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Preface

Books are individual and idiosyncratic. In trying to understand what makes a good
book, there is a limited amount that one can learn from other books; but at least one
can read their prefaces, in hope of help.

Our own research shows that authors use prefaces for many different reasons.
Prefaces can be explanations of the role and the contents of the book, as in Chung

[49] or Revuz [223] or Nummelin [202]; this can be combined with what is almost an
apology for bothering the reader, as in Billingsley [25] or Çinlar [40]; prefaces can
describe the mathematics, as in Orey [208], or the importance of the applications,
as in Tong [267] or Asmussen [10], or the way in which the book works as a text,
as in Brockwell and Davis [32] or Revuz [223]; they can be the only available outlet
for thanking those who made the task of writing possible, as in almost all of the
above (although we particularly like the familial gratitude of Resnick [222] and the
dedication of Simmons [240]); they can combine all these roles, and many more.

This preface is no different. Let us begin with those we hope will use the book.

Who wants this stuff anyway?

This book is about Markov chains on general state spaces: sequences Φn evolving
randomly in time which remember their past trajectory only through its most recent
value. We develop their theoretical structure and we describe their application.

The theory of general state space chains has matured over the past twenty years
in ways which make it very much more accessible, very much more complete, and (we
at least think) rather beautiful to learn and use. We have tried to convey all of this,
and to convey it at a level that is no more difficult than the corresponding countable
space theory.

The easiest reader for us to envisage is the long-suffering graduate student, who
is expected, in many disciplines, to take a course on countable space Markov chains.

Such a graduate student should be able to read almost all of the general space
theory in this book without any mathematical background deeper than that needed
for studying chains on countable spaces, provided only that the fear of seeing an in-
tegral rather than a summation sign can be overcome. Very little measure theory or
analysis is required: virtually no more in most places than must be used to define
transition probabilities. The remarkable Nummelin-Athreya-Ney regeneration tech-
nique, together with coupling methods, allows simple renewal approaches to almost
all of the hard results.

Courses on countable space Markov chains abound, not only in statistics and
mathematics departments, but in engineering schools, operations research groups and
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even business schools. This book can serve as the text in most of these environments
for a one-semester course on more general space applied Markov chain theory, pro-
vided that some of the deeper limit results are omitted and (in the interests of a
fourteen week semester) the class is directed only to a subset of the examples, con-
centrating as best suits their discipline on time series analysis, control and systems
models or operations research models.

The prerequisite texts for such a course are certainly at no deeper level than
Chung [50], Breiman [31], or Billingsley [25] for measure theory and stochastic pro-
cesses, and Simmons [240] or Rudin [233] for topology and analysis.

Be warned: we have not provided numerous illustrative unworked examples for the
student to cut teeth on. But we have developed a rather large number of thoroughly
worked examples, ensuring applications are well understood; and the literature is
littered with variations for teaching purposes, many of which we reference explicitly.

This regular interplay between theory and detailed consideration of application
to specific models is one thread that guides the development of this book, as it guides
the rapidly growing usage of Markov models on general spaces by many practitioners.

The second group of readers we envisage consists of exactly those practitioners,
in several disparate areas, for all of whom we have tried to provide a set of research
and development tools: for engineers in control theory, through a discussion of linear
and non-linear state space systems; for statisticians and probabilists in the related
areas of time series analysis; for researchers in systems analysis, through networking
models for which these techniques are becoming increasingly fruitful; and for applied
probabilists, interested in queueing and storage models and related analyses.

We have tried from the beginning to convey the applied value of the theory
rather than let it develop in a vauum. The practitioner will find detailed examples
of transition probabilities for real models. These models are classified systematically
into the various structural classes as we define them. The impact of the theory on the
models is developed in detail, not just to give examples of that theory but because
the models themselves are important and there are relatively few places outside the
research journals where their analysis is collected.

Of course, there is only so much that a general theory of Markov chains can
provide to all of these areas. The contribution is in general qualitative, not quanti-
tative. And in our experience, the critical qualitative aspects are those of stability of
the models. Classification of a model as stable in some sense is the first fundamental
operation underlying other, more model-specific, analyses. It is, we think, astonish-
ing how powerful and accurate such a classification can become when using only the
apparently blunt instruments of a general Markovian theory: we hope the strength of
the results described here is equally visible to the reader as to the authors, for this
is why we have chosen stability analysis as the cord binding together the theory and
the applications of Markov chains.

We have adopted two novel approaches in writing this book. The reader will
find key theorems announced at the beginning of all but the discursive chapters; if
these are understood then the more detailed theory in the body of the chapter will
be better motivated, and applications made more straightforward. And at the end
of the book we have constructed, at the risk of repetition, “mud maps” showing the
crucial equivalences between forms of stability, and giving a glossary of the models we
evaluate. We trust both of these innovations will help to make the material accessible
to the full range of readers we have considered.
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What’s it all about?

We deal here with Markov chains. Despite the initial attempts by Doob and Chung
[68, 49] to reserve this term for systems evolving on countable spaces with both
discrete and continuous time parameters, usage seems to have decreed (see for example
Revuz [223]) that Markov chains move in discrete time, on whatever space they wish;
and such are the systems we describe here.

Typically, our systems evolve on quite general spaces. Many models of practical
systems are like this; or at least, they evolve on IRk or some subset thereof, and
thus are not amenable to countable space analysis, such as is found in Chung [49],
or Çinlar [40], and which is all that is found in most of the many other texts on the
theory and application of Markov chains.

We undertook this project for two main reasons. Firstly, we felt there was a lack of
accessible descriptions of such systems with any strong applied flavor; and secondly, in
our view the theory is now at a point where it can be used properly in its own right,
rather than practitioners needing to adopt countable space approximations, either
because they found the general space theory to be inadequate or the mathematical
requirements on them to be excessive.

The theoretical side of the book has some famous progenitors. The foundations
of a theory of general state space Markov chains are described in the remarkable book
of Doob [68], and although the theory is much more refined now, this is still the best
source of much basic material; the next generation of results is elegantly developed
in the little treatise of Orey [208]; the most current treatments are contained in the
densely packed goldmine of material of Nummelin [202], to whom we owe much, and
in the deep but rather different and perhaps more mathematical treatise by Revuz
[223], which goes in directions different from those we pursue.

None of these treatments pretend to have particularly strong leanings towards ap-
plications. To be sure, some recent books, such as that on applied probability models
by Asmussen [10] or that on non-linear systems by Tong [267], come at the problem
from the other end. They provide quite substantial discussions of those specific aspects
of general Markov chain theory they require, but purely as tools for the applications
they have to hand.

Our aim has been to merge these approaches, and to do so in a way which will
be accessible to theoreticians and to practitioners both.

So what else is new?

In the preface to the second edition [49] of his classic treatise on countable space
Markov chains, Chung, writing in 1966, asserted that the general space context still
had had “little impact” on the the study of countable space chains, and that this
“state of mutual detachment” should not be suffered to continue. Admittedly, he was
writing of continuous time processes, but the remark is equally apt for discrete time
models of the period. We hope that it will be apparent in this book that the general
space theory has not only caught up with its countable counterpart in the areas we
describe, but has indeed added considerably to the ways in which the simpler systems
are approached.
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There are several themes in this book which instance both the maturity and the
novelty of the general space model, and which we feel deserve mention, even in the
restricted level of technicality available in a preface. These are, specifically,

(i) the use of the splitting technique, which provides an approach to general state
space chains through regeneration methods;

(ii) the use of “Foster-Lyapunov” drift criteria, both in improving the theory and in
enabling the classification of individual chains;

(iii) the delineation of appropriate continuity conditions to link the general theory
with the properties of chains on, in particular, Euclidean space; and

(iv) the development of control model approaches, enabling analysis of models from
their deterministic counterparts.

These are not distinct themes: they interweave to a surprising extent in the mathe-
matics and its implementation.

The key factor is undoubtedly the existence and consequences of the Nummelin
splitting technique of Chapter 5, whereby it is shown that if a chain {Φn} on a quite
general space satisfies the simple “ϕ-irreducibility” condition (which requires that for
some measure ϕ, there is at least positive probability from any initial point x that
one of the Φn lies in any set of positive ϕ-measure; see Chapter 4), then one can
induce an artificial “regeneration time” in the chain, allowing all of the mechanisms
of discrete time renewal theory to be brought to bear.

Part I is largely devoted to developing this theme and related concepts, and their
practical implementation.

The splitting method enables essentially all of the results known for countable
space to be replicated for general spaces. Although that by itself is a major achieve-
ment, it also has the side benefit that it forces concentration on the aspects of the
theory that depend, not on a countable space which gives regeneration at every step,
but on a single regeneration point. Part II develops the use of the splitting method,
amongst other approaches, in providing a full analogue of the positive recurrence/null
recurrence/transience trichotomy central in the exposition of countable space chains,
together with consequences of this trichotomy.

In developing such structures, the theory of general space chains has merely
caught up with its denumerable progenitor. Somewhat surprisingly, in considering
asymptotic results for positive recurrent chains, as we do in Part III, the concentration
on a single regenerative state leads to stronger ergodic theorems (in terms of total
variation convergence), better rates of convergence results, and a more uniform set
of equivalent conditions for the strong stability regime known as positive recurrence
than is typically realised for countable space chains.

The outcomes of this splitting technique approach are possibly best exemplified
in the case of so-called “geometrically ergodic” chains.

Let τC be the hitting time on any set C: that is, the first time that the chain Φn

returns to C; and let Pn(x,A) = P(Φn ∈ A | Φ0 = x) denote the probability that the
chain is in a set A at time n given it starts at time zero in state x, or the “n-step
transition probabilities”, of the chain. One of the goals of Part II and Part III is to
link conditions under which the chain returns quickly to “small” sets C (such as finite
or compact sets) , measured in terms of moments of τC , with conditions under which
the probabilities Pn(x,A) converge to limiting distributions.
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Here is a taste of what can be achieved. We will eventually show, in Chapter 15,
the following elegant result:

The following conditions are all equivalent for a ϕ-irreducible “aperiodic” (see
Chapter 5) chain:

(A) For some one “small” set C, the return time distributions have geometric tails;
that is, for some r > 1

sup
x∈C

Ex[rτC ] <∞;

(B) For some one “small” set C, the transition probabilities converge geometrically
quickly; that is, for some M <∞, P∞(C) > 0 and ρC < 1

sup
x∈C

|Pn(x,C)− P∞(C)| ≤Mρn
C ;

(C) For some one “small” set C, there is “geometric drift” towards C; that is, for
some function V ≥ 1 and some β > 0∫

P (x, dy)V (y) ≤ (1− β)V (x) + 1lC(x).

Each of these implies that there is a limiting probability measure π, a constant R <∞
and some uniform rate ρ < 1 such that

sup
|f |≤V

|
∫
Pn(x, dy)f(y)−

∫
π(dy)f(y)| ≤ RV (x)ρn

where the function V is as in (C).
This set of equivalences also displays a second theme of this book: not only do

we stress the relatively well-known equivalence of hitting time properties and limiting
results, as between (A) and (B), but we also develop the equivalence of these with
the one-step “Foster-Lyapunov” drift conditions as in (C), which we systematically
derive for various types of stability.

As well as their mathematical elegance, these results have great pragmatic value.
The condition (C) can be checked directly from P for specific models, giving a powerful
applied tool to be used in classifying specific models. Although such drift conditions
have been exploited in many continuous space applications areas for over a decade,
much of the formulation in this book is new.

The “small” sets in these equivalences are vague: this is of course only the preface!
It would be nice if they were compact sets, for example; and the continuity conditions
we develop, starting in Chapter 6, ensure this, and much beside.

There is a further mathematical unity, and novelty, to much of our presentation,
especially in the application of results to linear and non-linear systems on IRk. We
formulate many of our concepts first for deterministic analogues of the stochastic
systems, and we show how the insight from such deterministic modeling flows into
appropriate criteria for stochastic modeling. These ideas are taken from control the-
ory, and forms of control of the deterministic system and stability of its stochastic
generalization run in tandem. The duality between the deterministic and stochastic
conditions is indeed almost exact, provided one is dealing with ϕ-irreducible Markov
models; and the continuity conditions above interact with these ideas in ensuring that
the “stochasticization” of the deterministic models gives such ϕ-irreducible chains.
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Breiman [31] notes that he once wrote a preface so long that he never finished
his book. It is tempting to keep on, and rewrite here all the high points of the book.

We will resist such temptation. For other highlights we refer the reader instead
to the introductions to each chapter: in them we have displayed the main results in
the chapter, to whet the appetite and to guide the different classes of user. Do not be
fooled: there are many other results besides the highlights inside. We hope you will
find them as elegant and as useful as we do.

Who do we owe?

Like most authors we owe our debts, professional and personal. A preface is a good
place to acknowledge them.

The alphabetically and chronologically younger author began studying Markov
chains at McGill University in Montréal. John Taylor introduced him to the beauty
of probability. The excellent teaching of Michael Kaplan provided a first contact with
Markov chains and a unique perspective on the structure of stochastic models.

He is especially happy to have the chance to thank Peter Caines for planting
him in one of the most fantastic cities in North America, and for the friendship and
academic environment that he subsequently provided.

In applying these results, very considerable input and insight has been provided
by Lei Guo of Academia Sinica in Beijing and Doug Down of the University of Illinois.
Some of the material on control theory and on queues in particular owes much to their
collaboration in the original derivations.

He is now especially fortunate to work in close proximity to P.R. Kumar, who has
been a consistent inspiration, particularly through his work on queueing networks and
adaptive control. Others who have helped him, by corresponding on current research,
by sharing enlightenment about a new application, or by developing new theoretical
ideas, include Venkat Anantharam, A. Ganesh, Peter Glynn, Wolfgang Kliemann,
Laurent Praly, John Sadowsky, Karl Sigman, and Victor Solo.

The alphabetically later and older author has a correspondingly longer list of
influences who have led to his abiding interest in this subject. Five stand out: Chip
Heathcote and Eugene Seneta at the Australian National University, who first taught
the enjoyment of Markov chains; David Kendall at Cambridge, whose own funda-
mental work exemplifies the power, the beauty and the need to seek the underlying
simplicity of such processes; Joe Gani, whose unflagging enthusiasm and support for
the interaction of real theory and real problems has been an example for many years;
and probably most significantly for the developments in this book, David Vere-Jones,
who has shown an uncanny knack for asking exactly the right questions at times when
just enough was known to be able to develop answers to them.

It was also a pleasure and a piece of good fortune for him to work with the Finnish
school of Esa Nummelin, Pekka Tuominen and Elja Arjas just as the splitting tech-
nique was uncovered, and a large amount of the material in this book can actually be
traced to the month surrounding the First Tuusula Summer School in 1976. Applying
the methods over the years with David Pollard, Paul Feigin, Sid Resnick and Peter
Brockwell has also been both illuminating and enjoyable; whilst the ongoing stimu-
lation and encouragement to look at new areas given by Wojtek Szpankowski, Floske
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Spieksma, Chris Adam and Kerrie Mengersen has been invaluable in maintaining
enthusiasm and energy in finishing this book.

By sheer coincidence both of us have held Postdoctoral Fellowships at the Aus-
tralian National University, albeit at somewhat different times. Both of us started
much of our own work in this field under that system, and we gratefully acknowledge
those most useful positions, even now that they are long past.

More recently, the support of our institutions has been invaluable. Bond Univer-
sity facilitated our embryonic work together, whilst the Coordinated Sciences Labo-
ratory of the University of Illinois and the Department of Statistics at Colorado State
University have been enjoyable environments in which to do the actual writing.
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sting and Heinrich Hering in Germany, for assisting in our meeting regularly and
helping with far-flung facilities.

Peter Brockwell, Kung-Sik Chan, Richard Davis, Doug Down, Kerrie Mengersen,
Rayadurgam Ravikanth, and Pekka Tuominen, and most significantly Vladimir
Kalashnikov and Floske Spieksma, read fragments or reams of manuscript as we
produced them, and we gratefully acknowledge their advice, comments, corrections
and encouragement. It is traditional, and in this case as accurate as usual, to say that
any remaining infelicities are there despite their best efforts.

Rayadurgam Ravikanth produced the sample path graphs for us; Bob MacFarlane
drew the remaining illustrations; and Francie Bridges produced much of the bibliog-
raphy and some of the text. The vast bulk of the material we have done ourselves:
our debt to Donald Knuth and the developers of LATEX is clear and immense, as is
our debt to Deepa Ramaswamy, Molly Shor, Rich Sutton and all those others who
have kept software, email and remote telematic facilities running smoothly.

Lastly, we are grateful to Brad Dickinson and Eduardo Sontag, and to Zvi Ruder
and Nicholas Pinfield and the Engineering and Control Series staff at Springer, for
their patience, encouragement and help.

And finally . . .

And finally, like all authors whether they say so in the preface or not, we have received
support beyond the call of duty from our families. Writing a book of this magnitude
has taken much time that should have been spent with them, and they have been
unfailingly supportive of the enterprise, and remarkably patient and tolerant in the
face of our quite unreasonable exclusion of other interests.

They have lived with family holidays where we scribbled proto-books in restau-
rants and tripped over deer whilst discussing Doeblin decompositions; they have en-
dured sundry absences and visitations, with no idea of which was worse; they have
seen come and go a series of deadlines with all of the structure of a renewal process.



viii

They are delighted that we are finished, although we feel they have not yet
adjusted to the fact that a similar development of the continuous time theory clearly
needs to be written next.

So to Belinda, Sydney and Sophie; to Catherine and Marianne: with thanks for
the patience, support and understanding, this book is dedicated to you.

Added in Second Printing We are of course pleased that this volume is now in
a second printing, not least because it has given us the chance to correct a number
of minor typographical errors in the text. We have resisted the temptation to rework
Chapters 15 and 16 in particular although some significant advances on that material
have been made in the past 18 months: a little of this is mentioned now at the end
of these Chapters.

We are grateful to Luke Tierney and to Joe Hibey for sending us many of the
corrections we have now incorporated.

We are also grateful to the Applied Probability Group of TIMS/ORSA, who gave
this book the Best Publication in Applied Probability Award in 1992-1994. We were
surprised and delighted, in almost equal measure, at this recognition.



1

Heuristics

This book is about Markovian models, and particularly about the structure and
stability of such models. We develop a theoretical basis by studying Markov chains in
very general contexts; and we develop, as systematically as we can, the applications
of this theory to applied models in systems engineering, in operations research, and
in time series.

A Markov chain is, for us, a collection of random variables Φ = {Φn : n ∈ T},
where T is a countable time-set. It is customary to write T as ZZ+ := {0, 1, . . .}, and
we will do this henceforth.

Heuristically, the critical aspect of a Markov model, as opposed to any other set
of random variables, is that it is forgetful of all but its most immediate past. The
precise meaning of this requirement for the evolution of a Markov model in time, that
the future of the process is independent of the past given only its present value, and
the construction of such a model in a rigorous way, is taken up in Chapter 3. Until
then it is enough to indicate that for a process Φ, evolving on a space X and governed
by an overall probability law P, to be a time-homogeneous Markov chain, there must
be a set of “transition probabilities” {Pn(x,A), x ∈ X, A ⊂ X} for appropriate sets A
such that for times n,m in ZZ+

P(Φn+m ∈ A | Φj , j ≤ m;Φm = x) = Pn(x,A); (1.1)

that is, Pn(x,A) denotes the probability that a chain at x will be in the set A after n
steps, or transitions. The independence of Pn on the values of Φj , j ≤ m, is the Markov
property, and the independence of Pn and m is the time-homogeneity property.

We now show that systems which are amenable to modeling by discrete time
Markov chains with this structure occur frequently, especially if we take the state
space of the process to be rather general, since then we can allow auxiliary information
on the past to be incorporated to ensure the Markov property is appropriate.

1.1 A Range of Markovian Environments

The following examples illustrate this breadth of application of Markov models, and
a little of the reason why stability is a central requirement for such models.

(a) The cruise control system on a modern motor vehicle monitors, at each time
point k, a vector {Xk} of inputs: speed, fuel flow, and the like (see Kuo [147]). It
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calculates a control value Uk which adjusts the throttle, causing a change in the
values of the environmental variables Xk+1 which in turn causes Uk+1 to change
again. The multidimensional process Φk = {Xk, Uk} is often a Markov chain
(see Section 2.3.2), with new values overriding those of the past, and with the
next value governed by the present value. All of this is subject to measurement
error, and the process can never be other than stochastic: stability for this
chain consists in ensuring that the environmental variables do not deviate too
far, within the limits imposed by randomness, from the pre-set goals of the
control algorithm.

(b) A queue at an airport evolves through the random arrival of customers and the
service times they bring. The numbers in the queue, and the time the cus-
tomer has to wait, are critical parameters for customer satisfaction, for waiting
room design, for counter staffing (see Asmussen [10]). Under appropriate con-
ditions (see Section 2.4.2), variables observed at arrival times (either the queue
numbers, or a combination of such numbers and aspects of the remaining or
currently uncompleted service times) can be represented as a Markov chain,
and the question of stability is central to ensuring that the queue remains at a
viable level. Techniques arising from the analysis of such models have led to the
now familiar single-line multi-server counters actually used in airports, banks
and similar facilities, rather than the previous multi-line systems.

(c) The exchange rate Xn between two currencies can be and is represented as a
function of its past several values Xn−1, . . . , Xn−k, modified by the volatility of
the market which is incorporated as a disturbance term Wn (see Krugman and
Miller [142] for models of such fluctuations). The autoregressive model

Xn =
k∑

j=1

αjXn−j +Wn

central in time series analysis (see Section 2.1) captures the essential concept of
such a system. By considering the whole k-length vector Φn = (Xn, . . . , Xn−k+1),
Markovian methods can be brought to the analysis of such time-series models.
Stability here involves relatively small fluctuations around a norm; and as we
will see, if we do not have such stability, then typically we will have instability
of the grossest kind, with the exchange rate heading to infinity.

(d) Storage models are fundamental in engineering, insurance and business. In engi-
neering one considers a dam, with input of random amounts at random times,
and a steady withdrawal of water for irrigation or power usage. This model has
a Markovian representation (see Section 2.4.3 and Section 2.4.4). In insurance,
there is a steady inflow of premiums, and random outputs of claims at random
times. This model is also a storage process, but with the input and output re-
versed when compared to the engineering version, and also has a Markovian
representation (see Asmussen [10]). In business, the inventory of a firm will act
in a manner between these two models, with regular but sometimes also large ir-
regular withdrawals, and irregular ordering or replacements, usually triggered by
levels of stock reaching threshold values (for an early but still relevant overview
see Prabhu [220]). This also has, given appropriate assumptions, a Markovian
representation. For all of these, stability is essentially the requirement that the
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chain stays in “reasonable values”: the stock does not overfill the warehouse,
the dam does not overflow, the claims do not swamp the premiums.

(e) The growth of populations is modeled by Markov chains, of many varieties. Small
homogeneous populations are branching processes (see Athreya and Ney [11]);
more coarse analysis of large populations by time series models allows, as in (c),
a Markovian representation (see Brockwell and Davis [32]); even the detailed
and intricate cycle of the Canadian lynx seem to fit a Markovian model [188],
[267]. Of these, only the third is stable in the sense of this book: the others
either die out (which is, trivially, stability but a rather uninteresting form); or,
as with human populations, expand (at least within the model) forever.

(f) Markov chains are currently enjoying wide popularity through their use as a
tool in simulation: Gibbs sampling, and its extension to Markov chain Monte
Carlo methods of simulation, which utilise the fact that many distributions
can be constructed as invariant or limiting distributions (in the sense of (1.16)
below), has had great impact on a number of areas (see, as just one example,
[211]). In particular, the calculation of posterior Bayesian distributions has been
revolutionized through this route [244, 262, 264], and the behavior of prior
and posterior distributions on very general spaces such as spaces of likelihood
measures themselves can be approached in this way (see [75]): there is no doubt
that at this degree of generality, techniques such as we develop in this book are
critical.

(g) There are Markov models in all areas of human endeavor. The degree of word
usage by famous authors admits a Markovian representation (see, amongst oth-
ers, Gani and Saunders [85]). Did Shakespeare have an unlimited vocabulary?
This can be phrased as a question of stability: if he wrote forever, would the size
of the vocabulary used grow in an unlimited way? The record levels in sport
are Markovian (see Resnick [222]). The spread of surnames may be modeled
as Markovian (see [56]). The employment structure in a firm has a Markovian
representation (see Bartholomew and Forbes [15]). This range of examples does
not imply all human experience is Markovian: it does indicate that if enough
variables are incorporated in the definition of “immediate past”, a forgetfulness
of all but that past is a reasonable approximation, and one which we can handle.

(h) Perhaps even more importantly, at the current level of technological development,
telecommunications and computer networks have inherent Markovian represen-
tations (see Kelly [127] for a very wide range of applications, both actual and po-
tential, and Gray [89] for applications to coding and information theory). They
may be composed of sundry connected queueing processes, with jobs completed
at nodes, and messages routed between them; to summarize the past one may
need a state space which is the product of many subspaces, including countable
subspaces, representing numbers in queues and buffers, uncountable subspaces,
representing unfinished service times or routing times, or numerous trivial 0-1
subspaces representing available slots or wait-states or busy servers. But by a
suitable choice of state-space, and (as always) a choice of appropriate assump-
tions, the methods we give in this book become tools to analyze the stability of
the system.
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Simple spaces do not describe these systems in general. Integer or real-valued models
are sufficient only to analyze the simplest models in almost all of these contexts.

The methods and descriptions in this book are for chains which take their values
in a virtually arbitrary space X. We do not restrict ourselves to countable spaces, nor
even to Euclidean space IRn, although we do give specific formulations of much of our
theory in both these special cases, to aid both understanding and application.

One of the key factors that allows this generality is that, for the models we
consider, there is no great loss of power in going from a simple to a quite general
space. The reader interested in any of the areas of application above should therefore
find that the structural and stability results for general Markov chains are potentially
tools of great value, no matter what the situation, no matter how simple or complex
the model considered.

1.2 Basic Models in Practice

1.2.1 The Markovian assumption

The simplest Markov models occur when the variables Φn, n ∈ ZZ+, are independent.
However, a collection of random variables which is independent certainly fails to
capture the essence of Markov models, which are designed to represent systems which
do have a past, even though they depend on that past only through knowledge of
the most recent information on their trajectory.

As we have seen in Section 1.1, the seemingly simple Markovian assumption allows
a surprisingly wide variety of phenomena to be represented as Markov chains. It is
this which accounts for the central place that Markov models hold in the stochastic
process literature. For once some limited independence of the past is allowed, then
there is the possibility of reformulating many models so the dependence is as simple
as in (1.1).

There are two standard paradigms for allowing us to construct Markovian repre-
sentations, even if the initial phenomenon appears to be non-Markovian.

In the first, the dependence of some model of interest Y = {Yn} on its past
values may be non-Markovian but still be based only on a finite “memory”. This
means that the system depends on the past only through the previous k + 1 values,
in the probabilistic sense that

P(Yn+m ∈ A | Yj , j ≤ n) = P(Yn+m ∈ A | Yj , j = n, n− 1, . . . , n− k). (1.2)

Merely by reformulating the model through defining the vectors

Φn = {Yn, . . . , Yn−k}

and setting Φ = {Φn, n ≥ 0} (taking obvious care in defining {Φ0, . . . , Φk−1}), we can
define from Y a Markov chain Φ. The motion in the first coordinate of Φ reflects that
of Y, and in the other coordinates is trivial to identify, since Yn becomes Y(n+1)−1,
and so forth; and hence Y can be analyzed by Markov chain methods.

Such state space representations, despite their somewhat artificial nature in some
cases, are an increasingly important tool in deterministic and stochastic systems the-
ory, and in linear and nonlinear time series analysis.
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As the second paradigm for constructing a Markov model representing a non-
Markovian system, we look for so-called embedded regeneration points. These are
times at which the system forgets its past in a probabilistic sense: the system viewed
at such time points is Markovian even if the overall process is not.

Consider as one such model a storage system, or dam, which fills and empties.
This is rarely Markovian: for instance, knowledge of the time since the last input,
or the size of previous inputs still being drawn down, will give information on the
current level of the dam or even the time to the next input. But at that very special
sequence of times when the dam is empty and an input actually occurs, the process
may well “forget the past”, or “regenerate”: appropriate conditions for this are that
the times between inputs and the size of each input are independent. For then one
cannot forecast the time to the next input when at an input time, and the current
emptiness of the dam means that there is no information about past input levels
available at such times. The dam content, viewed at these special times, can then be
analyzed as a Markov chain.

“Regenerative models” for which such “embedded Markov chains” occur are com-
mon in operations research, and in particular in the analysis of queueing and network
models.

State space models and regeneration time representations have become increas-
ingly important in the literature of time series, signal processing, control theory, and
operations research, and not least because of the possibility they provide for analysis
through the tools of Markov chain theory. In the remainder of this opening chapter,
we will introduce a number of these models in their simplest form, in order to provide
a concrete basis for further development.

1.2.2 State space and deterministic control models

One theme throughout this book will be the analysis of stochastic models through
consideration of the underlying deterministic motion of specific (non-random) real-
izations of the input driving the model.

Such an approach draws on both control theory, for the deterministic analysis; and
Markov chain theory, for the translation to the stochastic analogue of the deterministic
chain.

We introduce both of these ideas heuristically in this section.

Deterministic control models In the theory of deterministic systems and control
systems we find the simplest possible Markov chains: ones such that the next position
of the chain is determined completely as a function of the previous position.

Consider the deterministic linear system on IRn, whose “state trajectory” x =
{xk, k ∈ ZZ+} is defined inductively as

xk+1 = Fxk (1.3)

where F is an n× n matrix.
Clearly, this is a multi-dimensional Markovian model: even if we know all of the

values of {xk, k ≤ m} then we will still predict xm+1 in the same way, with the same
(exact) accuracy, based solely on (1.3) which uses only knowledge of xm.

In Figure 1.1 we show sample paths corresponding to the choice of F as F =
I + ∆A with I equal to a 2 × 2 identity matrix, A =

( −0.2, 1
−1, −0.2

)
and ∆ = 0.02. It is
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Figure1.1. Deterministic linear model on IR2

instructive to realize that two very different types of behavior can follow from related
choices of the matrix F . In Figure 1.1 the trajectory spirals in, and is intuitively
“stable”; but if we read the model in the other direction, the trajectory spirals out,
and this is exactly the result of using F−1 in (1.3).

Thus, although this model is one without any built-in randomness or stochastic
behavior, questions of stability of the model are still basic: the first choice of F gives
a stable model, the second choice of F−1 gives an unstable model.

A straightforward generalization of the linear system of (1.3) is the linear control
model. From the outward version of the trajectory in Figure 1.1, it is clearly possible
for the process determined by F to be out of control in an intuitively obvious sense.
In practice, one might observe the value of the process, and influence it either by
adding on a modifying “control value” either independently of the current position of
the process or directly based on the current value. Now the state trajectory x = {xk}
on IRn is defined inductively not only as a function of its past, but also of such a
(deterministic) control sequence u = {uk} taking values in, say, IRp.

Formally, we can describe the linear control model by the postulates (LCM1) and
(LCM2) below.

If the control value uk+1 depends at most on the sequence xj , j ≤ k through xk,
then it is clear that the LCM(F ,G) model is itself Markovian.

However, the interest in the linear control model in our context comes from the
fact that it is helpful in studying an associated Markov chain called the linear state
space model. This is simply (1.4) with a certain random choice for the sequence {uk},
with uk+1 independent of xj , j ≤ k, and we describe this next.
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Deterministic linear control model

Suppose x = {xk} is a process on IRn and u = {un} is a process on IRp,
for which x0 is arbitrary and for k ≥ 1

(LCM1) there exists an n× n matrix F and an n× p matrix G
such that for each k ∈ ZZ+,

xk+1 = Fxk +Guk+1; (1.4)

(LCM2) the sequence {uk} on IRp is chosen deterministically.

Then x is called the linear control model driven by F,G, or the
LCM(F ,G) model.

The linear state space model In developing a stochastic version of a control
system, an obvious generalization is to assume that the next position of the chain is
determined as a function of the previous position, but in some way which still allows
for uncertainty in its new position, such as by a random choice of the “control” at
each step. Formally, we can describe such a model by
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Linear State Space Model

Suppose X = {Xk} is a stochastic process for which

(LSS1) There exists an n×nmatrix F and an n×pmatrixG such
that for each k ∈ ZZ+, the random variables Xk and Wk take
values in IRn and IRp, respectively, and satisfy inductively for
k ∈ ZZ+,

Xk+1 = FXk +GWk+1

where X0 is arbitrary;

(LSS2) The random variables {Wk} are independent and iden-
tically distributed (i.i.d), and are independent of X0, with
common distribution Γ (A) = P(Wj ∈ A) having finite mean
and variance.

Then X is called the linear state space model driven by F,G, or the
LSS(F ,G) model, with associated control model LCM(F ,G).

Such linear models with random “noise” or “innovation” are related to both the
simple deterministic model (1.3) and also the linear control model (1.4).

There are obviously two components to the evolution of a state space model.
The matrix F controls the motion in one way, but its action is modulated by the
regular input of random fluctuations which involve both the underlying variable with
distribution Γ , and its adjustment through G. In Figure 1.2 we show sample paths
corresponding to the choice of F as Figure 1.1 and G =

(2.5
2.5

)
, with Γ taken as a

bivariate Normal, or Gaussian, distribution N(0, 1). This indicates that the addition
of the noise variables W can lead to types of behavior very different to that of the
deterministic model, even with the same choice of the function F .

Such models describe the movements of airplanes, of industrial and engineering
equipment, and even (somewhat idealistically) of economies and financial systems [4,
39]. Stability in these contexts is then understood in terms of return to level flight, or
small and (in practical terms) insignificant deviations from set engineering standards,
or minor inflation or exchange-rate variation. Because of the random nature of the
noise we cannot expect totally unvarying systems; what we seek to preclude are
explosive or wildly fluctuating operations.

We will see that, in wide generality, if the linear control model LCM(F ,G) is
stable in a deterministic way, and if we have a “reasonable” distribution Γ for our
random control sequences, then the linear state space LSS(F ,G) model is also stable
in a stochastic sense.
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Figure1.2. Linear state space model on IR2 with Gaussian noise
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In Chapter 2 we will describe models which build substantially on these simple
structures, and which illustrate the development of Markovian structures for linear
and nonlinear state space model theory.

We now leave state space models, and turn to the simplest examples of another
class of models, which may be thought of collectively as models with a regenerative
structure.

1.2.3 The gamblers ruin and the random walk

Unrestricted random walk At the roots of traditional probability theory lies the
problem of the gambler’s ruin.

One has a gaming house in which one plays successive games; at each time-point,
there is a playing of a game, and an amount won or lost: and the successive totals of
the amounts won or lost represent the fluctuations in the fortune of the gambler.

It is common, and realistic, to assume that as long as the gambler plays the same
game each time, then the winnings Wk at each time k are i.i.d.

Now write the total winnings (or losings) at time k as Φk. By this construction,

Φk+1 = Φk +Wk+1. (1.5)

It is obvious that Φ = {Φk : k ∈ ZZ+} is a Markov chain, taking values in the real
line IR = (−∞,∞); the independence of the {Wk} guarantees the Markovian nature
of the chain Φ.

In this context, stability (as far as the gambling house is concerned) requires that
Φ eventually reaches (−∞, 0]; a greater degree of stability is achieved from the same
perspective if the time to reach (−∞, 0] has finite mean. Inevitably, of course, this
stability is also the gambler’s ruin.

Such a chain, defined by taking successive sums of i.i.d. random variables, provides
a model for very many different systems, and is known as random walk.

Random Walk on the Real Line

Suppose that Φ = {Φk; k ∈ ZZ+} is a collection of random variables
defined by choosing an arbitrary distribution for Φ0 and setting for k ∈
ZZ+

(RW1)
Φk+1 = Φk +Wk+1

where the Wk are i.i.d. random variables taking values in IR
with

Γ (−∞, y] = P(Wn ≤ y). (1.6)

Then Φ is called random walk on IR.
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Figure1.3. Random walk paths with increment distribution Γ = N(0, 1)

In Figure 1.3 , Figure 1.4 and Figure 1.5 we give sets of three sample paths of random
walks with different distributions for Γ : all start at the same value but we choose for
the winnings on each game

(i) W having a Gaussian N(0, 1) distribution, so the game is fair;

(ii) W having a Gaussian N(−0.2, 1) distribution, so the game is not fair, with the
house winning one unit on average each five plays;

(iii) W having a Gaussian N(0.2, 1) distribution, so the game modeled is, perhaps,
one of “skill” where the player actually wins on average one unit per five games
against the house.

The sample paths clearly indicate that ruin is rather more likely under case (ii)
than under case (iii) or case (i): but when is ruin certain? And how long does it take
if it is certain?

These are questions involving the stability of the random walk model, or at least
that modification of the random walk which we now define.

Random walk on a half-line Although they come from different backgrounds,
it is immediately obvious that the random walk defined by (RW1) is a particularly
simple form of the linear state space model, in one dimension and with a trivial form
of the matrix pair F,G in (LSS1). However, the models traditionally built on the
random walk follow a somewhat different path than those which have their roots in
deterministic linear systems theory.
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Figure1.4. Random walk paths with increment distribution Γ = N(−0.2, 1)

Figure1.5. Random walk paths with increment distribution Γ = N(0.2, 1)
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Perhaps the most widely applied variation on the random walk model, which
immediately moves away from a linear structure, is the random walk on a half-line.

Random Walk on a Half Line

Suppose Φ = {Φk; k ∈ ZZ+} is defined by choosing an arbitrary distribu-
tion for Φ0 and taking

(RWHL1)
Φk+1 = [Φk +Wk+1]+ (1.7)

where [Φk + Wk+1]+ := max(0, Φk + Wk+1) and again the
Wk are i.i.d. random variables taking values in IR with
Γ (−∞, y] = P(W ≤ y).

Then Φ is called random walk on a half-line.

This chain follows the paths of a random walk, but is held at zero when the underlying
random walk becomes non-positive, leaving zero again only when the next positive
value occurs in the sequence {Wk}.

In Figure 1.6 and Figure 1.7 we again give sets of sample paths of random walks
on the half line [0,∞), corresponding to those of the unrestricted random walk in the
previous section. The difference in the proportion of paths which hit, or return to,
the state {0} is again clear.

We shall see in Chapter 2 that random walk on a half line is both a model for
storage systems and a model for queueing systems. For all such applications there
are similar concerns and concepts of the structure and the stability of the models:
we need to know whether a dam overflows, whether a queue ever empties, whether
a computer network jams. In the next section we give a first heuristic description of
the ways in which such stability questions might be formalized.

1.3 Stochastic Stability For Markov Models

What is “stability”?
It is a word with many meanings in many contexts. We have chosen to use it

partly because of its very diffuseness and lack of technical meaning: in the stochastic
process sense it is not well-defined, it is not constraining, and it will, we hope, serve
to cover a range of similar but far from identical “stable” behaviors of the models we
consider, most of which have (relatively) tightly defined technical meanings.

Stability is certainly a basic concept. In setting up models for real phenomena
evolving in time, one ideally hopes to gain a detailed quantitative description of the
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Figure1.6. Random walk paths stopped at zero, with increment distribution Γ = N(−0.2, 1)

Figure1.7. Random walk paths stopped at zero, with increment distribution Γ = N(+0.2, 1)
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evolution of the process based on the underlying assumptions incorporated in the
model. Logically prior to such detailed analyses are those questions of the structure
and stability of the model which require qualitative rather than quantitative answers,
but which are equally fundamental to an understanding of the behavior of the model.
This is clear even from the behavior of the sample paths of the models considered in
the section above: as parameters change, sample paths vary from reasonably “stable”
(in an intuitive sense) behavior, to quite “unstable” behavior, with processes taking
larger or more widely fluctuating values as time progresses.

Investigation of specific models will, of course, often require quite specific tools:
but the stability and the general structure of a model can in surprisingly wide-ranging
circumstances be established from the concepts developed purely from the Markovian
nature of the model.

We discuss in this section, again somewhat heuristically (or at least with minimal
technicality: some “quotation-marked” terms will be properly defined later), various
general stability concepts for Markov chains. Some of these are traditional in the
Markov chain literature, and some we take from dynamical or stochastic systems
theory, which is concerned with precisely these same questions under rather different
conditions on the model structures.

1.3.1 Communication and recurrence as stability

We will systematically develop a series of increasingly strong levels of communication
and recurrence behavior within the state space of a Markov chain, which provide one
unified framework within which we can discuss stability.

To give an initial introduction, we need only the concept of the hitting time from
a point to a set: let

τA := inf(n ≥ 1 : Φn ∈ A)

denote the first time a chain reaches the set A. This will be infinite for those paths
where the set A is never reached.

In one sense the least restrictive form of stability we might require is that the
chain does not in reality consist of two chains: that is, that the collection of sets which
we can reach from different starting points is not different. This leads us to first define
and study

(I) ϕ-irreducibility for a general space chain, which we approach by requiring that
the space supports a measure ϕ with the property that for every starting point
x ∈ X

ϕ(A) > 0 ⇒ Px(τA <∞) > 0

where Px denotes the probability of events conditional on the chain beginning with
Φ0 = x.

This condition ensures that all “reasonable sized” sets, as measured by ϕ, can be
reached from every possible starting point.

For a countable space chain ϕ-irreducibility is just the concept of irreducibility
commonly used [40, 49], with ϕ taken as counting measure.

For a state space model ϕ-irreducibility is related to the idea that we are able to
“steer” the system to every other state in IRn. The linear control LCM(F ,G) model
is called controllable if for any initial states x0 and any other x� ∈ X, there exists
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m ∈ ZZ+ and a sequence of control variables (u�
1, . . . u

�
m) ∈ IRp such that xm = x�

when (u1, . . . um) = (u�
1, . . . u

�
m). If this does not hold then for some starting points

we are in one part of the space forever; from others we are in another part of the
space. Controllability, and analogously irreducibility, preclude this.

Thus under irreducibility we do not have systems so unstable in their starting po-
sition that, given a small change of initial position, they might change so dramatically
that they have no possibility of reaching the same set of states.

A study of the wide-ranging consequences of such an assumption of irreducibility
will occupy much of Part I of this book: the definition above will be shown to produce
remarkable solidity of behavior.

The next level of stability is a requirement, not only that there should be a
possibility of reaching like states from unlike starting points, but that reaching such
sets of states should be guaranteed eventually. This leads us to define and study
concepts of

(II) recurrence, for which we might ask as a first step that there is a measure ϕ
guaranteeing that for every starting point x ∈ X

ϕ(A) > 0 ⇒ Px(τA <∞) = 1, (1.8)

and then, as a further strengthening, that for every starting point x ∈ X

ϕ(A) > 0 ⇒ Ex[τA] <∞. (1.9)

These conditions ensure that reasonable sized sets are reached with probability one,
as in (1.8), or even in a finite mean time as in (1.9). Part II of this book is devoted to
the study of such ideas, and to showing that for irreducible chains, even on a general
state space, there are solidarity results which show that either such uniform (in x)
stability properties hold, or the chain is unstable in a well-defined way: there is no
middle ground, no “partially stable” behavior available.

For deterministic models, the recurrence concepts in (II) are obviously the same.
For stochastic models they are definitely different. For “suitable” chains on spaces
with appropriate topologies (the T-chains introduced in Chapter 6), the first will
turn out to be entirely equivalent to requiring that “evanescence”, defined by

{Φ →∞} =
∞⋂

n=0

{Φ ∈ On infinitely often}c (1.10)

for a countable collection of open precompact sets {On}, has zero probability for all
starting points; the second is similarly equivalent, for the same “suitable” chains, to
requiring that for any ε > 0 and any x there is a compact set C such that

lim inf
k→∞

P k(x,C) ≥ 1− ε (1.11)

which is tightness [24] of the transition probabilities of the chain.
All these conditions have the heuristic interpretation that the chain returns to

the “center” of the space in a recurring way: when (1.9) holds then this recurrence is
faster than if we only have (1.8), but in both cases the chain does not just drift off
(or evanesce) away from the center of the state space.

In such circumstances we might hope to find, further, a long-term version of
stability in terms of the convergence of the distributions of the chain as time goes by.
This is the third level of stability we consider. We define and study
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(III) the limiting, or ergodic, behavior of the chain: and it emerges that in the
stronger recurrent situation described by (1.9) there is an “invariant regime”
described by a measure π such that if the chain starts in this regime (that is, if
Φ0 has distribution π) then it remains in the regime, and moreover if the chain
starts in some other regime then it converges in a strong probabilistic sense
with π as a limiting distribution.

In Part III we largely confine ourselves to such ergodic chains, and find both theoret-
ical and pragmatic results ensuring that a given chain is at this level of stability. For
whilst the construction of solidarity results, as in Parts I and II, provides a vital un-
derpinning to the use of Markov chain theory, it is the consequences of that stability,
in the form of powerful ergodic results, that makes the concepts of very much more
than academic interest.

Let us provide motivation for such endeavors by describing, with a little more
formality, just how solid the solidarity results are, and how strong the consequent
ergodic theorems are. We will show, in Chapter 13, the following:

Theorem 1.3.1 The following four conditions are equivalent:

(i) The chain admits a unique probability measure π satisfying the invariant equations

π(A) =
∫
π(dx)P (x,A), A ∈ B(X); (1.12)

(ii) There exists some “small” set C ∈ B(X) and MC <∞ such that

sup
x∈C

Ex[τC ] ≤MC ; (1.13)

(iii) There exists some “small” set C, some b < ∞ and some non-negative “test
function” V , finite ϕ-almost everywhere, satisfying∫

P (x, dy)V (y) ≤ V (x)− 1 + b1lC(x), x ∈ X; (1.14)

(iv) There exists some “small” set C ∈ B(X) and some P∞(C) > 0 such that as
n→∞

lim inf
n→∞ sup

x∈C
|Pn(x,C)− P∞(C)| = 0 (1.15)

Any of these conditions implies, for “aperiodic” chains,

sup
A∈B(X)

|Pn(x,A)− π(A)| → 0, n→∞, (1.16)

for every x ∈ X for which V (x) <∞, where V is any function satisfying (1.14).

Thus “local recurrence” in terms of return times, as in (1.13) or “local convergence”
as in (1.15) guarantees the uniform limits in (1.16); both are equivalent to the mere
existence of the invariant probability measure π; and moreover we have in (1.14) an
exact test based only on properties of P for checking stability of this type.

Each of (i)-(iv) is a type of stability: the beauty of this result lies in the fact
that they are completely equivalent. Moreover, for this irreducible form of Marko-
vian system, it is further possible in the “stable” situation of this theorem to develop
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asymptotic results, which ensure convergence not only of the distributions of the
chain, but also of very general (and not necessarily bounded) functions of the chain
(Chapter 14); to develop global rates of convergence to these limiting values (Chap-
ter 15 and Chapter 16); and to link these to Laws of Large Numbers or Central Limit
Theorems (Chapter 17).

Together with these consequents of stability, we also provide a systematic ap-
proach for establishing stability in specific models in order to utilize these concepts.
The extension of the so-called “Foster-Lyapunov” criteria as in (1.14) to all aspects
of stability, and application of these criteria in complex models, is a key feature of
our approach to stochastic stability.

These concepts are largely classical in the theory of countable state space Markov
chains. The extensions we give to general spaces, as described above, are neither so
well-known nor, in some cases, previously known at all.

The heuristic discussion of this section will take considerable formal justification,
but the end-product will be a rigorous approach to the stability and structure of
Markov chains.

1.3.2 A dynamical system approach to stability

Just as there are a number of ways to come to specific models such as the random
walk, there are other ways to approach stability, and the recurrence approach based on
ideas from countable space stochastic models is merely one. Another such is through
deterministic dynamical systems.

We now consider some traditional definitions of stability for a deterministic sys-
tem, such as that described by the linear model (1.3) or the linear control model
LCM(F ,G).

One route is through the concepts of a (semi) dynamical system: this is a triple
(T,X , d) where (X , d) is a metric space, and T :X → X is, typically, assumed to
be continuous. A basic concern in dynamical systems is the structure of the orbit
{T kx : k ∈ ZZ+}, where x ∈ X is an initial condition so that T 0x := x, and we define
inductively T k+1x := T k(Tx) for k ≥ 1.

There are several possible dynamical systems associated with a given Markov
chain.

The dynamical system which arises most naturally if X has sufficient structure is
based directly on the transition probability operators P k. If µ is an initial distribution
for the chain (that is, if Φ0 has distribution µ), one might look at the trajectory of
distributions {µP k : k ≥ 0}, and consider this as a dynamical system (P,M, d) with
M the space of Borel probability measures on a topological state space X, d a suitable
metric on M, and with the operator P defined as in (1.1) acting as P :M → M
through the relation

µP ( · ) =
∫
X
µ(dx)P (x, · ), µ ∈M.

In this sense the Markov transition function P can be viewed as a deterministic
map from M to itself, and P will induce such a dynamical system if it is suitably
continuous. This interpretation can be achieved if the chain is on a suitably behaved
space and has the Feller property that Pf(x) :=

∫
P (x, dy)f(y) is continuous for
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every bounded continuous f , and then d becomes a weak convergence metric (see
Chapter 6).

As in the stronger recurrence ideas in (II) and (III) in Section 1.3.1, in discussing
the stability of Φ, we are usually interested in the behavior of the terms P k, k ≥ 0,
when k becomes large. Our hope is that this sequence will be bounded in some sense,
or converge to some fixed probability π ∈M, as indeed it does in (1.16).

Four traditional formulations of stability for a dynamical system, which give a
framework for such questions, are

(i) Lagrange stability: for each x ∈ X , the orbit starting at x is a precompact subset
of X . For the system (P,M, d) with d the weak convergence metric, this is
exactly tightness of the distributions of the chain, as defined in (1.11);

(ii) Stability in the sense of Lyapunov: for each initial condition x ∈ X ,

lim
y→x

sup
k≥0

d(T ky, T kx) = 0,

where d denotes the metric on X . This is again the requirement that the long
term behavior of the system is not overly sensitive to a change in the initial
conditions;

(iii) Asymptotic stability : there exists some fixed point x∗ so that T kx∗ = x∗ for all
k, with trajectories {xk} starting near x∗ staying near and converging to x∗

as k → ∞. For the system (P,M, d) the existence of a fixed point is exactly
equivalent to the existence of a solution to the invariant equations (1.12);

(iv) Global asymptotic stability : the system is stable in the sense of Lyapunov and
for some fixed x∗ ∈ X and every initial condition x ∈ X ,

lim
k→∞

d(T kx, x∗) = 0. (1.17)

This is comparable to the result of Theorem 1.3.1 for the dynamical system
(P,M, d).

Lagrange stability requires that any limiting measure arising from the sequence {µP k}
will be a probability measure, rather as in (1.16).

Stability in the sense of Lyapunov is most closely related to irreducibility, al-
though rather than placing a global requirement on every initial condition in the
state space, stability in the sense of Lyapunov only requires that two initial con-
ditions which are sufficiently close will then have comparable long term behavior.
Stability in the sense of Lyapunov says nothing about the actual boundedness of the
orbit {T kx}, since it is simply continuity of the maps {T k}, uniformly in k ≥ 0. An
example of a system on IR which is stable in the sense of Lyapunov is the simple
recursion xk+1 = xk + 1, k ≥ 0. Although distinct trajectories stay close together if
their initial conditions are similarly close, we would not consider this system stable
in most other senses of the word.

The connections between the probabilistic recurrence approach and the dynamical
systems approach become very strong in the case where the chain is both Feller and
ϕ-irreducible, and when the irreducibility measure ϕ is related to the topology by the
requirement that the support of ϕ contains an open set.

In this case, by combining the results of Chapter 6 and Chapter 18, we get for
suitable spaces
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Theorem 1.3.2 For a ϕ-irreducible “aperiodic” Feller chain with suppϕ containing
an open set, the dynamical system (P,M, d) is globally asymptotically stable if and
only if the distributions {P k(x, · )} are tight as in (1.11); and then the uniform ergodic
limit (1.16) holds.

This result follows, not from dynamical systems theory, but by showing that such a
chain satisfies the conditions of Theorem 1.3.1; these Feller chains are an especially
useful subset of the “suitable” chains for which tightness is equivalent to the properties
described in Theorem 1.3.1, and then, of course, (1.16) gives a result rather stronger
than (1.17).

Embedding a Markov chain in a dynamical system through its transition proba-
bilities does not bring much direct benefit, since results on dynamical systems in this
level of generality are relatively weak. The approach does, however, give insights into
ways of thinking of Markov chain stability, and a second heuristic to guide the types
of results we should seek.

1.4 Commentary

This book does not address models where the time-set is continuous (when Φ is
usually called a Markov process), despite the sometimes close relationship between
discrete and continuous time models: see Chung [49] or Anderson [5] for the classical
countable space approach.

On general spaces in continuous time, there are a totally different set of questions
that are often seen as central: these are exemplified in Sharpe [237], although the
interested reader should also see Meyn and Tweedie [180, 181, 179] for recent results
which are much closer in spirit to, and rely heavily on, the countable time approach
followed in this book.

There has also been considerable recent work over the past two decades on the
subject of more generally indexed Markov models (such as Markov random fields,
where T is multi-dimensional), and these are also not in this book. In our development
Markov chains always evolve through time as a scalar, discrete quantity.

The question of what to call a Markovian model, and whether to concentrate on
the denumerability of the space or the time parameter in using the word “chain”,
seems to have been resolved in the direction we take here. Doob [68] and Chung [49]
reserve the term chain for systems evolving on countable spaces with both discrete
and continuous time parameters, but usage seems to be that it is the time-set that
gives the “chaining”. Revuz [223], in his Notes, gives excellent reasons for this.

The examples we begin with here are rather elementary, but equally they are
completely basic, and represent the twin strands of application we will develop: the
first, from deterministic to stochastic models via a “stochasticization” within the same
functional framework has analogies with the approach of Stroock and Varadhan in
their analysis of diffusion processes (see [260, 259, 102]), whilst the second, from basic
independent random variables to sums and other functionals traces its roots back too
far to be discussed here. Both these models are close to identical at this simple level.
We give more diverse examples in Chapter 2.

We will typically use X and Xn to denote state space models, or their values at
time n, in accordance with rather long established conventions. We will then typically
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use lower case letters to denote the values of related deterministic models. Regener-
ative models such as random walk are, on the other hand, typically denoted by the
symbols Φ and Φn, which we also use for generic chains.

The three concepts described in (I)-(III) may seem to give a rather limited number
of possible versions of “stability”. Indeed, in the various generalizations of determin-
istic dynamical systems theory to stochastic models which have been developed in the
past three decades (see for example Kushner [149] or Khas’minskii [134]) there have
been many other forms of stability considered. All of them are, however, qualitatively
similar, and fall broadly within the regimes we describe, even though they differ in
detail.

It will become apparent in the course of our development of the theory of irre-
ducible chains that in fact, under fairly mild conditions, the number of different types
of behavior is indeed limited to precisely those sketched above in (I)-(III). Our aim is
to unify many of the partial approaches to stability and structural analysis, to indi-
cate how they are in many cases equivalent, and to develop both criteria for stability
to hold for individual models, and limit theorems indicating the value of achieving
such stability.

With this rather optimistic statement, we move forward to consider some of the
specific models whose structure we will elucidate as examples of our general results.
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Markov Models

The results presented in this book have been written in the desire that practitioners
will use them. We have tried therefore to illustrate the use of the theory in a systematic
and accessible way, and so this book concentrates not only on the theory of general
space Markov chains, but on the application of that theory in considerable detail.

We will apply the results which we develop across a range of specific applications:
typically, after developing a theoretical construct, we apply it to models of increasing
complexity in the areas of systems and control theory, both linear and nonlinear,
both scalar and vector-valued; traditional “applied probability” or operations research
models, such as random walks, storage and queueing models, and other regenerative
schemes; and models which are in both domains, such as classical and recent time-
series models.

These are not given merely as “examples” of the theory: in many cases, the
application is difficult and deep of itself, whilst applications across such a diversity
of areas have often driven the definition of general properties and the links between
them. Our goal has been to develop the analysis of applications on a step by step
basis as the theory becomes richer throughout the book.

To motivate the general concepts, then, and to introduce the various areas of
application, we leave until Chapter 3 the normal and necessary foundations of the
subject, and first introduce a cross-section of the models for which we shall be devel-
oping those foundations.

These models are still described in a somewhat heuristic way. The full mathemat-
ical description of their dynamics must await the development in the next chapter of
the concepts of transition probabilities, and the reader may on occasion benefit by
moving to some of those descriptions in parallel with the outlines here.

It is also worth observing immediately that the descriptive definitions here are
from time to time supplemented by other assumptions in order to achieve specific
results: these assumptions, and those in this chapter and the last, are collected for
ease of reference in Appendix C.

As the definitions are developed, it will be apparent immediately that very many
of these models have a random additive component, such as the i.i.d. sequence {Wn}
in both the linear state space model and the random walk model. Such a component
goes by various names, such as error, noise, innovation, disturbance or increment
sequence, across the various model areas we consider. We shall use the nomenclature
relevant to the context of each model.
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We will save considerable repetitive definition if we adopt a global convention
immediately to cover these sequences.

Error, Noise, Innovation, Disturbance and Increments

Suppose W = {Wn} is labeled as an error, noise, innovation, distur-
bance or increment sequence. Then this has the interpretation that the
random variables {Wn} are independent and identically distributed, with
distribution identical to that of a generic variable denoted W .

We will systematically denote the probability law of such a variable W
by Γ .

It will also be apparent that many models are defined inductively from their own
past in combination with such innovation sequences. In order to commence the in-
duction, initial values are needed. We adopt a second convention immediately to avoid
repetition in defining our models.

Initialization

Unless specifically defined otherwise, the initial state {Φ0} of a Markov
model will be taken as independent of the error, noise, innovation, dis-
turbance or increments process, and will have an arbitrary distribution.

2.1 Markov Models In Time Series

The theory of time series has been developed to model a set of observations developing
in time: in this sense, the fundamental starting point for time series and for more
general Markov models is virtually identical. However, whilst the Markov theory
immediately assumes a short-term dependence structure on the variables at each time
point, time series theory concentrates rather on the parametric form of dependence
between the variables.

The time series literature has historically concentrated on linear models (that is,
those for which past disturbances and observations are combined to form the present
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observation through some linear transformation) although recently there has been
greater emphasis on nonlinear models. We first survey a number of general classes of
linear models and turn to some recent nonlinear time series models in Section 2.2.

It is traditional to denote time series models as a sequence X = {Xn : n ∈ ZZ+},
and we shall follow this tradition.

2.1.1 Simple linear models

The first class of models we discuss has direct links with deterministic linear mod-
els, state space models and the random walk models we have already introduced in
Chapter 1.

We begin with the simplest possible “time series” model, the scalar autoregression
of order one, or AR(1) model on IR1.

Simple Linear Model

The process X = {Xn , n ∈ ZZ+} is called the simple linear model, or
AR(1) model if

(SLM1) for each n ∈ ZZ+, Xn and Wn are random variables on
IR, satisfying

Xn+1 = αXn +Wn+1,

for some α ∈ IR;

(SLM2) the random variables {Wn} are an error sequence with
distribution Γ on IR.

The simple linear model is trivially Markovian: the independence of Xn+1 from
Xn−1, Xn−2, . . . given Xn = x follows from the construction rule (SLM1), since the
value of Wn does not depend on any of {Xn−1, Xn−2 . . .} from (SLM2).

The simple linear model can be viewed in one sense as an extension of the random
walk model, where now we take some proportion or multiple of the previous value,
not necessarily equal to the previous value, and again add a new random amount
(the “noise” or “error”) onto this scaled random value. Equally, it can be viewed as
the simplest special case of the linear state space model LSS(F ,G), in the scalar case
with F = α and G = 1.

In Figure 2.1 and Figure 2.2 we give sets of sample paths of linear models with
different values of the parameter α.

The choice of this parameter critically determines the behavior of the chain. If
|α| < 1 then the sample paths remain bounded in ways which we describe in detail in
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Figure2.1. Linear model path with α = 0.85, increment distribution N(0, 1)

Figure2.2. Linear model path with α = 1.05, increment distribution N(0, 1)
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later chapters, and the process X is inherently “stable”: in fact, ergodic in the sense
of Section 1.3.1 (III) and Theorem 1.3.1, for reasonable distributions Γ . But if |α| > 1
then X is unstable, in a well-defined way: in fact, evanescent with probability one, in
the sense of Section 1.3.1 (II), if the noise distribution Γ is again reasonable.

2.1.2 Linear autoregressions and ARMA models

In the development of time series theory, simple linear models are usually analyzed
as a subset of the class of autoregressive models, which depend in a linear manner on
their past history for a fixed number k ≥ 1 of steps in the past.

Autoregressive Model

A process Y = {Yn} is called a (scalar) autoregression of order k, or
AR(k) model, if it satisfies, for each set of initial values (Y0, . . . , Y−k+1),

(AR1) for each n ∈ ZZ+, Yn and Wn are random variables on IR
satisfying inductively for n ≥ 1

Yn = α1Yn−1 + α2Yn−2 + . . .+ αkYn−k +Wn,

for some α1, . . . , αk ∈ IR;

(AR2) the sequence W is an error sequence on IR.

The collection Y = {Yn} is generally not Markovian if k > 1, since information on
the past (or at least the past in terms of the variables Yn−1, Yn−2, . . . , Yn−k) provides
information on the current value Yn of the process. But by the device mentioned in
Section 1.2.1, of constructing the multivariate sequence

Xn = (Yn, . . . , Yn−k+1)�

and setting X = {Xn, n ≥ 0}, we define X as a Markov chain whose first component
has exactly the sample paths of the autoregressive process. Note that the general
convention that X0 has an arbitrary distribution implies that the first k variables
(Y0, . . . , Y−k+1) are also considered arbitrary.

The autoregressive model can then be viewed as a specific version of the vector-
valued linear state space model LSS(F ,G). For by (AR1),

Xn =


α1 · · · · · · αk

1 0
. . .

...
0 1 0

Xn−1 +


1
0
...
0

Wn. (2.1)
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The same technique for producing a Markov model can be used for any linear model
which admits a finite dimensional description. In particular, we take the following
general model:

Autoregressive-Moving Average Models

The process Y = {Yn} is called an autoregressive-moving average process
of order (k, �), or ARMA(k, �) model, if it satisfies, for each set of initial
values (Y0, . . . , Y−k+1,W0, . . . ,W−�+1),

(ARMA1) for each n ∈ ZZ+, Yn and Wn are random variables on
IR, satisfying, inductively for n ≥ 1,

Yn = α1Yn−1 + α2Yn−2 + . . .+ αkYn−k

+Wn + β1Wn−1 + β2Wn−2 + . . .+ β�Wn−�,

for some α1, . . . , αk, β1, . . . , β� ∈ IR;

(ARMA2) the sequence W is an error sequence on IR.

In this case more care must be taken to obtain a suitable Markovian description of
the process. One approach is to take

Xn = (Yn, . . . , Yn−k+1,Wn, . . . ,Wn−�+1)�.

Although the resulting state process X is Markovian, the dimension of this realization
may be overly large for effective analysis. A realization of lower dimension may be
obtained by defining the stochastic process Z inductively by

Zn = α1Zn−1 + α2Zn−2 + . . .+ αkZn−k +Wn. (2.2)

When the initial conditions are defined appropriately, it is a matter of simple algebra
and an inductive argument to show that

Yn = Zn + β1Zn−1 + β2Zn−2 + . . .+ β�Zn−�,

Hence the probabilistic structure of the ARMA(k, �) process is completely determined
by the Markov chain {(Zn, . . . , Zn−k+1)� : n ∈ ZZ+} which takes values in IRk.

The behavior of the general ARMA(k, �) model can thus be placed in the Marko-
vian context, and we will develop the stability theory of this, and more complex
versions of this model, in the sequel.
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2.2 Nonlinear State Space Models

In discrete time, a general (semi) dynamical system on IR is defined, as in Section 1.3.2,
through a recursion of the form

xn+1 = F (xn), n ∈ ZZ+ (2.3)

for some continuous function F : IR → IR. Hence the simple linear model defined in
(SLM1) may be interpreted as a linear dynamical system perturbed by the “noise”
sequence W.

The theory of time series is in this sense closely related to the general theory of
dynamical systems: it has developed essentially as that subset of stochastic dynamical
systems theory for which the relationships between the variables are linear, and even
with the nonlinear models from the time series literature which we consider below,
there is still a large emphasis on linear substructures.

The theory of dynamical systems, in contrast to time series theory, has grown from
a deterministic base, considering initially the type of linear relationship in (1.3) with
which we started our examples in Section 1.2, but progressing to models allowing a
very general (but still deterministic) relationship between the variables in the present
and in the past, as in (2.3). It is in the more recent development that “noise” variables,
allowing the system to be random in some part of its evolution, have been introduced.

Nonlinear state space models are stochastic versions of dynamical systems where
a Markovian realization of the model is both feasible and explicit: thus they satisfy a
generalization of (2.3) such as

Xn+1 = F (Xn,Wn+1), k ∈ ZZ+ (2.4)

where W is a noise sequence and the function F : IRn × IRp → IRn is smooth (C∞):
that is, all derivatives of F exist and are continuous.

2.2.1 Scalar nonlinear models

We begin with the simpler version of (2.4) in which the random variables are scalar.



2.2 Nonlinear State Space Models 31

Scalar Nonlinear State Space Model

The chain X = {Xn} is called a scalar nonlinear state space model on
IR driven by F , or SNSS(F ) model, if it satisfies

(SNSS1) for each n ≥ 0, Xn and Wn are random variables on
IR, satisfying, inductively for n ≥ 1,

Xn = F (Xn−1,Wn),

for some smooth (C∞) function F : IR× IR → IR;

(SNSS2) the sequence W is a disturbance sequence on IR, whose
marginal distribution Γ possesses a density γw supported on
an open set Ow.

The independence of Xn+1 from Xn−1, Xn−2, . . . given Xn = x follows from the rules
(SNSS1) and (SNSS2), and ensures as previously that X is a Markov chain.

As with the linear control model (LCM1) associated with the linear state space
model (LSS1), we will analyze nonlinear state space models through the associated
deterministic “control models”. Define the sequence of maps {Fk: IR× IRk → IR : k ≥
0} inductively by setting F0(x) = x, F1(x0, u1) = F (x0, u1) and for k > 1

Fk(x0, u1, . . . , uk) = F (Fk−1(x0, u1, . . . , uk−1), uk). (2.5)

We call the deterministic system with trajectories

xk = Fk(x0, u1, . . . , uk), k ∈ ZZ+ (2.6)

the associated control model CM(F ) for the SNSS(F ) model, provided the determinis-
tic control sequence {u1, . . . , uk, k ∈ ZZ+} lies in the set Ow, which we call the control
set for the scalar nonlinear state space model.

To make these definitions more concrete we define two particular classes of scalar
nonlinear models with specific structure which we shall use as examples on a number
of occasions.

The first of these is the bilinear model, so called because it is linear in each of its
input variables, namely the immediate past of the process and a noise component,
whenever the other is fixed: but their joint action is multiplicative as well as additive.
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Figure2.3. Simple bilinear model path with F (x,w) = (0.707 + w)x+ w

Simple Bilinear Model

The chain X = {Xn} is called the simple bilinear model if it satisfies

(SBL1) for each n ≥ 0, Xn and Wn are random variables on IR,
satisfying for n ≥ 1,

Xn = θXn−1 + bXn−1Wn +Wn

where θ and b are scalars, and the sequence W is an error
sequence on IR.

The bilinear process is thus a SNSS(F ) model with F given by

F (x,w) = θx+ bxw + w, (2.7)

where the control set Ow ⊆ IR depends upon the specific distribution of W .
In Figure 2.3 we give a sample path of a scalar nonlinear model with

F (x,w) = (0.707 + w)x+ w
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and with Γ = N(0, 1
2). This is the simple bilinear model with θ = 0.707 and b = 1.

One can see from this simulation that the behavior of this model is quite different
from that of any linear model.

The second specific nonlinear model we shall analyze is the scalar first-order
SETAR model. This is piecewise linear in contiguous regions of IR, and thus while it
may serve as an approximation to a completely nonlinear process, we shall see that
much of its analysis is still tractable because of the linearity of its component parts.

SETAR Models

The chain X = {Xn} is called a scalar self-exciting threshold autoregres-
sion (SETAR) model if it satisfies

(SETAR1) for each 1 ≤ j ≤ M , Xn and Wn(j) are random
variables on IR, satisfying, inductively for n ≥ 1,

Xn = φ(j) + θ(j)Xn−1 +Wn(j), rj−1 < Xn−1 ≤ rj ,

where −∞ = r0 < r1 < · · · < rM = ∞ and {Wn(j)} forms
an i.i.d. zero-mean error sequence for each j, independent of
{Wn(i)} for i 
= j.

Because of lack of continuity, the SETAR models do not fall into the class of nonlinear
state space models, although they can often be analyzed using essentially the same
methods. The SETAR model will prove to be a useful example on which to test
the various stability criteria we develop, and the overall outcome of that analysis is
gathered together in Section B.2.

2.2.2 Multi-dimensional nonlinear models

Many nonlinear processes cannot be modeled by a scalar Markovian model such
as the SNSS(F ) model. The more general multi-dimensional model is defined quite
analogously.
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Nonlinear State Space Models

Suppose X = {Xk}, where

(NSS1) for each k ≥ 0 Xk and Wk are random variables on IRn,
IRp respectively, satisfying inductively for k ≥ 1,

Xk = F (Xk−1,Wk),

for some smooth (C∞) function F : X × Ow → X, where X is
an open subset of IRn, and Ow is an open subset of IRp;

(NSS2) the random variables {Wk} are a disturbance sequence
on IRp, whose marginal distribution Γ possesses a density γw

which is supported on an open set Ow.

Then X is called a nonlinear state space model driven by F , or NSS(F )
model, with control set Ow.

The general nonlinear state space model can often be analyzed by the same methods
that are used for the scalar SNSS(F ) model, under appropriate conditions on the
disturbance process W and the function F .

It is a central observation of such analysis that the structure of the NSS(F )
model (and of course its scalar counterpart) is governed under suitable conditions by
an associated deterministic control model, defined analogously to the linear control
model and the linear state space model.
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The Associated Control Model CM(F )

(CM1) The deterministic system

xk = Fk(x0, u1, . . . , uk), k ∈ ZZ+, (2.8)

where the sequence of maps {Fk : X × Ok
w → X : k ≥ 0}

is defined by (2.5), is called the associated control system
for the NSS(F ) model and is denoted CM(F ) provided the
deterministic control sequence {u1, . . . , uk, k ∈ ZZ+} lies in
the control set Ow ⊆ IRp.

The general ARMA model may be generalized to obtain a class of nonlinear models,
all of which may be “Markovianized”, as in the linear case.

Nonlinear Autoregressive-Moving Average Models

The process Y = {Yn} is called a nonlinear autoregressive-moving av-
erage process of order (k, �) if the values Y0, . . . , Yk−1 are arbitrary and

(NARMA1) for each n ≥ 0, Yn and Wn are random variables on
IR, satisfying, inductively for n ≥ k,

Yn = G(Yn−1, Yn−2, . . . , Yn−k,Wn,Wn−1,Wn−2, . . . ,Wn−�)

where the function G: IRk+�+1 → IR is smooth (C∞);

(NARMA2) the sequence W is an error sequence on IR.

As in the linear case, we may define

Xn = (Yn, . . . , Yn−k+1,Wn, . . . ,Wn−�+1)�

to obtain a Markovian realization of the process Y. The process X is Markovian, with
state space X = IRk+�, and has the general form of an NSS(F ) model, with
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Xn = F (Xn−1,Wn), n ∈ ZZ+. (2.9)

2.2.3 The gumleaf attractor

The gumleaf attractor is an example of a nonlinear model such as those which fre-
quently occur in the analysis of control algorithms for nonlinear systems, some of
which are briefly described below in Section 2.3. In an investigation of the patholo-
gies which can reveal themselves in adaptive control, a specific control methodology
which is described in Section 2.3.2, Mareels and Bitmead [161] found that the closed
loop system dynamics in an adaptive control application can be described by the
simple recursion

vn = − 1
vn−1

+
1

vn−2
, n ∈ ZZ+.

Here vn is a “closed loop system gain” which is a simple function of the output of the
system which is to be controlled. By setting xn =

(xa
n

xb
n

)
=
( vn

vn−1

)
we obtain a nonlinear

state space model with

F

(
xa

xb

)
=

(
−1/xa + 1/xb

xa

)

so that

xn =

(
xa

n

xb
n

)
= F

(
xa

n−1

xb
n−1

)
=

(
−1/xa

n−1 + 1/xb
n−1

xa
n−1

)
(2.10)

If F is required to be continuous then the state space X in this example must be taken
as two dimensional Euclidean space IR2 minus the x and y axes, and any other initial
conditions which might result in a zero value for xa

n or xb
n for some n.

A typical sample path of this model is given in Figure 2.4. In this figure 40,000
consecutive sample points of {xn} have been indicated by points to illustrate the
qualitative behavior of the model. Because of its similarity to some Australian flora,
the authors call the resulting plot the gumleaf attractor. Ydstie in [285] also finds that
such chaotic behavior can easily occur in adaptive systems.

One way that noise can enter the model (2.10) is directly through the first com-
ponent xa

n to give

Xn =

(
Xa

n

Xb
n

)
= F

(
Xa

n−1

Xb
n−1

)
=

(
−1/Xa

n−1 + 1/Xb
n−1

Xa
n−1

)
+

(
Wn

0

)
(2.11)

where W is i.i.d..
The special case where for each n the disturbance Wn is uniformly distributed on

[−1
2 ,

1
2 ] is illustrated in Figure 2.5. As in the previous figure, we have plotted 40,000

values of the sequence X which takes values in IR2. Note that the qualitative behavior
of the process remains similar to the noise-free model, although some of the detailed
behavior is “smeared out” by the noise.

The analysis of general models of this type is a regular feature in what follows,
and in Chapter 7 we give a detailed analysis of the path structure that might be
expected under suitable assumptions on the noise and the associated deterministic
model.
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Figure2.4. The gumleaf attractor

Figure2.5. The gumleaf attractor perturbed by noise
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2.2.4 The dependent parameter bilinear model

As a simple example of a multidimensional nonlinear state space model, we will
consider the following dependent parameter bilinear model, which is closely related to
the simple bilinear model introduced above. To allow for dependence in the parameter
process, we construct a two dimensional process so that the Markov assumption will
remain valid.

The Dependent Parameter Bilinear Model

The process Φ =
(θ
Y

)
is called the dependent parameter bilinear model if

it satisfies

(DBL1) For some |α| < 1 and all k ∈ ZZ+,

Yk+1 = θkYk +Wk+1 (2.12)
θk+1 = αθk + Zk+1, (2.13)

(DBL2) The joint process (Z,W)� is a disturbance sequence on
IR2, Z and W are mutually independent, and the distribu-
tions Γw and Γz of W , Z respectively possess densities which
are lower semicontinuous. It is assumed that W has a finite
second moment, and that E[log(1 + |Z|)] <∞.

This is described by a two dimensional NSS(F ) model, where the function F is of the
form

F
((Y

θ

)
,
(Z
W

))
=

(
αθ + Z

θY +W

)
(2.14)

As usual, the control set Ow ⊆ IR2 depends upon the specific distribution of W and
Z.

A plot of the joint process
(Y
θ
)

is given in Figure 2.6. In this simulation we have
α = 0.933, Wk ∼ N(0, 0.14) and Zk ∼ N(0, 0.01).

The dark line is a plot of the parameter process θ, and the lighter, more explosive
path is the resulting output Y. One feature of this model is that the output oscillates
rapidly when θk takes on large negative values, which occurs in this simulation for
time values between 80 and 100.
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Figure2.6. Dependent parameter bilinear model paths with α = 0.933, Wk ∼ N(0, 0.14) and
Zk ∼ N(0, 0.01)

2.3 Models In Control And Systems Theory

2.3.1 Choosing controls

In Section 2.2, we defined deterministic control systems, such as (2.5), associated
with Markovian state space models. We now begin with a general control system,
which might model the dynamics of an aircraft, a cruise control in an automobile, or
a controlled chemical reaction, and seek ways to choose a control to make the system
attain a desired level of performance.

Such control laws typically involve feedback; that is, the input at a given time
is chosen based upon present output measurements, or other features of the system
which are available at the time that the control is computed. Once such a control law
has been selected, the dynamics of the controlled system can be complex. Fortunately,
with most control laws, there is a representation (the “closed loop” system equations)
which gives rise to a Markovian state process Φ describing the variables of interest
in the system. This additional structure can greatly simplify the analysis of control
systems.

We can extend the AR models of time series to an ARX (autoregressive with
exogenous variables) system model defined for k ≥ 1 by

Yk + α1(k)Yk−1 + · · ·+ αn1(k)Yk−n1 = β1(k)Uk−1 + · · ·+ βn2(k)Uk−n2 +Wk (2.15)

where we assume for this discussion that the output process Y, the input process (or
exogenous variable sequence) U, and the disturbance process W are all scalar-valued,
and initial conditions are assigned at k = 0.
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Let us also assume that we have random coefficients αj(k), βj(k) rather than
fixed coefficients at each time point k. In such a case we may have to estimate the
coefficients in order to choose the exogenous input U.

The objective in the design of the control sequence U is specific to the particular
application. However, it is often possible to set up the problem so that the goal
becomes a problem of regulation: that is, to make the output as small as possible.
Given the stochastic nature of systems, this is typically expressed using the concepts
of sample mean square stabilizing sequences and minimum variance control laws.

We call the input sequence U sample mean square stabilizing if the input-output
process satisfies

lim sup
N→∞

1
N

N∑
k=1

[Y 2
k + U2

k ] <∞ a.s.

for every initial condition. The control law is then said to be minimum variance if it
is sample mean square stabilizing, and the sample path average

lim sup
N→∞

1
N

N∑
k=1

Y 2
k (2.16)

is minimized over all control laws with the property that, for each k, the input Uk is
a function of Yk, . . . , Y0, and the initial conditions.

Such controls are often called “causal”, and for causal controls there is some
possibility of a Markovian representation. We now specialize this general framework to
a situation where a Markovian analysis through state space representation is possible.

2.3.2 Adaptive control

In adaptive control, the parameters {αi(k), βi(k)} are not known a priori, but are
partially observed through the input-output process. Typically, a parameter estima-
tion algorithm, such as recursive least squares, is used to estimate the parameters
on-line in implementations. The control law at time k is computed based upon these
estimates and past output measurements.

As an example, consider the system model given in equation (2.15) with all of
the parameters taken to be independent of k, and let

θ = (−α1, · · · ,−αn1 , β1, · · · , βn2)

denote the time invariant parameter vector. Suppose for the moment that the param-
eter θ is known. If we set

φ�k−1 := (Yk−1, · · · , Yk−n1 , Uk−1, · · · , Uk−n2),

and if we define for each k the control Uk as the solution to

φ�k θ = 0, (2.17)

then this will result in Yk = Wk for all k. This control law obviously minimizes the
performance criterion (2.16) and hence is a minimum variance control law if it is
sample mean square stabilizing.
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It is also possible to obtain a minimum variance control law, even when θ is
not available directly for the computation of the control Uk. One such algorithm
(developed in [87]) has a recursive form given by first estimating the parameters
through the following stochastic gradient algorithm:

θ̂k = θ̂k−1 + r−1
k−1φk−1Yk

rk = rk−1 + ‖φk‖2;
(2.18)

the new control Uk is then defined as the solution to the equation

φ�k θ̂k = 0.

With Xk ∈ X := IR+ × IR2(n1+n2) defined as

Xk :=

 r−1
k

φk

θ̂k



we see that X is of the form Xk+1 = F (Xk,Wk+1), where F : X× IR → X is a rational
function, and hence X is a Markov chain.

To illustrate the results in stochastic adaptive control obtainable from the theory
of Markov chains, we will consider here and in subsequent chapters the following
ARX(1) random parameter, or state space, model.
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Simple Adaptive Control Model

The simple adaptive control model is a triple Y,U,θ where

(SAC1) the output sequence Y and parameter sequence θ are
defined inductively for any input sequence U by

Yk+1 = θkYk + Uk +Wk+1 (2.19)
θk+1 = αθk + Zk+1, k ≥ 1 (2.20)

where α is a scalar with |α| < 1;

(SAC2) the bivariate disturbance process
( Z
W

)
is Gaussian and

satisfies

E[
(Zn

Wn

)
] =

(
0
0

)
E[
(Zn

Wn

)
(Zk,Wk)] =

(
σ2

z 0
0 σ2

w

)
δn−k, n ≥ 1;

(SAC3) the input process satisfies Uk ∈ Yk, k ∈ ZZ+, where Yk =
σ{Y0, . . . , Yk}. That is, the input Uk at time k is a function
of past and present output values.

The time varying parameter process θ here is not observed directly but is partially
observed through the input and output processes U and Y.

The ultimate goal with such a model is to find a mean square stabilizing, minimum
variance control law. If the parameter sequence θ were completely observed then this
goal could be easily achieved by setting Uk = −θkYk for each k ∈ ZZ+, as in (2.17).

Since θ is only partially observed, we instead obtain recursive estimates of the
parameter process and choose a control law based upon these estimates. To do this
we note that by viewing θ as a state process, as defined in [39], then because of the
assumptions made on (W,Z), the conditional expectation

θ̂k := E[θk | Yk]

is computable using the Kalman filter (see [165, 156]) provided the initial distribution
of (U0, Y0, θ0) for (2.19), (2.20) is Gaussian.

In this scalar case, the Kalman filter estimates are obtained recursively by the
pair of equations

θ̂k+1 = αθ̂k + α
Σk(Yk+1 − θ̂kYk − Uk)Yk

ΣkY
2
k + σ2

w
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Σk+1 = σ2
z +

α2σ2
wΣk

ΣkY
2
k + σ2

w

When α = 1, σw = 1 and σz = 0, so that θk = θ0 for all k, these equations define the
recursive least squares estimates of θ0, similar to the gradient algorithm described in
(2.18).

Defining the parameter estimation error at time n by θ̃n := θn− θ̂n, we have that
θ̃k = θk − E[θk | Yk], and Σk = E[θ̃2

k | Yk] whenever θ̃0 is distributed N(0, Σ0) and Y0

and Σ0 are constant (see [172] for more details).
We use the resulting parameter estimates {θ̂k : k ≥ 0} to compute the “certainty

equivalence” adaptive minimum variance control Uk = −θ̂kYk, k ∈ ZZ+. With this
choice of control law, we can define the closed loop system equations.

Closed Loop System Equations

The closed loop system equations are

θ̃k+1 = αθ̃k − αΣkYk+1Yk(ΣkY
2
k + σ2

w)−1 + Zk+1 (2.21)

Yk+1 = θ̃kYk +Wk+1 (2.22)
Σk+1 = σ2

z + α2σ2
wΣk(ΣkY

2
k + σ2

w)−1, k ≥ 1 (2.23)

where the triple Σ0, θ̃0, Y0 is given as an initial condition.

The closed loop system gives rise to a nonlinear state space model of the form (NSS1).
It follows then that the triple

Φk := (Σk, θ̃k, Yk)�, k ∈ ZZ+, (2.24)

is a Markov chain with state space X = [σ2
z ,

σ2
z

1−α2 ] × IR2. Although the state space
is not open, as required in (NSS1), when necessary we can restrict the chain to the
interior of X to apply the general results which will be developed for the nonlinear
state space model.

As we develop the general theory of Markov processes we will return to this
example to obtain fairly detailed properties of the closed loop system described by
(2.21)-(2.23).

In Chapter 16 we characterize the mean square performance (2.16): when the
parameter σ2

z which defines the parameter variation is strictly less than unity, the
limit supremum is in fact a limit in this example, and this limit is independent of the
initial conditions of the system.

This limit, which is the expectation of Y0 with respect to an invariant measure,
cannot be calculated exactly due to the complexity of the closed loop system equa-
tions.
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Figure2.7. Disturbance W for the SAC model: N(0, 0.01) Gaussian white noise

Using invariance, however, we may obtain explicit bounds on the limit, and give
a characterization of the performance of the closed loop system which this limit
describes. Such characterizations are helpful in understanding how the performance
varies as a function of the disturbance intensity W and the parameter estimation
error θ̃.

In Figure 2.8 and Figure 2.9 we have illustrated two typical sample paths of the
output process Y, identical but for the different values of σz chosen.

The disturbance process W in both instances is i.i.d. N(0, 0.01); that is, σw = 0.1.
A typical sample path of W is given in Figure 2.7.

In both simulations we take α = 0.99. In the “stable” case in Figure 2.8, we have
σz = 0.2. In this case the output Y is barely distinguishable from the noise W. In
the second simulation, where σz = 1.1, we see in Figure 2.9 that the output exhibits
occasional large bursts due to the more unpredictable behavior of the parameter
process.

2.4 Markov Models With Regeneration Times

The processes in the previous section were Markovian largely through choosing a
sufficiently large product space to allow augmentation by variables in the finite past.

The chains we now consider are typically Markovian using the second paradigm
in Section 1.2.1, namely by choosing specific regeneration times at which the past is
forgotten. For more details of such models see Feller [76, 77] or Asmussen [10].
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Figure2.8. Output Y of the SAC model with α = 0.99, σw = 0.1, and σz = 0.2

Figure2.9. Output Y of the SAC model with α = 0.99, σw = 0.1, and σz = 1.1
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2.4.1 The forward recurrence time chain

A chain which is a special form of the random walk chain in Section 1.2.3 is the renewal
process. Such chains will be fundamental in our later analysis of the structure of even
the most general of Markov chains, and here we describe the specific case where the
state space is countable.

Let {Y1, Y2, . . .} be a sequence of independent and identical random variables,
with distribution function p concentrated, not on the positive and negative integers,
but rather on ZZ+. It is customary to assume that p(0) = 0. Let Y0 be a further
independent random variable, with the distribution of Y0 being a, also concentrated
on ZZ+. The random variables

Zn :=
n∑

i=0

Yi

form an increasing sequence taking values in ZZ+, and are called a delayed renewal
process, with a being the delay in the first variable: if a = p then the sequence {Zn}
is merely referred to as a renewal process.

As with the two-sided random walk, Zn is a Markov chain: not a particularly
interesting one in some respects, since it is evanescent in the sense of Section 1.3.1 (II),
but with associated structure which we will use frequently, especially in Part III.

With this notation we have P(Z0 = n) = a(n) and by considering the value of Z0

and the independence of Y0 and Y1, we find

P(Z1 = n) =
n∑

j=0

a(j)p(n− j).

To describe the n-step dynamics of the process {Zn} we need convolution notation.

Convolutions

We write a ∗ b for the convolution of two sequences a and b given by

a ∗ b (n) :=
n∑

j=0

b(j)a(n− j) =
n∑

j=0

a(j)b(n− j)

and ak∗ for the kth convolution of a with itself.

By decomposing successively over the values of the first n variables Z0, . . . , Zn−1 and
using the independence of the increments Yi we have that

P(Zk = n) = a ∗ pk∗ (n).
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Two chains with appropriate regeneration associated with the renewal process are the
forward recurrence time chain, sometimes called the residual lifetime process, and the
backward recurrence time chain, sometimes called the age process.

Forward and backward recurrence time chains

If {Zn} is a discrete time renewal process, then the forward recurrence
time chain V+ = V +(n), n ∈ ZZ+, is given by

(RT1) V +(n) := inf(Zm − n : Zm > n), n ≥ 0

and the backward recurrence time chain V− = V −(n), n ∈ ZZ+, is given
by

(RT2) V −(n) := inf(n− Zm : Zm ≤ n), n ≥ 0.

The dynamics of motion for V+ and V− are particularly simple.
If V +(n) = k for k > 1 then, in a purely deterministic fashion, one time unit

later the forward recurrence time to the next renewal has come down to k − 1. If
V +(n) = 1 then a renewal occurs at n+1: therefore the time to the next renewal has
the distribution p of an arbitrary Yj , and this is the distribution also of V +(n + 1) .
For the backward chain, the motion is reversed: the chain increases by one, or ages,
with the conditional probability of a renewal failing to take place, and drops to zero
with the conditional probability that a renewal occurs. We define the laws of these
chains formally in Section 3.3.1.

The regeneration property at each renewal epoch ensures that both V+ and V−

are Markov chains; and, unlike the renewal process itself, these chains are stable under
straightforward conditions, as we shall see.

Renewal theory is traditionally of great importance in countable space Markov
chain theory: the same is true in general spaces, as will become especially apparent in
Part III. We only use those aspects which we require in what follows, but for a much
fuller treatment of renewal and regeneration see Kingman [136] or Lindvall [155].

2.4.2 The GI/G/1, GI/M/1 and M/G/1 queues

The theory of queueing systems provides an explicit and widely used example of the
random walk models introduced in Section 1.2.3, and we will develop the application
of Markov chain and process theory to such models, and related storage and dam
models, as another of the central examples of this book.
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These models indicate for the first time the need, in many physical processes,
to take care in choosing the timepoints at which the process is analyzed: at some
“regeneration” time-points, the process may be “Markovian”, whilst at others there
may be a memory of the past influencing the future.

In the modeling of queues, to use a Markov chain approach we can make cer-
tain distributional assumptions (and specifically assumptions that some variables are
exponential) to generate regeneration times at which the Markovian forgetfulness
property holds. We develop such models in some detail, as they are fundamental
examples of the use of regeneration in utilizing the Markovian assumption.

Let us first consider a general queueing model to illustrate why such assumptions
may be needed.

Queueing Model Assumptions

Suppose the following assumptions hold.

(Q1) Customers arrive into a service operation at timepoints
T0 = 0, T0 + T1, T0 + T1 + T2, . . . where the interarrival
times Ti, i ≥ 1, are independent and identically distributed
random variables, distributed as a random variable T with
G(−∞, t] = P(T ≤ t).

(Q2) The nth customer brings a job requiring service Sn where
the service times are independent of each other and of the
interarrival times, and are distributed as a variable S with
distribution H(−∞, t] = P(S ≤ t).

(Q3) There is one server and customers are served in order of
arrival.

Then the system is called a GI/G/1 queue.

The notation and many of the techniques here were introduced by Kendall [128, 129]:
GI for general independent input, G for general service time distributions, and 1 for a
single server system. There are many ways of analyzing this system: see Asmussen [10]
or Cohen [54] for comprehensive treatments.

Let N(t) be the number of customers in the queue at time t, including the cus-
tomers being served. This is clearly a process in continuous time. A typical sample
path for {N(t), t ≥ 0}, under the assumption that the first customer arrives at t = 0,
is shown in Figure 2.10, where we denote by T ′

i , the arrival times

T ′
i = T1 + · · ·+ Ti, i ≥ 1 (2.25)



2.4 Markov Models With Regeneration Times 49

Figure2.10. A typical sample path of the single server queue

and by S′
i the sums of service times

S′
i = S0 + · · ·+ Si, i ≥ 0. (2.26)

Note that, in the sample path illustrated, because the queue empties at S′
2, due to

T ′
3 > S′

2, the point x = T ′
3 + S3 is not S′

3, and the point T ′
4 + S4 is not S′

4, and so on.
Although the process {N(t)} occurs in continuous time, one key to its analysis

through Markov chain theory is the use of embedded Markov chains.
Consider the random variable Nn = N(T ′

n−), which counts customers immedi-
ately before each arrival. By convention we will set N0 = 0 unless otherwise indicated.
We will show that under appropriate circumstances for k ≥ −j

P(Nn+1 = j + k | Nn = j,Nn−1, Nn−2, . . . , N0) = pk, (2.27)

regardless of the values of {Nn−1, . . . , N0}. This will establish the Markovian nature
of the process, and indeed will indicate that it is a random walk on ZZ+.

Since we consider N(t) immediately before every arrival time, Nn+1 can only
increase from Nn by one unit at most; hence, equation (2.27) holds trivially for k > 1.

For Nn+1 to increase by one unit we need there to be no departures in the time
period T ′

n+1 − T ′
n, and obviously this happens if the job in progress at T ′

n is still in
progress at T ′

n+1.
It is here that some assumption on the service times will be crucial. For it is easy

to show, as we now sketch, that for a general GI/G/1 queue the probability of the
remaining service of the job in progress taking any specific length of time depends,
typically, on when the job began. In general, the past history {Nn−1, . . . , N0} will
provide information on when the customer began service, and this in turn provides
information on how long the customer will continue to be served.
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To see this, consider, for example, a trajectory such as that up to (T ′
1−) on

Figure 2.10, where {Nn = 1, Nn−1 = 0, · · ·}. This tells us that the current job began
exactly at the arrival time T ′

n−2, so that (as at (T ′
2−))

P(Nn+1 = 2 | Nn = 1, Nn−1 = 0) = P(Sn−2 > Tn+1 + Tn | Sn−2 > Tn). (2.28)

However, a history such as {Nn = 1, Nn−1 = 1, Nn−2 = 0}, such as occurs up to (T ′
5−)

on Figure 2.10, shows that the current job began within the interval (T ′
n, T

′
n−1), and

so for some z < Tn (given by T ′
5 − x on Figure 2.10), the behavior at (T ′

6−) has the
probability

P(Nn+1 = 2 | Nn = 1, Nn−1 = 1, Nn−2 = 0) = P(Sn > Tn+1 + z | Sn > z). (2.29)

It is clear that for most distributions H of the service times Si, if we know Tn+1 = t
and Tn = t′ > z

P(Sn > t+ z | Sn > z) 
= P(Sn > t+ t′ | Sn > t′); (2.30)

so N = {Nn} is not a Markov chain, since from equation (2.28) and equation (2.29)
the different information in the events {Nn = 1, Nn−1 = 0} and {Nn = 1, Nn−1 =
1, Nn−2 = 0} (which only differ in the past rather than the present position) leads to
different probabilities of transition.

There is one case where this does not happen. If both sides of (2.30) are identical
so that the time until completion of service is quite independent of the time already
taken, then the extra information from the past is of no value.

This leads us to define a specific class of models for which N is Markovian.

GI/M/1 Assumption

(Q4) If the distribution H(−∞, t] of service times is exponential
with

H(−∞, t] = 1− e−µt, t ≥ 0

then the queue is called a GI/M/1 queue.

Here the M stands for Markovian, as opposed to the previous “general” assumption.
If we can now make assumption (Q4) that we have a GI/M/1 queue, then the

well-known “loss of memory” property of the exponential shows that, for any t, z,

P(Sn > t+ z | Sn > z) = e−µ(t+z)/e−µz = e−µt.

In this way, the independence and identical distribution structure of the service times
show that, no matter which previous customer was being served, and when their
service started, there will be some z such that
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P(Nn+1 = j + 1 | Nn = j,Nn−1, . . .) = P(S > T + z | S > z)

=
∫∞
0 e−µt G(dt)

(2.31)

independent of the value of z in any given realization, as claimed in equation (2.27).
This same reasoning can be used to show that, if we know Nn = j, then for

0 < i ≤ j, we will find Nn+1 = i provided j − i+ 1 customers leave in the interarrival
time (T ′

n, T
′
n+1). This corresponds to (j − i+ 1) jobs being completed in this period,

and the (j− i+1)th job continuing past the end of the period. The probability of this
happening, using the forgetfulness of the exponential, is independent of the amount of
time the service is in place at time T ′

n has already consumed, and thus N is Markovian.
A similar construction holds for the chain N∗ = {N∗

n} defined by taking the
number in the queue immediately after the nth service time is completed. This will be
a Markov chain provided the number of arrivals in each service time is independent
of the times of the arrivals prior to the beginning of that service time. As above, we
have such a property if the inter-arrival time distribution is exponential, leading us
to distinguish the class of M/G/1 queues, where again the M stands for a Markovian
inter-arrival assumption.

M/G/1 Assumption

(Q5) If the distribution G(−∞, t] of inter-arrival times is expo-
nential with

G(−∞, t] = 1− e−λt, t ≥ 0

then the queue is called an M/G/1 queue.

The actual probabilities governing the motion of these queueing models will be de-
veloped in Chapter 3.

2.4.3 The Moran dam

The theory of storage systems provides another of the central examples of this book,
and is closely related to the queueing models above.

The storage process example is one where, although the time of events happening
(that is, inputs occurring) is random, between those times there is a deterministic
motion which leads to a Markovian representation at the input times which always
form regeneration points.

A simple model for storage (the “Moran dam” [189, 10]) has the following ele-
ments. We assume there is a sequence of input times T0 = 0, T0 +T1, T0 +T1 +T2 . . . ,
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at which there is input into a storage system, and that the inter-arrival times Ti,
i ≥ 1, are independent and identically distributed random variables, distributed as a
random variable T with G(−∞, t] = P(T ≤ t).

At the nth input time, the amount of input Sn has a distribution H(−∞, t] =
P(Sn ≤ t); the input amounts are independent of each other and of the interarrival
times. Between inputs, there is steady withdrawal from the storage system, at a rate
r: so that in a time period [x, x+ t], the stored contents drop by an amount rt since
there is no input.

When a path of the contents process reaches zero, the process continues to take
the value zero until it is replenished by a positive input.

This model is a simplified version of the way in which a dam works; it is also a
model for an inventory, or for any other similar storage system.

The basic storage process operates in continuous time: to render it Markovian we
analyze it at specific timepoints when it (probabilistically) regenerates, as follows.

Simple Storage Models

(SSM1) For each n ≥ 0 let Sn and Tn be independent random
variables on IR with distributions H and G as above.

(SSM2) Define the random variables

Φn+1 = [Φn + Sn − Jn]+

where the variables Jn are independent and identically dis-
tributed, with

P(Jn ≤ x) = G(−∞, x/r] (2.32)

for some r > 0.

Then the chain Φ = {Φn} represents the contents of a storage system at
the times {Tn−} immediately before each input, and is called the simple
storage model .

The independence of Sn+1 from Sn−1, Sn−2, . . . and the construction rules (SSM1)
and (SSM2) ensure as before that {Φn} is a Markov chain: in fact, it is a specific
example of the random walk on a half line defined by (RWHL1), in the special case
where

Wn = Sn − Jn, n ∈ ZZ+.

It is an important observation here that, in general, the process sampled at other
time points (say, at regular time points) is not a Markov system, since it is crucial in
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Figure2.11. Storage system path with α/β = 2, r = 1

calculating the probabilities of the future trajectory to know how much earlier than
the chosen time-point the last input point occurred: by choosing to examine the chain
embedded at precisely those pre-input times, we lose the memory of the past. This
was discussed in more detail in Section 2.4.2.

We define the mean input by α =
∫∞
0 xH(dx) and the mean output between

inputs by β =
∫∞
0 rxG(dx). In Figure 2.11 and Figure 2.12 we give two sample paths

of storage models with different values of the parameter ratio α/β. The behavior of
the sample paths is quite different for different values of this ratio, which will turn
out to be the crucial quantity in assessing the stability of these models.

2.4.4 Content-dependent release rules

As with time-series models or state space systems, the linearity in the Moran storage
model is clearly a first approximation to a more sophisticated system.

There are two directions in which this can be taken without losing the Markovian
nature of the model.

Again assume there is a sequence of input timepoints T0 = 0, T0 + T1, T0 +
T1 + T2 . . . , and that the interarrival times Ti, i ≥ 1, are independent and identically
distributed random variables, with distribution G.

Then one might assume that, if the contents at the nth input time are given
by Φn = x, the amount of input Sn(x) has a distribution given by Hx(−∞, t] =
P(Sn(x) ≤ t) dependent on x; the input amounts remain independent of each other
and of the interarrival times.
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Figure2.12. Storage system path with α/β = 0.5, r = 1

Alternatively, one might assume that between inputs, there is withdrawal from
the storage system, at a rate r(x) which also depends on the level x at the moment
of withdrawal. This assumption leads to the conclusion that, if there are no inputs,
the deterministic time to reach the empty state from a level x is

R(x) =
∫ x

0
[r(y)]−1dy. (2.33)

Usually we assume R(x) to be finite for all x. Since R is strictly increasing the inverse
function R−1(t) is well-defined for all t, and it follows that the drop in level in a time
period t with no input is given by

Jx(t) = x− q(x, t)

where

q(x, t) = R−1(R(x)− t).

This enables us to use the same type of random walk calculation as for the Moran
dam.

As before, when a path of this storage process reaches zero, the process continues
to take the value zero until it is replenished by a positive input.

It is again necessary to analyze such a model at the times immediately before
each input in order to ensure a Markovian model. The assumptions we might use for
such a model are
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Content-Dependent Storage Models

(CSM1) For each n ≥ 0 let Sn(x) and Tn be independent random
variables on IR with distributions Hx and G as above.

(CSM2) Define the random variables

Φn+1 = [Φn − Jn + Sn(Φn − Jn)]+

where the variables Jn are independently distributed, with

P(Jn ≤ y | Φn = x) =
∫
G(dt)P(Jx(t) ≤ y) (2.34)

Then the chain Φ = {Φn} represents the contents of the
storage system at the times {Tn−} immediately before each
input, and is called the content-dependent storage model.

Such models are studied in [96, 34]. In considering the connections between queueing
and storage models, it is then immediately useful to realize that this is also a model of
the waiting times in a model where the service time varies with the level of demand,
as studied in [38].

2.5 Commentary

We have skimmed the Markovian models in the areas in which we are interested, trying
to tread the thin line between accessibility and triviality. The research literature
abounds with variations on the models we present here, and many of them would
benefit by a more thorough approach along Markovian lines.

For many more models with time series applications, the reader should see Brock-
well and Davis [32], especially Chapter 12; Granger and Anderson for bilinear models
[88]; and for nonlinear models see Tong [267], who considers models similar to those
we have introduced from a Markovian viewpoint, and in particular discusses the bi-
linear and SETAR models. Linear and bilinear models are also developed by Duflo
in [69], with a view towards stability similar to ours. For a development of general
linear systems theory the reader is referred to Caines [39] for a controls perspective,
or Aoki [6] for a view towards time series analysis.

Bilinear models have received a great deal of attention in recent years in both time
series and systems theory. The dependent parameter bilinear model defined by (2.13,
2.12) is called a doubly stochastic autoregressive process of order 1, or DSAR(1), in
Tjøstheim [265]. Realization theory for related models is developed in Guégan [90] and
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Mittnik [186], and the papers Pourahmadi [219], Brandt [28], Meyn and Guo [177],
and Karlsen [123] provide various stability conditions for bilinear models.

The idea of analyzing the nonlinear state space model by examining an associated
control model goes back to Stroock and Varadhan [260] and Kunita [144, 145] in
continuous time. In control and systems models, linear state space models have always
played a central role, while nonlinear models have taken a much more significant role
over the past decade: see Kumar and Varaiya [143], Duflo [69], and Caines [39] for
a development of both linear adaptive control models, and (nonlinear) controlled
Markov chains.

The embedded regeneration time approach has been enormously significant since
its introduction by Kendall in [128, 129]. There are many more sophisticated variations
than those we shall analyze available in the literature. A good recent reference is
Asmussen [10], whilst Cohen [54] is encyclopedic.

The interested reader will find that, although we restrict ourselves to these rel-
atively less complicated models in illustrating the value of Markov chain modeling,
virtually all of our general techniques apply across more complex systems. As one
example, note that the stability of models which are state-dependent, such as the
content-dependent storage model of Section 2.4.4, has only recently received attention
[38], but using the methods developed in later chapters it is possible to characterize
it in considerable detail [178, 180, 181].

The storage models described here can also be thought of, virtually by renaming
the terms, as models for state-dependent inventories, insurance models, and models of
the residual service in a GI/G/1 queue. To see the last of these, consider the amount of
service brought by each customer as the input to the “store” of work to be processed,
and note that the server works through this store of work at a constant rate.

The residual service can be, however, a somewhat minor quantity in a queueing
model, and in Section 3.5.4 below we develop a more complex model which is a better
representation of the dynamics of the GI/G/1 queue.

Added in Second Printing In the last two years there has been a virtual explosion
in the use of general state space Markov chains in simulation methods, and especially
in Markov chain Monte Carlo methods which include Hastings-Metropolis and Gibbs
sampling techniques, which were touched on in Chapter 1.1(f). Any future edition will
need to add these to the collection of models here and examine them in more detail:
the interested reader might look at the recent results [44, 191, 245, 246, 224, 166, 225],
which all provide examples of the type of chains studied in this book.
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Transition Probabilities

As with all stochastic processes, there are two directions from which to approach the
formal definition of a Markov chain.

The first is via the process itself, by constructing (perhaps by heuristic arguments
at first, as in the descriptions in Chapter 2) the sample path behavior and the dynam-
ics of movement in time through the state space on which the chain lives. In some of
our examples, such as models for queueing processes or models for controlled stochas-
tic systems, this is the approach taken. From this structural definition of a Markov
chain, we can then proceed to define the probability laws governing the evolution of
the chain.

The second approach is via those very probability laws. We define them to have
the structure appropriate to a Markov chain, and then we must show that there is
indeed a process, properly defined, which is described by the probability laws initially
constructed. In effect, this is what we have done with the forward recurrence time
chain in Section 2.4.1.

From a practitioner’s viewpoint there may be little difference between the ap-
proaches. In many books on stochastic processes, such as Çinlar [40] or Karlin and
Taylor [122], the two approaches are used, as they usually can be, almost interchange-
ably; and advanced monographs such as Nummelin [202] also often assume some of
the foundational aspects touched on here to be well-understood.

Since one of our goals in this book is to provide a guide to modern general space
Markov chain theory and methods for practitioners, we give in this chapter only
a sketch of the full mathematical construction which provides the underpinning of
Markov chain theory.

However, we also have as another, and perhaps somewhat contradictory, goal the
provision of a thorough and rigorous exposition of results on general spaces, and for
these it is necessary to develop both notation and concepts with some care, even if
some of the more technical results are omitted.

Our approach has therefore been to develop the technical detail in so far as it
is relevant to specific Markov models, and where necessary, especially in techniques
which are rather more measure theoretic or general stochastic process theoretic in
nature, to refer the reader to the classic texts of Doob [68], and Chung [49], or the
more recent exposition of Markov chain theory by Revuz [223] for the foundations we
need. Whilst such an approach renders this chapter slightly less than self-contained,
it is our hope that the gaps in these foundations will be either accepted or easily filled
by such external sources.
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Our main goals in this chapter are thus

(i) to demonstrate that the dynamics of a Markov chain {Φn} can be completely
defined by its one step “transition probabilities”

P (x,A) = P(Φn ∈ A | Φn−1 = x),

which are well-defined for appropriate initial points x and sets A;

(ii) to develop the functional forms of these transition probabilities for many of the
specific models in Chapter 2, based in some cases on heuristic analysis of the
chain and in other cases on development of the probability laws; and

(iii) to develop some formal concepts of hitting times on sets, and the “Strong Markov
Property” for these and related stopping times, which will enable us to address
issues of stability and structure in subsequent chapters.

We shall start first with the formal concept of a Markov chain as a stochastic process,
and move then to the development of the transition laws governing the motion of the
chain; and complete the cycle by showing that if one starts from a set of possible
transition laws then it is possible to move from these to a chain which is well defined
and governed by these laws.

3.1 Defining a Markovian Process

A Markov chain Φ = {Φ0, Φ1, . . .} is a particular type of stochastic process taking, at
times n ∈ ZZ+, values Φn in a state space X.

We need to know and use a little of the language of stochastic processes. A
discrete time stochastic process Φ on a state space is, for our purposes, a collection
Φ = (Φ0, Φ1, . . .) of random variables, with each Φi taking values in X; these random
variables are assumed measurable individually with respect to some given σ-field
B(X), and we shall in general denote elements of X by letters x, y, z, . . . and elements
of B(X) by A,B,C.

When thinking of the process as an entity, we regard values of the whole chain
Φ itself (called sample paths or realizations) as lying in the sequence or path space
formed by a countable product Ω = X∞ =

∏∞
i=0 Xi, where each Xi is a copy of X

equipped with a copy of B(X). For Φ to be defined as a random variable in its own
right, Ω will be equipped with a σ-field F , and for each state x ∈ X, thought of as an
initial condition in the sample path, there will be a probability measure Px such that
the probability of the event {Φ ∈ A} is well-defined for any set A ∈ F ; the initial
condition requires, of course, that Px(Φ0 = x) = 1.

The triple {Ω,F ,Px} thus defines a stochastic process since Ω = {ω0, ω1, . . . :
ωi ∈ X} has the product structure to enable the projections ωn at time n to be well
defined realizations of the random variables Φn.

Many of the models we consider (such as random walk or state space models)
have stochastic motion based on a separately defined sequence of underlying variables,
namely a noise or disturbance or innovation sequence W. We will slightly abuse
notation by using P(W ∈ A) to denote the probability of the event {W ∈ A} without
specifically defining the space on which W exists, or the initial condition of the chain:
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this could be part of the space on which the chain Φ is defined or it could be separate.
No confusion should result from this usage.

Prior to discussing specific details of the probability laws governing the motion
of a chain Φ, we need first to be a little more explicit about the structure of the state
space X on which it takes its values. We consider, systematically, three types of state
spaces in this book:

State Space Definitions

(i) The state space X is called countable if X is discrete, with a finite
or countable number of elements, and with B(X) the σ-field of all
subsets of X.

(ii) The state space X is called general if it is equipped with a countably
generated σ-field B(X).

(iii) The state space X is called topological if it is equipped with a locally
compact, separable, metrizable topology with B(X) as the Borel σ-
field.

It may on the face of it seem odd to introduce quite general spaces before rather than
after topological (or more structured) spaces.

This is however quite deliberate, since (perhaps surprisingly) we rarely find the
extra structure actually increasing the ease of approach. From our point of view, we
introduce topological spaces largely because specific applied models evolve on such
spaces, and for such spaces we will give specific interpretations of our general results,
rather than extending specific topological results to more general contexts.

For example, after framing general properties of sets, we identify these general
properties as holding for compact or open sets if the chain is on a topological space;
or after framing general properties of Φ, we develop the consequences of these when
Φ is suitably continuous with respect to the topology considered.

The first formal introduction of such topological concepts is given in Chapter 6,
and is exemplified by an analysis of linear and nonlinear state space models in Chap-
ter 7. Prior to this we concentrate on countable and general spaces: for purposes of
exposition, our approach will often involve the description of behavior on a countable
space, followed by the development of analogous behavior on a general space, and
completed by specialization of results, where suitable, to more structured topological
spaces in due course.

For some readers, countable space models will be familiar: nonetheless, by de-
veloping the results first in this context, and then the analogues for the less familiar
general space processes on a systematic basis we intend to make the general context
more accessible. By then specializing where appropriate to topological spaces, we
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trust the results will be found more applicable for, say, those models which evolve on
multi-dimensional Euclidean space IRk, or one of its subsets.

There is one caveat to be made in giving this description. One of the major
observations for Markov chains is that in many cases, the full force of a countable
space is not needed: we merely require one “accessible atom” in the space, such as
we might have with the state {0} in the storage models in Section 2.4.1. To avoid
repetition we will often assume, especially later in the book, not the full countable
space structure but just the existence of one such point: the results then carry over
with only notational changes to the countable case.

In formalizing the concept of a Markov chain we pursue this pattern now, first
developing the countable space foundations and then moving on to the slightly more
complex basis for general space chains.

3.2 Foundations on a Countable Space

3.2.1 The initial distribution and the transition matrix

A discrete time Markov chain Φ on a countable state space is a collection Φ =
{Φ0, Φ1, . . .} of random variables, with each Φi taking values in the countable set X.
In this countable state space setting, B(X) will denote the set of all subsets of X.

We assume that for any initial distribution µ for the chain, there exists a proba-
bility measure which denotes the law of Φ on (Ω,F), where F is the product σ-field
on the sample space Ω := X∞. However, since we have to work with several initial
conditions simultaneously, we need to build up a probability space for each initial
distribution.

For a given initial probability distribution µ on B(X), we construct the probability
distribution Pµ on F so that Pµ(Φ0 = x0) = µ(x0) and for any A ∈ F ,

Pµ(Φ ∈ A | Φ0 = x0) = Px0(Φ ∈ A) (3.1)

where Px0 is the probability distribution on F which is obtained when the initial
distribution is the point mass δx0 at x0.

The defining characteristic of a Markov chain is that its future trajectories depend
on its present and its past only through the current value.

To commence to formalize this, we first consider only the laws governing a tra-
jectory of fixed length n ≥ 1. The random variables {Φ0 . . . Φn}, thought of as a
sequence, take values in the space Xn+1 = X0 × · · · × Xn, the (n+ 1)-fold product of
copies Xi of the countable space X, equipped with the product σ-field B(Xn+1) which
consists again of all subsets of Xn+1.

The conditional probability

Pn
x0

(Φ1 = x1, . . . , Φn = xn) := Px0(Φ1 = x1, . . . , Φn = xn), (3.2)

defined for any sequence {x0, . . . , xn} ∈ Xn+1 and x0 ∈ X, and the initial probability
distribution µ on B(X) completely determine the distributions of {Φ0, . . . , Φn}.
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Definition of a Countable Space Markov Chain

The process Φ = (Φ0, Φ1, . . .), taking values in the path space (Ω,F ,P),
is a Markov chain if for every n, and any sequence of states {x0, x1 . . . xn},

Pµ(Φ0 = x0, Φ1 = x1, Φ2 = x2, . . . , Φn = xn)

= µ(x0)Px0(Φ1 = x1)Px1(Φ1 = x2) . . .Pxn−1(Φ1 = xn).
(3.3)

The probability µ is called the initial distribution of the chain.

The process Φ is a time-homogeneous Markov chain if the probabilities
Pxj (Φ1 = xj+1) depend only on the values of xj , xj+1 and are independent
of the timepoints j.

By extending this in the obvious way from events in Xn to events in X∞ we have that
the initial distribution, followed by the probabilities of transitions from one step to
the next, completely define the probabilistic motion of the chain.

If Φ is a time-homogeneous Markov chain, we write

P (x, y) := Px(Φ1 = y);

then the definition (3.3) can be written

Pµ(Φ0 = x0, Φ1 = x1, . . . , Φn = xn)

= µ(x0)P (x0, x1)P (x1, x2) · · ·P (xn−1, xn),
(3.4)

or equivalently, in terms of the conditional probabilities of the process Φ,

Pµ(Φn+1 = xn+1 | Φn = xn, . . . , Φ0 = x0) = P (xn, xn+1). (3.5)

Equation (3.5) incorporates both the “loss of memory” of Markov chains and the
“time-homogeneity” embodied in our definitions. It is possible to mimic this definition,
asking that the Pxj (Φ1 = xj+1) depend on the time j at which the transition takes
place; but the theory for such inhomogeneous chains is neither so ripe nor so clean
as for the chains we study, and we restrict ourselves solely to the time-homogeneous
case in this book.

For a given model we will almost always define the probability Px0 for a fixed
x0 by defining the one-step transition probabilities for the process, and building the
overall distribution using (3.4).

This is done using a Markov transition matrix.
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Transition Probability Matrix

The matrix P = {P (x, y), x, y ∈ X} is called a Markov transition matrix
if

P (x, y) ≥ 0,
∑
z∈X

P (x, z) = 1, x, y ∈ X (3.6)

We define the usual matrix iterates Pn = {Pn(x, y), x, y ∈ X} by setting P 0 = I, the
identity matrix, and then taking inductively

Pn(x, z) =
∑
y∈X

P (x, y)Pn−1(y, z). (3.7)

In the next section we show how to take an initial distribution µ and a transition
matrix P and construct a distribution Pµ so that the conditional distributions of the
process may be computed as in (3.1), and so that for any x, y,

Pµ(Φn = y | Φ0 = x) = Pn(x, y) (3.8)

For this reason, Pn is called the n-step transition matrix. For A ⊆ X, we also put

Pn(x,A) :=
∑
y∈A

Pn(x, y).

3.2.2 Developing Φ from the transition matrix

To define a Markov chain from a transition function we first consider only the laws
governing a trajectory of fixed length n ≥ 1. The random variables {Φ0, . . . , Φn},
thought of as a sequence, take values in the space Xn+1 = X0 × · · · × Xn, equipped
with the σ-field B(Xn+1) which consists of all subsets of Xn+1.

Define the distributions Px of Φ inductively by setting, for each fixed x ∈ X

Px(Φ0 = x) = 1
Px(Φ1 = y) = P (x, y)

Px(Φ2 = z, Φ1 = y) = P (x, y)P (y, z)

and so on. It is then straightforward, but a little lengthy, to check that for each fixed
x, this gives a consistent set of definitions of probabilities Pn

x on (Xn,B(Xn)), and
these distributions can be built up to an overall probability measure Px for each x on
the set Ω =

∏∞
i=0 Xi with σ-field F =

∨∞
i=0 B(Xi), defined in the usual way. Once we

prescribe an initial measure µ governing the random variable Φ0, we can define the
overall measure by
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Pµ(Φ ∈ A) :=
∑
x∈X

µ(x)Px(Φ ∈ A)

to govern the overall evolution of Φ. The formula (3.1) and the interpretation of the
transition function given in (3.8) follow immediately from this construction.

A careful construction is in Chung [49], Chapter I.2. This leads to

Theorem 3.2.1 If X is countable, and

µ = {µ(x), x ∈ X}, P = {P (x, y), x, y ∈ X}

are an initial measure on X and a Markov transition matrix satisfying (3.6) then there
exists a Markov chain Φ on (Ω,F) with probability law Pµ satisfying

Pµ(Φn+1 = y | Φn = x, . . . , Φ0 = x0) = P (x, y).

�

3.3 Specific Transition Matrices

In practice models are often built up by constructing sample paths heuristically, often
for quite complicated processes, such as the queues in Section 2.4.2 and their many
ramifications in the literature, and then calculating a consistent set of transition prob-
abilities. Theorem 3.2.1 then guarantees that one indeed has an underlying stochastic
process for which these probabilities make sense.

To make this more concrete, let us consider a number of the models with Marko-
vian structure introduced in Chapter 2, and illustrate how their transition probabili-
ties may be constructed on a countable space from physical or other assumptions.

3.3.1 The forward and backward recurrence time chains

Recall that the forward recurrence time chain V+ is given by

V +(n) := inf(Zm − n : Zm > n), n ≥ 0

where Zn is a renewal sequence as introduced in Section 2.4.1.
The transition matrix for V+ is particularly simple. If V +(n) = k for some k > 0,

then after one time unit V +(n+1) = k−1. If V +(n) = 1 then a renewal occurs at n+1
and V +(n + 1) has the distribution p of an arbitrary term in the renewal sequence.
This gives the sub-diagonal structure

P =


p(1) p(2) p(3) p(4) . . .
1 0 0 . . .

0
. . . . . .
0 1 0

...
...

. . . . . .


The backward recurrence time chain V− has a similarly simple structure. For any
n ∈ ZZ+, let us write

p(n) =
∑

j≥n+1

p(j). (3.9)
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Write M = sup(m ≥ 1 : p(m) > 0); if M < ∞ then for this chain the state space
X = {0, 1, . . . ,M − 1}; otherwise X = ZZ+. In either case, for x ∈ X we have (with Y
as a generic increment variable in the renewal process)

P (x, x+ 1) = P(Y > x+ 1 | Y > x) = p(x+ 1)/p(x)
P (x, 0) = P(Y = x+ 1 | Y > x) = p(x+ 1)/p(x) (3.10)

and zero otherwise. This gives a superdiagonal matrix of the form

P =


b(1) 1− b(1) 0 0 . . .
b(2) 0 1− b(2) 0 . . .

b(3) 0
. . . 1− b(3)

...
...

. . . . . .


where we have written b(j) = p(j + 1)/p(j).

These particular chains are a rich source of simple examples of stable and unstable
behaviors, depending on the behavior of p; and they are also chains which will be found
to be fundamental in analyzing the asymptotic behavior of an arbitrary chain.

3.3.2 Random walk models

Random walk on the integers Let us define the random walk Φ = {Φn;n ∈ ZZ+}
by setting, as in (RW1), Φn = Φn−1 +Wn where now the increment variables Wn are
i.i.d. random variables taking only integer values in ZZ = {. . . ,−1, 0, 1, . . .}. As usual,
write Γ (y) = P(W = y).

Then for x, y ∈ ZZ, the state space of the random walk,

P (x, y) = P(Φ1 = y | Φ0 = x)
= P(Φ0 +W1 = y | Φ0 = x)
= P(W1 = y − x)
= Γ (y − x). (3.11)

The random walk is distinguished by this translation invariant nature of the transition
probabilities: the probability that the chain moves from x to y in one step depends
only on the difference x− y between the values.

Random walks on a half line It is equally easy to construct the transition prob-
ability matrix for the random walk on the half-line ZZ+, defined in (RWHL1).

Suppose again that {Wi} takes values in ZZ, and recall from (RWHL1) that the
random walk on a half line obeys

Φn = [Φn−1 +Wn]+. (3.12)

Then for y ∈ ZZ+, the state space of the random walk on a half line, we have as in
(3.11) that for y > 0

P (x, y) = Γ (y − x); (3.13)

whilst for y = 0,
P (x, 0) = P(Φ0 +W1 ≤ 0 | Φ0 = x)

= P(W1 ≤ −x)
= Γ (−∞,−x].

(3.14)
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The simple storage model The storage model given by (SSM1)-(SSM2) is a con-
crete example of the structure in (3.13) and (3.14), provided the release rate is r = 1,
the inter-input times take values n ∈ ZZ+ with distribution G, and the input values
are also integer valued with distribution H.

The random walk on a half line describes the behavior of this storage model, and
its transition matrix P therefore defines its one-step behavior. We can calculate the
values of the increment distribution function Γ in a different way, in terms of the
basic parameters G and H of the models, by breaking up the possibilities of the input
time and the input size: we have

Γ (x) = P(Sn − Jn = x)
=

∑∞
i=0 H(i)G(x+ i).

We have rather forced the storage model into our countable space context by assuming
that the variables concerned are integer valued. We will rectify this in later sections.

3.3.3 Embedded queueing models

The GI/M/1 Queue The next context in which we illustrate the construction of
the transition matrix is in the modeling of queues through their embedded chains.

Consider the random variable Nn = N(T ′
n−), which counts customers immedi-

ately before each arrival in a queueing system satisfying (Q1)-(Q3).
We will first construct the matrix P = (P (x, y)) corresponding to the number of

customers N = {Nn} for the GI/M/1 queue; that is, the queue satisfying (Q4).

Proposition 3.3.1 For the GI/M/1 queue, the sequence N = {Nn, n ≥ 0} can be
constructed as a Markov chain with state space ZZ+ and transition matrix

P =


q0 p0

q1 p1 p0 0
q2 p2 p1 p0
...

...
...

. . . . . .


where qj =

∑∞
i=j+1 pi, and

p0 = P(S > T ) =
∫ ∞

0
e−µt G(dt) (3.15)

pj = P{S′
j > T > S′

j−1)

=
∫ ∞

0
{e−µt(µt)j/j!}G(dt), j ≥ 1. (3.16)

Hence N is a random walk on a half line.

Proof In Section 2.4.2 we established the Markovian nature of the increases at
T ′

n−, in (2.27), under the assumption of exponential service times.
Since we consider N(t) immediately before every arrival time, Nn+1 can only

increase from Nn by one unit at most; hence for k > 1 it is trivial that

P(Nn+1 = j + k | Nn = j,Nn−1, Nn−2, . . . , N0) = 0. (3.17)
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The independence and identical distribution structure of the service times show as in
Section 2.4.2 that, no matter which previous customer was being served, and when
their service started,

P(Nn+1 = j + 1 | Nn = j,Nn−1, Nn−2, . . . , N0) =
∫ ∞

0
e−µt G(dt) = p0 (3.18)

as shown in equation (2.31). This establishes the upper triangular structure of P .
If Nn = j, then for 0 < i ≤ j, we have Nn+1 = i provided exactly (j − i + 1)

jobs are completed in an inter-arrival period. It is an elementary property of sums of
exponential random variables (see, for example, Çinlar [40], Chapter 4) that for any
t, the number of services completed in a time [0, t] is Poisson with parameter µt, so
that

P(S0 + · · ·+ Sj+1 > t > S0 + · · ·+ Sj) = e−µt(µt)j/j! (3.19)

from which we derive (3.16).
It remains to show that P (j, 0) = qj =

∑∞
i=j+1 pi; but this follows analogously

with equation (3.16), since the queue empties if more than (j+1) customers complete
service between arrivals.

Finally, to assert that N = {Nn} can actually be constructed in its entirety as a
Markov chain on ZZ+, we appeal to the general results of Theorem 3.2.1 above to build
N from the probabilistic building blocks P = (P (i, j)), and any initial distribution
µ. �

The M/G/1 queue Next consider the random variables N∗
n, which count customers

immediately after each service time ends in a queueing system satisfying (Q1)-(Q3).
We showed in Section 2.4.2 that this is Markovian when the inter-arrival times

are exponential: that is, for an M/G/1 model satisfying (Q5).

Proposition 3.3.2 For the M/G/1 queue, the sequence N∗ = {N∗
n, n ≥ 0} can be

constructed as a Markov chain with state space ZZ+ and transition matrix

P =


q0 q1 q2 q3 q4 . . .
q0 q1 q2 q3 q4 . . .

q0 q1 q2 q3 . . .
q0 q1 q2 . . .

...
...

...
. . . . . .


where for each j ≥ 0

qj =
∫ ∞

0
{e−λt(λt)j/j!}H(dt) j ≥ 1. (3.20)

Hence N∗ is similar to a random walk on a half line, but with a different modification
of the transitions away from zero.

Proof Exactly as in (3.19), the expressions qk represent the probabilities of k
arrivals occurring in one service time with distribution H, when the interarrival times
are independent exponential variables of rate λ. �
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3.3.4 Linear models on the rationals

The discussion of the queueing models above not only gives more explicit examples of
the abstract random walk models, but also indicates how the Markov assumption may
or may not be satisfied, depending on how the process is constructed: we need the
exponential distributions for the basic building blocks, or we do not have probabilities
of transition independent of the past.

In contrast, for the simple scalar linear AR(1) models satisfying (SLM1) and
(SLM2), the Markovian nature of the process is immediate. The use of a countable
space here is in the main inappropriate, but some versions of this model do provide a
good source of examples and counterexamples which motivate the various topological
conditions we introduce in Chapter 6. Recall then that for an AR(1) model Xn and
Wn are random variables on IR, satisfying

Xn = αXn−1 +Wn,

for some α ∈ IR, with the “noise” variables {Wn} independent and identically dis-
tributed. To use the countable structure of Section 3.2 we might assume, as with the
storage model in Section 3.3.2 above, that α is integer valued, and the noise variables
are also integer valued.

Or, if we need to assume a countable structure on X we might, for example, find
a better fit to reality by supposing that the constant α takes a rational value; and
that the generic noise variable W also has a distribution on the rationals Q, with
P(W = q) = Γ (q), q ∈ Q. We then have, in a very straightforward manner

Proposition 3.3.3 Provided x0 ∈ Q, the sequence X = {Xn, n ≥ 0} can be con-
structed as a time homogeneous Markov chain on the countable space Q, with transi-
tion probability matrix

P (r, q) = P(Xn+1 = q | Xn = r)
= Γ (q − αr), r, q ∈ Q.

Proof We have established that X is Markov. Clearly, from (SLM1), when X0 ∈
Q, the value of X1 is in Q also; and P (r, q) merely describes the fact that the chain
moves from r to αr in a deterministic way before adding the noise with distribution
W .

Again, once we have P = {P (r, q), r, q ∈ Q}, we are guaranteed the existence
of the Markov chain X, using the results of Theorem 3.2.1 with P as transition
probability matrix. �

This autoregression highlights immediately the shortcomings of the countable
state space structure. Although Q is countable, so that in a formal sense we can
construct a linear model satisfying (SLM1) and (SLM2) on Q in such a way that we
can use countable space Markov chain theory, it is clearly more natural to take, say,
α as real and the variable W as real-valued also, so that Xn is real-valued for any
initial x0 ∈ IR.

To model such processes, and the more complex autoregressions and nonlinear
models which generalize them in Chapter 2, and which are clearly Markovian but
continuous-valued in conception, we need a theory for continuous-valued Markov
chains. We turn to this now.
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3.4 Foundations for General State Space Chains

3.4.1 Developing Φ from transition probabilities

The countable space approach guides the development of the theory we shall present
in this book for a much broader class of Markov chains, on quite general state spaces:
it is one of the more remarkable features of this seemingly sweeping generalization that
the great majority of the countable state space results carry over virtually unchanged,
without assuming any detailed structure on the space.

We let X be a general set, and B(X) denote a countably generated σ-field on X:
when X is topological, then B(X) will be taken as the Borel σ-field, but otherwise it
may be arbitrary.

In this case we again start from the one-step transition probabilities and construct
Φ much as in Theorem 3.2.1.

Transition Probability Kernels

If P = {P (x,A), x ∈ X, A ∈ B(X)} is such that

(i) for each A ∈ B(X), P ( · , A) is a non-negative measurable function on
X

(ii) for each x ∈ X, P (x, · ) is a probability measure on B(X)

then we call P a transition probability kernel or Markov transition func-
tion.

On occasion, as in Chapter 6, we may require that a collection T = {T (x,A), x ∈
X, A ∈ B(X)} satisfies (i) and (ii), with the exception that T (x,X) ≤ 1 for each x:
such a collection is called a substochastic transition kernel. In the other direction,
there will be times when we need to consider completely non-probabilistic mappings
K: X × B(X) → IR+ with K(x, · ) a measure on B(X) for each x, and K( · , B) a
measurable function on X for each B ∈ B(X). Such a map is called a kernel on
(X,B(X)).

We now imitate the development on a countable space to see that from the
transition probability kernel P we can define a stochastic process with the appropriate
Markovian properties, for which P will serve as a description of the one-step transition
laws.

We first define a finite sequence Φ = {Φ0, Φ1, . . . , Φn} of random variables on the
product space Xn+1 =

∏n
i=0 Xi, equipped with the product σ-field

∨n
i=0 B(Xi), by an

inductive procedure.
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For any measurable sets Ai ⊆ Xi, we develop the set functions Pn
x(·) on Xn+1 by

setting, for a fixed starting point x ∈ X and for the “cylinder sets” A1 × · · · ×An

P1
x(A1) = P (x,A1),

P2
x(A1 ×A2) =

∫
A1

P (x, dy1)P (y1, A2),

...

Pn
x(A1 × · · · ×An) =

∫
A1

P (x, dy1)
∫

A2

P (y1, dy2) · · ·P (yn−1, An).

These are all well-defined by the measurability of the integrands P ( · , · ) in the first
variable, and the fact that the kernels are measures in the second variable.

If we now extend Pn
x to all of

∨n
0 B(Xi) in the usual way [25] and repeat this

procedure for increasing n, we find

Theorem 3.4.1 For any initial measure µ on B(X), and any transition probabil-
ity kernel P = {P (x,A), x ∈ X, A ∈ B(X)}, there exists a stochastic process
Φ = {Φ0, Φ1, . . .} on Ω =

∏∞
i=0 Xi, measurable with respect to F =

∨∞
i=0 B(Xi), and a

probability measure Pµ on F such that Pµ(B) is the probability of the event {Φ ∈ B}
for B ∈ F ; and for measurable Ai ⊆ Xi, i = 0, . . . , n, and any n

Pµ(Φ0 ∈ A0, Φ1 ∈ A1, . . . , Φn ∈ An) (3.21)

=
∫

y0∈A0

· · ·
∫

yn−1∈An−1

µ(dy0)P (y0, dy1) · · ·P (yn−1, An).

Proof Because of the consistency of definition of the set functions Pn
x, there is an

overall measure Px for which the Pn
x are finite dimensional distributions, which leads

to the result: the details are relatively standard measure theoretic constructions, and
are given in the general case by Revuz [223], Theorem 2.8 and Proposition 2.11;
whilst if the space has a suitable topology, as in (MC1), then the existence of Φ is a
straightforward consequence of Kolmogorov’s Consistency Theorem for construction
of probabilities on topological spaces. �

The details of this construction are omitted here, since it suffices for our purposes
to have indicated why transition probabilities generate processes, and to have spelled
out that the key equation (3.21) is a reasonable representation of the behavior of the
process in terms of the kernel P .

We can now formally define

Markov Chains on General Spaces

The stochastic process Φ defined on (Ω,F) is called a time-homogeneous
Markov chain with transition probability kernel P (x,A) and initial dis-
tribution µ if the finite dimensional distributions of Φ satisfy (3.21) for
every n.
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3.4.2 The n-step transition probability kernel

As on countable spaces the n-step transition probability kernel is defined iteratively.
We set P 0(x,A) = δx(A), the Dirac measure defined by

δx(A) =

{
1 x ∈ A
0 x /∈ A,

(3.22)

and, for n ≥ 1, we define inductively

Pn(x,A) =
∫
X
P (x, dy)Pn−1(y,A), x ∈ X, A ∈ B(X). (3.23)

We write Pn for the n-step transition probability kernel {Pn(x,A), x ∈ X, A ∈ B(X)}:
note that Pn is defined analogously to the n-step transition probability matrix for
the countable space case.

As a first application of the construction equations (3.21) and (3.23), we have the
celebrated Chapman-Kolmogorov equations. These underlie, in one form or another,
virtually all of the solidarity structures we develop.

Theorem 3.4.2 For any m with 0 ≤ m ≤ n,

Pn(x,A) =
∫
X
Pm(x, dy)Pn−m(y,A), x ∈ X, A ∈ B(X). (3.24)

Proof In (3.21), choose µ = δx and integrate over sets Ai = X for i = 1, . . . , n−1;
and use the definition of Pm and Pn−m for the first m and the last n−m integrands.

�
We interpret (3.24) as saying that, as Φ moves from x into A in n steps, at any

intermediate time m it must take (obviously) some value y ∈ X; and that, being a
Markov chain, it forgets the past at that time m and moves the succeeding (n−m)
steps with the law appropriate to starting afresh at y. We can write equation (3.24)
alternatively as

Px(Φn ∈ A) =
∫
X

Px(Φm ∈ dy)Py(Φn−m ∈ A). (3.25)

Exactly as the one-step transition probability kernel describes a chain Φ, the m-step
kernel (viewed in isolation) satisfies the definition of a transition kernel, and thus
defines a Markov chain Φm = {Φm

n } with transition probabilities

Px(Φm
n ∈ A) = Pmn(x,A). (3.26)

This, and several other transition functions obtained from P , will be used widely in
the sequel.
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Skeletons and Resolvents

The chain Φm with transition law (3.26) is called the m-skeleton of the
chain Φ.

The resolvent Kaε is defined for 0 < ε < 1 by

Kaε(x,A) := (1− ε)
∞∑
i=0

εiP i(x,A), x ∈ X, A ∈ B(X).

The Markov chain with transition function Kaε is called the Kaε-chain.

This nomenclature is taken from the continuous-time literature, but we will see that
in discrete time the m-skeletons and resolvents of the chain also provide a useful tool
for analysis.

There is one substantial difference in moving to the general case from the count-
able case, which flows from the fact that the kernel Pn can no longer be viewed as
symmetric in its two arguments.

In the general case the kernel Pn operates on quite different entities from the left
and the right. As an operator Pn acts on both bounded measurable functions f on
X and on σ-finite measures µ on B(X) via

Pnf (x) =
∫
X
Pn(x, dy)f(y), µPn (A) =

∫
X
µ(dx)Pn(x,A),

and we shall use the notation Pnf, µPn to denote these operations. We shall also
write

Pn(x, f) :=
∫
Pn(x, dy)f(y) := δxP

nf

if it is notationally convenient. In general, the functional notation is more compact:
for example, we can rewrite the Chapman-Kolmogorov equations as

Pm+n = PmPn, m, n ∈ ZZ+.

On many occasions, though, where we feel that the argument is more transparent
when written in full form we shall revert to the more detailed presentation.

The form of the Markov chain definitions we have given to date concern only
the probabilities of events involving Φ. We now define the expectation operation Eµ

corresponding to Pµ.
For cylinder sets we define Eµ by

Eµ[1lA0×···×An(Φ0, . . . , Φn)] := Pµ({Φ0, . . . , Φn} ∈ A0 × · · · ×An),

where 1lB denotes the indicator function of a set B. We may extend the definition to
that of Eµ[h(Φ0, Φ1, . . .)] for any measurable bounded real-valued function h on Ω by
requiring that the expectation be linear.
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By linearity of the expectation, we can also extend the Markovian relationship
(3.21) to express the Markov property in the following equivalent form. We omit the
details, which are routine.

Proposition 3.4.3 If Φ is a Markov chain on (Ω,F), with initial measure µ, and
h:Ω → IR is bounded and measurable, then

Eµ[h(Φn+1, Φn+2, . . .) | Φ0, . . . , Φn; Φn = x] = Ex[h(Φ1, Φ2, . . .)]. (3.27)

�

The formulation of the Markov concept itself is made much simpler if we develop
more systematic notation for the information encompassed in the past of the process,
and if we introduce the “shift operator” on the space Ω.

For a given initial distribution, define the σ-field

FΦ
n := σ(Φ0, . . . , Φn) ⊆ B(Xn+1)

which is the smallest σ-field for which the random variable {Φ0, . . . , Φn} is measurable.
In many cases, FΦ

n will coincide with B(Xn), although this depends in particular on
the initial measure µ chosen for a particular chain.

The shift operator θ is defined to be the mapping on Ω defined by

θ({x0, x1, . . . , xn, . . .}) = {x1, x2, . . . , xn+1, . . .}.

We write θk for the kth iterate of the mapping θ, defined inductively by

θ1 = θ, θk+1 = θ ◦ θk, k ≥ 1.

The shifts θk define operators on random variables H on (Ω,F , Pµ) by

(θkH)(w) = H ◦ θk(ω).

It is obvious that Φn ◦ θk(ω) = Φn+k. Hence if the random variable H is of the form
H = h(Φ0, Φ1, . . .) for a measurable function h on the sequence space Ω then

θkH = h(Φk, Φk+1, . . .)

Since the expectation Ex[H] is a measurable function on X, it follows that EΦn [H] is
a random variable on (Ω,F ,Pµ) for any initial distribution. With this notation the
equation

Eµ[θnH | FΦ
n ] = EΦn [H] a.s. [Pµ] (3.28)

valid for any bounded measurable h and fixed n ∈ ZZ+, describes the time homoge-
neous Markov property in a succinct way.

It is not always the case that FΦ
n is complete: that is, contains every set of Pµ-

measure zero. We adopt the following convention as in [223]. For any initial measure
µ we say that an event A occurs Pµ-a.s. to indicate that Ac is a set contained in an
element of FΦ

n which is of Pµ-measure zero.
If A occurs Px-a.s. for all x ∈ X then we write that A occurs P∗-a.s.
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3.4.3 Occupation, hitting and stopping times

The distributions of the chain Φ at time n are the basic building blocks of its existence,
but the analysis of its behavior concerns also the distributions at certain random times
in its evolution, and we need to introduce these now.

Occupation Times, Return Times and Hitting Times

(i) For any set A ∈ B(X), the occupation time ηA is the number of visits
by Φ to A after time zero, and is given by

ηA :=
∞∑

n=1

1l{Φn ∈ A}.

(ii) For any set A ∈ B(X), the variables

τA := min{n ≥ 1 : Φn ∈ A}
σA := min{n ≥ 0 : Φn ∈ A}

are called the first return and first hitting times on A, respectively.

For every A ∈ B(X), ηA, τA and σA are obviously measurable functions from Ω to
ZZ+ ∪ {∞}.

Unless we need to distinguish between different returns to a set, then we call τA
and σA the return and hitting times on A respectively. If we do wish to distinguish
different return times, we write τA(k) for the random time of the kth visit to A: these
are defined inductively for any A by

τA(1) := τA

τA(k) := min{n > τA(k − 1) : Φn ∈ A}. (3.29)

Analysis of Φ involves the kernel U defined as

U(x,A) :=
∞∑

n=1

Pn(x,A)

= Ex[ηA] (3.30)

which maps X× B(X) to IR ∪ {∞}, and the return time probabilities

L(x,A) := Px(τA <∞)
= Px(Φ ever entersA). (3.31)
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In order to analyze numbers of visits to sets, we often need to consider the behavior
after the first visit τA to a set A (which is a random time), rather than behavior
after fixed times. One of the most crucial aspects of Markov chain theory is that the
“forgetfulness” properties in equation (3.21) or equation (3.27) hold, not just for fixed
times n, but for the chain interrupted at certain random times, called stopping times,
and we now introduce these ideas.

Stopping Times

A function ζ:Ω → ZZ+ ∪ {∞} is a stopping time for Φ if for any initial
distribution µ the event {ζ = n} ∈ FΦ

n for all n ∈ ZZ+.

The first return and the hitting times on sets provide simple examples of stopping
times.

Proposition 3.4.4 For any set A ∈ B(X), the variables τA and σA are stopping
times for Φ.

Proof Since we have

{τA = n} = ∩n−1
m=1{Φm ∈ Ac} ∩ {Φn ∈ A} ∈ FΦ

n , n ≥ 1
{σA = n} = ∩n−1

m=0{Φm ∈ Ac} ∩ {Φn ∈ A} ∈ FΦ
n , n ≥ 0

it follows from the definitions that τA and σA are stopping times. �
We can construct the full distributions of these stopping times from the basic

building blocks governing the motion of Φ, namely the elements of the transition
probability kernel, using the Markov property for each fixed n ∈ ZZ+. This gives

Proposition 3.4.5 (i) For all x ∈ X, A ∈ B(X)

Px(τA = 1) = P (x,A),

and inductively for n > 1

Px(τA = n) =
∫

Ac
P (x, dy)Py(τA = n− 1)

=
∫

Ac
P (x, dy1)

∫
Ac
P (y1, dy2) · · ·∫

Ac
P (yn−2, dyn−1)P (yn−1, A).
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(ii) For all x ∈ X, A ∈ B(X)
Px(σA = 0) = 1lA(x)

and for n ≥ 1, x ∈ Ac

Px(σA = n) = Px(τA = n).
�

If we use the kernel IB defined as IB(x,A) := 1lA∩B(x), we have, in more compact
functional notation,

Px(τA = k) = [(PIAc)k−1P ] (x,A).

From this we obtain the formula

L(x,A) :=
∞∑

k=1

[(PIAc)k−1P ] (x,A)

for the return time probability to a set A starting from the state x.
The simple Markov property (3.28) holds for any bounded measurable h and fixed

n ∈ ZZ+. We now extend (3.28) to stopping times.
If ζ is an arbitrary stopping time, then the fact that our time-set is ZZ+ enables

us to define the random variable Φζ by setting Φζ = Φn on the event {ζ = n}. For a
stopping time ζ the property which tells us that the future evolution of Φ after the
stopping time depends only on the value of Φζ , rather than on any other past values,
is called the Strong Markov Property.

To describe this formally, we need to define the σ-field FΦ
ζ := {A ∈ F : {ζ =

n} ∩A ∈ FΦ
n , n ∈ ZZ+}, which describes events which happen “up to time ζ”.

For a stopping time ζ and a random variable H = h(Φ0, Φ1, . . .) the shift θζ is
defined as

θζH = h(Φζ , Φζ+1, . . .),

on the set {ζ <∞}. The required extension of (3.28) is then

The Strong Markov Property

We say Φ has the Strong Markov Property if for any initial distribution µ,
any real-valued bounded measurable function h on Ω, and any stopping
time ζ,

Eµ[θζH | FΦ
ζ ] = EΦζ

[H] a.s. [Pµ], (3.32)

on the set {ζ <∞}.

Proposition 3.4.6 For a Markov chain Φ with discrete time parameter, the Strong
Markov Property always holds.
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Proof This result is a simple consequence of decomposing the expectations on
both sides of (3.32) over the set where {ζ = n}, and using the ordinary Markov
property, in the form of equation (3.28), at each of these fixed times n. �

We are not always interested only in the times of visits to particular sets. Often
the quantities of interest involve conditioning on such visits being in the future.

