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Introduction

Two of the best known of Hecke’s achievements are his theory of L-functions with grossen-
charakter, which are Dirichlet series which can be represented by Euler products, and his theory of the
Euler products, associated to automorphic forms on GL(2). Since a grossencharakter is an automorphic
form on GL(1) one is tempted to ask if the Euler products associated to automorphic forms on GL(2)
play a role in the theory of numbers similar to that played by the L-functions with grossencharakter.
In particular do they bear the same relation to the Artin L-functions associated to two-dimensional
representations of a Galois group as the Hecke L-functions bear to the Artin L-functions associated
to one-dimensional representations? Although we cannot answer the question definitively one of the
principal purposes of these notes is to provide some evidence that the answer is affirmative.

The evidence is presented in §12. It come from reexamining, along lines suggested by a recent
paper of Weil, the original work of Hecke. Anything novel in our reexamination comes from our point
of view which is the theory of group representations. Unfortunately the facts which we need from the
representation theory of GL(2) do not seem to be in the literature so we have to review, in Chapter I,
the representation theory of GL(2, F') when Fis a local field. §7 is an exceptional paragraph. It is not
used in the Hecke theory but in the chapter on automorphic forms and quaternion algebras.

Chapter I is long and tedious but there is nothing hard in it. Nonetheless it is necessary and
anyone who really wants to understand L-functions should take at least the results seriously for they
are very suggestive.

§9 and §10 are preparatory to the Hecke theory which is finally taken up in §11. We would like to
stress, since it may not be apparent, that our method is that of Hecke. In particular the principal tool is
the Mellin transform. The success of this method for GL(2) is related to the equality of the dimensions
of a Cartan subgroup and the unipotent radical of a Borel subgroup of PG L(2). The implication is that
our methods do not generalize. The results, with the exception of the converse theorem in the Hecke
theory, may:.

The right way to establish the functional equation for the Dirichlet series associated to the
automorphic forms is probably that of Tate. In §13 we verify, essentially, that this method leads to the
same local factors as that of Hecke and in §14 we use the method of Tate to prove the functional equation
for the L-functions associated to automorphic forms on the multiplicative group of a quaternion
algebra. The results of §13 suggest a relation between the characters of representations of GL(2) and
the characters of representations of the multiplicative group of a quaternion algebra which is verified,
using the results of §13, in §15. This relation was well-known for archimedean fields but its significance
had not been stressed. Although our proof leaves something to be desired the result itself seems to us
to be one of the more striking facts brought out in these notes.

Both §15 and §16 are after thoughts; we did not discover the results in them until the rest of the
notes were almost complete. The arguments of §16 are only sketched and we ourselves have not verified
all the details. However the theorem of §16 is important and its proof is such a beautiful illustration
of the power and ultimate simplicity of the Selberg trace formula and the theory of harmonic analysis
on semi-simple groups that we could not resist adding it. Although we are very dissatisfied with the
methods of the first fifteen paragraphs we see no way to improve on those of §16. They are perhaps
the methods with which to attack the question left unsettled in §12.

We hope to publish a sequel to these notes which will include, among other things, a detailed
proof of the theorem of §16 as well as a discussion of its implications for number theory. The theorem
has, as these things go, a fairly long history. As far as we know the first forms of it were assertions about
the representability of automorphic forms by theta series associated to quaternary quadratic forms.
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As we said before nothing in these notes is really new. We have, in the list of references at
the end of each chapter, tried to indicate our indebtedness to other authors. We could not however
acknowledge completely our indebtedness to R. Godement since many of his ideas were communicated
orally to one of us as a student. We hope that he does not object to the company they are forced to keep.

The notes™ were typed by the secretaries of Leet Oliver Hall. The bulk of the work was done by
Miss Mary Ellen Peters and to her we would like to extend our special thanks. Only time can tell if the
mathematics justifies her great efforts.

New York, N.Y. August, 1969
New Haven, Conn.

* that appeared in the SLM volume



Chapter I: Local Theory

§1 Weil representations. Before beginning the study of automorphic forms we must review the repre-
sentation theory of the general linear group in two variables over a local field. In particular we have to
prove the existence of various series of representations. One of the quickest methods of doing this is
to make use of the representations constructed by Weil in [1]. We begin by reviewing his construction
adding, at appropriate places, some remarks which will be needed later.

In this paragraph F’ will be a local field and K will be an algebra over F' of one of the following
types:

(i) The direct sum F' & F'.

(ii) A separable quadratic extension of F'.
(iii) The unique quaternion algebra over F. K is then a division algebra with centre F'.

(iv) The algebra M (2, F') of 2 x 2 matrices over F.
In all cases we identify I’ with the subfield of K consisting of scalar multiples of the identity. In
particular if K = F' & F we identify F' with the set of elements of the form (z, z). We can introduce an
involution ¢ of K, which will send x to z*, with the following properties:

(i) It satisfies the identities (z + y)* = z* + y* and (zy)* = y‘z".
(ii) If z belongs to F' then x = x*.
(iif) For any z in K both 7(x) = = 4+ 2* and v(z) = za* = x'x belong to F.

If K =F@&Fandx = (a,b) wesetz* = (b,a). If K is a separable quadratic extension of F' the
involution ¢ is the unique non-trivial automorphism of K over F'. In this case 7(z) is the trace of  and
v(x) is the norm of z. If K is a quaternion algebra a unique ¢ with the required properties is known to
exist. 7 and v are the reduced trace and reduced norm respectively. If K is M (2, F') we take ¢ to be the
involution sending

to
€r =
—C a

Then 7(z) and v(x) are the trace and determinant of .
If ¢ = 1 is a given non-trivial additive character of I then ¢ = ¢ r o T is a non-trivial additive
character of K. By means of the pairing

(z,y) = YK (vy)

we can identify K with its Pontrjagin dual. The function v is of course a quadratic form on K which is
a vector space over F'and f = ¢ r o v is a character of second order in the sense of [1]. Since

v(z+y) —v(z) —v(y) = 7(zy")

and
fla+y) @) ) = (=,9)

the isomorphism of K with itself associated to f isjust ¢. In particular v and f are nondegenerate.
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Let 8(K) be the space of Schwartz-Bruhat functions on K. There is a unique Haar measure dx
on K such that if ® belongs to §(K') and

¥ (z) = /K B(y) e (xy) dy

then

The measure dx, which is the measure on K that we shall use, is said to be self-dual with respect to ¢ .
Since the involution ¢ is measure preserving the corollary to Weil’s Theorem 2 can in the present
case be formulated as follows.

Lemma 1.1. There is a constant v which depends on the {p and K, such that for every function ®
in 8(K)

/K (@ * £)() Yxc(yz) dy = 71~ (") ¥ (=)

® x f is the convolution of ® and f. The values of 7y are listed in the next lemma.
Lemmal2 () If K=F®F or M(2,F) then v=1.
(ii) If K 1is the quaternion algebra over F' then v = —1.
(i) If F=R, K =C, and ‘
wF (x) — 6271'1(1907

then
a

Y=gt
|al

(iv) If F' is non-archimedean and K is a separable quadratic extension of F' let w be the quadratic
character of F* associated to K by local class-field theory. If Ug is the group of units of F™*
let m = m(w) be the smallest non-negative integer such that w is trivial on

Upt ={a€Up|a=1(modpy)}

and let n = n(yr) be the largest integer such that ¢p is trivial on the ideal p7". If a is any
generator on the ideal p'F™ then

fUF w () Yr(aa™t) da ‘
fUF w(a) Yp(aat) da

'Y:w(a)‘

The first two assertions are proved by Weil. To obtain the third apply the previous lemma to the
function
D(z) = e 2™,

We prove the last. It is shown by Weil that |y| = 1 and that if ¢ is sufficiently large  differs from

/(] Yp(zaz') dx
Pr
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by a positive factor. This equals
/ Yp(xx') |z|g d*x = / Yp(xet)|zat|pd*x
Pr’ Pr’

if d* x is a suitable multiplicative Haar measure. Since the kernel of the homomorphism v is compact
the integral on the right is a positive multiple of

/( 4)1#1:(:6) |z|p d*z.
v(pRt

Set k = 2( if K/F is unramified and set k = / if K/F is ramified. Then v(p’) = pz* N v(K).
Since 1 + w is twice the characteristic function of v(K ) the factor + is the positive multiple of

/p;k Yp(x)ds + /p;k Vp(z) w(z) de.

For ¢ and therefore k sufficiently large the first integral is 0. If K/ F is ramified well-known properties
of Gaussian sums allow us to infer that the second integral is equal to

[ oe (&) w(2) o

Since w = w™! we obtain the desired expression for - by dividing this integral by its absolute value. If
K /F is unramified we write the second integral as

.jo(—l)j—k {/pF’““ Vr(z)de — /PFW“ V() dm}

J

In this case m = 0 and
/Hj Yp(z)dx
bp

is 0if k — j > n but equals ¢*~7 if k — j < n, where ¢ is the number of elements in the residue class
field. Since w(a) = (—1)™ the sum equals

q

w(a) § q™ + 2(—1)qu—j <1 _ 1)

. . 2w(a)q7n+l
A little algebra shows that this equals ==_-5F—

seen to equal the expression given in the lemma.
In the notation of [19] the third and fourth assertions could be formulated as an equality

so that v = w(a), which upon careful inspection is

v =MNK/F,Yp).

It is probably best at the moment to take this as the definition of A\(K/F, ¥ ).
If K is not a separable quadratic extension of F' we take w to be the trivial character.
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Proposition 1.3 There is a unique representation r of SL(2,F) on 8(K) such that

(5 0 ) e = et lalaea)

@ r( (o §))e0 =srrianew

0 1
-1 0
If 8(K) is given its usual topology, r is continuous. It can be extended to a unitary representation
of SL(2,F) on L*(K), the space of square integrable functions on K. If F is archimedean and ®
belongs to S(K) then the function r(g)® is an indefinitely differentiable function on SL(2, F) with
values in § K).

(iii) » )‘I)(CC) = ~vP'(z").

This may be deduced from the results of Weil. We sketch a proof. SL(2, F') is the group generated

by the elements (g ao_l >, (é i), and w = (_01 é) with a in F'* and z in F' subject to the

relations

! /()= 2)e

(b) Wt — <—01 _01)

o D66 )

g 0491 and (1) i) Thus
the uniqueness of r is clear. To prove the existence one has to verify that the mapping specified by
(i), (i), (iii) preserves all relations between the generators. For all relations except (a), (b), and (c) this
can be seen by inspection. (a) translates into an easily verifiable property of the Fourier transform. (b)
translates into the equality v? = w(—1) which follows readily from Lemma 1.2.

If a = 1 the relation (c) becomes

together with the obvious relations among the elements of the form

/K ©(0) Ve (v()) o) dy = y0r(-v(a)) | S@)r(-v (). —o) dy (13.1)

K

which can be obtained from the formula of Lemma 1.1 by replacing ®(y) by ®'(—y") and taking the
inverse Fourier transform of the right side. If a is not 1 the relation (c) can again be reduced to (1.3.1)
provided v¢r is replaced by the character + — 1 (ax) and v and dz are modifed accordingly. We refer
to Weil’s paper for the proof that r is continuous and may be extended to a unitary representation of
SL(2,F)in L*(K).

Now take F' archimedean. It is enough to show that all of the functions r(g)® are indefinitely
differentiable in some neighborhood of the identity. Let

reF }

{2
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ae={(§ L) |aer}

Then NrwApNp is a neighborhood of the identity which is diffeomorphic to Np X Ap x Np. Itis
enough to show that

and let

¢(n,a,ny) = r(nwan)®

is infinitely differentiable as a function of n, as a function of a, and as a function of n; and that
the derivations are continuous on the product space. For this it is enough to show that for all  all
derivatives of r(n)® and r(a)® are continuous as functions of n and ® or a and ®. This is easily done.

The representation r depends on the choice of ¢ r. If a belongs to F* and ¢}z (z) = ¢ (ax) let
1’ be the corresponding representation. The constant 7' = w(a)y.

Lemmal.4 (i) The representation v’ is given by

w=e((5 (1))

(i) If b belongs to K* let A\(b)®(x) = ®(b~tx) and let p(b)®(x) = ®(xb). If a = v(b) then

and
r'(9)p(b) = p(b)r(g).
In particular if v(b) = 1 both \(b) and p(b) commute with r.

We leave the verification of this lemma to the reader. Take K to be a separable quadratic extension
of F or a quaternion algebra of centre F'. In the first case v(K ™) is of index 2 in F'*. In the second case
v(K*)is F* if F is non-archimedean and v(K *) has index 2 in F'* if F'is R.

Let K’ be the compact subgroup of K * consisting of all z with v(z) = zz* = 1 and let G be the
subgroup of GL(2, F') consisting of all g with determinant in (K ). G4 hasindex2or 1in GL(2, F).
Using the lemma we shall decompose r with respect to K" and extend r to a representation of G4 .

Let Q2 be a finite-dimensional irreducible representation of K * in a vector space U over C. Taking
the tensor product of  with the trivial representation of SL(2, F') on U we obtain a representation on

$(K) @c U = $(K,U)

which we still call r and which will now be the centre of attention.

Proposition 1.5 (i) If 8(K,Q) is the space of functions ® in S(K,U) satisfying
®(xh) = Q1 (h)®(x)

for all h in K’ then 8(K,Q) is invariant under r(g) for all g in SL(2, F).
(i) The representation r of SL(2,F) on 8(K,Q) can be extended to a representation rq of G4

satisfying
ol (5 7))o =mlemen

if a = v(h) belongs to v(K™).
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(iii) If n is the quasi-character of F* such that

Qa) =n(a)l

(5 0)) =wt@nr

(iv) The representation rq is continuous and if F is archimedean all factors in 8(K,Q)) are
infinitely differentiable.

(v) IfU is a Hilbert space and Q is unitary let L?(K,U) be the space of square integrable functions
from K to U with the norm

for a in F* then

o2 = / |®() 2 de

If L*(K,Q) is the closure of 8(K,Q) in L*(K,U) then rq can be extended to a unitary
representation of Gy in L?(K, Q).

The first part of the proposition is a consequence of the previous lemma. Let H be the group of
matrices of the form
a 0
0 1

with a in v(K*). It is clear that the formula of part (ii) defines a continuous representation of H on
8(K, ). Moreover G is the semi-direct of H and SL(2, F') so that to prove (ii) we have only to show

(6 V)o(" 1) = (5 1)) o ((% V)

Let a = v(h) and let r’ be the representation associated 9}z(x) = 9 r(az). By the first part of the
previous lemma this relation reduces to

ro(g) = p(h)ralg) p~ ' (h),

which is a consequence of the last part of the previous lemma.

To prove (iii) observe that
a 0\ [(a®> 0 a=t 0
0 a/) \0 1 0 1

and that a? = v(a) belongs to (K *). The last two assertions are easily proved.
We now insert some remarks whose significance will not be clear until we begin to discuss the
local functional equations. We associate to every ® in $( K, 2) a function

Wa(g) = ralg) (1) (1.5.1)

vo(a) = Wo <<g ?)) (1.5.2)

on v(K*). The both take values in U.

on (G4 and a function
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It is easily verified that

Wa ((é f)g) — Vp(2)Wa(g)

If g € G4 and F is a function on G let p(g) F' be the function h — F'(hg). Then

p(9) We = W;, (g)®

(6 1)

with a in v(K*). Let £ be the representation of B on the space of functions on v(K *) with values in

Let B, be the group of matrices of the form

U defined by

(5 )=
and f(((1) alc)>@(b)z¢p<bx) (b).
Then for all bin B,

The application ® — ¢g, and therefore the application & — Wy, is injective because
pa(v(h) = R O(h) @ (). (1:5.4)

Thus we may regard rq as acting on the space V' of functions pg, ® € S(K,2). The effect of a

matrix in By is given by (1.5.3). The matrix <a 2) corresponds to the operator w(a) n(a)l. Since

0
G is generated by B, the set of scalar matrices, and w = _01 (1) the representation r on V' is
determined by the action of w. To specify this we introduce, formally at first, the Mellin transform of
© =P
If v is a quasi-character of F'* let
= [ elau)da (1.5.5)
v(K*)
Appealing to (1.5.4) we may write this as
Bol) = B = [ WL uv(0) 041) B(1) . (156)

If X is a quasi-character of F'* we sometimes write A for the associated quasi-character A o v of K*.
The tensor product A ® 2 of A and (2 is defined by

AR Q)(h) = A(h) Q(h).
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If ag : h — |h|k is the module of K then

a2 @ Q(h) = |B3E p(v(h) Q(h).

We also introduce, again in a purely formal manner, the integrals

Z(Q,(I))_/KX Q(h) B(h) d*h

and

Z(Q71 ®) :/KX Q1 (h) ®(h) d*h

so that
Blp) = Z(pay® © Q, ®). (1.5.7)
Now let ¢’ = @, (w)o and let ' be the Fourier transform of ® so that ro(w) ®(z) = v®'(x*). If
Ho = w1
Pt =2 (u‘luala}f ® Qﬂ“ﬂ(w)q))

which equals

v [ 07 ) @ d
K

Since 19(v(h)) = n(v(h)) = Q(h'h) = Q(h*)2(h) this expression equals

gl K/fl(V(h))Q_l(hL)‘P'(hb)dxh —’Y/KM_I(V(h))Q_l(h) &' (h) d*h

so that "
(gt =2 (u‘laK ® 9‘1#1)’) : (1.5.8)

Take ;1 = py a3 where 1 is a fixed quasi-character and s is complex number. If K is a separable
quadratic extension of I’ the representation €2 is one-dimensional and therefore a quasi-character. The
integral defining the function

Z( ,uoz}(/2 ® Q, P)
is known to converge for Re s sufficiently large and the function itself is essentially a local zeta-function
in the sense of Tate. The integral defining

Z(n oy’ © 071 @)

converges for Re s sufficiently small, that is, large and negative. Both functions can be analytically
continued to the whole s-plane as meromorphic functions. There is a scalar C'(x) which depends
analytically on s such that

Z(pojl? @ 0,8) = C(n) Z(p " aj? @ Q71 &),

All these assertions are also known to be valid for quaternion algebras. We shall return to the verification
later. The relation

() =7""C(WF (g ")
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determines ¢’ in terms of .
If X is a quasi-character of F'* and ; = A ® Q then $(K, Q) = $(K, Q) and

0, (9) = A(detg)ra(g)

so that we may write
rQ, =AQTrg

However the space V; of functions on v(K *) associated to g, is not necessarily V. In fact
Vi={leeVi

and rq, (g) applied to A, is the product of A(detg) with the function A-ro(g),. Given €2 one can always
find a A such that A ® 2 is equivalent to a unitary representation.
If € is unitary the map ® — ¢4 is an isometry because

[ oo Testanaa= [ i e = [ o)

if the measures are suitably normalized.

We want to extend some of these results to the case K = F' @& F. We regard the element of K
as defining a row vector so that K becomes a right module for M (2, F'). If ® belongs to $(K) and g
belongs to GL(2, F'), we set

p(g) @(z) = @(zg).
Proposition 1.6 (i) If K = F @ F then r can be extended to a representation r of GL(2,F') such

that 0 0
a a
(6 )= (5 1))
for a in F*.

(i) If ® is the partial Fourier transform

B(a,h) = /F B(a,y) v (by) dy

and the Haar measure dy is self-dual with repsect to 1 then

for all @ in §(K) and all g in Gp.

It is easy to prove part (ii) for g in SL(2, F'). In fact one has just to check it for the standard
generators and for these it is a consequence of the definitions of Proposition 1.3. The formula of part (ii)
therefore defines an extension of r to GL(2, F') which is easily seen to satisfy the condition of part (i).

Let 2 be a quasi-character of K *. Since K* = F'* x F'* we may identify 2 with a pair (w1, w2)
of quasi-characters of F'*. Then rq will be the representation defined by

ra(g) = |detg|} *wi (detg)r(g).
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If x belongs to K * and v(z) = 1 then x is of the form (¢,¢t~') with ¢ in F'*. If ® belongs to §(K)
set

9(9,@):/ QU(t, ™)) d((t,t71)) d*t.

Since the integrand has compact support on F'* the integral converges. We now associate to ® the
function

Wa(g) = 0(Q2,ra(g)®) (1.6.1)

vo(a) = Wo <<g ?)) (1.6.2)

p(g)Wa = Wy, (9)@.

— a €z X
BF—{<0 1) la e F ,xeF}

and if the representations £ of Br on the space of functions on F'* is defined in the same manner as
the representation ¢ of B then

on GL(2, F') and the function

on F*. We still have

If

£(b)ps = Prom)a

for b in Br. The applications ® — Wg and ® — (g are no longer injective.
If 110 is the quasi-character defined by

po(a) = Q((a,a)) = wi(a) wa(a)

then

and
a 0\ [(a*> 0 a”t 0
0 a 0 1 0 a
so that
(6 0)) 2 = @l ey
Consequently

W <<g 2)) — /F wn (@) (2)wy  (2)B(az, a2~ 1) d* @

= wl(a)wg(a)/ wi(2)wy ()@ (z, 271 d*x

FX

which is the required result.
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Again we introduce in a purely formal manner the distribution
Z(Q, (I)) = Z(wl, u.)Q(I)) = / (I)(Jfl, 1‘2) wl(.’Eg) u.)Q(l‘Q) dXxQ dxl‘g.
If ;v is a quasi-character of F'* and ¢ = ¢g¢ we set
2= [ wlauta)d*a
The integral is
a 0 «
u(a)d | Q,rq O | d*
Fx 0 1
a 0 -1 -1 x x
—/ ,u,(a){/ rQ ))@(m,x Jwi(x)wy *(z)d x} d* o
Fx Fx 0 1
which in turn equals
1/2 —1 -1 X X
/ pla)wr (o)l f {/ O(ax, 2™ )wi(x)w, () d x} d*a.
Fx Fx
Writing this as a double integral and then changing variables we obtain
/ / <I>(oz,x)uwl(a)uwg(x)|ax|;/2 d*ad”z
Fx JFx
so that
o) = Z (uwla}/Q,uwza;/Q, q») . (1.6.3)
Let ¢' = @y, (w)o- Then
B gt = Z (7w ol ra(w) @)
which equals
// ¥ (y,2)p oy (@) ey (y) eyl e dy
so that o o
P g h) = Z(p wr el p T wy tagl 2, @), (1.6.4)

Suppose 1 = pjaj where 1 is a fixed quasi-character and s is a complex number. We shall see that
the integral defining the right side of (1.6.3) converges for Re s sufficiently large and that the integral
defining the right side of (1.6.4) converges for Re s sufficiently small. Both can be analytically continued
to the whole complex plane as meromorphic functions and there is a meromorphic function C'(11) which

is independent of ® such that

Z(uwla;p,,uwzoz}p) = C(,u)Z(,u_lwl_loz;p,u_lwgla;p, ).

Thus
Blu) = C(W@ (n g ")

The analogy with the earlier results is quite clear.
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§2 Representations of GL(2, F') in the non-archimedean case. In this and the next two paragraphs
the ground field F' is a non- archimedean local field. We shall be interested in representations 7 of
Gr = GL(2, F) on a vector space V over C which satisfy the following condition.

(2.1) For every vector v in V the stabilizer of v in Gg is an open subgroup of Gp.

Those who are familiar with such things can verify that this is tantamount to demanding that the
map (g,v) — 7(g)vof Gp x V into V is continuous if V is given the trivial locally convex topology in
which every semi-norm is continuous. A representation of G r satisfying (2.1) will be called admissible
if it also satisfies the following condition

(2.2) For every open subgroup G’ of GL(2,0F) the space of vectors v in V stablizied by G’ is
finite-dimensional.

Or is the ring of integers of F'.

Let Hr be the space of functions on G r which are locally constant and compactly supported.
Let dg be that Haar measure on G r which assigns the measure 1 to GL(2,Op). Every f in Hr may be
identified with the measure f(g) dg. The convolution product

fix fa(h) = : f1(9) f2(g~'h) dg

turns Hp into an algebra which we refer to as the Hecke algebra. Any locally constant function
on GL(2,0p) may be extended to Gz by being set equal to 0 outside of GL(2,0p) and therefore
may be regarded as an element of H . In particular if m;, 1 < 4 < r, is a family of inequivalent
finite-dimensional irreducible representations of GL(2, O ) and

&i(g) = dim(m;) trmi(g™")

for g in GL(2, Op) we regard ¢; as an element of H . The function

£=> &
i=1

is an idempotent of H . Such an idempotent will be called elementary.
Let 7 be a representation satisfying (2.1). If f belongs to Hp and v belongs to V' then f(g) 7(g)v
takes on only finitely many values and the integral

flg)m(g)vdg = 7(f)v

Gr

may be defined as a finite sum. Alternatively we may give V' the trivial locally convex topology and use
some abstract definition of the integral. The result will be the same and f — = (f) is the representation
of Hp on V. If g belongs to G then A(g) f is the function whose value at kv is f(g~'h). It is clear that

m(A(g)f) = m(g) 7 (f).

