VALENCE BOND METHODS
Theory and applications

Valence bond theory is one of two commonly used methods in molecular quantum
mechanics, the other is molecular orbital theory. This book focuses on the first of
these methodsb initio valence bond theory.

The book is split into two parts. Part | gives simple examples of two-electron
calculations and the necessary theory to extend these to larger systems. Part Il gives
a series of case studies of related molecule sets designed to show the nature of the
valence bond description of molecular structure. It also highlights the stability of this
description to varying basis sets. There are references to the CRUNCH computer
program for molecular structure calculations, which is currently available in the
public domain. Throughout the book there are suggestions for further study using
CRUNCH to supplement discussions and questions raised in the text.

The book will be of primary interest to researchers and students working on
molecular electronic theory and computation in chemistry and chemical physics.

GORDON A. GALLUP was born (9 March 1927) and raised in St Louis, Missouri
and attended the public schools there. After High School and a short stintin the US
Navy, he attended Washington University (St Louis) and graduated with an AB in
1950. He received the PhD degree from the University of Kansas in 1953 and spent
two years at Purdue University carrying out post-doctoral research. In 1955 he was
appointed to the faculty of chemistry at the University of Nebraska and rose through
the ranks, becoming full professor in 1964. He spent a year at the Quantum Theory
Project at the University of Florida, and a year in England at the University of
Bristol on an SERC fellowship. In 1993 he retired from teaching and since then has
spent time as a research professor with the Department of Physics and Astronomy
at the University of Nebraska. His research interests over the years include infrared
spectroscopy and molecule vibrations, theory of molecular electronic structure,
valence bond theory, electron scattering from atoms and molecules, and dissociative
electron attachment. During his career he has held grants from the National Science
Foundation, the Department of Energy, and others. He has had over 100 articles
published in 10-15 different chemistry and physics journals, as well as articles in
edited compendia and review books.



VALENCE BOND METHODS

Theory and applications

GORDON A. GALLUP

University of Nebraska

CAMBRIDGE

&l/) UNIVERSITY PRESS

@
iy




PUBLISHED BY CAMBRIDGE UNIVERSITY PRESS (VIRTUAL PUBLISHING)
FOR AND ON BEHALF OF THE PRESS SYNDICATE OF THE UNIVERSITY OF
CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge CB2 IRP

40 West 20th Street, New York, NY 10011-4211, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

http:/ /www.cambridge.org

© Gordon A. Gallup 2002
This edition © Gordon A. Gallup 2003

First published in printed format 2002

A catalogue record for the original printed book is available
from the British Library and from the Library of Congress
Original ISBN 0 521 80392 6 hardback

ISBN 0 511 02037 6 virtual (netLibrary Edition)



|
1

Contents

Preface
List of abbreviations

Theory and two-electron systems
Introduction
1.1 History
1.2 Mathematical background
1.2.1 Schrodinger’s equation
1.3 The variation theorem
1.3.1 General variation functions
1.3.2 Linear variation functions
1.3.3 A 2x 2 generalized eigenvalue problem
1.4 Weights of nonorthogonal functions
1.4.1 Weights without orthogonalization
1.4.2 Weights requiring orthogonalization
H, and localized orbitals
2.1 The separation of spin and space variables
2.1.1 The spin functions
2.1.2 The spatial functions
2.2 The AO approximation
2.3 Accuracy of the Heitler—London function
2.4 Extensions to the simple Heitler—London treatment
2.5 Why is the H molecule stable?
2.5.1 Electrostatic interactions
2.5.2 Kinetic energy effects
2.6 Electron correlation
2.7 Gaussian AO bases
2.8 A full MCVB calculation

Vii

pagexiii
XV

© © O ok~ oww

14
16
18
19
23
23
23
24
24
27
27
31
32
36
38
38
38



viii

3

Contents

2.8.1 Two different AO bases
2.8.2  Effect of eliminating various structures
2.8.3  Accuracy of full MCVB calculation with 10 AOs
2.8.4  Accuracy of full MCVB calculation with 28 AOs
2.8.5 EGSO weights for 10 and 28 AO orthogonalized bases
H, and delocalized orbitals
3.1 Orthogonalized AOs
3.2 Optimal delocalized orbitals
3.2.1 The method of Coulson and Fisher[15]
3.2.2 Complementary orbitals
3.2.3 Unsymmetric orbitals
Three electrons in doublet states
4.1 Spin eigenfunctions
4.2 Requirements of spatial functions
4.3 Orbital approximation
Advanced methods for larger molecules
5.1 Permutations
5.2 Group algebras
5.3 Some general results for finite groups
5.3.1 Irreducible matrix representations
5.3.2 Bases for group algebras
5.4 Algebras of symmetric groups
5.4.1 The unitarity of permutations
5.4.2 Partitions
5.4.3 Young tableaux anf’ and’P operators
5.4.4 Standard tableaux
5.4.5 The linear independence®fP; andP, NV
5.4.6 Von Neumann's theorem
5.4.7 Two Hermitian idempotents of the group algebra
5.4.8 A matrix basis for group algebras of symmetric groups
5.4.9 Sandwich representations
5.4.10 Group algebraic representation of the antisymmetrizer
5.5 Antisymmetric eigenfunctions of the spin
5.5.1 Two simple eigenfunctions of the spin
5.5.2 TheE function
5.5.3 Theindependent functions from an orbital product
5.5.4  Two simple sorts of VB functions

5.5.5 Transformations between standard tableaux and HLSP

functions
5.5.6 Representing N'PN E as a functional determinant

40
42
44
44
45
47
47
49
49
49
51
53
53
55
58
63
64
66
68
68
69
70
70
70
71
72
75
76
76
77
79
80
81
81
84
85
87

88
91



10

11

Contents

Spatial symmetry
6.1 The AO basis
6.2 Bases for spatial group algebras
6.3 Constellations and configurations
6.3.1 Example 1. 5D
6.3.2 Example 2. Nkl
6.3.3 Example 3. The system of benzene
Varieties of VB treatments
7.1 Local orbitals
7.2 Nonlocal orbitals
The physics of ionic structures
8.1 Asilly two-electron example
8.2 lonic structures and the electric moment of LiH
8.3 Covalent and ionic curve crossings in LiF

Examples and interpretations
Selection of structures and arrangement of bases
9.1 The AO bases
9.2  Structure selection
9.2.1 N and an STO3G basis
9.2.2 N and a 6-31G basis
9.2.3 N and a 6-31Gbasis
9.3 Planar aromatic and systems
Four simple three-electron systems
10.1 The allyl radical
10.1.1 MCVB treatment
10.1.2 Example of transformation to HLSP functions
10.1.3 SCVB treatment with corresponding orbitals
10.2 The Hg ion
10.2.1 MCVB calculation
10.2.2 SCVB with corresponding orbitals
10.3 The valence orbitals of the BeH molecule
10.3.1 Full MCVB treatment
10.3.2 An SCVB treatment
10.4 The Liatom
10.4.1 SCVB treatment
10.4.2 MCVB treatment
Second row homonuclear diatomics
11.1 Atomic properties
11.2 Arrangement of bases and quantitative results

97

98

98

99
100
102
105
107
107
108
111
111
113
115

121
121
123
123
123
124
124
125
125
126
129
132
134
134
135
136
137
139
141
142
144
145
145
146



11.3

11.4

Contents

Qualitative discussion
11.31 B

11.32 G

11.33 N

11.34 Q

11.35 K

General conclusions

12 Second row heteronuclear diatomics

12.1

12.2
12.3

An STO3G AO basis

1211 N

12.1.2 CO

12.1.3 BF

12.1.4 BeNe

Quantitative results from a 6-318asis
Dipole moments of CO, BF, and BeNe
12.3.1 Results for 6-31(hasis

12.3.2 Difficulties with the STO3G basis

13 Methane, ethane and hybridization

13.1

13.2
13.3

CH, CH, CHs, and CH
13.1.1 STO3G basis
13.1.2 6-31Gbasis
Ethane

Conclusions

14 Rings of hydrogen atoms

14.1
14.2

Basis set
Energy surfaces

15 Aromatic compounds

15.1

15.2

15.3
15.4

STO3G calculation

15.1.1 SCVB treatment of system

15.1.2 Comparison with linear 1,3,5-hexatriene
The 6-31Gbasis

15.2.1 Comparison with cyclobutadiene

The resonance energy of benzene

Naphthalene with an STO3G basis

15.4.1 MCVB treatment

15.4.2 The MOCI treatment

15.4.3 Conclusions

16 Interaction of molecular fragments

16.1

Methylene, ethylene, and cyclopropane
16.1.1 The methylene biradical

148
149
152
154
157
160
161
162
162
164
166
168
171
173
174
174
175
177
177
177
186
187
189
191
192
192
197
198
200
203
205
208
208
211
211
212
213
214
214
215



16.2

Contents

16.1.2 Ethylene

16.1.3 Cyclopropane with a 6-31®asis
16.1.4 Cyclopropane with an STO-3G basis
Formaldehyde, ¥£O

16.2.1 The least motion path

16.2.2 The true saddle point

16.2.3 Wave functions during separation

References

Index

Xi

215
218
224
225
226
227
228

231
235



Preface

One senses that it is out of style these days to write a book in the sciences all on
one’s own. Most works coming out today are edited compilations of others’ articles
collected into chapter-like organization. Perhaps one reason for this is the sheer size
of the scientific literature, and the resulting feelings of incompetence engendered,
although less honorable reasons are conceivable. Nevertheless, | have attempted
this task and submit this book on various aspects of what is caltléwitio valence

bond theory. In it | hope to have made a presentation that is useful for bringing
the beginner along as well as presenting material of interest to one who is already
a specialist. | have taught quantum mechanics to many students in my career and
have come to the conclusion that the beginner frequently confuses the intricacies
of mathematical arguments with subtlety. In this book | have not attempted to shy
away from intricate presentations, but have worked at removing, insofar as possible,
the more subtle ones. One of the ways of doing this is to give good descriptions of
simple problems that can show the motivations we have for proceeding as we do
with more demanding problems.

This is a book on one sort of model or trial wave function that can be used for
molecular calculations of chemical or physical interest. Itis in no way a book on the
foundations of quantum mechanics — there are many that can be recommended. For
the beginner one can still do little better than the books by Pauling and Wilson[1]
and Eyring, Walter, and Kimbal[2]. A more recent work is by Levine[3], and for
a more “physicsish” presentation the book by Messiah[4] is recommended. These
are a little weak on the practice of group theory for which Cotton[5] may serve. A
more fundamental work on group theory is by Hammermesh[6]. Some further group
theory developments, not to my knowledge in any other book, are in Chapter 5.
Some of what we do with the theory of symmetric groups is based fairly heavily
on a little book by Rutherford[7].

This is a book orab initio valence bond (VB) theory. There is a vast literature
on “valence bond theory” — much of it devoted to semiempirical and qualitative

Xiii



Xiv Preface

discussions of structure and reactivity of many chemical substances. It is not my
purpose to touch upon any of this except occasionally. Rather, | will restrict myself
principally to the results and interpretation of @ initio version of the theory. It
must be admitted thatb initio VB applications are limited to smaller systems, but
we shall stick to this more limited goal. Within what practitioners ahlinitio VB
theory there are, in broad terms, two different approaches.

 Calculationsinwhich the orbitals used are restricted to being centered on only one atom of
the molecule. They are legitimately called “atomic orbitals”. Treatments of this sort may
have many configurations involving different orbitals. This approach may be considered a
direct descendent of the original Heitler—London work, which is discussed in Chapter 2.

 Calculations in which the orbitals range over two or more atomic centers in the molecule.
Although the resulting orbitals are not usually called “molecular orbitals” in this context,
there might be some justification in doing so. Within this group of methods there are
subcategories that will be addressed in the book. Treatments of this sort usually have
relatively few configurations and may be considered descendents of the work of Coulson
and Fisher, which is discussed in Chapter 3.

Each of these two approaches has its enthusiasts and its critics. | have attempted an
even-handed description of them.

At various places in the text there are suggestions for further study to supple-
ment a discussion or to address a question without a currently known answer. The
CRUNCH program package developed by the author and his students is available
on the Web for carrying out these studieBhis program package was used for all
of the examples in the book with the exception of those in Sections 2.2-2.6.

| wish to thank Jeffrey Mills who read large parts of the manuscript and made
many useful comments with regard to both style and clarity of presentation. Lastly,
| wish to thank all of the students | have had. They did much to contribute to this
subject. As time passes, there is nothing like a group of interested students to keep
one on one’s toes.

Lincoln, Nebraska Gordon A. Gallup
November 2001

1 Seehttp://phy-ggallup.unl.edu/crunch
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Introduction

1.1 History

In physics and chemistry making a direct calculation to determine the structure
or properties of a system is frequently very difficult. Rather, one assumes at the
outset an ideal or asymptotic form and then applies adjustments and corrections to
make the calculation adhere to what is believed to be a more realistic picture of
nature. The practice is no different in molecular structure calculation, but there has
developed, in this field, two different “ideals” and two different approaches that
proceed from them.

The approach used first, historically, and the one this book is about, is called the
valence bond (VB) method today. Heitler and London][8], in their treatment of the
H, molecule, used a trial wave function that was appropriate for two H atoms at
long distances and proceeded to use it for all distances. The ideal here is called the
“separated atom limit”. The results were qualitatively correct, but did not give a
particularly accurate value for the dissociation energy of the H—H bond. After the
initial work, others made adjustments and corrections that improved the accuracy.
This is discussed fully in Chapter 2. A crucial characteristic of the VB method is
that the orbitals of different atoms must be considered as nonorthogonal.

The other approach, proposed slightly later by Hund[9] and further developed
by Mulliken[10] is usually called the molecular orbital (MO) method. Basically,
it views a molecule, particularly a diatomic molecule, in terms of its “united atom
limit”. Thatis, H, is a He atom (not a real one with neutrons in the nucleus) in which
the two positive charges are moved from coinciding to the correct distance for the
molecule! HF could be viewed as a Ne atom with one proton moved from the
nucleus out to the molecular distance, etc. As in the VB case, further adjustments
and corrections may be applied to improve accuracy. Although the united atom limit
is not often mentioned in work today, its heritage exists in that MOs are universally

1 Although this is impossible to do in practice, we can certainly calculate the process on paper.
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considered to be mutually orthogonal. We touch only occasionally upon MO theory
in this book.

As formulated by Heitler and London, the original VB method, which was easily
extendible to other diatomic molecules, supposed that the atoms making up the
molecule were in (high-spirf} states. Heitler and Rumer later extended the theory
to polyatomic molecules, but the atont&state restriction was still, with a few
exceptions, imposed. It is in this latter work that the famous Rumer[11] diagrams
were introduced. Chemists continue to be intrigued with the possibility of correlat-
ing the Rumer diagrams with bonding structures, such as the familiar &elal
Dewar bonding pictures for benzene.

Slater and Pauling introduced the idea of using whole atomic configurations
rather thanS states, although, for carbon, the difference is rather subtle. This, in
turn, led to the introduction of hybridization and the maximum overlap criterion
for bond formation[1].

Serber[12] and Van Vleck and Sherman[13] continued the analysis and intro-
duced symmetric group arguments to aid in dealing with spin. About the same time
the Japanese school involving Yamanouchi and Kotani[14] published analyses of
the problem using symmetric group methods.

All of the foregoing work was of hecessity fairly qualitative, and only the smallest
of molecular systems could be handled. After WWII digital computers became
available, and it was possible to test many of the qualitative ideas quantitatively.

In 1949 Coulson and Fisher[15] introduced the idea of nonlocalized orbitals to
the VB world. Since that time, suggested schemes have proliferated, all with some
connection to the original VB idea. As these ideas developed, the importance of
the spin degeneracy problem emerged, and VB methods frequently were described
and implemented in this context. We discuss this more fully later.

As this is being written at the beginning of the twenty-first century, even small
computers have developed to the point whadrénitio VB calculations that required
“supercomputers” earlier can be carried out in a few minutes or at most a few hours.
The development of parallel “supercomputers”, made up of many inexpensive per-
sonal computer units is only one of the developments that may allow one to carry
out ever more extensiab initio VB calculations to look at and interpret molecular
structure and reactivity from that unique viewpoint.

1.2 Mathematical background

Data on individual atomic systems provided most of the clues physicists used
for constructing quantum mechanics. The high spherical symmetry in these cases
allows significant simplifications that were of considerable usefulness during times
when procedural uncertainties were explored and debated. When the time came
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to examine the implications of quantum mechanics for molecular structure, it was
immediately clear that the lower symmetry, even in diatomic molecules, causes
significantly greater difficulties than those for atoms, and nonlinear polyatomic
molecules are considerably more difficult still. The mathematical reasons for this
are wellunderstood, butitis beyond the scope of this book to pursue these questions.
The interested reader may investigate many of the standard works detailing the
properties of Lie groups and their applications to physics. There are many useful
analytic tools this theory provides for aiding in the solution of partial differential
equations, which is the basic mathematical problem we have before us.

1.2.1 Schrodinger’s equation

Schrodinger’s space equation, which is the starting point of most discussions of
molecular structure, is the partial differential equation mentioned above that we
must deal with. Again, it is beyond the scope of this book to give even a review of
the foundations of quantum mechanics, therefore, we assume Schrodinger’s space
equation as our starting point. Insofar as we ignore relativistic effects, it describes
the energies and interactions that predominate in determining molecular structure.
It describes in quantum mechanical terms the kinetic and potential energies of the
particles, how they influence the wave function, and how that wave function, in
turn, affects the energies. We take up the potential energy term first.

Coulomb’s law

Molecules consist of electrons and nuclei; the principal difference between a
molecule and an atom is that the latter has only one patrticle of the nuclear sort.
Classical potential theory, which in this case works for quantum mechanics, says that
Coulomb’s law operates between charged particles. This asserts that the potential
energy of a pair of spherical, charged objects is

Q2 Q2
[Fi—T2| 12
whereq; andq;, are the charges on the two particles, ands the scalar distance
between them.

V([ry —T2l) = : (1.1)

Units

A shortdigression on units is perhaps appropriate here. We shall use either Gaussian
units in this book or, much more frequently, Hartree’s atomic units. Gaussian units,
as far as we are concerned, are identical with the old cgs system of units with the
added proviso that charges are measured in unnafeettostatic units, esu. The
value of |e| is thus 4.803206808 10710 esu. Keeping this number at hand is all

that will be required to use Gaussian units in this book.
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Hartree’s atomic units are usually all we will need. These are obtained by as-
signing mass, length, and time units so that the mass of the elenigea,1, the
electronic chargeg| = 1, and Planck’s constatfit= 1. An upshot of this is that the
Bohr radius is also 1. If one needs to compare energies that are calculated in atomic
units (hartrees) with measured quantities it is convenient to know that 1 hartree is
27.211396 eV, 6.27508 10° cal/mole, or 2.625493% 10° joule/mole. The reader
should be cautioned that one of the most common pitfalls of using atomic units is
to forget that the charge on the electron-i$. Since equations written in atomic
units have namgs, es, orhs in them explicitly, their being all equal to 1, it is easy
to lose track of the signs of terms involving the electronic charge. For the moment,
however, we continue discussing the potential energy expression in Gaussian units.

The full potential energy
One of the remarkable features of Coulomb’s law when applied to nuclei and
electrons is its additivity. The potential energy of an assemblage of particles is
just the sum of all the pairwise interactions in the form given in Eqg. (1.1). Thus,

consider a system witlk nuclei,a =1, 2,..., K having atomic numberZ,.
We also consider the molecule to haMeelectrons. If the molecule is uncharged
as a whole, thery © Z, = N. We will use lower case Latin letters, j, kK, ..., to
label electrons and lower case Greek letterss, y, ..., to label nuclei. The full
potential energy may then be written
7,27, ez, &
V= _ S —. 1.2
; lop %: lig +i<j Fij (12)

Many investigations have shown that any deviations from this expression that occur
in reality are many orders of magnitude smaller than the sizes of energies we need
be concerned with Thus, we consider this expression to represent exactly that part
of the potential energy due to the charges on the patrticles.

The kinetic energy

The kinetic energy in the Scbdinger equation is a rather different sort of quantity,
being, in fact, a differential operator. In one sense, it is significantly simpler than
the potential energy, since the kinetic energy of a particle depends only upon what
it is doing, and not on what the other particles are doing. This may be contrasted
with the potential energy, which depends not only on the position of the particle in
question, but on the positions of all of the other particles, also. For our molecular

2 The first correction to this expression arises because the transmission of the electric field from one particle to
another is not instantaneous, but must occur at the speed of light. In electrodynamics this phenomenon is called
aretarded potentialCasimir and Polder[16] have investigated the consequences of this for quantum mechanics.
The effect within distances around10cm is completely negligible.
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system the kinetic energy operator is

h? h?
T=-Y —v2_Y V2 1.3
— 2M, ZZmQ," (1.3)

whereM, is the mass of the™ nucleus.

The differential equation
The Schrodinger equation may now be written symbolically as

(T + V)W = EV, (1.4)

where E is the numerical value of the total energy, abids the wave function.
When Eq. (1.4) is solved with the various constraints required by the rules of
guantum mechanics, one obtains the total energy and the wave function for the
molecule. Other quantities of interest concerning the molecule may subsequently
be determined from the wave function.

It is essentially this equation about which Dirac[17] made the famous (or infa-
mous, depending upon your point of view) statement that all of chemistry is reduced
to physics by it:

The general theory of quantum mechanics is now almost complete, the imperfections that
still remain being in connection with the exact fitting in of the theory with relativity ideas.
These give rise to difficulties only when high-speed particles are involved, and are therefore
of no importance in the consideration of atomic and molecular structure and ordinary
chemical reactions .. The underlying physical laws necessary for the mathematical theory
of a large part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations much too
complicated to be soluble..

To some, with what we might call a practical turn of mind, this seems silly. Our
mathematical and computational abilities are not even close to being able to give
useful general solutions to it. To those with a more philosophical outlook, it seems
significant that, at our present level of understanding, Dirac’s statement is appar-
ently true. Therefore, progress made in methods of solving Eq. (1.4) is improving
our ability at making predictions from this equation that are useful for answering
chemical questions.

The Born—Oppenheimer approximation

In the early days of quantum mechanics Born and Oppenheimer[18] showed that
the energy and motion of the nuclei and electrons could be separated approximately.
This was accomplished using a perturbation treatment in which the perturbation
parameter is (g M)Y/4. In actuality, the term “Born—Oppenheimer approximation”
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is frequently ambiguous. It can refer to two somewhat different theories. The firstis
the reference above and the other one is found in an appendix of the book by Born
and Huang on crystal structure[19]. In the latter treatment, it is assumed, based
upon physical arguments, that the wave function of Eq. (1.4) may be written as the
product of two other functions

\Ij(ﬂ s Fa) = ¢(FQ)W(FI s Fa)v (15)

where the nuclear positio’s given inys are parameters rather than variables in
the normal sense. Thgis the actual wave function for nuclear motion and will not
concern us at all in this book. If Eq. (1.5) is substituted into Eq. (1.4), various terms
are collected, and small quantities dropped, we obtain what is frequently called the
Schiodinger equation for the electrons using the Born—Oppenheimer approximation

h?
2me

3V + VY = EFL). (1.6)
|

where we have explicitly observed the dependence of the energy on the nuclear
positions by writing it asE(r,). Equation (1.6) might better be termed the
Schidinger equation for the electrons using theéiabatic approximation[20].
Of course, the only difference between this and Eq. (1.4) is the presence of the
nuclear kinetic energy in the latter. A heuristic way of looking at Eq. (1.6) is to
observe that it would arise if the masses of the nuclei all passed to infinity, i.e.,
the nuclei become stationary. Although a physically useful viewpoint, the actual
validity of such a procedure requires some discussion, which we, however, do not
give.

We now go farther, introducing atomic units and rearranging Eq. (1.6) slightly,

—%ZV?w —Zf—“wZ%wZ Zr“jﬁw =Eey. (L7

i<]j a<p

This is the equation with which we must deal. We will refer to it so frequently,

it will be convenient to have a brief name for it. It is tk&ctronic Schidinger
equationand we refer to it as the ESE. Solutions to it of varying accuracy have been
calculated since the early days of qguantum mechanics. Today, there exist computer
programs both commercial and in the public domain that will carry out calculations
to produce approximate solutions to the ESE. Indeed, a program of this sort is
available from the author through the InterAglthough not as large as some of

the others available, it will do many of the things the bigger programs will do,
as well as a couple of things they do not: in particular, this program will do VB
calculations of the sort we discuss in this book.

3 The CRUNCH programhttp://phy-ggallup.unl.edu/crunch/
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1.3 The variation theorem
1.3.1 General variation functions

If we write the sum of the kinetic and potential energy operators as the Hamiltonian
operatofT + V = H, the ESE may be written as

HY = EW. (1.8)

One of the remarkable results of quantum mechanics is the variation theorem, which
states that

W = (WIHIY) > Eo, (1.9)

(VW)

where Eq is the lowest allowed eigenvalue for the system. The fraction in
Eq. (1.9) is frequently called thRayleigh quotient. The basic use of this result
is quite simple. One uses arguments based on similarity, intuition, guess-work, or
whatever, to devise a suitable function fbrUsing Eq. (1.9) then necessarily gives
us an upper bound to the true lowest energy, and, if we have been clever or lucky,
the upper bound is a good approximation to the lowest energy. The most common
way we use this is to construct a trial functiol, that has a number of parameters
in it. The quantity,W, in Eq. (1.9) is then a function of these parameters, and a
minimization of W with respect to the parameters gives the best result possible
within the limitations of the choice fo¥. We will use this scheme in a number of
discussions throughout the book.

1.3.2 Linear variation functions

A trial variation function that has linear variation parameters only is an important
special case, since it allows an analysis giving a systematic improvement on the
lowest upper bound as well as upper bounds for excited states. We shall assume that
¢1, 2, ..., represents a complete, normalized (but not necessarily orthogonal) set
of functions for expanding the exact eigensolutions to the ESE. Thus we write

U= Z¢>i G, (1.10)
i=1
where theC; are the variation parameters. Substituting into Eq. (1.9) we obtain
i Hij C*C;
_ 2 GGy iy (1.12)
2ij SiCiC
where
Hij = (¢i1HI¢;), (1.12)

Si = (dilo;). (1.13)
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We differentiateW with respect to th&C*s and set the results to zero to find the
minimum, obtaining an equation for eaCli,

D (Hj —WS)C;j=0; i=12.... (1.14)
,-

In deriving this we have used the properties of the intedrigls= H; and a similar
result for§;. Equation (1.14) is discussed in all elementary textbooks wherein it is
shown that &; # 0 solution exists only if th&V has a specific set of values. Itis
sometimes called thgeneralized eigenvalue problamdistinguish from the case
whenSis the identity matrix. We wish to pursue further information aboutse
here.

Let us consider a variation function where we have chaesefthe functions,
¢i. We will then show that the eigenvalues of thdunction problem divide,
i.e., occur between, the eigenvalues of theH(1)-function problem. In making
this analysis we use an extension of the methods given by Brillouin[21] and
MacDonald[22].

Having chosem of the¢ functions to start, we obtain an equation like Eq. (1.14),
but with onlyn x n matrices andh terms,

n
> (Hy —wig)c¥ =0;  i=12...n (1.15)
=1

It is well known that sets of linear equations like Eq. (1.15) will possess nonzero
solutions for theC}")s only if the matrix of coefficients has a rank less thran
This is another way of saying that the determinant of the matrix is zero, so we
have

IH-wg =o. (1.16)

When expanded out, the determinant is a polynomial of degiieethe variable
W™ and it hasn real roots ifH and S are both Hermitian matrices, ar@lis
positive definite. Indeed, i were not positive definite, this would signal that the
basis functions were not all linearly independent, and that the basis was defective.
If W takes on one of the roots of Eq. (1.16) the matix- W™ S s of rank
n — 1 or less, and its rows are linearly dependent. There is thus at least one more
nonzero vector with componerﬂé”) that can be orthogonal to all of the rows. This
is the solution we want.

It is useful to give a matrix solution to this problem. We affix a supers&pipo
emphasize that we are discussing a matrix solution faasis functions. Sincg™
is Hermitian, it may be diagonalized by a unitary matfix= (TT)!

TISOT — s — diag(s™, s ... §), (1.17)
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where the diagonal elementss§? are all real and positive, because of the Hermitian
and positive definite character of the overlap matrix. We may construct the inverse
square root 0§(", and, clearly, we obtain

[T(s™) Y2 T (s™) 2= 1. (1.18)
We subjectH™ to the same transformation and obtain
[T(s®) Y2 HOT (sM) 2 = HO, (1.19)

which is also Hermitian and may be diagonalized by a unitary mari€&ombining
the various transformations, we obtain

VIH®V = h® = diagth{, h{Y, ... hD), (1.20)
Visgny =1, (1.22)
v =T(s™) . (1.22)

We may now combine these matrices to obtain the null matrix
VIHOV — visWyh™ = o, (1.23)
and multiplying this on the left byM )~ = U (sM)¥/2T gives
HOV — SV H®W = . (1.24)

If we write out thek!™ column of this last equation, we have

n
S (HY -hPSY) v =0;  i=12...n (1.25)

=1

When this is compared with Eq. (1.15) we see that we have solved our prob-
lem, if C™ is thek™ column of V and W™ is thek™ diagonal element o™,
Thus the diagonal elements bf? are the roots of the determinantal equation
Eq. (1.16).

Now consider the variation problem with+ 1 functions where we have added
another of the basis functions to the set. We now have the matd&€&s) and
S™1) and the new determinantal equation

|H(n+1) _ W(”H)S(”H)\ —0. (1.26)

We may subject this to a transformation by the{i) x (n 4+ 1) matrix

- [v o
V=[0 J, (1.27)
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andH ™D and S are modified to

(n) J(n+1)
hl 0 e H 1n41
(n) L. J(n+1)
\71’ H (n+l)\7 — |_T(n+l) — O h2 H 2.n+1 (128)
q .+l _ .+1 .1
H $1n+1} H l('lll% T Hr?:ln+l
and
+1
1 0o - §l”n+ )
_ _ _ n+1)
vigh+ly — gn+l) — 0 1 T §n+1 ) (1.29)
n.+1) n.+1) . .' 1
+11 +12
Thus Eq. (1.26) becomes
)~ weees 0 ARG WS
0 0 AP WO A wege
J(n+1 . 1) g+ . 1 . :
RO - WS AT WO o Hid, - We

(1.30)

We modify the determinant in Eq. (1.30) by using column operations. Multiply the
i column by

T(n+1) n+1)
H in+l W(n+1)§n+1

hi(”) — W(n+1)

and subtract it from then(+ 1) column. This is seen to cancel tHerow element

in the last column. Performing this action for each of the firstolumns, the
determinant is converted to lower triangular form, and its value is just the product
of the diagonal elements,

0= D(n+1)(w(n+1))
— ﬁ [hi(n) _ W(n+1)]
i=1
(+1) _ \yy(+1) §n+l) 2

_ n|H
() _\Wn+1) _ \ intl n+1
X |:HnJrln+l W igl hi(”) ~WeD } (1.32)

Examination shows tha ™D (W™+D) is a polynomial il of degreen + 1,
as it should be.
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We note that none of tHa;-(”) are normally roots oD+,

i +1) _ (n) M7y (+1) (n) gh+1)
W(nJIrllr)-n h(n) D(n ) - 1_[ [hj - hi :H Hin+l - hi §n+l
e i

2

. (1.32)

and would be only if thehi(”) were degenerate or the second fadtor- |> were
zero?
Thus, D™ js zero when the second []factor of Eq. (1.31) is zero,

|__|_(n+1) . W(n+1)§n+1) 2

_ n_ |
HO D, — Wi =y~ el el (1.33)
i—1 h{® — WD

It is most useful to consider the solution of Eq. (1.33) graphically by plotting both
the right and left hand sides versws"+1) on the same graph and determining
where the two curves cross. For this purpose let us suppose that, and we
consider the right hand side. It will have poles on the real axis at each hf”‘fhe
WhenW®) becomes large in either the positive or negative direction the right hand
side asymptotically approaches the line

4 — — j— —
y=_ (HisSs+ HisS's - WO ST
i—1

It is easily seen that the determinant®is

4
S =1->[SP >0 (1.34)
i=1

and, if equal to zero$S would not be positive definite, a circumstance that would
happen only if our basis were linearly dependent. Thus, the asymptotic line of the
right hand side has a slope between 0 and°-¥& see this in Fig. 1.1. The left
hand side of Eqg. (1.33) is, on the other hand, just a straight line of exactly —45
slope and av® intercept ofH{). This is also shown in Fig. 1.1. The important
point we note is that the right hand side of Eqg. (1.33) has five branches that in-
tersect the left hand line in five places, and we thus obtain five roots. The vertical
dotted lines in Fig. 1.1 are the values of ﬂrfé> and we see there is one of these
between each pair of roots for the five-function problem. A little reflection will
indicate that this important fact is true for anynot just the special case plotted in
Fig. 1.1.

4 We shall suppose neither of these possibilities occurs, and in practice neither is likely in the absence of symmetry.
If there is symmetry present that can produce degeneracy or zero factors of {Resprt, we assume that
symmetry factorization has been applied and that all functions we are working with are within one of the closed
symmetry subspaces of the problem.
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Energy

Energy

Figure 1.1. The relationship between the rootsriee 4 (the abscissa intercepts of the
vertical dotted lines) and = 5 (abscissas of intersections of solid lines with solid curves)

shown graphically.

The upshot of these considerations is that a series of matrix solutions of the
variation problem, where we add one new function at a time to the basis, will
result in a series of eigenvalues in a pattern similar to that shown schematically in
Fig. 1.2, and that the order of adding the functions is immaterial. Since we suppose
that our ultimate basis\(— oo) is complete, each of the eigenvalues will become
exact as we pass to an infinite basis, and we see that the sequendmsit
solutions converges to the correct answer from above. The rate of convergence at
various levels will certainly depend upon the order in which the basis functions are
added, but not the ultimate value.

1.3.3 A 2x 2 generalized eigenvalue problem

The generalized eigenvalue problem is unfortunately considerably more compli-
cated than its regular counterpart whee= 1. There are possibilities for acciden-

tal cases when basis functions apparently should mix, but they do not. We can
give a simple example of this for ax22 system. Assume we have the pair of
matrices

A B
ao[h g w9
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Energy

1 2 3 4 5
Number of states
Figure 1.2. A qualitative graph showing schematically the interleaving of the eigenvalues

for a series of linear variation problems foe= 1, .. ., 5. The ordinate is energy.
and
1l s
S= [s 1], (1.36)
where we assume for the argument that 0. We form the matrixH’
A+C
H =H - Att S,
2
a b
= [b —a]’ (1.37)
where
A+C
a=A_ 2% (1.38)
2
and
A+C
b=B— %5. (1.39)

It is not difficult to show that the eigenvectors idf are the same as thoseldf
Our generalized eigenvalue problem thus depends upon three pararagters,
b, ands. Denoting the eigenvalue by and solving the quadratic equation, we

obtain
2 2 2
sb Jvas(l—s?)+b . (1.40)

W:_(l—sz) )
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We note the possibility of an accident that cannot happge-f0 andb # 0: Should
b = +as, one of the two values oV is either+a, and one of the two diagonal
elements oH’ is unchanged.Let us for definiteness assume that asand it is
a we obtain. Then, clearly the vect@y we obtain is

o)

and there is no mixing between the states from the application of the variation
theorem. The other eigenvector is simply determined because it must be orthogonal
to C;, and we obtain

Co= [_S/m] :

1/v1—¢82

so the other state is mixed. It must normally be assumed that this accident is
rare in practical calculations. Solving the generalized eigenvalue problem results
in a nonorthogonal basis changing both directions and internal angles to become
orthogonal. Thus one basis function could get “stuck” in the process. This should
be contrasted with the case wh&nr= 1, in which basis functions are unchanged
only if the matrix was originally already diagonal with respect to them.

We do not discuss it, but there is anx n version of this complication. If
there is no degeneracy, one of the diagonal elements oHth®atrix may be
unchanged in going to the eigenvalues, and the eigenvector associated with it is
[0,...,0,1,0,...,0].

1.4 Weights of nonorthogonal functions

The probability interpretation of the wave function in quantum mechanics obtained
by forming the square of its magnitude leads naturally to a simple idea for the
weights of constituent parts of the wave function when it is written as a linear
combination of orthonormal functions. Thus, if

W= %G, (1.41)

and(yi |y;) = &j, normalization of requires

dYcP=1 (1.42)

If, also, each of they; has a certain physical interpretation or significance, then
one says the wave functioh, or the state represented by it, consists of a fraction

5 NB We assumed this not to happen in our discussion above of the convergence in the linear variation problem.
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|C; |2 of the state represented Igy. One also says that theeight,w; of v in W is
wi = |Ci 2.

No such simple result is available for nonorthogonal bases, such as our VB
functions, because, although they are normalized, they are not mutually orthogonal.
Thus, instead of Eqg. (1.42), we would have

Y ocicis =1, (1.43)
ij

if the ¢ were not orthonormal. In fact, at first glance orthogonalizing them would
mix together characteristics that one might wish to consider separately in determin-
ing weights. In the author’s opinion, there has not yet been devised a completely
satisfactory solution to this problem. In the following paragraphs we mention some
suggestions that have been made and, in addition, present yet another way of
attempting to resolve this problem.

In Section 2.8 we discuss some simple functions used to represent thelet
cule. We choose one involving six basis functions to illustrate the various methods.
The overlap matrix for the basis is

[ 1.000000 T
0.962004 1.000000
0.137187 0.181541 1.000000
—0.254383 —-0.336628 0.141789 1.000000 ’
0.181541 0.137187 0.925640 0.251156 1.000000
| 0.336628 0.254383-0.251156 —0.788501 —0.141789 1.000 000

and the eigenvector we analyze is

[ 0.283129]
0.711721
0.013795

—0.038111| "
—0.233374
0.017 825]

(1.44)

Sis to be filled out, of course, so that it is symmetric. The particular chemical or
physical significance of the basis functions need not concern us here.

The methods below giving sets of weights fall into one of two classes: those
that involve no orthogonalization and those that do. We take up the former group
first.
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Table 1.1Weights for nonorthogonal basis functions
by various methods.

Chirgwin— Inverse- Symmetric
Coulson overlap orthogon. EGS0

0.266 999 0.106 151 0.501 707 0.004 998
0.691753 0.670769 0.508 663 0.944675
—0.000607 0.000741 0.002520 0.000007
0.016 022 0.008 327 0.042909 0.002 316
0.019525 0.212190 0.051580 0.047994
0.006 307 0.001822 0.000 065 0.000010

a8 EGSO= eigenvector guided sequential orthogonalization.

1.4.1 Weights without orthogonalization

The method of Chirgwin and Coulson
These workers[23] suggest that one use

wi =C' Y §;Cj, (1.45)
j

although, admittedly, they proposed it only in cases where the quantities were real.
As written, thisw; is not guaranteed even to be real, and whe©rendS; are real,

it is not guaranteed to be positive. Nevertheless, in simple cases it can give some
idea for weights. We show the results of applying this method to the eigenvector

and overlap matrix in Table 1.1 above. We see that the relative weights of basis
functions 2 and 1 are fairly large and the others are quite small.

Inverse overlap weights

Norbeck and the author[24] suggested that in cases where there is overlap, the
basis functions each can be considered to have a unique portion. The “length” of
this may be shown to be equal to the reciprocal of the diagonal oSthenatrix
corresponding to the basis function in question. Thus, if a basis function has a
unique portion of very short length, a large coefficient for it means little. This
suggests that a set mdlative weights could be obtained from

wi o |G [2/(S i, (1.46)

where theseay; do not generally sum to 1. As implemented, these weights are
renormalized so that they do sumto 1 to provide convenient fractions or percentages.
This is an awkward feature of this method and makes it behave nonlinearly in some
contexts. Although these first two methods agree as to the most important basis
function they transpose the next two in importance.
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1.4.2 Weights requiring orthogonalization

We emphasize that here we are speaking of orthogonalizing the VB basis not the
underlying atomic orbitals (AOs). This can be accomplished by a transformation
of the overlap matrix to convert it to the identity

NISN=I. (1.47)

Investigation shows thal is far from unique. Indeed, N satisfies Eq. (1.47NU

will also work, whereJ is any unitary matrix. A possible candidate fdris shown

in Eq. (1.18). If we put restrictions oN, the result can be made unique Nfis
forced to be upper triangular, one obtains the clasSchimidt orthogonalization

of the basis. The transformation of Eq. (1.18), as it stands, is frequently called
the canonical orthogonalizationf the basis. Once the basis is orthogonalized the
weights are easily determined in the normal sense as

2
Z(Nil)ijcj
i

wi = , (1.48)
and, of course, they sum to 1 exactly without modification.

Symmetric orthogonalization

Lowdin[25] suggested that one find the orthonormal set of functions that most
closely approximates the original nonorthogonal set in the least squares sense and
use these to determine the weights of various basis functions. An analysis shows
that the appropriate transformation in the notation of Eq. (1.18) is

N =T(s™) T = 52 = (531, (1.49)

which is seen to be the inverse of one of the square roots of the overlap matrix and
Hermitian (symmetric, if real). Because of this symmetry, using\thad Eq. (1.49)
is frequently called aymmetric orthogonalization. This translates easily into the
set of weights
2

, (1.50)

wp =

> (8"
j

which sums to 1 without modification. These are also shown in Table 1.1. We now
see weights that are considerably different from those in the first two columns.
w1 andw; are nearly equal, witlw, only slightly larger. This is a direct result of

the relatively large value ¢, in the overlap matrix, but, indirectly, we note that the
hypothesis behind the symmetric orthogonalization can be faulty. A least squares
problem like that resulting in this orthogonalization method, in principle, always
has an answer, but that gives no guarantee at all that the functions produced really
are close to the original ones. That is really the basic difficulty. Only if the overlap
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matrix were, in some sense, close to the identity would this method be expected to
yield useful results.

An eigenvector guided sequential orthogonalization (EGSO)

As promised, with this book we introduce another suggestion for determining
weights in VB functions. Let us go back to one of the ideas behind inverse overlap
weights and apply it differently. The existence of nonzero overlaps between differ-
ent basis functions suggests that some “parts” of basis functions are duplicated in
the sum making up the total wave function. At the same time, consider function 2
(the second entry in the eigenvector (1.44)). The eigenvector was determined using
linear variation functions, and clearly, there is something about function 2 that the
variation theorem likes, it has the largest (in magnitude) coefficient. Therefore, we
take all of that function in our orthogonalization, and, using a procedure analogous
to the Schmidt procedure, orthogonalize all of the remaining functions of the basis
to it. This produces a new set©f, and we can carry out the process again with the
largest remaining coefficient. We thus have a stepwise procedure to orthogonalize
the basis. Except for the order of choice of functions, this is just a Schmidt orthog-
onalization, which normally, however, involves an arbitrary or preset ordering.

Comparing these weights to the others in Table 1.1 we note that there is now
one truly dominant weight and the others are quite small. Function 2 is really a
considerable portion of the total function at 94.5%. Of the remaining, only function
5 at 4.8% has any size. It is interesting that the two methods using somewhat the
same idea predict the same two functions to be dominant.

If we apply this procedure to a different state, there will be a different ordering, in
general, but this is expected. The orthogonalization in this procedure is not designed
to generate a basis for general use, but is merely a device to separate characteristics
of basis functions into noninteracting pieces that allows us to determine a set of
weights. Different eigenvalues, i.e., different states, may well be quite different in
this regard.

We now outline the procedure in more detail. Deferring the question of ordering
until later, let us assume we have found an upper triangular transformation matrix,
N, that convertsS as follows:

t [k 0
msn= g & (L51)
wherelisak x kidentity, and we have determinkdfthe orthogonalized weights.
We show how to determiniy, 1 from N.

Working only with the lower righti§ — k) x (n — k) corner of the matrices, we
observe thag,_ in Eq. (1.51) is just the overlap matrix for the unreduced portion
of the basis and is, in particular, Hermitian, positive definite, and with diagonal
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elements equal to 1. We write it in partitioned form as

1 s
sv=|a & (152)
where [1 g]is the first row of the matrix. LeM,_g be an upper triangular matrix
partitioned similarly,

1
Mmk:[o g} (1.53)
and we determing and B so that
, 1 q+sB
f = ,
1 0
= , 1.55
[o sn_k_l} (1.59)
where these equations may be satisfied WBitthe diagonal matrix
B =diag((1—-s) ¥ (1-s2) %) (1.56)
and
q=-sB. (2.57)
The inverse oM,,_y is easily determined:
_ 1
M0t = |5 g (159
and, thusNy;1 = NxQ, where
R 0
Qk = [ 0 Mn_k] . (1.59)

The unreduced portion of the problem is now transformed as follows:
(Cnfk)TSFkCnfk = [(Mnfk)_lcnfk]T(Mnfk)TSwfk Mnfk[(Mnfk)_lcnfk]-

(1.60)
Writing
C
ka:[cﬂ, (1.61)
we have
(e Gl = | ST |. (L62)
Ci+sC
= . 1.
|: Cn—k—l ] ( 63)

Putting these together, we arrive at the tdlahs Q;Q2Q3z - - - Qn_1.



22 1 Introduction

What we have done so far is, of course, no different from a standard top-down
Schmidt orthogonalization. We wish, however, to guide the ordering with the eigen-
vector. This we accomplish by inserting before e@gfa binary permutation matrix
P« that puts in the top position thé; + sC' from Eq. (1.63) that is largest in
magnitude. Our actual transformation matrix is

N =P1Q1P,Qz- - Ph_1Qn-1. (1.64)

Then the weights are simply as given (for basis functions in a different order) by
Eg. (1.48). We observe that choosidg+ sC' as the test quantity whose magnitude
is maximized is the same as choosing the remaining basis function from the unre-
duced set that at each stage gives the greatest contribution to the total wave function.
There are situations in which we would need to modify this procedure for the
results to make sense. Where symmetry dictates that two or more basis functions
should have equal contributions, the above algorithm could destroy this equality.
In these cases some modification of the procedure is required, but we do not need
this extension for the applications of the EGSO weights found in this book.
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H, and localized orbitals

2.1 The separation of spin and space variables

One of the pedagogically unfortunate aspects of quantum mechanics is the com-
plexity that arises in the interaction of electron spin with the Pauli exclusion prin-
ciple as soon as there are more than two electrons. In general, since the ESE
does not even contain any spin operators, the total spin operator must commute
with it, and, thus, the total spin of a system of any size is conserved at this level of
approximation. The corresponding solution to the ESE must reflect this. In addition,
the total electronic wave function must also be antisymmetric in the interchange
of any pair of space-spin coordinates, and the interaction of these two require-
ments has a subtle influence on the energies that has no counterpart in classical
systems.

2.1.1 The spin functions

When there are only two electrons the analysis is much simplified. Even quite
elementary textbooks discuss two-electron systems. The simplicity is a conse-
guence of the general nature of what is calledgpi@-degeneracy problem, which

we describe in Chapters 4 and 5. For now we write the total solution for the ESE
Y (1, 2), where the labels 1 and 2 refer to the coordinates (space and spin) of the two
electrons. Since the ESE has no reference at all to gpih,2) may be factored

into separate spatial and spin functions. For two electrons one has the familiar result
that the spin functions are of either the singlet or triplet type,

Yo = [n1/2(L)n-1/2(2) — n-1/2(L)m,2(2)] /2, (2.1)
301 = n1/2(1)m/2(2), (2.2)
3o = [n1/2(1)n-1/2(2) + n-1/2(1)n12(2)] / V2, (2.3)
3¢_1 = n_1/2(1)n-1/2(2). (2.4)

23
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where on thep the anterior superscript indicates the multiplicity and the posterior
subscriptindicates thes value. The)..1» are the individual electron spin functions.

If we let P; represent an operator that interchanges all of the coordinates of the
it and j™ particles in the function to which it is applied, we see that

P2 1o = —¢po, (2.5)
P12 3¢mS == 3¢m5; (2-6)

thus, the singlet spin function is antisymmetric and the triplet functions are sym-
metric with respect to interchange of the two sets of coordinates.

