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Foreword

It is a truism that in the past decade density functional theory has made its way from a
peripheral position in quantum chemistry to center stage. Of course the often excellent
accuracy of the DFT based methods has provided the primary driving force of this develop-
ment. When one adds to this the computational economy of the calculations, the choice for
DFT appears natural and practical. So DFT has conquered the rational minds of the quan-
tum chemists and computational chemists, but has it also won their hearts? To many, the
success of DFT appeared somewhat miraculous, and maybe even unjust and unjustified.
Unjust in view of the easy achievement of accuracy that was so hard to come by in the wave
function based methods. And unjustified it appeared to those who doubted the soundness of
the theoretical foundations. There has been misunderstanding concerning the status of the
one-determinantal approach of Kohn and Sham, which superficially appeared to preclude
the incorporation of correlation effects. There has been uneasiness about the molecular
orbitals of the Kohn-Sham model, which chemists used qualitatively as they always have
used orbitals but which in the physics literature were sometimes denoted as mathematical
constructs devoid of physical (let alone chemical) meaning.

Against this background the Chemist’s Guide to DFT is very timely. It brings in the
second part of the book the reader up to date with the most recent successes and failures of
the density functionals currently in use. The literature in this field is exploding in such a
manner that it is extremely useful to have a comprehensive overview available. In particu-
lar the extensive coverage of property evaluation, which has very recently been enormously
stimulated by the time-dependent DFT methods, will be of great benefit to many (compu-
tational) chemists. But I wish to emphasize in particular the good service the authors have
done to the chemistry community by elaborating in the first part of the book on the ap-
proach that DFT takes to the physics of electron correlation. A full appreciation of DFT is
only gained through an understanding of how the theory, in spite of working with an orbital
model and a single determinantal wave function for a model system of noninteracting elec-
trons, still achieves to incorporate electron correlation. The authors justly put emphasis on
the pictorial approach, by way of Fermi and Coulomb correlation holes, to understanding
exchange and correlation. The present success of DFT proves that modelling of these holes,
even if rather crudely, can provide very good energetics. It is also in the simple physical
language of shape and extent (localized or delocalized) of these holes that we can under-
stand where the problems of that modelling with only local input (local density, gradient,
Laplacian, etc.) arise. It is because of the well equilibrated treatment of physical principles
and chemical applications that this book does a good and very timely service to the compu-
tational and quantum chemists as well as to the chemistry community at large. I am happy
to recommend it to this audience.

EVERT JAN BAERENDS, Amsterdam
October 1999
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Preface

This book has been written by chemists for chemists. In particular, it has not been written
by genuine theoretical chemists but by chemists who are primarily interested in solving
chemical problems and in using computational methods for addressing the many exciting
questions that arise in modern chemistry. This is important to realize right from the start
because our background of course determined how we approached this project. Density
functional theory is a fairly recent player in the computational chemistry arena. WK, the
senior author of this book remembers very well his first encounter with this new approach
to tackle electronic structure problems. It was only some ten years back, when he got a
paper to review for the Journal of Chemical Physics where the authors employed this method
for solving some chemical problems. He had a pretty hard time to understand what the
authors really did and how much the results were worth, because the paper used a language
so different from conventional wave function based ab initio theory that he was used to. A
few years later we became interested in transition-metal chemistry, the reactivity of
coordinatively unsaturated open-shell species in mind. During a stay with Margareta
Blomberg and Per Siegbahn at the University of Stockholm, leading researchers in this
field then already for a decade, MCH was supposed to learn the tricks essential to cope with
the application of highly correlated multireference wave function based methods to tackle
such systems. So he did – yet, what he took home was the feeling that our problems could
not be solved for the next decade with this methodology, but that there might be something
to learn about density functional theory (DFT) instead. It did not take long and DFT be-
came the major computational workhorse in our group. We share this kind of experience
with many fellow computational chemists around the globe. Starting from the late eighties
and early nineties approximate density functional theory enjoyed a meteoric rise in compu-
tational chemistry, a success story without precedent in this area. In the Figure below we
show the number of publications where the phrases ‘DFT’ or ‘density functional theory’
appear in the title or abstract from a Chemical Abstracts search covering the years from
1990 to 1999. The graph speaks for itself.
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This stunning progress was mainly fueled by the development of new functionals –
gradient-corrected functionals and most notably hybrid functionals such as B3LYP – which
cured many of the deficiencies that had plagued the major model functional used back then,
i. e., the local density approximation. Their subsequent implementation in the popular quan-
tum chemistry codes additionally catalyzed this process, which is steadily gaining momen-
tum. The most visible documentation that computational methods in general and density
functional theory in particular finally lost their ‘new kid on the block’ image is the award of
the 1998 Noble Prize in chemistry to two exceptional protagonists of this genre, John Pople
and Walter Kohn.

Many experimental chemists use sophisticated spectroscopic techniques on a regular
basis, even though they are not experts in the field, and probably never need to be. In a
similar manner, more and more chemists start to use approximate density functional theory
and take advantage of black box implementations in modern programs without caring too
much about the theoretical foundations and – more critically – limitations of the method. In
the case of spectroscopy, this partial unawareness is probably just due to a lack of time or
motivation since almost any level of education required seems to be well covered by text-
books. In computational chemistry, however, the lack of digestible sources tailored for the
needs of chemists is serious. Everyone trying to supplement a course in computational
chemistry with pointers to the literature well suited for amateurs in density functional theory
has probably had this experience. Certainly, there is a vast and fast growing literature on
density functional theory including many review articles, monographs, books containing
collections of high-level contributions and also text books. Indeed, some of these were very
influential in advancing density functional theory in chemistry and we just mention what is
probably the most prominent example, namely Parr’s and Yang’s ‘Density-Functional Theory
of Atoms and Molecules’ which appeared in 1989, just when density functional theory
started to lift off. Still, many of these are either addressing primarily the physics commu-
nity or present only specific aspects of the theory. What is not available is a text book,
something like Tim Clark’s ‘A Handbook of Computational Chemistry’, which takes a
chemist, who is interested but new to the field, by the hand and guides him or her through
basic theoretical and related technical aspects at an easy to understand level. This is pre-
cisely the gap we are attempting to fill with the present book. Our main motivation to
embark on the endeavor of this project was to provide the many users of standard codes
with the kind of background knowledge necessary to master the many possibilities and to
critically assess the quality obtained from such applications. Consequently, we are neither
concentrating on all the important theoretical difficulties still related to density functional
theory nor do we attempt to exhaustively review all the literature of important applications.
Intentionally we sacrifice the purists’ theoretical standpoint and a broad coverage of fields
of applications in favor of a pragmatic point of view. However, we did our best to include as
many theoretical aspects and relevant examples from the literature as possible to encourage
the interested readers to catch up with the progress in this rapidly developing field. In
collecting the references we tried to be as up-to-date as possible, with the consequence that
older studies are not always cited but can be traced back through the more recent investiga-
tions included in the bibliography. The literature was covered through the fall of 1999.



IX

However, due to the huge amount of relevant papers appearing in a large variety of jour-
nals, certainly not all papers that should have come to our attention actually did and we
apologize at this point to anyone whose contribution we might have missed. One more
point: we have written this book dwelling from our own background. Hence, the subjects
covered in this book, particularly in the second part, mirror to some extent the areas of
interest of the authors. As a consequence, some chemically relevant domains of density
functional theory are not mentioned in the following chapters. We want to make clear that
this does not imply that we assign a reduced importance to these fields, rather it reflects our
own lack of experience in these areas. The reader will, for example, search in vain for an
exposition of density functional based ab initio molecular dynamics (Car-Parrinello) meth-
ods, for an assessment of the use of DFT as a basis for qualitative models such as soft- and
hardness or Fukui functions, an introduction into the treatment of solvent effects or the
rapidly growing field of combining density functional methods with empirical force fields,
i. e., QM/MM hybrid techniques and probably many more areas.

The book is organized as follows. In the first part, consisting of Chapters 1 through 7, we
give a systematic introduction to the theoretical background and the technical aspects of
density functional theory. Even though we have attempted to give a mostly self-contained
exposition, we assume the reader has at least some basic knowledge of molecular quantum
mechanics and the related mathematical concepts. The second part, Chapters 8 to 13 presents
a careful evaluation of the predictive power that can be expected from today’s density
functional techniques for important atomic and molecular properties as well as examples of
some selected areas of application. Of course, also the selection of these examples was
governed by our own preferences and cannot cover all important areas where density func-
tional methods are being successfully applied. The main thrust here is to convey a general
feeling about the versatility but also the limitations of current density functional theory.

For any comments, hints, corrections, or questions, or to receive a list of misprints and
corrections please drop a message at DFT-Guide@chemie.uni-marburg.de.

Many colleagues and friends contributed important input at various stages of the prepa-
ration of this book, by making available preprints prior to publication, by discussions about
several subjects over the internet, or by critically reading parts of the manuscript. In par-
ticular we express our thanks to V. Barone, M. Bühl, C. J. Cramer, A. Fiedler, M. Filatov, F.
Haase, J. N. Harvey, V. G. Malkin, P. Nachtigall, G. Schreckenbach, D. Schröder, G. E.
Scuseria, Philipp Spuhler, M. Vener, and R. Windiks. Further, we would like to thank
Margareta Blomberg and Per Siegbahn for their warm hospitality and patience as open
minded experts and their early inspiring encouragement to explore the pragmatic alterna-
tives to rigorous conventional ab initio theory. WK also wants to thank his former and
present diploma and doctoral students who helped to clarify many of the concepts by ask-
ing challenging questions and always created a stimulating atmosphere. In particular we
are grateful to A. Pfletschinger and N. Sändig for performing some of the calculations used
in this book. Brian Yates went through the exercise of reading the whole manuscript and
helped to clarify the discussion and to correct some of our ‘Germish’. He did a great job –
thanks a lot, Brian – of course any remaining errors are our sole responsibility. Last but
certainly not least we are greatly indebted to Evert Jan Baerends who not only contributed
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many enlightening discussions on the theoretical aspects and provided preprints, but who
also volunteered to write the Foreword for this book and to Paul von Ragué Schleyer for
providing thoughtful comments. MCH is grateful to Joachim Sauer and Walter Thiel for
support, and to the Fonds der Chemischen Industrie for a Liebig fellowship, which allowed
him to concentrate on this enterprise free of financial concerns. At Wiley-VCH we thank R.
Wengenmayr for his competent assistance in all technical questions and his patience. The
victims that suffered most from sacrificing our weekends and spare time to the progress of
this book were certainly our families and we owe our wives Christina and Sophia, and
WK’s daughters Juliana and Leora a deep thank you for their endurance and understanding.

WOLFRAM KOCH, Frankfurt am Main
MAX C. HOLTHAUSEN, Berlin
November 1999

Preface to the second edition

Due to the large demand, a second edition of this book had to be prepared only about one
year after the original text appeared. In the present edition we have corrected all errors that
came to our attention and we have included new references where appropriate. The discus-
sion has been brought up-to-date at various places in order to document significant recent
developments.

WOLFRAM KOCH, Frankfurt am Main
MAX C. HOLTHAUSEN, Marburg
April 2001
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PART A

The Definition of the Model

What is density functional theory? The first part of this book is devoted to this question and
we will try in the following seven chapters to give the reader a guided tour through the
current state of the art of approximate density functional theory. We will try to lift some of
the secrets veiling that magic black box, which, after being fed with only the charge density
of a system somewhat miraculously cranks out its energy and other ground state properties.
Density functional theory is rooted in quantum mechanics and we will therefore start by
introducing or better refreshing some elementary concepts from basic molecular quantum
mechanics, centered around the classical Hartree-Fock approximation. Since modern den-
sity functional theory is often discussed in relation to the Hartree-Fock model and the
corresponding extensions to it, a solid appreciation of the related physics is a crucial ingre-
dient for a deeper understanding of the things to come. We then comment on the very early
contributions of Thomas and Fermi as well as Slater, who used the electron density as a
basic variable more out of intuition than out of solid physical arguments. We go on and
develop the red line that connects the seminal theorems of Hohenberg and Kohn through
the realization of this concept by Kohn and Sham to the currently popular approximate
exchange-correlation functionals. The concept of the exchange-correlation hole, which is
rarely discussed in detail in standard quantum chemical textbooks holds a prominent place
in our exposition. We believe that grasping its characteristics helps a lot in order to acquire
a more pictorial and less abstract comprehension of the theory. This intellectual exercise is
therefore well worth the effort. Next to the theory, which – according to our credo – we
present in a down-to-earth like fashion without going into all the many intricacies which
theoretical physicists make a living of, we devote a large fraction of this part to very prac-
tical aspects of density functional theory, such as basis sets, numerical integration tech-
niques, etc. While it is neither possible nor desirable for the average user of density func-
tional methods to apprehend all the technicalities inherent to the implementation of the
theory, the reader should nevertheless become aware of some of the problems and develop
a feeling of how a solution can be realized.
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3

1 Elementary Quantum Chemistry

In this introductory chapter we will review some of the fundamental aspects of electronic
structure theory in order to lay the foundations for the theoretical discussion on density
functional theory (DFT) presented in later parts of this book. Our exposition of the material
will be kept as brief as possible and for a deeper understanding the reader is encouraged to
consult any modern textbook on molecular quantum chemistry, such as Szabo and Ostlund,
1982, McWeeny, 1992, Atkins and Friedman, 1997, or Jensen, 1999. After introducing the
Schrödinger equation with the molecular Hamilton operator, important concepts such as
the antisymmetry of the electronic wave function and the resulting Fermi correlation, the
Slater determinant as a wave function for non-interacting fermions and the Hartree-Fock
approximation are presented. The exchange and correlation energies as emerging from the
Hartree-Fock picture are defined, the concepts of dynamical and nondynamical electron
correlation are discussed and the dissociating hydrogen molecule is introduced as a proto-
type example.

1.1 The Schrödinger Equation

The ultimate goal of most quantum chemical approaches is the – approximate – solution of
the time-independent, non-relativistic Schrödinger equation

��Ψ = Ψ
� � � � � �� � � � � �

� � � �i 1 2 N 1 2 M i 1 2 N 1 2 MĤ (x ,x , ,x ,R ,R , ,R ) (x ,x , ,x ,R ,R , ,R ) (1-1)

where Ĥ  is the Hamilton operator for a molecular system consisting of M nuclei and N
electrons in the absence of magnetic or electric fields. Ĥ  is a differential operator repre-
senting the total energy:
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Here, A and B run over the M nuclei while i and j denote the N electrons in the system.
The first two terms describe the kinetic energy of the electrons and nuclei respectively,
where the Laplacian operator 2

q∇  is defined as a sum of differential operators (in cartesian
coordinates)
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and MA is the mass of nucleus A in multiples of the mass of an electron (atomic units, see
below). The remaining three terms define the potential part of the Hamiltonian and repre-
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1  Elementary Quantum Chemistry

sent the attractive electrostatic interaction between the nuclei and the electrons and the
repulsive potential due to the electron-electron and nucleus-nucleus interactions, respec-
tively. rpq (and similarly Rpq) is the distance between the particles p and q, i. e., rpq = | qp rr

��
− |.

)R,,R,R,x,,x,x( M21N21i

�
�

���
�

��
Ψ  stands for the wave function of the i’th state of the
system, which depends on the 3N spatial coordinates }r{ i

�
, and the N spin coordinates1

}s{ i  of the electrons, which are collectively termed }x{ i
�

 and the 3M spatial coordinates of
the nuclei, }R{ I

�
. The wave function Ψi contains all information that can possibly be known

about the quantum system at hand. Finally, Ei is the numerical value of the energy of the
state described by Ψi.

All equations given in this text appear in a very compact form, without any fundamental
physical constants. We achieve this by employing the so-called system of atomic units,
which is particularly adapted for working with atoms and molecules. In this system, physi-
cal quantities are expressed as multiples of fundamental constants and, if necessary, as
combinations of such constants. The mass of an electron, me, the modulus of its charge, |e|,
Planck’s constant h divided by 2π, � , and 4πε0, the permittivity of the vacuum, are all set to
unity. Mass, charge, action etc. are then expressed as multiples of these constants, which
can therefore be dropped from all equations. The definitions of atomic units used in this
book and their relations to the corresponding SI units are summarized in Table 1-1.

Table 1-1. Atomic units.

Quantity Atomic unit Value in SI units Symbol (name)

mass rest mass of electron 9.1094 x 10–31 kg me

charge elementary charge 1.6022 x 10–19 C e
action Planck’s constant/2π 1.0546 x 10–34 J s �

length 4πε0 � / me e
2 5.2918 x 10–11 m a0 (bohr)

energy 2
� / me

2
0� 4.3597 x 10–18 J Eh (hartree)

Note that the unit of energy, 1 hartree, corresponds to twice the ionization energy of a
hydrogen atom, or, equivalently, that the exact total energy of an H atom equals –0.5 Eh.
Thus, 1 hartree corresponds to 27.211 eV or 627.51 kcal/mol.2

The Schrödinger equation can be further simplified if we take advantage of the signifi-
cant differences between the masses of nuclei and electrons. Even the lightest of all nuclei,
the proton (1H), weighs roughly 1800 times more than an electron, and for a typical nucleus
such as carbon the mass ratio well exceeds 20,000. Thus, the nuclei move much slower than
the electrons. The practical consequence is that we can – at least to a good approximation –
take the extreme point of view and consider the electrons as moving in the field of fixed

1 Remember from basic quantum mechanics that to completely describe an electron its spin needs to be speci-
fied in addition to the spatial coordinates. The spin coordinates can only assume the values ±½; the possible
values of the spin functions α(s) and β(s) are: α(½) = β(–½) = 1 and α(–½) = β(½) = 0.

2 We use kcal/mol rather than kJ/mol throughout the book. 1 kcal/mol = 4.184 kJ/mol.
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nuclei. This is the famous Born-Oppenheimer or clamped-nuclei approximation. Of course,
if the nuclei are fixed in space and do not move, their kinetic energy is zero and the poten-
tial energy due to nucleus-nucleus repulsion is merely a constant. Thus, the complete Ham-
iltonian given in equation (1-2) reduces to the so-called electronic Hamiltonian

����
��� ˆˆˆ

r

1

r

Z

2

1
Ĥ

N

1i

N

ij ij

N

1i

M

1A iA

A
N

1i

2
ielec ++=+−∇−= ∑ ∑∑ ∑∑

= >= ==
. (1-4)

The solution of the Schrödinger equation with elecĤ  is the electronic wave function
Ψelec and the electronic energy Eelec. Ψelec depends on the electron coordinates, while the
nuclear coordinates enter only parametrically and do not explicitly appear in Ψelec. The
total energy Etot is then the sum of Eelec and the constant nuclear repulsion term,

�

= >
= ∑ ∑

M M
A B

nuc
ABA 1 B A

Z Z

r
, i. e.,

elecelecelecelecĤ Ψ=Ψ � (1-5)

and

nucelectot ��� += . (1-6)

The attractive potential exerted on the electrons due to the nuclei – the expectation value
of the second operator NeV̂  in equation (1-4) – is also often termed the external potential,
Vext, in density functional theory, even though the external potential is not necessarily lim-
ited to the nuclear field but may include external magnetic or electric fields etc. From now
on we will only consider the electronic problem of equations (1-4) – (1-6) and the subscript
‘elec’ will be dropped.

The wave function Ψ itself is not observable. A physical interpretation can only be asso-
ciated with the square of the wave function in that

Ψ � � � � � �
� �

2
1 2 N 1 2 N(x ,x , ,x ) dx dx dx (1-7)

represents the probability that electrons 1, 2, …, N are found simultaneously in volume
elements N21 xdxdxd

�
�

��
. Since electrons are indistinguishable, this probability must not

change if the coordinates of any two electrons (here i and j) are switched, viz.,

Ψ = Ψ� � � � � � � � � �
� � � �

2 2
1 2 i j N 1 2 j i N(x ,x , ,x ,x , ,x ) (x ,x , ,x ,x , ,x ) . (1-8)

Thus, the two wave functions can at most differ by a unimodular complex number eiφ. It
can be shown that the only possibilities occurring in nature are that either the two functions
are identical (symmetric wave function, applies to particles called bosons which have inte-

1.1  The Schrödinger Equation
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ger spin, including zero) or that the interchange leads to a sign change (antisymmetric wave
function, applies to fermions, whose spin is half-integral). Electrons are fermions with spin
= ½ and Ψ must therefore be antisymmetric with respect to interchange of the spatial and
spin coordinates of any two electrons:

Ψ = −Ψ� � � � � � � � � �
� � � �1 2 i j N 1 2 j i N(x ,x , ,x ,x , ,x ) (x ,x , ,x ,x , ,x ) . (1-9)

We will soon encounter the enormous consequences of this antisymmetry principle,
which represents the quantum-mechanical generalization of Pauli’s exclusion principle (‘no
two electrons can occupy the same state’). A logical consequence of the probability inter-
pretation of the wave function is that the integral of equation (1-7) over the full range of all
variables equals one. In other words, the probability of finding the N electrons anywhere in
space must be exactly unity,

Ψ =∫ ∫
� � � � � �

� � �
2

1 2 N 1 2 N(x ,x , ,x ) dx dx dx 1 . (1-10)

A wave function which satisfies equation (1-10) is said to be normalized. In the follow-
ing we will deal exclusively with normalized wave functions.

1.2 The Variational Principle

What we need to do in order to solve the Schrödinger equation (1-5) for an arbitrary mol-
ecule is first to set up the specific Hamilton operator of the target system. To this end we
need to know those parts of the Hamiltonian Ĥ  that are specific for the system at hand.
Inspection of equation (1-4) reveals that the only information that depends on the actual
molecule is the number of electrons in the system, N, and the external potential Vext. The
latter is in our cases completely determined through the positions and charges of all nuclei
in the molecule. All the remaining parts, such as the operators representing the kinetic
energy or the electron-electron repulsion, are independent of the particular molecule we are
looking at. In the second step we have to find the eigenfunctions Ψi and corresponding
eigenvalues Ei of Ĥ . Once the Ψi are determined, all properties of interest can be obtained
by applying the appropriate operators to the wave function. Unfortunately, this simple and
innocuous-looking program is of hardly any practical relevance, since apart from a few,
trivial exceptions, no strategy to solve the Schrödinger equation exactly for atomic and
molecular systems is known.

Nevertheless, the situation is not completely hopeless. There is a recipe for systemati-
cally approaching the wave function of the ground state Ψ0, i. e., the state which delivers
the lowest energy E0. This is the variational principle, which holds a very prominent place
in all quantum-chemical applications. We recall from standard quantum mechanics that the
expectation value of a particular observable represented by the appropriate operator Ô
using any, possibly complex, wave function Ψtrial that is normalized according to equation
(1-10) is given by
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= Ψ Ψ ≡ Ψ Ψ∫ ∫
� � �

� �
*
trial trial 1 2 N trial trial

ˆ ˆ ˆO O dx dx dx O (1-11)

where we introduce the very convenient bracket notation for integrals first used by Dirac,
1958, and often used in quantum chemistry. The star in *

trialΨ  indicates the complex-conju-
gate of Ψtrial.

The variational principle now states that the energy computed via equation (1-11) as the
expectation value of the Hamilton operator Ĥ  from any guessed Ψtrial will be an upper
bound to the true energy of the ground state, i. e.,

Ψ Ψ = ≥ = Ψ Ψtrial trial trial 0 0 0
ˆ ˆH E E H (1-12)

where the equality holds if and only if Ψtrial is identical to Ψ0. The proof of equation (1-12)
is straightforward and can be found in almost any quantum chemistry textbook.

Before we continue let us briefly pause, because in equations (1-11) and (1-12) we
encounter for the first time the main mathematical concept of density functional theory. A
rule such as that given through (1-11) or (1-12), which assigns a number, e. g., Etrial, to a
function, e. g., Ψtrial, is called a functional. This is to be contrasted with the much more
familiar concept of a function, which is the mapping of one number onto another number.
Phrased differently, we can say that a functional is a function whose argument is itself a
function. To distinguish a functional from a function in writing, one usually employs square
brackets for the argument. Hence, f(x) is a function of the variable x while F[f] is a func-
tional of the function f. Recall that a function needs a number as input and also delivers a
number:

yx )x(f  → .

For example, f(x) = x2 + 1. Then, for x = 2, the function delivers y = 5. On the other hand,
a functional needs a function as input, but again delivers a number:

→F[f(x)]f(x) y .

For example, if we define [ ]= ∫
1

2

0

F[f] f(x) dx  and use f(x) as defined above as input,

this functional delivers F [f(x) = x2 + 1] = 28/15. If, instead we choose f(x) = 2x2+1, the
result is F [f(x) = 2x2 + 1] = 47/15.

Expectation values such as 〉〈Ô  in equation (1-11) are obviously functionals, since the
value of 〉〈Ô  depends on the function Ψtrial inserted.

Coming back to the variational principle, the strategy for finding the ground state energy
and wave function should be clear by now: we need to minimize the functional E[Ψ] by
searching through all acceptable N-electron wave functions. Acceptable means in this con-
text that the trial functions must fulfill certain requirements which ensure that these func-

1.2  The Variational Principle
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tions make physical sense. For example, to be eligible as a wave function, Ψ must be
continuous everywhere and be quadratic integrable. If these conditions are not fulfilled the
normalization of equation (1-10) would be impossible. The function3 which gives the low-
est energy will be Ψ0 and the energy will be the true ground state energy E0. This recipe can
be compactly expressed as

[ ] Ψ++Ψ=Ψ=
→Ψ→Ψ eeNe

NN
0 V̂V̂T̂minmin �� (1-13)

where Ψ → N indicates that Ψ is an allowed N-electron wave function. While such a search
over all eligible functions is obviously not possible, we can apply the variational principle
as well to subsets of all possible functions. One usually chooses these subsets such that the
minimization in equation (1-13) can be done in some algebraic scheme. The result will be
the best approximation to the exact wave function that can be obtained from this particular
subset. It is important to realize that by restricting the search to a subset the exact wave
function itself cannot be identified (unless the exact wave function is included in the subset,
which is rather improbable). A typical example is the Hartree-Fock approximation dis-
cussed below, where the subset consists of all antisymmetric products (Slater determinants)
composed of N spin orbitals.

Let us summarize what we have shown so far: once N and Vext (uniquely determined by
ZA and RA) are known, we can construct Ĥ . Through the prescription given in equation
(1-13) we can then – at least in principle – obtain the ground state wave function, which in
turn enables the determination of the ground state energy and of all other properties of the
system. Pictorially, this can be expressed as

{N, ZA, RA} ⇒ Ĥ  ⇒ Ψ0 ⇒ E0 (and all other properties).

Thus, N and Vext completely and uniquely determine Ψ0 and E0. We say that the ground
state energy is a functional of the number of electrons N and the nuclear potential Vext,

[ ]ext0 V,NEE = . (1-14)

1.3 The Hartree-Fock Approximation

In this and the following sections we will introduce the Hartree-Fock (HF) approximation
and some of the fundamental concepts intimately connected with it, such as exchange, self-
interaction, dynamical and non-dynamical electron correlation. We will meet many of these
terms again in our later discussions on related topics in the framework of DFT. The HF

3 In general there can be more than one function associated with the same energy. If the lowest energy results
from n functions, this energy is said to be n-fold degenerate.
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approximation is not only the corner stone of almost all conventional, i. e., wave function
based quantum chemical methods, it is also of great conceptual importance. An under-
standing of the physics behind this approximation will thus be of great help in our later
analysis of various aspects of density functional theory. In what follows we will concen-
trate on the interpretation of the HF scheme rather than on a detailed outline how the rel-
evant expressions are being derived. An excellent source for an in-depth discussion of many
aspects of the HF approximation and more sophisticated techniques related to it is the book
by Szabo and Ostlund, 1982.

As discussed above, it is impossible to solve equation (1-13) by searching through all
acceptable N-electron wave functions. We need to define a suitable subset, which offers a
physically reasonable approximation to the exact wave function without being unmanage-
able in practice. In the Hartree-Fock scheme the simplest, yet physically sound approxima-
tion to the complicated many-electron wave function is utilized. It consists of approximat-
ing the N-electron wave function by an antisymmetrized product4 of N one-electron wave
functions )x( ii

�
χ . This product is usually referred to as a Slater determinant, ΦSD:

χ χ χ
χ χ χ

Ψ ≈ Φ =

χ χ χ

� � �
�

� � �

� � �

� � �
�

1 1 2 1 N 1

1 2 2 2 N 2

0 SD

1 N 2 N N N

(x ) (x ) (x )

(x ) (x ) (x )
1

N!

(x ) (x ) (x )

(1-15)

or using a convenient short-hand notation, where only the diagonal elements are given:

{ }Φ = χ χ χ� � �
�SD 1 1 2 2 N N

1
det (x ) (x ) (x )

N!
. (1-16)

The one-electron functions )x( ii
�

χ  are called spin orbitals, and are composed of a spa-
tial orbital )r(i

�
φ  and one of the two spin functions, α(s) or β(s).

βα=σσφ=χ ,),s()r()x(
��

. (1-17)

The spin functions have the important property that they are orthonormal, i. e., <α|α> =
<β|β> = 1 and <α|β> = <β|α> = 0. For computational convenience, the spin orbitals them-
selves are usually chosen to be orthonormal also:

4 A simple product )x()x()x()x()x( NNjjii2211
�

�
��

�
��

χχχχχ=Ξ  is not acceptable as a model wave func-
tion for fermions because it assigns a particular one-electron function to a particular electron (for example χ1
to x1) and hence violates the fact that electrons are indistinguishable. In addition,

)x()x()x()x()x()x()x()x()x()x( NNijji2211NNjjii2211
�

�
��

�
���

�
��

�
��

χχχχχ−≠χχχχχ ,
i. e. such a product is not antisymmetric with respect to particle interchange.

1.3  The Hartree-Fock Approximation
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χ χ =< χ χ > = δ∫
� � �*

i i i j ij(x) (x) dx | (1-18)

where we have used the Kronecker delta symbol δij which equals 1 for i = j and 0 otherwise.
Spin orbitals carry the usual physical interpretation that χ � �2

(x) dx  represents the probabil-
ity of finding the electron with spin given by σ within the volume element rd

�
. The (N!)–1/2

prefactor ensures that ΦSD fulfills the normalization condition, equation (1-10). The Slater
determinant of equation (1-15) is indeed antisymmetric, since a determinant changes sign
upon exchange of two rows or two columns. However, we want to reiterate at this point that
replacing the true N-electron wave function Ψexact by a single Slater determinant ΦSD rep-
resents a fairly drastic approximation.

Now that we have decided on the form of the wave function the next step is to use the
variational principle in order to find the best Slater determinant, i. e., that one particular
ΦSD which yields the lowest energy. The only flexibility in a Slater determinant is provided
by the spin orbitals. In the Hartree-Fock approach the spin orbitals  χi{ }  are now varied
under the constraint that they remain orthonormal such that the energy obtained from the
corresponding Slater determinant is minimal

[ ]SD
NSD

min Φ=
→Φ

��
�	 . (1-19)

The expectation value of the Hamilton operator with a Slater determinant can be derived
by expanding the determinant and constructing the individual terms with respect to the
various parts in the Hamiltonian. The derivation is not very complicated and can again be
found in all relevant textbooks. We just give here the final result; the HF energy is given by

= Φ Φ = + −∑ ∑∑
N N N

HF SD SD
i i j

1ˆˆE H (i | h | i) (ii | jj) (ij | ji)
2

(1-20)

where

  = χ − ∇ − χ 
  

∑∫
� � �

M
* 2 A
i 1 i 1 1

1AA

Z1ˆ(i | h | i) (x ) (x ) dx
2 r

(1-21)

defines the contribution due to the kinetic energy and the electron-nucleus attraction and

= χ χ∫ ∫
� � � �22

i 1 j 2 1 2
12

1
(ii | jj) (x ) (x ) dx dx

r
(1-22)

= χ χ χ χ∫ ∫
� � � � � �* *

i 1 j 1 j 2 i 2 1 2
12

1
(ij | ji) (x ) (x ) (x ) (x ) dx dx

r
(1-23)
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are the so-called Coulomb and exchange integrals, respectively, which represent the inter-
action between two electrons as discussed in more detail below.

EHF from equation (1-20) is obviously a functional of the spin orbitals, EHF = E[{χi}].
Thus, the variational freedom in this expression is in the choice of the orbitals. In addition,
the constraint that the {χi} remain orthonormal must be satisfied throughout the minimiza-
tion, which introduces the Lagrangian multipliers εi in the resulting equations. These equa-
tions (1-24) represent the Hartree-Fock equations, which determine the ‘best’ spin orbitals,
i. e., those {χi} for which EHF attains its lowest value (for a detailed derivation see Szabo
and Ostlund, 1982)

iiif̂ χε=χ , i = 1, 2, …, N. (1-24)

These N equations have the appearance of eigenvalue equations, where the Lagrangian
multipliers εi are the eigenvalues of the operator f̂ . The εi have the physical interpretation
of orbital energies. The Fock operator f̂  is an effective one-electron operator defined as

= − ∇ − +∑
M

2 A
i i HF

iAA

Z1
f̂ V (i)

2 r
. (1-25)

The first two terms are the kinetic energy and the potential energy due to the electron-
nucleus attraction. VHF(i) is the Hartree-Fock potential. It is the average repulsive potential
experienced by the i’th electron due to the remaining N-1 electrons. Thus, the complicated
two-electron repulsion operator 1/rij in the Hamiltonian is replaced by the simple one-
electron operator VHF(i) where the electron-electron repulsion is taken into account only in
an average way. Explicitly, VHF has the following two components:

( )= −∑� � �
N

HF 1 j 1 j 1
j

ˆ ˆV (x ) J (x ) K (x ) . (1-26)

The Coulomb operator Ĵ  is defined as

= χ∫
� � �2

j 1 j 2 2
12

1
Ĵ (x ) (x ) dx

r
(1-27)

and represents the potential that an electron at position 1x
�

 experiences due to the average
charge distribution of another electron in spin orbital χj. Remember that 2

2
2j xd|)x(|

��
χ

represents the probability that the electron is within the volume element 2xd
�

. Thus the
Coulomb repulsion corresponding to a particular distance between the reference electron at

1x
�

 and another one at position 2x
�

 is weighted by the probability that the other electron is
at this point in space. Finally, this interaction is integrated over all space and spin coordi-

1.3  The Hartree-Fock Approximation



12

1  Elementary Quantum Chemistry

nates. Since the result of application of )x(Ĵ 1j
�

 on a spin orbital )x( 1i
�

χ  depends solely on
the value of χi at position 1x

�
, this operator and the corresponding potential are called local.

The second term in equation (1-26) is the exchange contribution to the HF potential. The
exchange operator K̂  has no classical interpretation and can only be defined through its
effect when operating on a spin orbital:

)x(xd)x(
r

1
)x()x()x(K̂ 1j22i

12
2

*
j1i1j

������
χχχ=χ ∫ . (1-28)

As evident from the above definition, )x(K̂ 1j
�

 leads to an exchange of the variables in
the two spin orbitals. Furthermore, the result of operating with )x(K̂ 1j

�
 on )x( 1i

�
χ  depends

on the value of χi on all points in space, since χi is now related to 2x
�

, the variable over
which we integrate. Consequently, this operator and the corresponding exchange potential
are called non-local. It is important to realize that the occurrence of the exchange term is
entirely due to the antisymmetry of the Slater determinant and applies to all fermions, be
they charged or neutral. The 1/r12 operator is spin independent. Thus the integration over
the spin coordinate in equation (1-28) can be separated and we have the integral over the
product of two different spin orbitals χi and χj which both depend on the same coordinate

2x
�

. Because spin functions are orthonormal, it follows that exchange contributions exist
only for electrons of like spin, because in the case of antiparallel spins, the integrand would
contain a factor <α(s2)|β(s2)> (or <β(s2)|α(s2)>) which is zero and thus makes the whole
integral vanish.

It can easily be shown from their definitions that the expectation values of )x(Ĵ 1j
�

 and
)x(K̂ 1j

�
 are the Coulomb and exchange integrals given in equations (1-22) and (1-23),

respectively, presented above. There is one more thing that we need to emphasize: in the
double summation in equation (1-20) the term i = j is allowed. This means that if i = j, the
integral (1-22) describes the Coulomb interaction of the charge distribution of one electron
with itself. As a consequence, even if we compute the energy of a one-electron system, such
as the hydrogen atom, where there is definitely no electron-electron repulsion, equation
(1-22) would nevertheless give a non-zero result. This self-interaction is obviously physi-
cal nonsense. However, the exchange term takes perfect care of this: for i = j, the Coulomb

and exchange integrals are identical and both reduce to 21
2

2i
12

2
1i xdxd)x(

r

1
)x(

����
∫ ∫ χχ .

Since they enter equation (1-20) with opposite signs the self-interaction is exactly can-
celled. As we will soon see, the self-interaction problem, so elegantly solved in the HF
scheme, and the representation of the exchange energy, constitute major obstacles in den-
sity functional approaches. Finally, we should note that because the Fock operator depends
through the HF potential on the spin orbitals, i. e., on the very solutions of the eigenvalue
problem that needs to be solved, equation (1-24) is not a regular eigenvalue problem that
can be solved in a closed form. Rather, we have here a pseudo-eigenvalue problem that has
to be worked out iteratively. The technique used is called the self-consistent field (SCF)
procedure since the orbitals are derived from their own effective potential. Very briefly, this



13

technique starts with a ‘guessed’ set of orbitals, with which the HF equations are solved.
The resulting new set of orbitals is then used in the next iteration and so on until the input
and output orbitals differ by less than a predetermined threshold. For the sake of complete-
ness we also point out that the Hartree-Fock SCF problem is usually solved through the
introduction of a finite basis set to expand the molecular orbitals. We will have to discuss
all these aspects in much more detail in the context of the Kohn-Sham equations in later
chapters.

Finally, we should note Koopmans’ theorem (Koopmans, 1934) which provides a physi-
cal interpretation of the orbital energies ε from equation (1-24): it states that the orbital
energy εi obtained from Hartree-Fock theory is an approximation of minus the ionization
energy associated with the removal of an electron from that particular orbital χi, i. e.,

)i(IEEE i
1NNi −=−≈ε − . The simple proof of this theorem can be found in any quantum

chemistry textbook.
An important consequence of the only approximate treatment of the electron-electron

repulsion is that the true wave function of a many electron system is never a single Slater
determinant! We may ask now: if ΦSD is not the exact wave function of N interacting
electrons, is there any other (necessarily artificial model) system of which it is the correct
wave function? The answer is ‘Yes’; it can easily be shown that a Slater determinant is
indeed an eigenfunction of a Hamilton operator defined as the sum of the Fock operators of
equation (1-25)

SD

N

i
iSD

N

i
iSD

0
HFSDHF f̂EĤ Φε=Φ=Φ=Φ ∑∑ . (1-29)

Since the Fock operator is a effective one-electron operator, equation (1-29) describes a
system of N electrons which do not interact among themselves but experience an effective
potential VHF. In other words, the Slater determinant is the exact wave function of N non-
interacting particles moving in the field of the effective potential VHF.5 It will not take long
before we will meet again the idea of non-interacting systems in the discussion of the
Kohn-Sham approach to density functional theory.

1.4 The Restricted and Unrestricted Hartree-Fock Models

Frequently we are dealing with the special but common situation that the system has an
even number of electrons which are all paired to give an overall singlet, so-called closed-
shell systems. The vast majority of all ‘normal’ compounds, such as water, methane or most
other ground state species in organic or inorganic chemistry, belongs to this class. In these

5 Strictly speaking, this statement applies only to closed-shell systems of non-degenerate point group symme-
try, otherwise the wave function consists of a linear combination of a few Slater determinants.

1.3  The Hartree-Fock Approximation
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instances the Hartree-Fock solution is usually characterized by having doubly occupied
spatial orbitals, i. e., two spin orbitals χp and χq share the same spatial orbital φp connected
with an α and a β spin function, respectively and have the same orbital energy. If we impose
this double occupancy right from the start, we arrive at the restricted Hartree-Fock approxi-
mation, RHF for short. Situations where the RHF picture is inadequate are provided by any
system containing an odd number of electrons (the methyl radical or even the hydrogen
atom with its single electron fall into this category) or by systems with an even number of
electrons, but where not all of these electrons occupy pair-wise one spatial orbital – i. e.,
open-shell situations, such as the triplet ground states of methylene, CH2 ( 1

3BX
~

) or the
oxygen molecule ( −Σg

3X ). There are two possibilities for how one can treat such species
within the Hartree-Fock approximation. Either we stay as closely as possible to the RHF
picture and doubly occupy all spatial orbitals with the only exception being the explicitly
singly occupied ones, or we completely abandon the notion of doubly occupied spatial
orbitals and allow each spin orbital to have its own spatial part. The former is the restricted
open-shell HF scheme (ROHF) while the latter is the much more popular unrestricted
Hartree-Fock variant (UHF). In UHF the α and β orbitals do not share the same effective
potential but experience different potentials, α

HFV  and β
HFV . As a consequence, the α- and

β-orbitals differ in their spatial characteristics and have different orbital energies. The UHF
scheme affords equations that are much simpler than their ROHF counterparts. Particu-
larly, the ROHF wave function is usually composed not of a single Slater determinant, but
corresponds to a limited linear combination of a few determinants where the expansion
coefficients are determined by the symmetry of the state. On the other hand, in the UHF
scheme we are always dealing with single-determinantal wave functions. However, the
major disadvantage of the UHF technique is that unlike the true and also the ROHF wave
function, a UHF Slater determinant is no longer an eigenfunction of the total spin operator,

2Ŝ . The more the 〈 〉2Ŝ  expectation value of a Slater determinant deviates from the correct
value – i. e., S(S+1) where S is the spin quantum number representing the total spin of the
system – the more this unrestricted determinant is contaminated by functions correspond-
ing to states of higher spin multiplicity and the less physically meaningful it obviously
gets.

1.5 Electron Correlation

As we have seen in the preceding section a single Slater determinant ΦSD as an approxi-
mate wave function captures a significant portion of the physics of a many electron system.
However, it never corresponds to the exact wave function. Thus, owing to the variational
principle, EHF is necessarily always larger (i. e., less negative) than the exact (within the
Born-Oppenheimer approximation and neglecting relativistic effects) ground state energy
E0. The difference between these two energies is, following Löwdin, 1959, called the cor-
relation energy

HF0
HF
C EEE −= . (1-30)
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HF
CE  is a negative quantity because E0 and EHF < 0 and |E0| > |EHF|. It is a measure for the

error introduced through the HF scheme. The development of methods to determine the
correlation contributions accurately and efficiently is still a highly active research area in
conventional quantum chemistry. Electron correlation is mainly caused by the instantane-
ous repulsion of the electrons, which is not covered by the effective HF potential. Pictori-
ally speaking, the electrons get often too close to each other in the Hartree-Fock scheme,
because the electrostatic interaction is treated in only an average manner. As a consequence,
the electron-electron repulsion term is too large resulting in EHF being above E0. This part
of the correlation energy is directly connected to the 1/r12 term controlling the electron-
electron repulsion in the Hamiltonian and is obviously the larger the smaller the distance
r12 between electrons 1 and 2 is. It is usually called dynamical electron correlation because
it is related to the actual movements of the individual electrons and is known to be a short
range effect. The second main contribution to HF

CE  is the non-dynamical or static correla-
tion. It is related to the fact that in certain circumstances the ground state Slater determinant
is not a good approximation to the true ground state, because there are other Slater determi-
nants with comparable energies. A typical example is provided by one of the famous labo-
ratories of quantum chemistry, the H2 molecule. At the equilibrium distance the RHF scheme
provides a good approximation to the H2 molecule. The correlation error, which is almost
exclusively due to dynamical correlation is small and amounts to only 0.04 Eh. However, as
we stretch the bond the correlation gets larger and in the limit of very large distances con-
verges to some 0.25 Eh as evident from Figure 1-1, which displays the computed (RHF and
UHF) as well as the exact potential curves for the ground state of the hydrogen molecule.

Obviously, this cannot be dynamical correlation because at rHH → ∞ we have two inde-
pendent hydrogen atoms with only one electron at each center and no electron-electron
interaction whatsoever (because 1/rHH → 0). To understand this wrong dissociation behavior
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UHF

Exact

RH-H

R
el

a
ti

ve
E

n
er

g
y

Figure 1-1. Potential curves for H2.
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in the HF picture let us recall from basic quantum mechanics that the HF ground state wave
function of the H2 molecule is the Slater determinant where the bonding σ orbital is doubly
occupied

Φ = σ α σ β� �
GS g 1 1 g 2 2

1
det{ (r ) (s ) (r ) (s )}

2
. (1-31)

Using the simplest picture (and neglecting the effect of overlap on the normalization),
this doubly occupied σg spatial molecular orbital can be thought of as being the symmetric
linear combination of the two 1s atomic orbitals on the ‘left’ and ‘right’ hydrogens, HL and
HR

σ = +g L R
1

{1s 1s }
2

. (1-32)

If we expand the determinant (1-31) in terms of the atomic orbitals (1-32) we get (im-
plicitly assuming that in the determinants the first term is always associated with the coor-
dinates 1r

�
 and s1 and the second with 2r

�
 and s2)

]}s1s1{det}s1s1{det}s1s1{det}s1s1{det[
2

1
RRLLRLRLGS βα+βα+αβ+βα=Φ . (1-33)

or, pictorially )HH()HH()HH()HH( ↑↓−++↑↓−↑↓↓↑ +++ ����

We see that there is an equal probability that the two spin paired electrons in that orbital
are shared between the two protons )HH()HH( ↑↓↓↑ + �� , as indicated by the first two
terms in equation (1-33) or that both electrons are on one nucleus, giving rise to a hydrogen
anion while the other is a mere proton )HH()HH( ↑↓−++↑↓− + �� , given by the third
and fourth term. While the inclusion of these latter, ionic terms is perfectly adequate for a
description at the equilibrium distance, it is not suited at all for the dissociation limit, where
the weight of the ionic contributions must of course be zero in order to give the correct
asymptotic wave function consisting of two isolated hydrogen atoms

{ } { }[ ]αβ+βα=Φ RLRLDISS s1s1dets1s1det
2

1
. (1-34)

The fact that the HF wave function even at large internuclear distances consists of 50 %
of ionic terms, even though H2 dissociates into two neutral hydrogen atoms, leads to an
overestimation of the interaction energy and finally to the large error in the dissociation
energy. Another way of looking at this phenomenon is to recognize that to construct the
correct expression (1-34) from the molecular orbitals, we have to include the determinant
(1-36) composed of the orbital resulting from the antisymmetric linear combination of the
1s atomic orbitals, i. e., the σu antibonding orbital,
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{ }RLu s1s1
2

1 −=σ , (1-35)

{ })s()r()s()r(det
2

1
22u11uAS βσασ=Φ

��
. (1-36)

If, as in the RHF scheme, only one of the two determinants is used and the other is
completely neglected the picture cannot be complete. Indeed, in terms of determinants
constructed from molecular orbitals the qualitatively correct wave function for rHH → ∞ is

{ }ASGSDISS
2

1 Φ+Φ=Φ (1-37)

where both determinants enter with equal weight. This kind of non-dynamical correlation
is often also referred to as left-right correlation, because it describes the effect that if one
electron is at the left nucleus, the other will most likely be at the right one. Obviously,
unlike the dynamical correlation discussed before, these non-dynamical contributions are a
long range effect and, as in the H2 case discussed above, become the more important the
more the bond is stretched (Cook and Karplus, 1987). However, we also see from Figure
1-1 that using the unrestricted (UHF) scheme rather than RHF cures the problem of the
wrong dissociation energy. At an H-H distance of some 1.24 Å an unrestricted solution
lower than the RHF one appears and develops into a reasonable potential curve. However,
there is no such thing as a free lunch and the price to be paid here is that the resulting UHF
wave function no longer resembles the H2 singlet ground state. At large internuclear dis-
tances it actually converges to a physically unreasonable 1:1 mixture between a singlet
(S = 0, hence S (S + 1) = 0) and a triplet (S = 1, hence S (S + 1) = 2) as indicated by the
expectation value of the 2Ŝ  operator, 〈 〉2Ŝ  = 1. The correct energy emerges because the
UHF wave function breaks the inversion symmetry inherent to a homonuclear diatomic
such as H2 and localizes one electron with spin down at one nucleus and the second one
with opposite spin at the other nucleus. For details, see Szabo and Ostlund, 1982.

Finally, we want to point out that HF
CE  is not restricted to the direct contributions con-

nected to the electron-electron interaction. As this quantity measures the difference be-
tween the expectation value of Ĥ  with a Slater determinant 〉Φ++Φ〈 SDeeNeSD V̂V̂T̂
and the correct energy obtained from the true wave function Ψ0, it should come as no
surprise that there are also correlation contributions due to the kinetic energy or even the
nuclear-electron term. If, for example, the average distance between the electrons is too
small at the Hartree-Fock level, this automatically will lead to a kinetic energy that is too
large and a nuclear-electron attraction which is too small (i. e., too strong). These indirect
contributions can get quite significant and in some cases even constitute the decisive part of

HF
CE  (Baerends and Gritsenko, 1997). We will see in Chapter 5 that the definition of elec-

tron correlation that emerges from the Kohn-Sham formalism of density functional theory
is in many aspects similar to the classical one based on the HF scheme discussed at this

1.5  Electron Correlation
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point, but that there are also some significant differences. Some quantitative data to cor-
roborate the statements of this section can be found in Table 5-1.

In the context of traditional wave function based ab initio quantum chemistry a large
variety of computational schemes to deal with the electron correlation problem has been
devised during the years. Since we will meet some of these techniques in our forthcoming
discussion on the applicability of density functional theory as compared to these conven-
tional techniques, we now briefly mention (but do not explain) the most popular ones.6

Electron correlation can most economically be accounted for through second order pertur-
bation theory due to Møller and Plesset. This frequently used level is abbreviated MP2.
MP4, i. e., Møller-Plesset perturbation theory to fourth order is also often used. This tech-
nique is more accurate but also significantly more costly than MP2: while MP2 formally
scales with the fifth power of the system size, MP4 scales as O(m7); m being a measure of
the molecular size. For comparison, the formal scaling of Hartree-Fock calculations is O(m4).7

Other popular methods are based on configuration interaction (CI), quadratic CI (QCI) and
coupled cluster approaches (CC). In principle the exact wave functions and energies of all
states of the system could be obtained by these techniques. Of course, in real applications
some kind of approximation has to be used. The most common among these are methods
known as CISD, QCISD and CCSD, where ‘SD’ stands for single and double excitations.
Even more sophisticated are extensions to QCISD and CCSD where triple excitations are
also accounted for through a perturbative treatment, leading to methods called QCISD(T)
and CCSD(T), respectively. These last two methods are among the most accurate, but also
most expensive (formal scaling is also m7) computational wave function based techniques
generally available.

6 There is a vast literature on these methods. For a concise but very instructive overview we recommend Bartlett
and Stanton, 1995.

7 The real scaling is significantly smaller, usually between O(m2) and O(m3), depending on the system size.

1.5  Electron Correlation
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In this chapter we make first contact with the electron density. We will discuss some of its
properties and then extend our discussion to the closely related concept of the pair density.
We will recognize that the latter contains all information needed to describe the exchange
and correlation effects in atoms and molecules. An appealing avenue to visualize and un-
derstand these effects is provided by the concept of the exchange-correlation hole which
emerges naturally from the pair density. This important concept, which will be of great use
in later parts of this book, will finally be used to discuss from a different point of view why
the restricted Hartree-Fock approach so badly fails to correctly describe the dissociation of
the hydrogen molecule.

2.1 The Electron Density

The probability interpretation from equation (1-7) of the wave function leads directly to the
central quantity of this book, the electron density )r(

�

ρ . It is defined as the following mul-
tiple integral over the spin coordinates of all electrons and over all but one of the spatial
variables

�ρ( ) = Ψ∫ ∫
� � � � � �

� � �

2
1 2 N 1 2 NN (x ,x , ,x ) ds dx dx . (2-1)

)r(
�

ρ  determines the probability of finding any of the N electrons within the volume ele-
ment 1rd

�

 but with arbitrary spin while the other N-1 electrons have arbitrary positions and
spin in the state represented by Ψ. Strictly speaking )r(

�

ρ  is a probability density, but call-
ing it the electron density is common practice. It should be noted that the multiple integral
as such represents the probability that one particular electron is within the volume element

1rd
�

. However, since electrons are indistinguishable the probability of finding any electron
at this position is just N times the probability for one particular electron. Clearly, )r(

�

ρ  is a
non-negative function of only the three spatial variables which vanishes at infinity and
integrates to the total number of electrons:

0)r( =∞→ρ
�

, (2-2)

�� �ρ( ) =∫
� �

d N . (2-3)

Unlike the wave function, the electron density is an observable and can be measured
experimentally, e. g. by X-ray diffraction. One of its important features is that at any posi-
tion of an atom, )r(

�

ρ  exhibits a maximum with a finite value, due to the attractive force
exerted by the positive charge of the nuclei. However, at these positions the gradient of the
density has a discontinuity and a cusp results. This cusp is a consequence of the singularity

in the − A

iA

Z

r
 part in the Hamiltonian as riA → 0. Actually, it has long been recognized that
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the properties of the cusp are intimately related to the nuclear charge Z of the nucleus
according to

�
→

∂ + ρ( ) = ∂ 
�

iA
A

r 0
lim 2Z 0

r
(2-4)

where )r(
�

ρ  is the spherical average of )r(
�

ρ . Among the other properties of the density, we
mention its asymptotic exponential decay for large distances from all nuclei

ρ ∝ −� �

(r) exp[ 2 2I |r|] (2-5)

where I is the exact first ionization energy of the system.
As a typical example we illustrate in Figure 2-1 the electron density of the water mol-

ecule in two different representations. In complete analogy, ρ �

(x)  extends the electron den-
sity to the spin-dependent probability of finding any of the N electrons within the volume
element 1rd

�

 and having a spin defined by the spin coordinate s.

2.2 The Pair Density

The concept of electron density, which provides an answer to the question ‘how likely is it
to find one electron of arbitrary spin within a particular volume element while all other
electrons may be anywhere’ can now be extended to the probability of finding not one but
a pair of two electrons with spins σ1 and σ2 simultaneously within two volume elements

1rd
�

 and 2rd
�

, while the remaining N-2 electrons have arbitrary positions and spins. The
quantity which contains this information is the pair density ),(

��
��
��

2ρ , which is defined as

( ) ( ) ( )� �� �2ρ = − Ψ∫ ∫� � � � � � �

� � �

2
1 2 N 3 N, N N 1 x ,x , ,x dx dx . (2-6)

Figure 2-1. Representations of the electron density of the water molecule: (a) relief map showing values of ρ(r)
projected onto the plane, which contains the nuclei (large values near the oxygen atom are cut out); (b) three
dimensional molecular shape represented by an envelope of constant electron density (0.001 a.u.).

O

H

H

a) b)
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This quantity is of great importance, since it actually contains all information about
electron correlation, as we will see presently. Like the density, the pair density is also a
non-negative quantity. It is symmetric in the coordinates and normalized to the total number
of non-distinct pairs, i. e., N(N-1).8 Obviously, if electrons were identical, classical parti-
cles that do not interact at all, such as for example billiard balls of one color, the probability
of finding one electron at a particular point of coordinate-spin space would be completely
independent of the position and spin of the second electron. Since in our model we view
electrons as idealized mass points with no volume, this would even include the possibility
that both electrons are simultaneously found in the same volume element. In this case the
pair density would reduce to a simple product of the individual probabilities, i.e.,

� � � �� � � �2
−ρ = ρ( ) ρ( )� � � �N 1

( , )
N

. (2-7)

The (N–1)/N factor enters because the particles are identical and not distinguishable.
Pictorially speaking, the probability that any of the N electrons is at 1x

�

 is given by )x( 1
�

ρ .
The probability that another electron is simultaneously at 2x

�

 is only (N–1)/N )x( 2
�

ρ  be-
cause the electron at 1x

�

 cannot at the same time be at 2x
�

 and the probability must be
reduced accordingly.

However, billiard balls are a pretty bad model for electrons. First of all, as discussed
above, electrons are fermions and therefore have an antisymmetric wave function. Second,
they are charged particles and interact through the Coulomb repulsion; they try to stay
away from each other as much as possible. Both of these properties heavily influence the
pair density and we will now enter an in-depth discussion of these effects. Let us begin with
an exposition of the consequences of the antisymmetry of the wave function. This is most
easily done if we introduce the concept of the reduced density matrix for two electrons,
which we call γ2. This is a simple generalization of ),(

��
��
��

2ρ  given above according to

′ ′γ =

′ ′− Ψ Ψ∫ ∫

� � � �

� � � � � � � � � �

� � � �

2 1 2 1 2

*
1 2 3 N 1 2 3 N 3 N

(x ,x ;x ,x )

N(N 1) (x ,x ,x , ,x ) (x ,x ,x , ,x ) dx dx . (2-8)

When going from ρ2 to γ2 we prime those variables in the second factor which are not
included in the integration. The two sets of independent and continuous variables, i. e.,

21 x,x
��

 and 21 x,x ′′ ��

, define the value of )x,x;x,x( 21212 ′′γ
����

 which is the motivation for calling
this quantity a matrix (for more information on reduced density matrices see in particular
Davidson, 1976, or McWeeny, 1992). If we now interchange the variables 1x

�

 and 2x
�

 (or
1x′�  and 2x′� ), γ2 will change sign because of the antisymmetry of Ψ:

8 This is the normalization adopted for example by McWeeny, 1967, 1992. One also finds 1/2 N(N-1) as pre-
factor, which corresponds to a normalization to the distinct number of pairs, e. g. Löwdin, 1959 or Parr and
Yang, 1989.

2.2  The Pair Density



22

2  Electron Density and Hole Functions

)x,x;x,x()x,x;x,x( 2112221212 ′′γ−=′′γ
��������

. (2-9)

It should be obvious that the diagonal elements of this ‘matrix’ (i. e., for 11 xx ′=
��

 and

22 xx ′=
��

) bring us back to our pair density ),(
��

��
��

2ρ  defined above. If we now look at the
special situation that 1x

�

 = 2x
�

, that is the probability that two electrons with the same spin
are found within the same volume element, we find that

)x,x()x,x( 112112
����

ρ−=ρ . (2-10)

This can only be true if 0),( =ρ2 ��
��
��

. In other words, this result tells us that the prob-
ability of finding two electrons with the same spin at the same point in space is exactly zero.
Hence, electrons of like spin do not move independently from each other. It is important to
realize that this kind of correlation is in no way connected to the charge of the electrons but
is a direct consequence of the Pauli principle. It applies equally well to neutral fermions
and – also this is very important to keep in mind – does not hold if the two electrons have
different spin. This effect is known as exchange or Fermi correlation. As we will show
below, this kind of correlation is included in the Hartree-Fock approach due to the
antisymmetry of a Slater determinant and therefore has nothing to do with the correlation
energy HF

CE  discussed in the previous chapter.
Next, let us explore the consequences of the charge of the electrons on the pair density.

Here it is the electrostatic repulsion, which manifests itself through the 1/r12 term in the
Hamiltonian, which prevents the electrons from coming too close to each other. This effect
is of course independent of the spin. Usually it is this effect which is called simply electron
correlation and in Section 1.4 we have made use of this convention. If we want to make the
distinction from the Fermi correlation, the electrostatic effects are known under the label
Coulomb correlation.

It can easily be shown that the HF approximation discussed in Chapter 1 does include
the Fermi-correlation, but completely neglects the Coulomb part. To demonstrate this, we
analyze the Hartree-Fock pair density for a two-electron system with the two spatial orbit-
als φ1 and φ2 and spin functions σ1 and σ2

{ } ρ = φ σ φ σ 
� �� � 2HF

2 1 2 1 1 1 1 2 2 2 2(x ,x ) det (r ) (s ) (r ) (s ) (2-11)

which after squaring the expanded determinants becomes

ρ = φ φ σ σ

+φ φ σ σ
− φ φ φ φ σ σ σ σ

� �� �

� �

� � � �

HF 2 2 2 2
2 1 2 1 1 2 2 1 1 2 2

2 2 2 2
1 2 2 1 1 2 2 1

1 1 2 1 1 2 2 2 1 1 2 1 1 2 2 2

(x ,x ) (r ) (r ) (s ) (s )

(r ) (r ) (s ) (s )

2 (r ) (r ) (r ) (r ) (s ) (s ) (s ) (s )

(2-12)

The spin-independent probability of finding one electron at 1r
�

 and the other simul-
taneously at 2r

�

 is obtained by integrating over the spins. Since the spin functions are
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orthonormal (recall Section 1.3) this integration simply yields 1 for the first two terms.
Furthermore, the first and second term in equation (2-12) are identical because electrons
are indistinguishable and therefore it does not matter which of the electrons – ‘number 1’ or
‘number 2’ – is associated with the first or the second orbital. If, however, σ1 ≠ σ2, i. e., the
electrons’ spins are antiparallel, the last of the three terms in equation (2-12) will vanish
due to the orthonormality of the spin functions, <α(s1) | β(s1)> = 0. This finally leads to

)r()r(),( 21
,HF 21

����

ρρ=ρ σ≠σ
2 ��

��  which corresponds to the completely uncorrelated situa-
tion.9 Note that ),(21,HF

��
��
��σ≠σ

2ρ  does not necessarily vanish even for 21 rr
��

= . On the other
hand, if σ1 = σ2, i. e., the electrons’ spins are parallel, the last term in equation (2-12) will
not vanish but yields <σ(si) | σ(si)> = 1 (σ = α, β). Hence, ),(21,HF

��
��
��σ=σ

2ρ  does not reduce
to the simple, uncorrelated product of individual probabilities. Rather, for 21 rr

��

= , the third
term exactly cancels the first two and we indeed arrive at 0),(HF =ρ2 ��

��
��

. Thus, we re-
derived the conclusions from the end of the preceding chapter that the correlation due to the
antisymmetry of the wave function is covered by the HF scheme – after all no surprise since
a Slater determinant is antisymmetric in the coordinates of any two electrons. Electrons of
antiparallel spins though move in a completely uncorrelated fashion and Coulomb correla-
tion is not present at the Hartree-Fock level, as discussed in the previous chapter.

It is now convenient to express the influence of the Fermi and Coulomb correlation on
the pair density by separating the pair density into two parts, i. e. the simple product of
independent densities and the remainder, brought about by Fermi and Coulomb effects and
accounting for the (N-1)/N normalization

[ ])x;x(f1)x()x()x,x( 2121212
������

+ρρ=ρ . (2-13)

Here, )x;x(f 21
��

 is sometimes called the correlation factor. Consequently, )x;x(f 21
��

 = 0
defines the completely uncorrelated case. However, note that in this case, i. e., for )x;x(f 21

��

= 0, )x,x( 212
��

ρ  is normalized to the wrong number of pairs, since σ ≠σρ∫∫
� � � �1 2HF,
1 2 1 22 (r , r )dr dr

= ρ ρ∫∫
� � � �

1 2 1 2(r ) (r )dr dr  = N2 rather than N(N-1) and therefore contains the unphysical self-
interaction. We now go one step further and define the conditional probability )x;x( 12

��

Ω .
This is the probability of finding any electron at position 2 in coordinate-spin space if there
is one already known to be at position 1

� � �

�

� �
� �

�

ρ
Ω =

ρ( )

� �

� �

�2 1
( , )

( ; ) . (2-14)

The conditional density obviously integrates to N-1 electrons, containing all electrons
but the reference electron at 1x

�

1Nxd)x;x( 212 −=Ω∫
���

. (2-15)

9 The (N-1)/N factor of equation (2-7) disappears because the two electrons in question have different spin.

2.2  The Pair Density
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The difference between )x;x( 12
��

Ω  and the uncorrelated probability of finding an elec-
tron at 2�

�

 describes the change in conditional probability caused by the correction for self-
interaction, exchange and Coulomb correlation, compared to the completely uncorrelated
situation:

� � �
� �

�

� �
� �

�

ρ
= − ρ = ρ

ρ( )

� �

� � � � � �

�XC 1 2 2 2
( , )

h (x ;x ) (x ) (x )f( ; ) . (2-16)

Since correlation typically leads to a depletion of the electron density at 2�
�

 as compared
to the independent particle situation, the quantity );(

����
���
��

 is called the exchange-cor-
relation hole which usually has a negative sign, in particular in the vicinity of the reference
electron. In addition, if we integrate equation (2-16), recalling from equation (2-15) that

)x;x( 12
��

Ω  integrates to N-1, while ∫ =ρ Nxd)x( 22
��

 we immediately see the important
result that the exchange-correlation hole contains exactly the charge of one electron

1xd)x;x(h 221XC −=∫
���

. (2-17)

The concept of the exchange-correlation hole is widely used in density functional theory
and its most relevant properties are the subject of the following section.

2.3 Fermi and Coulomb Holes

The idea of the exchange-correlation hole function allows a very pictorial and intuitively
appealing access to an understanding of how exchange and Coulomb correlation affects the
electron distribution in an atom or molecule. In this context we can imagine the electron
digging a hole around itself such that the probability of finding another electron nearby is
diminished. As the hole density usually has a negative sign, the electrostatic interaction of
the necessarily positive electron density at a certain position with the exchange-correlation
hole surrounding it is attractive. Using the new concepts introduced so far, it is worthwhile
to take a fresh look at the expectation value of eeV̂ , the electron-electron repulsion term in
the Hamiltonian, equation (1-4), which corresponds to the potential energy due to the elec-
trostatic repulsion of the electrons, Eee. This interaction depends on the distance between
two electrons weighted by the probability that this distance will occur. Thus, we can ex-
press Eee in terms of the spin-independent equivalent of the pair density (i.e., where we
have integrated over the spin coordinates) which contains just this information

>

ρ
= Ψ Ψ =∑∑ ∫ ∫

� �

� �
N N

2 1 2
ee 1 2

ij 12i j i

(r , r )1 1
E dr dr

r 2 r
. (2-18)

Using )r;r(h)r()r()r()r,r( 21XC121212
�������

ρ+ρρ=ρ  (cf. the spin-integrated analog of equa-
tion 2-16) we can split Eee in two contributions which can be easily interpreted,
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21
12

21XC1
21

12

21
ee rdrd

r

)r;r(h)r(

2

1
rdrd

r

)r()r(

2

1
E

��

���

��

��

∫ ∫∫ ∫
ρ

+ρρ= . (2-19)

The first term is J[ρ], the classical electrostatic energy of a charge distribution with
itself. Again, it is important to realize that J[ρ] contains also the unphysical self-interac-
tion as already alluded to in Chapter 1. This can most easily be illustrated by considering
a one-electron system: with only one electron there obviously cannot be any electron-
electron Coulomb interaction. Nevertheless, even in these cases J[ρ] ≠ 0. The second
term is the energy of interaction between the charge density and the charge distribution
of the exchange-correlation hole. It includes the correction for the self-interaction as well
as all contributions of quantum-mechanical correlation effects. It should be obvious by
now why the hole functions are so useful for discussing exchange and correlation effects.
The more we know about the characteristics of hXC and the better the approximate hole
functions we use in our calculations resemble the true ones, the more accurate results we
can expect.

The exchange-correlation hole can formally be split into the Fermi hole, )r,r(h 21X
21

��σ=σ

and the Coulomb hole )r,r(h 21
,

C
21

��σσ ,

�

�� � � � ��
� � � � �

σ =σ σ σ= +� � � � � �2 1 2,
1 2C( ; r ) ( ; ) h (r , r ) (2-20)

where the former is the hole in the probability density of electrons due to the Pauli princi-
ple, i. e., the antisymmetry of the wave function and applies only to electrons with the same
spin. The latter has contributions for electrons of either spin and is the hole resulting from
the 1/r12 electrostatic interaction. These definitions are motivated by the HF picture where
the Fermi hole is accounted for through the use of a single Slater determinant whereas the
Coulomb hole is neglected. Even though the separation of hXC into an exchange and a
correlation contribution is convenient, we must keep in mind that only the total hole has a
real physical meaning. In the following we will discuss some of the properties of these
individual holes.

2.3.1 The Fermi Hole

First of all we note that the Fermi hole – which is due to the antisymmetry of the wave
function – dominates by far the Coulomb hole. Second, another, very important property of
the Fermi hole is that it, just like the total hole, integrates to –1

1rd)r;r(h 221X −=∫
���

. (2-21)

This is easy to understand because it means that the conditional probability for electrons
of spin σ integrates to Nσ - 1 instead of Nσ because there is one electron of the same spin σ

2.3  Fermi and Coulomb Holes
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already known to be at 1r
�

. Hence, this electron is removed from the distribution. By this
removal of one charge, the Fermi hole also takes care of the self-interaction problem. Fur-
ther, due to the Pauli principle which ensures that two electrons of the same spin cannot be
at the same position in space, the Fermi hole has to become equal to minus the density of
electrons with this spin at the position of the reference electron for 12 rr

��

→ ,

)r()r;rr(h 1112X
����

ρ−=→ . (2-22)

What can we say about the shape of the Fermi hole? First, it can be shown that hX is
negative everywhere,

0)r;r(h 21X <
��

. (2-23)

Second, if we recall the definition, equation (2-16), and modify it for the exchange-only
case

� �� �= ρ� � � � �

X 1 2 2 Xh (r ; r ) (r )f ( ; ) (2-24)

we see that the actual shape depends not only on the Fermi correlation factor but also on the
density at 2r

�

. As a consequence, it will certainly not be spherically symmetric. Usually, the
exchange hole is largest around the probe electron. However, if, for example, the reference
electron is at a position 1r

�

 located far away from the atom or molecule, the Fermi hole will
be only slowly varying for 2r

�

 being within regions of appreciable electron density. Around
the reference electron it will be almost negligible because )rr( 12

��

→ρ  will be small. In a
way, the Fermi hole ‘stays behind’ when the reference electron goes outside the regions of
normal electron density. There are also situations where the Fermi hole actually tends to be
delocalized. Let us again use the ground state of the H2 molecule as a simple but very
instructive example. Here, there are only two electrons with spin paired and the only duty
of the Fermi hole in this case is to cancel the self-interaction. Thus, for the α (or equiva-
lently the β) electron, )r;r(h 21X

��α  is equal to minus the α- (or β-) density which equals half
the total density. Thus, this hole is half the squared σg molecular orbital in H2. It is therefore
delocalized over the whole molecule, representing a charge depletion of half an electron
from the vicinity of each nucleus. Note that the Fermi hole is in this case completely inde-
pendent of the location of the reference electron. Even for rHH → ∞, where there should be
one electron at each center, the Fermi hole will still remove only half of the density from
the location of the reference electron. As a consequence, the attraction of the reference
electron to the nucleus will be partially screened and its density will therefore be too dif-
fuse. This is exactly what happens in the HF scheme, where the total hole is approximated
solely by the Fermi hole. The too diffuse density causes a severe underestimation of the
electron-nuclear attraction accompanied by a too low kinetic energy and an electron-elec-
tron repulsion which is also too low. All these effects contribute to the large error in the
Hartree-Fock dissociation curve, as we will show in more detail in Section 5.3.2 (see also
Baerends and Gritsenko, 1997).
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2.3.2 The Coulomb Hole

From equations (2-17) and (2-21) it is obvious that the Coulomb hole must be normalized
to zero, i. e. the integral over all space contains no charge:

0rd)r;r(h 221C =∫
���

. (2-25)

This makes good physical sense since for electrons of unlike spin the probability of
finding an electron of spin σ anywhere in space is of course the total number of electrons of
this spin, i. e., Nσ. This result is independent of the positions of electrons with spin σ’ ≠ σ.
Also, there is no need for a self-interaction correction. The Coulomb hole will be negative
and largest at the position of the reference electron since it originates from the 1/r12 electro-
static interaction which keeps electrons apart. Since there is a finite probability that two
electrons of different spin (and approximated as volume-less point charges) can be found
within the same volume element )r;r(h 11C

��

 has no predetermined value at vanishing
interelectronic distance, unlike the Fermi hole which for 12 rr

��

→  approaches )r( 1
�

ρ− . How-
ever, what )r;r(h 11C

��

 mirrors for 12 rr
��

→  is the cusp condition that we already met in the
discussion of the density. Because no two electrons of parallel spin can occupy the same
point in space, the cusp condition occurs only for electrons of antiparallel spin. Since the
Coulomb hole integrates to zero it must also be positive in some regions. In other words,
density is taken away from areas close to the reference electron and is piled up in regions
farther away from it. How does the Coulomb hole look like in our H2 laboratory molecule?
Of course, this is a particularly simple case, because there are no parallel spin contributions
and the Coulomb hole refers only to the interaction of electrons of antiparallel spins. If one
of the two electrons is found at, say, the left proton, the probability to find the other one at
the right nucleus will be higher and vice versa. The larger the distance between the two H
atoms the more pronounced this effect will be. Thus, also the Coulomb hole will be
delocalized with a negative part at the nucleus where the reference electron sits and a posi-
tive part, i. e., a build-up of charge at the other nucleus. At the extreme, when rHH → ∞, the
Coulomb hole will remove half an electron from the nucleus where the reference electron is
positioned and build a charge of half an electron at the other nucleus. Unlike the Fermi
hole, which for H2 was found to be completely independent of where the reference electron
is located, it should be clear from the foregoing discussion that the Coulomb hole has to
switch abruptly if the reference electron moves from the left to the right nucleus.

To visualize the above discussion we show in Figure 2-2 the Fermi, Coulomb and total
exchange-correlation holes for H2 at various distances. The probe electron is placed at 0.3
bohr to the left of the right proton. We see immediately – in particular for large r – that
while both components of the hole are delocalized, the sum of the two, i. e., the total hole,
is localized at the proton of the reference electron. At large distances the Coulomb hole is
negative at the right proton and adds to the Fermi hole, while at the left proton the Coulomb
hole is positive and exactly cancels the Fermi hole. The result is a total hole that removes
exactly one electron from the right proton as it should in order to yield two undisturbed
hydrogen atoms in the dissociation limit. An important observation here is that neither of

2.3  Fermi and Coulomb Holes
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the two individual components of the total hole is anywhere close to a reasonable represen-
tation of the EXC total hole. Only if the Fermi and Coulomb holes are combined, the correct
shape emerges.

Figure 2-2. Fermi, Coulomb and the resulting total exchange-correlation holes for H2 at three different internuclear
distances; the position of the probe electron is marked with an arrow (adapted from Baerends and Gritsenko,
J. Phys. Chem. A, 101, 5390 (1997), with permission by the American Chemical Society).
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3 The Electron Density as the Basic Variable:
Early Attempts

In this section we will approach the question which is at the very heart of density functional
theory: can we possibly replace the complicated N-electron wave function with its depend-
ence on 3N spatial plus N spin variables by a simpler quantity, such as the electron density?
After using plausibility arguments to demonstrate that this seems to be a sensible thing to
do, we introduce two early realizations of this idea, the Thomas-Fermi model and Slater’s
approximation of Hartree-Fock exchange defining the Xα method. The discussion in this
chapter will prepare us for the next steps, where we will encounter physically sound rea-
sons why the density is really all we need.

3.1 Does it Make Sense?

The conventional approach to quantum chemistry uses the wave function Ψ as the central
quantity. The reason is that once we know Ψ (or a good approximation to it) we have access
to all information that can be known about this particular state of our target system. A
typical example of this approach is the Hartree-Fock approximation that we expounded in
Chapter 1. There is, however, a severe problem. The wave function is a very complicated
quantity that cannot be probed experimentally and that depends on 4N variables, three
spatial and one spin variable for each of the N electrons. The systems we are interested in in
chemistry, biology and material science contain many atoms and many more electrons.
Thus, any wave function based treatment will soon reach an unmanageable size. This not
only makes a computational treatment very difficult if not impossible but also reduces the
possibility of a descriptive understanding and renders this approach inaccessible to intui-
tion. On the other hand, the Hamilton operator Ĥ  contains only operators that act on one
( T̂  and NeV̂ ) or at most two ( eeV̂ ) particles at a time, independent of the size of the
system. Hence, one may wonder whether the complicated wave function is really needed
for obtaining the energy and other properties of interest or whether it contains redundant
and irrelevant information with regard to this purpose and we can get away with a less
complicated quantity as the central variable. This is indeed the case! First, it is fairly straight-
forward to show that the Schrödinger equation can be rewritten in terms of the reduced one-
and two-particle density matrices10 and we end up with an equation that depends on 8,
rather than 4N variables, independent of the system size (McWeeny, 1992, Kryachko and
Ludeña, 1990). However, in the present context we are not going to follow that avenue any
further, since it actually represents a detour from our real goal, i. e., density functional
theory. Rather, we want to use the electron density )r(

�

ρ  as discussed in the previous chap-
ter – a quantity that depends only on the three spatial variables and is therefore an object in

10 The former is a generalization of the electron density in the same spirit as )x,x;x,x( 21212 ′′γ
����

 is a generalization
of )x,x( 212

��

ρ , see Section 2.2.
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the three-dimensional physical space – as a means to reach a solution to the Schrödinger
equation. That this endeavor has some chances of success can be deduced from the follow-
ing sequence of observations: recall that in Section 1.2 we arrived at the conclusion that the
Hamilton operator of any atomic or molecular system is uniquely defined by N, the number
of electrons, RA, the position of the nuclei in space, and ZA the charges of the nuclei. We
went on by saying that once Ĥ  is known, we can – of course only in principle – solve the
Schrödinger equation. We also showed in the discussion of the properties of the electron
density )r(

�

ρ  in Section 2.1 that

(i) Nd =)ρ(∫ ��
��
��

, i. e., the density integrates to the number of electrons,
(ii) )r(

�

ρ  has maxima, that are actually even cusps, only at the positions RA of the nuclei,
and that

(iii) 0Z2
r

lim A
0riA

=)(ρ



 +
∂
∂

→
�
�

, i. e.,

the density at the position of the nucleus contains information about the nuclear charge Z.

Thus, the electron density already provides all the ingredients that we identified as being
necessary for setting up the system specific Hamiltonian and it seems at least very plausible
that in fact )r(

�

ρ  suffices for a complete determination of all molecular properties (of course,
this does not relieve us from the task of actually solving the corresponding Schrödinger
equation and all the difficulties related to this). As noted by Handy, 1994, these very simple
and beautifully intuitive arguments in favor of density functional theory are attributed to
E. B. Wilson. So the answer to the question posed in the caption to this section is certainly
a loud and clear ‘Yes’.

3.2 The Thomas-Fermi Model

Actually, the first attempts to use the electron density rather than the wave function for
obtaining information about atomic and molecular systems are almost as old as is quantum
mechanics itself and date back to the early work of Thomas, 1927 and Fermi, 1927. In the
present context, their approach is of only historical interest. We therefore refrain from an
in-depth discussion of the Thomas-Fermi model and restrict ourselves to a brief summary
of the conclusions important to the general discussion of DFT. The reader interested in
learning more about this approach is encouraged to consult the rich review literature on this
subject, for example by March, 1975, 1992 or by Parr and Yang, 1989.

At the center of the approach taken by Thomas and Fermi is a quantum statistical model
of electrons which, in its original formulation, takes into account only the kinetic energy
while treating the nuclear-electron and electron-electron contributions in a completely clas-
sical way. In their model Thomas and Fermi arrive at the following, very simple expression
for the kinetic energy based on the uniform electron gas, a fictitious model system of con-
stant electron density (more information on the uniform electron gas will be given in Sec-
tion 6.4):
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∫ ρπ=ρ rd)r()3(
10

3
)]r([T 3/53/22

TF
���

. (3-1)

If this is combined with the classical expression for the nuclear-electron attractive po-
tential and the electron-electron repulsive potential we have the famous Thomas-Fermi
expression for the energy of an atom,

ρ ρρρ = π ρ − +∫ ∫ ∫ ∫
� ��

� � � � � �2 2 / 3 5 / 3 1 2
TF 1 2

12

(r ) (r )3 (r) 1
E [ (r)] (3 ) (r)dr Z dr dr dr

10 r 2 r
. (3-2)

The importance of this equation is not so much how well it is able to really describe the
energy of an atom (actually it is only of limited use in that respect because TTF is only a
very coarse approximation to the true kinetic energy and exchange and correlation effects
are completely neglected), but that the energy is given completely in terms of the electron
density )r(

�

ρ . Thus, we have the first example of a genuine density functional for the en-
ergy! In other words, equation (3-2) is a prescription for how to map a density )r(

�

ρ  onto an
energy E without any additional information required. In particular no recourse to the wave
function is taken. Now that we have a functional expressing the energy in terms of the
density, the next important step is to find a strategy for how the correct density that we need
to insert into (3-2) can be identified. To this end, the Thomas-Fermi model employs the
variational principle. It is assumed that the ground state of the system is connected to the
electron density for which the energy according to equation (3-2) is minimized under the
constraint of Nd =)ρ(∫ ��

��
��

. Note, at this point we do not know either whether expressing
the energy as a functional of )r(

�

ρ  is physically justified or whether a procedure employing
the variational principle on the density is really allowed in this context. Thus, for the time
being the only right of existence of the Thomas-Fermi model is that it seems reasonable!

3.3 Slater’s Approximation of Hartree-Fock Exchange

Let us introduce another early example by Slater, 1951, where the electron density is ex-
ploited as the central quantity. This approach was originally constructed not with density
functional theory in mind, but as an approximation to the non-local and complicated ex-
change contribution of the Hartree-Fock scheme. We have seen in the previous chapter that
the exchange contribution stemming from the antisymmetry of the wave function can be
expressed as the interaction between the charge density of spin σ and the Fermi hole of the
same spin

21
12

21X1
X rdrd

r

)r;r(h)r(

2

1
E

��

���

∫ ∫
ρ= . (3-3)

Hence, if we can construct a simple but reasonable approximation to the Fermi hole, the
solution of equation (3-3) can be made considerably easier. Slater’s idea was to assume that
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the exchange hole is spherically symmetric and centered around the reference electron at

1r
�

. We further assume that within the sphere the exchange hole density is constant, having
minus the value of )r( 1

�

ρ , while outside it is zero. Since the Fermi hole is known to contain
exactly one elementary charge (cf. equation (2-21)), the radius of this sphere is then given
by

3/1
1

3/1

S )r(
4

3
r −ρ







π
=

�

. (3-4)

The radius rS is sometimes called the Wigner-Seitz radius and can be interpreted to a first
approximation as the average distance between two electrons in the particular system. Re-
gions of high density are characterized by small values of rS and vice versa. From standard
electrostatics it is known that the potential of a uniformly charged sphere with radius rS is
proportional to 1/rS, or, equivalently, to 3/1

1)r(
�

ρ . Hence, we arrive at the following ap-
proximate expression for EX (CX is a numerical constant),

1
3/4

1XX rd)r(C][E
��

∫ ρ≅ρ . (3-5)

What does this mean? We have replaced the non-local and therefore fairly complicated
exchange term of Hartree-Fock theory as given in equation (3-3) by a simple approximate
expression which depends only on the local values of the electron density. Thus, this ex-
pression represents a density functional for the exchange energy. As noted above, this for-
mula was originally explicitly derived as an approximation to the HF scheme, without any
reference to density functional theory. To improve the quality of this approximation an
adjustable, semiempirical parameter α was introduced into the pre-factor CX which leads
to the Xα or Hartree-Fock-Slater (HFS) method which enjoyed a significant amount of
popularity among physicists, but never had much impact in chemistry,

1
3/4

1

3/1

X rd)r(
3

8

9
][E

��

∫ ρα






π
−=ρα . (3-6)

Typical values of α are between 2/3 and 1. We will later see that the 4/3 power law for
the dependence of the exchange interaction on the electron density is also obtained from a
completely different approach using the concept of the uniform electron gas, work pio-
neered by Bloch, 1929, and Dirac, 1930. A detailed discussion of the uniform electron gas
and its expressions for exchange and correlation energies awaits the reader in Section 6.4.
It is worth mentioning that if the exchange contributions of equation (3-5), with a slightly
modified value of CX, are combined with the Thomas-Fermi energy given by expression
(3-2), we end up with an approximation which is known as the Thomas-Fermi-Dirac model.
This model now includes the kinetic and classical Coulomb contributions as well as the
quantum mechanical exchange effects. The important point is that all parts are expressed as
pure functionals of the density. Since, just like the original Thomas-Fermi model, the Tho-
mas-Fermi-Dirac extension was also not very successful in chemical applications, we will
not discuss it any further.
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4 The Hohenberg-Kohn Theorems

Density functional theory as we know it today was born in 1964 when a landmark paper by
Hohenberg and Kohn appeared in the Physical Review. The theorems proven in this report
represent the major theoretical pillars on which all modern day density functional theories
are erected. This chapter introduces these Hohenberg-Kohn theorems and discusses their
obvious and maybe not so obvious consequences. We also give an alternative, more modern
approach, namely the Levy constraint-search scheme. We go on and discuss the question
whether a physically meaningful wave function can be uniquely associated with a certain
density. The common denominator in our discussion is the primacy of the application-
oriented understanding over the puristic theoretical point of view. Readers who have also
an affinity towards the latter and want to learn more about the many theoretical intricacies
of the Hohenberg-Kohn theorems are recommended to consult the comprehensive and theo-
retically sound discussions contained in Parr and Yang, 1989, Kryachko and Ludeña, 1990,
Dreizler and Gross, 1995 and Eschrig, 1996.