Moreover
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(2.3) For every v in V there is an f in Hp such that 7f(v) = v.

In fact f can be taken to be a multiple of the characteristic function of some open and closed
neighborhood of the identity. If 7 is admissible the associated representation of H r satisfies

(2.4) For every elementary idempotent £ of Hp the operator (&) has a finite-dimensional range.

We now verify that from a representation 7 of Hr satisfying (2.3) we can construct a represen-
tation 7 of G satisfying (2.1) such that

m(f) = f(g) m(g) dg.

GFr

By (2.3) every vector v in V is of the form

Zw(fi) v; =0 (2.3.1)

i=1
implies that
w = 7r()\(g)fl)vZ
i=1
is 0 we can define 7(g)v to be
m(A(g) fi)vs
i=1

m will clearly be a representation of G satisfying (2.1).
Suppose that (2.3.1) is satisifed and choose f in Hp so that 7(f)w = w. Then

r

w = Zﬂ(f * X(g) fi)vs.

=1
fxXg) fi=plg ") f * f;

w=) w(plg)f * fi)vi =7 (p(g™")[) {Zﬂ(fi)vz} = 0.
' i=1
It is easy to see that the representation of G r satisfies (2.2) if the representation of H r satisfies
(2.4). A representation of Hr satisfying (2.3) and (2.4) will be called admissible. There is a complete
correspondence between admissible representations of G and of H . For example a subspace is
invariant under G if and only if it is invariant under Hr and an operator commutes with the action
of G'r if and only if it commutes with the action of Hr.
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>From now on, unless the contrary is explicitly stated, an irreducible representation of G or Hr
is to be assumed admissible. If 7 is irreducible and acts on the space V' then any linear transformation
of V' commuting with Hr is a scalar. In fact if V' is assumed, as it always will be, to be different
from 0 there is an elementary idempotent £ such that 7(§) # 0. Its range is a finite-dimensional space
invariant under A. Thus A has at least one eigenvector and is consequently a scalar. In particular there
is a homomorphism w of F'* into C such that

(3 2)) -

for all a in F*. By (2.1) the function w is 1 near the identity and is therefore continuous. We shall
refer to a continuous homomorphism of a topological group into the multiplicative group of complex
numbers as a quasi-character.

If x is a quasi-character of F'* then ¢ — x(detg) is a quasi-character of Gp. It determines a
one-dimensional representation of G which is admissible. It will be convenient to use the letter x to
denote this associated representation. If 7 is an admissible reprentation of G on V then x ® 7 will be
the reprenentation of G on V defined by

(x ®@ 7)(g) = x(detg)m(g)-

It is admissible and irreducible if 7 is.
Let 7 be an admissible representation of G on V and let V* be the space of all linear forms on
V. We define a representation 7* of H on V* by the relation

(v, 7 (fHv*) = (n(fHv,v*)
where fv(g) = f(g~?). Since 7* will not usually be admissible, we replace V* by V = 7*(Hp)V*.
The space V' is invariant under H . For each f in Hf there is an elementary idempotent £ such that

&x f = f and therefore the restriction 7 of 7* to V satisfies (2.3). Itis easily seen that if { is an elementary
idempotent so is £. To show that 7 is admissible we have to verify that

V() =7V =" (V*

is finite-dimensional. Let V(§) = 7(§)V and let V, = (1 —m({))V. V is clearly the direct sum of V(£),
which is finite-dimensional, and V.. Moreover 17(5 ) is orthogonal to V. because

(v =7(E)v, 7 (&)v) = (x(E)v = 7(§)v,v) =0
It follows immediately that V() is isomorphic to a subspace of the dual of V(€) and is therefore
finite-dimensional. It is in fact isomorphic to the dual of V' (§) because if v* annihilates V. then, for all
vinV, 5

(0,77 ()v") = (v,07) = =(v = 7(§)v,v") =0
so that 7 (§)v* = v*.

7 will be called the representation contragradient to 7. It is easily seen that the natural map of
V into V* is an isomorphism and that the image of this map is 7 (H F)‘~/* so that 7 may be identified
with the contragredient of 7.

If V; is an invariant subspace of V and V, = V; \ V we may associate to 7 representations 71 and
my on Vi and V5. They are easily seen to be admissible. It is also clear that there is a natural embedding
of V2 in V. Moreover any element v; of V1 lies in V1 (&) for some ¢ and therefore is determined by its
effecton V; (€). It annihilates (I 7(€)) V. Thereis certainly a linear function v on V which annihilates
(I —7(€))V and agrees with V1 on V4 (€). Tis necessarily in V so that V; may be identified with V5 \ V.

Since every representation is the contragredient of its contragredient we easily deduce the following
lemma.
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Lemma2.5 (a). Suppose Vi is an invariant subspace of V. If‘72 1s the annshilator of Vi in V then

V1 is the annihilator of Vo in V.
(b) m is irreducible if and only if T is.

Observe that for all gin Gg

(m(g)v,7) = (v, 7(g~")0).

If 7 is the one-dimensional representation associated to the quasi-character x then 7 = x~!. Moreover
if x is a quasi-character and 7 any admissible representation then the contragredient of y ® mis x ! @ 7.

Let V' be a separable complete locally convex space and 7 a continuous representation of G'r
on V. The space Vi = m(Hp)V is invariant under G r and the restriction 7 of 7 to V} satisfies (2.1).
Suppose that it also satisfies (2.2). Then if 7 is irreducible in the topological sense 7 is algebraically
irreducible. To see this take any two vectors v and w in Vj and choose an elementary idempotent £ so
that 7(§)v = v. v is in the closure of 7(H p)w and therefore in the closure of 7(Hp)w N w(§)V. Since,
by assumption, 7(§)V is finite dimensional, v must actually lie in 7(Hp)w.

The equivalence class of 7 is not in general determined by that of m. It is, however, when
7 is unitary. To see this one has only to show that, up to a scalar factor, an irreducible admissible
representation admits at most one invariant hermitian form.

Lemma 2.6 Suppose my and my are irreducible admissible representations of Gg on Vi and Vo re-
spectively. Suppose A(vy,vq) and B(vy,vs) are non-degenerate forms on Vi x Vo which are linear
in the first variable and either both linear or both conjugate linear in the second variable. Suppose
moreover that, for all g in Gp

A(mi(g)v1, ma(g)va) = A(v1,v2)

and
B(ﬂ'l (g)v1, 7T2(g)’l)2) = B(vy,v2)

Then there is a complex scalar A such that
B(vy,va) = AA(v1,v2)
Define two mappings S and 71" of V5 into Vi by the relations
A(vy,v9) = (v1, Sva)

and
B(’Ul, ?}2) = <’U17 TUQ>,

Since S and T are both linear or conjugate linear with kernel 0 they are both embeddings. Both take
V5 onto an invariant subspace of V1. Since Vi has no non-trivial invariant subspaces they are both
isomorphisms. Thus S~17'is a linear map of V5 which commutes with G i and is therefore a scalar 1.
The lemma follows.

An admissible representation will be called unitary if it admits an invariant positive definite
hermitian form.

We now begin in earnest the study of irreducible admissible representations of G . The basic
ideas are due to Kirillov.
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Proposition 2.7. Let w be an irreducible admissible representation of Gg on the vector space V.
(a) If V is finite-dimensional then V is one-dimensional and there is a quasi-character x of F*
such that

m(g) = x(detg)

(b) If V is infinite dimensional there is no nonzero vector invariant by all the matrices ((1) 916),
xeF.

If 7 is finite-dimensional its kernel H is an open subgroup. In particular there is a positive
number € such that
1 =z
0 1

belongs to H if |x| < e. If z is any element of F' there is an a in F'* such that |ax| < €. Since

(v )6 D-6)
(b 1)

belongs to H for all z in F'. For similar reasons the matrices

()

do also. Since the matrices generate SL(2, F') the group H contains SL(2, F'). Thus 7(g1)7(g2) =
m(g2)m(g1) for all g1 and g2 in Gp. Consequently each 7(g) is a scalar matrix and 7(g) is one-
dimensional. In fact

the matrix

m(g) = x(detg)l

where x is a homorphism of F'* into C*. To see that  is continuous we need only observe that

(5 ) -

Suppose V' contains a nonzero vector v fixed by all the operators

(6 1)

Let H be the stabilizer of the space Cv. To prove the second part of the proposition we need only verify
that H is of finite index in G . Since it contains the scalar matrices and an open subgroup of G r it will
be enough to show that it contains SL(2, F'). In fact we shall show that H, the stabilizer of v, contains
SL(2,F). Hy is open and therefore contains a matrix

(¢ 4)
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with ¢ # 0. It also contains

G D6 )-8 m

Ifx= %Oythen

also belongs to Hy. As before we see that H contains SL(2, F').
Because of this lemma we can confine our attention to infinite-dimensional representations. Let
1 = 1 be a nontrivial additive character of I'. Let Br be the group of matrices of the form

= (6 7)

with ¢ in F'* and z in F. If X is a complex vector space we define a representation &, of By on the
space of all functions of F'* with values in X by setting

(£ (0)¢) (@) = Y(az)p(aa).

&y leaves the invariant space S(F*, X) of locally constant compactly supported functions. & is
continuous with respect to the trivial topology on 8(F*, X).

Proposition 2.8. Let m be an infinite dimensional irreducible representation of Ggp on the space V.
Let p = pr be the mazimal ideal in the ring of integers of F', and let V' be the set of all vectors v

iV such that
1 =z
/p_n Yp(—x)m <<0 1)) vdr =0
for some integer n. Then

(i) The set V' is a subspace of V.
(ii) Let X =V'\'V and let A be the natural map of V onto X. If v belongs to V let ¢, be the

function defined by
e =a(=((5 1))

The map v — @, is an injection of V into the space of locally constant functions on F* with
value in X.
(iii) If b belongs to Br and v belongs to V' then

Pr(b)yo = fdﬂ(b)@v

If m > n so that p~™ contains p~" then

[ 7)o
£ ({3 D) cor (3 D)o

yep—m/pn
Thus if the integral of the lemma vanishes for some integer n it vanishes for all larger integers. The
first assertion of the proposition follows immediately.
To prove the second we shall use the following lemma.

is equal to
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Lemma2.8.1 Let p~™ be the largest ideal on which v is trivial and let f be a locally constant function
on p~* with values in some finite dimensional complex vector space. For any integer n < { the
following two conditions are equivalent
(i) f is constant on the cosets of p~™ in p
(ii) The integral

—L

| vt sayae

is zero for all a outside of p~™*",

Assume (i) and let a be an element of F'* which is not in p~™""™. Then z — ¢(—az) is a
non-trivial character of p~" and

/p Loanf@di= Y v /p st s =o

yep—*t/p—m

f may be regarded as a locally constant function on F with support in p~¢. Assuming (ii) is
tantamount to assuming that the Fourier transform F’ of f has its support in p~™*". By the Fourier
inversion formula

f(z) = / b(—zy) f'(y) dy.
p*m+n

If y belongs to p~" " the function z — 1 (—xy) is constant on cosets of p~™. It follows immediately
that the second condition of the lemma implies the first.

To prove the second assertion of the proposition we show that if ¢,, vanishes identically then v
is fixed by the operator  ( ( v )) for all z in F' and then appeal to Proposition 2.7.

Take o
(3 7)-

The restriction of f to an ideal in F' takes values in a finite-dimensional subspace of V. To show that
f is constant on the cosets of some ideal p~" it is enough to show that its restriction to some ideal p~t
containing p~" has this property.

By assumption there exists an ng such that f is constant on the cosets of p~"°. We shall now
show that if f is constant on the cosets of p~"*! it is also constant on the cosets of p~". Take any ideal
p~¢ containing p~". By the previous lemma

| ota) sy dn =0

if a is not in p~ "1

p—m—i—n—l

. We have to show that the integral on the left vanishes if a is a generator of

If Ur is the group of units of OF the ring of integers of I there is an open subgroup U; of Ur

such that
b 0 B
T 0 1 v="0
for bin U;. For such b

(8 9), e (& (¢ D)
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is equal to

(s (s D)oo s

Thus it will be enough to show that for some sufficiently large ¢ the integral vanishes when a is taken
to be one of a fixed set of representatives of the cosets of U; in the set of generators of p~" "~ 1. Since
there are only finitely many such cosets it is enough to show that for each a there is at least one ¢ for
which the integral vanishes.

By assumption there is an ideal a(a) such that

(3 )G D)
o5 D) oo (s e

so that ¢ = /(a) could be chosen to make

But this integral equals

=a'a(a).

To prove the third assertion we verify that

A <7r <<é i’)) v> — () Av) (2.8.2)

forall vin V and all y in F'. The third assertion follows from this by inspection. We have to show that

isin V' or that, for some n,

y VT ((é f))”((é ?))vdx—/p_nw—xw(y)w ((é f))vdx

is zero. The expression equals

[ ovon (o 770 va [ sernn((§ 7)) v

If p~" contains y we may change the variables in the first integral to see that it equals the second.
It will be convenient now to identify v with ¢, so that V' becomes a space of functions on F'*
with values in X. The map A is replaced by the map ¢ — ¢(1). The representation 7™ now satisfies

m(b)p = &y (b)p

if bis in Bp. There is a quasi-character wy of F'* such that

(3 2) -
(05 0)

the representation is determined by wg and 7(w).

If
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Proposition 2.9 (i) The space V' contains
Vo =8(F*, X)

(ii) The space V is spanned by Vo and w(w)Vj.

For every ¢ in V there is a positive integer n such that

(5 7))o=

if z and a — 1 belong to p™. In particular p(aa) = ¢(a) if a belongs to F'* and a — 1 belongs to p”.
The relation

Y(ar)p(a) = ¢(a)

for all z in p” implies that p(a) = 0 if the restriction of ¥ to ap™ is not trivial. Let p~™ be the largest
ideal on which 9 is trivial. Then ¢(«) = 0 unless |a| < |w|~™~" if w is a generator of p.

Let 1 be the space of all w in V' such that, for some integer ¢ depending on ¢, ¢(a) = 0 unless
|a| > |w|’. To prove (i) we have to show that V; = §(F*, X). Itis at least clear that §(F'*, X) contains
Vo. Moreover for every ¢ in V and every x in F’ the difference

(L

¢ (@) = (1 = ¢(ax))p(a)

is identically zero for = 0 and otherwise vanishes at least on z~'p~™. Since there is no function in
V invariant under all the operators
- 1 =z
0 1
the space 1} is not 0.

Before continuing with the proof of the proposition we verify a lemma we shall need.

isin Vj. To see this observe that

Lemma 2.9.1 The representation &, of Bp in the space S(F*) of locally constant, compactly sup-
ported, complex-valued functions on F* is irreducible.

For every character 1 of Ur let ¢, be the function on F'* which equals ;: on Ur and vanishes off
Ur. Since these functions and their translates span §(F'*) it will be enough to show that any non-trivial
invariant subspace contains all of them. Such a space must certainly contain some non-zero function ¢
which satisfies, for some character v of U, the relation

p(ae) = v(e) p(a)

for all ¢ in F'* and all € in Up. Replacing ¢ by a translate if necessary we may assume that p(1) # 0.
We are going to show that the space contains ¢,, if y is different from v. Since Ur has at least two
characters we can then replace ¢ by some ¢, with y different from v, and replace v by  and ;. by v to
see it also contains ¢,,.
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e (O )R ()

where z is still to be determined. p is to be different form v. ¢’ belongs to the invariant subspace and

Set

¢ (ae) = p(e)¢’(a)

for all ¢ in F'* and all € in Ur. We have
¢0) = pla) [ i e ae) de
F

The character 1~ 'v has a conductor p™ with n positive. Take z to be of order —n — m. The integral,
which can be rewritten as a Gaussian sum, is then, as is well-known, zero if a is not in Ug but different
from zero if a is in Up. Since ¢(1) is not zero ¢’ must be a nonzero multiple of ¢,,.

To prove the first assertion of the proposition we need only verify that if u belongs to X then 1
contains all functions of the form a@ — n(a)u with i in §(F*). There is a ¢ in V such that p(1) = u.

Take x such that ¢)(z) # 1. Then
P 1 =«

isin Vp and ¢'(1) = (1 — ¢(z))u. Consequently every u is of the form ¢(1) for some ¢ in Vj.
If 1 is a character of Ur let V(p) be the space of functions ¢ in V; satisfying

p(ae) = p(e)p(a)
forall ain F'* and all € in Up. V) is clearly the direct sum of the space Vj(11). In particular every vector
u in X can be written as a finite sum
uw="> ¢i(1)
where ¢; belongs to some Vj(14;).
If we make use of the lemma we need only show that if u can be written as u = (1) where ¢ is

in V(v) for some v then there is at least one function in Vj of the form o — 7(a)u where 7 is a nonzero
function in §(F'*). Choose y different from v and let p" be the conductor of 1~ *v. We again consider

oo (0 ) 1)

where z is of order —n — m. Then
@) =la) [ v vrlae de
F

The properties of Gaussian sums used before show that ¢’ is a function of the required kind.
The second part of the proposition is easier to verify. Let Pr be the group of upper-triangular
matrices in G'p. Since V} is invariant under Pr and V is irreducible under G'r the space V' is spanned

by V and the vectors
’ 1 =z (w)
’ 0 1 ’
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with ¢ in Vj. But
o' ={¢' = m(w)p} + m(w)e
and as we saw, ¢’ — 7(w)¢ is in V{). The proposition is proved.
To study the effect of w we introduce a formal Mellin transform. Let @ be a generator of p. If ¢

is a locally constant function on F'* with values in X then for every integer n the function € — ¢ (ew™)
on UF takes its values in a finite-dimensional subspace of X so that the integral

/ lem™w(e) = Ba(v)
Ur

is defined. In this integral we take the total measure of Up to be 1. It is a vector in X. @(v,t) will be
the Formal Laurent series
Z t"on(v)

t

If ¢ isin V the series has only a finite number of terms with negative exponent. Moreover the series
(v, t) is different from zero for only finitely many v. If ¢ belongs to V} these series have only finitely
many terms. It is clear that if ¢ is locally constant and all the formal series ¢(v, t) vanish then ¢ = 0.

Suppose ¢ takes values in a finite-dimensional subspace of X, w is a quasi-character of F'*, and
the integral

/ w(a)p(a)d™a (2.10.1)
Fx

is absolutely convergent. If w’ is the restriction of w to U this integral equals

Z 2" /U o(w™e) W' (€) de = Z 2" P (W)

n

if z = w(w). Consequently the formal series $(w’, t) converges absolutely for ¢ = z and the sum is
equal to (2.10.1). We shall see that X is one dimensional and that there is a constant ¢y = ¢y(¢) such
that if |w(w)| = |w|® with ¢ > ¢ then the integral (2.10.1) is absolutely convergent. Consequently all
the series ¢(v, t) have positive radii of convergence.

If ¢ = 9 is a given non-trivial additive character of I, ;1 any character of Ur, and = any element
of I’ we set

(. x) = /U () (ex) de

The integral is taken with respect to the normalized Haar measure on Ur. If g belongs to G r, ¢ belongs
toV,and ¢’ = 7(g)p we shall set

m(9) 2(v,t) = @' (v,1).
Proposition 2.10 (i) If § belongs to Ur and £ belongs to Z then

7r (( ‘”gé ?)) B(v,t) = =t 1(8) B(1, 1)

(ii) If = belongs to F' then

(6 1))pen=2r {Z (v w"x)@nw)}

m
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where the inner sum s taken over all characters of Up
(iii) Let wo be the quasi-character defined by

(5 £

for ain F*. Let vy be its restriction to Up and let zg = wo(w). For each character v of Up
there is a formal series C(v,t) with coefficients in the space of linear operators on X such
that for every ¢ in Vj

r << 0 é)) Bt = Clu,t) v vyt #7025,

(1)

@'(v,t) = Zt”/U v(e) p(w™ ) de.

Then

Changing variables in the integration and in the summation we obtain the first formula of the propo-

sition.
P 1 =z

P'(v,t) = Z " (w"ex) v(e) p(w"e) de.

n Ur

Now set

Then

By Fourier inversion

p(@"e) =D Gnlp) n(e).

The sum on the right is in reality finite. Substituting we obtain

Pty =) t" {Z/U ptv(e) Y(ew" ) de @n(u)}

as asserted.

Suppose v is a character of Ur and ¢ in Vj is such that $(y,t) = 0 unless u = v~ 15 ', This
means that

p(ae) = vig(e) p(a)

(I

or that
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forall ein Up. If ¢’ = 7(w)y then

(5 ) e ==((5 ) mtwe=rtm((5 2))e
(G )-GO )

the expression on the right is equal to

Since

so that @' (p,t) = 0 unless p = v.
Now take a vector v in X and a character v of Ur and let ¢ be the function in V) which is zero
outside of Ur and on Up is given by

o(€) = v(e) vo(e)u. (2.10.2)
If ¢’ = m(w)¢p then @), is a function of n, v, and u which depends linearly on u and we may write
Pn(v) = Cn(v)u
where C,, () is a linear operator on X.
We introduce the formal series

Cv,t) = t"Cu(v).
We have now to verify the third formula of the proposition. Since ¢ is in Vj the product on the right
is defined. Since both sides are linear in ¢ we need only verify it for a set of generators of Vj. This
set can be taken to be the functions defined by (2.10.2) together with their translates of power w. For

functions of the form (2.10.2) the formula is valid because of the way the various series C(v, t) were
defined. Thus all we have to do is show that if the formula is valid for a given function ¢ it remains

valid when ¢ is replaced by
@’ 0
T 0 1))¥
By part (i) the right side is replaced by
ZtOw, ) pv g Lt ).

wn((7 D)oer((s 2o

and 7(w)p(v, t) is known we can use part (i) and the relation
1 0\ (= o0 w0
0 @) \0 = 0 1
to see that the left side is replaced by

2t m(w)P(v, t) = 25t°C(v, ) (v gt t g ).

For a given v in X and a given character v of UF there must exist a ¢ in V' such that

B(v,t) = t"Cr(v)u

Consequently there is an ng such that C),(v)u = 0 for n < ng. Of course ny may depend on v and
v. This observation together with standard properties of Gaussian sums shows that the infinite sums
occurring in the following proposition are meaningful, for when each term is multiplied on the right
by a fixed vector in X all but finitely many disappear.

Since
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Proposition 2.11 Let p~¢ be the largest ideal on which 1 is trivial.
(i) Let v and p be two characters of Ur such that vpvy is not 1. Let p™ be its conductor. Then

S o™ v (o™ ) Crn0)

s equal to
o ) 2 pro(—1)Co e () Cp e (p)

for all integers n and p.
(ii) Let v be any character of Ug and let v = V_lyo_l. Then

S n(0 w07, wp) Cpn(o)

s equal to

20v0(—1)0n,p + (7| _1)_125+10n—1—€( p—1—0(V Z 27" Crpr (V) Cpir (V)
—2—/

for all integers n and p.

The left hand sums are taken over all characters o of Ur and 9, , is Kronecker’s delta. The

N G T T B PR T T e
(3 D) rers-mne (3 3P (3 71)

for all ¢ in V{. Since 7(w) is not necessarily in V we write this relation as

wtw) {x (5 1)) e —stwie} + w2e=ne-0m (5 7)) ((5 7))

The term 72 (w)¢ is equal to vo(—1) .
We compute the Mellin transforms of both sides

(6 - fgei)

sty (1)) et =S )5 G0

so that the Mellin transform of the right side is

)Y S o v =@ (e oyt~ )2 P Clin(0) B (0). (211.1)

n D,p,0

implies that

and
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On the other hand

Zt" Zzo pin (V)Pp(v 5
and

“((o 1)) wee = 2 T = By

7((6 1)) @000 - n(w)pen)

>t 2P n(prve, @) — 6(prin)|Crin(p™ v ) Bp(p)-

so that

is equal to

Here §(prvy) is 1 if pruy is the trivial character and 0 otherwise. The Mellin transform of the left hand
side is therefore

S o @) =000 Cor () Cotn (075 B0 +10(—1) 3 B (). (2112
PP
The coefficient of t”@p(,o) in (2.11.1) is
Zn v, @) n(pT o vy —w@P)2g  Cpn () (2.11.3)
and in (2.11.2) it is
S ln(or ") = 80257 o ()07 957 + 10— 1o pdpr )T (211.4)

r

These two expressions are equal for all choice of n, p, p, and v.
If p # v and the conductor of vp~! is p™ the gaussian sum n(pv
Thus (2.11.4) reduces to

—1 w")iszerounlessr = —m—/.

1 —m—Z)

_ —p—m—F _ _
(v~ w 20" Ot (V) Cpeme(p ™ 5 ).

Since
n(p, —z) = p(=1) n(y, )
the expression (2.11.3) is equal to

) Enle™ )l )% Cpanl)

Replacing p by p~'1; ! we obtain the first part of the proposition.