2.1.2 The spatial functions

The Pauli exclusion principle requires that the total wave function for electrons
(fermions) have the property

PW (1 2)=v(2 1)=-V(1,2), (2.7)
but absence of spin in the ESE requires
@Sy, (1, 2) = @SHDy(1, 2) x @CSHDg (1, 2), (2.8)

and it is not hard to see that the overall antisymmetry requires that the spatial
function have behavior opposite to that ¢fin all cases. We emphasize that it

is not an oversight to attach mog label toyr in Eq. (2.8). An important principle

in quantum mechanics, known as the Wigner—Eckart theorem, requires the spatial
part of the wave function to be independentaffor a givensS.

Thus the singlet spatial function is symmetric and the triplet one antisymmetric. If
we use the variation theorem to obtain an approximate solution to the ESE requiring
symmetry as a subsidiary condition, we are dealing with the singlet state for two
electrons. Alternatively, antisymmetry, as a subsidiary condition, yields the triplet
state.

We must now see how to obtain useful solutions to the ESE that satisfy these
conditions.

2.2 The AO approximation

The only uncharged molecule with two electrons is &hd we will consider this
molecule for a while. The ESE allows us to do something that cannot be done in the
laboratory. It assumes the nuclei are stationary, so for the moment we consider a
very stretched out Himolecule. If the atoms are distant enough we expect each one
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to be a normal H atom, for which we know the exact ground state wave furiction.
The singlet wave function for this arrangement might be written

(1, 2) = N[1%:(1)1(2) + 13(1)1s()], (2.9)
where 1g and 1g are 1sorbital functions centered at nuckeiandb, respectively,
andN is the normalization constant. This is just the spatial part of the wave function.
We may now work with it alone, the only influence left from the spin is the “+”
in EQ. (2.9) chosen because we are examining the singlet state. The function of
Eq. (2.9) is that given originally by Heitler and London[8].

Perhaps a small digression is in order on the use of the term “centered” in the last
paragraph. When we write the ESE and its solutions, we use a single coordinate
system, which, of course, has one origin. Then the position of each of the particles,
ri for electrons and, for nuclei, is given by a vector from this common origin.
When determining theslstate of H (with an infinitely massive proton), one obtains
the result (in au)

1s(r) = % exp(—), (2.10)

wherer is the radial distance from the origin of this H atom problem, which is
where the proton is. If nucleus= ais located at, then 1g(1) is a shorthand for

N 1 I
1 = 19(f1 —Ta]) = N exp(—F1 —Tal), (2.11)

and we say that 1§1) is “centered at nucleus'.
In actuality it will be useful later to generalize the function of Eqg. (2.10) by
changing its size. We do this by introducing a scale factor in the exponent and write

1S(a, r) = \/gexp(—ozr). (2.12)

When we work out integrals for VB functions, we will normally do them in terms
of this version of the H-atom function. We may reclaim the real H-atom function
any time by settinge = 1.
Let us now investigate the normalization constantin Eq. (2.9). Direct substitution
yields
1= (M(1,2)1'y(1,2) (2.13)
= INP((12(1)11%(1))(1%(2)11%(2))

+ (1(1)11%(1)) (1s(2)11%(2))

+ (1s(1)11%(1)) (12(2)|11(2))

+ (1(1)11s(1)) (1s(2)11%(2))), (2.14)
1 The actual distance required here is quite large. Herring[26] has shown that there are subtle effects due to

exchange that modify the wave functions at even quite large distances. In addition, we are ignoring dispersion
forces.
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where we have written out all of the terms. The function in Eq. (2.10) is
normalized, so

(1sa(1)11sa(1)) = (1(2)|1s6(2)), (2.15)
= (1s5(1)I1(1)), (2.16)
= (1(2)|15a(2)), (2.17)
=1 (2.18)

The other four integrals are also equal to one another, and this is a function of the
distance R, between the two atoms called the overlap intedséR). The overlap
integral is an elementary integral in the appropriate coordinate system, confocal
ellipsoidal-hyperboloidal coordinates[27]. In terms of the function of Eq. (2.12) it
has the form

S(w) = (1 + w + w?/3) expw), (2.19)
w=aR, (2.20)

and we see that the normalization constant-ofl, 2) is
N =[2(1+ ] Y2 (2.21)

We may now substitute) (1, 2) into the Rayleigh quotient and obtain an estimate
of the total energy,

E(R) = ("'v(L 2)IHI'¥ (L, 2)) = Eo(R), (2.22)

whereEg is the true ground state electronic energy fer Fhis expression involves

four new integrals that also can be evaluated in confocal ellipsoidal-hyperboloidal
coordinates. In this case all are not so elementary, involving, as they do, expan-
sions in Legendre functions. The final energy expressior is (L in all of the
integrals)

J1(R) + S(R)ky(R) n j2+k 1

E=2h-2 11 SR 1+S(R)2+§’ (2.23)
where

h=a2/2-a, (2.24)
ji=-[1-@1+we>|/R, (2.25)
ki=—a(l+ w)e™™, (2.26)
jo=[1—(1+ 11w/8 + 3w?/4+ w3/6)e"?"]/R, (2.27)

ko = {6[S(w)*(C + Inw) — S(—w)?E1(4w) + 2S(w) (—w)E1(2w)]
+ (25w /8 — 23w%/4 — 3w® — w*/3)e"?*}/(5R), (2.28)

l, =[(5/164+ w/8 4+ w?)e ™ — (5/16+ w/8)e**]/R. (2.29)
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Of these only the exchange integral of Eq. (2.28) is really troublesome to evaluate.
It is written in terms of the overlap integr&(w), the same function ofw,
S(—w) = (1 — w + w?/3)€”, the Euler constanC = 0.577 215664 901 532 86,

and the exponential integral

Ei(x) = /X h e—deV, (2.30)

which is discussed by Abramowitz and Stegun[28].

In our discussion we have merely given the expressions for the five integrals that
appear in the energy. Those interested in the problem of evaluation are referred to
Slater[27]. In practice, these expressions are neither very important nor useful. They
are essentially restricted to thescussion of this simplest case of the iHolecule
and a few other diatomic systems. The use of AOs written as sums of Gaussian
functions has become universal except for single-atom calculations. We, too, will
use the Gaussian scheme for most of this book. The present discussion, included
for historical reasons, is an exception.

2.3 Accuracy of the Heitler—London function

We are now in a position to compare our results with experiment. A grapliRf

given by Eq. (2.23) is shown as curve (e) in Fig. 2.1. As we see, it is qualitatively
correct, showing the expected behavior of having a minimum with the energy rising
to infinity at shorter distances and reaching a finite asymptote for Rrgaues.
Nevertheless, it misses 34% of the binding energy (comparing with curve (a) of
Fig. 2.1), a significant fraction, and its minimum is clearly at too large a bond
distancée

2.4 Extensions to the simple Heitler-London treatment

In the last section, our calculation used only the function of Eq. (2.9), what is
now called the “covalent” bonding function. According to our discussion of linear
variation functions, we should see an improvement in the energy if we perform a
two-state calculation that also includes tbmic function,

“1(1,2) = N[1s(1)18(2) + 19(1)19,(2)]. (2.31)

When this is done we obtain the curve labeled (d) in Fig. 2.1, which, we see,
represents a small improvement in the energy.

2 The quantity we have calculated here is appropriately compar@i,tthe bond energy from the bottom of
the curve. This differs from the experimental bond eneByy, by the amount of energy due to the zero point
motion of the vibration. There is no vibration in our system, since the nuclei are infinitely massive. We use the
theoretical result for comparison, since it is today considered more accurate than experimental numbers.
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Figure 2.1. Energies of Hor various calculations using the H-atds orbital functions;

(b) covalent+ ionic, scaled; (c) covalent only, scaled; (d) covalgnionic, unscaled;

(e) covalent only, unscaled. (a) labels the curve for the accurate function due to Kolos and
Wolniewicz[31]. This is included for comparison purposes.

A much largerimprovementis obtained if we follow the suggestions of Wang[29]
and Weinbaum[30] and use the'(l) of Eq. (2.12), scaling thesIH function at
each internuclear distance to give the minimum energy according to the variation
theorem. In Fig. 2.1 the covalent-only energy is labeled (c) and the two-state energy
is labeled (b). There is now more difference between the one- and two-state energies
and the better binding energy is all but 15% of the tét@he scaling factory,
shows a smooth rise fromyl at large distances to a value near 1.2 at the energy
minimum.

Rhetorically, we might ask, what is it about the ionic function that produces
the energy lowering, and just how does it differ from the covalent function? First,
we note that the normalization constants for the two functions are the same, and,
indeed, they represent exactly the same charge density. Nevertheless, they differ in
their two-electron propertie$yc (adding a subscrig to indicate covalent) gives
a higher probability that the electrons be far from one another, wijilegives

3 Perhaps we should note that in this relatively simple case, we will approach the binding energy from below as
we improve the wave function. This is by no means guaranteed in more complicated systems where both the
equilibrium and asymptotic wave functions will be approximate. One of the most important problems of bond
energy calculations is to have a “balanced” treatment. This happens if the accuracies at the equilibrium and
asymptotic geometries are sufficiently high to give an accurate difference. More realistically in larger systems,
one must have any errors at the two geometries sufficiently close to one another to obtain a useful value of the
difference. We will take up this question again later.
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just the opposite. This is only true, however, if the electrons are close to one or the
other of the nuclei. If both of the electrons are near the mid-point of the bond, the
two functions have nearly the same value. In fact, the overlap between these two
functions is quite close to 1, indicating they are rather similar. At the equilibrium
distance the basic orbital overlap from Eq. (2.19) is

S=(14|1s,) = 0.658 88. (2.32)
A simple calculation leads to
A= tyc|ty) = 25 _0.91886 (2.33)
1+ &

(We consider these relations further below.) The covalent function has been char-
acterized by many workers as “overcorrelating” the two electrons in a bond.
Presumably, mixing in a bit of the ionic function ameliorates the overage, but
this does not really answer the questions at the beginning of this paragraph. We
take up these questions more fully in the next section, where we discuss physical
reasons for the stability of H

At the calculated energy minimum (optimum the total wave function is found
to be

¥ = 0.801981 ¢ + 0.211 7024y, . (2.34)

The relative values of the coefficients indicate that the variation theorem thinks
better of the covalent function, but the other appears fairly high at first glance.
If, however, we apply the EGSO process described in Section 1.4.2, we obtain
0.996 50'yc + 0.083 5411p|’ ,where, of course, the covalent function is unchanged,
butly| is the new ionic function orthogonal tg/c. On the basis of this calculation
we conclude that the the covalent character in the wave functiond9g®0% =
0.993 (99.3%) of the total wave function, and the ionic character is only 0.7%.
Further insight into this situation can be gained by examining Fig. 2.2, where a
geometric representation of the basis vectors and the eigenfunction is given. The
overlap integral is the inner product of the two vectors (basis functions) and is the
cosine of the angle between them. Since arcapst 23.24, some care was taken
with Fig. 2.2 so that the angle between the vectors representing the covalent and
ionic basis functions is close to this value. One conclusion to be drawn is that these
two vectors point, to a considerable extent, in the same direction. The two smaller
segments labeled (a) and (b) show how the eigenfunction Eq. (2.34) is actually put
together from its two components. Now it is seen that the relatively large coefficient
of 1y, is required because it is poor in “purely ionic” character, rather than because
the eigenvector is in a considerably different direction from that of the covalent
basis function.
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= Covalent
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Figure 2.2. A geometric representation of functions feiirterms of vectors foR = Req.
The small vectors labeled (a) and (b) are, respectively, the covalent and ionic components of
the eigenvector. The vectors with dashed lines are the symmetrically orthogonalized basis
functions for this case.

It is important to realize that the above geometric representation of the H
Hilbert space functions is more than formal. The overlap integral of two normalized
functions is a real measure of their closeness, as may be seen from

(v = M) |(fwe — ) = 2(1— A), (2.35)

and, if the two functions were exactly the samewould be 1. As pointed out
above,A is a dependent upa®, the orbital overlap. Figure 2.3 shows the relation
between these two quantities for the possible values of

In addition, in Fig. 2.2 we have plotted with dashed lines the symmetrically
orthogonalized basis functions in this treatment. It is simple to verify that

(*yc — S'y [y — Styc) =0, (2.36)

whereSis the orbital overlap. Therefore, the vectors given in Fig. 2.2 are just the
normalized versions of those in Eq. (2.36). Since they must be at right angles, they
must move out 33.3&rom the vector they are supposed to approximate. Thus, the
real basis functions are closer together than their orthogonalized approximations
are to the functions they are to represent. Clearly, writing the eigenfunction in
terms of the two symmetrically orthogonalized basis functions will require nearly
equal coefficients, a situation giving a very overblown view of the importance of
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Figure 2.3. The relation between the orbital and covalent—ionic function overlaps.

the “ionic” component of the eigenfunctidrSince cos 30= /3,2, this situation
will be the same for any pair of vectors wigh> +/3/2. Only wherS « +/3/2, is it
likely that the symmetrical orthogonalization will, in the two-vector case, produce
coefficients that are qualitatively useful.

Another interesting conclusion can be drawn from Fig. 2.2. The linear combina-
tion of AOs-molecular orbital (LCAO-MO) function for ks

Yo = 0.51046 yc + '), (2.37)

and, although it has not been shown in the figure to reduce crowding, the vector
corresponding tay o would appear halfway between the two fgrc andy, . It
is thus only a little farther from the optimum eigenfunction thag alone.

2.5 Why is the H, molecule stable?

Our discussion so far has not touched upon the origin of the stability of the H
molecule. Reading from the articles of the early workers, one obtains the impression
that most of them attributed the stability to “resonance” between ¢f@ il s,(2)

form of the wave function and thes](2)1s,(1) form. This phenomenon was new

to physicists and chemists at the time and was frequently invoked in “explaining”
guantum effects. Today’s workers prefer explanations that use classical language,

4 Although the function is more complicated, this is actually what happened in the third column of Table 1.1,
where the first two entries are nearly equal compared to those in other columns.
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insofar as possible, and attempt to separate the two styles of description to see as
clearly as possible just where the quantum effects are.

2.5.1 Electrostatic interactions

Equation (2.23) is not well adapted to looking at the nature of the bonding. We
rearrange it so that we see the terms that decrease the energy beyond that of two H
atoms. This gives
J(R) + K(R)
1+ T(R)
Here Ey is the energy of a normal hydrogen atod(R), K(R), andT(R) were
called by Heitler and London the Coulomb integral, the exchange integral, and
the overlap integral, respectively. The reader should perhaps be cautioned that the
terms “Coulomb”, “exchange”, and “overlap” integrals have been used by many
other workers in ways that differ from that initiated by Heitler and London. In the
present section we adhere to their original definitions, as follows:

E(R) = 2Ey + (2.38)

J(R) = (1sa(1)1(2)IV (1. 2)|18a(1)1(2)). (2.39)
K(R) = (1sa(1)1(2)IV (1, 2)I1(1)1sa(2)). (2.40)
T(R) = (1sa(1)15(2)| 1p(1) 1sa(2)), (2.41)

= (1(1)|15(1))%,
and
V(1,2)= _l/rza o l/flb + l/flz + 1/Rab' (2.42)

These equations are obtained by assigning electron 1 to paotord 2 tob, so
that the kinetic energy terms and the Coulomb attraction terﬂy‘@a — l/r2b give
rise to the Ey term in Eq. (2.38)V(1, 2) in Eq. (2.42) is then that part of the
Hamiltonian that goes to zero for the atoms at long distances. It is seen to consist of
two attraction terms and two repulsion terms. As observed by Heitler and London,
the bonding in the Bmolecule arises from the way these terms balance idJthe
andK integrals. We show a graph of these integrals in Fig. 2.4. Before continuing,
we discuss modifications of Eq. (2.38) when scalgdrbitals are used.

With the 18’ function of Eq. (2.12), we obtain

J(@R) + K(«¢R)
1+ T(@R)
which reduces to the energy expression of Eq. (2.38) whenl. The changes

brought by including the scale factor are only quantitative in nature and leave the
qualitative conclusions unmodified.

E(x, R) = 2E4 + (@ — 1)* + « , (2.43)
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Figure 2.4. The relative sizes of tl€R) andK (R) integrals.

Itisimportant to understand why i R) andK (R) integrals have the sizes they
do. We consided (R) first. As we have seen from Eqg. (2.42)(1, 2) is the sum of
four different Coulombic terms from the Hamiltonian. If these are substituted into
Eq. (2.39), we obtain

J(R) = 2j1(R) + j2(R) + 1/R,
j1(R) = (1] — 1/rplls) = (1] — 1/rallsy),
j2(R) = (12:(1)15,(2)[1/r1211s(1)15(2)).

The quantityj;(R) is seen to be the energy of Coulombic attraction between a point
charge and a spherical charge distributipiR) is the energy of Coulombic repul-
sion between two spherical charge distributions, arilis the energy of repulsion
between two point charged(R) is thus the difference between two attractive and
two repulsive terms that cancel to a considerable extent. The magrifuitie
chargesis 1in every case. This is shown in Fig. 2.5, where we see that the resulting
difference is only a few percent of the magnitudes of the individual terms.

This is to be contrasted with the situation for the exchange integral. In this case
we have

K(R) = 2ky(R)S(R) + k2(R) + S(R)?/R,

ki(R) = (1| — 1/rp|1s) = (1| — 1/rallsy),
ko(R) = (12(1)1%(2)[1/r12/1s(2)15,(1)).
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Figure 2.5. Comparison of the sizesjgf+ 1/R and—2j; that comprise the positive and
negative terms in the Coulomb integral.

The magnitude of the charge in the overlap distributicnl4,, is S(R), and here

again the overall result is the difference between the energies of attractive and

repulsive terms involving the same sized charges of different shaped distributions.

The values are shown in Fig. 2.6, where we see that now there is a considerably
greater difference between the attractive and repulsive terms. This leads to a value
of about 20% of the magnitude of the individual terms.

These values fal (R) andK (R) may be rationalized in purely electrostatic terms
involving charge distributions of various sizes and sh&fe®m the point of view
of electrostatics])(R) is the interaction of points and spherical charge distributions.
The well-known effect, where the interaction of a point and spherical charge at a
distanceR is due only to the portion of the charge inside a sphere of reiljlsads
to an exponential fall-offl (R), asR increases.

The situation is not so simple witK (R). The overlap charge distribution is
shown in Fig. 2.7 and is far from spherical. The upshot of the differences is that the
ko(R) integral is theself-energyof the overlap distribution and is more dependent
upon its charge than upon its size. In addition, at any distance therdicRiha
portion of the distribution that surrounds the point charge, and, again, the distance
dependence is decreased. The overall effect is thus that shown in Fig. 2.4.

5 |t should not be thought that the result{ R)| <« |K (R)| is peculiar to the 4 orbital shape. It is fairly easy to
show that a single spherical Gaussian orbital in the place of $Heals to a qualitatively similar result. In
addition, twos phybrid orbitals, oriented toward one another, show the effect, although compared with spherical
orbitals, the disparity betweehandK is reduced.
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Figure 2.7. The overlap charge distribution when the H-H distance is near the molecular
equilibrium value. We show an altitude plot of the value onsthe plane.

We have not yet spoken of the effect of optimizing the scale factor in Eq. (2.43).
Wang[29] showed, for the singlet state, that it varies from Rat co to about
1.17 at the equilibrium separation. Since bdtandK have relatively small slopes
near the equilibrium distance, the principal effect is to increase the potential energy
portion of the energy by about 17%. The{ 1)? term increases by only 3%. Thus
the qualitative picture of the bond is not changed by this refinement.
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2.5.2 Kinetic energy effects

When we go beyond the simple covalent treatment and include an ionic function in
the Heitler—London treatment, we obtain a further lowering of the calculated energy.
Atfirst glance, perhaps this is surprising, since the ionic function has more electron
repulsion than the covalent. Although we saw in Section 1.3.2 that any additional
linear variation term must lower the energy, that does not give any physical picture
of the process. We will now give a detailed analysis of how the lowering comes

about and its physical origin.

In the previous section we examined the variational result of the two-term wave
function consisting of the covalent and ionic functions. This producesx& 2
Hamiltonian, which may be decomposed into kinetic energy, nuclear attraction,
and electron repulsion terms. Each of these operators produces2anzatrix.
Along with the overlap matrix these are

1 Sc T Tic
|:&| 1 ] |:TCI TCC]
V|| V|C GII G|Cj|
Vh = . Ge= .
n |:VC| VCC:| € |:GCI GCC

As we discussed above, the two functions have the same charge dearsityhis
implies thatT,; = Tecc andV,, = Vcc, but we expecG,, > Gece.
The normalization of the wave function requires

1= C|2+ZS|CC|CC +C(2;. (2.44)

Two similar expressions give us the expectation values amdV,,
(T) = C¥Tyy + 2T,cCiCc + CéTcc, (2.45)
(Vn) = C2V}y + 2V cC,Cc + C&Vcc. (2.46)

Multiplying Eq. (2.44) byTcc andVcc in turn and subtracting the result from the
corresponding Eq. (2.45) or Eq. (2.46), we arrive at the equations

(T) = Tec = 2(Tic — TeeSc)CiCe, (2.47)
(Vn) = Vec = 2(Vic — VeeSce)CiCe, (2.48)

and we see that the differences depend on how the off-diagonal matrix elements
compare to the overlap times the diagonal elements. A similar expressiGq i®r
more complicated:

(Ge) — Gee = 2(Gic — GeeSc)CiCe + (G — Gee)CE. (2.49)

6 They have the same first order density matrices.
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Table 2.1 Numerical values for overlap, kinetic energy, nuclear attraction,
and electron repulsion matrix elements in the two-state calculation.

S T \Y G
Il 1.0 1.1468141 —3.5841346 0.7056100
Cl 0.9332216 0.9540814 —3.3228817 0.6003137
CcC 1.0 11468141 —3.584 1346 0.5840973

The numerical values of the matrix elementsRoe R, are shownin Table 2.1
Putting in the numbers we see thBt — TccSc = —0.116 15, and, therefore,
the kinetic energy decreases as more of the ionic function is mixed in with the
covalent. The nuclear attraction term changes in the opposite direction, but by
only about one fifth as muchN,c — VecSc = 0.021 910. The magnitudes of the
numbers in theG column are generally smaller than in the others and we have
Gic — GeeSc =0.055221 ands); — Gee = 0.121513. Since&, is not very
large, the squared term in EqQ. (2.49) is not very importantCAgrows from zero
the decrease in the energy is dominated by the kinetic energy until the squared term
in Eq. (2.49) can no longer be ignored.

Therefore, the principal role of the inclusion of the ionic term in the wave function
is the reduction of the kinetic energy from the value in the purely covalent wave
function. Thus, this is the delocalization effect alluded to above. We saw in the last
section that the bonding indtould be attributed principally to the much larger
size of the exchange integral compared to the Coulomb integral. Since the electrical
effects are contained in the covalent function, they may be considered a first order
effect. The smaller added stabilization due to the delocalization when ionic terms
are included is of higher order in VB wave functions.

We have gone into some detail in discussing the Heitler—London treatment of
H,, because of our conviction that it is important to understand the details of the
various contributions to the energy. Our conclusion is that the bonding isdtlie
primarily to the exchange effect caused by the combination of the Pauli exclusion
principle and the required singlet state. The peculiar shape of the overlap distribution
causes the exchange effect to dominate. Early texts (see, e.g., Ref. [1]) frequently
emphasized theesonancebetween the direct and exchange terms, but this is
ultimately due to the singlet state and Pauli principle. Those more familiar with
the language of the molecular orbital (MO) picture of bonding may be surprised
that the concept oflelocalization energyloes not arise here. That effect would
occur in the VB treatment only if ionic terms were included. We thus conclude that
delocalization is less important than the exchange attraction in bonding.
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2.6 Electron correlation

We have pushed this basis to its limit. In fact, it has a basic defect that does not
allow a closer approach to the correct answer. The electrons repel each other, and
the variation theorem tries to arrange that they not be too close together on the
average. This type of effect is called electron correlation, i.e., if the electrons stay
away from each other to some extent, their motion is said to be correlated. This
calculation does produce some correlation, since we saw that the covalent function
tends to keep the electrons apart. This is, however, only in a direction parallel to the
bond. When the molecule forms there is also the possibility for angular correlation
around the bond direction. Our simple basis makes no provision for this at all, and
a significant fraction of the remaining discrepancy is due to this failing. In addition,
Rosen[32] addeg, AOs to each center to produce polarization. These, in addition
to p, orbitals, will provide more correlation of the type important when the atoms
are close as well as correlation of the type generally called van der Waal's forces.
We will correct some of these defects in the next section.

2.7 Gaussian AO bases

We now turn to considering calculations with the AOs represented by sums
of Gaussians. This approach was pioneered by Boys[33], and is used almost
universally today. We will settle on a particular basis and investigate its use for
a number of different VB-like calculations.

A double¢ + polarization basis

We define a ten-function AO basis for thg Molecule that has two differesttype
orbitals and onep-type set on each H atom. It will be recalled that Weinbaum
allowed the scale factor of thes brbital to adjust at each internuclear distance.
Using two “different sized’s-type orbitals on each center accomplishes a similar
effect by allowing the variation theorem to “choose” the amount of each in the
mixture. Our orbitals are shown in Table 2.2. T®type orbitals are a split version

of the Huzinaga 6-Gaussian H function and ixype orbitals are adjusted to
optimize the energy at the minimum. It will be observed thatphend p,, scale
factors are different. We will present an interpretation of this below.

2.8 A full MCVB calculation

The author and his students have used the term multiconfiguration valence bond
(MCVB) to describe a linear variation calculation involving more than one VB
structure (function). This practice will be continued in the present book. Other
terms have been used that mean essentially the same thing[34]. We defer a fuller
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Table 2.2 A double-zeta plus polarization (DZP) basis fos ehalculations.

1s 1s Po Pr

exp c exp c exp c exp c

68.1600 0.00255 0.082217 0.24260 0.9025 1.0 0.5625 1.0
10.2465 0.01938

2.346 48 0.09280

0.673320 0.29430

0.224660 0.49221
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Figure 2.8. A global view of the adiabatic energies of thetblecule with the DZP basis.

discussion of these terms until Chapter 7. When the MCVB calculation consists
of all of the n-electron functions the basis can support, the treatment is said to
befull.’

In the present case we have ten AO basis functions, and these provide a set
of 55 symmetric (singlet) spatial functions. Only 27 of these, however, can enter
into functions satisfying the spatial symmethi;ar, of the ground state of the
H, molecule. Indeed, there are only 14 independent linear combinations for this
subspace from the total, and, working in this subspace, the linear variation matrices
are only 14x 14. We show the energy for this basis as the lowest energy curve in
Fig. 2.8. We will discuss the other curves in this figure later.

7 Compare with the term “full CI” used in the MO regime.
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Table 2.3Comparison of MCVB coefficients for orthogonalized AOs and “raw”
AOs at the equilibrium internuclear distance. The ordering is determined
by the orthogonalized AOs.

No. Type Symmetry function Orth. AOs Raw AOs
1 C (1s5 1s) 0.74368190 076270395
2 | (18 1) + (15 1sa) 0.144 20130 064562 30
3 C (Isa 1) + (18, 1sy) —0.10407787  —0.036 49999
4 C (1s, 15)) 0.050698 84 M65531 68
5 | (1<, 1)) + (1) 1s)) —0.03630953  —0.06927156
6 C (Pza 150) — (152 Pab) —0.02512735  —0.03423223
7 I (Pxb Pxb) + (Pyb Pyb)

+ (Pxa Pxa) + (Pya Pya) —0.02470292  —0.02470292

8 | (Pza Pza) + (Pzb Pzb) —0.01842072 —0.01842085
9 | (18], pzb) — (1S} Pza) 0.016 54402 ®2611673
10 | (1s: 1s) + (1 1)) —0.01562366 Q13765060
11 | (15 Pra) — (10 Pzb) —0.01197350 D09 689 91
12 C (18, pzb) — (Pza 1s)) —0.011494 85 09 13060
13 C (Pxa Pxb) + (Pya Pyb) —0.00719805  —0.007 19805
14 C (Pza Pab) —0.00666028  —0.006 66048

2.8.1 Two different AO bases

The Gaussian group functions given in Table 2.2 could be used in “raw” form for our
calculation, or we could devise two linear combinations of the raw functions that
are orthogonal. The most natural choice for the latter would be a linear combination
that is the best Hdorbital and the function orthogonal to it. It should perhaps be
emphasized that the energies are identical for the two calculations, except for minor
numerical rounding differences. We show the MCVB coefficients for each of these
in Table 2.3. Thep-type orbitals are already orthogonal to #ype and to each
other, of course. It will be observed that we orthogonalize only on the same center,
not between centers. This is, of course, $ivee qua norof VB methods.

Examination of the coefficients shows that, although the numbers are not greatly
different, there are some significant equalities and differences between the two sets.
Considering the equalities first, we note that this occurs for functions 7 and 13. These
contribute to angular correlation around the internuclear axis and are completely
orthogonal to all of the other functions. This is the reason that the coefficients are
the same for the two bases.

At any internuclear separation, the overlap of the satwpe orbitals at the same
center is

(1s,]1s,) = 0.70909 (2.50)

which is fairly large. This produces the greatest difference between the two sets,
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Table 2.4Comparison of EGSO weights for orthogonalized AOs and “raw”
AOs at the equilibrium internuclear distance. The ordering

is determined by the orthogonalized AOs.

No Type Symmetry function Orth. AOs Raw AOs
1 C (1s: 1s) 0.94619561 0.980762 89
10 I (1s: 18) + (1s, 1) 0.043836 16 0.002 08027
7 [ (Pxb Pxb) + (Pyb Pyb)
+ (Pxa Pxa) + (Pya Pya) 0.004 19901 0.004 19901
3 C (1sa 1) +(1s, 1s) 0.002147 20 a
11 I (184 pza) — (1 Pzbv) 0.00207171 0.009 68991
2 I (1 1) + (1s 1s9) 0.000 662 56 a
12 cC (38} Pzv) — (Pza 19) a 0.00305299
5 I (1s) 1s) + (15, 1) a 0.000654 57

a8 These and the functions not listed contribute < 0.01%.

functions 2 and 10. For the orthogonalized set, theabsl 1§ are good approxima-

tions to the H% orbital and are important in the ionic function. With the raw AOs
the most important ionic term becomes function 10, which mixes the two types.
The fact that the function 1 coefficient is larger for the raw AOs than for the other
basis should not be considered too important. There is a rather larger amount of
overlag for the former basis.

We now compare the EGSO weights of the important functions between the
orthogonalized and raw bases. These are shown in Table 2.4. At first glance, in
looking at the covalent function, one might be surprised at how much larger the
weight is for the raw orbital. A little reflection will show, however, that this is to be
expected and is related to the way these calculations accomplish the effects of orbital
scaling. It will be recalled that the orbital scale factor in Eq. (2.12) was optimally
~1.2 at the equilibrium internuclear separation in the simple calculation. The raw
AO called 1sin Table 2.4 does not have the long range component contained in
the optimized AO. Therefore, the raw AO is “tighter” and the closer of the two to
the AO the molecule desires Rty On the other hand the orthogonalizesiAO
is the function appropriate for long range. The “ionic” functiony(1s)) + (1s, 15)),
which contains both short and long range orthogonalized AOs, compensates for
the too diffuse character of the orthogonalizexd \e note that the sum of the
first two weights is 0.990 031 77 for orthogonalized AOs and 0.982 843 16 for raw
AOs. These are not too far from one another and indicate a similar representation
of the total wave function.

8 This is measured by the determinant ofx144 MCVB overlap matrix. The smaller this is, the larger are all of
the coefficients of the VB functions.
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Table 2.5Comparison of MCVB coefficients for orthogonalized
AOs and raw AOs at the internuclear distance of 20 bohr.

No. Type Symmetry function Orth. AOs Raw AOs
1 C (1s: 1s) 1.00000000 0.66134676
2 cC (1s2 18)) +(1s; 1s,)  0.00000000  0.197 29367
3 c (1s] 1s) 0.00000000 0.058856 86

Table 2.6 Comparison of EGSO weights for orthogonalized
and raw AOs at an internuclear distance of 20 bohr.

No. Type Symmetry function Orth. AOs Raw AOs

1 C (Isls) 1.00000000  0.94232944
2 C  (Is;15)+(1s,1s) 0.00000000  0.056 81421
3 C (IS, 19) 0.00000000  0.000 856 35

When we make these same comparisons for an internuclear separation of
20 bohr, we obtain the coefficients shown in Table 2.5 and the weights shown in
Table 2.6. Now the orthogonalized AOs give the asymptotic function with one con-
figuration, while it requires three for the raw AOs. The energies are the same, of
course. The EGSO weights imply the same situation. A little reflection will show
that the three terms in the raw VB function are just those required to reconstruct
the proper H$ orbital.

It should be clear that coefficients and weights in such calculations as these
depend on the exact arrangement of the basis, and that their interpretations also
depend upon how much physical or chemical significance can be associated with
individual basis functions.

2.8.2 Effect of eliminating various structures

As we stated above, there are 14 different symmetry functionsin the full MCVB with
the present basis we are discussing. It will be instructive to see how the adiabatic
energy curve changes as we eliminate these various functions in a fairly systematic
way. This is the source of the higher-energy curves in Fig. 2.8. We showed all of
them there in spite of the fact that they are not all easily distinguishable on that
scale, because that gives a better global view of how they change. We “blow up”
the region around the minimum and show this in Fig. 2.9 where the six lowest
ones are labeled (a)—(f). In addition, the Kolos and Wolniewicz curve is shown for
comparison and marked “K&W”.
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Figure 2.9. Adetailed view of the adiabatic energies of theldlecule with the DZP basis.

(a) This is the full calculation with all of the functions of Table 2.3.

(b) This has had functions 7 and 13 (see Table 2.3) removed. These give angular correlation
around the internuclear axis.

(c) This has had functions 4 and 5 eliminated (in addition to 7 and 13). This clearly does
not have much effect. @/can categorize different structures according to how many
electrons are in orbitals that might be considered “excited”. In this case all of the AOs
except the two H4 orbitals will be considered excited. Functions 7 and 13 are of a sort
we will call “double excitations” and do not contribute much to the energy.

(d) Now 6, 8, 9, 11, 12, and 14 have been eliminated. These are the configurations that
contain thep, AO. These are fairly important, it is seen.

(e) When we now eliminate 3 and 10 and we are left with only the covalent and ionic
configurations of the asymptotic Hfisnction.

(f) Thisis only function 1, the covalent one. Itis seen that the it&im contributes fairly
little at this level.

The energy increments from omitting selected basis functions are not additive,
thus, using the amount that the energy is raised by elimination as a measure of
the importance of various configurations is not a unique process, since the result
depends upon the order of elimination. Nevertheless, the previous exercise was
instructive.

Although one would not expect a good answer, we show one more calculation
with a limited basis — that is the KZionic” function by itself. It does not fall in
the region plotted in Fig. 2.9, but is shown in Fig. 2.8 where it is marked “lonic”.
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Table 2.7A TZ2P1[¥ basis for H calculations.

sS,s’ p, P d
exp’ c© exp o exp’ c¢

68.1600 0.00255 5.027243 0.09205 1.140046 1.0
10.2465 0.01938 1.190621 0.47406

2.346 48 0.09280

0.673320 0.29430 0.450098 0.57860

0.224660 0.49221
0.082217 0.24260

a Triple-zeta+ 2 p-functions+ 1 d-function.
b exp = exponential scale factor.
¢ ¢ = coefficient.

2.8.3 Accuracy of full MCVB calculation with 10 AOs

The full MCVB calculation gives the best answer we have obtained so far. Compared
to the Kolos and Wolniewicz result we now have 91.5% of the binding energy, but
the minimum is at 0.778 instead of 0.741 @most 5% too large. One must realize
that the difficulty here isot with the VB method, but, rather, with the underlying
AO basis. We are evaluating the energy for the full calculation, which would be
the same whether we are using the VB method, orthogonal MOs followed by a full
configuration interaction (CI), or some combinatfon.

2.8.4 Accuracy of full MCVB calculation with 28 AOs

It is instructive to increase the size of the AO basis to see where we get to in
calculating the binding energy of HThis is a so-called triple-basis with a split
p set and ad set on each center. It is shown in Table 2.7 and is based upon
the same six-function Huzinaga orbital as is used in the previous Gaussian basis,
Table 2.2. There are 406 singlet functions that can be made from this basis, but
only 128 of them can enter int’o?:ér molecular states, and these give 58 linearly
independenilzg+ functions. The &, 2s, 3s, 1p, and 2o orbitals we use are the
eigenfunctions of the H-atom Hamiltonian matrix in thes’, s”, p, andp’ group
function basis. There is only ortkfunction, and it needs no modification.

The results are considerably improved over the basis of Table 2.7. We now obtain
98.6% of the binding energy and the minimum is at 0.743WAich is only 0.3%

9 Itis perhaps not too difficult to see that a nonsingular linear transformation of the underlying AO basis produces a
nonsingular linear transformation of theelectron basis. Thus, th¢ andSmatrices imply the same eigenvalues,
although the coefficients in the sum giving the wave function will differ. Nevertheless, the actual wave function
for a given eigenvalue (nondegenerate ones, at least) will be the same.
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Table 2.8 EGSO weights (>0.001) for two bases.

10 AOs 28 AOs

1 (1s, 1s) 0.94619561(C) 0.947 33655(C) (1s: 1s)
2 (1s: 25) + (1, 29) 0.04383616(l) 0.03022893(1) $12s)+ (1g, 23)
3 0.01211946(C) & 3%)+ (1, 3%)
4 (Pxa Pxa) + (Pya Pya) (1pxa 1pxa) + (1Pya 1pya)

+ (pxb pxb) —+ (pyb pyb) 0.004 199 01(|) 0.003736 22(|) + (lpxb lpxb) —+ (l Pyb lpyb)
5 (1s: 29) + (2 1g) 0.002 147 20(C)
6 0.00231693(C) & 1pz) + (1 1pza)
7 (1sa Pza) + (1% Pab) 0.00207171(l)

Total 0.99844970 0.99573809 Total

too large. We could improve these results further, but for our purposes in discussing
VB theory this is not particularly pertinent. Rather, we compare the EGSO weights
of the two calculations to ascertain how much they change.

2.8.5 EGSO weights for 10 and 28 AO orthogonalized bases

In Table 2.8 we show a comparison of the EGSO weights for the two full MCVB
calculations we have made with orthogonalized Gaussian bases. These are quite
close to one another. We have only listed functions with weigh@001, and in
each case there are five.

We can interpret the various weights as follows.

1. Covalent The principal function in each case is the conventional Heitler-London co-
valent basis function with a weight very close to 95%.

2. lonic The function, in each case, with the next highest weight, 3—4%, is ionic and involves
a singleexcitation into the 8 AO. This contributes to adjusting the electron correlation
and also contributes to adjusting the size of the wave function along the lines of the
scale adjustment of the Weinbaum treatment. As we have shown, it also contributes to
delocalization.

3. Covalent This function at 1.2% appears only with the larger basis set involving, as it
does, the higher 3s-function. It will contribute to scaling.

4. lonic At ~0.4% the next function type appears in both sets and contributes to the angular
correlation around the internuclear line.

5. Covalent At ~0.2% the next function appears only with the smaller basis. It is the
counterpart of the 3govalent function with the larger basis, but is relatively less
important.

6. Covalent At ~0.2% this function contributes to polarization with the larger basis.

7. lonic Again, at ~0.2% this function contributes to polarization with the smaller
basis.
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These functions contribute over 99% of the total wave function in both cases. The
smaller value for the larger basis reflects the larger number of small contribution
basis functions in that case. Although the fairly large number of basis functions
that contribute with only minor weights have an important impact on lowering the
energy, the large weight of the covalent function indicates that the bond in;the H
molecule is just as chemists always describe it: a covalent bond.
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H, and delocalized orbitals

We now examine VB functions where the orbitals are allowed to take much more
general forms, but only one configuration is used. This more general form allows
the orbitals to range over more than one atomic center. As we shall see later, the
restriction to one configuration is appropriate only to two-electron systems, So
we must postpone the discussions of more configurations until we treat the more
advanced methods in Chapter 5.

3.1 Orthogonalized AOs

Before we examine the more general case, let us look at an unusual result due
to Slater. Earlier, in discussing solids Wannier[35] had shown how linear combi-
nations of the AOs could be made that rendered the functions orthogonal while
retaining a relatively large concentration on one center. Slater adapted this idea
to the H, molecule. In modern language this is just making a symmetric orthogo-
nalization (see Section 1.4.2) of the basis, which in this case is a Hls function
on each of two centers, 1s, and ls,. We are here again, following Slater, us-
ing the correct exponential functions of Eq. (2.10). The overlap matrix for this

basis is
= 1 S
S = |:S 1i| , (3.1)
and the inverse square root is
1 n 1 1 1
G172 _ 2J14+S  2J1—-S 2J/1+S8 2J/1-S (3.2)
B 1 1 1 1 ’ '

- +
2/T+S 2J/T—5 2J1+5 2J/1-35

47
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where S = (1s,|1s5), and the signs are appropriate for S > 0. This orthogonaliza-
tion gives us two new functions (see Eq. (1.48))

|A) = P|ls,) + Ql1sp), (3.3)
|B) = Qlls,) + P|lsp), (3.4)
where
P = : + : (3.5)
T 2J/1+S 2J1-8' '
1 1
0 (3.6)

T2J/I+S 2/I=S

We use these in a single Heitler—London covalent configuration,
Yo = A()B(2) + B(1)A(2),

and calculate the energy. When R — oo we obtain £ = —1 au, justas we should. At
R =0.741 10\, however, where we have seen that the energy should be a minimum,
we obtain £ = —0.6091 hartree, much higher than the correct value of —1.1744
hartree. The result for this orthogonalized basis, which represents not only no
binding but actual repulsion, could hardly be worse.

It is interesting to consider this function in terms of the covalent and ionic func-
tions of Chapter 2. If the |A) and |B) functions in terms of the basic AOs are
substituted into W,,,, and the result normalized, one sees that

V1482

\porth = 1 — SZ

(Ve — Sy,

where, as always, S is the orbital overlap. Thus, this is exactly the symmetrically
orthogonalized function closer to V¢ discussed above, and its vector representation
in Fig. 2.2 is clearly a considerable distance from the optimum eigenvector. Thus we
should not be surprised at the poor value for the variational energy corresponding
to W,

The early workers do not comment particularly on this result, but, in light of
present understanding, we may say that the symmetric orthogonalization gives very
close to the poorest possible linear combination for determining the lowest energy.
This results from the added kinetic energy of the orbitals produced by a node that is
not needed. Alternatively, one could say that the symmetric orthogonalization yields
antibonding orbitals where bonding orbitals are needed. This is a good example of
how the orthogonalization between different centers can have serious consequences
for obtaining good energies and wave functions. We shall see shortly that there are,
however, linear combinations determined in other ways that work quite well.
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3.2 Optimal delocalized orbitals

We now investigate orbitals that range over both centers with linear combinations
that minimize the calculated energy. For this simple two-electron system these may
all be viewed as extensions of the Coulson—Fisher approach we describe next. We
use the basis of Table 2.2 and compare these results with the appropriate full MCVB
calculations of Section 2.8.

3.2.1 The method of Coulson and Fisher[15]
The first calculation of the energy of H; for optimal delocalized orbitals used
A = ls, + Alsy, 3.7)
B = Als, + 1sp, 3.8)

and, using the “covalent” function, A(1) B(2) + B(1)A(2), in the Rayleigh quotient,
adjusted the value of A to minimize the energy. We will not duplicate this calculation
here, but bring this up, because the methods we will discuss are generalizations of
the Coulson-Fisher approach where we use in the orbitals all of the functions of
our basis with the appropriate symmetry.

3.2.2 Complementary orbitals
It will be observed that the Coulson—Fisher functions satisfy the relations
onA=B8B 3.9
and
onB = A, (3.10)

where oy, is the operation of D, that reflects the molecule end for end. If A and B
are also of o symmetry,' the “covalent” function A(1)B(2) + B(1)A(2) is of 12;
symmetry. Thus, the overall state symmetry is correct, although the orbitals do not
belong to a single irreducible representation. For our first calculation we take all of
the o-type AOs of the basis and form (the unnormalized)

A=1s,+als, + b2s, + c2sp + dp,a + epzp (3.11)
and

B = oA, (3.12)

! The reader should note carefully the two different uses of the symbol o here. One is a group operation, the other
the state designation of an orbital.
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Table 3.1. Energies of optimal orbital calculations.

Distance Complementary Unsymmetric
A orbitals orbitals Full MCVB
0.741 —1.143356 —1.147 368 —1.148 052
00 -1.0 -1.0 —-1.0

Orbital value

Figure 3.1. Altitude drawing of the A optimal complementary orbital for values in the x—z
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plane. The H nuclei are on the z-axis. The two vertical lines point at the nuclei.

where a, ..., e are the variation constants to be optimized.2 These orbitals are
inserted in the covalent function, and the Rayleigh quotient minimized with respect
to the variation parameters. We show the results for two internuclear distances in
fourth columns of Table 3.1 together with the calculation of the full

the second and

MCVB using the same AO basis, i.e., omitting the p, AOs.

It will be recalled by examining Table 2.3 that there are 12 independent o-AO-
only VB functions in the MCVB. Our complementary orbital function has only five
independent parameters, so it certainly cannot duplicate the MCVB energy, but it

reproduces 96.8% of the binding energy of the latter calculation.

We show a 3D altitude drawing of the amplitude of the A orbital in Fig. 3.1. It is
easily seen to be extended over both nuclei, and it is this property that produces in the
wave function the adjustment of the correlation and delocalization that is provided
by the ionic function in the linear variation treatment with the same AO basis.

We point out that these results are obtained without any “ionic” states in the wave
function and such are not needed. As we argued in Chapter 2, the principal role of
the ionic functions is to provide delocalization of the electrons when the molecule

2 'We note that we cannot introduce the p, AOs here and retain the ! 2;’ state symmetry.
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forms. Since the orbital is itself delocalized, the wave function requires nothing
further.

We also anticipate the discussion of Chapter 7 by pointing out that the wave
function we have obtained here is a simple version of Goddard’s generalized valence
bond (GGVB) or the spin coupled valence bond SCVB treatment of Gerratt, Cooper,
and Raimondi. The GGVB in general has orthogonality prescriptions that do not,
howeyver, arise in the two electron case.

3.2.3 Unsymmetric orbitals

Instead of using Eq. (3.12) we might use a B defined as
B =1ls,+a' ls, +b'2s), + ' 25, +d pp+ € paa. (3.13)

Of course, if this is used in A(1)B’(2) + B’(1)A(2), the result does not have the
correct symmetry, therefore we must use a projection operator to obtain the 12;
state. Defining A’ = 0, B’ and B = 0}, A, we have

1
S+ onl[A(1)B'(2) + B'()A(2)]
= %[A(I)B’(Z) + B'(1)A(2) + B(1)A’(2) + A'(1)B(2)], (3.14)

and when this ten-parameter function is optimized with the Rayleigh quotient we
obtain the results in the third column of Table 3.1 We now have 99.5% of the full
binding energy, which is a credible showing. These orbitals are visibly different
from the complementary optimal orbital as can be seen in the plots of A in Fig. 3.2

Orbital amplitude
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Figure 3.2. Altitude drawing of the A optimal unsymmetric orbital for values in the x—z
plane. The H nuclei are on the z-axis. The two vertical lines point at the nuclei.
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and A’ in Fig. 3.3. This A is more evenly distributed over the molecule, and A’ is

less so, being somewhat outside of the region between the nuclei.