4.1 The First Hohenberg-Kohn Theorem: Proof of Existence

The first Hohenberg-Kohn theorem provides the proof that our plausibility arguments
given at the beginning of the previous chapter are indeed physically justified. To put it
differently we are about to show that the electron density in fact uniquely determines the
Hamilton operator and thus all properties of the system. The proof originally given by
Hohenberg and Kohn in their 1964 paper is disarmingly simple, almost trivial and one
may wonder why it took about 40 years after Thomas and Fermi first used the density as a
basic variable before their approach was put onto a firm physical foundation. Quoting
directly from the Hohenberg/Kohn paper, this first theorem states that ‘the external po-
tential )r(Vext

�
 is (to within a constant) a unique functional of )r(

�
ρ ; since, in turn )r(Vext

�

fixes Ĥ  we see that the full many particle ground state is a unique functional of )r(
�

ρ ‘.
The proof runs as follows and is based on reductio ad absurdum. We start by considering
two external potentials Vext and extV′  which differ by more than a constant (since the wave
function and hence the charge density is unaltered if a constant is added to the potential,
we must require from the outset that the two external potentials differ not only by a con-
stant) but which both give rise to the same electron density )r(

�
ρ  associated with the cor-

responding non-degenerate ground states of N particles (the limitation to non-degenerate
ground states of the original Hohenberg-Kohn argument will later be lifted, see below).
These two external potentials are part of two Hamiltonians which only differ in the exter-
nal potential, extee V̂V̂T̂Ĥ ++=  and extee V̂V̂T̂Ĥ ′++=′ . Obviously, the two Hamil-
tonians Ĥ  and Ĥ′  belong to two different ground state wave functions, Ψ and Ψ’, and
corresponding ground state energies, E0 and 0E′ , respectively, with 00 EE ′≠ . However,
we assume that both wave functions give rise to the same electron density (this is very
well possible, since the prescription of how a density is constructed from a wave function
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by quadrature, i. e., N21
2

N21 xdxdds)x,,x,x(N
�

�
��

�
��

�
�

∫∫ Ψ=)ρ(� , is of course not
unique). We express this schematically following our notation from Section 1.2 as

extext VĤ)r(ĤV ′⇐′⇐Ψ′⇐ρ⇒Ψ⇒⇒
�

.

Therefore Ψ and Ψ’, respectively, are different, and we can use Ψ’ as trial wave function
for Ĥ . We must then have by virtue of the variational principle

Ψ′′−Ψ′+Ψ′′Ψ′=Ψ′Ψ′< |ĤĤ||Ĥ||Ĥ|E0 (4-1)

or, because the two Hamilton operators differ only in the external potential

Ψ′′−−−++Ψ′+′< exteeextee00 V̂V̂T̂V̂V̂T̂EE (4-2)

which yields

{ } rdVV)r(EE extext00
��

∫ ′−ρ+′< . (4-3)

Interchanging the unprimed with the primed quantities and repeating the above steps of
equations (4-1) to (4-3) we arrive at the corresponding equation

{ } rdVV)r(EE extext00
��

∫ ′−ρ−<′ . (4-4)

After adding equations (4-3) and (4-4), this leaves us with the clear contradiction

0000 EEEE +′<′+  or 0 < 0. (4-5)

This concludes the proof that there cannot be two different Vext that yield the same
ground state electron density, or, in other words, that the ground state density uniquely
specifies the external potential Vext. Using again the terminology of Section 1.2 we can
simply add ρ0 as the property which contains the information about {N, ZA, RA} and sum-
marize this as

ρ0 ⇒ {N, ZA, RA} ⇒ Ĥ  ⇒ Ψ0 ⇒ E0 (and all other properties).

Since the complete ground state energy is a functional of the ground state electron den-
sity so must be its individual components and we can write (where we revert to the sub-
script ‘Ne’ to specify the kind of external potential present in our case, which is fully
defined by the attraction due to the nuclei)

ρ = ρ + ρ + ρ0 0 0 ee 0 Ne 0E [ ] T[ ] E [ ] E [ ] . (4-6)

It is convenient at this point to separate this energy expression into those parts that
depend on the actual system, i. e., the potential energy due to the nuclei-electron attraction,
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∫ ρ=ρ rdV)r(][E Ne00Ne
��

, and those which are universal in the sense that their form is
independent of N, RA and ZA

�� ��� ���������

��

validyuniversall

0ee0

dependentsystem

Ne000 ][E][TrdV)r(][E ρ+ρ+ρ=ρ ∫ . (4-7)

Collecting the system independent parts into a new quantity, the Hohenberg-Kohn func-
tional FHK[ρ0], we arrive at

][FrdV)r(][E 0HKNe000 ρ+ρ=ρ ∫
��

, (4-8)

which defines FHK[ρ0]. In other words, if the Hohenberg-Kohn functional is fed with some
arbitrary density )r(

�
ρ  it cranks out the expectation value 〈 Ψ + Ψ 〉ee

ˆ ˆ|T V | . This is the sum
of the kinetic energy and the electron-electron repulsion operator with the ground state
wave function Ψ connected with this very density (i. e., Ψ is, among all the many wave
functions that yield ρ, the one which delivers the lowest energy),

Ψ+Ψ=ρ+ρ=ρ eeeeHK V̂T̂][E][T][F . (4-9)

This, at first glance innocuous-looking functional FHK[ρ] is the holy grail of density
functional theory. If it were known exactly we would have solved the Schrödinger equa-
tion, not approximately, but exactly. And, since it is a universal functional completely inde-
pendent of the system at hand, it applies equally well to the hydrogen atom as to gigantic
molecules such as, say, DNA! FHK[ρ] contains the functional for the kinetic energy T[ρ]
and that for the electron-electron interaction, Eee[ρ]. The explicit form of both these
functionals lies unfortunately completely in the dark. However, from the latter we can
extract at least the classical Coulomb part J[ρ], since that is already well known (recall
Section 2.3),

][E][J][Erdrd
r

)r()r(

2

1
][E nclncl21

12

21
ee ρ+ρ=ρ+ρρ=ρ ∫ ∫

��
��

. (4-10)

Encl[ρ] is the non-classical contribution to the electron-electron interaction containing
all the effects of self-interaction correction, exchange and Coulomb correlation described
previously. It will come as no surprise that finding explicit expressions for the yet unknown
functionals, i. e. T[ρ] and Encl[ρ], represents the major challenge in density functional theory
and a large fraction of this book will be devoted to that problem.

One should note at this point that the ground state density uniquely determines the Ham-
ilton operator, which characterizes all states of the system, ground and excited. Thus, all
properties of all states are formally determined by the ground state density (even though
we would need functionals other than ][FrdV)r( HKNe ρ+ρ∫

��
, which is the functional con-
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structed to deliver E0 but not properties of electronically excited states). In the next section
we will see that the reason why density functional theory is usually termed a ground state
only theory is a consequence of the second Hohenberg-Kohn theorem. On the other hand,
it is only the ground state density that contains the information about positions and charges
of the nuclei allowing the mapping from density to external potential; the density of an
excited state cannot be used.

4.2 The Second Hohenberg-Kohn Theorem: Variational Principle

Up to this point we have established that the ground state density is in principle sufficient to
obtain all properties of interest. But, how can we be sure that a certain density is really the
ground state density that we are looking for? A formal prescription for how this problem
should be tackled has been given through the second theorem proven by Hohenberg and
Kohn in their 1964 contribution. In plain words, this theorem states that FHK[ρ], the func-
tional that delivers the ground state energy of the system, delivers the lowest energy if and
only if the input density is the true ground state density, ρ0. This is of course nothing else
than our old friend, the variational principle which in the present context can be expressed
as

]~[E]~[E]~[T]~[EE eeNe0 ρ+ρ+ρ=ρ≤ . (4-11)

Stated in still other words this means that for any trial density )r(~ �
ρ  – which satisfies the

necessary boundary conditions such as 0)r(~ ≥ρ
�

, ∫ =ρ Nrd)r(~ ��
, and which is associated

with some external potential extV
~

 – the energy obtained from the functional given in equa-
tion (4-6) represents an upper bound to the true ground state energy E0. E0 results if and
only if the exact ground state density is inserted into equation (4-8). The proof of the in-
equality (4-11) is simple since it makes use of the variational principle established for wave
functions as detailed in Chapter 1. We recall that any trial density )r(~ �

ρ  defines its own

Hamiltonian H
~
ˆ  and hence its own wave function Ψ~ . This wave function can now be taken

as the trial wave function for the Hamiltonian generated from the true external potential
Vext. Thus, we arrive at

0000extee Ĥ][E]~[ErdV)r(~]~[V]~[T
~

Ĥ
~ ΨΨ=ρ≥ρ=ρ+ρ+ρ=ΨΨ ∫

��
(4-12)

which is the desired result.
Let us summarize what we have shown so far. First, all properties of a system defined

by an external potential Vext are determined by the ground state density. In particular the
ground state energy associated with a density ρ is available through the functional

][FrdV)r( HKNe ρ+ρ∫
��

. Second, this functional attains its minimum value with respect to
all allowed densities if and only if the input density is the true ground state density, i. e., for

)r()r(~
0
��

ρ≡ρ . Of course, the applicability of this variational recipe is limited to the ground
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state energy since the property that E0 is the lowest possible energy of the system is explic-
itly used (to be precise, it is limited to the lowest lying state within a given symmetry).
Hence, we cannot straightforwardly transfer this strategy to the problem of determining
energies and properties of electronically excited states (the problem of excited states’ prop-
erties will be taken on in the following chapter).

Let us pause briefly at this point to scratch at a more formal, theoretical problem. The
attentive reader might have noticed that we smuggled in the condition ‘and which are asso-
ciated with some external potential extV′ ‘ as a restriction for densities to be eligible in the
variational procedure. This restriction marks the so-called Vext-representability problem of
electron densities. It is the problem that among the many densities one may think of, not all
are eligible in the context of the Hohenberg-Kohn theorem. Only those should be consid-
ered which are associated with an antisymmetric wave function and a Hamilton operator
with some kind of external potential (not necessarily restricted to the kind of potentials we
have met so far). Intimately connected is the question of how such densities can be recog-
nized. While this is an important problem in some of the more theoretical aspects of density
functional theory (for example, it is not known so far, which conditions densities must obey
in order to be Vext-representable), it is only of minor relevance from an application’s point
of view. Most importantly, as we will show in the following section this requirement can be
replaced by the much weaker condition that the density must stem from an antisymmetric
wave function without the explicit connection to an external potential. Such densities are
called N-representable. Since virtually all practical applications are in one way or the other
related to wave function techniques all densities that occur in these applications trivially
satisfy this condition. In any case, in spite of representing an exciting intellectual chal-
lenge, Vext- or N-representability problems will not bother us any further, since they belong
into the domain of theoretical physics rather than computational chemistry.

4.3 The Constrained-Search Approach

In this section we introduce a different way of looking at the variational search connected
to the Hohenberg-Kohn treatment. Recall the variational principle, equation (1-13) as in-
troduced in Chapter 1

Ψ++Ψ=
→Ψ eeNe

N
0 V̂V̂T̂minE . (4-13)

In words, we search over all allowed, antisymmetric N-electron wave functions and the
one that yields the lowest expectation value of the Hamilton operator (i. e. the energy) is the
ground state wave function.

In order to connect this variational principle to density functional theory we perform the
search defined in equation (4-13) in two separate steps: first, we search over the subset of
all the infinitely many antisymmetric wave functions XΨ  that upon quadrature yield a
particular density ρX (under the constraint that the density integrates to the correct number
of electrons). The result of this search is the wave function X

minΨ  that yields the lowest

4.3  The Constrained-Search Approach
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energy for a given density ρX. The second step lifts the constraint of a particular density and
extends the search over all densities. We finally identify that density among the many ρΓ,
Γ = A, B, …, X, … as the ground state density, for which the wave function ΓΨmin  charac-
terized in the first step delivers the lowest energy of all. This way of looking at the minimi-
zation problem in density functional theory was introduced by Levy, 1979, and is known as
the Levy constrained-search formulation and is discussed in detail in Parr and Yang, 1989,
or Kryachko and Ludeña, 1990. It can be expressed as






 Ψ++Ψ=

ρ→Ψ→ρ eeNe
N

0 V̂V̂T̂minminE (4-14)

where the inner and outer minimizations correspond to the first and second steps of above,
respectively.

The energy due to the external potential is determined simply by the density and is
therefore independent of the wave function generating that density. Hence, it is the same
for all wave functions integrating to a particular density and we can separate it from the
kinetic and electron-electron repulsion contributions






 ρ+Ψ+Ψ= ∫ρ→Ψ→ρ

rdV)r(V̂T̂minminE Neee
N

0
��

(4-15)

or, introducing the universal functional

Ψ+Ψ=ρ
ρ→Ψ

eeV̂T̂min][F , (4-16)

this results in

( )∫ ρ+ρ=
→ρ

rdV)r(][FminE Ne
N

0
��

. (4-17)

Given a density, ∫ ρ+ρ rdV)r(][F Ne
��

 delivers the corresponding energy and upon mini-

mization, the ground state density and ground state energy are obtained. One should notice
that F[ρ] differs from the functional FHK[ρ] given above in equation (4-9) only by the fact
that it is defined for all densities that originate from an antisymmetric wave function Ψ.
The additional restriction that the density has to be associated with an external potential
does not surface in this formulation. Of course, if the input density belongs to the class of
Vext-representable densities, as is obviously the case for the ground state density which
belongs to the corresponding Vext in the Hamiltonian, the two functionals become identical,
FHK[ρ0] = F[ρ0]. In addition, in the Levy formulation the restriction to non-degenerate
ground states of the original Hohenberg-Kohn theorem is lifted. If a ground state density ρ0
is selected, only one of the wave functions out of a set of functions connected with the same
ground state energy (associated with ρ0) is found in the constrained search.
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4.4 Do We Know the Ground State Wave Function in Density
Functional Theory?

From a purist theoretical point of view, there is one further important result hidden in the
Levy constrained-search strategy: it provides a unique, albeit only formal, route to extract
the ground state wave function Ψ0 from the ground state density ρ0. This is anything but a
trivial problem, since there are many antisymmetric N-electron wave functions that yield

the same density via 0ρ = Ψ∫ ∫
� � � � � �

� � �
2

1 2 N 1 2 N(r) N (x ,x , ,x ) ds dx dx . Of these, the cor-
rect ground state wave function Ψ0 is the one which yields the lowest energy. Stated in
other words, we just have to have a look at all the Ψ’s associated with the ground state
density ρ0 and select that one for which 

0
E ρ→Ψ  is lowest, which is then Ψ0. Of course, like

so many results presented in this chapter, this one is also absolutely useless in real applica-
tions. We have no access to all these wave functions and thus, in real life there is no way
whatsoever to identify the correct wave function associated with a particular density. Hence,
even though the ground state wave function is in principle accessible once we know the
correct ground state density (which, in turn, is provided by minimizing the functional F[ρ]),
it is fair to say that for all practical purposes, there is no wave function in density functional
theory. We want to point this out very explicitly, since in the literature there is sometimes a
certain laxness about this important fact.11

4.5 Discussion

At the conclusion of this chapter let us recapitulate what we know by virtue of the Hohenberg-
Kohn theorems and what that they are not able to provide. For good reasons we have intro-
duced the Hohenberg-Kohn theorems as being the bedrock of modern density functional
theory. However, at the same time, it cannot be overstressed that these results are not more
(but also not less) than mere proofs of existence. All the theorems tell us is that a unique
mapping between the ground state density )r(0

�
ρ  and the ground state energy E0 exists in

principle. However, they do not provide any guidance at all how the functional that delivers
the ground state energy should be constructed. It is the kind of result which saves ‘hard-
core’ theoreticians from having sleepless nights, because after Hohenberg and Kohn pre-
sented their results it was clear that what people did since Thomas and Fermi, namely
employing the electron density as the central variable which contains all the necessary
information to describe an atomic or molecular system, is indeed physically sound. How-
ever, for those who prefer a pragmatic point of view and are mainly interested in applying
density functional theory as a tool to computationally predict the properties of molecules,
nothing has visibly changed by the advent of these theorems. The calculations are as hard
as before and the Hohenberg-Kohn theorems do not even give a clue as to what kind of
approximation should be used for the unknown functionals.

11 Even though the correct many electron wave function is not available in DFT, we will see in Section 5.3.3 that
a related wave function exists, which can often be used for qualitative interpretation.

4.5  Discussion
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The second theorem establishes the variational principle. Again, we have to be careful
not to overinterpret this result. In any real application of density functional theory we are
forced to use an approximation for the functional F[ρ], since the true functional is not
available. The variational principle as proven above, however, applies to the exact func-
tional only. This has several unpleasant consequences. First, many conventional wave func-
tion based theories, such as the Hartree-Fock or configuration interaction schemes, are
strictly variational and the expectation value = 〈Ψ Ψ〉� �ˆE |H|  is an indicator of the quality
of the trial wave function (the lower E is, the better an approximation is Ψ~  to Ψ0). In the
density functional world, the energy value delivered by a trial functional has absolutely no
meaning in that respect. Second, it can well happen that the energies obtained from ap-
proximate density functional theory are lower than the exact ones! For example, if we
compute the energy of the hydrogen atom with the popular BPW91 functional and a large
cc-pV5Z expansion of the one-electron Kohn-Sham functions, the result is –0.5042 Eh,
significantly below the exact energy of –0.5 Eh (explanations of the various acronyms that
define the level of calculation will be given in later chapters). The reason for these at first
glance unexpected results is that in density functional theory, by using an approximation
for the universal functional we in a way use an approximated rather than the exact Hamil-
tonian, while not paying attention to the wave function (which we do not know anyway).
Of course, if we change Ĥ  and use something which is only an approximation to it, the
variational principle does not hold anymore. On the other hand, in variational conventional
methods we use the exact electronic Hamilton operator from equation (1-4) and compute
the energy as an expectation value using more and more sophisticated approximations for
the many-particle wave function, exactly the scenario for which the variational principle
applies.

Similarly, the constrained-search scheme, even though being very elegant in appearance
and strong in formal power, is only of theoretical value and offers no solution to practical
considerations. Simply, the program indicated in Section 4.3 cannot be realized – how
would we ever be able to search through all wave functions? Since this is obviously impos-
sible, setting up the functional 

Ψ→ρ
ρ = 〈Ψ + Ψ〉ee

ˆ ˆF[ ] min |T V |  is impossible, too. A second

point deserves to be mentioned as well. We set out to find a functional that contains an
explicit prescription for how to uniquely map an electron density onto an energy, bypassing
the complicated N-particle wave function. However, what we ended up with in the con-
strained search formalism is a definition of the all-decisive functional F[ρ] that explicitly
contains the wave function rather than the density – recall equations (4-14) to (4-17). We
are not going to pursue these formal aspects of density functional theory any further since
it represents a diversion from the real focal point of this book: the role of density functional
theory in chemical applications. A competent in-depth discussion with many pointers to
the original literature can again be found in the excellent book by Kryachko and Ludeña,
1990.
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In this chapter we will show how the Hohenberg-Kohn theorems of the previous chapter
can be put to work. As the caption to this chapter indicates, the approach we are discussing
has its origin in the second major paper of modern density functional theory, which ap-
peared about a year after the ground breaking contribution by Hohenberg and Kohn. In this
report, Kohn and Sham, 1965, suggested an avenue for how the hitherto unknown universal
functional of the previous chapter can be approached. At the center of their ingenious idea
is the realization that most of the problems with direct density functionals like the Thomas-
Fermi method presented in Chapter 3 are connected with the way the kinetic energy is
determined. In order to alleviate the situation and realizing that orbital-based approaches
such as the Hartree-Fock method perform much better in this respect, Kohn and Sham
introduced the concept of a non-interacting reference system built from a set of orbitals
(i. e., one electron functions) such that the major part of the kinetic energy can be computed
to good accuracy. The remainder is merged with the non-classical contributions to the elec-
tron-electron repulsion – which are also unknown, but usually fairly small. By this method,
as much information as possible is computed exactly, leaving only a small part of the total
energy to be determined by an approximate functional. After introducing the Kohn-Sham
scheme, we will discuss some of its major features. In particular we will draw the demarca-
tion line between those properties that apply to ‘Kohn-Sham in principle’ and what hap-
pens to these properties in ‘Kohn-Sham in real life’.

5.1 Orbitals and the Non-Interacting Reference System

Let us recall that the Hohenberg-Kohn theorems allow us to construct a rigorous many-
body theory using the electron density as the fundamental quantity. We showed in the pre-
vious chapter that in this framework the ground state energy of an atomic or molecular
system can be written as

( )∫ ρ+ρ=
→ρ

rdV)r(][FminE Ne
N

0
��

(5-1)

where the universal functional F[ρ] contains the individual contributions of the kinetic
energy, the classical Coulomb interaction and the non-classical portion due to self-interac-
tion correction, exchange (i. e., antisymmetry), and electron correlation effects,

)]r([E)]r([J)]r([T)]r([F ncl
����

ρ+ρ+ρ=ρ . (5-2)

Of these, only J[ρ] is known, while the explicit forms of the other two contributions
remain a mystery. The Thomas-Fermi and Thomas-Fermi-Dirac approximations that we
briefly touched upon in Chapter 3 are actually realizations of this very concept. All terms
present in these models, i. e., the kinetic energy, the potential due to the nuclei, the classical
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Coulomb repulsion, and in the case of the Thomas-Fermi-Dirac model also the exchange
contribution are explicit functionals of the electron density, making the respective expres-
sions very simple. It turns out, however, that all methods based on the Thomas-Fermi scheme,
including the numerous extensions that have been introduced since its original conception,
fail miserably when results better than mere qualitative trends are the target. Among the
most devastating results was the rigorous proof that within the Thomas-Fermi model no
molecular system is stable with respect to its fragments! So, what value for chemistry can
a model possibly have in which chemical bonding does not even exist? It quickly became
clear that the major reason for the very disappointing performance of the Thomas-Fermi
model is the simple functional form for the kinetic energy with its dependence on

∫ ρ rd)r(3/5 ��
. Also intuitively we are not surprised that the relationship between the spatial

distribution of the electrons as provided by the electron density and their velocities, which
are needed for the kinetic energy, is not that trivial. Thus, it seems to be crucial to find a
different way to treat the kinetic energy with a better control of the accuracy – and that is
exactly what Kohn and Sham set out to do.

To understand how Kohn and Sham tackled this problem, we go back to the discussion
of the Hartree-Fock scheme in Chapter 1. There, our wave function was a single Slater
determinant ΦSD constructed from N spin orbitals. While the Slater determinant enters the
HF method as the approximation to the true N-electron wave function, we showed in Sec-
tion 1.3 that ΦSD can also be looked upon as the exact wave function of a fictitious system
of N non-interacting electrons (that is ‘electrons’ which behave as uncharged fermions and
therefore do not interact with each other via Coulomb repulsion), moving in the effective
potential VHF. For this type of wave function the kinetic energy can be exactly expressed as

∑ χ∇χ−=
N

i
i

2
iHF 2

1
T . (5-3)

The HF spin orbitals χi that appear in this expression are chosen such that the expecta-
tion value EHF attains its minimum (under the usual constraint that the χi remain orthonormal)

SDeeNeSD
N

HF V̂V̂T̂minE
SD

Φ++Φ=
→Φ

. (5-4)

Of course, all this is not new but only a recapitulation of results from Chapter 1. The
important connection to density functional theory is that we now go on to exploit the above
kinetic energy expression, which is valid for non-interacting fermions, in order to compute
the major fraction of the kinetic energy of our interacting system at hand.

The next step is crucial. We have shown above that the exact wave functions of non-
interacting fermions are Slater determinants.12 Thus, it will be possible to set up a non-
interacting reference system, with a Hamiltonian in which we have introduced an effective,
local potential )r(VS

�
:

12 That is, if we are dealing with non-degenerate states. Otherwise the wave function might be a limited linear
combination of Slater determinants.
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∑ ∑+∇−=
N

i

N

i
iS

2
iS )r(V

2

1
Ĥ

�
. (5-5)

Since this Hamilton operator does not contain any electron-electron interactions it in-
deed describes a non-interacting system. Accordingly, its ground state wave function is
represented by a Slater determinant (switching to ΘS and ϕ rather than ΦSD and χ for the
determinant and the spin orbitals, respectively, in order to underline that these new quanti-
ties are not related to the HF model)

ϕ ϕ ϕ
ϕ ϕ ϕ
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ϕ ϕ ϕ

� � �
�
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�

1 1 2 1 N 1
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(x ) (x ) (x )
1

N!

(x ) (x ) (x )

(5-6)

where the spin orbitals, in complete analogy to equations (1-24) and (1-25), are determined
by

iii
KSf̂ ϕε=ϕ , (5-7)

with the one-electron Kohn-Sham operator KSf̂  defined as

)r(V
2

1
f̂ S

2KS �
+∇−= . (5-8)

In order to distinguish these orbitals from their Hartree-Fock counterparts, they are usu-
ally termed Kohn-Sham orbitals, or briefly KS orbitals. The connection of this artificial
system to the one we are really interested in is now established by choosing the effective
potential VS such that the density resulting from the summation of the moduli of the squared
orbitals {ϕi} exactly equals the ground state density of our real target system of interacting
electrons,

)r()s,r()r( 0

N

i s

2
iS

���
ρ=ϕ=ρ ∑∑ . (5-9)

5.2 The Kohn-Sham Equations

At this point, we come back to our original problem: finding a better way for the determi-
nation of the kinetic energy. The very clever idea of Kohn and Sham was to realize that if
we are not able to accurately determine the kinetic energy through an explicit functional,



44

5  The Kohn-Sham Approach

we should be a bit less ambitious and concentrate on computing as much as we can of the
true kinetic energy exactly. We then have to deal with the remainder in an approximate
manner. Hence, they suggested to use expression (5-3) to obtain the exact kinetic energy of
the non-interacting reference system with the same density as the real, interacting one

∑ ϕ∇ϕ−=
N

i
i

2
iS 2

1
T . (5-10)

Of course, the non-interacting kinetic energy is not equal to the true kinetic energy of the
interacting system, even if the systems share the same density, i. e., TS ≠ T.13 Kohn and
Sham accounted for that by introducing the following separation of the functional F[ρ]

)]r([E)]r([J)]r([T)]r([F XCS
����

ρ+ρ+ρ=ρ (5-11)

where EXC, the so-called exchange-correlation energy is defined through equation (5-11)
as

( ) ( ) ][E][T][J][E][T][T][E nclCeeSXC ρ+ρ=ρ−ρ+ρ−ρ≡ρ . (5-12)

The residual part of the true kinetic energy, TC, which is not covered by TS, is simply
added to the non-classical electrostatic contributions. In other words, the exchange-corre-
lation energy EXC is the functional which contains everything that is unknown, a kind of
junkyard where everything is stowed away which we do not know how to handle exactly.
Let us also underline that in spite of its name, EXC contains not only the non-classical
effects of self-interaction correction, exchange and correlation, which are contributions to
the potential energy of the system, but also a portion belonging to the kinetic energy. As
indicated by the intimate relation between the orbitals and the density through equation
(5-9), TS is expected to be a functional of ρ. A complementary way of looking at this is to
realize that the energy expression of the non-interacting system contains only two compo-
nents: the kinetic energy and the energy due to the interaction with the external potential.
By the Hohenberg-Kohn theorem, the total energy must be a functional of the density.
Likewise, the interaction with the external potential is an explicit functional of ρ. Hence, TS
is also necessarily a functional of the charge density. But note that we again do not have a
simple expression for TS where the density enters explicitly – the KS orbitals and not the
density ρ appear in equation (5-10).

So far so good, but before we are in business with this concept we need to find a pre-
scription for how we can uniquely determine the orbitals in our non-interacting reference
system. In other words, we ask: how can we define VS such that it really provides us with a
Slater determinant which is characterized by exactly the same density as our real system?
To solve this problem, we write down the expression for the energy of our interacting, real

13 Actually, it can be shown that TS ≤ T.
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system in terms of the separation described by equation (5-11), highlighting the depend-
ence on the orbitals as indicated in equations (5-9) and (5-10):
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∑ ∑ ∫ ∫∑
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The only term for which no explicit form can be given, i. e., the big unknown, is of
course EXC. Similarly to what we have done within the Hartree-Fock approximation, we
now apply the variational principle and ask: what condition must the orbitals {ϕi} fulfill in
order to minimize this energy expression under the usual constraint of ijji | δ=〉ϕϕ〈 ? The
resulting equations are (for a detailed derivation see Parr and Yang, 1989):
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If we compare this equation with the one-particle equations from the non-interacting
reference system, we see immediately that the expression in square brackets, i. e. Veff, is
identical to VS of equation (5-8) above
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Thus, once we know the various contributions in equation (5-15) we have a grip on the
potential VS which we need to insert into the one-particle equations, which in turn deter-
mine the orbitals and hence the ground state density and the ground state energy by em-
ploying the energy expression (5-13). It should be noted that Veff already depends on the
density (and thus on the orbitals) through the Coulomb term as shown in equation (5-13).
Therefore, just like the Hartree-Fock equations (1-24), the Kohn-Sham one-electron equa-
tions (5-14) also have to be solved iteratively.

One term in the above equation needs some additional comments, namely VXC, the po-
tential due to the exchange-correlation energy EXC. Since we do not know how this energy
should be expressed, we of course also have no clue as to the explicit form of the corre-

5.2  The Kohn-Sham Equations
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sponding potential. Hence, VXC is simply defined as the functional derivative of EXC with
respect to ρ, i. e.,

δρ
δ

≡ XC
XC

E
V . (5-16)

It is very important to realize that if the exact forms of EXC and VXC were known (which
is unfortunately not the case), the Kohn-Sham strategy would lead to the exact energy, i. e.
the correct eigenvalue of the Hamilton operator Ĥ  of the Schrödinger equation. The reader
should check for him- or herself that the formalism that we have illustrated in this chapter
does not contain any approximation as of yet. Thus, unlike the Hartree-Fock model, where
the approximation is introduced right from the start (the wave function is assumed to be a
single Slater determinant, which therefore can never deliver the true solution) the Kohn-
Sham approach is in principle exact! The approximation only enters when we have to
decide on an explicit form of the unknown functional for the exchange-correlation energy
EXC and the corresponding potential VXC. The central goal of modern density functional
theory is therefore to find better and better approximations to these two quantities and we
will have a lot more to say about these aspects in the following chapters.

Before we enter a more detailed discussion of various aspects in the Kohn-Sham ap-
proach, let us summarize the main features of this procedure:
(i) We define a non-interacting reference system of N particles whose exact ground state

is a single Slater determinant ΘS and whose density ρS by construction exactly equals
the density of our real, interacting system, ρ0.

(ii) The orbitals which form this Slater determinant are the solutions of N single particle
equations (5-7). This allows the determination of the non-interacting kinetic energy,
TS according to (5-10). The effective potential VS in the one-electron Hamilton opera-
tor must be chosen such that the condition of ρS = ρ0 is fulfilled. The next steps aim at
finding a way of generating this VS.

(iii) The energy of the interacting system is separated into the kinetic energy TS of the
non-interacting system, the energy due to the nuclei ENe, the classical electrostatic
electron-electron repulsion energy J and the remainder EXC which consists of the
quantum-mechanical contributions to the potential energy (self-interaction correc-
tion, exchange and correlation) and the part of the true kinetic energy that is not
covered by TS (equation 5-12).

(iv) This energy expression is subjected to the variational principle with respect to inde-
pendent variations in the orbitals. The resulting expressions (5-13) show that the ef-
fective potential VS that we need to get the correct orbitals of the non-interacting
reference system exactly equals the sum of the potential due to the nuclei, VNe, the
classical Coulomb potential, VC, and the potential generated by EXC, i. e., VXC (equa-
tion 5-15).

(v) Provided that we know the explicit forms of all these potentials, we know VS and by
solving the one-electron equations we obtain the KS orbitals. These define the non-
interacting system that shares the same density as our real system. Since in all real
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applications we do not know the exact VXC we need to introduce an approximation for
the exchange-correlation potential.

(vi) The orbitals give us the density via equation (5-9). Inserting this density into the
energy expression finally yields the exact ground state density and hence the exact
ground state energy, again provided we know the exact functionals. In all real applica-
tions, however, we have to resort to approximations for the unknown functional EXC.

5.3 Discussion

In the preceding paragraph we have given a detailed survey of the Kohn-Sham approach to
density functional theory. Now, we need to discuss some of the relevant properties pertain-
ing to this scheme and how we have to interpret the various quantities it produces. We also
will mention some areas connected to Kohn-Sham density functional theory which are still
problematic. Before we enter this discussion the reader should be reminded to differentiate
carefully between results that apply to the hypothetical situation in which the exact func-
tional EXC and the corresponding potential VXC are known and the real world in which we
have to use approximations to these quantities.

5.3.1 The Kohn-Sham Potential is Local

First we point out that the effective potential that occurs in the one-particle equations of the
non-interacting reference system )r(VS

�
 is local in the sense that it is a function of only the

spatial variable 
�
r  and is independent on the values of VS at other points in space, ′�r . Due

to the equality between )r(VS
�

 and )r(Veff
�

 demonstrated above, )r(VXC
�

, i. e., the poten-
tial responsible for exchange and correlation effects and the difference between TS and T,
must also be local. This is to be contrasted with the non-local exchange contribution that
appears in the Hartree-Fock approximation. The result of operating with the Hartree-Fock
exchange operator )x(K̂ 1j

�
 on the orbital )x( 1i

�
χ  depends on the value of χi everywhere in

the coordinate space, not just 1x
�

, as we discussed in Section 1.3. We arrive at the fascinat-
ing conclusion that the Kohn-Sham equations have a structure that is actually formally less
complicated than the Hartree-Fock approximation. Nevertheless, they are exact in princi-
ple. We should, however, add that even though the Kohn-Sham potential is a local potential
with expressions that are formally less complicated than the corresponding equations in the
Hartree-Fock approximation, it will probably have a very complex and non-local depend-
ence on the density.14 Its value at a particular point in space )r(Veff

�
 will depend on the

charge density at all other points in a difficult and for us inaccessible way. The reader
should keep in mind that this is necessarily so, because knowledge of the exact exchange-
correlation potential is equivalent to exactly solving the Schrödinger equation.

14 Stated in more mathematical terms: while the exact VXC is local, EXC does not originate from a local kernel.

5.3  Discussion



48

5  The Kohn-Sham Approach

5.3.2 The Exchange-Correlation Energy in the Kohn-Sham and Hartree-Fock
Schemes

We should also clarify at this stage that there are inherent differences between the ex-
change-correlation energy that appears in the Kohn-Sham formalism and their namesakes,
the exchange and correlation energies, as they are defined within the Hartree-Fock picture.
Let us state right up front: even though these two quantities are similar in some way, they
do not have the same meaning! This is important to realize because the construction of
exchange and correlation functionals to be used in the Kohn-Sham scheme are frequently
based on the HF-derived definitions of exchange and correlation. Recall from Chapters 1
and 2 that if we employ the hole formalism, the Hartree-Fock exchange energy is given by

21
12

21
HF
X1

HF
0HF

X rdrd
r

)r;r(h)r(

2

1
E

��
���

∫∫
ρ

= (5-17)

where both electrons are associated with the same spin function. Thus, the exchange energy
can be interpreted as the interaction between the HF ground state charge distribution HF

0ρ
and the corresponding exchange or Fermi hole HF

Xh . The Hartree-Fock correlation energy
HF
CE  is then defined as the difference between the exact, non-relativistic energy within the

Born-Oppenheimer approximation and the Hartree-Fock energy, equation (1-30). We can
use an equivalent separation of EXC in the KS scheme and express KS

XE  just as its HF
counterpart, with the only difference that it is computed from the KS orbitals which are
associated with the exact density ρ0,
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���

∫∫
ρ

= . (5-18)

As the Hartree-Fock energy is the lowest energy one can possibly get from a single
determinant it follows immediately that the correlation energy in the KS scheme using the
exact functional must be more negative (larger in an absolute sense) than HF

CE . The deci-
sive difference between HF

CE  and KS
CE  is, however, that the charge density in the Kohn-

Sham approach is by definition the exact density of the real ground state, )r(0
�

ρ , while the
HF orbitals give the HF ground state wave function, whose square certainly does not inte-
grate to the correct ground state density, )r()r( 0

HF
0

��
ρ≠ρ . Hence, in the KS formalism the

correlation hole is simply defined as the difference between the total exchange-correlation
hole and the exchange only part,

)r;r(h)r;r(h)r;r(h 21
KS
X21XC21

KS
C

������
−= (5-19)

while we have to introduce a term in the HF scheme taking care of the difference between
the exact and the Hartree-Fock electron density

)r;r(h)r;r(h))r()r(()r;r(h 21
HF
X21XC2

HF
02021

HF
C

��������
−+ρ−ρ= . (5-20)
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Hence, if the HF density is close to the exact density the differences between the ex-
change and correlation contributions in the Hartree-Fock and Kohn-Sham schemes are small.
However, the more )r(HF

0
�

ρ  deviates from )r(0
�

ρ , the less will the HF exchange and corre-
lation energies parallel their Kohn-Sham counterparts. An obvious consequence of

)r()r( 0
HF
0

��
ρ≠ρ  is that the correlation energy in the HF scheme will contain contributions

from the nuclear-electron attraction, the classical Coulomb repulsion and the kinetic en-
ergy, since these quantities are evaluated using the Hartree-Fock density )r(HF

0
�

ρ , rather
than the exact one. Note that the first two contributions to the correlation energy will al-
ways be zero in the KS scheme, because the density defined by the KS orbitals equals by
construction the ground state density )r(0

�
ρ . Hence ENe[ρ] and J[ρ] are computed exactly.

In Table 5-1 the consequences of these differences – which are frequently significant, in
particular when bonds are stretched – are illustrated for the H2 molecule at three internu-
clear distances (where HF

ee
HF

C,Ne
HF
C

HF
C EETE ++= ). Note the large contributions from the

electron-nucleus attraction and the kinetic energy, which are caused by the much too dif-
fuse density at elongated H-H distances, as discussed in detail by Baerends and Gritsenko,
1997.

5.3.3 Do the Kohn-Sham Orbitals Mean Anything?

The next point concerns the role of the KS orbitals. Until recently there was a broad con-
sensus that the orbitals satisfying equation (5-14) have no physical significance and that
their only connection to the real world is that the sum of their squares add up to the exact
density. While this is certainly true in a strict sense, several authors have lately pointed to
the interpretative power of the KS orbitals in traditional qualitative molecular orbital schemes,
see, Kohn, Becke, and Parr, 1996, Baerends and Gritsenko, 1997, Stowasser and Hoffmann,
1999, and Baerends, 2000. After all, the KS orbitals are not only associated with a one-
electron potential which includes all non-classical effects, they are also consistent with the
exact ground state density. Actually, the HF orbitals are in a sense much farther away from
the real system since they neither reflect correlation effects nor do they yield the exact
density. Many authors therefore recommend the KS orbitals as legitimate tools in qualita-
tive MO considerations. On the other hand, one must not confuse the Slater determinant
generated from the KS orbitals with the true many-electron wave function! As outlined in
the preceding chapter, the exact wave function of the target system is simply not available
in density functional theory! Similarly, the eigenvalues εi connected to the KS orbitals do

Table 5-1. Contributions to the Hartree-Fock correlation energy [eV] (taken from Baerends and Gritsenko, 1997).

HF
CE HF

CT HF
C,NeE HF

C,eeE

H2 at R = 1.401 (Re) –1.1 +1.3 –0.5 –1.9
H2 at R = 5 bohr –3.9 +8.9 –8.5 –4.4
H2 at R = 10 bohr –6.3 +7.9 –8.4 –5.6

5.3  Discussion
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not have a strict physical meaning. In Kohn-Sham theory, for example, there is no equiva-
lent of Koopmans’ theorem, which could relate orbital energies to ionization energies. There
is one exception though: as a direct consequence of the long range behavior of the charge
density shown in equation (2-5), the eigenvalue of the highest occupied orbital, εmax, of the
KS orbitals equals the negative of the exact ionization energy. Again, however, we have to
add a big caveat here: this holds strictly only for εmax resulting from the exact VXC, not for
solutions obtained with approximations to the exchange-correlation potential. The exact
ionization energy of the hydrogen atom, for example, is 0.5 Eh. None of the approximate
exchange-correlation functionals in use today produces a 1s orbital whose absolute energy
comes even close. Rather, 1s orbital energies in the order of only –0.23 to –0.28 Eh are
obtained, more than 0.2 Eh or 5 eV off the correct value. This disappointing result mirrors
deficiencies in the exchange-correlation potentials generated by approximate functionals
for EXC, in particular deficiencies of their long range, asymptotic behavior. We will come
back to this phenomenon in Section 6.8 of the following chapter. If instead an essentially
exact VXC is used, computed from highly sophisticated configuration interaction or similar
schemes, the agreement between εmax and –IE improves significantly. That the agreement
is not quantitative is due to remaining inaccuracies in the computationally predicted densi-
ties (see e. g., Morrison and Zhao, 1995). Finally, we must not forget to mention that the
KS orbital energies also play a role in the treatment of excited states in the perturbation
theory based treatment of Görling, 1996 or in the framework of time-dependent density
functional theory, as we will outline further below. Actually Savin, Umrigar, and Gonze,
1998 showed that there is in many cases a surprisingly good agreement between the ground-
state KS eigenvalue differences obtained from the exact KS potential and the correspond-
ing excitation energies. These authors, however, also pointed out that this result only ap-
plies if the essentially exact potential is being used. Eigenvalue differences from approxi-
mate functionals come not even close.15

5.3.4 Is the Kohn-Sham Approach a Single Determinant Method?

One frequently reads the assertion that the Kohn-Sham scheme, just like the Hartree-Fock
approximation, is a single determinant approach with all problems and shortcomings con-
nected to this. As a consequence, the Kohn-Sham formalism should, for example, fail to
correctly describe the prototype H2 dissociation just in the same way as demonstrated for
the Hartree-Fock case in Section 1.4. However, we have shown above that the Kohn-Sham
picture is only a particular rearrangement of the Hohenberg-Kohn theorems and therefore
an avenue leading in principle to the exact energy of the electronic Schrödinger equation in
all situations, without exception (remember that this holds only for the energy; the exact
wave function is not available). In terms of the KS approach the title question rather trans-
lates into the problem whether the non-interacting N-electron ground state that shares the
same density as the interacting system can be generated by a single Slater determinant built

15 This is due to the wrong asymptotic decay of approximate functionals, as discussed below in Section 6.8.
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from orbitals that are obtained as the N energetically lowest lying orbitals of a simple local
Kohn-Sham potential VS. Such cases are termed non-interacting pure-state-VS represent-
able. For the prototype two-electron closed-shell system H2, an essentially exact local Kohn-
Sham potential VS can fairly straightforwardly be constructed numerically by ‘inverting’
equation (5-8). In this case the Kohn-Sham orbitals and the density are connected trivially
(apart from an irrelevant phase factor) via

2

)r(
)r(

�
� ρ=ϕ . (5-21)

Nearly exact charge densities are available from top-level conventional quantum chemi-
cal calculations, i. e., full configuration interaction using large one electron basis sets. From
these, Kohn-Sham orbitals of corresponding quality can be obtained, which lead in an
iterative fashion to a very realistic representation of the exact Kohn-Sham potential VS.
Using such an essentially exact Kohn-Sham potential for H2, Gritsenko and Baerends, 1997,
showed that in fact a single Slater determinant is obtained as the Kohn-Sham non-interact-
ing reference system. This is true not only near the equilibrium bond distance, but also
when the H-H bond is significantly stretched. Even in such a case with strong non-dynami-
cal electron correlation due to the orbital near-degeneracy discussed in Section 1.5, a single
Slater determinant represents the non-interacting Kohn-Sham reference system. Of course,
the KS orbitals must increasingly differ from their HF counterparts in order to incorporate
the correlation effects and the resulting KS non-interacting wave function is a pretty bad
approximation to the true wave function. In other words, the exact H2 potential curve should
be available using a single determinant Kohn-Sham reference system provided that the
exact exchange-correlation functional is known. On the other hand, it is an active area of
research whether there are also cases where a non-degenerate interacting ground state den-
sity cannot be represented by a single Slater determinant (i. e., it is not non-interacting
pure-state-VS representable) and when this is to be expected. For certain internuclear dis-
tances the non-degenerate +Σg

1  ground state of the C2 molecule has been identified only
recently as an example where it is not possible to represent the (essentially) exact interact-
ing density obtained from sophisticated conventional calculations as a single determinant
Kohn-Sham solution (Schipper, Gritsenko, and Baerends, 1998a). Rather, an ensemble of a
small number of accidentally (i. e., not symmetry dictated) degenerate determinants is re-
quired to do so. These densities are called non-interacting ensemble-VS representable. The
weights of the individual determinants in the ensemble need to be determined variationally.
As a sequel to this study, Schipper, Gritsenko, and Baerends, 1999, provided another, very
instructive example in their study of the identity reaction H2 + H’2 → HH’ + HH’. In the
region around the quadratic saddle point, both, the exact Kohn-Sham solution as well as
typical approximate functionals need an ensemble treatment to achieve an accurate barrier
height. If instead the standard single determinant Kohn-Sham approach is employed, the
barrier is always severely underestimated. A concise but very clear summary of these com-
plications can be found in Baerends, 2000. See also Wang and Schwarz, 1996 for a discus-
sion of these phenomena using the related concept of fractional occupation numbers.

5.3  Discussion
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On the other hand, none of the current approximate EXC functionals is able to quantita-
tively reproduce the subtle details of the non-classical contributions to the energy (such as
the left-right correlation in the dissociating H2), which in fact leads to incorrect dissocia-
tion curves in the restricted scheme, very similar to restricted Hartree-Fock. Hence, once
more we have an example where it is of utmost importance to clearly distinguish whether
we are talking about the Kohn-Sham formalism in principle or about actual implementa-
tions of this scheme which necessarily utilize some kind of approximate form for EXC. We
will come back to this problem and the relationship to the so-called ensemble densities in
Section 5.3.6. We cannot overemphasize how important it is not to let a sloppy way of
describing these effects slip in. Again, it is not necessarily the single determinant based
regular KS scheme itself which is to blame for the sometimes poor results of approximate
Kohn-Sham density functional theory; responsible instead are the deficiencies of the ap-
proximations to the exchange-correlation functional. Some of these will occupy us in more
detail in the following chapter.

5.3.5 The Unrestricted Kohn-Sham Formalism

The effective potential of the Kohn-Sham equations Veff contains no reference to the spin of
the electrons. Hence, for an even number of electrons the KS orbitals necessarily occur in
degenerate pairs where the spatial part is shared by an α and a β spin function, akin to the
RHF scheme of Chapter 1. Even if we are dealing with a system with an odd number of
electrons where the density of the α-spin electrons will differ from the β-spin density, the
only, all-decisive variable is still the total density, )r()r()r(

���
βα ρ+ρ=ρ . No information

about the individual spin densities is required. The energy will become a functional of the
individual spin densities only if the potential contains parts that are spin dependent, such as
an external magnetic field. This is, however, well beyond the scope of this book. The bot-
tom line is that in principle this formalism is suitable for any kind of atom or molecule, be
it of closed-shell character or a system with an arbitrary multiplicity. However, as so often
this is only the formal point of view which applies to a hypothetical situation, namely that
the exact functionals are available. If we think more pragmatically we realize that the cur-
rent approximate functionals based on the electron density alone do not offer the flexibility
to really account for open-shell problems. Therefore, functionals that explicitly depend on
the α- and β-spin densities are usually employed in such situations, in analogy to the unre-
stricted HF approach described earlier. The resulting approximate spin-density functionals
for exchange and correlation are able to capture more of the essential physics in open-shell
species than their spin independent counterparts.

Let us again take the H2 dissociation problem as a simple but instructive example. Con-
sider the +Σg

1  ground state density of the H2 molecule. Obviously the spin density at either
nucleus must be zero as dictated by the spatial hD∞  symmetry of this closed-shell system.
This requirement of zero spin density is independent of the distance and also applies as the
H–H distance grows larger and larger. Thus, even in the limit of a supermolecule of two
non-interacting hydrogen atoms, infinitely far apart, the spin density is zero. The energy of
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this system must of course approach twice the energy of an isolated hydrogen atom. On the
other hand it is clear that the ground state of a hydrogen atom is 2S with one unpaired
electron and non-zero spin density. If a spin-density functional is applied to these two, in
principle equivalent situations, it will find zero spin density at the nuclei in the supermol-
ecule, but a non-zero spin density in the isolated atom and will assign different energies to
both solutions. Consequently any approximate spin-density functional will give the
unphysical result that the energy for two isolated hydrogen atoms will not add up to the
energy of the supermolecule. Therefore, none of the current approximate functionals is
able to recover the correct potential curve for the H2 molecule if used in the spin restricted
form. This situation resembles the problems of the RHF approximation in the H2 dissocia-
tion discussed in Chapter 1 and is schematically shown in Figure 5-1. Conversely, if the
corresponding calculations are performed in the unrestricted Kohn-Sham (UKS) picture a
qualitatively correct potential curve results, including the asymptotic region with the rela-
tive energy of the dissociation limit being equal to twice the atomic hydrogen energy. But
now, like the UHF solution, the UKS spin densities also break the inversion symmetry as
the H–H distance increases, leading to a spin polarization where α-spin density accumu-
lates at one nucleus and β-spin density at the other (Gunnarsson and Lundqvist, 1976,
Dunlap, 1987). Thus, the unrestricted density mimics the atomic densities. The symmetry
of the charge density is in these cases obviously lower than the symmetry of the molecule
and is therefore unphysical. In other words, unrestricted techniques give qualitatively cor-
rect energies but wrong densities, whereas spin-restricted methods show the opposite
behavior, that is, they give reasonable densities accompanied by incorrect energies. With
the approximate functionals in use today it turns out that it is often necessary to allow for
the unphysical symmetry breaking in order to achieve satisfactory results (see Salahub,
1987, for an extensive discussion). We postpone a more elaborate discussion of the symme-
try problem, including possible remedies, to the next section. At this point we should point
out that even though symmetry breaking occurs also within the Kohn-Sham ansatz, this
scheme is significantly more robust than HF theory in this respect, as has been shown by,
e. g., Bauernschmitt and Ahlrichs, 1996a, and Sherrill, Lee, and Head-Gordon, 1999. This
can also be clearly seen in Figure 5-1: the UHF curve appears already at a significantly
shorter H–H distance than the UKS one. In other words, the spin-restricted functional al-
lows a reasonably good description of the potential curve for a significantly larger fraction
of the dissociation process. As we will see in Chapter 13, this has important consequences
for the applicability of restricted functionals for the calculation of saddle points of chemi-
cal reactions of formally closed-shell molecules, which are frequently characterized by
stretched bonds.

Just as in the unrestricted Hartree-Fock variant, the Slater determinant constructed from
the KS orbitals originating from a spin unrestricted exchange-correlation functional is not
a spin eigenfunction. Frequently, the resulting 〈 〉2Ŝ  expectation value is used as a probe for
the quality of the UKS scheme, similar to what is usually done within UHF. However, we
must be careful not to overstress the apparent parallelism between unrestricted Kohn-Sham
and Hartree-Fock: in the latter, the Slater determinant is in fact the approximate wave func-
tion used. The stronger its spin contamination, the more questionable it certainly gets. In

5.3  Discussion
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the former approach, the KS Slater determinant is not the true wave function of the system
and the extent to which spin contamination of the KS determinant affects the true wave
function is not known. In fact, there are even opinions in the literature that KS determinants
for open-shell systems which are not spin-contaminated are actually wrong (see for exam-
ple Pople, Gill, and Handy, 1995). In any case, it is a noteworthy and comforting fact, even
if we do not know how much it is worth, that if unrestricted Hartree-Fock and Kohn-Sham
determinants are compared, the deviation of 〈 〉2Ŝ  from the exact value is in most cases
considerably less significant for the KS determinant as described by Baker, Scheiner, and
Andzelm, 1993 and Laming, Handy, and Amos, 1993. The latter authors suggest that the
tendency of unrestricted open-shell Kohn-Sham determinants to have only rather small
spin contaminations is due to the local nature of the exchange-correlation functionals as
opposed to the non-local Hartree-Fock exchange.

In wave function based methods spin-contaminated unrestricted wave functions are fre-
quently corrected by applying so-called spin projection and annihilation techniques. Here,
the unwanted contributions to the energy belonging to states of other than the desired 2Ŝ
are removed using several techniques such as spin projection operators or expression of the
contaminated wave function in terms of pure spin states and subsequent subtraction of the
energies of the unwanted higher spin states. These methods have also been applied to unre-
stricted Kohn-Sham determinants. However, neither the theoretical soundness of this method
nor the quality of the spin-projected energies has been firmly established yet and the gen-
eral state of affairs in this respect seems to be more critical rather than promising (for a
discussion and examples see, e. g., Cramer et al., 1995, Wittbrodt and Schlegel, 1996,
Goldstein, Beno, and Houk, 1996 or Rodriguez, Wheeler, and McCusker, 1998).

Figure 5-1. H2 potential curves computed within the restricted and unrestricted Hartree-Fock (RHF and UHF)
and Kohn-Sham (RKS and UKS) formalisms.
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5.3.6 On Degeneracy, Ensembles and other Oddities

In the preceding section we mentioned the problem of the symmetry broken and hence,
unphysical spin densities created in the UKS scheme upon dissociation of the hydrogen
molecule. This is just one example of an interesting field where approximate density func-
tional theory faces a plethora of yet unsolved problems, i. e., how to deal with degeneracies
due to spin or non-abelian spatial symmetry.16 For a competent review on this topic, the
reader is referred to the beautiful contribution by Savin, 1996, which inspired part of the
following exposition. In the following we will enumerate some typical problematic cases.
Our main intention is to sharpen the reader’s attention in this regard rather than to offer a
profound theoretical discussion, let alone general solutions. Due to the complexity of the
problem the former forbids itself in the present context, while the latter is still not available
in all cases. For a deeper scrutiny we refer the reader to the entry points for the current
literature on this subject included in the text.

Whenever symmetry related degeneracies occur, all current approximate Kohn-Sham
based density functionals fail in one way or the other. Let us start with a seemingly easy
class of systems: atoms. Unless atoms are characterized by completely filled shells, all
atomic ground states exhibit spatial or spin degeneracies. Let us take the 2D state of the
scandium dication as a simple example. It has a [Ne] (3s)2 (3p)6 (3d)1 configuration, i. e., a
singly occupied d-shell. There are a variety of equivalent ways how this occupation can be
represented. For example, using real d-orbitals the single electron could reside in any of the
five degenerate orbitals. Alternatively one could choose a spherically symmetric ensemble
of all five d-orbitals with equal weights of 1/5 or even opt for a complex representation of
the d-orbitals. The important point is that each of these representations yield significantly
different charge densities. This is shown for the occupation of the five different real d-orbitals
in Figure 5-2. Occupying the dz2 orbital yields an energy different from occupying any
other d-orbital.

On the other hand, the correct energy of the atomic state must obviously be independent
of the particular choice of occupation and be the same in all cases. Hence, any approximate
density functional faces the difficult task to deliver the same energy from these different,
but yet equivalent atomic densities. The sobering reality is that none of the available
functionals is able to master this challenge. This of course provokes the next question, i. e.,
if there are a number of energies corresponding to the scandium ground state configuration,
is there any criterion according to which one can select a particular energy? While we will
return to this question in some detail in our later discussion on atomic calculations in Chap-
ter 9, we mention at this point that the usual answer is to opt for the solution which delivers
the lowest energy, even if physical symmetry requirements are violated.

Another typical class of examples is given by the dissociation of diatomic molecules as
already alluded to above in the case of the H2 molecule where the correct dissociation
behavior was only achieved by allowing for symmetry broken spin densities. This problem

16 A non-abelian point-group contains irreducible representations of dimension larger than one. Since the de-
gree of degeneracy caused by spatial symmetry equals the dimensionality of the corresponding irreducible
representation, this kind of degeneracy is only possible in non-abelian point groups.

5.3  Discussion
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is, however, more general. Consider the ground state of an arbitrary homonuclear diatomic
X2 which dissociates into two ground state atoms X. At the limit of an infinite X–X dis-
tance we have a supermolecule of two non-interacting atoms X. Even though there is no
interaction between the two atoms the global wave function has of course still the overall
molecular symmetry. It should be obvious from elementary arguments that the energy as
well as the charge density of this supermolecule must be obtainable from the corresponding
quantities of the isolated atoms. In particular the energy of the supermolecule must be
twice the energy of one isolated atom X. This important property is called size-consistency.

Let us take the B2 molecule in its −Σg
3  ground state as an example. Near the equilibrium

distance the dominant configuration is 2
u

2
u

2
g

2
u

2
g 12211 πσσσσ , i. e., two triplet coupled elec-

trons occupy the lowest bonding π molecular orbital. Hence, the molecular density is cylin-
drically symmetric, independent of the internuclear distance. This density can easily be
represented by a Slater determinant containing two singly occupied πx and πy orbitals,
which are generated as a linear combination of the corresponding real atomic p-orbitals
(L and R stand for left and right, respectively):

π ≈ +x x,L x,R
1

[p p ]
2

 and π ≈ +y y,L y,R
1

[p p ]
2

. (5-22)

At infinite separation, one arrives at two boron atoms each having a donut-like cylindri-
cal density as indicated in Figure 5-3. However, such a density cannot be obtained from real
atomic p-orbitals. In other words, the density that results from the supermolecule is simply
inaccessible from calculations on the isolated atoms. Whatever we do, we will never gener-
ate the correct charge density (and therefore energy) of the dissociated B2 molecule by
calculations of the isolated boron atoms and the requirement of size-consistency is vio-
lated. Only if one switches to complex orbitals such as |px ± ipy|, are cylindrical atomic
densities possible. But even then, we are still in trouble and face a different problem. Just as

Figure 5-2. Isodensity surfaces (0.001 a.u.) of the d1-densities generated from integral orbital occupation of the
five d-orbitals in Sc2+ by one electron in a DFT calculation. The shape of the density resulting from occupation of
the dz2-orbital differs from the other four (which are identical to each other except for their orientation in space)
and a slightly different total energy (given in a.u.) is assigned to this particular density.
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in the preceding example of the scandium density, there are many different, but yet equiva-
lent ways to realize the 1s2 2s2 2p1 occupation of the 2P atomic ground state of boron. Even
if cylindrical atomic densities can be represented by complex orbitals and size consistency
is re-established, this atomic density results in a less favorable energy than the energy
coming from the use of real atomic p-orbitals shown in the lower half of Figure 5-3. To
reach size-consistency with respect to this atomic energy we are forced to break the mo-
lecular symmetry in the supermolecule calculation. To be specific, we construct the mo-
lecular density by allowing the localization of one open-shell electron in the, say, px atomic
orbital of the left boron atom and the other electron in the py orbital of the right atom. Again
we have a situation where the correct energy can only be obtained from an unphysical
density.

Are there any remedies in sight within approximate Kohn-Sham density functional theory
to get correct energies connected with physically reasonable densities, i. e., without having
to use wrong, that is symmetry broken, densities? In many cases the answer is indeed yes.
But before we consider the answer further, we should point out that the question only needs
to be asked in the context of the approximate functionals: for degenerate states and related
problems outlined above, an exact density functional in principle also exists. The real-life
solution is to employ the non-interacting ensemble-VS representable densities ρ  intro-
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Figure 5-3. The symmetry dilemma in present-day DFT: starting from the cylindrically symmetric molecular π-
density (a), the dissociation into atomic fragments can either be computed with correct atomic densities but a
wrong energy (b) or a correct energy, but wrong (because symmetry broken) atomic densities (c) (isodensity
surfaces at 0.01 a.u. constructed from the p-orbital space; adapted from Savin in Recent Developments of Modern
Density Functional Theory, Seminario, J. M. (ed.), 1996, with permission from Elsevier Science).
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duced briefly in Section 5.3.4. These densities are not obtained from pure states, but from
ground state ensembles according to

∑ ρ=ρ
L

i
iiw  with ∑ =

L

i
i 1w  and 1w0 i ≤≤ . (5-23)

The densities ρi are obtained from a set of degenerate KS wave functions and the wi are
the corresponding weights. Without going into details we note that regular density func-
tional theory can be extended to such ensembles. For our problems at hand, we can write
down the energy expression as

∑ ρ=ρρρ
L

i
iiL21 ][Ew],,,[E � . (5-24)

Again, the ρi are the equivalent densities obtained from symmetry breaking. Let us clarify
this concept by using the examples given above. In the B2 case, the two equivalent symme-
try broken Kohn-Sham Slater determinants are

R,yL,x1 pp�=Θ  and Θ = �2 x,R y,Lp p . (5-25)

These two determinants produce equivalent, but asymmetric densities. In addition, the
energies obtained from these densities are the same, i. e. E[ρ1] = E[ρ2]. If we now insert
these two densities in equation (5-24) it is clear that the energy will be invariant to the
choice of w1 and w2. If we choose w1 = w2 = 1/2 we will also arrive at the physically
correct, i. e. symmetric density. A very similar reasoning can be used for the H2 dissocia-
tion. We again have two equivalent Kohn-Sham spin densities corresponding to

βα=Θ RL1 s1s1  and αβ=Θ RL2 s1s1 , (5-26)

which have the same energy. If both spin densities enter with equal weight,

][
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1
RL
ααα ρ+ρ=ρ  and ][

2

1
LR
βββ ρ+ρ=ρ (5-27)

the result is the correct zero spin density,

0][
2

1
RRLL =ρ−ρ+ρ−ρ=ρ−ρ βαβαβα . (5-28)

The strategy to first use broken symmetry solutions and later restore the correct (spin)
density by employing ensembles can be applied successfully to solve many degeneracy
related problems. However, in practice it is very rarely used because there are hardly any
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computational schemes that can deal with such situations. In the overwhelming number of
cases, symmetry broken solutions are used without bothering about dealing with unphysical
spin densities. Finally, we should add that the approach of using broken symmetry and
afterwards restoring the correct symmetry by constructing ensembles is not a panacea.
There are examples, such as the O2 dissociation, where even more elaborate strategies
reaching beyond the regular Kohn-Sham formalism are required for a solution. For details,
see Savin, 1995 and 1996.

5.3.7 Excited States and the Multiplet Problem

We have noted in the derivation of the Hohenberg-Kohn theorems that density functional
theory is usually termed a ground state theory. The reason for this is not that the ground
state density does not contain the information on the excited states – it actually does! – but
because no practical way to extract this information is known so far. However, the proper-
ties of excited states and excitation energies in particular are of interest in many respects
and a number of strategies how one could approach this problem in the framework of the
Kohn-Sham scheme have been put forward. In the following we will concentrate only on
those approaches which have found their way into real applications. For a theoretically
oriented discussion, see e. g., the important work of Theophilou, 1979 (also reviewed in
Parr and Yang, 1989), Gross, Oliveira, and Kohn, 1988a,b or the more recent contributions
by Görling, 1996 or Nagy, 1998a,b. In this context we note a very recent report of Görling,
1999 to extend the regular Kohn-Sham schemes with their limitation to ground state prop-
erties to excited states. In this method a more general formulation of the Hohenberg-Kohn
theorem is presented which allows one to treat ground and excited states on an equal foot-
ing. While first exploratory applications to alkali metal atoms show promising perform-
ance, routine applications will not be possible for some time. It will be interesting to see
whether this or other approaches will have the potential to overcome the excited state prob-
lem in density functional theory in a general fashion.

More pragmatically, standard density functional techniques can be used to explore the
energetically lowest lying state of each spatial or spin irreducible representation of the
system, since they represent in a sense the ‘ground state’ in that particular symmetry as
shown many years ago by Gunnarsson and Lundqvist, 1976. For example, computing the
energetic separation between the CH2 1

3BX
~

 triplet ground state and the lowest lying 1
1Aa~

singlet can be realized within density functional theory by simply setting up the corre-
sponding Kohn-Sham determinants and computing the energy difference between these
two (this is the so-called ∆SCF method). Even in cases where the target is a state which is
excited even within a certain representation, the pragmatic solution – which has no formal
justification! – is to apply the regular ground state scheme, provided the excited state can
be written as a single determinant. However, many excited states do not fall into that cat-
egory and intrinsically need a multi-determinantal description. Instructive examples are
provided by the open-shell configurations of atoms which give rise to several terms. For
example, the 1s22s22p2 configuration of the carbon atom leads to three atomic terms, 3P, 1D

5.3  Discussion
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and 1S. A density functional theory based evaluation of the relative stabilities of these terms
is a long-standing problem that holds a prominent place in the theoretical debate, the so-
called multiplet problem. Let us elaborate on this subject a bit more. If we neglect the
effects of spin/orbit coupling, all eligible states of an atom must be simultaneous eigenstates
not only of the Hamilton operator Ĥ  but also of the angular momentum operators

2L̂ and zL̂ , the corresponding spin operators 2Ŝ  and zŜ , and the parity π̂ . Hence, the
state of an atom is characterized by the associated quantum numbers, i. e., L, ML, S, MS,
and π. In density functional theory we are not working with wave functions, which usually
are the carriers of these symmetry requirements. Therefore, it must be the exchange-corre-
lation functionals that should in principle contain the dependence on the above quantum
numbers. On the other hand, as we will discuss in detail in the following chapter, all current
approximate functionals are based on the model of the uniform electron gas and solely
depend on the charge or spin densities. They lack any relation to the other quantities rel-
evant for a complete description of an atomic state we have just mentioned. We are there-
fore facing a considerable conceptual problem inherent to Kohn-Sham density functional
theory which transcends the atomic case and applies equally well to other symmetry related
problems: how should one describe states which are eigenfunctions of the 2L̂  and 2Ŝ  or
other operators if we are working merely with an orbital based theory where we have no
access to the correct N-electron wave function and its symmetry characteristics? The prag-
matic solution adopted is to select the single-determinantal non-interacting Kohn-Sham
reference system in such a way that this Slater determinant corresponds to a state of the
desired definite values of the conserved quantum numbers. As we will see presently, this
creates new problems because of the limitations of Slater determinants.

An early ad-hoc approach to solve the multiplet problem is the sum method due to Ziegler,
Rauk, and Baerends, 1977, see also von Barth, 1979. Among the central conclusions put
forward by these authors is that the energy of a term which is not representable by a single
Slater determinant but needs a linear combination of determinants to exhibit the correct
spatial and spin symmetries, cannot be computed by using the spin densities generated
from the corresponding configuration state function, i. e., the proper symmetry adapted
linear combination of Slater determinants. Rather, they propose that excited states which
cannot be expressed as a single-determinantal wave function should be written as a weighted
sum of determinantal energies, according to

∑ Φ=
J

j
jj )(ECE (5-29)

where the coefficients Cj are fixed by the required symmetry. Let us take a very simple
example to illustrate this concept. Consider the helium atom with its 1S ground state char-
acterized by a (1s)2 configuration. If we now transfer one electron from the 1s to the 2s
level, i. e. generate a (1s)1 (2s)1 occupation, this configuration is connected with two multiplet
states, the lowest excited 1S and 3S terms of atomic helium. Recall from basic quantum
mechanics that the 3S state consists of three, energetically degenerate components accord-
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ing to values of the quantum number MS = 1, 0, and –1 of the z-component of the total spin,
while there is of course only one 1S component with MS = 0. What are the energies of these
excited states? We start out by writing down the corresponding single-determinantal wave
functions, but immediately see that one can construct such functions only for the two tri-
plets corresponding to MS = ±1:

{ } ))s()s(()r(s2)r(s1det
2

1
)1M,S( 2121S

3 αα×==Φ
��

(5-30)

{ } ))s()s(()r(s2)r(s1det
2

1
)1M,S( 2121S

3 ββ×=−=Φ
��

(5-31)

As orbitals we simply use 1s and 2s atomic functions and our notation should be self-
explanatory. Thus, following the assumption that states which are represented by a single
determinant can be studied, we could set up a Kohn-Sham determinant corresponding to
either equation (5-30) or (5-31) to obtain the energy of the 3S state in an UKS calculation.
The two states with MS = 0, i. e. the 1S and the remaining component of the triplet (of
which we know that it must be energetically degenerate with the MS = ±1 components), are
more complicated and no longer of a single-determinantal form:

[ ] [ ])s()s()s()s()r(s1)r(s2)r(s2)r(s1
2

1
)0M,S( 21212121S

3 αβ+βα×−==Φ
����

(5-32)
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. (5-33)

How can we obtain an energy for the excited singlet? The normal prescription is not
applicable since there is no single determinant on which a Kohn-Sham calculation could be
based. However, the determinant that intuitively comes closest to this state is

{ })s()r(s2)s()r(s1det
2

1
)0M,mix( 2211S βα==Φ

��
. (5-34)

This determinant has the desired MS = 0, but its total spin is not defined. Now comes the
trick: we recognize that equation (5-34) is actually a mixture of the functions (5-32) and
(5-33) of the MS = 0 states (which can easily be verified by expanding the determinants),

Φ = = Φ = + Φ =3 1
S S S

1
(mix,M 0) [ ( S,M 0) ( S,M 0)]

2
. (5-35)

Now the procedure to get the energy of the singlet is outlined: after reordering equation
(5-35) and changing to energies rather than determinants we have

)0M,S(E)0M,mix(E2)0M,S(E S
3

SS
1 =−=== . (5-36)
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Hence, we compute the Kohn-Sham energies of the single determinant for the mixed
state and of one of the two accessible triplet states. Since all three components of 3S must
have the same energy, we know the energies of both terms on the right hand side of equa-
tion (5-36). Through this little detour we finally arrive at the desired result. This scheme
can be applied in many situations if we recognize that many (even though not all) multiplet
energies can be written as a weighted sum of single determinants Φj as in equation (5-29).
A partially automated protocol for this technique based on an elegant group theoretical
method to obtain the weights of the various determinants Φj of mixed symmetry, has been
developed by Daul and coworkers as outlined by Daul, 1994 and Daul, Doclo, and Stückl,
1997 and implemented in an auxiliary program to be used together with the Amsterdam
Density Functional program package (ADF Single Determinants Fribourg, ASF).

However, note that the sum method has no firm theoretical justification. Not only is the
simple assumption that we can characterize excited states through the occupation numbers
of the determinant representing the non-interacting reference system questionable, this
approach also ignores the fact that the functional for the excited states need not be the same
as that for the ground states. Finally, the application of the KS scheme to an unphysical
state such as Φ(mix, MS = 0) also carries a question mark. Similarly, the assumption that
the same orbitals are used in each of the calculations also adds to the uncertainty of the
results. Indeed, there are many examples of inconsistencies of this method. This is most
clearly demonstrated by cases where one multiplet energy can be represented in various
ways by using different combinations of Slater determinants. Of course, to be consistent
the computed energy must be independent of the actually chosen linear combination of
determinants. This physical requirement is often not fulfilled and deviations exceeding 0.5
eV for the energy of a given multiplet may occur. In addition, from a technical point of
view the method has the disadvantage that several calculations are necessary for obtaining
the desired energies and that optimizing the geometry for such states is not straightforward.

An alternative to the sum method, dubbed spin-restricted open-shell Kohn-Sham (ROKS),
has recently been suggested by Filatov and Shaik, 1998a and 1999. This scheme bears a
strong formal similarity to the general spin restricted open-shell version of Hartree-Fock
theory. Unlike the UKS based sum method, the non-interacting Kohn-Sham reference wave
function uses the same orbitals for α and β electrons and is an eigenfunction of 2Ŝ  and zŜ .
Likewise, the ROKS scheme yields one-electron orbitals and non-interacting wave func-
tions that are symmetry adapted. The correct spatial symmetry is introduced via certain
relations between the non-interacting wave function and the interacting multiplet energy.
The latter corresponds to a symmetry adapted ensemble of Kohn-Sham determinants (which
themselves can be viewed as states of mixed symmetry as shown above). A somewhat
related scheme applicable for open-shell singlets (restricted open-shell singlet, ROSS) has
been reported by Gräfenstein, Kraka, and Cremer, 1998. These authors use the relation
between an open-shell singlet and the corresponding triplet state and introduce exactly
computed exchange integrals to define an energy functional for an open-shell singlet. Tak-
ing the −∆ ← Σ1 3

g ga X  excitation energy of the O2 molecule as an example, where both
states originate from the 2

g1π�  configuration, ROKS fortuitously reproduces the experi-
mental value of 0.97 eV exactly while the ROSS approach yields a slightly higher excita-
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tion energy of 1.18 eV if the BLYP exchange-correlation functional and polarized triple
zeta Gaussian basis sets are used, indicating that both schemes perform rather well. Unfor-
tunately, just like the sum method, none of these techniques has been implemented in any
standard program package as of yet.

Grimme, 1996 has suggested a different way to bring electronic excitation energies into
the realm of density functional theory. His method starts with the configuration interaction
scheme restricted to single excitations (CIS), a well established method in wave function
based theory to determine excited state energies. The matrix elements of the CIS Hamilto-
nian are then modified by replacing the Hartree-Fock orbital energies by the corresponding
eigenvalues obtained from gradient-corrected Kohn-Sham calculations. In addition, three
empirical parameters determined from a representative reference set are included to scale
the Coulomb integrals and to introduce an empirical shift of the diagonal CIS matrix ele-
ments. Even though this approach also lacks a solid theoretical foundation, computed exci-
tation energies for molecules including fairly large hydrocarbons are within a few tenths of
an eV of the experimental data. Grimme’s method carries the acronym DFT/SCI for density
functional theory/single excitation configuration interaction. It has been extended to multi-
reference configuration interaction schemes very recently, see Grimme and Waletzke, 1999.
It would be interesting to have this method generally available in commonly used quantum
chemical programs.

Another, again completely different but apparently very promising approach to the cal-
culation of excitation energies has been developed in the past few years and is based on
time-dependent density functional theory, TDDFT. From a practical point of view, TDDFT
has the important advantage that it can actually be used because it was recently imple-
mented in many quantum chemical programs, such as the 1998 release of Gaussian or the
current version of Turbomole. This technique has a fairly involved theoretical background
and we will confine our discussion to a very qualitative level. The reader interested in a
more elaborate treatment of the subject is referred to the detailed reviews by, e. g., Casida,
1995, Burke and Gross, 1998 or Petersilka, Gossmann, and Gross, 1998. In a nutshell, this
strategy employs the fact that the frequency dependent linear response of a finite system
with respect to a time-dependent perturbation has discrete poles at the exact, correlated
excitation energies of the unperturbed system. To be more specific, the frequency depend-
ent mean polarizability α(ω) describes the response of the dipole moment to a time-de-
pendent electric field with frequency ω(t). It can be shown that the α(ω) are related to the
electronic excitation spectrum according to

∑
ω−ω

=ωα
I

22
I

If)( . (5-37)

Here ωI is the excitation energy EI-E0 and the sum runs over all excited states I of the
system. From equation (5-37) we immediately see that the dynamic mean polarizability
α(ω) diverges for ωI = ω, i. e., has poles at the electronic excitation energies ωI. The residues
fI are the corresponding oscillator strengths. Translated into the Kohn-Sham scheme, the
exact linear response can be expressed as the linear density response of a non-interacting

5.3  Discussion
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system to an effective perturbation.17 The orbital eigenvalue differences of the ground state
KS orbitals enter this formalism as a first approximation to the excitation energies, which
are then systematically shifted towards the true excitation energies. Note that in the TDDFT
approach only properties of the ground state – namely the ordinary Kohn-Sham orbitals
and their corresponding orbital energies obtained in a regular ground state calculation – are
involved. Hence, excitation energies are expressed in terms of ground state properties and
the problem of whether density functional theory can be applied to excited states is most
elegantly circumvented. The TDDFT approach has even been extended from the mere pre-
diction of excitation energies to the computational treatment of excited state surfaces in-
cluding avoided crossings between states belonging to the same irreducible representation
by Casida, Casida, and Salahub, 1998. It is probably fair to say that as of the time of writing
TDDFT has the appearance of being the most promising avenue to a satisfactory excited
state treatment within approximate density functional theory. An ever increasing number of
papers showing the power of this technique has appeared since efficient implementations
of TDDFT became generally available in major commercial codes. Errors are usually in the
order of a few tenths of an eV, even if difficult situations are considered, such as Rydberg
states (Handy and Tozer, 1999) or excited states with substantial double excitation charac-
ter (Hirata and Head-Gordon, 1999), as we will explore in more detail in Chapter 9.

17 Note that in all current implementations of TDDFT the so-called adiabatic approximation is employed. Here,
the time-dependent exchange-correlation potential that occurs in the corresponding time-dependent Kohn-
Sham equations and which is rigorously defined as the functional derivative of the exchange-correlation
action AXC[ρ] with respect to the time-dependent electron-density is approximated as the functional deriva-
tive of the standard, time-independent EXC with respect to the charge density at time t, i. e.,
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Stated in other words, the zero-frequency limit of AXC is used for treating the finite frequency perturbations.
For details see in particular Casida, 1995.
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Functionals

In the previous chapter we introduced the Kohn-Sham formalism which allows an exact
treatment of most of the contributions to the electronic energy of an atomic or molecular
system, including the major fraction of the kinetic energy. All remaining – unknown – parts
are collectively folded into the exchange-correlation functional EXC[ρ]. These include the
non-classical portion of the electron-electron interaction along with the correction for the
self-interaction and the component of the kinetic energy not covered by the non-interacting
reference system. Obviously, the whole endeavor of applying the Kohn-Sham scheme as a
tool to get a grip on the Schrödinger equation makes sense only if explicit approximations
to this functional are available. The quality of the density functional approach hinges solely
on the accuracy of the chosen approximation to EXC. Hence, the quest of finding better and
better functionals is at the very heart of density functional theory. In the following we will
review the current state of the art regarding approximate functionals for EXC. We start out
by showing that unlike in conventional wave function based methods, in density functional
theory there is no systematic way towards improved approximate functionals, which in fact
represents one of the major drawbacks associated with this approach. Then, we introduce
the adiabatic connection, which provides the link between the non-classical potential en-
ergy of exchange and correlation and the EXC functional of the Kohn-Sham scheme, with
special emphasis on the corresponding hole function. The simple concept of the local den-
sity approximation based on the uniform electron gas, which represents the bedrock of
almost all current functionals, is discussed. Even though this physical model performs bet-
ter than anticipated, it is not accurate enough for chemical applications. Hence, ideas about
how one can go beyond that approximation have been put forward by many researchers. We
will develop the connection from the local density approximation to the more sophisticated
generalized gradient approximation up to the nowadays so popular hybrid functionals. These
general strategies are realized in many different individual functionals and the most wide-
spread representatives as well as new developments for both classes are presented. We
continue with a discussion of the problems due to the self-interaction of the charge density
and to the behavior of the corresponding exchange-correlation potentials in the long range
asymptotic region. Both aspects are inherent to all approximate exchange-correlation
functionals and give rise to unwanted effects. The strengths and weaknesses of the various
approaches will be discussed and we conclude this chapter with an assessment as to where
future developments might lead.

6.1 Is There a Systematic Strategy?

Before we start looking at possible approximations to EXC we need to address whether
there will be some kind of guidance along the way. If we consider conventional, wave
function based methods for solving the electronic Schrödinger equation, the quality of the
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results solely depends on our choice of the approximate wave function. From basic con-
cepts of linear algebra we in fact know the prescription for how the true wave function
should be constructed in principle, such as in the full configuration interaction scheme,
characterized by an expansion of both the one and the many particle problem in a complete,
i. e., essentially infinite basis. Even though this can never be realized because the resulting
equations would be much too complicated to be ever solved, this prescription shows us the
way how the approximate wave functions can be improved step by step in a systematic
manner. Unfortunately a similar beacon guiding us along the way towards our final, albeit
unreachable destination does not exist in density functional theory. The origin of this sober-
ing statement is simply that the explicit form of the exact functional is a total mystery to us.
Not only is the physics underlying the success of current functionals far from being fully
understood, we simply do not have the faintest idea how to arrive at approximations which
are closer to the exact functional. All searching for better functionals relies largely on physical
or mathematical intuition and has a strong ‘trial and error’ component. There are, however,
a few physical constraints which a reasonable functional has to fulfill. Among those a
prominent place is held by the sum rules valid for the exact exchange-correlation holes as
outlined in Chapter 2. Of course, the more closely the model hole that emerges from an
approximate exchange-correlation functional resembles the true hole, the better this func-
tional will be able to account for the non-classical effects. Other properties include the cusp
condition of the correlation hole at zero separation of the two electrons, certain scaling
conditions of the exchange and correlation energies and asymptotic properties of the corre-
sponding exchange-correlation potentials, etc.18 However, one should not expect too much
help from such formal boundary conditions, since one of the baffling peculiarities of ap-
proximate density functional theory is that functionals which strictly meet these require-
ments are not necessarily better than others that do not. In fact, some of the most successful
approximate functionals violate several of these conditions. It is therefore of immense im-
portance to carefully study the performance of a particular functional with respect to a
suitable set of reference data (we will elaborate on these decisive aspects in much detail in
the second part of this book). Indeed, the most stringent tests currently available for new
functionals are completely empirical and involve the comparison with accurate reference
data, such as atomization, ionization and reaction energies, structural data and the like. The
most frequently used set of energetic reference data is probably the so-called G2
thermochemical data base which contains more than 50 experimentally well established
atomization energies of small molecules containing main group elements originally col-
lected by Curtiss et al., 1991. The ability to reproduce the energetics of this data base or
extensions to it has become the de facto standard for measuring the accuracy of a new
computational method. The target accuracy is the so-called chemical accuracy which cor-
responds to an average absolute error of about 0.1 eV or 2 kcal/mol. However, this is a very
ambitious goal and up to now only very few and very expensive traditional quantum chemi-
cal strategies are able to achieve this kind of accuracy. The performance of approximate

18 We will not digress on that matter here but rather refer the interested reader to the relevant literature, see
Perdew and Burke, 1996, or Adamo, di Matteo, and Barone, 1999.
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functionals with regard to the G2 and related reference sets will occupy us in significant
detail in Section 9.1. We should also mention in this context that the energy delivered by a
particular functional is not the ultimate probe for its quality. The exchange-correlation
energy results from the integral over the exchange-correlation potential and in principle the
correct energy can be obtained even from an erroneous potential because of a fortuitous
error cancellation. Therefore, a more physically motivated test is provided by a point-by-
point comparison between the model exchange-correlation potential and accurate potentials
derived from high-quality correlated wave function based calculations. However, such ac-
curate potentials are rarely available and this kind of validation is seldom used.

6.2 The Adiabatic Connection

The purpose of this chapter is the illustration of the ways how a good approximation to the
exact exchange-correlation functional of Kohn-Sham theory can be found. But before we
proceed we need to take a second look at this very quantity and relate EXC with the concept
of exchange-correlation holes introduced earlier. The hole functions we discussed in Chap-
ter 2 contained all information about the non-classical contributions to the potential energy
due to the electron-electron interaction, Encl. However, we saw in the preceding chapter that
EXC as defined in the framework of Kohn-Sham theory also accounts for TC, the difference
between the kinetic energy of the real, fully interacting system, T, and the kinetic energy TS
related to the non-interacting reference system,

{ } ][E][T][E][T][T][E nclCnclSXC ρ+ρ=ρ+ρ−ρ=ρ . (6-1)

Thus, the information about T[ρ] – TS[ρ] must be somehow folded into the correspond-
ing hole functions. To do this, imagine that we connect the two systems central for the KS
scheme (i. e. the non-interacting reference with no 1/rij electron-electron interaction and
the real one where this interaction is operative with full strength) by gradually increasing
the coupling strength parameter λ from 0 to 1:
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For each λ the effective external potential λ
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how these two endpoints are smoothly connected through a continuum of artificial, par-
tially interacting systems. Borrowing from thermodynamics this path is called the adi-
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abatic connection. In terms of the adiabatic connection the energy of the interacting system
Eλ=1 can be expressed as the following integral

∫ λ=λ=λ =−
1

0
01 dEEE , and thus ∫ =λλ=λ +=

1

0
01 EdEE (6-3)

To utilize this relation we now need an explicit expression for dEλ. To this end we inves-
tigate how the total energy Eλ changes upon an infinitesimal change in the coupling strength
λ. This energy is the expectation value of the corresponding Hamiltonian

∑∑
>

λ
λ λ+=

N

i

N

ij ij
ext r

1
ddVĤd , (6-4)

and, using the hole formalism, can be expressed as
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Inserting equation (6-5) in the integral of equation (6-3) leads to

λ= λ=
λ= λ=

λ
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(6-6)

where we have made use of the λ-independence of the density )r(
�

ρ . Replacing 0
extV =λ  and

1
extV =λ  by VS and Veff, respectively and using the energy expression for the non-interacting

Kohn-Sham system,

∫ ρ+==λ rdV)r(TE SS0
��

(6-7)

and defining the coupling-strength integrated exchange-correlation hole XCh  as

∫ λ≡ λ
1

0
21XC21XC d)r;r(h)r;r(h
����

(6-8)

we finally arrive at the following equation for the energy of the real, interacting system
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Thus, the important take-home message is that the exchange-correlation energy of the
Kohn-Sham scheme can be expressed through the coupling-strength integrated exchange-
correlation hole XCh . If we know this hole, we know the exchange-correlation energy as
demonstrated in the following expression

21
12

21XC1
XC rdrd

r

)r;r(h)r(

2

1
E

��

���

∫ ∫
ρ

= . (6-10)

What does this mean? If we compare equation (6-9) which we just derived with its
counterpart which can be deduced from equation (2-19) of Chapter 2 (by adding to the Eee
term of the electron-electron interaction described in that expression the kinetic energy and
the contribution from the external potential)

21
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(6-11)

where T is the true kinetic energy of the fully interacting system and the last term the non-
classical contribution to the electron-electron repulsion, we see that the integration over the
coupling-strength elegantly transfers the difference between T and TS, i. e. the part of the
kinetic energy not covered by the non-interacting reference system, into the exchange-
correlation hole. In other words, when going from equation (6-11) to equation (6-9) we
drastically simplify the expression for the kinetic energy (T) by reducing it to the kinetic
energy of the non-interacting reference system (TS). The price we pay for this is a further
complication in the exchange-correlation hole brought about by the additional integration
over the coupling strength parameter λ, i. e., we replace XCh  by XCh . Importantly, this
integration has no effect on the formal properties of the exchange-correlation hole dis-
cussed in Chapter 2, the sum rules, cusp conditions, etc. that apply to hXC apply as well to

XCh . For details on this very fundamental concept see the contributions of Gunnarsson and
Lundqvist, 1976, Harris, 1984, Becke, 1988a, 1995, and Jones and Gunnarsson, 1989.