If p = v then §(pr~—!) = 1. Moreover, as is well-known and easily verified, n(pr—!,@") = 1 if
r> -4,
Bt @) = [o|(jw] - 1)

and n(pr=1,@") = 0if r < —¢ — 2. Thus (2.11.4) is equal to

vo(—1)0n,pI+(Jw|-1 ) p+£+1cn— —1(V)Cr—p—1( ! _1 Z 2077 Char( )Cn-l-r(’/_l’/o_l)-

r=—~0—2

The second part of the proposition follows.
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Proposition(2.12) (i) For every n, p, v and p
Cn(¥)Cp(p) = Cp(p)Cn(v)

(i) There is no non-trivial subspace of X invariant under all the operators C,,(v).
(iii) The space X 1is one-dimensional.

Suppose prvg # 1. The left side of the first identity in the previous proposition is symmetric in
the two pairs (n, v) and (p, p). Since (' p~ vy, ™) is not zero we conclude that

vy ,w
Cnm—e(V) Cp—m—é(p) = Cp—m—é(p) Cnm—e(v)

for all choices of n and p. The first part of the proposition is therefore valid in p # v.

Now suppose p = v. We are going to that if (p, n) is a given pair of integers and u belongs to X

then

Crger (V) Cpgr (V)11 = Copyor (V) Crr (V)
for all 7 in Z. If r < 0 both sides are 0 and the relation is valid so the proof can proceed by induction
on r. For the induction one uses the second relation of Proposition 2.11 in the same way as the first was
used above.

Suppose X; is a non-trivial subspace of X invariant under all the operators C,,(v). Let V; be
the space of all functions in Vj) which take values in X; and let V be the invariant subspace generated
by Vi. We shall show that all functions in V7 take values in X so that V/ is a non-trivial invariant
subspace of V. This will be a contradiction. If ¢ in V' takes value in X; and g belongs to Pp then 7(g)¢
also takes values in X;. Therefore all we need to do is show that if ¢ is in V; then 7(w)¢ takes values
in X;. This follows immediately from the assumption and Proposition 2.10.

To prove (iii) we show that the operators C,, (v) are all scalar multiples of the identity. Because
of (i) we need only show that every linear transformation of X which commutes with all the operators
C,,(v) is a scalar. Suppose T is such an operator. If ¢ belongs to V' let T, be the function from F* to
X defined by

Tp(a) =T (p(a)).
Observe that Ty is still in V. This is clear if ¢ belongs to V) and if ¢ = 7m(w)ypy we see on examining
the Mellin transforms of both sides that

Ty = m(w)Tpo.

Since V' = Vj +7(w)V} the observation follows. T therefore defines a linear transformation of V' which
clearly commutes with the action of any g in Pp. If we can show that it commutes with the action of w
it will follow that it and, therefore, the original operator on X are scalars. We have to verify that

T(w)To = Tr(w)e
at least for ¢ on Vj and for ¢ = m(w)yo with ¢g in V. We have already seen that the identity holds for
@ in Vy. Thus if ¢ = 7(w)po the left side is

m(w) T (w)po = 7 (w)Tpo = vo(—1)Tg
and the right side is
Tr*(w)po = vo(~1)Tpo.
Because of this proposition we can identify X with C and regard the operators C,,(v) as complex
numbers. For each r the formal Laurent series C'(v, t) has only finitely many negative terms. We now
want to show that the realization of 7 on a space of functions on F'* is, when certain simple conditions

are imposed, unique so that the series C(v, t) are determined by the class of 7 and that conversely the
series C'(v, t) determine the class of .
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Theorem 2.13 Suppose an equivalence class of infinite-dimensional irreducible admissible represen-
tations of G is given. Then there exists exactly one space V' of complex-valued functions on F*
and exactly one representation m of Gg on V which is in this class and which is such that

m(b)e = &y (b)e
if b is in Br and @ is in V.

We have proved the existence of one such V and 7. Suppose V" is another such space of functions
and 7’ a representation of G on V' which is equivalent to 7. We suppose of course that

7' (b)o = Ey(b)e

if bisin Bp and ¢ isin V'. Let A be an isomorphism of V' with V' such that Aw(g) = 7n'(g) A for all g.
Let L be the linear functional

L(p) = Ap(1)

L <7r <<g (1))) «p) — Ap(a)

so that A is determined by L. If we could prove the existence of a scalar A such that L(p) = Ap(1) it
would follow that

on V. Then

Ap(a) = Ap(a)
for all a such that Ap = Ap. This equality of course implies the theorem.

Observe that
L <7r <<é ”f)) <p> _ <<é "f)) Ap(1) = () L(). (2.13.1)

Thus we need the following lemma.

Lemma 2.13.2 If L is a linear functional on V' satisfying (2.13.1) there is a scalar X such that

L(p) = Ap(1).
This is a consequence of a slightly different lemma.

Lemma 2.13.3 Suppose L is a linear functional on the space S(F*) of locally constant compactly
supported functions on F* such that

L (@ ((é f)) ¢> = ¥(2) L(%)

for all ¢ in S(F*) and all x in F. Then there is a scalar A such that L(p) = Ap(1).

Suppose for a moment that the second lemma is true. Then given a linear functional L on V'
satisfying (2.13.1) there is a A such that L(y) = Ap(1) for all ¢ in V = §(F*). Take x in F such that
Y(x) # land ¢ in V. Then

er=c(e-x((o 7))e)+2(=((o 7))%):
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(o 1))

Ap(1) = Mp(2)p(1) + () L(p)

Since

is in Vj the right side is equal to

so that

(1= () L(p) = A(1 = (x)) (1)

which implies that L(y) = Ap(1).

To prove the second lemma we have only to show that ¢(1) = 0 implies L(¢) = 0. If we set
©(0) = 0 then ¢ becomes a locally constant function with compact support in F'. Let ¢’ be its Fourier
transform so that

p(a) = /Fw(ba) ¢’ (—b) db.

Let €2 be an open compact subset of F'* containing 1 and the support of ¢. There is an ideal a in F
so that for all a in Q the function ¢’(—b)1(ba) is constant on the cosets of a in F'. Choose an ideal b
containing a and the support of ¢’. If S is a set of representatives of b/a and if ¢ is the measure of a

then
p(a) =Y p(ba)e' (D).

besS

If g is the characteristic function of €2 this relation may be written
1 b
o= n6 (o 1))
besS

with Ay = c’(=b). If p(1) = 0 then
D (b)) =0

bes

=3\ {fw ((é l{)) o — wwm}
It is clear that L(y) = 0.

The representation of the theorem will be called the Kirillov model. There is another model
which will be used extensively. It is called the Whittaker model. Its properties are described in the next
theorem.

so that
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Theorem 2.14 (i) For any ¢ in V set

Wo(9) = (m(9)¢)(1)

s0 that W, is a function in Gp. Let W (1) be the space of such functions. The map ¢ — W, is
an isomorphism of V. with W (m,1). Moreover

Wﬂ(g)gp = p(g)W<P

(i) Let W(v) be the space of all functions W on Gg such that

w((o 7))o= v

for all x in F and g in G. Then W(m, 1) is contained in W (v)) and is the only invariant
subspace which transforms according to ™ under right translations.

(i D)= (5 2) ) -

the function W, is 0 only if ¢ is. Since

Since

the relation
Wag)e = P(9)Wo

is clear. Then W (7, ) is invariant under right translation and transforms according to 7.

o (5 1)9) = (=((5 1)) wtore) @ = st@imtareta)

the space W (, 1)) is contained in W (1)). Suppose W is an invariant subspace of W (v) which trans-
forms according to . There is an isomorphism A of V with W such that

A((9)¢) = p(9)(Agp).

Let
Since

the map A is determined by L. Also

t(=((5 1))¢)=4¢((5 7)) = v@ae = v

so that by Lemma 2.13.2 there is a scalar A such that

L(p) = Ap(1).
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Consequently Ap = AW, and W = W (m, ).

The realization of 7 on W (m,1) will be called the Whittaker model. Observe that the repre-
sentation of G on W () contains no irreducible finite-dimensional representations. In fact any such
representation is of the form

m(g9) = x(detg).

If m were contained in the representation on W (1) there would be a nonzero function W on G g such
that

w((g 7)9) = vl

In particular taking g = e we find that

However it is also clear that

(3 ) fon(3 )

so that ¢)(z) = 1 for all z. This is a contradiction. We shall see however that 7 is a constituent of the
representation on W (). That is, there are two invariant subspaces W; and W5 of W () such that W
contains W5 and the representation of the quotient space W; /W5 is equivalent to 7.

Proposition 2.15 Let w and 7' be two infinite-dimensional irreducible representations of G realized
in the Kirillov form on spaces V and V'. Assume that the two quasi-characters defined by

(9 R () R

are the same. Let {C(v,t)} and {C'(v,t)} be the families of formal series associated to the two
representations. If

C(v,t) = C'(v,t)
for all v then T = «’.

If ¢ belongs to 8(F*) then, by hypothesis,

m(w)@(v, 1) = 7' (w)@(v, 1)

so that m(w)y = 7' (w)ep. Since V is spanned by $(F*) and 7(w)S(F*) and V' is spanned by S(F*)
and 7' (w)8(F™) the spaces V and V"' are the same. We have to show that

m(g9)p = 7' ()¢

for all ¢ in V and all g in Gp. This is clear if g is in Pr so it is enough to verify it for g = w.
We have already observed that m(w)ypo = 7'(w)yp if o is in S(F*) so we need only show that
m(w)p = 7' (w)if ¢ is of the form 7(w)po with ¢g in §(F*). But m(w)e = 7% (w)pg = w(—1)pe and,
since (w)po = 7' (w)po, ' (w)p = w'(—1)¢o.
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Let N be the group of matrices of the form

(o 7)

with z in F' and let B be the space of functions on G'r invariant under left translations by elements
of Np. B is invariant under right translations and the question of whether or not a given irreducible
representation 7 is contained in B arises. The answer is obviously positive when m = x is one-
dimensional for then the function g — x/(detg) is itself contained in B.

Assume that the representation 7 which is given in the Kirillov form acts on B. Then there is a
map A of V into B such that

If L(¢) = Ap(1) then

(e ((s 1))e) = (2.15.1)

for all p in V and all z in F'. Conversely given such a linear form the map ¢ — Ay defined by

satisfies the relation Am(g) = p(g)A and takes V into B. Thus 7 is contained in B if an only if there is
a non-trivial linear form L on V which satisfies (2.15.1).

Lemma2.15.2 If L is a linear form on S(F*) which satisfies (2.15.1) for all x in F and for all ¢
in 8(F*) then L is zero.

We are assuming that L annihilates all functions of the form

“llo 1)es

so it will be enough to show that they span 8(F'*). If ¢ belongs to 8(F'*) we may set ¢(0) = 0 and
regard ¢ as an element of 8(F'). Let ¢’ be its Fourier transform so that

p(x) = /Fcp’(—bw(bx) db.

Let 2 be an open compact subset of F'* containing the support of ¢ and let p~" be an ideal containing
(2. There is an ideal a of F’ such that ¢’(—b)1(bx) is, as a function of b, constant on cosets of a for all
in p~™. Let b be an ideal containing both a and the support of ¢’. If S is a set of representatives for the
cosets of ain b, if ¢ is the measure of a, and if ¢ is the characteristic function of {2 then

p(z) = Z Aot (bz) o (2)

bes

s )

if \p = c¢’(—b). Thus
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Since ¢(0) = 0 we have

be:o

b

p=> X {fw <<é l{)) o — <po}
b
as required.

Thus any linear form on V' verifying (2.15.1) annihilates §(F'*). Conversely any linear form on
V annihilating S(F*) satisfies (2.15.1) because

()

isin §(F*) if p is in V. We have therefore proved

so that

Proposition 2.16 For any infinite-dimensional irreducible representation m the following two prop-
erties are equivalent:

(i) 7 is not contained in B.
(i) The Kirillov model of 7 is realized in the space S(F*).

A representation satisfying these two conditions will be called absolutely cuspidal.

Lemma 2.16.1 Let m be an infinite-dimensional irreducible representation realized in the Kirillov
form on the space V.. Then Vo = 8(F) is of finite codimension in V.

We recall that V' = V + w(w)Vj. Let V4 be the space of all ¢ in V|, with support in Up. An
element of 7(w) V| may always be written as a linear combination of functions of the form

(T 1))

with ¢ in V; and p in Z. For each character p of Ur let ¢, be the function in V; such that ¢, (€) =
wu(€)vp(e) for € in Up. Then
Pulv,t) = d(vpuro)

and
r(W)Bu(v.t) = SO, 1),

Let 7, = m(w)y,. The space V is spanned by V|, and the functions

(7 5)»

For the moment we take the following two lemmas for granted.
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Lemma 2.16.2 For any character p of ﬁp there is an integer ng and a family of constants \;,
1 <i<p, such that

forn > ng.

Lemma 2.16.3 There is a finite set S of characters of Up such that for v not in S the numbers
Cn(v) are 0 for all but finitely many n.

If 44 is not in S the function 7, is in V. Choose 1 in S and let V), be the space spanned by the

functions
wP 0
Lo 1))

and the functions ¢ in V; satisfying (ae) = ¢(a)u~'(¢) for all @ in F* and all € in Up. It will be
enough to show that V,, /V,, NV} is finite-dimensional.

If pis in V}, then @(v,t) = 0 unless v = p and we may identify ¢ with the sequence {©, (1)}
The elements of V,, NV} are the elements corresponding to sequences with only finitely many nonzero
terms. Referring to Proposition 2.10 we see that all of the sequences satisfying the recursion relation

Bul) = 3" NaPcila)

for n > ny. The integer n, depends on .
Lemma 2.16.1 is therefore a consequence of the following elementary lemma whose proof we
postpone to Paragraph 8.

Lemma2.16.4 Let \;, 1 < i < p, be p complex numbers. Let A be the space of all sequences {a},
n € Z for which there exist two integers ny and ny such that

an = E )\ian—i

1<i<p

form > ny and such that a, =0 forn < ng. Let Ag be the space of all sequences with only a finite
number of nonzero terms. Then A/Ay is finite-dimensional.

We now prove Lemma 2.16.2. According to Proposition 2.11

S o v @ (0 B, 5P) Cra(0)

is equal to
2610(=1)dnp + (@] = 1) 7 25" Coce () Cpm1=e(P) = Y 20" Crotr () G (D).
—2—¢

Remember that p~ is the largest ideal on which 1/ is trivial. Suppose first that v = v.



Chapter 1 35

Take p = —¢and n > —/(. Then 6(n — p) = 0 and

-1 -1

n(o~ v, @ n(o =) = 0

unless 0 = v. Hence

Cre(v) = (Jw| = 1) 2 Crum1— o () Cap—a ( Z 2o Cnr(V)Copirn (V)

—2—/

which, since almost all of the coefficients C_y () in the sum are zero, is the relation required.
If v # Utake p > —f and n > p. Then (o~ 'v,@") = 0 unless 0 = v and (o~ 'v,wP) = 0
unless o = v. Thus

(Jo| - 1)_1Zg+10n—1—£( )Cp—1—e(V ZZO ntr (V) Cptr(V) = 0. (2.16.5)

There is certainly at least one ¢ for which C;(7) # 0. Take p — 1 — ¢ > i. Then from (2.16.5) we deduce
a relation of the form

n+7‘ Z )\ Cn—H' z

where r is a fixed integer and 7 is any integer greater than p.
Lemma 2.16.3 is a consequence of the following more precise lemma. If p” is the conductor of a
character p we refer to m as the order of p.

Lemma 2.16.6 Let mg be of the order vy and let my be an integer greater than mg. Write vy in any
manner in the form vy = V1_11/2_1 where the orders of v1 and vy are strictly less than my. If the

order m of p is large enough

-1 —m—/

_ —m—e N p@ )
Com—oe(p) = v5p(=1)zg™*

2 2 (IO) 2 P( ) 0 U(VQP_I,w_m_Z)

and Cp(p) =0 if p # —2m — 2.

Suppose the order of p is at least m;. Then privy = pu; ' is still of order m. Applying
Proposition 2.11 we see that

> 0o v, @ (o™ p, @) Cr om0 (0)

is equal to
n(ul_lp_lyo_la w_m_z)z(q)n—i_zylpyo(_I)Cn—m—ﬁ(y)cp—m—ﬂ(p)

for all integers n and p. Choose n such that C,, (1) # 0. Assume also that m + n + ¢ > —{ or that
m > —20 —n. Then n(o~ vy, @™ +) = 0 unless ¢ = v so that

Nyt p, T Cptngama2e(v1) = n(vep™ @™ 20 v prg (= 1) Cr (1) Gy ().
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Since v ! pis still of order m the left side is zero unless p = —2m — 2(. The only term on the right side
that can vanish is Cp,(p). On the other hand if p = —2m — 2¢ we can cancel the terms C,, (v1) from both
side to obtain the relation of the lemma.

Apart from Lemma 2.16.4 the proof of Lemma 2.16.1 is complete. We have now to discuss its
consequences. If w; and wsy are two quasi-characters of F'* let B(wy,ws) be the space of all functions
¢ on G'r which satisfy

(i) Forall gin Gp, a1, as in F*,and z in I
g

@ <<aol z> 9) = wi(a1)wa(az)

(ii) There is an open subgroup U of GL(2, OF) such that ¢(gu) = ¢(g) forall win U.
Since

ax

o ©(g)-

Gr = Np Ap GL(2,0F)

where Ap is the group of diagonal matrices the elements of B(w;,ws) are determined by their restric-
tions to GL(2, OF) and the second condition is tantamount to the condition that ¢ be locally constant.
B(w1,ws) is invariant under right translations by elements of G so that we have a representation
p(wi,ws) of G on B(wy,ws). It is admissible.

Proposition 2.17 If 7 is an infinite-dimensional irreducible representation of Gp which is not abso-
lutely cuspidal then for some choice of u1 and ug it is contained in p(py, fi2).

We take 7 in the Kirillov form. Since Vj is invariant under the group Pr the representation 7
defines a representation o of Pr on the finite-dimensional space V/Vj. It is clear that o is trivial on
Np and that the kernel of o is open. The contragredient representation has the same properties. Since
Pr /N is abelian there is a nonzero linear form L on V/V} such that

) (( mor )) L = i (o) Haa)

for all a1, as, and z. p; and po are homomorphisms of F'* into C* which are necessarily continuous.
L may be regarded as a linear form on V. Then

c(= (% 5))¢) = mlamstai.

If pisin V let Ay be the function
Ap(g) = L(n(g)¢)

on Gp. Ais clearly an injection of V' into B(u1, p2) which commutes with the action of G .

Before passing to the next theorem we make a few simple remarks. Suppose 7 is an infinite-
dimensional irreducible representation of G and w is a quasi-character of F'*. It is clear that W (w ®
7, 1)) consists of the functions

g — W(g)w(detg)

with W on W (m, ). If V is the space of the Kirillov model of 7 the space of the Kirillov model of w @ 7
consists of the functions a — ¢ (a)w(a) with ¢ in V. To see this take 7 in the Kirillov form and observe
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first of all that the map A : ¢ — ¢w is an isomorphism of V' with another space V' on which G acts
by means of the representation 7’ = A(w @ m) A~ If

a oz
/(5 7)
belongs to By and ¢’ = ¢pw then

' (b)¢'(a) = w(a){w(a)y(ax)p(aa)} = (azx)¢’ (aa)

so that 7' (b)¢’ = &, (b)¢’. By definition then 7’ is the Kirillov model of w ® 7. Let w; be the restriction
of wto Up and let z; = w(w). If ¢’ = pw then

~/

o (v,t) = p(vwy, z1t).

Thus

7' (W) (v, t) = T(w)P(vwr, 21t) = Clvwr, 1) Pv  wi w2 tey ).

The right side is equal to

C(vwy, 1)@ (v g twit 29 te 2t h)

so that when we replace 7 by w ® 7 we replace C(v,t) by C(vwy, z1t).
Suppose ¢/ (x) = 1 (bx) with b in F* is another non-trivial additive character. Then W (7, )

consists of the functions
, - b 0
with Win W (mr, ).

The last identity of the following theorem is referred to as the local functional equation. It is the
starting point of our approach to the Hecke theory.

Theorem 2.18 Let m be an irreducible infinite-dimensional admissible representation of Gp.
(1) If w is the quasi-character of Gp defined by

then the contragredient representation 7 is equivalent to w™' @ .

(ii) There is a real number so such that for all g in Gg and all W in W (m, 1)) the integrals

/ w(( O)g) a2 d%a = (g, 5, W)
o 0 1

[ (2 0)o) e am

converge absolutely for Res > sg.

(iii) There is a unique Euler factor L(s,m) with the following property: if

U(g,s,W) = L(s,m)®(g,s, W)
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then ®(g,s, W) is a holomorphic function of s for all g and all W and there is at least one
W in W(m, ) such that
d(e,s, W) =a’

where a s a positive constant.

(iv) If _ 5
U(g,s,W) = L(s,7)®(g,5 W)

there is a unique factor e(s,m, 1) which, as a function of s, is an exponential such that

d <<_01 é) g,1 —S,W> = e(s,m,0)D(g,s, W)

for all g in Gg and all W in W ().

To say that L(s, ) is an Euler product is to say that L(s,7) = P~!(¢*) where P is a polynomial
with constant term 1 and ¢ = || is the number of elements in the residue field. If L(s,7) and
L'(s, ) were two Euler factors satisfying the conditions of the lemma their quotient would be an entire
function with no zero. This clearly implies uniqueness.

If ¢ is replaced by v where ¢’(z) = 1 (bx) the functions W are replaced by the functions W’

with
W'(g) =W <<8 ?) g)
and
U(g,s, W) = [b]'/**U(g, 5, W)
while

U(g,s,W') = [b]'/* " w(b)¥(g, 5, W),
Thus L(s, ) will not depend on . However
e(s,m, ") = w(d) [p[** (s, 7, 9)).
According to the first part of the theorem if W belongs to W (7, 1) the function
W(g) = W(g)w™" (detg)

is in W (7, ). Itis clear that
U(g,5, W) =w(detg)¥(g,s, W)

so that if the third part of the theorem is valid when 7 is replaced by 7 the function &)(g, s,W)isa
holomorphic function of s. Combining the functional equation for 7 and for 7 one sees that

e(s,m)e(l —s,m, 1) = w(—1).

Let V be the space on which the Kirillov model of 7 acts. For every W in W (w,)) there is a

unique ¢ in V such that
a 0
v (i 0) =
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If 7 is itself the canonical model

sty =w (5 1) w)
e (%0

If x is any quasi-character of F'* we set

where

200 = [ @
FX
if the integral converges. If g is the restriction of x to Ur then

$(x) = &(xo0, x(@))-
Thus if af is the quasi-character ap (x) = || and the appropriate integrals converge
Ule,s, W) = Blaf %) = B(1,q/*7)
(e, s, W) = Plo M) = Bl 55 1 2)

if 1 is the restriction of w to Up and zp = w(y). Thus if the theorem is valid the series p(1,¢) and
oy ! t) have positive radii of convergence and define functions which are meromorphic in the whole
t-plane.
It is also clear that
U(w,1 -5, W) = m(w)p(vy*, 25 ¢~ 1?).

If ¢ belongs to Vj then
w(w)@(vg 25 a7V = Clg t g a7 A B(1L ¢ Y.

Choosing ¢ in V; such that $(1,¢) = 1 we see that C(1; !, t) is convergent in some disc and has an
analytic continuation to a function meromorphic in the whole plane.
Comparing the relation

11 12 s —1 _—1/2 _1/2 s\~ _s
T(w)vg 25 a0 = Clvg 2 P 20031, 420 )
with the functional equation we see that

L(1 — s,m)e(s, m, 1)
L(s,m)

Clvyt 2 g V2¢%) = . (2.18.1)

Replacing 7 by x ® ™ we obtain the formula

L(1—s,x ' @m)e(s,x @T,¢)
L(s,x®m) .

C(V()_IX()_la Zo—lzl—lq—l/2qs) —

Appealing to Proposition 2.15 we obtain the following corollary.
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Corollary 2.19 Let w and @' be two irreducible infinite-dimensional representations of Gp. Assume
that the quasi-characters w and w' defined by

() R R

are equal. Then m and ©' are equivalent if and only if

L -s,x '@mes,x@m¥) L —sx'@7)e(s,x®7',9)

L(s,x ®m) L(s,x ® ')

for all quasi-characters.

We begin the proof of the first part of the theorem. If ¢; and ¢ are numerical functions on F'*
we set

(p1,p2) = /@1(a)<p2(—a)dxa.

The Haar measure is the one which assigns the measure 1 to Up. If one of the functions is in §(F'*)
and the other is locally constant the integral is certainly defined. By the Plancherel theorem for Up

(e ) =) v(=1)Ga)Z,(v1).

