generalization error because it quantifies
how much we are mislead in choosing the optimal function when using a learning
algorithm, i.e., when generalizing from a given training sample to a general pre-
diction function. Having such a bound at our disposal allows us to answer the three
questions directly:

1. Since the function ε is dependent on the size of the training sample1, we fix ε

and solve for the training sample size.

2. This is exactly the question answered by the generalization error bound. Note
that the ultimate interest is in bounds that depend on the particular training sample
observed; a bound independent of the training sample would give a guarantee ex-
ante which therefore cannot take advantage of some “simplicity” in the training
sample.

3. If we evaluate the two generalization errors for the two different learning
algorithms, we should choose the algorithm with the smaller generalization error

1 In fact, it will be inversely related because with increasing size of the training sample the expected loss will be
non-increasing due to results from large deviation theory (see Appendix A.5.2).
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bound. Note that the resulting bound would no longer hold for the selection
algorithm. Nonetheless, Part II of this book shows that this can be achieved with a
slight modification.

It comes as no surprise that learning theory needs assumptions to hold. In contrast
to parametric statistics, which assumes that the training data is generated from a
distribution out of a given set, the main interest in learning theory is in bounds
that hold for all possible data distributions. The only way this can be achieved is to
constrain the class of functions used. In this book, this is done by considering linear
functions only. A practical advantage of having results that are valid for all possible
probability measures is that we are able to check whether the assumptions imposed
by the theory are valid in practice. The price we have to pay for this generality is
that most results of learning theory are more an indication than a good estimate
of the real generalization error. Although recent efforts in this field aim to tighten
generalization error bound as much as possible, it will always be the case that any
distribution-dependent generalization error bound is superior in terms of precision.

Apart from enhancing our understanding of the learning phenomenon, learn-
ing theory is supposed to serve another purpose as well—to suggest new algo-
rithms. Depending on the assumption we make about the learning algorithms, we
will arrive at generalization error bounds involving different measures of (data-
dependent) complexity terms. Although these complexity terms give only upper
bounds on the generalization error, they provide us with ideas as to which quanti-
ties should be optimized. This is the topic of the second part of the book.
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2 Kernel Classifiers from a Machine Learning
Perspective

This chapter presents the machine learning approach to learning kernel classifiers.
After a short introduction to the problem of learning a linear classifier, it shows
how learning can be viewed as an optimization task. As an example, the classical
perceptron algorithm is presented. This algorithm is an implementation of a more
general principle known as empirical risk minimization. The chapter also presents
a descendant of this principle, known as regularized (structural) risk minimization.
Both these principles can be applied in the primal or dual space of variables. It is
shown that the latter is computationally less demanding if the method is extended
to nonlinear classifiers in input space. Here, the kernel technique is the essential
method used to invoke the nonlinearity in input space. The chapter presents several
families of kernels that allow linear classification methods to be applicable even
if no vectorial representation is given, e.g., strings. Following this, the support
vector method for classification learning is introduced. This method elegantly
combines the kernel technique and the principle of structural risk minimization.
The chapter finishes with a presentation of a more recent kernel algorithm called
adaptive margin machines. In contrast to the support vector method, the latter aims
at minimizing a leave-one-out error bound rather than a structural risk.

2.1 The Basic Setting

The task of classification learning is the problem of finding a good strategy to
assign classes to objects based on past observations of object-class pairs. We shall
only assume that all objects x are contained in the set � , often referred to as the
input space. Let � be a finite set of classes called the output space. If not otherwise
stated, we will only consider the two-element output space {−1,+1}, in which case
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the learning problem is called a binary classification learning task. Suppose we are
given a sample of m training objects,

x = (x1, . . . , xm) ∈ �m ,

together with a sample of corresponding classes,

y = (y1, . . . , ym) ∈ �m .

We will often consider the labeled training sample,1

z = (x, y) = ((x1, y1) , . . . , (xm, ym)) ∈ (� × �)m = �
m ,

and assume that z is a sample drawn identically and independently distributed (iid)
according to some unknown probability measure PZ.

Definition 2.1 (Learning problem) The learning problem is to find the unknown
(functional) relationship h ∈ �� between objects x ∈ � and targets y ∈ �

based solely on a sample z = (x, y) = ((x1, y1) , . . . , (xm, ym)) ∈ (� × �)m

of size m ∈ � drawn iid from an unknown distribution PXY. If the output space
� contains a finite number |�| of elements then the task is called a classification
learning problem.

Of course, having knowledge of PXY = PZ is sufficient for identifying this
relationship as for all objects x ,

PY|X=x (y) = PZ ((x, y))

PX (x)
= PZ ((x, y))∑

ỹ∈� PZ ((x, ỹ))
. (2.1)

Thus, for a given object x ∈ � we could evaluate the distribution PY|X=x over
classes and decide on the class ŷ ∈ � with the largest probability PY|X=x

(
ŷ
)
.

Estimating PZ based on the given sample z, however, poses a nontrivial problem.
In the (unconstrained) class of all probability measures, the empirical measure

vz ((x, y)) = |{i ∈ {1, . . . ,m} | zi = (x, y)}|
m

(2.2)

1 Though mathematically the training sample is a sequence of iid drawn object-class pairs (x, y) we sometimes
take the liberty of calling the training sample a training set. The notation z ∈ z then refers to the fact that there
exists an element zi in the sequence z such that zi = z.
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is among the “most plausible” ones, because

vz ({z1, . . . , zm}) =
m∑

i=1

vz (zi) = 1 .

However, the corresponding “identified” relationship hvz ∈ �� is unsatisfactory
because

hvz (x) =
∑
xi∈x

yi · Ix=xi

assigns zero probability to all unseen objects-class pairs and thus cannot be used
for predicting further classes given a new object x ∈ � . In order to resolve this
difficulty, we need to constrain the set �� of possible mappings from objects
x ∈ � to classes y ∈ � . Often, such a restriction is imposed by assuming a given
hypothesis space� ⊆ �� of functions2 h : � → � . Intuitively, similar objects xi

should be mapped to the same class yi . This is a very reasonable assumption if we
wish to infer classes on unseen objects x based on a given training sample z only.

A convenient way to model similarity between objects is through an inner
product function 〈·, ·〉 which has the appealing property that its value is maximal
whenever its arguments are equal. In order to employ inner products to measure
similarity between objects we need to represent them in an inner product space
which we assume to be �n

2 (see Definition A.39).

Definition 2.2 (Features and feature space) A function φi : � → � that maps
each object x ∈ � to a real value φi (x) is called a feature. Combining n features
φ1, . . . , φn results in a feature mapping φ : � → � ⊆ �n

2 and the space� is called
a feature space.

In order to avoid an unnecessarily complicated notation we will abbreviate φ (x)
by x for the rest of the book. The vector x ∈ � is also called the representation of
x ∈ � . This should not be confused with the training sequence x which results in
an m × n matrix X = (

x′1; . . . ; x′m
)

when applying φ to it.

Example 2.3 (Handwritten digit recognition) The important task of classifying
handwritten digits is one of the most prominent examples of the application of
learning algorithms. Suppose we want to automatically construct a procedure

2 Since each h is a hypothetical mapping to classes, we synonymously use classifier, hypothesis and function to
refer to h.
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which can assign digital images to the classes “image is a picture of 1” and “image
is not a picture of 1”. Typically, each feature φi : � → � is the intensity of
ink at a fixed picture element, or pixel, of the image. Hence, after digitalization
at N × N pixel positions, we can represent each image as a high dimensional
vector x (to be precise, N2–dimensional). Obviously, only a small subset of the
N2–dimensional space is occupied by handwritten digits3, and, due to noise in the
digitization, we might have the same picture x mapped to different vectors xi , x j .
This is assumed encapsulated in the probability measure PX. Moreover, for small
N, similar pictures xi ≈ x j are mapped to the same data vector x because the
single pixel positions are too coarse a representation of a single image. Thus, it
seems reasonable to assume that one could hardly find a deterministic mapping
from N2–dimensional vectors to the class “picture of 1”. This gives rise to a
probability measure PY|X=x. Both these uncertainties—which in fact constitute the
basis of the learning problem—are expressed via the unknown probability measure
PZ (see equation (2.1)).

In this book, we will be concerned with linear functions or classifiers only. Let us
formally define what we mean when speaking about linear classifiers.

Definition 2.4 (Linear function and linear classifier) Given a feature mapping
φ : � → � ⊆ �n

2, the function f : � → � of the form4

fw (x) = 〈φ (x) ,w〉 = 〈x,w〉
is called a linear function and the n–dimensional vector w ∈ � is called a weight
vector. A linear classifier is obtained by thresholding a linear function,

hw (x) = sign (〈x,w〉) . (2.3)

Clearly, the intuition that similar objects are mapped to similar classes is satisfied
by such a model because, by the Cauchy-Schwarz inequality (see Theorem A.106),
we know that∣∣〈w, xi〉 −

〈
w, x j

〉∣∣ = ∣∣〈w, xi − x j

〉∣∣ ≤ ‖w‖ · ∥∥xi − x j

∥∥ ;
3 To see this, imagine that we generate an image by tossing a coin N2 times and mark a black dot in a N × N
array, if the coin shows head. Then, it is very unlikely that we will obtain an image of a digit. This outcome is
expected as digits presumably have a pictorial structure in common.
4 In order to highlight the dependence of f on w, we use fw when necessary.
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that is, whenever two data points are close in feature space (small
∥∥xi − x j

∥∥), their
difference in the real-valued output of a hypothesis with weight vector w ∈ � is
also small. It is important to note that the classification hw (x) remains unaffected
if we rescale the weight w by some positive constant,

∀λ > 0 : ∀x ∈ � : sign (〈x, λw〉) = sign (λ 〈x,w〉) = sign (〈x,w〉) . (2.4)

Thus, if not stated otherwise, we assume the weight vector w to be of unit length,

� = {x �→ 〈x,w〉 |w ∈� } ⊆ �
� , (2.5)

� = {w ∈ � | ‖w‖ = 1} ⊂ � , (2.6)

� =
{

hw
def= sign ( fw) | fw ∈ �

}
⊆ �� . (2.7)

Ergo, the set � , also referred to as the hypothesis space, is isomorphic to the unit
hypersphere � in �n (see Figure 2.1).

The task of learning reduces to finding the “best” classifier f ∗ in the hypothesis
space � . The most difficult question at this point is: “How can we measure the
goodness of a classifier f ? We would like the goodness of a classifier to be

strongly dependent on the unknown measure PZ; otherwise, we would not have
a learning problem because f ∗ could be determined without knowledge of the
underlying relationship between objects and classes expressed via PZ.

pointwise w.r.t. the object-class pairs (x, y) due to the independence assumption
made for z.

a positive, real-valued function, making the maximization task computationally
easier.

All these requirements can be encapsulated in a fixed loss function l : �×� → �.
Here l ( f (x) , y) measures how costly it is when the prediction at the data point
x is f (x) but the true class is y. It is natural to assume that l (+∞,+1) =
l (−∞,−1) = 0, that is, the greater y · f (x) the better the prediction of f (x)
was. Based on the loss l it is assumed that the goodness of f is the expected loss
EXY

[
l ( f (X) ,Y)

]
, sometimes referred to as the expected risk. In summary, the

ultimate goal of learning can be described as:

Based on the training sample z ∈ �m , a hypothesis space � ⊆ �
� and a

loss function l : � × � → � find the function

f ∗ = argmin
f ∈�

EXY
[
l ( f (X) ,Y)

]
.
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Assuming an unknown, but fixed, measure PZ over the object-class space � we
can view the expectation value EXY

[
l ( f (X) ,Y)

]
of the loss as an expected risk

functional over � .

Definition 2.5 (Expected risk) Given a loss l : � × � → � and a measure PXY,
the functional

R [ f ]
def= EXY

[
l ( f (X) ,Y)

]
, (2.8)

is called expected risk or expected loss of a function f ∈ � ⊆ �
� , respectively.

If the loss function l : � ×� → � maps from the predicted and true classes to the
reals, the expected risk is also defined by (2.8) but this time w.r.t. h ∈ � ⊆ �� .

Example 2.6 (Classification loss) In the case of classification learning, a natural
measure of goodness of a classifier h ∈ � is the probability of assigning a new
object to the wrong class, i.e., PXY (h (X) �= Y). In order to cast this into a loss-
based framework we exploit the basic fact that P (A) = E

[
IA

]
for some A. As a

consequence, using the zero-one loss l0−1 : � × � → � for real-valued functions

l0−1 ( f (x) , y)
def= Iy f (x)≤0 , (2.9)

renders the task of finding the classifier with minimal misclassification probability
as a risk minimization task. Note that, due to the fact that y ∈ {−1,+1}, the
zero-one loss in equation (2.9) is a special case of the more general loss function
l0−1 : � × � → �

l0−1 (h (x) , y)
def= Ih(x)�=y . (2.10)

Example 2.7 (Cost matrices) Returning to Example 2.3 we see that the loss given
by equation (2.9) is inappropriate for the task at hand. This is due to the fact that
there are approximately ten times more “no pictures of 1” than “pictures of 1”.
Therefore, a classifier assigning each image to the class “no picture of 1” (this
classifier is also known as the default classifierf) would have an expected risk of
about 10%. In contrast, a classifier assigning each image to the class “picture of
1” would have an expected risk of about 90%. To correct this imbalance of prior
probabilities PY (+1) and PY (−1) one could define a 2× 2 cost matrix

C =
(

0 c12

c21 0

)
.
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Hypothesis space Feature space

Figure 2.1 (Left) The hypothesis space� for linear classifiers in �3 . Each single point
x defines a plane in �3 and thus incurs a grand circle {w ∈� | 〈x,w〉 = 0 } in hypothesis
space (black lines). The three data points in the right picture induce the three planes in the
left picture. (Right) Considering a fixed classifier w (single dot on the left) the decision
plane

{
x ∈ �3 | 〈x,w〉 = 0

}
is shown.

Let 1y and 1sign( f (x)) denote the 2 × 1 indicator vectors of the true class and the
classification made by f ∈ � at x ∈ � . Then we have a cost matrix classification
loss lC by

lC ( f (x) , y)
def= 1′yC1sign( f (x)) =

 c12 y = +1 and f (x) < 0
c21 y = −1 and f (x) > 0
0 otherwise .

Obviously, setting c12 = PY (−1) and c21 = PY (+1) leads to equal risks for both
default classifiers and thus allows the incorporation of prior knowledge on the
probabilities PY (+1) and PY (−1).

Remark 2.8 (Geometrical picture) Linear classifiers, parameterized by a weight
vector w, are hyperplanes passing through the origin in feature space�. Each clas-
sifier divides the feature space into two open half spaces, X+1 (w) ⊂ �, X−1 (w) ⊂
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� by the hyperplane5 X0 (w) ⊂ � using the following rule,

X y (w) = {x ∈ � | sign (〈x,w〉) = y } .
Considering the images of X0 (w) in object space �

X̃0 (w) = {x ∈ � | 〈x,w〉 = 0} ,
this set is sometimes called the decision surface. Our hypothesis space � for
weight vectors w is the unit hypersphere in �n (see equation (2.6)). Hence, having
fixed x, the unit hypersphere � is subdivided into three disjoint sets W+1 (x) ⊂
�, W−1 (x) ⊂� and W0 (x) ⊂� by exactly the same rule, i.e.,

Wy (x) = {w ∈� | sign (〈x,w〉) = y } .
As can be seen in Figure 2.1 (left), for a finite sample x = (x1, . . . , xm) of training
objects and any vector y = (y1, . . . , ym) ∈ {−1,+1}m of labelings the resulting
equivalence classes

Wz =
m⋂

i=1

Wyi (xi )

are (open) convex polyhedra. Clearly, the labeling of the xi determines the training
error of each equivalence class

Wz = {w ∈� | ∀i ∈ {1, . . . ,m} : sign (〈xi ,w〉) = yi } .

2.2 Learning by Risk Minimization

Apart from algorithmical problems, as soon as we have a fixed object space � , a
fixed set (or space) � of hypotheses and a fixed loss function l, learning reduces to
a pure optimization task on the functional R [ f ].

Definition 2.9 (Learning algorithm) Given an object space � , an output space
� and a fixed set � ⊆ �

� of functions mapping � to �, a learning algorithm �

5 With a slight abuse of notation, we use sign (0) = 0.
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for the hypothesis space � is a mapping6

� :
∞⋃

m=1

(� × �)m → � .

The biggest difficulty so far is that we have no knowledge of the function to be
optimized, i.e., we are only given an iid sample z instead of the full measure
PZ. Thus, it is impossible to solve the learning problem exactly. Nevertheless, for
any learning method we shall require its performance to improve with increasing
training sample size, i.e., the probability of drawing a training sample z such
that the generalization error is large will decrease with increasing m. Here, the
generalization error is defined as follows.

Definition 2.10 (Generalization error) Given a learning algorithm � and a loss
l : � × � → � the generalization error of � is defined as

R [�, z]
def= R [� (z)]− inf

f ∈�
R [ f ] .

In other words, the generalization error measures the deviation of the expected risk
of the function learned from the minimum expected risk.

The most well known learning principle is the empirical risk minimization (ERM)
principle. Here, we replace PZ by vz, which contains all knowledge that can be
drawn from the training sample z. As a consequence the expected risk becomes an
empirically computable quantity known as the empirical risk.

Definition 2.11 (Empirical risk) Given a training sample z ∈ (� × �)m the
functional

Remp [ f, z]
def= 1

m

m∑
i=1

l ( f (xi ) , yi) , (2.11)

is called the empirical risk functional over f ∈ � ⊆ �
� or training error of f ,

respectively.

6 The definition for the case of hypotheses h ∈ � ⊆ �� is equivalent.
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By construction, Remp can be minimized solely on the basis of the training sample
z. We can write any ERM algorithm in the form,

�ERM (z)
def= argmin

f ∈�
Remp [ f, z] . (2.12)

In order to be a consistent learning principle, the expected risk R [�ERM (z)] must
converge to the minimum expected risk R [ f ∗], i.e.,

∀ε > 0 : lim
m→∞PZm

(
R
[
�ERM (Z)

]− R
[

f ∗
]
> ε

) = 0 , (2.13)

where the randomness is due to the random choice of the training sample z.
It is known that the empirical risk Remp [ f, z] of a fixed function f converges

toward R [ f ] at an exponential rate w.r.t. m for any probability measure PZ (see
Subsection A.5.2). Nonetheless, it is not clear whether this holds when we con-
sider the empirical risk minimizer �ERM (z) given by equation (2.12) because this
function changes over the random choice of training samples z. We shall see in
Chapter 4 that the finiteness of the number n of feature space dimensions com-
pletely determines the consistency of the ERM principle.

2.2.1 The (Primal) Perceptron Algorithm

The first iterative procedure for learning linear classifiers presented is the percep-
tron learning algorithm proposed by F. Rosenblatt. The learning algorithm is given
on page 321 and operates as follows:

1. At the start the weight vector w is set to 0.

2. For each training example (xi , yi) it is checked whether the current hypothesis
correctly classifies or not. This can be achieved by evaluating the sign of yi 〈xi ,w〉.
If the i th training sample is not correctly classified then the misclassified pattern xi

is added to or subtracted from the current weight vector depending on the correct
class yi . In summary, the weight vector w is updated to w+ yixi .

3. If no mistakes occur during an iteration through the training sample z the
algorithm stops and outputs w.

The optimization algorithm is a mistake-driven procedure, and it assumes the
existence of a version space V (z) ⊆ � , i.e., it assumes that there exists at least
one classifier f such that Remp [ f, z] = 0.
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Definition 2.12 (Version space) Given the training sample z = (x, y) ∈ (� × �)m

and a hypothesis space � ⊆ �� , we call

V� (z)
def= {h ∈ � | ∀i ∈ {1, . . . ,m} : h (xi) = yi } ⊆ �

the version space, i.e., the set of all classifiers consistent with the training sample.
In particular, for linear classifiers given by (2.5)–(2.7) we synonymously call the
set of consistent weight vectors

V (z)
def= {w ∈� | ∀i ∈ {1, . . . ,m} : yi 〈xi ,w〉 > 0 } ⊆�

the version space.

Since our classifiers are linear in feature space, such training samples are called
linearly separable. In order that the perceptron learning algorithm works for any
training sample it must be ensured that the unknown probability measure PZ satis-
fies R [ f ∗] = 0. Viewed differently, this means that PY|X=x (y) = Iy=h∗(x), h∗ ∈ �,
where h∗ is sometimes known as the teacher perceptron. It should be noticed that
the number of parameters learned by the perceptron algorithm is n, i.e., the dimen-
sionality of the feature space �. We shall call this space of parameters the primal
space, and the corresponding algorithm the primal perceptron learning algorithm.
As depicted in Figure 2.2, perceptron learning is best viewed as starting from an
arbitrary7 point w0 on the hypersphere � , and each time we observe a misclas-
sification with a training example (xi , yi), we update wt toward the misclassified
training object yixi (see also Figure 2.1 (left)). Thus, geometrically, the perceptron
learning algorithm performs a walk through the primal parameter space with each
step made in the direction of decreasing training error. Note, however, that in the
formulation of the algorithm given on page 321 we do not normalize the weight
vector w after each update.

2.2.2 Regularized Risk Functionals

One possible method of overcoming the lack of knowledge about PZ is to replace
it by its empirical estimate vz. This principle, discussed in the previous section,
justifies the perceptron learning algorithm. However, minimizing the empirical
risk, as done by the perceptron learning algorithm, has several drawbacks:

7 Although in algorithm 1 on page 321 we start at w0 = 0 it is not necessary to do so.
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Figure 2.2 A geometrical picture of the update step in the perceptron learning algorithm
in �

2 . Evidently, xi ∈ �
2 is misclassified by the linear classifier (dashed line) having

normal wt (solid line with arrow). Then, the update step amounts to changing wt into
wt+1 = wt + yi xi and thus yixi “attracts” the hyperplane. After this step, the misclassified
point xi is correctly classified.

1. Many examples are required to ensure a small generalization error R [�ERM, z]
with high probability taken over the random choice of z.

2. There is no unique minimum, i.e., each weight vector w ∈ V (z) in version
space parameterizes a classifier fw that has Remp [ fw, z] = 0.

3. Without any further assumptions on PZ the number of steps until convergence
of the perceptron learning algorithm is not bounded.

A training sample z ∈ �m that is linearly separable in feature space is required.

The second point in particular shows that ERM learning makes the learning task
an ill-posed one (see Appendix A.4): A slight variation z̃ in the training sample z
might lead to a large deviation between the expected risks of the classifiers learned
using the ERM principle,

∣∣R [�ERM (z)]− R
[
�ERM

(
z̃
)]∣∣. As will be seen in Part

II of this book, a very influential factor in this deviation is the possibility of the
hypothesis space � adopting different labelings y for randomly drawn objects x.
The more diverse the set of functions a hypothesis space contains, the more easily
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it can produce a given labeling y regardless of how bad the subsequent prediction
might be on new, as yet unseen, data points z = (x, y). This effect is also known
as overfitting, i.e., the empirical risk as given by equation (2.11) is much smaller
than the expected risk (2.8) we originally aimed at minimizing.

One way to overcome this problem is the method of regularization. In our
example this amounts to introducing a regularizer a-priori, that is, a functional
	 : � → �

+ , and defining the solution to the learning problem to be

�	 (z)
def= argmin

f ∈�
Remp [ f, z]+ λ	 [ f ]︸ ︷︷ ︸

Rreg[ f,z]

. (2.14)

The idea of regularization is to restrict the space of solutions to compact subsets
of the (originally overly large) space � . This can be achieved by requiring the set
Fε = { f |	 [ f ] ≤ ε } ⊆ � to be compact for each positive number ε > 0. This,
in fact, is the essential requirement for any regularizer 	. Then, if we decrease
λ for increasing training sample sizes in the right way, it can be shown that the
regularization method leads to f ∗ as m → ∞ (see equation (2.13)). Clearly,
0 ≤ λ < ∞ controls the amount of regularization. Setting λ = 0 is equivalent
to minimizing only the empirical risk. In the other extreme, considering λ → ∞
amounts to discounting the sample and returning the classifier which minimizes
	 alone. The regularizer 	 can be thought of as a penalization term for the
“complexity” of particular classifiers.

Another view of the regularization method can be obtained from the statistical
study of learning algorithms. This will be discussed in greater detail in Part II of
this book but we shall put forward the main idea here. We shall see that there
exist several measures of “complexity” of hypothesis spaces, the VC dimension
being the most prominent thereof. V. Vapnik suggested a learning principle which
he called structural risk minimization (SRM). The idea behind SRM is to, a-priori,
define a structuring of the hypothesis space � into nested subsets �0 ⊂ �1 ⊂ · · · ⊆
� of increasing complexity. Then, in each of the hypothesis spaces �i empirical
risk minimization is performed. Based on results from statistical learning theory,
an SRM algorithm returns the classifier with the smallest guaranteed risk8. This
can be related to the algorithm (2.14), if 	 [ f ] is the complexity value of f given
by the used bound for the guaranteed risk.

From a Bayesian perspective, however, the method of regularization is closely
related to maximum-a-posteriori (MAP) estimation. To see this, it suffices to

8 This is a misnomer as it refers to the value of an upper bound at a fixed confidence level and can in no way be
guaranteed.
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express the empirical risk as the negative log-probability of the training sample
z, given a classifier f . In general, this can be achieved by

PZm |F= f (z) =
m∏

i=1

PY|X=xi ,F= f (yi)PX|F= f (xi) ,

PY|X=x,F= f (y) = exp (−l ( f (x) , y))∑
ỹ∈� exp (−l ( f (x) , ỹ))

= 1

C (x)
exp (−l ( f (x) , y)) .

Assuming a prior density fF ( f ) = exp (−λm	 [ f ]), by Bayes’ theorem we have
the posterior density

fF|Zm=z ( f ) ∝ exp

(
−

m∑
i=1

l ( f (xi) , yi)

)
exp (−λm	 [ f ])

∝ exp
(−Remp [ f, z]− λ	 [ f ]

)
.

The MAP estimate is that classifier fMAP which maximizes the last expression, i.e.,
the mode of the posterior density. Taking the logarithm we see that the choice of
a regularizer is comparable to the choice of the prior probability in the Bayesian
framework and therefore reflects prior knowledge.

2.3 Kernels and Linear Classifiers

In practice we are often given a vectorial representation x = �x of the objects. Using
the identity feature mapping, i.e., x = φ (x) = �x , results in classifiers linear in
input space. Theoretically, however, any mapping into a high-dimensional feature
space is conceivable. Hence, we call a classifier nonlinear in input space whenever
a feature mapping different from the identity map is used.

Example 2.13 (Nonlinear classifiers) Let � = �
2 and let the mapping φ : � →

� be given by

φ (�x) =
(
(�x)1 , (�x)2

2 , (�x)1 (�x)2

)′
. (2.15)

In Figure 2.3 (left) the mapping is applied to the unit square [0, 1]2 and the
resulting manifold in �3 is shown. Note that in this case the decision surface X̃0 (w)
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Figure 2.3 (Left) Mapping of the unit square [0, 1]2 ⊂ �
2 to the feature space � ⊆ �3

2
by equation (2.15). The mapped unit square forms a two-dimensional sub-manifold in �3

though dim (�) = 3. (Right) Nine different decision surfaces obtained by varying w1 and
w3 in equation (2.16). The solid, dashed and dot-dashed lines result from varying w3 for
different values of w1 = −1, 0 and +1, respectively.

in input space is given by

X̃0 (w) =
{
�x ∈ �2

∣∣∣w1 (�x)1 + w2 (�x)2
2 + w3 (�x)1 (�x)2 = 0

}
, (2.16)

whose solution is given by

(�x)2 = − w3

2w2
· (�x)1 ±

√
(�x)1

(
w2

3 (�x)1 − 4w1w2
)

2w2
.

In Figure 2.3 (right) we have depicted the resulting decision surfaces for various
choices of w1 and w3. Clearly, the decision surfaces are nonlinear functions
although in feature space we are still dealing with linear functions.
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As we assume φ to be given we will call this the explicit way to non-linearize a
linear classification model. We already mentioned in Section 2.2 that the number of
dimensions, n, of the feature space has a great impact on the generalization ability
of empirical risk minimization algorithms. Thus, one conceivable criterion for
defining features φi is to seek a small set of basis functions φi which allow perfect
discrimination between the classes in � . This task is called feature selection.

Let us return to the primal perceptron learning algorithm mentioned in the last
subsection. As we start at w0 = 0 and add training examples only when a mistake is
committed by the current hypothesis, it follows that the each solution has to admit
a representation of the form,

wt =
m∑

i=1

αiφ (xi) =
m∑

i=1

αixi . (2.17)

Hence, instead of formulating the perceptron algorithm in terms of the n variables
(w1, . . . , wn)

′ = w we could learn the m variables (α1, . . . , αm)
′ = α which

we call the dual space of variables. In the case of perceptron learning we start
with α0 = 0 and then employ the representation of equation (2.17) to update αt

whenever a mistake occurs. To this end, we need to evaluate

y j

〈
x j ,wt

〉 = y j

〈
x j ,

m∑
i=1

αi xi

〉
= y j

m∑
i=1

αi

〈
x j , xi

〉
which requires only knowledge of the inner product function 〈·, ·〉 between the
mapped training objects x. Further, for the classification of a novel test object x
it suffices to know the solution vector αt as well as the inner product function,
because

〈x,wt 〉 =
〈

x,
m∑

i=1

αi xi

〉
=

m∑
i=1

αi 〈x, xi 〉 .

Definition 2.14 (Kernel) Suppose we are given a feature mapping φ : � → � ⊆
�n

2. The kernel is the inner product function k : � × � → � in �, i.e., for all
xi , x j ∈ � ,

k
(
xi , x j

) def= 〈
φ (xi ) ,φ

(
x j

)〉 = 〈
xi , x j

〉
.

Using the notion of a kernel k we can therefore formulate the kernel perceptron
or dual perceptron algorithm as presented on page 322. Note that we can benefit
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from the fact that, in each update step, we only increase the j th component of
the expansion vector α (assuming that the mistake occurred at the j th training
point). This can change the real-valued output 〈xi ,wt〉 at each mapped training
object xi by only one summand y j

〈
x j , xi

〉
which requires just one evaluation of the

kernel function with all training objects. Hence, by caching the real-valued outputs
o ∈ �m at all training objects we see that the kernel perceptron algorithm requires
exactly 2m memory units (for the storage of the vectors α and o) and is thus suited
for large scale problems, i.e., m � 1000.

Definition 2.15 (Gram matrix) Given a kernel k : � × � → � and a set
x = (x1, . . . , xm) ∈ �m of m objects in � we call the m × m matrix G with

Gi j
def= k

(
xi , x j

) = 〈
xi , x j

〉
(2.18)

the Gram matrix of k at x.

By the above reasoning we see that the Gram matrix (2.18) and the m–dimensional
vector of kernel evaluations between the training objects xi and a new test object
x ∈ � suffice for learning and classification, respectively. It is worth also mention-
ing that the Gram matrix and feature space are called the kernel matrix and kernel
space, respectively, as well.

2.3.1 The Kernel Technique

The key idea of the kernel technique is to invert the chain of arguments, i.e., choose
a kernel k rather than a mapping before applying a learning algorithm. Of course,
not any symmetric function k can serve as a kernel. The necessary and sufficient
conditions of k : � × � → � to be a kernel are given by Mercer’s theorem.
Before we rephrase the original theorem we give a more intuitive characterization
of Mercer kernels.

Example 2.16 (Mercer’s theorem) Suppose our input space � has a finite num-
ber of elements, i.e., � = {x1, . . . , xr }. Then, the r × r kernel matrix K with
Ki j = k

(
xi , x j

)
is by definition a symmetric matrix. Consider the eigenvalue de-

composition of K = U�U′, where U = (
u′1; . . . ;u′r

)
is an r × n matrix such that

U′U = In, � = diag (λ1, . . . , λn) , λ1 ≥ λ2 ≥ · · · ≥ λn > 0 and n ≤ r being
known as the rank of the matrix K (see also Theorem A.83 and Definition A.62).
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Now the mapping φ : � → � ⊆ �n
2,

φ (xi ) = �
1
2 ui ,

leads to a Gram matrix G given by

Gi j = 〈
φ (xi ) ,φ

(
x j

)〉
�
=
(
�

1
2 ui

)′ (
�

1
2 u j

)
= u′i�u j = Ki j .

We have constructed a feature space � and a mapping � into it purely from the
kernel k. Note that λn > 0 is equivalent to assuming that K is positive semidefinite
denoted by K ≥ 0 (see Definition A.40). In order to show that K ≥ 0 is also
necessary for k to be a kernel, we assume that λn < 0. Then, the squared length of
the nth mapped object xn is

‖φ (xn)‖2 = u′n�un = λn < 0 ,

which contradicts the geometry in an inner product space.

Mercer’s theorem is an extension of this property, mainly achieved by studying the
eigenvalue problem for integral equations of the form∫
�

k (x, x̃) f (x̃) dx̃ = λ f (x) ,

where k is a bounded, symmetric and positive semidefinite function.

Theorem 2.17 (Mercer’s theorem) Suppose k ∈ L∞ (� × � ) is a symmetric
function, i.e., k (x, x̃) = k (x̃, x), such that the integral operator Tk : L2 (� ) →
L2 (� ) given by

(Tk f ) (·) =
∫
�

k (·, x) f (x) dx

is positive semidefinite, that is,∫
�

∫
�

k (x̃, x) f (x) f (x̃) dxdx̃ ≥ 0 , (2.19)

for all f ∈ L2 (� ). Let ψi ∈ L2 (� ) be the eigenfunction of Tk associated with the
eigenvalue λi ≥ 0 and normalized such that ‖ψi‖2 =

∫
�
ψ2

i (x) dx = 1, i.e.,

∀x ∈ � :
∫
�

k (x, x̃) ψi (x̃) dx̃ = λiψi (x) .
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Then

1. (λi )i∈� ∈ �1 ,

2. ψi ∈ L∞ (� ),

3. k can be expanded in a uniformly convergent series, i.e.,

k (x, x̃) =
∞∑

i=1

λiψi (x) ψi (x̃) (2.20)

holds for all x, x̃ ∈ � .

The positivity condition (2.19) is equivalent to the positive semidefiniteness of K
in Example 2.16. This has been made more precise in the following proposition.

Proposition 2.18 (Mercer Kernels) The function k : � × � → � is a Mercer
kernel if, and only if, for each r ∈ � and x = (x1, . . . , xr ) ∈ � r , the r × r matrix
K = (

k
(
xi , x j

))r
i, j=1 is positive semidefinite.

Remarkably, Mercer’s theorem not only gives necessary and sufficient conditions
for k to be a kernel, but also suggests a constructive way of obtaining features φi

from a given kernel k. To see this, consider the mapping φ from � into �2

φ (x) =
(√

λ1ψ1 (x) ,
√
λ2ψ2 (x) , . . .

)′
. (2.21)

By equation (2.20) we have for each x, x̃ ∈ �

k (x, x̃) =
∞∑

i=1

λiψi (x) ψi (x̃) =
∞∑

i=1

φi (x) φi (x̃) = 〈φ (x) ,φ (x̃)〉 .

The features ψi are called Mercer features; the mapping

ψ (x) = (ψ1 (x) , ψ2 (x) , . . .)
′

is known as the Mercer map; the image� of ψ is termed Mercer space.

Remark 2.19 (Mahalanobis metric) Consider kernels k such that dim (�) =
dim (�) < ∞. In order to have equal inner products in feature space � and
Mercer space�, we need to redefine the inner product in�, i.e.,

〈a,b〉� = a′�b ,
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where � = diag (λ1, . . . , λn). This metric appears in the study of covariances
of multidimensional Gaussians and is also known as the Mahalanobis metric. In
fact, there is a very close connection between covariance functions for Gaussian
processes and kernels which we will discuss in more depth in Chapter 3.

2.3.2 Kernel Families

So far we have seen that there are two ways of making linear classifiers nonlinear
in input space:

1. Choose a mapping φ which explicitly gives us a (Mercer) kernel k, or

2. Choose a Mercer kernel k which implicitly corresponds to a fixed mapping φ.

Though mathematically equivalent, kernels are often much easier to define and
have the intuitive meaning of serving as a similarity measure between objects
x, x̃ ∈ � . Moreover, there exist simple rules for designing kernels on the basis
of given kernel functions.

Theorem 2.20 (Functions of kernels) Let k1 : � ×� → � and k2 : � ×� → �

be any two Mercer kernels. Then, the functions k : � × � → � given by

1. k (x, x̃) = k1 (x, x̃)+ k2 (x, x̃),

2. k (x, x̃) = c · k1 (x, x̃ ), for all c ∈ �+ ,

3. k (x, x̃) = k1 (x, x̃)+ c, for all c ∈ �+ ,

4. k (x, x̃) = k1 (x, x̃) · k2 (x, x̃),

5. k (x, x̃) = f (x) · f (x̃), for any function f : � → �

are also Mercer kernels.

The proofs can be found in Appendix B.1. The real impact of these design rules
becomes apparent when we consider the following corollary (for a proof see
Appendix B.1).

Corollary 2.21 (Functions of kernels) Let k1 : � × � → � be any Mercer
kernel. Then, the functions k : � × � → � given by

1. k (x, x̃) = (k1 (x, x̃)+ θ1)
θ2 , for all θ1 ∈ �+ and θ2 ∈ � ,

2. k (x, x̃) = exp
(

k1(x,x̃)
σ 2

)
, for all σ ∈ �+ ,
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3. k (x, x̃ ) = exp
(
− k1(x,x)−2k1(x,x̃)+k1(x̃,x̃)

2σ 2

)
, for all σ ∈ �+

4. k (x, x̃ ) = k1(x,x̃)√
k1(x,x)·k1(x̃,x̃)

are also Mercer kernels.

It is worth mentioning that, by virtue of the fourth proposition of this corollary,
it is possible to normalize data in feature space without performing the explicit
mapping because, for the inner product after normalization, it holds that

knorm (x, x̃)
def= k (x, x̃)√

k (x, x) · k (x̃, x̃)
= 1√

‖x‖2 · ∥∥x̃
∥∥2

〈
x, x̃

〉 = 〈
x
‖x‖ ,

x̃∥∥x̃
∥∥
〉
. (2.22)

Kernels on Inner Product Spaces—Polynomial and RBF Kernels

If the input space � is already an N–dimensional inner product space �N
2 we can

use Corollary 2.21 to construct new kernels because, according to Example A.41
at page 219, the inner product function 〈·, ·〉� in � is already a Mercer kernel. In
Table 2.1 some commonly used families of kernels on �N

2 are presented. The last
column gives the number of linearly independent features φi in the induced feature
space �.

The radial basis function (RBF) kernel has the appealing property that each
linear combination of kernel functions of the training objects9 x = (�x1, . . . , �xm)

f (�x) =
m∑

i=1

αi k (�x, �xi ) =
m∑

i=1

αi exp

(
−‖�x − �xi‖2

�

2σ 2

)
, (2.23)

can also be viewed as a density estimator in input space � because it effectively
puts a Gaussian on each �xi and weights its contribution to the final density by αi .
Interestingly, by the third proposition of Corollary 2.21, the weighting coefficients
αi correspond directly to the expansion coefficients for a weight vector w in a
classical linear model f (�x) = 〈φ (�x) ,w〉. The parameter σ controls the amount
of smoothing, i.e., big values of σ lead to very flat and smooth functions f —
hence it defines the unit on which distances ‖�x − �xi‖ are measured (see Figure
2.4). The Mahalanobis kernel differs from the standard RBF kernel insofar as

9 In this subsection we use �x to denote the N–dimensional vectors in input space. Note that x := φ (�x) denotes
a mapped input object (vector) �x in feature space �.
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Name Kernel function dim (�)

pth degree polynomial k (�u, �v) = (〈�u, �v〉� )p (N+p−1
p

)
p ∈ �+

complete polynomial k (�u, �v) = (〈�u, �v〉� + c)p (N+p
p

)
c ∈ �+ , p ∈ �+

RBF kernel k (�u, �v) = exp

(
−‖�u−�v‖2

�

2σ 2

)
∞

σ ∈ �+

Mahalanobis kernel k (�u, �v) = exp
(− (�u − �v)′ � (�u − �v)) ∞

� = diag
(
σ−2

1 , . . . , σ−2
N

)
,

σ1, . . . , σN ∈ �+

Table 2.1 List of kernel functions over �N
2 . The dimensionality of the input space is N .

each axis of the input space � ⊆ �N
2 has a separate smoothing parameter, i.e., a

separate scale onto which differences on this axis are viewed. By setting σi →∞
we are able to eliminate the influence of the i th feature in input space. We shall
see in Section 3.2 that inference over these parameters is made in the context
of automatic relevance determination (ARD) of the features in input space (see
also Example 3.12). It is worth mentioning that RBF kernels map the input space
onto the surface of an infinite dimensional hypersphere because by construction
‖φ (�x)‖ = √

k (�x, �x) = 1 for all �x ∈ � . Finally, by using RBF kernels we have
automatically chosen a classification model which is shift invariant, i.e., translating
the whole input space � by some fixed vector �a does not change anything because

∀�a ∈ � : ‖(�x + �a)− (�xi + �a)‖2 = ‖�x + �a − �xi − �a‖2 = ‖�x − �xi‖2
.

The most remarkable advantage in using these kernels is the saving in compu-
tational effort, e.g., to calculate the inner product for pth degree complete polyno-
mial kernels we need � (N + p) operations whereas an explicit mapping would
require calculations of order �(exp(p ln(N/p))). Further, for radial basis function
kernels, it is very difficult to perform the explicit mapping.
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Figure 2.4 The real-valued function f (�x) for m = 20 training points �x ∈ �2 with α = 1
(see equation (2.23)) for varying values of σ (from upper left to lower right σ = 0.5,
σ = 0.7, σ = 1.0 and σ = 2.0). From the contour plot it can be seen that by increasing σ

the contribution of single points to the final density vanishes. Further, for bigger values of
σ the resulting surface is smoother. For visualization purposes the surface {�x | f (�x) = 0 }
is made transparent.

Example 2.22 (Polynomial kernel) Consider the pth degree polynomial kernel as
given in Table 2.1. In order to obtain explicit features φ : � → � let us expand
the kernel function as follows10

(〈�u, �v〉� )p =
(

N∑
i=1

uivi

)p

=
(

N∑
i1=1

ui1vi1

)
· · ·
 N∑

i p=1

uipvi p


10 For notational brevity, in this example we denote the i–th component of the vector �u ∈ � and �v ∈ � by ui
and vi , respectively.
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=
N∑

i1=1

· · ·
N∑

i p=1

(
ui1 · · · uip

)︸ ︷︷ ︸
φi(�u)

· (vi1 · · · vi p

)︸ ︷︷ ︸
φi(�v)

= 〈φ (�u) ,φ (�v)〉 .

Although it seems that there are N p different features we see that two index vectors
i1 and i2 lead to the same feature φi1 = φi2 if they contain the same distinct
indices the same number of times but at different positions, e.g., i1 = (1, 1, 3)
and i2 = (1, 3, 1) both lead to φ (�u) = u1u1u3 = u2

1u3. One method of computing
the number of different features φ is to index them by an N–dimensional exponent
vector r = (r1, . . . , rN ) ∈ {0, . . . , p}N , i.e., φr (�u) = ur1

1 · · · · · urN
N . Since there are

exactly p summands we know that each admissible exponent vector r must obey
r1+ · · ·+ rN = p. The number of different exponent vectors r is thus exactly given
by11(

N + p − 1

p

)
,

and for each admissible exponent vector r there are exactly12

p!
r1! · · · · · rN !
different index vectors i ∈ {1, . . . , N}p leading to r. Hence the rth feature is given
by

φr (�u) =
√

p!
r1! · · · · · rN ! · ur1

1 · · · · · urN
N .

Finally note that the complete polynomial kernel in Table 2.1 is a pth degree
polynomial kernel in an N + 1–dimensional input space by the following identity

(〈�u, �v〉 + c)p = (〈(�u,√c
)
,
(�v,√c

)〉)p
,

11 This problem is known as the occupancy problem: Given p balls and N cells, how many different configura-
tions of occupancy numbers r1, . . . , rN whose sum is exactly p exist? (see Feller (1950) for results).
12 To see this note that we have first to select r1 indices j1, . . . , jr1 and set i j1 = · · · = i jr1

= 1. From the
remaining p − r1 indices select r2 indices and set them all to 2, etc. Thus, the total number of different index
vectors i leading to the same exponent vector r equals(

p

r1

)(
p − r1

r2

)
· · · · ·

(
p − r1 − · · · − rN−2

rN−1

)
= p!

r1 ! · · · · · rN ! ,
which is valid because r1 + · · · + rN = p (taken from (Feller 1950)).
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where we use the fact that c ≥ 0. This justifies the number of dimensions of feature
space given in the third column of Table 2.1.

Kernels on Strings

One of the greatest advantages of kernels is that they are not limited to vectorial
objects �x ∈ � but that they are applicable to virtually any kind of object repre-
sentation. In this subsection we will demonstrate that it is possible to efficiently
formulate computable kernels on strings. An application of string kernels is in the
analysis of DNA sequences which are given as strings composed of the symbols13

A, T, G,C. Another interesting use of kernels on strings is in the field of text cate-
gorization and classification. Here we treat each document as a sequence or string
of letters. Let us start by formalizing the notion of a string.

Definition 2.23 (Strings and alphabets) An alphabet � is a finite collection of
symbols called characters. A string is a finite sequence u = (u1, . . . , ur ) of
characters from an alphabet �. The symbol �∗ denotes the set of all strings of

any length, i.e., �∗ def= ∪∞i=0�
i . The number |u| of symbols in a string u ∈ �∗ is

called the length of the string. Given two strings u ∈ �∗ and v ∈ �∗, the symbol

uv
def= (

u1, . . . , u|u|, v1, . . . , v|v|
)

denotes the concatenation of the two strings.

Definition 2.24 (Subsequences and substrings) Given a string u ∈ �∗ and an
index vector i = (i1, . . . , ir ) such that 1 ≤ i1 < · · · < ir ≤ |u|, we denote by
u [i] the subsequence

(
ui1 , . . . , uir

)
. The index vector (1, . . . , r) is abbreviated by

1 : r. Given two strings v ∈ �∗ and u ∈ �∗ where |u| ≥ |v| we define the

index set Iv,u
def= {i : (i + |v| − 1) | i ∈ {1, . . . , |u| − |v| + 1} }, i.e., the set of all

consecutive sequences of length |v| in |u|. Then the string v is said to be a substring
of u if there exists an index vector i ∈ Iv,u such that v = u [i]. The length l (i) of
an index vector is defined by i|v| − i1 + 1, i.e., the total extent of the subsequence
(substring) v in the string u.

In order to derive kernels on strings, it is advantageous to start with the explicit
mapping φ : �∗ → � and then make sure that the resulting inner product function
〈φ (·) ,φ (·)〉 is easy to compute. By the finiteness of the alphabet �, the set �∗ is
countable and we can therefore use it to index the features φ.

13 These letters correspond to the four bases Adenine, Thymine, Guanine and Cytosine.
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The most trivial feature set and corresponding kernel are obtained if we con-
sider binary features φu that indicate whether the given string matches u or not,

φu (v) = Iu=v ⇔ k (u, v) =
{

1 if u = v

0 otherwise
,

Though easy to compute, this kernel is unable to measure the similarity to any
object (string) not in the training sample and hence would not be useful for
learning.

A more commonly used feature set is obtained if we assume that we are given
a lexicon B = {b1, . . . , bn} ⊂ �∗ of possible substrings which we will call words.
We compute the number of times the i th substring bi appears within a given string
(document). Hence, the so-called bag-of-words kernel is given by

φb (v) = βb ·
∑
i∈Ib,v

Ib=v[i] ⇔ kB (u, v) =
∑
b∈B

β2
b

∑
i∈Ib,u

∑
j∈Ib,v

Ib=u[i]=v[j] , (2.24)

which can be efficiently computed if we assume that the data is preprocessed
such that only the indices of the words occurring in a given string are stored.
The coefficients βb allow the weighting of the importance of words b ∈ B to
differ. A commonly used heuristic for the determination of the βb is the use
of the inverse-document-frequency (IDF) which is given by the logarithm of the
inverse probability that the substring (word) b appears in a randomly chosen string
(document).

The kernel given in equation (2.24) has the disadvantage of requiring a fixed
lexicon B ⊂ �∗ which is often difficult to define a-priori. This is particularly
true when dealing with strings not originating from natural languages. If we fix
the maximum length, r , of substrings considered and weight the feature φb by λ|b|,
i.e., for λ ∈ (0, 1) we emphasize short substrings whereas for λ > 1 the weight of
longer substrings increases, we obtain

φb (v) = λ|b|
∑
i∈Ib,v

Ib=v[i] ⇔ kr (u, v) =
r∑

s=1

λ2s
∑
b∈�s

∑
i∈Ib,u

∑
j∈Ib,v

Ib=u[i]=v[j] , (2.25)

which can be computed using the following recursion (see Appendix B.2)

kr (u1u, v) =
{

0 if |u1u| = 0
kr (u, v)+∑|v|

j=1 λ
2 · k ′r (u1u, v) otherwise

, (2.26)
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k ′r (u1u, v1v) =


0 if r = 0
0 if |u1u| = 0 or |v1v| = 0
0 if u1 �= v1(
1+ λ2 · k ′r−1 (u, v)

)
otherwise

. (2.27)

Since the recursion over kr invokes at most |v| times the recursion over k ′r (which
terminates after at most r steps) and is invoked itself exactly |u| times, the compu-
tational complexity of this string kernel is � (r · |u| · |v|).

One of the disadvantages of the kernels given in equations (2.24) and (2.25)
is that each feature requires a perfect match of the substring b in the given string
v ∈ �∗. In general, strings can suffer from deletion and insertion of symbols, e.g.,
for DNA sequences it can happen that a few bases are inserted somewhere in a
given substring b. Hence, rather than requiring b to be a substring we assume that
φb (v) only measures how often b is a subsequence of v and penalizes the non-
contiguity of b in v by using the length l (i) of the corresponding index vector i,
i.e.,

φb (v) =
∑

{i|b=v[i] }
λl(i) ⇔ kr (u, v) =

∑
b∈�r

∑
{i|b=u[i] }

∑
{j|b=v[j] }

λl(i)+l(j) (2.28)

This kernel can efficiently be computed by applying the the following recursion
formula (see Appendix B.2)

kr (uus, v) =
{

0 if min (|uus| , |v|) < r
kr (u, v)+ λ2∑{t |vt=us } k ′r−1 (u, v [1 : (t − 1)])

(2.29)

k ′r (uus, v) =


0 if min (|uus | , |v|) < r
1 if r = 0
λ · k ′r (u, v)+ λ2∑

{t |vt=us } λ
|v|− j k ′r−1 (u, v [1 : (t − 1)])

(2.30)

Clearly, the recursion for kr is invoked exactly |u| times by itself and each time
invokes at most |v| times the recursive evaluation of k ′r . The recursion over k ′r
is invoked at most r times itself and invokes at most |v| times the recursion
over k ′r−1. As a consequence the computational complexity of this algorithm is
�
(
r · |u| · |v|2). It can be shown, however, that with simple caching it is possible

to reduce the complexity further to � (r · |u| · |v|).

Remark 2.25 (Ridge Problem) The kernels (2.25) and (2.28) lead to the so-called
ridge problem when applied to natural language documents, i.e., different docu-
ments u ∈ �∗ and v ∈ �∗ map to almost orthogonal features φ (u) and φ (v).
Thus, the Gram matrix has a dominant diagonal (see Figure 2.5) which is prob-
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Figure 2.5 Intensity plots of the normalized Gram matrices when applying the string
kernels (2.24), (2.25) and (2.28) (from left to right) to 32 sentences taken from this chapter
with n = 5 and λ = 0.5. 11, 8, 4 and 9 sentences were taken from Section 2.2, Subsection
2.2.2, Section 2.3 and Subsection 2.3.1, respectively. For the sake of clarity, white lines are
inserted to indicate the change from one section to another section.

lematic because each new test document x is likely to have a kernel value k (x, xi )

close to zero. In order to explain this we notice that a document u ∈ �∗ has at
least |u| − r + 1 matches of contiguous substrings with itself, i.e., all substrings
u [i : (i + r − 1)] for all i ∈ {1, . . . , |u| − r + 1}. However, even if two documents
u ∈ �∗ and v ∈ �∗ share all words b ∈ �r of length r (on average) but in differ-
ent orders, we have approximately |u|

r matches (assuming |u| ≈ |v|). Therefore the
difference

(
(|u| − r)− |u|

r

) · λr between diagonal and off-diagonal elements of the
Gram matrix becomes systematically larger with increasing subsequence length r.

Kernels from Probabilistic Models of the Data

A major disadvantage of the two kernel families presented so far is that they are
limited to a fixed representation of objects, x , i.e., vectorial data or strings. In order
to overcome this limitation, Jaakkola and Haussler introduced the so-called Fisher
kernel. The idea of the Fisher kernel is to use a probabilistic model of the input
data, x , to derive a similarity measure between two data items. In order to achieve
this, let us assume that the object generating probability measure PX can be written
as a mixture, i.e., there exists a vector θ = (θ1; . . . ; θ r;π) such that14

PX (x) = Pθ
X (x) =

r∑
i=1

Pθ i
X|M=i (x) · PM (i)︸ ︷︷ ︸

πi

=
r∑

i=1

πi · Pθi
X|M=i (x) , (2.31)

14 With a slight abuse of notation, we always use PX even if X is a continuous random variable possessing a
density fX. In this case we have to replace PX by fX and PX|M=i by fX|M=i but the argument would not change.
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where the measure Pθ i
X|M=i is parameterized by θ i only. In the search for the most

plausible mixture components θML (given a set x ∈ �m of m training objects) the
Fisher score and the Fisher information matrix play a major role.

Definition 2.26 (Fisher score and Fisher information matrix) Given a parame-
terized family �� of probability measures Pθ

X over the space � and a parameter
vector θ̃ ∈ � the function

fθ̃ (x)
def=

∂ ln
(
Pθ

X (x)
)

∂θ

∣∣∣∣∣∣
θ=θ̃

is called the Fisher score of x at θ̃ . Further, the matrix

I θ̃

def= EX

[
fθ̃ (X)

(
fθ̃ (X)

)′]
(2.32)

is called Fisher information matrix at θ̃ . Note that the expectation in equation

(2.32) is w.r.t. Pθ̃
X.

Now, given an estimate θ̂ ∈ � of the parameter vector θ—probably obtained by
using unlabeled data {x1, . . . , xM }, where M � m—let us consider the Fisher
score mapping in the |θ |–dimensional feature space �, i.e.,

φ
θ̂
(x) = f

θ̂
(x) . (2.33)

Interestingly, we see that the features φ associated with πi measure the amount
by which the i th mixture component PX|M=i contributes to the generation of the
pattern x , i.e.,

∂ ln
(
Pθ

X (x)
)

∂π j
=

∂ ln

(
r∑

i=1
πiP

θ i
X|M=i (x)

)
∂π j

= Pθ j

X|M= j (x)
r∑

i=1
πiP

θ i
X|M=i (x)

= Pθ j

X|M= j (x)

Pθ
X (x)

.

As a consequence, these features allow a good separation of all regions of the input
space � in which the mixture measure (2.31) is high for exactly one component
only. Hence, using the Fisher score fθ (x) as a vectorial representation of x provides
a principled way of obtaining kernels from a generative probabilistic model of the
data.
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Definition 2.27 (Fisher kernel ) Given a parameterized family � of probability
measures Pθ

X over the input space � and a parameter vector θ ∈ � the function

k (x, x̃) = (fθ (x))′ I−1
θ fθ (x̃)

is called the Fisher kernel. The naive Fisher kernel is the simplified function

k (x, x̃) = (fθ (x))′ fθ (x̃) .

This assumes that the Fisher information matrix I θ is the identity matrix I.

The naive Fisher kernel is practically more relevant because the computation of
the Fisher information matrix is very time consuming and sometimes not even
analytically possible. Note, however, that not only do we need a probability model
Pθ

X of the data but also the model � ⊃ Pθ
X of probability measures.

Example 2.28 (Fisher kernel) Let us assume that the measures PX|M=i belong to
the exponential family, i.e., their density can be written as

fθ i
X|M=i (x) = ai (θ i) · ci (x) · exp

(
θ ′iτ i (x)

)
,

where ci : � → � is a fixed function, τ i : � → �
ni is known as a sufficient

statistic of x and ai : �ni → � is a normalization constant. Then the value of the
features φθ j

associated with the j th parameter vector θ j are given by

∂ ln
(
fθX (x)

)
∂θ j

= 1

fθX (x)
·
∂

(
r∑

i=1
PM (i) · ai (θ i) · ci (x) · exp

(
θ ′iτ i (x)

))
∂θ j

= fθ j

X|M= j (x)PM ( j)

fθX (x)


∂a j(θ j)

∂θ j

a j

(
θ j

)︸ ︷︷ ︸
independentof x

+τ j (x)

 .

Let us consider the contribution of the features φθ j
at objects x, x̃ ∈ � for which15

fθ j

X|M= j (x)

fθX (x)
≈ fθ j

X|M= j (x̃)

fθX (x̃)

15 If this relation does not hold then the features associated with π j already allow good discrimination.
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and, additionally, assume that PM is the uniform measure. We see that〈
φθ j

(x) ,φθ j
(x̃)
〉
∝ (τ j (x)

)′
τ j (x̃) ,

that is, we effectively consider the sufficient statistic τ j (x) of the j th mixture
component measure as a vectorial representation of our data.

2.3.3 The Representer Theorem

We have seen that kernels are a powerful tool that enrich the applicability of linear
classifiers by a large extent. Nonetheless, apart from the solution of the perceptron
learning algorithm it is not yet clear when this method can successfully be applied,
i.e., for which learning algorithms � : ∪∞m=1�

m → � the solution � (z) admits a
representation of the form

(� (z)) (·) =
m∑

i=1

αi k (xi , ·) . (2.34)

Before identifying this class of learning algorithms we introduce a purely func-
tional analytic point of view on kernels. We will show that each Mercer kernel
automatically defines a reproducing kernel Hilbert space (RKHS) of functions as
given by equation (2.34). Finally, we identify the class of cost functions whose
solution has the form (2.34).

Reproducing Kernel Hilbert Spaces

Suppose we are given a Mercer kernel k : � × � → �. Then let �0 be the linear
space of real-valued functions on � generated by the functions {k (x, ·) | x ∈ � }.
Consider any two functions f (·) = ∑r

i=1 αi k (xi , ·) and g (·) = ∑s
j=1 β j k

(
x̃ j , ·

)
in �0 where α ∈ �

r , β ∈ �
s and xi , x̃ j ∈ � . Define the inner product 〈 f, g〉

between f and g in �0 as

〈 f, g〉 def=
r∑

i=1

s∑
j=1

αiβ j k
(
xi , x̃ j

) = s∑
j=1

β j f
(
x̃ j

) = r∑
i=1

αi g (xi ) , (2.35)

where the last equality follows from the symmetry of the kernel k. Note that this
inner product 〈·, ·〉 is independent of the representation of the function f and g
because changing the representation of f , i.e., changing r , α and {x1, . . . , xr },
would not change

∑s
j=1 β j f

(
x̃ j

)
(similarly for g). Moreover, we see that
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1. 〈 f, g〉 = 〈g, f 〉 for all functions f, g ∈ �0 ,

2. 〈c f + dg, h〉 = c 〈 f, h〉 + d 〈g, h〉 for all functions f, g, h ∈ �0 and all
c, d ∈ �,

3. 〈 f, f 〉 = ∑r
i=1

∑r
j=1 αiα j k

(
xi , x j

) ≥ 0 for all functions f ∈ �0 because k is
a Mercer kernel.

It still remains to established that 〈 f, f 〉 = 0 implies that f = 0. To show this we
need first the following important reproducing property: For all functions f ∈ �0

and all x ∈ �
〈 f, k (x, ·)〉 = f (x) , (2.36)

which follows directly from choosing s = 1, β1 = 1 and x̃1 = x in (2.35)—hence
g (·) = k (x, ·). Now using the Cauchy-Schwarz inequality (see Theorem A.106
and preceding comments) we know that

0 ≤ ( f (x))2 = (〈 f, k (x, ·)〉)2 ≤ 〈 f, f 〉 〈k (x, ·) , k (x, ·)〉︸ ︷︷ ︸
k(x,x)

, (2.37)

which shows that 〈 f, f 〉 = 0 only if f (x) = 0 for all x ∈ � , i.e., f = 0.
Finally, let us consider any Cauchy sequence ( fr )r∈� of functions in �0. Then,

by virtue of equation (2.37), we know that, for all r, s ∈ � , ( fr (x)− fs (x))
2 ≤

‖ fr − fs‖2 k (x, x) and hence ( fr)r∈� converges toward some real-valued function
f on � . It is possible to complete �0 by adding the limits of all Cauchy sequences
to it, extending it and its inner product to a slightly larger class � ⊆ �

� . Thus,
we have shown that each kernel k : � × � → � defines a Hilbert space � of
real-valued functions over � which has the reproducing property (2.36), i.e., the
value of the function f at x is “reproduced” by the inner product of f with k (x, ·).
The full power of this consideration is expressed in the following theorem.

Theorem 2.29 (Representer theorem) Let k be a Mercer kernel on � , z ∈
(� × �)m be a training sample and gemp : (� × � × �)m → � ∪ {∞} be any
arbitrary but fixed function. Let greg : � → [0,∞) be any strictly monotoni-
cally increasing function. Define � as the RKHS induced by k. Then any f ∈ �
minimizing the regularized risk

Rreg [ f, z] = gemp
(
((xi , yi , f (xi )))i∈{1,...,m}

)+ greg (‖ f ‖) , (2.38)
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admits a representation of the form

f (·) =
m∑

i=1

αi k (xi , ·) α ∈ �m . (2.39)

The proof is given in Appendix B.3. It elucidates once more the advantage of
kernels: Apart from limiting the computational effort in application, they allow
for a quite general class of learning algorithms (characterized by the minimization
of a functional of the form (2.38)) to be applied in dual variables α ∈ �m .

2.4 Support Vector Classification Learning

The methods presented in the last two sections, namely the idea of regularization,
and the kernel technique, are elegantly combined in a learning algorithm known as
support vector learning (SV learning).16 In the study of SV learning the notion of
margins is of particular importance. We shall see that the support vector machine
(SVM) is an implementation of a more general regularization principle known
as the large margin principle. The greatest drawback of SVMs, that is, the need
for zero training error, is resolved by the introduction of soft margins. We will
demonstrate how both large margin and soft margin algorithms can be viewed in
the geometrical picture given in Figure 2.1 on page 23. Finally, we discuss several
extensions of the classical SVM algorithm achieved by reparameterization.

2.4.1 Maximizing the Margin

Let us begin by defining what we mean by the margin of a classifier. In Figure
2.6 a training sample z in �2 together with a classifier (illustrated by the incurred
decision surface) is shown. The classifier fw in Figure 2.6 (a) has a “dead zone”
(gray area) separating the two sets of points which is larger than the classifier fw̃

chosen in Figure 2.6 (b). In both pictures the “dead zone” is the tube around the
(linear) decision surface which does not contains any training example (xi , yi) ∈ z.
To measure the extent of such a tube we can use the norm of the weight vector w
parameterizing the classifier fw. In fact, the size of this tube must be inversely
proportional to the minimum real-valued output yi 〈xi ,w〉 of a classifier w on a

16 Vapnik also introduced the term support vector machines (SVMs) for learning algorithms of the “support
vector” type.
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Figure 2.6 Geometrical margins of a plane (thick solid line) in �2 . The crosses (yi =
+1) and dots (yi = −1) represent labeled examples xi . (Left) The classifier fw with the
largest geometrical margin γz (w). Note that this quantity is invariant under rescaling of
the weight vector. (Right) A classifier fw̃ with a smaller geometrical margin γz

(
w̃
)
. Since

min(xi ,yi )∈z yi
〈
xi , w̃

〉 = 1,
∥∥w̃
∥∥ can be used to measure the extent of the gray zone tube by

γz
(
w̃
) = 1/

∥∥w̃
∥∥.

given training sample z. This quantity is also known as the functional margin on
the training sample z and needs to be normalized to be useful for comparison
across different weight vectors w not necessarily of unit length. More precisely,
when normalizing the real-valued outputs by the norm of the weight vector w
(which is equivalent to considering the real-valued outputs of normalized weight
vectors w/ ‖w‖ only) we obtain a confidence measure comparable across different
hyperplanes. The following definition introduces the different notions of margins
more formally.

Definition 2.30 (Margins) Suppose we are given a training sample z = (x, y) ∈
�m, a mapping φ : � → � ⊆ �n

2 and a vector w ∈ �. For the hyperplane having
normal w we define the

functional margin γ̃i (w) on an example (xi , yi) ∈ z to be γ̃i (w)
def= yi 〈xi ,w〉,
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functional margin γ̃z (w) on a training sample z to be γ̃z (w)
def= min(xi ,yi )∈z γ̃i (w),

geometrical margin γi (w) on an example (xi , yi ) ∈ z to be γi (w)
def= γ̃i (w) / ‖w‖,

geometrical margin γz (w) on a training sample z to be γz (w)
def= γ̃z (w) / ‖w‖.

Note that γ̃i (w) > 0 implies correct classification of (xi , yi) ∈ z. Furthermore, for
w ∈� the functional and geometrical margin coincide.

In 1962 Novikoff proved a theorem for perceptrons which was, in 1964, extended to
linear classifiers in kernel space. The theorem shows that the number of corrections
in the perceptron learning algorithm is provably decreasing for training samples
which admit a large margin.

Theorem 2.31 (Perceptron convergence theorem) Let z = (x, y) ∈ �m be a
training sample, let φ : � → � ⊆ �n

2 be a fixed feature map, and let ς =
maxxi∈x ‖φ (xi )‖ be the smallest radius of a sphere enclosing all the mapped
training objects x. Suppose that there exists a vector w∗ ∈� such that γ̃z (w∗) =
γz (w∗) > 0. Then the number of mistakes made by the perceptron learning
algorithm on z is at most(

ς

γz (w∗)

)2

.

The proof is given in Appendix B.4. This theorem answers one of the questions
associated with perceptron learning, that is, the number of steps until convergence.
The theorem was one of the first theoretical justifications of the idea that large
margins yield better classifiers; here in terms of mistakes during learning. We shall
see in Part II that large margins indeed yield better classifiers in terms of expected
risk.

Let � and � be the RKHS and feature space connected with the Mercer kernel
k, respectively. The classifier w with the largest margin γz (w) on a given training
sample can be written as

wSVM
def= argmax

w∈�
γz (w) = argmax

w∈�
1

‖w‖ γ̃z (w) . (2.40)

Two methods of casting the problem of finding this classifier into a regularization
framework are conceivable. One method is to refine the (coarse) l0−1 loss function
given in equation (2.9) by exploiting the minimum real-valued output γz (w) of
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each classifier w ∈ � . A second option is to fix the minimum real-valued output
γ̃z (w) of the classifier w ∈ � and to use the norm ‖w‖ of each classifier to measure
its complexity. Though the latter is better known in the SV community we shall
present both formulations.

1. Fix the norm of the classifiers to unity (as done in Novikoff’s theorem), then we
must maximize the geometrical margin. More formally, in terms of equation (2.38)
we have

wSVM = argmin
w∈�

lmargin (γz (w)) , (2.41)

where

lmargin (t)
def= −t . (2.42)

A more convenient notation of this minimization problem is

maximize min ( fw (x1) , . . . , fw (xm)) = γz (w)

subject to ‖ fw‖2 = ‖w‖2 = 1 .

This optimization problem has several difficulties associated with it. First, the ob-
jective function is neither linear nor quadratic. Further, the constraints are nonlin-
ear. Hence, from an algorithmic viewpoint this optimization problem is difficult
to solve. Nonetheless, due to the independence of the hypothesis space from the
training sample it is very useful in the study of the generalization error.

2. Fix the functional margin to unity and minimize the norm ‖w‖ of the weight
vector. More formally, the set of all classifiers considered for learning is

� (z)
def= {w ∈ � |γ̃z (w) = 1 } , (2.43)

which are known as canonical hyperplanes. Clearly, this definition of the hypothe-
sis space is data dependent which makes a theoretical analysis quite intricate17. The
advantage of this formulation becomes apparent if we consider the corresponding
risk functional:

wSVM ∝ argmin
w∈�(z)

‖ fw‖2 = argmin
w∈�(z)

‖w‖2 . (2.44)

17 In general, the hypothesis space must be independent of the training sample. The training sample dependence
on the hypothesis space for Mercer kernels is resolved in Theorem 2.29. Note, however, that this theorem does
not apply to canonical hyperplanes.
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The risk functional seems to imply that we minimize a complexity or structural
risk, but this is wrong. In fact, the lack of any empirical term in the risk functional
is merely due to the formulation which uses a data dependent hypothesis space
(2.43). If we cast the minimization of this risk functional in a convex programming
framework we obtain

minimize ‖w‖2 = ‖ fw‖2

subject to yi 〈xi ,w〉 ≥ 1 i = 1, . . . ,m .
(2.45)

This optimization problem is much more computationally amenable. Here, the
objective function is quadratic and the constraints are linear. As a consequence, the
solution must be expressible in its dual form. Introducing m Lagrangian multipliers
αi for the linear constraints (which turn out to be the expansion coefficients of the
weight vector w in terms of the mapped training objects), taking the derivative
w.r.t. w and back-inserting into the Lagrangian, we obtain the following Wolfe dual
(for details see Section B.5)

W (α) = α′1− 1

2
α′YGYα , (2.46)

which needs to be maximized in the positive quadrant 0 ≤ α,

α̂ = argmax
0≤α

W (α) .

Here, G is the m × m Gram matrix defined by equation (2.18) and Y def=
diag (y1, . . . , ym). Note, however, that the solution

wSVM =
m∑

i=1

α̂i yixi

is equivalent to the solution of optimization problem (2.41) up to a scaling factor.
Using decomposition techniques to solve the problem, the computational effort is
roughly of order �

(
m2
)
.

2.4.2 Soft Margins—Learning with Training Error

The algorithm presented in the last subsection is clearly restricted to training
samples which are linearly separable. One way to deal with this insufficiency is
to use “powerful” kernels (like an RBF kernel with very small σ ) which makes
each training sample separable in feature space. Although this would not cause
any computational difficulties, the “large expressive” power of the classifiers in
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feature space may lead to overfitting, that is, a large discrepancy between empirical
risk (which was previously zero) and true risk of a classifier. Moreover, the above
algorithm is “nonrobust” in the sense that one outlier (a training point (xi , yi) ∈ z
whose removal would lead to a large increase in margin) can cause the learning
algorithm to converge very slowly or, even worse, make it impossible to apply at
all (if γi (w) < 0 for all w ∈�).

In order to overcome this insufficiency we introduce a heuristic which has
become known as the soft margin SVM. The idea exploited is to upper bound the
zero-one loss l0−1 as given in equation (2.9) by a linear or quadratic function (see
Figure 2.7),

l0−1 ( f (x) , y) = I−y f (x)>0 ≤ max {1− y f (x) , 0} = llin ( f (x) , y) , (2.47)

l0−1 ( f (x) , y) = I−y f (x)>0 ≤ max {1− y f (x) , 0}2 = lquad ( f (x) , y) .

It is worth mentioning that, due to the cut off at a real-valued output of one (on the
correct side of the decision surface), the norm ‖ f ‖ can still serve as a regularizer.
Viewed this way, the idea is in the spirit of the second parameterization of the
optimization problem of large margins (see equation (2.40)).

Linear Approximation

Let us consider the case of a linear approximation. Given a tradeoff parameter
λ > 0, the regularization functional becomes

Rreg [ fw, z] = 1

m

m∑
i=1

llin ( fw (xi) , yi)+ λ ‖ fw‖2 ,

or equivalently

minimize
m∑

i=1

ξi + λm ‖w‖2

subject to yi 〈xi ,w〉 ≥ 1− ξi i = 1, . . . ,m , (2.48)

ξ ≥ 0 .

Transforming this into an optimization problem involving the corresponding Wolfe
dual we must maximize an equation of the form (2.46), but this time in the “box”
0 ≤ α ≤ 1

2λm 1 (see Section B.5). In the limit λ → 0 we obtain the “hard
margin” SVM because there is no upper bound on α. Another explanation of
this equivalence is given by the fact that the objective function is proportional to
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Figure 2.7 Approximation to the Heaviside step function Iy f (x)≤0 (solid line) by the
so-called “hinge loss” (dashed line) and a quadratic margin loss (dotted line). The x–
axis contains the negative real-valued output −y f (x) which is positive in the case of
misclassification of x by f .

1
λm

∑m
i=1 ξi + ‖w‖2. Thus, in the limit of λ → 0, any w for which ξ �= 0 incurs

an infinitely large value of the objective function and therefore in the optimum∑m
i=1 ξi = 0. Note that by virtue of this formulation the “box” is decreased with

increasing training sample size.

Quadratic Approximation

Though not as popular in the SV community, the quadratic approximation has
proven to be successful in real world applications. Formally, the regularization
functional becomes

Rreg [ fw, z] = 1

m

m∑
i=1

lquad ( fw (xi ) , yi)+ λ ‖ fw‖2 ,

which in its equivalent form is

minimize
m∑

i=1

ξ 2
i + λm ‖w‖2
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subject to yi 〈xi ,w〉 ≥ 1− ξi i = 1, . . . ,m , (2.49)

ξ ≥ 0 .

The corresponding Wolfe dual (derived in Section B.5) is given by

W (α) = α′1− 1

2
α′YGYα − λm

2
α′α ,

and must be maximized in the positive quadrant 0 ≤ α. This can equivalently be
expressed by a change of the Gram matrix, i.e.,

W (α) = α′1− 1

2
α′YG̃Yα , G̃ = G+ λmI . (2.50)

Remark 2.32 (Data independent hypothesis spaces) The two algorithms pre-
sented in this subsection use the idea of fixing the functional margin to unity.
This allows the geometrical margin to be controlled by the norm ‖w‖ of the weight
vector w. As we have seen in the previous subsection there also exists a “data inde-
pendent” formulation. In the case of a quadratic soft margin loss the formulation
is apparent from the change of the Gram matrix: The quadratic soft margin SVM
is equivalent to a hard margin SVM if we change the Gram matrix G to G+ λmI.
Furthermore, in the hard margin case, we could alternatively have the hypothesis
space being the unit hypersphere in feature space. As a consequence thereof, all
we need to consider is the change in the feature space, if we penalize the diagonal
of the Gram matrix by λm.

Remark 2.33 (Cost matrices) In Example 2.7 we showed how different a-priori
class probabilities PY (−1) and PY (+1) can be incorporated through the use of a
cost matrix loss function. In the case of soft margin loss this can be approximately
achieved by using different values λ+ ∈ �

+ and λ− ∈ �
+ at the constraints for

the training points of class +1 and −1, respectively. As the (general) regularizer
is inversely related to the allowed violation of constraints it follows that the
underrepresented class having smaller prior probability should have the larger
λ value.