6.3 From Holes to Functionals

As already alluded to above, the analysis of the properties of model hole functions that
emerge from approximate exchange-correlation functionals is a major tool for assessing

6.3  From Holes to Functionals
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the suitability of such functionals. Recall that in Chapter 2 we separated the total exchange-
correlation hole into two components, the Fermi and Coulomb holes, with the former being
by far the most important contribution to the total hole. The Fermi hole was identified as a
non-positive quantity which contains exactly one elementary charge. This is a fairly strin-
gent restriction. For example, for ‘normal’ positions, where the hole is concentrated around
the reference electron it follows that the ‘deeper’ the hole gets for 12 rr

��

→  (where it as-
sumes )r( 1

�

ρ− ) the less will it extend into space, i. e., the shorter its range, as schematically
shown in Figure 6-1. We should note that the exchange-correlation hole for the special case
that 12 rr

��

=  is called the on-top hole, which has attracted considerable attention lately, see,
e. g., Perdew et al., 1997, and Burke, Perdew, and Ernzerhof, 1998.

On the other hand, the Coulomb hole integrates to zero and can be negative as well as
positive. Hence this sum rule is of only minor help. There is one additional, very important
aspect in this context. The exact hole functions are highly asymmetric entities and it will be
very difficult for any approximate hole to recover all the subtle details of its six-dimen-
sional shape (remember that the hole depends on the coordinates of two electrons). How-
ever, the expression for the exchange-correlation energy given in equation (6-10) does not
rely on the angular details of XCh  because of the clearly isotropic character of the Cou-
lomb interaction represented by the 1/rij operator and only depends on the distance between
any two electrons. Hence, our approximate hole only has to model the spherically averaged
exact hole about each reference point, which is significantly less complicated (but still
complicated enough).

6.4 The Local Density and Local Spin-Density Approximations

In this section we introduce the model system on which virtually all approximate exchange-
correlation functionals are based. At the center of this model is the idea of a hypothetical
uniform electron gas. This is a system in which electrons move on a positive background
charge distribution such that the total ensemble is electrically neutral. The number of elec-

h (r ;r )xc 1 2

r2r1 = r2

Figure 6-1. Fermi holes of different depths for the on-top density.
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trons N as well as the volume V of the gas are considered to approach infinity, while the
electron density, i. e., N/V remains finite, N → ∞, V → ∞, N/V = ρ and attains a constant
value everywhere. Physically, such a situation resembles the model of an idealized metal
consisting of a perfect crystal of valence electrons and positive cores where the cores are
smeared out to arrive at a uniform positive background charge. Indeed, the uniform elec-
tron gas is a fairly good physical model for simple metals such as sodium. On the other
hand, we should note from the start that this model system, which is also known under the
label of the homogeneous electron gas, is pretty far from any realistic situation in atoms or
molecules, which are usually characterized by rapidly varying densities. The reason why
the uniform electron gas has such a prominent place in density functional theory is that it is
the only system for which we know the form of the exchange and correlation energy
functionals exactly or at least to very high accuracy. We actually already met the exchange
functional of this model system in Chapter 3 when we briefly discussed the Dirac exchange
functional that appears in the Thomas-Fermi-Dirac method. The idea to use this model for
approximating EXC in the Kohn-Sham scheme was already included in the original paper
by Kohn and Sham, 1965. Let us tackle the problem now from a slightly different point of
view. Central to this model is the assumption that we can write EXC in the following, very
simple form

∫ ρερ=ρ rd))r(()r(][E XC
LDA
XC

���

. (6-12)

Here, ))r((XC
�

ρε  is the exchange-correlation energy per particle of a uniform electron
gas of density )r(

�

ρ . This energy per particle is weighted with the probability )r(
�

ρ  that
there is in fact an electron at this position in space. Writing EXC in this way defines the local
density approximation, LDA for short. The quantity ))r((XC

�

ρε  can be further split into
exchange and correlation contributions,

))r(())r(())r(( CXXC
���

ρε+ρε=ρε . (6-13)

The exchange part, εX, which represents the exchange energy of an electron in a uniform
electron gas of a particular density is, apart from the pre-factor, equal to the form found by
Slater in his approximation of the Hartree-Fock exchange (Section 3.3) and was originally
derived by Bloch and Dirac in the late 1920’s:

3
X

)r(3

4

3

π
ρ−=ε
�

. (6-14)

Inserting equation (6-14) into equation (6-12) retrieves the ρ4/3 dependence of the ex-
change energy indicated in equation (3-5). This exchange functional is frequently called
Slater exchange and is abbreviated by S. No such explicit expression is known for the
correlation part, εC. However, highly accurate numerical quantum Monte-Carlo simulations
of the homogeneous electron gas are available from the work of Ceperly and Alder, 1980.

6.4  The Local Density and Local Spin-Density Approximations
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On the basis of these results various authors have presented analytical expressions of εC
based on sophisticated interpolation schemes. The most widely used representations of εC
are the ones developed by Vosko, Wilk, and Nusair, 1980, while the most recent and prob-
ably also most accurate one has been given by Perdew and Wang, 1992. The common short
hand notation for the former implementations of the correlation functional is VWN. Hence,
instead of the abbreviation LDA, which defines the model of the local density approxima-
tion, one frequently finds the acronym SVWN to identify the particular functional. Note
that in their paper Vosko, Wilk, and Nusair report several expressions for εC. VWN usually
implies that the correlation energy density of the homogeneous electron gas has been ob-
tained in the random phase approximation (RPA), while the somewhat less frequently used
VWN5 variant (note that this is the one recommended by the authors) denotes the use of the
parameterization scheme based upon the results of Ceperly and Alder. Even though these
two VWN functionals in most cases perform similarly (Hertwig and Koch, 1997. But see
Section 9.4 for examples where VWN and VWN5 perform differently) one should be cau-
tious about which flavor of the VWN functional is actually implemented in the correspond-
ing computer program in order to avoid confusion. Before we go on, we pause for a minute
to make a general remark on the nomenclature found in the literature to name a particular
functional. While there is no strict rule, most authors now term the functionals as ‘XC’
where X stands for the exchange part and C for the correlation part as described by the
initial letter of the names of the corresponding authors. The letters are augmented by a year,
if the same authors developed more than one functional. If the exchange and correlation
parts are due to the same authors, the letters are usually given only once.

In the preceding chapter we mentioned that approximate functionals are usually also
expressed in an unrestricted version, where not the electron density )r(

�

ρ , but the two spin
densities, )r(

�

αρ  and )r(
�

βρ , with )r()r()r(
���

ρ=ρ+ρ βα  are employed as the central input.
Even though from a puristic theoretical point of view the exact functional will not depend
on the spin densities (as long as the external potential is spin-independent), approximations
to it will benefit from the additional flexibility of having two instead of one variable. In
particular, for open-shell situations with an unequal number of α and β electrons, functionals
of the two spin densities consistently lead to more accurate results. But also for certain
situations with an even number of electrons, such as the H2 molecule at larger separation,
the unrestricted functionals perform significantly better because they allow symmetry break-
ing. Up to this point the local density approximation was introduced as a functional de-
pending solely on )r(

�

ρ . If we extend the LDA to the unrestricted case, we arrive at the
local spin-density approximation, or LSD. Formally, the two approximations differ only
that instead of equation (6-12) we now write

∫ βαβα ρρερ=ρρ rd))r(),r(()r(],[E XC
LSD
XC

����

. (6-15)

Just as for the simple, spin compensated situation where α βρ = ρ = ρ� � �1
2(r) (r) (r) , there

are related expressions for the exchange and correlation energies per particle of the uni-
form electron gas characterized by )r()r(

��

βα ρ≠ρ , the so-called spin polarized case. The
degree of spin polarization is often measured through the spin-polarization parameter
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ξ attains values from 0 (spin compensated) to 1 (fully spin polarized, i. e., all electrons
have only one kind of spin). For details see in particular Appendix E of Parr and Yang,
1989. In the following we do not differentiate between the local and the local spin-density
approximation and use the abbreviation LDA for both, unless otherwise noted.

How do we interpret the LDA for the exchange-correlation functional? Let us consider
the general case of an open-shell atom or molecule. At a certain position r

�

 in this system
we have the corresponding spin densities )r(

�

αρ  and )r(
�

βρ . In the local spin-density ap-
proximation we now take these densities and insert them into equation (6-15) obtaining

)r(EXC
�

. Thus, we associate with the densities )r(
�

αρ  and )r(
�

βρ  the exchange and corre-
lation energies and potentials that a homogeneous electron gas of equal, but constant den-
sity and the same spin polarization ξ would have. This is now repeated for each point in
space and the individual contributions are summed up (integrated) as schematically indi-
cated in Figure 6-2. Obviously, this approximation hinges on the assumption that the ex-
change-correlation potentials depend only on the local values of )r(

�

αρ  and )r(
�

βρ .
This is a very drastic approximation since, after all, the density in our actual system is

certainly anything but constant and does not even come close to the situation characteristic
of the uniform electron gas. As a consequence, one might wonder whether results obtained
with such a crude model will be of any value at all. Somewhat surprisingly then, experience
tells us that the local (spin) density approximation is actually not that bad, but rather deliv-

Figure 6-2. The local density approximation.

6.4  The Local Density and Local Spin-Density Approximations
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ers results that are comparable to or even better than the Hartree-Fock approximation. It has
proven particularly successful for the determination of molecular properties such as equi-
librium structures, harmonic frequencies or charge moments as we will discuss in more
detail in later chapters. However, we should not get overexcited about such observations,
because a look at energetical details, such as bond energies, immediately shows that for
such properties the performance of the LDA is rather poor. If we take the average unsigned
deviation from the experimental atomization energies from the G2 data set as an indicator,
the LDA deviates by 36 kcal/mol! On the other hand, we need to put this into perspective
because the deviation of the HF method is even substantially larger: its error is a hefty
78 kcal/mol, more than twice as large as the error of the local density approximation! While
the HF approximation typically underestimates atomization energies, the LDA errs in the
opposite direction, giving rise to the notorious overbinding tendency of this approxima-
tion, which we will discuss in Chapter 9.

In anticipation of the future discussion on how to improve on the local density approxi-
mation, we need to ask ourselves, what are the reasons that the LDA works better than
expected from the underlying physical model of the homogeneous electron gas? The clue
for an understanding seems to be that the exchange-correlation hole of the uniform electron
gas, which is being used as model for the exact hole in the local density approximation,
satisfies most of the important relations established for the true hole. Among those are the
sum-rules, the behavior for vanishing inter-electronic distance of the exchange part
( )r()r;rr(h 1112X

����

ρ−=→ ) and the correlation part (cusp condition), as well as the prop-
erty of the exchange hole to be negative everywhere. Of course, the LDA model hole and
the exact hole differ in many details. The overbinding tendency of the local density ap-
proximation can be rationalized in terms of the exchange hole properties. The LDA hole is
spherically symmetric and always attached to the reference electron while the exact hole
has a pronounced angular structure. In the bonding region between two atoms, the LDA
model hole resembles the exact exchange hole, which becomes more isotropic (and sym-
metric with respect to the reference electron) than in the separated atoms. In an atom, the
exact exchange hole is displaced toward the nucleus, whereas the LDA hole remains as it
was in the molecular bond: centered on its reference electron. The neglect of this displace-
ment in the LDA causes significant deviations from the exact differential exchange energy
upon bond formation, with substantial errors on the atomic asymptote of an atomization
process. In other words: the centered LDA exchange hole is a better approximation for the
more homogeneous molecular density than for the more inhomogeneous density of atoms.
This causes in particular the exchange energy of the molecular system to be too negative,
that is, causes a dramatic overbinding (Ernzerhof, Perdew, and Burke, 1997).

Fortunately, only the spherically averaged exchange-correlation hole is of relevance for
the exchange-correlation energy, as shown in the preceding section. The agreement be-
tween the spherically averaged LDA and exact holes is indeed much better – which is
among the reasons why the LDA works at all – and the homogeneous electron gas in fact
provides a reasonable first approximation to spherically averaged exchange-correlation holes
of real systems. However, we should keep in mind that the LDA hole )r;r(h 21

LDA
XC

��

 will
have its highest degree of accuracy for small distances between the reference and the other
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electron because in the local density approximation we treat the exchange-correlation hole
around 1r

�

 as if the neighborhood were part of a homogenous electron gas of constant den-
sity. Clearly, in a real system with considerably varying charge density, this assumption
will deteriorate the larger the distance between the reference electron at 1r

�

 and the other
one at 2r

�

 is.

6.5 The Generalized Gradient Approximation

The only moderate accuracy that the local (spin) density approximation delivers is cer-
tainly insufficient for most applications in chemistry. Hence, for the many years in which
the LDA was the only approximation available for EXC, density functional theory was mostly
employed by solid-state physicists and hardly had any impact in computational chemistry.
The situation changed significantly in the early eighties when the first successful exten-
sions to the purely local approximation were developed. The logical first step in that direc-
tion was the suggestion of using not only the information about the density )r(

�

ρ  at a par-
ticular point r

�

, but to supplement the density with information about the gradient of the
charge density, )r(

�

ρ∇  in order to account for the non-homogeneity of the true electron
density. In other words, we interpret the local density approximation as the first term of a
Taylor expansion of the uniform density and expect to obtain better approximations of the
exchange-correlation functional by extending the series with the next lowest term. Thus,
we arrive at (with σ and σ’ indicating α or β spin)

�

�

�

+
ρ

ρ∇
ρ

ρ∇
ρρ+

ρρερ=ρρ
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σ′σ
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∫
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rd),(],[E
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,
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(6-17)

This form of functional is termed the gradient expansion approximation (GEA) and it
can be shown that it applies to a model system where the density is not uniform but very
slowly varying. Unfortunately, and at first glance counterintuitively, if utilized to solve real
molecular problems the GEA does not lead to the desired improved accuracy but frequently
performs even worse than the simple local density approximation. The reason for this fail-
ure is that the exchange-correlation hole associated with a functional such as in equation
(6-17) has lost many of the properties which made the LDA hole physically meaningful.
For example, the sum rules do not apply any more and the exchange hole is not restricted to
be negative for any pair 21 r;r

��

. Thus, the dependence between the depth of the on-top hole
and its extension is lost and the holes as well as the corresponding exchange-correlation
energies will be much more erratic. This shows again that it is not so much the model
system of the uniform electron gas but much more so the fact that the corresponding ex-
change-correlation hole system obeys most of the rules of the real system which is respon-
sible for the success of the local density and local spin-density approximations.

6.5  The General Gradient Approximation
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In a very elegant (or shall we say brute force) way, this problem was solved by straight-
forwardly enforcing the restrictions valid for the true holes also for the hole of the beyond-
LDA functionals. If there are parts in the GEA exchange holes which violate the require-
ment of being negative everywhere, just set them to zero. And, in order to have the correct
sum rule behavior, well, let us simply truncate the exchange and correlation holes such that

)r;r(h 21X
��

 and )r;r(h 21C
��

 contain one and zero electron charges, respectively. Functionals
that include the gradients of the charge density and where the hole constraints have been
restored in the above manner are collectively known as generalized gradient approxima-
tions (GGA). These functionals are the workhorses of current density functional theory and
can be generically written as

∫ βαβαβα ρ∇ρ∇ρρ=ρρ rd),,,(f],[EGGA
XC

�

. (6-18)

As we will see presently, several suggestions for the explicit dependence of the integrand
f on the densities and their gradients exist, including semiempirical functionals which con-
tain parameters that are calibrated against reference values rather than being derived from
first principles. In practice, GGA

XCE  is usually split into its exchange and correlation contri-
butions

GGA
C

GGA
X

GGA
XC EEE += (6-19)

and approximations for the two terms are sought individually.
Let us take a closer look at gradient-corrected exchange functionals in order to illustrate

the general ideas. In particular, the reader should convince him- or herself that we are
dealing with mathematically complex constructs which have been chosen such that the
desired boundary conditions which the functionals and corresponding hole functions should
satisfy are fulfilled and a satisfactory performance results. One should be aware that it is
not the physics but the results obtained from them which dictate the choice of the math-
ematical constructs. In fact, some of these functionals are not even based on any physical
model. In other words, the actual form of GGA

XE  and GGA
CE  usually does not assist the

understanding of the physics these functionals try to describe. This underlines the prag-
matic character so typical for approximate density functional theory in general.

We rewrite the exchange part of GGA
XCE  as

∑ ∫
σ

σσ ρ−= rd)r()s(FEE 3/4LDA
X

GGA
X

��

. (6-20)

The argument of the function F is the reduced density gradient for spin σ

)r(

|)r(|
)r(s

3/4 �

�

�

σ

σ
σ ρ

ρ∇= . (6-21)

sσ is to be understood as a local inhomogeneity parameter. It assumes large values not
only for large gradients, but also in regions of small densities, such as the exponential tails
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far from the nuclei. Likewise, small values of sσ occur for small gradients, typical for
bonding regions, but also for regions of large density. For example, the combination of
large density gradients and large densities close to the nuclei typically leads to values of sσ
in this region which are in between the reduced density gradients in the bonding and tail
regions, respectively. Of course, the homogeneous electron gas is characterized by sσ = 0
everywhere. Finally, a word on why we divide by the 4/3 power of ρ and not just by ρ itself.
This is needed to make sσ a dimensionless quantity: the dimension of the density is the
inverse dimension of volume and hence [r]–3. Its gradient has therefore dimensions of [r]–4.
But this is just the same dimension that ρ4/3 has, because of ([r]–3)4/3 = [r]–4 and we arrive at
the desired dimensionless reduced gradient.

For the function F two main classes of realizations have been put forward (see in particu-
lar Adamo, di Matteo, and Barone, 1999). The first one is based on a GGA exchange func-
tional developed by Becke, 1988b. As outlined above, this functional is abbreviated simply
as B (sometimes one also finds B88)

σ
−

σ

σ

β+
β

=
ssinhs61

s
F

1

2
B . (6-22)

β is an empirical parameter that was determined to 0.0042 by a least-squares fit to the
exactly known exchange energies of the rare gas atoms He through Rn. In addition to the
sum rules, this functional was designed to recover the exchange energy density asymptoti-
cally far from a finite system.

Functionals which are related to this approach include among others the recent FT97
functional of Filatov and Thiel, 1997, the PW91 exchange functional (Perdew, 1991, and
Burke, Perdew, and Wang, 1998) and the CAM(A) and CAM(B) functionals developed by
Handy and coworkers (Laming, Termath, and Handy, 1993).

The second class of GGA exchange functionals use for F a rational function of the
reduced density gradient. Prominent representatives are the early functionals by Becke,
1986 (B86) and Perdew, 1986 (P), the functional by Lacks and Gordon, 1993 (LG) or the
recent implementation of Perdew, Burke, and Ernzerhof, 1996 (PBE). As an example, we
explicitly write down F of Perdew’s 1986 exchange functional, which, just as for the more
recent PBE functional, is free of semiempirical parameters:
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The corresponding gradient-corrected correlation functionals have even more compli-
cated analytical forms and cannot be understood by simple physically motivated reason-
ings. We therefore refrain from giving their explicit expressions and limit ourselves to a
more qualitative discussion of the most popular functionals. Among the most widely used
choices is the correlation counterpart of the 1986 Perdew exchange functional, usually
termed P or P86. This functional employs an empirical parameter, which was fitted to the

6.5  The General Gradient Approximation
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correlation energy of the neon atom. A few years later Perdew and Wang, 1991, refined
their correlation functional, leading to the parameter free PW91. Another, nowadays even
more popular correlation functional is due to Lee, Yang, and Parr, 1988 (LYP). Unlike all
the other functionals mentioned so far, LYP is not based on the uniform electron gas but is
derived from an expression for the correlation energy of the helium atom based on an
accurate, correlated wave function presented in the context of wave function based theory
by Colle and Salvetti, 1975. The LYP functional contains one empirical parameter. It dif-
fers from the other GGA functionals in that it contains some local components. We should
note that all these correlation functionals are based on systems that only include dynamical,
i. e., short range correlation effects (the uniform electron gas or the helium atom). Non-
dynamical effects are not covered by these functionals, a property that we will come back
to in the next section.

In principle, each exchange functional could be combined with any of the correlation
functionals, but only a few combinations are currently in use. The exchange part is almost
exclusively chosen to be Becke’s functional which is either combined with Perdew’s 1986
correlation functional or the Lee, Yang, Parr one – levels usually abbreviated as BP86 and
BLYP, respectively. Sometimes also the PW91 correlation functional is employed, corre-
sponding to BPW91. To be fair, all these flavors of gradient-corrected KS-density func-
tional theory deliver results of similar quality as demonstrated by several studies which
assess the performance of these functional. However, in this chapter we will predominantly
concentrate on the more formal theoretical aspects of functionals and postpone a detailed
view on the actual performance of modern functionals to our discussion in Part B.

We finally note a semantic detail. GGA functionals are frequently termed non-local
functionals in the literature. This is a somewhat misleading and actually sloppy terminol-
ogy that should be avoided. In our discussion of the Hartree-Fock scheme in Section 1.3 we
introduced the difference between local and non-local operators and showed that the clas-
sical Coulomb potential is a local one while the HF exchange contribution represents a
typical non-local potential. According to this discussion, all GGA functionals are perfectly
local in the mathematical sense: the value of the functional at a point r

�

 depends only on
information about the density )r(

�

ρ , its gradient )r(
�

ρ∇ , and possibly other information at
this very point and is absolutely independent of properties of )r( ′ρ

�

 at points rr
��

≠′ . Call-
ing these functionals ‘non-local’ is only motivated by the fact that these functionals go
beyond the ‘local’ density approximation and of course the observation that knowledge of
the gradients is the first step towards accounting for the inhomogeneity of the real density;
nevertheless it is sloppy physicists’ jargon.

6.6 Hybrid Functionals

We have repeatedly indicated that usually the exchange contributions are significantly larger
in absolute numbers than the corresponding correlation effects. Therefore, an accurate ex-
pression for the exchange functional in particular is a prerequisite for obtaining meaningful
results from density functional theory. However, we have seen in Chapters 1 and 5 that the
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exchange energy of a Slater determinant can be computed exactly, recall equations (5-17)
or (5-18). Thus, why do we bother with complicated, but nevertheless only approximate
exchange functionals at all? The straightforward and seemingly most appropriate strategy
for arriving at a most accurate exchange-correlation energy seems to be to use the exact
exchange energy of equation (5-18) and rely on approximate functionals only for the part
missing in the HF picture, i. e., the electron correlation,

KS
C

exact
XXC EEE += . (6-24)

If applied to atoms this concept indeed delivers promising results. Unfortunately, and at
first glance very surprisingly, it does not live up to the expectation at all if applied to mol-
ecules and chemical bonding. Against the G2 reference set we noted a mean absolute error
of 78 kcal/mol for the Hartree-Fock level (i. e., exact exchange only, where we assume that
the HF and KS orbitals are similar). While the inclusion of correlation through an appropri-
ate functional in the spirit of equation (6-24) indeed cuts the error down to 32 kcal/mol, this
is nevertheless a disappointing result if we consider that the errors associated with the
currently used EXC functionals of the GGA type, where both exchange and correlation are
approximated, are in the order of only 5-7 kcal/mol.

What are the reasons for this significant failure of the exact exchange/density functional
correlation combination in molecular calculations? For an analysis let us recall our discus-
sion from Chapter 2 about the properties and shapes of the exact hole functions of the H2
molecule, and in particular have another look at Figure 2-2. We saw that in this simple case
the exchange hole corresponds to one half of the density of the σg occupied molecular
orbital and corresponds to the removal of half an electron from the vicinity of each nucleus.
It is completely delocalized and independent from the position of the reference electron.
However, the exact full hole is relatively localized, in particular for extended internuclear
distances where left-right correlation prevails. To salvage this overall characteristic of the
total hole, the exact exchange hole has to be complemented by the correlation hole, which
by itself is also delocalized. Thus, both components taken individually are bad representa-
tions of the whole, in particular the non-local exchange hole can in no way account for the
effects that occur upon bond stretching or in similar situations. As an aside, we note that
this is a manifestation of the fact that the separation of EXC in individual exchange and
correlation contributions is actually artificial and is only a consequence of the use of a
particular reference system, i. e., a single Slater determinant. We re-emphasize that a clear
physical meaning can only be attributed to the undivided exchange-correlation energy and
hole. If we turn to the approximate holes given by the local density approximation as well
as its gradient-corrected extensions we note that they are by construction based on a local
model. Thus, these functionals implicitly assume that both, the exchange and the correla-
tion hole are localized holes because all properties are determined by the density and its
gradient at one particular point in space. Pictorially speaking, the approximate functionals

appr
XCE  only ‘see’ their direct neighborhood and are completely ‘unaware’ of what is going

on farther away. But this explains why the simple ansatz of equation (6-24) is bound to fail
if applied to molecules. We combine the exact, delocalized exchange hole with a localized

6.6  Hybrid Functionals
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model hole for correlation. Because the cancellation between the two individual holes can-
not take place (as discussed above and in Section 2.3), the resulting total hole has the wrong
characteristics. On the other hand, approximate exchange-correlation holes based on the
uniform electron gas are again local and are therefore a better model for the exact hole than
equation (6-24). Actually, Becke, 1995, Gritsenko, Schipper, and Baerends, 1997, and
Schipper, Gritsenko, and Baerends, 1998b and 1999, as well as others pointed out and
verified numerically that current density functionals for exchange with their localized holes
effectively reproduce the sum of exact exchange and non-dynamical correlation while the
corresponding correlation functionals represent only the effects of dynamical electron cor-
relation. By the way, the approximate correlation hole provided by conventional, wave
function based techniques indeed has the required long-range characteristics for dealing
with non-dynamical correlation, usually accomplished through including energetically low-
lying Slater determinants into the wave function. In fact, there are attempts to already in-
clude these long-range correlation effects into the ‘exact’ EX contribution of equation (6-
24) through a multi-configurational SCF (MCSCF) ansatz. Combining this ‘exchange plus
non-dynamical correlation’ portion with a local density functional for dynamical correla-
tion should be more appropriate (see, e. g., the recent reports by Leininger et al., 1997,
Borowski et al., 1998, or Gräfenstein and Cremer, 2000). The two major problems with this
approach are its significantly increased computational costs and that double-counting of
correlation effects cannot be completely excluded.

Rather than pursuing this approach further, we follow a different avenue to exploit exact
exchange outlined by Becke, 1993a and 1993b. The theoretical justification of this ap-
proach can be extracted from the adiabatic connection sketched in Section 6.2 above. We
recall from equation (6-10) that the exchange-correlation energy of the Kohn-Sham scheme
is obtained through the coupling-strength integrated exchange-correlation hole. This equa-
tion is of course equivalent to the following expression (6-25), where we integrate over the
λ-dependent exchange-correlation potential energy, which is nothing else than the non-
classical contribution to the electron-electron interaction for different values of λ (note that
Encl corresponds to the pure potential energy contributions, dependent on λ. Only the inte-
gration over λ introduces the kinetic energy part into EXC)

λ= ∫ λ dEE
1

0
nclXC . (6-25)

Let us explore first the nature of the integrand λ
nclE  for the limiting cases. At λ = 0 we are

dealing with an interaction free system, and the only component which is not included in
the classical term is due to the antisymmetry of the fermion wave function. Thus, 0

nclE =λ  is
composed of exchange only, there is no correlation whatsoever.19 Hence, the λ = 0 limit of
the integral in equation (6-25) simply corresponds to the exchange contribution of a Slater
determinant, as for example, expressed through equation (5-18). Remember, that 0

nclE =λ  can

19 Keep in mind that dynamic electron correlation is always connected to the fact that electrons interact as
charged species.
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be computed exactly, once the KS orbitals are available. On the other hand, for λ = 1, the
non-classical contributions are those of the fully interacting system, containing exchange
as well as electron correlation parts. This interacting exchange-correlation energy is not
known, but can be approximated – more or less satisfactorily – by any EXC functional. The
true exchange-correlation energy is given by the integral of equation (6-25) and we know
its value for λ = 0 exactly and have pretty good approximations for λ = 1. To exactly
evaluate this integral, however, we would need λ

nclE  for intermediate values of λ. But this
information is not available and we must try to find approximations to this integral. Alter-
natively, we can analyze this integral from a slightly different point of view. We have seen
above that the model holes of the LDA or GGA schemes are reference point centered and
relatively localized. Hence, they provide a crude simulation of left-right correlation. As we
have discussed at length, this is a desirable feature for describing the hole of the interacting
system, which is also localized. On the other hand, at λ = 0 all there is, is exchange with its
delocalized hole and our localized model holes are completely inadequate. Therefore, in
terms of holes, to describe the λ = 0 end of the integration it appears plausible to mix in a
certain amount of the pure, exact exchange hole into the overall hole.

Let us be specific. The simplest approximation to solve equation (6-25) is to assume that
λ
nclE  is a linear function in λ. This leads to

1
XC

0
XC

HH
XC E

2

1
E

2

1
E =λ=λ += , (6-26)

and corresponds to the situation shown schematically in Figure 6-3a. Using the LDA ex-
change-correlation functional for 1

nclE =λ , equation (6-26) represents the so-called half-and-
half (HH) combination of ‘exact’ exchange and density functional exchange-correlation as
introduced by Becke, 1993a. In fact this approach showed a promising performance. The
absolute average error with respect to the G2 atomization energies amounts to 6.5 kcal/
mol, and rivals the value of 5.7 kcal/mol for the gradient-corrected BPW91, if basis-set
free, fully numerical results are utilized. The next step taken by Becke, 1993b was to intro-
duce semiempirical coefficients to determine the weights of the various components in this
scheme leading to the following extension of equation (6-26):

91PW
C

B
X

LSD
X

0
XC

LSD
XC

3B
XC cEbE)EE(aEE ++−+= =λ . (6-27)

In this equation we have three parameters. The amount of exact exchange in the func-
tional is determined through a, while b and c control the contributions of exchange and
correlation gradient corrections to the local density approximation. As indicated in equa-
tion (6-27), Becke utilized his 1988 exchange functional and Perdew and Wang’s 1991
correlation functional in his original approach. The three empirical parameters were cho-
sen such that the atomization and ionization energies as well as the proton affinities in-
cluded in the G2 data base and some total energies were optimally reproduced. This led to
a = 0.20, b = 0.72, and c = 0.81. Hence, the amount of exact exchange was reduced relative
to the earlier half-and-half scheme, indicative of a large slope of λ

XCE  at λ = 0, see Figure

6.6  Hybrid Functionals
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6-3b. Most importantly, this three-parameter fit reduced the average absolute error in the
G2 atomization energies significantly to only about 2–3 kcal/mol, already very close to the
target accuracy of 2 kcal/mol. Of course one should keep in mind that the parameters a, b,
and c were fitted to exactly these data and it is a priori completely unclear whether a simi-
larly good performance can also be expected in general. Functionals of this sort, where a
certain amount of exact exchange is incorporated are frequently called DFT/HF hybrid
functionals, because they represent a hybrid between pure density functionals for exchange
and exact Hartree-Fock exchange. They are also sometimes referred to as ACM functionals,
where the acronym stands for adiabatic connection method.

Currently, the most popular hybrid functional is known as B3LYP and was suggested by
Stephens et al., 1994. While it is of very similar spirit to the original form proposed, as
given in equation (6-27), in B3LYP, the PW91 correlation functional is replaced by the
LYP functional. The values of the three parameters were directly taken from Becke’s origi-
nal paper. Thus, the B3LYP exchange-correlation energy expression is (with a, b, and c just
as above)

LSD
C

LYP
C

88B
X

0
XC

LSD
X

LYP3B
XC E)c1(EcEbEaE)a1(E −++++−= =λ . (6-28)

For the B3LYP functional an unsigned error with respect to the G2 data base of only
slightly above 2 kcal/mol was determined.

Since their incarnation in the early nineties these hybrid functionals experienced an
unprecedented success (Raghavachari, 2000). In particular the B3LYP functional was an
absolute shooting star and soon developed into by far the most popular and most widely
used functional. This amazing success was fueled by the surprisingly good performance
B3LYP and related functionals demonstrated in many chemical applications, including
such difficult areas as open-shell transition-metal chemistry as we will discuss in much
detail in later parts of this book.

More recent developments by Becke, 1996a reduced the number of parameters to one

)EE(aEE DFT
XC

0
X

DFT
XC

1B
XC −+= =λ (6-29)
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Figure 6-3. λ-dependence of EXC.
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where the amount of exact exchange was empirically determined as a = 0.28 if for DFT
XCE  a

combination of the standard Becke exchange (B) and a new correlation functional due to
Becke (B95) was inserted. This functional is commonly referred to as B1B95. Its average
absolute error with respect to the G2 atomization energies is only around 2 kcal/mol. How-
ever, there are certain technical disadvantages with this functional. Most notably, it de-
pends explicitly on the kinetic energy density in addition to the density and its gradient,
which complicates the implementation into standard molecular structure computer pro-
grams. This might be the reason, why the new B1B95 has attracted less interest than its
three-parameter predecessor, even though inclusion of the kinetic energy density into ex-
change-correlation functionals seems to have gained a lot of attention lately, as outlined
below. In the last part of his series of papers on density-functional thermochemistry, Becke,
1997, introduced a new type of exchange-correlation functional which was based on an
elaborate fitting procedure. The exchange-correlation functional was separated into several
parts, i. e., exchange, like-spin correlation and unlike-spin correlation and an additional
amount of exact, Hartree-Fock exchange, i. e.,

HF
X

HF
XCCCXX

97B
XC EcEEEEEE +++++= αβββααββαα (6-30)

Each component, with the exception of the HF exchange, is expressed in a power series
involving the density and the reduced density gradient. These expansions were terminated
at second order, since otherwise unphysical, overfitted functionals were obtained. The re-
sulting ten linear coefficients were optimized by a least-square fit to energetical data from
the G2 set. Note, that the optimal parameters were determined in a fully numerical (i. e.,
basis set free), non-self-consistent procedure using LDA densities. If measured against the
G2 training set, average absolute and maximum errors of atomization energies of only 1.8
and 5.5 kcal/mol, respectively, were obtained. The amount of exact exchange was deter-
mined at 20 % in this B97 functional. As Becke noted, this kind of accuracy is probably as
far as one can get with conventional gradient-corrected GGA functionals for exchange and
correlation and a certain (but fixed, see below) amount of exact, i. e. λ = 0, exchange. A
year later, Schmider and Becke 1998a, reparameterized the B97 functional with respect to
the extended G2 set. The resulting B98 functional retains the good absolute average (1.9 kcal/
mol) and maximum errors (9.1 kcal/mol) also for this larger and more demanding training
set.20 Hamprecht et al., 1998, reparameterized the original B97 functional in a self-consist-
ent procedure, i. e., with densities optimized within the same functional and using a TZ2P
basis set and termed the resulting B97 flavor B97-1. In the same paper these authors also
suggest an extension to the B97 idea. They additionally require in the parameterization
scheme that the functional also reproduces nuclear gradients for molecules (i. e., zero if
calculations are performed at equilibrium geometries) and, probably even more impor-
tantly, that it yields accurate exchange-correlation potentials, a property that will become

20 Schmider and Becke, 1998a, presented various parameterizations in their paper, which differed in the choice
of data included in the fitting. The quoted performance applies to their parameter set 2c, where 148 heats of
formation, 42 ionization energies, 25 electron affinities, 8 proton affinities and 10 total energies were included
in the training set.

6.6  Hybrid Functionals



84

6  The Quest for Approximate Exchange-Correlation Functionals

of interest in Section 6-8. Because the least-square procedure now includes much more
information, the power series was extended to forth order, increasing the number of param-
eters to 15. However, unlike in the B97 or B98 schemes, the resulting HCTH functional is
a pure GGA functional and contains no exact exchange. In a subsequent paper (Boese et al.,
2000), the training set for the parametrization was extended in particular by anions and
weakly bound dimers leading to the HCTH/120 and HCTH/147 functionals (the numbers
indicate the number of systems used in the training sets. In the original HCTH parametrization
a total of 93 systems was used).

Before closing this section let us mention that a fraction of about 20–25 % exact ex-
change as realized in the above functionals seems to be reasonable also on purely theoreti-
cal grounds as shown by Perdew, Ernzerhof, and Burke, 1996, and Burke, Ernzerhof, and
Perdew, 1997. These authors proposed parameter-free hybrid functionals of the general
form, where the amount of exact exchange has been derived as 25 % from theoretical rea-
sonings through a perturbation theory argument,

)EE(25.0EE GGA
X

HF
X

GGA
XC

hybrid
XC −+= . (6-31)

If the PBE exchange-correlation functional is chosen as the GGA component, the
PBE1PBE model emerges (some authors prefer to call this functional PBE0). As shown by
Adamo and Barone, 1999, PBE1PBE shows promising performance for all important prop-
erties, being competitive with the most reliable, empirically parameterized current
functionals. However, while about a quarter of exact exchange is reasonable for most regu-
lar systems, it should be clear that in general this parameter is certainly not universal but
depends on the actual situation. This can be impressively demonstrated using our standard
guinea-pig, the H2 molecule and its molecular ion, H2

+. Let us consider first the neutral
hydrogen molecule. As we have seen in Section 2.3, as the distance of the two nuclei in-
creases, the total exchange-correlation hole gets more and more localized. For infinite dis-
tance it is strictly localized and removes exactly one electron from the proton where the
reference electron is located while it is zero at the other nucleus. In this situation, the
amount of exact exchange in a restricted calculation must go to zero as r → ∞: the correla-
tion holes of approximate functionals are localized. Mixing in any fraction of the delocalized
exact exchange hole would therefore lead to an unphysically delocalized total hole (see
also, Gritsenko, van Leeuwen, and Baerends, 1996). The situation is completely different
for the corresponding radical cation, the one-electron system H2

+. Here, the exchange-
correlation hole obviously contains only the exchange part, which is completely delocalized
over the molecule, independent of the internuclear distance. Due to their inherent local
character none of the current approximate exchange functionals is capable of correctly
representing this situation. In order to describe this delocalized hole a hybrid with 100 %
exact exchange would be needed, as discussed by Sodupe et al., 1999. Generally speaking,
in situations, where the λ = 0 limit is represented by degenerate or near-degenerate ground
states, the local exchange density functional is a good approximation throughout the whole
integration, including λ = 0. In other words, the λ-dependence of λ

XCE  is characterized
under these circumstances by an extreme slope (approaching −∞) at λ = 0 and the solution
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for λ = 0 does not contribute to the integral as indicated in Figure 6-3c. A typical example
is provided by the ozone molecule which is known to be pathological because of near-
degeneracy effects. The ionic and biradical resonance structures indicated in Figure 6-4
both contribute significantly to the overall wave function.

The most sensitive properties in that respect are the vibrational frequencies, in particular
the antisymmetric O-O stretching vibration (of b2 symmetry). Along this vibrational mode
the relative weights of the two main contributors of Figure 6-4 to the wave function change.
Conventional methods, such as HF or the MP2 approach in particular, where dynamical
electron correlation is estimated through second order perturbation theory, fail completely.
But also hybrid functionals such as B3LYP or the very recent, one-parameter mPW1PW
scheme predict harmonic frequencies of O3 which are in much less harmony with the ex-
perimental data than the results obtained from plain GGA protocols, such as BLYP or
BP86. Table 6-1 summarizes theoretically predicted harmonic frequencies for ozone from
representative computational models employing a flexible cc-pVQZ basis set to expand the
KS orbitals.

6.7 Self-Interaction

There is one more problem which is typical for approximate exchange-correlation
functionals. Consider the simple case of a one electron system, such as the hydrogen atom.
Clearly, the energy will only depend on the kinetic energy and the external potential due to
the nucleus. With only one single electron there is absolutely no electron-electron interac-
tion in such a system. This sounds so trivial that the reader might ask what the point is. But
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Figure 6-4. Resonance structures of O3.

Table 6-1. Harmonic frequencies and experimental fundamentals for ozone [cm–1]. Deviations from the experi-
mental result [%] are given in parentheses.

Method bending (a1) antisym. stretch (b2) sym. stretch (a1)

Hartree-Fock 870 (+21.5) 1419   (+30.3) 1541 (+35.8)
MP2 747   (+4.3) 2211 (+203.0) 1170   (+3.1)
B3LYP 750   (+4.7) 1205   (+10.7) 1259 (+10.9)
mPW1PW 778   (+8.7) 1296   (+19.0) 1323 (+16.6)
BLYP 688   (–3.9)   991     (–9.0) 1135   (±0)
BP 708   (–1.1) 1054     (–3.2) 1179   (+3.9)
Experiment 716 1089 1135

6.7  Self Interaction
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consider the energy expression for a one electron system in the Kohn-Sham scheme (which
is no different from the general equation (5-14)),

][E][E][J][T)]r([E NeXCS ρ+ρ+ρ+ρ=ρ
�

. (6-32)

The classical electrostatic repulsion term is

21
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21 rdrd
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][J

��
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∫∫
ρρ=ρ . (6-33)

This term does not exactly vanish for a one electron system since it contains the spurious
interaction of the density with itself. Hence, for equation (6-32) to be correct, we must
demand that J[ρ] exactly equals minus EXC[ρ] such that the wrong self-interaction is can-
celled

ρ ρ
= − ρ∫∫

� �

� �1 2
1 2 XC

12

(r ) (r )1
dr dr E [ ]

2 r
. (6-34)

And that is where the trouble begins.
We saw in Section 1.3 that by construction the exchange term of the Hartree-Fock model

indeed exactly neutralizes the unwanted portion of J[ρ]. In particular, for a one electron
system equation (6-34) is satisfied and the HF scheme is therefore free of self-interaction
errors. On the other hand, in any realization of the Kohn-Sham density functional scheme
we have to employ approximations to the exchange-correlation energy which are inde-
pendent of J[ρ] and we should not expect equation (6-34) to hold. In fact, none of the
currently used exchange-correlation functionals is self-interaction free. In Table 6-2 we
have summarized the results for the hydrogen atom as obtained with typical exchange-
correlation functionals employing a large cc-pV5Z basis set.

We see that the self-interaction error, J[ρ] + EXC[ρ], is in all cases in the order of 10–3 Eh
or a few hundredths of an eV. In addition, the data in Table 6-2 reiterate some of the facts
that we noted before. B3LYP, BP86 and BPW91 yield total energies below the exact result
of –0.5 Eh, in an apparent contradiction to the variational principle (see discussion in Sec-

Table 6-2. Energy components [Eh] of various functionals for the hydrogen atom.

Functional Etot J[ρ] EX[ρ] EC[ρ] J[ρ] + EXC[ρ]

SVWN –0.49639 0.29975 –0.25753 –0.03945   0.00277
BLYP –0.49789 0.30747 –0.30607   0.0   0.00140
B3LYP –0.50243 0.30845 –0.30370a –0.00756 –0.00281
BP86 –0.50030 0.30653 –0.30479 –0.00248 –0.00074
BPW91 –0.50422 0.30890 –0.30719 –0.00631 –0.00460
HF –0.49999 0.31250 –0.31250   0.0   0.0

a Includes 0.06169 Eh from exact exchange.
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tion 4.5). It is also noteworthy that of the three correlation functionals, only LYP yields the
correct result of zero correlation energy for a single electron (i. e., it is self-interaction
free), all others deviate non-negligibly from zero.

Of course, this self-correction error is not limited to one electron systems, where it can
be identified most easily, but applies to all systems. Perdew and Zunger, 1981, suggested a
self-interaction corrected (SIC) form of approximate functionals in which they explicitly
enforced equation (6-34) by substracting out the unphysical self-interaction terms. Without
going into any detail, we just note that the resulting one-electron equations for the SIC
orbitals are problematic. Unlike the regular Kohn-Sham scheme, the SIC-KS equations do
not share the same potential for all orbitals. Rather, the potential is orbital dependent which
introduces a lot of practical complications. As a consequence, there are hardly any imple-
mentations of the Perdew-Zunger scheme for self-interaction correction.

Surprisingly, while application of the Perdew-Zunger self-interaction correction improves
the results for atoms as expected, this does not necessarily carry over to ground state ener-
gies and geometries of molecules, where the self-interaction corrected scheme may even
lead to a deterioration of the results as compared to regular approximate Kohn-Sham calcu-
lations, as reported by Goedecker and Umrigar, 1997. The reasons for this behavior are,
however, not fully understood. Similarly, to what extent the unphysical self-interaction
affects the results of density functional calculations in general is not completely clear yet,
but it certainly can sometimes have severe consequences. Among the most spectacular
examples is the difficulty that approximate exchange-correlation functionals experience
when the dissociation of radicals consisting of two identical moieties are studied as pointed
out by several authors; e. g., by Merkle, Savin, and Preuss, 1992, and more recently by
Bally and Sastry, 1997, and Zhang and Yang, 1998. Sodupe et al., 1999, for example show
that Kohn-Sham calculations predict the wrong order of stability for the two low-lying
structural isomers of the (H2O)2

+ dimer, overestimating the stability of the symmetric H2O
… OH2 by some 17 kcal/mol. Even for systems as simple as the one-electron hydrogen
molecular ion, +

2H , the dissociation curve is significantly in error leading to much too
small binding energies. The origin of the huge self-interaction error as the H–H bond stretches
is the incapability of the intrinsically localized model holes of approximate functionals to
describe the delocalized exchange hole of (H…H)+ as rH-H →∞, see also the clear discus-
sion in Perdew and Ernzerhof, 1998. According to Zhang and Yang, 1998, such problems
are always to be expected for situations where non-integer number of electrons are in-
volved. The +

2H  dissociation offers a prototype for this scenario since it leads to a delocalized
state according to H+0.5 … H+0.5 as RHH increases. In general, such cases are to be expected
if the ionization energy of one dissociation partner differs by only a small amount from the
electron affinity of the other partner. For ++ +→ HHH2  this criterion is perfectly satisfied
since the ionization energy of H and the electron affinity of H+ are identical. These authors
go on to speculate, that similar problems should also surface if transition states of chemical
reactions with stretched bonds or certain charge-transfer complexes are studied with ap-
proximate exchange-correlation functionals. That self-interaction indeed plays a decisive
role in the vicinity of transition structures and may heavily affect reaction barriers has been
demonstrated, e. g., by Csonka and Johnson, 1998: the barrier for the seemingly simple

6.7  Self Interaction
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hydrogen abstraction reaction, H2 + H → H + H2, is raised by approximately 8–9 kcal/mol
by inclusion of the self-interaction correction and brings the computed results into much
better agreement with the experimental activation barrier, as we will discuss in more detail
in Chapter 13. Their paper also includes an instructive and yet concise outline of the Perdew-
Zunger procedure.

6.8 Asymptotic Behavior of Exchange-Correlation Potentials

While the behavior of the exchange-correlation potential VXC (recall from equation (5-16)
that the exchange-correlation potential VXC is defined as the functional derivative of the

exchange-correlation energy EXC with respect to the charge density ρ: 
δρ

δ
≡ XC

XC
E

V ) at

distances far from the atom or molecule seems of little importance at first glance, it turned
out to be critical for properties which depend not only on the quality of the occupied Kohn-
Sham orbitals but also on how well the virtual orbitals are described. Typical examples
include atomic electron affinities and properties related to the response of the system to an
electromagnetic field, such as polarizabilities, or excitation energies to energetically high-
lying states, in particular Rydberg states, computed from the poles of the frequency de-
pendent polarizability (i. e., in the TDDFT scheme). How should the asymptotic VXC look

like? We know that for an N-electron system the Coulomb potential 2
C 1 2

12

(r )
V (r ) dr

r

ρ
= ∫

�

� �

behaves like N/r when r → ∞. In order to cancel the unphysical self-interaction in the
Coulomb term, the exchange-correlation potential (since correlation effects are much more
short-ranged, it usually suffices to analyze only the exchange potential in the asymptotic
region) must therefore have a –1/r dependence at large r. The electron far away from the
molecule now sees the correct net (N+1-Z) charge (Z being the positive nuclear charge).
There are two problems with current popular exchange functionals in this context. First,
none of the corresponding potentials has the correct –1/r behavior, they rather all decrease
exponentially, i. e., much too fast. As a consequence, these approximate potentials are less
attractive than the exact one at large r. The second problem is more subtle and much more
difficult to grasp without a detailed theoretical analysis. In the following we will limit
ourselves to a pictorial description of the problem without dwelling too much into the
physical background. In a celebrated (see Zhang and Yang, 2000) and often quoted paper,
Perdew et al., 1982, extended Kohn-Sham density functional theory to fractional electron
numbers. In that context they showed that the exchange-correlation potential actually jumps
by a constant as the number of electrons passes through an integer. This phenomenon is
known as the derivative discontinuity in DFT. As a corollary to this it can be shown that
none of the currently available approximate functionals, which are all characterized by a
continuous potential with respect to variations in the number of electrons is able to model
this behavior. This in turn has the rather unexpected consequence that an accurate continu-
ous potential should not vanish asymptotically. Rather, as shown for example by Tozer and
Handy, 1998, the asymptotic potential should obey
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Here, I and εmax are the lowest ionization energy and the orbital energy of the highest
occupied Kohn-Sham orbital, respectively. By the way, these deficiencies of current
functionals are the reason for the fact noted in Section 5.3.3 that the exact relationship
between these quantities, i. e., that I equals –εmax is not fulfilled by any approximate ex-
change-correlation functional. In fact, all approximate functionals give values of -εmax which
are significantly larger (i. e. less negative) than the ionization energy. This reflects the too
small attractive character of the corresponding asymptotic potentials.

There have been several attempts to improve the asymptotic behavior of exchange-corre-
lation potentials. For example, van Leeuwen and Baerends, 1994, constructed a potential
such that it shows the correct –1/r behavior, however, it still vanishes at infinity and there-
fore does not take into account the problems connected with the derivative discontinuity. In
addition, this LB94 potential cannot be derived as the derivative of an exchange-correlation
functional and shows some deficiencies in regions closer to the nucleus. As noted above,
Hamprecht et al., 1998, fitted their GGA exchange-correlation HCTH functional to energetics
as well as exchange-correlation potentials in order to achieve better characteristics in the
asymptotic region. However, their potential also eventually vanishes. For other approaches
see also Chermette et al., 1998. While both, LB94 as well as HCTH yielded improved
results for low-lying virtual orbitals and related properties as compared to regular exchange-
correlation potentials, further improvements were accomplished by an ingeniously simple
modification of the HCTH functional. Tozer and Handy, 1998, replaced the potential com-
puted as the functional derivative of the HCTH functional by the asymptotically correct
potential from equation (6-35) if the grid point where the potential is being evaluated is ‘far’
from the molecule.21 This procedure was termed HCTH(AC) where AC stands for asymp-
totically corrected. The ionization energy and the highest occupied orbital energy needed
for this correction were simply taken from regular Kohn-Sham calculations. HCTH(AC)
indeed yielded significantly better excitation energies to high-lying Rydberg states and
hyperpolarizabilities as we outline in Part B of this book. Before closing this section, we
note that hybrid functionals with their exact Hartree-Fock exchange contribution also lead
to an amelioration. First, the HF exchange functional obviously shows the correct –1/r de-
cay for large distances. The asymptotic form of the exchange potential in hybrid functionals
therefore assumes the improved (but still not correct) form –a/r with a < 1 being the amount
of exact exchange included (see Casida, 1995). Second, the introduction of some Hartree-
Fock exchange leads to a discontinuity in the potential as it goes through an integer particle
number. As a consequence, hybrid functionals will – albeit only partially – correct the prob-
lems of potentials based on pure density functionals in the asymptotic regime. An extension
of the idea of ‘asymptotic correction’ to hybrid functionals has been presented by Allen and
Tozer, 2000. While the correction significantly improves excitation energies to Rydberg
States, no overall improvement over the results obtained from HCTH(AC) was achieved.

21 Tozer and Handy empirically define ‘far’ in terms of 4.7 times the Bragg-Slater radius of the corresponding
atom. The two potentials for ‘near’ and ‘far’ are connected through a linear extrapolation.

6.9  Discussion
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6.9 Discussion

In the preceding sections we have reviewed the current state of the art in approximate
exchange-correlation functionals. The above conclusions support a certain, albeit qualita-
tive hierarchy of functionals of ascending complexity and accuracy as: the local density
approximation (LDA) which usually yields good structural properties but frequently fails
miserably in binding energies due to overbinding; regular gradient-corrected exchange-
correlation functionals (BP86, BLYP, BPW91, PBE and the like) which already provide
fairly accurate results, as indicated by absolute average errors of some 5 kcal/mol for at-
omization energies with respect to the G2 data base; and finally hybrid functionals, which
show in many (although not all!) applications the most satisfactory performance. The most
prominent example of this class is B3LYP. In Part B of this book we report on the details of
how we can break down this hierarchy to individual functionals from each family and how
they perform for the prediction of different properties. In this concluding section we will
present a glimpse on recent progress how to devise new functionals. While some perform-
ance data are also mentioned here, a more detailed portrait on the quality of these and other
new developments awaits the reader in Section 9.1.

We already mentioned Becke’s recent one-parameter hybrid functional B1B95, which
performs better than B3LYP with errors against the G2 set of only slightly above 2 kcal/
mol. Of course, the one-parameter scheme is not limited to this particular choice of
functionals and any exchange and correlation functional can in principle be used in this
protocol. One particularly interesting flavor of such one-parameter hybrids is the modified
Perdew-Wang approach (mPW1PW) suggested by Adamo and Barone, 1998b. It was de-
signed specifically with non-covalent interactions in mind, but shows a very promising
performance across the board.

However, similar accuracy seems to be in reach also for the latest developments in regu-
lar GGA functionals without exact exchange, such as demonstrated by Filatov and Thiel’s
1997 functional. Still, as we will elaborate on in the application oriented part of this book,
none of these functionals is without shortcomings and the hunt for better and more univer-
sal functionals is anything but at an end. Novel forms of functionals discussed presently try
to explore new forms for exchange-correlation functionals, and we will give a few repre-
sentative examples. Extending the search for approximate exchange-correlation functionals
to schemes that go beyond the GGA by taking second order gradients and the (non-inter-
acting) kinetic energy density into account leads to a new family of functionals, which has
been termed meta-generalized gradient approximation (meta-GGA) by Perdew et al., 1999.
An early example of this kind of functional is provided by the LAP correlation functional
due to Proynov, Vela, and Salahub, 1994. This functional involves the Laplacian of the
electron density, )r(2 �

ρ∇ , for each spin direction and the kinetic energy density as ingredi-
ents reflecting inhomogeneity. Also the B95 correlation functional belongs into this cat-
egory. Filatov and Thiel, 1998, suggest a new functional for EXC which likewise expands
the arguments of the usual GGA formulation by including contributions from the Laplacian
of the density. Similarly, Schmider and Becke, 1998b, extended their B97 functional by
taking into account the Laplacian of the density and the non-interacting kinetic energy
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density (see also Becke, 1999, for a summary on B97 and extensions to it). Also van Voorhis
and Scuseria, 1998, presented a new exchange-correlation functional termed VSXC which
depends not only on ρ and ∇ρ, but also on the non-interacting kinetic energy density.
Somewhat later Ernzerhof and Scuseria, 1999, Perdew et al., 1999, and Proynov, Chermette
and Salahub, 2000, developed alternative formulations of the same motif. In all cases very
encouraging results were reported (see, for example, Adamo, Ernzerhof and Scuseria, 2000).
These approaches are physically motivated, and without diluting the functionals by any
exact exchange, the new functionals reach an accuracy on the G2 test bench which is com-
parable or even slightly better than that of the actual de facto standard B3LYP. On the other
hand, addressing the problem from a very pragmatic point of view, Adamson, Gill, and
Pople, 1998, make heavy use of parameterization and thus generate what they call empiri-
cal density functionals, which also deliver a good overall accuracy. Interestingly, these
authors argued that it might not be a proper way to create functionals using large and
flexible basis sets (or an infinite basis as used by Becke) during the development phase.
Rather than assuming that functionals resulting from such a process will be equally suit-
able for smaller basis sets, they used a relatively small basis to start with and put more
emphasis on the empirical parameterization. Following the lines of the arguments above, it
is an appealing idea to assume that the parameterization performed within a small basis
expansion set can absorb some deficiencies of the basis limitations itself. Their ‘empirical
density functional 1’ (EDF1 for short) is composed of an adjusted mixture of functional
forms for exchange and correlation with Xα, B, LYP as components.

Interestingly, all these latter new functionals achieve their promising performance with-
out exact exchange. Hence, it may well be that future exchange-correlation functionals will
get away without any exact exchange mixing and, as van Voorhis and Scuseria, 1998, con-
clude, that the apparent need for exact exchange mixing is only a relic of the relatively poor
quality of the currently used exchange functionals. Nevertheless in concluding this section
we have to note that none of the new functionals mentioned above has already gained a
significant popularity. Functionals such as BP86, BLYP or B3LYP are still the mainstay in
most chemical applications and no serious competitor that could eventually challenge the
dominance of these schemes in the short run is actually in sight.

6.9  Discussion
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7 The Basic Machinery of Density Functional Programs

The preceding six chapters provided an overview of the theoretical background and current
state of the art of modern approximate density functional theory. We now turn to the more
practical problem of how the strategies developed so far can be mapped onto computational
schemes. To this end, we first introduce the linear-combination-of-atomic-orbitals (LCAO)
ansatz, which is the by far most dominant way to make the iterative self-consistent field
procedure for solving the one-electron Kohn-Sham equations computationally accessible.
This leads immediately to the problem of which kinds of basis sets are suitable in order to
expand the Kohn-Sham orbitals in such calculations and according to which criteria one
should choose a particular set of basis functions. One of the main questions in this context
is, to what extent one can benefit from the vast experience regarding basis sets accumulated
in wave function based techniques. Schemes for how the various components appearing in
the KS equations are actually determined are discussed with particular emphasis on how
the Coulomb energy can be approached. We also give a survey of the techniques employed
for the numerical integration of the exchange-correlation potential including grid-free ap-
proaches, which circumvent the ubiquitous problems with numerical noise in the grid-
based numerical integration. Finally, we will review the development of new algorithms
that aim at a linear scaling of the computing time with respect to the size of the molecule
which will allow the application of these methods to very large molecules occurring, for
example, in biochemistry or material science.

7.1 Introduction of a Basis:
The LCAO Ansatz in the Kohn-Sham Equations

Recall the central ingredient of the Kohn-Sham approach to density functional theory, i. e.,
the one-electron KS equations,

2
N Mj 22 A

2 XC 1 i i i
12 1Aj A

(r ) Z1
dr V (r )

2 r r

  ϕ  − ∇ + + − ϕ = ε ϕ      
∑ ∑∫

�
� �

. (7-1)

The term in square brackets defines the Kohn-Sham one-electron operator and equation
(7-1) can be written more compactly as

iii
KSf̂ ϕε=ϕ . (7-2)

Note that the operator KSf̂  differs from the Fock operator f̂  that we introduced in Sec-
tion 1.3 in connection with the Hartree-Fock scheme only in the way the exchange and
correlation potentials are treated. In the former, the non-classical contributions are expressed
via the – in its exact form unknown – exchange-correlation potential VXC, the functional
derivative of EXC with respect to the charge density. In the latter, correlation is neglected
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altogether, while the exchange contribution is given exactly by the action of the exchange
operator K̂  on a spin orbital χi,

)x(xd)x(
r

1
)x()x()x(K̂ 1j22i

12
2

*
j1i1j

������
χχχ=χ ∫ . (7-3)

The Kohn-Sham equations given above in equations (7-1) or (7-2) represent a compli-
cated system of coupled integro-differential equations (the kinetic energy operator is a
differential operator, while the Coulomb contribution is expressed through an integral op-
erator) and we now need to find a computationally efficient way of solving these equations.
At the end of this process we obtain as solutions the Kohn-Sham molecular orbitals {ϕi},
which yield the ground state density associated with the particular choice of VXC (should
we know the exact VXC, the exact density would result). In principle, a purely numerical
approach to solve these equations is possible and a few benchmark calculations for atoms
and small molecules using such a technique are available (Becke, 1989). However, numeri-
cal procedures are much too demanding for routine applications and other techniques are
required. Almost all applications of Kohn-Sham density functional theory therefore make
use of the LCAO expansion of the KS molecular orbitals, a scheme introduced by Roothaan,
1951, in the framework of the Hartree-Fock method. In the LCAO approach we introduce
a set of L predefined basis functions {ηµ} and linearly expand the Kohn-Sham orbitals as

∑
=µ

µµ η=ϕ
L

1
ii c . (7-4)

If the set {ηµ} was complete which would require L = ∞, every function ϕi could be
expressed exactly via equation (7-4). Of course, in real applications L is finite and it is of
crucial importance to choose the {ηµ} such that the linear combination of (7-4) provides an
approximation of the exact Kohn-Sham orbitals as accurate as possible. It should also be
clear that by using a linear combination of predefined basis functions to express the Kohn-
Sham orbitals, the originally highly non-linear optimization problem has been simplified
into a linear one, with the coefficients {cµi} being the only variables. When the LCAO
method was invented back in the nineteenfifties, the {ηµ} were inspired by the exactly
known eigenfunctions (‘atomic orbitals’) of the hydrogen atom, which explains the name.
Today, the basis functions are usually chosen according to different, more pragmatic crite-
ria and do not resemble atomic functions anymore, as we will expound presently. For the
time being we just assume that we have decided on some set of real basis functions {ηµ}
(complex basis functions are possible, but to simplify matters we restrict ourselves to real
functions). We now insert equation (7-4) into equation (7-2) and obtain in very close anal-
ogy to the Hartree-Fock case
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νν ηε=η . (7-5)
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If we now multiply this equation from the left with an arbitrary basis function ηµ and
integrate over space we get L equations
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 for 1 ≤ i ≤ L (7-6)

The integrals on both sides of this equation each define a matrix. On the left hand side,

∫ νµµν ηη= 111
KS

1
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(7-7)

is a matrix element of the Kohn-Sham matrix while the overlap matrix on the right hand
side has elements

∫ νµµν ηη= 111 rd)r()r(S
���

. (7-8)

Both matrices are L × L dimensional and, as long as we are dealing with real basis
functions, are symmetric, i. e., Mµν = Mνµ (in the general case, they are self-adjoint or
hermitian, i. e., *MM νµµν = ). Using S and F and introducing the L × L dimensional matri-
ces C containing the expansion vectors
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and εεεεε, a diagonal matrix of the orbital energies
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we can rewrite the L equations (7-6) compactly as a matrix equation

FKS C = S C �. (7−11)

Hence, through the LCAO expansion we have translated the non-linear optimization
problem, which required a set of difficult to tackle coupled integro-differential equations,
into a linear one, which can be expressed in the language of standard linear algebra and can
easily be coded into efficient computer programs.

�
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Up to this point the derivation has exactly paralleled the Hartree-Fock case, which only
differs in using the corresponding Fock matrix, F rather than the Kohn-Sham counterpart,
FKS. By expanding KSf̂  into its components, the individual elements of the Kohn-Sham
matrix become
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We now need to discuss how these contributions that are required to construct the Kohn-
Sham matrix are determined. The first two terms in the parenthesis of equation (7-12)
describe the electronic kinetic energy and the electron-nuclear interaction, both of which
depend on the coordinate of only one electron. They are often combined into a single inte-
gral, i. e.,
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Independent of the choice of the {ηµ}, the one-electron contribution hµν can be fairly
easily computed using well tested algorithms. For the third term we need the charge density
ρ which takes the following form in the LCAO scheme
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The expansion coefficients, which actually contain all relevant information about the
charge density, are usually collected in the so-called density matrix P with elements

∑ νµµν =
N

i
iiccP . (7-15)

Thus, we can alternatively express the Coulomb contribution in equation (7-12) solely
in terms of the basis functions as the following four-center-two-electron integrals (since the
four basis functions ηµ, ην, ηλ, ησ can be attached to a maximum of four different atoms)
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Up to this point, exactly the same formulae also apply in the Hartree-Fock case. The
difference is only in the exchange-correlation part. In the Kohn-Sham scheme this is repre-
sented by the integral,

∫ νµµν ηη= 111XC1
XC rd)r()r(V)r(V

����
, (7-17)

where we have to decide on the explicit form of VXC, whereas the HF exchange integral is
given by22
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Note again the formal simplicity of equation (7-17) as compared to equation (7-18) in
spite of the fact that the former is exact provided the correct VXC is inserted, while the latter
is inherently an approximation. The calculation of the formally L2/2 one-electron integrals
contained in hµν, equation (7-13) is a fairly simple task compared to the determination of
the classical Coulomb and the exchange-correlation contributions. However, before we
turn to the question, how to deal with the Coulomb and VXC integrals, we want to discuss
what kind of basis functions are nowadays used in equation (7-4) to express the Kohn-
Sham orbitals.

7.2 Basis Sets

During the years, a huge collection of basis sets was generated in the context of wave
function based approaches to quantum chemistry. Here, the orbitals χi which are expressed
through the {ηµ} are used to construct the approximate wave function. It has long been
recognized that very large basis sets are needed if high quality wave functions that take also
into account electron correlation are the target. In particular, basis functions with complex
nodal structures (polarization functions, see below) are necessary and in highly correlated
calculations the basis set requirements soon lead to computationally very demanding pro-
cedures. On the other hand, in the Kohn-Sham scheme the orbitals play an indirect role and

are introduced only as a tool to construct the charge density according to ∑ ϕ=ρ
N

i

2
i )r()r(
��

.

One should therefore expect that the basis set requirements in Kohn-Sham calculations are
less severe than in wave function based ones. Indeed, in most applications this is the case
(see, e. g., Bauschlicher et al., 1997, and Martin, 2000).

In the following we will give a very concise overview of the typical kinds of basis sets in
use today. In conventional wave function based approaches, such as the Hartree-Fock or

22 Note that we must use ix
�

 and not ir
�

 as variable here, because of the spin-dependence of the exchange
integral, recall Section 1.3.

7.2  Basis Sets
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configuration-interaction schemes, the set {ηµ} is almost universally chosen to consist of
so-called cartesian Gaussian-type-orbitals, GTO of the general form

]rexp[zyxN 2nmlGTO α−=η . (7-19)

N is a normalization factor which ensures that <ηµ|ηµ> = 1 (but note that the ηµ are not
orthogonal, i. e., <ηµ|ην> ≠ 0 for µ ≠ ν). α represents the orbital exponent which deter-
mines how compact (large α) or diffuse (small α) the resulting function is. L = l + m + n is
used to classify the GTO as s-functions (L = 0), p-functions (L = 1), d-functions (L = 2),
etc. Note, however, that for L > 1 the number of cartesian GTO functions exceeds the
number of (2l+1) physical functions of angular momentum l. For example, among the six
cartesian functions with L = 2, one is spherically symmetric and is therefore not a d-type,
but an s-function. Similarly the ten cartesian L = 3 functions include an unwanted set of
three p-type functions.

The preference for GTO basis functions in HF and related methods is motivated by the
computational advantages these functions offer, because very efficient algorithms exist for
analytically calculating the huge number of four-center-two-electron integrals occurring in
the Coulomb and HF-exchange terms. On the other hand, from a physical point of view,
Slater-type-orbitals (STO) seem to be the natural choice for basis functions. They are sim-
ple exponentials that mimic the exact eigenfunctions of the hydrogen atom. Unlike the GTO
functions, Slater-type-orbitals exhibit the correct cusp behavior at r → 0 with a discontinu-
ous derivative (while a GTO has a slope of zero at r → 0) and the desired exponential decay
in the tail regions as r → ∞ (GTO fall off too rapidly). A typical STO is expressed as

),(Y]rexp[rN lm
1nSTO φΘζ−=η − . (7-20)

Here, n corresponds to the principal quantum number, the orbital exponent is termed ζ
and Ylm are the usual spherical harmonics that describe the angular part of the function. In
fact as a rule of thumb one usually needs about three times as many GTO than STO func-
tions to achieve a certain accuracy. Unfortunately, many-center integrals such as described
in equations (7-16) and (7-18) are notoriously difficult to compute with STO basis sets
since no analytical techniques are available and one has to resort to numerical methods.
This explains why these functions, which were used in the early days of computational
quantum chemistry, do not play any role in modern wave function based quantum chemical
programs. Rather, in an attempt to have the cake and eat it too, one usually employs the so-
called contracted GTO basis sets, in which several primitive Gaussian functions (typically
between three and six and only seldom more than ten) as in equation (7-19) are combined
in a fixed linear combination to give one contracted Gaussian function (CGF),

∑ η=η ττ

A

a

GTO
aa

CGF d . (7-21)

The original motivation for contracting was that the contraction coefficients dsτ can be
chosen in a way that the CGF resembles as much as possible a single STO function. In
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addition, contracting the primitives is also another trick to reduce the computational bur-
den. For more details on the intricacies of such basis sets, we recommend, e. g., the compe-
tent discussion in Feller and Davidson, 1990, or Helgaker and Taylor, 1995.

In density functional theory CGF basis sets also enjoy a strong popularity. They are the
natural choice in those programs that offer Kohn-Sham methods as an add-on but were
originally designed for wave function theory and hence use CGF to expand the molecular
orbitals, such as Gaussian or Turbomole. Also some of the genuine Kohn-Sham programs
use Gaussian basis sets, such as DGauss or DeMon. However, since in the Kohn-Sham
scheme, no exchange integrals as in equation (7-18) appear and, as we will see in a minute,
the explicit calculation of the Coulomb integrals (equation (7-16)) can also be circum-
vented, CGF functions are not the only player in that field and the user may face different
types of basis sets depending on which program he or she decides to select. For example,
the Amsterdam Density Functional code, ADF, uses Slater-type orbitals as basis functions.
Not only does one get away with less functions than with GTO sets, but also the treatment
of non-abelian point group symmetries is easier to implement with exponential functions.
This leads to a more convenient input definition and interpretation of the results of high-
symmetry molecules and a possible reduction in computing time. Still another kind of basis
function is realized within the program DMol, which does not use analytical, but numerical
basis functions (Delley, 1990). Here, the {ηµ} are represented numerically on atomic centered
grids, with cubic spline interpolations between mesh points. These basis functions are gen-
erated by numerically solving the atomic KS equations with the corresponding approxi-
mate exchange-correlation functional. Thus, numerical basis sets provide exact energies
(within the given functional) for atomic fragments, but obviously necessitate the use of
purely numerical (rather than analytical) techniques for solving the integrals over basis
functions developed in the preceding section.

We should also mention that basis sets which do not actually comply with the LCAO
scheme are employed under certain circumstances in density functional calculations, i. e.,
plane waves. These are the solutions of the Schrödinger equation of a free particle and are
simple exponential functions of the general form

]rkiexp[PW ��
=η (7-22)

where the vector k
�

 is related to the momentum p
�

 of the wave through p k=
��

� . Plane
waves are not centered at the nuclei but extend throughout the complete space. They enjoy
great popularity in solid state physics for which they are particularly adapted because they
implicitly involve the concept of periodic boundary conditions. Unfortunately, the number
of plane waves needed to arrive at an acceptable accuracy is usually daunting at best and for
this and other reasons applications employing plane wave basis sets are very rare in mo-
lecular quantum chemistry. Actually, none of the popular program packages supports this
kind of basis set and we will therefore neither discuss plane waves nor recent modifications
of this concept, such as the projector augmented wave method. Interested readers are di-
rected to the review by Blöchl, Margl, and Schwarz, 1996.

Irrespective of whether we use Gaussian functions, Slater type exponentials or numeri-
cal sets, certain categories of functions that can help to characterize the quality of a basis set

7.2  Basis Sets



100

7  The Basic Machinery of Density Functional Programs

have become customary in quantum chemistry. The simplest and least accurate expansion
of the molecular orbitals utilizes only one basis function (or one contracted function in the
case of CGF sets) for each atomic orbital up to and including the valence orbitals. These
basis sets are for obvious reasons called minimal sets. A typical representative is the STO-
3G basis set, in which three primitive GTO functions are combined into one CGF. For
carbon, this basis set consists of five functions, one each describing the 1s and 2s atomic
orbitals and three functions for the 2p shell (px, py, and pz). One should expect no more than
only qualitative results from minimal sets and nowadays they are hardly used anymore. The
next level of sophistication are the double-zeta basis sets. Here, the set of functions is
doubled, i. e., there are two functions for each orbital (the generic name ‘double-zeta’ for
such basis sets still points to the beginnings of computational quantum chemistry, when
STO functions were in use, where the orbital exponent is called ζ). If we take into account
that it is in the valence space where changes in the electronic wave function occur during
chemical processes, we can limit the doubled set of functions to the valence orbitals, while
the chemically mostly inert core electrons are still treated in a minimal set. This defines the
split-valence type sets. Typical examples are the 3-21G or 6-31G Gaussian basis sets devel-
oped by Pople and coworkers. In most applications, such basis sets are augmented by po-
larization functions, i. e., functions of higher angular momentum than those occupied in
the atom, e. g., p-functions for hydrogen or d-functions for the first-row elements. Polari-
zation functions have by definition more angular nodal planes than the occupied atomic
orbitals and thus ensure that the orbitals can distort from their original atomic symmetry
and better adapt to the molecular environment. Polarized double-zeta or split valence basis
sets are the mainstay of routine quantum chemical applications since usually they offer a
balanced compromise between accuracy and efficiency. In terms of CGF type basis sets,
typical examples are the standard 6-31G(d,p) sets of Hehre, Ditchfield, and Pople, 1972,
and Hariharan and Pople, 1973, or the more recent SVP (split-valence polarization) sets of
Schäfer, Horn, and Ahlrichs, 1992. Equivalents consisting of two STO functions per atomic
orbital or two numerical functions are of comparable importance in their respective do-
mains. In the latter case the doubling of the numerical functions can be achieved, for exam-
ple, by adding numerically generated atomic orbitals from calculations on doubly or even
higher positively charged ions.

It is obvious how these schemes can be extended by increasing the number of functions
in the various categories. This results in triple- or quadruple-zeta basis sets which are aug-
mented by several sets of polarization functions including functions of even higher angular
momentum. The cc-pVQZ (for correlation-consistent polarized valence quadruple zeta)
and cc-pV5Z (the 5 stands for quintuple) basis sets mentioned earlier are typical, modern
representatives of this approach in terms of Gaussian functions (Dunning, 1989). For ex-
ample, the large cc-pV5Z contraction consists for the first-row atoms boron to neon of
14s-, 8p-, 4d-, 3f-, 2g-, and 1h-type primitive GTO. These are contracted to 6s- and 5p-type
contracted Gaussian functions while the polarization functions are left uncontracted, lead-
ing to a final basis set of size 6s, 5p, 4d, 3f, 2g, 1h. This is a valence quintuple set because
there is 1 CGF for the 1s core electrons and 5 sets of s- and p-functions representing the
corresponding 2s and 2p orbitals of the valence shell. If the so-called spherical harmonic
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functions are used, where the contaminants in the d- and higher sets are deleted and only
the true angular momentum functions are retained, this basis set contains 91 CGF per first-
row atom as compared to only 15 in a 6-31G(d,p) basis (by definition the 6-31G(d,p) basis
set employs six cartesian d-functions). In a study on the applicability of these correlation-
consistent basis sets in Kohn-Sham calculations, Raymond and Wheeler, 1999, concluded
that the combination of the B3LYP technique with these sets (cc-pVTZ and better) indeed
gives very satisfactory results.

The exponents and contraction coefficients of most Gaussian basis sets have been
optimized within the Hartree-Fock or correlated wave function based schemes. A notewor-
thy exception are the sets of Godbout et al., 1992, which have been explicitly optimized
using the LDA approach and represent the standard basis sets provided by the program
DGauss. In the beginning it was not at all clear whether one could in fact use basis sets that
were optimized for representing molecular orbitals in a HF or configuration interaction
context to construct the density, as in the Kohn-Sham scheme. However, it fortunately
turned out that the results are fairly insensitive with respect to the way the exponents and
contraction coefficients have been determined, in particular for the calculation of proper-
ties such as energies or equilibrium geometries. Hence, in general it is probably not neces-
sary to use basis sets explicitly optimized for a density functional approach, even though
there are a number of special cases where this statement is an oversimplification. Neverthe-
less, most modern applications of Kohn-Sham density functional theory using Gaussian
functions simply employ one of the many standard basis sets, irrespective of their origin in
wave function based approaches. In most contemporary program packages the popular sets
are provided in an internal basis set library. Should the desired set not be included in that
internal library of the program chosen, it can usually be conveniently downloaded even in
the appropriate input format from the web-site http://www.emsl.pnl.gov:2080/forms/
basisform.html (Feller, Schuchardt, and Jones, 1998).

If the molecules of interest contain elements heavier than, say, krypton, one usually em-
ploys a (relativistic) effective core potential ((R)ECP), also called pseudopotential, to model
the energetically deep-lying and chemically mostly inert core electrons, as reviewed recently
by Frenking et al., 1996, and Cundari et al., 1996. The potentials are called ‘relativistic’ if
they have been fitted to atomic calculations that explicitly incorporate relativistic effects.
The commonly used pseudopotentials have been determined with conventional wave func-
tion based methods in mind and it is not a priori clear, whether they are as useful in conjunc-
tion with density functional calculations. In particular one might pessimistically expect that
an ECP appropriate for a specific exchange-correlation functional should be generated from
atomic calculations employing that very functional, causing a Babylonian confusion of
tongues. However, the considerable experience accumulated so far shows that this fear is
fortunately unfounded and that one can safely use the well-established ECP also in density
functional calculations. Specifically, Russo, Martin, and Hay, 1995, as well as van Wüllen,
1996, showed for selected compounds such as transition-metal carbonyls that in compari-
son with the corresponding all-electron calculations, errors of the same order of magnitude
are introduced in density functional and Hartree-Fock calculations employing two different
popular flavors of effective core potentials derived from atomic Hartree-Fock computations.

7.2  Basis Sets
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7.3 The Calculation of the Coulomb Term

In this section we discuss the various strategies implemented in common Kohn-Sham pro-
grams to compute the classical electrostatic contribution to the electron-electron repulsion
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In regular wave function based methods J is determined through the four-center-two-
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equation (7-16). Of course, the same approach is valid in density functional calculations.
However, the problem inherent to this scheme is the large computational load resulting
from the sheer number of integrals. It should be obvious that formally there are some L4

such integrals which need to be computed and indeed, the handling of the two-electron
integrals still constitutes the computational bottle-neck in traditional Hartree-Fock calcula-
tions on very large systems. In the HF picture these integrals are not only needed for the
classical Coulomb energy but also for the determination of the exchange energy, as indi-
cated by the integrals Kµν shown in equation (7-18). No generally applicable computa-
tional alternative determining these contributions without explicit evaluation of the two-
electron integrals is known in wave function based methods. In contrast, the exchange (and
correlation) contribution in density functional theory is approached via approximate
functionals and the evaluation of J is completely uncoupled from the way EXC is treated.
Hence, we are not forced to use the Jµν integrals from equation (7-16) but are free to take
advantage of more efficient techniques for tackling the classical Coulomb contributions.
Many density functional programs indeed use special strategies to compute J which all boil
down to simplifying equation (7-16), which we can equivalently write as,
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We may now expand the density )r( 2
�

ρ  in terms of an atom-centered auxiliary basis set
{ωκ}, according to

∑
κ

κκω=ρ≈ρ
K

)r(c)r(~)r(
���

, (7-25)

where the tilde indicates that we are dealing with an approximate density (since in practice
the auxiliary basis set will never be complete). If we use this approximation, the computa-
tional cost for evaluating J is now formally reduced from L4 to L2K, since instead of equa-
tion (7-16) we now have to solve
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This technique was originally suggested by Baerends, Ellis, and Ros, 1973, for STO
basis functions and later extended by Sambe and Felton, 1975, and others to CGF basis
sets. The coefficients cκ are determined either straightforwardly by minimizing the func-
tion
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or preferentially by minimizing the Coulomb self-repulsion of the residual density,
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The latter approach has the advantage that the exact J is approached strictly from above,
however for technical reasons it is only applicable if Gaussian basis functions are em-
ployed (Dunlap, Connolly, and Sabin, 1979). Both schemes are of course subject to the
constraint that the fitted density is normalized to the total number of electrons, i. e.,

∫ =ρ Nrd)r(~ ��
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Among the programs that employ equation (7-26) for evaluating the Coulomb contribu-
tions together with equation (7-28) for obtaining the coefficients of the auxiliary basis set
are Turbomole (where this technique carries the label RI-J method, because in the deriva-
tion a step occurs which makes use of a mathematical trick called the ‘resolution of the
identity’, see also further below) and DGauss, i. e., programs using CGF as basis functions.
The STO based program ADF takes a slightly different route. The fitted density is here used
to construct the Coulomb potential according to
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The coefficients defining the fitted density are obtained via equation (7-27). To avoid the
difficulties of dealing with two-electron integrals in a Slater-type basis, Jµν is evaluated in
this context by a numerical integration on a grid as
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Here, the grid contains P points, which are located at positions }r{ p
�

 and the Wp repre-
sent the weights in the numerical quadrature scheme. We will encounter a more detailed

7.3  The Calculation of the Coulomb Term
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discussion of such numerical techniques in the following section. Finally, we note that the
basis sets used for expanding the density according to equation (7-25) are conveniently
chosen to be of the same type as the functions used in the LCAO expansion, i. e., contracted
Gaussians in Turbomole, DGauss, etc. and Slater type functions in ADF. Because these
functions model the density, which is determined as the sum of squares of the KS orbitals,
we can expect as a rule of thumb that the exponents in the auxiliary basis set should cover
the range from about twice the smallest to twice the largest exponent. Experience also
shows that the number of auxiliary functions K must be some 2-3 times larger than the L
basis functions in the LCAO basis set in order to keep the error in the total energy intro-
duced by using only the approximate charge density below a critical threshold of 10–4 Eh
(ca. 0.06 kcal/mol). A recent, very careful and detailed discussion on the optimization of
such auxiliary basis sets has been given by Eichkorn, et al., 1995 and 1997.

A completely different approach is taken in DMol. Recall that this program uses numeri-
cal basis sets rather than analytical functions. At the center of their implementation is
Poisson’s equation,

)r(4)r(VCoul
2 ��

ρπ−=∇ (7-32)

which connects the Coulomb potential with the density. This equation is solved numeri-
cally on a grid. In a nutshell, the strategy includes the decomposition of the Coulomb
potential into independent single-center contributions which are solved individually. Fi-
nally, the bits and pieces are recollected to construct )r(V

~
Coul

�
 on the grid. For details, the

reader should consult Delley, 1990, or Becke and Dickson, 1988. This motif of breaking up
an integral into atomic contributions will also reappear in the next section where we discuss
the numerical integration of the exchange-correlation potential.

The common denominator of all these approaches for evaluating the Coulomb contribu-
tion is that no four-center-two-electron integrals such as equation (7-16) are needed. As a
consequence, the formal scaling of the computing time is reduced from O(N4) to O(N3). But
one needs to be very careful to put this conclusion in the right perspective and not to
overinterpret the formal scaling properties. It can easily be shown that for both approaches
the asymptotic scaling for very large systems reduces to O(N2). The reason is simply that in
extended systems only those integrals will survive where the functions are located on
neighboring centers. The majority of the integrals will be close to zero and can safely be
neglected because of the vanishing overlap of the basis functions. Johnson, 1995, has termed
this the ‘N3 versus N4 myth’. Nevertheless, the debate whether schemes replacing the exact
computation of the Coulomb part by some kind of approximate approach employing fitted
densities of potentials are in the long run beneficial or not has certainly not been settled yet.
For example, von Arnim and Ahlrichs, 1998, impressively demonstrated that even for large
systems with more than 1000 basis functions their implementation of equation (7-26) in the
frame of the Turbomole program is at least about one order of magnitude faster than the
conventional approach of explicitly computing the four-center-two-electron integrals. Well
implemented techniques employing fitted densities are probably even competitive with cur-
rent methods achieving linear scaling (see section 7.6) for cases up to fairly large systems.
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7.4 Numerical Quadrature Techniques to Handle the
Exchange-Correlation Potential

What we have not discussed so far is how the contribution of the final components of the
Kohn-Sham matrix in equation (7-12), i. e., the exchange-correlation part, can be com-
puted. What we need to solve are terms such as

∫ νµµν ηη= 111XC1
XC rd)r()r(V)r(V

����
. (7-33)

Unfortunately, the explicit expressions even for the most simple approximations of VXC,
such as the LDA, are fairly sophisticated mathematical constructs, as we have seen in the
preceding chapter. A general analytical solution of equation (7-33) is therefore out of reach
and numerical techniques based on a grid to solve these integrals need to be employed. The
art consists now in designing a grid that comprises the most suitable compromise between
the desired sufficiently high numerical accuracy and the no less vital requirement of having
a computationally efficient scheme. Once we have decided on which mesh to use, )r(VXC

�

needs to be evaluated at each grid point. From the computational point of view, and if we
use a spin-density approach in combination with a GGA functional, this translates into the
determination of ρα and ρβ and their first and second derivatives at each point because a
GGA functional contains the gradient of the density and the exchange-correlation potential
itself is defined as the functional derivative of the energy with respect to the density.