The sum is in reality finite. It is easy to se that if b belongs to B

(o (D), € ())) = (0, ")

Suppose T is given in the Kirillov form and acts on V. Let 7/, the Kirillov model of w™! @ T,
act on V. To prove part (i) we have only to construct an invariant non-degenerate bilinear form 3 on
V x V' If ¢ belongs to Vj and ¢’ belongs to V"’ or if ¢ belongs to V and ¢’ belongs to V{j we set

Blp,¢") = (w0, ¢').

If ¢ and ¢’ are arbitrary vectors in V and V' we may write ¢ = @1 + m(w)p2 and ¢’ = @1 + 7' (w)ph
with ¢, 2 in Vj and ¢}, ¢} in V. We want to set

B, ") = (p1,91) + (01, 7 (0)py) + (T(w)pa, p1) + (P2, h).

The second part of the next lemma shows that 3 is well defined.

Lemma2.19.1 Let ¢ and ¢’ belong to Vi and V{ respectively. Then
(i)
(m(w)e,¢') = vo(=1){p, 7' (w)¢")

(i) If either m(w)yp belongs to Vo or w'(w)¢’ belongs to V| then

(m(w)p, 7' (w)g") = (¢, ¢).
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The relation

T(w)@(v,t) =Y "> Crip()Pp(v 15 )z "

implies that
(r(w)p. ') = 3 U=1)Crurp ()30 15 )2 B0 ). (219.2)

n?p?”

Replacing 7 by 7/ replaces w by w™!, vy by 15 ', 20 by 25 !, and C(v, ) by C(vvi ', 25 't). Thus

(p,m(w)e') = Y v(=1)Crip(rrg 2o "Gy (v 0)Pu(v ™). (2.19.3)

n,p,v

Replacing v by vy in (2.19.3) and comparing with (2.19.2) we obtain the first part of the lemma.
Because of the symmetry it will be enough to consider the second part when 7(w)¢ belongs to
Vo. By the first part

(m(w)p, 7' (w)e') = vo(=1){m*(w)e,¢") = (¢, ¢").
It follows immediately from the lemma that

Br(w)p, ' (w)¢') = Ble, ¢')
so that to establish the invariance of 3 we need only show that
B(r(p)p, 7' (p)¢") = B, ¢')
for all triangular matrices p. If ¢ is in Vj or ¢’ is in V{ this is clear. We need only verify it for ¢ in

m(w)Vy and ¢’ in 7’ (w)V{.
If isin Vj, ¢’ isin Vj and p is diagonal then

Br)m(w)p, ' (p)n' (w)¢) = Br(w)m(pr)e, 7' (w)n' (p1)¢")
where p; = w™!pw is also diagonal. The right side is equal to
B(r(p1)e, @ (p1)¢) = Bl ¢') = B(r(w)e, ' (w)p').

Finally we have to show that*

(6 Dor (D)) mer

forall zin F'and all p and ¢'. Let ¢;, 1 < i < r, generate V modulo V; and let (p;», 1 < j <1/, generate
V' modulo V. There certainly is an ideal a of F’ such that

(3 D)omr

* The tags on Equations 2.19.2 and 2.19.3 have inadvertently been repeated.




Chapter 1 42

and

for all 7 and j if x belongs to a. Then

(o Yo (s 1)) =

Since 2.19.2 is valid if z is in a and ¢ is in Vj or ¢’ is in V] it is valid for all ¢ and ¢’ provided that z is
in a. Any y in F' may be written as ax with a in /' and x in a. Then

1 y\ _ (a O 1 =z a”l 0
0 1) \0 1 0 1 0 1
and it follows readily that
(G D)= (o 1))e) =

Since (3 is invariant and not identically zero it is non-degenerate. The rest of the theorem will now
be proved for absolutely cuspidal representations. The remaining representations will be considered
in the next chapter. We observe that since W (m, ¢) is invariant under right translations the assertions
need only be established when g is the identity matrix e.

If 7 is absolutely cuspidal then V = Vy = 8(F*) and W ((§ %)
compact support. Therefore the integrals defining ¥ (e, s, W) and U(e, s W) are absolutely convergent
for all values of s and the two functions are entire. We may take L(s,7) = 1. If ¢ is taken to be the
characteristic function of U then ®(e,s, W) = 1.

Referring to the discussion preceding Corollary 2.19 we see that if we take

) = ¢(a) is locally constant with

e(s,m ) = Clug 'y 25 ' %")

the local functional equation of part (iv) will be satisfied. It remains to show that €(s, 7, ) is an
exponential function or, what is at least ast strong, to show that, for all v, C(v,t) is a multiple of a
power of t. It is a finite linear combination of powers of ¢ and if it is not of the form indicated it has a
zero at some point different form 0. C(vy; !, 29 ;1t™1) is also a linear combination of powers of ¢ and
so cannot have a pole except at zero. To show that C'(v, t) has the required form we have only to show
that

Cw,t)C(w 1yt 25 ™) = np(—1). (2.19.3)

Choose ¢ in Vj and set ¢’ = w(w)p. We may suppose that ¢’(v,t) # 0. The identity is obtained by
combining the two relations

P (v,t) =C,t)p(vtyy b 25ttt

and

vo(-1)@(w g ) = C(v™ g ) E (v, 25 1171,

We close this paragraph with a number of facts about absolutely cuspidal representations which
will be useful later.
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Proposition 2.20 Let m be an absolutely cuspidal representation of Gp. If the quasi-character w

defined by
(s 2) -

1$ actually a character then w is unitary.

As usual we take 7 and 7 in the Kirillov form. We have to establish the existence of a positive-

definite invariant hermitian form on V. We show first that if ¢ belongs to V' and ¢ belongs to V' then
there is a compact set (2 in G such that if
acF }

w={(3 %)

the support of (7(g)p, ¥), a function of g, is contained in Zp(). If Ap is the group of diagonal matrices
Gr = GL(2,0F) Ar GL(2,0p). Since ¢ and @ are both invariant under subgroups of finite index in
GL(2,0p) it is enough to show that the function (7(b)y, ) on Ap has support in a set Zp) with
compact. Since

7 (5 2)1) 00 @@

it is enough to show that the function
a O -
(m <<0 1)) ©, @)

has compact support in F'*. This matrix element is equal to

| elan)z-oyda

Since ¢ and ¢ are functions with compact support the result is clear.
Choose gy # 0in V and set

(1, 02) = /Z ) BTG B dy

This is a positive invariant hermitian form on V.
We have incidentally shown that 7 is square-integrable. Observe that even if the absolutely
cuspidal representation 7 is not unitary one can choose a quasi-character x such that x ® 7 is unitary.

If 7 is unitary there is a conjugate linear map A : V' — V defined by

(p1,p2) = (p1, Apa).
Clearly A&, (b) = &, (b)A for all bin Bp. The map Aj defined by

Aop(a) =p(—a)

has the same properties. We claim that
A= AAy

with A in C*. To see this we have only to apply the following lemma to Ay ' A.
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Lemma 2.21.1. Let T be a linear operator on 8(F™) which commutes with &;(b) for all b in Bp.
Then T' is a scalar.

Since &, is irreducible it will be enough to show that 7" has an eigenvector. Let p~* be the largest
ideal on which v is trivial. Let iz be a non-trivial charcter of Ur and let p™ be its conductor. T commutes

with the operator
_ 0 1 w
=], on (6 1) (o 70 7))
. @& llo 1)o 1

and it leaves the range of the restriction of S to the functions invariant under U invariant. If ¢ is such
a function

Se(a) = (a) /U () (e de.

The Gaussian sum is 0 unless a lies in Up. Therefore S¢ is equal to (1) times the function which is
zero outside of Ur and equals ;1 on Up. Since T' leaves a one-dimensional space invariant it has an
eigenvector.

Since A = AA( the hermitian form (1, 2) is equal to

A /F e1(@Fa(a) da.

Proposition 2.21.2. Let w be an absolutely cuspidal representation of G for which the quasi-character

w defined by
(6 2)) e

(i) If m is in the Kirillov form the hermitian form

| ez aa

1s a character.

18 tnvariant.
(i) If |z| =1 then |C(v,z)| =1 and if Res = 1/2

(s, m, ¥)| = 1.
Since |zp| = 1 the second relation of part (ii) follows from the first and the relation
e(s,m ) = Clvgt, "=z,
If nisin Z and v is a character of U let

o(ew™) = 6 mr(€)v(e€)

| e@Pda=1

If o' = 7(w)p and C(v,t) = Cy(v)t* then

@' (ew™) = bp—nmCe(v)zg "v " (e).

formin Z and € in Ug. Then

Since |zp| =1
| @l da=1cioP

Applying the first part of the lemma we see that, if |z| = 1, both |C,(v)[? and |C (v, 2)|* = |Co(v)|? |2|*
are 1.
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Proposition 2.22. Let w be an irreducible representation of Gp. It is absolutely cuspidal if and only
if for every vector v there is an ideal a in F such that

[r((3 1)

It is clear that the condition cannot be satisfied by a finite dimensional representation. Suppose
that 7 is infinite dimensional and in the Kirillov form. If ¢ is in V' then

(4 1)

4(a) / blaw) do =0

if and only if

for all a. If this is so the character x — 1 (ax) must be non-trivial on a for all a in the support of ¢. This
happens if and only if ¢ is in §(F*). The proposition follows.

Proposition 2.23. Let m be an absolutely cuspidal representation and assume the largest ideal on
which v is trivial is Op. Then, for all characters v, Cp,(v) =0 if n > —1.

Take a character v and choose n; such that Cy,, (v) # 0. Then C,,(v) = 0 for n # ny. If
U= 1/_11/0_ ! then, as we have seen,

C,t)C([@,t 25 ") = wo(—1)

so that
Cn(v)=0

for n # ny and
Cnl (V)Cnl (ﬁ) = VO(_l)Zgl :

In the second part of Proposition 2.11 take n = p = n; + 1 to obtain

Y on(e @™ (o r, @™ ) oy 2(0) = 25 o (—1) + ([ = 1) 20Cn, () Co, (7).

The right side is equal to

20 g (—1) - =

@ -1

Assumen; > —1. Then (o~ v, @™ *1)isOunless 0 = v and n(oc ™17, w™ 1) is 0 unless o = v. Thus
the left side is 0 unless v = v. However if v = v the left side equals Cs,,, +2(v). Since this cannot be
zero 2n; + 2 must be equal n; so that ny = —2. This is a contradiction.
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§3. The principal series for non-archimedean fields. In order to complete the discussion of the previous
pragraph we have to consider representations which are not absolutely cuspidal. This we shall now
do. We recall that if iy, ps is a pair of quasi-characters of F'* the space B (1, p2) consists of all locally
constant functions f on G'r which satisfy

1/2

f(9) (3.1)

a

f ((%1 CZ)Q) = pa(a1)pz(az) al

2

forall gin G, a1, as, in F*, and z in F. p(u1, pe) is the representation of G on B (1, pt2).
Because of the Iwasawa decomposition Gp = PrGL(2,0F) the functions in B(u1, u12) are
determined by their restrictions to GL(2, Or). The restriction can be any locally constant function on

GL(2,0p) satisfying
F((% 2)s) = mlawataro

a2

forall gin GL(2,0F), a1, a2 in Up, and 2 in Op. If U is an open subgroup of GL(2, O ) the restriction
of any function invariant under U is a function on GL(2,Op)/U which is a finite set. Thus the space
of all such functions is finite dimensional and as observed before p(fi1, i2) is admissible.

Let J be the space of continuous functions f on G'r which satisfy

(% 2)0)-
/2 —1/2

forall gin Gp, a1, az in F*, and = in F'. We observe that J contains B(a /", ar'"). G acts on J.
The Haar measure on G if suitably normalized satisfies

f<g>dg=/ / /

Gr Np JAR GL(Q,OF)
o a1 0
a@= < 0 a2> ’

/ (k) dk
GL(2,0F)

is a G p-invariant linear form on J. There is also a positive constant c such that

GFf(g)dg:c/NF/AF/NF _1f<na<_01 (1))”1>dndadnl,
/GL(ZOF)J”(k)dk_c/Ff((_Ol é) <é f)) .

If 1 belongs to B(p1, u12) and @y belongs to B(uy !, 5 ') then o1 belongs to F and we set

ai

—| f(9)

ag

-1

f(nak) dn dadk

ax
ag

if

It follows easily from this that

ax
ag

Consequently

(p1,902) = / v1(k) pa(k) dk.
GL(2,0r)
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Clearly
(p(9)e1,p(9)p2) = (P1,92)

so that this bilinear form is invariant. Since both ¢; and ¢» are determined by their restrictions to
GL(2,0r) itis also non-degenerate. Thus p(u ', it5 ) is equivalent to the contragredient of p(1, 2 ).

In Proposition 1.6 we introduced a representation r of G’ and then we introduced a representa-
tion ro = 7, ., Both representations acted on S(F?). If

3 (a,b) = /F B(a, y)i(by) dy

is the partial Fourier transform
[r(9)®]” = n(g)®~ (3.1.1)
and
P e (9) = pa (detg) |detg|'/?r(g). (3.1.2)

We also introduced the integral

Ol i) = [ (s (et ¢

and we set
Wa(g) = 0(p1, p23 Ty 112 (9) D). (3.1.3)

The space of functions Wy is denoted W (11, p12; ).
If w is a quasi-character of F'* and if |w(w)| = |w|® with s > 0 the integral

z2(w, @) = /FX (0, t)w(t) d*t

is defined for all ® in $(F?). In particular if |1 (w)p; * ()| = |@|® with s > —1 we can consider the
function

fa(g) = m(detg) |detg|'*z(armpy ', p(9)®)
on Gp. Recall that ap(a) = |al|. Clearly
p(h)fs = fu (3.1.4)
if
U =y (deth) |deth|' /2 p(h)®.
We claim that fg belongs to B(ju1, p2). Since the stabilizer of every ® under the representation

g — 1 (detg) |detg|'/2p(g) is an open subgroup of G the functions fg are locally constant. Since the
space of functions fg is invariant under right translations we need verify (3.1) only for g = e.

(3 2)=<lmtns((3 2))e)mmes

By definition the right side is equal to

pr(ana)laras]? [ (O (01 2(0,a2t) 4t

Changing variables we obtain

1/2
as /“1(t)ﬂz_l(t) |t| ®(0,¢) d*t.

The integral is equal to fs(e). Hence our assertion.

pa(a1) pz(az)
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Proposition 3.2. Assume |u1(w)uy (@)| = |@|® with s > —1.

(i) There is a linear transformation A of W (1, p2; ) into By, uz) which for all ® in §(F?),
sends We to fg~.

(ii) A is bijective and commutes with right translations.

To establish the first part of the proposition we have to show that fg~ is 0 if Wg is. Since

NrAp < _01 é) N is a dense subset of G this will be a consequence of the following lemma.

Lemma3.2.1. If the assumptions of the proposition are satisfied then, for all ® in 8(F?), the function

1s tntegrable with respect to the additive Haar measure on F' and

[we((5 )t @la2onaa= s (7 5 (5 7))

By definition
(42 D) S

while
wa (5 1)) st @2 = @@ [ @t @ 0ae (22
After a change of variable the right side becomes
[ ot o0 @t
Computing formally we see that

Jwe (5 9)) " @1al 2 (a) da

is equal to

[vta{ [ otatmon waeh dai= [ o { [ oot do} e

which in turn equals

/FX pa (gt (2) [1] {/Fi)(t,a)w(axt) da} d*t = /F (¢, 2t)py (g () |t ¥t
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Our computation will be justified and the lemma proved if we show that the integral

/F>< /F |(t,at™ ) (1) d*t da

/ / D (t, a)| [E*+ d*tda
F*X JF

which is finite because s is greater than —1.

To show that A is surjective we show that every function f in B(ju, u2) is of the form fg for
some ® in §(F?). Given f let ®(z,y) be 0 if (z,y) is not of the form (0, 1)g for some g in GL(2,Or)
but if (2, ) is of this form let ®(z,y) = u; *(detg)f(g). It is easy to see that ® is well-defined and
belongs to §(F2). To show that f = f¢ we need only show that f(g) = fe(g) for all g in GL(2,OF).
If g belongs to GL(2,0F) then ®((0,t)g) = 0 unless ¢ belongs to Up so that

is convergent. It equals

fa(g) = o (detg) / B((0, £)g)n (£)y13(8) dt.

Up

Since
©((0,0)9) = w0z @eta) (7)) = Owalodns @) o)

the required equality follows.
Formulae (3.1.2) to (3.1.4) show that A commutes with right translations. Thus to show that A is
injective we have to show that W (e) = 0if f ~is 0. It follows from the previous lemma that

(5 7))

is zero for almost all a if f,~is 0. Since Wg ((g ?)) is a locally constant function on F'* it must

vanish everywhere.
We have incidentally proved the following lemma.

Lemma 3.2.3 Suppose |1 (w)py (w)| = |@|® with s > —1 and W belongs to W (u1, juo; ). If
a 0
{6 1)

Theorem 3.3 Let 1 and po be two quasi-characters of F*.

for all a in F* then W is 0.

(i) If neither pipuy ' nor py o is ap the representations p(py, p2) and p(pa, p2) are equivalent
and irreducible.

(i) If ulugl = ap write py = Xa};p, o = Xa;}/Q. Then B(u1, u2) contains a unique proper
invariant subspace Bg(p1, o) which is irreducible. B(usg, p1) also contains a unique proper
invariant subspace B¢(pg, p1). It is one-dimensional and contains the function x(detg).
Moreover the Gp-modules Bg(p1,p12) and B(psz, p11)/Bs(pe, 1) are equivalent as are the
modules B(p1, pi2)/Bs(pr, p2) and By (pz, pa).

We start with a simple lemma.
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Lemma 3.3.1 Suppose there is a non-zero function f in B(u1, pe) invariant under right translations

1/ 1/2

by elements of Np. Then there is a quasi-character x such that p1, = xop ® and po = xop~ and

f is a multiple of x.

Since NpAp ((1) _01 )N r is an open subset of G the function f is determined by its value at

((1) _01 ) Thus if ;1 and po have the indicated form it must be a multiple of x.
If ¢ belongs to F'* then

(e )=(0 D)6 )

Thus if f exists and w = ugufla}1

(e ) =eor((T )

Since f is locally constant there is an ideal a in F' such that w is constant on a — {0}. It follows
immediately that w is identically 1 and that ;+; and ps have the desired form.
The next lemma is the key to the theorem.

Lemma 3.3.2. If |p1p2(w)| = |w|® with s > —1 there is a minimal non-zero invariant subspace X
of B(p1, p2). For all f in B(uy,pe) and all n in Np the difference f — p(n)f belongs to X.

By Proposition 3.2 it is enough to prove the lemma when B(ui,p2) is replaced by
W (1, pro;1). Associate to each function W in W (p1, p2; 1) a function

w3 )

on F'*. If ¢ is 0 so is W. We may regard m = p(p1, f12) as acting on the space V' of such functions. If b
isin B
m(b)e = &y (b)p.

Appealing to (3.2.2) we see that every function ¢ in V has its support in a set of the form
{a€ F*||a] <c}

where ¢ = ¢(y) is a constant. As in the second paragraph the difference ¢ — w(n)p = ¢ — &y (n)p is
in §(F*) for all n in Np. Thus V N 8(F*) is not 0. Since the representation &, of Bp on §(F*) is
irreducible, V and every non-trivial invariant subspace of V' contains 8(F*). Taking the intersection
of all such spaces we obtain the subspace of the lemma.

We first prove the theorem assuming that |1 (@), ()| = |w|® with s > —1. We have
defined a non-degenerate pairing between B (111, t12) and B(pu; ', 3y '). All elements of the orthogonal
complement of X are invariant under Ng. Thusif p; p5 Lisnot a the orthogonal complement is 0 and
X is B(ju1, j12) so that the representation is irreducible. The contragredient representation p(u; *, 5 )
is also irreducible.

If ulugl = ap we write u; = Xal/z, Lo = Xa;1/2. In this case X is the space of the functions
orthogonal to the function x ™ in B(uy ",y '). We set By(ji1, pt2) = X and we let By(u', ;') be

the space of scalar multiples of x~!. The representation of G on B(u1, ui2) is irreducible. Since
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Bs(p1, p2) is of codimension one it is the only proper invariant subspace of B(y1, p2). Therefore
Br(uy', puy ") is the only proper invariant subspace of B(uy ", 115 ").

If |11 (@) py (@) | = |@|® then |uy () pa(w)| = |w|~* and either s > —1 or —s > —1. Thus if
ul_l,ug is neither aup nor oz~ the representation ™ = p(fu1, p11) is irreducible. If w = pu1 o then

so that 7 is equivalent to w @ 7 or tow @ p(uy ', py *). Ttis easily seen that w @ p(py ', 5 ') is equivalent
to plwpy Hwpy t) = plpz, pa).

If pipg ' = ap and 7 is the restriction of p to By(u1, ) then 7 is the representation on
Bluy "t uy ') /By(uyt, uyt) defined by p(uy*, uy'). Thus 7 is equivalent to the tensor product of

w = p1p2 and this representation. The tensor product is of course equivalent to the representation on

B(po, p1)/By(pa, pr). If pg = on}w/2 and po = Xa;1/2 the representations on B (y1, pt2)/Bs(p1, p2)

and B ¢(p2, pt1) are both equivalent to the representations g — x(detg).
The space W (1, pi2; 1) has been defined for all pairs pi1, fia.

Proposition 3.4 (i) For all pairs p1, po

W (a1, pa2; w) = W(M27,u1; 1/1)

(i) In particular if pips " # a}l the representation of Ggp on W(u1,ua; ¥) is equivalent to
p(Hs ph2)-

If @ is a function on F'? define ®* by
o (z,y) = (y, ).
To prove the proposition we show that, if @ is in S(F?),
1 (detg) [detg|'/20 (1, po; 7(g)®*) = pa(detg) |detg|'/0 (ua, pu1; 7(9)®).

If g is the identity this relation follows upon inspection of the definition of 6( 11, j2; ®*). Itis also easily
seen that

r(g9)®" = [r(g)®]"
if gis in SL(2, F') so that it is enough to prove the identity for

(5 7).

pa(a) [ (et t a0 () 4t = pafa) [ Blat.t stz (0 a7

It reduces to

The left side equals
(@) [ (e a6 4t

which, after changing the variable of integration, one sees is equal to the right side.



Chapter 1 52

If 115 is not ap or a! so that p(uy, po) is irreducible we let 7(p1, ji2) be any representation
in the class of p(p1, pi2). If p(p1, o) is reducible it has two constituents one finite dimensional and one
infinite dimensional. A representation in the class of the first will be called 7(u1, pi2). A representation
in the class of the second will be called o (111, f12). Any irreducible representation which is not absolutely
cuspidal is either a 7(u1, p12) or a o(pu1, pi2). The representations o(p1, p2) which are defined only for
certain values of j1; and p9 are called special representations.

Before proceeding to the proof of Theorem 2.18 for representations which are not absolutely
cuspidal we introduce some notation. If w is an unramified quasi-character of F'* the associated

L-function is 1

K T e

It is independent of the choice of the generator w of p. If w is ramified L(s,w) = 1. If ¢ belongs to
S(F) the integral

Zwao) = [ pla)la) ol a*a
is absolutely convergent in some half-plane Re s > sy and the quotient

Z(wap, ¢)
L(s,w)

can be analytically continued to a function holomorphic in the whole complex plane. Moreover for a
suitable choice of ¢ the quotient is 1. If w is unramified and

/ d*a=0
Ur

one could take the characteristic function of Op. There is a factor (s, w, 1)) which, for a given w and
1), is of the form ab® so that if ¢ is the Fourier transform of ¢

Z(w a5, P)
L(1-s,w™1)

Z(was, ¢)

=e(s,w, ) L(s.2)

If w is unramified and Op is the largest ideal on which ) is trivial £(s,w,9) = 1.

Proposition 3.5 Suppose p1 and po are two quasi-characters of F* such that neither ul_l,ug nor
papyt is ap and T is w(p1, o). Then

W(m, ) = W (1, p2; )

and if
L(S,W) = L(S,/J,l)L(S,,U,Q)
L(s, ) = L(s,p7 ") L(s, 413 ")
5(8’7777/}) = E(Saulaw)e(sau%w)

all assertions of Theorem 2.18 are valid. In particular if |pi(w)| = |w| ™% and |p2(w)| = |w| =52
the integrals defining V(g,s, W) are absolutely convergent if Re s > max{sy,s2}. If p1 and ps are
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unramifed and Op is the largest ideal of F' on which 1 is trivial there is a unique function Wy in
W (m, 1) which is invariant under GL(2,0F) and assumes the value 1 at the identity. If

/ d*a=1
Ur

That W (m, ) = W (p1, pe; 9) is of course a consequence of the previous proposition. As we
observed the various assertions need be established only for g = e. Take ® in §(F?) and let W = Wy
be the corresponding element of W (w, ). Then

()

belongs to the space of the Kirillov model of 7. As we saw in the closing pages of the first paragraph

‘I’(e’&W)—/ W((“ 0>> la]* =2 d%a = §(ay ?)
X 0 1

then ®(e,s, Wy) = 1.

is equal to
Z(p o, p2oip, @)
if the last and therefore all of the integrals are defined.