2.4.3 Geometrical Viewpoints on Margin Maximization

In the previous two subsections the SV learning algorithms were introduced purely
from a margin maximization perspective. In order to associate these algorithms
with the geometrical picture given in Figure 2.1 on page 23 we note that, for a
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Figure 2.8 Finding the center of the largest inscribable ball in version space. (Left) In
this example four training points were given which incur the depicted four planes. Let us
assume that the labeling of the training sample was such that the polyhedra on top of the
sphere is the version space. Then, the SV learning algorithm finds the (weight) vector w on
top of the sphere as the center of the largest inscribable ball�τ (w) (transparent cap). Here,
we assumed ‖yixi‖ = ‖xi‖ to be constant. The distance of the w from the hyperplanes
(dark line) is proportional to the margin γz (w) (see text). (Right) Viewed from top we see
that the version space V (z) is a bended convex body into which we can fully inscribe a
circle of radius proportional to γz (w).

fixed point (xi , yi ) ∈ z, the geometrical margin γi

(
w̃
)

can be read as the distance
of the linear classifier having normal w̃ to the hyperplane {w ∈ � |yi 〈xi ,w〉 = 0}.
In fact, the Euclidean distance of the point w̃ from the hyperplane having normal
yixi is yi

〈
xi , w̃

〉
/ ‖yixi‖ = γi

(
w̃
)
/ ‖xi‖. For the moment let us assume that ‖xi‖ is

constant for all xi in the training objects x ∈ �m . Then, if a classifier fw̃ achieves
a margin of γz

(
w̃
)

on the training sample z we know that the ball,

�τ

(
w̃
) = {

w ∈�
∣∣∣∣∣ ∥∥w− w̃

∥∥ <
γz
(
w̃
)

‖xi‖

}
⊂ V (z)
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of radius τ = γz
(
w̃
)
/ ‖xi‖ is totally inscribable in version space V (z). Hence-

forth, maximizing γz
(
w̃
)

is equivalent to finding the center of the largest inscrib-
able ball in version space (see Figure 2.8).

The situation changes if we drop the assumption that ‖xi‖ is constant. In this
case, training objects for which ‖xi‖ is very large effectively minimize the radius
τ of the largest inscribable ball. If we consider the center of the largest inscribable
ball as an approximation to the center of mass of version space V (z) (see also
Section 3.4) we see that normalizing the xi ’s to unit length is crucial to finding a
good approximation for this point.

The geometrical intuition still holds if we consider the quadratic approximation
presented in Subsection 2.4.2. The effect of the diagonal penalization is to add a
new basis axis for each training point (xi , yi) ∈ z. Hence, in this new space the
quadratic SVM tries to find the center of the largest inscribable ball. Needless to
say that we again assume the xi ’s to be of constant length ‖xi‖. We shall see in
Section 5.1 that the margin γz

(
w̃
)

is too coarse a measure to be used for bounds on
the expected risk if ‖xi‖ �= const.—especially if we apply the kernel technique.

2.4.4 The ν–Trick and Other Variants

The SV algorithms presented so far constitute the basis of the standard SV tool
box. There exist, however, several (heuristic) extensions for the case of multiple
classes (2 < |�| <∞), regression estimation (� = �) and reparameterizations in
terms of the assumed noise level EX

[
1−maxy∈�

(
PY|X=x (y)

)]
which we present

here.

Multiclass Support Vector Machines

In order to extend the SV learning algorithm to K = |�| > 2 classes two different
strategies have been suggested.

1. The first method is to learn K SV classifiers f j by labeling all training points
having yi = j with+1 and yi �= j with −1 during the training of the j th classifier.
In the test stage, the final decision is obtained by

fmultiple (x) = argmax
y∈�

fy (x) .

Clearly, this method learns one classifier for each of the K classes against all the
other classes and is hence known as the one-versus-rest (o-v-r) method. It can be
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shown that it is possible to solve the K optimization problems at once. Note that
the computational effort is of order �

(
Km2

)
.

2. The second method is to learn K (K − 1) /2 SV classifiers. If 1 ≤ i < j ≤ K
the classifiers fi, j is learned using only the training samples from the class i and
j , labeling them +1 and −1, respectively. This method has become known as the
one-versus-one (o-v-o) method. Given a new test object x ∈ � , the frequency ni

of “wins” for class i is computed by applying fi, j for all j . This results in a vector
n = (n1; . . . ; nK ) of frequencies of “wins” of each class. The final decision is
made for the most frequent class, i.e.,

fmultiple (x) = argmax
y∈�

ny .

Using a probabilistic model for the frequencies n, different prior probabilities of the
classes y ∈ � can be incorporated, resulting in better generalization ability. Instead
of solving K (K − 1) /2 separate optimization problems, it is again possible to
combine them in a single optimization problem. If the prior probabilities PY ( j)
for the K classes are roughly 1

K , the method scales as �
(
m2
)

and is independent
of the number of classes.

Recently, a different method for combining the single pairwise decisions has been
suggested. By specifying a directed acyclic graph (DAG) of consecutive pairwise
classifications, it is possible to introduce a class hierarchy. The leaves of such a
DAG contain the final decisions which are obtained by exclusion rather than by
voting. This method compares favorably with the o-v-o and o-v-r methods.

Support Vector Regression Estimation

In the regression estimation problem we are given a sample of m real target values
t = (t1, . . . , tm) ∈ �

m , rather than m classes y = (y1, . . . , ym) ∈ �m . In order to
extend the SV learning algorithm to this task, we note that an “inversion” of the
linear loss llin suffices in order to use the SV machinery for real-valued outputs ti .
In classification the linear loss llin ( f (x) , ·) adds to the total cost, if the real-valued
output of | f (x)| is smaller than 1. For regression estimation it is desirable to have
the opposite true, i.e., incurred costs result if |t − f (x)| is very large instead of
small. This requirement is formally captured by the ε–insensitive loss

lε ( f (x) , t) =
{

0 if |t − f (x)| ≤ ε

|t − f (x)| − ε if |t − f (x)| > ε
. (2.51)
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Then, one obtains a quadratic programming problem similar to (2.46), this time in
2m dual variables αi and α̃i—two corresponding to each training point constraint.
This is simply due to the fact that f can fail to attain a deviation less than ε on both
sides of the given real-valued output ti , i.e., ti − ε and ti + ε. An appealing feature
of this loss is that it leads to sparse solutions, i.e., only a few of the αi (or α̃i ) are
non-zero. For further references that cover the regression estimation problem the
interested reader is referred to Section 2.6.

ν–Support Vector Machines for Classification

A major drawback of the soft margin SV learning algorithm given in the form
(2.48) is the lack of control over how many training points will be considered
as margin errors or “outliers”, that is, how many have γ̃i (wSVM) < 1. This is
essentially due to the fact that we fixed the functional margin to one. By a simple
reparameterization it is possible to make the functional margin itself a variable
of the optimization problem. One can show that the solution of the following
optimization problem has the property that the new parameter ν bounds the fraction
of margin errors 1

m |{(xi , yi) ∈ z | γ̃i (wSVM) < ρ }| from above:

minimize
1

m

m∑
i=1

ξi − νρ + 1

2
‖w‖2

subject to yi 〈xi ,w〉 ≥ ρ − ξi i = 1, . . . ,m , (2.52)

ξ ≥ 0, ρ ≥ 0 .

It can be shown that, for each value of ν ∈ [0, 1], there exists a value of λ ∈ �
+

such that the solution wν and wλ found by solving (2.52) and (2.48) have the same
geometrical margins γz (wν) = γz (wλ). Thus we could try different values of λ
in the standard linear soft margin SVM to obtain a required fraction of margin
errors. The appealing property of the problem (2.52) is that this adjustment is done
within the one optimization problem (see Section B.5). Another property which
can be proved is that, for all probability models where neither PX ({X, 1}) nor
PX ({X,−1}) contains any discrete component, ν asymptotically equals the fraction
of margin errors. Hence, we can incorporate prior knowledge of the noise level
EX
[
1−maxy∈�

(
PY|X=x (y)

)]
via ν. Excluding all training points for which the

real-valued output is less than ρ in absolute value, the geometrical margin of the
solution on the remaining training points is ρ/ ‖w‖.
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2.5 Adaptive Margin Machines

In this last section we will introduce an algorithm which is based on a conceptually
different principle. Our new approach is motivated by a recently derived leave-
one-out bound on the generalization error of kernel classifiers. Let us start by
introducing the concept of the leave-one-out error.

2.5.1 Assessment of Learning Algorithms

Whilst the mathematical model of learning to be introduced in Part II of this book
gives some motivation for the algorithms introduced so far, the derived bounds
are often too loose to be useful in practical applications. A completely different
approach can be taken if we study the expected risk of a learning algorithm �

rather than any hypothesis.

Definition 2.34 (Expected risk of a learning algorithm) Given an algorithm � :
∪∞m=1�

m → � , a loss function l : � × � → � and a training sample size m ∈ � ,
the expected risk R [�,m] of the learning algorithm � is defined by

R [�,m]
def= EZm

[
R
[
� (Z)

]]
.

Note that this quantity does not bound the expected risk of the one classifier
learned from a training sample z but the average expected risk performance of
the algorithm �. For any training sample z, an almost unbiased estimator of this
quantity is given by the leave-one-out error Rloo [�, z] of �.

Definition 2.35 (Leave-one-out error) Given an algorithm � : ∪∞m=1�
m → � , a

loss function l : � × � → � and a training sample z ∈ �m, the leave-one-out
error is defined by

Rloo [�, z]
def= 1

m

m∑
i=1

l (� ((z1, . . . , zi−1, zi+1, . . . , zm)) (xi ) , yi) .

This measure counts the fraction of examples that are misclassified if we leave them
out for learning when using the algorithm �. The unbiasedness of the estimator is
made more precise in the following proposition.
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Theorem 2.36 (Unbiasedness of the leave-one-out error) Given a fixed measure
PZ, a fixed hypothesis space � , a fixed loss l and a fixed learning algorithm
� :⋃∞

m=1�
m → � , the leave-one-out error is almost unbiased, that is,

EZm

[
Rloo

[
�,Z

]] = R [�,m − 1] .

Proof In order to prove the result we note that

EZm
[
Rloo

[
�,Z

]] = EZm

[
1

m

m∑
i=1

l (� ((Z1, . . . ,Zi−1,Zi+1, . . . ,Zm)) (Xi) ,Yi )

]

= 1

m

m∑
i=1

EZm
[
l (� ((Z1, . . . ,Zi−1,Zi+1, . . . ,Zm)) (Xi) ,Yi)

]
= 1

m

m∑
i=1

EZm−1

[
EXY|Zm−1=z

[
l (� (z) (X) ,Y)

]]
= EZm−1

[
R
[
� (Z)

]] = R [�,m − 1] .

The theorem is proved.

Despite the fact that this result allows us to obtain a precise estimate of the expected
risk of the learning algorithm, its computation is very time consuming as the
learning algorithm must be invoked m times. Therefore, it is desirable to have a
bound on this quantity which can be computed solely on the basis of the training
sample z and the learned hypothesis � (z). As demonstrated in Section 2.4, a rather
powerful class of learning algorithms is given by

α̂ = argmax
0≤α≤u

W (α)

W (α) = −1

2
α′YGYα +

m∑
i=1

J (αi) , (2.53)

where J : � → � is a fixed function, u is an m×1 vector of positive real numbers,

Y def= diag (y1, . . . , ym) and G is the m × m Gram matrix given by equation (2.18).
Based on the vector α̂ ∈ �m , the linear classifier f is then given by

f (x) = 〈
ŵ, x

〉 = m∑
i=1

α̂i yik (xi , x) ⇔ ŵ =
m∑

i=1

α̂i yixi . (2.54)

We can give the following bound on the leave-one-out error Rloo [�W , z].
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Theorem 2.37 (Leave-One-Out Bound) Suppose we are given a training sample
z ∈ �m and a Mercer kernel k. Let α̂ be the maximizing coefficients of (2.53). Then
an upper bound on the leave-one-out error of �W is given by

Rloo [�W , z] ≤ 1

m

m∑
i=1

�

−yi

m∑
j=1
j �=i

α̂ j y j k
(
xi , x j

) , (2.55)

where �(t) = It≥0 is the Heaviside step function.

The proof is given in Appendix B.6. For support vector machines V. Vapnik has
shown that the leave-one-out error is bounded by the ratio of the number of non-
zero coefficients α̂i to the number m of training examples. The bound given in
Theorem 2.37 is slightly tighter than Vapnik’s leave-one-out bound. This is easy to
see because all training points that have α̂i = 0 cannot be leave-one-out errors in
either bound. Vapnik’s bound assumes all support vectors (all training points with
α̂i > 0) are leave-one-out errors, whereas they only contribute as errors in equation
(2.55) if yi

∑m
j=1
j �=i

α̂ j y jk
(
xi , x j

) ≤ 0. In practice this means that the bound (2.55)

is tighter for less sparse solutions.

2.5.2 Leave-One-Out Machines

Theorem 2.37 suggests an algorithm which directly minimizes the expression in
the bound. The difficulty is that the resulting objective function will contain the
step function It≥0. The idea we exploit is similar to the idea of soft margins in
SVMs, where the step function is upper bounded by a piecewise linear function,
also known as the hinge loss (see Figure 2.7). Hence, introducing slack variables,
gives the following optimization problem:

minimize
m∑

i=1

ξi

subject to yi

m∑
j=1
j �=i

α j y jk
(
xi , x j

) ≥ 1− ξi i = 1, . . . ,m , (2.56)

α ≥ 0 , ξ ≥ 0 .
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For further classification of new test objects we use the decision rule given in
equation (2.54). Let us study the resulting method which we call a leave-one-out
machine (LOOM).

First, the technique appears to have no free regularization parameter. This
should be compared with support vector machines, which control the amount of
regularization through the free parameter λ. For SVMs, in the case of λ → 0
one obtains a hard margin classifier with no training errors. In the case of linearly
inseparable datasets in feature space (through noise, outliers or class overlap) one
must admit some training errors (by constructing soft margins). To find the best
choice of training error/margin tradeoff one must choose the appropriate value
of λ. In leave-one-out machines a soft margin is automatically constructed. This
happens because the algorithm does not attempt to minimize the number of training
errors—it minimizes the number of training points that are classified incorrectly
even when they are removed from the linear combination which forms the decision
rule. However, if one can classify a training point correctly when it is removed
from the linear combination, then it will always be classified correctly when it is
placed back into the rule. This can be seen as αi yik (xi , xi ) always has the same
sign as yi ; any training point is pushed further from the decision boundary by its
own component of the linear combination. Note also that summing for all j �= i
in the constraint (2.56) is equivalent to setting the diagonal of the Gram matrix
G to zero and instead summing for all j . Thus, the regularization employed by
leave-one-out machines disregards the values k (xi , xi ) for all i .

Second, as for support vector machines, the solutions α̂ ∈ �
m can be sparse

in terms of the expansion vector; that is, only some of the coefficients α̂i are non-
zero. As the coefficient of a training point does not contribute to its leave-one-out
error in constraint (2.56), the algorithm does not assign a non-zero value to the
coefficient of a training point in order to correctly classify it. A training point has
to be classified correctly by the training points of the same label that are close to it,
but the point itself makes no contribution to its own classification in training.

2.5.3 Pitfalls of Minimizing a Leave-One-Out Bound

The core idea of the presented algorithm is to directly minimize the leave-one-out
bound. Thus, it seems that we are able to control the generalization ability of an
algorithm disregarding quantities like the margin. This is not true in general18 and

18 Part II, Section 4.3, shows that there are models of learning which allow an algorithm to directly minimize a
bound on its generalization error. This should not be confused with the possibility of controlling the generalization
error of the algorithm itself.
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in particular the presented algorithm is not able to achieve this goal. There are some
pitfalls associated with minimizing a leave-one-out bound:

1. In order to get a bound on the leave-one-out error we must specify the algorithm
� beforehand. This is often done by specifying the form of the objective function
which is to be maximized (or minimized) during learning. In our particular case
we see that Theorem 2.37 only considers algorithms defined by the maximization
of W (α) with the “box” constraint 0 ≤ α ≤ u. By changing the learning algorithm
to minimize the bound itself we may well develop an optimization algorithm
which is no longer compatible with the assumptions of the theorem. This is true in
particular for leave-one-out machines which are no longer in the class of algorithms
considered by Theorem 2.37—whose bound they are aimed at minimizing. Further,
instead of minimizing the bound directly we are using the hinge loss as an upper
bound on the Heaviside step function.

2. The leave-one-out bound does not provide any guarantee about the generaliza-
tion error R [�, z] (see Definition 2.10). Nonetheless, if the leave-one-out error is
small then we know that, for most training samples z ∈ �m , the resulting classi-
fier has to have an expected risk close to that given by the bound. This is due to
Hoeffding’s bound which says that for bounded loss (the expected risk of a hypoth-
esis f is bounded to the interval [0, 1]) the expected risk R [� (z)] of the learned
classifier � (z) is close to the expectation of the expected risk (bounded by the
leave-one-out bound) with high probability over the random choice of the training
sample.19 Note, however, that the leave-one-out estimate does not provide any in-
formation about the variance of the expected risk. Such information would allow
the application of tighter bounds, for example, Chebyshev’s bound.

3. The original motivation behind the use of the leave-one-out error was to measure
the goodness of the hypothesis space � and of the learning algorithm � for the
learning problem given by the unknown probability measure PZ. Commonly, the
leave-one-out error is used to select among different models �1,�2, . . . for a given
learning algorithm �. In this sense, minimizing the leave-one-out error is more a
model selection strategy than a learning paradigm within a fixed model.

Definition 2.38 (Model selection) Suppose we are given r ∈ � fixed learning
algorithms �i : ∪∞m=1�

m → �� which map training samples z to classifiers
h ∈ �� . Then, given a training sample z ∈ �m, the problem of model selection
is to identify the learning algorithm �i which would lead to a classifier �i (z)

19 We shall exploit this idea further in Part II, Section 5.3.
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possessing the smallest expected risk, i.e., find the algorithm �z such that

�z = argmin
�i

R [�i (z)] .

If we have a fixed learning procedure �χ : ∪∞m=1�
m → �� which is param-

eterized by χ then the model selection problem reduces to finding the the best
parameter χ (z) for a given training sample z ∈ �m.

A typical model selection task which arises in the case of kernel classifiers is the
selection of parameters of the kernel function used, for example, choosing the
optimal value of σ for RBF kernels (see Table 2.1).

2.5.4 Adaptive Margin Machines

In order to generalize leave-one-out machines we see that the m constraints in
equation (2.56) can be rewritten as

yi

m∑
j=1
j �=i

α j y jk
(
xi , x j

)+ αi k (xi , xi ) ≥ 1− ξi + αi k (xi , xi ) i = 1, . . . ,m ,

yi f (xi ) ≥ 1− ξi + αi k (xi , xi ) i = 1, . . . ,m .

Now, it is easy to see that a training point (xi , yi) ∈ z is linearly penalized for
failing to obtain a functional margin of γ̃i (w) ≥ 1 + αi k(xi , xi ). In other words,
the larger the contribution the training point makes to the decision rule (the larger
the value of αi ), the larger its functional margin must be. Thus, the algorithm
controls the margin for each training point adaptively. From this formulation one
can generalize the algorithm to control regularization through the margin loss.
To make the margin at each training point a controlling variable we propose the
following learning algorithm:

minimize
m∑

i=1

ξi (2.57)

subject to yi

m∑
j=1

α j y j k
(
xi , x j

) ≥ 1− ξi + λαi k (xi , xi ) , i = 1, . . . ,m.

α ≥ 0 , ξ ≥ 0 . (2.58)
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This algorithm—which we call adaptive margin machines—can also be viewed in
the following way: If an object xo ∈ x is an outlier (the kernel values w.r.t. points in
its class are small and w.r.t. points in the other class are large), αo in equation (2.58)
must be large in order to classify xo correctly. Whilst support vector machines use
the same functional margin of one for such an outlier, they attempt to classify
xo correctly. In adaptive margin machines the functional margin is automatically
increased to 1 + λαok (xo, xo) for xo and thus less effort is made to change the
decision function because each increase in αo would lead to an even larger increase
in ξo and can therefore not be optimal.

Remark 2.39 (Clustering in feature space) In adaptive margin machines the ob-
jects xr ∈ x, which are representatives of clusters (centers) in feature space �, i.e.,
those which have large kernel values w.r.t. objects from its class and small kernel
values w.r.t. objects from the other class, will have non-zero αr . In order to see this
we consider two objects, xr ∈ x and xs ∈ x, of the same class. Let us assume that
xr with ξr > 0 is the center of a cluster (w.r.t. the metric in feature space � induced
by the kernel k) and s with ξs > 0 lies at the boundary of the cluster. Hence we
subdivide the set of all objects into

xi ∈ C+ : ξi = 0, yi = yr , i �= r, i �= s ,

xi ∈ C− : ξi = 0, yi �= yr ,

xi ∈ I+ : ξi > 0, yi = yr , i �= r, i �= s ,

xi ∈ I− : ξi > 0, yi �= yr .

We consider the change in ξ if we increase αr by � > 0 (giving ξ ′) and simul-
taneously decrease αs by � (giving ξ ′′). From equations (2.57)–(2.58) we know
that

xi ∈ C+ : ξ ′i = ξi , ξ ′′i ≤ �k (xi , xs) ,

xi ∈ C− : ξ ′i ≤ �k (xi , xr ) , ξ ′′i = ξi ,

xi ∈ I+ : ξ ′i ≥ ξi −�k (xi , xr ) , ξ ′′i = ξi +�k (xi , xs) ,

xi ∈ I− : ξ ′i = ξi +�k (xi , xr ) , ξ ′′i ≥ ξi −�k (xi , xs) ,

xr : ξ ′r ≥ ξr −�(1− λ) k (xr , xr ) , ξ ′′r = ξr +�k (xr , xs) ,

xs : ξ ′s ≥ ξs −�k (xs, xr ) , ξ ′′s ≥ ξs +�(1− λ) k (xs, xs) .

Now we choose the biggest � such that all inequalities for xi ∈
{

I+, I−, r, r ′
}

become equalities and for xi ∈ {C+,C−} the r.h.s. equals zero. Then, the relative
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change in the objective function is given by

1

�

m∑
i=1

(
ξ ′i + ξ ′′i − ξi

) =∑
i∈I+

(k (xi , xs)− k (xi , xr ))︸ ︷︷ ︸
change of intra−class distance

−
∑
i∈I−

(k (xi , xs)− k (xi , xr ))︸ ︷︷ ︸
change of inter−class distance

,

where we assume that k (xr , xr ) = k (xs, xs). Since the cluster centers in feature
space � minimize the intra-class distance whilst maximizing the inter-class dis-
tances it becomes apparent that their αr will be higher. Taking into account that
the maximum � considerable for this analysis is decreasing as λ increases we see
that, for suitable small λ, adaptive margin machines tend to only associate cluster
centers in feature space � with non-zero α’s.

2.6 Bibliographical Remarks

Linear functions have been investigated for several hundred years and it is virtually
impossible to identity their first appearance in scientific literature. In the field
of artificial intelligence, however, the first studies of linear classifiers go back to
the early works of Rosenblatt (1958), Rosenblatt (1962) and Minsky and Papert
(1969). These works also contains the first account of the perceptron learning
algorithm which was originally developed without any notion of kernels. The more
general ERM principle underpinning perceptron learning was first formulated in
Vapnik and Chervonenkis (1974). In this book we introduce perceptron learning
using the notion of version space. This somewhat misleading name comes from
Mitchell (1977), Mitchell (1982), Mitchell (1997) and refers to the fact that all
classifiers h ∈ V (z) are different “versions” of consistent classifiers. Originally,
T. Mitchell considered the hypothesis space of logic formulas only.

The method of regularization introduced in Section 2.2 was originally devel-
oped in Tikhonov and Arsenin (1977) and introduced into the machine learning
framework in Vapnik (1982). The adaptation of ill-posed problems to machine
learning can be found in Vapnik (1982) where they are termed stochastic ill-posed
problems. In a nutshell, the difference to classical ill-posed problems is that the
solution y is a random variable of which we can only observe one specific sam-
ple. As a means to solving these stochastic ill-posed problems, Vapnik suggested
structural risk minimization.

The original paper which proved Mercer’s theorem is by Mercer (1909); the
version presented in this book can be found in König (1986). Regarding Remark
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2.19, the work by Wahba (1990) gives an excellent overview of covariance func-
tions of Gaussian processes and kernel functions (see also Wahba (1999)). The
detailed derivation of the feature space for polynomial kernels was first published
in Poggio (1975). In the subsection on string kernels we mentioned the possibility
of using kernels in the field of Bioinformatics; first approaches can be found in
Jaakkola and Haussler (1999b) and Karchin (2000). For a more detailed treatment
of machine learning approaches in the field of Bioinformatics see Baldi and Brunak
(1998). The notion of string kernels was independently introduced and developed
by T. Jaakkola, C. Watkins and D. Haussler in Watkins (1998), Watkins (2000)
and Haussler (1999). A detailed study of support vector machines using these ker-
nels can be found in Joachims (1998) and Lodhi et al. (2001). For more traditional
methods in information retrieval see Salton (1968). The Fisher kernel was origi-
nally introduced in Jaakkola and Haussler (1999a) and later applied to the problem
of detecting remote protein homologizes (Jaakkola et al. 1999). The motivation of
Fisher kernels in these works is much different to the one given in this book and
relies on the notion of Riemannian manifolds of probability measures.

The consideration of RKHS introduced in Subsection 2.3.3 presents another
interesting aspect of kernels, that is, that they can be viewed as regularization
operators in function approximation. By noticing that kernels are the Green’s
functions of the corresponding regularization operator we can directly go from
kernels to regularization operators and vice versa (see Smola and Schölkopf (1998),
Smola et al. (1998), Smola (1998) and Girosi (1998) for details). The original proof
of the representer theorem can be found in Schölkopf et al. (2001). A simpler
version of this theorem was already proven in Kimeldorf and Wahba (1970) and
Kivinen et al. (1997).

In Section 2.4 we introduced the support vector algorithm as a combination of
structural risk minimization techniques with the kernel trick. The first appearance
of this algorithm—which has its roots in the early 1960s (Vapnik and Lerner
1963)—is in Boser et al. (1992). The notion of functional and geometrical margins
is due to Cristianini and Shawe-Taylor (1999). For recent developments in kernel
methods and large margin classifiers the interested reader is referred to Schölkopf
et al. (1998) and Smola et al. (2000). The original perceptron convergence theorem
(without using kernels) is due to Novikoff (1962) and was independently proved
by Block (1962). The extension to general kernels was presented in Aizerman et al.
(1964).

In the derivation of the support vector algorithm we used the notion of canon-
ical hyperplanes which is due to Vapnik (1995); for more detailed derivations of
the algorithm see also Vapnik (1998), Burges (1998) and Osuna et al. (1997). An
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extensive study of the computational complexity of the support vector algorithm
can be found in Joachims (1999). In the five years an array of different implemen-
tations have been presented, e.g., SVMlight (Joachims 1998; Osuna et al. 1997),
SMO (Platt 1999; Keerthi et al. 1999a; Shevade et al. 1999) and NPA (Keerthi
et al. 1999b).

It was noted that without the introduction of soft margins, classifiers found
by the support vector algorithm tend to overfit. This was already observed in
practice (Cortes 1995; Schölkopf et al. 1995; Osuna et al. 1997; Joachims 1999;
Bennett 1998). This tendency is called the nonrobustness of the hard margin SVM
algorithm—a term which is due to Shawe-Taylor and Cristianini (2000). In order
to introduce soft margins we used the hinge loss (due to Gentile and Warmuth
(1999)) whose relation to support vector machines was shown in Sollich (2000).
The seminal paper, which introduced the linear soft margin algorithm is Cortes
and Vapnik (1995); it also mentions the possibility of quadratically penalizing the
slacks. The empirical success of quadratic soft margin support vector machines
has been demonstrated in Veropoulos et al. (1999) and Brown et al. (2000). The
former paper also noted that different values of λ for training points from different
classes can be used to compensate for unequal class probabilities (see also Osuna
et al. (1997) for details). Experimental evidence of the advantage of normalizing
training data in feature space before applying the support vector algorithm can be
found in Schölkopf et al. (1995), Joachims (1998) and Joachims (1999); theoretical
evidence is given in Herbrich and Graepel (2001b).

It is interesting to remark that the research on linear classifiers has run rather
parallel in the computer science and the statistical physics community (see Guyon
and Storck (2000) for a recent overview). One of the earliest works about support
vector machines (which are called maximal stability perceptrons) is by Lambert
(1969). After this work, many statistical physicists got involved in neural networks
(Gardner 1988; Gardner and Derrida 1988). As a consequence, several large mar-
gin alternative of the perceptron learning algorithm were devised, for example, the
minimal overlap (MinOver) algorithm (Krauth and Mézard 1987) or the adatron
(Anlauf and Biehl 1989). Finally, a fast primal-dual method for solving the maxi-
mum margin problem has been published in Ruján (1993).

In Subsection 2.4.4 several extensions of the original support vector algorithm
are presented. For more details on the extension to multiple classes see Weston
and Watkins (1998), Platt et al. (2000), Hastie and Tibshirani (1998), Guermeur
et al. (2000) and Allwein et al. (2000). There exits a vast literature on support
vector regression estimation; for an excellent overview see Smola and Schölkopf
(2001), Smola (1996), Smola (1998) and Smola and Schölkopf (1998). It has
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also been shown that support vector machines can be applied to the problem
of density estimation (Weston et al. 1999; Vapnik and Mukherjee 2000). The
reparameterization of the support vector algorithm in terms of ν, the fraction of
margin errors, was first published in Schölkopf et al. (2000) where it was also
applied to the support vector algorithm for regression estimation.

Finally, in Section 2.5, we introduce the leave-one-out error of algorithms
which motivate an algorithm called adaptive margin machines (Weston and Her-
brich 2000). The proof of the unbiasedness of the leave-one-out error can be found
in Lunts and Brailovsky (1969) and also in Vapnik (1998, p. 417). The bound on
the leave-one-out error for kernel classifiers presented in Theorem 2.37 was proven
in Jaakkola and Haussler (1999b).
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3 Kernel Classifiers from a Bayesian Perspective

This chapter presents the probabilistic, or Bayesian approach to learning kernel
classifiers. It starts by introducing the main principles underlying Bayesian infer-
ence both for the problem of learning within a fixed model and across models.
The first two sections present two learning algorithms, Gaussian processes and
relevance vector machines, which were originally developed for the problem of re-
gression estimation. In regression estimation, one is given a sample of real-valued
outputs rather than classes. In order to adapt these methods to the problem of classi-
fication we introduce the concept of latent variables which, in the current context,
are used to model the probability of the classes. The chapter shows that the prin-
ciple underlying relevance vector machines is an application of Bayesian model
selection to classical Bayesian linear regression. In the third section we present a
method which directly models the observed classes by imposing prior knowledge
only on weight vectors of unit length. In general, it is impossible to analytically
compute the solution to this algorithm. The section presents a Markov chain Monte
Carlo algorithm to approximately solve this problem, which is also known as Bayes
point learning. Finally, we discuss one of the earliest approaches to the problem
of classification learning—the Fisher linear discriminant. There are ways to apply
the kernel trick to all these algorithms thus rendering them powerful tools in the
application of kernel methods to the problem of classification learning.

3.1 The Bayesian Framework

In the last chapter we saw that a learning problem is given by the identification
of an unknown relationship h ∈ �� between objects x ∈ � and classes y ∈ �
solely on the basis of a given iid sample z = (x, y) = ((x1, y1) , . . . , (xm, ym)) ∈
(� × �)m = �m (see Definition 2.1). Any approach that deals with this problem
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starts by choosing a hypothesis space1 � ⊆ �� and a loss function l : �×� → �

appropriate for the task at hand. Then a learning algorithm � : ∪∞m=1�
m → � aims

to find the one particular hypothesis h∗ ∈ � which minimizes a pre-defined risk
determined on the basis of the loss function only, e.g., the expected risk R [h] of
the hypothesis h or the empirical risk Remp [h, z] of h ∈ � on the given training
sample z ∈ �m (see Definition 2.5 and 2.11). Once we have learned a classifier
� (z) ∈ � it is used for further classification on new test objects. Thus, all the
information contained in the given training sample is summarized in the single
hypothesis learned.

The Bayesian approach is conceptually different insofar as it starts with a mea-
sure PH over the hypotheses—also known as the prior measure—which expresses
the belief that h ∈ � is the relationship that underlies the data. The notion of belief
is central to Bayesian analysis and should not be confused with more frequentistic
interpretations of the probability PH (h). In a frequentistic interpretation, PH (h) is
the relative frequency with which h underlies the data, i.e., PY|X=x (y) = Ih(x)=y ,
over an infinite number of different (randomly drawn) learning problems. As an
example consider the problem of learning to classify images of Kanji symbols al-
ways using the same set � of classifiers on the images. Then PH (h) is the relative
frequency of Kanji symbols (and therefore learning tasks) for which h is the best
classifier in�. Clearly, this number is difficult to determine and meaningless when
given exactly one learning problem. In contrast, a Bayesian interpretation sees the
number PH (h) as expressing the subjective belief that h ∈ � models the unknown
relationship between objects and classes. As such the term “belief” is dependent on
the observer and unquestionably the “truth”—or at least the best knowledge about
the truth—for that particular observer. The link between frequentistic probabilities
and subjective beliefs is that, under quite general assumptions of rational behavior
on the basis of beliefs, both measures have to satisfy the Kolmogorov axioms, i.e.,
the same mathematical operations apply to them.

Learning in the Bayesian framework is the incorporation of the observed train-
ing sample z ∈ �m in the belief expression PH. This results in a so-called posterior
measure PH|Zm=z. Compared to the single summary h∗ ∈ � obtained through the
machine learning approach, the Bayesian posterior PH|Zm=z is a much richer repre-
sentation of the information contained in the training sample z about the unknown
object-class relationship. As mentioned earlier, the Bayesian posterior PH|Zm=z is

1 In order to unburden the main text we again take the liberty of synonymously referring to �, � and� as the
hypothesis space and to h ∈ �, f ∈ � and w ∈� as hypothesis, classifier or just function (see also Section 2.1
and footnotes therein).
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obtained by applying the rules of probability theory (see Theorem A.22), i.e.,

∀h ∈ � : PH|Zm=z (h) = PZm |H=h (z)PH (h)

EH
[
PZm |H=h (z)

] =
likelihood of h︷ ︸︸ ︷

PYm |Xm=x,H=h (y)

prior of h︷ ︸︸ ︷
PH (h)

EH
[
PYm |Xm=x,H=h (y)

]︸ ︷︷ ︸
evidence of�

, (3.1)

where we have used the fact that PZm |H=h (z) = PYm |Xm=x,H=h (y)PXm (x) because
hypotheses h ∈ �� only influence the generation of classes y ∈ �m but not objects
x ∈ �m . Due to the central importance of this formula—which constitutes the main
inference principle in the Bayesian framework—the three terms in equation (3.1)
deserve some discussion.

The Likelihood Let us start with the training data dependent term. Interpreted
as a function of h ∈ � this term expresses how “likely” it is to observe the class
sequence y if we are given m objects x and the true relationship is h ∈ �. Without
any further prior knowledge, the likelihood contains all information that can be
obtained from the training sample z about the unknown relationship2. In the case
of learning, the notion of likelihood is defined as follows.

Definition 3.1 (Likelihood) Given a family � of models PY|X=x,H=h over the space
� together with an observation z = (x, y) ∈ � the function � : � × � → �

+ is
called the likelihood of h and is defined by

� (h, z)
def= PY|X=x,H=h (y) ,

that is, the probability of observing y under the probability measure PY|X=x,H=h.

In order to relate this definition to the likelihood expression given in equation (3.1)
we note that, due to the independence assumption made, it holds that

� (h, z) = PYm |Xm=x,H=h (y) =
m∏

i=1

PY|X=xi ,H=h (yi) .

Given an appropriately chosen loss function l : � × � → � it is reasonable
to assume that the smaller the loss incurred by the hypothesis h ∈ � on a given

2 In fact, among statisticians there is a school of thought which adheres to the so-called likelihood principle: Any
inference about hypothesis h ∈ � for a given training sample z ∈ �m should only be done on the basis of the
likelihood function � : �→ �

+.
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training sample z ∈ � , the more likely it is that the function h underlies the data.
This has been made more precise in the following likelihood model.

Definition 3.2 (Inverse loss likelihood) Given a fixed loss function l : �×� → �

the inverse loss likelihood for a fixed z = (x, y) ∈ � is defined by

�l (h, z)
def= exp

(−β−1 · l (h (x) , y)
)∑̂

y∈�
exp

(−β−1 · l (h (x) , ŷ
)) , (3.2)

where β ∈ [0,∞) is known as the noise level.

In the limiting case β →∞ the inverse loss likelihood is a constant function, i.e.,
�l (h, z) = 1

|� | regardless of the hypothesis h considered. In this case no additional
information is conveyed by the training sample. The likelihood obtained in the no-
noise case, i.e., β = 0, is of particular importance to us and we shall call it the
PAC-likelihood.3

Definition 3.3 (PAC-likelihood) Assume � to be a finite set of classes. Then the
PAC likelihood is defined by

�PAC (h, (x, y))
def= Ih(x)=y .

The Prior The prior measure (or belief) PH is the crucial quantity in a Bayesian
analysis—it is all the knowledge about the relationship between objects and classes
before training data has arrived, encapsulated in a probability measure. Of course,
there is no general rule for determining particular priors. At the time when compu-
tational power was a scarce resource, practitioners suggested conjugate priors.

Definition 3.4 (Conjugate prior) Given a set �� = {PY|X=x,H=h | h ∈ �} of
measures over the sample space � , a set �� = {Pθ

H | θ ∈ �} of probability mea-
sures over the hypothesis space � is called a conjugate prior family to �� if, for
any prior PH ∈ ��, the corresponding posterior PH|Z=z is still in the set �� for
all values of z, i.e.,

∀PH ∈ �� : ∀ (x, y) ∈ � : PH|Z=(x,y) ∝
(
PY|X=x,H=hPH

) ∈ �� ,

where the measure PH|Z=z is defined in (3.1).

3 The abbreviation PAC is introduced in Part II, Section 4.2.
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The advantage of conjugate priors becomes apparent if we additionally assume that
the conjugate family �� is parameterized by a small number of parameters. Then,
inference on the basis of the data, z ∈ �m , simplifies to the computation of a few
new parameter values.

Example 3.5 (Conjugate prior) A popular example of a conjugate prior family is
the family of Beta distributions over the success probability p for the binomially
distributed random variables (see also Table A.1), i.e., for PP = Beta (α, β) and
PX = Binomial (n, p) we know that PP|X=i = Beta (α + i, β + n − i) because

fP|X=i (p) = PX|P=p (i) fP (p)∫ 1
0 PX|P= p̂ (i) fP

(
p̂
)

d p̂

=
(n

i

)
pi (1− p)n−i �(α+β)

�(α)�(β)
pα−1 (1− p)β−1∫ 1

0

(n
i

)
p̂i
(
1− p̂

)n−i �(α+β)
�(α)�(β)

p̂α−1
(
1− p̂

)β−1
d p̂

= pα+i−1 (1− p)n+β−i−1∫ 1
0 p̂α+i−1

(
1− p̂

)n+β−i−1
d p̂

.

Another example of a conjugate prior family is the family of Gaussian measures
over the mean µ of another Gaussian measure, which will be discussed at more
length in Section 3.2.

It is worth mentioning that, apart from computational reasons, there is no moti-
vation for favoring conjugate priors over other prior measures PH. As a general
guideline, one should try to model the prior knowledge with a family of probabil-
ity measures that is quite flexible but which leaves inference still computationally
feasible. Examples of such prior families are given in the subsequent sections.

Evidence of � The denominator of equation (3.1) is called the evidence of the
model (or hypothesis space) �. It expresses how likely the observation of the class
sequence y ∈ �m is, in conjunction with the m training objects x ∈ �m under
all different hypotheses h ∈ �� contained in �, weighted by their prior belief
PH (h). Hence, this quantity is a function of the class sequence y ∈ �m for a fixed
hypothesis space � and for the object sample x ∈ �m . In fact, when viewed
as a function of the classes the evidence is merely a probability measure over
the space of all classifications at the m training objects x. As every probability
measure has the property that it must sum to one, we see that high values of the
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Figure 3.1 Effect of evidence maximization. For a training set size of m = 5 we have
arranged all possible classifications y ∈ {−1,+1}5 on the interval [0, 1] by g (y) =∑5

i=1 2−i+1Iyi=+1 and depicted two different distributions EHi

[
PY5|X5=x,Hi=h (y)

]
over

the space of all classifications on the 5 training objects x ∈ � 5 (gray and white bars).
Since both probability mass functions sum up to one there must exist classifications y,
e.g., y1, for which the more simple model �1 (because it explains only a small number
of classifications) has a higher evidence than the more complex model�2. Nonetheless, if
we really observe a complex classification, e.g., y2, then the maximization of the evidence
leads to the “correct” model�2.

evidence for some classifications y must imply that other classifications, ỹ, lead
to a small evidence of the fixed model �. Hence every hypothesis space has some
“preferred” classifications for which its evidence is high but, necessarily, also other
“non-preferred” classifications of the observed object sequence x ∈ �m .

This reasoning motivates the usage of the evidence for the purpose of model
selection. We can view the choice of the hypothesis space � out of a given
set {�1, . . . ,�r } a as model selection problem because it directly influences the
Bayesian inference given in equation (3.1). Using the evidence would lead to the
following model selection algorithm:

Given a training sample z = (x, y) and r hypothesis spaces �1, . . . ,�r

choose the hypothesis space � such that EHi

[
PYm |Xm=x,Hi=h (y)

]
is maxi-

mized.
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By the above reasoning we see that overly complex models � , which fit almost
any possible classification y ∈ �m of a given sequence x ∈ �m of training objects,
are automatically penalized. This is because the more classifications a hypothesis
space is capable of describing4, the smaller the probability of a single classification
under the fixed model. If, however, we really observe a classification y that cannot
be accommodated by any of the simple models, the evidence of the complex model
� is largest. This is also illustrated in Figure 3.1.

The evidence as a measure of the quality of a hypothesis space can also be
derived if we additionally consider the space � = {�1, . . . ,�r } of all possible
hypothesis spaces considered. First, equation (3.1) can be rewritten as

PH|Zm=z,D=�i (h) = PYm |Xm=x,H=h,D=�i (y)PH|D=�i (h)

EH|D=�i

[
PYm |Xm=x,H=h,D=�i (y)

]
= PYm |Xm=x,H=h,D=�i (y)PH|D=�i (h)

PYm |Xm=x,D=�i (y)
,

where we have included the conditioning on the fixed hypothesis space �i . Now,
using Theorem A.22 to compute the posterior belief in the hypothesis space �i

after having seen the training sample z we see that

PD|Zm=z (�i) = PZm |D=�i (z)PD (�i)

ED
[
PZm |D=�i (z)

] ∝ PYm |Xm=x,D=�i (y)PD (�i) , (3.3)

because the denominator of equation (3.3) does not depend on �i . Without any
prior knowledge, i.e., with a uniform measure PD, we see that the posterior belief
is directly proportional to the evidence PYm |Xm=x,D=�i (y) of the model �i . As a
consequence, maximizing the evidence in the course of model selection is equiva-
lent to choosing the model with the highest posterior belief.

3.1.1 The Power of Conditioning on Data

From a purely Bayesian point of view, for the task of learning we are finished as
soon as we have updated our prior belief PH into the posterior belief PH|Zm=z using
equation (3.1). Nonetheless, our ultimate goal is to find one (deterministic) function
h ∈ �� that best describes the relationship objects and classes, which is implicitly

4 We say that the hypothesis space� describes the classification y at some given training points x if there exists
at least one hypothesis h ∈ � which leads to a high likelihood � (h, (x, y)). Using the notion of an inverse
loss likelihood this means that there exists a hypothesis h ∈ � that has a small empirical risk or training error
Remp [h, (x, y)] (see also Definition 2.11).
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expressed by the unknown measure PZ = PY|XPX. In order to achieve this goal,
Bayesian analysis suggests strategies based on the posterior belief PH|Zm=z:

If we are restricted to returning a function h ∈ � from a pre-specified hypothesis
space � ⊆ �� and assume that PH|Zm=z is highly peaked around one particular
function then we determine the classifier with the maximum posterior belief.

Definition 3.6 (Maximum-a-posteriori estimator) For a given posterior belief
PH|Zm=z over a hypothesis space � ⊆ �� , the maximum-a-posteriori estimator
is defined by5

�MAP (z)
def= argmax

h∈�
PH|Zm=z (h) . (3.4)

If we use the inverse loss likelihood and note that the posterior PH|Zm=z is given
by the product of the likelihood and the prior we see that this scheme returns the
minimizer of the training error and our prior belief, which can be thought of as a
regularizer (see also Subsection 2.2.2). The drawback of the MAP estimator is that
it is very sensitive to the training sample if the posterior measure is multi modal.
Even worse, the classifier �MAP (z) ∈ � is, in general, not unique, for example if
the posterior measure is uniform.

If we are not confined to returning a function from the original hypothesis space
� then we can use the posterior measure PH|Zm=z to induce a measure PY|X=x,Zm=z

over classes y ∈ � at a novel object x ∈ � by

PY|X=x,Zm=z (y) = PH|Zm=z ({h ∈ � | h (x) = y }) .
This measure can then be used to determine the class y which incurs the smallest
loss at a given object x .

Definition 3.7 (Bayes classification strategy) Given a posterior belief PH|Zm=z

over a hypothesis space � and a loss function l : � × � → � the Bayes clas-
sification strategy Bayesz implements the following classification

Bayesz (x)
def= argmin

y∈�
EH|Zm=z

[
l (y,H (x))

]
. (3.5)

5 If we have an infinite number of hypotheses the quantity PH|Zm=z (h) is replaced by the corresponding value
of the density, i.e., fH|Zm=z (h).
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Assuming the zero-one loss l0−1 given in equation (2.10) we see that the Bayes
optimal decision at x is given by

Bayesz (x)
def= argmax

y∈�
PH|Zm=z ({h ∈ � | h (x) = y }) . (3.6)

It is interesting to note that, in the special case of the two-classes � = {−1,+1},
we can write Bayesz as a thresholded real-valued function, i.e.,

Bayesz (x) = sign
(
EH|Zm=z

[
H (x)

])
. (3.7)

If we are not restricted to returning a deterministic function h ∈ �� we can
consider the so-called Gibbs classification strategy.

Definition 3.8 (Gibbs classification strategy) Given a posterior belief PH|Zm=z

over a hypothesis space� ⊆ �� , the Gibbs classification strategy Gibbsz is given
by

Gibbsz (x)
def= h (x) , h ∼ PH|Zm=z ,

that is, for a novel test object x ∈ � we randomly draw a function h according to
PH|Zm=z and use this function to label x.

Although this classifier is used less often in practice we will explore the full power
of this classification scheme later in Section 5.1.

In the following three sections we consider specific instances of the Bayesian prin-
ciple which result in new learning algorithms for linear classifiers. It is worth men-
tioning that the Bayesian method is not limited to the task of binary classification
learning, but can also be applied if the output space is the set of real numbers.
In this case, the learning problem is called the problem of regression estimation.
We shall see that in many cases, the regression estimation algorithm is the starting
point to obtain a classification algorithm.

3.2 Gaussian Processes

In this section we are going to consider Gaussian processes both for the purpose
of regression and for classification. Gaussian processes, which were initially de-
veloped for the regression estimation case, are extended to classification by using
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the concept of latent variables and marginalization. In this sense, the regression
estimation case is much more fundamental.

3.2.1 Bayesian Linear Regression

In the regression estimation problem we are given a sequence x = (x1, . . . , xm) ∈
�

m of m objects together with a sequence t = (t1, . . . , tm) ∈ �m of m real-valued
outcomes forming the training sample z = (x, t). Our aim is to find a functional
relationship f ∈ �

� between objects x and target values t . In accordance with
Chapter 2 we will again consider a linear model �

� = {x �→ 〈x,w〉 |w ∈ � } ,
where we assume that x def= φ (x) and φ : � → � ⊆ �n

2 is a given feature mapping
(see also Definition 2.2). Note that x ∈ � should not be confused with the training
sequence x ∈ �m which results in an m × n matrix X = (

x′1; . . . ; x′m
)

when φ is
applied to it.

First, we need to specify a prior over the function space � . Since each function
fw is uniquely parameterized by its weight vector w ∈ � it suffices to consider
a prior distribution on weight vectors. For algorithmic convenience let the prior
distribution over weights be a Gaussian measure with mean 0 and covariance In ,
i.e.,

PW = Normal (0, In) . (3.8)

Apart from algorithmical reasons such a prior favors weight vectors w ∈ �

with small coefficients wi because the log-density is proportional to −‖w‖2 =
−∑n

i=1 w
2
i (see Definition A.26). In fact, the weight vector with the highest a-

priori density is w = 0.
Second, we must specify the likelihood model PTm |Xm=x,W=w. Let us assume

that, for a given function fw and a given training object x ∈ � , the real-valued
output T is normally distributed with mean fw (x) and variance σ 2

t . Using the
notion of an inverse loss likelihood such an assumption corresponds to using the
squared loss, i.e., l2 ( f (x) , t) = ( f (x)− t)2 when considering the prediction
task under a machine learning perspective. Further, it shall be assumed that the
real-valued outputs T1 and T2 at x1 and x2 �= x1 are independent. Combining these
two requirements results in the following likelihood model:

PTm |Xm=x,W=w (t) = Normal
(
Xw, σ 2

t Im

)
. (3.9)
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A straightforward application of Bayes’ theorem then reveals that the posterior
measure PW|Xm=x,Tm=t is also a Gaussian measure (see Theorem A.28), i.e.,

PW|Xm=x,Tm=t = Normal
(
σ−2

t

(
σ−2

t X′X+ In

)−1
X′ t,

(
σ−2

t X′X+ In

)−1
)

= Normal
((

X′X+ σ 2
t In

)−1
X′ t,

(
σ−2

t X′X+ In

)−1
)
.

In order to predict at a new test object x ∈ � using the Bayes prediction strategy
we take into account that, by the choice of our likelihood model, we look for the
minimizer of squared loss, i.e.,

Bayesz (x) = argmin
t∈�

EW|Xm=x,Tm=t [l2 ( fW (x) , t)]

= argmin
t∈�

EW|Xm=x,Tm=t

[
(〈x,W〉 − t)2

]
= EW|Xm=x,Tm=t

[〈x,W〉] = 〈
x,EW|Xm=x,Tm=t

[
W
]〉

, (3.10)

=
〈
x,
(
X′X+ σ 2

t In

)−1
X′ t
〉
,

where the third line follows from the fact that (〈x,w〉 − t)2 is minimized at t =
〈x,w〉. In the current form the prediction at x involves the inversion of the n × n
matrix X′X+ σ 2

t In which is the empirical covariance matrix of the training objects
in feature space �. This is an unfavorable property as it requires explicit evaluation
of the feature mapping φ : � → �. In order to simplify this expression we apply
the Woodbury formula (see Theorem A.79) to the inverse of this matrix, i.e.,

(
X′X+ σ 2

t In

)−1 = σ−2
t In − σ−4

t X′ (Im + σ−2
t XX′)−1

X

= σ−2
t

(
In − X′ (XX′ + σ 2

t Im

)−1
X
)
.

Thus, the Bayesian prediction strategy at a given object x ∈ � can be written as,

x′
(
X′X+ σ 2

t In

)−1
X′ t = σ−2

t

(
x′X′ − x′X′ (XX′ + σ 2

t Im

)−1
XX′

)
t

= σ−2
t x′X′ (XX′ + σ 2

t Im

)−1 ((
XX′ + σ 2

t Im

)− XX′) t

= x′X′ (XX′ + σ 2
t Im

)−1
t . (3.11)

Note that this modification only requires us to invert a m×m matrix rather than the
n× n matrix X′X+ σ 2

t In . As a consequence, all that is needed for the prediction at
individual objects is the inner product function k (x, x̃) = 〈

x, x̃
〉 = 〈φ (x) ,φ (x̃)〉



84 Chapter 3

also known as the kernel for the mapping φ : � → � ⊆ �n
2 (see also Definition

2.14). Exploiting the notions of kernels the prediction at any x ∈ � can be written
as

f (x) =
m∑

i=1

α̂i k (x, xi ) , α̂ = (
G+ σ 2

t Im

)−1
t , (3.12)

where the m × m matrix G = XX′ is defined by Gi j = k
(
xi , x j

)
and is called the

Gram matrix. From this expression we see that the computational effort involved in
finding the linear function from a given training sample is �

(
m3
)

since it involves
the inversion of the m×m matrix G+σ 2

t Im . However, by exploiting the fact that, for
many kernels, the matrix G has eigenvalues λ = (λ1, . . . , λm)

′ that decay quickly
toward zero, it is possible to approximate the inversion of the matrix G+σ 2

t Im with
�
(
m2
)

computations.
In order to understand why this method is also called Gaussian process re-

gression we note that, under the assumptions made, the probability model of
the data PTm |Xm=x (t) is a Gaussian measure with mean vector 0 and covariance
XX′ + σ 2

t I = G + σ 2
t I (see Theorem A.28 and equations (3.8) and (3.9)). This is

the defining property of a Gaussian process.

Definition 3.9 (Stochastic and Gaussian processes) A stochastic process T :
� → (�,�1 ,PT) is a collection of random variables indexed by x ∈ �

and is fully defined by the probability distribution of any finite sequence T =
(T (x1) , . . . ,T (xm)). Gaussian processes are a subset of stochastic processes that
can be specified by giving only the mean vector ET

[
T
]

and the covariance matrix
Cov (T) for any finite sample x ∈ �m.

As can be seen, Bayesian regression involving linear functions and the prior and
likelihood given in equations (3.8) and (3.9), respectively, is equivalent to mod-
eling the outputs as a Gaussian process having mean 0 and covariance function
C (x, x̃) = 〈

x, x̃
〉 + σ 2

t Ix �=x̃ = k (x, x̃) + σ 2
t Ix �=x̃ . The advantage of the Gaussian

process viewpoint is that weight vectors are avoided—we simply model the data
z = (x, t) directly. In order to derive the prediction fGP (x) of a Gaussian process
at a new object x ∈ � we exploit the fact that every conditional measure of a Gaus-
sian measure is again Gaussian (see Theorem A.29). According to equation (A.12)
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this yields PT|Tm=t,Xm=x,X=x = Normal
(
µt , υ

2
t

)
with

µt = x′X′ (G+ σ 2
t I
)−1

t =
m∑

i=1

((
G+ σ 2

t I
)−1

t
)

i
k (xi , x) , (3.13)

υ2
t = x′x+ σ 2

t − x′X′ (G+ σ 2
t I
)−1

Xx (3.14)

= k (x, x) + σ 2
t −

m∑
i=1

m∑
j=1

k (xi , x) · k
(
x j , x

) · ((G+ σ 2
t I
)−1
)

i j
,

by considering the joint probability of the real-valued outputs (t; t) at the training
points x ∈ �m and the new test object x ∈ � with covariance matrix(

G+ σ 2
t I Xx

x′X′ x′x+ σ 2
t

)
.

Note that the expression given in equation (3.13) equals the Bayesian prediction
strategy given in equation (3.11) or (3.12) when using a kernel. Additionally, the
Gaussian process viewpoint offers an analytical expression for the variance of the
prediction at the new test point, as given in equation (3.14). Hence, under the
assumption made, we cannot only predict the new target value at a test object but,
also judge the reliability of that prediction. It is though important to recognize that
such error bars on the prediction are meaningless if we cannot guarantee that our
Gaussian process model is appropriate for the learning problem at hand.

Remark 3.10 (Covariance functions and kernels) It is interesting to compare
equation (3.12) with the expression for the change of the Gram matrix G when
considering quadratic soft margin support vector machines (see equation (2.50)
and Remark 2.32). We can either treat the feature space mapping φ : � → � and
the variance on the outputs t ∈ � separately or incorporate the latter directly into
the kernel k : � × � → � by changing the Gram matrix G into G̃

G̃ = G+ σ 2
t I ⇔ kσ 2

t
(x, x̃) = k (x, x̃)+ σ 2

t Ix=x̃ . (3.15)

This equivalence allows us to view the parameter λ in the support vector classi-
fication case as an assumed noise level on the real-valued output yi 〈w, xi〉 at all
the training points zi = (xi , yi). Note that the difference in the classification case
is the thresholding of the target t ∈ � to obtain a binary decision y ∈ {−1,+1}.

Under the Gaussian process consideration we see that all prior knowledge has been
incorporated in the choice of a particular kernel k : � × � → � and variance
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σ 2
t ∈ �+ . In order to choose between different kernels and variances we employ the

evidence maximization principle. For a given training sample z = (x, t) of object-
target pairs we maximize the expression PTm |Xm=x (t) w.r.t. the kernel parameters
and variance σ 2

t . The appealing feature of the Gaussian process model is that this
expression is given in an analytical form. It is the value of the m–dimensional
Gaussian density with mean 0 and covariance matrix G + σ 2

t I at t ∈ �
m . If we

consider the log-evidence given by

ln
(
PTm |Xm=x (t)

) = −1

2

(
m ln (2π)+ ln

(∣∣G+ σ 2
t I
∣∣)+ t ′

(
G+ σ 2

t I
)−1

t
)
,

we see that, in the case of a differentiable kernel function k, the gradient of the log-
evidence can be computed analytically and thus standard optimization methods can
be used to find the most probable kernel parameters.

Example 3.11 (Evidence maximization with Gaussian processes) In Figure 3.2
we have shown an application of the maximization of the evidence for a simple
regression problem on the real line � = �. As can be seen from this example, the
evidence is often multi-modal which can make its maximization very difficult—a
few observations x1, . . . , xr as well as initial parameters θ0 and σ0 in the search
for the most probable parameter can have a large influence on the found local
maximum. One way to overcome this problem is to integrate over all possible
parameters θ and variances σ 2

t and weight each prediction by its evidence.
Another interesting observation to be drawn from Figure 3.2 is of the ability of

the method to provide error bars on the prediction t ∈ � (dotted lines in the middle
and left plot). If we have chosen a model which assumes almost no variance on the
outputs then we have a small variance for test points which are near the training
sample x (in the metric induced by the kernel). This is in accordance with the
intuitive notion of the variability of the target values for all test points having high
correlation with the training sample.

Example 3.12 (Automatic relevance determination) An interesting application
of the analytical maximization of the evidence in Gaussian processes is for the
determination of relevant dimensions in the case of an N–dimensional input space
� ⊆ �

N . If we use the Mahalanobis kernel (see also Table 2.1) given by

k (�u, �v) = exp

(
−

N∑
i=1

(ui − vi )
2

σ 2
i

)
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Figure 3.2 (Left) The log-evidence for a simple regression problem on the real line
� = �. The x–axis varies over different values of the assumed variance σ 2

t whereas the
y–axis ranges over different values for the bandwidth σ in an RBF kernel (see Table 2.1).
The training sample consists of the 6 observations shown in the middle plot (dots). The
dot (•) and cross (×) depict two values at which the gradient vanishes, i.e., local maxima
of the evidence. (Middle) The estimated function corresponding to the kernel bandwidth
σ = 1.1 and variance σ 2

t = 0 (• in the left picture). The dotted line shows the error bars
of one standard deviation computed according to equation (3.14). Note that the variance
increases in regions where no training data is available. (Right) The estimated function
corresponding to the kernel bandwidth σ = 3 and variance σ 2

t = 0.5 (× in the left picture).
This local maxima is attained because all observations are assumed to be generated by the
variance component σ 2

t only.

we see that, for the case of σi → ∞, the i th input dimension is neglected in the
computation of the kernel and can therefore be removed from the dataset (see also
Figure 3.3). The appealing feature of using such a kernel is that the log-evidence
ln
(
PTm |Xm=x (t)

)
can be written as a differentiable function in the parameters

σ ∈ �+ and thus standard maximization methods such as gradient ascent, Newton-
Raphson and conjugate gradients can be applied. Moreover, in a Bayesian spirit it
is also possible to additionally favor large values of the parameters σi by placing
an exponential prior on σ−2

i .

3.2.2 From Regression to Classification

We shall now return to our primary problem, which is classification. We are given
m classes y = (y1, . . . , ym) ∈ �m = {−1,+1}m rather than m real-valued outputs
t = (t1, . . . , tm) ∈ �m . In order to use Gaussian processes for this purpose we are
faced with the following problem: Given a model for m real-valued outputs t ∈ �m

how can we model 2m different binary vectors y ∈ �m?
In order to solve this problem we note that, for the purpose of classification,

we need to know the predictive distribution PY|X=x,Zm=z (y) where z = (x, y) is



88 Chapter 3

input dimension 1

−10

−5

0

5

10

in
pu

t d
im

en
si

on
 2

−10

−5

0

5

10

function values

−10

−5

0

5

input dimension 1

−10

−5

0

5

10

in
pu

t d
im

en
si

on
 2

−10

−5

0

5

10
function values

−15

−10

−5

0

Figure 3.3 (Left) A function fw sampled from the ARD prior with σ1 = σ2 =
√

5 where
� = �

2 . Considering the 1–D functions over the second input dimension for fixed values
of the first input dimension, we see that the functions change slowly only for nearby values
of the first input dimension. The size of the neighborhood is determined by the choice of
σ1 and σ2. (Right) A function fw sampled from the ARD prior with σ1 = 20σ2. As can
be seen the function is only changing very slowly over the first input dimension. In the
limiting case σ1 →∞ any sample fw is a function of the second input dimension only.

the full training sample of object-class pairs. Given the predictive distribution at
a new test object x ∈ � we decide on the class y with maximum probability
PY|X=x,Zm=z (y). The trick which enable the use of a regression estimation method
such as Gaussian processes is the introduction of a latent random variable T
which has influence on the conditional class probability PY|X=x . As we saw in
the last subsection, each prediction fGP (x) of a Gaussian process at some test
object x ∈ � can be viewed as the real-valued output of a mean weight vector
wcm = EW|Xm=x,Tm=t

[
W
]

in some fixed feature space � (see equation (3.10)), i.e.,
the distance to the hyperplane with the normal vector wcm. Intuitively, the further
away a test object x ∈ � is from the hyperplane (the larger the value of t), the
more likely it is that the object is from the class y = sign (t). One way to model
this intuitive notion is by

PY|T=t (y) = exp
(
β−1 · yt

)
exp

(
β−1 · yt

)+ exp
(−β−1 · yt

) = exp
(
2β−1 · yt

)
1+ exp

(
2β−1 · yt

) , (3.16)
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Figure 3.4 Latent variable model for classification with Gaussian processes. Each real-
valued function (left) is “transfered” through a sigmoid given by equation (3.16) (middle
plot). As a result we obtain the predictive distribution PY|X=x,T=t (+1) for the class +1
as a function of the inputs (right). By increasing the noise parameter β we get smoother
functions g (x) = PY|X=x,T=t (+1). In the limit of β → 0 the predictive distribution
becomes a zero-one valued function.

where β can be viewed as a noise level, i.e., for limβ→0 PY|T=t (y) = Iyt≥0 (see also
Definition 3.2 and Figure 3.4). In order to exploit the latent random variables we
marginalize over all their possible values (t, t) ∈ �

m+1 at the m training objects
x ∈ �m and the test object x ∈ � , i.e.,

PY|X=x,Zm=z (y) = ETm+1|X=x,Zm=z

[
PY|X=x,Zm=z,Tm+1=(t,t)

]
=

∫
�

∫
�m

PY|T=t (y) fTm+1|X=x,Zm=z ((t, t)) d t dt . (3.17)

A problem arises with this integral due to the non-Gaussianity of the term
PY|T=t (y) meaning that the integrand fTm+1|X=x,Zm=z is no longer a Gaussian den-
sity and, thus, it becomes analytically intractable. There are several routes we can
take:

1. By assuming that fTm+1|X=x,Zm=z is a uni-modal function in (t, t) ∈ �
m+1 we

can consider its Laplace approximation. In place of the correct density we use
an (m + 1)-dimensional Gaussian measure with mode µ ∈ �

m+1 and covariance
� ∈ �(m+1)×(m+1) given by

µ = argmax
(t,t)∈�m+1

fTm+1|X=x,Zm=z ((t, t)) (3.18)
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� = −

 ∂2 ln

(
fTm+1|X=x,Zm=z ((t, t))

)
∂ti∂t j

∣∣∣∣∣
ti=µi ,t j=µ j

m+1,m+1

i, j=1


−1

. (3.19)

2. We can use a Markov chain to sample from PTm+1|X=x,Zm=z and use a Monte
Carlo approximation to the integral. So, given K samples (t1, t1) , . . . , (t K , tK ) we
approximate the predictive distribution by averaging over the samples

PY|X=x,Zm=z (y) ≈ 1

K

K∑
i=1

PY|T=ti (y) .

Note that in order to generate samples ti ∈ � we also have to sample t i ∈ �
m

although these are not used in the final approximation.

Let us pursue the first idea and determine the maximizer µ = (
t̂, t̂
)

of fTm+1|X=x,Zm=z.
In Appendix B.7 we show that the maximization can be decomposed into a maxi-
mization over the real-valued outputs t ∈ �m of the latent variables corresponding
to the m training objects and a maximization of the real-valued output t ∈ � at the
new test object. We prove that the value t̂ ∈ �m is formally given by

t̂ = argmax
t∈�m

m∑
i=1

ln
(
PY|T=ti (yi)

)− t ′G−1t . (3.20)

Having found this vector using an iterative Newton-Raphson update we can then
compute t̂ directly using t̂ = t̂

′
G−1Xx. As a consequence, by Theorem A.29, and

the results from Appendix B.7, it follows that

PT|X=x,Zm=z = Normal
(

t̂
′
G−1Xx, x′x− x′X′ (I+ PG)−1 PXx

)
= Normal

(
t̂, υ2) ,

where P is a m×m diagonal matrix with entries β−1 ·PY|T=t̂i (1)
(
1− PY|T=t̂i (1)

)
.

The benefit of this consideration is that the problem of determining the predictive
distribution (3.17) reduces to computing

PY|X=x,Zm=z (y) =
∫
�

PY|T=t (y) fT|X=x,Zm=z (t) dt , (3.21)

which is now computationally feasible because fT|X=x,Zm=z is a normal density only
depending on the two parameters t̂ and υ2. In practice, we would approximate
the function PY|T=t by Gaussian densities to be able to evaluate this expression
numerically. However, if all we need is the classification, we exploit the fact
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that sign
(
t̂
)

always equals the class y ∈ {−1,+1} with the larger probability
PY|X=x,Zm=z (y) (see Appendix B.7). In this case it suffices to compute the vector
t̂ ∈ �m using equation (3.20) and to classify a new point according to

hGPC (x) = sign

(
m∑

i=1

α̂i k (xi , x)

)
, α̂ = G−1 t̂ . (3.22)

In Appendix B.7 we derive a stable algorithm to compute the vector α̂ ∈ �
m of

expansion coefficients6. The pseudocode of the algorithm can be found on page
326.

Remark 3.13 (Support vector classification learning) A closer look at equation
(3.16) reveals that this likelihood is equivalent to the inverse loss likelihood for the
margin loss given in equation (2.42). This equivalence allows us to directly relate
linear soft margin support vector machines and Gaussian process classification
when using a Laplace approximation:

1. Since we only require the maximizing vector t̂ ∈ �
m of latent real-valued

outputs at the training objects x ∈ �m to be found, we know that we effectively
search for one weight vector ŵ =∑m

i=1 α̂i xi = X′α̂. In particular, using the linear
expansion of the weight vector in the mapped training objects, we see that

t̂ = Xŵ = XX′α̂ = Gα̂ , ⇔ α̂ = G−1 t̂ .

2. By the same argument we know that the term t ′G−1 t equals α′Gα = ‖w‖2

(assuming that w = X′α exists in the linear span of the mapped training inputs).
Now, if we consider an inverse loss likelihood PY|T=t for the loss l : � × � → �

the maximizer t̂ ∈ �m , of equation (3.20) must equal the minimizer ŵ ∈ � of

−
m∑

i=1

ln
(
PY|T=ti (yi)

)+ ‖w‖2 =
m∑

i=1

lsigmoid (〈xi ,w〉 , yi)+ ‖w‖2 , (3.23)

where lsigmoid (t, y) = ln
(
1+ exp

(
2β−1 · yt

)) − 2β−1 yt. Note that lsigmoid : � ×
� → � is another approximation of the zero-one loss l0−1 (see Figure 3.5 (left)
and equation (2.9)). In this sense, Gaussian processes for classification are another

6 Basically, a closer look at equation (3.22) and (3.20) shows that, in order to obtain t̂, we need to invert the
Gram matrix G ∈ �m×m which is then used again to compute α̂. If the Gram matrix is badly conditioned, i.e.,
the ratio between the largest and smallest eigenvector of G is significantly large, then the error in computing α̂ by
(3.22) can be very large although we may have found a good estimate t̂ ∈ �m . Therefore, the algorithm presented
avoids the “detour” via t̂ but directly optimizes w.r.t. α. The more general difficulty is that inverting a matrix is
an ill-posed problem (see also Appendix A.4).
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Figure 3.5 (Left) Approximation of the zero-one loss function Iyt≤0 (solid line) by the
sigmoidal loss given by lsigmoid (t, y) = ln

(
1+ exp

(
2β−1 · yt

)) − 2β−1yt (dashed and
dotted lines). Note that these loss functions are no longer upper bounds except when
β → 0. In this case, however, the loss becomes infinitely large whenever y f (x) < 0.
(Right) Likelihood model induced by the hinge loss llin (t, y) = max {1− yt, 0}. Note
that in contrast to the model given in equation (3.16), this liklihood is not normalizable.

implementation of soft margin support vector machines .

3. Using the identity (3.23) we could also try to find an interpretation of support
vector machines as Gaussian process classification with a different likelihood
model PY|T=t . In fact, the likelihood model can easily be derived from (3.23) and
(2.47) and is given by

PY|T=t (y) = exp (−llin (t, y)) = exp (−max {1− yt, 0}) .
In Figure 3.5 (right) we have plotted this likelihood model for varying values
of t ∈ �. As can be seen from the plots the problem with this loss-function
induced likelihood model is that it cannot be normalized independently of the value
t = 〈x,w〉. Hence, it is not directly possible to cast support vector machines into a
probabilistic framework by relating them to a particular likelihood model.

3.3 The Relevance Vector Machine

In the last section we saw that a direct application of Bayesian ideas to the problem
of regression estimation yields efficient algorithms known as Gaussian processes.
In this section we will carry out the same analysis with a slightly refined prior PW

on linear functions fw in terms of their weight vectors w ∈ � ⊆ �n
2. As we will
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see in Section 5.2 an important quantity in the study of the generalization error
is the sparsity ‖w‖0 =

∑n
i=1 Iwi �=0 or ‖α‖0 of the weight vector or the vector of

expansion coefficients, respectively. In particular, it is shown that the expected risk
of the classifier fw learned from a training sample z ∈ �m is, with high probability
over the random draw of z, as small as≈ ‖w‖0

n or ‖α‖0
m , where n is the dimensionality

of the feature space � and w = ∑m
i=1 αixi = X′α. These results suggest favoring

weight vectors with a small number of non-zero coefficients. One way to achieve
this is to modify the prior in equation (3.8), giving

PW = Normal (0,�) ,

where � = diag (θ) and θ = (θ1, . . . , θn)
′ ∈ (�+)n

is assumed known. The idea
behind this prior is similar to the idea of automatic relevance determination given
in Example 3.12. By considering θi → 0 we see that the only possible value for the
i th component of the weight vector w is 0 and, therefore, even when considering
the Bayesian prediction Bayesz the i th component is set to zero. In order to make
inference we consider the likelihood model given in equation (3.9), that is, we
assume that the target values t = (t1, . . . , tm) ∈ �m are normally distributed with
mean 〈xi ,w〉 and variance σ 2

t . Using Theorem A.28 it follows that the posterior
measure over weight vectors w is again Gaussian, i.e.,

PW|Xm=x,Tm=t = Normal (µ,�) ,

where the posterior covariance � ∈ �n×n and mean µ ∈ �n are given by

� = (
σ−2

t X′X+�−1)−1
, µ = σ−2

t �X′ t = (
X′X+ σ 2

t �−1)−1
X′ t . (3.24)

As described in the last section, the Bayesian prediction at a new test object x ∈ �
is given by Bayesz (x) = 〈x,µ〉. Since we assumed that many of the θi are
zero, i.e., the effective number neff = ‖θ‖0 of features φi : � → � is small, it
follows that � and µ are easy to calculate7. The interesting question is: Given a
training sample z = (x, t) ∈ (� × �)m , how can we “learn” the sparse vector
θ = (θ1, . . . , θn)

′?
In the current formulation, the vector θ is a model parameter and thus we shall

employ evidence maximization to find the value θ̂ that is best supported by the
given training data z = (x, t). One of the greatest advantages is that we know the

7 In practice, we delete all features φi : � → � corresponding to small θ–values and fix the associated µ–values
to zero.
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evidence fTm |Xm=x (t) explicitly (see Theorem A.28),

fTm |Xm=x (t) = EW
[
fTm |Xm=x,W=w (t)

]
= (2π)−

m
2
∣∣σ 2

t I+ X�X′∣∣− 1
2 exp

(
− t ′

(
σ 2

t I+ X�X′)−1
t

2

)
. (3.25)

In Appendix B.8 we derive explicit update rules for θ and σ 2
t which, in case of

convergence, are guaranteed to find a local maximum of the evidence (3.25). The
update rules are given by

θ
(new)
i = µ2

i

ζi
,

(
σ 2

t

)(new) = ‖t − Xµ‖2

m −∑n
i=1 ζi

, ζi = 1− θ−1
i �ii .

Interestingly, during application of these update rules, it turns out that many of the
θi decrease quickly toward zero which leads to a high sparsity in the mean weight
vector µ. Note that, whenever θi falls below a pre-specified threshold, we delete the
i th column from X as well as θi itself which reduces the number of features used
by one. This leads to a faster convergence of the algorithm as it progresses because
the necessary inversion of the matrix σ−2

t X′X +�−1 in (3.24) is computationally
less demanding. After termination, all components ŵi of the learned weight vector
ŵ ∈ �

n , for which θi is below the threshold, are set to exactly 0; the remaining
coefficients ŵi are set equal to corresponding values in µ = σ−2

t �X′ t.
In order to apply this algorithm (which has so far been developed for the case of

regression estimation only) to our initial problem of classification learning (recall,
are given a sample z = (x, y) ∈ (� × {−1,+1})m of object-class pairs), we use
the idea outlined in the previous subsection. In particular, when computing the
predictive distribution PY|X=x,Zm=z of the class y ∈ {−1,+1} at a new test object
x ∈ � , we consider m + 1 latent variables T1, . . . ,Tm,Tm+1 at all the m training
objects x ∈ �m and at the test object x ∈ � , computed by applying a latent weight
vector W to all the m + 1 mapped objects (x, x) ∈ �m+1. By marginalizing over
all the possible values w ∈ �n of W we obtain

PY|X=x,Zm=z (y) = EW|X=x,Zm=z
[
PY|X=x,Zm=z,W=w (y)

]
=

∫
�n

PY|X=x,W=w (y) · fW|Zm=z (w) dw .

Note that PY|X=x,W=w (y) = PY|T=〈x,w〉 (y) where PY|T=t is given by equation
(3.16). Similarly to the Gaussian process case, the problem with this integral is that
it cannot be performed analytically because the integrand fW|Zm=z (w) is no longer
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Gaussian. We shall therefore exploit the idea of using a Laplace approximation to
it, i.e., approximating this density by a Gaussian density with the mean µ ∈ �

n

and the covariance � ∈ �n×n given by

µ = argmax
w∈�n

fW|Zm=z (w) , (3.26)

� =
− ∂2 ln

(
fW|Zm=z (w)

)
∂wi∂w j

∣∣∣∣∣
wi=µi ,w j=µ j

n,n

i, j=1

−1

. (3.27)

As we essentially aim to finding θ̂ ∈ (
�
+)n

it turns out that the Laplacian

approximation is a perfect choice because it allows us to estimate θ̂ by iterating
the following scheme:

1. For a fixed valued θ ∈ (
�
+)n

we compute the Laplacian approximation to
fW|Zm=z yielding µ and a covariance matrix �.

2. Using the current values of µ and � we make one update step on θ . Note that
in the classification case we omit a variance σ 2

t ∈ �+ on the latent variables Ti.

It is worth mentioning that we formulate the Laplacian approximation in terms of
the weight vectors w rather than the real-valued outputs t ∈ �

m . This is because,
for classification, whenever ‖θ‖0 < m (we identify fewer features than training
examples), the covariance matrix of t cannot have full rank, which would cause
numerical instabilities in the resulting algorithm. The two algorithms for regression
estimation and classification are given on pages 327 and 328, respectively.