The straightforward numerical integration of XCVµν  maps equation (7-33) onto
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In words, the integral of equation (7-33) for the exchange-correlation potential is ap-
proximated by a sum of P terms. Each of these is computed as the product of the numerical
values of the basis functions ηµ and ην with the exchange-correlation potential VXC at each
point pr

�
 on the grid. Each product is further weighted by the factor Wp, whose value de-

pends on the actual numerical technique used.
The first step to build a successful strategy for solving this numerical problem is to find

a grid that is best suited for the particular situation. Clearly, the behavior of the exchange-
correlation potential is governed by the characteristics of the density )r(

�
ρ , which has cusps

at the positions of the nuclei in the molecule. It was therefore quickly apparent that a simple
cartesian grid, which does not account for the accumulation of density at the positions of
the nuclei, is certainly not the optimal choice. Rather, the implementation of equation (7-34)
in most current computer programs follows design principles put forward by Becke, 1988c,
where the molecular integration is broken up into separate, but overlapping atomic contri-
butions. In order to limit the number of sub- and superscripts and to keep the exposition as
easy and general as possible, we follow the notation generally used and switch to I as the
value of the integral and to )r(F

�
 for the integrand, i. e., ∫= rd)r(FI

��
. Then, this decom-

position reads
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where the sum is over the M nuclei and the IA are the atomic contributions defined as
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The atomic integrands FA are chosen such that their sum over all nuclei returns the
original function,
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The individual )r(FA
�

 are constructed from the original integrand by the introduction of
weight functions )r(WA

�
 with which )r(F

�
 is multiplied
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)r(WA
�

 assumes a value close to unity if r
�

 is close to nucleus A and close to zero near
all other nuclei B ≠ A. It is thus ensured that )r(FA

�
 is indeed the contribution of )r(F

�

associated with nucleus A with no (or negligibly small) contributions near the other nuclei
and that )r(FA

�
 has a (near) singularity only at nucleus A. Of course, the weights satisfy
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The transition from 1)r(WA ≈
�

 to 0)r(WA ≈
�

 as the distance from the nucleus A in-
creases needs to be smooth enough such that numerical instabilities are avoided but at the
same time also as abrupt as possible such that density peaks from nearby the nuclei are
extinguished. The implementation of this concept in the three-dimensional space involves
a special choice of coordinates – see Becke, 1988c, for details – but actually leads to a
smoothened step function as schematically sketched in Figure 7-1 for the one-dimensional
case.

Figure 7-1. Becke partition in one dimension.
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The way these weight functions (and in particular their dependence on the distance from
the nuclei) are determined involves some mathematical subtleties but is well described in
the literature (see Becke, 1988c, Murray, Handy, and Laming, 1993, Treutler and Ahlrichs,
1995) and will not occupy us any further.

Once the atomic contributions FA are determined, the corresponding integrals IA are
subsequently computed on grids that consist of points on concentric spheres around each
atom. Switching to polar coordinates r, θ, and φ the radial and angular integrations are
separated according to
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There are P radial and Q angular points, with corresponding radial and angular weights,
Wrad and Wang, respectively. The total number of grid points per atom is then P × Q. Usu-
ally, the angular part is not split up further into separate integrations over the two coordi-
nates θ and φ because there are highly efficient algorithms for numerically integrating on
the surface of a sphere that clearly outperform the alternative integration over the indi-
vidual angular coordinates.

The next step is to choose one of the many recipes available for the numerical quadrature
of the radial and angular contributions. It is well beyond the scope of this book to offer a
detailed discussion of all the pros and cons connected with the various alternatives and we
will therefore limit ourselves to a very brief summary of what is currently being used in
popular density functional programs. The reader interested in a more comprehensive and
in-depth exposition of numerical integration techniques in the context of density functional
calculations is encouraged to consult the primary literature quoted. For the integration along
the radial coordinate Gaussian, for example, employs a Euler-McLaurin scheme originally
proposed by Murray, Handy and Laming, 1993. On the other hand, Treutler and Ahlrichs,
1995, prefer a Gauss-Chebyshev type of integration in their implementation of equation (7-
38) in the Turbomole package. If we turn to the integration of the angular part, i. e., the
numerical quadrature on the surface of a sphere, there seems to be a certain consensus that
the so-called Lebedev grids offer the best value for money. These are very efficient grids of
octahedral symmetry. Usually, Lebedev grids that exactly sum all the spherical harmonics
for up to l = 29 or l = 35 are used in typical density functional programs. This translates into
302 or 434 integration points, respectively, per radial coordinate.

In order to cut down the number of grid points and hence to increase the efficiency of the
numerical integration, a technique called grid pruning is frequently used. The underlying
idea is that as one approaches the nucleus, the electron density loses more and more its
angular structure and becomes increasingly spherically symmetric. Hence, for spheres at
small distances from the nucleus a progressively smaller amount of angular grid points
should suffice. Similar arguments apply if we analyze the situation at large values of r.
Here, the actual magnitude of )r(

�
ρ  becomes so small that again we can get away with

much less sophisticated angular grids without loosing any significant accuracy. In a pruned
grid one exploits these observations and the space around each atom is partitioned into

7.4  Numerical Quadrature Techniques to Handle the Exchange-Correlation Potential
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various regions. Within these regions, whose sizes of course depend on the actual atom,
Lebedev grids of varying density are used. Close to the nucleus fairly coarse grids are
sufficient, while dense ones are employed at intermediate distances and again coarser grids
as we move farther away from the nucleus. This technique is used in most modern density
functional programs such as Gaussian or Turbomole. For example, the fairly dense default
integration mesh in Gaussian 98 is a pruned grid containing 75 radial shells and a maxi-
mum of 302 angular points per shell. Due to the pruning the actual number of integration
points per atom is reduced to only around 7 000, just a third of the regular size of 75 × 302
= 22 650 points.

We now need to address some of the problematic aspects inherent in the numerical
quadrature techniques. The origin of all these undesirable features is that none of the nu-
merically approximated quantities are exact. Thus, this numerical noise introduces an addi-
tional source of uncertainty into the calculations and one needs to limit the corresponding
errors as much as possible. A severe problem is related to the orientation of the angular
parts of the atomic grids. Since the angular grids are incomplete, the energies computed by
employing these grids are sensitive to rotations of the molecule. In other words, the total
energy of a molecule has the very problematic property of not being rotationally invariant.
Depending on its orientation in space, small variations in the total energy occur. A solution
to this dilemma is the definition of a standard, albeit still arbitrary orientation of the angular
grids relative to the Cartesian reference frame. A set of rules characterizing such a standard
nuclear orientation can be found in Gill, Johnson, and Pople, 1993. The size of the errors
introduced by the lack of rotational invariance is demonstrated in Table 7-1. Here, the
molecule HOOF was computed in three different orientations. These calculations employed
a pruned, medium sized grid consisting of 50 Euler-McLaurin radial shells and a maximum
of 194 angular Lebedev points and a smaller, unpruned grid with 20 radial and 50 angular
points (i. e., 1000 points per atom).

While the dependence of the total energy on the orientation is not dramatic, for obvious
reasons it is the more severe the coarser the grid is. In addition, the variations will of course
increase with the size of the molecule and can therefore become significant for larger mol-
ecules. Using a standard orientation solves the problem and the energy determined for
orientation I will always be obtained. It should be clear, however, that choosing a particular
orientation as the standard is completely arbitrary. One could just as well construct a differ-
ent set of rules leading to an alternative standard orientation which would be characterized
by slightly different total energies. We should also mention that rotational invariance be-
comes even more important if gradients or harmonic frequencies are being computed. In

Table 7-1. Total energies [Eh] of HOOF in various orientations (taken from Johnson, 1995).

Orientation (50, 194)-grid Difference (20, 50)-grid Difference

I (Standard) –247.0686706 0 –247.0669064   0
II –247.0686463 2.43 × 10–5 –247.0666277   2.79 × 10–4

III –247.0686779 7.30 × 10–6 –247.0678356 –9.29 × 10–4
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particular harmonic frequencies of low-lying modes can be jeopardized by using tech-
niques that lack rotational invariance.

A second major problem connected to the use of finite grids for the evaluation of the
exchange-correlation energy is associated with the determination of derivatives of the en-
ergy, such as the gradients used in geometry optimizations. We use
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as the most general expression for the numerical quadrature approximation of EXC, where
the weights Wt are the product of the atomic weights WA and the quadrature weights Wp
and Wq. The derivative of XCE
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The first term on the right hand side of equation (7-40), the weight function derivatives,
will vanish in the limit of an infinite grid. However, in practical applications we must con-
sider that the atomic weights depend explicitly on the nuclear coordinates and therefore
their derivative will not be zero. In particular if coarse grids are used, the contributions of

tW
dx

d
 can be of appreciable magnitude. A different way of looking at this is that the

numerical grid for the evaluation of EXC is constructed as the superposition of individual
atomic grids. These are not fixed in space but move along with the atoms to which they are
attached. Nevertheless, many programs simply neglect these terms. Among the undesirable
consequences of this policy is that the calculated gradient does not necessarily vanish ex-
actly at the energy minimum as it should and we are left with the unpleasant situation that at
the lowest energy configuration we have a non-zero gradient while the structure with van-
ishing gradients is not the one with the lowest energy. In some cases if meshes that are too
small are employed this may even lead to situations where the optimizer gets so confused
that the optimization fails to converge. Fortunately, in most cases this numerical noise is not
dramatic if grids of sufficient density are employed as demonstrated by Johnson and Frisch,
1993, and Baker et al., 1994. On the other hand, these errors become more severe if not
gradients but higher derivatives are calculated as in the evaluation of harmonic frequencies.
For example, using a grid with 50 radial and 194 angular points and a 6-31G(d) basis set,
the lowest vibrational frequency of ammonia which corresponds to the ‘umbrella’ inversion
mode amounts to 862 cm–1 if the weight derivatives are neglected but to 888 cm–1 if they are
included. If instead a much smaller grid with 30 and 86 radial and angular points, respec-
tively, is used, the inclusion of the weight derivatives increases the frequency from 879 to
945 cm–1. As an aside, we note that due to the octahedral symmetry of the Lebedev angular
grids, the doubly degenerate modes in molecules of D3h or C3v symmetry are not exactly
reproduced. For example, in ammonia using the large (50,194)-grid, the two e-symmetric
modes split into 1662 and 1685 cm–1 and 3505 and 3517 cm–1, respectively.

7.4  Numerical Quadrature Techniques to Handle the Exchange-Correlation Potential
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7.5 Grid-Free Techniques to Handle the Exchange-Correlation
Potential

It is clear from the above discussion that the evaluation of the exchange-correlation poten-
tial using numerical integration on a finite grid has a disadvantages, mostly due to the
‘numerical noise’ inherent in this approach. To get rid of these problems it would be desir-
able to have grid-free implementations to compute EXC and VXC. A first step in that direc-
tion has been taken by Zheng and Almlöf, 1993 (see also Almlöf and Zheng, 1997), subse-
quently taken up by Glaesemann and Gordon, 1998 and 1999. The basic idea is to interpret
the density )r(

�
ρ  as a multiplicative operator. Next, the matrix representation R of this

operator in the basis of the LCAO expansion of the Kohn-Sham orbitals {ηµ} is constructed,
leading to the matrix elements

rd)r()r()r(R
����

νµµν ηρη= ∫ . (7-41)

This step is similar to what we have done in equation (7-7) where we obtained the matrix
representation of the Kohn-Sham operator. If we insert expression (7-14) for the charge
density in terms of the LCAO functions and make use of the density matrix P defined in
equation (7-15), we arrive at

∑∑ ∫
λ σ

νσλµλσµν ηηηη=
L L

rd)r()r()r()r(PR
�����

. (7-42)

While the computational work for setting up the matrix representation R of )r(
�

ρ  scales
formally as N4, this can be cut down to N3 using again the trick introduced in section 7-3 by
expanding the density in terms of an atom centered, orthonormalized auxiliary basis set
{ωk} (recall equation (7-25)). Let us review this simplification under a slightly different
perspective. The starting point is again

∑
κ

κκω=ρ≈ρ
K

)r(c)r(~)r(
���

. (7-43)

Since we have chosen the {ωκ} to be orthonormal, the expansion coefficients cκ are
related to the density matrix according to

∫ ∑∑ ∫
λ σ

κσλλσκκ ωηη=ωρ=
L L

rd)r()r()r(Prd)r()r(~c
�������

(7-44)

(the reader not familiar with these basic techniques of linear algebra should consult, for
example, Chapter 1 of Szabo and Ostlund, 1982). Inserting equation (7-44) into equation
(7-43) we arrive at the following expression for the density
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Consequently, the final equation for the now only approximate matrix element µνR
~

becomes
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or, after slight rearrangement,

∫∫∑∑∑ σλκκνµ
λ σ κ

λσµν ηηω×ωηη= rd)r()r()r(rd)r()r()r(PR
~ L L K ��������

. (7-47)

Hence, we have factored the matrix element Rµν of equation (7-42) which includes ex-
pensive four-center integrals into a combination of two three-center integrals through the
introduction of the auxiliary basis set with the concomitant reduction in computational
costs. This approach is usually known as the resolution of the identity (see Kendall and
Früchtl, 1997) because if the auxiliary basis set {ωκ} were complete, the sum over κ of the
corresponding integrals that are formally being inserted will yield unity. (This is the com-
pleteness relation of linear algebra, see Szabo and Ostlund, 1982. Note that again we re-
strict our discussion to real, not complex functions {ωκ}). We emphasize that this approach
constitutes an approximation which is only exact in the limit of a complete auxiliary basis
set (see equation (7-43)), which is of course never realized.

After this brief detour we return to the main subject of this section, the implementation
of a grid-free KS scheme. Now that we have a matrix representation of the density, we can
exploit another well-known fact from linear algebra: a function of a matrix which is ex-
pressed in an orthonormal basis can be evaluated by first diagonalizing the matrix, then
applying the function on the diagonal elements and finally transforming the matrix back to
its original basis. Since the basis functions {ηµ} are not orthonormal, we need to include as
a first step the transformation of R to an orthonormal basis, R’. Let us illustrate this simple
procedure using the LDA exchange functional, where the function is to take the 4/3 power
of the density, f(x) = x4/3. Without going into any detail about how the required matrix
transformations are carried out – be assured that they are possible – the sequence of opera-
tions is
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The resulting matrix F corresponds to the 4/3 power of the original matrix R. If more
advanced, GGA-type functionals are used rather than the local density approximation, the
procedure becomes slightly more complicated due to the more complex forms of the
functionals. Here we just briefly sketch the general strategy which is centered around the
observation that these functionals can usually be interpreted as a product of operators con-

taining terms proportional to 3/4)r(
�

ρ  and to 
3/4

s
ρ

ρ∇
= , the reduced density gradient. The

matrix representation Qµν of such a product of two functions )r(f
�

 and )r(g
�

 can be ap-
proximated if we again introduce an auxiliary basis set {πγ},
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This is nothing else than another resolution of the identity, whose accuracy is determined
by the quality of the auxiliary basis set {πγ}. In principle, these techniques could be used to
implement any desired functional including the capability to analytically compute energy
derivatives as needed in geometry optimizations and many other applications. Their main
advantage is that the numerical noise inherent to grid-based numerical integration techniques
will be replaced by a smooth, reproducible error due to the incompleteness of the auxiliary
basis set. This error is not only independent of the choice of the coordinate system and thus
eliminates one significant drawback discussed in the previous section, it furthermore can
be controlled by systematically increasing the basis set. However, in particular for gradi-
ent-corrected functionals and the evaluation of derivatives, all the experience that has been
accumulated so far with these alternatives to the conventional grid-based strategies indi-
cates that very large auxiliary basis sets {ω} and {π} are needed to obtain reasonable accu-
racies (see, e. g., Glaesemann and Gordon, 2000). Also, as the basis sets get larger, prob-
lems due to linear dependence and other numerical precision problems probably become
important. Up to now only a few experimental implementations of grid-free schemes to
compute the exchange-correlation contributions in Kohn-Sham theory have been reported.
Before closing this section we should mention that Werpetinski and Cook, 1997, describe a
different grid-free approach which is, however, limited to exchange-only, local ρ4/3

functionals. These authors employ an auxiliary basis set to directly fit the corresponding
ρ1/3 potential. While their results represent an improvement over conventional grid-based
techniques, this approach cannot easily be extended to modern, more complicated functionals
and it therefore lacks the generality needed to be a successful contender in this arena.
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7.6 Towards Linear Scaling Kohn-Sham Theory

While density functional approaches offer the advantage of obtaining results of better than
Hartree-Fock quality for about the price of a HF calculation, their straightforward applica-
tion to large systems that occur, for example, in biochemistry, catalysis or solution chemis-
try is still limited because of the high computational costs. There has therefore been an ever
growing interest in developing techniques which do not suffer from the problematic scaling
properties of conventional algorithms but whose computational efforts grow only linearly
with the size of the system.23

The contribution which dominates by far the computational effort in current implemen-
tations of the Kohn-Sham formalism is the evaluation of the Coulomb contribution J. We
noted in Section 7.3 that in the large system limit the determination of J scales quadratically
with the size of the system, independent of the choice of either the conventional technique
based on four-center-two-electron integrals or strategies employing an auxiliary basis to fit
the density. The difficulty with the Coulomb contribution is that on the one hand the elec-
trostatic 1/r operator has a singularity at r = 0 and is on the other hand also inherently long-
ranged. It will be very difficult, if possible at all, to design linear scaling algorithms that
properly treat both of these difficulties. All methods attempting to reduce the scaling there-
fore share a common motif: the Coulomb problem is partitioned into a small, short-range
region where J is computed exactly and a large, ‘well separated’ part, where the interaction
is approximated.

One class of strategies is based on the fast multipole method (FMM), which was origi-
nally designed by Greengard, 1987, to evaluate the Coulomb interaction between point
charges. Here, the linear scaling is aimed for by a separation of the physical space around a
charged particle. Within the small, so-called near-field region the interaction has to be
evaluated directly. However, the interaction with the far-field region is computed by divid-
ing the physical space into a hierarchical set of cells and approximating the interaction
energy between the particles contained in two cells by an intelligent use of multipole ex-
pansions. Since the multipole expansions become more accurate as the interaction distance
increases, larger and larger cells may be used as the two cells get more distant. Due to this
hierarchy of cells, in the limit of very large systems linear scaling is gradually approached,
even though its cost also scales with the fourth power of the logarithm of the accuracy
required as outlined by Pérez-Jordá and Yang, 1998.

However, unlike point charges, the continuous charge distributions that occur in quan-
tum chemistry have varying extents and the applicability of the multipole approximation is
not only limited by the distance but also by the extent or diffuseness of the charge distribu-
tion. This additional complexity makes a transfer of the concepts of the fast multipole
method to applications in quantum chemistry less straightforward. Therefore it should come
as no surprise that several adaptations to extend the applicability of the FMM to the Cou-
lomb problem with continuous charge distributions have been suggested. These lead to

23 Efforts to tame the unfavorable scaling of electronic structure methods are not limited to density functional
theory. For a general summary of the current state of the art see the review by Goedecker, 1999.

7.6  Towards Linear Scaling Kohn-Sham Theory
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schemes such as the continuous fast multipole method (CFMM) of White et al., 1994 (see
also Johnson et al., 1996), the Gaussian very fast multipole method (GvFMM) of Strain,
Scuseria, and Frisch, 1996, or the quantum chemical tree code (QCTC) of Challacombe,
Schwegler, and Almlöf, 1996, to mention just a few. All these techniques achieve close to
linear scaling if the system gets large enough. Where the actual break-even point as com-
pared to conventional integration methods occurs, depends on the particular system (for
example, compact, three-dimensional molecular systems behave less favorably than two-
or one-dimensional chains), basis sets and the desired accuracy.

Rather than splitting the physical space into short- and long-range parts as in the above
techniques, an alternative is for the Coulomb operator itself to be reformulated and written
as a sum of two contributions representing the short- and long-range regimes,

r

)r(f1

r

)r(f
)r(L)r(S

r

1 −+=+≡  with r r r′= −� �
. (7-49)

The function f(r) divides 1/r into a short-range function S(r) which has a singularity at r
= 0 and a non-singular, long-ranged function L(r). The separator function has to be chosen
such that f(r) is a rapidly decaying function which approaches unity as r → ∞. Conse-
quently, 1 – f(r) vanishes at r = 0 and contains all long-ranged components of the 1/r opera-
tor, as depicted in Figure 7-2.

S(r) will be treated in real space but needs to be applied only in a small neighborhood
around the reference charge distribution. L(r), which represents the bulk of the electrostatic
interactions (in terms of their number, not in the contribution to the energy), can be treated
using various approximations with favorable scaling properties. For example, in the origi-

Figure 7-2. Optimal partition of the Coulomb operator (adapted from Lee, Taylor, Dombrowski, and Gill, Phys.
Rev. A, 55, 3233 (1997), with permission by the American Physical Society).

r

1/r

long range

short range

f(r)
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nal formulation of this algorithm, christened KWIK24 by Dombroski, Taylor, and Gill, 1996,
the function f(r) is chosen to be the error function and the long-range term is approximated
by its truncated Fourier series expansion. Among the other possibilities discussed, the most
efficient and most drastic one is to neglect the long range part altogether. Obviously this
extreme approximation has an enormous effect on the absolute energies. However, if L(r) is
sufficiently flat, much smaller consequences are expected for relative energies as has in-
deed been found by Adamson, Dombroski, and Gill, 1996. To what extent this Coulomb-
attenuated Schrödinger equation (CASE) approximation and the more sophisticated Cou-
lomb-attenuated potential (CAP) extensions to it developed by Gill and Adamson, 1996,
will be useful in actual applications has not been established yet.

In summary, the prospect of achieving linear or close to linear scaling in the determina-
tion of the Coulomb part in real calculations seems to be rather promising. This is under-
lined by the optimistic conclusion drawn in a review on linear scaling techniques in DFT by
Scuseria, 1999, that ‘the “integral bottleneck” that characterized quantum chemistry calcu-
lations for many years has clearly been defeated’. Also note that corresponding algorithms
have lately been implemented in several popular quantum chemistry codes and are there-
fore generally available.

The other two possible computational bottlenecks in a Kohn-Sham calculation are the
diagonalization of the Kohn-Sham matrix FKS and the numerical quadrature of the ex-
change-correlation functional and potential. In spite of the formal N3 scaling of the
diagonalization, it has been shown to be computationally insignificant unless very large
molecular systems are being investigated. Nevertheless, techniques which allow a near-
linear scaling in terms of elapsed cpu time and of memory requirement have been reported
by various authors (see, e. g., Millam and Scuseria, 1997, Scuseria, 1999). Similarly, novel
techniques which also reduce the numerical quadrature to near-linear scaling are starting to
emerge (Pérez-Jordá and Yang, 1995, or Stratmann, Scuseria, and Frisch, 1996). Thus, for
all three important components of a Kohn-Sham calculation, methods which asymptoti-
cally scale linearly with the size of the system are available. In principle, this opens the way
to apply these methods to ‘realistic’ molecules such as enzymes, and non-periodic catalysts
etc. However, the mere existence of methods that asymptotically scale more favorably than
current techniques does not say anything about how large the system has to be in order to
make the better scaling an asset. It is the magnitude of the pre-factor that is the decisive
property which determines where the cross-over between optimized conventional and lin-
ear scaling implementations will occur.

While the linear scaling techniques described so far are targeted at programs using
Gaussian functions, related attempts have also been presented for use with Slater functions
as described by Fonseca Guerra et al., 1998, in the context of the ADF program. We should
also mention a completely different strategy for approaching linear scaling, the divide-and-
conquer method put forward by Yang (see Yang, 1992, and Parr and Yang, 1995). In this
scheme, not molecular orbitals as in the conventional Kohn-Sham procedure, but the elec-

24 The term KWIK is not an acronym but resulted from the final four letters in the central formula of their paper,
which contains the string A(k,ω)I(k).
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tron density is the central quantity. A large molecule is divided into subsystems in physical
space and the densities of these submoieties (which necessarily add up to the total density
of the system) are expressed through local basis functions. The individual parts of the
energy are evaluated and the energy of the whole system is obtained from the sum of the
subsystem contributions. An implementation of this technique within the DeFT program
has been described by Goh, Gallant, and St-Amant, 1998.
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PART B

The Performance of the Model

The past decade has seen considerable efforts in the improvement of density functional
methods and present day functionals often yield energy related results approaching so-
called chemical accuracy, that is, with errors less than 2 kcal/mol. In fact, in many areas of
chemical research it is very difficult, if possible at all, to produce results – either by experi-
mental means or by high quality post Hartree-Fock wave function based computations –
which are unquestionably of higher accuracy than those obtained by means of modern
functionals. Numerous examples can be found in the chemical literature supporting this
statement and there are more success stories for the application of approximate density
functional theory every month. On the other hand, the often quoted major drawback of
density functional theory is the formal inability to systematically improve the accuracy of
quantitative predictions. Apart from some well documented problems for DFT (excited
states, highly degenerate systems, weak interactions) it is still impossible to predict DFT
errors a priori, only from an intimate knowledge of the fundamental features of the theory.
Furthermore, it has frequently been reiterated that if density functional methods definitely
fail, and if the reason is not due to the choice of a particular functional, integration grid, or
basis set, there is no rigorous procedure to correct the flaws since the underlying reasons of
shortcomings in the theory are far from being understood. While not too many years ago
this has led many to simply ignore density functional theory despite of its apparent success
in many cases, computational chemistry today seems to put this into a more pragmatic
perspective. From a practical point of view, i. e., if the focus lies on the efficient solution of
a particular chemical problem rather than on a rigorous validation of a theory, the situation
for the applicability of DFT methods is not different from the situation of most of the post-
Hartree-Fock approaches. If a system is small enough, the whole hierarchy of post-HF
methods can be applied in order to substantiate the quality of predictions of DFT. If this is
impossible, for like reasons any result from a chosen level of post-HF treatment could be
distrusted. The formal advantage of wave function-based theories over approximate den-
sity functional theory − namely the potential to improve the correlation treatment step by
step up to a point where the interesting observable is converged − is an option only for some
small molecular systems. For most chemically interesting problems such a procedure pro-
hibits itself because of the extraordinary scaling of the computational effort with the sys-
tem size and the slow convergence of correlation effects with basis set size.

Having said this, we like to view modern density functional theory as a very efficient
additional tool in the arsenal of computational methods rather than a perfectly different
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theory, which is used orthogonal to traditional approaches (like valence bond and molecu-
lar orbital theory). Just like any newly developed post-HF method,25 a new functional has
to be evaluated by careful calibration to known accurate data, before it should be trusted
and applied routinely. Hence, systematic testing of modern density functional methodol-
ogy for a broad variety of chemically motivated questions is of paramount interest, because
the critical evaluation of such results provides the only means to assess the reliability of
current DFT methods. This type of research has led already to a substantial body of expe-
rience and even for professionals it is not easy to follow up with the vast amount of publi-
cations and the rapid development in the field. Therefore, the objective of the second part of
this book is to provide a comprehensive survey over systematic benchmarks assessing the
accuracy of the different flavors of DFT. We analyze the results stemming from miscellane-
ous areas of application, ranging from geometry optimizations and vibrational frequencies
over to energetic details as well as electric and magnetic properties up to exploration of
pathways on potential energy surfaces for chemical reactions. The general strengths and
weaknesses of the various functionals presently available are outlined. The selection of
examples is of course related to our personal interests and there are many important appli-
cations that could not be included because of space limitations. In any case, the main target
of this part is to convey a feeling to the reader of how good present day DFT is and, wher-
ever possible, we try to provide an evidence-based hierarchy of density functional models,
in order to enable him or her to select the functional and basis set most appropriate for the
respective application at hand.

25 Problems with the recently introduced multiconfiguration perturbation methods might serve as a good exam-
ple in this respect, see Roos et al., 1996, for a review and further references.
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8 Molecular Structures and Vibrational Frequencies

8.1 Molecular Structures

One of the central tasks of computational chemistry is the reliable prediction of molecular
structures. It is routine now to carry out geometry optimizations on systems consisting of
up to, say, 50 atoms and a lot of experience has been collected with respect to the perform-
ance of Hartree-Fock approaches and methods based on Møller-Plesset perturbation theory
of low order (see, for example, Hehre et al., 1986). These methods usually perform well
within an expected accuracy of ±0.02 Å or better for bond lengths in molecules consisting
of main group elements. It has long been recognized that HF theory usually gives bond
lengths which are too short, and the description of multiple bonds tends to be problematic
due to the neglect of electron correlation. The MP2 approach, conversely, frequently over-
estimates bond distances but has been a very successful and well-accepted black box treat-
ment of virtually any problem in organic chemistry in the past. However, an entirely differ-
ent situation has been recognized for transition-metal containing systems, for which an
often frustrating performance is observed. For coordinatively saturated closed-shell sys-
tems – that is to say, for best cases – deviations exceeding ± 0.1 Å for bond distances
involving the metal center are commonplace (see Frenking et al., 1996, for an instructive
review). For studies on coordinatively unsaturated open-shell systems the situation for such
methods is even worse and is probably condensed best by quoting Taylor: ‘Transition-
metal chemistry (…) is a graveyard for UHF-based MP methods’ (Taylor, 1992).

While automatic geometry optimization schemes employing analytical gradients and
modern, effective update algorithms have been around for many years in the Hartree-Fock
world, similar strategies for Kohn-Sham density functional theory were first published and
implemented in computer programs only at the end of the eighties, see, e. g. Versluis and
Ziegler, 1988, Fournier, Andzelm, and Salahub, 1989, Fan and Ziegler, 1991, Andzelm and
Wimmer, 1991, and Johnson, Gill, and Pople, 1993. However, as of now structural
optimizations using DFT can be performed just as conveniently as in HF schemes.

Transition-metal chemistry in particular was the field where pioneering density func-
tional results have been of unprecedented accuracy for larger systems and impressive to
any researcher in the field. Today, it seems that density functional theory has adopted the
role of a standard tool for the prediction of molecular structures.

8.1.1 Molecular Structures of Covalently Bound Main Group Elements

Andzelm and Wimmer, 1992, published one of the first comprehensive studies on the
performance of approximate density functional theory in which optimized molecular
geometries were reported. These authors computed the geometries of several organic spe-
cies containing the atoms C, N, O, H, and F at the local SVWN level, using a polarized
double-zeta basis set optimized for LDA computations. Some trends have been discerned
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from this study, which provide general ‘rules of thumb’ for what can be expected from the
application of the LDA: While the calculated distances of bonds involving hydrogen atoms
were consistently overestimated by up to 0.02 Å, single bonds between heavier atoms were
too short by about the same amount. C=C double and aromatic bonds were well described
within a few thousandths of an Å, whereas C≡C triple bonds were too long by up to 0.02 Å.
Similar trends were observed for single and double bonds between C and O as well as C
and N. Single bond lengths were usually underestimated and double bond distances were
typically correct or overestimated by up to 0.03 Å, depending on the particular system.
Polar C–F bonds agreed nicely with experiment, while a deviation of +0.06 Å was noted
for the N-F bond in NF3. Calculated bond angles were in most cases accurate to within 1°
with the exception of NO2, for which an underestimation of the experimental value by 2.5°
has been observed. Equivalent patterns of deviations become obvious from the geometric
data published by Johnson, Gill, and Pople, 1993, who used the rather small 6-31G(d) basis
set in a comparative study on the performance of six different DFT methods implemented
in Gaussian 92 on a G2 subset.26 For SVWN optimized structures, a mean absolute devia-
tion of 0.02 Å for bond lengths and 1.9° for bond angles has been observed, which can be
compared to results of HF (0.02 Å, 2.0°), MP2 (0.01 Å, 1.8°), and QCISD (0.01 Å, 1.8°)
on the same set of molecules. In order to identify effects of the basis set incompleteness on
LDA results, Dickson and Becke, 1993, have evaluated geometries of 69 neutral closed-
shell species obtained with the basis set free NUMOL program at the LDA limit and com-
pared them with results from several other major density functional computer codes along
with experimental data where available. The basis set free calculations confirmed the pre-
vailing trends for bond lengths described above but indicated a tendency for an overall
contraction of bonds upon improvement of the basis set, very similar to what has been
observed for Hartree-Fock optimized geometries. The shortening of bonds upon improve-
ment of the basis set quality led to refined LDA geometries in general, but the systematic
overestimation of bonds to hydrogen atoms remained significant. In addition, the descrip-
tion of bond distances between group 1 and group 2 metal dimers such as Na2 or Mg2 were
found to be problematic for LDA; regardless of whether basis sets are used or not, devia-
tions of up to 0.5 Å occur. As a portrait of trends in deviations depending on bonding
situations and basis set qualities we give a few representative examples for hydrocarbons in
Table 8-1.

Gradient corrections have been introduced in order to correct for shortcomings of the
LDA. Hence, with regard to what we have learned above, one can assume that their appli-
cation should result in an expansion of those bond lengths that are underestimated at the
LDA level, whereas too long bonds should be contracted. To put these simple-minded
anticipations into practice, let us consider the bond lengths in the first two columns of Table
8-2.

26 This set consists of 32 small neutral first-row species and although this is not a very representative testing
ground for many chemical problems, it has become a de facto standard used by several other groups. We will
refer to it as the ‘JGP set’ in the following discussions.
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In the case of H2, the large overestimation observed for LDA is indeed compensated for
at the BLYP level, reducing the deviation from experiment by a significant extent. For the
C–H-bonds hardly any bond contraction is seen upon inclusion of gradient corrections. On
the other hand, C–C bonds are expanded as expected and, corresponding to the observed
error pattern at the SVWN level, single bonds are affected more than triple bonds. How-
ever, the underestimation of the C–C single bond visible in the LDA structure is overcom-
pensated at the GGA level, leading to an even larger deviation from experiment, now with
an error of reversed sign. For the C=C double bond in turn, the BLYP functional corrects
the LDA structure to yield a very good agreement with experiment. Both methods describe
the C≡C triple bond as too long, the GGA functionals exaggerate the bond length even a
little more than the LDA. Use of the larger 6-311++G(d,p) basis set marginally improves
the results for the triple bond in acetylene for all methods by roughly the same amount,
whereas C-C single and double bonds remain largely unchanged at the BLYP level. Basis
set effects are even less pronounced for bonds involving hydrogen atoms. So far, all three
gradient-corrected functionals appear well suited to predict molecular structures of better
quality than the LDA. It is noteworthy, however, that the BP86 and BPW91 functionals do
not overestimate the length of the C-C single bond as much as the BLYP functional does.

All of the examples discussed above demonstrate that the bonding situation determines
the accuracy achievable in LDA or GGA calculations. From a closer inspection of the
structural data published in the literature, it becomes obvious that this is indeed generally

Table 8-1. Basis set dependence of SVWN-optimized C-C/C-H bond lengths [Å].

Bond 6-31G(d,p) 6-311++G(d,p) Limita Experiment

H-H    —  /0.765    —  /0.765    —  /0.765    —  /0.741
H3C-CH3 1.513/1.105 1.510/1.101 1.508/1.100 1.526/1.088
H2C=CH2 1.330/1.098 1.325/1.094 1.323/1.093 1.339/1.085
HC≡CH 1.212/1.078 1.203/1.073 1.203/1.074 1.203/1.061

a Basis set free data from Dickson and Becke, 1993.

Table 8-2. Effect of gradient corrections on computed bond lengths for different bonding situations [Å].

Bond SVWNa BLYPa SVWNb BLYPb BP86b BPW91b Experiment

H-H RH–H 0.765 0.748 0.765 0.748 0.752 0.749 0.741
H3C-CH3 RC–C 1.513 1.541 1.510 1.542 1.535 1.533 1.526

RC–H 1.105 1.104 1.101 1.100 1.102 1.100 1.088
H2C=CH2 RC–C 1.331 1.341 1.327 1.339 1.337 1.336 1.339

RC–H 1.098 1.095 1.094 1.092 1.094 1.092 1.085
HC≡CH RC–C 1.212 1.215 1.203 1.209 1.210 1.209 1.203

RC–H 1.078 1.073 1.073 1.068 1.072 1.070 1.061

a 6-31G(d) basis set; b 6-311++G(d,p) basis set.
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the case. Furthermore, the merits of the GGA visible in the description of other molecular
properties (like binding energies, see following chapter) do not generally lead to improved
molecular geometries. In many cases the LDA deficiencies are overcompensated, leading
to even larger deviations from experimental data. For example, the proper prediction of the
molecular structures of fluorine peroxide, FOOF, and nitrosyl hyperfluorite, FONO, are
well known to be vexing problems for standard wave function based methods – results
from simple LDA calculations, however, are in good agreement with experiment (Amos,
Murray, and Handy, 1993). Although BLYP is certainly among the most prominent GGA
functionals and is considered superior to the local density approximation functional SVWN,
it produces strikingly worse structures for these species. As another case in point, Altmann,
Handy, and Ingamels, 1996, found SVWN results for a set of sulfur-containing compounds
by and large closer to experimental values than results from BLYP computations, with
differences between the functionals of up to 0.06 Å.27 Increasing the basis set size from
6-31G(d,p) to TZ2P+f led to a general bond contraction for both functionals (ranging from
0.01 to 0.03 Å) and to an overall improvement with respect to experimental data. For the
JGP set of molecules, the BLYP functional yields bond lengths which are on average too
long by 0.02 Å and bond angles are generally underestimated by 2°, showing no improve-
ment over Hartree-Fock or SVWN results (Johnson, Gill, and Pople, 1993). A comparison
of geometric parameters for the 55 molecules in the G2 set optimized with different
functionals revealed that both BLYP and BP86 gave molecular geometries with larger overall
deviations from experiment than MP2, the latter GGA performing slightly better than the
former (Bauschlicher, 1995). On the other hand, in cases like O3, S3, CH2 and Be2, which
have proved to be notoriously difficult problems for post-HF methods, the gradient-cor-
rected BP86 functional compared favorably with these traditional approaches and SVWN.
Only large scale coupled cluster calculations reached a better agreement with experiment
(Murray, Handy, and Amos, 1993). The BLYP functional gave slightly worse results, mostly
similar to SVWN, in some instances better. Scheiner, Baker, and Andzelm, 1997, con-
ducted an elaborate study on more than 100 molecules consisting of first and second-row
elements and were forced to conclude that the performance of the BLYP functional is infe-
rior to that of SVWN. This was particularly so for bonds involving second-row elements.
These authors found that both GGA functionals tested, BLYP and BPW91, do in fact pro-
vide a noticeable improvement over LDA in the description of bonds to hydrogen atoms,
but not for those to second-row elements. Table 8-3 shows that no marked overall improve-
ment results from the use of gradient-corrected functionals when all bond lengths are com-
pared.

Redfern, Blaudeau, and Curtiss, 1997, conducted a comparative study on systems in-
volving third-row atoms. Reported geometries obtained with the BLYP and BPW91

27 Besides, they noted conspicuous differences of up to 0.07 Å at the LDA level from the use of different pro-
grams (DMol and CADPAC). S-F bonds were longer by 0.03 Å, S-Cl and S-H bonds by 0.04 Å on average if
DMol was used, while the remaining bonds showed good agreement. This might be indicative of severe
shortcomings in the basis sets used (numerical double-zeta and 6-31G(d), respectively), which would under-
line an increased importance of basis set quality for species containing third-row atoms as noted by several
authors.
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functionals once more revealed a significantly worse description of bond lengths as com-
pared to MP2 (mean unsigned errors from experiment for bond lengths and angles, respec-
tively: BLYP: 0.05 Å, 1.0°, BPW91: 0.03 Å, 1.0°, MP2: 0.02 Å, 0.4°). Use of the small 6-
31G(d) basis set, however, might somewhat obscure the conclusions from this study.

Laming, Termath, and Handy, 1993, showed that there is room for improvement within
the B88 exchange functional: after slight modifications in the original functional expres-
sion and empirical readjustment of the β-parameter (cf. Section 6.5) with respect to im-
proved geometries and atomization energies for a small set of molecular systems, they
favorably tested their new functionals CAM(A)-LYP and CAM(B)-LYP on a reduced G2-
set. In combination with a basis set of polarized triple-zeta quality, the mean errors to
experimental bond lengths were found significantly reduced compared to BLYP (BLYP:
0.017 Å, CAM(A)-LYP: 0.007 Å, CAM(B)-LYP: 0.009 Å). On the other hand, Adamo and
Barone, 1998b, reported only a marginal improvement of computed geometries upon sub-
stitution of Becke’s exchange functional by the PW functional for exchange: the average
deviation for bond lengths in the JPG set is 0.012 Å with the PWPW91 functional com-
pared to 0.014 Å obtained with BPW91 and BLYP (all methods used in combination with
the 6-311G(d,p) basis set). Attempts to modify the PW91 exchange functional (leading to
the so-called mPW functional for exchange as implemented in the program Gaussian 98)
did not change the performance with respect to geometric parameters of main group spe-
cies.28 Also, other newly introduced gradient-corrected functionals did not significantly
improve the performance (Neuman and Handy, 1995, Neuman and Handy, 1996, Hamprecht
et al., 1998, Adamo and Barone, 1999, Ernzerhof and Scuseria, 1999a). Thus, in conclu-
sion, it appears that for most species the GGA and LDA protocols produce bond lengths of
very similar quantitative accuracy with mean deviations from experiment around 0.01 to
0.02 Å for first and second-row species. Bond angles are usually underestimated but gener-
ally accurate to within 1° on average. These deviations obey certain trends, which depend
on the particular binding situation. Larger deviations have been reported for heavier main

Table 8-3. Mean absolute deviations from experiment for computed bond lengths [Å]. Taken from Scheiner,
Baker, and Andzelm, 1997.

Type SVWN BLYP BPW91 SVWN BLYP BPW91

6-31G(d,p) TZV2P

all bondsa 0.016 0.021 0.017 0.013 0.016 0.013
first rowb 0.015 0.017 0.013 0.013 0.013 0.011
bonds to H atomsc 0.016 0.014 0.013 0.013 0.010 0.010
second rowd 0.025 0.042 0.033 0.017 0.033 0.025

a Bond distances of all 108 species investigated; b bonds involving first row elements and hydrogen atoms; c bonds
involving at least one H atom; d bonds involving at least one second row element.

28 These modifications were not, however, explicitly done with geometric parameters in mind.
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group species. It has become obvious in several cases that the BLYP functional is less
suited for reliable structure prediction than the BP86 or BPW91 functionals.

In virtually all cases studied, hybrid functionals perform substantially better than LDA
or GGA approaches in predicting molecular geometries, and in most comparative studies a
50 % reduction in the mean errors for bond lengths is observed. For example, bond lengths
in the G2 set computed using B3LYP and B3P86 show an average absolute deviation from
experiment of 0.013 Å and 0.010 Å compared to 0.026 Å and 0.022 Å for the pure GGA
functionals BLYP and BP86, respectively. Increasing the basis set from 6-31G(d) to 6-
311+G(3df,2p) reduces the mean error further to 0.008 Å for B3LYP (Bauschlicher, 1995).
Scheiner, Baker, and Andzelm, 1997, reported the same trends for first and second-row
systems using a slightly different hybrid functional implementation. For a set of 20 or-
ganic molecules, geometries optimized at the B3LYP/6-31G(d) level were found to be in
error by less than 0.005 Å on average for bond lengths, and bond angles were accurate to
within a few tenths of a degree. These deviations are of the same order as the uncertainties
in the experimental equilibrium structures for most polyatomics (Rauhut and Pulay, 1995).
For a set of 13 mostly organic species, the basis set dependence of B3LYP and CCSD(T)
structures has been systematically compared and convergence was found to be faster for
the DFT method (Martin, El-Yazal, and François, 1995a). For these species, B3LYP was
found to give very accurate results with some trends in deviations: the lengths of single
bonds were slightly overestimated on average by 0.002 Å, whereas double bonds were too
short on average by –0.003 Å and triple bonds by –0.006 Å. Only expensive CCSD(T)/cc-
pVQZ calculations gave better structures than the hybrid functional. The uniform error
behavior present in the B3LYP geometries led the authors to propose an empirical correc-
tion scheme for geometries based on formal bond orders between atoms. This scheme gave
marginally improved geometries with a mean absolute error from accurate experimental
data in the order of 0.002 Å. This scaling has, however, not been used in subsequent stud-
ies.

Improvements over LDA and GGA structures with hybrid functionals are also observed
for species containing third-row elements where the B3PW91, for instance, performs bet-
ter than MP2 (Redfern, Blaudeau, and Curtiss, 1997). Raymond and Wheeler, 1999, re-
ported geometries of a set of challenging species (NO, NO2, NO3, O2, O3, SO2, ClO, ClO2)
obtained with the B3LYP functional and used the aug-cc-pVDZ, aug-cc-pVTZ, aug-cc-
pVQZ and aug-cc-pV5Z series of basis sets in order to extrapolate to the basis set limit of
B3LYP. These authors found a significant reduction in deviations from experimental bond
lengths upon improving the basis set from double-zeta to triple-zeta quality, whereas no
marked changes resulted from extending the basis to quadruple-zeta and quintuple-zeta.
They identified the neutral Cl2 and the Cl2

− anion as particularly problematic systems with
deviations from experiment of 0.03 Å and 0.09 Å, respectively, in the extrapolated basis set
limit. Average deviations ranging from 0.031 Å (aug-cc-pVDZ) to 0.009 Å (extrapolated
limit) were reported for all other systems and many computed results fell within the experi-
mental uncertainty. An overall accuracy of 1.0° (aug-cc-pVDZ) and 0.8° (aug-cc-pVQZ)
was observed for bond angles. Further particularly challenging test cases for density
functionals are XONO and XNO2 with X = F, Cl, and Br. For the geometries of these
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species, the hybrid functionals provide a crucial improvement over GGA functionals and
the LDA, although they do not reach the performance of large scale coupled cluster calcu-
lations (Lee, Bauschlicher, and Jayatilaka, 1997). Further examples for the performance of
density functional theory regarding geometry prediction of open-shell species have recently
been reviewed by Ventura, 1997.

At first sight, the good performance of hybrid functionals like B3LYP might be rather
surprising, since Becke did not use geometric data as input for the optimization of those
parameters on which most of the modern hybrid functionals rely. However, taking the
typical deviations of the constituent functional ingredients, namely Hartree-Fock and BLYP,
into account, it becomes more obvious why the ubiquitous B3LYP functional behaves so
well: bond lengths evaluated with the former method are usually too short, and we just
learned that BLYP generally gives bonds that are too long. Consequently, a composite of
both should profit from error cancellations. While this certainly is only a superficial ra-
tionalization for the very satisfactory performance of the hybrid approach, this simple
view is nevertheless often sufficient to extrapolate the behavior of such functionals if the
performance of the constituent HF and GGA methods is known. In any case, the generally
observed high quality of structures optimized by the B3LYP functional has led several
authors to suggest that such geometries (and zero-point energy corrections from harmonic
frequency calculations, see below) should be used instead of MP2 geometries within the
framework of highly accurate extrapolation schemes like G2 and CBS. And indeed, first
applications of procedures altered in this way revealed not only an improved computa-
tional efficiency but also slightly reduced average errors (Bauschlicher and Partridge, 1995,
Mebel, Morokuma, and Lin, 1995, Montgomery et al., 1999). With respect to the general
quality of structural predictions it is apparent that the admixture of exact HF exchange
seems to influence the results more than the particular choice of local or non-local parts of
exchange and correlation functionals within a particular hybrid functional. While a blend
of 50 % exact exchange in older procedures (Becke, 1993a) does not lead to significantly
better geometries compared to the pure GGA, virtually all functionals including a fraction
of 20-25 % HF exchange yield very similar results, all of high quality. As a summary,
Table 8-4 offers error statistics that have been obtained from the application of various
density functional methods to structures of main group species: the hybrid functionals
containing three empirically fitted mixing parameters (B3LYP and B3PW91) perform es-
sentially identically to more recently developed hybrids containing only one mixing pa-
rameter determined on theoretical reasoning (B1LYP, B1PW91, see Adamo and Barone,
1997, PBE1PBE, see Ernzerhof and Scuseria, 1999, and Adamo and Barone, 1999, or
B98, see Bienati, Adamo, and Barone, 1999). Despite the use of various functionals for
exchange and correlation, or modifications thereof (mPW, Adamo and Barone, 1998b), the
performance of the methods is significantly improved upon admixing exact exchange in
the order of some 20 %.

8.1  Molecular Structures
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Table 8-4. Compilation of mean absolute deviations for bond lengths [Å] / bond angles [degrees] for small main
group molecules from different sources.

32 1st row species, 6-31G(d) basis, Johnson, Gill, and Pople, 1993

HF 0.020 / 2.0 SVWN 0.021 / 1.9
MP2 0.014 / 1.8 BLYP 0.020 / 2.3
QCISD 0.013 / 1.8

33 1st row species, TZ2P basis, Laming, Termath, and Handy, 1993

SVWN 0.090 / 1.9 CAM(A)LYP 0.007 / 1.7
BLYP 0.013 / 1.7 CAM(B)LYP 0.009 / 1.5

13 species, Martin, El-Yazal, and François, 1995a

CCSD(T)/cc-pVDZ 0.018 / 2.2 B3LYP/cc-pVDZ 0.009 / 1.7
CCSD(T)/cc-pVTZ 0.014 / 0.6 B3LYP/cc-pVTZ 0.004 / 0.3
CCSD(T)/cc-pVQZ 0.002 / 0.4 B3LYP/cc-pVQZ 0.004 / 0.3

20 organic molecules, Rauhut and Pulay, 1995

BLYP/6-31G(d) 0.012 / 0.6 B3LYP/6-31G(d) 0.003 / 0.5

108 1st and 2nd row species, Scheiner, Baker, and Andzelm, 1997

6-31G(d,p) DZVP TZVP TZ2P UCCa

HF 0.021
MP2 0.014
SVWN 0.016 0.016 0.014 0.013 0.013
BLYP 0.021 0.024 0.020 0.016 0.016
BPW91 0.017 0.019 0.016 0.013 0.012
ACM 0.011 0.011 0.009 0.010 0.009

40 species cont. 3rd row elements, 6-31G(d) basis, Redfern, Blaudeau and Curtiss, 1997

MP2 0.022 / 0.4 B3LYP 0.030 / 0.5
BLYP 0.048 / 1.0 B3PW91 0.020 / 0.5
BPW91 0.020 / 0.5

32 1st row species, 6-311G(d,p) basis, Adamo and Barone, 1997, 1998, 1999

BLYP 0.014 B3LYP 0.004
BPW91 0.014 B1LYP 0.005
PWPW91 0.012 B3PW91 0.008
mPWPW91 0.012 B1PW91 0.005
PBEPBE 0.012 mPW3PW91 0.008
BHLYP 0.015 mPW1PW91 0.010

PBE1PBE 0.010

40 1st and 2nd row species, TZ2P basis, Hamprecht et al., 1998

BLYP 0.019 / 0.4 B3LYP 0.008 / 0.2
HTCH 0.013 / 0.7

a uncontracted aug-cc-pVTZ basis.
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8.1.2 Molecular Structures of Transition-Metal Complexes

Accurate experimental information on equilibrium geometries for transition-metal complexes
is much more limited than for main group molecules. Since reliable data exists for several
carbonyl complexes these systems have served in the past to test the performance of various
theoretical methods, including density functional theory. The commonly accepted working
hypothesis describing trends in electronic structure of these complexes is the Dewar-Chatt-
Duncanson model, according to which the binding between metal and ligands is governed
by the interplay of donor and acceptor contributions. A balanced description of these effects
has been a long-standing challenge for computational methods, in particular for complexes
of the first transition-metal row. For this class of complexes, the Hartree-Fock model gener-
ally overestimates metal-ligand (M-L) bond lengths, typically by 0.1 to 0.3 Å, whereas the
performance of MP2 strongly depends on the electronic situation at the metal center: good
agreement with experimental data is commonly found for geometries of 4d and 5d species
provided that relativistic effects are properly accounted for. For elements of the first transi-
tion-metal row, however, MP2 tends to underestimate M-L bond lengths significantly. For
the LDA, a general trend to underestimate the lengths of M-L bonds is well documented.
Nevertheless, it performs favorably compared to HF and frequently gives smaller deviations
from experiment than MP2. The systematic underestimation of M-L bonds involving the
metal centers by the LDA is compensated to a large extent by the application of gradient
corrections – a typical lengthening of bonds involving metal atoms is in the order of 0.05 Å,
which compares to 0.01-0.02 Å for main group elements. However, owing to the variable
quality of GGA geometries for main group species outlined above, the situation remains
unconvincing for the structures of the ligands where significant deviations occur. As for
species consisting of main group elements, the best overall description of structural proper-
ties within the DFT framework is once more found for hybrid functionals including some
20 % of exact exchange. Let us consider these statements in more detail for the chromium
hexacarbonyl complex Cr(CO)6, a well studied compound for which a highly accurate ex-
perimental structure obtained from neutron diffraction is available. Table 8-5 contains a
representative collection of geometric data computed at different levels of theory.

Clearly visible are common trends for HF and MP2 structures: bond distances are over-
estimated by the former and underestimated by the latter method. The CCSD(T) optimiza-
tion yields an improved Cr-C bond but, interestingly, the worst description of the C-O bond
among all methods shown. This flaw is certainly a consequence of the lack of higher angu-
lar momentum functions in the basis set used for the ligand atoms – however, the computa-
tional demands of this level of theory are already respectable even considering present
computational standards. In view of the results of standard wave function based methods
the performance of the SVWN functional is not bad, although the Cr-C distance is far too
short. For this bond, the BP86 gradient-corrected functional yields a very good agreement
with experiment, but a worse C-O bond length results. BLYP overestimates both the Cr-C
as well as the C-O bond distance, but there might be some room for improvement by using
more flexible basis sets. The two hybrid methods give a balanced improvement over the
LDA structure for both bond types and the agreement with experiment is good.

8.1  Molecular Structures
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Table 8-6 displays M-C and C-O bond lengths for the hexacarbonyls of Cr, Mo, and W
determined at different levels of theory together with experimental data. First we note the
general expansion of M-C bonds by the GGA treatment improving the LDA geometry for
the Cr and Mo complexes, but not for W(CO)6. For this species, a nearly perfect agreement
with experiment for W-C and C-O bond lengths is seen with SVWN, while BP86 overesti-
mates both distances. However, neither LDA nor BP86 calculations reflect the experimen-
tal trends in M-C bond lengths, but the metal-CO bond lengths increase steadily from Cr to
W. Better agreement is obtained if relativistic effects are included within the GGA treat-
ment, either by means of perturbation theory (BP86+QR) or by use of relativistic effective

Table 8-5. Computed bond lengths [Å] for the Cr(CO)6 complex in Oh symmetry. Experimental values: RCr-C =
1.918 Å, RC-O = 1.141 Å (see ref. 70 in Jonas and Thiel 1995).

Bond HF MP2 CCSD(T) SVWN BP86 BLYP B3P86 B3LYP

2.010a 1.862a 1.939c 1.865d 1.911d 1.942f 1.901d 1.927d

RCr-C 2.017b 1.874b 1.866e 1.910e 1.937g 1.929g

1.970c 1.908f 1.921h

1.111a 1.154a 1.178c 1.145d 1.156d 1.157f 1.141d 1.142d

RC-O 1.111b 1.154b 1.145e 1.153e 1.164g 1.150g

1.118c 1.154f 1.155h

a Doubly polarized triple-zeta basis on C and O, ECP/triple-zeta basis on Cr (Jonas and Thiel, 1995); b doubly
polarized triple-zeta basis on C and O, Wachters basis on Cr (Jonas and Thiel, 1995); c Wachters basis on Cr,
triple-zeta basis on C and O (Barnes, Liu, and Lindh, 1993); d 6-311+G(d) basis as implemented in Gaussian
(viz., modified Wachters basis on Cr) (Spears, 1997); e triple-zeta STO on Cr, polarized double-zeta STO on C
and O (Ziegler, 1995); f double numerical basis as implemented in DMol (Delley, 1994); g Wachters basis on Cr,
6-31G(d) basis on C and O (Hamprecht et al., 1998); h extended Wachters basis on Cr, polarized double-zeta
basis (D95*) on C and O (Koch and Hertwig, 1998).

Table 8-6. Bond lengths for neutral hexacarbonyl complexes of Cr, Mo, and W in Oh symmetry [Å].

Cr(CO)6 Mo(CO)6 W(CO)6

Method RM-C RC-O RM-C RC-O RM-C RC-O

SVWNa 1.866 1.145 2.035 1.144 2.060 1.144
BP86a 1.910 1.153 2.077 1.152 2.116 1.154
BP86+QRa 1.910 1.153 2.076 1.153 2.049 1.155
BP86/ECPb 1.908 1.154 2.065 1.153 2.075 1.154
B3LYPc 1.921 1.155 2.068 1.155 2.078 1.156
MP2/ECPb 1.862 1.154 2.031 1.152 2.047 1.153
Experiment 1.914 1.141 2.063 1.145 2.058 1.148

a Triple-zeta STO on the metal, polarized double-zeta STO on C and O (Ziegler, 1995); b doubly polarized triple-
zeta basis on C and O, ECP/triple-zeta basis on the metal (Jonas and Thiel, 1995); c polarized double-zeta basis
on C and O, ECP/triple-zeta basis on the metal (Koch and Hertwig, 1998).
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core potentials (BP86/ECP, see Frenking et al., 1996). Both approaches give essentially the
same accuracy (see also van Wüllen, 1996) and correctly reproduce the experimentally
observed trend in bond lengths. It is obvious from Table 8-6 that the presence of relativistic
effects results in metal-ligand bond contractions in the order of 0.06 Å for W(CO)6, which
is just about the usual amount by which LDA underestimates the length of such bonds.
Hence, the excellent SVWN estimate for the W-C bond length seems to be predominantly
caused by error cancellation, whereas the C-O bond is indeed very well described at this
level. Finally, the MP2 results of Jonas and Thiel reflect also for these species what is now
common knowledge for such systems (see Frenking and Wagener, 1998, and references
cited therein): the simplest post-HF method, i. e. MP2, cannot deal with 3d transition-metal
compounds, while reasonable geometries are usually obtained for coordinatively saturated
closed-shell complexes of 4d and 5d elements.

The trends derived from these example cases are representative for most of the geomet-
ric data published on coordinative transition-metal compounds. In the past decade the BP86
functional has become the preferred computational workhorse for the handling of transi-
tion-metal complexes. Accurate geometries were obtained with this functional for the neu-
tral carbonyl complexes Fe(CO)5, Ru(CO)5, Os(CO)5, Ni(CO)4, Pd(CO)4, and Pt(CO)4 (Jonas
and Thiel, 1995). Where the results could be compared to experimental data, deviations for
metal ligand bonds did not exceed 0.01 Å. For structures of ionic hexacarbonyl complexes,
a larger maximum deviation of 0.06 Å has been noted, but the direct comparison with
experiment is somewhat hampered by the presence of crystal packing or counter-ion effects
in X-ray structures (Jonas and Thiel, 1996). Related findings have been reported for the
structures of −

6)CO(V  (Spears, 1997) and a variety of other complexes (for typical exam-
ples, see Ziegler, 1995, Rosa et al., 1996, Bérces, 1996, or Ehlers et al., 1997). Experimen-
tal trends in bond lengths are well reproduced for different kinds of coordinatively bonded
complexes despite the presence of non-negligible errors in absolute values, e. g., for C-O
bond lengths.

By and large, the BP86 functional has been shown to be a valuable tool for the assess-
ment of transition-metal coordination chemistry. Unfortunately, other functionals have not
been tested as extensively as BP86 but a recent review shows that the B3LYP functional
gives essentially equally good structures for this class of compounds (Frenking and Wagener,
1998). The molecular structures of the complexes Fe(CO)5, Fe2(CO)9, and Fe3(CO)12 have
been studied using the BP86 and B3LYP functionals in combination with basis sets of
double-zeta and polarized double-zeta quality, and the results were carefully compared to
available experimental and existing theoretical data in a vividly written report (Jang et al.,
1998). The experimental geometries are reproduced well within 0.02 Å and 0.4°, which is
just about the order of magnitude by which different experiments deviate from each other.
Notable qualitative differences between both theoretical methods occurred for the descrip-
tion of axial and equatorial M-L bond lengths in Fe(CO)5, but in view of the experimental
contradictions found for this issue it is hard to state which functional performs better. How-
ever, B3LYP compared favorably with CCSD(T) results for this compound. In a study on
the actinide complexes UF6, NpF6, and PuF6, the bond lengths computed with HF, SVWN,
BLYP, and B3LYP were compared with experimental structures obtained by electron dif-
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fraction techniques (Hay and Martin, 1998). Employing a newly developed relativistic ECP/
basis set combination for the metal atoms and the 6-31G(d) basis on F, the observed devia-
tions in bond lengths were moderate with the best performance found for SVWN, the worst
for BLYP. At the conventional HF level the bond lengths were underestimated by 0.02 Å
while the density functionals produced distances which were too long with errors of 0.01 Å
(SVWN), 0.04 Å (BLYP), and 0.02 Å (B3LYP).

In a comparative study on optimized geometries of 25 transition-metal complexes, quali-
tative differences for SVWN and BP86 structures have been noted (Bray et al., 1996). A
general expansion of bond lengths ranging from 0.02 to 0.09 Å was found when going
from SVWN to the gradient-corrected BP86 functional. This trend is consistently present
in all types of bonds investigated. However, a better agreement with experiment is found
for BP86 structures of those complexes, which predominantly contain coordinative metal-
carbon bonds (0.01 Å vs. 0.05 Å mean deviation for BP86 and SVWN, respectively), whereas
SVWN gives better results for complexes containing covalent bonds between metal and
non-carbon atoms (0.07 Å vs. 0.03 Å mean deviation for BP86 and SVWN, respectively).
From what we have learned in Section 8.1.1, this behavior is not totally unexpected and it
can be rationalized after reinspection of the published data. Weak bonds (e. g., coordina-
tive bonds like M-CO, M-CN or M-NO) are systematically underestimated in length in
LDA structures. Stronger M-Cl and M-OH bonds agree very well in length with experi-
ment whereas double bonds like M=O come out too long from LDA optimizations. Inclu-
sion of gradient corrections affords a systematic elongation of bonds, which leads to an
improved description of weak bonds and exaggerated bond distances for stronger bonds.
Thus, akin to the deviation patterns noted earlier for bonds between main group atoms, the
particular binding situation determines the accuracy resulting from the LDA and GGA
treatment.

8.2 Vibrational Frequencies

Vibrational spectroscopy is of utmost importance in many areas of chemical research and
the application of electronic structure methods for the calculation of harmonic frequencies
has been of great value for the interpretation of complex experimental spectra. Numerous
unusual molecules have been identified by comparison of computed and observed frequen-
cies. Another standard use of harmonic frequencies in first principles computations is the
derivation of thermochemical and kinetic data by statistical thermodynamics for which the
frequencies are an important ingredient (see, e. g., Hehre et al. 1986). The theoretical evalu-
ation of harmonic vibrational frequencies is efficiently done in modern programs by evalu-
ation of analytic second derivatives of the total energy with respect to cartesian coordinates
(see, e. g., Johnson and Frisch, 1994, for the corresponding DFT implementation and
Stratman et al., 1997, for further developments). Alternatively, if the second derivatives are
not available analytically, they are obtained by numerical differentiation of analytic first
derivatives (i. e., by evaluating gradient differences obtained after finite displacements of
atomic coordinates). In the past two decades, most of these calculations have been carried
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out at the Hartree-Fock level in combination with small to medium sized basis sets and the
results have been systematically compared to experimental data. At this level, the calcu-
lated frequencies are commonly overestimated quite systematically by ca. 10 %, which can
be traced back to the missing electron correlation, basis set deficiencies and the neglect of
anharmonicity. As the observed deviations are in most cases uniform, a simple empirical
scaling of the computed frequencies or diagonal force constants allows for a substantial
improvement of the results in most instances. The scale factors are usually transferable
within the same class of compounds. A force field determined in this way can predict
vibrational frequencies to within 10 to 20 cm–1 accuracy for systems which are well-be-
haved in the HF approximation, such as for simple organic molecules. For systems de-
manding a higher degree of electron correlation, however, the Hartree-Fock method fails to
give even qualitatively correct answers and errors are generally non-systematic. This cat-
egory of species is found among transition-metal compounds, systems containing multiple
bonds, and open-shell species. Faulty geometric parameters have been recognized as a key
problem in this regard (for an in-depth discussion and potential remedies see Allen and
Császár, 1993, and references cited therein). If we would restrict ourselves to conventional
wave function based methods, the accurate prediction of vibrational frequencies for transi-
tion-metal complexes is only possible by means of sophisticated wave function based theory
(large scale CI or coupled-cluster approaches) but the large number of electrons intrinsi-
cally renders its application prohibitively expensive, in particular for systems with low
point-group symmetry. Consequently, the computationally efficient treatment of electron
correlation and the availability of analytical first and second derivatives – which are not at
hand for most highly correlated post-HF approaches – spurred on the interest in approxi-
mate density functionals in this important field of application. The systematic and accurate
assessment of the performance of DFT for force fields of transition-metal complexes is
somewhat hampered by the smaller number of experimentally well characterized systems,
but the available studies are very encouraging.

8.2.1 Vibrational Frequencies of Main Group Compounds

From several early studies it has become obvious that harmonic frequencies computed at
the LDA level are generally as close to experiment as those obtained from MP2 theory (Fan
and Ziegler, 1992, Bérces and Ziegler, 1992, Murray et al., 1992, Handy et al., 1992). The
particular performance of frequency evaluation employing the simple SVWN functional
has been investigated in some detail by Andzelm, and Wimmer, 1992, for a set of small
molecules consisting of C, N, O, H, and F atoms. C=C and C≡C bond stretching frequen-
cies were found to be very close to experimentally derived harmonic frequencies, whereas
C–C single bond stretches were overestimated by about 1 %. The C–H bond stretching
frequencies were typically too low by about 2 %. These deviations are fully in line with the
discussion of bond lengths above: for those bond types which are overestimated in length,
frequencies which are too low result, and vice versa. In addition, a general underestimation
of low frequency bending and torsional modes has been noted, which directly contributes

8.2  Vibrational Frequencies
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to a general underestimation of zero-point vibrational energies. LDA underestimates these
energies to about the same extent as MP2 overestimates them.

Given the sometimes erratic behavior of optimized molecular structures found in the
JGP set, a remarkably similar overall performance for SVWN and BLYP with respect to
predicted harmonic vibrational frequencies was noted by Johnson, Gill, and Pople, 1993.
Both methods compared favorably with (unscaled) HF and MP2 results and the mean abso-
lute deviations from available experimental harmonic frequencies were reported as SVWN:
75 cm–1, BLYP: 73 cm–1, HF: 168 cm–1, MP2: 99 cm–1, QCISD: 42 cm–1. Hertwig and
Koch, 1995, have systematically studied vibrational frequencies for main group homonuclear
diatomics and found the BP86 functional to perform slightly better than BLYP, but both
GGA schemes describe experimental data remarkably better than MP2 or CISD (mean
absolute errors for the species Li2 to Cl2 employing the 6-311G(d) basis set are HF: 218 cm−1,
MP2: 138 cm–1, CISD: 104 cm–1, BP86: 39 cm–1, BLYP: 48 cm–1). The superior perform-
ance of GGA functionals over both the simple LDA or the hybrid functionals in the diffi-
cult case of the ozone system – an exacting testing ground for post-HF methods, on which
many fail to even give qualitatively correct answers – has already been mentioned in Sec-
tion 6.6. BLYP also gave improved frequencies compared to SVWN for the demanding
FOOF and FONO systems despite larger deviations found in bond lengths (Amos, Murray,
and Handy, 1993). Several other case studies documented the high quality of harmonic
frequencies predicted at the GGA level (see, e. g., Florian and Johnson, 1994, Hutter, Lüthi,
and Diederich, 1994, Florian and Johnson, 1995, Wheeless, Zhou, and Liu, 1995, and
Michalska et al., 1996). But just as importantly, the evaluation of frequencies at the LDA
level can lead to chemically meaningful answers for large scale cases where any higher
level of theory cannot be applied within the limits of available computing resources (for an
example see, Hill, Freeman, and Delley, 1999).

Zhou, Wheeless, and Liu, 1996, have systematically investigated the reliability of re-
sults from six different density functional methods employing the small 6-31G(d) basis set.
These authors computed harmonic frequencies for typical organic molecules such as ethyl-
ene, formaldehyde, glyoxal, acrolein, and butadiene, as well as some deuterated derivatives
for which experimental data is available. The results indicate that frequencies obtained by
the three hybrid methods B3LYP, B3P86, and BHLYP somewhat overestimate observed
fundamentals (151 data points, mean absolute errors: 51 cm–1, 56 cm–1, and 109 cm–1, re-
spectively) but that B3LYP and B3P86 results are closer to available experimental har-
monic values (16 data points, errors: 21 cm–1, 22 cm–1, and 96 cm–1). The SVWN, BLYP,
and BP86 functionals, in turn, deviate more strongly (errors: 85 cm–1, 73 cm–1, and 79 cm−1,
respectively) but a better agreement is seen for the direct comparison with experimental
fundamentals (errors: 28 cm–1, 16 cm–1, 19 cm–1). At first sight the excellent accord be-
tween harmonics obtained with the LDA and the two GGA functionals and experimental
fundamentals is surprising in light of the only mediocre quality of the corresponding struc-
tural predictions. The good performance of the GGA functionals in the determination of
directly observed fundamental frequencies implies that the correlation between equilib-
rium structures and frequencies is not as strong for current DFT methods as it is for conven-
tional wave function based methods. This can, however, be attributed to a cancellation of
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errors: the BLYP functional systematically overestimates bond lengths, which leads to a
general underestimation of computed force constants. This bias is compensated for by the
systematic overestimation somewhat inappropriately introduced by the direct comparison
of computed harmonic and observed fundamental frequencies (fundamentals are usually
smaller than their harmonic counterparts due to anharmonicity effects). This view seems
justified by the fact that C–H stretching frequencies have been identified as the main source
of anharmonicity and if these vibrations were excluded, BLYP and B3LYP gave very simi-
lar results. However, neither the computation of anharmonic vibrational energy levels nor
the experimental determination of harmonic frequencies is routinely practical for polyatomic
molecules. Hence, it seems that the B3LYP and B3P86 methods give results which are
theoretically more sound but that GGA frequencies might be a pragmatic way for the inter-
pretation of directly observed experimental frequencies without the need to account for
anharmonicity effects. A similar conclusion has been put forward by Finley and Stephens,
1995, after studying the vibrational frequencies of a set of 11 small first-row compounds.
Interestingly, these authors also noted a significant improvement of computed lower fre-
quencies upon improvement of the basis set quality. For more complicated situations, how-
ever, the application of gradient-corrected functionals may lead to large errors in predicted
frequencies and the overall performance of hybrid functionals is found superior – in these
instances, the failures are caused by large errors in the GGA structures (Lee, Bauschlicher,
and Jayatilka, 1997). A variety of case studies verifies the high quality of vibrational spec-
tra computed with hybrid methods, which usually outperform LDA and gradient-corrected
methods and give results close to sophisticated post-HF methods and experiments (see,
e. g., Barone, Orlandini, and Adamo, 1994a, Martin, El-Yazal, and François, 1995b,
Kozlowski, Rauhut, and Pulay, 1995, Martin, El-Yazal, and François, 1996, Kesyczynski,
Goodman, and Kwiatkowski, 1997, Kwiatkowski and Leszczynski, 1997, Stepanian et al.,
1998a, 1998b, 1999, Devlin and Stephens, 1999, or Bienati, Adamo, and Barone, 1999).
Interestingly, the kinetic energy density dependent VSXC functional yields frequencies of
similar quality than B3LYP without the use of Hartree-Fock exchange (Jaramillo and
Scuseria, 1999).

After it has become clear that DFT methods are in general well-behaved in predicting
vibrational frequencies and that deviations from experimental results occur quite system-
atically, some consideration has been given to the development of generic scaling factors.
Florian and Johnson, 1994, were probably the first to show that the systematic deviations
apparent in density functional calculations on formamide could benefit from scaling. Based
on investigations on a set of 20 small molecules with over 300 experimental fundamentals,
Rauhut and Pulay, 1995, published scaling factors for the BLYP/6-31G(d) and B3LYP/6-
31G(d) levels of theory (0.990, and 0.963, respectively). The fortuitous agreement of BLYP
frequencies with anharmonic experimental frequencies leads to a scaling factor close to
unity and thus the mean deviation from experiment only changes from 30 cm–1 to 26 cm–1

after scaling. However, the mean deviation for B3LYP improves rather significantly from
74 cm–1 to 19 cm–1 upon scaling. These authors have also shown that the accuracy of com-
puted frequencies can be further improved by application of their scaled quantum mechani-
cal (SQM) force field procedure. In this model the molecular force field is expressed in a

8.2  Vibrational Frequencies
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set of standardized valence internal coordinates which are then sorted into groups sharing
common scaling factors. Such factors – eleven in number for this specific set of molecules
– are derived for each group separately by a least squares fit procedure to experimental
frequencies. This type of scaling yields reduced errors for both hybrid methods tested
(B3LYP, and B3PW86) and, in particular, frequencies in the fingerprint region profited
strongly. Application of this procedure has led, for example, to a reassignment of some
fundamentals for the infrared spectrum of aniline. The disadvantage of this approach is of
course the need to transform the computed force constants into a set of nonredundant va-
lence coordinates, the manual derivation of which is a tedious affair and error-prone for
larger molecules.

In a seminal paper, Scott and Radom, 1996, have investigated the performance of a
variety of modern functionals (BLYP, BP86, B3LYP, B3P86, and B3PW91) in combina-
tion with the 6-31G(d) basis set for predicting vibrational frequencies and zero-point vibra-
tional energies for a large suite of test molecules. By fitting computed data to a basis of
1066 individual experimental vibrations they developed a set of uniform scaling factors
relating the computed harmonic frequencies to experimental fundamentals. Table 8-7 shows
the resulting scaling factors along with some data allowing an assessment of the perform-
ance for each of the methods after scaling on the test set of 122 molecules.

All DFT methods perform better than HF and MP2; the hybrid techniques are even
better than the costly QCISD. Both GGA functionals show scaling factors close to unity
which means that they can be used without scaling, but they do not perform quite as well as

Table 8-7. Frequency scaling factors, rms deviation, proportion outside a 10 % error range and listings of
problematic cases [cm–1] for several methods employing the 6-31G(d) basis set. Taken from Scott and Radom,
1996.

Method fa RMSb 10 %c Problematic Cases (Deviations larger than 100 cm–1)

HF 0.8953 50 10 233(O2), 221(O3, F2), 180(1A1-CH2), 164(F2O), 139(N2),
120(N2F2), 115(HOF, NF3), 103(NClF2)

MP2 0.9434 63 10 660(O3), 304(NO2), 277(N2), 225(O2), 150(HF), 149(1A1-CH2),
142(HC2H), 136(HC4H), 131(ClNS), 120(ClC2H), 117(H2),
115(3B2-CH2), 111(C2N2), 101(FCN)

QCISD 0.9537 37 6 202(1A1-CH2), 129(HF), 117(C2H2), 101(O3)

BLYP 0.9945 45 10 224(1A1-CH2), 189(H2), 165(HF), 116(OH), 113(SO3), 112(3B1-
CH2), 111(SO2), 109(C2H2)

BP86 0.9914 41 6 229(1A1-CH2), 142(H2), 115(HF), 114(3B2-CH2), 106(F2)

B3LYP 0.9614 34 6 204(1A1-CH2), 132(HF), 125(F2), 121(H2), 110(O3)

B3P86 0.9558 38 4 204(1A1-CH2), 146(F2), 139(O3)

B3PW91 0.9573 34 4 204(1A1-CH2), 140(F2), 137(O3)

a Scale factor; b root mean square error after scaling in cm–1; c percentage of frequencies that fall outside by more
than 10 % of the experimentally observed fundamentals.



135

methods including exact exchange. The hybrid functionals show scaling factors similar to
MP2 and QCISD whereas their accuracy is superior to all traditional methods with respect
to the criteria presented in Table 8-2. B3PW91 performs best, closely followed by the
popular B3LYP functional.

In addition to the uniform scaling factors given above, these authors proposed separate
scaling factors for zero-point vibrational energies, for low frequency vibrations, and for
correcting thermal contributions to enthalpies and entropies. The evaluation shows signifi-
cant differences between uniform and separately optimized scaling factors and the authors
recommend that the latter should be used in order to improve the theoretical predictions.
For the BLYP functional, additional tests with a larger 6-311G(df,p) basis set and different
integration grid sizes indicated only minor influences on the deviations from experimental
data. Uniform scaling parameters for vibrational frequencies and zero-point vibrational
energies have been independently developed by others (Bauschlicher and Partridge, 1995,
for B3LYP, Wong, 1996, for SVWN, BVWN, BLYP, B3LYP, and B3P86, Jaramillo and
Scuseria, 1999, for VSXC and B3LYP), and it is pleasing to note that, where the investiga-
tions overlap, the results are in good mutual agreement.

8.2.2 Vibrational Frequencies of Transition-Metal Complexes

The pioneering comprehensive study of monometal carbonyls by Jonas and Thiel, 1995,
was probably the first devoted to the computation of vibrational spectra for such com-
pounds using density functional theory. These authors systematically compared experi-
mental spectra and calculated vibrational data for several neutral tetra-, penta-, and
hexacarbonyl complexes, M(CO)n, n = 4-6). They used HF, MP2, BP86, and BLYP and
found the BP86 functional in combination with a doubly polarized triple-zeta basis on the
ligands and a relativistic ECP/triple-zeta basis on the metal to be very well suited for pre-
dictive purposes. Most of the DFT results reported were in very good agreement with ex-
periment, whereas HF structures and frequencies were found to be completely inadequate.
Results from MP2 calculations were satisfactory only for third and, to a lesser extent, sec-
ond-row transition-metal complexes, whereas significant deviations (partly exceeding
100 cm–1) occurred for first-row transition-metal complexes. In agreement with the aspects
considered above, the BP86 functional tends to underestimate the C–O stretching modes
rather uniformly by some 20 to 40 cm–1 while M–C stretching modes were accurate to
within 20 cm–1. A subsequent study on several metal- carbonyl hydrides corroborated the
good quality of BP86 results, which were found to be superior to both, HF and MP2 ap-
proaches (Jonas and Thiel, 1996). The computed harmonic M–C stretching frequencies
were again slightly lower than experimental values, whereas M–H bond stretches were
overestimated by up to 50 cm–1 for third-row complexes and accurate to within 10 cm–1 for
the heavier hydrides. These studies were subsequently extended to include charged carbo-
nyl complexes, where a highly uniform small deviation between computed harmonics and
observed fundamental frequencies for a given type of vibration was found (Jonas and Thiel,
1998). Computed raw frequencies could even be improved by the application of constant

8.2  Vibrational Frequencies



136

8  Molecular Structures and Vibrational Frequencies

shift factors (28 cm–1 for C–O and –13 cm–1 for M–C stretching modes) to the computed
harmonics.29 The B3LYP functional gave slightly larger deviations than BP86 in related
work on several isoelectronic hexacarbonyl complexes, if the computed harmonic frequen-
cies were compared to directly observed fundamentals (Szilagyi and Frenking, 1997). In
the study on Fe(CO)5, Fe2(CO)9, and Fe3(CO)12 by Jang et al., 1998, the results could be
compared to experiment, and an improved performance was found for B3LYP after scaling
the harmonic frequencies by a factor of 0.97, a scale factor which is quite similar to the
values for main group compounds described above. BP86 results were found to be in good
agreement without scaling. A study on the actinide complexes UF6, NpF6, and PuF6 em-
ploying HF, SVWN, BLYP and B3LYP reported harmonic frequencies which were com-
pared to experimental gas-phase and matrix results (Hay and Martin, 1998). The computed
and experimental harmonic frequencies differed on average by 50 cm–1(HF), 19 cm–1

(SVWN), 33 cm–1 (BLYP), and 21 cm–1 (B3LYP) and a correlation with deviations for
computed bond lengths was recognized.

In summary, systematic comparisons between computed and experimental frequencies
have proven the applicability of DFT for the evaluation of vibrational spectra on
coordinatively saturated closed-shell transition-metal complexes. A much lower computa-
tional cost in combination with a high overall accuracy compared to correlated traditional
approaches renders the well tested BP86 functional a highly valuable research tool with
excellent predictive power for this field of research. This assessment is corroborated by an
ongoing series of studies by Andrews and coworkers, who use density functional theory as
a standard tool to augment and interpret experimentally measured infrared data, even on
small coordinatively unsaturated, open-shell species (which have as yet received not as
much attention as the standard closed-shell complexes). A detailed discussion of the huge
amount of published data is well beyond the scope of this book and the reader is rather
referred to representative pieces of work, which provide pointers to further publications.
These studies include the infrared spectra of +

4-1)CO(Cu , Cu(CO)1-3, and −
3-1)CO(Cu  (Zhou

and Andrews, 1999a, see literature cited for −
x)CO(Ni  and −

x)CO(Co ) as well as related
ruthenium and osmium complexes (Zhou and Andrews, 1999b, see literature cited for iron
complexes), nitrides and N2 complexes of rhodium (Citra and Andrews, 1999, and refer-
ences cited therein for related work on Fe, Co, and Ni), nitric oxide complexes (Kushto and
Andrews, 1999), oxygen complexes of chromium, molybdenum, and tungsten (Zhou and
Andrews, 1999c), scandium (Bauschlicher, 1999) and yttrium and lanthanum (Andrews et
al., 1999).

29 As discussed for the two complexes [V(CO)6]
– and Cr(CO)6 these constant shifts obtained for BP86 are just

about the order of magnitude of anharmonic effects present in such compounds; see Spears, 1997.
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Information about the energetic properties of molecules is at the heart of every quantum
chemical investigation. In this chapter we will take a close look at the performance of
current approximate density functionals when it comes to the determination of such impor-
tant energetic properties as atomization energies, ionization energies (IE) and electron af-
finities (EA). In particular the first quantity is of great value since it provides an idea of the
ballpark figure we are talking about when we are interested in computing the thermochem-
istry of chemical reactions. The energies needed to remove (IE) or add an electron (EA) to
an atom or molecule are obviously of significant interest in their own right. For example,
the interpretation of photoelectron spectroscopy experiments is greatly facilitated if accu-
rate ionization energies are available. Furthermore, since the computation of all these dif-
ferent quantities poses severe and often different demands on the method chosen, the accu-
racy with which a functional delivers such energies is a probe for its versatility. Somewhat
counterintuitively at first sight, the reliable calculation of energetic information for atoms,
in particular for transition-metals, is especially difficult and not without ambiguity. We
therefore devote a complete section to this problem. Finally, we take up the discussion on
excitation energies from Section 5.3.7 and give an overview of the current state of the art in
the determination of electronically excited states and the corresponding transition energies
using density functional theory. We conclude with a few remarks about the ability of ap-
proximate density functional theory to reproduce singlet-triplet gaps in carbenes and re-
lated species.

9.1 Atomization Energies

Chemical reactions involve the cleavage and formation of bonds within molecules. The
calculation and prediction of thermochemical data has long been a vivid field for quantum
chemistry (see, e. g., Irikura and Frurip, 1998). For example, whenever experimental data
is not available and empirical estimates fail, some type of quantum chemistry usually be-
comes involved to obtain the missing information, but ‘computational thermochemistry’ is
of great relevance also in many other areas. In practice, there is always the need to reach
some compromise between accuracy and computational effort. Hartree-Fock theory pro-
vides an exact treatment of exchange and scales well with the molecular size, but it suffers
from severe deficiencies in describing chemical bonding due to the neglect of correlation
energy contributions. Except for isodesmic (or related) reactions (see, e. g., Hehre et al.,
1986) it cannot be used for thermochemical predictions. The introduction of dynamic and
static correlation effects by means of post-HF wave function based methods improves the
situation to a desired accuracy, but severely suffers from the notoriously unfavorable scal-
ing with molecular size. Notwithstanding the rather positive appraisal of the local density
approximation for the evaluation of molecular geometries and vibrational frequencies in
the preceding chapter, binding energies obtained with this method are generally very inac-
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curate. The literature is full of results giving testimony to the inability of this method to
deliver even qualitatively meaningful answers for problems related to chemical energetics.
This problem was recognized more than two decades ago and was actually the main stimu-
lus for the development of gradient corrections and, later, hybrid functionals.