Taboo Probabilities

We define the n-step taboo probabilities as

AP
n(x,B) := Px(Φn ∈ B, τA ≥ n), x ∈ X, A,B ∈ B(X).

The quantity AP
n(x,B) denotes the probability of a transition to B in n steps of the

chain, “avoiding” the set A. As in Proposition 3.4.5 these satisfy the iterative relation

AP
1(x,B) = P (x,B)

and for n > 1

AP
n(x,B) =

∫
Ac
P (x, dy)AP

n−1(y,B), x ∈ X, A,B ∈ B(X), (3.33)

or, in operator notation, AP
n(x,B) = [(PIAc)n−1P ](x,B).

We will also use extensively the notation

UA(x,B) :=
∞∑

n=1

AP
n(x,B), x ∈ X, A,B ∈ B(X); (3.34)

note that this extends the definition of L in (3.31) since

UA(x,A) = L(x,A), x ∈ X.

3.5 Building Transition Kernels For Specific Models

3.5.1 Random walk on a half line

Let Φ be a random walk on a half line, where now we do not restrict the increment
distribution to be integer-valued. Thus {Wi} is a sequence of i.i.d. random variables
taking values in IR = (−∞,∞), with distribution function Γ (A) = P(W ∈ A),
A ∈ B(IR).

For any A ⊆ (0,∞), we have by the arguments we have used before



3.5 Building Transition Kernels For Specific Models 77

P (x,A) = P(Φ0 +W1 ∈ A | Φ0 = x)
= P(W1 ∈ A− x)
= Γ (A− x), (3.35)

whilst

P (x, {0}) = P(Φ0 +W1 ≤ 0 | Φ0 = x)
= P(W1 ≤ −x)
= Γ (−∞,−x]. (3.36)

These models are often much more appropriate in applications than random walks
restricted to integer values.

3.5.2 Storage and queueing models

Consider the Moran dam model given by (SSM1)-(SSM2), in the general case where
r > 0, the inter-input times have distribution G; and the input values have distribu-
tion H.

The model of a random walk on a half line with transition probability kernel P
given by (3.36) defines the one-step behavior of the storage model. As for the integer
valued case, we calculate the distribution function Γ explicitly by breaking up the
possibilities of the input time and the input size, to get a similar convolution form
for Γ in terms of G and H:

Γ (A) = P(Sn − Jn ∈ A)

=
∫ ∞

0
G(A/r + y/r)H(dy), (3.37)

where as usual the set A/r := {y : ry ∈ A}.
The model (3.37) is of a storage system, and we have phrased the terms ac-

cordingly. The same transition law applies to the many other models of this form:
inventories, insurance models, and models of the residual service in a GI/G/1 queue,
which were mentioned in Section 2.5.

In Section 3.5.4 below we will develop the transition probability structure for a
more complex system which can also be used to model the dynamics of the GI/G/1
queue.

3.5.3 Renewal processes and related chains

We now consider a real-valued renewal process: this extends the countable space
version of Section 2.4.1 and is closely related to the residual service time mentioned
above.

Let {Y1, Y2, . . .} be a sequence of independent and identical random variables,
now with distribution function Γ concentrated, not on the whole real line nor on
ZZ+, but rather on IR+. Let Y0 be a further independent random variable, with the
distribution of Y0 being Γ0, also concentrated on IR+. The random variables

Zn :=
n∑

i=0

Yi
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are again called a delayed renewal process, with Γ0 being the distribution of the delay
described by the first variable. If Γ0 = Γ then the sequence {Zn} is again referred to
as a renewal process.

As with the integer-valued case, write Γ0 ∗ Γ for the convolution of Γ0 and Γ
given by

Γ0 ∗ Γ (dt) :=
∫ t

0
Γ (dt− s)Γ0(ds) =

∫ t

0
Γ0(dt− s)Γ (ds) (3.38)

and Γn∗ for the nth convolution of Γ with itself. By decomposing successively over
the values of the first n variables Z0, . . . , Zn−1 we have that

P(Zn ∈ dt) = Γ0 ∗ Γn∗ (dt)

and so the renewal measure given by U(−∞, t] =
∑∞

0 Γn∗ (−∞, t] has the interpre-
tation

U [0, t] = E0[number of renewals in [0, t]]

and

Γ0 ∗ U [0, t] = EΓ0 [number of renewals in [0, t]],

where E0 refers to the expectation when the first renewal is at 0, and EΓ0 refers to
the expectation when the first renewal has distribution Γ0.

It is clear that Zn is a Markov chain: its transition probabilities are given by

P (x,A) = P(Zn ∈ A | Zn−1 = x) = Γ (A− x)

and so Zn is a random walk. It is not a very stable one, however, as it moves inexorably
to infinity with each new step.

The forward and backward recurrence time chains, in contrast to the renewal pro-
cess itself, exhibit a much greater degree of stability: they grow, then they diminish,
then they grow again.
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Forward and backward recurrence time chains

If {Zn} is a renewal process with no delay, then we call the process

(RT3)

V +(t) := inf(Zn − t : Zn > t, n ≥ 1), t ≥ 0 (3.39)

the forward recurrence time process; and for any δ > 0, the discrete time
chain V+

δ = {V +
δ (n) = V +(nδ), n ∈ ZZ+} is called the forward recurrence

time δ-skeleton.

We call the process

(RT4)

V −(t) := inf(t− Zn : Zn ≤ t, n ≥ 1), t ≥ 0

the backward recurrence time process; and for any δ > 0, the discrete
time chain V−

δ = {V −
δ (n) = V −(nδ), n ∈ ZZ+} is called the backward

recurrence time δ-skeleton.

No matter what the structure of the renewal sequence (and in particular, even if Γ is
not exponential), the forward and backward recurrence time δ-skeletons V+

δ and V−
δ

are Markovian.
To see this for the forward chain, note that if x > δ, then the transition proba-

bilities P δ of V+
δ are merely

P δ(x, {x− δ}) = 1

whilst if x ≤ δ we have, by decomposing over the time and the index of the last
renewal in the period after the current forward recurrence time finishes, and using
the independence of the variables Yi

P δ(x,A) =
∫ δ−x

0

∞∑
n=0

Γn∗ (dt)Γ (A− [δ − x]− t)

=
∫ δ−x

0
U(dt)Γ (A− [δ − x]− t). (3.40)

For the backward chain we have similarly that for all x

P(V −(nδ) = x+ δ | V −((n− 1)δ) = x) = Γ (x+ δ,∞)/Γ (x,∞)

whilst for dv ⊂ [0, δ]

P(V −(nδ) ∈ dv | V −((n− 1)δ) = x) =
∫ x+δ

x
Γ (du)U(dv − (u− x)− δ)

Γ (v,∞)
[Γ (x,∞)]−1

.
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3.5.4 Ladder chains and the GI/G/1 queue

The GI/G/1 queue satisfies the conditions (Q1)-(Q3). Although the residual service
time process of the GI/G/1 queue can be analyzed using the model (3.37), the more
detailed structure involving actual numbers in the queue in the case of general (i.e.
non-exponential) service and input times requires a more complex state space for a
Markovian analysis.

We saw in Section 3.3.3 that when the service time distribution H is exponential,
we can define a Markov chain by

Nn = { number of customers at T ′
n−, n = 1, 2, . . .},

whilst we have a similarly embedded chain after the service times if the inter-arrival
time is exponential. However, the numbers in the queue, even at the arrival or depar-
ture times, are not Markovian without such exponential assumptions.

The key step in the general case is to augment {Nn} so that we do get a Markov
model. This augmentation involves combining the information on the numbers in the
queue with the information in the residual service time

To do this we introduce a bivariate “ladder chain” on a “ladder” space ZZ+ × IR,
with a countable number of rungs indexed by the first variable and with each rung
constituting a copy of the real line.

This construction is in fact more general than that for the GI/G/1 queue alone,
and we shall use the ladder chain model for illustrative purposes on a number of
occasions.

Define the Markov chain Φ = {Φn} on ZZ+ × IR with motion defined by the
transition probabilities P (i, x; j ×A), i, j ∈ ZZ+, x ∈ IR, A ∈ B(IR) given by

P (i, x; j ×A) = 0 j > i+ 1
P (i, x; j ×A) = Λi−j+1(x,A), j = 1, . . . , i+ 1 (3.41)
P (i, x; 0×A) = Λ∗

i (x,A).

where each of the Λi, Λ
∗
i is a substochastic transition probability kernel on IR in its

own right.
The translation invariant and “skip-free to the right” nature of the movement of

this chain, incorporated in (3.42), indicates that it is a generalization of those random
walks which occur in the GI/M/1 queue, as delineated in Proposition 3.3.1. We have

P =


Λ∗

0 Λ0

Λ∗
1 Λ1 Λ0 0

Λ∗
2 Λ2 Λ1 Λ0

...
...

...
. . . . . .


where now the Λi, Λ

∗
i are substochastic transition probability kernels rather than mere

scalars.
To use this construction in the GI/G/1 context we write

Φn = (Nn, Rn), n ≥ 1

where as before Nn is the number of customers at T ′
n− and
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Rn = {total residual service time in the system at T ′
n+} :

then Φ = {Φn;n ∈ ZZ+} can be realised as a Markov chain with the structure (3.42),
as we now demonstrate by constructing the transition kernel P explicitly.

As in (Q1)-(Q3) let H denote the distribution function of service times, and G
denote the distribution function of interarrival times; and let Z1, Z2, Z3, . . . denote
an undelayed renewal process with Zn − Zn−1 = Sn having the service distribution
function H, as in (2.26). This differs from the process of completion points of services
in that the latter may have longer intervals when there is no customer present, after
completion of a busy cycle.

Let Rt denote the forward recurrence time in the renewal process {Zk} at time t
in this process, i.e., Rt = ZN(t)+1 − t, where N(t) = sup{n : Zn ≤ t} as in (3.39). If
R0 = x then Z1 = x. Now write

P t
n(x, y) = P(Zn ≤ t < Zn+1, Rt ≤ y | R0 = x) (3.42)

for the probability that, in this renewal process n “service times” are completed in
[0, t] and that the residual time of current service at t is in [0, y], given R0 = x.

With these definitions it is easy to verify that the chain Φ has the form (3.42)
with the specific choice of the substochastic transition kernels Λi, Λ

∗
i given by

Λn(x, [0, y]) =
∫ ∞

0
P t

n(x, y)G(dt) (3.43)

and

Λ∗
n(x, [0, y]) =

[ ∞∑
n+1

Λj(x, [0,∞))
]
H[0, y]. (3.44)

3.5.5 State space models

The simple nonlinear state space model is a very general model and, consequently, its
transition function has an unstructured form until we make more explicit assumptions
in particular cases. The general functional form which we construct here for the scalar
SNSS(F ) model of Section 2.2.1 will be used extensively, as will the techniques which
are used in constructing its form.

For any bounded and measurable function h: X → IR we have from (SNSS1),

h(Xn+1) = h(F (Xn,Wn+1))

Since {Wn} is assumed i.i.d. in (SNSS2) we see that

Ph (x) = E[h(Xn+1) | Xn = x]
= E[h(F (x,W ))]

where W is a generic noise variable. Since Γ denotes the distribution of W , this
becomes

Ph (x) =
∫ ∞

−∞
h(F (x,w))Γ (dw)

and by specializing to the case where h = 1lA, we see that for any measurable set A
and any x ∈ X,
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P (x,A) =
∫ ∞

−∞
1l{F (x,w) ∈ A}Γ (dw).

To construct the k-step transition probability, recall from (2.5) that the transi-
tion maps for the SNSS(F ) model are defined by setting F0(x) = x, F1(x0, w1) =
F (x0, w1), and for k ≥ 1,

Fk+1(x0, w1, . . . wk+1) = F (Fk(x0, w1, . . . wk), wk+1)

where x0 and wi are arbitrary real numbers. By induction we may show that for any
initial condition X0 = x0 and any k ∈ ZZ+,

Xk = Fk(x0,W1, . . . ,Wk),

which immediately implies that the k-step transition function may be expressed as

P k(x,A) = P(Fk(x,W1, . . . ,Wk) ∈ A)

=
∫
· · ·

∫
1l{Fk(x,w1, . . . , wk) ∈ A}Γ (dw1) . . . Γ (dwk) (3.45)

3.6 Commentary

The development of foundations in this chapter is standard. The existence of the
excellent accounts in Chung [49] and Revuz [223] renders it far less necessary for us
to fill in specific details.

The one real assumption in the general case is that the σ-field B(X) is countably
generated. For many purposes, even this condition can be relaxed, using the device of
“admissible σ-fields” discussed in Orey [208], Chapter 1. We shall not require, for the
models we develop, the greater generality of non-countably generated σ-fields, and
leave this expansion of the concepts to the reader if necessary.

The Chapman-Kolmogorov equations, simple though they are, hold the key to
much of the analysis of Markov chains. The general formulation of these dates to
Kolmogorov [139]: David Kendall comments [132] that the physicist Chapman was
not aware of his role in this terminology, which appears to be due to work on the
thermal diffusion of grains in a non-uniform fluid.

The Chapman-Kolmogorov equations indicate that the set Pn is a semigroup of
operators just as the corresponding matrices are, and in the general case this obser-
vation enables an approach to the theory of Markov chains through the mathematical
structures of semigroups of operators. This has proved a very fruitful method, espe-
cially for continuous time models. However, we do not pursue that route directly in
this book, nor do we pursue the possibilities of the matrix structure in the countable
case.

This is largely because, as general non-negative operators, the Pn often do not act
on useful spaces for our purposes. The one real case where the Pn operate successfully
on a normed space occurs in Chapter 16, and even there the space only emerges after
a probabilistic argument is completed, rather than providing a starting point for
analysis.

Foguel [79, 81] has a thorough exposition of the operator-theoretic approach to
chains in discrete time, based on their operation on L1 spaces. Vere-Jones [283, 284]
has a number of results based on the action of a matrix P as a non-negative operator
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on sequence spaces suitably structured, but even in this countable case results are
limited. Nummelin [202] couches many of his results in a general non-negative operator
context, as does Tweedie [272, 273], but the methods are probabilistic rather than
using traditional operator theory.

The topological spaces we introduce here will not be considered in more detail
until Chapter 6. Very many of the properties we derive will actually need less structure
than we have imposed in our definition of “topological” spaces: often (see for example
Tuominen and Tweedie [269]) all that is required is a countably generated topology
with the T1 separability property. The assumptions we make seem unrestrictive in
practice, however, and avoid occasional technicalities of proof.

Hitting times and their properties are of prime importance in all that follows. On
a countable space Chung [49] has a detailed account of taboo probabilities, and much
of our usage follows his lead and that of Nummelin [202], although our notation differs
in minor ways from the latter. In particular our τA is, regrettably, Nummelin’s SA

and our σA is Nummelin’s TA; our usage of τA agrees, however, with that of Chung
[49] and Asmussen [10], and we hope is the more standard.

The availability of the Strong Markov Property is vital for much of what follows.
Kac is reported as saying [35] that he was fortunate, for in his day all processes had
the Strong Markov Property: we are equally fortunate that, with a countable time
set, all chains still have the Strong Markov Property.

The various transition matrices that we construct are well-known. The reader
who is not familiar with such concepts should read, say, Çinlar [40], Karlin and Taylor
[122] or Asmussen [10] for these and many other not dissimilar constructions in the
queueing and storage area. For further information on linear stochastic systems the
reader is referred to Caines [39]. The control and systems areas have concentrated
more intensively on controlled Markov chains which have an auxiliary input which is
chosen to control the state process Φ. Once a control is applied in this way, the “closed
loop system” is frequently described by a Markov chain as defined in this chapter.
Kumar and Varaiya [143] is a good introduction, and the article by Arapostathis et al
[7] gives an excellent and up to date survey of the controlled Markov chain literature.
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Irreducibility

This chapter is devoted to the fundamental concept of irreducibility: the idea that all
parts of the space can be reached by a Markov chain, no matter what the starting
point. Although the initial results are relatively simple, the impact of an appropriate
irreducibility structure will have wide-ranging consequences, and it is therefore of
critical importance that such structures be well understood.

The results summarized in Theorem 4.0.1 are the highlights of this chapter from
a theoretical point of view. An equally important aspect of the chapter is, however, to
show through the analysis of a number of models just what techniques are available
in practice to ensure the initial condition of Theorem 4.0.1 (“ϕ-irreducibility”) holds,
and we believe that these will repay equally careful consideration.

Theorem 4.0.1 If there exists an “irreducibility” measure ϕ on B(X) such that for
every state x

ϕ(A) > 0 ⇒ L(x,A) > 0 (4.1)

then there exists an essentially unique “maximal” irreducibility measure ψ on B(X)
such that

(i) for every state x we have L(x,A) > 0 whenever ψ(A) > 0, and also

(ii) if ψ(A) = 0, then ψ(Ā) = 0, where

Ā := {y : L(y,A) > 0} ;

(iii) if ψ(Ac) = 0, then A = A0 ∪N where the set N is also ψ-null, and the set A0

is absorbing in the sense that

P (x,A0) ≡ 1, x ∈ A0.

Proof The existence of a measure ψ satisfying the irreducibility conditions (i)
and (ii) is shown in Proposition 4.2.2, and that (iii) holds is in Proposition 4.2.3. �

The term “maximal” is justified since we will see that ϕ is absolutely continuous
with respect to ψ, written ψ � ϕ, for every ϕ satisfying (4.1); here the relation of
absolute continuity of ϕ with respect to ψ means that ψ(A) = 0 implies ϕ(A) = 0.

Verifying (4.1) is often relatively painless. State space models on IRk for which
the noise or disturbance distribution has a density with respect to Lebesgue measure
will typically have such a property, with ϕ taken as Lebesgue measure restricted to
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an open set (see Section 4.4, or in more detail, Chapter 7); chains with a regeneration
point α reached from everywhere will satisfy (4.1) with the trivial choice of ϕ = δα
(see Section 4.3).

The extra benefit of defining much more accurately the sets which are avoided by
“most” points, as in Theorem 4.0.1 (ii), or of knowing that one can omit ψ-null sets
and restrict oneself to an absorbing set of “good” points as in Theorem 4.0.1 (iii),
is then of surprising value, and we use these properties again and again. These are
however far from the most significant consequences of the seemingly innocuous as-
sumption (4.1): far more will flow in Chapter 5, and thereafter.

The most basic structural results for Markov chains, which lead to this formal-
ization of the concept of irreducibility, involve the analysis of communicating states
and sets. If one can tell which sets can be reached with positive probability from
particular starting points x ∈ X, then one can begin to have an idea of how the chain
behaves in the longer term, and then give a more detailed description of that longer
term behavior.

Our approach therefore commences with a description of communication between
sets and states which precedes the development of irreducibility.

4.1 Communication and Irreducibility: Countable Spaces

When X is general, it is not always easy to describe the specific points or even sets
which can be reached from different starting points x ∈ X. To guide our development,
therefore, we will first consider the simpler and more easily understood situation when
the space X is countable; and to fix some of these ideas we will initially analyze briefly
the communication behavior of the random walk on a half line defined by (RWHL1),
in the case where the increment variable takes on integer values.

4.1.1 Communication: random walk on a half line

Recall that the random walk on a half line Φ is constructed from a sequence of i.i.d.
random variables {Wi} taking values in ZZ = (. . . ,−2,−1, 0, 1, 2, . . .), by setting

Φn = [Φn−1 +Wn]+. (4.2)

We know from Section 3.3.2 that this construction gives, for y ∈ ZZ+,

P (x, y) = P(W1 = y − x),
P (x, 0) = P(W1 ≤ −x). (4.3)

In this example, we might single out the set {0} and ask: can the chain ever reach
the state {0}?

It is transparent from the definition of P (x, 0) that {0} can be reached with
positive probability, and in one step, provided the distribution Γ of the increment
{Wn} has an infinite negative tail. But suppose we have, not such a long tail, but
only P(Wn < 0) > 0, with, say,

Γ (w) = δ > 0 (4.4)

for some w < 0. Then we have for any x that after n = [x/w] steps,
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Px(Φn = 0) ≥ P(W1 = w,W2 = w, . . . ,Wn = w) = δn > 0

so that {0} is always reached with positive probability.
On the other hand, if P(Wn < 0) = 0 then it is equally clear that {0} cannot

be reached with positive probability from any starting point other than 0. Hence
L(x, 0) > 0 for all states x or for none, depending on whether (4.4) holds or not.

But we might also focus on points other than {0}, and it is then possible that
a number of different sorts of behavior may occur, depending on the distribution of
W . If we have P(W = y) > 0 for all y ∈ ZZ then from any state there is positive
probability of Φ reaching any other state at the next step. But suppose we have the
distribution of the increments {Wn} concentrated on the even integers, with

P(W = 2y) > 0, P(W = 2y + 1) = 0, y ∈ ZZ,

and consider any odd valued state, say w. In this case w cannot be reached from any
even valued state, even though from w itself it is possible to reach every state with
positive probability, via transitions of the chain through {0}.

Thus for this rather trivial example, we already see X breaking into two subsets
with substantially different behavior: writing ZZ0

+ = {2y, y ∈ ZZ+} and ZZ1
+ = {2y +

1, y ∈ ZZ+} for the set of non-negative even and odd integers respectively, we have

ZZ+ = ZZ0
+ ∪ ZZ1

+,

and from y ∈ ZZ1
+, every state may be reached, whilst for y ∈ ZZ0

+, only states in ZZ0
+

may be reached with positive probability.
Why are these questions of importance?
As we have already seen, the random walk on a half line above is one with many

applications: recall that the transition matrices of N = {Nn} and N∗ = {N∗
n}, the

chains introduced in Section 2.4.2 to describe the number of customers in GI/M/1
and M/G/1 queues, have exactly the structure described by (4.3).

The question of reaching {0} is then clearly one of considerable interest, since
it represents exactly the question of whether the queue will empty with positive
probability. Equally, the fact that when {Wn} is concentrated on the even integers
(representing some degenerate form of batch arrival process) we will always have an
even number of customers has design implications for number of servers (do we always
want to have two?), waiting rooms and the like.

But our efforts should and will go into finding conditions to preclude such odd-
ities, and we turn to these in the next section, where we develop the concepts of
communication and irreducibility in the countable space context.

4.1.2 Communicating classes and irreducibility

The idea of a Markov chain Φ reaching sets or points is much simplified when X
is countable and the behavior of the chain is governed by a transition probability
matrix P = P (x, y), x, y ∈ X. There are then a number of essentially equivalent ways
of defining the operation of communication between states.

The simplest is to say that state x leads to state y, which we write as x → y, if
L(x, y) > 0, and that two distinct states x and y in X communicate, written x ↔ y,
when L(x, y) > 0 and L(y, x) > 0. By convention we also define x→ x.
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The relation x ↔ y is often defined equivalently by requiring that there exists
n(x, y) ≥ 0 and m(y, x) ≥ 0 such that Pn(x, y) > 0 and Pm(y, x) > 0; that is,∑∞

n=0 P
n(x, y) > 0 and

∑∞
n=0 P

n(y, x) > 0.

Proposition 4.1.1 The relation “↔” is an equivalence relation, and so the equiva-
lence classes C(x) = {y : x↔ y} cover X, with x ∈ C(x).

Proof By convention x ↔ x for all x. By the symmetry of the definition, x ↔ y
if and only if y ↔ x.

Moreover, from the Chapman-Kolmogorov relationships (3.24) we have that if
x↔ y and y ↔ z then x↔ z. For suppose that x→ y and y → z, and choose n(x, y)
and m(y, z) such that Pn(x, y) > 0 and Pm(y, z) > 0. Then we have from (3.24)

Pn+m(x, z) ≥ Pn(x, y)Pm(y, z) > 0

so that x→ z: the reverse direction is identical. �
Chains for which all states communicate form the basis for future analysis.

Irreducible Spaces and Absorbing Sets

If C(x) = X for some x, then we say that X (or the chain {Xn}) is
irreducible.

We say C(x) is absorbing if P (y, C(x)) = 1 for all y ∈ C(x).

When states do not all communicate, then although each state in C(x) communicates
with every other state in C(x), it is possible that there are states y ∈ [C(x)]c such
that x→ y. This happens, of course, if and only if C(x) is not absorbing.

Suppose that X is not irreducible for Φ. If we reorder the states according to the
equivalence classes defined by the communication operation, and if we further order
the classes with absorbing classes coming first, then we have a decomposition of P
such as that depicted in Figure 4.1.

Here, for example, the blocks C(1), C(2) and C(3) correspond to absorbing
classes, and block D contains those states which are not contained in an absorbing
class. In the extreme case, a state in D may communicate only with itself, although
it must lead to some other state from which it does not return. We can write this
decomposition as

X =

(∑
x∈I

C(x)

)
∪D (4.5)

where the sum is of disjoint sets.
This structure allows chains to be analyzed, at least partially, through their con-

stituent irreducible classes. We have
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Figure4.1. Block decomposition of P into communicating classes

Proposition 4.1.2 Suppose that C :=C(x) is an absorbing communicating class for
some x ∈ X. Let PC denote the matrix P restricted to the states in C. Then there
exists an irreducible Markov chain ΦC whose state space is restricted to C and whose
transition matrix is given by PC .

Proof We merely need to note that the elements of PC are positive, and∑
y∈C

P (x, y) ≡ 1, x ∈ C

because C is absorbing: the existence of ΦC then follows from Theorem 3.2.1, and
irreducibility of ΦC is an obvious consequence of the communicating class structure
of C. �

Thus for non-irreducible chains, we can analyze at least the absorbing subsets in
the decomposition (4.5) as separate chains.

The virtue of the block decomposition described above lies largely in this assur-
ance that any chain on a countable space can be studied assuming irreducibility. The
“irreducible absorbing” pieces C(x) can then be put together to deduce most of the
properties of a reducible chain.

Only the behavior of the remaining states in D must be studied separately, and
in analyzing stability D may often be ignored. For let J denote the indices of the
states for which the communicating classes are not absorbing. If the chain starts in
D =

⋃
y∈J C(y), then one of two things happens: either it reaches one of the absorbing

sets C(x), x ∈ X\J , in which case it gets absorbed: or, as the only other alternative,
the chain leaves every finite subset of D and “heads to infinity”.
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To see why this might hold, observe that, for any fixed y ∈ J , there is some
state z ∈ C(y) with P (z, [C(y)]c) = δ > 0 (since C(y) is not an absorbing class), and
Pm(y, z) = β > 0 for some m > 0 (since C(y) is a communicating class). Suppose
that in fact the chain returns a number of times to y: then, on each of these returns,
one has a probability greater than βδ of leaving C(y) exactly m+ 1 steps later, and
this probability is independent of the past due to the Markov property.

Now, as is well known, if one tosses a coin with probability of a head given by
βδ infinitely often, then one eventually actually gets a head: similarly, one eventually
leaves the class C(y), and because of the nature of the relation x ↔ y, one never
returns.

Repeating this argument for any finite set of states in D indicates that the chain
leaves such a finite set with probability one.

There are a number of things that need to be made more rigorous in order for
this argument to be valid: the forgetfulness of the chain at the random time of
returning to y, giving the independence of the trials, is a form of the Strong Markov
Property in Proposition 3.4.6, and the so-called “geometric trials argument” must be
formalized, as we will do in Proposition 8.3.1 (iii).

Basically, however, this heuristic sketch is sound, and shows the directions in
which we need to go: we find absorbing irreducible sets, and then restrict our atten-
tion to them, with the knowledge that the remainder of the states lead to clearly
understood and (at least from a stability perspective) somewhat irrelevant behavior.

4.1.3 Irreducible models on a countable space

Some specific models will illustrate the concepts of irreducibility. It is valuable to
notice that, although in principle irreducibility involves Pn for all n, in practice we
usually find conditions only on P itself that ensure the chain is irreducible.

The forward recurrence time model Let p be the increment distribution of a
renewal process on ZZ+, and write

r = sup(n : p(n) > 0). (4.6)

Then from the definition of the forward recurrence chain it is immediate that the set
A = {1, 2, . . . , r} is absorbing, and the forward recurrence chain restricted to A is
irreducible: for if x, y ∈ A, with x > y then P x−y(x, y) = 1 whilst

P y+r−x(y, x) > P y−1(y, 1)p(r)P r−x(r, x) = p(r) > 0. (4.7)

Queueing models Consider the number of customers N in the GI/M/1 queue. As
shown in Proposition 3.3.1, we have P (x, x+ 1) = p0 > 0, and so the structure of N
ensures that by iteration, for any x > 0

P x(0, x) > P (0, 1)P (1, 2) . . . P (x− 1, x) = [p0]x > 0.

But we also have P (x, 0) > 0 for any x ≥ 0: hence we conclude that for any pair
x, y ∈ X, we have

P y+1(x, y) > P (x, 0)P y(0, y) > 0.
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Thus the chain N is irreducible no matter what the distribution of the interarrival
times.

A similar approach shows that the embedded chain N∗ of the M/G/1 queue is
always irreducible.

Unrestricted random walk Let d be the greatest common divisor of {n : Γ (n) >
0}. If we have a random walk on ZZ with increment distribution Γ , each of the sets
Dr = {md + r,m ∈ ZZ} for each r = 0, 1, . . . , d − 1 is absorbing, so that the chain is
not irreducible.

However, provided Γ (−∞, 0) > 0 and Γ (0,∞) > 0 the chain is irreducible when
restricted to any one Dr. To see this we can use Lemma D.7.4: since Γ (md) > 0 for
all m > m0 we only need to move m0 steps to the left and then we can reach all
states in Dr above our starting point in one more step. Hence this chain admits a
finite number of irreducible absorbing classes.

For a different type of behavior, let us suppose we have an increment distribution
on the integers, P(Wn = x) > 0, x ∈ ZZ, so that d = 1; but assume the chain itself is
defined on the whole set of rationals Q.

If we start at a value q ∈ Q then Φ “lives” on the set C(q) = {n + q, n ∈ ZZ},
which is both absorbing and irreducible: that is, we have P (q, C(q)) = 1, q ∈ Q, and
for any r ∈ C(q), P (r, q) > 0 also.

Thus this chain admits a countably infinite number of absorbing irreducible
classes, in contrast to the behavior of the chain on the integers.

4.2 ψ-Irreducibility

4.2.1 The concept of ϕ-irreducibility

We now wish to develop similar concepts of irreducibility on a general space X. The
obvious problem with extending the ideas of Section 4.1.2 is that we cannot define
an analogue of “↔”, since, although we can look at L(x,A) to decide whether a set
A is reached from a point x with positive probability, we cannot say in general that
we return to single states x.

This is particularly the case for models such as the linear models for which the
n-step transition laws typically have densities; and even for some of the models such
as storage models where there is a distinguished reachable point, there are usually no
other states to which the chain returns with positive probability.

This means that we cannot develop a decomposition such as (4.5) based on a
countable equivalence class structure: and indeed the question of existence of a so-
called “Doeblin decomposition”

X =

(∑
x∈I

C(x)

)
∪D, (4.8)

with the sets C(x) being a countable collection of absorbing sets in B(X) and the
“remainder” D being a set which is in some sense ephemeral, is a non-trivial one. We
shall not discuss such reducible decompositions in this book although, remarkably,
under a variety of reasonable conditions such a countable decomposition does hold
for chains on quite general state spaces.



4.2 ψ-Irreducibility 91

Rather than developing this type of decomposition structure, it is much more
fruitful to concentrate on irreducibility analogues. The one which forms the basis for
much modern general state space analysis is ϕ-irreducibility.

ϕ-Irreducibility for general space chains

We call Φ = {Φn} ϕ-irreducible if there exists a measure ϕ on B(X) such
that, whenever ϕ(A) > 0, we have L(x,A) > 0 for all x ∈ X.

There are a number of alternative formulations of ϕ-irreducibility. Define the transi-
tion kernel

Ka 1
2
(x,A) :=

∞∑
n=0

Pn(x,A)2−(n+1), x ∈ X, A ∈ B(X); (4.9)

this is a special case of the resolvent of Φ introduced in Section 3.4.2, and which
we consider in Section 5.5.1 in more detail. The kernel Ka 1

2
defines for each x a

probability measure equivalent to I(x,A) +U(x,A) =
∑∞

n=0 P
n(x,A), which may be

infinite for many sets A.

Proposition 4.2.1 The following are equivalent formulations of ϕ-irreducibility:

(i) for all x ∈ X, whenever ϕ(A) > 0, U(x,A) > 0;

(ii) for all x ∈ X, whenever ϕ(A) > 0, there exists some n > 0, possibly depending
on both A and x, such that Pn(x,A) > 0;

(iii) for all x ∈ X, whenever ϕ(A) > 0 then Ka 1
2
(x,A) > 0.

Proof The only point that needs to be proved is that if L(x,A) > 0 for all x ∈ Ac

then, since L(x,A) = P (x,A)+
∫
Ac P (x, dy)L(y,A), we have L(x,A) > 0 for all x ∈ X:

thus the inclusion of the zero-time term in Ka 1
2

does not affect the irreducibility. �
We will use these different expressions of ϕ-irreducibility at different times with-

out further comment.

4.2.2 Maximal irreducibility measures

Although seemingly relatively weak, the assumption of ϕ-irreducibility precludes sev-
eral obvious forms of “reducible” behavior. The definition guarantees that “big” sets
(as measured by ϕ) are always reached by the chain with some positive probability, no
matter what the starting point: consequently, the chain cannot break up into separate
“reduced” pieces.
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For many purposes, however, we need to know the reverse implication: that “neg-
ligible” sets B, in the sense that ϕ(B) = 0, are avoided with probability one from
most starting points. This is by no means the case in general: any non-trivial restric-
tion of an irreducibility measure is obviously still an irreducibility measure, and such
restrictions can be chosen to give zero weight to virtually any selected part of the
space.

For example, on a countable space if we only know that x→ x∗ for every x and
some specific state x∗ ∈ X, then the chain is δx∗-irreducible.

This is clearly rather weaker than normal irreducibility on countable spaces, which
demands two-way communication. Thus we now look to measures which are exten-
sions, not restrictions, of irreducibility measures, and show that the ϕ-irreducibility
condition extends in such a way that, if we do have an irreducible chain in the sense
of Section 4.1, then the natural irreducibility measure (namely counting measure) is
generated as a “maximal” irreducibility measure.

The maximal irreducibility measure will be seen to define the range of the chain
much more completely than some of the other more arbitrary (or pragmatic) irre-
ducibility measures one may construct initially.

Proposition 4.2.2 If Φ is ϕ-irreducible for some measure ϕ, then there exists a
probability measure ψ on B(X) such that

(i) Φ is ψ-irreducible;

(ii) for any other measure ϕ′, the chain Φ is ϕ′-irreducible if and only if ψ � ϕ′;

(iii) if ψ(A) = 0, then ψ {y : L(y,A) > 0} = 0;

(iv) the probability measure ψ is equivalent to

ψ′(A) :=
∫
X
ϕ′(dy)Ka 1

2
(y,A),

for any finite irreducibility measure ϕ′.

Proof Since any probability measure which is equivalent to the irreducibility mea-
sure ϕ is also an irreducibility measure, we can assume without loss of generality that
ϕ(X) = 1. Consider the measure ψ constructed as

ψ(A) :=
∫
X
ϕ(dy)K 1

2
(y,A). (4.10)

It is obvious that ψ is also a probability measure on B(X). To prove that ψ has all
the required properties, we use the sets

Ā(k) =

{
y :

k∑
n=1

Pn(y,A) > k−1

}
.

The stated properties now involve repeated use of the Chapman-Kolmogorov equa-
tions. To see (i), observe that when ψ(A) > 0, then from (4.10), there exists some k
such that ϕ(Ā(k)) > 0, since Ā(k) ↑

{
y :

∑
n≥1 P

n(y,A) > 0
}

= X. For any fixed x,
by ϕ-irreducibility there is thus some m such that Pm(x, Ā(k)) > 0. Then we have



4.2 ψ-Irreducibility 93

k∑
n=1

Pm+n(x,A) =
∫
X
Pm(x, dy)

( k∑
n=1

Pn(y,A)
)
≥ k−1Pm(x, Ā(k)) > 0,

which establishes ψ-irreducibility.
Next let ϕ′ be such that Φ is ϕ′-irreducible. If ϕ′(A) > 0, we have

∑
n P

n(y,A) > 0
for all y, and by its definition ψ(A) > 0, whence ψ � ϕ′. Conversely, suppose that
the chain is ψ-irreducible and that ψ � ϕ′. If ϕ′{A} > 0 then ψ{A} > 0 also, and by
ψ-irreducibility it follows that Ka 1

2
(x,A) > 0 for any x ∈ X. Hence Φ is ϕ′-irreducible,

as required in (ii).
Result (iv) follows from the construction (4.10) and the fact that any two maximal

irreducibility measures are equivalent, which is a consequence of (ii).
Finally, we have that∫

X
ψ(dy)Pm(y,A)2−m =

∫
X
ϕ(dy)

∑
n

Pm+n(y,A)2−(n+m+1) ≤ ψ(A)

from which the property (iii) follows immediately. �
Although there are other approaches to irreducibility, we will generally restrict

ourselves, in the general space case, to the concept of ϕ-irreducibility; or rather, we
will seek conditions under which it holds. We will consistently use ψ to denote an
arbitrary maximal irreducibility measure for Φ.

ψ-Irreducibility Notation

(i) The Markov chain is called ψ-irreducible if it is ϕ-irreducible for
some ϕ and the measure ψ is a maximal irreducibility measure
satisfying the conditions of Proposition 4.2.2.

(ii) We write
B+(X) := {A ∈ B(X) : ψ(A) > 0}

for the sets of positive ψ-measure; the equivalence of maximal ir-
reducibility measures means that B+(X) is uniquely defined.

(iii) We call a set A ∈ B(X) full if ψ(Ac) = 0.

(iv) We call a set A ∈ B(X) absorbing if P (x,A) = 1 for x ∈ A.

The following result indicates the links between absorbing and full sets. This result
seems somewhat academic, but we will see that it is often the key to showing that
very many properties hold for ψ-almost all states.

Proposition 4.2.3 Suppose that Φ is ψ-irreducible. Then
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(i) every absorbing set is full,

(ii) every full set contains a non-empty, absorbing set.

Proof If A is absorbing, then were ψ(Ac) > 0, it would contradict the definition
of ψ as an irreducibility measure: hence A is full.

Suppose now that A is full, and set

B = {y ∈ X :
∞∑

n=0

Pn(y,Ac) = 0}.

We have the inclusion B ⊆ A since P 0(y,Ac) = 1 for y ∈ Ac. Since ψ(Ac) = 0, from
Proposition 4.2.2 (iii) we know ψ(B) > 0, so in particular B is non-empty. By the
Chapman-Kolmogorov relationship, if P (y,Bc) > 0 for some y ∈ B, then we would
have ∞∑

n=0

Pn+1(y,Ac) ≥
∫

Bc
P (y, dz)

{ ∞∑
n=0

Pn(z,Ac)
}

which is positive: but this is impossible, and thus B is the required absorbing set. �
If a set C is absorbing and if there is a measure ψ for which

ψ(B) > 0 ⇒ L(x,B) > 0, x ∈ C

then we will call C an absorbing ψ-irreducible set.
Absorbing sets on a general space have exactly the properties of those on a

countable space given in Proposition 4.1.2.

Proposition 4.2.4 Suppose that A is an absorbing set. Let PA denote the kernel P
restricted to the states in A. Then there exists a Markov chain ΦA whose state space
is A and whose transition matrix is given by PA. Moreover, if Φ is ψ-irreducible then
ΦA is ψ-irreducible.

Proof The existence of ΦA is guaranteed by Theorem 3.4.1 since PA(x,A) ≡
1, x ∈ A. If Φ is ψ-irreducible then A is full and the result is immediate by Proposi-
tion 4.2.3. �

The effect of these two propositions is to guarantee the effective analysis of re-
strictions of chains to full sets, and we shall see that this is indeed a fruitful avenue
of approach.

4.2.3 Uniform accessibility of sets

Although the relation x↔ y is not a generally useful one when X is uncountable, since
Pn(x, y) = 0 in many cases, we now introduce the concepts of “accessibility” and,
more usefully, “uniform accessibility” which strengthens the notion of communication
on which ψ-irreducibility is based.

We will use uniform accessibility for chains on general and topological state spaces
to develop solidarity results which are almost as strong as those based on the equiv-
alence relation x↔ y for countable spaces.
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Accessibility

We say that a set B ∈ B(X) is accessible from another set A ∈ B(X) if
L(x,B) > 0 for every x ∈ A;

We say that a set B ∈ B(X) is uniformly accessible from another set
A ∈ B(X) if there exists a δ > 0 such that

inf
x∈A

L(x,B) ≥ δ; (4.11)

and when (4.11) holds we write A � B.

The critical aspect of the relation “A � B” is that it holds uniformly for x ∈ A.
In general the relation “�” is non-reflexive although clearly there may be sets A,B
such that A is uniformly accessible from B and B is uniformly accessible from A.

Importantly, though, the relationship is transitive. In proving this we use the
notation

UA(x,B) =
∞∑

n=1

AP
n(x,B), x ∈ X, A,B ∈ B(X);

introduced in (3.34).

Lemma 4.2.5 If A � B and B � C then A � C.

Proof Since the probability of ever reaching C is greater than the probability of
ever reaching C after the first visit to B, we have

inf
x∈A

UC(x,C) ≥ inf
x∈A

∫
B
UB(x, dy)UC(y, C) ≥ inf

x∈A
UB(y,B) inf

x∈B
UC(y, C) > 0

as required. �
We shall use the following notation to describe the communication structure of

the chain.
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Communicating sets

The set Ā := {x ∈ X : L(x,A) > 0} is the set of points from which A is
accessible.

The set Ā(m) := {x ∈ X :
∑m

n=1 P
n(x,A) ≥ m−1}.

The set A0 := {x ∈ X : L(x,A) = 0} = [Ā]c is the set of points from
which A is not accessible.

Lemma 4.2.6 The set Ā = ∪mĀ(m), and for each m we have Ā(m) � A.

Proof The first statement is obvious, whilst the second follows by noting that for
all x ∈ Ā(m) we have

L(x,A) ≥ Px(τA ≤ m) ≥ m−2.

�
It follows that if the chain is ψ-irreducible, then we can find a countable cover of

X with sets from which any other given set A in B+(X) is uniformly accessible, since
Ā = X in this case.

4.3 ψ-Irreducibility For Random Walk Models

One of the main virtues of ψ-irreducibility is that it is even easier to check than the
standard definition of irreducibility introduced for countable chains. We first illustrate
this using a number of models related to random walk.

4.3.1 Random walk on a half line

Let Φ be a random walk on the half line [0,∞), with transition law as in Section 3.5.
The communication structure of this chain is made particularly easy because of the
“atom” at {0}.

Proposition 4.3.1 The random walk on a half line Φ = {Φn} with increment vari-
able W is ϕ-irreducible, with ϕ(0,∞) = 0, ϕ({0}) = 1, if and only if

P(W < 0) = Γ (−∞, 0) > 0; (4.12)

and in this case if C is compact then C � {0}.
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Proof The necessity of (4.12) is trivial. Conversely, suppose for some δ, ε > 0,
Γ (−∞,−ε) > δ. Then for any n, if x/ε < n,

Pn(x, {0}) ≥ δn > 0.

If C = [0, c] for some c, then this implies for all x ∈ C that

Px(τ0 ≤ c/ε) ≥ δ1+c/ε

so that C � {0} as in Lemma 4.2.6. �
It is often as simple as this to establish ϕ-irreducibility: it is not a difficult con-

dition to confirm, or rather, it is often easy to set up “grossly sufficient” conditions
such as (4.12) for ϕ-irreducibility.

Such a construction guarantees ϕ-irreducibility, but it does not tell us very much
about the motion of the chain. There are clearly many sets other than {0} which the
chain will reach from any starting point. To describe them in this model we can easily
construct the maximal irreducibility measure. By considering the motion of the chain
after it reaches {0} we see that Φ is also ψ-irreducible, where

ψ(A) =
∑
n

Pn(0, A)2−n;

we have that ψ is maximal from Proposition 4.2.2.

4.3.2 Storage models

If we apply the result of Proposition 4.3.1 to the simple storage model defined by
(SSM1) and (SSM2), we will establish ψ-irreducibility provided we have

P(Sn − Jn < 0) > 0.

Provided there is some probability that no input takes place over a period long enough
to ensure that the effect of the increment Sn is eroded, we will achieve δ0-irreducibility
in one step. This amounts to saying that we can “turn off” the input for a period longer
than s whenever the last input amount was s, or that we need a positive probability
of the input remaining turned off for longer than s/r. One sufficient condition for this
is obviously that the distribution H have infinite tails.

Such a construction may fail without the type of conditions imposed here. If, for
example, the input times are deterministic, occurring at every integer time point, and
if the input amounts are always greater than unity, then we will not have an irreducible
system: in fact we will have, in the terms of Chapter 9 below, an evanescent system
which always avoids compact sets below the initial state.

An underlying structure as pathological as this seems intuitively implausible,
of course, and is in any case easily analyzed. But in the case of content-dependent
release rules, it is not so obvious that the chain is always ϕ-irreducible. If we assume
R(x) =

∫ x
0 [r(y)]−1dy < ∞ as in (2.33), then again if we can “turn off” the input

process for longer than R(x) we will hit {0}; so if we have

P(Ti > R(x)) > 0

for all x we have a δ0-irreducible model. But if we allow R(x) = ∞ as we may wish
to do for some release rules where r(x) → 0 slowly as x→ 0, which is not unrealistic,
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then even if the inter-input times Ti have infinite tails, this simple construction will
fail. The empty state will never be reached, and some other approach is needed if we
are to establish ϕ-irreducibility.

In such a situation, we will still get µLeb-irreducibility, where µLeb is Lebesgue
measure, if the inter-input times Ti have a density with respect to µLeb: this can be
determined by modifying the “turning off” construction above. Exact conditions for
ϕ-irreducibility in the completely general case appear to be unknown to date.

4.3.3 Unrestricted random walk

The random walk on a half line, and the various applications of it in storage and
queueing, have a single state reached from all initial points, which forms a natural
candidate to generate an irreducibility measure. The unrestricted random walk re-
quires more analysis, and is an example where the irreducibility measure is not formed
by a simple regenerative structure.

For unrestricted random walk Φ given by

Φk+1 = Φk +Wk+1,

and satisfying the assumption (RW1), let us suppose the increment distribution Γ of
{Wn} has an absolutely continuous part with respect to Lebesgue measure µLeb on
IR, with a density γ which is positive and bounded from zero at the origin; that is,
for some β > 0, δ > 0,

P(Wn ∈ A) ≥
∫

A
γ(x) dx,

and
γ(x) ≥ δ > 0, |x| < β.

Set C = {x : |x| ≤ β/2} : if B ⊆ C, and x ∈ C then

P (x,B) = P (W1 ∈ B − x)

≥
∫

B−x
γ(y) dy

≥ δµLeb(B).

But now, exactly as in the previous example, from any x we can reach C in at most
n = 2|x|/β steps with positive probability, so that µLeb restricted to C forms an
irreducibility measure for the unrestricted random walk.

Such behavior might not hold without a density. Suppose we take Γ concentrated
on the rationals Q, with Γ (r) > 0, r ∈ Q. After starting at a value r ∈ Q the chain
Φ “lives” on the set {r + q, q ∈ Q} = Q so that Q is absorbing. But for any x ∈ IR
the set {x + q, q ∈ Q} = x + Q is also absorbing, and thus we can produce, for this
random walk on IR, an uncountably infinite number of absorbing irreducible sets.

It is precisely this type of behavior we seek to exclude for chains on a general
space, by introducing the concepts of ψ-irreducibility above.

4.4 ψ-Irreducible Linear Models

4.4.1 Scalar models

Let us consider the scalar autoregressive AR(k) model



4.4 ψ-Irreducible Linear Models 99

Yn = α1Yn−1 + α2Yn−2 + . . .+ αkYn−k +Wn,

where α1, . . . , αk ∈ IR, as defined in (AR1). If we assume the Markovian representation
in (2.1), then we can determine conditions for ψ-irreducibility very much as for random
walk.

In practice the condition most likely to be adopted is that the innovation process
W has a distribution Γ with an everywhere positive density. If the innovation process
is Gaussian, for example, then clearly this condition is satisfied. We will see below, in
the more general Proposition 4.4.3, that the chain is then µLeb-irreducible regardless
of the values of α1, . . . , αk.

It is however not always sufficient for ϕ-irreducibility to have a density only
positive in a neighborhood of zero. For suppose that W is uniform on [−1, 1], and
that k = 1 so we have a first order autoregression. If |α1| ≤ 1 the chain will be
µLeb

[−1,1]-irreducible under such a density condition: the argument is the same as for
the random walk. But if |α1| > 1, then once we have an initial state larger than
(|α1| − 1)−1, the chain will monotonically “explode” towards infinity and will not be
irreducible.

This same argument applies to the general model (2.1) if the zeros of the poly-
nomial A(z) = 1−α1z

1−· · ·−αkz
k lie outside of the closed unit disk in the complex

plane C. In this case Yn → 0 as n→∞ when Wn is set equal to zero, and from this
observation it follows that it is possible for the chain to reach [−1, 1] at some time in
the future from every initial condition. If some root of A(z) lies within the open unit
disk in C then again “explosion” will occur and the chain will not be irreducible.

Our argument here is rather like that in the dam model, where we considered
deterministic behavior with the input “turned off”. We need to be able to drive
the chain deterministically towards a center of the space, and then to be able to
ensure that the random mechanism ensures that the behavior of the chain from initial
conditions in that center are comparable.

We formalize this for multidimensional linear models in the rest of this section.

4.4.2 Communication for linear control models

Recall that the linear control model LCM(F ,G) defined in (LCM1) by xk+1 = Fxk +
Guk+1 is called controllable if for each pair of states x0, x

� ∈ X, there exists m ∈
ZZ+ and a sequence of control variables (u�

1, . . . u
�
m) ∈ IRp such that xm = x� when

(u1, . . . um) = (u�
1, . . . u

�
m), and the initial condition is equal to x0.

This is obviously a concept of communication between states for the deterministic
model: we can choose the inputs uk in such a way that all states can be reached from
any starting point. We first analyze this concept for the deterministic control model
then move on to the associated linear state space model LSS(F ,G), where we see
that controllability of LCM(F ,G) translates into ψ-irreducibility of LSS(F ,G) under
appropriate conditions on the noise sequence.

For the LCM(F ,G) model it is possible to decide explicitly using a finite procedure
when such control can be exerted. We use the following rank condition for the pair
of matrices (F,G):
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Controllability for the Linear Control Model

Suppose that the matrices F and G have dimensions n × n and n × p,
respectively.

(LCM3) The matrix

Cn := [Fn−1G | · · · | FG | G] (4.13)

is called the controllability matrix, and the pair of matrices
(F,G) is called controllable if the controllability matrix Cn

has rank n.

It is a consequence of the Cayley Hamilton Theorem, which states that any power F k

is equal to a linear combination of {I, F, . . . , Fn−1}, where n is equal to the dimension
of F (see [39] for details), that (F,G) is controllable if and only if

[F k−1G | · · · | FG | G]

has rank n for some k ∈ ZZ+.

Proposition 4.4.1 The linear control model LCM(F ,G) is controllable if the pair
(F,G) satisfy the rank condition (LCM3).

Proof When this rank condition holds it is straightforward that in the LCM(F ,G)
model any state can be reached from any initial condition in k steps using some control
sequence (u1, . . . , uk), for we have by

xk = F kx0 + [F k−1G | · · · | FG | G]

 u1
...
uk

 (4.14)

and the rank condition implies that the range space of the matrix [F k−1G | · · · | FG |
G] is equal to IRn. �

This gives us as an immediate application

Proposition 4.4.2 The autoregressive AR(k) model may be described by a linear
control model (LCM1), which can always be constructed so that it is controllable.

Proof For the linear control model associated with the autoregressive model de-
scribed by (2.1), the state process x is defined inductively by
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xn =


α1 · · · · · · αk

1 0
. . .

...
0 1 0

xn−1 +


1
0
...
0

un,

and we can compute the controllability matrix Cn of (LCM3) explicitly:

Cn = [Fn−1G | · · · | FG | G] =



ηk−1 · · · η2 η1 1
... · 1 0
η2 ·

...

η1 1
...

1 0 · · · · · · 0


where we define η0 = 1, ηi = 0 for i < 0, and for j ≥ 2,

ηj =
k∑

i=1

αiηj−i.

The triangular structure of the controllability matrix now implies that the linear
control system associated with the AR(k) model is controllable. �

4.4.3 Gaussian linear models

For the LSS(F ,G) model
Xk+1 = FXk +GWk+1

described by (LSS1) and (LSS2) to be ψ-irreducible, we now show that it is sufficient
that the associated LCM(F ,G) model be controllable and the noise sequence W have
a distribution that in effect allows a full cross-section of the possible controls to be
chosen. We return to the general form of this in Section 6.3.2 but address a specific
case of importance immediately. The Gaussian linear state space model is described
by (LSS1) and (LSS2) with the additional hypothesis

Disturbance for the Gaussian state space model

(LSS3) The noise variable W has a Gaussian distribution on IRp

with zero mean and unit variance: that is, W ∼ N(0, I),
where I is the p× p identity matrix.

If the dimension p of the noise were the same as the dimension n of the space, and if
the matrix G were full rank, then the argument for scalar models in Section 4.4 would
immediately imply that the chain is µLeb-irreducible. In more general situations we
use controllability to ensure that the chain is µLeb-irreducible.
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Proposition 4.4.3 Suppose that the LSS(F ,G) model is Gaussian and the associated
control model is controllable.

Then the LSS(F ,G) model is ϕ-irreducible for any non-trivial measure ϕ which
possesses a density on IRn, Lebesgue measure is a maximal irreducibility measure, and
for any compact set A and any set B with positive Lebesgue measure we have A � B.

Proof If we can prove that the distribution P k(x, · ) is absolutely continuous
with respect to Lebesgue measure, and has a density which is everywhere positive
on IRn, it will follow that for any ϕ which is non-trivial and also possesses a density,
P k(x, · ) � ϕ for all x ∈ IRn: for any such ϕ the chain is then ϕ-irreducible. This
argument also shows that Lebesgue measure is a maximal irreducibility measure for
the chain.

Under condition (LSS3), for each deterministic initial condition x0 ∈ X = IRn,
the distribution of Xk is also Gaussian for each k ∈ ZZ+ by linearity, and so we need
only to prove that P k(x, · ) is not concentrated on some lower dimensional subspace
of IRn. This will happen if and only if the variance of the distribution P k(x, · ) is of
full rank for each x.

We can compute the mean and variance of Xk to obtain conditions under which
this occurs. Using (4.14) and (LSS3), for each initial condition x0 ∈ X the conditional
mean of Xk is easily computed as

µk(x0) := Ex0 [Xk] = F kx0 (4.15)

and the conditional variance of Xk is given independently of x0 by

Σk := Ex0 [(Xk − µk(x0))(Xk − µk(x0))�] =
k−1∑
i=0

F iGG�F i�. (4.16)

Using (4.16), the variance of Xk has full rank n for some k if and only if the control-
lability grammian, defined as

∞∑
i=0

F iGG�F i�, (4.17)

has rank n. From the Cayley Hamilton Theorem again, the conditional variance of
Xk has rank n for some k if and only if the pair (F,G) is controllable and, if this is
the case, then one can take k = n.

Under (LSS1)-(LSS3), it thus follows that the k-step transition function possesses
a smooth density; we have P k(x, dy) = pk(x, y)dy where

pk(x, y) = (2π|Σk|)−k/2 exp{−1
2(y − F kx)�Σ−1

k (y − F kx)} (4.18)

and |Σk| denotes the determinant of the matrix Σk. Hence P k(x, · ) has a density
which is everywhere positive, as required, and this implies finally that for any compact
set A and any set B with positive Lebesgue measure we have A � B. �

Assuming, as we do in the result above, that W has a density which is every-
where positive is clearly something of a sledge hammer approach to obtaining ψ-
irreducibility, even though it may be widely satisfied. We will introduce more delicate
methods in Chapter 7 which will allow us to relax the conditions of Proposition 4.4.3.

Even if (F,G) is not controllable then we can obtain an irreducible process, by
appropriate restriction of the space on which the chain evolves, under the Gaussian
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assumption. To define this formally, we let X0 ⊂ X denote the range space of the
controllability matrix:

X0 = R([Fn−1G | · · · | FG | G])

=
{n−1∑

i=0

F iGwi : wi ∈ IRp
}
,

which is also the range space of the controllability grammian. If x0 ∈ X0 then so is
Fx0 +Gw1 for any w1 ∈ IRp. This shows that the set X0 is absorbing, and hence the
LSS(F,G) model may be restricted to X0.

The restricted process is then described by a linear state space model, similar to
(LSS1), but evolving on the space X0 whose dimension is strictly less than n. The
matrices (F0, G0) which define the dynamics of the restricted process are a controllable
pair, so that by Proposition 4.4.3, the restricted process is µLeb-irreducible.

4.5 Commentary

The communicating class concept was introduced in the initial development of count-
able chains by Kolmogorov [140] and used systematically by Feller [76] and Chung
[49] in developing solidarity properties of states in such a class.

The use of ψ-irreducibility as a basic tool for general chains was essentially de-
veloped by Doeblin [65, 67], and followed up by many authors, including Doob [68],
Harris [95], Chung [48], Orey [207]. Much of their analysis is considered in greater de-
tail in later chapters. The maximal irreducibility measure was introduced by Tweedie
[272], and the result on full sets is given in the form we use by Nummelin [202].
Although relatively simple they have wide-ranging implications.

Other notions of irreducibility exist for general state space Markov chains. One
can, for example, require that the transition probabilities

K 1
2
(x, ·) =

∞∑
n=0

Pn(x, ·)2−(n+1)

all have the same null sets. In this case the maximal measure ψ will be equivalent to
K 1

2
(x, ·) for every x. This was used by Nelson [192] and Šidák [238] to derive solidarity

properties for general state space chains similar to those we will consider in Part II.
This condition, though, is hard to check, since one needs to know the structure of
Pn(x, ·) in some detail; and it appears too restrictive for the minor gains it leads to.

In the other direction, one might weaken ϕ-irreducibility by requiring only that,
whenever ϕ(A) > 0, we have

∑
n P

n(x,A) > 0 only for ϕ-almost all x ∈ X. Whilst
this expands the class of “irreducible” models, it does not appear to be noticeably
more useful in practice, and has the drawback that many results are much harder to
prove as one tracks the uncountably many null sets which may appear. Revuz [223]
Chapter 3 has a discussion of some of the results of using this weakened form.

The existence of a block decomposition of the form

X =

(∑
x∈I

C(x)

)
∪D
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such as that for countable chains, where the sum is of disjoint irreducible sets and D
is in some sense ephemeral, has been widely studied. A recent overview is in Meyn
and Tweedie [182], and the original ideas go back, as so often, to Doeblin [67], after
whom such decompositions are named. Orey [208], Chapter 9, gives a very accessible
account of the measure-theoretic approach to the Doeblin decomposition.

Application of results for ψ-irreducible chains has become more widespread re-
cently, but the actual usage has suffered a little because of the somewhat inadequate
available discussion in the literature of practical methods of verifying ψ-irreducibility.
Typically the assumptions are far too restrictive, as is the case in assuming that in-
novation processes have everywhere positive densities or that accessible regenerative
atoms exist (see for example Laslett et al [153] for simple operations research models,
or Tong [267] in time series analysis).

The detailed analysis of the linear model begun here illustrates one of the recur-
ring themes of this book: the derivation of stability properties for stochastic models
by consideration of the properties of analogous controlled deterministic systems. The
methods described here have surprisingly complete generalizations to nonlinear mod-
els. We will come back to this in Chapter 7 when we characterize irreducibility for
the NSS(F ) model using ideas from nonlinear control theory.

Irreducibility, whilst it is a cornerstone of the theory and practice to come, is
nonetheless rather a mundane aspect of the behavior of a Markov chain. We now
explore some far more interesting consequences of the conditions developed in this
chapter.



5

Pseudo-atoms

Much Markov chain theory on a general state space can be developed in complete
analogy with the countable state situation when X contains an atom for the chain Φ.

Atoms

A set α ∈ B(X) is called an atom for Φ if there exists a measure ν on
B(X) such that

P (x,A) = ν(A), x ∈ α.

If Φ is ψ-irreducible and ψ(α) > 0 then α is called an accessible atom.

A single point α is always an atom. Clearly, when X is countable and the chain is
irreducible then every point is an accessible atom.

On a general state space, accessible atoms are less frequent. For the random walk
on a half line as in (RWHL1), the set {0} is an accessible atom when Γ (−∞, 0) > 0:
as we have seen in Proposition 4.3.1, this chain has ψ({0}) > 0. But for the random
walk on IR when Γ has a density, accessible atoms do not exist.

It is not too strong to say that the single result which makes general state space
Markov chain theory as powerful as countable space theory is that there exists an
“artificial atom” for ϕ-irreducible chains, even in cases such as the random walk with
absolutely continuous increments. The highlight of this chapter is the development of
this result, and some of its immediate consequences.

Atoms are found for “strongly aperiodic” chains by constructing a “split chain”
Φ̌ evolving on a split state space X̌ = X0∪X1, where X0 and X1 are copies of the state
space X, in such a way that

(i) the chain Φ is the marginal chain of Φ̌, in the sense that P(Φk ∈ A) = P(Φ̌k ∈
A0 ∪A1) for appropriate initial distributions, and
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(ii) the “bottom level” X1 is an accessible atom for Φ̌.

The existence of a splitting of the state space in such a way that the bottom level is
an atom is proved in the next section. The proof requires the existence of so-called
“small sets” C, which have the property that there exists an m > 0, and a minorizing
measure ν on B(X) such that for any x ∈ C,

Pm(x,B) ≥ ν(B). (5.1)

In Section 5.2, we show that, provided the chain is ψ-irreducible

X =
∞⋃
1

Ci

where each Ci is small: thus we have that the splitting is always possible for such
chains.

Another non-trivial consequence of the introduction of small sets is that on a
general space we have a finite cyclic decomposition for ψ-irreducible chains: there is
a cycle of sets Di, i = 0, 1, . . . , d− 1 such that

X = N ∪
d−1⋃
0

Di

where ψ(N) = 0 and P (x,Di) ≡ 1 for x ∈ Di−1 (mod d). A more general and more
tractable class of sets called petite sets are introduced in Section 5.5: these are used
extensively in the sequel, and in Theorem 5.5.7 we show that every petite set is small
if the chain is aperiodic.

5.1 Splitting ϕ-Irreducible Chains

Before we get to these results let us first consider some simpler consequences of the
existence of atoms.

As an elementary first step, it is clear from the proof of the existence of a maximal
irreducibility measure in Proposition 4.2.2 that we have an easy construction of ψ
when X contains an atom.

Proposition 5.1.1 Suppose there is an atom α in X such that
∑

n P
n(x,α) > 0 for

all x ∈ X. Then α is an accessible atom and Φ is ν-irreducible with ν = P (α, · ).

Proof We have, by the Chapman-Kolmogorov equations, that for any n ≥ 1

Pn+1(x,A) ≥
∫

α
Pn(x, dy)P (y,A)

= Pn(x,α)ν(A)

which gives the result by summing over n. �
The uniform communication relation “� A” introduced in Section 4.2.3 is also

simplified if we have an atom in the space: it is no more than the requirement that
there is a set of paths to A of positive probability, and the uniformity is automatic.
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Proposition 5.1.2 If L(x,A) > 0 for some state x ∈ α, where α is an atom, then
α � A. �

In many cases the “atoms” in a state space will be real atoms: that is, single
points which are reached with positive probability.

Consider the level in a dam in any of the storage models analyzed in Section 4.3.2.
It follows from Proposition 4.3.1 that the single point {0} forms an accessible atom
satisfying the hypotheses of Proposition 5.1.1, even when the input and output pro-
cesses are continuous.

However, our reason for featuring atoms is not because some models have single-
tons which can be reached with probability one: it is because even in the completely
general ψ-irreducible case, by suitably extending the probabilistic structure of the
chain, we are able to artificially construct sets which have an atomic structure and
this allows much of the critical analysis to follow the form of the countable chain
theory.

This unexpected result is perhaps the major innovation in the analysis of general
Markov chains in the last two decades. It was discovered in slightly different forms,
independently and virtually simultaneously, by Nummelin [200] and by Athreya and
Ney [12].

Although the two methods are almost identical in a formal sense, in what follows
we will concentrate on the Nummelin Splitting, touching only briefly on the Athreya-
Ney random renewal time method as it fits less well into the techniques of the rest of
this book.

5.1.1 Minorization and splitting

To construct the artificial atom or regeneration point involves a probabilistic “split-
ting” of the state space in such a way that atoms for a “split chain” become natural
objects.

In order to carry out this construction we need to consider sets satisfying the
following

Minorization Condition

For some δ > 0, some C ∈ B(X) and some probability measure ν with
ν(Cc) = 0 and ν(C) = 1

P (x,A) ≥ δ1lC(x)ν(A), A ∈ B(X), x ∈ X. (5.2)
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The form (5.2) ensures that the chain has probabilities uniformly bounded below
by multiples of ν for every x ∈ C. The crucial question is, of course, whether any
chains ever satisfy the Minorization Condition. This is answered in the positive in
Theorem 5.2.2 below: for ϕ-irreducible chains “small sets” for which the Minorization
Condition holds exist, at least for the m-skeleton. The existence of such small sets is a
deep and difficult result: by indicating first how the Minorization Condition provides
the promised atomic structure to a split chain, we motivate rather more strongly the
development of Theorem 5.2.2.

In order to construct a split chain, we split both the space and all measures that
are defined on B(X).

We first split the space X itself by writing X̌ = X × {0, 1}, where X0 := X × {0}
and X1 := X × {1} are thought of as copies of X equipped with copies B(X0), B(X1)
of the σ-field B(X)

We let B(X̌) be the σ-field of subsets of X̌ generated by B(X0), B(X1): that is,
B(X̌) is the smallest σ-field containing sets of the form A0 :=A×{0}, A1 :=A×{1},
A ∈ B(X).

We will write xi, i = 0, 1 for elements of X̌, with x0 denoting members of the
upper level X0 and x1 denoting members of the lower level X1. In order to describe
more easily the calculations associated with moving between the original and the split
chain, we will also sometimes call X0 the copy of X, and we will say that A ∈ B(X) is
a copy of the corresponding set A0 ⊆ X0.

If λ is any measure on B(X), then the next step in the construction is to split the
measure λ into two measures on each of X0 and X1 by defining the measure λ∗ on
B(X̌) through

λ∗(A0) = λ(A ∩ C)[1− δ] + λ(A ∩ Cc),
λ∗(A1) = λ(A ∩ C)δ,

}
(5.3)

where δ and C are the constant and the set in (5.2). Note that in this sense the
splitting is dependent on the choice of the set C, and although in general the set
chosen is not relevant, we will on occasion need to make explicit the set in (5.2) when
we use the split chain.

It is critical to note that λ is the marginal measure induced by λ∗, in the sense
that for any A in B(X) we have

λ∗(A0 ∪A1) = λ(A). (5.4)

In the case when A ⊆ Cc, we have λ∗(A0) = λ(A); only subsets of C are really
effectively split by this construction.

Now the third, and most subtle, step in the construction is to split the chain Φ
to form a chain Φ̌ which lives on (X̌,B(X̌)). Define the split kernel P̌ (xi, A) for xi ∈ X̌
and A ∈ B(X̌) by

P̌ (x0, · ) = P (x, · )∗, x0 ∈ X0\C0; (5.5)

P̌ (x0, · ) = [1− δ]−1[P (x, · )∗ − δν∗( · )], x0 ∈ C0; (5.6)

P̌ (x1, · ) = ν∗( · ), x1 ∈ X1. (5.7)
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where C, δ and ν are the set, the constant and the measure in the Minorization
Condition.

Outside C the chain {Φ̌n} behaves just like {Φn}, moving on the “top” half X0

of the split space. Each time it arrives in C, it is “split”; with probability 1 − δ it
remains in C0, with probability δ it drops to C1. We can think of this splitting of the
chain as tossing a δ-weighted coin to decide which level to choose on each arrival in
the set C where the split takes place.

When the chain remains on the top level its next step has the modified law
(5.6). That (5.6) is always non-negative follows from (5.2). This is the sole use of the
Minorization Condition, although without it this chain cannot be defined.

Note here the whole point of the construction: the bottom level X1 is an atom,
with ϕ∗(X1) = δϕ(C) > 0 whenever the chain Φ is ϕ-irreducible. By (5.3) we have
P̌n(xi,X1\C1) = 0 for all n ≥ 1 and all xi ∈ X̌, so that the atom C1 ⊆ X1 is the only
part of the bottom level which is reached with positive probability. We will use the
notation

α̌ := C1 (5.8)

when we wish to emphasize the fact that all transitions out of C1 are identical, so
that C1 is an atom in X̌.

5.1.2 Connecting the split and original chains

The splitting construction is valuable because of the various properties that Φ̌ inherits
from, or passes on to, Φ. We give the first of these in the next result.

Theorem 5.1.3 (i) The chain Φ is the marginal chain of {Φ̌n}: that is, for any
initial distribution λ on B(X) and any A ∈ B(X),∫

X
λ(dx)P k(x,A) =

∫
X̌
λ∗(dyi)P̌ k(yi, A0 ∪A1). (5.9)

(ii) The chain Φ is ϕ-irreducible if Φ̌ is ϕ∗-irreducible; and if Φ is ϕ-irreducible
with ϕ(C) > 0 then Φ̌ is ν∗-irreducible, and α̌ is an accessible atom for the split chain.

Proof (i) From the linearity of the splitting operation we only need to check
the equivalence in the special case of λ = δx, and k = 1. This follows by direct
computation. We analyze two cases separately.

Suppose first that x ∈ Cc. Then∫
X̌
δ∗x(dyi)P̌ (yi, A0 ∪A1) = P̌ (x0, A0 ∪A1) = P (x,A),

by (5.5) and (5.4). On the other hand suppose x ∈ C. Then∫
X̌
δ∗x(dyi)P̌ (yi, A0 ∪A1)

= (1− δ)P̌ (x0, A0 ∪A1) + δP̌ (x1, A0 ∪A1)

= (1− δ)
[
[1− δ]−1[P ∗(x,A0 ∪A1)− δν∗(A0 ∪A1)]

]
+ δν∗(A0 ∪A1)

= P (x,A)
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from (5.6), (5.7) and (5.4) again.
(ii) If the split chain is ϕ∗-irreducible it is straightforward that the original

chain is ϕ-irreducible from (i). The converse follows from the fact that α̌ is an acces-
sible atom if ϕ(C) > 0, which is easy to check, and Proposition 5.1.1. �

The following identity will prove crucial in later development. For any measure
µ on B(X) we have ∫

X̌
µ∗(dxi)P̌ (xi, · ) =

(∫
X
µ(dx)P (x, · )

)∗
(5.10)

or, using operator notation, µ∗P̌ = (µP )∗. This follows from the definition of the
∗ operation and the transition function P̌ , and is in effect a restatement of Theo-
rem 5.1.3 (i).

Since it is only the marginal chain Φ which is really of interest, we will usually
consider only sets of the form Ǎ = A0 ∪ A1, where A ∈ B(X), and we will largely
restrict ourselves to functions on X̌ of the form f̌(xi) = f(xi), where f is some function
on X; that is, f̌ is identical on the two copies of X. By (5.9) we have for any k, any
initial distribution λ, and any function f̌ identical on X0 and X1

Eλ[f(Φk)] = Ěλ∗ [f̌(Φ̌k)].

To emphasize this identity we will henceforth denote f̌ by f , and Ǎ by A in these
special instances. The context should make clear whether A is a subset of X or X̌, and
whether the domain of f is X or X̌.

The Minorization Condition ensures that the construction in (5.6) gives a prob-
ability law on X̌. A similar construction can also be carried out under the seem-
ingly more general minorization requirement that there exists a function h(x) with∫
h(x)ϕ(dx) > 0, and a measure ν(·) on B(X) such that

P (x,A) ≥ h(x)ν(A), x ∈ X, A ∈ B(X). (5.11)

The details are, however, slightly less easy than for the approach we give above al-
though there are some other advantages to the approach through (5.11): the interested
reader should consult Nummelin [202] for more details.

The construction of a split chain is of some value in the next several chapters,
although much of the analysis will be done directly using the small sets of the next
section. The Nummelin Splitting technique will, however, be central in our approach
to the asymptotic results of Part III.

5.1.3 A random renewal time approach

There is a second construction of a “pseudo-atom” which is formally very similar to
that above. This approach, due to Athreya and Ney [12], concentrates, however, not
on a “physical” splitting of the space but on a random renewal time.

If we take the existence of the minorization (5.2) as an assumption, and if we also
assume

L(x,C) ≡ 1, x ∈ X (5.12)

we can then construct an almost surely finite random time τ ≥ 1 on an enlarged
probability space such that Px(τ <∞) = 1 and for every A
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Px(Φn ∈ A, τ = n) = ν(C ∩A)Px(τ = n). (5.13)

To construct τ , let Φ run until it hits C; from (5.12) this happens eventually with
probability one. The time and place of first hitting C will be, say, k and x. Then
with probability δ distribute Φk+1 over C according to ν; with probability (1 − δ)
distribute Φk+1 over the whole space with law Q(x, ·), where

Q(x,A) = [P (x,A)− δν(A ∩ C)]/(1− δ);

from (5.2) Q is a probability measure, as in (5.6). Repeat this procedure each time
Φ enters C; since this happens infinitely often from (5.12) (a fact yet to be proven in
Chapter 9), and each time there is an independent probability δ of choosing ν, it is
intuitively clear that sooner or later this version of Φk is chosen. Let the time when
it occurs be τ . Then Px(τ < ∞) = 1 and (5.13) clearly holds; and (5.13) says that τ
is a regeneration time for the chain.

The two constructions are very close in spirit: if we consider the split chain
construction then we can take the random time τ as τα̌, which is identical to the
hitting time on the bottom level of the split space.

There are advantages to both approaches, but the Nummelin Splitting does not
require the recurrence assumption (5.12), and more pertinently, it exploits the rather
deep fact that some m-skeleton always obeys the Minorization Condition when ψ-
irreducibility holds, as we now see.

5.2 Small Sets

In this section we develop the theory of small sets. These are sets for which the
Minorization Condition holds, at least for the m-skeleton chain. From the splitting
construction of Section 5.1.1, then, it is obvious that the existence of small sets is of
considerable importance, since they ensure the splitting method is not vacuous.

Small sets themselves behave, in many ways, analogously to atoms, and in partic-
ular the conclusions of Proposition 5.1.1 and Proposition 5.1.2 hold. We will find also
many cases where we exploit the “pseudo-atomic” properties of small sets without
directly using the split chain.

Small Sets

A set C ∈ B(X) is called a small set if there exists an m > 0, and a
non-trivial measure νm on B(X), such that for all x ∈ C, B ∈ B(X),

Pm(x,B) ≥ νm(B). (5.14)

When (5.14) holds we say that C is νm-small.
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The central result (Theorem 5.2.2 below), on which a great deal of the subsequent
development rests, is that for a ψ-irreducible chain, every set A ∈ B+(X) contains
a small set in B+(X). As a consequence, every ψ-irreducible chain admits some m-
skeleton which can be split, and for which the atomic structure of the split chain can
be exploited.

In order to prove this result, we need for the first time to consider the densities of
the transition probability kernels. Being a probability measure on (X,B(X)) for each
individual x and each n, the transition probability kernel Pn(x, ·) admits a Lebesgue
decomposition into its absolutely continuous and singular parts, with respect to any
finite non-trivial measure φ on B(X) : we have for any fixed x and B ∈ B(X)

Pn(x,B) =
∫

B
pn(x, y)φ(dy) + P⊥(x,B). (5.15)

where pn(x, y) is the density of Pn(x, · ) with respect to φ and P⊥ is orthogonal to φ.

Theorem 5.2.1 Suppose φ is a σ-finite measure on (X,B(X)). Suppose A is any set
in B(X) with φ(A) > 0 such that

φ(B) > 0, B ⊆ A ⇒
∞∑

k=1

P k(x,B) > 0, x ∈ A.

Then, for every n, the function pn defined in (5.15) can be chosen to be a measurable
function on X2, and there exists C ⊆ A, m > 1, and δ > 0 such that φ(C) > 0 and

pm(x, y) > δ, x, y ∈ C. (5.16)

Proof We include a detailed proof because of the central place small sets hold
in the development of the theory of ψ-irreducible Markov chains. However, the proof
is somewhat complex, and may be omitted without interrupting the flow of under-
standing at this point.

It is a standard result that the densities pn(x, y) of Pn(x, · ) with respect to φ
exist for each x ∈ X, and are unique except for definition on φ-null sets. We first need
to verify that

(i) the densities pn(x, y) can be chosen jointly measurable in x and y, for each n;

(ii) the densities pn(x, y) can be chosen to satisfy an appropriate form of the
Chapman-Kolmogorov property, namely for n, m ∈ ZZ+, and all x, z

pn+m(x, z) ≥
∫
X
pn(x, y)pm(y, z)φ(dy). (5.17)

To see (i), we appeal to the fact that B(X) is assumed countably generated. This
means that there exists a sequence {Bi; i ≥ 1} of finite partitions of X, such that
Bi+1 is a refinement of Bi, and which generate B(X). Fix x ∈ X, and let Bi(x) denote
the element in Bi with x ∈ Bi(x).

For each i, the functions
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p1
i (x, y) =

{
0 φ(Bi(y)) = 0
P (x,Bi(y))/φ(Bi(y)), φ(Bi(y)) > 0

are non-negative, and are clearly jointly measurable in x and y. The Basic Differen-
tiation Theorem for measures (cf. Doob [68], Chapter 7, Section 8) now assures us
that for y outside a φ-null set N ,

p1
∞(x, y) = lim

i→∞
p1

i (x, y) (5.18)

exists as a jointly measurable version of the density of P (x, ·) with respect to φ.
The same construction gives the densities pn∞(x, y) for each n, and so jointly

measurable versions of the densities exist as required.
We now define inductively a version pn(x, y) of the densities satisfying (5.17),

starting from pn∞(x, y). Set p1(x, y) = p1∞(x, y) for all x, y; and set, for n ≥ 2 and any
x, y,

pn(x, y) = pn
∞(x, y)

∨
max

1≤m≤n−1

∫
Pm(x, dw)pn−m(w, y).

One can now check (see Orey [208] p 6) that the collection {pn(x, y), x, y ∈ X, n ∈ ZZ+}
satisfies both (i) and (ii).

We next verify (5.16). The constraints on φ in the statement of Theorem 5.2.1
imply that

∞∑
n=1

pn(x, y) > 0, x ∈ A, a.e y ∈ A [φ];

and thus we can find integers n,m such that∫
A

∫
A

∫
A
pn(x, y)pm(y, z)φ(dx)φ(dy)φ(dz) > 0.

Now choose η > 0 sufficiently small that, writing

An(η) := {(x, y) ∈ A×A : pn(x, y) ≥ η}

and φ3 for the product measure φ× φ× φ on X× X× X, we have

φ3 ({(x, y, z) ∈ A×A×A : (x, y) ∈ An(η), (y, z) ∈ Am(η)}) > 0.

We suppress the notational dependence on η from now on, since η is fixed for the
remainder of the proof.

For any x, y, set Bi(x, y) = Bi(x) × Bi(y), where Bi(x) is again the element
containing x of the finite partition Bi above. By the Basic Differentiation Theorem as
in (5.18), this time for measures on B(X) × B(X), there are φ2-null sets Nk ⊆ X × X
such that for any k and (x, y) ∈ Ak\Nk,

lim
i→∞

φ2(Ak ∩Bi(x, y))/φ2(Bi(x, y)) = 1. (5.19)

Now choose a fixed triplet (u, v, w) from the set

{(x, y, z) : (x, y) ∈ An\Nn, (y, z) ∈ Am\Nm}.

From (5.19) we can find j large enough that
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φ2(An ∩Bj(u, v)) ≥ (3/4)φ2(Bj(u, v))
φ2(Am ∩Bj(v, w)) ≥ (3/4)φ2(Bj(v, w)). (5.20)

Let us write An(x) = {y ∈ A : (x, y) ∈ An}, A∗
m(z) = {y ∈ A : (y, z) ∈ Am} for the

sections of An and Am in the different directions. If we define

En = {x ∈ An ∩Bj(u) : φ(An(x) ∩Bj(v)) ≥ (3/4)Bj(v)} (5.21)

Dm = {z ∈ Am ∩Bj(w) : φ(A∗
m(z) ∩Bj(v)) ≥ (3/4)Bj(v)}, (5.22)

then from (5.20) we have that φ(En) > 0, φ(Dm) > 0. This then implies, for any pair
(x, z) ∈ En ×Dm,

φ(An(x) ∩A∗
m(z)) ≥ (1/2)φ(Bj(v)) > 0 (5.23)

from (5.21) and (5.22).
Our pieces now almost fit together. We have, from (5.17), that for (x, z) ∈ En ×

Dm

pn+m(x, z) ≥
∫

An(x)∩A∗
m(z)

pn(x, y)pm(y, z)φ(dy)

≥ η2φ(An(x) ∩A∗
m(z))

≥ [η2/2]φ(Bj(v))
≥ δ1, say . (5.24)

To finish the proof, note that since φ(En) > 0, there is an integer k and a set C ⊆ Dm

with P k(x,En) > δ2 > 0, for all x ∈ C. It then follows from the construction of the
densities above that for all x, z ∈ C

pk+n+m(x, z) ≥
∫

En

P k(x, dy)pn+m(y, z)

≥ δ1δ2,

and the result follows with δ = δ1δ2 and M = k + n+m. �
The key fact proven in this theorem is that we can define a version of the densities

of the transition probability kernel such that (5.16) holds uniformly over x ∈ C. This
gives us

Theorem 5.2.2 If Φ is ψ-irreducible, then for every A ∈ B+(X), there exists m ≥ 1
and a νm-small set C ⊆ A such that C ∈ B+(X) and νm{C} > 0.

Proof When Φ is ψ-irreducible, every set in B+(X) satisfies the conditions of
Theorem 5.2.1, with the measure φ = ψ. The result then follows immediately from
(5.16). �

As a direct corollary of this result we have

Theorem 5.2.3 If Φ is ψ-irreducible, then the Minorization Condition holds for
some m-skeleton, and for every Kaε-chain, 0 < ε < 1. �

Any Φ which is ψ-irreducible is well-endowed with small sets from Theorem 5.2.1,
even though it is far from clear from the initial definition that this should be the case.
Given the existence of just one small set from Theorem 5.2.2, we now show that it is
further possible to cover the whole of X with small sets in the ψ-irreducible case.
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Proposition 5.2.4 (i) If C ∈ B(X) is νn-small, and for any x ∈ D we have
Pm(x,C) ≥ δ, then D is νn+m-small, where νn+m is a multiple of νn.

(ii) Suppose Φ is ψ-irreducible. Then there exists a countable collection Ci of small
sets in B(X) such that

X =
∞⋃
i=0

Ci. (5.25)

(iii) Suppose Φ is ψ-irreducible. If C ∈ B+(X) is νn-small, then we may find M ∈ ZZ+

and a measure νM such that C is νM -small, and νM{C} > 0.

Proof (i) By the Chapman-Kolmogorov equations, for any x ∈ D,

Pn+m(x,B) =
∫
X
Pn(x, dy)Pm(y,B)

≥
∫

C
Pn(x, dy)Pm(y,B) (5.26)

≥ δνn(B).

(ii) Since Φ is ψ-irreducible, there exists a νm-small set C ∈ B+(X) from
Theorem 5.2.2. Moreover from the definition of ψ-irreducibility the sets

C̄(n,m) := {y : Pn(y, C) ≥ m−1} (5.27)

cover X and each C̄(n,m) is small from (i).
(iii) Since C ∈ B+(X), we have Ka 1

2
(x,C) > 0 for all x ∈ X. Hence νKa 1

2
(C) >

0, and it follows that for some m ∈ ZZ+,

νM (C) := νPm(C) > 0.

To complete the proof observe that, for all x ∈ C,

Pn+m(x,B) =
∫
X
Pn(x, dy)Pm(y,B) ≥ νPm(B) = νM (B),

which shows that C is νM -small, where M = n+m. �

5.3 Small Sets for Specific Models

5.3.1 Random walk on a half line

Random walks on a half line provide a simple example of small sets, regardless of the
structure of the increment distribution.

It follows as in the proof of Proposition 4.3.1 that every set [0, c], c ∈ IR+ is
small, provided only that Γ (−∞, 0) > 0: in other words, whenever the chain is ψ-
irreducible, every compact set is small. Alternatively, we could derive this result by
use of Proposition 5.2.4 (i) since {0} is, by definition, small.

This makes the analysis of queueing and storage models very much easier than
more general models for which there is no atom in the space. We now move on to
identify conditions under which these have identifiable small sets.
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5.3.2 “Spread-out” random walks

Let us again consider a random walk Φ of the form

Φn = Φn−1 +Wn,

satisfying (RW1). We showed in Section 4.3 that, if Γ has a density γ with respect
to Lebesgue measure µLeb on IR with

γ(x) ≥ δ > 0, |x| < β,

then Φ is ψ-irreducible: re-examining the proof shows that in fact we have demon-
strated that C = {x : |x| ≤ β/2} is a small set.

Random walks with nonsingular distributions with respect to µLeb, of which the
above are special cases, are particularly well adapted to the ψ-irreducible context. To
study them we introduce so-called “spread-out” distributions.

Spread-Out Random Walks

(RW2) We call the random walk spread-out (or equivalently, we
call Γ spread out) if some convolution power Γn∗ is non-
singular with respect to µLeb.

For spread out random walks, we find that small sets are in general relatively easy to
find.

Proposition 5.3.1 If Φ is a spread-out random walk, with Γn∗ non-singular with
respect to µLeb then there is a neighborhood Cβ = {x : |x| ≤ β} of the origin which is
ν2n-small, where ν2n = εµLeb1l[s,t] for some interval [s, t], and some ε > 0.

Proof Since Γ is spread out, we have for some bounded non-negative function γ
with

∫
γ(x) dx > 0, and some n > 0,

Pn(0, A) ≥
∫

A
γ(x) dx, A ∈ B(IR).

Iterating this we have

P 2n(0, A) ≥
∫

A

∫
IR
γ(y)γ(x− y) dy dx =

∫
A
γ ∗ γ(x) dx : (5.28)

but since from Lemma D.4.3 the convolution γ∗γ(x) is continuous and not identically
zero, there exists an interval [a, b] and a δ with γ ∗ γ(x) ≥ δ on [a, b]. Choose β =
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[b− a]/4, and [s, t] = [a+ β, b− β], to prove the result using the translation invariant
properties of the random walk. �

For spread out random walks, a far stronger irreducibility result will be provided
in Chapter 6 : there we will show that if Φ is a random walk with spread-out increment
distribution Γ , with Γ (−∞, 0) > 0, Γ (0,∞) > 0, then Φ is µLeb-irreducible, and every
compact set is a small set.

5.3.3 Ladder chains and the GI/G/I queue

Recall from Section 3.5 the Markov chain constructed on ZZ+ × IR to analyze the
GI/G/1 queue, defined by

Φn = (Nn, Rn), n ≥ 1

where Nn is the number of customers at T ′
n− and Rn is the residual service time at

T ′
n+.

This has the transition kernel

P (i, x; j ×A) = 0, j > i+ 1
P (i, x; j ×A) = Λi−j+1(x,A), j = 1, . . . , i+ 1
P (i, x; 0×A) = Λ∗

i (x,A),

where

Λn(x, [0, y]) =
∫ ∞

0
P t

n(x, y)G(dt), (5.29)

Λ∗
n(x, [0, y]) =

[ ∞∑
n+1

Λj(x, [0,∞))
]
H[0, y], (5.30)

P t
n(x, y) = P(S′

n ≤ t < S′
n+1, Rt ≤ y | R0 = x); (5.31)

here, Rt = S′
N(t)+1 − t, where N(t) is the number of renewals in [0, t] of a renewal

process with inter-renewal time H, and if R0 = x then S′
1 = x.

At least one collection of small sets for this chain can be described in some detail.

Proposition 5.3.2 Let Φ = {Nn, Rn} be the Markov chain at arrival times of a
GI/G/1 queue described above. Suppose G(β) < 1 for all β < ∞. Then the set
{0× [0, β]} is ν1-small for Φ, with ν1( · ) given by G(β,∞)H( · ).

Proof We consider the bottom “rung” {0× IR}. By construction

Λ∗
0(x, [0, · ]) = H[0, · ][1− Λ0(x, [0,∞])],

and since

Λ0(x, [0,∞)] =
∫
G(dt)P(0 ≤ t < σ1 | R0 = x)

=
∫
G(dt)1l{t < x}

= G(−∞, x],

we have
Λ∗

0(x, [0, · ]) = H[0, · ]G(x,∞).

The result follows immediately, since for x < β,Λ∗
0(x, [0, · ]) ≥ H[0, · ]G(β,∞). �
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5.3.4 The forward recurrence time chain

Consider the forward recurrence time δ-skeleton V+
δ = V +(nδ), n ∈ ZZ+, which was

defined in Section 3.5.3: recall that

V +(t) := inf(Zn − t : Zn ≥ t), t ≥ 0

where Zn :=
∑n

i=0 Yi for {Y1, Y2, . . .} a sequence of independent and identical random
variables with distribution Γ , and Y0 a further independent random variable with
distribution Γ0.

We shall prove

Proposition 5.3.3 When Γ is spread out then for δ sufficiently small the set [0, δ]
is a small set for V+

δ .

Proof As in (5.28), since Γ is spread out there exists n ∈ ZZ+, an interval [a, b]
and a constant β > 0 such that

Γn∗(du) ≥ βµLeb(du), du ⊆ [a, b].

Hence if we choose small enough δ then we can find k ∈ ZZ+ such that

Γn∗(du) ≥ β1l[kδ,(k+4)δ](u)µLeb(du), du ⊆ [a, b]. (5.32)

Now choose m ≥ 1 such that Γ [mδ, (m+ 1)δ) = γ > 0; and set M = k+m+ 2. Then
for x ∈ [0, δ), by considering the occurrence of the nth renewal where n is the index
so that (5.32) holds we find

Px(V +(Mδ) ∈ du ∩ [0, δ))
≥ P0(x+ Zn+1 −Mδ ∈ du ∩ [0, δ), Yn+1 ≥ δ)

=
∫

y∈[δ,∞)
Γ (dy)P0(x+ y −Mδ + Zn ∈ du ∩ [0, δ)) (5.33)

≥
∫

y∈[mδ,(m+1)δ)
Γ (dy)P0(Zn ∈ du ∩ {[0, δ)− x− y +Mδ}).

Now when y ∈ [mδ, (m+ 1)δ) and x ∈ [0, δ), we must have

{[0, δ)− x− y +Mδ} ⊆ [kδ, (k + 3)δ) (5.34)

and therefore from (5.33)

Px(V +(Mδ) ∈ du ∩ [0, δ)) ≥ β1l[0,δ)(u)µLeb(du)Γ (mδ, (m+ 1)δ)
≥ βγ1l[0,δ)(u)µLeb(du). (5.35)

Hence [0, δ) is a small set, and the measure ν can be chosen as a multiple of Lebesgue
measure over [0, δ). �

In this proof we have demanded that (5.32) holds for u ∈ [kδ, (k + 4)δ] and in
(5.34) we only used the fact that the equation holds for u ∈ [kδ, (k+ 3)δ]. This is not
an oversight: we will use the larger range in showing in Proposition 5.4.5 that the
chain is also aperiodic.
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5.3.5 Linear state space models

For the linear state space LSS(F ,G) model we showed in Proposition 4.4.3 that in
the Gaussian case when (LSS3) holds, for every initial condition x0 ∈ X = IRn,

P k(x0, · ) = N(F kx0,
k−1∑
i=0

F iGG�F i�); (5.36)

and if (F,G) is controllable then from (4.18) the n-step transition function possesses
a smooth density pn(x, y) which is continuous and everywhere positive on IR2n. It
follows from continuity that for any pair of bounded open balls B1 and B2 ⊂ IRn,
there exists ε > 0 such that

pn(x, y) ≥ ε, (x, y) ∈ B1 ×B2.

Letting νn denote the normalized uniform distribution on B2 we see that B1 is νn-
small.

This shows that for the controllable, Gaussian LSS(F ,G) model, all compact
subsets of the state space are small.

5.4 Cyclic Behavior

5.4.1 The cycle phenomenon

In the previous sections of this chapter we concentrated on the communication struc-
ture between states. Here we consider the set of time-points at which such communi-
cation is possible; for even within a communicating class, it is possible that the chain
returns to given states only at specific time points, and this certainly governs the
detailed behavior of the chain in any longer term analysis.

A highly artificial example of cyclic behavior on the finite set X = {1, 2, 3, . . . , d}
is given by the transition probability matrix

P (x, x+ 1) = 1, x ∈ {1, 2, 3, . . . , d− 1}, P (d, 1) = 1.

Here, if we start in x then we have Pn(x, x) > 0 if and only if n = 0, d, 2d, . . ., and
the chain Φ is said to cycle through the states of X.

On a continuous state space the same phenomenon can be constructed equally
easily: let X = [0, d), let Ui denote the uniform distribution on [i, i+ 1), and define

P (x, ·) := 1l[i−1,i)(x)Ui(·), i = 0, 1, . . . , d− 1 (mod d).

In this example, the chain again cycles through a fixed finite number of sets. We now
prove a series of results which indicate that, no matter how complex the behavior
of a ψ-irreducible chain, or a chain on an irreducible absorbing set, the finite cyclic
behavior of these examples is typical of the worst behavior to be found.

5.4.2 Cycles for a countable space chain

We discuss this structural question initially for a countable space X.
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Let α be a specific state in X, and write

d(α) = g.c.d.{n ≥ 1 : Pn(α,α) > 0}. (5.37)

This does not guarantee that Pmd(α)(α,α) > 0 for all m, but it does imply
Pn(α,α) = 0 unless n = md(α), for some m.

We call d(α) the period of α. The result we now show is that the value of d(α)
is common to all states y in the class C(α) = {y : α ↔ y}, rather than taking a
separate value for each y.

Proposition 5.4.1 Suppose α has period d(α): then for any y ∈ C(α), d(α) = d(y).

Proof Since α ↔ y, we can find m and n such that Pm(α, y) > 0 and Pn(y,α) >
0. By the Chapman-Kolmogorov equations, we have

Pm+n(α,α) ≥ Pm(α, y)Pn(y,α) > 0, (5.38)

and so by definition, (m + n) is a multiple of d(α). Choose k such that k is not a
multiple of d(α). Then (k +m+ n) is not a multiple of d(α): hence, since

Pm(α, y)P k(y, y)Pn(y,α) ≤ P k+m+n(α,α) = 0,

we have P k(y, y) = 0, which proves d(y) ≥ d(α). Reversing the role of α and y shows
d(α) ≥ d(y), which gives the result. �

This result leads to a further decomposition of the transition probability matrix
for an irreducible chain; or, equivalently, within a communicating class.

Proposition 5.4.2 Let Φ be an irreducible Markov chain on a countable space, and
let d denote the common period of the states in X. Then there exist disjoint sets
D1 . . . Dd ⊆ X such that

X =
d⋃

i=1

Dk,

and
P (x,Dk+1) = 1, x ∈ Dk, k = 0, . . . , d− 1 (mod d). (5.39)

Proof The proof is similar to that of the previous proposition. Choose α ∈ X as
a distinguished state, and let y be another state, such that for some M

PM (y,α) > 0.

Let k be any other integer such that P k(α, y) > 0. Then P k+M (α,α) > 0, and
thus k + M = jd for some j; equivalently, k = jd −M . Now M is fixed, and so we
must have P k(α, y) > 0 only for k in the sequence {r, r + d, r + 2d, . . .}, where the
integer r = r(y) ∈ {1, . . . , d} is uniquely defined for y.

Call Dr the set of states which are reached with positive probability from α only
at points in the sequence {r, r + d, r + 2d, . . .} for each r ∈ {1, 2 . . . d}. By definition
α ∈ Dd, and P (α, Dc

1) = 0 so that P (α, D1) = 1. Similarly, for any y ∈ Dr we have
P (y,Dc

r+1) = 0, giving our result. �
The sets {Di} covering X and satisfying (5.39) are called cyclic classes, or a d-

cycle, of Φ. With probability one, each sample path of the process Φ “cycles” through
values in the sets D1, D2, . . . Dd, D1, D2, . . ..
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Diagrammatically, we have shown that we can write an irreducible transition
probability matrix in “super-diagonal” form

P =



0 P1

0 0 P2 0
...

. . . 0 P3
...

...
. . . 0

. . .
Pd . . . . . . . . . 0


where each block Pi is a square matrix whose dimension may depend upon i.

Aperiodicity

An irreducible chain on a countable space X is called

(i) aperiodic, if d(x) ≡ 1, x ∈ X;

(ii) strongly aperiodic, if P (x, x) > 0 for some x ∈ X.

Whilst cyclic behavior can certainly occur, as illustrated in the examples at the begin-
ning of this section, and the periodic behavior of the control systems in Theorem 7.3.3
below, most of our results will be given for aperiodic chains. The justification for using
such chains is contained in the following, whose proof is obvious.

Proposition 5.4.3 Suppose Φ is an irreducible chain on a countable space X, with
period d and cyclic classes {D1 . . . Dd}. Then for the Markov chain Φd = {Φd, Φ2d, . . .}
with transition matrix P d, each Di is an irreducible absorbing set of aperiodic states.

5.4.3 Cycles for a general state space chain

The existence of small sets enables us to show that, even on a general space, we still
have a finite periodic breakup into cyclic sets for ψ-irreducible chains.

Suppose that C is any νM -small set, and assume that νM (C) > 0, as we may
without loss of generality by Proposition 5.2.4.

We will use the set C and the corresponding measure νM to define a cycle for a
general irreducible Markov chain. To simplify notation we will suppress the subscript
on ν. Hence we have PM (x, · ) ≥ ν( · ), x ∈ C, and ν(C) > 0, so that, when the chain
starts in C, there is a positive probability that the chain will return to C at time M .
Let

EC = {n ≥ 1 : the set C is νn-small, with νn = δnν for some δn > 0.} (5.40)
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be the set of timepoints for which C is a small set with minorizing measure propor-
tional to ν. Notice that for B ⊆ C, n, m ∈ EC implies

Pn+m(x,B) ≥
∫

C
Pm(x, dy)Pn(y,B)

≥ [δmδnν(C)]ν(B), x ∈ C;

so that EC is closed under addition. Thus there is a natural “period” for the set C,
given by the greatest common divisor of EC ; and from Lemma D.7.4, C is νnd-small
for all large enough n.

We show that this value is in fact a property of the whole chain Φ, and is indepen-
dent of the particular small set chosen, in the following analogue of Proposition 5.4.2.

Theorem 5.4.4 Suppose that Φ is a ψ-irreducible Markov chain on X. Let C ∈
B(X)+ be a νM -small set and let d be the greatest common divisor of the set EC .
Then there exist disjoint sets D1 . . . Dd ∈ B(X) (a “d-cycle”) such that

(i) for x ∈ Di, P (x,Di+1) = 1, i = 0 . . . d− 1 (mod d);

(ii) the set N = [
⋃d

i=1 Di]c is ψ-null.

The d-cycle {Di} is maximal in the sense that for any other collection {d′, D′
k, k =

1, . . . d′} satisfying (i)-(ii), we have d′ dividing d; whilst if d = d′, then, by reordering
the indices if necessary, D′

i = Di a.e. ψ.

Proof For i = 0, 1 . . . d− 1 set

D∗
i =

{
y :

∞∑
n=1

Pnd−i(y, C) > 0

}
:

by irreducibility, X = ∪D∗
i .

The D∗
i are in general not disjoint, but we can show that their intersection is

ψ-null. For suppose there exists i, k such that ψ(D∗
i ∩D∗

k) > 0. Then for some fixed
m,n > 0, there is a subset A ⊆ D∗

i ∩D∗
k with ψ(A) > 0 such that

Pmd−i(w,C) ≥ δm > 0, w ∈ A

Pnd−k(w,C) ≥ δn > 0, w ∈ A (5.41)

and since ψ is the maximal irreducibility measure, we can also find r such that∫
C
ν(dy)P r(y,A) = δc > 0. (5.42)

Now we use the fact that C is a νM -small set: for x ∈ C, B ⊆ C, from (5.41), (5.42),

P 2M+md−i+r(x,B) ≥
∫

C
PM (x, dy)

∫
A
P r(y, dw)

∫
C
Pmd−i(w, dz)PM (z,B)

≥ [δcδm]ν(B),

so that [2M+md+r]−i ∈ EC . By identical reasoning, we also have [2M+nd+r]−k ∈
EC . This contradicts the definition of d, and we have shown that ψ(D∗

i ∩ D∗
k) = 0,

i 
= k.
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Let N = ∪i,j(D∗
i ∩D∗

k), so that ψ(N) = 0. The sets {D∗
i \N} form a disjoint class

of sets whose union is full. By Proposition 4.2.3, we can find an absorbing set D such
that Di = D ∩ (D∗

i \N) are disjoint and D = ∪Di. By the Chapman-Kolmogorov
equations again, if x ∈ D is such that P (x,Dj) > 0, then we have x ∈ Dj−1, by
definition, for j = 0, . . . , d− 1 (mod d). Thus {Di} is a d-cycle.

To prove the maximality and uniqueness result, suppose {D′
i} is another cycle

with period d′, with N = [∪D′
i]

c such that ψ(N) = 0. Let k be any index with
ν(D′

k ∩ C) > 0: since ψ(N) = 0 and ψ � ν, such a k exists. We then have, since C is
a νM -small set, PM (x,D′

k ∩ C) ≥ ν(D′
k ∩ C) > 0 for every x ∈ C. Since (D′

k ∩ C) is
non-empty, this implies firstly that M is a multiple of d′; since this happens for any
n ∈ EC , by definition of d we have d′ divides d as required. Also, we must have C∩D′

j

empty for any j 
= k: for if not we would have some x ∈ C with PM (x,C ∩D′
k) = 0,

which contradicts the properties of C.
Hence we have C ⊆ (D′

k ∪N), for some particular k. It follows by the definition
of the original cycle that each D′

j is a union up to ψ-null sets of (d/di) elements of
Di. �

It is obvious from the above proof that the cycle does not depend, except perhaps
for ψ-null sets, on the small set initially chosen, and that any small set must be
essentially contained inside one specific member of the cyclic class {Di}.

Periodic and aperiodic chains

Suppose that Φ is a ϕ-irreducible Markov chain.

The largest d for which a d-cycle occurs for Φ is called the period of Φ.

When d = 1, the chain Φ is called aperiodic.

When there exists a ν1-small set A with ν1(A) > 0, then the chain is
called strongly aperiodic.

As a direct consequence of these definitions and Theorem 5.2.3 we have

Proposition 5.4.5 Suppose that Φ is a ψ-irreducible Markov chain.

(i) If Φ is strongly aperiodic, then the Minorization Condition (5.2) holds.

(ii) The resolvent, or Kaε-chain, is strongly aperiodic for all 0 < ε < 1.

(iii) If Φ is aperiodic then every skeleton is ψ-irreducible and aperiodic, and some
m-skeleton is strongly aperiodic.

�

This result shows that it is clearly desirable to work with strongly aperiodic chains.
Regrettably, this condition is not satisfied in general, even for simple chains; and we
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will often have to prove results for strongly aperiodic chains and then use special
methods to extend them to general chains through the m-skeleton or the Kaε-chain.

We will however concentrate almost exclusively on aperiodic chains. In practice
this is not greatly restrictive, since we have as in the countable case

Proposition 5.4.6 Suppose Φ is a ψ-irreducible chain with period d and d-cycle
{Di, i = 1 . . . d}. Then each of the sets Di is an absorbing ψ-irreducible set for the
chain Φd corresponding to the transition probability kernel P d, and Φd on each Di is
aperiodic.

Proof That each Di is absorbing and irreducible for Φd is obvious: that Φd on
each Di is aperiodic follows from the definition of d as the largest value for which a
cycle exists. �

5.4.4 Periodic and aperiodic examples: forward recurrence times

For the forward recurrence time chain on the integers it is easy to evaluate the period
of the chain. For let p be the distribution of the renewal variables, and let

d = g.c.d.{n : p(n) > 0}.

It is a simple exercise to check that d is also the g.c.d. of the set of times {n :
Pn(0, 0) > 0} and so d is the period of the chain.

Now consider the forward recurrence time δ-skeleton V+
δ = V +(nδ), n ∈ ZZ+

defined in Section 3.5.3. Here, we can find explicit conditions for aperiodicity even
though the chain has no atom in the space. We have

Proposition 5.4.7 If F is spread out then V+
δ is aperiodic for sufficiently small δ.

Proof In Proposition 5.3.3 we showed that for sufficiently small δ, the set [0, δ)
is a νM -small set, where ν is a multiple of Lebesgue measure restricted to [0, δ].

But since the bounds on the densities in (5.35) hold, not just for the range
[kδ, (k + 3)δ) for which they were used, but by construction for the greater range
[kδ, (k + 4)δ), the same proof shows that [0, δ) is a νM+1-small set also, and thus
aperiodicity follows from the definition of the period of V+

δ as the g.c.d. in (5.40). �

5.5 Petite Sets and Sampled Chains

5.5.1 Sampling a Markov chain

A convenient tool for the analysis of Markov chains is the sampled chain, which
extends substantially the idea of the m-skeleton or the resolvent chain.

Let a = {a(n)} be a distribution, or probability measure, on ZZ+, and consider
the Markov chain Φa with probability transition kernel

Ka(x,A) :=
∞∑

n=0

Pn(x,A)a(n), x ∈ X, A ∈ B(X). (5.43)
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It is obvious that Ka is indeed a transition kernel, so that Φa is well-defined by
Theorem 3.4.1.

We will call Φa the Ka-chain, with sampling distribution a. Probabilistically, Φa

has the interpretation of being the chain Φ “sampled” at time-points drawn suc-
cessively according to the distribution a, or more accurately, at time-points of an
independent renewal process with increment distribution a as defined in Section 2.4.1.

There are two specific sampled chains which we have already invoked, and which
will be used frequently in the sequel. If a = δm is the Dirac measure with δm(m) = 1,
then the Kδm-chain is the m-skeleton with transition kernel Pm. If aε is the geometric
distribution with

aε(n) = [1− ε]εn, n ∈ ZZ+

then the kernel Kaε is the resolvent Kε which was defined in Chapter 3. The concept
of sampled chains immediately enables us to develop useful conditions under which
one set is uniformly accessible from another. We say that a set B ∈ B(X) is uniformly
accessible using a from another set A ∈ B(X) if there exists a δ > 0 such that

inf
x∈A

Ka(x,B) > δ; (5.44)

and when (5.44) holds we write A a
� B.

Lemma 5.5.1 If A a
� B for some distribution a then A � B.

Proof Since L(x,B) = Px(τB < ∞) = Px(Φn ∈ B for some n ∈ ZZ+) and
Ka(x,B) = Px(Φη ∈ B) where η has the distribution a, it follows that

L(x,B) ≥ Ka(x,B) (5.45)

for any distribution a, and the result follows. �
The following relationships will be used frequently.

Lemma 5.5.2 (i) If a and b are distributions on ZZ+ then the sampled chains with
transition laws Ka and Kb satisfy the generalized Chapman-Kolmogorov equa-
tions

Ka∗b(x,A) =
∫
Ka(x, dy)Kb(y,A) (5.46)

where a ∗ b denotes the convolution of a and b.

(ii) If A a
� B and B

b
� C, then A

a∗b
� C.

(iii) If a is a distribution on ZZ+ then the sampled chain with transition law Ka

satisfies the relation

U(x,A) ≥
∫
U(x, dy)Ka(y,A) (5.47)
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Proof To see (i), observe that by definition and the Chapman-Kolmogorov equa-
tion

Ka∗b(x,A) =
∞∑

n=0

Pn(x,A) a ∗ b(n)

=
∞∑

n=0

Pn(x,A)
n∑

m=0

a(m)b(n−m)

=
∞∑

n=0

n∑
m=0

∫
Pm(x, dy)Pn−m(y,A)a(m)b(n−m)

=
∫ ∞∑

m=0

Pm(x, dy)a(m)
∞∑

n=m

Pn−m(y,A)b(n−m)

=
∫
Ka(x, dy)Kb(yA), (5.48)

as required.
The result (ii) follows directly from (5.46) and the definitions.
For (iii), note that for fixed m,n,

Pm+n(x,A)a(n) =
∫
Pm(x, dy)Pn(y,A)a(n)

so that summing over m gives

U(x,A)a(n) ≥
∑
m>n

Pm(x,A)a(n) =
∫
U(x, dy)Pn(y,A)a(n);

a second summation over n gives the result since
∑

n a(n) = 1. �
The probabilistic interpretation of Lemma 5.5.2 (i) is simple: if the chain is sam-

pled at a random time η = η1 + η2, where η1 has distribution a and η2 has indepen-
dent distribution b, then since η has distribution a ∗ b, it follows that (5.46) is just a
Chapman-Kolmogorov decomposition at the intermediate random time.

5.5.2 The property of petiteness

Small sets always exist in the ψ-irreducible case, and provide most of the properties
we need. We now introduce a generalization of small sets, petite sets, which have even
more tractable properties, especially in topological analyses.

Petite Sets

We will call a set C ∈ B(X) νa-petite if the sampled chain satisfies the
bound

Ka(x,B) ≥ νa(B),

for all x ∈ C, B ∈ B(X), where νa is a non-trivial measure on B(X).
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From the definitions we see that a small set is petite, with the sampling distribution a
taken as δm for some m. Hence the property of being a small set is in general stronger
than the property of being petite. We state this formally as

Proposition 5.5.3 If C ∈ B(X) is νm-small then C is νδm-petite. �

The operation “ a
�” interacts usefully with the petiteness property. We have

Proposition 5.5.4 (i) If A ∈ B(X) is νa-petite, and D
b

� A then D is νb∗a-petite,
where νb∗a can be chosen as a multiple of νa.

(ii) If Φ is ψ-irreducible and if A ∈ B+(X) is νa-petite, then νa is an irreducibility
measure for Φ.

Proof To prove (i) choose δ > 0 such that for x ∈ D we have Kb(x,A) ≥ δ. By
Lemma 5.5.2 (i),

Kb∗a(x,B) =
∫
X
Kb(x, dy)Ka(y,B)

≥
∫

A
Kb(x, dy)Ka(y,B) (5.49)

≥ δνa(B).

To see (ii), suppose A is νa-petite and νa(B) > 0. For x ∈ A(n,m) as in (5.27) we
have

PnKa(x,B) ≥
∫

A
Pn(x, dy)Ka(y,B) ≥ m−1νa(B) > 0

which gives the result. �
Proposition 5.5.4 provides us with a prescription for generating an irreducibility

measure from a petite set A, even if all we know for general x ∈ X is that the single
petite set A is reached with positive probability. We see the value of this in the
examples later in this chapter

The following result illustrates further useful properties of petite sets, which dis-
tinguish them from small sets.

Proposition 5.5.5 Suppose Φ is ψ-irreducible.

(i) If A is νa-petite, then there exists a sampling distribution b such that A is also
ψb-petite where ψb is a maximal irreducibility measure.

(ii) The union of two petite sets is petite.

(iii) There exists a sampling distribution c, an everywhere strictly positive, measur-
able function s: X → IR, and a maximal irreducibility measure ψc such that

Kc(x,B) ≥ s(x)ψc(B), x ∈ X, B ∈ B(X)

Thus there is an increasing sequence {Ci} of ψc-petite sets, all with the same
sampling distribution c and minorizing measure equivalent to ψ, with ∪Ci = X.
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Proof To prove (i) we first show that we can assume without loss of generality
that νa is an irreducibility measure, even if ψ(A) = 0.

From Proposition 5.2.4 there exists a νb-petite set C with C ∈ B+(X). We have
Kaε(y, C) > 0 for any y ∈ X and any ε > 0, and hence for x ∈ A,

Ka∗aε(x,C) ≥
∫
νa(dy)Kaε(y, C) > 0.

This shows that A a∗aε
� C, and hence from Proposition 5.5.4 we see that A is νa∗aε∗b-

petite, where νa∗aε∗b is a constant multiple of νb. Now, from Proposition 5.5.4 (ii),
the measure νa∗aε∗b is an irreducibility measure, as claimed.

We now assume that νa is an irreducibility measure, which is justified by the
discussion above, and use Proposition 5.5.2 (i) to obtain the bound, valid for any
0 < ε < 1,

Ka∗aε(x,B) = KaKaε(x,B) ≥ νaKaε(B), x ∈ A, B ∈ B(X).

Hence A is ψb-petite with b = aε ∗ a and ψb = νaKaε . Proposition 4.2.2 (iv) asserts
that, since νa is an irreducibility measure, the measure ψb is a maximal irreducibility
measure.

To see (ii), suppose that A1 is ψa1-petite, and that A2 is ψa2-petite. Let A0 ∈
B+(X) be a fixed petite set and define the sampling measure a on ZZ+ as a(i) =
1
2 [a1(i) + a2(i)], i ∈ ZZ+.

Since both ψa1 and ψa2 can be chosen as maximal irreducibility measures, it
follows that for x ∈ A1 ∪A2

Ka(x,A0) ≥ 1
2 min(ψa1(A0), ψa2(A0)) > 0

so that A1 ∪A2
a
� A0. From Proposition 5.5.4 we see that A1 ∪A2 is petite.

For (iii), first apply Theorem 5.2.2 to construct a νn-small set C ∈ B+(X). By (i)
above we may assume that C is ψb-petite with ψb a maximal irreducibility measure.
Hence Kb(y, · ) ≥ 1lC(y)ψb( · ) for all y ∈ X.

By irreducibility and the definitions we also have Kaε(x,C) > 0 for all 0 < ε < 1,
and all x ∈ X. Combining these bounds gives for any x ∈ X, B ∈ B(X),

Kb∗aε(x,B) ≥
∫

C
Kaε(y, dz)Kb(z,B) ≥ Kaε(x,C)ψb(B)

which shows that (iii) holds with c = b ∗ aε, s(x) = Kaε(x,C) and ψc = ψb.
The petite sets forming the countable cover can be taken as Cm :={x ∈ X : s(x) ≥

m−1}, m ≥ 1. �
Clearly the result in (ii) is best possible, since the whole space is a countable

union of small (and hence petite) sets from Proposition 5.2.4, yet is not necessarily
petite itself.

Our next result is interesting of itself, but is more than useful as a tool in the use
of petite sets.

Proposition 5.5.6 Suppose that Φ is ψ-irreducible and that C is νa-petite.

(i) Without loss of generality we can take a to be either a uniform sampling distri-
bution am(i) = 1/m, 1 ≤ i ≤ m, or a to be the geometric sampling distribution
aε. In either case, there is a finite mean sampling time

ma =
∑

i

ia(i).



5.5 Petite Sets and Sampled Chains 129

(ii) If Φ is strongly aperiodic then the set C0∪C1 ⊆ X̌ corresponding to C is ν∗a-petite
for the split chain Φ̌.

Proof To see (i), let A ∈ B+(X) be νn-small. By Proposition 5.5.5 (i) we have

Kb(x,A) ≥ ψb(A) > 0, x ∈ C

where ψb is a maximal irreducibility measure. Hence
∑N

k=1 P
k(x,A) ≥ 1

2ψb(A), x ∈ C,
for some N sufficiently large.

Since A is νn-small, it follows that for any B ∈ B(X),

N+n∑
k=1

P k(x,B) ≥
N∑

k=1

P k+n(x,B) ≥ 1
2ψb(A)νn(B)

for x ∈ C. This shows that C is νa-petite with a(k) = (N + n)−1 for 1 ≤ k ≤ N + n.
Since for all ε and m there exists some constant c such that aε(j) ≥ cam(j), j ∈ ZZ+,
this proves (i).

To see (ii), suppose that the chain is split with the small set A ∈ B+(X). Then
A0 ∪ X1 is also petite: for X1 is small, and A0 is also small since P̌ (x,X1) ≥ δ for
x0 ∈ A0, and we know that the union of petite sets is petite, by Proposition 5.5.5.

Since when x0 ∈ Ac
0 we have for n ≥ 1, P̌n(x0, A0 ∪ X1) = P̌n(x0, A0 ∪ A1) =

Pn(x,A) it follows that

Ǩa(x0, A0 ∪ X1) =
∞∑

j=0

a(j)P̌ j(x0, A0 ∪X1)

is uniformly bounded from below for x0 ∈ C0 \A0, which shows that C0 \A0 is petite.
Since the union of petite sets is petite, C0 ∪ X1 is also petite. �

5.5.3 Petite sets and aperiodicity

If A is a petite set for a ψ-irreducible Markov chain then the corresponding minorizing
measure can always be taken to be equal to a maximal irreducibility measure, although
the measure νm appropriate to a small set is not as large as this.

We now prove that in the ψ-irreducible aperiodic case, every petite set is also
small for an appropriate choice of m and νm.

Theorem 5.5.7 If Φ is irreducible and aperiodic then every petite set is small.

Proof Let A be a petite set. From Proposition 5.5.5 we may assume that A is
ψa-petite, where ψa is a maximal irreducibility measure.

Let C denote the small set used in (5.40). Since the chain is aperiodic, it follows
from Theorem 5.4.4 and Lemma D.7.4 that for some n0 ∈ ZZ+, the set C is νk-small,
with νk = δν for some δ > 0, for all n0/2− 1 ≤ k ≤ n0.

Since C ∈ B+(X), we may also assume that n0 is so large that

∞∑
k=�n0/2�

a(k) ≤ 1
2ψa(C).
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With n0 so fixed, we have for all x ∈ A and B ∈ B(X),

Pn0(x,B) ≥
n0/2�∑
k=0

{∫
C
P k(x, dy)Pn0−k(y,B)

}
a(k)

≥
(n0/2�∑

k=0

P k(x,C)a(k)
)(
δν(B)

)
≥

(
1
2ψa(C)

)(
δν(B)

)
which shows that A is νn0-small, with νn0 = (1

2δψa(C))ν. �
This somewhat surprising result, together with Proposition 5.5.5, indicates that

the class of small sets can be used for different purposes, depending on the choice
of sampling distribution we make: if we sample at a fixed finite time we may get
small sets with their useful fixed time-point properties; and if we extend the sampling
as in Proposition 5.5.5, we develop a petite structure with a maximal irreducibility
measure. We shall use this duality frequently.

5.6 Commentary

We have already noted that the split chain and the random renewal time approaches
to regeneration were independently discovered by Nummelin [200] and Athreya and
Ney [12]. The opportunities opened up by this approach are exploited with growing
frequency in later chapters.

However, the split chain only works in the generality of ϕ-irreducible chains be-
cause of the existence of small sets, and the ideas for the proof of their existence go
back to Doeblin [67], although the actual existence as we have it here is from Jain and
Jamison [106]. Our proof is based on that in Orey [208], where small sets are called
C-sets. Nummelin [202] Chapter 2 has a thorough discussion of conditions equivalent
to that we use here for small sets; Bonsdorff [26] also provides connections between
the various small set concepts.

Our discussion of cycles follows that in Nummelin [202] closely. A thorough study
of cyclic behavior, expanding on the original approach of Doeblin [67], is given also
in Chung [48].

Petite sets as defined here were introduced in Meyn and Tweedie [178]. The
“small sets” defined in Nummelin and Tuominen [204] as well as the petits ensembles
developed in Duflo [69] are also special instances of petite sets, where the sampling
distribution a is chosen as a(i) = 1/N for 1 ≤ i ≤ N , and a(i) = (1−α)αi respectively.
To a French speaker, the term “petite set” might be disturbing since the gender of
ensemble is masculine: however, the nomenclature does fit normal English usage since
[21] the word “petit” is likened to “puny”, while “petite” is more closely akin to
“small”.

It might seem from Theorem 5.5.7 that there is little reason to consider both
petite sets and small sets. However, we will see that the two classes of sets are useful in
distinct ways. Petite sets are easy to work with for several reasons: most particularly,
they span periodic classes so that we do not have to assume aperiodicity, they are
always closed under unions for irreducible chains (Nummelin [202] also finds that
unions of small sets are small under aperiodicity), and by Proposition 5.5.5 we may
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assume that the petite measure is a maximal irreducibility measure whenever the
chain is irreducible.

Perhaps most importantly, when in the next chapter we introduce a class of
Markov chains with desirable topological properties, we will see that the structure of
these chains is closely linked to petiteness properties of compact sets.
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Topology and Continuity

The structure of Markov chains is essentially probabilistic, as we have described it
so far. In examining the stability properties of Markov chains, the context we shall
most frequently use is also a probabilistic one: in Part II, stability properties such as
recurrence or regularity will be defined as certain return to sets of positive ψ-measure,
or as finite mean return times to petite sets, and so forth.

Yet for many chains, there is more structure than simply a σ-field and a probabil-
ity kernel available, and the expectation is that any topological structure of the space
will play a strong role in defining the behavior of the chain. In particular, we are used
thinking of specific classes of sets in IRn as having intuitively reasonable properties.

When there is a topology, compact sets are thought of in some sense as manage-
able sets, having the same sort of properties as a finite set on a countable space; and
so we could well expect “stable” chains to spend the bulk of their time in compact
sets. Indeed, we would expect compact sets to have the sort of characteristics we have
identified, and will identify, for small or petite sets.

Conversely, open sets are “non-negligible” in some sense, and if the chain is
irreducible we might expect it at least to visit all open sets with positive probability.
This indeed forms one alternative definition of “irreducibility”.

In this, the first chapter in which we explicitly introduce topological considera-
tions, we will have, as our two main motivations, the desire to link the concept of
ψ-irreducibility with that of open set irreducibility and the desire to identify compact
sets as petite.

The major achievement of the chapter lies in identifying a topological condition on
the transition probabilities which achieves both of these goals, utilizing the sampled
chain construction we have just considered in Section 5.5.1.

Assume then that X is equipped with a locally compact, separable, metrizable
topology with B(X) as the Borel σ-field. Recall that a function h from X to IR is lower
semicontinuous if

lim inf
y→x

h(y) ≥ h(x), x ∈ X :

a typical, and frequently used, lower semicontinuous function is the indicator function
1lO(x) of an open set O in B(X).

We will use the following continuity properties of the transition kernel, couched
in terms of lower semicontinuous functions, to define classes of chains with suitable
topological properties.
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Feller chains, continuous components and T-chains

(i) If P ( · , O) is a lower semicontinuous function for any open set O ∈
B(X), then P is called a (weak) Feller chain.

(ii) If a is a sampling distribution and there exists a substochastic tran-
sition kernel T satisfying

Ka(x,A) ≥ T (x,A), x ∈ X, A ∈ B(X),

where T ( · , A) is a lower semicontinuous function for any A ∈ B(X),
then T is called a continuous component of Ka.

(iii) If Φ is a Markov chain for which there exists a sampling distri-
bution a such that Ka possesses a continuous component T , with
T (x,X) > 0 for all x, then Φ is called a T-chain.

We will prove as one highlight of this section

Theorem 6.0.1 (i) If Φ is a T-chain and L(x,O) > 0 for all x and all open sets
O ∈ B(X) then Φ is ψ-irreducible.

(ii) If every compact set is petite then Φ is a T-chain; and conversely, if Φ is a
ψ-irreducible T-chain then every compact set is petite.

(iii) If Φ is a ψ-irreducible Feller chain such that suppψ has non-empty interior,
then Φ is a ψ-irreducible T-chain.

Proof Proposition 6.2.2 proves (i); (ii) is in Theorem 6.2.5; (iii) is in Theo-
rem 6.2.9. �

In order to have any such links as those in Theorem 6.0.1 between the measure-
theoretic and topological properties of a chain, it is vital that there be at least a
minimal adaptation of the dynamics of the chain to the topology of the space on
which it lives.

For consider the chain on [0, 1] with transition law for x ∈ [0, 1] given by

P (n−1, (n+ 1)−1) = 1− αn, P (n−1, 0) = αn, n ∈ ZZ+; (6.1)

P (x, 1) = 1, x 
= n−1, n ≥ 1. (6.2)

This chain fails to visit most open sets, although it is definitely irreducible provided
αn > 0 for all n: and although it never leaves a compact set, it is clearly unstable in
an obvious way if

∑
n αn <∞, since then it moves monotonically down the sequence

{n−1} with positive probability.
Of course, the dynamics of this chain are quite wrong for the space on which we

have embedded it: its structure is adapted to the normal topology on the integers, not
to that on the unit interval or the set {n−1, n ∈ ZZ+}. The Feller property obviously
fails at {0}, as does any continuous component property if αn → 0.
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This is a trivial and pathological example, but one which proves valuable in
exhibiting the need for the various conditions we now consider, which do link the
dynamics to the structure of the space.

6.1 Feller Properties and Forms of Stability

6.1.1 Weak and strong Feller chains

Recall that the transition probability kernel P acts on bounded functions through
the mapping

Ph (x) =
∫
P (x, dy)h(y), x ∈ X. (6.3)

Suppose that X is a (locally compact separable metric) topological space, and let us
denote the class of bounded continuous functions from X to IR by C(X).

The (weak) Feller property is frequently defined by requiring that the transition
probability kernel P maps C(X) to C(X). If the transition probability kernel P maps
all bounded measurable functions to C(X) then P (and also Φ) is called strong Feller.

That this is consistent with the definition above follows from

Proposition 6.1.1 (i) The transition kernel P1lO is lower semicontinuous for every
open set O ∈ B(X) (that is, Φ is weak Feller) if and only if P maps C(X) to
C(X); and P maps all bounded measurable functions to C(X) (that is, Φ is strong
Feller) if and only if the function P1lA is lower semicontinuous for every set
A ∈ B(X).

(ii) If the chain is weak Feller then for any closed set C ⊂ X and any non-decreasing
function m: ZZ+ → ZZ+ the function Ex[m(τC)] is lower semicontinuous in x.
Hence for any closed set C ⊂ X, r > 1 and n ∈ ZZ+ the functions

Px{τC ≥ n} Ex[τC ] and Ex[rτC ]

are lower semicontinuous.

(iii) If the chain is weak Feller then for any open set O ⊂ X, the function Px{τO ≤ n}
and hence also the functions Ka(x,O) and L(x,O) are lower semicontinuous.

Proof To prove (i), suppose that Φ is Feller, so that P1lO is lower semicontinuous
for any open set O. Choose f ∈ C(X), and assume initially that 0 ≤ f(x) ≤ 1 for all
x. For N ≥ 1 define the Nth approximation to f as

fN (x) :=
1
N

N−1∑
k=1

1lOk
(x)

where Ok = {x : f(x) > k/N}. It is easy to see that fN ↑ f as N ↑ ∞, and by assump-
tion PfN is lower semicontinuous for each N . By monotone convergence, PfN ↑ Pf
as N ↑ ∞, and hence by Theorem D.4.1 the function Pf is lower semicontinuous.
Identical reasoning shows that the function P (1− f) = 1−Pf , and hence also −Pf ,
is lower semicontinuous. Applying Theorem D.4.1 once more we see that the function
Pf is continuous whenever f is continuous with 0 ≤ f ≤ 1.
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By scaling and translation it follows that Pf is continuous whenever f is bounded
and continuous.

Conversely, if P maps C(X) to itself, and O is an open set then by Theorem D.4.1
there exist continuous positive functions fN such that fN (x) ↑ 1lO(x) for each x as
N ↑ ∞. By monotone convergence P1lO = limPfN , which by Theorem D.4.1 implies
that P1lO is lower semicontinuous.

A similar argument shows that P is strong Feller if and only if the function P1lA
is lower semicontinuous for every set A ∈ B(X).

We next prove (ii). By definition of τC we have Px{τC = 0} = 0, and hence
without loss of generality we may assume that m(0) = 0. For each i ≥ 1 define
∆m(i) := m(i) − m(i − 1), which is non-negative since m is non-increasing. By a
change of summation,

E[m(τC)] =
∞∑

k=1

m(k)Px{τC = k}

=
∞∑

k=1

k∑
i=1

∆m(i)Px{τC = k}

=
∞∑
i=1

∆m(i)Px{τC ≥ i}

Since by assumption ∆m(k) ≥ 0 for each k > 0, the proof of (ii) will be complete
once we have shown that Px{τC ≥ k} is lower semicontinuous in x for all k.

Since C is closed and hence 1lCc(x) is lower semicontinuous, by Theorem D.4.1
there exist positive continuous functions fi, i ≥ 1, such that fi(x) ↑ 1lCc(x) for each
x ∈ X.

Extend the definition of the kernel IA, given by

IA(x,B) = 1lA∩B(x),

by writing for any positive function g

Ig(x,B) := g(x)1lB(x).

Then for all k ∈ ZZ+,

Px{τC ≥ k} = (PICc)k−1(x,X) = lim
i→∞

(PIfi)
k−1(x,X).

It follows from the Feller property that {(PIfi)
k−1(x,X) : i ≥ 1} is an increas-

ing sequence of continuous functions and, again by Theorem D.4.1, this shows that
Px{τC ≥ k} is lower semicontinuous in x, completing the proof of (ii).

Result (iii) is similar, and we omit the proof.
�

Many chains satisfy these continuity properties, and we next give some important
examples.

Weak Feller chains: the nonlinear state space models One of the simplest
examples of a weak Feller chain is the quite general nonlinear state space model
NSS(F ).
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Suppose conditions (NSS1) and (NSS2) are satisfied, so that X = {Xn}, where

Xk = F (Xk−1,Wk),

for some smooth (C∞) function F : X × IRp → X, where X is an open subset of IRn;
and the random variables {Wk} are a disturbance sequence on IRp.

Proposition 6.1.2 The NSS(F ) model is always weak Feller.

Proof We have by definition that the mapping x → F (x,w) is continuous for
each fixed w ∈ IR. Thus whenever h: X → IR is bounded and continuous, h ◦ F (x,w)
is also bounded and continuous for each fixed w ∈ IR. It follows from the Dominated
Convergence Theorem that

Ph (x) = E[h(F (x,W ))]

=
∫
Γ (dw)h ◦ F (x,w) (6.4)

is a continuous function of x ∈ X. �
This simple proof of weak continuity can be emulated for many models. It implies

that this aspect of the topological analysis of many models is almost independent of
the random nature of the inputs. Indeed, we could rephrase Proposition 6.1.2 as saying
that since the associated control model CM(F ) is a continuous function of the state
for each fixed control sequence, the stochastic nonlinear state space model NSS(F ) is
weak Feller.

We shall see in Chapter 7 that this reflection of deterministic properties of CM(F )
by NSS(F ) is, under appropriate conditions, a powerful and exploitable feature of the
nonlinear state space model structure.

Weak and strong Feller chains: the random walk The difference between the
weak and strong Feller properties is graphically illustrated in

Proposition 6.1.3 The unrestricted random walk is always weak Feller, and is
strong Feller if and only if the increment distribution Γ is absolutely continuous with
respect to Lebesgue measure µLeb on IR.

Proof Suppose that h ∈ C(X): the structure (3.35) of the transition kernel for the
random walk shows that

Ph (x) =
∫
IR
h(y)Γ (dy − x)

=
∫
IR
h(y + x)Γ (dy) (6.5)

and since h is bounded and continuous, Ph is also bounded and continuous, again
from the Dominated Convergence Theorem. Hence Φ is always weak Feller, as we also
know from Proposition 6.1.2.

Suppose next that Γ possesses a density γ with respect to µLeb on IR. Taking h
in (6.5) to be any bounded function, we have

Ph (x) =
∫
IR
h(y)γ(y − x) dy; (6.6)
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but now from Lemma D.4.3 it follows that the convolution Ph (x) = γ∗h is continuous,
and the chain is strong Feller.

Conversely, suppose the random walk is strong Feller. Then for any B such that
Γ (B) = δ > 0, by the lower semicontinuity of P (x,B) there exists a neighborhood O
of {0} such that

P (x,B) ≥ P (0, B)/2 = Γ (B)/2 = δ/2, x ∈ O. (6.7)

By Fubini’s Theorem and the translation invariance of µLeb we have for any A ∈ B(X)

∫
IR µ

Leb(dy)Γ (A− y) =
∫
IR µ

Leb(dy)
∫
IR 1lA−y(x)Γ (dx)

=
∫
IR Γ (dx)

∫
IR 1lA−x(y)µLeb(dy)

= µLeb(A)
(6.8)

since Γ (IR) = 1. Thus we have in particular from (6.7) and (6.8)

µLeb(B) =
∫
IR µ

Leb(dy)Γ (B − y)
≥

∫
O µLeb(dy)Γ (B − y)

≥ δµLeb(O)/2
(6.9)

and hence µLeb � Γ as required. �

6.1.2 Strong Feller chains and open set irreducibility

Our first interest in chains on a topological space lies in identifying their accessible
sets.

Open set irreducibility

(i) A point x ∈ X is called reachable if for every open set O ∈ B(X)
containing x (i.e. for every neighborhood of x)∑

n

Pn(y,O) > 0, y ∈ X.

(ii) The chain Φ is called open set irreducible if every point is reachable.

We will use often the following result, which is a simple consequence of the definition
of support.

Lemma 6.1.4 If Φ is ψ-irreducible then x∗ is reachable if and only if x∗ ∈ supp (ψ).
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Proof If x∗ ∈ supp (ψ) then, for any open set O containing x∗, we have ψ(O) > 0
by the definition of the support. By ψ-irreducibility it follows that L(x,O) > 0 for all
x, and hence x∗ is reachable.

Conversely, suppose that x∗ 
∈ supp (ψ), and let O = supp (ψ)c. The set O is open
by the definition of the support, and contains the state x∗. By Proposition 4.2.3 there
exists an absorbing, full set A ⊆ supp (ψ). Since L(x,O) = 0 for x ∈ A it follows that
x∗ is not reachable. �

It is easily checked that open set irreducibility is equivalent to irreducibility when
the state space of the chain is countable and is equipped with the discrete topology.

The open set irreducibility definition is conceptually similar to the ψ-irreducibility
definition: they both imply that “large” sets can be reached from every point in the
space. In the ψ-irreducible case large sets are those of positive ψ-measure, whilst in
the open set irreducible case, large sets are open non-empty sets.

In this book our focus is on the property of ψ-irreducibility as a fundamental
structural property. The next result, despite its simplicity, begins to link that property
to the properties of open-set irreducible chains.

Proposition 6.1.5 If Φ is a strong Feller chain, and X contains one reachable point
x∗, then Φ is ψ-irreducible, with ψ = P (x∗, · ).

Proof Suppose A is such that P (x∗, A) > 0. By lower semicontinuity of P ( · , A),
there is a neighborhood O of x∗ such that P (z,A) > 0, z ∈ O. Now, since x∗ is
reachable, for any y ∈ X, we have for some n

Pn+1(y,A) ≥
∫

O
Pn(y, dz)P (z,A) > 0 (6.10)

which is the result. �
This gives trivially

Proposition 6.1.6 If Φ is an open set irreducible strong Feller chain, then Φ is a
ψ-irreducible chain. �

We will see below in Proposition 6.2.2 that this strong Feller condition, which (as
is clear from Proposition 6.1.3) may be unsatisfied for many models, is not needed
in full to get this result, and that Proposition 6.1.5 and Proposition 6.1.6 hold for
T-chains also.

There are now two different approaches we can take in connecting the topological
and continuity properties of Feller chains with the stochastic or measure-theoretic
properties of the chain. We can either weaken the strong Feller property by requiring
in essence that it only hold partially; or we could strengthen the weak Feller condition
whilst retaining its essential flavor.

It will become apparent that the former, T-chain, route is usually far more pro-
ductive, and we move on to this next. A strengthening of the Feller property to give
e-chains will then be developed in Section 6.4.
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6.2 T-chains

6.2.1 T-chains and open set irreducibility

The calculations for NSS(F ) models and random walks show that the majority of the
chains we have considered to date have the weak Feller property.

However, we clearly need more than just the weak Feller property to connect
measure-theoretic and topological irreducibility concepts: every random walk is weak
Feller, and we know from Section 4.3.3 that any chain with increment measure con-
centrated on the rationals enters every open set but is not ψ-irreducible.

Moving from the weak to the strong Feller property is however excessive. Using
the ideas of sampled chains introduced in Section 5.5.1 we now develop properties of
the class of T-chains, which we shall find includes virtually all models we will inves-
tigate, and which appears almost ideally suited to link the general space attributes
of the chain with the topological structure of the space.

The T-chain definition describes a class of chains which are not totally adapted
to the topology of the space, in that the strongly continuous kernel T , being only a
“component” of P , may ignore many discontinuous aspects of the motion of Φ: but it
does ensure that the chain is not completely singular in its motion, with respect to the
normal topology on the space, and the strong continuity of T links set-properties such
as ψ-irreducibility to the topology in a way that is not natural for weak continuity.

We illustrate precisely this point now, with the analogue of Proposition 6.1.5.

Proposition 6.2.1 If Φ is a T-chain, and X contains one reachable point x∗, then
Φ is ψ-irreducible, with ψ = T (x∗, · ).

Proof Let T be a continuous component for Ka: since T is everywhere non-trivial,
we must have in particular that T (x∗,X) > 0. Suppose A is such that T (x∗, A) > 0. By
lower semicontinuity of T ( · , A), there is a neighborhood O of x∗ such that T (w,A) >
0, w ∈ O. Now, since x∗ is reachable, for any y ∈ X, we have from Proposition 5.5.2

Kaε∗a(y,A) ≥
∫

O
Kaε(y, dw)Ka(w,A)

≥
∫

O
Kaε(y, dw)T (w,A)

> 0 (6.11)

which is the result. �
This result has, as a direct but important corollary

Proposition 6.2.2 If Φ is an open set irreducible T-chain, then Φ is a ψ-irreducible
T-chain. �

6.2.2 T-chains and petite sets

When the Markov chain Φ is ψ-irreducible, we know that there always exists at least
one petite set. When X is topological, it turns out that there is a perhaps surprisingly
direct connection between the existence of petite sets and the existence of continuous
components.
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In the next two results we show that the existence of sufficient open petite sets
implies that Φ is a T-chain.

Proposition 6.2.3 If an open νa-petite set A exists, then Ka possesses a continuous
component non-trivial on all of A.

Proof Since A is νa-petite, by definition we have

Ka( · , · ) ≥ 1lA( · )ν{ · }.

Now set T (x,B) := 1lA(x)ν(B): this is certainly a component of Ka, non-trivial on
A. Since A is an open set its indicator function is lower semicontinuous; hence T is a
continuous component of Ka. �

Using such a construction we can build up a component which is non-trivial
everywhere, if the space X is sufficiently rich in petite sets. We need first

Proposition 6.2.4 Suppose that for each x ∈ X there exists a probability distribution
ax on ZZ+ such that Kax possesses a continuous component Tx which is non-trivial at
x. Then Φ is a T-chain.

Proof For each x ∈ X, let Ox denote the set

Ox = {y ∈ X : Tx(y,X) > 0}.

which is open since Tx( · ,X) is lower semicontinuous. Observe that by assumption,
x ∈ Ox for each x ∈ X.

By Lindelöf’s Theorem D.3.1 there exists a countable subcollection of sets {Oi :
i ∈ ZZ+} and corresponding kernels Ti and Kai such that

⋃
Oi = X. Letting

T =
∞∑

k=1

2−kTk and a =
∞∑

k=1

2−kak,

it follows that Ka ≥ T , and hence satisfies the conclusions of the proposition. �
We now get a virtual equivalence between the T-chain property and the existence

of compact petite sets.

Theorem 6.2.5 (i) If every compact set is petite, then Φ is a T-chain.

(ii) Conversely, if Φ is a ψ-irreducible T-chain then every compact set is petite, and
consequently if Φ is an open set irreducible T-chain then every compact set is
petite.

Proof Since X is σ-compact, there is a countable covering of open petite sets, and
the result (i) follows from Proposition 6.2.3 and Proposition 6.2.4.

Now suppose that Φ is ψ-irreducible, so that there exists some petite A ∈ B+(X),
and let Ka have an everywhere non-trivial continuous component T .

By irreducibility Kaε(x,A) > 0, and hence from (5.46)

Ka∗aε(x,A) = KaKaε (x,A) ≥ TKaε (x,A) > 0

for all x ∈ X.
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The function TKaε ( · , A) is lower semicontinuous and positive everywhere on
X. Hence Ka∗aε(x,A) is uniformly bounded from below on compact subsets of X.
Proposition 5.2.4 completes the proof that each compact set is petite.

The fact that we can weaken the irreducibility condition to open-set irreducibility
follows from Proposition 6.2.2. �

The following factorization, which generalizes Proposition 5.5.5, further links the
continuity and petiteness properties of T-chains.

Proposition 6.2.6 If Φ is a ψ-irreducible T-chain, then there is a sampling distribu-
tion b, an everywhere strictly positive, continuous function s′: X → IR, and a maximal
irreducibility measure ψb such that

Kb(x,B) ≥ s′(x)ψb(B), x ∈ X, B ∈ B(X).

Proof If T is a continuous component of Ka, then we have from Proposi-
tion 5.5.5 (iii),

Ka∗c(x,B) ≥
∫
Ka(x, dy)s(y)ψc(B)

≥ T (x, s)ψc(B)

The function T ( · , s) is positive everywhere and lower semicontinuous, and therefore
it dominates an everywhere positive continuous function s′; and we can take b = a ∗ c
to get the required properties. �

6.2.3 Feller chains, petite sets, and T-chains

We now investigate the existence of compact petite sets when the chain satisfies only
the (weak) Feller continuity condition. Ultimately this leads to an auxiliary condition,
satisfied by very many models in practice, under which a weak Feller chain is also a
T-chain.

We first require the following lemma for petite sets for Feller chains.

Lemma 6.2.7 If Φ is a ψ-irreducible Feller chain, then the closure of every petite
set is petite.

Proof By Proposition 5.2.4 and Proposition 5.5.4 and regularity of probability
measures on B(X) (i.e. a set A ∈ B(X) may be approximated from within by compact
sets), the set A is petite if and only if there exists a probability a on ZZ+, δ > 0, and
a compact petite set C ⊂ X such that

Ka(x,C) ≥ δ, x ∈ A.

By Proposition 6.1.1 the function Ka(x,C) is upper semicontinuous when C is com-
pact. Thus we have

inf
x∈Ā

Ka(x,C) = inf
x∈A

Ka(x,C)

and this shows that the closure of a petite set is petite. �
It is now possible to define auxiliary conditions under which all compact sets are

petite for a Feller chain.



142 6 Topology and Continuity

Proposition 6.2.8 Suppose that Φ is ψ-irreducible. Then all compact subsets of X
are petite if either:

(i) Φ has the Feller property and an open ψ-positive petite set exists; or

(ii) Φ has the Feller property and suppψ has non-empty interior.

Proof To see (i), let A be an open petite set of positive ψ-measure. ThenKaε( · , A)
is lower semicontinuous and positive everywhere, and hence bounded from below on
compact sets. Proposition 5.5.4 again completes the proof.

To see (ii), let A be a ψ-positive petite set, and define

Ak := closure {x : Kaε(x,A) ≥ 1/k} ∩ suppψ.

By Proposition 5.2.4 and Lemma 6.2.7, each Ak is petite. Since suppψ has non-empty
interior it is of the second category, and hence there exists k ∈ ZZ+ and an open set
O ⊂ Ak ⊂ suppψ. The set O is an open ψ-positive petite set, and hence we may
apply (i) to conclude (ii). �

A surprising, and particularly useful, conclusion from this cycle of results concern-
ing petite sets and continuity properties of the transition probabilities is the following
result, showing that Feller chains are in many circumstances also T-chains. We have
as a corollary of Proposition 6.2.8 (ii) and Proposition 6.2.5 (ii) that

Theorem 6.2.9 If a ψ-irreducible chain Φ is weak Feller and if suppψ has nonempty
interior then Φ is a T-chain. �

These results indicate that the Feller property, which is a relatively simple con-
dition to verify in many applications, provides some strong consequences for ψ-
irreducible chains.