In order to understand why this algorithm is called a relevance vector machine
we note that it is also possible to use a kernel function k : � × � → � evaluated
at the training objects x ∈ �m as m features φi = k (xi , ·). In this case the weight
vector w becomes the vector α ∈ �m of expansion coefficients and the data matrix
X ∈ �m×n is given by the Gram matrix G ∈ �m×m . The algorithm aims to find the
smallest subset of training objects such that the target values t ∈ �

m (regression
estimation) or the classes y ∈ {−1,+1}m (classification) can be well explained by

f (·) =
m∑

i=1

αi k (xi , ·) , h (·) = sign

(
m∑

i=1

αi k (xi , ·)
)

. (3.28)

All the training objects xi ∈ x which have a non-zero coefficient αi are termed
relevance vectors because they appear the most relevant for the correct prediction
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Figure 3.6 (Left) Marginalized log-prior densities fWi over single weight vector compo-
nents wi implicitly considered in relevance vector machines. Relevance vector machines
are recovered for the case of a → 0 and b →∞ in which the prior is indefinitely peaked
at w = 0. (Right) Surface plot for the special case of n = 2 and b = a−1 = 1 000. Note
that this prior favors one zero weight vector component w1 = 0 much more that two very
small values |w1| and |w2| and is sometimes called a sparsity prior.

of the whole training sample.8 The appealing feature when using models of the
form (3.28) is that we still learn a linear classifier (function) in some feature space
�. Not only does it allow us to apply all the theoretical results we shall obtain in
Part II of this book but the geometrical picture given in Section 2.1 is also still valid
for this algorithm.

Remark 3.14 (Sparsity in relevance vector machines) In a fully Bayesian treat-
ment, rather than using just one value θ̂ of the parameters θ we should define a
prior PQ over all possible values of θ ∈ �n and then marginalize, i.e.,

fT|X=x,Xm=x,Tm=t (t) = EQ
[
EW|Q=θ

[
fTm+1|X=x,Xm=x,W=w ((t, t))

]]
EQ

[
EW|Q=θ

[
fTm |Xm=x,W=w (t)

]]
= EQ

[
fTm+1|X=x,Xm=x,Q=θ ((t, t))

]
EQ

[
fTm |Xm=x,Q=θ (t)

] .

8 Another reason for terming them relevance vectors is that the idea underlying the algorithm is motivated by
automatic relevance determination, introduced in Example 3.12 (personal communication with M. Tipping).
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The problem with the latter expression is that we cannot analytically compute the
final integral. Although we get a closed form expression for the density fTm |Xm=x,Q=θ

(a Gaussian measure derived in equation (3.25)) we cannot perform the expecta-
tion analytically regardless of the prior distribution chosen. When using a product
of Gamma distributions for PQ, i.e., fQ (θ) = ∏n

i=1 Gamma (a, b)
(
θ−1

i

)
, it can

be shown, however, that, in the limit of a → 0 and b → ∞, the mode of the
joint distribution fQTm |Xm=x (θ , t) equals the vector θ̂ and t̂ = Xµ (see equation
(3.24)) as computed by the relevance vector machine algorithm. Hence, the rel-
evance vector machine—which performs evidence maximization over the hyper-
parameters θ ∈ �

n —can also be viewed as a maximum-a-posteriori estimator
of PWQ|Xm=x,Tm=t because t = Xw. As such it is interesting to investigate the
marginalized prior PW = EQ

[
PW|Q=θ

]
. In Figure 3.6 we have depicted the form of

this marginalized prior for a single component (left) and for the special case of a
two-dimensional feature space (right). It can be seen from these plots that, by the
implicit choice of this prior, the relevance vector machine looks for a mode θ̂ in
a posterior density which has almost all a-priori probability mass on sparse solu-
tions. This somewhat explains why the relevance vector machine algorithm tends
to find very sparse solutions.

3.4 Bayes Point Machines

The algorithms introduced in the last two sections solve the classification learning
problem by taking a “detour” via the regression estimation problem. For each
training object it is assumed that we have prior knowledge PW about the latent
variables Ti corresponding to the logit transformation of the probability of xi

being from the observed class yi . This is a quite cumbersome assumption as we
are unable to directly express prior knowledge on observed quantities such as the
classes y ∈ �m = {−1,+1}m . In this section we are going to consider an algorithm
which results from a direct modeling of the classes.

Let us start by defining the prior PW. In the classification case we note that, for
any λ > 0, the weight vectors w and λw perform the same classification because
sign (〈x,w〉) = sign (〈x, λw〉). As a consequence we consider only weight vectors
of unit length, i.e., w ∈ �, � = {w ∈ � | ‖w‖ = 1 } (see also Section 2.1).
In the absence of any prior knowledge we assume a uniform prior measure PW

over the unit hypersphere � . An argument in favor of the uniform prior is that the
belief in the weight vector w should be equal to the belief in the weight vector −w
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under the assumption of equal class probabilities PY (−1) and PY (+1). Since the
classification y−w = (sign (〈x1,−w〉) , . . . , sign (〈xm,−w〉)) of the weight vector
−w at the training sample z ∈ �

m equals the negated classification −yw =
− (sign (〈x1,w〉) , . . . , sign (〈xm,w〉)) of w it follows that the assumption of equal
belief in w and −w corresponds to assuming that PY (−1) = PY (+1) = 1

2 .
In order to derive an appropriate likelihood model, let us assume that there is no

noise on the classifications, that is, we shall use the PAC-likelihood lPAC as given
in Definition 3.3. Note that such a likelihood model corresponds to using the zero-
one loss l0−1 in the machine learning scenario (see equations (2.10) and (3.2)).
According to Bayes’ theorem it follows that the posterior belief in weight vectors
(and therefore in classifiers) is given by

fW|Zm=z (w) = PYm |Xm=x,W=w (y) fW (w)

PYm |Xm=x (y)

=
{ 1

PW(V (z)) if w ∈ V (z)
0 otherwise

. (3.29)

The set V (z) ⊆ � is called version space and is the set of all weight vectors that
parameterize classifiers which classify all the training objects correctly (see also
Definition 2.12). Due to the PAC-likelihood, any weight vector w which does not
have this property is “cut-off” resulting in a uniform posterior measure PW|Zm=z

over version space. Given a new test object x ∈ � we can compute the predictive
distribution PY|X=x,Zm=z of the class y at x ∈ � by

PY|X=x,Zm=z (y) = PW|Zm=z (sign (〈x,W〉) = y) .

The Bayes classification strategy based on PY|X=x,Zm=z decides on the class with
the larger probability. An appealing feature of the two class case � = {−1,+1} is
that this decision can also be written as

Bayesz (x) = sign
(
EW|Zm=z

[
sign (〈x,W〉)]) , (3.30)

that is, the Bayes classification strategy effectively performs majority voting in-
volving all version space classifiers. The difficulty with the latter expression is that
we cannot analytically compute the expectation as this requires efficient integra-
tion of a convex body on a hypersphere (see also Figure 2.1 and 2.8). Hence, we
approximate the Bayes classification strategy by a single classifier.
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Definition 3.15 (Bayes point) Given a training sample z and a posterior measure
PW|Zm=z over the unit hypersphere� , the Bayes point wbp ∈� is defined

wbp = argmin
w∈�

EX
[
l0−1 (Bayesz (X) , sign (〈φ (X) ,w〉))] ,

that is, the Bayes point is the optimal projection of the Bayes classification strategy
to a single classifier wbp w.r.t. generalization error.

Although the Bayes point is easily defined its computation is much more difficult
because it requires complete knowledge of the input distribution PX. Moreover,
it requires a minimisation process w.r.t. the Bayes classification strategy which
involves the posterior measure PW|Zm=z—a computationally difficult task. A closer
look at equation (3.30), however, shows that a another reasonable approximation
to the Bayes classification strategy is given by exchanging sign (·) and expectation,
i.e.,

hcm (x) = sign
(
sign

(
EW|Zm=z

[〈x,W〉])) = sign

〈x,EW|Zm=z
[
W
]︸ ︷︷ ︸

wcm

〉 .

The idea behind this “trick” is that, if the version space V (z) is almost point-
symmetric w.r.t. wcm then, for each weight vector w ∈ V (z) in version space,
there exists another weight vector w̃ = 2wcm − w ∈ V (z) also in version space
and, thus,

sign (〈x,w〉)+ sign
(〈

x, w̃
〉) = {

2 · sign (〈x,wcm〉) if |〈x,w〉| < |〈x,wcm〉|
0 otherwise

,

that is, the Bayes classification of a new test object equals the classification carried
out be the single weight vector wcm. The advantage of the classifier wcm—which
is also the center of mass of version space V (z)—is that it can be computed or es-
timated without any extra knowledge about the data distribution. Since the center
of mass is another approximation to the Bayes classification we call every algo-
rithm that computes wcm a Bayes point algorithm, although the formal definition
of the Bayes point approximation is slightly different. In the following subsection
we present one possible algorithm for estimating the center of mass.
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3.4.1 Estimating the Bayes Point

The main idea in computing the center of mass of version space is to replace the
analytical integral by a sum over randomly drawn classifiers, i.e.,

wcm = EW|Zm=z
[
W
] ≈ 1

K

K∑
i=1

wi wi ∼ PW|Zm=z .

Such methods are known as Monte-Carlo methods and have proven to be suc-
cessful in practice. A difficulty we encounter with this approach is in obtaining
samples wi drawn according to the distribution PW|Zm=z. Recalling that PW|Zm=z is
uniform in a convex polyhedra on the surface of hypersphere in feature space we
see that it is quite difficult to directly sample from it. A commonly used approach
to this problem is to approximate the sampling distribution PW|Zm=z by a Markov
chain. A Markov chain is fully specified by a probability distribution PW1W2 where
fW1W2 ((w1,w2)) is the “transition” probability for progressing from a randomly
drawn weight vector w1 to another weight vector w2. Sampling from the Markov
chain involves iteratively drawing a new weight vector wi+1 by sampling from
PW2|W1=wi . The Markov chain is called ergodic w.r.t. PW|Zm=z if the limiting distri-
bution of this sampling process is PW|Zm=z regardless of our choice of w0. Then, it
suffices to start with a random weight vector w0 ∈ � and at each step, to obtain
a new sample wi ∈� drawn according to PW2|W1=wi−1 . The combination of these
two techniques has become known as the Markov-Chain-Monte-Carlo (MCMC)
method for estimating the expectation EW|Zm=z

[
W
]
.

We now outline an MCMC algorithm for approximating the Bayes point by the
center of mass of version space V (z) (the whole pseudo code is given on page
330). Since it is difficult to generate weight vectors that parameterize classifiers
consistent with the whole training sample z ∈ �m we average over the trajectory
of a ball which is placed inside version space and bounced like a billiard ball. As
a consequence we call this MCMC method the kernel billiard. We express each
position b ∈ � of the ball and each estimate wi ∈ � of the center of mass of
V (z) as a linear combination of the mapped training objects, i.e.,

w =
m∑

i=1

αixi , b =
m∑

i=1

γixi , α ∈ �m , γ ∈ �m .
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Figure 3.7 (Left) 5 samples b1, . . . ,b5 (white dots) obtained by playing billiards on
the sphere in the special case of� ⊆ �

3 . In the update step, only the chord length (gray
lines) are taken into consideration. (Right) Schematic view of the kernel billiard algorithm.
Starting at w0 ∈ V (z) a trajectory of billiard bounces b1, . . . ,b5, . . . is computed and then
averaged over so as to obtain an estimate ŵcm of the center of mass of version space.

Without loss of generality we can make the following assumption about the needed
direction vector v

v =
m∑

i=1

βixi , β ∈ �m .

To begin we assume that w0 = 0 ⇔ α = 0. Before generating a billiard trajectory
in version space V (z) we first run learning algorithm to find an initial starting
point b0 inside version space (e.g., kernel perceptron or support vector learning
(see Algorithm 2 and Section D.2)). The kernel billiard algorithm then consists of
three steps (see also Figure 3.7):

1. Determine the closest boundary starting from the position bi in direction vi .
Since it is computationally very demanding to calculate the flight time of the
billiard ball on geodesics of the hypersphere � we make use of the fact that the
shortest distance in Euclidean space (if it exists) is also the shortest distance on the
hypersphere � . Thus, for the flight time τ j of the billiard ball from position bi in
direction vi to the hyperplane with normal vector y j x j we have

τ j = −
〈
bi , x j

〉〈
vi , x j

〉 . (3.31)
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After computing all m flight times, we look for the smallest positive one,

c = argmin
j :τ j>0

τ j .

Computing the closest bounding hyperplane in Euclidean space rather than on
geodesics causes problems if the direction vector vi is almost orthogonal to the
curvature of the hypersphere � , in which case τc → ∞. If this happens we
randomly generate a direction vector vi pointing toward version space V (z).
Assuming that the last bounce took place at the hyperplane having normal yc′xc′
this condition can easily be checked by yc′ 〈vi , xc′ 〉 > 0.

2. Update the billiard ball’s position to bi+1 and the new direction vector to vi+1.
The new point bi+1 and the new direction vi+1 are calculated from

bi+1 = bi + τcvi , (3.32)

vi+1 = vi − 2
〈vi , xc〉
‖xc‖2 xc . (3.33)

Afterwards, the position bi+1 must be normalized.

3. Update the center of mass wi of the whole trajectory by the new line segment
from bi to bi+1 calculated on the hypersphere� .
Since the solution w∞ lies on the hypersphere � we cannot simply update the
center of mass using weighted vector addition. Instead we use the operation ⊕µ :
� ×� →� acting on vectors of unit length and having the property that∥∥m− (wi ⊕µ m

)∥∥ = µ · ‖m− wi‖ ,

that is, µ is the fraction between the resulting chord length
∥∥m− (wi ⊕µ m

)∥∥ and
the total chord length ‖m− wi‖. It can be shown that

wi ⊕µ m = ρ1 (〈wi ,m〉 , µ)wi + ρ2 (〈wi ,m〉 , µ)m

where the explicit formulas for ρ1 and ρ2 can be found in Appendix B.9. Since the
posterior density is uniform in version space, the whole line between bi and bi+1

can be represented by the midpoint m ∈ V (z), given by

m = bi + bi+1

‖bi + bi+1‖ .

Thus, we can update the center of mass of the trajectory by

wi+1 = ρ1

(
〈wi ,m〉 , �i

�i + ξi

)
wi + ρ2

(
〈wi ,m〉 , �i

�i + ξi

)
m ,



103 Kernel Classifiers from a Bayesian Perspective

where ξi = ‖bi − bi+1‖ is the length of the trajectory in the i th step and �i =∑i
j=1 ξ j is the accumulated length up to the i th step. Note that the operation ⊕µ

is only an approximation to the addition operation we sought because an exact
weighting would require arc lengths rather than chord lengths.

As a stopping criterion we compute an upper bound on ρ2, the weighting factor of
the new part of the trajectory. If this value falls below a prespecified threshold we
stop the algorithm. Note that an increase in �i will always lead to termination.

3.5 Fisher Discriminants

In this last section we are going to consider one of the earliest approaches to the
problem of classification learning. The idea underlying this approach is slightly
different from the ideas outlined so far. Rather than using the decomposition
PXY = PY|XPX we now decompose the unknown probability measure PXY = PZ

constituting the learning problem as PXY = PX|YPY. The essential difference
between these two formal expressions becomes apparent when considering the
model choices:

1. In the case of PXY = PY|XPX we use hypotheses h ∈ � ⊆ �� to model the
conditional measure PY|X of classes y ∈ � given objects x ∈ � and marginal-
ize over PX. In the noise-free case, each hypothesis defines such a model by
PY|X=x,H=h (y) = Ih(x)=y . Since our model for learning contains only predictors
h : � → � that discriminate between objects, this approach is sometimes called
the predictive or discriminative approach.

2. In the case of PXY = PX|YPY we model the generation of objects x ∈ � given
the class y ∈ � = {−1,+1} by some assumed probability model PX|Y=y,Q=θ

where θ = (θ+1, θ−1, p) ∈ � parameterizes this generation process. We have
the additional parameter p ∈ [0, 1] to describe the probability PY|Q=θ (y) by
p · Iy=+1 + (1− p) · Iy=−1. As the model � contains probability measures from
which the generated training sample x ∈ � is sampled, this approach is sometimes
called the generative or sampling approach.

In order to classify a new test object x ∈ � with a model θ ∈ � in the generative
approach we make use of Bayes’ theorem, i.e.,

PY|X=x,Q=θ (y) = PX|Y=y,Q=θ (x)PY|Q=θ (y)∑
ỹ∈� PX|Y=ỹ,Q=θ (x)PY|Q=θ ( ỹ)

.
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In the case of two classes � = {−1,+1} and the zero-one loss, as given in equation
(2.10), we obtain for the Bayes optimal classification at a novel test object x ∈ � ,

hθ (x) = argmax
y∈{−1,+1}

PY|X=x (y)

= sign

(
ln

(
PX|Y=+1,Q=θ (x) · p

PX|Y=−1,Q=θ (x) · (1− p)

))
, (3.34)

as the fraction in this expression is greater than one if, and only, if PXY|Q=θ ((x,+1))
is greater than PXY|Q=θ ((x,−1)). In the generative approach the task of learning
amounts to finding the parameters θ∗ ∈ � or measures PX|Y=y,Q=θ∗ and PY|Q=θ∗

which incur the smallest expected risk R [hθ∗] by virtue of equation (3.34). Again,
we are faced with the problem that, without restrictions on the measure PX|Y=y ,
the best model is the empirical measure vxy (x), where x y ⊆ x is the sample of
all training objects of class y. Obviously, this is a bad model because vxy (x) as-
signs zero probability to all test objects not present in the training sample and thus
hθ (x) = 0, i.e., we are unable to make predictions on unseen objects. Similarly to
the choice of the hypothesis space in the discriminative model we must constrain
the possible generative models PX|Y=y .

Let us consider the class of probability measures from the exponential family

fX|Y=y,Q=θ (x) = a0
(
θ y

)
τ0 (x) exp

(
θ ′y (τ (x))

)
,

for some fixed function a0 : �y → �, τ0 : � → � and τ : � → �. Using this
functional form of the density we see that each decision function hθ must be of the
following form

hθ (x) = sign

(
ln

(
a0 (θ+1) τ0 (x) exp

(
θ ′+1 (τ (x))

) · p

a0 (θ−1) τ0 (x) exp
(
θ ′−1 (τ (x))

)
(1− p)

))

= sign

(θ+1 − θ−1)︸ ︷︷ ︸
w

(τ (x))+ ln

(
a0 (θ+1) · p

a0 (θ−1) (1− p)

)
︸ ︷︷ ︸

b

 (3.35)

= sign (〈w, τ (x)〉 + b) .

This result is very interesting as it shows that, for a rather large class of generative
models, the final classification function is a linear function in the model parameters
θ = (θ−1, θ+1, p). Now, consider the special case that the distribution PX|Y=y,Q=θ

of objects x ∈ � given classes y ∈ {−1,+1} is a multidimensional Gaussian in
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Figure 3.8 (Left) The Fisher discriminant estimated from 80 data points in �2 . The black
line represents the decision boundary. This must always be a linear function because both
models use the same (estimated) covariance matrix �̂ (ellipses). (Right) A geometrical
interpretation of the Fisher discriminant objective function (3.38). Given a weight vector
w ∈ �, each mapped training object x is projected onto w by virtue of t = 〈x,w〉. The
objective function measures the ratio of the inter-class distance (µ+1 (w)− µ−1 (w))2 and
the intra-class distance σ 2+1 (w)+ σ 2−1 (w).

some feature space � ⊆ �n
2 mapped into by some given feature map φ : � → �,

fX|Y=y,Q=θ (x) = (2π)−
n
2 |�|− 1

2 exp

(
−1

2

(
x− µµ

)′
�−1

(
x− µy

))
, (3.36)

where the parameters θ y are the mean vector µy ∈ �
n and the covariance matrix

� y ∈ �
n×n , respectively. Making the additional assumptions that the covariance

matrix � is the same for both models θ+1 and θ−1 and p = PY|Q=θ (+1) =
PY|Q=θ (−1) = 1

2 we see that, according to equations (A.16)–(A.17) and (3.35),

τ (x) = x , w = �−1 (µ+1 − µ−1

)
, b = 1

2

(
µ′
−1�

−1µ−1 − µ′
+1�

−1µ+1

)
. (3.37)

This results also follows from substituting (3.36) directly into equation (3.34) (see
Figure 3.8 (left)).
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An appealing feature of this classifier is that it has a clear geometrical interpre-
tation which was proposed for the first time by R. A. Fisher. Instead of working
with n–dimensional vectors x we consider only their projection onto a hyperplane
with normal w ∈ �. Let µy (w) = EX|Y=y

[
w′φ (X)

]
be the expectation of the

projections of mapped objects x from class y onto the linear discriminant having

normal w and σ 2
y (w) = EX|Y=y

[(
w′φ (X)− µy (w)

)2
]

the variance of these pro-

jections. Then choose as the direction w ∈ � of the linear discriminant a direction
along which the maximum of the relative distance between the µy (w) is obtained,
that is, the direction wFD along which the maximum of

J (w) = (µ+1 (w)− µ−1 (w))2

σ 2
+1 (w)+ σ 2

−1 (w)
(3.38)

is attained. Intuitively, the numerator measures the inter-class distance of points
from the two classes {−1,+1} whereas the denominator measures the intra-class
distance of points in each of the two classes (see also Figure 3.8 (right)). Thus,
the function J is maximized if the inter-class distance is large and the intra-class
distance is small. In general, the Fisher linear discriminant wFD suffers from the
problem that its determination is a very difficult mathematical and algorithmical
problem. However, in the particular case of9 PX|Y=y,Q=θ = Normal

(
µy,�

)
, a

closed form solution to this problem is obtained by noticing that T = w′φ (X)
is also normally distributed with PT|Y=y,Q=θ = Normal

(
w′µy,w′�w

)
. Thus, the

objective function given in equation (3.38) can be written as

J (w) =
(
w′ (µ+1 − µ−1

))2

w′�w+ w′�w
= 1

2
· w′ (µ+1 − µ−1

) (
µ+1 − µ−1

)′
w

w′�w
,

which is known as the generalized Rayleigh quotient having the maximizer wFD

wFD = �−1
(
µ+1 − µ−1

)
.

This expression equals the weight vector w found by considering the optimal
classification under the assumption of a multidimensional Gaussian measure for
the class conditional distributions PX|Y=y .

Unfortunately, as with the discriminative approach, we do not know the param-
eters θ = (

µ+1,µ−1,�
) ∈ � but have to “learn” them from the given training

sample z = (x, y) ∈ �m . We shall employ the Bayesian idea of expressing our
prior belief in certain parameters via some prior measure PQ. After having seen the

9 Note that µy (w) ∈ � is a real number whereas µy ∈ � is an n–dimensional vector in feature space.
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training sample z we update our prior belief PQ, giving a posterior belief PQ|Zm=z.
Since we need one particular parameter value we compute the MAP estimate θ̂ ,
that is, we choose the value of θ which attains the maximum a-posteriori belief
PQ|Zm=z (see also Definition 3.6). If we choose a (improper) uniform prior PQ then
the parameter θ̂ equals the parameter vector which maximizes the likelihood and
is therefore also known as the maximum likelihood estimator. In Appendix B.10 it
is shown that these estimates are given by

µ̂y = 1

my

∑
(xi ,y)∈z

xi , �̂ = 1

m

∑
y∈{−1,+1}

∑
(xi ,y)∈z

(
xi − µ̂y

) (
xi − µ̂y

)′
(3.39)

= 1

m

(
X′X−

∑
y∈{−1,+1}

myµ̂yµ̂
′
y

)
,

where X ∈ �
m×n is the data matrix obtained by applying φ : � → � to each

training object x ∈ x and my equals the number of training examples of class y.
Substituting the estimates into the equations (3.37) results in the so-called Fisher
linear discriminant wFD. The pseudocode of this algorithm is given at page 329.

In an attempt to “kernelize” this algorithm we note that a crucial requirement
is that �̂ ∈ �n×n has full rank which is impossible if dim (�) = n � m. Since the
idea of using kernels only reduces computational complexity in these cases we see
that it is impossible to apply the kernel trick directly to this algorithm. Therefore,
let us proceed along the following route: Given the data matrix X ∈ �

m×n we
project the m data vectors xi ∈ �

n into the m–dimensional space spanned by the
mapped training objects using x �→ Xx and then estimate the mean vector and the
covariance matrix in �m using equation (3.39). The problem with this approach is
that �̂ is at most of rank m−2 because it is an outer product matrix of two centered
vectors. In order to remedy this situation we apply the technique of regularization to
the resulting m×m covariance matrix, i.e., we penalize the diagonal of this matrix
by adding λI to it where large values of λ correspond to increased penalization. As
a consequence, the projected m–dimensional mean vector ky ∈ �m and covariance
matrix S ∈ �m×m are given by

ky = 1

my

∑
(xi ,y)∈z

Xxi = 1

my
G
(
Iy1=y, . . . , Iym=y

)′
,

S = 1

m

(
XX′XX′ −

∑
y∈{−1,+1}

mykyk′y

)
+ λI
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= 1

m

(
GG−

∑
y∈{−1,+1}

mykyk′y

)
+ λI ,

where the m × m matrix G with Gi j =
〈
xi , x j

〉 = k
(
xi , x j

)
is the Gram matrix.

Using ky and S in place of µy and � in the equations (3.37) results in the so-
called kernel Fisher discriminant. Note that the m–dimensional vector computed
corresponds to the linear expansion coefficients α̂ ∈ �m of a weight vector wKFD in
feature space because the classification of a novel test object x ∈ � by the kernel
Fisher discriminant is carried out on the projected data point Xx, i.e

h (x) = sign
(〈

α̂,Xx
〉+ b̂

)
= sign

(
m∑

i=1

α̂i k (xi , x)+ b̂

)
,

α̂ = S−1 (k+1 − k−1) , b̂ = 1

2

(
k′−1S−1k−1 − k′+1S−1k+1

)
. (3.40)

It is worth mentioning that we would have obtained the same solution by exploiting
the fact that the objective function (3.38) depends only on inner products between
mapped training objects xi and the unknown weight vector w. By virtue of Theorem
2.29 the solution wFD can be written as wFD = ∑m

i=1 α̂ixi which, inserted into
(3.38), yields a function in α whose maximizer is given by equation (3.40). The
pseudocode of this algorithm is given on page 329.

Remark 3.16 (Least squares regression and Fisher discriminant) An additional
insight into the Fisher discriminant can be obtained by exploiting its relationship
with standard least squares regression. In least squares regression we aim to find
the weight vector w ∈ � which minimizes ‖Xw− t‖2 = (Xw− t)′ (Xw− t),
where t ∈ �

m is a given vector of m real values. Maximizing this expression
w.r.t. w gives

∂ ‖Xw− t‖2

∂w

∣∣∣∣∣
w=ŵ

= 2X′Xŵ− 2X′t = 0, ⇔ ŵ = (
X′X

)−1
X′t .

In order to reveal the relation between this algorithm and the Fisher linear
discriminant we assume that X̃ ∈ �

m×(n+1) is a new data matrix constructed
from X by adding a column of ones, i.e., X̃ = (X, 1). Our new weight vector
w̃ = (w; b) ∈ �n+1 already contains the offset b. By choosing

t = m · (y1/my1, . . . , ym/mym ) ,
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where m+1 and m−1 are the number of positively and negatively labeled examples
in the training sample, we see that the maximum condition X̃′X̃̂̃w = X̃′t can also
be written(

X′
1′
) (

X 1
) ( ŵ

b̂

)
=
(

X′
1′
)

t ⇔
(

X′X X′1
1′X 1′1

)(
ŵ
b̂

)
=
(

X′t
1′t

)
.

By construction 1′t = m
(

m+1
m+1

− m−1
m−1

)
= 0 and, thus, the last equation gives

1′Xŵ+ b̂ · 1′1 = 0 , ⇔ b̂ = − 1

m
1′Xŵ . (3.41)

Inserting this expression into the first equation and noticing that by virtue of
equation (3.39)

X′t = m · (µ̂+1 − µ̂+1

)
,

we see that

X′Xŵ+ X′1 · b̂ =
(

X′X− 1

m
X′11′X

)
ŵ = m · (µ̂+1 − µ̂+1

)
. (3.42)

A straightforward calculation shows that

1

m
X′11′X = m+1µ̂+1µ̂

′
+1 + m−1µ̂−1µ̂

′
−1 −

m+1m−1

m

(
µ̂+1 − µ̂−1

) (
µ̂+1 − µ̂−1

)′
.

Combining this expression with equation (3.42) results in(
�̂ + m+1m−1

m

(
µ̂+1 − µ̂−1

) (
µ̂+1 − µ̂−1

)′)
ŵ = m · (µ̂+1 − µ̂+1.

)
where we used the definition of �̂ given in equation (3.39). Finally, noticing that

m+1m−1

m

(
µ̂+1 − µ̂−1

) (
µ̂+1 − µ̂−1

)′
w = (1− c)

(
µ̂+1 − µ̂−1

)
for some c ∈ � the latter expression implies that

ŵ = m · c · �̂−1 (
µ̂+1 − µ̂−1

)
,

that is, up to a scaling factor (which is immaterial in classification) the weight
vector ŵ ∈ � obtained by least square regression on t ∝ y equals the Fisher
discriminant. The value of the threshold b̂ is given by equation (3.41).
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3.6 Bibliographical Remarks

In the first section of this chapter we introduced the Bayesian inference principle
whose basis is given by Bayes’ theorem (see equation (3.1)). Excellent monographs
introducing this principle in more detail are by Bernardo and Smith (1994) and by
Robert (1994); for a more applied treatment of ideas to the problem of learning
see MacKay (1991) and MacKay (1999). It was mentioned that the philosophy
underlying Bayesian inference is based on the notion of belief. The link between
belief and probability is established in the seminal paper Cox (1946) where a min-
imal number of axioms regarding belief are given. Broadly speaking, these axioms
formalize rational behavior on the basis of belief. A major concept in Bayesian
analysis is the concept of prior belief. In the book we have only introduced the idea
of conjugate priors. As the prior is the crux of Bayesian inference there exist, of
course, many different approaches to defining a prior, for example on the basis of
invariances w.r.t. parameterization of the likelihood (Jeffreys 1946; Jaynes 1968).
In the context of learning, the model selection principle of evidence maximization
was formulated for the first time in MacKay (1992). In Subsection 3.1.1 we intro-
duced several prediction strategies on the basis of posterior belief in hypotheses.
Note that the term Bayes classification strategy (see Definition 3.7) should not be
confused with the term Bayes (optimal) classifier which is used to denote the strat-
egy which decides on the class y that incurs minimal loss on the prediction of x
(see Devroye et al. (1996)). The latter strategy is based on complete knowledge
of the data distribution PZ and therefore achieves minimal error (sometimes also
called Bayes error) for a particular learning problem.

Section 3.2 introduced Bayesian linear regression (see Box and Tiao (1973))
and revealed its relation to certain stochastic processes known as Gaussian pro-
cesses (Feller 1966); the presentation closely follows MacKay (1998, Williams
(1998). In order to relate this algorithm to neural networks (see Bishop (1995))
it was shown in Neal (1996) that a Gaussian process on the targets emerges in
the limiting case of an infinite number of hidden neurons and Gaussian priors on
the individual weights. The extension to classification using the Laplace approx-
imation was done for the first time in Barber and Williams (1997, Williams and
Barber (1998). It was noted that there also exists a Markov chain approximation
(see Neal (1997b)) and an approximation known as the mean field approximation
(see Opper and Winther (2000)). It should be noted that Gaussian processes for
regression estimation are far from new; historical details dating back to 1880 can
be found in Lauritzen (1981). Within the geostatistics field, Matheron proposed a
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framework of regression identical to Gaussian processes which he called "kriging"
after D. G. Krige, a South African mining engineer (Matheron 1963). However,
the geostatistics approach has concentrated mainly on low-dimensional problems.
The algorithmical problem of inverting the Gram matrix has been investigated by
Gibbs and Mackay (1997) who also proposes a variational approximation to Gaus-
sian processes; for other approaches to speeding Gaussian process regression and
classification see Trecate et al. (1999), Williams and Seeger (2001) and Smola and
Bartlett (2001). Finally, the reasoning in Remark 3.13 is mainly taken from Sollich
(2000).

The relevance vector machine algorithm presented in Section 3.3 can be found
in Tipping (2000) and Tipping (2001). This algorithm is motivated by automatic
relevance determination (ARD) priors which have been suggested in MacKay
(1994) and Neal (1996) and empirically investigated in Neal (1998). There exists a
variational approximation to this method found in Bishop and Tipping (2000).

In Section 3.4 we presented the Bayes point machine which is also known as the
optimal perceptron (Watkin 1993). This algorithm has received a lot of attention
in the statistical mechanics community (Opper et al. 1990; Opper and Haussler
1991; Biehl and Opper 1995; Opper and Kinzel 1995; Dietrich et al. 2000). There
it has been shown that the optimal perceptron is the classifier which achieves best
generalization error on average and in the so-called thermodynamical limit, i.e.,
the number of features n and the number samples m tend to infinity although
their ratio m/n = β stays constant. The idea of using a billiard on the unit
hypersphere is due to Ruján (1997); its “kernelization” was done independently by
Ruján and Marchand (2000) and Herbrich et al. (2001). For an extensive overview
of other applications of Markov Chain Monte Carlo methods the interested reader
is referred to Neal (1997a). There exist several extension to this algorithm which
aim to reduce the computational complexity (see Herbrich and Graepel (2001a)
and Rychetsky et al. (2000)). A promising approach has been presented in Minka
(2001) where the uniform posterior measure over version space is approximated by
a multidimensional Gaussian measure. This work also presents a modification of
the billiard algorithm which is guaranteed to converge (Minka 2001, Section 5.8).

The algorithm presented in the last section, that is, Fisher linear discriminants,
has its roots in the first half of the last century (Fisher 1936). It became part of
the standard toolbox for classification learning (also called discriminant analysis
when considered from a purely statistical perspective). The most appealing fea-
ture of Fisher discriminants is that the direction vector found is the maximizer of a
function which approximately measures the inter-class distance vs. the inner-class
distance after projection. The difficulty in determining this maximizer in general



112 Chapter 3

has been noticed in several places, e.g., Vapnik (1982, p. 48). The idea of ker-
nelizing this algorithm has been considered by several researchers independently
yet at the same time (see Baudat and Anouar (2000), Mika et al. (1999) and Roth
and Steinhage (2000)). Finally, the equivalence of Fisher discriminants and least
squares regression, demonstrated in Remark 3.16, can also be found in Duda et al.
(2001).

It is worth mentioning that, beside the four algorithms presented, an interesting
and conceptually different learning approach has been put forward in Jaakkola et al.
(2000) and Jebara and Jaakkola (2000). The algorithm presented there employs
the principle of maximum entropy (see Levin and Tribus (1978)). Rather than
specifying a prior distribution over hypotheses together with a likelihood model
PZ|H=h for the objects and classes, given a hypothesis h, which, by Bayes’ theorem,
result in the Bayesian posterior, we consider any measure PH which satisfies certain
constraints on the given training sample z as a potential candidate for the posterior
belief. The principle then chooses the measure PME

H which maximizes the entropy
EH
[
ln (PH (H))

]
. The idea behind this principle is to use as little prior knowledge

or information as possible in the construction of PME
H . Implementing this formal

principle for the special case of linear classifiers results in an algorithm very
similar to the support vector algorithm (see Section 2.4). The essential difference
is given by the choice of the cost function on the margin slack variables. A similar
observation has already been made in Remark 3.13.
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4 Mathematical Models of Learning

This chapter introduces different mathematical models of learning. A mathematical
model of learning has the advantage that it provides bounds on the generalization
ability of a learning algorithm. It also indicates which quantities are responsible
for generalization. As such, the theory motivates new learning algorithms. After
a short introduction into the classical parametric statistics approach to learning,
the chapter introduces the PAC and VC models. These models directly study the
convergence of expected risks rather than taking a detour over the convergence of
the underlying probability measure. The fundamental quantity in this framework
is the growth function which can be upper bounded by a one integer summary
called the VC dimension. With classical structural risk minimization, where the
VC dimension must be known before the training data arrives, we obtain a-priori
bounds, that is, bounds whose values are the same for a fixed training error.

In order to explain the generalization behavior of algorithms minimizing a
regularized risk we will introduce the luckiness framework. This framework is
based on the assumption that the growth function will be estimated on the basis
of a sample. Thus, it provides a-posteriori bounds; bounds which can only be
evaluated after the training data has been seen. Finally, the chapter presents a PAC
analysis for real-valued functions. Here, we take advantage of the fact that, in the
case of linear classifiers, the classification is carried out by thresholding a real-
valued function. The real-valued output, also referred to as the margin, allows us to
define a scale sensitive version of the VC dimension which leads to tighter bounds
on the expected risk. An appealing feature of the margin bound is that we can
obtain nontrivial bounds even if the number of training samples is significantly
less than the number of dimensions of feature space. Using a technique, which is
known as the robustness trick, it will be demonstrated that the margin bound is
also applicable if one allows for training error via a quadratic penalization of the
diagonal of the Gram matrix.
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4.1 Generative vs. Discriminative Models

In Chapter 2 it was shown that a learning problem is given by a training sample
z = (x, y) = ((x1, y1) , . . . , (xm, ym)) ∈ (� × �)m = �m , drawn iid according to
some (unknown) probability measure PZ = PXY, and a loss l : �×� → �, which
defines how costly the prediction h (x) is if the true output is y. Then, the goal is to
find a deterministic function h ∈ �� which expresses the dependency implicitly
expressed by PZ with minimal expected loss (risk) R [h] = EXY

[
l (h (X) ,Y)

]
while only using the given training sample z. We have already seen in the first part
of this book that there exist two different algorithmical approaches to tackling this
problem. We shall now try to study the two approaches more generally to see in
what respect they are similar and in which aspects they differ.

1. In the generative (or parametric) statistics approach we restrict ourselves to
a parameterized space � of measures for the space � , i.e., we model the data
generation process. Hence, our model is given by1 � = {

PZ|Q=θ | θ ∈ �
}
, where

θ should be understood as the parametric description of the measure PZ|Q=θ . With
a fixed loss l each measure PZ|Q=θ implicitly defines a decision function hθ ,

hθ (x) = argmin
y∈�

EY|X=x,Q=θ

[
l (y,Y)

]
. (4.1)

In order to see that this function has minimal expected risk we note that

Rθ [h]
def= EXY|Q=θ

[
l (h (X) ,Y)

] = EX|Q=θ

[
EY|X=x,Q=θ

[
l (h (x) ,Y)

]]
, (4.2)

where hθ minimizes the expression in the innermost brackets. For the case of zero-
one loss l0−1 (h (x) , y) = Ih(x)�=y also defined in equation (2.10), the function hθ

reduces to

hθ (x) = argmin
y∈�

(
1− PY|X=x,Q=θ (y)

) = argmax
y∈�

PY|X=x,Q=θ (y) ,

which is known as the Bayes optimal decision based on PZ|Q=θ .

2. In the discriminative, or machine learning, approach we restrict ourselves to a
parameterized space � ⊆ �� of deterministic mappings h from � to � . As a
consequence, the model is given by � = {hw : � → � | w ∈� }, where w is the
parameterization of single hypotheses hw. Note that this can also be interpreted as

1 We use the notation PZ|Q=θ to index different measures over � by some parameters θ . Note that it is neither
assumed nor true that the unknown data distribution PZ fulfills PZ = EQ[PZ|Q=θ ] because this requires a
measure PQ. Further, this would not take into account that we conditioned on the parameter space �.
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a model of the conditional distribution of classes y ∈ � given objects x ∈ � by
assuming that PY|X=x,H=h = Iy=h(x). Viewed this way, the model � is a subset of
the more general model � used in classical statistics.

The term generative refers to the fact that the model � contains different descrip-
tions of the generation of the training sample z (in terms of a probability measure).
Similarly, the term discriminative refers to the fact that the model� consists of dif-
ferent descriptions of the discrimination of the sample z. We already know that a
machine learning method selects one hypothesis � (z) ∈ � given a training sample
z ∈ �m . The corresponding selection mechanism of a probability measure PZ|Q=θ

given the training sample z is called an estimator.

Definition 4.1 (Estimator) Given a set � of probability measures PZ over � , a
mapping � : ⋃∞

m=1 �
m → � is called an estimator. If the set � is parameterized

by θ ∈ � then θ̂ z ∈ � is defined by

θ̂ z = θ ⇔ � (z) = PZ|Q=θ ,

that is, θ̂ z returns the parameters of the measure estimated using � .

If we view a given hypothesis space� as the set of parameters h for the conditional
distribution PY|X=x,H=h then we see that each learning algorithm � : ∪∞m=1�

m →
� is a special estimator � for only the class-conditional distribution PY|X=x .
However, the conceptual difference becomes apparent when we consider the type
of convergence results that have been studied for the two different models:

1. In the parametric statistics framework we are concerned with the convergence
of the estimated measure � (z) ∈ � to the unknown measure PZ where it is
often assumed that the model is correct, that is, there exists a θ∗ such that PZ =
PZ|Q=θ∗ ∈ � . Hence, a theoretical result in the statistics framework often has the
form

PZm
(
ρ
(
� (Z) ,PZ|Q=θ∗

)
> ε

)
< δ (ε,m) , (4.3)

where ρ is a metric in the space � of measures, for example the �2 norm
∥∥∥θ̂ z − θ ∗

∥∥∥
2

of the difference vector of the parameters θ .

2. In the machine learning framework we are concerned with the convergence of
the expected risk R [� (z)] of the learned function � (z) to the minimum expected
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risk infh∈� R [h] = R [h∗]. A theoretical result in this framework has the form

PZm

(
R
[
� (Z)

]− R
[
h∗
]
> ε

)
< δ (ε,m) , (4.4)

where the expression in the parenthesis is also known as the generalization error
(see also Definition 2.10). In case R [h∗] = 0 the generalization error equals the
expected risk. Note that each hypothesis h ∈ � is reduced to a scalar R [h] so that
the question of an appropriate metric ρ is meaningless2. Since PZ is assumed to be
unknown, the above inequality has to hold for all probability measures PZ. This
is often referred to as the worst case property of the machine learning framework.
The price we have to pay for this generality is that our choice of the predictive
model � might be totally wrong (e.g., R [h∗] = 0.5 in the case of zero-one loss
l0−1) so that learning � (z) ∈ � is useless.

For the task of learning—where finding the best discriminative description of the
data is assumed to be the ultimate goal—the convergence (4.4) of risks appears the
most appropriate. We note, however, that this convergence is a special case of the
convergence (4.3) of probability measures when identifying � and � and using
ρ
(
PZ|H=h,PZ|H=h∗

) = R [h]− R [h∗]. The interesting question is:

Does the convergence of probability measures always imply a convergence
of risks when using equation (4.1) regardless of ρ?

If this were the case than there would be no need to study the convergence of
risk but we could use the plethora of results known from statistics about the
convergence of probability measures. If, on the other hand, this is not the case then
it also follows that (in general) the common practice of interpreting the parameters
w (or θ ) of the hypothesis learned is theoretically not justified on the basis of
convergence results of the form (4.4). Let us consider the following example.

Example 4.2 (Convergence of probability measures3) Let us consider the zero-
one loss l0−1. Suppose � = {1, 2}, � = �, � = �

2 , PX|Y=y,Q=(θ1,θ2) uniform in[−θy, 0
]

if θy �= 1 and uniform in
[
0, θy

]
if θy = 1, and PY (1) = PY (2) = 1

2 . Let
us assume that the underlying probability measure is given by θ∗ = (1, 2). Given
a training sample z ∈ (� × �)m, a reasonable estimate θ̂ z of θ1 and θ2 would be

2 All norms on the real line �1 are equivalent (see Barner and Flohr (1989, p. 15)).
3 This example is taken from Devroye et al. (1996, p. 267).
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Figure 4.1 True densities fX|Y=y underlying the data in Example 4.2. The uniform
densities (solid lines) on [0, 1] and [−2, 0] apply for Y = 1 and Y = 2, respectively.
Although with probability one the parameter θ∗1 = 1 will be estimated to arbitrary
precision, the probability that a sample point falls at exactly x = 1 is zero, whence
(θ̂Z)1 �= 1. Since the model � is noncontinuous in its parameters θ , for almost all training
samples the estimated densities are uniform on [−(θ̂Z)2, 0] and [−(θ̂Z)1, 0] (dashed lines).
Thus, for all x > 0 the prediction based on θ̂Z is wrong.

(
θ̂ z

)
i
= max(x,i)∈z |x| for i ∈ {1, 2} because

∀ε > 0 : lim
m→∞PZm

(∥∥∥θ̂Z − θ∗
∥∥∥

2
> ε

)
= 0 ,

or θ̂ z converges to θ∗ in probability. However, as the class conditional measures
PX|Y=y are densities, we know that for both classes y ∈ {1, 2},

PZm

((
θ̂Z

)
y
�= 1

)
= 1 .

As a consequence, with probability one over the random choice of a training

sample z, the expected risk R
[
h

θ̂Z

]
equals 1

2 (see also Figure 4.1).

This simple example shows that the convergence of probability measures is not
necessarily a guarantee of convergence of associated risks. It should be noted, how-
ever, that this example used the noncontinuity of the parameterization θ of the prob-
ability measure PZ|Q=θ as well as one specific metric ρ on probability measures.

The following example shows that along with the difference R
[
h

θ̂ z

]
− R [hθ∗] in

expected risks there exists another “natural” metric on probability measures which
leads to a convergence of risks.
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Example 4.3 (L1–Convergence of probability measures) In case of zero-one
loss l0−1 each function h ∈ �� subdivides the space � into two classes: A set
Zc

h = {(x, y) ∈ � | l0−1 (h (x) , y) = 0 } of correctly classified points and its com-
plement Z i

h = {(x, y) ∈ � | l0−1 (h (x) , y) = 1 } of incorrectly classified points.
Clearly, the expected risk R [h] of a function h ∈ � has the property

R [h] = EXY
[
l (h (X) ,Y)

] = 0 · PZ
(
Zc

h

)+ 1 · PZ
(
Zi

h

) = PZ
(
Zi

h

)
. (4.5)

Let us assume that our generative model � only consists of measures PZ|Q=θ that
possess a density fZ|Q=θ over the σ–algebra �n of Borel sets in �n . The theorem
of Scheffé states that

ρ
(
PZ|Q=θ ,PZ|Q=θ∗

) def= ∥∥fZ|Q=θ − fZ|Q=θ∗
∥∥

1 = 2 sup
A∈�n

∣∣PZ|Q=θ (A) − PZ|Q=θ∗ (A)
∣∣ .

Utilizing equation (4.5) and the fact that each measure PZ|Q=θ defines a Bayes
optimal classifier hθ by equation (4.1) we conclude∥∥fZ|Q=θ − fZ|Q=θ∗

∥∥
1 = 2 sup

A∈�n

∣∣PZ|Q=θ (A)− PZ|Q=θ∗ (A)
∣∣

≥ 2 sup
θ̃∈�

∣∣Rθ

[
h θ̃

]− Rθ∗
[
h θ̃

]∣∣
≥ |Rθ [hθ ]− Rθ∗ [hθ ]| + |Rθ [hθ∗]− Rθ∗ [hθ∗]|
= |Rθ∗ [hθ ]− Rθ [hθ ]| + |Rθ [hθ∗]− Rθ∗ [hθ∗]|
≥ |Rθ∗ [hθ ]− Rθ [hθ ]+ Rθ [hθ∗]− Rθ∗ [hθ∗]|

=
∣∣∣∣∣∣Rθ∗ [hθ ]− Rθ∗ [hθ∗]︸ ︷︷ ︸

≥0

+ Rθ [hθ∗]− Rθ [hθ ]︸ ︷︷ ︸
≥0

∣∣∣∣∣∣
≥ Rθ∗ [hθ ]− Rθ∗ [hθ∗]

= R [hθ ]− R [hθ∗] ,

where we use the triangle inequality in the fifth line and assume PZ = PZ|Q=θ∗

in the last line. Thus we see that the convergence of the densities in L1 implies
the convergence (4.4) of the expected risks for the associated decision functions
because each upper bound on

∥∥fZ|Q=θ − fZ|Q=θ∗
∥∥

1 is also an upper bound on
R [hθ ]− R [hθ∗].

As a consequence, bounding the L1–distance of densities underlying the training
sample implies that we are able to bound the difference in expected risks, too.
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Note, however, that the convergence in expected risks could be much faster and
thus we lose some tightness of the potential results when studying the convergence
of probability measures.

The main problem in the last two examples is summarized in the following
statement made in Vapnik (1995): When solving a given problem one should avoid
solving a more general problem as an intermediate step. In our particular case this
means that if we are interested in the convergence of the expected risks we should
not resort to the convergence of probability measures because the latter might not
imply the former or might be a weaker convergence than required. Those who first
estimate PZ by � (z) ∈ � and then construct rules based on the loss l do themselves
a disservice.

4.2 PAC and VC Frameworks

As a starting point let us consider the huge class of empirical risk minimization
algorithms �ERM formally defined in equation (2.12). To obtain upper bounds on
the deviation between the expected risk of the function �ERM (z) (which minimizes
the training error Remp [h, z]) and the best function h∗ = arginf h∈� R [h], the
general idea is to make use of the following relation

Remp
[
h∗, z

] ≥ Remp [�ERM (z) , z] ⇔ Remp
[
h∗, z

]− Remp [�ERM (z) , z] ≥ 0 ,

which clearly holds by definition of h z
def= �ERM (z). Then it follows that

R [�ERM (z)]− R
[
h∗
] ≤ R [h z]− R

[
h∗
]+ (Remp

[
h∗, z

]− Remp [h z, z]
)︸ ︷︷ ︸

≥0

= ∣∣(R [h z]− Remp [h z, z]
)+ (Remp

[
h∗, z

]− R
[
h∗
])∣∣

≤ ∣∣R [h z]− Remp [h z, z]
∣∣+ ∣∣R [h∗]− Remp

[
h∗, z

]∣∣
≤ 2 sup

h∈�

∣∣R [h]− Remp [h, z]
∣∣ , (4.6)

where we have made use of the triangle inequality in the third line and bounded
the uncertainty about �ERM (z) ∈ � and h∗ ∈ � by the worst case assump-
tion of suph∈�

∣∣R [h]− Remp [h, z]
∣∣ from above. We see that, rather than study-

ing the generalization error of an empirical risk minimization algorithm directly,
it suffices to consider the uniform convergence of training errors to expected er-
rors over all hypotheses h ∈ � contained in the hypothesis space � because
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any upper bound on the deviation suph∈�
∣∣R [h]− Remp [h, z]

∣∣ is also an upper
bound on the generalization error R [�ERM (z)] − R [h∗] by virtue of equation
(4.6). The framework which studies this convergence is called the VC (Vapnik-
Chervonenkis) or PAC (Probably Approximately Correct) framework due to their
different origins (see Section 4.5 for a detailed discussion about their origins
and connections). Broadly speaking, the difference between the PAC framework
and the VC framework is that the former considers only data distributions PZ

where PY|X=x (y) = Ih∗(x)=y , for some h∗ ∈ �, which immediately implies that
R [h∗] = 0 and Remp [�ERM (z) , z] = 0. Thus, it follows that

R [�ERM (z)]− R
[
h∗
] = R [�ERM (z)] ≤ sup

{h∈� | Remp[h]=0 }
R [h] , (4.7)

because �ERM (z) ∈ {h ∈ � ∣∣ Remp [h, z] = 0
} ⊆ �.

Definition 4.4 (VC and PAC generalization error bounds) Suppose we are given
a hypothesis space � ⊆ �� and a loss function l : �×� → �. Then the function
εVC : � × (0, 1] → � is called a VC generalization error bound if, and only if, for
all training sample sizes m ∈ � , all δ ∈ (0, 1] and all PZ

PZm
(∀h ∈ � : ∣∣R [h]− Remp

[
h,Z

]∣∣ ≤ εVC (m, δ)
) ≥ 1− δ .

Similarly, a function εPAC : � × (0, 1] → � is called a PAC generalization error
bound if, and only if,

PZm (∀h ∈ V� (Z) : R [h] ≤ εPAC (m, δ)) ≥ 1− δ ,

for all samples sizes m ∈ � , all δ ∈ (0, 1] and all PZ.

Example 4.5 (Uniform convergence of frequencies to probabilities) There ex-
ists an interesting relationship between VC generalization error bounds and the
more classical problem of uniform convergence of frequencies to probabilities in
the special case of the zero-one loss l0−1 given in equation (2.10). As shown in
Example 4.3, in this case the expected risk R [h] of a single hypothesis h ∈ � is
the probability of the set Z i

h = {(x, y) ∈ � | l0−1 (h (x) , y) = 1 } ⊆ � whereas
the training error Remp [h, z] equals the empirical measure vz

(
Zi

h

)
. Hence we see

that

R [�ERM (z)]− R
[
h∗
] ≤ 2 sup

Zi
h∈�

∣∣PZ
(
Zi

h

)− vz
(
Zi

h

)∣∣ ,
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which inevitably shows that all we are concerned with is the uniform conver-
gence of frequencies vz

(
Zi

h

)
to probabilities PZ

(
Zi

h

)
over the fixed set � ={

Zi
h ⊆ � | h ∈ �} of events. Note, however, that up to this point we have only

shown that the uniform convergence of frequencies to probabilities provides a suf-
ficient condition for the convergence of the generalization error of an empirical
risk minimization algorithm. If we restrict ourselves to “non trivial” hypothesis
spaces and the one-sided uniform convergence, it can be shown that this is also a
necessary condition.

4.2.1 Classical PAC and VC Analysis

In the following three subsections we will only be concerned with the zero-one
loss l0−1 given by equation (2.10). It should be noted that the results we will obtain
can readily be generalized to loss function taking only a finite number values; the
generalization to the case of real-valued loss functions conceptually similar but will
not be discussed in this book (see Section 4.5 for further references).

The general idea is to bound the probability of “bad training samples”, i.e.,
training samples z ∈ �m for which there exists a hypothesis h ∈ � where the
deviation between the empirical risk Remp [h, z] and the expected risk R [h] is
larger than some prespecified ε ∈ [0, 1]. Setting the probability of this to δ and
solving for ε gives the required generalization error bound. If we are only given a
finite number |�| of hypotheses h then such a bound is very easily obtained by a
combination of Hoeffding’s inequality and the union bound.

Theorem 4.6 (VC bound for finite hypothesis spaces) Suppose we are given a
hypothesis space � having a finite number of hypotheses, i.e., |�| < ∞. Then,
for any measure PZ, for all δ ∈ (0, 1] and all training sample sizes m ∈ � , with
probability at least 1− δ over the random draw of the training sample z ∈ �m we
have

PZm

(∃h ∈ � : ∣∣R [h]− Remp
[
h,Z

]∣∣ > ε
)
< 2 · |�| · exp

(−2mε2
)
. (4.8)

Proof Let � = {
h1, . . . , h |�|

}
. By an application of the union bound given in

Theorem A.107 we know that PZm
(∃h ∈ � : ∣∣R [h]− Remp

[
h,Z

]∣∣ > ε
)

is given
by

PZm

( |�|∨
i=1

(∣∣R [hi ]− Remp
[
hi ,Z

]∣∣ > ε
)) ≤ |�|∑

i=1

PZm
(∣∣R [hi ]− Remp

[
hi ,Z

]∣∣ > ε
)
.
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Since, for any fixed h, R [h] and Remp [h, z] are the expectation and mean of a
random variable between 0 and 1, the result follows by Hoeffding’s inequality.

In order to generalize this proof to an infinite number |�| of hypotheses we
use a very similar technique which, however, requires some preparatory work to
reduce the analysis to a finite number of hypotheses. Basically, the approach can
be decomposed into three steps:

1. First, consider a double sample z z̃ ∈ �2m drawn iid where z̃ is sometimes re-
ferred to as a ghost sample. We upper bound the probability that there exists a
hypothesis h ∈ � such that Remp [h, z] is more than ε apart from R [h] (see equa-
tion (4.7)) by twice the probability that there exists h ′ ∈ � such that Remp

[
h ′, z

]
is

more than ε/2 apart from Remp
[
h ′, z̃

]
. This lemma has become known as the basic

lemma and the technique is often referred to as symmetrization by a ghost sample.
The idea is intuitive—it takes into account that it is very likely that the mean of a
random variable is close to its expectation (see Subsection A.5.2). If it is likely that
two means estimated on iid samples z ∈ �m and z̃ ∈ �m are very close then it ap-
pears very probable that a single random mean is close to its expectation otherwise
we would likely have observed a large deviation between the two means.

2. Since we assume the sample (and ghost sample) to be an iid sample it holds
that, for any permutation π : {1, . . . , 2m} → {1, . . . , 2m},
PZ2m (ϒ (Z1, . . . ,Z2m)) = PZ2m

(
ϒ
(
Zπ(1), . . . ,Zπ(2m)

))
,

whatever the logical formula ϒ : �2m → {true, false} stands for. As a conse-
quence, for any set �2m of permutations it follows that

PZ2m (ϒ (Z1, . . . ,Z2m)) = 1

|�2m|
∑

π∈�2m

PZ2m

(
ϒ
(
Zπ(1), . . . ,Zπ(2m)

))
(4.9)

=
∫
�2m

(
1

|�2m|
∑

π∈�2m

Iϒ(zπ(1),...,zπ(2m))

)
dFZ2m (z)

≤ max
z∈�2m

(
1

|�2m|
∑

π∈�2m

Iϒ(zπ(1),...,zπ(2m))

)
. (4.10)

The appealing feature of this step is that we have reduced the problem of bounding
the probability over �2m to a counting of permutations π ∈ �2m for a fixed z ∈
�2m . This step is also known as symmetrization by permutation or conditioning.
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3. It remains to bound the number of permutations π ∈ �2m such that there exists
a hypothesis h ′ ∈ � on which the deviation of two empirical risks (on the training
sample z and the ghost sample z̃) exceeds ε/2. Since we considered the zero-
one loss l0−1 we know that there are at most 22m different hypotheses w.r.t. the
empirical risks Remp

[
h ′, z

]
and Remp

[
h ′, z̃

]
. It we denote the maximum number

of such equivalence classes by �� (2m) then we can again use a combination of
the union bound and Hoeffding’s inequality to bound the generalization error. Note
that the cardinality |�| of the hypothesis space in the finite case has been replaced
by the number �� (2m).

Following these three steps we obtain the main VC and PAC bounds.

Theorem 4.7 (VC and PAC generalization error bound) For all probability mea-
sures PZ, any hypothesis space �, the zero-one loss l0−1 given by equation (2.10)
and all ε > 0

PZm
(∃h ∈ � : ∣∣R [h]− Remp

[
h,Z

]∣∣ > ε
)

< 4�� (2m) exp

(
−mε2

8

)
, (4.11)

PZm (∃h ∈ V (Z) : R [h] > ε) < 2�� (2m) exp
(
−mε

4

)
, (4.12)

PZm

(
R
[
�ERM (Z)

]− R
[
h∗
]
> ε

)
< 4�� (2m) exp

(
−mε2

32

)
. (4.13)

Proof The first two results are proven in Appendix C.1. The final result follows
from equation (4.6) using the fact that(

2 sup
h∈�

∣∣R [h]− Remp [h, z]
∣∣ ≤ ε ⇒ R [�ERM (z)]− R

[
h∗
] ≤ ε

)
⇔(

R [�ERM (z)]− R
[
h∗
]
> ε ⇒ sup

h∈�

∣∣R [h]− Remp [h, z]
∣∣ > ε

2

)
,

which proves the assertion.

Confidence Intervals

Disregarding the fact that �� is unknown up to this point we see that, from these
assertions, we can construct confidence intervals for the expected risk R [h] of the
function h by setting the r.h.s. of equations (4.11) and (4.12) to δ. Assuming that the
event (violation of the bound) has taken place (which will happen with probability
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not more than δ over the random draw of training sample z) then with probability
at least 1 − δ over the random draw of the training sample z for all probability
measures PZ, and simultaneously for all functions h ∈ �

R [h] ≤ Remp [h, z]+
√

8

m

(
ln

(
4

δ

)
+ ln (�� (2m))

)
︸ ︷︷ ︸

εVC(m,δ)

. (4.14)

Also, for all functions having zero training error Remp [h, z] = 0

R [h] ≤ 4

m

(
ln

(
2

δ

)
+ ln (�� (2m))

)
︸ ︷︷ ︸

εPAC(m,δ)

. (4.15)

These two bounds constitute the basis results obtained in the VC and PAC frame-
work. There are some interesting conclusions we can draw:

1. If the function �� fulfills �� (m) = 2m then both bounds are trivial because
ln
(
22m

) = m ln (4) > m whence the r.h.s. of both inequalities is always greater
than one. Note this is a meaningless bound as 0 ≤ R [h] ≤ 1. In this case we
say that the hypothesis space � is too rich and thus we are unable to give any
guarantees about the learned function. As an example, if for all m and all training
samples z ∈ �m there exists one hypothesis h ∈ � which achieves zero training
error Remp [h, z], then the hypothesis space was much to rich.

2. In the general VC case the upper bound is of order �(
√

ln (�� (2m)) /m)

whereas in the zero training error case it grows as �(ln(��(2m))/m) due to the
exponent of ε of one in equation (4.12). Thus, it seems that we can tighten bounds
by magnitudes if we can achieve zero training error. In fact, one can show that the
exponent of ε in equation (4.11) smoothly decreases from the 2 to 1 as a function of
the minimum expected risk R [h∗]. For specific conditions on the hypothesis space
� one can show that, even in the general case, the exponent of ε is 1.

3. If the cardinality of � is finite we always know that �� (m) ≤ |�| for all
m. As a consequence, in the case of finite cardinality of the hypothesis space we
obtain our result (4.8) as a special case (with less favorable constants). A potential
application of this result is to obtain upper bounds on the generalization error for
decision tree learning. As the size of decision trees often grows exponentially in
m, techniques like pruning effectively limit the number |�m| and thus guarantee a
small generalization error.
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Remark 4.8 (Race for constants) The proof of Theorem 4.7 does not provide the
best constants possible. The best constants that can be achieved are 2 as a coef-
ficient of and 1 in the exponent of the exponential term, respectively. We shall see
in Subsection 4.3 that an improvement of these results by orders of magnitude can
only be achieved if we give up the a-priori character of the bounds. Presently, the
bounds are of the same value for all decision functions that achieve the same train-
ing error Remp [h, z]. On the one hand, this characteristic is advantageous as it
gives us a general warranty however malicious the distribution PZ is. On the other
hand, it only justifies the empirical risk minimization method as this is the only data
dependent term entering the bound.

4.2.2 Growth Function and VC Dimension

In the previous subsection we used the function �� which characterizes the worst
case diversity of the hypothesis space � as a function of the training sample size.
Moreover, due to the exponential term for the deviation of two means, all that
matters for bounds on the generalization error is the logarithm of this function.
More formally, this function is defined as follows.

Definition 4.9 (Covering number and growth function) Let � ⊆ �� be a hy-
pothesis space. Then the function �� : � → � is defined as

�� (m)
def= max

z∈�m
|{(l0−1 (h (x1) , y1) , · · · , l0−1 (h (xm) , ym)) | h ∈ � }| , (4.16)

that is, the maximum number of different equivalence classes of functions w.r.t. the
zero-one loss l0−1 on a sample of size m. This is called the covering number of �
w.r.t. zero-one loss l0−1. The logarithm of this function is called the growth function
and is denoted by ��, i.e.,

�� (m)
def= ln (�� (m)) .

Clearly, the growth function depends neither on the sample nor on the unknown
distribution PZ but only on the sample size m and the hypothesis space �. Ideally,
this function would be calculated before learning and, as a consequence, we would
be able to calculate the second term of the confidence intervals (4.14) and (4.15).
Unfortunately, it is generally not possible to determine the exact value of the
function �� for an arbitrary hypothesis space � and any m. Therefore one major
interest in the VC and PAC community is to obtain tight upper bounds on the
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growth function. One of the first such bounds is given by the following results
whose proof can be found in Appendix C.2.

Theorem 4.10 (Growth function bound and VC dimension) For any hypothesis
space �, the growth function �� either

1. satisfies the equality

∀m ∈ � : �� (m) = ln (2) · m ,

2. or, there exists a natural number ϑ� ∈ � such that

�� (m)

{ = ln (2) · m if m ≤ ϑ�

≤ ln
(∑ϑ�

i=0

(m
i

))
if m > ϑ�

. (4.17)

The number4 ϑ� ∈ � is called the VC dimension of the hypothesis space � and is
defined by

ϑ�
def= max

{
m ∈ � ∣∣�� (m) = 2m

}
. (4.18)

This result is fundamental as it shows that we can upper bound the richness
�� of the hypothesis space by an integer summary—the VC dimension. A lot
of research has been done to obtain tight upper bounds on the VC dimension
which has, by definition, the following combinatorial interpretation: If �� =
{{(x, y) ∈ � | l0−1 (h (x) , y) = 1 } | h ∈ � } is the induced set of events that a
hypothesis h ∈ � labels (x, y) ∈ � incorrectly, then the VC dimension ϑ of
�� is the largest natural number ϑ such that there exists a sample z ∈ �ϑ of
size ϑ which can be subdivided in all 2ϑ different ways by (set) intersection with
��. Then we say that �� shatters z. If no such number exists we say that the VC
dimension of �� or � is infinite. Sometimes the VC dimension is also called the
shatter coefficient.

In order to relate the above bound on the growth function in terms of the
VC dimension to the confidence intervals (4.14) and (4.15) we make use of the
inequality given in Theorem A.105 which states that for all m > ϑ

ϑ∑
i=0

(
m

i

)
<
(em

ϑ

)ϑ
. (4.19)

4 We shall omit the subscript of ϑ� whenever the hypothesis space � is clear from context.
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Figure 4.2 Growth of the complexity term ϑ
m

(
ln
(

2m
ϑ

)
+ 1

)
in the VC confidence

interval (4.14) as a function of ϑ
m . (a) On the whole interval [0, 1] the increase is clearly

sub-linear. (b) For very small values of ϑ
m < 1

30 the growth is almost linear.

Therefore for all training sample sizes m > ϑ , the growth function �� (m) ≤
ϑ
(
ln
(

m
ϑ

)+ 1
)

is sub-linear in ϑ due to the ln
(

m
ϑ

)
term.

Remark 4.11 (Sufficient training sample size) Using the upper bound (4.19) of
the upper bound (4.17) for the growth function �� we obtain for the confidence
interval (4.14) the following expression

∀2m > ϑ : R [h] ≤ Remp [h, z]+
√√√√8

(
ln
(

4
δ

)
m

+ ϑ

m

(
ln

(
2m

ϑ

)
+ 1

))
,

Neglecting the term ln (4/δ) /m (which decreases very quickly to zero for increas-
ing m) we plot the value of ϑ

m

(
ln
(

2m
ϑ

)+ 1
)

as a function of ϑ
m in Figure 4.2.

Clearly, for m
ϑ

> 30 the contribution of the VC term is less than 0.15 and thus,
by the constant factor of 8, we will have nontrivial results in these regimes. Vapnik
suggested this as a rule of thumb for the practicability of his bound. By the plots
in Figure 4.2 it is justifiable to say that, for m

ϑ
> 30, the training sample size is

sufficiently large to guarantee a small generalization error of the empirical risk
minimization algorithm.

Remark 4.12 (Data dependent hypothesis spaces) Another consequence of the
reasoning given above is that the hypothesis space � must be independent of the
training sample z. As we have seen in Chapter 2 there are two different viewpoints
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Figure 4.3 Curse of dimensionality. In order to reliably estimate a density in �n we sub-
divide the n–dimensional space into cells and estimate their probability by the frequency
that an example x ∈ x falls into it. Increasing the number of cells would increase the
precision of this estimate. For a fixed precision, however, the number of cells depends
exponentially on the number n of dimensions.

of margin maximization. First, having the norm of each normal vector w fixed,
margin maximization aims to minimize the margin loss lmargin given by equation
(2.42). Second, defining the hypothesis space � to achieve a minimum real-valued
output of one at each training point, this makes � data dependent and, thus,
inappropriate for theoretical studies. Nevertheless this formulation of the problem
is algorithmically advantageous.

An important property of the VC dimension is that it does not necessarily
coincide with the number of parameters used. This feature is the key to seeing that,
by studying the convergence of expected risks, we are able to overcome a problem
which is known as curse of dimensionality: The number of examples needed to
reliably estimate the density in an n–dimensional space � grows exponentially
with n (see also Figure 4.3). In the following we will give three examples showing
that the VC dimension can be less than, equal to or greater than the number of
parameters. Note that these three examples are intended to illustrate the difference
between number of parameters and the VC dimension rather than being practically
useful.

Example 4.13 (VC dimension and parameters) Let us use the following three
examples to illustrate the difference between the dimensionality of parameter space
and the VC dimension (see Section 4.5 for references containing rigorous proofs).
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1. Consider � = � and

� =
{

x �→ sign

(
n∑

i=1

∣∣wi x
i
∣∣ sign (x)+ w0

) ∣∣ (w0, w1, . . . , wn) ∈ �n+1

}
.

Clearly, all functions in h are monotonically increasing and have exactly one zero.
Thus the maximum size d of a training sample z that can be labeled in all 2d

different ways is one. This implies that the VC dimension of � is one. As this
holds regardless of n the VC dimension can be much smaller than the number of
parameters. It is worth mentioning that for all n ∈ � there exists a one-dimensional
parameterization of�—each w ∈ �n+1 is represented by its zero—which, however,
the difficulty is to find a-priori.

2. Consider � = �
n and

� = {
x �→ sign (〈w, x〉) ∣∣ w ∈ �n

}
,

where x def= φ (x) for some fixed feature mapping φ : � → � ⊆ �n
2 (see Definition

2.2). Given a sample x = (x1, . . . , xm) of m objects we thus obtain the m × n data
matrix X = (

x′1; . . . ; x′m
) ∈ �

m×n . If the training sample size m is bigger than
the number n of dimensions the matrix X has at most rank n, i.e., Xw = t has, in
general, no solution. It follows that the VC dimension can be at most n. In the case
of m = n, by choosing the training sample (x1, . . . , xm) such that xi = ei , we see
that Xw = Iw = w, that is, for any labeling y ∈ {−1,+1}m, we will find a vector
w ∈ �n that realizes the labeling. Therefore the VC dimension of linear classifiers
equals the number n of parameters.

3. Consider � = � and

� = {x �→ sign (sin (wx)) | w ∈ � } .
Through w we can parameterize the frequency of the sine and thus, for uniformly
spaced training samples x ∈ �m of any size m, we will find 2m (extremely high)
values of w that label the m points in all 2m different ways. As a consequence the
VC dimension is infinite though we have only one parameter.

4.2.3 Structural Risk Minimization

The analysis presented in the previous subsection revealed that the VC dimension
of � is the fundamental quantity that controls the uniform convergence of empiri-
cal risks to expected risks and, as such, the generalization error of an empirical risk
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minimization algorithm �ERM. Ideally, we would like to make the VC dimension
itself a quantity that can be minimized by a learning algorithm; in particular, if we
have too small a training sample z ∈ �m of size m for too rich a hypothesis space
� ⊆ �� having VC dimension ϑ � m. A minimization of the VC dimension in
parallel to the training error is, however, theoretically not justified as the VC di-
mension is only characterizing the complexity of� of empirical risk minimization
algorithms.

One possible method of overcoming this problem is to use the principle
of structural risk minimization (SRM). By a structure we mean a set � =
{�1, . . . ,�s} of s hypothesis spaces. It is often assumed that �1 ⊂ · · · ⊂ �s and
thus the relation �i−1 ⊂ �i implies ϑ�i−1 ≤ ϑ�i for the VC dimensions of �i−1

and �i . Then the idea of SRM is to compute a set
{
�ERM,�i (z) ∈ �i

}s

i=1 of hy-
potheses which minimize the training error Remp [·, z] in the hypothesis space �i .
This set is later used to tradeoff the resulting training error Remp

[
�ERM,�i (z) , z

]
versus the complexity (measured in terms of VC dimension ϑ�i ) using the con-
fidence interval (4.14) or (4.15). Clearly we cannot directly apply Theorems 4.7
because they assume a fixed hypothesis space. Further, we might have some prior
hope that the minimizer of the expected risk is within equivalence class �i which
we express by a probability distribution PS. In order to get a theoretically justified
result we make use of the following lemma which is the basis of multiple testing5.

Lemma 4.14 (Multiple testing) Suppose we are given a set {ϒ1, . . . ϒs} of s mea-
surable logic formulas ϒ : ⋃∞

m=1�
m × � × (0, 1] → {true, false} and a discrete

probability measure PS over the sample space {1, . . . , s}. Let us assume that

∀i ∈ {1, . . . , s} : ∀m ∈ � : ∀δ ∈ (0, 1] : PZm (ϒi (Z,m, δ)) ≥ 1− δ .

Then, for all m ∈ � and δ ∈ (0, 1],

PZm (ϒ1 (Z,m, δPS (1)) ∧ · · · ∧ϒs (Z,m, δPS (s))) ≥ 1− δ .

Proof The proof is a simple union bound argument. By definition

PZm (ϒ1 (Z,m, δPS (1)) ∧ · · · ∧ ϒs (Z,m, δPS (s)))

= 1− PZm (¬ϒ1 (Z,m, δPS (1)) ∨ · · · ∨ ¬ϒs (Z,m, δPS (s)))

≥ 1−
s∑

i=1

PZm (¬ϒi (Z,m, δPS (i))) (by the union bound)

5 In the theory of multiple statistical tests, the resulting statistical procedure is often called a Bonferroni test.
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> 1−
s∑

i=1

δPS (i) = 1− δ . (by assumption)

The lemma is proved.

This simple lemma is directly applicable to Theorem 4.7 by noticing that for each
training sample size m and for all hypothesis space �i in the structure � the
corresponding logic formulas are given by

ϒi (z,m, δ) ≡ ∀h ∈ �i :
∣∣R [h]− Remp [h, z]

∣∣ ≤ √ 8

m

(
ln

(
4

δ

)
+ ��i (2m)

)
,

ϒi (z,m, δ) ≡ ∀h ∈ �i : Remp [h, z] �= 0 ∨ R [h] ≤ 4

m

(
ln

(
2

δ

)
+ ��i (2m)

)
,

where the first formula is for the VC bound and the second for the PAC bound.
Thus, we know that, with probability at least 1−δ, simultaneously for all hypothesis
spaces �i ∈ � and all hypotheses h ∈ �i

R [h] ≤ Remp [h, z]+
√

8

m

(
ln

(
4

δ

)
+ ln

(
1

PS (�i)

)
+ ��i (2m)

)
, (4.20)

and simultaneously for all hypothesis spaces �i ∈ � and all hypotheses h ∈ �i

achieving zero training error Remp [h, z] = 0

R [h] ≤ 4

m

(
ln

(
2

δ

)
+ ln

(
1

PS (�i)

)
+ ��i (2m)

)
. (4.21)

Apparently, we are able to trade the complexity expressed by ��i (2m) against the
training error Remp [h, z] (see also Figure 4.4) or we can simply stop increasing
complexity as soon as we have found a hypothesis space �i containing a hypothe-
sis having zero training error at a price of− ln (PS (�i)). Thanks to the exponential
decrease, this price is very small if the number s of hypothesis spaces in � is small.
Note that the SRM principle is a curious one: In order to have an algorithm it is
necessary to have a good theoretical bound on the generalization error of the em-
pirical risk minimization method. Another view of the structural risk minimization
principle is that it is an attempt to solve the model selection problem. In place of
the ultimate quantity to be minimized—the expected risk of the learned function
�ERM,�i (z)—a (probabilistic) bound on the latter is used, automatically giving a
performance guarantee of the model selection principle itself.
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Figure 4.4 Structural risk minimization in action. Here we used hypothesis spaces �i

such that ϑ�i = i and �i ⊆ �i+1. This implies that the training errors of the empirical
risk minimizers can only be decreasing which leads to the typical situation depicted. Note
that lines are used for visualization purposes because we consider only a finite set � of
hypothesis spaces.