Computed atomization energies, i. e., of the (hypothetical) reactions in which a mol-
ecule is broken up into its constituent ground state atoms, are often very error-prone since
their evaluation necessitates the breaking of each bond in a molecule. While we usually
have a closed-shell molecule on the left hand side of the reaction, the ground state atoms
defining the right hand side are open-shell with varying multiplicity. Hence large differen-
tial correlation effects are typical for these reactions. Therefore, the calculation of atomiza-
tion energies is a stringent test for any computational strategy and the deviations from
experiments seen in such studies can probably be considered as upper bounds. As an in-
structive example, Table 9-1 shows some error statistics for atomization energies obtained
with different methods in combination with the rather small 6-31G(d) basis set for the JGP
set of 32 first and second-row species.

It is apparent that the Hartree-Fock level is characterized by an enormous average devia-
tion from experiment, but standard post-HF methods for including correlation effects such
as MP2 and QCISD also err to an extent that renders their results completely useless for
this kind of thermochemistry. We should not, however, be overly disturbed by these errors
since the use of small basis sets such as 6-31G(d) is a definite ‘no-no’ for correlated wave
function based quantum chemical methods if problems like atomization energies are to be
addressed. It suffices to point out the general trend that these methods systematically un-
derestimate the atomization energies due to an incomplete recovery of correlation effects, a
reliable assessment of which requires sufficiently large and flexibly polarized basis sets.30

The errors are systematic because correlation effects are always stronger in molecular sys-
tems than in their fragments (most correlation effects are roughly proportional to the number
of spin-paired electrons). An insufficient recovery of electron correlation leads to a lack of
stabilization of the parent molecular systems, which causes the underbinding tendency.
The LDA, in turn, shows a notorious overbinding for every single molecule in the test set
except Li2, and deviations from experimental atomization energies as large as 220 % occur

Table 9-1. Deviations between computed atomization energies and experiment for the JGP test set employing the
6-31G(d) basis set [kcal/mol]. Taken from Johnson, Gill and Pople, 1993.

HF MP2 QCISD SVWN SLYP BVWN BLYP

mean abs. dev.   86   22   29 36 (40)a 38 4 (4)a 6
mean dev. –86 –22 –29 36 (40)a 38 0 (4)a 1

a Basis set free results taken from Becke, 1992.

30 The G2 extrapolation scheme – which is a prescription to extrapolate the quality of QCISD(T)/
6-311++G(3df,2p) calculations – actually reaches chemical accuracy for the G2 test set of species, but only
with an empirical correction, depending on the number of electron pairs in a molecule in order to better
account for these effects.
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for particular species like F2 (see below). Although better than the HF approximation, the
LDA is certainly not a useful thermochemical tool with a mean absolute deviation of 36 kcal/
mol and it has largely been abandoned for this kind of studies. In an attempt to amend the
situation by inclusion of a gradient-corrected correlation functional (SLYP) one ends up
with even larger errors, which is irksome at first sight. A spectacular improvement, though,
results from the application of gradient corrections to exchange (but not to correlation): the
BVWN functional affords a reduced mean absolute deviation of 4 kcal/mol. Inspection of
the last two columns in Table 9-1 again shows that inclusion of gradient corrections to
correlation (to yield the BLYP functional) slightly decreases the overall accuracy. The com-
parison with basis set free results for the same set of species taken from a paper published
by Becke, 1992a, reveals no significant influence of the basis set size on the overall per-
formance of the SVWN or the BVWN functional.31 Becke has shown in subsequent work
that neither the choice of the PW91 parameterization of the uniform electron gas (instead
of VWN) nor the addition of PW91 gradient corrections for correlation significantly changes
the overall picture (Becke, 1992b). Also in this latter study, a slightly larger mean absolute
deviation occurred for the G2 set of molecules upon inclusion of gradient corrections to
correlation as compared to exchange-only corrections.

A closer look at the original data published by Johnson, Gill, and Pople, 1993, reveals
that use of the gradient-corrected LYP correlation functional instead of VWN increases
atomization energies for non-hydride species quite significantly, while those containing
hydrogen atoms are reduced. This rather systematic trend is portrayed in Table 9-2 for a
few example cases.

Use of the LYP correlation functional apparently reduces the overbinding proportional
to the number of hydrogen atoms by about 1 kcal/mol per H from CH to CH4. On the
contrary, for the nonhydride diatomics listed, the atomization energies increase by 4–5 kcal/
mol per atom upon substitution of VWN by the LYP functional. For species like C2H2,

31 The largest deviations occur for different species, however. The BVWN results published by Becke were
obtained in a post-LDA manner at LDA optimized geometries as opposed to the data published by Johnson,
Gill, and Pople, 1993, which were computed selfconsistently at geometries corresponding to the respective
level of theory. Hence, it is difficult to unambiguously pin down the origin of these differences.

Table 9-2. Signed deviations [kcal/mol] between computed atomization energies (employing a 6-31G(d) basis)
and experiment. Taken from Johnson, Gill, and Pople, 1993.

Molecule SVWN SLYP BVWN BLYP Molecule SVWN SLYP BVWN BLYP

CH   7   6   3   0 F2 47 55 11 18
CH2(

3B1) 21 19   2 –2 O2 57 68 10 19
CH3 31 28   3 –2 N2 32 39 –1   6
CH4 44 40   4 –3 CO 37 46 –5   1
C2H2 50 55 –9 –6 CN 37 45   3   9
C2H4 70 71 –3 –4 NO 44 53   5 13
C2H6 86 85 –1 –6 CO2 82 99 –3 11
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C2H4, and C2H6, in which both types of bonds are broken, the particular stoichiometry
determines which functional performs better. The very same trends are observed for other
correlation functionals (see Becke, 1992b). Such behavior is clearly unsatisfying and an
indication that an only incomplete error cancellation is operative. Consequently, quite large
errors can occur for unfortunate cases (ranging from –12 kcal/mol for H2O to +19 kcal/mol
in the case of NO for the BLYP functional). While BP86 compares favorably with other
GGA functionals for the evaluation of molecular structures and vibrational frequencies, it
is defeated by BLYP when it comes to determining atomization energies. In combination
with the 6-31G(d) basis set, the BLYP functional yields atomization energies for the G2 set
with a mean absolute deviation 2 kcal/mol smaller than BP86 and a significantly smaller
maximum deviation (Bauschlicher, 1995a). Using a large 6-311+G(3df,2p) basis, the situ-
ation becomes even worse for BP86: the mean unsigned error is almost 5 kcal/mol smaller
at the BLYP level and the difference in maximum errors is nearly 10 kcal/mol in favor of
the latter.32 The newer PW91 correlation functional performs equally well or marginally
better than LYP when used in combination with the Becke exchange term. Both show very
similar mean absolute deviations for over 100 atomization energies evaluated in the com-
prehensive study of Scheiner, Baker, and Andzelm, 1997 (cf. Table 9-3).

Although observed maximum deviations are sometimes substantial and evidently far
from chemical accuracy, the fact that the overall errors for gradient-corrected functionals
are more than five times smaller than those of the traditional wave function based methods
shows nonetheless their general suitability for thermochemical studies at a modest level of
computational effort. The BLYP functional in combination with small basis sets would
lend itself particularly well to thermochemical studies on extended systems, where the
computational demands of larger bases or correlated post-HF methods are prohibitive.
However, for medium sized hydrocarbons a large underestimation of atomization energies
has been observed for the BLYP functional. The BP86 functional overestimated the same
atomization energies twice as much as BLYP underestimated them, so here BPW91 seems
to be the GGA functional of choice with only very moderate deviations (Curtiss et al.,
1997). All in all, the introduction of gradient corrections to exchange is the key to improved
thermochemical data, whereas the influence of corrections to the correlation term is rather
modest (inclusion of the latter, however, has important consequences for the accuracy of
computed ionization energies, see below). The importance of gradient corrections to ex-
change is not completely unexpected considering the fact that exchange, which is the domi-
nant component of the exchange-correlation energy in Kohn-Sham theory, is largely in
error in the LDA. Gunnarson and Jones, 1985, have argued convincingly that much of the
exchange error inherent to the LDA stems from an improper incorporation of angular char-
acteristics and nodal structures of the Kohn-Sham orbitals. Differential exchange effects
are generally overestimated and errors in atomization energies are largest for molecular
systems, in which substantial changes in the orbital nodal structure occur – e. g., upon bond
formation from atoms resulting in occupied antibonding orbitals as in O2. Similar argu-

32 Remarkably, the BLYP functional approaches or sometimes surpasses the accuracy of hybrid functionals if
small basis sets are used (see Table 9-5).
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ments can be used to rationalize, for example, the huge overbinding of F2 by the LDA
(borrowing from an illuminating paper by Ernzerhof, Perdew, and Burke, 1997). The ex-
perimental dissociation energy of the fluorine molecule into two ground state atoms (F2

)( g
1 +Σ → 2F (2Pu)) amounts to 37 kcal/mol. Hartree-Fock and the local density approxima-

tion both give ridiculously wrong results: with the 6-31G(d) basis set the former yields
−34 kcal/mol (the fluorine molecule is unbound at the HF level with respect to the two
constituting F atoms) while the latter gives a binding energy of 84 kcal/mol, overshooting
the experimental D0 by more than a factor of two. Since F2 formally contains a single bond,
these large errors are somewhat irritating. It is, however, well known that the lone pairs are
strongly interacting in molecular F2, which in fact is the origin of the problems for both
methods. HF fails because it does not account for correlation energy and the electron pairs
repel each other too strongly. If correlation is included through second or fourth order
Møller-Plesset perturbation theory, very realistic binding energies of 35 and 30 kcal/mol,
respectively, result. To LDA, on the contrary, overlapping lone pairs are nothing but a higher
electron density. This method overestimates the exchange stabilization brought about by
these orbital interactions, which leads to an overestimation of the molecular binding en-
ergy. Incorporation of explicit density gradient dependencies into the exchange terms re-
pairs the shortcomings to a large extent (BVWN gives 47 kcal/mol), but still, GGA
functionals do not quite reach chemical accuracy. It is clear that the gradient-corrected
functionals represent a major improvement over the local density approximation and de-
liver average errors which sometimes get close to our target accuracy of 2 kcal/mol. Like-
wise, the data indicate that even though the various GGA functionals differ significantly in
their mathematical appearance, they all perform quite similarly. However, we also note that
the maximum deviations are significant and that we are still a long way from a density
functional approach that is able to generally provide chemical accuracy.

In view of this situation, Becke has taken the next logical step and improved the GGA
performance by admixture of exact exchange as we have already discussed to some extent
in Chapter 6. His first approach, the half-and-half scheme (Becke, 1993a), did not include
gradient corrections and was not much of an improvement over GGA functionals in terms
of thermochemical accuracy. However, a subsequently suggested parameterized version,
which included gradient corrections to exchange and correlation, gave impressively re-
duced mean errors for atomization energies of the G2 set (Becke 1993b). This was the
forerunner of the now widely used B3LYP hybrid (Stephens et al., 1994) which today is the
most popular density functional and is implemented into most major computer codes. For
details on these functionals, the reader should leaf back to Section 6.6.

Bauschlicher and Partridge, 1995, tested the B3LYP functional in combination with
different basis sets on the G2 set of molecules. In combination with the 6-31G(d) basis, it
yields an accuracy comparable to that of the pure BLYP functional (5.2 kcal/mol average
error). This only mediocre performance improves significantly to a mean absolute error of
only 2.2 kcal/mol, if the larger 6-311+G(3df,2p) basis is used, regardless of whether the
geometries were obtained at this level or with the much more affordable 6-31G(d) basis set.
Also, use of the aug-cc-pVTZ basis gave an improved average error of 2.3 kcal/mol, almost
reaching the desired goal of chemical accuracy. However, in this study the atomization

9.1  Atomization Energies
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energy for SO2 proved to be very problematic and the results for this molecule were found
to be extremely sensitive to the basis set quality. Martell, Goddard and Eriksson, 1997,
studied the performance of the three commonly used GGA functionals, namely BP86, BLYP,
and BPW91 together with the corresponding hybrid functionals B3P86, B3LYP, and
B3PW91 on a set of 44 small first and second-row molecules. They used four different
basis sets (6-31G(d,p), 6-311G(d,p), cc-pVDZ, and cc-pVTZ) in order to assess the reli-
ability of predicted atomization energies with these moderately sized bases.33 Comparing
the results for different basis sets and functionals it is important to firstly realize that no
particular method provides results superior to all others. The authors noted a general under-
estimation of atomization energies for the two hybrid functionals B3LYP and B3PW91,
which contrasts with the overestimation found for the three pure GGA protocols and, to a
smaller extent, for the B3P86 hybrid. Looking at the mean absolute errors for all method/
basis set combinations documented in Table 9-3, the B3LYP functional gives the highest
accuracy, closely followed by B3PW91. Larger errors occur for the B3P86 hybrid, which
only marginally surpasses the BPW91 and BLYP gradient-corrected functionals in terms
of accuracy. The worst performance is found for the BP86 functional, for which deviations
from experiment below 5 kcal/mol are the exception. The error pattern compiled in Table

33 Molecular geometries, which were not reported in this study, have been obtained using the 6-31G(d,p) and cc-
pVDZ basis sets. Thus, the 6-311G(d,p) and cc-pVTZ results refer to single point energy calculations only.

Table 9-3. Mean absolute deviations (MAD) from experiment [kcal/mol] for 44 atomization energies and number
of results that deviate by less than 5, between 5 and 10, and over 10 kcal/mol from experiment. Taken from
Martell, Goddard, and Eriksson, 1997.

Basis set MAD < 5 [5..10] > 10 MAD < 5 [5..10] > 10

BLYP B3LYP

6-31G(d,p)   7.6 21 12 11 5.6 26 15   3
6-311G(d,p)   6.8 23 11 10 6.8 23 14   7
cc-pVDZ   7.3 20 13 11 8.5 13 20 11
cc-pVTZ   7.2 20 12 12 3.1 36   5   3

BP86 B3P86

6-31G(d,p) 12.7   9   9 26 6.7 21 12 11
6-311G(d,p) 10.4 15   7 22 6.2 24 12   8
cc-pVDZ   9.9 13 10 21 5.4 25 15   4
cc-pVTZ 14.2   5   8 31 6.9 21 11 12

BPW91 B3PW91

6-31G(d,p)   7.0 22 11 11 5.6 24 17   3
6-311G(d,p)   6.1 24 11   9 6.9 21 17   6
cc-pVDZ   7.2 20 12 12 8.4 13 19 11
cc-pVTZ   7.8 19 11 14 3.8 36  6   2



143

9-3 reveals that the B3LYP and B3PW91 hybrid functionals give quite reliable atomization
energies in combination with the cc-pVTZ basis set. The most problematic systems in this
study were SO2, ClO2 and CCl, which also pose severe difficulties for traditional quantum
chemical methods.

A disturbing trend in the basis set dependence is seen from the mean unsigned errors
listed in Table 9-3. Reduced errors occur for the pure GGA functionals and B3P86 when
improving the quality of the Pople-type basis from 6-31G(d,p) to 6-311G(d,p) – exactly
what one would expect for any well-behaved quantum chemical method. Yet the opposite
trend emerges for the correlation consistent basis sets when going from the polarized dou-
ble-zeta cc-pVDZ to the polarized triple-zeta cc-pVTZ basis set. Better results are obtained
with the smaller basis set. Only the B3LYP and B3PW91 results show the expected behavior,
these two functionals deliver the smallest mean absolute errors of all methods if combined
with the large cc-pVTZ basis set. These baffling findings can be rationalized by inspection
of the data summarized in Table 9-4.

In spite of large differences in mean errors obtained with the various methods tested,
substitution of the 6-31G(d,p) basis by the larger 6-311G(d,p) set yields a systematic shift
to reduced atomization energies on average by 2.5 kcal/mol, irrespective of the method
used. Conversely, use of the larger cc-pVTZ instead of the cc-pVDZ basis set brings about
an increase in atomization energies, on average the order of +5.5 kcal/mol. Apparently, the
6-311G(d,p) basis yields a better description of isolated atoms, whereas the improved cor-
relation consistent basis stabilizes molecular systems quite significantly with respect to the
atoms. These shifts explain why GGA functionals, which usually overestimate atomization
energies, perform better with the larger Pople-type 6-311G(d,p) and the smaller cc-pVDZ
correlation consistent basis set. The clearly visible reason is once again error cancellation.

Another study by Scheiner, Baker, and Andzelm, 1997, has quite extensively addressed
the evaluation of atomization energies with respect to different functionals and basis sets of
varying quality. In this work it has been observed that polarized double- and triple-zeta
basis sets which have been explicitly optimized at the LDA level (denoted DZVPLDA and
TZVPLDA) are better suited for LDA and GGA calculations than for hybrid functionals.
Use of a standard TZV2P basis for BLYP and BPW91 led to ca. 1 kcal/mol larger errors
compared to results obtained with the TZVPLDA basis set, whereas just the opposite has
been observed for the B3LYP hybrid functional. Furthermore, the latter functional still
showed a remarkable drop by 2.5 kcal/mol in mean absolute deviations if a large uncontracted
aug-cc-pVTZ basis set was used – in contrast, only marginal improvements (below 0.3 kcal/
mol) were seen for BLYP and BPW91. Apparently, the basis set requirements for con-

Table 9-4. Average shifts in atomization energies upon basis set enlargement [kcal/mol]. Based on data taken
from Martell, Goddard, and Eriksson, 1997.

BLYP B3LYP BP86 B3P86 BPW91 B3PW91

6-31G(d,p) → 6-311G(d,p) –2.6 –2.6 –2.6 –2.0 –2.5 –2.4
cc-pVDZ → cc-pVTZ   4.8   5.5   5.2   5.9   5.0   5.9

9.1  Atomization Energies
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verged results are higher for hybrid methods than for GGA functionals. Furthermore, it
seems that hybrid methods get along much better with standard basis sets taken from the
wave function ab initio world than GGA functionals do.

Redfern, Blaudeau, and Curtiss, 1997, have tested the BLYP, B3LYP, BPW91, and
B3PW91 functionals with respect to the accuracy of atomization energies computed for a
set of 19 molecules containing third-row, non-transition-metal elements. They used a rather
large 6-311+G(3df,2p) basis set for single point energy calculations on top of MP2/6-31G(d)
geometries (which might not give the highest accuracy possible for the density functional
treatment). Among the functionals tested, the B3PW91 approach afforded the lowest aver-
age unsigned and maximum error (2.1 and 5.7 kcal/mol, respectively) which compared
nicely to much more costly G2 calculations (1.2 and 5.2 kcal/mol). The B3LYP functional
gave slightly worse energetics (3.3 and 6.2 kcal/mol), whereas the pure GGA functionals
led to larger mean errors and substantial maximum deviations (BLYP: 5.3 and 24.2 kcal/
mol; BPW91: 4.5 and 24.7 kcal/mol).

Before we end this discussion let us take up the thread from Section 6-9 and present
some results pertaining to the large number of new functionals that have emerged in the
past few years. The literature contains a variety of attempts to further improve the accuracy
of density functional methods, which essentially follow two distinct lines, namely (a) the
fitting of adjustable functional parameters to some kind of experimental data and (b) the
fulfillment of theoretically derived and physically meaningful conditions. Examples, for
instance, belonging to the first category are the CAM(A) and CAM(B) exchange functionals
reported by Laming, Termath, and Handy, 1993. Two different fitting procedures to experi-
mental data have been applied and for a G2 subset the resulting functionals showed a non-
uniform performance. If combined with the LYP correlation functional, the CAM(A)-LYP
functional gave significantly improved geometries as compared to BLYP but at the same
time much worse mean errors for atomization energies. In contrast, the CAM(B)-LYP func-
tional showed the reverse behavior with worse geometric parameters than CAM(A)-LYP
but smaller errors for atomization energies (CAM(A)-LYP: 21.9 kcal/mol, CAM(B)-LYP:
6.5 kcal/mol, BLYP: 9.5 kcal/mol). Such a situation is of course by no means satisfying.
On the one hand, the results show that there is definitely room for improvement within the
particular formulations of GGA functionals by means of fitting procedures and CAM(B)-
LYP might indeed appear as a useful improvement over the BLYP functional. On the other
hand, one could expect from theoretical reasoning that an improved description of molecu-
lar binding also leads naturally to a better performance in structure prediction, which obvi-
ously is not the case. It is hence apparent that reparameterization does not necessarily im-
prove the fundamental physics but rather exerts some shift on the outcome of error com-
pensation effects. Therefore, one can rightly argue that this might lead to a non-systematic
performance for molecules or properties not included in the fitting set, which would render
the quality of such corrections very difficult to judge a priori. Obviously, only extensive
testing can identify the particular advantages and potential caveats of such functionals.

The idea of modifying existing functionals by fitting particular terms to accurate experi-
mental data has been tempting to others, too. Stewart and Gill, 1995, have reparameterized
a simplified LYP correlation functional formalism, and tested its performance for atomiza-
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tion energies in combination with Becke’s 1988 (B) exchange term. This new simple func-
tional, referred to as Becke-Wigner (BW), has been tested with the 6-31G(d) and
6-311+G(3df,2p) basis sets to evaluate the atomization energies of the G2 set. The result-
ing mean absolute errors were slightly in favor of BLYP (6-31G(d): 5.5 and 4.5,
6-311+G(3df,2p): 4.9 and 4.7 kcal/mol, for BW and BLYP, respectively). However, the
computed data for individual molecules were quite different. If combined with the rather
modestly sized 6-31+G(d) basis set, the empirical density functional EDF1 by Adamson,
Gill, and Pople, 1998, yields reasonably good results with mean absolute errors for atomi-
zation energies of 3.2 kcal/mol compared to 4.4 and 5.9 kcal/mol for BLYP and B3LYP in
this basis, respectively. No improvement has been found upon exact exchange admixture. It
will be interesting to see a further assessment of the accuracy of this functional in future
applications. Neumann and Handy, 1995, implemented the Becke-Roussel exchange func-
tional (BR), which was fitted to model the shape of the Hartree-Fock exchange hole in a
two-term Taylor expansion without any reference to the electron gas model. This func-
tional (which depends on the density, its gradient and Laplacian as well as on the kinetic
energy density) was tested in combination with the P86 correlation functional, employing
a polarized triple-zeta TZ2P basis set, and atomization energies were obtained for a set of
27 diatomic first and second-row molecules with a mean error of 5.5 kcal/mol (compared
to 6.0 kcal/mol for BP86 applied to the same set). When used in a refitted three parameter
hybrid framework with some 20 % exact exchange admixture (BR3P86), the resulting at-
omization energies were improved with respect to the pure GGA, but slightly larger overall
and maximum deviations occurred as compared with B3P86 results. As briefly mentioned
in Chapter 6, Becke, 1997, proposed another functional, which contains exact exchange
admixture and was derived from a systematic fitting to thermochemical data of the G2 set
by adjusting 10 parameters, i. e., B97. Atomization energies were obtained with a mean
absolute deviation of 1.8 kcal/mol and an absolute maximum error of 5.5 kcal/mol. This
accuracy closely approaches that of the G2 extrapolation scheme, for which 1.2 and 5.1 kcal/
mol result for mean and maximum absolute deviations, respectively. Hence, this fitting
scheme created a functional which definitely surpasses the quality of hybrid functionals
like B3LYP or B3PW91. However, this new method is awaiting the extensive testing which
the latter two hybrids have seen in the recent past, and it remains to be verified whether its
performance endures as favorably as found for the test set for which it has been parameterized.
B97-1, the self-consistent reparameterization of the B97 functional leads to a slightly larger
mean absolute error (2.2 kcal/mol) for atomization energies of a G2 subset of species if
combined with a TZ2P basis set (Hamprecht et al., 1998). Rather impressive thermochemical
results as documented in Table 9-5 have been reported by van Voorhis and Scuseria, 1998,
for their VSXC functional. This functional was the outcome of a fitting procedure adjusting
no less than 21 different parameters. In addition, it goes beyond the standard GGA functionals
by depending also on the non-interacting kinetic energy density. Further developments
along similar lines have been reported in the recent literature and are discussed in Chap-
ter 6.

Neumann and Handy, 1996, implemented the recent B95 correlation functional and
tested it on a G2 subset. This functional was originally proposed by Becke and obeys

9.1  Atomization Energies
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some physically motivated minimal requirements, thus representing our first example of
path (b) among the lines of modern functional development. In Becke’s original work
(Becke, 1996a) the new method has been applied in a post-LDA manner (i. e., the func-
tional was applied on KS orbitals and the corresponding density obtained from a con-
verged SVWN calculation – as usually done by this author) whereas Neumann and Handy
tested a fully selfconsistent implementation. Benchmarked for atomization energies of the
G2 set (or a subset thereof by the latter authors), the new functional led to large overbinding
for non-hydrogen species, exaggerating the above mentioned observations for the inclu-
sion of gradient corrections to correlation even more. Species containing hydrogen atoms
on the other hand, were described with a better accuracy. The error of the pure GGA (i. e.,
non-hybrid) form (BB95, 8.8 kcal/mol) was found inferior even to BP86 (6.0 kcal/mol)
by Neumann and Handy, confirming the disappointing results of Becke’s original investi-
gation. Better results, however, were obtained for a fitted single parameter hybrid imple-
mentation, blending B with exact exchange (dubbed B1B95). Becke found this functional
superior to his three parameter fit (mean unsigned error 2.0 vs. 2.4 kcal/mol). Correspond-
ingly, a smaller error was also reported for B1B95 (2.6 kcal/mol) than for B3P86 (3.2 kcal/
mol) in the study by Neumann and Handy. Another functional, which does not rely on
empirical adjustments, is the PBE functional introduced by Perdew, Burke, and Ernzerhof,
1996. When applied to atomization energies for the G2 set of species (in combination with
the rather flexible 6-311+G(3df,2p) basis set on top of MP2 optimized structures), this
functional performs much better than SVWN, but does not reach the accuracy of BLYP
(mean absolute errors are SVWN: 36.4, PBE: 8.6, BLYP: 4.7 kcal/mol). Admixing of
25 % exact exchange does ameliorate the performance but, as reported by Ernzerhof and
Scuseria, 1999a, the resulting PBE1PBE hybrid functional still falls short of the B3LYP
hybrid. For the extended G2 set (148 molecules) the errors amount to 4.8 and 3.1 kcal/mol
for the PBE1PBE and B3LYP functionals, respectively. For the original G2 set consisting
of 55 molecules the errors are reduced to 3.5 kcal/mol (PBE1PBE) and 2.4 kcal/mol
(B3LYP). In a related study, Adamo and Barone, 1999, report an absolute mean error for
the PBE1PBE functional combined with the 6-311++G(3df,3pd) basis set on the 32 mol-
ecule JGP subset of the G2 database of 2.6 kcal/mol. Finally we mention the recent contri-
bution by Rabuck and Scuseria, 1999, who applied the B3LYP, VSXC, PBE1PBE and
PBE functionals to the determination of enthalpies of formation for molecules which are
not included in the typical density functional training sets and which are known to be
problematic. As expected, the average errors are significantly larger than for the G2 or
related references. The best performance is achieved with the VSXC functional (8.8 kcal/
mol absolute average deviation, 24.3 kcal/mol maximum deviation) followed by B3LYP
(10.6 and –37.2 kcal/mol, respectively) and PBE1PBE (11.5 and 39.5 kcal/mol, respec-
tively). The pure GGA functional PBE works significantly worse and shows an average
error of 38.2 kcal/mol and a maximum error exceeding 100 kcal/mol, rendering it fairly
useless in this context. Remember that VSXC achieves its good performance without con-
taining any Hartree-Fock exchange. Rather, it differs from regular GGA functionals by
the fact that it depends not only on the density gradient but also on the kinetic energy
density.



147

In conclusion, according to the results of a variety of systematic studies, the introduction
of hybrid functionals can be considered a successful step towards the ultimate goal of chemi-
cal accuracy for the evaluation of atomization energies of main group species, provided
that basis sets of polarized triple-zeta quality or better are used. Although functionals like
B3LYP and B3PW91 do not quite reach the target accuracy of below 2 kcal/mol, they
provide a pragmatic means to predict atomization energies with a pleasing accuracy. As
such, they constitute highly efficient alternatives to far more demanding post-HF methods,
which show comparable mean and maximum deviations in a variety of cases. These two
hybrid methods in particular are available in several major computer codes and provide a
significant improvement over results for pure GGA functionals with only few exceptions.
From the data given above, the rough hierarchy of functionals given in Section 6-9, i. e.,
LDA < GGA < hybrid functionals, is confirmed. If we go one step further and also ask the
question, which of the widely available functionals is to be recommended with respect to
the quality of the computational prediction of atomization energies, we arrive at the follow-
ing conclusion (with the expected accuracy increasing from left to right):

SVWN << BP86 < BLYP ≈ BPW91 < B3P86 < B3LYP ≈ B3PW91.
In terms of basis sets, there is compelling evidence that sets smaller than polarized tri-

ple-zeta quality significantly reduce the accuracy that can be obtained with modern hybrid
functionals and cannot be recommended if quantitative energetic results are the prime tar-
get.

In Table 9-5 we summarize the performance of various functionals discussed above as
collected from many sources, which highlights the conclusions of the above discussion.

Table 9-5. Compilation of mean absolute and maximum absolute deviations (in parentheses) for atomization
energies [kcal/mol] of small main group molecules from different sources.

32 1st row species, 6-31G(d) basis set, Johnson, Gill, and Pople, 1993

HF 85.9 SVWN 35.7
MP2 22.4 BVWN 4.4
QCISD 28.8 BLYP 5.6

33 1st and 2nd row diatomic molecules, TZ2P basis, Laming, Termath, and Handy, 1993

LDA 43.6 (18.3) CAM(A)-LYP 21.9 (14.5)
BLYP 9.5   (9.3) CAM(B)-LYP 6.5 (12.0)

G2 set, B1 = 6-31G(d), B2 = 6-311+G(3df,2p), Bauschlicher, 1995

HF/B1 80.5 (184.3) HF/B2 74.5 (170.0)
MP2/B1 16.0   (40.3) MP2/B2   7.3   (25.4)
BLYP/B1   5.3   (18.8) BLYP/B2   5.0   (15.8)
BP86/B1   7.2   (24.0) BP86/B2 10.3   (25.4)
B3LYP/B1   5.2   (31.5) BP86/B2   2.2     (8.4)
B3P86/B1   5.9   (22.6) BP86/B2   7.8   (22.7)

9.1  Atomization Energies
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Table 9-5, continued.

G2 set, Bauschlicher and Partridge, 1995

      6-31G(d)    aug-cc-pVTZ 6-311+G(3df,2p)
B3LYP 5.2 (31.5) 2.6 (18.2) 2.2 (8.1)

44 1st and 2nd row species, Martell, Goddard, and Eriksson, 1997

BLYP BP86 BPW91 B3LYP B3P86 B3PW91
6-31G(d,p) 7.6 12.7 7.0 5.6 6.7 5.6
6-311G(d,p) 6.8 10.4 6.1 6.8 6.2 6.9
cc-pVDZ 7.3   9.9 7.2 8.5 5.4 8.4
cc-pVTZ 7.2 14.2 7.8 3.1 6.9 3.8

G2 set, Stewart and Gill, 1995

BW/6-31G(d) 5.5 (25.5) BLYP/6-31G(d) 4.5 (16.3)
BW/6-311+G(3df,2p) 4.9 (15.3) BLYP/6-311+G(3df,2p) 4.7 (15.3)

27 1st and 2nd row diatomic molecules, TZ2P basis, Neumann and Handy, 1995, 1996

BP86 6.0 (18.3) B3P86 3.2   (9.3)
BRP86 5.5 (14.5) BR3P86 3.1 (12.0)
B1B95 8.8 (24.1) B1B95 2.6   (9.4)

19 species incl. 3rd row atoms, 6-311+G(3df,2p) basis, Redfern, Blaudeau, and Curtiss, 1997

G2 1.2   (5.2)
BLYP 5.3 (24.2) B3LYP 3.3 (6.2)
BPW91 4.5 (24.7) B3PW91 2.1 (5.7)

108 1st and 2nd row species, Scheiner, Baker, and Andzelm, 1997

DZVPLDA TZVPLDA DZP 6-31G(d) TZ2P UCC
SVWN 47.6 52.1 47.0 52.2 50.1 56.4
BLYP   7.4   6.9 10.2   7.0   7.4   7.1
BPW91   6.4   6.2   9.7   7.4   7.3   7.0
B3LYP   8.8   7.8 10.1   6.8   6.5   4.1

G2 set, 6-31+G(d) basis set, Adamson, Gill, and Pople, 1998

EDF1 3.2 (15.3) BLYP 4.4 (16.3)
B3LYP 5.9 (35.9)

G2 (first 2 cols.) and ext. G2 set, 6-311+G(3df,2p) basis, Ernzerhof and Scuseria, 1999a

SVWN 36.4 (84) 83.7 (216)
PBE   8.6 (26) 17.1   (52)
BLYP   4.7 (15)   7.1   (28)
B3LYP   2.4 (10)   3.1   (20)
PBE1PBE   3.5 (10)   4.8   (24)
VSXC   2.5 (10)   2.7     (8)
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Now that we have considered the performance of DFT for the prediction of atomization
energies for main group species in some detail, we focus a little closer on the right hand
side of such reactions: the atoms. Atoms are not only the smallest subunits in chemistry,
they are – seemingly paradoxically – also among the most difficult systems to describe for
approximate density functional theory. The only exceptions which are completely
unproblematic include closed-shell atoms, such as the ground states of the rare gases, but
these are not the subject of this section. Although the errors seen in the preceding section
stem at least to some extent from problems describing main group atoms in general and
atomic states in particular, the main thrust of the following discussion will be geared to-
wards transition-metal atoms and ions. The multifaceted chemistry of transition-metals is
largely determined by their variable occupation of nd, (n+1)s, and (n+1)p valence orbitals
which poses severe challenges for a theoretical treatment. From a physical point of view,
subtle differential correlation and exchange effects of the various ndp (n+1)sq occupations
are realized in the different atomic states. A method which aims at an accurate description
of atomic states must be capable of providing a balanced and unbiased representation of the
many possible electronic situations. This is anything but an easy task for any current quan-
tum chemical strategy, including sophisticated approaches such as configuration interac-
tion or coupled cluster methods. One should therefore not be surprised that problems arise
with Kohn-Sham methods based on approximate density functionals.

A second major reason why atoms are so difficult, in particular for methods rooted in
approximate density functional theory, has been touched upon already in Chapter 5. In
Kohn-Sham theory, by definition, we do not have access to the correct many-electron wave
function and its symmetry requirements. It is therefore not clear how to deal with atomic
terms whose wave functions are eigenfunctions of the 2 2ˆL̂ , S  and related operators (see
Section 5.3.7). The usual way out is to select a single-determinantal non-interacting Kohn-
Sham reference system for defining the values of the conserved quantum numbers. This
leads to ambiguities and possible inconsistencies in the description of these states. Con-
sider the high spherical symmetry of atomic species and recall from Chapter 5 the inability
of current approximate functionals to properly account for the related degeneracy effects
which occur in open-shell situations. A comprehensive computational study to investigate
these problems has been reported by Baerends, Branchadell, and Sodupe 1997. They dem-
onstrate that such difficulties already show up for main group atoms with partially occu-
pied p-orbitals. Let us consider the example of a 2P ground state for a boron atom with its
[He] (2s)2 (2p)1 electron configuration. The energy differences between the spherical den-
sity with 1/3 of an electron in each of the three real p-orbitals and a non-spherical density
derived from occupying the real pz orbital34 amounts to some non-negligible 0.2 eV if the
BP86 protocol is used. If instead one of the complex p-orbitals is occupied (e. g., px + ipy
which corresponds to ML = 1), the resulting energy is roughly in-between the previous two

34 This corresponds to the component of 2P with ML = 0. Occupying the real px or py orbital results in the same
energy – but note that the real px and py orbitals are no longer eigenfunctions of the 2L̂  operator.

9.2  Atomic Energies
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results. The exact energy density functional would be invariant over the set of charge den-
sities belonging to a degenerate ground state and would produce precisely the same energy
for all these possible representations. However, none of the currently known approximate
density functionals is able to meet this requirement. This type of problem is particularly
prominent when it comes to describing transition-metal atoms or ions with partially filled
d-shells. Here, the energy even depends on which of the real d-orbitals are selected for
specifying the configuration, because the shape of the dz2 orbital differs from the shape of
the other four orbitals of this set. We already illustrated this problem in Chapter 5 for the d1

configuration of the ten-fold degenerate 2D ground state of the scandium dication. The
important take home message here is that due to the deficiencies of the currently used
density functionals, there is no unambiguous reference energy for atoms in approximate
density functional theory.

What is obviously needed is a generally accepted recipe for how atomic states should be
dealt with in approximate density functional theory and, indeed, a few empirical rules have
been established in the past. Most importantly, due to the many ways atomic energies can
be obtained, one should always explicitly specify how the calculations were performed to
ensure reproducibility. From a technical point of view (after considerable discussions in
the past among physicists) there is now a general consensus that open-shell atomic calcu-
lations should employ spin polarized densities, i. e. densities where not necessarily

)r(
2

1
)r(

2

1
)r(

���

βα ρ+ρ=ρ . Note that this does not mean that the unrestricted Kohn-Sham

formalism has to be used, restricted open-shell variants are in principle equally eligible
(but recall the discussion in Section 5.3.5). All this condition states is that the α-density
does not have to be equal to the β-density. Actually, this rule must seem trivial and enforces
itself almost automatically, because spin unpolarized open-shell calculations are – if pos-
sible at all – usually difficult to perform with most current program packages. By the same
token, densities that are allowed to be non-spherical should be used. The corresponding
atomic orbitals should be occupied either by one or two electrons rather than distributing
the N electrons equally over the n degenerate orbitals.35 This rule is also – in principle –
automatically obeyed in most calculations done with standard codes, since it represents the
default way of performing such calculations. However, even in cases where a calculation is
started with an integer occupation of d-orbitals, unphysical mixings between d-orbitals
and the (n+1)s-orbital may occur, depending on the symmetry imposed. The solutions
resulting from such scrambling of the original occupation pattern cannot usually be related
to any physical state anymore, as outlined further below. When spin-polarized, non-spheri-
cal densities are allowed, the additional variational freedom leads to solutions which are
usually significantly lower in energy than if these restrictions are enforced.

35 The physical reasoning for why these densities were frequently employed in the earlier days of density func-
tional theory was that in this way the degeneracy of the partially filled d-orbitals could be retained. A technical
reason why these densities still have to be employed in some recent investigations is that calculations with
integral orbital occupations simply do not converge in the self consistent field procedure (see, e. g., Blanchet,
Duarte, and Salahub, 1997). Such densities correspond to a representation of a particular state 2S+1L with Ms
= S and a spherical averaging over ML.
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Following the discussion in Section 5.3.7, among the possible occupations of the real
atomic orbitals connected to a formal configuration one should select only those which
correspond to a single-determinantal representation of the desired atomic term. As stated
very early on by Ziegler, Rauk, and Baerends, 1977, only such single-determinantal states
are valid for a description using the current Kohn-Sham technology and the corresponding
approximate density functionals. This also means that there are states of atoms or mol-
ecules which cannot be computed directly owing to their inherent multi-determinantal char-
acter. In these cases alternative routes such as the sum method introduced in Section 5.3.7
must be used. For the transition-metal atoms and their positive ions, only the lowest multiplet
components of a particular configuration are needed for the ground and first excited states
and no such complications occur. Rather, all these terms can be represented by single deter-
minants. However, with the exception of ml = 0 all the 2l+1 components of atomic orbitals
for a given l are complex and therefore not directly accessible for a representation using
real orbitals. Instead, linear combinations of the complex determinants sharing the same
±ml need to be formed such that they lead to real representations. The adequate occupations
of real d-orbitals, which correspond to single Slater determinants with the correct angular
momentum and spin symmetry, have been summarized in an appendix of a frequently quoted
paper by Hay, 1977, and are reproduced in Table 9-6.

It has been noted in Hay’s paper that the occupations for the d1, d4, d6, and d9 states are
in principle arbitrary. This does not strictly hold true for density functional applications
because of the above-mentioned dependence of the energy on the shape of the occupied
orbitals. The density generated from occupying the dz2 differs from the one obtained from
placing the electron in, e. g., the dxy orbital. Feeding an approximate density functional
with these two unequal densities may lead to non-identical energies (cf. Figure 5-2). In
most practical applications, however, the errors introduced in this way should be much
smaller than those caused by other limitations of the functional or basis set employed.

Table 9-6. Open-shell d-configurations after Hay, 1977.

Configuration Ground State Term Occupation

d1 2D 1
z

)d( 2

d2 3F 1
yx

1
z

)d()d( 222 −

d3 4F 1
yz

1
xz

1
xy )d()d()d(

d4 5D 1
yz

1
xz

1
xy

1
yx

)d()d()d()d( 22 −

d5 6S 1
yz

1
xz

1
xy

1
z

1
yx

)d()d()d()d()d( 222 −

d6 5D 1
yz

1
xz

1
xy

1
yx

2
z

)d()d()d()d()d( 222 −

d7 4F 1
yz

1
xz

1
xy

2
yx

2
z

)d()d()d()d()d( 222 −

d8 3F 2
yz

2
xz

2
xy

1
yx

1
z

)d()d()d()d()d( 222 −

d9 2D 2
yz

2
xz

2
xy

2
yx

1
z

)d()d()d()d()d( 222 −
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The generation of a clean occupation pattern for atomic d-orbitals is greatly facilitated if
point-group symmetries can be exploited which prevent unphysical mixing. This has been
discussed in some detail in a paper on density functional atomic calculations (using a re-
stricted open-shell rather than the usual unrestricted strategy) of 3d transition-metal atoms
by Russo, Martin and Hay, 1994. What one needs are symmetry constraints which allow
the occupation of the nd- and (n+1)s-orbitals in such a way that any unwanted mixing
leading to unclear, non-integer occupations is prevented by symmetry. Let us elucidate this
by using the 5F term of a d3s1 occupation, as realized in the first excited state of the V+ ion
as an example. If we are fortunate enough to have a program which supports non-Abelian
point-group symmetries at our disposal, octahedral symmetry with inversion (point-group
Oh) should be employed. The three singly occupied d-orbitals are – following Table 9-6 –
chosen as the dxy, dxz, and dyz orbitals which span the three-dimensional irreducible repre-
sentation t2g. Hence, these three orbitals are equivalent and each is occupied by one elec-
tron of the same spin. Since the Pauli principle excludes the occupation of each spin orbital
by more than one electron and because the other d-orbitals belong to a different irreducible
representation of Oh (namely eg) the electrons deposited in the t2g orbitals cannot move to
any another d-orbital. The s-orbital belongs to the a1g irreducible representation. Also since
none of the d-orbitals transforms as a1g and in particular the occupied dxy, dxz, and dyz
orbitals are separated from the s-orbital by symmetry, also s/d mixing is impossible. As a
consequence the originally defined orbital assignment of electrons is frozen by symmetry
and will not change during the course of the calculation. If instead we have only Abelian
point-groups at our disposal and select C2v symmetry (the typical choice) it is still possible
to unambiguously assign the three d-electrons to the dxy, dxz, and dyz orbitals. In this case,
these three d-orbitals are all in an irreducible representation of their own, namely a2, b1 and
b2, respectively. Thus, no mixing between these or other d-orbitals can occur. However, the
formally singly occupied 4s orbital belongs to the totally symmetric a1 representation which
happens to be the same irreducible representation in which the dz2 and dx2-y2 orbitals can be
found. Hence, these three orbitals can now mix and there is no guarantee that the electron
which was initially assigned to the 4s orbital stays there and does not partially move into
the dz2 or the dx2-y2 orbital. Unfortunately, the use of high point-group symmetries and other
symmetry arguments is not a panacea. First, many programs, such as for example the cur-
rent versions of Gaussian simply do not support non-Abelian point-groups and Oh is thus
out of reach. Second, there is also a number of cases where symmetry alone, even if
symmetries such as Oh were accessible, does not help. A case in point is provided by the
3d14s1 occupation of the 3D ground term of the scandium cation. No point-group is avail-
able which could both exclude mixing of the s- and d-orbitals and still prevent unpaired d-
electrons from moving between degenerate symmetry-equivalent d-orbitals. Neither the
high Oh symmetry nor the Abelian C2v point-group (nor any other point-group) assures that
this electron distribution will persist throughout the calculation. Let us be specific: in Oh
we can prevent the 4s-orbital from mixing with any of the 3d-orbitals because they are
separated by symmetry. But because the 3d-orbitals transform as two- (eg) or three-dimen-
sional (t2g) irreducible representations of Oh, the smearing of the one d-electron between
symmetry equivalent orbitals cannot be ruled out. For example, if we initially place the
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electron in the dz2 orbital, there is no symmetry related reason why this electron should not
partially occupy the other d-orbital transforming as eg, i. e., dx2-y2. Fractional occupations
of these orbitals would be the result. On the other hand, while a unique assignment of the
3d electron is possible in C2v because there are three equivalent one-dimensional irreduc-
ible representations of C2v in which this single electron could be uniquely accommodated,
the 4s/3d mixing cannot be prevented in that point-group for the same reason as explained
above. In such cases, one usually prefers C2v, but the user has to observe carefully the
progress of the calculation in order to ensure that the initially adjusted occupation pattern
persists until convergence of the self consistent field, at least as much as possible. These
guidelines can be summarized in the following rule of thumb for the calculation of atomic
energies: accept only solutions with the correct occupation pattern and with integer d-
orbital occupations (see Ricca and Bauschlicher, 1995a). Finally, we should note that by
lifting all restrictions with respect to symmetry and occupation pattern, a further lowering
of the atomic energy can sometimes be achieved, see Baerends, Branchadell, and Sodupe
1997. The physical meaning of such solutions, which are often characterized by fractional
occupations of d- and s-orbitals is, however, questionable.

In addition to these more technical problems, there are other inconsistencies which re-
strict the quality of atomic energies. The most prominent issue in this context is the bias of
current approximate density functionals towards preferentially occupying d- rather than s-
orbitals (for detailed discussions see Gunnarsson and Jones, 1985, Ziegler and Li, 1994,
Holthausen et al., 1995). This is just the opposite of what is generally seen for traditional
wave function based approaches, which favor states with fewer d-electrons. We can ration-
alize the contrasting shortcomings of these two different schools of theory by the following
considerations exemplified for the atomic excitation energies of 3d transition-metal cati-
ons. The separations between the dn versus dn–1s1 states are determined by Coulomb repul-
sion, exchange energy, and electron correlation. As a consequence of the different sizes of
d- and s-orbitals36 the average interelectronic distances are larger for dn–1s1 configurations,
resulting in a reduced Coulomb repulsion. From the traditional wave function based view-
point, this means that the correlation problem is less severe for this occupation pattern.
Hartree-Fock theory, which treats Coulomb and exchange interactions exactly but neglects
correlation of electrons with antiparallel spin, indeed shows a pronounced bias towards
dn−1s1 configurations. This is particularly so for the late transition-metals for which this
change of the electronic configuration is accompanied by a spin flip and HF favors the
high-spin states. The very same situation causes a different problem if density functional
theory is invoked. Due to the more compact electron arrangements in the valence d-shells,
the average exchange stabilization per d-electron pair, Kdd, is stronger than that between an
s- and a d-electron, Ksd. As to the current situation, it has been shown that the LDA overes-
timates the absolute exchange terms Kdd, Ksd, as well as those between s- and d-electrons
and core-orbitals. As discussed in a key paper by Gunnarsson and Jones, 1985, this exag-
geration of exchange stabilizations is more pronounced for dn than for dn–1s1 situations

36 d-orbitals are generally more compact than s-orbitals of the following main quantum number by a factor of
about 1.5 to 3.4. The <rs>/<rd> ratio is particularly large for the 3d-series of elements, see Bauschlicher, 1998.

9.2  Atomic Energies
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which leads to the bias mentioned above. Fortunately, these effects are compensated for in
part by account of correlation energies, which operate in the opposite direction, so that
even the LDA usually performs better than the HF approach. Absolute exchange energies,
however, are much larger in transition-metal atoms than absolute correlation energies. For
example, a SVWN treatment of the Cu+ ion yields Ex in the order of –60 Eh, whereas Ec is
about –3 Eh, which illustrates the predominant influence of shortcomings in the exchange
part of functionals on observed errors.

We can already anticipate that gradient corrections to exchange or an admixture of HF
exchange in the hybrid functional scheme can help to improve agreement with experiment.
This has indeed been observed, but a tendency to artificially stabilize dn over dn–1s1 con-
figurations remains. The inclusion of atomic state splittings of transition-metals into the
databases used to construct new functionals appears to be a logical consequence, but as far
as we are aware, this has not been done as of yet. As a consequence, even using the most
advanced functionals, there are a number of cases where either wrong atomic ground states
are predicted by density functional theory, or where s/d mixing results in intermediate
occupations, which cannot be connected to physically reasonable configurations. For ex-
ample, the atomic ground state term of cobalt is 4F, dominated by a 3d74s2 occupation. The
second 4F term with a 3d84s1 occupation is – after correcting for the differential relativistic
effects – 0.17 eV higher in energy. Density functional calculations of various flavor give
the reverse result with the 3d84s1 occupation being lower in energy than the 3d74s2 one.

Finally we need to mention that heavier elements exhibit strong relativistic effects, which
also have a significant influence on the physical properties of the d-block elements. While
common wisdom has it that relativistic contributions have even qualitative consequences
for bonding or electronic state splittings of 5d transition-metals,37 their influence is not that
dramatic, but still non-negligible, for the 4d elements. The relativistic contributions to 3d
elements are often ignored, but yet, for the later elements of this row, they are larger than
inexperienced newcomers to the field might anticipate. In particular for Cu there is quite a
deal of influence on the stability of atomic states. The experimental value for the 3d10(1S)
→ 3d94s1(3D) state splitting in the copper cation is 2.81 eV. However, a sophisticated post-
HF treatment of these two states gives a value of 3.11 eV.38 Such a deviation is outside the
expected error range for a high quality level of theory, and indeed, the inclusion of scalar
relativistic effects by means of perturbation theory (mass-velocity and Darwin corrections)
gives a value of 2.85 eV in good agreement with experiment. Hence, the 3d94s1 configura-
tion is stabilized by 0.26 eV with respect to 3d10(1S) due to relativistic contributions. This
is certainly a non-negligible source of error for non-relativistic calculations if triplet copper
cations are involved. Hence, while non-relativistic calculations on 3d elements are very
well acceptable for many purposes, one has to take into account relativity if a higher accu-
racy is aimed at, at least for the later elements in the row. The most convenient way to

37 In fact, for 5d transition-metals relativistic contributions, and in particular spin-orbit coupling, can be of the
same order of magnitude as chemical bonding.

38 At the highly correlated CASSCF-AQCC level of conventional ab initio theory using a very large [7s6p4d3f2g]
ANO basis set.
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include scalar relativity to some extent into the calculations is the use of relativistic effec-
tive core potentials or explicit one-component schemes, but the neglect of spin-orbit cou-
pling effects can be problematic for the heavier elements.

A typical set of results for excitation energies of 3d transition-metal atoms and their
cations based on the results of Koch and Hertwig, 1998, is summarized in Tables 9-7 and
9-8. The SVWN, BLYP and B3LYP functionals were combined with a sufficiently flexible
contracted GTO basis set of 8s7p4d2f quality to expand the Kohn-Sham orbitals. In these
calculations the rules outlined above were followed. For clarity the occupations used in the
respective point-group symmetries are also included in the Tables. Since the computationally
predicted excitation energies have been obtained in a completely non-relativistic scheme,
they are compared to experimental energies that have been empirically corrected for differ-
ential scalar relativistic effects taken from Raghavachari and Trucks, 1989a and 1989b.
These corrections are based on approximate calculations and neglect the influence of rela-
tivity on the correlation energy (and vice versa), but have been shown to provide a good
approximation. The preference of current approximate density functionals for d-rich occu-
pations – in particular with the LDA – can easily be inferred from these results. Use of the
gradient-corrected BLYP protocol or the hybrid B3LYP approach does lead to a significant
reduction of the deviations but also to a less systematic behavior. Nevertheless, as com-
pared to other strategies the overall accuracy of these results, in particular for the B3LYP
functional, is satisfying. For example, the mean absolute deviations for the neutral excita-
tion energies (i. e., dns2 versus dn+1s1 configurations) as determined with the Hartree-Fock
model, second order Møller-Plesset perturbation theory or the QCISD(T) model amount to
0.86, 0.55 eV, and 0.14 eV, respectively (Raghavachari and Trucks, 1989a). The corre-
sponding density functional results are 0.74 eV for the SVWN, 0.55 eV for the BLYP
functional, and 0.33 eV if the B3LYP scheme is used. For the cations (i. e., dns1 versus dn+1)
the density functional approaches perform significantly better with mean unsigned errors
of 0.32, 0.18 and only 0.16 eV for LDA, BLYP, and B3LYP, respectively. For comparison,
Raghavachari and Trucks, 1989b report mean deviations of the HF, MP2 and QCISD(T)
schemes of 1.32, 0.35, and 0.23 eV, respectively. It should be noted that due to the above
mentioned limitations in the symmetry treatment for some of the difficult cases, the con-
verged wave functions were not absolutely clean. A case in point is provided by the Fe 5D
ground term. The corresponding d6s2 occupation cannot be treated in a unique, point-group
symmetry determined way. As indicated in Table 9-7, one has to resort to C2v symmetry
and face the problem of s/d mixing. In fact, in all final Kohn-Sham wave functions some of
the s-electron population had moved to the symmetry related d-orbitals, creating a slightly
fuzzy picture and adding to the inherent uncertainty of the results. Overall, this uncertainty
in atomic Kohn-Sham calculations is at least in the order of some tenths of an eV, but larger
deviations may also occur using even state-of-the-art functionals.

9.2  Atomic Energies
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9.3 Bond Strengths in Transition-Metal Complexes

The knowledge of accurate thermochemical data for individual metal-ligand bond strengths
is of major importance for the rational design of catalytic processes. Such data is unfortu-
nately rather limited for larger species in solution, but the last decade has provided an ever
growing list of accurate results for small, unsaturated complexes in the gas-phase by elabo-
rate experimental techniques (see, e. g., Freiser, 1996). Today, however, computational
thermochemistry is an important tool to fill those gaps, which cannot be covered by ex-
perimental means alone. Of course, a theoretical method, which shall be used to predict
unknown binding energies of metal-ligand bonds, first has to master a suite of known
benchmarks typical for the problem under investigation, in order to prove that it can han-
dle the delicate and subtle electronic problems in yet unexplored species. Experimental
gas-phase data are very well suited for this purpose due to the exclusion of severe compli-
cations, like solvent effects. On the traditional side, theories like Hartree-Fock, the MP
perturbation methods and also the complete-active-space SCF (CASSCF) approach have
been shown not to recover enough electron correlation and do not yield accurate geometries
or binding energies for first-row transition-metal complexes. The better players in the
post-HF field are the modified coupled-pair functional (MCPF) and especially the more
rigorous CCSD(T) approach. Also second-order perturbation theory based on CASSCF
references (CASPT2) has been shown to yield fairly accurate results even in complicated
cases (Roos et al., 1996). Quantitative accuracy, however, is hard to obtain even at the
highest levels of multireference treatment. Often, even such extraordinarily expensive
methods need empirical corrections to afford ‘best estimates’, in order to approach an
accuracy better than 5 kcal/mol. For an overview of this area of research the reader is
referred to reviews by Bauschlicher, 1995b, and Siegbahn, 1996a, and references cited
therein. Lately, as a more efficient alternative, parameterized extrapolation schemes have
been developed, which – much like G2 and related theories – empirically scale the corre-
lation energy (obtained from a moderate level of theory within a limited basis set) to
estimate the results of a more complete, but prohibitively expensive treatment. A promi-
nent example is the PCI-80 approach developed by Blomberg and Siegbahn (for a review
see Blomberg, 1998).

In Section 9.1 we have outlined the difficulties of modern density functionals to reach
chemical accuracy for atomization energies of main group species, and we concluded that
this goal is eventually not completely out of reach for the hybrid functional approach. In
this respect, we have looked at atomization processes as the worst case for a density func-
tional treatment, because the changes from molecular to atomic densities are most severe.
We can therefore expect a better description of the thermochemistry connected to the rup-
ture of individual bonds leading to larger (non-atomic) fragments due to a more complete
cancellation of errors. Density functional theory appears to be in a reasonably good shape
to further conquer this terrain. In this section, we concentrate on the strength of individual
bonds in small, coordinatively unsaturated, and mostly open-shell transition-metal com-
plexes, a worst case scenario in this field. Let us consider a specific example. If we want to
compute a metal-ligand bond strength according to M−X → M + X, then of course the

9.3  Bond Strengths in Transition-Metal Complexes
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4s 3− dz24s + 3dz2

isolated metal atom M becomes an integral part of the computational problem, including
the large errors discussed in the previous section. From what we know about the way den-
sity functional theory deals with transition-metal atoms, we should prepare to be less ambi-
tious with our expectations as to the accuracy of computations if these elements are in-
volved. Furthermore, a remnant of inorganic chemistry text book knowledge suffices to
confirm that this feeling is adequate not only for the right hand side of the above-mentioned
computational problem: the binding situation of transition-metals within complexes in one
way or another involves a redistribution of electrons between the valence nd, (n+1)s, and
(n+1)p orbitals on the metal, too. We can view this as a mixture of contributions from
ground, excited, and ionic states of the isolated atom.39 It can be energetically favorable,
for example, to (formally) promote the central metal atom M in a complex M-X to an
excited state in order to improve electrostatic interactions with the ligand. As an example,
we mention a particularly prominent binding mechanism which involves s/d hybridization.
Imagine a doubly occupied 3dz2 orbital and an empty 4s orbital as the (hypothetical) ground
state of a metal atom in a complex M-X. As illustrated in Figure 9-1, the formation of a (4s
+ 3dz2) hybrid-orbital maximizes the orbital overlap between metal and ligand X. For an
efficient charge transfer from the ligand to the metal this orbital has to be empty in order to
accept the corresponding electron density. The electron pair of the metal occupies the (4s –
3dz2) hybrid-orbital instead. Thereby, the charge density is efficiently polarized out of the
metal ligand bond axis into an equatorial orbital lobe, which reduces the electron-electron
repulsion between the formerly doubly occupied 3dz2 and ligand orbitals. If both hybrid
orbitals are being occupied in such a way, the energetic costs for this formal promotion of
electron density into the 4s orbital pays off very well in many cases, and an overall energy
gain can be obtained by such a bonding mechanism.

39 For a guide to a detailed understanding of the subject, the reader is encouraged to study the somewhat dated
but highly enlightening contribution of Carter and Goddard, 1988.

Figure 9-1. Schematic plot of the (4s + 3dz2) and (4s – 3dz2) orbitals of a third-row transition-metal involved in a
M-X bond.
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During the last years, more and more researchers have applied density functional theory
to small transition-metal complexes and benchmarked the results against either high level
wave function based methods or experimental data. A particular set of systems for which
reasonably accurate benchmark data are available are the cationic M+-X complexes, where
X is H, CH3 or CH2. Let us start our discussion with the cationic hydrides of the 3d transi-
tion-metals.

From the data in Table 9-9 we see clearly the recurring picture of LDA-typical overbinding,
which is ameliorated to some extent by inclusion of gradient corrections. Still, the BP86
results show a large overbinding in particular for the later elements of the series. Ziegler
and Li, 1994, attributed this latter finding to a general overestimation of exchange interac-
tions between the electron on the hydrogen atom and the same-spin electrons present on the
metal atom, which leads to a particularly large error for copper. The B3LYP hybrid func-
tional performs much better and halves the errors present in the GGA results. We note a
reasonable agreement between the corresponding results of Barone, Adamo, and Mele,
1996, on one hand and Blomberg, Siegbahn, and Svensson, 1996, on the other except for
the vanadium hydride, where the results of both groups differ. The reason for this discrep-
ancy might be attributed to the differences in basis sets, geometries and zero point vibra-
tional energies, but these should be reflected in the other data as well. Thus, one cannot
fully exclude the possibility that discrepancies with respect to molecular or atomic states
are present in this data. However, the PCI-80 approach, which performs best with a mean
deviation of 2 kcal/mol for this series, gives a value for VH+ right in the middle of the two
B3LYP results – so no conclusive statement can be made as to whether or not this is an
intrinsic shortcoming of the method. In any case, the large deviation for the copper hydride
cation found at the BP86 level is not seen in the B3LYP data of Barone, Adamo and Mele

Table 9-9. Experimental binding energies D0 [kcal/mol] for the cationic hydrides of the 3d elements and devia-
tions from these data obtained at various levels of theory.

Method ScH+ TiH+ VH+ CrH+ MnH+ FeH+ CoH+ NiH+ CuH+ MADe

Exp.a 56 53 47 32 48 49 46 39 21  ±2

SVWNb +9 +7 +9 +16 +11 +10 +14 +14 +21 12

BP86b +5 +4 +6 +8 +6 +10 +10 +11 +14   8

B3LYPc +3 +4 −2 +4 +1 +9 +5 +3 +4  4

B3LYPd +4 +3 +7 +5 +1 +9 +3 +7 —  5

MCPFd –6 –5 –5 –4 –10 –4 –9 –6 —  6

PCI-80d 0 +2 +2 −1 −3 +3 +1 +3 —  2

a Armentrout and Kickel, 1996; b Ziegler and Li, 1994; c TZVP+f basis, corrected for zero point vibrational
energies (Barone, Adamo, and Mele, 1996); d Single point energy calculations using the 6-311+G(2d,2p) basis
set. Geometries have been obtained using the smaller Hay and Wadt ECP/basis combinations (Blomberg, Siegbahn,
and Svensson, 1996); e Mean absolute deviation from experiment; for experiment, the average of the cited experi-
mental error bars is given.

9.3  Bond Strengths in Transition-Metal Complexes
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(this species has not been considered by Blomberg, Siegbahn and Svensson40). A conspicu-
ously large deviation of +9 kcal/mol occurs for the FeH+ species in the B3LYP results of
both groups. Also the PCI-80 approach shows the largest deviation for this species, al-
though the error is much smaller (3 kcal/mol).

Now we turn to the +
3MCH  cations, which have been studied by Holthausen et al., 1995,

and Blomberg, Siegbahn, and Svensson, 1996. The former authors used the BHLYP and
B3LYP hybrid functionals in combination with a rather limited Hay and Wadt ECP/basis
set. With the B3LYP hybrid functional, quite large overestimations of the binding energies
were obtained for some species (cf. Table 9-10). The mean absolute deviation was as high
as 9 kcal/mol, similar to the MCPF results of Blomberg, Siegbahn, and Svensson. The
unsatisfactory performance of the MCPF approach, however, has been attributed by
Blomberg Siegbahn and Svensson to the near-degeneracy effects, which are stronger in the
methyl complexes than in the hydrides. The much improved results obtained with the BHLYP
functional are remarkable, although it seems fortuitous in the present context: the much
larger Wachters/6-311+G(2d,2p) basis set combination used by Blomberg, Siegbahn, and
Svensson improves the B3LYP values substantially. However, none of the DFT methods
tested reaches the good performance of the scaled PCI-80 approach.

If we finally look at the corresponding methylene complexes (see Table 9-11) the poor
MCPF performance suggests that these systems pose a severe near-degeneracy problem,
and an appropriate rigorous wave function based approach would have to invoke a
multireference treatment in combination with large basis sets. Therefore the more interest-
ing it is to see that the B3LYP hybrid performs quite well. If used in combination with the
small Hay and Wadt ECP/basis, larger overestimations are seen for the Mn+, Fe+ and Co+

methylene complexes, but the overall quality of the results is better than that achieved for
the methyl species. The mean unsigned errors are significantly smaller if the larger Wachters
basis set is used, quite independent of the contraction scheme or basis employed on the
CH2 unit – however, some binding energies deviate quite substantially. The BHLYP ap-
proach underestimates the binding energies systematically, irrespective of the basis set used.
In fact, the pronounced tendency for overbinding seen in the methyl results above leads for
the methylene complexes to a somewhat better performance for the smaller Hay and Wadt
ECP/basis set combination. This clearly demonstrates error compensation effects. From
these findings we conclude that neither the use of the BHLYP functional, nor that of the
small Hay and Wadt effective core potential can be recommended for the evaluation of
binding energies of coordinatively unsaturated, open-shell transition-metal complexes. As
noted already in Section 9.1, the B3LYP hybrid should be used with basis sets of at least

40 At this point we like to add a note of caution: Blomberg et al. used the 6-311+G(2d,2p) basis set for single
point energy calculations. This notation was probably chosen by the authors of Gaussian to maintain the
standard nomenclature of the Pople-type basis sets but retrieves a modified Wachters, 1970, basis for the 3d
elements out of the basis set library. Somewhat irritatingly, the request for d-polarization functions in the
above notation actually augments the metal with f-functions. While this makes physical sense, the notation is
at best inconsistent. We additionally note that – at least up to Gaussian98, Rev. A7 – the internally stored basis
set for Cu mixes the d-function exponents and contraction coefficients optimized for the 2D atomic term with
the s- and p-functions determined for the 2S term. Use the ‘gfinput’ keyword in order to check the basis set
used in Gaussian calculations.
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polarized triple-zeta quality. A comparison of results from the systematic studies presented
so far shows that the B3LYP functional in combination with extended basis sets gives a
rather stable mean absolute deviation on the order of 4–6 kcal/mol, whereas maximum
deviations can reach 9 kcal/mol. Thereby, the B3LYP functional outperforms the MCPF
approach. The former produces smaller mean absolute errors and is more robust even for
problematic cases. However, as noted above, the density functional treatment does not reach
the good performance of the PCI-80 extrapolation scheme, at least not for the cases tested
so far.

We note in passing that empirical correction schemes have been proposed to account for
the bias towards d-rich situations of current density functionals. Ricca and Bauschlicher,
1995a, compute the dissociation energies of cationic transition-metal carbenes M=CH2

+ →
M+ + CH2 as a weighted average of the energies of the 3dn4s1 and the 3dn+1 asymptotes with
the weights determined by the metal 3d occupation in the carbene. For example, the FeCH2

+

ion has at its equilibrium geometry a 3d occupation of 6.52 electrons according to a Mulliken
population analysis. Ricca and Bauschlicher compute the Fe+/CH2 binding energy as an
average of 48 % of the 6D (3d64s1) and 52 % of the 4F (3d7) asymptote. However, this
correction has only a marginal influence and in fact yields inferior results in some cases.
The universal applicability of such correction schemes seems therefore to be questionable.
It is probably fair to say that as of today there seems to be no patent remedy in sight which
would reduce the inherent uncertainty in the atomic energies.

Related studies include the binding energies of 3d-transition-metal monocarbonyls
(Fournier, 1993, Ricca and Bauschlicher, 1994, Barone, 1994, Ricca and Bauschlicher,
1995b), MCH2

+ for 4d-transition row elements (Eriksson et al., 1994), +
n2 )OH(Fe  (Ricca

and Bauschlicher, 1995c), +
n2 )H(Co  (Bauschlicher and Maitre, 1995), ethylene complexes

of Cu+, Ag+, and Au+ (Hertwig et al., 1996), neutral metal hydrides (Barone and Adamo,
1997a), small titanium/oxygen compounds (Bergström, Lunell, and Eriksson, 1996), M+-
CO2 and OM+CO complexes for the 3d-elements (Sodupe et al., 1997a), 3d-element dihalides
(Wang and Schwarz, 1998), binding of nitric oxide to 3d-metal atoms (Blanchet, Duarte,
and Salahub, 1996) and 3d-metal cations (Thomas, Bauschlicher, and Hall, 1997). All these
studies (and many more, which we have not mentioned) essentially validate the applicabil-
ity of density functional theory approaches for transition-metal problems, and most of them
carry the same essential message: the minimum errors for the density functional treatment
of binding energies are of the same order of magnitude as the deviations found for com-
puted atomic state splittings. In light of the preceding discussion this comes to no surprise.
We have also seen above that the particular amount of exact exchange admixture can have
dramatic consequences for computed binding energies. Hence, as long as there are no bet-
ter physically motivated approaches the only obvious way to improve the results of modern
functionals in the transition-metal area seems to be the inclusion of atomic state splittings
into the training sets used for the empirical construction of these functionals.

Finally, we should mention that experimental data serving as a benchmark for the ap-
praisal of computational methods must be highly accurate. Setting the goal of 2 kcal/mol
for useful accuracy of calculated thermochemical data means of course, that a still better
level of accuracy must be reached by experimental measurements. The high accuracy of
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experimental data is in fact a most attractive property of the G2 set of molecular systems,
and is certainly not standard. The bulk of the metal-ligand binding energies determined
experimentally, usually obtained by elaborate mass spectrometric techniques, are often far
less accurate. As outlined by Blomberg and Siegbahn, 1998, a more realistic, but still useful
goal of accuracy in transition-metal chemistry can be set to 4 to 6 kcal/mol. We have shown
above that this goal still has to be regarded as quite ambitious, but it seems well within
reach of modern density functional techniques. However – and this is certainly one of our
main conclusions of this chapter – for every system under investigation, the importance of
calibrating the performance of the chosen strategy against appropriate reference results
cannot be overemphasized.

9.4 Ionization Energies

Let us now turn to the determination of ionization energies in the density functional frame-
work. This property, i. e., the energy required to remove an electron from a bound state to
infinite separation, is one of the most important characteristics for atoms. But also for
molecules ionization processes have attracted much attention from the early nineteenseventies
onwards when photoelectron spectroscopy emerged as a new and exciting experimental
technique. In photoelectron spectroscopy experiments monoenergetic radiation is used to
specifically eject electrons from any of the occupied levels in a molecule (of course, only if
sufficiently energetic radiation is used). Since each of these levels has a different energy,
the analysis of the ionization energies (as well as intensity and angular distribution of the
emitted electrons) serves as a microscopic probe for the detailed electronic structure of
molecules. It is therefore not surprising that this technique has served as a testing ground
for theoretical methods and nowadays, a strong synergy between experiment and theory
renders this field of research highly efficient. In the present context we note that the assign-
ment of photoelectron spectra was among the first successful applications of density func-
tional schemes.

Correlation effects are of particular importance for a proper description of ionization
processes since the number of electrons changes during the ionization. As a consequence,
the Hartree-Fock approximation usually underestimates ionization energies, since correla-
tion effects – which are neglected at the HF level – affect the neutral system usually more
strongly than the ionized cation with its one electron less. Obviously, the same observa-
tions apply to exchange-only density functionals, such as the old Xα method. For example,
the experimental ionization energy of the oxygen atom is 13.61 eV, but both, Hartree-Fock
and Xα severely undershoot this target and yield only 12.02 and 12.44 eV, respectively
(using a cc-pVQZ basis set). Of course, in all modern applications of density functional
theory combined exchange-correlation functionals are employed and the accuracy of the
computed predictions depends on the balanced description of the exchange and correlation
contributions in the neutral system and the ion. A number of systematic studies on the
performance of Kohn-Sham functionals regarding ionization energies, mostly based on the
G2 data or extensions thereof, have been published recently. Let us begin by quoting results
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from Becke, 1992b. This author applied various local and GGA functionals in his numeri-
cal, basis set free scheme (i. e., the results mirror the capability of the functional and are not
blurred by basis set deficiencies or biases) to the 42 accurately determined ionization ener-
gies of small species contained in the original G2 set. The LDA (where the Slater exchange
part was combined with the parameterization of the uniform electron gas data due to Perdew
and Wang, 1992) afforded mean absolute and maximum deviations of 0.23 and 0.62 eV,
respectively. The inclusion of Becke’s gradient corrections to the local exchange part actu-
ally yields results significantly inferior to those of the plain local functional, increasing the
errors by about a factor of two: the average error amounts to 0.41 eV and the maximum
error increased to 1.3 eV. Inclusion of the PW91 gradient-corrected correlation functional
(i. e., ending up with BPW91) significantly reduces the average error to 0.15 eV with a
maximum deviation of 0.44 eV. This situation is in striking contrast to the observations
made for atomization energies. There, the LDA was completely useless due to dramatic
overbinding and gradient corrections to exchange were found essential, while gradient-
corrected correlation functionals actually spoiled the error statistics (see above). In his
paper introducing the three-parameter hybrid functionals, Becke, 1993b, reports an aver-
age error of 0.14 eV for his original B3PW91 functional with a maximum error of 0.41 eV.
Thus, the beneficial effect of admixing a certain amount of exact exchange is much less
pronounced for ionization than for atomization energies. Very similar conclusions can be
extracted from recent papers by, e. g., De Proft and Geerlings, 1997, or Curtiss et al. 1998.
The latter authors established the accuracy of predicted ionization energies for seven popu-
lar exchange-correlation functionals combined with the 6-311+G(3df,2p) basis set with
respect to an extended set of more than 80 atoms and molecules. Unlike Becke in his above-
mentioned study, these authors employed the standard SVWN implementation of the LDA.
Interestingly, this functional performs rather disappointingly with an average unsigned er-
ror of 0.59 eV, confirming similar results by De Proft and Geerlings. The maximum devia-
tion occurs for CN whose ionization energy is overestimated by 1.74 eV. For the GGA
functionals BLYP, BP86, and BPW91, mean absolute deviations of 0.26, 0.20, and 0.22 eV,
respectively, were reported. The errors are slightly larger than those reported earlier by De
Proft and Geerlings but show the same trend in that BLYP seems to be the least accurate
GGA functional. Among the three hybrid functionals tested, B3LYP and B3PW91 perform
rather well with mean errors of 0.18 and 0.19 eV, respectively. Very surprisingly, if the P86
correlation functional is employed in the hybrid scheme (leading to the B3P86 functional),
a very large mean error of 0.57 eV results. The origin of this dramatic effect is unclear.
Hence, the winner in this contest turns out to be the B3LYP functional. To put this result
into perspective we need to point out that the G2 procedure performs much better with a
mean absolute deviation of only 0.06 eV and a maximum error of 0.32 eV (for B2F4).
Finally, we would like to mention the work of Ernzerhof and Scuseria, 1999a, who mostly
focus on the new PBE1PBE functional whose performance is comparable but slightly bet-
ter than B3LYP. However, these authors also show that the local VWN5 correlation func-
tional yields very satisfactory ionization energies (mean and maximum absolute errors of
0.22 and 0.6 eV) very close to the LDA results reported by Becke, while using VWN they
reproduced the large errors mentioned above. Thus it is obvious that even though the VWN
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parameterization for the local correlation functional is very close to other implementations
such as VWN5 or the local PW91 parameterization and unproblematic for almost all appli-
cations, it is not suited for computing ionization energies.

The important conclusion of this section is that ionization energies can be determined
with an average error of around 0.2 eV. The usual hierarchy of functionals, i. e., hybrid
functionals better than GGA better than LDA, however, does not strictly apply. Already the
local approximation provides good results as long as the VWN parameterization is avoided.
The GGA and hybrid functionals show only a small improvement over the LDA. On the
other hand, the B3P86 hybrid functional is an exception in that it performs very poorly and
should therefore not be applied to the determination of ionization energies. We have not yet
said anything about basis set requirements. It seems that ionization energies are less sensi-
tive in this respect than atomization energies. For example, Curtiss et al., 1998, show that
the mean absolute error for the B3LYP functional of 0.18 eV does not necessarily require
the large 6-311+G(3df,2pd) basis set. This accuracy is already reachable with the smaller
sets 6-311+G(2df,p) and even 6-31+G(d). A summary of the various benchmark results
discussed in this section is given in Table 9-12.

Table 9-12. Compilation of mean absolute (maximum) deviations for ionization energies [eV] of small main
group molecules from different sources.

42 atoms and molecules, numerical, basis set free, Becke, 1992b and 1993b

LDA 0.23 (0.62) BPW91 0.15 (0.44)

BVWN 0.41 (1.26) B3PW91 0.14 (0.41)

38 atoms and molecules, De Proft and Geerlings, 1997

SVWN, aug-cc-pVTZ 0.69 BLYP, aug-cc-pVTZ 0.19

BP86, aug-cc-pVTZ 0.17 B3LYP, cc-pVDZ 0.18

B3LYP, aug-cc-pVTZ 0.15 B3PW91, cc-pVDZ 0.20

B3PW91, aug-cc-pVTZ 0.15

83 atoms and molecules, Curtiss et al., 1998

SVWN, 6-311+G(3df,2p) 0.59 (1.74) B3LYP, 6-31+G(d) 0.18

BLYP, 6-311+G(3df,2p) 0.26 (1.02) B3LYP, 6-311+G(2df,p) 0.18

BPW91, 6-311+G(3df,2p) 0.22 (1.17) B3LYP, 6-311+G(3df,2p) 0.18 (1.65)

BP86, 6-311+G(3df,2p) 0.20 (1.20) B3PW91, 6-311+G(3df,2p) 0.19 (1.67)

B3P86, 6-311+G(3df,2p) 0.57 (2.22) G2 0.06 (0.32)

38 atoms and molecules, 6-311+G(3df,2p) basis, Ernzerhof and Scuseria, 1999

SVWN 0.69 (1.2) PBE 0.16 (0.5)

SVWN5 0.22 (0.6) PBE1PBE 0.16 (0.7)

BLYP 0.20 (0.6) VSXC 0.13 (0.4)

B3LYP 0.17 (0.8)
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9.5 Electron Affinities

The electron affinity of a neutral system is the energy gained upon attaching an additional
electron, thereby generating the corresponding anion. The addition of an electron does not
in all cases lead to energetically more favorable anions. Rather, there are many atoms or
molecules, where the energy of the anion is higher (i. e., less favorable) than that of the
parent neutral, i. e., where the excess electron is not bound but will auto-detach immedi-
ately. These species do not have a positive, but a negative electron affinity. While there are
sophisticated experimental techniques to probe the transient anionic species resulting from
neutrals with negative electron affinities we will in the following only consider stable ani-
ons characterized by positive electron affinities. The computational prediction of electron
affinities has always been a particularly difficult task for wave function based methods. The
correlation energy of the anion with the additional, albeit weakly bound electron is larger
than that of the neutral molecules and the anions are in addition usually characterized by a
very diffuse charge density. As a consequence, sophisticated treatments of the correlation
energy combined with one-particle basis sets augmented by diffuse and high angular mo-
mentum functions are required for an adequate description of the extra electron rendering
such calculations intrinsically prohibitive for larger molecules. Density functional methods
would therefore be a highly welcomed alternative. Before we enter a quantitative discus-
sion about the capability of approximate density functionals to determine electron affini-
ties we need to address a more general point. One frequently reads that for principal rea-
sons local functionals such as the LDA simply do not bind the extra electron and are there-
fore not suitable for studying anions and related properties like electron affinities. Of course,
the Hohenberg-Kohn theorem and hence density functional theory as such applies to all
bound systems, irrespective of whether the atom or molecule is neutral or charged, be it
positively or negatively. If the exact exchange-correlation was known, the exact solutions
for cations, neutrals and anions would be available. Having said this, it is also true that local
approaches like the LDA or the GGA functionals have indeed some intrinsic problems
when it comes to treating systems with an excess negative charge. The physical reasoning
behind this is related to the self-interaction problem and the incorrect asymptotic behavior
of current approximate exchange-correlation potentials briefly introduced in Sections 6.7
and 6.8. Recall that in none of the currently used density functional implementations is the
spurious repulsion of the probe electron with itself included in the Coulomb term J[ρ],
precisely cancelled by the exchange-correlation energy, EXC[ρ]. In terms of the related
potentials this applies in particular to distances far from the system because the corre-
sponding exchange-correlation potentials all die out too fast with increasing distance. Hence,
for large r, the repulsive Coulomb potential prevails and the approximate potential is less
attractive than it should be. As a consequence the excess electron of an anion is too weakly
bound, if it is bound at all, as clearly pointed out by Rösch and Trickey, 1997. These prob-
lems due to the incomplete cancellation of self-repulsion should be the more significant the
more localized the extra electron is. Hence, the most problematic cases are expected to be
atoms, followed by diatomics etc., while large molecules should be much more well-be-
haved. If we, however, adopt the DFT-typical pragmatic point of view, things are not quite
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so bad in real applications. In almost all Kohn-Sham calculations finite basis sets are used
to describe the electron density and the additional electron is forced to remain within the
spatial area defined by the basis functions. It simply cannot escape the atom or molecule
leading to an artificial stabilization which counterbalances the self-interaction based error.
As we will see in this section, there have been several systematic studies of electron affini-
ties whose conclusions may be best summarized by quoting from the title of a paper by
Tschumper and Schaefer, 1997: ‘Some positive results for negative ions’. In their extensive
study Curtiss et al, 1998, not only examined the performance of approximate density
functionals with respect to ionization energies but also looked at electron affinities. Their
extended G2 set included a total of 58 electron affinities for atoms and small molecules
(with up to three non-hydrogen main group atoms). Combined with the large 6-
311+G(3df,2p) one-electron basis, the G2 method sets the standard with a mean absolute
error of only 0.061 eV. The best density functional is BLYP with an average deviation of
0.11 eV, closely followed by BPW91 (0.12 eV), B3LYP (0.13 eV), and B3PW91 (0.15 eV).
59 % of the BLYP electron affinities are within 0.1 eV and almost 85 % are within 0.2 eV
of the experimental ones, not showing a systematic over- or underestimation. The maxi-
mum error occurs for the C2 molecule whose electron affinity is overestimated by 0.69 eV.
Just as with ionization energies, the B3P86 hybrid functional is lagging behind with an
error of 0.60 eV, which is only 0.1 eV less than with SVWN (0.70 eV). In all cases these
two functionals overestimate the stability of the anion and yield electron affinities that are
too large. Errors obtained with smaller basis sets such as 6-31+G(d) were only marginally
larger. De Proft and Geerlings, 1997, come to similar conclusions with respect to 27 elec-
tron affinities from the original G2 test set. While they find B3PW91 to be the most accu-
rate functional with an average error of 0.11 eV, B3LYP and BLYP are of comparable
accuracy with average deviations of 0.12 and 0.14 eV, respectively. The BP86 functional
has a slightly larger mean error of 0.23 eV and the SVWN functional is again far off, its
error amounts to 0.77 eV. There have been other studies as well, which essentially confirm
the results reported from these two representative investigations. We conclude that for the
calculation of electron affinities there seems to be no noteworthy beneficial effect of mix-
ing in exact exchange. This is in distinct contrast to atomization energies but parallels the
conclusions for ionization energies drawn in the preceding section. Thus we emphasize
that exact exchange is of large importance for bond-breaking processes but hardly of rel-
evance in processes where only the number of electrons is being changed. These conclu-
sions remain valid also outside the domain of the small molecules in the G2 set. In a number
of investigations, Schaefer and coworkers tested the applicability of DFT for the determi-
nation of electron affinities of a variety of molecules containing first- and second-row main
group elements. They reported overall mean errors for 49 electron affinities of 0.21 eV for
BYLP and B3LYP and of 0.22 eV for BP86. Also in their test set B3P86 and SVWN turn
out to be not well suited for computing electron affinities, with mean errors amounting to
0.62 and 0.70 eV, respectively (Brown, Rienstra-Kiracofe, and Schaefer, 1999, and refer-
ences cited therein). An important point is that these encouraging results were obtained
with fairly small basis sets of polarized double-zeta quality augmented by diffuse func-
tions, in agreement with the above-mentioned data presented by Curtiss et al., 1998. This
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makes the DFT based approach to electron affinities much more versatile and applicable to
larger molecules than wave function based strategies, for which significantly larger basis
sets are required. Table 9-13 summarizes some of the numerical data discussed in this
section.

Finally, we mention the recent study by de Oliveira et al., 1999, who reported atomic
electron affinities from a variety of methods including a number of density functionals.
While the general conclusions of this section are substantiated, one of their results will be
explicitly mentioned here: these authors show that for the first-row atoms the choice of the
exchange functional is decisive while the quality of the correlation functional is less impor-
tant. For the second-row analogs it is the other way round and the correlation functional
seems to be of greater importance. Even more oddly, the quality of various correlation
functionals varies and depends on the atoms. For example, the LYP functional works best
for first-row atoms, while PW91 turns out to be preferable for second-row ones. If nothing
else, these results point to the highly empirical character that all these functionals still have,
and that one has to be careful when judging the predictive capabilities of present functionals.

9.6 Electronic Excitation Energies and the Singlet/Triplet Splitting
in Carbenes

We conclude this chapter with an overview of how modern density functional theory deals
with electronic excitation energies. From the very beginning, electronically excited states

Table 9-13. Compilation of mean absolute deviations (maximum deviation in parentheses) for electron affinities
[eV] of small main group molecules from different sources.