Since we may cover the state space of a ψ-irreducible Markov chain by a countable
collection of petite sets, and since by Lemma 6.2.7 the closure of a petite set is itself
petite, it might seem that Theorem 6.2.9 could be strengthened to provide an open
covering of X by petite sets without additional hypotheses on the chain. It would then
follow by Theorem 6.2.5 that any ψ-irreducible Feller chain is a T-chain.

Unfortunately, this is not the case, as is shown by the following counterexample.
Let X = [0, 1] with the usual topology, let 0 < |α| < 1, and define the Markov
transition function P for x > 0 by

P (x, {0}) = 1− P (x, {αx}) = x

We set P (0, {0}) = 1. The transition function P is Feller and δ0-irreducible. But for
any n ∈ ZZ+ we have

lim
x→0

Px(τ{0} ≥ n) = 1,

from which it follows that there does not exist an open petite set containing the point
{0}.

Thus we have constructed a ψ-irreducible Feller chain on a compact state space
which is not a T-chain.
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6.3 Continuous Components For Specific Models

For a very wide range of the irreducible examples we consider, the support of the
irreducibility measure does indeed have non-empty interior under some “spread-out”
type of assumption. Hence weak Feller chains, such as the entire class of nonlinear
models, will have all of the properties of the seemingly much stronger T-chain models
provided they have an appropriate irreducibility structure.

We now identify a number of other examples of T-chains more explicitly.

6.3.1 Random walks

Suppose Φ is random walk on a half-line. We have already shown that provided the
increment distribution Γ provides some probability of negative increments then the
chain is δ0-irreducible, and moreover all of the sets [0, c] are small sets.

Thus all compact sets are small and we have immediately from Theorem 6.2.5

Proposition 6.3.1 The random walk on a half line with increment measure Γ is
always a ψ-irreducible T-chain provided that Γ (−∞, 0) > 0. �

Exactly the same argument for a storage model with general state-dependent
release rule r(x), as discussed in Section 2.4.4, shows these models to be δ0-irreducible
T-chains when the integral R(x) of (2.33) is finite for all x.

Thus the virtual equivalence of the petite compact set condition and the T-chain
condition provides an easy path to showing the existence of continuous components
for many models with a real atom in the space.

Assessing conditions for non-atomic chains to be T-chains is not quite as simple in
general. However, we can describe exactly what the continuous component condition
defining T-chains means in the case of the random walk. Recall that the random walk
is called spread-out if some convolution power Γn∗ is non-singular with respect to
µLeb on IR.

Proposition 6.3.2 The unrestricted random walk is a T-chain if and only if it is
spread out.

Proof If Γ is spread out then for some M , and some positive function γ, we have

PM (x,A) = ΓM∗(A− x) ≥
∫

A−x
γ(y)dy := T (x,A)

and exactly as in the proof of Proposition 6.1.3, it follows that T is strong Feller:
the spread-out assumption ensures that T (x,X) > 0 for all x, and so by choosing the
sampling distribution as a = δM we find that Φ is a T-chain.

The converse is somewhat harder, since we do not know a priori that when Φ is a
T-chain, the component T can be chosen to be translation invariant. So let us assume
that the result is false, and choose A such that µLeb(A) = 0 but Γn∗(A) = 1 for every
n. Then Γn∗(Ac) = 0 for all n and so for the sampling distribution a associated with
the component T ,

T (0, Ac) ≤ Ka(0, Ac) =
∑
n

Γn∗(Ac)a(n) = 0.
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The non-triviality of the component T thus ensures T (0, A) > 0, and since T (x,A)
is lower semicontinuous, there exists a neighborhood O of {0} and a δ > 0 such that
T (x,A) ≥ δ > 0, x ∈ O.

Since T is a component of Ka, this ensures

Ka(x,A) ≥ δ > 0, x ∈ O.

But as in (6.8) by Fubini’s Theorem and the translation invariance of µLeb we have

µLeb(A) =
∫
IR
µLeb(dy)Γn∗(A− y)

=
∫
IR
µLeb(dy)Pn(y,A). (6.12)

Multiplying both sides of (6.12) by a(n) and summing gives

µLeb(A) =
∫
IR µ

Leb(dy)Ka(y,A)
≥

∫
O µLeb(dy)Ka(y,A)

≥ δµLeb(O)
(6.13)

and since µLeb(O) > 0, we have a contradiction. �
This example illustrates clearly the advantage of requiring only a continuous

component, rather than the Feller property for the chain itself.

6.3.2 Linear models as T-chains

Proposition 6.3.2 implies that the random walk model is a T-chain whenever the
distribution of the increment variable W is sufficiently rich that, from each starting
point, the chain does not remain in a set of zero Lebesgue measure.

This property, that when the set of reachable states is appropriately large the
model is a T-chain, carries over to a much larger class of processes, including the
linear and nonlinear state space models.

Suppose that X is a LSS(F ,G)model, defined as usual by Xk+1 = FXk +GWk+1.
By repeated substitution in (LSS1) we obtain for any m ∈ ZZ+,

Xm = FmX0 +
m−1∑
i=0

F iGWm−i (6.14)

To obtain a continuous component for the LSS(F ,G) model, our approach is
similar to that in deriving its irreducibility properties in Section 4.4. We require that
the set of possible reachable states be large for the associated deterministic linear
control system, and we also require that the set of reachable states remain large when
the control sequence u is replaced by the random disturbance W. One condition
sufficient to ensure this is
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Non-singularity Condition for the LSS(F ,G) Model

(LSS4) The distribution Γ of the random variable W is non-
singular with respect to Lebesgue measure, with non-trivial
density γw.

Using (6.14) we now show that the n-step transition kernel itself possesses a continu-
ous component provided, firstly, Γ is non-singular with respect to Lebesgue measure
and secondly, the chain X can be driven to a sufficiently large set of states in IRn

through the action of the disturbance process W = {Wk} as described in the last
term of (6.14). This second property is a consequence of the controllability of the
associated model LCM(F ,G).

In Chapter 7 we will show that this construction extends further to more complex
nonlinear models.

Proposition 6.3.3 Suppose the deterministic control model LCM(F ,G) on IRn sat-
isfies the controllability condition (LCM3), and the associated LSS(F ,G) model X
satisfies the nonsingularity condition(LSS4).

Then the n-skeleton possesses a continuous component which is everywhere non-
trivial, so that X is a T-chain.

Proof We will prove this result in the special case where W is a scalar. The
general case with W ∈ IRp is proved using the same methods as in the case where
p = 1, but much more notation is needed for the required change of variables [174].

Let f denote an arbitrary positive function on X = IRn. From (6.14) together
with non-singularity of the disturbance process W we may bound the conditional
mean of f(Φn) as follows:

Pnf (x0) = E[f(Fnx0 +
n−1∑
i=0

F iGWn−i)] (6.15)

≥
∫
· · ·

∫
f(Fnx0 +

n−1∑
i=0

F iGwn−i) γw(w1) · · · γw(wn) dw1 . . . dwn.

Letting Cn denote the controllability matrix in (4.13) and defining the vector valued
random variable �Wn = (W1, . . . ,Wn)�, we define the kernel T as

Tf (x) :=
∫
f(Fnx+ Cn �wn) γ�w(�wn) d�wn.

We have T (x,X) = {
∫
γw(x) dx}n > 0, which shows that T is everywhere non-trivial;

and T is a component of Pn since (6.15) may be written in terms of T as

Pnf (x0) ≥
∫
f(Fnx0 + Cn �wn) γ�w(�wn) d�wn = Tf(x0). (6.16)
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Let |Cn| denote the determinant of Cn, which is non-zero since the pair (F,G) is
controllable. Making the change of variables

�vn = Cn �wn d�vn = |Cn|d�wn

in (6.16) allows us to write

Tf (x0) =
∫
f(Fnx0 + �vn)γ�w(C−1

n �vn)|Cn|−1 d�vn.

By Lemma D.4.3 and the Dominated Convergence Theorem, the right hand side of
this identity is a continuous function of x0 whenever f is bounded. This combined
with (6.16) shows that T is a continuous component of Pn. �

In particular this shows that the ARMA process (ARMA1) and any of its vari-
ations may be modeled as a T-chain if the noise process W is sufficiently rich with
respect to Lebesgue measure, since they possess a controllable realization from Propo-
sition 4.4.2.

In general, we can also obtain a T-chain by restricting the process to a control-
lable subspace of the state space in the manner indicated after Proposition 4.4.3.

6.3.3 Linear models as ψ-irreducible T-chains

We saw in Proposition 4.4.3 that a controllable LSS(F ,G) model is ψ-irreducible (with
ψ equivalent to Lebesgue measure) if the distribution Γ of W is Gaussian. In fact,
under the conditions of that result, the process is also strong Feller, as we can see
from the exact form of (4.18). Thus the controllable Gaussian model is a ψ-irreducible
T-chain, with ψ specifically identified and the “component” T given by P itself.

In Proposition 6.3.3 we weakened the Gaussian assumption and still found con-
ditions for the LSS(F ,G) model to be a T-chain. We need extra conditions to retain
ψ-irreducibility.

Now that we have developed the general theory further we can also use substan-
tially weaker conditions on W to prove the chain possesses a reachable state, and
this will give us the required result from Section 6.2.1. We introduce the following
condition on the matrix F used in (LSS1):

Eigenvalue condition for the LSS(F ,G) model

(LSS5) The eigenvalues of F fall within the open unit disk in C.

We will use the following lemma to control the growth of the models below.

Lemma 6.3.4 Let ρ(F ) denote the modulus of the eigenvalue of F of maximum
modulus, where F is an n × n matrix. Then for any matrix norm ‖ · ‖ we have the
limit

log(ρ(F )) = lim
n→∞

1
n

log(‖Fn‖). (6.17)
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Proof The existence of the limit (6.17) follows from the Jordan Decomposition
and is a standard result from linear systems theory: see [39] or Exercises 2.I.2 and
2.I.5 of [69] for details. �

A consequence of Lemma 6.3.4 is that for any constants ρ, ρ satisfying ρ < ρ(F ) <
ρ, there exists c > 1 such that

c−1ρn ≤ ‖Fn‖ ≤ cρn. (6.18)

Hence for the linear state space model, under the eigenvalue condition (LSS5), the
convergence Fn → 0 takes place at a geometric rate. This property is used in the
following result to give conditions under which the linear state space model is irre-
ducible.

Proposition 6.3.5 Suppose that the LSS(F ,G) model X satisfies the density con-
dition (LSS4) and the eigenvalue condition (LSS5), and that the associated control
system LCM(F ,G) is controllable.

Then X is a ψ-irreducible T-chain and every compact subset of X is small.

Proof We have seen in Proposition 6.3.3 that the linear state space model is a
T-chain under these conditions. To obtain irreducibility we will construct a reachable
state and use Proposition 6.2.1.

Let w� denote any element of the support of the distribution Γ of W , and let

x� =
∞∑

k=0

F kGw�.

If in (1.4), the control uk = w� for all k, then the system xk converges to x� uniformly
for initial conditions in compact subsets of X.

By (pointwise) continuity of the model, it follows that for any bounded set A ⊂ X
and open set O containing x�, there exists ε > 0 sufficiently small and N ∈ ZZ+

sufficiently large such that xN ∈ O whenever x0 ∈ A, and ui ∈ w�+εB, for 1 ≤ i ≤ N ,
where B denotes the open unit ball centered at the origin in X. Since w� lies in the
support of the distribution of Wk we can conclude that PN (x0, O) ≥ Γ (w�+εB)N > 0
for x0 ∈ A.

Hence x� is reachable, which by Proposition 6.2.1 and Proposition 6.3.3 implies
that Φ is ψ-irreducible for some ψ.

We now show that all bounded sets are small, rather than merely petite. Propo-
sition 6.3.3 shows that Pn possesses a strong Feller component T . By Theorem 5.2.2
there exists a small set C for which T (x�, C) > 0 and hence, by the Feller property,
an open set O containing x� exists for which

inf
x∈O

T (x,C) > 0.

By Proposition 5.2.4 O is also a small set. If A is a bounded set, then we have already
shown that A δM

� O for some N , so applying Proposition 5.2.4 once more we have the
desired conclusion that A is small. �
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6.3.4 The first-order SETAR model

Results for nonlinear models are not always as easy to establish. However, for simple
models similar conditions on the noise variables establish similar results. Here we
consider the first-order SETAR models, which are defined as piecewise linear models
satisfying

Xn = φ(j) + θ(j)Xn−1 +Wn(j), Xn−1 ∈ Rj

where −∞ = r0 < r1 < · · · < rM = ∞ and Rj = (rj−1, rj ]; for each j, the noise
variables {Wn(j)} form an i.i.d. zero-mean sequence independent of {Wn(i)} for i 
= j.
Throughout, W (j) denotes a generic variable with distribution Γj .

In order to ensure that these models can be analyzed as T-chains we make the
following additional assumption, analogous to those above.

(SETAR2) For each j = 1, · · · ,M , the noise variable W (j) has a
density positive on the whole real line.

Even though this model is not Feller, due to the possible presence of discontinuities
at the boundary points {ri}, we can establish

Proposition 6.3.6 Under (SETAR1) and (SETAR2), the SETAR model is a ϕ-
irreducible T-process with ϕ taken as Lebesgue measure µLeb on IR.

Proof The µLeb-irreducibility is immediate from the assumption of positive den-
sities for each of the W (j). The existence of a continuous component is less simple.

It is obvious from the existence of the densities that at any point in the interior
of any of the regions Ri the transition function is strongly continuous. We do not
necessarily have this continuity at the boundaries ri themselves. However, as x ↑ ri

we have strong continuity of P (x, · ) to P (ri, · ), whilst the limits as x ↓ ri of P (x,A)
always exist giving a limit measure P ′(ri, · ) which may differ from P (ri, · ).

If we take Ti(x, · ) = min(P ′(ri, · ), P (ri, · ), P (x, · )) then Ti is a continuous com-
ponent of P at least in some neighborhood of ri; and the assumption that the densities
of both W (i),W (i+ 1) are positive everywhere guarantees that Ti is non-trivial.

But now we may put these components together using Proposition 6.2.4 and we
have shown that the SETAR model is a T-chain. �

Clearly one can weaken the positive density assumption. For example, it is enough
for the T-chain result that for each j the supports of W (j) − φ(j) − θ(j)rj and
W (j + 1)− φ(j + 1)− θ(j + 1)rj should not be distinct, whilst for the irreducibility
one can similarly require only that the densities of W (j)−φ(j)−θ(j)x exist in a fixed
neighborhood of zero, for x ∈ (rj−1, rj ]. For chains which do not for some structural
reason obey (SETAR2) one would need to check the conditions on the support of the
noise variables with care to ensure that the conclusions of Proposition 6.3.6 hold.



6.4 e-Chains 149

6.4 e-Chains

Now that we have developed some of the structural properties of T-chains that we
will require, we move on to a class of Feller chains which also have desirable structural
properties, namely e-chains.

6.4.1 e-Chains and dynamical systems

The stability of weak Feller chains is naturally approached in the context of dynamical
systems theory as introduced in the heuristic discussion in Chapter 1. Recall from
Section 1.3.2 that the Markov transition function P gives rise to a deterministic map
from M, the space of probabilities on B(X), to itself, and we can construct on this
basis a dynamical system (P,M, d), provided we specify a metric d, and hence also a
topology, on M.

To do this we now introduce the topology of weak convergence.

Weak Convergence

A sequence of probabilities {µk : k ∈ ZZ+} ⊂ M converges weakly to
µ∞ ∈M (denoted µk

w−→ µ∞) if

lim
k→∞

∫
f dµk =

∫
f dµ∞

for every f ∈ C(X).

Due to our restrictions on the state space X, the topology of weak convergence is
induced by a number of metrics on M; see Section D.5. One such metric may be
expressed

dm(µ, ν) =
∞∑

k=0

|
∫
fk dµ−

∫
fk dν|2−k, µ, ν ∈M (6.19)

where {fk} is an appropriate set of functions in Cc(X), the set of continuous functions
on X with compact support.

For (P,M, dm) to be a dynamical system we require that P be a continuous
map on M. If P is continuous, then we must have in particular that if a sequence of
point masses {δxk

: k ∈ ZZ+} ⊂ M converge to some point mass δx∞ ∈M, then

δxk
P

w−→ δx∞P as k →∞

or equivalently, limk→∞ Pf (xk) = Pf (x∞) for all f ∈ C(X). That is, if the Markov
transition function induces a continuous map on M, then Pf must be continuous
for any bounded continuous function f .

This is exactly the weak Feller property. Conversely, it is obvious that for any weak
Feller Markov transition function P , the associated operator P on M is continuous.
We have thus shown
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Proposition 6.4.1 The triple (P,M, dm) is a dynamical system if and only if the
Markov transition function P has the weak Feller property. �

Although we do not get further immediate value from this result, since there do
not exist a great number of results in the dynamical systems theory literature to be
exploited in this context, these observations guide us to stronger and more useful
continuity conditions.

Equicontinuity and e-Chains

The Markov transition function P is called equicontinuous if for each
f ∈ Cc(X) the sequence of functions {P kf : k ∈ ZZ+} is equicontinuous
on compact sets.

A Markov chain which possesses an equicontinuous Markov transition
function will be called an e-chain.

There is one striking result which very largely justifies our focus on e-chains, especially
in the context of more stable chains.

Proposition 6.4.2 Suppose that the Markov chain Φ has the Feller property, and
that there exists a unique probability measure π such that for every x

Pn(x, · ) w−→ π. (6.20)

Then Φ is an e-chain.

Proof Since the limit in (6.20) is continuous (and in fact constant) it follows
from Ascoli’s Theorem D.4.2 that the sequence of functions {P kf : k ∈ ZZ+} is
equicontinuous on compact subsets of X whenever f ∈ C(X). Thus the chain Φ is an
e-chain. �

Thus chains with good limiting behavior, such as those in Part III in particular,
are forced to be e-chains, and in this sense the e-chain assumption is for many purposes
a minor extra step after the original Feller property is assumed.

Recall from Chapter 1 that the dynamical system (P,M, dm) is called stable in
the sense of Lyapunov if for each measure µ ∈M,

lim
ν→µ

sup
k≥0

dm(νP k, µP k) = 0.

The following result creates a further link between classical dynamical systems theory,
and the theory of Markov chains on topological state spaces. The proof is routine and
we omit it.

Proposition 6.4.3 The Markov chain is an e-chain if and only if the dynamical
system (P,M, dm) is stable in the sense of Lyapunov.
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6.4.2 e-Chains and tightness

Stability in the sense of Lyapunov is a useful concept when a stationary point for
the dynamical system exists. If x∗ is a stationary point and the dynamical system is
stable in the sense of Lyapunov, then trajectories which start near x∗ will stay near
x∗, and this turns out to be a useful notion of stability.

For the dynamical system (P,M, dm), a stationary point is an invariant proba-
bility: that is, a probability satisfying

π(A) =
∫
π(dx)P (x,A), A ∈ B(X). (6.21)

Conditions for such an invariant measure π to exist are the subject of considerable
study for ψ-irreducible chains in Chapter 10, and in Chapter 12 we return to this
question for weak Feller chains and e-chains.

A more immediately useful concept is that of Lagrange stability. Recall from
Section 1.3.2 that (P,M, dm) is Lagrange stable if, for every µ ∈ M, the orbit of
measures µP k is a precompact subset ofM. One way to investigate Lagrange stability
for weak Feller chains is to utilize the following concept, which will have much wider
applicability in due course.

Chains Bounded in Probability

The Markov chain Φ is called bounded in probability if for each initial
condition x ∈ X and each ε > 0, there exists a compact subset C ⊂ X
such that

lim inf
k→∞

Px{Φk ∈ C} ≥ 1− ε.

Boundedness in probability is simply tightness for the collection of probabilities
{P k(x, · ) : k ≥ 1}. Since it is well known [24] that a set of probabilities A ⊂ M
is tight if and only if A is precompact in the metric space (M, dm) this proves

Proposition 6.4.4 The chain Φ is bounded in probability if and only if the dynamical
system (P,M, dm) is Lagrange stable. �

For e-chains, the concepts of boundedness in probability and Lagrange stabil-
ity also interact to give a useful stability result for a somewhat different dynamical
system.

The space C(X) can be considered as a normed linear space, where we take the
norm | · |c to be defined for f ∈ C(X) as

|f |c :=
∞∑

k=0

2−k( sup
x∈Ck

|f(x)|)

where {Ck} is a sequence of open precompact sets whose union is equal to X. The as-
sociated metric dc generates the topology of uniform convergence on compact subsets
of X.
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If P is a weak Feller kernel, then the mapping P on C(X) is continuous with
respect to this norm, and in this case the triple (P, C(X), dc) is a dynamical system.

By Ascoli’s Theorem D.4.2, (P, C(X), dc) will be Lagrange stable if and only if for
each initial condition f ∈ C(X), the orbit {P kf : k ∈ ZZ+} is uniformly bounded, and
equicontinuous on compact subsets of X. This fact easily implies

Proposition 6.4.5 Suppose that Φ is bounded in probability. Then Φ is an e-chain
if and only if the dynamical system (P, C(X), dc) is Lagrange stable. �

To summarize, for weak Feller chains boundedness in probability and the equicon-
tinuity assumption are, respectively, exactly the same as Lagrange stability and sta-
bility in the sense of Lyapunov for the dynamical system (P,M, dm); and these sta-
bility conditions are both simultaneously satisfied if and only if the dynamical system
(P,M, dm) and its dual (P, C(X), dc) are simultaneously Lagrange stable.

These connections suggest that equicontinuity will be a useful tool for studying
the limiting behavior of the distributions governing the Markov chain Φ, a belief
which will be justified in the results in Chapter 12 and Chapter 18.

6.4.3 Examples of e-chains

The easiest example of an e-chain is the simple linear model described by (SLM1)
and (SLM2).

If x and y are two initial conditions for this model, and the resulting sample
paths are denoted {Xn(x)} and {Xn(y)} respectively for the same noise path, then
by (SLM1) we have

Xn+1(x)−Xn+1(y) = α(Xn(x)−Xn(y)) = αn+1(x− y). (6.22)

If |α| ≤ 1, then this indicates that the sample paths should remain close together if
their initial conditions are also close.

From this observation we now show that the simple linear model is an e-chain
under the stability condition that |α| ≤ 1. Since the random walk on IR is a special
case of the simple linear model with α = 1, this also implies that the random walk is
also an e-chain.

Proposition 6.4.6 The simple linear model defined by (SLM1) and (SLM2) is an
e-chain provided that |α| ≤ 1.

Proof Let f ∈ Cc(X). By uniform continuity of f , for any ε > 0 we can find δ > 0
so that |f(x) − f(y)| ≤ ε whenever |x − y| ≤ δ. It follows from (6.22) that for any
n ∈ ZZ+, and any x, y ∈ IR with |x− y| ≤ δ,

|Pn+1f (x)− Pn+1f (y)| = |E[f(Xn+1(x))− f(Xn+1(y))]|
≤ E[|f(Xn+1(x))− f(Xn+1(y))|]
≤ ε,

which shows that X is an e-chain. �
Equicontinuity is rather difficult to verify or rule out directly in general, especially

before some form of stability has been established for the process. Although the
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equicontinuity condition may seem strong, it is surprisingly difficult to construct a
natural example of a Feller chain which is not an e-chain. Indeed, our concentration
on them is justified by Proposition 6.4.2 and this does provide an indirect way to
verify that many Feller examples are indeed e-chains.

One example of a “non-e” chain is, however, provided by a “multiplicative random
walk” on IR+, defined by

Xk+1 =
√
XkWk+1, k ∈ ZZ+, (6.23)

where W is a disturbance sequence on IR+ whose marginal distribution possesses a
finite first moment. The chain is Feller since the right hand side of (6.23) is continuous
in Xk. However, X is not an e-chain when IR is equipped with the usual topology.

A complete proof of this fact requires more theory than we have so far developed,
but we can give a sketch to illustrate what can go wrong.

When X0 
= 0, the process logXk, k ∈ ZZ+, is a version of the simple linear model
described in Chapter 2, with α = 1

2 . We will see in Section 10.5.4 that this implies
that for any X0 = x0 
= 0 and any bounded continuous function f ,

P kf (x0) → f∞, k →∞

where f∞ is a constant. When x0 = 0 we have that P kf (x0) = f(x0) = f(0) for all
k.

From these observations it is easy to see that X is not an e-chain. Take f ∈ Cc(X)
with f(0) = 0 and f(x) ≥ 0 for all x > 0: we may assume without loss of generality
that f∞ > 0. Since the one-point set {0} is absorbing we have P k(0, {0}) = 1 for
all k, and it immediately follows that P kf converges to a discontinuous function. By
Ascoli’s Theorem the sequence of functions {P kf : k ∈ ZZ+} cannot be equicontinuous
on compact subsets of IR+, which shows that X is not an e-chain.

However by modifying the topology on X = IR+ we do obtain an e-chain as follows.
Define the topology on the strictly positive real line (0,∞) in the usual way, and define
{0} to be open, so that X becomes a disconnected set with two open components.
Then, in this topology, P kf converges to a uniformly continuous function which is
constant on each component of X. From this and Ascoli’s Theorem it follows that X
is an e-chain.

It appears in general that such pathologies are typical of “non-e” Feller chains,
and this again reinforces the value of our results for e-chains, which constitute the
more typical behavior of Feller chains.

6.5 Commentary

The weak Feller chain has been a basic starting point in certain approaches to Markov
chain theory for many years. The work of Foguel [78, 80], Jamison [108, 109, 110],
Lin [154], Rosenblatt [229] and Sine [241, 242, 243] have established a relatively rich
theory based on this approach, and the seminal book of Dynkin [70] uses the Feller
property extensively.

We will revisit this in much greater detail in Chapter 12, where we will also take
up the consequences of the e-chain assumption: this will be shown to have useful
attributes in the study of limiting behavior of chains.
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The equicontinuity results here, which relate this condition to the dynamical
systems viewpoint, are developed by Meyn [170]. Equicontinuity may be compared to
uniform stability [108] or regularity [77]. Whilst e-chains have also been developed in
detail, particularly by Rosenblatt [227], Jamison [108, 109] and Sine [241, 242] they
do not have particularly useful connections with the ψ-irreducible chains we are about
to explore, which explains their relatively brief appearance at this stage.

The concept of continuous components appears first in Pollard and Tweedie
[216, 217], and some practical applications are given in Laslett et al [153]. The real
exploitation of this concept really begins in Tuominen and Tweedie [269], from which
we take Proposition 6.2.2. The connections between T-chains and the existence of
compact petite sets is a recent result of Meyn and Tweedie [178].

In practice the identification of ψ-irreducible Feller chains as T-chains provided
only that suppψ has non-empty interior is likely to make the application of the
results for such chains very much more common. This identification is new. The
condition that suppψ have non-empty interior has however proved useful in a number
of associated areas in [217] and in Cogburn [53].

We note in advance here the results of Chapter 9 and Chapter 18, where we will
show that a number of stability criteria for general space chains have “topological”
analogues which, for T-chains, are exact equivalences. Thus T-chains will prove of
on-going interest.

Finding criteria for chains to have continuity properties is a model-by-model
exercise, but the results on linear and nonlinear systems here are intended to guide
this process in some detail.

The assumption of a spread-out increment process, made in previous chapters for
chains such as the unrestricted random walk, may have seemed somewhat arbitrary.
It is striking therefore that this condition is both necessary and sufficient for random
walk to be a T-chain, as in Proposition 6.3.2 which is taken from Tuominen and
Tweedie [269]; they also show that this result extends to random walks on locally
compact Haussdorff groups, which are T-chains if and only if the increment measure
has some convolution power non-singular with respect to (right) Haar measure. These
results have been extended to random walks on semi-groups by Högnas in [98].

In a similar fashion, the analysis carried out in Athreya and Pantula [14] shows
that the simple linear model satisfying the eigenvalue condition (LSS5) is a T-chain if
and only if the disturbance process is spread out. Chan et al [43] show in effect that
for the SETAR model compact sets are petite under positive density assumptions,
but the proof here is somewhat more transparent.

These results all reinforce the impression that even for the simplest possible
models it is not possible to dispense with an assumption of positive densities, and we
adopt it extensively in the models we consider from here on.
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The Nonlinear State Space Model

In applying the results and concepts of Part I in the domains of times series or sys-
tems theory, we have so far analyzed only linear models in any detail, albeit rather
general and multidimensional ones. This chapter is intended as a relatively complete
description of the way in which nonlinear models may be analyzed within the Marko-
vian context developed thus far. We will consider both the general nonlinear state
space model, and some specific applications which take on this particular form.

The pattern of this analysis is to consider first some particular structural or
stability aspect of the associated deterministic control, or CM(F ), model and then
under appropriate choice of conditions on the disturbance or noise process (typically a
density condition as in the linear models of Section 6.3.2) to verify a related structural
or stability aspect of the stochastic nonlinear state space NSS(F ) model.

Highlights of this duality are

(i) if the associated CM(F ) model is forward accessible (a form of controllability),
and the noise has an appropriate density, then the NSS(F ) model is a T-chain
(Section 7.1);

(ii) a form of irreducibility (the existence of a globally attracting state for the CM(F )
model) is then equivalent to the associated NSS(F ) model being a ψ-irreducible
T-chain (Section 7.2);

(iii) the existence of periodic classes for the forward accessible CM(F ) model is fur-
ther equivalent to the associated NSS(F ) model being a periodic Markov chain,
with the periodic classes coinciding for the deterministic and the stochastic
model (Section 7.3).

Thus we can reinterpret some of the concepts which we have introduced for Markov
chains in this deterministic setting; and conversely, by studying the deterministic
model we obtain criteria for our basic assumptions to be valid in the stochastic case.

In Section 7.4.3 the adaptive control model is considered to illustrate how these
results may be applied in specific applications: for this model we exploit the fact that
Φ is generated by a NSS(F ) model to give a simple proof that Φ is a ψ-irreducible
and aperiodic T-chain.

We will end the chapter by considering the nonlinear state space model without
forward accessibility, and showing how e-chain properties may then be established in
lieu of the T-chain properties.
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7.1 Forward Accessibility and Continuous Components

The nonlinear state space model NSS(F ) may be interpreted as a control system
driven by a noise sequence exactly as the linear model is interpreted. We will take
such a viewpoint in this section as we generalize the concepts used in the proof of
Proposition 6.3.3, where we constructed a continuous component for the linear state
space model.

7.1.1 Scalar models and forward accessibility

We first consider the scalar model SNSS(F ) defined by

Xn = F (Xn−1,Wn),

for some smooth (C∞) function F : IR× IR→ IR and satisfying (SNSS1)-(SNSS2).
Recall that in (2.5) we defined the map Fk inductively, for x0 and wi arbitrary

real numbers, by

Fk+1(x0, w1, . . . wk+1) = F (Fk(x0, w1, . . . wk), wk+1),

so that for any initial condition X0 = x0 and any k ∈ ZZ+,

Xk = Fk(x0,W1, . . . ,Wk).

Now let {uk} be the associated scalar “control sequence” for CM(F ) as in (CM1),
and use this to define the resulting state trajectory for CM(F ) by

xk = Fk(x0, u1, . . . , uk), k ∈ ZZ+. (7.1)

Just as in the linear case, if from each initial condition x0 ∈ X a sufficiently large set
of states may be reached from x0, then we will find that a continuous component may
be constructed for the Markov chain X. It is not important that every state may be
reached from a given initial condition; the main idea in the proof of Proposition 6.3.3,
which carries over to the nonlinear case, is that the set of possible states reachable
from a given initial condition is not concentrated in some lower dimensional subset
of the state space.

Recall also that we have assumed in (CM1) that for the associated deterministic
control model CM(F ) with trajectory (7.1), the control sequence {uk} is constrained
so that uk ∈ Ow, k ∈ ZZ+, where the control set Ow is an open set in IR.

For x ∈ X, k ∈ ZZ+, we define Ak
+(x) to be the set of all states reachable from x

at time k by CM(F ): that is, A0
+(x) = {x}, and

Ak
+(x) :=

{
Fk(x, u1, . . . , uk) : ui ∈ Ow, 1 ≤ i ≤ k

}
, k ≥ 1. (7.2)

We define A+(x) to be the set of all states which are reachable from x at some time
in the future, given by

A+(x) :=
∞⋃

k=0

Ak
+(x) (7.3)

The analogue of controllability that we use for the nonlinear model is called forward
accessibility.
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Forward accessibility

The associated control model CM(F ) is called forward accessible if for
each x0 ∈ X, the set A+(x0) ⊂ X has non-empty interior.

For general nonlinear models, forward accessibility depends critically on the particular
control set Ow chosen. This is in contrast to the linear state space model, where
conditions on the driving matrix pair (F,G) sufficed for controllability.

Nonetheless, for the scalar nonlinear state space model we may show that forward
accessibility is equivalent to the following “rank condition”, similar to (LCM3):

Rank Condition for the Scalar CM(F ) Model

(CM2) For each initial condition x0
0 ∈ IR there exists k ∈ ZZ+

and a sequence (u0
1, . . . , u

0
k) ∈ Ok

w such that the derivative

[ ∂

∂u1
Fk (x0

0, u
0
1, . . . , u

0
k) | · · · |

∂

∂uk
Fk (x0

0, u
0
1, . . . , u

0
k)
]

(7.4)

is non-zero.

In the scalar linear case the control system (7.1) has the form

xk = Fxk−1 +Guk

with F and G scalars. In this special case the derivative in (CM2) becomes exactly
[F k−1G| . . . |FG|G], which shows that the rank condition (CM2) is a generalization of
the controllability condition (LCM3) for the linear state space model. This connection
will be strengthened when we consider multidimensional nonlinear models below.

Theorem 7.1.1 The control model CM(F ) is forward accessible if and only if the
rank condition (CM2) is satisfied.

A proof of this result would take us too far from the purpose of this book. It is
similar to that of Proposition 7.1.2, and details may be found in [173, 174].

7.1.2 Continuous components for the scalar nonlinear model

Using the characterization of forward accessibility given in Theorem 7.1.1 we now
show how this condition on CM(F ) leads to the existence of a continuous component
for the associated SNSS(F ) model.

To do this we need to increase the strength of our assumptions on the noise
process, as we did for the linear model or the random walk.
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Density for the SNSS(F ) Model

(SNSS3) The distribution Γ of W is absolutely continuous, with
a density γw on IR which is lower semicontinuous.
The control set for the SNSS(F ) model is the open set

Ow := {x ∈ IR : γw(x) > 0}.

We know from the definitions that, with probability one, Wk ∈ Ow for all k ∈ ZZ+.
Commonly assumed noise distributions satisfying this assumption include those which
possess a continuous density, such as the Gaussian model, or uniform distributions
on bounded open intervals in IR.

We can now develop an explicit continuous component for such scalar nonlinear
state space models.

Proposition 7.1.2 Suppose that for the SNSS(F ) model, the noise distribution sat-
isfies (SNSS3), and that the associated control system CM(F ) is forward accessible.
Then the SNSS(F ) model is a T-chain.

Proof Since CM(F ) is forward accessible we have from Theorem 7.1.1 that the
rank condition (CM2) holds. For simplicity of notation, assume that the derivative
with respect to the kth disturbance variable is non-zero:

∂Fk

∂wk
(x0

0, w
0
1, . . . , w

0
k) 
= 0 (7.5)

with (w0
1, . . . , w

0
k) ∈ Ok

w. Define the function F k: IR×Ok
w → IR×Ok−1

w × IR as

F k(x0, w1, . . . , wk) = (x0, w1, . . . , wk−1, xk)
�

where xk = Fk(x0, w1, . . . , wk). The total derivative of F k can be computed as

DF k =


1 0 · · · 0
0

. . .
...

... 1 0
∂Fk
∂x0

∂Fk
∂w1

· · · ∂Fk
∂wk


which is evidently full rank at (x0

0, w
0
1, . . . , w

0
k). It follows from the Inverse Function

Theorem that there exists an open set

B = Bx0
0
×Bw0

1
× · · · ×Bw0

k

containing (x0
0, w

0
1, . . . , w

0
k), and a smooth function Gk: {F k{B}} → IRk+1 such that

Gk(F k(x0, w1, . . . , wk)) = (x0, w1, . . . , wk)
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for all (x0, w1, . . . , wk) ∈ B.
Taking Gk to be the final component of Gk, we see that for all (x0, w1, . . . , wk) ∈

B,

Gk(x0, w1, . . . , wk−1, xk) = Gk(x0, w1, . . . , wk−1, Fk(x0, w1, . . . , wk)) = wk.

We now make a change of variables, similar to the linear case. For any x0 ∈ Bx0
0
, and

any positive function f : IR → IR+,

P kf (x0) =
∫
· · ·

∫
f(Fk(x0, w1, . . . , wk))γw(wk) · · · γw(w1) dw1 . . . dwk (7.6)

≥
∫

B
w0

1

· · ·
∫

B
w0

k

f(Fk(x0, w1, . . . , wk))γw(wk) · · · γw(w1) dw1 . . . dwk.

We will first integrate over wk, keeping the remaining variables fixed. By making the
change of variables

xk = Fk(x0, w1, . . . , wk), wk = Gk(x0, w1, . . . , wk−1, xk)

so that
dwk = |∂Gk

∂xk
(x0, w1, . . . , wk−1, xk)| dxk

we obtain for (x0, w1, . . . , wk−1) ∈ Bx0
0
× . . .×Bw0

k−1
,∫

B
w0

k

f(Fk(x0, w1, . . . , wk))γw(wk) dwk =
∫
IR
f(xk)qk(x0, w1, . . . , wk−1, xk) dxk (7.7)

where we define, with ξ := (x0, w1, . . . , wk−1, xk),

qk(ξ) := 1l{Gk(ξ) ∈ B}γw(Gk(ξ))|
∂Gk

∂xk
(ξ)|.

Since qk is positive and lower semicontinuous on the open set F k{B}, and zero on
F k{B}c, it follows that qk is lower semi-continuous on IRk+1.

Define the kernel T0 for an arbitrary bounded function f as

T0f (x0) :=
∫
· · ·

∫
f(xk) qk(ξ) γw(w1) · · · γw(wk−1) dw1 . . . dwk−1dxk. (7.8)

The kernel T0 is non-trivial at x0
0 since

qk(ξ0)γw(w0
1) · · · γw(w0

k−1) = |∂Gk

∂xk
(ξ0)|γw(w0

k)γw(w0
1) · · · γw(w0

k−1) > 0,

where ξ0 = (x0
0, w

0
1, . . . , w

0
k−1, x

0
k). We will show that T0f is lower semicontinuous on

IR whenever f is positive and bounded.
Since qk(x0, w1, . . . , wk−1, xk)γw(w1) · · · γw(wk−1) is a lower semicontinuous func-

tion of its arguments in IRk+1, there exists a sequence of positive, continuous functions
ri: IRk+1 → IR+, i ∈ ZZ+, such that for each i, the function ri has bounded support
and, as i ↑ ∞,

ri(x0, w1, . . . , wk−1, xk) ↑ qk(x0, w1, . . . , wk−1, xk)γw(w1) · · · γw(wk−1)
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for each (x0, w1, . . . , wk−1, xk) ∈ IRk+1. Define the kernel Ti using ri as

Tif(x0) :=
∫
IRk

f(xk)ri(x0, w1, . . . , wk−1, xk) dw1 . . . dwk−1 dxk.

It follows from the dominated convergence theorem that Tif is continuous for any
bounded function f . If f is also positive, then as i ↑ ∞,

Tif (x0) ↑ T0f (x0), x0 ∈ IR

which implies that T0f is lower semicontinuous when f is positive.
Using (7.6) and (7.7) we see that T0 is a continuous component of P k which is

non-zero at x0
0. From Theorem 6.2.4, the model is a T-chain as claimed. �

7.1.3 Simple bilinear model

The forward accessibility of the SNSS(F ) model is usually immediate since the rank
condition (CM2) is easily checked.

To illustrate the use of Proposition 7.1.2, and in particular the computation of
the “controllability vector” (7.4) in (CM2), we consider the scalar example where Φ
is the bilinear state space model on X = IR defined in (SBL1) by

Xk+1 = θXk + bWk+1Xk +Wk+1

where W is a disturbance process. To place this bilinear model into the framework
of this chapter we assume

Density for the Simple Bilinear Model

(SBL2) The sequence W is a disturbance process on IR, whose
marginal distribution Γ possesses a finite second moment,
and a density γw which is lower semicontinuous.

Under (SBL1) and (SBL2), the bilinear model X is an SNSS(F ) model with F defined
in (2.7).

First observe that the one-step transition kernel P for this model cannot possess
an everywhere non-trivial continuous component. This may be seen from the fact
that P (−1/b, {−θ/b}) = 1, yet P (x, {−θ/b}) = 0 for all x 
= −1/b. It follows that
the only positive lower semicontinuous function which is majorized by P ( · , {−θ/b})
is zero, and thus any continuous component T of P must be trivial at −1/b: that is,
T (−1/b, IR) = 0.
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This could be anticipated by looking at the controllability vector (7.4). The first
order controllability vector is

∂F

∂u
(x0, u1) = bx0 + 1,

which is zero at x0 = −1/b, and thus the first order test for forward accessibility fails.
Hence we must take k ≥ 2 in (7.4) if we hope to construct a continuous component.

When k = 2 the vector (7.4) can be computed using the chain rule to give

[∂F
∂x

(x1, u2)
∂F

∂u
(x0, u1) |

∂F

∂u
(x1, u2)

]
= [(θ + bu2)(bx0 + 1) | bx1 + 1]
= [(θ + bu2)(bx0 + 1) | θbx0 + b2u1x0 + bu1 + 1]

which is non-zero for almost every
(u1

u2

)
∈ IR2. Hence the associated control model is

forward accessible, and this together with Proposition 7.1.2 gives

Proposition 7.1.3 If (SBL1) and (SBL2) hold then the bilinear model is a T-chain.

7.1.4 Multidimensional models

Most nonlinear processes that are encountered in applications cannot be modeled by
a scalar Markovian model such as the SNSS(F ) model. The more general NSS(F )
model is defined by (NSS1), and we now analyze this in a similar way to the scalar
model.

We again call the associated control system CM(F ) with trajectories

xk = Fk(x0, u1, . . . , uk), k ∈ ZZ+, (7.9)

forward accessible if the set of attainable states A+(x), defined as

A+(x) :=
∞⋃

k=0

{
Fk(x, u1, . . . , uk) : ui ∈ Ow, 1 ≤ i ≤ k

}
, k ≥ 1, (7.10)

has non-empty interior for every initial condition x ∈ X.
To verify forward accessibility we define a further generalization of the controlla-

bility matrix introduced in (LCM3).
For x0 ∈ X and a sequence {uk : uk ∈ Ow, k ∈ ZZ+} let {Ξk, Λk : k ∈ ZZ+} denote

the matrices

Ξk+1 = Ξk+1(x0, u1, . . . , uk+1) :=
[
∂F

∂x

]
(xk,uk+1)

Λk+1 = Λk+1(x0, u1, . . . , uk+1) :=
[
∂F

∂u

]
(xk,uk+1)

,

where xk = Fk(x0, u1 · · ·uk). Let Ck
x0

= Ck
x0

(u1, . . . , uk) denote the generalized con-
trollability matrix (along the sequence u1, . . . , uk)

Ck
x0

:= [Ξk · · ·Ξ2 Λ1 | Ξk · · ·Ξ3 Λ2 | · · · | Ξk Λk−1 | Λk] . (7.11)
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If F takes the linear form
F (x, u) = Fx+Gu (7.12)

then the generalized controllability matrix again becomes

Ck
x0

= [F k−1G | · · · | G],

which is the controllability matrix introduced in (LCM3).

Rank Condition for the Multidimensional CM(F ) Model

(CM3) For each initial condition x0 ∈ IRn, there exists k ∈ ZZ+

and a sequence �u0 = (u0
1, . . . , u

0
k) ∈ Ok

w such that

rankCk
x0

(�u0) = n. (7.13)

The controllability matrix Ck
y is the derivative of the state xk = F (y, u1, . . . , uk)

at time k with respect to the input sequence (u�k , . . . , u
�
1 ). The following result is

a consequence of this fact together with the Implicit Function Theorem and Sard’s
Theorem (see [107, 174] and the proof of Proposition 7.1.2 for details).

Proposition 7.1.4 The nonlinear control model CM(F ) satisfying (7.9) is forward
accessible if and only the rank condition (CM3) holds. �

To connect forward accessibility to the stochastic model (NSS1) we again assume that
the distribution of W possesses a density.

Density for the NSS(F ) Model

(NSS3) The distribution Γ of W possesses a density γw on IRp

which is lower semicontinuous, and the control set for the
NSS(F ) model is the open set

Ow := {x ∈ IR : γw(x) > 0}.

Using an argument which is similar to, but more complicated than the proof of Propo-
sition 7.1.2, we may obtain the following consequence of forward accessibility.
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Proposition 7.1.5 If the NSS(F ) model satisfies the density assumption (NSS3),
and the associated control model is forward accessible, then the state space X may be
written as the union of open small sets, and hence the NSS(F ) model is a T-chain.

�

Note that this only guarantees the T-chain property: we now move on to consider the
equally needed irreducibility properties of the NNS(F ) models.

7.2 Minimal Sets and Irreducibility

We now develop a more detailed description of reachable states and topological irre-
ducibility for the nonlinear state space NSS(F ) model, and exhibit more of the in-
terplay between the stochastic and topological communication structures for NSS(F )
models.

Since one of the major goals here is to exhibit further the links between the
behavior of the associated deterministic control model and the NSS(F ) model, it is
first helpful to study the structure of the accessible sets for the control system CM(F )
with trajectories (7.9).

A large part of this analysis deals with a class of sets called minimal sets for the
control system CM(F ). In this section we will develop criteria for their existence and
properties of their topological structure. This will allow us to decompose the state
space of the corresponding NSS(F ) model into disjoint, closed, absorbing sets which
are both ψ-irreducible and topologically irreducible.

7.2.1 Minimality for the Deterministic Control Model

We define A+(E) to be the set of all states attainable by CM(F ) from the set E at
some time k ≥ 0, and we let E0 denote those states which cannot reach the set E:

A+(E) :=
⋃

x∈E

A+(x) E0 := {x ∈ X : A+(x) ∩ E = ∅}.

Because the functions Fk( · , u1, . . . , uk) have the semi-group property

Fk+j(x0, u1, . . . , uk+j) = Fj(Fk(x0, u1, . . . , uk), uk+1, . . . , uk+j),

for x0 ∈ X, ui ∈ Ow, k, j ∈ ZZ+, the set maps {Ak
+ : k ∈ ZZ+} also have this property:

that is,
Ak+j

+ (E) = Ak
+(Aj

+(E)), E ⊂ X, k, j ∈ ZZ+.

If E ⊂ X has the property that
A+(E) ⊂ E

then E is called invariant. For example, for all C ⊂ X, the sets A+(C) and C0 are
invariant, and since the closure, union, and intersection of invariant sets is invariant,
the set

Ω+(C) :=
∞⋂

N=1

{ ∞⋃
k=N

Ak
+(C)

}
(7.14)

is also invariant.
The following result summarizes these observations:
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Proposition 7.2.1 For the control system (7.9) we have for any C ⊂ X,

(i) A+(C) and A+(C) are invariant;

(ii) Ω+(C) is invariant;

(iii) C0 is invariant, and C0 is also closed if the set C is open. �

As a consequence of the assumption that the map F is smooth, and hence continuous,
we then have immediately

Proposition 7.2.2 If the associated CM(F ) model is forward accessible then for the
NSS(F ) model:

(i) A closed subset A ⊂ X is absorbing for NSS(F ) if and only if it is invariant for
CM(F );

(ii) If U ⊂ X is open then for each k ≥ 1 and x ∈ X,

Ak
+(x) ∩ U 
= ∅ ⇐⇒ P k(x, U) > 0;

(iii) If U ⊂ X is open then for each x ∈ X,

A+(x) ∩ U 
= ∅ ⇐⇒ Kaε(x, U) > 0.
�

We now introduce minimal sets for the general CM(F ) model.

Minimal sets

We call a set minimal for the deterministic control model CM(F ) if
it is (topologically) closed, invariant, and does not contain any closed
invariant set as a proper subset.

For example, consider the LCM(F ,G) model introduced in (1.4). The assumption
(LCM2) simply states that the control set Ow is equal to IRp.

In this case the system possesses a unique minimal set M which is equal to X0,
the range space of the controllability matrix, as described after Proposition 4.4.3.
If the eigenvalue condition (LSS5) holds then this is the only minimal set for the
LCM(F ,G) model.

The following characterizations of minimality follow directly from the definitions,
and the fact that both A+(x) and Ω+(x) are closed and invariant.

Proposition 7.2.3 The following are equivalent for a nonempty set M ⊂ X:

(i) M is minimal for CM(F );

(ii) A+(x) = M for all x ∈M ;

(iii) Ω+(x) = M for all x ∈M . �
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7.2.2 M-Irreducibility and ψ-irreducibility

Proposition 7.2.3 asserts that any state in a minimal set can be “almost reached”
from any other state. This property is similar in flavor to topological irreducibility
for a Markov chain. The link between these concepts is given in the following central
result for the NSS(F ) model.

Theorem 7.2.4 Let M ⊂ X be a minimal set for CM(F ). If CM(F ) is forward
accessible and the disturbance process of the associated NSS(F ) model satisfies the
density condition (NSS3), then

(i) the set M is absorbing for NSS(F );

(ii) the NSS(F ) model restricted to M is an open set irreducible (and so ψ-irreducible)
T-chain.

Proof That M is absorbing follows directly from Proposition 7.2.3, proving M =
A+(x) for some x; Proposition 7.2.1, provingA+(x) is invariant; and Proposition 7.2.2,
proving any closed invariant set is absorbing for the NSS(F ) model.

To see that the process restricted to M is topologically irreducible, let x0 ∈ M ,
and let U ⊆ X be an open set for which U ∩M 
= ∅. By Proposition 7.2.3 we have
A+(x0) ∩ U 
= ∅. Hence by Proposition 7.2.2 Kaε(x0, U) > 0, which establishes open
set irreducibility. The process is then ψ-irreducible from Proposition 6.2.2 since we
know it is a T-chain from Proposition 7.1.5. �

Clearly, under the conditions of Theorem 7.2.4, if X itself is minimal then the
NSS(F ) model is both ψ-irreducible and open set irreducible. The condition that X
be minimal is a strong requirement which we now weaken by introducing a different
form of “controllability” for the control system CM(F ).

We say that the deterministic control system CM(F ) is indecomposable if its
state space X does not contain two disjoint closed invariant sets. This condition is
clearly necessary for CM(F ) to possess a unique minimal set. Indecomposability is
not sufficient to ensure the existence of a minimal set: take X = IR, Ow = (0, 1), and

xk+1 = F (xk, uk+1) = xk + uk+1,

so that all proper closed invariant sets are of the form [t,∞) for some t ∈ IR. This
system is indecomposable, yet no minimal sets exist.

Irreducible control models

If CM(F ) is indecomposable and also possesses a minimal set M , then
CM(F ) will be called M -irreducible.

If CM(F ) is M -irreducible it follows that M0 = ∅: otherwise M and M0 would be
disjoint nonempty closed invariant sets, contradicting indecomposability. To establish
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necessary and sufficient conditions for M -irreducibility we introduce a concept from
dynamical systems theory. A state x� ∈ X is called globally attracting if for all y ∈ X,

x� ∈ Ω+(y).

The following result easily follows from the definitions.

Proposition 7.2.5 (i) The nonlinear control system (7.9) is M -irreducible if and
only if a globally attracting state exists.

(ii) If a globally attracting state x� exists then the unique minimal set is equal to
A+(x�) = Ω+(x�). �

We can now provide the desired connection between irreducibility of the nonlinear
control system and ψ-irreducibility for the corresponding Markov chain.

Theorem 7.2.6 Suppose that CM(F ) is forward accessible and the disturbance pro-
cess of the associated NSS(F ) model satisfies the density condition (NSS3).

Then the NSS(F ) model is ψ-irreducible if and only if CM(F ) is M -irreducible.

Proof If the NSS(F ) model is ψ-irreducible, let x� be any state in suppψ, and
let U be any open set containing x�. By definition we have ψ(U) > 0, which implies
that Kaε(x, U) > 0 for all x ∈ X. By Proposition 7.2.2 it follows that x� is globally
attracting, and hence CM(F ) is M -irreducible by Proposition 7.2.5.

Conversely, suppose that CM(F ) possesses a globally attracting state, and let
U be an open petite set containing x�. Then A+(x) ∩ U 
= ∅ for all x ∈ X, which
by Proposition 7.2.2 and Proposition 5.5.4 implies that the NSS(F ) model is ψ-
irreducible for some ψ. �

7.3 Periodicity for nonlinear state space models

We now look at the periodic structure of the nonlinear NSS(F ) model to see how the
cycles of Section 5.4.3 can be further described, and in particular their topological
structure elucidated.

We first demonstrate that minimal sets for the deterministic control model
CM(F ) exhibit periodic behavior. This periodicity extends to the stochastic frame-
work in a natural way, and under mild conditions on the deterministic control system,
we will see that the period is in fact trivial, so that the chain is aperiodic.

7.3.1 Periodicity for control models

To develop a periodic structure for CM(F ) we mimic the construction of a cycle for
an irreducible Markov chain. To do this we first require a deterministic analogue of
small sets: we say that the set C is k-accessible from the set B, for any k ∈ ZZ+, if for
each y ∈ B,

C ⊂ Ak
+(y).

This will be denoted B
k−→ C. From the Implicit Function Theorem, in a manner

similar to the proof of Proposition 7.1.2, we can immediately connect k-accessibility
with forward accessibility.
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Proposition 7.3.1 Suppose that the CM(F ) model is forward accessible. Then for
each x ∈ X, there exist open sets Bx, Cx ⊂ X, with x ∈ Bx and an integer kx ∈ ZZ+

such that Bx
kx−→ Cx. �

In order to construct a cycle for an irreducible Markov chain, we first constructed
a νn-small set A with νn(A) > 0. A similar construction is necessary for CM(F ).

Lemma 7.3.2 Suppose that the CM(F ) model is forward accessible. If M is minimal
for CM(F ) then there exists an open set E ⊂ M , and an integer n ∈ ZZ+, such that
E

n−→ E.

Proof Using Proposition 7.3.1 we find that there exist open sets B and C, and
an integer k with B

k−→ C, such that B∩M 
= ∅. Since M is invariant, it follows that

C ⊂ A+(B ∩M) ⊂M, (7.15)

and by Proposition 7.2.1, minimality, and the hypothesis that the set B is open,

A+(x) ∩B 
= ∅ (7.16)

for every x ∈M .
Combining (7.15) and (7.16) it follows that Am

+ (c) ∩ B 
= ∅ for some m ∈ ZZ+,
and c ∈ C. By continuity of the function F we conclude that there exists an open set
E ⊂ C such that

Am
+ (x) ∩B 
= ∅ for all x ∈ E.

The set E satisfies the conditions of the lemma with n = m+k since by the semi-group
property,

An
+(x) = Ak

+(Am
+ (x)) ⊃ Ak

+(Am
+ (x) ∩B) ⊃ C ⊃ E

for all x ∈ E �
Call a finite ordered collection of disjoint closed sets G := {Gi : 1 ≤ i ≤ d} a

periodic orbit if for each i,

A1
+(Gi) ⊂ Gi+1 i = 1, . . . , d (mod d)

The integer d is called the period of G.
The cyclic result for CM(F ) is given in

Theorem 7.3.3 Suppose that the function F : X × Ow → X is smooth, and that the
system CM(F ) is forward accessible.

If M is a minimal set, then there exists an integer d ≥ 1, and disjoint closed sets
G = {Gi : 1 ≤ i ≤ d} such that M =

⋃d
i=1 Gi, and G is a periodic orbit. It is unique

in the sense that if H is another periodic orbit whose union is equal to M with period
d′, then d′ divides d, and for each i the set Hi may be written as a union of sets from
G.
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Proof Using Lemma 7.3.2 we can fix an open set E with E ⊂M , and an integer
k such that E k−→ E. Define I ⊂ ZZ+ by

I := {n ≥ 1 : E n−→ E} (7.17)

The semi-group property implies that the set I is closed under addition: for if i, j ∈ I,
then for all x ∈ E,

Ai+j
+ (x) = Ai

+(Aj
+(x)) ⊃ Aj

+(E) ⊃ E.

Let d denote g.c.d.(I). The integer d will be called the period of M , and M will be
called aperiodic when d = 1.

For 1 ≤ i ≤ d we define

Gi := {x ∈M :
∞⋃

k=1

Akd−i
+ (x) ∩ E 
= ∅}. (7.18)

By Proposition 7.2.1 it follows that M =
⋃d

i=1 Gi.
Since E is an open subset of M , it follows that for each i ∈ ZZ+, the set Gi is open

in the relative topology on M . Once we have shown that the sets {Gi} are disjoint,
it will follow that they are closed in the relative topology on M . Since M itself is
closed, this will imply that for each i, the set Gi is closed.

We now show that the sets {Gi} are disjoint. Suppose that on the contrary
x ∈ Gi ∩Gj for some i 
= j. Then there exists ki, kj ∈ ZZ+ such that

Akid−i
+ (y) ∩ E 
= ∅ and A

kjd−j
+ (y) ∩ E 
= ∅ (7.19)

when y = x. Since E is open, we may find an open set O ⊂ X containing x such that
(7.19) holds for all y ∈ O.

By Proposition 7.2.1, there exists v ∈ E and n ∈ ZZ+ such that

An
+(v) ∩O 
= ∅. (7.20)

By (7.20), (7.19), and since E k0−→ E we have for δ = i, j, and all z ∈ E,

Ak0+kδd−δ+n+k0
+ (z) ⊃ Ak0+kδd−δ+n

+ (E)

⊃ Ak0+kδd−δ
+ (An

+(v) ∩O)

⊃ Ak0
+ (Akδd−δ

+ (An
+(v) ∩O) ∩ E) ⊃ E.

This shows that
2k0 + kδd− δ + n ∈ I

for δ = i, j, and this contradicts the definition of d. We conclude that the sets {Gi}
are disjoint.

We now show that G is a periodic orbit. Let x ∈ Gi, and u ∈ Ow. Since the
sets {Gi} form a disjoint cover of M and since M is invariant, there exists a unique
1 ≤ j ≤ d such that F (x, u) ∈ Gj . It follows from the semi-group property that
x ∈ Gj−1, and hence i = j − 1.

The uniqueness of this construction follows from the definition given in equation
(7.18). �

The following consequence of Theorem 7.3.3 further illustrates the topological
structure of minimal sets.
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Proposition 7.3.4 Under the conditions of Theorem 7.3.3, if the control set Ow is
connected, then the periodic orbit G constructed in Theorem 7.3.3 is precisely equal
to the connected components of the minimal set M .

In particular, in this case M is aperiodic if and only if it is connected.

Proof First suppose that M is aperiodic. Let E n−→ E, and consider a fixed state
v ∈ E.

By aperiodicity and Lemma D.7.4 there exists an integer N0 with the property
that

e ∈ Ak
+(v) (7.21)

for all k ≥ N0. Since Ak
+(v) is the continuous image of the connected set v×Ok

w, the
set

A+(AN0
+ (v)) =

∞⋃
k=N0

Ak
+(v) (7.22)

is connected. Its closure is therefore also connected, and by Proposition 7.2.1 the
closure of the set (7.22) is equal to M .

The periodic case is treated similarly. First we show that for some N0 ∈ ZZ+ we
have

Gd =
∞⋃

k=N0

Akd
+ (v),

where d is the period of M , and each of the sets Akd
+ (v), k ≥ N0, contains v.

This shows that Gd is connected. Next, observe that

G1 = A1
+(Gd),

and since the control set Ow and Gd are both connected, it follows that G1 is also
connected. By induction, each of the sets {Gi : 1 ≤ i ≤ d} is connected. �

7.3.2 Periodicity

All of the results described above dealing with periodicity of minimal sets were posed
in a purely deterministic framework. We now return to the stochastic model described
by (NSS1)-(NSS3) to see how the deterministic formulation of periodicity relates to
the stochastic definition which was introduced for Markov chains in Section 5.4.

As one might hope, the connections are very strong.

Theorem 7.3.5 If the NSS(F ) model satisfies Conditions (NSS1)-(NSS3) and the
associated control model CM(F ) is forward accessible then:

(i) If M is a minimal set, then the restriction of the NSS(F ) model to M is a ψ-
irreducible T-chain, and the periodic orbit {Gi : 1 ≤ i ≤ d} ⊂M whose existence
is guaranteed by Theorem 7.3.3 is ψ-a.e. equal to the d-cycle constructed in
Theorem 5.4.4;

(ii) If CM(F ) is M -irreducible, and if its unique minimal set M is aperiodic, then
the NSS(F ) model is a ψ-irreducible aperiodic T-chain.
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Proof The proof of (i) follows directly from the definitions, and the observation
that by reducing E if necessary, we may assume that the set E which is used in
the proof of Theorem 7.3.3 is small. Hence the set E plays the same role as the
small set used in the proof of Theorem 5.2.1. The proof of (ii) follows from (i) and
Theorem 7.2.4. �

7.4 Forward Accessible Examples

We now see how specific models may be viewed in this general context. It will become
apparent that without making any unnatural assumptions, both simple models such
as the dependent parameter bilinear model, and relatively more complex nonlinear
models such as the gumleaf attractor with noise and adaptive control models can be
handled within this framework.

7.4.1 The dependent parameter bilinear model

The dependent parameter bilinear model is a simple NSS(F ) model where the function
F is given in (2.14) by

F
((Y

θ

)
,
(Z
W

))
=

(
αθ + Z

θY +W

)
(7.23)

Using Proposition 7.1.4 it is easy to see that the associated control model is forward
accessible, and then the model is easily analyzed. We have

Proposition 7.4.1 The dependent parameter bilinear model Φ satisfying Assump-
tions (DBL1)–(DBL2) is a T-chain. If further there exists some one z∗ ∈ Oz such
that

| z∗

1− α
| < 1, (7.24)

then Φ is ψ-irreducible and aperiodic .

Proof With the noise
( Z
W

)
considered a “control”, the first order controllability

matrix may be computed to give

C1
θ,y =

∂
(θ1

Y1

)
∂
(Z1

W1

) =

(
1 0
0 1

)

The control model is thus forward accessible, and hence Φ =
(θ
Y

)
is a T-chain.

Suppose now that the bound (7.24) holds for z∗ and let w∗ denote any element
of Ow ⊆ IR. If Zk and Wk are set equal to z∗ and w∗ respectively in (7.23) then as
k →∞ (

θk

Yk

)
→ x∗ :=

(
z∗(1− α)−1

w∗(1− α)(1− α− z∗)−1

)
The state x∗ is globally attracting, and it immediately follows from Proposition 7.2.5
and Theorem 7.2.6 that the chain is ψ-irreducible. Aperiodicity then follows from the
fact that any cycle must contain the state x∗. �
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7.4.2 The gumleaf attractor

Consider the NSS(F ) model whose sample paths evolve to create the version of the
“gumleaf attractor” illustrated in Figure 2.5. This model is given in (2.11) by

Xn =

(
Xa

n

Xb
n

)
=

(
−1/Xa

n−1 + 1/Xb
n−1

Xa
n−1

)
+

(
Wn

0

)

which is of the form (NSS1), with the associated CM(F ) model defined as

F
((xa

xb

)
, u
)

=

(
−1/xa + 1/xb

xa

)
+

(
u

0

)
. (7.25)

From the formulae

∂F

∂x
=
(

(1/xa)2 −(1/xb)2

1 0

)
∂F

∂u
=

(
1
0

)

we see that the second order controllability matrix is given by

C2
x0

(u1, u2) =
[
(1/xa

1)
2 1

1 0

]

where x0 =
(xa

0

xb
0

)
and xa

1 = −1/xa
0 + 1/xb

0 + u1. Hence, since C2
x0

is full rank for
all x0, u1 and u2, it follows that the control system is forward accessible. Applying
Proposition 7.2.6 gives

Proposition 7.4.2 The NSS(F ) model (2.11) is a T-chain if the disturbance se-
quence W satisfies Condition (NSS3).

7.4.3 The adaptive control model

The adaptive control model described by (2.21)-(2.23) is of the general form of the
NSS(F ) model and the results of the previous section are well suited to the analysis
of this specific example

An apparent difficulty with this model is that the state space X is not an open
subset of Euclidean space, so that the general results obtained for the NSS(F ) model
may not seem to apply directly. However, given our assumptions on the model, the
interior of the state space, (σz,

σz
1−α2 )×IR2, is absorbing, and is reached in one step with

probability one from each initial condition. Hence to obtain a continuous component,
and to address periodicity for the adaptive model, we can apply the general results
obtained for the nonlinear state space models by first restricting Φ to the interior of
X.

Proposition 7.4.3 If (SAC1) and (SAC2) hold for the adaptive control model de-
fined by (2.21-2.23), and if σ2

z < 1, then Φ is a ψ-irreducible and aperiodic T-chain.
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Proof To prove the result we show that the associated deterministic control model
for the nonlinear state space model defined by (2.21-2.23) is forward accessible, and
that for the associated deterministic control system, a globally attracting point exists.

The second-order controllability matrix has the form

C2
Φ0

(Z2,W2, Z1,W1) :=
∂(Σ2, θ̃2, Y2)�

∂(Z2,W2, Z1,W1)�
=

 0 −2α2σ2
wΣ2

1Y1

(Σ1Y 2
1 +σ2

w)2
0 0

• • 1 •
• • 0 1


where “•” denotes a variable which does not affect the rank of the controllability
matrix. It is evident that C2

Φ0
is full rank whenever Y1 = θ̃0Y0 + W1 is non-zero.

This shows that for each initial condition Φ0 ∈ X, the matrix C2
Φ0

is full rank for a.e.
{(Z1,W1), (Z2,W2)} ∈ IR4, and so the associated control model is forward accessible,
and hence the stochastic model is a T-chain by Proposition 7.1.5.

It is easily checked that if
( Z
W

)
is set equal to zero in (2.21)-(2.22) then, since

α < 1 and σ2
z < 1,

Φk → (
σ2

z

1− α2
, 0, 0)� as k →∞.

This shows that the control model associated with the Markov chain Φ is M -
irreducible, and hence by Proposition 7.2.6 the chain itself is ψ-irreducible. The limit
above also shows that every element of a cycle {Gi} for the unique minimal set must
contain the point ( σ2

z
1−α2 , 0, 0). From Proposition 7.3.4 it follows that the chain is ape-

riodic. �

7.5 Equicontinuity and the nonlinear state space model

7.5.1 e-Chain properties of nonlinear state space models

We have seen in this chapter that the NSS(F ) model is a T-chain if the noise variable,
viewed as a control, can “steer the state process Φ” to a sufficiently large set of states.

If the forward accessibility property does not hold then the chain must be ana-
lyzed using different methods. The process is always a Feller Markov chain, because
of the continuity of F , as shown in Proposition 6.1.2. In this section we search for
conditions under which the process Φ is also an e-chain.

To do this we consider the derivative process associated with the NSS(F ) model,
defined by ∆0 = I and

∆k+1 = [DF (Φk, wk+1)]∆k, k ∈ ZZ+ (7.26)

where ∆ takes values in the set of n× n-matrices, and DF denotes the derivative of
F with respect to its first variable.

Since ∆0 = I it follows from the chain rule and induction that the derivative
process is in fact the derivative of the present state with respect to the initial state:
that is,

∆k =
d

dΦ0
Φk for all k ∈ ZZ+.

The main result in this section connects stability of the derivative process with
equicontinuity of the transition function for Φ. Since the system (7.26) is closely
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related to the system (NSS1), linearized about the sample path (Φ0, Φ1, . . .), it is
reasonable to expect that the stability of Φ will be closely related to the stability of
∆.

Theorem 7.5.1 Suppose that (NSS1)-(NSS3) hold for the NSS(F ) model. Then let-
ting ∆k denote the derivative of Φk with respect to Φ0, k ∈ ZZ+, we have

(i) if for some open convex set N ⊂ X,

E[ sup
Φ0∈N

‖∆k‖] <∞ (7.27)

then for all x ∈ N ,
d

dx
Ex[Φk] = Ex[∆k];

(ii) suppose that (7.27) holds for all sufficiently small neighborhoods N of each y0 ∈
X, and further that for any compact set C ⊂ X,

sup
y∈C

sup
k≥0

Ey[‖∆k‖] <∞.

Then Φ is an e-chain.

Proof The first result is a consequence of the Dominated Convergence Theorem.
To prove the second result, let f ∈ Cc(X) ∩ C∞(X). Then∣∣∣ d

dx
P kf (x)

∣∣∣ =
∣∣∣ d
dx

Ex[f(Φk)]
∣∣∣ ≤ ‖f ′‖∞Ex[‖∆k‖]

which by the assumptions of (ii), implies that the sequence of functions {P kf : k ∈
ZZ+} is equicontinuous on compact subsets of X. Since C∞ ∩ Cc is dense in Cc, this
completes the proof. �

It may seem that the technical assumption (7.27) will be difficult to verify in
practice. However, we can immediately identify one large class of examples by con-
sidering the case where the i.i.d. process W is uniformly bounded. It follows from the
smoothness condition on F that supΦ0∈N ‖∆k‖ is almost surely finite for any compact
subset N ⊂ X, which shows that in this case (7.27) is trivially satisfied.

The following result provides another large class of models for which (7.27) is
satisfied. Observe that the conditions imposed on W in Proposition 7.5.2 are satisfied
for any i.i.d. Gaussian process. The proof is straightforward.

Proposition 7.5.2 For the Markov chain defined by (NSS1)-(NSS3), suppose that
F is a rational function of its arguments, and that for some ε0 > 0,

E[exp(ε0|W1|)] <∞.

Then letting ∆k denote the derivative of Φk with respect to Φ0, we have for any
compact set C ⊂ X, and any k ≥ 0,

E[ sup
Φ0∈C

‖∆k‖] <∞.

Hence under these conditions,

d

dx
Ex[Φk] = Ex[∆k].

�
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7.5.2 Linear state space models

We can easily specialize Theorem 7.5.1 to give conditions under which a linear model
is an e-chain.

Proposition 7.5.3 Suppose the LSS(F ,G) model X satisfies (LSS1) and (LSS2),
and that the eigenvalue condition (LSS5) also holds. Then Φ is an e-chain.

Proof Using the identity Xm = FmX0 +
∑m−1

i=0 F iGWm−i we see that

∆k = Fm,

which tends to zero exponentially fast, by Lemma 6.3.4. The conditions of Theo-
rem 7.5.1 are thus satisfied, which completes the proof. �

Observe that Proposition 7.5.3 uses the eigenvalue condition (LSS5), the same
assumption which was used in Proposition 4.4.3 to obtain ψ-irreducibility for the
Gaussian model, and the same condition that will be used to obtain stability in later
chapters.

The analogous Proposition 6.3.3 uses controllability to give conditions under
which the linear state space model is a T-chain. Note that controllability is not re-
quired here.

Other specific nonlinear models, such as bilinear models, can be analyzed similarly
using this approach.

7.6 Commentary

We have already noted that in the degenerate case where the control set Ow consists
of a single point, the NSS(F ) model defines a semi-dynamical system with state space
X, and in fact many of the concepts introduced in this chapter are generalizations of
standard concepts from dynamical systems theory.

Three standard approaches to the qualitative theory of dynamical systems are
topologial dynamics whose principal tool is point set topology; ergodic theory, where
one assumes (or proves, frequently using a compactness argument) the existence of an
ergodic invariant measure; and finally, the direct method of Lyapunov, which concerns
criteria for stability.

The latter two approaches will be developed in a stochastic setting in Parts II and
III. This chapter essentially focused on generalizations of the first approach, which
is also based upon, to a large extent, the structure and existence of minimal sets.
Two excellent expositions in a purely deterministic and control-free setting are the
books by Bhatia and Szegö [22] and Brown [37]. Saperstone [234] considers infinite
dimensional spaces so that, in particular, the methods may be applied directly to
the dynamical system on the space of probability measures which is generated by a
Markov processes.

The connections between control theory and irreducibility described here are
taken from Meyn [169] and Meyn and Caines [174, 173]. The dissertations of Chan
[41] and Mokkadem [187], and also Diebolt and Guégan [64], treat discrete time
nonlinear state space models and their associated control models. Diebolt in [63]
considers nonlinear models with additive noise of the form Φk+1 = F (Φk) + Wk+1

using an approach which is very different to that described here.
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Jakubsczyk and Sontag in [107] present a survey of the results obtainable for
forward accessible discrete time control systems in a purely deterministic setting.
They give a different characterization of forward accessibility, based upon the rank
of an associated Lie algebra, rather than a controllability matrix.

The origin of the approach taken in this chapter lies in the often cited paper by
Stroock and Varadahn [260]. There it is shown that the support of the distribution of
a diffusion process may be characterized by considering an associated control model.
Ichihara and Kunita in [101] and Kliemann in [138] use this approach to develop an
ergodic theory for diffusions. The invariant control sets of [138] may be compared to
minimal sets as defined here.

At this stage, introduction of the e-chain class of models is not well-motivated.
The reader who wishes to explore them immediately should move to Chapter 12.

In Duflo [69], a condition closely related to the stability condition which we impose
on ∆ is used to obtain the Central Limit Theorem for a nonlinear state space model.
Duflo assumes that the function F satisfies

|F (x,w)− F (y, w)| ≤ α(w)|x− y|

where α is a function on Ow satisfying, for some sufficiently large m,

E[α(W )m] < 1.

It is easy to see that any process Φ generated by a nonlinear state space model
satisfying this bound is an e-chain.

For models more complex than the linear model of Section 7.5.2 it will not be
as easy to prove that ∆ converges to zero, so a lengthier stability analysis of this
derivative process may be necessary. Since ∆ is essentially generated by a random
linear system it is therefore likely to either converge to zero or evanesce.

It seems probable that the stochastic Lyapunov function approach of Kushner
[149] or Khas’minskii [134], or a more direct analysis based upon limit theorems for
products of random matrices as developed in, for instance, Furstenberg and Kesten
[84] will be well suited for assessing the stability of ∆.
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Transience and Recurrence

We have developed substantial structural results for ψ-irreducible Markov chains in
Part I of this book. Part II is devoted to stability results of ever-increasing strength
for such chains.

In Chapter 1, we discussed in a heuristic manner two possible approaches to the
stability of Markov chains. The first of these discussed basic ideas of stability and
instability, formulated in terms of recurrence and transience for ψ-irreducible Markov
chains. The aim of this chapter is to formalize those ideas.

In many ways it is easier to tell when a Markov chain is unstable than when it
is stable: it fails to return to its starting point, it eventually leaves any “bounded”
set with probability one, it returns only a finite number of times to a given set of
“reasonable size”. Stable chains are then conceived of as those which do not vanish
from their starting points in at least some of these ways. There are many ways in
which stability may occur, ranging from weak “expected return to origin” properties,
to convergence of all sample paths to a single point, as in global asymptotic stability
for deterministic processes. In this chapter we concentrate on rather weak forms of
stability, or conversely on strong forms of instability.

Our focus is on the behavior of the occupation time random variable ηA :=∑∞
n=1 1l{Φn ∈ A} which counts the number of visits to a set A. In terms of ηA we

study the stability of a chain through the transience and recurrence of its sets.

Uniform Transience and Recurrence

The set A is called uniformly transient if for there exists M < ∞ such
that Ex[ηA] ≤M for all x ∈ A.

The set A is called recurrent if Ex[ηA] =∞ for all x ∈ A.
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The highlight of this approach is a solidarity, or dichotomy, theorem of surprising
strength.

Theorem 8.0.1 Suppose that Φ is ψ-irreducible. Then either

(i) every set in B+(X) is recurrent, in which case we call Φ recurrent; or

(ii) there is a countable cover of X with uniformly transient sets, in which case we
call Φ transient; and every petite set is uniformly transient.

Proof This result is proved through a splitting approach in Section 8.2.3. We also
give a different proof, not using splitting, in Theorem 8.3.4, where the cover with
uniformly transient sets is made more explicit, leading to Theorem 8.3.5 where all
petite sets are shown to be uniformly transient if there is just one petite set in B+(X)
which is not recurrent. �

The other high point of this chapter is the first development of one of the themes
of the book: the existence of so-called drift criteria, couched in terms of the expected
change, or drift, defined by the one-step transition function P , for chains to be stable
or unstable in the various ways this is defined.

Drift for Markov Chains

The (possibly extended valued) drift operator ∆ is defined for any non-
negative measurable function V by

∆V (x) :=
∫
P (x, dy)V (y)− V (x), x ∈ X. (8.1)

A second goal of this chapter is the development of criteria based on the drift function
for both transience and recurrence.

Theorem 8.0.2 Suppose Φ is a ψ-irreducible chain.

(i) The chain Φ is transient if and only if there exists a bounded non-negative function
V and a set C ∈ B+(X) such that for all x ∈ Cc,

∆V (x) ≥ 0 (8.2)

and
D = {V (x) > sup

y∈C
V (y)} ∈ B+(X). (8.3)
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(ii) The chain Φ is recurrent if there exists a petite set C ⊂ X, and a function V
which is unbounded off petite sets in the sense that CV (n) := {y : V (y) ≤ n} is
petite for all n, such that

∆V (x) ≤ 0, x ∈ Cc. (8.4)

Proof The drift criterion for transience is proved in Theorem 8.4.2, whilst the
condition for recurrence is in Theorem 8.4.3. �

Such conditions were developed by Lyapunov as criteria for stability in deter-
ministic systems, by Khas’minskii and others for stochastic differential equations
[134, 149], and by Foster as criteria for stability for Markov chains on a countable
space: Theorem 8.0.2 is originally due (for countable spaces) to Foster [82] in essen-
tially the form given above.

There is in fact a converse to Theorem 8.0.2 (ii) also, but only for ψ-irreducible
Feller chains (which include all countable space chains): we prove this in Section 9.4.2.
It is not known whether a converse holds in general.

Recurrence is also often phrased in terms of the hitting time variables τA =
inf{k ≥ 1 : Φk ∈ A}, with “recurrence” for a set A being defined by L(x,A) = Px(τA <
∞) = 1 for all x ∈ A. The connections between this condition and recurrence as we
have defined it above are simple in the countable state space case: the conditions are
in fact equivalent when A is an atom. In general spaces we do not have such complete
equivalence. Recurrence properties in terms of τA (which we call Harris recurrence
properties) are much deeper and we devote much of the next chapter to them. In
this chapter we do however give some of the simpler connections: for example, if
L(x,A) = 1 for all x ∈ A then ηA = ∞ a.s. when Φ0 ∈ A, and hence A is recurrent
(see Proposition 8.3.1).

8.1 Classifying chains on countable spaces

8.1.1 The countable recurrence/transience dichotomy

We turn as before to the countable space to guide and motivate our general results,
and to aid in their interpretation.

When X = ZZ+, we initially consider the stability of an individual state α. This
will lead to a global classification for irreducible chains.

The first, and weakest, stability property involves the expected number of visits
to α. The random variable ηα =

∑∞
n=1 1l{Φn = α} has been defined in Section 3.4.3

as the number of visits by Φ to α: clearly ηα is a measurable function from Ω to
ZZ+ ∪ {∞}.
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Classification of States

The state α is called transient if Eα(ηα) <∞, and recurrent if Eα(ηα) =
∞.

From the definition U(x, y) =
∑∞

n=1 P
n(x, y) we have immediately that for any states

x, y ∈ X
Ex[ηy] = U(x, y). (8.5)

The following result gives a structural dichotomy which enables us to consider, not
just the stability of states, but of chains as a whole.

Proposition 8.1.1 When X is countable and Φ is irreducible, either U(x, y) = ∞
for all x, y ∈ X or U(x, y) <∞ for all x, y ∈ X.

Proof This relies on the definition of irreducibility through the relation ↔.
If
∑

n P
n(x, y) = ∞ for some x, y, then since u → x and y → v for any u, v, we

have r, s such that P r(u, x) > 0, P s(y, v) > 0 and so∑
n

P r+s+n(u, v) > P r(u, x)
[∑

n

Pn(x, y)
]
P s(y, v) =∞. (8.6)

Hence the series U(x, y) and U(u, v) all converge or diverge simultaneously, and the
result is proved. �

Now we can extend these stability concepts for states to the whole chain.

Transient and recurrent chains

If every state is transient the chain itself is called transient.

If every state is recurrent, the chain is called recurrent.

The solidarity results of Proposition 8.1.3 and Proposition 8.1.1 enable us to classify
irreducible chains by the property possessed by one and then all states.

Theorem 8.1.2 When Φ is irreducible, then either Φ is transient or Φ is recurrent.
�
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We can say, in the countable case, exactly what recurrence or transience means in
terms of the return time probabilities L(x, x). In order to connect these concepts, for
a fixed n consider the event {Φn = α}, and decompose this event over the mutually
exclusive events {Φn = α, τα = j} for j = 1, . . . , n. Since Φ is a Markov chain, this
provides the first-entrance decomposition of Pn given for n ≥ 1 by

Pn(x,α) = Px{τα = n}+
n−1∑
j=1

Px{τα = j}Pn−j(α,α). (8.7)

If we introduce the generating functions for the series Pn and αP
n as

U (z)(x,α) :=
∞∑

n=1

Pn(x,α)zn, |z| < 1 (8.8)

L(z)(x,α) :=
∞∑

n=1

Px(τα = n)zn, |z| < 1 (8.9)

then multiplying (8.7) by zn and summing from n = 1 to ∞ gives for |z| < 1

U (z)(x,α) = L(z)(x,α) + L(z)(x,α)U (z)(α,α). (8.10)

From this identity we have

Proposition 8.1.3 For any x ∈ X, U(x, x) = ∞ if and only if L(x, x) = 1.

Proof Consider the first entrance decomposition in (8.10) with x = α: this gives

U (z)(α,α) = L(z)(α,α)
/[

1− L(z)(α,α)
]
. (8.11)

Letting z ↑ 1 in (8.11) shows that

L(α,α) = 1 ⇐⇒ U(α,α) =∞.

�
This gives the following interpretation of the transience/recurrence dichotomy of

Proposition 8.1.1.

Proposition 8.1.4 When Φ is irreducible, either L(x, y) = 1 for all x, y ∈ X or
L(x, x) < 1 for all x ∈ X.

Proof From Proposition 8.1.3 and Proposition 8.1.1, we have L(x, x) < 1 for all
x or L(x, x) = 1 for all x. Suppose in the latter case, we have L(x, y) < 1 for some
pair x, y: by irreducibility, U(y, x) > 0 and thus for some n we have Py(Φn = x, τy >
n) > 0, from which we have L(y, y) < 1, which is a contradiction. �

In Chapter 9 we will define Harris recurrence as the property that L(x,A) ≡ 1
for all x ∈ A and A ∈ B+(X): for countable chains, we have thus shown that recurrent
chains are also Harris recurrent, a theme we return to in the next chapter when we
explore stability in terms of L(x,A) in more detail.
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8.1.2 Specific models: evaluating transience and recurrence

Calculating the quantities U(x, y) or L(x, x) directly for specific models is non-trivial
except in the simplest of cases. However, we give as examples two simple models for
which this is possible, and then a deeper proof of a result for general random walk.

Renewal processes and forward recurrence time chains Let the transition
matrix of the forward recurrence time chain be given as in Section 3.3. Then it is
straightforward to see that for all states n > 1,

1P
n−1(n, 1) = 1.

This gives
L(1, 1) =

∑
n≥1

p(n) 1P
n−1(n, 1) = 1

also. Hence the forward recurrence time chain is always recurrent if p is a proper
distribution.

The calculation in the proof of Proposition 8.1.3 is actually a special case of the
use of the renewal equation. Let Zn be a renewal process with increment distribution
p as defined in Section 2.4. By breaking up the event {Zk = n} over the last time
before n that a renewal occurred we have

u(n) :=
∞∑

k=0

P(Zk = n) = 1 + u ∗ p(n)

and multiplying by zn and summing over n gives the form

U(z) = [1− P (z)]−1 (8.12)

where U(z) :=
∑∞

n=0 u(n)zn and P (z) :=
∑∞

n=0 p(n)zn.
Hence a renewal process is also called recurrent if p is a proper distribution, and

in this case U(1) = ∞.
Notice that the renewal equation (8.12) is identical to (8.11) in the case of the

specific renewal chain given by the return time τα(n) to the state α.

Simple random walk on ZZ+ Let P be the transition matrix of random walk on a
half line in the simplest irreducible case, namely P (0, 0) = p and

P (x, x− 1) = p, x > 0
P (x, x+ 1) = q, x ≥ 0.

(8.13)

where p+ q = 1. This is known as the simple, or Bernoulli, random walk.
We have that

L(0, 0) = p+ qL(1, 0),
L(1, 0) = p+ qL(2, 0).

(8.14)

Now we use two tricks specific to chains such as this. Firstly, since the chain is
skip-free to the left, it must reach {0} from {2} only by going through {1}, so that
we have

L(2, 0) = L(2, 1)L(1, 0).
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Secondly, the translation invariance of the chain, which implies L(j, j − 1) =
L(1, 0), j ≥ 1, gives us

L(2, 0) = [L(1, 0)]2.

Thus from (8.14), we find that

L(1, 0) = p+ q[L(1, 0)]2 (8.15)

so that L(1, 0) = 1 or L(1, 0) = p/q.
This shows that L(1, 0) = 1 if p ≥ q, and from (8.14) we derive the well-known

result that L(0, 0) = 1 if p ≥ q.

Random walk on ZZ In order to classify general random walk on the integers we
will use the laws of large numbers. Proving these is outside the scope of this book:
see, for example, Billingsley [25] or Chung [50] for these results.

Suppose that Φn is a random walk such that the increment distribution Γ has a
mean which is zero. The form of the Weak Law of Large Numbers that we will use
can be stated in our notation as

Pn(0, A(εn)) → 1 (8.16)

for any ε, where the set A(k) = {y : |y| ≤ k}. From this we prove

Theorem 8.1.5 If Φ is an irreducible random walk on ZZ whose increment distribu-
tion Γ has mean zero, then Φ is recurrent.

Proof First note that from (8.7) we have for any x∑N
m=1 P

m(x, 0) =
∑N

k=1

∑k
j=0 Px(τ0 = k − j)P j(0, 0)

=
∑N

j=0 P
j(0, 0)

∑N−j
i=0 Px(τ0 = i)

≤ ∑N
j=0 P

j(0, 0).

(8.17)

Now using this with the symmetry that
∑N

m=1 P
m(x, 0) =

∑N
m=1 P

m(0,−x) gives∑N
m=0 P

m(0, 0) ≥ [2M + 1]−1∑|x|≤M

∑N
j=0 P

j(0, x)

≥ [2M + 1]−1∑N
j=0 P

j(0, A(jM/N))

= [2aN + 1]−1∑N
j=0 P

j(0, A(aj))

(8.18)

where we choose M = Na where a is to be chosen later.
But now from the Weak Law of Large Numbers (8.16) we have

P k(0, A(ak)) → 1

as k →∞; and so from (8.18) we have

lim infN→∞
∑N

m=0 P
m(x, 0) ≥ lim infN→∞[2aN + 1]−1∑N

j=0 P
j(0, A(aj))

= [2a]−1.
(8.19)
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Since a can be chosen arbitrarily small, we have U(0, 0) =∞ and the chain is recur-
rent. �

This proof clearly uses special properties of random walk. If Γ has simpler struc-
ture then we shall see that simpler procedures give recurrence in Section 8.4.3.

8.2 Classifying ψ-irreducible chains

The countable case provides guidelines for us to develop solidarity properties of chains
which admit a single atom rather than a multiplicity of atoms. These ideas can then
be applied to the split chain and carried over through the m-skeleton to the original
chain, and this is the agenda in this section.

In order to accomplish this, we need to describe precisely what we mean by
recurrence or transience of sets in a general space.

8.2.1 Transience and recurrence for individual sets

For general A,B ∈ B(X) recall from Section 3.4.3 the taboo probabilities given by

AP
n(x,B) = Px{Φn ∈ B, τA ≥ n},

and by convention we set AP
0(x,A) = 0. Extending the first entrance decomposition

(8.7) from the countable space case, for a fixed n consider the event {Φn ∈ B} for
arbitrary B ∈ B(X), and decompose this event over the mutually exclusive events
{Φn ∈ B, τA = j} for j = 1, . . . , n, where A is any other set in B(X). The general
first-entrance decomposition can be written

Pn(x,B) = AP
n(x,B) +

n−1∑
j=1

∫
A

AP
j(x, dw)Pn−j(w,B) (8.20)

whilst the analogous last-exit decomposition is given by

Pn(x,B) = AP
n(x,B) +

n−1∑
j=1

∫
A
P j(x, dw)AP

n−j(w,B). (8.21)

The first-entrance decomposition is clearly a decomposition of the event {Φn ∈ A}
which could be developed using the Strong Markov Property and the stopping time
ζ = τA ∧n. The last exit decomposition, however, is not an example of the use of the
Strong Markov Property: for, although the first entrance time τA is a stopping time
for Φ, the last exit time is not a stopping time. These decompositions do however
illustrate the same principle that underlies the Strong Markov Property, namely the
decomposition of an event over the sub-events on which the random time takes on
the (countable) set of values available to it.

We will develop classifications of sets using the generating functions for the series
{Pn} and {AP

n}:

U (z)(x,B) :=
∞∑

n=1

Pn(x,B)zn, |z| < 1 (8.22)
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U
(z)
A (x,B) :=

∞∑
n=1

AP
n(x,B)zn, |z| < 1. (8.23)

The kernel U then has the property

U(x,A) =
∞∑

n=1

Pn(x,A) = lim
z↑1

U (z)(x,A) (8.24)

and as in the countable case, for any x ∈ X, A ∈ B(X)

Ex(ηA) = U(x,A). (8.25)

Thus uniform transience or recurrence is quantifiable in terms of the finiteness or
otherwise of U(x,A).

The return time probabilities L(x,A) = Px{τA <∞} satisfy

L(x,A) =
∞∑

n=1

AP
n(x,A) = lim

z↑1
U

(z)
A (x,A). (8.26)

We will prove the solidarity results we require by exploiting the convolution forms
in (8.20) and (8.21). Multiplying by zn in (8.20) and (8.21) and summing, the first
entrance and last exit decompositions give, respectively, for |z| < 1

U (z)(x,B) = U
(z)
A (x,B) +

∫
A
U

(z)
A (x, dw)U (z)(w,B), (8.27)

U (z)(x,B) = U
(z)
A (x,B) +

∫
A
U (z)(x, dw)U (z)

A (w,B). (8.28)

In classifying the chain Φ we will use these relationships extensively.

8.2.2 The recurrence/transience dichotomy: chains with an atom

We can now move to classifying a chain Φ which admits an atom in a dichotomous
way as either recurrent or transient. Through the splitting techniques of Chapter 5
this will then enable us to classify general chains.

Theorem 8.2.1 Suppose that Φ is ψ-irreducible and admits an atom α ∈ B+(X).
Then

(i) if α is recurrent, then every set in B+(X) is recurrent.

(ii) if α is transient, then there is a countable covering of X by uniformly transient
sets.

Proof (i) If A ∈ B+(X) then for any x we have r, s such that P r(x,α) > 0,
P s(α, A) > 0 and so∑

n

P r+s+n(x,A) ≥ P r(x,α)
[∑

n

Pn(α,α)
]
P s(α, A) = ∞. (8.29)

Hence the series U(x,A) diverges for every x,A when U(α,α) diverges.
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(ii) To prove the converse, we first note that for an atom, transience is equiv-
alent to L(α,α) < 1, exactly as in Proposition 8.1.3.

Now consider the last exit decomposition (8.28) with A,B = α. We have for any
x ∈ X

U (z)(x,α) = U (z)
α (x,α) + U (z)(x,α)U (z)

α (α,α)

and so by rearranging terms we have for all z < 1

U (z)(x,α) = U (z)
α (x,α)[1− U (z)

α (α,α)]−1 ≤ [1− L(α,α)]−1 <∞.

Hence U(x,α) is bounded for all x.
Now consider the countable covering of X given by the sets

α(j) = {y :
j∑

n=1

Pn(y,α) > j−1}.

Using the Chapman-Kolmogorov equations,

U(x,α) ≥ j−1U(x,α(j)) inf
y∈α(j)

j∑
n=1

Pn(y,α) ≥ j−2U(x,α(j))

and thus {α(j)} is the required cover by uniformly transient sets. �
We shall frequently find sets which are not uniformly transient themselves, but

which can be covered by a countable number of uniformly transient sets. This leads
to the definition

Transient sets

If A ∈ B(X) can be covered with a countable number of uniformly tran-
sient sets, then we call A transient.

8.2.3 The general recurrence/transience dichotomy

Now let us consider chains which do not have atoms, but which are strongly aperiodic.
We shall find that the split chain construction leads to a “solidarity result” for the

sets in B+(X) in the ψ-irreducible case, thus allowing classification of Φ as a whole.
Thus the following definitions will not be vacuous.
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Stability Classification of ψ-irreducible Chains

(i) The chain Φ is called recurrent if it is ψ-irreducible and U(x,A) ≡ ∞
for every x ∈ X and every A ∈ B+(X).

(ii) The chain Φ is called transient if it is ψ-irreducible and X is tran-
sient.

We first check that the split chain and the original chain have mutually consistent
recurrent/transient classifications.

Proposition 8.2.2 Suppose that Φ is ψ-irreducible and strongly aperiodic. Then ei-
ther both Φ and Φ̌ are recurrent, or both Φ and Φ̌ are transient.

Proof Strong aperiodicity ensures as in Proposition 5.4.5 that the Minorization
Condition holds, and thus we can use the Nummelin Splitting of the chain Φ to
produce a chain Φ̌ on X̌ which contains an accessible atom α̌.

We see from (5.9) that for every x ∈ X, and for every B ∈ B+(X),

∞∑
n=1

∫
δ∗x(dyi)P̌n(yi, B) =

∞∑
n=1

Pn(x,B). (8.30)

If B ∈ B+(X) then since ψ∗(B0) > 0 it follows from (8.30) that if Φ̌ is recurrent, so is
Φ. Conversely, if Φ̌ is transient, by taking a cover of X̌ with uniformly transient sets
it is equally clear from (8.30) that Φ is transient.

We know from Theorem 8.2.1 that Φ̌ is either transient or recurrent, and so the
dichotomy extends in this way to Φ. �

To extend this result to general chains without atoms we first require a link
between the recurrence of the chain and its resolvent.

Lemma 8.2.3 For any 0 < ε < 1 the following identity holds:

∞∑
n=1

Kn
aε

=
1− ε

ε

∞∑
n=0

Pn

Proof From the generalized Chapman-Kolmogorov equations (5.46) we have

∞∑
n=1

Kn
aε

=
∞∑

n=1

Ka∗n
ε

=
∞∑

n=0

b(n)Pn

where we define b(k) to be the kth term in the sequence
∑∞

n=1 a
∗n
ε . To complete the

proof, we will show that b(k) = (1− ε)/ε for all k ≥ 0.
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Let B(z) =
∑
b(k)zk, Aε(z) =

∑
aε(k)zk denote the power series representation

of the sequences b and aε. From the identities

Aε(z) =
( 1− ε

1− εz

)
B(z) =

∞∑
n=1

(
Aε(z)

)n

we see that B(z) = ((1− ε)/ε)(1− z)−1. By uniqueness of the power series expansion
it follows that b(n) = (1− ε)/ε for all n, which completes the proof. �

As an immediate consequence of Lemma 8.2.3 we have

Proposition 8.2.4 Suppose that Φ is ψ-irreducible.

(i) The chain Φ is transient if and only if each Kaε-chain is transient.

(ii) The chain Φ is recurrent if and only if each Kaε-chain is recurrent.
�

We may now prove

Theorem 8.2.5 If Φ is ψ-irreducible, then Φ is either recurrent or transient.

Proof From Proposition 5.4.5 we are assured that the Kaε-chain is strongly ape-
riodic. Using Proposition 8.2.2 we know then that each Kaε-chain can be classified
dichotomously as recurrent or transient.

Since Proposition 8.2.4 shows that the Kaε-chain passes on either of these prop-
erties to Φ itself, the result is proved. �

We also have the following analogue of Proposition 8.2.4:

Theorem 8.2.6 Suppose that Φ is ψ-irreducible and aperiodic.

(i) The chain Φ is transient if and only if one, and then every, m-skeleton Φm is
transient.

(ii) The chain Φ is recurrent if and only if one, and then every, m-skeleton Φm is
recurrent.

Proof (i) If A is a uniformly transient set for the m-skeleton Φm, with∑
j P

jm(x,A) ≤M , then we have from the Chapman-Kolmogorov equations

∞∑
j=1

P j(x,A) =
m∑

r=1

∫
P r(x, dy)

∑
j

P jm(y,A) ≤ mM. (8.31)

Thus A is uniformly transient for Φ. Hence Φ is transient whenever a skeleton is
transient. Conversely, if Φ is transient then every Φk is transient, since

∞∑
j=1

P j(x,A) ≥
∞∑

j=1

P jk(x,A).

(ii) If the m-skeleton is recurrent then from the equality in (8.31) we again
have that ∑

P j(x,A) =∞, x ∈ X, A ∈ B+(X) (8.32)
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so that the chain Φ is recurrent.
Conversely, suppose that Φ is recurrent. For any m it follows from aperiodicity

and Proposition 5.4.5 that Φm is ψ-irreducible, and hence by Theorem 8.2.5, this
skeleton is either recurrent or transient. If it were transient we would have Φ transient,
from (i). �

It would clearly be desirable that we strengthen the definition of recurrence to
a form of Harris recurrence in terms of L(x,A), similar to that in Proposition 8.1.4.
The key problem in moving to the general situation is that we do not have, for a
general set, the equivalence in Proposition 8.1.3. There does not seem to be a simple
way to exploit the fact that the atom in the split chain is not only recurrent but also
satisfies L(α̌, α̌) = 1, and the dichotomy in Theorem 8.2.5 is as far as we can go
without considerably stronger techniques which we develop in the next chapter.

Until such time as we provide these techniques we will consider various partial
relationships between transience and recurrence conditions, which will serve well in
practical classification of chains.

8.3 Recurrence and transience relationships

8.3.1 Transience of sets

We next give conditions on hitting times which ensure that a set is uniformly transient,
and which commence to link the behavior of τA with that of ηA.

Proposition 8.3.1 Suppose that Φ is a Markov chain, but not necessarily irreducible.

(i) If any set A ∈ B(X) is uniformly transient with U(x,A) ≤ M for x ∈ A, then
U(x,A) ≤ 1 +M for every x ∈ X.

(ii) If any set A ∈ B(X) satisfies L(x,A) = 1 for all x ∈ A, then A is recurrent. If Φ
is ψ-irreducible, then A ∈ B+(X) and we have U(x,A) ≡ ∞ for x ∈ X.

(iii) If any set A ∈ B(X) satisfies L(x,A) ≤ ε < 1 for x ∈ A, then we have U(x,A) ≤
1/[1− ε] for x ∈ X, so that in particular A is uniformly transient.

(iv) Let τA(k) denote the kth return time to A, and suppose that for some m

Px(τA(m) <∞) ≤ ε < 1, x ∈ A; (8.33)

then U(x,A) ≤ 1 +m/[1− ε] for every x ∈ X.

Proof (i) We use the first-entrance decomposition: letting z ↑ 1 in (8.27) with
A = B shows that for all x,

U(x,A) ≤ 1 + sup
y∈A

U(y,A), (8.34)

which gives the required bound.
(ii) Suppose that L(x,A) ≡ 1 for x ∈ A. The last exit decomposition (8.28)

gives

U (z)(x,A) = U
(z)
A (x,A) +

∫
A
U (z)(x, dy)U (z)

A (y,A).
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Letting z ↑ 1 gives for x ∈ A,

U(x,A) = 1 + U(x,A),

which shows that U(x,A) = ∞ for x ∈ A, and hence that A is recurrent.
Suppose now that Φ is ψ-irreducible. The set A∞ = {x ∈ X : L(x,A) = 1}

contains A by assumption. Hence we have for any x,∫
P (x, dy)L(y,A) = P (x,A) +

∫
Ac
P (x, dy)UA(y,A) = L(x,A).

This shows that A∞ is absorbing, and hence full by Proposition 4.2.3.
It follows from ψ-irreducibility that Ka 1

2
(x,A) > 0 for all x ∈ X, and we also

have for all x that, from (5.47),

U(x,A) ≥
∫

A
Ka 1

2
(x, dy)U(y,A) = ∞

as claimed.
(iii) Suppose on the other hand that L(x,A) ≤ ε < 1, x ∈ A. The last exit

decomposition again gives

U (z)(x,A) = U
(z)
A (x,A) +

∫
A
U (z)(x, dy)U (z)

A (y,A) ≤ 1 + εU (z)(x,A)

and so U (z)(x,A) ≤ [1 − ε]−1: letting z ↑ 1 shows that A is uniformly transient as
claimed.

(iv) Suppose now (8.33) holds. This means that for some fixed m ∈ ZZ+, we
have ε < 1 with

Px(ηA ≥ m) ≤ ε, x ∈ A; (8.35)

by induction in (8.35) we find that

Px(ηA ≥ m(k + 1)) =
∫
A Px(ΦτA(km) ∈ dy)Py(ηA ≥ m)

≤ εPx(τA(km) <∞)

≤ εPx(ηA ≥ km)

≤ εk+1,

(8.36)

and so for x ∈ A
U(x,A) =

∑∞
n=1 Px(ηA ≥ n)

≤ m[1 +
∑∞

k=1 Px(ηA ≥ km)]

≤ m/[1− ε].

(8.37)

We now use (i) to give the required bound over all of X. �
If there is one uniformly transient set then it is easy to identify other such sets,

even without irreducibility. We have

Proposition 8.3.2 If A is uniformly transient, and B
a
� A for some a, then B is

uniformly transient. Hence if A is uniformly transient, there is a countable covering
of A by uniformly transient sets.
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Proof From Lemma 5.5.2 (iii), we have when B
a
� A that for some δ > 0,

U(x,A) ≥
∫
U(x, dy)Ka(y,A) ≥ δU(x,B)

so that B is uniformly transient if A is uniformly transient. Since A is covered by the
sets A(m), m ∈ ZZ+, and each A(m) a

� A for some a, the result follows. �
The next result provides a useful condition under which sets are transient even

if not uniformly transient.

Proposition 8.3.3 Suppose Dc is absorbing and L(x,Dc) > 0 for all x ∈ D. Then
D is transient.

Proof Suppose Dc is absorbing and write B(m) = {y ∈ D : Pm(y,Dc) ≥ m−1}:
clearly, the sets B(m) cover D since L(x,Dc) > 0 for all x ∈ D, by assumption.

But since Dc is absorbing, for every y ∈ B(m) we have

Py(ηB(m) ≥ m) ≤ Py(ηD ≥ m) ≤ [1−m−1]

and thus (8.33) holds for B(m); from (8.37) it follows that B(m) is uniformly tran-
sient. �

These results have direct application in the ψ-irreducible case. We next give a
number of such consequences.

8.3.2 Identifying transient sets for ψ-irreducible chains

We first give an alternative proof that there is a recurrence/transience dichotomy for
general state space chains which is an analogue of that in the countable state space
case. Although this result has already been shown through the use of the splitting
technique in Theorem 8.2.5, the following approach enables us to identify uniformly
transient sets without going through the atom.

Theorem 8.3.4 If Φ is ψ-irreducible, then Φ is either recurrent or transient.

Proof Suppose Φ is not recurrent: that is, there exists some pair A ∈ B+(X),
x∗ ∈ X with U(x∗, A) < ∞. If A∗ = {y : U(y,A) = ∞}, then ψ(A∗) = 0: for
otherwise we would have Pm(x∗, A∗) > 0 for some m, and then

U(x∗, A) ≥
∫
X P

m(x∗, dw)U(w,A)

≥
∫
A∗ P

m(x∗, dw)U(w,A) = ∞.
(8.38)

Set Ar = {y ∈ A : U(y,A) ≤ r}. Since ψ(A) > 0, and Ar ↑ A ∩ Ac∗, there must
exist some r such that ψ(Ar) > 0, and by Proposition 8.3.1 (i) we have for all y,

U(y,Ar) ≤ 1 + r. (8.39)

Consider now Ar(M) = {y :
∑M

m=0 P
m(y,Ar) > M−1}. For any x, from (8.39)
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M(1 + r) ≥MU(x,Ar) ≥
M∑

m=1

∞∑
n=m

Pn(x,Ar)

=
∞∑

n=0

∫
X
Pn(x, dw)

M∑
m=1

Pm(w,Ar)

≥
∞∑

n=0

∫
Ar(M)

Pn(x, dw)
M∑

m=1

Pm(w,Ar)

≥ M−1
∞∑

n=0

Pn(x,Ar(M)).

(8.40)

Since ψ(Ar) > 0 we have ∪mAr(m) = X, and so the {Ar(m)} form a partition of X
into uniformly transient sets as required. �

The partition of X into uniformly transient sets given in Proposition 8.3.2 and in
Theorem 8.3.4 leads immediately to

Theorem 8.3.5 If Φ is ψ-irreducible and transient then every petite set is uniformly
transient.

Proof If C is petite then by Proposition 5.5.5 (iii) there exists a sampling distri-
bution a such that C a

� B for any B ∈ B+(X). If Φ is transient then there exists at
least one B ∈ B+(X) which is uniformly transient, so that C is uniformly transient
from Proposition 8.3.2. �

Thus petite sets are also “small” within the transience definitions. This gives us
a criterion for recurrence which we shall use in practice for many models; we combine
it with a criterion for transience in

Theorem 8.3.6 Suppose that Φ is ψ-irreducible. Then

(i) Φ is recurrent if there exists some petite set C ∈ B(X) such that L(x,C) ≡ 1 for
all x ∈ C.

(ii) Φ is transient if and only if there exist two sets D,C in B+(X) with L(x,C) < 1
for all x ∈ D.

Proof (i) From Proposition 8.3.1 (ii) C is recurrent. Since C is petite Theo-
rem 8.3.5 shows Φ is recurrent. Note that we do not assume that C is in B+(X), but
that this follows also.

(ii) Suppose the sets C,D exist in B+(X). There must exist Dε ⊂ D such
that ψ(Dε) > 0 and L(x,C) ≤ 1− ε for all x ∈ Dε. If also ψ(Dε ∩ C) > 0 then since
L(x,C) ≥ L(Dε∩C) we have that Dε∩C is uniformly transient from Proposition 8.3.1
and the chain is transient.

Otherwise we must have ψ(Dε ∩Cc) > 0. The maximal nature of ψ then implies
that for some δ > 0 and some n ≥ 1 the set Cδ := {y ∈ C : CP

n(y,Dε ∩Cc) > δ} also
has positive ψ-measure. Since, for x ∈ Cδ,

1− L(x,Cδ) ≥
∫

Dε∩Cc
CP

n(x, dy)[1− L(y, Cδ)] ≥ δε
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the set Cδ is uniformly transient, and again the chain is transient.
To prove the converse, suppose that Φ is transient. Then for some petite set

C ∈ B+(X) the set D = {y ∈ Cc : L(y, C) < 1} is non-empty; for otherwise by (i) the
chain is recurrent. Suppose that ψ(D) = 0. Then by Proposition 4.2.3 there exists a
full absorbing set F ⊂ Dc. By definition we have L(x,C) = 1 for x ∈ F \C, and since
F is absorbing it then follows that L(x,C) = 1 for every x ∈ F , and hence also that
L(x,C0) = 1 for x ∈ F where C0 = C ∩ F also lies in B+(X).

But now from Proposition 8.3.1 (ii), we see that C0 is recurrent, which is a
contradiction of Theorem 8.3.5; and we conclude that D ∈ B+(X) as required. �

We would hope that ψ-null sets would also have some transience property, and
indeed they do.

Proposition 8.3.7 If Φ is ψ-irreducible then every ψ-null set is transient.

Proof Suppose that Φ is ψ-irreducible, and D is ψ-null. By Proposition 4.2.3, Dc

contains an absorbing set, whose complement can be covered by uniformly transient
sets as in Proposition 8.3.3: clearly, these uniformly transient sets cover D itself, and
we are finished. �

As a direct application of Proposition 8.3.7 we extend the description of the cyclic
decomposition for ψ-irreducible chains to give

Proposition 8.3.8 Suppose that Φ is a ψ-irreducible Markov chain on (X,B(X)).
Then there exist sets D1 . . . Dd ∈ B(X) such that

(i) for x ∈ Di, P (x,Di+1) = 1, i = 0, . . . , d− 1 (mod d)

(ii) the set N = [
⋃d

i=1 Di]c is ψ-null and transient.

Proof The existence of the periodic sets Di is guaranteed by Theorem 5.4.4, and
the fact that the set N is transient is then a consequence of Proposition 8.3.3, since⋃d

i=1 Di is itself absorbing. �
In the main, transient sets and chains are ones we wish to exclude in practice.

The results of this section have formalized the situation we would hope would hold:
sets which appear to be irrelevant to the main dynamics of the chain are indeed so, in
many different ways. But one cannot exclude them all, and for all of the statements
where ψ-null (and hence transient) exceptional sets occur, one can construct examples
to show that the “bad” sets need not be empty.

8.4 Classification using drift criteria

Identifying whether any particular model is recurrent or transient is not trivial from
what we have done so far, and indeed, the calculation of the matrix U or the hitting
time probabilities L involves in principle the calculation and analysis of all of the
Pn, a daunting task in all but the most simple cases such as those addressed in
Section 8.1.2.

Fortunately, it is possible to give practical criteria for both recurrence and tran-
sience, couched purely in terms of the drift of the one-step transition matrix P towards
individual sets, based on Theorem 8.3.6.
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8.4.1 A drift criterion for transience

We first give a criterion for transience of chains on general spaces, which rests on
finding the minimal solution to a class of inequalities.

Recall that σC , the hitting time on a set C, is identical to τC on Cc and σC = 0
on C.

Proposition 8.4.1 For any C ∈ B(X), the pointwise minimal non-negative solution
to the set of inequalities ∫

P (x, dy)h(y) ≤ h(x), x ∈ Cc

h(x) ≥ 1, x ∈ C,

(8.41)

is given by the function

h∗(x) = Px(σC <∞), x ∈ X;

and h* satisfies (8.41) with equality.

Proof Since for x ∈ Cc

Px(σC <∞) = P (x,C) +
∫

Cc
P (x, dy)Py(σC <∞) = Ph∗ (x)

it is clear that h∗ satisfies (8.41) with equality.
Now let h be any solution to (8.41). By iterating (8.41) we have

h(x) ≥
∫

C
P (x, dy)h(y) +

∫
Cc

P (x, dy)h(y)

≥
∫

C
P (x, dy)h(y) +

∫
Cc

P (x, dy)[
∫

C
P (y, dz)h(z) +

∫
Cc

P (x, dz)h(z)]

...

≥
N∑

j=1

∫
C

CP
j(x, dy)h(y) +

∫
Cc

CP
N (x, dy)h(y).

(8.42)
Letting N →∞ shows that h(x) ≥ h∗(x) for all x. �

This gives the required drift criterion for transience. Recall the definition of the
drift operator as ∆V (x) =

∫
P (x, dy)V (y)− V (x); obviously ∆ is well-defined if V is

bounded. We define the sublevel set CV (r) of any function V for r ≥ 0 by

CV (r) := {x : V (x) ≤ r}.

Theorem 8.4.2 Suppose Φ is a ψ-irreducible chain. Then Φ is transient if and only
if there exists a bounded function V : X→ IR+ and r ≥ 0 such that

(i) both CV (r) and CV (r)c lie in B+(X);

(ii) whenever x ∈ CV (r)c,
∆V (x) > 0. (8.43)
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Proof Suppose that V is an arbitrary bounded solution of (i) and (ii), and let M
be a bound for V over X. Clearly M > r. Set C = CV (r), D = Cc, and

hV (x) =
{

[M − V (x)]/[M − r] x ∈ D
1 x ∈ C

so that hV is a solution of (8.41). Then from the minimality of h∗ in Proposition 8.4.1,
hV is an upper bound on h∗, and since for x ∈ D,hV (x) < 1 we must have L(x,C) < 1
also for x ∈ D.

Hence Φ is transient as claimed, from Theorem 8.3.6.

Conversely, if Φ is transient, there exists a bounded function V satisfying (i) and
(ii). For from Theorem 8.3.6 we can always find ε < 1 and a petite set C ∈ B+(X)
such that {y ∈ Cc : L(y, C) < ε} is also in B+(X). Thus from Proposition 8.4.1, the
function V (x) = 1− Px(σC <∞) has the required properties. �

8.4.2 A drift criterion for recurrence

Theorem 8.4.2 essentially asserts that if Φ “drifts away” in expectation from a set in
B+(X), as indicated in (8.43), then Φ is transient. Of even more value in assessing
stability are conditions which show that “drift toward” a set implies recurrence, and
we provide the first of these now. The condition we will use is

Drift criterion for recurrence

(V1) There exists a positive function V and a set C ∈ B(X)
satisfying

∆V (x) ≤ 0, x ∈ Cc (8.44)

We will find frequently that, in order to test such drift for the process Φ, we need to
consider functions V : X → IR such that the set CV (M) = {y ∈ X : V (y) ≤ M} is
“finite” for each M . Such a function on a countable space or topological space is easy
to define: in this abstract setting we first need to define a class of functions with this
property, and we will find that they recur frequently, giving further meaning to the
intuitive meaning of petite sets.
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Functions unbounded off petite sets

We will call a measurable function V : X → IR+ unbounded off petite sets
for Φ if for any n <∞, the sublevel set

CV (n) = {y : V (y) ≤ n}

is petite.

Note that since, for an irreducible chain, a finite union of petite sets is petite, and since
any subset of a petite set is itself petite, a function V : X → IR+ will be unbounded
off petite sets for Φ if there merely exists a sequence {Cj} of petite sets such that,
for any n <∞

CV (n) ⊆
N⋃

j=1

Cj (8.45)

for some N <∞. In practice this may be easier to verify directly.
We now have a drift condition which provides a test for recurrence.

Theorem 8.4.3 Suppose Φ is ψ-irreducible. If there exists a petite set C ⊂ X, and a
function V which is unbounded off petite sets such that (V1) holds then L(x,C) ≡ 1
and Φ is recurrent.

Proof We will show that L(x,C) ≡ 1 which will give recurrence from Theo-
rem 8.3.6. Note that by replacing the set C by C ∪CV (n) for n suitably large, we can
assume without loss of generality that C ∈ B+(X).

Suppose by way of contradiction that the chain is transient, and thus that there
exists some x∗ ∈ Cc with L(x∗, C) < 1.

Set CV (n) = {y ∈ X : V (y) ≤ n}: we know this is petite, by definition of V , and
hence it follows from Theorem 8.3.5 that CV (n) is uniformly transient for any n. Now
fix M large enough that

M > V (x∗)/[1− L(x∗, C)]. (8.46)

Let us modify P to define a kernel P̂ with entries P̂ (x,A) = P (x,A) for x ∈ Cc and
P̂ (x, x) = 1, x ∈ C. This defines a chain Φ̂ with C as an absorbing set, and with the
property that for all x ∈ X ∫

P̂ (x, dy)V (y) ≤ V (x). (8.47)

Since P is unmodified outside C, but Φ̂ is absorbed in C, we also have

P̂n(x,C) = Px(τC ≤ n) ↑ L(x,C), x ∈ Cc, (8.48)
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whilst for A ⊆ Cc

P̂n(x,A) ≤ Pn(x,A), x ∈ Cc. (8.49)

By iterating (8.47) we thus get, for fixed x ∈ Cc

V (x) ≥
∫
P̂n(x, dy)V (y)

≥
∫

Cc∩[CV (M)]c
P̂n(x, dy)V (y)

≥ M
[
1− P̂n(x,CV (M) ∪ C)

]
.

(8.50)

Since CV (M) is uniformly transient, from (8.49) we have

P̂n(x∗, CV (M) ∩ Cc) ≤ Pn(x∗, CV (M) ∩ Cc) → 0, n→∞. (8.51)

Combining this with (8.48) gives

[1− P̂n(x∗, CV (M) ∪ C)] → [1− L(x∗, C)], n→∞. (8.52)

Letting n → ∞ in (8.50) for x = x∗ provides a contradiction with (8.52) and our
choice of M . Hence we must have L(x,C) ≡ 1, and Φ is recurrent, as required. �

8.4.3 Random walks with bounded range

The drift condition on the function V in Theorem 8.4.3 basically says that, whenever
the chain is outside C, it “moves down” towards that part of the space described by
the petite sets outside which V tends to infinity.

This condition implies that we know where the petite sets for Φ lie, and can
identify those functions which are unbounded off the petite sets. This provides very
substantial motivation for the identification of petite sets in a manner independent
of Φ; and for many chains we can use the results in Chapter 6 to give such form to
the results.

On a countable space, of course, finite sets are petite. Our problem is then to
identify the correct test function to use in the criteria.

In order to illustrate the use of the drift criteria we will first consider the simplest
case of a random walk on ZZ with finite range r. Thus we assume the increment
distribution Γ is concentrated on the integers and is such that Γ (x) = 0 for |x| > r.
We then have a relatively simple proof of the result in Theorem 8.1.5.

Proposition 8.4.4 Suppose that Φ is an irreducible random walk on the integers. If
the increment distribution Γ has a bounded range and the mean of Γ is zero, then Φ
is recurrent.

Proof In Theorem 8.4.3 choose the test function V (x) = |x|. Then for x > r we
have that ∑

y

P (x, y)[V (y)− V (x)] =
∑
y

Γ (w)w,

whilst for x < −r we have that
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∑
y

P (x, y)[V (y)− V (x)] = −
∑
w

Γ (w)w.

Suppose the “mean drift”
β =

∑
w

Γ (w)w = 0.

Then the conditions of Theorem 8.4.3 are satisfied with C = {−r, . . . , r} and with
(8.44) holding for x ∈ Cc, and so the chain is recurrent. �

Proposition 8.4.5 Suppose that Φ is an irreducible random walk on the integers.
If the increment distribution Γ has a bounded range and the mean of Γ is non-zero,
then Φ is transient.

Proof Suppose Γ has non-zero mean β > 0. We will establish for some bounded
monotone increasing V that ∑

y

P (x, y)V (y) = V (x) (8.53)

for x ≥ r.
This time choose the test function V (x) = 1 − ρx for x ≥ 0, and V (x) = 0

elsewhere. The sublevel sets of V are of the form (−∞, r] with r ≥ 0. This function
satisfies (8.53) if and only if for x ≥ r∑

y

P (x, y)[ρy/ρx] = 1 (8.54)

so that this V can be constructed as a valid test function if (and only if) there is a
ρ < 1 with ∑

w

Γ (w)ρw = 1. (8.55)

Therefore the existence of a solution to (8.55) will imply that the chain is transient,
since return to the whole half line (−∞, r] is less than sure from Proposition 8.4.2.
Write β(s) =

∑
w Γ (w)sw: then β is well defined for s ∈ (0, 1] by the bounded range

assumption. By irreducibility, we must have Γ (w) > 0 for some w < 0, so that
β(s) → ∞ as s→ 0. Since β(1) = 1, and β′(1) =

∑
w wΓ (w) = β > 0 it follows that

such a ρ exists, and hence the chain is transient.
Similarly, if the mean of Γ is negative, we can by symmetry prove transience

because the chain fails to return to the half line [−r,∞). �
For random walk on the half line ZZ+ with bounded range, as defined by (RWHL1)

we find

Proposition 8.4.6 If the random walk increment distribution Γ on the integers has
mean β and a bounded range, then the random walk on ZZ+ is recurrent if and only
if β ≤ 0.

Proof If β is positive, then the probability of return of the unrestricted random
walk to (−∞, r] is less than one, for starting points above r, and since the probability
of return of the random walk on a half line to [0, r] is identical to the return to (−∞, r]
for the unrestricted random walk, the chain is transient.
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If β ≤ 0, then we have as for the unrestricted random walk that, for the test
function V (x) = x and all x ≥ r∑

y

P (x, y)[V (y)− V (x)] =
∑
w

Γ (w)w ≤ 0;

but since, in this case, the set {x ≤ r} is finite, we have (8.44) holding and the chain
is recurrent. �

The first part of this proof involves a so-called “stochastic comparison” argument:
we use the return time probabilities for one chain to bound the same probabilities for
another chain. This is simple but extremely effective, and we shall use it a number
of times in classifying random walk. A more general formulation will be given in
Section 9.5.1.

Varying the condition that the range of the increment is bounded requires a much
more delicate argument, and indeed the known result of Theorem 8.1.5 for a general
random walk on ZZ, that recurrence is equivalent to the mean β = 0, appears difficult
if not impossible to prove by drift methods without some bounds on the spread of Γ .

8.5 Classifying random walk on IR+

In order to give further exposure to the use of drift conditions, we will conclude this
chapter with a detailed examination of random walk on IR+.

The analysis here is obviously immediately applicable to the various queueing and
storage models introduced in Chapter 2 and Chapter 3, although we do not fill in the
details explicitly. The interested reader will find, for example, that the conditions on
the increment do translate easily into intuitively appealing statements on the mean
input rate to such systems being no larger than the mean service or output rate if
recurrence is to hold.

These results are intended to illustrate a variety of approaches to the use of the
stability criteria above. Different test functions are utilized, and a number of different
methods of ensuring they are applicable are developed. Many of these are used in the
sequel where we classify more general models.

As in (RW1) and (RWHL1) we let Φ denote a chain with

Φn = [Φn−1 +Wn]+

where as usual Wn is a noise variable with distribution Γ and mean β which we shall
assume in this section is well-defined and finite.

Clearly we would expect from the bounded increments results above that β ≤ 0
is the appropriate necessary and sufficient condition for recurrence of Φ. We now
address the three separate cases in different ways.

8.5.1 Recurrence when β is negative

When the inequality is strict it is not hard to show that the chain is recurrent.

Proposition 8.5.1 If Φ is random walk on a half line and if

β =
∫
wΓ (dw) < 0

then Φ is recurrent.
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Proof Clearly the chain is ϕ-irreducible when β < 0 with ϕ = δ0, and all compact
sets are small as in Chapter 5. To prove recurrence we use Theorem 8.4.3, and show
that we can in fact find a suitably unbounded function V and a compact set C
satisfying ∫

P (x, dy)V (y) ≤ V (x)− ε, x ∈ Cc, (8.56)

for some ε > 0. As in the countable case we note that since β < 0 there exists x0 <∞
such that ∫ ∞

−x0

wΓ (dw) < β/2 < 0,

and thus if V (x) = x, for x > x0∫
P (x, dy)[V (y)− V (x)] ≤

∫ ∞

−x0

wΓ (dw). (8.57)

Hence taking ε = β/2 and C = [0, x0] we have the required result. �

8.5.2 Recurrence when β is zero

When the mean increment β = 0 the situation is much less simple, and in general
the drift conditions can be verified simply only under somewhat stronger conditions
on the increment distribution Γ , such as an assumption of a finite variance of the
increments.

We will find it convenient to develop prior to our calculations some detailed
bounds on the moments of Γ , which will become relevant when we consider test
functions of the form V (x) = log(1 + |x|).

Lemma 8.5.2 Let W be a random variable with law Γ , s a positive number and t
any real number. Then for any A ⊆ {w ∈ IR : s+ tw > 0},

E[log(s+ tW )1l{W ∈ A}] ≤ Γ (A) log(s) + (t/s)E[W1l{W ∈ A}]

−(t2/(2s2))E[W 21l{W ∈ A, tW < 0}]

Proof For all x > −1, log(1 + x) ≤ x− (x2/2)1l{x < 0}. Thus

log(s+ tW )1l{W ∈ A} = [log(s) + log(1 + tW/s)]1l{W ∈ A}

≤ [log(s) + tW/s]1l{W ∈ A}

−((tW )2/(2s2))1l{tW < 0,W ∈ A}]

and taking expectations gives the result. �

Lemma 8.5.3 Let W be a random variable with law Γ and finite variance. Let s be
a positive number and t a real number. Then

lim
x→∞−xE[W1l{W < t− sx}] = lim

x→∞xE[W1l{W > t+ sx}] = 0. (8.58)

Furthermore, if E[W ] = 0, then

lim
x→∞−xE[W1l{W > t− sx}] = lim

x→∞xE[W1l{W < t+ sx}] = 0. (8.59)
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Proof This is a consequence of

0 ≤ lim
x→∞(t+ sx)

∫ ∞

t+sx
wΓ (dw) ≤ lim

x→∞

∫ ∞

t+sx
w2Γ (dw) = 0,

and

0 ≤ lim
x→−∞(t+ sx)

∫ t+sx

−∞
wΓ (dw) ≤ lim

x→−∞

∫ t+sx

−∞
w2Γ (dw) = 0.

If E[W ] = 0, then E[W1l{W > t + sx}] = −E[W1l{W < t + sx}], giving the second
result. �

We now prove

Proposition 8.5.4 If W is an increment variable on IR with β = 0 and

0 < E[W 2] =
∫
w2 Γ (dw) <∞

then the random walk on IR+ with increment W is recurrent.

Proof We use the test function

V (x) =
{

log(1 + x) x > R
0 0 ≤ x ≤ R

(8.60)

where R is a positive constant to be chosen. Since β = 0 and 0 < E[W 2] the chain
is δ0-irreducible, and we have seen that all compact sets are small as in Chapter 5.
Hence V is unbounded off petite sets.

For x > R, 1 + x > 0, and thus by Lemma 8.5.2,

Ex[V (X1)] = E[log(1 + x+W )1l{x+W > R}]
≤ (1− Γ (−∞, R− x)) log(1 + x) + U1(x)− U2(x),

(8.61)

where in order to bound the terms in the expansion of the logarithms in V , we consider
separately

U1(x) = (1/(1 + x))E[W1l{W > R− x}]
U2(x) = (1/(2(1 + x)2))E[W 21l{R− x < W < 0}] (8.62)

Since E[W 2] <∞

U2(x) = (1/(2(1 + x)2))E[W 21l{W < 0}]− o(x−2),

and by Lemma 8.5.3, U1 is also o(x−2).
Thus by choosing R large enough

Ex[V (X1)] ≤ V (x)− (1/(2(1 + x)2))E[W 21l{W < 0}] + o(x−2)
≤ V (x), x > R.

(8.63)

Hence the conditions of Theorem 8.4.3 hold, and chain is recurrent. �
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8.5.3 Transience of skip-free random walk when β is positive

It is possible to verify transience when β > 0, without any restrictions on the range
of the increments of the distribution Γ , thus extending Proposition 8.4.5; but the
argument (in Proposition 9.1.2) is a somewhat different one which is based on the
Strong Law of Large Numbers and must wait some stronger results on the meaning
of recurrence in the next chapter.

Proving transience for random walk without bounded range using drift conditions
is difficult in general. There is however one model for which some exact calculations
can be made: this is the random walk which is “skip-free to the right” and which
models the GI/M/1 queue as in Theorem 3.3.1.

Proposition 8.5.5 If Φ denotes random walk on a half line ZZ+ which is skip-free
to the right (so Γ (x) = 0 for x > 1), and if

β =
∑

wΓ (w) > 0

then Φ is transient.

Proof We can assume without loss of generality that Γ (−∞, 0) > 0: for clearly, if
Γ [0,∞) = 1 then Px(τ0 < ∞) = 0, x > 0 and the chain moves inexorably to infinity;
hence it is not irreducible, and it is transient in every meaning of the word.

We will show that for a chain which is skip-free to the right the condition β > 0
is sufficient for transience, by examining the solutions of the equations∑

P (x, y)V (y) = V (x), x ≥ 1 (8.64)

and actually constructing a bounded non-constant positive solution if β is positive.
The result will then follow from Theorem 8.4.2.

First note that we can assume V (0) = 0 by linearity, and write out the equation
(8.64) in this case as

V (x) = Γ (−x+ 1)V (1) + Γ (−x+ 2)V (2) + . . .+ Γ (1)V (1 + x). (8.65)

Once the first value in the V (x) sequence is chosen, we therefore have the remaining
values given by an iterative process. Our goal is to show that we can define the
sequence in a way that gives us a non-constant positive bounded solution to (8.65).

In order to do this we first write

V ∗(z) =
∞∑
0

V (x)zx, Γ ∗(z) =
∞∑
−∞

Γ (x)zx,

where V ∗(z) has yet to be shown to be defined for any z and Γ ∗(z) is clearly defined
at least for |z| ≥ 1. Multiplying by zx in (8.65) and summing we have that

V ∗(z) = Γ ∗(z−1)V ∗(z)− Γ (1)V (1) (8.66)

Now suppose that we can show (as we do below) that there is an analytic expansion
of the function

z−1[1− z]/[Γ ∗(z−1)− 1] =
∞∑
0

bnz
n (8.67)
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in the region 0 < z < 1 with bn ≥ 0. Then we will have the identity

V ∗(z) = zΓ (1)V (1)z−1/[Γ ∗(z−1)− 1]

= zΓ (1)V (1)(
∑∞

0 zn)z−1[1− z]/[Γ ∗(z−1)− 1]

= zΓ (1)V (1)(
∑∞

0 zn)(
∑∞

0 bmz
m).

(8.68)

From this, we will be able to identify the form of the solution V . Explicitly, from
(8.68) we have

V ∗(z) = zΓ (1)V (1)
∑∞

n=0 z
n∑n

m=0 bm (8.69)

so that equating coefficients of zn in (8.69) gives

V (x) = Γ (1)V (1)
x−1∑
m=0

bm.

Clearly then the solution V is bounded and non-constant if∑
m

bm <∞. (8.70)

Thus we have reduced the question of transience to identifying conditions under which
the expansion in (8.67) holds with the coefficients bj positive and summable.

Let us write aj = Γ (1− j) so that

A(z) :=
∞∑
0

ajz
j = zΓ ∗(z−1)

and for 0 < z < 1 we have

B(z) := z[Γ ∗(z−1)− 1]/[1− z] = [A(z)− z]/[1− z]

= 1− [1−A(z)]/[1− z]

= 1−∑∞
0 zj ∑∞

n=j+1 an.

(8.71)

Now if we have a positive mean for the increment distribution,

|
∞∑
0

zj
∞∑

n=j+1

an| ≤
∑
n

nan < 1

and so B(z)−1 is well defined for |z| < 1; moreover, by the expansion in (8.71)

B(z)−1 =
∑

bjz
j

with all with all bj ≥ 0, and hence by Abel’s Theorem,∑
bj = [1−

∑
n

nan]−1 = β−1

which is finite as required. �
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8.6 Commentary

On countable spaces the solidarity results we generalize here are classical, and thor-
ough expositions are in Feller [76], Chung [49], Çinlar [40] and many more places.
Recurrence is called persistence by Feller, but the terminology we use here seems to
have become the more standard. The first entrance, and particularly the last exit,
decomposition are vital tools introduced and exploited in a number of ways by Chung
[49].

There are several approaches to the transience/recurrence dichotomy. A common
one which can be shown to be virtually identical with that we present here uses the
concept of inessential sets (sets for which ηA is almost surely finite). These play the
role of transient parts of the space, with recurrent parts of the space being sets which
are not inessential. This is the approach in Orey [208], based on the original methods
of Doeblin [67] and Doob [68].

Our presentation of transience, stressing the role of uniformly transient sets, is
new, although it is implicit in many places. Most of the individual calculations are in
Nummelin [202], and a number are based on the more general approach in Tweedie
[272]. Equivalences between properties of the kernel U(x,A), which we have called
recurrence and transience properties, and the properties of essential and inessential
sets are studied in Tuominen [268].

The uniform transience property is inherently stronger than the inessential prop-
erty, and it certainly aids in showing that the skeletons and the original chain share
the dichotomy between recurrence and transience. For use of the properties of skeleton
chains in direct application, see Tjøstheim [265].

The drift conditions we give here are due in the countable case to Foster [82],
and the versions for more general spaces were introduced in Tweedie [275, 276] and
in Kalashnikov [117]. We shall revisit these drift conditions, and expand somewhat
on their implications in the next chapter. Stronger versions of (V1) will play a central
role in classifying chains as yet more stable in due course.

The test functions for classifying random walk in the bounded range case are
directly based on those introduced by Foster [82]. The evaluation of the transience
condition for skip-free walks, given in Proposition 8.5.5, is also due to Foster. The
approximations in the case of zero drift are taken from Guo and Petrucelli [92] and
are reused in analyzing SETAR models in Section 9.5.2.

The proof of recurrence of random walk in Theorem 8.1.5, using the weak law of
large numbers, is due to Chung and Ornstein [51]. It appears difficult to prove this
using the elementary drift methods.

The drift condition in the case of negative mean gives, as is well known, a stronger
form of recurrence: the concerned reader will find that this is taken up in detail in
Chapter 11, where it is a central part of our analysis.
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Harris and Topological Recurrence

In this chapter we consider stronger concepts of recurrence and link them with the
dichotomy proved in Chapter 8. We also consider several obvious definitions of global
and local recurrence and transience for chains on topological spaces, and show that
they also link to the fundamental dichotomy.

In developing concepts of recurrence for sets A ∈ B(X), we will consider not just
the first hitting time τA, or the expected value U( · , A) of ηA, but also the event that
Φ ∈ A infinitely often (i.o.), or ηA =∞, defined by

{Φ ∈ A i.o.} :=
∞⋂

N=1

∞⋃
k=N

{Φk ∈ A}

which is well defined as an F-measurable event on Ω. For x ∈ X, A ∈ B(X) we write

Q(x,A) := Px{Φ ∈ A i.o.} : (9.1)

obviously, for any x,A we have Q(x,A) ≤ L(x,A), and by the strong Markov property
we have

Q(x,A) = Ex[PΦτA
{Φ ∈ A i.o.}1l{τA <∞}] =

∫
A
UA(x, dy)Q(y,A). (9.2)

Harris recurrence

The set A is called Harris recurrent if

Q(x,A) = Px(ηA = ∞) = 1, x ∈ A.

A chain Φ is called Harris (recurrent) if it is ψ-irreducible and every set
in B+(X) is Harris recurrent.
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We will see in Theorem 9.1.4 that when A ∈ B+(X) and Φ is Harris recurrent then in
fact we have the seemingly stronger and perhaps more commonly used property that
Q(x,A) = 1 for every x ∈ X.

It is obvious from the definitions that if a set is Harris recurrent, then it is
recurrent. Indeed, in the formulation above the strengthening from recurrence to
Harris recurrence is quite explicit, indicating a move from an expected infinity of
visits to an almost surely infinite number of visits to a set.

This definition of Harris recurrence appears on the face of it to be stronger than
requiring L(x,A) ≡ 1 for x ∈ A, which is a standard alternative definition of Harris
recurrence. In one of the key results of this section, Proposition 9.1.1, we prove that
they are in fact equivalent.

The highlight of the Harris recurrence analysis is

Theorem 9.0.1 If Φ is recurrent, then we can write

X = H ∪N (9.3)

where H is absorbing and non-empty and every subset of H in B+(X) is Harris
recurrent; and N is ψ-null and transient.

Proof This is proved, in a slightly stronger form, in Theorem 9.1.5. �
Hence a recurrent chain differs only by a ψ-null set from a Harris recurrent chain.

In general we can then restrict analysis to H and derive very much stronger results
using properties of Harris recurrent chains.

For chains on a countable space the null set N in (9.3) is empty, so recurrent
chains are automatically Harris recurrent.

On a topological space we can also find conditions for this set to be empty, and
these also provide a useful interpretation of the Harris property.

We say that a sample path of Φ converges to infinity (denoted Φ → ∞) if the
trajectory visits each compact set only finitely often. This definition leads to

Theorem 9.0.2 For a ψ-irreducible T-chain, the chain is Harris recurrent if and
only if Px{Φ →∞} = 0 for each x ∈ X.

Proof This is proved in Theorem 9.2.2 �
Even without its equivalence to Harris recurrence for such chains this “recurrence”

type of property (which we will call non-evanescence ) repays study, and this occupies
Section 9.2.

In this chapter, we also connect local recurrence properties of a chain on a topo-
logical space with global properties: if the chain is a ψ-irreducible T-chain, then re-
currence of the neighborhoods of any one point in the support of ψ implies recurrence
of the whole chain.

Finally, we demonstrate further connections between drift conditions and Harris
recurrence, and apply these results to give an increment analysis of chains on IR which
generalizes that for the random walk in the previous chapter.
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9.1 Harris recurrence

9.1.1 Harris properties of sets

We first develop conditions to ensure that a set is Harris recurrent, based only on the
first return time probabilities L(x,A).

Proposition 9.1.1 Suppose for some one set A ∈ B(X) we have L(x,A) ≡ 1, x ∈ A.
Then Q(x,A) = L(x,A) for every x ∈ X, and in particular A is Harris recurrent.

Proof Using the strong Markov property, we have that if L(y,A) = 1, y ∈ A,
then for any x ∈ A

Px(τA(2) <∞) =
∫

A
UA(x, dy)L(y,A) = 1;

inductively this gives for x ∈ A, again using the strong Markov property,

Px(τA(k + 1) <∞) =
∫

A
UA(x, dy)Py(τA(k) <∞) = 1.

For any x we have
Px(ηA ≥ k) = Px(τA(k) <∞),

and since by monotone convergence

Q(x,A) = lim
k

Px(ηA ≥ k)

we have Q(x,A) ≡ 1 for x ∈ A.
It now follows since

Q(x,A) =
∫

A
UA(x, dy)Q(y,A) = L(x,A)

that the theorem is proved. �
This shows that the definition of Harris recurrence in terms of Q is identical to a

similar definition in terms of L: the latter is often used (see for example Orey [208])
but the use of Q highlights the difference between recurrence and Harris recurrence.

We illustrate immediately the usefulness of the stronger version of recurrence in
conjunction with the basic dichotomy to give a proof of transience of random walk
on ZZ.

We showed in Section 8.4.3 that random walk on ZZ is transient when the incre-
ment has non-zero mean and the range of the increment is bounded.

Using the fact that, on the integers, recurrence and Harris recurrence are identical
from Proposition 8.1.3, we can remove this bounded range restriction. To do this we
use the strong rather than the weak law of large numbers, as used in Theorem 8.1.5.

The form we require (see again, for example, Billingsley [25]) states that if Φn

is a random walk such that the increment distribution Γ has a mean β which is not
zero, then

P0( lim
n→∞n−1Φn = β) = 1.

Write Cn for the event {|n−1Φn − β| > β/2}. We only use the result, which follows
from the strong law, that
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P0(lim sup
n→∞

Cn) = 0. (9.4)

Now let Dn denote the event {Φn = 0}, and notice that Dn ⊆ Cn for each n. Imme-
diately from (9.4) we have

P0(lim sup
n→∞

Dn) = 0 (9.5)

which says exactly Q(0, 0) = 0.
Hence we have an elegant proof of the general result

Proposition 9.1.2 If Φ denotes random walk on ZZ and if

β =
∑

wΓ (w) > 0

then Φ is transient. �

The most difficult of the results we prove in this section, and the strongest,
provides a rather more delicate link between the probabilities L(x,A) and Q(x,A)
than that in Proposition 9.1.1.

Theorem 9.1.3 (i) Suppose that D � A for any sets D and A in B(X). Then

{Φ ∈ D i.o.} ⊆ {Φ ∈ A i.o.} a.s. [P∗] (9.6)

and hence Q(y,D) ≤ Q(y,A), for all y ∈ X.

(ii) If X � A then A is Harris recurrent, and in fact Q(x,A) ≡ 1 for every x ∈ X.

Proof Since the event {Φ ∈ A i.o.} involves the whole path of Φ, we cannot deduce
this result merely by considering Pn for fixed n. We need to consider all the events

En = {Φn+1 ∈ A}, n ∈ ZZ+

and evaluate the probability of those paths such that an infinite number of the En

hold.
We first show that, if FΦ

n is the σ-field generated by {Φ0, . . . , Φn}, then as n→∞

P
[ ∞⋃
i=n

Ei | FΦ
n

]
→ 1l

( ∞⋂
m=1

∞⋃
i=m

Ei

)
a.s. [P∗] (9.7)

To see this, note that for fixed k ≤ n

P
[ ∞⋃
i=k

Ei | FΦ
n

]
≥ P

[ ∞⋃
i=n

Ei | FΦ
n

]
≥ P

[ ∞⋂
m=1

∞⋃
i=m

Ei | FΦ
n

]
. (9.8)

Now apply the Martingale Convergence Theorem (see Theorem D.6.1) to the extreme
elements of the inequalities (9.8) to give

1l
[⋃∞

i=k Ei

]
≥ lim supn P

[⋃∞
i=n Ei | FΦ

n

]
≥ lim infn P

[⋃∞
i=n Ei | FΦ

n

]
≥ 1l

[⋂∞
m=1

⋃∞
i=m Ei

]
.

(9.9)
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As k → ∞, the two extreme terms in (9.9) converge, which shows the limit in (9.7)
holds as required.

By the strong Markov property, P∗[
⋃∞

i=n Ei | FΦ
n ] = L(Φn, A) a.s. [P∗]. From our

assumption that D � A we have that L(Φn, A) is bounded from 0 whenever Φn ∈ D.
Thus, using (9.7) we have P∗-a.s,

1l
(⋂∞

m=1

⋃∞
i=m{Φi ∈ D}

)
≤ 1l

(
lim supn L(Φn, A) > 0

)
= 1l

(
limn L(Φn, A) = 1

)
= 1l

(⋂∞
m=1

⋃∞
i=m Ei

)
,

(9.10)

which is (9.6).
The proof of (ii) is then immediate, by taking D = X in (9.6). �
As an easy consequence of Theorem 9.1.3 we have the following strengthening of

Harris recurrence:

Theorem 9.1.4 If Φ is Harris recurrent then Q(x,B) = 1 for every x ∈ X and every
B ∈ B+(X).

Proof Let {Cn : n ∈ ZZ+} be petite sets with ∪Cn = X. Since the finite union of
petite sets is petite for an irreducible chain by Proposition 5.5.5, we may assume that
Cn ⊂ Cn+1 and that Cn ∈ B+(X) for each n.

For any B ∈ B+(X) and any n ∈ ZZ+ we have from Lemma 5.5.1 that Cn � B, and
hence, since Cn is Harris recurrent, we see from Theorem 9.1.3 (i) that Q(x,B) = 1
for any x ∈ Cn. Because the sets {Ck} cover X, it follows that Q(x,B) = 1 for all x
as claimed. �

Having established these stability concepts, and conditions implying they hold for
individual sets, we now move on to consider transience and recurrence of the overall
chain in the ψ-irreducible context.

9.1.2 Harris recurrent chains

It would clearly be desirable if, as in the countable space case, every set in B+(X)
were Harris recurrent for every recurrent Φ. Regrettably this is not quite true.

For consider any chain Φ for which every set in B+(X) is Harris recurrent: append
to X a sequence of individual points N = {xi}, and expand P to P ′ on X′ := X ∪N
by setting P ′(x,A) = P (x,A) for x ∈ X, A ∈ B(X), and

P ′(xi, xi+1) = βi, P ′(xi,α) = 1− βi

for some one specific α ∈ X and all xi ∈ N .
Any choice of the probabilities βi which provides

1 >
∞∏
i=0

βi > 0

then ensures that

L′(xi, A) = L′(xi,α) = 1−
∞∏

n=i

βi < 1, A ∈ B+(X)
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so that no set B ⊂ X′ with B ∩X in B+(X) and B ∩N non-empty is Harris recurrent:
but

U ′(xi, A) ≥ L′(xi,α)U(α, A) = ∞, A ∈ B(X)

so that every set in B+(X′) is recurrent.
We now show that this example typifies the only way in which an irreducible chain

can be recurrent and not Harris recurrent: that is, by the existence of an absorbing
set which is Harris recurrent, accompanied by a single ψ-null set on which the Harris
recurrence fails.