Remark 4.15 (The role of PS) The role of the numbers PS (�i ) seems somewhat
counterintuitive as we appear to be able to bias our estimate by adjusting these
parameters. The belief PS must, however, be specified in advance and represents
some apportionment of our confidence to the different points where failure might
occur. We recover the standard PAC and VC bound if PS is peaked at exactly one
hypothesis space. In the first work on SRM it was implicitly assumed that these
numbers are 1

s . Another interesting aspect of PS is that, thanks to the exponential
term in Theorem 4.7 using a uniform measure PS we can consider up to � (em)

different hypothesis spaces before deteriorating to trivial bounds.

4.3 The Luckiness Framework

Using structural risk minimization we are able to make the complexity, as measured
by the VC dimension of the hypothesis space, a variable of a model selection
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algorithm while still having guarantees for the expected risks. Nonetheless, we
recall that the decomposition of the hypothesis space must be done independently
of the observed training sample z. This rule certainly limits the applicability of
structural risk minimization to an a-priori complexity penalization strategy. The
resulting bounds effectively ignore the sample z ∈ �m except with regard to the
training error Remp [� (z) , z]. A prominent example of the misuse of structural
risk minimization was the first generalization error bounds for the support vector
machine algorithm. It has become commonly accepted that the success of support
vector machines can be explained through the structuring of the hypothesis space
� of linear classifiers in terms of the geometrical margin γz (w) of a linear classifier
having normal vector w (see Definition 2.30). Obviously, however, the margin itself
is a quantity that strongly depends on the sample z and thus a rigorous application
of structural risk minimization is impossible! Nevertheless, we shall see in the
following section that the margin is, in fact, a quantity which allows an algorithm
to control its generalization error.

In order to overcome this limitation we will introduce the luckiness framework.
The goals in the luckiness framework are to

1. Formalize under which conditions we can use the training sample z ∈ �m to
decompose a given hypothesis space � and

2. Provide PAC or VC like results, namely, uniform bounds on the expected risks
that still do not depend on the unknown probability measure PZ.

In contrast to the VC and PAC framework the new uniform bound on the expected
risk R [h] of all hypotheses h ∈ � is allowed to depend on the training sample z
and the single hypothesis h considered6.

Definition 4.16 (Luckiness generalization error bound) Suppose we are given a
hypothesis space � ⊆ �� and a loss function l : � × � → �. Then the function
εL : � × (0, 1] × ∪∞m=1�

m ×� → �
+ is called a luckiness generalization error

bound if, and only if, for all training sample sizes m ∈ �, all δ ∈ (0, 1] and all PZ

PZm (∀h ∈ � : R [h] ≤ εL (m, δ,Z, h)) ≥ 1− δ .

6 Note that a VC and PAC generalization error bound is implicitly dependent on the training error Remp [h, z].
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Given such a result we have automatically obtained a bound for the algorithm
which directly minimizes the εL (|z| , δ, z, h), i.e.,

�εL (z)
def= argmin

h∈�
εL (|z| , δ, z, h) . (4.22)

Note that at present only PAC results for the zero-one loss l0−1 are available. Hence
we must assume that, for the training sample z, there exists at least one hypothesis
h ∈ � such that Remp [h, z] = 0.

The additional information we exploit in the case of sample based decomposi-
tions of the hypothesis space � is encapsulated in a luckiness function. The main
idea is to fix in advance some assumption about the measure PZ, and encode this
assumption in a real-valued function L defined on the space of training samples
z ∈ �m and hypotheses h ∈ �. The value of the function L indicates the extent
to which the assumption is satisfied for the particular sample and hypothesis. More
formally, this reads as follows.

Definition 4.17 (Luckiness function and level) Let � ⊆ �� and � = � × �
be a given hypothesis and sample space, respectively. A luckiness function L is a
permutation invariant function that maps each training sample z and hypothesis h
to a real value, i.e.,

L :
∞⋃

m=1

�m ×�→ � .

Given a training sample z = (x, y), the level �L of a function h ∈ � relative to L
and z is defined by

�L (z, h)
def= |{(l0−1 (g (x1) , y1) , . . . , l0−1 (g (xm) , ym)) | g ∈ H (h, z)}| ,

where the set H (h, z) is the subset of all hypotheses which are luckier on z, i.e.,

H (h, z)
def= {g ∈ � | L (z, g) ≥ L (z, h)} ⊆ � .

The quantity �L plays the central role in what follows. Intuitively speaking, for
a given training sample z and hypothesis h the level �L (z, h) counts the number
of equivalence classes w.r.t. the zero-one loss l0−1 in � which contain functions
g ∈ � that are luckier or at least as lucky as h. The main idea of the luckiness
framework is to replace the coarse worst case argument—taking the covering num-
ber �� as the maximum number of equivalence classes with different losses for
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an application of the union bound—by an actual sample argument (see Subsection
4.2.1).

Thanks to the symmetrization by a ghost sample we only needed to show
that for zero training error Remp [h, z] = 0 on a sample of size m, the training
error on the ghost sample z̃ cannot exceed ε

2 with high probability and then use
a union bound over all the equivalence classes. As we now want to make use of
the luckiness L (z, h) for the estimation of the number of equivalence classes,
we have to assume that also the luckiness (and thus the number of equivalence
classes measured by �L) cannot increase too much. This is formally expressed in
the following definition.

Definition 4.18 (Probable smoothness of luckiness functions) A luckiness func-
tion L is probably smooth with respect to the function ω : � × [0, 1] → � , if for
all m ∈ � , all distributions PZ and all δ ∈ [0, 1]

PZ2m (∃h ∈ � : �L (Z, h) > ω (L ((Z1, . . . ,Zm) , h) , δ)) ≤ δ .

The intuition behind this definition is that it captures when the luckiness can be
estimated from the training sample (z1, . . . , zm) ∈ �m with high probability.
We have to make sure that with small probability (at most δ) over the random
draw of a training and ghost sample there are more than ω (L ((z1, . . . , zm) , h) , δ)
equivalence classes that contain functions that are luckier than h on the training
and ghost sample (z1, . . . , zm, zm+1, . . . , z2m). Now we are ready to give the main
result in the luckiness framework.

Theorem 4.19 (Luckiness bound) Suppose L is a luckiness function that is prob-
ably smooth w.r.t. the function ω. For any probability measure PZ, any d ∈ � and
any δ ∈ (0, 1], with probability at least 1− δ over the random draw of the training
sample z ∈ �m of size m, if Remp [h, z] = 0 and ω

(
L (z, h) , δ

4

) ≤ 2d then7

R [h] ≤ 2

m

(
d + ld

(
4

δ

))
. (4.23)

The lengthy proof is relegated to Appendix C.3. By the probable smoothness of
L , the value of the function ω (L (z, h) , δ/4) can never exceed 22m because, for
the zero-one loss l0−1, the maximum number �L (z, h) of equivalence classes on a
sample z of size maximally 2m is, for any h ∈ �, at most this number. Hence we

7 Note that the symbol ld denotes the logarithm to base 2 (see also page 331).
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can safely apply Lemma 4.14 using the following proposition

∀h ∈ � : Remp [h, z] �= 0 ∨ ω

(
L (z, h) ,

δ

4

)
> 2i ∨ R [h] ≤ 2

m

(
i + ld

(
4

δ

))
,

which holds with probability at least 1 − δ over the random draw of the training
sample z. This means, simultaneously for all functions h which achieve zero
training error Remp [h, z] = 0 and ω (m, L (z, h) , δpd/4) ≤ 2d , we know with
probability at least 1− δ over the random draw of the training sample z ∈ �m , that

R [h] ≤ 2

m

(
d + ld

(
4

δpd

))
,

where the 2m numbers pd must be positive and sum to one. This result is very
impressive as it allows us to use the training sample z ∈ �m to decompose
the hypothesis space �. Such a decomposition is given by the data-dependent
structure � = {�1 (z) , . . . ,�2m (z)} where �i (z) is the set of all hypotheses
which lead to a complexity value ω less than or equal to 2i , i.e.,

�i (z) =
{

h ∈ �
∣∣∣∣ ω(m, L (z, h) ,

δ

4

)
≤ 2i

}
⊆ � .

We refer to #ld (ω (m, L (z, h) , ·))$ as an effective complexity—a complexity
which depends on the data z and is not a-priori fixed. The price we pay for this
generality is the anytime applicability of the bound: There is no guarantee before
we have seen the training sample z that ld (ω (m, L (z, h) , ·)) will be small for
any hypothesis h with zero training error Remp [h, z]. As soon as we make use of
z ∈ �m in the luckiness function L there will be a distribution PZ which yields
ω (m, L (z, h) , ·) > 2m for any consistent hypothesis h ∈ V� (z) and thus we
are unable to give any guarantee on the expected loss of these hypotheses. Such
a distribution corresponds to the maximum violation of our belief in PZ encoded
a-priori by the choice of the luckiness function L .

Remark 4.20 (Conditional confidence intervals) It is worth mentioning that the
approach taken in the luckiness framework is far from new in classical statistics.
The problem of conditional confidence intervals as a branch of classical test theory
is very closely connected to the idea underlying luckiness. The main idea behind
conditional confidence intervals is that although a confidence interval procedure
� : �m × [0, 1] → � has the property that, for all measures PZ,

∀δ ∈ [0, 1] : PZm (∀h ∈ � : R [h] ∈ �(Z, δ)) ≥ 1− δ ,
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there might exist a collection � of training samples z ∈ �
m such that, for all

measures PZ,

∀δ ∈ [0, 1] : ∃κ ∈ [0, 1] : PZm |Zm∈� (∀h ∈ � : R [h] ∈ �(Z, δ)) ≥ 1− δ − κ .

Such collections � are called positively biased relevant collections and can effec-
tively be used to tighten the confidence interval � if the training sample z is wit-
nessing the prior belief expressed via positively biased relevant collections. Hence
it is necessary to detect if a given training sample z falls into one of the prese-
lected positively biased relevant collections. The function ω in Definition 4.18 can
be considered to serve exactly this purpose.

Before finishing this section we will give two examples of luckiness functions.
For further examples the interested reader is referred to the literature mentioned in
Section 4.5.

Example 4.21 (PAC luckiness) In order to show that the luckiness framework is,
in fact, a generalization of the PAC framework we consider the following luckiness
function L (z, h) = −ϑ� where ϑ� is the VC dimension of �. Then, by the upper
bound given in Theorem A.105, we know that L is probably smooth w.r.t.

ω (L , δ) =
(

2em

−L

)−L

,

because the number of equivalence classes on a sample of size 2m can never exceed
that number. If we set pi = 1 if, and only if, i = ϑ� we see that, by the luckiness
bound (4.23), simultaneously for all functions h that achieve zero training error
Remp [h, z] = 0

R [h] ≤ 2

m

(
ϑ� ld

(
2em

ϑ�

)
+ ld

(
4

δ

))
,

which is, up to some constants, the same result as given by (4.15). Note that this
luckiness function totally ignores the sample z as mentioned in the context of the
classical PAC framework.

Example 4.22 (Empirical VC dimension luckiness) Suppose we are given a
training sample z. We define the empirical VC dimension as the largest natural
number d = ϑ� (z) such that there exists a subset

{
zi1 , . . . , zid

} ⊆ {z1, . . . , zm}
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on which the hypotheses h ∈ � incur all the 2d loss patterns;

ϑ� (z)
def= max

{
j ∈ {1, . . . , |z|} ∣∣�� (z, j) = 2 j

}
,

�� (z, j)
def= max

z̃⊆z:| z̃|= j

∣∣{(l0−1 (h (x̃1) , ỹ1) , . . . , l0−1
(
h
(
x̃ j

)
, ỹ j

)) | h ∈ �}∣∣ .
Note that the classical VC dimension is obtained if z contains all points of the
space � . Then we show in Appendix C.4 that L (z, h) = −ϑeff (z) is probably
smooth w.r.t. the function

ω (L , δ) =
(

em

−2L − 2 ln (δ)

)−4L−4 ln(δ)

,

for all δ ∈ [
0, 1

2

]
. This shows that we can replace the VC dimension ϑ� known

before the training sample arrives with the empirical VC dimension ϑ� (z) after
having seen the data.

Remark 4.23 (Vanilla luckiness) The main luckiness result as presented in Theo-
rem 4.19 is a simplified version of the original result. In the full version the notion
of probable smoothness is complicated by allowing the possibility of exclusion of a
data-dependent fraction of the double sample before bounding the number of equiv-
alence classes of luckier functions H (h, z). As a consequence the data-dependent
fraction is added to the r.h.s. of equation (4.23). Using the more complicated luck-
iness result it can be shown that the margin γz (w) of a linear classifier parame-
terized by w is a probably smooth luckiness function. However, in the next section
we shall present an analysis for linear classifiers in terms of margins which yields
better results than the results in the luckiness framework. It is worth mentioning
that for some distributions the margin γz (w) of any classifier hw can be arbitrarily
small and thus the bound can be worse than the a-priori bounds obtained in the
classical PAC and VC frameworks.

4.4 PAC and VC Frameworks for Real-Valued Classifiers

In Section 4.2 we introduced the growth function as a description of the complexity
of a hypothesis space � when using the zero-one loss l0−1 and the empirical risk
minimization principle. This bound is tight as, for each training sample size m ∈ � ,
there exists a data distribution PZ for which the number of equivalence classes
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equals the number given by the covering number �� (the exponentiated growth
function). In fact, assuming that this number of equivalence classes is attained by
the sample zworst, this happens to be the case if PZm (zworst) = 1.8

On the other hand, in the case of linear classifiers, i.e., x �→ 〈x,w〉 where

x def= φ (x) and φ : � → � ⊆ �n
2 (see also Definition 2.2), it seems plausible that

the margin, that is, the minimal real-valued output before thresholding, provides
confidence about the expected risk. Taking the geometrical picture given in Figure
2.1 on page 23 into account we see that, for a given training sample z ∈ �m , the
covering number�� on that particular sample is the number of different polyhedra
on the surface of the unit hypersphere. Having attained a functional margin of
γ̃z (w) (which equals γz (w) if ‖w‖ = 1) when using hw (x) = sign (〈x,w〉) for
classification, we know that we can inscribe a ball of radius at least γ̃z (w) in one of
the equivalence classes—the version space (see also Subsection 2.4.3). Intuitively
we are led to ask “how many equivalence classes can maximally be achieved if we
require the margin to be γ̃z (w) beforehand?”. Ideally, we would like to use this
number in place of the number �� . The margin γ̃z (w) is best viewed as the scale
at which we look on the hypothesis space � of real-valued functions. If the margin
is at least γ then two functions are considered to be equivalent if their real-valued
outputs differ by not more than γ on the given training sample z because they must
correspond to the same classification which is carried out by thresholding the real-
valued outputs. The scale sensitive version of the covering number�� when using
real-valued functions f ∈ � for classification learning is defined as follows.

Definition 4.24 (Covering number of real-valued functions) Let � ⊆ �
� be a

set of real-valued functions mapping from � to �. For a given sample x =
(x1, . . . , xm) ∈ �m and γ > 0 we define �∞

�
(γ, x) to be the smallest size of a

cover Fγ (x) ⊂ � such that, for every f ∈ � , there exists a function f̂ in the
cover Fγ (x) with∥∥∥( f (x1)− f̂ (x1) , . . . , f (xm)− f̂ (xm)

)∥∥∥∞ = max
i=1,...,m

∣∣∣ f (xi )− f̂ (xi)

∣∣∣ ≤ γ .

8 Since we already assumed that the training sample zworst is iid w.r.t. a fixed distribution PZ, tightness of the
growth function based bounds is only achieved if

PZm (zworst) = 1 .

But, if there is only one training sample zworst this is impossible due to the well known “concentration of measure
phenomenon in product spaces” (see Talagrand (1996)).
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Figure 4.5 (Left) 20 real-valued function (solid lines) together with two training points
x1, x2 ∈ � (crosses). The functions are given by f (x) = α1k (x1, x)+α2k (x2, x) where α

is constrained to fulfill
∥∥α′Gα

∥∥2 ≤ 1 (see Definition 2.15) and k is given by the RBF kernel
(see Table 2.1). (Right) A cover Fγ ((x1, x2)) for the function class� (not the smallest). In
the simple case of m = 2 each function f ∈ � is reduced to two scalars f (x1) and f (x2)

and can therefore be represented as a point in the plane. Each big black dot corresponds
to a function f̂ in the cover Fγ ((x1, x2)); all the gray dots in the box of side length 2γ
correspond to the function covered.

The quantity �∞
�
(γ, x) is called the empirical covering number at scale γ . We

define the covering number �∞
�
(γ,m) at scale γ by

�
∞
� (γ,m)

def= sup
x∈�m

�
∞
� (γ, x) .

Intuitively, the value �∞
�
(γ, x) measures how many “bricks” of side length 2γ we

need to cover the cloud of points in �
m generated by ( f (x1) , . . . , f (xm)) over

the choice of f ∈ � (see Figure 4.5). By definition, for each m ∈ � , the covering
number is a function decreasing in γ . By increasing γ we allow the functions
f ∈ � and f̂ ∈ Fγ (x) to deviate by larger amounts and, thus, a smaller number
of functions may well suffice to cover the set � . Further, the covering number
�
∞
�
(γ,m) at scale γ does not depend on the sample but only on the sample size

m. This allows us to proceed similarly to a classical PAC analysis. In order to use
this refined covering number �∞

�
we now consider the following event:
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There exists a function fw that achieves zero training error Remp [hw, z] on
the sample z ∈ �m and the covering number �∞

�
(γ̃z (w) /2, 2m) at the

measured scale γ̃z (w) /2 is less than 2d but the expected risk R [hw] of fw

exceeds some pre-specified value ε.

At first glance, it may seem odd that we consider only the scale of half the
observed margin γ̃z (w) and a covering number for a double sample of size 2m.
These are technical requirements which might be resolved using a different proving
technique. Note that the covering number �∞

�
(γ,m) is independent of the sample

z ∈ �m which allows us to define a function9 e : � → � such that

e (d)
def= min

{
γ ∈ �+ ∣∣ �∞

�
(γ, 2m) ≤ 2d

} ⇒ �
∞
�
(e (d) , 2m) ≤ 2d , (4.24)

that is, e (d) is the smallest margin which ensures that the covering number
�∞
�
(e (d) , 2m) is less than or equal to 2d . Note that we must assume that the

minimum γ ∈ �+ will be attained. Hence, the condition �∞
�
(γ̃z (w) /2, 2m) ≤ 2d

is equivalent to γ̃z (w) ≥ 2 · e (d). Now, in order to bound the probability of the
above mentioned event we proceed in a similar manner to the PAC analysis.

1. By the basic lemma C.2 we know that, for all mε > 2,

PZm

(∃ fw ∈ � : (Remp
[
hw,Z

] = 0
) ∧ (R [hw] > ε) ∧ (γ̃Z (w) ≥ 2 · e (d))

)
< 2 · PZ2m (J (Z)) ,

where the proposition J
(
z z̃
)

with z, z̃ ∈ �m is given by

∃ fw ∈ � : (Remp [hw, z] = 0
) ∧ (Remp

[
hw, z̃

]
>

ε

2

)
∧ (γ̃z (w) ≥ 2 · e (d)) .

2. Now we apply a technique known as symmetrization by permutation (see page
291 for more details). The core idea is to make use of the fact that the double
sample z ∈ �2m is assumed to be an iid sample. Thus, deterministically swapping
the i th pair (xi , yi) ∈ (z1, . . . , zm) with (xi+m , yi+m) ∈ (zm+1, . . . , z2m) will not
affect the probability of J (Z). As a consequence we can consider the expected
probability of J (z) under the uniform distribution over all 2m different swappings
(represented as binary strings of length m) and then exchange the expectation over
PZ2m and the permutations. This allows us to fix the double sample z ∈ �2m and
simply count the number of swappings that satisfy the condition stated by J (Z).

9 This function is also known as the dyadic entropy number (see also Appendix A.3.1).
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Figure 4.6 Relation between the real-valued output of a cover element f̂ ∈
Fe(d) ((x1, x2)) ⊆ � and the real-valued output of the covered function f ∈ � . For il-
lustrative purposes we have simplified to the case of m = 1 and z = {(x1,+1) , (x2,+1)}.
Note that the distance of the functions is the maximum deviation on the real-valued output
at the two points x1 and x2 only and thus at most e (d). By assumption, f correctly clas-
sifies (x1,+1) with a margin greater than 2 · e (d) and thus f̂ (x1) ≥ e (d). Similarly, f
incorrectly classifies (x2,+1) and thus f̂ (x2) must be strictly less than e (d).

3. For a fixed double sample z = (x, y) ∈ (� × �)2m let us consider a cover
Fe(d) (x) ⊂ � at scale e (d). So, for all functions f ∈ � there exists a real-valued
function f̂ ∈ Fe(d) (x) whose real-valued output deviates by at most e (d) from the
real-valued output of f at the double sample x ∈ � 2m . By the margin condition
γ̃(z1,...,zm) (w) ≥ 2 · e (d) we know that for all fw ∈ � which achieve zero training
error, Remp [hw, (z1, . . . , zm)] = 0, the corresponding elements f̂w of the cover
Fe(d) (x) have a real-valued output yi f̂w (xi ) on all objects (x1, . . . , xm) of at least
e (d). Similarly, for all fw ∈ � that misclassify points in (zm+1, . . . , z2m) we know
that their corresponding elements f̂w of the cover Fe(d) (x) achieve real-valued
outputs yi f̂w (xi) strictly less than e (d) on these points since a misclassification
corresponds to a negative output at these points (see Figure 4.6). As a consequence,
the probability of J (z) is upper bounded by the fraction of swapping permutations
π : {1, . . . , 2m} → {1, . . . , 2m} such that

∃ f̂ ∈ Fe(d) (x) :
(

min
i=1,...,m

yπ(i) f̂
(
xπ(i)

) ≥ e (d)

)
∧ (4.25)

1

m

∣∣∣{yi f̂ (xi ) < e (d) | i ∈ {π (m + 1) , . . . , π (2m)}
}∣∣∣ > ε

2
.

4. Suppose there exists a swapping permutation satisfying the logical formula
(4.25). Then the maximum number of points that can be swapped is m− εm

2 because
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swapping any of the εm
2 or more examples (xi , yi) ∈ (zm+1, . . . , z2m) for which

yi f̂ (xi ) < e (d) into the first m examples would violate mini=1,...m yπ(i) f̂
(
xπ(i)

) ≥
e (d). Under the uniform distribution over all swappings this probability is less than
2−m · 2m− εm

2 = 2−
εm
2 . Further, the number of functions f̂ ∈ Fe(d) (x) considered

is less than or equal to �∞
�
(e (d) , 2m) which by definition (4.24) is less than or

equal to 2d . Thus for a fixed sample this probability is less than 2d− εm
2 . It is worth

noticing that this last step is the point where we use the observed margin γ̃z (w)

to boil down the worst case number �� (when only considering the binary valued
functions) to the number 2d that needs to be witnessed by the observed margin
γ̃z (w).

Using the fact that for all d ∈ �
+ , 2d− εm

2 ≥ 1 whenever mε ≤ 2, we have shown
the following theorem.

Theorem 4.25 (Covering number bound) Let � ⊆ �
� be a set of real-valued

functions parameterized by w ∈ � whose associated classifications are � =
{x �→ sign ( f (x)) | f ∈ � }. For the zero-one loss l0−1, for all d ∈ �+ and ε > 0

PZm

(
∃hw ∈ V� (Z) : (R [hw] > ε) ∧

(
�
∞
�

(
γ̃Z (w)

2
, 2m

)
≤ 2d

))
< 2d+1− εm

2 ,

where the version space V� (z) is defined in Definition 2.12.

An immediate consequence is, that with probability at least 1− δ over the random
draw of the training sample z ∈ �m , the following statement ϒi (z,m, δ) is true

∀hw ∈ V� (z) :
(

R [hw] ≤ 2

m

(
i + ld

(
2

δ

)))
∨
(
�
∞
�

(
γ̃z (w)

2
, 2m

)
> 2i

)
.

Noticing that the bound becomes trivial for i > #m/2$ (because the expected risk is
at most one) we can safely apply the multiple testing lemma 4.14 with uniform PS

over the natural numbers i ∈ {1, . . . , #m/2$}. Thus we have shown the following
powerful corollary of Theorem 4.25.

Corollary 4.26 (Covering number bound) Let � ⊆ �
� be a set of real-valued

functions parameterized by w ∈ � whose associated classifications are � =
{x �→ sign ( f (x)) | f ∈ � }. For the zero-one loss l0−1, for any δ ∈ (0, 1], with
probability at least 1 − δ over the random draw of the training sample z ∈ �m,
for all hypotheses hw that achieve zero training error Remp [hw, z] = 0 and whose
margin satisfies �∞

�
(γ̃z (w) /2, 2m) ≤ 2

m
2 the expected risk R [hw] is bounded
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from above by

R [hw] ≤ 2

m

(⌈
ld

(
�
∞
�

(
γ̃z (w)

2
, 2m

))⌉
+ ld (m)+ ld

(
1

δ

))
. (4.26)

Although this result cannot immediately be used to uniformly bound the expected
risk of hw we see that maximizing the margin γ̃z (w) will minimize the upper bound
on the expected error R [hw]. Thus it justifies the class of large margin algorithms
introduced in Chapter 2.

Remark 4.27 (Bounds using the empirical covering number) By a more care-
ful analysis it is possible to show that we can use the empirical covering number
�∞
�
(γ̃z (w) /2, x) in place of the worst case covering number �∞

�
(γ̃z (w) /2, 2m)

where x ∈ �
m is the observed sample of m inputs. This, however, can only be

achieved at the price of less favorable constants in the bound because we do not
observe a ghost sample and therefore must use the training sample z ∈ �m to es-
timate �∞

�
(γ̃z (w) /2, 2m). Further, for practical application of the result, it still

remains to characterize the empirical covering number �∞
�
(γ̃z (w) /2, x) by an

easy-to-compute quantity of the sample z ∈ �m.

4.4.1 VC Dimensions for Real-Valued Function Classes

It would be desirable to make practical use of equation (4.26) for bounds similar to
those given by Theorem 4.7. This is not immediately possible, the problem being
determining �∞

�
for the observed margin. This problem is addressed using a one

integer summary which, of course, is now allowed to vary for the different scales
γ . Therefore, this summary is known as generalization of the VC dimension for
real-valued functions.

Definition 4.28 (VC Dimension of real-valued function classes) Let � ⊆ �
�

be a set of real-valued functions from the space � to �. We say that a sample of
m points x = (x1, . . . , xm) ∈ �m is γ –shattered by � if there are m real numbers
r1, . . . , rm such that for all 2m different binary vectors y ∈ {−1,+1}m there is a
function f y ∈ � satisfying

f y (xi )

{ ≥ ri + γ if yi = +1
≤ ri − γ if yi = −1

.
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Figure 4.7 (Left) Two points x1 and x2 on the real line. The set � is depicted by the
functions � = { f1, . . . , f4}. (Right) The maximum γ ≈ 0.37 (vertical bar) we can
consider for γ -shattering is quite large as we can shift the functions � by different values
r1 and r2 for x1 and x2, respectively. The shifted set � − r2 for x2 is shown by dashed
lines. Note that f1 − ri , f2 − ri , f3 − ri and f4 − ri realize y = (−1,−1), y = (−1,+1),
y = (+1,−1) and y = (+1,+1), respectively.

The fat shattering dimension fat� : �+ → � maps a value γ ∈ �
+ to the size of

the largest γ –shattered set, if this is finite, or infinity otherwise.

In order to see that the fat shattering dimension is clearly a generalization of the VC
dimension we note that, for γ → 0, the fat shattering dimension limγ→0 fat� (γ )

equals the VC dimension ϑ� of the thresholded set � = {sign ( f ) | f ∈ � } of
binary classifiers. By using the scale parameter γ ∈ �

+ we are able to study the
complexity of a set of real-valued functions proposed for binary classification at
a much finer scale (see also Figure 4.7). Another advantage of this dimension is
that, similarly to the VC and PAC theory presented in Section 4.2, we can use it
to bound the only quantity entering the bound (4.26)—the log-covering number
ld
(
�
∞
�
(γ̃z (w) /2, 2m)

)
. In 1997, Alon et al. proved the following lemma as a

byproduct of a more general result regarding the characterization of Glivenko-
Cantelli classes.

Lemma 4.29 (Bound on the covering number) Let� ⊆ �
� be a set of functions

from � to the closed interval [a, b]. For all m ∈ � and any γ ∈ (a, b) such that
d = fat�

(
γ

4

) ≤ m,

ld
(
�
∞
� (γ,m)

) ≤ 1+ d · ld

(
2em (b − a)

dγ

)
ld

(
4m (b − a)2

γ 2

)
.
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This bound is very similar to the bound presented in Theorem 4.10. The VC dimen-
sion ϑ� has been replaced by the corresponding value fat� (γ ) of the fat shattering
dimension. The most important difference is the additional ld

(
4m (b − a)2 /γ 2

)
term the necessity of which is still an open question in learning theory. The lemma
is not directly applicable to the general case of real-valued functions f ∈ � be-
cause these may be unbounded. Thus the idea is to truncate the functions into a
range [−τ,+τ ] by the application of a truncation operator Tτ , i.e.,

Tτ (�)
def= {Tτ ( f ) | f ∈ � } , Tτ ( f ) (x)

def=
 τ if f (x) > τ

f (x) if − τ ≤ f (x) ≤ τ

−τ if f (x) < −τ
.

Obviously, for all possible scales γ ∈ �
+ we know that the fat shattering dimen-

sion fatTτ (�) (γ ) of the truncated set of functions is less than or equal to the fat
shattering dimension fat� (γ ) of the non-truncated set � since every sample that
is γ –shattered by Tτ (�) can be γ –shattered by � , trivially, using the same but
nontruncated functions. As a consequence we know that, for any value τ ∈ �+ we
might use for truncation, it holds that the log-covering number of the truncated set
Tτ (�) of functions can be bounded in terms of the fat shattering dimension of �
and the value of τ

ld
(
�
∞
Tτ (�) (γ ,m)

) ≤ 1+ fat�
(γ

4

)
ld

(
4emτ

fat�
(
γ

4

) · γ
)

ld

(
16mτ 2

γ 2

)
.

In addition we know that, regardless of the value of τ ∈ �
+ , the function Tτ ( f )

performs the same classification as f , i.e., for any training sample z ∈ �m and all
functions f ∈ �
R
[
sign ( f )

] = R
[
sign (Tτ ( f ))

]
, Remp

[
sign ( f ) , z

] = Remp
[
sign (Tτ ( f )) , z

]
.

Using these two facts we aim to replace the log-covering number of the function
class � by the log-covering number ld(�∞Tτ (�)

(γ̃z(w)/2, 2m)) of the set Tτ (�) of
truncated real-valued functions. Note that τ ∈ �

+ must be chosen independently
of the training sample z ∈ �m . In order to achieve this we consider the following
well defined function ẽ : � → �

ẽ (d)
def= min

{
γ ∈ �+

∣∣∣�∞Tγ (�) (γ , 2m) ≤ 2d
}
⇒ �Tẽ(d)(�) (ẽ (d) , 2m) ≤ 2d ,

in place of the dyadic entropy number considered given in equation (4.24). By
definition, whenever �∞Tẽ(d)(�)(γ̃z(w)/2, 2m) ≤ 2d it must follow that γ̃z (w) ≥
2 · ẽ (d) which, together with Lemma 4.29, implies that the log-covering number
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ld(�∞Tẽ(d)(�)
(γ̃z(w)/2, 2m)) cannot exceed

1+ fat�

(
γ̃z (w)

8

)
ld

 8em · ẽ (d)

fat�
(
γ̃z(w)

8

)
· γ̃z(w)

2

 ld

32m · (ẽ (d))2(
γ̃z(w)

2

)2


≤ 1+ fat�

(
γ̃z (w)

8

)
ld

(
8em

fat� (γ̃z (w) /8)

)
ld (32m)︸ ︷︷ ︸

b(γ̃z(w))

.

In other words, by Lemma 4.29 we know that whenever the training sample z ∈ �m

and the weight vector w ∈ � under consideration satisfy b (γ̃z (w)) ≤ d then
the log-covering number ld(�∞Tẽ(d)(�)(γ̃z(w)/2, 2m)) is upper bounded by d. By
Theorem 4.25 it follows that, with probability at least 1− δ over the random draw
of the training sample z ∈ �m , the statement

ϒi (z,m, δ) ≡ ∀hw ∈ V� (z) : (b (γ̃z (w)) > i) ∨
(

R [hw] ≤ 2

m

(
i + ld

(
2

δ

)))
is true. As a consequence, stratifying over the

⌈
m
2

⌉
different natural numbers i

using the multiple testing lemma 4.14 and a uniform PS gives Theorem 4.30.
Notice that by the assumptions of Lemma 4.29 the margin γ̃z (w) must be such
that fat� (γ̃z (w) /8) is less than or equal to 2m.

Theorem 4.30 (Fat shattering bound) Let � ⊆ �
� be a set of real-valued

functions parameterized by w ∈ � whose associated classifications are � =
{x �→ sign ( f (x)) | f ∈ � }. For the zero-one loss l0−1, for any δ ∈ (0, 1], with
probability at least 1 − δ over the random draw of the training sample z ∈ �m,
for all hypotheses hw that achieve zero training error Remp [hw, z] = 0 and whose
margin γ̃z (w) satisfies ϑeff = fat� (γ̃z (w) /8) ≤ 2m the expected risk R [hw] is
bounded from above by

R [hw] ≤ 2

m

(⌈
ϑeff ld

(
8em

ϑeff

)
ld (32m)

⌉
+ ld (m)+ ld

(
2

δ

))
. (4.27)

Ignoring constants, it is worth noticing that compared to the original PAC bound
given by equation (4.15) we have an additional ld (32m) factor in the complexity
term of equation (4.27) which is due to the extra term in Lemma 4.29. Note that in
contrast to the classical PAC result, we do not know beforehand that the margin—
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whose fat shattering dimension replaces the VC dimension—will be large. As such,
we call this bound an a-posteriori bound.

4.4.2 The PAC Margin Bound

Using Lemma 4.29 we reduced the problem of bounding the covering number �∞
�

to the problem of bounding the fat shattering dimension. If we restrict ourselves
to linear classifiers in a feature space � we have the following result on the fat
shattering dimension.

Lemma 4.31 (Fat shattering bound for linear classifiers) Suppose that X =
{x ∈ � | ‖x‖ ≤ ς } is a ball of radius ς in an inner product space � and con-
sider the linear classifiers

� = {x �→ 〈w, x〉 | ‖w‖ ≤ B , x ∈ X }
with norm bounded by B. Then

fat� (γ ) ≤
(

Bς

γ

)2

. (4.28)

The proof can be found in Appendix C.5. In terms of Figure 2.6 we see that (4.28)
has an intuitive interpretation: The complexity measured by fat� at scale γ must
be viewed with respect to the total extent of the data. If the margin has a small
absolute value, its effective incurred complexity is large only if the extent of the
data is large. Thus, for linear classifiers, the geometrical margin10 γz (w) itself does
not provide any measure of the complexity without considering the total extent of
the data. Combining Lemma 4.31 with the bound given in Theorem 4.30 we obtain
a practically useful result for the expected risk of linear classifiers in terms of the
observed margin. Note that we must ensure that fat� (γz (w) /8) is at most 2m.

Theorem 4.32 (PAC Margin bound) Suppose � is a given feature space. For all
probability measures PZ such that PX ({x | ‖φ (x)‖ ≤ ς }) = 1, for any δ ∈ (0, 1],
with probability at least 1−δ over the random draw of the training sample z ∈ �m,
if we succeed in correctly classifying m samples z with a linear classifier fw having
a geometrical margin γz (w) of at least

√
32/mς , then the expected risk R [hw] of

10 Note that for ‖w‖ = 1 functional margin γ̃z (w) and geometrical margin γz (w) coincide.
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hw w.r.t. the zero-one loss l0−1 is bounded from above by

2

m

(⌈
64ς2

(γz (w))2 ld

(
(γz (w))2 em

8ς2

)
ld (32m)

⌉
+ ld

(
2m

δ

))
. (4.29)

This result is the theoretical basis of the class of large margin algorithms as it
directly allows us to make use of the attained geometrical margin γz (w) for giving
bounds on the expected risk R [hw] of a linear classifiers. An appealing feature
of the result is the subsequent capability of obtaining nontrivial bounds on the
expected risk even when the number n of dimensions of feature space is much
larger than the number m of training examples. Whilst this is impossible to achieve
in the parametric statistics approach we see that by directly studying the expected
risk we are able to defy the curse of dimensionality.

Remark 4.33 (Sufficient training sample size) At first glance the bound (4.29)
might represent progress. We must recall, however, that the theorem requires
that the attained margin γz (w) satisfies m (γz (w))2 /ς2 ≥ 32. Noticing that
(ς/γz (w))2 can be viewed as an effective VC dimension ϑeff we see that this is
equivalent to assuming that m

deff
≥ 32—the rule of thumb already given by Vapnik!

However, calculating the minimum training sample size m for a given margin com-
plexity ϑeff = (ς/γz (w))2, we see that equation (4.29) becomes nontrivial, i.e., less
than one, only for astronomically large values of m, e.g., m > 34 816 for ϑeff = 1
(see Figure 4.8). Thus it can be argued that Theorem 4.32 is more a qualitative
justification of large margin algorithms than a practically useful result. We shall
see in Section 5.1 that a conceptually different analysis leads to a similar bound
for linear classifiers which is much more practically useful.

4.4.3 Robust Margin Bounds

A major drawback of the margin bound given by Theorem 4.32 is its sensitivity
to a few training examples (xi , yi) ∈ z ∈ �m for which the margin γi (w) of a
linear classifier hw may be small. In the extreme case we can imagine a situation
in which the first m − 1 training examples from z are correctly classified with a
maximum margin of γi (w) = ς but the last observation has γm (w) = 0. It does
not seem plausible that this single point has such a large impact on the expected
risk of hw that we are unable to give any guarantee on the expected risk R [hw].
Algorithmically we have already seen that this difficulty can easily be overcome by
the introduction of soft margins (see Subsection 2.4.2). As a consequence, Shawe-
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Figure 4.8 Minimal training sample size as a function of the margin complexity ς2/γ 2

such that equation (4.29) becomes less than the one (ignoring the ld (2/δ) term due to the
astronomically large values of m).

Taylor and Cristianini called the existing margin bound “nonrobust”. The core
idea involved in making the margin bound (4.29) “robust” is to construct an inner
product space �̃ from a given feature space � ⊆ �n

2 such that, for a linear classifier
hw that fails to achieve only positive margins γi (w) on the training sample z, we
can find a corresponding linear classifier hw̃ in the inner product space �̃ achieving
a positive margin γz (w̃) on the mapped training sample whilst yielding the same
classification as hw for all unseen test objects. One way to achieve this is as follows:

1. Based on the given input space � and the feature space � with the associated
mapping φ : � → � for each training sample size m we set up a new inner product
space

�̃
def= � ×

{
j∑

i=1

Ixi

∣∣ j ∈ {1, . . . ,m} , (x1, . . . , x j

) ∈ � j

}
endowed with the following inner product11

〈(w, f ) , (x, g)〉
�̃

def= 〈w, x〉� +
∫

f (x) g (x) dx , (4.30)

where the second term on the r.h.s. of (4.30) is well defined because we only
consider functions that are non-zero on finitely many (at most m) points. The
inner product space �̃ can be set up independently of a training sample z. Given a

positive value � > 0, each point xi ∈ x is mapped to �̃ by τ� (xi )
def= (

xi ,�Ixi

)
.

11 For the sake of clarity, we use a subscript on inner products 〈·, ·〉� in this subsection.
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2. For a given linear classifier parameterized via its normal vector w ∈ � we
define a mapping ω�,γ : � → �̃ such that the minimum real-valued output (the
functional margin) is at least γ ∈ �+ , i.e.,

min
i=1,...,m

yi

〈
ω�,γ (w) , τ� (xi )

〉
�̃
≥ γ > 0 .

This can be achieved by the following mapping

ω�,γ (w)
def=

(
w,

1

�

∑
(xi ,yi )∈z

yi · d ((xi , yi) ,w, γ ) · Ixi

)
,

d ((x, y) ,w, γ )
def= max {0, γ − y 〈w, x〉�} ,

where d ((x, y) ,w, γ ) measures how much w fails at (x, y) ∈ � to achieve a
functional margin of γ . Using equation (4.30) for each point

(
x j , y j

) ∈ z in the
training sample it follows that the real-valued output in the new inner product space
�̃ is at least γ

y j

〈
ω�,γ (w) , τ�

(
x j

)〉
�̃

= y j

〈
w, x j

〉
�
+ y j

∑
(xi ,yi )∈z

yi · d ((xi , yi ) ,w, γ ) · Ixi Ix j

= y j

〈
w, x j

〉
�
+ d

((
x j , y j

)
,w, γ

)
≥ y j

〈
w, x j

〉
�
+ γ − y j

〈
w, x j

〉
�
= γ .

Further, for each example (x, y) /∈ z not contained in the training sample we see
that the real-valued output of the classifier ω�,γ (w) equals the real-valued output
of the unmodified weight vector w, i.e.,

y
〈
ω�,γ (w) , τ� (x)

〉
�̃

= y 〈w, x〉� + y
∑

(xi ,yi )∈z

yi · d ((xi , yi) ,w, γ ) · Ixi Ix

= y 〈w, x〉� .

Hence we can use ω�,γ (w) to characterize the expected risk of w but at the same
time exploit the fact that ω�,γ (w) achieves margin of at least γ in the inner product
space.

3. Let us assume that PZ is such that PX ({x ∈ � | ‖x‖� ≤ ς }) = 1. In order to
apply Theorem 4.32 for ω�,γ (w) and the set {τ� (x) | x ∈ � } we notice that, for
a given value of γ and �,
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(a) the geometrical margin of ω�,γ (w) is at least〈
ω�,γ (w) , τ�

(
x j

)〉
�̃∥∥ω�,γ (w)

∥∥
�̃

≥ γ√
‖w‖2

�
+
(

D(z,w,γ )

�

)2
,

where

D (z,w, γ )
def=
√ ∑

(xi ,yi )∈z

(d ((xi , yi) ,w, γ ))2 . (4.31)

Note that (D (z,w, 1))2 exactly captures the squared sum of the slack variables
in the soft margin support vector machine algorithm given by (2.49).

(b) all mapped points are contained in a ball of radius
√
ς2 +�2 because

∀x ∈ � : ‖τ� (x)‖2
�̃
= ‖x‖2

�
+�2 ≤ ς2 +�2 .

Thus by an application of Lemma 4.31 to a classifier ω�,γ (w) we have shown the
following lemma12.

Lemma 4.34 (Margin distribution) Suppose � is a given feature space. For all
� > 0, for all probability measures PZ such that PX ({x ∈ � | ‖x‖� ≤ ς }) = 1,
for any δ ∈ (0, 1], with probability at least 1 − δ over the random draw of the
training sample z ∈ �m, for all γ ∈ (0, ς ] the expected risk R [hw] of a linear
classifier hw w.r.t. the zero-one loss l0−1 is bounded from above by

R [hw] ≤ 2

m

(⌈
deff (�) ld

(
8em

deff (�)

)
ld (32m)

⌉
+ ld

(
2m

δ

))
,

where

deff (�) =
64

(
‖w‖2

�
+
(

D(z,w,γ )

�

)2
)(

ς2 +�2
)

γ 2
(4.32)

must obey deff (�) ≤ 2m.

Note that the term D (z,w, γ ) given in equation (4.31) is not invariant under
rescaling of w. For a fixed value of γ increasing the norm ‖w‖� of w can only
lead to a decrease in the term D (z,w, γ ). Thus, without loss of generality, we will
fix ‖w‖� = 1 in the following exposition.

12 With a slight lack of rigor we omitted the condition that there is no discrete probability PZ on misclassified
training examples because ω�,γ (w) characterizes w only at non-training examples.
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Unfortunately, Lemma 4.34 is not directly applicable to obtaining a useful
bound on the expected risk in terms of the margin distribution (measured by
D (z,w, γ )) as we are required to fix � in advance. The way to overcome this
problem is to apply Lemma 4.14 for different values of �. By Lemma 4.34 we
know that, with probability at least 1 − δ over the random draw of the training
sample z ∈ �m , the following statement is true

ϒi (z,m, δ) ≡ ∀w ∈ � : (deff (�i) > 2m) ∨(
R [hw] ≤ 2

m

(⌈
deff (�i ) ld

(
8em

deff (�i )

)
ld (32m)

⌉
+ ld

(
2m

δ

)))
.

In Appendix C.6 we give an explicit sequence of �i values which proves the final
margin distribution bound.

Theorem 4.35 (Robust margin bound) Suppose � ⊆ �n
2 is a given feature space.

For all probability measures PZ such that PX ({x ∈ � | ‖x‖� ≤ ς }) = 1, for any
δ ∈ (0, 1], with probability at least 1 − δ over the random draw of the training
sample z ∈ �m, for all γ ∈ (0, ς ] the expected risk R [hw] w.r.t. the zero-one loss
l0−1 of a linear classifier hw with ‖w‖� = 1 is bounded from above by

R [hw] ≤ 2

m

(⌈
deff ld

(
8em

deff

)
ld (32m)

⌉
+ ld

(
(16+ ld (m))m

δ

))
, (4.33)

where

deff = 65 (ς + 3D (z,w, γ ))2

γ 2

must obey deff ≤ 2m.

Note that, by application of Lemma 4.14, we only gain an additional summand of
3 + ld

(
ld
(√

m
))

in the numerator of equation (4.33). Coming back to our initial
example we see that, in the case of m − 1 examples correctly classified with a
(maximum) geometrical margin of γi (w) = ς and the mth example misclassified
by a geometrical margin of 0, Theorem 4.35 gives us an effective dimensionality
deff of 65 · 16 = 1040 and thus, for sufficiently large training sample size m,
we will get a nontrivial bound on the expected risk R [hw] of hw although hw

admits training errors. Note, however, that the result is again more a qualitative
justification of soft margins as introduced in Subsection 2.4.2 rather than being
practically useful (see also Remark 4.33). This, however, is merely due to the fact
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that we set up the “robustness” trick on top of the fat shattering bound given in
Theorem 4.30.

Remark 4.36 (Justification of soft margin support vector machines) One of the
motivations for studying robust margin bounds is to show that the soft margin
heuristic introduced for support vector machines has a firm theoretical basis. In
order to see this we note that in the soft margin case the norm ‖w‖� of the re-
sulting classifier is not of unit length as we fixed the functional margin to be one.
Therefore, we consider the case of γ = 1

‖w‖� and wnorm = w
‖w‖� which gives(

D

(
z,wnorm,

1

‖w‖�

))2

=
m∑

i=1

(
max

{
0,

1

‖w‖� − yi

〈
w

‖w‖� , xi

〉
�

})2

= 1

‖w‖2
�

m∑
i=1

(max {0, (1− yi 〈w, xi 〉�)})2

= 1

‖w‖2
�

m∑
i=1

lquad (〈w, xi 〉� , yi) = 1

‖w‖2
�

m∑
i=1

ξ 2
i ,

according to the slack variables ξi introduced in equation (2.48) and (2.49). For
the effective dimensionality deff it follows

deff = 65 ‖w‖2
�

ς + 3

‖w‖�

√√√√ m∑
i=1

ξ 2
i

2

= 65
(
ς ‖w‖� + 3 ‖ξ‖2

)2
(4.34)

≤ 65
(
ς ‖w‖� + 3 ‖ξ‖1

)2
, (4.35)

where we use the fact that ‖ξ‖2 ≤ ‖ξ‖1. Since by the assumption that ξi > 0 we
know ‖ξ‖1 =

∑m
i=1 ξi and, thus, equation (4.35) and (4.34) are somewhat similar

to the objective function minimized by the optimization problems (2.48) and (2.49).

Application to Adaptive Margin Machines

In Section 2.5 we have introduced adaptive margin machines as a fairly robust
learning algorithm. In this subsection we show that a straightforward application
of the margin distribution bound (4.33) reveals that the algorithm aims to mini-
mize effective complexity although no direct margin maximization appears to be
included in the objective function (2.57). The key fact we exploit is that, due to the
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constraints (2.58), we know, for each feasible solution α and ξ ,

∀i ∈ {1, . . . ,m} : yi

m∑
j=1

α j y j

〈
x j , xi

〉
︸ ︷︷ ︸

〈w,xi 〉

≥ 1− ξi + λαi k (xi , xi )

which readily implies

∀i ∈ {1, . . . ,m} : 1− 〈w, xi〉 ≤ ξi − λαi k (xi , xi ) ,

∀i ∈ {1, . . . ,m} : max {0, 1− 〈w, xi 〉} ≤ max {0, ξi − λαi k (xi , xi )} . (4.36)

Now for any linear classifier parameterized by w let us apply Theorem 4.35 with
wnorm = w

‖w‖ and γ = 1
‖w‖ . The resulting effective complexity measured by deff is

then given by

deff = 65 ‖w‖2

ς + 3

√√√√ m∑
i=1

(
max

{
0,

1

‖w‖ − yi

〈
w
‖w‖ , xi

〉})2
2

= 65

ς ‖w‖ + 3

√√√√ m∑
i=1

(max {0, 1− yi 〈w, xi〉})2

2

. (4.37)

Combining equation (4.36) and (4.37) we have shown the following theorem for
adaptive margin machines.

Theorem 4.37 (Adaptive margin machines bound) Suppose � ⊆ �n
2 is a given

feature space. For all probability measures PZ such that PX (‖φ (X)‖ ≤ ς) = 1, for
any δ ∈ (0, 1], with probability at least 1− δ over the random draw of the training
sample z, for all feasible solutions α ≥ 0 and ξ ≥ 0 of the linear program (2.57)–
(2.58) the expected risk R [hw] w.r.t. the zero-one loss l0−1 of the corresponding
linear classifier w =∑m

i=1 αi yixi is bounded from above by

R [hw] ≤ 2

m

(⌈
deff ld

(
8em

deff

)
ld (32m)

⌉
+ ld

(
(16+ ld (m))m

δ

))
,

where deff ≤ 2m with

deff = 65

(
ς ‖w‖ + 3

m∑
i=1

max {0, ξi − λαi k (xi , xi )}
)2

. (4.38)
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Proof The proof is an immediate consequence of Theorem 4.35, equation (4.36)
and equation (4.37) using the fact that the max function in the inner sum always
returns positive numbers ci and hence√√√√ m∑

i=1

c2
i ≤

√√√√( m∑
i=1

ci

)2

=
m∑

i=1

ci .

The theorem is proved.

From this theorem we can get the following insight: As both the vector α of the
expansion coefficients and the vector ξ of the slack variables must be positive,
the effective dimensionality deff is minimized whenever ξi < λαi k (xi , xi ). Let us
consider a fixed value of λ and a fixed linear classifier parameterized by α. Then
the algorithm given by equations (2.57)–(2.58) aims to minimize the sum of the
ξi ’s which, by equation (4.38), will minimize the resulting effective complexity of
α. The amount by which this will influence deff is controlled via λ, i.e., for small
values of λ (no regularization) the impact is very large whereas for λ → ∞ (total
regularization) the minimization of

∑m
i=1 ξi has no further impact on the effective

complexity.

4.5 Bibliographical Remarks

This chapter reviewed different mathematical models for learning. We demon-
strated that classical statistical analysis is not suited for the purpose of learning
because it studies the convergence of probability measures (see Billingsley (1968),
Pollard (1984) and Amari (1985)) and thus leads to observations such as the “curse
of dimensionality” (Bellman 1961). Further, classical statistical results often have
to assume the “correctness” of the probabilistic model which is essential for the
maximum likelihood method to provide good convergence results (see Devroye
et al. (1996, Chapters 15, 16) for a discussion with some pessimistic results). In
contrast, it has been suggested that studying convergence of risks directly is prefer-
able (see Vapnik and Chervonenkis (1971), Vapnik (1982), Kearns and Vazirani
(1994), Devroye et al. (1996), Vidyasagar (1997), Anthony (1997), Vapnik (1998)
and Anthony and Bartlett (1999)). In the case of empirical risk minimization algo-
rithms this has resulted in the so-called VC and PAC framework. The PAC frame-
work was introduced 1984 in the seminal paper of Valiant (1984) in which he
specializes the general question of convergence of expected risks to the problem
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of learning logic formulas assuming that the hypothesis space � contains the tar-
get formula. Hence all uncertainty is due to the unknown input distribution13 PX.
The restriction to logic formulas also simplified the matter because the number of
hypotheses then becomes finite even though it grows exponentially in the number
of binary features. Since then a number of generalizations have been proposed by
dropping the assumption of finite hypothesis spaces and realizability, i.e., the “or-
acle” draws its target hypothesis h∗ from the hypothesis space � which we use
for learning (see Blumer et al. (1989) and Anthony (1997) for a comprehensive
overview). The latter generalization became known as the agnostic PAC frame-
work (Kearns et al. 1992). Though we have ignored computational complexity and
computability aspects, the PAC model in its pure form is also concerned with these
questions.

Apart from these developments, V. Vapnik and A. Chervonenkis already studied
the general convergence question in the late 1960s. In honor of them, their frame-
work is now known as the VC (Vapnik-Chervonenkis) framework. They showed
that the convergence of expected risks is equivalent to the uniform convergence
of frequencies to probabilities over a fixed set of events (Vapnik and Chervo-
nenkis 1991) (see Vapnik (1998, Chapter 16) for a definition of “nontrivial” hy-
pothesis spaces and Bartlett et al. (1996) for a constructive example). This equiv-
alence is known as the key theorem in learning theory. The answer to a particular
case of this problem was already available through the Glivenko-Cantelli lemma
(Glivenko 1933; Cantelli 1933) which says that the empirical distribution function
of a one dimensional random variable converges uniformly to the true distribution
function in probability. The rate of convergence was proven for the first time in
Kolmogorov (1933). Vapnik and Chervonenkis generalized the problem and asked
themselves which property a set of events must share such that this convergence
still takes place. As a consequence, these sets of events are known as Glivenko-
Cantelli classes. In 1987, M. Talagrand obtained the general answer to the problem
of identifying Glivenko-Cantelli classes (Talagrand 1987). Ten years later this re-
sult was independently rediscovered by Alon et al. (1997). It is worth mentioning
that most of the results in the PAC framework are particular cases of more general
results already obtained by Vapnik and coworkers two decades before.

The main VC and PAC bounds given in equations (4.11) and (4.12) were first
proven in Vapnik and Chervonenkis (1974) and effectively differ by the exponent
at the deviation of ε. In Vapnik (1982, Theorem 6.8) it is shown that this expo-
nent continously varies from 2 to 1 w.r.t. the smallest achievable expected risk

13 In the original work of Valiant he used the term oracle to refer to the PX.
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infh∈� R [h] (see also Lee et al. (1998) for tighter results in the special case of
convex hypothesis spaces). The VC and PAC analysis revealed that, for the case
of learning, the growth function of a hypothesis space is an appropriate a-priori
measure of its complexity. As the growth function is very difficult to compute,
it is often characterized by a one-integer summary known as VC dimension (see
Theorem 4.10 and Sontag (1998) for an excellent survey of the VC dimension).
The first proof of this theorem is due to Vapnik and Chervonenkis (1971) and was
discovered independently in Sauer (1972) and Shelah (1972); the former credits
Erdös with posing it as a conjecture. In order to make the VC dimension a vari-
able of the learning algorithm itself two conceptually different approaches were
presented: By defining an a-priori structuring of the hypothesis space—sometimes
also referred to as a decomposition of the hypothesis space � (Shawe-Taylor et al.
1998)—it is possible to provide guarantees for the generalization error with high
confidence by sharing the confidence among the different hypothesis spaces. This
principle, known as structural risk minimization, is due to Vapnik and Chervo-
nenkis (1974). A more promising approach is to define an effective complexity via
a luckiness function which encodes some prior hope about the learning problem
given by the unknown PZ. This framework, also termed the luckiness framework is
due to Shawe-Taylor et al. (1998). For more details on the related problem of con-
ditional confidence intervals the interested reader is referred to Brownie and Kiefer
(1977), Casella (1988), Berger (1985) and Kiefer (1977). All examples given in
Section 4.3 are taken from Shawe-Taylor et al. (1998). The luckiness framework is
most advantageous if we refine what is required from a learning algorithm: A learn-
ing algorithm � is given a training sample z ∈ �m and a confidence δ ∈ (0, 1],
and is then required to return a hypothesis � (z) ∈ � together with an accuracy
ε such that in at least 1 − δ of the learning trials the expected risk of � (z) is
less than or equal to the given ε. Y. Freund called such learning algorithms self
bounding learning algorithms (Freund 1998). Although, without making explicit
assumptions on PZ, all learning algorithms might be equally good, a self bounding
learning algorithm is able to tell the practitioner when its implicit assumptions are
met. Obviously, a self bounding learning algorithm can only be constructed having
a theoretically justified generalization error bound available.

In the last section of this chapter we presented a PAC analysis for the particular
hypothesis space of linear classifiers making extensive use of the margin as a
data dependent complexity measure. In Theorem 4.25 we showed that the margin,
that is, the minimum real-valued output of a linear classifier before thresholding,
allows us to replace the coarse application of the union bound over the worst case
diversity of the binary-valued function class by a union bound over the number of
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equivalence classes witnessed by the observed margin. The proof of this result can
also be found in Shawe-Taylor and Cristianini (1998, Theorem 6.8) and Bartlett
(1998, Lemma 4). Using a scale sensitive version of the VC dimension known as
the fat shattering dimension (Kearns and Schapire 1994) we obtained bounds on the
expected risk of a linear classifier which can be directly evaluated after learning.
An important tool was Lemma 4.29 which can be found in Alon et al. (1997).
The final step was an application of Lemma 4.31 which was proven in Gurvits
(1997) and later simplified in Bartlett and Shawe-Taylor (1999). It should be noted,
however, that the application of Alon’s result yields bounds which are practically
irrelevant as they require the training sample size to be of order 105 in order to
be nontrivial. Reinterpreting the margin we demonstrated that this margin bound
directly gives a bound on the expected risk involving a function of the margin
distribution. This study closely followed the original papers Shawe-Taylor and
Cristianini (1998) and Shawe-Taylor and Cristianini (2000). A further application
of this idea showed that although not containing any margin complexity, adaptive
margin machines effectively minimize the complexity of the resulting classification
functions. Recently it has been demonstrated that a functional analytic viewpoint
offers ways to get much tighter bounds on the covering number at the scale of
the observed margin (see Williamson et al. (2000), Shawe-Taylor and Williamson
(1999), Schölkopf et al. (1999) and Smola et al. (2000)).
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5 Bounds for Specific Algorithms

This chapter presents a theoretical study of the generalization error of specific algo-
rithms as opposed to uniform guarantees about the expected risks over the whole
hypothesis space. It starts with a PAC type or frequentist analysis for Bayesian
learning algorithms. The main PAC-Bayesian generalization error bound measures
the complexity of a posterior belief by its evidence. Using a summarization prop-
erty of hypothesis spaces known as Bayes admissibility, it is possible to apply the
main results to single hypotheses. For the particular case of linear classifiers we
obtain a bound on the expected risk in terms of a normalized margin on the train-
ing sample. In contrast to the classical PAC margin bound, the new bound is an
exponential improvement in terms of the achieved margin. A drawback of the new
bound is its dependence on the number of dimensions of feature space.

In order to study more conventional machine learning algorithms the chapter
introduces the compression framework. The main idea here is to take advantage
of the fact that, for certain learning algorithms, we can remove training examples
without changing its behavior. It will be shown that the intuitive notion of compres-
sion coefficients, that is, the fraction of necessary training examples in the whole
training sample, can be justified by rigorous generalization error bounds. As an ap-
plication of this framework we derive a generalization error bound for the percep-
tron learning algorithm which is controlled by the margin a support vector machine
would have achieved on the same training sample. Finally, the chapter presents a
generalization error bound for learning algorithms that exploits the robustness of a
given learning algorithm. In the current context, robustness is defined as the prop-
erty that a single extra training example has a limited influence on the hypothesis
learned, measured in terms of its expected risk. This analysis allows us to show that
the leave-one-out error is a good estimator of the generalization error, putting the
common practice of performing model selection on the basis of the leave-one-out
error on a sound theoretical basis.
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5.1 The PAC-Bayesian Framework

Up to this point we have investigated the question of bounds on the expected risk
that hold uniformly over a hypothesis space. This was done due to the assumption
that the selection of a single hypothesis on the basis of the training sample z ∈
�

m is the ultimate goal of learning. In contrast, a Bayesian algorithm results in
(posterior) beliefs PH|Zm=z over all hypotheses. Based on the posterior measure
PH|Zm=z different classification strategies are conceivable (see Subsection 3.1.1
for details). The power of a Bayesian learning algorithm is in the possibility
of incorporating prior knowledge about the learning task at hand via the prior
measure PH. Recently D. McAllester presented some so-called PAC-Bayesian
theorems which bound the expected risk of Bayesian classifiers while avoiding
the use of the growth function and related quantities altogether. Unlike classical
Bayesian analysis—where we make the implicit assumption that the unknown
measure PZ of the data can be computed from the prior PH and the likelihood
PZ|H=h by EH

[
PZ|H=h

]
—these results hold for any distribution PZ of the training

data and thus fulfill the basic desiderata of PAC learning theory. The key idea
to obtain such results is to take the concept of structural risk minimization to its
extreme—where each hypothesis space contains exactly one hypothesis. A direct
application of the multiple testing lemma 4.14 yields bounds on the expected
risk for single hypotheses, which justify the use of the MAP strategy as one
possible learning method in a Bayesian framework. Applying a similar idea to
subsets of the hypothesis space � then results in uniform bounds for average
classifications as carried out by the Gibbs classification strategy. Finally, the use of
a simple inequality between the expected risk of the Gibbs and Bayes classification
strategies completes the list of generalization error bounds for Bayesian algorithms.
It is worth mentioning that we have already used prior beliefs in the application of
structural risk minimization (see Subsection 4.2.3).

5.1.1 PAC-Bayesian Bounds for Bayesian Algorithms

In this section we present generalization error bounds for the three Bayesian
classification strategies presented in Subsection 3.1.1. We shall confine ourselves to
the PAC likelihood defined in Definition 3.3 which, in a strict Bayesian treatment,
corresponds to the assumption that the loss is given by the zero-one loss l0−1. Note,
however, that the main ideas of the PAC-Bayesian framework carry over far beyond
this simple model (see Section 5.4 for further references).
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A Bound for the MAP Estimator

Let us consider any prior measure PH on a hypothesis space � = {hi}∞i=1. Then,
by the binomial tail bound given in Theorem A.116, we know that, for all ε > 0,

∀hi ∈ � : PZm
((

Remp
[
hi ,Z

] = 0
) ∧ (R [hi ] > ε)

)
< exp (−mε) ,

that is, the probability that a fixed hypothesis commits no errors on a sample
of size m, although its expected risk is greater than some prespecified ε, decays
exponentially in ε. This is clearly equivalent to the the following statement

ϒi (z,m, δ) ≡ (
Remp [hi , z] �= 0

) ∨ (R [hi ] ≤ ln
(

1
δ

)
m

)
, (5.1)

which holds with probability at least 1 − δ over the random draw of the training
sample z ∈ �m . Hence, applying Lemma 4.14 with PS = PH we have proven our
first PAC-Bayesian result.

Theorem 5.1 (Bound for single hypotheses) For any measure PH and any mea-
sure PZ, for any δ ∈ (0, 1], with probability at least 1− δ over the random draw of
the training sample z ∈ �m for all hypotheses h ∈ V� (z) that achieve zero train-
ing error Remp [h, z] = 0 and have PH (h) > 0, the expected risk R [h] is bounded
from above by

R [h] ≤ 1

m

(
ln

(
1

PH (h)

)
+ ln

(
1

δ

))
. (5.2)

This bound justifies the MAP estimation procedure because, by assumption of the
PAC likelihood for each hypothesis h not in version space V� (z), the posterior
measure PH|Zm=z (h) vanishes due to the likelihood term. Thus, the posterior mea-
sure PH|Zm=z is merely a rescaled version of the prior measure PH, only positive
inside version space V� (z). Hence, the maximizer �MAP (z) of the posterior mea-
sure PH|Zm=z must be the hypothesis with maximal prior measure PH which is, at
the same time, the minimizer of equation (5.2).

A Bound for the Gibbs Classification Strategy

Considering the Gibbs classification strategy given in Definition 3.8 we see that,
due to the non-deterministic classification function, the expected risk of Gibbsz
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based on PH|Zm=z can be written as

R [Gibbsz] = EXY
[
EH|Zm=z

[
l0−1 (H (X) ,Y)

]] = EH|Zm=z
[
EXY

[
l0−1 (H (X) ,Y)

]]
.

In case of the PAC likelihood we know that, for a given training sample z ∈ �m ,
the posterior probability can only be positive for hypotheses h within version
space V� (z). Let us study the more general case of a Gibbs classification strategy
GibbsH(z) over a subset H (z) ⊆ V� (z) of version space (the original Gibbs
classification strategy Gibbsz is retained by setting H (z) = V� (z)), i.e.,

GibbsH(z) (x) = h (x) , h ∼ PH|H∈H(z) . (5.3)

The expected risk of this generalized classification strategy can then be written as

R
[
GibbsH(z)

] = EH|H∈H(z)
[
EXY

[
l0−1 (H (X) ,Y)

]] = EH|H∈H(z)
[
R
[
H
]]

. (5.4)

The main idea involved in obtaining a bound for this classification strategy is to
split up the expectation value in equation (5.4) at some point ε ∈ (0, 1] and to use
the fact that by the zero-one loss l0−1, for all hypotheses R [h] ≤ 1,

R
[
GibbsH(z)

] ≤ ε · PH|H∈H(z)
[
R
[
H
] ≤ ε

]+ 1 · PH|H∈H(z)
[
R
[
H
]
> ε

]
.

Thus, it is necessary to obtain an upper bound on PH|H∈H(z)
[
R
[
H
]
> ε

]
over the

random draw of the training sample z ∈ �
m . Fully exploiting our knowledge

about the probability of drawing a training sample z such that a hypothesis h in
version space V� (z) has an expected risk R [h] larger than ε, we use equation
(5.1) together with the quantifier reversal lemma (see Lemma C.10 in Appendix
C.7). This yields that, for all β ∈ (0, 1), with probability at least 1 − δ over the
random draw of the training sample z,

∀α ∈ (0, 1] : PH

(H ∈ V� (z)) ∧

R
[
H
]
>

1

(1− β)

ln
(

1
αβδ

)
m︸ ︷︷ ︸

ε


 < α ,

where we replace Remp
[
H, z

] = 0 by H ∈ V� (z) which is true by definition. Note
that we exploit the fact that PZ|H=h = PZ which should not be confused with the
purely Bayesian approach to modeling the data distribution PZ (see Chapter 3). In
the current context, however, we consider the unknown true distribution PZ which
is not influenced by the (algorithmical) model h ∈ � chosen. As by assumption
H (z) ⊆ V� (z) it easily follows that
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PH|H∈H(z)
(
R
[
H
]
> ε

) = PH
(
(H ∈ H (z)) ∧ (R [H] > ε

))
PH (H (z))

<
α

PH (H (z))
.

Finally, choosing α = PH (H (z)) /m and β = 1/m, as well as exploiting the
fact that the function PH|H∈H(z)

[
R
[
H
]
> ε

]
is monotonically increasing in ε, it is

readily verified that, with probability at least 1 − δ over the random draw of the
training sample z ∈ �m ,

R
[
GibbsH(z)

] ≤ ε ·
(

1− 1

m

)
+ 1

m

= 1

m

(
ln

(
1

PH (H (z))

)
+ 2 ln (m)+ ln

(
1

δ

)
+ 1

)
.

Thus we have shown our second PAC-Bayesian result.

Theorem 5.2 (Bound for subsets of hypotheses) For any measure PH and any
measure PZ, for any δ ∈ (0, 1], with probability at least 1 − δ over the random
draw of the training sample z ∈ �

m for all subsets H (z) ⊆ V� (z) such that
PH (H (z)) > 0, the expected risk of the associated Gibbs classification strategy
GibbsH(z) is bounded from above by

R
[
GibbsH(z)

] ≤ 1

m

(
ln

(
1

PH (H (z))

)
+ 2 ln (m)+ ln

(
1

δ

)
+ 1

)
. (5.5)

As expected, the Gibbs classification strategy Gibbsz given in Definition 3.8
minimizes the r.h.s. of equation (5.5). Remarkably, however, the bound on the
expected risk for the Gibbs classification strategy is always smaller than or equal
to the bound value for any single hypothesis. This is seemingly in contrast to
a classical PAC analysis which views the learning process as a selection among
hypotheses based on the training sample z ∈ �m .

The Gibbs-Bayes Lemma

Finally, in order to obtain a PAC-Bayesian bound on the expected risk of the Bayes
classification strategy given in Definition 3.7 we make use of the following simple
lemma.



168 Chapter 5

Lemma 5.3 (Gibbs-Bayes lemma) For any measure PH|Zm=z over hypothesis
space � ⊆ �� and any measure PXY over data space � × � = � , for all
training samples z ∈ �m and the zero-one loss l0−1

R [Bayesz] ≤ |�| · R [Gibbsz] . (5.6)

Proof For any training sample z ∈ �m and associated measure PH|Zm=z consider
the set

Z z = {(x, y) ∈ � | l0−1 (Bayesz (x) , y) = 1} .
For all points (x, y) /∈ Z z in the complement, the r.h.s. of equation (5.6) is
zero and thus the bound holds. For all points (x, y) ∈ Z z the expectation value
EH|Zm=z

[
l0−1 (H (x) , y)

]
(as considered for the Gibbs classification strategy) will

be at least 1
|� | because Bayesz (x) makes, by definition, the same classification

as the majority of the h’s weighted by PH|Zm=z. As there are |�| different classes
the majority has to have a measure of at least 1

|� | . Thus, multiplying this value by
|�| upper bounds the loss of one incurred on the l.h.s. by Bayesz. The lemma is
proved.

A direct application of this lemma to Theorem 5.2 finally yields our third PAC-
Bayesian result.

Theorem 5.4 (Bound for the Bayes classification strategy) For any measure PH

and any measure PZ, for any δ ∈ (0, 1], with probability at least 1 − δ over the
random draw of the training sample z ∈ �m, for all subsets H (z) ⊆ V� (z)
such that PH (H (z)) > 0 the expected risk of the generalized Bayes classification
strategy BayesH(z) given by

BayesH(z) (x)
def= argmax

y∈�
PH|H∈H(z) ({h ∈ � | h (x) = y })

is bounded from above by

R
[
BayesH(z)

] ≤ |�|
m

(
ln

(
1

PH (H (z))

)
+ 2 ln (m)+ ln

(
1

δ

)
+ 1

)
. (5.7)

Again, H (z) = V� (z) minimizes the bound (5.7) and, as such, theoretically
justifies the Bayes optimal decision using the whole of version space without
assuming the “correctness” of the prior. Note, however, that the bound becomes
trivial as soon as PH (V (z)) ≤ exp (−m/ |�|). An appealing feature of these
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bounds is given by the fact that their complexity PH (V� (z)) vanishes in the
most “lucky” case of observing a training sample z such that all hypotheses are
consistent with it.

If we have chosen too “small” a hypothesis space beforehand there might
not even exist a single hypothesis consistent with the training sample; if, on the
other hand, the hypothesis space � contains many different hypothesis the prior
probability of single hypotheses is exponentially small. We have already seen this
dilemma in the study of the structural risk minimization framework (see Subsection
4.2.3).

Remark 5.5 (Evidence and PAC-Bayesian complexity) If we consider the PAC-
likelihood PY|X=x,H=h (y) = Ih(x)=y we see that the posterior belief PH|Zm=z is
a rescaled version of the prior belief PH|Zm=z. More interestingly, the evidence
EH
[
PZm |H=h

]
equals the prior probability of version space PH (V� (z)). Thus, in

the final bound (5.7) the effective complexity is the negated log-evidence, i.e., max-
imizing the log-evidence over a small number of different models is theoretically
justified by a PAC-Bayesian bound (together with Lemma 4.14) for any data dis-
tribution PZ. This result puts the heuristic model selection procedure of evidence
maximization on a sound basis and furthermore removes the necessity of “correct
priors”.

Bounds with Training Errors

It is worth mentioning that the three results presented above are based on the
assertion given in equation (5.1). This (probabilistic) bound on the expected risk of
hypotheses consistent with the training sample z ∈ �m is based on the binomial tail
bound. If we replace this starting point with the corresponding assertion obtained
from Hoeffding’s inequality, i.e.,

ϒi (z,m, δ) ≡ R [hi ]− Remp [hi , z] ≤
√

ln
(

1
δ

)
2m

and perform the same steps as before then we obtain bounds that hold uniformly
over the hypothesis space (Theorem 5.1) or for all measurable subsets H ⊆ � of
hypothesis space (Theorems 5.2 and 5.4). More formally, we obtain the following.

Theorem 5.6 (PAC-Bayesian bounds with training errors) For any measure PH

and any measure PZ, for any δ ∈ (0, 1], with probability at least 1 − δ over the
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random draw of the training sample z ∈ �m, for all hypotheses h ∈ � such that
PH (h) > 0,

R [h] ≤ Remp [h, z]+
√

1

2m

(
ln

(
1

PH (h)

)
+ ln

(
1

δ

))
.

Moreover, for all subsets H (z) ⊆ � such that PH (H (z)) > 0 the expected
risk R

[
GibbsH(z)

]
of the Gibbs classification strategy GibbsH(z) is bounded from

above by

Remp [H (z) , z]+
√

1

2m

(
ln

(
1

PH (H (z))

)
+ 2 ln (m)+ ln

(
1

δ

))
+ 1

m
, (5.8)

where Remp [H (z) , z]
def= EH|H∈H(z)

[
Remp

[
H, z

]]
is the average training error

over all hypotheses in H (z).

Clearly, even in the case of considering hypotheses which incur training errors,
it holds that the bound is smaller for the Gibbs classification strategy than for
any single hypothesis found by the MAP procedure. Moreover, the result on
the expected risk of the Gibbs classification strategy (or the Bayes classification
strategy when using Lemma 5.3) given in equation (5.8) defines an algorithm
which selects a subset H (z) ⊆ � of hypothesis space � so as to minimize the
bound. Note that by the selection of a subset this procedure automatically defines
a principle for inferring a distribution PH|H∈H(z) over the hypothesis space which is
therefore called the PAC-Bayesian posterior.

Remark 5.7 (PAC-Bayesian posterior) The ideas outlined can be taken one step
further when considering not only subsets H (z) ⊆ � of a hypothesis space but
whole measures1 QH|Zm=z. In this case, for each test object x ∈ � we must consider
a (Gibbs) classification strategy GibbsQH|Zm=z that draws a hypothesis h ∈ �

according to the measure QH|Zm=z and uses it for classification. Then, it is possible
to prove a result which bounds the expected risk of this Gibbs classification strategy
GibbsQH|Zm=z uniformly over all possible QH|Zm=z by

EQH|Zm=z

[
Remp

[
H, z

]]+
√

D
(
QH|Zm=z ‖PH

)+ ln (m)+ ln
(

1
δ

)+ 2

2m − 1
, (5.9)

1 With a slight abuse of notation, in this remark we use QH|Zm=z and qH|Zm=z to denote any measure and
density over the hypothesis space based on the training sample z ∈ �m .