27 atoms and molecules, De Proft and Geerlings, 1997

SVWN, aug-cc-pVTZ 0.77 BLYP, aug-cc-pVTZ 0.14
BP86, aug-cc-pVTZ 0.23 B3LYP, aug-cc-pVDZ 0.15
B3LYP, aug-cc-pVTZ 0.12 B3PW91, aug-cc-pVDZ 0.13
B3PW91, aug-cc-pVTZ 0.11

58 atoms and molecules, Curtiss et al., 1998

SVWN, 6-311+G(3df,2p) 0.70 (1.31) B3LYP, 6-31+G(d) 0.16
BLYP, 6-311+G(3df,2p) 0.11 (0.69 B3LYP, 6-311+G(2df,p) 0.14
BPW91, 6-311+G(3df,2p) 0.12 (0.77) B3LYP, 6-311+G(3df,2p) 0.13 (1.08)
BP86, 6-311+G(3df,2p) 0.19 (0.88) B3PW91, 6-311+G(3df,2p) 0.15 (1.06)
B3P86, 6-311+G(3df,2p) 0.60 (1.61)

25 atoms and molecules, 6-311+G(3df,2p) basis, Ernzerhof and Scuseria, 1999

SVWN 0.74 (1.2) PBE 0.11 (0.3)
SVWN5 0.30 (0.7) PBE1PBE 0.13 (0.3)
BLYP 0.11 (0.4) B3LYP 0.11 (0.5)
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have been identified as a very difficult area for Kohn-Sham density functional theory, which
is in principle limited to ground states only. Methods which offer accurate results paired
with theoretical soundness have therefore long been high up on the DFT whish list. In
Section 5.3.7 we presented some of the more recent developments in that area. The greatest
impetus in that regard certainly came from the time-dependent formulation of density func-
tional theory which opened the avenue of a formally rigorous extension of regular Kohn-
Sham DFT to a time-dependent scheme. By this token, the frequency dependent response
of the charge density becomes available which in turn can be directly related to excitation
energies. Probably the most important and elegant characteristics of this approach is that it
is based on ground state properties of the system and no extension of the Kohn-Sham
formalism into the grey area of excited states is necessary. We already mentioned in Section
5.3.7 that in general TDDFT provides excitation energies with good accuracy and in the
following we will substantiate these claims, focussing on the choice of functional and basis
set but also pointing out some problematic areas.

All the systematic investigations published so far essentially agree that TDDFT provides
accurate excitation energies that rival more sophisticated and much more costly wave func-
tion based approaches, as long as we are dealing with low-energy transitions involving
valence states. Differences between functionals are not very pronounced. For example,
Bauernschmitt and Ahlrichs, 1996b, report excitation energies for N2, formaldehyde, ethyl-
ene and pyridine derived from the SVWN, BP86 and B3LYP functionals combined with a
Gaussian basis set specifically designed for static polarizabilities, the POL basis set due to
Sadlej (which contains diffuse functions). If only low energy transitions with excitation
energies below half the ionization threshold are considered, mean absolute deviations of
0.36, 0.29 and 0.30 eV for these three functionals were obtained. These results are superior
to those from Hartree-Fock based approaches such as the random-phase-approximation
(RPA, which essentially is time-dependent HF) or the configuration interaction with single
excitations (CIS) schemes, which yield errors of 0.88 and 1.65 eV, respectively. Similarly,
Casida et al., 1998, report average errors of a few tenths of an eV for the LDA as long as
only low-lying states are included in the statistics. Stratmann, Scuseria, and Frisch, 1998,
also include larger molecules such as benzene, porphin and up to C70 in their investigation.
Their conclusions are completely in line with what we have presented so far. Excited states
which lie well below the ionization threshold are described very well and hybrid functionals
like B3LYP seem to yield slightly more accurate results than simple GGA ones. Their
results also turned out to be fairly insensitive to the basis set, in particular for the low-lying
transitions. Extending the basis set from 6-31+G(d) to aug-cc-pVTZ changed the energies
of two π → π* transitions in benzene by less than 0.1 eV. This promising performance of
TDDFT also applies to excitations from radical species, which pose severe problems to
conventional, Hartree-Fock based methods such as RPA or CIS. As shown by Hirata and
Head-Gordon, 1999, valence states with both, single and double excitation character, are
described uniformly reasonable with errors within a few tenths of an eV for small radicals
such as BH, CH3, CN, or CO+, but also for bigger systems including benzyl, anilino, and
phenoxyl radicals. While for the former group the performance increased from SVWN to
BLYP and B3LYP, no significant differences between these three functionals were ob-
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served for the latter set of radicals. This sharply contrasts with the performance of HF
based techniques. While the RPA and CIS schemes are only slightly inferior to TDDFT for
excitations with dominant single excitation character, they show very large errors for tran-
sitions with an appreciable double excitation character, rendering these methods rather
useless in such applications.

We always made the restriction in the above discussion that the excitations are to low
lying states. The reason is simply that as soon as higher lying states, which are frequently of
Rydberg character, are included, the picture changes dramatically and the TDDFT results
deteriorate significantly. Quoting again from the landmark paper by Bauernschmitt and
Ahlrichs, 1996b, the mean errors rise to 0.53 eV (SVWN), 0.55 eV (BP86) and 0.49 eV
(B3LYP) if excitations up to the molecular ionization energy are included, and similar
observations have been reported by many other authors. The origin of this surprising phe-
nomenon was first uncovered by Casida et al., 1998, and later expounded by Tozer and
Handy, 1998. These authors convincingly demonstrate that this shortcoming is intimately
connected to the incorrect asymptotic behavior of approximate exchange-correlation
potentials. Let us try to understand this. We saw in Section 6.8 that a common feature of
current approximate functionals is that the corresponding potentials are not attractive enough.
Among the reasons for this, we noted the wrong asymptotic decay of the potentials (which
is faster than the correct –1/r behavior) and the fact that they vanish at infinity whereas the
correct potential should converge to a positive, constant value. As a consequence, the or-
bital energy of the highest occupied orbital, which for the exact exchange-correlation func-
tional equals the ionization energy and therefore defines the ionization threshold, comes
out too high with approximate functionals, making the ionization threshold too low. Like-
wise, the description of the virtual orbitals suffers, leading to orbital energies which are too
high. As a consequence, only a few virtual orbitals have negative energies. Since the TDDFT
formalism makes use of orbital energy differences, the quality of the virtual orbitals and
their energies is mirrored in the quality of the corresponding excitation energies. Now it is
easy to explain why excitations to energetically low lying states are described reasonably
well. They involve low lying virtual orbitals whose energies are negative, i. e., which are
bound with current approximate functionals. On the other hand, high energy Rydberg
excitations involve higher virtual orbitals whose positive energies are not even qualitatively
correct anymore with these functionals. Casida et al., 1998, present two criteria which an
excitation must fulfill in order that a standard functional can be used without being nega-
tively affected by the problems due to the incorrect asymptotic behavior. First, the excita-
tion energy must be significantly smaller than minus the orbital energy of the highest occu-
pied orbital. Second, the transition should not involve major contributions from promo-
tions to virtual orbitals which are only weakly bound or even unbound in the selected
functional.

An obvious remedy to this situation is to use potentials that by construction exhibit the
correct asymptotic behavior. Indeed, using the LB94 or the HCTH(AC) potentials yields
significantly improved Rydberg excitation energies. As an instructive example, we quote
the detailed study by Handy and Tozer, 1999, on the benzene molecule. These authors
computed a number of singlet and triplet π → π* valence and π → n = 3 Rydberg excitations
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employing their asymptotically corrected HCTH(AC) procedure. Over all energies a mean
absolute deviation from experimental or accurate theoretical data of only 0.12 eV resulted,
only slightly higher than the error obtained with the much more demanding CASPT2 wave
function approach. Most importantly the Rydberg excitations, so difficult for the conven-
tional functionals, came out just as accurately as the valence transitions. Actually, the high-
est error of 0.62 eV in their computed transition energies was not due to a Rydberg excita-
tion but occurred for the π → π* valence excitation to the 3B2u state. Further examples,
which corroborate these conclusions but also add some small grains of salt can be found in
Tozer et al., 1999. While the HCTH(AC) procedure reproduced Rydberg and valence
excitations in most cases to within a few tenths of an eV, these authors noted that excitations
which involve a considerable charge transfer have significantly larger errors.

In a recent contribution, Adamo, Scuseria, and Barone, 1999, have studied the perform-
ance of the PBE GGA functional and the corresponding PBE1PBE hybrid functional in the
framework of time-dependent DFT and compared it to results obtained with the standard
B3LYP technique and with Handy and Tozer’s HCTH(AC) data. Interestingly, if the PBE
functional is blended with 25 % exact exchange the resulting PBE1PBE scheme provides
good excitation energies across the board, not only for valence but also for Rydberg
excitations close to the ionization threshold. On the one hand this is due to the admixture of
Hartree-Fock exchange in the functional, which improves the asymptotic behavior of the
exchange-correlation potential by introducing a discontinuity in the potential as it increases
through an integer number of electrons and by generating an asymptotic decay of –a/r
which is closer to the correct one than the GGA asymptotic decay (see Section 6.8). On the
other hand, part of the success of PBE1PBE must also be intrinsic to the PBE functional
itself. Other hybrid functionals like B3LYP are not as successful by far and already the pure
PBE functional (i. e., without exact exchange) is much better than BLYP or other GGA
implementations, even though it was not designed for any asymptotic features. Why this is
so remains, however, to be uncovered. The conclusions of this discussion are amply dem-
onstrated in Table 9-14 and Figure 9-2 which summarize the corresponding excitation en-
ergies obtained from various functionals using the ethylene molecule as an example.

Note in particular the sharp deterioration of the computationally predicted excitation
energies as one moves closer to the ionization threshold (exp.: 10.51 eV) for the standard
functionals, which is the most eye-catching feature in Figure 9-2. The other statements
discussed above also find their confirmation in the electronic excitations of ethylene. Both,
the local SVWN and the gradient-corrected BLYP functionals show non-negligible defi-
ciencies, with BLYP being even significantly inferior to SVWN. Switching to B3LYP im-
proves matters somewhat. These disappointingly average absolute errors are, however, only
due to the higher energy excitations, as indicated in Figure 9-2. The low energy region of
the spectrum is unproblematic for all these functionals. A substantial progress in terms of
performance is, however, seen with the HCTH(AC) functional. Most notably, because this
functional is augmented with an improved long-range potential, it performs satisfactorily
for all excitations included, not only for the low energy transitions, rivaling sophisticated
and computationally much more expensive CASPT2 calculations. Finally, we point to the
similarity of the PBE1PBE results obtained with two different basis sets. This indicates a
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certain robustness of the computed excitation energies with regard to the choice of the basis
set, provided basis sets of at least polarized triple-zeta quality augmented by diffuse func-
tions are used.

A particular class of excitation energies is provided by the relative stability of the low-
est lying singlet and triplet states of carbenes and related species. Even though the energy
difference between these two states can easily be computed by the ∆SCF approach, be-
cause they both represent the lowest states in their respective multiplicity, the computation
of reliable excitation energies for such species is a long standing problem in quantum
chemistry (for general overviews see Bettinger et al., 1997 and 1998). Let us take methyl-
ene as the simplest example to illustrate the peculiarities and concomitant problems for the
theoretical treatment of this group of molecules. A carbene is characterized by two elec-
trons not engaged in bonding, and two non-bonding orbitals to accommodate them, i. e.,
the π-type (b1 in case of the C2v symmetric CH2) and the lower lying σ-type orbital (a1 for
CH2). In the singlet 1A1 state, the two electrons are spin paired while in the 3B1 triplet the
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Figure 9-2. Performance of various functionals in the framework of time-dependent DFT for excitation energies
of ethylene.

9.6  Electronic Excitation Energies and the Singlet/Triplet Splitting in Carbenes
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two electrons of like spin occupy both orbitals with one electron each. Depending on the
energetic spacing of the two orbitals, the ground state of a carbene will be either singlet or
triplet. The closer together the a1 and b1 orbitals are, the more favored the triplet is (Hund’s
rule), while for well separated orbitals a singlet ground state emerges. From a computa-
tional point of view an adequate and unbiased description of the two states is paved with
obstacles. Due to the different multiplicity the correlation contributions in the singlet and
the triplet states differ. In addition, singlet carbene is one of the prototypes were a single-
determinantal approach is inadequate and non-dynamical correlation plays a decisive role.
While the double occupation of the a1 orbital is more favored than putting both electrons
into the b1 MO, this second alternative will nevertheless play an important role in the exact
wave function. Hence, in order to adequately account for this situation both configurations
need to be included in the approximate wave function. The triplet state, on the other hand,
is well described by one determinant. This situation is schematically depicted in Figure
9-3.

The simple Hartree-Fock ansatz is doomed to fail for two reasons. First, the Fermi cor-
relation due to parallel spins is included while the Coulomb correlation is not. Therefore
the triplet with its two open-shell parallel spin electrons will be described better than the
singlet. Second, the HF scheme uses only one configuration and completely neglects the
second determinant needed to describe the singlet wave function. A further destabilization
of the singlet as compared to the triplet results. In the conventional wave function arena the
problem of the carbene singlet-triplet splitting can therefore only be solved if sophisticated
and expensive methods which account for dynamical and non-dynamical correlation ef-
fects are employed. The singlet-triplet gap in methylene is therefore for good reasons known
as a ‘testing ground for electronic structure methods’ (Bettinger et al., 1998). How does
approximate density functional theory fare in this complicated situation? Table 9-15 shows
∆ES-T as computed with various functionals using a standard 6-311+G(d,p) and a series of

Figure 9-3. Schematic representation of the occupations of the highest occupied orbitals dominating the wave
functions of singlet and triplet carbene. For the singlet, c1 > c2.
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augmented correlation-consistent basis sets of increasing quality.41 Experimentally, the tri-
plet is more stable than the singlet by 9.4 kcal/mol.42

As expected from the above discussion, the HF method significantly overshoots this
value. It describes the triplet state as much too stable, being almost 20 kcal/mol off the
target. All DFT entries in Table 9-15 are of much better quality. Before we analyze the
performance of the density functionals we note that already the triple-zeta basis set, i. e.,
aug-cc-pVTZ, seems to provide converged results with respect to the basis set. Increasing
the basis set further does hardly change the computed singlet-triplet gaps, the results from
the quadruple and quintuple sets are completely identical (even though the number of basis
functions is much larger in the latter). On the other hand, going from 6-311+G(d,p) to aug-
cc-pVTZ systematically lowers ∆ES-T by roughly 1 kcal/mol. With the correlation consist-
ent basis sets, already the local SVWN approach gives a very reasonable splitting (12.9 kcal/
mol). Applying the Becke gradient correction for exchange together with the local VWN
correlation functional, the triplet is found to be 8.6 kcal/mol more stable than the singlet,
i. e., the reference value is underestimated by 0.8 kcal/mol. If only the correlation func-
tional is gradient-corrected in the SLYP functional instead, the singlet-triplet gap deterio-
rates to 14.2 kcal/mol. The GGA BLYP functional yields the most satisfactory singlet-
triplet splitting, missing the experimental value by only 0.6 kcal/mol. Using the B3LYP
hybrid functional, the much treasured champion among the currently popular recipes in
many areas, the agreement with experiment worsens and we end up with a 11.3 kcal/mol
energy difference between the 3B1 and 1A1 states of CH2, i. e., an erroneous stabilization of
triplet carbene. If instead of LYP the P86 or the PW91 correlation functionals are used,

41 These basis sets consist of 34 (6-311+G(d,p)), 92 (aug-cc-pVTZ), 172 (aug-cc-pVQZ), and finally 287 (aug-
cc-pV5Z) contracted Gaussian functions and include polarization functions up to d- (6-311+G(d,p)), f- (aug-
cc-pVTZ), g- (aug-cc-pVQZ), and even h-character (aug-cc-pV5Z).

42 This is the adiabatic Te reference value, i. e., without zero-point vibrational energy corrections, see Bettinger
et al., 1997 and 1998.

Table 9-15. Singlet (1A1) – triplet (3B1) energy gaps [kcal/mol] for methylene, CH2 using different basis sets.

Functional 6-311+G(d,p) aug-cc-pVTZ aug-cc-pVQZ aug-cc-pV5Z

HF 28.7 28.0 28.1 28.1
SVWN 14.0 12.9 12.9 12.9
SLYP 15.5 14.2 14.2 14.2
BVWN   9.3   8.5   8.6   8.6
BLYP 10.9 10.0 10.0 10.0
B3LYP 12.2 11.3 11.3 11.3
BP86 14.5 13.7 13.8 13.8
B3P86 15.7 14.8 14.9 14.9
BPW91 16.7 15.9 15.9 15.9
B3PW91 17.1 16.3 16.4 16.4
exp.                                           9.4

9.6  Electronic Excitation Energies and the Singlet/Triplet Splitting in Carbenes
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similar but more pronounced trends emerge. Let us try to understand this behavior. As
noted above, a balanced description of the two states is only possible if the near-degeneracy
effects of the singlet are properly taken into account. The large beneficial effect of the
gradient-corrected exchange functional is in line with one important argument put forward
earlier, namely that it is the exchange and not the correlation GGA functional which repre-
sents the non-dynamical correlation! The somewhat disappointing performance of the hy-
brid schemes is of course a simple reflection of the bias of the HF approximation towards
the triplet. We have discussed a similar situation in Section 6.6 were the ground state of the
ozone molecule was introduced as an example for a situation dominated by non-dynamical
correlation. Also in that example we found pure GGA functionals to perform much better
than hybrid ones.

The conclusions obtained for the parent methylene can be generalized for other carbenes
and related species. Worthington and Cramer, 1997, for example, studied a variety of sub-
stituted carbenes and vinylidenes (i. e., where the carbene carbon is part of a double bond,
RR’C=C:) at the BVWN5 and BLYP levels in combination with a cc-pVTZ basis set. The
singlet-triplet splittings were usually accurate to within a few kcal/mol of the experimental
reference data. For the carbenes the BLYP functional showed slightly, but consistently
larger errors than the BVWN5 protocol with a bias towards stabilizing the triplet. In the
case of the vinylidenes the errors are less systematic and no clear-cut conclusions can be
drawn. Using a polarized double-zeta basis set, Vargas, Galván, and Vela, 1998, studied a
number of halocarbenes CXY with X, Y = H, F, Cl, Br, and I. In harmony with the conclu-
sions drawn above, it turned out to be the general trend that the SVWN functional achieved
the best agreement with the experimental reference data. The BPW91 GGA functional was
second and the worst performance was obtained systematically with the B3PW91 hybrid
scheme. In all cases the triplet was computed as too stable. Very satisfying agreement be-
tween ∆ES-T obtained from sophisticated CCSD(T) calculations and the B3LYP hybrid
functional were reported by Gonzalez et al., 1998, for several carbenes and isoelectronic
nitrenium ions, R’NR+ and by Holthausen, Koch, and Apeloig, 1999, for silylenes, SiRR’
using the BLYP and B3LYP functionals. The common denominator of these and several
related studies is that today’s approximate density functionals are in fact capable of treating
both, the singlet and triplet states in a balanced way. The delicate and subtle effects due to
the near-degeneracy in the singlet and the differential dynamical correlation effects of the
two multiplicities, which challenge conventional, wave function based ab initio theory, do
not seem to pose crucial problems to DFT. Note however that due to the special electronic
situation in carbenes and related species pure density functionals are usually to be preferred
over hybrid ones.
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10 Electric Properties

In this chapter we will focus on the distribution of the electrons in a molecule and on the
properties related to the response of the charge distribution to an applied external field. We
will commence with a brief survey of how the standard methods for population analysis
assign partial charges to the individual atoms if used together with present day density
functional methods. Next, we will investigate the performance of current functionals for
the determination of typical molecular electric properties such as the static dipole moment
of a molecule, which reflects the molecular charge distribution and is therefore related to
the quality of the ground state electron density. If a molecule is exposed to an electric field
F
�

 the charge density will respond to this perturbation and the energy of the system will be
modified. The energy can then be described in terms of a Taylor expansion relative to its
field-free energy (i, j, k and l run over the Cartesian components, i. e., x, y and z):
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The derivatives of the energy taken at zero field define the static43 response properties of
the molecule and are a measure of the interaction between the applied electric field and the
system. In particular we are dealing with the following properties, which are sometimes
also classified as first, second and higher order properties, depending on the degree of
differentiation of the energy:
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the i’th component of the dipole moment vector µ
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43 We only consider static response properties in this chapter, which arise from a fixed external field. Their
dynamic counterparts describe the response to an oscillating electric field of electromagnetic radiation and are
of great importance in the context of non-linear optics. As an entry point to the treatment of frequency-
dependent electric response properties in the domain of time-dependent DFT we recommend the studies by
van Gisbergen, Snijders, and Baerends, 1998a and 1998b.
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the i,j’th component of the polarizability tensor α
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the i,j,k’th component of the first hyperpolarizability tensor β
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the i,j,k,l’th component of the second hyperpolarizability tensor γ
�

.
In the following we will concentrate on the quality of results obtained for these quanti-

ties from density functional theory. A more general discussion of polarizabilities,
hyperpolarizabilities etc., is beyond the scope of the present book, but can be found in
many textbooks on physical or theoretical chemistry, such as Atkins and Friedman, 1997.

Besides these response properties of a molecule we will also devote one section in this
chapter to the experimentally important infrared intensities, which are needed to comple-
ment the theoretically predicted frequencies for the complete computational simulation of
an IR spectrum. This discussion belongs in the present chapter because the infrared intensities
are related to the derivative of the permanent electric dipole moment µ with respect to
geometrical parameters.

Many of these properties are known to be very sensitive to the effects of electron corre-
lation. Therefore simple wave function based approaches such as the Hartree-Fock method
are often inadequate and need to be augmented by some strategy to include these contribu-
tions. In addition, it is well known from conventional approaches that flexible basis sets
augmented with polarization and diffuse functions are needed for a successful description
of response properties involving perturbations from an electric field. Among the reasons
for this demand is that the basis sets are usually independent of the perturbation. In other
words, the basis set itself does not change under the influence of the electric field. Hence,
we must augment the basis set by additional functions such that it acquires enough flexibil-
ity to allow the density to properly respond to the perturbation. This reasoning already
applies to the computation of dipole moments but even more so for higher derivatives of the
energy with respect to the electric field or mixed derivatives, such as the infrared intensities
discussed below. Because of the need for including electron correlation and large basis sets,
conventional methods soon become too demanding in terms of computer resources and
cannot be applied to larger, chemically relevant molecules. Thus, an assessment of the
applicability of density functional methods as a potential alternative is of great interest.

10.1 Population Analysis

Atomic partial charges are a difficult concept in quantum chemistry. On the one hand,
assigning charges to individual atoms in a molecule is very close to the classical interpreta-
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tions so successfully used in organic or inorganic chemistry and allows these inherently
qualitative models to be quantified. However, on the other hand it is well known that this
very concept is totally artificial since atomic charges in a molecule do not represent a
physical observable. Stated in other words, questions such as ‘what charge does the oxygen
atom in water carry?’ are simply not allowed and lie outside the physics of the problem.
Such fundamental reasoning notwithstanding, the availability of charges of individual at-
oms in a molecule would offer a lot of interpretational power and would be of enormous
help in analyzing quantum chemical calculations. Hence, a lot of different schemes to par-
tition the total electron density (which of course is a physical observable) onto the indi-
vidual atoms have been developed in the past. Because of the lack of a fundamental physi-
cal basis, all these recipes necessarily contain a certain amount of ambiguity and there
cannot be a ‘best’ population analysis. Also, because no unequivocal reference values exist
to which a population analysis must finally converge, it is important to keep in mind that
one must not compare results obtained from different schemes or even values obtained
within one method but with different basis sets or numerical integration grids. We will not
pursue these principle aspects of population analysis any further, since extensive discus-
sions of this subject can be found in most quantum chemical textbooks. As a good and still
up-to-date source of further information we refer the reader to the review of Bachrach,
1995.

Geerlings, De Proft, and Martin, 1996, have compared the atomic populations of 15
small molecules as obtained from Bader’s Atoms-in-Molecules (AIM, see Bader, 1994)
approach for population analysis using a variety of traditional, wave function based meth-
ods and approximate density functionals. As a reference they selected QCISD, as a fairly
sophisticated correlated wave function based technique. The AIM scheme is probably the
theoretically soundest way of partitioning the electron density between the atoms in a mol-
ecule. It is solely based on the properties of the charge density and makes no recourse to
basis functions and the like. The integral of the density assigned to a particular atom (where
the area belonging to an atom, the so-called atomic basin is defined through the gradient
paths of the density) gives the corresponding number of electrons on that center and hence
its partial charge. The deviation between the atomic populations of the various methods
from the QCISD reference is of course an indicator of the differences between the corre-
sponding charge densities. A word of warning not to over-interpret these numbers is, how-
ever, in order. The authors chose a rather modest cc-pVDZ basis set and the resulting QCISD/
cc-pVDZ level is certainly not sophisticated enough to produce highly accurate electron
densities. The deviations in the atomic populations therefore reflect only the internal con-
sistency of these different quantum chemical methods and do not include information about
the quality of the charge density on an absolute scale. Electron correlation has important
consequences for the atomic populations as evidenced by the large mean absolute deviation
of 0.133 |e| for the uncorrelated Hartree-Fock ansatz. The absolute values of the atomic
charges are usually too large at this level, as expected from the known trend of Hartree-
Fock to produce charge distributions that are often too polar. In the DFT domain, the uni-
form electron gas based SVWN functional also exhibits fairly large deviations with an
average error of 0.105 |e|. The two GGA functionals studied, BP86 and BLYP, are closer to
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the QCISD values with mean deviations of 0.071 and 0.067 |e|, respectively, while the
hybrid functionals B3LYP and B3PW91 are closer still, the deviations are reduced to 0.035
and 0.038 |e|, respectively. The DFT charges are in most cases smaller than the QCISD
ones, indicating less polar charge distributions. The error reduction upon going from LDA
to GGA functionals is easily rationalized if one considers the main difference between the
corresponding densities. As shown, e. g., by Fan and Ziegler, 1995, the changes in )r(

�

ρ
when going from the LDA to the GGA are small. The main effect is that )r(

�

ρ  increases in
the core region and the valence tails, while it is depleted in the intermediate region. Hence,
the polarization in the charge distribution is usually somewhat increased. Overall, the com-
patibility of correlated wave function based and density functional results enhances the
level of credibility that can be attributed to the many studies found in the literature which
make use of population analysis based on density functional methods, in particular if hy-
brid functionals are being used.

10.2 Dipole Moments

The permanent moments of a molecule are important descriptors of the ground state charge
distribution. The ability of a certain theoretical model to reproduce experimental perma-
nent dipole moments is therefore very helpful in assessing the quality of the corresponding
electron probability distribution. The dipole moment is in addition an important physical
property. For example, the electrostatic interaction of two molecules with non-vanishing
permanent dipole moments is dominated by the dipole-dipole term. There have been nu-
merous investigations of dipole moments at the Hartree-Fock and post-HF levels which
underline the importance of electron correlation for reaching accurate results. The most
famous example in this respect is probably the carbon monoxide molecule, whose experi-
mental dipole moment amounts to 0.11 D with the negative end at the carbon atom, i. e.,
being of –C=O+ polarity. The Hartree-Fock approximation is not even able to reproduce
this qualitative orientation. Near the HF limit (i. e., using a very large, almost complete
one-electron basis set) a dipole moment of –0.28 D is calculated, i. e., the HF dipole mo-
ment has the reverse orientation, +C=O–. Modern approximate density functional theory
performs much better. Table 10-1 summarizes some typical results for dipole moments44

2
z

2
y

2
x µ+µ+µ=µ  along the molecular axis from several recent investigations involving

typical approximate exchange-correlation functionals (the negative sign in case of CO in-
dicates a +C=O– polarity).

Dickson and Becke, 1996, use a basis set free numerical approach for obtaining their
LDA dipole moments, which defines the complete basis set limit. In all other investigations
basis sets of at least polarized triple-zeta quality were employed. Some of these basis sets
have been designed explicitly for electric field response properties, albeit in the wave func-
tion domain. In this category belong the POL basis sets designed by Sadlej and used by
many authors as well as basis sets augmented by field-induced polarization (FIP) func-

44 The dipole moment is a vector property, but usually only its magnitude is given.
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tions, which are rather diffuse s, p, d and possibly also f-type functions. It is clear from the
representative data given in Table 10-1 that smaller basis sets cannot be recommended
because their performance can be significantly worse. For example, with the popular and
often used 6-31G(d) basis set all density functionals, including SVWN and BLYP, em-
ployed in the early study of Johnson, Gill, and Pople, 1993, significantly overestimated the
NH3 dipole moment by 0.4 to 0.5 D, while all the other data in Table 10-1 are within some
0.1 D for this molecule. The POL and FIP basis sets customized for electric response prop-
erties do significantly better than the regular polarized triple-zeta sets. For example, the
numerical results by Dickson and Becke are in very good agreement with the local density
approximation data obtained by Calaminici, Jug, and Köster, 1998, with the TZVP-FIP
basis set and the dipole moments obtained with the POL basis are closer to the experimen-
tal µ than those computed with the standard cc-pVTZ expansion of the KS orbitals. The
data in Table 10-1 demonstrate that, overall, the density functionals yield rather good di-
pole moments, provided they are combined with flexible enough basis sets. These tech-
niques are indisputably much better than the Hartree-Fock approach but at comparable
costs. Notably, even the problematic CO molecule poses no difficulty to DFT. All functionals
employed, including the simple local density approximation provide dipole moments for
carbon monoxide which not only show the correct –C=O+ orientation, but also give very
satisfactory quantitative results. For the totally uncorrelated HF and the partially correlated
MP2 wave function methods, Cohen and Tantirungrotechai, 1999, report mean absolute
deviations of 0.17 and 0.05 D for the dipole moments of the ten small molecules of their
test set. The two GGA functionals included in their study, BLYP and HCTH, clearly out-
perform the HF approximation but fall short of MP2 with an average error of 0.09 D for
both DFT procedures. The winners among the standard functionals are once more the hy-
brid functionals. The commonly used B3LYP protocol is characterized by a mean absolute
deviation of only 0.04 D. Cohen and Tantirungrotechai also tested very recent functionals,
such as two different flavors of Becke’s 10-parameter functional alluded to in Chapter 6,
namely B97 and B97-1. These functionals also perform very satisfactorily, but not better
than B3LYP, with errors around 0.04 D. With the larger JGP set of 32 molecules selected
from the G2 data base and with the use of the rather large 6-311++G(3df,3pd) basis set,
which should be close to being saturated, Adamo, di Matteo, and Barone, 1999, report in
their recent review mean absolute errors which underline these conclusions and confirm
the expected hierarchy of functionals. Quoting from their results, the SVWN dipole mo-
ments are on average off by 0.25 D, all the GGA functionals perform similarly to each
other but considerably better than the local approximation with mean unsigned deviations
scattering between 0.10 to 0.12 D. Finally, the three-parameter hybrid functionals work
best with errors of only 0.08 D. This latter result is particularly noteworthy since it indi-
cates that for this particular set of molecules the hybrid functionals surpass even highly
correlated and computationally expensive wave function methods in accuracy: with the
same basis set the Hartree-Fock, MP2, and CCSD(T) techniques yield mean unsigned er-
rors of 0.29, 0.28, and 0.10 D, respectively.
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10.3 Polarizabilities

The static electric polarizability α
�

 is a measure of the ease with which the electronic
distribution, i. e., the charge density of a system will get distorted by an external electric
field. Atomic and molecular polarizabilities are important properties in many areas. For
example a large fraction of the electrostatic intermolecular interaction energy is related to
this quantity, in particular for systems without a permanent dipole moment. Similarly,
polarizabilities are crucial for an understanding of many properties in molecular optics and
spectroscopy. From a practical point of view, polarizabilities and hyperpolarizabilities as
defined in equations (10-3) to (10-5) can be computed by numerical differentiation of the
field-dependent energy or dipole moment. This so-called finite field approach is easy to
implement but prone to errors due to problems with numerical stability in the differentia-
tion – errors which are very difficult to control. The alternative is to compute the deriva-
tives analytically, which is more elaborate in terms of programming since it involves solv-
ing the so-called coupled-perturbed Kohn-Sham equations (see Colwell et al., 1993, and
Lee and Colwell, 1994) but is numerically considerably more stable. It is the latter method
which is implemented in most major codes, such as Gaussian 98, but the finite field ap-
proach is still being used, see, e. g., Calaminici, Jug, and Köster, 1998. If we take the
additional electric field as a perturbation to the original Hamiltonian of the system, the
polarizabilities can also be expressed through perturbation theory. One can then show that
the polarizability is inversely proportional to the excitation energies of the system, i. e.

∑
= −

∝α
1n n0 EE

1
 (0 is the ground state, n denotes the n’th excited state and the sum must

of course exclude n = 0). It is not our intention to make an excursion into perturbation
theory, we only mention this result because it allows a pictorial insight into some of the
factors controlling the polarizability of a system and helps to understand why density func-
tional methods perform the way they do. The energy differences between the ground and
excited states can to a first approximation be expressed in terms of the corresponding Kohn-
Sham orbital energy differences. The largest contribution will obviously be from the
excitations involving high-lying occupied and low-lying unoccupied Kohn-Sham orbitals
which give the smallest denominator, but the other energy differences also contribute. We
have seen in the preceding discussions that due to the incorrect asymptotic behavior of the
exchange-correlation potentials, all regular density functionals have problems in describ-
ing those orbital energies. In particular, because the long-range potentials are not attractive
enough, the energies of the highest occupied orbitals usually come out significantly too
high and the orbital differences are hence too low. One should therefore expect that these
functionals should predict polarizabilities that are exaggerated. And indeed, that is exactly
what is observed. Before we enter an in-depth discussion of the performance of the various
approximate density functionals we should point out that the computed static polarizability
data are not strictly comparable with experimental ones, because it is difficult to deduce the
pure static, frequency independent values from the experimental data and to remove the
unwanted contributions from vibrational, rotational or other effects. Generally it is ex-
pected that accounting for such effects would increase the computed value. In other words,

10.3  Polarizabilities
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a slight underestimation of the experimental data by the computational methods – which
are strictly frequency independent – is actually a desirable feature. Already in the early
study of Guan et al., 1993, who analyzed the performance of the local density approxima-
tion with regard to molecular polarizabilities the tendency of the LDA to overestimate the
mean polarizabilities45 <α> was noted. These authors were probably also the first to under-
line the need for flexible basis sets, which must include polarization and diffuse functions
to properly describe polarizabilities. Subsequently, McDowell, Amos, and Handy, 1995,
reported mean polarizabilities <α> of a series of small molecules obtained with the SVWN
and BLYP functionals in comparison with Hartree-Fock, correlated wave function and ex-
perimental data employing Sadlej’s POL basis set especially optimized for this purpose.
While the HF polarizabilities were systematically too low by about 5–10 %, exactly the
opposite trend was found for the density functionals. Both functionals studied overesti-
mated <α> fairly significantly. In terms of absolute errors, the density functional methods
were not superior to the HF approximation. Furthermore and in contrast to many other
properties, in this case the simple SVWN functional generally provided results closer to the
experimental or highly correlated reference data than the gradient-corrected BLYP tech-
nique. In order to assess the basis set dependence of their results, the authors repeated the
calculations with a larger set, where in particular the diffuse part was improved. Irrespec-
tive of the method this led to an increase of the calculated polarizabilities (including the HF
and related, more sophisticated models). This is in perfect agreement with the numerical,
basis-set free calculations of Dickson and Becke, 1996, employing the SVWN functional.
Their average polarizabilities are in most cases larger than any results using the same func-
tional but with a finite basis set. In other words, increasing the basis in general also in-
creases <α>. Since the LDA and GGA functionals already systematically overestimate this
quantity, this means that by increasing the basis set the error for the density functional
methods also gets larger. Thus, we have another typical example of getting the right answer
for the wrong reason. Using only a small basis set might give overoptimistic results for
polarizabilities, which do not mirror the intrinsic accuracy of density functional theory but
are only due to a fortuitous error cancellation. Other studies essentially confirmed these
conclusions, see, e. g., Calaminici, Jug, and Köster, 1998. Fuentalba and Simón-Manso,
1997, included the B3PW91 and B3LYP hybrid functionals in their study and showed that
they lead to a significant improvement. Since these functionals contain some Hartree-Fock
exchange and HF is known to give too small polarizabilities, the resulting <α> should
indeed benefit from error compensation. Another interpretation for the better performance
is that including exact HF exchange improves the asymptotic decay of the exchange poten-
tial, which is so important for polarizabilities. These authors also included the LB94 poten-
tial, which is characterized by the correct –1/r asymptotic decay. Supporting the above
reasoning, this choice also yielded improved results, in harmony with the qualitative dis-
cussion above that functionals which give better asymptotic potentials should partially cor-
rect the usually observed overestimation of polarizabilities. Similar observations regarding

45 Usually, the individual components of the polarizability tensor α
�

 are not given, but only the average value of
its diagonal elements which is defined as <α> = 1/3 (αxx + αyy + αzz).
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the LB94 potential and the importance of an accurate potential can be extracted from the
work of van Gisbergen, Snijders, and Baerends 1998b (see also the related earlier contribu-
tion by van Gisbergen et al., 1996 and the more recent study by Banerjee and Harbola,
1999), who used accurate exchange-correlation potentials derived from high quality charge
densities from configuration interaction calculations. For the six small molecules included
in their study, they found the LDA to overestimate the experimental <α> by 8.8 %, which
improved to an average absolute error of 3.6 % for LB94 (no systematic error, the com-
puted data scatter below and above the reference values and the average signed error amounts
to only 0.6 %). The role of asymptotically correct exchange-correlation functionals was
also the focus of the polarizability calculations by Tozer and Handy, 1998. These authors
showed that the improved asymptotic behavior of the HCTH functional was mirrored in the
quality of the computed mean polarizabilities. Inclusion of the ‘asymptotic correction’ (cf.
Section 6.8) resulted in even better data. For the 14 molecules included in their test set,
mean absolute deviations of 0.83 a. u. or 5.1 % (SVWN), 0.90 a. u. or 5.9 % (BLYP), 0.33
a. u. or 2.0 % (B3LYP), 0.36 a. u. or 2.5 % (HCTH) and 0.26 a. u. or 1.3 % (HCTH(AC))
are obtained with the POL basis set. SVWN and BLYP systematically overestimate the
mean polarizabilities. B3LYP and HCTH have the same trend, but to a lesser extent and
with two exceptions, CO2 and CH4. Use of the adiabatically corrected HCTH functional/
potential always lowers <α>, usually improving the agreement with the experiment. Only
for carbon dioxide and methane – which were already too low at HCTH – and ethylene is
no improvement as compared with the HCTH data observed. For comparison, the MP2
treatment is very close to the HCTH(AC) results with a mean absolute error of 0.24 a. u. or
1.4 %. Van Caillie and Amos, 1998, and Cohen and Tantirungrotechai, 1999, also used the
POL basis sets and studied the mean polarizabilities of a number of species including slightly
larger molecules such as ethane, ethene, ethyne and butadiene. Their qualitative results
overall confirm the above conclusions. In particular the B3LYP functional led to average
polarizabilities with an accuracy approaching (but not surpassing) that of sophisticated
wave function techniques. Finally, we mention a recent study by Adamo et al., 1999. These
authors applied the two hybrid functional B3LYP and PBE1PBE for a larger variety of
molecules, including some aliphatic and aromatic hydrocarbons, using different basis sets.
In line with the surprisingly good performance of the PBE1PBE functional for excitation
energies noted in Chapter 9, this functional also works very well for polarizabilities. While
for B3LYP and HCTH(AC) mean absolute errors in <α> of 0.39 and 0.29 a. u. are ob-
tained, for the PBE1PBE functional an error of only 0.20 a. u. with respect to a small set of
twelve reference molecules has been noted. Also, this functional does not show a system-
atic error, rather the results scatter irregularly around the experimental target numbers.
Actually, Adamo et al. also included fairly sophisticated wave function approaches such as
second and fourth order perturbation theory (MP2 and MP4) or the Brueckner doubles with
perturbational estimate of triple excitations (BD(T)) strategy. These methods were charac-
terized by mean absolute deviations of 0.25, 0.28, and 0.23 a. u., respectively. Interestingly,
none of these did surpass the accuracy obtained from the PBE1PBE functional, in spite of
being significantly more expensive computationally. For the eight hydrocarbons, including
fairly large molecules such as naphthalene, the PBE1PBE functional continues to provide

10.3  Polarizabilities
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Table 10-3. Compilation of mean absolute deviations for static average polarizabilities [a.u.] of small main group
molecules from different sources.

13 molecules, POL basis set, McDowell, Amos and Handy, 1995

HF 1.18 BD(T) 0.36
MP2 0.36 LDA 0.99
MP4 0.40 BLYP 0.95

19 molecules, augmented TZP STO basis set, van Gisbergen et al., 1996

LDA 0.92 LB94 0.63a

BP86 0.43

8 molecules, numerical, basis set free, Dickson and Becke, 1996

LDA 0.60

16 molecules, POL basis set, Van Caillie and Amos, 1998

HF 1.06 B3LYP 0.38
LDA 0.99

16 molecules, d-aug-cc-pVTZ basis set, Van Caillie and Amos, 1998

HF 1.07 B3LYP 0.39
LDA 0.98

14 molecules, POL basis set,Tozer and Handy, 1998

LDA 0.83 HCTH 0.36
BLYP 0.90 HCTH(AC) 0.26
B3LYP 0.33 MP2 0.24

5 molecules,TZVP+FIP basis set, Calaminici, Jug and Köster, 1998

HF 1.29 BLYP 0.41
LDA 0.33 CCSD(T) 0.31

12 molecules, POL basis set, Adamo et al., 1999

MP2 0.25 B97 0.42
MP4 0.28 B3LYP 0.39
BD(T) 0.23 HCTH 0.29
PBE1PBE 0.20

20 molecules, POL basis set, Cohen and Tozer, 1999

HF 1.76 HCTH 1.38
MP2 0.95 B3LYP 1.79
BD 1.29 B97 1.50
BLYP 2.25 B97-1 1.53

a Note that the signed average error is considerably smaller. The LB94 potential shows no systematic errors.

10.3  Polarizabilities
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promising results and significantly outperforms MP2 values, as far as the latter are avail-
able. It should be noted that in this case the standard B3LYP functional performs signifi-
cantly worse on average than the correlated methods, including MP2. Unfortunately, none
of the currently popular GGA functionals were included in this comparison. A representa-
tive collection of the data that we discussed in this section can be found in Table 10-2, while
Table 10-3 summarizes some of the recent literature studies on the accuracy of DFT meth-
ods for <α>.

The bottom line of this section is that density functional methods certainly provide a
promising tool for predicting static average polarizabilities. However, simple functionals
such as SVWN or GGA approaches like BLYP systematically and significantly overesti-
mate these quantities. There are probably several reasons for this, among which the errone-
ous asymptotic decay of the corresponding exchange-correlation potentials holds a promi-
nent place. Hybrid functionals and approaches specifically designed for dealing with the
asymptotic decay problem lead to much better results. The workhorse of today’s DFT prac-
titioners, B3LYP, performs satisfactorily, even though the results are frequently somewhat
less accurate than from standard MP2 theory. In terms of basis sets one should make sure
that they include polarization as well as diffuse functions. The POL basis sets, even though
optimized for wave function approaches, seems to offer a particularly well suited compro-
mise between size and computational economy for density functional approaches too.

10.4 Hyperpolarizabilites

The tensor of the static first hyperpolarizabilities β
�

 is defined as the third derivative of the
energy with respect to the electric field components and hence involves one additional field
differentiation compared to polarizabilities. Implementations employing analytic deriva-
tives in the Kohn-Sham framework have been described by Colwell et al., 1993, and Lee
and Colwell, 1994, for LDA and GGA functionals, respectively. If no analytic derivatives
are available, some finite field approximation is used. In these cases the β

�

 tensor is prefer-
ably computed by numerically differentiating the analytically obtained polarizabilities. In
this way only one non-analytical step, susceptible to numerical noise, is involved. Just as
for polarizabilities, the individual tensor components are not regularly reported, but rather

the average hyperpolarizability defined as )(
5

3
zzzyyzxxz β+β+β=〉β〈 . It is well known

from many wave function and density functional based studies that hyperpolarizabilities
are even more sensitive towards basis sets than lower-order electric properties. Hence, large
basis sets including polarization and diffuse functions are a must if reasonable calculations
on <β> are to be performed. The hyperpolarizabilities are largely determined by the elec-
tron density at long range and thus by the corresponding exchange-correlation potentials
far from the nuclei. Therefore the dependence on the particular functional employed should
be similar to or even more pronounced than what we discussed above for the polarizability
α
�

. Indeed, normal LDA and GGA functionals provide results for <β> which are similar to
each other but in general much too large if compared to experimental or accurate, corre-
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lated wave function data. We note in passing that for the hyperpolarizabilities the compari-
son to experimental data is even more problematic than for α

�

, because they usually do not
refer to the static limit and are severely contaminated by vibrational, rotational and other
contributions. As shown in the recent study by Cohen, Handy, and Tozer 1999, however,
the extent to which <β> is overestimated varies significantly from molecule to molecule.
For example, the BLYP average hyperpolarizability of formaldehyde, H2C=O, is too large
by some 125 % whereas for the hydrogen fluoride and carbon monoxide molecules the
error is less than 25 % if measured against accurate numbers from correlated wave function
based calculations. Similar results are obtained with SVWN as demonstrated by many
studies including the basis-free approach of Dickson and Becke, 1996. Better results are
furnished by hybrid functionals like B3LYP, probably due to the improved asymptotic
behavior brought about by the admixture of some exact, non-local Hartree-Fock exchange.
Special strategies, which either include a large flexibility like the highly parameterized
B97-1 hybrid functional, or which are designed with the asymptotically correct potential in
mind such as the LB94 potential or the HCTH(AC) protocol, are better still. But these are
also certainly not a panacea and some problematic cases remain. For example, a reliable
computational result of <β> for acetonitrile, CH3CN, is –40.4 a. u. The SVWN and BLYP
functionals show the typical overestimation and give values of –62 and –64 a. u., respec-
tively. As expected, the admixture of exact exchange in the B3LYP protocol reduces the
error and yields –53 a. u. Rather than reducing the value for <β> further and thus bringing
it closer to the reference, the asymptotically corrected HCTH(AC) procedure predicts <β>
= –145.5 a. u., miles away from the target. The reason is probably that the parent HCTH
functional produces a lowest unoccupied orbital of CH3CN with Rydberg character which
apparently the asymptotic correction is unable to cope with and the whole thing blows up.
A compilation of representative results for computed hyperpolarizabilities from the recent
literature can be found in Table 10-4.

Little is known about the predictive power of density functionals for second hyper-
polarizabilities, γ

�

. But the trends discussed so far for β
�

 can be safely extrapolated to γ
�

.
However, the basis set requirements are larger still and more subtle. More functions in the
polarization space are required as well as a very flexible description of the outer regions
with diffuse functions in order to achieve converged results. For example, Calaminici, Jug,
and Köster, 1998, show that upon adding a set of field-induced f-functions to their d-polar-
ized triple-zeta FIP basis set, the value of <γ> computed with the SVWN functional in-
creased dramatically for most of the small molecules included in their study (depending on
the molecule by 50 to more than 100 %). The overall accuracy seems to be less satisfactory
than for the lower order properties. LDA and GGA functionals severely overestimate the
individual tensor components and the average of γ due to the wrong asymptotic behavior of
the corresponding potentials. The LB94 potential improves the results but usually errs in
the opposite direction if compared to accurate coupled-cluster (CCSD(T)) data as shown
by van Gisbergen, Snijders, and Baerends, 1998b and Banerjee and Harbola, 1999.
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46 To be precise, this expression employs the so-called double-harmonic approximation, where cubic and higher
force constants as well as second and higher dipole derivatives are ignored. This approximation is common to
all current implementations of calculating IR and Raman intensities. For details see Amos, 1987.
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10.5 Infrared and Raman Intensities

The computational prediction of vibrational spectra is among the important areas of appli-
cation for modern quantum chemical methods because it allows the interpretation of ex-
perimental spectra and can be very instrumental for the identification of unknown species.
A vibrational spectrum consists of two characteristics, the frequency of the incident light at
which the absorption occurs and how much of the radiation is absorbed. The first quantity
can be obtained computationally by calculating the harmonic vibrational frequencies of a
molecule. As outlined in Chapter 8 density functional methods do a rather good job in that
area. To complete the picture, one must also consider the second quantity, i. e., accurate
computational predictions of the corresponding intensities have to be provided.

In the case of an infrared spectrum, the intensity is related to the square of the infinitesi-
mal change of the electric dipole moment µ with respect to the normal coordinates,46 q,

2

a
a q

CI
∂

µ∂= . (10-6)

C is a numerical constant and includes the degeneracy of the vibration a. Recall from

equation (10-2) that 
∂ µ = − ∂ 
E

F
, i. e. with respect to the energy the Ia are the mixed sec-

ond derivatives with respect to the electric field and to the nuclear coordinates and hence
also a second-order property. In the realm of conventional wave function techniques it is
well established that the reliable prediction of intensities is more demanding than locating
the frequencies of the vibrational transitions. Very akin to the response properties discussed
above, electron correlation turns out to be a particularly important factor for obtaining
useful predictions. Consequently, the Hartree-Fock approximation is not a useful alterna-
tive. In addition, basis sets with polarization and diffuse functions are needed to sample the
tail regions of the wave functions and allow the basis set to respond to the electric field
perturbation and are therefore a second prerequisite. As we know well by now, density
functional theory implicitly includes electron correlation through the exchange-correlation
functional. Indeed, successful computations of DFT frequencies and corresponding infra-
red intensities are reported in a large number of papers (for representative examples see
Stepanian et al., 1999, and Bauschlicher, Hudgins, and Allamandola, 1999). The most com-
prehensive systematic investigation of the performance of modern density functionals, in-
cluding hybrid ones, is probably the recent study of Halls and Schlegel, 1998. These au-
thors compared the local SVWN functional with the most popular GGA implementations
(BLYP, BP86, and BPW91) and their 3-parameter hybrid counterparts (B3LYP, B3P86,
and B3PW91) on a test set of twelve small, mostly organic molecules. The quantitative
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determination of absolute experimental IR intensities is difficult and usually only accurate
to within ±10%. In addition, the double harmonic approximation introduces another uncer-
tainty of about ±10% and hence no strict comparability between experimental and
computationally predicted data exists. To circumvent these ambiguities the authors chose
intensities computed at the conventional QCISD level as reference data. With the rather
modest 6-31G(d) basis set, the local SVWN functional had a mean absolute error of
9.5 km/mol, less than half of the mean deviation of the Hartree-Fock values (24.2 km/mol)
from the QCISD reference with the same basis set. Interestingly, the GGA functionals did
not come out any better. On the contrary, although in the same ballpark, the mean absolute
errors of BLYP (12.1 km/mol), BP86 (10.6 km/mol), and BPW91 (10.2 km/mol) are all
larger than the SVWN result. A big difference is connected with the admixture of some
exact exchange. The hybrid functionals cut the error down to half and win the competition
with rather low deviations of 5.8 km/mol (B3LYP), 4.9 km/mol (B3P86), and 4.8 km/mol
(B3PW91). For comparison, the post-HF method MP2 has an error of 6.3 km/mol. If the
basis set is increased to the rather large 6-311+G(3df,3pd) set, these conclusions remain by
and large valid. With this basis set the HF, SVWN, BLYP, and B3LYP mean absolute errors
with respect to the QCISD level amount to 27.1, 10.9, 10.6, and 5.0 km/mol, respectively.
If we take the QCISD/6-311+G(3df,3pd) data as close to the converged final and hence
idealized experimental values, we finally ask how big a basis must be used to get close
enough to the above errors. Not unexpectedly, the 6-31G(d) set is too small and not well
suited. Its SVWN and BLYP errors with respect to QCISD/6-311+G(3df,3pd) amount to
20.4 and 24.3 km/mol. Only after augmenting this set with several polarization and diffuse
functions an acceptable deviation close to 10-11 km/mol results. For example with the
6-31+G(3d,2p) set, the SVWN and BLYP errors are 12.1 and 11.5 km/mol, respectively,
which are quite satisfactory. In spite of the very elaborate comparisons presented in that
study one must keep in mind that the quantitative analysis should not be overvalued. IR
intensities are very sensitive quantities and using sophisticated coupled cluster CCSD(T)
calculations rather than QCISD together with large basis sets actually leads to deviations of
up to 10% and more, in spite of the formal similarity of the two approaches. In their study,
De Proft, Martin, and Geerlings, 1996, also included IR intensities computed with the
B3LYP functional and compare these with coupled cluster and QCISD results. Their re-
sults corroborate the above conclusions that this functional is well suited for predicting
infrared intensities if combined with d,f-polarized triple zeta basis sets. Smaller basis sets
are on average (but not in all cases) worse but still allow a semiquantitative analysis of
spectra. We should also mention the early study by Fan and Ziegler, 1992, who applied the
LDA and BP86 functionals together with various STO basis sets. Their conclusion about
the quality of DFT intensities and the need for sufficiently large basis sets is similar. How-
ever, unlike Halls and Schlegel, they report a small but consistent improvement in the com-
puted intensities when going from local to GGA functionals. Some representative numeri-
cal data from the studies cited are collected in Table 10-5.

The intensities of Raman scattering depend on the square of the infinitesimal change of
the polarizability α with respect to the normal coordinates, q. Since the polarizability itself
is already the second derivative of the energy with respect to the electric field – see equa-
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tion (10-3) – Raman scattering intensities are a third order property and hence are expected
to be even more sensitive to the functionals and basis sets used. In their systematic evalua-
tion of density functional methods for the calculation of Raman intensities, Halls and
Schlegel, 1999, report results for 12 small molecules obtained from SVWN, BLYP, B3LYP,
mPW1PW with various basis sets and compare them to experimental as well as Hartree-
Fock and MP2 data. The hybrid functionals work better than the BLYP functional which, in
turn, offers no improvement as compared to the SVWN approximation. This somewhat
disappointing performance of the GGA functionals for the determination of Raman intensities
was already noted in an earlier study by Stirling, 1996. As indicated by the mean absolute
deviations from experimental data collected in Table 10-6, the POL basis set provided an
accuracy very similar to the much larger aug-cc-pVTZ set while the errors from using 6-
31G(d) were more significant by about a factor of two. Based on these results Halls and
Schlegel recommend the B3LYP/POL combination for computing Raman intensities. In a
subsequent study Van Caillie and Amos, 2000, used time-dependent DFT to compute the
Raman intensities for a similar set of molecules with the POL basis set. Among the functionals
investigated were also recent exchange-correlation functionals such as PBE, PBE1PBE,
and B97. Their conclusions substantiate the results of Halls and Schlegel. GGA functionals
such as the PBE functional do not improve the SVWN results while the hybrid functionals
B3LYP, B97 and in particular PBE1PBE perform much better, see Table 10-6. Van Caillie
and Amos report also calculations where not the derivative of the static polarizability is
employed but in which they use dynamic (i. e., frequency dependent) polarizabilities for

Table 10-6. Compilation of mean absolute deviations for Raman intensities [Å4 amu–1]

12 molecules, Halls and Schlegel, 1999

HF/6-31G(d) 30.3 B3LYP/6-31G(d) 30.2
SVWN/6-31G(d) 31.0 mPW1PW/6-31G(d) 29.7
BLYP/6-31G(d) 31.2 MP2/6-31G(d) 30.2
HF/POL 15.1 B3LYP/POL 13.8
SVWN/POL 16.9 mPW1PW/POL 13.6
BLYP/POL 17.7 MP2/POL 11.5
HF/largea 14.6 B3LYP/largea 12.0
SVWN/largea 14.2 mPW1PW/largea 11.8
BLYP/largea 13.6 MP2/largea 10.0

10 molecules, POL basis set, Van Caillie and Amos, 2000

HF 16.9 B97 13.2
SVWN 18.1 PBE1PBE 12.6
PBE 18.7 MP2 11.0
B3LYP 13.9
HFb 17.3 B97b 14.5
SVWNb 19.1 PBE1PBEb 13.7
PBEb 19.6 B3LYPb 15.2

a large = aug-cc-pVTZ; b using dynamic polarizabilities.
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determining the Raman intensities. This frequency dependence, which is usually neglected,
increases the computed intensities on average by some 15% leading to an overall deteriora-
tion of the average errors. Hence, as the authors state, whether including the frequency
dependence represents an improvement cannot be concluded at this time.

The take home message of this section is that local and GGA functionals perform more
or less similarly for IR and Raman intensities, whereas the hybrid ones offer a significant
improvement, yielding results comparable or even better than MP2 for significantly less
computational cost. In terms of basis sets, at least double-zeta sets augmented by flexible
polarization and diffuse functions are needed. The POL basis set seems to offer a particu-
larly good price/performance ratio.

10.5  Infrared and Raman Intensities
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When a molecule is under the influence of an external magnetic field, this perturbation
gives rise to some very important effects, which all involve the interaction of a nuclear or
electron spin with the local electronic currents induced by the externally applied magnetic
field. Specifically, the interaction of a ‘magnetic’ nucleus, i. e., a nucleus whose spin I ≠ 0,
with an external magnetic field results in the well known chemical shift which is the prime
observable in nuclear magnetic resonance (NMR) experiments. Similarly, the second im-
portant source of information from an NMR spectrum, i. e., nuclear spin-spin coupling
effects is related to the interaction of a spin at one nucleus with the electronic currents
brought about by a second magnetic nucleus, i. e., the interaction of two nuclear magnetic
moments mediated by the electronic spin density. On the other hand, if it is not a nuclear
spin, but the spin of an unpaired electron that interacts with the magnetic field induced
currents we enter the domain of electron spin resonance (ESR, also known as electron
paramagnetic resonance, EPR). The central quantities in these techniques are the so-called
g-tensor, which in a way resembles the NMR chemical shifts as it describes differences in
the interaction due to the chemical environment and the hyperfine coupling constants which
probe the amount of unpaired spin density at the nuclear position.

Both spectroscopic methods enjoy an ever-increasing popularity in many chemical ap-
plications since they offer extremely valuable information about the geometrical and elec-
tronic structures of the system. While NMR is a well-established standard tool for probing
virtually any closed-shell molecule, ESR techniques represent a central source of informa-
tion for open-shell systems such as radicals. An important area where ESR data are of great
value is, for example, the investigation of enzymes containing non closed-shell transition-
metals, even though the connection between the experimental spectrum and the electronic
and geometrical details of the particular system are frequently not fully understood. This
great importance of NMR and ESR spectroscopy indicates that the capability of reliable
computational predictions of the corresponding properties is in high demand. However, as
will we outline succinctly further below, the theory behind the determination of magnetic
properties is fairly involved. Hence, it is only in the last two decades that meaningful chemical
shift calculations at the simple Hartree-Fock level have become available on a routine ba-
sis. Unfortunately, it soon turned out that in many instances, namely whenever electron
correlation is an issue, HF results are not of sufficient quality to provide useful information
for guiding and interpreting experimental activities. The obvious solution to this problem is
to employ wave function based strategies that explicitly include electron correlation ef-
fects. The high computational demands of such methods, however, limit their application
to small, chemically less relevant molecules. The only conventional correlated strategy
which has gained some popularity because it is still affordable if applied to medium sized
molecules is based on second order Møller-Plesset perturbation theory (MP2). However, as
we will see from the examples discussed below, this method fails miserably in cases where
near-degeneracy problems are present and has to be used with great care. As in other areas
discussed in this book it seems therefore to be a natural suggestion to combine the strate-
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gies for computing magnetic properties with density functional methods, where the elec-
tron correlation effects are implicitly accounted for via the exchange-correlation functional.
Indeed, the past few years have witnessed a tremendous development of implementations
for the density functional theory based determination of NMR and ESR parameters. At the
time of writing these techniques seem to be the only avenue leading to meaningful predic-
tions, for example, for large molecules47 or transition-metal compounds with a potential
which is growing at an impressive pace.

In this chapter we are going to introduce the most common strategies aimed at comput-
ing magnetic properties in a density functional theory context. We commence by briefly
reviewing the qualitative aspects of the theoretical foundations and present the implemen-
tations available. The reader should be aware that in this case we again face the dilemma of
deciding between a formal and theoretically thorough presentation of the material, digging
deep into the complex physics, and a more qualitative introduction which aims at providing
the reader with a feeling of how the methods work and how well they perform in practical
applications. Following the general philosophy of this book we intentionally decided on
the latter option. For readers who wish to learn more about this fascinating field, in particu-
lar the physics governing this whole area, we have included key references to the relevant
literature. We then go on by discussing the degree of accuracy that can be expected from
such calculations and how the choice of the functional and the one-electron basis set affects
the performance. Our main focus will be on the most active field in this area, i. e., the
computational prediction of NMR chemical shifts. The methodological aspects and repre-
sentative calculations of nuclear spin-spin couplings as well as ESR g-tensors and hyperfine
structures of radicals will be mentioned more briefly. In addition to presenting results for
lighter main group elements, the discussion will be extended to transition-metal compounds
which represent a considerable challenge for any method and where density functional
theory seems to be particularly successful and sometimes the only choice.

11.1 Theoretical Background

The general theory of the quantum mechanical treatment of magnetic properties is far be-
yond the scope of this book. For details of the fundamental theory as well as on many
technical aspects regarding the calculation of NMR parameters in the context of various
quantum chemical techniques we refer the interested reader to the clear and competent
discussion in the recent review by Helgaker, Jaszunski, and Ruud, 1999. These authors
focus mainly on the Hartree-Fock and related correlated methods but briefly touch also on
density functional theory. A more introductory exposition of the general aspects can be
found in standard text books such as McWeeny, 1992, or Atkins and Friedman, 1997. As
mentioned above we will in the following provide just a very general overview of this

47 For example, despite the high symmetry of C60, no calculation of its NMR properties at the MP2 level has
been reported so far. DFT-based methods, on the other hand, can readily be applied to this and to larger
fullerenes, see Bühl et al., 1999.
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subject. Similar to the dipole polarizability α
�

 introduced in the preceding chapter, NMR
chemical shifts and spin-spin couplings as well as ESR g-tensors are second-order proper-
ties and can be expressed as a mixed second derivative of the total electronic energy with
respect to two perturbations,

0YXts

2

st YX

E

==
∂∂

∂∝σ
��

. (11-1)

When X
�

 corresponds to the magnetic field B
�

 the σst are elements of the nuclear shield-
ing tensor or of the ESR g-tensor if Y

�

 is the nuclear magnetic moment or an electronic
spin, respectively. If, on the other hand, the derivative is taken with respect to two different
nuclear magnetic moments, we arrive at an expression for the (reduced) spin-spin coupling
constants of NMR spectroscopy. The usual way to tackle such equations is by employing
stationary perturbation theory. In the conventional Hartree-Fock approach this leads to the
coupled perturbed Hartree-Fock equations, which describe the linear response of the mo-
lecular orbitals that define the Slater determinant of the corresponding HF ground state to
the external perturbation. Due to the non-local character of the exchange operator in HF
theory, the response of a particular molecular orbital depends on the linear response of all
other occupied orbitals. On the other hand, if the same reasoning is applied to Kohn-Sham
density functional theory based on the commonly used local or gradient-corrected exchange-
correlation functionals, this linear response vanishes exactly because of the local character
of the corresponding exchange operators. There is no coupling between the linear responses
of different molecular orbitals and one ends up with the so-called uncoupled density func-
tional theory (UDFT) equations. The loss of the coupling is a shortcoming which reflects
the fact that the standard functionals depend only on the charge density and are designed
for ‘normal’ situations, i. e., where no magnetic field is present. It is very important to
realize that for a proper description of molecules in the presence of an external magnetic
field, the usual Hohenberg-Kohn theorems as outlined in Chapter 4 do not hold any more
and the corresponding exchange-correlation functional not only has to depend on the elec-
tron density )r(

�

ρ  but also on the current density )r(j
�

 induced by the magnetic field,

)]r(j),r([E)]r([E XC
fieldmagneticofpresence

XC
���

ρ →ρ . (11-2)

Approaches employing such current density functionals have been around for some time
(see Vignale, Rasolt, and Geldart, 1990) and first implementations have been reported re-
cently, for example by Lee, Handy, and Colwell, 1995, who used a local density type ap-
proximation, while Becke, 1996b, outlined the formalism for gradient-corrected current
density functionals. These techniques are, however, still in the early development phase
and have not reached the maturity to be of any practical relevance. Rather, all present-day
implementations of computing magnetic properties are based on regular density functionals,
i. e., they employ the approximation that the dependence on the current density can be
neglected,
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)]r([E)]r(j),r([E XCXC
���

ρ≈ρ . (11-3)

Fortunately, as shown by Lee, Handy, and Colwell, 1995, it seems that the consequences
of this approximation with regard to the accuracy of the computed chemical shifts are
rather modest and are of less significance than the general shortcomings inherent in the
functionals used. Hence, from an application-oriented, pragmatic point of view one does
not need to worry too much about using functionals which are formally inadequate because
they neglect the required dependence on )r(j

�

.
Another fundamental problem which significantly plagues all attempts to compute mag-

netic properties using a finite one-electron basis set approach, be it in the realm of density
functional theory or otherwise, is the so-called gauge-problem. To explain in simple terms
what that means we have to mention a few key aspects of how magnetic properties enter the
Schrödinger equation. The central observable in this context is the magnetic field B

�

. How-
ever, in the operators, not B

�

, but the related vector potential A
�

 of the field enters the
appropriate equations. The connection between these two quantities is that

AB
��

×∇= , (11-4)

i. e., the magnetic field is defined as the curl of the vector potential. For the non-expert, we
only mention that the curl is a particular kind of gradient that can be applied to a vector
field (for details see McWeeny, 1992, or Atkins and Friedman, 1997). It is not necessary in
the present context to enter an in-depth discussion of what this means, we only need to
convey the decisive point: the addition of the gradient of an arbitrary function to this vector
potential A

�

 leaves the magnetic field B
�

 unchanged. Or, in more pictorial terms, two dif-
ferent choices of origin would give two alternative values of A

�

 at any point in space, while
the field B

�

 is of course independent of the arbitrarily chosen origin. Hence, many vector
potentials give rise to same magnetic field and there is no unique definition for the choice
of A

�

 corresponding to a particular magnetic field B
�

. Since expectation values such as
NMR chemical shifts only depend on the observable, i. e. B

�

, the results must of course be
independent of the actual choice of the vector potential A

�

 (as long as it yields B
�

). It is this
requirement which is meant if one states that the magnetic field is gauge invariant.

In all our computational strategies we are limited to approximate schemes and the use of
finite one-electron basis sets. One of the outgrowths of these approximations is that gauge
invariance is not fulfilled. The unpleasant consequence is that the computationally pre-
dicted magnetic properties depend on the choice of the coordinate system. In the coupled
Hartree-Fock scheme, for example, gauge invariance is only assured with a complete, viz.,
infinite basis set. In fact, the breakthrough which triggered the fast growth of high accuracy
computational studies of NMR and ESR properties during the past two decades was the
development of efficient strategies to cope with this gauge problem. The two most widely
used techniques are the so-called individual gauges for localized orbitals (IGLO) devel-
oped by Kutzelnigg and coworkers (for a review see Kutzelnigg, Fleischer, and Schindler,
1990) and the gauge-invariant atomic orbital (GIAO, this acronym has been criticized
since the orbitals are actually gauge dependent and an alternative name frequently used is
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gauge-including atomic orbital) approaches first put forward by London as early as 1937.
In the IGLO ansatz, gauge-dependent factors are used on localized orbitals, while in the
GIAO framework the explicit field-dependence is built into the atom-centered basis func-
tions. For details the reader should consult Helgaker, Jaszunski, and Ruud, 1999, and the
many references given therein. The first chemically significant calculations of NMR shielding
constants in the context of density functional theory appeared a few years ago by Malkin,
Malkina, and Salahub, 1993, and employed the IGLO approach, while most subsequent
implementations use the GIAO technique, as described in detail by Rauhut et al., 1996, and
Cheeseman et al., 1996. As we will document presently, using uncoupled density func-
tional theory in either the IGLO or GIAO implementation leads in general to good agree-
ment with experimental data in spite of the formal shortcomings of this approach. How-
ever, in particular for systems characterized by low-lying excited states, but also in other
cases, shielding values which are systematically too low have been noted. As pointed out
by Bühl et al., 1999, it is not completely understood, whether this is due to general defi-
ciencies in the exchange-correlation functionals or whether it is due to the missing current
dependence. In best tradition of pragmatic solutions in density functional theory, Malkin et
al., 1994, suggested to introduce an ad hoc correction term to the corresponding expres-
sions as a first attempt to introduce some current dependence. The resulting modified sum-
over-states density functional perturbation theory (SOS-DFPT) approach indeed often leads
to improved accuracy, even though it lacks the physical rigor to make it a promising and
serious technique from a purists’ point of view. Before we begin a detailed discussion of the
actual performance of density functional methods in this arena, let us summarize the cur-
rent state of affairs with regard to the computational prediction of magnetic properties in
the Kohn-Sham framework. (i) The current dependence of the functionals required for a
theoretically correct description is neglected altogether; instead the usual exchange-corre-
lation functionals which depend solely on the charge density are employed. (ii) The gauge
problem is tackled with the same IGLO, GIAO or similar techniques as in wave function
based approaches. In most current implementations, for example in Gaussian, Turbomole
or ADF, the latter is realized. Among the problems of the former is that there are examples,
where the results depend significantly on the localization scheme chosen. (iii) A special
implementation aimed at reducing the systematic errors in the chemical shieldings and thus
attempting to implicitly introduce a current dependence is the SOS-DFPT technique. This
method is, however, fairly proprietary since it is implemented in combination with the
IGLO choice of origin only in the deMon program and is not available in any other gener-
ally accessible quantum chemical software.

11.2 NMR Chemical Shifts

The most important magnetic property by far is the chemical shift of NMR spectroscopy.
While proton (1H) and 13C shieldings hold a prominent place in organic chemistry, other
magnetic nuclei such as 15N, 29Si, or 31P but also heavier nuclei such as transition-metals
are increasingly important in many areas of chemistry. Obviously, all these nuclei are equally

11.2  NMR Chemical Shifts
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amenable to computational investigations. In the following we will give an overview of the
level of confidence that can be expected for NMR shieldings computed for the various
relevant magnetic nuclei using different exchange-correlation functionals, basis sets and
implementations. Before we enter this discussion we need to point out that computed mag-
netic properties are in general extremely sensitive to the geometry chosen. This applies in
particular to chemical shift calculations and already small changes in bond lengths or an-
gles may lead to significant deviations in the computed shifts. Hence, reliable chemical
shifts can only be expected if these calculations are based on good geometries. Actually,
this strong response of the chemical shift to structural variation has already frequently been
used as a means to identify the geometrical parameters of the target molecule, see Bühl,
1998. As the bottom line one should always keep in mind that the use of reliable structures
is an important prerequisite for obtaining meaningful chemical shift, spin-spin coupling, g-
tensor or hyperfine structure information.

Let us begin with 1H chemical shifts. Computational studies in this area are less frequent
than for other nuclei because proton shifts span only some ten ppm and rovibrational and
solvent effects might be comparable to the range of chemical shifts itself. Still, there have
been several reports on the successful application of density functional theory to proton
chemical shifts, see Dejaegere and Case, 1998, or Alkorta and Elguero, 1998, for repre-
sentative examples. In a recent detailed comparative study on 1H chemical shifts, Rablen,
Pearlman, and Finkbiner, 1999, reported the performance of the three popular hybrid
functionals B3P86, B3PW91 and B3LYP for reproducing 1H chemical shifts of 80 small to
modest sized organic molecules. With the GIAO scheme and using a 6-311++G(2df,p)
basis set relative shieldings of pleasing quality were obtained. While all three functionals
performed similarly, B3LYP was rated best. Increasing the basis set further did not improve
the overall performance significantly and already the smaller 6-311++G(d,p) basis set gave
results only marginally inferior to the 6-311++G(2df,p) ones. These authors also pointed
out that a linear scaling of the computed NMR chemical shifts improved the results, very
akin to the procedures established for harmonic frequencies. For example, a scaling factor
of 0.9422 was established for chemical shifts computed with the GIAO B3LYP/6-
311++G(2df,p) level based on B3LYP/6-31+G(d) optimized geometries.

Using fairly large Gaussian type basis sets to expand the Kohn-Sham orbitals and the
GIAO technique, Rauhut et al., 1996, and Cheeseman et al., 1996, tested the performance of
some popular exchange-correlation functionals ranging from LDA through GGA functionals
such as BPW91 and BLYP up to the related three-parameter hybrid functionals B3PW91
and B3LYP for 13C, 15N, and 17O chemical shifts. In particular, the density functional results
were compared to the conventional Hartree-Fock ansatz and the MP2 extension for incor-
porating (dynamical) electron correlation effects, which represent the standard non-density
functional methods used for this purpose. Some representative results taken from Cheeseman
et al., 1996, and Adamo, Cossi, and Barone, 1999, are shown in Table 11-1.

For 13C shieldings the test set of simple molecules included in Table 11-1 reveals that the
LDA cannot be recommended. This is because absolute deviations for both, absolute and
relative shifts are significantly higher than those of the HF method and much higher than
the rather small errors of the MP2 approach. As expected, the BLYP generalized gradient
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Table 11-1. Absolute and relative (in square brackets, with respect to CH4, NH3, and H2O) 13C, 15N, and 17O
NMR chemical shifts [ppm].

Molecule Nucl. HFa MP2a LDAa BLYPa B3LYPa PBE1PBEb Exp.a

CH4 C 195.7 201.5 193.7 187.5 189.6 194.0 195.1

NH3 N 262.6 276.2 266.1 259.2 260.3 263.1 264.5

H2O O 326.9 344.8 332.3 326.4 325.7 328.9 344.0

C2H6 C 84.0 188.0 176.7 169.7 173.6 179.7 180.9
[11.7] [13.5] [17.0] [17.8] [16.0] [14.3] [14.2]

C2H4 C 59.9 71.2 42.3 47.1 48.7 58.4 64.5
[135.8] [130.3] [151.4] [140.4] [140.9] [135.6] [130.6]

C2H2 C 113.9 123.3 100.0 105.7 106.3 114.0 117.2
[81.8] [78.2] [93.7] [81.8] [83.3] [80.0] [77.9]

CH2CCH2 Cterm 114.0 120.9 103.2 103.0 104.5 112.5 115.2
[81.7] [80.6] [90.5] [84.5] [85.1] [81.5] [79.9]

Ccentr –44.3 –26.0 –53.0 –51.7 –51.7 –36.6 –28.9
[240.0] [227.5] [246.7] [239.2] [241.3] [230.6] [224.0]

C6H6 C 55.0 64.0 41.7 43.7 45.2 55.3 57.2
[140.7] [137.5] [152.0] [143.8] [144.4] [138.7] [137.9]

CH3F C 124.5 121.8 103.2 101.2 106.6 116.5 116.8
[71.2] [79.7] [90.5] [86.3] [83.0] [77.5] [78.3]

CF4 C 79.2 64.4 39.2 38.3 46.5 59.2 64.5
[116.5] [137.1] [154.5] [149.2] [143.1] [134.8] [130.6]

HCN C 68.1 87.3 63.0 68.7 67.2 76.6 82.1
[127.6] [114.2] [130.7] [118.8] [122.4] [117.4] [113.0]

N –56.0 1.0 –60.2 –49.2 –53.1 –34.9 –20.4
[318.6] [275.2] [326.3] [308.4] [313.4] [298.0] [284.9]

CH3CN Cterm 190.9 193.6 182.3 177.1 180.4 187.7 187.7
[4.8] [7.9] [11.4] [10.4] [9.2] [6.3] [7.4]

Ccentr 60.6 76.1 54.7 57.8 57.4 68.2 73.8
[135.1] [125.4] [139.0] [129.7] [132.2] [125.8] [121.3]

N –46.6 –13.2 –44.7 –36.5 –40.7 –24.4 –8.1
[309.2] [289.4] [310.8] [295.7] [301.0] [287.5] [272.6]

CH3NH2 C 163.8 164.9 151.1 145.3 150.1 157.1 158.3
[31.9] [36.6] [42.6] [42.2] [39.5] [36.9] [36.8]

N 250.0 261.2 244.7 233.1 238.4 244.0
[12.6] [15.0] [21.4] [26.1] [21.9] [19.1]

N2 N –128.7 –44.9 –104.8 –97.1 –105.4 –76.8 –61.6
[391.3] [321.1] [370.9] [356.3] [365.7] [339.9] [326.1]

CH3OH C 143.7 142.2 126.1 122.0 127.4 136.5 136.6
[52.0] [59.3] [67.6] [65.5] [62.2] [57.5] [58.5]

O 274.7 350.6 334.5 313.9 321.6 334.7
[52.2] [–5.8] [2.2] [10.9] [4.1] [–5.8]

11.2  NMR Chemical Shifts
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functional improves the quality of the results, in particular the error in the relative shifts is
reduced to about one half of the LDA value. Interestingly, switching to the B3LYP hybrid
functional does not lead to the usually observed further betterment but furnishes results
very similar to the parent pure density functional. Rauhut et al. 1996, arrived at similar
conclusions even though some of their quantitative data differ due to the use of slightly
different basis sets and geometries. A promising recent alternative seems to be the PBE1PBE
functional. Using this protocol but employing a slightly different basis set, the mean abso-
lute errors in the absolute and relative shieldings drop to 3.1 and 2.5 ppm, respectively, as
compared to the MP2 result of 5.6 and 1.6 ppm, respectively (Adamo, Cossi, and Barone,
1999). Similarly, the mPW1PW functional shows very promising results for 13C shieldings
as demonstrated by Wiberg, 1999, for 18 organic molecules. Also the recent B98 functional
was shown to be competitive both with the MP2 approach and the best density functionals
by Bienati, Adamo, and Barone, 1999. Qualitatively similar conclusions can be drawn for
15N shieldings. However, for the few data for this nucleus included in Table 11-1 the LDA
already outperforms the HF scheme, even though for all methods the errors themselves are
considerably larger than for the 13C case. For 17O shieldings in main group element com-
pounds density functional approaches – either of the GGA or the hybrid type – seem to be

Table 11-1, continued.

Molecule Nucl. HFa MP2a LDAa BLYPa B3LYPa PBE1PBEb Exp.a

CH2O C –9.2 6.7 –41.0 –27.6 –25.4 –11.1
[204.9] [194.8] [234.7] [215.1] [215.0] [205.1]

O –461.2 –341.9 –509.2 –459.7 –469.8 –422.2
[788.1] [686.7] [841.5] [784.5] [795.5] [–751.1]

H3CCOCH3 Cmethyl 163.5 164.5 148.8 146.9 150.4 157.0 158.0
[32.2] [37.0] [44.9] [40.6] [39.2] [37.0] [37.1]

CCO –23.2 –5.8 –44.4 –37.4 –35.7 –11.1 –13.1
[218.9] [207.3] [234.5] [224.9] [225.3] [205.1] [208.2]

O –340.5 –279.8 –375.5 –351.5 –358.1 –330.2
[667.4] [624.6] [707.8] [676.3] [683.8] [659.1]

CO C –29.2 11.1 –23.9 –17.3 –21.7 –7.8 1.0
[224.9] [190.4] [217.6] [204.8] [211.3] [201.8] [194.1]

O –95.0 –47.4 –93.7 –82.9 –87.8 –70.0 –42.3
[421.9] [392.2] [426.0] [407.7] [413.5] [398.9] [386.3]

CO2 C 47.8 63.5 47.2 47.9 46.9 56.8 58.5
[147.9] [138.0] [146.5] [139.6] [142.7] [137.2] [136.6]

O 214.8 241.0 203.3 206.5 206.9 220.0 243.4
[112.1] [103.8] [129.0] [118.3] [118.8] [108.9] [100.6]

Mean abs. C 8.5 5.6 15.2 15.0 13.0 3.1
deviation [8.1] [1.6] [14.4] [7.8] [7.9] [2.5]

a Cheeseman et al., 1996 using a doubly polarized quadruple zeta basis; b Adamo, Cossi, and Barone, 1999, using
a standard 6-311+G(2p,d) basis set.
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insufficient to yield reliable results. For this nucleus, the conventional MP2 methods is
clearly superior, but also significantly more expensive computationally. A special, impor-
tant benchmark case is again provided by the ozone molecule because of the significant
effects arising from non-dynamical correlation. As shown in Table 11-2, only highly corre-
lated and computationally extremely demanding methods, such as CCSD(T) in combina-
tion with very large basis sets, are able to supply chemical shifts reasonably close to experi-
mental ones. Both, the HF and in particular the MP2 method, yield disastrously poor and
completely useless results, missing the experimental target data by some 2000 and 3500
ppm, respectively! On the other hand, just as in the previously discussed example of the
vibrational frequencies of O3, pure density functionals perform best, while in particular the
chemical shift of the central oxygen poses a significant problem to hybrid functionals. The
density functional results in Table 11-2 have been obtained within the GIAO scheme, but as
shown by Kaupp, Malkina, and Malkin, 1997, calculations using the IGLO method for
dealing with the gauge problem, either in the simple uncoupled or the SOS-DFPT picture
lead to very similar conclusions.

All the above results were obtained using comparably large basis sets and we must ask
whether the choice of the basis set influences these general conclusions and which kinds of
standard basis sets can be recommended for routine calculations of NMR chemical shifts.
Even though no systematic studies exploring the basis set dependence of NMR chemical
shift calculations in the Kohn-Sham framework seem to be available, the general consensus
appears to be that the basis set requirements are similar to those of the Hartree-Fock scheme
and less than for post-HF approaches. Typically, sets of polarized triple-zeta quality are
employed, such as the 6-311+G(2d,p) standard set which also includes an additional set of
diffuse functions on the non-hydrogen atoms. This basis set was recommended in particu-
lar by Cheeseman et al., 1996, in their evaluation of the applicability of density functional
theory to NMR chemical shifts. These authors also advocated the use of smaller sets such
as 6-31G(d) for larger molecules, albeit with some loss in accuracy. However, one should
keep in mind that there are indications that the rather good performance of these basis sets
may be due to fortuitous error cancellations and that bigger, more flexible sets are required
for arriving at the correct answer for the correct reason. Another frequently employed and
probably better suited class of basis sets is the IGLO-III set originally derived by Kutzelnigg
and coworkers (Kutzelnigg, Fleischer, and Schindler, 1990) for the calculation of NMR
chemical shieldings in the context of Hartree-Fock theory. These are loosely contracted

Table 11-2. Absolute 17O NMR chemical shifts [ppm] for ozone.

Nucleus HFa MP2a CCSD(T)b LDAa BLYPa B3LYPa PBE1PBEc Exp.

Oterminal –2793 +1055 –1208 –1520 –1454 –1673 –1453 –1290b, –1254c

Ocentral –2717 +2675   –754   –914   –892 –1115 –1040   –724b,   –688c

a At the experimental geometry (ROO=1.272 Å, α = 116.8°) using an aug-cc-pVQZ quadruple-zeta basis set;
b taken from Gauss and Stanton, 1996, using ROO=1.2693 Å, α = 117.0° and a large pentuple-zeta basis set;
c taken from Adamo and Barone, 1999 using ROO=1.2406 Å, α = 118.3° and a triple-zeta 6-311(d,p) basis set.

11.2  NMR Chemical Shifts
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sets augmented by diffuse and polarization functions. For example, for carbon the IGLO-
III basis set consists of 11s, 7p and 2d primitive Gaussian functions contracted to a final
basis set of 7s6p2d quality.

To summarize, for compounds containing elements of the first-row, GGA and hybrid
functionals provide chemical shifts of roughly similar accuracy, usually better than corre-
sponding Hartree-Fock results, while the LDA cannot be recommended. However, also the
GGA and hybrid approaches in many cases fall short of the precision that can be expected
from MP2 theory, let alone more elaborate techniques for accounting for electron correla-
tion such as CCSD(T). On the other hand, there are examples such as the 13C chemical
shifts in ortho-benzyne, where conventional methods such as HF and MP2 fail while den-
sity functional theory provides high quality predictions, see Orendt et al., 1996. Hence,
density functional based methods are a valuable addition to the quantum chemist’s tool box
but in most cases do not represent a major breakthrough if small molecules containing only
light elements are being studied. Rather, the use of density functional techniques has its
particular merits when it comes to large systems due to its computational efficiency or to
species which contain heavier elements, such as transition-metal compounds. As noted
before, for these molecules electron correlation is of great importance and often relativistic
effects can no longer be ignored. If the latter are incorporated through the use of relativistic
effective core potentials, the valence orbitals of the heavy elements show by construction
the wrong nodal behavior near the core. Hence, the straightforward use of RECPs for the
prediction of magnetic properties is limited to the ligand nuclei and cannot be used for the
metal. Another possibility for including relativistic effects is the quasirelativistic scheme
implemented in the ADF program. In this approach, the valence orbitals are orthogonalized
against the frozen core orbitals which ensures correct tails of the valence orbitals close to
the nucleus. As pointed out for example by Schreckenbach and Ziegler, 1998, chemical
shifts are mostly determined by the core tails of the valence orbitals and not by the core
orbitals themselves. Therefore, unlike RECPs, this technique can also be used to study
chemical shifts of the metal atom. In addition, very recently, the zeroth order regular ap-
proximation (ZORA) technique for incorporating spin free relativistic effects was imple-
mented in the context of NMR shielding constants by Wolff et al., 1999.