The question might be asked: can angular correlation be included in an optimal
orbital treatment? The answer is yes, but it is somewhat troublesome in general
with infinite groups like D,;,. We merely need to generalize the trick we pulled to
obtain the wave function of Eq. (3.14). The projection operator there guarantees
the g (gerade) subscript on the state symmetry, ]E;. If we add p, orbitals to our
unsymmetric optimal orbitals we must also apply a projection operator to guarantee
the ¥ part of the state symmetry. The appropriate operator in general is then

1 2w
—(1 Cypdo,
471( +0h)/0 pd

where C, is a rotation about the z-axis of ¢ radians. This is not an operation
convenient to deal with on a digital computer. We will not pursue these ideas
further. As stated, such integral projection operators are troublesome to implement,
and, in particular, they are clearly not very useful if there is no symmetry, which is

true of most molecules.
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Three electrons in doublet states

In Chapter 5 we give an analysis of VB functions that is general for any number
of electrons. In order to motivate some of the considerations we discuss there
we first give a detailed example of the requirements when one is to construct
an antisymmetric doublet eigenfunction of the spin for a three-electron system.
Pauncz[36] has written a useful workbook on this subject.

We will first give a discussion of some results of general spin-operator algebra;
not much is needed. This is followed by a derivation of the requirements spatial
functions must satisfy. These are required even of the exact solution of the ESE. We
then discuss how the orbital approximation influences the wave functions. A short
qualitative discussion of the effects of dynamics upon the functions is also given.

4.1 Spin eigenfunctions

The total spin operator and operator for theomponent are

F=3+3+%, (4.1)
S=S1+S2+ Ss, (4.2)

where we see that both operators syenmetri¢ sums of operators for the three
identical electrons. Many treatments of spin discuss the raising and lowering oper-
ators for thez-component of the total spin[4]. These are symmetric operators we
symbolize as

St =S+is, (4.3)
for raising and

S =5-iS (4.4)

1 The termsymmetrids used in a variety of ways by mathematicians and in this book. The important point here
is that the term implies that for particles these spin operators commute with any permutatiarobfects.

53
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for lowering. With these, two alternative forms &t are possible:

=SS +S5(5+1), (4.5)
=SS + Sz(Sz - 1) (46)

These are quite useful for constructing spin eigenfunctions and are easily seen to
be true, not only for three electrons, but for

In Chapter 2 we usegl.,» to represent individual electron spin functions, but
we would now like to use a more efficient notation. Thus we taket[+] to
represent the product of threg = +1/2 spin functions, one for electron 1, one for
electron 2, and one for electron 3. As part of the significance of the symbol we
stipulate that thet or — signs refer to electrons 1, 2, and 3 in that order. Thus, in
the notation of Chapter 2, we have, for example,

[+ + =1 = n12(L)n1/2(2)n-1/2(3)- 4.7)
Familiar considerations show that there are all together eight diffefiert ],
they are all normalized and mutually orthogonal, and they form a complete basis
for spin functions of three electrons.
The significance of Egs. (4.5) and (4.6) is tlwety spin functiong with the
properties
St¢ =0 (4.8)
and
S¢ = Mso, (4.9)
is automatically also an eigenfunction of the total spin with eigenvsligéVis + 1).
Similarly, if ¢ satisfies
S¢=0 (4.10)
and
S¢ = Mso, (4.11)

it is automatically also an eigenfunction of the total spin with eigenvallie
(Ms—1).

We may use this to construct doublet eigenfunctions of the total spin for our three
electrons. Thus, consider

¢ =a[—++] +b[+ — +] +c[++ -], (4.12)
where, clearly, we havg,¢ = ¥,¢. Applying the operatoB* to this gives
St¢ =(@+b+o)+++]. (4.13)

According to our requirements, this must be zegpi to be an eigenfunction of the
total spin, therefore, we must hawe-{ b + ¢) = 0, since |+ + +] certainly is not
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zero. We have one (homogeneous) equation in three unknowns so there is more than
one solution —in fact, there are an infinite number of solutions. Nevertheless, all of
them may be written as linear combinations of (in this case) just two. We observe
that we can write three solutions of the fore b, ¢) = (1, —1,0), (1,0, —1), and
(0,1, —1), but that any one of these may be written as the difference of the other
two. Thus, there are only twimearly independensolutions among our three, and
anydoublet spin function for three electrons may be written as a linear combination
of these two.

When dealing with spin functions it is normally convenient to arrange the bases
to be orthonormal, and we obtain two functions,

1
240 = . _ _[—
(= \/6(2[++ 1-[+—+]1-[-++D (4.14)
and
1
2 —_—— J— J— J—
¢ = ﬁ([+ +] —[—+ +]). (4.15)

For simplicity we do not label these functions with thig value. Our work in VB
theory and solving the ESE seldom needs any but the principal spin function with
Ms = S. The S~ operator is always available should otiMg values be needed.

With the spin eigenfunctions of Egs. (4.14) and (4.15) we have an example of
the spin degeneracglluded to in Chapter 2. Unlike the single singlet function we
arrived at for two electrons in Section 2.1.1 we now obtain tWiriting out the
equations specifically,

R 261 = Yp(Yp + 1)1, (4.16)
R 29, = V(Y + 1), (4.17)

we see that both of the functions have the same eigenvalue, and it is degenerate. In
Chapter 5 we shall see that the degree of this degeneracy is related to the sizes of
irreducible representations of the symmetric groups. We defer further discussion
until that place.

4.2 Requirements of spatial functions

We now have a significant difference from the case of two electrons in a singlet
state, namely, we have two spin functions to combine with spatial functions for a
solution to the ESE rather than only one. For a doublet three-electron system our
general solution must be

W = 2y 21 + 22 %o, (4.18)

2 Four really, considering that eaéty, and2¢, has bottms = +%, forms, also.
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and, apparently, we have two spatial functions to determine. We have not yet applied
the antisymmetry requirement, however. With this it will develop #atand?y
are not really independent and only one need be determined.
We must now investigate the effect of the binary interchange operdgren
the?¢; functions. We suppress tRespin-label superscript for these considerations.
It is straightforward to determine

Pio¢p1 = @1, (4.19)
Piogo = —¢o, (4.20)
Pisgr = (2[— ++] — [+ —+] - [+ +-])/v6

_ —%gbl - ggd)z, (4.21)
Pusgz = ([+ — +] — [+ + —])/V?2

= _?(bl + %d’z, (4.22)
Paspr = (2[+ —+] — [+ + -] - [- ++])/V6

= —%¢1 + ?@, (4.23)
Pasgo = ([+ + —]1 — [— + +])/v/2

I 20

and the results of applying higher permutations may be determined from these.
We now apply the?; operators tol and require the results to be antisymmetric.
Using the fact that the; are linearly independent, fd?;», we obtain

PV = —W = (Poyr1)é1 — (Pray2) o,
Proy1 = —, (4.25)
Pioy2 = o, (4.26)

and the others in a similar way give

1 3

Py = élﬁl + \/7_1#2, (4.27)
3 1

Prayo = §W1 - Elﬁz, (4.28)
1 3

Pasy1 = Elﬁl - \/7—1#2, (4.29)

3 1
Pogyro = _§W1 — élﬂz» (4.30)
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and, finally,
P12Pi3yy = —%wl + ?Wz, (4.31)
P12Pi3yr2 = —\/7:_%101 - %Wz, (4.32)
P12P2syr1 = —%1//1 - \/7\3’1#2, (4.33)
P12P2srz = ?wl - %I//z- (4.34)

With all of these relations it is not surprising that we can find several that express
Y, in terms of sums of permuteg functions. An example is

Y2 = (P13 — Pa)y1/V/3. (4.35)

This allows us to obtain some information about the normalization ofythe
functions, since

(Y2l ¥2) = = (P13 — P2a)¥1|(Piz — Pag)yra),

OJH

1

:—3 (Y1|(1 — P13Pog — PasPiz+ 1)y1),
1

:—3 (Y11(21 — P12P13 — PiaPag)yr),

= (YY), (4.36)

where we have used Egs. (4.31) and (433)us, the spin eigenfunction—
antisymmetry conditions require thdt andy, have the same normalization,
whatever itis. Furthermore, tH&; operators commute with the Hamiltonian of the
ESE, and an argument similar to that leading to Eq. (4.36) yields

(2|H|¥2) = (Ya|H 1) (4.37)

These considerations may now be used to simplify the Rayleigh quotie¥rt for
and we see that

(WIHW)  (dalH Y1) + (Yol H|Y2)

= : (4.38)
(VW) (Y1lvr1) + (Y2lyr2)
_ (Wl“‘”lﬂl)’ (4.39)
(Y1l¥r1)

and contrary to what appeared might be necessary above, we need to determine
only one function to obtain the energy. We emphasize that Eq. (4.39) is true even

3 We remind the reader that all permutations are unitary operators. Since binary permutations are equal to their
own inverses, they are also Hermitian. Products of commuting binaries are also Hermitian.
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for the exact solution to the ESE. The constraints that our spin eigenfunction—
antisymmetry conditions impose on the wave function require ¢handy, be
closely related, and, if a method is available for obtaining v, may then be
determined using?; operators.

If we wish to apply the variation theoremiaq, we still need the condition it must
satisfy. Reflecting back upon the two-electron systems, we see that the requirement
of symmetry for singlet functions could have been written

20+ P 2=ty (12) (4.40)

Examining our previous results we see that a corresponding relation for the three-
electron case may be constructed:

1
§(2| — Pi2Pi3 — P1aP23) 2y (123) = %y(123) (4.41)

This has the correct form: it is Hermitian and idempotent, but that it is actually
correct will be more easily ascertained after our general discussion of the next
chapter.

4.3 Orbital approximation

We now specialize outy-function, considering it to be a linear combination of
products of only three independent orbitals. At the outset wealse andc to
representthree different functions that are to be used as orbitals. To keep the notation
from becoming too cumbersome, we use an adaptation of tHesymbols above.

Thus we let

[abd = a(1)b(2)c(3), (4.42)
[bca] = b(1)c(2)a(3), (4.43)

etc. There are, of course, six such functions, since there are six permutations of
three objects.

Applying the doublet projector in Eg. (4.41) to each of the six product functions,
we obtain the six linear combinations,

wy = {2[abd — [bca] — [cal]}/3, (4.44)
wy = {2[bca — [cal] — [abd}/3, (4.45)
w3z = {2[cab] — [abd — [bca]}/3, (4.46)
wq = {2[ach] — [cba] — [bad}/3, (4.47)

ws = {2[cba] — [bad — [ach]}/3, (4.48)
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and
we = {2[bad — [ach — [cba]}/3. (4.49)
It is easy to see that these are not all linearly independent: in fact,
w1+ wr+w3=0 (4.50)
and
wa + ws + wg = 0. (4.51)

There are, therefore, apparently four functions based upon these orbitals to be
used for doublet states. Again, there seems to be too many, but we now show how
these are to be used. To proceed, we dispensewittind wg, since they are not
needed.

We now construct functions that satisfy Eqs. (4.25) and (4.26). By direct calcu-
lation we find that

Prow; = —w4 — ws, (4.52)
Piows = ws, (4.53)
P12w4 = —wi — Wy, (4.54)
and
P12w5 = wy. (455)
Thews constitute a basis for a matrix representatioPof
0 A
P12 = [A O} , (4.56)
where
-1 -1
A= [ 0 l] . (4.57)

A has eigenvalues-1 and is diagonalized by the (nonunitary) similarity trans-
formation:

_ -1 0
wsan =[], (4.58)
1 1
M::[O _2}. (4.59)

We now subjecP, to a similarity transformation bix,

M M
N:[M M], (4.60)
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and obtain

N7IPLN = (4.61)

O OO
OO r O
Or OO
P ooo

We may work outP,3 in the same way and subject it to the same similarity trans-
formation to obtain

12 3/2 0 0
1/2 —1/2 0 0
0 0 —-1/2 -3/2
0 0 -1/2 1/2

N~1PyN = (4.62)

These do not yet quite satisfy the conditions on antisymmetry given in Egs. (4.25),
(4.26), (4.29), and (4.30), but further transformation by

1 0 00
|0 -1/v3 00
Q=|, 0 0 1 (4.63)
0 0 1/V/3 0
yields
-1 0 00
Cined | o1 o0o0
Q "N™"P1NQ = 00 -1 0 (4.64)
00 01
and
1/2 —/3/2 0 0
1yt | =vB2 12 0 0
Q "NT"P23NQ = 0 0 2 32| (4.65)
0 0 —/3/2 —1/2

which do agree. SincBy3 = P12P,3P12 the requirements for that matrix will also
be satisfied. Putting together all of the transformations we eventually arrive at

x = Q IN"tw, (4.66)
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wherew = [w1 w, ws ws]" with the components defined in Egs. (4.44), (4.45),
(4.47), and (4.48), respectively. Thus we have the four functions,

x1 = {[abq — [cab] + [acl] — [bad]}/2, (4.67)
X, = {2[bca] + 2[cba] — [cab] — [ach — [abd — [bad}/+/12, (4.68)
xs = {2[bca] — 2[cba] — [cab] + [ach] — [abd + [bad]}/v/12, (4.69)

and
X4 = {—[abd + [cab] + [ach] — [bac]}/2. (4.70)

Therefore, the four linearly independent functions we obtain in the orbital approx-
imation can be arranged into two pairs of linear combinations, each pair of which
satisfies the transformation conditions to give an antisymmetric doublet function.
The most general total wave function then requires another linear combination of
the pair of functions. In this case Eq. (4.18) can be written

2W = (X1 + aXs) %1 + (X2 + axa) %o, (4.71)

whereq is a new variation parameter that is characteristic of the doublet case when
we use orbital product functions. The same valagijs required in both terms
because of Eq. (4.35). In addition, Eq. (4.39) is still valid, of course, so that the
energy is calculated from

_ (X1 + axa)|H (X1 + aXx3))
(X1 + axa)|(X1 + axs))

Thus, even without mixing in configurations of different orbitals, determining the
energy of a doublet system of three electrons in three different orbitals is a sort of
two-configuration calculation.

The way this function represents the system is strongly influenced by the dy-
namics of the problem, as well as the flexibility allowed. If we were to find the set
of three orbitals and value @f minimizing W, we obtain essentially the SCVB
wave function. What this looks like depends significantly on the potential energy
function. If we are treating the system of the allyl radical, where all three orbitals
are nearly degenerate, we obtain one sort of answer. If, on the other hand, we treat
a deep narrow potential like the Li atom, we would obtain two orbitals close to one
another and like the traditionas brbital of self-consistent-field (SCF) theory. The
third would resemble the 2srbital, of course.

(4.72)

4 These are displayed with an arbitrary overall normalization. This is unimportant in the Rayleigh quotient so long
as the functions’ normalizations are correct relative to one another. The real normalization constant depends
upon the overlaps, of course.
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If, as a further approximation, we force the two inner orbitals of the Li-atom
treatment to be the same, the needddalisappears. In Egs. (4.67)—(4.70) we put
c = b, and the result is

X, = [abb] — [baly], (4.73)

X2 = {2[bba] — [bah] — [abl]}/+/3, (4.74)
and

X3 =X4 =0, (4.75)

and we no longer haviwo pairs of functions with the correct properties. There

iS not an extra variation parameter to determine in this case. The most general
wave function of this sort with optimized orbitals is the ordinary spin-restricted
open-shell Hartree—Fock (ROHF) function.

If we have three orbitals the same= b = a, we then see that all of the
vanish identically. This is clearly the familiar answer: the Pauli exclusion principle
prohibits three electrons having the same spatial part of their spin orbitals.

In Chapter 10, after we have discussed the gemeedéctron problem, we will
illustrate these two three-electron doublet systems with some calculations. We delay
these examples because notational problems will be considerably simpler at that
time.

Above, we commented on the unfortunate increase in complexity in going from
a two-electron singlet system to a three-electron doublet system. Unfortunately, the
complexity accelerates as the number of electrons increases.

5 The ordinary unrestricted Hartree—Fock (UHF) function is not written like either of these. It is not a pure spin
state (doublet) as are these functions. The spin coupled VB (SCVB) function is lower in energy than the UHF
in the same basis.
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Advanced methods for larger molecules

As was seen in the last chapter, the effect of permutations on portions of the wave
function is important in enforcing their correct character. The permutations of
n entities form a group in the mathematical sense that is said to be one of the
symmetric group$.n particular, when we have all of the permutations ehtities
the groupis symbolize8,. Inthis chapter we give, using the theory of the symmetric
groups, a generalization of the special treatment of three electrons discussed above.

There are several more or less equivalent methods for dealing with the twin
problems of constructing antisymmetric functions that are also eigenfunctions of the
spin. Where orbitals are orthogonal the graphical unitary group approach (GUGA),
based upon the symmetric group and unitary group representations, is popular
today. With VB functions, which perforce have nonorthogonal orbitals, a significant
problem centers around devising algorithms for calculating matrix elements of the
Hamiltonian that are efficient enough to be useful. In the past symmetric group
methods have been criticized as being overcomplicated. Nevertheless, the present
author knows of no other techniques for obtaining what appears to be the optimal
algorithm for these calculations.

This chapter is the most complicated and formal in the book. Looking back
to Chapter 4 we can obtain an idea of what is needed in general. In this chapter
we:

1. outline the theory of the permutation (symmetric) groups and their algebras. The goal
here is the special, “factored” form for the antisymmetrizer of Section 5.4.10, since, in
this form the influence of the spin state on the spatial functions is especially transparent;

2. show how the resultant spatial functions allow an optimal algorithm for the evaluation
of matrix elements of the Hamiltonian, which is given;

3. show the way to generate HLSP functions from the previous treatment.

1 A word of caution here is in order. Groups describing spatial symmetry are frequently spoken of as symmetry
groups. These should be distinguished fromdji@metric groups.

63
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These are the principal ideas of this chapter although the order is not exactly given
by the list, and we start with an outline of permutation groups.

5.1 Permutations

The word permutation has two meanings in common usage. The standard dictionary
definition “an arrangement of a number of objects” is one of them, but we will
reserve it to meathe act of permuting a set of objects this work the word
“arrangement” will be used to refer to the particular ordering and “permutation”
will always refer to the act of changing the arrangement. The set of “acts” that result
in a particularearrangement is not unique, but we do not need to worry about this.
We just consider it the permutation producing the rearrangement.

In Chapter 4 we used symbols lik&; to indicate a binary permutation, but
this notation is much too inefficient for general use. Another inefficient notation

sometimes used is
1 2 3 .-~ n
(123,
1 l2 I3 -+ p

whereiy, iy, ..., i, is a different arrangement of the firstintegers. We interpret

this to mean that the object (currently) in positipns moved to the position;

(not necessarily different frony)). The inversepermutation could be symbolized

by reversing the direction of the arrow o There is too much redundancy in this
symbol for convenience, and permutations are most frequently written in terms of
their cycle structure

Every permutation can be written as a product, in the group sense, of cycles,
which are represented by disjoint sets of integers. The symbol (12) represents the
interchange of objects 1 and 2 in the set. This is independent of the number of
objects.

A cycle of three integers (134) is interpreted as instructions to take the object
in position 1 to position 3, that in position 3 to position 4, and that in position
4 to position 1. It should be clear that (134), (341), and (413) all refer to actions
with the same result. A permutation may have several cycles, (12)(346)(5789). It
should be observed that there are no numbers common between any of the cycles.
A unary cycle, e.g., (3), says that the object in position 3 is not moved. In writing
permutations unary cycles are normally omitted.

The group nature of the symmetric groups arises because the application of two
permutations sequentially is another permutation, and the sequential application
can be defined as the group multiplication operation. If we write the product of two
permutations,

(124) x (34) = (1243) (5.1)
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we say (34) is applied first and then (124). Working out results like that of
Eq. (5.1) is fairly simple with a little practice. If we decide to write cycles with the
smallest number in them first, we would start by searching the product of cycles
from the right for the smallest number, which is 1. The rightmost reference to 1
says “1— 27", the rightmost reference to 2 says <2 4”, the rightmost reference

to 4 says “4— 3", the rightmost reference to 3 says<3 4", but 4 appears again

in the left factor where “4— 1", closing the cycle. If two cycles have no numbers

in common, their product is just the two of them written side by side. The order is
immaterial; thus they commute. It may be shown also that the product defined this
way is associative ab)c = a(bc).

The inverse of a cycle is simply obtained by writing the numbers in reverse
order. Thus (1243) = (3421)= (1342), and (1243)(1342} |, the identity, which
corresponds in this case to no action, of course. We have here all the requirements
of a finite group.

1. A set of quantities with an associative lafvoomposition yielding another member of
the set.

2. An identity appears in the set. The identity commutes with all elements of the set.

3. Corresponding to each member of the setthere is an inverse. (The first two laws guarantee
that an element commutes with its inverse.)

A cycle can be written as a product of binary permutations in a number of ways.
One of these is

(ini2iz- - -in_1in) = (i1i2)(i2i3) - - - (in—1in)- (5.2)

The ternary cycle that is the product of two binary permutations with one number
in common can be written in three equivalent waysi |(i2iz) = (i2i3)(i1i3) =
(i1i3)(i1i2). Clearly, these transformations could be applied to the result of Eq. (5.2)
to arrive at a large number of products of different binaries. Nevertheless, each one
contains the same number of binary interchanges.

A cycle of n numbers is always the product of— 1 interchanges, regardless
of the way it is decomposed. In addition, these decompositions can vary in their
efficiency. Thus, e.g., (12)(23)(14)(24)(X4)23)(13)(12)= (13) all represent the
same permutation, but they all have add number of interchanges in their
representation.

In general, a permutation is the product@fbinary cyclesing ternary cyclesmn,
gquaternary cycles, etc., all of which are noninteracting. If all of these are factored
into (now interacting) binaries, the number is

jmax

o= (i—1m. (5.3)
j=2
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which is called theignatureof the permutation. A permutation is said to be even or
odd according to whetheris an even or odd number. The valuesxafiepends upon

the efficiency of the decomposition, but its oddness or evenness does not. Therefore,
the product of two even or two odd permutations is even, while the product of an
even and an odd permutation is odd.

5.2 Group algebras

We need to generalize the idea of a group to that of group algebra. The reader has
probably already used these ideas without the terminology.ahitisymmetrizer
we have used so much in earlier discussions is just such an entity for a symmetric

group, S,

1 .
A= %(—1) "7, (5.4)

_ A (5.5)

whereo, is the signature of the permutation defined in Eq. (5.3). We note that
Eg. (5.4) describes an entity in which we have multiplied group elements by scalars
(£1) and added the results together. Equation (5.5) implies that we may multiply
two such entities together, collect the terms by adding together the coefficients of
like permutations, and write the result as an algebra element. Heghiseidem-
potent. NB The assumption that we can identify the individual group elements
to collect coefficients is mathematically equivalent to assuming the group ele-
ments themselves formliaearly independenset of algebra elementsThe reader

may feel that couching our argument in terms of group algebras is unnecessarily
abstract, but, unfortunately, without this idea the arguments become excessively
tedious.

Thus, we define the operations of multiplying a group element by a scalar and
adding two or more such entities. In this, we assume the elements of the group to
be linearly independent, otherwise the mathematical structure we are dealing with
would be unworkable. An elememnt, of the algebra associated with can be
written

X=> Xp, (5.6)

PES
wherex, is, in general, a complex number. Two elements of the algebra may be

2 |In most arguments involving spatial symmetry, the group character projections used are implicitly (if not
explicitly) elements of the algebra of the corresponding symmetry group.
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added, subtracted, or multiplied

Xty= Z(Xp + Y,)p (5.7
PES

and

Xy = Z Z Xp Yr PTC

peESTES

=S (Z xpyp1,7> n (5.8)

neS \peSH

wherer = p~1. The way the product is formed in Eq. (5.8) should be care-
fully noted. We also note that individual elements of the group necessarily possess
inverses, but this is not true for the general algebra element.

These considerations make the elements of a group embedded in the algebra
behave like a basis for a vector space, and, indeed, this is a normed vector space.
Let x be any element of the algebra, and Ig] [ftand for the coefficient of in x.

Also, for all of the groups we consider in quantum mechanics it is necessary that
the group elements (not algebra elements) are assumed to be unitary. There will
be more on this below in Section 5.4 This gives the relagidr= p~. Thus we

have

IXI? = [x'x] = ) 1%,/ = 0, (5.9)

where the equality holds if and only ¥ = 0. One of the important properties of
[xylis

[xyl = [yx] (5.10)

for any two elements of the algebra. We will frequently use the ‘T notation in
later work.

Since the group elements we are working with normally arise as operators on
wave functions in quantum mechanical arguments, by extension, the algebra ele-
ments also behave this way. Because of the above, one of the important properties
of their manipulation is

(Blxy) = (X'o|¥). (5.11)

The idea of a group algebra is very powerful and allowed Frobenius to show con-
structively the entire structure of irreducible matrix representations of finite groups.
The theory is outlined by Littlewood[37], who gives references to Frobenius’s
work.
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5.3 Some general results for finite groups
5.3.1 Irreducible matrix representations

Many works[5, 6] on group theory describe matrix representations of groups. That
is, we have a set of matrices, one for each element of a gfeuihat satisfies

D(p)D(n) = D(pn). (5.12)

for each pair of group elementsAny matrix representation may be subjected to a
similarity transformation to obtain an equivalent representation:

D(p) = N"!ID(p)N;  p€G, (5.13)

whereN is any nonsingular matrix. Amongst all of the representations, unitary ones
are frequently singled out. This means that

D(p)™* = D(p™") = D(p)', (5.14)

and, for a finite group, such unitarity is always possible to arrange. For our work,
however, we need to consider representations that are not unitary, so some of the
results quoted below will appear slightly different from those seen in expositions
where the unitary property is always assumed.

The theory of group representation proves a number of results.

1. There is a set of inequivalent irreducible representations. The number of these is equal
to the number of equivalence classes among the group elementsoff tineeducible
representation is afy, x f, matrix, then

Y f2=g. (5.15)

whereg is the number of elements in the group.
2. The elements of the irreducible representation matrices satisfy a somewhat complicated
law of composition:

a (- 9 o
Z Dfi (o D) Dﬁ;(ﬂp) = 8aﬂ5jkf_D|i ). (5.16)
P o
3. If we specify in the previous item that= |, theorthogonality theoremesults:
2 D% (o) Dix(0) = Supdikdil fg (5.17)
P o

Equation (5.17) has an important implication. Consider a large table with entries,
Dy (p~1), and the rows labeled hyand the columns labeled by the possible values
of «, i, and j. Because of Eqg. (5.15) the table is square, and may be considered

3 The representation property does not imply, however, ghgty implies D(p) % D ().
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a g x g matrix. Because of Eq. (5.17) the matrix is necessarily nonsingular and
possesses an inverse. The inverse matrix is then an arrag vaitis andy columns
where the entri¢sare (f,/g) Dfi (0), the rows are labeled hy, i, and j, and the
columns byp. In the theory of matrices, it may be proved that matrix inverses
commute, therefore we have another relation among the irreducible representation
matrix elements:

fo o wy —
ZEDji(n)Dij(p ) =68, (5.18)
aij

wheres§,, is 1 or 0, according ag andp are or are not the same.

5.3.2 Bases for group algebras

The matrices of the irreducible representations provide one with a special set of
group algebra elements. We define

fo _
6i=3 > D (e e (5.19)

and using Eg. (5.16) one can show that

€] e = Supdjef. (5.20)

Equation (5.19) gives the algebra basis as a sum over the group elements. Using
Eqg. (5.18) we may also write the group elements as a sum over the algebra basis,

p=7)_ Dio)e (5.21)
aij
and, if p is taken as the identity,

Zeﬁ =1. (5.22)

In the theory of operators over vector spaces Eq. (5.22) is said to givesthletion
of the identity, since by Eq. (5.20) eaclf Ye= €, and isidempotent.

We note another important property of these bases. Irreducible representation
matrices may be obtained from th¢ by using the relation

D (o) = [0 ], (5.23)

where we have used the []-notation defined above to obtain the coefficient of
the identity operation.

4 NB In the inverse we have interchanged the index labels of the irreducible representation matrix.
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The theory of matrix representations of groups is more commonly discussed than
the theory of group algebras. The latter are, however, important for our discussion
of the symmetric groups, because Young (this theory is discussed by Rutherford[7])
has shown, for these groups, how to generate the algebra first and obtain the matrix
representations from them. In fact, we need not obtain the irreducible representation
matrices at all for our work; the algebra elemeats the operators we need to
construct spatial VB basis functions appropriate for a given spin.

5.4 Algebras of symmetric groups
5.4.1 The unitarity of permutations

Before we actually take up the subject of this section we must give a demonstration
that permutations are unitary. This was deferred from above.

Then-particle spatial (or spin) functions we work with are elements of a Hilbert
space in which the permutations are operator&(1f, 2, ..., n)andY (1, 2,...,n)
are two such functions we generally understand that

(B|T) = /E(l, 2,...,n)"r(1,2,...,n)drdro - - - dry. (5.24)
If Pop and Qg are operators in the Hilbert space and
(QopE|T) = <E| I:>opT> (5-25)

for all £ andY in the Hilbert spaceQ,, is said to be thélermitian conjugateof
Pop, i.€., Qop = Pdp. Consider the integral

/E(l, 2,...,n)* 7Y@ 2,...,n)dndry - - - drp

- /[n_lE(l, 2. YL 2....,n)dudr---dm,  (5.26)

wherer is some permutation. Equation (5.26) follows because of the possibility
of relabeling variables of definite integrals, and, since it is true foEahd ',
nl=n"1 (5.27)

This is the definition of a unitary operator.

5.4.2 Partitions

The theory of representations of symmetric groups is intimately connected with
the idea of partitions of integers. Rutherford[7] gives what is probably the most
accessible treatment of these matterpa#tition of an integemn is a set of smaller
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integers, not necessarily different, that adeshtdhus 5= 3+ 1 + 1 constitutes a
partition of 5. Partitions are normally written {n- -}, and another way of writing

the partition of 5 is{3,1%}. We use exponents to indicate multiple occurrences of
numbers in the partition, and we will write them with the numbers in decreasing
order. The distinct partitions of 5 a{é}, {4,1}, {3,2}, {3,1%}, {22,1}, {2,2%}, and

{15}. There are seven of them, and the theory of the symmetric groups says that this
is also the number of inequivalent irreducible representations for the &aupde

up of all the permutations of five objects. We have written the above partitions of
5 in the standard order, such that partitias before partitionj if the first number

ini differing from the corresponding one jnis larger than the one ip. When we
wish to speak of a general partition, we will use the symbol,

5.4.3 Young tableaux and/" and P operators

Associated with each partition there is a table, called by Youtapkeau. In our
example using 5, we might place the integers 1 through 5 in a number of rows
corresponding to the integers in a partition, each row having the number of entries
of that part of the patrtition, e.g., f¢B,2} and{22,1} we would have

1 2 3 L2
and (3 4],
4 5 5

respectively. The integers might be placed in another order, but, for now, we assume
they are in sequential order across the rows, finishing each row before starting the
next.

Associated with each tableau, we may construct two elements of the group
algebra of the corresponding symmetric group. The first of these is calledvithe
symmetrizeand is symbolized b. Each row of the tableau consists of a distinct
subset of the integers from 1 throughif we add together all of the permutations
involving just those integers in a row with the identity, we obtain the symmetrizer
for that row. Thus for th¢3,2} tableau, the symmetrizer for the first row is

| + (12)+ (13)+ (23)+ (123)+ (132)
and for the second is
| + (45).
Thus, the total row symmetrizep, is

P =[1 + (12)+ (13) + (23)+ (123)+ (132)][l + (45)]. (5.28)
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The second of these is tikelumn antisymmetrizeand is symbolized byv. As
might be expected, for th®,2} tableau the column antisymmetrizer is the product
of the antisymmetrizer for each column and is

N =[I = (149 - (25)] (5.29)

In these expressions a symmetrizer is the sum of all of the corresponding permu-
tations and the antisymmetrizer is the sum with plus signs for even permutations
and minus signs for odd permutations. In Egs. (5.28) and (5.29) the speeifid
N are given for the arrangement of numbers in{th&} tableau above. A different
arrangement of integers in this same shape would in many, but not all, cases give
different? and N operators.

As a further example we give tHB and A/ operators for the above tableau
associated with the shape?,1}. For this we have

P =11 + @2 + (34)],
N =[I — (13)— (15) — (35)+ (135)+ (153)][l — (24)].

Here, again) is the only operation in common betwefrand .

A central result of Young'’s theory is that the prodi¢® is proportional to an
algebra element that will serve as one of #jebasis elements discussed above,
and the proportionality constant f5/n!, n! being the value of in this case. The
productP N serves equally well, butis, of course, a different element of the algebra,
since/ N andP do not normally commute.

5.4.4 Standard tableaux

In a tableau corresponding to a partitionrgfthere are, of courseay! different
arrangements of the way the firsintegers may be entered. Among these thereis a
subset that Young callestandard tableauxThese are those for which the numbers
in any row increase to the right and downward in any column. Thus, we have for
{32

1 2 3 1 2 4 1 2 5 134and135
4 5 [ 135 |13 4 |[" |25 | 2 4

and among the 120 possible arrangements, only five are standard tableaux. These
standard tableaux have been ordered in a particular way calésital sequence

We label the standard tableaui, T,, ... and imagine the numbers of the tableau
written outin aline, row 1, row 2,. . . We say thaT; is beforeT; if the first number

of T; that differs from the corresponding oneTnis the larger of the two. In our
succeeding work we express the idealpbeing earlier tharT; with the symbols

T <T;.



5.4 Algebras of symmetric groups 73

The operator$?; and \; corresponding td; are, of course, different and, in
fact, have no permutations in common other than the identity. The first important
result is that

NPT =1, (5.30)

since the only permutatioN; andP; have in common i§ and the numbers adding
to the coefficient of the identity cannot cancel. THdsP; is never zero.
The second important result here is that

PiM ZNjPi =0, ifTi<T;. (5.31)

This is so because there is some pair of numbers appearing in the sameTow of
that must appear in the same columnlgf if it is later. To see this suppose that
the entries in the tableaux aré ) and (Tj)w, wherek andl designate the row
and column in the shape. Let the first difference occur atmoand columnn.
Thus, [T)mn > (Ti)mn, but (Ti)mn must appear somewhere T. Because of the
way standard tableaux are ordered it must©en, wherem’' > mandn’ < n.
Now, also by hypothesisT{)mn = (Ti)mn, Since this is in the region where the two
are the same. Therefore, there is a pair of numbers in the same Tipwhat appear

in the same column df;. Calling these numbens andq, we have

P = (1/2)RII + (pa)l. (5.32)
= (1/2[ + (pa)IPi, (5.33)
Nj = (1/2Nj[I = (pa)], (5.34)
= (1/2)[I — (pYINV;. (5.35)
and
[+ (pI[! = (pa)] =[I — (PAI[! + (pa)] = O. (5.36)

One should not conclude, however, tRa\; = ANiP; = 0if Ty < T;. Although
true in some cases, we see thatitdoes not hold true for the first and last of the tableaux
above. No pair in arow of the last is in a column of the first. In fact, the nonstandard

tableau
, _[1 5 3
r=la 2]
can be obtained fronis by permutations within rows and froii by permutations
within columns. ThusP’ = Ps and N’ = +N 4, and, therefore,
PsNy = £P'N' # 0. (5.37)

This would also be true for the operators written in the other order.
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We stated above that there is an inequivalent irreducible representat@&n of
associated with each partition of and we use the symbdi, to represent the
number of standard tableaux corresponding to the partitiodsing induction on
n, Young proved the theorem

o f2=ni, (5.38)
s

which should be compared with Eq. (5.15).

Young also derived a formula fak, but, as will be seen, we need only a small
number of partitions for our work with fermions like electrons. These are either
{n —k,k} or {2¢,1"-%)} for all k = 0, 1, ..., such thatn — 2k > 0. In fact, the
shapes of the tableaux corresponding to these two partitions are closely related,
beingtranspose®f one another. Letting = 5 andk = 2, the shape of3,2} may
be symbolized with dots as

If we interchange rows and columns in this shape, we obtain

which is seen to be the shape of the partitjgh1}. Partition shapes and tableaux
related this way are said to benjugatesand we use the symbalto represent the
partition conjugate ta..

It should be reasonably self-evident that the conjugate of a standard tableau
is a standard tableau of the conjugate shape. Therefpre, f;, and irreducible
representations corresponding to conjugate partitions are the same size. In fact, the
irreducible representations are closely related¥{p) is one of the irreducible
representation matrices for partitianone has

D*(p) = (1) D*(p), (5.39)

whereo, is the signature op.

As we noted above, Young derived a general expressior;féor any shape.
For the partitions we need there is, however, some simplification of the general
expression, and we have for eitfer— k,k} or {25,172}

~n—2k+1/n+1
~ n+1 k )’

p p!
(Q):qu—mf (5-41)

5 (5.40)
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5.4.5 The linear independence o, P; and P, N,

The relationships expressed in Eq. (5.31) can be used to prove the very important

result that the set of algebra element§,P;, is linearly independent. First, from

Eqg. (5.30) we have seen that they are not zero, so we suppose there is a relation
> aNiP =0. (5.42)

We multiply Eqg. (5.42) on the right, starting with the final okfg and, because of
Eg. (5.31), we obtain

asN;iPi Nt =0. (5.43)
Therefore, eithea; or N+ P: N;, or both must be 0. We observe, however, that
[NMiPNT = [N2P ] (5.44)
= gv[NP] (5.45)
= v, (5.46)

where gy is the order of the subgroup df’, and this is true for any. Thus,
NiPs N is not zero andis in Eq. (5.43) must be. Now that we knaay is zero,
we may multiply Eq. (5.42) on the right by _1, and see thad;_; must also be
zero. Proceeding this way until we reath, we see that all of the; are zero, and
the result is proved.

Permutations are unitary operators as seenin Eq. (5.27). This tells us how to take
the Hermitian conjugate of an element of the group algebra,

T
' = (Z Xﬂ,,) , (5.47)
=> xm (5.48)
= X (5.49)

In passing we note thdt” andP are Hermitian, since the coefficients are real and
equal for inverse permutations.

In generalP, \V; is not equal toV; P; butis its Hermitian conjugate, since (Y=
7ipt. Therefore, it should be reasonably obvious that?h&; operators are also
linearly independent. We note that an alternative, but very similar, proof that all
a = 0in Eq. (5.42) could be constructed by multiplying on the leftRy, j =
1,2,..., f sequentially.

Itis now fairly easy to see that we could form a new set of linearly independent
gquantities

x NP i=1,2...,1 (5.50)
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wherex; is any set of elements of the algebra that do not resuk.M P; = 0.
Corresponding results are true for right multiplication (iM.P; x; ). As is probably
not surprising there are parallel results for right or left multiplicatior?n;. An
important application of this result (for left multiplication) is an algebra element like
x; = pPi, wherep is any operation of the group, with corresponding expressions
for the other cases.

The operator®; andP; differ only in being based upon a different arrangement
of the numbers in the standard tableau they are associated with. Therefore, there
exists a permutationg;; that will interconvertP; andP; with the relation

7T|J7D] = Pi]'[ij, (551)

with a similar expression faf/; and. ;. The theorems of this section can thus
be stated in a different way. For example, we see that the quanftid§,r1; =
m1jPjNj, satisfy the definition of Eq. (5.50), and are thus linearly independent.
Three similar results pertain for the other three possible combinations of the ordering
of the products ofP and \ on either side of the equation. Explicitly, for one of
these cases, we may write that the relation

> PiNimya =0 (5.52)

implies that alla; = 0, with similar implications for the other cases.

5.4.6 Von Neumann'’s theorem

Von Neumann proved a very useful theorem for our work (quoted by Rutherford[7]).
Using our notation it can be written

PXN = [PxN]PN, (5.53)

wherex is any element of the algebra adandP are based upon the same tableau.
A similar expression holds fok/ xP.

5.4.7 Two Hermitian idempotents of the group algebra

We will choose arbitrarily to work with the first of the standard tabl€afxa given
partition. With this we can form the twidermitianalgebra elements

u=60PNP (5.54)

5 Any tableau would do, but we only need one. This choice serves.
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and
u=60NPN, (5.55)

wheref andé’ are real. We must work out what to set these values to saithatu
andu? =u'.
We stated at the end of Section 5.4.3 thBt) AP or (f/g)PN, g = n!, will
serve as an idempotent element of the algebra associated with the partition upon
which they are based, although these are, of course, not Hermitian. This means that

NPNP = %NP. (5.56)

Thus, observing tha®? = g»P, we have

(PN'P)2 = PAP2A'P, (5.57)
— gy PN'PNP, (5.58)
_ %PNP, (5.59)

wheregp is the order of the subgroup of tfieoperator. Thus, we obtain

U= AP (5.60)
ggp

as an idempotent of the algebra that is Hermitian. A very similar analysis gives
f
uU=—NPN, (5.61)
9av

wheregyy is the order of the subgroup of té operator. Although portions of the
following analysis could be done with the original non-Hermitian Young idempo-
tents, the operators of Egs. (5.60) and (5.61) are required near the end of the theory
and, indeed, simplify many of the intervening steps.

5.4.8 A matrix basis for group algebras of symmetric groups

In the present section we will give a construction of the matrix basis only for
the u= O PN'P operator. The treatment for the other Hermitian operator above is
identical and may be supplied by the reader.
Consider now the quantities,
mj; = mj1Um;j, (562)
= (m;)f, (5.63)

= ni_lunj; T = mj, (5.64)
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none of which is zero. Since u is based upon the first standard tableau, from now
on we suppress the “1” subscript in these equations. This requires us, however, to
use the inverse symbol, as seen. Now familiar methods are easily used to show
thatm;; # O for alli and j. In fact, the above results show that tng constitute
f2 linearly independent elements of the group algebra that, because of Young’s
results, completely span the space associated with the irreducible representation
labeled with the partition. Thus, because of Eg. (5.38) we have found a complete
set of linearly independent elements of the whole group algebra.

We now determine the multiplication rule fox; andmy,,

m;; My = 7Ti_1UJTj JTk_lum. (5.65)

Examining the inner factors of this product, we see that

urjm, tu = 02PN Prn 'PNP, (5.66)
f

= 9o (5.67)

We now apply Eg. (5.53) to some inner factors and obtain
Prjm PN = [Prjx 'PN]PN, (5.68)
= [[=; nk_lp./\/'P]]PN, (5.69)
urjm tu = 027 m "PNPPNPNP, (5.70)
= 02gp 77 "PNPPNPPNP, (5.71)
= MyjU, (5.72)
My = 95 [ *PA P, ]. (5.73)

Putting these transformations together,
mij My = M. (5.74)

All of the coefficients inPNP are real and the matrikl is thus real symmetric
(and Hermitian). Since they; are linearly independenM must be nonsingular.
In addition,g;ll[PNP] is equal to 1, so the diagonal elementshéfare all 1.M
is essentially an overlap matrix due to the non-orthogonality ofrife

We note that if the matriil were the identity, then;; would satisfy Eq. (5.20). An
orthogonalization transformation & may easily be effected by the nonsingular
matrix N

NTMN = I, (5.75)
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as we saw in Section 1.4.2. It should be recalled bh& not unique; added condi-
tions are required to make it so. We wish; to be unchanged by the transformation,
and an upper triangula¥ will accomplish both of these goals. If we require all of
the diagonal elements & also to be positive, it becomes uniquely determined.
Making the transformations we have

8 = Z(NT)ik Nij My, (5.76)

K
8jed = djkai, (5.77)
€11 = My, (5.78)

as desired. Thesg;s constitute a real matrix basis for the symmetric group and,
clearly, generate a real unitary representation through the use of Eq. (5.23).

5.4.9 Sandwich representations

The reader might ask: “Is there a parallel to Eq. (5.23) for the nonorthogonal matrix
basis we have just described?” We answer thisin the affirmative and show the results.
Clearly, we can define matrices

T(p)ij = [omi], (5.79)
and it is seen that a normal unitary representation may be obtained from
D(p)ij = > (NDiT (o) Ny (5.80)
ki

where we have used Eq. (5.76). The upshot of these considerations is thébjhe
matrices satisfy

T(p)M T () = T(p7), (5.81)

and these have been callegndwich representations, because of a fairly obvious
analogy. In arriving at Eq. (5.81) we have used

NN =M1, (5.82)

which is a consequence of Eq. (5.75).
We may also derive a result analogous to Eq. (5.21),

p= A__ZH(M—l)ﬁiT(p)ﬁ.(M-lm m; (5.83)
ij

where we have added a partition label to each of our matrices and summed over it.
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5.4.10 Group algebraic representation of the antisymmetrizer

As we have seen in Eq. (5.21), an element of the group may be written as a sum
over the algebra basis. For the symmetric groups, this takes the form,

p=>_D(p). (5.84)

Alj
We wish to apply permutations, and the antisymmetrizer to products of spin-orbitals
that provide a basis for a variational calculation. If each of these represents a pure
spin state, the function may be factored into a spatial and a spin part. Therefore, the
whole product¥, may be written as a product of a separate spatial function and a
spin function. Each of these is, of course, a product of spatial or spin functions of
the individual patrticles,

— ZOwm., (5.85)

whereE is a product of orbitals an@, is a sum of products of spin functions that

is an eigenfunction of the total spin. It should be emphasized that the spin function
has a definitéMg value, as indicated. If we apply a permutationitpwe are really
applying the permutation separately to the space and spin parts, and we write

PV = pr EpsOwm,, (5.86)

where ther or s subscripts indicate permutations affecting spatial or spin func-
tions, respectively. Since we are defining permutations that affect only one type of
function, separate algebra elements also agisgandef; .. These considerations
provide us with a special representation of the antisymmetrthet is useful for

our purposes:

Z( 1)% pr ps (5.87)
pesq
=222 Di(s,D f(p)t%}/,s (5.88)
P Al] NiTj!
Z Q'\J I’q)] s (5.89)

Aj

where we have used Eq. (5.18) and the symbol for the conjugate partition.
In line with the last section we give a version of Eq. (5.89) using the non-
orthogonal matrix basis,

A= Z f_(M Jk r(M 1)kl |I s (5.90)
Ajkl A

where we need not distinguish between khe! matrices for conjugate partitions.

6 We use the antisymmetrizer in its idempotent form rather than that with/hg)(! prefactor.
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5.5 Antisymmetric eigenfunctions of the spin

In this section we investigate the connections between the symmetric groups
and spin eigenfunctions. We have briefly outlined properties of spin operators in
Section 4.1. The reader may wish to review the material there.

One of the important properties of all of the spin operators is that they are
symmetric. Thdotal vector spin operator is a sum of the vector operators for
individual electrons

S= ié, (5.91)
i=1

indicating that the electrons are being treadegiivalentlyin these expressions.
This means that every € S, must commute with the total vector spin operator.
Since all of the other operatoréz,, raising, and lowering operators, are algebraic
functions of the components &f they also commute with every permutation. We
use this result heavily below.

5.5.1 Two simple eigenfunctions of the spin

Consider am electron system in a pure spin st&eThe associated partition is
{n/2+ S,n/2 — S}, and the first standard tableau is

1 -+» n/2-S ... n/2+S
n2+S+1 ... n ’

where we have written the partition in terms of tBeguantum number we have
targeted. We consider also an array of individual spin functions with the same shape
and allny 2 in the first row and;_ » in the second

[a e a ... a]
ﬁ Ce ,3 ’
where we have used the common abbreviatiors ;> andg = n_1,,. Associat-

ing symbols in corresponding positions of these two graphical shapes generates a
product ofas andgs with specific particle labels,

© =a(l)---a(n/2+ 9B(N/2+ S+1)--- B(n), (5.92)
S0 = Mg, (5.93)
Ms=S. (5.94)

If now we operate upo® with A/ (corresponding t¢n/2 + S,n/2 — S}) we obtain
a function withn/2 — S antisymmetric products of the [o8 Ba] sort,

NO =[a(1)B(/2+ S+ 1) — a(n/2+ S+ 1)BA)] - --a(n/2+ ).  (5.95)
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The spin raising operator (see Eq. (4.3)) may now be applied to this result, and we
obtain

S*NO® =NSHO,
=0, (5.96)

where we have used the commutationS3fwith all permutations. The following
argument indicates why the zero results. The termS'ofjive zero with eacl
encountered but turn eaghencountered into aa. ThusS*® is n/2 — Sterms

of products, each one of which has no more thg@ — S— 1 8 functions in it.
Considering how these would fit into the tableau shape, we see that there would
have to be, for each term, one column in the tableau that hasiarfoth rows.