For any Harris recurrent set D, we write D∞ = {y : L(y,D) = 1}, so that
D ⊆ D∞, and D∞ is absorbing.

We will call D a maximal absorbing set if D = D∞. This will be used, in general,
in the following form:

Maximal Harris sets

We call a set H maximal Harris if H is a maximal absorbing set such
that Φ restricted to H is Harris recurrent.

Theorem 9.1.5 If Φ is recurrent, then we can write

X = H ∪N (9.11)

where H is a non-empty maximal Harris set, and N is transient.

Proof Let C be a ψa-petite set in B+(X), where we choose ψa as a maximal
irreducibility measure. Set H = {y : Q(x,C) = 1} and write N = Hc.

Clearly, since H∞ = H, either H is empty or H is maximal absorbing. We first
show that H is non-empty.

Suppose otherwise, so that Q(x,C) < 1 for all x. We first show this implies the
set

C1 := {x ∈ C : L(x,C) < 1} :

is in B+(X).
For if not, and ψ(C1) = 0, then by Proposition 4.2.3 there exists an absorbing

full set F ⊂ Cc
1. We have by definition that L(x,C) = 1 for any x ∈ C ∩F , and since

F is absorbing we must have L(x,C ∩ F ) = 1 for x ∈ C ∩ F . From Proposition 9.1.1
it follows that Q(x,C ∩ F ) = 1 for x ∈ C ∩ F , which gives a contradiction, since
Q(x,C) ≥ Q(x,C ∩ F ). This shows that in fact ψ(C1) > 0.

But now, since C1 ∈ B+(X) there exists B ⊆ C1, B ∈ B+(X) and δ > 0 with
L(x,C1) ≤ δ < 1 for all x ∈ B: accordingly

L(x,B) ≤ L(x,C1) ≤ δ, x ∈ B.
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Now Proposition 8.3.1 (iii) gives U(x,B) ≤ [1− δ]−1, x ∈ B and this contradicts the
assumed recurrence of Φ.

Thus H is a non-empty maximal absorbing set, and by Proposition 4.2.3 H is
full: from Proposition 8.3.7 we have immediately that N is transient. It remains to
prove that H is Harris.

For any set A in B+(X) we have C � A. It follows from Theorem 9.1.3 that if
Q(x,C) = 1 then Q(x,A) = 1 for every A ∈ B+(X). Since by construction Q(x,C) = 1
for x ∈ H, we have also that Q(x,A) = 1 for any x ∈ H and A ∈ B+(X): so Φ
restricted to H is Harris recurrent, which is the required result. �

We now strengthen the connection between properties of Φ and those of its skele-
tons.

Theorem 9.1.6 Suppose that Φ is ψ-irreducible and aperiodic. Then Φ is Harris if
and only if each skeleton is Harris.

Proof If the m-skeleton is Harris recurrent then, since mτm
A ≥ τA for any A ∈

B(X), where τm
A is the first entrance time for the m-skeleton, it immediately follows

that Φ is also Harris recurrent.
Suppose now that Φ is Harris recurrent. For any m ≥ 2 we know from Proposi-

tion 8.2.6 that Φm is recurrent, and hence a Harris set Hm exists for this skeleton.
Since Hm is full, there exists a subset H ⊂ Hm which is absorbing and full for Φ, by
Proposition 4.2.3.

Since Φ is Harris recurrent we have that Px{τH < ∞} ≡ 1, and since H is
absorbing we know that mτm

H ≤ τH +m. This shows that

Px{τm
H <∞} = Px{τH <∞} ≡ 1

and hence Φm is Harris recurrent as claimed. �

9.1.3 A hitting time criterion for Harris recurrence

The Harris recurrence results give useful extensions of the results in Theorem 8.3.5
and Theorem 8.3.6.

Proposition 9.1.7 Suppose that Φ is ψ-irreducible.

(i) If some petite set C is recurrent, then Φ is recurrent; and the set C ∩ N is
uniformly transient, where N is the transient set in the Harris decomposition
(9.11).

(ii) If there exists some petite set in B(X) such that L(x,C) ≡ 1, x ∈ X, then Φ is
Harris recurrent.

Proof (i) If C is recurrent then so is the chain, from Theorem 8.3.5. Let D =
C ∩ N denote the part of C not in H. Since N is ψ-null, and ν is an irreducibility
measure we must have ν(N) = 0 by the maximality of ψ; hence (8.35) holds and from
(8.37) we have a uniform bound on U(x,D), x ∈ X so that D is uniformly transient.

(ii) If L(x,C) ≡ 1, x ∈ X for some ψa-petite set C, then from Theorem 9.1.3
C is Harris recurrent. Since C is petite we have C � A for each A ∈ B+(X). The
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Harris recurrence of C, together with Theorem 9.1.3 (ii), gives Q(x,A) ≡ 1 for all x,
so Φ is Harris recurrent. �

This leads to a stronger version of Theorem 8.4.3.

Theorem 9.1.8 Suppose Φ is a ψ-irreducible chain. If there exists a petite set C ⊂ X,
and a function V which is unbounded off petite sets such that (V1) holds then Φ is
Harris recurrent.

Proof In Theorem 8.4.3 we showed that L(x,C ∪ CV (n)) ≡ 1, for some n, so
Harris recurrence has already been proved in view of Proposition 9.1.7. �

9.2 Non-evanescent and recurrent chains

9.2.1 Evanescence and transience

Let us now turn to chains on topological spaces. Here, as was the case when consider-
ing irreducibility, it is our major goal to delineate behavior on open sets rather than
arbitrary sets in B(X); and when considering questions of stability in terms of sure
return to sets, the objects of interest will typically be compact sets.

With probabilistic stability one has “finiteness” in terms of return visits to sets
of positive measure of some sort, where the measure is often dependent on the chain;
with topological stability the “finite” sets of interest are compact sets which are
defined by the structure of the space rather than of the chain. It is obvious from
the links between petite sets and compact sets for T-chains that we will be able to
describe behavior on compacta directly from the behavior on petite sets described in
the previous section, provided there is an appropriate continuous component for the
transition law of Φ.

In this section we investigate a stability concept which provides such links between
the chain and the topology on the space, and which we touched on in Section 1.3.1.

As we discussed in the introduction of this chapter, a sample path of Φ is said to
converge to infinity (denoted Φ → ∞) if the trajectory visits each compact set only
finitely often. Since X is locally compact and separable, it follows from Lindelöf’s
Theorem D.3.1 that there exists a countable collection of open precompact sets {On :
n ∈ ZZ+} such that

{Φ →∞} =
∞⋂

n=0

{Φ ∈ On i.o.}c.

In particular, then, the event {Φ →∞} lies in F .

Non-evanescent Chains

A Markov chain Φ will be called non-evanescent if Px{Φ →∞} = 0 for
each x ∈ X.
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We first show that for a T-chain, either sample paths converge to infinity or they enter
a recurrent part of the space. Recall that for any A, we have A0 = {y : L(y,A) = 0}.

Theorem 9.2.1 Suppose that Φ is a T-chain. For any A ∈ B(X) which is transient,
and for each x ∈ X,

Px

{
{Φ →∞} ∪ {Φ enters A0}

}
= 1. (9.12)

Thus if Φ is a non-evanescent T-chain, then X is not transient.

Proof Let A =
⋃
Bj , with each Bj uniformly transient; then from Proposi-

tion 8.3.2, the sets B̄i(M) = {x ∈ X :
∑M

j=1 P
j(x,Bi) > M−1} are also uniformly

transient, for any i, j. Thus Ā =
⋃
Ai where each Ai is uniformly transient.

Since T is lower semicontinuous, the sets Oij :={x ∈ X : T (x,Ai) > j−1} are open,
as is Oj := {x ∈ X : T (x,A0) > j−1}, i, j ∈ ZZ+. Since T is everywhere non-trivial we
have for all x ∈ X,

T (x, (
⋃

Aj) ∪A0) = T (x,X) > 0

and hence the sets {Oij , Oj} form an open cover of X.
Let C be a compact subset of X, and choose M such that {OM , OiM : 1 ≤ i ≤M}

is a finite subcover of C. Since each Ai is uniformly transient, and

Ka(x,Ai) ≥ T (x,Ai) ≥ j−1 x ∈ Oij (9.13)

we know from Proposition 8.3.2 that each of the sets Oij is uniformly transient. It
follows that with probability one, every trajectory that enters C infinitely often must
enter OM infinitely often: that is,

{Φ ∈ C i.o.} ⊂ {Φ ∈ OM i.o.} a.s. [P∗]

But since L(x,A0) > 1/M for x ∈ OM we have by Theorem 9.1.3 that

{Φ ∈ OM i.o.} ⊂ {Φ ∈ A0 i.o.} a.s. [P∗]

and this completes the proof of (9.12). �

9.2.2 Non-evanescence and recurrence

We can now prove one of the major links between topological and probabilistic sta-
bility conditions.

Theorem 9.2.2 For a ψ-irreducible T-chain, the space admits a decomposition

X = H ∪N

where H is either empty or a maximal Harris set, and N is transient: and for all
x ∈ X,

L(x,H) = 1− Px{Φ →∞}. (9.14)

Hence we have

(i) the chain is recurrent if and only if Px{Φ →∞} < 1 for some x ∈ X; and

(ii) the chain is Harris recurrent if and only if the chain is non-evanescent.
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Proof We have the decomposition X = H∪N from Theorem 9.1.5 in the recurrent
case, and Theorem 8.3.4 otherwise.

We have (9.14) from (9.12), since N is transient and H = N0.
Thus if Φ is a non-evanescent T-chain, then it must leave the transient set N in

(9.11) with probability one, from Theorem 9.2.1. By construction, this means N is
empty, and Φ is Harris recurrent.

Conversely, if Φ is Harris recurrent (9.14) shows the chain is non-evanescent. �
This result shows that natural definitions of stability and instability in the topo-

logical and in the probabilistic contexts are exactly equivalent, for chains appropri-
ately adapted to the topology.

Before exploring conditions for either recurrence or non-evanescence, we look at
the ways in which it is possible to classify individual states on a topological space,
and the solidarity between such definitions and the overall classification of the chain
which we have just described.

9.3 Topologically recurrent and transient states

9.3.1 Classifying states through neighborhoods

We now introduce some natural stochastic stability concepts for individual states
when the space admits a topology. The reader should be aware that uses of terms
such as “recurrence” vary across the literature. Our definitions are consistent with
those we have given earlier, and indeed will be shown to be identical under appropriate
conditions when the chain is an irreducible T-chain or an irreducible Feller process;
however, when comparing them with some terms used by other authors, care needs
to be taken.

In the general space case, we developed definitions for sets rather than individual
states: when there is a topology, and hence a natural collection of sets (the open
neighborhoods) associated with each point, it is possible to discuss recurrence and
transience of each point even if each point is not itself reached with positive proba-
bility.

Topological recurrence concepts

We shall call a point x∗ topologically recurrent if U(x∗, O) = ∞ for all
neighborhoods O of x∗, and topologically transient otherwise.

We shall call a point x∗ topologically Harris recurrent if Q(x∗, O) = 1 for
all neighborhoods O of x∗.
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We first determine that this definition of topological Harris recurrence is equivalent
to the formally weaker version involving finiteness only of first return times.

Proposition 9.3.1 The point x∗ is topologically Harris recurrent if and only if
L(x∗, O) = 1 for all neighborhoods O of x∗.

Proof Our assumption is that

Px∗(τO <∞) = 1, (9.15)

for each neighborhood O of x∗. We show by induction that if τO(j) is the time of the
jth return to O as usual, and for some integer j ≥ 1,

Px∗(τO(j) <∞) = 1, (9.16)

for each neighborhood O of x∗, then for each such neighborhood

Px∗(τO(j + 1) <∞) = 1. (9.17)

Thus (9.17) holds for all j and the point x∗ is by definition topologically Harris
recurrent.

Recall that for any B ⊂ O we have the following probabilistic interpretation of
the kernel UO:

UO(x∗, B) = Px∗(τO <∞ and ΦτO ∈ B)

Suppose that UO(x∗, {x∗}) = q ≥ 0 where {x∗} is the set containing the one point
x∗, so that

UO(x∗, O\{x∗}) = 1− q. (9.18)

The assumption that j distinct returns to O are sure implies that

Px∗(ΦτO(1) = x∗, ΦτO(r) ∈ O, r = 2, . . . , j + 1) = q. (9.19)

Let Od ↓ {x∗} be a countable neighborhood basis at x∗. The assumption (9.16) applied
to each Od also implies that

Py(τOd
(j) <∞) = 1, (9.20)

for almost all y in O\Od with respect to UO(x∗, ·). But by (9.18) we have

UO(x∗, O\Od) ↑ 1− q,

as Od ↓ {x∗} and so by (9.20),∫
O\{x∗} UO(x, dy)Py(τO(j) <∞) ≥ limd↓0

∫
O\Od

UO(x∗, dy)Py(τOd
(j) <∞)

= 1− q.
(9.21)

This yields the desired conclusion, since by (9.19) and (9.21),

Px∗(τO(j + 1) <∞) =
∫

O
UO(x∗, dy)Py(τO(j) <∞) = 1.

�
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9.3.2 Solidarity of recurrence for T-chains

For T-chains we can connect the idea of properties of individual states with the
properties of the whole space under suitable topological irreducibility conditions.

The key to much of our analysis of chains on topological spaces is the following
simple lemma.

Lemma 9.3.2 If Φ is a T-chain, and T (x∗, B) > 0 for some x∗, B, then there is
a neighborhood O of x∗ and a distribution a such that O

a
� B, and hence from

Lemma 5.5.1, O � B.

Proof Since Φ is a T-chain, there exists some distribution a such that for all x,

Ka(x,B) ≥ T (x,B).

But since T (x∗, B) > 0 and T (x,B) is lower semicontinuous, it follows that for some
neighborhood O of x∗,

inf
x∈O

T (x,B) > 0

and thus, as in (5.45),

inf
x∈O

L(x,B) ≥ inf
x∈O

Ka(x,B) ≥ inf
x∈O

T (x,B)

and the result is proved. �

Theorem 9.3.3 Suppose that Φ is a ψ-irreducible T-chain, and that x∗ is reachable.
Then Φ is recurrent if and only if x∗ is topologically recurrent.

Proof If x∗ is reachable then x∗ ∈ suppψ and so O ∈ B+(X) for every neighbor-
hood of x∗. Thus if Φ is recurrent then every neighborhood O of x∗ is recurrent, and
so by definition x∗ is topologically recurrent.

If Φ is transient then there exists a uniformly transient set B such that T (x∗, B) >
0, from Theorem 8.3.4, and thus from Lemma 9.3.2 there is a neighborhood O of x∗

such that O � B; and now from Proposition 8.3.2, O is uniformly transient and thus
x∗ is topologically transient also. �

We now work towards developing links between topological recurrence and topo-
logical Harris recurrence of points, as we did with sets in the general space case.

It is unfortunately easy to construct an example which shows that even for a
T-chain, topologically recurrent states need not be topologically Harris recurrent
without some extra assumptions. For take X = [0, 1] ∪ {2}, and define the transition
law for Φ by

P (0, · ) = (µ+ δ2)/2
P (x, · ) = µ, x ∈ (0, 1]
P (2, · ) = δ2

(9.22)

where µ is Lebesgue measure on [0, 1] and δ2 is the point mass at {2}. Set the every-
where non-trivial continuous component T of P itself as

T (x, · ) = µ/2, x ∈ [0, 1]
T (2, · ) = δ2. (9.23)
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By direct calculation one can easily see that {0} is a topologically recurrent state but
is not topologically Harris recurrent.

It is also possible to develop examples where the chain is weak Feller but topo-
logical recurrence does not imply topological Harris recurrence of states.

Let X = {0,±1,±2, . . . ,±∞}, and choose 0 < p < 1
2 and q = 1−p. Put P (0, 1) =

p, P (0,−1) = q, and for n = 1, 2, . . . set

P (n, n+ 1) = p P (n, n− 1) = q
P (−n,−n− 1) = p P (−n, 0) = 1

2 − p P (−n, n) = 1
2

P (−∞,−∞) = p P (−∞, 0) = 1
2 − p P (−∞,∞) = 1

2
P (∞,∞) = 1.

(9.24)

By comparison with a simple random walk, such as that analyzed in Proposition 8.4.4,
it is clear that the finite integers are all recurrent states in the countable state space
sense.

Now endow the space X with the discrete topology on the integers, and with
a countable basis for the neighborhoods at ∞,−∞ given respectively by the sets
{n, n + 1, . . . ,∞} and {−n,−n − 1, . . . ,−∞} for n ∈ ZZ+. The chain is a Feller
chain in this topology, and every neighborhood of −∞ is recurrent so that −∞ is a
topologically recurrent state.

But L(−∞, {−∞,−1}) < 1
2 , so the state at −∞ is not topologically Harris re-

current.
There are however some connections which do hold between recurrence and Harris

recurrence.

Proposition 9.3.4 If Φ is a T-chain and the state x∗ is topologically recurrent then
Q(x∗, O) > 0 for all neighborhoods O of x∗.

If P (x∗, · ) ∼= T (x∗, · ) then also x∗ is topologically Harris recurrent. In particular,
therefore, for strong Feller chains topologically recurrent states are topologically Harris
recurrent.

Proof (i) Assume the state x∗ is topologically recurrent but that O is a neigh-
borhood of x∗ withQ(x∗, O) = 0. LetO∞ = {y : Q(y,O) = 1}, so that L(x∗, O∞) = 0.
Since

L(x,A) ≥ Ka(x,A) ≥ T (x,A), x ∈ X, A ∈ B(X)

this implies T (x∗, O∞) = 0, and since T is non-trivial, we must have

T (x∗, [O∞]c) > 0. (9.25)

Let Dn := {y : Py(ηO < n) > n−1}: since Dn ↑ [O∞]c, we must have T (x∗, Dn) > 0 for
some n. The continuity of T now ensures that there exists some δ and a neighborhood
Oδ ⊆ O of x∗ such that

T (x,Dn) > δ, x ∈ Oδ. (9.26)

Let us take m large enough that
∑∞

m a(j) ≤ δ/2: then from (9.26) we have

max
1≤j≤m

P j(x,Dn) > δ/2m, x ∈ Oδ, (9.27)

which obviously implies



220 9 Harris and Topological Recurrence

Px(τDn ≤ m) > δ/2m, x ∈ Oδ. (9.28)

It follows that

Px(ηOδ
≤ m+ n) ≥ Px(ηO ≤ m+ n)

≥ ∑m
1

∫
Dn DnP

k(x, dy)Py(ηO ≤ n)

≥ n−1P(τDn ≤ m)

≥ n−1δ/2m, x ∈ Oδ.

(9.29)

With (9.29) established we can apply Proposition 8.3.1 to see that Oδ is uniformly
transient.

This contradicts our assumption that x∗ is topologically recurrent, and so in fact
Q(x∗, O) > 0 for all neighborhoods O.

(ii) Suppose now that P (x∗, · ) and T (x∗, · ) are equivalent. Choose x∗ topo-
logically recurrent and assume we can find a neighborhood O with Q(x∗, O) < 1.
Define O∞ as before, and note that now P (x∗, [O∞]c) > 0 since otherwise

Q(x∗, O) ≥
∫

O∞
P (x∗, dy)Q(y,O) = 1;

and so also T (x∗, [O∞]c) > 0. Thus we again have (9.25) holding, and the argument in
(i) shows that there is a uniformly transient neighborhood of x∗, again contradicting
the assumption of topological recurrence. Hence x∗ is topologically Harris recurrent.

�
The examples (9.22) and (9.24) show that we do not get, in general, the second

conclusion of this proposition if the chain is merely weak Feller or has only a strong
Feller component.

In these examples, it is the lack of irreducibility which allows such obvious “patho-
logical” behavior, and we shall see in Theorem 9.3.6 that when the chain is a ψ-
irreducible T-chain then this behavior is excluded. Even so, without any irreducibility
assumptions we are able to derive a reasonable analogue of Theorem 9.1.5, showing
that the non-Harris recurrent states form a transient set.

Theorem 9.3.5 For any chain Φ there is a decomposition

X = R ∪N

where R denotes the set of states which are topologically Harris recurrent, and N is
transient.

Proof Let Oi be a countable basis for the topology on X. If x ∈ Rc then, by
Proposition 9.3.1, we have some n ∈ ZZ+ such that x ∈ On with L(x,On) < 1. Thus
the sets Dn = {y ∈ On : L(y,On) < 1} cover the set of non-topologically Harris
recurrent states. We can further partition each Dn into

Dn(j) := {y ∈ Dn : L(y,On) ≤ 1− j−1}

and by this construction, for y ∈ Dn(j) we have
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L(y,Dn(j)) ≤ L(y,Dn) ≤ L(y,On) ≤ 1− j−1 :

it follows from Proposition 8.3.1 that U(x,Dn(j)) is bounded above by j, and hence
is uniformly transient. �

Regrettably, this decomposition does not partition X into Harris recurrent and
transient states, since the sets Dn(j) in the cover of non-Harris states may not be
open. Therefore there may actually be topologically recurrent states which lie in the
set which we would hope to have as the “transient” part of the space, as happens in
the example (9.22).

We can, for ψ-irreducible T-chains, now improve on this result to round out the
links between the Harris properties of points and those of the chain itself.

Theorem 9.3.6 For a ψ-irreducible T-chain, the space admits a decomposition

X = H ∪N
where H is non-empty or a maximal Harris set and N is transient; the set of Harris
recurrent states R is contained in H; and every state in N is topologically transient.

Proof The decomposition has already been shown to exist in Theorem 9.2.2. Let
x∗ ∈ R be a topologically Harris recurrent state. Then from (9.14), we must have
L(x,H) = 1, and so x∗ ∈ H by maximality of H.

We can write N = NE ∪NH where NH = {y ∈ N : T (y,H) > 0} and NE = {y ∈
N : T (y,H) = 0}. For fixed x∗ ∈ NH there exists δ > 0 and an open set Oδ such that
x∗ ∈ Oδ and T (y,H) > δ for all y ∈ Oδ, by the lower semicontinuity of T ( · , H).

Hence also the sampled kernel Ka minorized by T satisfies Ka(y,H) > δ for all
y ∈ Oδ. Now choose M such that

∑
n>M a(n) ≤ δ/2. Then for all y ∈ Oδ∑

n≤M

Pn(y,H)a(n) ≥ δ/2

and since H is absorbing

Py(ηN > M) = Py(τH > M) ≤ 1− δ/2

which shows that Oδ is uniformly transient from (8.37).
If on the other hand x∗ ∈ NE then since T is non-trivial, there exists a uniformly

transient set D ⊆ N such T (x∗, D) > 0; and now by Lemma 9.3.2, there is again a
neighbourhood O of x∗ with O

a
� D, so that O is uniformly transient by Proposi-

tion 8.3.2 as required. �
The maximal Harris set in Theorem 9.3.6 may be strictly larger than the set R of

topologically Harris recurrent states. For consider the trivial example where X = [0, 1]
and P (x, {0}) = 1 for all x. This is a δ0-irreducible strongly Feller chain, with R = {0}
and yet H = [0, 1].

9.4 Criteria for stability on a topological space

9.4.1 A drift criterion for non-evanescence

We can extend the results of Theorem 8.4.3 in a number of ways if we take up the
obvious martingale implications of (V1), and in the topological case we can also gain
a better understanding of the rather inexplicit concept of functions unbounded off
petite sets for a particular chain if we define “norm-like” functions.
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Norm-like Functions

A function V is called norm-like if V (x) → ∞ as x → ∞: this means
that the sublevel sets {x : V (x) ≤ r} are precompact for each r > 0.

This nomenclature is designed to remind the user that we seek functions which behave
like norms: they are large as the distance from the center of the space increases.
Typically in practice, a norm-like function will be a norm on Euclidean space, or at
least a monotone function of a norm. For irreducible T-chains, functions unbounded
off petite sets certainly include norm-like functions, since compacta are petite in that
case; but of course norm-like functions are independent of the structure of the chain
itself.

Even without irreducibility we get a useful conclusion from applying (V1).

Theorem 9.4.1 If condition (V1) holds for a norm-like function V and a compact
set C then Φ is non-evanescent.

Proof Suppose that in fact Px{Φ →∞} > 0 for some x ∈ X. Then, since the set
C is compact, there exists M ∈ ZZ+ with

Px{{Φk ∈ Cc, k ≥M} ∩ {Φ →∞}} > 0.

Hence letting µ = PM (x, · ), we have by conditioning at time M ,

Pµ{{σC =∞} ∩ {Φ →∞}} > 0. (9.30)

We now show that (9.30) leads to a contradiction.
In order to use the martingale nature of (V1), we write (8.44) as

E[V (Φk+1) | FΦ
k ] ≤ V (Φk) a.s. [P∗],

when σC > k, k ∈ ZZ+.
Now let Mi = V (Φi)1l{σC ≥ i}. Using the fact that {σC ≥ k} ∈ FΦ

k−1, we may
show that (Mk,FΦ

k ) is a positive supermartingale: indeed,

E[Mk | FΦ
k−1] = 1l{σC ≥ k}E[V (Φk) | FΦ

k−1] ≤ 1l{σC ≥ k}V (Φk−1) ≤Mk−1.

Hence there exists an almost surely finite random variable M∞ such that Mk →M∞
as k →∞.

There are two possibilities for the limit M∞. Either σC < ∞ in which case
M∞ = 0, or σC = ∞ in which case lim supk→∞ V (Φk) = M∞ <∞ and in particular
Φ 
→ ∞ since V is norm-like. Thus we have shown that

Pµ{{σC <∞} ∪ {Φ →∞}c} = 1,
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which clearly contradicts (9.30). Hence Φ is non-evanescent. �
Note that in general the set C used in (V1) is not necessarily Harris recurrent,

and it is possible that the set may not be reached from any initial condition. Consider
the example where X = IR+, P (0, {1}) = 1, and P (x, {x}) ≡ 1 for x > 0. This is non-
evanescent, satisfies (V1) with V (x) = x, and C = {0}, but clearly from x there is no
possibility of reaching compacta not containing {x}.

However, from our previous analysis in Theorem 9.1.8 we obviously have that if
Φ is ψ-irreducible and Condition (V1) holds for C petite, then both C and Φ are
Harris recurrent.

9.4.2 A converse theorem for Feller chains

In the topological case we can construct a converse to the drift condition (V1), pro-
vided the chain has appropriate continuity properties.

Theorem 9.4.2 Suppose that Φ is a weak Feller chain, and suppose that there exists
a compact set C satisfying σC <∞ a.s. [P∗].

Then there exists a compact set C0 containing C and a norm-like function V ,
bounded on compacta, such that

∆V (x) ≤ 0, x ∈ Cc
0. (9.31)

Proof Let {An} be a countable increasing cover of X by open precompact sets
with C ⊆ A0; and put Dn = Ac

n for n ∈ ZZ+. For n ∈ ZZ+, set

Vn(x) = Px(σDn < σA0). (9.32)

For any fixed n and any x ∈ Ac
0 we have from the Markov property that the sequence

Vn(x) satisfies, for x ∈ Ac
0 ∩Dc

n∫
P (x, dy)Vn(y) = Ex[PΦ1{σDn < σA0}]

= Px{σDn < σA0}
= Vn(x)

(9.33)

whilst for x ∈ Dn we have Vn(x) = 1; so that for all n ∈ ZZ+ and x ∈ Ac
0∫

P (x, dy)Vn(y) ≤ Vn(x). (9.34)

We will show that for suitably chosen {ni} the function

V (x) =
∞∑
i=0

Vni(x), (9.35)

which clearly satisfies the appropriate drift condition by linearity from (9.34) if finitely
defined, gives the required converse result.

Since Vn(x) = 1 on Dn, it is clear that V is norm-like. To complete the proof
we must show that the sequence {ni} can be chosen to ensure that V is bounded on
compact sets, and it is for this we require the Feller property.

Let m ∈ ZZ+ and take the upper bound
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Vn(x) = Px{{σDn < σA0} ∩ {σA0 ≤ m} ∪ {σDn < σA0} ∩ {σA0 > m}}
≤ Px{σDn < m}+ Px{σA0 > m}. (9.36)

Choose the sequence {ni} as follows. By Proposition 6.1.1, the function Px{σA0 > m}
is an upper semi-continuous function of x, which converges to zero as m → ∞ for
all x. Hence the convergence is uniform on compacta, and thus we can choose mi so
large that

Px{σA0 > mi} < 2−(i+1), x ∈ Ai. (9.37)

Now for mi fixed for each i, consider Px{σDn < mi}: as a function of x this is also
upper semi-continuous and converges to zero as n → ∞ for all x. Hence again we
see that the convergence is uniform on compacta, which implies we may choose ni so
large that

Px{σDni
< mi} < 2−(i+1), x ∈ Ai. (9.38)

Combining (9.36), (9.37) and (9.38) we see that Vni ≤ 2−i for x ∈ Ai. From (9.35)
this implies, finally, for all k ∈ ZZ+ and x ∈ Ak

V (x) ≤ k +
∞∑

i=k

Vni(x)

≤ k +
∞∑

i=k

2−i

≤ k + 1 (9.39)

which completes the proof. �
The following somewhat pathological example shows that in this instance we

cannot use a strongly continuous component condition in place of the Feller property
if we require V to be continuous.

Set X = IR+ and for every irrational x and every integer x set P (x, {0}) = 1. Let
{rn} be an ordering of the remaining rationals Q\ZZ+, and define P for these states by
P (rn, 0) = 1/2, P (rn, n) = 1/2. Then the chain is δ0-irreducible, and clearly recurrent;
and the component T (x,A) = 1

2δ0{A} renders the chain a T-chain. But PV (rn) ≥
V (n)/2, so that for any norm-like function V , within any open set

∫
P (x, dy)V (y) is

unbounded.
However, for discontinuous V we do get a norm-like test function: just take

V (rn) = n, and V (x) = x, for x not equal to any rn. Then PV (rn) = n/2 < V (rn),
and PV (x) = 0 < V (x), for x not equal to any rn, so that (V1) does hold.

9.4.3 Non-evanescence of random walk

As an example of the use of (V1) we consider in more detail the analysis of the
unrestricted random walk

Φn = Φn−1 +Wn.

We will show that if W is an increment variable on IR with β = 0 and

E(W 2) =
∫
w2 Γ (dw) <∞

then the unrestricted random walk on IR with increment W is non-evanescent.
To verify this using (V1) we first need to add to the bounds on the moments of

Γ which we gave in Lemma 8.5.2 and Lemma 8.5.3.
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Lemma 9.4.3 Let W be a random variable, s a positive number and t any real num-
ber. Then for any B ⊆ {w : −s+ tw > 0},

E[log(−s+ tW )1l{W ∈ B}] ≤ P(B)(log(s)− 2) + (t/s)E[W1l{W ∈ B}].

Proof For all x > 1, log(−1 + x) ≤ x− 2. Thus

log(−s+ tW )1l{W ∈ B} = [log(s) + log(−1 + tW/s)]1l{W ∈ B}
≤ (log(s) + tW/s− 2)1l{W ∈ B};

taking expectations again gives the result. �

Lemma 9.4.4 Let W be a random variable with distribution function Γ and finite
variance. Let s, c, u2, and v2 be positive numbers, and let t1 ≥ t2 and u1, v1, t be real
numbers. Then

(i)

lim
x→−∞x2[−Γ (−∞, t1+sx) log(u1−u2x)+Γ (−∞, t2+sx)(log(v1−v2x)−c)] ≤ 0.

(9.40)

(ii)

lim
x→∞x2[−Γ (t2 + sx,∞) log(v1 + v2x) + Γ (t1 + sx,∞)(log(u1 + u2x)− c)] ≤ 0.

(9.41)

Proof To see (i), note that from

lim
x→∞x2Γ (−∞, t2 + sx) = 0

and
lim

x→∞ log[(u1 − u2x)/(v1 − v2x)] = log(u2/v2),

we have

lim
x→∞x2

[
−Γ (−∞, t1 + sx) log(u1 − u2x) + Γ (−∞, t2 + sx)(log(v1 − v2x)− c)

]
= lim

x→∞
[
−x2(Γ (−∞, t1 + sx)− Γ (−∞, t2 + sx)) log(u1 − u2x)

]
[
−x2Γ (−∞, t2 + sx) log[(u1 − u2x)/(v1 − v2x)]− cx2Γ (−∞, t2 + sx)

]
which is non-positive. The proof of (ii) is similar. �

We can now prove the most general version of Theorem 8.1.5 using a drift con-
dition that we shall attempt.

Proposition 9.4.5 If W is an increment variable on IR with β = 0 and E(W 2) <∞
then the unrestricted random walk on IR+ with increment W is non-evanescent.
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Proof In this situation we use the test function

V (x) =
{

log(1 + x) x > R
log(1− x) x < −R (9.42)

and V (x) = 0 in the region [−R,R], where R > 1 is again a positive constant to be
chosen.

We need to evaluate the behavior of Ex[V (X1)] near both ∞ and −∞ in this
case, and we write

V1(x) = Ex[log(1 + x+W )1l{x+W > R}]
V2(x) = Ex[log(1− x−W )1l{x+W < −R}] (9.43)

so that

Ex[V (X1)] = V1(x) + V2(x).

This time we develop bounds using the functions

V3(x) = (1/(1 + x))E[W1l{W > R− x}]
V4(x) = (1/(2(1 + x)2))E[W 21l{R− x < W < 0}]
V5(x) = (1/(1− x))E[W1l{W < −R− x}].

(9.44)

For x > R, 1 + x > 0, and thus as in (8.61), by Lemma 8.5.2,

V1(x) ≤ Γ (R− x,∞) log(1 + x) + V3(x)− V4(x),

while 1− x < 0, and by Lemma 9.4.3,

V2(x) ≤ Γ (−∞,−R− x)(log(−1 + x)− 2)− V5(x).

Since E(W 2) <∞

V4(x) = (1/(2(1 + x)2))E[W 21l{W < 0}]− o(x−2),

and by Lemma 8.5.3, both V3 and V5 are also o(x−2). By Lemma 9.4.4 (i) we also
have

−Γ (−∞, R− x) log(1 + x) + Γ (−∞,−R− x)(log(−1 + x)− 2) ≤ o(x−2).

Thus by choosing R large enough

Ex[V (X1)] ≤ V (x)− (1/(2(1 + x)2))E[W 21l{W < 0}] + o(x−2)
≤ V (x), x > R. (9.45)

The situation with x < −R is exactly symmetric, and thus we have that V is a norm-
like function satisfying (V1); and so the chain is non-evanescent from Theorem 9.4.1.

�
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9.5 Stochastic comparison and increment analysis

There are two further valuable tools for analyzing specific chains which we will con-
sider in this final section on recurrence and transience. Both have been used implicitly
in some of the examples we have looked at in this and the previous chapter, but be-
cause they are of wide applicability we will discuss them somewhat more formally
here.

The first method analyzes chains through an “increment analysis”. Because they
consider only expected changes in the one-step position of some function V of the
chain, and because expectation is a linear operator, drift criteria such as those in
Section 9.4 essentially classify the behavior of the Markov model by a linearization
of its increments. They are therefore often relatively easy to use for models where
the transitions are already somewhat linear in structure, such as those based on the
random walk: we have already seen this in our analysis of random walk on the half
line in Section 8.4.3.

Such increment analysis is of value in many models, especially if combined with
“stochastic comparison” arguments, which rely heavily on the classification of chains
through return time probabilities.

In this section we will further use the stochastic comparison approach to discuss
the structure of scalar linear models and general random walk on IR, and the special
nonlinear SETAR models; we will then consider an increment analysis of general
models on IR+ which have no inherent linearity in their structure.

9.5.1 Linear models and the stochastic comparison technique

Suppose we have two ϕ-irreducible chains Φ and Φ′ evolving on a common state
space, and that for some set C and for all n

Px(τC ≥ n) ≤ P′x(τC ≥ n), x ∈ Cc. (9.46)

This is not uncommon if the chains have similarly defined structure, as is the case
with random walk and the associated walk on a half line.

The stochastic comparison method tells us that a classification of one of the
chains may automatically classify the other.

In one direction we have, provided C is a petite set for both chains, that when
P′x(τC ≥ n) → 0 as n→∞ for x ∈ Cc, then not only is Φ′ Harris recurrent, but Φ is
also Harris recurrent.

This is obvious. Its value arises in cases where the first chain Φ′ has a (relatively)
simpler structure so that its analysis is straightforward through, say, drift conditions,
and when the validation of (9.46) is also relatively easy.

In many ways stochastic comparison arguments are even more valuable in the
transient context: as we have seen with random walk, establishing transience may
need a rather delicate argument, and it is then useful to be able to classify “more
transient” chains easily.

Suppose that (9.46) holds, and again that C is a ϕ-irreducible petite set for both
chains. Then if Φ is transient, we know that from Theorem 8.3.6 that there exists
D ⊂ Cc such that L(x,C) < 1− ε for x ∈ D where ϕ(D) > 0; it then follows that Φ′

is also transient.
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We first illustrate the strengths and drawbacks of this method in proving tran-
sience for the general random walk on the half line IR+.

Proposition 9.5.1 If Φ is random walk on IR+ and if β > 0 then Φ is transient.

Proof Consider the discretized version Wh of the increment variable W with
distribution

P(Wh = nh) = Γh(nh)

where Γh(nh) is constructed by setting, for every n

Γh(nh) =
∫ (n+1)h

nh
Γ (dw),

and let Φh be the corresponding random walk on the countable half line {nh, n ∈ ZZ+}.
Then we have firstly that for any starting point nh, the chain Φh is “stochastically
smaller” than Φ, in the sense that if τh

0 is the first return time to zero by Φh then

P0(τh
0 ≤ k) ≥ P0(τ0 ≤ k).

Hence Φ is transient if Φh is transient.
But now we have that

βh :=
∑

n nhΓh(nh) ≥ ∑
n

∫ (n+1)h
nh (w − h)Γ (dw)

=
∫
(w − h)Γ (dw)

= β − h

(9.47)

so that if h < β then βh > 0.
Finally, for such sufficiently small h we have that the chain Φh is transient from

Proposition 9.1.2, as required. �
Let us next consider the use of stochastic comparison methods for the scalar

linear model
Xn = αXn−1 +Wn.

Proposition 9.5.2 Suppose the increment variable W in the scalar linear model is
symmetric with density positive everywhere on [−R,R] and zero elsewhere. Then the
scalar linear model is Harris recurrent if and only if |α| ≤ 1.

Proof The linear model is, under the conditions on W , a µLeb-irreducible chain
on IR with all compact sets petite.

Suppose α > 1. By stochastic comparison of this model with a random walk Φ
on a half line with mean increment α − 1 it is obvious that provided the starting
point x > 1, then (9.46) holds with C = (−∞, 1]. Since this set is transient for the
random walk, as we have just shown, it must therefore be transient for the scalar linear
model. Provided the starting point x < −1, then by symmetry, the hitting times on
the set C = [−1,∞) are also infinite with positive probability. This argument does
not require bounded increments.

If α < −1 then the chain oscillates. If the range of W is contained in [−R,R],
with R > 1, then by choosing x > R we have by symmetry that the hitting time of
the chain X0,−X1, X2,−X3, . . . on C = (−∞, 1] is stochastically bounded below by
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the hitting time of the previous linear model with parameter |α|; thus the set [−R,R]
is uniformly transient for both models.

Thirdly, suppose that the 0 < α ≤ 1. Then by stochastic comparison with random
walk on a half line and mean increment α− 1, from x > R we have that hitting time
on [−R,R] of the linear model is bounded above by the hitting time on [−R,R] of
the random walk; whilst by symmetry the same is true from x < −R. Since we know
random walk is Harris recurrent it follows that the linear model is Harris recurrent.

Finally, by considering an oscillating chain we have the same recurrence result
for −1 ≤ α ≤ 0. �

The points to note in this example are

(i) without some bounds on W , in general it is difficult to get a stochastic compar-
ison argument for transience to work on the whole real line: on a half line, or
equivalently if α > 0, the transience argument does not need bounds, but if the
chain can oscillate then usually there is insufficient monotonicity to exploit in
sample paths for a simple stochastic comparison argument to succeed;

(ii) even with α > 0, recurrence arguments on the whole line are also difficult to get
to work. They tend to guarantee that the hitting times on half lines such as
C = (−∞, 1] are finite, and since these sets are not compact, we do not have
a guarantee of recurrence: indeed, for transient oscillating linear systems such
half lines are reached on alternate steps with higher and higher probability.

Thus in the case of unbounded increments more delicate arguments are usually
needed, and we illustrate one such method of analysis next.

9.5.2 Unrestricted random walk and SETAR models

Consider next the unrestricted random walk on IR given by

Φn = Φn−1 +Wn.

This is easy to analyze in the transient situation using stochastic comparison argu-
ments, given the results already proved.

Proposition 9.5.3 If the mean increment of an irreducible random walk on IR is
non-zero then the walk is transient.

Proof Suppose that the mean increment of the random walk Φ is positive. Then
the hitting time τ{−∞,0} on {−∞, 0} from an initial point x > 0 is the same as the
hitting time on {0} itself for the associated random walk on the half line; and we
have shown this to be infinite with positive probability. So the unrestricted walk is
also transient.

The argument if β < 0 is clearly symmetric. �
This model is non-evanescent when β = 0, as we showed under a finite variance

assumption in Proposition 9.4.5.
Now let us consider the more complex SETAR model

Xn = φ(j) + θ(j)Xn−1 +Wn(j), Xn−1 ∈ Rj
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where −∞ = r0 < r1 < · · · < rM = ∞ and Rj = (rj−1, rj ]; recall that for each j, the
noise variables {Wn(j)} form independent zero-mean noise sequences, and again let
W (j) denote a generic variable in the sequence {Wn(j)}, with distribution Γj .

We will see in due course that under a second order moment condition (SETAR3),
we can identify exactly the regions of the parameter space where this nonlinear chain
is transient, recurrent and so on.

Here we establish the parameter combinations under which transience will hold:
these are extensions of the non-zero mean increment regions of the random walk we
have just looked at.

As suggested by Figure B.1-Figure B.3 let us call the exterior of the parameter
space the area defined by

θ(1) > 1 (9.48)

θ(M) > 1 (9.49)

θ(1) = 1, θ(M) ≤ 1, φ(1) < 0 (9.50)

θ(1) ≤ 1, θ(M) = 1, φ(M) > 0 (9.51)

θ(1) < 0, θ(1)θ(M) > 1 (9.52)

θ(1) < 0, θ(1)θ(M) = 1, φ(M) + θ(M)φ(1) < 0 (9.53)

In order to make the analysis more straightforward we will make the following as-
sumption as appropriate.

(SETAR3) The variances of the noise distributions for the two
end intervals are finite; that is,

E(W 2(1)) <∞, E(W 2(M)) <∞

Proposition 9.5.4 For the SETAR model satisfying the assumptions (SETAR1)-
(SETAR3), the chain is transient in the exterior of the parameter space.

Proof Suppose (9.49) holds. Then the chain is transient, as we show by stochas-
tic comparison arguments. For until the first time the chain enters (−∞,−rM−1) it
follows the sample paths of a model

X ′
n = φ(M) + θ(M)X ′

n−1 +WM

and for this linear model Px(τ(−∞,0) < ∞) < 1 for all sufficiently large x, as in the
proof of Theorem 9.5.2, by comparison with random walk.

When (9.48) holds, the chain is transient by symmetry: now we find Px(τ(0,∞,) <
∞) < 1 for all sufficiently negative x.

When (9.52) holds the same argument can be used, but now for the two step
chain: the one-step chain undergoes larger and larger oscillations and thus there is
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a positive probability of never returning to the set [r1, rM−1] for starting points of
sufficiently large magnitude.

Suppose (9.50) holds and begin the process at xo < min(0, r1). Then until the
first time the process exits (−∞,min(0, r1)), it has exactly the sample paths of a
random walk with negative drift, which we showed to be transient in Section 8.5. The
proof of transience when (9.51) holds is similar.

We finally show the chain is transient if (9.53) holds, and for this we need
(SETAR3). Here we also need to exploit Theorem 8.4.2 directly rather than con-
struct a stochastic comparison argument.

Let a and b be positive constants such that −b/a = θ(1) = 1/θ(M). Since φ(M)+
θ(M)φ(1) < 0 we can choose u and v such that −aφ(1) < au+ bv < −bφ(M). Choose
c positive such that

c/a− u > max(0, rM−1), −c/b− v < min(0, r1).

Consider the function

V (x) =


1− 1/a(x+ u), x > c/a− u
1− 1/c −c/b− v < x < c/a− u
1 + 1/b(x+ v) x < −c/b− v

Suppose x > R > c/a− u, where R is to be chosen. Let

λ(x) = φ(M) + θ(M)x+ v

and
δ(x) = φ(M) + θ(M)x+ u.

If we write

V0(x) = −a−1E[(1/(δ(x) +W (M)))1l[W (M)>c/a−δ(x)]]
V1(x) = −c−1P (−c/b− λ(x) < W (M) < c/a− δ(x))
V2(x) = 1/a(x+ u) + b−1E[(1/(λ(x) +W (M)))([W (M)<−c/b−λ(x)]]

(9.54)

then we get
Ex[V (X1)] = V (x) + V0(x) + V1(x) + V2(x). (9.55)

It is easy to show that both V0(x) and V1(x) are o(x−2). Since

1/(λ(x) +W (M)) = 1/λ(x)−W (M)/λ(x)(λ(x) +W (M)),

the second summand of V2(x) equals

ΓM (−∞,−c/b− λ(x))/bλ(x)− E[(W (M)/λ(x)(λ(x) +W (M)))1l[W (M)<−c/b−λ(x)]].

Since for 0 < W (M) < −c/b− λ(x)

1/(1 +W (M)/λ(x)) ≤ 1 + bW (M)/c

we have in this case that for x large enough

0 ≥ −x2W (M)/λ(x)(λ(x) +W (M))
≥ −x2W (M)(1 + bW (M)/c)/λ2(x)
≥ −2W (M)(1 + bW (M)/c)/θ2(M); (9.56)
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whilst for W (M) ≤ 0, we have

1/(1 +W (M)/λ(x)) ≤ 1

and so

0 ≤ −x2W (M)/λ(x)(λ(x) +W (M))
≤ −x2W (M)/λ2(x)
≤ −2W (M)/θ2(M). (9.57)

Thus, by the Dominated Convergence Theorem,

limx2E[−W (M)/λ(x)(λ(x) + W (M))1l[W (M)<−c/b−λ(x)]]
= E[−W (M)/θ2(M)] = 0.

(9.58)

From (9.58) we therefore see that V2 equals

1/a(x+ u) + 1/bλ(x)− ΓM (−c/b− λ(x),∞)/bλ(x)− o(x−2)

= (bφ(M) + bv + au)/abλ(x)(x+ u)− o(x−2).

We now have from the breakup (9.55) that by choosing R large enough

Ex[V (X1)] = V (x) + (bφ(M) + bv + au)/abλ(x)(x+ u)− o(x−2)
≥ V (x), x > R. (9.59)

Similarly, for x < −R < −c/b− v < r1, it can be shown that

Ex[V (X1)] ≥ V (x).

We may thus apply Theorem 8.4.2 with the set C taken to be [−R,R], and the test
function V above to conclude that the process is transient. �

9.5.3 General chains with bounded increments

One of the more subtle uses of the drift conditions involves a development of the
interplay between first and second moment conditions in determining recurrence or
transience of a chain.

When the state space is IR, then even for a chain Φ which is not a random walk it
makes obvious sense to talk about the increment at x, defined by the random variable

Wx = {Φ1 − Φ0 | Φ0 = x} (9.60)

with probability law
Γx(A) = P(Φ1 ∈ A+ x | Φ0 = x).

The defining characteristic of the random walk model is then that the law Γx is
independent of x, giving the characteristic spatial homogeneity to the model.

In general we can define the “mean drift” at x by

m(x) = Ex[Wx] =
∫
wΓx(dw)



9.5 Stochastic comparison and increment analysis 233

so that m(x) = ∆V (x) for the special choice of V (x) = x.
Let us denote the second moment of the drift at x by

v(x) = Ex[W 2
x ] =

∫
w2 Γx(dw).

We will now show that there is a threshold or detailed balance effect between these
two quantities in considering the stability of the chain.

For ease of exposition let us consider the case where the increments again have
uniformly bounded range: that is, for some R and all x,

Γx[−R,R] = 1. (9.61)

To avoid somewhat messy calculations such as those for the random walk or SETAR
models above we will fix the state space as IR+ and we will make the assumption
that the measures Γx give sufficient weight to the negative half line to ensure that the
chain is a δ0-irreducible T-chain and also that v(x) is bounded from zero: this ensures
that recurrence means that τ0 is finite with probability one and that transience means
that P0(τ0 <∞) < 1. The δ0-irreducibility and T-chain properties will of course follow
from assuming, for example, that ε < Γx(−∞,−ε) for some ε > 0.

Theorem 9.5.5 For the chain Φ with increment (9.60) we have

(i) if there exists θ < 1 and x0 such that for all x > x0

m(x) ≤ θv(x)/2x (9.62)

then Φ is recurrent.

(ii) if there exists θ > 1 and x0 such that for all x > x0

m(x) ≥ θv(x)/2x (9.63)

then Φ is transient.

Proof (i) We use Theorem 9.1.8, with the test function

V (x) = log(1 + x), x ≥ 0 : (9.64)

for this test function (V1) requires∫ ∞

−x
Γx(dw)[log(w + x+ 1)− log(x+ 1)] ≤ 0, (9.65)

and using the bounded range of the increments, the integral in (9.65) after a Taylor
series expansion is, for x > R,∫ R

−R
Γx(dw)[w/(x+ 1)− w2/2(x+ 1)2 + o(x−2)] =

m(x)/(x+ 1) − v(x)/2(x+ 1)2 + o(x−2).

(9.66)

If x > x0 for sufficiently large x0 > R, and m(x) ≤ θv(x)/2x, then
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∫
P (x, dy)V (y) ≤ V (x)

and hence from Theorem 9.1.8 we have that the chain is recurrent.
(ii) It is obvious with the assumption of positive mean for Γx that for any x

the sets [0, x] and [x,∞) are both in B+(X).
In order to use Theorem 9.1.8, we will establish that for some suitable monotonic

increasing V ∫
y
P (x, dy)V (y) ≥ V (x) (9.67)

for x ≥ x0. An appropriate test function in this case is given by

V (x) = 1− [1 + x]−α, x ≥ 0 : (9.68)

we can write (9.67) for x > R as∫ R

−R
Γx(dw)[(w + x+ 1)−α − (x+ 1)−α] ≥ 0. (9.69)

Applying Taylor’s Theorem we see that for all w we have that the integral in (9.69)
equals

αm(x)/(x+ 1)1+α − αv(x)/2(x+ 1)2+α +O(x−3−α). (9.70)

Now choose α < θ − 1. For sufficiently large x0 we have that if x > x0 then from
(9.70) we have that (9.69) holds and so the chain is transient. �

The fact that this detailed balance between first and second moments is a de-
terminant of the stability properties of the chain is not surprising: on the space IR+

all of the drift conditions are essentially linearizations of the motion of the chain,
and virtually independently of the test functions chosen, a two term Taylor series
expansion will lead to the results we have described.

One of the more interesting and rather counter-intuitive facets of these results is
that it is possible for the first-order mean drift m(x) to be positive and for the chain
to still be recurrent: in such circumstances it is the occasional negative jump thrown
up by a distribution with a variance large in proportion to its general positive drift
which will give recurrence.

Some weakening of the bounded range assumption is obviously possible for these
results: the proofs then necessitate a rather more subtle analysis and expansion of
the integrals involved. By choosing the iterated logarithm

V (x) = log log(x+ c)

as the test function for recurrence, and by more detailed analysis of the function

V (x) = 1− [1 + x]−α

as a test for transience, it is in fact possible to develop the following result, whose
proof we omit.

Theorem 9.5.6 Suppose the increment Wx given by (9.60) satisfies

sup
x

Ex[|Wx|2+ε] <∞

for some ε > 0. Then
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(i) if there exists δ > 0 and x0 such that for all x > x0

m(x) ≤ v(x)/2x+O(x−1−δ) (9.71)

the chain Φ is recurrent.

(ii) if there exists θ > 1 and x0 such that for all x > x0

m(x) ≥ θv(x)/2x (9.72)

then Φ is transient. �

The bounds on the spread of Γx may seem somewhat artifacts of the methods of
proof used, and of course we well know that the zero-mean random walk is recurrent
even though a proof using an approach based upon a drift condition has not yet been
developed to our knowledge.

We conclude this section with a simple example showing that we cannot expect
to drop the higher moment conditions completely.

Let X = ZZ+, and let

P (x, x+ 1) = 1− c/x, P (x, 0) = c/x, x > 0

with P (0, 1) = 1.
Then the chain is easily shown to be recurrent by a direct calculation that for all

n > 1

P0(τ0 > n) =
n∏

x=1

[1− c/x].

But we have m(x) = −c+ 1− c/x and v(x) = cx+ 1− c/x so that

2xm(x)− v(x) = (2− 3c)x2 − (c+ 1)x+ c

which is clearly positive for c < 2/3: hence if Theorem 9.5.6 were applicable we should
have the chain transient.

Of course, in this case we have

Ex[|Wx|2+ε] = x2+εc/x+ 1− c/x > x1+ε

and the bound on this higher moment, required in the proof of Theorem 9.5.6, is
obviously violated.

9.6 Commentary

Harris chains are named after T.E. Harris who introduced many of the essential ideas
in [95]. The important result in Theorem 9.1.3, which enables the properties of Q to
be linked to those of L, is due to Orey [207], and our proof follows that in [208]. That
recurrent chains are “almost” Harris was shown by Tuominen [268], although the key
links between the powerful Harris properties and other seemingly weaker recurrence
properties were developed initially by Jain and Jamison [106].

We have taken the proof of transience for random walk on ZZ using the Strong
Law of Large Numbers from Spitzer [255].
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Non-evanescence is a common form of recurrence for chains on IRk: see, for exam-
ple, Khas’minskii [134]. The links between evanescent and transient chains, and the
equivalence between Harris and non-evanescent chains under the T-chain condition,
are taken from Meyn and Tweedie [178], who proved Theorem 9.2.2. Most of the con-
nections between neighborhood and global behavior of chains are given by Rosenblatt
[228, 229] and Tuominen and Tweedie [269].

The criteria for non-evanescence or Harris recurrence here are of course closely
related to those in the previous chapter. The martingale argument for non-evanescence
is in [178] and [276], but can be traced back in essentially the same form to Lamperti
[151]. The converse to the recurrence criterion under the Feller condition, and the fact
that it does not hold in general, are new: the construction of the converse function V
is however based on a similar result for countable chains, in Mertens et al [168].

The term “norm-like” to describe functions whose sublevel sets are precompact
is new. The justification for the terminology is that norm-like functions do, in most
of our contexts, measure the distance from a point to a compact “center” of the state
space. This will become clearer in later chapters when we see that under a suitable
drift condition, the mean time to reach some compact set from Φ0 = x is bounded by
a constant multiple of V (x). Hence V (x) bounds the mean “distance” to this compact
set, measured in units of time. Beneš in [19] uses the term moment for these functions.
Since “moments” are standard in referring to the expectations of random variables,
this terminology is obviously inappropriate here.

Stochastic comparison arguments have been used for far too long to give a detailed
attribution. For proving transience, in particular, they are a most effective tool. The
analysis we present here of the SETAR model is essentially in Petruccelli et al [214]
and Chan et al [43].

The analysis of chains via their increments, and the delicate balance required
between m(x) and v(x) for recurrence and transience, is found in Lamperti [151]; see
also Tweedie [276]. Growth models for which m(x) ≥ θv(x)/2x are studied by, for
example, Kersting (see [133]), and their analysis via suitable renormalization proves
a fruitful approach to such transient chains.

It may appear that we are devoting a disproportionate amount of space to unsta-
ble chains, and too little to chains with stability properties. This will be rectified in
the rest of the book, where we will be considering virtually nothing but chains with
ever stronger stability properties.
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The Existence of π

In our treatment of the structure and stability concepts for irreducible chains we have
to this point considered only the dichotomy between transient and recurrent chains.

For transient chains there are many areas of theory that we shall not investigate
further, despite the flourishing research that has taken place in both the mathematical
development and the application of transient chains in recent years. Areas which are
notable omissions from our treatment of Markovian models thus include the study of
potential theory and boundary theory [223], as well as the study of renormalized mod-
els approximated by diffusions and the quasi-stationary theory of transient processes
[71, 5].

Rather, we concentrate on recurrent chains which have stable properties without
renormalization of any kind, and develop the consequences of the concept of recur-
rence.

In this chapter we further divide recurrent chains into positive and null recurrent
chains, and show here and in the next chapter that the former class provide stochastic
stability of a far stronger kind than the latter.

For many purposes, the strongest possible form of stability that we might require
in the presence of persistent variation is that the distribution of Φn does not change
as n takes on different values. If this is the case, then by the Markov property it
follows that the finite dimensional distributions of Φ are invariant under translation
in time. Such considerations lead us to the consideration of invariant measures.

Invariant measures

A σ-finite measure π on B(X) with the property

π(A) =
∫
X
π(dx)P (x,A), A ∈ B(X) (10.1)

will be called invariant.

Although we develop a number of results concerning invariant measures, the key
conclusion in this chapter is undoubtedly
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Theorem 10.0.1 If the chain Φ is recurrent then it admits a unique (up to constant
multiples) invariant measure π, and the measure π has the representation, for any
A ∈ B+(X)

π(B) =
∫

A
π(dw)Ew

[ τA∑
n=1

1l{Φn ∈ B}
]
, B ∈ B(X). (10.2)

The invariant measure π is finite (rather than merely σ-finite) if there exists a petite
set C such that

sup
x∈C

Ex[τC ] <∞.

Proof The existence and representation of invariant measures for recurrent chains
is proved in full generality in Theorem 10.4.9: the proof exploits, via the Nummelin
splitting technique, the corresponding theorem for chains with atoms as in Theo-
rem 10.2.1, in conjunction with a representation for invariant measures given in The-
orem 10.4.9. The criterion for finiteness of π is in Theorem 10.4.10. �

If an invariant measure is finite, then it may be normalized to a stationary prob-
ability measure, and in practice this is the main stable situation of interest. If an
invariant measure has infinite total mass, then its probabilistic interpretation is much
more difficult, although for recurrent chains, there is at least the interpretation as
described in (10.2).

These results lead us to define the following classes of chains.

Positive and Null Chains

Suppose that Φ is ψ-irreducible, and admits an invariant probability
measure π. Then Φ is called a positive chain.

If Φ does not admit such a measure, then we call Φ null.

10.1 Stationarity and Invariance

10.1.1 Invariant measures

Processes with the property that for any k, the marginal distribution of {Φn, . . . , Φn+k}
does not change as n varies are called stationary processes, and whilst it is clear that
in general a Markov chain will not be stationary, since in a particular realization
we may have Φ0 = x with probability one for some fixed x, it is possible that with
an appropriate choice of the initial distribution for Φ0 we may produce a stationary
process {Φn, n ∈ ZZ+}.

It is immediate that we only need to consider a form of first step stationarity in
order to generate an entire stationary process. Given an initial invariant probability
measure π such that

π(A) =
∫
X
π(dw)P (w,A), (10.3)

we can iterate to give
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π(A) =
∫
X [
∫
X π(dx)P (x, dw)]P (w,A)

=
∫
X π(dx)

∫
X P (x, dw)P (w,A)

=
∫
X π(dx)P 2(x,A)

...
=

∫
X π(dx)Pn(x,A) = Pπ(Φn ∈ A),

(10.4)

for any n and all A ∈ B(X).
From the Markov property, it is clear that Φ is stationary if and only if the

distribution of Φn does not vary with time. We have immediately

Proposition 10.1.1 If the chain Φ is positive then it is recurrent.

Proof Suppose that the chain is positive and let π be a invariant probability
measure. If the chain is also transient, let Aj be a countable cover of X with uniformly
transient sets, as guaranteed by Theorem 8.3.4, with U(x,Aj) ≤Mj , say.

Using (10.4) we have for any j, k

kπ(Aj) =
k∑

n=1

∫
π(dw)Pn(w,Aj) ≤Mj

and since the left hand side remains finite as k →∞, we have π(Aj) = 0. This implies
π is trivial so we have a contradiction. �

Positive chains are often called “positive recurrent” to reinforce the fact that they
are recurrent. This also naturally gives the definition

Positive Harris chains

If Φ is Harris recurrent and positive, then Φ is called a positive Harris
chain.

It is of course not yet clear that an invariant probability measure π ever exists, or
whether it will be unique when it does exist. It is the major purpose of this chapter to
find conditions for the existence of π, and to prove that for any positive (and indeed
recurrent) chain, π is essentially unique.

Invariant probability measures are important not merely because they define
stationary processes. They will also turn out to be the measures which define the long
term or ergodic behavior of the chain. To understand why this should be plausible,
consider Pµ(Φn ∈ · ) for any starting distribution µ. If a limiting measure γµ exists in
a suitable topology on the space of probability measures, such as

Pµ(Xn ∈ A) → γµ(A)

for all A ∈ B(X), then
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γµ(A) = lim
n→∞

∫
µ(dx)Pn(x,A)

= lim
n→∞

∫
X
µ(dx)

∫
Pn−1(x, dw)P (w,A)

=
∫
X
γµ(dw)P (w,A), (10.5)

since setwise convergence of
∫
µ(dx)Pn(x, ·) implies convergence of integrals of

bounded measurable functions such as P (w,A).
Hence if a limiting distribution exists, it is an invariant probability measure; and

obviously, if there is a unique invariant probability measure, the limit γµ will be
independent of µ whenever it exists.

We will not study the existence of such limits properly until Part III, where our
goal will be to develop asymptotic properties of Φ in some detail. However, motivated
by these ideas, we will give in Section 10.5 one example, the linear model, where this
route leads to the existence of an invariant probability measure.

10.1.2 Subinvariant measures

The easiest way to investigate the existence of π is to consider a yet wider class of
measures, satisfying inequalities related to the invariant equation (10.1).

Subinvariant measures

If µ is σ-finite and satisfies

µ(A) ≥
∫
X
µ(dx)P (x,A), A ∈ B(X) (10.6)

then µ is called subinvariant.

The following generalization of the subinvariance equation (10.6) is often useful: we
have, by iterating (10.6),

µ(B) ≥
∫
µ(dw)Pn(w,B)

and hence, multiplying by a(n) and summing,

µ(B) ≥
∫
µ(dw)Ka(w,B), (10.7)

for any sampling distribution a.
We begin with some structural results for arbitrary subinvariant measures.

Proposition 10.1.2 Suppose that Φ is ψ-irreducible. If µ is any measure satisfying
(10.6) with µ(A) <∞ for some one A ∈ B+(X), then
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(i) µ is σ-finite, and thus µ is a subinvariant measure;

(ii) µ � ψ;

(iii) if C is petite then µ(C) <∞;

(iv) if µ(X) <∞ then µ is invariant.

Proof Suppose µ(A) < ∞ for some A with ψ(A) > 0. Using A∗(j) = {y :
Ka1/2

(y,A) > j−1}, we have by (10.7),

∞ > µ(A) ≥
∫

A∗(j)
µ(dw)Ka1/2

(w,A) ≥ j−1µ(A∗(j));

since
⋃
A∗(j) = X when ψ(A) > 0, such a µ must be σ-finite.

To prove (ii) observe that, by (10.7), if B ∈ B+(X) we have µ(B) > 0, so µ � ψ.
Thirdly, if C is νa-petite then there exists a set B with νa(B) > 0 and µ(B) <∞,

from (i). By (10.7) we have

µ(B) ≥
∫
µ(dw)Ka(w,B) ≥ µ(C)νa(B) (10.8)

and so µ(C) <∞ as required.
Finally, if there exists some A such that µ(A) >

∫
µ(dy)P (y,A) then we have

µ(X) = µ(A) + µ(Ac) >

∫
µ(dy)P (y,A) +

∫
µ(dy)P (y,Ac)

=
∫
µ(dy)P (y,X)

= µ(X) (10.9)

and if µ(X) <∞ we have a contradiction.
�

The major questions of interest in studying subinvariant measures lie with recur-
rent chains, for we always have

Proposition 10.1.3 If the chain Φ is transient then there exists a strictly subinvari-
ant measure for Φ.

Proof Suppose that Φ is transient: then by Theorem 8.3.4, we have that the
measures µx given by

µx(A) = U(x,A), A ∈ B(X)

are σ-finite; and trivially

µx(A) = P (x,A) +
∫
µx(dy)P (y,A) ≥

∫
µx(dy)P (y,A), A ∈ B(X) (10.10)

so that each µx is subinvariant (and obviously strictly subinvariant, since there is
some A with µx(A) <∞ such that P (x,A) > 0). �

We now move on to study recurrent chains, where the existence of a subinvariant
measure is less obvious.
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10.2 The existence of π: chains with atoms

Rather than pursue the question of existence of invariant and subinvariant measures
on a fully countable space in the first instance, we prove here that the existence of just
one atom α in the space is enough to describe completely the existence and structure
of such measures.

The following theorem obviously incorporates countable space chains as a special
case; but the main value of this presentation will be in the development of a theory
for general space chains via the split chain construction of Section 5.1.

Theorem 10.2.1 Suppose Φ is ψ-irreducible, and X contains an accessible atom α.

(i) There is always a subinvariant measure µ◦
α for Φ given by

µ◦
α(A) = Uα(α, A) =

∞∑
n=1

αP
n(α, A), A ∈ B(X); (10.11)

and µ◦
α is invariant if and only if Φ is recurrent.

(ii) The measure µ◦
α is minimal in the sense that if µ is subinvariant with µ(α) = 1,

then
µ(A) ≥ µ◦

α(A), A ∈ B(X).

When Φ is recurrent, µ◦
α is the unique (sub)invariant measure with µ(α) = 1.

(iii) The subinvariant measure µ◦
α is a finite measure if and only if

Eα[τα] <∞,

in which case µ◦
α is invariant.

Proof (i) By construction we have for A ∈ B(X)

∫
X
µ◦

α(dy)P (y,A) = µ◦
α(α)P (α, A) +

∫
αc

∞∑
n=1

αP
n(α, dy)P (y,A)

≤ αP (α, A) +
∞∑

n=2

αP
n(α, A) (10.12)

= µ◦
α(A),

where the inequality comes from the bound µ◦
α(α) ≤ 1. Thus µ◦

α is subinvariant, and
is invariant if and only if µ◦

α(α) = Pα(τα <∞) = 1; that is, from Proposition 8.3.1, if
and only if the chain is recurrent.

(ii) Let µ be any subinvariant measure with µ(α) = 1. By subinvariance,

µ(A) ≥
∫
X
µ(dw)P (w,A)

≥ µ(α)P (α, A) = P (α, A).

Assume inductively that µ(A) ≥∑n
m=1 αP

m(α, A), for all A. Then by subinvariance,
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µ(A) ≥ µ(α)P (α, A) +
∫

αc
µ(dw)P (w,A)

≥ P (α, A) +
∫

αc

[
n∑

m=1

αP
m(α, dw)

]
P (w,A)

=
n+1∑
m=1

αP
m(α, A).

Taking n ↑ ∞ shows that µ(A) ≥ µ◦
α(A) for all A ∈ B(X).

Suppose Φ is recurrent, so that µ◦
α(α) = 1. If µ◦

α differs from µ, there exists A
and n such that µ(A) > µ◦

α(A) and Pn(w,α) > 0 for all w ∈ A, since ψ(α) > 0. By
minimality, subinvariance of µ, and invariance of µ◦

α,

1 = µ(α) ≥
∫
X
µ(dw)Pn(w,α)

>

∫
X
µ◦

α(dw)Pn(w,α)

= µ◦
α(α) = 1.

Hence we must have µ = µ◦
α, and thus when Φ is recurrent, µ◦

α is the unique (sub)
invariant measure.

(iii) If µ◦
α is finite it follows from Proposition 10.1.2 (iv) that µ◦

α is invariant.
Finally

µ◦
α(X) =

∞∑
n=1

Pα(τα ≥ n) (10.13)

and so an invariant probability measure exists if and only if the mean return time to
α is finite, as stated. �

We shall use π to denote the unique invariant measure in the recurrent case.
Unless stated otherwise we will assume π is normalized to be a probability measure
when π(X) is finite.

The invariant measure µ◦
α has an equivalent sample path representation for re-

current chains:

µ◦
α(A) = Eα

[ τα∑
n=1

1l{Φn ∈ A}
]
, A ∈ B(X). (10.14)

This follows from the definition of the taboo probabilities αP
n.

As an immediate consequence of this construction we have the following elegant
criterion for positivity.

Theorem 10.2.2 (Kac’s Theorem) If Φ is ψ-irreducible and admits an atom α ∈
B+(X), then Φ is positive recurrent if and only if Eα[τα] <∞; and if π is the invariant
probability measure for Φ then

π(α) = (Eα[τα])−1. (10.15)

Proof If Eα[τα] < ∞, then also L(α,α) = 1, and by Proposition 8.3.1 Φ is
recurrent; it follows from the structure of π in (10.11) that π is finite so that the
chain is positive.

Conversely, Eα[τα] < ∞ when the chain is positive from the structure of the
unique invariant measure.
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By the uniqueness of the invariant measure normalized to be a probability mea-
sure π we have

π(α) =
µ◦

α(α)
µ◦

α(X)
=

Uα(α,α)
Uα(α,X)

=
1

Eα[τα]

which is (10.15). �
The relationship (10.15) is often known as Kac’s Theorem. For countable state

space models it immediately gives us

Proposition 10.2.3 For a positive recurrent irreducible Markov chain on a countable
space, there is a unique (up to constant multiples) invariant measure π given by

π(x) = [Ex[τx]]−1

for every x ∈ X. �

We now illustrate the use of the representation of π for a number of countable space
models.

10.3 Invariant measures: countable space models

10.3.1 Renewal chains

Forward recurrence time chains Consider the forward recurrence time process
V+ with

P (1, j) = p(j), j ≥ 1; P (j, j − 1) = 1, j > 1. (10.16)

As noted in Section 8.1.2, this chain is always recurrent since
∑
p(j) = 1.

By construction we have that

1P
n(1, j) = p(j + n− 1), j ≤ n

and zero otherwise; thus the minimal invariant measure satisfies

π(j) = U1(1, j) =
∑
n≥j

p(n) (10.17)

which is finite if and only if

∞∑
j=1

π(j) =
∞∑

j=1

∞∑
n=j

p(n) =
∞∑

n=1

np(n) <∞ : (10.18)

that is, if and only if the renewal distribution {p(i)} has finite mean.
It is, of course, equally easy to deduce this formula by solving the invariant

equations themselves, but the result is perhaps more illuminating from this approach.
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Linked forward recurrence time chains Consider the forward recurrence chain
with transition law (10.16), and define the bivariate chain V∗ = (V +

1 (n), V +
2 (n)) on

the space X∗ := {1, 2, . . .} × {1, 2, . . .}, with the transition law

P ((i, j), (i− 1, j − 1)) = 1, i, j > 1;
P ((1, j), (k, j − 1)) = p(k), k, j > 1;
P ((i, 1), (i− 1, k)) = p(k), i, k > 1;

P ((1, 1), (j, k)) = p(j)p(k), j, k > 1.

(10.19)

This chain is constructed by taking the two independent copies V +
1 (n), V +

2 (n) of the
forward recurrence chain and running them independently.

Now suppose that the distribution {p(j)} is periodic with period d: that is, the
greatest common divisor d of the set Np = {n : p(n) > 0} is d. We show that V∗ is
ψ-irreducible and positive if {p(j)} has period d = 1 and

∑
n≥1 np(n) <∞.

By the definition of d we have that there must exist r, s ∈ Np with greatest
common divisor d, and by Lemma D.7.3 there exist integers n, m such that

nr = ms+ d :

without loss of generality we can assume n,m > 0.
We show that the bivariate chain V∗ is δ1,1-irreducible if d = 1.
To see this, note that for any pair (i, j) with i ≥ j we have

P j+(i−j)nr((i, j), (1, 1)) ≥ [p(r)](i−j)nr−1[p(s)](i−j)ms−1 > 0

since
j + (i− j)nr = i+ (i− j)ms.

Moreover V∗ is positive Harris recurrent on X∗ provided only
∑

k kp(k) <∞, as
was the case for the single copy of the forward recurrence time chain. To prove this
we need only note that the product measure π∗(i, j) = π(i)π(j) is invariant for V∗,
where

π(j) =
∑
k≥j

p(k)/
∑
k

kp(k)

is the invariant probability measure for the forward recurrence time process from
(10.17) and (10.18); positive Harris recurrence follows since π∗(X∗) = [π(X)]2 = 1.

These conditions for positive recurrence of the bivariate forward time process will
be of critical use in the development of the asymptotic properties of general chains
in Part III.

10.3.2 The number in an M/G/1 queue

Recall from Section 3.3.3 that N∗ is a modified random walk on a half line with in-
crement distribution concentrated on the integers {. . . ,−1, 0, 1} having the transition
probability matrix of the form

P =


q0 q1 q2 q3 . . .
q0 q1 q2 q3 . . .

q0 q1 q2 . . .
q0 q1 . . .

q0 . . .
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where qi = P(Z = i − 1) for the increment variable in the chain when the server
is busy; that is, for transitions from states other than {0}. The chain N∗ is always
ψ-irreducible if q0 > 0, and irreducible in the standard sense if also q0 + q1 < 1, and
we shall assume this to be the case to avoid trivialities.

In this case, we can actually solve the invariant equations explicitly. For j ≥ 1,
(10.1) can be written

π(j) =
j+1∑
k=0

π(k)qj+1−k. (10.20)

and if we define

q̄j =
∞∑

n=j+1

qn

we get the system of equations

π(1)q0 = π(0)q̄0
π(2)q0 = π(0)q̄1 + π(1)q̄1
π(3)q0 = π(0)q̄2 + π(1)q̄2 + π(2)q̄1

. . .

(10.21)

In this case, therefore, we always get a unique invariant measure, regardless of the
transience or recurrence of the chain.

The criterion for positivity follows from (10.21). Note that the mean increment
β of Z satisfies

β =
∑
j≥0

q̄j − 1

so that formally summing both sides of (10.21) gives, since q0 = 1− q̄0

(1− q̄0)
∞∑

j=1

π(j) = (β + 1)π(0) + (β + 1− q̄0)
∞∑

j=1

π(j). (10.22)

If the chain is positive, this implies

∞ >
∞∑

j=1

π(j) = −π(0)(β + 1)/β

so, since β > −1, we must have β < 0. Conversely, if β < 0, and we take

π(0) = −β

then the same summation (10.22) indicates that the invariant measure π is finite.
Thus we have

Proposition 10.3.1 The chain N∗ is positive if and only if the increment distribu-
tion satisfies β =

∑
jqj < 1.

This same type of direct calculation can be carried out for any so called “skip-
free” chain with P (i, j) = 0 for j < i− 1, such as the forward recurrence time chain
above. For other chains it can be far less easy to get a direct approach to the invariant
measure through the invariant equations, and we turn to the representation in (10.11)
for our results.
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10.3.3 The number in a GI/M/1 queue

We illustrate the use of the structural result in giving a novel interpretation of an old
result for the specific random walk on a half line N corresponding to the number in
a GI/M/1 queue.

Recall from Section 3.3.3 that N has increment distribution concentrated on the
integers {. . . ,−1, 0, 1} giving the transition probability matrix of the form

P =



∑∞
1 pi p0∑∞
2 pi p1 p0 0∑∞
3 pi p2 p1 p0 . . .

...
...

...
...


where pi = P(Z = 1− i). The chain N is ψ-irreducible if p0 + p1 < 1, and irreducible
if p0 > 0 also. Assume these inequalities hold, and let {0} = α be our atom.

To investigate the existence of an invariant measure for N, we know from Theo-
rem 10.2.1 that we should look at the quantities αP

n(α, j).
Write [k] = {0, . . . , k}. Because the chain can only move up one step at a time,

so the last visit to [k] is at k itself, we have on decomposing over the last visit to [k],
for k ≥ 1

αP
n(α, k + 1) =

n∑
r=1

αP
r(α, k)[k]P

n−r(k, k + 1). (10.23)

Now the translation invariance property of P implies that for j > k

[k]P
r(k, j) = αP

r(α, j − k). (10.24)

Thus, summing (10.23) from 1 to ∞ gives

∞∑
n=1

αP
n(α, k + 1) =

[ ∞∑
n=1

αP
n(α, k)

] [ ∞∑
n=1

[k]P
n(k, k + 1)

]

=

[ ∞∑
n=1

αP
n(α, k)

] [ ∞∑
n=1

αP
n(α, 1)

]
.

Using the form (10.11) of µ◦
α, we have now shown that

µ◦
α(k + 1) = µ◦

α(k)µ◦
α(1),

and so the minimal invariant measure satisfies

µ◦
α(k) = sk

α (10.25)

where sα = µ◦
α(1).

The chain then has an invariant probability measure if and only if we can find
sα < 1 for which the measure µ◦

α defined by the geometric form (10.25) is a solution
to the subinvariant equations for P : otherwise the minimal subinvariant measure is
not summable.

We can go further and identify these two cases in terms of the underlying param-
eters pj . Consider the second (that is, the k = 1) invariant equation
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µ◦
α(1) =

∑
µ◦

α(k)P (k, 1).

This shows that sα must be a solution to

s =
∞∑
0

pjs
j , (10.26)

and since µ◦
α is minimal it must the smallest solution to (10.26). As is well-known,

there are two cases to consider: since the function of s on the right hand side of (10.26)
is strictly convex, a solution s ∈ (0, 1) exists if and only if

∞∑
0

jpj > 1,

whilst if
∑

j j pj ≤ 1 then the minimal solution to (10.26) is sα = 1.
One can then verify directly that in each of these cases µ◦

α solves all of the
invariant equations, as required. In particular, if

∑
j j pj = 1 so that the chain is

recurrent from the remarks following Proposition 9.1.2, the unique invariant measure
is µα(x) ≡ 1, x ∈ X: note that in this case, in fact, the first invariant equation is
exactly

1 =
∑
j≥0

∑
n>j

pn =
∑
j

j pj .

Hence for recurrent chains (those for which
∑

j j pj ≥ 1) we have shown

Proposition 10.3.2 The unique subinvariant measure for N is given by µα(k) = sk
α,

where sα is the minimal solution to (10.26) in (0, 1]; and N is positive recurrent if
and only if

∑
j j pj > 1. �

The geometric form (10.25), as a “trial solution” to the equation (10.1), is often
presented in an arbitrary way: the use of Theorem 10.2.1 motivates this solution, and
also shows that sα in (10.25) has an interpretation as the expected number of visits
to state k + 1 from state k, for any k.

10.4 The existence of π: ψ-irreducible chains

10.4.1 Invariant measures for recurrent chains

We prove in this section that a general recurrent ψ-irreducible chain has an invariant
measure, using the Nummelin splitting technique.

First we show how subinvariant measures for the split chain correspond with
subinvariant measures for Φ.

Proposition 10.4.1 Suppose that Φ is a strongly aperiodic Markov chain and let Φ̌
denote the split chain. Then

(i) If the measure π̌ is invariant for Φ̌, then the measure π on B(X) defined by

π(A) = π̌(A0 ∪A1), A ∈ B(X), (10.27)

is invariant for Φ, and π̌ = π∗.

(ii) If µ is any subinvariant measure for Φ then µ∗ is subinvariant for Φ̌, and if µ
is invariant then so is µ∗.
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Proof To prove (i) note that by (5.5), (5.6), and (5.7), we have that the measure
P̌ (xi, · ) is of the form µ∗

xi
for any xi ∈ X̌, where µxi is a probability measure on X.

By linearity of the splitting and invariance of π̌, for any Ǎ ∈ B(X̌),

π̌(Ǎ) =
∫
π̌(dxi)P̌ (xi, Ǎ) =

∫
π̌(dxi)µ∗

xi
(Ǎ) =

(∫
π̌(dxi)µxi( · )

)∗
(Ǎ)

Thus π̌ = π∗
0, where π0 =

∫
π̌(dxi)µxi( · ).

By (10.27) we have that π(A) = π∗
0(A0∪A1) = π0(A), so that in fact π̌ = π∗. This

proves one part of (i), and we now show that π is invariant for Φ. For any A ∈ B(X)
we have by invariance of π∗ and (5.10),

π(A) = π∗(A0 ∪A1) = π∗P̌ (A0 ∪A1) =
(
πP

)∗
(A0 ∪A1) = πP (A)

which shows that π is invariant and completes the proof of (i).
The proof of (ii) also follows easily from (5.10): if the measure µ is subinvariant

then
µ∗P̌ = (µP )∗ ≤ µ∗,

which establishes subinvariance of µ∗, and similarly, µ∗P̌ = µ∗ if µ is strictly invariant.
�

We can now give a simple proof of

Proposition 10.4.2 If Φ is recurrent and strongly aperiodic then Φ admits a unique
(up to constant multiples) subinvariant measure which is invariant.

Proof Assume that Φ is strongly aperiodic, and split the chain as in Section 5.1.
If Φ is recurrent then it follows from Proposition 8.2.2 that Φ̌ is also recurrent.

We have from Theorem 10.2.1 that Φ̌ has a unique subinvariant measure π̌ which is
invariant. Thus we have from Proposition 10.4.1 that Φ also has an invariant measure.

The uniqueness is equally easy. If Φ has another subinvariant measure µ, then
by Proposition 10.4.1 the split measure µ∗ is subinvariant for Φ̌, and since from
Theorem 10.2.1, the invariant measure π̌ is unique (up to constant multiples) for Φ̌,
we must have for some c > 0 that µ∗ = cπ̌. By linearity this gives µ = cπ as required.

�
We can, quite easily, lift this result to the whole chain even in the case where we

do not have strong aperiodicity by considering the resolvent chain, since the chain
and the resolvent share the same invariant measures.

Theorem 10.4.3 For any ε ∈ (0, 1), a measure π is invariant for the resolvent Kaε

if and only if it is invariant for P .

Proof If π is invariant with respect to P then by (10.4) it is also invariant for Ka,
for any sampling distribution a.

To see the converse, suppose that π satisfies πKaε = π for some ε ∈ (0, 1), and
consider the chain of equalities

πP = (1− ε)
∞∑

k=0

εkπP k+1
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= (1− ε)ε−1(
∞∑

k=0

εkπP k − π)

= ε−1(πKaε − (1− ε)π)
= π.

�
This now gives us immediately

Theorem 10.4.4 If Φ is recurrent then Φ has a unique (up to constant multiples)
subinvariant measure which is invariant.

Proof Using Theorem 5.2.3, we have that the Kaε-chain is strongly aperiodic,
and from Theorem 8.2.4 we know that the Kaε-chain is recurrent. Let π be the
unique invariant measure for the Kaε-chain, guaranteed from Proposition 10.4.2. From
Theorem 10.4.3 π is also invariant for Φ.

Suppose that µ is subinvariant for Φ. Then by (10.7) we have that µ is also
subinvariant for the Kaε-chain, and so there is a constant c > 0 such that µ = cπ.
Hence we have shown that π is the unique (up to constant multiples) invariant measure
for Φ. �

We may now equate positivity of Φ to positivity for its skeletons as well as the
resolvent chains.

Theorem 10.4.5 Suppose that Φ is ψ-irreducible and aperiodic. Then, for each m,
a measure π is invariant for the m-skeleton if and only if it is invariant for Φ.

Hence, under aperiodicity, the chain Φ is positive if and only if each of the m-
skeletons Φm is positive.

Proof If π is invariant for Φ then it is obviously invariant for Φm, by (10.4).
Conversely, if πm is invariant for the m-skeleton then by aperiodicity the measure

πm is the unique invariant measure (up to constant multiples) for Φm. In this case
write

π(A) =
1
m

m−1∑
k=0

∫
πm(dw)P k(w,A), A ∈ B(X).

From the Pm-invariance we have, using operator theoretic notation,

πP =
1
m

m−1∑
k=0

πmP
k+1 = π

so that π is an invariant measure for P . Moreover, since π is invariant for P , it is also
invariant for Pm from (10.4), and so by uniqueness of πm, for some c > 0 we have
π = cπm. But as π is invariant for P j for every j, we have from the definition that

π = c−1 1
m

m−1∑
k=0

∫
πP k+1 = c−1π

and so πm = π. �
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10.4.2 Minimal subinvariant measures

In order to use invariant measures for recurrent chains, we shall study in some detail
the structure of the invariant measures we have now proved to exist in Theorem 10.2.1.
We do this through the medium of subinvariant measures, and we note that, in this
section at least, we do not need to assume any form of irreducibility. Our goal is
essentially to give a more general version of Kac’s Theorem.

Assume that µ is an arbitrary subinvariant measure, and let A ∈ B(X) be such
that 0 < µ(A) <∞. Define the measure µ◦

A by

µ◦
A(B) =

∫
A
µ(dy)UA(y,B), B ∈ B(X). (10.28)

Proposition 10.4.6 The measure µ◦
A is subinvariant, and minimal in the sense that

µ(B) ≥ µ◦
A(B) for all B ∈ B(X).

Proof If µ is subinvariant, then we have first that

µ(B) ≥
∫

A
µ(dw)P (w,B);

assume inductively that µ(B) ≥
∫
A µ(dw)

∑n
m=1 AP

m(w,B), for all B. Then, by
subinvariance,

µ(B) ≥
∫

Ac

[∫
A
µ(dw)

n∑
m=1

AP
m(w, dv)

]
P (v,B) +

∫
A
µ(dw)P (w,B)

=
∫

A
µ(dw)

n+1∑
m=1

AP
m(w,B).

Hence the induction holds for all n, and taking n ↑ ∞ shows that

µ(B) ≥
∫

A
µ(dw)UA(w,B)

for all B. Now by this minimality of µ◦
A

µ◦
A(B) =

∫
A
µ(dw)P (w,B) +

∫
A
µ(dw)

∞∑
m=2

AP
m(w,B)

≥
∫

A
µ◦

A(dw)P (w,B) +
∫

Ac
[
∫

A
µ(dw)

∞∑
m=1

AP
m(w, dv)]P (v,B)

=
∫
X
µ◦

A(dw)P (w,B).

Hence µ◦
A is subinvariant also. �

Recall that we define A := {x : L(x,A) > 0}. We now show that if the set A in
the definition of µ◦

A is Harris recurrent, the minimal subinvariant measure is in fact
invariant and identical to µ itself on A.

Theorem 10.4.7 If L(x,A) ≡ 1 for µ-almost all x ∈ A, then we have

(i) µ(B) = µ◦
A(B) for B ⊂ A;

(ii) µ◦
A is invariant and µ◦

A(Ac) = 0.
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Proof (i) We first show that µ(B) = µ◦
A(B) for B ⊆ A.

For any B ⊆ A, since L(x,A) ≡ 1 for µ-almost all x ∈ A, we have from minimality
of µ◦

A

µ(A) = µ(B) + µ(A ∩Bc)
≥ µ◦

A(B) + µ◦
A(A ∩Bc)

=
∫

A
µ(dw)UA(w,B) +

∫
A
µ(dw)UA(w,A ∩Bc)

=
∫

A
µ(dw)UA(w,A) = µ(A). (10.29)

Hence, the inequality µ(B) ≥ µ◦
A(B) must be an equality for all B ⊆ A. Thus the

measure µ satisfies

µ(B) =
∫

A
µ(dw)UA(w,B) (10.30)

whenever B ⊆ A.
We now use (10.30) to prove invariance of µ◦

A. For any B ∈ B(X),∫
X
µ◦

A(dy)P (y,B) =
∫

A
µ◦

A(dy)P (y,B)

+
∫

Ac

[∫
A
µ◦

A(dw)UA(w, dy)
]
P (y,B)

=
∫

A
µ◦

A(dy)

[
P (y,B) +

∞∑
2

AP
n(y,B)

]
= µ◦

A(B) (10.31)

and so µ◦
A is invariant for Φ. It follows by definition that µ◦

A(Ac) = 0, so (ii) is proved.
We now prove (i) by contradiction. Suppose that B ⊆ A with µ(B) > µ◦

A(B).
Then we have from invariance of the resolvent chain in Proposition 10.4.3 and mini-
mality of µ◦

A, and the assumption that Kaε(x,A) > 0 for x ∈ B,

µ(A) ≥
∫
X
µ(dy)Kaε(y,A) >

∫
X
µ◦

A(dy)Kaε(y,A) = µ◦
A(A) = µ(A),

and we thus have a contradiction. �
An interesting consequence of this approach is the identity (10.30). This has the

following interpretation. Assume A is Harris recurrent, and define the process on A,
denoted by ΦA = {ΦA

n }, by starting with Φ0 = x ∈ A, then setting ΦA
1 as the value

of Φ at the next visit to A, and so on. Since return to A is sure for Harris recurrent
sets, this is well defined.

Formally, ΦA is actually constructed from the transition law

UA(x,B) =
∞∑

n=1

AP
n(x,B) = Px{ΦτA ∈ B},

B ⊆ A, B ∈ B(X). Theorem 10.4.7 thus states that for a Harris recurrent set A, any
subinvariant measure restricted to A is actually invariant for the process on A.

One can also go in the reverse direction, starting off with an invariant measure
for the process on A. The following result is proved using the same calculations used
in (10.31):
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Proposition 10.4.8 Suppose that ν is an invariant probability measure supported on
the set A with ∫

A
ν(dx)UA(x,B) = ν(B), B ⊆ A.

Then the measure ν◦ defined as

ν◦(B) :=
∫

A
ν(dx)UA(x,B) B ∈ B(X)

is invariant for Φ. �

10.4.3 The structure of π for recurrent chains

These preliminaries lead to the following key result.

Theorem 10.4.9 Suppose Φ is recurrent. Then the unique (up to constant multiples)
invariant measure π for Φ is equivalent to ψ and satisfies for any A ∈ B+(X), B ∈
B(X),

π(B) =
∫
A π(dy)UA(y,B)

=
∫
A π(dy)Ey

[∑τA
k=1 1l{Φk ∈ B}

]
=

∫
A π(dy)Ey

[∑τA−1
k=0 1l{Φk ∈ B}

] (10.32)

Proof The construction in Theorem 10.2.1 ensures that the invariant measure π
exists. Hence from Theorem 10.4.7 we see that π = π◦

A for any Harris recurrent set A,
and π then satisfies the first equality in (10.32) by construction. The second equality
is just the definition of UA. To see the third equality,

∫
A
π(dy)Ey

[ τA∑
k=1

1l{Φk ∈ B}
]

=
∫

A
π(dy)Ey

[τA−1∑
k=0

1l{Φk ∈ B}
]
,

apply (10.30) which implies that∫
A
π(dy)Ey[1l{ΦτA ∈ B}] =

∫
A
π(dy)Ey[1l{Φ0 ∈ B}].

We finally prove that π ∼= ψ. From Proposition 10.1.2 we need only show that if
ψ(B) = 0 then also π(B) = 0. But since ψ(B̄) = 0, we have that B0 ∈ B+(X), and so
from the representation (10.32),

π(B) =
∫

B0
π(dy)UB0(y,B) = 0,

which is the required result. �
The interpretation of (10.32) is this: for a fixed set A ∈ B+(X), the invariant

measure π(B) is proportional to the amount of time spent in B between visits to
A, provided the chain starts in A with the distribution πA which is invariant for the
chain ΦA on A.

When A is a single point, α, with π(α) > 0 then each visit to α occurs at α. The
chain Φα is hence trivial, and its invariant measure πα is just δα. The representation
(10.32) then reduces to µα given in Theorem 10.2.1.
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We will use these concepts systematically in building the asymptotic theory of
positive chains in Chapter 13 and later work, and in Chapter 11 we develop a number
of conditions equivalent to positivity through this representation of π. The next result
is a foretaste of that work.

Theorem 10.4.10 Suppose that Φ is ψ-irreducible, and let µ denote any subinvari-
ant measure.

(i) The chain Φ is positive if and only if for one, and then every, set with µ(A) > 0∫
A
µ(dy)Ey[τA] <∞. (10.33)

(ii) The measure µ is finite and thus Φ is positive recurrent if for some petite set
C ∈ B+(X)

sup
y∈C

Ey[τC ] <∞. (10.34)

The chain Φ is positive Harris if also

Ex[τC ] <∞, x ∈ X. (10.35)

Proof The first result is a direct consequence of (10.28), since we have

µ◦
A(X) =

∫
A
µ(dy)UA(y,X) =

∫
A
µ(dy)Ey[τA];

if this is finite then µ◦
A is finite and the chain is positive by definition. Conversely, if

the chain is positive then by Theorem 10.4.9 we know that µ must be a finite invariant
measure and (10.33) then holds for every A.

The second result now follows since we know from Proposition 10.1.2 that µ(C) <
∞ for petite C; and hence we have positive recurrence from (10.34) and (i), whilst
the chain is also Harris if (10.35) holds from the criterion in Theorem 9.1.7. �

In Chapter 11 we find a variety of usable and useful conditions for (10.34) and
(10.35) to hold, based on a drift approach which strengthens those in Chapter 8.

10.5 Invariant Measures: General Models

The constructive approach to the existence of invariant measures which we have
featured so far enables us either to develop results on invariant measures for a number
of models, based on the representation in (10.32), or to interpret the invariant measure
probabilistically once we have determined it by some other means.

We now give a variety of examples of this.

10.5.1 Random walk

Consider the random walk on the line, with increment measure Γ , as defined in
(RW1). Then by Fubini’s Theorem and the translation invariance of µLeb we have for
any A ∈ B(X)
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∫
IR
µLeb(dy)P (y,A) =

∫
IR
µLeb(dy)Γ (A− y)

=
∫
IR
µLeb(dy)

∫
IR

1lA−y(x)Γ (dx)

=
∫
IR
Γ (dx)

∫
IR

1lA−x(y)µLeb(dy) (10.36)

= µLeb(A)

since Γ (IR) = 1. We have already used this formula in (6.8): here it shows that
Lebesgue measure is invariant for unrestricted random walk in either the transient or
the recurrent case.

Since Lebesgue measure on IR is infinite, we immediately have from Theo-
rem 10.4.9 that there is no finite invariant measure for this chain: this proves

Proposition 10.5.1 The random walk on IR is never positive recurrent. �

If we put this together with the results in Section 9.5, then we have that when
the mean β of the increment distribution is zero, then the chain is null recurrent.

Finally, we note that this is one case where the interpretation in (10.32) can be
expressed in another way. We have, as an immediate consequence of this interpretation

Proposition 10.5.2 Suppose Φ is a random walk on IR, with spread out increment
measure Γ having zero mean and finite variance.

Let A be any bounded set in IR with µLeb(A) > 0, and let the initial distribution
of Φ0 be the uniform distribution on A. If we let NA(B) denote the mean number
of visits to a set B prior to return to A then for any two bounded sets B,C with
µLeb(C) > 0 we have

E[NA(B)]/E[NA(C)] = µLeb(B)/µLeb(C).

Proof Under the given conditions on Γ we have from Proposition 9.4.5 that the
chain is non-evanescent, and hence recurrent.

Using (10.36) we have that the unique invariant measure with π(A) = 1 is π =
µLeb/π(A), and then the result follows from the form (10.32) of π. �

10.5.2 Forward recurrence time chains

Let us consider the forward recurrence time chain V+
δ defined in Section 3.5 for a

renewal process on IR+. For any fixed δ consider the expected number of visits to an
interval strictly outside [0, δ]. Exactly as we reasoned in the discrete time case studied
in Section 10.3, we have

F [y,∞)dy ≤ U[0,δ](x, dy) ≤ F [y − δ,∞)dy.

Thus, if πδ is to be the invariant probability measure for V+
δ , by using the normalized

version of the representation (10.32)

F [y,∞)dy
[
∫∞
0 F (w,∞)dw]

≤ πδ(dy) ≤
F [y − δ,∞)dy

[
∫∞
δ F (w,∞)dw]

.
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Now we use uniqueness of the invariant measure to note that, since the chain V+
δ

is the “two-step” chain for the chain V+
δ/2, the invariant measures πδ and πδ/2 must

coincide. Thus letting δ go to zero through the values δ/2n we find that for any δ the
invariant measure is given by

πδ(dy) = m−1F [y,∞)dy (10.37)

where m =
∫∞
0 tF (dt); and πδ is a probability measure provided m <∞.

By direct integration it is also straightforward to show that this is indeed the
invariant measure for V+

δ .
This form of the invariant measure thus reinforces the fact that the quantity

F [y,∞)dy is the expected amount of time spent in the infinitesimal set dy on each
excursion from the point {0}, even though in the discretized chain V+

δ the point {0}
is never actually reached.

10.5.3 Ladder chains and GI/G/1 queues

General ladder chains We will now turn to a more complex structure and see how
far the representation of the invariant measure enables us to carry the analysis.

Recall from Section 3.5.4 the Markov chain constructed on ZZ+ × IR to analyze
the GI/G/1 queue, with the “ladder-invariant” transition kernel

P (i, x; j ×A) = 0, j > i+ 1
P (i, x; j ×A) = Λi−j+1(x,A), j = 1, . . . , i+ 1
P (i, x; 0×A) = Λ∗

i (x,A).
(10.38)

Let us consider the general chain defined by (10.38), where we can treat x and
A as general points in and subsets of X, so that the chain Φ now moves on a ladder
whose (countable number of) rungs are general in nature. In the special case of the
GI/G/1 model the results specialize to the situation where X = IR+, and there are
many countable models where the rungs are actually finite and matrix methods are
used to achieve the following results.

Using the representation of π, it is possible to construct an invariant measure for
this chain in an explicit way; this then gives the structure of the invariant measure
for the GI/G/1 queue also.

Since we are interested in the structure of the invariant probability measure we
make the assumption in this section that the chain defined by (10.38) is positive
Harris and ψ([0]) > 0, where [0] := {0 × X} is the bottom “rung” of the ladder. We
shall explore conditions for this to hold in Chapter 19.

Our assumption ensures we can reach the bottom of the ladder with probability
one. Let us denote by π0 the invariant probability measure for the process on [0], so
that π0 can be thought of as a measure on B(X).

Our goal will be to prove that the structure of the invariant measure for Φ is an
“operator-geometric” one, mimicking the structure of the invariant measure developed
in Section 10.3 for skip-free random walk on the integers.

Theorem 10.5.3 The invariant measure π for Φ is given by

π(k ×A) =
∫
X
π0(dy)Sk(y,A) (10.39)
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where
Sk(y,A) =

∫
X
S(y, dz)Sk−1(z,A) (10.40)

for a kernel S which is the minimal solution of the operator equation

S(y,B) =
∞∑

k=0

∫
X
Sk(y, dz)Λk(z,B), x ∈ X, B ∈ B(X). (10.41)

Proof Using the structural result (10.32) we have

π(k ×A) =
∫
[0]
π0(dy)U[0](0, y; k ×B) (10.42)

so that if we write
S(k)(y,A) := U[0](0, y; k ×A) (10.43)

we have by definition

π(k ×A) =
∫
[0]
π0(dy)S(k)(y,A). (10.44)

Now if we define the set [n] = {0, 1, . . . , n}×X, by the fact that the chain is translation
invariant above the zero level we have that the functions

U[n](n, y; (n+ k)×B) = U[0](0, y; k ×B) = S(k)(y,A) (10.45)

are independent of n. Using a last exit decomposition over visits to [k], together with
the “skip-free” property which ensures that the last visit to [k] prior to reaching
(k + 1)× X takes place at the level k × X, we find

[0]P
�(0, x; (k + 1)×A)

=
∑�−1

j=1

∫
X [0]P

j(0, x; k × dy)[k]P
�−j(k, y; (k + 1)×A)

=
∑�−1

j=1

∫
X [0]P

j(0, x; k × dy)[0]P �−j(0, y; 1×A)
(10.46)

Summing over � and using (10.45) shows that the operators S(k)(y,A) have the geo-
metric form in (10.40) as stated.

To see that the operator S satisfies (10.41), we decompose [0]P
n over the position

at time n− 1. By construction [0]P
1(0, x; 1×B) = Λ0(x,B), and for n > 1,

[0]P
n(0, x; 1×B) =

∑
k≥1

∫
X

[0]P
n−1(0, x; k × dy)Λk(y,B); (10.47)

summing over n and using (10.40) gives the result (10.41).
To prove minimality of the solution S to (10.41), we first define, for N ≥ 1, the

partial sums

SN (x; k ×B) :=
N∑

j=1
[0]P

j(0, x; k ×B) (10.48)

so that as N →∞, SN (x; 1×B) → S(x;B).
Using (10.46) these partial sums also satisfy

SN−1(x; k + 1×B) ≤
∫
SN−1(x; k × dy)SN−1(y; 1×B)
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so that
SN−1(x; k + 1×B) ≤

∫
Sk

N−1(x; 1× dy)SN−1(y; 1×B). (10.49)

Moreover from (10.47)

SN (x; 1×B) = Λ0(x,B) +
∑
k≥1

∫
X
SN−1(x; k × dy)Λk(y,B). (10.50)

Substituting from (10.49) in (10.50) shows that

SN (x; 1, B) ≤
∑
k

∫
X
Sk

N−1(x; 1, dy)Λk(y,B). (10.51)

Now let S∗ be any other solution of (10.41). Notice that S1(x; 1 × B) = Λ0(x,B) ≤
S∗(x,B), from (10.41). Assume inductively that SN−1(x; 1 × B) ≤ S∗(x,B) for all
x,B: then we have from (10.51) that

SN (x; 1×B) ≤
∑
k

∫
X

[S∗]k(x, dy)Λk(y,B) = S∗(x,B). (10.52)

Taking limits as N →∞ gives S(x,B) ≤ S∗(x,B) for all x,B as required. �
This result is a generalized version of (10.25) and (10.26), where the “rungs” on

the ladder were singletons.

The GI/G/1 queue Note that in the ladder processes above, the returns to the
bottom rung of the ladder, governed by the kernels Λ∗

i in (10.38), only appear in the
representation (10.39) implicitly, through the form of the invariant measure π0 for
the process on the set [0].

In particular cases it is of course of critical importance to identify this component
of the invariant measure also. In the case of a singleton rung, this is trivial since the
rung is an atom. This gives the explicit form in (10.25) and (10.26).

We have seen in Section 3.5 that the general ladder chain is a model for the
GI/G/1 queue, if we make the particular choice of

Φn = (Nn, Rn), n ≥ 1

where Nn is the number of customers at T ′
n− and Rn is the residual service time at

T ′
n+. In this case the representation of π[0] can also be made explicit.

For the GI/G/1 chain we have that the chain on [0] has the distribution of Rn at
a time-point {T ′

n+} where there were no customers at {T ′
n−}: so at these time points

Rn has precisely the distribution of the service brought by the customer arriving at
T ′

n, namely H.
So in this case we have that the process on [0], provided [0] is recurrent, is a

process of i.i.d random variables with distribution H, and thus is very clearly positive
Harris with invariant probability H.

Theorem 10.5.3 then gives us

Theorem 10.5.4 The ladder chain Φ describing the GI/G/1 queue has an invariant
probability if and only if the measure π given by

π(k ×A) =
∫
X
H(dy)Sk(y,A) (10.53)
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is a finite measure, where S is the minimal solution of the operator equation

S(y,B) =
∞∑

k=0

∫
X
Sk(y, dz)Λk(z,B), x ∈ X, B ∈ B(X). (10.54)

In this case π suitably normalized is the unique invariant probability measure for Φ.

Proof Using the proof of Theorem 10.5.3 we have that π is the minimal subin-
variant measure for the GI/G/1 queue, and the result is then obvious. �

10.5.4 Linear state space models

We now consider briefly a chain where we utilize the property (10.5) to develop the
form of the invariant measure. We will return in much more detail to this approach
in Chapter 12.

We have seen in (10.5) that limiting distributions provide invariant probability
measures for Markov chains, provided such limits exist. The linear model has a struc-
ture which makes it easy to construct an invariant probability through this route,
rather than through the minimal measure construction above.

Suppose that (LSS1) and (LSS2) are satisfied, and observe that since W is as-
sumed i.i.d. we have for each initial condition X0 = x0 ∈ IRn,

Xk = F kx0 +
k−1∑
i=0

F iGWk−i

∼ F kx0 +
k−1∑
i=0

F iGWi.

This says that for any continuous, bounded function g: IRn → IR,

P kg (x0) = Ex0 [g(Xk)] = E[g(F kx0 +
k−1∑
i=0

F iGWi)].

Under the additional hypothesis that the eigenvalue condition (LSS5) holds, it follows
from Lemma 6.3.4 that F i → 0 as i → ∞ at a geometric rate. Since W has a finite
mean then it follows from Fubini’s Theorem that the sum

X∞ :=
∞∑
i=0

F iGWi

converges absolutely, with E[|X∞|] ≤ E[|W |]∑∞
i=0 ‖F iG‖ <∞, with ‖ · ‖ an appropri-

ate matrix norm. Hence by the Dominated Convergence Theorem, and the assumption
that g is continuous,

lim
k→∞

P kg (x0) = E[g(X∞)].

Let us write π∞ for the distribution of X∞. Then π∞ is an invariant probability. For
take g bounded and continuous as before, so that using the Feller property for X in
Chapter 6 we have that Pg is continuous. For such a function g
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π∞(Pg) = E[Pg(X∞)] = lim
k→∞

P k(x0, Pg)

= lim
k→∞

P k+1g (x0)

= E[g(X∞)] = π∞(g).

Since π is determined by its values on continuous bounded functions, this proves that
π is invariant.

In the Gaussian case (LSS3) we can express the invariant probability more ex-
plicitly. In this case X∞ itself is Gaussian with mean zero and covariance

E[X∞X�
∞] =

∞∑
k=0

F iGG�F i�

That is, π = N(0, Σ) where Σ is equal to the controllability grammian for the linear
state space model, defined in (4.17).

The covariance matrix Σ is full rank if and only if the controllability condition
(LCM3) holds, and in this case, for any k greater than or equal to the dimension of
the state space, P k(x, dy) possesses the density pk(x, y)dy given in (4.18). It follows
immediately that when (LCM3) holds, the probability π possesses the density p on
IRn given by

p(y) = (2π|Σ|)−n/2 exp{−1
2y

TΣ−1y}, (10.55)

while if the controllability condition (LCM3) fails to hold then the invariant prob-
ability is concentrated on the controllable subspace X0 = R(Σ) ⊂ X and is hence
singular with respect to Lebesgue measure.

10.6 Commentary

The approach to positivity given here is by no means standard. It is much more com-
mon, especially with countable spaces, to classify chains either through the behavior
of the sequence Pn, with null chains being those for which Pn(x,A) → 0 for, say,
petite sets A and all x, and positive chains being those for which such limits are not
always zero; a limiting argument such as that in (10.5), which we have illustrated in
Section 10.5.4, then shows the existence of π in the positive case.

Alternatively, positivity is often defined through the behavior of the expected
return times to petite or other suitable sets.

We will show in Chapter 11 and Chapter 18 that even on a general space all of
these approaches are identical. Our view is that the invariant measure approach is
much more straightforward to understand than the Pn approach, and since one can
now develop through the splitting technique a technically simple set of results this
gives an appropriate classification of recurrent chains.

The existence of invariant probability measures has been a central topic of Markov
chain theory since the inception of the subject. Doob [68] and Orey [208] give some
good background. The approach to countable recurrent chains through last exit prob-
abilities as in Theorem 10.2.1 is due to Derman [61], and has not changed much since,
although the uniqueness proofs we give owe something to Vere-Jones [284]. The con-
struction of π given here is of course one of our first serious uses of the splitting
method of Nummelin [200]; for strongly aperiodic chains the result is also derived
in Athreya and Ney [12]. The fact that one identifies the actual structure of π in
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Theorem 10.4.9 will also be of great use, and Kac’s Theorem [114] provides a valu-
able insight into the probabilistic difference between positive and null chains: this is
pursued in the next chapter in considerably more detail.

Before the splitting technique, verifying conditions for the existence of π had
appeared to be a deep and rather difficult task. It was recognized in the relatively
early development of general state space Markov chains that one could prove the
existence of an invariant measure for Φ from the existence of an invariant probability
measure for the “process on A”. The approach pioneered by Harris [95] for finding the
latter involves using deeper limit theorems for the “process on A” in the special case
where A is a νn-small set, (called a C-set in Orey [208]) if an = δn and νn{A} > 0.
In this methodology, it is first shown that limiting probabilities for the process on
A exist, and the existence of such limits then provides an invariant measure for the
process on A: by the construction described in this chapter this can be lifted to an
invariant measure for the whole chain. Orey [208] remains an excellent exposition of
the development of this approach.

This “process on A” method is still the only one available without some regener-
ation, and we will develop this further in a topological setting in Chapter 12, using
many of the constructions above.

We have shown that invariant measures exist without using such deep asymptotic
properties of the chain, indicating that the existence and uniqueness of such measures
is in fact a result requiring less of the detailed structure of the chain.

The minimality approach of Section 10.4.2 of course would give another route to
Theorem 10.4.4, provided we had some method of proving that a “starting” subinvari-
ant measure existed. There is one such approach, which avoids splitting and remains
conceptually simple. This involves using the kernels

U (r)(x,A) =
∞∑

n=1

Pn(x,A)rn ≥ r

∫
X
U (r)(x, dy)P (y,A) (10.56)

defined for 0 < r < 1. One can then define a subinvariant measure for Φ as a limit

lim
r↑1

πr( · ) := lim
r↑1

[
∫

C
νn(dy)U (r)(y, · )]/[

∫
C
νn(dy)U (r)(y, C)]

where C is a νn-small set. The key is the observation that this limit gives a non-trivial
σ-finite measure due to the inequalities

Mj ≥ πr(C̄(j)) (10.57)

and
πr(A) ≥ rnνn(A), A ∈ B(X), (10.58)

which are valid for all r large enough. Details of this construction are in Arjas and
Nummelin [8], as is a neat alternative proof of uniqueness.

All of these approaches are now superseded by the splitting approach, but of
course only when the chain is ψ-irreducible. If this is not the case then the existence
of an invariant measure is not simple. The methods of Section 10.4.2, which are
based on Tweedie [280], do not use irreducibility, and in conjunction with those in
Chapter 12 they give some ways of establishing uniqueness and structure for the
invariant measures from limiting operations, as illustrated in Section 10.5.4.
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The general question of existence and, more particularly, uniqueness of invariant
measures for non-irreducible chains remains open at this stage of theoretical develop-
ment.

The invariance of Lebesgue measure for random walk is well known, as is the form
(10.37) for models in renewal theory. The invariant measures for queues are derived
directly in [40], but the motivation through the minimal measure of the geometric
form is not standard. The extension to the operator-geometric form for ladder chains
is in [277], and in the case where the rungs are finite, the development and applications
are given by Neuts [194, 195].

The linear model is analyzed in Snyders [250] using ideas from control theory,
and the more detailed analysis given there allows a generalization of the construction
given in Section 10.5.4. Essentially, if the noise does not enter the “unstable” region
of the state space then the stability condition on the driving matrix F can be slightly
weakened.
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Drift and Regularity

Using the finiteness of the invariant measure to classify two different levels of stability
is intuitively appealing. It is simple, and it also involves a fundamental stability
requirement of many classes of models. Indeed, in time series analysis for example, a
standard starting point, rather than an end-point, is the requirement that the model
be stationary, and it follows from (10.4) that for a stationary version of a model to
exist we are in effect requiring that the structure of the model be positive recurrent.

In this chapter we consider two other descriptions of positive recurrence which
we show to be equivalent to that involving finiteness of π.

The first is in terms of regular sets.

Regularity

A set C ∈ B(X) is called regular when Φ is ψ-irreducible, if

sup
x∈C

Ex[τB] <∞, B ∈ B+(X) (11.1)

The chain Φ is called regular if there is a countable cover of X by regular
sets.

We know from Theorem 10.2.1 that when there is a finite invariant measure and an
atom α ∈ B+(X) then Eα[τα] <∞. A regular set C ∈ B+(X) as defined by (11.1) has
the property not only that the return times to C itself, but indeed the mean hitting
times on any set in B+(X) are bounded from starting points in C.

We will see that there is a second, equivalent, approach in terms of conditions on
the one-step “mean drift”

∆V (x) =
∫
X
P (x, dy)V (y)− V (x) = Ex[V (Φ1)− V (Φ0)]. (11.2)

We have already shown in Chapter 8 and Chapter 9 that for ψ-irreducible chains,
drift towards a petite set implies that the chain is recurrent or Harris recurrent, and
drift away from such a set implies that the chain is transient. The high points in this
chapter are the following much more wide ranging equivalences.
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Theorem 11.0.1 Suppose that Φ is a Harris recurrent chain, with invariant measure
π. Then the following three conditions are equivalent:

(i) The measure π has finite total mass;

(ii) There exists some petite set C ∈ B(X) and MC <∞ such that

sup
x∈C

Ex[τC ] ≤MC ; (11.3)

(iii) There exists some petite set C and some extended valued, non-negative test
function V, which is finite for at least one state in X, satisfying

∆V (x) ≤ −1 + b1lC(x), x ∈ X. (11.4)

When (iii) holds then V is finite on an absorbing full set S and the chain restricted
to S is regular; and any sublevel set of V satisfies (11.3).

Proof That (ii) is equivalent to (i) is shown by combining Theorem 10.4.10 with
Theorem 11.1.4, which also shows that some full absorbing set exists on which Φ is
regular. The equivalence of (ii) and (iii) is in Theorem 11.3.11, whilst the identification
of the set S as the set where V is finite is in Proposition 11.3.13, where we also show
that sublevel sets of V satisfy (11.3). �

Both of these approaches, as well as giving more insight into the structure of
positive recurrent chains, provide tools for further analysis of asymptotic properties
in Part III.

In this chapter, the equivalence of existence of solutions of the drift condition
(11.4) and the existence of regular sets is motivated, and explained to a large degree,
by the deterministic results in Section 11.2. Although there are a variety of proofs of
such results available, we shall develop a particularly powerful approach via a discrete
time form of Dynkin’s Formula.

Because it involves only the one-step transition kernel, (11.4) provides an invalu-
able practical criterion for evaluating the positive recurrence of specific models: we
illustrate this in Section 11.4.

There exists a matching, although less important, criterion for the chain to be
non-positive rather than positive: we shall also prove in Section 11.5.1 that if a test
function satisfies the reverse drift condition

∆V (x) ≥ 0, x ∈ Cc, (11.5)

then provided the increments are bounded in mean, in the sense that

sup
x∈X

∫
P (x, dy)|V (x)− V (y)| <∞ (11.6)

then the mean hitting times Ex[τC ] are infinite for x ∈ Cc.
Prior to considering drift conditions, in the next section we develop through the

use of the Nummelin splitting technique the structural results which show why (11.3)
holds for some petite set C, and why this “local” bounded mean return time gives
bounds on the mean first entrance time to any set in B+(X).
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11.1 Regular chains

On a countable space we have a simple connection between the concept of regularity
and positive recurrence.

Proposition 11.1.1 For an irreducible chain on a countable space, positive recur-
rence and regularity are equivalent.

Proof Clearly, from Theorem 10.2.2, positive recurrence is implied by regularity.
To see the converse note that, for any fixed states x, y ∈ X and any n

Ex[τx] ≥ xP
n(x, y)[Ey[τx] + n].

Since the left hand side is finite for any x, and by irreducibility for any y there is
some n with xP

n(x, y) > 0, we must have Ey[τx] <∞ for all y also. �
It will require more work to find the connections between positive recurrence and

regularity in general.
It is not implausible that positive chains might admit regular sets. It follows

immediately from (10.33) that in the positive recurrent case for any A ∈ B+(X) we
have

Ex[τA] <∞, a.e. x ∈ A [π] (11.7)

Thus we have from the form of π more than enough “almost-regular” sets in the
positive recurrent case.

To establish the existence of true regular sets we first consider ψ-irreducible chains
which possess a recurrent atom α ∈ B+(X). Although it appears that regularity may
be a difficult criterion to meet since in principle it is necessary to test the hitting time
of every set in B+(X), when an atom exists it is only necessary to consider the first
hitting time to the atom.

Theorem 11.1.2 Suppose that there exists an accessible atom α ∈ B+(X).

(i) If Φ is positive recurrent then there exists a decomposition

X = S ∪N (11.8)

where the set S is full and absorbing, and Φ restricted to S is regular.

(ii) The chain Φ is regular if and only if

Ex[τα] <∞ (11.9)

for every x ∈ X.

Proof Let
S := {x : Ex[τα] <∞};

obviously S is absorbing, and since the chain is positive recurrent we have from
Theorem 10.4.10 (ii) that Eα[τα] <∞, and hence α ∈ S. This also shows immediately
that S is full by Proposition 4.2.3.

Let B be any set in B+(X) with B ⊆ αc, so that for π-almost all y ∈ B we have
Ey[τB] < ∞ from (11.7). From ψ-irreducibility there must then exist amongst these
values one w and some n such that BP

n(w,α) > 0. Since
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Ew[τB] ≥ BP
n(w,α)Eα[τB]

we must have Eα[τB] <∞.
Let us set

Sn = {y : Ey[τα] ≤ n}. (11.10)

We have the obvious inequality for any x and any B ∈ B+(X) that

Ex[τB] ≤ Ex[τα] + Eα[τB] (11.11)

so that each Sn is a regular set, and since {Sn} is a cover of S, we have that Φ
restricted to S is regular.

This proves (i): to see (ii) note that under (11.9) we have X = S, so the chain is
regular; whilst the converse is obvious. �

It is unfortunate that the ψ-null set N in Theorem 11.1.2 need not be empty. For
consider a chain on ZZ+ with

P (0, 0) = 1
P (j, 0) = βj > 0

P (j, j + 1) = 1− βj . (11.12)

Then the chain restricted to {0} is trivially regular, and the whole chain is positive
recurrent; but if ∑

j

j∏
1

βk = ∞

then the chain is not regular, and N = {1, 2, . . .} in (11.8).
It is the weak form of irreducibility we use which allows such null sets to exist:

this pathology is of course avoided on a countable space under the normal form of
irreducibility, as we saw in Proposition 11.1.1.

However, even under ψ-irreducibility we can extend this result without requiring
an atom in the original space.

Let us next consider the case where Φ is strongly aperiodic, and use the Nummelin
splitting to define Φ̌ on X̌ as in Section 5.1.1.

Proposition 11.1.3 Suppose that Φ is strongly aperiodic and positive recurrent.
Then there exists a decomposition

X = S ∪N (11.13)

where the set S is full and absorbing, and Φ restricted to S is regular.

Proof We know from Proposition 10.4.2 that the split chain is also positive re-
current with invariant probability measure π̌; and thus for π̌-a.e. xi ∈ X̌, by (11.7) we
have that

Ěxi [τα̌] <∞. (11.14)

Let Š ⊆ X̌ denote the set where (11.14) holds. Then it is obvious that Š is absorbing,
and by Theorem 11.1.2 the chain Φ̌ is regular on Š. Let {Šn} denote the cover of Š
with regular sets.
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Now we have Ň = X̌\Š ⊆ X0, and so if we write N as the copy of Ň and define
S = X\N , we can cover S with the matching copies Sn. We then have for x ∈ Sn and
any B ∈ B+(X)

Ex[τB] ≤ Ěx0 [τB] + Ěx1 [τB]

which is bounded for x0 ∈ Šn and all x1 ∈ α̌, and hence for x ∈ Sn.
Thus S is the required full absorbing set for (11.13) to hold. �
It is now possible, by the device we have used before of analyzing the m-skeleton,

to show that this proposition holds for arbitrary positive recurrent chains.

Theorem 11.1.4 Suppose that Φ is ψ-irreducible. Then the following are equivalent:

(i) The chain Φ is positive recurrent.

(ii) There exists a decomposition
X = S ∪N (11.15)

where the set S is full and absorbing, and Φ restricted to S is regular.

Proof Assume Φ is positive recurrent. Then the Nummelin splitting exists for
some m-skeleton from Proposition 5.4.5, and so we have from Proposition 11.1.3 that
there is a decomposition as in (11.15) where the set S = ∪Sn and each Sn is regular
for the m-skeleton.

But if τm
B denotes the number of steps needed for the m-skeleton to reach B, then

we have that
τB ≤ m τm

B

and so each Sn is also regular for Φ as required.
The converse is almost trivial: when the chain is regular on S then there exists

a petite set C inside S with supx∈C Ex[τC ] < ∞, and the result follows from Theo-
rem 10.4.10. �

Just as we may restrict any recurrent chain to an absorbing set H on which the
chain is Harris recurrent, we have here shown that we can further restrict a positive
recurrent chain to an absorbing set where it is regular.

We will now turn to the equivalence between regularity and mean drift conditions.
This has the considerable benefit that it enables us to identify exactly the null set
on which regularity fails, and thus to eliminate from consideration annoying and
pathological behavior in many models. It also provides, as noted earlier, a sound
practical approach to assessing stability of the chain.

To motivate and perhaps give more insight into the connections between hitting
times and mean drift conditions we first consider deterministic models.

11.2 Drift, hitting times and deterministic models

In this section we analyze a deterministic state space model, indicating the role we
might expect the drift conditions (11.4) on ∆V to play. As we have seen in Chapter 4
and Chapter 7 in examining irreducibility structures, the underlying deterministic
models for state space systems foreshadow the directions to be followed for systems
with a noise component.

Let us then assume that there is a topology on X, and consider the deterministic
process known as a semi-dynamical system.
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The Semi-Dynamical System

(DS1) The process Φ is deterministic, and generated by the non-
linear difference equation, or semi-dynamical system,

Φk+1 = F (Φk), k ∈ ZZ+, (11.16)

where F : X → X is a continuous function.

Although Φ is deterministic, it is certainly a Markov chain (if a trivial one in a
probabilistic sense), with Markov transition operator P defined through its operations
on any function f on X by

Pf ( · ) = f(F ( · )).

Since we have assumed the function F to be continuous, the Markov chain Φ has the
Feller property, although in general it will not be a T-chain.

For such a deterministic system it is standard to consider two forms of stability
known as recurrence and ultimate boundedness. We shall call the deterministic system
(11.16) recurrent if there exists a compact subset C ⊂ X such that σC(x) < ∞ for
each initial condition x ∈ X. Such a concept of recurrence here is almost identical to
the definition of recurrence for stochastic models. We shall call the system (11.16)
ultimately bounded if there exists a compact set C ⊂ X such that for each fixed initial
condition Φ0 ∈ X, the trajectory starting at Φ0 eventually enters and remains in C.
Ultimate boundedness is loosely related to positive recurrence: it requires that the
limit points of the process all lie within a compact set C, which is somewhat analogous
to the positivity requirement that there be an invariant probability measure π with
π(C) > 1− ε for some small ε.

Drift Condition for the Semi-dynamical System

(DS2) There exists a positive function V : X → IR+ and a com-
pact set C ⊂ X and constant M <∞ such that

∆V (x) := V (F (x))− V (x) ≤ −1

for all x lying outside the compact set C, and

sup
x∈C

V (F (x)) ≤M.
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If we consider the sequence V (Φn) on IR+ then this condition requires that this
sequence move monotonically downwards at a uniform rate until the first time that
Φ enter C. It is therefore not surprising that Φ hits C in a finite time under this
condition.

Theorem 11.2.1 Suppose that Φ is defined by (DS1).

(i) If (DS2) is satisfied, then Φ is ultimately bounded.

(ii) If Φ is recurrent, then there exists a positive function V such that (DS2) holds.

(iii) Hence Φ is recurrent if and only if it is ultimately bounded.

Proof To prove (i), let Φ(x, n) = Fn(x) denote the deterministic position of Φn

if the chain starts at Φ0 = x. We first show that the compact set C ′ defined as

C ′ :=
⋃
{Φ(x, i) : x ∈ C, 1 ≤ i ≤M + 1} ∪ C

where M is the constant used in (DS2), is invariant as defined in Chapter 7.
For any x ∈ C we have Φ(x, i) ∈ C for some 1 ≤ i ≤ M + 1 by (DS2) and the

hypothesis that V is positive. Hence for an arbitrary j ∈ ZZ+, Φ(x, j) = Φ(y, i) for
some y ∈ C, and some 1 ≤ i ≤M + 1. This implies that Φ(x, j) ∈ C ′ and hence C ′ is
equal to the invariant set

C ′ =
∞⋃
i=1

{Φ(x, i) : x ∈ C} ∪ C.

Because V is positive and decreases on Cc, every trajectory must enter the set C,
and hence also C ′ at some finite time. We conclude that Φ is ultimately bounded.

We now prove (ii). Suppose that a compact set C1 exists such that σC1(x) < ∞
for each initial condition x ∈ X. Let O be an open pre-compact set containing C1,
and set C := cl O. Then the test function

V (x) := σO(x)

satisfies (DS2). To see this, observe that if x ∈ Cc, then V (F (x)) = V (x)−1 and hence
the first inequality is satisfied. By assumption the function V is everywhere finite,
and since O is open it follows that V is upper semicontinuous from Proposition 6.1.1.
This implies that the second inequality in (DS2) holds, since a finite-valued upper
semicontinuous function is uniformly bounded on compact sets. �

For a semi-dynamical system, this result shows that recurrence is actually equiva-
lent to ultimate boundedness. In this the deterministic system differs from the general
NSS(F ) model with a non-trivial random component. More pertinently, we have also
shown that the semi-dynamical system is ultimately bounded if and only if a test
function exists satisfying (DS2).

This test function may always be taken to be the time to reach a certain compact
set. As an almost exact analogue, we now go on to see that the expected time to reach
a petite set is the appropriate test function to establish positive recurrence in the
stochastic framework; and that, as we show in Theorem 11.3.4 and Theorem 11.3.5,
the existence of a test function similar to (DS2) is equivalent to positive recurrence.
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11.3 Drift criteria for regularity

11.3.1 Mean drift and Dynkin’s Formula

The deterministic models of the previous section lead us to hope that we can obtain
criteria for regularity by considering a drift criterion for positive recurrence based on
(11.4).

What is somewhat more surprising is the depth of these connections and the
direct method of attack on regularity which we have through this route.

The key to exploiting the effect of mean drift is the following condition, which is
stronger on Cc than (V1) and also requires a bound on the drift away from C.

Strict Drift Towards C

(V2) For some set C ∈ B(X), some constant b < ∞, and an
extended real-valued function V : X→ [0,∞]

∆V (x) ≤ −1 + b1lC(x) x ∈ X. (11.17)

This is a portmanteau form of the following two equations:

∆V (x) ≤ −1, x ∈ Cc, (11.18)

for some non-negative function V and some set C ∈ B(X); and for some M <∞,

∆V (x) ≤M, x ∈ C. (11.19)

Thus we might hope that (V2) might have something of the same impact for stochastic
models as (DS2) has for deterministic chains.

In essentially the form (11.18) and (11.19) these conditions were introduced by
Foster [82] for countable state space chains, and shown to imply positive recurrence.
Use of the form (V2) will actually make it easier to show that the existence of ev-
erywhere finite solutions to (11.17) is equivalent to regularity and moreover we will
identify the sublevel sets of the test function V as regular sets.

The central technique we will use to make connections between one-step mean
drifts and moments of first entrance times to appropriate (usually petite) sets hinges
on a discrete time version of a result known for continuous time processes as Dynkin’s
Formula.

This formula yields not only those criteria for positive Harris chains and regu-
larity which we discuss in this chapter, but also leads in due course to necessary and
sufficient conditions for rates of convergence of the distributions of the process; nec-
essary and sufficient conditions for finiteness of moments; and sample path ergodic
theorems such as the Central Limit Theorem and Law of the Iterated Logarithm. All
of these are considered in Part III.
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Dynkin’s Formula is a sample path formula, rather than a formula involving
probabilistic operators. We need to introduce a little more notation to handle such
situations.

Recall from Section 3.4 the definition

FΦ
k = σ{Φ0, . . . , Φk}, (11.20)

and let {Zk,FΦ
k } be an adapted sequence of positive random variables. For each k, Zk

will denote a fixed Borel measurable function of (Φ0, . . . , Φk), although in applications
this will usually (although not always) be a function of the last position, so that

Zk(Φ0, . . . , Φk) = Z(Φk)

for some measurable function Z. We will somewhat abuse notation and let Zk denote
both the random variable, and the function on Xk+1.

For any stopping time τ define

τn := min{n, τ, inf {k ≥ 0 : Zk ≥ n}}.

The random time τn is also a stopping time since it is the minimum of stopping times,
and the random variable

∑τn−1
i=0 Zi is essentially bounded by n2.

Dynkin’s Formula will now tell us that we can evaluate the expected value of
Zτn by taking the initial value Z0 and adding on to this the average increments at
each time until τn. This is almost obvious, but has wide-spread consequences: in
particular it enables us to use (V2) to control these one-step average increments,
leading to control of the expected overall hitting time.

Theorem 11.3.1 (Dynkin’s Formula) For each x ∈ X and n ∈ ZZ+,

Ex[Zτn ] = Ex[Z0] + Ex

[ τn∑
i=1

(E[Zi | FΦ
i−1]− Zi−1)

]

Proof For each n ∈ ZZ+,

Zτn = Z0 +
τn∑
i=1

(Zi − Zi−1)

= Z0 +
n∑

i=1

1l{τn ≥ i}(Zi − Zi−1)

Taking expectations and noting that {τn ≥ i} ∈ FΦ
i−1 we obtain

Ex[Zτn ] = Ex[Z0] + Ex

[ n∑
i=1

Ex[Zi − Zi−1 | FΦ
i−1]1l{τn ≥ i}

]

= Ex[Z0] + Ex

[ τn∑
i=1

(Ex[Zi | FΦ
i−1]− Zi−1)

]
�

As an immediate corollary we have
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Proposition 11.3.2 Suppose that there exist two sequences of positive functions
{sk, fk : k ≥ 0} on X, such that

E[Zk+1 | FΦ
k ] ≤ Zk − fk(Φk) + sk(Φk).

Then for any initial condition x and any stopping time τ

Ex[
τ−1∑
k=0

fk(Φk)] ≤ Z0(x) + Ex[
τ−1∑
k=0

sk(Φk)].

Proof Fix N > 0 and note that

E[Zk+1 | FΦ
k ] ≤ Zk − fk(Φk) ∧N + sk(Φk).

By Dynkin’s Formula

0 ≤ Ex[Zτn ] ≤ Z0(x) + Ex

[ τn∑
i=1

(si−1(Φi−1)− [fi−1(Φi−1) ∧N ])
]

and hence by adding the finite term

Ex

[ τn∑
k=1

[fk−1(Φk−1) ∧N ]
]

to each side we get

Ex

[ τn∑
k=1

[fk−1(Φk−1)∧N ]
]
≤ Z0(x)+Ex

[ τn∑
k=1

sk−1(Φk−1)
]
≤ Z0(x)+Ex

[ τ∑
k=1

sk−1(Φk−1)
]
.

Letting n → ∞ and then N → ∞ gives the result by the Monotone Convergence
Theorem. �

Closely related to this we have

Proposition 11.3.3 Suppose that there exists a sequence of positive functions {εk :
k ≥ 0} on X, c <∞, such that

(i) εk+1(x) ≤ cεk(x), k ∈ ZZ+, x ∈ Ac;

(ii) E[Zk+1 | FΦ
k ] ≤ Zk − εk(Φk), σA > k.

Then

Ex[
τA−1∑
i=0

εi(Φi)] ≤
{
Z0(x), x ∈ Ac;
ε0(x) + cPZ0 (x), x ∈ X.

Proof Let Zk and εk denote the random variables Zk(Φ0, . . . , Φk) and εk(Φk)
respectively.

By hypothesis E[Zk | FΦ
k−1]− Zk−1 ≤ −εk−1 whenever 1 ≤ k ≤ σA. Hence for all

n ∈ ZZ+ and x ∈ X we have by Dynkin’s Formula

0 ≤ Ex[Zτn
A
] ≤ Z0(x)− Ex

[ τn
A∑

i=1

εi−1(Φi−1)
]
, x ∈ Ac.
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By the Monotone Convergence Theorem it follows that for all initial conditions,

Ex

[ τA∑
i=1

εi−1(Φi−1)
]
≤ Z0(x) x ∈ Ac.

This proves the result for x ∈ Ac.
For arbitrary x we have

Ex

[ τA∑
i=1

εi−1(Φi−1)
]

= ε0(x) + Ex

[
EΦ1

( τA∑
i=1

εi(Φi−1)
)
1l(Φ1 ∈ Ac)

]
≤ ε0(x) + cPZ0 (x).

�
We can immediately use Dynkin’s Formula to prove

Theorem 11.3.4 Suppose C ∈ B(X), and V satisfies (V2). Then

Ex[τC ] ≤ V (x) + b1lC(x)

for all x. Hence if C is petite and V is everywhere finite and bounded on C then Φ
is positive Harris recurrent.

Proof Applying Proposition 11.3.3 with Zk = V (Φk), εk = 1 we have the bound

Ex[τC ] ≤
{
V (x) for x ∈ Cc

1 + PV (x) x ∈ C

Since (V2) gives PV ≤ V − 1 + b on C, we have the required result.
If V is everywhere finite then this bound trivially implies L(x,C) ≡ 1 and so,

if C is petite, the chain is Harris recurrent from Proposition 9.1.7. Positivity follows
from Theorem 10.4.10 (ii). �

We will strengthen Theorem 11.3.4 below in Theorem 11.3.11 where we show
that V need not be bounded on C, and moreover that (V2) gives bounds on the
mean return time to general sets in B+(X).

11.3.2 Hitting times and test functions

The upper bound in Theorem 11.3.4 is a typical consequence of the drift condition.
The key observation in showing the actual equivalence of mean drift towards petite
sets and regularity is the identification of specific solutions to (V2) when the chain is
regular.

For any set A ∈ B(X) we define the kernel GA on (X,B(X)) through

GA(x, f) := [I + IAcUA] (x, f) = Ex[
σA∑
k=0

f(Φk)] (11.21)

where x is an arbitrary state, and f is any positive function.
For f ≥ 1 fixed we will see in Theorem 11.3.5 that the function V = GC( · , f)

satisfies (V2), and also a generalization of this drift condition to be developed in later
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chapters. In this chapter we concentrate on the special case where f ≡ 1 and we will
simplify the notation by setting

VC(x) = GC(x,X) = 1 + Ex[σC ]. (11.22)

Theorem 11.3.5 For any set A ∈ B(X) we have

(i) The kernel GA satisfies the identity

PGA = GA − I + IAUA

(ii) The function VA( · ) = GA( · ,X) satisfies the identity

PVA(x) = VA(x)− 1, x ∈ Ac. (11.23)

PVA(x) = Ex[τA]− 1, x ∈ A. (11.24)

Thus if C ∈ B+(X) is regular, VC is a solution to (11.17).

(iii) The function V = VA − 1 is the pointwise minimal solution on Ac to the in-
equalities

PV (x) ≤ V (x)− 1, x ∈ Ac. (11.25)

Proof From the definition

UA :=
∞∑

k=0

(PIAc)kP

we see that UA = P + PIAcUA = PGA. Since UA = GA − I + IAUA we have (i), and
then (ii) follows.

We have that VA solves (11.25) from (ii); but if V is any other solution then it is
pointwise larger than VA exactly as in Theorem 11.3.4. �

We shall use repeatedly the following lemmas, which guarantee finiteness of solu-
tions to (11.17), and which also give a better description of the structure of the most
interesting solution, namely VC .

Lemma 11.3.6 Any solution of (11.17) is finite ψ-almost everywhere or infinite ev-
erywhere.

Proof If V satisfies (11.17) then

PV (x) ≤ V (x) + b

for all x ∈ X, and it then follows that the set {x : V (x) <∞} is absorbing. If this set
is non-empty then it is full by Proposition 4.2.3. �

Lemma 11.3.7 If the set C is petite, then the function VC(x) is unbounded off petite
sets.
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Proof We have from Chebyshev’s inequality that for each of the sublevel sets
CV (�) := {x : VC(x) ≤ �},

sup
x∈CV (�)

Px{σC ≥ n} ≤ �

n
.

Since the right hand side is less than 1
2 for sufficiently large n, this shows that CV (�) a

�

C for a sampling distribution a, and hence, by Proposition 5.5.4, the set CV (�) is
petite. �

Lemma 11.3.7 will typically be applied to show that a given petite set is regular.
The converse is always true, as the next result shows:

Proposition 11.3.8 If the set A is regular then it is petite.

Proof Again we apply Chebyshev’s inequality. If C ∈ B+(X) is petite then

sup
x∈A

Px{σC > n} ≤ 1
n

sup
x∈A

Ex[τC ]

As in the proof of Lemma 11.3.7 this shows that A is petite if it is regular. �

11.3.3 Regularity, drifts and petite sets

In this section, using the full force of Dynkin’s Formula and the form (V2) for the
drift condition, we will find we can do rather more than bound the return times to C
from states in C. We have first

Lemma 11.3.9 If (V2) holds then for each x ∈ X and any set B ∈ B(X)

Ex[τB] ≤ V (x) + bEx

[τB−1∑
k=0

1lC(Φk)
]
. (11.26)

Proof This follows from Proposition 11.3.2 on letting fk = 1, sk = b1lC . �
Note that Theorem 11.3.4 is the special case of this result when B = C.
In order to derive the central characterization of regularity, we first need an

identity linking sampling distributions and hitting times on sets.

Lemma 11.3.10 For any first entrance time τB, any sampling distribution a, and
any positive function f : X → IR+, we have

Ex

[τB−1∑
k=0

Ka(Φk, f)
]

=
∞∑
i=0

aiEx

[τB−1∑
k=0

f(Φk+i)
]
.

Proof By the Markov property and Fubini’s Theorem we have

Ex

[τB−1∑
k=0

Ka(Φk, f)
]

=
∞∑
i=0

aiEx

[ ∞∑
k=0

P i(Φk, f)1l{k < τB}
]

=
∞∑
i=0

∞∑
k=0

aiEx

[
E
[
f(Φk+i) | Fk

]
1l{k < τB}

]
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But now we have that 1l(k < τB) is measurable with respect to Fk and so by the
smoothing property of expectations this becomes

∞∑
i=0

∞∑
k=0

aiEx

[
E
[
f(Φk+i)1l{k < τB} | Fk

]]
=

∞∑
i=0

∞∑
k=0

aiEx

[
f(Φk+i)1l(k < τB)

]

=
∞∑
i=0

aiEx

[τB−1∑
k=0

f(Φk+i)
]
.

�
We now have a relatively simple task in proving

Theorem 11.3.11 Suppose that Φ is ψ-irreducible.

(i) If (V2) holds for a function V and a petite set C then for any B ∈ B+(X) there
exists c(B) <∞ such that

Ex[τB] ≤ V (x) + c(B), x ∈ X.

Hence if V is bounded on A, then A is regular.

(ii) If there exists one regular set C ∈ B+(X), then C is petite and the function
V = VC satisfies (V2), with V uniformly bounded on A for any regular set A.

Proof To prove (i), suppose that (V2) holds, with V bounded on A and C
a ψa-petite set. Without loss of generality, from Proposition 5.5.6 we can assume∑∞

i=0 i ai < ∞. We also use the simple but critical bound from the definition of
petiteness:

1lC(x) ≤ ψa(B)−1Ka(x,B), x ∈ X, B ∈ B+(X). (11.27)

By Lemma 11.3.9 and the bound (11.27) we then have

Ex[τB] ≤ V (x) + bEx

[τB−1∑
k=0

1lC(Φk)
]

≤ V (x) + bEx

[τB−1∑
k=0

ψa(B)−1Ka(Φk, B)
]

= V (x) + bψa(B)−1
∞∑
i=0

aiEx

[τB−1∑
k=0

1lB(Φk+i)
]

≤ V (x) + bψa(B)−1
∞∑
i=0

(i+ 1)ai

for any B ∈ B+(X), and all x ∈ X. If V is bounded on A, it follows that

sup
x∈A

Ex[τB] <∞,

which shows that A is regular.
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To prove (ii), suppose that a regular set C ∈ B+(X) exists. By Lemma 11.3.8 the
set C is petite. Then V = VC is clearly positive, and bounded on any regular set A.
Moreover, by Theorem 11.3.5 and regularity of C it follows that condition (V2) holds
for a suitably large constant b. �

Boundedness of hitting times from arbitrary initial measures will become impor-
tant in Part III. The following definition is an obvious one.

Regularity of Measures

A probability measure µ is called regular, if

Eµ[τB] <∞, B ∈ B+(X)

The proof of the following result for regular measures µ is identical to that of the
previous theorem and we omit it.

Theorem 11.3.12 Suppose that Φ is ψ-irreducible.

(i) If (V2) holds for a petite set C and a function V , and if µ(V ) < ∞, then the
measure µ is regular.

(ii) If µ is regular, and if there exists one regular set C ∈ B+(X), then there exists
an extended-valued function V satisfying (V2) with µ(V ) <∞.

�

As an application of Theorem 11.3.11 we obtain a description of regular sets as
in Theorem 11.1.4.

Proposition 11.3.13 If there exists a regular set C ∈ B+(X), then the sets CV (�) :=
{x : VC(x) ≤ �, : � ∈ ZZ+} are regular and SC = {y : VC(y) < ∞} is a full absorbing
set such that Φ restricted to SC is regular.

Proof Suppose that a regular set C ∈ B+(X) exists. Since C is regular it is also
ψa-petite, and we can assume without loss of generality that the sampling distribution
a has a finite mean. By regularity of C we also have, by Theorem 11.3.11 (ii), that
(V2) holds with V = VC . From Theorem 11.3.11 each of the sets CV (�) is regular,
and by Lemma 11.3.6 the set SC = {y : VC(y) <∞} is full and absorbing. �

Theorem 11.3.11 gives a characterization of regular sets in terms of a drift condi-
tion. Theorem 11.3.14 now gives such a characterization in terms of the mean hitting
times to petite sets.

Theorem 11.3.14 If Φ is ψ-irreducible, then the following are equivalent:

(i) The set C ∈ B(X) is petite and supx∈C Ex[τC ] <∞;

(ii) The set C is regular and C ∈ B+(X).
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Proof (i) Suppose that C is petite, and let as before VC(x) = 1 + Ex[σC ]. By
Theorem 11.3.5 and the conditions of the theorem we may find a constant b < ∞
such that

PVC ≤ VC − 1 + b1lC .

Since VC is bounded on C by construction, it follows from Theorem 11.3.11 that C is
regular. Since the set C is Harris recurrent it follows from Proposition 8.3.1 (ii) that
C ∈ B+(X).

(ii) Suppose that C is regular. Since C ∈ B+(X), it follows from regularity that
supx∈C Ex[τC ] <∞, and that C is petite follows from Proposition 11.3.8. �

We can now give the following complete characterization of the case X = S.

Theorem 11.3.15 Suppose that Φ is ψ-irreducible. Then the following are equiva-
lent:

(i) The chain Φ is regular

(ii) The drift condition (V2) holds for a petite set C and an everywhere finite function
V .

(iii) There exists a petite set C such that the expectation

Ex[τC ]

is finite for each x, and uniformly bounded for x ∈ C.

Proof If (i) holds, then it follows that a regular set C ∈ B+(X) exists. The function
V = VC is everywhere finite and satisfies (V2), by (11.24), for a suitably large constant
b; so (ii) holds. Conversely, Theorem 11.3.11 (i) tells us that if (V2) holds for a petite
set C with V finite valued then each sublevel set of V is regular, and so (i) holds.

If the expectation is finite as described in (iii), then by (11.24) we see that the
function V = VC satisfies (V2) for a suitably large constant b. Hence from Theo-
rem 11.3.15 we see that the chain is regular; and the converse is trivial. �

11.4 Using the regularity criteria

11.4.1 Some straightforward applications

Random walk on a half line We have already used a drift criterion for positive
recurrence, without identifying it as such, in some of our analysis of the random walk
on a half line.