An ever growing number of chemical shift calculations for transition-element contain-
ing molecules has been carried out in the past few years as eloquently summarized in a
couple of recent reviews, such as Schreckenbach and Ziegler, 1998, Kaupp, Malkin, and
Malkina, 1998, and Bühl et al., 1999. An instructive example for ligand chemical shifts is
given by the 17O chemical shifts of neutral and charged tetrahedral d0 transition-metal oxo
complexes MO4. These systems are particularly well suited for a comparative study, since
the 17O chemical shifts cover a large range and are very sensitive on the metal atom and the
bonding situation. Table 11-3 contains the oxygen shielding constants of various MO4 com-
plexes obtained using a variety of density functional methods. For comparison, results
from the conventional, wave function based HF and MP2 techniques are also included.

Each of the functionals included in Table 11-3 shows a comparably good performance
for all oxo complexes. The differences between the functionals, be they of pure GGA or
hybrid type are in general small. This is even more remarkable if one takes into account that
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these numbers have been collected from several sources which differ in the way the NMR
shifts are being computed (GIAO and the SOS-DFPT IGLO variant), the way scalar rela-
tivistic effects are accounted for (RECP and the quasirelativistic approach), and the type of
basis set (GTO and STO based). On the other hand, both HF and MP2 show a completely
erratic behavior, which gets worse with increased deshielding. Interestingly, at the HF level
the computationally predicted shieldings are too low, while MP2 errs no less dramatically
in the opposite direction. A tendency of the MP2 methods to ‘overcorrect’ HF results can
also be noted for many well-behaved compounds of lighter nuclei, but in the transition-
metal species the errors can be spectacular: deviations from experiment of some 55000
ppm (!) in the case of MnO4

– clearly indicate that meaningless numbers have been pro-
duced. These compounds are known to exhibit significant non-dynamical electron correla-
tion effects pointing to the origin of this catastrophic behavior. The take-home message
here is that in such cases Hartree-Fock and MP2 methods are simply useless. On the other
hand, density functional theory seems to provide a general tool, applicable for the whole
range of oxides studied in this particular example. Interestingly, if instead of GGA functionals
their hybrid counterparts are employed, the agreement with experiment deteriorates. This
is in contradiction with the usual observation that hybrid functionals perform better than
GGA ones. To make things even more complicated, we will discuss cases below where the
hybrid functionals behave as expected and yield chemical shifts which are significantly
superior to GGA shifts. No general conclusion can be offered yet in this regard.

The computational prediction of not the ligand but the metal, particularly transition-
metal chemical shifts poses an even more severe challenge to any method. Electron corre-

Table 11-3. Absolute 17O NMR chemical shifts [ppm] in transition metal oxo complexes.

Molecule HF MP2 BP86 BP86 BP86 B3LYP B3LYP PBE1PBE Exp.e

GIAO GIAO GIAO GIAO IGLOa GIAO GIAO GIAO
BS Ib BS Ib STOc BS Ib BS Ib BS Ib BS IId BS IId

−2
4WO –194 –21 –140 –157 –138 –183 –108 –102 –129

−2
4MoO –335 –60 –216 –251 –231 –289 –201 –193 –239
−2

4CrO –1308 2173 –446 –508 –490 –640 –480 –479 –544
−
4ORe –464 3 –278 –282 –277 –339 –278

−
4TcO –819 184 –405 –421 –410 –518 –458
−
4MnO –7248 54485 –778 –832 –821 –1149 –939

4OsO –1295 1069 –521 –517 –503 –657 –505

4RuO –3330 8262 –740 –765 –733 –1037 ≈ –820

4FeO –1224 –1172 –1957

a SOS-IGLO approach; b Basis I: IGLO II basis for oxygen, RECP with (8s7p6d)/[6s5p3d] valence basis for
metals, taken from Kaupp, Malkina and Malkin, 1997; c STO: Slater type basis of polarized triple zeta quality,
taken from Schreckenbach and Ziegler, 1997a; d Basis II: EPR II basis for oxygen, RECP/valence basis for metals
as in Basis I, taken from Adamo and Barone, 1998c; e taken from Kaupp, Malkina and Malkin, 1997.
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lation cannot be neglected and at least for the heavier metals relativistic effects have a
pronounced, direct influence on the results and need to be included. However, if instead of
absolute shieldings relative chemical shifts are considered, the effects of relativity are at-
tenuated. The reason for this is that relativistic effects are mostly due to the core electrons
whose properties change only little when going from one molecular environment to an-
other. Hence, they cancel to a large extent when relative shifts are considered. Only if the
core tails of the valence orbitals start to become important can relativistic effects signifi-
cantly affect chemical shifts. Qualitative trends in chemical shifts can therefore be repro-
duced with non-relativistic calculations for elements as heavy as 4d transition-metals. If we
turn to the quantitative performance of various functionals, surprising differences to the
corresponding ligand shifts are observed. In particular, the use of regular GGA functionals
leads in most cases to only disappointing results while hybrid functionals perform signifi-
cantly better. An extreme but still typical example is provided by the 57Fe chemical shifts of
the prototype organometallic compound, ferrocene. Using a fairly large basis set, pure GGA
functionals severely underestimate the experimental chemical shift of 1532 ppm by some
900 ppm, while the B3LYP functional hits right on target at 1525 ppm as demonstrated by
Bühl, 1997.

In conclusion, for most of the transition-metal chemical shifts studied up to now, hybrid
functionals such as B3LYP perform much better than GGA functionals which tend to sig-
nificantly underestimate the chemical shifts. However, as emphasized by Bühl et al., 1999,
it is an entirely open question as to whether the good performance of B3LYP and related
functionals is due to the underlying physics or just the result of a fortuitous error cancella-
tion. We should point out though that Schreckenbach, 1999, offered an explanation for the
dramatic effect obtained for ferrocene. He argues that the following factors brought about
by mixing in exact exchange should be responsible: stabilization of the occupied orbitals
and the concomitant larger energetic gaps between occupied and virtual orbitals, the more
diffuse character of the unoccupied orbitals, and the inclusion of some coupling due to
Hartree-Fock exchange in the UDFT equations. In any case, even though such functionals
seem to help in these cases, they are certainly not a panacea since there are also examples –
like 95Mo chemical shifts – where the inclusion of exact exchange results in larger devia-
tions from the experimental data. The, admittedly somewhat unsatisfactory, bottom line is
that any serious investigation of metal chemical shifts must be preceded by a careful cali-
bration of the available density functionals, since it is not possible to make a safe a priori
prediction of how well a particular functional will perform.

Finally, we should note that a particularly important area of application where density
functional techniques, in spite of the deficiencies noted above, are virtually without com-
petition is provided by biochemically relevant molecules, such as enzymes or nucleic ac-
ids. The techniques discussed in this section are virtually the only quantum chemical meth-
ods which can be applied in this context due to their outstanding price/performance ratio.
For example, the 13C and 15N chemical shifts in bacteriochlorophyll A have been studied by
Facelli, 1998, and in another investigation the 57Fe, 13C and 17O shifts in iron porphyrin
derivatives gave important clues as to the structural details of these species, as shown by
McMahon et al., 1998.
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The chemical shifts discussed in the previous section are an important, but not the only
information carried by an NMR spectrum. In order to understand and interpret a com-
plete NMR spectrum the nuclear spin-spin coupling constants need to be analyzed as well.
However, the computational prediction of these quantities within approximate density
functional theory has turned out to be difficult and only a couple of reports have appeared
in the literature. In addition, only very few of the regularly available, commercial black-
box program packages include modules which would allow the routine calculation of this
property. We will therefore restrict ourselves to a brief overview of the current, still fairly
experimental state of the art for the determination of (isotropic) spin-spin coupling con-
stants in the context of density functional theory. One reason why these are difficult to
address theoretically is that there are a total of four terms which contribute to this prop-
erty, i. e., the diamagnetic and paramagnetic spin-orbit terms, the spin-dipole term and
the Fermi-contact term, all of which pose stringent and at the same time different prob-
lems for their theoretical description. The most important contribution among the four is
commonly the Fermi-contact term. Pictorially and very qualitatively speaking, the Fermi-
contact term for spin-spin coupling arises from the interaction of a magnetic nucleus with
the charge density at the position of this very same nucleus which induces a small polari-
zation of the total spin density (even though the system is formally closed-shell). This
distortion is then detected by a second nucleus through the same contact mechanism. In
other words, the Fermi-contact term probes the charge density and its sensitivity with re-
spect to spin polarization at the position of the two nuclei. In order to account for this
phenomenon we need to describe the local density and its spin polarization at the corre-
sponding nuclear positions as accurately as possible. This property is very sensitive to
almost everything, in particular to the type of functional and the one-particle basis set
used. Clearly, since the Fermi-contact interaction depends on the amplitude of the orbit-
als at the nuclei (which determines the charge density), neither ECP nor frozen core ap-
proaches as in the quasirelativistic ADF scheme are applicable. Rather, all-electron tech-
niques in which the core electrons are explicitly accounted for are mandatory. The first
report describing a practical implementation in the context of density functional theory
appeared in 1994 by Malkin, Malkina, and Salahub. While these authors based their tech-
nique on GTO basis sets and GGA functionals as implemented in the deMon program, a
complementary study using STO sets and the LDA approximation in the context of the
ADF code was presented two years later by Dickson and Ziegler, 1996. Both schemes
employed a mixed analytical/finite differences implementation in which the spin-dipole
term was completely neglected. Hybrid functionals could not be used with either approach.
An important step towards routine calculations of nuclear spin-spin coupling constants
was achieved a few years later by Sychrovský, Gräfenstein, and Cremer, 2000, and by
Helgaker, Watson, and Handy, 2000. The two groups presented almost simultaneously
fully analytical implementations of nuclear spin-spin coupling constants which not only
included all four contributions but also allowed the use of the popular and successful hy-
brid functionals.

11.3  NMR Nuclear Spin-Spin Coupling Constants
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In Table 11-4 we summarize some representative spin-spin coupling constants for sim-
ple organic molecules as obtained in the studies mentioned above. The somewhat unusual
PWP functional used by Malkin, Malkina, and Salahub, 1994, is a GGA functional which
combines the gradient-corrected exchange and correlation functionals due to Perdew/Wang
and Perdew. All the calculations from Table 11-4 have peen performed using large basis
sets since it is generally accepted that basis set requirements for calculating nuclear spin-
spin coupling constants are pretty demanding and exceed those known for computing NMR
chemical shifts. In particular, the fact that standard Gaussian functions are not able to re-
produce the correct cusp condition at the location of the nuclei creates problems in GTO
based implementations and standard basis sets are often inadequate. A possible remedy is
to augment such sets with tight (i. e., large exponent) s-functions in order to improve the
local density at the nucleus. Several authors have recommended the IGLO-III set although
there are also examples where even more flexible basis sets are required. Similarly, the
Slater type basis sets of Dickson and Ziegler, 1996, which do not share the problems of the
GTO sets near the nucleus, were of doubly polarized triple-zeta quality (i. e., one set of d-
and f-functions for first-row atoms).

The accuracy obtained with the GGA and hybrid functionals is satisfactory and devia-
tions from experiment are generally of the order of 10–20 %, while the LDA spin-spin

Table 11-4. Nuclear Spin-Spin Coupling Constants [Hz].

Molecule Coupling LDAa PWPb BLYPc B3LYPc Exp.c

CH4
2JHH –6.5 –10.6 –9.8 –10.9 –12.6
1JCH 121.6 118.4 124.0 123.5 125.3

C2H6
2JHH –10.8 –7.8 –7.1 –8.2 –/–
1JCH 119.8 120.9 127.7 127.5 124.9
2JCH –1.7 –2.5 –3.3 –4.1 –4.5

C2H4
2JHH 3.8 4.3 –/– 3.2d 2.5
1JCH 140.6 152.0 –/– 154.2d 156.4
2JCH 1.8 –0.7 –/– –1.3d –2.4
1JCC 68.5 61.2 –/– 70.1d 67.6
3JHH,trans 12.3 16.9 –/– 17.7d 19.1
3JHH,cis 6.6 10.1 –/– 11.0 d 11.6

C2H2
1JCH 232.8 249.1 256.1 254.4 248.7
2JCH 45.9 49.1 52.6 51.5 49.3
1JCC 204.7 184.3 197.3 201.7 171.5
3JHH 2.6 9.0 9.4 10.2 9.5

CH3F
1JCF –297.4 –268.1 –252.1 –227.1 –161.9
1JCH 141.3 –/– 144.3 144.9 149.1
2JHH –2.8 –/– –6.5 –7.7 –9.6
2JHF 33.2 –/– 49.5 50.8 46.4

a Taken from Dickson and Ziegler, 1996; b taken from Malkin, Malkina and Salahub, 1994; c taken from Sychrovský,
Gräfenstein and Cremer, 2000; d taken from Helgaker, Watson and Handy, 2000. As pointed out by these authors,
the corresponding values by Sychrovský, Gräfenstein and Cremer, 2000, are apparently in error due to an incor-
rect geometry.
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couplings are less useful. In their detailed comparisons which include many more mol-
ecules, Sychrovský, Gräfenstein, and Cremer, 2000, as well as Helgaker, Watson, and Handy,
2000, come to the conclusion that among the functionals investigated B3LYP provides the
most accurate nuclear spin-spin coupling constants. However, as noted by Malkina, Salahub,
and Malkin, 1996, the quality of the computationally predicted spin-spin coupling con-
stants systematically deteriorates along the series H, C, N, O, F which was tentatively
assigned to the increasing number of lone pairs as one passes from left to right in the
Periodic Table. For example, the computed 13C–19F couplings in methylfluoride, CH3F, of
–268.1 (PWP), –252.1 (BLYP) and –227.1 (B3LYP) Hz dramatically overshoot the experi-
mentally determined value of –161.9 Hz while the remaining computed and experimental
couplings are within a few Hz. Applications of GGA functionals to study spin-spin cou-
pling constants in larger organic molecules have been reported by Stahl et al., 1997, and
Hricovíni et al., 1997. The results of applying the B3LYP hybrid functional to various 13C-
13C and 13C-1H spin-spin coupling constants (considering only the dominant Fermi-contact
term) in saccharides and related carbohydrates reported by Bose et al., 1998, Cloran,
Carmichael, and Serianni, 1999a and 1999b, give encouraging results, too. As a general
trend these authors note that experimental 13C-1H spin-spin coupling constants are typi-
cally underestimated by less than 10 %, while 13C-13C coupling constants seem to come
out too large by a similar amount in the DFT calculations.

11.4 ESR g-Tensors

Let us now turn to ESR spectroscopy, which is used to explore the electronic structure of
open shell compounds such as simple radicals. The theoretical determination of g-tensors
in the context of density functional theory is also a very new field. The first implementation
based on the GIAO scheme has been presented only recently by Schreckenbach and Ziegler,
1997b. The corresponding modules have not been included in most popular programs yet
and the number of studies aimed at a systematic assessment of the quality of these ap-
proaches is therefore very small. Just as with the NMR spin-spin coupling constants it thus
appears premature to present any general conclusions with regard to basis sets, functionals
and resulting accuracy. Nevertheless, it seems that the trends observed for the NMR chemi-
cal shifts apply also to the g-tensor: density functional theory usually provides results of
higher quality than HF based techniques, but basis sets of at least polarized triple zeta
quality are required. Experimental trends are reproduced fairly well, both for the isotropic
g-value as well as its individual tensor components. However, severe problems still exist in
particular if heavier elements are involved. For these cases, relativistic effects such as spin-
orbit coupling become more and more important. Without going into detail we mention
that van Lenthe, Wormer, and van der Avoird, 1997, have presented an alternative approach
which explicitly includes these relativistic effects through the ZORA technique which seems
to be better suited for these cases than the Schreckenbach/Ziegler implementation. We close
this section with a similar conclusion as the preceding one. Density functional theory seems
to offer a promising avenue for the theoretical prediction of ESR g-tensors, but the current

11.5  Hyperfine Coupling Constants
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state of the art has not reached a stage where specific recommendations regarding functionals
and basis sets would be possible. The future seems to be bright and full of fascinating
challenges. One only has to consider the wide area of enzymatic reaction sequences where
ESR techniques are heavily used to monitor the reaction. But, it is still some way to go
before such applications will become routine.

11.5 Hyperfine Coupling Constants

Hyperfine couplings can be classified in two categories stemming from two physical mecha-
nisms. The anisotropic contribution results from the interaction between the magnetic
moments of the electrons and the nuclei. Since this interaction depends on the relative
orientation of these magnetic moments, it is only detectable when the motion of the mol-
ecules is frozen such as in matrices and crystals. In solution the molecules tumble ran-
domly and the anisotropic part of the hyperfine coupling vanishes. On the other hand, the
isotropic contribution of hyperfine coupling constants are related to the interaction be-
tween the nuclear spin and the spin of the unpaired electron, which is due to a Fermi-
contact mechanism very akin to that described earlier in the context of NMR spin-spin
couplings, according to
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C contains several natural constants which in part depend on the nucleus I, β−α
µνP  is the

difference between the density matrices of electrons with α and β spin (i. e., a measure of
the spin density) and )r( I

�

δ  is the Dirac delta function which ensures that only the density at
the position of the nucleus I is considered in this equation. Obviously, no orientation de-
pendence exists and isotropic hyperfine coupling constants can also be measured in solu-
tion. These data contain important information about details of the geometries and allow
insights into the electronic structure of radicals and in the following, we will deal exclu-
sively with these isotropic values. The crucial requirement for obtaining accurate results
for isotropic hyperfine coupling constants is the availability of reliable spin densities at the
nuclear positions, which is known to be hard to achieve. Due to the similarity of the mecha-
nisms underlying NMR spin-spin and ESR hyperfine couplings it is no surprise that the
demands on the basis sets used are also comparable. Standard DZP or even TZP sets are
generally too small. Eriksson et al., 1994, for example recommend that the IGLO-III basis
sets also be used for this purpose while other studies have employed basis sets such as the
EPR-II and EPR-III sets specifically designed by Barone and co-workers for the evaluation
of EPR properties in density functional calculations (see, e. g., Barone, 1995). There are
too few systematic studies on the determination of (isotropic) hyperfine couplings to allow
for a solid evaluation of the correlation between expected accuracy and employed tech-
nique. However, it seems clear that density functional methods are capable of providing
reasonable predictions for these properties, even though they are not able to rival the accu-
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racy obtained from highly correlated wave function based methods as shown in a compre-
hensive recent study by Gauld, Eriksson, and Radom, 1997. Again, the choice of the func-
tional and/or the one-particle basis set to expand the Kohn-Sham orbitals is of crucial im-
portance. This should not surprise us since the isotropic couplings depend on the spin
density at the nuclear positions only and hence the performances of the different functionals
are directly related to their abilities to generate good spin densities not on average but at
these very positions. For example, Eriksson et al., 1994, demonstrated that the isotropic
hyperfine couplings of the water cation computed from various GGA functionals vary sig-
nificantly. Compared with the experimental coupling of –29.7 Gauss, the BP functional
yields –8.6 Gauss, PW86 results in –24.6 Gauss and the more recent PW91 functional
performs worst and produces +0.6 Gauss. As already alluded to in Section 11-3, the PW86
functional produces rather good spin densities which is also mirrored by its comparatively
good performance in the present context, while other functionals such as the widely used
BP are very poor. Similar conclusions regarding the strong dependence of the couplings on
the functional forms and the disappointing performance of the BP functional have been
reported by others, see, e. g. Barone, 1994. Consequently, Eriksson et al. recommend PW86
as the best suited GGA functional for the calculation of isotropic hyperfine coupling con-
stants. Thus, while the LDA does not deliver trustworthy results and should not be used for
computational prediction of hyperfine couplings, certain (but not all!) GGA functionals
such as PW86 already generally provide results of acceptable accuracy. Just as in most
other areas, hybrid schemes which include a certain amount of Hartree-Fock exchange
usually represent a further improvement, as, for example, reported by Barone, 1994, or
Adamo, Cossi, and Barone, 1999. A representative set of results is documented in Table
11-5, where isotropic hyperfine coupling constants are collected for the methyl radical and
the formaldehyde cation radical obtained with various functionals.

The best results are obtained with the hybrid schemes, the standard B3LYP functional
and the new, one-parameter PBE1PBE protocol. Of course, one must keep in mind that
independent of the particular functional chosen, large and flexible basis sets must be used.

Promising accuracy is also reported for the isotropic hyperfine coupling constants in-
volving metals. A case at hand is the study by Knight et al., 1999, of binary oxides such as
ScO, YO, and LaO, where the unrestricted B3LYP model together with very large GTO
basis sets provided a satisfactory agreement with the corresponding experimental hyperfine

Table 11-5. Isotropic hyperfine structures [Gauss].

Molecule Parameter PW86a B3LYPb PBE1PBEb Exp.a,b

CH3 AH –20.8 –23.3 –26.1 –23, –25.1
AC 32.8 29.8 29.2 ≈38,   28.4

CH2O
+ AH 133.3 130.3 134.2 133

AC –31.8 –33.5 –34.6 –39
AO –12.6 –15.4 –14.5

a Taken from Eriksson et al., 1994; b taken from Adamo, Cossi and Barone, 1999.

11.5  Hyperfine Coupling Constants
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couplings. In addition, these authors showed that B3LYP performed considerably better
than conventional restricted and unrestricted Hartree-Fock and even ROHF with configura-
tion interaction with single excitations (ROHF-CIS) models. In a detailed evaluation of
DFT methods for the prediction of transition-metal hyperfine coupling constants Munzarovà
and Kaupp, 1999, reported the results obtained with eight different functionals (the GGA
functionals BLYP, BP86, and BPW91, the corresponding three-parameter hybrids B3LYP
and B3PW91, and three examples of ‘half-and-half’ hybrid functionals briefly mentioned
in Section 6.6 which include 50 % exact exchange, namely BHLYP, BHP86, and BHPW91)
and several basis sets in comparison with reliable experimental data and results from elabo-
rate coupled cluster calculations. In terms of the basis set the authors note that for 3d tran-
sition-metals due to error compensation already a contracted GTO set of 9s7p4d quality
yields hyperfine coupling constants comparable to results obtained with much larger basis
sets. However, no generally valid hierarchy of functionals for the calculation of hyperfine
coupling constants of transition-metal containing compounds could be established, since
the performance of a given functional varies significantly for different classes of com-
plexes. The subtleties of the electronic structures, the degree of spin contamination as well
as other factors seem to be responsible for these variations. Nevertheless, for the majority
of the systems studied, essentially all of the functionals showed deviations of only some
10-15 % from the experimental isotropic metal hyperfine coupling constants.

11.6 Summary

The accurate computational determination of magnetic properties still poses a challenge to
density functional methods. The reasons for this are manifold. The theoretically most se-
vere deficiency of today’s implementations is the use of the standard functionals which
depend only on the charge density. In the presence of a magnetic field the usual Hohenberg-
Kohn theorem no longer applies and for a proper treatment functionals which depend not
only on the charge density but also on the magnetic current density should in principle be
employed. For the time being, no such )r(j

�

 dependent functionals have been implemented
in standard production codes and no quick solution to this problem seems to be in sight.
Fortunately, from a pragmatic point of view, the use of regular charge density functionals
seems to be only a minor flaw. The use of sophisticated functionals such as the modern
hybrid variants together with large and flexible basis sets frequently affords results which
are better than HF and which often rival or even outperform MP2 data. However, unlike for
many other molecular properties, no clear-cut hierarchy of functionals in terms of accuracy
has yet emerged. One should also keep in mind that all magnetic properties are very sensi-
tive to the quality of the basis sets, the kind of functional selected, and in particular to the
geometry of the system at hand. While using inaccurate geometries may render the whole
calculation worthless, the comparison between theoretically predicted and experimentally
obtained magnetic properties may on the other hand also be used as a probe for the correct
structure of the target molecule. DFT-based NMR chemical shift calculations can and should
use the techniques to deal with the gauge problem which have been developed earlier in the
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context of wave function based methods, namely IGLO or GIAO or related techniques. In
conclusion, particularly if large molecules which may even contain transition-metal centers
with a complex electronic structure are considered, density functional approaches are prob-
ably the only means available today to obtain reasonably accurate results for NMR and
ESR properties.

11.6  Summary
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The structures, energetics, vibrational frequencies etc. discussed in the preceding chapters
concerned mostly covalently bound molecules with bond energies typically exceeding 50-
100 kcal/mol. Let us now turn to more weakly bound systems with binding energies smaller
by one or two orders of magnitude. An important category among such systems is the
hydrogen bond or hydrogen bridge, i. e., the linkage A−H⋅⋅⋅B which involves hydrogen
atoms in a moderately polar bond Aδ−−Hδ+ (the proton donor) and another atom or group
Bδ− (the proton acceptor). Since 1939 the concept of hydrogen bonding has found wide
acceptance due to the publication of Pauling’s ‘The Nature of the Chemical Bond’ and it is
commonly invoked to explain the properties of systems as important as water, carbohy-
drates, and nucleic acids, just to name a few. This type of bond is characterized by a com-
plex formation energy larger than just dipolar and dispersion interaction energies and by an
H⋅⋅⋅B bond length that is shorter than the sum of the van der Waals radii of H and B. Both
A and B are usually atoms more electronegative than hydrogen like O, F, N, or Cl. If the
proton accepting group B is oxygen or nitrogen, the existence of a hydrogen bond is indi-
cated when the H⋅⋅⋅B distance is less than 2.5 Å and larger than the covalent N-H or O-H
bond length (about 1.0 Å). Moreover, the presence of hydrogen bonds is evidenced by an
elongation of the A-H bond, accompanied by a red shift of the corresponding infrared
stretching frequency. This weakening of the donor A-H bond goes hand in hand with a
strengthening of the H⋅⋅⋅B interaction and leads to binding situations which are intermedi-
ate between the two extremes A-H + B and A– + H-B+, the latter corresponding to the
product of a simple acid-base proton transfer reaction. A decrease in electron density of the
hydrogen atoms involved in a bridge is also indicated by a low field shift in 1H-NMR
experiments, which can be as high as 20 ppm for strong bonds involving ionic species. The
strength of hydrogen bonds between neutral species in the gas-phase is usually of the order
of 2-10 kcal/mol and hence intermediate between covalent bonds (usually exceeding 50 kcal/
mol) and attractive van der Waals interactions (below 2 kcal/mol). Although rather weak in
nature, hydrogen bonds often have a decisive influence on the chemical properties of sub-
stances. Hydrogen bonds stabilize the secondary and tertiary structures of proteins and are
thought to play a major role in substrate recognition, binding and enzymatic catalysis.
Owing to their major contributions to the molecular architecture, hydrogen bonds have
been studied extensively, experimentally as well as theoretically, over the years.

The peculiarity of this unique bonding pattern is that the groups A−H and B are gener-
ally closed-shell (and in their electronic ground state) and it is not obvious at first sight how
the hydrogen atom could be involved in more than one bond with its single 1s valence
orbital. Although experimental work has been carried out for a vast variety of systems,
many difficulties prevent the detailed understanding of the nature of this bond and elec-
tronic structure theory therefore plays an important role in this field of research. The devel-
opment of energy partitioning schemes in particular provided theoretical means to qualita-
tively rationalize the underlying bonding mechanism. The scheme of Morokuma, 1977, for
example, which has probably received the most wide-spread attention for over two decades

A Chemist’s Guide to Density Functional Theory. Second Edition
Wolfram Koch, Max C. Holthausen

Copyright © 2001 Wiley-VCH Verlag GmbH
ISBNs: 3-527-30372-3 (Softcover); 3-527-60004-3 (Electronic)



218

12  Hydrogen Bonds and Weakly Bound Systems

now, splits the total interaction energy between two molecules into several parts such as an
electrostatic component, a polarization component (originating from the polarization of
one of the interacting molecules due to the presence of the other), a charge-transfer compo-
nent and a few further ingredients. Applied to hydrogen bonding Morokuma’s scheme has
led to the understanding that electrostatic and charge-transfer interactions both constitute
the most relevant components of the binding energy (Umeyama and Morokuma, 1977).48

The detailed nature of the hydrogen bond, however, is still a matter of debate (see
Dannenberg, Haskamp, and Masunov, 1999, and references cited) owing to the fact that
most rationalizations depend strongly on the particular level of theory employed. What
seems clear is that the interactions responsible for a hydrogen bond can originate from
various physical effects. Both electrostatic and covalent contributions vary from species to
species and thus a balanced description of the subtle interplay of electronic effects is needed
for a successful theoretical description of hydrogen bonding.

Let us briefly outline some salient problems limiting the accuracy that a theoretical
treatment of hydrogen bonded systems can reach. One contribution to the bonding stems
from the interaction of molecular moments, like the dipole-dipole interaction. Considering
the well known tendency of Hartree-Fock theory to overestimate dipole moments (cf. Chapter
10), it becomes obvious that this contribution to the binding energy will be exaggerated at
this level. On the other hand, attractive dispersion interactions are completely missing in
HF level calculations. Dispersion interactions are pure correlation effects and hence can
only be recovered at more sophisticated, correlated levels of theory which, in turn, usually
also yield better (i. e., smaller) dipole moments. Hence – as a consequence of error cancel-
lation – both approaches may reproduce equally well, say, the experimental binding energy
of a hydrogen bonded complex. Properties of other regions on the potential energy surface
may be described quite differently by the two different approaches, though.

Another decisive point for the theoretical treatment of hydrogen bonded systems is the
choice of basis set. The strength of hydrogen bonds computed by means of traditional ab
initio theory requires highly flexible basis sets including diffuse functions and an explicit
recovery of electron correlation effects. The fact that the basis sets employed are practically
always incomplete is troublesome with respect to a balanced description of the molecular
complex as well as its constituting fragments. There are two aspects of this problem from
the perspective of post-HF theory. Quite a vexing one is the basis set superposition error
(BSSE). It arises from the use of finite sized basis sets in the supermolecular approach,
which is usually adopted to compute the interaction energy as the difference between the
total energy of the A−H⋅⋅⋅B complex and the sum of the total energies of the non-interacting
fragments A−H and B. Whereas the isolated fragments are just described in their own basis
sets, in the interacting complex each of them will expand its respective wave function using

48 Since the procedure used to compute some of these components violates the Pauli exclusion principle, the
physical meaning of the interpretations emerging from the Morokuma scheme has sometimes been ques-
tioned (see, e. g., Chakravorty and Davidson, 1993). However, although its physical basis is certainly not
‘rock-solid’, this scheme (as well as others, see Reed et al., 1986, Glendening and Streitwieser, 1994, Remer
and Jensen, 2000) splits the interaction energy into physically intuitive components and allows for a rationali-
zation of quantum chemical results. For a rigorous theoretical approach to electron density partitioning see
Bader, 1994.
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virtual orbitals of the other. This will lead to a spurious lowering of the total energy of the
complex with respect to its fragments and thus to an artificial overestimation of the
complexation energy. An approximate and highly popular way to estimate the BSSE a
posteriori is the counterpoise correction of Boys and Bernardi, 1970,49 in which the frag-
ment energies are computed using the basis functions of the entire complex but considering
the atoms of one respective fragment only. In this way the fragment energies will be low-
ered since their basis set expansion is becoming more complete. Notwithstanding some –
quite intelligible – critical opinions about the applicability of the counterpoise correction,
it appears that its use is now widely accepted provided that adequate basis sets are used (for
an in-depth discussion and original references, see van Duijneveldt et al., 1994).

One further problem is caused by the incomplete recovery of the correlation energy and
the very large basis set requirements in correlated calculations. Correlation effects are larger
in the interacting complex than in the fragments – hence the incomplete coverage of corre-
lation effects will lead to an underestimation of the interaction energy. This effect is usually
the more pronounced the smaller (less complete) the basis sets are. This error and the BSSE
act in opposite directions and could cancel (a rather optimistic standpoint taken in some
studies), but the actual influence of both errors on computed binding energies is hard to
predict.

All this illustrates the problems when attempting to properly describe hydrogen bonding
by means of electronic structure calculations and to rationalize the underlying physics (for
reviews see, Scheiner, 1991 and 1997, Guo et al., 1997, Del Bene, 1998, Lii, 1998, and
Rappé and Bernstein, 2000). Such problems also exist in principle for covalently bonded
systems but they are usually ignored since the binding energies are one or two orders of
magnitude larger than the uncertainties caused by the errors mentioned above. Whenever
calculations aim at a similar relative accuracy, say, 2 % of the binding energy of weakly
interacting molecules, the computational expenses are enormous and a systematic improve-
ment of the basis set quality and the correlation treatment is necessary in order to allow for
an estimate of remaining errors. Of course, such an approach is inevitably constrained to
the smallest molecular systems. For some cases traditional wave function based approaches
have been pushed to their limits and highly accurate computational results exist, which
eventually challenge experimental accuracy. For very high level calculations on the water
dimer, for example, see Klopper, van Duijneveldt-van de Rijdt and van Duijneveldt, 2000,
van Duijneveldt-van de Rijdt and van Duijneveldt, 1999, or Schütz et al., 1997, as well as
references cited therein.

Finally, we need to step back a little in order to draw the readers attention to a more
fundamental problem inherent to any theoretical treatment of hydrogen bonding situations,
be it based on traditional wave function based or density functional theory. The topic is the
evaluation of frequency shifts for situations in which the choice of coordinate system is of
particular concern. Let us begin by classifying hydrogen bonds according to their strength
or, correspondingly, according to the A–H stretching frequency. We will use Figure 12-1 to
illustrate the issue for the O−H⋅⋅⋅O type of bonds.
49 A priori approaches have also been developed, see, Valiron, Vibók, and Mayer, 1993, as well as Paizs and

Suhai, 1998, and references cited therein.
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The graph shows qualitatively the correlation between O-H stretching frequency and the
O-O separation in increasingly stronger hydrogen bonds from right to left. Borrowing from
Novak, 1974, we distinguish three binding situations, weak, intermediate, and strong, which
are of interest in the forthcoming discussion, and which are classified according to the
shape of the potential energy surface (PES) in the region of the O-H stretch. The O−H
stretching potential in a weak OH⋅⋅⋅O bond is very similar to that in the isolated water
molecule (sketched as � in Figure 12-1). This is the standard situation for a quantum
chemical treatment and the methodological issues determining the accuracy of computed
frequencies discussed in Chapter 8 are perfectly valid. The harmonic approximation for the
evaluation of force constants usually gives sufficiently accurate results or, if not, one has to
correct for the anharmonicity of the potential energy surface in one dimension. In the present
context that is along the proton coordinate in the O−H bond (see Bleiber and Sauer, 1995).
Proceeding to situation � with a hydrogen bond of intermediate strength, the O-O distance
becomes shorter, the PES is broader and the vibrational levels are more closely spaced, in
line with a stronger frequency shift. This is due to the increased H⋅⋅⋅O interaction, which
starts to influence the PES considerably. The potential along the OH coordinate has a shoulder
or, in the stronger binding situation �, a shallow second minimum. The theoretical recov-
ery of anharmonic frequencies on such a PES is possible only by explicit consideration of
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Figure 12-1. Classification of O-H⋅⋅⋅O hydrogen bonding situations of different strengths and schematic
representation of corresponding potential energy curves along the O-H stretching coordinate.
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two dimensions, e. g., the O-H and the O-O coordinate (see Sokolov and Savel’ev, 1977,
Sokolov, Vener, and Savel’ev, 1990, as well as Del Bene and Jordan, 1998). In even stronger
bonds (situation �) the PES is commonly very flat in the O⋅⋅⋅H⋅⋅⋅O region and the barrier
separating the two minima might even disappear taking the zero point vibrational level into
account. A meaningful description of the OH stretching frequency requires at least a two
dimensional treatment (see Ojamäe, Shavitt, and Singer, 1995). This collection of prob-
lems connected to the PES of other than weak hydrogen bonds illustrates what sort of
difficulty one may encounter in studies on seemingly easy systems. Unlike the relatively
simple search for stationary points in order to determine binding energies, the evaluation of
anharmonic frequencies via explicit treatment of higher dimensional potential energy sur-
faces is anything but trivial. For strong hydrogen bonding situations the results obtained
from studies of harmonic frequency shifts can therefore be far from relevant. To the best of
our knowledge, no attempts have been made to explore the performance of density func-
tional theory under such circumstances. The theory of weak hydrogen bonds, on the other
hand, is well developed and the available literature is full of successful comparisons with
experimental data and high level wave function based theory. This is the area we will mainly
concentrate on in the following.

Facing huge computational demands even for the smallest species, theoretical research
in this field is eagerly in need of much more efficient methods in order to assess larger,
scientifically more relevant species. It is no wonder, therefore, that the excellent perform-
ance of modern density functional methods in other areas of chemical research encouraged
many to test this methodology on hydrogen bonded complexes. In the following section we
will elaborate on the performance of density functional theory in this highly demanding
field by discussing one of the archetype examples: the water dimer. Later in this chapter we
will also present examples for a variety of other hydrogen bonds in order to see how well
the different binding situations are described by modern functionals. As to computed fre-
quency shifts, we will restrict our presentation to rather weak intermolecular hydrogen
bonds. Since all effects characterizing the physics of hydrogen bonding are present in these
species, we can fully assess the capabilities of density functional implementations by com-
parison to experiment or high level wave function based theory. Strong bonding situations
and most intramolecular hydrogen bridges are intrinsically multidimensional problems in
the bridging region and anharmonicity effects become particularly severe. The theoretical
treatment of vibrational frequencies of such systems requires expert knowledge, a presen-
tation of which is definitely outside the scope of this book. We will conclude this chapter
with a brief discussion on the shortcomings of present-day functionals when it comes to
coping with dispersion interactions, which, as we will see, constitute the limiting factor for
the applicability of density functional theory to weakly interacting systems.

12.1 The Water Dimer – A Worked Example

The water dimer is probably the most intensively studied intermolecular hydrogen bonded
system of all. Hence, ample theoretical and experimental data is available for this system,

12.1  The Water Dimer – A Worked Example
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R
O-H

R
O-O

Proton Donor Proton Acceptor

which is therefore well suited for demonstrating the performance of theoretical methods.50

There are three essential properties of the water dimer which have been determined experi-
mentally: the oxygen-oxygen intermolecular distance, the binding energy, and the O-H
stretching frequency shift of the donor molecule. As to the equilibrium geometry, the Cs-
symmetric linear trans-structure (depicted in Figure 12-2) has been established by micro-
wave spectroscopy.

Comparisons of the computed RO-O with experiment are somewhat complicated by the
fact that the region of the PES associated with the intermolecular coordinates is quite flat
and subject to large vibrational anharmonicity effects. The experimentally measured,
vibrationally averaged R0 value should therefore be corrected before a comparison is made
with the computed Re distance. For the water dimer the experimentally determined R0 for
the oxygen-oxygen distance is 2.976 Å and a Re value of 2.952 Å has been estimated (see
van Duijneveldt-van de Rijdt and van Duijneveldt, 1992). Clearly, this coordinate is highly
sensitive to the level of theory applied and the accuracy with which it is reproduced by
theoretical methods thus constitutes a good benchmark. Hartree-Fock theory gives an inter-
molecular distance which is too long, and the deviations reach 0.1 Å if improper basis sets
are chosen. As evident from the data compiled in Table 12-1, increasing the basis set qual-
ity expands the O–O distance and further deteriorates the agreement with experiment. MP2,
in turn, does a fair job and nearly halves the deviations seen at the HF level. But this lowest
level of correlation treatment underestimates RO-O, even if quite large basis sets are used.
The remaining discrepancy has been attributed to the neglect of the BSSE in the geometry
optimization procedure and indeed, an improved distance of 2.917 Å results from a coun-
terpoise corrected MP2/aug-cc-pVQZ evaluation of the equilibrium structure (Hobza,
Bludský, and Suhai, 1999). The more sophisticated correlation treatment in the CCSD(T)
approach affords still smaller deviations than MP2 if small basis sets are used, but the gain
in accuracy is not so impressive with the larger basis sets, despite the much higher compu-
tational costs. Also this approach underestimates the bond length owing to BSSE effects as
shown by Schütz et al., 1997, and a counterpoise corrected CCSD(T) value of 2.925 Å was
obtained by this group. The shortcomings of even these highly demanding geometry
optimizations demonstrate the huge demands of correlated post-HF approaches with re-

50 A recent discussion of the water dimer in the DFT domain has been given by Guo et al., 1997.

Figure 12-2. The water dimer.
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spect to the basis set size: it seems that even the highly flexible aug-cc-pV5Z basis – com-
prising no less than 574 contracted basis functions for the water dimer – is not yet close to
the basis set limit. Even considering today’s computational standards, such calculations
cannot be performed in production mode and, even worse, the unfavorable scaling of corre-
lated post-HF methods with the basis set size is strongly discouraging for anyone thinking
of larger systems.

Comparing a few example density functional models with these results, we first note
that SVWN severely underestimates the O–O bond distance and the deviations from ex-
periment are more than three times larger compared to the HF level. Quite disturbingly, in
combination with Dunning’s aug-cc-pVDZ basis sets the linear trans-structure is not even
a minimum but is characterized by three imaginary frequencies as a chemically irrelevant
higher order saddle point. This seems to be a particular shortcoming of the SVWN/aug-cc-
pVDZ combination as the larger triple and quadruple bases render this structure correctly a
minimum. The poor LDA performance is in line with early findings by others, document-
ing the severe underestimation of intermolecular distances in hydrogen bonded complexes
at this level (see Sim et al., 1992, Kieninger and Suhai, 1994, Kaschner and Seifert, 1994,
Guo et al., 1997). The inclusion of gradient corrections to exchange and correlation yields
major improvements for the predicted oxygen-oxygen separation. But the agreement of the
BLYP results with experiment is in fact baffling, in particular in combination with the
correlation-consistent basis sets. We have not come to trust the quality of this functional
with respect to structure predictions for it has shown a general trend to overestimate bond
distances (recall the discussion in Chapter 8). Curious about the influence of the particular
functional components, we applied also the BVWN and SLYP functionals to this system
(i. e., adding gradient corrections only to the exchange or correlation part, respectively).
What we obtained is, putting it mildly, irritating: compared to the SVWN results, inclusion
of the LYP gradient-corrected correlation functional shortens RO-O constantly by some
0.05 Å, regardless of the basis set, exaggerating the faulty bond compression at the LDA
level. Becke’s 88 gradient correction to exchange, on the other hand, overshoots this dis-
tance more than HF does. As a consequence the individual components of the BLYP func-
tional give intermolecular bond lengths which differ by 0.4 Å! This rather unsatisfactory
finding clearly indicates that the excellent performance of the BLYP functional is entirely

Table 12-1. Deviation in the computed RO-O distance of the water dimer [Å] from the ‘experimental’ Re value of
2.952 Å.

Basis Set HF MP2 CCSD(T) SVWN BLYP SLYP BVWN B3LYP

6-31++G(d,p) 0.035 –0.038 –0.030 –0.256 –0.040 –0.301 0.061 –0.066
6-311++G(d,p) 0.082 –0.042 –0.028 –0.244 –0.025 –0.291 0.082 –0.052
aug-cc-pVDZ 0.080 –0.034a –0.033b –c –0.012 –0.290 0.117 –0.041
aug-cc-pVTZ 0.086 –0.044a –0.057b –0.241 –0.004 –0.288 0.124 –0.034
aug-cc-pVQZ 0.086 –0.057b – –0.238 –0.003 –0.286 0.119 –0.033

a Taken from Kim and Jordan, 1994. b Only RO-O optimized, Halkier et al., 1997. c No Cs-trans minimum structure.

12.1  The Water Dimer – A Worked Example
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due to fortuitous error cancellation. From the last column in Table 12-1 we see that the
B3LYP functional, which – skeptic personalities now might put it this way – admixes a
little overestimation from HF with a little more underestimation from LDA to the well
cancelled B88 and LYP errors, performs not quite as well as the pure GGA and gives a
slightly underestimated RO-O. But still, the agreement with experiment compares well with
MP2 or CCSD(T) results. And it is encouraging to note that Simon, Duran, and Dannenberg,
1999, showed in a recent contribution that application of a (modified) counterpoise proce-
dure to the geometry optimization scheme yields a much improved agreement with the
‘experimental’ Re value for the B3LYP functional, even using very moderately sized basis
sets. On the corrected B3LYP potential surface obtained with a polarized double-zeta basis
set augmented with diffuse functions (D95++(d,p)) these researchers located a minimum at
Re = 2.912 Å, compared to an uncorrected value of 2.880 Å. Considering the basis set
dependence of deviations seen above, still better values seem obtainable with higher qual-
ity basis sets.

In conclusion, these dreary findings cast some doubt on the reliability of DFT results for
hydrogen bonded systems. However, although the interatomic oxygen-oxygen separation is
a highly sensitive measure for judging the quality of theoretical results, it is not the only
one. But before we concentrate on other properties of the dimer, let us look at some experi-
mentally known properties of the water monomer and see how well DFT does here. Clearly,
the description of the water dimer is closely connected to the question of how well the water
molecule itself is tackled. From the data given in Table 12-2 it is evident that the oxygen-
hydrogen bond distance is reproduced best at the MP2 level of theory. Just as we would
expect from the conclusions drawn in Chapter 8, we find an underestimation of RO-H by HF
and an overestimation by the BLYP functional. The constituent SLYP and BVWN functionals
both exaggerate the O–H distance, the former more than the latter, and BLYP gives an error
right in the middle. B3LYP, also quite foreseeably, compensates the overestimation of BLYP
and by including the underestimation of HF gives a deviation from the experimental value
similar to MP2. Related to the geometric deviations are those of the (unscaled) harmonic
vibrational frequencies and most interesting in the present context are the O-H stretching
vibrations. For νs and νas, the symmetric and antisymmetric stretch, respectively, the errors
generally ensue from the trends observed for the bond length: bonds which are too short
result in frequencies which are substantially too high for the HF method, which shows the
largest deviations. Bonds which are too long, in turn, cause frequencies which are too low in
the case of SVWN and BLYP (as well as SLYP and BVWN). The MP2 approach, which
furnishes Table 12-2 with a highly accurate RO-H, also shows the best agreement with ex-
periment for the frequencies. The deviations of B3LYP are right in the range of what we
have noted as typical for this functional in Chapter 8, and the systematic underestimation by
some 30–40 cm–1 could profit from scaling.51 As components of the interaction energy, the
quality of computed dipole moments and polarizabilities is also of interest. It is a well

51 We also noted already that BLYP results show a better agreement with directly observed, anharmonic fre-
quencies. This is also the case here: the BLYP deviations from the fundamental experimental frequencies
(νs = 3657 cm–1, νas = 3756 cm–1) are 2 and 0 cm–1, respectively.
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known deficit of the HF approach that the dipole moment of the water molecule is overesti-
mated by some 5 % as a consequence of the neglect of electron correlation, while MP2
reproduces the experimental value with pleasing accuracy. Following the trends noted in
Section 10-2, the B3LYP functional performs as good as MP2 does and also the LDA does
a good job. The BLYP deviation of 3 % from the experimental value is smaller than the
Hartree-Fock error and, as apparent from the data collected in Table 12-2, caused by the
B88 gradient correction to exchange. Thus, the good B3LYP dipole moment could once
more be seen as a compensation effect of errors present in the building blocks, i. e., HF and
BLYP. The mean polarizability of the water molecule is underestimated by 15 % at the HF
level, but well reproduced by MP2. The LDA overestimates this quantity by some 8 % and
the BLYP error amounts to 10 %. Now, it is the LYP gradient-corrected correlation func-
tional which is obviously causing the deviation present in the BLYP results. The hybrid
B3LYP again performs rather well, reproducing the mean polarizability within 2 % of the
experimental value, but slightly overestimating this property. Hence, notwithstanding the
sometimes faulty performance of the constituting components, the B3LYP hybrid func-
tional yields an excellent description of physical properties of the water monomer and lags
only marginally behind the more demanding computations at the MP2 level of theory.

Let us now return to the water dimer and focus on the computed binding energy. Inter-
molecular dissociation energies (corrected for zero point vibrational and thermal effects) of
5.4 ± 0.7 kcal/mol and 5.4 ± 0.2 kcal/mol have been obtained in experimental studies (see
the references cited by Kim and Jordan, 1994), with the former value being more often
quoted. The data collected in Table 12-3 underlines what we have said above about the
effort one has to spend when using traditional wave function based methods in order to
obtain reliable results. A look at the binding energies obtained in the Hartree-Fock approxi-
mation shows that at the lowest level of calculation presented, HF/cc-pVDZ, the two water
molecules are bound by 5.7 kcal/mol, in good agreement with experiment. The counter-
poise correction at this level seems at first sight not to do any good – the corrected binding
energy drops down to 3.6 kcal/mol. Saturating the basis set, however, shows that it is in fact
the BSSE estimation procedure, which works well: the converged (essentially BSSE-free)
interaction energy computed at the HF/cc-pV5Z level (3.5 kcal/mol) confirms the former

Table 12-2. Experimental values and deviation from experiment of the RO-H bond distance, the symmetric (νs)
and the antisymmetric (νas) stretching frequency [cm–1], the dipole moment [D], and the mean polarizability
[Å3] of the water molecule. The aug-cc-pVTZ basis set is used throughout.

Property Exp. HF MP2a SVWN BLYP SLYP BVWN B3LYP

RO-H 0.957a –0.016 +0.004 +0.013 +0.015 +0.019 +0.010 +0.005
νs 3832a +288 –9 –106 –177 –155 –132 –33
νas 3943a +279 +5 –107 –186 –156 –142 –42
µ [D] 1.854a +0.084 +0.006 +0.005 –0.051 +0.007 –0.052 –0.006
∆(<α>)b 1.427a –0.207 –0.004 +0.109 +0.143 +0.179 +0.075 +0.026

a Taken from Kim and Jordan, 1994. b Mean polarizability computed as <α> = 1/3 (αxx + αyy + αzz), see Section
10.3.

12.1  The Water Dimer – A Worked Example
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counterpoise corrected estimate. Adding a single set of diffuse functions leads to a signifi-
cant decrease of the BSSE – already the fairly small aug-cc-pVDZ set shows a BSSE of
only 0.3 kcal/mol and the basis seems to be converged with respect to both computed bind-
ing energy as well as BSSE, from the aug-cc-pVTZ level on. Use of the cc-pVDZ basis set
leads to a significantly larger BSSE at the MP2 level. The computed binding energy of
7.3 kcal/mol is corrected to 3.9 kcal/mol by the counterpoise procedure but both values
miss the experimental interaction energy by 1–2 kcal/mol. MP2 results fall within the ex-
perimental error range using the cc-pVTZ and better basis sets. The augmented basis sets
almost halve the BSSE with respect to their counterparts without diffuse functions and the
uncorrected binding energies seem in fact almost converged from the augmented double-
zeta basis on. This underlines the need to use at least one set of diffuse functions, as com-
monly advised in theoretical studies on hydrogen bonds. It is further interesting to note that
the uncorrected results approach the basis set limit from above whereas the counterpoise
procedure yields lower limits of the correct binding energy. Such a behavior is of course
highly desirable for it allows the correct binding energy to be extrapolated and constitutes
a way of specifying the remaining error at a given level of theory. Essentially the same
observations can be made for the CCSD(T) method, which gives marginally better results
than MP2 but at substantially higher costs. Again, as already alluded to above, the unfavorable
scaling of the latter method with the system size renders it a tool for benchmarking of small
systems rather than a production method to give results at justifiable costs.

Now that we have considered the traditional approaches in some detail – how does den-
sity functional theory deal with the problem? The LDA data presented in Table 12-4 con-
firms what can be speculated from the findings above: the underestimated bond lengths are
paralleled by a significantly overestimated interaction energy. As was the case for the inter-
molecular O–O distance, the BLYP functional shows a reasonable agreement with the ex-
perimental binding energy, although one of its component functionals, SLYP, overesti-

Table 12-3. Interaction energy (∆E) and counterpoise-corrected interaction energies (∆ECP) of the water dimer at
different levels of theory [kcal/mol]. The CCSD(T)/aug-VTZ geometry has been used for single point energy
calculations on the dimer. The BSSE is given in parentheses. Data taken from Halkier et al., 1997. An experimen-
tal value of 5.4 ± 0.7 kcal/mol has been reported in this study.

Basis Set HF MP2 CCSD(T)

∆E               ∆ECP ∆E               ∆ECP ∆E               ∆ECP

cc-pVDZ 5.7 3.6 (2.1) 7.3 3.9 (3.4) 7.0 3.7 (3.3)
cc-pVTZ 4.3 3.5 (0.8) 6.0 4.4 (1.6) 5.9 4.3 (1.6)
cc-pVQZ 3.9 3.5 (0.4) 5.5 4.7 (0.8) 5.4 4.7 (0.7)
cc-pV5Z 3.6 3.5 (0.1) 5.1 4.8 (0.3) 5.1 4.8 (0.3)
aug-cc-pVDZ 3.8 3.5 (0.3) 5.2 4.3 (0.9) 5.2 4.3 (0.9)
aug-cc-pVTZ 3.6 3.5 (0.1) 5.1 4.6 (0.5) 5.2 4.7 (0.5)
aug-cc-pVQZ 3.6 3.5 (0.1) 5.0 4.8 (0.2) 5.1 4.9 (0.2)
aug-cc-pV5Z 3.5 3.5 (0.0) 5.0 4.8 (0.2) – – –
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mates the binding energy drastically. Again, the inclusion of gradient corrections to the
correlation functional gives worse results than SVWN and overestimates ∆E by some
2−3 kcal/mol more than LDA does already. This resembles the situation found for atomiza-
tion energies, where the inclusion of the LYP correlation functional also lead to increased
binding energies, larger even than those of the pure LDA (see Chapter 9). The BVWN
functional, on the other hand, underestimates the binding energy by 2–3 kcal/mol.

In Table 12-5 we compare the binding energies computed using several hybrid functionals
and basis sets, attempting to approach the basis set limit for each functional in a systematic
(but not necessarily cost effective) way. At first we note the reasonable performance of all
functionals. The converged results, however, indicate a slight tendency to underestimate
the experimental value by about 1–2 kcal/mol. This trend is slightly more emphasized for

Table 12-4. Computed interaction energy (∆E) and counterpoise-corrected interaction energies (∆ECP) of the
water dimer [kcal/mol]. The BSSE is given in parentheses.

Basis Set SVWN BLYP SLYP BVWN

∆E          ∆ECP ∆E          ∆ECP ∆E          ∆ECP ∆E          ∆ECP

6-31++G(d,p) 10.8 9.8 (1.0) 5.6 4.8 (0.8) 13.2 12.3 (0.9) 4.1 3.4 (0.7)
6-311++G(d,p) 10.5 9.5 (1.0) 5.4 4.6 (0.8) 12.9 11.9 (1.0) 4.0 3.3 (0.7)
6-311++G(3df,2p) 9.3 9.1 (0.2) 4.5 4.2 (0.3) 11.7 11.5 (0.2) 3.1 2.9 (0.2)
aug-cc-pVDZ –a 4.3 4.1 (0.2) 11.6 11.6 (0.0) 2.9 2.8 (0.1)
aug-cc-pVTZ 9.0 9.1 (–0.1) 4.2 4.2 (0.0) 11.4 11.6 (–0.2) 2.9 2.8 (0.1)
aug-cc-pVQZ 9.0 9.1 (–0.1) 4.2 4.2 (0.0) 11.3 11.6 (–0.2) 2.9 2.9 (0.0)

a No Cs-trans minimum structure.

Table 12-5. Computed interaction energy (∆E) and counterpoise-corrected interaction energies (∆ECP) of the
water dimer [kcal/mol]. The BSSE is given in parentheses.

Basis Set B3LYP B3PW91 mPW1PW91

∆E               ∆ECP ∆E               ∆ECP ∆E               ∆ECP

6-31++G(d,p) 6.0 4.6 (1.4) 5.5 4.7 (0.8) 6.2 5.3 (0.9)
6-311++G(d,p) 5.8 5.1 (0.7) 5.3 4.5 (0.8) 5.9 5.1 (0.8)
6-311++G(3df,2p) 4.8 4.6 (0.2) 4.3 4.0 (0.3) 4.9 4.6 (0.3)
cc-pVDZ – a 7.3 3.9 (3.4) 7.9 4.5 (3.4)
cc-pVTZ 6.1 4.5 (1.6) 5.3 4.0 (1.3) 5.9 4.6 (1.3)
cc-pVQZ 5.3 4.6 (0.7) 4.6 4.0 (0.6) 5.2 4.6 (0.6)
cc-pV5Z 4.8 4.6 (0.2) 4.2 4.0 (0.2) 4.8 4.6 (0.2)
aug-cc-pVDZ 4.7 4.5 (0.2) 4.2 4.0 (0.2) 4.8 4.6 (0.2)
aug-cc-pVTZ 4.6 4.6 (0.0) 4.0 4.0 (0.0) 4.6 4.6 (0.0)
aug-cc-pVQZ 4.6 4.6 (0.0) 4.0 4.0 (0.0) 4.6 4.6 (0.0)

a No Cs-trans minimum structure.

12.1  The Water Dimer – A Worked Example
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the B3PW91 functional. We also tested the mPW1PW functional of Adamo and Barone,
1998b. Its exchange part has explicitly been designed with an improved description of the
low density regions in mind, which dominate the interactions between weakly bound sys-
tems. Indeed, with respect to the B3PW91 hybrid, an improved representation of the bind-
ing energy results, now providing the very same quality as the B3LYP functional. In view
of the large error compensation effects of the functional ingredients of the B3LYP hybrid,
however, we refrain from a further discussion of subtle binding energy differences at this
point. Instead we note another interesting finding, namely that the counterpoise-corrected
results reveal a much less pronounced BSSE for any of the DFT methods than found for the
traditional calculations. It is striking that Dunning’s augmented correlation-consistent bases
hardly show any BSSE from double-zeta quality on in connection with the hybrid functionals,
whereas the non-augmented sets are slightly more prone to this error even up to pentuple-
zeta quality. The diffuse set of functions in the augmented series is apparently an essential
part needed in the basis and is more important than higher angular momentum functions –
for DFT calculations.52 This is not the case for the MP2 and CCSD(T) calculations, where
the augmented bases show a smaller but still significant BSSE and thus both, diffuse and
higher angular momentum functions are indispensable to approach the basis set limit. The
Pople-type basis sets show essentially the same binding energies and BSSEs as the correla-
tion-consistent bases of comparable size. The counterpoise procedure apparently works
very well, which allows for a reasonable estimate of the converged binding energies at
moderate cost. This is in line with findings of Paizs and Suhai, 1998, who applied a coun-
terpoise procedure as well as an a priori correction scheme to DFT calculations and showed
that both procedures give results very close to each other. From the results shown above we
see that for a given basis set, however, different functionals show differences in the esti-
mated BSSE by up to 0.6 kcal/mol. This is an indication that the standard basis sets taken
from the world of traditional wave function based methods are not equally well suited for
different functionals (we have come to the same conclusion already in Chapter 9).

Overall, the accuracy reached by the hybrid functionals tested is quite pleasing, in par-
ticular if we keep in mind the favorable scaling of computational demands and the obvi-
ously much lower basis set requirements. The binding energy of the water molecule com-
puted with the B3LYP and the mPW1PW functional miss the lower experimental error bar
by only 0.1 kcal/mol and approach quite closely the best available conventional wave func-
tion based data.

Finally, we test the ability of a variety of functionals to predict the characteristic fre-
quency shift ∆νOH, which the donor O–H stretching mode experiences upon forming a
hydrogen bridge. Following Sauer et al., 1994, we compare in Table 12-6 the harmonic
donor νOH stretching mode of the dimer with the arithmetic mean ν = (νs + νas)/2 of the
symmetric and the asymmetric harmonic stretching modes of the free monomer in order to
account for the strong coupling of these two modes in the latter species. In addition, the
elongation ∆RO-H of the O–H bond involved in the interaction is given in Table 12-6.

52 In a different context, very similar conclusions about the BSSE in density functional applications were ob-
tained by Dargel et al., 1998.
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Experimentally observed frequency shifts range from –105 cm–1 to –206 cm–1 (see ref-
erences cited by Bleiber and Sauer, 1995) and depend strongly on the type of experiment
applied. Furthermore, they include potentially strong anharmonicity effects which are not
easy to account for. Thus, it seems more adequate to compare the results of the various DFT
methods to accurate post-HF results. Firstly we note the excellent agreement between the
BLYP and B3LYP results with the MP2 data. The computed ∆RO-H show the expected
behavior: the reasonable agreement in the frequency shifts for MP2 on one hand and BLYP
and B3LYP on the other is reflected in a common elongation by 0.008 Å of this bond for all
these methods.53 The observed overbinding for SVWN and even more so for SLYP goes
hand in hand with a much overestimated shift in frequencies and bond lengths by these
methods. Reduced values are obtained for both shifts for the BVWN functional, which
underestimates the binding energy. Different from what we have seen with the geometric
data above, the importance of higher order correlation effects is apparently more pronounced
for the computation of frequencies: the best available MP4-level data shows a somewhat
lower shift in frequency and RO-H. However, we have learned already to expect errors around
50 cm–1 when applying density functional theory to the evaluation of harmonic frequen-
cies. The inclusion of scaling factors should lead to a further decrease in errors, but we also
suspect that the deviations between computed and experimental geometries are a non-neg-
ligible source of error for the computed frequencies. Indeed, Hobza, Bludský, and Suhai,
1999, computed counterpoise corrected harmonic frequencies at the MP2/aug-cc-pVDZ
level of theory, and found a red shift 20 cm–1 lower than that resulting from uncorrected
MP2/aug-cc-pVDZ calculations.

To conclude this section, we add some data which appeared in a recent study of Tuma,
Boese, and Handy, 1999, who tested several of the more recently developed DFT methods
for their ability to reproduce the properties of hydrogen bonded systems, including the
water dimer. Table 12-7 shows selected results for the water dimer properties. Employing a
TZ2P-quality basis set, these authors obtained results of very similar quality for the hybrid
schemes B3LYP, B97-1, and PBE1PBE and the BLYP gradient-corrected functional. Some-
what larger deviations in the frequency shifts are seen for the gradient-corrected PBE scheme.
The HCTH GGA functional gives the largest deviations for the geometry and binding en-
ergy, whereas a newly developed improved version of this functional, called HCTH38,

Table 12-6. Harmonic frequency shifts [cm–1] of the donor O-H stretching mode and  elongation of the O-H bond
[Å] in the water dimer computed at several levels of theory (aug-cc-pVTZ basis set).

HF MP2 MP4a SVWN BLYP SLYP BVWN B3LYP

∆νOH –100 –169 –121 –360 –181 –401 –134 –174
∆RO-H 0.004 0.008 0.007 0.010 0.008 0.021 0.005 0.008

a Best available ab initio data: MP4/VTZ(2df,2p), Bleiber and Sauer, 1995.

53 A similarly good agreement between B3LYP and MP2 calculations has been noted also for much smaller
basis sets, see Del Bene, Person, and Szczepaniak, 1995.

12.1  The Water Dimer – A Worked Example
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Table 12-7. Selected computed properties for the water dimer (taken from Tuma, Boese, and Handy, 1999).

Property B3LYP B97-1 PBE1PBE BLYP PBE HTCH HTCH38

∆RO-O[Å]a –0.047 –0.044 –0.077 –0.009 –0.072 0.109 –0.003
∆ECP[kcal/mol] 4.8 5.2 5.2 4.5 5.4 2.9 4.6
∆νOH[cm–1] –175 –175 –199 –187 –227 –143 –181

a Deviation from the experimental Re of 2.952 Å.

Figure 12-3. Global minimum configuration of the water trimer.

yields an excellent RO-O value together with a binding energy and frequency shift very
similar to B3LYP and B97-1.

12.2 Larger Water Clusters

The reasonable success in the description of the water dimer by gradient-corrected and
hybrid density functional methods has led to investigations on larger clusters of water mol-
ecules and the properties of the water trimer have been the subject of a variety of theoretical
and experimental studies. The water trimer is one of the simplest (and therefore one of the
best studied) species for which cooperative effects can be investigated, i. e., the effect on
the nature of the first hydrogen bond when a second is formed between one of the first two
partners and a third water molecule. The global minimum of this species is sketched in
Figure 12-3 and has been established as a cyclic structure with a nearly planar six-membered
ring and three exocyclic O-H bonds.

It was only recently that the binding energy and the structural parameters were accu-
rately determined by means of state-of-the-art wave function based theory (Nielsen, Seidl,
and Janssen, 1999) and this data now serves as a benchmark for the accuracy of alternative
theoretical methods. The oxygen-oxygen distance obtained at the MP2/aug-cc-pVQZ level
of theory amounts to 2.78 Å, and a value of 10.4 kcal/mol has been extrapolated for the
infinite basis set MP2 classical binding energy at this geometry, including zero-point vibra-
tional energies obtained at the MP2/aug-cc-pVTZ level. DFT calculations performed by
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Gonzáles et al., 1996, employed BLYP as representative of the GGA family, as well as the
B3LYP, B3P86, and B3PW91 hybrid functionals in combination with the 6-31+G(d,p)
basis for geometry optimization and the 6-311++G(3df,2p) basis set for single point energy
calculations. The deviations from the results of Nielsen et al. for the optimized (three slightly
inequivalent) RO-O distances follow precisely the trends described above for the water dimer:
with oxygen-oxygen separations between 2.79 and 2.80 Å, the BLYP functional gave the
best structural parameters, followed by B3LYP (2.77–2.78 Å) and B3PW91 (2.76–2.77 Å).
The largest deviation was found for the B3P86 hybrid (RO-O = 2.72–2.73 Å). The binding
energy computed at the B3P86 level (10.1 kcal/mol) agreed best with the value of Nielsen,
Seidl, and Janssen, followed by B3LYP (8.9 kcal/mol), BLYP (8.1 kcal/mol), and B3PW91
(7.6 kcal/mol). These energies were not corrected for the BSSE, but from what we found
for the water dimer, we can assume that this data obtained with the 6-311++G(3df,2p) basis
approaches the basis set limit to within about 1 kcal/mol. However, a slight underestima-
tion of the binding energies is apparent in this data, as also noted for the water dimer.

Larger water clusters consisting of up to 8 monomers have been studied by Estrin et al.,
1996, who applied the PWP86 and the BP86 functionals. Their results on the water dimer
indicate a tendency of the former GGA functional to give a somewhat larger binding en-
ergy than the latter (∆ECP = 5.8 kcal/mol and 4.4 kcal/mol, respectively. ‘CP’ indicates that
the value has been corrected for BSSE via the counterpoise correction) but both values are
in reasonable agreement with the best available conventional wave function based data. For
the water trimer, these authors obtained a slightly higher binding energy (∆ECP = 12.7 kcal/
mol) than Gónzales et al., also overestimating the value of Nielsen, Seidl, and Janssen.
Estrin et al. concluded, that the methods applied were somewhat inferior to published B3LYP
data, but that the approach taken should allow for meaningful predictions on larger water
clusters, of which they investigated the tetramer, the pentamer, two hexamer, and three
different octamer forms. Marked differences between these and earlier results of Laasonen
et al., 1993, for the same set of species54 have been attributed to limitations inherent to the
plane-wave approach used by the latter authors. The results of Estrin et al. compare at least
qualitatively to wave function based data on small water clusters of up to six monomers
(Xantheas and Dunning, 1993) corroborating the applicability of this DFT approach, al-
though a general trend to overestimate binding energies, to underestimate intermolecular
distances, and to overestimate O–H bond lengths seems to persist at the GGA level. Kim et
al., 1999, extended these studies and investigated a variety of structural isomers of the
water heptamer. The structures, binding energies, and vibrational spectra obtained at the
B3LYP/6-311++G(d,p) level of theory show a reasonable correlation with selected MP2
data and experiment. In a pragmatic approach, Lee, Chen, and Fitzgerald, 1994, used the
BP86 and BLYP functionals (which yield qualitatively correct binding energies of smaller
clusters if no BSSE is taken into account) for an assessment of structural and energetic
properties of water clusters consisting of up to 20 monomers. In this work, particularly
stable bonding patterns of planar four-membered rings were identified, and the existence of

54 Later, these studies have been extended to clusters as large as 20 water monomers (see Laasonen and Klein,
1994).

12.2  Larger Water Clusters
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magic numbers (4, 8, 12) for particularly stable clusters was predicted. Furthermore, by
empirically fitting a simple 1/n function to these results, the authors were able to extrapo-
late the stability of larger water clusters with an accuracy better than 1 kcal/mol up to the
limit of ice at 0 K. Such predictive capabilities further strengthen the role of DFT as an
efficient practical tool in this contemporary field of research.

12.3 Other Hydrogen Bonded Systems

Closely related to water clusters are hydrogen-bonded aggregates of alcohol molecules and
mixed clusters of water and alcohols, which have attracted some attention in recent years.
In a variety of studies the (at least qualitatively) correct description of thermochemical and
physical properties of such species by gradient-corrected or hybrid functionals has been
repeatedly documented by comparison to experiment or correlated ab initio data.55 All
these studies are centered around hydrogen bonding involving the moderately strong OH⋅⋅⋅O
bridges in neutral clusters. The strengths of these hydrogen bonds seem in general to be
very well described, albeit slightly underestimated by current DFT methodology. Let us
now see how DFT covers other binding situations ranging from very weak interaction ener-
gies to the strongest hydrogen bonds.

In one of the earliest of all comparative DFT studies on hydrogen bonded systems, Latajka
and Bouteiller, 1994, studied the hydrogen fluoride dimer and applied a number of differ-
ent functionals in combination with a variety of polarized Pople-type basis sets. While the
quality of the computed geometry and vibrational frequency of the monomer follows es-
sentially what has been said above for the water monomer, these authors observed a signifi-
cant underestimation of available experimental polarizabilities. This has been attributed to
deficiencies in the 6-311++G(d,p) basis set used and better values have been obtained by
increasing the number of polarization functions. As found for the water dimer, all gradient-
corrected and hybrid functionals tested were well suited to assess the structural and ener-
getic properties of the FH dimer, and particularly low deviations from experimental data
were found for the BLYP functional. As for the water dimer, the computationally predicted
vibrational frequencies and the red shift of F-H stretching modes showed somewhat larger
deviations. Later, Maerker et al., 1997, investigated the performance of DFT for the de-
scription of various properties of (FH)n clusters (n = 1-6) in a highly elaborate study and the
results corroborate the applicability of DFT approaches for this type of system. For the
bigger clusters, however, somewhat larger deviations were observed than for the dimer.56

55 Related studies include: Mó, Yáñez, and Elguero, 1997 (minima and interconnecting transition structures on
the methanol trimer potential energy surface), González, Mó, and Yáñez, 1999 (the ethanol dimer and trimer),
Jursic, 1999 (the mixed water-methanol dimer), González et al., 1998a (mixed water/methanol clusters),
González, Mó, and Yáñez, 1996, (the H2O2 dimer and the H2O2⋅⋅⋅H2O complex), Rablen, Lockman and
Jorgensen, 1998 (complexes of small organic species with water), Mó and Yáñez, 1998 (tropolone-(H2O)2
clusters).

56 The interested reader is referred to the original publication as a survey of the present day knowledge of
properties of larger hydrogen fluoride clusters, a good bibliography, and further interesting theoretical results.
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Hirata and Iwata, 1998, extended these studies to linear oligomers and an infinite linear
hydrogen fluoride polymer. Also this study substantiates the applicability of the BLYP and
B3LYP functionals, for which reasonable agreement with experiment has been found with
respect to structure, binding energies and vibrational frequencies of the species explored.

Novoa and Sosa, 1995, investigated the complexes (FH)2, (H2O)2, C2H2⋅⋅⋅H2O, CH4⋅⋅⋅H2O,
and (NH3)2 and compared the results of DFT and Møller-Plesset perturbation theory up to
fourth order. While an excellent agreement between BLYP and B3LYP on the one hand and
correlated wave function based methods on the other was documented for geometries and
counterpoise-corrected binding energies, the constituting SVWN, BVWN and SLYP
functionals performed even worse for some of the species than noted above for the water
dimer. For example, the O–C distance in the H2O⋅⋅⋅CH4 complex, for which MP2, BLYP,
and B3LYP agree quite reasonably (3.77 Å, 3.94 Å, and 3.89 Å, respectively), is computed
as 5.91 Å (BVWN), 3.23 Å (SLYP), 3.35 Å (SVWN), and 4.11 Å (HF). These findings
again underline the high degree of error cancellation which is operative in gradient-cor-
rected and hybrid functionals. That this error compensation is indeed successful is impres-
sively demonstrated by the computed binding energies, where the BLYP, B3LYP and MP4
results agree to within 1 kcal/mol, even for weakly bound complexes. For the H2O⋅⋅⋅CH4
complex, which is bound by 0.4 kcal/mol at the MP4 level of theory, however, this accu-
racy is not sufficient for any qualitative let alone quantitative results (actually, this complex
is unbound by 0.3 kcal/mol at the BLYP level).

Civalleri, Garrone, and Ugliengo, 1997, have studied (FH)2 as well as binary adducts of
hydrogen fluoride with NH3 and CO, the former as an example of a hydrogen bond stronger
than that in (FH)2, the latter representative for weaker interactions. This work also shows a
good conformity between all tested DFT methods (with the anticipated exception of the
local SVWN functional) and available wave function based approaches for the computed
binding energy of (FH)2 and the FH⋅⋅⋅NH3 complex. The largest relative deviations were
found for the FH⋅⋅⋅OC heterodimer, but all density functional methods correctly reproduce
the greater stability of the FH⋅⋅⋅CO isomer. In contrast, at the Hartree-Fock level of theory,
this isomer is incorrectly described as being equally stable as the FH⋅⋅⋅OC isomer, probably
in relation to the reversed dipole moment of CO at that level. Computed harmonic fre-
quency shifts for the F–H stretch were found to be significantly different for BLYP and
B3LYP, and both methods overestimate the best available values for this quantity. For
anharmonic frequencies, which have been considered for FH⋅⋅⋅CO and FH⋅⋅⋅NH3 in this
study, a fair agreement between B3LYP, MP2 and experiment has been noted, whereas
BLYP gave grossly underestimated frequencies. This should not surprise us too much in
the light of Chapter 8, where we found an exceptionally good agreement between observed
fundamentals and harmonics computed by BLYP. Any correction for anharmonicity effects
necessarily leads to lower, and therefore underestimated, frequencies.

For the hydrogen bonded complexes (FH)2, (HCl)2, (H2O)2, FH⋅⋅⋅CO, FH⋅⋅⋅OC, FH⋅⋅⋅NH3,
ClH⋅⋅⋅NH3, OH2⋅⋅⋅NH3, and H3O

+⋅⋅⋅H2O, with binding energies ranging from 1.7 kcal/mol
(FH⋅⋅⋅CO) to 32.9 kcal/mol (H3O

+⋅⋅⋅H2O), Tuma, Boese, and Handy, 1999, compared re-
sults of several density functional methods with high level conventional wave function
based data. With the exception of the HCTH functional, all functionals were found to over-

12.3  Other Hydrogen Bonded Systems
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estimate the stability of hydrogen bonds stronger than that of water and to underestimate
that of less strongly bound species (for selected examples see Table 12-8). The HCTH
functional consistently underestimates the hydrogen bond stabilities somewhat more than
the other functionals do. This method, in turn, outperforms every other functional regard-
ing geometry changes and harmonic frequency shifts, which were also considered in this
study.

In a study of Topol, Burt, and Rashin, 1995, enthalpies and entropies of dimerization
(including counterpoise corrections, zero point vibrational energy effects and thermal cor-
rections to 298 K) for water, methanol, ethanol, formic acid, acetic acid, and trifluoroacetic
acid were computed using the BP86 GGA functional in combination with (LDA optimized)
basis sets of polarized double- and triple-zeta quality and compared to experimental data.
For the weakly bound water (∆H = 4.1 kcal/mol), methanol (∆H = 3.2 kcal/mol), and etha-
nol (∆H = 3.3 kcal/mol) dimers, the experimental values were slightly underestimated but
the deviations did not exceed 1 kcal/mol. A similar accuracy was observed for the rather
strongly bound carboxylic dimers of formic acid (∆H = 16.6 kcal/mol) whereas slightly
larger overestimations of up to 2.7 kcal/mol were found for the most stable conformers of
the acetic acid (∆H = 17.3 kcal/mol) and trifluoroacetic acid dimers (∆H = 16.4 kcal/mol).
In an investigation on the stability of structural isomers of the formic acid tetramer, Stein
and Sauer, 1997, obtained a pleasing agreement between MP2 and B3LYP results, although
the latter method showed a tendency to exaggerate the binding energies as well.

The most strongly bound neutral hydrogen bonded species known, the phosphinic acid
dimer, has been studied by González et al., 1998b. Its binding energy estimated at the
B3LYP/6-311+G(3df,2p) level (23.2 kcal/mol) agrees nicely with experiment (23.9 ± 6 kcal/
mol). Also the computed vibrational properties are consistent with available experimental
data. A still stronger hydrogen bond is present in the anionic hydrogen diformiate complex
HCOO–⋅⋅⋅HOOCH, which represents a model system relevant for enzymatic catalysis. Süle
and Nagy, 1996, applied several DFT methods to evaluate the geometry and binding energy
of this species. All functionals applied (BP86, BLYP, B3LYP, and B3P86) have been found
to underestimate the experimental interaction energy of 36.8 kcal/mol by up to 8 kcal/mol
when using the 6-311++G(d,p) basis set. At the B3P86/6-311++G(3df,2p) level, this error
is reduced to 5 kcal/mol. In combination with a polarized triple-zeta basis set built from
Slater-type orbitals, the BP86 functional implemented within the ADF code gave precisely
the same result – however, the use of more diffuse basis functions might improve the com-

Table 12-8. Deviation of counterpoise-corrected interaction energies [kcal/mol] for several hydrogen bonded
systems from best available computed data (TZ2P basis set quality, all data from Tuma, Boese, and Handy, 1999).

System Reference B3LYP B97-1 PBE1PBE BLYP PBE HTCH HTCH38

H3O
+⋅⋅⋅H2O 32.9 2.9 3.2 4.1 3.1 5.1 0.4 2.9

FH⋅⋅⋅NH3 12.6 0.4 0.7 1.2 0.2 1.7 –2.2 0.1
H2O⋅⋅⋅H2O 5.0 –0.2 0.1 0.2 –0.6 0.3 –2.1 –0.4
FH⋅⋅⋅OC 1.7 –0.3 0.0 –0.1 –0.6 –0.2 –1.2 –0.3
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puted thermochemistry of this anionic system. Kumar et al., 1998, also studied this species
(as well as the neutral formic acid dimer, see also Smallwood and McAllister, 1997) and
found good agreement between B3LYP and MP2 thermochemical results, but they ob-
tained an even lower binding energy owing to the use of very limited basis sets and geomet-
ric constraints in the calculations. These authors also investigated solvation effects on the
hydrogen bond strength by explicit inclusion of one and two water molecules or by a self-
consistent reaction field model in the calculations. Also the influence of different substituents
(replacing X = H in XCOOH) on the interaction energy has been considered. Furthermore,
miscellaneous properties of strong hydrogen bonds have been investigated by means of
DFT methods in a recent series of papers (see Kumar and McAllister, 1998, and references
cited therein).

Let us now turn to very weakly bound systems. A systematic comparison between re-
sults from wave function theory, experiment and several DFT methods for the weakly bound
OC⋅⋅⋅H2O and CO⋅⋅⋅H2O complexes has been undertaken by Lundell and Lataijka, 1997.
These species (bound by ∆ECP = 1.3 and 0.8 kcal/mol, respectively, at the CCSD(T)/6-
311++G(2d,2p) level) seem to mark the borderline of meaningful applications of modern
approximate density functional theory. Using the 6-311++G(2d,2p) basis set, the DFT
optimized structures for both species showed slightly overestimated intramolecular bond
lengths and slightly too short intermolecular distances as compared to MP2 and CCSD(T)
calculations or to experiment. Also in this study the BLYP functional keeps up its leading
performance for the prediction of intermolecular distances, whereas some functionals without
gradient corrections showed an alarming overestimation by up to 1 Å. The correct descrip-
tion of the H⋅⋅⋅O distance in the less stable CO⋅⋅⋅H2O isomer, however, is apparently more
demanding also for the hybrid functionals, which showed deviations from CCSD(T) re-
sults of almost 0.4 Å for this bond. The counterpoise-corrected binding energies for the
OC⋅⋅⋅H2O complex are slightly underestimated by all GGA schemes and the hybrid func-
tional results scatter around the conventional ab initio values with deviations of less than
1 kcal/mol. The relative energy of the other isomer, being 0.6 kcal/mol higher in energy at
the CCSD(T) level, is also obtained within 1 kcal/mol by all GGA and hybrid functionals.
While the intramolecular vibrational properties were described sufficiently well by most
gradient-corrected and especially by hybrid functionals, larger relative deviations from MP2
results have been noted for the intermolecular modes, overestimating the red shifts by up to
20 cm–1, which corresponds to a deviation of more than 200 %. Particularly problematic
were the modes of the less stable CO⋅⋅⋅H2O isomer. While these deviations are in fact lower
than those observed in other applications described above in absolute terms, the large rela-
tive errors render the predictive power of such results ambiguous owing to the small size of
observable effects. The authors related these deficiencies to the predominance of disper-
sion energy contributions to the bonding, which are not covered by the functionals investi-
gated (see below), but constitute 60-80 % of the binding energies of the two species as
shown by Lundell, 1995. Nevertheless, in the recent literature DFT methods have been
applied with some success to weak hydrogen bonds involving π-electron systems (Chandra
and Nguyen, 1998). In this context we note that modifications of the original B3LYP
parameterization have been suggested for an improved assessment of vibrational frequency

12.3  Other Hydrogen Bonded Systems
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shifts and successfully applied to the (FH)2 complex (Dkhissi, Alikhani, and Bouteiller,
1997). Also an empirical modification of the adjustable β-parameter in the B88 functional
used in combination with exact exchange has been proposed and led to improved intermo-
lecular distances and frequency shifts for the (H2O)2 and the (FH)2 system. Non-uniform
results, however, were obtained for other weakly interacting species (García et al., 1997).

In conclusion, it seems that the thermochemical, structural and vibrational properties of
a broad variety of hydrogen bonded species in very different binding situations can be
described reasonably well by gradient-corrected and hybrid density functional methods.
The applicability of DFT methods to hydrogen bonded systems has been confirmed by
benchmarking the results with experimental and higher level theoretical data. As of today,
a wealth of papers has appeared,57 which exploit the performance of DFT methods as a
practical means to supplement and guide experimental work. Representative examples com-
prise studies on molecular clusters (Hagemeister, Gruenloh, and Zwier, 1998, and Pribble,
Hagemeister, and Zwier, 1997), correlation between proton NMR chemical shift and hy-
drogen bond strength (Kumar and McAllister, 1998, Garcia-Viloca et al., 1998) molecular
dynamics (Wei and Salahub, 1994 and 1997, Termath and Sauer, 1997, Haase, Sauer, and
Hutter, 1997, Cheng 1998), molecular adsorption in zeolites (Krossner and Sauer, 1996,
Sauer, 1998, Zygmunt et al., 1998), binding and vibrational properties of nucleic acid bases
(Šponer and Hobza, 1998, Santamaria et al., 1999), cooperative hydrogen bonds in enzyme
catalysis (Guo and Salahub, 1998) and many more. While the interactions in strongly bound
species are generally overestimated, weaker hydrogen bonds are often found to be underes-
timated in stability. Many functionals reach an accuracy in the description of binding ener-
gies in the order of 1–2 kcal/mol provided that sufficiently flexible basis sets of at least
polarized triple-zeta quality are used. Even though this is what is called chemical accuracy,
it is not sufficient to achieve predictive power for very weakly bound species. Finally, we
mention a study by Milet et al., 1999. These authors corroborate the above conclusions that
DFT is able to deliver reasonably reliable results for minimum structures of such com-
plexes. But they also point out that density functionals have more severe problems when it
comes to probing other regions of the PES. For example, the angular dependence of the
water dimer energy is described significantly worse by the GGA and hybrid functionals
used than the properties of the minimum structure.

12.4 The Dispersion Energy Problem

In reviewing the performance of density functional theory applied to hydrogen bonded
complexes of moderate strength, we repeatedly noted a systematic underestimation of the
interaction energies for many types of functionals, usually below 2 kcal/mol. This has been
related by some researchers to the inability of modern functionals to describe those contri-
butions to intermolecular binding energies which stem from dispersion forces. Dispersion

57 Searching the Chemical Abstracts database for the combined keywords ‘DFT’ and ‘hydrogen bond’ reveals
201 entries for the time between January 1997 and August 1999.
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forces, also referred to as London forces, are long-range attractive forces which act be-
tween separated molecules even in the absence of charges or permanent electric moments.
These forces, which are purely quantum mechanical in nature, arise from an interplay be-
tween electrons belonging to the densities of two otherwise non-interacting molecules or
atoms. Owing to their like electric charges, the molecular electron densities of two differ-
ent systems repel each other if they come too close together. But at intermediate distances
the motion of electrons in one unit induces slight perturbations in the otherwise evenly
distributed electron densities of the neighboring molecule. This correlation of electronic
motion leads to a temporary dipole moment. The induced dipole moment, in turn, induces
a charge polarization in the first molecule, creating an attractive force between the two
systems. In the asymptotic limit, this induced dipole-induced dipole attraction decays with
the inverse sixth power of the intermolecular distance. The actual presence of interactions
from higher order electric moments leads also to other terms like induced quadrupole-
dipole, quadrupole-quadrupole interactions, etc., which vary as 1/r8, 1/r10 and so on. It is
solely this type of interaction which is responsible for the minute binding forces between
rare gas atoms and is the only reason why, for example, He even liquefies at very low
temperatures. This effect is entirely due to electron correlation and the Hartree-Fock model
is therefore not applicable to such situations.