This column, with its corresponding factor fraM, would thus appear as

[ = ()]e()e(d),

which is clearly zero. Eqg. (5.96) is the consequence.
Thus, V'@ is an eigenfunction o8’ because of Eq. (4.5),

PNO = S+ 1NO, (5.97)

and has total spin quantum numli(also theMs value for this function). Other
values ofMg are available witt5~ should they be needed.

We now investigate the behavior &when we apply our two simple Hermitian
idempotents discussed earlier,

Opnp = OPNPO, (5.98)
= gpOPNO, (5.99)
Onpn = O'NPNO. (5.100)

Since St and S, both commute with\V and P, both®pnp and®ypy are eigen-
functions of theS? operator with total spirsandMs = S.

Heretofore in this section we have been working with the partikien{n/2 + S,
n/2 — S}, but references to it in the equations have been suppressed. We now write
Oh \ p aNdO} - Applying the antisymmetrizer to the function of both space and
spin that contain®?%p,

1 ' ’
AII})ISNP = E qujr Eq\j,s(a?DN P: (5.101)
Vi

If the antisymmetrizer has been conditioned (see Egs. (5.75)—(5.78)) sei'lggat
isOPNP*, we obtain

Q‘Aj/,s(axp Np = 01j 5/we,-’\1,s®ﬁ> NP> (5.102)
because of the orthogonality of tla# for differentas.
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We make a small digression and note thatdpm-degeneracy probleme have
alluded to before is evident in Eq. (5.102). It will be observed thatl, ..., f;
in the index ofg/; (O3 p. and these functions are linearly independent since the
e,-*j’S are. There are, thug; linearly independent spin eigenfunctions of eigenvalue
S(S+ 1). Each of these has a full complementM§ values, of course. In view
of Eq. (5.40) the number of spin functions increases rapidly with the number of
electrons. Ultimately, however, the dynamics of a system governs if many or few
of these are important.

Returning to our antisymmetrized function, we see it is now

1 ~
A¥pnp = T, Z eu(\l,r Eﬂkl,s(aéw P (5.103)
i

and we are in a position to examine its properties with regard to the Rayleigh
guotient.
Considering first the denominator, we have

(AWpNplAVpNp) = f,2 Z {<e‘|il,r 2 |e§\1,r g)

(ef\ls®PNP| €1.Obnp)}> (5.104)
=1 1( |e§1r E)©pnelely Obnp)- (5.105)
since
(e, 8le,, B) = (8¢, €}, B), (5.106)
(3, 3). (5.107

with a very similar expression for the spin integral. Since the Hamiltonian of the
ESE commutes with all permutations and symmetric group algebra elements, the
same reductions apply to the numerator, and we obtain

(AWpnplHIAVPNP) = f; 1(“‘H|eﬁr )(®PNP’e§1s®éNP> (5.108)

This result should be carefully compared to that of Eq. (4.37), where there were
two functions that have the same integral. Here we havef them!
Our final expression for the Rayleigh quotient is

_ (A¥pnp/H[AVPNP)
(AWpnplAWpNR)

(5.109)

(5.110)

7 We may note in passing that the partition for three electrons in a doublet sfatgjiand f, for this is 2. That
is why we found two functions in our work in Chapter 4.
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We are now done with spin functions. They have done their job to select the correct
irreducible representation to use for the spatial part of the wave function. Since
we no longer need spin, it is safe to suppress thigbscript in Eq. (5.110) and all

of the succeeding work. We also note that the partition of the spatial funciion
conjugate to the spin partition, i.¢2"/?~S, 225}, From now on, if we have occasion

to refer to this partition in general by symbol, we will drop tilde and represent

it with a barex.

5.5.2 TheE function

We have so far said little about the nature of the space fun@idaarlier we implied

that it might be an orbital product, but this was not really necessary in our general
work analyzing the effects of the antisymmetrizer and the spin eigenfunction. We
shall now be specific and assume t@&ais a product of orbitals. There are many
ways that a product of orbitals could be arranged, and, indeed, there are many
of these for which the application of the&, would produce zero. The partition
corresponding to the spin eigenfunction had at most two rows, and we have seen
that the appropriate ones for the spatial functions have at most two columns. Let
us illustrate these considerations with a system of five electrons in a doublet state,
and assume that we have five different (linearly independent) orbitals, which we
labela, b, c, d, ande. We can draw two tableaux, one with the particle labels and
one with the orbital labels,

a b 1
c d and | 2
e 3

4
5

Associating symbols in corresponding positions from these two tableaux we may
write down a particular producE = a(1)c(2)e(3)b(4)d(5). There are, of course,

5! = 120 different arrangements of the orbitals among the particles, and all of the
products are linearly independent. When we operate on them with the idenfpotent
e11, however, the linear independence is greatly reduced and instead of 120 there are
only f = 5 remaining’® This reduction is discussed in general by Littlewood[37].

For our work, however, we note that = m;; = u, and ur; are linearly independent
algebra elements. Therefore, using Eq. (5.64), the set consisting of the functions,
uria(1)c(2)e(3)b(4)d(5); i =1,...,5 s linearly independerf. There are many

sets of five that have this property, but we only need a set that spans the vector

8 We now suppress thesuperscript.

9 At the beginning of Section 5.4.4 we saw that there were five standard tableau for the conjugate of the current
shape.

10 The linear independence of this sort of set is discussed in Section 5.4.5.
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space of these functions, and the ones given here, based upon standard tableaux,
will serve. We saw in Eq. (4.71) that there are two linearly independent orbital
functions for the three-electron doublet state in the most general case, this being a
consequence of the spin degeneracy of two. The result here is merely an extension.
For the partition and tableau above the spin degeneracy is five, and the number of
independent orbital functions is the same.

We saw in Chapter 4 that the number of independent functions is reduced to
one if two of the three electrons are in the same orbital. A similar reduction
occurs in general. In our five-electron exampleh is set equal t@a andc # d,
there are only two linearly independent functions, illustrating a specific case of the
general result that the number of linearly independent functions arising from any
orbital product is determined only by the orbitals “outside” the doubly occupied
set. This is an important point, for which now we take up the general rules.

5.5.3 The independent functions from an orbital product

Assume we have a setwflinearly independent orbitals. In order to do a calculation
we must haven > n/2 + S, wheren is the number of electrons. Any fewer than
this would require at least sonigple occupancyf some of the orbitals, and any
such productZz, would yield zero when operated on by;uThis is the minimal
number; ordinarily there will be more. Any particular product can be characterized
by anoccupation vectory = [y1 5. .. ym] Wherey; = 0,1, or, 2, and

m

Y n=n (5.111)

i=1

Clearly, the number of “2”s among thge cannot be greater thary2 — S.

It is not difficult to convince oneself that functions with differeng are linearly
independent. Therefore, the only cases we have to check are those produced from
one occupation vector. Littlewood[37] shows how this is done considstarglard
tableaux with repeated elements. We choose an ordering for the labels of the orbitals
we are usinga; < a, < --- < ax; n/2+ S <k < nthatis arbitrary other than a
requirement that tha with y; = 2 occur firstin the orderingt We now place these
orbitals in a tableau shape with the rule that all symbolsharelecreasingo the
right in the rows andlefinitely increasinglownward in the columns. Considering
our five-electron case again, assume we have four orlgitald < ¢ < d anda
is doubly occupied. The rules for standard tableaux with repeated elements then

11 This ordering can be quite arbitrary and, in particular, need not be related to an orbital’s position in a product
with a differenty .
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produce
a a a a
b c| and (b d
d c

as the two possible arrangements for this case. Using only three orbitals, < c,
with a andb doubly occupied, we obtain only one such tableau,

a a
b b
c

The general result states that the number of linearly independent functions from
the set ;i E(y); i =1,..., f is the number of standard tableaux with repeated
elements that can be constructed from the labels ir&tgroduct. As a general
principle, this is not so easy to prove as some of the demonstrations of linear
independence we have given above. The interested reader might, however, examine
the case of two-column tableaux with which we are concerned. Examining the
nature of ther; for this class of tableau, it is easy to deduce the result usimy\..

This is all that is needed, of course. The number of linearly independent functions
cannot depend upon the representation. i

We now see that for eaghwe havef ¥ linearly independent functionsz(i (),
wherer!; i =1,..., f7 is some subs#& of all of ther; appropriate for2(7).

The method for putting together a Cl wave function is now clear. After choosing
they's to be included, one obtains

ub =ud  Cizr/ E(7). (5.112)
ly
where theC;; are the linear variation parameters to optimize the energyisu
thus a function satisfying the antisymmetry and spin conditions we choose and
suitable for use with the ESE. We recall tha? is all that is needed to determine
the energies. Minimizing the energy given by the Rayleigh quotient

g _ (UPlH[u®) (5.113)
(UP|ud)
_ (®[H|u®) (5.114)
(®|ud)

leads to a conventional nonorthogonal CI.

12 e see now why there were relatively few spin functions generated by operators from the symmetric groups.
For the partitionin/2 + S, n/2 — S} and anMs = S, there is only one standard tableau with repeated elements
for the orderinge < 8. Thus only theni’lj\/Pj\/G) are linearly independent. All expressions of the form
NPNmj®©, mj # | are zero.
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Now that we know the number of linearly independesgarticle functions for
a particulary, we can ask for the total number of linearly independeparticle
functions that can be generated franorbitals. Weyl[38] gave a general expression
for all partitions and we will only quote his result for our two-column tableaux.
The total number of function€)(n, m, S), i.e., the size of a full Cl calculation is

2S5+1 m+1 m+1
D(n.m. S) = m—+1<n/2+ S+ 1) (n/2—S>' (5.115)

This is frequently called the Weyl dimension formula. For sngadhd largem and
n, D can grow prodigiously beyond the capability of any current comgidter.

5.5.4 Two simple sorts of VB functions

We saw in Section 5.4.7 that there were two Hermitian idempotents of the algebra
that were easily constructed for each partition. Using these alternatives gives us two
different (but equivalent) specific forms for the spatial part of the wave function.
Specifically, if we choose & ONPN, we obtain the standard tableau functions
introduced by the author and his coworkers[39]. If, on the other hand, we take
u = 6"PNP, we obtain the traditional Heitler—London-Slater—Pauling (HLSP)
VB functions as discussed by Matsen and his coworkers[40]. In actual practice
the =/ for this case are not usually chosen from among those giving standard
tableaux, but rather to give the Rumer diagrams (see Section 5.5.5). We asserted
above that the permutations giving standard tableaux were only one possible set
yielding linearly independent elements of the group algebra. This is a case in point.
For the two-column tableaux the Rumer permutations are an alternative set that
can be used, and are traditionally associated with different bonding patterns in the
molecule.

Ofthese two schemes, itappears that the standard tableaux functions have proper-
ties that allow more efficient evaluation. This is directly related to the occurrence of
the V' on the “outside” oW NPA. Tableau functions have the most antisymmetry
possible remaining after the spin eigenfunction is formed. The HLSP functions have
the least. Thus the standard tableaux functions are closer to single determinants,
with their many properties that provide for efficient manipulafib@ur discussion
of evaluation methods will therefore be focused on them. Since the two sets are
equivalent, methods for writing the HLSP functions in terms of the others allow
us to compare results for weights (see Section 1.1) of bonding patterns where this

13 These considerations are independent of the nature of the orbitals other than their required linear independence.
Thus, D is the size of the full Hamiltonian matrix in either a VB treatment or an orthogonal molecular orbital
Cl.

14 One may compare this difference with Goddard’s[41] discussion of what he termed the G1 and Gf methods.



88 5 Advanced methods for larger molecules

is desired. If only energies and other properties calculated from expectation values
are needed, the standard tableaux functions are sufficient.

We note finally that iff” = 1 for a particular product function the standard
tableaux function and HLSP function are the same.

5.5.5 Transformations between standard tableaux and HLSP functions

Since the standard tableaux functions and the HLSP functions span the same vector
space, a linear transformation between them is possible. Specifically, it would
appear that the task is to determine #he in

ONPNmi = & 0'PNPpj, (5.116)
j

where ther; are the permutations interconverting standard tableauxpasan-

ilarly interconvert Rumer diagrams. It turns out, however, that Eq. (5.116) cannot
be valid. The difficulty arises because on the left of the equal sign the left-most
operator isN, while on the right it isP. To see that Eq. (5.116) leads to a
contradiction multiply both sides hy/. After factoring out some constants, one
obtains

1
ONPN = aii ——NPpj, 5.117
! 2,: Tavge ( )

which has a right hand side demonstratively different from that of Eq. (5.116). The
left hand sides are, however, the same, so the two together lead to a contradiction.
We must modify Eq. (5.116) by eliminating one or the other of the offending factors.

It does not matter which, in principle, but the calculations are simpler if we use
instead

ONPNmi = a; éNij. (5.118)
j

In order to see why this modified problem actually serves our purpose, we digress
to discuss some results for non-Hermitian idempotents.

The perceptive reader may already have observed that the functions we use
can take many forms. Consider the non-Hermitian idempotéfdg)PN . Using
the permutations interconverting standard tableaux, one finds th@t® N =; E;
i =1,..., fis aset of linearly independent functions 8fhas no double occu-
pancy). Defining a linear variation function in terms of these,

f
P = aPNZa;m =, (5.119)
i
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one obtains for the matrix system,

Hj = K x (m E|HNPN|7; E), (5.120)
Sj = K x (m EINPN |z E), (5.121)

which is easily seen to be the same system as that obtained from the Hermitian
idempotentg PN . The “K” is different, of course, but this cancels between the
numerator and denominator of the Rayleigh quotient. Thus,

f
V= ——NPNY anE 5.122
oo Z | (5.122)

will produce the same eigensystem and eigenvectors as the variation furction
of Eq. (5.119), but the resulting spatial functions are not eqiak ¥'. Some
considerable care is required in interpreting this result. It must be remembered that
the spatial functions under discussion are only a fragment of the total wave function,
and are related to expectation values of the total wave function only if the operator
involved commutes with all permutations f. There are two important cases that
demonstrate the care that must be used in this matter.

Consider an operator commonly used to determine the charge density:

Dop = Z 8(Fi —p), (5.123)

wherep is the position at which the density is given anmbw labels electrons. This
operator commutes with all permutations and is thus satisfactory for determining
the charge density fron, ', or the whole wave function. The spatial probability
density is another matter. In this case the operator is

IDop = 1_[ S(Fi _lai)a (5-124)

where thep; are the values at which the functions are evaluated. As it stands, this
is satisfactory for the whole wave function, but for neitdenor ¥’. To work with
the latter two, we must make it commute with all permutations, and it must be
modified to
1 _ .
Py = =l Yot 1H5(ri -5, (5.125)

T e i

where the permutations do not operate ongheThe P;, form gives the same
value in all three cases.

After this digression we now return to the problem of determining the HLSP
functions in terms of the standard tableaux functions. We solve Eq. (5.118) by
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multiplying both sides byrljl and evaluating both sides for the identity element:
1
g—IINPNm m ] = Z [NPojrai (5.126)
N n
i
Myi = Z Bkjaji s (5.127)
j
and denoting byA the matrix with elements;;, we obtain
A=B"IM. (5.128)
In Eq. (5.128)
1
Myi = g—[[nglNPNm]], (5.129)
N

is the “overlap” matrix fo® N'PN (see Eq. (5.73) and following).

For singlet systems the bonding patterns for Rumer diagrams are conventionally
obtained by writing the symbols for the orbitals in a ring (shown here for six), and
drawing all diagrams where all pairs of orbital symbols are connected by a line and
no lines cross|[2, 13].

a a a a a
N f\\b f b f//b
€ c e C e c e C e c

- d “~d d "

Ourtreatment has been oriented towards using tableaux to represent functions rather
than Rumer diagrams, and it will be convenient to continue. Thus, corresponding
to the five canonical diagrams for a ring of six orbital symbols one can write

a b a f a b a d a f
c d b c c f b c b f
efRdeRdeRechdR

where the symbols in the same row are “bonded” in the Rumer diagram. We have
made a practice in using [ ] around our tableaux, and those that refer to func-
tions where we us@ AN P will be given “R” subscripts to distinguish them from
functions where we have useédP . This notational device will be used exten-
sively in Part Il of the book where many comparisons between standard tableaux
functions and HLSP functions are shown.

15 We commented above that the form of Eq. (5.118) was simpler than the result of remé\finogn the other
side. This arises because determinifig\[Pz] is, in general, much more difficult than evaluatingy[P],
because simple expressions faf"P are known only for singlet and doublet systems.
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The tableaux in the last paragraph are, of course, not unique. In any row either
orbital could be written first, and any order of rows is possible. Thus, there are
23 x 31 = 48 different possible arrangements for each. We have made them unique
by settinga <b <c <d < e < f, making each row increase to the right and
the first column increase downward. These are not standard tableaux — the second
column is not alway increasing downward. Using

1 4
2 5
3 6

for the particle label tableau, it is seen that the permutatlQn&5 364), (365),
(254), and (23 564) will generate all five orbital tableaux from the first, and can be
used for thep; of EqQ. (5.118).

This transformation is tedious to obtain by hand, and computer programs are to
be preferred. A few special cases have been given[39]. An example is also given in
Section 6.3.2.

5.5.6 Representing N'PN E as a functional determinant

For the efficient evaluation of matrix elements, it is useful to have a representation
of ON'PN E as a functional determinant. We consider subgroups and their cosets
to obtain the desired form.

The operato/V consists of terms for all of the permutations of the subgi@up
andpP those for the subgroup». Except for the highest multiplicity cas8,= n/2,
G, is smaller than the whole &,. Let pyr € Gy andt; € G,r. Consider all of
the permutationg 1 for fixed T, aspar runs overG . This set of permutations is
called aright cosetof G yr. The designation as “right” arises becausis written to
the right of all of the elements @& .. We abbreviate the right coset@s,z;. There
is also aleft cosetr1G s, not necessarily the same as the right coset. Consider a
possibly different right cose® \ 1o, o & Gyr. This setis either completely distinct
from G 1 or identical with it. Thus, assume there is one permutation in common
between the two cosets,

p1TL = P2T2; p1, p2 € Gy (5.130)
p3p1T1 = p3p2T2; p3 € Gy, (5.131)

and, asos ranges ove y, the right and left hand sides of Eq. (5.131) run over the
two cosets and we see they are the same except possibly for order. The test may be
stated another way: if

121, = p, tp1 € Gy, (5.132)

71 andt, generate the same coset.
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We conclude that one can find a number of right coset generators giving distinct
cosets until the permutations & are exhausted. Symbolizing the right coset
generators as; = |, 12, ..., Tp, We have

S =Gyl @GN @ ® Gu1p, (5.133)

where the first coset i8 y itself. This leads to the often quoted result that the order
of any subgroup must be an integer divisor of the order of the whole group and, in
this case, we have

n
p= (n/2—8>' (5.134)

Our goal now is to find a convenient set of right coset generator& fethat
givesS,. Let us now consider specifically the case for {12} partition with
k =n/2 — S, and the tableau,

1 n—k+17]
k n
k+1
[n—k 4
The order ofG is gy = (n — k)!Kk!. Now letiq, iy, ..., i bel < k of the integers
from the first column of our tableau and Igt, j,, ..., j| be the same number

from the second column. These two sets of integers define a special permutation
(DD = (i1j1) - -- (i ji), which is a product of noninteracting binaries. Since
each binary contains a number from each column, nonelwitld are members of

G. Some, but not all, are members®%$, however. Amongst all of these there is

a subset that we catlanonicalin whichi; <iy <---<ijandj; < jo <--- < ji.

The number of these is
n—k k
I [ /)’
and it is easily shown that

2 (70 -G 659
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Thus, if the distinct canonicali)( j )] generate distinct cosets, we have all of them,
since

av (E) —nl. (5.136)

Considering [)(j)]; and [(")(j))]i, we use Eq. (5.132) to test whether they
generate the same coset. Thg([))], are, of course, their own inverses, and for the
present test we have

[N € G (5.137)

If [(1)(j)]i and [(")(j)]r have any binaries with no numbers in common then
these will remain unaffected in the product, and since none of the binaries is a
member ofGy, neither is the product and the cosets must be different. If there
are any binaries in common these cancel and there remain only binaries that have
numbers connected in one or more chains. Consider a simple two-member chain,
(ab)(ch) = (ac)(ab). The binary & c) € G, but (@ b) is not, so this chain cannot
be a member o6&, and, again, the cosets are different. Our simple two-member
chain could, however, be the start of a longer one, and proceeding this way we see
that we always arrive at the conclusion that the canonicqlj{l;s generate all of
the cosets.

Going back t® N'PN, we write out the\ on the right explicitly and carry out
a number of transformations.

ONPN =0NP Y (-1, (5.138)
UEGN
= 0N Y (=1'vv Py, (5.139)
veGy

= %N B, (5.140)

1
B=— v ipy, 5.141
an U;v ( )

and we see that thB operator is a sort of symmetrization of tifeoperator. We
note first that [ = 1. The operatoP is a sum of terms

k
P=1+) p. (5.142)
=1

where p is a sum over all of the sort ofi[f(j)]; that correspond tb and have
“horizontal” binaries only. There ar#lpermutations i Next, we observe that
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each term in Eqg. (5.141) has the form

Zv-1p|v:(n—k)!k!('l‘) <”|_k)_l(‘|<)_lb|, (5.143)

V n—k\
=gN( | ) b, (5.144)

whereb, is the sum of all of the coset generators correspondihdaguation (5.143)
is obtained merely by the correct counting: the factors on the right are the number
of terms in the sum ang, divided by the number of terms . Thus,

ONPN = é/vzs, (5.145)
k -1
:i/\/z<”_k> b, (5.146)
g =\ |
= éBN, (5.147)

where we know\ andB commute, since they are both Hermitian and s&'BN .
As an example of how andby operators work together we observe that the full
antisymmetrizer corresponding 8 may be written with\/and theb, operators,

1 k
A= HN I;(—1)' b, (5.148)

since the right hand side has each permutation once and each will have the correct
sign. We emphasize that this is valid for any

Now considen functionsus, uo, .. ., uy and form then-particle product function
E = u1(1)uz(2) - - - up(n). Using the form of the antisymmetrizer of Eq. (5.148) we
see that

1 ulfl) e UnFl)

A
n!

a1

: P, (5.149)
ui(n) --- un(n)

and for eack of Eq. (5.148) we have away of representing a determinant. These cor-
respond to different Lagrange expansions that can be used to evaluate determinants,
and, in particular, the use &f= 1 is closely associated with Cramer’s rule[42].

We now define another operator (group algebra element) usinty theset
generator sums,

k
D@ =) _q'br. (5.150)
1=0
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whereq could be complex. WitV this new operator may be applied to the orbital
productZ. A little reflection will convince the reader that the result may be written
as a functional determinant,

ND(Q)E = ‘_q'; QJ, (5.151)

whereP, Q, R, andSare blocks from the determinantin Eq. (5.149). Their sizesand
shapes depend up&nP is (n — k) x (n — k), Qis (n— k) x k, Risk x (n — k),
andSisk x k. The block—q Rrepresents the variableg multiplying each function
in the R-block. We note that iff = —1 the operatoD(q) is just the sum of coset
generators in Eq. (5.148), and the determinant in Eq. (5.151) just becomes the one
in Eq. (5.149).

We may now use thg-function integral[28],

! n—k\ '
/ t@—t)"*'dt=(n-k+1)* < |_ ) , (5.152)
0
and, lettingg = t/(1 — t), convertD(q) to B. Thus, one obtains
1
(n—k+1) / (1 —t)"OD[(t /(1 —t))]dt = B. (5.153)
0

Putting together these results, we obtain the expressioA 6PN E as the
integral of a functional determinant,

_ 1
ONPNE = w/ a-pew| P
g 0 —qR

_ t

=1t

The same sort of considerations allow one to determine matrix elements. Let
v1(1)---vn(n) = YT be another orbital product. There is a joint overlap matrix

between the- andu-functions:

QJdt, (5.154)

(5.155)

(vilug) -+ (v1lun)
Smi=| | (5.156)
(unluz) -+ (vnlUpn)

and we may use it to assemble a functional determinant. Thus, we have

P/ Q/

4R oldt. (5.157)

_ 1
(TIONPNE) = W[ (1— 1)
0

t
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where the primed blocks of the determinant come fig(m u) in the same way as
the blocks of Eq. (5.151) were obtained from the determinant of Eq. (5.149). Some-
what more complicated but similar considerations provide for the determination of
the matrix elements of the Hamiltonian.

When there are doubly occupied orbitals amonguheimplifications occur in
these expressions. In addition, the integrand is a polynontiaffidegreen — k, and
may be evaluated exactly in computer applications using an optimal Gauss quadra-
ture formula[28]. For further details on both these points, the reader is referred to
the literature[39]. The VB calculations reported on in Part Il of the book were all
carried out by a computer program implementing the discussion of this section.



6

Spatial symmetry

Spatial symmetry plays a role in a large number of the examples in Part Il of this
book. This can arise in a number ways, but the two mostimportant are simplification
of the calculations and labeling of the energy states. We have devoted considerable
time and space in Chapter 5 to the effects of identical particle symmetry and spin.
In this chapter we look at some of the ways spatial symmetry interacts with anti-
symmetrization.

We first note that spatial symmetry operators and permutations commute when
applied to the functions we are interested in. Consider a multiparticle function

¢(F1,7>2, ..., n), where each of the particle coordinates is a 3-vector. Applying a
permutation tap gives

7T¢(F1, Fz, ey Fn) = ¢(Fﬂ1, Fﬂz, ey Fﬂn), (61)
where{ry, 7o, ..., m} IS Some permutation of the s, 2, .. ., n}. Now consider

the result of applying a spatial symmetry operatog., a rotation, reflection, or
rotary-reflection, t@. Symbolically, we write for a spatial symmetry operati,,

-

RF=r/, (6.2)
R¢(F1, Mo, ...,Fn) :¢(r’1,r’2, ...,r’n), (63)
and we see that
7 R = Rxf, (6.4)
=@(M s Virgo oo Fy)- (6.5)

1 In physics and chemistry there are two different forms of spatial symmetry operators: the direct and the indirect.
In the direct transformation, a rotation by 3 radians, e.g., causes all vectors to be rotated around the rotation
axis by this angle with respect to the coordinate axes. The indirect transformation, on the other hand, involves
rotating the coordinate axes to arrive at new components for the same vector in a new coordinate system. The
latter procedure is not appropriate in dealing with the electronic factors of Born—Oppenheimer wave functions,
since we do not want to have to express the nuclear positions in a new coordinate system for each operation.

97
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6.1 The AO basis

The functions we use are products of AOs, and, to be useful in a calculation, the AOs
must be a basis for a representation of the spatial group. Since the spatial operations
and permutations commute, the tableau functions we use also provide a basis for
a representation of the spatial group. This is generally true regardless of the nature
of the representation provided by the AOs themselves[43]. Nevertheless, to work
with tableaux on computers it greatly simplifies programs if the AO basis provides

a representation of a somewhat special sort weggalkralized permutationf we

have an appropriate AO basis, it supports a unitary representation of the spatial
groupGs ={l, Ry, Rs, ..., R¢},

Rxj =Y xxD(R) (6.6)
K

wherey; are the AOs and th®(R )y; are, in general, reducibl®(R;) is a gen-
eralized permutation matrix if every element is either zero or a number of unit
magnitude. Because of the unitarity, each row or columB@®;) has exactly one
nonzero element, and this onedid. As it turns out, this is not an extremely spe-
cial requirement, but it is not always possible to arrange. The following are some
guidelines as to when i$ possible?

e Ggis abelian.

* Gg has a principal rotation axis of order2, and no atoms of the molecule are centered
on it. This frequently requires the coordinate axes for the AOs to be different on different
atoms.

¢ Gs transforms thex-, y-, and z-coordinate axes intat themselves, and we use
tensorial rather than sphericdl, f,...functions. That is, oud-set transforms as
(X2, y?, 72, Xy, Xz, yz} with similar sets for the highdrvalues.

In cases where these guidelines cannot be met, one must use the largest abelian
subgroup from the tru&s of the molecule. We will show some examples later.

6.2 Bases for spatial group algebras

Just as we saw with the symmetric groups, groups of spatial operations have asso-
ciated group algebras with a matrix basis for this algebra,

g
& = %Z D(R)4*R.. (6.7)
i=1

2 We emphasize these rules are not needed theoretically. They are merely those that the symmetry analysis in
CRUNCH requires to work.
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This should be compared with Eq. (5.19), but in this case we can assume that the
irreducible representation is unitary without causing any complications. The law
of combination is identical with the earlier Eq. (5.20),

e el = 8jidupell. (6.8)

We use the same symbol for the two kinds of groups. This normally causes no
confusion. These operators of course satisfy

(&) =&, (6.9)

and, thuseg is Hermitian. All of theef}; also commute with the Hamiltonian.

The elemeng?, is a projector for the first component of thé" irreducible
representation basis. Using standard tableaux functions we can select a function of
a given symmetnanda given spin state with

v = ONPNT], (6.10)

whereT; is a product of AOs associated with the standard tableau. When we
evaluate matrix elements of either the overlap or the Hamiltonian between two
functions of these types we have

(e ve) = (BONPNT; |0 N PN T), (6.11)
= 8up(T; |E1ON PN TK), (6.12)
(5[ H[WK) = Sas(Ti [H [0 PAT). (6.13)

6.3 Constellations and configurations

In quantum mechanical structure arguments we often speak of a configuration
as a set of orbitals with a particular pattern of occupations. In this sense, if we
consider the first of a set of standard tableali,we can see that it establishes

a configuration of orbitals. The other standard tableduy,. ., T;, all establish

the same configuration. Consider, however, the result of operatirig with an
element ofGs. Itis simple to see why the assumption that the representBX{&)

in EqQ. (6.6) consists of generalized permutation matrices simplifies the result of this
operation: in this cas& T is just another product functioftT'. It may involve

the same configuration or a different one, but it is just a simple product function.
We use the ternconstellationto denote the collection of configurations that are
generated by all of the elements operating upph; i = 1,2, ..., g. Putting this
another way, a constellation is a set of configurations closed under the operations
of Gs. It will be useful to illustrate some of these ideas with examples. We give
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Table 6.1 Transformation of HO AOs.

I C, Oxz Ozy
2s 2s 2s 2s
2pyx —2px 2pyx —2px
2py —2py —2py 2py
2p, 2p, 2p, 2p,
1sy 1s, 1s, 1s,
1s, 1sy 1s 1s,

three: aC,, system, HO; aC3, system, NH; and aDgy, system, ther system of
benzene.

6.3.1 Example 1. HO

Consider a water molecule with a minimal basis on the atoms. We hage a 1
2s, 2py, 2py, 2p; set on the O atom andsland I, on the H atoms. We assume
the molecule is oriented in the-zplane with the O on the-axis and the center of
mass at the origin of a right-handed Cartesian coordinate system. It does not detract
from this illustration if we ignore the Gl and we suppress them from all tableaux.
H,0 belongs to th€,, symmetry group, which is abelian and, hence, satisfies one
of our guidelines above. Table 6.1 gives the transformation of the AOs under the
operations of the group.

Consider a configuratiors22 p21s22p, 2 p,. The identity and-,, operations leave
it unchanged and the other two give?2p21s?2p,2p;,, and these configurations
comprise one of the constellations fos® and this basis. The projector for tidg
symmetry species @5, is

1
eAl = Z(I + C2 + Oxz + Uzy), (614)
and taking
2s 2s
2px  2px
1ss, 1s,
2py  2p;
as the defining tableau, we obtain
2s 2s 2s 2s 2s 2s
2px 2p 111 2p 2px 2pc 2px
Aq X X | _
e i — , 6.15
1ls, 1sy 2 s, 1sy 1s, 1s, ( )

2py  2p; 2py 2p; 2py 2p;
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as theA; symmetry function based upon this constellation. If, alternatively, we
used theB, projector,

1
e = 21(| — Cy — oxz + 0zy), (6.16)

we would obtain the same two tableaux as in Eq. (6.15), but withgign between
them. The other two projectors yield zero.

The symmetry standard tableaux functions are not always so intuitive as those in
the first case we looked at. Consider, e.g., the configura&@p@pinzlsalsg,
for which there are two standard tableaux and no other members in the constellation,

2px  2px 2px  2px
2py  2py 2py  2py
2s  2p; and 2s 1g
1ls, 1s, 2p; 1s,
When we applye’s to the first of these, we obtain
2px 2px 2px  2px 2px 2px
2py 2p 1 2py 2p 2py 2p
Ay y 1 y y y y
l2s 2p, |=2||2s 2p |T|2s 2p, || €17
1 1s 1, 1 1, 1s

where the second term on the rightist a standard tableau, but may be written in
terms of them. Using the methods of Chapter 5 we find that

2px 2Py 2px 2Py« 2px 2Py
2py 2py _ 2py  2py _ 2py  2py
2s 2p, | |2s 2p, 2s 1s, |’ (6.18)
1, 1s 1l 1s 2p; 1
and thus

2px 2Py 2px 2P« 2px 2P«
2py 2p 2py, 2p 1|2p, 2p

A y vy | _ y y | =+ y y

€1 2s 2p, | | 2s 2p, 2128 1s |’ (6.19)
1s, 1s 1, 1 2p; 1ls

which is a projected symmetry function, although not manifestly so.
It is not difficult to show that

2px  2px

M ;Ey igy —o, (6.20)

2p;, 1ls,

and the second standard tableau does not contribdtastevave functions. This
result indicates that the first standard tableau is not by itself a pure symmetry
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Table 6.2 Transformation of NEAOs.

a Eachreflection plane is labeled with the coordinate
axis that is contained in it.

b Each H-atom orbital is labeled with the reflection
plane it resides on.

type but contain®\; and B, components, while the second is piBg The linear
combination of Eq. (6.19) removes the unwanted part from the first tableau.

We emphasize that these results are specific to the way we have ordered the
particle numbers in the AOs. Other arrangements could give results that look quite
different, but which would, nevertheless, be equivalent as far as giving the same
eigenvalues of the ESE is concerned.

6.3.2 Example 2. NH

Cs, is not an abelian group, but it is not difficult to orient a minimal basis involving

s and p orbitals to make the representation of the AO basis a set of generalized
permutation matrices. We orient tl@g-axis of the group along the unit vector
{1/+/3,1//3,1/4/3}. The center of mass is at the origin and the N atom is on the
Cs-axis in the negative direction from the origin. The three reflection planes of the
group may be defined by the rotation axis and the three coordinate axes, respectively.
There is an H atom in each of the reflection planes at an N—H bond distance from
the N atom and at an angle sf76° from the rotation axis. In our description we
suppress the closed4core as before. Table 6.2 shows the transformation properties
of the basis. We consider the configuratia?2p.2py2p,1s,1s,1s,, which is the

only member of its constellation. Once we have chosen a specific arrangement for
the first tableau, the other four standard tableaux may be given

2s 2s 2s 2s 2s 2s 2s 2s 2s 2s
2px  1s 2px  1s 2px  2py 2px  2py 2px 1sy
2py 1sy | | 2py 2p; | | 1sc 1sy 1sc 2p; || 1k 2p;
2p, 1s, ] L1sy 1s, | [2p; 15, | [1sy 15, [ [ 2py 1s

’

=
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and these will be symbolized By, . . ., Ts in the order given. Thé\; projector for
Cs, is

1
M — é(I + C3 + C5 + oy + oy + 03), (6.21)

and usingsymgenn from the CRUNCH suite, we find th@#tNPN Ty is alA;
symmetry function on its own,

eMONPN T, = ONPN T (6.22)

Applying e’ to ONPNT, yields
1
eMONPNT, = 69]\/73/\/ (2T, + 2T5 — Ty + 3Ts). (6.23)

Usinge™ with Ts, T4, or Ts does not give a function linearly independent of those we
have found already. Thus, there are two linearly independenfunctions that can
be formed from the configuration above. The first of these is not hard to understand
when one examines the consequences of the antisymmetry of the columns of the
standard tableaux functions. The second, however, is much less obvious and would
be very tedious to determine without the computer program.

To obtain the symmetry functions in terms of HLSP functions we can transform
the standard tableaux functions using the methods of Chapter 5. The transformation
matrix is given in Eq. (5.128):

0 0 0 0 -2/3
-1/3 -1/3 13 1/3 -1/3
A=|-1/3 13 -1/3 13 -1/3]|, (6.24)
0 23 23 23 -2/3
-1/3 13 13 -1/3 -1

and multiplying this by the coefficients of the symmetry functions of Egs. (6.22)
and (6.23), we obtain

1 0 0 -1/3
0 1/3 ~1/3 —-2/9
Alo 13|=|-1/3 —2/9], (6.25)
0 -1/6 0 0
0 12 ~-1/3 —2/9
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as the coefficients ofA; symmetry HLSP functions. The Rumer tablea; R
for the HLSP functions are

2s 2s 2s 2s 2s 2s 2s 2s 2s 2s
2px  1s, 2px  1s, 1sc  2py 1s,  2py 2py 1sy
2py 1sy 1s, 2p, 2px 1sy 1s, 2p, Isc  2p;
2p; 1, [ L2py 1s, 1o L2p; 1s, 1o L2p« 1s: 1 L2pc 1s: |

These Rumer tableaux are based upon the following diagrams:

2|0x\ 2px\ 2px 2px
1, oI, TIsors | 1%/ P lSZ/
2p, 2py 2|0z\2py 2p, 2py, 20, 2p, 2p; 2py
~ N N ~
1s, 1s, 1s, 1s, 1s,

1s,

where we have arrang&the orbitals below the<pair in a circle. T(R) andT(R)
are the two “Kekut™ diagrams and the others are the “Dewar” dlagraﬁﬁ@ is
the HLSP function with three electron pair bonds between fheotbital and the
closest & . One sees that th'E;fR) Kekulé structure is completely missing from the
LA functions. We, of course, could have determined the symmetry HLSP functions
by examining them directly. CIearIV(R) is by itself a symmetry function and a
sum of the three Dewar structures is also. It is not so obwous'l'tﬁétdoes not
contribute.

One must confess that thege symmetry results we have obtained for NH
are reasonably simple, because we chose the order of the AOs the way we did.
One could arrange the orbitals in some other order and obtain valid results, but have
symmetry functions that are very nonintuitive. The reader is urged to experiment
with symgenn to see this.

This is also evident when we considés symmetry, the projector for which is

1
eAzzé(l +C3+ C3 — ox — oy — 07). (6.26)
As e’ is applied to theT; in turn, we obtain zero until

eMONPNT, = %GNPN(D — Ts). (6.27)

3 The order of these Rumer diagrams is determined by the automatic generation routine in the computer program.
4 Although NH; does not have the spatial symmetry of a hexagon, we still may use this terminology in describing
the structures.
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Ts gives the same function. This function may be written in terms of Rumer tableaux,
TR also, and we obtain

1 1
SONPN (T —Te) = NPT + TP + 7 + 210 + 1), (6.28)

not a result that is particularly intuitivé',,fR) is present in this sum, and we will see
shortly that this Rumer tableau is the only one that hagsacomponent. It is not
pure, asis seenfrom Eq. (6.28), but none of the other tableaux have gayt at all.

There are two linear combinations of the standard tableaux functions that com-
prise a pair ofE symmetry. TheE projectors are

1

e:II.El = §(| - l/2(33 - 1/2C§ +ox — 1/2‘7y - 1/262), (6.29)
1

&1 = 5(Y%:Cs = Y9,C5 + Y30y — Y,0). (6.30)

The computations show that

e'fl@NPNTz = %QNPN(ZTZ — T3 — Ta), (6.31)
eElQNPNT3 = \/?5(9./\/’73./\/(—-]—3 + Ta), (6.32)

where the energy for either component will be the same. Again, the functions may
be expressed in terms of the Rumer structures, and we obtain
1 2
FONPN@T, — T3 = Ty) = SNP(~ TR+ TR+ 10),  (6.33)
V3 1
—0 —T3+Ty) = —
6 NPN(=Ts + Ty) Nex

As we commented on aboVER is missing from all of the functions except for the
one of A, symmetry.

NP(TS = TH). (6.34)

6.3.3 Example 3. Ther system of benzene

In Chapter 15 we give an extensive treatment ofilsgstem of benzene, buthere we
outline briefly some of the symmetry considerations. We consider the configuration
P1 P2 P3 P4 Ps P, Wherep; stands for a CR, orbital at the ™ C atom, numbered se-
guentially and counterclockwise around the ring. The set of five standard tableaux is

P1 P2 P1 P2 P1 P3 P1 P3 P1 Pa
Ps Pa Pz Ps P2 Pa P2 Pps P2 Ps
Ps  Pe Pa  Ps Ps  Ps Pa  Pe Ps  Ps
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and we label thery, . .., Ts in that order. The®s in merely the sum of all of the
elements of th®g, symmetry group divided by 24, the valuegfWe obtain two
linear combinations

eAlgGJ\/PJ\/'Tl = QJ\/PNTL (6.35)
1
eMONPNT, = 69/\/ PN (3T, — T, — T3 + 2T, — 3Ts). (6.36)
Here again, the second of these is not obviously a symmetry function.

The Rumer diagrams for benzene actually mirror the real spatial symmetry, and
thus the Kekwt"and Dewar structures emerge,

p]_ p]_ p]_ pl p1
~ e ~
Ps R Ps \ P2 pg P, Pe P, P / &
Ps P; BPg P Ps P Pg P3 Pg P3
p4/ ™~ Py Py ™~ Py Py -

and with these we associate the Rumer tableaux

P1 P2 P11 P2 P1 Pa P1 Pe P1 Ps
Ps Pa Ps Ps P2 Ps P2 Pps P2 Ps | -
Ps PelgLPs Ps gL Ps PefglLPs PslglP3 Psafq

The transformation from standard tableaux functions to HLSP functions is inde-
pendent of the spatial symmetry and so we needdmeatrix in Eq. (6.24) again.
This time the results are

1 12 0 13
0 —-1/6 ~1/3 2/9
Alo -1/6|=|-1/3 2/9|- (6.37)
0 13 0 1/3
0 —1/2 ~1/3 2/9

Inthis case the symmetry functions in terms of the Rumer tableau are fairly obvious,
as can be seen by inspection of the Rumer diagrams added together in them.
We give more details of symmetry in benzene in Chapter 15.
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Varieties of VB treatments

The reader will recall that in Chapter 2 we gave examples p€&lculations in

which the orbitals were restricted to one or the other of the atomic centers and
in Chapter 3 the examples used orbitals that range over more than one nuclear
center. The genealogies of these two general sorts of wave functions can be
traced back to the original Heitler—London approach and the Coulson—-Fisher[15]
approach, respectively. For the purposes of discussion in this chapter we will say
the former approach uséascal orbitals and the latternonlocal orbitals. One of

the principal differences between these approaches revolves around the occurrence
of the so-called ionic structures in the local orbital approach. We will describe the
two methods in some detail and then return to the question of ionic structures in
Chapter 8.

7.1 Local orbitals

The use in VB calculations of local orbitals is more straightforward than the alter-
native. In its simplest form, when atomic AOs are used and considered fixed, the
wave function is

‘P=ZCi¢i, (7.1)

where theg; aren-electron basis functions as described in Chapter 5. The wave
function presents a linear variation problem, and the only real problem is the practi-
cal one of choosing a suitable seygffunctions. We will discuss this latter problem
more fully in Chapter 9.

A primary characteristic of this approach is that egclean be interpreted as a
representation of the molecule in which each atom has a more-or-less definite state
or configuration. In this way the molecule as a whole may be thought of as consisting
of a mixture of atomic states including ionic ones, and in ideal circumstances we

107
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may calculate fractional weights for these states. The focus here is thus on the way
atoms in a number of states interact to form the molecule.

This is, of course, the approach used by all of the early VB workers. In more
recent times, after computing machinery allovaalinitio treatments, this is the
sort of wave function proposed by Balint-Kurti and Karplus[34], which they called
amultistructure approachThe present author and his students have proposed the
multiconfiguration valence bond (MCVB) approach, which differs from the Balint-
Kurti-Karplus wave function principally in the way tlge are chosen.

The local approach may be extended, as Hiberty[44] suggests, by allowing the
AOs to “breathe”. This is accomplished in modern times by writing the orbitals
in ¢; as linear combinations of more primitive AOs, all at one nuclear center, and
optimizing these linear combinations along with the coefficients in Eq. (7.1). The
breathing thus contributeswnlinearcomponent to the energy optimization. This
latter is, of course, only a practical problem; it contributes no conceptual difficulty
to the interpretation of the wave function.

We may summarize the important characteristics of VB calculations with local
orbitals.

1. Then-electron basis consists of functions that have a clearcut interpretation in terms of
individual atomic states or configurations.

2. Many atomic states i are of the sort termed “ionic”.

. In a highly accurate energy calculation many terms may be required in Eq. (7.1).

4. If Rumertableaux are used for, these may in many cases be put in a one-to-one relation
with classical bonding diagrams used by chemists.

5. Inits simplest form the energy optimization is a linear variation problem.

6. If a molecule dissociates, the asymptotic wave function has a clear set of atomic states.

w

7.2 Nonlocal orbitals

In all of the various VB methods that have been suggested involving nonlocal
orbitals it is obvious that the orbitals must be written as linear combinations of AOs
at many centers. Thus one is always faced with some sort of nonlinear minimization
of the Rayleigh quotient.

Historically, the first of the modern descendents of the Coulson—Fisher method
proposed was the GGVB approach. Nevertheless, we will postpone its description,
since it is a restricted version of still later proposals.

We describe first the SCVB proposal of Gerrttlal. We use here the notation
and methods of Chapter 5. These workers originally usedé¢nealogical repre-
sentation®f the symmetric groups[7], but so long as the irreducible representation
space is completely spanned, any representation will give the same energy and
wave function. Balint-Kurti and van Lenthe proposed using an equivalent wave
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function. The principal differences between these proposals deal with methods of
optimization. We will continue to use the SCVB acronym for this method.

Consider a system af electrons in a spin stat®@ We know that there are far
linearly independent orbitals

f_2s+1< n+1)

n+1 \n-—-95/2 (7.2)

linearly independent standard tableaux functions or HLSP functions that can be
constructed from these orbitals. In the present notation the SCVB wave function is
written as the general linear combination of these:

f

Wscvp= Z Cigi(ug, ..., Un), (7.3)

i=1

where the orbitals ig; are, in general, linear combinations of the whole AO basis.
The problemis to optimize the Rayleigh quotient for this wave function with respect
to both theC; and the linear coefficients in the orbitals. Using familiar methods of the
calculus of variations, one can set the first variation of the energy with respect to
the orbitals and linear coefficients to zero. This leads to a set of Fock-like operators,
one for each orbital. Gerragt al. use a second order stabilized Newton—Raphson
algorithm for the optimization. This gives a set of occupied and virtual orbitals
from each Fock operator as well as optim@ns.

The SCVB energy is, of course, just the result from this optimization. Should
a more elaborate wave function be needed, the virtual orbitals are available for a
more-or-less conventional, but nonorthogonal, Cl that may be used to improve the
SCVB result. Thus an accurate result here may also involve a wave function with
many terms.

The GGVB[41] wave function can have several different forms, each one of
which, however, is a restricted version of a SCVB wave function. As originally
proposed, a GGVB calculation uses just one of the genealogical irreducible rep-
resentation functions and optimizes the orbitals in it, under a constraint of some
orthogonality. In general, the orbitals are ordered into two sets, orthogonality is
enforced within the sets but not between them. Thus, theré diferent GGVB
wave functions, depending upon which of the genealogicdlinctions is used.
Goddard designated these as the G1,.G2,Gf methods, the general one being
Gi. Each of these, in general, yields a different energy, and one could choose the
wave function for the lowest as the best GGVB answer. In actual practice only the
G1 or Gf methods have been much used. In simple cases the Gf wave function is a
standard tableaux function while the G1 is a HLSP function. For Gf wave functions

1 The requirements of symmetry may modify this.
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we may show that the above orthogonality requirement is not a real constraint on the
energy. From Chapter 5 we have, foelectrons in a singlet state, the unnormalized
function

Vgt = ONPNUi(1)- - - un(m)vy(m+ 1)- - - vm(n), (7.4)

wherem = n/2, and theus andvs are the two sets of orbitals. In principle, we
could optimize the energy and orbitals corresponding to Eq. (7.4), and afterwards
the presence of th& will allow the formation of linear combinations among tire

and, in general, different ones among tisethat will render the two sets internally
orthonormal. This does not change the valu@gt, of course, except possibly for

its overall normalization.