Also B
U(e,s,W) = Z(py " o, pi gy, @).

Any function in §(F?) is a linear combination of functions of the form

P(z,y) = p1(2)p2(y)-

Since the assertions to be proved are all linear we need only consider the functions ® which are given
as products. Then

Z(Mla%,ma%y@) = Z(M1@8F7<P1)Z(#2048F7<P2)

so that the integral does converge in the indicated region. Moreover

Z(ny o, piy e, ®) = Z 11y 0, 01) Z (11 0, 02)
also converges for Re s sufficiently large. ®(e, s, W) is equal to

Z(af, p1) Z(peay, p2)
L(Saul) L(Sau2)

and is holomorphic in the whole complex plane. We can choose (1 and ¢, so that both factors are 1.

It follows from the Iwasawa decomposition Gp = Pr GL(2,0F) that if both p; and po are
unramified there is a non-zero function on B (1, 12) which is invariant under GL(2, Op) and that it
is unique up to a scalar factor. If the largest ideal on which ) is trivial is O, if ® is the characteristic
function of O%, and if ®f is the partial Fourier transform introduced in Proposition 1.6 then &7 = ®,.
Consequently

Tu1,pe (g)(I)() = (I)O
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forall gin GL(2,0pF). If Wy = Wy, then, since @ is the product of the characteristic function of Op
with itself, ®(e, s, W) = 1if
/ d*a=1.
Ur

The only thing left to prove is the local functional equation. Observe that
&)(w, s, W) = &J(e, 5,,0(w)T/V)7

that if W = W then p(w)W = W, (s, and that r(w)®(z,y) = ®'(y, x) if @’ is the Fourier transform
of ®. Thus if ®(z,y) is a product 1 (z)p2(y)

Z(uy o, 01) Z(p5 ' a%, §a)

&J(w,s,W) = a8 a
L(S7M1 1) L(SaHQl)

The functional equation follows immediately.
If prypy is ap or ot and = m(py, pg) we still set

L(Sa’ﬂ) = L(Saul) L(S?M2)
and

8(87 ™, '(/J) = 5(57 K1, 'l/]) 6(87 K2, w)

Since 7 is equivalent to 7(py ", p5 )
L(s,7) = L(s, uy ") L(s, 3 *).

Theorem 2.18 is not applicable in this case. It has however yet to be proved for the special representa-

tions. Any special representation o is of the form o (1, p12) with g = Xa}/ * and Lo = Xagl/ ®. The

contragredient representation of & is o (y5 *, 17 *). This choice of y1 and s is implicit in the following
proposition.

Proposition 3.6 W (o,1) is the space of functions W = Weg in Wy, po; ¥) for which

/F<1>(x,0) dz = 0.

Theorem 2.18 will be valid if we set L(s,0) = L(s,0) = 1 and e(s,0,v) = &(s, u1, ) (s, p2, )
when x is ramified and we set L(s,0) = L(s, 1), L(s,5) = L(s, 5 ), and

L(l B Saul_l)

e(s,0,9) = e(s, u1,9) e(s, p2, ) L(s, ji2)

when x is unramified.

W (o,1) is of course the subspace of W (i1, p2; 1) corresponding to the space B (fu1, p12) under
the transformation A of Proposition 3.2. If W = Wy then A takes W to the function f = fg~ defined
by

f(9) = z(papz ' ar, p(g)™ ) (detg) |detg| /.
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f belongs to B (p1, p2) if and only if

/ Y (9)f(g)dg = 0.
GL(2,0r)

As we observed this integral is equal to a constant times

fre G D) D) L6 1)
Joronl(3 D))o [{ e

The double integral does converge and equals, apart from a constant factor,

//(I)N(t,tx) It| dt dw = //<1>~(t,x) dt d
/q»(t,()) dt.

We now verify not only the remainder of the theorem but also the following corollary.

which equals

which in turn equals

Corollary 3.7 (i) If m = m(p1, o) then

L(1—-s,0) L(1—s,7)
e(s,0,v) “Lo) (s, m ) I
(ii) The quotient
L(s, )
L(s,0)

is holomorphic
(iii) For all ® such that

/(I)(x,O) de =0

the quotient
Z(“la%’ “205%’ (I))
L(s,0)

is holomorphic and there exists such a ® for which the quotient is one.

The first and second assertions of the corollary are little more than matters of definition. Although
W (1, pr2tp) is not irreducible we may still, for all I in this space, define the integrals

U(g,s,W) = /W ((8 (1)> g> la*~/2 d%q
T(g,s,W) = /W ((0 ?) g) la[*" 2w (a) d*a.

Q
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They may be treated in the same way as the integrals appearing in the proof of Proposition 3.5. In
particular they converge to the right of some vertical line and if W = Wy

Ve, s, W) = Z(u1a%k, poag, ®)
\I’(e,s, W) = Z(Hz_la%vﬂfla%a D).

Moreover
U(g,s, W)
L(s,m)
is a holomorphic function of s and
\11(97 1- 87W) — 8(8 T '(/J)\I/(g75, W)
L(1—s,7) T L(s,m)
Therefore a( W)
4,8,

®(g,s, W) = “L(s,0)
and _

~ U(g,s, W)

®(g,5,W) = TL(s5)

are meromorphic functions of s and satisfy the local functional equation

P(wg,1 —s, W) =e(s,0,¢) ®(g,s,W).

To compete the proof of the theorem we have to show that £(s, o, 1) is an exponential function of
s and we have to verify the third part of the corollary. The first point is taken care of by the observation
that u; ' (@) || = py (@) so that

LA-sph) 1= pa(w)|wf

S = (@) |l
L(s, ji2) 1—pi (@) ||

If  is ramified so that L(s,o) = L(s, m) the quotient part (iii) of the corollary is holomorphic.
Moreover a ® in §(F'?) for which

Z(MlasFaM2asF7 (I)) = L(870) =1

can be so chosen that
®(ex,ny) = x(en)®(z,y)

for € and 7 in Up. Then
/ ®(x,0)dx = 0.
F

Now take x unramified so that x(a) = |a|” for some complex number . We have to show that if

/F<I>(x,0) da = 0
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then
Z(Mla%, M2a8F7 (p)
L(87 /J'l)

is a holomorphic function of s. Replacing s by s — r + 1/2 we see that it is enough to show that

(1=l [[ @) ot ol o dy

is a holomorphic function of s. Without any hypothesis on ® the integral converges for Res > 0 and
the product has an analytic continuation whose only poles are at the roots of |@|® = 1. To see that these
poles do not occur we have only to check that there is no pole at s = 0. For a given ® in §(F?) there is
an ideal a such that

O(z,y) = ®(z,0)

for y in a. If o’ is the complement of a

// B(z,y) e |y Az d*y

/ / B(x,y) |2+ |y &z &y
F Ja’

which has no pole at s = 0 and a constant times

{/F<I>(x,0) |x|sd:c} {/a |y|sdxy}

If a = p" the second integral is equal to

is equal to the sum of

o™ (1 = |w|*) ™
If
/ ®(x,0)dr =0
F

the first term, which defines a holomorphic function of s, vanishes at s = 0 and the product has no
pole there.
If g is the characteristic function of O set

O(z,y) = {po(z) — |@| vo(@2) } wo(y).

Then
/ ®(x,0)dr =0
F
and
Z(Mlaiﬁ #204%‘7 (I))
is equal to

{] (aota) = 1ot ) st ol o b { [ uto) o ol 0
The second integral equals L(s, j12) and the first equals

(1= p(@) [@|"™") L(s, 1)
so their product is L(s, u1) = L(s, o).
Theorem 2.18 is now completely proved. The properties of the local L-functions L(s, 7) and the
factors €(s, 7, 1) described in the next proposition will not be used until the paragraph on extraordinary
representations.
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Proposition 3.8 (i) If 7 is an irreducible representation there is an integer m such that if the order
of x is greater than m both L(s,x ® ) and L(s,x ® 7) are 1.
(i) Suppose w1 and wo are two irreducible representations of Gr and that there is a quasi-
character w such that

(s ) () e

Then there is an integer m such that if the order of x is greater than m

5(85X® 7T15¢) = 6(85X®7727w)

(iii) Let w be an irreducible representation and let w be the quasi-character defined by

(5 1)

Write w in any manner as w = uipo. Then if the order of x is sufficiently large in comparison
to the orders of w1 and o

e(s,x @ m,1p) = (s, xp1, ) €(8, xti2, ).

It is enough to treat infinite-dimensional representations because if ¢ = o (1, p2) and 7 =
(1, o) are both defined L(s,x ® 0) = L(s,x ®7), L(s,x ® ) = L(s,x ® 7), and (s, x ® 0,7) =
(s, x ® m, 1) if the order of x is sufficiently large.

If 7 is not absolutely cuspidal the first part of the proposition is a matter of definition. If 7 is
absolutely cuspidal we have shown that L(s,x ® m) = L(s, x ® 7) = 1 for all .

According to the relation (2.18.1)

e(s,x @ m, ) = C’(Vo_lyl_l,zo_lzl_lq_l/Qz_I)

if the order of x is so large that L(s,x ® 7) = L(s,x ! ® @) = 1. Thus to prove the second part we
have only to show that if {C;(v,t)} and {C2 (v, t)} are the series associated to 71 and 75 then

Cy(v,t) = Co(v,t)

if the order of v is sufficiently large. This was proved in Lemma 2.16.6. The third part is also a
consequence of that lemma but we can obtain it by applying the second part to m; = 7 and to
Ty = 71, p2)-

We finish up this paragraph with some results which will be used in the Hecke theory to be
developed in the second chapter.
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Lemma 3.9 The restriction of the irreducible representation m to GL(2,0Fp) contains the trivial
representation if and only if there are two unramified characters uy and ps such that m = 7w(py, p2).

This is clear if 7 is one-dimensional so we may as well suppose that 7 is infinite dimensional.
If 7 = w(p1, o) we may let m = p(uq,p2). It is clear that there is a non-zero vector in B(fu1, 112)
invariant under GL(2, Op) if and only if p; and po are unramified and that if there is such a vector
it is determined up to a scalar factor. If 7 = o(ju1, 12) and p1 /15 = ap we can suppose that 7 is the
restriction of p(1, 12) to Bg(pu1, p2). The vectors in B(uq, p2) invariant under GL(2, Op) clearly do
not lie in B (p1, p2) so that the restriction of 7 to GL(2, O ) does not contain the trivial representation.
All that we have left to do is to show that the restiction of an absolutely cuspidal representation to
GL(2,0p) does not contain the trivial representation.

Suppose the infinite-dimensional irreducible representation 7 is given in the Kirillov form with
respect to an additive character ¢ such that O is the largest ideal on which ) is trivial. Suppose the
non-zero vector ¢ is invariant under GL(2, Op). It is clear that if

then w is unramified, that ¢(v,t) = 0 unless v = 1 is the trivial character, and that ¢ (v, t) has no pole
att = 0. Suppose 7 is absolutely cuspidal so that ¢ belongs to S(F*). Since m(w)¢ = ¢ and the
restriction of w to UF is trivial

A1) = C(1L,8) 31, 27

if z9 = w(w). Since C(1,1) is a constant times a negative power of ¢ the series on the left involves no
negative powers of ¢ and that on the right involves only negative powers. This is a contradiction.

Let }(( be the subalgebra of the Hecke algebra formed by the functions which are invariant under
left and right translations by elements of GL(2, O ). Suppose the irreducible representation 7 acts on
the space X and there is a non-zero vector x in X invariant under GL(2,Op). If f is in H, the vector
7( f)x has the same property and is therefore a multiple A(f)x of z. The map f — A(f) is a non-trivial
homomorphism of }j into the complex numbers.

Lemma 3.10 Suppose m = 7(u1, o) where py and ps are unramified and X is the associated homo-
morphism of Hy into C. There is a constant ¢ such that

) < e /G 1£(9)] dg (3.10.1)

for all f in H if and only if 1z is a character and |p1(w)py *(@)| = |w|® with —1 < s < 1.
Let 7 act on X and let 7 in X be such that (z, ) # 0. Replacing # by

/ w(g)zT dg
GL(2,0F)

if necessary we may suppose that 7 is invariant under GL(2, Or). We may also assume that (z,7) = 1.
If n(g) = (7(g)x, ) then

() n(g) = /G n(gh) £ (h) dh
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for all f in Hy. In particular

A(f) = /G n(h) f(h) dh.

If [n(h)| < c for all h the inequality (3.10.1) is certainly valid. Conversely, since 7 is invariant under
left and right translations by GL(2,Op) we can, if the inequality holds, apply it to the characteristic
functions of double cosets of this group to see that (k)| < ¢ for all h. Since

o((5 0)n) = m@sate am)

the function 7 is bounded only if ji1 /12 is a character as we now assume it to be. The finite dimensional
representations take care of themselves so we now assume 7 is infinite-dimensional.

Since 7 and 7 are irreducible the function (7 (g)z, ) is bounded for a given pair of non-zero
vectors if and only if it is bounded for all pairs. Since Gr = GL(2,0r) Ap GL(2,0p) and 12 is a
character these functions are bounded if and only if the functions

(s %)

are bounded on F'*. Take 7 and 7 in the Kirillov form. If p isin V and @ is in V then

@ ((5 1)) wrwa

wwa (5 9)ed =m@m@ < (% 1)) wes>

Thus 71(g) is bounded if and only if the functions

(3 3

are bounded for all pin V and all ¢ in S(F'*).

It is not necessary to consider all ¢ in §(F'*) but only a set which together with its translates by
the diagonal matrices spans §(£'*). If y is a character of Ur let ¢, be the function on F** which is 0
outside of Ur and equals p on Up. It will be sufficient to consider the functions ¢ = ¢,, and all we

need show is that
w™ 0
(m << 0 1 )) 5 Pu) (3.10.2)

is a bounded function of n for all i and all ¢. The expression (3.10.2) is equal to @, (x). If ¢ belongs
to S(F) the sequence {®, (1)} has only finitely many non-zero terms and there is no problem. If
» = m(w)ypo then

is equal to

> Gu(w)t™ = C(u,t)n(t)
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where 7(t) depends on ¢( and is an arbitrary finite Laurent series. We conclude that (3.10.1) is valid if
and only if ju1 p12 is a character and the coefficients of the Laurent series C'(p, t) are bounded for every
choice of .

It follows from Proposition 3.5 and formula (2.18.1) that, in the present case, the series has only
one term if y is ramified but that if p is trivial

(1= (@)t 1) (1 = pa(w)t™t)
T 15 () [@10) (1 = 153 () []0)

C (w2 i (@) iy (w)t) = (

The function on the right has zeros at t = u1(w) and t = po(w) and poles att = 0, t = ||~y (@),
and t = || uz(w). A zero can cancel a pole only if (@) = || Ly (@) or w1 (@) = |@| "L pa(w).
Since w1 and po are unramified this would mean that ,ul_l L2 equals ap or a}l which is impossible
when 7 = (1, pi2) is infinite dimensional.

If C(p, t) has bounded coefficients and yu1 p12 is a character the function on the right has no poles
for |t| < |o|~'/? and therfore |y ()| > |w|'/? and |ug ()| > |w|'/2. Since

(@) g (@)] = (@) = |uy ™ (w) 2

where 111112 is a character these two inequalities are equivalent to that of the lemma. Conversely if these
two inequalities are satisifed the rational function on the right has no pole except that at 0 inside the
circle |t| = || ~1/? and at most simple poles on the circle itself. Applying, for example, partial fractions
to find its Laurent series expansion about 0 one finds that the coefficients of C(1,t) are bounded.

Lemma 3.11 Suppose py and po are unramified, pypo is a character, and m = w(py, u2) is infinite
dimensional. Let |p1(w)| = |w|" where r is real so that |p2(w)| = |w|™". Assume Op is the
largest ideal on which 1 is trivial and let Wy be that element of W (1)) which is invariant under
GL(2,0p) and takes the value 1 at the identity. If s > |r| then

a 0 s—1/2 g% 1
W, a d a <
/. <<0 1))“’ S TP ==

if the Haar measure is so normalized that the measure of Up is one.

If @ is the characteristic function of O% then

W ((0 ?)) —m(@al? [ @t )yt a0

f (5 )

Changing variables in the left-hand side we obtain

lal"~1/2 4% < //@(at,t-l) a7 2" 4% a d*t.

1
lal*tTb]*~" d¥ad™ b = .
/oF /oF (1= Jww[**7)(1 = |w|*=7)
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§4. Examples of absolutely cuspidal representations In this paragraph we will use the results of the
first paragraph to construct some examples of absolutely cuspidal representations.

First of all let K be a quaternion algebra over I'. K is of course unique up to isomorphism.
As in the first paragraph {2 will denote a continuous finite-dimensional representation of K* the
multiplicative group of K. If x is a quasi-character of F'* and v is the reduced norm on K we denote
the one-dimensional representation g — X(V( g)) of K* by x also. If 2 is any representation y ® €2 is
the representation g — x(g) Q(g). If 2 is irreducible all operators commuting with the action of K*
are scalars. In particular there is a quasi-character {2 of F'* such that

Qa) = w(a)l

for all @ in F'* which is of course a subgroup of K *. If Q2 is replaced by x ® €2 then w is replaced by
x2w. € will denote the representation contragredient to (2.

Suppose €2 is irreducible, acts on V, and the quasi-character w is a character. Since K*/F* is
compact there is a positive definite hermitian form on V invariant under K *. When this is so we call
2 unitary.

It is a consequence of the following lemma that any one-dimensional representation of K * is the
representation associated to a quasi-character of F'*.

Lemmad4.l Let K; be the subgroup of K* consisting of those x for which v(z) = 1. Then K; is the
commutator subgroup, in the sense of group theory, of K*.

K certainly contains the commutator subgroup. Suppose z belongs to K. If x = z* then
z? = zx* = 1 so that x = +1. Otherwise = determines a separable quadratic extension of F. Thus,
in all cases, if zz* = 1 there is a subfield L of K which contains x and is quadratic and separable over
L. By Hilbert’s Theorem 90 there is a y in L such that x = yy~‘. Moreover there is an element o in K
such that 0z0~! = 2* for all z in L. Thus z = yoy~'o ! is in the commutator subgroup.
In the first paragraph we associated to 2 a representation rg, of a group G+ on the space (K, Q2).
Since F' is now non-archimedean the group G isnow Gp = GL(2, F).

Theorem 4.2 (i) The representation rq is admissible.
(ii) Let d = degree). Then rq is equivalent to the direct sum of d copies of an irreducible
representation mw(€2).
@) If Q is the representation associated to a quasi-character x of F* then
1/2 —1/2
m(Q) = o(xap”, xap 7).
(iv) If d > 1 the representation w(2) is absolutely cuspidal.

If n is a natural number we set
G, ={9€ GL(2,0F)|g=I(modp™)}

We have first to show that if ® is in §( K, 2) there is an n such that ro(g)® = @ if g is in G,, and that
for a given n the space of ® in §( K, 2) for which rq(g)® = & for all g in G, is finite dimensional.

Any
_(a b
9= \¢ d

_ 1 0\[(a ¥V
9=\ eat 1 0 d

in GG, may be written as
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and both the matrices on the right are in GG,,. Thus G,, is generated by the matrices of the forms

R I O T (R Ead C I

with ¢ = 1 (modp™) and z = 0 (mod p™). It will therefore be enough to verify the following three
assertions.

(4.2.1) Given ® there is an n > 0 such that

(6 1))x=
ifa =1 (modp™)

(4.2.2) Given @ there is an n > 0 such that

(o 1)e=e
ifz =0 (modp™).

(4.2.3) Givenn > 0 the space of ® in §( K, 2) such that

(o 7))o=
r(w™)rg ((3 ”f)) ro(w)d = @

for all x in p™ is finite-dimensional.

If a = v(h) then
ra <<8 ?)) ® = |hl; Q(h) D(zh).

Since ® has compact suport in K and is locally constant there is a neighborhood U of 1 in K* such that

and

Q(h) ®(xh) |h[/* = ®(x)

for all hin U and all z in K. The assertion (4.2.1) now follows from the observation that v is an open
mapping of K * onto F'*.
We recall that

ro <<é ”16)) B(2) = (av(2)) B(2)

Let p~* be the largest ideal on which ¢ is trivial and let p x be the prime ideal of K. Since v(p}) = p

(s e

for all 2 in p” if and only if the support of ® is contained in p"~*. With this (4.2.2) is established.

O satisfies the two conditions of (4.2.3) if and only if both ® and r(w)® have support in p;{"_é
or, since r(w)® = —@’, if and only if & and ®’, its Fourier transform, have support in this set. There
is certainly a natural number k such that w(T(y)) = 1 forall y in p’I“(. Assertion (4.2.3) is therefore a
consequence of the following simple lemma.
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Lemma 4.2.4 If the support of ® is contained in p" and ¢(T(y)) =1 for all y in p% the Fourier

transform of ® is constant on cosets of p]?'".

Since

the lemma is clear.

We prove the second part of the theorem for one-dimensional 2 first. Let {2 be the representation
associated to x. S(K,€?) is the space of ® in §(K) such that ®(xh) = ®(z) for all h in K;. Thus to
every ® in §( K, §2) we may associate the function ¢ on F'* defined by

pa(a) = h]* Q(h) @ (h)
if a = v(h). The map ® — g is clearly injective. If ¢ belongs to S(F*) the function ® defined by
®(h) = |l Q7 () o (v(h)
if h # 0 and by
B(0) =0

belongs to S(K,2) and ¢ = ¢g. Let 8o( kK, §2) be the space of functions obtained in this way. It is the
space of functions in $(K, ©?) which vanish at 0 and therefore is of codimension one. If ® belongs to
So( K, ), is non-negative, does not vanish identically and @’ is its Fourier transform then

'(0) = /@(x) dz 0.

Thus rq (w)® does not belong to 8o (K, ) and 8y (K, 2) is not invariant. Since it is of codimension one
there is no proper invariant subspace containing it.

Let V be the image of §( K, w) under the map & — ¢¢. We may regard rq, as acting in V. >From
the original definitions we see that

ra(b)p = &y (b)y

if bisin Bp. If V is a non-trivial invariant subspace of V' the difference

e-ra((y 1))

isin Vo N Vj for all ¢ in V4 and all z in F'. If ¢ is not zero we can certainly find an x for which the
difference is not zero. Consequently V) N V; is not 0 so that V; contains V|, and hence all of V.

rq is therefore irreducible and when considered as acting on V' it is in the Kirillov form. Since
Vo is not V it is not absolutely cuspidal. It is thus a 7(p1, p2) or a o1, p12). To see which we have to
find a linear form on V which is trivial on V{. The obvious choice is

if ¢ = pg. Then
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To see this we have only to recall that

ro <<g 2>>_Q(a)1_x2(a)1
(6 7)) 20 =12 a0 00

where a = v(h) so that |h|1/2 la]% and Q(h) = x(a)I. Thus if

Ap(g) = L(ra(g9)¢)

and that

A is an injection of V into an irreducible invariant subspace of B(x« F/ ’ xan P Y 2). The only such

subspace is B (XQF/2, onFl/ ) and rq, is therefore J(XaF/2, XaF1/2).

Suppose now that €2 is not one-dimensional. Let 2 act on U. Since K is normal and K/ K is
abelian there is no non-zero vector in U fixed by every element of K. If ® is in 8( K, §2) then

®d(zh) = Q1 (h) ()

for all hin K. In particular ®(0) is fixed by every element in K and is therefore 0. Thus all functions
in §( K, 2) have compact supports in K * and if we associate to every ¢ in §( K, ) the function

pa(a) = 1l Q(h) B(h)
where a = v(h) we obtain a bijection from 8(K, ) to S(F*,U). It is again clear that
po; =y (D)pa

if bisin Bp and &, = rq(b)®.

Lemma4.2.5 Let ) be an irreducible representation of K* in the complex vector space U. Assume
that U has dimension greater than one.
(i) For any ® in 8(K,U) the integrals

Z(QSF®Q’(I))_/KX \a]s/z Qa) ®(a)d*a
Z(ah 007, @) = / a3 Q1 (a) ®(a) d*a

are absolutely convergent in some half-plane Res > sg.
(ii) The functions Z(a% @ Q,®) and Z(a @ Q7L ®) can be analytically continued to functions
meromorphic in the whole complex plane.
(ili) Given w in U there is a ® in 8(K,U) such that
Z(ap ®0,P) = u.
(iv) There is a scalar function £(s,Q, ) such that for all ® in §(K,U)

Z( ;);7‘/2 ° ® Q_lyq)/) = _5(57977/}) Z(a;+1/2 ® Q7q))
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if ® is the Fourier transform of ®. Moreover, as a function of s, £(s,9,1) is a constant
times an exponential.