171 Bounds for Specific Algorithms

where2

D
(
QH|Zm=z ‖PH

) = EQH|Zm=z

[
ln

(
qH|Zm=z (H)

fH (H)

)]
is known as the Kullback-Leibler divergence between QH|Zm=z and PH. Disregard-
ing the square root and setting 2m − 1 to m (both are due to the application of
Hoeffding’s inequality) we therefore have that the PAC-Bayesian posterior is ap-
proximately given by the measure QH|Zm=z which minimizes

EQH|Zm=z

[
Remp

[
H, z

]]+ D
(
QH|Zm=z ‖PH

)+ ln (m)+ ln
(

1
δ

)+ 2

m
. (5.10)

Whenever we consider the negative log-likelihood as a loss function,

Remp [h, z] = − 1

m

m∑
i=1

ln
(
PZ|H=h ((xi , yi))

) = − 1

m
ln
(
PZm |H=h (z)

)
,

this minimizer equals the Bayesian posterior due to the following argument:

For all training sample sizes m ∈ � we have that

EQH|Zm=z

[
Remp

[
H, z

]] = − 1

m
EQH|Zm=z

[
ln
(
PZm |H=h (z)

)]
.

Dropping all terms which do not depend on QH|Zm=z, equation (5.10) can be
written as

1

m

(
EQH|Zm=z

[
ln

(
1

PZm |H=h (z)

)]
+ EQH|Zm=z

[
ln

(
qH|Zm=z (H)

fH (H)

)])
= 1

m

(
EQH|Zm=z

[
ln

(
qH|Zm=z (H)

PZm |H=h (z) fH (H)

)])
= 1

m

(
EQH|Zm=z

[
ln

(
qH|Zm=z (H)

fH|Zm=z (H)PZm (z)

)])
= 1

m

(
EQH|Zm=z

[
ln

(
qH|Zm=z (H)

fH|Zm=z (H)

)
− ln (PZm (z))

])
.

This term is minimized if and only if qH|Zm=z (h) = fH|Zm=z (h) for all hypotheses
h ∈ �. Thus, the PAC-Bayesian framework provides a theoretical justification
for the use of Bayes’ rule in the Bayesian approach to learning as well as a

2 Note that q and f denote the densities of the measures Q and P, respectively (see also page 331).
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quantification of the “correctness” of the prior choice, i.e., evaluating equation
(5.9) for the Bayesian posterior PH|Zm=z provides us with a theoretical guarantee
about the expected risk of the resulting Bayes classification strategy.

5.1.2 A PAC-Bayesian Margin Bound

Apart from building a theoretical basis for the Bayesian approach to learning,
the PAC-Bayesian results presented can also be used to obtain (training) data-
dependent bounds on the expected risk of single hypotheses h ∈ �. One moti-
vation for doing so is their tightness, i.e., the complexity term − ln (PH (H (z)))
is vanishing in maximally “lucky” situations. We shall use the Bayes classification
strategy as yet another expression of the classification carried out by a single hy-
pothesis h ∈ �. Clearly, this can be done as soon as we are sure that, for a given
subset H (h) ⊆ �, BayesH(h) behaves exactly the same as a single hypothesis
h ∈ � on the whole space � w.r.t. the loss function considered. More formally,
this is captured by the following definition.

Definition 5.8 (Bayes admissibility) Given a hypothesis space � ⊆ �� and a
prior measure PH over � we call a subset H (h) ⊆ � Bayes admissible w.r.t. h
and PH if, and only if,

∀ (x, y) ∈ � : l0−1 (h (x) , y) = l0−1
(
BayesH(h) (x) , y

)
.

For general hypothesis spaces � and prior measures PH it is difficult to verify the
Bayes admissibility of a hypothesis. Nevertheless, for linear classifiers in some

feature space �, i.e., x �→ sign (〈x,w〉) where x def= φ (x) and φ : � → � ⊆ �n
2

(see also Definition 2.2), we have the following geometrically plausible lemma.

Lemma 5.9 (Bayes admissibility for linear classifiers in feature space) For the
uniform measure PW over the unit hypersphere � ⊂ � ⊆ �n

2 each ball �τ (w) =
{v ∈� | ‖w− v‖ < τ } ⊆� is Bayes admissible w.r.t. to its center

c = EW|W∈�r (w)

[
W
]∥∥EW|W∈�r (w)

[
W
]∥∥ .

Proof The proof follows from the simple observation that the center of a ball is
always in the bigger half when bisected by a hyperplane.
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Remarkably, in using a ball �τ (w) rather than w to get a bound on the expected
risk R [hw] of hw we make use of the fact that hw summarizes all its neighboring
classifiers hv ∈ V� (z), v ∈ �τ (w). This is somewhat related to the idea of a
covering already exploited in the course of the proof of Theorem 4.25: The cover
element f̂ ∈ Fγ (x) carries all information about the training error of all the
covered functions via its real-valued output referred to as the margin (see page
144 for more details).

In this section we apply the idea of Bayes admissibility w.r.t. the uniform
measure PW to linear classifiers, that is, we express a linear classifier x �→
sign (〈x,w〉) as a Bayes classification strategy Bayes�τ (w) over a subset �τ (w) of
version space V (z) such that PW (�τ (W)) can be lower bounded solely in terms
of the margin. As already seen in the geometrical picture on page 57 we need to
normalize the geometrical margin γi (w) of a linear classifier hw by the length ‖xi‖
of the i th training point in order to ensure that a ball of the resulting margin is
fully within version space V (z). Such a refined margin quantity �z (w) offers the
advantage that no assumption about finite support of the input distribution PX needs
to be made.

Theorem 5.10 (PAC-Bayesian margin bound) Suppose � ⊆ �n
2 is a given fea-

ture space of dimensionality n. For all probability measures PZ, for any δ ∈ (0, 1],
with probability at least 1−δ over the random draw of the training sample z ∈ �m,
if we succeed in correctly classifying m samples z with a linear classifier fw achiev-
ing a positive normalized margin �z (w),

�z (w)
def= min

i=1,...,m

yi 〈xi ,w〉
‖w‖ · ‖xi‖ > 0 , (5.11)

then the generalization error of hw is bounded from above by

R [hw] ≤ 2

m

(
d ln

(
1

1−√1− �2
z (w)

)
+ 2 ln (m)+ ln

(
1

δ

)
+ 2

)
. (5.12)

where d = min (m, n).

The proof is given in Appendix C.8. The most appealing feature of this new margin
bound is, of course, that in the case of maximally large margins, i.e., �z (w) = 1,
the first term vanishes and the bound reduces to

2

m

(
2 ln (m)+ ln

(
1

δ

)
+ 2

)
.
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Here, the numerator grows logarithmically whilst the denominator grows linearly
hence giving a rapid decay to zero. Moreover, in the case of

�z (w) >

√
2 exp

(
−1

2

)
− exp (−1) ≈ 0.91

we enter a regime where − ln(1 − √
1− �2

z (w)) < 1
2 and thus the troublesome

situation of d = m is compensated for by a large observed margin. The situation
d = m occurs if we use kernels which map the data into a high dimensional space
as with the RBF kernel (see Table (2.1)).

Example 5.11 (Normalizing data in feature space) Theorem 5.10 suggests the
following learning algorithm: Given a version space V (z) find the classifier w
that maximizes �z (w). This algorithm, however, is given by the support vector
machine only if the training data in feature space � are normalized. In Figure 5.1
we plotted the expected risks of support vector machine solutions (estimated over
100 different splits of the datasets3 thyroid (m = 140, m test = 75) and sonar

(m = 124, m test = 60)) with (dashed line) and without normalization (solid line)
as a function of the polynomial degree p of a complete polynomial kernel (see
Table 2.1). As suggested by Theorem 5.10 in almost all cases the normalization
improved the performance of the support vector machine solution at a statistically
significant level.

Remark 5.12 (Sufficient training sample size) It may seem that this bound on
the expected risk of linear hypotheses in terms of the margin is much tighter than
the PAC margin bound presented in Theorem 4.32 because its scaling behavior
as a function of the margin is exponentially better. Nevertheless, the current result
depends heavily on the dimensionality n ∈ � of the feature space � ⊆ �n

2 whereas
the result in Theorem 4.32 is independent of this number. This makes the current
result a practically relevant bound if the number n of dimensions of feature space
� is much smaller than the training sample size. A challenging problem is to use
the idea of structural risk minimization. If we can map the training sample z ∈ �m

in a low dimensional space and quantify the change in the margin solely in terms
of the number n of dimensions used and a training sample independent quantity,
then we can use the margin plus an effective small dimensionality of feature space
to tighten the bound on the expected risk of a single classifier.

3 These datasets are taken from the UCI Benchmark Repository found at http://www.ics.uci.edu/~mlearn.
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Figure 5.1 Expected risks of classifiers learned by a support vector machine with (solid
line) and without (dashed line) normalization of the feature vectors xi . The error bars
indicate one standard deviation over 100 random splits of the datasets. The plots are
obtained on the thyroid dataset (left) and the sonar dataset (right).

Remark 5.13 (“Risky” bounds) The way we incorporated prior knowledge into
this bound was minimal. In fact, by making the assumption of a uniform measure
PW on the surface of a sphere we have chosen the most uninformative prior pos-
sible. Therefore our result is solution independent; it is meaningless where (on the
unit sphere) the margin �z (w) is observed. Remarkably, the PAC-Bayesian view
offers ways to construct “risky” bounds by putting much more prior probability on
a certain region of the hypotheses space �. Moreover, we can incorporate unla-
beled data much more easily by carefully adjusting our prior PW.

5.2 Compression Bounds

So far we have have studied uniform bounds only; in the classical PAC and VC
framework we bounded the uniform convergence of training errors to expected
risks (see Section 4.2.1). In the luckiness framework we bounded the expected
risk uniformly over the (random) version space (see Theorem 4.19). In the PAC
Bayesian framework we studied bounds on the expected risk of the Gibbs classifi-
cation strategy uniformly over all subsets of hypothesis (version) space (Theorem
5.2 and 5.6), or possible posterior measures (equation (5.9)). We must recall, how-
ever, that these results are more than is needed. Ultimately we would like to bound
the generalization error of a given algorithm rather than proving uniform bounds
on the expected risk. In this section we will present such an analysis for algorithms
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that can be expressed as so-called compression schemes. The idea behind compres-
sion schemes stems from the information theoretical analysis of learning where the
action of a learning algorithm is viewed as summarization or compression of the
training sample z ∈ �m into a single function. Since the uncertainty is only within
the m classes y ∈ �m (given the m objects x ∈ �m) the protocol is as follows: The
learning algorithm gets to know the whole training sample z = (x, y) ∈ (� × �)m

and must transfer d bits to a classification algorithm that already knows the m train-
ing objects x ∈ �m . The requirement on the choice of d ∈ � is that the classifi-
cation algorithm must be able to correctly classify the whole training sample by
just knowing the d bits and the objects x. If this is possible than the sequence y of
classes must contain some redundancies w.r.t. the classification algorithm’s ability
to reproduce classes, i.e., the hypothesis space � ⊆ �� chosen. Intuitively, a small
compression coefficient d/m should imply a small expected risk of the classifica-
tion strategy parameterized by the d bits. This will be shown in the next subsec-
tion. In the subsequent subsection we apply the resulting compression bound to the
perceptron learning algorithm to prove the seemingly paradoxical result that there
exists an upper bound on its generalization error driven by the margin a support
vector machine would have achieved on the same training sample. This example
should be understood as an example of the practical power of the compression
framework rather than a negative result on the margin as a measure of the effective
complexity of single (real-valued) hypotheses.

5.2.1 Compression Schemes and Generalization Error

In order to use the notion of compression schemes for bounds on the generaliza-
tion error R [�, z] of a fixed learning algorithm � : ∪∞m=1�

m → � ⊆ �� we
are required to formally cast the latter into a compression framework. The learning
algorithm � must be expressed as the composition of a compression and recon-
struction function. More formally this reads as follows:

Definition 5.14 (Compression scheme) Let the set Id,m ⊂ {1, . . . ,m}d comprise
of all index vectors of size exactly d ∈ � ,

Id,m =
{
(i1, . . . , id) ∈ {1, . . . ,m}d | i1 �= · · · �= id

}
.

Given a training sample z ∈ �m and an index vector i ∈ Id,m, let zi be the
subsequence indexed by i,

zi
def= (

zi1 , . . . , zid

)
.
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The algorithm � : ∪∞m=1�
m → � is said to be a compression scheme of size

d if, and only if, there exists a compression function �d : ∪∞i=d�
i → Id,m and

a reconstruction function �d : �d → �� whose composition yields the same
hypothesis as � (z), i.e.,

∀z ∈ �m : � (z) = �d

(
z�d (z)

)
. (5.13)

The compression scheme is said to be permutation invariant if, and only if, the
reconstruction function �d is permutation invariant.

Before we proceed to present a generalization error bound for compression
schemes we will try to enhance the understanding of this formal definition by
casting a few of the algorithms presented in this book into this definition.

Example 5.15 (Perceptron learning algorithm) In the case of the perceptron
learning algorithm given in Algorithm 1 we see that the removal of all training
examples (xi , yi) ∈ z that were never used to update the weight vector would not
change the algorithm’s solution because the algorithm decides on an update using
only the current weight vector wt and the current example (xi , yi) ∈ z. Hence
we could run the perceptron learning algorithm to track only the indices i of all
training examples used in an update step (compression function �|i|). Afterwards
we run the perceptron learning algorithm again on the subsample zi (reconstruc-
tion function �|i|) which would give the same solution as running the algorithm on
the full training sample z ∈ �m. Thus, by virtue of equation (5.13) the perceptron
learning algorithm is a compression scheme.

Example 5.16 (Support vector learning) In order to see that support vector
learning fits into the compression framework we notice that, due to the station-
ary conditions, at the solutions α̂ ∈ �

m , ξ̂ ∈ �
m to the mathematical programs

presented in Section B.5

∀i ∈ {1, . . . ,m} : α̂i

(
yi

〈
xi , ŵ

〉− 1+ ξ̂i

)
= 0 . (5.14)

Now imagine we run the support vector algorithm and find all training samples
indices i such that yi

〈
xi , ŵ

〉 = 1− ξ̂i where (xi , yi) ∈ z (compression function �|i|),
that is, all patterns that lie directly on the hyperplanes

{
x ∈ � ∣∣ 〈x, ŵ

〉 = ±1
}

(if

ξ̂i = 0) and within the margin or even on the wrong side of the hyperplane (if
ξ̂i > 0). If we now rerun the support vector learning algorithm on zi we know that
we obtain the same weight vector ŵ =∑m

i=1 α̂i yixi because, by virtue of equation
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(5.14), the left-out training examples must have had expansion coefficients of zero.
Further, the ordering of zi is irrelevant. As a consequence, the support vector
learning algorithm is a permutation invariant compression scheme.

It is interesting to note that the relevance vector machine algorithm (see Section
3.3) is not expressible as a compression scheme. Consider that we conduct a first
run to select the training examples which have non-zero expansion coefficients in
the final expansion. A rerun on this smaller subset of the training sample would not
obtain the same classifier because the computation of the few nonzero expansion
coefficients αi uses all the m classes y ∈ �m and examples x ∈ �m given (see
Algorithm 7).

In the following we confine ourselves to the zero-one loss l0−1
(
ŷ, y

) = Iŷ �=y .
As mentioned earlier this is not a severe restriction and can be overcome by using
different large deviation bounds (see Subsection A.5.2). Let us start with the simple
PAC case, that is, we assume that there exists a hypothesis h∗ ∈ �� such that
PY|X=x (y) = Ih∗(x)=y . Then, for a given compression scheme of size d ≤ m we
will bound the probability of having training samples z ∈ �m such that the training
error Remp[�d(z�d (z)), z] = 0 but the expected risk R[�d(z�d (z))] of the function
learned is greater than ε. This probability can be upper bounded by the sum of the
probabilities that the reconstruction function � (zi) returns a hypothesis with this
property over the choice of i ∈ Id,m , i.e.,

PZm

((
Remp

[
�d

(
Z�d (Z)

)
,Z
] = 0

) ∧ (R [�d

(
Z�d (Z)

)]
> ε

))
≤ PZm

(∃i ∈ Id,m :
(
Remp

[
�d (Zi) ,Z

] = 0
) ∧ (R [�d (Zi)

]
> ε

))
≤
∑

i∈Id,m

PZm

((
Remp

[
�d (Zi) ,Z

] = 0
) ∧ (R [�d (Zi)

]
> ε

))
. (5.15)

Clearly, for any i ∈ Id,m , a correct classification of the whole training sample
z ∈ �m implies a correct classification of the subset

(
z \ (zi1 , . . . , zid

)) ∈ �m−d of
training samples not used. Moreover, using the fact that PZm is a product measure,
the single summands in (5.15) are upper bounded by

EZd

[
PZm−d |Zd=z

((
Remp

[
�d (z) ,Z

] = 0
) ∧ (R [�d (z)] > ε)

)]
.

Note that in this expression the symbol Z denotes the m − d random training ex-
amples whereas the symbol z ∈ �d denotes the d training examples used to re-
construct the hypothesis. Since all the m − d training examples Z are assumed
to be drawn iid from PZ we know that the innermost probability cannot exceed
(1− ε)m−d due to the binomial tail bound. Further, we know that the number of
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different index vectors i ∈ Id,m equals4
(m

d

)
d! which finally gives that the proba-

bility in (5.15) is strictly less than
(m

d

)
d! (1− ε)m−d . This statement is equivalent

to the following assertion ϒi (z,m, δ) that holds with probability at least 1 − δ

over the random draw of the training sample z ∈ �m for all compression schemes
(�i ,�i) of size i

(
Remp [�i (z,�i (z)) , z] �= 0

) ∨ (R [�i (z,�i (z))] ≤
ln
((m

i

)
i !) + ln

(
1
δ

)
m − i

)
.

Using Lemma 4.14 with uniform PS over the numbers i ∈ {1, . . . ,m} we have
proven the following theorem.

Theorem 5.17 (PAC compression bound) Suppose we are given a fixed learning
algorithm � : ∪∞m=1�

m → � ⊆ �� which is a compression scheme. For any
probability measure PZ and any δ ∈ (0, 1], with probability at least 1 − δ over
the random draw of the training sample z ∈ �m, if Remp [� (z) , z] = 0 and � (z)
corresponds to a compression scheme of size d, the expected risk R [� (z)] of the
function � (z) ∈ � is bounded from above by

R [� (z)] ≤ 1

m − d

(
ln

((
m

d

)
d!
)
+ ln (m)+ ln

(
1

δ

))
.

Furthermore, if � is a permutation invariant compression scheme, then

R [� (z)] ≤ 1

m − d

(
ln

((
m

d

))
+ ln (m)+ ln

(
1

δ

))
. (5.16)

In order to understand the full power of this theorem we note that according to
Theorem A.105 for all d ∈ {1, . . . ,m}, (m

d

)
<
∑d

i=0

(m
i

)
<
(

em
d

)d
which shows

that for permutation invariant compression schemes the generalization error bound
(5.16) can be written as5

R [� (z)] ≤ 2

m

(
d ln

(em

d

)
+ ln (m)+ ln

(
1

δ

))
.

Disregarding the improved constants, this is the same bound as obtained in the
PAC framework (see equation (4.21) and (4.19)) with the important difference
that the number d of examples used is not known a-priori but depends on the

4 Note that in the case of permutation invariant compression schemes the factor of d! vanishes.
5 Note that this result is trivially true for d > m/2; in the other case we used 1/ (m − d) ≤ 2/m.
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training sample z ∈ �m and learning algorithm �. Since we no longer consider
the empirical risk minimization algorithm we see that it is possible to obtain
guarantees on the generalization error R [�] even if the hypothesis space � has
infinite VC dimension ϑ�. It is worth mentioning that the result as it stands has
an intuitive interpretation: If we view d/m as a (data dependent) compression
coefficient then Theorem 5.17 justifies the statement that a small compression
coefficient guarantees a small expected risk of the function learned.

From this derivation we see that the procedure can readily be generalized to the
case of a lossy compression scheme of size d, that is, the hypothesis reconstructed
by �d(z�d (z)) ∈ � still commits some training errors on the given training sample
z. If we fix the maximum number of training errors committed to q ∈ {1, . . . ,m}
we are interested in bounding the probability of having training samples z ∈ �m

such that the training error Remp[�d(z�d (z)), z] ≤ q
m but with the expected risk

R[�d(z�d (z))] of the function learned greater than ε. Using the same technique as
in the PAC case we obtain

PZm

((
Remp

[
�d

(
Z�d (Z)

)
,Z
] ≤ q

m

)
∧ (R [�d

(
Z�d (Z)

)]
> ε

))
≤
∑

i∈Id,m

PZm

((
Remp

[
�d (Zi) ,Z

] ≤ q

m

)
∧ (R [�d (Zi)

]
> ε

))
.

Again, for any i ∈ Id,m we know that if �d (zi) commits no more than q errors
on z, then the number of errors committed on the subset (z \ zi) ∈ �m−d cannot
exceed q. Hence, any summand in the last expression is upper bounded by

EZd

[
PZm−d |Zd=z

((
Remp

[
�d (z) ,Z

] ≤ q

m − d

)
∧ (R [�d (z)] > ε)

)]
.

Using Hoeffding’s inequality for any fixed sample z ∈ �
d we know that the

innermost probability cannot exceed exp
(−2 (m − d) (ε − q/ (m − d))2). By an

application of the union bound over all the
(m

d

)
d! different index vectors i ∈ Id,m

we conclude that the following statement ϒi,q (z,m, δ) holds, with probability at
least 1 − δ over the random draw of the training sample z ∈ �m , for all lossy
compression schemes of size i and maximal number of training errors q

(
Remp [h z, z] >

q

m

)
∨
R [h z] ≤ q

m − d
+
√

ln
((m

d

)
d!) + ln

(
1
δ

)
2 (m − d)

 ,
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where we used the shorthand notation h z
def= �i(z�i (z)). Combining the m2 different

statements for all the possible values of i ∈ {1, . . . ,m} and q ∈ {1, . . . ,m} and
using Lemma 4.14 with uniform PS we have proven the following theorem.

Theorem 5.18 (Lossy compression bound) Suppose we are given a fixed learn-
ing algorithm � : ∪∞m=1�

m → � ⊆ �� which is a compression scheme. For any
probability measure PZ and any δ ∈ (0, 1], with probability at least 1− δ over the
random draw of the training sample z ∈ �m, if� (z) corresponds to a compression
scheme of size d, the expected risk R [� (z)] of the function � (z) ∈ � is bounded
from above by

R [� (z)] ≤ m

m − d
Remp [� (z) , z]+

√
ln
((m

d

)
d!)+ 2 ln (m)+ ln

(
1
δ

)
2 (m − d)

.

Furthermore, if � is a permutation invariant compression scheme, then

R [� (z)] ≤ m

m − d
Remp [� (z) , z]+

√
ln
((m

d

))+ 2 ln (m)+ ln
(

1
δ

)
2 (m − d)

.

This result and Theorem 5.17 constitute the basic results of the compression frame-
work. One of the most intriguing features of these inequalities is that, regardless
of any a-priori complexity measure (e.g., VC dimension ϑ� or the size |�| of the
hypothesis space �), they will always attain nontrivial values, provided that the
number d of training examples used is at least as small as half the training sample
size. To some extent, this is similar reasoning to that used in the luckiness frame-
work. The difference, however, is that in the current framework we have considered
what we are actually interested in—the expected risk R [� (z)] of the hypothe-
sis � (z) ∈ � learned—rather than providing uniform bounds over version space
V� (z) which introduce additional technical difficulties such as probable smooth-
ness (see Definition 4.18).

Remark 5.19 (Ghost sample) There exists an interesting relationship between the
technique of symmetrization by a ghost sample (see page 124) used in the PAC/VC
framework and the compression framework. Since we consider only the expected
risk of the hypothesis learned by a fixed learning algorithm and assume that this
hypothesis can be reconstructed from d % m training examples, the remaining m−
d training examples constitute a ghost sample on which the hypothesis succeeds
(lossless compression) or commits a small number q of errors (lossy compression).
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Hence, by exploiting the high compressibility of the training sample, there is
no need for an extra ghost sample. In contrast, in the PAC/VC framework we
cannot exploit the high compression coefficient of the hypothesis learned since we
consider all consistent hypotheses uniformly. Furthermore, in this case the analysis
is irrespective of the learning algorithm used.

5.2.2 On-line Learning and Compression Schemes

One of the most interesting applications of the compression framework is in the
area of on-line learning algorithms. Broadly speaking, an on-line algorithm is a
learning algorithm that proceeds in trials. In each trial the algorithm is presented
with an unlabeled example x j ∈ x and produces a prediction h j

(
x j

)
using the

current hypothesis h j ∈ �. It then receives a class y j ∈ y for the example
x j ∈ x and incurs a mistake if the label differs from the current hypothesis’
prediction. After each revealed class y j the algorithm is allowed to change the
current hypothesis h j . More formally this reads as follows.

Definition 5.20 (On-line learning algorithm) Given an input space � , a finite
output space � and a hypothesis space � ⊆ �� , an on-line algorithm �� for
� can be written as

�� (z)
def= �

(
y j|j|, x j|j|,�

(· · ·� (y j2, x j2,�
(
y j1, x j1, h0

(
x j1

)) (
x j2

))) (
x j|j|
))

,

where � : � × � × � → � is an update function which maps the current
class y j ∈ � , the current object x j ∈ � and the prediction of the current
hypothesis h j ∈ � to a (potentially) new hypothesis h j+1. The index vector
j = ( j1, j2, . . .) ∈ ∪∞i=1 {1, . . . ,m}i determines the deterministic order of the
training examples. Note that it is possible to present the same training example
(xi , yi ) ∈ z several times.

An example of an on-line learning algorithm is the perceptron learning algorithm;
it starts at the hypothesis h0 : x �→ sign (〈x, 0〉) and, in each step of the algorithm,
it checks whether the current weight vector correctly classifies the new training
object. The current hypothesis is only changed if a mistake occurs. Such class of
algorithms deserves special attention for our current analysis.

Definition 5.21 (Mistake-driven algorithm) An on-line learning algorithm ��

is mistake-driven if the update function only changes the hypothesis following
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mistakes, i.e.,

∀x ∈ � : ∀y ∈ � : ∀h ∈ � : (y = h (x)) ⇒ � (y, x, h (x)) = h .

In the study of on-line learning algorithms it is particularly important to know its
performance, measured by the number of steps until convergence.

Definition 5.22 (Mistake bound) Given a hypothesis space� ⊆ �� and an input
sequence x ∈ �m let us assume that the sequence y ∈ �m of classes is obtained
by yi = h (xi ) for some hypothesis h ∈ � (also called the target concept). The
function M� : �m → � is called a mistake bound for the on-line learning
algorithm � if it bounds the number of mistakes � incurs on z = (x, y) ∈ �m

for any ordering j ∈ ∪∞i=1 {1, . . . ,m}i .

Since a mistake-driven on-line learning algorithm � effectively disregards the
training examples on which it never makes a mistake we are able to cast it into
a compression framework. In fact, if we imagine we run the mistake-driven algo-
rithm � on the training sample z ∈ �m , only tracking the indices i on which it
makes a mistake (compression function �i) and re-run the on-line learning algo-
rithm on the reduced training sample6 zi (reconstruction function �|i|) we obtain
by definition the same final hypothesis. Thus we have the following theorem.

Theorem 5.23 (Mistake bounds into generalization error bounds) Suppose we
are given a mistake-driven on-line learning algorithm � for � ⊆ �� together
with a mistake bound M� : �m → � . For any probability measure PZ and any
δ ∈ (0, 1], with probability at least 1 − δ over the random draw of the training
sample z = (x, y) ∈ �m, if there exists a hypothesis h ∈ � such that yi = h (xi )

then the expected risk R [� (z)] of the function � (z) is bounded from above by

R [� (z)] ≤ 2

m

(
M� (z) · ln (em)+ ln (m)+ ln

(
1

δ

))
. (5.17)

We present two applications of Theorem 5.23 which demonstrate the power of
this simple consideration by reproducing results already obtained (with much more
effort) in the VC framework.

6 Here we assume that, in a given ordering, all indices to removed examples have been dropped.
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Example 5.24 (Perceptron learning algorithm) Let us consider again the per-
ceptron learning algorithm given at page 321. This algorithm is by definition a
mistake-driven algorithm having a mistake bound

M� (z) = max
w∈�

(
maxxi∈x ‖φ (xi )‖

γz (w)

)
=
(

maxxi∈x ‖φ (xi)‖
γz (wSVM)

)2

as given in Theorem 2.31. Here, x def= φ (x) and φ : � → � ⊆ �n
2 is some mapping

of the objects x ∈ � into a feature space � (see also Definition 2.2). Remarkably,
this mistake bound is dominated by the margin a support vector machine would
have achieved on the same training sample z. Substituting this result directly into
equation (5.17) shows that we can give a tighter generalization error bound for
the perceptron learning algorithm by studying its properties than for the support
vector machine algorithm when using the uniform bounds presented in the last
chapter (see Section 4.4 and Theorem 4.32).

Example 5.25 (Halving algorithm) For finite hypothesis spaces �, there exists a
mistake-driven learning algorithm which achieves a minimal mistake bound. This
on-line learning algorithm is called the halving algorithm and proceeds as follows:

1. Initially, all hypotheses h ∈ � are stored in the set C = � of consistent
classifiers.

2. Given a new training object xi ∈ x the class ŷ ∈ � which receives the majority
of votes from all consistent classifiers h ∈ C is predicted, that is,

ŷ = argmax
y∈�

|{h ∈ C | h (x) = y }| . (5.18)

3. In the case of a mistake, i.e., yi �= ŷ all hypotheses in C which are inconsistent
are removed, so, C ← C \ {h ∈ C | h (xi ) �= yi }.
4. If all training examples are correctly classified, it outputs any hypothesis h ∈ C
from the final set of consistent classifiers.

Clearly, this is a mistake-driven procedure. Further, if � has only two classes the
maximum number of mistakes this algorithm incurs is ld (|�|) because, at each
mistake, the set C is at least halved (if not, then (5.18) would not have incurred a
mistake). Plugging ld (|�|) for M� (z) into equation (5.17) we see that we have
recovered the basic VC bound for finite hypothesis spaces (see Theorem 4.6). Since
the halving algorithm outputs any consistent function, the resulting bound would
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hold uniformly over version space C = V� (z). Interestingly, by construction this
is also true for the VC bound.

5.3 Algorithmic Stability Bounds

In this last section we present a very recently developed method for studying
the generalization error of learning algorithms. In contrast to the compression
framework we now do not need to enforce the existence of compression and
reconstruction functions. Instead, we take advantage of the robustness of a learning
algorithm. The robustness of a learning algorithm � is a measure of the influence
of an additional training example (x̃, ỹ) ∈ � on the learned hypothesis � (z) ∈ �.
Here, the influence is quantified in terms of the loss achieved at any (potential) test
object x ∈ � . We observe that a robust learning algorithm guarantees that both the
difference in expected risks and empirical risks of the function learned is bounded
even if we replace one training example by its worst counterpart. This observation
is of great help when using McDiarmid’s inequality given in Theorem A.119—
a large deviation result perfectly suited for the current purpose. This inequality
bounds the probability that a function of the training sample z ∈ �m (the difference
R [� (z)] − Remp [� (z) , z] of the expected and empirical risk of the function
learned from the training sample z) deviates from its expected value in terms of
the maximum deviation between the function’s value before and after one example
is changed. In fact, the definition of robustness of a learning algorithm is mainly
chosen so as to be able to apply this powerful inequality to our current problem.

5.3.1 Algorithmic Stability for Regression

Because of its simplicity we shall start with the regression estimation case, that is,
we consider a training sample z = (x, t) ∈ (� × �)m drawn iid from an unknown
distribution PZ = PT|XPX. In this case the hypotheses are given by real-valued
functions f ∈ � where � ⊆ �

� . Further, the loss function l : � × � → �

becomes a function of predicted real values t̂ and observed real values t (see, for
example the squared loss defined on page 82). Before proceeding we introduce
some abbreviations for the sake of notational simplicity. Given a sample z ∈ �m ,
a natural number i ∈ {1, . . . ,m} and an example z ∈ � let

z\i
def= (z1, . . . , zi−1, zi+1, . . . , zm) ∈ �m−1 ,
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zi↔z
def= (z1, . . . , zi−1, z, zi+1, . . . , zm) ∈ �m ,

be the sample with the i th element deleted or the i th element replaced by z,

respectively. Whenever the learning algorithm is clear from context, we use f z
def=

� (z). Then the notion of robustness of a learning algorithm is formally defined as
follows.

Definition 5.26 (Uniform stability) A learning algorithm � : ∪∞m=1�
m → � is

said to be βm–stable w.r.t. the loss function l : � × � → � if the following holds
for all i ∈ {1, . . . ,m}
∀z ∈ �m : ∀ (x, t) ∈ � : ∣∣l ( f z (x) , t)− l

(
f z\i (x) , t

)∣∣ ≤ βm .

It is worth pointing out that βm–stability of a learning algorithm � implies ro-
bustness in the more usual sense of measuring the influence of an extra training
example

(
x̃, t̃

) ∈ � . This is formally expressed in the following theorem.

Theorem 5.27 (Robustness of βm–stable algorithms) Suppose we are given a
βm–stable learning algorithm � : ∪∞m=1�

m → � w.r.t. the loss function
l : � × � → �. Then, for any training sample z ∈ �m, any z̃ ∈ � , any (x, t) ∈ �
and all i ∈ {1, . . . ,m}∣∣l ( f z (x) , t)− l

(
f zi↔z̃ (x) , t

)∣∣ ≤ 2βm .

Proof First, we notice that that l ( f z (x) , t)− l
(

f zi↔z̃ (x) , t
)

equals(
l ( f z (x) , t)− l

(
f z\i (x) , t

))︸ ︷︷ ︸
a

+ (l ( f z\i (x) , t
)− l

(
f zi↔z̃ (x) , t

))︸ ︷︷ ︸
b

.

From this, the result follows by the triangle inequality applied to a and b and the
fact that the absolute value of a and b is by definition upper bounded by βm .

Note that the value of βm depends on the training sample size m, so, for larger
training samples the influence of a single example (x, t) ∈ � should be decreasing
toward zero. We will call an algorithm “stable” if the decrease in βm is of order
one, limm→∞ βm · m−1 = 0. In order to compute values of βm for a rather large
class of learning algorithms it is useful to introduce the following concept.
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Definition 5.28 (Lipschitz continuous loss function) A loss function l : �×� →
� is said to be Lipschitz continuous (in its first argument) if

∀t̂ ∈ � : ∀t̃ ∈ � : ∀t ∈ � : ∣∣l (t̂, t
) − l

(
t̃, t
)∣∣ ≤ Cl ·

∣∣t̂ − t̃
∣∣ .

The value Cl ∈ �+ is called the Lipschitz constant of the loss function l.

Thus, whenever we are given a Lipschitz continuous loss function we are able to
use the difference

∣∣ f z (x)− f z\i (x)
∣∣ to bound the difference of the losses incurred

by two functions f z ∈ � and f z\i ∈ � at any test object x ∈ � . Let us give a few
examples of Lipschitz continuous loss functions which we have already used in the
consideration of learning algorithms for the regression estimation problem in Part
I of this book.

Example 5.29 (Soft margin loss) If we consider the linear soft margin loss func-
tion given in equation (2.47), namely llin

(
t̂, y

) = max
{
1− yt̂, 0

}
where y ∈

{−1,+1}, we see that∣∣llin
(
t̂, y

)− llin
(
t̃, y

)∣∣ ≤ ∣∣yt̃ − yt̂
∣∣ = ∣∣y (t̃ − t̂

)∣∣ = ∣∣t̂ − t̃
∣∣ .

This shows that llin is Lipschitz continuous with the Lipschitz constant Cllin = 1.

Example 5.30 (ε–insensitive loss) A closer inspection of the ε–insensitive loss
function (2.51), i.e., lε

(
t̂, t
) = max

(∣∣t − t̂
∣∣− ε, 0

)
, which is used for regression

estimation with support vector machines, shows that this loss function is Lipschitz
continuous with the Lipschitz constant Clε = 1 because∣∣lε (t̂, t

)− lε
(
t̃, t
)∣∣ ≤ ∣∣∣∣t − t̂

∣∣− ∣∣t − t̃
∣∣∣∣ ≤ ∣∣t̃ − t̂

∣∣ .
Using the concept of Lipschitz continuous loss functions we can upper bound the
value of βm for a rather large class of learning algorithms using the following
theorem (see also Subsection 2.2.2).

Theorem 5.31 (Stability of regularized risk minimization algorithms) Let l :
� × � → � be a convex Lipschitz continuous function in its first argument with
Lipschitz constant Cl . Given a reproducing kernel Hilbert space � ⊆ �

� with
kernel k : � ×� → �, any algorithm � : ∪∞m=1�

m → � which can be written as

� (z) = argmin
f ∈�

1

m

∑
(xi ,ti )∈z

l ( f (xi ) , ti )+ λ ‖ f ‖2 , (5.19)
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where λ > 0 is βm–stable with respect to l with

βm ≤ C2
l κ

2

2λm
,

where κ = supx∈� k (x, x). Note that, in this formulation, the value m is fixed for
any training sample z.

The proof of this result is given in Appendix C.9. By the generality of expression
(5.19) it is possible to cast most of the learning algorithms presented in Part I of
this book into this framework. Now, in order to obtain generalization error bounds
for βm–stable learning algorithms � we proceed as follows.

1. Since we aim to use McDiarmid’s inequality we define a random variable g (Z)
which measures the difference of the expected risk R [ f z] of the function f z and
some observable empirical quantity such as the training error Remp [ f z, z] or the
leave-one-out error Rloo [�, z] (see Definition 2.35). An example of g (Z) might be
g (Z) = R [ fZ]− Remp

[
fZ,Z

]
.

2. We then need to upper bound the expectation of g over the random draw of
training samples z ∈ �m . This is because we are only interested in the probability
that g (Z) will be larger than some prespecified ε.

3. Another consequence of the usage of McDiarmid’s inequality is that we need
an upper bound on

sup
z∈�m ,z̃∈�

|g (z)− g (zi↔z̃)| ,

which should preferably not depend on i ∈ {1, . . . ,m}.
In Appendix C.9 we have carried out these steps to obtain generalization error
bounds both in terms of the training error as well as of the leave-one-out error.
This is summarized in the following theorem.

Theorem 5.32 (Algorithmic stability bound for regression estimation) Suppose
we are given a βm–stable learning algorithm�w.r.t. a loss function l : �×� → �.
For all probability measures PZ = PXT such that

PZm+1

(
l
(

f(Z1,...,Zm) (Xm+1) ,Tm+1
) ∈ [0, b]

) = 1 ,



189 Bounds for Specific Algorithms

for any ε > 0 we have

PZm
(
R [ fZ] > Remp

[
fZ,Z

]+ ε + 2βm

)
< exp

(
− mε2

2 (4mβm + b)2

)
,

PZm
(
R [ fZ] > Rloo

[
�,Z

]+ ε + βm

)
< exp

(
− mε2

2 (2m (βm + βm−1)+ b)2

)
.

At first we note that these two bounds are essentially the same, i.e., the additive
correction is ≈ βm and the decay of the probability is �(exp(−ε2/mβ2

m)). This
comes as a slight surprise as VC theory appears to indicate that the training er-
ror Remp is only a good indicator of the generalization error of an algorithm when
the hypothesis space is of small VC dimension (see Theorem 4.7). In contrast the
leave-one-out error disregards VC dimension and is an almost unbiased estima-
tor of the expected generalization error of an algorithm (see Theorem 2.36). We
must recall, however, that VC theory is used in the study of empirical risk mini-
mization algorithms which only consider the training error as the cost function to
be minimized. In contrast, in the current formulation we have to guarantee a cer-
tain stability of the learning algorithm. In particular, when considering the result
of Theorem 5.31 we see that, in the case of λ → 0, that is, the learning algorithm
minimizes the empirical risk only, we can no longer guarantee a finite stability. In
light of this fact, let us consider βm–stable algorithms � such that βm ≤ ηm−1,
i.e., the influence of a single new training example is inversely proportional to the
training sample size m with a decay of η ∈ �

+ . With this the first inequality in
Theorem 5.32 states that, with probability at least 1 − δ over the random draw of
the training sample z ∈ �m ,

R [� (z)] ≤ Remp [� (z) , z]+ 2η

m
+
√

2 (4η + b)2 ln
(

1
δ

)
m

.

This is an amazingly tight generalization error bound whenever η % √
m because

the expression is dominated by the second term. Moreover, this result provides
us with practical guidelines on the possible values of the trade-off parameter λ.
Since for regularized risk minimization algorithms of the form (5.19) we know that

η ≤ C2
l κ

2

2λ , it follows that λ ≥ C2
l κ

2

bm because otherwise the bound would be trivial (as
large as b) regardless of the empirical term Remp [� (z) , z]. Before we proceed to
the classification learning case we show an application of this new generalization
error bound for a stable regression estimation algorithm presented in Part I.
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Example 5.33 (Support vector regression) In the case of linear functions fw ∈
�
� of the form fw = 〈w, x〉, where x def= φ (x) and φ : � → � ⊆ �n

2 is some
mapping of the objects x ∈ � into a feature space � (see also Definition 2.2),
we define ‖ fw‖2 as ‖w‖2. Then, if we consider the ε–insensitive loss as given by
equation (2.51) we retain the support vector regression algorithm

�SVR (z) = fŵ ∈ �� such that ŵ = argmin
w∈�

1

m

m∑
i=1

lε (〈w, xi〉 , ti )+ λ ‖w‖2 .

Introducing 2m positive slack variables ξi ∈ �
+ that capture the deviation of

〈w, xi 〉 from the observed value ti this learning algorithm can also be expressed in
terms of the following mathematical program

minimize
1

m
ξ ′1+ λ ‖w‖2

subject to ti − 〈w, xi 〉 ≤ ε + ξi , i ∈ {1, . . . ,m} ,
〈w, xi 〉 − ti ≤ ε + ξi+m , i ∈ {1, . . . ,m} ,
ξ ≥ 0 .

If we combine the Lipschitz continuity of the ε–insensitive loss given in Example
5.30 with Theorems 5.31 and 5.32 we see that the support vector regression algo-
rithm has a generalization error bound of

R [�SVR (z)] ≤ 1

m

(
ξ̂
′
1+ κ2

λ

)
+

√√√√2
(

2 κ2

λ
+ b

)2
ln
(

1
δ

)
m

,

where ξ̂ ∈ �
2m is the value of the slack variables at the minimum, κ =

supx∈� k (x, x) and b ∈ �
+ is a known upper bound on the values of the ti ∈ �.

Note that R [�SVR (z)] is the expected ε–insensitive loss of the learned function
fŵ. Besides providing a practically relevant generalization error bound the result

also has the intuitive interpretation that, for smaller values of λ, the term ξ̂
′
1 is

non-increasing and competes with the increasing term κ2

λ
.

5.3.2 Algorithmic Stability for Classification

In classification learning we are given a training sample z = (x, y) ∈ (� × �)m

together with a hypothesis space � ⊆ �� of classifiers h mapping objects x ∈ �
to classes y ∈ � . We confine ourselves to the zero-one loss l0−1

(
ŷ, y

) = I ŷ �=y
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Figure 5.2 The clipped linear soft margin loss lτ for various values of τ > 0. Note that
for τ → 0 the loss function approaches the zero-one loss I−y f (x)≥0.

although the following reasoning also applies to any loss that takes only a finite
set of values. Similarly to the results presented in the last subsection we would
like to determine the βm–stability of a given classification learning algorithm
� : ∪∞m=1�

m → �. It turns out, however, that the only two possible values of
βm are 0 and 1. The former case occurs if, for all training samples z ∈ �m and all
test examples (x, y) ∈ � ,∣∣∣I�(z)(x)�=y − I�(z\i)(x)�=y

∣∣∣ = 0 ,

which is only possible if� only contains one hypothesis. If we exclude this trivial
case from our considerations then we see that Theorem 5.32 only gives trivial
results for classification learning algorithms. This is mainly due to the coarseness
of the loss function l0−1.

In order to circumvent this problem we shall exploit the real-valued out-
put f (x) when considering classifiers of the form h (·) = sign ( f (·)). Since
our ultimate interest is in the generalization error R [h] = EXY

[
Ih(X) �=Y

] =
EXY

[
IY· f (X)≤0

]
we will consider a loss function lτ : � × � → [0, 1] which is

an upper bound of the function Iy f (x)≤0. To see the advantage of such a loss func-
tion note that l0−1

(
ŷ, y

) ≤ lτ (t, y) implies that EXY
[
l0−1 (sign ( f (X)) ,Y)

] ≤
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EXY
[
lτ ( f (X) ,Y)

]
. Another useful requirement on the refined loss function lτ is

Lipschitz continuity with a small Lipschitz constant. This can be achieved by a
slight refinement of the linear soft margin loss llin considered in Example 5.29. The
generalization is obtained by requiring a real-valued output of at least τ on the cor-
rect side. Since the loss function has to pass through 1 for f (x) = 0 it follows that
the steepness of the function is 1/τ , giving the Lipschitz constant as 1/τ . Finally
we note that lτ should always be in the interval [0, 1] because the zero-one loss
l0−1 will never exceed 1. Hence, we obtain the following version of the linear soft
margin loss which will serve our needs (see also Figure 5.2)

lτ (t, y) =


0 if yt > 1
1− yt

τ
if yt ∈ [0, τ ]

1 if yt < 0
. (5.20)

A direct application of Theorem 5.32 to the expected and empirical risks using
the loss function lτ yields an algorithmic stability result for classification learning
algorithms which use a thresholded real-valued function for classification.

Theorem 5.34 (Algorithmic stability for classification) Let � ⊆ �
� be a set of

real-valued functions and � : ∪∞m=1�
m → � be a given learning algorithm such

that the associated classifications are � = {x �→ sign ( f (x)) | f ∈ � }. For the
zero-one loss l0−1, for all probability measures PZ such that PX (k (X,X) ≤ κ) =
1, for any τ ∈ �

+ and any δ ∈ (0, 1], with probability at least 1 − δ over the
random draw of the training sample z ∈ �m, the expected risk R

[
sign (� (z))

]
of

the classifier � (z) ∈ � is bounded from above by

R
[
sign (� (z))

] ≤ Rτ
emp [� (z) , z]+ κ2

λmτ 2
+

√√√√2
(

2 κ2

λτ 2 + 1
)2

ln
(

1
δ

)
m

.

Note that the quantity Rτ
emp [ f, z] is given by Rτ

emp [ f, z] = 1
m

∑m
i=1 lτ ( f (xi ) , yi).

Again, we have the intuitive interpretation that, for larger values of τ , the term
Rτ

emp [ f, z] = 1
m

∑m
i=1 lτ ( f (xi) , yi) is provably non-increasing whereas the term

κ2

λmτ 2 is always increasing. It is worth considering this theorem for the special
case of linear soft margin support vector machines for classification learning (see
Subsection 2.4.2). Without loss of generality let us assume that κ2 = 1 as for
RBF kernels and normalized kernels (see Table 2.1). Noticing that the sum

∑m
i=1 ξ̂i

of the slacks ξ̂ ∈ �
m at the solution upper bounds m · R1

emp [� (z) , z] we see
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that the linear soft margin algorithm �SVC presented in Subsection 2.4.2 has a
generalization error bound w.r.t. the zero-one loss l0−1 of

R
[
sign (�SVC (z))

] ≤ 1

m

(
ξ̂
′
1+ 1

λ

)
+ 2

√
(1+ λ)2 ln

(
1
δ

)
λ2m

.

This bound provides an interesting model selection criterion for linear soft margin
support vector machines. The model selection problem we considered here is the
selection of the appropriate value of λ—the assumed noise level. In contrast to the
results of Subsection 4.4.3 this bound only holds for the linear soft margin support
vector machine and can thus be considered practically useful. This, however,
remains to be shown empirically. The results in this section are so recent that no
empirical studies have yet been carried out.

Remark 5.35 (Leave-one-out bounds) In the current derivation we have only
presented the application of the training error variant of Theorem 5.32. We omitted
to show the application of the leave-one-out variant because the resulting bound
would involve the leave-one-out error w.r.t. the clipped loss lτ rather than the
zero-one loss l0−1. Although there exist a plethora of bounds on the leave-one-
out error of most of the algorithms presented (e.g. Theorem 2.37) a computation of
the leave-one-out error w.r.t. lτ requires the invocation of the learning algorithm m
times which is computationally infeasible. An interesting area for further research
regards obtaining bounds on this quantity rather than on the usual leave-one-out
error w.r.t. the zero-one loss l0−1.

5.4 Bibliographical Remarks

In this chapter we presented several frameworks for studying the generalization
error of specific learning algorithms. We started with a framework seemingly com-
bining the best of two worlds: By studying Bayesian algorithms we have the power
of incorporating prior knowledge into the learning task via an explicit prior PH

while we can still give PAC guarantees for the generalization error of Bayesian
classification strategies. This framework, also known as the PAC-Bayesian frame-
work, was introduced for the first time in Shawe-Taylor and Williamson (1997,
p. 4) where the authors cast a Bayesian algorithm in the luckiness framework. Re-
markably, they concede that “... a Bayesian might say that luckiness is just a com-
plicated way of encoding a prior. The sole justification for our particular way of
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encoding is that it allows us to get the PAC like results we sought...”. In contrast to
their results—which hold for single classifiers drawn according to the posterior
measure—McAllester (1998) considered classification strategies which allowed
him to tighten the results and ease their proofs. Theorems 5.1, 5.2 and 5.6 can
be found in this paper; the more general result given in equation (5.9) together
with some remarks on how to generalize the framework to arbitrary loss functions
can be found in McAllester (1999). The simple relationship between the expected
risk of the Gibbs and the Bayes classification strategies (Theorem 5.7) is taken
from Herbrich and Graepel (2001b). The full power of the bound for the Bayesian
classifier can be exploited by making use of the fact that for “benign” hypothesis
spaces the expected risk of one classifier can be expressed as the generalization
error of a subset of classifiers. This analysis, together with the final PAC-Bayesian
margin bound (Theorem 5.10) can be found in Herbrich and Graepel (2001b). Re-
cently, it has been shown that not only the evidence can be justified in a distribution
free framework, but also the estimated posterior probability PH|Zm=z (H (x) = y)
leads to a decrease in expected risk when used as a rejection criterion (see Freund
et al. (2000)). In contrast to the bounds in the PAC-Bayesian framework, this paper
studies only the generalization error of their (pseudo)-Bayesian prediction method
which results in remarkably tight bounds. A work preceeding Shawe-Taylor and
Williamson (1997, p. 4) is by Haussler et al. (1994) where it was assumed that
PH is known to the learning algorithm and corresponds to the probability of target
concepts. Rather than studying the performance of Bayesian classification strate-
gies for a fixed, but unknown, data distribution PZ it was assumed that the prior
belief PH is used to govern PY|X=x . It was shown that the average generalization
error of classification strategies over PH can be arbitrarily bad without assuming
that the learning algorithm uses the same PH. It should be noted, however, that this
quantity does not satisfy the PAC desiderata of not knowing the data distribution.

In the following section we introduced the notion of compression schemes.
One of the earliest works in that area is by Littlestone and Warmuth (1986) which
was summarized and extended to on-line learning algorithms in Floyd and War-
muth (1995). Theorem 5.17 is taken from this paper; the lossy compression scheme
bound (Theorem 5.18) was proven in Graepel et al. (2000); see also Marchand and
Shawe-Taylor (2001) for a result that avoids the exponent two at the deviation ε.
Interestingly, all these results can be extended further by allowing the learning algo-
rithm to save an additional b bits which would only incur an additional summand
of b

m in the resulting generalization error bound. An interesting combination of
large margins of the linear classifier learned by an algorithm and sparsity w.r.t. the
expansion coefficients is presented in Herbrich et al. (2000). The subsection on the
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combination of compression schemes and mistake bounds for mistake-driven on-
line learning algorithms is taken from Floyd and Warmuth (1995). Example 5.24 is
discussed in greater length in Graepel et al. (2001). The notion of on-line learning
algorithms is due to Littlestone (1988). This paper also introduced the halving algo-
rithm together with its mistake bound (see Example 5.25). An interesting question
emerging from the analysis in the compression framework is the following: Given
a learning algorithm which maps into a hypothesis space of VC dimension ϑ�, is
it always possible to find a compression scheme of size not more than ϑ� that will
be consistent, provided some target concept from � is used to label the data? This
is still an open problem; for first attempts to solve it the interested reader is referred
to Floyd and Warmuth (1995).

Finally, we demonstrated that we can study the generalization error of learning
algorithms by considering their robustness. The notion of robustness of a learning
algorithm is far from new but was mainly considered in the analysis of the leave-
one-out model selection procedure (see Devroye and Wagner (1979) and Kearns
and Ron (1999)). The results presented in Section 5.3 are mainly taken from
Bousquet and Elisseeff (2000) and Bousquet and Elisseeff (2001). The interested
reader is referred to their work for further details.
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A Theoretical Background and Basic Inequalities

The purpose of this appendix is twofold: On the one hand, it should serve as
a reference for the case that we need more exactness in the reasoning. On the
other hand, it gives brief introductions to probability theory, functional analysis
and ill-posed problems. The section on probability theory is based on Feller (1966,
Chapter 4) and Kockelkorn (2000). The following section about functional analysis
is compiled from Barner and Flohr (1989), Cristianini and Shawe-Taylor (2000)
and Debnath and Mikusinski (1998). The section about ill-posed problems is taken
from Tikhonov and Arsenin (1977). Finally, we present a set of inequalities needed
for the derivation of some of the results in the book.

A.1 Notation

In addition to the special notation introduced in the following sections, it was my
objective to make things clearer by consistency. Thus, the general ideas underlying
the notation are: Parentheses are used for the evaluation of a function, e.g., f (x),
whereas brackets should indicate the application of a functional, e.g., R [ f ]; the
concept of bold face is to denote composed objects like tuples, vectors, matrices or
vector valued functions1, e.g., x, x, X or φ; calligraphic letters specify spaces or
specific sets, e.g., �; fraktur letters should stand for collection of sets and algebras,
e.g., �; sans-serif letters indicate that the specific value of the object is subject to
chance, e.g., X. Deviations from these broad guidelines are indicated to avoid too
complicated a notation2.

1 Sometimes, the symbol �x is also used for vectors. This will always be indicated in order to avoid confusion.
2 Due to the lack of available symbols we will use � to denote the order of a term and � to denote Borel
sets. Furthermore, we use the special symbols E, P, v, f, F and I to denote the expectation value, the probability
measure, the empirical probability measure, the density, the distribution function and the indicator function.
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A.2 Probability Theory

In general, sets are denoted by roman upper capital letters, e.g., X , whilst elements
are denoted by roman lower capital letters, e.g., x . For sets the indicator function
IX is defined by

IX (x)
def=
{

0 if x /∈ X
1 if x ∈ X

.

If ϒ : � → {true, false} is a logical formula then Iϒ(x) is shorthand notation for
I{z∈� |ϒ(z)=true } (x).

Definition A.1 (σ–algebra) Given a set � , a collection � of sets X ⊆ � is called
a σ–algebra over � if and only if

1. If a set X ∈ � so is its complement Xc = � \ X.

2. If Xi ∈ �, i = 1, . . . ,∞ is any countable collection of sets in�, then also their
union ∪∞i=1 Xi ∈ � and intersection ∩∞i=1 Xi ∈ � belong to �.

In short, any σ–algebra � is closed under complementation and the formation of
countable unions and intersections.

Definition A.2 (Borel sets) Given � = �
n , the Borel sets �n are the smallest

σ–algebra that contains all open intervals{
(x1, . . . , xn) ∈ �n | ∀i ∈ {1, . . . , n} : xi ∈ (ai , bi )

}
for all ai , bi ∈ �. Note that �n contains an uncountable number of sets.

Definition A.3 (Measurable and probability space) A measurable space is de-
fined by the tuple (� ,�). Here � is called the sample space and � is a σ–algebra
over � . A probability space is defined by the triple (� ,�,P) where P is a proba-
bility measure on � , i.e., P : �→ [0, 1] such that P (� ) = 1 and for all countable
collections of non-overlapping sets Xi ∈ �, i = 1, . . . ,∞

P

( ∞⋃
i=1

Xi

)
=

∞∑
i=1

P (Xi) .
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In most circumstances, the measurable space is clear from context. In order to
avoid ambiguities about the used probability measure P we shall use a sans serif
letter as a subscript. Thus, if ϒ is a measurable logical formula over x ∈ � , i.e.,
ϒ : � → {true, false} and {x ∈ � |ϒ (x) = true } ∈ �,

PX (ϒ (X))
def= P ({x ∈ � |ϒ (x) = true })

denotes the probability of ϒ (x) when x is selected according to P.

Definition A.4 (Measurability) Given a measurable space (� ,�), the real-
valued function g : � → � is called �–measurable (or simply measurable) if
and only if

∀z ∈ � : {x ∈ � | g (x) ≤ z } ∈ � .

Definition A.5 (Random variable) Given a measurable space (� ,�), a random
variable is a �–measurable real-valued function f : � → �.

In order to distinguish random variables from ordinary functions we also use sans
serif letters to denote them, e.g., Y = f (X). Thus a random variable Y = f (X)
induces a measure PY which acts on the real line, i.e., � = � and for which the
σ–algebra � contains at least the intervals {(−∞, z] | z ∈ � }. The measure PY is
induced by the measure PX and f , i.e.,

∀Y ∈ �1 : PY (Y )
def= PX ({x ∈ � | f (x) ∈ Y }) .

Definition A.6 (Distribution function and density) For a random variable X the
function FX : � → [0, 1] defined by

FX (x)
def= PX (X ≤ x)

is called the distribution function of X. The function fX : � → � is called the
density if

∀z ∈ � : FX (z) =
∫

x≤z
fX (x) dx .

In the study of learning as well as statistics the expectation of a random variable is
of particular importance.
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Definition A.7 (Expectation) Let f : � → � be a measurable function. The
expectation EX

[
f (X)

]
of f over the random draw of x is defined by

EX
[

f (X)
] def=

∫
�

f (x) dFX (x) .

The expectation value is only defined if
∫
�
| f (x)| dFX (x) <∞.

Definition A.8 (Variance) The variance Var (X) of a random variable X is defined
by

Var (X)
def= EX

[
(X− µ)

2
]
= EX

[
X2]− µ2 ,

where µ = EX
[
X
]

is the expectation of the random variable X.

Definition A.9 (Product space) Given two measurable spaces (� ,�) and (�,�)

we define the product space by (� × �,�×�). Here �×� denotes the smallest
σ–algebra which contains the sets {X × Y | X ∈ �,Y ∈ �}.

Definition A.10 (Marginal and conditional measure) Given the joint probability
space (� × �,�×�,PXY), the marginal probability measure PX is defined by

∀X ∈ � : PX (X)
def= PXY (X × �) .

Given Y ∈ �, PY (Y ) > 0, the conditional probability measure PX|Y∈Y is given by

∀X ∈ � : PX|Y∈Y (X)
def= PXY (X × Y )

PY (Y )
.

(PY and PY|X∈X are given in the same way).

Definition A.11 (Independence) We call the random variables X and Y indepen-
dent (w.r.t. the measure PXY), if and only if

∀X ∈ � : ∀Y ∈ � : PXY (X × Y ) = PX (X)PY (Y ) .

In this case, the marginal distributions suffice to define the whole product measure.
If (� ,�) equals (�,�) we shall write PX2 as an abbreviation for PXX.

Whenever we deal with a sequence of n random variables X1, . . . ,Xn we denote
the whole sequence by X. Such a sequence can either be a column or row vector,
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which should be clear from the context. A particular element of the sample space
�

n is then denoted by the n–tuple x. Given an n–tuple x = (x1, . . . , xn), the
abbreviation x ∈ x should be understood as ∃i ∈ {1, . . . , n} : xi = x .

Definition A.12 (Expectation of a n–dimensional random variable) Given n ran-
dom variables X = (X1, . . . ,Xn) with a joint measure PX, the expectation EX

[
X
]

is defined by the n–tuple

EX
[
X
] def= (

EX1

[
X1
]
, . . . ,EXn

[
Xn

])
.

Definition A.13 (Covariance and covariance matrix) Given two random vari-
ables X and Y with a joint measure PXY, the covariance Cov (X,Y) is defined
by

Cov (X,Y)
def= EXY

[
(X− µ) (Y− ν)

]
,

where µ = EX
[
X
]

and ν = EY
[
Y
]
. Note that Cov (X,X) = Var (X). Given n

random variables X = (X1, . . . ,Xn) and m random variables Y = (Y1, . . . ,Ym)

having a joint measure PXY, the n ×m covariance matrix Cov (X,Y) is defined by

Cov (X,Y) def=
 Cov (X1,Y1) · · · Cov (X1,Ym)

...
. . .

...

Cov (Xn,Y1) · · · Cov (Xn,Ym)

 .

If X = Y we abbreviate Cov (X,X) def= Cov (X).

Definition A.14 (Empirical measure) Given a measurable space (� ,�) and a
sequence x ∈ � n we call vx the empirical measure defined by

∀A ∈ � : vx (A)
def= |{i ∈ {1, . . . , n} | xi ∈ A }|

n
.

A.2.1 Some Results for Random Variables

In this subsection we will present some results for the expectation and variance of
sums and products of random variables. These will prove to be useful for most of
Chapter 3.
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Theorem A.15 (Expectation of sum and products) Given two independent ran-
dom variables X and Y

EXY
[
X · Y] = EX

[
X
] · EY

[
Y
]
, (A.1)

EXY
[
X+ Y

] = EX
[
X
]+ EY

[
Y
]
. (A.2)

whenever the two terms on the r.h.s. exist. Note that statement (A.2) is also true if
X and Y are not independent.

Corollary A.16 (Linearity of the expectation) For any n–dimensional random
variable X, any matrix A ∈ �

m×n and any fixed vector b ∈ �
m we have

EX
[
AX+ b

] = AEX
[
X
]+ b.

Theorem A.17 (Variance decomposition) Given two independent random vari-
ables X and Y we have

Var (X+ Y) = Var (X)+ Var (Y) .

Proof Put µ = E
[
X
]

and ν = EY
[
Y
]
. Exploiting Definition A.8 we know that

the variance Var (X+ Y) is given by

EXY

[(
X+ Y− EXY

[
X+ Y

])2
]
= EXY

[
((X− µ)+ (Y− ν))

2
]

= EXY

[(
(X− µ)

2 + 2 (X− µ) (Y− ν)+ (Y− ν)
2
)]

= EX

[
(X− µ)

2
]
+ 2EXY

[
(X− µ) (Y− ν)

]+ EY

[
(Y− ν)

2
]

= EX

[
(X− µ)

2
]
+ 2 EX

[
X− µ

]︸ ︷︷ ︸
=0

EY
[
Y− µ

]︸ ︷︷ ︸
=0

+EY

[
(Y− ν)

2
]

= Var (X)+ Var (Y) ,

where the second line follows from Theorem A.15 and the fifth line from the
assumed independence and Theorem A.15.

Theorem A.18 (Covariance decomposition) For any pair of random variables X
and Y with a joint measure PXY and any numbers a, b, c, d ∈ �,

Cov (X,Y) = EXY
[
XY
]− EX

[
X
]

EY
[
Y
]
,

Cov (a + bX, c + dY) = bd · Cov (X,Y) .
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Proof The first assertion follows directly from Definition A.13 and Theorem
A.15. For the second assertion let µ = EX

[
X
]

and ν = EY
[
Y
]
. Then we have

Cov (a + bX, c + dY) = EXY
[
(a + bX− (a + bµ)) (c + dY− (c + dν))

]
= EXY

[
bd · (X− µ) (Y− ν)

] = bd · Cov (X,Y) ,

where we the second line uses Theorem A.15 and Definition A.13.

Corollary A.19 (Variance scaling) For any random variable X and any c ∈ � we
have Var (cX) = c2 · Var (X).

Corollary A.20 (Variance of sums of independent variables) Given n indepen-
dent identically distributed random variables X1, . . . ,Xn we have

Var

(
1

n

n∑
i=1

Xi

)
= 1

n
Var (Xi) .

Corollary A.21 (Covariances of linear transformations) For any n–dimensional
random variable X, any m–dimensional random variable Y, any r × n matrix A,
s × m matrix B, r × 1 vector a and s × 1 vector b,

Cov (AX+ a,BY+ b) = A · Cov (X,Y) · B′ .

From the definition of conditional and marginal measures, we have the following
important theorem.

Theorem A.22 (Bayes’ theorem (Bayes 1763)) Given the joint probability space
(� × �,�×�,PXY) then, for all X ∈ �, PX (X) > 0 and Y ∈ �, PY (Y ) > 0

PX|Y∈Y (X) = PY|X∈X (Y )PX (X)

PY (Y )
.

If both X and Y posses densities fX and fY the theorem reads as follows

∀y ∈ � : ∀x ∈ � : fX|Y=y (x) = fY|X=x (y) fX (x)

fY (y)
.

Another important theorem we need is the following as found in Scheffé (1947).
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Theorem A.23 (Scheffé’s theorem) For all densities fX and fY on the measurable
space (�n ,�n)∫
�n

∣∣fX (x)− fY (x)
∣∣ dx = 2 sup

A∈�n

|PX (A) − PY (A)| . (A.3)

Proof Choose C = {
x ∈ �n

∣∣ fX (x) > fY (x)
} ∈ �n and Cc = �

n \ C ∈ �n .
Then, for the �1 distance between fX and fY,∫

�n

∣∣fX (x)− fY (x)
∣∣ dx

=
∫

C

∣∣fX (x)− fY (x)
∣∣ dx +

∫
Cc

∣∣fX (x)− fY (x)
∣∣ dx

=
∫

C

(
fX (x)− fY (x)

)
dx +

∫
Cc

(
fY (x)− fX (x)

)
dx

= PX (C)− PY (C)+ (1− PY (C))− (1− PX (C))

= 2 (PX (C)− PY (C)) . (A.4)

For a geometrical argument see Figure A.1. Now, for all A ∈ �n

|PX (A)− PY (A)| =
∣∣∣∣∫

A∩C

(
fX (x)− fY (x)

)
dx +

∫
A∩Cc

(
fX (x)− fY (x)

)
dx

∣∣∣∣
=

∣∣∣∣∣∣
∫

A∩C
fX (x)− fY (x)︸ ︷︷ ︸

≥0

dx −
∫

A∩Cc
fY (x)− fX (x)︸ ︷︷ ︸

≥0

dx

∣∣∣∣∣∣
≤ max

(∫
A∩C

fX (x)− fY (x) dx,
∫

A∩Cc
fY (x)− fX (x) dx

)
≤ max

(∫
C

fX (x)− fY (x) dx,
∫

Cc
fY (x)− fX (x) dx

)
= PX (C)− PY (C) ,

where the second line follows by definition of C and the third line is always true
because ∀a > 0, b > 0 : |a − b| ≤ max (a, b). We have shown that the supremum
in (A.3) is attained at C ∈ �n and thus equation (A.4) proves the theorem.
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Figure A.1 Geometrical proof of Scheffé’s theorem for �
1 . The quantity∫

�n

∣∣fX (x)− fY (x)
∣∣ d x is given by the sum of the two shaded areas excluding the striped

area A. Given the set C = {
x ∈ � ∣∣ fX (x) > fY (x)

}
the quantity PX (C) − PY (C) is

given by the light shaded area only. Since the area under both curves fX and fY is exactly
one it must hold that PX (C)− PY (C) = PY (Cc)− PX (Cc) because we subtract A from
both curves. This proves Scheffé’s theorem.

A.2.2 Families of Probability Measures

In this subsection we present commonly used probability measures together with
their expectation value and variance. We show that most of the distributions belong
to the rather large class of measures in the exponential family which has many
useful properties, e.g., canonical parameters and natural statistics (see Lindsey
(1996) and Amari (1985)).

Probability Measures over the Natural Numbers �

For the following measures we assume that the sample space � is the set of all
natural numbers (including 0) and the σ–algebra is the collection of all subsets
of �. In Table A.1 we have summarized the most commonly used probability
measures on natural numbers. Note that, for the binomial distribution, we assumed
that

(n
i

) = 0 whenever i > n.
The Bernoulli distribution is used to model the outcome of a coin toss with a

chance of p for “heads”; 1 is used to indicate “head”. The binomial distribution
models the outcome of i “heads” in n independent tosses of a coin with a chance
of p for “heads”. The Poisson distribution is the limiting case of the Binomial
distribution if the number of tosses tend to infinity but the expectation value np = λ

remains constant.
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Name Probability measure / density EX
[
X
]

Var (X)
Bernoulli (p) PX (1) = 1− PX (0) = p p p (1− p)
Binomial (n, p) PX (i) = (n

i

)
pi (1− p)n−i np np (1− p)

Poisson (λ) PX (i) = λi

i! exp (−λ) λ λ

Uniform (A) PX (i) = 1
|A| Ii∈A A A2 − (A

)2
Normal

(
µ, σ 2

)
fX (x) = 1√

2πσ
exp

(
− (x−µ)2

2σ 2

)
µ σ 2

Exp (λ) fX (x) = λ exp (−λx) Ix≥0
1
λ

1
λ2

Gamma (α, β) fX (x) = xα−1

βα�(α)
exp

(
− x

β

)
Ix>0 αβ αβ2

Beta (α, β) fX (x) = �(α+β)xα−1(1−x)β−1

�(α)�(β)
Ix∈[0,1]

α
α+β

αβ

(α+β)2(α+β+1)

Uniform ([a, b]) fX (x) = 1
b−a Ix∈[a,b]

a+b
2

(b−a)2

12

Table A.1 Summary of measures over the natural numbers � (first four rows) and the
real line �1 (last five rows). Note that � (α) = ∫∞

0 tα−1 exp (−t) dt denotes the Gamma
function. For plots of these distributions see page 209 and 210. Furthermore, the symbols
A and A2 denote 1

|A|
∑

ai∈A
ai and 1

|A|
∑

ai∈A
a2

i , respectively.

Probability Measures on the Real Line �1

For the following measures we assume that the sample space � is the real line
� and the σ–algebra is the Borel sets �1 (see Definition A.2). In Table A.1
we summarized commonly used probability measures on �

1 by specifying their
density function. For a comprehensive overview of measures on �1 see (Johnson
et al. 1994).

Note that the exponential distribution Exp (λ) is a special case of the Gamma
distribution because Gamma (1, β) = Exp

(
β−1

)
. The Beta distribution is the

conjugate prior distribution of the success probability in a Binomial measure (see
also Section 3.1). Finally, the normal or Gaussian distribution owes its importance
to the well known central limit theorem.

Theorem A.24 (Central limit theorem) Let X1,X2, . . . be mutually independent
random variables with a common distribution FX that satisfies

∀i ∈ � : (
EX
[
Xi

] = 0
) ∧ (Var (Xi) = 1) . (A.5)
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Figure A.2 The probability mass function PX for the measures in Table A.1. (Left)
Bernoulli and Poisson measure. (Right) Binomial and uniform measure. In the uniform
measure plot, we consider the sets Ab = {0, . . . , b}.

Then, for all such probability measures PX,

∀x ∈ � : lim
n→∞PXn

(∑n
i=1 Xi√

n
≤ x

)
=
∫ x

−∞
1√
2π

exp

(
− t2

2

)
dt ,

that is, the distribution function of the normalized sum of identically and inde-
pendently distributed random variables that fulfill (A.5) approaches pointwise the
normal distribution function with increasing sample size n.

Probability Measure on �n

The only multidimensional probability measure we consider is the n–dimensional
normal distribution defined over the sample space � = �

n and the σ–algebra �n

(see Figure A.4).
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Figure A.3 The densities fX for the measures in Table A.1. (Left) Densities of the
Gaussian/normal and the Gamma measure. (Right) Densities of the exponential and Beta
measure.

Definition A.25 (Multidimensional Gaussian measure) Suppose we are given a
vector µ ∈ �

n and a deterministic matrix A ∈ �
n×m . Let Y = (Y1, . . . ,Ym)

be a sequence of m independent normally random variables Yi with mean zero
and unit variance, i.e., Yi ∼ Normal (0, 1). Then X = AY + µ is said to be
normally or Gaussian distributed with mean EX

[
X
] = µ and covariance matrix

Cov (X) = � = AA′. Since the measure PX is uniquely determined by these two
quantities we also write Y ∼ Normal (µ,�).

Theorem A.26 (Density of a Gaussian measure) If X ∼ Normal (µ,�), then X
possess a density fX if and only if � is positive definite (see Definition A.57). The
density fX is given by

fX (x) = 1

(2π)
n
2 |�| 1

2

exp

(
−1

2
(x − µ)′ �−1 (x − µ)

)
. (A.6)
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Figure A.4 Density of the multidimensional normal distribution. (Left) Here, we used
� = I and µ = 0. (Right) Density obtained from a transformation of the left density such
that Cov (X,Y) = 0.5 and µ = 0.

Theorem A.27 (Linear transformation of multidimensional Gaussian measures)
Let X ∼ Normal (µ,�) be an n–dimensional normally distributed random vari-
able, let A ∈ �

m×n be a fixed matrix and let b ∈ �
m be a fixed vector. Then, the

random variable Y = AX+ b is Y ∼ Normal
(
Aµ+ b,A�A′).

Proof The theorem follows directly from Corollary A.16 and A.21.

Theorem A.28 (Convolutions of Gaussian measures) Let us assume that PX|Y=y =
Normal (X y,�) is a Gaussian measures, where X ∈ �

m×n and � ∈ �
m×m are

fixed matrices for all values of y ∈ �
n . If PY = Normal (µ,�) is a Gaussian

measure then

PY|X=x = Normal
(
�
(
X′�−1x +�−1µ

)
,�
)
. (A.7)

PX = Normal
(
Xµ,�+ X�X′) , (A.8)

where � = (
X′�−1X+ �−1

)−1
.

Proof By Theorem A.22 we know that

fY|X=x (y) = fX|Y=y (x) fY (y)∫
�n fX|Y= ỹ (x) fY

(
ỹ
)

d ỹ
= fX|Y=y (x) fY (y)

fX (x)
. (A.9)
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First note that the denominator is independent of y. Thus let us start with the
numerator of (A.9). Using Definition A.26 we have that the latter is given by

c · exp

(
−1

2

(
(x − X y)′ �−1 (x − X y)+ (y − µ)′ �−1 (y − µ)

))
,

where c = (2π)−
m+n

2 |�|− 1
2 |�|− 1

2 is independent of x and y. From Theorem A.86
we know that this expression can be written as

c · exp

(
−1

2

(
(y − c)′ C (y − c)+ d (x)

))
,

where

C = X′�−1X+�−1 ,

Cc = X′�−1x +�−1µ ,

d (x) = (x − Xµ)′
(
�+ X�X′)−1

(x − Xµ) .

Since d (x) is not a function of y the term exp
(− 1

2 d (x)
)

can be incorporated in the

normalization constant c and, thus, equation (A.7) follows by equating �
def= C−1.

In order to show the second assertion we use the definition of fX (x), i.e.,

fX (x) =
∫
�n

c · exp

(
−1

2

((
ỹ − c

)′
C
(

ỹ − c
)+ d (x)

))
d ỹ

= c · exp

(
−1

2
d (x)

)
·
∫
�n

exp

(
−1

2

((
ỹ − c

)′
C
(

ỹ − c
)))

d ỹ

= c · exp

(
−1

2
d (x)

)
· (2π) n

2 |C| 1
2 = c̃ · exp

(
−1

2
d (x)

)
= c̃ · exp

(
−1

2
(x − Xµ)′

(
�+ X�X′)−1

(x − Xµ)

)
,

where the third line follows from Definition A.26 and the fact that probability
densities always integrate to one. This proves equation (A.8).