Using the criteria above, we have

Proposition 11.4.1 If Φ is a random walk on a half line with finite mean increment
β then Φ is regular if

β =
∫
wΓ (dw) < 0;

and in this case all compact sets are regular sets.



11.4 Using the regularity criteria 279

Proof By consideration of the proof of Proposition 8.5.1, we see that this result
has already been established, since (11.18) was exactly the condition verified for
recurrence in that case, whilst (11.19) is simply checked for the random walk. �

From the results in Section 8.5, we know that the random walk on IR+ is transient
if β > 0, and that (at least under a second moment condition) it is recurrent in the
marginal case β = 0. We shall show in Proposition 11.5.3 that it is not regular in this
marginal case.

11.4.1.1 Forward recurrence times We could also use this approach in a simple
way to analyze positivity for the forward recurrence time chain.

In this example, using the function V (x) = x we have∑
y

P (x, y)V (y) = V (x)− 1, x ≥ 1 (11.28)

∑
y

P (0, y)V (y) =
∑
y

p(y) y. (11.29)

Hence, as we already know, the chain is positive recurrent if
∑

y p(y) y <∞.
Since E0[τ0] =

∑
y p(y) y the drift condition with V (x) = x is also necessary, as

we have seen.
The forward recurrence time chain thus provides a simple but clear example of

the need to include the second bound (11.19) in the criterion for positive recurrence.

11.4.1.2 Linear models Consider the simple linear model defined in (SLM1) by

Xn = αXn−1 +Wn

We have

Proposition 11.4.2 Suppose that the disturbance variable W for the simple linear
model defined in (SLM1), (SLM2) is non-singular with respect to Lebesgue measure,
and satisfies E[log(1 + |W |)] <∞. Suppose also that |α| < 1. Then every compact set
is regular, and hence the chain itself is regular.

Proof From Proposition 6.3.5 we know that the chain X is a ψ-irreducible and
aperiodic T-chain under the given assumptions.

Let V (x) = log(1 + ε|x|), where ε > 0 will be fixed below. We will verify that
(V2) holds with this choice of V by applying the following two special properties of
this test function:

V (x+ y) ≤ V (x) + V (y) (11.30)

lim
x→∞[V (x)− V (|α|x)] = log((|α|−1) (11.31)

From (11.30) and (SLM1),

V (X1) = V (αX0 +W1) ≤ V (|α|X0) + V (W1),

and hence from (11.31) there exists r <∞ such that whenever X0 ≥ r,

V (X1) ≤ V (X0)− 1
2 log(|α|−1) + V (W1).
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Choosing ε > 0 sufficiently small so that E[V (W )] ≤ 1
4 log(|α|−1) we see that for

x ≥ r,
Ex[V (X1)] ≤ V (x)− 1

4 log(|α|−1).

So we have that (V2) holds with C = {x : |x| ≤ r} and the result follows. �
This is part of the recurrence result we proved using a stochastic comparison

argument in Section 9.5.1, but in this case the direct proof enables us to avoid any
restriction on the range of the increment distribution.

We can extend this simple construction much further, and we shall do so in
Chapter 15 in particular, where we show that the geometric drift condition exhibited
by the linear model implies much more, including rates of convergence results, than
we have so far described.

11.4.2 The GI/G/1 queue with re-entry

In Section 2.4.2 we described models for GI/G/1 queueing systems. We now indicate
one class of models where we generalize the conditions imposed on the arrival stream
and service times by allowing re-entry to the system, and still find conditions under
which the queue is positive Harris recurrent.

As in Section 2.4.2, we assume that customers enter the queue at successive time
instants 0 = T ′

0 < T ′
1 < T ′

2 < T ′
3 < · · ·. Upon arrival, a customer waits in the queue

if necessary, and then is serviced and exits the system. In the G1/G/1 queue, the
interarrival times {T ′

n+1 − T ′
n : n ∈ ZZ+} and the service times {Si : i ∈ ZZ+} are

i.i.d. and independent of each other with general distributions, and means 1/λ, 1/µ
respectively.

After being served, a customer exits the system with probability r and re-enters
the queue with probability 1− r. Hence the effective rate of customers to the queue
is, at least intuitively,

λr :=
λ

r
.

If we now let Nn denote the queue length (not including the customer which may
be in service) at time T ′

n−, and this time let R+
n denote the residual service time (set

to zero if the server is free) for the system at time T ′
n−, then the stochastic process

Φn =

(
Nn

R+
n

)
, n ∈ ZZ+,

is a Markov chain with stationary transition probabilities evolving on the ladder-
structure space X = ZZ+ × IR+.

Now suppose that the load condition

ρr :=
λr

µ
< 1 (11.32)

is satisfied. This will be shown to imply positive Harris recurrence for the chain Φ.
Write [0] = 0× 0 for the state where the queue is empty. Under (11.32), for each

x ∈ X, we may find m ∈ ZZ+ sufficiently large that

Px{Φm = [0]} > 0. (11.33)
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This follows because under the load constraint, there exists δ > 0 such that with
positive probability, each of the first m interarrival times exceeds each of the first m
service times by at least δ, and also none of the first m customers re-enter the queue.

For x, y ∈ X we say that x ≥ y if xi ≥ yi for i = 1, 2. It is easy to see that
Px(Φm = [0]) ≤ Py(Φm = [0]) whenever x ≥ y, and hence by (11.33) we have the
following result:

Proposition 11.4.3 Suppose that the load constraint (11.32) is satisfied. Then the
Markov chain Φ is δ[0]-irreducible and aperiodic, and every compact subset of X is
petite. �

We let Wn denote the total amount of time that the server will spend servicing the
customers which are in the system at time T ′

n+. Let V (x) = Ex[W0]. It is easily seen
that

V (x) = E[Wn | Φn = x],

and hence that PnV (x) = Ex[Wn].
The random variable Wn is also called the waiting time of the nth customer to

arrive at the queue. The quantity W0 may be thought of as the total amount of work
which is initially present in the system. Hence it is natural that V (x), the expected
work, should play the role of a Lyapunov function.

The drift condition we will establish for some k > 0 is

Ex[Wk] ≤ Ex[W0]− 1, x ∈ Ac

supx∈A Ex[Wk] <∞;
(11.34)

this implies that V (x) satisfies (V2) for the k-skeleton, and hence as in the proof of
Theorem 11.1.4 both the k-skeleton and the original chain are regular.

Proposition 11.4.4 Suppose that ρr < 1. Then (11.34) is satisfied for some compact
set A ⊂ X and some k ∈ ZZ+, and hence Φ is a regular chain.

Proof Let | · | denote the Euclidean norm on IR2, and set

Am = {x ∈ X : |x| ≤ m}, m ∈ ZZ+.

For each m ∈ ZZ+, the set Am is a compact subset of X.
We first fix k such that (k/λ)(1 − ρr) ≥ 2; we can do this since ρr < 1 by

assumption. Let ζk then denote the time that the server is active in [0, T ′
k]. We have

Wk = W0 +
k∑

i=1

ni∑
j=1

S(i, j)− ζk (11.35)

where ni denotes the number of times that the ith customer visits the system, and
the random variables S(i, j) are i.i.d. with mean µ−1.

Now choose m so large that

Ex[ζk] ≥ Ex[T ′
k]− 1, x ∈ Ac

m.

Then by (11.35), and since λr/λ is equal to the expected number of times that a
customer will re-enter the queue,
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Ex[Wk] ≤ Ex[W0] +
k∑

i=1

Ex[ni](1/µ)− (E[T ′
k]− 1)

= Ex[W0] + (kλr/λ)(1/µ)− k/λ+ 1
= Ex[W0]− (k/λ)(1− ρr) + 1,

and this completes the proof that (11.34) holds. �

11.4.3 Regularity of the scalar SETAR model

Let us conclude this section by analyzing the SETAR models defined in (SETAR1)
and (SETAR2) by

Xn = φ(j) + θ(j)Xn−1 +Wn(j), Xn−1 ∈ Rj ;

these were shown in Proposition 6.3.6 to be ϕ-irreducible T-chains with ϕ taken as
Lebesgue measure µLeb on IR under these assumptions.

In Proposition 9.5.4 we showed that the SETAR chain is transient in the “exte-
rior” of the parameter space; we now use Theorem 11.3.15 to characterize the behavior
of the chain in the “interior” of the space (see Figure B.1). This still leaves the char-
acterization on the boundaries, which will be done below in Section 11.5.2.

Let us call the interior of the parameter space that combination of parameters
given by

θ(1) < 1, θ(M) < 1, θ(1)θ(M) < 1 (11.36)

θ(1) = 1, θ(M) < 1, φ(1) > 0 (11.37)

θ(1) < 1, θ(M) = 1, φ(M) < 0 (11.38)

θ(1) = θ(M) = 1, φ(M) < 0 < φ(1) (11.39)

θ(1) < 0, θ(1)θ(M) = 1, φ(M) + θ(M)φ(1) > 0. (11.40)

Proposition 11.4.5 For the SETAR model satisfying (SETAR1)-(SETAR2), the
chain is regular in the interior of the parameter space.

Proof To prove regularity for this interior set, we use (V2), and show that when
(11.36)-(11.40) hold there is a function V and an interval set [−R,R] satisfying the
drift condition ∫

P (x, dy)V (y) ≤ V (x)− 1, |x| > R. (11.41)

First consider the condition (11.36). When this holds it is straightforward to calculate
that there must exist positive constants a, b such that

1 > θ(1) > −(b/a),

1 > θ(M) > −(a/b).

If we now take
V (x) =

{
a x x > 0
b |x| x ≤ 0

then it is easy to check that (11.41) holds under (11.36) for all |x| sufficiently large.



11.4 Using the regularity criteria 283

To prove regularity under (11.37), use the function

V (x) =
{
γ x x > 0
2 [φ(1)]−1 |x| x ≤ 0

for which (11.41) is again satisfied provided

γ > 2 |θ(M)| [φ(1)]−1

for all |x| sufficiently large. The sufficiency of (11.38) follows by symmetry, or directly
by choosing the test function

V (x) =
{
γ′ |x| x ≤ 0
−2 [φ(M)]−1 x x > 0

with
γ′ > −2 |θ(1)| [φ(M)]−1.

In the case (11.39), the chain is driven by the constant terms and we use the test
function

V (x) =
{

2 [φ(1)]−1 |x| x ≤ 0
2 [|φ(M)|]−1 x x > 0

to give the result.
The region defined by (11.40) is the hardest to analyze. It involves the way in

which successive movements of the chain take place, and we reach the result by
considering the two-step transition matrix P 2.

Let fj denote the density of the noise variable W (j). Fix j and x ∈ Rj and write

R(k, j) = {y : y + φ(j) + θ(j)x ∈ Rk},

ζ(k, x) = −φ(k)− θ(k)φ(j)− θ(k)θ(j)x.

If we take the linear test function

V (x) =
{
a x x > 0
b |x| x ≤ 0

(with a, b to be determined below ), then we have∫
P 2(x, dy)V (y) =

M∑
k=1

a

∫ ∞

ζ(k,x)
(u− ζ(k, x))[

∫
R(k,j)

fk(u− θ(k)w)fj(w)dw]du

−b
∫ ζ(k,x)

−∞
(u− ζ(k, x))[

∫
R(k,j)

fk(u− θ(k)w)fj(w)dw]du.

It is straightforward to find from this that for some R > 0, we have∫
P 2(x, dy)V (y) ≤ −bx− (b/2)(φ(M) + θ(M)φ(1)), x ≤ −R,
∫
P 2(x, dy)V (y) ≤ ax+ (a/2)(φ(1) + θ(1)φ(M)), x ≥ R.

But now by assumption φ(M) + θ(M)φ(1) > 0, and the complete set of conditions
(11.40) also give φ(1) + θ(1)φ(M) < 0. By suitable choice of a, b we have that the
drift condition (11.41) holds for the two-step chain, and hence this chain is regular.
Clearly, this implies that the one step chain is also regular, and we are done. �
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11.5 Evaluating non-positivity

11.5.1 A drift criterion for non-positivity

Although criteria for regularity are central to analyzing stability, it is also of value to
be able to identify unstable models.

Theorem 11.5.1 Suppose that the non-negative function V satisfies

∆V (x) ≥ 0, x ∈ Cc; (11.42)

and
sup
x∈X

∫
P (x, dy)|V (x)− V (y)| <∞. (11.43)

Then for any x0 ∈ Cc such that

V (x0) > V (x), for all x ∈ C (11.44)

we have Ex0 [τC ] =∞.

Proof The proof uses a technique similar to that used to prove Dynkin’s Formula.
Suppose by way of contradiction that Ex0 [τC ] < ∞, and let Vk = V (Φk). Then we
have

VτC = V0 +
τC∑

k=1

(Vk − Vk−1)

= V0 +
∞∑

k=1

(Vk − Vk−1)1l{τC ≥ k}

Now from the bound in (11.43) we have for some B <∞
∞∑

k=1

Ex0 [|E[(Vk − Vk−1) | FΦ
k−1]1l{τC ≥ k}|] ≤ B

∞∑
k=1

Px0{τC ≥ k} = BEx0 [τC ]

which is finite. Thus the use of Fubini’s Theorem is justified, giving

Ex0 [VτC ] = V0(x0) +
∞∑

k=1

Ex0 [E[(Vk − Vk−1) | FΦ
k−1]1l{τC ≥ k}] ≥ V0(x0).

But by (11.44), VτC < V0(x0) with probability one, and this contradiction shows that
Ex0 [τC ] = ∞. �

This gives a criterion for a ψ-irreducible chain to be non-positive. Based on The-
orem 11.1.4 we have immediately

Theorem 11.5.2 Suppose that the chain Φ is ψ-irreducible and that the non-negative
function V satisfies (11.42) and (11.43) where C ∈ B+(X). If the set

Cc
+ = {x ∈ X : V (x) > sup

y∈C
V (y)}

also lies in B+(X) then the chain is non-positive.
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In practice, one would set C equal to a sublevel set of the function V so that the
condition (11.44) is satisfied automatically for all x ∈ Cc.

It is not the case that this result holds without some auxiliary conditions such as
(11.43). For take the state space to be ZZ+, and define P (0, i) = 2−i for all i > 0; if
we now choose k(i) > 2i, and let

P (i, 0) = P (i, k(i)) = 1/2,

then the chain is certainly positive Harris, since by direct calculation

P0(τ0 ≥ n+ 1) ≤ 2−n.

But now if V (i) = i then for all i > 0

∆V (i) = [k(i)/2]− i > 0

and in fact we can choose k(i) to give any value of ∆V (i) we wish.

11.5.2 Applications to random walk and SETAR models

As an immediate application of Theorem 11.5.2 we have

Proposition 11.5.3 If Φ is a random walk on a half line with mean increment β
then Φ is regular if and only if

β =
∫
wΓ (dw) < 0.

Proof In Proposition 11.4.1 the sufficiency of the negative drift condition was
established. If

β =
∫
wΓ (dw) ≥ 0.

then using V (x) = x we have (11.42), and the random walk homogeneity properties
ensure that the uniform drift condition (11.43) also holds, giving non-positivity. �

We now give a much more detailed and intricate use of this result to show that the
scalar SETAR model is recurrent but not positive on the “margins” of its parameter
set, between the regions shown to be positive in Section 11.4.3 and those regions shown
to be transient in Section 9.5.2: see Figure B.1-Figure B.3 for the interpretation of
the parameter ranges. In terms of the basic SETAR model defined by

Xn = φ(j) + θ(j)Xn−1 +Wn(j), Xn−1 ∈ Rj

we call the margins of the parameter space the regions defined by

θ(1) < 1, θ(M) = 1, φ(M) = 0 (11.45)

θ(1) = 1, θ(M) < 1, φ(1) = 0 (11.46)

θ(1) = θ(M) = 1, φ(M) = 0, φ(1) ≥ 0 (11.47)

θ(1) = θ(M) = 1, φ(M) < 0, φ(1) = 0 (11.48)

θ(1) < 0, θ(1)θ(M) = 1, φ(M) + θ(M)φ(1) = 0. (11.49)
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We first establish recurrence; then we establish non-positivity. For this group of pa-
rameter combinations, we need test functions of the form V (x) = log(u + ax) where
u, a are chosen to give appropriate drift in (V1). To use these we will need the full
force of the approximation results in Lemma 8.5.2, Lemma 8.5.3, Lemma 9.4.3, and
Lemma 9.4.4, which we previously used in the analysis of random walk, and to ana-
lyze this region we will also need to assume (SETAR3): that is, that the variances of
the noise distributions for the two end intervals are finite.

Proposition 11.5.4 For the SETAR model satisfying (SETAR1)-(SETAR3), the
chain is recurrent on the margins of the parameter space.

Proof We will consider the test function

V (x) =
{

log(u+ ax) x > R > rM−1

log(v − bx) x < −R < r1
(11.50)

and V (x) = 0 in the region [−R,R], where a, b and R are positive constants and u
and v are real numbers to be chosen suitably for the different regions (11.45)-(11.49).

We denote the non-random part of the motion of the chain in the two end regions
by

k(x) = φ(M) + θ(M)x

and
h(x) = φ(1) + θ(1)x.

We first prove recurrence when (11.45) or (11.46) holds. The proof is similar in style
to that used for random walk in Section 9.5, but we need to ensure that the different
behavior in each end of the two end intervals can be handled simultaneously.

Consider first the parameter region θ(M) = 1, φ(M) = 0, and 0 ≤ θ(1) < 1, and
choose a = b = u = v = 1, with x > R > rM−1. Write in this case

V1(x) = E[log(u+ ak(x) + aW (M))1l[k(x)+W (M)>R]]
V2(x) = E[log(v − bk(x)− bW (M))1l[k(x)+W (M)<−R]] (11.51)

so that
Ex[V (X1)] = V1(x) + V2(x).

In order to bound the terms in the expansion of the logarithms in V1, V2, we use the
further notation

V3(x) = (a/(u+ ak(x)))E[W (M)1l[W (M)>R−k(x)]]

V4(x) = (a2/(2(u+ ak(x))2))E[W 2(M)1l[R−k(x)<W (M)<0]]
V5(x) = (b/(v − bk(x)))E[W (M)1l[W (M)<−R−k(x)]]. (11.52)

Since E(W 2(M)) <∞

V4(x) = (a2/(2(u+ ak(x))2))E[W 2(M)1l[W (M)<0]]− o(x−2),

and by Lemma 8.5.3 both V3 and V5 are also o(x−2).
For x > R, u+ ak(x) > 0, and thus by Lemma 8.5.2,

V1(x) ≤ ΓM (R− k(x),∞) log(u+ ak(x)) + V3(x)− V4(x),
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while v − bk(x) < 0, and thus by Lemma 9.4.3,

V2(x) ≤ ΓM (−∞,−R− k(x))(log(−v + bk(x))− 2)− V5(x).

By Lemma 9.4.4(i) we also have that the terms

−ΓM (−∞, R− k(x)) log(u+ ak(x)) + ΓM (−∞,−R− k(x))(log(−v + bk(x))− 2)

are o(x−2). Thus by choosing R large enough

Ex[V (X1)] ≤ V (x)− (a2/(2(u+ ak(x))2))E[W 2(M)1l[W (M)<0]] + o(x−2)
≤ V (x), x > R. (11.53)

For x < −R < r1 and θ(1) = 0, Ex[V (X1)] is a constant and is therefore less than
V (x) for large enough R.

For x < −R < r1 and 0 < θ(1) < 1, consider

V6(x) = E[log(u+ ah(x) + aW (1))1l[h(x)+W (1)>R]]
V7(x) = E[log(v − bh(x)− bW (1))1l[h(x)+W (1)<−R]] : (11.54)

we have as before
Ex[V (X1)] = V6(x) + V7(x). (11.55)

To handle the expansion of terms in this case we use

V8(x) = (a/(u+ ah(x)))E[W (1)1l[W (1)>R−h(x)]]

V9(x) = (b/v − bh(x)))E[W (1)1l[W (1)<−R−h(x)]]

V10(x) = (b2/(2(v − bh(x))2))E[W 2(1)1l[−R−h(x)>W (1)>0]].

Since E[W 2(1)] <∞

V10(x) = (b2/(2(v − bh(x))2))E[W 2(1)1l[W (1)>0]]− o(x−2),

and by Lemma 8.5.3, both V8(x) and V9(x) are o(x−2).
For x < −R, u+ ah(x) < 0, we have by Lemma 9.4.3(i),

V6(x) ≤ Γ1(R− h(x),∞)(log(−u− ah(x))− 2)− V8(x),

and v − bh(x) > 0, so that by Lemma 8.5.2,

V7(x) ≤ Γ1(−∞,−R− h(x)) log(v − bh(x))− V9(x)− V10(x).

Hence choosing R large enough that v − bh(x) ≤ v − bx, we have from (11.55),

Γ1(−∞,−R− h(x)) log(v − bh(x)) ≤ Γ1(−∞,−R− h(x)) log(v − bx)

= V (x)− Γ1(−R− h(x),∞) log(v − bx).

By Lemma 9.4.4(ii),

Γ1(R− h(x),∞)(log(−u− ah(x))− 2)− Γ1(−R− h(x),∞) log(v − bx) ≤ o(x−2),

and thus
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Ex[V (X1)] ≤ V (x)− (b2/(2(v − bh(x))2))E[W 2(1)1lW (1)>0]] + o(x−2)
≤ V (x), x < −R. (11.56)

Finally consider the region θ(M) = 1, φ(M) = 0, θ(1) < 0, and choose a = −bθ(M)
and v−u = aφ(1). For x > R > rM−1, (11.53) is obtained in a manner similar to the
above. For x < −R < r1, we look at

V11(x) = (a2/(2(u+ ah(x))2))E[W 2(1)1l[R−h(x)<W (1)<0]].

By Lemma 9.4.3

V6(x) ≤ Γ1(R− h(x),∞) log(u+ ah(x)) + V8(x)− V11(x),

and
V7(x) ≤ Γ1(−∞,−R− h(x))(log(−v + bh(x))− 2)− V9(x).

From the choice of a, b, u and v,

log(u+ ah(x)) = log(v − bx) = V (x),

and thus by Lemma 8.5.3 and Lemma 9.4.4(i) for R large enough

Ex[V (X1)] ≤ V (x)− (a2/(2(u+ ah(x))2))E[W 2(1)1l[W (1)<0]] + o(x−2)
≤ V (x), x < −R. (11.57)

When (11.46) holds, the recurrence of the SETAR model follows by symmetry from
the result in the region (11.45).

(ii) We now consider the region where (11.47) holds: in (11.48) the result will
again follow by symmetry.

Choose a = b = u = v = 1 in the definition of V . For x > R > rM−1, (11.53)
holds as before. For x < −R < r1, since 1− h(x) ≤ 1− x,

Γ1(−∞,−R− h(x)) log(1− h(x)) ≤ Γ1(−∞,−R− h(x)) log(1− x).

From this, (11.56) is also obtained as before.
(iii) Finally we show that the chain is recurrent if the boundary condition

(11.49) holds.
Choose v − u = bφ(M) = aφ(1), b = −aθ(1) = −a/θ(M). For x > R > rM−1,

consider
V12(x) = (b2/(2(v − bk(x))2))E[W 2(M)1l[−R−k(x)>W (M)>0]].

By Lemma 9.4.3 we get both

V1(x) ≤ ΓM (R− k(x),∞)(log(−u− ak(x))− 2)− V3(x),

V2(x) ≤ ΓM (−∞,−R− k(x)) log(v − bk(x))− V5(x)− V12(x).

From the choice of a, b, u and v

ΓM (−∞,−R− k(x)) log(v − bk(x)) = log(u+ ax)− ΓM (−R− k(x),∞) log(u+ ax),

and thus by Lemma 9.4.4(i) and (iii), for R large enough
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Ex[V (X1)]] ≤ V (x)− (b2/(2(v − bk(x))2))E[W 2(M)1l[W (M)>0]] + o(x−2)
≤ V (x), x > R. (11.58)

For x < −R < r1, since

log(u+ ah(x)) = log(v − bx),

(11.57) is obtained similarly.
It is obvious that the above test functions V are norm-like, and hence (V1)

holds outside a compact set [−R,R] in each case. Hence we have recurrence from
Theorem 9.1.8. �

To complete the classification of the model, we need to prove that in this region
the model is not positive recurrent.

Proposition 11.5.5 For the SETAR model satisfying (SETAR1)-(SETAR3), the
chain is non-positive on the margins of the parameter space.

Proof We need to show that in the case where

φ(1) < 0, φ(1)φ(M) = 1, θ(1)φ(M) + θ(M) ≤ 0

the chain is non-positive. To do this we appeal to the criterion in Section 11.5.1.
As we have φ(1)φ(M) = 1 we can as before find positive constants a, b such that

φ(1) = −ba−1, φ(M) = −ab−1.

We will consider the test function

V (x) = Vcd(x) + 1lkR(x) (11.59)

where the functions Vcd and 1lkR are defined for positive c, d, k,R by

1lkR(x) =
{
k |x| ≤ R
0 |x| > R

and
Vcd(x) =

{
a x+ c x > 0
b |x|+ d x ≤ 0 .

It is immediate that∫
P (x, dy)|V (x)− V (y)| ≤ aE[|W1|] + bE[|WM |] + 2(a|θ(1)|+ b|θ(M)|) + 2|d− c|,

whilst V is obviously norm-like.
We now verify that indeed the mean drift of V (Φn) is positive. Now for x ∈ RM ,

we have ∫
P (x, dy)V (y) =

∫
ΓM (dy − θ(M)− φ(M)x)Vcd(y)

+
∫
ΓM (dy − θ(M)− φ(M)x)1lkR(y), (11.60)

and the first of these terms can be written as
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∫
ΓM (dy − θ(M)− φ(M)x)Vcd(y)

=
∫
ΓM (dz)[−b(z + θ(M) + φ(M)x) + d]

+
∫ ∞

−θ(M)−φ(M)x
ΓM (dz)[(a+ b)(z + θ(M) + φ(M)x) + c− d]. (11.61)

Using this representation we thus have∫
P (x, dy)V (y) = ax+ d− bθ(M)

+
∫ ∞

0
ΓM (dy − θ(M)− φ(M)x)[(a+ b)y + c− d]

+
∫ R

−R
kΓM (dy − θ(M)− φ(M)x). (11.62)

A similar calculation shows that for x ∈ R1,∫
P (x, dy)V (y) = −bx+ c− aθ(1)

−
∫ 0

−∞
Γ1(dy − θ(1)− φ(1)x)[(a+ b)y + c− d]

+
∫ R

−R
kΓ1(dy − θ(1)− φ(1)x). (11.63)

Let us now choose the positive constants c, d to satisfy the constraints

aθ(1) ≥ d− c ≥ bθ(M) (11.64)

(which is possible since θ(1)φ(M) + θ(M) ≤ 0) and k,R sufficiently large that

R ≥ max(|θ(1)|, |θ(M)|) (11.65)

k ≥ (a+ b) max(|θ(1)|, |θ(M)|). (11.66)

It then follows that for all x with |x| sufficiently large∫
P (x, dy)V (y) ≥ V (x)

and the chain is non-positive from Section 11.5.1. �

11.6 Commentary

For countable space chains, the results of this chapter have been thoroughly explored.
The equivalence of positive recurrence and the finiteness of expected return times to
each atom is a consequence of Kac’s Theorem, and as we saw in Proposition 11.1.1,
it is then simple to deduce the regularity of all states. As usual, Feller [76] or Chung
[49] or Çinlar [40] provide excellent discussions.

Indeed, so straightforward is this in the countable case that the name “regular
chain”, or any equivalent term, does not exist as far as we are aware. The real focus
on regularity and similar properties of hitting times dates to Isaac [103] and Cogburn
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[53]; the latter calls regular sets “strongly uniform”. Although many of the properties
of regular sets are derived by these authors, proving the actual existence of regular sets
for general chains is a surprisingly difficult task. It was not until the development of
the Nummelin-Athreya-Ney theory of splitting and embedded regeneration occurred
that the general result of Theorem 11.1.4, that positive recurrent chains are “almost”
regular chains was shown (see Nummelin [201]).

Chapter 5 of Nummelin [202] contains many of the equivalences between regular-
ity and positivity, and our development owes a lot to his approach. The more general
f -regularity condition on which he focuses is central to our Chapter 14: it seems worth
considering the probabilistic version here first.

For countable chains, the equivalence of (V2) and positive recurrence was de-
veloped by Foster [82], although his proof of sufficiency is far less illuminating than
the one we have here. The earliest results of this type on a non-countable space ap-
pear to be those in Lamperti [152], and the results for general ψ-irreducible chains
were developed by Tweedie [275], [276]. The use of drift criteria for continuous space
chains, and the use of Dynkin’s Formula in discrete time, seem to appear for the first
time in Kalashnikov [115, 117, 118]. The version used here and later was developed
in Meyn and Tweedie [178], although it is well known in continuous time for more
special models such as diffusions (see Kushner [149] or Khas’minskii [134]).

There are many rediscoveries of mean drift theorems in the literature. For opera-
tions research models (V2) is often known as Pakes’ Lemma from [212]: interestingly,
Pakes’ result rediscovers the original form buried in the discussion of Kendall’s famous
queueing paper [128], where Foster showed that a sufficient condition for positivity
of a chain on ZZ+ is the existence of a solution to the pair of equations∑

P (x, y)V (y) ≤ V (x)− 1, x ≥ N∑
P (x, y)V (y) < ∞, x < N,

although in [82] he only gives the result for N = 1. The general N form was also
re-discovered by Moustafa [190], and a form for reducible chains given by Mauldon
[164]. An interesting state-dependent variation is given by Malyšhev and Men’̌sikov
[160]; we return to this and give a proof based on Dynkin’s Formula in Chapter 19.

The systematic exploitation of the various equivalences between hitting times
and mean drifts, together with the representation of π, is new in the way it appears
here. In particular, although it is implicit in the work of Tweedie [276] that one can
identify sublevel sets of test functions as regular, the current statements are much
more comprehensive than those previously available, and generalize easily to give an
appealing approach to f -regularity in Chapter 14.

The criteria given here for chains to be non-positive have a shorter history. The
fact that drift away from a petite set implies non-positivity provided the increments
are bounded in mean appears first in Tweedie [276], with a different and less trans-
parent proof, although a restricted form is in Doob ([68], p 308), and a recent version
similar to that we give here has been recently given by Fayolle et al [73]. All proofs
we know require bounded mean increments, although there appears to be no reason
why weaker constraints may not be as effective.

Related results on the drift condition can be found in Marlin [163], Tweedie [274],
Rosberg [226] and Szpankowski [261], and no doubt in many other places: we return
to these in Chapter 19.
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Applications of the drift conditions are widespread. The first time series applica-
tion appears to be by Jones [113], and many more have followed. Laslett et al [153]
give an overview of the application of the conditions to operations research chains
on the real line. The construction of a test function for the GI/G/1 queue given in
Section 11.4.2 is taken from Meyn and Down [175] where this forms a first step in a
stability analysis of generalized Jackson networks. A test function approach is also
used in Sigman [239] and Fayolle et al [73] to obtain stability for queueing networks:
the interested reader should also note that in Borovkov [27] the stability question is
addressed using other means.

The SETAR analysis we present here is based on a series of papers where the
SETAR model is analyzed in increasing detail. The positive recurrence and transience
results are essentially in Petruccelli et al [214] and Chan et al [43], and the non-
positivity analysis as we give it here is taken from Guo and Petruccelli [92]. The
assumption of finite variances in (SETAR3) is again almost certainly redundant, but
an exact condition is not obvious.

We have been rather more restricted than we could have been in discussing specific
models at this point, since many of the most interesting examples, both in operations
research and in state-space and time series models, actually satisfy a stronger version
of the drift condition (V2): we discuss these in detail in Chapter 15 and Chapter 16.
However, it is not too strong a statement that Foster’s Criterion (as (V2) is often
known) has been adopted as the tool of choice to classify chains as positive recurrent:
for a number of applications of interest we refer the reader to the recent books by
Tong [267] on nonlinear models and Asmussen [10] on applied probability models.
Variations for two-dimensional chains on the positive quadrant are also widespread:
the first of these seems to be due to Kingman [135], and on-going usage is typified
by, for example, Fayolle [72].
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Invariance and Tightness

In one of our heuristic descriptions of stability, in Section 1.3, we outlined a picture
of a chain settling down to a stable regime independent of its initial starting point:
we will show in Part III that positive Harris chains do precisely this, and one role of
π is to describe the final stochastic regime of the chain, as we have seen.

It is equally possible to approach the problem from the other end: if we have a
limiting measure for Pn, then it may well generate a stationary measure for the chain.
We saw this described briefly in (10.5): and our main goal now is to consider chains
on topological spaces which do not necessarily enjoy the property of ψ-irreducibility,
and to show how we can construct invariant measures for such chains through such
limiting arguments, rather than through regenerative and splitting techniques.

We will develop the consequences of the following slightly extended form of bound-
edness in probability, introduced in Chapter 6.

Tightness and Boundedness in Probability on Average

A sequence of probabilities {µk : k ∈ ZZ+} is called tight if for each ε > 0,
there exists a compact subset C ⊂ X such that

lim inf
k→∞

µk(C) ≥ 1− ε. (12.1)

The chain Φ will be called bounded in probability on average if for each
initial condition x ∈ X the sequence {P k(x, · ) : k ∈ ZZ+} is tight, where
we define

P k(x, · ) :=
1
k

k∑
i=1

P i(x, · ). (12.2)

We have the following highlights of the consequences of these definitions.
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Theorem 12.0.1 (i) If Φ is a weak Feller chain which is bounded in probability on
average then there exists at least one invariant probability measure.

(ii) If Φ is an e-chain which is bounded in probability on average, then there exists a
weak Feller transition function Π such that for each x the measure Π(x, · ) is
invariant, and

Pn(x, f) → Π(x, f), as n→∞,

for all bounded continuous functions f , and all initial conditions x ∈ X.

Proof We prove (i) in Theorem 12.1.2, together with a number of consequents for
weak Feller chains. The proof of (ii) essentially occupies Section 12.4, and is concluded
in Theorem 12.4.1. �

We will see that for Feller chains, and even more powerfully for e-chains, this
approach based upon tightness and weak convergence of probability measures provides
a quite different method for constructing an invariant probability measure. This is
exemplified by the linear model construction which we have seen in Section 10.5.4.

From such constructions we will show in Section 12.4 that (V2) implies a form of
positivity for a Feller chain. In particular, for e-chains, if (V2) holds for a compact set
C and an everywhere finite function V then the chain is bounded in probability on
average, so that there is a collection of invariant measures as in Theorem 12.0.1 (ii).

In this chapter we also develop a class of kernels, introduced by Neveu in [196],
which extend the definition of the kernels UA. This involves extending the definition of
a stopping time to randomized stopping times. These operators have very considerable
intuitive appeal and demonstrate one way in which the results of Section 10.4 can be
applied to non-irreducible chains.

Using this approach, we will also show that (V1) gives a criterion for the existence
of a σ-finite invariant measure for a Feller chain.

12.1 Chains bounded in probability

12.1.1 Weak and vague convergence

It is easy to see that for any chain, being bounded in probability on average is a
stronger condition than being non-evanescent.

Proposition 12.1.1 If Φ is bounded in probability on average then it is non-
evanescent.

Proof We obviously have

Px{
∞⋃

j=n

1l(Φj ∈ C)} ≥ Pn(x,C); (12.3)

if Φ is evanescent then for some x there is an ε > 0 such that for every compact C,

lim sup
n→∞

Px{
∞⋃

j=n

1l(Φj ∈ C)} ≤ 1− ε

and so the chain is not bounded in probability on average. �
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The consequences of an assumption of tightness are well-known (see Billingsley
[24]): essentially, tightness ensures that we can take weak limits (possibly through a
subsequence) of the distributions {P k(x, · ) : k ∈ ZZ+} and the limit will then be a
probability measure. In many instances we may apply Fatou’s Lemma to prove that
this limit is subinvariant for Φ; and since it is a probability measure it is in fact
invariant.

We will then have, typically, that the convergence to the stationary measure
(when it occurs) is in the weak topology on the space of all probability measures on
B(X) as defined in Section D.5.

12.1.2 Feller chains and invariant probability measures

For weak Feller chains, boundedness in probability gives an effective approach to
finding an invariant measure for the chain, even without irreducibility.

We begin with a general existence result which gives necessary and sufficient
conditions for the existence of an invariant probability. From this we will find that
the test function approach developed in Chapter 11 may be applied again, this time
to establish the existence of an invariant probability measure for a Feller Markov
chain.

Recall that the geometrically sampled Markov transition function, or resolvent,
Kaε is defined for ε < 1 as Kaε = (1− ε)

∑∞
k=0 ε

kP k

Theorem 12.1.2 Suppose that Φ is a Feller Markov chain. Then

(i) If an invariant probability does not exist then for any compact set C ⊂ X,

Pn(x,C) → 0 as n→∞ (12.4)
Kaε(x,C) → 0 as ε ↑ 1 (12.5)

uniformly in x ∈ X.

(ii) If Φ is bounded in probability on average then it admits at least one invariant
probability.

Proof We prove only (12.4), since the proof of (12.5) is essentially identical. The
proof is by contradiction: we assume that no invariant probability exists, and that
(12.4) does not hold.

Fix f ∈ Cc(X) such that f ≥ 0, and fix δ > 0. Define the open sets {Ak : k ∈ ZZ+}
by

Ak =
{
x ∈ X : P kf > δ

}
.

If (12.4) does not hold then for some such f there exists δ > 0 and a subsequence
{Ni : i ∈ ZZ+} of ZZ+ with ANi 
= ∅ for all i. Let xi ∈ ANi for each i, and define

λi := PNi(xi, · )

We see from Proposition D.5.6 that the set of sub-probabilities is sequentially compact
with respect to vague convergence. Let λ∞ be any vague limit point: λni

v−→ λ∞ for
some subsequence {ni : i ∈ ZZ+} of ZZ+. The sub-probability λ∞ 
= 0 because, by the
definition of vague convergence, and since xi ∈ ANi ,
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∫
f dλ∞ ≥ lim inf

i→∞

∫
f dλi

= lim inf
i→∞

PNi(xi, f)

≥ δ > 0. (12.6)

But now λ∞ is a non-trivial invariant measure. For, letting g ∈ Cc(X) satisfy g ≥ 0,
we have by continuity of Pg and (D.6),∫

g dλ∞ = limi→∞ PNni
(xni , g)

= limi→∞[PNni
(xni , g) +N−1

i (PNni+1(xni , g)− Pg)]
= limi→∞ PNni

(xni , Pg)
≥

∫
(Pg) dλ∞

(12.7)

By regularity of finite measures on B(X) (cf Theorem D.3.2) this implies that λ∞ ≥
λ∞P , which is only possible if λ∞ = λ∞P . Since we have assumed that no invariant
probability exists it follows that λ∞ = 0, which contradicts (12.6). Thus we have that
Ak = ∅ for sufficiently large k.

To prove (ii), let Φ be bounded in probability on average. Since we can find ε > 0,
x ∈ X and a compact set C such that P j(x,C) > 1− ε for all sufficiently large j by
definition, (12.4) fails and so the chain admits an invariant probability. �

The following corollary easily follows: notice that the condition (12.8) is weaker
than the obvious condition of Lemma D.5.3 for boundedness in probability on average.

Proposition 12.1.3 Suppose that the Markov chain Φ has the Feller property, and
that a norm-like function V exists such that for some initial condition x ∈ X,

lim inf
k→∞

Ex[V (Φk)] <∞. (12.8)

Then an invariant probability exists. �

These results require minimal assumptions on the chain. They do have two draw-
backs in practice.

Firstly, there is no guarantee that the invariant probability is unique. Cur-
rently, known conditions for uniqueness involve the assumption that the chain is
ψ-irreducible. This immediately puts us in the domain of Chapter 10, and if the mea-
sure ψ has an open set in its support, then in fact we have the full T-chain structure
immediately available, and so we would avoid the weak convergence route.

Secondly, and essentially as a consequence of the lack of uniqueness of the invari-
ant measure π, we do not generally have guaranteed that

Pn(x, · ) w−→ π.

However, we do have the result

Proposition 12.1.4 Suppose that the Markov chain Φ has the Feller property, and
is bounded in probability on average.

If the invariant measure π is unique then for every x

Pn(x, · ) w−→ π. (12.9)
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Proof Since for every subsequence {nk} the set of probabilities {Pnk
(x, · )} is se-

quentially compact in the weak topology, then as in the proof of Theorem 12.1.2, from
boundedness in probability we have that there is a further subsequence converging
weakly to a non-trivial limit which is invariant for P . Since all these limits coincide
by the uniqueness assumption on π we must have (12.9). �

Recall that in Proposition 6.4.2 we came to a similar conclusion. In that result,
convergence of the distributions to a unique invariant probability, in a manner similar
to (12.9), is given as a condition under which a Feller chain Φ is an e-chain.

12.2 Generalized sampling and invariant measures

In this section we generalize the idea of sampled chains in order to develop another
approach to the existence of invariant measures for Φ. This relies on an identity called
the resolvent equation for the kernels UB, B ∈ B(X). The idea of the generalized
resolvent identity is taken from the theory of continuous time processes, and we shall
see that even in discrete time it unifies several concepts which we have used already,
and which we shall use in this chapter to give a different construction method for σ-
finite invariant measures for a Feller chain, even without boundedness in probability.

To state the resolvent equation in full generality we introduce randomized first
entrance times. These include as special cases the ordinary first entrance time τA, and
also random times which are completely independent of the process: the former have
of course been used extensively in results such as the identification of the structure
of the unique invariant measure for ψ-irreducible chains, whilst the latter give us the
sampled chains with kernel Kaε .

The more general version involves a function h which will usually be continuous
with compact support when the chain is on a topological space, although it need not
always be so.

Let 0 ≤ h ≤ 1 be a function on X. The random time τh which we associate
with the function h will have the property that Px{τh ≥ 1} = 1, and for any initial
condition x ∈ X and any time k ≥ 1,

Px{τh = k | τh ≥ k,FΦ
∞} = h(Φk). (12.10)

A probabilistic interpretation of this equation is that at each time k ≥ 1 a weighted
coin is flipped with the probability of heads equal to h(Φk). At the first instance k
that a head is finally achieved we set τh = k. Hence we must have, for any k ≥ 1,

Px{τh = k | FΦ
∞} =

k−1∏
i=1

(1− h(Φi))h(Φk) (12.11)

Px{τh ≥ k | FΦ
∞} =

k−1∏
i=1

(1− h(Φi)) (12.12)

where the product is interpreted as one when k = 1.
For example, if h = 1lB then we see that τh = τB. If h = 1

21lB then a fair coin is
flipped on each visit to B, so that Φτh

∈ B, but with probability one half, the random
time τh will be greater then τB.

Note that this is very similar to the Athreya-Ney randomized stopping time
construction of an atom, mentioned in Section 5.1.3.
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By enlarging the probability space on which Φ is defined, and adjoining an i.i.d.
process Y = {Yk, k ∈ ZZ+} to Φ, we now show that we can explicitly construct the
random time τh so that it is an ordinary stopping time for the bivariate chain

Ψk =

(
Φk

Yk

)
, k ∈ ZZ+.

Suppose that Y is i.i.d. and independent of Φ, and that each Yk has distribution
u, where u denotes the uniform distribution on [0, 1]. Then for any sets A ∈ B(X),
B ∈ B([0, 1]),

Px{Ψ1 ∈ A×B | Φ0 = x, Y0 = u} = P (x,A)u(B)

With this transition probability, Ψ is a Markov chain whose state space is equal to
Y = X× [0, 1].

Let Ah ∈ B(Y) denote the set

Ah = {(x, u) ∈ Y : h(x) ≥ u}

and define the random time τh = min(k ≥ 1 : Ψk ∈ Ah). Then τh is a stopping time
for the bivariate chain.

We see at once from the definition and the fact that Yk is independent of
(Φ, Y1, . . . , Yk−1) that τh satisfies (12.10). For given any k ≥ 1,

Px{τh = k | τh ≥ k,FΦ
∞} = Px{h(Φk) ≥ Yk | τh ≥ k,FΦ

∞}
= Px{h(Φk) ≥ Yk | FΦ

∞}
= h(Φk),

where in the second equality we used the fact that the event {τh ≥ k} is measurable
with respect to {Φ, Y1, . . . , Yk−1}, and in the final equality we used independence of
Y and Φ.

Now define the kernel Uh on X× B(X) by

Uh(x,B) = Ex

[ τh∑
k=1

1lB(Φk)
]
. (12.13)

where the expectation is understood to be on the enlarged probability space. We have

Uh(x,B) =
∞∑

k=1

Ex[1lB(Φk)1l{τh ≥ k}]

and hence from (12.12)

Uh(x,B) =
∞∑

k=0

P (I1−hP )k (x,B) (12.14)

where I1−h denotes the kernel which gives multiplication by 1−h. This final expression
for Uh defines this kernel independently of the bivariate chain.

In the special cases h ≡ 0, h = 1lB, and h ≡ 1 we have, respectively,

Uh = U, Uh = UB, Uh = P.
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When h = 1
2 so that τh is completely independent of Φ we have

U 1
2

=
∞∑

k=1

(1
2)k−1P k = Ka 1

2
.

For general functions h, the expression (12.14) defining Uh involves only the tran-
sition function P for Φ and hence allows us to drop the bivariate chain if we are
only interested in properties of the kernel Uh. However the existence of the bivariate
chain and the construction of τh allows a transparent proof of the following resolvent
equation.

Theorem 12.2.1 (Resolvent Equation) Let h ≤ 1 and g ≤ 1 be two functions on
X with h ≥ g. Then the resolvent equation holds:

Ug = Uh + UhIh−gUg = Uh + UgIh−gUh.

Proof To prove the theorem we will consider the bivariate chain Ψ . We will see
that the resolvent equation formalizes several relationships between the stopping times
τg and τh for Ψ . Note that since h ≥ g, we have the inclusion Ag ⊆ Ah and hence
τg ≥ τh.

To prove the first resolvent equation we write
τg∑

k=1

f(Φk) =
τh∑

k=1

f(Φk) + 1l{τg > τh}
τg∑

k=τh+1

f(Φk)

so by the strong Markov property for the process Ψ ,

Ug(x, f) = Uh(x, f) + Ex[1l{g(Φτh
) < Uτh

}Ug(Φτh
, f)]. (12.15)

The latter expectation can be computed using (12.12). We have

Ex[1l{g(Φτh
) < Yτh

}Ug(Φτh
, f)1l{τh = k} | FΦ

∞]

= Ex[1l{g(Φk) < Yk}Ug(Φk, f)1l{τh = k} | FΦ
∞]

= Ex[1l{g(Φk) < Yk}1l{h(Φk) ≥ Yk}Ug(Φk, f)1l{τh ≥ k} | FΦ
∞]

= Ex[1l{g(Φk) < Yk ≤ h(Φk)}Ug(Φk, f)1l{τh ≥ k} | FΦ
∞]

= [h(Φk)− g(Φk)]Ug(Φk, f)
k−1∏
i=1

[1− h(Φi)].

Taking expectations and summing over k gives

Ex[1l{g(Φτh
) < Yτh

}Ug(Φτh
, f)]

=
∞∑

k=1

Ex

[k−1∏
i=1

[1− h(Φi)][h(Φk)− g(Φk)]Ug(Φk, f)
]

=
∞∑

k=0

(PI1−h)kPIh−gUg (x, f).
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This together with (12.15) gives the first resolvent equation.
To prove the second, break the sum to τg into the pieces between consecutive

visits to Ah:

τg∑
k=1

f(Φk) =
τh∑

k=1

f(Φk) +
τg∑

k=1

1l{Ψk ∈ {Ah \Ag}}θk
{ τh∑

i=1

f(Φi)
}
.

Taking expectations gives

Ug(x, f) = Uh(x, f)

+Ex

[ τg∑
k=1

1l{g(Φk) < Yk ≤ h(Φk)}θk
{ τh∑

i=1

f(Φi)
}]
. (12.16)

The expectation can be transformed, using the Markov property for the bivariate
chain, to give

Ex

[ τg∑
k=1

1l{g(Φk) < Yk ≤ h(Φk)}θk
{ τh∑

i=1

f(Φi)
}]

=
∞∑

k=1

Ex

[
1l{g(Φk) < Yk ≤ h(Φk)}1l{τg ≥ k}EΨk

[ τh∑
i=1

f(Φi)
]]

=
∞∑

k=1

Ex

[
[h(Φk)− g(Φk)]1l{τg ≥ k}Uh(Φk, f)

]
= UgIh−gUh

which together with (12.16) proves the second resolvent equation. �
When τh is a.s. finite for each initial condition the kernel Ph defined as

Ph(x,A) = UhIh (x,A)

is a Markov transition function. This follows from (12.11), which shows that

Ph(x,X) = Uh(x, h) =
∞∑

k=1

Ex

[k−1∏
i=1

(1− h(Φi))h(Φk)
]

=
∞∑

k=1

Px{τh = k} (12.17)

and hence Ph(x,X) = 1 if Px{τh <∞} = 1.
It is natural to seek conditions which will ensure that τh is finite, since this is

of course analogous to the concept of Harris recurrence, and indeed identical to it
for h = 1lC . The following result answers this question as completely as we will find
necessary.

Define L(x, h) = Uh(x, h) and Q(x, h) = Px{
∑∞

k=1 h(Φk) = ∞}. Theorem 12.2.2
now shows that these functions are extensions of the the functions L and Q which we
have used extensively: in the special case where h = 1lB for some B ∈ B(X) we have
Q(x, 1lB) = Q(x,B) and L(x, 1lB) = L(x,B).

Theorem 12.2.2 For any x ∈ X and function 0 ≤ h ≤ 1,
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(i) Px{Ψk ∈ Ah i.o.} = Q(x, h);

(ii) Px{τh <∞} = L(x, h), and hence L(x, h) ≥ Q(x, h);

(iii) If for some ε < 1 the function h satisfies h(x) ≤ ε for all x ∈ X then L(x, h) = 1
if and only if Q(x, h) = 1.

Proof (i) We have from the definition of Ah,

Px{Ψk ∈ Ah i.o. | FΦ
∞} = Px{Yk ≤ h(Φk) i.o. | FΦ

∞}.

Conditioned on FΦ∞, the events {Yk ≤ h(Φk)}, k ≥ 1, are mutually independent.
Hence by the Borel-Cantelli Lemma,

Px{Ψk ∈ Ah i.o. | FΦ
∞} = 1l

{ ∞∑
k=1

Px{Yk ≤ h(Φk) | FΦ
∞} =∞

}
.

Since Px{Yk ≤ h(Φk) | FΦ∞} = h(Φk), taking expectations of each side of this identity
completes the proof of (i).

(ii) This follows directly from the definitions and (12.17).
(iii) Suppose that h(x) ≤ ε for all x, and suppose that Q(x, h) < 1 for some

x. We will show that L(x, h) < 1 also.
If this is the case then by (i), for some N <∞ and δ > 0,

Px{ Ψk ∈ Ac
h for all k > N} = δ.

But then by the fact that Y is i.i.d. and independent of Φ,

1− L(x, h) ≥ Px{ Ψk ∈ Ac
h for all k > N , and Yk > ε for all k ≤ N}

= Px{ Ψk ∈ Ac
h for all k > N}Px{ Yk > ε for all k ≤ N}

= δ(1− ε)N > 0.

�
We now present an application of Theorem 12.2.2 which gives another represen-

tation for an invariant measure, extending the development of Section 10.4.2.

Theorem 12.2.3 Suppose that 0 ≤ h ≤ 1 with Q(x, h) = 1 for all x ∈ X.

(i) If µ is any σ-finite subinvariant measure then µ is invariant, and has the repre-
sentation

µ(A) =
∫
µ(dx)h(x)Uh(x,A)

(ii) If ν is a finite measure satisfying, for some A ∈ B(X),

ν(B) = νUhIh(B), B ⊆ A

then the measure µ := νUh is invariant for Φ. The sets

Cε = {x : Ka 1
2
(x, h) > ε}

cover X and have finite µ-measure for every ε > 0.
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Proof We prove (i) by considering the bivariate chain Ψ . The set Ah ⊂ Y is Harris
recurrent and in fact Px{Ψ ∈ Ah i.o.} = 1 for all x ∈ X by Theorem 12.2.2. Now
define the measure µ on Y by

µ(A×B) = µ(A)u(B), A ∈ B(X), B ∈ B([0, 1]). (12.18)

Obviously µ is an invariant measure for Ψ and hence by Theorem 10.4.7,

µ(A) = µ(A× [0, 1]) =
∫
(x,y)∈Ah

µ(dx)u(dy)Uh(x,A)

=
∫
µ(dx)h(x)Uh(x,A)

which is the first result.
To prove (ii) first extend ν to B(Y) as µ was extended in (12.18) to obtain a

measure ν on B(Y). Now apply Theorem 10.4.7. The measure µ′ defined as

µ′(A×B) = Eν

[ τh∑
k=1

1l{Ψk ∈ A×B}
]

is invariant for Ψ , and since the distribution of Φ is the marginal distribution of Ψ ,
the measure µ defined for A ∈ B(X) by µ(A) := µ′(A× [0, 1]), A ∈ B(X), is invariant
for Φ.

We now demonstrate that µ is σ-finite. From the assumptions of the theorem and
Theorem 12.2.2 (ii) the sets Cε cover X. We have from the representation of µ,

ν(X) = µ(h) = µKa 1
2
(h) ≥ εµ(Cε)

Hence for all ε we have the bound µ(Cε) ≤ µ(h)/ε < ∞, which completes the proof
of (ii). �

12.3 The existence of a σ-finite invariant measure

12.3.1 The smoothed chain on a compact set

Here we shall give a weak sufficient condition for the existence of a σ-finite invariant
measure for a Feller chain. This provides an analogue of the results in Chapter 10
for recurrent chains. The construction we use mimics the construction mentioned
in Section 10.4.2: here, though, a function on a compact set plays the part of the
petite set A used in the construction of the “process on A”, and the fact that there
is an invariant measure to play the part of the measure ν in Theorem 10.4.8 is an
application of Theorem 12.1.2.

These results will again lead to a test function approach to establishing the exis-
tence of an invariant measure for a Feller chain, even without ψ-irreducibility.

We will, however, assume that some one compact set C satisfies a strong form of
Harris recurrence: that is, that there exists a compact set C ⊂ X with

L(x,C) = Px{Φ enters C} ≡ 1, x ∈ X. (12.19)

Observe that by Proposition 9.1.1, (12.19) implies that Φ visits C infinitely often
from each initial condition, and hence Φ is at least non-evanescent.
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To construct an invariant measure we essentially consider the chain ΦC obtained
by sampling Φ at consecutive visits to the compact set C. Suppose that the resulting
sampled chain on C had the Feller property. In this case, since the sampled chain
evolves on the compact set C, we could deduce from Theorem 12.1.2 that an invariant
probability existed for the sampled chain, and we would then need only a few further
steps for an existence proof for the original chain Φ.

However, the transition function PC for the sampled chain is given by

PC =
∞∑

k=0

(PICc)kPIC = UCIC

which does not have the Feller property in general. To proceed, we must “smooth
around the edges of the compact set C”. The kernels Ph introduced in the previous
section allow us to do just that.

Let N and O be open subsets of X with compact closure for which C ⊂ O ⊂ Ō ⊂
N , where C satisfies (12.19) and let h: X → IR be a continuous function such as

h(x) =
d(x,N c)

d(x,N c) + d(x, Ō)

for which
1lO(x) ≤ h(x) ≤ 1lN (x). (12.20)

The kernel Ph := UhIh is a Markov transition function since by (12.19) we have that
Q(x, h) ≡ 1. Since Ph(x, N̄) = 1 for all x ∈ X, we will immediately have an invariant
measure for Ph by Theorem 12.1.2 if Ph has the weak Feller property.

Proposition 12.3.1 Suppose that the transition function P is weak Feller. If 0 ≤
h ≤ 1 is continuous and if Q(x, h) ≡ 1, then Ph is also weak Feller.

Proof By the Feller property, the kernel (PI1−h)nPIh preserves positive lower
semicontinuous functions. Hence if f is positive and lower semicontinuous, then

Phf =
∞∑

k=0

(PI1−h)nPIhf

is lower semicontinuous, being the increasing limit of a sequence of lower semicontin-
uous functions.

Suppose now that f is bounded and continuous, and choose a constant L so large
that L+ f and L− f are both positive. Then the functions

L+ f L− f Ph(L+ f) Ph(L− f)

are all positive and lower semicontinuous, from which it follows that Phf is continuous.
Hence Ph is weak Feller as required. �

We now prove using the generalized resolvent operators

Theorem 12.3.2 If Φ is Feller and (12.19) is satisfied then there exists at least one
invariant measure which is finite on compact sets.
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Proof From Theorem 12.1.2 an invariant probability ν exists which is invariant
for Ph = UhIh. Hence from Theorem 12.2.3, the measure µ = νUh is invariant for
Φ and is finite on the sets {x : Ka 1

2
(x, h) > ε}. Since Ka 1

2
(x, h) is a continuous

function of x, and is strictly positive everywhere by (12.19), it follows that µ is finite
on compact sets. �

12.3.2 Drift criteria for the existence of invariant measures

We conclude this section by proving that the test function which implies Harris recur-
rence or regularity for a ψ-irreducible T-chain may also be used to prove the existence
of σ-finite invariant measures or invariant probability measures for Feller chains.

Theorem 12.3.3 Suppose that Φ is Feller and that (V1) is satisfied with a compact
set C ⊂ X. Then an invariant measure exists which is finite on compact subsets of X.

Proof If L(x,C) = 1 for all x ∈ X, then the proof follows from Theorem 12.3.2.
Consider now the only other possibility, where L(x,C) 
= 1 for some x. In this

case the adapted process {V (Φk)1l{τC > k},FΦ
k } is a convergent supermartingale, as

in the proof of Theorem 9.4.1, and since by assumption Px{τC =∞} > 0, this shows
that

Px{lim sup
k→∞

V (Φk) <∞} ≥ 1− L(x,C) > 0.

By Theorem 12.1.2, it follows that an invariant probability exists, and this completes
the proof. �

Finally we prove that in the weak Feller case, the drift condition (V2) again
provides a criterion for the existence of an invariant probability measure.

Theorem 12.3.4 Suppose that the chain Φ is weak Feller. If (V2) is satisfied with
a compact set C and a positive function V which is finite at one x0 ∈ X then an
invariant probability measure π exists.

Proof Iterating (V2) n times gives

1
n

n∑
k=0

1 ≤ 1
n
V (x0) + b

1
n

n∑
k=0

P k(x0, C).

Letting n→∞ we see that

lim inf
n→∞

1
n

n∑
k=0

P k(x0, C) ≥ 1
b
. (12.21)

Theorem 12.3.4 then follows directly from Theorem 12.1.2 (i). �

12.4 Invariant Measures for e-Chains

12.4.1 Existence of an invariant measure for e-chains

Up to now we have shown under very mild conditions that an invariant probability
measure exists for a Feller chain, based largely on arguments using weak convergence
of Pn.
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As we have seen, such weak limits will depend in general on the value of x chosen,
unless as in Proposition 12.1.4 there is a unique invariant measure. In this section we
will explore the properties of the collection of such limiting measures.

Suppose that the chain is weak Feller and we can prove that a Markov transition
function Π exists which is itself weak Feller, such that for any f ∈ C(X),

lim
k→∞

P kf (x) = Πf (x), x ∈ X. (12.22)

In this case, it follows as in Proposition 6.4.2 from Ascoli’s Theorem D.4.2 that
{P kf : k ∈ ZZ+} is equicontinuous on compact subsets of X whenever f ∈ C(X), and
so it is necessary that the chain Φ be an e-chain, in the sense of Section 6.4, whenever
we have convergence in the sense of (12.22).

The key to analyzing e-chains lies in the following result:

Theorem 12.4.1 Suppose that Φ is an e-chain. Then

(ii) There exists a substochastic kernel Π such that

P k(x, · ) v−→ Π(x, · ) as k →∞ (12.23)
Kaε(x, · )

v−→ Π(x, · ) as ε ↑ 1 (12.24)

for all x ∈ X.

(ii) For each j, k, � ∈ ZZ+ we have

P jΠkP � = Π, (12.25)

and hence for all x ∈ X the measure Π(x, · ) is invariant with Π(x,X) ≤ 1.

(iii) The Markov chain is bounded in probability on average if and only if Π(x,X) = 1
for all x ∈ X.

Proof We prove the result (12.23), the proof of (12.24) being similar. Let {fn} ⊂
Cc(X) denote a fixed dense subset. By Ascoli’s theorem and a diagonal subsequence
argument, there exists a subsequence {ki} of ZZ+ and functions {gn} ⊂ C(X) such
that

lim
i→∞

P kifn (x) = gn(x) (12.26)

uniformly for x in compact subsets of X for each n ∈ ZZ+. The set of all subprobabilities
on B(X) is sequentially compact with respect to vague convergence, and any vague
limit ν of the probabilities P ki(x, · ) must satisfy

∫
fn dν = gn(x) for all n ∈ ZZ+. Since

the functions {fn} are dense in Cc(X), this shows that for each x there is exactly one
vague limit point, and hence a kernel Π exists for which

P ki(x, · )
v−→ Π(x, · ) as i→∞

for each x ∈ X.
Observe that by equicontinuity, the function Πf is continuous for every function

f ∈ Cc(X). It follows that Πf is positive and lower semicontinuous whenever f has
these properties.

By the Dominated Convergence Theorem we have for all k, j ∈ ZZ+,
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P jΠk = Π.

Next we show that ΠP = Π, and hence that

ΠkP j = Π, k, j ∈ ZZ+.

Let f ∈ Cc(X) be a continuous positive function with compact support. Then, since
the function Pf is also positive and continuous, (D.6) implies that

Π(Pf) ≤ lim inf
i→∞

P ki(Pf)

= Πf,

which shows that ΠP = Π.
We now show that (12.23) holds. Suppose that PN does not converge vaguely to

Π. Then there exists a different subsequence {mj} of ZZ+, and a distinct kernel Π ′

such that

Pmj

v−→ Π ′(x, · ), j →∞.

However, for each positive function f ∈ Cc(X),

Πf = lim
j→∞

ΠPmjf

= ΠΠ ′f by the Dominated Convergence Theorem
≤ lim inf

i→∞
P kiΠ

′f since Π ′f is continuous and positive

= Π ′f.

Hence by symmetry, Π ′ = Π, and this completes the proof of (i) and (ii).
The result (iii) follows from (i) and Proposition D.5.6. �

12.4.2 Hitting time and drift criteria for stability of e-chains

We now consider the stability of e-chains. First we show in Theorem 12.4.3 that if
the chain hits a fixed compact subset of X with probability one from each initial
condition, and if this compact set is positive in a well defined way, then the chain is
bounded in probability on average. This is an analogue of the rather more powerful
regularity results in Chapter 11.

This result is then applied to obtain a drift criterion for boundedness in proba-
bility using (V2).

To characterize boundedness in probability we use the following weak analogue of
Kac’s Theorem 10.2.2, connecting positivity of Kaε(x,C) with finiteness of the mean
return time to C.

Proposition 12.4.2 For any compact set C ⊂ X

lim inf
ε↑1

Kaε(x,C) ≥ (sup
y∈C

Ey[τC ])−1, x ∈ C.
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Proof For the first entrance time τC to the compact set C, let θτC denote the
τC-fold shift on sample space, defined so that θτCf(Φk) = f(Φk+τC

) for any function
f on X.

Fix x ∈ C, 0 < ε < 1, and observe that by conditioning at time τC and using the
strong Markov property we have for x ∈ C,

Kaε(x,C) = (1− ε)Ex

[ ∞∑
k=0

εk1l{Φk ∈ C}
]

= (1− ε)Ex

[
1 +

∞∑
k=0

ετC+k(θτC 1l{Φk ∈ C})
]

= (1− ε) + (1− ε)Ex

[
ετC EΦτC

[ ∞∑
k=0

εk1l{Φk ∈ C}
]]

≥ (1− ε) + Ex[ετC ] inf
y∈C

Kaε(y, C)

Taking the infimum over all x ∈ C, we obtain

inf
y∈C

Kaε(y, C) ≥ (1− ε) + inf
y∈C

Ey[ετC ] inf
y∈C

Kaε(y, C) (12.27)

By Jensen’s inequality we have the bound E[ετC ] ≥ εE[τC ]. Hence letting MC =
supx∈C Ex[τC ] it follows from (12.27) that for y ∈ C,

Kaε(y, C) ≥ 1− ε

1− εMC
.

Letting ε ↑ 1 we have for each y ∈ C,

lim inf
ε↑1

Kaε(y, C) ≥ lim
ε↑1

(
1− ε

1− εMC

)
=

1
MC

.

�
We saw in Theorem 12.4.1 that Φ is bounded in probability on average if and only

if Π(x,X) = 1 for all x ∈ X. Hence the following result shows that compact sets serve
as test sets for stability: if a fixed compact set is reachable from all initial conditions,
and if Φ is reasonably well behaved from initial conditions on that compact set, then
Φ will be bounded in probability on average.

Theorem 12.4.3 Suppose Φ is an e-chain. Then

(i) max
x∈X

Π(x,X) exists, and is equal to zero or one;

(ii) if min
x∈X

Π(x,X) exists, then it is equal to zero or one;

(iii) if there exists a compact set C ⊂ X such that

Px{τC <∞} = 1 x ∈ X

then min
x∈X

Π(x,X) exists, and is attained on C, so that

inf
x∈X

Π(x,X) = min
x∈C

Π(x,X);

(iv) if C ⊂ X is compact, then

inf
x∈C

Π(x,X) ≥
(
sup
x∈C

Ex[τC ]
)−1

.
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Proof (i) If Π(x,X) > 0 for some x ∈ X, then an invariant probability π exists.
In fact, we may take π = Π(x, · )/Π(x,X).

From the definition of Π and the Dominated Convergence Theorem we have that
for any f ∈ Cc(X),

π(f) = lim
n→∞[πPn(f)] = πΠ(f)

which shows that π = πΠ. Hence 1 = π(X) =
∫
π(dx)Π(x,X). This shows that

Π(y,X) = 1 for a.e. y ∈ X [π], proving (i) of the theorem.
(ii) Let ρ = infx∈X Π(x,X), and let

Sρ = {x ∈ X : Π(x,X) = ρ}.

By the assumptions of (ii), Sρ 
= ∅. Letting u( · ) := Π( · ,X), we have Pu = u, and
this implies that the set Sρ is absorbing. Since u is lower semicontinuous, the set Sρ

is also a closed subset of X.
Since Sρ is closed, it follows by vague convergence and (D.6) that for all x ∈ X,

lim inf
N→∞

PN (x, Sc
ρ) ≥ Π(x, Sc

ρ),

and since Sρ is also absorbing, this shows that for all x ∈ Sρ

Π(x, Sc
ρ) = 0. (12.28)

Suppose now that 0 ≤ ρ < 1. As in the proof of (i),

π{y ∈ X : Π(y,X) = 1} = 1

for any invariant probability π, and hence

Π(x, Sρ) ≤ Π(x, {y ∈ X : Π(y,X) < 1}) = 0. (12.29)

Equations (12.28) and (12.29) show that for any x ∈ Sρ,

ρ = Π(x,X) = Π(x, Sρ) +Π(x, Sc
ρ) = 0,

and this proves (ii).
(iii) Since u(x) :=Π(x,X) is lower semicontinuous we have

inf
x∈C

u(x) = min
x∈C

u(x).

That is, the infimum is attained.
Since Pu = u, the sequence {u(Φk),FΦ

k } is a martingale, which converges to
a random variable u∞ satisfying Ex[u∞] = u(x), x ∈ X. By Proposition 9.1.1, the
assumption that Px{τC <∞} ≡ 1 implies that

Px{Φ ∈ C i.o.} = 1, x ∈ X. (12.30)

If Φk ∈ C for some k ∈ ZZ+, then obviously u(Φk) ≥ minx∈C u(x), which by (12.30)
implies that

u∞ = lim
k→∞

u(Φk) ≥ min
x∈C

u(x) a.s.

Taking expectations shows that u(y) ≥ minx∈C u(x) for all y ∈ X, proving part (iii)
of the theorem.
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(iv) Letting MC = supx∈C Ex[τC ] it follows from Proposition 12.4.2 that

inf
y∈C

lim inf
ε↑1

Kaε(y, C) ≥ 1
MC

.

This proves the result since lim supε↑1 Kaε(y, C) ≤ Π(y, C) by Theorem 12.4.1. �
We have immediately

Proposition 12.4.4 Let Φ be an e-chain, and let C ⊂ X be compact. If Px{τC <
∞} = 1, x ∈ X, and supx∈C Ex[τC ] <∞, then Φ is bounded in probability on average.

Proof From Theorem 12.4.3 (iii) we see that for all x,

min
x∈X

Π(x,X) = min
x∈C

Π(x,X) ≥
(
sup
x∈C

Ex[τC ]
)−1

> 0.

Hence from Theorem 12.4.3 (ii) we have Π(x,X) = 1 for all x ∈ X. Theorem 12.4.1
then implies that the chain is bounded in probability on average. �

The next result shows that the drift criterion for positive recurrence for ψ-
irreducible chains also has an impact on the class of e-chains.

Theorem 12.4.5 Let Φ be an e-chain, and suppose that condition (V2) holds for
a compact set C and an everywhere finite function V . Then the Markov chain Φ is
bounded in probability on average.

Proof It follows from Theorem 11.3.4 that Ex[τC ] ≤ V (x) for x ∈ Cc, so that a
fortiori we also have L(x,C) ≡ 1. As in the proof of Theorem 12.3.4, for any x ∈ X,

Π(x,X) ≥ lim sup
n→∞

1
n

n∑
k=0

P k(x,C) ≥ 1
b
, x ∈ X.

From this it follows from Theorem 12.4.3 (iii) and (ii) that Π(x,X) ≡ 1, and hence
Φ is bounded in probability on average as claimed. �

12.5 Establishing boundedness in probability

Boundedness in probability is clearly the key condition needed to establish the exis-
tence of an invariant measure under a variety of continuity regimes. In this section
we illustrate the verification of boundedness in probability for some specific models.

12.5.1 Linear state space models

We show first that the conditions used in Proposition 6.3.5 to obtain irreducibility
are in fact sufficient to establish boundedness in probability for the linear state space
model. Thus with no extra conditions we are able to show that a stationary version
of this model exists.

Recall that we have already seen in Chapter 7 that the linear state space model
is an e-chain when (LSS5) holds.

Proposition 12.5.1 Consider the linear state space model defined by (LSS1) and
(LSS2). If the eigenvalue condition (LSS5) is satisfied then Φ is bounded in probability.
Moreover, if the nonsingularity condition (LSS4) and the controllability condition
(LCM3) are also satisfied then the model is positive Harris.
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Proof Let us take

M := I +
∞∑
i=1

F�iF i,

where F� denotes the transpose of F . If Condition (LSS5) holds then by Lemma 6.3.4,
the matrix M is finite and positive definite with I ≤M , and for some α < 1

|Fx|2M ≤ α|x|2M (12.31)

where |y|2M := y�My for y ∈ IRn.
Let m =

(∑∞
i=0 F

i
)
GE[W1], and define

V (x) = |x−m|2M , x ∈ X. (12.32)

Then it follows from (LSS1) that

V (Xk+1) = |F (Xk −m)|2M + |G(Wk+1 − E[Wk+1])|2M

+(Xk −m)�F�MG(Wk+1 − E[Wk+1])

+(Wk+1 − E[Wk+1])�G�MF (Xk −m).

(12.33)

Since Wk+1 and Xk are independent, this together with (12.31) implies that

E[V (Xk+1) | X0, . . . , Xk] ≤ αV (Xk) + E[|G(Wk+1 − E[Wk+1])|2M ], (12.34)

and taking expectations of both sides gives

lim sup
k→∞

E[V (Xk)] ≤
E[|G(Wk+1 − E[Wk+1])|2M ]

1− α
<∞.

Since V is a norm-like function on X, Lemma D.5.3 gives a direct proof that the chain
is bounded in probability.

We note that (12.34) also ensures immediately that (V2) is satisfied. Under the
extra conditions (LSS4) and (LCM3) we have from Proposition 6.3.5 that all compact
sets are petite, and it immediately follows from Theorem 11.3.11 that the chain is
regular and hence positive Harris. �

It may be seen that stability of the linear state space model is closely tied to the
stability of the deterministic system xk+1 = Fxk. For each initial condition x0 ∈ IRn

of this deterministic system, the resulting trajectory {xk} satisfies the bound

|xk|M ≤ αk|x0|M

and hence is ultimately bounded in the sense of Section 11.2: in fact, in the dynamical
systems literature such a system is called globally exponentially stable. It is precisely
this stability for the deterministic “core” of the linear state space model which allows
us to obtain boundedness in probability for the stochastic process Φ.

We now generalize the model (LSS1) to include random variation in the coeffi-
cients F and G.
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12.5.2 Bilinear models

Let us next consider the scalar example where Φ is the bilinear state space model on
X = IR defined in (SBL1)–(SBL2)

Xk+1 = θXk + bWk+1Xk +Wk+1 (12.35)

where W is a zero-mean disturbance process. This is related closely to the linear
model above, and the analysis is almost identical.

To obtain boundedness in probability by direct calculation, observe that

E[|Xk+1| | Xk = x] ≤ E[|θ + bWk+1|]|x|+ E[|Wk+1|] (12.36)

Hence for every initial condition of the process,

lim sup
k→∞

E[|Xk|] ≤
E[|Wk+1|]

1− E[|θ + bWk+1|]

provided that
E[|θ + bWk+1|] < 1. (12.37)

Since | · | is a norm-like function on X, this shows that Φ is bounded in probability
provided that (12.37) is satisfied.

Again observe that in fact the bound (12.36) implies that the mean drift criterion
(V2) holds.

12.5.3 Adaptive control models

Finally we consider the adaptive control model (2.21)-(2.23).
The closed loop system described by (2.24) is a Feller Markov chain, and thus

an invariant probability exists if the distributions of the process are tight for some
initial condition. We show here that the distributions of Φ are tight when the initial
conditions are chosen so that

θ̃k = θk − E[θk | Yk], and Σk = E[θ̃2
k | Yk]. (12.38)

For example, this is the case when y0 = θ̃0 = Σ0 = 0. If (12.38) holds then it follows
from (2.22) that

E[Y 2
k+1 | Yk] = ΣkY

2
k + σ2

w. (12.39)

This identity will be used to prove the following result:

Proposition 12.5.2 For the adaptive control model satisfying (SAC1) and (SAC2),
suppose that the process Φ defined in (2.24) satisfies (12.38) and that σ2

z < 1. Then
we have

lim sup
k→∞

E[|Φk|2] <∞

so that distributions of the chain are tight, and hence Φ is positive recurrent.
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Proof We note first that since the sequence {Σk} is bounded below and above by
Σ = σz > 0 and Σ = σz/(1− α2) <∞, and the process θ clearly satisfies

lim sup
k→∞

E[θ2
k] =

σ2
z

1− α2
,

to prove the proposition it is enough to bound E[Y 2
k ].

From (12.39) and (2.23) we have

E[Y 2
k+1Σk+1 | Yk] = Σk+1E[Y 2

k+1 | Yk]

= Σk+1(ΣkY
2
k + σ2

w)

= (σ2
z + α2σ2

wΣk(ΣkY
2
k + σ2

w)−1)(ΣkY
2
k + σ2

w)

= σ2
z

(
Y 2

k Σk

)
+
(
σ2

wσ
2
z + α2σ2

wΣk

)
.

(12.40)

Taking total expectations of each side of (12.40), we use the condition σ2
z < 1 to

obtain by induction, for all k ∈ ZZ+,

ΣE[Y 2
k+1] ≤ E[Y 2

k+1Σk+1] ≤
σ2

wσ
2
z + α2σ2

wΣ

1− σ2
z

+ σ2k
z E[Y 2

0 Σ0]. (12.41)

This shows that the mean of Y 2
k is uniformly bounded.

Since Φ has the Feller property it follows from Proposition 12.1.3 that an invariant
probability exists. Hence from Theorem 7.4.3 the chain is positive recurrent. �

In fact, we will see in Chapter 16 that not only is the process bounded in proba-
bility, but the conditional mean of Y 2

k converges to the steady state value Eπ[Y 2
0 ] at a

geometric rate from every initial condition. These results require a more elaborate
stability proof.

Note that equation (12.40) does not obviously imply that there is a solution to
a drift inequality such as (V2): the conditional expectation is taken with respect to
Yk, which is strictly smaller than FΦ

k .
The condition that σ2

z < 1 cannot be omitted in this analysis: indeed, we have
that if σ2

z ≥ 1, then

E[Y 2
k ] ≥ [σ2

z ]
kY0 + kσ2

w →∞

as k increases, so that the chain is unstable in a mean square sense, although it may
still be bounded in probability.

It is well worth observing that this is one of the few models which we have encoun-
tered where obtaining a drift inequality of the form (V2) is much more difficult than
merely proving boundedness in probability. This is due to the fact that the dynamics
of this model are extremely nonlinear, and so a direct stability proof is difficult. By
exploiting equation (12.39) we essentially linearize a portion of the dynamics, which
makes the stability proof rather straightforward. However the identity (12.39) only
holds for a restricted class of initial conditions, so in general we are forced to tackle
the nonlinear equations directly.
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12.6 Commentary

The key result Theorem 12.1.2 is taken from Foguel [78]. Versions of this result have
also appeared in papers by Beneš [18, 19] and Stettner [256] which consider processes
in continuous time. For more results on Feller chains the reader is referred to Krengel
[141], and the references cited therein.

For an elegant operator-theoretic proof of results related to Theorem 12.3.2, see
Lin [154] and Foguel [80]. The method of proof based upon the use of the operator
Ph = UhIh to obtain a σ-finite invariant measure is taken from Rosenblatt [228].
Neveu in [196] promoted the use of the operators Uh, and proved the resolvent equa-
tion Theorem 12.2.1 using direct manipulations of the operators. The kernel Ph is
often called the balayage operator associated with the function h (see Krengel [141]
or Revuz [223]). In the Supplement to Krengel’s text by Brunel ([141] pp. 301–309)
a development of the recurrence structure of irreducible Markov chains is developed
based upon these operators. This analysis and much of [223] exploits fully the resol-
vent equation, illustrating the power of this simple formula although because of our
emphasis on ψ-irreducible chains and probabilistic methods, we do not address the
resolvent equation further in this book.

Obviously, as with Theorem 12.1.2, Theorem 12.3.4 can be applied to an irre-
ducible Markov chain on countable space to prove positive recurrence. It is of some
historical interest to note that Foster’s original proof of the sufficiency of (V2) for
positivity of such chains is essentially that in Theorem 12.3.4. Rather than showing in
any direct way that (V2) gives an invariant measure, Foster was able to use the count-
able space analogue of Theorem 12.1.2 (i) to deduce positivity from the “non-nullity”
of a “compact” finite set of states as in (12.21). We will discuss more general versions
of this classification of sets as positive or null further, but not until Chapter 18.

Observe that Theorem 12.3.4 only states that an invariant probability exists.
Perhaps surprisingly, it is not known whether the hypotheses of Theorem 12.3.4 imply
that the chain is bounded in probability when V is finite-valued except for e-chains
as in Theorem 12.4.5.

The theory of e-chains is still being developed, although these processes have been
the subject of several papers over the past thirty years, most notably by Jamison and
Sine [109, 112, 243, 242, 241], Rosenblatt [227], Foguel [78] and the text by Krengel
[141]. In most of the e-chain literature, however, the state space is assumed compact
so that stability is immediate. The drift criterion for boundedness in probability on
average in Theorem 12.4.5 is new. The criterion Theorem 12.3.4 for the existence of
an invariant probability for a Feller chain was first shown in Tweedie [280].

The stability analysis of the linear state space model presented here is standard.
For an early treatment see Kalman and Bertram [120], while Caines [39] contains
a modern and complete development of discrete time linear systems. Snyders [250]
treats linear models with a continuous time parameter in a manner similar to the
presentation in this book. The bilinear model has been the subject of several papers:
see for example Feigin and Tweedie [74], or the discussion in Tong [267]. The stability
of the adaptive control model was first resolved in Meyn and Caines [172], and related
stability results were described in Solo [251]. The stability proof given here is new,
and is far simpler than any previous results.
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Ergodicity

In Part II we developed the ideas of stability largely in terms of recurrence structures.
Our concern was with the way in which the chain returned to the “center” of the space,
how sure we could be that this would happen, and whether it might happen in a finite
mean time.

Part III is devoted to the perhaps even more important, and certainly deeper,
concepts of the chain “settling down”, or converging, to a stable or stationary regime.

In our heuristic introduction to the various possible ideas of stability in Sec-
tion 1.3, such convergence was presented as a fundamental idea, related in the dy-
namical systems and deterministic contexts to asymptotic stability. We noted briefly,
in (10.5) in Chapter 10, that the existence of a finite invariant measure was a nec-
essary condition for such a stationary regime to exist as a limit. In Chapter 12 we
explored in much greater detail the way in which convergence of Pn to a limit, on
topological spaces, leads to the existence of invariant measures.

In this chapter we begin a systematic approach to this question from the other
side. Given the existence of π, when do the n-step transition probabilities converge
in a suitable way to π?

We will prove that for positive recurrent ψ-irreducible chains, such limiting behav-
ior takes place with no topological assumptions, and moreover the limits are achieved
in a much stronger way than under the tightness assumptions in the topological con-
text. The Aperiodic Ergodic Theorem, which unifies the various definitions of positiv-
ity, summarizes this asymptotic theory. It is undoubtedly the outstanding achievement
in the general theory of ψ-irreducible Markov chains, even though we shall prove some
considerably stronger variations in the next two chapters.

Theorem 13.0.1 (Aperiodic Ergodic Theorem) Suppose that Φ is an aperiodic
Harris recurrent chain, with invariant measure π. The following are equivalent:

(i) The chain is positive Harris: that is, the unique invariant measure π is finite.

(ii) There exists some ν-small set C ∈ B+(X) and some P∞(C) > 0 such that as
n→∞, for all x ∈ C

Pn(x,C) → P∞(C). (13.1)

(iii) There exists some regular set in B+(X): equivalently, there is a petite set C ∈
B(X) such that

sup
x∈C

Ex[τC ] <∞. (13.2)



318 13 Ergodicity

(iv) There exists some petite set C, some b < ∞ and a non-negative function V
finite at some one x0 ∈ X, satisfying

∆V (x) := PV (x)− V (x) ≤ −1 + b1lC(x), x ∈ X. (13.3)

Any of these conditions is equivalent to the existence of a unique invariant probability
measure π such that for every initial condition x ∈ X,

sup
A∈B(X)

|Pn(x,A)− π(A)| → 0 (13.4)

as n→∞, and moreover for any regular initial distributions λ, µ,

∞∑
n=1

∫ ∫
λ(dx)µ(dy) sup

A∈B(X)
|Pn(x,A)− Pn(y,A)| <∞. (13.5)

Proof That π(X) < ∞ in (i) is equivalent to the finiteness of hitting times as in
(iii) and the existence of a mean drift test function in (iv) is merely a restatement of
the overview Theorem 11.0.1 in Chapter 11.

The fact that any of these positive recurrence conditions imply the uniform con-
vergence over all sets A from all starting points x as in (13.4) is of course the main
conclusion of this theorem, and is finally shown in Theorem 13.3.3.

That (ii) holds from (13.4) is obviously trivial by dominated convergence. The cy-
cle is completed by the implication that (ii) implies (13.4), which is in Theorem 13.3.5.

The extension from convergence to summability provided the initial measures are
regular is given in Theorem 13.4.4. Conditions under which π itself is regular are also
in Section 13.4.2. �

There are four ideas which should be born in mind as we embark on this third
part of the book, especially when coming from a countable space background. The
first two involve the types of limit theorems we shall address; the third involves the
method of proof of these theorems; and the fourth involves the nomenclature we shall
use.

Modes of Convergence The first is that we will be considering, in this and the
next three chapters, convergence of a chain in terms of its transition probabilities. Al-
though it is important also to consider convergence of a chain along its sample paths,
leading to strong laws, or of normalized variables leading to central limit theorems
and associated results, we do not turn to this until Chapter 17.

This is in contrast to the traditional approach in the countable state space case.
Typically, there, the search is for conditions under which there exist pointwise limits
of the form

lim
n→∞ |P

n(x, y)− π(y)| = 0; (13.6)

but the results we derive are related to the signed measure (Pn − π), and so concern
not merely such pointwise or even setwise convergence, but a more global convergence
in terms of the total variation norm.
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Total Variation Norm

If µ is a signed measure on B(X) then the total variation norm ‖µ‖ is
defined as

‖µ‖ := sup
f :|f |≤1

|µ(f)| = sup
A∈B(X)

µ(A)− inf
A∈B(X)

µ(A) (13.7)

The key limit of interest to us in this chapter will be of the form

lim
n→∞ ‖P

n(x, · )− π‖ = 2 lim
n→∞ sup

A
|Pn(x,A)− π(A)| = 0. (13.8)

Obviously when (13.8) holds on a countable space, then (13.6) also holds and indeed
holds uniformly in the end-point y. This move to the total variation norm, necessitated
by the typical lack of structure of pointwise transitions in the general state space, will
actually prove exceedingly fruitful rather than restrictive.

When the space is topological, it is also the case that total variation convergence
implies weak convergence of the measures in question.

This is clear since (see Chapter 12) the latter is defined as convergence of expec-
tations of functions which are not only bounded but also continuous. Hence the weak
convergence of Pn to π as in Proposition 12.1.4 will be subsumed in results such as
(13.4) provided the chain is suitably irreducible and positive.

Thus, for example, asymptotic properties of T-chains will be much stronger than
those for arbitrary weak Feller chains even when a unique invariant measure exists
for the latter.

Independence of initial and limiting distributions The second point to be
made explicitly is that the limits in (13.8), and their refinements and extensions
in Chapters 14–16, will typically be found to hold independently of the particular
starting point x, and indeed we will be seeking conditions under which this is the
case.

Having established this, however, the identification of the class of starting dis-
tributions for which particular asymptotic limits hold becomes a question of some
importance, and the answer is not always obvious: in essence, if the chain starts with
a distribution “too near infinity” then it may never reach the expected stationary
distribution.

This is typified in (13.5), where the summability holds only for regular initial
measures.

The same type of behavior, and the need to ensure that initial distributions are
appropriately “regular” in extended ways, will be a highly visible part of the work in
Chapters 14 and 15.
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The role of renewal theory and splitting Thirdly, in developing the ergodic
properties of ψ-irreducible chains we will use the splitting techniques of Chapter 5
in a systematic and fruitful way, and we will also need the properties of renewal
sequences associated with visits to the atom in the split chain.

Up to now the existence of a “pseudo-atom” has not generated many results that
could not have been derived (sometimes with considerable but nevertheless relatively
elementary work) from the existence of petite sets: the only real “atom-based” result
has been the existence of regular sets in Chapter 11. We have not given much reason
for the reader to believe that the atom-based constructions are other than a gloss on
the results obtainable through petite sets.

In Part III, however, we will find that the existence of atoms provides a critical
step in the development of asymptotic results. This is due to the many limit theorems
available for renewal processes, and we will prove such theorems as they fit into the
Markov chain development.

We will also see that several generalizations of regular sets also play a key role
in such results: the essential equivalence of regularity and positivity, developed in
Chapter 11, becomes of far more than academic value in developing ergodic structures.

Ergodic chains Finally, a word on the term ergodic. We will adopt this term for
chains where the limit in (13.6) or (13.8) holds as the time sequence n → ∞, rather
than as n→∞ through some subsequence.

Unfortunately, we know that in complete generality Markov chains may be peri-
odic, in which case the limits in (13.6) or (13.8) can hold at best as we go through a
periodic sequence nd as n→∞. Thus by definition, ergodic chains will be aperiodic,
and a minor, sometimes annoying but always vital change to the structure of the
results is needed in the periodic case.

We will therefore give results, typically, for the aperiodic context and give the
required modification for the periodic case following the main statement when this
seems worthwhile.

13.1 Ergodic chains on countable spaces

13.1.1 First-entrance last-exit decompositions

In this section we will approach the ergodic question for Markov chains in the count-
able state space case, before moving on to the general case in later sections. The
methods are rather similar: indeed, given the splitting technique there will be a rela-
tively small amount of extra work needed to move to the more general context.

Even in the countable case, the technique of proof we give is simpler and more
powerful than that usually presented. One real simplification of the analysis through
the use of total variation norm convergence results comes from an extension of the
first-entrance and last-exit decompositions of Section 8.2, together with the represen-
tation of the invariant probability given in Theorem 10.2.1.

The first-entrance last-exit decomposition, for any states x, y,α ∈ X is given by

Pn(x, y) = αP
n(x, y) +

n−1∑
j=1

[ j∑
k=1

αP
k(x,α)P j−k(α,α)

]
αP

n−j(α, y), (13.9)
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where we have used the notation α to indicate that the specific state being used for
the decomposition is distinguished from the more generic states x, y which are the
starting and end points of the decomposition.

We will wish in what follows to concentrate on the time variable rather than a
particular starting point or end point, and it will prove particularly useful to have
notation that reflects this. Let us hold the reference state α fixed and introduce the
three forms

ax (n) := Px(τα = n) (13.10)

u (n) := Pα(Φn = α) (13.11)

ty (n) := αP
n(α, y). (13.12)

This notation is designed to stress the role of ax (n) as a delay distribution in the
renewal sequence of visits to α, and the “tail properties” of ty (n) in the representation
of π: recall from (10.11) that

π(y) = (Eα[τα])−1∑∞
j=1 αP

j(α, y)

= π(α)
∑∞

j=1 ty(j).
(13.13)

Using this notation the first entrance and last exit decompositions become

Pn(x,α) =
∑n

j=0 Px(τα = j)Pn−j(α,α)

=
∑n

j=0 ax(j)u(n− j)

Pn(α, y) =
∑n

j=0 P
j(α,α)αP

n−j(α, y)

=
∑n

j=0 u(j)ty(n− j)

or, using the convolution notation a ∗ b (n) =
∑n

0 a(j)b(n − j) introduced in Sec-
tion 2.4.1,

Pn(x,α) = ax ∗ u (n) (13.14)

Pn(α, y) = u ∗ ty (n). (13.15)

The first-exit last-entrance decomposition (13.9) can be written similarly as

Pn(x, y) = αP
n(x, y) + ax ∗ u ∗ ty (n). (13.16)

The power of these forms becomes apparent when we link them to the representation
of the invariant measure given in (13.13). The next decomposition underlies all ergodic
theorems for countable space chains.

Proposition 13.1.1 Suppose that Φ is a positive Harris recurrent chain on a count-
able space, with invariant probability π. Then for any x, y,α ∈ X

|Pn(x, y)− π(y)| ≤ αP
n(x, y) + |ax ∗ u− π(α)| ∗ ty (n) + π(α)

∞∑
j=n+1

ty(j). (13.17)
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Proof From the decomposition (13.16) we have

|Pn(x, y)− π(y)| ≤ αP
n(x, y)

+|ax ∗ u ∗ ty (n)− π(α)
∑n

j=1 ty(j)|

+|π(α)
∑n

j=1 ty(j)− π(y)|.

(13.18)

Now we use the representation (13.13) for π and (13.17) is immediate. �

13.1.2 Solidarity from one ergodic state

If the three terms in (13.17) can all be made to converge to zero, we will have shown
that Pn(x, y) → π(y) as n → ∞. The two extreme terms involve the convergence of
simple positive expressions, and finding bounds for both of these is at the level of
calculation we have already used, especially in Chapters 10 and 11. The middle term
involves a deeper limiting operation, and showing that this term does indeed converge
is at the heart of proving ergodic theorems.

We can reduce the problem of this middle term entirely to one independent of
the initial state x and involving only the reference state α. Suppose we have

|u(n)− π(α)| → 0, n→∞. (13.19)

Then using Lemma D.7.1 we find

lim
n→∞ ax ∗ u (n) = π(α) (13.20)

provided we have (as we do for a Harris recurrent chain) that for all x∑
j

ax(j) = Px(τα <∞) = 1. (13.21)

The convergence in (13.19) will be shown to hold for all states of an aperiodic positive
chain in the next section: we first motivate our need for it, and for related results in
renewal theory, by developing the ergodic structure of chains with “ergodic atoms”.

Ergodic atoms

If Φ is positive Harris, an atom α ∈ B+(X) is called ergodic if it satisfies

lim
n→∞ |P

n(α,α)− π(α)| = 0. (13.22)
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In the positive Harris case note that an atom can be ergodic only if the chain is
aperiodic.

With this notation, and the prescription for analyzing ergodic behavior inherent
in Proposition 13.1.1, we can prove surprisingly quickly the following solidarity result.

Theorem 13.1.2 If Φ is a positive Harris chain on a countable space, and if there
exists an ergodic atom α, then for every initial state x

‖Pn(x, · )− π‖ → 0, n→∞. (13.23)

Proof On a countable space the total variation norm is given simply by

‖Pn(x, · )− π‖ =
∑
y

|Pn(x, y)− π(y)|

and so by (13.17) we have the total variation norm bounded by three terms:

‖Pn(x, · )− π‖ ≤
∑
y

αP
n(x, y) +

∑
y

|ax ∗ u− π(α)| ∗ ty (n) +
∑
y

π(α)
∞∑

j=n+1

ty(j).

(13.24)
We need to show each of these goes to zero. From the representation (13.13) of π,
and Harris positivity

∞ >
∑
y

π(y) = π(α)
∞∑

j=1

∑
y

ty(j). (13.25)

The third term in (13.24) is the tail sum in this representation and so we must have

π(α)
∞∑

j=n+1

∑
y

ty(j) → 0, n→∞. (13.26)

The first term in (13.24) also tends to zero, for we have the interpretation∑
y

αP
n(x, y) = Px(τα ≥ n) (13.27)

and since Φ is Harris recurrent Px(τα ≥ n) → 0 for every x.
Finally, the middle term in (13.24) tends to zero by a double application of

Lemma D.7.1, first using the assumption that α is ergodic so that (13.20) holds and,
once we have this, using the finiteness of

∑∞
j=1

∑
y ty(j) given by (13.25). �

This approach may be extended to give the Ergodic Theorem for a general space
chain when there is an ergodic atom in the state space. A first-entrance last-exit
decomposition will again give us an elegant proof in this case, and we prove such a
result in Section 13.2.3, from which basis we wish to prove the same type of ergodic
result for any positive Harris chain. To do this, we must of course prove that the atom
α̌ for the split skeleton chain Φ̌

m, which we always have available, is an ergodic atom.
To show that atoms for aperiodic positive chains are indeed ergodic, which is

crucial to completing this argument, we need results from renewal theory. This is
therefore necessarily the subject of the next section.
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13.2 Renewal and regeneration

13.2.1 Coupling renewal processes

When α is a recurrent atom in X, the sequence of return times given by τα(1) = τα
and for n > 1

τα(n) = min(j > τα(n− 1) : Φj = α)

is a specific example of a renewal process, as defined in Section 2.4.1.
The asymptotic structure of renewal processes has, deservedly, been the subject

of a great deal of analysis: such processes have a central place in the asymptotic theory
of many kinds of stochastic processes, but nowhere more than in the development of
asymptotic properties of general ψ-irreducible Markov chains.

Our goal in this section is to provide essentially those results needed for proving
the ergodic properties of Markov chains, and we shall do this through the use of
the so-called “coupling approach”. We will regrettably do far less than justice to the
full power of renewal and regenerative processes, or to the coupling method itself:
for more details on renewal and regeneration, the reader should consult Feller [76]
or Kingman [136], whilst the more recent flowering of the coupling technique is well
covered by the recent book by Lindvall [155].

As in Section 2.4.1 we let p = {p(j)} denote the distribution of the increments
in a renewal process, whilst a = {a(j)} and b = {b(j)} will denote possible delays
in the first increment variable S0. For n = 1, 2, . . . let Sn denote the time of the
(n+ 1)st renewal, so that the distribution of Sn is given by a ∗ pn∗ if S0 has the delay
distribution a.

Recall the standard notation

u(n) =
∞∑

j=0

pj∗ (n)

for the renewal function for n ≥ 0. Since p0∗ = δ0 we have u(0) = 1; by convention
we will set u(−1) = 0.

If we let Z(n) denote the indicator variables

Z(n) =
{

1 Sj = n, some j ≥ 0
0 otherwise,

then we have
Pa(Z(n) = 1) = a ∗ u (n),

and thus the renewal function represents the probabilities of {Z(n) = 1} when there
is no delay, or equivalently when a = δ0.

The coupling approach involves the study of two linked renewal processes with
the same increment distribution but different initial distributions, and, most critically,
defined on the same probability space.

To describe this concept we define two sets of mutually independent random
variables

{S0, S1, S2, . . .}, {S′
0, S

′
1, S

′
2, . . .}

where each of the variables {S1, S2, . . .} and {S′
1, S

′
2, . . .} are independent and iden-

tically distributed with distribution {p(j)}; but where the distributions of the inde-
pendent variables S0, S

′
0 are a, b.
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The coupling time of the two renewal processes is defined as

Tab = min{j : Za(j) = Zb(j) = 1}

where Za, Zb are the indicator sequences of each renewal process. The random time
Tab is the first time that a renewal takes place simultaneously in both sequences, and
from that point onwards, because of the loss of memory at the renewal epoch, the
renewal processes are identical in distribution.

The key requirement to use this method is that this coupling time be almost
surely finite. In this section we will show that if we have an aperiodic positive recurrent
renewal process with finite mean

mp :=
∞∑

j=0

jp(j) <∞ (13.28)

then such coupling times are always almost surely finite.

Proposition 13.2.1 If the increment distribution has an aperiodic distribution p
with mp <∞ then for any initial proper distributions a, b

P(Tab <∞) = 1. (13.29)

Proof Consider the linked forward recurrence time chain V∗ defined by (10.19),
corresponding to the two independent renewal sequences {Sn, S

′
n}.

Let τ1,1 = min(n : V ∗
n = (1, 1)). Since the first coupling takes place at τ1,1 + 1,

Tab = τ1,1 + 1

and thus we have that
P(Tab > n) = Pa×b(τ1,1 ≥ n). (13.30)

But we know from Section 10.3.1 that, under our assumptions of aperiodicity of p
and finiteness of mp, the chain V∗ is δ1,1-irreducible and positive Harris recurrent.
Thus for any initial measure µ we have a fortiori

Pµ(τ1,1 <∞) = 1;

and hence in particular for the initial measure a× b, it follows that

Pa×b(τ1,1 ≥ n) → 0, n→∞

as required. �
This gives a structure sufficient to prove

Theorem 13.2.2 Suppose that a, b, p are proper distributions on ZZ+, and that u
is the renewal function corresponding to p. Then provided p is aperiodic with mean
mp <∞

|a ∗ u (n)− b ∗ u (n)| → 0, n→∞. (13.31)
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Proof Let us define the random variables

Zab(n) =
{
Za(n) n < Tab

Zb(n) n ≥ Tab

so that for any n

P(Zab(n) = 1) = P(Za(n) = 1). (13.32)

We have that

|a ∗ u (n)− b ∗ u (n)| = |P(Za(n) = 1)− P(Zb(n) = 1)|
= |P(Zab(n) = 1)− P(Zb(n) = 1)|
= |P(Za(n) = 1, Tab > n) + P(Zb(n) = 1, Tab ≤ n)

−P(Zb(n) = 1, Tab > n)− P(Zb(n) = 1, Tab ≤ n)|
= |P(Za(n) = 1, Tab > n)− P(Zb(n) = 1, Tab > n)|
≤ max{P(Za(n) = 1, Tab > n),P(Zb(n) = 1, Tab > n)}
≤ P(Tab > n). (13.33)

But from Proposition 13.2.1 we have that P(Tab > n) → 0 as n → ∞, and (13.31)
follows. �

We will see in Section 18.1.1 that Theorem 13.2.2 holds even without the assump-
tion that mp <∞. For the moment, however, we will concentrate on further aspects
of coupling when we are in the positive recurrent case.

13.2.2 Convergence of the renewal function

Suppose that we have a positive recurrent renewal sequence with finite mean mp <∞.
Then the proper probability distribution e = e(n) defined by

e(n) :=m−1
p

∞∑
j=n+1

p(j) = m−1
p (1−

n∑
j=0

p(j)) (13.34)

has been shown in (10.17) to be the invariant probability measure for the forward
recurrence time chain V+ associated with the renewal sequence {Sn}. It also follows
that the delayed renewal distribution corresponding to the initial distribution e is
given for every n ≥ 0 by

Pe(Z(n) = 1) = e ∗ u (n)
= m−1

p (1− p ∗ 1) ∗ u (n)

= m−1
p (1− p ∗ 1) ∗ (

∞∑
j=0

p∗j) (n)

= m−1
p (1 + 1 ∗ (

∞∑
j=1

p∗j)(n)− p ∗ 1 ∗ (
∞∑

j=0

p∗j) (n))

= m−1
p . (13.35)

For this reason the distribution e is also called the equilibrium distribution of the
renewal process.
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These considerations show that in the positive recurrent case, the key quantity
we considered for Markov chains in (13.22) has the representation

|u(n)−m−1
p | = |Pδ0(Z(n) = 1)− Pe(Z(n) = 1)| (13.36)

and in order to prove an asymptotic limiting result for an expression of this kind, we
must consider the probabilities that Z(n) = 1 from the initial distributions δ0, e.

But we have essentially evaluated this already. We have

Theorem 13.2.3 Suppose that a, p are proper distributions on ZZ+, and that u is the
renewal function corresponding to p. Then provided p is aperiodic and has a finite
mean mp

|a ∗ u (n)−m−1
p | → 0, n→∞. (13.37)

Proof The result follows from Theorem 13.2.2 by substituting the equilibrium
distribution e for b and using (13.35). �

This has immediate application in the case where the renewal process is the return
time process to an accessible atom for a Markov chain.

Proposition 13.2.4 (i) If Φ is a positive recurrent aperiodic Markov chain then
any atom α in B+(X) is ergodic.

(ii) If Φ is a positive recurrent aperiodic Markov chain on a countable space then for
every initial state x

‖Pn(x, · )− π‖ → 0, n→∞. (13.38)

Proof We know from Proposition 10.2.2 that if Φ is positive recurrent then the
mean return time to any atom in B+(X) is finite. If the chain is aperiodic then (i)
follows directly from Theorem 13.2.3 and the definition (13.22).

The conclusion in (ii) then follows from (i) and Theorem 13.1.2. �
It is worth stressing explicitly that this result depends on the classification of

positive chains in terms of finite mean return times to atoms: that is, in using renewal
theory it is the equivalence of positivity and regularity of the chain that is utilized.

13.2.3 The regenerative decomposition for chains with atoms

We now consider general positive Harris chains and use the renewal theorems above
to commence development of their ergodic properties.

In order to use the splitting technique for analysis of total variation norm con-
vergence for general state space chains we must extend the first-entrance last-exit
decomposition (13.9) to general spaces. For any sets A,B ∈ B(X) and x ∈ X we have,
by decomposing the event {Φn ∈ B} over the times of the first and last entrances to
A prior to n, that

Pn(x,B) = AP
n(x,B) +

n−1∑
j=1

∫
A

[ j∑
k=1

∫
A

AP
k(x, dv)P j−k(v, dw)

]
AP

n−j(w,B).

(13.39)
If we suppose that there is an atom α and take A = α then these forms are somewhat
simplified: the decomposition (13.39) reduces to
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Pn(x,B) = αP
n(x,B) +

n−1∑
j=1

[ j∑
k=1

αP
k(x,α)P j−k(α,α)

]
αP

n−j(α, B). (13.40)

In the general state space case it is natural to consider convergence from an arbitrary
initial distribution λ. It is equally natural to consider convergence of the integrals

Eλ[f(Φn)] =
∫
λ(dx)

∫
Pn(x, dy)f(w) (13.41)

for arbitrary non-negative functions f . We will use either the probabilistic or the
operator theoretic version of this quantity (as given by the two sides of (13.41))
interchangeably, as seems most transparent, in what follows.

We explore convergence of Eλ[f(Φn)] for general (unbounded) f in detail in Chap-
ter 14. Here we concentrate on bounded f , in view of the definition (13.7) of the total
variation norm.

When α is an atom in B+(X), let us therefore extend the notation in (13.10)-
(13.12) to the forms

aλ (n) = Pλ(τα = n) (13.42)

tf (n) =
∫

αP
n(α, dy)f(y) = Eα[f(Φn)1l{τα ≥ n}] : (13.43)

these are well-defined (although possibly infinite) for any non-negative function f on
X and any probability measure λ on B(X).

As in (13.14) and (13.15) we can use this terminology to write the first entrance
and last exit formulations as∫

λ(dx)Pn(x,α) = aλ ∗ u (n) (13.44)∫
Pn(α, dy)f(y) = u ∗ tf (n). (13.45)

The first-entrance last-exit decomposition (13.40) can similarly be formulated, for
any λ, f , as∫

λ(dx)
∫
Pn(x, dw)f(w) =

∫
λ(dx)

∫
αP

n(x, dw)f(w) + aλ ∗ u ∗ tf (n). (13.46)

The general state space version of Proposition 13.1.1 provides the critical bounds
needed for our approach to ergodic theorems. Using the notation of (13.41) we have
two bounds which we shall refer to as Regenerative Decompositions.

Theorem 13.2.5 Suppose that Φ admits an accessible atom α and is positive Harris
recurrent with invariant probability measure π. Then for any probability measure λ
and f ≥ 0,

|Eλ[f(Φn)]− Eα[f(Φn)] | ≤ Eλ[f(Φn)1l{τα ≥ n}]

+ |aλ ∗ u− u| ∗ tf (n)
(13.47)

|Eλ[f(Φn)]− Eπ[f(Φn)] | ≤ Eλ[f(Φn)1l{τα ≥ n}]

+ | aλ ∗ u− π(α) | ∗ tf (n)

+π(α)
∑∞

j=n+1 tf (j).

(13.48)
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Proof The first-entrance last-exit decomposition (13.46), in conjunction with the
simple last exit decomposition in the form (13.45), gives the first bound on the dis-
tance between Eλ[f(Φn)] and Eα[f(Φn)] in (13.47).

The decomposition (13.46) also gives

|Eλ[f(Φn)]− Eπ[f(Φn)] | ≤ Eλ[f(Φn)1l{τα ≥ n}]

+
∣∣∣aλ ∗ u ∗ tf (n)− π(α)

∑n
j=1 tf (j)

∣∣∣
+
∣∣∣π(α)

∑n
j=1 tf (j)−

∫
π(dw)f(w)

∣∣∣ .
(13.49)

Now in the general state space case we have the representation for π given from
(10.32) by ∫

π(dw)f(w) = π(α)
∞∑
1

tf (y); (13.50)

and (13.48) now follows from (13.49). �
The Regenerative Decomposition (13.48) in Theorem 13.2.5 shows clearly what

is needed to prove limiting results in the presence of an atom. Suppose that f is
bounded. Then we must

(E1) control the third term in (13.48), which involves questions of the finiteness of
π, but is independent of the initial measure λ: this finiteness is guaranteed for
positive chains by definition;

(E2) control the first term in (13.48), which involves questions of the finiteness of
the hitting time distribution of τα when the chain begins with distribution λ;
this is automatically finite as required for a Harris recurrent chain, even without
positive recurrence, although for chains which are only recurrent it clearly needs
care;

(E3) control the middle term in (13.48), which again involves finiteness of π to bound
its last element, but more crucially then involves only the ergodicity of the atom
α, regardless of λ: for we know from Lemma D.7.1 that if the atom is ergodic
so that (13.19) holds then also

lim
n→∞ aλ ∗ u (n) = π(α), (13.51)

since for Φ a Harris recurrent chain, any probability measure λ satisfies∑
n

aλ(n) = Pλ(τα <∞) = 1. (13.52)

Thus recurrence, or rather Harris recurrence, will be used twice to give bounds: pos-
itive recurrence gives one bound; and, centrally, the equivalence of positivity and
regularity ensures the atom is ergodic, exactly as in Theorem 13.2.3.

Bounded functions are the only ones relevant to total variation convergence. The
Regenerative Decomposition is however valid for all f ≥ 0. Bounds in this decompo-
sition then involve integrability of f with respect to π, and a non-trivial extension of
regularity to what will be called f -regularity. This will be held over to the next chap-
ter, and here we formalize the above steps and incorporate them with the splitting
technique, to prove the Aperiodic Ergodic Theorem.
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13.3 Ergodicity of positive Harris chains

13.3.1 Strongly aperiodic chains

The prescription (E1)-(E3) above for ergodic behavior is followed in the proof of

Theorem 13.3.1 If Φ is a positive Harris recurrent and strongly aperiodic chain
then for any initial measure λ

‖
∫
λ(dx)Pn(x, · )− π‖ → 0, n→∞. (13.53)

Proof (i) Let us first assume that there is an accessible ergodic atom in the
space. The proof is virtually identical to that in the countable case. We have

‖
∫
λ(dx)Pn(x, · )− π‖ = sup

|f |≤1

∣∣∣∣∫ λ(dx)
∫
Pn(x, dw)f(w)−

∫
π(dw)f(w)

∣∣∣∣ (13.54)

and we use (13.48) to bound these terms uniformly for functions f ≤ 1.
Since |f | ≤ 1 the third term in (13.48) is bounded above by

π(α)
∞∑

n+1

t1(j) → 0, n→∞ (13.55)

since it is the tail sum in the representation (13.50) of π(X).
The second term in (13.48) is bounded above by

|aλ ∗ u− π(α)| ∗ t1(n) → 0, n→∞, (13.56)

by Lemma D.7.1; here we use the fact that α is ergodic and, again, the representation
that π(X) = π(α)

∑∞
1 t1(j) <∞.

We must finally control the first term. To do this, we need only note that, again
since |f | ≤ 1, we have

Eλ[f(Φn)1l{τα ≥ n}] ≤ Pλ(τα ≥ n) (13.57)

and this expression tends to zero by monotone convergence as n → ∞, since α is
Harris recurrent and Px(τα <∞) = 1 for every x.

Notice explicitly that in (13.55)-(13.57) the bounds which tend to zero are in-
dependent of the particular |f | ≤ 1, and so we have the required supremum norm
convergence.

(ii) Now assume that Φ is strongly aperiodic. Consider the split chain Φ̌: we
know this is also strongly aperiodic from Proposition 5.5.6 (ii), and positive Harris
from Proposition 10.4.2. Thus from Proposition 13.2.4 the atom α̌ is ergodic. Now
our use of total variation norm convergence renders the transfer to the original chain
easy. Using the fact that the original chain is the marginal chain of the split chain,
and that π is the marginal measure of π̌, we have immediately

‖
∫
λ(dx)Pn(x, · )− π‖ = 2 sup

A∈B(X)
|
∫
X
λ(dx)Pn(x,A)− π(A)|

= 2 sup
A∈B(X)

|
∫
X̌
λ∗(dxi)P̌n(xi, A)− π̌(A)|
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≤ 2 sup
B̌∈B(X̌)

|
∫
X̌
λ∗(dxi)P̌n(xi, B̌)− π̌(B̌)|

= ‖
∫
λ∗(dxi)P̌n(xi, · )− π̌‖, (13.58)

where the inequality follows since the first supremum is over sets in B(X̌) of the form
A0 ∪A1 and the second is over all sets in B(X̌).

Applying the result (i) for chains with accessible atoms shows that the total
variation norm in (13.58) for the split chain tends to zero, so we are finished. �

13.3.2 The ergodic theorem for ψ-irreducible chains

We can now move from the strongly aperiodic chain result to arbitrary aperiodic
Harris recurrent chains. This is made simpler as a result of another useful property
of the total variation norm.

Proposition 13.3.2 If π is invariant for P then the total variation norm

‖
∫
λ(dx)Pn(x, · )− π‖

is non-increasing in n.

Proof We have from the definition of total variation and the invariance of π that

‖
∫
λ(dx)Pn+1(x, · )− π‖

= sup
f :|f |≤1

|
∫
λ(dx)Pn+1(x, dy)f(y)−

∫
π(dy)f(y)|

= sup
f :|f |≤1

|
∫
λ(dx)Pn(x, dw)

[∫
P (w, dy)f(y)

]
−
∫
π(dw)

[∫
P (w, dy)f(y)

]
|

≤ sup
f :|f |≤1

|
∫
λ(dx)Pn(x, dw)f(w)−

∫
π(dw)f(w)| (13.59)

since whenever |f | ≤ 1 we also have |Pf | ≤ 1. �
We can now prove the general state space result in the aperiodic case.

Theorem 13.3.3 If Φ is positive Harris and aperiodic then for every initial distri-
bution λ

‖
∫
λ(dx)Pn(x, · )− π‖ → 0, n→∞. (13.60)

Proof Since for some m the skeleton Φm is strongly aperiodic, and also positive
Harris by Theorem 10.4.5, we know that

‖
∫
λ(dx)Pnm(x, · )− π‖ → 0, n→∞. (13.61)

The result for Pn then follows immediately from the monotonicity in (13.59). �
As we mentioned in the discussion of the periodic behavior of Markov chains, the

results are not quite as simple to state in the periodic as in the aperiodic case; but
they can be easily proved once the aperiodic case is understood.
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The asymptotic behavior of positive recurrent chains which may not be Harris is
also easy to state now that we have analyzed positive Harris chains.

The final formulation of these results for quite arbitrary positive recurrent chains
is

Theorem 13.3.4 (i) If Φ is positive Harris with period d ≥ 1 then for every initial
distribution λ

‖d−1
∫
λ(dx)

d−1∑
r=0

Pnd+r(x, · )− π‖ → 0, n→∞. (13.62)

(ii) If Φ is positive recurrent with period d ≥ 1 then there is a π-null set N such that
for every initial distribution λ with λ(N) = 0

‖d−1
∫
λ(dx)

d−1∑
r=0

Pnd+r(x, · )− π‖ → 0, n→∞. (13.63)

Proof The result (i) is straightforward to check from the existence of cycles in
Section 5.4.3, together with the fact that the chain restricted to each cyclic set is
aperiodic and positive Harris on the d-skeleton. We then have (ii) as a direct corollary
of the decomposition of Theorem 9.1.5. �

Finally, let us complete the circle by showing the last step in the equivalences
in Theorem 13.0.1. Notice that (13.64) is ensured by (13.1), using the Dominated
Convergence Theorem, so that our next result is in fact marginally stronger than the
corresponding statement of the Aperiodic Ergodic Theorem.

Theorem 13.3.5 Let Φ be ψ-irreducible and aperiodic, and suppose that there exists
some ν-small set C ∈ B+(X) and some P∞(C) > 0 such that as n→∞

∫
C
νC(dx)(Pn(x,C)− P∞(C)) → 0 (13.64)

where νC( · ) = ν( · )/ν(C) is normalized to a probability on C. Then the chain is
positive, and there exists a ψ-null set such that for every initial distribution λ with
λ(N) = 0

‖
∫
λ(dx)Pn(x, · )− π‖ → 0, n→∞. (13.65)

Proof Using the Nummelin splitting via the set C for the m-skeleton, we find
that (13.64) taken through the sublattice nm is equivalent to

δ−1(P̌n(α̌, α̌)− δP∞(C)) → 0. (13.66)

Thus the atom α̌ is ergodic and the results of Section 13.3 all hold, with P∞(C) =
π(C). �
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13.4 Sums of transition probabilities

13.4.1 A stronger coupling theorem

In order to derive bounds such as those in (13.5) on the sums of n-step total variation
differences from the invariant measure π, we need to bound sums of terms such as
|Pn(α,α) − π(α)| rather than the individual terms. This again requires a renewal
theory result, which we prove using the coupling method. We have

Proposition 13.4.1 Suppose that a, b, p are proper distributions on ZZ+, and that u
is the renewal function corresponding to p. Then provided p is aperiodic and has a
finite mean mp, and a, b also have finite means ma, mb, we have

∞∑
n=0

|a ∗ u (n)− b ∗ u (n)| <∞. (13.67)

Proof We have from (13.33) that

∞∑
n=0

|a ∗ u (n)− b ∗ u (n)| ≤
∞∑

n=0

P(Tab > n) = E[Tab]. (13.68)

Now we know from Section 10.3.1 that when p is aperiodic and mp < ∞, the linked
forward recurrence time chain V∗ is positive recurrent with invariant probability

e∗(i, j) = e(i)e(j).

Hence from any state (i, j) with e∗(i, j) > 0 we have as in Proposition 11.1.1

Ei,j [τ1,1] <∞. (13.69)

Let us consider specifically the initial distributions δ0 and δ1: these correspond to
the undelayed renewal process and the process delayed by exactly one time unit
respectively. For this choice of initial distribution we have for n > 0

δ0 ∗ u (n) = u(n)
δ1 ∗ u (n) = u(n− 1)

Now E[T01] ≤ E1,2[τ1,1] + 1 and it is certainly the case that e∗(1, 2) > 0. So from
(13.30), (13.68) and (13.69)

Var (u) :=
∞∑

n=0

|u(n)− u(n− 1)| ≤ E1,2[τ1,1] + 1 <∞. (13.70)

We now need to extend the result to more general initial distributions with finite
mean. By the triangle inequality it suffices to consider only one arbitrary initial
distribution a and to take the other as δ0. To bound the resulting quantity |a∗u (n)−
u(n)| we write the upper tails of a for k ≥ 0 as

a(k) :=
∞∑

j=k+1

a(j) = 1−
k∑

j=0

a(j)
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and put
w(k) = |u(k)− u(k − 1)|.

We then have the relation

a ∗ w (n) =
n∑

j=0

a(j)w(n− j)

≥ |
n∑

j=0

[1−
j∑

k=0

a(k)][u(n− j)− u(n− j − 1)]|

= |
n∑

j=0

[u(n− j)− u(n− j − 1)]

−
n∑

j=0

j∑
k=0

a(k)[u(n− j)− u(n− j − 1)]|

= |u(n)−
n∑

k=0

a(k)
n∑

j=k

[u(n− j)− u(n− j − 1)]|

= |u(n)−
n∑

k=0

a(k)u(n− k)| (13.71)

so that ∑
n

|u(n)− a ∗ u (n)| ≤
∑
n

a ∗ w (n) = [
∑
n

a(n)][
∑
n

w(n)]. (13.72)

But by assumption the mean ma =
∑
a(n) is finite, and (13.70) shows that the

sequence w(n) is also summable; and so we have∑
n

|u(n)− a ∗ u (n)| ≤ maVar (u) <∞ (13.73)

as required. �
It is obviously of considerable interest to know under what conditions we have∑

n

|a ∗ u (n)−m−1
p | <∞; (13.74)

that is, when this result holds with the equilibrium measure as one of the initial
measures.

Using Proposition 13.4.1 we know that this will occur if the equilibrium distri-
bution e has a finite mean; and since we know the exact structure of e it is obvious
that me <∞ if and only if

sp :=
∑
n

n2p(n) <∞.

In fact, using the exact form

me = [sp −mp]/[2mp]

we have from Proposition 13.4.1 and in particular the bound (13.72) the following
pleasing corollary:

Proposition 13.4.2 If p is an aperiodic distribution with sp <∞ then∑
n

|u(n)−m−1
p | ≤ Var (u)[sp −mp]/[2mp] <∞. (13.75)

�
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13.4.2 General chains with atoms

We now refine the ergodic theorem Theorem 13.3.3 to give conditions under which
sums such as ∞∑

n=1

‖Pn(x, · )− Pn(y, · )‖

are finite. A result such as this requires regularity of the initial states x, y: recall from
Chapter 11 that a probability measure µ on B(X) is called regular, if

Eµ[τB] <∞, B ∈ B+(X).

We will again follow the route of first considering chains with an atom, then trans-
lating the results to strongly aperiodic and thence to general chains.

Theorem 13.4.3 Suppose Φ is an aperiodic positive Harris chain and suppose that
the chain admits an atom α ∈ B+(X). Then for any regular initial distributions λ, µ,

∞∑
n=1

∫ ∫
λ(dx)µ(dy)‖Pn(x, · )− Pn(y, · )‖ <∞; (13.76)

and in particular, if Φ is regular, then for every x, y ∈ X
∞∑

n=1

‖Pn(x, · )− Pn(y, · )‖ <∞. (13.77)

Proof By the triangle inequality it will suffice to prove that
∞∑

n=1

∫
λ(dx)‖Pn(x, · )− Pn(α, · )‖ <∞; (13.78)

that is, to assume that one of the initial distributions is δα.
If we sum the first Regenerative Decomposition (13.47) in Theorem 13.2.5 with

f ≤ 1 we find (13.78) is bounded by two sums: firstly,
∞∑

n=1

∫
λ(dx)αP

n(x,X) = Eλ[τα] (13.79)

which is finite since λ is regular; and secondly{ ∞∑
n=1

∫
λ(dx)|ax ∗ u (n)− u(n)|

}{ ∞∑
n=1

αP
n(α,X)

}
. (13.80)

To bound this term note that
∑∞

n=1 αP
n(α,X) = Eα[τα] < ∞ since every accessible

atom is regular from Theorems 11.1.4 and 11.1.2; and so it remains only to prove that
∞∑

n=1

∫
λ(dx)|ax ∗ u (n)− u(n)| <∞. (13.81)

From (13.72) we have
∞∑

n=1

|ax ∗ u (n)− u(n)| ≤
( ∞∑

n=1

ax(n)
)( ∞∑

n=1

|u(n)− u(n− 1)|
)

= Ex[τα]Var (u),

and hence the sum (13.81) is bounded by Eλ[τα]Var (u), which is again finite by
Proposition 13.4.1 and regularity of λ. �
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13.4.3 General aperiodic chains

The move from the atomic case is by now familiar.

Theorem 13.4.4 Suppose Φ is an aperiodic positive Harris chain. For any regular
initial distributions λ, µ

∞∑
n=1

∫ ∫
λ(dx)µ(dy)‖Pn(x, · )− Pn(y, · )‖ <∞. (13.82)

Proof Consider the strongly aperiodic case. The theorem is valid for the split
chain, since the split measures λ∗, µ∗ are regular for Φ̌: this follows from the charac-
terization in Theorem 11.3.12.

Since the result is a total variation result it remains valid when restricted to the
original chain, as in (13.58).

In the arbitrary aperiodic case we can apply Proposition 13.3.2 to move to a
skeleton chain, as in the proof of Theorem 13.2.5. �

The most interesting special case of this result is given in the following theorem.

Theorem 13.4.5 Suppose Φ is an aperiodic positive Harris chain and that α is an
accessible atom. If

Eα[τ2
α] <∞ (13.83)

then for any regular initial distribution λ

∞∑
n=1

‖λPn − π‖ <∞. (13.84)

�

Proof In the case where there is an atom α in the space, we have as in Propo-
sition 13.4.2 that π is a regular measure when the second-order moment (13.83) is
finite, and the result is then a consequence of Theorem 13.4.4.

13.5 Commentary

It is hard to know where to start in describing contributions to these theorems. The
countable chain case has an immaculate pedigree: Kolmogorov [139] first proved this
result, and Feller [76] and Chung [49] give refined approaches to the single-state
version (13.6), essentially through analytic proofs of the lattice renewal theorem.

The general state space results in the positive recurrent case are largely due to
Harris [95] and to Orey [207]. Their results and related material, including a null
recurrent version in Section 18.1 below are all discussed in a most readable way in
Orey’s monograph [208]. Prior to the development of the splitting technique, proofs
utilized the concept of the tail σ-field of the chain, which we have not discussed so
far, and will only touch on in Chapter 17.

The coupling proofs are much more recent, although they are usually dated to
Doeblin [66]. Pitman [215] first exploited the positive recurrent coupling in the way
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we give it here, and his use of the result in Proposition 13.4.1 was even then new, as
was Theorem 13.4.4.

Our presentation of this material has relied heavily on Nummelin [202], and
further related results can be found in his Chapter 6. In particular, for results of this
kind in a more general setting where the renewal sequence is allowed to vary from the
probabilistic structure with

∑
n p(n) = 1 which we have used, the reader is referred

to Chapters 4 and 6 of [202].
It is interesting to note that the first-entrance last-exit decomposition, which

shows so clearly the role of the single ergodic atom, is a relative late-comer on the
scene. Although probably used elsewhere, it surfaces in the form given here in Num-
melin [200] and Nummelin and Tweedie [206], and appears to be less than well known
even in the countable state space case. Certainly, the proof of ergodicity is much sim-
plified by using the Regenerative Decomposition.

We should note, for the reader who is yet again trying to keep stability nomencla-
ture straight, that even the “ergodicity” terminology we use here is not quite standard:
for example, Chung [49] uses the word ergodic to describe certain ratio limit theorems
rather than the simple limit theorem of (13.8). We do not treat ratio limit theorems in
this book, except in passing in Chapter 17: it is a notable omission, but one dictated
by the lack of interesting examples in our areas of application. Hence no confusion
should arise, and our ergodic chains certainly coincide with those of Feller [76], Num-
melin [202] and Revuz [223]. The latter two books also have excellent treatments of
ratio limit theorems.

We have no examples in this chapter. This is deliberate. We have shown in Chap-
ter 11 how to classify specific models as positive recurrent using drift conditions: we
can say little else here other than that we now know that such models converge in
the relatively strong total variation norm to their stationary distributions. Over the
course of the next three chapters, we will however show that other much stronger
ergodic properties hold under other more restrictive drift conditions; and most of
the models in which we have been interested will fall into these more strongly stable
categories.
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f-Ergodicity and f-Regularity

In Chapter 13 we considered ergodic chains for which the limit

lim
k→∞

Ex[f(Φk)] =
∫
f dπ (14.1)

exists for every initial condition, and every bounded function f on X.
An assumption that f is bounded is often unsatisfactory in applications. For

example, f may denote a cost function in an optimal control problem, in which case
f(Φn) will typically be a norm-like function of Φn on X; in queueing applications, the
function f(x) might denote buffer levels in a queue corresponding to the particular
state x ∈ X which is, again, typically an unbounded function on X; in storage models,
f may denote penalties for high values of the storage level, which correspond to
overflow penalties in reality.

The purpose of this chapter is to relax the boundedness condition by developing
more general formulations of regularity and ergodicity. Our aim is to obtain conver-
gence results of the form (14.1) for the mean value of f(Φk), where f : X → [1,∞)
is an arbitrary fixed function. As in Chapter 13, it will be shown that the simplest
approach to ergodic theorems of this kind is to consider simultaneously all functions
which are dominated by f : that is, to consider convergence in the f -norm, defined as

‖ν‖f = sup
g:|g|≤f

|ν(g)|

where ν is any signed measure.
The goals described above are achieved in the following f -Norm Ergodic Theorem

for aperiodic chains.

Theorem 14.0.1 (f-Norm Ergodic Theorem) Suppose that the chain Φ is ψ-
irreducible and aperiodic, and let f ≥ 1 be a function on X. Then the following
conditions are equivalent:

(i) The chain is positive recurrent with invariant probability measure π and

π(f) :=
∫
π(dx)f(x) <∞

(ii) There exists some petite set C ∈ B(X) such that

sup
x∈C

Ex[
τC−1∑
n=0

f(Φn)] <∞. (14.2)
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(iii) There exists some petite set C and some extended-valued non-negative function
V satisfying V (x0) <∞ for some x0 ∈ X, and

∆V (x) ≤ −f(x) + b1lC(x), x ∈ X. (14.3)

Any of these three conditions imply that the set SV = {x : V (x) < ∞} is absorbing
and full, where V is any solution to (14.3) satisfying the conditions of (iii), and any
sublevel set of V satisfies (14.2); and for any x ∈ SV ,

‖Pn(x, · )− π‖f → 0 (14.4)

as n → ∞. Moreover, if π(V ) < ∞ then there exists a finite constant Bf such that
for all x ∈ SV ,

∞∑
n=0

‖Pn(x, · )− π‖f ≤ Bf (V (x) + 1). (14.5)

Proof The equivalence of (i) and (ii) follows from Theorem 14.1.1 and Theo-
rem 14.2.11. The equivalence of (ii) and (iii) is in Theorems 14.2.3 and 14.2.4, and
the fact that sublevel sets of V are “self-regular” as in (14.2) is shown in Theo-
rem 14.2.3. The limit theorems are then contained in Theorems 14.3.3, 14.3.4 and
14.3.5. �

Much of this chapter is devoted to proving this result, and related f -regularity
properties which follow from (14.2), and the pattern is not dissimilar to that in
the previous chapter: indeed, those ergodicity results, and the equivalences in Theo-
rem 13.0.1, can be viewed as special cases of the general f results we now develop.

The f -norm limit (14.4) obviously implies that the simpler limit (14.1) also holds.
In fact, if g is any function satisfying |g| ≤ c(f +1) for some c <∞ then Ex[g(Φk)] →∫
g dπ for states x with V (x) <∞, for V satisfying (14.3). We formalize the behavior

we will analyze in

f -Ergodicity

We shall say that the Markov chain Φ is f-ergodic if f ≥ 1 and

(i) Φ is positive Harris recurrent with invariant probability π

(ii) the expectation π(f) is finite

(iii) for every initial condition of the chain,

lim
k→∞

‖P k(x, · )− π‖f = 0.
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The f -Norm Ergodic Theorem states that if any one of the equivalent conditions
of the Aperiodic Ergodic Theorem holds then the simple additional condition that
π(f) is finite is enough to ensure that a full absorbing set exists on which the chain
is f -ergodic. Typically the way in which finiteness of π(f) would be established in
an application is through finding a test function V satisfying (14.3): and if, as will
typically happen, V is finite everywhere then it follows that the chain is f -ergodic
without restriction, since then SV = X.

14.1 f-Properties: chains with atoms

14.1.1 f-Regularity for chains with atoms

We have already given the pattern of approach in detail in Chapter 13. It is not
worthwhile treating the countable case completely separately again: as was the case
for ergodicity properties, a single accessible atom is all that is needed, and we will
initially develop f -ergodic theorems for chains possessing such an atom.

The generalization from total variation convergence to f -norm convergence given
an initial accessible atom α can be carried out based on the developments of Chap-
ter 13, and these also guide us in developing characterizations of the initial measures λ
for which general f -ergodicity might be expected to hold. It is in this part of the anal-
ysis, which corresponds to bounding the first term in the Regenerative Decomposition
of Theorem 13.2.5, that the hard work is needed, as we now discuss.

Suppose that Φ admits an atom α and is positive Harris recurrent with invariant
probability measure π. Let f ≥ 1 be arbitrary: that is, we place no restrictions on
the boundedness or otherwise of f . Recall that for any probability measure λ we have
from the Regenerative Decomposition that for arbitrary |g| ≤ f ,

|Eλ[g(Φn)]− π(g)| ≤
∫
λ(dx)

∫
αP

n(x, dw)f(w) (14.6)

+ | aλ ∗ u− π(α) | ∗ tf (n) + π(α)
∞∑

j=n+1

tf (j).

Using hitting time notation we have
∞∑

n=1

tf (n) = Eα

[ τα∑
j=1

f(Φj)
]

(14.7)

and thus the finiteness of this expectation will guarantee convergence of the third
term in (14.6), as it did in the case of the ergodic theorems in Chapter 13. Also as in
Chapter 13, the central term in (14.6) is controlled by the convergence of the renewal
sequence u regardless of f , provided the expression in (14.7) is finite.

Thus it is only the first term in (14.6) that requires a condition other than ergod-
icity and finiteness of (14.7). Somewhat surprisingly, for unbounded f this is a much
more troublesome term to control than for bounded f , when it is a simple consequence
of recurrence that it tends to zero. This first term can be expressed alternatively as∫

λ(dx)
∫

αP
n(x, dw)f(w) = Eλ[f(Φn)1l(τα ≥ n)] (14.8)
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and so we have the representation
∞∑

n=1

∫
λ(dx)

∫
αP

n(x, dw)f(w) = Eλ

[ τα∑
j=1

f(Φj)
]
. (14.9)

This is similar in form to (14.7), and if (14.9) is finite, then we have the desired
conclusion that (14.8) does tend to zero. In fact, it is only the sum of these terms
that appears tractable, and for this reason it is in some ways more natural to consider
the summed form (14.5) rather than simple f -norm convergence.

Given this motivation to require finiteness of (14.7) and (14.9), we introduce the
concept of f-regularity which strengthens our definition of ordinary regularity.

f -Regularity

A set C ∈ B(X) is called f-regular where f : X → [1,∞) is a measurable
function, if for each B ∈ B+(X),

sup
x∈C

Ex

[τB−1∑
k=0

f(Φk)
]
<∞.

A measure λ is called f-regular if for each B ∈ B+(X),

Eλ

[τB−1∑
k=0

f(Φk)
]
<∞.

The chain Φ is called f-regular if there is a countable cover of X with
f -regular sets.

From this definition an f -regular state, seen as a singleton set, is a state x for which
Ex

[∑τB−1
k=0 f(Φk)

]
<∞, B ∈ B+(X).

As with regularity, this definition of f -regularity appears initially to be stronger
than required since it involves all sets in B+(X); but we will show this to be again
illusory.

A first consequence of f -regularity, and indeed of the weaker “self-f -regular” form
in (14.2), is

Proposition 14.1.1 If Φ is recurrent with invariant measure π and there exists C ∈
B(X) satisfying π(C) <∞ and

sup
x∈C

Ex[
τC−1∑
n=0

f(Φn)] <∞ (14.10)

then Φ is positive recurrent and π(f) <∞.
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Proof First of all, observe that under (14.10) the set C is Harris recurrent and
hence C ∈ B+(X) by Proposition 9.1.1. The invariant measure π then satisfies, from
Theorem 10.4.9,

π(f) =
∫

C
π(dy)Ey

[τC−1∑
n=0

f(Φn)
]
.

If C satisfies (14.10) then the expectation is uniformly bounded on C itself, so that
π(f) ≤ π(C)MC <∞. �

Although f -regularity is a requirement on the hitting times of all sets, when the
chain admits an atom it reduces to a requirement on the hitting times of the atom
as was the case with regularity.

Proposition 14.1.2 Suppose Φ is positive recurrent with π(f) < ∞, and that an
atom α ∈ B+(X) exists.

(i) Any set C ∈ B(X) is f-regular if and only if

sup
x∈C

Ex

[ σα∑
k=0

f(Φk)
]
<∞.

(ii) There exists an increasing sequence of sets Sf (n) where each Sf (n) is f-regular
and the set Sf = ∪Sf (n) is full and absorbing.

Proof Consider the function Gα(x, f) previously defined in (11.21) by

Gα(x, f) = Ex[
σα∑
k=0

f(Φk)]. (14.11)

When π(f) < ∞, by Theorem 11.3.5 the bound PGα(x, f) ≤ Gα(x, f) + c holds
for the constant c = Eα[

∑τα
k=1 f(Φk)] = π(f)/π(α) < ∞, which shows that the set

{x : Gα(x, f) <∞} is absorbing, and hence by Proposition 4.2.3 this set is full.
To prove (i), let B be any sublevel set of the function Gα(x, f) with π(B) > 0

and apply the bound

Gα(x, f) ≤ Ex[
τB−1∑
k=0

f(Φk)] + sup
y∈B

Ey[
σα∑
k=0

f(Φk)].

This shows that Gα(x, f) is bounded on C if C is f -regular, and proves the “only if”
part of (i).

We have from Theorem 10.4.9 that for any B ∈ B+(X),

∞ >

∫
B
π(dx)Ex

[ τB∑
k=0

f(Φk)
]

≥
∫

B
π(dx)Ex

[
1l(σα < τB)

τB∑
k=σα+1

f(Φk)
]

=
∫

B
π(dx)Px(σα < τB)Eα

[ τB∑
k=1

f(Φk)
]
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where to obtain the last equality we have conditioned at time σα and used the strong
Markov property.

Since α ∈ B+(X) we have that

π(α) =
∫

B
π(dx)Ex

[τB−1∑
k=0

1l(Φk ∈ α)
]
> 0,

which shows that
∫
B π(dx)Px(σα < τB) > 0. Hence from the previous bounds,

Eα

[∑τB
k=1 f(Φk)

]
<∞ for B ∈ B+(X).

Using the bound τB ≤ σα + θσατB, we have for arbitrary x ∈ X,

Ex

[ τB∑
k=0

f(Φk)
]
≤ Ex

[ σα∑
k=0

f(Φk)
]
+ Eα

[ τB∑
k=1

f(Φk)
]

(14.12)

and hence C is f -regular if Gα(x, f) is bounded on C, which proves (i).
To prove (ii), observe that from (14.12) we have that the set Sf (n) := {x :

Gα(x, f) ≤ n} is f -regular, and so the proposition is proved. �

14.1.2 f-Ergodicity for chains with atoms

As we have foreshadowed, f -regularity is exactly the condition needed to obtain
convergence in the f -norm.

Theorem 14.1.3 Suppose that Φ is positive Harris, aperiodic, and that an atom
α ∈ B+(X) exists.

(i) If π(f) <∞ then the set Sf of f-regular states is absorbing and full, and for any
x ∈ Sf we have

‖P k(x, · )− π‖f → 0, k →∞.

(ii) If Φ is f-regular then Φ is f-ergodic.

(iii) There exists a constant Mf < ∞ such that for any two f-regular initial distri-
butions λ and µ,

∞∑
n=1

∫ ∫
λ(dx)µ(dy)‖Pn(x, · )− Pn(y, · )‖f

≤ Mf

(∫
λ(dx)Gα(x, f) +

∫
µ(dy)Gα(y, f)

)
. (14.13)

Proof From Proposition 14.1.2 (ii), the set of f -regular states Sf is absorbing
and full when π(f) < ∞. If we can prove ‖P k(x, · ) − π‖f → 0, for x ∈ Sf , this will
establish both (i) and (ii).

But this f -norm convergence follows from (14.6), where the first term tends to
zero since x is f -regular, so that Ex[

∑τα
n=1 f(Φn)] < ∞; the third term tends to

zero since
∑∞

n=1 tf (j) = Eα[
∑τα

n=1 f(Φn)] = π(f)/π(α) < ∞; and the central term
converges to zero by Lemma D.7.1 and the fact that α is an ergodic atom.

To prove the result in (iii), we use the same method of proof as for the ergodic
case. By the triangle inequality it suffices to assume that one of the initial distributions
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is δα. We again use the first form of the Regenerative Decomposition to see that for
any |g| ≤ f , x ∈ X, the sum

∞∑
n=1

∫
λ(dx)|Pn(x, g)− Pn(α, g)|

is bounded by the sum of the following two terms:

∞∑
n=1

∫
λ(dx)αP

n(x, f) = Eλ

[ τα∑
n=1

f(Φn)
]

(14.14)

{ ∞∑
n=1

∫
λ(dx)|ax ∗ u (n)− u(n)|

}{ ∞∑
n=1

αP
n(α, f)

}
. (14.15)

The first of these is again finite since we have assumed λ to be f -regular; and in
the second, the right hand term is similarly finite since π(f) < ∞, whilst the left
hand term is independent of f , and since λ is regular (given f ≥ 1), is bounded by
Eλ[τα]Var (u), using (13.73).

Since for some finite M ,

Ex[τα] ≤ Ex[
τα∑

n=1

f(Φn)] ≤MGα(x, f)

this completes the proof of (iii). �
Thus for a chain with an accessible atom, we have very little difficulty moving

to f -norm convergence. The simplicity of the results is exemplified in the countable
state space case where the f -regularity of all states, guaranteed by Proposition 14.1.2,
gives us

Theorem 14.1.4 Suppose that Φ is an irreducible positive Harris aperiodic chain on
a countable space. Then if π(f) <∞, for all x, y ∈ X

‖P k(x, · )− π‖f → 0 k →∞.

and ∞∑
n=1

‖Pn(x, · )− Pn(y, · )‖f <∞.

14.2 f-Regularity and drift

It would seem at this stage that all we have to do is move, as we did in Chapter 13, to
strongly aperiodic chains; bring the f -properties proved in the previous section above
over from the split chain in this case; and then move to general aperiodic chains by
using the Nummelin splitting of the m-skeleton.

Somewhat surprisingly, perhaps, this recipe does not work in a trivially easy way.
The most difficult step in this approach is that when we go to a split chain it is
necessary to consider an m-skeleton, but we do not yet know if the skeletons of an
f -regular chain are also f -regular. Such is indeed the case and we will prove this key
result in the next section, by exploiting drift criteria.
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This may seem to be a much greater effort than we needed for the Aperiodic
Ergodic Theorem: but it should be noted that we devoted all of Chapter 11 to the
equivalence of regularity and drift conditions in the case of f ≡ 1, and the results
here actually require rather less effort. In fact, much of the work in this chapter is
based on the results already established in Chapter 11, and the duality between drift
and regularity established there will serve us well in this more complex case.

14.2.1 The drift characterization of f-regularity

In order to establish f -regularity for a chain on a general state space without atoms,
we will use the following criterion, which is a generalization of the condition in (V2).
As for regular chains, we will find that there is a duality between appropriate solutions
to (V3) and f -regularity.

f -Modulated Drift Towards C

(V3) For a function f : X → [1,∞), a set C ∈ B(X), a constant
b <∞, and an extended-real valued function V : X → [0,∞]

∆V (x) ≤ −f(x) + b1lC(x), x ∈ X. (14.16)

The condition (14.16) is implied by the slightly stronger pair of bounds

f(x) + PV (x) ≤
{
V (x) x ∈ Cc

b x ∈ C
(14.17)

with V bounded on C, and it is this form that is often verified in practice.
Those states x for which V (x) is finite when V satisfies (V3) will turn out to be

those f -regular states from which the distributions of Φ converge in f -norm. For this
reason the following generalization of Lemma 11.3.6 is important: we omit the proof
which is similar to that of Lemma 11.3.6 or Proposition 14.1.2.

Lemma 14.2.1 Suppose that Φ is ψ-irreducible. If (14.16) holds for a positive func-
tion V which is finite at some x0 ∈ X then the set Sf := {x ∈ X : V (x) < ∞} is
absorbing and full.

�
The power of (V3) largely comes from the following

Theorem 14.2.2 (Comparison Theorem) Suppose that the non-negative func-
tions V, f, s satisfy the relationship

PV (x) ≤ V (x)− f(x) + s(x), x ∈ X
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Then for each x ∈ X, N ∈ ZZ+, and any stopping time τ we have

N∑
k=0

Ex[f(Φk)] ≤ V (x) +
N∑

k=0

Ex[s(Φk)]

Ex

[τ−1∑
k=0

f(Φk)
]
≤ V (x) + Ex

[τ−1∑
k=0

s(Φk)
]
.

Proof This follows from Proposition 11.3.2 on letting fk = f , sk = s. �
The first inequality in Theorem 14.2.2 bounds the mean value of f(Φk), but says

nothing about the convergence of the mean value. We will see that the second bound
is in fact crucial for obtaining f -regularity for the chain, and we turn to this now.

In linking the drift condition (V3) with f -regularity we will consider the extended-
real valued function GC(x, f) defined in (11.21) as

GC(x, f) = Ex

[ σC∑
k=0

f(Φk)
]

(14.18)

where C is typically f -regular or petite. The following characterization of f -regularity
shows that this function is both a solution to (14.16), and can be bounded using
any other solution V to (14.16). Together with Lemma 14.2.1, this result proves the
equivalence between (ii) and (iii) in the f -Norm Ergodic Theorem.

Theorem 14.2.3 Suppose that Φ is ψ-irreducible.

(i) If (V3) holds for a petite set C then for any B ∈ B+(X) there exists c(B) < ∞
such that

Ex

[τB−1∑
k=0

f(Φk)
]
≤ V (x) + c(B).

Hence if V is bounded on the set A, then A is f-regular.

(ii) If there exists one f-regular set C ∈ B+(X), then C is petite and the function
V (x) = GC(x, f) satisfies (V3) and is bounded on A for any f-regular set A.