There is no need to verify the first part of the lemma. Observe that ap (v(z)) = |v(z)|p = |35|}(/2

so that ,
(0f © Q)(x) = |23/ Q).

If ® belongs to 8(K,U) set
B1 (z) = / Q(h) ®(zh).
K

The integration is taken with respect to the normalized Haar measure on the compact group K;. @
clearly belongs to (K, U) and

Z(ah @ Q,0) =Z(aj @ 0Q,Pq) (4.2.6)
and the Fourier transform @/ of ®; is given by
) (z) = / Q(h~1) @ (hx)
K
The function ¢ (z*) belongs to S( K, Q) and
Z(ah @0 1) = Z(ah Q7 @)). (4.2.7)
Since ®; and ¢/ both have compact support in K * the second assertion is clear.
If u is in U and we let ®,, be the function which is O outside of U, the group of units of O,
and on U is given by @,,(z) = Q7! (x)u then

Z(ap ®@Q,0,) =cu

C—/ d*a.
Uk

If ¢ belongs to S(K ™) let A(¢) and B(y) be the linear transformations of U defined by

if

AU = Z(a7? 2 Q, 0%
B(p)u = Z(a;s+3/2 & Q_l, <p/u)

where ¢’ is the Fourier transform of ¢. If A\(h) ¢(h) = p(h~1z) and p(h) ¢(z) = p(xh) then
A R)p) = I () Ale)

and
Alp(h)p) = bl >~ A(p)Q7 (h).

Since the Fourier transform of A(h)p is |h|gp(h)p’ and the Fourier transform of
p(h)g is |h| ' A(h)¢’, the map ¢ — B(y) has the same two properties. Since the kernel of Q is
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open it is easily seen that A(y) and B(y) are obtained by integrating ¢ against locally constant func-
tions o and 3. They will of course take values in the space of linear transformations of U. We will
have

a(ha) = [B;22F*Q(R) a(a)

and
a(ah™") = [ ala) Q71 (k)

B will satisfy similar identities. Thus

a(h) = W2 Qh) a(1)
B(h) = R[22 h) B(1)

a(1) is of course the identity. However (1) must commute with 2(h) for all 4 in K and therefore it
is a scalar multiple of the identity. Take this scalar to be —¢(s, 2, ).

The identity of part (iv) is therefore valid for ® in (K *,U) and in particular for ¢ in §(K, Q).
The general case follows from (4.2.6) and (4.2.7). Since

1 —s
o5, ¢) = — 2@ o0 @)

the function e(s, €2, v) is a finite linear combination of powers |w|® if @ is a generator of p . Exchanging
the roles of ®,, and @/, we see that e (s, 2, 1) has the same property. (s, {2,) is therefore a multiple
of some power of |w|®.

We have yet to complete the proof of the theorem. Suppose ¢y = ¢g belongs to S(F*,U) and
©' = Oro(w)s- We saw in the first paragraph that if x is a quasi-character of F'* then

P(x) = Z(arx ®Q, @) (4.2.8)
and, if Q(a) = w(a)I for a in F’*,
Px o) = ~Zlapx @ Q7). (4.2.9)

Suppose Uy is a subspace of U and ¢ takes its values in Uy. Then, by the previous lemma, @(x)
and @'(x"'w™!) also lie in Uy for all choices of x. Since ¢’ lies in §(F*,U) we may apply Fourier
inversion to the multiplicative group to see that ¢’ takes values in U.

We may regard rq as acting on 8(F'*,U). Then 8(F*,Uy) is invariant under rq(w). Since
ra(b)e = &u(b)p for bin B it is also invariant under the action of Bp. Finally 7o ((§ 0))90 =w(a)y
so that S(F'*,Up) is invariant under the action of G itself. If we take Uy to have dimension one
then S(F*, UO) may be identified with S(F*) and the representation rg restricted to S(F'*,Uy) is

irreducible. From (4.2.8) and (4.2.9) we obtain

Blaf ' *x) = Z(a3 Px 0.0, ®)
Blop™ Pyt = ~Z(ap Py e 07 @)

so that s o
P (ap” P W™ = e(s,x @ ,0) Bl ).
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Thus if 7y is the restriction of ro to S(F*, Uy)
E(va ® 7T05¢) = 5(8’ X® Qﬂ/})

so that mp = 7(2) is, apart from equivalence, independent of U. The theorem follows.
Let © be any irreducible finite-dimensional representation of K* and let {2 act on U. The

contragredient representation Q acts on the dual space UofU. Ifu belongs to U and u belongs to U
(u, UR)T) = (Q (h)u, W)
If ® belongs to S(K) set
Z(a 0, B u, i) = /K (B[ B(R) (Qh)u, ) d*h
and set
2 © O, B, i) = /K (B[ B(h) (u, O(h)ii) d* h.

Theorem 4.3 Let Q be an irreducible representation of K> in the space U.
(i) For any quasi-character x of F'*

T(x ® Q) =x @7(NQ).
(ii) There is a real number sy such that for all u, uw and ® and all s with Re s > sq the integral

defining Z (o5 @ Q, ®;u,u) is absolutely convergent.
(iii) There is a unique Euler factor L(s,$2) such that the quotient

Z(a5? @ Q, @, u, 1)
L(s,Q)

18 holomorphic for all u, u, ® and for some choice of these variables is a non-zero constant.
(iv) There is a functional equation

Z(« S+1/2®Q D, u,u)

Z(a?}ﬂ_s ®Q, P u, 1)
=— Q
E(S’ Y ¢) (87 Q)

L(1—5,Q)

where £(s,Q,v) is, as a function of s, an exponential.
W) If Qa) = w(a)I for a in F* and if 7 = w(Q) then

(6 5o

Moreover L(s,m) = L(s,Q), L(s, %) = L(s,Q) and (s, m,¢) = (s, 2, ).

The first assertion is a consequence of the definitions. We have just proved all the others when (2

has a degree greater than one. Suppose then that Q(h) = x(v(h)) where ¥ is a quasi-character of F'*.

Then 7(Q2) = W(Xa;/ ? xa Fl/ ?) and if the last part of the theorem is to hold L(s, €2), which is of course
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uniquely determined by the conditions of part (iii), must equal L(s,7) = L(s, on};/ %). Also L(s, Q)
—1 1/2)

must equal L(s,T) = L(s, x ™ o/
In the case under consideration U = C and we need only consider
Z(ar @Q,0;1,1) = Z(ay @ Q, ).
As before the second part is trivial and
Z(a% ® 97(1)) = Z(a% ®Qa¢)1)
if
B1 (z) = / B(h).
Ky

The Fourier transform of ®; is

&' (z) = /K () = /K R0

Z(a% @ Q, @) = Z(afh @ Q,P)).

It is therefore enough to consider the functions in §( X, §2).
If ¢ = g is defined as before then ¢ lies in the space on which the Kirillov model of 7 acts and

Pl ) = AT 0 Q, ).

and

The third assertion follows from the properties of L(s, 7). The fourth follows from the relation
Pl W) = —Z(e}* o0 @),
which was proved in the first paragraph, and the relation

~¢ 1/2—s _q ~; s—1/2
Plap™ w) _ plar )
L(1—s,7) e(s,m ) L(s,m) ’

which was proved in the second, if we observe that Q(h) = Q1(h). ¢’ is of course 7 (w)¢p.

Corollary 4.4 If m = () then ™ = 7(£2).

This is clear if 2 if of degree one so suppose it is of degree greater than one. Combining the

identity of part (iv) with that obtained upon interchanging the roles of 2 and Q and of ® and &’ we
find that

(s, ) e(1 — 5,Q, 1) = w(—1).
The same considerations show that
5(57Wa¢) 5(1 - 5’7},7/)) = w(_l)

Consequently

Replacing 2 by x ® {2 we see that

e(s,x P @,Y) =e(s,x T @0, 0) = e(s,x 7 (Q),¥)

for all quasi-characters y. Since 7 and 7(£2) are both absolutely cuspidal they are equivalent.
There is a consequence of the theorem whose significance we do not completely understand.
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Proposition 4.5 Let Q be an irreducible representation of K> on the space U and suppose that the
dimension of U is greater than one. Let U be the dual space of U. Let w be the Kirillov model of
m(Q), let @ lie in S(F™), and let ' = w(w)p. If u belongs to U and u belong to U the function ®
on K which vanishes at 0 and on K> is defined by

B(x) = p(v(2)) (@)~ (u, (x)a)

is in 8(K) and its Fourier transform ® wvanishes at 0 and on K* is given by

¥'(z) = —¢/ (v()) [v(@)| " w ™ (v(@)) (Qx)u, T)
if Qa) = w(a)l for ain F*.
It is clear that ® belongs not merely to 8(K') but in fact to S(K ). So does the function ®; which
we are claiming is equal to ®'. The Schur orthogonality relations for the group K3 show that ®’'(0) = 0

so that @’ also belongs to S(K ).
We are going to show that for every irreducible representation of )’ of K *

/ D4 (z), <u’7(~2/(x)ﬂ’> ‘y(x)‘3/2—s d*x _ _/ (s, 2, 0) () (V (), ) ’V(x)’s+l/2 d*z
L(1—s,Q) L(s,Q)

for all choices of u’ and @’. Applying the theorem we see that

/ (@1 () — @' (2)} (o, @ (@)) (@) >~ &2 = 0

for all choices of €, v/, %/, and all s. An obvious and easy generalization of the Peter-Weyl theorem,
which we do not even bother to state, shows that ®; = @',

If
U(z) = /K (u, Q(ha)@) (Y (ha)u', @) dh
then
O (2)(Y (), ') () |2 d¥ e = / p(v(@)) (@)~ W(z) d*x
KX K* /K,

while

/ Oy () (W'Y (), @) ()P d*a = —/ ¢ (v(e) ™ (@) (@) U () d

KX KX /K,

If W is O for all choice of v’ and @’ the required identity is certainly true. Suppose then V is different
from 0 for some choice v’ and u'.
Let U be the intersection of the kernels of 2’ and (2. It is an open normal subgroup of K* and
H = U K, F* is open, normal, and of finite index in K *. Suppose that Q'(a) = w’(a)I for ain F*. If
h belongs to H
W(xh) = xo(h) W(x)

where Y is a quasi-character of H trivial on U and K; and equal tow’w ™! on F'*. Moreover x, extends
to a quasi-character y of K * so that

X may of course be identified with a quasi-character of F'*.
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Lemma4.5.1 If

J. . BT #0

then Q' is equivalent to x ® .
Y and x ® 2 agree on F'* and

[ xR ) 20

The lemma follows from the Schur orthogonality relations.
We have therefore only to prove the identity for ' = x ® €. Set

Fla) = /K (u, Q)i (Qha)ed, T dh.

u’ and @’ now belong to the spaces U and U. There is a function f on F* such that

F(x) = f(v(2))

The identity we are trying to prove may be written as

J &' (@) x Ha)w™ (a) fla™") |a]'/*~* d*a
LA —-s,x1®7)

J¢(a) x(a) f(a)]a]*~/2 d*a

Toxer) (4.5.2)

= e(s,x ®m, 1)

Let H be the group constructed as before with U taken as the kernel of 2. The image I of H under v
is a subgroup of finite index in F'* and f, which is a function on F'* /F’, may be written as a sum

fla) = 3" Mexi(a)

where {x1,- -, X} are the characters of F'*/F’ which are not orthogonal to f. By the lemma (2 is
equivalent to x; ® 2 for 1 <14 < p and therefore 7 is equivalent to x; ® 7. Consequently

e(s,x®@m, ) =¢e(s,xxi @ m,¢)
and

Jpx #'(@)x"H(a) xi (@) w (a) o]~ d¥a
Li—s,x ' ©7)

oy o my J PO X @) a1
L(s,x ® )
The identity (4.5.2) follows.

Now let K be a separable quadratic extension of F'. We are going to associate to each quasi-
character w of K* an irreducible representation m(w) of Gp. If G4 is the set of all g in Gp whose
determinants belong to v (K *) we have already, in the first paragraph, associated to w a representation
r, of G4+. To emphasize the possible dependence of r,, on 1) we now denote it by m(w, ). G4 is of
index 2 in G . Let m(w) be the representation of G induced from 7(w, ).
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Theorem 4.6 (i) The representation m(w, ) is irreducible.
(i) The representation w(w) is admissible and irreducible and its class does not depend on the

choice of 1.

(iii) If there is no quasi-character x of F* such that w = xov the representation m(w) is absolutely
cuspidal.

(iv) If w = xov and n is the character of F* associated to K by local class field theory then m(w)
is W(X? XW) .

It is clear what the notion of admissibility for a representation of G should be. The proof that
7(w, 1) is admissible proceeds like the proof of the first part of Theorem 4.2 and there is little point in
presenting it.

To every ® in 8( K, w) we associate the function ¢g on F. = v(K *) defined by

pa(a) = w(h) |h[}[* o(n)

if a = v(h). Clearly po = 0 if and only if & = 0. Let V. be the space of functions on F; obtained in
this manner. V. clearly contains the space $(F’;) of locally constant compactly supported functions on
F. . In fact if ¢ belongs to $(F.) and

®(h) = w L (h) |Al"* (v (h))

then ¢ = @g. If the restriction of w to the group K of elements of norm 1 in K * is not trivial so that
every element of $(K,w) vanishes at 0 then V. = §(F). Otherwise $(F} ) is of codimension one in
V.

Let B, be the group of matrices of the form

a x

0 1
with @ in F'; and z in F. In the first paragraph we introduced a representation { = £, of B on the
space of functions on F;. It was defined by

(5 1)) e =etoa

(5 1)) e =vta50)

We may regard 7(w, 1) as acting on V. and if we do the restriction of 7(w, 1) to By is &y.

and

Lemma 4.6.1 The representation of Bp induced from the representation &, of By on 8(Fy) is the
representation &, of Br. In particular the representation &y, of B is irreducible.

The induced representation is of course obtained by letting B act by right translations on the
space of all functions ¢ on By with values in §(F.) which satisfy

P(b1b) = &y (b1) p(b)
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for all by in B. Let L be the linear functional in $(F';) which associates to a function its value at 1.
Associate to ¢ the function

= (3 ((5 1)) =2 ((( 3)70)

The value of ((§ 7)) at cvin F is

T e T )
otz (7 (3 1)) = vlanstaa)

Since F'* /F. is finite it follows immediately that ¢ is in §(F'*) and that ¢ is 0 if ¢ is. It also shows
that ¢ can be any function in §(F'*) and that if ¢’ = p(b) ¢ then ¢’ = £(b) ¢ for all b in Bp. Since
a representation obtained by induction cannot be irreducible unless the original representation is, the
second assertion follows from Lemma 2.9.1.

If the restriction of w to K is not trivial the first assertion of the theorem follows immediately. If
it is then, by an argument used a number of times previously, any non-zero invariant subspace of V.
contains 8(F} ) so that to prove the assertion we have only to show that 8§(F’; ) is not invariant.

As before we observe that if ¢ in §(K,w) = 8(K) is taken to vanish at 0 but to be non-negative
and not identically 0 then

ro(w) ®(0) = ’y/ O(x)dx #0
K

so that g is in 8(F} ) but ¢, ()4 is not.

The representation 7(w) is the representation obtained by letting G act to the right on the space
of functions ¢ on G4 with values in V., which satisfy

p(hg) = m(w,¥)(h) ¢(9)

for h in G . Replacing the functions ¢ by the functions

s=5((3 1))

we obtain an equivalent representation, that induced from the representation

rsa((3 2)0(% 9)

of G,. It follows from Lemma 1.4 that this representation is equivalent to 7(w,¢’) if ¢/(z) = ¥ (az).
Thus 7(w) is, apart from equivalence, independent of 1.

Since
a 0
GF:{g<O 1>|g€G+,a€FX}

¢ is determined by its restrictions to Br. This restriction, which we again call ¢, is any one of the
functions considered in Lemma 4.6.1. Thus, by the construction used in the proof of that lemma, we
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can associate to any ¢ a function ¢ on F'*. Let V be the space of functions so obtained. We can regard
m = m(w) as acting on V. It is clear that, forall p in V,

m(b)p = &y (b)p

if bis in Bp. Every function on F; can, by setting it equal to 0 outside of F';, be regarded as a function

F*. Since
(5 1)) @ =vtaa)

V is the space generated by the translates of the functions in V.. Thusif V. = §(F) then V = §(F*)
and if 8(F) is of codimension one in V. then 8(F*) is of codimension two in V.
It follows immediately that (w) is irreducible and absolutely cuspidal if the restriction of w to
K is not trivial.
The function ¢ in V. corresponds to the function ¢ which is 0 outside of G+ and on G is givne
by
p(g) = m(w,¥)(g)e-

It is clear that

T(w)(9)p = m(w,¥)(9)¢

if g isin G4. Any non-trivial invariant subspace of V' will have to contain §(F'*) and therefore S(F ).
Since 7(w, ) is irreducible it will have to contain V. and therefore will be V itself. Thus 7(w) is
irreducible for all w.

If the restriction of w to K is trivial there is a quasi-character y of F'* such that w = xy ov. To
establish the last assertion of the lemma all we have to do is construct a non-zero linear form L on V'
which annihilates §(F'*) and satisfies

L (w (( aol aOQ )) 80) = x(a1az) n(az)

if T = m(w). We saw in Proposition 1.5 that

m <<g 2)) = x*(a)n(a)y

1/2
L(p)

ax

a2

so will only have to verify that

If o = pg isin V. we set

so that if @ is in F'}.
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If e is in F'* but not in F; any function ¢ in V' can be written uniquely as

oot ((59)) e

L(¢) = L(p1) + x(¢) L(p2)-

Theorem 4.7 (i) If 7 = m(w) then m = 7(w") if w'(a) = w(a), @ = 7(w™?t) and x @ © = w(wy') if
X s a quasi-character of F* and ' = xov.

(ii) If a is in F'* then
T <<g 2)) =w(a)n(a)l.

(ili) L(s,m) = L(s,w) and L(s,7) = L(s,w™"). Moreover if ¥ (x) = ¢p(£(z)) for z in K and
if \(K/F,vyp) is the factor introduced in the first paragraph then

with ¢ and g in V.. We set

e(s,mp) =e(s,w, V) M(K/F,{r)

It is clear that x ® m(w, ) of G1. However by its very construction x ® m(w, 1) = m(wx’, ).

The relation
(5 1)) =—wt@nar

is a consequence of part (iii) of Proposition 1.5 and has been used before. Since 1’ = 7 o v is trivial and
w(v(a)) = w(a)w*(a)

f=wlnler=nw™)

To complete the proof of the first part of the theorem we have to show that 7(w) = 7w(w"). It is enough
to verify that m(w, ) = w(w*, ). If ® belongs to §(K) let *(x) = P(z*). & — ' is a bijection of
8(K,w) with §(K, w") which changes m(w, ) into 7(w", ). Observe that here as elsewhere we have
written an equality when we really mean an equivalence.

We saw in the first paragraph that if ¢ = g is in V, then

Blaf ) = Z(0jw, ®)
and that if ¢/ = m(w)p and @’ is the Fourier transform of ® then, if wy(a) = w(a) n(a) for a in F*,
B (wy oy ) =12 (a W ®)
if vy = M(K/F,v¢p). Thus for all ¢ in V, the quotient
~; s5—1/2
Blaj ")
L(s,w)

has an analytic continuation as a holomorphic function of s and for some ¢ it is a non-zero constant.

Also - Plag
U0 ) APt (o0, 0 D)
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To prove the theorem we have merely to check that these assertions remain valid when ¢ is
allowed to vary in V. In fact we need only consider functions of the form

R E

where ¢q is in V and € is not in F;.. Since

~; s—1/2 —s ~ s—1/2
P(a %) = [e]/275 Go(ain )

the quotient

-~ —1/2
play ')

L(s,w)
is certainly holomorphic in the whole plane. Since
AN — 1/2—s — —8 — 1/2—s 15~ — 1/2—s
Blwg o) = wole) wy (€) el 2Bl gt ™7) = Jel P B el )

the functional equation is also satisfied.
Observe that if w = x o v then m(w) = (X, x5) so that

L(s,w) = L(s,x) L(s,xn)

and
E(vava) A(K/Fa ¢F) = 5(57X5¢F) 5(57XT]’¢F)

These are special cases of the identities of [19].
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§5. Representations of GL(2,R). We must also prove a local functional equation for the real and
complex fields. In this paragraph we consider the field R of real numbers. The standard maximal
compact subgroup of GL(2,R) is the orthogonal group O(2,R). Neither GL(2,R) nor O(2,R) is
connected.

Let J(; be the space of infinitely differentiable compactly supported functions on GL(2, R) which
are O(2,R) finite on both sides. Once a Haar measure on Gg = GL(2,R) has been chosen we may
regard the elements of H; as measures and it is then an algebra under convolution.

J1 % fa(g) = fi(gh™Y) f2(h) dh.

Gr

On O(2,R) we choose the normalized Haar measure. Then every function £ on O(2, R) which is a finite
sum of matrix elements of irreducible representations of O(2, R) may be identified with a measure on
O(2,R) and therefore on GL(2,R). Under convolution these measures form an algebra Hy. Hg will
be the sum of }H; and }(5. It is also an algebra under convolution of measures. In particular if £ belongs
to 3 and f belongs to H;

£ f(g) = /O o S0 S g)

and
fre@= [ flgu gt du
O(2,R)
If 0;, 1 < i < p, is a family of inequivalent irreducible representations of O(2,R) and
¢(u) = dim oy traceo;(u™t)
then
p
§=> &
i=1

is an idempotent of Hg. Such an idempotent is called elementary.
It is a consequence of the definitions that for any f in }; there is an elementary idempotent £
such that

Exf=fxE=1F

Moreover for any elementary idempotent {
ExTHy xE=ExCF(GRr) x &

is a closed subspace of C2°(GR), in the Schwartz topology. We give it the induced topology.
A representation 7 of the algebra g on the complex vector space V' is said to be admissible if
the following conditions are satisfied.

(5.1) Every vector v in V' is of the form

T

v = Zﬂ-(fi)vi

=1

with f; in H; and v; in V.
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(5.2) For every elementary idempotent £ the range of 7(§) is finite dimensional.

(5.3) For every elementary idempotent { and every vector v in 7(£)V the map f — 7(f)v of
€3£ into the finite dimensional space 7(§)V is continuous.

If v =Y., m(fi)v; we can choose an elementary idempotent ¢ so that {f; = f;£ = f; for
1 < i < r. Then m(§)v = v. Let {} be a sequence in C2°(Gr) which converges, in the space of
distributions, towards the Dirac distribution at the origin. Set ¢/, = & * ¢y, * £. For each i the sequence
{¢h, = fi} converges to f; in the space {3H1£. Thus by (5.3) the sequence {7 (¢!},)v} converges to v in
the finite dimensional space 7(£)v. Thus v is in the closure of the subspace (£ ;£)v and therefore
belongs to it.

As in the second paragraph the conditions (5.1) and (5.2) enable us to define the representation
7 contragredient to 7. Up to equivalence it is characterized by demanding that it satisfy (5.1) and (5.2)

and that there be a non-degenerate bilinear form on V' x v satisfying

(m(f)v,0) = (v, 7(f)v)

for all f in Hg. V is the space on which 7 acts and f is the image of the measure f under the map
g — g~ !. Notice that we allow ourselves to use the symbol f for all elements of H. The condition

(5.3) means that for every v in V and every v in V' the linear form
f=A{x(f)v,0)

is continuous on each of the spaces {}(£. Therefore 7 is also admissible.

Choose € so that 7(§)v = v and 7(§)v = v. Then for any f in H;

(m(f)v,0) = (x(£fE)v,v).

There is therefore a unique distribution 1 on G such that

u(f) = (w(f)v,v)
for f in H;. Choose ¢ in {H; € so that w(p)v = v. Then

pu(f) = u(€fes) = p(&fép) = (r(EfEp)v,v) = (7 (§fE)v, V)

so that u(fy) = p(f). Consequently the distribution y is actually a function and it is not unreasonable
to write it as ¢ — (m(g)v,v) even though 7 is not a representation of Gg. For a fixed g, (7(g)v,v)
depends linearly on v and v. If the roles of 7 and 7 are reversed we obtain a function (v, 7(g)v). It is
clear from the definition that

(m(g)v,0) = (v, 7(g7")0).
Let g be the Lie algebra of G and let gc = g @y C. Let A be the universal enveloping algebra

of gc. If we regard the elements of 2 as distributions on Gr with support at the identity we can take
their convolution product with the elements of C2°(Gr). More precisely if X belongs to g

X * f(g) = %f(eXP(_tth:o

and

[*X(g) = %f(g exp(—tX))|,_,
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If f belongs to H; sodo f *x X and X * f.
We want to associate to the representation 7 of Hy on V' a representation 7 of 2l on V' such that

m(X)7(f) = 7(X + f)

and
m(f)m(X) = m(f* X)
forall X in20and all fin H;. If v = > 7(f;) v; we will set

m(X)v = Z?T(X * fi)v;

7

and the first condition will be satisfied. However we must first verify that if

Zﬂ-(fi)vi =0

)

then

w = Z?T(X * fi)v;

i

is also 0. Choose f so that w = 7 (f)w. Then

w= ZW(f)TF(X*fi)’UZ' = ZW(f*X*fi)?}i :W(f*X){ZW(fi)Ui} =0.