Theorem A.29 (Marginal and conditional measures) Let X ∼ Normal (µ,�)

be an n–dimensional normally distributed random variable with � > 0. Let
X = (U,V) be partitioned into an r–dimensional random variable U and an s–
dimensional random variable V where n = r + s. Then for all v ∈ �s and u ∈ �r

PU = Normal
(
µU ,�UU

)
, (A.10)



213 Theoretical Background and Basic Inequalities

PV = Normal
(
µV ,�V V

)
, (A.11)

PU|V=v = Normal
(
µU +�U V �−1

V V

(
v − µV

)
,�UU −�U V �−1

V V �V U

)
, (A.12)

PV|U=u = Normal
(
µV +�V U�−1

UU

(
u − µU

)
,�V V −�V U�−1

UU�U V

)
,(A.13)

where

µ =
(

µU

µV

)
, � =

(
�UU �U V

�V U �V V

)
.

Proof The assertions (A.10) and (A.11) follow directly from Theorem A.27 con-
sidering that

U =
(

Ir 0
0 0

)
X , V =

(
0 0
0 Is

)
X .

We shall prove equation (A.12) for the special case of µ = 0 only—the full result
follows from Theorem A.27. First we exploit the fact that

fU|V=v (u) = fX ((u; v))
fV (v)

. (A.14)

Since we know the density fV already let us consider the joint density fX as a
function of u and v. To this end we use equation (A.27) of Theorem A.80 to obtain
a partitioned expression for the inverse �−1 of the covariance matrix �, i.e.,

�−1 =
(

A B
B′ D

)
,

where the matrices A, B and D are given by

A = (
�UU −�U V �−1

V V �VU

)−1
,

B = −A�U V �−1
V V ,

D = �−1
V V +�−1

V V �VU A�U V �−1
V V .

Now we can write the joint density fX ((u; v)) as a function of u and v

c · exp

(
−1

2

(
u′, v′

)
�−1 (u; v)

)
= c · exp

(
−1

2

(
u′Au + 2u′Bv + v′Dv

))
= c · exp

(
−1

2

((
u + A−1Bv

)′
A
(
u + A−1Bv

)+ v′
(
D− B′A−1B

)
v
))

,
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using the constant c = (2π)−
n
2 |�|− 1

2 . The last line can be proven by expanding it
and making a term-wise comparison with the second line. Note that D−B′A−1B =
�−1

V V , which follows from applying equation (A.27) to �−1. Finally, using (A.14)
shows that the conditional density of U given v ∈ �

s is again normal with mean
−A−1Bv = �U V �−1

V V v and covariance matrix A−1 = �UU −�U V �−1
V V �VU . The

proof of equation (A.13) is analogous.

Exponential Family

All of the above measures belong to the class of measures in the exponential family.
Let us start by defining formally the exponential family.

Definition A.30 (Exponential family) A probability measure PX is said to have
an exponential representation if its density fX (x) (continuous measures) or proba-
bility mass PX (x) (discrete measures) at x ∈ � can be written

p (x) = a0 (θ) τ0 (x) exp
(
θ ′ (τ (x))

)
,

for some θ ∈ � ⊆ �
n , τ0 : � → �, τ : � → �

n . The normalizing constant a0 (θ)

is given by

a0 (θ)
def=
(∫

�

τ0 (x) exp
(
θ ′ (τ (x))

)
dx
)−1

(A.15)

and is assumed to be finite. The set of all probability measures PX that have an
exponential representation are defined as the exponential family.

In Table A.2 we have given the functions τ0 and τ together with the normalization
constant a0 (θ) for all the one-dimensional measures introduced. In the case of X ∼
Normal (µ,�) where µ ∈ �

n , a straightforward manipulation of the definition
given in equation (A.6) shows that

θ =
(

�−1µ;−�−1
11

2
;−�−1

12 ; . . . ;−
�−1

22

2
;−�−1

23 ; . . . ;−
�−1

nn

2

)
, (A.16)

τ (x) = (
x; x2

1 ; x1x2; . . . ; x1xn; x2
2 ; x2x3; . . . ; x2

n

)
,

τ0 (x) = 1 ,
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Name τ0 (x) θ τ (x) a0 (θ)

Bernoulli (p) 1 ln
(

p
1−p

)
x (1+ exp (θ))−1

Binomial (n, p)
(n

x

)
ln
(

p
1−p

)
x (1+ exp (θ))−n

Poisson (λ) 1
x ! ln (λ) x exp (− exp (θ))

Uniform (A) 1 — — (|A|)−1

Normal
(
µ, σ 2

)
1

(
µ

σ 2 ; − 1
2σ 2

) (
x; x2

) √
− θ2

π
exp

(
− θ1

2

)
Exp (λ) 1 −λ x −θ

Gamma (α, β) x−1
(
α; − 1

β

)
(ln (x) ; x) −θθ1

2 · 1
�(θ1)

Beta (α, β) x−1 (1− x)−1 (α; β) (ln (x) ; ln (1− x)) �(θ1+θ2)
�(θ1)�(θ2)

Uniform ([a, b]) 1 — — (b − a)−1

Table A.2 Canonical parameterization of the measures given in Table A.1. Note that
� (α) = ∫∞

0 tα−1 exp (−t) dt denotes the Gamma function.

is the parameterization of the multidimensional Gaussian in the exponential family.
The value of a0 (θ) is calculated according to equation (A.15) and given by

a0 (θ) = (2π)−
n
2 |�|− 1

2 exp

(
−1

2
µ′�−1µ

)
. (A.17)

A.3 Functional Analysis and Linear Algebra

In this section we introduce the basic terms of functional analysis together with
some examples. This section is followed by a more detailed subsection about
matrix algebra together with some useful matrix identities. For a more detailed
treatment of matrices the interested reader is referred to (Harville 1997; Lütkepohl
1996).

Definition A.31 (Vector space) A set3 � is a vector space if addition and multi-
plication by scalar are defined such that, for x, y ∈ � , and c ∈ �,

x+ y ∈ � , cx ∈ � , 1x = x , 0x = 0 .

3 The notational similarity of � as a vector space as well as the sample space (in probability theory) is intended
to indicate their similar roles in the two fields.
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Here the addition operation x+ y has to satisfy that, for all x, y, z ∈ � ,

x+ y = y+ x ,

(x+ y)+ z = x+ (y+ z) ,

∃0 ∈ � : x+ 0 = 0 ,

∃ − x ∈ � : x+ (−x) = 0 ,

as well as the distributive laws for scalar multiplication,

c (x+ y) = cx+ cy , (c + d) x = cx+ dx .

Definition A.32 (Metric space) Suppose � is a vector space. A metric space � is
defined by the tuple (� , ρ) where ρ : � × � → �

+ is called a metric, i.e., for all
x, y, z ∈ � ,

ρ (x, y) ≥ 0 and ρ (x, y) = 0 ⇔ x = y ,

ρ (x, y) = ρ (y, x) ,

ρ (x, y) ≤ ρ (x, z)+ ρ (z, y) .

Definition A.33 (Normed space) Suppose � is a vector space. A normed space �
is defined by the tuple (� , ‖·‖) where ‖·‖ : � → �

+ is called a norm, i.e., for all
x, y ∈ � and c ∈ �,

‖x‖ ≥ 0 and ‖x‖ = 0 ⇔ x = 0 ,
‖cx‖ = |c| · ‖x‖ ,

‖x+ y‖ ≤ ‖x‖ + ‖y‖ . (A.18)

This clearly induces a metric ρ on � by ρ (x, y) = ‖x− y‖. Note that equation
(A.18) is known as the triangle inequality.

Definition A.34 (�n
p and L p) Given a subset X ⊆ � , the space L p (X) is the space

of all functions f : X → � such that∫
X
| f (x)|p dx <∞ if p <∞ ,

sup
x∈X

| f (x)| <∞ if p = ∞ .
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Endowing this space with the norm

‖ f ‖p
def=
{ (∫

X | f (x)|p dx
) 1

p if p <∞
supx∈X | f (x)| if p = ∞

makes L p (X) a normed space (by Minkowski’s inequality). The space �n
p of se-

quences of length n is defined by

�n
p

def=
{
(x1, . . . , xn) ∈ �n

∣∣∣∣ ∑n
i=1 |xi |p <∞ if 0 < p <∞

maxi=1,...,n |xi | if p = ∞
}
.

Definition A.35 (�p–norms) Given x ∈ �n
p we define the �p–norm ‖x‖p by

‖x‖p
def=

∑n

i=1 Ixi �=0 if p = 0(∑n
i=1 |xi |p

)1/p
if 0 < p <∞

maxi=1,...,n |xi | if p = ∞
.

Definition A.36 (Balls in normed spaces) Given a normed space � , the open ball
�τ (x) ⊆ � of radius τ around x ∈ � is defined by

�τ (x)
def= {y ∈ � | ‖x− y‖ < τ } .

Equivalently, the closed ball �τ (x) ⊆ � is defined by

�τ (x)
def= {y ∈ � | ‖x− y‖ ≤ τ } .

Definition A.37 (Inner product space) Suppose we are given a vector space � .
An inner product space � (or pre-Hilbert space) is defined by the tuple (� , 〈·, ·〉),
where 〈·, ·〉 : � × � → � is called an inner product and satisfies the following
properties: For all x, y, z ∈ � and c, d ∈ �,

〈x, x〉 ≥ 0 (A.19)

〈x, x〉 = 0 ⇔ x = 0 , (A.20)

〈cx+ dy, z〉 = c 〈x, z〉 + d 〈y, z〉 , (A.21)

〈x, y〉 = 〈y, x〉 . (A.22)

Clearly, each inner product space is a normed space when defining ‖x‖ def= √〈x, x〉.
The function 〈·, ·〉 : � × � → � is called generalized inner product if it only
satisfies equation (A.20)–(A.22).
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Definition A.38 (Euclidean inner product) If � = �n
2 we define the Euclidean

inner product between x, y ∈ � by

〈x, y〉 def= x′y =
n∑

i=1

xi yi . (A.23)

Example A.39 (�n
2 and L2) Defining an inner product 〈·, ·〉 in �n

2 and L2 (X) by
(A.23) and

〈 f, g〉 =
∫

X
f (x) g (x) dx (A.24)

makes these two spaces inner product spaces because

1. 〈x, x〉 =∑n
i=1 x2

i ≥ 0 and 〈 f, f 〉 = ∫
X ( f (x))2 dx ≥ 0.

2. 〈x, x〉 =∑n
i=1 x2

i = 0 if and only if x = 0. Similarly, 〈 f, f 〉 = ∫
X ( f (x))2 dx =

0 if and only if f (x) = 0 almost everywhere.

3. For the �n
2 case we have

〈cx+ dy, z〉 =
n∑

i=1

(cxi + dyi) zi = c
n∑

i=1

xi zi + d
n∑

i=1

yi zi

= c 〈x, z〉 + d 〈y, z〉 .
Similarly,

〈a f + bg, h〉 =
∫

X
(a f (x)+ bg (x)) h (x) dx

= a
∫

X
f (x) h (x) dx+ b

∫
X

g (x) h (x) dx

= a 〈 f, h〉 + b 〈g, h〉 .
4. The symmetry follows trivially from definition (A.23) and (A.24).

Definition A.40 (Positive (semi)definiteness) Given a vector space � , a function
f : � × � → � is said to be positive definite (positive semidefinite) if, and only
if, for all n ∈ �, all x1, . . . , xn ∈ � and all a ∈ �n , a �= 0, it satisfies

n∑
i=1

n∑
j=1

ai a j f
(
xi , x j

)
> 0 .

(
n∑

i=1

n∑
j=1

ai a j f
(
xi , x j

) ≥ 0

)
.
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Example A.41 (Positive semidefiniteness) Consider any inner product 〈·, ·〉 =
f (·, ·) on a vector space � . Then, for all n ∈ �, all a ∈ �

n , a �= 0 and any
sequence x1, . . . , xn ∈ � ,

n∑
i=1

n∑
j=1

aia j

〈
xi , x j

〉 =
n∑

i=1

ai

n∑
j=1

a j

〈
xi , x j

〉 = n∑
i=1

ai

〈
xi ,

n∑
j=1

a j x j

〉

=
〈

n∑
i=1

aixi ,

n∑
j=1

a j x j

〉
=
∥∥∥∥∥ n∑

i=1

ai xi

∥∥∥∥∥
2

≥ 0 ,

where the second step follows from equation (A.21) and the last step is a direct
consequence of equation (A.19). Thus, the inner product is a positive semidefinite
function by definition.

Definition A.42 (Cauchy sequence) A sequence (xi )i∈� in a normed space is said
to be a Cauchy sequence if limn→∞ supm≥n ‖xn − xm‖ = 0. Note that all conver-
gent sequences are Cauchy sequences but the converse is not true in general.

Definition A.43 (Hilbert space) A Hilbert space � is a complete inner product
space. A space is called complete if every Cauchy sequence converges.

Definition A.44 (Linear operator) Given two Hilbert spaces � and � , a map-
ping T : �→ � is called linear operator if and only if

1. For all x ∈ � and y ∈ �, T (x+ y) = T x+ T y.

2. For all x ∈ � and all c ∈ �, T (cx) = c · T x.

Definition A.45 (Eigenvalue and eigenvector) Let T : � → � be a linear
operator on a Hilbert space �. If there is a vector x ∈ �, x �= 0, such that
T x = λx for some scalar λ, then λ is an eigenvalue of T with the corresponding
eigenvector x.

Definition A.46 (Self-adjoint operators) A linear operator T : � → � on a
Hilbert space � is self-adjoint, if, for all x, y ∈ �,

〈T x, y〉 = 〈x, T y〉 .
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A.3.1 Covering, Packing and Entropy Numbers

In this section we recall the notion of covering and packing numbers as well as
entropy numbers. We present an elementary relation for covering and packing
numbers; for further information the interested reader is referred to Kolmogorov
and Fomin (1957), Carl and Stephani (1990) and Vidyasagar (1997).

Definition A.47 (ε–cover and ε–packing) Let (� , ρ) be a metric space, let A ⊆
� and ε > 0. A set B ⊆ � is an ε–cover for A if for every a ∈ A there exists
b ∈ B such that ρ (a, b) ≤ ε, i.e.,

A ⊆
⋃
b∈B

�ε (b) .

The cover B is said to be proper if, and only if, B ⊆ A. The set B ⊆ A is an
ε–packing of A if, for all distinct b, c ∈ B, d (b, c) > ε.

Definition A.48 (Covering and packing number) Let (� , ρ) be a metric space,
let A ⊆ � and ε > 0. The covering number �ρ

A (ε) is the minimal cardinality of
an ε–cover for A; if there is no such finite cover then it is defined to be ∞. The
packing number �ρ

A (ε) is the maximal cardinality of an ε–packing of A; if there
is no such finite packing then it is defined to be ∞.

In order to enhance understanding we have shown an ε–cover as well as an ε–
packing in Figure A.5. There exists an elementary relationship between packing
and covering numbers first proven in Kolmogorov and Tihomirov (1961); the
current proof is taken from Anthony and Bartlett (1999).

Theorem A.49 (Packing and covering numbers) Let (� , ρ) be a metric space.
Then, for all ε > 0 and for every subset A ⊆ � , the packing and covering numbers
satisfy the following relation:

�
ρ

A (2ε) ≤ �ρ

A (ε) ≤�ρ

A (ε) .

Proof Let us begin with the leftmost inequality. Suppose that C ⊆ � is an ε–
cover of A and that P ⊆ A is a 2ε–packing of A of maximum cardinality�ρ

A (2ε).
We need to show that |P| ≤ |C|which will be done by contradiction. Let us assume
that |P| > |C|. Since C is an ε–cover of A we know that, for every p ∈ P , there



221 Theoretical Background and Basic Inequalities

�

�

�

�

�

� �

Figure A.5 (Left) ε–covering of the set A ⊂ �
2 using the Euclidean metric. The black

dots represent the ε–cover. (Right) ε–packing of the same set A ⊂ �
2 . Note that by

definition we can place balls of radius ε
2 around the ε–packing and obtain a set of balls

which have an empty intersection with each other.

exists a c ∈ C such that ρ (p, c) ≤ ε. By the “pigeonhole4 principle” there must be
some c ∈ C such that for two points p1 �= p2 in P , ρ (p1, c) ≤ ε and ρ (p2, c) ≤ ε.
Since ρ is a metric (see Definition A.32) we know that

ρ (p1, p2) ≤ ρ (p1, c)+ ρ (p2, c) ≤ 2ε ,

which contradicts the assumption that P is a 2ε–packing of A. Hence, |P| ≤ |C|
as desired.

To prove the rightmost inequality, suppose that P is an ε–packing of maximum
cardinality�ρ

A (ε). Then, for any a ∈ A, there must exist a p ∈ P with ρ (p, a) ≤
ε because otherwise we could form the packing P ∪ {a} which contradicts the

4 The pigeonhole principle states that if n pigeons are distributed over fewer than n pigeonholes, some pigeon-
holes must contain more than one pigeon (for Trybulec (1990) for a rigorous proof).
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assumption that P is a maximal ε–packing. It follows that any maximum ε–packing
is an ε–cover.

Sometimes it is more useful to work with the functional inverse of the covering and
packing number, defined as follows.

Definition A.50 (Entropy numbers) Let (� , ρ) be a metric space and let A ⊆ � .
Then the nth entropy number εA (n) is the smallest number ε > 0 such that
�

ρ

A (ε) ≤ n,

εA (n)
def= inf

{
ε > 0

∣∣ �ρ

A (ε) ≤ n
}
.

The nth inner entropy number ϕA (n) is defined as the largest ε > 0 such that
�

ρ
A (ε) > n,

ϕA (n)
def= sup

{
ε > 0

∣∣�ρ

A (ε) ≥ n
}
.

Corollary A.51 (Entropy and inner entropy numbers) Let (� , ρ) be a metric
space. Then, for all n ∈ �

+ and for every subset A ⊆ � , the entropy and inner
entropy numbers satisfy

ϕA (n) ≤ εA (n) ≤ 2 · ϕA (n) .

Proof The result follows directly from Theorem A.49 noticing that �ρ

A (ε) and
�

ρ

A (ε) are non-increasing functions for increasing ε, that is, we know that there
exists a smallest � ≥ 0 such that

�
ρ

A (2εA (n)+�)︸ ︷︷ ︸
ϕA(n)

= �ρ

A (εA (n)) = n .

This shows the rightmost inequality. The leftmost inequality can be shown in an
analogous way.

A.3.2 Matrix Algebra

Vectors, which are column vectors by definition, and matrices are denoted in bold
face5, e.g., x or X. Vector components are denoted by subscripts omitting bold

5 This should not be confused with the special symbols E, P, v, f, F and I which denote the expectation value,
the probability measure, the empirical probability measure, the density, the distribution function and the indicator
function, respectively. Whenever the symbol x is already in use, we use �x to denote a vector to avoid confusion.
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face, i.e., xi . Note that for matrices we do not omit the bold face, i.e., Xi j is the
element of X in the i th row and j th column. We have for the n × 1 vector x
that x = (x1, . . . , xn)

′ = (x1; . . . ; xn), i.e., a comma-separated list creates a row
vector whereas a semicolon-separated list denotes a column vector. The n × n
identity matrix is denoted by In . We omit the index n whenever the size of the
matrix is clear from the context. The vector ei denotes the i th unit vector, i.e.,
all components are zero except the i th component which is one. The vector 1 is
defined by

∑
i ei = (1; . . . ; 1). The main importance of matrix algebra stems from

the following theorem which builds the link between linear operators and matrices.

Theorem A.52 (Linear operators in finite dimensional spaces) All linear oper-
ators φ : �n → �

m for finite n, m ∈ � admit a representation of the form

φ (x) = Ax ,

where A ∈ �m×n is called the parameter matrix.

Proof Put x =∑n
i=1 xi ei . By the two properties of linear operators

φ (x) = φ

(
n∑

i=1

xi ei

)
=

n∑
i=1

xiφ (ei ) = (φ (e1) , . . . ,φ (en))︸ ︷︷ ︸
A

x ,

that is, the columns of the matrix A are the images of the n unit vectors ei ∈ �n .

Types of Matrices

Definition A.53 (Square matrix) A matrix A ∈ �n×m is called a square matrix if,
and only if, m = n.

Definition A.54 (Symmetric matrix) A square matrix A is called a symmetric
matrix if, and only if, A′ = A.

Definition A.55 (Lower and upper triangular matrix) A square matrix A is a
called lower (upper) triangular matrix if, and only if, Ai j = 0 ⇐ i < j (i > j).

Definition A.56 (Diagonal matrix) A square matrix A is called a diagonal matrix
if, and only if, Ai j = 0 for all i �= j . They are denoted by diag (a1, . . . , an).
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Definition A.57 (Positive (semi)definite matrix) A symmetric n × n matrix A is
called positive definite, i.e., A > 0, if, and only if,

∀c ∈ �n , c �= 0 : c′Ac > 0 .

If the inequality only holds with ≥ then A is called positive semidefinite. This is
denoted by A ≥ 0.

Definition A.58 (Orthogonal matrix) A square matrix A is called an orthogonal
matrix if, and only if, A′A = I.

Definition A.59 (Singular matrix) A square matrix A is singular if, and only if,
|A| = 0; otherwise the matrix is called a non-singular matrix.

Transpose

Definition A.60 (Transpose of a matrix) For any n × m matrix A the transpose

A′ is an m × n matrix defined by A′
i j

def= A j i .

Theorem A.61 (Transpose of matrix product) For any n×m matrix A and m×r
matrix B,

(AB)′ = B′A′ .

Proof Follows trivially by comparing individual elements of both matrix prod-
ucts.

Rank

Definition A.62 (Rank of a matrix) Given an m × n matrix A the rank rk (A) is
the maximum number of columns which are linearly independent.

Theorem A.63 (Rank of the transpose) For any m × n matrix A we know that
rk (A) = rk

(
A′) ≤ min {m, n}.
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Determinant

Definition A.64 (Determinant of a matrix) The determinant |A| of an n × n ma-
trix A is defined by

|A| def= A , if n = 1 ,

|A| def=
{ ∑n

i=1 Ai j ·
∣∣A[i j ]

∣∣ · (−1)i+ j for any j ∈ {1, . . . , n}∑n
j=1 Ai j ·

∣∣A[i j ]

∣∣ · (−1)i+ j for any i ∈ {1, . . . , n} , if n > 1 .

The (n − 1) × (n − 1) matrix A[i j ] is obtained by deleting the i th row and j th
column from A.

Theorem A.65 (Determinants of the transpose) For any n×n matrix A we have
|A| = ∣∣A′∣∣.
Proof The result is trivially true for n = 1. Let us assume the assertion is true of
n ∈ � . Then, for any (n + 1)× (n + 1) matrix A, by definition

|A| =
n+1∑
j=1

A1 j ·
∣∣A[1 j ]

∣∣ · (−1)1+ j =
n+1∑
j=1

A j1 ·
∣∣A[ j1]

∣∣ · (−1)1+ j

=
n+1∑
j=1

A′
1 j ·

∣∣A′
[1 j ]

∣∣ · (−1)1+ j = ∣∣A′∣∣ ,
where the second line follows by assumption and the definition of the transpose.

Theorem A.66 (Determinants of triangular matrices) The determinant |A| of a
lower (upper) triangular n × n matrix A is given by the product of the diagonal of
A, i.e.,

|A| =
n∏

i=1

Aii .

Proof Let us assume that A is lower triangular. The result follows by induction.
The case n = 1 is covered by the Definition A.64. Let us assume the assertion is
true for n ∈ � . Then, for any (n + 1)× (n + 1) matrix A, by definition

|A| =
n+1∑
j=1

A1 j ·
∣∣A[1 j ]

∣∣ · (−1)1+ j = A11 ·
∣∣A[11]

∣∣ = A11 ·
n∏

i=1

Ai+1,i+1 ,
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because, according to Definition A.55, all A1 j for j > 1 are zero. The last step
follows from the fact that

∣∣A[11]

∣∣ is the determinant of the n × n lower triangular
sub-matrix of A obtained by deletion of the first row and column. The case of A
being upper triangular follows by an application of Theorem A.65.

Due to their lengths, the following three theorems are given without proof. The
interested reader is referred to Mardia et al. (1979) and Harville (1997).

Theorem A.67 (Products of determinant) For any two n × n matrices A and B,

|AB| = |A| · |B| .

Theorem A.68 (Determinant of triangular partitioned matrix) Let M be a par-
titioned n × n matrix

M =
(

A B
C D

)
,

where A ∈ �s×s , B ∈ �s×r , C ∈ �r×s , D ∈ �r×r and n = r + s. If either B = 0 or
C = 0 we have

|M| = |A| · |D| .

Theorem A.69 (Determinant of linear combinations) For any n×n matrix A =
(a1, . . . , an), any i, j ∈ {1, . . . , n} and any λ ∈ �∣∣(a1, . . . , a j−1, a j + λai , a j+1, . . . , an

)∣∣ = |A| .

Theorem A.70 (Determinant and rank) For any n× n matrix A with rk (A) < n
we have that |A| = 0.

Proof Since rk (A) < n we know that there exists a column ai of A which can be
linearly combined from the remaining n − 1 columns. Without loss of generality
suppose that this is the first column a1, i.e., a1 = ∑n−1

j=1 λ j a j+1. According to
Theorem A.69 we know that

|A| =
∣∣∣∣∣
(

a1 −
n−1∑
j=1

λ j a j+1, a2, . . . , an

)∣∣∣∣∣ = |(0, a2, . . . , an)| = 0 .

where we used Definition A.64 with the first column of zeros.
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Theorem A.71 (Scaling of determinant) For any n × n matrix A = (a1, . . . , an)

and any vector λ ∈ �n

|(λ1a1, . . . , λnan)| = |A| ·
n∏

i=1

λi .

Proof Noticing that

(λ1a1, . . . , λnan) = A · diag (λ1, . . . , λn) ,

the result follows from Theorems A.66 and A.67.

Theorem A.72 (Determinant of a partitioned matrix) Let M be a partitioned
n × n matrix

M =
(

A B
C D

)
,

where A ∈ �s×s , B ∈ �s×r , C ∈ �r×s , D ∈ �r×r and n = r + s. If A−1 and D−1

exist then

|M| =
∣∣∣∣ A B

C D

∣∣∣∣ = |A| · ∣∣D− CA−1B
∣∣ = |D| · ∣∣A− BD−1C

∣∣ .
Proof In order to prove the assertion we use the fact that M can be written as the
product of two partitioned block-triangular matrices, i.e.,(

Is 0
CA−1 D− CA−1B

)(
A B
0 Ir

)
=
(

A− BD−1C BD−1

0 Ir

)(
Is 0
C D

)
.

Applying Theorems A.67 and A.68 proves the result.

Trace

Definition A.73 (Trace of a matrix) The trace tr (A) of a square n × n matrix A
is defined by

tr (A)
def=

n∑
i=1

Aii .
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Theorem A.74 (Trace of matrix products) For any n × m matrix A and m × n
matrix B,

tr (AB) = tr (BA) .

Proof By definition we know that

tr (AB) =
n∑

i=1

(
m∑

j=1

Ai j B j i

)
=

m∑
j=1

(
n∑

i=1

B j iAi j

)
= tr (BA) .

The theorem is proved.

Inverse

Definition A.75 (Inverse of a matrix) The square matrix A−1 is called the inverse
of A ∈ �n×n if, and only if,

A−1A = AA−1 = In .

The inverse exists if, and only if, A is non-singular, i.e., |A| �= 0.

Theorem A.76 (Inverse of square matrix) If A and B are any two n×n matrices
and AB = In then B = A−1.

Proof From Theorem A.67 we know that |A| · |B| = |In| = 1. Hence both A−1

and B−1 exists because |A| �= 0 and |B| �= 0. As a consequence A−1 · (AB) =
A−1 · In ⇔ B = A−1 which proves the theorem.

Theorem A.77 (Product and transpose of inverses) If the two square matrices A
and B are invertible then

(AB)−1 = B−1A−1 ,
(
A′)−1 = (

A−1
)′
.

Proof To prove the first assertion we have to show that
(
B−1A−1

)
(AB) = I which

follows from Definition A.75. The second assertion follows from
(
A′)−1

A′ =(
A−1

)′
A′ = (

AA−1)′ = I′ = I by virtue of Theorem A.61.
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Theorem A.78 (Inverse and determinant) Let A be an invertible symmetric n×n
matrix. Then the inverse A−1 can be computed as

A−1 = 1

|A|

 (−1)1+1 · ∣∣A[11]

∣∣ · · · (−1)1+n · ∣∣A[1n]

∣∣
...

. . .
...

(−1)n+1 · ∣∣A[n1]

∣∣ · · · (−1)n+n · ∣∣A[nn]

∣∣

′

.

Proof In order to proof the theorem we need to show that A−1A = In . For the
i, j–th element of A−1A we have

(
A−1A

)
i j
= 1

|A| ·
n∑

l=1

(−1)i+l · ∣∣A[il]

∣∣ · Al j = 1

|A| ·
n∑

l=1

(−1)i+l · ∣∣A[il]

∣∣ · A j l︸ ︷︷ ︸
qi j

.

By Definition A.64 for i = j we see that qi j = |A|. In the case of i �= j , qi j can
be viewed as the determinant of the matrix Ã obtained from A by replacing the j th
column with the i th column. Hence rk(Ã) < n and therefore, by Theorem A.70,
we know that qi j = 0 which proves the theorem.

Theorem A.79 (Woodbury formula) Let C be an invertible n × n matrix. Then,
for any matrix A ∈ �n×m and B ∈ �m×n ,

(C+ AB)−1 = C−1 − C−1A
(
I+ BC−1A

)−1
BC−1 . (A.25)

The r.h.s. exists if and only if the l.h.s. exists.

Proof Put D = I + BC−1A. First we show that the r.h.s. of equation (A.25) has
the property that its product with (C+ AB) equals I, i.e.,(

C−1 − C−1A
(
I+ BC−1A

)−1
BC−1

)
(C+ AB)

= (
C−1 − C−1AD−1BC−1) (C+ AB)

= I+ C−1AB− C−1AD−1B− C−1AD−1BC−1AB

= I+ C−1A
(
I− D−1 − D−1BC−1A

)
B

= I+ C−1A

I− D−1
(
I+ BC−1A

)︸ ︷︷ ︸
D

B = I .
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Since both the l.h.s. and r.h.s. of equation (A.25) are square matrices the result
follows from Theorem A.76.

Theorem A.80 (Partitioned inverse of a matrix) Let M be a partitioned invert-
ible n × n matrix

M =
(

A B
C D

)
,

where A ∈ �s×s , B ∈ �s×r , C ∈ �r×s , D ∈ �r×r and n = r + s. If A−1 exists then

E = (
D− CA−1B

)−1
also exists and

M−1 =
(

A−1 + A−1BECA−1 −A−1BE
−ECA−1 E

)
. (A.26)

Further, if D−1 exists then F = (
A− BD−1C

)−1
also exists and

M−1 =
(

F −FBD−1

−D−1CF D−1 + D−1CFBD−1

)
. (A.27)

Proof In order to prove equation (A.26) put

N =
(

A−1 0
−CA−1 Ir

)
.

According to Theorem A.76

NM =
(

Is A−1B
0 D− CA−1B

)
is invertible because N and M are square matrices and, by assumption, invertible.
Hence the rows of D − CA−1B are linearly independent and therefore E exists. It
remains to show that MM−1 = In which follows from

A
(
A−1 + A−1BECA−1)− BECA−1 = Is + BECA−1 − BECA−1 = Is ,

C
(
A−1 + A−1BECA−1)− DECA−1 = (

C+ CA−1BEC− DEC
)

A−1

= (
E−1 + CA−1B− D

)
ECA−1 = 0 ,

−AA−1BE+ BE = 0 ,

−CA−1BE+ DE = (
D− CA−1B

)
E = Ir .
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The proof of equation (A.27) follows by applying equation (A.26) to M′ and
noticing that M−1 = ((M′)−1)′ due to Theorem A.77.

Spectral Decomposition

Definition A.81 (Eigenvector and eigenvalue) Let A be an n×n matrix. Then the
vector u ∈ �n , u �= 0 is called an eigenvector of A with the eigenvalue λ if

Au = λu . (A.28)

Since each eigenvector u �= 0 must obey Au = λu we know that each eigenvalue λ

is a non-trivial solution of (A− λI)u = 0. This, however, requires that |A− λI| =
0.

Definition A.82 (Characteristic polynomial) Given an n × n matrix A, the char-
acteristic polynomial �A : � → � of A is defined by

�A (λ)
def= |A− λI| .

Note that the characteristic polynomial is a nth degree polynomial.

If A is not only square but also symmetric, it can be shown that all roots of �A are
real. Using this result we can prove the following powerful theorem.

Theorem A.83 (Spectral decomposition theorem) Any symmetric n × n matrix
A can be written as

A = U�U′ , (A.29)

where U′U = I and � = diag (λ1, . . . , λn).

Proof If we consider any two eigenvectors ui and u j then we know that

0 = u′i
(
Au j

)− (Au j

)′
ui = u′iAu j − u′j Aui = λ j u′iu j − λiu′j ui =

(
λ j − λi

)
u′iu j ,

where we exploit the symmetry of A and equation (A.28). Thus any two eigen-
vectors ui ,u j with different eigenvalues λi , λ j are orthogonal. If ui1 , . . . ,uil are
l eigenvectors with the same eigenvalue λ then

∑l
j=1 αlui j is also an eigenvector

with the eigenvalue λ for any α1, . . . , αl . This allows us to apply the Gram-Schmidt
orthogonalization to all eigenvectors ui with equal eigenvalues. Hence we can as-
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sume that all eigenvectors are orthogonal. Moreover, if ui is an eigenvector then
βui is also an eigenvector with the same eigenvalue. Thus, without loss of gen-
erality, we assume that ‖ui‖ = 1 for all i . Let us arrange all n eigenvectors of
unit length columnwise in an n × n matrix U = (u1, . . . ,un) in order of increas-
ing eigenvalues λi . By construction this matrix has the property that U′U = I. By
virtue of equation (A.28) we have

AU = U� , (A.30)

where � = diag (λ1, . . . , λn). Since U is a square matrix Theorem A.76 shows that
UU′ = I. Multiplying equation (A.30) by U′ from the right results in A = U�U′
which proves the theorem.

Theorem A.84 (Trace and Determinant) For any symmetric n×n matrix A with
eigenvalues λ1, . . . , λn,

|A| =
n∏

i=1

λi , tr (A) =
n∑

i=1

λi .

Proof Consider the spectral decomposition of A, i.e., A = U�U′. Using Theorem
A.67 and U′U = I gives

|A| = ∣∣U�U′∣∣ = |U| · |�| · ∣∣U′∣∣ = ∣∣U′∣∣ · |U| · |�| = ∣∣U′U
∣∣ · |�| = |�| .

The first results follows by |�| = |diag (λ1, . . . , λn)| =∏n
i=1 λi . The second result

follows from the following argument

tr (A) = tr
(
U�U′) = tr

(
�U′U

) = tr (�) =
n∑

i=1

λi ,

where we use Theorem A.74 in the second step.

Theorem A.85 (Eigenvalues and positive semidefiniteness) A symmetric n × n
matrix A is positive definite (positive semidefinite) if and only if all n eigenvalues
λi of A are strictly positive (non-negative).

Proof Let us assume the matrix A is positive definite, that is, for all c ∈ �
n ,

c �= 0 we know that c′Ac > 0. By Theorem A.83 we have A = U�U′ for
U = (u1, . . . ,un), U′U = UU′ = I and � = diag (λ1, . . . , λn). Using c = ui

we obtain u′iU�U′ui = λi ‖ui‖2 = λi > 0 for all i ∈ {1, . . . , n}.
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Now let us assume that all n eigenvalues λi are strictly positive. Then, for all
vectors c ∈ �n , c �= 0,

c′Ac = c′U�U′c = α′�α =
n∑

i=1

λiα
2
i > 0 .

Note that U′c = 0 ⇔ c = 0 because
∥∥U′c

∥∥2 = c′UU′c = ‖c‖2. The proof for the
case of positive semidefiniteness follows from the same argument.

Quadratic forms

Theorem A.86 (Sum of quadratic forms) Let A ∈ �
n×n and B ∈ �

m×m be
two symmetric, positive semidefinite matrices. Then, for any matrix X ∈ �

n×r ,
Y ∈ �m×r , a ∈ �n and b ∈ �m , we have that

D (µ) = (a− Xµ)′ A (a− Xµ)+ (b− Yµ)′ B (b− Yµ) , (A.31)

can be written as

D (µ) = (µ− c)′ C (µ− c)+ d (A.32)

where

C = X′AX+ Y′BY , d = a′Aa+ b′Bb− c′Cc ,

and c ∈ �r satisfies

Cc = X′Aa+ Y′Bb .

In the special case of C > 0 and Y = I we can write d ∈ � as

d = (a− Xb)′
(
A−1 + XB−1X′)−1

(a− Xb) . (A.33)

Proof The lengthy proof of the existence of c ∈ �r has been omitted and can be
found in Kockelkorn (2000). Let us start by proving equation (A.32). Expanding
(A.31) we obtain

D (µ) = a′Aa− 2a′AXµ+ µ′X′AXµ+ µ′Y′BYµ− 2b′BYµ+ b′Yb

= a′Aa− 2µ′ (X′Aa+ Y′Bb
)+ µ′ (X′AX+ Y′BY

)
µ+ b′Bb

= a′Aa− 2µ′Cc+ µ′Cµ+ b′Bb

= (µ− c)′ C (µ− c)− c′Cc+ a′Aa+ b′Bb ,
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where we used the symmetry of A and B several times. This shows equation (A.32).
In the special case of Y = I we obtain

C = X′AX+ B . (A.34)

Let us introduce the following abbreviation u def= a − Xb ⇔ a = u + Xb. Then
we know

Cc = X′Aa+ Bb = X′A (u+ Xb)+ Bb = X′Au+ Cb ,

where we have used equation (A.34). Since C > 0 it follows that

c′Cc = c′CC−1Cc = (
X′Au+ Cb

)′
C−1

(
X′Au+ Cb

)
= u′AXC−1X′Au+ 2u′AXb+ b′Cb . (A.35)

Further, we have

a′Aa = (u+ Xb)′ A (u+ Xb) = u′Au+ 2u′AXb+ b′X′AXb . (A.36)

Combining equations (A.36), (A.35) and (A.34) thus yields

a′Aa+ b′Bb− c′Cc = u′Au− u′AXC−1X′Au+ b′X′AXb+ b′Bb− b′Cb

= u′Au− u′AXC−1X′Au+ b′
(
X′AX+ B

)
b− b′Cb

= u′
(
A− AXC−1X′A

)
u .

Finally, using the Woodbury formula given in Theorem A.79 we can write A −
AXC−1X′A =

((
A− AXC−1X′A

)−1
)−1

as(
A− (AX)

(
C−1X′A

))−1 = A−1 + X
(
I− C−1X′AX

)−1
C−1X′

= A−1 + X
(
C− X′AX

)−1
X′ = A−1 + XB−1X′ .

Putting all these results together proves equation (A.33).

Theorem A.87 (Rayleigh coefficient) Let A ∈ �
n×n be a symmetric, positive

semidefinite matrix with eigenvalues λ1 ≥ · · · ≥ λn ≥ 0. Then, for all x ∈ �n ,

λn ≤ x′Ax
x′x

≤ λ1 ,

where the λi are the eigenvalues of A sorted in decreasing order. Further, the right
hand side becomes an equality if x is the eigenvector u1 of A corresponding to the
largest eigenvalue λ1.
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Proof According to Theorem A.83 we know that each symmetric A can be written
as A = U�U′ where U′U = UU′ = I and � = diag (λ1, . . . , λn). For a given
x ∈ �n let us consider y = U′x. Then we know that

x′Ax
x′x

= x′U�U′x
x′UU′x

= y′�y
y′y

=
∑n

i=1 λi y2
i∑

y2
i

. (A.37)

Since λn ≤ λi and λi ≤ λ1 for all i ∈ {1, . . . , n} we know that

n∑
i=1

λn y2
i ≤

n∑
i=1

λi y2
i ≤

n∑
i=1

λ1y2
i . (A.38)

The results follows directly from equation (A.37). Moreover, if y1 = 1 and yi = 0
for all i ∈ {2, . . . , n} then we attain an equality in (A.38). This is the case only for
x being the first column of U, i.e., the eigenvector u1 corresponding to the largest
eigenvalue λ1.

Theorem A.88 (Generalized Rayleigh coefficient) Let A ∈ �
n×n be a symmet-

ric, positive semidefinite matrix and B = C′C be a positive definite n × n matrix.
Then, for all x ∈ �n ,

λn ≤ x′Ax
x′Bx

≤ λ1 , (A.39)

where the λi are the eigenvalues of (C−1)′AC−1 sorted in decreasing order. Fur-
ther, the right hand side becomes an equality if x = C−1u1 where u1 is the eigen-
vector of (C−1)′AC−1 corresponding to the largest eigenvalue λ1. In the special
case of A = aa′ we know that λ1 = a′B−1a and that the maximizer of (A.39) is
given by x = B−1a.

Proof Put z = Cx. Then for all x ∈ �n

x′Ax
x′Bx

= x′Ax
x′C′Cx

= z′
(
C−1

)′
AC−1z

z′z
,

and therefore the first part follows from Theorem A.87. In the special case of
A = aa′ we obtain (C−1)′AC−1 = (C−1)′aa′C−1 = vv′ where v = (C−1)′a.
The matrix vv′ has exactly one eigenvector v to the eigenvalue ‖v‖2 because
(vv′)v = v(v′v) = ‖v‖2 · v. Since ‖v‖2 = a′C−1(C−1)′a = a′(C′C)−1a = a′B−1a
and x = C−1v = C−1(C−1)′a = (C′C)−1a = B−1a the special case is proved.
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Kronecker Product

Definition A.89 (Kronecker product) Given an n×m and q× r matrix A and B,
respectively, the Kronecker product A⊗ B is the nq × mr matrix

A⊗ B def=
 a11B · · · a1mB

...
. . .

...

an1B · · · anmB

 .

Theorem A.90 (Matrix product of Kronecker products) For all m, n, q, r, s, t ∈
� and any n × m matrix A, r × q matrix B, m × s matrix C and q × t matrix D,

(A⊗ B) (C⊗ D) = (AC)⊗ (BD) .

Proof Let us represent the matrices A and B in terms of their rows and C and D
in terms of their columns,

A = (
a′1; . . . ; a′n

)
, ai ∈ �m , B = (

b′1; . . . ;b′r
)
, b j ∈ �q ,

C = (c1, . . . , cs) , cu ∈ �m , D = (d1, . . . ,dt) , dv ∈ �q .

and i ∈ {1, . . . , n}, j ∈ {1, . . . , r}, u ∈ {1, . . . , s} and v ∈ {1, . . . , t}. Let

i ∗ j
def= (i − 1) · r + j and u ∗ v

def= (u − 1) · t + v. Consider the element in
the i ∗ j–th row and u ∗ v–th column of (A⊗ B) (C⊗ D)

((A⊗ B) (C⊗ D))i∗ j,u∗v = (
ai1b′j , . . . , aim b′j

) (
c1ud′v, . . . , cmud′v

)′
=

m∑
l=1

ailclub′j dv

= a′i cu · b′j dv

= (AC)iu · (BD) jv

= ((AC)⊗ (BD))i∗ j,u∗v ,

where the last step follows from Definition A.89.

Theorem A.91 (Eigenvalues of Kronecker products) Let A and B be symmetric
n × n and m ×m matrices, respectively. Then the eigenvalues of the matrix A⊗ B
are all products of pairs of eigenvalues of A and B.
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Proof Let {(u1, λ1) , . . . , (un, λn)} and {(v1, ω1) , . . . , (vm, ωm)} be the eigensys-
tems of A and B where we take the liberty of having a few λi and ωi zero (see
Theorem A.83). Then, for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}
(A⊗ B)

(
ui ⊗ v j

) = (Aui)⊗
(
Bv j

) = (λiui)⊗
(
ω j v j

)
= (

λiω j

) (
ui ⊗ v j

)
,

where we used Theorem A.90. Further,∥∥ui ⊗ v j

∥∥2 = (
ui ⊗ v j

)′ (
ui ⊗ v j

) = ‖ui‖2 · ∥∥v j

∥∥2 = 1

which shows that A⊗B has at least mn eigenvectors with eigenvalues given by the
product of all pairs of eigenvalues of A and B. Since all eigenvectors are orthogonal
to each other A⊗ B ∈ �mn×mn has at most mn eigenvectors.

Corollary A.92 (Positive definiteness of Kronecker products) Let A and B be
two positive definite (positive semidefinite) matrices. Then A⊗B is positive definite
(positive semidefinite).

Proof If A and B are positive definite then all eigenvalues of A and B are strictly
positive (see Theorem A.85). Hence, by Theorem A.91 all eigenvalues of A ⊗ B
are strictly positive and thus A⊗ B is positive definite by Theorem A.85. The case
of positive semidefinite matrices proceeds similarly.

Derivatives of Matrices

Definition A.93 (Derivative of a vector-valued function) Let φ : �m → �
n be a

fixed function. Then the m × n matrix ∂φ(x)
∂x of derivatives is defined by

∂φ (x)
∂x

def=
(
∂φ j (x)
∂xi

)m,n

i, j=1

=


∂φ1(x)
∂x1

. . .
∂φn(x)
∂x1

...
. . .

...
∂φ1(x)
∂xm

· · · ∂φn(x)
∂xm

 .

Theorem A.94 (Derivative of a linear function) Let φ : �m → �
n be a linear

function, i.e., φ (x) = Ax + b for a fixed matrix A ∈ �
n×m and vector b ∈ �

n .
Then

∂φ (x)
∂x

= A′ .
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Proof For any i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} let us consider the i, j–th

element of ∂φ(x)
∂x . We have ∂φ j (x)

∂xi
=

∑m
l=1 A jl xl

∂xi
= A j i which proves the theorem.

Theorem A.95 (Derivative of a quadratic form) Let φ : �n → � be a quadratic
form, i.e., φ (x) = x′Ax for a fixed symmetric matrix A ∈ �n×n . Then

∂φ (x)
∂x

= 2Ax .

Proof For any i ∈ {1, . . . , n} let us consider the i th element of ∂φ(x)
∂x . We have

∂φ (x)
∂xi

=
∑n

r=1

∑n
s=1 xr Arsxs

∂xi
=

n∑
s=1
s �=i

Ais xs +
n∑

r=1
r �=i

Ari xr + 2xi Aii = Ax ,

where the last equality follows from the symmetry of A.

Theorem A.96 (Derivative of the inverse) Let A : � → �
n×n be a matrix-valued

function. Then

∂ (A (x))−1

∂x
= − (A (x))−1 ∂A (x)

∂x
(A (x))−1 .

Proof First note that, for all x ∈ �, by definition A (x) (A (x))−1 = I. Since I
does not depend on x we have

0 = ∂I
∂x

= ∂A (x) (A (x))−1

∂x
= ∂A (x)

∂x
(A (x))−1 + A (x)

∂ (A (x))−1

∂x
,

where the second part follows by component-wise application of the product rule
of differentiation. The result follows by rearranging the terms.

Theorem A.97 (Derivative of the log-determinant) For any symmetric n×n ma-
trix A,

∂ ln (|A|)
∂A

= A−1 .



239 Theoretical Background and Basic Inequalities

Proof Let us consider the i, j–th element of the n × n matrix of derivatives, i.e.,
∂ ln (|A|) /∂Ai j . By the chain rule of differentiation and Definition A.64 we know

∂ ln (|A|)
∂Ai j

= d ln (|A|)
d |A| · ∂ |A|

∂Ai j
= 1

|A| ·
∂
(∑n

l=1 Al j ·
∣∣A[l j ]

∣∣ · (−1)l+ j
)

∂Ai j

= 1

|A| ·
∣∣A[i j ]

∣∣ · (−1)i+ j ,

because all the
∣∣A[l j ]

∣∣ involve determinants of matrices which do not contain Ai j .
Exploiting the symmetry of A and Theorem A.78 proves the theorem.

The following theorem is given without proof; the interested reader is referred to
Magnus and Neudecker (1999).

Theorem A.98 (Derivative of a quadratic form) For any non-singular n×n ma-
trix A and a,b ∈ �n ,

∂a′A−1b
∂A

= − (A−1)′ ab′
(
A−1)′ .

A.4 Ill-Posed Problems

The concept of well and ill-posed problems was introduced in Hadamard (1902)
in an attempt to clarify what types of boundary conditions are most natural for
various types of differential equations. The solution to any quantitative problem
usually ends in finding the “solution” y from given “initial data” x,

y = S (x) . (A.40)

We shall consider x and y as elements of metric spaces � and � with the metrics
ρ� and ρ� . The metric is usually determined by the formulation of the problem.
Suppose that the concept of solution is defined by equation (A.40).

Definition A.99 (Stable solution) The problem of determining the solution y =
S (x) in the space of � from the initial data x ∈ � is said to be stable on the spaces
(�,� ) if, for every ε > 0, there exists a positive number δ (ε) > 0 such that

∀x1, x2 ∈ � : ρ� (x1, x2) ≤ δ (ε) ⇒ ρ� (S (x1) , S (x2)) ≤ ε .
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Definition A.100 (Well-posed and ill-posed problems) The problem of deter-
mining the solution y = S (x) in the space of � from the initial data x ∈ � is
said to be well-posed on the spaces (�,� ) if

1. for every element x ∈ � there exists a solution y in the space � .

2. the solution y = S (x) is unique.

3. the problem is stable on the spaces (�,� ).

Problems that do not satisfy these conditions are said to be ill-posed.

A.5 Basic Inequalities

A.5.1 General (In)equalities

This section collects some general results which are frequently used in the main
body. Each theorem is followed by its proof.

Theorem A.101 (Lower bound for the exponential) For all x ∈ � we have

1+ x ≤ exp (x) ,

with equality if and only if x = 0.

Proof Consider the function f (x) = 1 + x − exp (x). The first and second
derivatives of this function are d f (x)

dx = 1− exp (x) and d2 f (x)
dx2 = − exp (x). Hence

this function has a maximum at x∗ = 0 which implies that f (x) ≤ f (0) = 0 ⇔
1+ x ≤ exp (x).

Theorem A.102 (Euler’s inequality) For all x > 0 and all a ∈ �, a �= 0(
1+ a

x

)x
< exp (a) .

Proof From Theorem A.101 we know that 1 + a/x < exp (a/x), because, by
assumption, a �= 0. Since x > 0 this implies (1+ a/x)x < (exp (a/x))x = exp (a)
which proves the theorem.
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Theorem A.103 (Binomial theorem) For all x ∈ � and all d ∈ � we have

(1+ x)d =
d∑

i=0

(
d

i

)
xi .

Proof We proof the theorem by induction over d. The theorem is trivially true for
all d = 0 and all x ∈ �. Suppose the theorem is true for some d ∈ �. Then

(1+ x)d+1 = (1+ x)
d∑

i=0

(
d

i

)
xi =

d∑
i=0

(
d

i

)
xi +

d+1∑
i=1

(
d

i − 1

)
xi

=
(

d

0

)
x0 +

d∑
i=1

((
d

i

)
+
(

d

i − 1

))
xi +

(
d

d

)
xd+1

=
(

d + 1

0

)
x0 +

d∑
i=1

(
d + 1

i

)
xi +

(
d + 1

d + 1

)
xd+1

=
d+1∑
i=0

(
d + 1

i

)
xi ,

where we have used(
d

i

)
+
(

d

i − 1

)
=
(

d + 1

i

)
(A.41)

in the third line.

Corollary A.104 (Binomial coefficients) For all a, b ∈ � and all d ∈ � we have

(a + b)d =
d∑

i=0

(
d

i

)
ai · bd−i .

Proof Using Theorem A.103 with the factorization (a + b)d = (b (a/b + 1))d

proves the corollary.

Theorem A.105 (Upper bound for the sum of binomials) For any m ∈ � and
d ∈ {1, . . . ,m} we have

d∑
i=0

(
m

i

)
<
(em

d

)d
.
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Proof The result follows from Theorems A.103 and A.102. Noticing
(

m
d

)d−i ≥ 1
for all i ∈ {0, . . . , d} we see that

d∑
i=0

(
m

i

)
≤

d∑
i=0

(
m

i

)(m

d

)d−i =
(m

d

)d d∑
i=0

(
m

i

)(
d

m

)i

≤
(m

d

)d m∑
i=0

(
m

i

)(
d

m

)i

=
(m

d

)d
(

1+ d

m

)m

<
(m

d

)d
exp (d) =

(em

d

)d
.

The theorem is proven.

Theorem A.106 (Cauchy-Schwarz inequality (Cauchy 1821)) For any two ele-
ments x and y of an inner product space � we have

|〈x, y〉| ≤ ‖x‖ · ‖y‖ .

Proof If y = 0 then the inequality is true because both sides are zero. Assume
then y �= 0. For any c ∈ � we have

0 ≤ 〈x+ cy, x + cy〉 = ‖x‖2 + 2c 〈x, y〉 + c2 ‖y‖2 .

Now put c = −〈x,y〉
‖y‖2 to obtain

0 ≤ ‖x‖2 − 〈x, y〉
‖y‖2

〈x, y〉 ⇔ |〈x, y〉| ≤ ‖x‖ · ‖y‖ ,

as ‖y‖2 > 0 by assumption.

Note that the Cauchy-Schwarz inequality remains valid even if equation (A.20) is
replaced by y = 0 ⇒ ‖y‖ = 0.

Theorem A.107 (Union bound) Let X1, . . . , Xn ∈ � be a finite number of sets
from the σ–algebra �. Then, for any measure PX,

PX (X1 ∪ · · · ∪ Xn) ≤
n∑

i=1

PX (Xi ) .
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Proof Consider two arbitrary sets A ∈ � and B ∈ �. By definition

PX (A ∪ B) = PX (A)+ PX (B)− PX (A ∩ B) ≤ PX (A) + PX (B) .

Hence

PX (X1 ∪ · · · ∪ Xn) ≤ PX (X1)+ PX (X2 ∪ · · · ∪ Xn) ≤ · · · ≤
n∑

i=1

PX (Xi ) ,

which proves the theorem.

A.5.2 Large Deviation Bounds

In this subsection we present a series of theorems which aim to bound the proba-
bility that a random variable X is far from its expected value EX

[
X
]
. We will only

scratch the surface of the theory of large deviation bounds; the interested reader
is referred to Devroye et al. (1996), Feller (1950), Feller (1966) and Devroye and
Lugosi (2001) for further details.

The following important theorem shows that, in the limit of an infinitely large
sample, there is no variation in the mean of the sample. The mean value of a
sequence of random variable is no longer random but is precisely given by the
expectation value of each single random variable.

Theorem A.108 (Law of large numbers) For any random variable X with finite
expectation µ = EX

[
X
]

and variance Var (X) we have

∀ε > 0 : lim
n→∞PXn

(∣∣∣∣∣1n
n∑

i=1

Xi − µ

∣∣∣∣∣ > ε

)
= 0 (A.42)

We shall prove this theorem shortly. Now, the problem of large deviations is to
determine how fast the convergence (A.42) happens to be. We would like to know
how likely it is that a mean of n independently identically distributed (iid) numbers
deviates from their common expectation by more than ε > 0. Let us start with a
simple theorem bounding the tail of any positive random variable.

Theorem A.109 (Markov’s inequality (Markov 1912)) If the random variable X
fulfills FX (0) = 0 then, for all λ > 0,

PX
(
X > λEX

[
X
])

<
1

λ
.
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Proof By Definition A.7 we know that

EX
[
X
] =

∫ ∞

0
x dFX (x) >

∫ ∞

λEX[X]
x dFX (x)

≥ λEX
[
X
] ∫ ∞

λEX[X]
dFX (x) ≥ λEX

[
X
]
PX
(
X > λEX

[
X
])

.

Dividing both sides by λEX
[
X
]

(which is always positive by FX (0) = 0 and the
choice of λ) gives the desired result.

A direct consequence of this theorem is Chebyshev’s inequality.

Theorem A.110 (Chebyshev’s inequality (Tschebyscheff 1936)) If EX
[
X2
]

ex-
ists, then for all ε > 0

PX (|X| > ε) <
EX
[
X2
]

ε2
. (A.43)

In particular, we have for all ε > 0

PX
(∣∣X− EX

[
X
]∣∣ > ε

)
<

Var (X)
ε2

.

Proof Define a new random variable Y = X2. Then FY (0) = 0, ε2 > 0 and

PX (|X| > ε) = PY
(
Y > ε2

)
<

EY
[
Y
]

ε2
= EX

[
X2
]

ε2
,

where the inequality follows from Theorem A.109.

Proof of Theorem A.108. Let us denote µ = EX
[
X
]
. Then, by Chebyshev’s in-

equality , for all ε > 0,

PXn

(∣∣∣∣∣1n
n∑

i=1

Xi − µ

∣∣∣∣∣ > ε

)
= PXn

(∣∣∣∣∣1n
n∑

i=1

Xi − EXn

[
1

n

n∑
i=1

Xi

]∣∣∣∣∣ > ε

)

≤ Var
(
n−1∑n

i=1 Xi

)
ε2

.

By Corollary A.20 we know that, for n iid variables Xi , Var
(
n−1∑n

i=1 Xi

) =
1
n Var (X) and thus, for all ε > 0, limn→∞ Var

(
n−1∑n

i=1 Xi

) · ε−2 = 0 whenever
Var (X) is finite. The law of large numbers is proved.



245 Theoretical Background and Basic Inequalities

Although the general applicability of Chebyshev’s inequality is an appealing fea-
ture the bound is, in general, very loose (see also Devroye and Lugosi (2001)).
A key to obtaining tighter bounds comes through a more clever use of Markov’s
inequality—a technique known as Chernoff’s bounding method. The idea is very
simple: By Markov’s inequality and the monotonicity of f (z) = exp (sz), for all
s > 0, we know that, for all ε > 0,

PXn

(
1

n

n∑
i=1

Xi − EX
[
X
]
> ε

)

= PXn

(
exp

(
s

n

n∑
i=1

(
Xi − EX

[
X
]))

> exp (sε)

)

<
EXn

[
exp

(
s
n

∑n
i=1

(
Xi − EX

[
X
]))]

exp (sε)

=
∏n

i=1 EXi

[
exp

(
s
n

(
Xi − EX

[
X
]))]

exp (sε)
, (A.44)

where the third line follows from Theorem A.109 and the last line follows from
the independence of the Xi and Theorem A.15. Now the problem of finding tight
bounds for large deviations reduces to the problem of bounding the function
exp

(
sn−1

(
X− EX

[
X
]))

which is also called the moment generating function (see
Feller (1966)).For random variables with finite support the most elegant bound is
due to Hoeffding (1963)6.

Lemma A.111 Let X be a random variable with EX
[
X
] = 0, PX (X ∈ [a, b]) = 1.

Then, for all s > 0,

EX
[
exp (sX)

] ≤ exp

(
s2 (b − a)2

8

)
.

Proof By the convexity of the exponential function

∀x ∈ [a, b] : exp (sx) ≤ x − a

b − a
exp (sb) + b − x

b − a
exp (sa) .

6 The proof presented can be found in Devroye et al. (1996).
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Exploiting EX
[
X
] = 0, and introducing the notation p

def= − a
b−a we have that

exp (ps (b − a)) = exp (−sa). Thus, we get

EX
[
exp (sX)

] ≤ p exp (sb)+ (1− p) exp (sa)

= p exp (sb) exp (ps (b − a))

exp (ps (b − a))
+ (1− p) exp (sa) exp (ps (b − a))

exp (ps (b − a))

= 1− p + p exp (s (b − a))

exp (ps (b − a))
= exp (g (u)) ,

where

u
def= s (b − a) ≥ 0 , g (u)

def= −pu + ln (1− p + p exp (u)) .

By a straightforward calculation we see that the derivative of g is

dg (u)

du
= −p + p exp (u)

1− p + p exp (u)
,

therefore g (0) = dg(u)
du

∣∣∣
u=0

= 0. Moreover,

d2g (u)

du2
= p exp (u) (1− p + p exp (u))− p exp (u) p exp (u)

(1− p + p exp (u))2

= (1− p) p exp (u)

(1− p + p exp (u))2 ,

and the maximum of d2g(u)
du2 is attained for u = 0. Hence d2g(u)

du2 ≤ (1− p) p ≤ 1
4 .

Thus, by Taylor series expansion with remainder, for some u0 ∈ [0, u],

g (u) = g (0)+ u · dg (u)

du

∣∣∣∣
u=0

+ u2

2
· d2g (u)

du2

∣∣∣∣
u=u0

≤ u2

8
= s2 (b − a)2

8
.

The lemma is proved.

Using this lemma we can now prove Chernoff’s inequality (Chernoff 1952;
Okamoto 1958) which was later generalized by Hoeffding (1963).

Theorem A.112 (Hoeffding’s inequality) Let X1, . . . ,Xn be independent bounded
random variables such that, for all i ∈ {1, . . . , n}, PXi (Xi ∈ [a, b]) = 1 and
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EXi

[
Xi

] = µ. Then, for all ε > 0,

PXn

(
1

n

n∑
i=1

Xi − µ > ε

)
< exp

(
− 2nε2

(b − a)2

)
(A.45)

and

PXn

(∣∣∣∣∣1n
n∑

i=1

Xi − µ

∣∣∣∣∣ > ε

)
< 2 exp

(
− 2nε2

(b − a)2

)
. (A.46)

Proof Noting that EX
[
X− µ

] = 0 we can apply Lemma A.111 together with
equation (A.44) to obtain

PXn

(
1

n

n∑
i=1

Xi − µ > ε

)
<

∏n
i=1 exp

(
s2(b−a)2

8n2

)
exp (sε)

= exp

(
s2

8n
(b − a)2 − sε

)
.

Minimization of this expression w.r.t. s gives s = 4nε/ (b − a)2. Hence we have

PXn

(
1

n

n∑
i=1

Xi − µ > ε

)
< exp

(
s2

8n
(b − a)2 − sε

)
= exp

(
− 2nε2

(b − a)2

)
.

This proves equation (A.45). By using Yi = −Xi we see

PYn

(
1

n

n∑
i=1

Yi − EY
[
Y
]
> ε

)
= PXn

(
µ− 1

n

n∑
i=1

Xi > ε

)

< exp

(
− 2nε2

(b − a)2

)
.

Thus, using Theorem A.107 we obtain equation (A.46).

This inequality is appropriate if we have only knowledge of the support of PX.
However, this bound does not take into account the variance of the random variable
X. We shall provide a bound on the moment generating function taking into account
both support and variance.
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Lemma A.113 Let X be a random variable with EX
[
X
] = 0, PX (|X| ≤ c) = 1

and σ 2 = Var (X) = EX
[
X2
]
. Then, for all s > 0,

EX
[
exp (sX)

] ≤ exp

(
σ 2

c2
(exp (sc)− 1− sc)

)
.

Proof First we note that, for all j ∈ {2, . . . ,∞},
EX
[
X j
] = EX

[
X j−2X2

] ≤ EX
[
c j−2X2

] = c j−2σ 2 ,

because, by assumption, the random variable is bounded by c. Exploiting the fact
that exp (x) =∑∞

j=0
x j

j ! we therefore obtain

EX
[
exp (sX)

] = EX

[
1+ sX +

∞∑
j=2

s j X j

j !

]
= 1+

∞∑
j=2

s j

j !EX
[
X j
]

≤ 1+
∞∑

j=2

s j

j !c
j−2σ 2

= 1+ σ 2

c2

∞∑
j=2

s j c j

j !

= 1+ σ 2

c2
(exp (sc) − 1− sc) .

Finally, using Theorem A.101 proves the lemma.

Theorem A.114 (Bennett (1962)) Let X1, . . . ,Xn be independent random vari-
ables such that, for all i ∈ {1, . . . , n}, PXi (|Xi | ≤ c) = 1 and EXi

[
Xi

] = 0.
Then, for any ε > 0,

PXn

(
n∑

i=1

Xi > ε

)
< exp

(
−ε

c

((
1+ nσ 2

εc

)
ln
(

1+ εc

nσ 2

)
− 1

))
,

where σ 2 = EX
[
X2
] = Var (X).

Proof Using equation (A.44) and the Lemma A.113 yields

PXn

(
n∑

i=1

Xi > ε

)
< exp

(
nσ 2

c2
(exp (sc)− 1− sc) − sε

)
, (A.47)
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which needs to be minimized w.r.t. s. Setting the first derivative of the logarithm of
equation (A.47) to zero gives

nσ 2

c2
(c exp (sc)− c)− ε = 0 ,

which implies that the minimum is at s = 1
c ln

(
1+ εc

nσ 2

)
. Resubstituting this value

in equation (A.47) results in the following bound

exp

(
nσ 2

c2

((
1+ εc

nσ 2

)
− 1− ln

(
1+ εc

nσ 2

))
− ε

c
ln
(

1+ εc

nσ 2

))
= exp

(
ε

c
− nσ 2

c2
ln
(

1+ εc

nσ 2

)
− ε

c
ln
(

1+ εc

nσ 2

))
= exp

(
−ε

c

((
1+ nσ 2

εc

)
ln
(

1+ εc

nσ 2

)
− 1

))
The theorem is proved.

The full power of this theorem becomes apparent if we bound
(
1+ 1

x

)
ln (1+ x)

even further.

Theorem A.115 (Bernstein (1946)) Suppose we are given n independent random
variables X1, . . . ,Xn such that for all i ∈ {1, . . . , n}, PXi (|Xi | ≤ c) = 1 and
EXi

[
Xi

] = 0. Then, for any ε > 0,

PXn

(
1

n

n∑
i=1

Xi > ε

)
< exp

(
− nε2

2σ 2 + cε

)
,

where σ 2 = EX
[
X2
] = Var (X).

Proof First we show that ln (1+ x) ≥ 2x/ (2+ x) which follows from con-
sidering the function f (x) = ln (1+ x) − 2x/ (2+ x). The function f has the
derivative 1/ (1+ x) − 4/

(
(2+ x)2) whose only positive zero is at x = 0. Since

f (1) = ln (2) − 2/3 > 0 and f (0) = 0 it follows that, for all positive x ∈ �,
f (x) ≥ 0 ⇔ ln (1+ x) ≥ 2x/ (2+ x). Using x = εc

nσ 2 in Theorem A.114 shows
that, for all λ > 0,

PXn

(
n∑

i=1

Xi > λ

)
< exp

(
−λ

c

((
1+ nσ 2

λc

)
2 λc

nσ 2

2+ λc
nσ 2

− 1

))
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= exp

(
−λ

c

(
2λc
nσ 2 + 2

2+ λc
nσ 2

− 1

))

= exp

(
−2λ2c + 2λnσ 2

2cnσ 2 + λc2
+ λ

c

)
= exp

(
− λ2

2nσ 2 + λc

)
.

Substituting λ = nε proves the theorem.

If all we need is a bound on the probability that X1+· · ·+Xn = 0 we can eliminate
the exponent 2 on ε as opposed to Hoeffding’s and Bernstein’s inequality.

Theorem A.116 (Binomial tail bound) Let X1, . . . ,Xn be independent random
variables such that, for all i ∈ {1, . . . , n}, PXi (Xi = 1) = 1 − PXi (Xi = 0) =
EXi

[
Xi

] = µ. Then, for all ε ∈ (0, µ),

PXn

(
1

n

n∑
i=1

Xi = 0

)
< exp (−nε) .

Proof By the independence of the Xi we have

PXn

(
1

n

n∑
i=1

Xi = 0

)
= (1− µ)n ≤ exp (−nµ) < exp (−nε) ,

where the second step follows from Theorem A.102.

Large Deviations of Functions of Random Variables

Finally, there exists a further generalization of large deviation bounds when consid-
ering any function f : � n → � of n random variables X1, . . . ,Xn . Again, we aim
to bound the probability that f (X1, . . . ,Xn) deviates from EXn

[
f (X1, . . . ,Xn)

]
.

Before we start we need some additional quantities.

Definition A.117 (Martingale and martingale difference) A sequence of ran-
dom variables Y1, . . . ,Yn is called a martingale w.r.t. another sequence X1, . . . ,Xn

if for every i ∈ {1, . . . , n}, Yi = g (X1, . . . ,Xi) is a function of X1, . . . ,Xi and

PXi

(
EXi+1|Xi=x

[
g ((x,Xi+1))

] �= g (X)
) = 0 .
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A sequence of random variables V1, . . . ,Vn is called a martingale difference
sequence w.r.t. another sequence X1, . . . ,Xn if, for every i ∈ {1, . . . , n}, Vi =
g (X1, . . . ,Xi) is a function of X1, . . . ,Xi and

PXi

(
EXi+1|Xi=x

[
g ((x,Xi+1))

] �= 0
) = 0 .

In order to tackle this problem we use a slight modification of equation (A.44)
already noticed in Hoeffding (1963): Whenever V1, . . . ,Vn forms a martingale
difference sequence w.r.t. X1, . . . ,Xn then, for all s > 0,

PXn

(
n∑

i=1

Vi > ε

)
<

EXn

[
exp

(
s

n∑
i=1

Vi

)]
exp {sε}

=

n∏
i=1

EXi |Xi−1=x

[
exp (sVi )

]
exp {sε} . (A.48)

However, the significance of this simple extension was not recognized until 1989
when it triggered a revolution in certain applications (McDiarmid 1989). In the
current case of interest we note that

Vi
def= EXn−i |Xi=(x,x)

[
f ((x, x,X))

]− EXn−i+1|Xi−1=x

[
f ((x,X))

]
(A.49)

forms a martingale difference sequence w.r.t. X1, . . . ,Xn which implies that all
we need is an upper bound on EXi |Xi−1=x

[
exp (sVi )

]
. We shall use the following

lemma.

Lemma A.118 For any function f : � n → � such that for all i ∈ {1, . . . n}
sup

x∈� n,x̃∈�
| f (x1, . . . , xn)− f (x1, . . . , xi−1, x̃ , xi+1, . . . xn)| ≤ ci (A.50)

we know that, for all measures PX, all x ∈ � i−1, all x ∈ � and i ∈ {1, . . . , n},∣∣EXn−i |Xi=(x,x)
[

f (x, x,X)
]− EXn−i+1 |Xi−1=x

[
f (x,X)

]∣∣ ≤ |ci | .

Proof By definition we know that∣∣EXn−i |Xi=(x,x)
[

f (x, x,X)
]− EXn−i+1|Xi−1=x

[
f (x,X)

]∣∣
= ∣∣EXn−i |Xi=(x,x)

[
EXi+1

[
f (x, x,X)− f (x,Xi ,X)

]]∣∣
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≤ EXn−i |Xi=(x,x)

EXi+1

| f (x, x,X)− f (x,Xi ,X)|︸ ︷︷ ︸
≤|ci |

 ≤ |ci | ,

where the third line follows by the triangle inequality and from equation (A.50).

Theorem A.119 (McDiarmid’s inequality (McDiarmid 1989)) For any function
f : � n → � such that (A.50) holds we know that for all measures PX

PXn
(

f (X)− EXn
[

f (X)
]
> ε

)
< exp

(
− ε2

2
∑n

i=1 c2
i

)
Proof First we combine Lemma A.118 with Lemma A.111 to obtain

EXi |Xi−1=x

[
exp (sVi)

] ≤ exp

(
−s2c2

i

2

)
Using equation (A.48) this implies that

PXn

(
f (X)− EXn

[
f (X)

]
> ε

)
< exp

(
s2 ∑n

i=1 c2
i

2
− sε

)
.

Minimizing w.r.t. s results in s = ε/
(∑n

i=1 c2
i

)
. Resubstituted into the latter

expression proves the theorem.

Note that the original result in McDiarmid (1989) contains a slightly better con-
stant of 2 rather than 1

2 in the exponential term which is proven using the same
technique. As an example of the power of this theorem consider the simple func-
tion f (x1, . . . , xn) = 1

n

∑n
i=1 xi where xi ∈ [a, b]. Noticing that ci = a−b

n we see
that Hoeffding’s inequality can easily be proven using McDiarmid’s inequality.



B Proofs and Derivations—Part I

This appendix gives all proofs and derivations of Part I in detail. If necessary the
theorems are restated before proving them. This appendix is not as self-contained
as the chapters in the main body of this book; it is probably best to read it in
conjunction with the corresponding chapter.

B.1 Functions of Kernels

In this section we present the proofs of Theorem 2.20 and Corollary 2.21.

Proof of Theorem 2.20. For all r ∈ � and all sequences (x1, . . . , xr ) ∈ �
r let

K1, K2, K+, Kc, K+c, K∗ and K f be the r × r matrices whose i, j–th element is
given by k1

(
xi , x j

)
, k2

(
xi , x j

)
, k1

(
xi , x j

)+k2
(
xi , x j

)
, c·k1

(
xi , x j

)
, k1

(
xi , x j

)+c,
k1
(
xi , x j

)·k2
(
xi , x j

)
and f (xi)· f

(
x j

)
, respectively. We need to show that K+, Kc,

K+c, K∗ and K f are positive semidefinite using only that K1 and K2 are positive
semidefinite, i.e., for all α ∈ �r , α′K1α ≥ 0 and α′K2α ≥ 0.

1. α′K+α = α′ (K1 +K2)α = α′K1α + α′K2α ≥ 0.

2. α′Kcα = c · α′K1α ≥ 0.

3. α′K+cα = α′
(
K1 + c11′

)
α = α′K1α + c

∥∥1′α
∥∥2 ≥ 0.

4. According to Corollary A.92 the r2 × r2 matrix H = K1 ⊗ K2 is positive
definite, that is, for all a ∈ �

r2
, a′Ha ≥ 0. Given any α ∈ �

r , let us consider
a = (

α1e′1; . . . ;αr e′r
) ∈ �r2

. Then,

a′Ha =
r2∑

i=1

r2∑
j=1

ai a j Hi j =
r∑

i=1

r∑
j=1

αiα j Hi+(i−1)r, j+( j−1)r
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=
r∑

i=1

r∑
j=1

αiα j k1
(
xi , x j

)
k2
(
xi , x j

) = α′K∗α ≥ 0 .

5. For any function f : � → � we know that

α′K f α =
r∑

i=1

r∑
j=1

αiα j f (xi ) f
(
x j

) = (
r∑

i=1

ai f (xi )

)2

≥ 0 .

Proof of Corollary 2.21. The first assertion follows directly from propositions 3
and 4 of Theorem 2.20. For the proof of the second assertion note that

exp

(
k1 (x, x̃)

σ 2

)
=

∞∑
i=0

1

σ 2i i !k
i
1 (x, x̃) = 1+

∞∑
i=1

1

σ 2i i !k
i
1 (x, x̃) .

Hence, by propositions 1, 2 and 3 of Theorem 2.20 the second assertion is proved.
In order to prove the third assertion note that

exp

(
−k1 (x, x) − 2k1 (x, x̃)+ k1 (x̃, x̃)

2σ 2

)
= exp

(
−k1 (x, x)

2σ 2

)
︸ ︷︷ ︸

f (x)

· exp

(
−k1 (x̃, x̃)

2σ 2

)
︸ ︷︷ ︸

f (x̃)

· exp

(
k1 (x, x̃)

σ 2

)
.

Now using propositions 4 and 5 of Theorem 2.20 and the second assertion of
this corollary proves the third assertion. The last assertion follows directly from
proposition 4 and 5 of Theorem 2.20 as

k (x, x̃) = k1 (x, x̃)√
k1 (x, x) · k1 (x̃, x̃)

=
√

1

k1 (x, x)︸ ︷︷ ︸
f (x)

·
√

1

k1 (x̃, x̃)︸ ︷︷ ︸
f (x̃)

· k1 (x, x̃) .

The corollary is proved.

B.2 Efficient Computation of String Kernels

In this section we prove that the recursions given in equations (2.26)–(2.27) and
(2.29)–(2.30) compute the kernel functions (2.25) and (2.28), respectively.
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B.2.1 Efficient Computation of the Substring Kernel

In order to compute the kernel (2.25) efficiently we note that, in the outer sum over
b ∈ �s , it suffices to consider all possible substrings of length s that are contained
in u. Hence we can rewrite the kernel kr by

kr (u, v) =
r∑

s=1

|u|−s+1∑
i=1

|v|−s+1∑
j=1

λ2sIu[i:(i+s−1)]=v[ j :( j+s−1)]

=
|u|∑
i=1

|v|∑
j=1

λ2Iui=v j +
|u|−1∑
i=1

|v|−1∑
j=1

λ4Iu[i:(i+1)]=v[ j :( j+1)] + · · ·

=
|u|∑
i=1

|v|∑
j=1

λ2
(
Iui=v j + λ2

(
Iu[i:(i+1)]=v[ j :( j+1)] + λ2 (· · ·))) .