On the other hand, no such invariance of G1 or HLSP functions occurs, so the
orthogonality constraint has a real impact on the calculated energy.

We saw in Chapter 3 how the delocalization of the orbitals takes the place of the
ionic terms in localized VB treatments, and this phenomenon is generally true for
n electron systems.

We now summarize the main characteristics of VB calculations with nonlocal
orbitals.

1. The wave function is reasonably compact, normally having no moreftiiarms.

2. There are no structures in the sum that must be interpreted as “ionic” in character. For
many people this is a real advantage to these VB functions.

3. The SCVB function produces a considerable portion of the correlation energy.

4. If Rumertableaux are used for, these may in many cases be put in a one-to-one relation
with classical bonding diagrams used by chemists.

5. If a molecule dissociates, the asymptotic wave function has a clear set of atomic states.

Illustrations of both of these classes of VB functions will be given for a number
of systems in Part Il of this book.
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The physics of ionic structures

The existence of many ionic structures in MCVB wave functions has often been
criticized by some workers as being unphysical. This has been the case particularly
when a covalent bond between like atoms is being represented. Nevertheless, we
have seen in Chapter 2 that ionic structures contribute to electron delocalization in
the H, molecule and would be expected to do likewise in all cases. Later in this
chapter we will see that they can also be interpreted as contributions from ionic
states of the constituent atoms. When the bond is between unlike atoms, it is to be
expected that ionic structures in the wave function will also contribute to various
electric moments, the dipole moment being the simplest. The amounts of these ionic
structures in the wave functions will be determined by a sort of “balancing act”
in the variation principle between the “diagonal” effects of the ionic state energies
and the “off-diagonal” effect of the delocalization.

In this chapter we will also focus on the dipole moment of molecules. With these,
some of the most interesting phenomena are the molecules for which the electric
moment is in the “wrong” direction insofar as the atomic electronegativities are
concerned. CO is probably the most famous of these cases, but other molecules
have even more striking disagreements. One of the larger is the simple diatomic
BF. We will take up the question of the dipole moments of molecules like BF in
Chapter 12. In this chapter we will examine in a more general way how various
sorts of structures influence electric moments for two simple cases. For some of the
discussion in this chapter we restrict ourselves to descriptions of minimal basis set
results, since these satisfactorily describe the physics of the effects. In other cases
a more extensive treatment is necessary.

8.1 Assilly two-electron example

In Chapter 2 we described several treatments of thenblecule, and, of course,
there the question of dipole moments was irrelevant, although we could have
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calculated a quadrupole moment. We want here to consider the properties of a
covalent VB structure for BHusing a silly basis set consisting of @rbitals for the

two atoms that have different scale factors. Such a wave function is certain not to
have the correc’tEJ symmetry for H and will not have a credible energy, but an
important point emerges. Let the singlet standard tableaux fungtioioe

¥ = N[1s, 1sy], (8.1)

where, as indicated by the prime, we use differently scaled AOs at the two cen-
ters. The question we ask is: What is the electric dipole moment implied by this
wave function? Assuming the molecule is situated alongztheis, thex- and
y-components of the moment are zero. In atomic unitszieemponent of the
moment is

Za + 2o + 2S(15}|Z|1sp)
1+ & '

Y S8(za + 2,) — 2(1s,[2|1%)]

N 1+ ’

where S = (1s)|1s,). It is clear from Eg. (8.2) that, whatever its value at small
distancesy, goes to zero as the interatomic distance goes to infinity, Sradeo
goes to zerou, is not zero, however, at 0.7,/ distance near that at equilibrium
in H,. Taking the scale of<to be 1.0 and that ofsl to be 1.2, a value close to
that which is optimum for the moleculeye obtain., = —0.118 D. STO6Gs were
used andy, < zg, i.e., the less diffuse orbital is in the positizalirection from the
other. This calculated moment is not very large, but it arises frporaly covalent
function. If we do the same calculation for the triplet function,

1s,
[1%]’
we obtainu, = 0.389 D, in the direction opposite to that for the singlet function.
In the singlet case the electron distribution is more toward the less extended AO
and in the triplet case more toward the more extended AO.

It is useful to state this result in different language. In general, we expect more
electronegative atoms to have tighter less diffuse orbitals in comparable shells than
atoms of lower electronegativity. In our case this means we have a surrogate atom
for higher electronegativity in the positiedirection from the other. Therefore,
bonding interactions have the electrons moving toward the more electronegative
atom and antibonding interactions have them moving toward the less electronegative
atom. The usual sign convention confusion occurs, of course; the dipole moment
points in a direction opposite to the electron movement.

Mz=12a+2Zp—

(8.2)

1 We note thatif the orbitals were scaled equallysd | z|1s,) = S(za + zb) andy is correctly zero at all distances.



8.2 lonic structures and the electnmmoment of LiH 113

Li—H*

Electric moment (au)
w
T
1

0 1 2 3 4 5 6
Li—H distance (bohr)

Figure 8.1. The electric dipole function versus the internuclear distance for LiH using the
two ionic and one covalent functions, individually. The sign of the moment forLH™
has been changed to facilitate plotting and comparison of the magnitudes.

It is clear, when we calculate the electric moment with a more realistic wave
function, that even the so-called covalent functions can make nonzero contributions
when symmetry allows.

8.2 lonic structures and the electric moment of LiH

There are two rather different questions that arise when considering ionic structures
in VB wave functions. The first of these we discuss is the contribution to electric
dipole moments. LiH is considered as an example. In the next section we take up
ionic structures and curve crossings, using LiF to illustrate the points.

LiH is the simplest uncharged molecule that has a permanent electric dipole
moment> We examine here some of the properties of the simplest VB functions
for this molecule. The molecule is oriented along zkexis with the Li atom in the
positive direction.

Figure 8.1 shows the expectation values of the electric moment for theHL.i
and covalent structures. The graph givesrthgativeof the moment for Li —H*
for easy comparison. In addition, the moment for the three-term wave function
involving all three of the other functions is given. Although such a simple wave

2 The small moments in isotopic hydrogen, HD and HT, for example, do not interest us here.
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function does not reproduce the total moment accurately, qualitatively the signs
are correct. The behavior of the three expectation values deserves comment.

1. Li-—H™ From the point of view of electrostatics this structure is the simplest. We have
a spherical LT ion and a bare proton. The dipole moment should just Bein atomic
units, and the line giving the dependence of the momerR should be straight with a
slope of—45° and through the origin. (NB The sign of this curve has been changed in
Fig. 8.1 to facilitate comparison of magnitudes.)

2. LiT—H~ At longer distances the molecule is essentially an undistortéddn and an
H~ ion. As such, the moment equals the internuclear distance. As the ions approach
one another, the Pauli principle interaction between the hiid Hls AOs causes the
moment to be larger than the value due only to the distance. It should be noted that the
effect of the Pauli principle is in the same direction as is the triplet example we gave
earlier for the H molecule with unequally scaled AOs, i.e., the charge density is pushed
toward the more diffuse orbital. The exchange interaction between two doubly occupied
orbital distributionss essentially like the triplet interaction between two singly occupied
orbitals of the same sort.

3. Covalent The dipole moment of the covalent structure is never larger than 1 (in atomic
units) and is always positive. A simple analy@sot so easy here, but the samed.il
and HX interaction as appeared above occurs in this case also.

Figure 8.2 shows the coefficients of the three structures in the total three-term
wave function. As expected, the covalent term predominates at all distances, but

10 T T T T T
0.8 .
Li—H
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Figure 8.2. The coefficients of the three structures in the simple three-term wave function.
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Figure 8.3. The dipole function for the full valence wave function of LiH. It is a little

difficult to see on the present scale, but the moment is —0.033 au at an internuclear distance
of 0.2 bohr.

the Lit —H™ term is the next largest at all distances. The structure with the “wrong”
sign is always the smallest in the range of the graph. Figure 8.2 admittedly does not
allow a quantitative analysis of the way the three terms produce the total moment,
but it does provide a suggestive picture of how the various terms contribute.

When a full valence calculation is done with the present basis, there are 48
standard tableaux functions that produce*#5 functions. Figure 8.3 shows the
dipole moment function for this wave function. The figure also shows the’*45
line that would be the moment if the charges at the ends were unit magnitude. The
curve has some interesting structure. As noted in the caption, even this molecule
shows the dipole going the “wrong” way to a slight extent at very close internuclear
distances. As the distance increases the moment rises abové time4imdicating
an effective charge on the ends greater in magnitude than one au. By the time the
equilibrium distance is reached (3.019 bohr), the effective charges have fallen so that
the momentis 5.5 D with the positive end atthe Li, as the electronegativities predict.

8.3 Covalent and ionic curve crossings in LiF

Lithium and fluorine form a diatomic molecule that has a large dipole moment
in the gas phase; it has been measured to be 6.3248 D in the ground vibrational
state. The equilibrium internuclear distance is 1.5641d, therefore, the apparent
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Figure 8.4. The first foutX states of LiF near the ionic—covalent curve crossing region.
The electric dipole moment is also given showing its change in relation to the crossing of
the first two states. The energy curves refer to the left vertical axis and the dipole moment
to the right.

charge on the atoms 0.84 electrons. When there is a long distance between
them, the overall ground state is the pair of atoms, each in its neutral ground state.
The first excited overall state has the Li atom excited-2 2p at 1.847 eV. The
ionization potential of Li is 5.390 eV and the electron affinity of F is 3.399 eV, so
the next state up is the transfer of an electron from Lito F at an energy of 1.991 eV.
This is a lower energy than ang 2> 3l states of Li or any p — 3s states of F.

If there were no other interaction the energy of the atoms in the-Ei- state
would fall as they approach each other frem The energy of this state would
cross the ground state at about 12 bohr. In actuality the states interact, and there is
an avoided crossing. The energies of the first four states of LiF are shown in Fig. 8.4
as a function of internuclear distance. In addition, the electric dipole moment is
shown.

The point we wish to bring out here is that the dipole moment curve around
6—7 bohr is very nearly the value expected 4oone electronic charge separated
by that distance. As one moves outward, the avoided crossing region is traversed,
the state of the molecule switches over fromi L~ to Li—F and the dipole falls
rapidly.

The avoided crossing we have discussed occurs between the two curves in
Fig. 8.4 labelede; and E,. Another avoided crossing, farther out than our graph
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shows, occurs between the'l-i F~ state curve andE; and E4. These latter two
states involve Lid,—F2p, and Li2p,—F2p,, both coupled td=*. The crossing
in these cases occurs at such large distances there is very little interaction.

The calculations in this illustration were not done with a minimal basis set, since,
if such were used, they would not show the correct behavior, even qualitatively.
This happens because we must represent both FaimdtRe same wave function.
Clearly one set of AOs cannot represent both states of F. Li does not present such
a difficult problem, since, to a first approximation, it has either one orbital or
none. The calculations of Fig. 8.4 were done with wave functions of 1886 standard
tableaux functions. These support 1620 symmetry functions. We will discuss
the arrangement of bases more fully in Chapter 9.
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Selection of structures and arrangement of bases

Since, for any butthe smallest of systems, a full VB calculation is out of the question,

it is essential to devise a useful and systematic procedure for the arrangement of the
bases and for the selection of a manageable subset of structures based upon these
orbitals. These two problems are interrelated and cannot be discussed in complete
isolation from one another, but we will consider the basis question first. In our
two-electron calculations we have already addressed some of the issues, but here
we look at the problems more systematically.

9.1 The AO bases

The calculations described in this section of the book have, for the most part, been
carried out using three of the basis sets developed by the Pople school.

STO3GA minimal basis. This contains exactly the number of orbitals that might be occupied
in each atomic shell.

6-31GA valence double-dasis. This basis has been constructed for atoms up through Ar.
6-31G* A valence double-dasis with polarization functions added. Polarization functions
are functions of one largérvalue than normally occurs in an atomic shell in the ground
state.

Any departures from these will be spelled out at the place they are used.

Our general procedure is to represent the atoms in a molecule using the Hartree—
Fock orbitals of the individual atoms occurring in the molecule. (We will also
consider the interaction of molecular fragments where the Hartree—Fock orbitals of
the fragments are used.) These are obtained with the above bases in the conventional
way using Roothaan’s RHF or ROHF procedure[45], extended where necessary.

ROHF calculations are not well defined, and the reader is cautioned that this
term has meanings that differ among workers. Some computational packages,
GAMESSJ46] is an example, in doing a single-atom calculation, do not treat the

121
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atom in a spherical environment. For example, for N ifi8ground state, the three

p orbitals are divided inte ands sets and are not all equal. This is not a matter of
any importance in that milieu. An atom in a molecule will not be in a spherically
symmetric environment for the Hartree—Fock function to be determined.

In all of the calculations described here, however, we use the original Roothaan
specifications that produce setd dtinctions that transform into one another under
all rotations. This can have an important consequence in our VB calculations, if we
treat a problem in which the energies of the system are important as we move to
asymptotic geometries. An example will clarify this point. i€ in alxg ground
state, but there are two couplings of two C atoms, each*i®aground state, that
have this symmetry. In our calculations these two will have the correct asymptotic
degeneracy only if we use “spherical” atoms.

Conventional basis set Hartree—Fock procedures also produce a number of
virtual orbitals in addition to those that are occupied. Although there are experi-
mental situations where the virtual orbitals can be interpreted physically[47], for
our purposes here they provide the necessary fine tuning of the atomic basis as atoms
form molecules. The number of these virtual orbitals depends upon the number of
orbitals in the whole basis and the number of electrons in the neutral atom. For the B
through F atoms from the second row, the minimal STO3G basis does not produce
any virtual orbitals. For these same atoms the 6-31G and 6-Ba&es produce four
and nine virtual orbitals, respectively. There is a point we wish to make about the
orbitals in these double-basis sets. A valence orbital and the corresponding virtual
orbital of the samé-value have approximately the same extension in space. This
means that the virtual orbital can efficiently correct the size of the more important
occupied orbital in linear combinations. As we saw in the two-electron calculations,
this can have an important effect on the AOs as a molecule forms. We may illustrate
this situation using N as an example.

The 6-31G basis for N has thregype Gaussian groups. In the representation of
the normal atom thesland Z occupied orbitals are two linear combinations of the
three-function basis and tlsetype virtual orbital is the third. For convenience, we
will call the last orbital 3, but it should not be thought to be a good representation
of a real orbital of that sort in an excited atom. A typical Hartree—Fock calculation
yields

1s = 0.996 224 78 + 0.019 984 195 — 0.004 639 93, (9.1)
2s = —0.226 268 2 + 0.515 913 18 + 0.568 841 0@, (9.2)
3s = 0.091 01932 — 1.5148 075 B + 1.478 256 4§, (9.3)

wheregg, g3, andg; are, respectively, the 6, 3, and 1 Gaussian groups from the basis.
The Isorbital is predominantly thgs function, but the other two have roughly equal
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(in magnitude) parts af; andg;. Therefore, a linear combinatioa?s + b3swith
a fairly smallb can have an extension in space differing from thatoitelf. If
b/a < 0itis more compact; ib/a > 0 it is less compact.

9.2 Structure selection

Our discussion of the structure selection must be somewhat more involved. In part,
this is a discussion of a crucial member of the CRUNCH package, the program
entitledsymgenn. It possesses a number of configuration selection devices, for
the details of which the reader is referred to the CRUNCH manual. The present
discussion will focus on the desired outcome of the selections rather than on how
to accomplish them. Again, itis convenient to describe these by giving an example,
that of the N molecule, which will be discussed quantitatively in Chapter 11.

9.2.1 N, and an STO3G basis

N, has 14 electrons and there are 10 orbitals in an STO3G basis. The Weyl
dimension formula, Eq. (5.115), gives 4950 configurattofus a singlet state.
Physical arguments suggest that configurations with electrons excited out sf the 1
cores should be quite unimportant. If we forceg1%? occupation at all times,
Eg. (5.115) now gives us 1176 configurations, a considerable reduction. These are
not justzg states, of cours&ymgenn will allow us to select linear combinations
having this spatial symmetry only. This reduces the size of the linear variation ma-
trix to 102x 102, a further significant reduction. Another number thahgenn
tells us is that, among the 1176 configurations, only 328 appear as any part of a
linear combination giving Eg state. This number would be difficult to determine
by hand?

At this stagesymgenn has done its job and the matrix generator uses the
symgenn results to compute the Hamiltonian matrix. Thus, we would call this
afull valencecalculation of the energy of Nwith an STO3G basis.

9.2.2 N, and a 6-31G basis

We still have 14 electrons, but the larger basis provides 18 orbitals in the basis.
The full calculation now has 4 269 359 850 configurations, a number only slightly

1 This is the number of linearly independent standard tableaux or Rumer functions that the entire basis supports.
2 To be precise, we should point out that we haymgenn treat N> as aDap, System, rather than the completely
correctDyon. In projecting symmetry blocks out of Hamiltonian matrices, it is never wrong to sséagroup
of the full symmetry, merely inefficient. It would be a serious error, of course, to use too high a symmetry. It
happens for the STO3G basis that there is no difference betigeDa, and Zar Dooh projections.
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smaller than 2. Forcing a $21s? occupation reduces this to 4 504 864, which is a
considerable reduction, but still much too large a number in practice. The reduction
of these toZ;;r states is not known, but the number is still likely to be considerable.
Instead, we use physical arguments again to reduce the number of configurations
further. Many of the 4 504 864 configurations have mostly virtual orbitals occupied
and we expect these to be unimportant. The number of occupied orbitals from the
6-31G basis is the same number as the total number of orbitals from the STO3G
basis. Therefore, there are again 102 functions from the occupied orbitals.
These include charge separations as high-asWe add to this full valence set
those configurations that have one occupied orbital replaced by one virtual orbital
in the valence configurations with charge separation no highertiaBymgenn

could work out the number of configurations resulting, but we have not done this.
If this selection scheme is combined wmg symmetry projection, we obtain a
1086x 1086 Hamiltonian matrix, an easily manageadilee.

9.2.3 N and a 6-31G basis

When we addl orbitals to the basis on each atom we have the possibility that
polarization can occur. Of course, as far as an atom in the second or third rows is
concerned, thd orbitals merely increase the number of virtual orbitals and increase
the number of possibilities for substitutions from the normally filled set. We do not
give any of the numbers here, but will detail them when we discuss particular
examples.

9.3 Planar aromatic andn systems

In later chapters we give a number of calculations of planar unsaturated systems.
Because of the plane of symmetry, the SCF orbitals can be sorted into two groups,
those that are even with respect to the symmetry plane, and those that are odd.
The former are commonly called orbitals and the lattet orbitals. Although it

is an approximation, there has been great interest in treating freats of these
systems with VB methods and ignoring thgarts. The easiest way of doing this,
while still usingab initio methods, is to arrange all configurations to have all of the
occupiedr orbitals doubly occupied in the same way. In additiowjrtual orbitals

are simply ignored. The AOs may then be used in their raw state or in any linear
combinations desired. In this sort of arrangement ttedectrons are subjected to
what is called thestatic-exchange potential (SHBY] of the nuclei and» core.

The most important molecules of this sort are the aromatic hydrocarbons, but many
examples containing oxygen and nitrogen also exist.
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Four simple three-electron systems

Inthis chapter we describe four rather different three-electron systemssirstem

ofthe allyl radical, the Hgionic molecule, the valence orbitals of the BeH molecule,
and the Liatom. In line with the intent of Chapter 4, these treatments are included to
introduce the reader to systems that are more complicated than those of Chapters 2
and 3, but simple enough to give detailed illustrations of the methods of Chapter 5.
In each case we will examine MCVB results as an example of localized orbital
treatments and SCVB results as an example of delocalized treatments. Of course,
for Li this distinction is obscured because there is only a single nucleus, but there
are, nevertheless, noteworthy points to be made for that system. The reader should
refer back to Chapter 4 for a specific discussion of the three-electron spin problem,
but we will nevertheless use the general notation developed in Chapter 5 to describe
the results because it is more efficient.

10.1 The allyl radical

All of the calculations on allyl radicals are based upon a conventional ROHF
treatment with a full geometry optimization using a 6-314asis set. The “core”

was used to construct an SEP as described in Chapter 9. The molecule possesses
C,, symmetry. TheC, symmetry axis is along theaxis and the nuclei all reside in
thex—z plane. Thus the “#AOs consist of thepys, dyys, anddy;s, of which there

are 12 in all for this basis. At each C there is@g 2a 3py, a Iy, and a 8ly,. The

2py is the SCF orbital for the atomic ground state, and thgi8 the virtual orbital

of the same symmetry. Table 10.1 shows for reference the pertinent portions of the
C,, character table. We number theorbitals from one end of the molecule and

use 2y, 2p,, and 2z, remembering that they are all of th@2sort. The effect of

the oy, andoy, operations of the group is seen to be
oy2p = —2p;, (10.1)
szzpl = 2p3= (10-2)

125
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Table 10.1C,, characters.

Co I C, Oxz Oyz
Aq 1 1 1 1
A 1 1 -1 -1
B, 1 -1 1 -1
B, 1 -1 -1 1

Table 10.2Results of 128-function MCVB calculation.

—116.43324863 au SCF energy
—116.477 396 60 au MCVB energy
1.201eV Correlation energy
2p1 2p2
0.9003 EGSO pop. c{‘zps }
szzpz = 2p2, (10.3)
0xz2P3 = 2p1. (10.4)

The effect of theC, operation is easily determined sin€® = ox,0y,. There
is, of course, a completely parallel set of relations for tigg 3et of orbitals.
Writing out the corresponding relations for the 8rbitals is left to the interested
reader.

10.1.1 MCVB treatment

An MCVB calculation with a full set of configurations involving the sip2and
3py orbitals with further configurations involving all possible single excitations
out of this set into thel-set gives 256 standard tableau functions, which can form
1282A, symmetry functions and a Hamiltonian matrix of the same dimension.
Table 10.2 gives several results from the calculation, and we see that there is about
1.2 eV of correlation energy. Because of the static exchange core, all of this is in
therr system, of course. In addition we see that the EGSO population suggests that
the wave function is 90% of the basic VB function with unmodified AOs. This is
true, of course, for either standard tableaux functions or HLSP functions.

It is instructive to examine the symmetry of the standard tableaux function of
highest EGSO population given in Table 10.2. The effects of the two symmetry
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planes ofC,, on the 2%y orbitals are given above, and, consequently,

S o O e PR
el )=o) (10.6)
=— [;B; sz} . (10.7)

It is important to recognize why Eq. (10.7) is true. From Chapter 5 we have
BE; sz] = ONPN2p1(1)2p3(2)2p2(3), (10.8)

except for normalization. Sinc¥ is a column antisymmetrizer, if we interchange
2p1(1)2p3(2), the sign of the whole function changes, and this standard tableaux
function has’A, symmetry. The spatial projector fak, symmetry may be con-
structed from Table 10.1,

e™ =Y [I +Cy — oxz — 0y4l, (10.9)
and we see that
o0 2| 20 2], (10.10
The second standard tableaux function
|:2pl 2p3}
2p;

iS not a pure symmetry type; in fact, it is a linear combinatiodffand 2B,. Since

there cannot be three linearly independent functions from these tableaux, the two
A, functions must be the same, and we do not need the second standard tableaux
function for this calculation. The”> operator may be applied to this tableau to
obtain the result in a less formal fashion,

A [ 2p1 2ps] l([Zpl 2p3] [2p3 2p1])
. _* _ , 10.11
© |:2p2 2\[2p2 2p2 ( )

where we have a honstandard tableau in the result. Again, the methods of Chapter 5
come to our aid, and we have

2p3 2p1] ([Zpl Zpﬂ [Zpl 2pzD
— - , 10.12
[ZF’Z 2p 2p3 ( )
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Table 10.3Results of smaller VB calculations.

—116.43324863 au SCF energy
32-function MCVB —d-functions removed
—116.470007 69 au MCVB energy
1.000 eV Apparent correlation energy
2pl 2p2
0.9086 EGSO pop. <{f2p3 ]
4-Function MCVB — 2, 2p2, 2p3 only
—116.461872 28 au MCVB energy
0.779 eV Apparent correlation energy
2pl 2p2
0.9212 EGSO pop. C%Zps ]

2-function VB — 2p;, 2p2, 2ps covalent only
—116.413 426 76 Energy

and substituting this result into Eq. (10.11), we obtain

r 2P 2p3] _ 1[2p 2pp
e [sz ]_2 o . (10.13)

Our ability to represent the wave function for allyl as one standard tableaux
function should not be considered too important. If we had ordered portdtals
differently with respect to particle labels, there are cases wheréhiinction
would require using both standard tableaux functions.

This happens when we consider the most important configuration using HLSP
functions. The two Rumer diagrams are shown with dots to indicate the extra
electron.

_ Py P,
Py bg bl ™~ P3

Transforming our wave function to the HLSP function basige obtain

2A2=0.41115([2'°2 Zpl} —[sz 2p3] )+ (10.14)
2p3 R 2p R

where we have used Rumer tableaux (see Chapter 5). We emphasize that the EGSO
populations are the same regardless of the basis.

In Table 10.3 we give data for smaller calculations of the atlysystem. As
expected, the MCVB energies increase as fewer basis functions are included, the

1 Details of this sort of calculation are given in the next section.
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apparent correlation energy decreasing by about 0.5 eV. In fact, unlike the case
with Hy, the covalent only VB energy abovethe SCF energy. This is a frequent
occurrence in systems where resonance occurs between equivalent structures. It
arises because of the delocalization tendencies of the electrons. We will take this
question up in greater detail in Chapter 15 when we discuss benzene.

In actuality, the two smaller correlation energies shown in Table 10.3 are not
very significant, since the AO basis is really different from that giving the SCF
energy. What is significant is the relative constancy of the EGSO weight for the
most important configuration.

Since there are only four terms, we give the whole wave function for the smallest
calculation. In terms of standard tableaux functions one obtains

2p1 2p2
2n. _
A, =0.730 75{2p3 ]
[2p1 2p1| [2ps 2p3]
+0.l4064<_2p3 | — _2p1 _)
| 2p3 1 L2p: i
+0.06132< 2P1 2pu|_|2Ps 2ps ) (10.15)
| 2p2 1 L2p i

The HLSP function form of this wave function is easily obtained with the method
of Section 5.5.5,

2p3 R L2p R

+ three other terms the same as in Eif).15). (10.16)

The reader will recall that a given configuration has different standard tableaux
functions and HLSP functions if and only if it supports more than one standard
tableaux function (or HLSP function).

It will be instructive to detail the calculations leading from Eq. (10.15) to
Eqg. (10.16). This provides an illustration of the methods of Section 5.5.5.

10.1.2 Example of transformation to HLSP functions

The permutations we use are based upon the particle label tableau

27
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and, therefore,

YeNPN =3[ 1 —(12)+ (13) + 7,(23)
—Y,(123)— ,(132)), (10.17)
Yo NP =Y3[T — (12) + (13) - (132)] (10.18)

The standard tableaux for the present basis are

|:2F)1 2p2] and [Zpl 293i|.
2p3 2p; '

it should be clear that the permutation yielding the second from the first is (23).
Thus, the permutations of the sort defined in Eq. (5.64) &= {I, (23)}, and
we obtain

1
M = [ ! /2] (10.19)

where we have used aviP A version of Eq. (5.73), and the numbers are obtained
from the appropriate coefficient in Eq. (10.17).
The Rumer tableaux may be written

[2p1 Zpﬂ and [Zps 2pz}
2p3 R 2p; R

and the{p; } setis{I, (12)}. Thus the matriXB from Eqg. (5.126) is

B— [é :ﬂ (10.20)
andAfrom Eq. (5.128) is
1, 1
A=B1M = 1/2 2| (10.21)
—72 -1

We also give the inverse transformation

4 2
Alz[_/?’ /3] (10.22)
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The results of multiplying Egs. (10.17) and (10.18) by (23) and (12), respectively,
from the right are seen to be

Y NPN(23) = Y[ Yol — Y5(12) — Y5(13) + (23) — (123)+ ¥,(132)],

YaNP(12) = Y5[—1 + (12)+ (123)— (23)]
and we obtain

VNPVl — 15(12)] = Y N PN, (10.23)
YoNP[ = Y,I — (12)] = Ys N'PN(23). (10.24)

For completeness we also give the inverse transformation:

YsNPN[Ysl —%323)] = Y NP, (10.25)
Ye NPN[ — %51 — ¥5(23)] = Y3 N'P(12). (10.26)

We now return to the problem, and, using the first row of the matrixin Eq. (10.21),
we see that

2py 292} 1 ([291 sz] [2p3 2P2] >
1 _ . (1027
[2p3 2 \|2ps R L2m R ( )

1/12p sz] [sz ZDS] >
—— — . 10.28
2 ([293 R L2m R ( )

This result does not quite finish the problem, however, in that it dealsunitbrma-
lized functions. The coefficients that we show are given assuming the tableau func-
tions of either sort are individually normalized to 1. We must therefore consider
some normalization integrals.

The normalization and overlap integrals of the two standard tableaux functions
may be written as a matrix

sfjtf = (2p12p22ps|7 *ONPN 1} |2p12p22ps),

tf _ [0.365 14470 (@A82572 33

0.313656 6 (10.29)
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The corresponding normalization and overlap integrals for the HLSP functions are
then obtained with the transformation of Eq. (10.22),

SR _ [0.463 9760 —0.266 313 37i| (10.30)

0.463976 03| -

It is seen that the two diagonal elementsSBfare equal, reflecting the symmetrical
equivalence of the two Rumer tableaux and diagrams. The coefficients in the wave
functions Egs. (10.15) and (10.16) are all appropriate for each individual tableau
function’s being normalized to 1. Therefore/ if)QNPNZ p12p22psis anor-
malized standard tableaux function, with a similar expression for the HLSP func-
tions. In terms of normalized tableau functions we have

1 |:2pl sz]uzi_L Sh( 1 |:2pl sz]u
[t 2ps AT /SR 2ps R
u
_ 1 [292 Zpﬂ , (10.31)
R

@ 2py

where we have designated unnormalized tableau functions with a superstript “
We now see tha,v'SR /S;;' should convert the coefficient of the standard table-
aux function in Eq. (10.15) to the coefficient of the HLSP function in Eq. (10.16),

ie.,
1 (04639760
73079x o/ 220 _ 9411 10.32
0-73079x 2\ 536514270 041188 (10-32)

For a system of any size, these considerations are tedious and best done with a
computer.

10.1.3 SCVB treatment with corresponding orbitals

The SCVB method can also be used to studystheystem of the allyl radical. As
we have seen already, only one of the two standard tableaux functions is required
because of the symmetry of the molecule. We show the results in Table 10.4, where
we see that one arrives at 85% of the correlation energy from the largest MCVB
calculation in Table 10.2. There is no entry in Table 10.4 for the EGSO weight,
since it would be 1, of course.

The single standard tableaux function is

|:2pl szi|
2p3 ’
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Table 10.4Results of SCVB calculation.

—116.43324863 au SCF energy
—116.47093315 au SCVB energy
1.025 eV Correlation energy

Orbital amplitude

0.4
0.3
0.2
0.1
0.0

Distance from center (A) 2

3
474 Distance from center (A)

Figure 10.1. The first SCVB orbital for the allyl radical. The orbital amplitude is given in
a plane parallel to the radical and 0.5dfstant.

and the orbitals satisfy

oyz2P2 = 2Py, (10.34)
oyz2P3 = 2y, (10.35)

each one consisting of alinear combination of all oft®sOs allowed by symmetry.
In terms of HLSP functions the wave function has two terms, of course:

0.537(5028<[2'°2 Zpl] —[sz Zpﬂ )
2p3 R L2P1 R

and the overlap between the two HLSP functions 5730 003.

In Fig. 10.1 we show an altitude drawing of the orbital amplitude of the first
of the SCVB orbitals of the allykr system. The third can be obtained by merely
reflecting this one in thg—z plane of the molecule. It is seen to be concentrated at
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Orbital amplitude
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Figure 10.2. The second SCVB orbital for the allyl radical. The orbital amplitude is given
in a plane parallel to the radical and 0.5d#stant.

one end of the radical, with the amplitude falling off fairly rapidly as one moves
away from that end. The second SCVB orbital is shown in Fig. 10.2. Itis seen to be
concentrated on the middle carbon atom with lobes symmetrically placed on either
end carbon. Both of these drawings are plotted for amplitudes in a planeffbfmA

the plane in which the nuclei occur. Since thesemamebitals, the amplitude is, of
course, zero in the nuclear plane.

10.2 The Hef ion

The Hg ion has the archetype three-electron bond originally described by Pauling
[1], and this section gives a description of MCVB calculation and SCVB treatments
for this system. All of these use a Huzinaga 6-&fdnction split (411), a 4-G 2
function and ap, function with the scale set to 0.9605. We take up the MCVB
treatment first.

10.2.1 MCVB calculation

The basis described was used to generate sraxdupied and four virtual RHF
orbitals. Using these afull calculation yields 250 standard tableaux functions, which
may be combined into 125 functions £ symmetry. The results for energy,
bond distance, and vibrational frequency are shown in Table 10.5. We see that the
agreement foD, is within 0.1 eV, forRe is within 0.01 A and forwe is within
20cnT!. Even atthe equilibrium nuclear separation, the wave function is dominated
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Table 10.5Dissociation energy, bond distance, and
vibrational frequency from MCVB calculation of He

De eV R. A we ML
Calc. 2.268 1.0888 1715.8
Exp. 2.365 1.0808 1698.5

Table 10.6Energy differences &vg — Emcvs for HeS .

AE(Rmin) eV AE(R) eV

1.088 1.214

by the first term, and only the second is of further importance,

w(sy) = 0.967 975([12 15&] _ [2 190])

2% 2% 2% 2%
—0.135988([1Sb ] — [136 D +---. (10.36)

10.2.2 SCVB with corresponding orbitals

The three orbitals we use are two we labsl &nd 1 that are symmetrically
equivalent and onef® that has the symmetry indicated. Thusyfis the horizontal
reflection fromD,., we have the transformations

onls =1,
only =1s,
oh2Ps = —2Ps-

When these orbitals are optimized, the energies of the SCVB wave functions are
higher, of course, than those of the full MCVB wave functions. We show the
differences at the equilibrium and infinite internuclear separations in Table 10.6.
The energy curves are parallel withig0.1 eV, but the SCVB energy is about
1.1 eV higher.

Because of the spatial symmetry there is only one configuration (as with allyl),
and in this case the HLSP function function is the simpler of the two. We have for
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Amplitude

T T T T T T T 1

zdirection (A)

Figure 10.3. The first SCVB orbital for the Eiéon. The orbital amplitude is given in the
x—z plane, which contains the nuclei.

2 -2

the two forms

s, 1
Wscve = [2? S°:| ,
o R
— 1.282557 82{ ;ﬁ 15*’] — 0.803090 6{ 1:2 2P ] . (10.37)

where each of the tableaux functions is individually normalized. The second

standard tableaux function on the right hand side of Eq. (10.37)is o?mareym—

metry, as can be seen by methods we have used above. Thus the other tableau is of

mixed symmetry, and the second term subtracts out the “wrong” part from the first.
The Is, orbital is shown in Fig. 10.3, and it is seen to be located predomi-

nately on one of the nuclei. We may compare this orbital to that fogiMen in

Section 3.2.2. The present one is seen to be more localized near the nuclei, reflecting

the larger nuclear charge for He. Thg, brbital is obtained by reflecting wit,.

The 2p, orbital is shown as an altitude drawing in Fig. 10.4, where it is seen to

have the symmetry indicated by its symbol.

10.3 The valence orbitals of the BeH molecule

In this section we give the results of MCVB and SCVB treatments of BeH us-
ing a conventional 6-31G basis® Although there are some similarities to the
He;j ion, the lack ofg—u symmetry in this case introduces a number of interesting

2 The relative values of the coefficients in Eq. (10.37) are not determined by the variation theorem, but are imposed
by the symmetry and overlaps.
3 That is, there is a set af orbitals on Be and a set gf orbitals on H.
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Table 10.7Dissociation energy, bond distance,
vibrational frequency, and electric dipole moment
from full MCVB calculation of BeH.

De eV Re A we cm1 uD

Calc. 1.963 1.3486 2117.1 0.262
Exp. 2.034 1.3426 2060.8

Amplitude

15

1.0

0.5

0.0

-0.5
-1.0
-15

z-direction (A) 1 77 -2

Figure 10.4. The third SCVB orbital for the Eléon. The orbital amplitude is given in the
X—z plane.

differences. The use of corresponding orbitals does not arise, since there is no
symmetry requirement to be satisfied.

10.3.1 Full MCVB treatment

A full MCVB calculation on BeH with the above basis yields 504 doublet stan-
dard tableaux functions, and these combine into 344 symmetry functions. In
Table 10.7 we give some details of the results with experimental values for com-
parison. The calculated, is within 0.1 eV of the experimental value, the values of
Re are quite close, and the vibrational frequency is within 60€mn experimental
value for the dipole moment is apparently not known.

The principal configurations in the wave function are shown as HLSP functionsin
Table 10.8 and as standard tableaux functions in Table 10.9. Considering the HLSP
functions, the first is the ground state configuration of the separated atoms, the next
two are bonding functions with tlee-p hybrid of Be and the fourth contributes polar-
ization to the Bep, component. The corresponding entries in the third and fourth
columns of Table 10.9 do not include the tableau function with the @bital,
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Table 10.8The principal HLSP function
configurations in BeH at R= R..

Coef. Tableau
2s 2s
0.33276 [ 1s ]
R
[1s 2p, ]
0.29579 s
L dR
[2s  1s]
—0.28028 2p, I
[1s 3p, |
0.126 09 2 I

Table 10.9Large components of the wave function for distances
on either side of the cross-over from negative to positive dipole
moments. The & 1 orbitals are on H and the = 2 or 3
orbitals are on Be. The Bels orbitals from the core
are omitted in the tableaux.

R=10A R=Re
Coef. Tableau Coef. Tableau
0.55201 [gi)z 13} 0.53040 [g;z 15}
—0.27234 [ii 25] 0.33276 [ig 23}
0.18700 [gzz 15} 0.15274 [g;z 15}
0.10765 [fg’z ZpZ} 0.11730 [g 13}
—0.07944 [%&;)z 3p2} 0.10357 [ifz ZPZ}
0.05929 [i 15} 0.089 61 [%Sf)z 15}

but do include the ionic functions involvings2s. Overall, therefore the two dif-
ferent sorts of functions give similar pictures of the bonding in this system.

We now consider the dipole moment, which we will analyze in terms of standard
tableaux functions only. Our calculated value for the momentis fairly small, but itis
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Figure 10.5. The dipole moment function from the MCVB calculation of BeH. The vertical
dotted line marks the calculated equilibrium internuclear distance.

in the “right” direction according to the electronegativity difference. The molecule

is oriented with the Be atom in the positizadirection in these calculations. We
show the dipole as a function of distance in Fig. 10.5. One sees thaj tifd@eH is

fairly close to a point at which the moment changes sign to the “wrong” direction. In
Table 10.9 we give the major tableau in the wave function on either side of the cross-
over to see how the dipole moment depends upon distance. At both distances the
first three tableaux are covalent and do not have large moments. We saw, however,
in Chapter 8 that covalent functions could have small moments in the direction of
less diffuse orbitals. The biggest difference here is the overlap of teevi the

Bels and we expect the covalent functions to have small negative moments. The
H1sand Be2rbitals are not so different in size and will not contribute so much.
The fourth function aRe is ionic with a large moment in the positive direction. This
sort of function does not come in until the sixth placdRat 1.0 A and then with

a coefficient only half the size. Thus the main contribution to a positive moment
recedes as the distance gets smaller.

10.3.2 An SCVB treatment

The allyl radical and the Heion both have end-for-end symmetry and thus the
corresponding orbital SCVB treatment is applied. Consequently, there was only
one tableau function in each of those cases. BeH is different in this regard. In the
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Orbital amplitude
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Figure 10.6. The first SCVB orbital for the BeH molecule and associated with the Be
nucleus. This has the general appearance sfarhybrid pointed toward the H atom, and
we denote it thénner hybrid, h;. The orbital amplitude is given in the-z plane, which
contains the nuclei.

Orbital amplitude
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Figure 10.7. The second SCVB orbital for the BeH molecule and associated with the Be
nucleus. This has the general appearance gfarhybrid pointed away from the H atom,

and we denote it theuterhybrid, h,. The orbital amplitude is given in the-z plane, which
contains the nuclei.

wave function there are three different orbitals and, consequently, two independent
tableaux (of either sort) and an extra variation parameter associated with their
mixing. To a considerable extent we may associate two of the orbitals with the
Be nucleus and one with the H nucleus. Altitude drawings of the three orbitals
are shown in Figs. 10.6, 10.7, and 10.8. They are all orthogonal to the dded
orbitals and this results in the sharp negative peak at the Be nucleus. The two
Be orbitals in Figs. 10.6 and 10.7 have the general charactessmhybrids
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Table 10.10Energy differences between
SCVB and MCVB treatment of BeH.

AE(Re) eV AE(Ry) eV
0.653 0.772

Orbital amplitude

0.6
0.4
0.2
0.0
-0.2
-0.4

rrrrrr 111

1

0x-distance A

z-distance (A) 2

Figure 10.8. The SCVB orbital for the BeH molecule associated with the H nucleus. The
orbital amplitude is given in the-z plane, which contains the nuclei.

pointed toward and away from the H atom, respectively. We denote these the inner
and outer hybriddy; andh,. The third orbital shown in Fig. 10.8 and located mainly

on the H atom we will denote simply bys1The energy differences & andoco
geometries are in Table 10.10, where it is seen that the two curves are parallel within
about 0.12 eV.

The extra variation parameter with the two tableaux that occur here is shown by
the coefficients in Table 10.11, where we use the orbital symbols defined above.
The representation of the total wave function is rather similar with the two different
sorts of tableau functions. Nevertheless, the HLSP functions have a slight edge in
that the perfect pairing function between the inner hybrid and theisla better
single-function approximation to the wave function than any of the other tableaux.
This is very clear from the EGSO weights that are given.

10.4 The Li atom

As we stated in Chapter 4, the Li atom has a much deeper and narrower potential
for three electrons than does the allyl radical. One consequence is that the nuclear
attraction part of the dynamical effects is relatively more important in Li. Because
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Table 10.11Coefficients and tableaux for standard tableaux functions
and HLSP functions for SCVB treatment of BeH.
The orbital symbols are defined in the text.

Standard tableaux functions HLSP functions

Coef. EGSO Wt Tableau Coef. EGSO Wt Tableau

1.00358  0.8775 [E 13] 1.00908  0.9991 [hi 13}
° R

-0.23580  0.1225 [2'5 hO} 0.01128  0.0009 [1§ ho}
R

it resembles the SCF result, we, in this case, take up the SCVB wave function
first.

These Li atom calculations used Huzinaga'’s (10/73) basis set[48], further split
to (10/73/5221) to yield four basis functions. This is ahdnly basis, so our treat-
ments will not produce any angular correlation, but the principles are well illus-
trated, nevertheless.

10.4.1 SCVB treatment

There is no added symmetry in this example to cause one of the standard tableaux
functions to disappear. Thus, the SCVB wave function is

1s 1¢ 1s 2s
U = A[Zs ]+B[1S, ] (10.38)

where B, 15, and & are three different linear combinations of the four basis
functions. In this case the tableaux in Eq. (10.38) can be interpreted as either the
standard or the Rumer sort. The energies and wave functions obtained are shown
in Table 10.12. We observe that the wave function in terms of HLSP functions is a
little simpler in that the function withdand ¥’ coupled to singlet is very nearly

all of it. It has been observed that correlation energies are frequently close to 1 eV
per pair of electrons, particularly in atoms. The value in Table 10.12 is only a third
of that. This is to be expected since we have included the possibility of only radial
correlation in our wave functio.

4 We do not go into this, but only observe that there are three directions in which electrons may avoid one another.
In many cases each direction contributes approximatéyof the correlation energy.
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Table 10.12Results of SCVB calculation. The A and B
in line 4 are defined in Eq. (10.38).

—7.43230022 au SCF energy
—7.444280860 8 au SCVB energy
0.326 eV Correlation energy
A B
Standard tableaux 1.01298945 -0.15604134
Rumer tableaux 0.99374695 —0.00692154
0.40 T ; ; : : : :

0.35

0.30

0.25

0.20

0.15

r x (orbital amplitude)

0.10 1/

0.05 [

0.00 |

-0.05 1 I I I I I I
0.0 0.5 1.0 15 2.0 25 3.0 35 4.0

Radial distance (bohr)

Figure 10.9. The three SCVB orbitals for the Li atom. The orbital amplitudes times the
radial coordinate are shown.

In terms of the primitive split Gaussian basis, we obtain for the three SCVB
orbitals

1s=0.67036139; + 0.42101056; + 0.094 469 35; — 0.094 700678
1s' = 0.196 626 76, + 0.861 563 1%, — 0.088 741 863 + 0.089 095 19,
2s=-0.07116488s— 0.102 382 36, + 0.683 095 98; + 0.365 043 0%,

wheres, ..., s are the four functions in increasing order of diffuseness. These
SCVB orbitals are plotted in Fig. 10.9 where we see that the inner shell orbitals
are split and show radial correlation. The outer orbital has one radial node like the
familiar 2s orbital of SCF theory, but in this case it is exactly orthogonal to neither
of the inner orbitals.
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Table 10.13Results of MCVB calculation for Li.

—7.43230022 au SCF energy

—7.446 82277 au MCVB energy
0.395 eV Correlation energy
0.9746 EGSO pop. c{‘i Is }

10.4.2 MCVB treatment

We now describe the full MCVB treatment of the Li atom using a basis consisting
of the three SCVB orbitalssl 1s', and & to which we add the primitivey, for
completeness. The Hamiltonian matrix is2@0, and the energy is of course the
same regardless of the sort of Cl performed, so long as it is “full”. The results are
shown in Table 10.13, where we see that the SCVB calculation arrived at about 83%
of the correlation energy available from this basis. The EGSO population of the
principal SCVB standard tableaux function is very high. The additional correlation
energy from the MCVB is principally from intershell correlation and is produced
by the accumulation of a number of configurations with fairly small coefficients.
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Second row homonuclear diatomics

For many years chemists have considered that an understanding of the theory of
the bonding of the homonuclear diatomic molecules from the second row of the
periodic table is central to understanding all of bonding, and we consider these stable
molecules first from our VB point of view. The stable molecules with interesting
multiple bonds are B C,, N», O, and k. Of course, k has only a single bond

by ordinary bonding rules, but we include it in our discussion.itistable, but,
qualitatively, is similar to H. The question of the existence of Bealso interesting,

but is really a different sort of problem from that of the other molecules. Of the five
molecules we do considerpBnd G are known only spectroscopically, while the
other three exist at room temperature all around us or in the laboratory.

11.1 Atomic properties

Before we launch into the discussion of the molecules, we examine the nature of
the atoms we are dealing with. As we should expect, this has a profound effect on
the structure of the molecules we obtain. We show in Fig. 11.1 the first few energy
levels of B through F with the ground state taken at zero energy.L.T&éerm
symbols are also shown. The ground configurations of B and F each support just
one term 2P, but the other three support three terms. All of these are at energies
below~4.2 eV (relative to their ground state energies). The states from the ground
configuration are connected with lines marked with a G in Fig. 11.1.
We also consider two sorts of excited states.

e Those arising from configurations that differ from the ground configuration by one
2s—2p transition. This may be calledalenceexcited configuration. The lines con-
necting these states are marked with a “V".