4 4

>From the same calculation we extract the relation

m(f) {ZW(X*fi)Ui} =m(f*X) {Zﬁ(fi)vi}

%

for all f so that 7(f)m(X) = 7(f * X).

If g is in G then A(g) f = d, * f if é4 is the Dirac function at g. If g is in O(2,R) or in Zg, the
groups of scalar matrices, d, * f is in H; if f is, so that the same considerations allow us to associate
to 7 a representation m of O(2,R) and a representation 7 of Zg. It is easy to see that if 4 is in either of
these groups then

7(AdhX) = n(h) n(X) 7(h™1).

To dispel any doubts about possible ambiguities of notation there is a remark we should make. For
any f in H;

(m(flv,0) = [ flg){m(g)v, V) dg.

Gr
Thus if A isin O(2,R) or Zg

(m(f * 0n)v,v) = : f(g) (m(gh)v,v) dg
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and

(m(f)m(h)v,0) = [ flg){m(g)m(h)v,v)dg

Gr

so that
(w(gh)v,v) = (m(g) m(h)v, V).

A similar argument shows that
(n(hg)v,T) = {x(g)v, F(h™'D).

It is easily seen that the function (7(g)v,v) takes the value of (v,v) at ¢ = e. Thus if h belongs to
O(2,R) or Zg the two possible interpretations of (7(h)v,v) give the same result.

It is not possible to construct a representation of G on V' and the representation of 2l is supposed
to be a substitute. Since G is not connected, it is not adequate and we introduce instead the notion of
a representation 7 of the system {2, ¢} where

(-1 0
e=l9 1/
It is a representation 71 of 2 and an operator 7 (¢) which satisfy the relations
mi(e) =1

and
Wl(AdEX) == 7T1(E)7T1(X) 7T1(E_1).

Combining the representation 7 with 2 with the operator 7 (&) we obtain a representation of the system
o 6}.There is also a representation 7 of 2l associated to 7 and it is not difficult to see that

(n(X)v, D) = (v, 7(X)7)
if X — X is the automorphism of 2 which sends X in g to —X.

Let
©(g) = (m(g9)v, ).

 is certainly infinitely differentiable. Integrating by parts we see that

; f@)p*X(9)dg= [ [f*X(g)elg)dg

The right side is

so that
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Assume now that the operators 7(X) are scalar if X is in the centre 3 of 2. Then the standard
proof, which uses the theory of elliptic operators, shows that the functions ¢ are analytic on G. Since

p* X(e) = (n(X)v,D)

p* X(e) = (n(e) m(X)v,7)

and Gr has only two components, one containing e and the other containing ¢. The function ¢ vanishes
identically if (7(X)v, v) and (7(¢) (X )v, v) are 0 for all X in 2(. Any subspace V; of V invariant under
2 and ¢ is certainly invariant under O(2, R) and therefore is determined by its annihilator in V. If v is

in V] and v annihilates V; the function (7(g)v,v) is 0 so that

(m(f)v,0) =0

for all f in H(;. Thus 7(f)v is also in V;. Since Hs clearly leaves V; invariant this space is left invariant
by all of Hp.

By the very construction any subspace of V' invariant under Hp is invariant under 2 and ¢ so
that we have almost proved the following lemma.

Lemma5.4 The representation m of Hg is irreducible if and only if the associated representation w
of {, e} is.

To prove it completely we have to show that if the representation of {2, ¢} is irreducible the
operator m(X) is a scalar for all X in 3. As 7(X) has to have a non-zero eigenfunction we have only
to check that 7(X') commutes with 7(Y") for Y in 2 with 7(e). It certainly commutes with 7(Y). X is
invariant under the adjoint action not only of the connected component of G but also of the connected
component of GL(2,C). Since GL(2, C) is conected and contains €

m(e) m(X) n(e) = m(Ade(X)) = 7(X).

Slight modifications, which we do not describe, of the proof of Lemma 5.4 lead to the following
lemma.

Lemma 5.5 Suppose w and 7' are two irreducible admissible representations of Hg. m and 7' are
equivalent if and only if the associated representations of {2} are.

We comment briefly on the relation between representations of Gr and representations of Hp.
Let V be a complete separable locally convex topological space and 7 a continuous representation of
Gron V. Thus the map (g,v) — 7(g)vof Gg x V to V is continuous and for f in C2°(Gg) the operator

m(f) = | flz)n(z)dx

Gr

is defined. So is 7(f) for f in Hy. Thus we have a representation of Hg on V. Let V|, be the space
of O(2,R)-finite vectors in V. It is the union of the space 7(§)V as £ ranges over the elementary
idempotents and is invariant under Hg. Assume, as is often the case, that the representation 7y of Hg
on Vj is admissible. Then 7 is irreducible if and only if 7 is irreducible in the topological sense.

Suppose 7’ is another continuous representation of Gy in a space V' and there is a continuous
non-degenerate bilinear form on V' x V’ such that

(m(g)v,v') = (v, 7' (g~ ')



Chapter 1 82

Then the restriction of this form to Vj x Vj is non-degenerate and

(m(f)o,v") = (v, 7' (')

forall f in Hg, vin Vp, and v’ in V. Thus 7{, is the contragredient of 7. Since

(mo(f)v, ") = [ f(g)(m(g)v,v")

Gr

we have
(mo(g)v, V") = (m(g)v, ).

The special orthogonal group SO(2,R) is abelian and so is its Lie algebra. The one-dimensional
representation
cosf sinf inf
<—sin9 cos@) e

of SO(2,R) and the associated representation of its Lie algebra will be both denoted by x,. A
representation 7 of 2 or of {2, e} will be called admissible if its restrictions to the Lie algebra of
SO(2,R) decomposes into a direct sum of the representations x,, each occurring with finite multiplicity.
If 7 is an admissible representation of g the corresponding representation of {2, ¢} is also admissible.
We begin the classification of the irreducible admissible representations of Hy and of {2, ¢} with the
introduction of some particular representations.

Let p1 and po be two quasi-characters of F'*. Let B(u1, pi2) be the space of functions f on Gy
which satisfy the following two conditions.

(i)
1/2

f(g)

a

F(( o)) =mla e |2

2

for all g in Gg, a1, as in R*, and = in R.
(ii) fis SO(2,R) finite on the right.
Because of the Iwasawa decomposition

Gg = Ng Ag SO(2,R)

these functions are complete determined by their restrictions to SO(2, R) and in particular are infinitely
differentiable. Write
m;
)
i

where s; is a complex number and m; is 0 or 1. Set s = s; — so and m = |my — ms| so that

p py () = t]° (ﬁ) . If n has the same parity as m let ¢,, be the function in B (11, p12) defined by

pi(g) =t

1/2

ﬂ einG.

1 =z a; 0 cosf) sinf — i (ar) ia(as)
nilo 1 0 as —sinf cosp ) ) M\ K22 as

The collection {,, } is a basis of B(u1, f2).
For any infinitely differentiable function f on Gr and any compactly supported distribution p
we defined A\(u) f by

) f(g) = i(p(9)f)
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and p(p) f by

If, for example, 1 is a measure

) f(g) = g f(h™'g) du(h)

and

p(n)f(g) = ; f(gh) du(h).
In all cases A(u)f and p(u)f are again infinitely differentiable. For all f in Hg the space B(fu1, 112)
is invariant under p(f) so that we have a representation p(f1, p12) of Hg on B(pq, p2). It is clearly
admissible and the associated representation p(y1, p12) of {2, £} is also defined by right convolution.
We introduce the following elements of g which is identified with the Lie algebra of 2 x 2 matrices.

0 1 10 1 1 —i
=(G0) =G y) () (5 D)
0 1 0 0 10
we(@o) o= (a) =0 )

2

Z
D = X+X_ +X_X+ + 7,

as well as

which belongs to .

Lemmab5.6 The following relations are valid
@) p(U)pn = ingy, (i) p(e)pn = (—1)"pn

(iii) p(Vi)on = (s + 14 n)pni2 (i) p(V_)on = (s +1 = n)pn—2

V) p(D)pn = £520,, (i) p(J)en = (51 + 52)¢n

The relations (i), (ii), and (vi) are easily proved. It is also clear that for all ¢ in B (1, 112)
p(Z) p(e) = (s+1) p(e)

and
p(X4) p(e) = 0.

cosf sinf 2
Ad <<—sin9 cosH)) Ve =V

Ad (080 smONY g ey,
—sinf cosd

The relations

and
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show that p(V )¢, is a multiple of ¢,, 12 and that p(V_ )¢, is a multiple of ¢,,_5. Since
Vi =2 —iU +2iX,

and
Vo=72+U—-2iX,

the value of p(V} )y, at the identity e is s + 1 + n and that of p(V_)¢,, = s+ 1 — n. Relations (iii) and
(iv) follow. 5
It is not difficult to see that D belongs to 3 the centre of 2. Therefore p(D)p = A(D)p = A(D)y

since D = D. If we write D as )

Z
2X_Xo+Z+

and observe that A\(X )¢ = 0and A(Z)p = —(s + 1)¢if pis in B(u1, u2) we see that

(s +1)2 21
2 L

p(D)pr = {—<s Tt on.

Lemma5.7 (i) If s —m is not an odd integer B(uy, pu2) is irreducible under the action of g.
(i) If s —m is an odd integer and s > 0 the only proper subspaces of B(u1, o) invariant under

g are
By(pr, )=y, Cop
n>s+1
n=s+1(mod 2)
Bo(p, p2) = Z Cen
n—s—1

n=s+1(mod 2)

and, when it is different from B(u1, pu2),

Bo(pr, p2) = Bi(p, p2) + Ba(pr, p2).

(iii) If s —m is an odd integer and s < 0 the only proper subspaces of B(pu1, pu2) invariant under
g are

Bi(pr,p2) = Y, Cop

n>s+1
n=s+1(mod 2)

Bo(p1, p2) = Z Con

n—s—1
n=(s+1)(mod 2)

and
Bp(p1, p2) = Bi(pr, pr2) N Ba(per, p2).

Since a subspace of B(j1, 12) invariant under g is spanned by those of the vectors ¢,, that it
contains this lemma is an easy consequence of the relations of Lemma 5.6.
Before stating the corresponding results for {2, ¢} we state some simple lemmas.
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Lemma5.8 If 7 is an irreducible admissible representation of {2, e} there are two possibilities:
(i) The restriction of m to U is irreducible and the representations X — w(X) and X —
7(Ade(X)) are equivalent.
(i) The space V' on which w acts decomposes into a direct sum Vi @ Vo where Vi and Vo are both
mwvariant and irreducible under A. The representations w1 and wo of A on Vi and Vo are not
equivalent but mo is equivalent to the representation X — W(AdE(X)).

If the restriction of  to 2 is irreducible the representations X — 7(X)and X — 7(Ade(X)) are
certainly equivalent. If itis not irreducible let V; be a proper subspace invariant under . If V, = 7(e)V;
then V3 NV, and V; + V5 are all invariant under {2, e}. Thus Vi NVo = {0}and V =V; & Vo, If 1}
had a proper subspace V; invariant under 2 the same considerations would show that V' = V/ & Vj
with Vy = 7(e)V/. Since this is impossible V; and V5 are irreducible under .

Ifvyisin Vy

mo(X) w(e)vy = m(e) mi (ade(X))vy

so that the representations X — m3(X) and X — m (Adg(X )) are equivalent. If m; and 7y were
equivalent there would be an invertible linear transformation A from V; to V5 so that Amy(X) =
7T2(X)A If (%1 is in V1

A7 m(e) m(X)vr = A7 ma(ade(X)) w(e) v1 = 1 (Ade(X)) A7 w(e) vy

Consequently { A=!7()}? regarded as a linear transformation of V; commutes with 2 and is therefore
a scalar. There is no harm in supposing that it is the identity. The linear transformation

V1 + Vo — A_I/U2 + AU1

then commutes with the action of {2, £}. This is a contradiction.
Let x be a quasi-character of R* and let x(¢) = ¢° for ¢ positive. For any admissible representation
m of U and therefore of g we define a representation x ® 7 of g and therefore 2 by setting

x@m(X)= g trace X + m(X)
if X isin g. If 7 is a representation of {2, e} we extend x ® 7 to {2, ¢} by setting

x@m(e) = x(=1)m(e)
If 7 is associated to a representation 7 of Hg then x ® 7 is associated to the representation of Hy defined

by
x@m(f)=m(xf)

if x f is the product of the functions y and f.

Lemma 5.9 Let my be an irreducible admissible representation of A. Assume that my is equivalent
to the representation X — mo(Ade(X)). Then there is an irreducible representation m of {2, e}
whose restriction to A is mg. If n is the non-trivial quadratic character of R* the representations
m and n® 7 are not equivalent but any representatin of {A, e} whose restriction to A is equivalent
to o is equivalent to one of them.

Let mp act on V. There is an invertible linear transformation A of V' such that Amy(X) =
mo(Ade(X))A for all X in 2. Then A% commutes with all 7(X) and is therefore a scalar. We may
suppose that A2 = I. If we set m(¢) = A and 7(X) = 7(X) for X in 2 we obtain the required
representation. If we replace A by —A we obtain the representation n ® m. 7 and 1 ® 7 are not
equivalent because any operator giving the equivalence would have to commute with all of the 7(X)
and would therefore be a scalar. Any representation 7’ of {2, £} whose restriction to 2l is equivalent to
7o can be realized on Vj in such a way that 7/(X) = m(X) for all X. Then 7/(¢) = £A.
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Lemma5.10 Let m be an irreducible admissible representation of A. Assume that m and mo, with
mo(X) = m (Ade(X)), are not equivalent. Then there is an irreducible representation 7 of {2, e}
whose restriction to A is the direct sum of m1 and wo. Every irreducible admissible representation
of {&,e} whose restriction to A contains m is equivalent to w. In particular n @ m is equivalent
to .

Let m act on V4. To construct m we set V = V; & V5 and we set
m(X) (v1 ®v2) = m(X)vy O mo(X)ve

and
m(e) (11 B va) = vy B vy,

The last assertion of the lemma is little more than a restatement of the second half of Lemma 5.8.

Theorem 5.11 Let uy and po be two quasi-characters of F*.

1) If ,ul,u2_1 is not of the form t — tPsgnt with p a non-zero integer the space B(uy, p2) is
irreducible under the action of {U,e} or Hg. w(p1,p2) is any representation equivalent to
p(p, i)

(i) If pipy ' (t) = tPsgnt, where p is a positive integer, the space B(uy,p2) contains exactly
one proper subspace Bg(p1, pu2) invariant under {A,e}. It is infinite dimensional and any
representation of {A, e} equivalent to the restriction of p(p1, p2) to Bs(u1, pa) will be denoted
by o(p1, pe). The quotient space

By(pr, p2) = Blpa, p2)/Bs(p1, p2)

is finite-dimensional and m(py, p2) will be any representation equivalent to the representation
of {A, e} on this quotient space.

(iii) If pips t(t) = tP sgnt, where p is a negative integer, the space By, p2) contains exactly one
proper subspace By(pu1, p2) invariant under {A,e}. It is finite-dimensional and (1, p12)
will be any representation equivalent to the restriction of p(p1, p2) to B(pa, n2). o(p1, p2)
will be any representation equivalent to the representation on the quotient space

By(p, p2) = Blpr, p2) /By (pr, p2).

(iv) A representation w(puy1, p2) is never equivalent to a representation o(u}, ph).

(v) The representations (1, p2) and w(uy, ph) are equivalent if and only if either (ui, p2) =
(115 pa) or (pa, p2) = (p, ph).-

(vi) The representations o(u1, pe) and o(p), ph) are equivalent if and only if (u1,u2) is one of

the four pairs (py, p5), (o, ph), (Han, pan), or (uan, pin).
(vii) Ewvery irreducible admissible representation of {2, e} is either a w(u1, p2) or a o(uy, p2).

Let py iy ' (1) = |t|s(ﬁ)m s —m is an odd integer if and only if s is an integer p and p; 15 ' (t) =
t? sgnt. Thus the first three parts of the lemma are consequences of Lemma 5.6 and 5.7. The fourth
follows from the observation that (1, o) and o (), ph) cannot contain the same representations of
the Lie algebra of SO(2,R).

We suppose first that s — m is not an odd integer and construct an invertible transformation 7'
from B(p1, pi2) to B(pe, 111) which commutes with the action of {2, c}. We have introduced a basis
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{¢n} of B(u1,us2). Let {¢],} be the analogous basis of B(usa, i1). T will have to take ¢,, to a multiple
ans,, of ¢!, . Appealing to Lemma 5.6 we see that it commutes with the action of {2, £} if and only if

(s+14+n)apis=(—s+1+n)a,
(s+1—n)ap—2=(—s+1—n)a,

and
an = (=1)"a_,.

These relations will be satisfied if we set

—s+1+n
| pstim

Ay = an(S) = I\(T;'f‘n)

Since n = m(mod 2) and s — m — 1 is not an even integer all these numbers are defined and different
from O.
If s < 0and s — m is an odd integer we set

an(s) = lim a,(2)

The numbers a,,(s) are still defined although some of them may be 0. The associated operator T’
maps B(p1, p12) into B(pe, 1) and commutes with the action of {,e}. If s = 0 the operator T is
non-singular. If s < 0 its kernel is B ¢(u1, p12) and it defines an invertible linear transformation from
Bs(per, p2) to Bs(pz, p1). If s > 0 and s — m is an odd integer the functions a,,(z) have at most simple
poles at s. Let
buls) = lim(z = 5) o (2

The operator T associated to the family {b,,(s)} maps B(u1, p12) into B(puz, 1) and commutes with
the action of {2, e}. It kernel is B (1, o) so that it defines an invertible linear transformation from
B (g1, p2) to By (pe, p1). These considerations together with Lemma 5.10 give us the equivalences of
parts (v) and (vi).

Now we assume that 7 = w(py, p2) and ©' = w(uy, uh) or m = o(p1, pe) and 7 = o(uf, 1h)

are equivalent. Let y;(T") = ]t]si(ﬁ)mi and let 11/ (t) = [t[% ()™, Lets = 51 — 89, m = |my — ma,

¢

s’ = s —sh, m' = |m) — m}|. Since the two representations rlnlust contain the same representations of
the Lie algebra of SO(2,R) the numbers m and m/' are equal. Since 7(D) and 7’ (D) must be the same
scalar Lemma 5.6 shows that s’ = +s. m(.J) and 7’(.J) must also be the same scalar so s + 55 = s1 + so.
Thus if 7(t) = sgnt the pair (u1, pu2) must be one of the four pairs (uf, pb), (ph, 1h), (g, nps),
(nub, np’). Lemma 5.9 shows that 7(p)ph) and 7(nufy, nub) are not equivalent. Parts (v) and (vi) of
the theorem follow immediately.

Lemmas 5.8, 5.9, and 5.10 show that to prove the last part of the theorem we need only show
that any irreducible admissible representation 7 of 2l is, for a suitable choice of 11; and p2, a constituent
of p(1,p2). That is there should be two subspace By and Bs of B(p1, p12) invariant under A so
that B; contains By and 7 is equivalent to the representation of 2 on the quotient By /Bo. If x is
a quasi-character of F'* then 7 is a constituent of p(u1, p2) if and only if x ® 7 is a constituent of
p(xp1, xp2). Thus we may suppose that 7(.J) is 0 so that 7 is actually a representation of 2, the
universal enveloping algebra of the Lie algebra of Zg \ Gg. Since this group is semi-simple the desired
result is a consequence of the general theorem of Harish-Chandra [6].
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It is an immediate consequence of the last part of the theorem that every irreducible admissible
representations of {2, ¢} is the representation associated to an irreducible admissible representation of
Hg. Thus we have classifed the irreducible admissible representations of {2, ¢} and of Hg. We can
write such a representation of Hg as 7(p1, p2) or o (1, f2).

In the first paragraph we associated to every quasi-character w of C* a representation of r,, of
G the group of matrices with positive determinant. r,, acts on the space of functions ® in §(C') which

satisfy
®(xh) = w(h) ®(x)

for all h such that hh = 1. All elements of §(C,w) are infinitely differentiable vectors for 7, so that 7,
also determines a representation, again called r,,, of . r,, depended on the choice of a character of R.

If that character is
w(x) — e27‘ruxi

then
rw(X4) @(2) = 2muzzi)®(2).

Lemma5.12 Let §o(C,w) be the space of functions ® in §(C,w) of the form
B(z) = e 2"UZZp(2, %)

where P(z,Z) is a polynomial in z in Z. Then S$o(C,w) is invariant under A and the restriction of
rw to 80(C,w) is admissible and irreducible.

It is well known and easily verified that the function e—2mlulzZ g jts own Fourier transform

provided of course that the transform is taken with respect to the character

Ye(z) = (2 + 2)

and the self-dual measure for that character. From the elementary properties of the Fourier transform
one deduces that the Fourier transform of a function

O(z) = e 21" P(z, 7)
where P is a polynomial in z and Z is of the same form. Thus r,,(w) leaves 8;(C, w) invariant. Recall

that
(0 1
w={_1 o

80(C,w) is clearly invariant under r,, (X ). Since X_ = Adw(X) it is also invariant under X. But
X1 X_ —X_ X, = Zso thatitis also invariant under Z. We saw in the first paragraph that if wy is

the restriction of w to R* then
a O
T (( 0 a )) = (sgna)wo(a)l

thus 7, (J) = ¢l if wg(a) = a® for a positive a. In conclusion 8y(C, w) is invariant under g and therefore
under 2.
If
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where 7 is a complex number and m and n are two integers, one 0 and the other non-negative, the

functions
<I>p(z) _ e—27‘r\u|zz Lntp zm—&-p’

with p a non-negative integer, form a basis of 8,(C, w). Suppose as usual that % =

21 Oy
o _ 1 9 1 0 : / . .
that 5= = 5 37 — 5; 5, Then the Fourier transform &), of ®), is given by
n+ m-+
o’ (Z) _ 1 gnre o gmTe —27|u|zZ
P (2miu)mtnt2p gzntr gzmtr
which is a function of the form
p—1
(i sgn u)m+n+2pe—2ﬂ'|u\z2 Fn+p ,m+p + Zaqe—Qﬂu\zZ Fn+q ,mtq
q=0

Only the coefficient a,_; interests us. It equals

(isgnu)mtntr-l
1 — 1)}

T {p(n+m+1+p-1)}
Since

ro(w) ®(2) = (isgnu) ®'(2)
and

ro(X2) = (1) "y (w) 1o (X4 ) 7(w)
while
rw(X4)®p = (2mui)Ppiq

we see that

p—1
ro(X_)®p = (27mui)Ppiq — (isgnu)(n+m+2p+1)P, + quq)q.
q=0

Since U = X1 — X_ we have

p—1
ro(U)®, = (isgnu)(n+m+2p+1)®, — qui)q
1=0

and we can find the functions ¥,, p = 0,1, - - -, such that

p—1
Uy, =, + Zapqq)q
q=0

while
ro(U)¥, = (isgnu)(n+m+2p+ 1)¥,,.

These functions form a basis of §y(C, w). Consequently r, is admissible.
If it were not irreducible there would be a proper invariant subspace which may or not contain
®y. In any case if §; is the intersection of all invariant subspaces containing ®, and 85 is the sum of all
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invariant subspaces which do not contain ®( both §; and 83 are invariant and the representation m; of
2on §;/85 N8 is irreducible. If the restriction of 7, to the Lie algebra of SO(2,R) contains x,, it does
not contain x_,. Thus 7; is not equivalent to the representation X — 71 (Ade(X)). Consequently
the irreducible representation 7 of {2, ¢} whose restriction to 2 is m; must be one of the special
representations o (y1, j12) or a representation (111, 127). Examining these we see that since 7 contains
kq with ¢ = sgnu(n + m + 1) it contains all the representations k, with ¢ = sgnu(n +m + 2p + 1),
p = 0,1,2,---. Thus §; contains all the functions ¥, and 8, contains none of them. Since this
contradicts the assumption that 8¢(C, w) contains a proper invariant subspace the representation r,, is
irreducible.

For the reasons just given the representation m of {2, ¢} whose restriction to 2 contains r,, is
either a o(pu1, pi2) or a w(pua, an). Itis a w(py, pan) if and only if n +m = 0. Since

(6 1)) =wt@smar =@t

we must have ju1 10 = won in the first case and 12 = wy in the second. wy is the restriction of w to R*.
Since the two solutions u? = wy differ by 7 they lead to the same representation. If n + m = 0 then
13 = wo if and only if w(z) = p1 (v(2)) forall z in C*. Of course v(z) = 2Z.