The innermost nested sum can be evaluated recursively when we take advantage
of the fact that u [i : (i + s)] �= v [ j : ( j + s)] implies that u [i : (i + s + t)] �=
v [ j : ( j + s + t)] for all t ∈ � . This proves equations (2.26)–(2.27).

B.2.2 Efficient Computation of the Subsequence Kernel

The proof that the recursions given in equation (2.29)–(2.30) compute the kernel
given in equation (2.28) proceeds in two stages:

1. First, we establish that (2.30) computes

k ′r (u, v) =
{

1 if r = 0∑
b∈�r

∑
{i|b=u[i] }

∑
{j|b=v[j] } λ

|u|+|v|−i1− j1+2 otherwise . (B.1)

2. Second, we directly show that (2.29) holds.

In order to prove equation (B.1) we analyze three cases:

1. If either |u| < r or |v| < r we know that one of the sums in equation
(B.1) is zero because u or v cannot contain a subsequence longer than the strings
themselves. This justifies the first part of (2.30).

2. If r = 0 then the second part of (2.30) is equivalent to the first part of equation
(B.1).

3. For a given character u ∈ � and a given string v ∈ �∗ consider Mu =
{b ∈ �r | br = u } and Ju = {

j ∈ {1, . . . , |v|}r ∣∣ v jr = u
}
, i.e., all subsequences
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of length r such that the last character in b equals u and all index vectors over v

such that the last indexed character equals u. Then we know that∑
b∈�r

∑
{i|b=(uus)[i] }

∑
{j|b=v[j] }

λ|uus |+|v|−i1− j1+2

=
∑

b∈Mus

∑
{i|b=(uus )[i] }

∑
j∈Jus

λ|uus |+|v|−i1− j1+2 +
∑

{j|b=v[j] }\Jus

λ|uus |+|v|−i1− j1+2


+

∑
b∈�r \Mus

∑
{i|b=(uus)[i] }

∑
{j|b=v[j] }

λ|uus |+|v|−i1− j1+2 .

Now the first term can be rewritten as∑
b∈Mus

∑
{i|b=(uus )[i] }

∑
j∈Jus

λ|uus |+|v|−i1− j1+2

=
∑

b∈�r−1

∑
{i|b=u[i] }

∑
{t |vt=us }

∑
{j|b=(v[1:(t−1)])[j] }

λ|uus |+|v|−i1− j1+2

=
∑

{t |vt=us }
λ|v|−t+2

∑
b∈�r−1

∑
{i|b=u[i] }

∑
{j|b=(v[1:(t−1)])[j] }

λ|u|+(t−1)−i1− j1+2

︸ ︷︷ ︸
k′r−1 (u,v[1:(t−1)])

.

Since for all remaining subsequences b ∈ �r the last character does not match
with us we can summarize the remaining terms by

λ ·
∑
b∈�r

∑
{i|b=u[i] }

∑
{j|b=v[j] }

λ|u|+|v|−i1− j1+2

︸ ︷︷ ︸
k′r (u,v)

.

Thus, we have shown the third part of (2.30).

It remains to prove that (2.29) is true. Again, we analyze the two different cases:

1. If either |u| < r or |v| < r we know that one of the sums in equation
(2.28) is zero because u or v cannot contain a subsequence longer than the strings
themselves. This justifies the first part of (2.29).

2. Let Mu and Ju be defined as in the previous analysis. Then we know

kr (uus, v) =
∑

b∈Mus

∑
{i|b=(uus)[i] }

∑
j∈Jus

λl(i)+l(j)
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+
∑

b∈Mus

∑
{i|b=(uus)[i] }

∑
{j|b=v[j] }\Jus

λl(i)+l(j)

+
∑

b∈�r \Mus

∑
{i|b=(uus )[i] }

∑
{j|b=v[j] }

λl(i)+l(j) .

Using Definition 2.24 the first term can be written∑
b∈Mus

∑
{i|b=(uus)[i] }

∑
j∈Jus

λl(i)+l(j) =
∑

b∈Mus

∑
{i|b=(uus)[i] }

∑
j∈Jus

λir+ jr−i1− j1+2

=
∑

b∈�r−1

∑
{i|b=u[i] }

∑
{t |vt=us }

∑
{j|b=(v[1:(t−1)])[j] }

λ|u|+1+(t−1)+1−i1− j1+2

= λ2 ·
∑

{t |vt=us }

∑
b∈�r−1

∑
{i|b=u[i] }

∑
{j|b=(v[1:(t−1)])[j] }

λ|u|+(t−1)+2

︸ ︷︷ ︸
k′r−1(u,v[1:(t−1)])

.

Since the remaining sums run over all b ∈ �r where br is not equal to us (or to
any symbol in v if it matches with us) they can be computed by kr (u, v). This
completes the proof that the recursion given in equations (2.29)–(2.30) computes
(2.28).

B.3 Representer Theorem

In this section we present the proof of Theorem 2.29 also found in Schölkopf et al.
(2001).

Proof Let us introduce the mapping � : � → � defined by

�(x) = k (x, ·) .
Since k is a reproducing kernel, by equation (2.36) we know that

∀x, x̃ ∈ � : (� (x)) (x̃) = k (x, x̃) = 〈�(x) ,� (x̃)〉 . (B.2)

Now, given x = (x1, . . . , xm), any f ∈ � can be decomposed into a part that exists
in the span of the �(xi ) and a part which is orthogonal to it,

f =
m∑

i=1

αi�(xi )+ v
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for some α ∈ �
m and v ∈ � satisfying that ∀xi ∈ x : 〈v,� (xi)〉 = 0. Using

equation (B.2), the application of f to any arbitrary training point x j ∈ x yields

f
(
x j

) =
〈

m∑
i=1

αi�(xi)+ v,�
(
x j

)〉 = m∑
i=1

αi

〈
�(xi ) ,�

(
x j

)〉
=

m∑
i=1

αi k
(
xi , x j

)
,

independent of v. Hence, the first term in equation (2.38) is independent of v.
As for the second term, since v is orthogonal to

∑m
i=1 αi�(xi ) and greg is strictly

monotonic we get

greg (‖ f ‖) = g

(∥∥∥∥∥ m∑
i=1

αi�(xi )+ v

∥∥∥∥∥
)

= g


√√√√∥∥∥∥∥ m∑

i=1

αi�(xi )

∥∥∥∥∥
2

+ ‖v‖2


≥ g

(∥∥∥∥∥ m∑
i=1

αi�(xi )

∥∥∥∥∥
)

,

with equality occurring if, and only if, v = 0. Hence, setting v = 0 does not affect
the first term in equation (2.38) while strictly reducing the second term—hence
any minimizer must have v = 0. As a consequence, any minimizer takes the form
f =∑m

i=1 αi�(xi ), so, using equation (B.2)

f (·) =
m∑

i=1

αi k (xi , ·) .

The theorem is proved.

B.4 Convergence of the Perceptron

In this section we present the proof of Novikoff’s perceptron convergence theorem
(see Theorem 2.31) which makes extensive use of the geometry in a feature space
�. This elegant proof is the heart of many mistake bounds for linear classifiers.
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Proof Suppose wt is the final solution vector after t mistakes. Then, by the
algorithm in Section D.1 on page 321 the last update step reads

wt = wt−1 + yixi .

Hence the inner product with the vector w∗ satisfies〈
w∗,wt

〉 = 〈
w∗,wt−1

〉+ yi

〈
w∗, xi

〉
≥ 〈

w∗,wt−1
〉+ γz

(
w∗) ≥ · · · ≥ tγz

(
w∗) ,

where the last step follows from repeated applications up to step t = 0 where by
assumption w0 = 0. Similarly, by definition of the algorithm,

‖wt‖2 = ‖wt−1‖2 + 2yi 〈wt−1, xi 〉︸ ︷︷ ︸
≤0

+‖xi‖2

≤ ‖wt−1‖2 + ς2 ≤ · · · ≤ tς2 .

Using the Cauchy-Schwarz inequality (see Theorem A.106) we thus have

tγz
(
w∗) ≤ 〈w∗,wt

〉 ≤ ∥∥w∗∥∥ · ‖wt‖ ≤
√

tς .

This is clearly equivalent to

t ≤
(

ς

γz (w∗)

)2

.

The theorem is proved.

B.5 Convex Optimization Problems of Support Vector Machines

Here, we give a derivation of the dual optimization problems of SVMs. For the

sake of understandability we denote by Y def= diag (y1, . . . , ym) the m×m diagonal

matrix of classes (−1 and +1) and by G
def= (〈

xi , x j

〉)m,m

i, j=1 the m ×m Gram matrix.
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B.5.1 Hard Margin SVM

Consider the optimization problem given by equation (2.45). Written in terms of
the primal Lagrangian, the solution ŵ can be expressed by1(

ŵ, α̂
) = argmin

w∈�
argmax

0≤α

L (w,α) ,

L (w,α) = 1

2
‖w‖2 −

m∑
i=1

αi yi 〈xi ,w〉 + α′1 .

Taking the derivative w.r.t. the primal variable w we obtain

∂L (w,α)

∂w

∣∣∣∣
w=ŵ

= ŵ−
m∑

i=1

αi yixi = 0 ⇔ ŵ =
m∑

i=1

αi yixi .

Substitution into the primal Lagrangian yields the Wolfe dual, that is,

α̂ = argmax
0≤α

W (α)

W (α) = 1

2
α′YGYα − α′YGYα + α′1 = α′1− 1

2
α′YGYα .

B.5.2 Linear Soft Margin Loss SVM

Now consider the case involving the linear soft margin loss (see equation (2.48)).
First, let us multiply the objective function by the constant C = 1

2λm which would
not change the solution but render the derivation much easier. Expressed in terms
of the primal Lagrangian the solution ŵ can be written as(

ŵ, ξ̂ , α̂, β̂
)

= argmin
w∈�,0≤ξ

argmax
0≤α,0≤β

L (w, ξ ,α,β) ,

L (w, ξ ,α,β) = 1

2
‖w‖2 + Cξ ′1−

m∑
i=1

αi yi 〈xi ,w〉 + α′1− α′ξ − β ′ξ

= 1

2
‖w‖2 −

m∑
i=1

αi yi 〈xi ,w〉 + α′1+ ξ ′ (C1− α − β) .

1 Note that the constant positive factor of 1
2 does not change the minimum.
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The corresponding dual is found by differentiation w.r.t. the primal variables w and
ξ , that is,

∂L (w, ξ ,α,β)

∂w

∣∣∣∣
w=ŵ

= ŵ−
m∑

i=1

αi yixi = 0 ⇔ ŵ =
m∑

i=1

αi yixi ,

∂L (w, ξ ,α,β)

∂ξ

∣∣∣∣
ξ=ξ̂

= C1− α − β = 0 ⇔ α = C1− β . (B.3)

Substituting these stationarity conditions into the primal Lagrangian we obtain the
following dual objective function(

α̂, β̂
)

= argmax
0≤α,0≤β

W (α,β) ,

W (α,β) = 1

2
α′YGYα − α′YGYα + α′1 = α′1− 1

2
α′YGYα .

Since β ≥ 0, the second stationarity condition (B.3) restricts each αi to be less than
or equal to C . As a consequence the final Wolfe dual is given by

α̂ = argmax
0≤α≤C1

W (α) ,

W (α) = α′1− 1

2
α′YGYα .

B.5.3 Quadratic Soft Margin Loss SVM

Consider the quadratic soft margin loss given by equation (2.49). Again, let us
multiply the objective function by the constant 1

2λm . Expressed in terms of the
primal Lagrangian the solution ŵ can be written as(

ŵ, ξ̂ , α̂, β̂
)

= argmin
w∈�,0≤ξ

argmax
0≤α,0≤β

L (w, ξ ,α,β) ,

L (w, ξ ,α,β) = 1

2
‖w‖2 + 1

2λm
ξ ′ξ −

m∑
i=1

αi yi 〈xi ,w〉 + α′1− α′ξ − β ′ξ

= 1

2
‖w‖2 −

m∑
i=1

αi yi 〈xi ,w〉 + α′1+ ξ ′
(

1

2λm
ξ − α − β

)
.
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The corresponding dual is found by differentiation w.r.t. the primal variables w and
ξ , that is,

∂L (w, ξ ,α,β)

∂w

∣∣∣∣
w=ŵ

= ŵ−
m∑

i=1

αi yixi = 0 ⇔ ŵ =
m∑

i=1

αi yixi ,

∂L (w, ξ ,α,β)

∂ξ

∣∣∣∣
ξ=ξ̂

= 1

λm
ξ̂ − α − β = 0 ⇔ ξ̂ = λm (α + β) .

Substituting the stationarity conditions into the primal we obtain(
α̂, β̂

)
= argmax

0≤α,0≤β

W (α,β) ,

W (α,β) = 1

2
α′YGYα − α′YGYα + α′1+ λm (α + β)′

(
1

2
(α + β)− α − β

)
= 1

2
α′YGYα − α′YGYα + α′1+ λm (α + β)′

(
−1

2
(α + β)

)
= α′1− 1

2
α′YGYα − λm

2
‖α + β‖2 .

Noticing that decreasing β will always lead to an increase in W (α,β), we simply
set β̂ = 0. Hence, the final Wolfe dual is given by

α̂ = argmax
0≤α

W (α) ,

W (α) = α′1− 1

2
α′YGYα − λm

2
α′α .

B.5.4 ν–Linear Margin Loss SVM

Now consider the case involving the linear soft margin loss and the reparame-
terization by ν ∈ [0, 1] (see equation (2.52)). Expressed in terms of the primal
Lagrangian the solution w∗ can be written as(

ŵ, ξ̂ , ρ̂, α̂, β̂, δ̂
)

= argmin
w∈�,0≤ξ ,0≤ρ

argmax
0≤α,0≤β,0≤δ

L (w, ξ , ρ,α,β, δ) ,

L (w, ξ , ρ,α,β, δ) = 1

2
‖w‖2 + ρ

(
α′1− ν − δ

)+ ξ ′
(

1

m
1− α − β

)
−

m∑
i=1

αi yi 〈xi ,w〉 .
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The corresponding dual is found by differentiation w.r.t. the primal variables w, ξ

and ρ, that is,

∂L (w, ξ , ρ,α,β, δ)

∂w

∣∣∣∣
w=ŵ

= ŵ−
m∑

i=1

αi yixi = 0 ⇔ ŵ =
m∑

i=1

αi yixi ,

∂L (w, ξ , ρ,α,β, δ)

∂ξ

∣∣∣∣
ξ=ξ̂

= 1

m
1− α − β = 0 ⇔ α = 1

m
1− β , (B.4)

∂L (w, ξ , ρ,α,β, δ)

∂ρ

∣∣∣∣
ρ=ρ̂

= α′1− ν − δ = 0 ⇔ α′1 = ν + δ . (B.5)

Resubstituting these stationarity conditions into the primal Lagrangian we obtain
the following dual objective function(

α̂, β̂, δ̂
)

= argmax
0≤α,0≤β,0≤δ

W (α,β, δ) ,

W (α,β, δ) = 1

2
α′YGYα − α′YGYα + ρ̂

(
α′1− ν − δ

)+ ξ̂
′
(

1

m
1− α − β

)
= −1

2
α′YGYα .

Since β ≥ 0, the second stationarity condition (B.4) restricts each αi to be less than
or equal to 1

m . Since δ ≥ 0 the third stationarity condition (B.5) is equivalent to α′1
to be greater or equal to ν. Hence, the final Wolfe dual is given by

α̂ = argmax
0≤α≤ 1

m 1,α′1≥ν
W (α) ,

W (α) = −1

2
α′YGYα .

B.6 Leave-One-Out Bound for Kernel Classifiers

Here we give the proof of Theorem 2.37. The proof is adapted from the original
proof given in Jaakkola and Haussler (1999b); we do not have to enforce convexity
of the potential function J and have dropped the assumption that αi ∈ [0, 1].

Proof of Theorem 2.37. The basic idea of this proof is to find an expression of
the leave-one-out error of an algorithm using only the coefficients α̂ obtained by
learning on the whole training sample. Thus we try to relate a leave-one-our error at
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the t th example with the coefficients obtained by joint maximization of the function
W given by

W (α) = −1

2

m∑
i=1

m∑
j=1

αiα j yi y jk
(
xi , x j

)+ m∑
i=1

J (αi ) .

Some notational comments are in order: Subscripts on W refer to the left out
example, the subscript on α to the value of the particular component, and the
superscripts on α to the maximizer for the corresponding functions W .

Leaving out the t th example we know that the remaining α’s are obtained by
the maximization of

Wt (α) = −1

2

m∑
i=1
i �=t

m∑
j=1
j �=t

αiα j yi y jk
(
xi , x j

)+ m∑
i=1
i �=t

J (αi ) .

Let the learning algorithm �W result in αt ∈ �m , i.e.,

αt = argmax
0≤α≤u

Wt (α) .

Naturally, αt is different from α̂ because the latter is jointly optimized with αt in
the objective function. In order to relate the decision function (2.54) based on αt

with the decision function (2.54) based on α̂ obtained by joint optimization we aim
to find a function Ŵ : �m → �

whose maximum is attained at α̂ and

which involves Wt .

In order to achieve this we construct W from Wt by adding the missed summands
and fixing αt to its optimal value α̂t . This gives

Ŵ (α) = Wt (α)− 1

2

m∑
i=1
i �=t

αi α̂t yi ytk (xi , xt )− 1

2

m∑
j=1

α̂tα j yt y jk
(
xt , x j

)+ J
(
α̂t

)

= Wt (α)− α̂t yt

m∑
i=1
i �=t

αi yik (xi , xt )− 1

2
α̂t α̂t k (xt , xt )+ J

(
α̂t

)
, (B.6)

where we used the symmetry of the Mercer kernel k. Note that the last two terms
in (B.6) do not change the maximum because they only depend on the fixed value
α̂t . As a consequence we shall omit them in the following argument. Since α̂
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maximizes Ŵ we know that

Ŵ
(
α̂
) ≥ Ŵ

(
αt
)
,

Wt

(
α̂
)− α̂t yt

m∑
i=1
i �=t

α̂i yik (xi , xt ) ≥ Wt

(
αt
)− α̂t yt

m∑
i=1
i �=t

αt
i yik (xi , xt ) ,

−α̂t yt

m∑
i=1
i �=t

αt
i yik (xi , xt ) ≤ −α̂t yt

m∑
i=1
i �=t

α̂i yik (xi , xt )−
(
Wt

(
αt
)− Wt

(
α̂
))

.

As by definition αt maximizes Wt we have

Wt

(
αt
) ≥ Wt

(
α̂
) ⇔ Wt

(
αt
)− Wt

(
α̂
) ≥ 0 ,

which shows that

−α̂t yt

m∑
i=1
i �=t

αt
i yik (xi , xt ) ≤ −α̂t yt

m∑
i=1
i �=t

α̂i yik (xi , xt )

−yt

m∑
i=1
i �=t

αt
i yik (xi , xt )

︸ ︷︷ ︸
�W ((z1,...,zt−1,zt+1,...,zm))(xt )

≤ −yt

m∑
i=1
i �=t

α̂i yik (xi , xt ) ,

because, by assumption, α̂t is positive. A leave-one-out error at the t th example
occurs if, and only if, the l.h.s. of the inequality is positive. This is as the braced
term is exactly the real-valued output at xt when the t th example is left out during
learning. Thus the sum of step functions of the r.h.s. bounds the leave-one-out error
from above. The theorem is proved.

B.7 Laplace Approximation for Gaussian Processes

In this section we derive a method to compute the vector µ = (
t̂, t̂
) ∈ �

m+1

which maximizes the expression (3.18). As a byproduct we will also give the
explicit form of the covariance matrix � of the Laplace approximation defined in
equation (3.19). Finally, we derive a stable algorithm for computing the expansion
coefficients α ∈ �m for classification using Gaussian processes.
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B.7.1 Maximization of fTm+1|X=x,Zm=z

In order to find the maximum of the density fTm+1|X=x,Zm=z we use Bayes’ theorem

fTm+1|X=x,Zm=z ((t, t)) = fTm+1|X=x,Xm=x,Ym=y ((t, t))

= PYm |Tm+1=(t,t),Xm=x,X=x (y) fTm+1|Xm=x,X=x ((t, t))

PYm |Xm=x,X=x (y)

= PYm |Tm=t,Xm=x (y) fTm+1|Xm=x,X=x ((t, t))

PYm |Xm=x (y)
,

where we use the fact that the test object x ∈ � and its associated latent variable T
have no influence on the generation of the classes y at the training objects x. Now,
taking the logarithm will not change the maximum but will render optimization
much easier. Hence, we look for the vector

(
t̂, t̂
)

which maximizes

J (t, t) = ln
(
PYm |Tm=t,Xm=x (y)

)︸ ︷︷ ︸
Q1(t)

+ ln
(
fTm+1|Xm=x,X=x ((t, t))

)︸ ︷︷ ︸
Q2(t,t)

− ln
(
PYm |Xm=x (y)

)
.

Note that the last term is a normalization constant which does not depend on
(t, t) and can thus be omitted from the optimization. Let us start by considering
the second term Q2 (t, t) which effectively builds the link between Gaussian
processes for regression and for classification. By assumption2 PTm+1|Xm=x,X=x =
Normal (0,Gm+1) and thus, according to Definition A.26, this term is given by

Q2 (t, t) = −1

2

(
(m + 1) ln (2π)+ ln (|Gm+1|)+

(
t ′, t

)
G−1

m+1

(
t
t

))
, (B.7)

where

Gm+1 =
(

XX′ Xx
x′X′ x′x

)
=
(

Gm Xx
x′X′ x′x

)
and G−1

m+1 =
(

M m
m′ κ

)
(B.8)

are the (m + 1) × (m + 1) Gram matrix and its inverse of the training and test
object(s). Using Theorem A.80 for the inverse of a partitioned matrix Gm+1 we
know that G−1

m+1 can be written as in equation (B.8) where

M = G−1
m + 1

κ
mm′ , m = −κG−1

m Xx , κ = (
x′x− x′X′G−1

m Xx
)−1

. (B.9)

2 For the sake of understandability we consider a regression model without any variance σ 2
t . Note, however,

that we can always incorporate the variance afterwards by changing the kernel according to equation (3.15) (see
Remark 3.10). This is particularly important if Gm+1 is not of full rank.
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Hence it follows that (B.7) can be written as

Q2 (t, t) = −1

2

(
t ′Mt + 2t t ′m+ t2κ

)+ c , (B.10)

where we summarize all terms independent of t and t in c ∈ �. We note that Q1 (t)
does not depend on t and thus, for any value of t ∈ �m , we can analytically derive
the optimal value t̂ of t by maximizing Q2 (t, ·). Taking the derivative of (B.10)
w.r.t. t and setting this function to zero gives

∂Q2 (t, t)

∂t

∣∣∣∣
t=t̂

= 2t ′m+ 2t̂κ ⇔ t̂ = − t ′m
κ

= t ′G−1
m Xx . (B.11)

Substituting this expression into (B.10) shows that this term equals

Q2 (t) = −1

2

(
t ′Mt − 2

κ
t ′mm′ t + 1

κ
t ′mm′ t

)
+ c = −1

2
t ′G−1

m t + c . (B.12)

Let us turn our attention to the first term Q1 (t) of J (t, t). If we define π (t) =
exp

(
β−1 · t

)
/
(
1+ exp

(
β−1 · t

))
then the likelihood model (3.16) can be written

as

PY|T=t (y) = π (t)
y+1

2 (1− π (t))
1−y

2 ,

where we use that y ∈ {−1,+1}. By exploiting the independence of the Yi given
the value of Ti = ti we can rewrite Q1 (t) in the following form

Q1 (t) =
m∑

i=1

ln
(
PYi |T=ti (yi)

)
= 1

2

m∑
i=1

((yi + 1) ln (π (ti ))+ (1− yi) ln (1− π (ti )))

= 1

2

m∑
i=1

(
(yi + 1) β−1ti − 2 ln

(
1+ exp

(
β−1 · ti

)))
= 1

2β
(y + 1)′ t −

m∑
i=1

ln
(
1+ exp

(
β−1 · ti

))
. (B.13)

Combining equations (B.12) and (B.13) we obtain the following revised objective
function J (t) to be maximized over t ∈ �m

J (t) = 1

2β
(y + 1)′ t −

m∑
i=1

ln
(
1+ exp

(
β−1 · ti

))− 1

2
t ′G−1

m t + c . (B.14)
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A straightforward calculation reveals that the gradient vector is given by

∂ J (t)
∂ t

∣∣∣∣
t= t̂

= 1

2β
(y + 1)− 1

β
π
(
t̂
)−G−1

m t̂ , (B.15)

where π( t̂) = (π(t̂1), . . . , π(t̂m))′. As can be seen from this expression, due to the
term π( t̂), it is not possible to compute the roots t̂ of this equation in a closed form.
We use the Newton-Raphson method,

t i+1 = t i − η ·H−1
t i
· ∂ J (t)

∂ t

∣∣∣∣
t=t i

,

where the m × m Hessian matrix H t̂ is given by

H t̂ =


∂ J (t)
∂t1∂t1

∣∣∣
t1=t̂1

· · · ∂ J (t)
∂t1∂tm

∣∣∣
t1=t̂1,tm=t̂m

...
. . .

...
∂ J (t)
∂tm∂t1

∣∣∣
tm=t̂m,t1=t̂1

· · · ∂ J (t)
∂tm∂tm

∣∣∣
tm=t̂m

 = −P−G−1
m .

The diagonal matrix P in the definition of Ht is given by

P = 1

β
· diag

(
a
(
t̂1
)
, . . . , a

(
t̂m
))

, (B.16)

a
(
t̂i
) def= dπ (t)

dt

∣∣∣∣
t=t̂i

= 1

β

exp
(
β−1 · t̂i

)(
1+ exp

(
β−1 · t̂i

))2 =
1

β
π
(
t̂i
) (

1− π
(
t̂i
))

. (B.17)

Thus the update step of the Newton-Raphson method is given by

t i+1 = t i + η · (G−1
m + P

)−1
(

1

2β
(y + 1)− 1

β
π (t i)−G−1

m t i

)
,

where η ∈ �+ has to be chosen such that J (t i+1) > J (t i). Once this procedure has
converged to t̂ ∈ �

m (which must provably happen because the negative Hessian
is always positive-definite) we can compute t̂ ∈ � by equation (B.11).

B.7.2 Computation of �

In order to find the covariance matrix � of the Laplace approximation we exploit
equations (B.10) and (B.9). A direct calculation reveals that inverse covariance
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matrix �−1 is given by

�−1 =
(

M+ P m
m′ κ

)
,

where M ∈ �m×m , m ∈ �m and κ ∈ � are defined in equation (B.8) and P ∈ �m×m

is given in equation (B.16). Applying the second statement of Theorem A.80 we
can directly compute the covariance matrix � for the Laplace approximation, i.e.,

� =
( (

G−1
m + P

)−1 −κ−1
(
G−1

m + P
)−1

m
−κ−1m′ (G−1

m + P
)−1

κ−1 + κ−2m′ (G−1
m + P

)−1
m

)
.

This expression can be further simplified by noticing that
(
G−1

m + P
)−1 =

(I+GmP)−1 Gm . Hence, using the definitions in equation (B.8) we obtain that

−κ−1 (G−1
m + P

)−1
m = (I+GmP)−1 Xx ,

κ−1 + κ−2m′ (G−1
m + P

)−1
m = x′x− x′X′G−1

m Xx+ x′X′G−1
m (I+GmP)−1 Xx

= x′x− x′X′G−1
m

(
I− (I+GmP)−1)Xx

= x′x− x′X′G−1
m

(
I− I+Gm (I+ PGm)

−1 P
)

Xx

= x′x− x′X′ (I+ PGm)
−1 PXx ,

where the fourth line follows from the Woodbury formula (see Theorem A.79). In
summary,

� =
(

(I+GmP)−1 Gm (I+GmP)−1 Xx
x′X′ (I+GmP)−1 x′x− x′X′ (I+ PGm)

−1 PXx

)
.

B.7.3 Stabilized Gaussian Process Classification

If we are only concerned with the classification of a new test object x ∈ � we
exploit the fact that sign

(
t̂
)

always equals the class y ∈ {−1,+1} with the larger
probability PY|X=x,Zm=z (y) (see equation (3.21) for a definition of this term). Let us
show that t̂ = 0 implies PY|X=x,Zm=z (+1) = PY|X=x,Zm=z (−1) = 1

2 ; the result fol-
lows by the monotonicity of PY|T=t as a function of t . At first we note that π (t) =
1−π (−t) where π (t) = PY|T=t (+1) = exp

(
β−1 · t

)
/
(
1+ exp

(
β−1 · t

))
. Using
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this relation we have

PY|X=x,Zm=z (+1) =
∫
�

PY|T=t (+1)︸ ︷︷ ︸
π(t)

· 1√
2πσ

exp

(
− t2

2σ 2

)
dt

=
∫
�

(1− π (−t)) · 1√
2πσ

exp

(
− t2

2σ 2

)
dt

=
∫
�

PY|T=s (−1)︸ ︷︷ ︸
1−π(s)

· 1√
2πσ

exp

(
− s2

2σ 2

)
ds

= PY|X=x,Zm=z (−1) ,

where the third line follows by s = −t and the assumption that t̂ = 0. Since
t̂ = t̂

′
G−1

m Xx we know that the Gaussian process classification function is given by

hGPC (x) = sign

(
m∑

i=1

αi 〈xi , x〉
)

, α = G−1
m t̂ .

In order to avoid unnecessary inversions of the Gram matrix Gm—which is an
ill-posed problem if Gm is almost singular—we shall reformulate the Newton-
Raphson method in terms of α ∈ �

m using t = Gmα. Let the Gram matrix
Gm =

(
g′1; . . . ; g′m

)
be given by its m rows g1, . . . , gm ∈ �m . Then equation (B.14)

can be rewritten as

J (α) = 1

2β
(y + 1)′ Gmα −

m∑
i=1

ln
(
1+ exp

(
β−1 · g′iα

))− 1

2
α′Gmα .

As a consequence the gradient and Hessian are given by

∂ J (α)

∂α

∣∣∣∣
α=α

= 1

2β
Gm (y + 1)− 1

β
G′

mπ (Gmα)−Gmα ,

Hα = −G′
mPGm −Gm = −Gm (PGm + I) ,

where π (Gmα) = (
π
(
g′1α

)
, . . . , π

(
g′mα

))′
and

P = 1

β
· diag

(
a
(
g′1α

)
, . . . , a

(
g′mα

))
.
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The Newton-Raphson algorithm computes αi+1 from αi by

αi+1 = αi + η ·G−1
m (PGm + I)−1 Gm

(
1

2β
(y + 1)− 1

β
π (Gmαi )− αi

)
= αi + η · (PGm + I)−1

(
1

β

(
y + 1

2
− π (Gmαi)

)
− αi

)
.

The adaptation of the parameter η is done by incrementally choosing η from the
sequence

(
2−i
)

i∈� . As soon as J (αi+1) ≥ J (αi) we update αi and re-compute P
and π (Gmαi) making sure that i never exceeds a certain value3.

B.8 Relevance Vector Machines

In this section we derive an explicit update rule for computing the parameter vector
θ̂ and σ̂ 2

t which locally maximizes the evidence fTm |Xm=x (t). In order to ease the
optimization we consider the log-evidence given by

E
(
θ, σ 2

t

) = −1

2

m ln (2π)+ ln
(∣∣σ 2

t Im + X�X′∣∣)︸ ︷︷ ︸
Q1(θ,σ 2

t )

+ t ′
(
σ 2

t Im + X�X′)−1
t︸ ︷︷ ︸

Q2(θ,σ 2
t )

 .

Due to its length we have divided the derivation into several parts. Afterwards,
we derive the relevance vector machine algorithm for classification using ideas
already outlined in Section B.7. We shall compute the weight vector µ ∈ �

n

which maximizes fW|Zm=z together with the covariance matrix � ∈ �
n×n defined

in equation (3.27).

B.8.1 Derivative of the Evidence w.r.t. θ

As our goal is to maximize E over the choice of θ ∈ �
n we aim to compute the

derivative w.r.t. θ . At first we have that

∂E
(
θ, σ 2

t

)
∂θ

= −1

2

(
∂Q1

(
θ, σ 2

t

)
∂θ

+ ∂Q2
(
θ, σ 2

t

)
∂θ

)
.

3 We use imax = 8 in our implementation.
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Let us start with Q1
(
θ , σ 2

t

)
. According to Theorem A.72 we know∣∣�−1

∣∣ · ∣∣σ 2
t Im + X�X′∣∣ = ∣∣σ 2

t Im

∣∣ · ∣∣�−1 + σ−2
t X′X

∣∣ ,
which implies

Q1
(
θ, σ 2

t

) = ln
(∣∣σ 2

t Im

∣∣)+ ln
(∣∣�−1 + σ−2

t X′X
∣∣)− ln

(∣∣�−1
∣∣)

= m ln
(
σ 2

t

)+ ln
(∣∣�−1

∣∣)+ n∑
i=1

ln (θi) . (B.18)

Here we use equation (3.24) for the definition of � = (
�−1 + σ−2

t X′X
)−1

. For the
sake of understandability we compute the derivative of Q1 component-wise, that
is, we compute ∂Q1

(
θ, σ 2

t

)
/∂θ j . By Theorem A.97 we know

∂Q1
(
θ, σ 2

t

)
∂θ j

= ∂ ln
(∣∣�−1

∣∣)
∂θ j

+ 1

θ j
=

n∑
r=1

n∑
s=1

∂ ln
(∣∣�−1

∣∣)
∂
(
�−1

)
rs

· ∂
(
�−1

)
rs

∂θ j
+ 1

θ j

=
n∑

r=1

n∑
s=1

�rs ·
∂
(
�−1 + σ−2

t X′X
)

rs

∂θ j
+ 1

θ j

= 1

θ j
− 1

θ2
j

� j j .

Now, let us consider the second term Q2
(
θ, σ 2

t

)
. First, we use the Woodbury

formula (see Theorem A.79) to obtain(
σ 2

t Im + X�X′)−1 = σ−2
t Im − σ−4

t X
(
In + σ−2

t �X′X
)−1

�X′

= σ−2
t Im − σ−4

t X
(
�
(
�−1 + σ−2

t X′X
))−1

�X′

= σ−2
t Im − σ−4

t X
(
�−1 + σ−2

t X′X
)−1

X′

= σ−2
t

(
Im − σ−2

t X�X′) , (B.19)

by exploiting the definition of �, as given in equation (3.24). Using the fact that
µ = σ−2

t �X′ t = �τ and the abbreviation τ = σ−2
t X′ t we can rewrite Q2 by

Q2
(
θ, σ 2

t

) = t ′
(
σ 2

t Im + X�X′)−1
t = σ−2

t t ′ (t − Xµ) = σ−2
t t ′ t − τ ′µ .

Then the derivative of Q2 w.r.t. to θ j is given by

∂Q2
(
θ, σ 2

t

)
∂θ j

= ∂
(
σ−2

t t ′ t − τ ′µ
)

∂θ j
= −τ ′

∂µ

∂θ j
,
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because µ is the only term that depends on θ j . Using Theorem A.96 we know

∂µ

∂θ j
= ∂�τ

∂θ j
= ∂�

∂θ j
τ = ∂

(
�−1

)−1

∂θ j
τ = −�

∂�−1

∂θ j
�τ = −�

(
− 1

θ2
j

1 j j

)
�τ ,

where 1 j j ∈ �n×n is used to denote a matrix of zeros except for the j, j–th element
which is one. As a consequence,

∂Q2
(
θ, σ 2

t

)
θ j

= −τ ′
∂µ

∂θ j
= −τ ′�

(
1

θ2
j

1 j j

)
�τ = −µ′

(
1

θ2
j

1 j j

)
µ = −µ2

j

θ2
j

,

where we use the symmetry of � ∈ �n×n . Combining these results,

∂E
(
θ, σ 2

t

)
∂θ

= −1

2

(
1

θ1
− �11 + µ2

1

θ2
1

, . . . ,
1

θn
− �nn + µ2

n

θ2
n

)′
. (B.20)

B.8.2 Derivative of the Evidence w.r.t. σ 2
t

In order to compute the derivative w.r.t. σ 2
t we again consider Q1 and Q2 separately.

Using Theorem A.97 we obtain

∂Q1
(
θ, σ 2

t

)
∂σ 2

t

= ∂ ln
(∣∣σ 2

t Im + X�X′∣∣)
∂σ 2

t

=
m∑

r=1

m∑
s=1

∂ ln
(∣∣σ 2

t Im + X�X′∣∣)
∂
(
σ 2

t Im + X�X′)
rs

· ∂
(
σ 2

t Im + X�X′)
rs

∂σ 2
t

=
m∑

r=1

(
σ 2

t Im + X�X′)−1

rr
= tr

((
σ 2

t Im + X�X′)−1
)
.

This expression can further be simplified exploiting equation (B.19), i.e.,

∂Q1
(
θ, σ 2

t

)
∂σ 2

t

= tr
(
σ−2

t

(
Im − σ−2

t X�X′)) = m · σ−2
t − σ−4

t · tr
(
�X′X

)
,

where we used Theorem A.74 and � = (
�−1 + σ−2

t X′X
)−1

as given in equation
(3.24). Finally, we see that

�XX′ = σ 2
t �

(
σ−2

t XX′ +�−1 −�−1) = σ 2
t

(
In −��−1)
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from which it follows that

∂Q1
(
θ, σ 2

t

)
∂σ 2

t

=
m −

n∑
i=1

(
1− �ii

θi

)
σ 2

t

.

In order to compute Q2 we apply Theorem A.96 and obtain

∂Q2
(
θ, σ 2

t

)
∂σ 2

t

=
∂
(

t ′
(
σ 2

t Im + X�X′)−1
t
)

∂σ 2
t

= t ′
(
− (σ 2

t Im + X�X′)−1 (
σ 2

t Im + X�X′)−1
)

t .

Using equation (B.19) together with µ = σ−2
t �X′ t (see equation (3.24)) the

innermost term in the latter expression can be rewritten as(
σ 2

t Im + X�X′)−1
t = σ−2

t

(
Im − σ−2

t X�X′) t = σ−2
t (t − Xµ) ,

which then leads to

∂Q2
(
θ, σ 2

t

)
∂σ 2

t

= −
((
σ 2

t Im + X�X′)−1
t
)′ ((

σ 2
t Im + X�X′)−1

t
)
= −‖t − Xµ‖2

σ 4
t

.

Putting both results finally gives the derivative of E w.r.t. σ 2
t

∂E
(
θ , σ 2

t

)
∂σ 2

t
= −1

2

σ 2
t

(
m −∑n

i=1

(
1− �ii

θi

))
− ‖t − Xµ‖2

σ 4
t

 . (B.21)

B.8.3 Update Algorithms for Maximizing the Evidence

Although we are able to compute the derivative of the evidence E w.r.t. its param-
eters θ and σ 2

t (see equations (B.20) and (B.21)) we see that we cannot explicitly
compute their roots because the terms �ii and µi involve the current solution θ

and σ 2
t . However, in order to maximize the evidence (or log-evidence) w.r.t. the

parameters θ ∈ (�+)m
and σ 2

t ∈ �+ we exploit the fact that any rearrangement of
the gradient equation

∂E
(
θ, σ 2

t

)
∂θ

∣∣∣∣∣
θ=θ̂

= θ̂ − g
(
θ̂
)
,



275 Proofs and Derivations—Part I

allows us to use the update rule θnew = g (θold) to compute a (local) maximum of
E , i.e., the fixpoint of g : �n → �

n . A closer look at equation (B.20) shows that

θ
(new)
i = �ii + µ2

i , (B.22)

is a valid update rule. Introducing ζi = 1 − θ−1
i �ii we see that another possible

update rule is given by

θ
(new)
i = µ2

i

ζi
, (B.23)

which follows from (B.22) as

θi = �ii + µ2
i , ⇔ θi − �ii = µ2

i , ⇔ θiζi = µ2
i .

In practice it has been observed that the update rule given in equation (B.23)
leads to faster convergence although it does not benefit from the guarantee of
convergence. According to equation (B.21) we see that(
σ 2

t

)(new) = ‖t − Xµ‖2

m −∑n
i=1 ζi

,

is an update rule which has shown excellent convergence properties in our experi-
ments.

B.8.4 Computing the Log-Evidence

In the relevance vector machine algorithm it is necessary to compute the log-
evidence E

(
θ, σ 2

t

)
to monitor convergence. The crucial quantity for the compu-

tation of this quantity is the covariance matrix � ∈ �
n×n and its inverse �−1. In

order to save computational time we use equation (B.18) to efficiently compute
Q1
(
θ, σ 2

t

)
,

Q1
(
θ, σ 2

t

) = m ln
(
σ 2

t

)+ ln
(∣∣�−1

∣∣)+ n∑
i=1

ln (θi) .

Since we already need to compute ‖t − Xµ‖2 and µ in each update step it is
advantageous to rewrite the expression Q2

(
θ, σ 2

t

)
by

Q2
(
θ, σ 2

t

) = σ−2
t t ′ (t − Xµ)

= σ−2
t ‖t − Xµ‖2 + σ−2

t t ′Xµ− σ−2
t µ′X′Xµ
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= σ−2
t ‖t − Xµ‖2 + µ′�−1µ− σ−2

t µ′X′Xµ

= σ−2
t ‖t − Xµ‖2 + µ′�−1µ ,

where we useµ = σ−2�X′ t and � = (
�−1 + σ−2

t X′X
)−1 ⇔ �−1 =

�−1 − σ−2
t X′X as given by equation (3.24).

B.8.5 Maximization of fW|Zm=z

In order to find the maximum µ ∈ �n of the density fW|Zm=z we use Bayes’ theorem

fW|Zm=z (w) = fW|Xm=x,Ym=y (w) = PYm |W=w,Xm=x (y) fW (w)

PYm |Xm=x (y)
,

where we exploit the fact that fW|Xm=x = fW as objects have no influence on weight
vectors. Taking logarithms and dropping all terms which do not depend on w we
end up looking for the maximizer µ ∈ �n of

J (w) = ln
(
PYm |W=w,Xm=x (y)

)+ ln
(
fW (w)

)
.

According to Section B.7 we know that the first term is given by 1
2β (y + 1)′ t −∑m

i=1 ln
(
1+ exp

(
β−1 · ti

))
where t ∈ �

m is the vector of latent activations at
the m training objects x. By definition, however, t = Xw which completes the
definition of the first term. For the second term we know that PW = Normal (0,�).
Hence, representing X = (

x′1; . . . ; x′m
) ∈ �m×n by its m rows x′i yields

J (w) = 1

2β
(y + 1)′ Xw−

m∑
i=1

ln
(
1+ exp

(
β−1 · x′i w

))− 1

2
w′�−1w+ c ,

where c = − 1
2 (m · ln (2π)+ |�|) does not depend on w. Taking the derivative

w.r.t. w we obtain

∂ J (w)

∂w

∣∣∣∣
w=w

= 1

2β
X′ (y + 1)− 1

β
X′π (Xw)−�−1w , (B.24)

where π (t) = (π (t1) , . . . , π (tm))
′ ∈ �m and the function π : � → [0, 1] defined

by π (t) = exp
(
β−1 · t

)
/
(
1+ exp

(
β−1 · t

))
is known as the sigmoid resulting

from the likelihood model (3.16). Clearly, we cannot compute the root(s) of this
gradient equation due to the non-linear term π (Xw). Let us use the Newton-
Raphson method to find a local maximum µ iteratively. To this end we have to
compute the Hessian Hw, that is, the n × n matrix of second derivatives of J
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evaluated at w. Using equation (B.24), the Hessian Hw is given by

Hw = −X′PX−�−1 ,

where P ∈ �m×m is a diagonal matrix

P = 1

β2
· diag

(
π
(
x′1w

) (
1− π

(
x′1w

))
, . . . , π

(
x′mw

) (
1− π

(
x′mw

)))
.

As a consequence, the Newton-Raphson algorithm performs the following update

wi+1 = wi − η ·H−1
wi

∂ J (w)

∂w

∣∣∣∣
w=wi

= wi + η
(
X′PX+�−1)−1

(
1

β
X′
(

y + 1
2

− π (Xw)

)
−�−1w

)
.

The parameter η ∈ �
+ is chosen from the sequence

(
2−i
)

i∈� in such a way that
J (wi+1) > J (wi). After convergence of this update rule (which must converge
because the negative Hessian is positive definite) the solution wi is provably the
maximizer µ ∈ �n of fW|Zm=z. Note that that the inverse of the negated Hessian Hµ

evaluated at the final solution µ is the covariance matrix � defined in (3.27). We
shall need this matrix to perform one update step on the (so far fixed) parameter θ .

B.9 A Derivation of the Operation⊕µ

Let us derive the operation ⊕µ : � ×� → � acting on vectors of unit length.
This function has to have the following properties (see Section 3.4.1)∥∥s⊕µ t

∥∥2 = 1 , (B.25)∥∥t− s⊕µ t
∥∥ = µ ‖t− s‖ , (B.26)

s⊕µ t = ρ1s+ ρ2t , (B.27)

ρ1 ≥ 0 , ρ2 ≥ 0 . (B.28)

Here we assume that ‖s‖2 = ‖t‖2 = 1. Inserting equation (B.27) into (B.25) gives

‖ρ1s+ ρ2t‖2 = ρ2
1 + ρ2

2 + 2ρ1ρ2 〈s, t〉 = 1 . (B.29)

In a similar fashion combining equations (B.27) and (B.26) gives∥∥t− s⊕µ t
∥∥2 = µ2 ‖t− s‖2
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‖(1− ρ2) t− ρ1s‖2 = µ2 ‖t− s‖2

(1− ρ2) (1− ρ2 − 2ρ1 〈s, t〉)+ ρ2
1 = 2µ2 (1− 〈s, t〉) . (B.30)

Note that equation (B.29) is quadratic in ρ2 and has the following solution

ρ2 = −ρ1 〈s, t〉±
√
ρ2

1 (〈s, t〉)2 − ρ2
1 + 1︸ ︷︷ ︸

A

. (B.31)

Let us substitute equation (B.31) into the l.h.s. of equation (B.30). This gives the
following quadratic equation in ρ1

(1− A + ρ1 〈s, t〉) (1− A − ρ1 〈s, t〉)+ ρ2
1 = 2µ2 (1− 〈s, t〉)

(1− A)2 − ρ2
1 (〈s, t〉)2 + ρ2

1 = 2µ2 (1− 〈s, t〉)
1− A = µ2 (1− 〈s, t〉)

ρ2
1

(
(〈s, t〉)2 − 1

)+ 1 = (
µ2 (1− 〈s, t〉)− 1

)2
, (B.32)

whose solution is given by

ρ1 = µ

√
−µ2 − µ2 〈s, t〉 − 2

〈s, t〉 + 1
.

Inserting this formula back into equation (B.31), and making use of the identity
(B.32), we obtain for ρ2

ρ2 = −ρ1 〈s, t〉 ±
√
ρ2

1

(
(〈s, t〉)2 − 1

)+ 1 = −ρ1 〈s, t〉 ± (µ2 (1− 〈s, t〉)− 1
)
.

B.10 Fisher Linear Discriminant

Given a training sample z = (x, y) ∈ �m , let us compute the maximum likelihood
estimates µ̂y and �̂ of the mean vector µy ∈ �n and the covariance � ∈ �n×n of
an n-dimensional Gaussian measure, respectively. Let us assume that PY (+1) =
PY (−1) = 1

2 . Then the logarithm of the likelihood can be written as

L
(
µy,�

) = ln

(
m∏

i=1

(2π)−
n
2 |�|− 1

2 exp

(
−1

2

(
xi − µyi

)′
�−1 (xi − µyi

)))
,
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= −
m∑

i=1

1

2

(
n ln (2π)+ ln (|�|)+ (xi − µyi

)′
�−1

(
xi − µyi

))
.

Let us start with the maximizer w.r.t. the mean vectors µy . Setting the derivative to
zero we obtain, for both classes y ∈ {−1,+1},
∂L

(
µy,�

)
∂µy

∣∣∣∣∣
µy=µ̂y

=
∑

(xi ,y)∈z

(
�−1xi − �−1µ̂y

) = 0 ,

µ̂y = 1

my

∑
(xi ,y)∈z

xi , (B.33)

where my equals the number of samples of class y in z ∈ �m . Further, according
to Theorems A.97 and A.98 we know

∂L
(
µy,�

)
∂�

∣∣∣∣∣
�=�̂

= −1

2

m∑
i=1

(
�̂
−1 − �̂

−1 (
xi − µyi

) (
xi − µyi

)′
�̂
−1) = 0 ,

m�̂
−1 = �̂

−1

(
m∑

i=1

(
xi − µyi

) (
xi − µyi

)′)
�̂
−1

�̂ = 1

m

∑
y∈{−1,+1}

∑
(xi ,y)∈z

(
xi − µy

) (
xi − µy

)′
.

If we substitute µ̂y as given in equation (B.33) for µy we obtain

�̂ = 1

m

( ∑
y∈{−1,+1}

∑
(xi ,y)∈z

(
xi − µ̂y

) (
xi − µ̂y

)′)

= 1

m

(
m∑

i=1

xi x′i −
∑

y∈{−1,+1}

(
2
∑

(xi ,y)∈z

xi µ̂
′
y − myµ̂yµ̂

′
y

))

= 1

m

(
X′X−

∑
y∈{−1,+1}

myµ̂yµ̂
′
y

)
.
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C Proofs and Derivations—Part II

This appendix gives all proofs and derivations of Part II in detail. If necessary the
theorems are restated before proving them. This appendix is not as self-contained
as the chapters in the main body of this book; it is probably best to read it in
conjunction with the corresponding chapter.

C.1 VC and PAC Generalization Error Bounds

In this section we present the proof of Theorem 4.7. It involves several lemmas
which will also be of importance in other sections of this book. We shall therefore
start by proving these lemmas before proceeding to the final proof. The version of
the proof presented closely follows the original paper Vapnik and Chervonenkis
(1971) and its polished version, found in Anthony and Bartlett (1999).

C.1.1 Basic Lemmas

In this section we prove three basic lemmas—the key ingredients required to obtain
bounds on the generalization error in the VC, PAC and luckiness frameworks. The
original proof of Lemma C.1 is due to Vapnik and Chervonenkis (1971). We shall
present a simplified version of the proof, as found in Devroye et al. (1996, p. 193).
The proof of Lemma C.3 is the solution to Problem 12.7 in Devroye et al. (1996,
p. 209) and is only a special case of Lemma C.2 which uses essentially the same
technique as the proof of Lemma C.1. In order to enhance readability we shall use

the shorthand notation z[i: j ]
def= (

zi , . . . , z j

)
.
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Figure C.1 Graphical illustration of the main step in the basic lemma. If vz (A (z))
deviates from PZ (A (z)) by at least ε but v z̃ (A (z)) is ε

2 -close to PZ (A (z)) then vz (A (z))
and v z̃ (A (z)) deviate by at least ε

2 .

Lemma C.1 (VC basic lemma) For all probability measures PZ and all subsets �
of the σ–algebra � over the sample space � , if mε2 > 2 we have

PZm

(
sup
A∈�

|P (A)− vZ (A)| > ε

)
<2PZ2m

(
sup
A∈�

∣∣vZ[1:m] (A)− vZ[(m+1):2m] (A)
∣∣ > ε

2

)
.

Proof Given a sample z ∈ �m , let A (z) ∈ � be given by

A (z) = argsup
A∈�

|PZ (A)− vz (A)| .

Clearly, whenever for z, z̃ ∈ �m

(|vz (A (z))− PZ (A (z))| > ε)︸ ︷︷ ︸
Q1(z)

∧
(
|vz̃ (A (z))− PZ (A (z))| < ε

2

)
︸ ︷︷ ︸

Q2(z z̃)

it follows that the proposition

Q3
(
z z̃
) ≡ |vz (A (z))− v z̃ (A (z))| > ε

2

is true as well (see also Figure C.1). Henceforth, we know that

PZ2m (Q3 (Z)) ≥ PZ2m

(
Q1
(
Z[1:m]

) ∧ Q2 (Z)
)

= EZm
1

[
IQ1(Z1)PZm

2 |Zm
1 =z1 (Q2 (z1Z2))

]
.

Now, PZm
2 |Zm

1 =z1 (Q2 (z1Z2)) is the probability that the mean of m random vari-
ables, taking values in {0, 1}, does not exceed a distance of ε

2 from their com-
mon expectation PZ (A (z1)). The variance of such a random variable is given
by PZ(A(z1))(1−PZ(A(z1)))

m ≤ 1
4m and thus, by Chebyshev’s inequality (see Theorem

A.110) and the assumed independence of Z2 from Z1, it follows that

PZm
2 |Zm

1 =z1 (Q2 (z1Z2)) ≥ 1− PZ (A (z1)) (1− PZ (A (z1)))

m
(
ε
2

)2 ≥ 1− 1

mε2
>

1

2
,
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where the last inequality follows from mε2 > 2 by assumption. Furthermore, we
know that whenever Q3 (z) holds supA∈� |vz (A)− vz̃ (A)| > ε

2 because A (z1) ∈
�. In summary

PZ2m

(
sup
A∈�

∣∣vZ[1:m] (A) − vZ[(m+1):2m] (A)
∣∣ > ε

2

)
>

1

2
PZm (Q1 (Z))

= 1

2
PZm

(
sup
A∈�

|PZ (A) − vZ (A)| > ε

)
.

The lemma is proved.

Lemma C.2 (Luckiness basic lemma) For all probability measures PZ, all mea-
surable logical formulas ϒ : ⋃∞

m=1 �
m → {true, false} and all subsets � of the

σ–algebra � over the sample space � , if mε > 2 we have

PZm (∃A ∈ � : (ϒ (Z)) ∧ (vZ (A) = 0) ∧ (PZ (A) > ε)) <

2PZ2m

(
∃A ∈ � : (ϒ (

Z[1:m]
)) ∧ (vZ[1:m] (A) = 0

) ∧ (vZ[(m+1):2m] (A) >
ε

2

))
.

Proof Given a sample z ∈ �
m , let A (z) ∈ � be such that PZ (A (z)) >

ε (z) ∧ vz (A (z)) = 0 if such a set exists or any set A ∈ � otherwise. For any
z, z̃ ∈ �m let us define

Q1
(
z z̃
) ≡ v z̃ (A (z)) ≥ ε

2
, Q2 (z) ≡ (ϒ (z)) ∧ (vz (A (z)) = 0) ,

Q3 (z) ≡ PZ (A (z)) > ε .

First, it holds that

PZ2m

(
Q1 (Z) ∧ Q2

(
Z[1:m]

)) ≥ PZ2m

(
Q1 (Z) ∧ Q2

(
Z[1:m]

) ∧ Q3
(
Z[1:m]

))
= EZm

1

[
IQ2(Z1)∧Q3(Z1)PZm

2 |Zm
1 =z1 (Q1 (z1Z2))

]
.

By the indicator event we know that PZ (A (z1)) > ε whenever we need to evaluate
PZm

2 |Zm
1 =z1 (Q1 (z1Z2)) which is the probability that a binomially distributed vari-

able with expectation greater than ε exceeds a value of mε
2 > 1 as by assumption

of the theorem mε > 2 and the sample Z2 is assumed to be independent of Z1. By
the binomial tail bound (see Theorem A.116) this probability is lower bounded by

PZm
2 |Zm

1 =z1 (Q1 (z1Z2)) ≥ 1− exp (−mε) > 1− exp (−2) >
1

2
,
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where we have used the assumption mε > 2 of the theorem again. In summary

PZ2m

(
∃A ∈ � : (ϒ (

Z[1:m]
)) ∧ (vZ[1:m] (A) = 0

) ∧ (vZ[(m+1):2m] (A) >
ε

2

))
≥ PZm

1 Zm
2

(
Q1 (Z) ∧ Q2

(
Z[1:m]

))
>

1

2
PZm (Q2 (Z) ∧ Q3 (Z))

= 1

2
PZm (∃A ∈ � : (ϒ (Z)) ∧ (vZ (A) = 0) ∧ (PZ (A) > ε)) .

The lemma is proved.

Lemma C.3 (PAC basic lemma) For all probability measures PZ and all subsets
� of the σ–algebra � over the sample space � , if mε > 2 we have

PZm (∃A ∈ � : (vZ (A) = 0) ∧ (PZ (A) > ε))

< 2PZ2m

(
∃A ∈ � : (vZ[1:m] (A) = 0

) ∧ (vZ[(m+1):2m] (A) >
ε

2

))
.

Proof Using ϒ (z) = true in Lemma C.2 proves the assertion.

C.1.2 Proof of Theorem 4.7

Proof Let us start by proving equation (4.11). First, we note that, due to Lemma
C.1, it suffices to bound the probability1

PZ2m

(
∃h ∈ � : ∣∣Remp

[
h, (Z1, . . . ,Zm)

]− Remp
[
h, (Zm+1, . . . ,Z2m)

]∣∣ > ε

2

)
︸ ︷︷ ︸

J (Z)

.

Since all 2m samples Zi are drawn iid from PZ we know that, for any permutation
π : {1, . . . , 2m} → {1, . . . , 2m},
PZ2m (J (Z)) = PZ2m (J (� (Z))) ,

where we use the shorthand notation �(Z) to denote the action of π on the

indices of Z = (Z1, . . . ,Z2m), i.e., �((Z1, . . . ,Z2m))
def= (

Zπ(1), . . . ,Zπ(2m)

)
. Now

consider all 2m different swapping permutations �s indexed by s ∈ {0, 1}m , i.e.,
�s (z) swaps zi and zi+m if, and only if, si = 1. Using the uniform measure PSm

1 Note that in due course of the proof we use the symbol z (and Z) to refer to a (random) training sample (drawn
iid from PZ) of size 2m.
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where PS (0) = PS (1) = 1
2 we get

PZ2m (J (Z)) = ESm

[
PZ2m |Sm=s (J (�s (Z)))

] = EZ2m

[
PSm |Z2m=z (J (�S (z)))

]
,

Note that PZ2mSm = PZ2m PSm , hence the two measures are independent so that
PSm |Z2m=z = PSm . The advantage of this formulation is that we only need to find
the probability of J (�S (z)) over the random choice of permutations S for a fixed
double sample z ∈ �

2m . Since the double sample z is fixed, it follows that the
number of hypotheses h considered in J (�s (z)) must effectively be finite because,
regardless of the permutation �s, any two hypotheses h ∈ � and h̃ ∈ � with the
property

∀i ∈ {1, . . . , 2m} : h (xi ) = h̃ (xi )

lead to the same difference in training errors on (z1, . . . , zm) and (zm+1, . . . , z2m).
Thus, let �� (z) ∈ � be the number of equivalence classes w.r.t. the zero-one loss

�� (z)
def= ∣∣{(l0−1 (h (x1) , y1) , . . . l0−1

(
h
(
x|z|
)
, y|z|

)) | h ∈ �}∣∣ ≤ 2|z| ,

and let ĥ1, . . . , ĥ��(z) ∈ � be the corresponding hypotheses realizing the �� (z)
different loss patterns. By the union bound it follows that PSm |Z2m=z (J (�S (z)))
is less than or equal to

��(z)∑
i=1

PSm |Z2m=z

(∣∣∣∣∣ 1

m

m∑
j=1

I
ĥi

(
xπS( j)

)
�=yπS( j)

− 1

m

m∑
j=1

I
ĥi

(
xπS( j+m)

)
�=yπS( j+m)

∣∣∣∣∣ > ε

2

)

=
��(z)∑

i=1

PSm |Z2m=z

(∣∣∣∣∣ 1

m

m∑
j=1

(
I
ĥi

(
xπS( j)

)
�=yπS( j)

− I
ĥi

(
xπS( j+m)

)
�=yπS( j+m)

)∣∣∣∣∣ > ε

2

)
,

where we used the definition of Remp [h, (z1, . . . , zm)] given in equation (22) and
z = ((x1, y1) , . . . , (x2m, y2m)). Since we consider the uniform measure over swap-
pings we know that each summand over j ∈ {1, . . . ,m} is a uniformly dis-

tributed random variable with outcomes ±
∣∣∣∣Iĥi

(
xπS( j)

)
�=yπS( j)

− I
ĥi

(
xπS( j+m)

)
�=yπS( j+m)

∣∣∣∣.
As a consequence these random variables are always in the interval [−1,+1] with
expectation zero. Thus, a direct application of Hoeffding’s inequality (see Theorem
A.112) yields

PZ2m (J (Z)) < EZ2m

(
��(Z)∑

i=1

2 exp

(
−mε2

8

))
= EZ2m

[
�� (Z)

] · 2 exp

(
−mε2

8

)
.
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Figure C.2 Counting swappings that ensure Remp[ĥi , (z1, . . . , zm)] = 0 while
Remp[ĥi , (zm+1, . . . , z2m)] > ε where ĥi ∈ �. Each example z j ∈ (zm+1, . . . , z2m) where
l0−1(ĥi (x j ), y j ) = 1 is shown as a gray cell. We used m = 5 and ε = 2

m . (Left) Clearly,
whenever z6, z8 or z10 is swapped the training error in the first half remains zero. (Right)
If we swap z7 or z9 into the first half we will violate the zero training error condition and
therefore must not swap them.

Using the worst case quantity �� (2m)
def= maxz∈�2m �� (z) completes the proof

of assertion (4.11).
The second equation (4.12) is proven in a similar way. First, according to

Lemma C.3 all we need to bound is the probability

PZ2m

(
∃h ∈ � : Remp

[
h, (Z1, . . . ,Zm)

] = 0 ∧ Remp
[
h, (Zm+1, . . . ,Z2m)

]
>

ε

2

)
︸ ︷︷ ︸

J (Z)

.

If we again consider all 2m swapping permutations πs we see that this probability
equals

EZ2m

[
��(Z)∑

i=1

PSm |Z2m=z

(
Q z

(
ĥi

))]
,

where the event Q z

(
ĥi

)
⊆ {0, 1}m is the set of all swappings such that ĥi incurs

no training errors on the first m samples (z1, . . . , zm) but at least mε
2 training errors

on the second m samples (zm+1, . . . , z2m), i.e.,

Q z

(
ĥi

)
=
{

s

∣∣∣∣∣
(

m∑
j=1

Iĥi(xπs( j))=yπs( j)
= 0

)
∧
(

m∑
j=1

Iĥi(xπs( j+m)) �=yπs( j+m)
>

mε

2

)}
.

Here, the set ĥ1, . . . ĥ��(z) ∈ � are again �� (z) different hypotheses w.r.t. the
training errors on z = (z1, . . . , z2m). In contrast to the previous case, the cardinality

of Q z

(
ĥi

)
is easily upper bounded by 2m−mε

2 because, whenever we swap any of
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the at least mε
2 patterns

(
x j+m, y j+m

)
that incur a loss on the second m samples, we

violate the assumption of zero training error on the first m samples (see also Figure
C.2). Since we use the uniform measure PSm it follows that

PZ2m (J (Z)) ≤ EZ2m

[
��(Z)∑

i=1

2−m · 2m−mε
2

]
= EZ2m

[
�� (Z)

] · 2−
mε
2 .

Bounding the expectation EZ2m

[
�� (Z)

]
by its maximum �� (2m) from above

and using 2−x = exp (−x · ln (2)) ≤ exp
(− x

2

)
for all x ≥ 0 proves equation

(4.12).

C.2 Bound on the Growth Function

In this section we prove Theorem 4.10 using proof by contradiction. This elegant
proof is due to E. Sontag and is taken from Sontag (1998). At first let us introduce
the function � : � × � → � defined by

�(m, ϑ)
def=

ϑ∑
i=0

(
m

i

)
.

Defining
(m

i

) = 0 whenever i > m we see that �(m, ϑ) = 2m if ϑ ≥ m because
by Theorem A.103,

�(m,m) =
m∑

i=0

(
m

i

)
=

m∑
i=0

(
m

i

)
· 1i = (1+ 1)m = 2m . (C.1)

Let us start with a central lemma which essentially forms the heart of the proof.

Lemma C.4 Let m ∈ �, ϑ ∈ {0, . . . ,m} and r > �(m, ϑ), and suppose that the
matrix A ∈ {0, 1}m×r is such that all its r columns are distinct. Then, there is some
(ϑ + 1)× 2ϑ+1 sub-matrix of A whose 2ϑ+1 columns are distinct.

Proof We proceed by induction over m ∈ � . Note that the lemma is trivially true
for ϑ = m because, according to equation (C.1), �(m,m) = 2m . But, each binary
matrix with m rows has at most 2m distinct columns; hence there exists no value
of r . Let us start by proving the assertion for m = 1: We have just shown that
we only need to consider ϑ = 0. Then, the only possible value of r is 2 because
�(1, 0) = 1. For this value, however, the only (ϑ + 1)× 2ϑ+1 = 1× 2 sub-matrix
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of the m × r = 1 × 2 matrix A is A itself which by assumption has 2 distinct
columns.

We next assume the result is true for m − 1 and prove it for m. Let us consider
any matrix A ∈ {0, 1}m×r with r > �(m, ϑ) distinct columns. By interchanging
columns, this matrix can always be transfered into the form

0 · · · 0 1 · · · 1 ∗ · · · ∗ B

  B

  C


 ,

where B and C are (m − 1) × r1 and (m − 1) × (r − 2r1) matrices, respectively,
and “∗” is a placeholder for either 0 or 1. Let us consider two matrices B and C for
the largest value of r1 (number of columns of B). Then, by assumption, all r − r1

columns of
(

B C
)

must be distinct because

If B were to have two equal columns or B and C were to have a column
in common then A would contain two equals columns which contradicts the
assumption.

If C were to have two equal columns then the corresponding first entries in A
must be different and this contradicts the maximal choice of r1.

Bearing in mind that we only need to show the lemma for ϑ ∈ {0, . . . ,m − 1} we
now distinguish two cases:

1. r − r1 > �(m − 1, ϑ): In this case the inductive assumption applies to(
B C

)
, i.e., this (m − 1) × (r − r1) matrix already contains a (ϑ + 1) × 2ϑ+1

sub-matrix as desired to hold for A.

2. r − r1 ≤ �(m − 1, ϑ): In this case the inductive assumption applies to B
because r1 = r − (r − r1) > � (m, ϑ)−�(m − 1, ϑ) = �(m − 1, ϑ − 1) where
the last step follows from equation (A.41). Since we know that B contains a ϑ×2ϑ

sub-matrix with 2ϑ distinct columns it follows that
0 · · · 0 1 · · · 1 B

  B




contains a (ϑ + 1)× 2ϑ+1 sub-matrix with 2ϑ+1 distinct columns.

The lemma is proved.
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We can now proceed to the main proof.

Proof of Theorem 4.10. Suppose that the VC dimension of� is ϑ . For all m ≥ ϑ

consider a training sample z = (z1, . . . , zm) ∈ �m for which the maximum of
equation (4.16) is attained. Let ĥ1, . . . , ĥ��(m) ∈ � be the hypotheses realizing
the �� (m) different zero-one loss patterns and arrange all these m–dimensional
binary vectors in an m ×�� (m) matrix A, i.e.,

A =


l0−1

(
ĥ1 (x1) , y1

)
· · · l0−1

(
ĥ��(m) (x1) , y1

)
...

. . .
...

l0−1

(
ĥ1 (xm) , ym

)
· · · l0−1

(
ĥ��(m) (xm) , ym

)
 .

If it were the case that �� (m) > � (m, ϑ) then Lemma C.4 states that there is
a sub-matrix with ϑ + 1 rows and all possible distinct 2ϑ+1 columns, i.e., there
exists a subsequence of z of length ϑ + 1 which is shattered by �. This is a
contradiction to the maximal choice of the VC dimension ϑ (see equation (4.18))
Hence, �� (m) ≤ �(m, ϑ) which proves Theorem 4.10.

C.3 Luckiness Bound

In this section we prove Theorem 4.19 which is the main result in the luckiness
framework. Note that this proof works “inversely”, i.e., instead of upper bounding
the probability that the expected risk is larger than ε by some term δ (ε) and later
solving for ε, we show that our choice of ε guarantees that the above mentioned
probability is less than δ. Let us restate the theorem.

Theorem C.5 Suppose L is a luckiness function that is probably smooth w.r.t. the
function ω. For any δ ∈ [0, 1], any probability measure PZ and any d ∈ �,

PZm (∃h ∈ � : Q1 (Z, h) ∧ Q2 (Z, h) ∧ Q3 (h)) < δ ,

where the propositions Q1, Q2 and Q3 are given by

Q1 (z, h) ≡ Remp [h, z] = 0 , Q2 (z, h) ≡ ω

(
L (z, h) ,

δ

4

)
≤ 2d ,

Q3 (h) ≡ R [h] > ε (m, d, δ) , and ε (m, d, δ) = 2

m

(
d + ld

(
4

δ

))
.
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The result (4.23) follows from the fact that the negation of the conjunction says
that, for all hypotheses h ∈ �, either Remp [h, z] �= 0 or ω (L (z, h) , δ/4) > 2d or
R [h] ≤ ε (m, d, δ).

Proof Due to the length of the proof we have structured it into three steps.

We will abbreviate ε (m, d, δ) by ε and will use the shorthand notation z[i: j ]
def=(

zi , zi+1, . . . , z j

)
. If Qi and Q j are propositions, Qij

def= Qi ∧ Q j .

Symmetrization by a Ghost Sample

By Lemma C.2 we know that, for all m ∈ �,

PZm (∃h ∈ � : Q12 (Z, h) ∧ Q3 (h)) ≤
2 · PZ2m

(∃h ∈ � : Q12
(
Z[1:m], h

) ∧ Q4
(
Z[(m+1):2m], h

))︸ ︷︷ ︸
J (Z)

,

where the proposition Q4 is given by

Q4 (z, h) ≡ Remp [h, z] >
ε

2
.

In order to see that we consider the following logical formula ϒ and σ–algebra ��
induced by �:

ϒ (z, h) ≡ Q2 (z, h) ,

�� =
{

Ah
def= {(x, y) ∈ � | l0−1 (h (x) , y) = 1 } | h ∈ �

}
.

Hence, R [h] = PZ (Ah), Remp [h, z] = vz (Ah) and, by the choice of ε we ensured
that mε > 2. Thus, it now suffices to show that PZ2m (J (Z)) ≤ δ

2 .

Upper bounding the probability of samples where the growth function increases
too much

In order to make use of the probable smoothness of L we distinguish the event
that the number of equivalence classes w.r.t. the zero-one loss l0−1 that contain
functions luckier than h is larger than ω

(
m, L

(
z[1:m], h

)
, d/4

)
and its negation. In

order to accomplish this we define the proposition S by

S (z) ≡ ∃h ∈ � : �L (z, h) > ω (L ((z1, . . . , zm) , h) , δ/4) .
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We see that, by the probable smoothness of the luckiness L given in Definition
4.18,

PZ2m (J (Z)) = PZ2m (J (Z) ∧ S (Z))+ PZ2m (J (Z) ∧ (¬S (Z)))
≤ PZ2m (S (Z))+ PZ2m (J (Z) ∧ (¬S (Z)))

≤ δ

4
+ PZ2m (J (Z) ∧ (¬S (Z))) ,

Now we upper bound PZ2m (J (Z) ∧ (¬S (Z))) by δ
4 .

Symmetrization by Permutation

By defining Q5 (z, h) = Q2
(
z[1:m], h

) ∧ (¬S (z)), that is,

Q5 (z, h) ≡ �L (z, h) ≤ 2d ,

we see that the proposition J (z) ∧ (¬S (z)) is given by

Q (z) ≡ ∃h ∈ � : Q1
(
z[1:m], h

) ∧ Q4
(
z[(m+1):2m], h

) ∧ Q5 (z, h) .

Now we shall use a technique which is known as symmetrization by permutation
and which is due to Kahane (1968) according to van der Vaart and Wellner (1996).
Since all 2m samples Zi are drawn iid from PZ we know that, for any permutation
π : {1, . . . , 2m} → {1, . . . , 2m},
PZ2m (Q (Z)) = PZ2m (Q (� (Z))) ,

where we use the shorthand notation �(Z) to denote the action of π on the

indices of Z = (Z1, . . . ,Z2m), i.e., �((Z1, . . . ,Z2m))
def= (

Zπ(1), . . . ,Zπ(2m)

)
. Now

consider all 2m different swapping permutations �s indexed by s ∈ {0, 1}m , i.e.,
�s (z) swaps zi and zi+m if, and only if, si = 1. It follows that

PZ2m (Q (Z)) = ES
[
PZ2m |S=s (Q (�s (Z)))

] = EZ2m

[
PS|Z2m=z (Q (�S (z)))

]
for any discrete measure PS. Clearly, PZ2mS = PZ2m PS which implies that
PS|Z2m=z = PS. Hence, if we show that PS (Q (�S (z))) is at most δ

4 for each
double sample z ∈ �2m , we have proven the theorem. The appealing feature of
the technique is that we can fix z in the further analysis. In our particular case we
obtain that PS (Q (�S (z))) is given by

PS
(∃h ∈ � : Q1

(
�S (z)[1:m] , h

) ∧ Q4
(
�S (z)[(m+1):2m] , h

) ∧ Q5 (z, h)
)
, (C.2)
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where we used the fact that the luckiness function is permutation invariant. Since
the double sample z ∈ �

2m is fixed, we can arrange the hypotheses h ∈ � in
decreasing order of their luckiness on the fixed double sample, i.e., i > j ⇒
L (z, hi) ≤ L

(
z, h j

)
. Now let

c (i)
def= ∣∣{(l0−1

(
h j (x1) , y1

)
, . . . , l0−1

(
h j (x2m) , y2m

)) | j ∈ {1, . . . , i}}∣∣
be the number of equivalence classes w.r.t. the zero-one loss incurred by the first
i hypotheses. Finally, let i∗ be such that c (i∗) ≤ 2d but c (i∗ + 1) > 2d . Then
equation (C.2) can be rewritten as

PS
(∃ j ∈ {1, . . . , i∗

} : Q1
(
�S (z)[1:m] , h j

) ∧ Q4
(
�S (z)[(m+1):2m] , h j

))
,

because by construction we know that h1, . . . , hi∗+1 are the only hypotheses that
are at least as lucky as hi∗+1 on z but �L (z, hi∗+1) > 2d . Since c (i∗) ≤ 2d there
are not more than q ≤ 2d hypotheses ĥ1, . . . , ĥq ⊆ {h1, . . . , hi∗ } which realize
the c (i∗) different zero-one loss function patterns. Thus, by an application of the
union bound we have that the probability in equation (C.2) is bounded from above
by

q∑
i=1

PS

(
Q1

(
�S (z)[1:m] , ĥi

)
∧ Q4

(
�S (z)[(m+1):2m] , ĥi

))
.

However, if we assume a uniform measure PS over the 2m different swapping
permutations each summand cannot be bigger than 2m− εm

2 · 2−m = 2− εm
2 because,

whenever we swap one of the at least εm
2 examples that incur a mistake on the

second m examples (according to Q4) into the first m examples, we violate Q1

(see also Figure C.2). Thus we see that

PZ2m (J (Z) ∧ (¬S (Z))) ≤ PZ2m (Q (Z))

≤ q · 2−
m
2 ε ≤ 2d · 2

−d−ld
(

4
δ

)
= δ

4
,

which completes the proof.

C.4 Empirical VC Dimension Luckiness

In this section we proof the probable smoothness of the empirical VC dimension
(see Section 4.3). This proof is mainly taken from Shawe-Taylor et al. (1998).
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Theorem C.6 (Probable smoothness of the empirical VC dimension luckiness)
Given a hypothesis space �, for any δ ∈ [

0, 1
2

]
the unluckiness function

U (z, h) = ϑ� (z) is probably smooth w.r.t. the function

ω (U, δ) =
(

2em

τ (U, δ) · U

)τ (U,δ)·U
, τ (U, δ) = 4

(
1+ 1

U
ln

(
1

δ

))
.