* Those arising from a@— 3stransition. This is the first configuration of a Rydberg-like
series. The lines connecting these states are marked with an “R”.

145
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Figure 11.1. Energy levels for five atoms.

In the cases of B and C three terms have been observed from the valence excited
configuration. Apparently only one has been observed for the others. Only one
state has been plotted for the Rydberg state. We note that the energy of the lowest
valence excited state crosses the lowest Rydberg state energy between C and N. As
two identical atoms from the group approach one another to form a molecule, the
ground and several excited states mix together in the final structure. The general
point we make is that we expect valence states to be more important than Rydberg
states in bondind,and the atoms at the start of the list have much lower valence
state energies than those later, and the valence states should mix in more easily upon
molecule formation. The energy necessary for the excitation of the atomic states
must come from the bonding energy. We analyze the bonding of these molecules
using the above general ideas.

11.2 Arrangement of bases and quantitative results

A goal of this chapter is to show, for the diatomic molecules under discussion, both
the capability of the VB method in providing quantitative estimates of molecular
properties and its capability of giving qualitative pictures of the bonding. The
quantitative results are illustrated in Table 11.1, where we give valug.fahe
equilibrium bond distance, arid,? determined theoretically with STO3G, 6-31G,

1 Among other things, thesorbital is too diffuse to overlap other orbitals well.
2 Do + we/2, see Huber and Herzberg[49].



11.2 Arrangement of bases and quantitatiesults 147

Table 11.1Bond distances and {for some second row
homonuclear diatomics.

Source B, Co N> (0] F
Exp. R A 1590 1.243  1.098 1208  1.412
DeeV  3.085 6.325 9905 5214  1.659
STO3G Re 1541 1261 1198 1.263  1.392
De 3.778 6.851 6.452 4529  2.082
6-31G Re 1.623 1243 1.137 1290 1.502
De 2781 6.164 7.666 3.830 1.565
6-31G Re 1.610 1261 1.129 1.257 1.436
De 3.053 6.331 8.768 4580 1.867

Table 11.2Number of symmetry functions for 6-31G
and 6-31G basis sets.

Basis B Cy N2 O, F>
6-31G 777 991 1086 697 109
6-31G 1268 1864 1812 1188 131

and 6-31G bases compared with those from experiment. All of the VB calculations
here have the twos? shells in each atom completely closed, and, in order to save
space, none ofthe tableaux shown in tables later in this chapter include these orbitals
explicitly.

In Chapter 9 we gave a somewhat generic description of the way we arrange
basis sets. More details are given here.

STO3G Each of the treatments may be described &gl @alencecalculation. The details

of numbers of VB structures is given below in Table 11.4.

6-31G The VB structure basis is a full valance set augmented by structures involving a
single excitation from one valence orbital to one virtual orbital, using all possible combi-
nations of the excitation (outside the dhells). Table 11.2 shows the number of symmetry
functions (the dimension of thd and S matrices) for each case.

6-31G* The AO basis in this case is the same as that for the 6-31G set with alsataifals
added. In these calculations ttieand thed,, orbitals are included in the virtual orbital set

in which single excitations are included in generating structuresdf loebitals were not
used. The inclusion of theskorbitals provides polarization when the molecule is formed.

An examination of the values in Table 11.1 shows a variety of results for the
different molecules and bases. In general, the valué afe too large except for
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B, and R, values using the STO3G basis. The 6-31@lues average about 0.03 A
too large.

The calculated, values vary somewhat more randomly. In general the values
for B, and G are the closest to the experimental ones, followed by those,for F
The values oD, for N, are the hardest to obtain followed by those far @ith
the 6-31G basis set, the calculatdd, values for B, C,, and F are all within
0.2 eV of experiment, while Nis off by more than 1 eV. It is not clear why,N
presents such a challenge.

11.3 Qualitative discussion

If one wishes a qualitative picture of the bonding and structure of a molecule it
has become evident that this is most easily determined from a reasonably minimal
basis calculation. As one increases the size of the basis, the set of important struc-
tures remains reasonably stable, but there is frequently some jockeying around.
As we argued earlier, the STO3G set was historically optimized to be appropriate
for molecular geometries, therefore it is, perhaps, not surprising that it gives a rea-
sonable picture of molecular structure, even when taken over to the VB method.
In spite of this bias toward the molecular state, the STO3G basis also gives a good
account of the states that the system migrates into as the separation between the
atoms goes teo. In the present section we therefore examine the wave functions
obtained with this basis for the molecules we are discussing to determine the VB
picture of their bonding.

In Table 11.3 we show the ground states of the atoms and the ground state of
the diatomic molecules they form. Except possibly fgr, BIl of these are well
established spectroscopically. This same table shows the total degeneracy for two
infinitely separated atoms. For example, atomic boron is #P@ state, which,
ignoring spin-orbit coupling (i.e., using the ESE), is six-fold degenerate. Each
of these states can couple with each in another atom, so, all together, we expect
6 x 6 = 36 different states to come togethesatThis willinclude singlets, triplets,

%, I, and A states with varioug andu and+ and— labels, but the number will
add up to 36. We are not interested in discussing most of these but the interested
reader can make calculations for each of the symmetries with CRUNCH.

As we stated earlier, all of the configurations we use have the sfsHells
occupied. Thus if we allow all possible occupations of the remaining eight valence
orbitals in the STO3G basis, we may speak tflvalenceVB. We have this same
number of valence orbitals in all of the molecules we treat this way. As we pass from
B, to K, the number of electrons that the orbitals must hold increases, however,
causing a considerable variation in the number of allowed states. We show the
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Table 11.3Atomic ground states and asymptotic
molecular symmetries.

Molecular states

Atom Atomic state Deg. ato Bonding state

B 2po 36 32§
C 3pe 81 15y
N 4 16 R
0 3pe 81 329—
F 2po 36 Iyt

Table 11.4Statistics of full valence calculations for STO3G basis.

Number of Number of Number of symmetry

Molecule S+1 electrond  constellations functions
B2(Zq) 3 6 18 41
C(*z]) 1 8 35 84
Na(*) 1 10 76 102
02(325) 3 12 18 30
F2(*24) 1 14 8 8

@ Qutside a 151 core.

numbers in Table 11.4, where it is seen that the total size of the variational problem
is a maximum for the case of.NWe now proceed to a discussion of the individual
molecules.

1131 B

The very first question that we might ask is: From our knowledge of the properties
of VB functions and knowing that the atom is i’ R° state, can we predict the
likely ground state symmetry of the molecule? WithtBis may be tricky. We list
some conjectures.

1. The very first guess might be that, outside of the tved @osed subshells, a sin-
gle o bond is formed from the twg orbitals in theo orientation. A singlet state is
expected.

2. A more intricate situation arises if the excited configuratie@#, can come into play.
Then the two 8 and two 2, electrons can each form an electron pair bond, but there
are still two 2p,, electrons hanging around.
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Table 11.5Principal standard tableaux function
structures for B at an asymptotic bond distance.

1 2 3
Num?2 2 8 8
2% 25 2% 2% Pxa Pxa
b 28, 2% Pxb  Pxb Pyb  Pyb
Tab. Pxa Pxa Pxb
Pyb Pyb Pya

Ci(o0) 0.66511124 -0.11817721 0.020997 77

a The number of terms inthe symmetry function thatis generated
from the tableau shown. (See text.)
b These tableau symbols exclude the core orbitals.

Table 11.6Principal HLSP function structures for,B
at an asymptotic bond distance.

1 2 3
Num?2 2 8 8
28, 2%, 25, 25 Pxa Pxa
28, 2% Pxb  Pxb Pyb  Pyb
b y y
Tab. Pxa Pxa Pxb
pyb R pyb R pya R

Ci(00) 0.66511124 -0.11817721 0.020997 77

@ The number of terms in the symmetry function thatis generated
from the tableau shown. (See text.)
b These tableau symbols exclude the core orbitals.

(@) The two 2, orbitals could form an electron pair bond. Thus we would expédta
state with three bonds.
(b) The two 2o, electrons could arrange themselves in two one-electron bonds, one for
the x-direction and one for thg-direction.
i. If the two electrons are singlet coupled, we ha\?ejg‘ state.
ii. If the two electrons are triplet coupled, we havé%g state.

We have collected some results for standard tableaux functions and HLSP func-
tionsin Tables 11.5and 11.6. The structure of these tables will be repeated in several
later sections, and we describe it here.

1. The unlabeled row gives the ordinal number of the following entries.

2. The “Num.” row givesthe number of tableau functions in a symmetry function. Thus
the “2” for column one indicates that the tableau function below it is the first of a two
function sum that has the correc‘Ea: symmetry.

3. The “Tab.” row gives the actual tableaux in terms of AO symbols.
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Table 11.7Principal standard tableaux function structures for B
at energy minimum bond distance.

1 2 3 4
Num. 2 2 2 2
2% 2% 2% 2% 2% 2% 2% 2%
Tab. Pza  Pzb 233 Pza 233 23) Pza Pyb
Pxa Pxb Pxa Pzb
Pyb Pyb Pyb Pxa

Ci(Rmin) 0.21536705 —0.20641877 0.19851819 0.11567619

4. TheC; are the coefficients in the wave function correspondtirtge tableaux. The values
assume that the actual tableau function is normalized to 1 as well as the overall wave
function. The 0” indicates the values in this case are for laRg&alues. Elsewhere,
other arguments appear.

We return to consideration of the entries in these tables, where we give the principal
structures for two B atoms at long distance. It can be seen that we did not need
to give two tables since they are the same. The reader should recall that the two
sorts of VB functions are the same when there is only one standard tableau, as is
the case here. Focusing on Table 11.5 we see that the principal structure involves
the orbitals of the atomic configuratiosZ2p on each atom. The relatively small
coefficient is caused by the fact that the principal structure is really

2% 2% 2% 2%
066511124 | 2% 2% | |2% 2% ||

pxa pxb

Pyb Pya

i.e., there are two terms in the symmetry function. If the symmetry function were
normalized in the form { 4 g)/+/2 the coefficient would be-0.941. We also
emphasize that the footnotes in Tables 11.5 and 11.6 apply equally well to all of
the tables in this chapter that show tableaux and coefficients.

The second and third terms involve excited states that produce electron correlation
(particularly of the angular sort) in the closesf Zhells of the atoms. Therefore,
the wave function for the asymptotic geometry is essentially the product of two
atomic wave functions.

When the two atoms are at the geometry of the energy minimum the results are as
shown in Tables 11.7 and 11.8, where, as before, we give both the standard tableaux
function and HLSP function results. It is clear that the wave function is now a more
complicated mixture of many structures. In addition, the apparent importance of
the structures based upon the values of the coefficients is somewhat different for the
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Table 11.8Principal HLSP function structures for,Eat the energy
minimum bond distance.

1 2 3 4
Num. 2 2 2 2
25 2% 2% 25 2% Pza 2% 25
Tab. 25b 25'0 230 Pza Zsa Pzb 230 25b
Pxa Pxb Pxa Pxa
pyb R pyb R pyb R pya R

Ci(Rmin) 0.19851819 —0.13455943 -0.11819006 0.097 15409

standard tableaux function and HLSP function bases. Considering Table 11.7 first,
we see that structure 1 consists of orbitals from the excited valence configuration
of each atom, £p?. Structure 4 is another of the nine standard tableaux from this
arrangement. Structure 2 has the orbitals of one atom in the ground state and one
in the excited valence state. Structure 3 is from the two atoms each in their ground
states. Thus, the VB picture of the Biolecule consists of roughly equal parts of
these three atomic configurations. There are, of course, many smaller terms leading
to electron correlation.

The picture from the results of Table 11.8 is not significantly different. Structure
3 from before is now 1 (with the same coefficient, of course), but we have a mixture
of the same atomic configurations. The new structures 2 and 3 show standard two-
electron bonds involvingand 2p, orbitals on opposite atoms. This feature is not
so clear from the standard tableaux functions.

1132 G

The ground state of the C atom¥ from a %22p? configuration. In the case of
B we saw that the excited valence configuration played an important role in the
structures describing the;,Bnolecule. G has more electrons with the possibility
of more bonds, and, thus, there may be more tendency for the valence excited
configuration to be important in this molecule than in B

Our conjectures concerning the lowest state pafe as follows.

1. The twa®P atoms could form @,—p, bond with the two remaining,, orbitals coupled:
(@) 3=~ asinB;
(b) 1T to give a doubly degenerate ground state.

2. The two®P atoms could form tw,, bonds to produce’®* ground state. If the valence
excited state is important as argued above, thes@ Smtates could also couple t@
interacting strongly with the twg, bonds.

It is this last situation that pertains.
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Table 11.9Principal standard tableaux function structures
for C, at an asymptotic bond distance.

1 2 3
Num. 2 4 2
28 2% 25 2% Pxa Pxa
Tab. 2y 2% Pyb  Pyb Pxb  Pxb
Pza Pzb Pza Pzb Pza Pzb
Pxa Pxb Pxa Pxb Pya Pyb
Ci () 0.69060371 —0.106 757 10 0.01650307

Table 11.10Principal HLSP function structures forC
at an asymptotic bond distance.

1 2 3 4
Num. 2 2 8 4
2% 2% 2% 2% 2% 2% 2% 2%
Tab. 28 2% 28 2% Pyob  Pyb Pyb  Pyb
Pza Pzb Pzb  Pxa Pza Pzb Pza Pzb
Pxa Pxb_g Pza  Pxblg Pxa Pxb_g Pxa  Pxb g

Ci(co) 0.39872024 —0.39872024 —0.06163624 0.009528 05

First, however, we examine the asymptotic geometry. The principal structures are
shown in Tables 11.9 and 11.10. In the standard tableaux function case structure 1
is one of the possibléx* couplings of two®P atoms, and structures 2 and 3
produce electron correlation in the closesskell. The results with HLSP functions
are essentially the same with some differences in the coefficients. The apparently
smaller coefficients in the latter case result mainly from the larger number of terms
in the symmetry functions.

We show the standard tableaux function results for the energy minimum geometry
in Table 11.11. Here we see that the valence excited configuration has become
the dominant structure, and tIQHE;Jr coupling of the3P atomic ground states is
structure 2. Structure 3 is a mixture of tP® and3P states while structure 4 is
another of the standard tableau associated with structure 1.

We call attention to a significant similarity between structure 1 and the tableau
for the®S atomic state, which is

2s

2p;
2py
2py
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Table 11.11Principal standard tableaux function structures foy & the
energy minimum bond distance.

1 2 3 4

Num. 1 1 4 1
25 2% 2S, 2%, 23, 2% 25 2%
Tab. Pza  Pzb 2% 2% Pya Pya Pza  Pxb
Pxa  Pxb Pxa Pxb 28, Pz Pzb  Pya
Pya Pyb Pya Pyb Pxa Pxb Pxa Pyb

Ci (Rmin) 0.438636 13 0.29303991 0.158 96969 —0.131 203 05

Table 11.12Principal HLSP function structures for £t the energy
minimum bond distance.

1 2 3 4
Num. 1 1 2 2
2% 25 2%  Pra 2% 2% 28 2%
Tab. 28, 2%, 2% Pz Pyo  Pyb Pya Pya
Pxa Pxb Pxa Pxb 25b Pza 2% Pzb
Pya Pyb g Pya Pyb g Pxa Pxblg Pxa Pxblg

Ci(Rmin) 0.24070183 —-0.17976981 -0.16503055 0.12771028

This function is antisymmetric with respectto the interchange of any pair of orbitals.
The same pertains to structure 1 of Table 11.11 with respect to either of the columns.
Thus the dominant structure is very much t¥@&atoms.

The results for HLSP functions in Table 11.12 show a somewhat different picture.
In this case the dominant (but not by much) structure is the one withrtlyonds
and structures 3 and 4 providesabond. Structure 2 is the doub?8 structure,
but, since HLSP functions do not have a close relationship to the 2&stite as
above, there is less importance to just one Rumer coupling scheme.

11.33 N

We commented above that the energies of the first excited valence states of B and
C are fairly low and there is a large jump between C and N. The reason for this
is principally the Coulomb repulsion energy in the states. For B and C the excited
valence state has one less paired orbital than the corresponding ground state, while
forN, O, and F the numbers are the same. Since the Coulomb repulsion energy tends
to be largest between two electrons in the same orbital, this trend is not surprising.
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Table 11.13Principal standard tableaux
function structure for Mat an asymptotic
bond distance.

1
Num. 1
2 2%
28, 2%
Tab. Pza  Pzb
Pxa Pxb
Pya Pyb
Ci(0) 1.000 001 54

Table 11.14Principal HLSP function structures for N
at an asymptotic bond distance.

1 2 3
Num. 1 1 1
28 2% 2% 2% 28 2%
2 2% 2y 2% 2 2%
Tab. Pzb  Pxa Pxa Pxb Pza  Pzb
Pza Pxb Pzo  Pya Pxb  Pya
Pya Pyb g Pza  Pyb g Pxa Pyb_|Rr

Ci(co) 0.47140379 0.47140379 0.47140379

In addition, we are comparing these molecules with a minimal basis. With eight
valence orbitals and ten electrons, configurations that produce some angular corre-
lation in the 2 shell cannot occur in the asymptotic region. The upshot is that there
is just one principal standard tableaux function at long distance, and this is shown
in Table 11.13. Because of the antisymmetry in the columns of standard tableaux
functions, we see that this function represents two noninterat8mgatoms.

The situation is not so simple with HLSP functions. They do not have the anti-
symmetry characteristic mentioned above, and the asymptotic state requires a sum
of three of them as shown in Table 11.14.

When two*S N atoms form a molecule we have the possibility that there could
be three bonds, one from the twi orbitals, and two from the foup,, orbitals.

Some mixing of the 2svith the p, orbitals might lead to hybridization. No other
possibilities seem likely. We show the principal configurations in the HLSP function
and standard tableaux function cases in Tables 11.15 and 11.16, respectively. We
see that the same orbitals are present in both main structures. The situation with
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Table 11.15Principal HLSP function structures for Nt the energy
minimum bond distance.

1 2 3 4

Num. 1 1 2 4

2% 2% 2% 2% 2% 2% 2% 2%

2% 2% Pzb  Pzb 23 2% 2 2%
Tab. Pza Pzb 2%  Pza Pxa Pxa Pzb  Pzb

Pxa Pxb Pxa Pxb pyb pyb pya pya

Pya Pybgr Pya Pyb g Pza Pzb_|g Pxa Pxb g
Ci (Rmin) 0.20743981 0.103862 35 0.08190716 —-0.07526188

Table 11.16Principal standard tableaux function structures foy at the
energy minimum bond distance.

1 2 3 4 5

Num. 1 1 2 1 1
25, 2%, 2s, 2%, 25, 254 25, 2% 28, 2%,
28 2% 28 2% Pz Pzb 28, 2% 2% 2%
Tab. Pza Pzb Pza Pxb 2% Pza Pza Pxa Pza Pzb

Pxa Pxb Pzb pya Pxa Pxb Pzb Pxb Pxa pya
Pya Pyb Pxa Pyb Pya Pyb Pya Pyb Pxb  Pyb
Ci(Rmin) 0.32986828 —0.15877696 0.11211670-0.11107350-0.11074584

the HLSP functions is somewhat simpler. The main structure has three electron
pair bonds involving the @ orbitals, and structure 2 involves one atom in the first
excited valence state with an electron pair bond betwsem@ 2p, orbitals. This

latter occurrence, of course, indicates a certain amousthybridization in the

o bond. Structures 3 and 4 represent ionic contributions torttad o bonds,
respectively.

The results for the standard tableaux functions at the energy minimum are
shown in Table 11.16. Structures 1, 2, 4, and 5 are different standard tableaux cor-
responding to two ground state atoms and represent mixing in different states from
the ground configurations. The standard tableaux functions are not so simple here
since they do not represent three electron pair bonds as a single tableau. Structure 3
represents one of the atoms in the first excited valence state and contritg#ps to
hybridization in thes bond as in the HLSP function case.

It is clear that, regardless of the sort of basis function we use, our results give
the bonding picture of plas a triple bond. There is, in addition, some indication
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that the excited valence configuration is less important compared to the ground
configuration than was the case with &d G. Two properties of the atoms could
contribute to this.

» As already mentioned, the excited valence state is of higher energy and is less likely to
mix as strongly.

» Exciting the atom in this case does not change the number of paired electrons, and, thus,
a no greater opportunity for bonding presents itself than in the ground state.

11.3.4 Q

From Table 11.3 we see that the ground state of & jsand there are only two
unpaired orbitals in the ground configuration. Sincelthghell is more than half

full, valence excitations will not reduce the number of double occupations. We can
make the following conjectures.

1. The two free P orbitals from each atom could combine to form twdoonds to give a
'z state.
2. One of the P orbitals on each atom could join with the other to form aond.
(a) The other P orbitals could combine as a pair afbonds to give &I1, state.
(b) The other single @ orbitals could combine with the doubly occupied orbital on the
other atom to form twahree-electron bonds[1], giving%zg‘ state.

It is, of course, the last case that occurs, and we consider first the nature of a
three-electron bond.

Any elementary inorganic structure book will describe, in MO termsgthends
in O, as each having a doubly occupied bonding orbital and a singly occupied
antibonding orbital. (This is the MO description of a three-electron bond.) We may
analyze this description, using the properties of tableau functions, to see how it
relates to the VB picture.

We take a very simple case of a pair of orbitaland b that can bond. We
assume the orbitals are at two different centers. The simplest LCAO approximation
to the bonding orbital i& = A(a + b), and the antibonding counterparta$ =
B(a—b). HereA=1//2(1+ S) andB = 1/,/2(1 - S), whereSis the overlap
integral, are the normalization constants. Consider the simple three-electron doublet
wave function

v [6* "], (11.1)

=AZB[a+b a+b]. (11.2)
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Table 11.17Principal standard tableaux
function structures for @at an asymptotic
bond distance.

1 2
Num. 2 2
[2s, 25, ] [2s, 2s, ]
25 25 23, 2%
2Pxa  2Pxa 2Ppxa  2Pxa
Tab. 2Pyb  2Pyb 2Pyb  2Pyb
2pza 2pzb 2pza 2pxb
2pxp 2p;n
| 2Pya | | 2Pya i
Ci(0) 0.61237406 —0.61237406

It will be recalled from our discussion of Chapter 5 that the tableau in Eq. (11.2)
is a shorthand for the result of operating upon a particular orbital product with
the operato¥ N'PN, and\ is the column antisymmetrizer. Thus, our function
contains a X 2 functional determinant involving + b and two particles in all
terms. Any row or column operations legal in a determinant may be used to simplify
our function, and the determinant may be converted to the equal one involving just
2a and—b. Equation (11.2) becomes

2a a-+b
_ A2
w—AB[_b }

()

and shows us how the three-electron bond is represented in the VB scheme. We
also emphasize that the tableaux of Egs. (11.2) and (11.4) are of the sort where
the standard tableaux functions and the HLSP functions are the same. Thus, that
distinction does not affect our picture.

Now, let us consider the principal structures for the asymptotic geometry shown
in Tables 11.17 and 11.18. Both forms of the wave function correspoﬁﬂgo
couplings of the two atoms in theiP ground states.

When we consider the principal structures at the energy minimum geometry we
see the three-electron bonds discussed above. These are shown in Tables 11.19 and
11.20. Considering the principal tableaux of either sort, we see there are two three-
electron sets presentZ, pxp and pib Pya. There is, of course, a normal two-electron
o bond present also. When we move to the second structure, there are differences.

(11.3)
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Table 11.18Principal HLSP function structures
for O, at an asymptotic bond distance.

1 2
Num. 2 2
(25 2% ] (25, 2% ]
2y, 2% 2y, 2%
2Pxa  2Pxa 2Pxa  2Pxa
Tab. 2pyb  2Pyp 2Pyb  2Pyb
2Pza 2Pz 2pya 2pxb
2pxb 2pzb
| 2Pya g | 2Pza 1r
Ci(0) 0.5000000 0.5000000

Table 11.19Principal standard tableaux function structures fos & the energy
minimum bond distance.

1 2 3 4 5

Num. 2 2 2 2 2

29 2% |[2% 2% [[2% 2% |[2% 22 |[2a 25 |
2y, 2% 2% 2% 28 2% 2y, 2% 2y 2%
2pxa 2pxa 2pxa 2pxa pra 2pxa 2pza 2pza 2pxb 2pxb

Tab. 2pyb 2pyb 2pya 2pya 2pyb 2pyb prb 2pxb 2pya 2pya
2Pza 2Pz 2Pza 2Pz 2Pza 2Pxb 2Pyb 2Py 2Pza 2Pxa
szb 2pxb 2pzb 2pxa 2pzb
2pPya | 2Py | 2Pya | 2Pya | 2Py

Ci(Rmin) 0.38567656 —0.19060383 —0.18926876 0.17554111—0.164 44574

Table 11.20Principal HLSP function structures for {at the energy
minimum bond distance.

1 2 3 4

Num. 2 2 2 4

(25 2% | [22 25 | [2% 28 | [2a 2% |

25, 2% 2, 2% 2, 2% 2, 2%

2Pxa  2Pxa 2Pza  2Pza 2Pxa  2Pxa 2Pza  2Pza
Tab. 2pyb 2pyb 2pxb 2pxb 2pya 2pya 2pxa 2pxa

2Pza 2Pzp 2pyb  2Pyb 2Pza 2Pzb 2pyb  2Pyb

2Pxp 2Pya 2Pxp 2Py

2pya R | 2Pya | 2Pyb | 2Pya

L _ Jdr JR JdR
Ci (Rmin) 0.32717236 0.17554111 —-0.17107555 —-0.11300107
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Table 11.21Principal standard tableaux
and HLSP function structures for, F
at an asymptotic bond distance.

1

Num. 2

28y 2%
28 2%
Pza Pza
Tab. Pzb  Pzb
p)(a an
Pxb  Pxb
| Pya Pyb |
Ci() 0.707 10678

1. With standard tableaux functions:
(a) structure 2 is ionic, having the two three-electron bonds pointed the same way;
(b) structures 3 and 4 are the other standard tableau associated with structure 1;
(c) structure 5 makes ionic contributions to all bonds, but in such a way that the net

charge on the atoms is zero. The charge in a three-electron bond is one way, and the
charge in ther bond is opposite.
2. With HLSP functions:

(a) structure 2 is ionic with a zero net atonalcarge. This is similar to structure 5 in
terms of the standard tableaux functions;

(b) structure 3 is ionic with a net charge. The two three-electron bonds point in the same
direction;

(c) structure 4 is ionic with respect to thebond.

1135k

As we pass to §; with a minimal basis the amount of flexibility remaining is small.
The only unpaired orbital in the atom is @ #ne, and these are expected to form
ao electron pair bond andjaﬁar molecular state. In fact, with 14 electrons and 8
orbitals (outside the core) there can be, at most, one unpaired orbital setin any struc-
ture. Therefore, in this case there is no distinction between the standard tableaux
and HLSP function representations of the wave functions, and we give only one
set of tables. As is seen from Table 11.21, there is only one configuration present
at asymptotic distances. That shown is one of]’t}igr combinations of two’P
atoms.

Table 11.22 shows the principal structures at the energy minimum bond dis-
tance. Structure 1 is @ bond comprising the tw, orbitals, and structure 2 is
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Table 11.22Principal standard tableaux and HLSP function
structures for k at the energy minimum bond distance.

1 2 3 4
Num. 1 2 2 2
(2% 28] [2% 23| [2% 29| [2% 2%
233 23) Zsb 253 Pzb  Pzb Pza Pza
Pxa Pxa Pzb  Pzb Pxa Pxa Pxa Pxa
Tab. Pxb  Pxb Pxa Pxa Pxb  Pxb Pxb  Pxb
pya pya Pxb  Pxb pya pya pya pya
Pyb  Pyb Pya Pya Pyb  Pyb Pyb  Pyb
Pza Pzb pyb pyb 25{) Pza 23) Pzb

Ci(Rmn) 0.77922133 —0.23213450 0.05353427  0.04470264

ionic, contributing to correlation in the bond. Structures 3 and 4 contribugeto
hybridization in the bond.

11.4 General conclusions

In Section 11.1 we pointed out that B and C atoms have relatively low-lying valence
excited states compared to the other atoms considered. It is seen that these valence
excited states comprise the principal structures in the bonded stat@nti;, but

not in the other molecules where they contribute less than the ground configuration.
We shall discuss these effects in further detail for C atoms in Chapter 13. If we treat
the one- and three-electron bonds as one-half a bond we see tkat R, O,, and

F, have two, three, three, two, and one bond(s) in the molecule, respectively. Were it
not for the low-lying valence excited states in B and C, the molecules corresponding
to these might be expected to have one and two bonds, respectively. Nevertheless,
the more open structure of the valence excited states allows more bonding between
the atoms.

The two molecules that have one- or three-electrdyonds show triplet ground

states. This conforms to Hund’s rule in atoms where one has unpaired electrons
distributed among degenerate orbitals to produce the highest possible multiplicity.

The other molecules all have electron pair bonds or unshared pairs and are in singlet
states.
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Second row heteronuclear diatomics

The consideration of isoelectronic sequences can provide considerable physical
understanding of structural details. We here give details of the calculation of a series
of isoelectronic diatomic molecules from the second row of the periodic table, N
CO, BF, and BeNe. By studying this sequence we see how the competition between
nuclear charges affects bonding. All of these are closed-shell singlet systems, and,
at least in the cases of the first two, conventional bonding arguments say there is a
triple bond between the two atoms. We expect, at most, only a Van der Waals type
of bond between Be and Ne, of course. Our calculations should predict this.

The three polar molecules in the series are interesting because they all have
anomalous directions to their dipole moments, i.e., the direction is different
from that predicted by an elementary application of the idea of electronegativity,
accepting the fact that there may be ambiguity in the definition of electronegativity
for Ne. We will see how VB ideas interpret these anomalous dipole moments.

We do the calculations with a 6-3IMasis in the same way as was done in
Chapter 11 and for three arrangements of STO3G bases. This will allow us both to
judge the stability of the qualitative predictions to the basis and to assess the ability
of the calculations to obtain quantitative answers.

We have already treatechh Chapter 11, but will look at it here from a somewhat
different point of view.

12.1 An STO3G AQO basis

Results of calculations carried out with three different selection schemes and an
STO3G AO will be described. The reader will recall that the scale factors for this
basis are traditionally adjusted to give molecular geometries, and this must be
remembered when interpreting the results. By now the reader should suspect that
such a basis will not produce very accurate energies. Nevertheless, we see that the
qualitative trends of the quantities match the experimental values.

162
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Table 12.1Dissociation energies and equilibrium distances for isoelectronic
series with an STO3G basis and a full calculation. Energies are in electron volts
and distances are ingstroms.

Basis N, (6{0) BF BeNe

Exp.
De 9.905 11.226 7.897
Rm 1.098 1.128 1.263

STO3G (£1, grouped)
De 6.101 8.988 6.917 0.023
Rm 1.199 1.195 1.257 2.583
(£1, ungrouped)
De 6.448 9.444 7.162 0.123
Rm 1.198 1.196 1.265 2.159
(full)
Eq 6.452 9.460 7.181 0.125
Rm 1.265 1.196 1.264 2.151

6-31G Full valence+38
De 8.768 11.053 7.709 0.053
Rm 1.129 1.155 1.278 3.066

&S is an abbreviation for ‘single excitations’.

The three ways in which the structures are selected for the calculation follow,
and in all cases the Iwbitals of the atoms are doubly occupied.

* “+1, grouped” This indicates that the structures included in the VB calculation are re-
stricted to those in which there is at most only one electron transferred from one atom to
the other and in which there are sixtwo my, and twory electrons.

e “+1, ungrouped” This indicates that the structures included in the VB calculation are
restricted to those in which there is at most only one electron transferred from one atom
to the other.

* “full” This is the full (valence) VB calculation.

Dissociation energies and minimum energy atomic separations from the STO3G
bases are given in Table 12.1 along with those for the 6*3#Sis, which we will
discuss later. We note that the restrictiogtbionicities has an effect on the energy

of at most 10—-20 meV for this basis.

We give tables of the important structures in the full wave function using spherical
AOs and using the—p hybrids, 2st+ 2p,. The energies are, of course, the same for
these alternatives, but the apparent importance of the standard tableaux functions
or HLSP functions differs. We also discuss EGSO results for the series.

Again we see that th®, of N, is the most poorly predicted in this series. We
have no clear explanation for this at present.
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Table 12.2N,: The most important terms in the wave function when spherical
AOs are used as determined by the magnitudes of the coefficients. Results
for standard tableaux and HLSP functions are given. See text.

1 2 3 4

Num. 1 1 2 1

2% 2% 2% 2% 28, 2% 25 2%

2% 2% 2% 2% 2Pza  2Pza 2% 2%
STF 2Pza 2Pz 2Pza  2Pxo 25, 2021 2Pza  2Pxa

pra 2pxb 2pzb 2pya 2pxa 2pxb 2pzb 2pxb

2pya 2Pyb 2pxa  2Pyb 2pya 2pyb 2Ppya 2Pyb
Ci (min) 0.329 86 —0.15878 —-0.11212 —0.11107
Num. 1 1 2 1

25, 25, 25, 25, 25, 25, 25, 25,

28, 2% 2Pzb 2Pzb 28, 2% 28, 2%
HLSP 2pza 2Pz 2% 2pza 2pxa  2Pxa 2Pza  2Pza

pra 2pxb 2pxa 2pxb 2pyb 2pyb 2pyb 2pyb

2pya  2pyb g 2pya 2pyb g 2Pza 2Pz | g 2Pxa  2Pxb_ g
Ci(min) 0.20744 0.103 86 0.08191 —0.07526

1211 N

In Table 12.2 we show the four most important structures in the wave function as
determined by the magnitude of the coefficients for standard tableaux functions and
for HLSP functions. Table 12.3 shows the same information fostA®©s formed
into s—p hybrids. The symbolsHy” or “hix” represent the outward or inward
pointing hybrids, respectively. Using the size of the coefficients as a measure of
importance we see that the expected structure involving @mal twar bonds is the
largestin the wave function. It appears that the hybrid orbital arrangementis slightly
preferred for standard tableaux functions while the spherical orbital arrangement
is slightly preferred for HLSP functions, but the difference is not great. These
results suggest that an intermediate rather than one-to-one hybridization might be
preferable, but a great difference is not expected. Nevertheless, it is clear that the
VB method predicts a triple bond between the two atomszin N

The layout of Tables 12.3 and 12.4 is similar to that of Tables 11.5 and 11.6
describedin Section 11.3.1. There is, nevertheless, one point concerning the “Num.”
row that merits further comment. In Chapter 6 we discussed how the symmetric
group projections interact with spatial symmetry projections. Functions 1, 2, and
4 are members of one constellation, and the corresponding coefficients may not be
entirely independent. There are three linearly indeperi'@Jﬂsymmetry functions
from the five standard tableaux of this configuration. The 1, 2, and 4 coefficients
are thus possibly partly independent and partly connected by group theory. In none
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Table 12.3N,: The most important terms in the wave function when s—p hybrid
AOs are used as determined by the magnitudes of the coefficients. Results for
standard tableaux and HLSP functions are given.

1 2 3 4
Num. 1 1 1 2
hoa hoa hoa hoa hoa hoa hob hob
hob hob hob hob hob hob hia hia
STF hia  hip hia  2pxp hia  hip hoa  hip
2Pxa  2Pxb hip 2pya 2pxa  2Pya 2Pxa  2Pxb
2pya 2Pyb 2pxa  2Pyb 2pxb  2Pyb 2pya 2Pyb
Ci(min) 0.33743 —0.14476 —-0.107 25 0.09941
Num. 1 4 1 1
hoa  hoa hoa  hoa Noa  hoa Noa  hoa
hob hob hob hob hia hia hob hob
HLSP hia  hip hia  hia hob  hip 2pxb  2Pxb
2Pxa 2Pxb 2P« 2Pxb 2pxa  2pPxb hia  hip
2Pya 2Pyb | 2Pya 2Pyb | 2pya 2Pyb | 5 2pya 2Pyb | 5
Ci(min) 0.18912 —0.08964 0.086 69 0.086 31

of the tables do we attempt to elucidate this sort of question. It really requires a
detailed examination of the output of ttgmgenn segment of the CRUNCH suite.

Table 12.4 shows spherical and hybrid AO results when subjected to the EGSO
weight analysis. Unlike the coefficients, the EGSO analysis for these results shows
that an ionic function is the single structure that contains the largest fraction of the
wave function in both of these cases. This is a common result in molecules with
multiple bonding. We have seen that the ionic structures contribute to delocaliza-
tion of the electrons (see Chapter 2) and thereby reduce the kinetic energy of the
structure. In a complicated symmetry function involving the sum of several terms
the mixing of the improved correlation energy of the covalent functions and the im-
proved kinetic energy of the ionic functions can produce a symmetry constellation
that has the highest weight. It is thus important to interpret these results correctly.

We may comment that the principal configuration with spherical AOs measured
by coefficient in the wave function,

2% 2%

28 2%

2pza 2pzb )

2pxa 2pxb

2Pya  2Pyb
is not present among the first four functions measured by the EGSO weights. In fact
its weight is 0.012 69, a little lower than those in the table. The situation is similar
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Table 12.4N,: EGSO weights (standard tableaux functions) for spherical AOs,
upper group, and s—p hybrids, lower group. These are weightaliale
symmetry functionsather than individual tableaux. It should be recalled
from Chapter 6 that the detailed forms of symmetry functions are
dependent on the particular arrangement of the orbitals in
the tableaux and are frequently nonintuitive.

1 2 3 4
Num. 4 2 6 4
2% 2% 2% 2% 2% 2% 2% 2%
ZSb 2Sb ZSb ZSb 2 Pzb 2 Pzb 2 Pza 2 Pza
STF 2pxa 2pxa 2pza 2pza sza sza sza 2pxa
2pza 2pzb pra prb 25b 2pza 2pyb 2pyb
2pya  2Pyb 2pya  2Pyb 2pya  2Pyb 28, 2pgp
Wit 0.55862 0.20053 0.066 58 0.04089
Num. 4 2 6 2
Noa Noa hoa hoa hoa hoa Noa Noa
hob hob hob hob hia hia hob hob
STF pra pra hia hia 2pyb 2pyb pra sza
ia  hip 2Pxa 2Pxb hob ib 2pyn  2Pyb
2pya 2pyb 2pya 2pyb 2pxa 2pxb hia hib
Wit 0.61166 0.156 66 0.05714 0.03870

with the hybrid orbitals. In this case the standard tableaux function

hoa
hob
hia
2Pxa
2pya

hoa
hob
hib
2pxb
2pyb

hasan EGSO weight of0.005 32, rather smaller than the value in the case of spherical
functions. The reader should not find these small contributions too unexpected. The
ionic structures singled out by the EGSO can be looked at as one-third ionic and
two-thirds covalent. When the orthogonalization inherent in the method works, the
effect of the purely covalent functions is considerably depressed and is already

taken care of by the mixed functions.

12.1.2 CO

The set of tables we give for CO follows the pattern given feirNthe last section.
Table 12.5 shows the four most important structures in the wave function of CO
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Table 12.5CO: The most important terms in the wave function when spherical
AOs are used as determined by the magnitudes of the coefficients. Results for
standard tableaux and HLSP functions are given.

1 2 3 4

Num. 2 1 1 1

2% 2% 2% 2% 2% 2% 28, 2%

2y 2% 2y 2% 28 2% 2Pzb 2Pzb
STF prb prb szb szb sza szb 2% 2pza

2pza 2pzb 2pxa 2pxb 2pxa 2pxb 2pxa 2pxb

2pya 2Pyb 2pya 2Pyb 2pya 2Pyb 2pya  2pyb
Ci(min) 0.20559 —0.19223 0.14909 —0.12044
Num. 2 1 2 1

2% 2% 2% 2% 2% 2% 2% 2%

28 2% 28 2% 28 2% 28, 25
HLSP 2P« 2Pxb 2Pz 2Pgzp 2Pz 2Pzb 2Pxb 2Pxb

sza szb pra prb 2pxb 2pxb 2pyb 2pyb

2Pya 2Pyb | 2Ppya 2pyb | 2pya 2pyb ] 2Pza 2Pz |
Ci(min) 0.17915 —0.157016 —0.094 20 0.09319

as determined by the magnitude of the coefficients for standard tableaux functions
and HLSP functions. Table 12.6 shows the same information far th®s formed

into s—p hybrids. The symbolsHy” or “h;x” are used as before. Using the size

of the coefficients as a measure of importance, we see that VB theory predicts CO
to have only two covalent bonds between the atoms. We saw in Section 11.1 that
C and O are both iP ground states, thus elementary considerations suggest that
there is oner covalent bond and one covalent bond cylindrically averaged to
achievel=* symmetry. This view, although too simplistic, is different from that
often seen where CO is written like;Nvith a triple bond. The latter must also

be too simplistic, since, if CO had anything close to an evenly shared triple bond,
its dipole moment would be large, although in the experimentally correct direc-
tion. We will discuss the dipole moments of the polar molecules all together in
Section 12.3.

The triple bond structure appears in the third place with spherical AOs and
standard tableaux functions, but is not among the first four with HLSP functions.
This is actually misleading due to the arbitrary cutoff at four functions in the table.
The HLSP function triple bond has a coefficient of 0.09182, only slightly smaller
that function 4 in the table. The appearance of the triple bond structure in this
wave function is the quantum mechanical manifestation of thedek-bonding”
phenomenon invoked in qualitative arguments concerning bonding. We thereby
have a quantitative approach to the concept.
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Table 12.6CO: The most important terms in the wave function when s—p hybrid
AOs are used as determined by the magnitudes of the coefficients. Results for
standard tableaux and HLSP functions are given.

1 2 3 4
Num. 2 1 1 1
hoa hoa hoa hoa hoa hoa hob hob
hoo  hop Nob  hop hob  hop hib  hip
STF 2pyb 2Py hip,  hip hia  hip hoa  hia
hia hib 2pxa 2pxb 2pxa 2pxb 2pxa 2pxb
2Ppxa  2Pxb 2Ppya 2Pyb 2pya 2pyb 2pya 2Pyb
Ci (min) 0.27404 0.22204 0.18809 0.146 23
Num. 2 1 1 2
hoa  Noa hoa  Noa hoa  hoa Noa  hoa
hob hob hob hob hob hob hob hob
HLSP 2Pxb  2Pxb hib  hip 2Pxn  2Pxb hib  hip
hia  hip 2Pxa  2Pxb 2pyy  2Pyp 2pxn  2Pxb
2Pya 2pyb | 2pya 2pyb | hia hip R 2pya 2Pyb | 5
Ci(min) 0.24094 0.18173 0.13844 0.12586

Comparing Tables 12.5 and 12.6 with those for, Mables 12.2 and 12.3, we
see that CO prefers hybrid orbitals to a somewhat greater extent. The differences
are not great, however. The EGSO weights shown in Table 12.7 display a be-
havior rather different from those forNIn this case the principal configuration
is the same for both sorts of measure. The smaller EGSO weights are different,
however.

12.1.3 BF

The pattern of tables for BF follows the earlier treatments in the chapter. Table 12.8
shows the four most important structures in the wave function of BF as determined
by the magnitude of the coefficients for standard tableaux functions and HLSP
functions. Table 12.9 shows the same information forath®0s formed intos—p
hybrids. We use thd1,,” or “hix” symbols as before. Inthis case, all of the principal
structures except number 4 for the hybrid AOs have no more than one unpaired set
of orbitals. Therefore, the coefficients for the standard tableaux functions and the
HLSP functions differ in that case only. The hybrid orbital arrangement is again
preferred, but the difference is only somewhat greater than that for CO. The principal
configuration is definitely a singkebond between the two atoms. When interpreted
as a configuration of BF, the most important one from CO changes to the ionic sort.
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Table 12.7CO: EGSO weights (standard tableaux functions) for spherical AOs,
upper group, and s—p hybrids, lower group. These are weightalfaie
symmetry functionsather than individual tableaux. It should be recalled

from Chapter 6 that the detailed forms of symmetry functions are
dependent on the particular arrangement of the orbitals in
the tableaux and are frequently nonintuitive.

1 2 3 4

Num. 2 1 2 2

2% 2% 2% 2% 2, 2% 28 2%

2 2% 2y 2% 2Pzb  2Pzb 2 2%
STF 2pyb  2Pyb 2Pzp 2Pzp 2pyb  2Pyb 2pzp 2Pzp

2Pza 2Pz 2Pxa  2Pxb 2% 2pza 2Pxa  2Pxa

2pxa  2Pxb 2pya  2Pyb 2Pxa  2Pxb 2pyn  2Pyb
Wit 0.550208 0.140467 0.105 266 0.03316
Num. 2 1 2 1

hoa hoa hoa hoa hob hob hoa hoa

hob  hob hob  Nob hi,  hip hob o
STF 2Ppyb  2Pyb hib  hip 2pyb  2Pyb 2Pxp  2Pxb

hia hib pra prb hoa hia 2pyb 2pyb

2pxa 2pxb 2pya 2pyb 2pxa 2pxb hia hib
Wit 0.637 66 0.09984 0.04174 0.03157

Table 12.8BF: The most important terms in the wave function when spherical
AOs are used as determined by the magnitudes of the coefficients. Results for
standard tableaux and HLSP functions are the same.

1 2 3 4
Num. 1 2 1 1
2% 2% 2% 2% 29 2% 2y, 2%
STF 2y, 2% 2y, 2% 2, 2% 2Pzb  2Pzp
or 2pxb 2pxb 2pzb 2pzb 2pzb 2pzb 2pxb 2pxb
HLSP 2pyb 2Py 2pyb  2Pyb 2Pxb  2Pxb 2pyb 2Py
sza 2pzb 2pxa 2pxb 2pyb 2pyb 2 2pza
Ci(min) 0.27778 —0.224278 —0.217808 —0.135735

For spherical AOs it is not among the first four, but appears in the eighth position
with a coefficient of 0.114 16, and for hybrids it is the eighth one down with a
coefficient of 0.12080. We therefore predict that, quantitatively, there isdess
back-bonding in BF than in CO. For neither arrangement of orbitals is the triply
bonded structure of Nimportant for BF.
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Table 12.9BF: The most important terms in the wave function when hybrid
AOs are used as determined by the magnitudes of the coefficients. Results for
standard tableaux and HLSP functions are the same.

1 2 3 4

Num. 1 1 2 2

hoa hoa hoa hoa hoa hoa hob hob
STF hob  hob hob  hob hob  hob hip  hip
or 2pxb 2Py hip  hip hi,  hip 2pyy  2pyb
HLSP 2pyb  2Pyb 2Pxb  2Pxb 2Ppyb 2Py Noa hia

hia hib 2pyb 2pyb 2pxa 2pxb sza szb
cst(min) 0.33549 0.260 92 0.22879 0.16075
C'*P(min) 0.33549 0.260 92 0.22879 0.14762

Table 12.10BF: EGSO weights (standard tableaux functions) for spherical
AOs, upper group, and hybrid AOs, lower group. These are weights
for whole symmetry functions.

1 2 3 4

Num. 2 1 1 2

2% 2% 2% 25 28, 2% 2y 2%

28b 28b ZSb 230 2 Pzb szb szb szb
STF 2P0 2Pz 2pxb  2Pxb 2D 2Pxb 2Py 2Pyb

2pyb  2Pyb 2pyb  2Pyp 2pyp  2Pyb 253 2pPza

2pxa 2pxb sza 2pzb 2301 sza pra prb
Wit 0.464 83 0.30250 0.08213 0.02811
Num. 1 2 2 1

hoa hoa hoa hoa hob hob hob hob

hoo  hob hob  hop hib  hip hia  hia
STF 2Pxb  2Pxb hiv  hip 2Pyb 2Py 2Pxb  2Pxb

2pyb  2Pyp 2pyb  2Pyb hoa  hia 2pyp 2Py

hia hib 2pxa 2pxb 2pxa 2pxb hoa hib
Wit 0.48657 0.25267 0.07854 0.03612

The EGSO weights shown in Table 12.10 for the two orbital arrangements display
an interesting switch. For the spherical AOs a cylindrically averagbdnd is the
principal configuration and the bond is the second one. The hybrid AOs show the
opposite order with the bond structure relatively more strongly favored than in
the spherical case. In both cases there is considerable competition between the two
bond types, and the VB prediction is that they are strongly mixed in the molecule.
We defer a discussion of the dipole moment until later.
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Table 12.11BeNe: The most important terms in the wave function when
spherical AOs are used, as determined by the magnitudes of the
coefficients. Results for standard tableaux and HLSP functions

are the same for these terms in the wave function.