Suppose n + m > 0 so that 7 is a o(p1, p2). Let pi(t) = |t|sl(ﬁ)ml Because of Theorem 5.11
we can suppose that m; = 0. Let s = s; — s;. We can also suppose that s is non-negative. If

m = |my — mg| then s — m is an odd integer so m and my are determined by s. We know what
representations of the Lie algebra of SO(2, R) are contained in 7. Appealing to Lemma 5.7 we see that
s = n + m. Since p e = nNwo we have s1 + so = 2r. Thus s; = r + mTJr” and sy = r — ”‘;m In all

cases the representation 7 is determined by w alone and does not depend on 1. We refer to it as 7(w).
Every special representation o (p1, f12) is a m(w) and 7(w) is equivalent to 7(w’) if and only if w = W’
orw'(z) = w(2).

We can now take the first step in the proof of the local functional equation.

Theorem 5.13 Let m be an infinite-dimensional irreducible admissible representation of Hg. If 1 is
a non-trivial additive character of R there exists exactly one space W (mw, ) of functions W on Gg

with the following properties
1 =z
w((y 1)e)=s@w
for all x in F.

(1) If W is in W(m, 1)) then
(i) The functions W are continuous and W (m,v) is invariant under p(f) for all f in Hg.
Moreover the representation of Hg on W (m, 1) is equivalent to 7.
(i) If W is in W(m, 1)) there is a positive number N such that

o (s ) -ou

We prove first the existence of such a space. Suppose ™ = m(w) is the representation associated
to some quasi-character w of C*. An additive character ¢ being given the restriction of 7 to 2 contains
the representation r,, determined by w and 1. For any ® in §(C,w) define a function Wg on G4 by

Wa(g) =ru(g9) 2(1)

as |t| — oo.
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Since p(g) Wo = W, (4)a the space of such functions is invariant under right translations. Moreover

wa (o 1)) =@ Walo

Every vector in §(C, w) is infinitely differentiable for the representation r,,. Therefore the functions
Wg are all infinitely differentiable and, if X isin %,

p(X)Ws =W, (x)e-

In particular the space Wy (m, 1) of those Wy for which @ is in §¢(C,w) is invariant under 2. We set
Wa equal to 0 outside of G and regard it as a function on Gr.

We want to take W (m,v) to be the sum of Wi (m, ) and its right translate by . If we do it
will be invariant under {2/, ¢} and transform according to the representation 7 of {2, }. To verify the
second condition we have to show that it is invariant under Hg. For this it is enough to show that
8o(C,w) is invariant under the elements of H with support in Gy. The elements certainly leave the
space of functions in §(C, w) spanned by the functions transforming according to a one-dimensional
representation of SO(2,R) invariant. Any function in §(C,w) can be approximated uniformly on
compact sets by a function in 8¢(C,w). If in addition it transforms according to the representation
kyn, of SO(2,R) it can be approximated by functions in §¢(C,w) transforming according to the same
representation. In other words it can be approximated by multiples of a single function in §,(C, w) and
therefore is already in 8y (C, w).

The growth condition need only be checked for the functions Wy in Wy (7, ). If a is negative

(5 1)

B(z) = e 2"UZZp(2, %)

but if a is positive and

it is equal to
e—27r\u|ap(a1/27a1/2) w(a) ‘a’1/2’

and certainly satisfies the required condition.
We have still to prove the existence of W (m, 1) when m = m(u1, p2) and is infinite dimensional.
As in the first paragraph we set

Oz, ®) = [ a(®) " (02847 ¥4
RX
for ® in §(R®) and we set

Wa(g) = pu(detg) |detg|"/* 0 (1, 2, 7(9)®)
= H(Mla 25 Ty o (g)(I))
Ty, 1 the representation associated to the quasi-character (a,b) — pi(a) pu2(b) of R* x R*. If X is
in®A
p(X)Wa(g) =W,, .. (x)8(9)

Let W (1, p12; 1) be the space of those Wy which are associated to O (2, R)-finite functions ®. W (1, p2; 1)
is invariant under {2, ¢} and under Hp.



Chapter 1 92

Lemma 5.13.1 Assume py(x) sy (z) = |z|® (‘—il)m with Res > —1 and m equal to 0 or 1. Then
there exists a bijection A of W (1, po; 1) with B(u1, pe) which commutes with the action of {A,e}.

We have already proved a lemma like this in the non-archimedean case. If ® is in §(R?) and w
is a quasi-character of R* set

2w, ®) = /@(o,t)w(t)dX(t)

The integral converges if w(t) = |t|"(sgnt)™ with r > 0. In particular under the circumstances of the
lemma

fa(g) = pi(detg) |detg|? 2 (11 py  ar, p(g) @)

is defined. As usual ag(z) = |z|. A simple calculation shows that

(0 )9) = mlan) nata) |27 o)

ag CL_2
If @~ is the partial Fourier transform of ® introduced in the first paragraph then

p(g) fo~ = f<I>1~

if &1 =7, 4, (f)P. A similar relation will be valid for a function f in Hg, that is

p(f)fo~ = f<I>1~

if &1 =1y, 4, (f)®. Inparticular if fo~ is O(2, R)-finite there is an elementary idempotent £ such that
p(§)fo~ = fo~. Thus, if 1 = 1, 1, (§)®, fo~ = fe~ and @7 is O(2,R) finite. Of course fp~ is
O(2, R)-finite if and only if it belongs to B (u1, p2).

We next show that given any f in B(u, o) there is an O(2, R)-finite function ® in §(R?) such
that f = fe~. According to the preceding observation together with the self-duality of $(R?) under
Fourier transforms it will be enough to show that for some ® in §(R?), f = fs. In fact, by linearity, it
is sufficient to consider the functions ¢,, in B(j1, p2) defined earlier by demanding that

cosf sinf  ing
P\ _sing cosh)) €

n must be of the same parity as m. If § = sgnn set

O(x,y) = e_“(IQ'H’Q)(ﬂS + Z'(Sy)‘"|

cosf sinf  ind
p<<—sin«9 cos@))é_e ®

Since p(g) fo = fp(g)» When detg = 1 the function fg is a multiple of ,,. Since

Then

o
fale) = " [ et g
—0o0
—(Unl+s+1)
2

plnl+s+1)

= ()" — 5
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which is not 0, the function fs is not 0.

The map A will transform the function W¢ to fo~. It will certainly commute with the action of
{2, e}. That A exists and is injective follows from a lemma which, together with its proof, is almost
identical to the statement and proof of Lemma 3.2.1.

The same proof as that used in the non-archimedian case also shows that W (u1, p2;v) =
W (pa, pi1;1) for all ¢. To prove the existence of W (m,¢) when m = 7w(u1,u2) and is infinite-
dimensional we need only show that when 1y and ps satisfy the condition the previous lemma the
functions W in W (1, p12; 1) satisfy the growth condition of the theorem. We have seen that we can
take W = Wg with

O~ (2,y) = e "I P(x,y)

where P(z,y) is a polynomial in x and y. Then
(z,y) = e " TVIQ(a, y)

where Q(z,y) is another polynomial. Recall that ¢(x) = *™“%. Then

Wa ((0 ?)) —pnfa)af 2 [ TGt ut ) o (gt a7

The factor in front certainly causes no harm. If § > 0 the integrals from —oo to —¢ and from ¢ to oo
decrease rapidly as |a| — oo and we need only consider integrals of the form

)
/ 6—7r(a2t2+u2t72)t7" dt
0

where 7 is any real number and v is fixed and positive. If v = ¥ then u* = v* + % and e~ 37wt 7y
is bounded in the interval [0, §] so we can replace u by v and suppose r is 0. We may also suppose that
a and v are positive and write the integral as

)
—1,2
e—27ra'u/ e—ﬂ(at—l-vt ) dt.
0

The integrand is bounded by 1 so that the integral is O(1). In any case the growth condition is more
than satisfied.

We have still to prove uniqueness. Suppose Wi (7, ) is a space of functions satisfying the first
two conditions of the lemma. Let x,, be a representation of the Lie algebra of SO(2, R) occurring in 7
and let W be a function in W (7, 1) satisfying

cosf) sinf _ ind
W <g<—sin9 cos@>>_e Wi(9).

_ e O
=1 << 0 7

If
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the function W is completely determined by (. It is easily seen that

iz 0
p(U)W1 (( " | )) =inei(t)
172
Zywy (| 17 — ot AL
P (( 0 dt
Gz 0
p(X)Wh << MO 1 )) =iutpi(l).
172

Thus if ] and o] correspond to p(V, )Wy and p(V_ )W

o1 (1) = 207 — (2ut —n) 1
and
NGES 2t% + (2ut — n) @1(t).
Since

1 U?
D: — _ — 7 _
2V V, —iU 5

p(D)W; corresponds to

2t

i dp1 dp2
dt dt

g t—— — 2t —) + (2nut — 2u*t?) ;.

Finally p(e)W; corresponds to ¢1(—t).

Suppose that 7 is either (1, p2) or o (1, p2). Let pypy *(t) = |t[*(sgnt)™. If s — m is an
odd integer we can take n = |s| + 1. From Lemma 5.6 we have p(V_)W; = 0 so that ¢, satisfies the
equation

d
2t % + (2ut — n)p1 = 0.

If the growth condition is to be satisfied ¢; must be 0 for ut < 0 and a multiple of [¢|"/2e~"* for ut > 0.

Thus W is determined up to a scalar factor and the space W (7, v) is unique.
s2—1

Suppose s — m is not an odd integer. Since p(D)W; = *5=W the function ¢ satisfies the
equation
d%p1 5 nu  (1—s?)
J— —_— = O
a2 +4q—u + y + 12 Y1

We have already constructed a candidate for the space W (m,1)). Let’s call this candidate Wa (7, ).
There will be a non-zero function ¢ in it satisfying the same equation as ¢;. Now ¢; and all of
its derivatives go to infinity no faster than some power of |t| as t — oo while as we saw g5 and its
derivations go to 0 at least exponentially as |t| — oco. Thus the Wronskian

doa _ dpr
#1 dt P2 i
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goes to 0 as |t| — oo. By the form of the equation the Wronskian is constant. Therefore it is identically
0 and p1(t) = awa(t) fort > 0 and ¢1(t) = B p2(t) for t < 0 where « and 3 are two constants. The
uniqueness will follow if we can show that for suitable choice of n we have av = 3. If m = 0 we can
take n = 0. If pq(t) = [t|** (sgnt)™ then w(e)W; = (—1)™2W7 so that p1(—t) = (—1)"' ¢4 (t) and
w2 (—t) = (—1)™2¢y(t). Thus a = (3. If m = 1 we can take n = 1. From Lemma 5.6

W(V_l)Wl = (—1)mlS7T(E)W1

so that

2t % + (2ut — 1)p1(t) = (—1)™ sp1(—1).

Since 9 satisfies the same equation o = 3.

If 44 is a quasi-character of R* and w is the character of C* defined by w(z) = u(zZz) then
m(w) = w(p, un). We have defined W (m(w), ) in terms of w and also as W (111, f12; 7). Because of the
uniqueness the two resulting spaces must be equal.

Corollary 5.14 Let m and n be two integers, one positive and the other 0. Let w be a quasi-character

of C* of the form

w(z) =(z2)""  ym gn

and let uy and ps be two quasi-characters of R satisfying pipe(z) = |z|?"(sgnz)™ "+ and

pipy t(x) = 2™ sgna so that w(w) = o(py, p2). Then the subspace Bg(uy, po) of Bluy, ) is
defined and there is an isomorphism of B(p1, pro) with W (u1, pa; 1) which commutes with the action
of {~A,e}. The image Wy(p1, po; ) of Bs(p1, u2) is W(r(w), ). If ® belongs to §(R?) and Wy
belongs to W (1, p2; 1) then We belongs to Wy (uq, o3 v) if and only if

/ ' —®(x,0)dz =0
o Oy
for any two non-negative integers i and j withi+j=m+n— 1.

Only the last assertion is not a restatement of previously verified facts. To prove it we have to
show that fg~ belongs to B(u1, p2) if and only if ® satisfies the given relations. Let f = fg~. Itis
in B (u1, p2) if and only if it is orthogonal to the functions in B ¢(uy ', uy ') Since By(uy !, puy ') is
finite-dimensional there is a non-zero vector fj in it such that p(X ) fo = 0. Then

oo(2 1)) -0

and f is orthogonal to fj if and only if

/Rf<w<(1) ?)) dy = 0. (5.14.1)

The dimension of B f(ul_l, p3 %) is m + n. It follows easily from Lemmas 5.6 and 5.7 that the vectors
p(XE) p(w) fo,0 < p < m+n—1spanit. Thus fisin B,(u, p12) if and only if each of the functions
p(X%) p(w) f satisfy (5.14.1). For f itself the left side of (5.14.1) is equal to

/{/q)w (m’t)w(é f))“l(t)uz‘l(t)ltldxt} da,
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Apart from a positive constant which relates the additive and multiplicative Haar measure this equals

/ / —t, —tx)t™ " sgnt dt dx
1)m+”—1//¢>~(t, z)t" T dt do

(—1)mn-1 / B(t,0) ™+ g, (5.14.2)

which is

or, in terms of ®,

By definition
Tpa,pe (w) @(z,y) = (I)I(y? z)
and an easy calculation based on the definition shows that
THI:HQ (Xf-) (I)(JI, y) = (2i7ruxy)p (I)(.’E, y)

p . .
Thus 7y, 1, (XE) 701w (w) @ is @ non-zero scalar times

o%p
oxP OyP

' (y, )

For this function (5.14.2) is the product of a non-zero scalar and

8217 l m+n—1
// Bar 8yp ,T) T dx.

ap (I) (0 ) m+n—p—1 dx
OyP

Integrating by parts we obtain

except perhaps for sign. If we again ignore a non-zero scalar this can be expressed in terms of ® as

8m+n—p— 1

W@(CE, 0) l’p dZC

The proof of the corollary is now complete.

Before stating the local functional equation we recall a few facts from the theory of local zeta-
functions. If F'is R or C and if ® belongs to S(F') we set

Z(was, ®) = /q)(a) w(a) |a|3 d*a.

w is a quasi-character. The integral converges in a right half-plane. One defines functions L(s,w) and
(s, w, ¥ p) with the following properties:
(a) For every ® the quotient
Z(wak, @)
L(s,w)
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has an analytic continuation to the whole complex plane as a holomorphic function. Moreover
for a suitable choice of @ it is an exponential function and in fact a constant.
(b) If &' is the Fourier transform of ® with respect to the character 5 then

Z(w tap @)

Z(way, @)
L(1 —s,w™1) '

L(s,w)

= 5(57 W, wF)
If F =Rand w(z) = |z|i(sgnz)™ with m equal to 0 or 1 then

L(s,w) = p~z(strtm) F<78 rr m)

2

and if Yp(z) = e*™iu
. m s—i—r—%
e(s,w,p) = (isgnu)™ |ulg .

If ¥ =Cand

w(x) =|z|ca™z"

where m and n are non-negative integers, one of which is 0, then
L(s,w) = 2(2m) " T Tm+)D (s 4 4+ m 4 n).

Recall that |z|c = zZ. If ¢ (2) = etm Re(w?)

e(s,w,Yr) =i"T"w(w) jw %_1/2.
These facts recalled, let 7 be an irreducible admissible representation of Hg. If m = m(p1, p12) we
set
L(Sa 7T) - L(Sa Ml) L(Sa M2)
and

5(85 , wR) = 5(57 M1, wR) 5(85 H2, ¢R)

and if 7 = m(w) where w is a character of C* we set
L(s,m) = L(s,w)
and

5(57 T, ¢R) = )‘(C/Ra 'l/}R) 6(87 W, wC/R)

if o /r(2) = Yr(2+ Z). The factor A\(C/R, 1r) was defined in the first paragraph. It is of course neces-
sary to check that the two definitions coincide if 7(w) = 7(pu1, p2). This is an immediate consequence
of the duplication formula.
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Theorem 5.15 Let w be an infinite-dimensional irreducible admissible representation of Hgr. Let w
be the quasi-character of R* defined by

(5 2)) =etor

If W is in W(m, 1) set

\I/(g,s,W)—/RX W((S (1)>g> la*~Y? d%a
wasw)= [ w((§ 0)a)e @l

and let
V(g,s,W) = L(s,m) ®(g,s, W)

U(g,s,W) = L(s,7) ®(g, s, W).

(i) The integrals defined ¥(g,s, W) and \Tl(g, s, W) are absolutely convergent in some right half-
plane. B
(i) The functions ®(g,s, W) and ®(g,s, W) can be analytically continued to the whole complex
plane as meromorphic functions. Moreover there exists a W for which ®(e,s, W) is an
exponential function of s.
(iii) The functional equation

(I’(’U)g, 1- S, W) = 5(377Ta¢) (I)(gv S, W)

1s satisifed.

(iv) If W is fized V(g,s, W) remains bounded as g varies in a compact set and s varies in the
region obtained by removing discs centred at the poles of L(s, ) from a vertical strip of finite
width.

We suppose first that m = 7(p1, p12). Then W (m,¢) = W (u1, po;¢). Each Win Wy, po; 1) is
of the form W = W4 where s e
O(z,y) =TTV P(z,y)

with P(z,y) a polynomial. However we shall verify the assertions of the theorem not merely for W in
W (r, ) but for any function W = Wg with ® in §(IR?). Since this class of functions is invariant under
right translations most of the assertions need then be verified only for g = e.

A computation already performed in the non-archimedean case shows that

\11(67 S, W) = Z(/J:l(lfg, M2aﬁ9§7 (I))

the integrals defining these functions both being absolutely convergent in a right half-plane. Also for
s in some left half-plane

U(w,1—s,W)=Z(p oy % p5 oy °, @)

if @’ is the Fourier transform of ®.

Since ® can always be taken to be a function of the form ®(x,y) = ®;(x) ®2(y) the last assertion
of part (ii) is clear. All other assertions of the theorem except the last are consequence of the following
lemma.
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Lemma5.15.1 For every ® in S(R?) the quotient
Z(nol a2, ®)
L(s, p1) L(s, p2)
is a holomorphic function of (s1,s2) and
Z(pytag o pytag 2, @)
L(1 = 51,47 ) L(1 = 52,113 ")

1s equal to
Z(NIO‘ISRI ) :UQO‘ISRZ ) QJ)
L(s1, 1) L(s2, p2) -
We may as well assume that y; and ju9 are characters so that the integrals converge for Re s; > 0
and Re s5 > 0. We shall show that when 0 < Res; < 1land 0 < Ress <1

8(817M17¢) 8(827/“1’2"[/J)

Z(prog!, poa?, ®) Z(py oy "t pg a2 W)

is equal to
Zuy g™y g, @) Z(mog, peog?, ¥)

if ® and W belong to $(R?).
The first of these expressions is equal to

/ ¢<x,y>qﬂ<u,v>m(g) m(%)

if we assume, as we may, that d*z = |z|~! dz. Changing variables we obtain

[ i@ uatlel 1 { [ @) wiw o dudo| aaary

The second expression is equal to

/Mfl(w) pa () 7 [yt {/‘P'(xu,yv)‘l’(u’v) dudv} d*zdy

which equals

[ 1@ ato) el { [l @y ) w0) dudv} Pz d*y,

Since the Fourier transform of the function (u,v) — ®(xu,yv) is the function |zy|~1®' (x = u, y~1v)
the Plancherel theorem implies that

/@(mu,yv) U (u,v) dudv = /\xy]_lé/(x_lu,y_lv) U(u,v) dudv.

The desired equality follows.
Choose ®; and ®; in §(R) such that

L(s, i) = Z(pici, ;)
and take ¥(z,y) = ®1(z) P2(y). The functional equation of the lemma follows immediately if 0 <
s1 < land 0 < sp < 1. The expression on one side of the equation is holomorphic for 0 < Re s; and
0 < Re s2. The expression on the other side is holomorphic for Re s; < 1 and Re s < 1. Standard and
easily proved theorems in the theory of functions of several complex variables show that the function

they define is actually an entire function of s; and s,. The lemma is completely proved.
For m = 7(p1, p2) the final assertion of the theorem is a consequence of the following lemma.

S1 So

d*xd*ydudv

T

u

Y
v
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Lemma5.15.2 Let ) be a compact subset of $(R?) and C a domain in C? obtained by removing balls
about the poles of L(s1, 1) L(sa, pe) from a tube a; < Resy < by, as < Resy < by. Then

S1 So
Z(MlaR ) ,U'QaR 9 (p)
remains bounded as ® varies in Q and (s1,s2) varies in C.

The theorems in the theory of functions alluded to earlier show that it is enough to prove this
when either both a; and a are greater than 0 or both b; and b are less than 1. On a region of the first
type the functions Z(u; o, peag, ®) is defined by a definite integral. Integrating by parts as in the
theory of Fourier transforms one finds that

Z(pag " ppag? T @) = O(rf +13) 7"

as 7'12 + 7'22 — oo uniformly for ® in () and a; < o; < by, as < 02 < by which is a much stronger
estimate than required. For a region of the second type one combines the estimates just obtained with
the functional equation and the known asymptotic behavior of the I'-function.

Now let w be a quasi-character of C* which is not of the form w(z) = x(zZz) with x a quasi-
character of R* and let 7 = w(w). W (m,v) is the sum of W7 (7, ) and its right translate by e. It is
easily seen that

B(g,5,p(e)W) = w(~1) B(e™'ge,5,W)

and that B B
d(wg, s, p(e)W) = w(—1) d(we'ge, s, W)
Thus it will be enough to prove the theorem for W in Wy (7, 1)). Since
®(cg, 5, W) = 2(g,5, W)

and

&)(weg,s,W) = &)(wg,s,W)
we can also take g in G1. Wi (m, 1)) consists of the functions Wg with @ in 8y(C,w). We prove the
assertions for functions Wy with ® in 8§(C,w). Since this class of functions is invariant under right
translations by elements of G we may take g = e.
As we observed in the first paragraph we will have

Ve, s, W) =Z(wag,P)
U(w,1—5W)=AC/R,¢) Z(w 'al™, )

in some right half plane and the proof proceeds as before. If w(z) = (22)"2™ 2" and p — ¢ = n — m the
function
(I’(Z) _ e—27‘r\u|z22p2q

belongs to 8¢(C, w) and
o0
Z(wag, ®) = 27T/ 6_2ﬂ|u‘t2t2(8 +r+p+m)dt
0

= 727 |u|) TP D(s 41+ p + m)

Taking p = n we obtain an exponential times L(s,w). The last part of the theorem follows from an
analogue of Lemma 5.15.2.

The local functional equation which we have just proved is central to the Hecke theory. We
complete the paragraph with some results which will be used in the paragraph on extraordinary
representations and the chapter on quaternion algebras.
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Lemma 5.16 Suppose 1 and pe are two quasi-characters for which both m = w(uy, u2) and o =
o(u1, u2) are defined. Then
L(1—s,0)e(s,0,¢) L1 —s,7)e(s, m,¢)

L(s,0) L(s,m)

and the quotient

1s an exponential times a polynomial.

Interchanging 11 and ys if necessary we may suppose that p1 5 ' () = || (sgn )™ with s > 0.
According to Corollary 5.14, W (o, 1)) is a subspace of W (u1, pi2,). Although W (u1, p12,) is not
irreducible it is still possible to define ¥ (g, s, W) and ¥(g, s, W) when W lies in W (1, pi2, ) and to
use the method used to prove Theorem 5.15 to show that

\Il(wg7 1— S, W)
L(1—s,7)

is equal to
V(g,s,W)
L(s,m)

Applying the equality to an element of W (o, 1)) we obtain the first assertion of the lemma. The second
is most easily obtained by calculation. Replacing p1 and ps2 by uiak and usaf is equivalent to a
translation in s so we may assume ps is of the form pus(x) = (sgnz)™2. There is a quasi-character
w of C* such that 0 = 7(w). If w(z) = (22)"2™z" then py(z) = |z|> T+ (sgng)mtnmetl
pi(z) = ™ " (sgnx)™2*! so that r = 0. Apart from an exponential factor L(s,o) is equal to
I'(s + m + n) while L(s, ) is, again apart from an exponential factor,

P<8+m+n+m1>r<5+m2> (5.16.1)

(s, m)

2 2
where m; = m + n + my + 1 (mod 2). Since m + n > 0 the number
1
k= §(m+n+1+m1—m2)—1

is a non-negative integer and my + 2k = m + n +m; — 1. Thus

-1

k
s+ mgo 1 . s+tm+n+mp+1
F( 5 )- girt L (s m2 +2)) F( 5 )
j=0

By the duplication formula the product (5.16.1) is a constant times an exponential times

I(s+m+n+mq)
[T}-o(s + m2 +2)

=0

If m; = 0 the lemma follows immediately. If m; =1
F(s+m+n+my)=(s+m+n)T'(s+m+n)

and my + 2k = m + n. The lemma again follows.