Proof (i) Suppose that (V3) holds, with C a ψa-petite set. By the Comparison
Theorem 14.2.2, Lemma 11.3.10, and the bound

1lC(x) ≤ ψa(B)−1Ka(x,B)

in (11.27) we have for any B ∈ B+(X), x ∈ X,

Ex

[τB−1∑
k=0

f(Φk)
]
≤ V (x) + bEx

[τB−1∑
k=0

1lC(Φk)
]

≤ V (x) + bEx

[τB−1∑
k=0

ψa(B)−1Ka(Φk, B)
]

= V (x) + bψa(B)−1
∞∑
i=0

aiEx

[τB−1∑
k=0

1lB(Φk+i)
]

≤ V (x) + bψa(B)−1
∞∑
i=0

iai.
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Since we can choose a so that ma =
∑∞

i=0 iai <∞ from Proposition 5.5.6, the result
follows with c(B) = bψa(B)−1ma. We then have

sup
x∈A

Ex

[τB−1∑
k=0

f(Φk)
]
≤ sup

x∈A
V (x) + c(B),

and so if V is bounded on A, it follows that A is f -regular.
(ii) If an f -regular set C ∈ B+(X) exists, then it is also regular and hence petite

from Proposition 11.3.8. The function GC(x, f) is clearly positive, and bounded on
any f -regular set A. Moreover, by Theorem 11.3.5 and f -regularity of C it follows
that condition (V3) holds with V (x) = GC(x, f). �

14.2.2 f-regular sets

Theorem 14.2.3 gives a characterization of f -regularity in terms of a drift condition.
The next result gives such a characterization in terms of the return times to petite
sets, and generalizes Proposition 11.3.14: f -regular sets in B+(X) are precisely those
petite sets which are “self-f -regular”.

Theorem 14.2.4 When Φ is a ψ-irreducible chain, the following are equivalent:

(i) C ∈ B(X) is petite and

sup
x∈C

Ex

[τC−1∑
k=0

f(Φk)
]
<∞; (14.19)

(ii) C is f-regular and C ∈ B+(X).

Proof To see that (i) implies (ii), suppose that C is petite and satisfies (14.19).
By Theorem 11.3.5 we may find a constant b <∞ such that (V3) holds for GC(x, f).
It follows from Theorem 14.2.3 that C is f -regular.

The set C is Harris recurrent under the conditions of (i), and hence lies in B+(X)
by Proposition 9.1.1.

Conversely, if C is f -regular then it is also petite from Proposition 11.3.8, and if
C ∈ B+(X) then supx∈C Ex[

∑τC−1
k=0 f(Φk)] <∞ by the definition of f -regularity. �

As an easy corollary to Theorem 14.2.3 we obtain the following generalization of
Proposition 14.1.2.

Theorem 14.2.5 If there exists an f-regular set C ∈ B+(X), then there exists an
increasing sequence {Sf (n) : n ∈ ZZ+} of f-regular sets whose union is full. Hence
there is a decomposition

X = Sf ∪N (14.20)

where the set Sf is full and absorbing and Φ restricted to Sf is f-regular.

Proof By f -regularity and positivity of C we have, by Theorem 14.2.3 (ii),
that (V3) holds for the function V (x) = GC(x, f) which is bounded on C, and by
Lemma 14.2.1 we have that V is finite π-a.e.

The required sequence of f -regular sets can then be taken as
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Sf (n) := {x : V (x) ≤ n}, n ≥ 1

by Theorem 14.2.3. It is a consequence of Lemma 14.2.1 that Sf = ∪Sf (n) is absorb-
ing. �

We now give a characterization of f -regularity using the Comparison Theo-
rem 14.2.2.

Theorem 14.2.6 Suppose that Φ is ψ-irreducible. Then the chain is f-regular if and
only if (V3) holds for an everywhere finite function V , and every sublevel set of V is
then f-regular.

Proof From Theorem 14.2.3 (i) we see that if (V3) holds for a finite-valued V
then each sublevel set of V is f -regular. This establishes f -regularity of Φ.

Conversely, if Φ is f -regular then it follows that an f -regular set C ∈ B+(X)
exists. The function V (x) = GC(x, f) is everywhere finite and satisfies (V3), by
Theorem 14.2.3 (ii). �

As a corollary to Theorem 14.2.6 we obtain a final characterization of f -regularity
of Φ, this time in terms of petite sets:

Theorem 14.2.7 Suppose that Φ is ψ-irreducible. Then the chain is f-regular if and
only if there exists a petite set C such that the expectation

Ex

[τC−1∑
k=0

f(Φk)
]

is finite for each x, and uniformly bounded for x ∈ C.

Proof If the expectation is finite as described in the theorem, then by Theo-
rem 11.3.5 the function GC(x, f) is everywhere finite, and satisfies (V3) with the
petite set C. Hence from Theorem 14.2.6 we see that the chain is f -regular.

For the converse take C to be any f -regular set in B+(X). �

14.2.3 f-Regularity and m-skeletons

One advantage of the form (V3) over (14.17) is that, once f -regularity of Φ is estab-
lished, we may easily iterate (14.16) to obtain

PmV (x) ≤ V (x)−
m−1∑
i=0

P if +
m−1∑
i=0

P i1lC (x) x ∈ X. (14.21)

This is essentially of the same form as (14.16), and provides an approach to f -
regularity for the m-skeleton which will give us the desired equivalence between f -
regularity for Φ and its skeletons.

To apply Theorem 14.2.3 and (14.21) to obtain an equivalence between f -
properties of Φ and its skeletons we must replace the function

∑m−1
i=0 P i1lC with

the indicator function of a petite set. The following result shows that this is possible
whenever C is petite and the chain is aperiodic.

Let us write for any positive function g on X,

g(m) :=
m−1∑
i=0

P ig. (14.22)
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Lemma 14.2.8 If Φ is aperiodic and if C ∈ B(X) is a petite set, then for any ε > 0
and m ≥ 1 there exists a petite set Cε such that

1l(m)
C ≤ m1lCε + ε.

Proof Since Φ is aperiodic, it follows from the definition of the period given in
(5.40) and the fact that petite sets are small, proven in Proposition 5.5.7, that for a
non-trivial measure ν and some k ∈ ZZ+, we have the simultaneous bound

P km−i(x,B) ≥ 1lC(x)ν(B), x ∈ X, B ∈ B(X), 0 ≤ i ≤ m− 1.

Hence we also have

P km(x,B) ≥ P i1lC(x)ν(B), x ∈ X, B ∈ B(X), 0 ≤ i ≤ m− 1,

which shows that
P km(x, · ) ≥ 1l(m)

C (x)m−1ν.

The set Cε = {x : 1l(m)
C (x) ≥ ε} is therefore νk-small for the m-skeleton, where

νk = εm−1ν, whenever this set is non-empty. Moreover, C ⊂ Cε for all ε < 1.
Since 1l(m)

C ≤ m everywhere, and since 1l(m)
C (x) < ε for x ∈ Cc

ε , we have the bound

1l(m)
C ≤ m1lCε + ε

�
We can now put these pieces together and prove the desired solidarity for Φ and

its skeletons.

Theorem 14.2.9 Suppose that Φ is ψ-irreducible and aperiodic. Then C ∈ B+(X)
is f-regular if and only if it is f (m)-regular for any one, and then every, m-skeleton
chain.

Proof If C is f (m)-regular for an m-skeleton then, letting τm
B denote the hitting

time for the skeleton, we have by the Markov property, for any B ∈ B+(X),

Ex

[τm
B −1∑
k=0

m−1∑
i=0

P if(Φkm)
]

= Ex

[τm
B −1∑
k=0

m−1∑
i=0

f(Φkm+i)
]

≥ Ex

[τB−1∑
j=0

f(Φj)
]
.

By the assumption of f (m)-regularity, the left hand side is bounded over C and hence
the set C is f -regular.

Conversely, if C ∈ B+(X) is f -regular then it follows from Theorem 14.2.3 that
(V3) holds for a function V which is bounded on C.

By repeatedly applying P to both side of this inequality we obtain as in (14.21)

PmV ≤ V − f (m) + b1l(m)
C .

By Lemma 14.2.8 we have for a petite set C ′
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PmV ≤ V − f (m) + bm1lC′ + 1
2

≤ V − 1
2f

(m) + bm1lC′ ,

and thus (V3) holds for the m-skeleton. Since V is bounded on C, we see from
Theorem 14.2.3 that C is f (m)-regular for the m-skeleton. �

As a simple but critical corollary we have

Theorem 14.2.10 Suppose that Φ is ψ-irreducible and aperiodic. Then Φ is f-
regular if and only if each m-skeleton is f (m)-regular. �

The importance of this result is that it allows us to shift our attention to skeleton
chains, one of which is always strongly aperiodic and hence may be split to form an ar-
tificial atom; and this of course allows us to apply the results obtained in Section 14.1
for chains with atoms.

The next result follows this approach to obtain a converse to Proposition 14.1.1,
thus extending Proposition 14.1.2 to the non-atomic case.

Theorem 14.2.11 Suppose that Φ is positive recurrent and π(f) < ∞. Then there
exists a sequence {Sf (n)} of f-regular sets whose union is full.

Proof We need only look at a split chain corresponding to the m-skeleton chain,
which possess an f (m)-regular atom by Proposition 14.1.2. It follows from Proposi-
tion 14.1.2 that for the split chain the required sequence of f (m)-regular sets exist,
and then following the proof of Proposition 11.1.3 we see that for the m-skeleton an
increasing sequence {Sf (n)} of f (m)-regular sets exists whose union is full.

From Theorem 14.2.9 we have that each of the sets {Sf (n)} is also f -regular for
Φ and the theorem is proved. �

14.3 f-Ergodicity for general chains

14.3.1 The aperiodic f-ergodic theorem

We are now, at last, in a position to extend the atom-based f -ergodic results of
Section 14.1 to general aperiodic chains.

We first give an f -ergodic theorem for strongly aperiodic chains. This is an easy
consequence of the result for chains with atoms.

Proposition 14.3.1 Suppose that Φ is strongly aperiodic, positive recurrent, and
suppose that f ≥ 1.

(i) If π(f) =∞ then P k(x, f) →∞ as k →∞ for all x ∈ X.

(ii) If π(f) < ∞ then almost every state is f-regular and for any f-regular state
x ∈ X

‖P k(x, · )− π‖f → 0, k →∞.

(iii) If Φ is f-regular then Φ is f-ergodic.
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Proof (i) By positive recurrence we have for x lying in the maximal Harris set
H, and any m ∈ ZZ+,

lim inf
k→∞

P k(x, f) ≥ lim inf
k→∞

P k(x,m ∧ f) = π(m ∧ f).

Letting m→∞ we see that P k(x, f) →∞ for these x. For arbitrary x ∈ X we choose
n0 so large that Pn0(x,H) > 0. This is possible by ψ-irreducibility. By Fatou’s Lemma
we then have the bound

lim inf
k→∞

P k(x, f) = lim inf
k→∞

Pn0+k(x, f) ≥
∫

H
Pn0(x, dy)

{
lim inf
k→∞

P k(x, f)
}

= ∞.

Result (ii) is now obvious using the split chain, given the results for a chain
possessing an atom, and (iii) follows directly from (ii). �

We again obtain f -ergodic theorems for general aperiodic Φ by considering the
m-skeleton chain. The results obtained in the previous section show that when Φ has
appropriate f -properties then so does each m-skeleton. For aperiodic chains, there
always exists some m ≥ 1 such that the m-skeleton is strongly aperiodic, and hence
we may apply Theorem 14.3.1 to the m-skeleton chain to obtain f -ergodicity for this
skeleton. This then carries over to the process by considering the m distinct skeleton
chains embedded in Φ.

The following lemma allows us to make the desired connections between Φ and
its skeletons.

Lemma 14.3.2 (i) For any f ≥ 1 we have for n ∈ ZZ+,

‖Pn(x, · )− π‖f ≤ ‖P km(x, ·)− π(·)‖f (m) ,

for k satisfying n = km+ i with 0 ≤ i ≤ m− 1.

(ii) If for some m ≥ 1 and some x ∈ X we have ‖P km(x, · )− π‖f (m) → 0 as k →∞
then ‖P k(x, · )− π‖f → 0 as k →∞.

(iii) If the m-skeleton is f (m)-ergodic then Φ itself is f-ergodic.

Proof Under the conditions of (i) let |g| ≤ f and write any n ∈ ZZ+ as n = km+ i
with 0 ≤ i ≤ m− 1. Then

|Pn(x, g)− π(g)| = |P km(x, P ig)− π(P ig)|
≤ ‖P km(x, ·)− π(·)‖f (m) .

This proves (i) and the remaining results then follow. �
This lemma and the ergodic theorems obtained for strongly aperiodic chains

finally give the result we seek.

Theorem 14.3.3 Suppose that Φ is positive recurrent and aperiodic.

(i) If π(f) =∞ then P k(x, f) →∞ for all x.

(ii) If π(f) <∞ then the set Sf of f-regular sets is full and absorbing, and if x ∈ Sf

then ‖P k(x, · )− π‖f → 0, as k →∞.

(iii) If Φ is f-regular then Φ is f-ergodic. Conversely, if Φ is f-ergodic then Φ
restricted to a full absorbing set is f-regular.
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Proof Result (i) follows as in the proof of Proposition 14.3.1 (i).
If π(f) <∞ then there exists a sequence of f -regular sets {Sf (n)} whose union is

full. By aperiodicity, for some m, the m-skeleton is strongly aperiodic and each of the
sets {Sf (n)} is f (m)-regular. From Proposition 14.3.1 we see that the distributions of
the m-skeleton converge in f (m)-norm for initial x ∈ Sf (n).

This and Lemma 14.3.2 proves (ii). The first part of (iii) is then a simple conse-
quence; the converse is also immediate from (ii) since f -ergodicity implies π(f) <∞.

�
Note that if Φ is f -ergodic then Φ may not be f -regular: this is already obvious

in the case f = 1.

14.3.2 Sums of transition probabilities

We now refine the ergodic theorem Theorem 14.3.3 to give conditions under which
the sum ∞∑

n=1

‖Pn(x, · )− π‖f (14.23)

is finite.
The first result of this kind requires f -regularity of the initial probability measures

λ, µ. For practical implementation, note that if (V3) holds for a petite set C and a
function V , and if λ(V ) <∞, then from Theorem 14.2.3 (i) we see that the measure
λ is f -regular.

Theorem 14.3.4 Suppose Φ is an aperiodic positive Harris chain. If π(f) <∞ then
for any f-regular set C ∈ B+(X) there exists Mf < ∞ such that for any f-regular
initial distributions λ, µ,

∞∑
n=1

∫ ∫
λ(dx)µ(dy)‖Pn(x, · )− Pn(y, · )‖f ≤Mf (λ(V ) + µ(V ) + 1) <∞ (14.24)

where V ( · ) = GC( · , f).

Proof Consider first the strongly aperiodic case, and construct a split chain Φ̌
using an f -regular set C. The theorem is valid from Theorem 14.1.3 for the split
chain, since the split measures µ∗, λ∗ are f -regular for Φ̌. The bound on the sum can
be taken as

∞∑
n=1

∫ ∫
λ∗(dx)µ∗(dy)‖P̌n(x, · )− P̌n(y, · )‖f < Mf (λ∗(V ) + µ∗(V ) + 1)

with V = ǦC0∪C1( · , f), since C0 ∪ C1 ∈ B+(X̌) is f -regular for the split chain.
Since the result is a total variation result it is then obviously valid when restricted

to the original chain, as in (13.58). Using the identity∫
λ∗(dx)ǦC0∪C1(x, f) =

∫
λ(dx)GC(x, f),

and the analogous identity for µ, we see that the required bound holds in the strongly
aperiodic case.
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In the arbitrary aperiodic case we can apply Lemma 14.3.2 to move to a skeleton
chain, as in the proof of Theorem 14.3.3. �

The most interesting special case of this result is given in the following theorem.

Theorem 14.3.5 Suppose Φ is an aperiodic positive Harris chain and that π is f-
regular. Then π(f) < ∞ and for any f-regular set C ∈ B+(X) there exists Bf < ∞
such that for any f-regular initial distribution λ

∞∑
n=1

‖λPn − π‖f ≤ Bf (λ(V ) + 1). (14.25)

where V ( · ) = GC( · , f). �

Our final f -ergodic result, for quite arbitrary positive recurrent chains is given
for completeness in

Theorem 14.3.6 (i) If Φ is positive recurrent and if π(f) < ∞ then there exists
a full set Sf , a cycle {Di : 1 ≤ i ≤ d} contained in Sf , and probabilities
{πi : 1 ≤ i ≤ d} such that for any x ∈ Dr,

‖Pnd+r(x, · )− πr‖f → 0, n→∞. (14.26)

(ii) If Φ is f-regular then for all x,

‖d−1
d∑

r=1

Pnd+r(x, · )− π‖f → 0, n→∞. (14.27)

�

14.3.3 A criterion for finiteness of π(f)

From the Comparison Theorem 14.2.2 and the ergodic theorems presented above we
also obtain the following criterion for finiteness of moments.

Theorem 14.3.7 Suppose that Φ is positive recurrent with invariant probability π,
and suppose that V, f and s are non-negative, finite-valued functions on X such that

PV (x) ≤ V (x)− f(x) + s(x)

for every x ∈ X. Then π(f) ≤ π(s).

Proof For π-a.e. x ∈ X we have from the Comparison Theorem 14.2.2, Theo-
rem 14.3.6 and (if π(f) = ∞) the aperiodic version of Theorem 14.3.3, whether or
not π(s) <∞,

π(f) = lim
N→∞

1
N

N∑
k=1

Ex[f(Φk)] ≤ lim
N→∞

1
N

N∑
k=1

Ex[s(Φk)] = π(s).

�
The criterion for π(X) < ∞ in Theorem 11.0.1 is a special case of this result.

However, it seems easier to prove for quite arbitrary non-negative f, s using these
limiting results.
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14.4 f-Ergodicity of specific models

14.4.1 Random walk on IR+ and storage models

Consider random walk on a half line given by Φn = [Φn−1 + Wn]+, and assume that
the increment distribution Γ has negative first moment and a finite absolute moment
σ(k) of order k.

Let us choose the test function V (x) = xk. Then using the binomial expansion
the drift ∆V is given for x > 0 by

∆V (x) =
∫∞
−x Γ (dy)(x+ y)k − xk

≤
(∫∞

−x Γ (dy)y
)
kxk−1 + cσ(k)xk−2 + d

(14.28)

for some finite c, d. We can rewrite (14.28) in the form of (V3); namely for some
c′ > 0, and large enough x ∫

P (x, dy)yk ≤ xk − c′xk−1.

From this we may prove the following

Proposition 14.4.1 If the increment distribution Γ has mean β < 0 and finite (k+
1)st moment, then the associated random walk on a half line is |x|k-regular. Hence
the process Φ admits a stationary measure π with finite moments of order k; and with
fk(y) = yk + 1,

(i) for all λ such that
∫
λ(dx)xk+1 <∞,∫
λ(dx)‖Pn(x, · )− π‖fk

→ 0, n→∞;

(ii) for some Bf <∞, and any initial distribution λ,
∞∑

n=0

∫
λ(dx)‖Pn(x, · )− π‖fk−1

≤ Bf

(
1 +

∫
xk λ(dx)

)
Proof The calculations preceding the proposition show that for some c0 > 0,
d0 <∞, and a compact set C ⊂ IR+,

PVi+1 (x) ≤ Vi+1(x)− c0fi(x) + d01lC(x) 0 ≤ i ≤ k, (14.29)

where Vj(x) = xj , fj(x) = xj + 1. Result (i) is then an immediate consequence of the
f -Norm Ergodic Theorem.

To prove (ii) apply (14.29) with i = k and Theorem 14.3.7 to conclude that
π(Vk) <∞. Applying (14.29) again with i = k − 1 we see that π is fk−1-regular and
then (ii) follows from the f -Norm Ergodic Theorem. �

It is well known that the invariant measure for a random walk on the half line
has moments of order one degree lower than those of the increment distribution, but
this is a particularly simple proof of this result.

For the Moran dam model or the queueing models developed in Chapter 2, this
result translates directly into a condition on the input distribution. Provided the
mean input is less than the mean output between input times, then there is a finite
invariant measure: and this has a finite kth moment if the input distribution has finite
(k + 1)st moment.
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14.4.2 Bilinear Models

The random walk model in the previous section can be generalized in a variety of
ways, as we have seen many times in the applications above.

For illustrative purposes we next consider the scalar bilinear model

Xk+1 = θXk + bWk+1Xk +Wk+1 (14.30)

for which we proved boundedness in probability in Section 12.5.2. For simplicity, we
take E[W ] = 0.

To obtain a solution to (V3), assume that W has finite variance. Then for the
test function V (x) = x2, we observe that by independence

E[(Xk+1)2 | Xk = x] ≤
[
θ2 + b2E[W 2

k+1]
]
x2 + (2bx+ 1)E[W 2

k+1]. (14.31)

Since this V is a norm-like function on IR, it follows that (V3) holds with the choice
of

f(x) = 1 + δV (x)

for some δ > 0 provided
θ2 + b2E[W 2

k ] < 1. (14.32)

Under this condition it follows just as in the LSS(F ) model that provided the noise
process forces this model to be a T-chain (for example, if the conditions of Propo-
sition 7.1.3 hold) then (14.32) is a condition not just for positive Harris recurrence,
but for the existence of a second order stationary model with finite variance: this is
precisely the interpretation of π(f) <∞ in this case.

A more general version of this result is

Proposition 14.4.2 Suppose that (SBL1) and (SBL2) hold and

E[W k
n ] <∞. (14.33)

Then the bilinear model is positive Harris, the invariant measure π also has finite kth

moments (that is, satisfies
∫
xkπ(dx) <∞), and

‖Pn(x, · )− π‖xk → 0, n→∞.

�

In the next chapter we will show that there is in fact a geometric rate of conver-
gence in this result. This will show that, in essence, the same drift condition gives us
finiteness of moments in the stationary case, convergence of time-dependent moments
and some conclusion about the rate at which the moments become stationary.

14.5 A Key Renewal Theorem

One of the most interesting applications of the ergodic theorems in these last two
chapters is a probabilistic proof of the Key Renewal Theorem.

As in Section 3.5.3, let Zn :=
∑n

i=0 Yi, where {Y1, Y2, . . .} is a sequence of in-
dependent and identical random variables with distribution Γ on IR+, and Y0 is
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a further independent random variable with distribution Γ0 also on IR+; and let
U( · ) =

∑∞
n=0 Γ

n∗( · ) be the associated renewal measure.
Renewal theorems concern the limiting behavior of U ; specifically, they concern

conditions under which

Γ0 ∗ U ∗ f (t) → β−1
∫ ∞

0
f(s) ds (14.34)

as t → ∞, where β =
∫∞
0 sΓ (ds) and f and Γ0 are an appropriate function and

measure respectively.
With minimal assumptions about Γ we have Blackwell’s Renewal Theorem.

Theorem 14.5.1 Provided Γ has a finite mean β and is not concentrated on a lattice
nh, n ∈ ZZ+, h > 0, then for any interval [a, b] and any initial distribution Γ0

Γ0 ∗ U [a+ t, b+ t]→ β−1(b− a), t→∞. (14.35)

Proof This result is taken from Feller ([77], p. 360) and its proof is not one we
pursue here. We do note that it is a special case of the general Key Renewal Theorem,
which states that under these conditions on Γ , (14.34) holds for all bounded non-
negative functions f which are directly Riemann integrable, for which again see Feller
([77], p. 361); for then (14.35) is the special case with f(s) = 1l[a,b](s). �

This result shows us the pattern for renewal theorems: in the limit, the measure
U approximates normalized Lebesgue measure.

We now show that one can trade off properties of Γ against properties of f (and
to some extent properties of Γ0) in asserting (14.34). We shall give a proof, based on
the ergodic properties we have been considering for Markov chains, of the following
Uniform Key Renewal Theorem.

Theorem 14.5.2 Suppose that Γ has a finite mean β and is spread out (as defined
in (RW2)).

(a) For any initial distribution Γ0 we have the uniform convergence

lim
t→∞ sup

|g|≤f
|Γ0 ∗ U ∗ g(t)− β−1

∫ ∞

0
g(s)ds| = 0 (14.36)

provided the function f ≥ 0 satisfies

f is bounded; (14.37)
f is Lebesgue integrable; (14.38)
f(t) → 0, t→∞. (14.39)

(b) In particular, for any bounded interval [a, b] and Borel sets B

lim
t→∞ sup

B⊆[a,b]
|Γ0 ∗ U(t+B)− β−1µLeb(B)| = 0. (14.40)

(c) For any initial distribution Γ0 which is absolutely continuous, the convergence
(14.36) holds for f satisfying only (14.37) and (14.38).
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Proof The proof of this set of results occupies the remainder of this section, and
contains a number of results of independent interest. �

Before embarking on this proof, we note explicitly that we have accomplished a
number of tradeoffs in this result, compared with the Blackwell Renewal Theorem.
By considering spread-out distributions, we have exchanged the direct Riemann in-
tegrability condition for the simpler and often more verifiable smoothness conditions
(14.37)-(14.39). This is exemplified by the fact that (14.40) allows us to consider the
renewal measure of any bounded Borel set, whereas the general Γ version restricts us
to intervals as in (14.35). The extra benefits of smoothness of Γ0 in removing (14.39)
as a condition are also in this vein.

Moreover, by moving to the class of spread-out distributions, we have introduced
a uniformity into the Key Renewal Theorem which is analogous in many ways to
the total variation norm result in Markov chain limit theory. This analogy is not
coincidental: as we now show, these results are all consequences of precisely that total
variation convergence for the forward recurrence chain associated with this renewal
process.

Recall from Section 3.5.3 the forward recurrence time process

V +(t) := inf(Zn − t : Zn ≥ t), t ≥ 0.

We will consider the forward recurrence time δ-skeleton V+
δ = V +(nδ), n ∈ ZZ+ for

that process, and denote its n-step transition law by Pnδ(x, · ). We showed that for
sufficiently small δ, when Γ is spread out, then (Proposition 5.3.3) the set [0, δ] is a
small set for V+

δ , and (Proposition 5.4.7) V+
δ is also aperiodic.

It is trivial for this chain to see that (V2) holds with V (x) = x, so that the chain
is regular from Theorem 11.3.15, and if Γ0 has a finite mean, then Γ0 is regular from
Theorem 11.3.12.

This immediately enables us to assert from Theorem 13.4.4 that, if Γ1, Γ2 are
two initial measures both with finite mean, and if Γ itself is spread out with finite
mean,

∞∑
n=0

‖Γ1P
nδ( · )− Γ2P

nδ( · )‖ <∞. (14.41)

The crucial corollary to this example of Theorem 13.4.4, which leads to the Uniform
Key Renewal Theorem is

Proposition 14.5.3 If Γ is spread out with finite mean, and if Γ1, Γ2 are two initial
measures both with finite mean, then

‖Γ1 ∗ U − Γ2 ∗ U‖ :=
∫ ∞

0
|Γ1 ∗ U(dt)− Γ2 ∗ U(dt)| <∞. (14.42)

Proof By interpreting the measure Γ0P
s as an initial distribution, observe that

for A ⊆ [t,∞), and fixed s ∈ [0, t), we have from the Markov property at s the identity

Γ0 ∗ U(A) = Γ0P
s ∗ U(A− s). (14.43)

Using this we then have
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∫ ∞

0
|Γ1 ∗ U(dt)− Γ2 ∗ U(dt)|

=
∑∞

n=0

∫
[nδ,(n+1)δ) |Γ1 ∗ U(dt)− Γ2 ∗ U(dt)|

=
∑∞

n=0

∫
[0,δ) |(Γ1P

nδ − Γ2P
nδ) ∗ U(dt)|

≤ ∑∞
n=0

∫
[0,δ)

∫
[0,t] |(Γ1P

nδ − Γ2P
nδ)(du)|U(dt− u)

≤ ∑∞
n=0

∫
[0,δ) |(Γ1P

nδ − Γ2P
nδ)(du)|U [0, δ)

≤ U [0, δ)
∑∞

n=0 ‖Γ1P
nδ − Γ2P

nδ‖

(14.44)

which is finite from (14.41). �
From this we can prove a precursor to Theorem 14.5.2.

Proposition 14.5.4 If Γ is spread out with finite mean, and if Γ1, Γ2 are two initial
measures both with finite mean, then

sup
|g|≤f

|Γ1 ∗ U ∗ g(t)− Γ2 ∗ U ∗ g(t)| → 0, t→∞ (14.45)

for any f satisfying (14.37)-(14.39).

Proof Suppose that ε is arbitrarily small but fixed. Using Proposition 14.5.3 we
can fix T such that ∫ ∞

T
|(Γ1 ∗ U − Γ2 ∗ U)(du)| ≤ ε. (14.46)

If f satisfies (14.39), then for all sufficiently large t,

f(t− u) ≤ ε, u ∈ [0, T ];

for such a t, writing d = sup f(x) < ∞ from (14.37), it follows that for any g with
|g| ≤ f ,

|Γ1 ∗ U ∗ g(t)− Γ2 ∗ U ∗ g(t)| ≤
∫ T
0 |(Γ1 ∗ U − Γ2 ∗ U(du)|f(t− u)

+
∫ t
T |(Γ1 ∗ U − Γ2 ∗ U)(du)|f(t− u)

≤ ε‖Γ1 ∗ U − Γ2 ∗ U‖+ εd

:= ε′

(14.47)

which is arbitrarily small, from (14.44), thus proving the result. �
This would prove Theorem 14.5.2 (a) if the equilibrium measure

Γe[0, t] = β−1
∫ t

0
Γ (u,∞)du

defined in (10.37) were itself regular, since we have that Γe∗U( · ) = β−1µLeb( · ), which
gives the right hand side of (14.36). But as can be verified by direct calculation, Γe

is regular if and only if Γ has a finite second moment, exactly as is the case in
Theorem 13.4.5 for general chains with atoms.

However, we can reach the following result, of which Theorem 14.5.2 (a) is a
corollary, using a truncation argument.
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Proposition 14.5.5 If Γ is spread out with finite mean, and if Γ1, Γ2 are any two
initial measures, then

sup
|g|≤f

|Γ1 ∗ U ∗ g(t)− Γ2 ∗ U ∗ g(t)| → 0, t→∞

for any f satisfying (14.37)-(14.39).

Proof For fixed v, let Γ v(A):=Γ (A)/Γ [0, v] for allA ⊆ [0, v] denote the truncation
of Γ (A) to [0, v].

For any g with |g| ≤ f ,

|Γ1 ∗ U ∗ g(t)− Γ v
1 ∗ U ∗ g(t)| ≤ ‖Γ1 − Γ v

1 ‖ sup
x
U ∗ f(x) (14.48)

which can be made smaller than ε by choosing v large enough, provided supx U ∗
f(x) <∞. But if t > T , from (14.47), with Γ1 = δ0, Γ2 = Γ v

e and g = f ,

U ∗ f(t) = δ0 ∗ U ∗ f(t)

≤ Γ v
e ∗ U ∗ f(t) + ε′

≤
(
Γe[0, v]

)−1
Γe ∗ U ∗ f(t) + ε′

≤
(
Γe[0, v]

)−1
β−1

∫∞
0 f(u)du+ ε′

(14.49)

which is indeed finite, by (14.38).
The result then follows from Proposition 14.5.4 and (14.48) by a standard triangle

inequality argument. �
Theorem 14.5.2 (b) is a simple consequence of Theorem 14.5.2 (a), but to prove

Theorem 14.5.2 (c), we need to refine the arguments above a little.
Suppose that (14.39) does not hold, and write

Aε(t) := {u ∈ [0, T ] : f(t− u) ≥ ε}

where ε and T are as in (14.46). We then have∫ T

0
|(Γ1 ∗ U − Γ2 ∗ U)(du)|f(t− u)

≤
∫ T
0 |(Γ1 ∗ U − Γ2 ∗ U(du)|f(t− u)1l[Aε(t)]c(u)

+
∫ T
0 (Γ1 ∗ U + Γ2 ∗ U)(du)f(t− u)1lAε(t)(u)

≤ ε‖Γ1 ∗ U − Γ2 ∗ U‖+ d(Γ1 + Γ2) ∗ U(Aε(t)).

(14.50)

If we now assume that the measure Γ1 + Γ2 to be absolutely continuous with respect
to µLeb, then so is (Γ1 + Γ2) ∗ U ([77], p. 146).

Now since f is integrable, as t→∞ for fixed T, ε we must have µLeb(Aε(t)) → 0.
But since T is fixed, we have that both µLeb[0, T ] <∞ and (Γ1 + Γ2) ∗ U [0, T ] <∞,
and it is a standard result of measure theory ([94], p 125) that
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(Γ1 + Γ2) ∗ U(Aε(t)) → 0, t→∞.

We can thus make the last term in (14.50) arbitrarily small for large t, even without
assuming (14.39); now reconsidering (14.47), we see that Proposition 14.5.4 holds
without (14.39), provided we assume the existence of densities for Γ1 and Γ2, and
then Theorem 14.5.2 (c) follows by the truncation argument of Proposition 14.5.5.

14.6 Commentary

These results are largely recent. Although the question of convergence of Ex[f(Φk)] for
general f occurs in, for example, Markov reward models [20], most of the literature
on Harris chains has concentrated on convergence only for f ≤ 1 as in the previous
chapter. The results developed here are a more complete form of those in Meyn
and Tweedie [178], but there the general aperiodic case was not developed: only
the strongly aperiodic case is considered in detail. A more embryonic form of the
convergence in f -norm, indicating that if π(f) <∞ then Ex[f(Φk)] → π(f), appeared
as Theorem 2 of Tweedie [278].

Nummelin [202] considers f -regularity, but does not go on to apply the resulting
concepts to f -ergodicity, although in fact there are connections between the two which
are implicit through the Regenerative Decomposition in Nummelin and Tweedie [206].

That Theorem 14.1.1 admits a converse, so that when π(f) < ∞ there exists
a sequence of f -regular sets {Sf (n)} whose union is full, is surprisingly deep. For
general state space chains, the question of the existence of f -regular sets requires the
splitting technique as did the existence of regular sets in Chapter 11. The key to their
use in analyzing chains which are not strongly aperiodic lies in the duality with the
drift condition (V3), and this is given here for the first time.

The fact that (V3) gives a criterion for finiteness of π(f) was observed in Tweedie
[278]. Its use for asserting the second order stationarity of bilinear and other time
series models was developed in Feigin and Tweedie [74], and for analyzing random
walk in [279]. Related results on the existence of moments are also in Kalashnikov
[116].

The application to the generalized Key Renewal Theorem is particularly satis-
fying. By applying the ergodic theorems above to the forward recurrence time chain
V+

δ , we have “leveraged” from the discrete time renewal theory results of Section 13.2
to the continuous time ones through the general Markov chain results. This Marko-
vian approach was developed in Arjas et al [9], and the uniformity in Theorem 14.5.2,
which is a natural consequence of this approach, seems to be new there. The simpler
form without the uniformity, showing that one can exchange spread-outness of Γ for
the weaker conditions on f dates back to the original renewal theorems of Smith
[247, 248, 249], whilst Breiman [30] gives a form of Theorem 14.5.2 (b). An elegant
and different approach is also possible through Stone’s Decomposition of U [258],
which shows that when Γ is spread-out,

U = Uf + Uc

where Uf is a finite measure, and Uc has a density p with respect to µLeb satisfying
p(t) → β−1 as t→∞.

The convergence, or rather summability, of the quantities
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‖Pn(x, · )− π‖f

leads naturally to a study of rates of convergence, and this is carried out in Nummelin
and Tuominen [205]. Building on this, Tweedie [279] uses similar approaches to those
in this chapter to derive drift criteria for more subtle rate of convergence results: the
interested reader should note the result of Theorem 3 (iii) of [279]. There it is shown
(essentially by using the Comparison Theorem) that if (V3) holds for a function f
such that

f(x) ≥ Ex[r(τC)], x ∈ Cc

where r(n) is some function on ZZ+, then

V (x) ≥ Ex[r0(τC)], x ∈ Cc

where r0(n) =
∑n

1 r(j). If C is petite then this is (see [205] or Theorem 4 (iii) of [279])
enough to ensure that

r(n)‖Pn(x, · )− π‖ → 0, n→∞

so that (V3) gives convergence at rate r(n)−1 in the ergodic theorem.
Applications of these ideas to the Key Renewal Theorem are also contained in

[205].
The special case of r(n) = rn is explored thoroughly in the next two chapters.

The rate results above are valuable also in the case of r(n) = nk since then r0(n) is
asymptotically nk+1. This allows an inductive approach to the level of convergence
rate achieved; but this more general topic is not pursued in this book. The inter-
ested reader will find the most recent versions, building on those of Nummelin and
Tuominen [205], in [271].
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Geometric Ergodicity

The previous two chapters have shown that for positive Harris chains, convergence
of Ex[f(Φk)] is guaranteed from almost all initial states x provided only π(f) < ∞.
Strong though this is, for many models used in practice even more can be said: there
is often a rate of convergence ρ such that

‖Pn(x, · )− π‖f = o(ρn)

where the rate ρ < 1 can be chosen essentially independent of the initial point x.
The purpose of this chapter is to give conditions under which convergence takes

place at such a uniform geometric rate. Because of the power of the final form of
these results, and the wide range of processes for which they hold (which include
many of those already analyzed as ergodic) it is not too strong a statement that this
“geometrically ergodic” context constitutes the most useful of all of those we present,
and for this reason we have devoted two chapters to this topic.

The following result summarizes the highlights of this chapter, where we focus
on bounds such as (15.4) and the strong relationship between such bounds and the
drift criterion given in (15.3). In Chapter 16 we will explore a number of examples
in detail, and describe techniques for moving from ergodicity to geometric ergodicity.
The development there is based primarily on the results of this chapter, and also on
an interpretation of the geometric convergence (15.4) in terms of convergence of the
kernels {P k} in a certain induced operator norm.

Theorem 15.0.1 (Geometric Ergodic Theorem) Suppose that the chain Φ is ψ-
irreducible and aperiodic. Then the following three conditions are equivalent:

(i) The chain Φ is positive recurrent with invariant probability measure π, and there
exists some ν-petite set C ∈ B+(X), ρC < 1 and MC < ∞, and P∞(C) > 0
such that for all x ∈ C

|Pn(x,C)− P∞(C)| ≤MCρ
n
C . (15.1)

(ii) There exists some petite set C ∈ B(X) and κ > 1 such that

sup
x∈C

Ex[κτC ] <∞. (15.2)
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(iii) There exists a petite set C, constants b <∞, β > 0 and a function V ≥ 1 finite
at some one x0 ∈ X satisfying

∆V (x) ≤ −βV (x) + b1lC(x), x ∈ X. (15.3)

Any of these three conditions imply that the set SV = {x : V (x) < ∞} is absorbing
and full, where V is any solution to (15.3) satisfying the conditions of (iii), and there
then exist constants r > 1, R <∞ such that for any x ∈ SV

∑
n

rn‖Pn(x, · )− π‖V ≤ RV (x). (15.4)

Proof The equivalence of the local geometric rate of convergence property in (i)
and the self-geometric recurrence property in (ii) will be shown in Theorem 15.4.3.

The equivalence of the self-geometric recurrence property and the existence of
solutions to the drift equation (15.3) is completed in Theorems 15.2.6 and 15.2.4. It
is in Theorem 15.4.1 that this is shown to imply the geometric nature of the V -norm
convergence in (15.4), while the upper bound on the right hand side of (15.4) follows
from Theorem 15.3.3. �

The notable points of this result are that we can use the same function V in
(15.4), which leads to the operator norm results in the next chapter; and that the
rate r in (15.4) can be chosen independently of the initial starting point.

We initially discuss conditions under which there exists for some x ∈ X a rate
r > 1 such that

‖Pn(x, · )− π‖f ≤Mxr
−n (15.5)

where Mx < ∞. Notice that we have introduced f -norm convergence immediately:
it will turn out that the methods are not much simplified by first considering the
case of bounded f . We also have another advantage in considering geometric rates of
convergence compared with the development of our previous ergodicity results. We
can exploit the useful fact that (15.5) is equivalent to the requirement that for some
r̄, M̄x,

∑
n

r̄n ‖Pn(x, · )− π‖f ≤ M̄x. (15.6)

Hence it is without loss of generality that we will immediately move also to consider
the summed form as in (15.6) rather than the n-step convergence as in (15.5).
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f -Geometric Ergodicity

We shall call Φ f-geometrically ergodic, where f ≥ 1, if Φ is positive
Harris with π(f) <∞ and there exists a constant rf > 1 such that

∞∑
n=1

rn
f ‖Pn(x, · )− π‖f <∞ (15.7)

for all x ∈ X. If (15.7) holds for f ≡ 1 then we call Φ geometrically
ergodic.

The development in this chapter follows a pattern similar to that of the previous
two chapters: first we consider chains which possess an atom, then move to aperiodic
chains via the Nummelin splitting.

This pattern is now well-established: but in considering geometric ergodicity, the
extra complexity in introducing both unbounded functions f and exponential mo-
ments of hitting times leads to a number of different and sometimes subtle problems.
These make the proofs a little harder in the case without an atom than was the sit-
uation with either ergodicity or f -ergodicity. However, the final conclusion in (15.4)
is well worth this effort.

15.1 Geometric properties: chains with atoms

15.1.1 Using the Regenerative Decomposition

Suppose in this section that Φ is a positive Harris recurrent chain and that we have an
accessible atom α in B+(X): as in the previous chapter, we do not consider completely
countable spaces separately, as one atom is all that is needed. We will again use the
Regenerative Decomposition (13.48) to identify the bounds which will ensure that
the chain is f -geometrically ergodic.

Multiplying (13.48) by rn and summing, we have that

∑
n

‖Pn(x, · )− π‖f r
n

is bounded by the three sums
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∞∑
n=1

∫
αP

n(x, dw)f(w) rn

π(α)
∞∑

n=1

∞∑
j=n+1

tf (j) rn

∞∑
n=1

|ax ∗ u− π(α)| ∗ tf (n) rn

(15.8)

Now using Lemma D.7.2 and recalling that tf (n) =
∫

αP
n(α, dw)f(w), we have that

the three sums in (15.8) can be bounded individually through
∞∑

n=1

∫
αP

n(x, dw)f(w)rn ≤ Ex

[ τα∑
n=1

f(Φn)rn
]
, (15.9)

π(α)
∞∑

n=1

∞∑
j=n+1

tf (j)rn ≤ r

r − 1
Eα

[ τα∑
n=1

f(Φn)rn
]
, (15.10)

∞∑
n=1

|ax ∗ u− π(α)| ∗ tf (n)rn

=
(∑∞

n=1 |ax ∗ u (n)− π(α)|rn
)(∑∞

n=1 tf (n)rn
)

=
(∑∞

n=1 |ax ∗ u (n)− π(α)|rn
)(

Eα

[∑τα
n=1 f(Φn)rn

])
.

(15.11)

In order to bound the first two sums (15.9) and (15.10), and the second term in the
third sum (15.11), we will require an extension of the notion of regularity, or more
exactly of f -regularity. For fixed r ≥ 1 recall the generating function defined in (8.23)
for r < 1 by

U (r)
α (x, f) := Ex

[ τα∑
n=1

f(Φn)rn
]
; (15.12)

clearly this is defined but possibly infinite for r ≥ 1. From the inequalities (15.9)-
(15.11) above it is apparent that when Φ admits an accessible atom, establishing
f -geometric ergodicity will require finding conditions such that U (r)

α (x, f) is finite for
some r > 1.

The first term in the right hand side of (15.11) can be reduced further. Using the
fact that

|ax ∗ u (n)− π(α)| = |ax ∗ (u− π(α)) (n)− π(α)
∞∑

j=n+1

ax(j)|

≤ ax ∗ |(u− π(α))| (n) + π(α)
∞∑

j=n+1

ax(j)

and again applying Lemma D.7.2, we find the bound
∞∑

n=1

|ax ∗ u− π(α)|rn ≤
( ∞∑

n=1

ax(n)rn
)( ∞∑

n=1

|u(n)− π(α)|rn
)

+π(α)
∞∑

n=1

∞∑
j=n+1

ax(j)rn
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≤
(
Ex[rτα ]

)( ∞∑
n=1

|u(n)− π(α)|rn
)

+
r

r − 1
Ex[rτα ].

Thus from (15.9)-(15.11) we might hope to find that convergence of Pn to π takes
place at a geometric rate provided

(i) the atom itself is geometrically ergodic, in the sense that

∞∑
n=1

|u(n)− π(α)|rn

converges for some r > 1;

(ii) the distribution of τα possess an “f -modulated” geometrically decaying tail from
both α and from the initial state x, in the sense that both U

(r)
α (α, f) <∞ and

U
(r)
α (x, f) <∞ for some r = rx > 1: and if we can choose such an r independent

of x then we will be able to assert that the overall rate of convergence in (15.4)
is also independent of x.

We now show that as with ergodicity or f -ergodicity, a remarkable degree of
solidarity in this analysis is indeed possible.

15.1.2 Kendall’s Renewal Theorem

As in the ergodic case, we need a key result from renewal theory. Kendall’s Theorem
shows that for atoms, geometric ergodicity and geometric decay of the tails of the
return time distribution are actually equivalent conditions.

Theorem 15.1.1 (Kendall’s Theorem) Let u(n) be an ergodic renewal sequence
with increment distribution p(n), and write u(∞) = limn→∞ u(n). Then the following
three conditions are equivalent:

(i) There exists r0 > 1 such that the series

U0(z) :=
∞∑

n=0

|u(n)− u(∞)|zn (15.13)

converges for |z| < r0.

(ii) There exists r0 > 1 such that the function U(z) defined on the complex plane for
|z| < 1 by

U(z) :=
∞∑

n=0

u(n)zn

has an analytic extension in the disc {|z| < r0} except for a simple pole at z = 1.

(iii) there exists κ > 1 such that the series P (z)

P (z) :=
∞∑

n=0

p(n)zn (15.14)

converges for {|z| < κ}.
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Proof Assume that (i) holds. Then by construction the function F (z) defined on
the complex plane by

F (z) :=
∞∑

n=0

(u(n)− u(n− 1))zn

has no singularities in the disc {|z| < r0}, and since

F (z) = (1− z)U(z), |z| < 1, (15.15)

we have that U(z) has no singularities in the disc {|z| < r0} except a simple pole at
z = 1, so that (ii) holds.

Conversely suppose that (ii) holds. We can then also extend F (z) analytically in
the disc {|z| < r0} using (15.15). As the Taylor series expansion is unique, necessarily
F (z) =

∑∞
n=0(u(n) − u(n − 1))zn throughout this larger disc, and so by virtue of

Cauchy’s inequality ∑
n

|u(n)− u(n− 1)|rn <∞, r < r0.

Hence from Lemma D.7.2

∞ >
∑
n

∑
m≥n

|u(m+ 1)− u(m)|rn

≥
∑
n

|
∑
m≥n

(u(m+ 1)− u(m))|rn

=
∑
n

|u(∞)− u(n)|rn

so that (i) holds.
Now suppose that (iii) holds. Since P (z) is analytic in the disc {|z| < κ}, for any

ε > 0 there are at most finitely many values of z such that P (z) = 1 in the smaller
disc {|z| < κ− ε}.

By aperiodicity of the sequence {p(n)}, we have p(n) > 0 for all n > N for some
N , from Lemma D.7.4. This implies that for z 
= 1 on the unit circle {|z| = 1}, we
have ∞∑

N

p(n)�(zn) <
∞∑
N

p(n),

so that

�P (z) ≤
∞∑
0

p(n)�(zn) <
∞∑
0

p(n) = 1.

Consequently only one of these roots, namely z = 1, lies on the unit circle, and hence
there is some r0 with 1 < r0 ≤ κ such that z = 1 is the only root of P (z) = 1 in the
disc {|z| < r0}.

Moreover this is a simple root at z = 1, since

lim
z→1

1− P (z)
1− z

=
d

dz
P (z)|z=1 =

∑
np(n) 
= 0.

Now the renewal equation (8.12) shows that

U(z) = [1− P (z)]−1
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is valid at least in the disc {|z| < 1}, and hence

F (z) = (1− z)U(z) = (1− z)[1− P (z)]−1 (15.16)

has no singularities in the disc {|z| < r0}; and so (ii) holds.
Finally, to show that (ii) implies (iii) we again use (15.16): writing this as

P (z) = [F (z)− 1 + z]/F (z)

shows that P (z) is a ratio of analytic functions and so is itself analytic in the disc
{|z| < κ}, where now κ is the first zero of F (z) in {|z| < r0}; there are only finitely
many such zeros and none of them occurs in the closed unit disc {|z| ≤ 1} since P (z)
is bounded in this disc, so that κ > 1 as required. �

It would seem that one should be able to prove this result, not only by analysis
but also by a coupling argument as in Section 13.2. Clearly one direction of this is
easy: if the renewal times are geometric then one can use coupling to get geometric
convergence. The other direction does seem to require analytic tools to the best of
our knowledge, and so we have given the classical proof here.

15.1.3 The Geometric Ergodic Theorem

Following this result we formalize some of the conditions that will obviously be re-
quired in developing a geometric ergodicity result.

Kendall Atoms and Geometrically Ergodic Atoms

An accessible atom is called geometrically ergodic if there exists rα > 1
such that ∑

n

rn
α|Pn(α,α)− π(α)| <∞.

An accessible atom is called a Kendall atom of rate κ if there exists κ > 1
such that

U (κ)
α (α,α) = Eα[κτα ] <∞.

Suppose that f ≥ 1. An accessible atom is called f-Kendall of rate κ if
there exists κ > 1 such that

sup
x∈α

Ex

[τα−1∑
n=0

f(Φn)κn
]
<∞.

Equivalently, if f is bounded on the accessible atom α, then α is f -Kendall of rate κ
provided
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U (κ)
α (α, f) = Eα

[ τα∑
n=1

f(Φn)κn
]
<∞.

The application of Kendall’s Theorem to chains admitting an atom comes from
the following, which is straightforward from the assumption that f ≥ 1, so that
U

(κ)
α (α, f) ≥ Eα[κτα ].

Proposition 15.1.2 Suppose that Φ is ψ-irreducible and aperiodic, and α is an ac-
cessible Kendall atom. Then there exists rα > 1 and R <∞ such that

|Pn(α,α)− π(α)| ≤ Rr−n
α , n→∞.

�

This enables us to control the first term in (15.11). To exploit the other bounds
in (15.9)-(15.11) we also need to establish finiteness of the quantities U (κ)

α (x, f) for
values of x other than α.

Proposition 15.1.3 Suppose that Φ is ψ-irreducible, and admits an f-Kendall atom
α ∈ B+(X) of rate κ. Then the set

Sκ
f := {x : U (κ)

α (x, f) <∞} (15.17)

is full and absorbing.

Proof The kernel U (κ)
α (x, · ) satisfies the identity

∫
P (x, dy)U (κ)

α (y,B) = κ−1U (κ)
α (x,B) + P (x,α)U (κ)

α (α, B)

and integrating against f gives

PU (κ)
α (x, f) = κ−1U (κ)

α (x, f) + P (x,α)U (κ)
α (α, f).

Thus the set Sκ
f is absorbing, and since Sκ

f is non-empty it follows from Proposi-
tion 4.2.3 that Sκ

f is full. �
We now have sufficient structure to prove the geometric ergodic theorem when

an atom exists with appropriate properties.

Theorem 15.1.4 Suppose that Φ is ψ-irreducible, with invariant probability measure
π, and that there exists an f-Kendall atom α ∈ B+(X) of rate κ.

Then there exists a decomposition X = Sκ ∪ N where Sκ is full and absorbing,
such that for all x ∈ Sκ, some R <∞, and some r with r > 1

∑
n

rn‖Pn(x, ·)− π(·)‖f ≤ RU (κ)
α (x, f) <∞. (15.18)
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Proof By Proposition 15.1.3 the bounds (15.9) and (15.10), and the second term
in the bound (15.11), are all finite for x ∈ Sκ; and Kendall’s Theorem, as applied in
Proposition 15.1.2, gives that for some rα > 1 the other term in (15.11) is also finite.
The result follows with r = min(κ, rα). �

There is an alternative way of stating Theorem 15.1.4 in the simple geometric
ergodicity case f = 1 which emphasizes the solidarity result in terms of ergodic
properties rather than in terms of hitting time properties. The proof uses the same
steps as the previous proof, and we omit it.

Theorem 15.1.5 Suppose that Φ is ψ-irreducible, with invariant probability measure
π, and that there is one geometrically ergodic atom α ∈ B+(X). Then there exists
κ > 1, r > 1 and a decomposition X = Sκ ∪ N where Sκ is full and absorbing, such
that for some R <∞ and all x ∈ Sκ

∑
n

rn‖Pn(x, ·)− π(·)‖ ≤ REx[κτα ] <∞, (15.19)

so that Φ restricted to Sκ is also geometrically ergodic. �

15.1.4 Some geometrically ergodic chains on countable spaces

Forward recurrence time chains Consider as in Section 2.4 the forward recurrence
time chain V+.

By construction, we have for this chain that

E1[rτ1 ] =
∑
n

rnP1(τ1 = n) =
∑
n

rnp(n)

so that the chain is geometrically ergodic if and only if the distribution p(n) has
geometrically decreasing tails.

We will see, once we develop a drift criterion for geometric ergodicity, that this
duality between geometric tails on increments and geometric rates of convergence to
stationarity is repeated for many other models.

A non-geometrically ergodic example Not all ergodic chains on ZZ+ are geomet-
rically ergodic, even if (as in the forward recurrence time chain) the steps to the right
are geometrically decreasing. Consider a chain on ZZ+ with the transition matrix

P (0, j) = γj , j ∈ ZZ+

P (j, j) = βj , j ∈ ZZ+

P (j, 0) = 1− βj , j ∈ ZZ+. (15.20)

where
∑

j γj = 1.
The mean return time from zero to itself is given by

E0[τ0] =
∑
j

γj [1 + (1− βj)−1]

and the chain is thus ergodic if γj > 0 for all j (ensuring irreducibility and aperiod-
icity), and
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∑
j

γj(1− βj)−1 <∞. (15.21)

In this example
E0[rτ0 ] ≥ r

∑
j

γjEj [rτ0 ]

and
Pj(τ0 > n) = βn

j .

Hence if βj → 1 as n→∞, then the chain is not geometrically ergodic regardless of
the structure of the distribution {γj}, even if γn → 0 sufficiently fast to ensure that
(15.21) holds.

Different rates of convergence Although it is possible to ensure a common rate
of convergence in the Geometric Ergodic Theorem, there appears to be no simple way
to ensure for a particular state that the rate is best possible. Indeed, in general this
will not be the case.

To see this consider the matrix

P =


1
4

1
2

1
4

0 3
4

1
4

3
4 0 1

4


By direct inspection we find the diagonal elements have generating functions

U (z)(0, 0) = 1 + z/4(1− z)
U (z)(1, 1) = 1 + z/2(1− z) + z/4(1− z)
U (z)(2, 2) = 1 + z/4(1− z)

Thus the best rates for convergence of Pn(0, 0) and Pn(2, 2) to their limits π(0) =
π(2) = 1

4 are ρ0 = ρ2 = 0: the limits are indeed attained at every step. But the rate
of convergence of Pn(1, 1) to π(1) = 1

2 is at least ρ1 >
1
4 .

The following more complex example shows that even on an arbitrarily large
finite space {1, . . . , N +1} there may in fact be N different rates of convergence such
that

|Pn(i, i)− π(i)| ≤Miρ
n
i .

Consider the matrix

P =



β1 α1 α1 . . . α1 α1 α1

α1 β2 α2 . . . α2 α2 α2

α1 α2 β3 . . . α3 α3 α3
...

...
... . . .

...
...

...
α1 α2 α3 . . . βN−1 αN−1 αN−1

α1 α2 α3 . . . αN−1 βN αN

α1 α2 α3 . . . αN−1 αN βN


so that

P (k, k) = βk := 1−
k−1∑
1

αj − (N + 1− k)αk, 1 ≤ k ≤ N + 1,
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where the off-diagonal elements are ordered by

0 < αN < αN−1 < . . . < α2 < α1 ≤ [N + 1]−1.

Since P is symmetric it is immediate that the invariant measure is given for all k by

π(k) = [N + 1]−1.

For this example it is possible to show [263] that the eigenvalues of P are distinct
and are given by λ1 = 1 and for k = 2, . . . , N + 1

λk = βN+2−k − αN+2−k.

After considerable algebra it follows that for each k, there are positive constants
s(k, j) such that

Pm(k, k)− [N + 1]−1 =
N+1∑

j=N+2−k

s(k, j)λm
j

and hence k has the exact “self-convergence” rate λN+2−k.
Moreover, s(N +1, j) = s(N, j) for all 1 ≤ j ≤ N +1, and so for the N +1 states

there are N different “best” rates of convergence.
Thus our conclusion of a common rate parameter is the most that can be said.

15.2 Kendall sets and drift criteria

It is of course now obvious that we should try to move from the results valid for chains
with atoms, to strongly aperiodic chains and thence to general aperiodic chains via
the Nummelin splitting and the m-skeleton.

We first need to find conditions on the original chain under which the atom in
the split chain is an f -Kendall atom. This will give the desired ergodic theorem for
the split chain, which is then passed back to the original chain by exploiting a growth
rate on the f -norm which holds for “f -geometrically regular chains”. This extends the
argument used in the proof of Lemma 14.3.2 to prove the f -Norm Ergodic Theorem
in Chapter 14.

To do this we need to extend the concepts of Kendall atoms to general sets, and
connect these with another and stronger drift condition: this has a dual purpose, for
not only will it enable us to move relatively easily between chains, their skeletons, and
their split forms, it will also give us a verifiable criterion for establishing geometric
ergodicity.

15.2.1 f-Kendall sets and f-geometrically regular sets

The crucial aspect of a Kendall atom is that the return times to the atom from itself
have a geometrically bounded distribution. There is an obvious extension of this idea
to more general, non-atomic, sets.
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Kendall sets and f -geometrically regular sets

A set A ∈ B(X) is called a Kendall set if there exists κ > 1 such that

sup
x∈A

Ex[κτA ] <∞.

A set A ∈ B(X) is called an f-Kendall set for a measurable f : X → [1,∞)
if there exists κ = κ(f) > 1 such that

sup
x∈A

Ex

[τA−1∑
k=0

f(Φk)κk
]
<∞. (15.22)

A set A ∈ B(X) is called f-geometrically regular for a measurable f :
X → [1,∞) if for each B ∈ B+(X) there exists r = r(f,B) > 1 such that

sup
x∈A

Ex

[τB−1∑
k=0

f(Φk)rk
]
<∞.

Clearly, since we have r > 1 in these definitions, an f -geometrically regular set is
also f -regular. When a set or a chain is 1-geometrically regular then we will call it
geometrically regular.

A Kendall set is, in an obvious way, “self-geometrically regular”: return times
to the set itself are geometrically bounded, although not necessarily hitting times on
other sets.

As in (15.12), for any set C in B(X) the kernel U (r)
C (x,B) is given by

U
(r)
C (x,B) = Ex

[ τC∑
k=1

1lB(Φk)rk
]
; (15.23)

this is again well defined for r ≥ 1, although it may be infinite. We use this notation
in our next result, which establishes that any petite f -Kendall set is actually f -
geometrically regular. This is non-trivial to establish, and needs a somewhat delicate
“geometric trials” argument.

Theorem 15.2.1 Suppose that Φ is ψ-irreducible. Then the following are equivalent:

(i) The set C ∈ B(X) is a petite f-Kendall set.

(ii) The set C is f-geometrically regular and C ∈ B+(X).
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Proof To prove (ii)⇒(i) it is enough to show that A is petite, and this follows
from Proposition 11.3.8, since a geometrically regular set is automatically regular.

To prove (i)⇒(ii) is considerably more difficult, although obviously since a
Kendall set is Harris recurrent, it follows from Proposition 9.1.1 that any Kendall
set is in B+(X).

Suppose that C is an f -Kendall set of rate κ, let 1 < r ≤ κ, and define U (r)(x) =
Ex[rτC ], so that U (r) is bounded on C. We set M(r) = supx∈C U (r)(x) < ∞. Put
ε = log(r)/ log(κ): by Jensen’s inequality,

M(r) = sup
x∈C

Ex[κετC ] ≤M(κ)ε.

From this bound we see that M(r) → 1 as r ↓ 1.
Let τC(n) denote the nth return time to the set C, where for convenience, we set

τC(0) := 0. We have by the strong Markov property and induction,

Ex[rτC(n)] = Ex[rτC(n−1)+θτC (n−1)τC ]

= Ex[rτC(n−1)EΦτC (n−1)
[rτC ]]

≤ M(r) Ex[rτC(n−1)]

≤ (M(r))n−1U (r)(x), n ≥ 1.

(15.24)

To prove the theorem we will combine this bound with the sample path bound, valid
for any set B ∈ B(X),

τB∑
i=1

rif(Φi) ≤
∞∑

n=0

( τC(n+1)∑
j=τC(n)+1

rjf(Φj)
)
1l{τB > τC(n)}.

Taking expectations and applying the strong Markov property gives

U
(r)
B (x, f) ≤

∞∑
n=0

Ex

[
1l{τB > τC(n)}rτC(n)EΦτC (n)

[ τC∑
j=1

rjf(Φj)
]]

≤ sup
x∈C

U
(r)
C (x, f)

∞∑
n=0

Ex

[
1l{τB > τC(n)}rτC(n)

]
. (15.25)

For any 0 < γ < 1, n ≥ 0, and positive numbers x and y we have the bound
xy ≤ γnx2 + γ−ny2. Applying this bound with x = rτC(n) and y = 1l{τC(n) < τB} in
(15.25), and setting Mf (r) = supx∈C U

(r)
C (x, f) we obtain for any B ∈ B(X),

U
(r)
B (x, f) ≤ Mf (r)

∞∑
n=0

{
γnEx[r2τC(n)] + γ−nEx[1l{τC(n) < τB}]

}
≤ Mf (r)

{ ∞∑
n=0

γn(M(r2))nU (r2)(x)

+
∞∑

n=0

γ−nPx{τC(n) < τB}
}
, (15.26)
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where we have used (15.24). We still need to prove the right hand side of (15.26) is
finite. Suppose now that for some R <∞, ρ < 1, and any x ∈ X,

Px{τC(n) < τB} ≤ Rρn. (15.27)

Choosing ρ < γ < 1 in (15.26) gives

U
(r)
B (x, f) ≤Mf (r)

{
U (r2)(x)

∞∑
n=0

(γM(r2))n +
R

1− γ−1ρ

}
.

With γ so fixed, we can now choose r > 1 so close to unity that γM(r2) < 1 to obtain

U
(r)
B (x, f) ≤Mf (r)

{ U (r2)(x)
1− γM(r2)

+
R

1− γ−1ρ

}
.

and the result holds.
To complete the proof, it is thus enough to bound Px{τC(n) < τB} by a geometric

series as in (15.27). Since C is petite, there exists n0 ∈ ZZ+, c < 1, such that

Px{τC(n0) < τB} ≤ Px{n0 < τB} ≤ c, x ∈ C,

and by the strong Markov property it follows that with m0 = n0 + 1,

Px{τC(m0) < τB} ≤ c, x ∈ X.

Hence, using the identity

1l{τC(mm0) < τB} = 1l{τC([m− 1]m0) < τB}θτC([m−1]m0)1l{τC(m0) < τB}

we have again by the strong Markov property that for all x ∈ X, m ≥ 1,

Px{τC(mm0) < τB} = Ex

{
1l{τC([m− 1]m0) < τB}PΦτC ([m−1]m0)

{τC(m0) < τB}
}

≤ cPx{τC([m− 1]m0) < τB}
≤ cm

and it now follows easily that (15.27) holds. �
Notice specifically in this result that there may be a separate rate of convergence

r for each of the quantities
sup
x∈C

U
(r)
B (x, f)

depending on the quantity ρ in (15.27): intuitively, for a set B “far away” from C it
may take many visits to C before an excursion reaches B, and so the value of r will
be correspondingly closer to unity.

15.2.2 The geometric drift condition

Whilst for strongly aperiodic chains an approach to geometric ergodicity is possi-
ble with the tools we now have directly through petite sets, in order to move from
strongly aperiodic to aperiodic chains through skeleton chains and splitting methods
an attractive theoretical route is through another set of drift inequalities.

This has, as usual, the enormous practical benefit of providing a set of verifiable
conditions for geometric ergodicity. The drift condition appropriate for geometric
convergence is:
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Geometric Drift Towards C

(V4) There exists an extended-real valued function V : X →
[1,∞], a measurable set C, and constants β > 0, b <∞,

∆V (x) ≤ −βV (x) + b1lC(x), x ∈ X. (15.28)

We see at once that (V4) is just (V3) in the special case where f = βV . From this
observation we can borrow several results from the previous chapter, and use the
approach there as a guide.

We first spell out some useful properties of solutions to the drift inequality in
(15.28), analogous to those we found for (14.16).

Lemma 15.2.2 Suppose that Φ is ψ-irreducible.

(i) If V satisfies (15.28) then {V <∞} is either empty or absorbing and full.

(ii) If (15.28) holds for a petite set C then V is unbounded off petite sets.

Proof Since (15.28) implies PV ≤ V + b the set {V <∞} is absorbing; hence if
it is non-empty it is full, by Proposition 4.2.3.

Since V ≥ 1, we see that (V4) implies that (V2) holds with V ′ = V/(1 − β).
From Lemma 11.3.7 it then follows that V ′ (and hence obviously V ) is unbounded
off petite sets. �

We now begin a more detailed evaluation of the consequences of (V4). We first
give a probabilistic form for one solution to the drift condition (V4), which will prove
that (15.2) implies (15.3) has a solution.

Using the kernel U (r)
C we define a further kernel G(r)

C as G(r)
C = I + ICcU

(r)
C . For

any x ∈ X, B ∈ B(X), this has the interpretation

G
(r)
C (x,B) = Ex

[ σC∑
k=0

1lB(Φk)rk
]
. (15.29)

The kernel G(r)
C (x,B) gives us the solution we seek to (15.28).

Lemma 15.2.3 Suppose that C ∈ B(X), and let r > 1. Then the kernel G(r)
C satisfies

PG
(r)
C = r−1G

(r)
C − r−1I + r−1ICU

(r)
C

so that in particular for β = 1− r−1

PG
(r)
C −G

(r)
C = ∆G

(r)
C ≤ −βG(r)

C + r−1ICU
(r)
C . (15.30)
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Proof The kernel U (r)
C satisfies the simple identity

U
(r)
C = rP + rPICcU

(r)
C . (15.31)

Hence the kernel G(r)
C satisfies the chain of identities

PG
(r)
C = P + PICcU

(r)
C = r−1U

(r)
C = r−1[G(r)

C − I + ICU
(r)
C ].

�
This now gives us the easier direction of the duality between the existence of

f -Kendall sets and solutions to (15.28).

Theorem 15.2.4 Suppose that Φ is ψ-irreducible, and admits an f-Kendall set C ∈
B+(X) for some f ≥ 1. Then the function V (x) = G

(κ)
C (x, f) ≥ f(x) is a solution to

(V4).

Proof We have from (15.30) that, by the f -Kendall property, for some M < ∞
and r > 1,

∆V ≤ −βV + r−1M1lC

and so the function V satisfies (V4). �

15.2.3 Other solutions of the drift inequalities

We have shown that the existence of f -geometrically regular sets will lead to solutions
of (V4). We now show that the converse also holds.

The tool we need in order to consider properties of general solutions to (15.28)
is the following “geometric” generalization of the Comparison Theorem.

Theorem 15.2.5 If (V4) holds then for any r ∈ (1, (1 − β)−1) there exists ε > 0
such that for any first entrance time τB,

Ex

[τB−1∑
k=0

V (Φk)rk
]
≤ ε−1r−1V (x) + ε−1bEx

[τB−1∑
k=0

1lC(Φk)rk
]

and hence in particular choosing B = C

V (x) ≤ Ex

[τC−1∑
k=0

V (Φk)rk
]
≤ ε−1r−1V (x) + ε−1b1lC(x). (15.32)

Proof We have the bound

PV ≤ r−1V − εV + b1lC

where 0 < ε < β is the solution to r = (1− β + ε)−1. Defining

Zk = rkV (Φk)

for k ∈ ZZ+, it follows that
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E[Zk+1 | FΦ
k ] = rk+1E[V (Φk+1) | FΦ

k ]

≤ rk+1{r−1V (Φk)− εV (Φk) + b1lC(Φk)}

= Zk − εrk+1V (Φk) + rk+1b1lC(Φk).

Choosing fk(x) = εrk+1V (x) and sk(x) = brk+11lC(x), we have by Proposition 11.3.2

Ex

[τB−1∑
k=0

εrk+1V (Φk)
]
≤ Z0(x) + Ex

[τB−1∑
k=0

rk+1b1lC(Φk)
]
.

Multiplying through by ε−1r−1 and noting that Z0(x) = V (x), we obtain the required
bound.

The particular form with B = C is then straightforward. �
We use this result to prove that in general, sublevel sets of solutions V to (15.28)

are V -geometrically regular.

Theorem 15.2.6 Suppose that Φ is ψ-irreducible, and that (V4) holds for a function
V and a petite set C.

If V is bounded on A ∈ B(X), then A is V -geometrically regular.

Proof We first show that if V is bounded on A, then A ⊆ D where D is a
V -Kendall set.

Assume (V4) holds, let ρ = 1− β, and fix ρ < r−1 < 1. Now consider the set D
defined by

D :=
{
x : V (x) ≤ M + b

r−1 − ρ

}
, (15.33)

where the integer M > 0 is chosen so that A ⊆ D (which is possible because the
function V is bounded on A) and D ∈ B+(X), which must be the case for sufficiently
large M from Lemma 15.2.2 (i).

Using (V4) we have

PV (x) ≤ r−1V (x)− (r−1 − ρ)V (x) + b1lC(x)
≤ r−1V (x)−M, x ∈ Dc.

Since PV (x) ≤ V (x) + b, which is bounded on D, it follows that

PV ≤ r−1V + c1lD

for some c <∞. Thus we have shown that (V4) holds with D in place of C.
Hence using (15.32) there exists s > 1 and ε > 0 such that

Ex

[τD−1∑
k=0

skV (Φk)
]
≤ ε−1s−1V (x) + ε−1c1lD(x). (15.34)

Since V is bounded on D by construction, this shows that D is V -Kendall as required.
By Lemma 15.2.2 (ii) the function V is unbounded off petite sets, and therefore

the set D is petite. Applying Theorem 15.2.1 we see that D is V -geometrically regular.



15.2 Kendall sets and drift criteria 379

Finally, since by definition any subset of a V -geometrically regular set is itself
V -geometrically regular, we have that A inherits this property from D. �

As a simple consequence of Theorem 15.2.6 we can construct, given just one f -
Kendall set in B+(X), an increasing sequence of f -geometrically regular sets whose
union is full: indeed we have a somewhat more detailed description than this.

Theorem 15.2.7 If there exists an f-Kendall set C ∈ B+(X), then there exists V ≥
f and an increasing sequence {CV (i) : i ∈ ZZ+} of V -geometrically regular sets whose
union is full.

Proof Let V (x) = G
(r)
C (x, f). Then V satisfies (V4) and by Theorem 15.2.6 the set

CV (n) := {x : V (x) ≤ n} is V -geometrically regular for each n. Since SV = {V <∞}
is a full absorbing subset of X, the result follows. �

The following alternative form of (V4) will simplify some of the calculations
performed later.

Lemma 15.2.8 The drift condition (V4) holds with a petite set C if and only if V
is unbounded off petite sets and

PV ≤ λV + L (15.35)

for some λ < 1, L <∞.

Proof If (V4) holds, then (15.35) immediately follows. Lemma 15.2.2 states that
the function V is unbounded off petite sets.

Conversely, if (15.35) holds for a function V which is unbounded off petite sets
then set β = 1

2(1− λ) and define the petite set C as

C = {x ∈ X : V (x) ≤ L/β}

It follows that ∆V ≤ −βV + L1lC so that (V4) is satisfied. �
We will find in several examples on topological spaces that the bound (15.35)

is obtained for some norm-like function V and compact C. If the Markov chain is a
ψ-irreducible T-chain it follows from Lemma 15.2.8 that (V4) holds and then that
the chain is V -geometrically ergodic.

Although the result that one can use the same function V in both sides of∑
n

rn‖Pn(x, · )− π‖V ≤ RV (x).

is an important one, it also has one drawback: as we have larger functions on the left,
the bounds on the distance to π(V ) also increase.

Overall it is not clear when one can have a best common bound on the distance
‖Pn(x, · )− π‖V independent of V ; indeed, the example in Section 16.2.2 shows that
as V increases then one might even lose the geometric nature of the convergence.

However, the following result shows that one can obtain a smaller x-dependent
bound in the Geometric Ergodic Theorem if one is willing to use a smaller function
V in the application of the V -norm.

Lemma 15.2.9 If (V4) holds for V , and some petite set C, then (V4) also holds for
the function

√
V and some petite set C.
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Proof If (V4) holds for the finite-valued function V then by Lemma 15.2.8 V is
unbounded off petite sets and (15.35) holds for some λ < 1 and L < ∞. Letting
V ′(x) =

√
V (x), x ∈ X, we have by Jensen’s inequality,

PV ′(x) ≤
√
PV (x) ≤

√
λV + L

≤
√
λ
√
V +

L

2
√
λ

since V ≥ 1

=
√
λV ′ +

L

2
√
λ
,

which together with Lemma 15.2.8 implies that (V4) holds with V replaced by
√
V .
�

15.3 f-Geometric regularity of Φ and Φn

15.3.1 f-Geometric regularity of chains

There are two aspects to the f -geometric regularity of sets that we need in moving to
our prime purpose in this chapter, namely proving the f -geometric convergence part
of the Geometric Ergodic Theorem.

The first is to locate sets from which the hitting times on other sets are geomet-
rically fast. For the purpose of our convergence theorems, we need this in a specific
way: from an f -Kendall set we will only need to show that the hitting times on a
split atom are geometrically fast, and in effect this merely requires that hitting times
on a (rather specific) subset of a petite set be geometrically fast. Indeed, note that
in the case with an atom we only needed the f -Kendall (or self f -geometric regular-
ity) property of the atom, and there was no need to prove that the atom was fully
f -geometrically regular. The other structural results shown in the previous section
are an unexpectedly rich by-product of the requirement to delineate the geometric
bounds on subsets of petite sets. This approach also gives, as a more directly useful
outcome, an approach to working with the m-skeleton from which we will deduce
rates of convergence.

Secondly, we can see from the Regenerative Decomposition that we will need the
analogue of Proposition 15.1.3: that is, we need to ensure that for some specific set
there is a fixed geometric bound on the hitting times of the set from arbitrary starting
points. This motivates the next definition.
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f -Geometric Regularity of Φ

The chain Φ is called f -geometrically regular if there exists a petite set
C and a fixed constant κ > 1 such that

Ex

[τC−1∑
k=0

f(Φk)κk
]

(15.36)

is finite for all x ∈ X and bounded on C.

Observe that when κ is taken equal to one, this definition then becomes f -regularity,
whilst the boundedness on C implies f -geometric regularity of the set C from Theo-
rem 15.2.1: it is the finiteness from arbitrary initial points that is new in this definition.

The following consequence of f -regularity follows immediately from the strong
Markov property and f -geometric regularity of the set C used in (15.36).

Proposition 15.3.1 If Φ is f-geometrically regular so that (15.36) holds for a petite
set C then for each B ∈ B+(X) there exists r = r(B) > 1 and c(B) <∞ such that

U
(r)
B (x, f) ≤ c(B)U (r)

C (x, f). (15.37)

�

By now the techniques we have developed ensure that f -geometrically regularity
is relatively easy to verify.

Proposition 15.3.2 If there is one petite f-Kendall set C then there is a decompo-
sition

X = Sf ∪N
where Sf is full and absorbing, and Φ restricted to Sf is f-geometrically regular.

Proof We know from Theorem 15.2.1 that when a petite f -Kendall set C exists
then C is V -geometrically regular, where V (x) = G

(r)
C (x, f) for some r > 1. Since V

then satisfies (V4) from Lemma 15.2.3, it follows from Lemma 15.2.2 that Sf = {V <
∞} is absorbing and full. Now as in (15.32) we have for some κ > 1

V (x) ≤ Ex

[τC−1∑
n=0

V (Φn)κn
]
≤ ε−1κ−1V (x) + ε−1c1lC(x) (15.38)

and since the right hand side is finite on Sf the chain restricted to Sf is V -
geometrically regular, and hence also f -geometrically regular since f ≤ V . �

The existence of an everywhere finite solution to the drift inequality (V4) is equiv-
alent to f -geometric regularity, imitating the similar characterization of f -regularity.
We have
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Theorem 15.3.3 Suppose that (V4) holds for a petite set C and a function V which
is everywhere finite. Then Φ is V -geometrically regular, and for each B ∈ B+(X)
there exists c(B) <∞ such that

U
(r)
B (x, V ) ≤ c(B)V (x).

Conversely, if Φ is f-geometrically regular, then there exists a petite set C and a
function V ≥ f which is everywhere finite and which satisfies (V4).

Proof Suppose that (V4) holds with V everywhere finite and C petite. As in the
proof of Theorem 15.2.6, there exists a petite set D on which V is bounded, and as
in (15.34) there is then r > 1 and a constant d such that

Ex

[τD−1∑
k=0

V (Φk)rk
]
≤ dV (x).

Hence Φ is V -geometrically regular, and the required bound follows from Proposi-
tion 15.3.1.

For the converse, take V (x) = G
(r)
C (x, f) where C is the petite set used in the

definition of f -geometric regularity. �
This approach, using solutions V to (V4) to bound (15.36), is in effect an extended

version of the method used in the atomic case to prove Proposition 15.1.3.

15.3.2 Connections between Φ and Φn

A striking consequence of the characterization of geometric regularity in terms of the
solution of (V4) is that we can prove almost instantly that if a set C is f -geometrically
regular, and if Φ is aperiodic, then C is also f -geometrically regular for every skeleton
chain.

Theorem 15.3.4 Suppose that Φ is ψ-irreducible and aperiodic.

(i) If V satisfies (V4) with a petite set C then for any n-skeleton, the function V
also satisfies (V4) for some set C ′ which is petite for the n-skeleton.

(ii) If C is f-geometrically regular then C is f-geometrically regular for the chain
Φn for any n ≥ 1.

Proof (i) Suppose ρ = 1 − β and 0 < ε < ρ − ρn. By iteration we have using
Lemma 14.2.8 that for some petite set C ′,

PnV ≤ ρnV + b
n−1∑
i=0

P i1lC ≤ ρnV + bm1lC′ + ε.

Since V ≥ 1 this gives
PnV ≤ ρV + bm1lC′ , (15.39)

and hence (V4) holds for the n-skeleton.
(ii) If C is f -geometrically regular then we know that (V4) holds with V =

G
(r)
C (x, f). We can then apply Theorem 15.2.6 to the n-skeleton and the result follows.

�
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Given this together with Theorem 15.3.3, which characterizes f -geometric regu-
larity, the following result is obvious:

Theorem 15.3.5 If Φ is f-geometrically regular and aperiodic, then every skeleton
is also f-geometrically regular. �

We round out this series of equivalences by showing not only that the skeletons
inherit f -geometric regularity properties from the chain, but that we can go in the
other direction also.

Recall from (14.22) that for any positive function g on X, we write g(m) =∑m−1
i=0 P ig. Then we have, as a geometric analogue of Theorem 14.2.9,

Theorem 15.3.6 Suppose that Φ is ψ-irreducible and aperiodic. Then C ∈ B+(X)
is f-geometrically regular if and only if it is f (m)-geometrically regular for any one,
and then every, m-skeleton chain.

Proof Letting τm
B denote the hitting time for the skeleton, we have by the Markov

property, for any B ∈ B+(X) and r > 1,

Ex

[τm
B −1∑
k=0

rkm
m−1∑
i=0

P if(Φkm)
]
≥ r−mEx

[τm
B −1∑
k=0

m−1∑
i=0

rkm+if(Φkm+i)
]

≥ r−mEx

[τB−1∑
j=0

rjf(Φj)
]
.

If C is f (m)-geometrically regular for an m-skeleton then the left hand side is bounded
over C for some r > 1 and hence the set C is also f -geometrically regular.

Conversely, if C ∈ B+(X) is f -geometrically regular then it follows from Theo-
rem 15.2.4 that (V4) holds for a function V ≥ f which is bounded on C.

Thus we have from (15.39) and a further application of Lemma 14.2.8 that for
some petite set C ′′ and ρ′ < 1

PmV (m) ≤ ρV (m) +mb1l(m)
C′ ≤ ρ′V (m) +mb1lC′′ .

and thus (V4) holds for the m-skeleton. Since V (m) is bounded on C by (15.39), we
have from Theorem 15.3.3 that C is V (m)-geometrically regular for the m-skeleton.

�
This gives the following solidarity result.

Theorem 15.3.7 Suppose that Φ is ψ-irreducible and aperiodic. Then Φ is f-
geometrically regular if and only if each m-skeleton is f (m)-geometrically regular. �

15.4 f-Geometric ergodicity for general chains

We now have the results that we need to prove the geometrically ergodic limit (15.4).
Using the result in Section 15.1.3 for a chain possessing an atom we immediately
obtain the desired ergodic theorem for strongly aperiodic chains. We then consider
the m-skeleton chain: we have proved that when Φ is f -geometrically regular then
so is each m-skeleton. For aperiodic chains, there always exists some m ≥ 1 such
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that the m-skeleton is strongly aperiodic, and hence as in Chapter 14 we can prove
geometric ergodicity using this strongly aperiodic skeleton chain.

We follow these steps in the proof of the following theorem.

Theorem 15.4.1 Suppose that Φ is ψ-irreducible and aperiodic, and that there is
one f-Kendall petite set C ∈ B(X).

Then there exists κ > 1 and an absorbing full set Sκ
f on which

Ex[
τC−1∑
k=0

f(Φk)κk]

is finite, and for all x ∈ Sκ
f ,

∑
n

rn ‖Pn(x, · )− π‖f ≤ REx[
τC∑

k=0

f(Φk)κk]

for some r > 1 and R <∞ independent of x.

Proof This proof is in several steps, from the atomic through the strongly ape-
riodic to the general aperiodic case. In all cases we use the fact that the seemingly
relatively weak f -Kendall petite assumption on C implies that C is f -geometrically
regular and in B+(X) from Theorem 15.2.1.

Under the conditions of the theorem it follows from Theorem 15.2.4 that

V (x) = Ex

[ σC∑
k=0

f(Φk)κk
]
≥ f(x) (15.40)

is a solution to (V4) which is bounded on the set C, and the set Sκ
f = {x : V (x) <∞}

is absorbing, full, and contains the set C. This will turn out to be the set required
for the result.

(i) Suppose first that the set C contains an accessible atom α. We know then
that the result is true from Theorem 15.1.4, with the bound on the f -norm conver-
gence given from (15.18) and (15.37) by

Ex[
τα−1∑
k=0

f(Φk)κk] ≤ c(α)Ex[
τC−1∑
k=0

f(Φk)κk]

for some κ > 1 and a constant c(α) <∞.
(ii) Consider next the case where the chain is strongly aperiodic, and this time

assume that C ∈ B+(X) is a ν1-small set with ν1(Cc) = 0. Clearly this will not always
be the case, but in part (iii) of the proof we see that this is no loss in generality.

To prove the theorem we abandon the function f and prove V -geometric ergodic-
ity for the chain restricted to Sκ

f and the function (15.40). By Theorem 15.3.3 applied
to the chain restricted to Sκ

f we have that for some constants c <∞, r > 1,

Ex

[ τC∑
k=1

V (Φk)rk
]
≤ cV (x). (15.41)

Now consider the chain split on C. Exactly as in the proof of Proposition 14.3.1 we
have that
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Ěxi

[τC0∪C1∑
k=1

V̌ (Φ̌k)rk
]
≤ c′V̌ (xi)

where c′ ≥ c and V̌ is defined on X̌ by V̌ (xi) = V (x), x ∈ X, i = 0, 1.
But this implies that α̌ is a V̌ -Kendall atom, and so from step (i) above we see

that for some r0 > 1, c′′ <∞,∑
n

rn
0 ‖P̌n(xi, · )− π̌‖V̌ ≤ c′′V̌ (xi)

for all xi ∈ (Sκ
f )0 ∪ X1.

It is then immediate that the original (unsplit) chain restricted to Sκ
f is V -

geometrically ergodic and that∑
n

rn
0 ‖Pn(x, · )− π‖V ≤ c′′V (x)

From the definition of V and the bound V ≥ f this proves the theorem when C is
ν1-small.

(iii) Now let us move to the general aperiodic case. Choose m so that the set C
is itself νm-small with νm(Cc) = 0: we know that this is possible from Theorem 5.5.7.

By Theorem 15.3.3 and Theorem 15.3.5 the chain and the m-skeleton restricted
to Sκ

f are both V -geometrically regular. Moreover, by Theorem 15.3.3 and Theo-
rem 15.3.4 we have for some constants d <∞, r > 1,

Ex

[ τm
C∑

k=1

V (Φk)rk
]
≤ dV (x) (15.42)

where as usual τm
C denotes the hitting time for the m-skeleton. From (ii), since m is

chosen specifically so that C is “ν1-small” for the m-skeleton, there exists c <∞ with

‖Pnm(x, · )− π‖V ≤ cV (x)r−n
0 , n ∈ ZZ+, x ∈ Sκ

f .

We now need to compare this term with the convergence of the one-step transition
probabilities, and we do not have the contraction property of the total variation norm
available to do this. But if (V4) holds for V then we have that

PV (x) ≤ V (x) + b ≤ (1 + b)V (x),

and hence for any g ≤ V ,

|Pn+1(x, g)− π(g)| = |Pn(x, Pg)− π(Pg)|
≤ ‖Pn(x, · )− π‖(1+b)V

= (1 + b)‖Pn(x, · )− π‖V .

Thus we have the bound

‖Pn+1(x, · )− π‖V ≤ (1 + b)‖Pn(x, · )− π‖V . (15.43)

Now observe that for any k ∈ ZZ+, if we write k = nm + i with 0 ≤ i ≤ m − 1, we
obtain from (15.43) the bound, for any x ∈ Sκ

f
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‖P k(x, · )− π‖V ≤ (1 + b)m‖Pnm(x, · )− π‖V

≤ (1 + b)mcV (x)r−n
0

≤ (1 + b)mcr0V (x)(r1/m
0 )−k,

and the theorem is proved. �
Intuitively it seems obvious from the method of proof we have used here that

f -geometric ergodicity will imply f -geometric regularity for any f , but of course the
inequalities in the Regenerative Decomposition are all in one direction, and so we
need to be careful in proving this result.

Theorem 15.4.2 If Φ is f-geometrically ergodic then there is a full absorbing set S
such that Φ is f-geometrically regular when restricted to S.

Proof Let us first assume there is an accessible atom α ∈ B+(X), and that r > 1
is such that ∑

n

rn ‖Pn(α, · )− π‖f <∞.

Using the last exit decomposition (8.21) over the times of entry to α, we have as in
the Regenerative Decomposition (13.48)

Pn(α, f)− π(f) ≥ (u− π(α)) ∗ tf (n) + π(α)
∞∑

j=n+1

tf (j). (15.44)

Multiplying by rn and summing both sides of (15.44) would seem to indicate that α is
an f -Kendall atom of rate r, save for the fact that the first term may be negative, so
that we could have both positive and negative infinite terms in this sum in principle.
We need a little more delicate argument to get around this.

By truncating the last term and then multiplying by sn, s ≤ r and summing to
N , we do have∑N

n=0 s
n(Pn(α, f)− π(f)) ≥ [

∑N
n=0 s

ntf (n)[
∑N−n

k=0 sk(u(k)− π(α))]]

+π(α)
∑N

n=0 s
n∑N

j=n+1 tf (j).
(15.45)

Let us write cN (f, s) =
∑N

n=0 s
ntf (n), and d(s) =

∑∞
n=0 s

n|u(n) − π(α)|. We can
bound the first term in (15.45) in absolute value by d(s)cN (f, s), so in particular as
s ↓ 1, by monotonicity of d(s) we know that the middle term is no more negative
than −d(r)cN (f, s).

On the other hand, the third term is by Fubini’s Theorem given by

π(α)[s−1]−1
N∑

n=0

tf (n)(sn−1) ≥ [s−1]−1[π(α)cN (f, s)−π(f)−π(α)f(α)]. (15.46)

Suppose now that α is not f -Kendall. Then for any s > 1 we have that cN (f, s) is
unbounded as N becomes large. Fix s sufficiently small that π(α)[s − 1]−1 > d(r);
then we have that the right hand side of (15.45) is greater than

cN (f, s)[π(α)[s− 1]−1 − d(r)]− (π(f) + π(α)f(α))/(1− s)
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which tends to infinity as N → ∞. This clearly contradicts the finiteness of the left
side of (15.45). Consequently α is f -Kendall of rate s for some s < r, and then
the chain is f -geometrically regular when restricted to a full absorbing set S from
Proposition 15.3.2.

Now suppose that the chain does not admit an accessible atom. If the chain is
f -geometrically ergodic then it is straightforward that for every m-skeleton and every
x we have ∑

n

rn |Pnm(x, f)− π(f)| <∞.

and for the split chain corresponding to one such skeleton we also have |rn P̌n(x, f)−
π(f)| summable. From the first part of the proof this ensures that the split chain,
and again trivially the m-skeleton is f (m)-geometrically regular, at least on a full
absorbing set S. We can then use Theorem 15.3.7 to deduce that the original chain
is f -geometrically regular on S as required. �

One of the uses of this result is to show that even when π(f) < ∞ there is no
guarantee that geometric ergodicity actually implies f -geometric ergodicity: rates of
convergence need not be inherited by the f -norm convergence for “large” functions
f . We will see this in the example defined by (16.24) in the next chapter.

However, we can show that local geometric ergodicity does at least give the V -
geometric ergodicity of Theorem 15.4.1, for an appropriate V . As in Chapter 13, we
conclude with what is now an easy result.

Theorem 15.4.3 Suppose that Φ is an aperiodic positive Harris chain, with invari-
ant probability measure π, and that there exists some ν-small set C ∈ B+(X), ρC < 1
and MC <∞, and P∞(C) > 0 such that ν(C) > 0 and

|
∫

C
νC(dx)(Pn(x,C)− P∞(C))| ≤MCρ

n
C (15.47)

where νC( · ) = ν( · )/ν(C) is normalized to a probability measure on C.
Then there exists a full absorbing set S such that the chain restricted to S is

geometrically ergodic.

Proof Using the Nummelin splitting via the set C for the m-skeleton, we have
exactly as in the proof of Theorem 13.3.5 that the bound (15.47) implies that the
atom in the skeleton chain split at C is geometrically ergodic.

We can then emulate step (iii) of the proof of Theorem 15.4.1 above to reach the
conclusion. �

Notice again that (15.47) is implied by (15.1), so that we have completed the
circle of results in Theorem 15.0.1.

15.5 Simple random walk and linear models

In order to establish geometric ergodicity for specific models, we will of course use
the drift criterion (V4) as a practical tool to establish the required properties of the
chain.

We conclude by illustrating this for three models: the simple random walk on
ZZ+, the simple linear model, and a bilinear model. We give many further examples in
Chapter 16, after we have established a variety of desirable and somewhat surprising
consequences of geometric ergodicity.
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15.5.1 Bernoulli random walk

Consider the simple random walk on ZZ+ with transition law

P (x, x+ 1) = p, x ≥ 0; P (x, x− 1) = 1− p, x > 0; P (0, 0) = 1− p.

For this chain we can consider directly Px(τ0 = n) = ax(n) in order to evaluate the
geometric tails of the distribution of the hitting times. Since we have the recurrence
relations

ax(n) = (1− p)ax−1(n− 1) + pax+1(n− 1), x > 1;
ax(0) = 0, x ≥ 1;
a1(n) = pa2(n− 1), a0(0) = 0,

valid for n ≥ 1, the generating functions Ax(z) =
∑∞

n=0 ax(n)zn satisfy

Ax(z) = z(1− p)Ax−1(z) + zpAx+1(z), x > 1;
A1(z) = z(1− p) + zpA2(z),

giving the solution

Ax(z) =
[1− (1− 4pqz2)1/2

2pz

]x
=
[
A1(z)

]x
. (15.48)

This is analytic for z < 2/
√
p(1− p), so that if p < 1/2 (that is, if the chain is ergodic)

then the chain is also geometrically ergodic.
Using the drift criterion (V4) to establish this same result is rather easier. Con-

sider the test function V (x) = zx with z > 1. Then we have, for x > 0,

∆V (x) = zx[(1− p)z−1 + pz − 1]

and if p < 1/2, then [(1− p)z−1 + pz − 1] = −β < 0 for z sufficiently close to unity,
and so (15.28) holds as desired.

In fact, this same property, that for random walks on the half line ergodic chains
are also geometrically ergodic, holds in much wider generality. The crucial property is
that the increment distribution have exponentially decreasing right tails, as we shall
see in Section 16.1.3.

15.5.2 Autoregressive and bilinear models

Models common in time series, especially those with some autoregressive character,
often converge geometrically quickly without the need to assume that the innovation
distribution has exponential character. This is because the exponential “drift” of such
models comes from control of the autoregressive terms, which “swamp” the linear
drift of the innovation terms for large state space values. Thus the linear or quadratic
functions used to establish simple ergodicity will satisfy the Foster criterion (V2), not
merely in a linear way as is the case of random walk, but in fact in the stronger mode
necessary to satisfy (15.28).

We will therefore often find that, for such models, we have already established
geometric ergodicity by the steps used to establish simple ergodicity or even bound-
edness in probability, with no further assumptions on the structure of the model.
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Simple linear models Consider again the simple linear model defined in (SLM1)
by

Xn = αXn−1 +Wn

and assume W has an everywhere positive density so the chain is a ψ-irreducible
T-chain. Now choosing V (x) = |x|+ 1 gives

Ex[V (X1)] ≤ |α|V (x) + E[|W |] + 1. (15.49)

We noted in Proposition 11.4.2 that for large enough m, V satisfies (V2) with C =
CV (m) = {x : |x|+ 1 ≤ m}, provided that

E[|W |] <∞, |α| < 1 :

thus {Xn} admits an invariant probability measure under these conditions.
But now we can look with better educated eyes at (15.49) to see that V is in fact

a solution to (15.28) under precisely these same conditions, and so we can strengthen
Proposition 11.4.2 to give the conclusion that such simple linear models are geomet-
rically ergodic.

Scalar bilinear models We illustrate this phenomenon further by re-considering the
scalar bilinear model, and examining the conditions which we showed in Section 12.5.2
to be sufficient for this model to be bounded in probability. Recall that X is defined
by the bilinear process on X = IR

Xk+1 = θXk + bWk+1Xk +Wk+1 (15.50)

where W is i.i.d. From Proposition 7.1.3 we know when Φ is a T-chain.
To obtain a geometric rate of convergence, we reinterpret (12.36) which showed

that
E[|Xk+1| | Xk = x] ≤ E[|θ + bWk+1|]|x|+ E[|Wk+1|] (15.51)

to see that V (x) = |x|+ 1 is a solution to (V4) provided that

E[|θ + bWk+1|] < 1. (15.52)

Under this condition, just as in the simple linear model, the chain is irreducible and
aperiodic and thus again in this case we have that the chain is V -geometrically ergodic
with V (x) = |x|+ 1.

Suppose further that W has finite variance σ2
w satisfying

θ2 + b2σ2
w < 1;

exactly as in Section 14.4.2, we see that V (x) = x2 is a solution to (V4) and hence Φ
is V -geometrically ergodic with this V . As a consequence, the chain admits a second
order stationary distribution π with the property that for some r > 1 and c < ∞,
and all x and n, ∑

n

rn|
∫
Pn(x, dy)y2 −

∫
π(dy)y2| < c(x2 + 1).

Thus not only does the chain admit a second order stationary version, but the time
dependent variances converge to the stationary variance.
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15.6 Commentary

Unlike much of the ergodic theory of Markov chains, the history of geometrically
ergodic chains is relatively straightforward. The concept was introduced by Kendall
in [130], where the existence of the solidarity property for countable space chains
was first established: that is, if one transition probability sequence Pn(i, i) converges
geometrically quickly, so do all such sequences. In this seminal paper the critical
renewal theorem (Theorem 15.1.1) was established.

The central result, the existence of the common convergence rate, is due to Vere-
Jones [281] in the countable space case; the fact that no common best bound exists was
also shown by Vere-Jones [281], with the more complex example given in Section 15.1.4
being due to Teugels [263]. Vere-Jones extended much of this work to non-negative
matrices [283, 284], and this approach carries over to general state space operators
[272, 273, 202].

Nummelin and Tweedie [206] established the general state space version of geo-
metric ergodicity, and by using total variation norm convergence, showed that there
is independence of A in the bounds on |Pn(x,A)− π(A)|, as well as an independent
geometric rate. These results were strengthened by Nummelin and Tuominen [204],
who also show as one important application that it is possible to use this approach to
establish geometric rates of convergence in the Key Renewal Theorem of Section 14.5
if the increment distribution has geometric tails. Their results rely on a geometric tri-
als argument to link properties of skeletons and chains: the drift condition approach
here is new, as is most of the geometric regularity theory.

The upper bound in (15.4) was first observed by Chan [42]. In Meyn and Tweedie
[178], the f -geometric ergodicity approach is developed, thus leading to the final form
of Theorem 15.4.1; as discussed in the next chapter, this form has important operator-
theoretic consequences, as pointed out in the case of countable X by Hordijk and
Spieksma [99].

The drift function criterion was first observed by Popov [218] for countable chains,
with general space versions given by Nummelin and Tuominen [204] and Tweedie
[278]. The full set of equivalences in Theorem 15.0.1 is new, although much of it is
implicit in Nummelin and Tweedie [206] and Meyn and Tweedie [178].

Initial application of the results to queueing models can be found in Vere-Jones
[282] and Miller [185], although without the benefit of the drift criteria, such appli-
cations are hard work and restricted to rather simple structures. The bilinear model
in Section 15.5.2 is first analyzed in this form in Feigin and Tweedie [74]. Further
interpretation and exploitation of the form of (15.4) is given in the next chapter,
where we also provide a much wider variety of applications of these results.

In general, establishing exact rates of convergence or even bounds on such rates
remains (for infinite state spaces) an important open problem, although by analyzing
Kendall’s Theorem in detail Spieksma [254] has recently identified upper bounds on
the area of convergence for some specific queueing models.

Added in Second Printing There has now been a substantial amount of work on
this problem, and quite different methods of bounding the convergence rates have
been found by Meyn and Tweedie [183], Baxendale [17], Rosenthal [232] and Lund
and Tweedie [157]. However, apart from the results in [157] which apply only to
stochastically monotone chains, none of these bounds are tight, and much remains to
be done in this area.
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V -Uniform Ergodicity

In this chapter we introduce the culminating form of the geometric ergodicity the-
orem, and show that such convergence can be viewed as geometric convergence of
an operator norm; simultaneously, we show that the classical concept of uniform (or
strong) ergodicity, where the convergence in (13.4) is bounded independently of the
starting point, becomes a special case of this operator norm convergence.

We also take up a number of other consequences of the geometric ergodicity
properties proven in Chapter 15, and give a range of examples of this behavior. For
a number of models, including random walk, time series and state-space models of
many kinds, these examples have been held back to this point precisely because the
strong form of ergodicity we now make available is met as the norm, rather than
as the exception. This is apparent in many of the calculations where we verified the
ergodic drift conditions (V2) or (V3): often we showed in these verifications that the
stronger form (V4) actually held, so that unwittingly we had proved V -uniform or
geometric ergodicity when we merely looked for conditions for ergodicity.

To formalize V -uniform ergodicity, let P1 and P2 be Markov transition functions,
and for a positive function ∞ > V ≥ 1, define the V -norm distance between P1 and
P2 as

|||P1 − P2|||V := sup
x∈X

‖P1(x, · )− P2(x, · )‖V

V (x)
(16.1)

We will usually consider the distance |||P k−π|||V , which strictly speaking is not defined
by (16.1), since π is a probability measure, not a kernel. However, if we consider the
probability π as a kernel by making the definition

π(x,A) := π(A), A ∈ B(X), x ∈ X,

then |||P k − π|||V is well-defined.

V -uniform ergodicity

An ergodic chain Φ is called V -uniformly ergodic if

|||Pn − π|||V → 0, n→∞. (16.2)
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We develop three main consequences of Theorem 15.0.1 in this chapter.
Firstly, we interpret (15.4) in terms of convergence in the operator norm |||P k−π|||V

when V satisfies (15.3), and consider in particular the uniformity of bounds on the
geometric convergence in terms of such solutions of (V4). Showing that the choice of
V in the term V -uniformly ergodic is not coincidental, we prove

Theorem 16.0.1 Suppose that Φ is ψ-irreducible and aperiodic. Then the following
are equivalent for any V ≥ 1:

(i) Φ is V -uniformly ergodic.

(ii) There exists r > 1 and R <∞ such that for all n ∈ ZZ+

|||Pn − π|||V ≤ Rr−n. (16.3)

(iii) There exists some n > 0 such that |||P i − π|||V <∞ for i ≤ n and

|||Pn − π|||V < 1. (16.4)

(iv) The drift condition (V4) holds for some petite set C and some V0, where V0 is
equivalent to V in the sense that for some c ≥ 1,

c−1V ≤ V0 ≤ cV. (16.5)

Proof That (i), (ii) and (iii) are equivalent follows from Proposition 16.1.3. The
fact that (ii) follows from (iv) is proven in Theorem 16.1.2, and the converse, that
(ii) implies (iv), is Theorem 16.1.4. �

Secondly, we show that V -uniform ergodicity implies that the chain is strongly
mixing. In fact, it is shown in Theorem 16.1.5 that for a V -uniformly ergodic chain,
there exists R and ρ < 1 such that for any g2, h2 ≤ V and k, n ∈ ZZ+,

|Ex[g(Φk)h(Φn+k)]− Ex[g(Φk)]Ex[h(Φn+k)]| ≤ Rρn[1 + ρkV (x)].

Finally in this chapter, using the form (16.3), we connect concepts of geometric
ergodicity with one of the oldest, and strongest, forms of convergence in the study of
Markov chains, namely uniform ergodicity (sometimes called strong ergodicity).

Uniform ergodicity

A chain Φ is called uniformly ergodic if it is V -uniformly ergodic in the
special case where V ≡ 1; that is, if

sup
x∈X

‖Pn(x, · )− π‖ → 0, n→∞. (16.6)

There are a large number of stability properties all of which hold uniformly over the
whole space when the chain is uniformly ergodic.
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Theorem 16.0.2 For any Markov chain Φ the following are equivalent:

(i) Φ is uniformly ergodic.

(ii) There exists r > 1 and R <∞ such that for all x

‖Pn(x, · )− π‖ ≤ Rr−n; (16.7)

that is, the convergence in (16.6) takes place at a uniform geometric rate.

(iii) For some n ∈ ZZ+,
sup
x∈X

‖Pn(x, · )− π( · )‖ < 1. (16.8)

(iv) The chain is aperiodic and Doeblin’s Condition holds: that is, there is a prob-
ability measure φ on B(X) and ε < 1, δ > 0, m ∈ ZZ+ such that whenever
φ(A) > ε

inf
x∈X

Pm(x,A) > δ. (16.9)

(v) The state space X is νm-small for some m.

(vi) The chain is aperiodic and there is a petite set C with

sup
x∈X

Ex[τC ] <∞

in which case for every set A ∈ B+(X), supx∈X Ex[τA] <∞.

(vii) The chain is aperiodic and there is a petite set C and a κ > 1 with

sup
x∈X

Ex[κτC ] <∞,

in which case for every A ∈ B+(X) we have for some κA > 1,

sup
x∈X

Ex[κτA
A ] <∞.

(viii) The chain is aperiodic and there is a bounded solution V ≥ 1 to

∆V (x) ≤ −βV (x) + b1lC(x), x ∈ X (16.10)

for some β > 0, b <∞, and some petite set C.

Under (v), we have in particular that for any x,

‖Pn(x, · )− π‖ ≤ ρn/m (16.11)

where ρ = 1− νm(X).
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Proof This cycle of results is proved in Theorem 16.2.1-Theorem 16.2.4. �
Thus we see that uniform convergence can be embedded as a special case of

V -geometric ergodicity, with V bounded; and by identifying the minorization that
makes the whole space small we can explicitly bound the rate of convergence.

Clearly then, from these results geometric ergodicity is even richer, and the iden-
tification of test functions for geometric ergodicity even more valuable than the last
chapter indicated. This leads us to devote attention to providing a method of mov-
ing from ergodicity with a test function V to esV -geometric convergence, which in
practice appears to be a natural tool for strengthening ergodicity to its geometric
counterpart.

Throughout this chapter, we provide examples of geometric or uniform conver-
gence for a variety of models. These should be seen as templates for the use of the
verification techniques we have given in the theorems of the past several chapters.

16.1 Operator norm convergence

16.1.1 The operator norm ||| · |||V
We first verify that ||| · |||V is indeed an operator norm.

Lemma 16.1.1 Let L∞
V denote the vector space of all functions f : X → IR+ satisfying

|f |V := sup
x∈X

|f(x)|
V (x)

<∞.

If |||P1 − P2|||V is finite then P1 − P2 is a bounded operator from L∞
V to itself, and

|||P1 − P2|||V is its operator norm.

Proof The definition of ||| · |||V may be restated as

|||P1 − P2|||V = sup
x∈X

{sup|g|≤V |P1(x, g)− P2(x, g)|
V (x)

}
= sup

|g|≤V
sup
x∈X

|P1(x, g)− P2(x, g)|
V (x)

= sup
|g|≤V

|P1( · , g)− P2( · , g)|V

= sup
|g|V ≤1

|P1( · , g)− P2( · , g)|V

which is by definition the operator norm of P1−P2 viewed as a mapping from L∞
V to

itself. �
We can put this concept together with the results of the last chapter to show

Theorem 16.1.2 Suppose that Φ is ψ-irreducible and aperiodic and (V4) is satisfied
with C petite and V everywhere finite. Then for some r > 1,∑

rn |||Pn − π|||V <∞, (16.12)

and hence Φ is V -uniformly ergodic.
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Proof This is largely a restatement of the result in Theorem 15.4.1. From Theo-
rem 15.4.1 for some R <∞, ρ < 1,

‖Pn(x, · )− π‖V ≤ RV (x)ρn, n ∈ ZZ+,

and the theorem follows from the definition of ||| · |||V . �
Because ||| · |||V is a norm it is now easy to show that V -uniformly ergodic chains

are always geometrically ergodic, and in fact V -geometrically ergodic.

Proposition 16.1.3 Suppose that π is an invariant probability and that for some n0,

|||P − π|||V <∞ and |||Pn0 − π|||V < 1.

Then there exists r > 1 such that
∞∑

n=1

rn|||Pn − π|||V <∞.

Proof Since ||| · |||V is an operator norm we have for any m, n ∈ ZZ+, using the
invariance of π,

|||Pn+m − π|||V = |||(P − π)n(P − π)m|||V ≤ |||Pn − π|||V |||Pm − π|||V

For arbitrary n ∈ ZZ+ write n = kn0 + i with 1 ≤ i ≤ n0. Then since we have
|||Pn0 − π|||V = γ < 1, and |||P − π|||V ≤ M < ∞ this implies that (choosing M ≥ 1
with no loss of generality),

|||Pn − π|||V ≤ |||P − π|||iV |||Pn0 − π|||kV
≤ M iγk

≤ Mn0γ−1(γ1/n0)n

which gives the claimed geometric convergence result. �
Next we conclude the proof that V -uniform ergodicity is essentially equivalent to

V solving the drift condition (V4).

Theorem 16.1.4 Suppose that Φ is ψ-irreducible, and that for some V ≥ 1 there
exists r > 1 and R <∞ such that for all n ∈ ZZ+

|||Pn − π|||V ≤ Rr−n. (16.13)

Then the drift condition (V4) holds for some V0, where V0 is equivalent to V in the
sense that for some c ≥ 1,

c−1V ≤ V0 ≤ cV. (16.14)

Proof Fix C ∈ B+(X) as any petite set. Then we have from (16.13) the bound

Pn(x,C) ≥ π(C)−RρnV (x)

and hence the sublevel sets of V are petite, so V is unbounded off petite sets.
From the bound

PnV ≤ RρnV + π(V ) (16.15)
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we see that (15.35) holds for the n-skeleton whenever Rρn < 1. Fix n with Rρn < e−1,
and set

V0(x) :=
n−1∑
i=0

exp[i/n]P iV.

We have that V0 > V , and from (16.15),

V0 ≤ e1nRV + nπ(V ),

which shows that V0 is equivalent to V in the required sense of (16.14).
From the drift (16.15) which holds for the n-skeleton we have

PV0 =
n∑

i=1

exp[i/n− 1/n]P iV

= exp[−1/n]
n−1∑
i=1

exp[i/n]P iV + exp[1− 1/n]PnV

≤ exp[−1/n]
n−1∑
i=1

exp[i/n]P iV + exp[−1/n]V + exp[1− 1/n]π(V )

= exp[−1/n]V0 + exp[1− 1/n]π(V )

This shows that (15.35) also holds for Φ, and hence by Lemma 15.2.8 the drift con-
dition (V4) holds with this V0, and some petite set C. �

Thus we have proved the equivalence of (ii) and (iv) in Theorem 16.0.1.

16.1.2 V -geometric mixing and V -uniform ergodicity

In addition to the very strong total variation norm convergence that V -uniformly
ergodic chains satisfy by definition, several other ergodic theorems and mixing results
may be obtained for these stochastic processes. Much of Chapter 17 will be devoted to
proving that the Central Limit Theorem, the Law of the Iterated Logorithm, and an
invariance principle holds for V -uniformly ergodic chains. These results are obtained
by applying the ergodic theorems developed in this chapter, and by exploiting the
V -geometric regularity of these chains. Here we will consider a relatively simple result
which is a direct consequence of the operator norm convergence (16.2).

A stochastic process X taking values in X is called strong mixing if there exists a
sequence of positive numbers {δ(n) : n ≥ 0} tending to zero for which

sup |E[g(Xk)h(Xn+k)]− E[g(Xk)]E[h(Xn+k)]| ≤ δ(n), n ∈ ZZ+,

where the supremum is taken over all k ∈ ZZ+, and all g and h such that |g(x)|,
|h(x)| ≤ 1 for all x ∈ X.

In the following result we show that V -uniformly ergodic chains satisfy a much
stronger property. We will call Φ V -geometrically mixing if there exists R <∞, ρ < 1
such that

sup |Ex[g(Φk)h(Φn+k)]− Ex[g(Φk)]Ex[h(Φn+k)]| ≤ RV (x)ρn, n ∈ ZZ+,

where we now extend the supremum to include all k ∈ ZZ+, and all g and h such that
g2(x), h2(x) ≤ V (x) for all x ∈ X.
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Theorem 16.1.5 If Φ is V -uniformly ergodic then there exists R < ∞ and ρ < 1
such that for any g2, h2 ≤ V and k, n ∈ ZZ+,

|Ex[g(Φk)h(Φn+k)]− Ex[g(Φk)]Ex[h(Φn+k)]| ≤ Rρn[1 + ρkV (x)],

and hence the chain Φ is V -geometrically mixing.

Proof For any h2 ≤ V , g2 ≤ V let h = h − π(h), g = g − π(g). We have by√
V -uniform ergodicity as in Lemma 15.2.9 that for some R′ <∞, ρ < 1,

|Ex[h(Φk)g(Φk+n)]| =
∣∣∣Ex

[
h(Φk)EΦk

[g(Φn)]
]∣∣∣

≤ R′ρnEx

[∣∣∣h(Φk)
∣∣∣√V (Φk)

]
.

Since |h| ≤
(
1 +

∫
V

1
2dπ

)
V

1
2 we can set R′′ = R′

(
1 +

∫
V

1
2dπ

)
and apply (15.35) to

obtain the bound

|Ex[h(Φk)g(Φk+n)]| ≤ R′′ρnEx [V (Φk)]

≤ R′′ρn
{

L

1− λ
+ λkV (x)

}
.

Assuming without loss of generality that ρ ≥ λ, and using the bounds

|π(h)− Ex[h(Φk)]| ≤ R′′′ρk
√
V (x)

|π(g)− Ex[g(Φk+n)]| ≤ R′′′ρk+n
√
V (x)

gives the result for some R <∞. �
It follows from Theorem 16.1.5 that if the chain is V -uniformly ergodic then for

some R1 <∞,

|Ex[h(Φk)g(Φk+n)]| ≤ R1ρ
n[1 + ρkV (x)], k, n ∈ ZZ+ (16.16)

where h = h− π(h), g = g − π(g).
By integrating both sides of (16.16) over X, the initial condition x may be replaced

with a finite bound for any initial distribution µ with µ(V ) < ∞, and a mixing
condition will be satisfied for such initial conditions. In the particular case where
µ = π we have by stationarity and finiteness of π(V ) (see Theorem 14.3.7),

|Eπ[h(Φk)g(Φk+n)]| ≤ R2ρ
n, k, n ∈ ZZ+. (16.17)

for some R2 <∞; and hence the stationary version of the process satisfies a geometric
mixing condition under (V4).

16.1.3 V -uniform ergodicity for regenerative models

In order to establish geometric ergodicity for specific models, we will obviously use
the drift criterion (V4) to establish the required convergence. We begin by illustrating
this for two regenerative models: we give many further examples later in the chapter.

For many models with some degree of spatial homogeneity, the crucial condition
leading to geometric convergence involves exponential bounds on the increments of
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the process. Let us say that the distribution function G of a random variable is in
G+(γ) if G has a Laplace-Stieltjes transform convergent in [0, γ]: that is, if∫ ∞

0
estG(dt) <∞, 0 < s ≤ γ, (16.18)

where γ > 0.

Forward recurrence time chains Consider the forward recurrence time δ-skeleton
chain V +

δ defined by (RT3), based on increments with spread-out distribution Γ .
Suppose that Γ ∈ G+(γ). By choosing V (x) = eγx we have immediately that

(V4) holds for x ∈ C with C = [0, δ], and also

[V (x)]−1
∫
P (x, dy)V (y) = eγ(x−δ)/eγx = e−γδ < 1, x > δ.

Thus (V4) also holds on Cc, and we conclude that the chain is eγx-uniformly ergodic.
Moreover, from Theorem 16.0.1 we also have that∫

|Pn(x, dy)eγy − π(dy)eγy| < eγxr−n,

so that the moment-generating functions of the model, and moreover all polynomial
moments, converge geometrically quickly to their limits with known bounds on the
state-dependent constants.

This is the same result we showed in Section 15.1.4 for the forward recurrence
time chain on ZZ+; here we have used the drift conditions rather than the direct
calculation of hitting times to establish geometric ergodicity.

It is obvious from its construction that for this chain the condition Γ ∈ G+(γ) is
also necessary for geometric ergodicity.

The condition for uniform ergodicity for the forward recurrence time chain is also
trivial to establish, from the criterion in Theorem 16.0.2 (vi). We will only have this
condition holding if Γ is of bounded range so that Γ [0, c] = 1 for some finite c; in this
case we may take the state space X equal to the compact absorbing set [0, c]. The
existence of such a compact absorbing subset is typical of many uniformly ergodic
chains in practice.

Random walk on IR+ Consider now the random walk on [0,∞), defined by
(RWHL1). Suppose that the model has an increment distribution Γ such that

(a) the mean increment β =
∫
xΓ (dx) < 0;

(b) the distribution Γ is in G+(γ), for some γ > 0.

Let us choose V (x) = exp(sx), where 0 < s < γ is to be selected. Then we have∫
P (x, dy)∆V (y)/V (x) =

∫∞
−x Γ (dw)[exp(sw)− 1]

+Γ (−∞,−x][exp(−sx)− 1]

≤
∫∞
−∞ Γ (dw)[exp(sw)− 1]

+
∫−x
−∞ Γ (dw)[1− exp(sw)].

(16.19)
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But now if we let s ↓ 0 then

s−1
∫ ∞

−∞
Γ (dw)[exp(sw)− 1]→ β < 0.

Thus choosing s0 sufficiently small that
∫∞
−∞ Γ (dw)[exp(s0w)− 1] = ξ < 0, and then

choosing c large enough that

Γ (−∞,−x] ≤ −ξ/2, x ≥ c

we have that (V4) holds with C = [0, c]. Since C is petite for this chain, the random
walk is exp(s0x)-uniformly ergodic when (a) and (b) hold.

It is then again a consequence of Theorem 16.0.1 that the moment generating
function, and indeed all moments, of the chain converge geometrically quickly.

Thus we see that the behavior of the Bernoulli walk in Section 15.5 is due, essen-
tially, to the bounded and hence exponential nature of its increment distribution.

We will show in Section 16.3 that one can generalize this result to general chains,
giving conditions for geometric ergodicity in terms of exponentially decreasing “tails”
of the increment distributions.

16.2 Uniform ergodicity

16.2.1 Equivalent conditions for uniform ergodicity

From the definition (16.6), a Markov chain is uniformly ergodic if |||Pn − π|||V → 0 as
n→∞ when V ≡ 1. This simple observation immediately enables us to establish the
first three equivalences in Theorem 16.0.2, which relate convergence properties of the
chain.

Theorem 16.2.1 The following are equivalent, without any a priori assumption of
ψ-irreducibility or aperiodicity:

(i) Φ is uniformly ergodic.

(ii) there exists ρ < 1 and R <∞ such that for all x

‖Pn(x, · )− π‖ ≤ Rρn.

(iii) for some n ∈ ZZ+,
sup
x∈X

‖Pn(x, · )− π( · )‖ < 1.

Proof Obviously (i) implies (iii); but from Proposition 16.1.3 we see that (iii)
implies (ii), which clearly implies (i) as required. �

Note that uniform ergodicity implies, trivially, that the chain actually is π-
irreducible and aperiodic, since for π(A) > 0 there exists n with Pn(x,A) ≥ π(A)/2
for all x.

We next prove that (v)-(viii) of Theorem 16.0.2 are equivalent to uniform ergod-
icity.

Theorem 16.2.2 The following are equivalent for a ψ-irreducible aperiodic chain:
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(i) Φ is uniformly ergodic.

(ii) the state space X is petite.

(iii) there is a petite set C with supx∈X Ex[τC ] < ∞, in which case for every A ∈
B+(X) we have supx∈X Ex[τA] <∞.

(iv) there is a petite set C and a κ > 1 with supx∈X Ex[κτC ] < ∞ in which case for
every A ∈ B+(X) we have supx∈X Ex[κτA

A ] <∞ for some κA > 1.

(v) there is an everywhere bounded solution V to (16.10) for some petite set C.

Proof Observe that the drift inequality (11.17) given in (V2) and the drift in-
equality (16.10) are identical for bounded V . The equivalence of (iii) and (v) is thus a
consequence of Theorem 11.3.11, whilst (iv) implies (iii) trivially and Theorem 15.2.6
shows that (v) implies (iv): such connections between boundedness of τA and solutions
of (16.10) are by now standard.

To see that (i) implies (ii), observe that if (i) holds then Φ is π-irreducible and
hence there exists a small set A ∈ B+(X). Then, by (i) again, for some n0 ∈ ZZ+,
infx∈X P

n0(x,A) > 0 which shows that X is small from Theorem 5.2.4.
The implication that (ii) implies (v) is equally simple. Let V ≡ 1, β = b = 1

2 , and
C = X. We then have

∆V = −βV + b1lC ,

giving a bounded solution to (16.10) as required.
Finally, when (v) holds, we immediately have uniform geometric ergodicity by

Theorem 16.1.2. �
Historically, one of the most significant conditions for ergodicity of Markov chains

is Doeblin’s Condition.

Doeblin’s Condition

Suppose there exists a probability measure φ with the property that for
some m, ε < 1, δ > 0

φ(A) > ε =⇒ Pm(x,A) ≥ δ

for every x ∈ X.

From the equivalences in Theorem 16.2.1 and Theorem 16.2.2, we are now in a position
to give a very simple proof of the equivalence of uniform ergodicity and this condition.

Theorem 16.2.3 An aperiodic ψ-irreducible chain Φ satisfies Doeblin’s Condition if
and only if Φ is uniformly ergodic.
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Proof Let C be any petite set with φ(C) > ε and consider the test function

V (x) = 1 + 1lCc(x).

Then from Doeblin’s Condition

PmV (x)− V (x) = Pm(x,Cc)− 1lCc(x) ≤ 1− δ − 1lCc(x)

= −δ + 1lC(x)

≤ −1
2δV (x) + 1lC(x).

Hence V is a bounded solution to (16.10) for the m-skeleton, and it is thus the case
that the m-skeleton and the original chain are uniformly ergodic by the contraction
property of the total variation norm.

Conversely, we have from uniform ergodicity in the form (16.7) that for any ε > 0,
if π(A) ≥ ε then

Pn(x,A) ≥ ε−Rρn ≥ ε/2

for all n large enough that Rρn ≤ ε/2, and Doeblin’s Condition holds with φ = π. �
Thus we have proved the final equivalence in Theorem 16.0.2. We conclude by

exhibiting the one situation where the bounds on convergence are simply calculated.

Theorem 16.2.4 If a chain Φ satisfies

Pm(x,A) ≥ νm(A) (16.20)

for all x ∈ X and A ∈ B(X) then

‖Pn(x, · )− π‖ ≤ ρn/m (16.21)

where ρ = 1− νm(X).

Proof This can be shown using an elegant argument based on the assumption
(16.20) that the whole space is small which relies on a coupling method closely con-
nected to the way in which the split chain is constructed.

Write (16.20) as
Pm(x,A) ≥ (1− ρ)ν(A) (16.22)

where ν = νm/(1− ρ) is a probability measure.
Assume first for simplicity that m = 1. Run two copies of the chain, one from

the initial distribution concentrated at x and the other from the initial distribution
π. At every time point either

(a) with probability 1−ρ, choose for both chains the same next position from the dis-
tribution ν, after which they will be coupled and then can be run with identical
sample paths; or

(b) with probability ρ, choose for each chain an independent position, using the
distribution (as in the split chain construction) [P (x, · )− (1−ρ)ν( · )]/ρ, where
x is the current position of the chain.
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This is possible because of the minorization in (16.22). The marginal distributions
of these chains are identical with the original distributions, for every n. If we let T
denote the first time that the chains are chosen using the first option (a), then we
have

‖Pn(x, · )− π‖ ≤ P(T > n) ≤ ρn (16.23)

which is (16.21).
When m > 1 we can use the contraction property as in Proposition 16.1.3 to give

(16.21) in the general case. �
The optimal use of these many equivalent conditions for uniform ergodicity de-

pends of course on the context of use. In practice, this last theorem, since it identifies
the exact rate of convergence, is perhaps the most powerful, and certainly gives sub-
stantial impetus to identifying the actual minorization measure which renders the
whole space a small set.

It can also be of importance to use these conditions in assessing when uniform
convergence does not hold: for example, in the forward recurrence time chain V+

δ it
is immediate from Theorem 16.2.2 (iii) that, since the mean return time to [0, δ] from
x is of order x, the chain cannot be uniformly ergodic unless the state space can be
reduced to a compact set.

Similar remarks apply to random walk on the half line: we see this explicitly in
the simple random walk of Section 15.5, but it is a rather deeper result [47] that
for general random walk on [0,∞), Ex[τ0] ∼ cx so such chains are never uniformly
ergodic.

16.2.2 Geometric convergence of given moments

It is instructive to note that, although the concept of uniform ergodicity is a very
strong one for convergence of distributions, it need not have any implications for the
convergence of moments or other unbounded functionals of the chain at a geometric
rate.

This is obviously true in a trivial sense: an i.i.d. sequence Φn converges in a
uniformly ergodic manner, regardless of whether E[Φn] is finite or not.

But rather more subtly, we now show that it is possible for us to construct a
uniformly ergodic chain with convergence rate ρ such that π(f) < ∞, so that we
know Ex[f(Φn)] → π(f), but where not only does this convergence not take place at
rate ρ, it actually does not take place at any geometric rate at all.

For convenience of exposition we construct this chain on a countable ladder space
X = ZZ+ × ZZ+, even though the example is essentially one-dimensional.

Fix β < 1/4, and define for the ith rung of the ladder the indices

�m(i) := �( i− 1
iβ

)m�, i ≥ 1,m ≥ 0.

Note that for i = 1 we have �m(1) = 0 for all m, but for i > 1

(
i− 1
iβ

)m+1 − (
i− 1
iβ

)m = (
i− 1
iβ

)m(
i− 1− iβ

iβ
) ≥ 1

since (i− 1− iβ)/iβ ≥ (3i− 1)/i ≥ 2. Hence from the second rung up, this sequence
�m(i) forms a strictly monotone increasing set of states along the rung.



16.2 Uniform ergodicity 403

The transition mechanism we consider provides a chain satisfying the Doeblin
Condition. We suppose P is given by

P (i, �m(i); i, �m+1(i)) = β, i = 1, 2, . . . , m = 1, 2, . . .

P (i, �m(i); 0, 0) = 1− β, i = 1, 2, . . . , m = 1, 2, . . .

P (i, k; 0, 0) = 1, i = 1, 2, . . . , k 
= �m(i), m = 1, 2, . . .

P (0, 0; i, j) = αij , i, j ∈ X

P (0, k; 0, 0) = 1, k > 0,

(16.24)

where the αij are to be determined, with α00 > 0.
In effect this chain moves only on the states (0, 0) and the sequences �m(i), and

the whole space is small with

P (i, k; · ) ≥ min(1− β, α00)δ00( · ).

Thus the chain is clearly uniformly and hence geometrically ergodic.
Now consider the function f defined by f(i, k) = k; that is, f denotes the dis-

tance of the chain along the rung independent of the rung in question. We show that
the chain is f -ergodic but not f -geometrically ergodic, under suitable choice of the
distribution αij .

First note that we can calculate

Ei,1[
∑τ0,0−1

0 f(Φn)] = (1− β)
∑∞

n=0 β
n∑n

m=0 �
m(i)

≤ (1− β)
∑∞

n=0 β
n∑n

m=0(
i−1
iβ )m

= i;

Ei,�m(i)[
∑τ0,0−1

0 f(Φn)] ≤ ( i−1
iβ )mi, m = 1, 2, . . . ;

Ei,k[
∑τ0,0−1

0 f(Φn)] = k, k 
= �m(i), m = 1, 2, . . . .

Now let us choose

αik = c2−i−k, k 
= �m(i), m = 1, 2, . . . ;
αik = c

∑∞
m=0 2−i−�m(i), k = 1,

and all other values except α00 as zero, and where c is chosen to ensure that the αik

form a probability distribution.
With this choice we have

E0,0[
∑τ0,0−1

0 f(Φn)] ≤ 1 +
∑

i≥1

∑
k �=�m(i),m≥0 k2

−i−k +
∑

i≥1[
∑∞

m=0 2−i−�m(i)]i

≤ 1 + 2
∑

i≥1 i2
−i <∞

so that the chain is certainly f -ergodic by Theorem 14.0.1. However for any r ∈
(1, β−1),
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Ei,1[
∑τ0,0−1

0 f(Φn)rn] = (1− β)
∑∞

n=0 β
nrn∑n

m=0 �
m(i)

≥ (1− β)
∑∞

n=0(βr)
n∑n

m=0[(
i−1
iβ )m − 1]

= −( 1−β
1−βr ) +

∑∞
n=0(βr)

n[ [(i−1)/iβ]n+1−1
[(i−1)/iβ]−1 ]

which is infinite if

βr[
i− 1
iβ

] > 1;

that is, for those rungs i such that i > r/(r − 1). Since there is positive probability
of reaching such rungs in one step from (0, 0) it is immediate that

E0,0[
τ0,0−1∑

0

f(Φn)rn] = ∞

for all r > 1, and hence from Theorem 15.4.2 for all r > 1∑
n

rn‖Pn(0, 0; · )− π‖f = ∞.

Since {0, 0} ∈ B+(X), this implies that ‖Pn(x; · )− π‖f is not o(ρn) for any x or any
ρ < 1.

We have thus demonstrated that the strongest rate of convergence in the simple
total variation norm may not be inherited, even by the simplest of unbounded func-
tions; and that one really needs, when considering such functions, to use criteria such
as (V4) to ensure that these functions converge geometrically.

16.2.3 Uniform ergodicity: T-chains on compact spaces

For T-chains, we have an almost trivial route to uniform ergodicity, given the results
we now have available.

Theorem 16.2.5 If Φ is a ψ-irreducible and aperiodic T-chain, and if the state space
X is compact, then Φ is uniformly ergodic.

Proof If Φ is a ψ-irreducible T-chain, and if the state space X is compact, then
it follows directly from Theorem 6.0.1 that X is petite. Applying the equivalence of
(i) and (ii) given in Theorem 16.2.2 gives the result. �

One specific model, the nonlinear state space model, is also worth analyzing in
more detail to show how we can identify other conditions for uniform ergodicity.

The NSS(F ) model In a manner similar to the proof of Theorem 16.2.5 we show
that the the NSS(F ) model defined by (NSS1) and (NSS2) is uniformly ergodic,
provided that the associated control model CM(F ) is stable in the sense of Lagrange,
so that in effect the state space is reduced to a compact invariant subset.
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Lagrange Stability The CM(F ) model is called Lagrange stable if A+(x)
is compact for each x ∈ X.

Typically in applications, when the CM(F ) model is Lagrange stable the input se-
quence will be constrained to lie in a bounded subset of IRp. We stress however that
no conditions on the input are made in the general definition of Lagrange stability.

The key to analyzing the NSS(F ) corresponding to a Lagrange stable control
model lies in the following lemma:

Lemma 16.2.6 Suppose that the CM(F ) model is forward accessible, Lagrange sta-
ble, M -irreducible and aperiodic, and suppose that for the NSS(F ) model conditions
(NSS1) - (NSS3) are satisfied.

Then for each x ∈ X the set A+(x) is closed, absorbing, and small.

Proof By Lagrange stability it is sufficient to show that any compact and invariant
set C ⊂ X is small. This follows from Theorem 7.3.5 (ii), which implies that compact
sets are small under the conditions of the lemma. �

Using Lemma 16.2.6 we now establish geometric convergence of the expectation
of functions of Φ:

Theorem 16.2.7 Suppose the NSS(F ) model satisfies Conditions (NSS1)-(NSS3)
and that the associated control model CM(F ) is forward accessible, Lagrange stable,
M -irreducible and aperiodic.

Then a unique invariant probability π exists, and the chain restricted to the ab-
sorbing set A+(x) is uniformly ergodic for each initial condition.

Hence also for every function f : X → IR which is uniformly bounded on compact
sets, and every initial condition,

Ey[f(Φk)]→
∫
f dπ

at a geometric rate.

Proof When CM(F ) is forward accessible, M -irreducible and aperiodic, we have
seen in Theorem 7.3.5 that the Markov chain Φ is ψ-irreducible and aperiodic.

The result then follows from Lemma 16.2.6: the chain restricted to A+(x) is
uniformly ergodic by Theorem 16.0.2. �

16.3 Geometric ergodicity and increment analysis

16.3.1 Strengthening ergodicity to geometric ergodicity

It is possible to give a “generic” method of establishing that (V4) holds when we
have already used the test function approach to establishing simple (non-geometric)
ergodicity through Theorem 13.0.1. This method builds on the specific technique for
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random walks, shown in Section 16.1.3 above, and is an increment-based method
similar to that in Section 9.5.1.

Suppose that V is a test function for regularity. We assume that V takes on the
“traditional” form due to Foster: V is finite-valued, and for some petite set C and
some constant b <∞, we have∫

P (x, dy)V (y) ≤
{
V (x)− 1 for x ∈ Cc;
b for x ∈ C

(16.25)

Recall that VC(x) = Ex[σC ] is the minimal solution to (16.25) from Theorem 11.3.5.

Theorem 16.3.1 If Φ is a ψ-irreducible ergodic chain and V is a test function sat-
isfying (16.25), and if P satisfies, for some c, d <∞ and β > 0, and all x ∈ X,∫

V (y)≥V (x)
P (x, dy) exp{β(V (y)− V (x))} ≤ c (16.26)

and ∫
V (y)<V (x)

P (x, dy)(V (y)− V (x))2 ≤ d (16.27)

then Φ is V ∗-uniformly ergodic, where V ∗(y) = eδV (y) for some δ < β.

Proof For positive δ < β we have

[V ∗(x)]−1
∫
P (x, dy)V ∗(y) =

∫
P (x, dy) exp{δ(V (y)− V (x))}

=
∫
P (x, dy)

{
1 + δ(V (y)− V (x))

+ δ2

2 (V (y)− V (x))2 exp{δθx(V (y)− V (x))}
}

(16.28)
for some θx ∈ [0, 1], by using a second order Taylor expansion. Since V satisfies
(16.25), the right hand side of (16.28) is bounded for x ∈ Cc by

1− δ + δ2

2

{∫
V (y)<V (x) P (x, dy)(V (y)− V (x))2

+
∫
V (y)≥V (x) P (x, dy)((V (y)− V (x))2 exp{δ(V (y)− V (x))}

}
≤ 1− δ + δ2

2 d+ δ2−ξ

2

∫
V (y)≥V (x) P (x, dy) exp{(δ + δξ/2)(V (y)− V (x))}

≤ 1− δ + δ2−ξ

2 (d+ c),
(16.29)

for some ξ ∈ (0, 1) such that δ + δξ/2 < β by virtue of (16.26) and (16.27), and the
fact that x2 is bounded by ex on IR+. This proves the theorem, since we have

1− δ +
δ2−ξ

2
(d+ c) < 1

for sufficiently small δ > 0, and thus (V4) holds for V ∗. �
The typical example of this behavior, on which this proof is modeled, is the

random walk in Section 16.1.3. In that case V (x) = x, and (16.26) is the requirement
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that Γ ∈ G+(γ). In this case we do not actually need (16.27), which may not in fact
hold.

It is often easier to verify the conditions of this theorem than to evaluate directly
the existence of a test function for geometric ergodicity, as we shall see in the next
section.

How necessary are the conditions of this theorem on the “tails” of the increments?
By considering for example the forward recurrence time chain, we see that for some
chains Γ ∈ G+(γ) may indeed be necessary for geometric ergodicity. However, geomet-
ric tails are certainly not always necessary for geometric ergodicity: to demonstrate
this simply consider any i.i.d. process, which is trivially uniformly ergodic, regardless
of its “increment” structure.

It is interesting to note, however, that although they seem somewhat “proof-
dependent”, the uniform bounds (16.26) and (16.27) on P that we have imposed
cannot be weakened in general when moving from ergodicity to geometric ergodicity.

We first show that we can ensure lack of geometric ergodicity if the drift to the
right is not uniformly controlled in terms of V as in (16.26), even for a chain satisfying
all our other conditions. To see this we consider a chain on ZZ+ with transition matrix
given by, for each i ∈ ZZ+,

P (0, i) = αi > 0,
P (i, i− 1) = γi > 0,
P (i, i+ n) = [1− γi][1− βi]βn

i , n ∈ ZZ+. (16.30)

where
∑
αi = 1 and γi, βi are less than unity for all i.

Provided
∑
iαi <∞ and we choose γi sufficiently large that

[1− γi]βi/[1− βi]− γi ≤ −ε

for some ε > 0, then the chain is ergodic since V (x) = x satisfies (V2): this can be
done if we choose, for example,

γi ≥ βi + ε[1− βi].

And now if we choose βj → 1 as j → ∞ we see that the chain is not geometrically
ergodic: we have for any j

Pj(τ0 > n) ≥ [1− γj ][1− βj ]βn
j

so P0(τ0 > n) does not decrease geometrically quickly, and the chain is not geometri-
cally ergodic from Theorem 15.4.2 (or directly from Theorem 15.1.1).

In this example we have bounded variances for the left tails of the increment
distributions, and exponential tails of the right increments: it is the lack of uniformity
in these tails that fails along with the geometric convergence.

To show the need for (16.27), consider the chain on ZZ+ with the transition matrix
(15.20) given for all j ∈ ZZ+ by P (0, 0) = 0 and

P (0, j) = γj > 0, P (j, j) = βj , P (j, 0) = 1− βj ,

where
∑

j γj = 1. We saw in Section 15.1.4 that if βj → 1 as n→∞, the chain cannot
be geometrically ergodic regardless of the structure of the distribution {γj}.



408 16 V -Uniform Ergodicity

If we consider the minimal solution to (16.25), namely

V0(j) = Ej [σ0] = [1− βj ]−1, j > 0,

then clearly the right hand increments are uniformly bounded in relation to V for
j > 0: but we find that∑

P (i, j)(V0(j)− V0(i))2 = P (i, 0)[1− βi]−2 = [1− βi]−1 →∞, i→∞.

Hence (16.27) is necessary in this model for the conclusion of Theorem 16.3.1 to be
valid.

16.3.2 Geometric ergodicity and the structure of π

The relationship between spatial and temporal geometric convergence in the previous
section is largely a result of the spatial homogeneity we have assumed when using
increment analysis.

We now show that this type of relationship extends to the invariant probability
measure π also, at least in terms of the “natural” ordering of the space induced by
petite sets and test functions.

Let us we write, for any function g,

Ag,n(x) = {y : g(y) ≤ g(x)− n}.

We say that the chain is “g-skip-free to the left” if there is some k ∈ ZZ+, such that
for all x ∈ X,

P (x,Ag,k(x)) = 0, (16.31)

so that the chain can only move a limited amount of “distance” through the sub-
level sets of g in one step. Note that such skip-free behavior precludes the Doeblin
Condition if g is unbounded off petite sets, and requires a more random-walk like
behavior.

Theorem 16.3.2 Suppose that Φ is geometrically ergodic. Then there exists β > 0
such that ∫

π(dy)eβVC(y) <∞ (16.32)

where VC(y) = Ey[σC ] for any petite set C ∈ B+(X).
If Φ is g-skip-free to the left for a function g which is unbounded off petite sets,

then for some β′ > 0 ∫
π(dy)eβ′g(y) <∞. (16.33)

Proof From geometric ergodicity, we have from Theorem 15.2.4 that for any petite
set C ∈ B+(X) there exists r > 1 such that V (y) = G

(r)
C (y,X) satisfies (V4). It follows

from Theorem 14.3.7 that π(V ) <∞. Using the interpretation (15.29) we have that

∞ > π(V ) ≥
∫
π(dy)Ey[rσC ]. (16.34)

Now the function f(j) = zj is convex in j ∈ ZZ+, so that Ex[rσC ] ≥ rEx[σC ] by Jensen’s
inequality. Thus we have (16.32) as desired.



16.4 Models from queueing theory 409

Now suppose that g is such that the chain is g-skip-free to the left, and fix b so that
the petite set C = {y : g(y) ≤ b} is in B+(X). Because of the left skip-free property
(16.31), for g(x) ≥ nk + b, we have Px(σC ≤ n) = 0 so that Ex[rσC ] ≥ r(g(x)−b)/k.

As
∫
π(dx)Ex[rσC ] <∞ by virtue of (16.34), we have thus proved the second part

of the theorem for eβ = k
√
r. �

This result shows two things; firstly, if we think of VC (or equivalently GC(x,X))
as providing a natural scaling of the space in some way, then geometrically ergodic
chains do have invariant measures with geometric “tails” in this scaling.

Secondly, and in practice more usefully, we have an identifiable scaling for such
tails in terms of a “skip-free” condition, which is frequently satisfied by models in
queueing applications on INn in particular. For example, if we embed a model at the
departure times in such applications, and a limited number of customers leave each
time, we get a skip-free condition holding naturally. Indeed, in all of the queueing
models of the next section this condition is satisfied, so that this theorem can be
applied there.

To see that geometric ergodicity and conditions on π such as (16.33) are not
always linked in the given topology on the space, however, again consider any i.i.d.
chain. This is always uniformly ergodic, regardless of π: the rescaling through gC here
is too trivial to be useful.

In the other direction, consider again the chain on ZZ+ with the transition matrix
given for all j ∈ ZZ+ by

P (0, j) = γj , P (j, j) = βj , P (j, 0) = 1− βj ,

where
∑

j γj = 1: we know that if βj → 1 as n → ∞, the chain is not geometrically
ergodic. But for this chain, since we know that π(j) is proportional to

E0[Number of visits to j before return to 0]

we have
π(j) ∝ γj [1− βj ]−1

and so for suitable choice of γj we can clearly ensure that the tails of π are geometric
or otherwise in the given topology, regardless of the geometric ergodicity of P .

16.4 Models from queueing theory

We further illustrate the use of these theorems through the analysis of three queueing
systems.

These are all models on ZZn
+ and their analysis consists of showing that there

exists ε1, ε2 > 0, such that ε1|i|1 ≤ V (i) ≤ ε2|i|1, where V is the minimal solution to
(16.25) and |i|1 is the �1-norm on ZZn

+; we then find that Φ is V ∗-uniformly ergodic
for V ∗(i) = eδV (i), so that in particular we conclude that V ∗ is bounded above and
below by exponential functions of |i|1 for these models.

Typically in all of these examples the key extra assumption needed to ensure
geometric ergodicity is a geometric tail on the distributions involved: that is, the
increment distributions are in G+(γ) for some γ. Recall that this was precisely the
condition used for regenerative models in Section 16.1.3.
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16.4.1 The embedded M/G/1 queue Nn

The M/G/1 queue exemplifies the steps needed to apply Theorem 16.3.1 in queueing
models.

Theorem 16.4.1 If Φ the Markov chain Nn defined by (Q4) is ergodic, then Φ is
also geometrically ergodic provided the service time distributions are in G+(γ) for
some γ > 0.

Proof We have seen in Section 11.4 that V (i) = i is a solution to (16.25) with
C = {0}.

Let us now assume that the service time distribution H ∈ G+(γ). We prove
that (16.26) and (16.27) hold. Application of Theorem 16.3.1 then proves V ∗-uniform
ergodicity of the embedded Markov chain where V ∗(i) = eδi for some δ > 0.

Let ak denote the probability of k arrivals within one service. Note that (16.27)
trivially holds, since

∑
j≤k P (k, j)(j − k)2 ≤ a0. For l ≥ 0 we have

P (k, k + l) = al+1 =
1

(l + 1)!

∫ ∞

0
e−λt(λt)l+1dH(t).

Let δ > 0, so that∑
l≥0

eδ(l+1)P (k, k + l) ≤
∫ ∞

0
exp{(eδ − 1)λt}dH(t)

which is assumed to be finite for (eδ − 1)λ < γ. Thus we have the result. �

16.4.2 A gated-limited polling system

We next consider a somewhat more complex multidimensional queueing model. Con-
sider a system consisting of K infinite capacity queues and a single server.

The server visits the queues in order (hence the name polling system) and during
a visit to queue k the server serves min(x, �k) customers, where x is the number of
customers present at queue k at the instant the server arrives there: thus �k is the
“gate-limit”.

To develop a Markovian representation, this system is observed at each instant
the server arrives back at queue 1: the queue lengths at the respective queues are
then recorded. We thus have a K-dimensional state description Φn = Φk

n, where Φk
n

stands for the number of customers in queue k at the server’s nth visit to queue 1.
The arrival stream at queue k is assumed to be a Poisson stream with parameter

λk; the amount of service given to a queue k customer is drawn from a general
distribution with mean µ−1

k .
To make the process Φ a Markov chain we assume that the sequence of service

times to queue k are i.i.d. random variables. Moreover, the arrival streams and service
times are assumed to be independent of each other.