Proof Given a double sample z1z2 ∈ �2m, |z1| = m we note that, according
to Theorem 4.10 and A.105, ω (U, δ) = (

2em
τU

)τU
is an upper bound on the

number of equivalence classes w.r.t. the zero-one loss l0−1 on that double sample if
ϑ� (z1z2) ≤ τU . Thus it suffices to show that, for any δ ∈ [0, 1],

PZ2m (τ (ϑ� ((Z1, . . . ,Zm)) , δ) · ϑ� ((Z1, . . . ,Zm)) < ϑ� (Z))︸ ︷︷ ︸
Q(Z)

≤ δ .

Since all 2m samples Zi are drawn iid from PZ we know that, for any permutation
π : {1, . . . , 2m} → {1, . . . , 2m},
PZ2m (Q (Z)) = PZ2m (Q (� (Z))) ,

where we use the shorthand notation �(Z) to denote the action of π on the

indices of Z = (Z1, . . . ,Z2m), i.e., �((Z1, . . . ,Z2m))
def= (

Zπ(1), . . . ,Zπ(2m)

)
. Now

consider all 2m different swapping permutations �s indexed by s ∈ {0, 1}m , i.e.,
�s (z) swaps zi and zi+m if, and only if, si = 1. It follows that

PZ2m (Q (Z)) = ES
[
PZ2m |S=s (Q (�s (Z)))

] = EZ2m

[
PS|Z2m=z (Q (�S (z)))

]
for any discrete measure PS. Clearly, PZ2mS = PZ2m PS which implies that
PS|Z2m=z = PS. Hence, if we show that PS (Q (�S (z))) is at most δ for each dou-
ble sample z ∈ �2m and the uniform measure PS on {0, 1}m , we have proven the
theorem. Let d = ϑ� (z) be the empirical VC dimension on the fixed double sam-
ple. By definition, there must exists at least one subsequence z̃ = (

zi1 , . . . , zid

) ⊂ z
of length d that is shattered by �. The important observation is that any sub-
sequence of length j ∈ {1, . . . , d} of z̃ must also be shattered by � because,
otherwise, z̃ is not shattered by�. Let j∗ ∈ [0,m] be such that τ ( j∗, δ) · j∗ = d;

j∗ = d

4
+ ln (δ) . (C.3)

Whenever any swapping permutation πs is such that more than , j∗- examples
of the subsequence z̃ are swapped into the first half, Q (�s (z)) cannot be true
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because the empirical VC dimension on the first half was at least , j∗-+ 1 and τ is
monotonically increasing in its first argument. Thus, PS (Q (�S (z))) is bounded
from above by

2−m ·
, j∗-∑
j=0

Sd, j ≤
, j∗-∑
j=0

(
d

j

)
2−d <

1

2d

(
ed

j∗

) j∗
<

(eτ ( j∗, δ)) j∗

2τ ( j∗,δ)· j∗ ,

where Sd, j is the number of swappings that swap exactly j of the d examples into
the first half. The second step follows directly from Lemma C.7 and the observation
that 4 j∗ < d for all δ ∈ [

0, 1
2

]
. The last step is a consequence of Theorem

A.105 and equation (C.3). In order to complete the proof it suffices to show that
j∗ ln (eτ ( j∗, δ)) − j∗ · τ ( j∗, δ) · ln (2) < ln (δ). Using the definition of τ and
Theorem A.101 we see that the latter term is given by

j∗
(

1+ ln

(
4

(
1− 1

j∗
ln (δ)

))
− 4 ln (2)

(
1− 1

j∗
ln (δ)

))
< j∗

(
1+ ln (4)− 1

j∗
ln (δ)− 4 ln (2)+ 4 ln (2)

j∗
ln (δ)

)
< (4 ln (2)− 1) ln (δ) < 2 ln (δ) < ln (δ) ,

because 1 + ln (4) − 4 ln (2) < 0 and ln (δ) < 0 for all δ ∈ [0, 1
2

]
. The theorem is

proved.

Lemma C.7 For any double sample z ∈ �2m, for any d ≤ m, for any subsample
z̃ = (

zi1 , . . . , zid

) ⊂ z and for any j < d/3, the number Sd, j of swappings such
that exactly j examples of z̃ are within the first m examples is bounded by

Sd, j ≤
(

d

j

)
· 2m−d .

Proof First, let us assume that the subsample z̃ is such that no two indices i p and
iq have the property that

∣∣i p − iq

∣∣ = m (Figure C.3 (left)). Then we observe that
the number Sd, j is exactly

(d
j

)
2m−d due to the following argument: Since d ≤ m

and no two indices are the swapping counterpart of each other, there must exists
a swapping πs0 such that all examples in z̃ ⊂ z are in the second half. In order to
ensure that exactly j of the d examples are in the first half we have to swap them
back into the first half (starting from �s0 (z)). Now there are

(d
j

)
many choices of

distinct examples to swap. Further, swapping any of the m − d examples not in z̃
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Figure C.3 Counting swappings such that exactly j of the d = 6 examples (gray
background) are within the first m = 7 examples. (Left) Since no two of the d indices
are the swapping counterpart to each other we can swap all gray examples into the second
half and start counting. (Right) Since z1 and z8 are within the d examples there will always
be r = 1 gray example in the first half.

that are in the second half of �s0 (z) into the first half would not alter the event;
hence the 2m−d term.

Now let us assume that there are r ∈ {1, . . . , j} pairs of indices i p and iq

such that
∣∣i p − iq

∣∣ = m and let Sr
d, j be the number of swappings that satisfy

the condition stated (Figure C.3 (right)). In this case, whatever the swapping, r
examples of z̃ are in the first half, and to make up the number to j a further j − r
indices have to be chosen out of the d − 2r . Hence

Sr
d, j =

(
d − 2r

j − r

)
· 2m−d+2r

because the remaining m − d − 2r can be swapped without affecting the condition
stated. Note that

Sr+1
d, j =

(
d − 2r − 2

j − r − 1

)
· 2m−d+2r+2 = g ( j, r) · Sr

d, j ,

where

g ( j, r) = 4
( j − r) (d − j − r)

(d − 2r) (d − 2r − 1)
.
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It is easily verified that, for any r ∈ {1, . . . , j}, the function g attains its maximum
for j = d/2. However, as by assumption j < d/3 we know that

g ( j, r) <
4

9

(d − 3r) (2d − 3r)

(d − 2r) (d − 2r − 1)

in the possible range of j . Hence, the function g ( j, r) is strictly less than 1 if d ≥ 9
because this implies that

d2 − 9d + 18r > 0 ⇒ 4 (d − 3r) (2d − 3r) < 9 (d − 2r) (d − 2r − 1) .

As a consequence, for d ≥ 9 the result is true because

Sr
d, j < S0

d, j = Sd, j =
(

d

j

)
· 2m−d

for all r ∈ {1, . . . , j}. For d < 9 the only possible cases are j = 0 (trivial),
j = 1, r = 1 and j = 2, r ∈ {1, 2} which can easily verified to be true. The
theorem is proved.

C.5 Bound on the Fat Shattering Dimension

This elegant proof of Lemma 4.31 can be found in Bartlett and Shawe-Taylor
(1998) and dates back to Gurvits (1997). We will restate the original proof using

the shorthand notation
∑

A
def= ∑

ai∈A ai .

Proof The proof involves two lemmas that make extensive use of the geometry in
an inner product space �. We show that if S ⊂ X is γ –shattered by � , then every
subset S0 ⊆ S satisfies

∥∥∑ S0 −∑ (S \ S0)
∥∥ ≥ |S|γ

B . At the same time, for all
S ⊂ X , some S0 ⊆ S satisfies

∥∥∑ S0 −∑ (S \ S0)
∥∥ ≤ √|S|ς . Combining these

two assertions yields

1 ≥ |S| γ√|S|Bς
= √|S| γ

Bς
⇒ |S| ≤

(
Bς

γ

)2

,

for every γ –shattered set S. This proves the lemma.

Lemma C.8 If S ⊂ X is γ –shattered by � , then every subset S0 ⊆ S satisfies∥∥∥∑ S0 −
∑

(S \ S0)

∥∥∥ ≥ |S| γ
B

.
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Proof Suppose S = {x1, . . . , xm} is γ –shattered by � witnessed by the m real
numbers r1, . . . , rm . Then, for all y = (y1, . . . , ym) ∈ {−1,+1}m there is a wy

with
∥∥wy

∥∥ ≤ B such that, for all i ∈ {1, . . . ,m}, yi

(〈
wy, xi

〉− ri

) ≥ γ . Fix a
subset S0 ⊆ S. We consider two cases: If∑

{ri | xi ∈ S0 } ≥
∑

{ri | xi ∈ (S \ S0)} ,

then we consider yi = +1 if, and only if, xi ∈ S0. In this case we have
〈
wy, xi

〉 ≥
ri + γ if xi ∈ S0 and − 〈wy, xi

〉 ≥ −ri + γ if xi ∈ (S \ S0). If follows that〈
wy,

∑
S0

〉
≥

∑
{ri | xi ∈ S0 } + |S0| γ

−
〈
wy,

∑
(S \ S0)

〉
≥ −

∑
{ri | xi ∈ (S \ S0)} + |S \ S0| γ ,

which, combined together, gives〈
wy,

∑
S0 −

∑
(S \ S0)

〉
≥
∑

{ri | xi ∈ S0 } −
∑

{ri | xi ∈ (S \ S0)} + |S| γ
≥ |S| γ .

Using the Cauchy-Schwarz inequality (see Theorem A.106) and the assumption∥∥wy

∥∥ ≤ B, we know

B
∥∥∥∑ S0 −

∑
(S \ S0)

∥∥∥ ≥ ∥∥wy

∥∥ · ∥∥∥∑ S0 −
∑

(S \ S0)

∥∥∥
≥

〈
wy,

∑
S0 −

∑
(S \ S0)

〉
≥ |S| γ .

In the other case, we consider yi = +1 if, and only if, xi ∈ (S \ S0), and use an
identical argument.

Lemma C.9 For all S ⊂ X, some S0 ⊆ S satisfy∥∥∥∑ S0 −
∑

(S \ S0)

∥∥∥ ≤ √|S|ς .

Proof The proof uses the probabilistic method (Alon et al. 1991). Suppose S =
{x1, . . . , xm}. We choose S0 randomly by defining xi ∈ S0 ⇔ Bi = +1, where
B1, . . . ,Bm are independent random variables with PBi (+1) = PBi (−1) = 1

2 .
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Then,

EBm

[∥∥∥∑ S0 −
∑

(S \ S0)

∥∥∥2
]
= EBm

∥∥∥∥∥ m∑
i=1

Bixi

∥∥∥∥∥
2


= EBm

[〈
m∑

i=1

Bixi ,

m∑
j=1

B j x j

〉]

=
m∑

i=1

EBm

[〈
Bixi ,

m∑
j=1

B j x j

〉]

=
m∑

i=1

EBm

[〈
Bixi ,

∑
i �= j

B j x j + Bixi

〉]

=
m∑

i=1

(∑
i �= j

EBm

[
Bi · B j

] 〈
xi , x j

〉+ EBm

[
‖Bixi‖2

])

=
m∑

i=1

EBm

[
‖Bixi‖2

]
≤ |S|ς2 ,

where the last line follows from the fact that the Bi have zero mean and are
independent, i.e., EBm

[
Bi · B j

] = 0 for i �= j . Since the expectation is no more

than |S|ς2, there must be a set S0 for which
∥∥∑ S0 −∑ (S \ S0)

∥∥2
is no more

than |S|ς2.

C.6 Margin Distribution Bound

In course of the derivation of the sequence �i we shall sometimes abbreviate
D (z,w, γ ) by D. Let us consider the value of deff (�) given by equation (4.32)
for a fixed value of γ and ‖w‖ = 1, i.e.,

deff (�) =
64
(

1+ ( D
�

)2
) (

ς2 +�2
)

γ 2
= 64

γ 2

(
ς2 +�2 + ς2 D2

�2
+ D2

)
︸ ︷︷ ︸

f (�)

. (C.4)

Given an observed margin distribution D we would like to replace � in equation
(C.4) with the minimizing value �∗ (D) of the term deff (�) which is equivalent to
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the minimizer of f (�). A straightforward calculation shows that this value has to
be �∗ (D) = √

ςD because

d f

d�

∣∣∣∣
�∗
= 2�∗ (D)− 2ς2 D2

(�∗ (D))3 = 0 ,
d2 f

d�2

∣∣∣∣
�=√ςD

= 2+ 6√
ςD

> 0 .

In this case the value of f (�∗ (D)) equals ς2 + 2ςD + D2 = (ς + D)2. First,
note that the largest value of D is 2ς

√
m because, in the worst case, w fails for all

m points to achieve a functional margin of γ by at most 2ς (all points are assumed
to be in a ball of radius less than or equal to ς ) and, thus, D2 ≤ 4ς2m ⇔ D ≤
2ς
√

m. Hence we set up an arithmetic series (�i )i=1,...,s of values before having
observed the data such that �1 = 2ς

√
m and �i+1 = �i

2 which ensures that, for
all values of D, there will be a �i such that

�∗ (D)

2
=
√
ςD

2
≤ �i ≤

√
ςD = �∗ (D) .

Using the lower bound
√
ςD
2 for �i in equation (C.4) we see that, for all D,

f
(
�∗ (D)

) ≤ f (�i ) ≤ f

(√
ςD

2

)
= ς2 + 1

4
ςD + 4ςD + D2 ≤ (ς + 3D)2

<
65

64
(ς + 3D)2 .

Finally note that it suffices to consider the series until ς

64 < �s ≤ ς

32 because, for

all D such that �∗ (D) = √
ςD <

ς

32 ⇔
√

D
ς
≤ 1

32 , it is readily verified that

f
(
�∗ (D)

) = (ς + D)2

≤ f (�s) =
(

1+ D2

�2
s

) (
ς2 +�2

s

) ≤ (1+ 642 D2

ς2

)(
ς2 + ς2

322

)
≤ ς2

(
1+ 642

324

)(
1+ 1

1024

)
<

65

64
ς2 <

65

64
(ς + 3D)2 .

The number s is easily determined by making use of the definition �s = 2ς
√

m ·
2−s+1 and ς

64 < �s which yields s < 8+ 1
2 ld (m).
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C.7 The Quantifier Reversal Lemma

This section presents the quantifier reversal lemma due to David McAllester (see
McAllester (1998)). This lemma is of particular importance in the derivation of
generalization error bounds in the PAC-Bayesian framework (see Section 5.1).
Broadly speaking, if a logical formula acts on two random variables and we have
the formula true for all values of one of the random variables, then the quantifier
reversal lemma allows us to move the all-quantifier over that random variable into
a “all-but-a-fraction-of-δ” statement for a fixed value of the other random variable.
Thus, it provides an upper bound on the conditional distribution of the random
variable.

Lemma C.10 (Quantifier reversal lemma) Let X and Y be random variables and
let δ range over (0, 1]. Let ϒ : � × � × � → {true, false} be any measurable
logical formula on the product space such that for any x ∈ � and y ∈ � we have

{δ ∈ (0, 1] | ϒ (x, y, δ) } = (0, δmax]

for some δmax. If

∀x ∈ � : ∀δ ∈ (0, 1] : PY|X=x (ϒ (x,Y, δ)) ≥ 1− δ ,

then, for any β ∈ (0, 1), we have

∀δ ∈ (0, 1] : PY

(
∀α ∈ (0, 1] : PX|Y=y

(
ϒ
(
X, y, (αβδ)

1
1−β
))
≥ 1− α

)
≥ 1− δ .

Let us start with a simple lemma we need for of the proof.

Lemma C.11 Let X be a random variable such that PX ([0, 1]) = 1 and let g be
any measurable, monotonically decreasing function from the interval [0, 1] to the
reals, i.e., g : [0, 1] → � is such that x ≥ y implies g (x) ≤ g (y). If

∀δ ∈ [0, 1] : FX (δ) ≤ δ ,

then

EX
[
g (X)

] ≤ ∫ 1

0
g (x) dx . (C.5)
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Proof By the definition of the expectation (Definition A.7) we know that

EX
[
g (X)

] =
∫ 1

0
g (x) dFX (x) = −

∫ 1

0
FX (x) d (g (x))+ [g (x) · FX (x)

]1
0

=
∫ 1

0
FX (x) d (−g (x))+ g (1) ,

where the first line follows from partial integration and the second line uses the fact
that FX (0) = 0 and FX (1) = 1. Since −g (x) is, by assumption, a monotonically
increasing function we know that any positive difference g (x)− g (x̃) > 0 implies
that x − x̃ > 0. Hence for the first integral we can use the upper bound on FX to
obtain

EX
[
g (X)

] ≤
∫ 1

0
x d (−g (x))+ g (1)

=
∫ 1

0
g (x) dx + [x · (−g (x))]1

0 + g (1) =
∫ 1

0
g (x) dx .

The lemma is proved.

Using this lemma we can now proceed to prove the quantifier reversal lemma.

Proof of Theorem C.10. Define f : � × � → � in the following way

f (x, y) =
{

0 if {δ ∈ (0, 1] | ϒ (x, y, δ) } = (0, δmax] = ∅
δmax if {δ ∈ (0, 1] | ϒ (x, y, δ) } = (0, δmax] �= ∅ .

By definition, for any x ∈ � , and y ∈ � and δ ∈ (0, 1] we know that ϒ (x, y, δ) =
true is equivalent to the fact that f (x, y) ≥ δ. For a given x ∈ � we define the

new random variable T def= f (x,Y). Then the assumption of the theorem implies
that

∀x ∈ � : ∀δ ∈ (0, 1] : PY|X=x (ϒ (x,Y, δ)) ≥ 1− δ ⇔ FT (δ) ≤ δ .

Now, note that for β ∈ (0, 1), g (z) = zβ−1 is an monotonically decreasing function
since the exponent is strictly negative. From Lemma C.11 we conclude

∀x ∈ � : ∀δ ∈ (0, 1] : EY|X=x

[
f β−1 (x,Y)

] = ET
[
Tβ−1] ≤ ∫ 1

0
zβ−1 dz = 1

β
.
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Taking the expectation over x ∈ � gives

∀δ ∈ (0, 1] : EX
[
EY|X=x

[
f β−1 (x,Y)

]] ≤ 1

β
.

We can exchange the expectation values by the theorem of repeated integrals (see
Feller (1966)). Thus, using Markov’s inequality given in Theorem A.109 we obtain

∀δ ∈ (0, 1] : PY

(
EX|Y=y

[
f β−1 (X, y)

] ≤ 1

βδ

)
≥ 1− δ .

Applying Markov’s inequality once again to the conditional expectation value
EX|Y=y

[
f β−1 (X, y)

]
gives

∀δ ∈ (0, 1] : PY

(
∀α ∈ (0, 1] : PX|Y=y

(
f β−1 (X, y) ≤ 1

αβδ

)
≥ 1− α

)
≥ 1− δ.

Finally, rearranging terms and using the fact that ϒ (x, y, δ) = true is equivalent
to f (x, y) ≥ δ we obtain

∀δ ∈ (0, 1] : PY

(
∀α ∈ (0, 1] : PX|Y=y

(
ϒ
(
X, y, (αβδ)

1
1−β
))
≥ 1− α

)
≥ 1− δ.

The theorem is proved.

C.8 A PAC-Bayesian Marin Bound

This section contains the proof of Theorem 5.10. In course of this proof we need
several theorems and lemmas which have been delegated to separate subsections
due to their length.

Proof of Theorem 5.10. Geometrically, the hypothesis space � is isomorphic the
unit sphere� in �n (see Figure 2.8). Let us assume that PW is uniform on the unit
sphere. Given the training sample z ∈ �m and a classifier having normal w ∈ �
we show in Theorem C.13 that the open ball

� (w) =
{

v ∈�
∣∣∣∣ 〈w, v〉 >

√
1− �2

z (w)

}
⊆� (C.6)

is fully within the version space V (z). Such a set � (w) is, by definition, point
symmetric w.r.t. w and hence we can use − ln (PW (� (w))) to bound the expected
risk of hw. Since PW is uniform on the unit sphere, the value − ln (PW (� (w))) is
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simply the logarithm of the volume ratio of the surface of the unit sphere to the
surface of all v ∈ � satisfying equation (C.6). A combination of Theorem C.14
and C.15 shows that this ratio is given by

ln

(
1

PW (� (w))

)
= ln

 ∫ 2π
0 sinn−2 (θ) dθ∫ arccos

(√
1−(�z(w))2

)
0 sinn−2 (θ) dθ


≤ n · ln

(
1

1−√1− �2
z (w)

)
+ ln (2) .

Using Theorem 5.4 and Lemma 5.9 and bounding ln (2) by one from above we
obtain the desired result. Note that m points {x1, . . . , xm} maximally span an
m–dimensional space and, thus, we can marginalize over the remaining n − m
dimensions of feature space �. This gives d = min (m, n).

C.8.1 Balls in Version Space

In this section we prove that the open ball

� (w) =
{

v ∈�
∣∣∣∣ 〈w, v〉 >

√
1− �2

z (w)

}
around a linear classifier having normal w of unit length contains classifiers within
version space V (z) only. Here, �z (w) is the margin of the hyperplane w on a set
of points normalized by the length ‖xi‖ of the xi (see equation (5.11) for a formal
definition). In order to prove this result we need the following lemma.

Lemma C.12 Suppose � ⊆ �n
2 is a fixed feature space. Assume we are given two

points w ∈� and x ∈ � such that〈w, x〉 = γ > 0. Then, for all v ∈� with

〈w, v〉 >
√

1− γ 2

‖x‖2 (C.7)

it follows that 〈v, x〉 > 0.

Proof Since we only evaluate the inner product of any admissible v ∈ � with
w ∈� and x ∈ �, we can make the following approach
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Figure C.4 Suppose the point x1 (or x2) is given. We must show that all classifiers

having normal w̃ of unit length and
〈
w, w̃

〉
>

√
1− γ 2

i / ‖xi‖2 are on the same side of

the hyperplane {v ∈ � | 〈xi , v〉 = 0 }, i.e.,
〈
ṽ, xi

〉
> 0, where γi = 〈xi ,w〉. From the

picture it is clear that, regardless of ‖xi‖, sin (α) = (γi/ ‖xi‖) or equivalently cos (α) =√
1− sin2 (α) =

√
1− γ 2

i / ‖xi‖2. Obviously, all vectors w̃ of unit length which enclose an
angle less than α with w are on the same side (the dark cone). As cos (α) is monotonically
decreasing for α ∈ (

0, π
2

)
, these classifiers must satisfy

〈
w, w̃

〉 = cos
(
�

(
w, w̃

))
>√

1− γ 2
i / ‖xi‖2.

v = λ
x
‖x‖ + τ

(
w− γ

x

‖x‖2

)
.

Note that the vectors x
‖x‖ and w − γ x

‖x‖2 are orthogonal by construction. Further-

more, the squared length of w−γ x
‖x‖2 is given by 1−γ 2/ ‖x‖2. Therefore, the unit

norm constraint on v implies that

τ 2 = 1− λ2

1− γ 2

‖x‖2

.

Furthermore, assumption (C.7) becomes〈
λ

x
‖x‖ + τ

(
w− γ

x

‖x‖2

)
,w
〉

>

√
1− γ 2

‖x‖2
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λ
γ

‖x‖ ±
√√√√ 1− λ2

1− γ 2

‖x‖2

(
1− γ 2

‖x‖2

)
>

√
1− γ 2

‖x‖2

λ
γ

‖x‖ −
√

1− γ 2

‖x‖2

(
1±

√
1− λ2

)
︸ ︷︷ ︸

f (λ)

> 0 .

In order to solve for λ we consider the l.h.s. as a function of λ and determine the
range of values in which f (λ) is positive. A straightforward calculation reveals
that [0, λmax] with

λmax = 2γ

‖x‖

√
1− γ 2

‖x‖2 ,

is the only range in which f (λ) is positive. As a consequence, the assumption
〈w, v〉 >

√
1− γ 2/ ‖x‖2 is equivalent to

0 < λ ‖x‖ < 2γ

√
1− γ 2

‖x‖ .

Finally, the inner product of any v with x is given by

〈v, x〉 =
〈
λ

x
‖x‖ + τ

(
w− γ

x
‖x‖

)
, x
〉
= λ ‖x‖ + τ (γ − γ ) > 0 ,

where the last inequality follows from the previous consideration. The lemma is
proved. For a geometrical reasoning see Figure C.4.

Theorem C.13 Suppose � ⊆ �n
2 is a fixed feature space. Given a training sample

z = (x, y) ∈ (� × {−1,+1})m and w ∈ � such that �z (w) > 0, for all v ∈ �
such that 〈w, v〉 > √

1− �2
z (w) we have

∀i ∈ {1, . . . ,m} : yi 〈v, xi 〉 > 0 .

Proof According to Lemma C.12 we know that all v ∈ Bi with

Bi =
v ∈�

∣∣∣∣∣∣ 〈w, v〉 >
√

1− (yi 〈xi ,w〉)2

‖xi‖2

 ,
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parameterize classifiers consistent with the i th point xi . Clearly, the intersection of
all Bi gives the classifiers w which jointly satisfy the constraints yi 〈w, xi 〉 > 0.
Noticing that the size of Bi depends inversely on yi 〈xi ,w〉 we see that all v
such that 〈w, v〉 > �z (w) jointly classify all points xi correctly. The theorem is
proved.

C.8.2 Volume Ratio Theorem

In this subsection we explicitly derive the volume ratio between the largest inscrib-
able ball in version space and the whole parameter space for the special case of
linear classifiers in �n . Given a point w ∈� and a positive number γ > 0 we can
characterize the ball of radius γ in the parameter space by

�γ (w) = {
v ∈� ∣∣ ‖w− v‖2 < γ 2

} = {
v ∈� ∣∣ 〈w, v〉 > 1− γ 2/2

}
.

In the following we will calculate the exact value of the volume ratio vol(�)

vol(�γ (w))
where w can be chosen arbitrarily (due to the symmetry of the sphere).

Theorem C.14 Suppose we are given a fixed feature space � ⊆ �n
2. Then the

fraction of the whole surface vol (�) of the unit sphere to the surface vol
(
�γ (w)

)
with Euclidean distance less than γ from any point w ∈� is given by

vol (�)

vol
(
�γ (w)

) = ∫ π

0 sinn−2 (θ) dθ∫ arccos
(

1− γ 2
2

)
0 sinn−2 (θ) dθ

.

Proof As the derivation requires the calculation of surface integrals on the hyper-
sphere in �n

2 we define each admissible w ∈ � by its polar coordinates and carry
out the integration over the angles. Thus we specify the coordinate transformation
τ : �n → �

n from polar coordinates into Cartesian coordinates, i.e., every w ∈�
is expressed via n − 2 angles θ = (θ1, . . . , θn−2)

′ ranging from 0 to π , one angle
0 ≤ ϕ ≤ 2π , and the radius function r (θ, ϕ) which is in the case of a sphere of
constant value r . This transformation reads

τ1 (r, ϕ, θ) = r · sin(ϕ) sin(θ1) · · · sin(θn−2) (C.8)

τ2 (r, ϕ, θ) = r · cos(ϕ) sin(θ1) · · · sin(θn−2)

...
...

...
...

τn−1 (r, ϕ, θ) = r · cos(θn−3) sin(θn−2)
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τn (r, ϕ, θ) = r · cos(θn−2) . (C.9)

Without loss of generality we choose w to be θ̃ = 0, ϕ̃ = 0. Hence the ball �γ

(
w̃
)

of radius γ is the following set of angles{
ϕ ∈ [0, 2π ] , θ ∈ [0, π ]n−2

∣∣∣∣ 〈τ (1, ϕ, θ) , τ
(

1, ϕ̃, θ̃
)〉

> 1− γ 2

2

}
=
{
ϕ ∈ [0, 2π ] , θ ∈ [0, π ]n−2

∣∣∣∣ cos(θn−2) > 1− γ 2

2

}
=
{
ϕ ∈ [0, 2π ] , θ ∈ [0, π ]n−2

∣∣∣∣ θn−2 < arccos

(
1− γ 2

2

)}
.

As can be seen from this expression the margin γ characterizing the ball simply
possesses a restriction on the angle θn−2 in the integration. Thus, the quantity of
interest is given by∫ 2π

0

∫ π

0 · · ·
∫ π

0

∣∣Jn

(
r, ϕ, θ1, . . . , θn−2

)∣∣ dθn−2 · · · dθ1 dϕ∫ 2π
0

∫ π

0 · · ·
∫ $

0

∣∣Jn

(
r, ϕ, θ1, . . . , θn−2

)∣∣ dθn−2 · · · dθ1 dϕ
, (C.10)

where $ = arccos
(
1− γ 2/2

)
and Jn is the functional determinant of τ given by

equation (C.8)–(C.9),

Jn(r, ϕ, θ1, . . . , θn−2) = |Jn| , (C.11)

where the Jacobian matrix Jn is formally defined as

Jn
def=


∂τ1(r,ϕ,θ )

∂r

∣∣∣
r

∂τ1(r,ϕ,θ )
∂ϕ

∣∣∣
ϕ
· · · ∂τ1(r,ϕ,θ )

∂θn−2

∣∣∣
θn−2

...
...

. . .
...

∂τn (r,ϕ,θ )
∂r

∣∣∣
r

∂τn (r,ϕ,θ )
∂ϕ

∣∣∣
ϕ
· · · ∂τn (r,ϕ,θ )

∂θn−2

∣∣∣
θn−2

 .

If Jn−1 = (j1, . . . , jn−1) ∈ �
(n−1)×(n−1) is the Jacobian matrix for the mapping τ

when applied for points in �n−1 then we see that

Jn =
(

sin (θn−2) · Jn−1 r · cos (θn−2) · j1(
cos (θn−2) 0 · · · 0

) −r · sin (θn−2)

)
. (C.12)

Hence the nth row of this matrix contains only two non-zero elements

∂τn (r, ϕ, θ)

∂r

∣∣∣∣
r

= cos (θn−2) ,
∂τn (r, ϕ, θ)

∂θn−2

∣∣∣∣
θn−2

= −r · sin (θn−2) .
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Now, using the Laplace expansion of (C.11) in the nth row (see Definition A.64)
we obtain

|Jn| = (−1)n+1 cos (θn−2)
∣∣J[n,1]

∣∣− (−1)n+n · r sin (θn−2)
∣∣J[n,n]

∣∣ ,
where J[i, j ] is the (n − 1)× (n − 1) sub-matrix obtained by deletion of the i th row
and the j th column of Jn . From equation (C.12) and Theorem A.71 it follows that∣∣J[n,n]

∣∣ = sinn−1 (θn−2) · |Jn−1|. Further we know that∣∣J[n,1]

∣∣ = |(sin (θn−2) · j2, . . . , sin (θn−2) · jn−1, r · cos (θn−2) · j1)|
= (−1)n−2 · |(r · cos (θn−2) · j1, sin (θn−2) · j2, . . . , sin (θn−2) · jn−1)|
= (−1)n−2 · r · cos (θn−2) · sinn−2 (θn−2) · |Jn−1| .

Hence, |Jn| is given by

|Jn| = − cos2 (θn−2) · r · sinn−2 (θn−2) · |Jn−1| − r · sinn (θn−2) · |Jn−1| ,
= − |Jn−1| · r · sinn−2 (θn−2)

(
cos2 (θn−2)+ sin2 (θn−2)

)
= − |Jn−1| · r · sinn−2 (θn−2) ,

which, substituted into equation (C.10) gives

vol (�)

vol
(
�γ (w)

) = ∫ π

0 sinn−2 (θn−2) dθn−2∫ $

0 sinn−2 (θn−2) dθn−2

, (C.13)

where $ = arccos
(
1− γ 2/2

)
. The theorem is proved.

C.8.3 A Volume Ratio Bound

In this section we present a practically useful upper bound for the expression given
in equation (C.13). In order to check the usefulness of this expression we have
compared the exact value of (C.13) with the upper bound and found that in the
interesting regime of large margins the bound seems to be within a factor of 2 from
the exact value (see Figure C.5).

Theorem C.15 For all j ∈ � and all 0 < x ≤ 1

ln

( ∫ π

0 sin2 j+1 (θ) dθ∫ $(x)
0 sin2 j+1 (θ) dθ

)
≤ ln

(
1

x

)2 j+1

+ ln (2) , (C.14)

where $ (x) = arccos (1− x).
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Figure C.5 Comparison of the bound (C.14) (solid line) with the exact value (C.13)
(dashed line) over the whole range of possible values of x for (a) n = 10 and (b) n = 100.
Interestingly, in the relevant regime of large values of x the bound seems to be very tight
regardless of the number of dimensions.

Proof Without loss of generality, we consider a transformation of the variable
x �→ 2x which implies that the valid range of x equals

(
0, 1

2

]
. From Bois (1961)

we know that, for all j ∈ � ,

∫
sin2 j+1 (θ) dθ = −cos (θ)

2 j + 1

j∑
i=0

sin2i (θ) B j,i , (C.15)

where

B j,i = 2 (i + 1) · 2 (i + 2) · · · · · 2 j

(2i + 1) · (2i + 3) · · · · · (2 j − 1)

= 2 · 4 · · · 2 j

1 · 3 · · · (2 j − 1)
· 1 · 3 · · · (2i − 1)

2 · 4 · · · (2i)

= 4 j ( j !)2 (2i)!
(2 j)! (i !)2 4i

= 4 j

4i

(2i
i

)(2 j
j

) . (C.16)

Let us introduce the abbreviation

S ( j, x) =
∫ arccos(1−2x)

0
sin2 j+1 (θ) dθ .
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Then the numerator of (C.14) (after the transformation x �→ 2x) is given by S ( j, 1)
whereas the denominator of (C.14) is simply S ( j, x). From equation (C.15) we see

S ( j, x) = −cos (θ)

2 j + 1

j∑
i=0

sin2i (θ) B j,i

∣∣∣∣∣
arccos(1−2x)

0

= 4 j

(2 j + 1)
(2 j

j

) (1+ (2x − 1)
j∑

i=0

(
2i

i

)
xi (1− x)i

)
,

where we have used (C.16) and

sin2i (θ) = (
sin2 (θ)

)i = (
1− cos2 (θ)

)i = (
1− (1− 2x)2

)i = (
4x − 4x2

)i
.

Expanding the first term of the sum we obtain for the logarithm of the fraction of
integrals

ln

(
S ( j, 1)

S ( j, x)

)
= ln

(
2

2x + (2x − 1)
∑ j

i=1

(2i
i

)
xi (1− x)i

)
.

In Lemma C.20 we show that for any j ∈ �+ and 0 ≤ x < 1
2

j∑
i=1

(
2i

i

)
xi (1− x)i ≤ 2x

(
(2x)2 j − 1

)
2x − 1

.

Inserting this into the last expression and taking into account that (2x − 1) ≤ 0 in
the relevant regime of x we obtain

ln

(
S ( j, 1)

S ( j, x)

)
≤ ln

 2

2x + (2x − 1)
2x((2x)2 j−1)

(2x−1)

 = ln

(
2

(2x)2 j+1

)
= − (2 j + 1) ln (x)+ ln (2) ,

which proves the theorem. Note that in the case of x = 1
2 the problem reduces to

ln

(
S ( j, 1)

S
(

j, 1
2

)) = − (2 j + 1) ln (2x)︸ ︷︷ ︸
0

+ ln (2) ,

which finalizes the proof.



311 Proofs and Derivations—Part II

C.8.4 Bollmann’s Lemma

In the course of the proof of Theorem C.15 we needed a tight upper bound on the
growth of

∑ j
i=1

(2i
i

)
xi (1− x)i as a function of x . In the following we present a

series of lemmas resulting in a reasonably accurate upper bound called Bollmann’s
lemma (Lemma C.20).

Lemma C.16 For all i ∈ �+(
2 (i + 1)

i + 1

)
=
(

2i

i

)(
4− 2

i + 1

)
.

Proof A straightforward calculation shows that(
2 (i + 1)

i + 1

)
= 2 (i + 1) (2i + 1)

(i + 1) (i + 1)

(
2i

i

)
=
(

2i

i

)
4i + 2

i + 1

=
(

2i

i

)(
4− 2

i + 1

)
.

The lemma is proved.

Lemma C.17 For all i ∈ �+ and j ∈ �+(
2 ( j + 1)

j + 1

)(
2i

i

)
≤ 2

(
2 (i + j)

i + j

)
.

Proof We prove the lemma by induction over i . For i = 1 it follows that(
2 ( j + 1)

j + 1

)(
2

1

)
= 2

(
2 ( j + 1)

j + 1

)
.

Assume the assertion is true for i ∈ �
+ . Then(

2 ( j + 1)

j + 1

)(
2 (i + 1)

i + 1

)
=

(
2 ( j + 1)

j + 1

)(
2i

i

)(
4− 2

i + 1

)
≤ 2

(
2 (i + j)

i + j

)(
4− 2

i + 1

)
≤ 2

(
2 (i + j)

i + j

)(
4− 2

i + j + 1

)
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= 2

(
2 (i + j + 1)

i + j + 1

)
,

where we used Lemma C.16 in the first and last lines.

Lemma C.18 For all 0 ≤ x < 1
2

∞∑
i=1

(
2i

i

)
xi (1− x)i = 2x

1− 2x
.

Proof This can be seen by considering

arcsin (u) = u +
∞∑

i=1

(
2i

i

)
1

4i

u2i+1

2i + 1
,

d arcsin (u)

du
= 1+

∞∑
i=1

(
2i

i

)
1

4i
u2i = 1√

1− u2
.

Using u = 2
√

x (1− x) we obtain the result, i.e.,

∞∑
i=1

(
2i

i

)
1

4i

(
2
√

x (1− x)
)2i = 1√

1− 4x (1− x)
− 1

∞∑
i=1

(
2i

i

)
xi (1− x)i = 1−√1− 4x (1− x)√

1− 4x (1− x)

= 1−
√
(1− 2x)2√

(1− 2x)2
.

The lemma is proved.

Lemma C.19 For all 0 ≤ x < 1
2 and j ∈ �+

4x2
∞∑

i=1

(
2 (i + j)

i + j

)
xi+ j (1− x)i+ j ≤

∞∑
i=1

(
2 (i + j + 1)

i + j + 1

)
xi+ j+1 (1− x)i+ j+1 .
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Proof Put A (i, j, x)
def= ∑∞

i=1

(2(i+ j )
i+ j

)
xi+ j (1− x)i+ j . Then the result to be

proven simply reads 4x2 · A (i, j, x) ≤ A (i, j + 1, x). By Lemma C.17 we have

∞∑
i=1

(
2i

i

)(
2 ( j + 1)

j + 1

)
xi+ j (1− x)i+ j ≤ 2 · A (i, j, x) .

Since 0 < 1− x ≤ 1+ 2x , by Lemma C.18 it follows that

(1− x)
∞∑

i=1

(
2i

i

)(
2 ( j + 1)

j + 1

)
xi+ j (1− x)i+ j ≤ 2 (1+ 2x) · A (i, j, x) ,

(1− x)

(
2 ( j + 1)

j + 1

)
x j (1− x) j 2x

1− 2x
≤ 2 (1+ 2x) · A (i, j, x) .

Multiplying both sides by 1−2x
2 (which is, by assumption, positive) yields(

2 ( j + 1)

j + 1

)
x j+1 (1− x) j+1 ≤ (1− 4x2) · A (i, j, x) .

Rearranging terms gives

4x2 · A (i, j, x) ≤ A (i, j, x)−
(

2 ( j + 1)

j + 1

)
x j+1 (1− x) j+1 = A (i, j + 1, x) .

The lemma is proved.

Lemma C.20 For any j ∈ �+ and 0 < x < 1
2

j∑
i=1

(
2i

i

)
xi (1− x)i ≤ 2x

(
(2x)2 j − 1

)
2x − 1

.

Proof The assertion can be transformed into

j∑
i=1

(
2i

i

)
xi (1− x)i ≤ 2x

(
(2x)2 j − 1

)
2x − 1

= 2x
(
1− (2x)2 j

)
1− 2x

≤ 2x

1− 2x
− (2x)2 j+1

1− 2x
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≤
∞∑

i=1

(
2i

i

)
xi (1− x)i − (2x)2 j+1

1− 2x
,

which is equivalent to

(2x)2 j+1 ≤ (1− 2x)
∞∑

i=1

(
2 (i + j)

i + j

)
xi+ j (1− x)i+ j .

We prove this by induction over j . For j = 1 we have(
2

1

)
x (1− x) = 2x − 2x2 ≤ 2x + 4x2 = 8x3 − 2x

2x − 1
= 2x

(
(2x)2 − 1

)
2x − 1

.

Assume the assertion is true for j . Then

(2x)2( j+1)+1 = 4x2 (2x)2 j+1

≤ 4x2

(
(1− 2x)

∞∑
i=1

(
2 (i + j)

i + j

)
xi+ j (1− x)i+ j

)

≤ (1− 2x)
∞∑

i=1

(
2 (i + j + 1)

i + j + 1

)
xi+ j+1 (1− x)i+ j+1 ,

where the second line is assumed to be true and the third line follows from Lemma
C.19. The lemma is proved.

C.9 Algorithmic Stability Bounds

In this section we present the proofs of the main theorems from Section 5.3.
In order to enhance the readability of the proofs we use the same notation as
introduced on page 186, that is, given a sample z ∈ �

m , a natural number
i ∈ {1, . . . ,m} and an example z ∈ � let

z\i
def= (z1, . . . , zi−1, zi+1, . . . , zm) ∈ �m−1 ,

zi↔z
def= (z1, . . . , zi−1, z, zi+1, . . . , zm) ∈ �m ,

be the sample with the i th element deleted or the i th element replaced by z,
respectively. Whenever the learning algorithm is clear from the context, we use

f z
def= � (z) to denote the hypothesis learned by � given z ∈ �m .
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C.9.1 Uniform Stability of Functions Minimizing a Regularized Risk

This subsection proves Theorem 5.31. The proof is mainly taken from Bousquet
and Elisseeff (2000).

Proof of Theorem 5.31. In course of the proof we shall often consider the differ-
ence between the functions f z\i and f z obtained by learning on the reduced training

sample z\i and the full training sample z. Let us denote this difference by � f
def=(

f z\i − f z
)
. Then we must bound the difference

∣∣l ( f z\i (x) , t
) − l ( f z (x) , t)

∣∣ for
any (x, t) ∈ � . Using the Lipschitz continuity of l we know that∣∣l ( f z\i (x) , t

) − l ( f z (x) , t)
∣∣ ≤ Cl ·

∣∣ f z\i (x)− f z (x)
∣∣ = Cl · |� f (x)| .

Since we consider a reproducing kernel Hilbert space � of real-valued functions
f ∈ �� we know that (see also equations (2.36) and (2.37))

|� f (x)| = |〈� f, k (x, ·)〉| ≤ ‖� f ‖ · k (x, x) . (C.17)

Thus, it suffices to have an upper bound on ‖� f ‖. We shall show shortly that
‖� f ‖2 ≤ Cl

2λm |� f (xi )| which, together with the last inequality implies that

‖� f ‖2 ≤ Cl

2λm
|� f (xi )| ≤ Cl

2λm
‖� f ‖ · k (xi , xi ) ⇔ ‖� f ‖ ≤ Cl

2λm
· k (xi , xi ) .

Resubstituting this expression into equation (C.17) gives∣∣l ( f z\i (x) , t
) − l ( f z (x) , t)

∣∣ ≤ Cl · ‖� f ‖ · k (x, x) ≤ C2
l κ

2

2λm
,

where κ is defined by κ = supx∈� k (x, x). It remains to prove the upper bound
on the ‖� f ‖2. At first we exploit the fact that f z\i and f z are the minimizers of
equation (5.19) for the two different training samples z\i ∈ �

m−1 and z ∈ �m ,
respectively. Formally this reads

Rreg [ f z, z]− Rreg [ f z + η ·� f ] ≤ 0 , Rreg
[

f z\i , z\i

]− Rreg
[

f z\i − η ·� f
] ≤ 0,

where we assume η ∈ (0, 1) and Rreg is defined by

Rreg [ f, z] = 1

m

∑
(xi ,ti )∈z

l ( f (xi ) , ti )︸ ︷︷ ︸
Rm [ f,z]

+λ ‖ f ‖2 .
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Adding the above two inequalities and exploiting Rreg [ f, z] = Rreg
[

f, z\i

] +
1
m l ( f (xi ) , ti ) we obtain

1

m
(l ( f z (xi ) , ti )− l (( f z + η ·� f ) (xi) , ti ))+ λ · A ≤ B , (C.18)

where A and B are given by

A = ‖ f z‖2 + ∥∥ f z\i
∥∥2 − ‖ f z + η ·� f ‖2 − ∥∥ f z\i − η ·� f

∥∥2
,

B = Rm

[
f z + η� f, z\i

]+ Rm

[
f z\i + η� f, z\i

]− Rm

[
f z, z\i

]− Rm

[
f z\i , z\i

]
.

Using the definition of � f allows us to determine A directly

A = 2η
(−〈 f z,� f 〉 + 〈 f z\i ,� f

〉− η ‖� f ‖2
)

= 2η
(〈

f z\i − f z,� f
〉− η ‖� f ‖2

) = 2η (1− η) ‖� f ‖2 .

Since the loss function l is assumed to be convex in its first argument we know that
for all (x, t) ∈ � and all η ∈ (0, 1)

l (( f z + η ·� f ) (x) , t)− l (( f z) (x) , t) ≤ η · (l (( f z\i
)
(x) , t

) − l (( f z) (x) , t)
)
.

This implies that the following two inequalities hold true

Rm

[
f z + η� f, z\i

]− Rm

[
f z, z\i

] ≤ η
(
Rm

[
f z\i , z\i

]− Rm

[
f z, z\i

])
,

Rm

[
f z\i − η� f, z\i

]− Rm

[
f z\i , z\i

] ≤ η
(
Rm

[
f z, z\i

]− Rm

[
f z\i , z\i

])
.

Adding these two inequalities shows that B ≤ 0. Using the Lipschitz continuity of
the loss we see that equation (C.18) can be written as

‖� f ‖2 ≤ l (( f z + η ·� f ) (xi ) , ti )− l ( f z (xi) , ti )

2η (1− η) λm

≤ Cl · |( f z + η ·� f ) (xi)− f z (xi )|
2η (1− η) λm

= Cl

2 (1− η) λm
|� f (xi)| .

Taking the limit of the latter expression for η → 0 shows that ‖� f ‖2 ≤
Cl

2λm |� f (xi )| which completes the proof.

C.9.2 Algorithmic Stability Bounds

In this subsection we prove Theorem 5.32. We start with some simple lemmas
which help us to structure the main proof.
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Lemma C.21 Let � : ∪∞m=1�
m → � be a βm–stable learning algorithm w.r.t. a

loss function l : � × � → �. Then we have

EZm
[
R [ fZ]− Remp

[
fZ,Z

]] ≤ 2βm , EZm
[
R [ fZ]− Rloo

[
�,Z

]] ≤ βm .

Proof By the independence of the training sample z ∈ �m from the test example
z = (x, t) ∈ � we note that the expectation EZm

[
R [ fZ]− Remp

[
fZ,Z

]]
can be

rewritten as

1

m

m∑
i=1

∫
�m

∫
�

l ( f z (x) , t)− l
(

f zi↔(x,t) (x) , t
)︸ ︷︷ ︸

q(z,(x,t))

dFZ ((x, t)) dFZm (z) .

By virtue of Theorem 5.27, for any i ∈ {1, . . . ,m} the integrand q (z, (x, t)) is
upper bounded by 2βm thanks to the βm–stability of the learning algorithm �.
This proves the first assertion. Similarly, for the second assertion we know that
EZm

[
R [ fZ]− Rloo

[
�,Z

]]
can be written as

1

m

m∑
i=1

∫
�m

∫
�

l ( f z (x) , t)− l
(

f z\i (xi ) , ti
)

dFZ ((x, t)) dFZm (z) .

Since, for any i ∈ {1, . . . ,m}, the example zi = (xi , ti ) is not used in finding f z\i
but has the same distribution as z = (x, t) the latter expression equals

1

m

m∑
i=1

∫
�m

∫
�

l ( f z (x) , t)− l
(

f z\i (x) , t
)︸ ︷︷ ︸

q(z,(x,t))

dFZ ((x, t)) dFZm (z) .

By assumption � is a βm–stable algorithm w.r.t. l which implies that the integrand
is bounded from above by βm . The lemma is proved.

Lemma C.22 Let � : ∪∞m=1�
m → � be a βm–stable learning algorithm w.r.t. a

given loss function l : � × � → [0, b]. Then, for any i ∈ {1, . . . ,m}, we have

sup
z∈�m ,z̃∈�

∣∣R [ f z]− R
[

f zi↔z̃

]∣∣ ≤ 2βm ,

sup
z∈�m ,z̃∈�

∣∣Remp [ f z, z]− Remp
[

f zi↔z̃ , zi↔z̃

]∣∣ ≤ 2βm + b

m
,

sup
z∈�m,z̃∈�

|Rloo [�, z]− Rloo [�, zi↔z̃]| ≤ 2βm−1 + b

m
.
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Proof The first assertion follows directly from Theorem 5.27 noticing that, by the
βm–stability of �, for all z ∈ �m , all z̃ ∈ � and all i ∈ {1, . . . ,m}∣∣R [ f z]− R

[
f zi↔z̃

]∣∣ ≤ EXT
[∣∣l ( f z (X) ,T)− l

(
f zi↔z̃ (X) ,T

)∣∣] ≤ 2βm .

In order to prove the second assertion we note that, for all i ∈ {1, . . . ,m},

Remp [ f z, z] = m − 1

m
Remp

[
f z, z\i

]+ 1

m
l ( f z (xi ) , ti ) .

Remp
[

f zi↔z̃ , zi↔z̃

] = m − 1

m
Remp

[
f zi↔z̃ , z\i

]+ 1

m
l
(

f zi↔z̃ (x̃) , t̃
)
.

As, by assumption, � is a βm–stable algorithm, using Theorem 5.27 shows that∣∣Remp
[

f z, z\i

]− Remp
[

f zi↔z̃ , z\i

]∣∣ cannot exceed 2βm . Further, by the finiteness
of the loss function l it follows that∣∣Remp [ f z, z]− Remp

[
f zi↔z̃ , zi↔z̃

]∣∣ ≤ 2
m − 1

m
βm + b

m
< 2βm + b

m
.

The proof of the final assertion is analogous and exploiting that, for all i ∈
{1, . . . ,m}

Rloo [�, z] = 1

m

m∑
j=1
j �=i

l
(

f z\ j

(
x j

)
, t j

)+ 1

m
l
(

f z\i (xi ) , ti
)
,

Rloo [�, zi↔z̃] = 1

m

m∑
j=1
j �=i

l
(

f z(i↔z̃)\ j

(
x j

)
, t j

)
+ 1

m
l
(

f z\i (x̃) , t̃
)
.

Taking into account that f z\ j is obtained by learning using a training sample of size
m − 1 the third statement of the lemma follows immediately.

Using these two lemmas allows us to present the proof of Theorem 5.32.

Proof of Theorem 5.32. Let us start with the first equation involving the training
error Remp [ f z, z]. To this end we define the function g (Z) = R [ fZ]−Remp

[
fZ,Z

]
of the m random variables Z1, . . . ,Zm . By Lemma C.22 we know that for all
i ∈ {1, . . . ,m}

sup
z∈�m ,z̃∈�

|g (z)− g (zi↔z̃)| ≤ 4βm + b

m
,



319 Proofs and Derivations—Part II

because the difference

|g (z)− g (zi↔z̃)| =
∣∣R [ f z]− Remp [ f z, z]− (R [ f zi↔z̃

]− Remp
[

f zi↔z̃ , zi↔z̃

])∣∣
is bounded from above by the sum of the two terms

∣∣R [ f z]− R
[

f zi↔z̃

]∣∣ and∣∣Remp [ f z, z]− Remp
[

f zi↔z̃ , zi↔z̃

]∣∣ due to the triangle inequality. Further, by
Lemma C.21 we know

g (z) > ε + 2βm ⇒ g (z) > ε + EZm
[
g (Z)

]
.

Thus, using McDiarmid’s inequality given in Theorem A.119 shows that

PZm (g (Z) > ε + 2βm) ≤ PZm

(
g (Z)− EZm

[
g (Z)

]
> ε

)
< exp

(
− mε2

2 (4mβm + b)2

)
.

The proof for the case of the leave-one-out error Rloo [�, z] is analogous: If we
define the function g (Z) = R [ fZ] − Rloo

[
�,Z

]
of the m random variables

Z1, . . . ,Zm then, by Lemma C.22, for all i ∈ {1, . . . ,m},
sup

z∈�m ,z̃∈�
|g (z)− g (zi↔z̃)| ≤ 2 (βm + βm−1)+ b

m
.

In addition, by Lemma C.21 we have that

g (z) > ε + βm ⇒ g (z) > ε + EZm
[
g (Z)

]
.

The result follows again by an application of McDiarmid’s inequality to g (Z).
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D Pseudocodes

This section contains all the pseudocodes of the algorithms introduced in the book.
A set of implementations in R (a publicly available version of S-PLUS) can be
found at http://www.kernel-machines.org/.

D.1 Perceptron Algorithm

Algorithm 1 Perceptron learning algorithm (in primal variables).

Require: A feature mapping φ : � → � ⊆ �n
2

Ensure: A linearly separable training sample z = ((x1, y1) , . . . , (xm, ym))

w0 = 0; t = 0
repeat

for j = 1, . . . ,m do
if y j

〈
φ
(
x j
)
,w
〉 ≤ 0 then

wt+1 = wt + y jφ
(
x j
)

t ← t + 1
end if

end for
until no mistakes have been made within the for loop
return the final weight vector wt

This section contains three different implementations of the classical percep-
tron algorithm (see Rosenblatt (1958)) which differ by the representation used for
the weight vector (Algorithms 1 and 2). The dual algorithm 2 can be sped up by
caching the real-valued outputs of the temporary solutions (Algorithm 3).
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Algorithm 2 Perceptron learning algorithm (in dual variables).

Require: A feature mapping φ : � → � ⊆ �n
2

Ensure: A linearly separable training sample z = ((x1, y1) , . . . , (xm, ym))

α = 0
repeat

for j = 1, . . . ,m do
if y j

∑m
i=1 αi

〈
φ (xi ) ,φ

(
x j
)〉 ≤ 0 then

α j ← α j + y j

end if
end for

until no mistakes have been made within the for loop
return the vector α of expansion coefficients

Algorithm 3 Kernel perceptron learning algorithm (optimized).

Require: A kernel function k : � × � → �

Ensure: A linearly separable training sample z = ((x1, y1) , . . . , (xm, ym))

o = α = 0
repeat

for j = 1, . . . ,m do
if y j o j ≤ 0 then

α j ← α j + y j

for i = 1, . . . ,m do
oi ← oi + y j k

(
x j , xi

)
end for

end if
end for

until no mistakes have been made within the for loop
return the vector α of expansion coefficients
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D.2 Support Vector and Adaptive Margin Machines

In the following subsections we give the pseudocode for support vector machines
and adaptive margin machines. We assume access to a solver for the quadratic
programming problem which computes the solution vector x∗ to the following
problem

minimize
1

2
x′Hx+ c′x

subject to A1x = b1 .

A2x ≤ b2 ,

l ≤ x ≤ u . (D.1)

Packages that aim to solving these type of problem are, for example MINOS
(Murtagh and Saunders 1993), LOQO (Vanderbei 1994) or CPLEX (CPLEX Op-
timization Inc. 1994). An excellent introduction to the problem of mathematical
programming is given in Hadley (1962), Hadley (1964) and Vanderbei (1997). We
used the PR LOQO package1 of A. Smola together with R, which is a publicly
available version of S-PLUS, for all experiments.

D.2.1 Standard Support Vector Machines

For the standard SVM with box constraints 0 ≤ α ≤ 1
2λ1 we set

x = α ,

H = YGY ⇔ Hi j = yi y j k
(
xi , x j

)
,

c = −1m ,

l = 0m ,

u = 1

2λm
1m .

We obtain hard margin SVMs for λ→ 0 (in practice we used λm = 10−20). In the
case of quadratic margin loss we apply a hard margin SVM with the diagonal of H
additively correct by λm · 1 (see Subsection 2.4.2).

1 Publicly available at http://www.kernel-machines.org/.
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D.2.2 ν–Support Vector Machines

For the ν-SVMs we set

x = α ,

H = YGY ⇔ Hi j = yi y j k
(
xi , x j

)
,

c = 0m ,

A2 = −1′m ,

b2 = −ν ,
l = 0m ,

u = 1

m
1m .

D.2.3 Adaptive Margin Machines

Finally, in the case of Adaptive Margin Machines we set the variables as follows:

x =
(

α

ξ

)
, c =

(
0m

1m

)
,

H = 02m,2m ,

A2 = (−YG̃Y,−Im

)
,

b2 = −1m ,

l =
(

0m

0m

)
,

where the m × m matrix G̃ is given by

G̃i j =
{

k
(
xi , x j

)
if i �= j

k
(
xi , x j

)− λ if i = j
.
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D.3 Gaussian Processes

In this section we give the pseudocode for both Bayesian linear regression (Al-
gorithm 4) and Bayesian linear classification (Algorithm 5). These algorithms are
also an implementation of Gaussian processes for regression and classification.
Note that the classification algorithm is obtained by using a Laplace approxima-
tion to the true posterior density fTm+1|X=x,Zm=z. For a Markov-Chain Monte-Carlo
implementation see Neal (1997b).

Algorithm 4 Gaussian processes regression estimation.

Require: A variance on the outputs σ 2
t ∈ �+

Require: A feature mapping φ : � → � ⊆ �n
2

Require: A training sample z = ((x1, t1) , . . . , (xm, tm)) ∈ (� × �)m

G =
((〈

φ (xi ) ,φ
(
x j
)〉)m

i, j=1 + σ 2
t Im

)
∈ �m×m

α = G−1 t
return the vector α of expansion coefficients

With respect to Algorithm 5, it is advantageous to solve the equation H� = g
for � rather than explicitly computing the inverse H−1 and carrying out the matrix-
vector product as shown in the inner loop in the pseudocode. Many software
packages would provide numerically stable algorithms such as Gauss-Jordan de-
composition for solving systems of linear equations. Further note that we use
π (t) = 1/ (1+ exp (−t)) which equals (see Section B.7)

π (t) = exp (t)

1+ exp (t)
= exp (t) · exp (−t)

(1+ exp (t)) · exp (−t)
= 1

1+ exp (−t)

but whose computation is much more stable as exp (−t) ≈ 0 for moderately large
values of t .

D.4 Relevance Vector Machines

In this section we give the pseudocode for relevance vector machines—both in the
regression estimation (Algorithm 6) and classification scenario (Algorithm 7). In
order to unburden the algorithms we use the notation w[n] to refer to the vector
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Algorithm 5 Gaussian processes classification using the Laplace approximation.

Require: A variance on the latent variables σ 2
t ∈ �+ and a noise level β ∈ �+

Require: A feature mapping φ : � → � ⊆ �n
2

Require: A training sample z = ((x1, y1) , . . . , (xm, ym)) ∈ (� × {−1,+1})m

Require: A tolerance criterion TOL ∈ (0, 1)

G = 1
β
·
((〈

φ (xi ) ,φ
(
x j
)〉)m

i, j=1 + σ 2
t Im

)
∈ �m×m

α = 0; t = Gα

J = 1
2 (y+ 1)′ t −∑m

i=1 ln (1+ exp (ti ))− 1
2α′Gα

repeat
π = (

(1+ exp (−t1))−1 , . . . , (1+ exp (−tm))−1)′
g = 1

2 (y + 1)− π − α

H = − (diag (π1 (1− π1) , . . . , πm (1− πm))G+ I)
� = H−1g, η = 1
repeat

α̃ = α − η�; t̃ = Gα̃

J̃ = 1
2 (y + 1)′ t̃ −∑m

i=1 ln
(
1+ exp

(
t̃i
))− 1

2 α̃′Gα̃

η ← η
2

until J̃ > J
α = α̃, J = J̃ , t = t̃

until ‖g‖
m < TOL

return the vector α of expansion coefficients

(
wn1 , . . . , wn|n|

)
obtained from w by arranging those components indexed by n =(

n1, . . . , n|n|
)
. As an example consider w = (w1, . . . , w10) and n = (1, 3, 6, 10)

which gives w[n] = (w1, w3, w6, w10). We have given the two algorithms in a
form where we delete feature φi if the associated hyper-parameter θi falls below
a prespecified tolerance, which should be close to the maximal precision of the
computer used. This is necessary because, otherwise, the inversion of � would be
an ill-posed problem and would lead to numerical instabilities. We can monitor
convergence of the algorithm for classification learning by inspecting the value
J which should only be increasing. In contrast, when considering the regression
estimation case we should use the Cholesky decomposition of the matrix �−1 to
efficiently compute the evidence. The Cholesky decomposition of the matrix �−1 is
given by �−1 = R′R where R is an upper triangular matrix (see Definition A.55).
The advantage of this decomposition is that � = R−1

(
R−1

)′
by virtue of Theorem

A.77. Further, having such a decomposition simplifies the task of computing the
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determinant as (see Theorems A.15 and A.66)

ln
(∣∣�−1

∣∣) = ln
(∣∣R′R

∣∣) = ln
(∣∣R′∣∣)+ ln (|R|) = 2

n∑
i=1

ln (Rii ) .

For a more detailed treatment of numerical issues in matrix algebra the interested
reader is referred to Golub and van Loan (1989) and Press et al. (1992). These
algorithms can also be applied to the expansion coefficients α ∈ �

m in a kernel
classifier model hα (or kernel regression model fα)

fα (x) =
m∑

i=1

αi k (xi , x) , hα (x) = sign

(
m∑

i=1

αi k (xi , x)

)
.

The only difference between the algorithms is that w must be replaced by α and X
needs to be replaced by G = (

k
(
xi , x j

))m,m

i, j=1 ∈ �m×m . It is worth mentioning that,
in principle, any function k : �×� → � could be used, that is, not only symmetric
positive semidefinite functions corresponding to Mercer kernels are allowed.

Algorithm 6 Regression estimation with relevance vector machines.

Require: A data matrix X ∈ �m×n and m real-valued outputs t ∈ �m

Require: A vector θ ∈ (�+ )n and a variance σ 2
t ∈ �+

Require: The maximum number of iterations, imax; a tolerance for pruning TOL ∈ �+
for i = 1, . . . , imax do

n = (
j ∈ {1, . . . , n} ∣∣ θ j > TOL

)
(all non-pruned indices)

X̃ ∈ �m×|n| contains the |n| columns from X indexed by n
θ̃ = θ [n]

� =
(
σ−2

t X̃′X̃+ diag
(
θ̃−1

1 , . . . , θ̃−1
|n|
))−1

w[n] = σ−2
t �X̃′ t

ζ = 1−
(
θ̃−1

1 · �11, . . . , θ̃
−1
|n| ·�|n|,|n|

)′
θn j =

w2
n j
ζ j

for all j ∈ {1, . . . , |n|}
σ 2

t =
∥∥t−X̃w[n]

∥∥2

m−ζ ′1
end for
return the weight vector w
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Algorithm 7 Classification learning with relevance vector machines.

Require: A data matrix X ∈ �m×n and m classes y ∈ {−1,+1}m
Require: A vector θ ∈ (�+)n
Require: The maximum number of iterations, imax; a tolerance for pruning TOL ∈ �+

w = 0
for i = 1, . . . , imax do

n = (
j ∈ {1, . . . , n} ∣∣ θ j > TOL

)
(all non-pruned indices)

X̃ ∈ �m×|n| contains the |n| columns from X indexed by n

θ̃ = θ [n]; �−1 = diag
(
θ̃−1

1 , . . . , θ̃−1
|n|
)

; t = X̃w[n]

J = 1
2 (y + 1)′ t −∑m

i=1 ln (1+ exp (ti ))− 1
2 w′[n]�

−1w[n]

repeat
π = (

(1+ exp (−t1))−1 , . . . , (1+ exp (−tm))−1)′
g = X̃′

(
1
2 (y + 1)− π

)
−�−1w[n]

H = − (X̃′ · diag (π1 (1− π1) , . . . , πm (1− πm)) · X̃+�−1)
� = H−1g, η = 1
repeat

w̃ = w; w̃[n] = w[n] − η�; t̃ = X̃w̃[n]

J̃ = 1
2 (y + 1)′ t̃ −∑m

i=1 ln
(
1+ exp

(
t̃i
))− 1

2 w̃′[n]�
−1w̃[n]

η ← η
2

until J̃ > J
w = w̃; J = J̃ ; t = t̃

until ‖g‖
|n| < TOL

� = −H−1

ζ = 1−
(
θ̃−1

1 · �11, . . . , θ̃
−1
|n| ·�|n|,|n|

)′
θni =

w2
ni
ζi

for all i ∈ {1, . . . , |n|}
end for
return the weight vector w



329 Pseudocodes

D.5 Fisher Discriminants

In this section we present the Fisher discriminant algorithm both in primal and
dual variables (Algorithms 8 and 9). As mentioned earlier, when computing w =
�̂
−1 (

µ̂+1 − µ̂−1

)
it is advantageous to solve �̂w = (

µ̂+1 − µ̂−1

)
for w instead.

Many software packages would provide numerically stable algorithms such as
Gauss-Jordan decomposition for solving systems of linear equations. Note that we
have included the estimated class probabilities PY (y) in the construction of the
offset b.

Algorithm 8 Fisher discriminant algorithm (in primal variables).

Require: A feature mapping φ : � → � ⊆ �n
2

Require: A training sample z = ((x1, y1) , . . . , (xm, ym))

Determine the numbers m+1 and m−1 of samples of class +1 and −1
µ̂+1 = 1

m+1

∑
(xi ,+1)∈z

φ (xi ); µ̂−1 = 1
m−1

∑
(xi ,−1)∈z φ (xi )

�̂ = 1
m

(
m∑

i=1
φ (xi) (φ (xi ))

′ − m+1µ̂+1µ̂
′
+1 − m−1µ̂−1µ̂

′
−1

)
w = �̂

−1 (
µ̂+1 − µ̂−1

)
b = 1

2

(
µ̂
′
−1�̂

−1
µ̂−1 − µ̂

′
+1�̂

−1
µ̂+1

)
+ ln

(
m+1
m−1

)
return the weight vector w ∈ �n and the offset b ∈ �

Algorithm 9 Fisher discriminant algorithm (in dual variables).

Require: A training sample z = ((x1, y1) , . . . , (xm, ym))

Require: A kernel function k : � × � → � and a regularization parameter λ ∈ �+
Determine the numbers m+1 and m−1 of samples of class +1 and −1
G = (

k
(
xi , x j

))m,m
i, j=1 ∈ �m×m

k+1 = 1
m+1

G
(
Iy1=+1, . . . , Iym=+1

)′; k−1 = 1
m−1

G
(
Iy1=−1, . . . , Iym=−1

)′
S = 1

m

(
GG− m+1k+1k′+1 − m−1k−1k′−1

)+ λIm

α = S−1 (k+1 − k−1)

b = 1
2

(
k′−1S−1k−1 − k′+1S−1k+1

)+ ln
(

m+1
m−1

)
return the vector α of expansion coefficients and the offset b ∈ �
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D.6 Bayes Point Machines

This section contains the pseudocode of the kernel billiard for computing the
Bayes point (Algorithm 10). In the course of the algorithm’s implementation we
sometimes need normalized vectors βnorm of the vector β of expansion coefficients
found by,

βnorm =
1∑m

i=1

∑m
j=1 βiβ j k

(
xi , x j

)β . (D.2)

Algorithm 10 Kernel billiard algorithm (in dual variables).

Require: A tolerance criterion TOL ∈ [0, 1] and τmax ∈ �+
Require: A training sample z = ((x1, y1) , . . . , (xm, ym)) ∈ (� × {−1,+1})m

Require: A kernel function k : � × � → �

Ensure: for all i ∈ {1, . . . ,m}, yi
∑m

j=1 γ j k
(
xi , x j

)
> 0

α = 0; β = random; normalize β using (D.2)
� = ξmax = 0; pmin = 1
while ρ2 (pmin,�/ (�+ ξmax)) > TOL do

repeat
for i = 1, . . . ,m do

di = yi
∑m

j=1 γ j k
(
x j , xi

)
; νi = yi

∑m
j=1 β j k

(
x j , xi

)
; τi = −di/νi

end for
c′ = argmin i:τi>0 τi

if τc′ ≥ τmax then
β = random, but yc

∑m
j=1 β j k

(
x j , xc

)
> 0; normalize β using (D.2)

else
c = c′

end if
until τc′ < τmax

γ̃ = γ + τcβ; normalize γ̃ using (D.2); βc = βc − 2νc yc/k (xc, xc)

ζ = γ + γ̃ ; normalize ζ using (D.2)

ξ =
√∑m

i=1
∑m

j=1 (γi − γ̃i )
(
γ j − γ̃ j

)
k
(
xi , x j

)
p =∑m

i=1
∑m

j=1 ζiα j k
(
xi , x j

)
α = ρ1

(
p, �

�+ξ
)

α + ρ2

(
p, �

�+ξ
)

ζ

pmin = min (p, pmin); ξmax = max (ξ, ξmax); � = �+ ξ ; γ = γ̃

end while
return the vector α of expansion coefficients
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or definition.

Symbol meaning page

〈·, ·〉 inner product 217
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225

⊗ Kronecker product 236
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1 vector of ones 215
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∨ logical “or”
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�ε bound minimization learning algorithm 136
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B

�n Borel sets over �n 200
�τ (x) open ball of radius τ around x 217
�τ (x) closed ball of radius τ around x 217
Bayesz Bayes classification strategy 80
BayesH(z) generalized Bayes classification

strategy
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C

C ∈ �2×2 cost matrix 22
Cov (X,Y) covariance between X and Y 203
Cov (X,Y) covariance matrix for X and Y 203
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D
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E

EX
[
X
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εA (d) entropy number of A 222



333 List of Symbols

F
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f ∗ : � → � optimal real-valued function 21
f̂ : � → � real-valued function in a cover Fγ (x) 141
Fγ (x) ⊂ � cover of � given the sample x 141
FX distribution function 201
fθ Fisher score at θ 45
fX density of the random variable X 201
fat� (γ ) fat shattering dimension at scale γ 147
ϕA (d) inner entropy number 222

G

G ∈ �m×m Gram matrix 33
γi (w) geometrical margin of w at zi 50
γz (w) geometrical margin of w on the training set z 50
γ̃i (w) functional margin of w at zi 50
γ̃z (w) functional margin of w on the training set z 50
Gibbsz Gibbs classification strategy 81
GibbsH(z) generalized Gibbs classification strategy 166

H

� ⊆ �� hypothesis space 19, 21
h : � → � hypothesis 19
hw : �→� binary hypothesis 20
hθ : � → � induced classifier for a given probability

model PZ|Q=θ

116

h∗ : � → � optimal hypothesis 118
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I

I indicator function 200
I Fisher information matrix 45
i index vector 38, 41
Iv,u set of index vectors for v in u 41
Id,m set of index vectors 176

K

� ⊆ �n
2 feature (kernel) space 19

k (x, x̃) kernel value between x, x̃ ∈ � 32
K ∈ �m×m kernel matrix 33

L

�n
2 ⊆ �

n space of square summable sequences of
length n

218

�L (z, h) level of h given z 136
L2 space of square integrable functions 218
(λi)i∈� sequence of eigenvalues 35
l
(
ŷ, y

)
loss between ŷ and y 21

l0−1
(
ŷ, y

)
zero-one loss between ŷ and y 22

lC
(
ŷ, y

)
cost matrix loss between ŷ and y 23

lmargin (t) margin loss of t 52
llin
(
t̂, y

)
linear soft margin loss between t̂ and y 54

lquad
(
t̂, y

)
quadratic soft margin loss between
t̂ and y

54

lε
(
t̂, t
)

ε–insensitive loss between t̂ and t 59
l2
(
t̂, t
)

squared loss 82
� (θ) likelihood of the parameter θ 75
L (z, h) luckiness of h given z 136
ln (·) natural logarithm
ld (·) logarithm to base 2
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M

m training sample size 18
� ⊆ �n

2 Mercer space 35
�

ρ

A (ε) packing number at scale ε 220
M� (z) mistake bound for � 183

N

� natural numbers
n dimension of feature space 19
N dimension of input space 38
�

ρ

A (ε) covering number at scale ε 220
�� (z) empirical covering number at z for binary-

valued functions
285

�� (m) worst case covering number for binary-valued
functions

286

�
∞
�
(γ, x) empirical covering number of � at scale γ 141

�
∞
�
(γ,m) (worst case) covering number of � at scale γ 141

ν fraction of margin errors 60

O

� (·) order of a term

P

PX probability measure on � 200
� family of probability measures 214
πs swapping permutation 284
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Q

� rational numbers
θ ∈ � parameter vector 214
� parameter space 214
Q the random variable of θ ; in Remark 5.7 a

measure such as P
116, 170

θ̂ z estimator for the parameter of the probability
measure PZ estimated using �

117

R

� real numbers
R [ f ] expected risk of f ∈ � 22
R [h] expected risk of h ∈ � 22
Rθ [h] expected risk of h ∈ � under PZ|Q=θ 116
R [�, z] generalization error of � given z ∈ �m 25
R [�,m] generalization error of � for training sample

size m
61

Remp [ f, z] empirical risk of f ∈ � given z ∈ �m 25
Rreg [ f, z] regularized risk of f ∈ � given z ∈ �m 29
� (z, i) reconstruction function 176
ρ metric 216

S

sign sign function, i.e., sign (x) = 2 · Ix≥0 − 1
� alphabet 41
� covariance matrix 38
ς radius of sphere enclosing training data 51
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T

tr (A) trace of the matrix A 227
t ∈ �m sample of real-valued outputs 82

U

u ∈ �r string 41
�u ∈ �N

2 vector in input space 38
� (y, x, h) update algorithm 182

V

vx empirical probability measure 18, 203
V (z) ⊆� version space 26
V� (z) ⊆ � version space in � 26
Var (X) variance of X 202
v ∈ �r string 41
�v ∈ �N

2 vector in input space 38
ϑ� VC dimension of � 128
ϑ� (z) empirical VC dimension of � 140

W

� ⊂ � unit hyper-sphere in �n 21
� (z) canonical hyperplanes 52
w ∈ � weight vector 20
W±1 (x) hemispheres in� induced by x 24
W0 (x) decision boundary induced by x 24
Wz equivalence classes of weight vectors 24
W (α) Wolfe dual 53
	 [ f ] regularization functional of f ∈ � 29
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X

� input space 17
x ∈ �m sample of training objects 18
x ∈ � input point
xi ∈ x i th training point 18
�x ∈ � input vector if � ∈ �N

2 30
(�x)i i th component of �x 30
x = φ (x) mapped input point x 19
X ∈ �m×n data matrix of mapped input points 19
X±1 (w) decision regions induced by w 24
X0 (w) ∈ � decision boundary in feature space 24
X̃0 (w) ∈ � decision boundary in input space 24
� σ–algebra over � 200
ξ vector of margin slack variables 54

Y

� output space (often {−1,+1}) 17
y ∈ �m sample of training outputs 18
y ∈ � output class
yi ∈ y class of i th training point 18
ψi : � → � Mercer feature on � 34
ψ : � → � Mercer feature mapping 35

Z

� = � × � (labeled) data space 18
z ∈ �m (labeled) training sample 18
z\i ∈ �m−1 training sample with the i th element deleted 186
zi↔z ∈ �m training sample with the i th element replaced

by z ∈ �
186

z[i: j ] subsequence
(
zi , . . . , z j

)
of z 281

Z random training sample
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luckiness bound, 137
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