Clearly, the so far unknown exact density functional must account for such electron
correlation effects. However, in present implementations only the exchange-correlation
energy of a given, local molecular electron density is considered and remains unaffected by
the density of another, distant system if no overlap is present. The exchange-correlation
potential )r(VXC

�

 at a point r
�

 is determined by the density (and its gradients and perhaps
other local information) exactly at this point. In other words, two unshared electron distri-
butions do not contribute by any means to an energy lowering in functional forms which
depend only on a local electron density. In order to describe London interactions, a fully
nonlocal functional must be applied and a local density functional is in principle not capa-
ble of describing this long-range, nonlocal correlation effect. Accordingly, some standard
functionals, while correctly describing the short-range repulsion, were found to completely
fail in the description of the attractive branches in the potentials of van der Waals com-
plexes like He2, Ne2 or Ar2. Numerical applications show in fact minima on the potential
energy surfaces of such systems, although too deep and at the wrong positions, but these
usually vanish after correcting for basis set superposition errors. The presence of actual
minima has been attributed to overlapping densities, which decay exponentially in r, and
not to a physically correct description of true dispersion interactions dominated by the long
range fluctuating dipole (1/r6) term (Kristyán and Pulay, 1994). Pérez-Jordá and Becke,
1995, investigated the performance of the SVWN and BP86 functionals as well as Becke’s
two hybrid approaches for the description of the He2, Ne2, Ar2, HeNe, HeAr, and NeAr rare
gas dimers. Also this group found a strong overbinding for the LDA with minima located at
too short distances, and only repulsive interactions for the GGA and the related hybrid
functional. Interestingly, the half-and-half approach not including any gradient corrections
provided a quite reasonable description of the potential shapes, but this approach gave
minima which were too shallow. From the latter finding it appears that some DFT models

12.4  The Dispersion Energy Problem
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might in fact give reasonable results for related systems. But as so many times before, this
is not the right answer for the right reason, i. e., a proper description of the physics of
dispersion forces, but merely a consequence of error cancellation. Others have outlined the
strengths and weaknesses of density functional theory associated with the description of
weakly interacting systems dominated by charge-transfer interactions and dispersion forces
(for helpful entry points into the recent literature consult Hobza, Šponer, and Reschel,
1995, Kang, 1996, Jeong and Han, 1996, Ruiz, Salahub, and Vela, 1996, Meijer and Sprik,
1996, Wesolowski et al., 1997, and Lundell and Latajka, 1997).

While calculations at the GGA level with the B88 exchange functional plus some corre-
lation functional have been shown to give purely repulsive interactions for van der Waals
complexes, other functionals yield relatively strong binding interactions. Work along these
lines, although rather sparse, has been put forward in the literature. For instance, Patton and
Pederson, 1997, tested two standard gradient-corrected functionals in combination with
mostly converged basis sets and demonstrated a reasonable performance for the description
of a variety of rare gas dimers. While the LDA gave grossly overestimated atomization
energies, the PWPW91 GGA functional led to reduced errors. For the gradient-corrected
PBE protocol a reasonable agreement with experimental energies, bond distances, and even
vibrational frequencies was obtained for the lighter He2 and Ne2 diatomics. Dimers con-
sisting of heavier rare gas atoms, however, were found to be too weakly bound at this level,
and better agreement was found with the PWPW91 functional. Zhang, Pan, and Yang,
1997, published a comparative study on the performance of seven different gradient-cor-
rected exchange functionals in combination with the PW91 correlation functional on the
same six rare gas diatomics which Peréz and Becke have explored. The former authors
emphasized the particular influence that the choice of exchange functional has on the out-
come of calculations on these van der Waals systems. Hence, it might well be that inclusion
of data for weakly interacting systems into the data base used for the construction (empiri-
cal fitting) of new functionals might lead to progress in this field. Notwithstanding all
criticism with respect to the lack of the underlying physics, such pragmatism has evidently
helped a lot in the past. Thus, we conclude this chapter by noting that as of today density
functional theory can be used successfully, albeit only with great care, for rather weakly
bound systems (see also the discussion in Adamo, di Matteo, and Barone, 1999). However,
for the most part contemporary density functional theory does not seem to offer sound and
reliable predictive capabilities when it comes to describing systems dominated by very
weak van der Waals forces. It will be interesting to see to what extent the many attempts to
develop new functionals (see, Lundqvist et al., 1995, Andersson, Langreth, and Lundqvist,
1996, Dobson and Dinte, 1996, Osinga et al., 1997, Kohn, Meir, and Makarov, 1998, Dobson,
1998, Lein, Dobson, and Gross, 1999) or to improve existing ones (e. g., Adamo and Barone,
1998b) will lead finally to an adequate and satisfying description also of the energetically
low energy end of chemical interactions.
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13 Chemical Reactivity:
Exploring Potential Energy Surfaces

The rates of chemical reactions are in many cases limited because of the presence of energy
barriers between reactants and products, and the barrier heights typically determine the
branching ratio of products. A rigorous understanding of all elementary steps along the
reaction coordinates leading from reactants to products is a prerequisite for the develop-
ment of guidelines for rationalizing or predicting the corresponding chemical transforma-
tions. However, the complete characterization of the actual reaction mechanisms, i. e., ex-
plicit information on the structural and energetic details of all intermediates and transition
structures relevant in the course of a particular reaction, by experimental means alone has
been possible in only a very limited number of cases.58 Quantum chemical calculations
offer in principle a complementary source of information. Among the most prominent ap-
plications of modern electronic structure theory is therefore the localization and characteri-
zation of stationary points on those parts of a potential energy surface, which are associated
with a chemical reaction. In particular the ability to directly model the transition structures
connected to the activation barriers is a most appealing feature. However, even for a quali-
tatively correct picture of a reaction path electron correlation effects need to be taken into
account in the framework of conventional ab initio molecular-orbital theory. If quantitative
accuracy is the target, a sophisticated treatment of correlation effects is usually required in
order to ensure a balanced description of minima and transition structures. Hartree-Fock
theory in most instances fails miserably. Typically, this approach leads to an overestimation
of reaction barriers. One important reason for the poor performance of the HF method is
that the stretching of bonds – which is a key feature of transition structures involving the
shift of individual or groups of atoms – beyond a certain point leads to a break-down of the
one-determinantal wave function. The HF model cannot cope with such situations and, in
principle, a multi-determinantal description of the wave function combined with a suffi-
cient recovery of dynamical electron correlation is needed in order to achieve chemically
meaningful accuracy. Even though such methods have been developed and successfully
applied in the past, approaches like CASPT2, MRCI, or ACPF, which are based on CASSCF
zeroth order wave functions, are much too expensive to play a role as a standard tool and
their application is limited to small, chemically less relevant cases only. Single reference
approximations like MP2 or CCSD(T) have shown to provide sufficiently accurate results
in many cases, however, it is often not clear from the outset whether they are appropriate or
not. In addition, these methods also suffer from an unfavorable scaling with molecular size,
as has been already critically noted in several places in this book. This problem is particu-
larly pronounced due to the fact that – depending on the particular system under study – the
use of very large basis sets is mandatory in order to obtain converged results. The compu-

58 Note, however, that the 1999 Nobel Prize for Chemistry was awarded to A. Zewail for his ‘studies of the
transition states of chemical reactions using femtosecond spectroscopy’ (Academy’s citation, October 12,
1999).

A Chemist’s Guide to Density Functional Theory. Second Edition
Wolfram Koch, Max C. Holthausen

Copyright © 2001 Wiley-VCH Verlag GmbH
ISBNs: 3-527-30372-3 (Softcover); 3-527-60004-3 (Electronic)



240

13  Chemical Reactivity: Exploring Potential Energy Surfaces

tational efficiency of density functional approaches combined with the inclusion of
nondynamical and dynamical correlation effects inherent to the functionals used has there-
fore made approximate DFT a promising competitor to the conventional methods. In recent
years density functionals have been applied to a great variety of chemical reactions ranging
from organic and inorganic systems through organometallic catalysis in the gas-phase, in
homogeneous and heterogeneous environments, to bioinorganic reactions and models for
enzymatic catalysis (for a collection of recent examples see, e. g., Truhlar and Morokuma,
1999). Early systematic investigations involving simple organic and organometallic reac-
tions include the work of Andzelm, Sosa, and Eades, 1993, Stanton and Merz, 1994, and
Baker, Muir, and Andzelm, 1995; for reviews see, e. g., Seifert and Krüger, 1995, Springborg,
1997, Ziegler, 1997, and Salahub et al., 1999. These studies revealed that the LDA gives
extremely unreliable results, and should not be used, whereas a better agreement with post-
HF and experimental reference results can be afforded by application of gradient-corrected
approaches, although they were shown to have a pronounced bias to underestimate barri-
ers.

In this final chapter we do not attempt to cover all the recent applications of density
functional theory to chemical reactivity. Such an endeavor seems hard to accomplish even
in an entire book, let alone a single chapter – plus, a review would be outdated by the time
of publishing given the vast number of research papers appearing in the literature month by
month. Rather, we concentrate on a few systematic studies on prototype reactions in which
the performance of density functional methods is compared to high level post-HF compu-
tational results or to reliable experimental data. The examples have been chosen to demon-
strate that the performance of approximate DFT for different classes of reactions frequently
differs significantly and that no general rule of thumb is available. Rather, each reaction
may offer its particular surprises. Therefore, the importance of a careful calibration of the
theoretical methods prior to their application to the actual, uncharted territory of interest
cannot be overstressed. Still, certain transformations are characterized by typical problems
and some of them are also the subject of the following sections.

In particular, reactions involving transition-metals have attracted a lot of interest re-
cently because of the connection to catalytic and enzymatic processes. Unfortunately, the
proper computational description of such reactions is one of the great challenges of today’s
theoretical chemistry and the question for the general applicability of density functional
methods in the field is an area of active research. We chose to provide a single but – as we
think – representative example to illustrate the difficulties one has to face in theoretical
studies of transition-metal reactivity.

13.1 First Example: Pericyclic Reactions

The first pair of examples we would like to discuss occurs in a field which lends itself
naturally to be conquered by theory. Indeed, the past three decades have seen the explora-
tion of mechanistic details of pericyclic reactions as one of the major success stories of
computational chemistry. Rooted in qualitative molecular orbital theory, the key concept of
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conservation of orbital symmetry (Woodward and Hoffmann, 1970) has opened the way to
the detailed mechanistic understanding of electrocyclic reactions, cycloadditions, sigmatropic
shifts, cheletropic reactions, and the like. In earlier times, however, numerical applications
using semiempirical methods or Hartree-Fock theory were insufficient to allow for un-
equivocal conclusions about mechanistic conceptions – a vividly written documentation of
related controversies has been presented by Houk, Gonzalez, and Li, 1995. Activation en-
ergies for pericyclic reactions computed at the HF level are substantially too high, usually
by about 50-100 %, due to the neglect of electron correlation contributions. Inclusion of
dynamic correlation effects in most cases ameliorates the situation and usually affords a
much better agreement with experiment. Another severe problem occurs if a balanced de-
scription of alternate pathways, like concerted and stepwise reaction mechanisms is envis-
aged. A computational discrimination between these alternatives is complicated by the fact
that the latter involve biradical species, which can be extraordinarily troublesome for sin-
gle-reference methods, such as HF or Møller-Plesset perturbation theory, but also difficult
for density functional methods (see, e. g., Goddard and Orlova, 1999, also for possible
remedies). As in many other areas, the advent of approximate density functional theory has
had a major impact on this area of research, once its general applicability in the field seemed
established. Modern functionals have been shown to yield a very reasonable description of
the potential energy surfaces connected to the chemistry of pericyclic reactions, even in
demanding electronic situations such as in radical cation species, which pose a fundamen-
tal challenge to the traditional approaches (see, e. g., Wiest, 1999). An overview of this
theoretically well-covered field of research can be found in recent reviews (Wiest and Houk,
1996, Bertran et al., 1998, Wiest, 1998, and references therein). Here, we choose to intro-
duce the reader to two prominent examples, the [π4c] electrocyclic ring opening of
cyclobutene and the prototype of a Diels-Alder reaction, the [π4s+π2s] cycloaddition of
ethylene to butadiene.

13.1.1 Electrocyclic Ring Opening of Cyclobutene

The conrotatory thermal electrocyclic ring opening of cyclobutene 1 has been extensively
studied using a great variety of theoretical methods. In line with the Woodward-Hoffmann
rules, all theoretical methods applied to this problem compute a C2-symmetric transition
structure 2 with a twisted carbon framework. This transition structure connects cyclobutene
with the gauche-1,3-butadiene 3,59 which subsequently rotates along the central C-C bond
via transition structure 4 to yield the global minimum along the reaction coordinate, i. e.,
trans-1,3-butadiene 5. The reaction path emerging from experimental and high-level theo-
retical work is pictured in Figure 13-1.

From a first inspection of the experimental and theoretical energetic data for stationary
points along the reaction path compiled in Table 13-1, we see that Hartree-Fock theory

59 The planar cis-butadiene is not a minimum but rather represents the transition structure for the degenerate
isomerization of the two identical gauche isomers.
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overshoots the activation barrier ∆E#
1-2 for the initial ring opening step by 10 kcal/mol. A

closer inspection of the restricted HF wave function reveals a RHF→UHF instability,60 i. e.,
there is an unrestricted Hartree-Fock solution with a lower energy than the restricted, closed-
shell RHF determinant. This is a strong indication of the necessity to include electron cor-
relation in order to properly describe the bond rupture in transition structure 2. Indeed, if
electron correlation effects are accounted for at the rather sophisticated G2 level, the ex-

Figure 13-1. Reaction path for the electrocyclic ring opening of cyclobutene.

Table 13-1. Computed reaction barriers and isomer stabilities [kcal/mol] for the electrocyclic ring opening of
cyclobutene (relative to cyclobutene 1, including zero-point vibrational contributions). Except for G2, the results
were obtained using the 6-311+G(d,p) basis set.

Barrier Exp.a G2 HF SVWN SLYP BVWN BLYP B3LYP

∆E#
1-2  33  33  43  33  33  28  27  32

∆E#
3-2  41  43  56  36  34  44  41  44

∆E3-5  –3   –3   –3  –4  –3  –4   –4   –3
∆E#

3-4   3    3    2   4    5    3    4    3
∆E1-3  –8 –10 –13  –3   –1 –16 –14 –12
∆E1-5 –11 –13 –16  –6  –4 –20 –18 –16

a Compiled from the experimental references cited in Murcko, Castejon, and, Wiberg, 1996, and Wiest, 1998.
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60 The stability of a Slater determinant can be checked by means of the stable keyword in Gaussian 98. For an
extension to DFT, see Bauernschmitt and Ahlrichs, 1996a.
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perimental barrier is reproduced perfectly. If we look at the relative energies resulting from
the LDA treatment, we note an impressive agreement between SVWN and experiment as to
the height of the activation barrier – in contrast with common expectations, the LDA does
not underestimate the barrier. Further, quite interestingly, the inclusion of gradient correc-
tions to correlation does not seem to have any influence on the computed ∆E#

1-2: the SLYP
barrier height also matches the experimental value. Switching on gradient corrections to
exchange in the BVWN functional, however, leads to an underestimation of the activation
barrier by 5 kcal/mol. Also the BLYP GGA functional underestimates the barrier by 6 kcal/
mol, and only the B3LYP hybrid functional catches up with the excellent LDA quality and
accurately describes ∆E#

1-2. Note that unlike in the HF scheme, irrespective of the actual
functional applied all non-interacting Slater determinants generated from the approximate
KS orbitals are stable with respect to symmetry breaking – starting from an unrestricted set
of guess orbitals of broken symmetry for transition structure 2, the determinants in all cases
collapse to the restricted solutions. This is an encouraging documentation of what we have
noted already before pertaining to the dissociation potential of H2 in Section 5.3.5: density
functional theory is significantly more robust with respect to symmetry breaking for stretched
bonds than Hartree-Fock theory. That is, the onset of the point where restricted and unre-
stricted calculations differ from each other is shifted to larger bond distances for density
functional calculations. In the present context this means that, ignoring all other sources of
error, this class of methods lends itself intrinsically better to a description of stretched bonds
in transition structures than Hartree-Fock and related wave function based concepts. One
would be tempted to relate the good performance of the density functionals to this pleasing
feature, if there were not the disturbing deviations upon inclusion of gradient corrections to
exchange. Remember that these were rather decisive for an accurate evaluation of atomiza-
tion energies as noted in Chapter 9. So, is there something wrong with the feeling we devel-
oped for the hierarchy of density functional methods in the preceding chapters? Certainly
not! In fact, a different picture emerges, if we look at the same reaction from a different
point of view, viz., as an electrocyclic ring closure of gauche-butadiene 3, and compare the
calculated energy difference ∆E#

3-2 computed by the various methods. Now we find a situ-
ation which corresponds more closely to what we would have expected on the basis of our
previous findings. While HF overestimates the activation barrier of the reverse reaction even
more than before and G2 theory also deviates by +2 kcal/mol, SVWN underestimates the
barrier by 5 kcal/mol. This is ameliorated a little at the SLYP level and a much larger bar-
rier is obtained by application of the BVWN functional, which is now in quite good agree-
ment with the experimental data. Inclusion of the gradient corrections to correlation in the
BLYP functional brings about a perfect match with experiment. Admixture of exact HF-
exchange leads to a slight overestimation of the barrier, but still, the experiment is well
reproduced. The relative stabilities of gauche- and trans-butadiene expressed in ∆E3-5 are
in most pleasing agreement with experiment at all levels of theory: the deviations do not
exceed 1 kcal/mol in any case. Likewise, the relative energy of the transition structure 4,
which connects the gauche- (3) and trans-forms (5) of butadiene, is accurately described
and within 2 kcal/mol of the reference values at all levels, with the BVWN and B3LYP
functionals performing best. Significant deviations are seen for ∆E1-3 and ∆E1-5, and it is

13.1  First Example: Pericyclic Reactions
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hence the description of the strained cyclobutene species 1, which is causing the trouble. Its
electronic structure is obviously very different from the other species such that errors can-
cel only incompletely. While the G2 technique places ∆E1-3 and ∆E1-5 within 2 kcal/mol of
the experimental results – which is just the accuracy this method has been designed for –
the DFT methods perform much worse. The SVWN, and even more so the SLYP func-
tional, underestimate the energy difference between cyclobutene and the two butadiene
minimum conformations, whereas BVWN, BLYP, and B3LYP overestimate these energy
differences. In conclusion, among the functionals tested, B3LYP provides the best overall
description of the entire reaction sequence with a maximum deviation of 5 kcal/mol.

13.1.2 Cycloaddition of Ethylene to Butadiene

The Diels-Alder reaction is a most useful synthetic tool in organic chemistry, and the par-
ent [4+2] cycloaddition of ethylene to butadiene has been well studied by experimentalists
and theorists alike and constitutes a good test case for our current presentation. It has been
established that the reaction proceeds through a synchronous concerted transition state,
which means that the two new bonds are being formed not only in one single step but also
in a synchronous way (Goldstein, Beno, and Houk, 1996). The alternative stepwise mecha-
nism involving biradical species is, however, energetically not far from the concerted one.
A variety of theoretical methods has been applied to Diels-Alder reactions and it has been
shown that an accurate description of this reaction type is in need of a rather high level of
electron correlation as far as classical electronic structure theory is concerned. The prob-
lems range from the overestimation of barriers at the HF level to non-converging results at
different levels of Møller-Plesset perturbation theory and do not end unless non-dynamical
correlation is adequately accounted for in a balanced way to study the radical pathway
alternative (for related literature see Bertran et al., 1998, and cited references). Density
functional theory has been successfully used in this field ever since its first implementation
in standard quantum chemical codes. It has furnished organic chemistry with much mecha-
nistic comprehension about this type of reaction and has been used – usually in combina-
tion with limited basis sets due to the size of the molecules involved – as an easy-to-use tool
for synthetic organic chemists (for recent examples see Sodupe et al., 1997b, Venturini et
al., 1997, Chen, Houk, and Foote, 1998, Tietze, Pfeiffer, and Schuffenhauer, 1998, and
Goldstein, Beno, and Houk, 1999).

The course of the reaction is sketched in Figure 13-2 and Table 13-2 contains the activa-
tion and reaction energies computed at different levels of theory. G261 and experimental
results agree to within 2 kcal/mol so that this data serves well as a benchmark. We note the
large deviations from these results at the Hartree-Fock level which we have got so used to
by now: the reaction barrier is overestimated by no less than 100 %, rendering this level of
theory completely useless for gaining chemical insight. A most dramatic underestimation

61 Related, yet simpler extrapolation schemes have been applied to evaluate the activation barrier (Froese et al.,
1997) and the entire sequence (Barone and Arnaud,1997).



245

of the barrier is seen at the LDA level and the SLYP functional places the barrier below
even the relative energy of the reactants. However, the energy difference between the
cyclohexene product and the transition structure (∆Era) obtained with these two methods
(64 and 69 kcal/mol, respectively) is close to the reference data, which is indicative of an
incomplete error cancellation on the part of the separated reactants. The BVWN functional
has just the reverse problem: correcting exchange with the gradient-corrected functional
due to Becke results in a substantial improvement for the computed barrier height, but now
the stability of the product is significantly underestimated. This leads to an underestimation

Figure 13-2. Reaction path for the cycloaddition of ethylene to butadiene.

Table 13-2. Computed activation (∆Ea) and reaction energies (∆Er) for the concerted gas-phase cycloaddition of
ethylene to trans-butadiene [kcal/mol]. The HF and DFT calculations were performed with the 6-311+G(d,p)
basis set and include zero-point vibrational contributions.

Exp.a G2 HF SVWN SLYP BVWN BLYP B3LYP

∆Ea 27 ± 2   25   51    5   –2  33  26  28
∆Er –38 –38 –30 –59 –67 –14 –22 –29

a Taken from references cited in Wiest, 1998.
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of the reverse barrier by this functional by about the same amount as SVWN and SLYP err
in the forward direction. It is apparent that gradient corrections to exchange are more im-
portant for a balanced description of separated reactants and the transition structure, whereas
gradient corrections to correlation do well for the relative energies of transition structure
and product. The combination of both in the BLYP functional leads to an improved de-
scription for the entire reaction sequence, but the product stability remains underestimated
by 16 kcal/mol – an unacceptably large error for chemical purposes. The B3LYP hybrid
slightly improves the barrier height, but still a large deviation of 9 kcal/mol is seen for the
relative energy of cyclohexene. This latter finding is rather surprising as this reaction has
not been found problematic for the B3LYP hybrid functional in previous published work
(see, e. g., Barone and Arnaud, 1996 and 1997). The only difference between these investi-
gations and the present results is the use of smaller basis sets in the previous studies. So, it
seems worthwhile to have a look at the basis set dependence. Let us therefore focus on
results from calculations with basis sets of varying size.

From the energetics compiled in Table 13-3 we clearly see that a systematic improve-
ment of the basis set quality causes a severe deterioration of the description of the relative
stability of the cyclohexene product. The height of the activation barrier is less affected and
the disagreement with the G2 data increases only slightly when going from smaller to
larger basis sets. It appears that even the B3LYP hybrid functional is not well suited to
consistently describe the dramatic changes in molecular electron density when fragmenta-
tion processes are considered, even if all species involved are closed-shell. Hence, it is
rather plausible that the many honors density functional theory has earned in this field in
the past are due to massive error compensation effects arising from the use of small basis
sets. Admittedly, this error compensation has been highly effective and constant for a broad
variety of systems studied, and has led to extraordinarily good agreement with experimen-
tal data (see, e. g., Beno, Houk, and Singleton, 1996). So the B3LYP/6-31G(d) combina-
tion is without doubt a cost efficient and therefore valuable procedure with predictive capa-
bilities.62 But, in contrast to what we have concluded in other instances, there is no way to
improve the results if we encounter problems and we have to be very careful what we can

Table 13-3. Basis set dependence of activation (∆Ea) and reaction energies (∆Er) computed using the B3LYP
functional for the concerted gas-phase cycloaddition of ethylene to trans-butadiene [kcal/mol]. All calculations
include zero-point vibrational contributions evaluated at the B3LYP/6-311+G(d,p) level.

6-31G(d) 6-31+G(d) 6-31++G(d,p) 6-311++G(3d,2p) cc-pVTZ

∆Ea    25   27   27   28   28
∆Er  –37 –33 –32 –29 –28

62 As noted by Adamo, di Matteo, and Barone, 1999, similarly good results can be expected from the traditional
schools of theory only at the CCSD(T)/TZ2P level, but this computational approach is prohibitively expen-
sive for most chemically relevant systems to be studied.
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and cannot believe. There might be situations which small basis sets are not able to cope
and the error compensation does not work. And worse, there is probably no way to identify
such situations from the outset. In any event, the bottom line is that one way to identify
potential shortcomings of density functionals used to study chemical reactivity is to check
the basis set influence on the results. In view of these facts let us reiterate the big caveat that
will accompany us through this chapter: one should not apply current approximate density
functionals to mechanistic problems without careful prior benchmarking of the employed
methodology for thermochemical data of related well-characterized systems!

13.2 Second Example: The SN2 Reaction at Saturated Carbon

Another fundamental reaction in organic chemistry is the bimolecular nucleophilic substi-
tution (SN2), also referred to as the Walden inversion (see, e. g., Shaik, Schlegel, and Wolfe,
1992). One experimentally and theoretically particularly well characterized example is the
gas-phase SN2 reaction of Cl− + CH3Cl → ClCH3 + Cl−. Starting from the separated chlo-
ride anion and methylchloride, an ion-molecule complex [Cl⋅⋅⋅CH3Cl]− is formed. From
this complex, the reaction proceeds through a trigonal bipyramidal D3h symmetric transi-
tion structure, in which one of the two identical carbon-chlorine bonds is formed to the
same extent as the other one is broken. The product side of this identity reaction is of course
the mirror image of the first half of the reaction and indistinguishable from the reactant
side. Obviously, the practical interest in this sequence is limited, but besides the fundamen-
tal implications it suffices to establish the performance of density functional methods in the
present context. Figure 13-3 sketches the energetic regime along the reaction coordinate

Figure 13-3. Reaction path for the gas-phase SN2 reaction of Cl− + CH3Cl.

13.2  Second Example: The SN2 Reaction at Saturated Carbon
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and Table 13-4 provides experimental and accurate computational reference data, together
with Hartree-Fock and a few density functional results.

If we compare the experimental ∆Ec, the (negative) complexation energy of the ion-
molecule complex, with the computed data we see that the Hartree-Fock level underesti-
mates this quantity, while G2 reproduces the experimental value very well. The SVWN
functional overbinds the complex by 4 kcal/mol compared to the G2 value, but lies in fact
just 1 kcal/mol outside the experimental error range – given the well known overbinding
tendency of the LDA, one might take this as an indication that the true value lies rather
close to the upper bound of the experimental uncertainty. As is common, the inclusion of
the LYP gradient corrections increases the overbinding and the SLYP functional overesti-
mates the G2 benchmark data by 6 kcal/mol. The SVWN overbinding is largely compen-
sated for by inclusion of gradient corrections to exchange and BVWN gives a reasonable
complexation energy, matching the Hartree-Fock value. The BLYP GGA functional and
the B3LYP hybrid give the same result, missing the experimental target by 2 kcal/mol. The
overall reaction barrier, ∆Eob, is the difference between the relative energies of the entrance
channel and the transition structure. HF overestimates the barrier relative to G2 and experi-
ment by some 4-6 kcal/mol. The qualitative picture changes with application of density
functional theory: all functionals place the central barrier below the relative energy of the
entrance channel and give negative values for ∆Eob. The LDA approach and even more so
the SLYP functional both underestimate the overall barrier by 11 and 14 kcal/mol, respec-
tively. Again, BVWN does a better job, but still underestimates the G2 value63 by 7 kcal/
mol. Additional inclusion of the LYP correlation functional in the BLYP scheme leads to a
deterioration of the results by 2 kcal/mol. The admixture of exact exchange within the
B3LYP hybrid gives the best result with a deviation from experimental and G2 results in
the order of 5 kcal/mol. The intrinsic reaction barrier, that is the energy difference ∆Eb
between the ion-molecule complex and the transition structure, is described with similar
deviations. These results are representative for other studies on this and related systems:
standard GGA functionals underestimate the activation barriers more than the correspond-
ing hybrid functionals (Deng, Branchadell, and Ziegler, 1994, and Glukhovtsev et al., 1996).

Table 13-4. Complexation energy (∆Ec) and barrier heights (∆Eob and ∆Eb, see text) for the gas phase bimolecular
SN2 identity reaction Cl− + CH3Cl → ClCH3 + Cl− [kcal/mol]. HF and DFT calculations were done with the 6-
311+G(d,p) basis set and include zero-point vibrational contributions.

Exp.a G2b HF SVWN SLYP BVWN BLYP B3LYP

∆Ec –12 ± 2 –11  –9 –15 –17   –9 –10 –10
∆Eob 3 / 1 ± 1c    3   7  –8 –11   –4   –6   –2
∆Eb 13 ± 2  13 16   6   6    5    4    8

a Compiled from references cited in Glukhovtsev et al., 1996; b taken from Glukhovtsev, Pross, and Radom,
1995; c two experimental values given.

63 Large scale CCSD(T) calculations by Botschwina, 1998, confirm the G2 result for ∆Eob.
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Slightly better results have been obtained, however, with the recently developed mPW and
PBE functionals as can be seen from the data compiled in Table 13-5. The improvements
do not exceed 2 kcal/mol though. It is interesting to note that the application of smaller (6-
31+G(d)) or larger basis sets (6-311++G(3df,3pd)) does not change the picture much, in
contrast to the strong influence of the basis set quality we have noted before.

13.3 Third Example:
Proton Transfer and Hydrogen Abstraction Reactions

The transfer of protons between atoms is of utmost importance in chemical and biological
transformations. Theoretical research in this field is entangled in a combination of prob-
lems associated with the highly demanding aspects of hydrogen bridges and those difficul-
ties associated with a consistent description of different regions on potential energy sur-
faces encompassing the formation and cleavage of bonds. The breaking of covalent bonds
to hydrogen atoms is another important subject related to combustion chemistry. In this
field, the abstraction of hydrogen atoms by radical species is of great interest but, as we will
see, highly involved as far as theory is concerned. The present section provides two exam-
ples, which are well investigated and covered by literature: the intramolecular proton trans-
fer process in malonaldehyde enol, and the simple, seemingly trivial, hydrogen exchange
reaction H + H2 → H2 + H.

13.3.1 Proton Transfer in Malonaldehyde Enol

The enol form of malonaldehyde is favored over the tautomeric aldehyde due to the pres-
ence of an intramolecular hydrogen bond. It constitutes one of the smallest model systems

Table 13-5. Computed complexation energies (∆Ec) and barrier heights (∆Eob and ∆Eb, see text) [kcal/mol] for
the gas phase bimolecular SN2 identity reaction Cl− + CH3Cl → ClCH3 + Cl− from different sources (single point
energy calculations using the 6-311++G(3df,3pd) basis on top of  6-311+G(d,p) geometries).

B3LYPa B3LYPb B1LYPc PBE1PBEb LGLYPc LG1LYPc

∆Ec  –9  –9 –10 –10 –12 –11
∆Eob  –1  –1   –1    1   –1  –2
∆Eb   8   8    9  10   11   9

BPW91d B3PW91d mPWPW91d mPW1PW91d mPW3PW91d

∆Ec  –9 –9 –11 –10 –10
∆Eob  –3   0  –4    0    0
∆Eb   6 10   6   11  10

a 6-31+G(d,p) basis: Glukhovtsev et al., 1996; b Adamo and Barone, 1999; c Adamo and Barone, 1998a; d Adamo
and Barone, 1998b.

13.3  Third Example: Proton Transfer and Hydrogen Abstraction Reactions
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for hydrogen bonded species subject to an intramolecular proton transfer – an important
process in enzymatic reactions. As an extension to Chapter 12, where we have evaluated the
capabilities and limitations of contemporary density functionals to describe species with
intermolecular hydrogen bonds, we now look a little closer at the intramolecular binding
and the proton transfer process in malonaldehyde from a thermochemical point of view.
The asymmetric nature of the hydrogen bond in this species has been established by
crystallographic, microwave, and NMR experiments (see Perrin and Kim, 1998, and refer-
ences therein) and the shift of the proton from one oxygen atom to the other – concomitant
with a rearrangement of the double bond framework – proceeds via a C2v symmetric tran-
sition state. This double minimum situation is depicted in Figure 13-4.

As we have outlined in the introduction to Chapter 12, the flat potential energy surface
in the hydrogen bonding region and its double minimum nature obscures the validity of the
harmonic approximation commonly used to evaluate vibrational frequencies and
thermochemical properties. For the related situation in the protonated water dimer, Valeev
and Schaefer, 1998, have argued that strong anharmonicity effects of low frequency modes
can cause substantial errors for computed zero-point vibrational energies. Here, we are
mainly interested in demonstrating the general ability of density functionals to describe
potential energy surfaces. Thus, we are not seeking final answers to the chemical problem
– in order to do so there are many severe puzzles to be solved, starting from the choice of a
multidimensional coordinate system (e. g., Carrington and Miller, 1986) and ranging through
a description of proton tunneling (see Shida, Barbara, and Almlöf, 1989). Rather, we will
address the basic question: is present day density functional theory able to provide a good
enough potential energy surface to justify its use in a subsequent, physically sound treat-
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Figure 13-4. Energy profile for the proton transfer in malonaldehyde enol.
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ment of the chemical problem? Does it make sense to use it at all? Let us try to find an
answer from the results summarized in Table 13-6.

We can see at a glimpse that for HF theory as well as for SVWN or SLYP the answer to
both questions is ‘No’. The energy difference ∆EHB between conformers 1 and 2, which
represents the strength of the intramolecular hydrogen bridge, is severely underestimated
by the former and dramatically overestimated by the latter methods. Accordingly, the O⋅⋅⋅O
and the O⋅⋅⋅H distances are computed too long at the HF, and too short at the SVWN level,64

both compared to the MP2 reference geometry. Using the SLYP functional the CS mini-
mum structure does not even exist but rather collapses into a C2v minimum – a dramatic
failure. On the contrary, as so often is the case, the BVWN functional improves the agree-
ment with the CCSD(T) energetic reference data. The structural parameters differ in the
order of 0.01 Å from the optimized MP2 structure, though. Better agreement is found for
the BLYP functional, which also describes the relative energies of stationary points inves-
tigated on this PES reasonably well, although the barrier height is underestimated by 2 kcal/
mol. A slightly better performance results from the B3LYP treatment of the problem. Both
energetics and structural parameters agree nicely with the accurate conventional ab initio
results. Overall, the B3LYP functional yields structures and relative energies of very simi-
lar quality as MP2 and approaches the accuracy of the higher level benchmarks to within
1 kcal/mol, with a slight bias to underestimate the proton transfer barrier (see also Zhang,
Bell, and Truong, 1994, Barone, Orlandini, and Adamo, 1994b, and Barone and Adamo,
1996 and 1997b). While this accuracy is certainly at the borderline of being useful for
studies of such flat potential energy surfaces as that present in malonaldehyde enol, we
conclude that the hybrid functional level can provide proton transfer potential energy sur-
faces of a quality comparable to MP2, but at substantially lower costs. Therefore, this level
of theory should lend itself as an efficient tool to a further assessment of proton transfer

Table 13-6. Computed total energy differences [kcal/mol] and distances [Å] for the proton transfer in malonaldehyde
enol (6-311++G(d,p) basis).

Method ∆EHB ∆EPT         Min (2)         TS (3)
RO⋅⋅⋅O RO⋅⋅⋅H RO⋅⋅⋅O RO⋅⋅⋅H

HF   0.3 10.8 2.70 1.91 2.32 1.19
SVWN 20.3   0.0 2.37 1.29 2.36 1.21
SLYP 22.5   −a −a −a 2.37 1.21
BVWN 11.5   3.4 2.65 1.76 2.40 1.22
BLYP 13.0   2.2 2.59 1.67 2.40 1.23
B3LYP 12.9   3.2 2.58 1.69 2.37 1.21
MP2 12.1   3.3 2.58 1.69 2.36 1.20
CCSD(T) 11.5   4.4 2.58b 1.69b 2.36b 1.20b

CCSD(T)c 12.4   4.0 2.58b 1.69b 2.36b 1.20b

a No asymmetric Cs structure; b MP2/6-311++G(d,p) structure; c 6-311++G(2df,2pd) basis.

64 Similar findings have been reported already in the literature (Sim et al., 1992).
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processes. Similar conclusions have been drawn by others, who tested various recently
developed functionals on related problems (Sirois et al., 1997, Adamo and Barone, 1998a
and 1998b, Sadhukhan et al., 1999).

13.3.2 A Hydrogen Abstraction Reaction

One of the simplest chemical reactions involving a barrier, H2 + H → [H⋅⋅⋅H⋅⋅⋅H]≠ → H +
H2, has been investigated in some detail in a number of publications. The theoretical de-
scription of this hydrogen abstraction sequence turns out to be quite involved for post-
Hartree-Fock methods and is anything but a trivial task for density functional theory ap-
proaches. Table 13-7 shows results reported by Johnson et al., 1994, and Csonka and Johnson,
1998, for computed classical barrier heights (without consideration of zero-point vibra-
tional corrections or tunneling effects) obtained with various methods. The CCSD(T) result
of 9.9 kcal/mol is probably very accurate and serves as a reference (the experimental bar-
rier, which of course includes zero-point energy contributions, amounts to 9.7 kcal/mol).

As usual, we see the uncorrelated HF level overestimating the barrier, this time by 8 kcal/
mol. MP2 does better, but it is not able to fully recover the correlation energy so that the
CCSD(T) benchmark data is still overestimated by 3 kcal/mol. Turning to the density
functionals, the SVWN and SLYP implementations produce only chemical nonsense: the
H3 radical is computed as a stable minimum, lying energetically below the reactants, rather
than as a saddle point. The BVWN functional changes the situation giving at least a quali-
tatively correct picture with a barrier separating the two asymptotic channels H + H2. Yet
the barrier height is severely underestimated by some 7 kcal/mol or over 50 %. This wholly
unsatisfactory picture does not change significantly if the BLYP and B3LYP functionals
are employed.

Durant, 1996, has found the incorporation of a larger amount of exact exchange into the
hybrid functional formulation as one way to improve the performance with respect to this
reaction: the BHLYP functional delivers a barrier height of 6 kcal/mol. Accordingly,
Chermette, Razafinjanahary, and Carrion, 1997, have reoptimized the empirical mixing
parameters inherent to the B3LYP hybrid functional formulation with respect to the de-
scription of hydrogen-only systems. These authors stressed that the results were found
particularly sensitive to the amount of exact exchange admixture, which they readjusted
from 0.20 in the original B3LYP composition to 0.559 in their so-called B3(H) functional.

Table 13-7. Computed classical barrier heights ∆E [kcal/mol] for the reaction H2 + H → [H⋅⋅⋅H⋅⋅⋅H]≠ → H2 + H
(6-311++G(,3pd) basis set); data compiled from Johnson et al., 1994, and Csonka and Johnson, 1998.

HF MP2 CCSD(T) SVWN SLYP BVWN BLYP B3LYP

∆E 17.6 13.2 9.9 –2.8 –3.5   3.7   2.9   4.1
∆ESIC

a   –   – –   6.6  6.0 13.2 12.6 11.1

a Corrected for self-interaction contributions.
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Applied to the reaction barrier, this functional indeed gave an improved value of 7 kcal/
mol.

Johnson et al., 1994, and subsequently Csonka and Johnson, 1998, went deeper into the
problem and investigated the influence of the self-interaction contributions (see Section
6.7) on this reaction. Some of their results obtained after applying a self-interaction correc-
tion are given in Table 13-7. Indeed we see a dramatic effect on all functionals applied: all
barriers are shifted by 7 − 9.5 kcal/mol to higher energies with the smallest effect for the
B3LYP hybrid. Its self-interaction corrected barrier amounts to 11.1 kcal/mol, which agrees
much better with the CCSD(T) value. The data given in Table 13-7 shows that the self-
interaction error causes a significant and unphysical lowering of the activation barrier, which
is, apparently, least pronounced for the B3LYP hybrid functional. We have noted already
that inclusion of an even larger portion of exact exchange in the BHLYP hybrid functional
improves the computed energy barrier. Without further reference, this could now be ex-
plained in two ways. One point of view is that the larger amount of exact exchange – that is,
exchange which is free of the self-interaction error by construction – reduces this particular
shortcoming to some extent. On the other hand, seen from an even more naive standpoint,
the increased barrier is only a reflection of the fact that we are mixing in a certain amount
of HF quality into the functional form. We have noted above that the pure Hartree-Fock
level severely overestimates the barrier, hence the more that HF character is included in the
functional the more the barrier is shifted to higher relative energies. While both views allow
for a – albeit hand-waving – rationalization of the performance of the respective functionals,
the explicit analysis of self-interaction errors by Csonka and Johnson, 1998, reveals that
the situation is more complicated. These authors studied the individual components which
contribute to the overall self-interaction error for all three species involved in the reaction –
see Table 13-8.

For the BLYP functional there is a pronounced self-interaction error for the H3 transition
structure, which is much larger than the errors for the H radical or the H2 molecule taken
together. The correlation part has no self-interaction problem, since the LYP correlation
energy has been designed as perfectly self-interaction free, and hence the error in the com-
puted barrier height is entirely due to the incomplete cancellation of the self-interaction
error in the Coulomb/exchange part. So far, everything is according to expectation. For the
B3LYP hybrid, however, the breakdown of the self-interaction error into its components

Table 13-8. Self-interaction error components for Coulomb and exchange energies (EJ + EX) as well as for the
correlation energy (EC), and the resulting sum for the H atom, the H2 molecule, and the H3 transition structure
[kcal/mol]. Data taken from Csonka and Johnson, 1998.

Method H H2 H3

EJ + Ex EC SIC EJ + Ex EC SIC EJ + Ex EC SIC

BLYP 0.86   0.00 –0.86 0.38   0.00 –0.38 –8.51   0.00 8.51
B3LYP 2.96 –2.62 –0.34 5.20 –5.45   0.24   0.92 –7.93 7.01

13.3  Third Example: Proton Transfer and Hydrogen Abstraction Reactions
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shows a startling situation: the errors for EJ + EX are three to thirteen times larger than those
found for the pure Becke exchange functional for H and H2. Furthermore, for the H3 tran-
sition structure the exchange related self-interaction error is about nine times smaller than
for BLYP. There, EJ + EX was about –9 kcal/mol, but this changes to +0.9 kcal/mol when
the B3LYP functional is used. Hence, the self-interaction error trends in the hybrid func-
tional treatment of this reaction are just opposite to that of the pure GGA! But even more
baffling is the finding that the correlation energy error is no longer zero but gets significant!
This error stems from the admixture of the VWN correlation functional into the B3LYP
hybrid form (see equation (6-28)) and scales quite constantly with the size of the number of
atoms in the system. It is acting in the opposite direction and in fact compensates almost
perfectly for the self-interaction error of the Coulomb-exchange energy for H and H2 such
that the total self-interaction errors are well below 1 kcal/mol. This is not so for H3, where
we have a small error from exchange of +0.92 kcal/mol which contrasts with a huge corre-
lation self-interaction error of –7.93 kcal/mol. Thus, a total error of 7.01 kcal/mol results.
The large underestimation of the barrier height is thus due to the imperfect cancellation of
the individual error components.

This hydrogen abstraction reaction has been found particularly problematic also for
other GGA and hybrid functionals, so it is clear that this and related reactions constitute
severe problems for currently available functionals (see Durant, 1996, Sadhukhan et al.,
1999). Of particular interest, however, is the finding that functionals that depend also on
the non-interacting kinetic energy density – like LAP and B95 – show an improved de-
scription of the barrier (BLAP3: 7.3 kcal/mol, B1B95: 7.6 kcal/mol, see Salahub et al.,
1999).65 In conclusion, although one important source of error for the failure of density
functional methods to describe this hydrogen abstraction reaction has been pinned down,
the procedure to correct for self-interaction contributions is not commonly available and
not easily applicable to standard Kohn-Sham procedures (see Csonka and Johnson, 1998,
for an easy-to-read outline of procedures and further references). Therefore, one should
expect that gradient-corrected functionals tend to severely underestimate the barriers to
radical hydrogen abstraction reactions. To some lesser extent this also applies to hybrid
functionals. Further examples corroborating these statements can be found for similar reac-
tions in Johnson, 1995, or Baker, Muir, and Andzelm, 1995. It may nevertheless be that
related reactions can be very well described by standard functionals provided that a more
fortuitous error compensation occurs for the particular species under study. Better results
than reported here have in fact been described but the performance changes unpredictably
from system to system and a general bias to underestimate the activation barriers for such
processes appears to persist (see, e. g., Bernardi and Bottoni, 1997, Nguyen, Creve, and
Vanquickenborne, 1996, Jursic 1996. See also Ventura, 1997, for a review).

65 We find also other recently developed exchange functionals in combination with LYP and the 6-311++G(,3dp)
basis marginally better than the B3LYP hybrid: B1LYP: 4.8 kcal/mol, LG1LYP: 5.1 kcal/mol, mPW1LYP:
4.4 kcal/mol. Note that these hybrid functionals do not contain correlation contributions from the VWN func-
tional.
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13.4 Fourth Example: H2 Activation by FeO+ in the Gas-Phase

In this last example we extend the investigation of reaction mechanisms to transition-metal
chemistry. As repeatedly mentioned in the previous chapters, the presence of transition-
metals leads to additional difficulties for an appropriate computational description, see,
e. g., Koch and Hertwig, 1998. However, it is particularly this difficult terrain where DFT
methods have acquired a good reputation as offering the best value for money. This also
applies to mechanistic details as verified by the large and continuously growing number of
investigations uncovering organometallic and related reaction mechanisms that appear in
the literature. Rather than attempting to survey all these developments, we will use one
particular example in the following for discussing some of the problems and peculiarities
inherent to the computational description of transition-metal reactivity. The example cho-
sen is the activation of molecular hydrogen by an iron oxide cation, FeO+. While at first
glance this may seem to be a fairly exotic model reaction, it will turn out to be highly
instructive in the following. Before we start with some background information, let us add
that this reaction involves open-shell and coordinatively unsaturated transition-metal com-
plexes. Because of the complicated electronic structure inherent in such species, the de-
mands on computational techniques are particularly high. The performance of density func-
tional methods established for this example represents therefore a worst case scenario and
the errors should be upper bounds. Reactions involving larger, coordinatively saturated,
closed-shell transition-metal complexes which obey the 18-electron rule are expected to be
less problematic and associated with smaller computational uncertainties. Indeed, an am-
ple number of contributions testifies to the suitability of DFT methods in the regime of
organometallic chemistry (for representative examples see Cui et al., 1995, Dapprich et al.,
1996, Siegbahn, 1996b, Deng and Ziegler, 1997, Frankcombe et al., 1997, Siegbahn and
Crabtree, 1997, Niu and Hall, 1997, Cui, Musaev, and Morokuma, 1998a and 1998b, Tor-
rent, Deng, and Ziegler, 1998, Basch et al., 1999, Niu, Thomson, and Hall, 1999, Amara et
al., 1999, Pavlov, Blomberg, and Siegbahn, 1999, Deubel and Frenking, 1999, Kragten,
van Santen, and Lerou, 1999, Petitjean, Pattou, and Ruiz-López, 1999, just to mention a
few). In many cases density functional approaches are actually the only feasible way to
tackle these questions, because typically rather large model systems are required to assign
enough chemical relevance to the calculations. The need to choose large model systems
complicates both theoretical and experimental work and due to the lack of accurate data to
compare to, most such theoretical studies are rather qualitative in nature and are not suited
as examples in the present context. The chemical insight gained in many instances is never-
theless highly impressive and density functional calculations at moderately advanced lev-
els are often the only means to rationalize experimental findings.

The situation is somewhat better for the gas-phase chemistry of isolated transition-metal
ions or complexes, and this area of research has received a lot of attention in the past. On
the experimental side, comprehensive mass-spectrometric techniques allow for an explicit
measurement of thermochemical and kinetic parameters of reactants, intermediates, and
products occurring along the reaction pathways. These data can be obtained without the
influence of ligands, counter ions, solvents etc. which would be a highly complicated enter-
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prise – if possible at all – for experiments in homogeneous or heterogeneous environments.
For similar reasons, reactions among isolated species in the gas-phase are particularly well
suited for quantum chemical investigations, which can supplement the experimental results
with direct information on stationary points occurring along the reaction coordinate. There-
fore, the synergy between experiment and theory has been particularly useful in this field
(Schröder et al., 1997).

We now turn to our specific example. In the last decade, bond activation processes me-
diated by bare metal oxide cations have been extensively studied reflecting the important
role that such reactions play in various areas ranging from heterogeneous catalysis to bio-
chemical transformations.66 As a rather advanced example, we present here the results from
state-of-the-art theoretical studies on the activation of molecular hydrogen by iron oxide
cation, FeO+ (6Σ+) + H2 → Fe+ (6D) + H2O. Let us start with an illustration of the chemical
problem: the most intriguing features of this reaction are (a) the unexpectedly low reactiv-
ity found in gas-phase experiments. Although the overall reaction is highly exothermic (∆H
= –36 kcal/mol) and spin-conserving (both reactants and products are high-spin with S = 5/2,
i. e., sextet multiplicity) only one in 100-1000 collisions is reactive under the conditions of
mass-spectrometric measurements. This contrasts with the general finding that FeO+ effi-
ciently reacts with alkanes, alkenes, and aromatic systems. (b) A very low kinetic isotope
effect (kH/kD ≈ 1-1.5) and (c) an inverse temperature dependence, i. e., an even lower reac-
tivity at elevated temperatures has been found for the reaction. While finding (a) is in line
with the assumption of a high barrier in the course of the reaction, the latter two findings do
not readily agree with a central barrier. Experimental work alone has not been able to
resolve these apparent contradictions and a combination of density functional theory and
multireference post-HF calculations has been used to unravel the intrinsic mechanistic de-
tails of this reaction, first by Fiedler et al., 1994, and subsequently by Filatov and Shaik,
1998b, and Irigoras, Fowler, and Ugalde, 1999.

The first step in computational studies like this should always be to calibrate the chosen
density functional methods against the known energetic properties of related systems in
order to define the level of accuracy that can be expected. Our first interest lies in the high-
spin/low-spin state energy differences, as the formation and cleavage of covalent bonds to
the transition-metal always involves electron population changes among the respective d
and s orbitals. We begin by comparing computed and experimentally determined energies
to excite the Fe+ ion from its 6D(d6s1) ground state into the first excited 4F (d7) state. From
the data in Table 13-9 we see already significant deviations (up to half an eV) from the
experimental value for all density functionals, all erroneously predicting a quartet ground
state of Fe+. Part of this error is due to the neglect of differential relativistic effects, but the
well-known preference of density functional methods for dn over dn–1s1 configurations (re-
call the discussion in Section 9.2) contributes as well and inflicts a substantial error on the
Fe+ + H2O exit channel. Of the density functional methods tested, the B3LYP functional
performs best, followed by BP86 and FT97. There have been two studies with the B3LYP

66 For a presentation of the field and experimental references the reader is referred to the review of Schröder and
Schwarz, 1995.
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functional employing different basis sets, due to Wachters (for Fe)/Dunning (for H, O) and
Ahlrichs (for Fe)/Pople (for H, O), respectively. Both sets, which we will abbreviate as WD
and AP, respectively, are of approximately polarized triple-zeta quality. The deviations be-
tween the corresponding results give a feeling for the errors inherent in the choice of the
basis set. For the atomic excitation energy the basis set effect amounts to 2 kcal/mol, with
the Wachters basis set performing better.

Very similar deviations from the CCSD(T) benchmark data67 are seen for the computed
spin-state splittings in the [Fe(H2O)]+ complex. Apparently, the error in the atomic state
splitting also affects that of the complex. The basis set effect amounts to 3.5 kcal/mol with
the WD basis set combination again performing better. The computed high-spin/low-spin
state splittings for the FeO+ molecule reported in Table 13-9 compare fairly well with the
CCSD(T) data, with B3LYP exhibiting the largest deviation. If compared to the CASPT2
results the differences are larger and show a preference of the density functionals to favor
low-spin states. Note also that the CCSD(T) and CASPT2 calculations differ by 6.6 kcal/
mol from each other. The rather complicated electronic structure of FeO+ is probably best
described at the multireference CASPT2 level of theory, but due to the lack of more precise
data a final recommendation as to which of these approaches is to be preferred cannot be
given. At least we find that all levels consistently predict a high-spin 6Σ+ ground state for
FeO+ while the uncertainty of the DFT results is as high as some 10 kcal/mol.

The binding energies of FeO+ and the [Fe(H2O)]+ complex are known experimentally
and are compared to the corresponding computed results in the first two entries in Table
13-10. In both cases the BP86 functional exhibits a dramatic overbinding of about 20 kcal/
mol. Oddly, the FT97 GGA functional shows an equally large deviation for the strongly
bound oxide, whereas it perfectly reproduces the experimental value for the water-iron
binding energy. The B3LYP functional provides an excellent description of the FeO+ bind-
ing energy and modestly overestimates that of the weakly bound [Fe(H2O)]+ species by

Table 13-9. High-spin/low-spin excitation energies ∆E [kcal/mol] for Fe+
 (

6D→4F), [Fe(H2O)]+ (6A1→
4B2), and

FeO+ (6Σ+→4Φ).

Species B3LYPa BP86a FT97a B3LYPb CCSD(T)b CASPT2c Exp.

∆E (Fe+) –2.4 –4.3   –6.5 –4.2   5.4 5.9
∆E ([Fe(H2O)]+) –5.4 –8.2 –11.2 –8.9   2.7
∆E (FeO+)   8.0 12.7   15.5   7.3 12.5 19.1

a Wachters basis for Fe, Dunning TZ2P basis for H and O, Filatov and Shaik, 1998b; b modified Ahlrichs TZVP
basis for Fe, Pople 6-311++G(2df,2p) for H and O, Irigoras, Fowler, and Ugalde, 1999; c ANO [8s7p6d4f2g]
basis for Fe, [3s2p1d] and [5s4p3d2f] for H and O, respectively, Fiedler et al., 1994.

67 All CCSD(T) data reported in the following have been obtained using B3LYP geometries and the CASPT2
calculations are based on BP86 structures. This exemplifies another important use of density functional theory
in the field: as detailed in Chapter 8, modern functionals usually yield reliable geometries. Thus, performing
energy calculations with correlated, computationally expensive conventional ab initio methods on top of DFT
optimized geometries represents an economic yet accurate strategy.
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about 4 and 2 kcal/mol with the WD and AP basis sets, respectively. As a final check of the
computational methods, we compare the energetics of three reactions for which experi-
mental data is available. The thermochemistry of FeO+ + H2 → Fe+ + H2O is described very
well at the B3LYP level, the WD basis set combination leading to an overestimation, the
AP combination to an underestimation of the exothermicity of this reaction, both values
lying only slightly outside the experimental uncertainty. FT97 significantly underestimates
the reference value and this is even more pronounced with BP86. Similar findings apply to
the thermochemical description of the hydrogen abstraction from H2O by Fe+ to give FeOH+

and a hydrogen radical, although the errors for the two GGA functionals are less severe. A
remarkable difference of 6.8 kcal/mol is observed between the B3LYP results obtained
with the WD and the AP basis set combinations. The former is in excellent agreement with
the CCSD(T) data, while both B3LYP energies are slightly outside the experimental error
range, but on opposite sides. The final entry in Table 13-10 also shows a critical deviation
between the B3LYP results and experiment: the hybrid functional underestimates the
endothermicity of this reaction by 12.4 kcal/mol while the CCSD(T) result underestimates
it by 3.9 kcal/mol.

From these few observations we can already conclude that the most consistent density
functional description of the energetics is provided by the B3LYP hybrid with errors of the
order of 5 kcal/mol for binding energies and errors about twice as large for the high-spin/
low-spin excitation energies. Weakly bound metal complexes are more problematic to de-
scribe than strongly bound species, a problem which is quite commonly found for this
functional. The use of two different basis sets has revealed that an additional uncertainty of
2 to 3 kcal/mol is present in particular for computed binding energies, but deviations can in
fact be as large as 7 kcal/mol. The overall accuracy of the B3LYP functional derived from
these benchmark studies is hence in the order of ±5 kcal/mol. Let us stress this particular
point in other words: errors as large as half an eV or some 10 kcal/mol can occur for the
relative energetics of species involved in the reaction as summarized in Table 13-10. The
FT97 and BP86 functionals show much larger errors and they probably can not be recom-
mended for this kind of application.

Table 13-10. Computed binding energies of FeO+ and [Fe(H2O)]+ (D0 with respect to atomic and molecular
sextet states) and overall reaction energies for three examples [kcal/mol].

B3LYPa BP86a FT97a B3LYPb CCSD(T)b Exp.c

FeO+   80.5d 108.4d  108.0d − −  81.4 ± 1.4
[Fe(H2O)]+   34.9  50.1   30.7   32.5   30.6  30.7 ± 1.2
FeO+ (6Σ+) + H2  →  Fe+(6D) + H2O   38.5   3.8     7.7   33.2   37.2  36.0 ± 1.4
Fe+(6D) + H2O    →  FeOH+(5A’) + H –33.0 –9.8 –21.5 –26.2 –33.1 –30.4 ± 2.8
Fe+(6D) + H2O    →  FeH (5∆) + OH − − − –56.7 –65.3 –69.2 ± 1.4

a Wachters basis for Fe, Dunning TZ2P basis for H and O, Filatov and Shaik, 1998b; b modified Ahlrichs TZVP
basis for Fe, Pople 6-311++G(2df,2p) for H and O, Irigoras, Fowler, and Ugalde, 1999; c experimental references
reported in Irigoras, Fowler, and Ugalde, 1999; d De values.
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Let us now turn to the description of the reaction pathways. Figure 13-5 schematically
depicts the shapes of the corresponding potential energy curves for the sextet and quartet
spin-states and Table 13-11 contains the thermochemical information obtained at different
levels of theory.
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Figure 13-5. Energy profile for the gas-phase reaction H2 + FeO+ → Fe + H2O.

Table 13-11. Computed energies [kcal/mol] of stationary points for the activation of H2 by FeO+ (D0 relative to
separated FeO+ (6Σ+) + H2).

B3LYPa BP86a FT97a B3LYPb CCSD(T)b CASPT2c

FeO+(4Φ) + H2    8  13   16    7   13 19
61 –15 –16  –12 –13 –12  –5
41   –7 –16  –12   –6    0   3
6TS1    8    9   12  10  13  19
4TS1    1    0   –1    1    8   6
62 –38  –33 –26 –34 –31 –14
42 –41  –41 –34 –38 –30 –25
6TS2 –13   –7   4 –11   –7
4TS2 –34  –31  –21 –30 –22
63 –73 –54 –38 –66 –70 –67
43 –79 –62 –50 –75 –67
Fe+(6D) + H2O –39  –4   –8 –33 –37 –36
Fe+(4D) + H2O –41  –8 –14 –37 –32

a Wachters basis for Fe, Dunning TZ2P basis for H and O, Filatov and Shaik, 1998b; b modified Ahlrichs TZVP
basis for Fe, Pople 6-311++G(2df,2p) for H and O, B3LYP geometries, Irigoras, Fowler, and Ugalde, 1999;
c ANO [8s7p6d4f2g] basis for Fe, [3s2p1d] and [5s4p3d2f] for H and O, respectively, BP86 geometries, Fiedler
et al., 1994.

13.4  Fourth Example: H2 Activation by FeO+ in the Gas-Phase
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The reaction starts on the high-spin surface by forming a planar ion-molecule encounter
complex [(H2)FeO]+, 61, from the separated reactants (the superscript indicates the multi-
plicity). According to the CASPT2 results the relative energy of this complex is merely
5 kcal/mol below the entrance channel, whereas the CCSD(T) calculations suggest a
stabilization energy of 12 kcal/mol. The density functional methods compute relative en-
ergies for this complex between –12 to –16 kcal/mol, in much better agreement with the
CCSD(T) than with the CASPT2 value. The corresponding complex 41 on the low-spin
surface is found to be less stable than its sextet counterpart by 8 kcal/mol (CASPT2) and
12 kcal/mol (CCSD(T)), both values are satisfactorily reproduced by the B3LYP func-
tional. The FT97 and BP86 functionals both describe the high-spin and the low-spin spe-
cies as equally stable. Following the formation of this complex, the reaction proceeds on
the sextet potential energy surface through an energetically rather high-lying multicentered
H2-insertion transition state 6TS1, which is found to be 19 kcal/mol above the sextet en-
trance channel at the CASPT2 level of theory. The relative energy of this structure is com-
puted to be much lower at all other levels, with B3LYP using the WD basis set giving the
lowest estimate of 8 kcal/mol. While the discrepancy for the computed absolute barrier
height is rather large between CASPT2 and all other methods, we can see a highly consist-
ent description among all methods if we look at the barrier computed with respect to the
relative energy of the encounter complex, 61: now all methods agree to within 1 kcal/mol
with the CASPT2 value of 24 kcal/mol. As we have already outlined earlier in this chapter,
it is apparent that a balanced description of fragmentation (or, in this case, association)
processes is particularly demanding for density functional methods. It is clear from the
results in Table 13-11 that this holds true also for post-HF methods, albeit to a lesser
extent. Proceeding further on the sextet surface, this transition state collapses into the
intermediate HFeOH+, 62, with a relative energy of –14 kcal/mol (CASPT2) or –31 kcal/
mol (CCSD(T)). Note the large discrepancy between the two post-HF results. The B3LYP
and BP86 energies agree much better with the CCSD(T) result, and only the FT97 func-
tional assigns a substantially higher energy to this complex. A second transition state along
the reaction coordinate, 6TS2, is placed 7 kcal/mol below the separated reactants at the
CCSD(T) level and connects 62 with the cationic iron water product complex. This second
transition structure is much lower in energy than 6TS1. Actually, all computed results
agree on that: irrespective of the basis set used, both B3LYP calculations give a lower
barrier, whereas the BP86 results agree with the reference value perfectly. Only the FT97
functional gives a relative barrier 4 kcal/mol above the entrance channel. Seen from an-
other angle, the B3LYP calculations place 6TS2 21 kcal/mol below 6TS1, in excellent
agreement with a CCSD(T) difference of −20 kcal/mol. The two GGA functionals give
significantly smaller energy differences of 16 (BP86) and 8 kcal/mol (FT97). A very con-
sistent picture also emerges if we look at the barrier 6TS2 relative to 62: all methods agree
with the CCSD(T) value of 24 kcal/mol within 2 kcal/mol except for FT97, which gives a
larger barrier of 30 kcal/mol.

Following the transition state 6TS2 downhill, we end up with the cationic iron water
complex 63, which is found –70 or –67 kcal/mol more stable than the reactants at the
CCSD(T) or CASPT2 levels, respectively. The B3LYP numbers are similar, yielding –73
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(WD) and –66 (AP) kcal/mol. The BP86 and FT97 functionals err significantly by about
30 kcal/mol.

If we step back into the region of the initial hydrogen activation and consider the energy
of the corresponding transition structure with a quartet multiplicity, 4TS1, a much lower
barrier than on the high-spin surface results (6 kcal/mol for CASPT2 or 8 kcal/mol for
CCSD(T)). All density functional methods give an even lower value of around ±1 kcal/
mol. The subsequent minimum 42 is at all levels of theory more stable than 62 except for
CCSD(T) which favors the latter by 1 kcal/mol. Given the large deviations between the
CASPT2 and CCSD(T) energies in this region of the potential surface none of the methods
applied is able to provide a conclusive answer as to the favored spin-state. The quartet
transition structure 4TS2 is, however, definitely more stable than the corresponding sextet
structure 6TS2. While CCSD(T) favors the low-spin transition state by 15 kcal/mol, the
two B3LYP calculations do so by 21 and 19 kcal/mol, respectively and BP86 (24 kcal/mol)
and FT97 (25 kcal/mol) emphasize the quartet stability even more. 4TS2 is also well below
the relative energy of 4TS1 as is quite consistently shown by the B3LYP, BP86 and CCSD(T)
results, which give an energy difference between these species of −35 to −30 kcal/mol; use
of the FT97 functional results in a smaller difference of –22 kcal/mol. The subsequently
formed cationic iron complex with water is found to be more stable as a quartet by all
density functionals, whereas CCSD(T) favors the sextet, and the same trends are observed
for the exit channel Fe+ + H2O. The preference for low-spin states of density functionals is
obvious and has been identified above as a consequence of shortcomings in the description
of the atomic splittings.

With respect to the reaction mechanism the following conclusions emerge: the highest
energy barrier along the reaction coordinate is that of the initial H2 activation 6TS1; all
other barriers are lower in energy by an amount which is most probably outside the error
range of the B3LYP hybrid functional and the post-HF calculations. The presence of a high
lying transition structure for the initial activation of the H2 molecule could readily explain
the experimental observation of an exothermic, but highly inefficient reaction. However, a
barrier height of +19 kcal/mol computed at the CASPT2 level and also the +13 to +8 kcal/
mol obtained with the other methods, should in fact prevent the reaction from taking place
at all under thermal conditions.68 The finding of a much lower barrier on the quartet sur-
face, however, provides a more favorable pathway. In particular the occurrence of a barrier
very close to the energy of the entrance channel, as computed by the density functional
approaches, provides an appealing possibility to interpret the experimental observation of a
very inefficient reaction. In order for the reaction to proceed through quartet spin states, a
crossover from high-spin to low-spin, mediated by spin-orbit coupling has to take place.
This junction region where the sextet and quartet potential surfaces cross is located be-
tween the encounter complex and the transition state – marked as SI (spin inversion) in
Figure 13-5. Even though the crossing point is probably below the energy of the quartet

68 A detailed elucidation of the electronic structure of the species involved in the course of the reaction is well
beyond the aim of this section so we rather refer the reader to the presentations by Fiedler et al., 1994 and
Filatov and Shaik, 1998b.

13.4  Fourth Example: H2 Activation by FeO+ in the Gas-Phase
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transition state 4TS1 and thus most likely below the energy of the entrance channel, a rather
low crossing probability has been identified by Danovich and Shaik, 1997, providing an
explanation for the low reactivity. Experimentally we know that a second crossing between
high-spin and low-spin surfaces has to occur, for the sextet exit channel is unambiguously
lower in energy than the quartet asymptote. Indeed, the CCSD(T) calculations are in accord
with this reasoning, with the crossing taking place between 4TS2 and 63: while 4TS2 is
between 15 and 25 kcal/mol more stable than 6TS2, the high-spin product complex 63 is
more stable by 3 kcal/mol than its quartet counterpart. All density functionals, on the other
hand, artificially favor the low spin complex 43 as well as the quartet exit channel and are
evidently unable to provide a fully satisfying answer. The erroneous stabilization of the
low-spin state in the DFT regime has been frequently noted. However, if we simply correct
the sextet/quartet gap of the exit channel by the atomic error, all functionals (except for the
FT97 functional) prefer the sextet by about 2 kcal/mol, close to the CCSD(T) result. The
conclusions for the multiplicity of transition state TS2 would remain unaltered, and we
obtain the same qualitative picture at the density functional level as deduced from the
CCSD(T) calculations with respect to the second surface-crossing region. While these as-
sumptions seem very reasonable, the accuracy of the applied theoretical models is simply
not good enough for unambiguous conclusions. In summary, theoretical findings provide
quite unexpected, but important insights into the origin of the experimental observations:
the apparent spin conservation for the overall reaction originates in a double crossing of the
high-spin and low-spin surfaces along the reaction coordinate. The evolving mechanism,
which has been coined ‘two-state reactivity’, provides an appealing way of interpreting
experimental findings for a wide range of transition-metal mediated reactions (see, e. g.,
Shaik et al, 1995 and 1998).

So much for this interesting chemistry. But what can we deduce for the applicability of
density functional theory to such complicated and multifaceted electronic problems? Strictly
speaking, we are forced to conclude from the presentation of results above, that a consistent
description of energy differences below 5 kcal/mol is out of reach for present day density
functional theory and even errors of 10 kcal/mol are not uncommon (see, e. g., Brönstrup et
al., 2001). Part of this uncertainty is also due to the rather larger basis set effects. The
results obtained with the WD and the AP bases are in some instances quite different and it
is not generally clear which one is to be preferred. This underlines the need to develop basis
sets particularly designed for use in connection with density functional methods in general
(see, e. g., Porezag and Pederson, 1999) and hybrid functionals in particular. For the two
gradient-corrected functionals applied, we have seen much larger errors in relative energies
than those found for the B3LYP hybrid, which provided a much better overall agreement
with experimental or computational reference data. In addition, a much more satisfying
consistency of results is obtained with the hybrid functional if relative energies of similarly
bound species are considered – a finding that not only applies for transition-metal reac-
tions. The largest errors are usually connected to the fragments in the exit or entrance
channels; if the energies of the various stationary points within a reaction sequence are
considered, much smaller errors are obtained. However, we have also seen discrepancies as
large as 17 kcal/mol between advanced post-HF methods like CCSD(T) and CASPT2, which
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puts things into a different perspective: it is by no means clear if these methods really
perform better than the B3LYP functional. This brings us back to the recommendation
mentioned already above: the importance of benchmarking the performance of a particular
density functional method on a set of experimentally well established thermochemical facts
related to the reaction at hand. Only from a carefully performed calibration can we get
insight into the problems relevant to a new system under study. Experience with the appli-
cation of density functional theory on first and second-row transition-metal reactivity has
revealed that one has to be very careful interpreting hybrid density functional results on
energy differences below 10 kcal/mol. Errors can be large in some cases and perfectly
cancel out in others – of course, we never know unless we explicitly check with more
accurate data. However, in particular the application of the B3LYP hybrid functional has
provided valuable insights into mechanistic scenarios of transition-metal mediated reac-
tions, which by far exceed the insights from experimental means alone. If applied with
care, these techniques offer new avenues for the investigation of transition-metal chemistry
and reactivity. For representative further work related to the reactivity of bare transition-
metal ions, the reader is referred to Holthausen and Koch, 1996a and 1996b, Holthausen et
al., 1996 and 1997, Hertwig et al., 1997, Hoyau and Ohanessian, 1997, Abahkin, Burt, and
Russo, 1997, Wittborn et al., 1997, Westerberg and Blomberg, 1998, Blomberg et al., 1999,
Yoshizawa, Shiota, and Yamabe, 1998 and 1999, Luna et al., 1997, 1998a, and 1998b. For
related work on the reactivity of third-row transition-metal ions, see, e. g., Pavlov et al.,
1997, Hertwig and Koch, 1999, and Sändig and Koch, 1997 and 1998.

13.4  Fourth Example: H2 Activation by FeO+ in the Gas-Phase
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A
adiabatic approximation in TDDFT    64
adiabatic connection    67 ff, 82
adiabatic connection method (ACM)    see

functionals, hybrid
antisymmetrized product    9
antisymmetry principle    6
atomic units    4
atoms
– dissociation into    52 ff, 56 f, 87, 137 ff
– d-orbital densities    56
– energies    149 ff
– excitation energies of transition metal

atoms    154 ff
– lack of reference energies in DFT    150
– orbital occupation    149 ff
– reference for d-orbital occupation    151
– symmetry related degeneracies    55
atoms-in-molecules approach (AIM)    179
atomization energies    137 ff
– error statistics    147 f

B
basis functions    94 ff
basis sets    97 ff
– auxiliary    102, 110 ff
– cartesian functions    101
– contracted Gaussian functions (CGF)

98 ff
– correlation consistent    100
– Gaussian type orbitals (GTO)    98 ff
– online library    101
– optimized for DFT    101, 143, 262
– numerical    99
– plane waves    99
– polarization functions    100
– requirements    97, 104
– Slater-type orbitals (STO)    98 f
– spherical harmonic functions    100 f
– split-valence type    100

basis set superposition error (BSSE)    218 f
bond lengths    119 ff
– error statistics    123, 126, 128
– JGP set    120
– main group compounds    119 ff
– transition metal complexes    127 ff
Born-Oppenheimer approximation    5
bracket notation    7

C
carbenes    173 ff
closed-shell systems    13
charge density    97
chemical accuracy    66
computational bottleneck
– Coulomb term    102
– matrix diagonalization    115
– numerical quadrature    115
conditional probability    23
configuration interaction (CI)    18
constrained search approach    37
contracted basis set    98 ff
contracted Gaussian function (CGF)    98
conventional ab initio methods    18
– computational costs    18
core electrons    101
correlation    see electron correlation
correlation energy    14, 71 f, 77 f
– Hartree-Fock vs. DFT    48 f
correlation factor    23
Coulomb attenuated Schrödinger equation

approximation (CASE)    115
Coulomb correlation    22
Coulomb hole    25, 27 ff
Coulomb integral    11, 102
Coulomb operator    11
Coulomb term    102
– linear scaling methods    113 ff
counterpoise correction    219
coupled perturbed Hartree-Fock equations    199
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coupled cluster method (CC)    18
coupling strength integrated exchange-

correlation hole    68 f
coupling strength parameter λ    67
current density functionals    197 f
cusp condition    19 f, 66, 69, 74, 209
cycloaddition, [4+2]    244 ff

D
∆SCF method    59
degeneracy    55 ff
density functional theory/single excitation

configuration interaction method (DFT/
SCI)    63

density fitting    102 ff
density matrix    96
derivative discontinuity    88
Diels-Alder reaction    244 ff
dipole moments    180 ff
– basis set requirements    182
– definition    177
– error statistics    181
dispersion energy    236 f
divide-and-conquer method    115
downloadable basis set library    101
dynamical electron correlation    15, 78 ff

E
effective core potential    101
electrocyclic ring opening    241 ff
electron affinities    166 ff
– and approximate functionals    166 f
– error statistics    168
electron correlation    14
– dynamical    15, 78 ff
– left-right    17, 81
– non-dynamical    15, 50 ff, 79 ff, 174 ff,

205, 207
electron density    19 ff
– atomic    56, 149 ff
– approximate    102
– non-spherical atomic    149 ff
ensembles    55
error cancellation    67, 125, 129, 140, 143,

157, 184, 205, 208, 218 f, 223 f, 238, 244,
246, 252 ff

ESR hyperfine coupling constants    see
hyperfine coupling constants

ESR g-tensors    211

exchange-correlation energy    44, 48
– λ-dependence    81 ff
exchange-correlation hole    24, 69, 84
– coupling-strength integration    68
exchange-correlation potential    45 f, 88 f
– asymptotic behavior    50, 88 f
– grid-free techniques    110 ff
– numerical quadrature techniques    105 ff
exchange integral    11
exchange operator    12, 47, 94
excited states    59 ff
excitation energies    59 ff, 168 ff
– carbenes    173 ff
– transition metal atoms    156
external potential    5, 33 ff, 67
exact exchange    78 ff, 84, 125, 127, 208, 252 ff

F
fast multipole methods    113 ff
– continuous fast multipole method    114
– Gaussian very fast multipole method    114
– quantum chemical tree code    114
Fermi-correlation    22
Fermi hole    25 ff, 70
fitted electron density    102 ff
Fock operator    11
frequencies    see vibrational frequencies
functional
– asymptotically corrected    89
– B    77
– B1    82 f
– B3(H)    248
– B3LYP    82, 141
– B88    see B
– B95    90, 250
– B97    83, 90, 225 f
– B97-1    83
– B98    83
– CAM(A)-LYP and CAM(B)-LYP    77, 123,

126, 144
– definition    7
– dependent on non-interacting kinetic

energy density    90, 133, 145
– development    66 ff, 144 ff
– EDF1    91, 145, 148
– empirical    91
– FT97    77, 256 ff
– GGA    see generalized gradient approxi-

mation
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– gradient corrected    see generalized
gradient approximation

– HCTH    84, 182, 185 ff, 229 f
– HCTH(AC)    89, 170 ff, 185 ff
– half-and-half scheme    81
– hybrid    78 ff, 141
– LAP    90, 254
– LB94    89, 170, 184 f, 189 f
– LDA    see local density approximation
– local    see local density approximation
– LSD    see local spin-density approximation
– LG    77, 245
– LYP    78, 82
– mPW    85, 89, 123, 125 f, 204, 228 f, 249
– mPWPW91    see mPW
– mPW1PW91    see mPW
– mPW3PW91    see mPW
– non-local    78, and see generalized gradient

approximation
– physical constraints    66
– P    77
– P86    77 f
– PBE    77, 84, 171 ff, 229 f, 249
– PBE0    see PBE1PBE
– PBE1PBE    84, 171 ff, 229 f, 249
– PW91    77 f, 81 f
– S    71
– VSXC    90, 133, 145
– VWN    72
– VWN5    72, 164

G
G2    66
– extended set    146
– JGP subset    120
– method    138
– use of DFT geometries    125
– thermochemical database    66
gauge problem in calculation of magnetic

properties    200
Gaussian-type-orbitals (GTO)    98
generalized gradient approximation (GGA)

75 ff
– meta GGA    90
gauge-invariant/including atomic orbital

scheme (GIAO) for calculating magnetic
properties    200 f

gradient corrections    75 ff
– second order    90

– Laplacian    90
gradient expansion approximation (GEA)

75
grid
– pruning    107 f
– rotational invariance    108 f
– techniques    105 ff
grid-free Kohn-Sham scheme    110 ff

H
H2 molecule
– activation by FeO+    255 ff
– asymptotic wave function    16
– exact Kohn-Sham potential    51
– exchange-correlation hole functions    27
– potential curves    15, 54
– reaction with H radical    87, 252 ff
– unrestricted vs. restricted description    52 f

+
2H  dissociation    84, 87

Hamilton operator    3
harmonic frequencies    see vibrational

frequncies
Hartree-Fock
– approximation    8 ff
– energy    10
– equations    11
– potential    11
– restricted (RHF)    13 f
– restricted open-shell (ROHF)    14
– unrestricted (UHF)    13 f
Hartree-Fock-Slater method    32
Hohenberg-Kohn
– functional    35
– theorems    33 ff
hole functions    19, 69
homogeneous electron gas    see uniform

electron gas
hydrogen abstraction reactions    87
hydrogen bond    217 ff
– basis set superposition error    218
– classification    220
– frequency shifts    219 f
– weakly bound species    235 f
hyperfine coupling constants    212 ff
– basis set requirements    212
– definition    212
hyperpolarizabilities    188 ff
– definition    178
– error statistics    190
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I
individual gauges for localized orbitals (IGLO)

scheme for calculating magnetic properties
200 f

infrared intensities    191 ff
– definition    191
– double-harmonic-approximation    191
– error statistics    193
ionization energies    163 ff
– lowest    88 f
– error statistics    165 f

K
kinetic energy    30 ff, 41 ff
Koopmans’ theorem    13, 50
Kohn-Sham
– approach    41 ff
– equations    43 ff, 93 ff
– linear scaling techniques    113 ff
– LCAO ansatz    93 ff
– matrix    95 ff, 110
– operator    43
– orbital energies    50
– orbitals    43, 49, 88 f, 93 ff
– potential    47
– spin-restricted open-shell method (ROKS)

62
– time-dependent ansatz    63 f, 169 ff
– unrestricted formalism (UKS)    52
KWIK approximation    115

L
LCAO ansatz    93 ff
LDA    see local density approximation
left-right correlation    17, 81
Levy constrained search formulation    38
linear scaling techniques    113 ff
local density approximation (LDA)    70 ff
local inhomogeneity parameter    76 f
local operator    12
local potential    12, 47
local spin-density approximation (LSD)    72
London forces    see dispersion energy
LSD    see local spin-density approximation

M
magnetic properties    197 ff
molecular structures    119 ff
– error statistics    123, 126, 128

– JGP set    120
– main group compounds    119 ff
– transition metal complexes    127 ff
Møller-Plesset perturbation theory    18
MP2    see Møller-Plesset perturbation theory
multiplet problem    59 ff

N
non-dynamical electron correlation    15, 50 ff,

79 ff, 174 ff
non-interacting ensemble-VS representable

51, 57 f
non-interacting kinetic energy    44
non-interacting pure-state-VS representable    51
non-interacting reference system    13, 41 ff
non-local functionals    78, and see generalized

gradient approximation
non-local operator    12
non-local potential    12, 47
nuclear magnetic resonance (NMR)    201 ff
– basis set requirements    205
– chemical shifts    201 ff
– error statistics    203 ff, 207
– relativistic effects    206 ff
– spin-spin coupling constants    209 ff
nucleophilic substitution reaction    247 ff
numerical integration    103, 105 ff
numerical quadrature techniques    105 ff, 108
N-representability    37

O
one-electron operator    11, 93
one-electron functions    9
on-top hole    70
online basis set library    101
open-shell systems    14
orbital
– complex representation    56 f, 149 f
– energy    11, 13
– expansion by basis sets    93 ff
– Gaussian-type (GTO)    98
– Slater-type (STO)    98
overlap matrix    95
ozone
– vibrational frequencies    85
– NMR chemical shifts    205

P
pair density    20 ff
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Pauli’s exclusion principle    6
pericyclic reactions    240 ff
plane waves    99
Poisson’s equation    104
polarizabilities    183 ff
– basis set requirements    184
– definition    178
– error statistics    186 f
– frequency dependent    63
population analysis    178 ff
proton transfer    249 ff
pseudopotential    101

Q
quadratic CI (QCI)    18
quasirelativistic methods    see relativistic

effects

R
Raman intensities    192 ff
– error statistics    194
– frequency dependence    195
reaction pathways
– cycloaddition of ethylene to butadiene

244 ff
– electrocyclic ring opening of cyclobutene

241 ff
– gas phase activation of H2 by FeO+    255 ff
– proton transfer in malonaldehyde    249 ff
– SN2 reaction    247
reduced density gradient    76
reduced density matrix    21
relativistic effects    101, 128 f, 154 f, 206 f,

211, 256
resolution of the identity    103, 111 f
restricted open-shell singlet (ROSS) method

62
rotational invariance    108 f
ROHF    see Hartree-Fock, restricted open-

shell method
ROKS    see spin-restricted open-shell Kohn-

Sham method
ROSS    see restricted open-shell singlet

method
Rydberg states    64, 170 ff, 189

S
Schrödinger equation    3

self-interaction    12, 25, 85 ff, 253 f
self-interaction correction (SIC)    87, 249 f
self-consistent field    12
singlet/triplet gap for methylene    173 ff
– error statistics    175
size-consistency    56
Slater determinant    9
Slater exchange    71
Slater-type-orbitals (STO)    98
SN2    see nucleophilic substitution reaction
spatial orbital    9
spin contamination    53 f
spin-density functionals    52
spin function    9
spin orbital    9
spin polarization    72 f, 150 f
spin projection and annihilation techniques

54
spin-restricted open-shell Kohn-Sham (ROKS)

method    62
stability of Slater determinant    242
sum method    60 ff
sum-over-states density functional perturbation

theory (SOS-DFPT)    201
symmetry
– breaking    53 ff, 150 f, 243
– dilemma    57

T
TDDFT    see time-dependent DFT
Thermochemistry    137 ff
Thomas-Fermi model    30, 42
Thomas-Fermi-Dirac model    32
time-dependent DFT    63 f, 169 ff
transition metals
– atomic energies    149 ff
– binding energies    159 ff
– H2 bond activation    255 ff
– bond strengths    157 ff
– excitation energies    154 ff
– literature pointers for theoretical studies

255, 263
– molecular structures    127 ff
– reference for d-orbital occupation    151
– s/d-hybridization    158
– state splitting    149 ff
transition metal complexes
– bond strengths    157 ff
– molecular structures    127 ff
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– reactivity    255
– vibrational frequencies    135 ff
two-state reactivity    262

U
UHF    see Hartree-Fock, unrestricted formal-

ism
UKS    see Kohn-Sham, unrestricted formalism
uncoupled density functional theory (UDFT)

197
uniform electron gas    30 ff, 70 ff
– parameterization    see local density

approximation

V
van der Waals complexes    236 ff
variational principle    6, 36, 40
Vext-representability    37
vibrational frequencies    130 ff
– error due to grid    108 f
– error statistics    134
– main group compounds    131 ff
– ozone    85

– scaling factors    133 ff
– transition metal complexes    135 f

W
water
– clusters    230 ff
– computed properties    225
– dimer    221 ff
– electron density    20
wave function    4
– approximate construction    97
– in density functional theory    39, 49 f
– single-determinantal    60 ff
– spin contamination    17, 53 f
– stability    242
– symmetry breaking    56 ff
weak molecular interactions    236 ff
weight functions    106 f
– derivatives    109
Wigner-Seitz radius    32

X
Xα method    32