Theorem 16.4.2 The gated-limited polling model Φ described above is geometrically
ergodic provided

1 > ρ :=
∑
k

λk/µk (16.35)

and the service-time distributions are in G+(γ) for some γ.
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Proof It is straightforward to show that Φ is ergodic for the gated-limited service
discipline when (16.35) holds, by identifying a drift function that is linear in the
number of customers in the respective queues: specifically V (i) =

∑K
k=1 ik/µk where

i is a K-dimensional vector with kth component ik, can easily be shown to satisfy
(16.25).

To apply the results in this section, observe that for this embedded chain there
are only finitely many different possible one-step increments , depending on whether
Φk

n exceeds �k or equals x < �k. Combined with the linearity of V , we conclude that
both sums

{
∑

j:V (j)≥V (i)

P (i, j)eλ(V (j)−V (i)) : i ∈ X}

and
{

∑
j:V (j)<V (i)

P (i, j)(V (j)− V (i))2 : i ∈ X}

have only finitely many non-zero elements. We must ensure that these expressions are
all finite, but it is straightforward to check as in Theorem 16.4.1 that convergence of
the Laplace-Stieltjes transforms of the service-time distributions in a neighborhood
of 0 is sufficient to achieve this, and the theorem follows. �

16.4.3 A queue with phase-type service times

In many cases of ergodic chains there are no closed form expressions for the drift
function, even though it follows from Chapter 11 that such functions exist. However,
once ergodicity has been established, we do know by minimality that the function
VC(x) = Ex[σC ] is a finite solution to (16.25). We now consider a queueing model for
which we can study properties of this function without explicit calculation: this is the
single server queue with phase-type service time distribution.

Jobs arrive at a service facility according to a Poisson process with parameter λ.
With probability pk any job requires k independent exponentially distributed phases
of service each with mean ν. The sum of these phases is the “phase-type” service time
distribution, with mean service time µ−1 =

∑∞
k=1 kpk/ν.

This process can be viewed as a continuous time Markov process on the state
space

X = {i = (i1, i2) | i1, i2 ∈ ZZ+}
where i1 stands for the number of jobs in the queue and i2 for the remaining number
of phases of service the job currently in service is to receive.

We consider an approximating discrete time Markov chain, which has the follow-
ing transition probabilities for h < (λ+ ν)−1 and e1 = (1, 0), e2 = (0, 1):

P (0, 0 + e2) = λplh,
P (i, i+ e1) = λh, i1, i2 > 0
P (i, i− e2) = νh, i1 > 0, i2 > 1

P (i, i− e1 + le2) = νplh, i1 > 0, i2 = 1
P (i, i) = 1−∑

j �=i P (i, j).

(16.36)

We call this the h-approximation to the M/PH/1 queue.
Although we do not evaluate a drif criterion explicitly for this chain, we will use

a coupling argument to show for V0(i) = Ei[σ0] that when i 
= 0
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V0(i+ e2)− V0(i) = c, (16.37)

V0(i+ e1)− V0(i) = c′ := c
∞∑
l=1

lpl (16.38)

for some constant c > 0, so that V0(i) = c′i1 + ci2 is thus linear in both components
of the state variable for i 
= 0.

Theorem 16.4.3 The h-approximation of the M/PH/1 queue as in (16.36) is geo-
metrically ergodic whenever it is ergodic, provided the phase-distribution of the service
times is in G+(γ) for some γ > 0.

In particular if there are a finite number of phases ergodicity is equivalent to
geometric ergodicity for the h-approximation.

Proof To develop the coupling argument, we first generate sample paths of Φ
drawing from two i.i.d. sequences U1 = {U1

n}n, U2 = {U2
n}n of random variables

having a uniform distribution on (0, 1]. The first sequence generates arrivals and
phase-completions, the second generates the number of phases of service that will
be given to a customer starting service. The procedure is as follows. If U1

n ∈ (0, λh]
an arrival is generated in (nh, (n + 1)h]; if U1

n ∈ (λh, λh + νh] a phase completion
is generated, and otherwise nothing happens. Similarly, if U2

n ∈ (
∑k−1

l=0 pl,
∑k

l=0 pl] k
phases will be given to the nth job starting service. This stochastic process has the
same probabilistic behavior as Φ.

To prove (16.37) we compare two sample paths, say φk = {φk
n}n, k = 1, 2, with

φ1
1 = i and φ2

1 = i+e2, generated by one realization of U1 and U2. Clearly φ2
n = φ1

n+e2,
until the first moment that φ1 hits 0, say at time n∗. But then φ2

n∗ = (0, 1). This
holds for all realizations φ1 and φ2 and we conclude that V0(i + e2) = Ei+e2 [σ0] =
Ei[σ0] + Ee2 [σ0] = V0(i) + c, for c = Ee2 [σ0].

If φ2 starts in i + e1 then φ2
n∗ = (0, l) with probability pl, so that V0(i + e2) =

V0(i) +
∑

l plEle2 [σ0] = V0(i) + c
∑

l pll.
Hence, (16.38) and (16.37) hold, and the combination of (16.38) and (16.37)

proves (16.26) if we assume that the service time distribution is in G+(γ) for some
γ > 0, again giving sufficiency of this condition for geometric ergodicity. �

16.5 Autoregressive and state space models

As we saw briefly in Section 15.5.2, models with some autoregressive character may
be geometrically ergodic without the need to assume that the innovation distribution
is in G+(γ). We saw this occur for simple linear models, and for scalar bilinear models.

We now consider rather more complex versions of such models and see that the
phenomenon persists, even with increasing complexity of space and structure, if there
is a multiplicative constant essentially driving the movement of the chain.

16.5.1 Multidimensional RCA models

The model we consider next is a multidimensional version of the RCA model. The
process of n-vector observations Φ is generated by the Markovian system

Φk+1 = (A+ Γk+1)Φk +Wk+1 (16.39)
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where A is an n×n non-random matrix, Γ is a sequence of random (n×n) matrices,
and W is a sequence of random p-vectors.

Such models are developed in detail in [198], and we will assume familiarity
with the Kronecker product “⊗” and the “vec” operations, used in detail there. In
particular we use the basic identities

vec (ABC) = (C� ⊗A)vec (B)
(A⊗B)� = (A� ⊗B�).

(16.40)

To obtain a Markov chain and then establish ergodicity we assume:

Random Coefficient Autoregression

(RCA1) The sequences Γ and W are i.i.d. and also independent
of each other.

(RCA2) The following expectations exist, and have the pre-
scribed values:

E[Wk] = 0 E[WkW
�
k ] = G (n× n),

E[Γk] = 0 (n× n) E[Γk ⊗ Γk] = C (n2 × n2),

and the eigenvalues of A⊗A+C have moduli less than unity.

(RCA3) The distribution of
(Γk
Wk

)
has an everywhere positive den-

sity with respect to µLeb on IRn2+p.

Theorem 16.5.1 If the assumptions (RCA1)-(RCA3) hold for the Markov chain
defined in (16.39), then Φ is V -uniformly ergodic, where V (x) = |x|2. Thus these
assumptions suffice for a second-order stationary version of Φ to exist.

Proof Under the assumptions of the theorem the chain is weak Feller and we can
take ψ as µLeb on IRn. Hence from Theorem 6.2.9 the chain is an irreducible T-chain,
and compact subsets of the state space are petite. Aperiodicity is immediate from
the density assumption (RCA3). We could also apply the techniques of Chapter 7 to
conclude that Φ is a T-chain, and this would allow us to weaken (RCA3).

To prove |x|2-uniform ergodicity we will use the following two results, which are
proved in [198]. Suppose that (RCA1) and (RCA2) hold, and let N be any n × n
positive definite matrix.

(i) If M is defined by

vec (M) = (I −A� ⊗A� − C)−1vec (N) (16.41)
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then M is also positive definite.

(ii) For any x,

E[Φ�
k (A+ Γk+1)�M(A+ Γk+1)Φk | Φk = x] = x�Mx− x�Nx. (16.42)

Now let N be any positive definite (n× n)-matrix and define M as in (16.41). Then
with V (x) := x�Mx,

E[V (Φk+1) | Φk = x] = E[Φ�
k (A+ Γk+1)�M(A+ Γk+1)Φk | Φk = x]

+E[W�
k+1MWk+1]

(16.43)

on applying (RCA1) and (RCA2).
From (16.42) we also deduce that

PV (x) = V (x)− x�Nx+ tr (V G) < λV (x) + L (16.44)

for some λ < 1 and L <∞, from which we see that (V4) follows, using Lemma 15.2.8.
Finally, note that for some constant c we must have c−1|x|2 ≤ V (x) ≤ c|x|2 and

the result is proved. �

16.5.2 Adaptive control models

In this section we return to the simple adaptive control model defined by (SAC1)–
(SAC2) whose associated Markovian state process Φ is defined by (2.24).

We showed in Proposition 12.5.2 that the distributions of the state process Φ for
this adaptive control model are tight whenever stability in the mean square sense is
possible, for a certain class of initial distributions. Here we refine the stability proof
to obtain V -uniform ergodicity for the model.

Once these stability results are obtained we can further analyze the system equa-
tions and find that we can bound the steady state variance of the output process by
the mean square tracking error Eπ[|θ̃0|2] and the disturbance intensity σ2

w.
Let y: X → IR, θ̃: X → IR, Σ: X → IR denote the coordinate variables on X so that

Yk = y(Φk) θ̃k = θ̃(Φk) Σk = Σ(Φk) k ∈ ZZ+,

and define the norm-like function V on X by

V (y, θ̃, Σ) = θ̃4 + ε0θ̃
2y2 + ε20y

2 (16.45)

where ε0 > 0 is a small constant which will be specified below.
Letting P denote the Markov transition function for Φ we have by (2.22),

Py2 = θ̃2y2 + σ2
w. (16.46)

This is far from (V4), but applying the operator P to the function θ̃2y2 gives

P θ̃2y2 = E
[(ασ2

0 θ̃ − αΣyW1

σ2
0 +Σy2

+ Z1

)2
(θ̃y +W1)

2
]

= σ2
z θ̃

2y2 + σ2
zσ

2
w

+
( α

σ2
0 +Σy2

)2
E[(σ2

0 θ̃ −ΣyW1)2(θ̃y +W1)2]
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and hence we may find a constant K1 <∞ such that

P θ̃2y2 ≤ σ2
z θ̃

2y2 +K1(θ̃4 + θ̃2 + 1). (16.47)

From (2.21) it is easy to show that for some constant K2 > 0

P θ̃4 ≤ α4θ̃4 +K2(θ̃2 + 1). (16.48)

When σ2
z < 1 we combine equations (16.46-16.48) to find, for any 1 > ρ >

max(σ2
z , α

4), constants R < ∞ and ε0 > 0 such that with V defined in (16.45),
PV ≤ ρV +R. Applying Theorem 16.1.2 and Lemma 15.2.8 we have proved

Proposition 16.5.2 The Markov chain Φ is V -uniformly ergodic whenever σ2
z < 1,

with V given by (16.45); and for all initial conditions x ∈ X, as k →∞,

Ex[Y 2
k ]→

∫
y2 dπ (16.49)

at a geometric rate. �

Hence the performance of the closed loop system is characterized by the unique
invariant probability π.

From ergodicity of the model it can be shown that in steady state θ̃k = θk−E[θk |
Y0, . . . , Yk], and Σk = E[θ̃2

k | Y0, . . . , Yk]. Using these identities we now obtain bounds
on performance of the closed loop system by integrating the system equations with
respect to the invariant measure.

Taking expectations in (2.22) and (2.23) under the probability Pπ gives

Eπ[Y 2
0 ] = Eπ[Σ0Y

2
0 ] + σ2

w

σ2
zEπ[Y 2

0 ] = Eπ[Σ0Y
2
0 ]− α2σ2

wEπ[Σ0].

Hence, by subtraction, and using the identity Eπ[|θ̃0|2] = Eπ[Σ0], we can evaluate the
limit (16.49) as

Eπ[Y 2
0 ] =

σ2
w

1− σ2
z

(1 + α2Eπ[|θ̃0|2]) (16.50)

This shows precisely how the steady state performance is related to the disturbance
intensity σ2

w, the parameter variation intensity σ2
z , and the mean square parameter

estimation error Eπ[|θ̃0|2].
Using obvious bounds on Eπ[Σ0] we obtain the following bounds on the steady

state performance in terms of the system parameters only:

σ2
w

1− σ2
z

(1 + α2σ2
z) ≤ Eπ[Y 2

0 ] ≤ σ2
w

1− σ2
z

(1 +
α2σ2

z

1− α2
).

If it were possible to directly observe θk−1 at time k then the optimal performance
would be

Eπ[Y 2
0 ] =

σ2
w

1− σ2
z

.

This shows that the lower bound in the previous chain of inequalities is non-trivial.
The performance of the closed loop system is illustrated in Chapter 2.
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Figure16.1. The output of the simple adaptive control model when the control Uk is set
equal to zero. The resulting process is equivalent to the dependent parameter bilinear model
with α = 0.99, Wk ∼ N(0, 0.01) and Zk ∼ N(0, 0.04)

A sample path of the output Y of the controlled system is given in Figure 2.8,
which is comparable to the noise sample path illustrated in Figure 2.7. To see how
this compares to the control-free system, a simulation of the simple adaptive control
model with the control value Uk set equal to zero for all k is given in Figure 16.1. The
resulting process

(θ
Y

)
becomes a version of the dependent parameter bilinear model.

Even though we will see in Chapter 17 that this process is bounded in probability,
the sample paths fluctuate wildly, with the output process Y quickly exceeding 10100

in this simulation.

16.6 Commentary

This chapter brings together some of the oldest and some of the newest ergodic
theorems for Markov chains.

Initial results on uniform ergodicity for countable chains under, essentially, Doe-
blin’s Condition date to Markov [162]: transition matrices with a column bounded
from zero are often called Markov matrices. For general state space chains use of
the condition of Doeblin is in [65]. These ideas are strengthened in Doob [68], whose
introduction and elucidation of Doeblin’s condition as Hypothesis D (p. 192 of [68])
still guides the analysis of many models and many applications, especially on compact
spaces.

Other areas of study of uniformly ergodic (sometimes called strongly ergodic,
or quasi-compact) chains have a long history, much of it initiated by Yosida and
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Kakutani [286] who considered the equivalence of (iii) and (v) in Theorem 16.0.2,
as did Doob [68]. Somewhat surprisingly, even for countable spaces the hitting time
criterion of Theorem 16.2.2 for uniformly ergodic chains appears to be as recent as the
work of Huang and Isaacson [100], with general-space extensions in Bonsdorff [26];
the obvious value of a bounded drift function is developed in Isaacson and Tweedie
[104] in the countable space case. Nummelin ([202], Chapters 5.6 and 6.6) gives a
discussion of much of this material.

There is a large subsequent body of theory for quasi-compact chains, exploiting
operator-theoretic approaches. Revuz ([223], Chapter 6) has a thorough discussion of
uniformly ergodic chains and associated quasi-compact operators when the chain is
not irreducible. He shows that in this case there is essentially a finite decomposition
into recurrent parts of the space: this is beyond the scope of our work here.

We noted in Theorem 16.2.5 that uniform ergodicity results take on a particularly
elegant form when we are dealing with irreducible T-chains: this is first derived in
a different way in [269]. It is worth noting that for reducible T-chains there is an
appealing structure related to the quasi-compactness above. It is shown by Tuominen
and Tweedie [269] that, even for chains which are not necessarily irreducible, if the
space is compact then for any T-chain there is also a finite decomposition

X =
n⋃

k=0

Hk ∪ E

where the Hi are disjoint absorbing sets and Φ restricted to any Hk is uniformly
ergodic, and E is uniformly transient.

The introduction to uniform ergodicity that we give here appears brief given the
history of such theory, but this is a largely a consequence of the fact that we have
built up, for ψ-irreducible chains, a substantial set of tools which makes the approach
to this class of chains relatively simple.

Much of this simplicity lies in the ability to exploit the norm ||| · |||V . This is a very
new approach. Although Kartashov [124, 125] has some initial steps in developing a
theory of general space chains using the norm ||| · |||V , he does not link his results to
the use of drift conditions, and the appearance of V -uniform results are due largely
to recent observations of Hordijk and Spieksma [252, 99] in the countable space case.

Their methods are substantially different from the general state space version
we use, which builds on Chapter 15: the general space version was first developed in
[178] for strongly aperiodic chains. This approach shows that for V -uniformly ergodic
chains, it is in fact possible to apply the same quasi-compact operator theory that
has been exploited for uniformly ergodic chains, at least within the context of the
space L∞

V . This is far from obvious: it is interesting to note Kendall himself ([131], p
183) saying that “ ... the theory of quasi-compact operators is completely useless” in
dealing with geometric ergodicity, whilst Vere-Jones [284] found substantial difficulty
in relating standard operator theory to geometric ergodicity. This appears to be an
area where reasonable further advances may be expected in the theory of Markov
chains.

It is shown in Athreya and Pantula [14] that an ergodic chain is always strong
mixing. The extension given in Section 16.1.2 for V -uniformly ergodic chains was
proved for bounded functions in [64], and the version given in Theorem 16.1.5 is
essentially taken from Meyn and Tweedie [178].
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Verifying the V -uniform ergodicity properties is usually done through test func-
tions and drift conditions, as we have seen. Uniform ergodicity is generally either a
trivial or a more difficult property to verify in applications. Typically one must either
take the state space of the chain to be compact (or essentially compact), or be able
to apply the Doeblin or small set conditions, in order to gain uniform ergodicity. The
identification of the rate of convergence in this last case is a powerful incentive to use
such an approach. The delightful proof in Theorem 16.2.4 is due to Rosenthal [231],
following the strong stopping time results of Aldous and Diaconis [2, 62], although
the result itself is inherent in Theorem 6.15 of Nummelin [202]. An application of this
result to Markov chain Monte Carlo methods is given by Tierney [264].

However, as we have shown, V -uniform ergodicity can often be obtained for some
V under much more readily obtainable conditions, such as a geometric tail for any
i.i.d. random variables generating the process. This is true for queues, general storage
models, and other random-walk related models, as the application of the increment
analysis of Section 16.3 shows. Such chains were investigated in detail by Vere-Jones
[281] and Miller [185].

The results given in Section 16.3 and Section 16.3.2 are new in the case of general
X, but are based on a similar approach for countable spaces in Spieksma and Tweedie
[253], which also contains a partial converse to Theorem 16.3.2. There are some pre-
cursors to these conditions: one obvious way of ensuring that P has the characteristics
in (16.26) and (16.27) is to require that the increments from any state are of bounded
range, with the range allowed depending on V , so that for some b

|V (j)− V (k)| ≥ b⇒ P (k, j) = 0 : (16.51)

and in [160] it is shown that under the bounded range condition (16.51) an ergodic
chain is geometrically ergodic.

A detailed description of the polling system we consider here can be found in [3].
Note that in [3] the system is modeled slightly differently, with arrivals of the server
at each gate defining the times of the embedded process. The coupling construction
used to analyze the h-approximation to the phase-service model is based on [236] and
clearly is ideal for our type of argument. Further examples are given in [253].

For the adaptive control and linear models, as we have stressed, V -uniform ergod-
icity is often actually equivalent to simple ergodicity: the examples in this chapter are
chosen to illustrate this. The analysis of the bilinear and the vector RCA model given
here is taken from Feigin and Tweedie [74]; the former had been previously analyzed
by Tong [266]. In a more traditional approach to RCA models through time series
methods, Nicholls and Quinn [198] also find (RCA2) appropriate when establishing
conditions for strict stationarity of Φ, and also when treating asymptotic results of
estimators.

The adaptive model was introduced in [165] and a stability analysis appeared in
[172] where the performance bound (16.50) was obtained. Related results appeared in
[251, 91, 171, 83]. The stability of the multidimensional adaptive control model was
only recently resolved in Rayadurgam et al [221].
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Sample Paths and Limit Theorems

Most of this chapter is devoted to the analysis of the series Sn(g), where we define
for any function g on X,

Sn(g) :=
n∑

k=1

g(Φk) (17.1)

We are concerned primarily with four types of limit theorems for positive recurrent
chains possessing an invariant probability π:

(i) those which are based upon the existence of martingales associated with the chain;

(ii) the Strong Law of Large Numbers (LLN), which states that n−1Sn(g) converges
to π(g) = Eπ[g(Φ0)], the steady state expectation of g(Φ0);

(iii) the Central Limit Theorem (CLT), which states that the sum Sn(g − π(g)),
when properly normalized, is asymptotically normally distributed;

(iv) the Law of the Iterated Logarithm (LIL) which gives precise upper and lower
bounds on the limit supremum of the sequence Sn(g−π(g)), again when properly
normalized.

The martingale results (i) provide insight into the structure of irreducible chains, and
make the proofs of more elementary ergodic theorems such as the LLN almost trivial.
Martingale methods will also prove to be very powerful when we come to the CLT
for appropriately stable chains.

The trilogy of the LLN, CLT and LIL provide measures of centrality and vari-
ability for Φn as n becomes large: these complement and strengthen the distributional
limit theorems of previous chapters. The magnitude of variability is measured by the
variance given in the CLT, and one of the major contributions of this chapter is to
identify the way in which this variance is defined through the autocovariance sequence
for the stationary version of the process {g(Φk)}.

The three key limit theorems which we develop in this chapter using sample path
properties for chains which possess a unique invariant probability π are

LLN We say that the Law of Large Numbers holds for a function g if

lim
n→∞

1
n
Sn(g) = π(g) a.s. [P∗]. (17.2)
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CLT We say that the Central Limit Theorem holds for g if there exists a constant
0 < γ2

g <∞ such that for each initial condition x ∈ X,

lim
n→∞Px

{
(nγ2

g )−1/2Sn(g) ≤ t
}

=
∫ t

−∞
1√
2π

e−x2/2 dx

where g = g − π(g): that is, as n→∞,

(nγ2
g )−1/2Sn(g) d−→ N(0, 1).

LIL When the CLT holds, we say that the Law of the Iterated Logarithm holds for
g if the limit infimum and limit supremum of the sequence

(2γ2
gn log log(n))−1/2Sn(g)

are respectively −1 and +1 with probability one for each initial condition x ∈ X.

Strictly speaking, of course, the CLT is not a sample path limit theorem, although
it does describe the behavior of the sample path averages and these three “classical”
limit theorems obviously belong together.

Proofs of all of these results will be based upon martingale techniques involving
the path behavior of the chain, and detailed sample path analysis of the process
between visits to a recurrent atom.

Much of this chapter is devoted to proving that these limits hold under vari-
ous conditions. The following set of limit theorems summarizes a large part of this
development.

Theorem 17.0.1 Suppose that Φ is a positive Harris chain with invariant probability
π.

(i) The LLN holds for any g satisfying π(|g|) <∞.

(ii) Suppose that Φ is V -uniformly ergodic. Let g be a function on X satisfying g2 ≤
V , and let g denote the centered function g = g −

∫
g dπ. Then the constant

γ2
g := Eπ[g2(Φ0)] + 2

∞∑
k=1

Eπ[g(Φ0)g(Φk)] (17.3)

is well defined, non-negative and finite, and

lim
n→∞

1
n

Eπ

[(
Sn(g)

)2]
= γ2

g . (17.4)

(iii) If the conditions of (ii) hold and if γ2
g = 0 then

lim
n→∞

1√
n
Sn(g) = 0 a.s. [P∗].

(iv) If the conditions of (ii) hold and if γ2
g > 0 then the CLT and LIL hold for the

function g.
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Proof The LLN is proved in Theorem 17.1.7, and the CLT and LIL are proved
in Theorem 17.3.6 under conditions somewhat weaker than those assumed here.

It is shown in Lemma 17.5.2 and Theorem 17.5.3 that the asymptotic variance
γ2

g is given by (17.3) under the conditions of Theorem 17.0.1, and the alternate rep-
resentation (17.4) of γ2

g is given in Theorem 17.5.3. The a.s. convergence in (iii) when
γ2

g = 0 is proved in Theorem 17.5.4. �
While Theorem 17.0.1 summarizes the main results, the reader will find that

there is much more to be found in this chapter. We also provide here techniques for
proving the LLN and CLT in contexts far more general than given in Theorem 17.0.1.
In particular, these techniques lead to a functional CLT for f -regular chains in Sec-
tion 17.4.

We begin with a discussion of invariant σ-fields, which form the basis of classical
ergodic theory.

17.1 Invariant σ-Fields and the LLN

Here we introduce the concepts of invariant random variables and σ-fields, and show
how these concepts are related to Harris recurrence on the one hand, and the LLN
on the other.

17.1.1 Invariant random variables and events

For a fixed initial distribution µ, a random variable Y on the sample space (Ω,F)
will be called Pµ-invariant if θkY = Y a.s. [Pµ] for each k ∈ ZZ+, where θ is the shift
operator. Hence Y is Pµ-invariant if there exists a function f on the sample space
such that

Y = f(Φk, Φk+1, . . .) a.s. [Pµ], k ∈ ZZ+. (17.5)

When Y = 1lA for some A ∈ F then the set A is called a Pµ-invariant event. The set
of all Pµ-invariant events is a σ-field, which we denote Σµ.

Suppose that an invariant probability measure π exists, and for now restrict at-
tention to the special case where µ = π. In this case, Σπ is equal to the family of
invariant events which is commonly used in ergodic theory (see for example Kren-
gel [141]), and is often denoted ΣI .

For a bounded, Pπ-invariant random variable Y we let hY denote the function

hY (x) := Ex[Y ], x ∈ X. (17.6)

By the Markov property and invariance of the random variable Y ,

hY (Φk) = E[θkY | FΦ
k ] = E[Y | FΦ

k ] a.s. [Pπ] (17.7)

This will be used to prove:

Lemma 17.1.1 If π is an invariant probability measure and Y is a Pπ-invariant
random variable satisfying Eπ[|Y |] <∞, then

Y = hY (Φ0) a.s. [Pπ].
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Proof It follows from (17.7) that the adapted process (hY (Φk),FΦ
k ) is a convergent

martingale for which
lim

k→∞
hY (Φk) = Y a.s. [Pπ].

When Φ0 ∼ π the process hY (Φk) is also stationary, since Φ is stationary, and hence
the limit above shows that its sample paths are almost surely constant. That is,
Y = hY (Φk) = hY (Φ0) a.s. [Pπ] for all k ∈ ZZ+. �

It follows from Lemma 17.1.1 that if X ∈ L1(Ω,F ,Pπ) then the Pπ-invariant
random variable E[X | Σπ] is a function of Φ0 alone, which we shall denote X∞(Φ0),
or just X∞.

The function X∞ is significant because it describes the limit of the sample path
averages of {θkX}, as we show in the next result.

Theorem 17.1.2 If Φ is a Markov chain with invariant probability measure π, and
X ∈ L1(Ω,F ,Pπ), then there exists a set FX ∈ B(X) of full π-measure such that for
each initial condition x ∈ FX ,

lim
N→∞

1
N

N∑
k=1

θkX = X∞(x) a.s. [Px].

Proof Since Φ is a stationary stochastic process when Φ0 ∼ π, the process {θkX :
k ∈ ZZ+} is also stationary, and hence the Strong Law of Large Numbers for stationary
sequences [68] can be applied:

lim
N→∞

1
N

N∑
k=1

θkX = E[X | Σπ] = X∞(Φ0) a.s. [Pπ]

Hence, using the definition of Pπ, we may calculate∫
Px

{
lim

N→∞
1
N

N∑
k=1

θkX = X∞(x)
}
π(dx) = 1.

Since the integrand is always positive and less than or equal to one, this proves the
result. �

This is an extremely powerful result, as it only requires the existence of an invari-
ant probability without any further regularity or even irreducibility assumptions on
the chain. As a product of its generality, it has a number of drawbacks. In particular,
the set FX may be very small, may be difficult to identify, and will typically depend
upon the particular random variable X.

We now turn to a more restrictive notion of invariance which allows us to deal
more easily with null sets such as F c

X . In particular we will see that the difficulties
associated with the general nature of Theorem 17.1.2 are resolved for Harris processes.

17.1.2 Harmonic functions

To obtain ergodic theorems for arbitrary initial conditions, it is helpful to restrict
somewhat our definition of invariance.

The concepts introduced in this section will necessitate some care in our definition
of a random variable. In this section, a random variable Y must “live on” several
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different probability spaces at the same time. For this reason we will now stress that
Y has the form Y = f(Φ0, . . . , Φk, . . .) where f is a function which is measurable with
respect to B(Xz ) = F . We call a random variable Y of this form invariant if it is
Pµ-invariant for every initial distribution µ. The class of invariant events is defined
analogously, and is a σ-field which we denote Σ.

Two examples of invariant random variables in this sense are

Q̃{A} = lim sup
k→∞

1l{Φk ∈ A} π̃{A} = lim sup
N→∞

1
N

N∑
k=1

1l{Φk ∈ A}

with A ∈ B(X).
A function h: X → IR is called harmonic if, for all x ∈ X,∫

P (x, dy)h(y) = h(x). (17.8)

This is equivalent to the adapted sequence (h(Φk),FΦ
k ) possessing the martingale

property for each initial condition: that is,

E[h(Φk+1) | FΦ
k ] = h(Φk) k ∈ ZZ+ a.s. [P∗].

For any measurable set A the function h
Q̃{A}(x) = Q(x,A) is a measurable function of

x ∈ X which is easily shown to be harmonic. This correspondence is just one instance
of the following general result which shows that harmonic functions and invariant
random variables are in one to one correspondence in a well defined way.

Theorem 17.1.3 (i) If Y is bounded and invariant then the function hY is har-
monic, and

Y = lim
k→∞

hY (Φk) a.s. [P∗];

(ii) If h is bounded and harmonic then the random variable

H := lim sup
k→∞

h(Φk)

is invariant, with hH(x) = h(x).

Proof For (i), first observe that by the Markov property and invariance we may
deduce as in the proof of Lemma 17.1.1 that

hY (Φk) = E[Y | FΦ
k ] a.s. [P∗].

Since Y is bounded, this shows that (hY (Φk),FΦ
k ) is a martingale which converges to

Y . To see that hY is harmonic, we use invariance of Y to calculate

PhY (x) = Ex[hY (Φ1)] = Ex[E[Y | FΦ
1 ]] = hY (x).

To prove (ii), recall that the adapted process (h(Φk),FΦ
k ) is a martingale if h is

harmonic, and since h is assumed bounded, it is convergent. The conclusions of (ii)
follow. �

Theorem 17.1.3 shows that there is a one to one correspondence between invari-
ant random variables and harmonic functions. From this observation we have as an
immediate consequence
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Proposition 17.1.4 The following two conditions are equivalent:

(i) All bounded harmonic functions are constant;

(ii) Σµ and hence Σ is Pµ-trivial for each initial distribution µ.

Finally, we show that when Φ is Harris recurrent, all bounded harmonic functions
are trivial.

Theorem 17.1.5 If Φ is Harris recurrent then the constants are the only bounded
harmonic functions.

Proof We suppose that Φ is Harris, let h be a bounded harmonic function, and
fix a real constant a. If the set {x : h(x) ≥ a} lies in B+(X) then we will show that
h(x) ≥ a for all x ∈ X. Similarly, if {x : h(x) ≤ a} lies in B+(X) then we will show
that h(x) ≤ a for all x ∈ X. These two bounds easily imply that h is constant, which
is the desired conclusion.

If {x : h(x) ≥ a} ∈ B+(X) then Φ enters this set i.o. from each initial condition,
and consequently

lim sup
k→∞

h(Φk) ≥ a a.s. [P∗].

Applying Theorem 17.1.3 we see that h(x) = Ex[H] ≥ a for all x ∈ X. Identical
reasoning shows that h(x) ≤ a for all x when {x : h(x) ≤ a} ∈ B+(X), and this
completes the proof. �

It is of considerable interest to note that in quite another way we have already
proved this result: it is indeed a rephrasing of our criterion for transience in Theo-
rem 8.4.2.

In the proof of Theorem 17.1.5 we are not in fact using the full power of the Mar-
tingale Convergence Theorem, and consequently the proposition can be extended to
include larger classes of functions, extending those which are bounded and harmonic,
if this is required.

As an easy consequence we have

Proposition 17.1.6 Suppose that Φ is positive Harris and that any of the LLN, the
CLT, or the LIL hold for some g and some one initial distribution. Then this same
limit holds for every initial distribution.

Proof We will give the proof for the LLN, since the proof of the result for the
CLT and LIL is identical.

Suppose that the LLN holds for the initial distribution µ0, and let g∞(x) =
Px{ 1

nSn(g) →
∫
g dπ}. We have by assumption that∫

g∞ dµ0 = 1.

We will now show that g∞ is harmonic, which together with Theorem 17.1.5 will imply
that g∞ is equal to the constant value 1, and thereby complete the proof. We have
by the Markov property and the smoothing property of the conditional expectation,
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Pg∞ (x) = Ex

[
PΦ1

{
lim

n→∞
1
n

n∑
k=1

g(Φk) =
∫
g dπ

}]
= Ex

[
Px

{
lim

n→∞
1
n

n∑
k=1

g(Φk+1) =
∫
g dπ | FΦ

1

}]

= Px

{
lim

n→∞
[(n+ 1

n

) 1
n+ 1

n+1∑
k=1

g(Φk+1)−
g(Φ1)
n

]
=
∫
g dπ

}
= g∞(x).

�
From these results we may now provide a simple proof of the LLN for Harris

chains.

17.1.3 The LLN for positive Harris chains

We present here the LLN for positive Harris chains. In subsequent sections we will
prove more general results which are based upon the existence of an atom for the
process, or an atom α̌ for the split version of a general Harris chain.

In the next result we see that when Φ is positive Harris, the null set F c
X defined

in Theorem 17.1.2 is empty:

Theorem 17.1.7 The following are equivalent when an invariant probability π exists
for Φ:

(i) Φ is positive Harris.

(ii) For each f ∈ L1(X,B(X), π),

lim
n→∞

1
n
Sn(f) =

∫
f dπ a.s. [P∗]

(iii) The invariant σ-field Σ is Px-trivial for all x.

Proof (i) ⇒ (ii) If Φ is positive Harris with unique invariant probability π then
by Theorem 17.1.2, for each fixed f , there exists a set G ∈ B(X) of full π-measure
such that the conclusions of (ii) hold whenever the distribution of Φ0 is supported on
G. By Proposition 17.1.6 the LLN holds for every initial condition.
(ii) ⇒ (iii) Let Y be a bounded invariant random variable, and let hY be the
associated bounded harmonic function defined in (17.6). By the hypotheses of (ii)
and Theorem 17.1.3 we have

Y = lim
k→∞

hY (Φk) = lim
N→∞

1
N

N∑
k=1

hY (Φk) =
∫
hY dπ a.s. [P∗],

which shows that every set in Σ has Px-measure zero or one.
(iii) ⇒ (i) If (iii) holds, then for any measurable set A the function Q( · , A) is
constant. It follows from Theorem 9.1.3 (ii) that Q( · , A) ≡ 0 or Q( · , A) ≡ 1. When
π{A} > 0, Theorem 17.1.2 rules out the case Q( · , A) ≡ 0, which establishes Harris
recurrence. �
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17.2 Ergodic Theorems for Chains Possessing an Atom

In this section we consider chains which possess a Harris recurrent atom α. Under
this assumption we can state a self contained and more transparent proof of the Law
of Large Numbers and related ergodic theorems, and the methods extend to general
ψ-irreducible chains without much difficulty.

The main step in the proofs of the ergodic theorems considered here is to divide
the sample paths of the process into i.i.d. blocks corresponding to pieces of a sam-
ple path between consecutive visits to the atom α. This makes it possible to infer
most ergodic theorems of interest for the Markov chain from relatively simple ergodic
theorems for i.i.d. random variables.

Let σα(0) = σα, and let {σα(j) : j ≥ 1} denote the times of consecutive visits to
α so that

σα(k + 1) = θσα(k)τα + σα(k), k ≥ 0.

For a function f : X → IR we let sj(f) denote the sum of f(Φi) over the jth piece of
the sample path of Φ between consecutive visits to α:

sj(f) =
σα(j+1)∑

i=σα(j)+1

f(Φi) (17.9)

By the strong Markov property the random variables {sj(f) : j ≥ 0} are i.i.d. with
common mean

Eα[s1(f)] = Eα

[ τα∑
i=1

f(Φi)
]

=
∫
f dµ (17.10)

where the definition of µ is self evident. The measure µ on B(X) is invariant by
Theorem 10.0.1.

By writing the sum of {f(Φi)} as a sum of {si(f)} we may prove the LLN, CLT
and LIL for Φ by citing the corresponding ergodic theorem for the i.i.d. sequence
{si(f)}. We illustrate this technique first with the LLN.

17.2.1 Ratio form of the law of large numbers

We first present a version of Theorem 17.1.7 for arbitrary recurrent chains.

Theorem 17.2.1 Suppose that Φ is Harris recurrent with invariant measure π, and
suppose that there exists an atom α ∈ B+(X). Then for any f , g ∈ L1(X,B(X), π)
with

∫
g dπ 
= 0,

lim
n→∞

Sn(f)
Sn(g)

=
π(f)
π(g)

a.s. [P∗]

Proof For the proof we assume that each of the functions f and g are positive.
The general case follows by decomposing f and g into their positive and negative
parts.

We also assume that π is equal to the measure µ defined implicitly in (17.10).
This is without loss of generality as any invariant measure is a constant multiple of
µ by Theorem 10.0.1.

For n ≥ σα we define
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�n := max(k : σα(k) ≤ n) = −1 +
n∑

k=0

1l{Φk ∈ α} (17.11)

so that from (17.9) we obtain the pair of bounds

�n−1∑
j=0

sj(f) ≤
n∑

i=1

f(Φi) ≤
�n∑

j=0

sj(f) +
τα∑
i=1

f(Φi) (17.12)

Since the same relation holds with f replaced by g we have

∑n
i=1 f(Φi)∑n
i=1 g(Φi)

≤ �n
�n − 1

[
1
�n

(∑�n
j=1 sj(f) +

∑τα
i=1 f(Φi)

)]
[

1
�n−1

∑�n−1
j=0 sj(g)

]
Because {sj(f) : j ≥ 1} is i.i.d. and �n →∞,

1
�n

�n∑
j=0

sj(f) → E[s1(f)] =
∫
f dµ

and similarly for g. This yields

lim sup
n→∞

∑n
i=1 f(Φi)∑n
i=1 g(Φi)

≤
∫
f dµ∫
g dµ

and by interchanging the roles of f and g we obtain

lim inf
n→∞

∑n
i=1 f(Φi)∑n
i=1 g(Φi)

≥
∫
f dµ∫
g dµ

which completes the proof. �

17.2.2 The CLT and the LIL for chains possessing an atom

Here we show how the CLT and LIL may be proved under the assumption that an
atom α ∈ B+(X) exists.

The Central Limit Theorem (CLT) states that the normalized sum

(nγ2
g )−1/2Sn(g)

converges in distribution to a standard Gaussian random variable, while the Law of
the Iterated Logarithm (LIL) provides sharp bounds on the sequence

(2γ2
gn log log(n))−1/2Sn(g)

where g is the centered function g := g− π(g), π is an invariant probability, and γ2
g is

a normalizing constant.
These results do not hold unless some restrictions are imposed on both the func-

tion and the Markov chain: for counterexamples on countable state spaces, the reader
is referred to Chung [49]. The purpose of this section is to provide general sufficient
conditions for chains which possess an atom.

One might expect that, as in the i.i.d. case, the asymptotic variance γ2
g is equal to

the variance of the random variable g(Φk) under the invariant probability. Somewhat
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surprisingly, therefore, we will see below that this is not the case. When an atom α
exists we will demonstrate that in fact

γ2
g = π{α}Eα

[( τα∑
k=1

g(Φk)
)2]

(17.13)

The actual variance of g(Φk) in the stationary case is given by Theorem 10.0.1 as∫
g2 dπ = π{α}Eα

[ τα∑
k=1

(
g(Φk)

)2]
;

thus when Φ is i.i.d., these expressions do coincide, but differ otherwise.
We will need a moment condition to prove the CLT in the case where there is an

atom.

CLT Moment Condition for α

An atom α ∈ B+(X) exists with

Eα[s0(|g|)2] <∞, and Eα[s0(1)2] <∞. (17.14)

This condition will be generalized to obtain the CLT and LIL for general positive
Harris chains in Sections 17.3-17.5. We state here the results in the special case
where an atom is assumed to exist.

Theorem 17.2.2 Suppose that Φ is Harris recurrent, g: X → IR is a function, and
that (17.14) holds so that Φ is in fact positive Harris. Then γ2

g < ∞, and if γ2
g > 0

then the CLT and LIL hold for g.

Proof The proof is a surprisingly straightforward extension of the second proof
of the LLN. Using the notation introduced in the proof of Theorem 17.2.1 we obtain
the bound

|
n∑

i=1

g(Φi)−
�n−1∑
j=0

sj(g)| ≤ s�n(|g|) (17.15)

By the law of large numbers for the i.i.d. random variables {(sj(|g|))2 : j ≥ 1},

lim
N→∞

1
N

N∑
j=1

(sj(|g|))2 = Eα[(s0(|g|))2] <∞

and hence
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lim
N→∞

1
N

N∑
j=1

(sj(|g|))2 −
1

N − 1

N−1∑
j=1

(sj(|g|))2 = 0.

From these two limits it follows that (sn(|g|))2/n→ 0 as n→∞, and hence that

lim sup
n→∞

s�n(|g|)√
n

≤ lim sup
n→∞

s�n(|g|)√
�n

= 0 a.s. [P∗] (17.16)

This and (17.15) show that

∣∣∣ 1√
n

n∑
i=1

g(Φi)−
1√
n

�n−1∑
j=0

sj(g)
∣∣∣→ 0 a.s. [P∗] (17.17)

We now need a more delicate argument to replace the random upper limit in the sum∑�n−1
j=0 sj(g) appearing in (17.17) with a deterministic upper bound.

First of all, note that

�n∑�n
j=0 sj(1)

≤ �n
n
≤ �n∑�n−1

j=0 sj(1)

Since s0(1) is almost surely finite, s0(1)/�n → 0, and as in (17.16), s�n(1)/�n → 0.
Hence by the LLN for i.i.d. random variables,

lim
n→∞

�n
n

=
(

lim
n→∞

1
�n

�n∑
j=1

sj(1)
)−1

= Eα[s0(1)]−1 = π{α}. (17.18)

Let ε > 0, n = !(1− ε)π{α}n", n = �(1 + ε)π{α}n�, and n∗ = !π{α}n", where !x"
(�x�) denote the smallest integer greater than (greatest integer smaller than) the real
number x. Then by the result above, for some n0

Px{n ≤ �n − 1 ≤ n} ≥ 1− ε, n ≥ n0. (17.19)

Hence for these n we have by Kolmogorov’s Inequality (Theorem D.6.3),

Px

{∣∣∣ 1√
n

�n−1∑
j=0

sj(g)−
1√
n

n∗∑
j=0

sj(g)
∣∣∣ > β

}
≤ ε+ Px

{
max

n≤l≤n∗

∣∣∣ n∗∑
j=l

sj(g)
∣∣∣ > β

√
n
}

+Px

{
max

n∗≤l≤n

∣∣∣ l∑
j=n∗

sj(g)
∣∣∣ > β

√
n
}

≤ ε+
2nεEα[(s0(g))2]

β2n

Since ε > 0 is arbitrary, this shows that

∣∣∣ 1√
n

�n∑
j=0

sj(g)−
1√
n

n∗∑
j=0

sj(g)
∣∣∣→ 0

in probability. This together with (17.17) implies that also

∣∣∣ 1√
n

n∑
i=1

g(Φi)−
1√
n

n∗∑
j=0

sj(g)
∣∣∣→ 0 (17.20)
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in probability. By the CLT for i.i.d. sequences, we may let σ2 = Eα[(s0(g))2] giving

lim
n→∞Px

{
(nγ2

g )−1/2Sn(g) ≤ t
}

= lim
n→∞Px

{
(nγ2

g )−1/2
n∗∑
j=0

sj(g) ≤ t
}

= lim
n→∞Px

{√!nπ{α}"
nπ{α}

1√
n∗σ2

n∗∑
j=0

sj(g) ≤ t
}

=
∫ t

−∞
1√
2π

e−1/2 x2
dx

which proves (i).
To prove (ii), observe that (17.17) implies that, as in the proof of the CLT, the

analysis can be shifted to the sequence of i.i.d. random variables {sj(g) : j ≥ 1}. By
the LIL for this sequence,

lim sup
n→∞

1√
2σ2�n log log(�n)

�n∑
j=1

sj(g) = 1 a.s. [P∗]

and the corresponding lim inf is −1. Equation (17.18) shows that �n/n→ π{α} > 0
and hence by a simple calculation log log �n/ log log n→ 1 as n→∞. These relations
together with (17.17) imply

lim sup
n→∞

1√
2γ2

gn log log(n)

n∑
k=1

g(Φk)

= lim sup
n→∞

1√
π{α}

1√
2σ2n log log(n)

�n∑
k=1

sj(g)

= lim sup
n→∞

1√
π{α}

√
�n log log(�n)
n log log(n)

1√
2σ2�n log log(�n)

�n∑
k=1

sj(g)

= 1

and the corresponding lim inf is equal to −1 by the same chain of equalities. �

17.3 General Harris Chains

We have seen in the previous section that when Φ possesses an atom, the sample
paths of the process may be divided into i.i.d. blocks to obtain for the Markov chain
almost any ergodic theorem that holds for an i.i.d. process.

If Φ is strongly aperiodic, such ergodic theorems may be established by consid-
ering the split chain, which possesses the atom X×{1}. For a general aperiodic chain
such a splitting is not possible in such a “clean” form. However, since an m-step
skeleton chain is always strongly aperiodic we may split this embedded chain as in
Chapter 5 to construct an atom for the split chain. In this section we will show how
we can then embed the split chain onto the same probability space as the entire chain
Φ. This will again allow us to divide the sample paths of the chain into i.i.d. blocks,
and the proofs will be only slightly more complicated than when a genuine atom is
assumed to exist.
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17.3.1 Splitting general Harris chains

When Φ is aperiodic, we have seen in Proposition 5.4.5 that every skeleton is ψ-
irreducible, and that the Minorization Condition holds for some skeleton chain. That
is, we can find a set C ∈ B+(X), a probability ν, δ > 0, and an integer m such that
ν(C) = 1, ν(Cc) = 0 and

Pm(x,B) ≥ δν(B), x ∈ C, B ∈ B(X).

The m-step chain {Φkm : k ∈ ZZ+} is strongly aperiodic and hence may be split to
form a chain which possesses a Harris recurrent atom.

We will now show how the split chain may be put on the same probability space
as the entire chain Φ. It will be helpful to introduce some new notation so that we
can distinguish between the split skeleton chain, and the original process Φ. We will
let {Yn} denote the level of the split m-skeleton at time nm; for each n the random
variable Yn may take on the value zero or one. The split chain Φ̌ will become the
bivariate process {Φ̌n = (Φmn, Yn) : n ∈ ZZ+}, where the equality Φ̌n = xi means that
Φnm = x and Yn = i.

The split chain is constructed by defining the conditional probabilities

P̌{Yn = 1, Φnm+1 ∈ dx1, . . . , Φ(n+1)m−1 ∈ dxm−1, Φ(n+1)m ∈ dy

| Φnm
0 , Y n−1

0 ;Φnm = x}
= P̌{Y0 = 1, Φ1 ∈ dx1, . . . , Φm−1 ∈ dxm−1, Φm ∈ dy | Φ0 = x}
= δr(x, y)P (x, dx1) · · ·P (xm−1, dy) (17.21)

where r ∈ B(X2) is the Radon-Nykodym derivative

r(x, y) = 1l{x ∈ C} ν(dy)
Pm(x, dy)

.

Integrating over x1, . . . xm−1 we see that

P̌{Yn = 1, Φ(n+1)m ∈ dy | Φnm
0 , Y n−1

0 ;Φnm = x}

= δ1l(x ∈ C)
ν(dy)

Pm(x, dy)
Pm(x, dy)

= δ1l(x ∈ C)ν(dy).

From Bayes rule, it follows that

P̌{Yn = 1 | Φnm
0 , Y n−1

0 ;Φnm = x} = δ1l{x ∈ C}
P̌{Φ(n+1)m ∈ dy | Φnm

0 , Y n
0 ;Φnm = x, Yn = 1} = ν(dy)

and hence, given that Yn = 1, the pre-nm process and post-(n + 1)m process are
independent: that is

{Φk, Yi : k ≤ nm, i ≤ n} is independent of {Φk, Yi : k ≥ (n+ 1)m, i ≥ n+ 1}.

Moreover, the distribution of the post (n+ 1)m process is the same as the P̌ν∗ distri-
bution of {(Φi, Yi) : i ≥ 0}, with the interpretation that ν is “split” to form ν∗ as in
(5.3) so that
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P̌ν∗{Y0 = 1, Φ0 ∈ dx} := δ1l(x ∈ C)ν(dx).

For example, for any positive function f on X, we have

Ě[f(Φ(n+1)m+k) | Φmn
0 , Y n

0 ;Yn = 1] = Eν [f(Φk)].

Hence the set α̌ := C1 := C × {1} behaves very much like an atom for the chain.
We let σα̌(0) denote the first entrance time of the split m-step chain to the set α̌,

and σα̌(k) the kth entrance time to α̌ subsequent to σα̌(0). These random variables
are defined inductively as

σα̌(0) = min(k ≥ 0 : Yk = 1)
σα̌(n) = min(k > σα̌(n− 1) : Yk = 1), n ≥ 1.

The hitting times {τα̌(k)} are defined in a similar manner:

τα̌(1) = min(k ≥ 1 : Yk = 1)
τα̌(n) = min(k > τα̌(n− 1) : Yk = 1), n ≥ 1.

For each n define

si(f) =
mσα̌(i+1)+m−1∑
j=m(σα̌(i)+1)

f(Φj)

=
σα̌(i+1)∑

j=σα̌(i)+1

Zj(f)

where

Zj(f) =
m−1∑
k=0

f(Φjm+k).

From the remarks above and the strong Markov property we obtain the following
result:

Theorem 17.3.1 The two collections of random variables

{si(f) : 0 ≤ j ≤ m− 2}, {si(f) : j ≥ m}

are independent for any m ≥ 2. The distribution of si(f) is, for any i, equal to the
P̌̌α-distribution of the random variable

∑τα̌m+m−1
k=m f(Φk), which is equal to the P̌ν∗

distribution of
σα̌m+m−1∑

k=0

f(Φk) =
σα̌∑
k=0

Zk(f). (17.22)

The common mean of {si(f)} may be expressed

Ě[si(f)] = δ−1π(C)−1m

∫
fdπ. (17.23)
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Proof From the definition of {σα̌(k)} we have that the distribution of sn+j(f)
given s0(f), . . . , sn(f) is equal to the distribution of si(f) for all n ∈ ZZ+, j ≥ 1. This
follows from the construction of {σα̌(k)} which makes the distribution of Φσα̌(n+j)m+m

given FΦ
σα̌(n+j)m ∨ FY

σα̌(n+j) equal to ν.
From this we see that {sn(f) : n ≥ 1} is a stationary sequence, and moreover,

that {sj(f)} is a one-dependent process: that is, {s0(f), . . . , sn−1(f)} is independent
of {sn+1(f), . . . , } for all n ≥ 1.

From (17.22) we can express the common mean of {si(f)} in terms of the invariant
mean of f as follows

Ě[si(f)] = Ěα̌
[∑τα̌

k=1 Zk(f)
]

= Ěα̌ [
∑∞

k=1 Zk(f)1l{k ≤ τα̌}]
= Ěα̌

[∑∞
k=1 ĚΦ̌mk

[Z1(f)]1l{k ≤ τα̌}
]

= δ−1π(C)−1
∫
π(dy)Ey[Z1(f)]

= δ−1π(C)−1m
∫
fdπ

where the fourth equality follows from the representation of π given in Theorem 10.0.1
applied to the split m-skeleton chain. �

Define now, for each n ∈ ZZ+, �n := max{i ≥ 0 : mσα̌(i) ≤ n}, and write∑n
k=1 f(Φk) =

∑mσα̌(0)+m−1
k=1 f(Φk)

+
∑�n−1

i=0 si(f)
+
∑n

k=m(σα̌(�n)+1) f(Φk).
(17.24)

All of the ergodic theorems presented in the remainder of this section are based upon
Theorem 17.3.1 and the decomposition (17.24), valid for all n ≥ 1.

We now apply this construction to give an extension of the Law of Large Numbers.

17.3.2 The LLN for general Harris chains

The following general version of the LLN for Harris chains follows easily by considering
the split chain Φ̌.

Theorem 17.3.2 The following are equivalent when a σ-finite invariant measure π
exists for Φ:

(i) for every f , g ∈ L1(π) with
∫
g dπ 
= 0,

lim
n→∞

Sn(f)
Sn(g)

=
π(f)
π(g)

a.s. [P∗];

(ii) The invariant σ-field Σ is Px-trivial for all x;

(iii) Φ is Harris recurrent.

Proof We just prove the equivalence between (i) and (iii). The equivalence of (i)
and (ii) follows from the Chacon-Ornstein Theorem (see Theorem 3.2 of Revuz [223]),
and the same argument that was used in the proof of Theorem 17.1.7.

The “if” part is trivial: If
∫
f dπ > 0 then by the ratio limit result which is

assumed to hold,
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Px{f(Φi) > 0 i.o.} = 1

for all initial conditions, which is seen to be a characterization of Harris recurrence
by taking f to be an indicator function.

To prove that (iii) implies (i) we will make use of the decomposition (17.24)
and essentially the same proof that was used when an atom was assumed to exist in
Theorem 17.2.1.

From (17.24) we have

∑n
i=1 f(Φi)∑n
i=1 g(Φi)

≤ �n
�n − 1

[
1
�n

(∑�n
j=0 sj(f) +

∑mσα̌(0)+m−1
k=1 f(Φk)

)]
[

1
�n−1

∑�n−1
j=0 sj(f)

]
Since by Theorem 17.3.1 the two sequences {s2k(f) : k ∈ ZZ+} and {s2k+1(f) : k ∈
ZZ+} are both i.i.d., we have from (17.23) and the LLN for i.i.d. sequences that

lim
N→∞

1
N

N∑
k=1

sk(f) = lim
N→∞

1
N

N∑
k=1

k odd

sk(f) + lim
N→∞

1
N

N∑
k=1

k even

sk(f)

= 1
2

(
δ−1π(C)−1m

∫
fdπ + δ−1π(C)−1m

∫
fdπ

)
= δ−1π(C)−1m

∫
fdπ.

Since �n →∞ a.s. it follows that

lim sup
n→∞

∑n
i=1 f(Φi)∑n
i=1 g(Φi)

≤
∫
fdπ∫
gdπ

.

Interchanging the roles of f and g gives an identical lower bound on the limit infimum,
and this completes the proof. �

Observe that this result holds for both positive and null recurrent chains. In the
positive case, substituting g ≡ 1 gives Theorem 17.2.1.

17.3.3 Applications of the LLN

In this section we will describe two applications of the LLN. The first is a technical
result which is generally useful, and will be needed when we prove the functional
central limit theorem for Markov chains in Section 17.4.

As a second application of the LLN we will give a proof that the dependent
parameter bilinear model is positive recurrent under a weak moment condition on
the parameter process.

The running maximum As a simple application of the Theorem 17.3.2 we will
establish here a bound on the running maximum of g(Φk).

Theorem 17.3.3 Suppose that Φ is positive Harris, and suppose that π(|g|) < ∞.
Then the following limit holds:

lim
n→∞

1
n

max
1≤k≤n

|g(Φk)| = 0 a.s. [P∗].
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Proof We may suppose without loss of generality that g ≥ 0.
It is easy to verify that the desired limit holds if and only if

lim
n→∞

1
n
g(Φn) = 0 a.s. [P∗]. (17.25)

It follows from Theorem 17.3.2 and positive Harris recurrence that

lim
n→∞

{
1
n

n∑
k=1

g(Φk)−
1

n− 1

n−1∑
k=1

g(Φk)

}
= π(g)− π(g) = 0.

The left hand side of this equation is equal to

lim
n→∞

1
n
g(Φn)− 1

n

1
n− 1

n−1∑
k=1

g(Φk).

Since by Theorem 17.3.2 we have 1
n

1
n−1

∑n−1
k=1 g(Φk) → 0, it follows that (17.25) does

hold, and the proof is complete. �
To illustrate the application of the LLN to the stability of stochastic models we

will now consider a linear system with random coefficients.

The dependent parameter bilinear model Here we revisit the dependent pa-
rameter bilinear defined by (DBL1)–(DBL2).

We saw in Proposition 7.4.1 that this model is a Feller T-chain. Since Z is i.i.d.,
the parameter process θ is itself a Feller T-chain, which is positive Harris by Propo-
sition 11.4.2. Hence the LLN holds for θ, and this fact is the basis of our subsequent
analysis of this bilinear model.

Proposition 17.3.4 If (DBL1) and (DBL2) hold then θ is positive Harris recurrent
with invariant probability πθ. For any f : IR → IR satisfying∫

IR
{f(x) ∨ 0}πθ(dx) <∞

we have

lim
N→∞

1
N

N∑
k=1

f(θk) =
∫
IR
f(x)πθ(dx) a.s. [P∗]

When θ0 ∼ πθ the process is strictly stationary, and may be defined on the positive
and negative time set ZZ. For this stationary process, the backwards LLN holds:

lim
N→∞

1
N

N∑
k=1

f(θ−k) =
∫
IR
f(x)πθ(dx) a.s. [Pπθ

] (17.26)

Proof The positivity of θ has already been noted prior to the proposition. The
first limit then follows from Theorem 17.1.7 when

∫
IR f(x)πθ(dx) > −∞. Otherwise,

we have from Theorem 17.1.7 and integrability of f ∨ 0, for any M > 0,

lim sup
N→∞

1
N

N∑
k=1

f(θk) ≤ lim sup
N→∞

1
N

N∑
k=1

f(θk) ∨ (−M) =
∫
IR
{f(x) ∨ (−M)}πθ(dx),
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and the right hand side converges to −∞ = πθ(f) as M →∞.
The limit (17.26) holds by stationarity, as in the proof of Theorem 17.1.2 (see

[68]). �
We now apply the LLN for θ to obtain stability for the joint process. The bound

(17.27) used in Proposition 17.3.5 is analogous to the condition that |α| < 1 in the
simple linear model. Indeed, suppose that we have the condition that |θk| is less than
one only in the mean: Eπθ

[|θk|] < 1. Then by Jensen’s inequality it follows that the
bound (17.27) is also satisfied.

Proposition 17.3.5 Suppose that (DBL1) and (DBL2) hold, and that∫
IR

log |x|πθ(dx) < 0. (17.27)

Then the joint process Φ =
(θ
Y

)
is positive recurrent and aperiodic.

Proof To begin, recall from Theorem 7.4.1 that the joint process Φ =
(θ
Y

)
is a

ψ-irreducible and aperiodic T-chain.
For y ∈ IR fixed, let µy = πθ × δy denote the initial distribution which makes θ

a stationary process, and Y0 = y a.s.. We will show that the distributions of Y, and
hence of Φ are tight whenever Φ0 ∼ µy. From the Feller property and Theorem 12.1.2,
this is sufficient to prove the theorem.

The following equality is obtained by iterating equation (2.12):

Yk+1 =
k∑

j=1

(
k∏

i=j

θi)Wj + (
k∏

i=0

θi)Y0 +Wk+1. (17.28)

Establishing stability is then largely a matter of showing that the product
∏k

i=j θi

converges to zero sufficiently fast. To obtain such convergence we will apply the LLN
Proposition 17.3.4 and (17.27), which imply that as n→∞,

1
n

log
( n∏

i=0

θ2
−i

)
= 2

1
n

n∑
i=0

log |θ−i| → 2
∫
IR

log |x|πθ(dx) < 0. (17.29)

We will see that this limit, together with stationarity of the parameter process, implies
exponential convergence of the product

∏k
i=j θi to zero. This will give us the desired

bounds on Y.
To apply (17.29), fix constants L < ∞, 0 < ρ < 1, let Πj,k =

∏k
i=j θi, and use

(17.28) and the inequality ab ≤ 1
2(a2 + b2) to obtain the bound

Pµy{|Yk+1| ≥ L}

≤ Pµy

{ k∑
j=1

|Πj,k||Wj |+ |Π0,k||y|+ |Wk+1| ≥ L
}

≤ Pµy

{ k∑
j=0

ρ−(k−j)Π2
j,k +

k∑
j=0

ρ(k−j)W 2
j+1 ≥ 2L− (y2 + 1)

}

≤ Pµy

{ k∑
j=0

ρ−(k−j)Π2
j,k ≥ L− 1 + y2

2

}
+ Pµy

{ k∑
j=0

ρ(k−j)W 2
j+1 ≥ L− 1 + y2

2

}
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We now use stationarity of θ and independence of W to move the time indices within
the probabilities on the right hand side of this bound:

Pµy{|Yk+1| ≥ L}

≤ Pµy

{ k∑
j=0

ρ−(k−j)Π2
−(k−j),0 ≥ L− 1 + y2

2

}

+Pµy

{ k∑
j=0

ρ(k−j)W 2
k−j ≥ L− 1 + y2

2

}

≤ Pµy

{ ∞∑
�=0

ρ−�Π2
−�,0 ≥ L− 1 + y2

2

}
+Pµy

{ ∞∑
�=0

ρ�W 2
� ≥ L− 1 + y2

2

}
(17.30)

From Fubini’s Theorem we have, for any 0 < ρ < 1, that the sum
∑∞

�=0 ρ
�W 2

� con-
verges a.s. to a random variable with finite mean σ2

w(1− ρ)−1.
We now show that the sum

∑∞
�=0 ρ

−�Π2
−�,0 converges a.s. For this we apply the

root test. The logarithm of the nth root of the nth term an in this series is equal to

log(a
1
n
n ) := log(ρ−nΠ2

−n,0)
1
n = − log(ρ) + 2

1
n

n∑
i=0

log |θ−i|.

By (17.29) it follows that

lim
n→∞ log(a

1
n
n ) = − log(ρ) + 2

∫
IR

log |x|πθ(dx),

which is negative for sufficiently large ρ < 1. Fixing such a ρ, we have that

limn→∞ a
1
n
n < 1, and thus the root test is positive. Thus the sum

∑∞
�=0 ρ

−�Π2
−�,0

converges to a finite limit with probability one.
By (17.30) and finiteness of the sums on the right hand side we conclude that

sup
k≥0

Pµy{|Yk| ≥ L} → 0 as L→∞,

which is the desired tightness property for the process Y. �
This stability result may be surprising given the very weak conditions imposed,

and it may be even more surprising to find that these conditions can be substantially
relaxed. It is really only the bound (17.27) together with stationarity of the parameter
process which was needed in the proof of tightness for the output process Y. The use
of the linear model θ was merely a matter of convenience.

This result illustrates the strengths and weaknesses of adopting boundedness in
probability, or even positive Harris recurrence as a stability condition. Although the
dependent parameter bilinear model is positive recurrent under (17.27), the behavior
of the sample paths of Y can appear quite explosive. To illustrate this, recall the
simulation given in Chapter 16 where we took the simple adaptive control model
illustrated in Figure 2.8, but set the control equal to zero for illustrative purposes.
This gives the model described in (DBL1)–(DBL2) with Z and W Gaussian N(0, σ2

z)
and N(0, σ2

w) respectively, where σz = 0.2 and σw = 0.1. The parameter α is taken
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as 0.99. These parameter values are identical to those of the simulation given for the
simple adaptive control model in Figure 2.8. The stability condition (17.27) holds in
this example since

∫
IR log |x|πθ(dx) ≈ −0.3 < 0.

A sample path of log10(|Yk|) is given in Figure 16.1. Note the gross difference in
behavior between this model and the simple adaptive control model with the control
intact: In less than 700 time points the output of the dependent parameter bilinear
model exceeds 10100, while in the controlled case we see in Figures 2.8 and 2.7 that
the output is barely distinguishable from the disturbance W.

17.3.4 The CLT and LIL for Harris chains

We now give versions of the CLT and LIL without the assumption that a true atom
α ∈ B+(X) exists.

We will require the following bounds on the split chain constructed in this section.
These conditions will be translated back to a condition on a petite set in Section 17.5.

CLT Moment Condition for the Split Chain

For the split chain constructed in this section, P̌xi{σα̌ < ∞} = 1 for all
xi ∈ X̌, and the function g and the atom α̌ jointly satisfy the bounds

Ěν∗
[( σα̌∑

n=0

Zn(|g|)
)2]

<∞ and Ěν∗
[
σ2

α̌

]
<∞. (17.31)

When these conditions are satisfied we will show that the CLT variance may be
written

γ2
g = m−1π̌(α̌)Ěα̌[(s1(g))2] + 2m−1π̌(α̌)Ěα̌[s1(g)s2(g)] (17.32)

where π̌ is the invariant probability measure for the split chain and π̌(α̌) = δπ(C).
We may now present

Theorem 17.3.6 Suppose that Φ is ergodic and that (17.31) holds. Then 0 ≤ γ2
g <

∞, and if γ2
g > 0 then the CLT and LIL hold for g.

Proof The proof is only a minor modification of the previous proof: we recall that
�n := max(k : mσα̌(k) ≤ n) and observe that in a manner similar to the derivation of
(17.17) we may show that∣∣∣∣∣∣ 1√

n

n∑
j=0

g(Φj)−
1√
n

�n−1∑
j=0

sj(g)

∣∣∣∣∣∣→ 0 a.s. (17.33)
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From the LLN we have

lim
n→∞

�n
n

= lim
n→∞

1
n

n/m�−1∑
k=1

1l {(Φmk, Yk) ∈ α̌} =
π̌(α̌)
m

a.s. [P∗]. (17.34)

This can be used to replace the upper limit of the second sum in (17.33) by a de-
terministic bound, just as in the proof of Theorem 17.2.2. Indeed, stationarity and
one-dependence of {sj(g) : j ≥ 1} allow us to apply Kolmogorov’s inequality Theo-
rem D.6.3 to obtain the following analogue of (17.20): letting n∗ := !m−1π̌(α̌)n", we
have from (17.34) and (17.33) that∣∣∣∣∣∣ 1√

n

n∑
i=0

g(Φi)−
1√
n

n∗∑
j=0

sj(g)

∣∣∣∣∣∣→ 0 (17.35)

in probability.
To complete the proof we will obtain a version of the CLT for one-dependent,

stationary stochastic processes.
Fix an integer m ≥ 2 and define ηj = sjm+1(g) + · · · + s(j+1)m−1(g). For all

n ∈ ZZ+ we may write

1√
n

n∑
j=1

sj(g) =
1√
n

n/m�−1∑
j=0

ηj +
1√
n

n/m�−1∑
j=1

smj(g) +
1√
n

n∑
j=mn/m�

sj(g). (17.36)

The last term converges to zero in probability, so that it is sufficient to consider the
first and second terms on the RHS of (17.36). Since {si(g) : i ≥ 1} is stationary
and one-dependent, it follows that {ηj} is an independent and identically distributed
process, and also that {smj(g) : j ≥ 1} is i.i.d.

The common mean of the random variables {ηj} is zero, and its variance is given
by the formula

σ2
m := Ě[η2

j ] = (m− 1)Ě[s1(g)2] + 2(m− 2)Ě[s1(g)s2(g)].

By the CLT for i.i.d. random variables, we have therefore

1√
n

n/m�−1∑
j=0

ηj
d−→ N(0,m−1σ2

m),

and
1√
n

n/m�∑
j=0

smj(g)
d−→ N(0,m−1σ2

s),

where σ2
s = E[s1(g)2]. Letting m→∞ we have

m−1σ2
m → σ̄2 := Ě[s1(g)2] + 2Ě[s1(g)s2(g)]

m−1σ2
s → 0,

from which it can be shown, using (17.36), that

1√
n

n∑
j=1

sj(g)
d−→ N(0, σ̄2), as n→∞.
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Returning to (17.35) we see that

1√
n

n∑
i=0

g(Φi) → N(0,m−1π̌(α̌)σ̄2) as n→∞

which establishes the CLT.
We can use Theorem 17.3.1 to prove the LIL, where the details are much simpler.

We first write, as in the proof of Theorem 17.2.2,

1√
2n log logn

 n∑
k=1

g(Φk)−
�n∑

j=1

sj(g)

→ 0 a.s.

Using an expression similar to (17.36) together with the LIL for i.i.d. sequences
we can easily show that the upper and lower limits of

1√
2nσ̄2 log logn

n∑
k=1

sk(g)

are +1 and −1 respectively. Here the proof of Theorem 17.2.2 may be adopted to
prove the LIL, which completes the proof of Theorem 17.3.6. �

17.4 The Functional CLT

In this section we show that a sequence of continuous functions obtained by interpo-
lating the values of Sn(f) converge to a standard Brownian motion. The machinery
which we develop to prove this result rests heavily on the stability theory developed
in Chapters 14 and 15. These techniques are extremely appealing as well as powerful,
and can lead to much further insight into asymptotic behavior of the chain. Here we
will focus on just one result: a functional central limit theorem, or invariance prin-
ciple for the chain. This will allow us to refine the CLT which was presented in the
previous chapter as well as allow us to obtain the expression (17.3) for the limiting
variance.

We may now drop the aperiodicity assumption which was required in the previous
section because of the very different approach taken.

17.4.1 The Poisson equation

Much of this development is based upon the following identity, known as the Poisson
equation:

ĝ − P ĝ = g − π(g). (17.37)

Given a function g on X with π(|g|) <∞ we will require that a finite-valued solution
ĝ to the Poisson equation (17.37) exist, and we will develop in this section sufficient
conditions under which this is the case. The assumption that ĝ is finite-valued is
made without any real loss of generality. If ĝ solves the Poisson equation for some
finite-valued function g, and if ĝ(x0) is finite for just one x0 ∈ X, then the set Sg of all
x such that |ĝ(x)| <∞ is full and absorbing, and hence the chain may be restricted
to the set Sg.
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In the special case where g ≡ 0, solutions to the Poisson equation are precisely
what we have called harmonic functions in Section 17.1.2. In general, if ĝ1 and ĝ2 are
two solutions to the Poisson equation then the difference ĝ1 − ĝ2 is harmonic. This
observation is useful in answering questions regarding the uniqueness of solutions, as
we see in the following

Proposition 17.4.1 Suppose that Φ is positive Harris, and suppose that ĝ and ĝ•
are two solutions to the Poisson equation with π(|ĝ| + |ĝ•|) < ∞. Then for some
constant c, ĝ(x) = c+ ĝ•(x) for a.e. x ∈ X [π].

Proof We have already remarked that h := ĝ− ĝ• is harmonic. To show that h is
a constant we will require a strengthening of Theorem 17.1.5.

By iteration of the harmonic equation (17.8) we have P kh = h for all k, and
hence for all n,

h =
1
n

n∑
k=1

P kh

Since by assumption π(|h|) < ∞, it follows from Theorem 14.3.6 that h(x) = π(h)
for a.e. x. �

One approach to the question of existence of solutions to (17.37) when an atom
α exists is to let

ĝ(x) = Gα(x, g) = Ex

[ σα∑
k=0

g(Φk)
]
. (17.38)

The expectation is well defined if the chain is f -regular for some f ≥ |g|. Since
0 = π(g) = π(α)Eα[

∑τα
k=1 g(Φk)], we have

P ĝ (x) = Ex

[ σα∑
k=1

g(Φk)
]
1l(x 
∈ α)

+Eα

[ τα∑
k=1

g(Φk)
]
1l(x ∈ α)

= Ex

[ σα∑
k=1

g(Φk)
]
1l(x 
∈ α)

Since ĝ(z) = g(z) for all z ∈ α, this shows that for all x,

P ĝ (x) = Ex

[ σα∑
k=0

g(Φk)
]
− g(x) = ĝ(x)− g(x),

so that the Poisson equation is satisfied.
This approach can be extended to general ergodic chains by considering a split

chain. However we will find it more convenient to follow a slightly different approach
based upon the ergodic and regularity theorems developed in Chapter 14.

First note the formal similarity between the Poisson equation, which can be
written ∆ĝ = −g + π(g), and the drift inequality (V3). The Poisson equation and
(V3) are closely related, and in fact the inequality implies fairly easily that a solution
to the Poisson equation exists. Assume that Φ is f -regular, so that (V3) holds for a
function V which is everywhere finite, and a set C which is petite. If Φ is aperiodic,
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and if π(V ) <∞, then from the f -Norm Ergodic Theorem 14.0.1 we know that there
exists a constant R <∞ such that for any function g satisfying |g| ≤ f ,

∞∑
k=0

|P k(x, g)− π(g)| ≤ R(V (x) + 1).

Hence the function ĝ defined as

ĝ(x) =
∞∑

k=0

{P k(x, g)− π(g)} (17.39)

also satisfies the bound |ĝ| ≤ R(V +1), and clearly satisfies the Poisson equation. We
state a generalization of this important observation as

Theorem 17.4.2 Suppose that Φ is ψ-irreducible, and that (V3) holds with V every-
where finite, f ≥ 1, and C petite. If π(V ) <∞ then for some R <∞ and any |g| ≤ f ,
the Poisson equation (17.37) admits a solution ĝ satisfying the bound |ĝ| ≤ R(V +1).

Proof The aperiodic case follows from absolute convergence of the sum in (17.39).
In the general periodic case it is convenient to consider the Kaε chain, which is always
strongly aperiodic when Φ is ψ-irreducible by Proposition 5.4.5.

To begin, we will show that the resolvent or Kaε-chain satisfies a version of (V3)
with the same function f and a scaled version of the function V used in the theorem.
We will on two occasions apply the identity

Kaε = εKaεP + (1− ε)I. (17.40)

whose derivation is straightforward given the definition of the resolvent Kaε . Hence
by (V3) for the kernel P ,

KaεV ≤ εKaε(V − f + b1lC) + (1− ε)V.

Since f ≤ (1− ε)−1Kaεf it follows that with Vε equal to a suitable constant multiple
of V we have for some b′,

KaεVε ≤ Vε − f + b′Kaε1lC

Since C is petite for Φ and hence also for the Kaε-chain by Theorem 5.5.6, the set
Cn := {x : Kaε(x,C) ≥ 1/n} is petite for the Kaε-chain for all n. Note that C ⊆ Cn

for n sufficiently large. Since Cn is petite we may adopt the proof of Theorem 14.2.9:
scaling Vε as necessary, we may choose n and bε so large that

KaεVε ≤ Vε − f + bε1lCn .

Thus the Kaε-chain is f -regular. By aperiodicity there exists a constant Rε <∞ such
that for any |g| ≤ f , we have a solution ĝε to the Poisson equation

Kaε ĝε = ĝε − g

satisfying |ĝε| ≤ Rε(V + 1).
To complete the proof let
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ĝ :=
ε

1− ε
Kaε ĝε =

ε

1− ε
(ĝε − g)

Writing (17.40) in the form

ε

1− ε
PKaε =

1
1− ε

Kaε − I

we have by applying both sides to ĝε,

P ĝ = ε−1ĝ − ĝε = ε−1ĝ − (ε−1 − 1)ĝ − g = ĝ − g

so that the Poisson equation is satisfied. �
The significance of the Poisson equation is that it enables us to apply martingale

theory to analyze the series Sn(g). If ĝ solves the Poisson equation then we may write
for any n ≥ 1,

Sn(g) =
n∑

k=1

g(Φk) =
n∑

k=1

[ĝ(Φk)− P ĝ (Φk)]

=
n∑

k=1

[ĝ(Φk)− P ĝ (Φk−1)] +
n∑

k=1

[P ĝ(Φk−1)− P ĝ (Φk)]

The second sum on the right hand side is a telescoping series, which telescopes to
P ĝ (Φ0)−P ĝ (Φn). We will prove in Theorem 17.4.3 that the first sum is a martingale,
which shall be denoted

Mn(g) =
n∑

k=1

[ĝ(Φk)− P ĝ (Φk−1)] (17.41)

Hence Sn(g) is equal to a martingale, plus a term which can be easily bounded. We
summarize these observations in

Theorem 17.4.3 Suppose that Φ is positive Harris and that a solution to the Poisson
equation (17.37) exists with

∫
|ĝ| dπ < ∞. Then when Φ0 ∼ π, the series Sn(g) may

be written
Sn(g) = Mn(g) + P ĝ (Φ0)− P ĝ (Φn) (17.42)

where (Mn(g),FΦ
n ) is the martingale defined in (17.41).

Proof The expression (17.42) was established prior to the theorem statement. To
see that (Mn(g),FΦ

n ) is a martingale, apply the identity

ĝ(Φk)− P ĝ (Φk−1) = ĝ(Φk)− E[ĝ(Φk) | FΦ
k−1].

The integrability condition on ĝ is imposed so that

Eπ[|ĝ(Φk)− E[ĝ(Φk) | FΦ
k−1]|] <∞, k ≥ 1,

and hence also Eπ[|Mn|] <∞ for all n. �
Theorem 17.4.3 adds a great deal of structure to the problem of analyzing the

partial sums Sn(g) which we may utilize by applying the results of Section D.6.2 for
square integrable martingales.



444 17 Sample Paths and Limit Theorems

17.4.2 The functional CLT for Markov chains

We now combine the functional CLT for martingales (Theorem D.6.4) and Theo-
rem 17.4.3 to give a functional CLT for Markov chains. In the following main result
of this section we consider the function sn(t) which interpolates the values of the
partial sums of g(Φk):

sn(t) = S�nt�(g) + (nt− �nt�)
[
S�nt�+1(g)− S�nt�(g)

]
. (17.43)

Theorem 17.4.4 Suppose that Φ is positive Harris, and suppose that g is a function
on X for which a solution ĝ to the Poisson equation exists with π(ĝ2) < ∞. If the
constant

γ2
g := π(ĝ2 − {P ĝ}2) (17.44)

is strictly positive then as n→∞,

(nγ2
g )−1/2sn(t) d−→ B a.s. [P∗]

where B denotes a standard Brownian motion on [0, 1].

Proof Using an obvious generalization of Proposition 17.1.6 we see that it is
enough to prove the theorem when Φ0 ∼ π. From Theorem 17.4.3 we have

Sn(g) = Mn(g) + P ĝ (Φ0)− P ĝ (Φn).

Defining the stochastic process mn(t) for t ∈ [0, 1] as in (D.7) by

mn(t) = M�nt�(g) + (nt− �nt�)
[
M�nt�+1(g)−M�nt�(g)

]
, (17.45)

it follows that for all t ∈ [0, 1],

(nγ2
g )−1/2|sn(t)−mn(t)| ≤ (nγ2

g )−1/2|P ĝ (Φ0)|
+(nγ2

g )−1/2 max
1≤k≤n

|P ĝ (Φk)| (17.46)

Since π(ĝ2) < ∞, by Jensen’s inequality we also have π({P ĝ}2) < ∞. Hence by
Theorem 17.3.3 it follows that

1
n

max
1≤k≤n

{P ĝ (Φk)}2 → 0 a.s. [Pπ]

as n→∞, and from (17.46) we have

sup
0≤t≤1

(nγ2
g )−1/2|sn(t)−mn(t)| → 0 a.s. [Pπ]

as n → ∞. That is, |(nγ2
g )−1/2(sn − mn)|c → 0 in C[0, 1] with probability one. To

prove the theorem, it is therefore sufficient to show that (nγ2
g )−1/2mn(t) d−→ B.

We complete the proof by showing that the conditions of Theorem D.6.4 hold for
the martingale Mn(g).

To show that (D.8) holds note that
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Eπ[(Mk(g)−Mk−1(g))2 | FΦ
k−1] = Eπ[(ĝ(Φk)− P ĝ (Φk−1))2 | FΦ

k−1]
= P ĝ2 (Φk−1)− {P ĝ (Φk−1)}2

Since we have assumed that ĝ2 is π-integrable, it follows that the function P ĝ2−{P ĝ}2
is also π-integrable. Hence the LLN holds:

lim
n→∞

1
n

n∑
k=1

Eπ[(Mk(g)−Mk−1(g))2 | FΦ
k−1] = π(P ĝ2 − {P ĝ}2) = γ2

f a.s..

We now establish (D.9). Again by the LLN we have for any b > 0,

lim
n→∞

1
n

n∑
k=1

Eπ[(Mk(g)−Mk−1(g))21l{(Mk(g)−Mk−1(g))2 ≥ b} | FΦ
k−1]

= Eπ[(ĝ(Φ1)− P ĝ (Φ0))21l{(ĝ(Φ1)− P ĝ (Φ0))2 ≥ b}]

which tends to zero as b→∞. It immediately follows that (D.9) holds for any ε > 0,
and this completes the proof. �

As an illustration of the implications of Theorem 17.4.4 we state the following
corollary, which is an immediate consequence of the fact that both h(u) = u(1) and
h(u) = max0≤t≤1 u(t) are continuous functionals on u ∈ C[0, 1].

Theorem 17.4.5 Under the conditions of Theorem 17.4.4, the CLT holds for g with
γ2

g given by (17.44), and as n→∞,

(nγ2
g )−1/2 max

1≤k≤n
Sk(g)

d−→ max
0≤t≤1

B(t).

17.4.3 The representations of γ2
g

It is apparent now that the limiting variance in the CLT can take on many different
forms depending on the context in which this limit theorem is proven. Here we will
briefly describe how the various forms may be identified and related.

The CLT variance given in (17.44) can be transformed by substituting in the
Poisson equation (17.37), and we thus obtain

γ2
g = π(ĝ2 − {ĝ − g}2) = 2π(ĝg)− π(g2) = Eπ[2ĝ(Φ0)g(Φ0)− g2(Φ0)] (17.47)

Substituting in the particular solution (17.39), which we may write as

ĝ(x) =
∞∑

k=0

P k(x, g)

results in the expression

γ2
g = π(g2) + 2π(

∞∑
k=1

gP k(x, g)) (17.48)

This immediately gives the representation (17.3) for γ2
g whenever the expectation with

respect to π, and the infinite sum may be interchanged. We will give such conditions
in the next section, under which the identity (17.3) does indeed hold.
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Note that if we substituted in a different formula for ĝ we would arrive at an
entirely different formula. We now show that by taking the specific form (17.38) for
ĝ we can connect the expression for the limiting variance given in Section 17.2 with
the formulas given here.

Recall that using the approach of Section 17.2 based upon the existence of an
atom we arrived at the identity

γ2
g = π(α)Eα

[( τα∑
1

g(Φk)
)2]

(17.49)

It may seem unlikely a priori that the two expressions (17.47) and (17.49) coincide.
However, as required by the theory, it is of course true that the identity

π(α)Eα

[( τα∑
k=1

g(Φk)
)2]

= Eπ[2ĝ(Φ0)g(Φ0)− g2(Φ0)] (17.50)

holds whenever an atom α ∈ B+(X) exists. To see this we will take

ĝ(x) = Ex

[ τα∑
j=0

g(Φj)
]

which is the specific solution (17.38) to the Poisson equation. By the representation
of π using the atom α and the formula for the solution ĝ to the Poisson equation we
then have

Eπ[2ĝ(Φ0)g(Φ0)− g2(Φ0)] = π(α)Eα

[ τα∑
k=1

(
2g(Φk)ĝ(Φk)− g2(Φk)

)]
= π(α)Eα

[ τα∑
k=1

(
2g(Φk)EΦk

[ σα∑
j=0

g(Φj)
]
− g2(Φk)

)]

= π(α)Eα

[ τα∑
k=1

(
2g(Φk)E

[
θk

σα∑
j=0

g(Φj) | FΦ
k

]
− g2(Φk)

)]
For any k ≥ 1 we have on the event {k ≤ τα},

θk
σα∑
j=0

g(Φj) =
τα∑

j=k

g(Φj)

and hence the previous equation gives

Eπ[2ĝ(Φ0)g(Φ0)− g2(Φ0)] = π(α)Eα

[ τα∑
k=1

(
2g(Φk)E

[ τα∑
j=k

g(Φj) | FΦ
k

]
− g2(Φk)

)]

= π(α)Eα

[ τα∑
k=1

E
[ τα∑
j=k

2g(Φk)g(Φj)− g2(Φk) | FΦ
k

]]

= π(α)Eα

[ τα∑
k=1

( τα∑
j=k

2g(Φk)g(Φj)− g2(Φk)
)]

= π(α)Eα

[( τα∑
k=1

g(Φk)
)2]

which gives (17.50).
We now apply the martingale and atom-based approaches simultaneously to ob-

tain criteria for the CLT and LIL.
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17.5 Criteria for the CLT and the LIL

In this section we give more easily verifiable conditions under which the CLT and
LIL hold for general Harris chains. Up to now, our assumptions on the chain involve
the statistics of the return time to the atom α̌ for the split chain, or integrability
conditions on a solution to the Poisson equation. Neither of these assumptions is easy
to interpret, and therefore it is crucial to connect them to verifiable properties of the
one step transition function P . We do this now by proving that a drift property gives
a sufficient condition under which the CLT and LIL are valid. Under this condition
we will also show that the CLT variance may be written in the form (17.3).

The following conditions will be imposed throughout this section:

CLT Moment Condition on V, f

The chain Φ is ergodic, and there exists a function f ≥ 1, a finite-valued
function V and a petite set C satisfying (V3).

Letting π denote the unique invariant probability measure for the chain,
we assume that π(V 2) <∞.

The integrability condition on V 2 can be obtained by applying Theorem 14.3.7, but
this condition may be difficult to verify in practice. For this reason we give in the fol-
lowing lemma a stronger condition under which this bound is satisfied automatically.

Lemma 17.5.1 If Φ is V ′-uniformly ergodic then the CLT moment condition on V, f
are satisfied with V = (1−

√
1− β)−1

√
V ′ and f =

√
V ′.

Proof It follows from Lemma 15.2.9 that the chain is V -uniform, and hence (V3)
holds with this V . The finiteness of π(V 2) follows from finiteness of π(V ′), which is a
consequence of the f -Norm Ergodic Theorem 14.0.1. �

The following result shows that (V3) provides a sufficient condition under which
the assumptions imposed in Section 17.4 and Section 17.3 are satisfied.

Lemma 17.5.2 Under the CLT moment condition on V, f above we have

(i) There exists a constant R < ∞ such that for any function g which satisfies the
bound |g| ≤ f , the Poisson equation (17.37) admits a solution ĝ with |ĝ| ≤
R(V + 1);

(ii) The split chain satisfies the bound

Ěα̌

[(τα̌−1∑
�=0

Z�(f)
)2]

<∞ (17.51)
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and hence the CLT moment condition (17.31) holds for any function g with
|g| ≤ f .

Proof Result (i) is simply a restatement of Theorem 17.4.2, so it is enough to
prove (ii).

Under the CLT moment condition on V, f above, Φ is f -regular, and hence the
m-skeleton is f (m)-regular by Theorem 14.2.10. Hence the split chain Φ̌ for the m-
skeleton is f (m)-regular if the set C used in the splitting is a sublevel set of V , and
from Theorem 14.2.3 applied to the m-skeleton we have for some R0 < ∞ and any
xi ∈ X̌,

Ěxi

[ τα̌∑
k=0

f (m)(Φ̌k)
]
≤ R0(V (x) + 1)

where we define f (m)(Φ̌k) = f (m)(Φmk, Yk) := f (m)(Φk).
Since {τα̌ ≥ k} ∈ F̌mk = σ{Yi : i ≤ k, Φj : j ≤ mk}, we have for all xi,

Ěxi

[ τα̌∑
k=0

Zk(f)
]

=
∞∑

k=0

Ěxi [Zk(f)1l{τα̌ ≥ k}]

=
∞∑

k=0

Ěxi [Ě[Zk(f) | F̌mk]1l{τα̌ ≥ k}]

From (17.21) we may find R1 <∞ such that for i = 0, 1,

Ě[Zk(f) | F̌mk; Φ̌k = (Φmk, Yk) = (x, i)] ≤ R1f
(m)(x),

and hence

Ěxi

[ τα̌∑
k=0

Zk(f)
]
≤ R0R1(V (x) + 1), xi ∈ X̌.

Under the assumption that π(V 2) <∞ we see from the representation of π that

Ěα̌

[τα̌−1∑
�=0

(
ĚΦ̌�

[ τα̌∑
k=0

Zk(f)
])2]

≤ (π̌(α̌))−1(R0R1)2π([V + 1]2) <∞. (17.52)

Using (17.52) it is now relatively easy to show that the bound (17.51) holds. We may
calculate using the ordinary Markov property,

∞ > Ěα̌

[τα̌−1∑
�=0

(
ĚΦ̌�

[ τα̌∑
k=0

Zk(f)
])2]

= Ěα̌

[τα̌−1∑
�=0

(
Ě
[ τα̌∑
k=�

Zk(f) | F̌m�

])2]

≥ Ěα̌

[τα̌−1∑
�=0

Z�(f)Ě
[ τα̌∑
k=�

Zk(f) | F̌m�

]]

= Ěα̌

[τα̌−1∑
�=0

τα̌∑
k=�

Z�(f)Zk(f)
]

≥ 1
2 Ěα̌

[(τα̌−1∑
�=0

Z�(f)
)2]

�
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Theorem 17.5.3 Assume the CLT moment condition on V, f , and let g be a function
on X with |g| ≤ f . Then the constant γ2

g defined as

γ2
g := π(ĝ2 − (P ĝ)2)

is well defined, non-negative, and finite, and may be written as

γ2
g = lim

n→∞
1
n

Eπ

[(
Sn(g)

)2]
= Eπ[g2(Φ0)] + 2

∞∑
k=1

Eπ[g(Φ0)g(Φk)] (17.53)

where the sum converges absolutely.
If γ2

g > 0 then the CLT and LIL hold for g.

Proof To obtain the representation (17.53) for γ2
g , apply the identity (17.42), from

which we obtain
Eπ[(Sn(g)−Mn(g))2] ≤ 4π(ĝ2)

Since Eπ[Mn(g)2] =
∑n

1 Eπ[(Mk −Mk−1)2] = nγ2
g , it follows that 1

nEπ[Sn(g)2] → γ2
g

as n→∞.
We now show that 1

nEπ[Sn(g)2] →∑∞
−∞ Eπ[g(Φ0)g(Φk)].

First we show that this sum converges absolutely. By the f -Norm Ergodic The-
orem 14.0.1 we have for some R <∞, and each x,

∞∑
k=0

|Ex[g(Φ0)g(Φk)]| ≤ |g(x)|
∞∑

k=0

‖P k(x, · )− π‖f

≤ |g(x)|R(V (x) + 1).

Since |g| is bounded by f , which is bounded by a constant times V +1, it follows that
for some R′,

∞∑
k=0

|Ex[g(Φ0)g(Φk)]| ≤ R′(V 2(x) + 1)

and hence ∞∑
k=0

|Eπ[g(Φ0)g(Φk)]| ≤ R′(π(V 2) + 1) <∞.

We now compute γ2
g : For each n we have by invariance,

1
n

Eπ[Sn(g)2] = Eπ[g(Φ0)2] + 2
1
n

n∑
k=1

n∑
j=k+1

Eπ[g(Φk)g(Φj)]

= Eπ[g(Φ0)2] + 2
1
n

n−1∑
k=0

(n−1−k∑
i=1

Eπ[g(Φ0)g(Φi)]
)
,

and the right hand side converges to
∑∞

−∞ Eπ[g(Φ0)g(Φk)] as n→∞.
To prove that the CLT and LIL hold when γ2

g > 0, observe that by Lemma 17.5.2
under the conditions of this section the hypotheses of both Theorem 17.3.6 and The-
orem 17.4.5 are satisfied. Theorem 17.3.6 gives the CLT and LIL, and Theorem 17.4.5
shows that the limiting variance is equal to π(ĝ2 − (P ĝ)2). �

So far we have left open the question of what happens when γ2
g = 0. Under the

conditions of Theorem 17.5.3 it may be shown that in this case
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1√
n
Sn(g) d−→ 0.

We leave the proof of this general result to the reader. In the next result we give a
criterion for the CLT and LIL for V -uniformly ergodic chains, and show that for such
chains 1√

n
Sn(g) converges to zero with probability one when γ2

g = 0.

Theorem 17.5.4 Suppose that Φ is V -uniformly ergodic. If g2 < V then the conclu-
sions of Theorem 17.5.3 hold, and if γ2

g = 0 then

1√
n
Sn(g) → 0, a.s. [P∗].

Proof In view of Lemma 17.5.1 and Theorem 17.5.3, the only result which requires
proof is that ( 1√

n
Sn(g) : n ≥ 1) converges to zero when γ2

g = 0.
Recalling (17.42) we have

Sn(g) = Mn(g) + P ĝ (Φ0)− P ĝ (Φn)

We have shown that 1√
n
P ĝ (Φn) → 0 a.s. in the proof of Theorem 17.4.4. To prove

the theorem we will show that (Mn(g)) is a convergent sequence.
We have for all n and x,

Ex[(Mn(g))2] =
n∑

k=1

Ex[P (Φk−1, ĝ
2)− P (Φk−1, ĝ)2]

Letting G(x) = P (x, ĝ2) − P (x, ĝ)2 we have 0 ≤ G ≤ RV for some R < ∞, and
π(G) = γ2

g = 0. Hence by Theorem 15.0.1,

Ex[(Mn(g))2] =
n∑

k=1

Ex[G(Φk−1)] ≤
∞∑

k=0

|P k(x,G)− π(G)| <∞

By the Martingale Convergence Theorem D.6.1 it follows that (Mn(g)) converges to
a finite constant, and is hence bounded in n with probability one. �

17.6 Applications

From Theorem 17.0.1 we see that any of the V -uniform models which were studied
in the previous chapter satisfy the CLT and LIL as long as the limiting variance is
positive. We will consider here two models where moment conditions on the distur-
bance process may be given explicitly to ensure that the CLT holds. In the first we
avoid Theorem 17.0.1 since we can obtain a stronger result by using Theorem 17.5.3,
which is based upon the CLT moment condition of the previous section.

17.6.1 Random walks and storage models

Consider random walk on a half line given by Φn = [Φn−1 + Wn]+, and assume that
the increment distribution Γ is has negative first moment and a finite fifth moment.



17.6 Applications 451

We have analyzed this model in Section 14.4 where it was shown in Proposi-
tion 14.4.1 that under these conditions the chain is (x4 + 1)-regular.

Let f(x) = |x|+ 1 and V (x) = cx2, with c > 0. From (14.29) we have that (V3)
holds for some c, and we have just noted that the chain is V 2-regular. Hence the
conditions imposed in Section 17.5 are satisfied, and applying Theorem 17.5.3 we see
that the CLT and LIL hold for any g satisfying |g| ≤ f .

In particular, on setting g(x) = x we see that the CLT and LIL hold for Φ itself.

Proposition 17.6.1 If the increment distribution Γ has mean β < 0 and finite fifth
moment, then the associated random walk on a half line is positive Harris and the
CLT and LIL hold for the process {Φk : k ≥ 0}.

The limiting variance may be written using (17.3) as γ2
g =

∑∞
−∞ Eπ[Φ̄kΦ̄0], or

using (17.13) with α = {0} we have

γ2
g = π(0)E0

[( τ0∑
k=1

Φk − Eπ[Φk]
)2]

�

17.6.2 Linear state space models

Here we illustrate Theorem 17.0.1. We can easily obtain conditions under which the
CLT holds for the Linear State Space Model, and explicitly calculate the limiting
variance. To avoid unnecessary technicalities we will assume that E[W ] = 0.

Let Yk = c�Xk, k ∈ ZZ+, where c ∈ IRn. If the eigenvalue condition (LSS5) holds
then we have seen in Proposition 12.5.1 that a unique invariant probability π exists,
and hence a stationary version of the process Yk also exists, defined for k ∈ ZZ. The
stationary process can be realized as

Yk =
∞∑

�=0

h�Wk−�

where h� = c�F �G and (Wk : k ∈ ZZ) are i.i.d. with mean zero and covariance
ΣW = E[WW�], which is assumed to be finite in (LSS2).

Let R(k) denote the autocovariance sequence for the stationary process:

R(k) = Eπ[YkY0] k ∈ ZZ.

If the CLT holds for the process Y then we have seen that the limiting variance,
which we shall denote γ2

c , is equal to

γ2
c =

∞∑
k=−∞

R(k) (17.54)

The autocovariance sequence can be analyzed through its Fourier series, and this
approach gives a simple formula for the limiting variance γ2

c .
The process Y has a spectral density D(ω) which is obtained from the autoco-

variance sequence through the Fourier series

D(ω) =
∞∑

m=−∞
R(m)eimω,
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and R(m) can be recovered from D(ω) by the integral

R(m) =
1
2π

∫ π

−π
e−imωD(ω) dω

It is a straightforward exercise (see [143], page 66) to show that the spectral density
has the form

D(ω) = H(eiω)ΣWH(eiω)∗

where

H(eiω) =
∞∑

�=0

h�e
i�ω = c�(I − eiωF )−1G.

From these calculations we obtain the following CLT for the Linear State Space
Model:

Theorem 17.6.2 Consider the linear state space model defined by (LSS1) and
(LSS2). If the eigenvalue condition (LSS5), the nonsingularity condition (LSS4) and
the controllability condition (LCM3) are satisfied then the model is V -uniformly er-
godic with V (x) = |x|2 + 1.

For any vector c ∈ IRn, the limiting variance is given by the formula

γ2
c = c�(I − F )−1GΣWG�(I − F�)−1c,

and the CLT and LIL hold for process Y when γ2
c > 0.

Proof We have seen in the proof of Theorem 12.5.1 that (V4) holds for the linear
state space model with V (x) = 1+x�Mx, where M is a positive matrix (see (12.34)).
Under the conditions of Theorem 17.6.2 we also have that Φ is a ψ-irreducible and
aperiodic T-chain by Proposition 6.3.5. By Lemma 17.5.1 and Theorem 17.5.2 it
follows that the CLT and LIL hold for Y, and that the limiting variance is given by
(17.54).

The closed form expression for γc follows from the chain of identities

γ2
c =

∞∑
k=−∞

R(k) = D(0) = c�(I − F )−1GΣWG�(I − F�)−1c.

�
Had we proved the CLT for vector valued functions of the state, it would be

more natural in this example to prove directly that the CLT holds for X. In fact, an
extension of Theorem D.6.4 to vector-valued processes is possible, and from such a
generalization we have under the conditions of Theorem 17.6.2 that

1√
n

n∑
k=1

XkX
�
k

d−→ N(0, Σ)

where Σ = (I − F )−1GΣWG�(I − F�)−1.
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17.7 Commentary

The results of this chapter may appear considerably deeper than those of other chap-
ters, although in truth they are often straightforward from more global stochastic
process results, given the embedded regeneration structure of the split chain, or given
the existence of a stationary version (that is, of an invariant probability measure) for
the chain.

One of the achievements of this chapter is the identification of these links, and
in particular the development of a drift-condition approach to the sample path and
central limit laws.

These laws are of value for Markov chains exactly as they are for all stochastic
processes: the LLN and CLT, in particular, provide the theoretical basis for many
results in the statistical analysis of chains as they do in related fields. In particular,
the standard proofs of asymptotic efficiency and unbiasedness for maximum likeli-
hood estimators is largely based upon these ergodic theorems. For this and other
applications, the reader is referred to [93].

The Law of Large Numbers has a long history whose surface we can only skim
here. Theorem 17.1.2 is a result of Doob [68], and the ratio form for Harris chains
Theorem 17.3.2 is given in Athreya and Ney [13]. Chapter 3 of Orey [208] gives a
good overview of related ratio limit theorems.

The classic text of Chung [49] gives in Section I.16 the CLT and LIL for chains
on a countable space from which we adopt many of the proofs of the results in
Section 17.2 and Section 17.3. Versions of the Central Limit Theorem for Harris
chains may be found in Cogburn [52] and in Nummelin and Niemi [202, 199]. The
paper [199] presents an excellent survey of what was the state of the art at that time,
and also an excellent development of CLTs in a context more general than we have
given.

Neveu remarks in [197] that “the relationship between the theory of martingales
and the theory of Markov chains is very deep”. At that time he referred mainly to the
connections between harmonic functions, martingales, and first hitting probabilities
for a Markov chain. In Section III-5 of [197] he develops fairly briefly a remarkably
strong classification of a Markov chain as either recurrent or transient, based mainly
on martingale limit theory and the existence of harmonic functions. Certainly the
connections between martingales and Markov chains are substantial. From the largely
martingale based proof of the functional CLT described in this chapter, and the more
general implications of the Poisson equation and its associated martingale to the
ergodic theory of Markov chains, it appears that the relationship between Markov
chains and martingales is even richer than was thought at the time of Neveu’s writing.

The martingale approach via solutions to the Poisson equation which is developed
in Section 17.4 is adopted from Duflo [69] and Maigret [158].

For further results on the potential theory of positive kernels we refer the reader
to the seminal work of Neveu [196], Revuz [223] and Constantinescu and Cornea [55],
and to Nummelin [203] for the most current development. Applications to Markov
processes evolving in continuous time are developed in Neveu [196], Kunita [146], and
Meyn and Tweedie [179].

For an excellent account of Central Limit Theorems and versions of the Law of
the Iterated Logarithm for a variety of processes the reader is referred to Hall and
Heyde [93]. Martingale limit theory as presented in, for example, Hall and Heyde [93]
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allows several obvious extensions of the results given in Section 17.4. For example,
a functional Law of the Iterated Logarithm for Markov chains can be proved in a
manner similar to the functional Central Limit Theorem given in Theorem 17.4.4.
Using the almost sure invariance principle given in Brosamler [36] and Lacey and
Philipp [150], it is likely that an almost sure Central Limit Theorem for Markov
chains may be obtained under an appropriate drift condition, such as (V4).

In work closely related to the development of Section 17.4, Kurtz [148] considers
chains arising in models found in polymer chemistry. These models evolve on the
surface of a three dimensional sphere X = S2, and satisfy a multidimensional version
of the Poisson equation: ∫

X
P (x, dy)y = ρx

where |ρ| < 1. Bhattacharaya [23] also considers the CLT and LIL for Markov pro-
cesses, using an approach based upon the analogue of the Poisson equation in con-
tinuous time.

If a solution to the Poisson equation cannot be found directly as in [148], then a
more general approach is needed. This is the main motivation for the development of
the drift criteria (V3) and (V4) which is central to this chapter, and all of Part III.
Most of these results are either new or very recent in this general state space con-
text. Meyn and Tweedie [178] use a variant of (V4) to obtain the CLT and LIL for
ψ-irreducible Markov chains giving Theorem 17.0.1, and the use of (V3) to obtain
solutions to the Poisson equation is taken from Glynn and Meyn [86]. Applications
to random walks and linear models similar to those given in Section 17.6 are also
developed in [86].

Proposition 17.3.5, which establishes stability of the dependent parameter bilinear
model, is taken from Brandt et. al. [1] where further related results may be found.

The finiteness of the fifth moment of the increment process which is imposed in
Proposition 17.6.1 is close to the right condition for guaranteeing that the random
walk obey the CLT. Daley [60] shows that for the GI/G/1 queue a fourth moment
condition is necessary and sufficient for the absolute convergence of the sum

∞∑
−∞

Eπ[Φ̄kΦ̄0]

where Φ̄k = Φk−Eπ[Φk]. Recall that this sum is precisely the limiting variance used in
Proposition 17.6.1. This strongly suggests that the CLT does not hold for the random
walk on the half line when the increment process does not have a finite fourth moment,
and also suggests that the CLT may indeed hold when the fourth moment is finite.
These subtleties are described further in [86].
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Positivity

Turning from the sample path and classical limit theorems for normalized sums of the
previous chapter, we now return to considering limits of the transition probabilities
Pn(x,A).

Our first goal in this chapter is to derive limit theorems for chains which are not
positive Harris recurrent. Although some results in this spirit have been derived as
ratio limit theorems such as Theorem 17.2.1 and Theorem 17.3.2, we have not to this
point considered in any detail the difference between limiting behavior of positive and
null recurrent chains.

The last five chapters have amply illustrated the power of ψ-irreducibility in the
positive case: that is, in conjunction with the existence of an invariant probability
measure. However, even in the non-positive case, powerful and elegant results can be
achieved. For Harris recurrent chains we prove a generalized version of the Aperiodic
Ergodicity Theorem of Chapter 13, which covers the null recurrent case and actually
subsumes the ergodic case also, since it applies to any Harris recurrent chain. We will
show

Theorem 18.0.1 Suppose Φ is an aperiodic Harris recurrent chain. Then for any
initial probability distributions λ, µ,∫ ∫

λ(dx)µ(dy)‖Pn(x, · )− Pn(y, · )‖ → 0, n→∞. (18.1)

If Φ is a null recurrent chain with invariant measure π, then for any constant ε > 0,
and any initial distribution λ

lim
n→∞ sup

A∈B(X)

∫
λ(dx)Pn(x,A)/[π(A) + ε] = 0. (18.2)

Proof The first result is shown in Theorem 18.1.2 after developing some extended
coupling arguments and then applying the splitting technique. The consequence (18.2)
is proved in Theorem 18.1.3. �

Our second goal in this chapter is to use these limit results to complete the
characterizations of positivity through a positive/null dichotomy of the local behavior
of Pn on suitable sets: not surprisingly, the sets of relevance are petite or compact
sets in the general or topological settings respectively.

In the classical countable state space analysis, as in say Chung [49] or Feller
[76] or Çinlar [40], it is standard to first approach positivity as an asymptotic “Pn-
property” of individual states. It is not hard to show that when Φ is irreducible, either
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lim supn→∞ Pn(x, y) > 0 for all x, y ∈ X or limn→∞ Pn(x, y) = 0 for all x, y ∈ X.
These classifications then provide different but ultimately equivent characterizations
of positive and null chains in the sense we have defined them, which is through the
finiteness or otherwise of π(X). In Theorem 18.2.2 we show that for ψ-irreducible
chains the positive/null dichotomy as defined in, say, Theorem 13.0.1 is equivalent to
similar dichotomous behavior of

lim sup
n→∞

Pn(x,C) (18.3)

for petite sets, exactly as it is in the countable case.
Hence for irreducible T-chains, positivity of the chain is characterized by posi-

tivity of (18.3) for compact sets C. For T-chains we also show in this chapter that
positivity is characterized by the behavior of (18.3) for the open neighborhoods of
x, and that similar characterizations exist for e-chains. Thus there are, for these two
classes of topologically well-behaved chains, descriptions in topological terms of the
various concepts embodied in the concept of positivity.

These results are summarized in the following theorem:

Theorem 18.0.2 Suppose that Φ is a chain on a topological space for which a reach-
able state x� ∈ X exists.

(i) If the chain is a T-chain then the following are equivalent:

(a) Φ is positive Harris;

(b) Φ is bounded in probability;

(c) Φ is non-evanescent and x� is “positive”;

If any of these equivalent conditions hold and if the chain is aperiodic, then for
each initial state x ∈ X,

‖P k(x, · )− π‖ → 0 as k →∞. (18.4)

(ii) If the chain is an e-chain then the following are equivalent:

(a) There exists a unique invariant probability π and for every initial condition
x ∈ X and each bounded continuous function f ∈ C(X),

lim
k→∞

P k(x, f) = π(f)

lim
n→∞

1
n

n∑
i=1

f(Φi) = π(f) in probability;

(b) Φ is bounded in probability on average;

(c) Φ is non-evanescent and x� is “positive”;

If any of these equivalent conditions hold and if the reachable state is “aperiodic”
then for each initial state x ∈ X,

P k(x, · ) w−→ π as k →∞. (18.5)



18.1 Null recurrent chains 457

Proof (i) The equivalence of Harris positivity and boundedness in probability
for T-chains is given in Theorem 18.3.2, and the equivalence of (a) and (c) follows
from Proposition 18.3.3.

(ii) The equivalences of (a)-(c) follow from Proposition 18.4.2, and the limit
result (18.5) is given in Theorem 18.4.4. �

Thus we have global convergence properties following from local properties,
whether the local properties are with respect to petite sets as in Theorem 18.0.1
or neighborhoods of points as in Theorem 18.0.2.

Finally, we revisit the LLN for e-chains in the light of these characterizations and
show that a slight strengthening of the hypotheses of Theorem 18.0.2 are precisely
those needed for such chains to obey such a law.

18.1 Null recurrent chains

Our initial step in examining positivity is to develop, somewhat paradoxically, a limit
result whose main novelty is for null recurrent chains. Orey’s Theorem 18.1.2 actually
subsumes some aspects of the ergodic theorem in the positive case, but for us its virtue
lies in ensuring that limits can be also be defined for null chains.

The method of proof is again via a coupling argument and the Regenerative
Decomposition.

The coupling in Section 13.2 was made somewhat easier because of the existence of
a finite invariant measure in product form to give positivity of the forward recurrence
time chain. If the mean time between renewals is not finite, then such a coupling of
independent copies of the renewal process may not actually occur with probability one.
To see this, consider the recurrence and transience classification of simple symmetric
random walks in two and four dimensions (see Spitzer [255], Section 8). The former
is known to be recurrent, so the return times to zero form a proper renewal sequence.
Now consider two independent copies of this random walk: this is a four-dimensional
random walk which is equally well known to be transient, so the return time to zero
is infinite with positive probability.

Since this is the coupling time of the two independent renewal processes, we
cannot couple them as we did in the positive recurrent case. It is therefore perhaps
surprising that we can achieve our aims by the following rather different and less
obvious coupling method.

18.1.1 Coupling renewal processes for null chains

As in Section 13.2 we again define two sets of random variables {S0, S1, S2, . . .} and
{S′

0, S
′
1, S

′
2, . . .}, where {S1, S2, . . .} are independent and identically distributed with

distribution {p(j)}, and the distributions of the independent variables S0, S
′
0 are a, b.

This time, however we define the second sequence {S′
1, S

′
2, . . .} in a dependent

way. Let M be a (typically large, and yet to be chosen) integer. For each j define S′
j

as being either exactly Sj if Sj > M , or, if Sj ≤M , define S′
j as being an independent

variable with the same conditional distribution as Sj , namely

P(S′
j = k | Sj ≤M) = p(k)/(1− p(M)), k ≤M,

where p(M) =
∑

j>M p(j).
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This construction ensures that for j ≥ 1 the increments Sj and S′
j are identical

in distribution even though they are not independent. By construction, also, the
quantities

Wj = Sj − S′
j

have the properties that they are identically distributed, they are bounded above by
M and below by −M , and they are symmetric around zero and in particular have
zero mean.

Let Φ∗
n =

∑n
j=0 Wj denote the random walk generated by this sequence of vari-

ables, and let T ∗
ab denote the first time that the random walk Φ∗ returns to zero,

when the initial step W0 = S0 − S′
0 has the distribution induced by choosing a, b as

the distributions of S0, S
′
0 respectively.

As in Section 13.2 the coupling time of the two renewal processes is defined as

Tab = min{j : Za(j) = Zb(j) = 1}

where Za, Zb are the indicator sequences of each renewal process, and since

Φ∗
n =

n∑
j=0

Sj −
n∑

j=0

S′
j

we have immediately that
Tab = T ∗

ab.

But we have shown in Proposition 8.4.4 that such a random walk, with its bounded
increments, is recurrent on ZZ, provided of course that it is ψ-irreducible; and if the
random walk is recurrent, T ∗

ab <∞ with probability one from all initial distributions
and we have a successful coupling of the two sequences.

Oddly enough, it is now the irreducibility that causes the problems. Obviously a
random walk need not be irreducible if the increment distribution Γ is concentrated
on sublattices of ZZ, and as yet we have no guarantee that Φ∗ does not have increments
concentrated on such a sublattice: it is clear that it may actually do so without further
assumptions.

We now proceed with the proof of the result we require, which is the same con-
clusion as in Theorem 13.2.2 without the assumption that mp < ∞; and the issues
just raised are addressed in that proof.

Theorem 18.1.1 Suppose that a, b, p are proper distributions on ZZ+, and that u is
the renewal function corresponding to p. Then provided p is aperiodic

|a ∗ u− b ∗ u|(n) → 0, n→∞, (18.6)

and
|a ∗ u− b ∗ u| ∗ p(n) → 0, n→∞. (18.7)

Proof We will first assume a stronger form of aperiodicity, namely

g.c.d.{n−m : m < n, p(m) > 0, p(n) > 0} = 1.

With this assumption we can choose M sufficiently large that

g.c.d.{n−m : m < n ≤M, p(m) > 0, p(n) > 0} = 1. (18.8)
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Let us use this M in the construction of the random walk Φ∗ above. It is straightfor-
ward to check that now Φ∗ really is irreducible, and so

P(Tab <∞) = 1

for any a, b. In particular, then, (18.6) is true for a, b.
We now move on to prove (18.7), and to do this we will now use the backward

recurrence chain rather than the forward recurrence chain.
Let V −

a , V −
b be the backward recurrence chains defined for the renewal indicators

Z−
a , Z

−
b : note that the subscripts a, b denote conditional random variables with the

initial distributions indicated. It is obvious that the chains V −
a , V −

b couple at the same
time Tab that Z−

a , Z
−
b couple.

Now let A be an arbitrary set in ZZ+. Since the distributions of V −
a and V −

b are
identical after the time Tab we have for any n ≥ 1 by decomposing over the values of
Tab and using the Markov or renewal property

P(V −
a (n) ∈ A) =

n∑
m=1

P(Tab = m)P(V −
a (n−m) ∈ A) + P(V −

a (n) ∈ A, Tab > n)

P(V −
b (n) ∈ A) =

n∑
m=1

P(Tab = m)P(V −
b (n−m) ∈ A) + P(V −

b (n) ∈ A, Tab > n).

Using this and the inequality |x− y| ≤ max(x, y), x, y ≥ 0, we get

sup
A⊆ZZ+

|P(V −
a (n) ∈ A)− P(V −

b (n) ∈ A)| ≤ P(Tab > n). (18.9)

We already know that the right hand side of (18.9) tends to zero. But the left hand
side can be written as

sup
A⊆ZZ+

|P(V −
a (n) ∈ A)− P(V −

b (n) ∈ A)|

= 1
2

∞∑
m=0

|P(V −
a (n) = m)− P(V −

b (n) = m)|

= 1
2

n∑
m=0

|a ∗ u (n−m)p(m)− b ∗ u (n−m)p(m)|

= 1
2 |a ∗ u− b ∗ u| ∗ p(n) (18.10)

and so the result (18.7) holds.
It remains to remove the extraneous aperiodicity assumption (18.8).
To do this we use a rather nice trick. Let us modify the distribution p(j) to form

another distribution p0(j) on {0, 1, . . .} defined by setting

p0(0) = p > 0;

p0(j) = (1− p)p(j), j ≥ 1.

Let us now carry out all of the above analysis using p0, noting that even though this
is not a standard renewal sequence since p0(0) > 0, all of the operations used above
remain valid.
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Provided of course that p(j) is aperiodic in the usual way, we certainly have that
(18.8) holds for p0 and we can conclude that as n→∞,

|a ∗ u0 − b ∗ u0|(n) → 0, (18.11)

|a ∗ u0 − b ∗ u0| ∗ p0(n) → 0. (18.12)

Finally, by construction of p0 we have the two identities

p0(n) = (1− p)p(n), u0(n) = (1− p)−1u(n)

and consequently, from (18.11) and (18.12) we have exactly (18.6) and (18.7) as
required. �

Note that in the null recurrent case, since we do not have
∑
p(n) <∞, we cannot

prove this result from Lemma D.7.1 even though it is a identical conclusion to that
reached there in the positive recurrent case.

18.1.2 Orey’s convergence theorem

In the positive recurrent case, the asymptotic properties of the chain are interesting
largely because of the proper distribution π occurring as the limit of the sequence
Pn.

In the null recurrent case we know that no such limiting distribution can exist,
since there is no finite invariant measure.

It is therefore remarkable that we can give a strong result on the closeness of the
n-step distributions from different initial laws, even for chains which may be null.

Theorem 18.1.2 Suppose Φ is an aperiodic Harris recurrent chain. Then for any
initial probability distributions λ, µ,∫ ∫

λ(dx)µ(dy)‖Pn(x, · )− Pn(y, · )‖ → 0, n→∞. (18.13)

Proof Yet again we begin with the assumption that there is an atom α in the
space. Then for any x we have from the Regenerative Decomposition (13.47)

‖Pn(x, · )− Pn(α, · )‖ ≤ Px(τα ≥ n) + |ax ∗ u− u| (n) + |ax ∗ u− u| ∗ p (n) (18.14)

where now p(n) = Pα(τα > n). From Theorem 18.1.1 we know the last two terms in
(18.14) tend to zero, whilst the first tends to zero from Harris recurrence.

The result (18.13) then follows for any two specific initial starting points x, y
from the triangle inequality; it extends immediately to general initial distributions
λ, µ from dominated convergence.

As previously, the extension to strongly aperiodic chains is straightforward, whilst
the extension to general aperiodic chains follows from the contraction property of the
total variation norm. �

We conclude with a consequence of this theorem which gives a uniform version
of the fact that, in the null recurrent case, we have convergence of the transition
probabilities to zero.

Theorem 18.1.3 Suppose that Φ is aperiodic and null recurrent, with invariant mea-
sure π. Then for any initial distribution λ and any constant ε > 0

lim
n→∞ sup

A∈B(X)

∫
λ(dx)Pn(x,A)/[π(A) + ε] = 0. (18.15)



18.2 Characterizing positivity using Pn
461

Proof Suppose by way of contradiction that we have a sequence of integers {nk}
with nk → ∞ and a sequence of sets Bk ∈ B(X) such that, for some λ, and some
δ, ε > 0, ∫

λ(dx)Pnk(x,Bk) ≥ δ[π(Bk) + ε], k ∈ ZZ+. (18.16)

Now from (18.13), we know that for every y

|
∫
λ(dx)Pnk(x,Bk)− Pnk(y,Bk)| → 0, k →∞ (18.17)

and by Egorov’s Theorem and the fact that π(X) = ∞ this convergence is uniform
on a set with π-measure arbitrarily large.

In particular we can take k and D such that π(D) > δ−1 and

|
∫
λ(dx)Pnk(x,Bk)− Pnk(y,Bk)| ≤ εδ/2, y ∈ D. (18.18)

Combining (18.16) and (18.18) gives

π(Bk) =
∫
π(dy)Pnk(y,Bk)

≥
∫

D
π(dy)Pnk(y,Bk)

≥ π(D)[
∫
λ(dx)Pnk(x,Bk)− εδ/2]

≥ π(D)[δ(π(Bk) + ε)− εδ/2] (18.19)

which gives
π(D) ≤ δ−1,

thus contradicting the definition of D. �
The two results in Theorem 18.1.2 and Theorem 18.1.3 combine to tell us that,

on the one hand, the distributions of the chain are getting closer as n gets large;
and that they are getting closer on sets increasingly remote from the “center” of the
space, as described by sets of finite π-measure.

18.2 Characterizing positivity using P n

We have chosen to formulate positive recurrence initially, in Chapter 10, in terms of
the finiteness of the invariant measure π. The ergodic properties of such chains are
demonstrated in Chapters 13-16 as a consequence of this simple definition.

In contrast to this definition, the classical approach to the classification of ir-
reducible chains as positive or null recurrent uses the transition probabilities rather
than the invariant measure: typically, the invariant measure is demonstrated to exist
only after a null/positive dichotomy is established in terms of the convergence prop-
erties of Pn(x,A) for appropriate sets A. Null chains in this approach are those for
which Pn(x,A) → 0 for, say, all x and all small sets A, and almost by default, positive
recurrent chains are those which are not null; that is, for which lim supPn(x,A) > 0.

We now develop a classification of states or of sets as positive recurrent or null
using transition probabilities, and show that this approach is consistent with the
definitions involving invariant measures in the case of ψ-irreducible chains.
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18.2.1 Countable spaces

We will first consider the classical classification of null and positive chains based on
Pn in the countable state space case.

When X is countable, recall that recurrence of individual states x, y ∈ X involves
consideration of the finiteness or otherwise of Ex(ηy) = U(x, y) =

∑∞
n=1 P

n(x, y). The
stronger condition

lim sup
n→∞

Pn(x, y) > 0 (18.20)

obviously implies that
Ex(ηy) =∞; (18.21)

and since in general, because of the cyclic behavior in Section 5.4, we may have

lim inf
n→∞ Pn(x, y) = 0, (18.22)

the condition (18.20) is often adopted as the next strongest stability condition after
(18.21).

This motivates the following definitions.

Null and positive states

(i) The state α is called null if limn→∞ Pn(α,α) = 0.

(ii) The state α is called positive if lim supn→∞ Pn(α,α) > 0.

When Φ is irreducible, either all states are positive or all states are null, since for any
w, z there exist r, s such that P r(w, x) > 0 and P s(y, z) > 0 and

lim sup
n→∞

P r+s+n(w, z) > P r(w, x)[lim sup
n→∞

Pn(x, y)]P s(y, z). (18.23)

We need to show that these solidarity properties characterize positive and null chains
in the sense we have defined them. One direction of this is easy, for if the chain is
positive recurrent, with invariant probability π, then we have for any n

π(y) =
∑
x

π(x)Pn(x, y);

hence if limn→∞ Pn(w,w) = 0 for some w then by (18.23) and dominated convergence
π(y) ≡ 0, which is impossible. The other direction is easy only if one knows, not merely
that lim supn→∞ Pn(x, y) > 0 but that (at least through an aperiodic class) this is
actually a limit. Theorem 18.1.3 now gives this to us.

Theorem 18.2.1 If Φ is irreducible on a countable space then the chain is positive
recurrent if and only if some one state is positive. When Φ is positive recurrent, for
some d ≥ 1
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lim
n→∞Pnd+r(x, y) = dπ(y) > 0

for all x, y ∈ X, and some 0 ≤ r(x, y) ≤ d− 1; and when Φ is null

lim
n→∞Pn(x, y) = 0

for all x, y ∈ X.

Proof If the chain is transient then since U(x, y) < ∞ for all x, y from Proposi-
tion 8.1.1 we have that every state is null; whilst if the chain is null recurrent then
since π(y) <∞ for all y, Theorem 18.1.3 shows that every state is null.

Suppose that the chain is positive recurrent, with period d: then the Aperiodic
Ergodic Theorem for the chain on the cyclic class Dj shows that for x, y ∈ Dj we
have

lim
n→∞Pnr(x, y) = dπ(y) > 0

whilst for z ∈ Dj−r (mod d) we have P j−r(z,Dj) = 1, showing that every state is
positive. �

The simple equivalences in this result are in fact surprisingly hard to prove until
we have established, not just the properties of the sequences lim supPn, but the
actual existence of the limits of the sequences Pn through the periodic classes. This
is why this somewhat elementary result has been reserved until now to establish.

18.2.2 General spaces

We now move on to the equivalent concepts for general chains: here, we must consider
properties of sets rather than individual states, but we will see that the results above
have completely general analogues.

When X is general, the definitions for sets which we shall use are

Null and positive sets

(i) The set A is called null if limn→∞ Pn(x,A) = 0 for all x ∈ A.

(ii) The set A is called positive if lim supn→∞ Pn(x,A) > 0 for all
x ∈ A.

We now prove that these definitions are consistent with the definitions of null and
positive recurrence for general ψ-irreducible chains.

Theorem 18.2.2 Suppose that Φ is ψ-irreducible. Then

(i) the chain Φ is positive recurrent if and only if every set B ∈ B+(X) is positive;

(ii) if Φ is null then every petite set is null and hence there is a sequence of null sets
Bj with

⋃
j Bj = X.
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Proof If the chain is null then either it is transient, in which case each petite set
is strongly transient and thus null by Theorem 8.3.5; or it is null and recurrent in
which case, since π exists and is finite on petite sets by Proposition 10.1.2, we have
that every petite set is again null from Theorem 18.1.3.

Suppose the chain is positive recurrent and we have A ∈ B+(X). For x ∈ D0 ∩H,
where H is the maximal Harris set, and D0 is an arbitrary cyclic set, we have for each
r

lim
n→∞Pnd+r(x,A) = dπ(A ∩Dr)

which is positive for some r. Since for every x we have L(x,D0∩H) > 0 we have that
the set A is positive. �

18.3 Positivity and T-chains

18.3.1 T-chains bounded in probability

In Chapter 12 we showed that chains on a topological space which are bounded
in probability admit finite subinvariant measures under a wide range of continuity
conditions.

It is thus reasonable to hope that ψ-irreducible chains on a topological space which
are bounded in probability will be positive recurrent. Not surprisingly, we will see in
this section that such a result is true for T-chains, and indeed we can say considerably
more: boundedness in probability is actually equivalent to positive Harris recurrence
in this case. Moreover, for T-chains positive or null sets also govern the behavior of
the whole chain.

It is easy to see that on a countable space, where the continuous component prop-
erties are always satisfied, irreducible chains admit the following connection between
boundedness in probability and positive recurrence.

Proposition 18.3.1 For an irreducible chain on a countable space, positive Harris
recurrence is equivalent to boundedness in probability.

Proof In the null case we do not have boundedness in probability since Pn(x, y) →
0 for all x, y from Theorem 18.2.1.

In the positive case we have on each periodic set Dr a finite probability measure
πr such that if x ∈ D0

lim
n→∞Pnd+r(x,C) = πr(C) (18.24)

so by choosing a finite C such that πr(C) > 1−ε for all 1 ≤ r ≤ d we have boundedness
in probability as required. �

The identical conclusion holds for T-chains. To get the broadest presentation,
recall that a state x� ∈ X is reachable if

U(y,O) > 0

for every state y ∈ X, and every open set O containing x�.

Theorem 18.3.2 Suppose that Φ is a T-chain and admits a reachable state x�. Then
Φ is a positive Harris chain if and only if it is bounded in probability.
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Proof First note from Proposition 6.2.1 that for a T-chain the existence of just
one reachable state x� gives ψ-irreducibility, and thus Φ is either positive or null.

Suppose that Φ is bounded in probability. Then Φ is non-evanescent from Propo-
sition 12.1.1, and hence Harris recurrent from Theorem 9.2.2.

Moreover, boundedness in probability implies by definition that some compact
set is non-null, and hence from Theorem 18.2.2 the chain is positive Harris, since
compact sets are petite for T-chains.

Conversely, assume that the chain is positive Harris, with periodic sets Dj each
supporting a finite probability measure πj satisfying (18.24). Choose ε > 0, and
compact sets Cr ⊆ Dr such that πr(Cr) > 1− ε for each r.

If x ∈ Dj then with C := ∪Cr,

lim
n→∞Pnd+r−j(x,C) = πr(Cr) > 1− ε. (18.25)

If x is in the non-cyclic set N = X\ ∪Dj then Pn(x,∪Dj) → 1 by Harris recurrence,
and thus from (18.25) we also have lim infn Pn(x,C) > 1 − ε, and this establishes
boundedness in probability as required. �

18.3.2 Positive and null states for T-chains

The ideas encapsulated in the definitions of positive and null states in the countable
case and positive and null sets in the general state space case find their counterparts
in the local behavior of chains on spaces with a topology.

Analogously to the definition of topological recurrence at a point we have

Topological positive and null recurrence of states

We shall call a state x∗

(i) null if limn→∞ Pn(x∗, O) = 0 for some neighborhood O of x∗;

(ii) positive if lim supn→∞ Pn(x∗, O) > 0 for all neighborhoods O of
x∗.

We now show that these topological properties for points can be linked to their
counterparts for the whole chain when the T-chain condition holds. This completes
the series of results begun in Theorem 9.3.3 connecting global properties of T-chains
with those at individual points.

Proposition 18.3.3 Suppose that Φ is a T-chain, and suppose that x∗ is a reachable
state. Then the chain Φ is positive recurrent if and only if x∗ is positive.

Proof From Proposition 6.2.1 the existence of a reachable state ensures the chain
is ψ-irreducible. Assume that x∗ is positive. Since Φ is a T-chain, there exists an open
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petite set C containing x∗ (take any precompact open neighborhood) and hence by
Theorem 18.2.2 the chain is also positive.

Conversely, suppose that Φ has an invariant probability π so that Φ is positive
recurrent. Since x� is reachable it also lies in the support of π, and consequently any
neighborhood of x∗ is in B+(X). Hence x� is positive as required, from Theorem 18.2.2.

�

18.4 Positivity and e-Chains

For T-chains we have a great degree of coherence in the concepts of positivity. Al-
though there is not quite the same consistency for weak Feller chains, within the
context of chains bounded in probability we can develop several valuable approaches,
as we saw in Chapter 12.

In particular, for e-chains we now prove several further positivity results to in-
dicate the level of work needed in the absence of ψ-irreducibility. It is interesting to
note that it is the existence of a reachable state that essentially takes over the role of
ψ-irreducibility, and that such states then interact well with the e-chain assumption.

18.4.1 Reachability and positivity

To begin we show that for an e-chain which is non-evanescent, the topological irre-
ducibility condition that a reachable state exists is equivalent to the measure-theoretic
irreducibility condition that the limiting measure Π(x,X) is independent of the start-
ing state x. Boundedness in probability on average is then equivalent to positivity of
the reachable state.

We first give a general result for Feller chains:

Lemma 18.4.1 If Φ is a Feller chain and if a reachable state x� exists, then for any
pre-compact neighborhood O containing x�,

{Φ →∞} = {Φ ∈ O i.o.}c a.s. [P∗]

Proof Since L(x,O) is a lower semicontinuous function of x by Proposition 6.1.1,
and since by reachability it is strictly positive everywhere, it follows that L(x,O) is
bounded from below on compact subsets of X.

Letting {On} denote a sequence of pre-compact open subsets of X with On ↑ X,
it follows that On � O for each n, and hence by Theorem 9.1.3 we have

{Φ ∈ On i.o.} ⊆ {Φ ∈ O i.o.} a.s. [P∗]

This immediately implies that

{Φ →∞}c =
⋃
n≥1

{Φ ∈ On i.o.} ⊆ {Φ ∈ O i.o.} a.s. [P∗],

and since it is obvious that {Φ →∞} ⊆ {Φ ∈ O i.o.}c, this proves the lemma. �

Proposition 18.4.2 Suppose that Φ is an e-chain which is non-evanescent, and sup-
pose that a reachable state x� ∈ X exists. Then the following are equivalent:
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(i) There exists a unique invariant probability π such that

P k(x, · ) w−→ π as k →∞;

(ii) Φ is bounded in probability on average;

(iii) x� is positive.

Proof The identity PΠ = Π which is proved in Theorem 12.4.1 implies that for
any f ∈ Cc(X), the adapted process (Π(Φk, f),FΦ

k ) is a bounded martingale. Hence
by the Martingale Convergence Theorem D.6.1 there exists a random variable π̃(f)
for which

lim
k→∞

Π(Φk, f) = π̃(f) a.s. [P∗],

with Ey[π̃(f)] = Π(y, f) for all y ∈ X.
Since Π(y, f) is a continuous function of y, it follows from Lemma 18.4.1 that

lim inf
k→∞

|Π(Φk, f)−Π(x�, f)| = 0 a.s. [P∗],

which gives π̃(f) = Π(x�, f) a.s. [P∗]. Taking expectations gives Π(y, f) = Ey[π̃(f)] =
Π(x�, f) for all y.

Since a finite measure on B(X) is determined by its values on continuous functions
with compact support, this shows that the measures Π(y, · ), y ∈ X, are identical.
Let π denote their common value.

To prove Proposition 18.4.2 we first show that (i) and (iii) are equivalent. To
see that (iii) implies (i), observe that under positivity of x� we have Π(x�,X) > 0,
and since Π(y,X) = π(X) does not depend on y it follows from Theorem 12.4.3 that
Π(y,X) = 1 for all y. Hence π is an invariant probability, which shows that (i) does
hold.

Conversely, if (i) holds then by reachability of x� we have x� ∈ suppπ and hence
every neighborhood of x� is positive. This shows that (iii) also holds.

We now show that (i) is equivalent to (ii).
It is obvious that (i) implies (ii). To see the converse, observe that if (ii) holds

then by Theorem 12.4.1 we have that π is an invariant probability. Moreover, since
x� is reachable we must have that π(O) > 0 for any neighborhood of x�. Since
Π(y,O) = π(O) for every y, this shows that x� is positive.

Hence (iii) holds, which implies that (i) also holds. �

18.4.2 Aperiodicity and convergence

The existence of a limit for P k in Proposition 18.4.2 rather than for the individual
terms Pn seems to follow naturally in the topology we are using here.

We can strengthen such convergence results using a topological notion of aperiod-
icity and we turn to such concepts in the this section. It appears to be a particularly
difficult problem to find such limits for the terms Pn in the weak Feller situation
without an e-chain condition.

In the topological case we use a definition justified by the result in Lemma D.7.4,
which is one of the crucial consequences of the definitions in Chapter 5.
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Topological aperiodicity of states

A recurrent state x is called aperiodic if P k(x,O) > 0 for each open set
O containing x, and all k ∈ ZZ+ sufficiently large.

The following result justifies this definition of aperiodicity and strengthens Theo-
rem 12.4.1.

Proposition 18.4.3 Suppose that Φ is an e-chain which is bounded in probability on
average. Let x� ∈ X be reachable and aperiodic, and let π = Π(x�, · ). Then for each
initial condition y lying in suppπ,

P k(y, · ) w−→ π as k →∞ (18.26)

Proof For any f ∈ Cc(X) we have by stationarity,∫
|P kf | dπ =

∫
[
∫
P |P kf | ]dπ ≥

∫
|P k+1f | dπ,

and hence v := limk→∞
∫
|P kf | dπ exists.

Since {P kf} is equicontinuous on compact subsets of X, there exists a continuous
function g, and a subsequence {ki} ⊂ ZZ+ for which P kif → g as i → ∞ uniformly
on compact subsets of X. Hence we also have P ki+�f → P �g as i→∞ uniformly on
compact subsets of X.

By the Dominated Convergence Theorem we have for all � ∈ ZZ+,∫
P �g dπ =

∫
f dπ and

∫
|P �g| dπ = v. (18.27)

We will now show that this implies that the function g cannot change signs on suppπ.
Suppose otherwise, so that the open sets

O+ := {x ∈ X : g(x) > 0}, O− := {x ∈ X : g(x) < 0}

both have positive π measure.
Because x� ∈ suppπ, it follows by Proposition 18.4.2 that there exists k+, k− ∈

ZZ+ such that
P k+(y,O+) > 0 and P k−(y,O−) > 0 (18.28)

when y = x�, and since Pn( · , O) is lower semicontinuous for any open set O ⊂ X,
equation (18.28) holds for all y in an open neighborhood N containing x�.

We may now use aperiodicity. Since P k(x�, N) > 0 for all k sufficiently large, we
deduce from (18.28) that there exists � ∈ ZZ+ for which

P �(y,O+) > 0 and P �(y,O−) > 0

when y = x�, and hence for all y in an open neighborhood N ′ of x�. This implies that
|P �g| < P �|g| on N ′, and since π{N ′} > 0, that

∫
|P �g| dπ <

∫
|g| dπ, in contradiction

to the second equality in (18.27).
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Hence g does not change signs in suppπ. But by (18.27) it follows that if
∫
f dπ =

0 then

0 = |
∫
g dπ| =

∫
|g| dπ,

so that g ≡ 0 on suppπ. This shows that the limit (18.26) holds for all initial condi-
tions in suppπ. �

We now show that if a reachable state exists for an e-chain then the limit in
Proposition 18.4.3 holds for each initial condition. A sample path version of Theo-
rem 18.4.4 will be presented below.

Theorem 18.4.4 Suppose that Φ is an e-chain which is bounded in probability on
average. Then

(i) A unique invariant probability π exists if and only if a reachable state x� ∈ X
exists;

(ii) If an aperiodic reachable state x� ∈ X exists, then for each initial state x ∈ X,

P k(x, · ) w−→ π as k →∞, (18.29)

where π is the unique invariant probability for Φ. Conversely, if (18.29) holds
for all x ∈ X then every state in suppπ is reachable and aperiodic.

Proof The proof of (i) follows immediately from Proposition 18.4.2, and the con-
verse of (ii) is straightforward.

To prove the remainder, we assume that the state x� ∈ X is reachable and aperi-
odic, and show that equation (18.29) holds for all initial conditions.

Suppose that
∫
f dπ = 0, |f(x)| ≤ 1 for all x, and for fixed ε > 0 define the set

Oε := {x ∈ X : lim sup
k→∞

|P kf | < ε}.

Because the Markov transition function P is equicontinuous, and because Proposi-
tion 18.4.3 implies that (18.29) holds for all initial conditions in suppπ, the set Oε is
an open neighborhood of suppπ.

Hence π{Oε} = 1, and since Oε is open, it follows from Theorem 18.4.4 (i) that

lim
N→∞

PN (x,Oε) = 1.

Fix x ∈ X, and choose N0 ∈ ZZ+ such that PN0(x,Oε) ≥ 1− ε. We then have by the
definition of Oε and Fatou’s Lemma,

lim sup
k→∞

|PN0+kf (x)| ≤ PN0(x,Oc
ε) + lim sup

k→∞

∫
Oε

PN0(x, dy)|P kf (y)|

≤ 2ε.

Since ε is arbitrary, this completes the proof. �
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18.5 The LLN for e-Chains

As a final result, illustrating both these methods and the sample path methods de-
veloped in Chapter 17, we now give a sample path version of Proposition 18.4.2 for
e-chains.

Define the occupation probabilities as

µ̃n{A} := Sn(1lA) =
1
n

n∑
k=1

1l{Φk ∈ A} n ∈ ZZ+, A ∈ B(X). (18.30)

Observe that {µ̃k} are not probabilities in the usual sense, but are probability-valued
random variables.

The Law of Large Numbers (Theorem 17.1.2) states that if an invariant probabil-
ity measure π exists, then the occupation probabilities converge with probability one
for each initial condition lying in a set of full π-measure. We now present two versions
of the law of large numbers for e-chains where the null set appearing in Theorem 17.1.2
is removed by restricting consideration to continuous, bounded functions. The first
is a Weak Law of Large Numbers, since the convergence is only in probability, while
the second is a Strong Law with convergence occurring almost surely.

Theorem 18.5.1 Suppose that Φ is an e-chain bounded in probability on average,
and suppose that a reachable state exists. Then a unique invariant probability π exists
and the following limits hold.

(i) For any f ∈ C(X), as k →∞ ∫
f dµ̃k →

∫
f dπ

in probability for each initial condition;

(ii) If for each initial condition of the Markov chain the occupation probabilities are
almost surely tight, then as k →∞

µ̃k
w−→ π a.s. [P∗]. (18.31)

Proof Let f ∈ C(X) with 0 ≤ f(x) ≤ 1 for all x, let C ⊂ X be compact and
choose ε > 0. Since P kf →

∫
f dπ as k → ∞, uniformly on compact subsets of X,

there exists M sufficiently large for which

∣∣∣ 1
N

N∑
k=1

PMf (Φk)−
∫
f dπ

∣∣∣ ≤ ε+
1
N

N∑
i=1

1l{Φi ∈ Cc} (18.32)

Now for any M ∈ ZZ+, we will show

| 1
N

N∑
k=1

f(Φk)−
∫
f dπ| = | 1

N

N∑
k=1

PMf(Φk)−
∫
f dπ|+ o(1) (18.33)

where the term o(1) converges to zero as n→∞ with probability one.
For each N , n ∈ ZZ+ we have
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1
N

N∑
k=1

f(Φk)−
∫
f dπ =

n−1∑
i=0

1
N

N∑
k=1

(
P if(Φk−i)− P i+1f(Φk−i−1)

)

+
1
N

N∑
k=1

Pnf(Φk)−
∫
f dπ

+
1
N

N∑
k=1

(
Pnf(Φk−n)− Pnf(Φk)

)
where we adopt the convention that Φk = Φ0 for k ≤ 0. For each M ∈ ZZ+ we may
average the right hand side of this equality from n = 1 to M to obtain

1
N

N∑
k=1

f(Φk)−
∫
f dπ =

1
M

M∑
n=1

(
n−1∑
i=0

1
N

N∑
k=1

(
P if(Φk−i)− P i+1f(Φk−i−1)

))

+
1
N

N∑
k=1

( 1
M

M∑
n=1

Pnf(Φk)
)
−
∫
f dπ

+
1
M

M∑
n=1

( 1
N

N∑
k=1

Pnf(Φk−n)− Pnf(Φk)
)

The fourth term is a telescoping series, and hence recalling our definition of the
transition function PM we have

∣∣∣ 1
N

N∑
k=1

f(Φk)−
∫
f dπ

∣∣∣ ≤
M−1∑
i=0

∣∣∣ 1
N

N∑
k=1

(
P if(Φk−i)− P i+1f(Φk−i−1)

)∣∣∣
+
∣∣∣ 1
N

N∑
k=1

(
PMf (Φk)−

∫
f dπ

)∣∣∣
+

2M
N

(18.34)

For each fixed 0 ≤ i ≤M − 1 the sequence(
P if(Φk−i)− P i+1f(Φk−i−1),FΦ

k−i

)
k > i,

is a bounded martingale difference process. Hence by Theorem 5.2 of Chapter 4 of
[68], the first summand converges to zero almost surely for every M ∈ ZZ+, and thus
(18.33) is proved.

Hence for any γ > ε, it follows from (18.33) and (18.32) that

lim sup
N→∞

Px

{∣∣∣ 1
N

N∑
k=1

f(Φk)−
∫
f dπ

∣∣∣ ≥ γ
}

≤ lim sup
N→∞

Px

{ 1
N

N∑
i=1

1l{Φi ∈ Cc} ≥ γ − ε
}

≤ 1
γ − ε

lim sup
N→∞

Ex

[ 1
N

N∑
i=1

1l{Φi ∈ Cc}
]

Since Φ is bounded in probability on average, the right hand side decreases to zero
as C ↑ X, which completes the proof of (i).
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To prove (ii), suppose that the occupation probabilities {µ̃k} are tight along some
sample path. Then we may choose the compact set C in (18.32) so that along this
sample path

lim sup
N→∞

∣∣∣ 1
N

N∑
k=1

PMf (Φk)−
∫
f dπ

∣∣∣ ≤ 2ε.

Since ε > 0 is arbitrary, (18.33) shows that

lim
N→∞

1
N

N∑
k=1

f (Φk) =
∫
f dπ a.s. [P∗]

so that the Strong Law of Large Numbers holds for all f ∈ C(X) and all initial
conditions x ∈ X.

Let {fn} be a sequence of continuous functions with compact support which is
dense in Cc(X) in the uniform norm. Such a sequence exists by Proposition D.5.1.
Then by the preceding result,

Px

{
lim

k→∞

∫
fndµ̃k =

∫
fndπ for each n ∈ ZZ+

}
= 1,

which implies that µ̃k
v−→ π as k → ∞. Since π is a probability, this shows that in

fact µ̃k
w−→ π a.s. [P∗], and this completes the proof. �

We conclude by stating a result which, combined with Theorem 18.5.1, provides
a test function approach to establishing the Law of Large Numbers for Φ. For a proof
see [169].

Theorem 18.5.2 If a norm-like function V and a compact set C satisfy condi-
tion (V4) then Φ is bounded in probability, and the occupation probabilities are almost
surely tight for each initial condition. Hence, if Φ is an e-chain, and if a reachable
state exists,

µ̃k
w−→ π as k →∞ a.s. [P∗]. (18.35)

18.6 Commentary

Theorem 18.1.2 for positive recurrent chains is first proved in Orey [207], and the null
recurrent version we give here is in Jamison and Orey [111]. The dependent coupling
which we use to prove this result for null recurrent chains is due to Ornstein [209],
[210], and is also developed in Berbee [20]. Our presentation of this material has relied
heavily on Nummelin [202], and further related results can be found in his Chapter 6.

Theorem 18.1.3 is due to Jain [105], and our proof is taken from Orey [208].
The links between positivity of states, boundedness in probability, and positive

Harris recurrence for T-chains are taken from Meyn [169], Meyn and Tweedie [178]
and Tuominen and Tweedie [269]. In [178] analogues of Theorem 18.3.2 and Proposi-
tion 18.3.3 are obtained for non-irreducible chains.