1 2 3 4
Num. 1 2 1 1
2% 2% 2% 2% 25 2% 2% 2%
STF 23) 290 szb szb 25&) 25) 2pza 2pza
or 2P 2Pz 2Pxa  2Pxa 2Pxb  2Pxb 2Pz 2Pz

HLSP 2P 2Pxb 2Pxb  2Pxb 2pyb  2Pyb 2Pxb  2Pxb
2pyb 2Py 2pyb  2Pyb 2Pza 2Pz 2Pyb 2Py
Ci(min) 0.87946 —0.18865 —0.186 14 —0.14405

Table 12.12BeNe: The most important terms in the wave function when s—p
hybrid AOs are used as determined by the magnitudes of the coefficients.
Results for standard tableaux and HLSP functions are the same
for these terms in the wave function.

1 2 3 4

Num. 1 1 1 2

hob hob hoa hoa hob hob hob hob
STF hiv,  hip hob  hop hia  hia hip,  hip
or 2Pxb  2Pxb hip  hip hiv  hip 2Pxb  2Pxb
HLSP 2pyb 2Py 2Pxn  2Pxb 2Pxb  2Pxb 2Pya 2Pya

hoa  hia 2pyn  2Pyp 2pyn  2Pyp 2pyn  2Pyb
Ci(min) 0.71854 0.42947 0.298 39 —-0.188 64

12.1.4 BeNe

When we arrive at BeNe in our series we expect no real electron pair bond between
the two atoms, but we provide the same sorts of tables as before. Table 12.11 shows
the four most important structures in the wave function of BF as determined by the
magnitude of the coefficients for standard tableaux functions or HLSP functions.
Table 12.12 shows the same information for sh&Os formed intas—p hybrids.

The symbols hyy” or “hix” are used as before. In this case, where none of the
principal structures has more than one pair of unpaired orbitals, there is no dif-
ference in the coefficients between the standard tableaux functions and the HLSP
functions. For BeNe the spherical AO arrangement is definitely preferred. Exam-
ination of Table 12.12 shows an unusual inner—outer hybrid pairing on Be in the
principal configuration. This pairing is not a good substitute for tedtound
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Table 12.13BeNe: EGSO weights (standard tableaux functions) for
spherical AOs. These are weights for whole symmetry functions.

1 2 3 4

Num. 1 2 1 1

2% 2% 2% 2% 2% 2% 2% 2%

Zsb 230 2 Pzb szb 25'0 23b 2 Pza sza
STF 2pzb szb 2pxa 2pxa prb 2pxb 2pzb 2pzb

2Pxb 2Pxb 2Pxb  2Pxb 2pyb 2Pyb 2Pxb 2Pxb

2pyb 2pyb 2pyb 2pyb 2pza 2pzb 2pyb 2pyb
Wit 0.845 66 0.07854 0.03588 0.02073
Num. 1 1 1 2

hob hob hoa hoa hob hob hob hob

hip  hip hob  hob hia  hia hip  hip
STF 2pxb  2Pxb hiy,  hip hi,  hip 2Pxa  2Pxa

2pyb 2pyb 2pxb 2pxb 2pxb 2pxb 2pxb 2pxb

hoa  hia 2Py 2Pyb 2Pyb  2Pyb 2Pyb  2Pyb
Wit 0.57315 0.20839 0.09372 0.07854

state of Be and leads to the somewhat smaller value of the coefficient compared to
the primary structure in the case of spherical AOs. Because of the column antisym-
metry of the standard tableaux functions the hybrids on Ne do not cause a similar
difficulty.

Comparing the two sets of weights in Table 12.13 shows the same phenomenon.
The principal spherical AO structure represents over 80% of the total wave function
while the weights for the hybrid structures fall off more slowly. It addition it will
be observed that the principal terms in the wave functions and the EGSO weights
are completely parallel in the case of BeNe. This is in contrast to other members in
this series of molecules.

We see that the third function in any of the spherical AO series is an ionic
structure equivalent to the principal configuration for BF and thus represents one
o bond. This is a relatively minor constituent of the wave function, but, never-
theless, has a surprisingly large coefficient. It is possible that this sort of term
is overemphasized in the STO3G basis, since it predicts an improbably short
bond between Be and Ne, judged by the value obtained with the higher-quality
6-31G" basis® As a test of this conjecture, a recalculation of the STO3G structures
at the 6-31G equilibrium distance reduces the importance of this ionic struc-
ture to the fourth place with an EGSO weight of 0.4%. Theback-bonding

1 This is very likely a manifestation dfasis set superposition errahat occurs frequently in MO calculations,
also.
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Table 12.14Statistics on 6-31Gcalculations for N, CO, BF, and
BeNe. The dipole moments are also given. See Section 12.3
for a discussion of the signs of the moments.

Moment (D)
Molecule N, 2 NgP Calc. Exp.
N, 6964 1812 0.0 0.0
CcoO 5736 2986 —0.087 -0.122
BF 3166 1680 —1.084 —0.5°
BeNe 1210 672 -0.312 ?

& The number of basis functions |nvolved1|EJr orlx* symmetry functions.
b The number of symmetry functions supported
©Forv =0.

structure at=0.01% is even less important in this molecule. It appears that VB
theory predicts there to be no electron pair bonds between the two atoms here.
The minimum in the internuclear potential curve is due to Van der Waals interac-
tions. In spite of this the molecule has a small dipole moment, which we discuss
below.

12.2 Quantitative results from a 6-31G basis

In Chapter 11 we described calculations using the occupied AOs in a full MCVB
with added configurations involving single excitations into all of the atomic virtual
orbitals excepting théls. We give the values foDe and Ry, in Table 12.1. The
results for N are the same, of course, as those in Table 11.1. As was the case
with the homonuclear molecules in Chapter 11, we again see that the calculated
energy for N is the farthest from experiment for the known values. There seems
at the moment no good explanation for this. Nevertheless, the higher-quality basis
gives closer agreement with experiment. In Table 12.14 we present statistics for the
number ofn-electron basis functions involved in the calculations.

Apparently there are no experimental data on BeNe. If we fit a Morse function
to the parameters we obtain for the dissociation curve, it is estimated that there
would be 14-15 bound vibrational states for this Van der Waals molecule. Thus,
VB theory predicts the existence of stable gaseous BeNe, ifit is cold enough, since
D¢ is only 2k T for room temperature.

As stated above, we consider the dipole moments of the heteronuclear molecules
in the next section, but we give in Table 12.14 the dipole moments at the equilibrium
geometry and determined with the 6-31k&asis.
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12.3 Dipole moments of CO, BF, and BeNe

Elementary discussions define the electronegativity of an atom as a measure of
its ability to attract electrons to itself. Several authors, Pauling[50], Mulliken[51],
and Allen[52], have devised quantitative values as a measure of this ability. Such
elementary discussions usually emphasize the connection between the dipole
moments of heteronuclear bonds and the comparative electronegativities of the
atoms involved. In particular the expectation is that the electronegativity difference
should tell the direction of the moment. In general, this idea works well with many
diatomic molecules that have single bonds between the atoms. Examples are hydro-
gen halides and (gaseous) alkali halides. Discussions of LiH and LiF representing
this sort of system are in Chapter 8. There are, nevertheless, a number of diatomic
molecules that have an anomalous direction of the dipole moment between different
atoms. CO is probably the most notorious of these anomalies but others are known.
Huzinagaet al[53] have examined a number of these and describe the effects in
terms of MO theories. The interested reader is referred to the article for the details,
since this work stresses VB analyses of chemical phenomena.

12.3.1 Results for 6-31Gbasis

Figure 12.1 shows the dipole moment functions in teahmternuclear distance
of CO, BF, and BeNe, calculated with our conventional 6-3b&sis arrangement.

4 T T T T
3t . 1
. BF
8 of | ]
€
£
o 1r CcO B
1S
<Q
S AL S e
£ 0
B " BeNe
@ 1L J
0 1
_2 - 4
_3 1 1 1 1
0 1 2 3 4 5

Internuclear distance (A)

Figure 12.1. The dipole moment functions for CO, BF, BeNe calculated at a number of
distances with the conventional 6-318asis arrangement.
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The curves for CO and BF show the form typical of these systems as is emphasized
in Ref. [53]. In our discussion of LiF in Section 8.3 we emphasized how the nature
of awave function could change from ionic to covalent with a change in internuclear
distance. Here again we appear to have the “signature” of this sort of phenomenon:
the change of sign of the moment atinternuclear distances around 1.0sttdhigly
suggests the interplay of two effects where the winning one changes fairly rapidly
with distance. On the other hand the sign of BeNe does not change and this suggests
that one of these effects is absent in this molecule.

From the signs on the moments and our work in Chapters 2 and 8 we interpret
these curves as follows (for the interpretation of the signs the reader is reminded
that all three of our systems are oriented with lggselectronegative atom in the
positivez-direction).

1. Atinternuclear distances intermediate, but greater than equilibrium, the familiar ideas of
electronegativity win out, and the more electronegative atom has an excess of negative
chargeAtthe maximathe charge on O in COis arourn@.29|d and ;m Fin BF—0.70|4.

It is not surprising that in BF the effect is larger. No legitimate argument would suggest
that Ne has any sort of negative ion propensity, and we do not see a maximum in that
curve.

2. When systems are pushed together, nonbonded electrons, on the other hand, tend to
retreat toward the system that has the more diffuse orbitals. In this case that is C, B, or
Be. Since the nonbonded electrons are generally in orbitals less far out, this effect occurs
at closer distances and, according to our calculations, wins out at equilibrium distances
for CO and BF. This is the only effect for BeNe, and the moment is in the same direction
at all of the distances we show. This retreat of electrons is definitely a result of the Pauli
exclusion principle.

Both sorts of physical effects tend to fall off exponentially as the distance between
the atoms increases — the dipole moment must go to zero asymptotically. A close
examination of the CO results shows that the moment goes to very small negative
values again around 4.0.AVhether this is real is difficult to decide without further
calculations. It might be that the Pauli exclusion effect wins again at these distances,
the result might be different for a still larger basis. Also, Gaussian basis functions
can cause troubles at larger distances because individually they really fall off much
too rapidly with distance.

12.3.2 Difficulties with the STO3G basis

We also calculated the dipole moment functions for CO, BF, and BeNe with an
STO3G basis, and it can be seen in Fig. 12.2 that there are real difficulties with
the minimal basis. We have argued that the numerical value and sign of the electric
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BF

Electric dipole moment (D)
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Figure12.2. The dipole moment functions for CO, BF, BeNe calculated number of
distances with the full valenaminimal STO3G basis.

dipole moment in these molecules is the result of a balance between two opposing
effects. When we pass to the STO3G basis, this balance is throwit effinstruc-

tive, nevertheless, to see that STO3Gs reproduce the Pauli exclusion effect better
than the formation of a partial negative ion at the more electronegative end of the
molecule. This is expected. The more diffuse 6-83b@sis, with its capability for
allowing the AOs to breathe and polarize can much better represent the negative
ions.

2 This is in spite of the qualitatively reasonable energies the basis yields. Such an outcome is a familiar one,
however — the energy is the result of a variational calculation and is expected to be produced to higher order
than quantities like the electric moment. In addition, the minimal basis does better in the region of the minimum
and asymptotically than elsewhere. ThOg,may not suffer too greatly.
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Methane, ethane and hybridization

In Chapter 11 we discussed the properties of the atoms in the second row of the
periodic table and how these might influence molecules formed from them. We
focus on carbon in this chapter and examine how the bonding changes through
the series CH, Ch CHs, and CH,. The first three of these are known only
spectroscopically, in matrix isolation, or as reaction intermediates, but many of
their properties have been determined. The reader will recall that carbon exhibits
relatively low-energy excited valence configurations. For carbon the excitation
energy is around 4 eV, and among the atoms discussed in Chapter 11, only boron
has a lower excitation energy. If this excited configuration is to have an important
role in the bonding, the energy to produce the excitation must be paid back by the
energy of formation of the bond or bonds. We shall see that VB theory predicts this
happens between CH and @H\fter our discussion of these single carbon com-
pounds, we will consider ethane, @EHs, as an example for dealing with larger
hydrocarbons.

13.1 CH, CH,, CH3, and CHy4
13.1.1 STO3G basis

We first give calculations of these four molecules with an STO3G basis. The total
energies and first bond dissociation energies are collected in Table 13.1. We see that,
even with the minimal basis, the bond energies are within 0.4 eV of the experimental
values except for CkJ which has considerable uncertainty. The calculated values
tend to be smaller, as expected for a minimal VB treatment.

We now give a discussion of each of the molecules, first considering the atomic
structure of the carbon atom and attempting to predict the bonding pattern. The
predictions are followed by the results of the STO3G calculations.

177



178 13 Methane, ethane and hybridization
Table 13.1CH, STO3G energies.

Energy (au) Dissociation  Energy (eV) Exp. (V)

>

0 CeP) —37.438 66

1 CH@m  -38.05028  Dc.y 3.065 3.465
2 CH,(®B) —38.69363  Dcpn 3.901 4.33
3 CHs(?Aj) —39.33838  Dcy,_n 3.939 <4.90
4 CHy(*A;) —39.98973  Dcm,n 4.118 4.406

a See Refs. [49, 54].

Table 13.2Principal standard tableaux functions for CH at the
equilibrium internuclear distance. This is the x-component

of ax-pair.
1 2 3 4
Num?2 1 1 1 1
2s 2s 2s 2s 2s 2s 2p;, 2p;
TabP [13 2p2] |:1s 2px:| [sz 2pz] |:23 1s :|
2px sz 2pX 2pX

Ci(min) 0.72968453 —-0.32040021  0.227 852 03 0.168 832 87

a The number of terms in the symmetry function that is generated from the tableau
shown. (See text.)
b These tableau symbols exclude the core orbitals.

CH

The3P (we call it3P(1)) ground state of the C atom has two unpaipselectrons.
When an H atom approaches, it should be able to form an electron pair bond with
one of these orbitals, while the other would remain unpaired. This scenario leads
to the expectation that CH should havélaground state. We have commented on
the possible involvement of the excited®S state, but symmetry prohibits such
mixing here. There is a higher ener$fy(2) valence state that is allowed to interact
through symmetry.

There are 75 standard tableaux functions in a full valence treatment, but only
36 arell states, half being-components and haif-components. The variation
problem therefore has two 2818 matrices. The principal standard tableaux
functions in the wave function are shown in Table 13.2. The predominantterm inthe
wave function clearly involves the C atom in #B(1) state. The calculated dipole
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z

H, H,
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Figure 13.1. Orientation of the GHiradical.

moment at the equilibrium separation for this basis is 1.4983 D with H the positive
end.

CH,

The methylene radical has enjoyed a certain notoriety concerning the nature of the
ground state. It is now known to be in a triplet state with a bent geometry. This
is perhaps not what is expected if we just think of an H atom interacting with the
remaining unpaireg orbital of CH, an outcome that should lead to a singlet state of
some geometry. At this stage in our series we will see, however, that the e@ited
state becomes dominant in the wave function. A quintet state coupled with two
doublet H atoms can have no lower multiplicity than triplet. In Fig. 13.1 we show
the orientation of the CHldiradical in a Cartesian coordinate system and assume
Cy, symmetry.

With six electrons and six orbitals in a full valence calculation we expect 189
standard tableaux functions. These support Bilsymmetry functions that, how-
ever, involve a total of only 97 standard tableaux functions out of the possible
189. Table 13.3 shows the principal terms in the wave function for the equilibrium
geometry.

The principal standard tableaux function is

2s 1s
2p; ls
2py
2p,

THO = , (13.1)

where the subscripts on the arbitals are associated with the corresponding sub-
scripts on the H atoms in Fig. 13.1, and the @rbital is on the positivey side of
the x—zplane with X, on the other side. We add a superscrifg0’ to the tableau
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Table 13.3Principal standard tableaux functions for Gldt the
equilibrium internuclear geometry.

1 2 3 4
Num? 1 2 2 1
2s  1s 2py  2py 2s 2s 2s 2s
Tabb 2px 1s 25  1s 2px 1 2px 2py
' 2py 2py 2p, 1s,
2p; 2p, 1s, 1s

Ci(min) 0.37932412 0.09243713 -0.09161994 -0.088 82352

a8 The number of terms in the symmetry function that is generated from the
tableau shown. (See text).
b These tableau symbols exclude the core orbitals.

symbol to distinguish it from tableaux we introduce later that have hybrid orbitals
in them.

As we have pointed out many times previously, the columns of the standard
tableaux functions are antisymmetrized, and the orbitals in a column may be
replaced by any linear combination of them with no more than a change of an
unimportant overall constant. In this case, consider a linear combination that has
two hybrid orbitals that point directly at the H atoms in accord with Pauling’s
principle of maximum overlap. Using the paramepene have three orthonormal
hybrids

ha = cos@)(2s) + sin@)[sin(¢/2)(2py) + cosg/2)(2p,)],
hp = cos@)(2s) + sin@)[—sin(®/2)(2py) + cosep/2)(2p,)],
ho — cosp/2) sin@)(2s) —cosP)(2p;)

~ /co2(6) + co(/2) sirf(6)

(13.2)

whereg (> /2)! is the angle between these two hybrids, and

6 = arccof,/— cos@)].

We keep the P, orbital unchanged. This set is a variant of the canomsigahybrid
setin which, however, all three orbitals are not symmetrically equivalepisithe
H-C—-H angleh, andhy, point directly at the H atoms. Because of the invariance

1 Hybrids consisting of and p orbitals without this angle restriction can be complex. We are not interested in
such cases.
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Table 13.4Energies for T*° and T/'R as a function

of hybrid angle.
<T1AO| H |T1AO> (T]_h Rl H |T1h R> .
e e—au ——=tau
Hybrid angle <T1AO|T1AO> <-|—1hR|-|—1h R)

120.0 38.479 436 —38.595532
130.0 —38.479 436 —38.599 825
140.0 —38.479 436 —38.597 295
150.0 —38.479 436 —38.590391

of the function in Eq. (13.1), we obtain

ha 1s
TAO = E: s ] (13.3)
2py

We have written out these hybrids, but the reader should realize that the eight-
electron wave function (including thes? based upon the standard tableaux
function of Eq. (13.3) has an energy expectation value indepehdétite angle
parameter used in the hybrids, so longpas 7 /2. There are, however, nine stan-
dard tableaux functions for the orbital configuration in Eq. (13.3). These may be
combined into five other combinations #8; symmetry. Tha*° above is the only
one that shows the invariance to hybrid angle. When we combine all five in a wave
function, the energy does depend upon the hybrid orbital directions. Nevertheless, as
we add more and more structures to the wave function, we eventually arrive at a full
calculation, and the energy is again invariant to the hybrid orbital directions. Thus
the principal of maximum overlap has a meaning only for wave functions that do not
involve a linear combination of all possible structures for the underlying AO basis.

Some further numerical examples are illuminating when we compare the standard
tableaux function results with those of HLSP functions. We define

ha 1
h 1s,
hR __ b
T = 2p, . (13.4)

Consider the energies in Table 13.4, where we see that the enefgy ofaries
up and down around 100-200 meV in the angle range shown, while tiidtdfs

2 This does not mean that the energy offfd’sis independent of the actual angle in the molecule. Among other
things, the nuclear repulsion energy depends upon the distance between the H atoms.
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constant. Using the methods of Chapter 5, we may vTrrlitE in terms of standard
tableaux functions:

ha 1sa ha  1s37] [ha  1s; ]
ThR:1_2 hy 1, | 6|hy, I +§ hp  2px
! 5 | h, 5|1 5|1
2pX pr . L'z _
_ha hb ha hb_ i a hb ]
611y 1g +§ Iss hz | 3| 1ss 2px
51 h, 5| 1s, 5| 1s,
| 2Px 2px _ | h; _
[ha 1, ha 1s ha h;
9| 1s, hy 9| 1s, 2py 6| 1sy 2py
“5 | hy 5| hy "5 hy (13:3)
| 2px h; 1s,

We see immediately thai*°, the standard tableaux function invariant to the hybrid
angles, is actually the largest term'll'ﬁ R but not overwhelmingly so. The others
all depend on the hybrid angles and, therefore, so ﬂfﬁ@sWe may also note that
using hybrid orbital§'1h Rhas alower energy by3 eV, but, as seen from Table 13.1,
the full calculation, with either sort of basis, is still more stable by anctieeV.

The calculated value of the dipole moment is 0.6575 D for this basis with the
charge positive at the H-atom end of the bonds.

CH;

Adding an H atom to Chimight be expected to do little more than regularize the
hybrids we gave in Eq. (13.2), converting them to a canorsigaset. With this we
expect a planar doublet system. Whether the molecule is really planar is difficult
to judge from qualitative considerations. Calculations and experiment bear out the
planarity, however.

A full valence orbital VB calculation in this basis involves 784 standard tableaux
functions, of which only 364 are involved in 68,” symmetry functions. For Ci
we present the results in terms g1 hybrids. This has no effect on the energy,
of course. We show the principal standard tableaux functions in Table 13.5. The
molecule is oriented with th€z-axis along the-axis and one of the H atoms on the
x-axis. The three trigonal hybrids are oriented towards the H atoms. X'reub-
script on the orbital symbols in Table 13.5 indicates the functions or-tds, the
“a” subscript those 120rom the first set, and théb” subscript those 240rom the
first set.
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Table 13.5Principal standard tableaux function structures for €H
at equilibrium bond distances.

1 2 3 4
Numa 1 1 1 3
he 1s hy 1s hy 1s he  hy
Tabb ha 1s Is 1s ha 1s ha 1s
’ hb 15&) ha 2 pz 13& 2 pz hb 15{)
2pz hb hb 2pz

Ci(min) 0.52192272 —-0.32028142 —-0.21195778 0.17512490

a8 The number of terms in the symmetry functithat is generated from the
tableau shown. (See text.)
b These tableau symbols exclude the core orbitals.

Table 13.6Second moments of the charge for£H

Component Value (D A)?
(xx+yy+2z2 —24.160 72
(2zz— xx —yy)/2 —1.82970
(xx—vyy)/2 0.0
Xz 0.0
yz 0.0
Xy 0.0

a Units of debye’agstroms.

Returning to the entries in Table 13.5, we see that the principal standard tableaux
function is based upon the G state in line with our general expectations for this
molecule with three C—H bonds. We considered in some detail the invariance of
this sort of standard tableaux function to hybrid angle in oup @l¥cussion. We
do not repeat such an analysis here, but the same results would occur. As we have
seen in Chapter 6, standard tableaux functions frequently are not simply related
to functions of definite spatial symmetry. The second and third standard tableaux
functions are members of the same constellation as the first, but are part of pure
2, functions only when combined with other standard tableaux functions with
smaller coefficients that do not show at the level to appear in the table. These
other standard tableaux functions are associatedwseoupled valence states of
carbon at higher energies than thaP&f The fourth term is ionic and associated
with a negative C atom and partly positive H atoms.

The dipole moment of Cklis zero, of course, but the second moments of the
charge have been determined, gnt) and the quadrupole moments are given in
Table 13.6. The sign of the-axial quadrupole term indicates the distribution of
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Figure 13.2. Drawing of positive axial quadrupole.

charge in the wave function. Figure 13.2 shows the general shape pfakial
quadrupole with the signs of the regions. Since the moment of the molecule is
negative, we see that its signs are reversed compared to those in the figure, and the
individual C—H bonds are relatively positive at the H-atom ends.

We may arrive at this conclusion another way. In Table 13.6 the components
(Xx —yy)/2, xy, xz, and yz are zero indicating that the quadrupole field is
cylindrically symmetric about the-axis. Theaxial moment around the- or
y-axis is

(2xx —yy—122/2 =3(XX —Yyy)/4— (22z— XX — yY)/4, (13.6)
= (2yy — XX —122/2, (13.7)
=0.91485DA (13.8)

for which the positive sign again indicates the positive nature of the H end of the
C—H bonds. This direction of the dipole moment is the same as that of CH and
CH,, and is again expected because of the relative predominance in the wave
function of the ionic term shown in Table 13.5.

CH,

We expect methane to be formed by the combination of an H-atom with the remain-

ing unpairedp;, orbital of CH;. If the principal configuration is still that involving

the C°Sstate and its nondirectional character predominates, we expect methane to
be tetrahedral, thereby minimizing the repulsion energy between pairs of H atoms.

This is borne out by the calculations as we see in Table 13.7.
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Table 13.7Principal standard tableaux function structures for ¢H
at equilibrium bond distances.

1 2 3 4

Num?2 1 1 4 1
TabP hy 1% 1l 1s ha 1s hy lg
' he 1s hy hqg hy 1s 1s, hg
hg 1gy he 1gy he 1s he 1y

Ci(min) 0.37203796 —0.15590088 0.129 792 00—-0.105 365 69

8 The number of terms in the symmetry function that is generated from the
tableau shown. (See text.)
b These tableau symbols exclude the core orbitals.

Table 13.8Apparent partial electronic charge on H atoms
based upon lowest nonzero moment and the corresponding
calculated bond lengths, STO3G basis.

Molecule Charge RchA
CH 0.254/¢ 1.231
CH, 0.137 1.163
CH3 0.194 1.145
CH, 0.188 1.150

a8 The H—C—H bond angle is 129.1

A full valence calculation on Cllgives 1764 standard tableaux functions, and
all of these are involved in the 164, symmetry functions. The second and fourth
tableaux are also present in the principal constellation and, as with the earlier cases,
these are not simple symmetry functions alone. The third tableau is ionic with the
negative charge at the C atom. As before, this contributes to the relative polarity of
the C—H bonds.

This is seen from a calculation of the electric moments. Methane has no nonzero
dipole or quadrupole moments, but ttyezcomponent of the octopole is 1.144B.A
All of the others are zero if the molecule has the orientation in the coordinate system
that is used here. The value is positive, showing the same qualitative electronic
distribution in C—H bonds as was seen for the other,Ghblecules we have
examined. Quantitatively, the octopole moment is equivalent to a charge of€).204
at the H-atom nuclei.

For easy comparison we show in Table 13.8 the apparent charge on the H atom
in each of our molecules. The trend in these charges is broken between one and
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Table 13.9Statistics for 6-31Gcalculations of CH.

Num. symm. Number of

State funcs. tableaux
CH n 213 546
CH, 3B, 828 1651
CHs 2N, 1597 9375
CH, n 2245 26 046

two H atoms. The likely interpretation here is that this is the place where the most

important atomic configuration changes as one progresses through the list. This is
seen clearly in Tables 13.2, 13.3, 13.5, and 13.7, where the principal configuration
in the wave functions is shown.

In the early days of VB theory workers were concerned with the “valence state”
of carbon[55]. Our calculations cannot really address this question because itis well
defined only within a perfect pairing single tableau wave functi®he notion was
contrived to explain the relatively constant bond energies through thes€liks,
while there is a requirement to pay back the ggdpss in having the principal
configuration change to higher energy. In the context of a full valence calculation
we may only give a somewhat more qualitative argument. Tistate of C is
about 4 eV above the ground state. This suggests that each of the actual C—H bond
energies in Chl with respect to some hypothetical frozen carbon state is about
2 eV higher than the apparent calculated or measured value. We attribute this to the
greater effectiveness for bonding whesi hybrids are involved.

13.1.2 6-31G basis

After our discussion of the STO3G results we, in this section, compare some of these
obtained with a 6-31Gbasis arranged as described in Chapter 9. As before, we find
that the larger basis gives more accurate results, but the minimal basis yields more
useful qualitative information concerning the states of the atoms involved and the
bonding. The statistics on the number of symmetry functions and standard tableaux
functions for the various calculations are given in Table 13.9.

From Table 13.10 we see that the bond distances are reproduced better in this case
than with the STO3G basis. We see that the break in the trend between CH and CH
again appears, and we continue to attribute it to the change in the important atomic
configuration at this juncture in the list. The calculated bond distances are about
4.2% high. The success in calculating bond energies is more difficult to assess,
since there is considerably more uncertainty in the experimental results.

3 Eventhen, itis a purely theoretical concept. There appears to be no experimental approach to the energy of this
state.
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Table 13.10Energies, bond distances, and bond energies of CH
for 6-31G" bases.

Bond length (A De (eV)
Energy (au) Calc. Exp. Dissociation Calc. Exp.

C —-37.71251

CH —-38.32154 1.169 1.1190 Dc_n 2.978 3.462
CH, -—38.98355 1.104 1.029 Dch-n 4.502 4.33
CHs —-39.62408 1.109 1.079 Dch,-n 3.918 <4.90
CH; —-40.29547 1.119 1.094 Dc,—H 4.758 4.406

a8 The H—C—H bond angle is 130.5

Table 13.11Various multipole moments and the apparent
charges on H atoms from 6-31@alculations.

Moment Value Charge
CH D 1.20030 0.214|e¢
CH, D 0.53033 0.119
CHz AQ —1.33895 0.152
CH, @) 0.58764 0.022

ap, dipole; AQ, axial quadrupole; O, octopole.

The apparent charges on the H atoms in this basis are shown in Table 13.11.
These may be compared to the similar values in Table 13.8. We see that the larger
basis yields smaller values, particularly for methane. Nevertheless, we still predict
that the H atoms in these small hydrocarbons are more positive than the C atom.

13.2 Ethane

Ethane presents a considerably greater challenge for calculation than the single
carbon molecules above. Even if we continue the practice of putsrelettrons

in the “core” we have seven bonds and 14 electrons. A full minimal basis calcula-
tion, such as with STO3Gs, will produce 2 760 615 standard tableaux functions or
HLSP functions for the total 14-electron basis. Not all of these' Asg (assum-

ing D3g symmetry) but the number would be considerable. With 14 electrons and
14 orbitals, none doubly occupied, there are 429 possible Rumer diagrams or stan-
dard tableaux functions. We will not attempt any “full” calculations with ethane,
but rather focus on basis set arrangements that are designed to yield useful results
with greater efficiency.
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Table 13.12Energies for covalent only calculations ogPand Ds, ethane.

Energy (hartree
Num. symm. oy ( )
Treatment funcs. D3q Dan
Cartesian AO 52 —78.367 895 a
Hybrid AO 52 —78.577 391 —78.575 229
Perfect pairing (hybrid) 1 —78.565885 —78.563937

2 This was not run.

We first contrast using a Cartesian basis vsith hybrids on the C atoms for a
covalent-only calculatiofi.Table 13.12 shows these along with the perfect pairing
energy. We see that there is a considerable lowering of the energly at 5.7 eV
from using hybrid orbitals on the C atom instead of the original Cartesian basis.
The hybrids are arranged to be pointing at the H atoms and the other C atom. We
also see that the perfect pairing wave function is not a great deal higher in energy
than the full covalent-only energy &tE = 0.313 or Q307 eV for theDgq4 or D3y
geometry, respectively. The perfect pairing function is the only Rumer tableau that
is a symmetry function by itself. We saw earlier that a perfect pairing function with
Cartesian AOs is frequently not sensible, and this is another such case.

Because they have no ionic states, the previous covalent-only results have too
high a kinetic energy contribution, as discussed in Chapter 2. Adding all possible
ionic states would lead to the very large number of basis functions quoted in the
first paragraph of the discussion of ethane. We will consider the following physical
arguments that may be used to limit the number of ionic state functions. This will
all be done in the context of hybrid orbitals on the C atoms.

1. Adjacentionic structures are the mostimportant. This is expected since reductions in the
kinetic energy will only occur if the overlap between the orbitals is fairly sizable. This is
accomplished by assigning two electrons to each pair of orbitals that are arranged to bond
in the molecule, and then requiring that this pair always have two electrons occupying
them.

2. Only a few ionic bonds are required. We accomplish this by restricting the number of
doubly occupied orbitals in a structure.

3. Highly charged atorrare unlikely. We accomplish this by preventing the charge depletion
or build-up on either C atom from being outsiti4.

Table 13.13 shows the energies for several treatments of ethane using these argu-
ments. The first addition of one set of ionic structures per basis function produces

4 The reader is reminded that different linear combinations of the AOs yield different energies for less than full
treatments.
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Table 13.13Energies for various hybrid orbital calculations
of Dzg and Dsj, ethane.

Energy (hartree)

lonic Num. symm.

structures funcs. Tableaux 3P (DEM
0 52 429  —-78.577391 -78.575228
1 214 2277 —78.731700 —-78.730171
2 448 4797 —78.742547 —78.741 195

Table 13.14Internal rotation barrier in ethane.

) Energy (eV)
lonic
structures Theory Exp.

0 0.059

1 0.042

2 0.037

0.127

a See Ref. [56].

a lowering of~4.2 eV, or nearly 0.6 eV per bond. The second ionic structure pro-
duces only 0.04 eV more per bond. In Chapter 2 the lowering of the energy in H
when the ionic states are added is nearly 1 eV. The overlap there is rather greater at
~0.9 than the values here, which are around 0.7 for either a C—H or a C—C bond.

We have calculated ethane in bdily and D3, geometries. From Table 13.13
we obtain the calculated barriers to internal rotation given in Table 13.14. Itis seen
that the calculated barrier height is falling as the number of ionic states increases.
It is not yet converged, but we do not give the result obtained by including three
ionic structures in the basis functions. The interested reader can work this out. The
trend here with the addition of ionic states runs counter to predictions using another
method published by Pophristic and Goodman[57].

In addition it appears that this minimal basis calculation is unable to give a result
close to the experimental value for the rotation barrier. We do not pursue this further
here, but leave it as an open question.

13.3 Conclusions

In its original form VB theory was proposed using only states of atoms liké$he
for C that we have invoked in describing our results. These are produced by standard
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tableaux functions of the particular sort that is antisymmetric with respect to the
interchange of any of the four C orbitals,2py, 2py, and 2o,. The functions based
upon the other standard tableaux of the constellation correspond to the inclusion of
otherL S states of the same configuration. Although not as important in the wave
function, these functions do enter and allow one to infer that the step suggested by
Slater and Pauling, the inclusion of all states of a configuration, was an important
addition to the VB method.

Our results in this chapter also show that using hybrid orbitals with restricted
bases can make an important improvement in the wave functions, at least when the
criterion is energy lowering.

We also see that the number of basis functions grows rapidly with the number
of electrons. In Chapter 16 we will discuss another method for dealing with the
escalation of basis size with greater numbers of atoms and electrons.
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Rings of hydrogen atoms

In this chapter we examine some results for four model systems consisting of
rings of H atoms. These calculations show how the number of atoms in a complex
reaction may influence rates of reaction, particularly through the activation energy.
The systems are as follows.

¢ Four H atoms in a rectangular geometryaf, symmetry. The rectangle is characterized
by two distancesRAandRB. We map out a region of the ground state energy for this
four-electron system as a function of the two distances.

¢ Six H atoms in a hexagonal geometry@4, symmetry. This is not eegular hexagon, in
general, but, like the system of four H atoms, is characterized by two distances we also
label RAandRB. These two distances alternate around the ring. We also calculate the
map of the ground state energy for this six-electron system.

e Eight H atoms in an octagonal geometrydf, symmetry and the specific shape char-
acterized by th&®@AandRBvariables as above. For this larger system we only determine
the saddle point with respect to the same sort of variables.

e Ten H atoms in a decagonal geometryf, symmetry and th&A and RB variables.
Again, we determine only the saddle point.

Since the geometries of these systems are in most regions not regular polygons,
we will symbolize them as (), emphasizing the number ofHholecules rather
than the total number of atoms.

For any of these, iRA= 0.7 A andRBis quite large, the rings represent 2-5
normal H molecules well separated from one another. If the roleRA&NdRB
are reversed, theHnolecules have executed a metathesis in which the molecules
transform into an equivalent set.

These are, without doubt, somewhat artificial systems. For real systems, one could
not tell if anything happened, unless isotopic labeling could be arranged. An even
greater problem would occur in the gas phase, since the entropy penalty required
for these peculiar geometries would be expected to make them very improbable.

191
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Table 14.1Number of symmetry functions of three types for
H-ring calculations of (H), and (H,)s.

Base configs. Single exc. Double exc. Total State

(Ha)2 8 17 33 58 1A
(Ha)s 13 130 411 554 LA|

Table 14.2Number of symmetry functions for saddle point
calculations of (H), and (H)..

Num. Symm. Funcs. Num. tab. State
(H2)4 146 1134 LAl
(Hz)s 768 7602 Y

Nevertheless, the results have considerable interest, bearing, as they do, onthe same
sort of considerations as the Woodward—Hoffman rules[58].

14.1 Basis set

The calculations were all performed with a8i-only basis of a $and a“X” at each
center. These are written in terms of the Huzinaga 6-Gaussian functioyp4sy.(6
This is thes part of the basis used in Chapter 2 for therfblecule and is shown in
Table 2.2. It will be recalled that the 82 orbital is not a real H2 orbital, but the
second eigenfunction for this basis. As such it provides orbital breathing flexibility
in the wave function. We show some statistics for these calculations in Table 14.1.
lonic states are restricted #iol at any center. The saddle point calculations for the
larger two systems were carried out with more restricted bases involving valence-
only covalent and single-, and double-ionic structures. The statistics for these are
shown in Table 14.2.

14.2 Energy surfaces

The energy surface for (ht, divided by 2, is shown in Fig. 14.1, and that for{kl
divided by 3, isin Fig. 14.2. Because of the division by the numberahblecules,

the energy goes te-1 hartree alRAandRB both grow large. Examination of the
two surfaces shows clearly that they are quite different. Thé.(ehergy surface

has a fairly sharp ridge between the two stable valleys. This is completely missing
in the (H)3 case. The difference between the energies

En,/2 — En,/3
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Figure 14.1. The energy surface for the conversion of 2H2H, in D2, geometries. The
energy is per imolecule.
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Figure 14.2. The energy surface for the conversion of 3H3H, in D3, geometries. The
energy is per imolecule.

for the two surfaces is plotted in Fig. 14.3. This is everywhereéd.001 eV within
the region of the plot. ThuEy, /2 is always relatively higher.

In Table 14.3 we show the saddle points and activation energies of the four
systems. It is seen that there is a tendency for the quantities to alternate between
higher and lower values as the number of iolecules is either even or odd.

The differences decrease, however, as the rings become larger, and it appears
that further calculations might show that the effect levels out. Nevertheless, the
activation energy for the (), system is almost three times higher than that of the
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Table 14.3Properties of the saddle points for
the four hydrogen rings.

. . Activation

RAA RBA Energy au energy eV
(H2)2 1.310 1.310 -1.0367 3.04
(H2)3 0.998 0.998 -1.1067 1.14
(H2)4 1.203 1.203 —1.0475 2.75
(H2)s 1.107 1.107 -1.0819 1.81
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Figure 14.3. The difference between the energy surfaces for the conversiop of 2,
in Dy, geometries and 3H— 3H, in D3y, geometries. The energy is pes bholecule. NB
We have changed the aspect from that of Figs. 14.1 and 14.2.

(H.); system, the saddle point is 0.3fArther out and therefore more difficult to
reach.

We can gain further insight into the differences between these two systems from
an examination of the two 2 matrix systems based upon the Kekiike HLSP
functions. These are, of course, the only structures fex(lut for this comparison
we ignore the long-bond functions in the other rings. We show the elements of these
two matrix systems in Table 14.4. These systems are particularly simple since the
diagonal elements dfl are equal, giving simple expressions for the eigenvalues of
the problemyiz,,

_ HipxHp (14.1)
1£S, '
Hiz — SioH
— Hy T2 Sz 1 (14.2)

1+ S,
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Table 14.4Values of elements in the two-state HLSP function matrix
systems for four hydrogen rings, all evaluated at the saddle points.

2H11/n(= 2Hy/n)  2H3p/n S> 2(H12 — SipH11)/n

(H2)2 —1.0113 0.7058 —0.6763 0.02196
(H2)3 —-1.0279 —0.6308 0.5752 —0.03955
(H2)4 —1.0422 0.3284 —0.3015 0.01418
(H2)s —1.0452 —0.2474 0.2242 —0.01307

As we see from Table 14.4, there is a peculiar alternation in sign in passing
through the series. This results in the lower energy arising from the upper or lower
sign in Eq. (14.2) fon odd or even in (H),, respectively. If we represent the two
Kekulé structure functions by the symbs” andK{"”, the wave function at the
saddle point is

W = No[K — (1)K V). (14.3)
The immediate consequence of this is a tengldoc the electrons to stay away
from the center of the ring for the eversystems. For example, consider the- 2

case:
@ _ a b _ b c
\psad_o.54615<[c d]R [ q aL), (14.4)

wherea, b, ¢, andd are the four orbitals around the ring, in order. This function
would certainly be zero if the electrons were at locations such that all of the orbitals
were of equal value. Because of the Pauli principle each of the Rumer tableaux
functions is also zero at such a point, but there is an extra tendency toward zero
because of the difference in Eq. (14.4). These do not occur in the cdsles. Such

a point is the center of the ring. Therefore, we interpret the in-and-out alternation
of the saddle point as a result of the extra tendency of the electrons in the even
systems to avoid the center. As the ring becomes larger and the center farther away,
the effect would be expected to decrease.

We also note that the values of the energy and overlap elements vary monoton-
ically with n, contrary to the alternating characteristic so far emphasized. Their
specific values give a maximum at= 3 in the last column, however. The max-
imum remains after division by (& S;5). Thus the (H); system has the largest
interaction at the saddle point, as measured by the energy decrease when the two
structures interact. It is also interesting thét decreases asincreases. An im-
mediate explanation for this is not available.
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The real reactions that most resemble these are the production of cyclobu-
tane from two ethylene molecules (}) and the Diels—Alder reaction between
butadiene and ethylene (£§)4). Even these cannot be made to react in the bare
forms, but fairly simple activation by substituents will allow the;J$lanalog to
proceed. Apparently, no form of the {4 analog has ever been observed. Our
analysis suggests that there is a fundamental difference between the four-electron
and six-electron systems that produces the effect. The book by Woodward and
Hoffman[58] may be consulted for a rationalization of these results based upon
MO theory.

As we continue to larger rings, the results are not so clearcut. There is a tendency
for the saddle points to alternate in and out somewhat, but the interaction energy
appearsto be amaximum at the ring of six atoms. These last more-or-less qualitative
comments have been based upon just the two simple Kdika structures of
the rings, and may not be able to show the proper behavior. The actual surface
calculations of (H), and (H)3 included many more structures and show strikingly
different qualitative behavior.
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Aromatic compounds

Benzene is the archetypal aromatic hydrocarbon and its study has been central to the
understanding of aromaticity and resonance from the early times. In addition, it has
the physical property of having its electrons reasonably independent from those

in o bonds, leading early guantum mechanics workers to treat électrons alone.

Since benzene is a ring and the rules for forming Rumer diagrams have one draw
noncrossing lines between orbital symbols written in a circle, the Rumer diagrams
correspond to the classical Kekulé and Dewar bond schemes that chemists had
postulated far earlier than the VB treatments occurred. This parallel has intrigued
people since its first observation and led to many discussions concerning its signifi-
cance. It has also led to considerable work in more qualitative “graphical methods”
for which the reader is directed to the literature. (Setr alia, Randic[59].)

We will examine benzene with different bases and also discuss some of the ideas
that consideration of this molecule has led to, such as resonance and resonance
energy.

We show again the traditional five covalent Rumer diagrams for six electrons and
six orbitals in a singlet coupling and emphasize that the similarity between the ring
of orbitals and the shape of the molecule considerably simplifies the understanding
of the symmetry for benzene.

a a a a a
f o >b 7 b f\\b f b f//b
e C e C e CcC e CcC e C
e g ~q d a
Ky Ky D; D, D3

Most of the discussion we give here on the nature of the wave function will focus
on HLSP functions. An earlgb initio study by Norbeck and the present author

197



198 15 Aromatic compounds

Table 15.1The four most important categories of HLSP functions in
the wave function for benzene.

1 2 3 4
Num?2 2 3 12 12
2pa 2 2Py 2pc 2pa  2pa 2pa  2pa
HLSP [ch 2pd] [Zpa Zpd} [ch 2pd} [ch ZpC]
2pe  2pf g 2pe  2pr g 2pe  2pr g 2pe  2pf g
C ¢ 0.16088 —0.05763 0.051 62 0.027 44

a8The number of terms in the symmetry function that is generated from the tableau
shown. (See text.)

b These tableau symbols exclude the core orbitals.

¢In this case all of the terms in a symmetry function have the same sign as well as
magnitude for the coefficient.

on benzene[60] focused more on interpretation of the standard tableaux function
representation of the wave functions. Thus, the present discussion now differs from
that earlier in some respects.

15.1 STO3G calculation

The Weyl dimension formula (Eg. (5.115)) tells us that six electrons in six orbitals
in a singlet state yield 175 basis functions. These may be combined irt&;22
symmetry functions. Table 15.1 shows the important HLSP functions#eoaly
calculation of benzene for the SCF optimum geometry in the same basis: The
orbitals are all treated in the “core”, as described in Chapter 9, and #iectrons

are subjected to its SEP. We discuss the nature of this potential farther in the next
section. The functions numbered in the first row of Table 15.1 have the following
characteristics.

1. The two functionsf this type are the classical Kelastructures fobenzene. One might
expect the coefficient to be larger, but we will see below why it is not.
. These three functions are the classical Dewar structures.
3. The third set of functions, 12 in number, are all of the possible singly ionized structures
where the charges are adjacent, and there are no long bonds.
4. The fourth set of functions are all of the doubly charged structures with-taed —
charges adjacent and no long bonds.

N

When there is a relatively high degree of symmetry as in benzene, the interpreta-
tion of the parts of the wave function must be carried out with some care. This arises
from an apparent enhancement of the magnitude of the coefficient of a structure in
the wave function when whole symmetry functions are used. Let us consider the
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Kekulé structures and denote themHKyandK,. As discussed in Chapter 5, when
these HLSP functions are projected from the appropriate prodyzbdbitals

Kl = 9/7)/\/7)/)1,
K2 = Q/PNP,OZ,

they are not normalized to 1. The “raw™22 overlap matrix is

2.246 3649
0.7995155 22463649|°

and, hence, the true overlap between a normalikedndK is 0.355 915 2. Thus,
if we consider the’“Alg symmetryfunction involving K; and K5, we obtain in its
normalized form

1 A1y = 0.607 251 7K1 + K3),

and, if the wave function is written in terms of this symmetry function, its co-
efficient would be 0.264 931 3 instead of the number listed in Table 15.1 for the
individual Kekulé structures. In these terms, the Kekulé structures appear to have a
larger coefficient. A similar analysis for the Dewar structures leads to an apparent
enhancement of the coefficient magnitude-©.133 825 9.

The apparent enhancement we are discussing here is more pronounced, in gen-
eral, the greater the number of terms in the symmetry function. We now consider
the third sort of function from Table 15.1. These are the 12 short-bond singly ionic
functions, and in this case the enhancement of the coefficient is a factor of 5.0685,
i.e., the reciprocal of the normalization constant for the symmetry function that is
the sum of the individually normalized HLSP functions. The resulting coefficient
would then be 0.261 637, a number essentially the same as the coefficient of the
Kekulé symmetry function.

Are the Kekulé functions and the short-bond singly ionic functions really of
nearly equal importance in the wave function? This appears to be the only possible
conclusion and may be rationalized as follows. We have seen that the covalent-only
structures provide for a considerable electron correlation, lowering their potential
energies, but constrain the space available to the electrons, thereby raising their
kinetic energies. lonic structures allow delocalization that lowers the kinetic energy
while not raising the potential energy enough to prevent an overall decrease in
energy. When there are six bonds to be delocalized we expect the effect in the singly
ionic structures to be roughly six times that for only one bond. Those we discuss
are the adjacent only ionic structures and are expected to be the most important.