The convergence result Theorem 18.4.4 for chains possessing an aperiodic reach-
able state is based upon Theorem 8.7.2 of Feller [77].

The use of the martingale property of Π(Φk, f) to obtain uniqueness of the invari-
ant probability in Proposition 18.4.2 is originally in [109]. This is a powerful technique
which is perhaps even more interesting in the absence of a reachable state.
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For suppose that the chain is bounded in probability but a reachable state does
not exist, and define an equivalence relation on X as follows: x ↔ y if and only if
Π(x, · ) = Π(y, · ). It follows from the same techniques which were used in the proof
of Proposition 18.4.2, that if x is recurrent then the set of all states Ex for which
y ↔ x is closed. Since x ∈ Ex for every recurrent point x ∈ R, F = X−∑Ex consists
entirely of non-recurrent points. It then follows from Proposition 3.3 of Tuominen
and Tweedie [270] that F is transient.

From this decomposition and Proposition 18.4.3 it is straightforward to generalize
Theorem 18.4.4 to chains which do not possess a reachable state. The details of this
decomposition are spelled out in Meyn and Tweedie [182].

Such decompositions have a large literature for Feller chains and e-chains: see
for example Jamison [109] and also Rosenblatt [227] for e-chains, and Jamison and
Sine [112], Sine [243, 242, 241] and Foguel [78, 80] for Feller chains and the detailed
connections between the Feller property and the stronger e-chain property. All of
these papers consider exclusively compact state spaces. The results for non-compact
state spaces appear here for the first time.

The LLN for e-chains is originally due to Breiman [29] who considered Feller
chains on a compact state space. Also on a compact state space is Jamison’s extension
of Breiman’s result [108] where the LLN is obtained without the assumption that a
unique invariant probability exists.

One of the apparent difficulties in establishing this result is finding a candidate
limit π̃(f) of the sample path averages 1

nSn(f). Jamison resolved this by considering
the transition function Π, and the associated convergent martingale (Π(Φk, A),FΦ

k ).
If the chain is bounded in probability on average then we define the random probability
π̃ as

π̃{A} := lim
k→∞

Π(Φk, A), A ∈ B(X). (18.36)

It is then easy to show by modifying (18.34) that Theorem 18.5.1 continues to hold
with

∫
f dπ replaced by

∫
f dπ̃, even when no reachable state exists for the chain. The

proof of Theorem 18.5.1 can be adopted after it is appropriately modified using the
limit (18.36).
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Generalized Classification Criteria

We have now developed a number of simple criteria, solely involving the one step
transition function, which enable us to classify quite general Markov chains. We have
seen, for example, that the equivalences in Theorem 11.0.1, Theorem 13.0.1, or The-
orem 15.0.1 give an effective approach to the analysis of many systems.

For more complex models, however, the analysis of the simple one step drift

∆V (x) =
∫
P (x, dy)[V (y)− V (x)]

towards petite sets may not be straightforward, or indeed may even be impractica-
ble. Even though we know from the powerful converse theory in the theorems just
mentioned that for most forms of stability, there must be at least one V with the one
step drift ∆V suitably negative, finding such a function may well be non-trivial.

In this chapter we conclude our approach to stochastic stability by giving a num-
ber of more general drift criteria which enable the classification of chains where the
one-step criteria are not always straightforward to construct. All of these variations
are within the general framework described previously. The steps to be used in prac-
tice are, we hope, clear from the preceding chapters, and follow the route reiterated
in Appendix A.

There are three generalizations of the drift criteria which we consider here.

(a) State dependent drift conditions, which allow for negative drifts after a number
of steps n(x) depending on the state x from which the chain starts;

(b) Path or history dependent drift conditions, which allow for functions of the whole
past of the process to show a negative drift;

(c) Mixed or “average” drift conditions, which allow for functions whose drift varies
in direction, but which is negative in a suitably “averaged” way.

For each of these we also indicate the application of the method by example. The
state-dependent drift technique is used to analyze random walk on IR2

+ and a model
of invasion/defense, where simple one-step drift conditions seem almost impossible
to construct; the history-dependent methods are shown to be suited to bilinear mod-
els with random coefficients, where again one-step drift conditions seem to fail; and,
finally, the mixed drift analysis gives us a criterion for ladder processes, and in par-
ticular the Markovian representation of the full GI/G/1 queue, to be ergodic.
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19.1 State-dependent drifts

19.1.1 The state-dependent drift criteria

In this section we consider consequences of state-dependent drift conditions of the
form ∫

Pn(x)(x, dy)V (y) ≤ g[V (x), n(x)], x ∈ Cc, (19.1)

where n(x) is a function from X to ZZ+, g is a function depending on which type of
stability we seek to establish, and C is an appropriate petite set.

The function n(x) here provides the state-dependence of the drift conditions,
since from any x we must wait n(x) steps for the drift to be negative.

In order to develop results in this framework we work with an “embedded” chain
Φ̂. Using n(x) we define the new transition law {P̂ (x,A)} by

P̂ (x,A) = Pn(x)(x,A), x ∈ X, A ∈ B(X), (19.2)

and let Φ̂ be the corresponding Markov chain. This Markov chain may be constructed
explicitly as follows. The time n(x) is a (trivial) stopping time. Let s(k) denote its
iterates: that is, along any sample path, s(0) = 0, s(1) = n(x) and

s(k + 1) = s(k) + n(Φs(k)).

Then it follows from the strong Markov property that

Φ̂k = Φs(k), k ≥ 0 (19.3)

is a Markov chain with transition law P̂ .
Let F̂k = Fs(k) be the σ-field generated by the events “before s(k)”: that is,

F̂k := {A : A ∩ {s(k) ≤ n} ∈ Fn, n ≥ 0}.
We let τ̂A, σ̂A denote the first return and first entry index to A respectively for the
chain Φ̂. Clearly s(k) and the events {σ̂A ≥ k}, {τ̂A ≥ k} are F̂k−1-measurable for
any A ∈ B(X).

Note that s(τ̂C) denotes the time of first return to C by the original chain Φ
along an embedded path, defined by

s(τ̂C) :=
τ̂C−1∑

0

n(Φ̂k). (19.4)

From (19.3) we have

s(τ̂C) ≥ τC , s(σ̂C) ≥ σC , a.s. [P∗]. (19.5)

These relations will enable us to use the drift equations (19.1), with which we
will bound the index at which Φ̂ reaches C, to bound the hitting times on C by the
original chain.

We first give a state-dependent criterion for Harris recurrence.

Theorem 19.1.1 Suppose that Φ is a ψ-irreducible chain on X, and let n(x) be a
function from X to ZZ+. The chain is Harris recurrent if there exists a non-negative
function V unbounded off petite sets, and some petite set C satisfying∫

Pn(x)(x, dy)V (y) ≤ V (x), x ∈ Cc. (19.6)
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Proof The proof is an adaptation of the proof of Theorem 9.4.1.
Let C0 = C, and let Cn = {x ∈ X : V (x) ≤ n}. By assumption, the sets Cn,

n ∈ ZZ+, are petite.
Now suppose by way of contradiction that Φ is not Harris recurrent. By The-

orem 8.0.1 the chain is either recurrent, but not Harris recurrent, or the chain is
transient. In either case, we show that there exists an initial condition x0 such that

Px0{(Φ ∈ C i.o.)c ∩ (V (Φk) →∞)} > 0. (19.7)

Firstly, if the chain is transient, then by Theorem 8.3.5 each Cn is uniformly transient,
and hence V (Φk) →∞ as k →∞ a.s. [P∗], and so (19.7) holds.

Secondly, if Φ is recurrent, then the state space may be written as

X = H ∪N (19.8)

where H = N c is a maximal Harris set and ψ(N) = 0; this follows from Theorem 9.0.1.
Since for each n the set Cn is petite we have Cn � H, and hence by Theorem 9.1.3,

{Φ ∈ Cn i.o.} ⊂ {Φ ∈ H i.o.} a.s. [P∗].

It follows that the inclusion {lim inf V (Φn) < ∞} ⊂ {Φ ∈ H i.o.} holds with proba-
bility one. Thus (19.7) holds for any x0 ∈ N , and if the chain is not Harris, we know
N is non-empty.

Now from (19.7) there exists M ∈ ZZ+ with

Px0{(Φk ∈ Cc, k ≥M) ∩ (V (Φk) →∞)} > 0 :

letting µ = PM (x0, · ), we have by conditioning at time M ,

Pµ{(σC =∞) ∩ (V (Φk) →∞)} > 0. (19.9)

We now show that (19.9) leads to a contradiction when (19.6) holds.
Define the chain Φ̂ as in (19.3). We can write (19.6), for every k, as

E[V (Φ̂k+1) | F̂k] ≤ V (Φ̂k) a.s. [P∗]

when σ̂C > k, k ∈ ZZ+.
Let Mi = V (Φ̂i)1l{σ̂C ≥ i}. Using the fact that {σ̂C ≥ k} ∈ F̂k−1, we have that

E[Mk | F̂k−1] = 1l{σ̂C ≥ k}E[V (Φ̂k) | F̂k−1] ≤ 1l{σ̂C ≥ k}V (Φ̂k−1) ≤Mk−1.

Hence (Mk, F̂k) is a positive supermartingale, so that from Theorem D.6.2 there exists
an almost surely finite random variable M∞ such that Mk → M∞ a.s. as k → ∞.
From the construction of Mi, either σ̂C < ∞ in which case M∞ = 0, or σ̂C = ∞ in
which case lim supk→∞ V (Φ̂k) = M∞ <∞ a.s.

Since σC <∞ whenever σ̂C <∞, this shows that for any initial distribution µ,

Pµ{{σC <∞} ∪ {lim inf
n→∞ V (Φn) <∞}c} = 1.

This contradicts (19.9), and hence the chain is Harris recurrent. �
We next prove a state-dependent criterion for positive recurrence.
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Theorem 19.1.2 Suppose that Φ is a ψ-irreducible chain on X, and let n(x) be a
function from X to ZZ+. The chain is positive Harris recurrent if there exists some
petite set C, a non-negative function V bounded on C, and a positive constant b
satisfying ∫

Pn(x)(x, dy)V (y) ≤ V (x)− n(x) + b1lC(x), x ∈ X (19.10)

in which case for all x
Ex[τC ] ≤ V (x) + b. (19.11)

Proof The state-dependent drift criterion for positive recurrence is a direct con-
sequence of the f -ergodicity results of Theorem 14.2.2, which tell us that without any
irreducibility or other conditions on Φ, if f is a non-negative function and∫

P (x, dy)V (y) ≤ V (x)− f(x) + b1lC(x), x ∈ X (19.12)

for some set C then for all x ∈ X

Ex

[τC−1∑
k=0

f(Φk)
]
≤ V (x) + b. (19.13)

Again define the chain Φ̂ as in (19.3). From (19.10) we can use (19.13) for Φ̂,
with f(x) taken as n(x), to deduce that

Ex

[τ̂C−1∑
k=0

n(Φ̂k)
]
≤ V (x) + b. (19.14)

But we have by adding the lengths of the embedded times n(x) along any sample
path that from (19.4)

τ̂C−1∑
k=0

n(Φ̂k) = s(τ̂C) ≥ τC .

Thus from (19.14) and the fact that V is bounded on the petite set C, we have that
Φ is positive Harris using the one-step criterion in Theorem 13.0.1, and the bound
(19.11) follows also from (19.14). �

We conclude the section with a state-dependent criterion for geometric ergodicity.

Theorem 19.1.3 Suppose that Φ is a ψ-irreducible chain on X, and let n(x) be a
function from X to ZZ+. The chain is geometrically ergodic if it is aperiodic and there
exists some petite set C, a non-negative function V ≥ 1 and bounded on C, and
positive constants λ < 1 and b <∞ satisfying∫

Pn(x)(x, dy)V (y) ≤ λn(x)[V (x) + b1lC(x)]. (19.15)

When (19.15) holds, ∑
n

rn‖Pn(x, · )− π‖ ≤ RV (x), x ∈ X (19.16)

for some constants R <∞ and r > 1.
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Proof Suppose that (19.15) holds, and define

V ′(x) = 2(V (x)− 1/2) ≥ 1.

Then we can write (19.15) as∫
P̂ (x, dy)V ′(y) ≤ λn(x)[2V (x) + 2b1lC(x)]− 1

= λn(x)[V ′(x) + 1 + 2b1lC(x)]− 1
(19.17)

Without loss of generality we will therefore assume that V itself satisfies the inequality∫
P̂ (x, dy)V (y) ≤ λn(x)[V (x) + 1 + b1lC(x)]− 1. (19.18)

We now adapt the proof of Theorem 15.2.5. Define the random variables

Zk = κs(k)V (Φ̂k)

for k ∈ ZZ+. It follows from (19.18) that for κ = λ−1, since κs(k+1) is F̂k-measurable,

E[Zk+1 | F̂k] = κs(k+1)E[V (Φ̂k+1) | F̂k]

≤ κs(k+1){κ−n(Φk)[V (Φk) + 1 + b1lC(Φk)]− 1}

= Zk − κs(k+1) + κs(k) + κs(k)b1lC(Φk).

Using Proposition 11.3.2 we have

Ex

[τ̂C−1∑
k=0

[κs(k+1) − κs(k)]
]
≤ Z0(x) + Ex

[τ̂C−1∑
k=0

κs(k)b1lC(Φ̂k)
]
.

Collapsing the sum on the left and using the fact that only the first term in the sum
on the right is non-zero, we get

Ex[κs(τ̂C) − 1] ≤ V (x) + b1lC(x). (19.19)

Since V <∞ and V is assumed bounded on C, and again using the fact that s(τ̂C) >
τC , we have from Theorem 15.0.1 (ii) that the chain is geometrically ergodic.

The final bound in (19.16) comes from the fact that for some r, an upper bound
on the state-dependent constant term in (19.16) is shown in Theorem 15.4.1 to be
given by

R(x) = Ex[κτC ] ≤ Ex[κs(τ̂C)] ≤ (2 + b)V (x)

since V ≥ 1. �

19.1.2 Models on IR2
+

State dependent criteria appear to be of most use in analyzing multidimensional
models, especially those on the positive orthant of Euclidean space. This is because,
although the normal one-step drift conditions may work in the interior of such spaces,
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the constraints on the faces of the orthant can imply that drift is not negative in this
part of the space.

We illustrate this in a simple case when the space is IR2
+ = {(x, y), x ≥ 0, y ≥ 0}.

Consider the case of random walk restricted to the positive orthant. Let Zk =
(Zk(1), Zk(2)) be a sequence of i.i.d. random variables in IR2 and define the chain Φ
by

(Φn(1), Φn(2)) = ([Φn−1(1) + Zn(1)]+, [Φn−1(2) + Zn(2)]+). (19.20)

Let us assume that for each coordinate we have negative increments: that is,

E[Zk(1)] < 0, E[Zk(2)] < 0.

This assumption ensures that the chain is a δ(0,0)-irreducible chain with all compact
sets petite. To see this note that there exists h > 0 such that

P(Zk(1) < −h) > h, P(Zk(2) < −h) > h,

and so for any square Sw = {x ≤ w, y ≤ w} we have that, choosing m ≥ w/h

Pm((x, y), (0, 0)) > h2m > 0, (x, y) ∈ Sw.

This provides δ(0,0)-irreducibility, and moreover shows that Sw is small, with ν = δ0,0

in (5.14).
We will also assume that the second moments of the increments are finite:

E[Z2
k(1)] <∞, E[Z2

k(2)] <∞.

Thus it follows from Proposition 14.4.1 that each of the marginal random walks on
[0,∞) is positive Harris with stationary measures π1, π2 satisfying

β1 :=
∫
zπ1(dz) <∞, β2 :=

∫
zπ2(dz) <∞. (19.21)

Of course, from this we could establish positivity merely by noting that π = π1 × π2

is invariant for the bivariate chain. However, in order to illustrate the methods of this
section we will establish that Φ is positive Harris by considering the test function
V (x, y) = x+ y: this also gives us a bound on the hitting times of rectangles that the
more indirect result does not provide.

By choosing M large enough we can ensure that the truncated versions of the
increments are also negative, so that for some ε > 0

E[Zk(1)1l{Zk(1) ≥ −M}] < −ε, E[Zk(2)1l{Zk(2) ≥ −M}] < −ε.

This ensures that on the set A(M) = {x ≥ M,y ≥ M}, we have that (19.10) holds
with n(x, y) = 1 in the usual manner.

Now consider the strip A1(M,m) = {x ≤M,y ≥ m}, and fix (x, y) ∈ A1(M,m).
Let us choose a given fixed number of steps n, and choose m > (M+1)n. At each

step in the time period {0, . . . , n} the expected value of Φn(2) decreases in expectation
by at least ε. Moreover, from (19.21) and the f -norm ergodic result (14.5) we have
that by convergence there is a constant c0 such that for all n

E(0,y)[Φn(1)] ≤ c0 (19.22)
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independent of y. From stochastic monotonicity we also have that for all x ≤ M , if
τ0 denotes the first hitting time on {0} for the marginal chain Φn(1)

E(x,y)[Φn(1)1l{τ0 > n}] ≤ E(M,y)[Φn(1)1l{τ0 > n}]
:= ζM (n)

(19.23)

which is finite and tends to zero as n→∞, from Theorem 14.2.7, independent of y.
Let us choose n large enough that ζM (n) ≤ ε0.

We thus have from the Markov property

E(x,y)[Φn(1) + Φn(2)] = E(x,y)[Φn(2)] + E(x,y)[Φn(1)1l{τ0 > n}]

+E(x,y)[Φn(1)1l{τ0 ≤ n}]

≤ y − nε+ ε0 + c0.

(19.24)

Thus for x ≤ M , we have uniform negative n-step drift in the region A1(M,m)
provided

nε > M + ε0 + c0

as required.
A similar construction enables us to find that for fixed large n the n-step drift in

the region A2(m,M) is negative also. Thus we have shown

Theorem 19.1.4 If the bivariate random walk on IR2
+ has negative mean increments

and finite second moments in both coordinates then it is positive Harris recurrent, and
for sets A(m) = {x ≥ m, y ≥ m} with m large, and some constant c,

E(x,y)[τA(m)] ≤ c(x+ y). (19.25)

In this example, we do not use the full power of the results of Section 19.1. Only
three values of n(x, y) are used, and indeed it is apparent from the construction in
(19.24) that we could have treated the whole chain on the region

{x ≥M + n} ∪ {y ≥M + n}

for the same n. In this case the n-skeleton {Φnk} would be shown to be positive
recurrent, and it follows from the fact that the invariant measure for {Φk} is also
invariant for {Φnk} that the original chain is positive Harris: see Chapter 10. This
example does, however, indicate the steps that we could go through to analyze less
homogeneous models, and also indicates that it is easier to analyze the boundaries
or non-standard regions independently of the interior or standard region of the space
without the need to put the results together for a single fixed skeleton.

19.1.3 An invasion/antibody model

We conclude this section with the analysis of an invasion/antibody model on a count-
able space, illustrating another type of model where control of state-dependent drift
is useful.

Models for competition between two groups can be modeled as bivariate processes
on the integer-valued quadrant ZZ2

+ = {i, j ∈ ZZ+}. Consider such a process in discrete
time with the first coordinate process Φn(1) denoting the numbers of invaders and
the second coordinate process Φn(2) denoting the numbers of defenders.
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(A1) Suppose first that the defenders and invaders mutually tend to reduce the op-
position numbers when both groups are present, even though “reinforcements”
may join either side. Thus on the interior of the space, denoted I = {i, j ≥ 1},
we assume that for some εi, εj ≥ ε > 1/2

Ei,j [Φ1(1) + Φ1(2)] ≤ (i− εi) + (j − εj) ≤ i+ j − 2ε, i, j > 1. (19.26)

Such behavior might model, for example, antibody action against invasive bod-
ies where there is physical attachment of at least one antibody to each invader
and then both die: in such a context we would have εi = εj = 1.

(A2) On one boundary, when the defender numbers reach the level 0, if the invaders
are above a threshold level d the body dies in which case the invaders also die
and the chain drops to (0, 0), so that

P ((i, 0), (0, 0)) = 1, i > d; (19.27)

otherwise a new population of antibodies or defenders of finite mean size is
generated. These assumptions are of course somewhat unrealistic and clearly
with more delicate arguments can be made much more general if required.

(A3) Much more critically, on the other boundary, when the invader numbers fall
to level 0, and the defenders are of size j > 0, a new “invading army” is raised
to bring the invaders to size N , where N is a random variable concentrated on
{j + 1, j + 2, . . . , j + d} for the same threshold d, so that

d∑
k=1

P ((0, j), (j + k, j) = 1 : (19.28)

this distribution being concentrated above j represents the physically realistic
concept that a new invasion will fail instantly if the invading population is not
at least the size of the defending population. The bounded size of the increment
is purely for convenience of exposition.

Note that the chain is δ(0,0)-irreducible under the assumptions A1-A3, regardless of
the behavior at zero. Thus the model can be formulated to allow for a stationary
distribution at (0, 0) (i.e extinction) or for rebirth and a more generally distributed
stationary distribution over the whole of ZZ+

2 . The only restriction we place in general
is that the increments from (0, 0) have finite mean: here we will not make this more
explicit as it does not affect our analysis.

Let us, to avoid unrewarding complexities, add to (19.26) the additional condition
that the model is “left-continuous”: that is, has bounded negative increments defined
by

P ((i, j), (i− l, j − k) = 0, i, j > 0, k, l > 1 : (19.29)

this would be appropriate if the chain were embedded at the jumps of a continuous
time process, for example.

To evaluate positive recurrence of the model, we use the test function V (i, j) =
[i+ j]/β, where β < ε is to be chosen.

Analysis of this model in the interior of the space is not difficult: by using (V2)
with V (i, j) on I = {i, j ≥ 1}, we have that Ei,j [τIc ] < (i+ j)/β from the assumption
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(A1). The difficulty with such multidimensional models is that even though they
reach Ic in a finite mean time, they may then “escape” along one or both of the
boundaries. It is in this region that the tools of Section 19.1 are useful in assisting
with the classification of the model.

Starting at B1(c) = {(i, 0), i > c}, the infinite boundary edge above c, we have
that the value of V (Φ1) is zero if c > d, so that (19.10) also holds with n = 1 provided
we choose c > max(d, β−1).

On the other infinite boundary edge, denoted B2(c) = {(0, j), j > c}, however,
we have positive one step drift of the function V . Now from the starting point (0, j),
let us consider the (j + 1)-step drift. This is bounded above by [j + d − 2jε]/β and
so we have (19.10) also holds with n(j) = j + 1 provided

[j + d− 2jε]/β < −j − 1,

which will hold provided β < 2ε− 1 and we then choose c > (d+ β)/(2ε− 1− β).
Consequently we can assert that, writing C = I ∪B2(c)∪B1(c) with c satisfying

both these constraints, the mean time

E(i,j)[τC ] ≤ [i+ j]/β

regardless of the threshold level d, and so the invading strategy is successful in over-
coming the antibody defense.

Note that in this model there is no fixed time at which the drift from all points
on the boundary B2(c) is uniformly negative, no matter what the value of c chosen.
Thus, state-dependent drift conditions appear needed to analyze this model.

To test for geometric ergodicity we use the function V (i, j) = exp(αi) + exp(αj)
and adopt the approach in Section 16.3.

We assume that the increments in the model have uniformly geometrically de-
creasing tails and bounded second moments: specifically, we assume each coordinate
process satisfies, for some γ > 0,

θi(γ) :=
∑

k≥i−1 exp(γk)Pi,j(Φ1(1) = i+ k) <∞, j ≥ 1

θ′j(γ) :=
∑

k≥j−1 exp(γk)Pi,j(Φ1(2) = j + k) <∞, i ≥ 1
(19.30)

and ∑
k≥i−1 k

2Pi,j(Φ1(1) = i+ k) < D1, j ≥ 1

∑
k≥j−1 k

2Pi,j(Φ1(2) = j + k) < D2, i ≥ 1.
(19.31)

Then on the interior set I we have, for α < γ∑
j P ((r, s), (i, j))V (i, j) ≤ exp(αr)[θi(α)− 1]

+ exp(αs)[θ′j(α)− 1]

≤ α exp(αr)(−εr/2)

+α exp(αs)(−εs/2)

(19.32)

for small enough α, using a Taylor series expansion and the uniform conditions (19.30)
and (19.31). Thus (19.15) holds with n = 1 and λ = 1− αε/2.
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Starting at B1(c), (19.15) also obviously holds provided we choose c large enough.
On the other infinite boundary edge B2(c) = {(0, j), j > c} we have a similar con-
struction for the j+1-step drift. We have, using the uniform bounds (19.31) assumed
on the variances∑

j P
j+1((0, s), (i, j))V (i, j) ≤ exp(α(j + d))[1− ε/2]j

+ exp(αs)[1− ε/2]j
(19.33)

and so for α suitably small, we have (19.15) holding again as required. �

19.2 History-dependent drift criteria

The approach through Dynkin’s Formula to obtaining bounds on hitting times of
appropriate sets allows a straightforward generalization to more complex, history-
dependent, test functions with very little extra effort above that expended already.

Rather than considering a fixed function V of the state Φk, we will now let
{Vk : k ∈ ZZ+} denote a family of non-negative Borel measurable functions Vk: Xk+1 →
IR+. By imposing the appropriate “drift condition” on the stochastic process {Vk =
Vk(Φ0, . . . , Φk)}, we will obtain generalized criteria for stability and non-stability.
The value of this generalization will be illustrated below in an application to an
autoregressive model with random coefficients.

19.2.1 Generalized criteria for positivity and nullity

We first consider, in the time-varying context, drift conditions on such a family {Vk :
k ∈ ZZ+} for chains to be positive or to be null. We call a sequence {Vk,FΦ

k } adapted
if Vk is measurable with respect to FΦ

k for each k.
The following condition generalizes (V2).

Generalized Negative Drift Condition

There exists a set C ∈ B(X), and an adapted sequence {Vk,FΦ
k } such

that, for some ε > 0,

E[Vk+1 | FΦ
k ] ≤ Vk − ε a.s. [P∗] (19.34)

when σC > k, k ∈ ZZ+.

As usual the condition that σC > k means that Φi ∈ Cc for each i between 0 and k.
Since C will usually be assumed “small” in some sense (either petite, or compact),
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(19.34) implies that there is a drift towards the “center” of the state space when Φ
is “large” in exactly the same way that (V2) does.

From these generalized drift conditions and Dynkin’s Formula we find

Theorem 19.2.1 If {Vk} satisfies (19.34) then

Ex[τC ] ≤
{
ε−1V0(x) x ∈ Cc

1 + ε−1PV0 (x) x ∈ C

Hence if C is petite and supx∈C Ex[V0(Φ1)] <∞ then Φ is regular.

Proof The proof follows immediately from Proposition 11.3.3 by letting Zk = Vk,
εk = ε, exactly as in Theorem 11.3.4. �

There is a similar generalization of the drift criterion for determining whether a
given chain is null.

Generalized Positive Drift Condition

There exists a set C ∈ B(X), and an adapted sequence {Vk,FΦ
k } with

E[Vk+1 | FΦ
k ] ≥ Vk a.s. [P∗], (19.35)

when σC > k, k ∈ ZZ+.

Clearly the process Vk ≡ 1 satisfies (19.35), so we will need some auxiliary conditions
to prove anything specific when (19.35) holds.

Theorem 19.2.2 Suppose that {Vk} satisfies (19.35), and let x0 ∈ Cc be such that

V0(x0) > Vk(x0, . . . , xk), xk ∈ C, k ∈ ZZ+. (19.36)

Suppose moreover the conditional absolute increments have bounded means: that is,
for some constant B <∞,

E[|Vk − Vk−1| | FΦ
k−1] ≤ B. (19.37)

Then Ex0 [τC ] =∞.

Proof The proof of Theorem 11.5.1 goes through without change, although in
this case the functions Vk in that proof are not taken simply as V (Φk) but as
Vk(Φ0, . . . , Φk). �
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19.2.2 Generalized criteria for geometric ergodicity

We can extend the results of Chapter 15 in a similar way when the space admits
a topology. In order to derive such criteria we need to adapt the sequence {Vk}
appropriately to the topology. Let us call the whole sequence {Vk} norm-like if there
exists a norm-like function V : X → IR+ with the property

Vk(x0, . . . , xk) ≥ V (xk) ≥ 0 (19.38)

for all k ∈ ZZ+ and all xi ∈ X.
The criterion for such a family {Vk} generalizes (15.35), which we showed in

Lemma 15.2.8 to be equivalent to (V4).

Generalized Geometric Drift Condition

There exists λ < 1, L <∞ and an adapted norm-like sequence {Vk,FΦ
k }

such that

Ex[Vk+1 | FΦ
k ] ≤ λVk + L a.s. [P∗], k ∈ ZZ+. (19.39)

Theorem 19.2.3 Suppose that Φ is an irreducible aperiodic T-chain. If the gen-
eralized geometric drift condition (19.39) holds, and if V0 is uniformly bounded on
compact subsets of X, then there exists R <∞ and r > 1 such that

∞∑
n=1

rn‖Pn(x, · )− π‖f ≤ R(V0 (x) + 1), n ∈ ZZ+, x ∈ X

where f = V + 1 and V is as defined in (19.38). In particular, Φ is then f-
geometrically ergodic.

Proof Let λ < ρ < 1, and define the precompact set C and the constant ε > 0 by

C = {x ∈ X : V (x) ≤ 2L
ρ− λ

+ 1}, ε =
ρ− λ

2
.

Then for all k ∈ ZZ+,

E[Vk+1 | FΦ
k ] ≤ ρVk +

{
[L+ (ρ− λ)]− ρ− λ

2
(V (Φk) + 1)

}
− ρ− λ

2
(V (Φk) + 1)

Hence E[Vk+1 | FΦ
k ] ≤ ρVk−εf(Φk) when Φk ∈ Cc. Letting Zk = rkVk, where r = ρ−1,

we then have E[Zk | FΦ
k−1] − Zk−1 ≤ −εrkf(Φk−1), when Φk−1 ∈ Cc. We now use

Dynkin’s formula to deduce that for all x ∈ X,
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0 ≤ Ex[zτm
C

] = Ex[Z1] + Ex

[( τm
C∑

k=2

E[Zk | FΦ
k−1]− Zk−1

)
1l(τC ≥ 2)

]

≤ Ex[Z1]− Ex

[ τm
C∑

k=2

εrkf(Φk−1)1l(τC ≥ 2)
]

This and the Monotone Convergence Theorem shows that for all x ∈ X,

Ex

[ τC∑
k=1

rkf(Φk−1)
]
≤ ε−1rEx[V1] + rV (x).

This completes the proof, since Ex[V1] + V (x) ≤ λV0(x) + L + V0(x) by (19.39) and
(19.38). �

19.2.3 Generalized criteria for non-evanescence and transience

A general criterion for Harris recurrence on a topological space can be obtained from
the following history dependent drift condition, which generalizes (V1).

Generalized Non-positive Drift Condition

There exists a compact set C ⊂ X, and an adapted norm-like sequence
{Vk,FΦ

k } such that

E[Vk+1 | FΦ
k ] ≤ Vk a.s. [P∗], (19.40)

when σC > k, k ∈ ZZ+.

Theorem 19.2.4 If (19.40) holds then Φ is non-evanescent. Hence if Φ is a ψ-
irreducible T-chain and (19.40) holds for a norm-like sequence and a compact C,
then Φ is Harris recurrent.

Proof The proof is almost identical to that of Theorem 9.4.1. If Px{Φ →∞} > 0
for some x ∈ X, then (9.30) holds, so that for some M

Pµ{{σC =∞} ∩ {Φ →∞}} > 0, (19.41)

where µ = PM (x, · ).
This time let Mi = Vi1l{σC ≥ i}. Again we have that (Mk,FΦ

k ) is a positive
supermartingale, since

E[Mk | FΦ
k−1] = 1l{σC ≥ k}E[Vk | FΦ

k−1] ≤ 1l{σC ≥ k}Vk−1 ≤Mk−1.

Hence there exists an almost surely finite random variable M∞ such that Mk →M∞
as k →∞.

But as in Theorem 9.4.1, either σC < ∞ in which case M∞ = 0, or σC = ∞
which contradicts (19.41). Hence Φ is again non-evanescent.

The Harris recurrence when Φ is a T-chain follows as usual by Theorem 9.2.2. �
Finally, we give a criterion for transience using a time-varying test function.
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Generalized Non-negative Drift Condition

There exists a set A ∈ B(X), and a uniformly bounded, adapted sequence
{Vk,FΦ

k } such that

E[Vk+1 | FΦ
k ] ≥ Vk a.s. [P∗], (19.42)

when σA > k, k ∈ ZZ+.

Theorem 19.2.5 Suppose that the process Vk satisfies (19.42) for a set A, and sup-
pose that for deterministic constants L > M ,

Vk ≤ L, 1l{σA = k}Vk ≤M, k ∈ ZZ+

Then for all x ∈ X

Px0{σA =∞} ≥ V0(x)−M

L−M
.

Hence if both A and {x : V0(x) > M} lie in B+(X) then Φ is transient.

Proof Define the sequence {Mk} by

Mk+1 = Vk+11l{σA > k}+M1l{σA ≤ k}.

Then, since {σA ≤ k} ∈ FΦ
k , we have

E[Mk+1 | FΦ
k ] ≥ Vk1l{σA > k}+M1l{σA ≤ k}

≥ Vk1l{σA > k}+ Vk1l{σA = k}+M1l{σA ≤ k − 1}
= Mk

and the adapted process (Mk,FΦ
k ) is thus a submartingale. Hence (L −Mk,FΦ

k ) is
a positive supermartingale. By Kolmogorov’s Inequality (Theorem D.6.3) it follows
that for any T > 0

Px{sup
k≥0

(L−Mk) ≥ T} ≤ L−M0(x)
T

.

Letting T = L−M , and noting that M0(x) ≥ V0(x), gives

Px{ inf
k≥0

Mk ≤M} ≤ L− V0(x)
L−M

.

Finally, since Mk = M for all k sufficiently large whenever σA <∞, it follows that

Px{σA = ∞} ≥ Px{ inf
k≥0

Mk > M} ≥ V0(x)−M

L−M

which is the desired bound. �
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19.2.4 The dependent parameter bilinear model

To illustrate the general results described above we will analyze the dependent pa-
rameter bilinear model defined as in (7.23) by the pair of equations

θk+1 = αθk + Zk+1, |α| < 1
Yk+1 = θkYk +Wk+1

This model is just the simple adaptive control model with the control set to zero; but
while the model is somewhat simpler to define than the adaptive control model, we
will see that the lack of control makes it much more difficult to show that the model
is geometrically ergodic. One of the difficulties with this model is that to date a test
function of the form (V4) has not been explicitly computed, though we will show here
that a time varying test function of the form (19.39) can be constructed.

The proof will require a substantially more stringent bound on the parameter
process than that which was used in the proof of Proposition 17.3.5. We will assume
that

ζ2
z := E

[
exp

{ 2
1− |α| |Z1| − 2

}]
< 1. (19.43)

Using a history dependent test function of the form (19.39) we will prove the following

Theorem 19.2.6 Suppose that conditions (DBL1)-(DBL2) hold, and (19.43) is sat-
isfied. Then Φ is geometrically ergodic, and hence possesses a unique invariant prob-
ability π. The CLT and LIL hold for the processes Y and θ, and for each initial
condition x ∈ X,

lim
N→∞

1
N

N∑
k=1

Y 2
k =

∫
y2 dπ <∞ a.s. [Px]

|Ex[Y 2
k ]−

∫
y2dπ| ≤ M(x)ρk, k ≥ 0

where M is a continuous function on X and 0 < ρ < 1. �

Proof It follows as in the proof of Proposition 17.3.5 that the joint process Φk =(θk
Yk

)
, k ≥ 0, is an aperiodic, ψ-irreducible T-chain.
In view of Theorem 19.2.3 it is enough to show that the history dependent drift

(19.39) holds for an adapted process {Vk}. We now indicate how to construct such a
process now.

First use the estimate x ≤ e−1ex to show

|
k∏

i=j

θi| ≤ e−(k−j+1)
( k∏

i=j

exp |θi|
)

= e−(k−j+1) exp
( k∑

i=j

|θi|
)
. (19.44)

But since by (2.13),

k∑
i=j

|θi| ≤ |α|
k∑

i=j

|θi|+ |α||θj−1|+
k∑

i=j

|Zi|,

we have
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k∑
i=j

|θi| ≤
|α|

1− |α| |θj−1|+
1

1− |α|

k∑
i=j

|Zi|, (19.45)

and (19.44) and (19.45) imply the bound, for j ≥ 1,

|
k∏

i=j

θi| ≤ e−(k−j+1) exp{ |α|
1− |α| |θj−1|} × exp{ 1

1− |α|

k∑
i=j

|Zi|}. (19.46)

Squaring both sides of (17.28) and applying (19.46), we obtain the bound

Y 2
k+1 ≤ 3Ak + 3Bk + 3W 2

k+1 (19.47)

for all k ∈ ZZ+, where

Ak = {
k∑

j=1

|Wj | exp{ |α|
1− |α| |θj−1|}

k∏
i=j

exp{ 1
1− |α| |Zi| − 1}}2

Bk = θ2
0Y

2
0 exp{ 2|α|

1− |α| |θ0|}
k∏

i=1

exp{ 2
1− |α| |Zi| − 2}.

If we define
Ck = exp{ 2|α|

1− |α| |θk|}

we have the three bounds, valid for any ε > 0,

E[Ak+1 | FΦ
k ] ≤ ζ2

z{(1 + ε)Ak + (1 + ε−1)E[W 2]Ck}
E[Bk+1 | FΦ

k ] ≤ ζ2
zBk

E[Ck+1 | FΦ
k ] ≤ |α|Ck + (1− |α|)(E[exp{ 2|α|

1− |α| |Z1|}])
1

1−|α| .

This is shown in [177] and we omit the details which are too lengthy for this exposition.
The constant ε will be assumed small, but we will keep it free until we have performed
one more calculation. For k ≥ 0 we make the definition

Vk = ε3Y 2
k + ε2Ak +Bk + Ck.

We have for any k ≥ 0,

ε3Y 2
k + exp{ 2|α|

1− |α| |θk|} ≤ Vk,

and since V (y, θ) = ε3y2 + exp{ 2|α|
1−|α| |θ|} is a norm-like function on X, it follows that

the sequence {Vk : k ∈ ZZ+} is norm-like.
Using the bounds above we have for some R <∞,

E[Vk+1 | FΦ
k ] ≤ 3ε3A2

k + 3ε3Bk + ζ2
z ε

2(1 + ε)Ak + ζ2
z ε

2(1 + ε−1)E[W 2]Ck

+ζ2
zBk + |α|Ck +R.

Rearranging terms gives

E[Vk+1 | FΦ
k ] ≤ {3ε+ ζ2

z (1 + ε)}ε2Ak + {3ε3 + ζ2
z}Bk

+{|α|+ ε2(1 + ε−1)E[W 2]ζ2
z}Ck +R.

Hence (19.39) holds with

λ = max(|α|+ ζ2
z ε

2(1 + ε−1)E[W 2], ζ2
z + 3ε3, ζ2

z (1 + ε) + 3ε),

and for ε sufficiently small, we have λ < 1 as required. �
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19.3 Mixed drift conditions

One of the themes of this book has been the interplay between the various stability
concepts, and the existence of test functions which give appropriate and consistent
drift towards the center of the space.

We conclude with a section which considers chains where the drift is mixed: that
is, inward in some parts of the space, and outward in other parts. Of course, it again
follows from all we have done to date that for some functions (and in particular the
expected hitting time functions VC) the one step drift will always be towards the set
C from initial conditions outside of C. However, it is of considerable intuitive interest
to consider the drift when the function V is relatively arbitrary, in which case there
is no reason a priori to expect that the drift will be consistent in any useful way.

We will find in this section that for a large class of functions, an appropriately
averaged drift over the state space is indeed “inwards” when the chain is positive, and
“outwards” when the chain is null. This accounts in yet another way for the success
of the seemingly simple drift criteria as tools for classifying general chains.

19.3.1 The limiting-average drift

Suppose that V is an everywhere finite non-negative function satisfying∫
P (x, dy)|V (y)− V (x)| ≤ d <∞, x ∈ X. (19.48)

Then we have, for all n ∈ ZZ+, x ∈ X,∫
Pn(x, dy)|∆V (y)| ≤ d

and thus the functions

n−1
n∑

k=1

∫
Cc

P k(x, dy)∆V (y) (19.49)

are all well-defined and finite everywhere. Obviously we need a little less than (19.48)
to guarantee this, but (19.48) will also be a convenient condition elsewhere.

Theorem 19.3.1 Suppose that Φ is ψ-irreducible, and that V ≥ 0 satisfies (19.48).
A sufficient condition for the chain to be positive is that for some one x ∈ X and
some petite set C

lim inf
n→∞ n−1

n∑
k=1

∫
Cc

P k(x, dy)∆V (y) < 0. (19.50)

Proof By definition we have∫
Pn+1(x, dy)V (y) =

∫
Pn(x, dw)

∫
P (w, dy)V (y)

=
∫
Pn(x, dy)∆V (y) +

∫
Pn(x, dy)V (y)

(19.51)

where all the terms in (19.51) are finite by induction and (19.48). By iteration, we
then get
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n−1
∫
Pn+1(x, dy)V (y) = n−1

n∑
k=1

∫
P k(x, dy)∆V (y) + n−1[∆V (x) + V (x)]

so that as n→∞
lim inf n−1

n∑
k=1

∫
Pn(x, dy)∆V (y) ≥ 0. (19.52)

Now suppose by way of contradiction that Φ is null; then from Theorem 18.2.2 we
have that the petite set C is null, and so for every x we have by the bound in (19.48)

lim
n→∞

∫
C
Pn(x, dy)∆V (y) = 0.

This, together with (19.52), cannot be true when we have assumed (19.50); so the
chain is indeed positive. �

There is a converse to this result. We first show that for positive chains and
suitable functions V , the drift ∆V , π-averaged over the whole space, is in fact zero.

Theorem 19.3.2 Suppose that Φ is ψ-irreducible, positive with invariant probability
measure π, and that V ≥ 0 satisfies (19.48). Then∫

X
π(dy)∆V (y) = 0. (19.53)

Proof Consider the function Mz(x) defined for z ∈ (0, 1) by

Mz(x) =
∫
P (x, dy)[zV (x) − zV (y)]/[1− z]

We first show that |Mz(x)| is uniformly bounded for x ∈ X and z ∈ (1
2 , 1) under the

bound (19.48).
By the Mean Value Theorem and non-negativity of V we have for any 0 < z < 1,

|zV (x) − zV (y)| ≤ |V (x)− V (y)| sup
t≥0

| d
dt
zt|

= |V (x)− V (y)|| log(z)|. (19.54)

Hence under (19.48), for all x ∈ X and z ∈ (0, 1),

|Mz(x)| ≤ | log(z)|
1− z

∫
P (x, dy)|V (x)− V (y)| ≤ d

z
(19.55)

which establishes the claimed boundedness of |Mz(x)|.
Moreover, by (19.54) and dominated convergence,

lim
z↑1

Mz(x) =
∫
P (x, dy)

{
lim
z↑1

zV (x) − zV (y)

1− z

}
= ∆V (x). (19.56)

Since
∫
π(dx)zV (x) <∞ for fixed z ∈ (0, 1), we can interchange the order of integra-

tion and find∫
π(dx)Mz(x) =

∫
π(dx)

∫
P (x, dy)[zV (x) − zV (y)]/[1− z] = 0.
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Hence by the Dominated Convergence Theorem once more we have

0 = limz↑1
∫
π(dx)Mz(x)

=
∫
π(dx)

[
limz↑1 Mz(x)

]
=

∫
π(dx)∆V (x)

(19.57)

as required. �
Intuitively, one might expect from stationarity that the balance equation (19.53)

will hold in complete generality. But we know that this is not the case without some
auxiliary conditions such as (19.48): we saw this in Section 11.5.1, where we showed
an example of a positive chain with everywhere strictly positive drift.

We now see that the balanced drift of (19.53) occurs, as one might expect from
(19.50), from the inward drift towards suitable sets C, combined with an outward
drift from such sets. This gives us the converse to Theorem 19.3.1.

Theorem 19.3.3 Suppose that Φ is ψ-irreducible, and that V ≥ 0 satisfies (19.48).
If C is a sublevel set of V with Cc, C ∈ B+(X), then a necessary condition for the
chain to be positive is that ∫

Cc
π(dw)∆V (w) < 0 (19.58)

in which case for almost all x ∈ X

lim
n→∞n−1

n∑
k=1

∫
Cc

P k(x, dy)∆V (y) < 0. (19.59)

Thus, under these conditions, (19.50) is necessary and sufficient for positivity.

Proof Suppose the chain is positive, and that C = {x : V (x) ≤ b} ∈ B+(X) is a
sublevel set of the function V , so that obviously

V (y) > sup
x∈C

V (x), y ∈ Cc. (19.60)

From (19.48) we certainly have that drift off C is bounded, so that

|∆V (x)| ≤ B′ <∞, x ∈ C, (19.61)

and in particular
∫
C π(dw)∆V (w) ≤ B′.

Using the invariance of π,∫
C π(dw)∆V (w) =

∫
C π(dx)

∫
P (x, dw)V (w)−

∫
C π(dw)V (w)

=
∫
C π(dx)[

∫
Cc P (x, dw)V (w) +

∫
C P (x, dw)V (w)]

−
∫
C [
∫
X π(dx)P (x, dw)]V (w)

=
∫
C π(dx)

∫
Cc P (x, dw)V (w)

+
∫
C π(dx)

∫
C P (x, dw)V (w)

−
∫
X π(dx)

∫
C P (x, dw)V (w).

(19.62)
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Now provided the set Cc is in B+(X), we show the right hand side of (19.62) is strictly
positive. To see this requires two steps.

First observe that
∫
C π(dx)P (x,Cc) > 0 since C,Cc ∈ B+(X). Since V (y) >

supw∈C V (w) for y ∈ Cc we have∫
C
π(dx)

∫
Cc

P (x, dw)V (w) >
(
sup
w∈C

V (w)
) ∫

C
π(dx)P (x,Cc) (19.63)

showing from (19.62) that∫
C
π(dw)∆V (w) >

(
sup
w∈C

V (w)
)
[
∫

C
π(dx)P (x,Cc)−

∫
Cc

π(dx)P (x,C)]. (19.64)

Secondly, we have the balanced-flow equation∫
C π(dx)P (x,Cc) =

∫
C π(dx)[1− P (x,C)]

= π(C)−
∫
C π(dx)P (x,C)

=
∫
X π(dx)P (x,C)−

∫
C π(dx)P (x,C)

=
∫
Cc π(dx)P (x,C).

(19.65)

Putting this into the strict inequality in (19.64), we have that∫
C
π(dw)∆V (w) > 0 (19.66)

provided that V does not vanish on C. If V does vanish on C then (19.66) holds
automatically.

But now, under (19.48) we have
∫
π(dx)∆V (x) = 0 from (19.53), and so (19.58)

is a consequence of this and (19.66). Since ∆V (y) is bounded under (19.48), (19.59)
is actually identical to (19.58) and the theorem is proved. �

These results show that for a wide class of functions, our criteria for positivity
and nullity, given respectively in Section 11.3 and Section 11.5.1, are essentially the
two extreme cases of this mixed-drift result. We conclude with an example where
similar mixed behavior may be exhibited quite explicitly.

19.3.2 A mixed drift criterion for stability of the ladder chain

We return to the ladder chain defined by (10.38). Recall that the structure of the
stationary measure, when it exists, is known to have an operator-geometric form as
in Section 10.5.3. Here we consider conditions under which such a stationary measure
exists.

If we assume that the zero-level transitions have the form

Λ∗
i (x,A) = P (i, x; 0, A) =

∞∑
j=k+1

Λj(x,A) (19.67)

so that there is a greater degree of homogeneity than in the general model, then the
operator
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Λ(x,A) :=
∞∑

j=0

Λj(x,A)

is stochastic.
Thus Λ(x,A) defines a Markov chain ΦΛ, which is the marginal position of Φ

ignoring the actual rung: by direct calculation we can check that for any B

Pn(i, x; ZZ+ ×B) = Λn(x,B). (19.68)

Moreover, (19.68) immediately gives that if Φ is ψ-irreducible, then ΦΛ is ψ∗-
irreducible, where ψ∗(B) = ψ(ZZ+ ×B).

Now define, for any w ∈ X, the expected change in ladder height by

β(w) =
∞∑

j=0

jΛj(x,X) : (19.69)

if β(w) > 1+ δ for all w then, exactly as in our analysis of the random walk on a half
line, we have that

E(i,w)[τC ] <∞

for all i > M,w ∈ X, where C = ∪M
0 {j × X} is the “bottom end” of the ladder.

But one might not have such downwards drift uniform across the rungs. The
result we prove is thus an average drift criterion.

Theorem 19.3.4 Suppose that the chain Φ is ψ-irreducible, and has the structure
(19.67). If the marginal chain ΦΛ admits an invariant probability measure ν such that∫

ν(dw)β(w) > 1 (19.70)

then Φ admits an invariant probability measure π.

Proof The proof is similar to that of Theorem 19.3.1, but we do not assume
boundedness of the drifts so we must be a little more delicate. Choosing V (i, w) = i,
we have first that

∆V (i, w) = 1−
i∑

j=0

jΛj(x,X)− (i+ 1)
∞∑

j=i+1

Λj(x,X);

note that in particular for i > d this gives

∆V (i, w) ≤ ∆V (d,w), w ∈ X. (19.71)

Now even though (19.48) is not assumed, because |∆V (i, w)| ≤ d + 1 for i ≤ d, and
because starting at level i, after k steps the chain cannot be above level i+ k, we see
exactly as in proving (19.52) that

lim inf n−1
n∑

k=1

∫ ∑
j

P k(i, x; j × dy)∆V (j, y) ≥ 0. (19.72)

We now show that this average non-negative drift is not possible under (19.70), unless
the chain is positive.
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From (19.70) we have

0 > lim
k→∞

∫
ν(dw)∆V (k,w). (19.73)

Choose d sufficiently large that

0 >
∫
ν(dw)∆V (d,w). (19.74)

Further truncate by choosing v ≥ 1 large enough that if Dv = {y : ∆V (d, y) ≥ −v}
then, using (19.74)

0 >
∫

Dv

ν(dw)∆V (d,w). (19.75)

Now decompose the left hand side of (19.72) as

n−1
n∑

k=1

∫
X

∑
j

P k(i, x; j × dy)∆V (j, y)

= n−1
n∑

k=1

∫
X

d−1∑
j=0

P k(i, x; j × dy)∆V (j, y)

+n−1
n∑

k=1

∫
X

∑
j≥d

P k(i, x; j × dy)∆V (j, y)

≤ n−1
n∑

k=1

d
d−1∑
j=0

P k(i, x; j × X)

+n−1
n∑

k=1

∫
Dv

∑
j≥d

P k(i, x; j × dy)∆V (j, y) (19.76)

since on Dc
v we have ∆V (d, y) ≤ −1.

Assume the chain is not positive: we now show that (19.76) is strictly negative,
and this provides the required contradiction of (19.72).

We know from Theorem 18.2.2 that there exists a sequence Cn of null sets with
Cn ↑ ZZ+ × X.

In fact, in this model we now show that every rung is such a null set. Fix a rung
j×X, and let Cn(j) = Cn∩j×X. Since Φ is assumed ψ∗-irreducible with an invariant
probability measure ν, we have from the ergodic theorem (13.63) that for ψ∗-a.e x,
and any M ,

limn−1
n∑

k=1

Λk(x,CM (j)) = ν(CM (j)).

Choose M so large that ν(CM (j)) ≥ 1− ε for a given ε > 0. Then we have

limn−1∑n
k=1 P

k(i, x; j × X) = limn−1∑n
k=1 P

k(i, x; j × CM (j))

+ limn−1∑n
k=1 P

k(i, x; j × [CM (j)]c)

≤ limn−1∑n
k=1 P

k(i, x;CM )

+ limn−1∑n
k=1 Λ

k(x, [CM (j)]c)

≤ ε
(19.77)
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which shows the rung j × X to be null as claimed.
Using (19.77) we have in particular that for any B, and d as above,

ν(B) = limn−1∑n
k=1 Λ

k(x,B)

= limn−1∑n
k=1

∑d−1
j=0 P

k(i, x; j ×B)

+ limn−1∑n
k=1

∑∞
j=d P

k(i, x; j ×B)

= limn−1∑n
k=1

∑∞
j=d P

k(i, x; j ×B).

(19.78)

We now use (19.77) and (19.78) in (19.76). This gives, successively,

lim inf
n→∞ n−1

n∑
k=1

∫
X

∑
j

P k(i, x; j × dy)∆V (j, y)

≤ lim infn→∞ n−1∑n
k=1

∫
Dv

∑
j≥d P

k(i, x; j × dy)∆V (j, y)

=
∫
Dv

ν(dy)∆V (j, y) < 0

(19.79)

from the construction in (19.75).
This is the required contradiction of (19.72) and we are finished. �
It is obviously of interest to know whether the same average drift condition suffices

for positivity when (19.67) does not hold.
In general, this is a subtle question. Writing as before [0] = 0× X, we obviously

have that under (19.70)
E0,y[τ[0]] <∞ (19.80)

for ν-a.e. y, since this quantity does not depend on the detailed hitting distribution
on [0]. But although this ensures that the process on [0] is well-defined, it does not
even ensure that it is recurrent.

As an example of the range of behaviors possible, let us take X = ZZ+ also, and
consider a chain that can move only up one rung or down one rung: specifically, choose
0 < p, q < 1 and

Λ0(x, x− 1) = pq, x ≥ 1
Λ0(x, x+ 1) = (1− p)q, x ≥ 0
Λ2(x, x− 1) = p(1− q), x ≥ 1
Λ2(x, x+ 1) = (1− p)(1− q), x ≥ 0

(19.81)

with the transitions on the boundary given by

Λ0(0, 0) = pq,
Λ2(0, 0) = p(1− q).

(19.82)

The marginal chain ΦΛ is a random walk on the half line {0, 1, . . .} with an invariant
measure ν if and only if p > 1/2. On the other hand, β(x) > 1 if and only if q < 1/2.
Thus (19.70) holds if q < 1/2 < p.

This chain falls into the class that we have considered in Theorem 19.3.4; but
other behaviors follow if we vary the structure at the bottom rung.
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Let us then specify the boundary conditions in a manner other than (19.67): put
Λ∗

1(x, x− 1) = p(1− q) and Λ∗
1(x, x+ 1) = (1− p)(1− q) but

Λ∗
0(x, x− 1) = r(1− q), x ≥ 1

Λ∗
0(x, x+ 1) = (1− r)(1− q), x ≥ 1.

(19.83)

where 0 < r < 1.
Consider now the expected increments in the chain Φ[0] on [0]. By considering

whether the chain leaves [0] or not we have for all x ≥ 1

E[Φ[0]
n | Φ[0]

n−1 = x]− x ≥ (1− 2r)(1− q) + (1− 2p)
( 1− q

1− 2q
+ 1

)
q : (19.84)

here the second term follows since, on an excursion from [0], the expected drift to
the left at every step is no more than (1 − 2p) independent of level change, and the
expected number of steps to return to [0] from 1× X is (1− q)/(1− 2q).

From (19.84) we therefore have that the chain Φ[0] is transient if r and q are small
enough, and p− 1/2 is not too large.

This example shows the critical need to identify petite sets and the return times
to them in classifying any chain: here we have an example where the set [0] is not
petite, although it has many of the properties of a petite set. Yet even though we
have (19.80) proven, we do not even have enough to guarantee the chain is recurrent.

19.3.3 Stability of the GI/G/1 queue

We saw in Section 3.5 that with appropriate choice of kernels the ladder chain serves
as a model for the GI/G/1 queue. We will use the average drift condition of Theo-
rem 19.3.4 to derive criteria for stability of this model.

Of course, in this case we do not have (19.67), and the example at the end of the
last section shows that we cannot necessarily deduce anything from (19.70).

In this case, however, we have as in Section 10.5.3 that [0] is petite, and that
the process on [0], if honest, has invariant measure H where H is the service time
distribution. If we can satisfy (19.70), then, it follows from (19.80) that the process
on [0] is indeed honest, and we only have to check further that∫

H(dy)E0,y[τ[0]] <∞ (19.85)

to derive positivity.
We conclude by proving through this approach a result complementing the result

found in quite another way in Proposition 11.4.4.

Theorem 19.3.5 The GI/G/1 queue with mean inter-arrival time λ and mean ser-
vice time µ satisfies (19.70) if and only if λ > µ, and in this case the chain has an
invariant measure given by (10.53).

Proof From the representations (3.43) and (3.44), we have that the kernel

Λ(x, [0, y]) =
∫ ∞

0
G(dt)P t(x, y)
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where P t(x, y) = P(Rt ≤ y | R0 ≤ y) is the forward recurrence time process in a
renewal process N(t) generated by increments with distribution H.

Since H has finite mean µ, we know from (10.37) that P δ(x, y) has invariant
measure

ν[0, x] = µ−1
∫ x

0
[1−H(x)]dx

for every δ: thus ν is also invariant for Λ.
On the other hand, from (3.43),

β(x) =
∞∑

n=0

nΛn(x, [0,∞))

=
∞∑

n=0

n

∫
G(dt)P t

n(x,∞)

=
∫
G(dt)E[N(t) | R0 = x].

The stationarity of ν for the renewal process N(t) shows that∫ ∞

0
ν(dx)E[N(t) | R0 = x] = t/µ

and so by Fubini’s Theorem, we therefore have∫
ν(dx)β(x) =

∫∞
0

[∫∞
0 ν(dx)E[N(t) | R0 = x]

]
G(dt)

=
∫∞
0 [t/µ]G(dt)

= λ/µ

(19.86)

which proves the first part of the theorem.
To conclude, we note that in this particular case, we know more about the struc-

ture of E0,y[τ[0]], and this enables us to move from the case where (19.67) holds. Given
the starting configuration (0, y), let ny denote the number of customers arriving in
the first service time y: if η(≤ ∞) denotes the expected number of customers in a
busy period of the queue, then by using the trick of rearranging the order of service
to deal with each of the identical ny “busy periods” generated by these customers
separately, we have the linear structure

E0,y[τ[0]] = 1 + E0,y[nyη] = 1 + η
∞∑

n=0

Gn∗[0, y]. (19.87)

As in (19.80), we at least know that since (19.70) holds, the left hand side of this
equation is finite, so that η < ∞. Moreover, from the Blackwell Renewal Theorem
(Theorem 14.5.1) we have for any ε and large y

∞∑
n=0

Gn∗[0, y] ≤ y[λ−1 + ε] (19.88)

so that, finally, (19.85) follows from (19.87), (19.88), and the fact that the mean of
H is finite. �
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19.4 Commentary

Despite the success of the simple drift, or Foster-Lyapunov, approach there is a grow-
ing need for more subtle variations such as those we present here.

There are several cases in the literature where the analysis of state-dependent
(or at least not simple one-step) drift appears unavoidable: see Tjøstheim [265] or
Chen and Tsay [46], where m-step skeletons {Φmk} are analyzed. Analysis of this
kind is simplified if the various parts of the space can be considered separately as in
Section 19.1.2.

In the countable space context, Theorem 19.1.1 was first shown as Theorem 1.3
and Theorem 19.1.2 as Theorem 1.4 of Malyšhev and Men’̌sikov [160]. Their proofs,
especially of Theorem 19.1.2, are more complex than those based on sample path
arguments, which were developed along with Theorem 19.1.3 in [184]. As noted there,
the result can be extended by choosing n(x) as a random variable, conditionally
independent of the process, on ZZ+. In the special case where n(x) has a uniform
distribution on [1, n] independent of x, we get a time averaged result used by Meyn
and Down [175] in analyzing stability of queueing networks. If the variable has a point
mass at n(x) we get the results given here.

Models of random walk on the orthant in Section 19.1.2 have been analyzed in
numerous different ways on the integer quadrant ZZ2

+ by, for example, [159, 167, 160,
230, 72]. Much of their work pertains to more general models which assume different
drifts on the boundary, thus leading to more complex conditions. In [159, 167, 160]
it is assumed that the increments are bounded (although they also analyze higher
dimensional models), whilst in [230, 72] it is shown that one can actually choose
n = 1 if a quadratic function is used for a test function, whilst weakening the bounded
increments assumption to a second moment condition: this method appears to go back
to Kingman [135].

As we have noted, positive recurrence in the simple case illustrated here could
be established more easily given the independence of the two components. However,
the bound using linear functions in (19.25) seems to be new, as does the continuous
space methodology we use here.

The antibody model here is based on that in [184]. The attack pattern of the
“invaders” is modeled to a large extent on the rabies model developed in Bar-
toszyński [16], although the need to be the same order of magnitude as the antibody
group is a weaker assumption than that implicit in the continuous time continuous
space model there.

The results in Section 19.2 are largely taken from Meyn and Tweedie [178]: they
appear to give a fruitful approach to more complex models, and the seeming simplicity
of the presentation here is largely a function of the development of the methods based
on Dynkin’s formula for the non-time varying case. An application to adaptive control
is given in Meyn and Guo [176], where drift functions which depend on the whole
history of the chain are used systematically. Regrettably, examples using this approach
are typically too complex to present here.

The dependent parameter bilinear time series model is analyzed in [177], from
which we adopt the proof of Theorem 19.2.6. In Karlsen [123] a decoupling inequality
of [137] is used to obtain a second order stationary solution in the Gaussian pa-
rameter case, and Brandt [28] provides a simple argument, similar to the proof of
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Proposition 17.3.4, to obtain boundedness in probability for general bilinear time
series models with stationary coefficients.

Results on mixed drifts, such as those in Section 19.3.1, have been discovered
independently several times.

Although Neuts [193] analyzed a two-drift chain in detail, on a countable space
the first approach to classifying chains with different drifts appears to be due to
Marlin [163]. He considered the special case of V (x) = x and assumed a fixed finite
number of different drifts. The form given here was developed for countable spaces by
Tweedie [274] (although the proof there is incomplete) and Rosberg [226], who gives
a slightly different converse statement. A general state space form is in Tweedie [276].

The condition (19.55) for the converse result to hold, and which also suffices to
ensure that ∆V (w) ≥ 0 on Cc implies non-positivity, is known as Kaplan’s condi-
tion [121]: the general state space version sketched here is adapted from a countable
space version in [235]. Related results are in [261].

The average mean drift criterion for the ladder process in Section 19.3.2 is due
to Neuts [194] when the rungs are finite, and is proved there by matrix methods: the
general result is in [277], and (19.70) is also shown there to be necessary for positivity
under reasonable assumptions.

The final criterion for stability of the GI/G/1 queue produced by this analysis is
of course totally standard [10]: that the very indirect Markovian approach reproduces
this result exactly brings us to a remarkably reassuring conclusion.

Added in Second Printing In the past year, Dai has shown in [57] that the state-
dependent drift criterion Theorem 19.1.2 leads to a new approach to the stability of
stochastic queueing network models via the analysis of a simpler deterministic fluid
model. Related work has been developed by Chen [45] and Stolyar [257], and these
results have been strengthened in Dai and Weiss [59] and Dai and Meyn [58].



Appendices

Despite our best efforts, we understand that the scope of this book inevitably leads
to the potential for confusion in readers new to the subject, especially in view of
the variety of approaches to stability which we have given, the many related and
perhaps (until frequently used) forgettable versions of the “Foster-Lyapunov” drift
criteria, and the sometimes widely separated conditions on the various models which
are introduced throughout the book.

At the risk of repetition, we therefore gather together in this Appendix several
discussions which we hope will assist in giving both the big picture, and a detailed
illustration of how the structural results developed in this book may be applied in
different contexts.

We first give a succinct series of equivalences between and implications of the
various classifications we have defined, as a quick “mud map” to where we have been.
In particular, this should help to differentiate between those stability conditions which
are “almost” the same.

Secondly, we list together the drift conditions, in slightly abbreviated form, to-
gether with references to their introduction and the key theorems which prove that
they are indeed criteria for different forms of stability and instability. As a guide to
their usage we then review the analysis of one specific model (the scalar threshold
autoregression, or SETAR model).

This model incorporates a number of sub-models (specifically, random walks and
scalar linear models) which we have already analyzed individually: thus, although
not the most complex model available, the SETAR model serves to illustrate many
of the technical steps needed to convert elegant theory into practical use in a number
of fields of application. The scalar SETAR model also has the distinct advantage
that under the finite second moment conditions we impose, it can be analyzed fully,
with a complete categorization of its parameter space to place each model into an
appropriate stability class.

Thirdly, we give a glossary of the assumptions employed in each of the various
models we have analyzed. This list is not completely self-contained: to do this would
extend repetition beyond reasonable bounds. However, our experience is that, when
looking at a multiply analyzed model, one can run out of hands with which to hold
pages open, so we trust that this recapitulation will serve our readers well.

We conclude with a short collection of mathematical results which underpin and
are used in proving results throughout the book: these are intended to render the book
self-contained, but make no pretence at giving any more comprehensive overview
of the areas of measure theory, analysis, topology and even number theory which
contribute to the overall development of the theory of general Markov chains.



A

Mud Maps

The wide variety of approaches to and definitions of stability can be confusing. Unfor-
tunately, if one insists on non-countable spaces there is little that can be done about
the occasions when two definitions are “almost the same” except to try and delineate
the differences.

Here then is an overview of the structure of Markov chains we have developed,
at least for the class of chains on which we have concentrated, namely

I := {Φ : Φ is ψ-irreducible for some ψ}.

We have classified chains in I using three different but (almost) equivalent properties:

Pn-properties : that is, direct properties of the transition laws Pn

τ -properties : properties couched in terms of the hitting times τA for appropriate
sets A

Drift properties : properties using one step increments of the form of ∆V for some
function V .

A.1 Recurrence versus transience

The first fundamental dichotomy (Chapter 8) is

I = T +R

where T denotes the class of transient chains and R denotes the class of recurrent
chains. This is defined as a dichotomy through a Pn-property in Theorem 8.0.1:
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P n-Definition of Recurrent and Transient Chains

Φ ∈ R ⇐⇒
∑
n

Pn(x,A) =∞, x ∈ X, A ∈ B+(X)

Φ ∈ T ⇐⇒
∑
n

Pn(x,Aj) ≤Mj <∞, x ∈ X, X = ∪Aj

A recurrent chain is “almost” a Harris chain (Chapter 9). Define H ⊆ R by the Harris
τ -property

Φ ∈ H ⇐⇒ Px(τA <∞) ≡ 1, x ∈ X, A ∈ B+(X).

If Φ ∈ R then (Theorem 9.0.1) there is a full absorbing set (a maximal Harris set) H
such that

X = H ∪N

and Φ can be restricted in a unique way to a chain Φ ∈ H on the set H.
The τ -classification of T and R can be made stronger in terms of

Q(x,A) = Px(Φ ∈ A i.o.)

We have from Theorem 8.0.1 and Theorem 9.0.1:

τ -Classification of Recurrent and Transient Chains

Φ ∈ R ⇐⇒ Q(x,A) = 1, x ∈ H, A ∈ B+(X)

Φ ∈ T ⇐⇒ Q(x,A) = 0, x ∈ X, A petite

If indeed Φ ∈ H then the first of these holds for all x since H = X.
The drift classification we have derived is then (Theorem 9.1.8 and Theorem 8.0.2)
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Drift Classification of Recurrent and Transient Chains

Φ ∈ H ⇐= ∆V (x) ≤ 0, x ∈ Cc,

C petite, V unbounded off petite sets

Φ ∈ T ⇐⇒ ∆V (x) ≥ 0, x ∈ Cc,

C petite, V bounded and increasing off C

There is thus only one gap in these classifications, namely the actual equivalence of the
drift condition for recurrence. We have shown (Theorem 9.4.2) that such equivalence
holds for Feller (including countable space) chains.

Finally, it is valuable in practice in a topological context to recall that for T-
chains, which (Proposition 6.2.8) include all Feller chains in I such that suppψ has
non-empty interior

(i) if Φ is in I then (Theorem 6.2.5)

Φ is a T-chain ⇐⇒ every compact set is petite;

(ii) if Φ is a T-chain in I then (Theorem 9.2.2)

Φ ∈ H ⇐⇒ Φ is non-evanescent;

that is, Harris chains in this case do not leave compact sets forever.

A.2 Positivity versus nullity

The second fundamental dichotomy (Chapter 10) is

I = P +N

where N denotes the set of null chains and P ⊆ R denotes the set of positive chains.
Since every transient chain is a fortiori null, this is in any real sense a breakup of R
rather than the complete set I, and is defined in Chapter 10 through a Pn-property:
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First P n-Definition of Positive and Null Chains

Φ ∈ P ⇐⇒ π(A) =
∫
π(dy)Pn(y,A), A ∈ B(X)

where π is a probability measure with π(X) = 1

Φ ∈ N ⇐⇒ µ(A) ≥
∫
µ(dy)Pn(y,A), A ∈ B(X)

where µ is a measure with µ(X) = ∞.

A positive chain is again “almost” a regular chain. Define the collection S ⊆ P by
the τ -property of regularity

Φ ∈ S ⇐⇒ sup
x∈Cj

Ex[τA] <∞, A ∈ B+(X), X = ∪Cj .

If Φ ∈ P then (Theorem 11.0.1) there is a full absorbing set S such that

X = S ∪N

and Φ can be restricted in a unique way to a regular chain Φ ∈ S on the set S.
The τ -classification of P and N can be made stronger, in almost exact analogy

to the recurrence classification above. Theorem 11.0.1 shows

τ -Classification of Positive and Null Chains

Φ ∈ P ⇐⇒ sup
x∈Cj

Ex[τA] <∞, A ∈ B+(X), S = ∪Cj .

Φ ∈ N ⇐⇒
∫

C
π(dx)Ex[τC ] =∞, C ∈ B+(X)
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Again, if Φ ∈ S then the first of these holds with S = X. We might expect that

Φ ∈ N ⇐⇒ inf
x∈C

Ex[τC ] = ∞, some C ∈ B+(X) :

clearly the infinite expected hitting times will imply the chain is not positive, but the
converse appears to be so far unknown except when C is an atom.

The drift classification is

Drift Classification of Positive and Null Chains

Φ ∈ S ⇐⇒ ∆V (x) ≤ −1 + b1lC , x ∈ X, C petite

Φ ∈ N ⇐=


∆V (x) ≥ 0, x ∈ Cc,∫
P (x, dy)|V (y)− V (x)| bounded,

C petite, V increasing off C.

There is again one open question in these classifications, namely that of the equiva-
lence or otherwise of the drift condition for nullity. We do not know how close this is
to complete.

In a topological context we know again (see Chapter 18) that for T-chains, there
is a further stability property completely equivalent to positivity: if Φ is an aperiodic
T-chain in R then

Φ ∈ P ⇐⇒ {Pn(x, · )} is tight, a.e. x ∈ X.

Both the Pn and τ properties are essentially properties involving the whole trajectory
of the chain. The drift conditions, and in particular their sufficiency for classification,
are powerful practical tools of analysis because they involve only the one-step move-
ment of the chain: this is summarized further in Section B.1.

A.3 Convergence Properties

There is a further Pn-description of P and N , closer to the recurrence/transience
dichotomy, which is developed in Chapter 18, and which is the classical starting point
in countable chain theory.
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Second P n-Definition of Positive and Null Chains

Φ ∈ P ⇐⇒ lim sup
n→∞

Pn(x,A) > 0, x ∈ X, A ∈ B+(X)

Φ ∈ N ⇐⇒ lim
n→∞Pn(x,Bj) = 0, x ∈ X, X =

⋃
Bj

However, these are weak categorizations of the types of convergence which hold for
these chains. For aperiodic chains we have (Theorem 13.0.1)

H ∩ P = E

where the class E is the set of ergodic chains such that

Φ ∈ E ⇐⇒ lim
n→∞ ‖P

n(x, · )− π‖ = 0, x ∈ X.

The properties of E are delineated further in Part III, and in particular in our next
Appendix we summarize criteria (drift conditions) for classifying sub-classes of E .
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Testing for Stability

B.1 A Glossary of Drift Conditions

In this section we collect together the various “Foster-Lyapunov” or “drift” criteria
which we have developed for the testing of various forms of stability described in
Section A.

In using each of these drift conditions, one is required to find two chain-related
characteristics:

(i) a suitable non-negative “test function” which is always denoted V ;

(ii) a suitable “test set” which is always denoted C.

Typically, for well-behaved chains we are able without great difficulty to give condi-
tions showing a set C to be a “test set”; these sets are usually petite, or for T-chains,
compact. The choice of V , on the other hand, is an art form and depends strongly on
intuition regarding the movement of the chain.

The Recurrence Criterion (V1) The weakest stability condition was introduced
on page 197. Its use in general requires the existence of a function V , unbounded off
petite sets, or norm-like on topological spaces, and a petite or compact set C, with

∆V (x) ≤ 0, x ∈ Cc (8.44)

Several theorems show this to be an appropriate condition for various forms of recur-
rence, including Theorem 8.4.3, Theorem 9.4.1, and Theorem 12.3.3.

The Positivity/Regularity Criterion (V2) The second condition (often known
as Foster’s Condition) was introduced on page 270. We require for some constant
b <∞

∆V (x) ≤ −1 + b1lC(x), x ∈ X, (11.17)

where V is allowed to be an extended real-valued function V : X→ [0,∞] provided it
is finite at some point in X, and C is typically petite or compact. Theorems which
show this to be an appropriate condition for various forms of regularity, existence
of invariant measures, positive recurrence and ergodicity are Theorem 11.3.4, Theo-
rem 11.3.11, Theorem 11.3.15, Theorem 12.3.4, Theorem 12.4.5 and Theorem 13.0.1.
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The f-Positivity/f-Regularity Criterion (V3) The third condition was intro-
duced on page 345. Here again V is an extended real-valued function V : X → [0,∞]
finite at some point in X and C is typically petite or compact; and we require for
some function f : X → [1,∞), and a constant b <∞,

∆V (x) ≤ −f(x) + b1lC(x), x ∈ X. (14.16)

Various theorems which show this to be an appropriate condition for various forms
of f -regularity, existence of f -moments of π and f -ergodicity and even sample path
results such as the Central Limit Theorem and the Law of the Iterated Logarithm
include Theorem 14.2.3, Theorem 14.2.6, Theorem 14.3.7 and Theorem 17.5.3.

The V -Uniform/V -Geometric Ergodicity Criterion (V4) The strongest sta-
bility condition was introduced on page 376. Again V is an extended real-valued
function V : X → [1,∞] finite at some point in X, and for constants β > 0 and b <∞,

∆V (x) ≤ −βV (x) + b1lC(x), x ∈ X. (15.28)

Critical theorems which show this to be an appropriate condition for various forms
of V -geometric regularity, geometric ergodicity, V -uniform ergodicity are Theo-
rem 15.2.6 and Theorem 16.1.2. We also showed in Lemma 15.2.8 that (V4) holds
with a petite set C if and only if V is unbounded off petite sets and

PV ≤ λV + L (15.35)

holds for some λ < 1, L <∞, and this is a frequently used alternative form.

The Transience/Nullity Criterion Finally, we introduced conditions for instabil-
ity. These involve the relation

∆V (x) ≥ 0, x ∈ Cc (8.43)

which was introduced on both page 284 and page 196.
Theorems which show this to be an appropriate condition for various forms of

non-positivity or nullity include Theorem 11.5.1: typically these require V to have
bounded increments in expectation, and C to be a sublevel set of V .

Exactly the same drift criterion can also be shown to give an appropriate condition
for various forms of transience, as in Theorem 8.4.2: these require, typically, that V
be bounded, and C be a sublevel set of V with both C and Cc in B+(X).

These criteria form the basis for classification of the chains we have considered
into the various stability classes, and despite their simplicity they appear to work
well across a great range of cases. It is our experience that in the use of the two
commonest criteria (V2) and (V4) for models on IRk, quadratic forms are the most
useful to use, although the choice of a suitable form is not always trivial.

Finally, we mention that in some cases where identifying the test function is
difficult we may need greater subtlety: the generalizations in Chapter 19 then provide
a number of other methods of approach.
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FigureB.1. The SETAR model: stability classification of (θ(1), θ(M))-space. The model is
regular in the shaded “interior” area (11.36), and transient in the unshaded “exterior” (9.48),
(9.49) and (9.52). The boundaries are in the figures below.

B.2 The scalar SETAR Model: a complete classification

In this section we summarize, for illustration, the use of these drift conditions in
practice for scalar first order SETAR models: recall that these are piecewise linear
models satisfying

Xn = φ(j) + θ(j)Xn−1 +Wn(j), Xn−1 ∈ Rj

where −∞ = r0 < r1 < · · · < rM = ∞ and Rj = (rj−1, rj ]; for each j, the noise
variables {Wn(j)} form an i.i.d. zero-mean sequence independent of {Wn(i)} for i 
= j.

We assume (for convenience of exposition) that the following conditions hold on
the noise distributions:

(i) each {Wn(i)} has a density positive on the whole real line, and

(ii) the variances of the noise distributions for the two end intervals are finite.

Neither of these conditions is necessary for what follows, although weakening them
makes proofs rather more difficult.

In Figure B.1, Figure B.2 and Figure B.3 we depict the parameter space in terms
of φ(1), θ(1), φ(M), and θ(M). The results we have proved show that in the “interior”
and “boundary” areas, the SETAR model is Harris recurrent; and it is transient in
the “exterior” of the parameter space. In accordance with intuition, the model is null
on the boundaries themselves, and regular (and indeed, in this case, geometrically
ergodic) in the strict interior of the parameter space.

The steps taken to carry out this classification form a template for analyzing
many models, which is our reason for reproducing them in summary form here.
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FigureB.2. The SETAR model: stability classification of (φ(1), φ(M))-space in the regions
(θ(M) = 1; θ(1) ≤ 1) and (θ(M) ≤ 1; θ(1) = 1). The model is regular in the shaded “interior”
areas, which are clockwise (11.38), (11.37) and (11.39); transient in the unshaded “exterior”
(9.51), (9.50); and null recurrent on the “margins” described clockwise by (11.45), (11.46)
and (11.47)–(11.48).

FigureB.3. The SETAR model: stability classification of (φ(1), φ(M))-space in the region
(θ(M) θ(1) = 1; θ(1) ≤ 0). The model is regular in the shaded “interior” area (11.40); transient
in the unshaded “exterior” (9.53); and null recurrent on the “margin” described by (11.49).
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(STEP 1) As a first step, we show in Theorem 6.3.6 that the SETAR model is
a ϕ-irreducible T-process with ϕ taken as Lebesgue measure µLeb on IR. Thus compact
sets are test sets in all of the criteria above.

(STEP 2) In the “interior” of the parameter space we are able to identify
geometric ergodicity in Proposition 11.4.5, by using (V4) with linear test functions
of the form

V (x) =
{
a x x > 0
b |x| x ≤ 0

and suitable choice of the coefficients a, b, related to the parameters of the model.
Note that we only indicated that V satisfied (V2), but the stronger form is actually
proved in that result.

(STEP 3) We establish transience on the “exterior” of the parameter space
as in Proposition 9.5.4 using the bounded function

V (x) =


1− 1/a(x+ u), x > c/a− u
1− 1/c −c/b− v < x < c/a− u
1 + 1/b(x+ v) x < −c/b− v

for suitable u, v, a, b, c: this satisfies (8.43) so that Theorem 8.4.2 applies.
(STEP 4) Null recurrence is, as is often the case, the hardest to establish.

Firstly, Proposition 11.5.4 shows the chain to be recurrent on the boundaries of the
parameter space. This is done by applying (V1) with a logarithmic test function

V (x) =
{

log(u+ ax) x > R > rM−1

log(v − bx) x < −R < r1

and V (x) = 0 in the region [−R,R], where a, b, R, u and v are constants chosen
suitably for different regions of the parameter space.

To complete the classification of the model, we need to prove that in this region
the model is not positive recurrent. In Proposition 11.5.5 we show that the chain
is indeed null on the margins of the parameter space, using essentially linear test
functions in (11.42).

This model, although not linear, is sufficiently so that the methods applied to
the random walk or the simple autoregressive models work here also. In this sense
the SETAR model is an example of greater complexity but not of a step-change in
type. Indeed, the fact that the drift conditions only have to hold outside a compact
set means that for this model we really only have to consider the two linear models
one each of the end intervals, rendering its analysis even more straightforward.

For more detail on this model see Tong [267]; and for some of the complications
in moving to multidimensional versions see Brockwell, Liu and Tweedie [33].

Other generalized random coefficient models or completely nonlinear models with
which we have dealt are in many ways more difficult to classify. Nevertheless, steps
similar to those above are frequently the only ones available, and in practice lin-
earization to enable use of test functions of these forms will often be the approach
taken.



C

A Glossary of Model Assumptions

Here we gather together the assumptions used for the classes of models we have
analyzed as continuing examples. These are only intended for reference. Discussion of
the background or the use of these terms is given as they are originally introduced:
the Index gives a coherent list of the point of introduction of these assumptions with
the nomenclature given here, whilst the equation numbering is that of the original
introduction to the model assumption.

C.1 Regenerative Models

We first consider the class of models loosely defined as “regenerative”. Such models
are usually addressed in applied probability or operations research contexts.

C.1.1 Recurrence time chains

Both discrete time and continuous time renewal processes have served as examples
as well as tools in our analysis.

(RT1) If {Zn} is a discrete time renewal process, then the forward recurrence time
chain V+ = V +(n), n ∈ ZZ+ is given by

V +(n) := inf(Zm − n : Zm > n), n ≥ 0

(RT2) The backward recurrence time chain V− = V −(n), n ∈ ZZ+ is given by

V −(n) := inf(n− Zm : Zm ≤ n), n ≥ 0.

(RT3) If {Zn} is a renewal process in continuous time with no delay, then we call the
process

V +(t) := inf(Zn − t : Zn > t, n ≥ 1), t ≥ 0

the forward recurrence time process; and for any δ > 0, the discrete time chain
V+

δ = V +(nδ), n ∈ ZZ+ is called the forward recurrence time δ-skeleton.

(RT4) We call the process

V −(t) := inf(t− Zn : Zn ≤ t, n ≥ 1), t ≥ 0

the backward recurrence time process; and for any δ > 0, the discrete time chain
V−

δ = V −(nδ), n ∈ ZZ+ is called the backward recurrence time δ-skeleton.
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C.1.2 Random Walk

We have analyzed both random walk on the real line and random walk on the half
line, and many models based on these.

(RW1) Suppose that Φ = {Φn;n ∈ ZZ+} is a collection of random variables defined
by choosing an arbitrary distribution for Φ0 and setting for k ≥ 1

Φk = Φk−1 +Wk

where the Wk are i.i.d. random variables taking values in IR with

Γ (−∞, y] = P(Wn ≤ y). (1.6)

Then Φ is called random walk on IR.

(RW2) We call the random walk spread-out (or equivalently, we call Γ spread out) if
some convolution power Γn∗ is non-singular with respect to µLeb.

(RWHL1) Suppose Φ = {Φn;n ∈ ZZ+} is defined by choosing an arbitrary distribution
for Φ0 and taking

Φn = [Φn−1 +Wn]+ (1.7)

where [Φn−1 +Wn]+ := max(0, Φn−1 +Wn) and again the Wn are i.i.d. random
variables taking values in IR with Γ (−∞, y] = P(W ≤ y).

Then Φ is called random walk on a half-line.

C.1.3 Storage Models and Queues

Random walks provide the underlying structure for both queueing and storage models,
and we have assumed several specializations for these physical systems.

Queueing models and storage models are closely related in formal structure, al-
though the physical interpretation of the quantities of interest are somewhat different.

We have analyzed GI/G/1 queueing models under the assumptions

(Q1) Customers arrive into a service operation at timepoints T0 = 0, T0 + T1, T0 +
T1 + T2, . . . where the interarrival times Ti, i ≥ 1, are i.i.d. random variables,
distributed as a random variable T with G(−∞, t] = P(T ≤ t).

(Q2) The nth customer brings a job requiring service Sn where the service times are
independent of each other and of the interarrival times, and are distributed as
a variable S with distribution H(−∞, t] = P(S ≤ t).

(Q3) There is one server and customers are served in order of arrival.

In such a general situation we have often considered the countable space chain con-
sisting of the number of customers in the queue either at arrival or at departure times.
Under some exponential assumptions these give the GI/M/1 and M/G/1 queueing
systems:
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(Q4) If the distribution H(−∞, t] of service times is exponential with

H(−∞, t] = 1− e−µt, t ≥ 0

then the queue is called a GI/M/1 queue.

(Q5) If the distribution G(−∞, t] of inter-arrival times is exponential with

G(−∞, t] = 1− e−λt, t ≥ 0

then the queue is called an M/G/1 queue.

In storage models we have a special case of random walk on a half line, but here we
consider the model at the times of input and break the increment into the input and
output components.

The simple storage model has the assumptions

(SSM1) For each n ≥ 0 let Sn and Tn be i.i.d. random variables on IR with distribu-
tions H and G.

(SSM2) Define the random variables

Φn+1 = [Φn + Sn − Jn]+

where the variables Jn are i.i.d., with

P(Jn ≤ x) = G(−∞, x/r] (2.32)

for some r > 0.

Then the chain Φ = {Φn} represents the contents of a storage system at the times
{Tn−} immediately before each input, and is called the simple storage model , with
release rate r.

More complex content-dependent storage models have the assumptions

(CSM1) For each n ≥ 0 let Sn(x) and Tn be i.i.d. random variables on IR with
distributions Hx and G.

(CSM2) Define the random variables

Φn+1 = [Φn − Jn + Sn(Φn − Jn)]+

where the variables Jn are independently distributed, with

P(Jn ≤ y | Φn = x) =
∫
G(dt)P(Jx(t) ≤ y) (2.34)

The chain Φ = {Φn} can be interpreted as the content of the storage system at
the times {Tn−} immediately before each input, and is called the content dependent
storage model.

We also note that these models can be used to represent a number of state-
dependent queueing systems where the rate of service depends on the actual state of
the system rather than being independent.
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C.2 State Space Models

The other broad class of models we have considered are loosely described as “state
space models”, and occur in communication and control engineering, other areas of
systems analysis, and in time series.

C.2.1 Linear Models

The process X = {Xn , n ∈ ZZ+} is called the simple linear model if

(SLM1) Xn and Wn are random variables on IR satisfying, for some α ∈ IR,

Xn = αXn−1 +Wn, n ≥ 1;

(SLM2) the random variables {Wn} are an i.i.d. sequence with distribution Γ on IR.

Next suppose X = {Xk} is a stochastic process for which

(LSS1) There exists an n×n matrix F and an n× p matrix G such that for each k ∈
ZZ+, the random variables Xk and Wk take values in IRn and IRp, respectively,
and satisfy inductively for k ≥ 1, and arbitrary W0,

Xk = FXk−1 +GWk;

(LSS2) The random variables {Wn} are i.i.d. with common finite mean, taking values
on IRp, with distribution Γ (A) = P(Wj ∈ A).

Then X is called the linear state space model driven by F,G, or the LSS(F ,G) model,
with associated control model LCM(F ,G) (defined below).

Further assumptions are required for the stability analysis of this model. These
include, at different times

(LSS3) The noise variable W has a Gaussian distribution on IRp with zero mean and
unit variance: that is, W ∼ N(0, I).

(LSS4) The distribution Γ of the random variable W is non-singular with respect to
Lebesgue measure, with non-trivial density γw.

(LSS5) The eigenvalues of F fall within the open unit disk in C.

The associated (linear) control model LCM(F ,G) is defined by the following two sets
of assumptions.

Suppose x = {xk} is a deterministic process on IRn and u = {un} is a determin-
istic process on IRp, for which x0 is arbitrary; then x is called the linear control model
driven by F,G, or the LCM(F ,G) model, if for k ≥ 1

(LCM1) there exists an n × n matrix F and an n × p matrix G such that for each
k ∈ ZZ+,

xk+1 = Fxk +Guk+1; (1.4)

(LCM2) the sequence {un} on IRp is chosen deterministically.



C.2 State Space Models 519

A process Y = {Yn} is called a (scalar) autoregression of order k, or AR(k) model,
if it satisfies

(AR1) for each n ≥ 0, Yn and Wn are random variables on IR, satisfying, inductively
for n ≥ k,

Yn = α1Yn−1 + α2Yn−2 + . . .+ αkYn−k +Wn,

for some α1, . . . , αk ∈ IR;

(AR2) the sequence W is an error or innovation sequence on IR.

The process Y = {Yn} is called an autoregressive-moving average process of order
(k, �), or ARMA(k, �) model, if it satisfies

(ARMA1) for each n ≥ 0, Yn and Wn are random variables on IR, satisfying, induc-
tively for n ≥ k,

Yn =
k∑

j=1

αjYn−j +
�∑

j=1

βjWn−j +Wn,

for some α1, . . . , αk, β1, . . . , β� ∈ IR;

(ARMA2) the sequence W is an error or innovation sequence on IR.

C.2.2 Nonlinear Models

The stochastic nonlinear systems we analyze have a deterministic analogue in semi-
dynamical systems, defined by:

(DS1) The process Φ is deterministic, and generated by the nonlinear difference equa-
tion, or semi-dynamical system,

Φk+1 = F (Φk), k ∈ ZZ+, (11.16)

where F : X → X is a continuous function.

(DS2) There exists a positive function V : X → IR+ and a compact set C ⊂ X and
constant M <∞ such that

∆V (x) := V (F (x))− V (x) ≤ −1

for all x lying outside the compact set C, and

sup
x∈C

V (F (x)) ≤M.

The chain X = {Xn} is called a scalar nonlinear state space model on IR driven by
F , or SNSS(F ) model, if it satisfies

(SNSS1) for each n ≥ 0, Xn and Wn are random variables on IR, satisfying, induc-
tively for n ≥ 1,

Xn = F (Xn−1,Wn),

for some smooth (C∞) function F : IR× IR → IR.
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We also use, for various results at various times,

(SNSS2) The sequence W is a disturbance sequence on IR, whose marginal distribu-
tion Γ possesses a density γw supported on an open set Ow, called the control
set.

(SNSS3) The distribution Γ of W is absolutely continuous, with a density γw on IR
which is lower semicontinuous.

Suppose X = {Xk}, where

(NSS1) for each k ≥ 0, Xk and Wk are random variables on IRn, IRp respectively,
satisfying inductively for k ≥ 1,

Xk = F (Xk−1,Wk),

for some smooth (C∞) function F : X× Ow → X, where X is an open subset of
IRn, and Ow is an open subset of IRp.

Then X is called a nonlinear state space model driven by F , or NSS(F ) model, with
control set Ow.

Again for various properties to hold we require

(NSS2) The random variables {Wk} are a disturbance sequence on IRp, whose
marginal distribution Γ possesses a density γw which is supported on an open
set Ow.

(NSS3) The distribution Γ of W possesses a density γw on IRp which is lower semi-
continuous, and the control set is the open set

Ow := {x ∈ IR : γw(x) > 0}.

The associated control model CM(F ) is defined as follows.

(CM1) The deterministic system

xk = Fk(x0, u1, . . . , uk), k ∈ ZZ+, (2.8)

where the sequence of maps {Fk : X × Ok
w → X : k ≥ 0} is defined by (2.5), is

called the associated control system for the NSS(F ) model (denoted CM(F ))
provided the deterministic control sequence {u1, . . . , uk, k ∈ ZZ+} lies in the
control set Ow ⊆ IRp.

To obtain a T-chain, we assume for the SNSS(F ) model,

(CM2) For each initial condition x0
0 ∈ IR there exists k ∈ ZZ+ and a sequence

(u0
1, . . . , u

0
k) ∈ Ok

w such that the derivative[ ∂

∂u1
Fk (x0

0, u
0
1, . . . , u

0
k) | · · · |

∂

∂uk
Fk (x0

0, u
0
1, . . . , u

0
k)
]

(7.4)

is non-zero.

For the multi-dimensional NSS(F ) model we often assume
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(CM3) For each initial condition x0
0 ∈ IR there exists k ∈ ZZ+ and a sequence �u0 =

(u0
1, . . . , u

0
k) ∈ Ok

w such that

rankCk
x(�u0) = n. (7.13)

A specific example of the NSS(F ) model is the nonlinear autoregressive-moving av-
erage, or NARMA, model.

The process Y = {Yn} is called a nonlinear autoregressive-moving average process
of order (k, �) if the values Y0, . . . , Yk−1 are arbitrary and

(NARMA1) for each n ≥ 0, Yn and Wn are random variables on IR, satisfying, induc-
tively for n ≥ k,

Yn = G(Yn−1, Yn−2, . . . , Yn−k,Wn,Wn−1,Wn−2, . . . ,Wn−�)

where the function G: IRk+�+1 → IR is smooth (C∞).

(NARMA2) the sequence W is an error sequence on IR.

C.2.3 Particular Examples

The simple adaptive control model is a triple Y,U,θ where

(SAC1) the output sequence Y and parameter sequence θ are defined inductively for
any input sequence U by

Yk+1 = θkYk + Uk +Wk+1 (2.19)

θk+1 = αθk + Zk+1, k ≥ 1 (2.20)

where α is a scalar with |α| < 1;

(SAC2) the bivariate disturbance process
( Z
W

)
is Gaussian and satisfies

E[
(Zn

Wn

)
] =

(
0
0

)
E[
(Zn

Wn

)
(Zk,Wk)] =

(
σ2

z 0
0 σ2

w

)
δn−k, n ≥ 1

with σz < 1;

(SAC3) the input process satisfies Uk ∈ Yk, k ∈ ZZ+, where Yk = σ{Y0, . . . , Yk}.

With the control Uk chosen as Uk = −θ̂kYk, k ∈ ZZ+, the closed loop system equations
for the simple adaptive control model are

θ̃k+1 = αθ̃k − αΣkYk+1Yk(ΣkY
2
k + σ2

w)−1 + Zk+1 (2.21)

Yk+1 = θ̃kYk +Wk+1 (2.22)

Σk+1 = σ2
z + α2σ2

wΣk(ΣkY
2
k + σ2

w)−1, k ≥ 1 (2.23)

where the triple Σ0, θ̃0, Y0 is given as an initial condition.
The closed loop system gives rise to a Markovian system of the form (NSS1), so

that Φk = (Σk, θ̃k, Yk)� is a Markov chain with state space X = [σ2
z ,

σ2
z

1−α2 ]× IR2.
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A chain X = {Xn} is called a scalar self-exciting threshold autoregression (or
SETAR) model if it satisfies

(SETAR1) for each 1 ≤ j ≤M , Xn and Wn(j) are random variables on IR, satisfying,
inductively for n ≥ 1,

Xn = φ(j) + θ(j)Xn−1 +Wn(j), rj−1 < Xn−1 ≤ rj ,

where −∞ = r0 < r1 < · · · < rM = ∞ and {Wn(j)} forms an i.i.d. zero-mean
error sequence for each j, independent of {Wn(i)} for i 
= j.

For stability classification we often use

(SETAR2) For each j = 1, · · · ,M , the noise variable W (j) has a density positive on
the whole real line.

(SETAR3) The variances of the noise distributions for the two end intervals are finite;
that is,

E(W 2(1)) <∞, E(W 2(M)) <∞

A chain X = {Xn} is called a simple (first order) bilinear process if it satisfies

(SBL1) For each n ≥ 0, Xn and Wn are random variables on IR, satisfying for n ≥ 1,

Xn = θXn−1 + bXn−1Wn +Wn

where θ and b are scalars, and the sequence W is an error sequence on IR.

(SBL2) The sequence W is a disturbance process on IR, whose marginal distribution
Γ possesses a finite second moment, and a density γw which is lower semicon-
tinuous.

The process Φ =
(θ
Y

)
is called the dependent parameter bilinear model if it satisfies

(DBL1) For some |α| < 1 and all k ∈ ZZ+,

Yk+1 = θkYk +Wk+1 (2.12)

θk+1 = αθk + Zk+1. (2.13)

We often also require

(DBL2) The joint process (Z,W)� is a disturbance sequence on IR2, Z and W are
mutually independent, and the distributions Γw and Γz of W , Z respectively
possess densities which are lower semicontinuous. It is assumed that W has a
finite second moment, and that E[log(1 + |Z|)] <∞.

The chain X = {Xk} is called a random coefficient autoregression (RCA) process if
it satisfies, for each k ≥ 0,

Xk+1 = (A+ Γk+1)Xk +Wk+1

where Xk, Γk and Wk are random variables satisfying the following:
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(RCA1) The sequences Γ and W are i.i.d. and also independent of each other.

Conditions which lead to stability are then

(RCA2) The following expectations exist, and have the prescribed values:

E[Wk] = 0 E[WkW
�
k ] = G (n× n),

E[Γk] = 0 (n× n) E[Γk ⊗ Γk] = C (n2 × n2),

and the eigenvalues of A⊗A+ C have moduli less than unity.

(RCA3) The distribution of
(Γk
Wk

)
has an everywhere positive density with respect to

µLeb on IRn2+p
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Some Mathematical Background

In this final section we collect together, for ease of reference, many of those mathemat-
ical results which we have used in developing our results on Markov chains and their
applications: these come from probability and measure theory, topology, stochastic
processes, the theory of probabilities on topological spaces, and even number theory.

We have tried to give results at a relevant level of generality for each of the
types of use: for example, since we assume that the leap from countable to general
spaces or topological spaces is one that this book should encourage, we have reviewed
(even if briefly) the simple aspects of this theory; conversely, we assume that only a
relatively sophisticated audience will wish to see details of sample path results, and
the martingale background provided requires some such sophistication.

Readers who are unfamiliar with any particular concepts and who wish to delve
further into them should consult the standard references cited, although in general a
deep understanding of many of these results is not vital to follow the development in
this book itself.

D.1 Some Measure Theory

We assume throughout this book that the reader has some familiarity with the ele-
ments of measure and probability theory. The following sketch of key concepts will
serve only as a reminder of terms, and perhaps as an introduction to some non-
elementary concepts; anyone who is unfamiliar with this section must take much in
the general state space part of the book on trust, or delve into serious texts such as
Billingsley [25], Chung [50] or Doob [68] for enlightenment.

D.1.1 Measurable spaces and σ-fields

A general measurable space is a pair (X,B(X)) with

X: an abstract set of points;

B(X) : a σ-field of subsets of X; that is,

(i) X ∈ B(X);

(ii) if A ∈ B(X) then Ac ∈ B(X);

(iii) if Ak ∈ B(X), k = 1, 2, 3, . . . then
⋃∞

k=1 Ak ∈ B(X).
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A σ-field B is generated by a collection of sets A in B if B is the smallest σ-field
containing the sets A, and then we write B = σ(A); a σ-field B is countably generated
if it is generated by a countable collection A of sets in B. The σ-fields B(X) we use
are always assumed to be countably generated.

On the real line IR := (−∞,∞) the Borel σ-field B(IR) is generated by the count-
able collection of sets A = (a, b] where a, b range over the rationals Q.

When our state space is IR then we always assume it is equipped with the Borel
σ-field.

If (X1,B(X1)) is a measurable space and (X2,B(X2)) is another measurable space,
then a mapping h: X1 → X2 is called a measurable function if

h−1{B} := {x : h(x) ∈ B} ∈ B(X1)

for all sets B ∈ B(X2).
As a convention, functions on (X,B(X)) which we use are always assumed to be

measurable, and in general this is omitted from theorem statements and the like.

D.1.2 Measures

A (signed) measure µ on the space (X,B(X)) is a function from B(X) to (−∞,∞]
which is countably additive: if Ak ∈ B(X), k = 1, 2, 3, . . ., and Ai ∩Aj = ∅, i 
= j then

µ(
∞⋃
i=1

Ai) =
∞∑
i=1

µ(Ai).

We say that µ is positive if µ(A) ≥ 0 for any A. The measure µ is called a probability
(or subprobability) measure if it is positive and µ(X) = 1 (or µ(X) < 1).

A positive measure µ is σ-finite if there is a countable collection of sets {Ak} such
that X = ∪Ak and µ(Ak) <∞ for each k.

On the real line (IR,B(IR)) Lebesgue measure µLeb is a positive measure defined
for intervals (a, b] by µLeb(a, b] = b− a, and for the other sets in B(IR) by an obvious
extension technique. Lebesgue measure on higher dimensional Euclidean space IRp is
constructed similarly using the area of rectangles as a basic definition.

The total variation norm of a signed measure is defined as ‖µ‖:=sup
∫
f dµ, where

the supremum is taken over all measurable functions f from (X,B(X)) to (IR,B(IR)),
such that |f(x)| ≤ 1 for all x ∈ X.

For a signed measure µ, the state space X may be written as the union of disjoint
sets X+ and X− where

µ(X+)− µ(X−) = ‖µ‖.

This is known as the Hahn decomposition.

D.1.3 Integrals

Suppose that h is a non-negative measurable function from (X,B(X)) to (IR,B(IR)).
The Lebesgue integral of h with respect to a positive finite measure µ is defined in
three steps.

Firstly, for A ∈ B(X) define 1lA(x) = 1 if x ∈ A, and 0 otherwise: 1lA is called the
indicator function of the set A. In this case we define
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∫
X

1lA(x)µ(dx) := µ(A).

Next consider simple functions h such that there exist sets {A1, . . . AN} ⊂ B(X) and
positive numbers {b1, . . . bN} ⊂ IR+ with h =

∑N
k=1 bk1lAk

.
If h is a simple function we can unambiguously define

∫
X
h(x)µ(dx) :=

N∑
k=1

bkµ{Ak}.

Finally, since it is possible to show that given any non-negative measurable h, there
exists a sequence of simple functions {hk}∞k=1, such that for each x ∈ X,

hk(x) ↑ h(x)

we can take ∫
X
h(x)µ(dx) := lim

k

∫
X
hk(x)µ(dx)

which always exists, though it may be infinite.
This approach works if h is non-negative. If not, write

h = h+ − h−

where h+ and h− are both non-negative measurable functions, and define∫
X
h(x)µ(dx) :=

∫
X
h+(x)µ(dx)−

∫
X
h−(x)µ(dx),

if both terms on the right are finite. Such functions are called µ-integrable, or just
integrable if there is no possibility of confusion; and we frequently denote the integral
by ∫

h dµ :=
∫
X
h(x)µ(dx).

The extension to σ-finite measures is then straightforward.
Convergence of sequences of integrals is central to much of this book. There are

three results which we use regularly:

Theorem D.1.1 (Monotone Convergence Theorem) If µ is a σ-finite positive
measure on (X,B(X)) and {fi : i ∈ ZZ+} are measurable functions from (X,B(X)) to
(IR,B(IR)) which satisfy 0 ≤ fi(x) ↑ f(x) for µ-almost every x ∈ X, then∫

X
f(x)µ(dx) = lim

i

∫
X
fi(x)µ(dx). (D.1)

Note that in this result the monotone limit f may not be finite even µ-almost every-
where, but the result continues to hold in the sense that both sides of (D.1) will be
finite or infinite together.

Theorem D.1.2 (Fatou’s Lemma) If µ is a σ-finite positive measure on (X,B(X))
and {fi : i ∈ ZZ+} are non-negative measurable functions from (X,B(X)) to (IR,B(IR))
then ∫

X
lim inf

i
fi(x)µ(dx) ≤ lim inf

i

∫
X
fi(x)µ(dx). (D.2)
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Theorem D.1.3 (Dominated Convergence Theorem) Suppose that µ is a σ-
finite positive measure on (X,B(X)) and g ≥ 0 is a µ-integrable function from
(X,B(X)) to (IR,B(IR)).

If f and {fi : i ∈ ZZ+} are measurable functions from (X,B(X)) to (IR,B(IR))
satisfying |fi(x)| ≤ g(x) for µ-almost every x ∈ X, and if fi(x) → f(x) as i→∞ for
µ-a.e. x ∈ X, then each fi is µ-integrable, and∫

X
f(x)µ(dx) = lim

i

∫
X
fi(x)µ(dx)

D.2 Some Probability Theory

A general probability space is an ordered triple (Ω,F ,P) with Ω an abstract set of
points, F a σ-field of subsets of Ω, and P a probability measure on F .

If (Ω,F ,P) is a probability space and (X,B(X)) is a measurable space, then a
mapping X:Ω → X is called a random variable if

X−1{B} := {ω : X(ω) ∈ B} ∈ F

for all sets B ∈ B(X): that is, if X is a measurable mapping from Ω to X.
Given a random variable X on the probability space (Ω,F ,P), we define the

σ-field generated by X, denoted σ{X} ⊆ F , to be the smallest σ-field on which X is
measurable.

If X is a random variable from a probability space (Ω,F ,P) to a general mea-
surable space (X,B(X)), and h is a real valued measurable mapping from (X,B(X))
to the real line (IR,B(IR)) then the composite function h(X) is a real-valued random
variable on (Ω,F ,P): note that some authors reserve the term “random variable” for
such real-valued mappings. For such functions, we define the expectation as

E[h(X)] =
∫

Ω
h(X(ω))P(dw)

The set of real-valued random variables Y for which the expectation is well-defined
and finite is denoted L1(Ω,F ,P). Similarly, we use L∞(Ω,F ,P) to denote the col-
lection of essentially bounded real-valued random variables Y ; that is, those for
which there is a bound M and a set AM ⊂ F with P(AM ) = 0 such that
{ω : |Y (ω)| > M} ⊆ AM .

Suppose that Y ∈ L1(Ω,F ,P) and G ⊂ F is a sub-σ-field of F . If Ŷ ∈ L1(Ω,G,P)
and satisfies

E[Y Z] = E[Ŷ Z] for all Z ∈ L∞(Ω,G,P)

then Ŷ is called the conditional expectation of Y given G, and denoted E[Y | G]. The
conditional expectation defined in this way exists and is unique (modulo P-null sets)
for any Y ∈ L1(Ω,F ,P) and any sub σ-field G.

Suppose now that we have another σ-field D ⊂ G ⊂ F . Then

E[Y | D] = E[E[Y | G] | D]. (D.3)

The identity (D.3) is often called “the smoothing property of conditional expecta-
tions”.
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D.3 Some Topology

We summarize in this section several concepts needed for chains on topological spaces,
and for the analysis of some of the applications on such spaces. The classical texts of
Kelley [126] or Halmos [94] are excellent references for details at the level we require,
as is the more introductory but very readable exposition of Simmons [240].

D.3.1 Topological spaces

On any abstract space X a topology T := {open subsets of X} is a collection of sets
containing

(i) arbitrary unions of members of T ,

(ii) finite intersections of members of T ,

(iii) the whole space X and the empty set ∅.
Those members of T containing a point x are called the neighborhoods of x, and

the complements of open sets are called closed.
A set C is called compact if any cover of C with open sets admits a finite subcover,

and a set D is dense if the smallest closed set containing D (the closure of D) is the
whole space. A set is called precompact if it has a compact closure.

When there is a topology assumed on the state spaces for the Markov chains
considered in this book, it is always assumed that these render the space locally
compact and separable metric: a locally compact space is one for which each open
neighborhood of a point contains a compact neighborhood, and a separable space is
one for which a countable dense subset of X exists. A metric space is such that there
is a metric d on X which generates its topology.

For the topological spaces we consider, Lindelöf’s Theorem holds:

Theorem D.3.1 (Lindelöf ’s Theorem) If X is a separable metric space, then ev-
ery cover of an open set by open sets admits a countable subcover.

If X is a topological space with topology T , then there is a natural σ-field on X
containing T . This σ-field B(X) is defined as

B(X) :=
⋂
{G : T ⊂ G, G a σ-field on X}

so that B(X) is generated by the open subsets of X.
Extending the terminology from IR, this is often called the Borel σ-field of X:

throughout this book, we have assumed that on a topological space the Borel σ-field
is being addressed, and so our general notation B(X) is consistent in the topological
context with the conventional notation.

A measure µ is called regular if for any set E ∈ B(X),

µ(E) = inf{µ(O) : E ⊆ O, O open} = sup{µ(C) : C ⊆ E, C compact}

For the topological spaces we consider, measures on B(X) are regular: we have ([233]
p. 49)

Theorem D.3.2 If X is locally compact and separable, then every σ-finite measure
on B(X) is regular.
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D.4 Some Real Analysis

A function f : X → IR on a space X with a metric d is called continuous if for each ε > 0
there exists δ > 0 such that for any two x, y ∈ X, if d(x, y) < δ then |f(x)−f(y)| < ε.
The set of all bounded continuous functions on the locally compact and separable
metric space X forms a metric space denoted C(X), whose metric is generated by the
supremum norm

|f |c := sup
x∈X

|f(x)|.

A function f : X → IR is called lower semicontinuous if the sublevel set {x : f(x) ≤ c}
is closed for any constant c, and upper semicontinuous if {x : f(x) < c} is open for
any constant c.

Theorem D.4.1 A real-valued function f on X is continuous if and only if it is
simultaneously upper semicontinuous and lower semicontinuous.

If the function f is positive, then it is lower semicontinuous if and only if there
exists a sequence of continuous bounded positive functions {fn : n ∈ ZZ+} ⊂ C(X),
each with compact support, such that for all x ∈ X,

fn(x) ↑ f(x) as n→∞.

A sequence of functions {fi : i ∈ ZZ+} ⊂ C(X) is called equicontinuous if for
each ε > 0 there exists δ > 0 such that for any two x, y ∈ X, if d(x, y) < δ then
|fi(x)− fi(y)| < ε for all i.

Theorem D.4.2 (Ascoli’s Theorem) Suppose that the topological space X is com-
pact. A collection of functions {fi : i ∈ ZZ+} ⊂ C(X) is precompact as a subset of C(X)
if and only if the following two conditions are satisfied:

(i) The sequence is uniformly bounded: i.e. for some M <∞, and all i ∈ ZZ+,

|fi|c = sup
x∈X

|fi(x)| ≤M.

(ii) The sequence is equicontinuous.

Finally, in our context one of the most frequently used of all results on continuous
functions is that which assures us that the convolution operation applied to any pair
of L1(IR,B(IR), µLeb) and L∞(IR,B(IR), µLeb) functions is continuous.

For two functions f, g: IR → IR, the convolution f ∗g is the function on IR defined
for t ∈ IR by

f ∗ g (t) =
∫ ∞

−∞
f(s)g(t− s) ds.

This is well defined if, for example, both f and g are positive. We have (see [233], p.
196)

Theorem D.4.3 Suppose that f and g are measurable functions on IR, that f is
bounded, and that

∫
|g| dx < ∞. Then the convolution f ∗ g is a bounded continuous

function.
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D.5 Some Convergence Concepts for Measures

In this section we summarize various forms of convergence of probability measures
which are used throughout the book. For further information the reader is referred
to Parthasarathy [213] and Billingsley [24].

Assume X to be a locally compact and separable metric space. Letting M de-
note the set of probability measures on B(X), we can construct a number of natural
topologies on M.

As is obvious in Part III of this book, we are frequently concerned with the very
strong topology of convergence in total variation norm. However, for individual se-
quences of measures, the topologies of weak or vague convergence prove more natural
in many respects.

D.5.1 Weak Convergence

In the topology of weak convergence a sequence {νk : k ∈ ZZ+} of elements of M
converges to ν if and only if

lim
k→∞

∫
f dνk =

∫
f dν (D.4)

for every f ∈ C(X).
In this case we say that {νk} converges weakly to ν as k → ∞, and this will be

denoted νk
w−→ ν.

The following key result is given as Theorem 6.6 in [213]:

Proposition D.5.1 There exists a sequence of uniformly continuous, uniformly
bounded functions {gn : n ∈ ZZ+} ⊂ C(X) with the property that

µk
w−→ µ∞ ⇐⇒ ∀n ∈ ZZ+, lim

k→∞

∫
gn dµk =

∫
gn dµ∞. (D.5)

It follows that M can be considered as a metric space with metric | · |w defined for
ν, µ ∈M by

|ν − µ|w :=
∞∑

k=1

2−k
∣∣∣∫ gk dν −

∫
gk dµ

∣∣∣
Other metrics relevant to weak convergence are summarized in, for example, [119].

A set of probability measures A ⊂M is called tight if for every ε ≥ 0 there exists
a compact set C ⊂ X for which

ν {C} ≥ 1− ε for every ν ∈ A.

The following result, which characterizes tightness with M viewed as a metric space,
follows from Proposition D.5.6 below.

Proposition D.5.2 The set of probabilities A ⊂ M is precompact if and only if it
is tight.
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A function V : X → IR+ is called norm-like if there exists a sequence of compact
sets, Cn ⊂ X, Cn ↑ X such that

lim
n→∞

(
inf

x∈Cc
n

V (x)
)

=∞

where we adopt the convention that the infimum of a function over the empty set is
infinity. If X is a closed and unbounded subset of IRk it is evident that V (x) = |x|p is
norm-like for any p > 0. If X is compact then our convention implies that any positive
function V is norm-like because we may set Cn = X for all n ∈ ZZ+.

It is easily verified that a collection of probabilities A ⊂M is tight if and only if
a norm-like function V exists such that

sup
ν∈A

∫
V dν <∞.

The following simple lemma will often be needed.

Lemma D.5.3 (i) A sequence of probabilities {νk : k ∈ ZZ+} is tight if and only if
there exists a norm-like function V such that

lim sup
k→∞

νk(V ) <∞.

(ii) If for each x ∈ X there exists a norm-like function Vx( · ) on X such that

lim sup
k→∞

Ex[Vx(Φk)] <∞,

then the chain is bounded in probability. �

The next result can be found in [24] and [213].

Theorem D.5.4 The following are equivalent for a sequence of probabilities {νk :
k ∈ ZZ+} ⊂ M

(i) νk
w−→ ν

(ii) for all open sets O ⊂ X, lim inf
k→∞

νk {O} ≥ ν {O}

(iii) for all closed sets C ⊂ X, lim sup
k→∞

νk {C} ≤ ν {C}

(iv) for every uniformly bounded and equicontinuous family of functions C ⊂ C(X),

lim
k→∞

sup
f∈C

|
∫
fdνk −

∫
fdν| = 0.

�
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D.5.2 Vague Convergence

Vague convergence is less stringent than weak convergence. Let C0(X) ⊂ C(X) denote
the set of continuous functions on X which converge to zero on the “boundary” of X:
that is, f ∈ C0(X) if for some (and hence any) sequence {Ck : k ∈ ZZ+} of compact
sets which satisfy

Ck ⊂ Ck+1, and
∞⋃

k=0

Ck = X,

we have
lim

k→∞
sup
x∈Cc

k

|f(x)| = 0.

The space C0(X) is simply the closure of Cc(X), the space of continuous functions with
compact support, in the uniform norm.

A sequence of subprobability measures {νk : k ∈ ZZ+} is said to converge vaguely
to a subprobability measure ν if for all f ∈ C0(X)

lim
k→∞

∫
f dνk =

∫
f dν,

and in this case we will write

νk
v−→ ν as k →∞.

In this book we often apply the following result, which follows from the observa-
tion that positive lower semicontinuous functions on X are the pointwise supremum
of a collection of positive, continuous functions with compact support (see Theo-
rem D.4.1).

Lemma D.5.5 If νk
v−→ ν then

lim inf
k→∞

∫
f dνk ≥

∫
f dν (D.6)

for any positive lower semicontinuous function f on X.

It is obvious that weak convergence implies vague convergence. On the other
hand, a sequence of probabilities converges weakly if and only if it converges vaguely
and is tight.

The use and direct verification of boundedness in probability will often follow
from the following results: the first of these is a consequence of our assumption that
the state space is locally compact and separable (see Billingsley [24] and Revuz [223]).

Proposition D.5.6 (i) For any sequence of subprobabilities {νk : k ∈ ZZ+} there
exists a subsequence {nk} and a subprobability ν∞ such that

νnk

v−→ ν∞, k →∞.

(ii) If {νk} is tight and each νk is a probability measure, then νnk

w−→ ν∞ and ν∞ is
a probability measure.

�
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D.6 Some Martingale Theory

D.6.1 The Martingale Convergence Theorem

A sequence of integrable random variables {Mn : n ∈ ZZ+} is called adapted to
an increasing family of σ-fields {Fn : n ∈ ZZ+} if Mn is Fn-measurable for each n.
The sequence is called a martingale if E[Mn+1 | Fn] = Mn for all n ∈ ZZ+, and a
supermartingale if E[Mn+1 | Fn] ≤Mn for n ∈ ZZ+.

A martingale difference sequence {Zn : n ∈ ZZ+} is an adapted sequence of random
variables such that the sequence Mn =

∑n
k=0 Zk is a martingale.

The following result is basic:

Theorem D.6.1 (The Martingale Convergence Theorem) Let Mn be a super-
martingale, and suppose that

sup
n

E[|Mn|] <∞.

Then {Mn} converges to a finite limit with probability one.

If {Mn} is a positive, real valued supermartingale then by the smoothing property
of conditional expectations (D.3),

E[|Mn|] = E[Mn] ≤ E[M0] <∞, n ∈ ZZ+

Hence we have as a direct corollary to the Martingale Convergence Theorem

Theorem D.6.2 A positive supermartingale converges to a finite limit with proba-
bility one.

Since a positive supermartingale is convergent, it follows that its sample paths
are bounded with probability one. The following result gives an upper bound on the
magnitude of variation of the sample paths of both positive supermartingales, and
general martingales.

Theorem D.6.3 (Kolmogorov’s Inequality) (i) If Mn is a martingale then for
each c > 0 and p ≥ 1,

P{ max
0≤k≤n

|Mk| ≥ c} ≤ 1
cp

E[|Mn|p]

(ii) If Mn is a positive supermartingale then for each c > 0

P{ sup
0≤k≤∞

Mk ≥ c} ≤ 1
c
E[M0]

These results, and related concepts, can be found in Billingsley [25], Chung [50],
Hall and Heyde [93], and of course Doob [68].
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D.6.2 The functional CLT for martingales

Consider a general martingale (Mn,Fn). Our purpose is to analyze the following
sequence of continuous functions on [0, 1]:

mn(t) :=M�nt� + (nt− �nt�)
[
M�nt�+1 −M�nt�

]
, 0 ≤ t ≤ 1. (D.7)

The function mn(t) is piecewise linear, and is equal to Mi when t = i/n for 0 ≤ t ≤ 1.
In Theorem D.6.4 below we give conditions under which the normalized sequence
{n−1/2mn(t) : n ∈ ZZ+} converges to a continuous process (Brownian motion) on
[0, 1]. This result requires some care in the definition of convergence for a sequence of
stochastic processes.

Let C[0, 1] denote the normed space of all continuous functions φ: [0, 1] → IR
under the uniform norm, which is defined as

|φ|c = sup
0≤t≤1

|φ(t)|.

The vector space C[0, 1] is a complete, separable metric space, and hence the theory
of weak convergence may be applied to analyze measures on C[0, 1].

The stochastic process mn(t) possesses a distribution µn, which is a probability
measure on C[0, 1]. We say that mn(t) converges in distribution to a stochastic process
m∞(t) as n → ∞, which is denoted mn

d−→ m∞, if the sequence of measures µn

converge weakly to the distribution µ∞ of m∞. That is, for any bounded continuous
functional h on C[0, 1],

E[h(mn)] → E[h(m∞)] as n→∞.

The limiting process, standard Brownian motion on [0, 1], which we denote by B, is
defined as follows:

Standard Brownian Motion

Brownian motion B(t) is a real-valued stochastic process on [0, 1] with
B(0) = 0, satisfying

(i) The sample paths of B are continuous with probability one;

(ii) The increment B(t)−B(s) is independent of {B(r) : r ≤ s} for each
0 ≤ s ≤ t ≤ 1;

(iii) The distribution of B(t)−B(s) is Gaussian N(0, |t− s|).
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To prove convergence we use the following key result which is a consequence of The-
orem 4.1 of [93].

Theorem D.6.4 Let (Mn,Fn) be a square integrable martingale, so that for all n ∈
ZZ+

E[M2
n] = E[M2

0 ] +
n∑

k=1

E[(Mk −Mk−1)2] <∞,

and suppose that the following conditions hold:

(i) For some constant 0 < γ2 <∞,

lim
n→∞

1
n

n∑
k=1

E[(Mk −Mk−1)2|Fk−1] = γ2 a.s. (D.8)

(ii) For all ε > 0,

lim
n→∞

1
n

n∑
k=1

E[(Mk −Mk−1)21l{(Mk −Mk−1)2 ≥ εn}|Fk−1] = 0 a.s. (D.9)

Then (γ2n)−1/2mn
d−→ B. �

Function space limits of this kind are often called invariance principles, though
we have avoided this term because functional CLT seems more descriptive.

D.7 Some Results on Sequences and Numbers

We conclude with some useful lemmas on sequences and convolutions. The first gives
an interaction between convolutions and limits. Recall that for two series a, b on ZZ+,
the convolution is defined as

a ∗ b (n) :=
n∑

j=0

a(j)b(n− j)

Lemma D.7.1 If {a(n)}, {b(n)} are non-negative sequences such that b(n) → b(∞) <
∞ as n→∞, and

∑
a(j) <∞, then

a ∗ b (n) → b(∞)
∞∑

j=0

a(j) <∞, n→∞. (D.10)

Proof Set b(n) = 0 for n < 0. Since b(n) converges it is bounded, and so by the
Dominated Convergence Theorem

lim
n→∞ a ∗ b (n) =

∞∑
j=0

a(j) lim
n→∞ b(n− j) = b(∞)

∞∑
j=0

a(j) (D.11)

as required. �
The next lemma contains two valuable summation results for series.
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Lemma D.7.2 (i) If c(n) is a non-negative sequence then for any r > 1,∑
n≥0

[∑
m≥n

c(m)
]
rn ≤ r

r − 1

∑
m≥0

c(m)rm

and hence the two series∑
n≥0

c(n)rn,
∑
n≥0

[∑
m≥n

c(m)
]
rn

converge or diverge together.

(ii) If a, b are two non-negative sequences and r ≥ 0 then∑
a ∗ b (n)rn =

[∑
a(n)rn

][∑
b(n)rn

]
.

Proof By Fubini’s Theorem we have∑
n≥0

[
∑
m≥n

c(m)]rn =
∑
m≥0

c(m)
∑
n≤m

rn

=
∑
m≥0

c(m)[rm+1 − 1]/[r − 1]

which gives the first result. Similarly, we have∑
n≥0

a ∗ b (n)rn =
∑
n≥0

[
∑
m≤n

a(m)b(n−m)]rn

=
∑
m≥0

a(m)rm
∑
n≥m

b(n−m)rn−m

=
∑
m≥0

a(m)rm
∑
n≥0

b(n)rn

which gives the second result. �
An elementary result on the greatest common divisor is useful for periodic chains.

Lemma D.7.3 Let d denote the greatest common divisor (g.c.d) of the numbers m,n.
Then there exist integers a, b such that

am+ bn = d

For a proof, see the corollary to Lemma 1.31 in Herstein [97].
Finally, in analyzing the periodic behavior of Markov chains, the following lemma

is invaluable on very many occasions in ensuring positivity of transition probabilities:

Lemma D.7.4 Suppose that N ⊂ ZZ+ is a subset of the integers which is closed
under addition: for each j, k ∈ N , j + k ∈ N . Let d denote the greatest common
divisor of the set N . Then there exists n0 <∞ such that nd ∈ N for all n ≥ n0.

For a proof, see p. 569 of Billingsley [25].
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[16] R. Bartoszyński. On the risk of rabies. Math. Biosci., 24:355–377, 1975.



538 References

[17] Peter H. Baxendale. Uniform estimates for geometric ergodicity of recurrent
Markov processes. Unpublished report, University of Southern California, 1993.
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nombre fini d’états. Revue Mathematique de l’Union Interbalkanique, 2:77–105,
1938.
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Absolute continuity, 80
Absorbing set, 89
– Maximal a.s., 204
Accessible atom, 100
Accessible set, 91
Adaptive control, 38
Adaptive control model, simple, 39
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– Boundedness in probability, 303
– Performance, 406
– V -Uniform ergodicity, 406
Age process, 44
Antibody model, 471
Aperiodicity, 116, 118
– Topological a. for states, 447
– Strong a., 116
Aperiodic Ergodic Theorem, 309
ARMA model, 27, 28
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– (RCA1), 404
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– (RT1), 44
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– (RW2), 111
– (RWHL1), 14
– (SAC1), 39
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– (SNSS2), 29
– (SNSS3), 152
– (SSM1), 49
– (SSM2), 49
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– (V2), 262
– (V3), 337
– (V4), 367
Atom, 100
– f -Kendall a., 360
– Ergodic, 314
– Geo. ergodic a., 357
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– Kendall a., 360
Autoregression, 27
– Random coefficient a., 404
– Dependent parameter random coeff. a., 36

Backward recurrence time δ-skeleton, 75
Backward recurrence time chain, 44, 60
Backward recurrence time process, 75
Balayage operator, 305
Bilinear model, 30
– Dependent parameter b.m., 36
– Irreducible T-chains as b.m., 155
– f -Regularity and ergodicity for b.m., 347
– Geo. ergodicity for b.m., 380, 403
– Multidimensional b.m., 403
Blackwell Renewal Theorem, 348
Borel σ-field, 516, 519
Bounded in probability, 145, 301
– B.i.p. on average, 285
– B.i.p. for T-chains, 455
Brownian motion, 525

Causality in control, 38
Central Limit Theorem, 411
– CLT for Martingales, 525
– Functional CLT , 431, 435
– CLT for Random walks, 442
– CLT for Autoregressions, 442
Chapman-Kolmogorov equations, 67, 68
– Generalized C-K.e., 120
Closed sets, 519
Closure of sets, 519
Communication of discrete states, 82
Compact set, 519
Comparison Theorem, 337
– Geometric C.T., 368
Conditional expectation, 518
Continuous function, 520
Control set, 30, 32, 152, 156
Controllability grammian, 98
Controllability matrix, 155
Controllable, 16, 95
Converges to infinity, 201, 207
Convolution, 43, 74, 520
Countably generated σ-field, 516
Coupling, 316
– C. renewal processes, 316
– C. time, 317
– C. null chains, 448
– C. to bound sums, 325
Cruise control, 3
Cyclic classes, 115
– C.c. for control models, 161

Dams, 48

– Content-dependent release rules, 50
Dense sets, 519
Dependent parameter bilinear model, 35
– Geo. ergodicity for the d.p.b.m., 479
Derivative process, 166
Dirac probability measure, 67
Disturbance, 24
Doeblin’s Condition, 391, 407
Dominated Convergence Theorem, 518
Drift criteria, 174, 496, 501
– D.c. for deterministic models, 259
– D.c. for f -moments, 331, 337
– D.c. for geometric ergodicity, 367
– D.c. for non-positivity, 276, 499
– D.c. for non-evanescence, 215
D.c. for positivity (Foster’s criterion), 262,

499
– D.c. for positivity for e-chains, 298
– D.c. for recurrence, 190

Converse for Feller chains, 215
– D.c. for invariant measures, 296
– D.c. for transience, 189, 276
– History dependent d.c., 474
– Mixed d.c., 481
– State dependent d.c., 466
Drift operator, 174
Dynamical system, 19, 28
Dynkin’s formula, 263

e-Chain, 144
– Aperiodicity for e.c., 458
Eigenvalue condition, 140
Embedded Markov chains, 7
Equicontinuous Markov chains (e-chains),

144
Equicontinuous functions, 520
Ergodicity, 312, 500
– f -e., 331
– Strong e., 407
– History of e., 329
– E. for e-chains, 459
– f -Geometric e., 355, 374
– f -Norm e., 330
– V -Uniform e., 382
– E. for Null chains, 446
– Uniform e., 383, 390
Ergodic atom, 314
Error, 24
Evanescence, 17, 207
– E. for Feller chains, 457
Exchange rate, 4
Exogenous variables, 37
Expectation, 518

Fatou’s Lemma, 517
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Feller property, 128
Finiteness of moments, 345
First entrance decomposition, 176, 180
First-entrance last-exit decomposition, 312
Forward accessible, 151, 155
Forward recurrence time chains, 44, 60, 236
– F.r.t. δ-skeleton, 75, 112, 349
– Geo. ergodicity for f.r.t.c, 361
– Recurrence for f.r.t.c, 177
– Regularity for f.r.t.c., 271
– Positivity for f.r.t.c., 247
– V -Uniform ergodicity for f.r.t.c., 389
Forward recurrence time process, 75
Foster’s criterion, 262, 284
Foster-Lyapunov criteria, 19
Full set, 89
Functional CLT, 525
Functions unbounded off petite sets, 191

Generalized sampling, 289
Geometric ergodicity, 354, 360
– Drift criterion for g.e., 367
Geometric Ergodic Theorem, 354
Geometrically ergodic atom, 357, 360
Globally attracting, 160
Gumleaf attractor, 34

Harmonic functions, 414
Harris τ -property, 497
Harris, maximal h. set, 205
Harris, positive, 231
Harris recurrence, 200
– Topological H.r. of states, 209

Independent and identically distributed, 9
Increment (or disturbance), 24
Increment analysis, 219
– Geometric i.a., 397
Indecomposable, 159
Indicator function, 68, 516
Inessential sets, 199
Initial condition, 55
Initial distribution, 57
Innovation, 24
Integrable functions, 517
Invariant σ-fields, 412
Invariant events, 414
Invariant measures, 229
– I.m. for e-chains, 297
– I.m. for Feller chains, 287, 295
– I.m. for recurrent chains, 241
– Structure of i.m., 245
Invariant random variables, 412, 414
Invariant set, 157
Invasion/antibody model, 471

Irreducibity, 83
– Maximal i. measure, 89
– ϕ-i., 87
– M -i., 160
– Open set i., 131, 133

Kac’s Theorem, 236
Kaplan’s condition, 491
Kendall sets, 364
Kendall’s Theorem, 358
Kernel, 65
– n-step transition probability k., 67
– Substochastic k., 77
– Transition probability k., 65
Kolmogorov’s inequality, 524

Ladder chains, 76
– Positivity for l.c., 248
last-exit decomposition, 180
Law of large numbers, 410, 413
– LLN for e-chains, 461
– Ratio form of the LLN, 417, 424
Law of the iterated logarithm, 411
LCM(F ,G) model, 9
Lebesgue integral, 516
Lebesgue measure, 516
Lindelöf’s Theorem, 519
Linear control model, 8, 9, 95
– Controllability for the l.c.m., 96
Linear state space models, 9
– L.s.s.m. as T-chains, 138
– Boundedness in prob. for l.s.s.m., 301
– Gaussian l.s.s.m., 97, 114
– Positivity for l.s.s.m., 251
– Simple l.s.s.m., 25
– Central Limit Theorem for l.s.s.m., 443
Linked forward recurrence time chains, 237
Locally compact, 519
Lower semicontinuous, 126, 520

Markov chain, 3, 58, 66
– Definition of a m.c., 55
– Time-homogeneous m.c., 58
Markov property, 69
– Strong m.p., 72
Markov transition function, 65
Markov transition matrix, 59
Martingale, 524
Martingale difference sequence, 524
Maximal Harris set, 205
Maximal irreducibility measure, 89
Mean drift, 225
Mean square stabilizing, 38
Measurable function, 516
Measurable space, 515
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Measure, 516
Metric space, 519
Minimal set, 158
Minimal subinvariant measures, 243
Minimum variance control, 38
Minorization Condition, 102
Mixing, 408
– V -geometric mixing, 387
Moment, 228
Monotone Convergence Theorem, 517
Moran dam, 49, 74
Multidimensional models, 469

Neighborhoods, 519
Networks, 5, 284
Noise, 24
Non-evanescent, 207, 286, 498
Nonlinear state space model, 29 130, 149
– V -uniform ergodicity and n.s.s.m., 396
– Associated control system for n.s.s.m., 33
Norm, f , 330
Norm, V -norm, 382
Norm, operator V -norm, 385
Norm, total variation, 310
Norm-like functions, 214, 522
Norm-like sequence, 476
NSS(F ) model, 32
Null chains, 498
– Pn-Definition, 498, 500
– τ -Definition, 499
Null Markov process, 230
Null sets, 454
Null states, 453, 456

Occupation probabilities, 461
Occupation time, 70
Open sets, 519
Orey’s Theorem, 451

Pakes’ lemma, 283
Period, 118
Persistence, 199
Petite set, 121
Phase-type service times, 402
Poisson equation, 431
Polling systems, 401
Populations, 5
Positive chain, 230, 498
– Pn-Definition, 498, 500
– τ -Definition, 499
– T-chains, 455
Positive sets, 454
Positive state, 447, 453
– Topologically p.s., 446
Precompact sets, 519

Probability space, 518
Process on A, 244, 253, 294

Quasi-compact, 407
Queues, 4, 45
– q. with re-entry, 272
– GI/G/1 q., 47, 76, 111
– Positivity for the GI/G/1 q., 248, 488
– GI/M/1 q., 47, 62, 239

Positivity of the GI/M/1 q., 240
Transience of the GI/M/1 q., 197

– M/G/1 q., 48, 86
Positivity for M/G/1 q., 237
Geo. ergodicity for M/G/1 q., 401

– M/PH/1 q., 402
– Phase type service and geo. ergodicity, 402
– Polling systems and geo. ergodicity, 401

Random coefficient autoregression, 404
Random variable, 518
Random walk, 11, 61, 93, 247
– Continuous components for r.w., 137
– Recurrent r.w., 192
– Simple r.w., 178
– Transient r.w., 193
Random walk on half line, 14, 73, 81, 195,

220
– Bernoulli r.w., 178,

Geo. ergodicity of the B.r.w., 379
– Central Limit Theorem for r.w., 442
– Regularity of r.w., 270
– V -uniform ergodicity of r.w., 389
– f -regularity and ergodicity for r.w., 346
Randomized first entrance times, 289
Rate of convergence,
– Geometric r.o.c., 354
– Exact r.o.c., 392
Ratio limit theorem, 417
Reachable state, 131, 133, 447, 455
Real line, 516
Recurrence, 17
– Pn-Definition, 496
– τ -Definition, 497
– Deterministic systems, 260
Recurrent state, 211
Recurrent atom, 175
Recurrent chain, 176, 182, 496
– Structure of π for r.c., 245
Recurrent set, 173
Regeneration times, 43, 105
Regenerative decomposition, 320, 356
– R.d. for geometrically regular chains, 356
Regularity, 255, 333, 498
– R. and ergodicity, 328
– R. for Markov chains, 498
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– R. for sets, 255
f -Regular sets, 333, 339
f -Geometrically regular sets, 364

– R. for measures, 519
– f -r., 332, 352

Criterion for f -r., 338
– f -geometric r., 364, 371

Criterion for f -geometric r., 367
Renewal measure, 75
Renewal process, 43
– Delayed r.p., 74
– Recurrence for a r.p., 177
Renewal Theorem, 347
– Blackwell’s r.t., 348
– Kendall’s r.t., 358
Residual lifetime process, 44
Resolvent equation, 291
Resolvent kernel, 68
Running maximum, 425

σ-field, 515
– σ-field generated by r.v., 518
σ-finite measure, 516
Sample paths, 55
Sampled chain, 119
– Generalized s.c., 289
Sampling distribution, 119
Sampling, generalized, 289
Semi-dynamical system, 19, 260
Separability, 519
Sequence or path space, 55
SETAR model, 31, 142, 503
– Null recurrence, 277
– Regularity, 274
– Transience, 222
Shift operator, 69
Simple linear model, 25
– Regularity for the s.l.m., 271
Skeleton, 68
Skip-free random walk on a half line, 197
Skip-free to the left, g, 399
Skip-free chain, invariant measure for, 238
Skip-free to the right, 77
Small set, 106
SNSS(F ) model, 29
Splitting, 102
– S. a general Harris chains, 422
Spread-out, 111, 247
Stability, 15, 173
– S. of dynamical systems
– S. in the sense of Lyapunov, 20
– τ -properties and s., 496
– Pn-properties and s., 496
– Asymptotic s., 20
– Drift properties and s., 496

– Global asymptotic s., 20
– Global exponential s., 302
– Lagrange s., 20

Lagrange s. for CM(F ) model, 396
State spaces, 56
Stationary processes, 230
Stochastic comparison, 219
Stopping times, 71
– First hitting t., 70
– First return t., 70
Storage model, 4
– Content-dependent s.m., 52
– Simple s.m., 49, 62
Strong Feller property, 128
Strong Markov property, 72
Strong mixing, 383, 387
Subinvariant measures, 232
Sublevel set, 190, 520
Supermartingale, 524

T-chain, 127, 133
– Bounded in probability T-c., 455
– Positive recurrent T-c., 455
Taboo probabilities, 73
Test function, 501
Test set, 501
The Martingale Convergence Theorem, 524
Tight, 17, 285, 521
Topologically recurrent state, 209
Topology, 519
Total variation norm, 310, 516
– f -t.v.n., 330
– V -norm, 382
Transience, 176, 181, 182, 496
Transient atom, 175
Transient, uniformly, 173
Transition kernel, substochastic, 65
Transition matrix, n-step, 59
Transition probabilities, 55

Ultimately bounded, 260
Unbounded off petites, 191
Uniform accessibility, 91, 119
Uniformly transient, 184
Upper semicontinuous, 520

Vague topology, 523
V -norm, 385

Weak convergence, 521
Weak Feller property, 128
Weak topology, 287, 521
Weakly, 143
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Mathematical objects and operations

ZZ+, Non-negative integers, 3
ZZ, Integers, 61
C, Complex plane, 140
IR, Real line 516
IRn, n-dimensional Euclidean space, 6
B(IR), Borel σ-field on IR, 516

M, Space of Borel probability measures, 19
µLeb, Lebesgue measure on IR, 93, 516
1lB , Indicator function of B, 68
�, Absolute continuity, 80
µk

w−→ µ∞, Weak convergence, 143

C(X), Continuous bounded functions on X,
128, 520

Cc(X), Continuous functions with compact
support, 143

C0(X), Continuous functions vanishing at∞,
523

C∞, Infinitely differentiable functions, 29
G+(γ), Distributions with Laplace-Stieltjes

transform convergent in [0, γ], 389

∗, Convolution operator, 74
vec (B), Vec operation 404
A⊗B, Kronecker product, 404

Markov chain notation

Φ Markov chain, 3, 66
Φm, The m-skeleton chain, 68
Φa, Sampled chain with transition kernel

Ka, 119
Φn, Markov chain value at time n, 3

X State space, 55
B(X), σ-field of subsets of X, 55
Px, Probability conditional on Φ0 = x, 16

ϕ, Irreducibility measure, 87
ψ, Maximal irreducibility measure, 88
B+(X), Sets with ψ(A) > 0, 89

Ω = X∞, Sequence space, 55
θk, kth order shift operator on Ω, 69
FΦ

n := σ(Φ0, . . . , Φn), 69
FΦ

ζ :={A ∈ F : {ζ = n}∩A ∈ FΦ
n , n ∈ ZZ+},

72
π, Invariant measure, 229

σA :=min{n ≥ 0 : Φn ∈ A}, Hitting time on
A, 70

σA(j), jth hitting time on A, 417
τA := min{n ≥ 1 : Φn ∈ A}, Return time to

A, 16, 70
τA(j), jth return time on A, 70
ηA :=

∑∞
n=1 1l{Φn = A}, 70

α, Atom, 100
d(α), Period of α, 114
ax (n) := Px(τα = n), 313
u (n) := Pα(Φn = α), 313
ty (n) := αP

n(α, y), 313

Split chain notation

Φ̌, The split chain, 103
P̌ (xi, A), The split transition function, 103
α̌, The atom in B(X̌), 104
λ∗, Split measure on B(X̌), 103
π̌, Split invariant measure, 240

Kernels

P (x,A), One-step transition probability, 58,
66

Pn(x,A), n-step transition probability, 59,
67

U(x,A) :=
∑∞

n=1 P
n(x,A), 70

P k(x, · ), Cesaro average of P k, 285
δx(A) = P 0(x,A), Dirac measure, 67

IB(x,A), 72
Ka(x,A) :=

∑∞
n=0 P

n(x,A)a(n), 119
Kaε

, Resolvent kernel, 68
T (x,A), Continuous component, 127
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AP
n(x,B) := Px(Φn ∈ B, τA ≥ n), 73

UA(x,B) :=
∑∞

n=1 AP
n(x,B), 73

L(x,A) := Px(τA <∞), 70
Q(x,A) = Px{Φ ∈ A i.o.}, 200

Ph(x,A), Kernel for “process on h”, 292
Uh, Resolvent kernel, 290
Q(x, h), 292
L(x, h), 292
Ig(x,A), 129

U
(r)
C (x,B) = Ex

[∑τC

k=1 1lB(Φk)rk
]
, 364

U
(r)
α (x, f) := Ex

[∑τα

n=1 f(Φn)rn
]
, 357

G
(r)
C (x,B) = Ex

[∑σC

k=0 1lB(Φk)rk
]
, 367

Communication operations

→, Leads to, 82
↔, Communicates with, 82
A � B, Uniformly accessibility, 91
A

a
� B, Uniformly accessibility using a, 120

Ā, Points from which A is accessible, 91
A0, Points from which A is inaccessible, 91
Ā(m), Points “reaching A in m steps”, 91

A+(x), States reachable from x by CM(F ),
150

Ak
+(x), States reachable from x at time k by

CM(F ), 150
Ω+(C), Omega limit set for NSS(F ), 157

Drift condition notation

∆V (x) =
∫
P (x, dy)V (y) − V (x), Drift op-

erator, 174
CV (r) = {x : V (x) ≤ r}, Sublevel set of V ,

190
VC , Minimal solution to (V2), 266

Norms

‖µ‖, Total variation norm, 311
‖ν‖f , f -norm, 330
|f |c, Norm on C(X), 145
|f |V := supx∈X

|f(x)|
V (x) , 385

|||P1−P2|||V :=supx∈X
‖P1(x, · )−P2(x, · )‖V

V (x) , 382

Sample path and CLT notation

Sn(g), Partial sum of g(Φk), 410
γ2

g , Limiting variance in the CLT, 411
Σµ, σ-field of Pµ-invariant events, 412
hY , Almost everywhere invariant function,

412

Q̃{A}, Invariant random variable, 414
π̃{A}, Invariant random variable, 414
sj(f), Sum of f(Φi) between visits to atom,

417
ĝ, Solution to the Poisson equation, 431
sn(t), Interpolation of Sn(g), 435
Mn(g), Martingale derived from g, 434
mn(t), Interpolation of Mn(g), 435

Renewal notation

Z = {Zk}, Discrete time renewal process, 43
p(n), Increment distribution of renewal se-

quence, 43
p(M), Upper tail of renewal sequence, 448
u(n) = P(Zk = n), 43
U(z) :=

∑∞
n=0 u(n)zn, 178

U(n) :=
∑∞

k=0 P(Zk = n), 178
Tab, Coupling time, 317

V +(n), Forward recurrence time chain, 44
V +(t), Forward recurrence time process, 75
V +

δ (n), Forward recurrence δ-skeleton, 75
V −(t), Backward recurrence process, 75
V −

δ (n), Backward recurrence δ-skeleton, 75

Systems models notation

W = {Wn}, Disturbance, noise, innovation
process, 24

Γ , Distribution of disturbance variable, 24
Cn, Controllability matrix, 96
Ck

x0
, Generalized controllability matrix, 155

Fk, Output maps for LCM, 30
Ow, Control set, 152, 156
Ow, Supports disturbance/control in CM(F )

or NSS(F ) models, 32
ρ(F ), Maximum eigenvalue modulus, 140
∆k, Derivative process, 166

Queues and storage models

W = {Wn}, Increment process, 24
N(t), Customers in queue at time t, 45
Nn, Customers in q. before nth arrival, 46
N∗

n Customers in q. after nth service time,
48

Rn, Residual service time, 77
J Interarrival times for a dam, 49, 52
R(x), Emptying time for dam, 51
Λi(x,A), Ladder chain transition probabili-

ties, 77
Λ∗

i (x,A), Zero-level l. c. transition probabil-
ities, 77
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