We also observe that the diagonal element of the Hamiltonian for a single Dewar
structure is about 1.8 eV higher than a diagonal element of a single Kekulé structure.
This is a very reasonable number for the difference in energies between a long and
a short bond. The short-bond singly ionic structures have a diagonal element of the
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Hamiltonian that is about 8.6 eV above the single Kekst¥ucture. This number
is not exactly comparable to the ionic structures in discussed in Chapter 2.
Consider the two ionic structures,

- +

a a
f b* ¢ b~
e| C e| C
d d
Il |2

which are two of the 12 short-bond adjacent singly ionic structures in benzene. The
2 x 2 secular equation corresponding to these two functions is

8.562 — E

—1.442— 0.0995 8562— E| 0

where we have converted the energies to electron volts and have reset the zero to the
energy of the single KekalétructureK ;. The lower root of this equationis 6.476 eV,
which is~2 eV lower than the energy df alone. We should compare this with

the corresponding value forzHobtained with methods of Section 2.4, wherein
5.82 eV is obtained. Thus the effect on the diagonal energy of forming the ionic
structure pair is in the same direction for the two systems, but much larger in the
more compact bl

15.1.1 SCVB treatment of system

We have so far emphasized the nature of the wave function. We now examine the
energies of some differentarrangements of the bases. In Table 15.2 we show energies
for five levels of calculation, Keketonly, Keku€ plus Dewar, SCF, SCVB, and

full = structures, where energies are given as the excess energy due ®yttem

over that from the core. Coopet al[61] gave the SCVB treatment of benzene.

We note first that the covalent-only calculations give a higher energy than the
SCF wave function. We noted this effect with the allyl radical in Chapter 10, and it
happens again here with benzene. This is again a manifestation of the delocalization
provided by ionic structures in the wave function and the concomitant decrease in
the kinetic energy of the electrons. Since this phenomenon does not occur in cases
where resonance is absent, we expect it to be greater where there are possibilities
for greater numbers of more or less equivalent resonance structures.

There is only one equivalent orbital in a highly symmetrisystem like that in
benzene. This is shown as an altitude plot in Fig. 15.1. We see that each orbital is
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Table 15.2Comparison of different calculations
of therr system of benzene. All energies
are in hartrees.

E — Ecore®
K1 —6.71144
K1 & K —6.75553
Full cov. —6.76079
SCF —6.83410
SCVB —6.904 88
Full = —6.91187

a Ecore = _222.142 48.

Orbital amplitude

0.4
0.3
0.2
0.1
0.0
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Figure 15.1. Altitude plot of the SCVB orbital for the system of benzene. There are six
symmetrically equivalent versions of this around the ring. The amplitude is given in a plane
0.5 Ain the positivez-direction from the plane of the nuclei.

predominantly a single 2 with smaller “satellites” in the ortho positions, essen-

tially nothing at the meta positions, and a negative contribution at the para position.
The coefficients in the two covalent-only wave functiodgpure 2p,) and

W (SCVB 2p,) are not very different:

W (pure 2p,) = 0.402 88K + Kp) — 0.150260; + D; + Dg),
W(SCVB 2p,) = 0.40353K; + K3) — 0.122030; + D; + D).

We may, however, examine the<2 Kekulé-only matrices for these two cases. For
the pure 2, orbitals we have, in hartrees, the secular equation

—6.71144— E

—2.44849— 0.3559EF —6.71144— E| 0.
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Table 15.3Lowering of the energy from resonant
mixing for pure and SCVBp, orbitals.

Pure eV SCVB eV
K —only —-1.199 -0.870
K+ D —-1.343 -0.878

Table 15.4Comparison of some one- and
two-electron matrix elements for pure and SCVB
2p, orbitals. All energies are in hartrees.

Pure SCVB
T2 1.2299 1.0891
vb —2.9613 —2.8750
[11)11]F 0.5795 0.5125
[11|22]d 0.3242 0.3352

a Kinetic energy.

b Nuclear and core potential energy.
¢ Orbital self-repulsion energy.

d Adjacent orbital repulsion energy.

and for the SCVB orbitals,

—6.87256— E B
—4.61657— 0.6640(E —6.87256— E|

We see that thé&;—K; diagonal element for the SCVB orbitals is already about
4.4 eV below that for the pured orbitals. This is the most immediate explanation
for the lower energy of the SCVB result. In fact, this is the larger effect. As seenin
Eq. (14.2), the amount of energy lowering ink2 systems like these is

Hi> — SioHni
1+S2
In this case we have 1.20 eV and 0.87 eV for the pupe &d SCVB orbitals,
respectively, and the resonance appears somewhat more beneficial for the localized
orbital. These results are included in Table 15.3.

We may obtain more information from a comparison of some of the one-
and two-electron integrals for the individual orbitals. The values are shown in
Table 15.4. It is seen that the changes in the potential energy terms nearly cancel
with the repulsive self-energy and the nuclear and core potential energies chang-
ing in opposite directions. The change in the adjacent repulsion energy is also not

0.
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Table 15.5Comparison of different calculations
of therr system of linear 1,3,5-hexatriene. All
energies are in hartrees.

E- E?ore
Ky —6.12974
Full cov. —6.13378
SCF —6.164 40
SCVvB —6.25149
Full —6.25241

a Ecore == —22391056.

large. There remains only the kinetic energy term, for which the difference is nearly
3.8 eV, with the SCVB orbital lower. This is easily interpreted to be the result of
the delocalization in that orbital, and it thus makes the same sort of contribution
as do ionic structures in MCVB wave functions. The values ofritedectron ma-

trix elements are the result of an interplay of considerable complexity among the
simpler one- and two-electron matrix elements, and it is not really possible to say
much more about the effects of these latter quantities upon the total energies.

We show another aspect of these numbers in Table 15.3, where we detail the
effects of resonance between the two Kekulé structures and among all of the co-
valent structures for the two sorts op2orbitals. The results suggest that within
one structure the SCVB orbitals duplicate, to some extent, the effect of multiple
structures, and the configurational mixing produces less energy lowering with them.

Those familiar with the long history of the attacks on the question of the resonance
energy of benzene may be somewhat surprised at the small numbers in Table 15.3.
The energy differences that are given there are for just the sort of process that might
be expected to yield a theoretical value for the resonance energy, but experimental
determinations yield numbersinthe range 1.7-2.3 eV. This is an important question,
which we will take up in Section 15.3, where it will turn out that some subtleties
must be dealt with.

15.1.2 Comparison with linear 1,3,5-hexatriene

In order to put the structure of benzene into better perspective, we give a similar
calculation of 1,3,5-hexatriene for comparison. Table 15.5 shows the energies for
a set of calculations parallel to those in Table 15.2 for benzene. The most obvious
difference is the smaller total spread in the energies, about 3.3 eV rather than the
5.5 eV for benzene, and the SCVB energy is closer to thezftlan in benzene.
Standard arguments say that there is only a rather small amount of resonance
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Orbital amplitude
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Figure 15.2. Altitude plot of the first SCVB orbital for the system of 1,3,5-hexatriene.
There are two symmetrically equivalent versions of this at each end of the molecule. The
amplitude is given in a plane 0.5 i the positivez-direction from the plane of theuclei.
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Figure 15.3. Altitude plot of the second SCVB orbital for theystem of 1,3,5-hexatriene.
There are two symmetrically equivalent versions of this at each end of the molecule. The
amplitude is given in a plane 0.5 i the positivez-direction from the plane of the nuclei.

in linear hexatriene, since only the one Kekudfructure has only short bonds,
nevertheless, the SCF energy is lower than the full covalent energy.

There are three inequivalent SCVB orbitals for hexatriene, and these are givenin
Figs. 15.2, 15.3, and 15.4. The first of these shows a principal peak at thepfirst 2
orbital and a small satellite at the adjacent position. The second is more interesting
with the principal peak at the second C atom, but showing a larger satellite at
position 1 than at position 3. This is consistent with having essentially a double bond
between atoms 1 and 2 or 5 and 6, with single bonds between 2 and 3 and 4 and 5.
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Table 15.6Comparison of different calculations of
the system of benzene with a 6-31k&sis.
All energies are in hartrees.

E - Ecorea
SCF —6.416 20
Full valencer —6.464 30
SCVB —6.47944
Full valencer + S° —6.496 50

a Ecore - _224275 51.
b Single excitation.

Orbital amplitude
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Figure 15.4. Altitude plot of the third SCVB orbital for thesystem of 1,3,5-hexatriene.
There are two symmetrically equivalent versions of this at each end of the molecule. The
amplitude is given in a plane 0.5 i the positivez-direction from the plane of the nuclei.

The third orbital has a similar interpretation with a larger satellite at position 4
than at position 2.

The overall conclusion is that there is considerably less resonance in hexatriene
than in benzene, and the bond lengths and types alternate along the chain unlike
the equivalence in benzene.

15.2 The 6-31G basis

The SCF, SCVB, full valence, and full valencer + S results of using a 6-31G

basis on benzene are given in Table 15.6. The geometry used is that of the minimum
SCF energy of the basis. In this case the SCVB energy is lower by 0.4 eV than the
full valencerr energy. This is principally due to thel®olarization orbitals present

in the SCVB orbital, but absent in the valence calculation. The SCVB orbital is
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Table 15.7The centroids of charge implied by the
second moment of the charge distribution of the nuclear
ando framework. The C and H nuclear positions are
those of the 6-31GSCF equilibrium geometry.

Charge Radial distance JA
ct6 1.3862

5| 1.8730
H+1 2.4618

quantitatively so close to that from STO3G orbitals shown in Fig. 15.1 that the
eye cannot detect any difference, and we do not draw a 6-¥&ion of the
orbital.

The SEP is used again to represent the core, and the following analysis may be
made to get a crude picture of its nature. The second moment ofxfie yy)
charge distribution of the core is 0.481 10 bohit each apex of the hexagon
there is a C nucleus and an H nucleus farther out. There are also five electrons per
apex contributed by the system. The (quadratic) centroid of this charge may be
calculated from the second moment, and is shown in Table 15.7. The overlap and
kinetic energy one-electron matrix elements of théOs are unaffected by the
SEP. In addition, our centroid picture does not include any of the exchange effects
present The main point is that arguments using a nuclear charge effeet ¢ér
eachr AO may be too simplistic for many purposes.

We saw in Chapter 14 that a ring of six H atoms does not want to be in a regular
hexagonal geometry at the minimum energy. A question concerning benzene arises
then: Is benzene a regular hexagon because of or in spite of the resonance in the
7 system? The previous calculations have all been done with the regular hexagon
geometry forced on the molecule. We now relax that constraint to test the sta-
bility of the ring against distortion into an alternating bond length geometry. In
Table 15.8 we show the values and first and second derivatives of the SCF,
core, valence, and total energies with respect to two distortion directions in the
molecule. The first direction we calhiy” is a symmetric breathing motion involv-
ing the change in length of only the C—C bonds. (The C—H bonds are unchanged.)
The second we calldy,”, and it involves an alternating increase and decrease in
the lengths of the C—C bonds around the riige§—C—C, C—C—H angles, and
C—H distances are not changed.)

1 These are not expected to be very large in a system like benzene where there is a natural symmetry-based
orthogonality between the ando systems.
2 These group species symbols correspond to the symmetry of vibrational normal modes of the same sort.
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Table 15.8Energies and derivatives of energies relating to the stability
of the regular hexagonal structure of benzene.

SCF Core i Total
Energy —230.69171 —224.27551 —6.49650 —230.77202
AE/3(AR)P ayg —0.0138 —2.0506 1.9811 —0.0695
b, 0.0 0.0 0.0 0.0
92E/d(AR)*® & 3.4927 5.2878 —-1.8782 3.4096
b,y 5.5137 16.7429 -10.5174 6.2255
2 Hartrees.

b Hartrees/bohrA R is the change in the C—C distance in the ring in all cases.
¢ Hartrees/boHr.

At first glance the numbers in Table 15.8 suggest that the answer to the question
in the last paragraph is the “in spite of” alternative. The last row of the table shows
that theb,, distortion has a stable minimum in the core but a maximum intthe
energy. The values are such that the total has a stable minimum. The calculations
thus correctly predict that there is no force tending to distort the regular hexagon
at the point represented by the regular geometry.

Nevertheless, there is a difficulty with the interpretation in the last paragraph.
There has developed over the years a considerable literature on this question, with
many opinions on both sides. Shattal. have written articles on this subject[62, 63].
Such a situation frequently indicates the existence of ambiguities in the definition,
and that certainly applies to this case. We may describe the situation according to
our current terms.

As stated above, we have used the SEP to obtain separate energies for the
o core and ther system. Conventionally, this consists of attributing the whole of
the nuclear repulsion energy to the core. We called attention, however, to the nature
of the energy surface for six H atoms in a ring (see Chapter 14), which, unlike
the benzener system in our treatment, does have nuclear repulsion included.
It might be expected that we would need to make some sort of partitioning of
the nuclear repulsion energy to make the H atom andrtgstems comparable.

One way to do this would be to imagine the effect of one unit charge from the C
nuclei being subtracted from the core energy and added toé&mergy. None of the
totals is affected, of course. The result for the repulsion energy fgelsoharges

at the positions of the C atoms is 4.185 55 hartrees, but more important for our pur-
poses is that the second derivative is 0.8067 hartrees/loterms of the sama R
coordinate used in Table 15.8. It is seen that it would take the switch of many more
charges fromthe core to thesystem than are actually presentto reverse its tendency
to distort the regular hexagon. Thus, we need not revise the earlier conclusion.



208 15 Aromatic compounds

Table 15.9Energies and derivatives of energies relating
to the stability of the square geometry of cyclobutadiene.

Core b4 Total
Energy —150.52261 —3.08046  —153.60307
AE/d(AR)P by 0.0 0.0 0.0
32E/d(AR)%® b,y 5.9223 —6.9506 —0.7283

a Hartrees.
b Hartrees/bohr.
¢ Hartrees/bok.

The size of the ring is seen to be a compromise between attraction due to the
7 system and repulsion due to the core. Again, the sizes of the second derivatives
add to give a stable minimum. If we assume that the system behaves harmonically,
the derivatives in the last column imply that the ring C—C bond distances are about
0.0204 bohr (0.0108 PMonger than the value used for the first row of the table,
which are the SCF minimum distances.

15.2.1 Comparison with cyclobutadiene

Itis illuminating to compare the behavior of benz&npon theb,, type of distortion
with a similar calculation in cyclobutadiene. We do not repeat all of the calculations
ofthe last section, butdoinclude the resultsin Table 15.9, where we give the energies
and the derivatives for thie,, distortion from the geometry of a square. It will be
recalled from Chapter 14 that the energy surface for the ring of four H atoms has
a higher peak at the square geometry than the six-atom ring does at the regular
hexagon. The same situation applies here. The second derivative forsistem
is larger in magnitude than the core derivative, making the square an unstable
structure for GH,4. Thus we predict that cyclobutadiene in a singlet state has no
tendency to form a molecule with equal ring bond lengths as happens in benzene.
In these discussions of benzene and cyclobutadiene we have compared MCVB
level calculations of ther system with SCF level calculations of the core. We do
not expect that using correlated wave functions for core energies would change the
results enough to give a different qualitative picture.

15.3 The resonance energy of benzene

Once Keku€ had deduced the correct structure of benzene, chemists soon realized
that the double bonds in it were considerably more stable than isolated double

3 The same species symbol can serv®if symmetry.
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bonds in aliphatic hydrocarbons. The principal evidence is that reaction conditions
leading toadditionto an aliphatic double bond with the removal of the multiple
bond do not normally affect benzene, and more vigorous conditions cause an at-
tack that removes a ring H atom and leaves the double bonds unchanged. The
conclusion was that the “conjugated” ring double bonds possess an added stability
due to their environment. It remained for quantum mechanics to explain this ef-
fect in terms of what has come to be called “resonance” among a number of bond
structures.

Experimental approaches to determining the resonance energy (called stabiliza-
tion energy by some) have involved comparing thermodynamic measurements of
benzene with those of three cyclohexenes. Heats of combustion and heats of hy-
drogenation have been used. Most feel the hydrogenation method to be superior,
since itis expected to involve smaller differencing errors in the determination. The
energies and processes are

CGHG + 3H2 — CGle; AH = —2.13eV,
CeHio+ H2 — CeHio AH = —1.23eV.

The difference’, —1.54 eV, corresponds to the lower energy the three double bonds
in benzene have than if they were isolated. This is not much larger than the “pure
2p,” entry in the second row of Table 15.4. It was pointed out by Mulliken and
Parr[64], however, that this precise comparison is not what should be done.
The number in the table from our calculation does not involve any change in the
bond lengths whereas the experiment certainly does. Changes in energy due to bond
length change come from both thebonds and the core.

It is possible to make a successful comparison of theory with experiment for the
resonance energy modified according to the Mulliken and Parr prescription[60],
but there are still many assumptions that must be made that have uncertain con-
sequences. A better approach is to attempt calculations that match more closely
what experiment gives directly. This still requires making calculations on what is a
nonexistent molecule, but the unreality pertains only to geometry, not to restricted
wave functions.

Following these ideas, Table 15.10 shows results of 6:38R&ulations of the
7 system of normal benzene and benzene distorted to have alternating bond lengths
matching standard double and single bonds, which we will call cyclohexatriene.

The cyclohexatriene molecule has a wave function considerably modified from
that of benzene. The first few terms are shown in Table 15.11, where the two

4 Mostworkers change the sign of this to make it positive, but logically an energy corresponding to greater stability
should be negative.
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Table 15.10Calculations ofr energies for normal
and distorted benzene.

SCF MCVB
Benzene —6.416 20 —6.496 50
Cyclohexatriene —6.36307 —6.4429%
AEeV —1.446 —1.458

aThis gives 3211 tableaux functions formed into 280
symmetry functions.

b This gives 3235 tableaux functions formed into 545
symmetry functions.

Table 15.11The first terms in the MCVB wave function for cyclohexatriene.

1 2 3 4
Num. 1 6 1 3
2Ppa 2pp 2Pa 2pa 2P 2pc 2pc 2pg
HLSP [ZDC Zpd:| [ch Zpd} [Zpd 2pe} |:2pb Zpe]
2pe  2pr lg 2pe  2ps g 2pa 2pf g 2pa 2pf g
Ci 0.275450 0.08238 0.05311 —0.04078

“Kekule” structures have quite different coefficients. We interpret the terms as
follows.

1. This is the standard KelaiBtructure with ther bonds principally at the short distance.

2. The second group of functions, six in number, are adjacent single ionic structures corre-
sponding to bonds in the position marked in function 1.

3. Function 3 is the other Kekailstructure. Its importance in the wave function is low,
indicating littler bonding at the long positions.

4. The fourth group consists of the three “Dewar” structures and is also relatively unim-
portant.

When we look at the energies from Table 15.10, perhaps the most striking fact
is that the correlation energy in thesystem makes so little difference in thee
values. As we indicated above, the experimental value for the resonance energy
from heats of hydrogenation is1.54 eV, in quite satisfactory agreement with the
result in Table 15.10. The fact that our value is a little lower than the experimental
one may be attributed to the small amount of residual resonance remaining in the
cyclohexatriene, whereas the isolated double bonds in the experiment are truly
isolated in separate molecufes.

5 There is still interest in the resonance energy of benzene. Beckhalf§5] have synthesized a molecule with
a strained benzene ring in it and measured heats of hydrogenation. This is an experimental attempt to assay what
we did theoretically. They found similar results.
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Table 15.12Core,7 SCF, andr MCVB energies for various calculations
of naphthalene. An STO3G basis is used, and all energies are in hartrees.

Energy Num. symm. funcs.
Core —366.09370
SCFn —14.39873
“Kekule” VB —14.22175 1
Covalent MCVB —14.27712 16
Covalent+ single- MCVB —14.47632 334
ionic
Covalent+ single- MCVB —14.52433 1948
and double-ionic
Full = MCVB —14.52993 4936

15.4 Naphthalene with an STO3G basis

We now consider naphthalene, which possesses 42 covalent Rumer diagrams. Many
of these, however, will have long bonds between the two rings and are probably
not very important. To the author’s knowledge no systemaliénitio study has

been made of this question. The molecule bassymmetry, and these 42 covalent
functions are combined into only @, symmetry functions.

As with benzene we study only the system using the SEP to account for the
presence of the orbitals. It is not the purpose of this book to compare MCVB
with molecular orbital configuration interaction (MOCI) results, but we do it in this
case.

15.4.1 MCVB treatment

We first give the MCVB results in Table 15.12, which shows energies for se-
veral levels of calculations with an STO3G basis. A fullcalculation for naph-
thalene consists of 19404 singlet tableau functions, which may be combined
into 49361A, symmetry functions. The covalent plus single ionic calculation
involves 1302 singlet tableau functions, which may be combined into 334 sym-
metry functions, and the covalent, single-, and double-ionic treatment produces
7602 singlet tableau functions, which may be combined into 1948 symmetry
functions.

The results in Table 15.12 show again that the SCF function has a lower energy
than the covalent-only VB. Although a thorough study has notbeen made, it appears
that this difference increases with the size of the system. Certainly, the decrease in
energy upon adding the single-ionic structures to the basis is greater here than in
benzene<4.1 eV for benzene versus 5.42 eV for naphthalene. Again we see the
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Table 15.13Energies for MOClr-only calculations of
naphthalene for different levels of excitation.

Energy Num. symm. funcs.

Core —366.09370

SCF —14.39873 1
Single —14.39873 7
Double —14.512 40 98
Triple —14.51483 522
Quadruple —14.52882 1694
Full —14.52993 4936

importance of delocalization in the wave function. The full delocalization energy
provided by including all ionic structures is 6.88 eV compared with 4.11 eV for
benzene (see Table 15.2). The ratio here is 1.67, remarkably close to the ratio of the
numbers of electrons in the twosystems. In contrast, the delocalization energy in
1,3,5-hexatriene is only 3.23 eV (see Table 15.5) and delocalization is less effective
in that molecule.

The addition of the doubly ionic structures to the MCVB wave function produces
an energy only 0.15 eV above the full calculation and, therefore, has produced just
about all the necessary delocalization.

15.4.2 The MOCI treatment

In this case the wave function consists of the Hartree—Fock function with added
configurations involving “excitations” of electrons from the occupied to the vir-
tual orbitals. With ten electrons we could have excitations as high as ten-fold,
but we do not explicitly work out those between four-fold and the full calcula-
tion, which is, of course, the same as the full one from the MCVB. The results
are shown in Table 15.13. The first thing we notice is the correct result that sin-
gle excitations do not contribute to the Cl enefgyerhaps the next most note-
worthy aspect is that the fifth through tenth excitations contribute very little to
the energy lowering. Indeed, the double excitations contribute the biggest part by
themselves.

The delocalization is, of course, not a problem for MOCI calculations, but the
electron correlation is. The numbers show that the double excitations produce a con-
siderable portion of the correlation energy possible with this basis, while including
excitations up through quadruple produces essentially all.

6 This is a consequence of Brillouin’s theorem.
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15.4.3 Conclusions

In the introduction we pointed out that calculations in chemistry and physics fre-
quently start from an “ideal” model and proceed to improvements. This procedure
is clear in the following two cases.

MCVB The principal function is completely open-shell, in that itinvolves no electron paired

in a single orbital. As ionic functions are added to the wave function, these, in many but not
all cases, involve electrons paired in a single orbital and begin to contribute a closed-shell
nature to the description of the system. (These ionic structures also cause delocalization, as
we have seen.)

MOCI The principal function here is completely closed-shell and the added configurations
serve to decrease this characteristic. Since the electrons become correlated under these
circumstances, the delocalization is necessarily reduced.

How these two characteristics balance out depends upon the system. Neverthe-
less, since the MCVB “ideal” is the separated atom state, it gives a description of
molecule formation that pictures molecules with more-or-less intact atoms in them.
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Interaction of molecular fragments

In previous chapters we have repeatedly emphasized that the principal difficulty
in calculating the dissociation energy of a bond is the correct treatment of the
change in electron correlation as the bond distance changes. This observation also
applies to reactions where bonds are both formed and broken. In many important
cases, however, the particular atom—atom distances that change significantly during
a reaction are relatively few in number, and a method for accurately treating the
correlation in only those “bonds” would have a clear advantage in efficiency. The
MCVB method provides a method for targeting certain bonds to treat the correlation
in them as well as possible. We call this procedargeted correlation, and in this
chapter we give examples using it. The SCVB method could also be used in this
context.

In our previous work we have used SCF solutions of the atoms as the ingredients
of then-electron VB basis functions. With targeted correlation we go one step up
and use SCF solutions of molecular fragments as the ingredients. As the name
implies, this must be tailored to the specific example and must be done with a
careful eye to the basic chemistry and physics of the situation at hand.

16.1 Methylene, ethylene, and cyclopropane

In this section we consider some molecules that can be viewed as consisting of
methylene radicals in some combination. Earlier publications[39, 66] have covered
some of the aspects of the subjects covered here. These earlier studies used an
STO3G minimal basis, and provide information to make comparisons of results
with the 6-31@G results that are presented here. We will describe the minimal basis
results more completely in a later section. Here, however, we make one comment
concerning the way one must handle these different bases. When using minimal
bases with targeted correlation qualitatively reasonable results are obtained, but this
is, in part, due to the less satisfactory representation of the fragments. When we use

214
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alarger basis, the fragment is better described, but the orbitals are not so well condi-
tioned to the molecules that one wishes to construct from them. Therefore, when we
use a 6-31Gbasis it is necessary to allow the open orbitals to breathe as distances
change, as suggested by Hiberty[44]. We will discuss the methylene biradical first.

16.1.1 The methylene biradical

The structure of Chiwas discussed by a completely MCVB treatmentin Chapter 15.
Here we look at it from an ROHF point of view. The structure ofQt#s uncertain

for a number of years, but it is now known that the ground state is triplet with a bent
geometry inC,, symmetry. Conventions dictate that ¢€ble oriented with th€,-
andz-axes coincident and the molecule in e plane. Consequently the ground
state is’By, and the MO configuration is

1a22a?1b23a; 1b.
The first excited state is the singlet configuration
laf2af1bs3a?,

which has' A; symmetry. The SCF energies for these are rather too far apart since
there is more electron correlation in the singlet coupling. We shall be able to interpret
our results for ethylene and cyclopropane in terms of these states of the methylene
biradical.

16.1.2 Ethylene

Our treatments of ethylene are all carried out with two methylene fragments that
have the 422a21b5 parts of both of their configurations doubly occupied in all VB
structures used. The 12 electrons involved can be placed in the core as described in
Chapter 9, which means that there are only four electrons, those for thesGr@
7 bonds, that are in the MCVB treatment. For simplicity we shall rename the other
two methylene orbitals; andsn;, wherei = 1, 2 for the two ends of the molecule.
The Weyl dimension formula tells us that there are 20 linearly independent tableaux
from four electrons distributed in four orbitals. When we g symmetry, how-
ever, only 12 of them are involved in eighA; functions.

As indicated above, the ands; orbitals are not the “raw” orbitals coming out
of the ROHF treatment of methylene, but linear combinations of the occupied and
selected virtual orbitals of that treatment, which provides the breathing adjustment.
Specifically, we use

i = C13y + Cx4a; + c3bay + ¢46a; + c574ay, (16.1)
7 = dh1by + dp2by + da3by, (16.2)



216 16 Interaction of molecular fragments

T T T T T T T T T
14t | A
12F .
A
10 4
s 8f 1
>
=2
2 6r J
[11]
4t A .
2 - -
0
1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

C—C bond length {A)
Figure 16.1. Dissociation curve for the double bond in,€GH,.

and optimize the six independent (each orbital is normalized) parameters at each
C—C distance. This includes all of the virtual orbitals but omits the highest three
a, virtual orbitals. These latter are mostly involved with thedunction of the basis
and will not influence bonding significantly. Figure 16.1 shows the ground and first
excited singlet states of ethylene as a function of the C—C distance. The molecule
is held in a plane and possesdes, symmetry at all distances. The H—C—H
angle, as determined from SCF minimizations, changes by about a degree in this
transformation, but this nicety was not included, the angle being held at the ethylene
value for all distances.

At Rcc = oo, the ground state wave function is particularly simple in terms of
standard tableaux functions,

Wo(R = 00) = [2 ;z] , (16.3)

where we assume the tableau symbol includes its normalization constant. This

is easily interpreted as two triplet systems coupled to singlet. In terms of HLSP
functions the results are not so simple. We have

01 02 02 T

Wo(R = 00) = 0.577 35[

o1 T2

} —0.57735[
T, T2 R

L, (16.4)

since these do not represent the triplet states so easily. In neither case are there any
ionic terms, of course.
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Table 16.1The principal terms in the ground state wave function feg Bt the
energy minimum. The two sorts of tableaux are given.

1 2 3 4
Standard Num. 1 2 2 1
tableaux o1 02 oy O Ty T o1 T
functions Tab. [ﬂl 7'[2] [ﬂl 7'[2] [Ul Ug] [02 7T2:|
Ci(min) 0.536 47 0.148 46 —0.12837 —-0.12477
HLSP Num. 1 2 2 2
functions Tab [Ul 02] [02 02] [ﬂl 711] [Ul Ul]
’ T w2 AR T w2 AR o1 02 1R T2 w2 AR
Ci(min) 0.47351 0.148 46 —0.12837 —0.12106

The first excited state wave function is also more complicatdg-gt= oo. In
terms of standard tableaux functions it is

Wy(R = 00) = 0.912 69["l "1] —0.399 26["1 "1]
02 02 T T2

—0.39926[ 2 "2]+0.08709[”1 ”1] (16.5)
1 T T2

(o}
T
The first term is the combination of twioA; methylenes, and the others provide
some electron correlation in these two structures. Since Eq. (16.5) has only doubly
occupied tableaux, the HLSP functions are the same.

We show the ground state wave functionRyf, in terms of standard tableaux
functions and HLSP functions in Table 16.1. We see that the representation of the
wave function is quite similar in the two different ways. Considering the HLSP
functions first, we note that the principal term represents two electron pair bonds,
oneo and oner. The next two are ionic structures contributing to delocalization,
and the fourth is a nonionic contribution to delocalization.

The standard tableaux function representation is similar. The principal term is
the same as the only term Bt= oo, and together with the fourth term (the other
standard tableau of the constellation) represents the two electron pair bonds of the
double bond. The second and third terms are the same as those in the HLSP function
representation and even have the same coefficients, since there is only one function
of this sort.

When we make a similar analysis of the terms in the wave function for the first ex-
cited state, more ambiguous results are obtained. These are shown in Table 16.2. For
both standard tableaux functions and HLSP functions the principal structure is the
same asthatinthe ground state. Higher terms are of an opposite sign, which provides
the necessary orthogonality, but the character of the wave function is not very clear
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Table 16.2The principal terms in the first excited state wave function
for Rec at the energy minimum. The two sorts of tableaux are given.

1 2 3 4
Standard Num. 1 2 2 1
tableaux Tab [01 o9 ] [7‘[2 7'[2] [01 o1 ] [0’1 o1 ]
functions ’ T T2 o1 02 Ty T2 T T2
Cil 0.71157 0.47812 0.33733 0.21683
HLSP Num. 1 2 2 2
functions Tab [(T]_ (72] [ﬂl ]Tl] [Gl Gl:l [Ul Gl]
" Lm melr Lor o2lr Lm2 modr Lm m2lRr

ct 0.57801 0.47812 0.33733 0.21683

from these terms. We give this example, because we will contrast it with an excited
state wave function of an unambiguous sort when we discuss cyclopropane. There is
one more point that should be discussed before we go on to cyclopropane, however.

The 1a22a21b3 orbitals on one of the two CHragments are not orthogonal to
those on the other Chlbut this does not cause the core valence separation any
problems. It does, however, represent a repulsion: that which is normally expected
between closed-shell systems. In this case the overlap and the repulsion are small.
During the calculations of the core matrix elements a measure of the overlap is
computed. This number is exactly 1.0 if there is zero overlap between the fragment
core orbitals. As more overlap appears the number rises and can be as high as 100.
For ethylene we never press the £flagments close enough together to reach
numbers higher than about 1.02. This is quite small and is the reason we know that
the core repulsion is small in this system.

16.1.3 Cyclopropane with a 6-3Ithasis

We examine the two lowest singlet states of cyclopropane as one of thgrGitps

is pulled away from the other two. Figure 16.2 shows the basic arrangement of the
molecule with the three C atoms in tkey plane. The C atom on the right is on the
y-axis, andR; is its distance to the midpoint of the other two &s.is the distance
between the two Cs that will become part of ethylene @énd the angle out of
planarity. We have labeled the C atoms 1, 2, and 3 to identify the three different
methylenes for designating orbitals.

The wave function is an extension of the one we used for the dissociation of
ethylene. We now have 18 electrons in nine core orbitals, and six electrons in the
threeo and threer orbitals that will make up the C—C bonds. As before, the
valence orbitals are allowed to breathe (see Eqgs. (16.1) and (16.2) for the linear
combinations) as the system changes. According to the Weyl dimension formula
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Figure 16.2. The geometric arrangement of the atoms of cyclopropane during the dissoci-
ation to ethylene and methylene. The system is maintain€gd,igeometry afi;, Ry, and
¢ change.
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Figure 16.3. The two lowestA; states during the dissociation of cyclopropane along the

C,H, relaxed pathThe dashed lines, indicating the diabatic energies, were not computed
but have been added merely to guide the eye.

there are 175 different structures possible, but in this case there are only 173 of
theminvolved in 92 A; (C»,) symmetry functions. The core overlap criterion never
becomes larger than 1.021 for these calculations.

In Fig. 16.3 we show the two lowe$; states as a function @?; for optimum
values of theR, and¢ parameters, and in Fig. 16.4 we show the path by giving
R, and¢ as functions ofR;. Qualitatively, the two energy curves have the classic
appearance of aavoided crossindpetween two diabatic states. The dashed lines
in Fig. 16.3 are not computed, but have been added to guide the eye.

Although we have been speaking of our process as the dissociation of cy-
clopropane, it is simpler to discuss it as if proceeding from the other direction.
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Figure 16.4. The variation d®, and¢ during the dissociation of cyclopropane.

Considering the dissociated system, we see that the geometry has relaxed to that
of an ethylene molecule with a methylene radical at some distance. Our treatment
allows methylene to have only two electrons in open shells so it must be in either a
singlet or a triplet state. Since the overall system is in a singlet state, the ethylene
portion must also be either singlet or triplet, respectively, to match. At the same
time ethylene is singlet in its ground state and triplet in its first excited state with

a fairly large excitation energy, while methylene is triplet in its ground state and
singlet in its first excited state with a relatively small excitation energy. These facts
tell us that, at long distances, the lowe; state is a combination of ground state
ethylene and singlet methylene. The Rumer tableau that corresponds to this case is

o1 01
02 03 s
JTp T3 R
where the subscripts identify the particular methylene fragment as given in
Fig. 16.2. There is, of course, another Rumer structure corresponding to this orbital
set. Table 16.3 gives the coefficients in the wave function.

At long distances the first excitéd\; state, on the other hand, is a combination
of triplet ethylene and ground state (triplet) methylene. The important tableaux in
the wave function are shown in Table 16.4, and in this case the principal tableau of
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Table 16.3The leading tableaux for the ground state wave function
of GH, + CH, at infinite separation.

1 2 3 4
Standard Num. 1 1 2 2
tableaux o1 01 T, M1 o1 01 o1 01
functions Tab. |:O'2 O'3:| |:02 03:| |:O'2 02:| |:O'2 7T2:|
T T3 Tp T3 T T3 o3 T3
Ci () 0.529 89 —-0.15611 0.14658 —-0.12841
HLSP Num. 1 2 1 2
functions o1 01 o1 01 T, M1 o1 01
Tab. |:02 03:| |:O'2 0'2:| |:02 03:| |:7'[2 77,’2:|
Tp T3 R T T3 R Tp T3 R 02 03 R
Ci(c)  0.46318 0.14658  -0.13647  —0.12081

Table 16.4The leading tableaux for the first excited state wave function
of C,H, + CH, at infinite separation.

1 2 3 4
Standard Num. 1 1 2 2
tableaux o1 02 o1 03 o3 03 o1 03
functions Tab. |:O’3 ﬂz] |:C72 7T2:| |:(71 ﬂz] |:C72 7T1:|
7T, T3 T, T3 7T, T3 T T3
Ci(c0) 0.41452 0.32577 —0.206 49 0.094@3
HLSP Num. 1 2 1 2
functions o2 03 o2 03 03 03 o3 03
Tab. |:7t1 T :| |:01 7'[1:| |:7'[1 T :| |:01 7'[1:|
o1 T3 R T T3 R o1 T3 R T T3 R
Ci(c0) 0.80148 0.38316 0.24593 0.13359

the state is more easily writtéin terms of standard tableaux functions as

o1 02 02 03
03 T2 | =—|7m2 O1 ],
1 T3 T3 T

where there are, of course, four more standard tableaux that could be written. We
may actually use the tableau shapes to see that this is the correct interpretation of

1 In this book the entries in tables like Table 16.4 are generated semiautomatically from computer printout.
Although this almost completely eliminates the dangers of misprints the computer programs do not always
arrange the tableaux in the most convenient way for the discussion. In this case we use the properties of standard
tableaux functions to make the transformation used.
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Table 16.5The leading tableaux for the ground state wave functionzbfsGt
the equilibrium geometry.

1 2 3 4
Standard Num. 1 1 1 1
tableaux o1 02 o1 03 o1 02 T, T
functions Tab. |:O'3 JT2:| |:O'2 ]T1:| |:O'3 JT1:| |:O’2 0’3:|
Tl T3 T2 T3 T2 T3 T2 T3
Ci(min) 0.13441 0.13092 —-0.12314 0.10256
HLSP Num. 1 1 1 2
function oy 03 o1 O3 T T T3 T3
Tab. |:7T1 7T2:| |:O'3 7T1:| |:02 03:| |:O'1 0'2:|
o1 T3 R Tp T3 R JTp T3 R 1 T2 R
Ci(min) 0.13270 —0.12519 0.086 67 0.08538

the states of the separate pieces of our system. The last tableau given above can
also be written symbolically as

02 03

2 + [Ul},

T3 71
where the two triplet tableaux can fit together to form the earlier singlet shape. We
have not emphasized this sort of combining of tableaux in our earlier work, but it
is particularly useful for systems in asymptotic regions. There are more structures
for this state and set of orbitals than for the lower one, because this set must also
represent a still higher coupling of ethylene and methylene, both'B, astate.
We do not show the energy curve for the state that goes asymptotically to that
coupling.

The wave functions for the ground and first excifed states for the cyclo-

propane equilibrium geometry are shown in Tables 16.5 and 16.6. In the case of

the ground state either the principal standard tableaux function or HLSP function
can be transformed as follows:

o1 02 02 03
03 T2 |=—|m2 O1 |,
7T, T3 T3 1

02 03 02 03

T T2 =|7mm o1

o1 T3 T3 T

R R
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Table 16.6The leading tableaux for the first excited state wave functionsbiC
at the equilibrium geometry.

1 2 3 4
Standard Num. 1 1 1 1
tableaux T M o1 03 o1 03 o1 02
functions Tab. |:02 03:| |:62 7T2:| |:02 7T1:| |:(73 7T1:|
T2 T3 1 T3 T2 T3 T2 T3
Ci(min) 0.20506 —0.18287 0.176 27 —0.16580
HLSP Num. 1 1 1 1
functions oy 03 T, T o1 02 o2 03
Tab. |:7T1 7'[2:| |:02 03:| |:(73 7T1:| |:C71 7'[1:|
o1 T3 R T T3 R T T3 R T T3 R
Ci(min) 0.18233 —0.17396 0.16855 0.16747

The first of these is the same as the transformation above for the first excited
asymptotic wave function. Thus, at the minimgeometry we see that the leading
term in the wave function is the same as that for the first excited stateatd there
has been a cross-over in the character of the wave function for the two geometries.
The leading coefficients are rather small for these functions. This is in part
because the orbital set in terms of which we have expressed the functions is not
the most felicitous. We have usegandr; relating to the local geometry of each
methylene. Alternatively, we can form hybrid orbitals

hi1 = N(oi + mi),
hi2 = N(oi — i),

which, in each case, are directed towards a neighboring methylene. The signs of
the orbitals are such that these combinations yield

hi2 < hyy,
h2o < hay,
h32 < hyy,

as the pairs that overlap most strongly. Table 16.7 shows the HLSP function tableaux
for the ground state in terms of these hybrids. This representation gives little clue
as to the asymptotic state this might be connected with, but does show a rather
conventional picture of cyclopropane as having three electron pair bonds holding
the ring together. There is also the expected mix of covalent and ionic functions.
When we get to the first excited state at the geometry of the energy minimum
(Table 16.6), it is seen that most important tableaux in the wave function in terms
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Table 16.7The leading HLSP functions for the ground state wave function
of C3Hg at the equilibrium geometry when hybrid orbitals are used.

1 2 3 4
Num. 1 6 6 2
haz hig hir hy hir hy hi1 hy
Tab. |:h12 h21:| |:h12 h21:| |:h31 h31:| |:h21 h21:|
hao hai | Lhe hailg Lhiz hay Lha hadg
Ci(min) 0.35455 0.098 99 0.05240 0.046 07

of oj andm; orbitals is not very easily interpreted, although the leading term, in
the case of HLSP functions, is the same as that for the ground state. We do not
give them here, but the first excited state in terms of the hybrid orbitals is likewise
poorly illuminating. We may look at the problem in another way.

As cyclopropane dissociates, we see that the geometry changes happen rather
rapidly over a fairly narrow range as the character of the energy states changes in
the neighborhood oR; = 2.4 A. (See Fig. 16.4.) At asymptotic geometries we
saw that the characters of the wave functions for the first two states are clearcut.
As the one methylene moves, the two pieces in the first excited state, consisting of
two triplet fragments, attract one another more strongly and the potential energy
curve falls, see Fig. 16.3. The ground state, consisting of two singlet fragments
appears repulsive. These two sorts of states would cross if they did not interact.
They, in fact, do interact: there is an avoided crossing, and a barrier appears on the
lower curve. This interaction region is fairly narrow, and, inside the cross-over, the
lower curve continues downward representing the bonding that hojts C
together. Thus, this targeted correlation treatment predicts that there is a 1.244 eV
barrier to the insertion of singlet methylene into ethylene to form cyclopropane.
We do not show it here[39], but triplet methylene and singlet ethylene repel each
other strongly at all distances, and thus should not react unless there should be a
spin cross-over to a singlet state. This occurrence of a barrier due to an avoided
crossing has been invoked many times to explain and rationalize reaction pathways
[67, 69].

16.1.4 Cyclopropane with an STO-3G basis

Some years ago a short description of a more restricted version of the problem in
the last section was published[39]. Using an STO-3G basis, the earlier calculation
examined the two lowestA; energies as a singlet methylene approached an ethy-

lene molecule. In this case, however, the ethylene was not allowed to relax in its
geometry. The curves are shown in Fig. 16.5. The important point is that we see
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Figure 16.5. The two lowestA; states showing the attack of singlet methylene on a rigid

ethylene. These energies were obtained using an STO-3G basis, with which we obtain a
barrier of about 0.8 eV.

the same qualitative behavior in this much more approximate calculation as that
shown in Fig. 16.3, where the results using a larger basis and fuller optimization is
presented.

16.2 Formaldehyde, HCO

When formaldehyde is subjected to suitable optical excitation it dissociatesdinto H
and CO. The process is thought to involve an excitation to the first excited singlet
state followed by internal conversion to a highly excited vibrational state of the
ground singlet state that dissociates according to the equation

H,CO ™ H,CO* — H, + CO.

Conventional counting says that€lO has four bonds in it, and the final product has

the same number arranged differently. Our goal is to follow the bonding arrange-

ment from the initial geometry to the final. This is said to occur onShé&round

state singlet) energy surface, which in full generality depends upon six geometric

parameters. Restricting the surface to planar geometries reduces this number to

five, and keeping the C—O distance fixed reduces it to four. We will examine

different portions of theg, surface for different numbers of geometric coordinates.
Some years ago Vance and the present author[68] made a study of this surface

with the targeted correlation technique using a Dunning dombtebasis[70] that,
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Table 16.80rbitals used and statistics of MCVB calculations on the S
energy surface of formaldehyde. For the 6-318asis the full set of
configurations from the unprimed orbitals was used and
single excitations into the primed set were included.

Orbitals Total Co, Cs
STO3G bhasis H4, 1s,
CO:3, 30, 50, 60, 1, 21 1120 565 1120
6-31G* basis H:%, 1s,, 28], 25
CO:5, 1n, 50/, 27, 27’ 131 70 131

except for the lack of polarization functions, is similar to a 6-31@sis. To keep
consistency with the remainder of this book we redo some of the calculations from
the earlier study with the latter basis, but will mix in some of the earlier results,
which are essentially the same, with the current ones.

We show the results of calculations at the STO3G and 6:3é¢Is of the AO
basis. Table 16.8 shows the orbitals used and the number of functions produced for
each case. These statistics apply to each of the calculations we give.

The important difference between the STO3G and 6-3i#3es is the arrange-
ment of orbitals on the CO fragment. In its ground state CO has an orbital config-
uration of

Core: 3%40%50°11".

The S function is best described as a nonbonding orbital located principally on
the C atom. In Table 16.8 ther2orbital is the virtual orbital from the ground state
RHF treatment. The primed orbitals on H are the same as we have used before,
but those on CO are based upon an ROHR 7* calculation of the first triplet
state. The “raw” b, 50/, 27, and 2’ taken directly from the calculations will

not work, however. Their overlaps are much too large foSanatrix of any size

(>2 or 3) to be considered nonsingular by standard 16-place accuracy calculations.
Therefore, for each high-overlap pair the sum and difference were formed. These
are orthogonal, and do not cause any problems.

16.2.1 The least motion path

We first comment on the so-called least motion path (LMP), in which the two
H atoms move away from the CO atoms, maintaining,a symmetry, as shown
in Fig. 16.6. Earlier calculations of all sorts indicate that this path does not cross
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Figure 16.6. A representation of the LMP for the dissociation ££8.
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Figure 16.7. The true saddle point for the dissociation §€6. This figure is drawn to

scale as accurately as possible.

the lowest saddle point for the reaction. In fact, there is no real saddle point in
geometries constrained to g,. Earlier workers have, however, imposed further
constraints and produced a pseudo saddle point of this sort. This is done because
it illustrates a typical four-electron rearrangement similar to the process discussed
in Chapter 14 for four H atoms. This is classified by Woodward and Hoffman[58]
as a “forbidden” process, which means, of course, that the energy required for it
is relatively high compared to the energy for other geometries that may break the
symmetry giving the orbital crossing. In any event the forces on the nuclei along
restricted paths such as this tend to lead to separation of all three parts of the
molecule rather than the formation of CO angl H

16.2.2 The true saddle point

Calculations using both MCVB and MOCI wave functions predict a very different
geometry at the saddle point for the® dissociation. The molecule is still planar,

but otherwise has no elements of symmetry. We do not describe calculations here
that search out the saddle point, but we do show the nature of the wave function
there, which will make clear why it has the relatively peculiar geometry shown in
Fig. 16.7. This position is such that the tendency of the molecule is to formm a H
molecule. Depending upon the method of calculation the barrier height is estimated
to be 4.05—4.06 eV, approximately the energy of one H—H bond. Theorefically
the exothermicity of the process is very close to 0.0 so the parts separate with at
least the activation energy.

2 The process we are discussing is a so-cafiedesmiceaction. This means that the number of bonds is constant.
It has been argued that calculations of this sort of process using changes in SCF energies are useful because the
correlation energies tend to cancel when taking the difference. See Ref. [71].
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Table 16.9The leading Rumer tableaux for the asymptotic state of formaldehyde,
H, 4+ CO. In this case the standard tableaux functions
are the same for these terms.

1 2 3 4
Num. 1 2 2 2
506 5o 1s, 1sy 50 5o 50 5o
Tab 1oy Lmy 5¢ 5o 1oy 1my 1oy 1my
) Iry 1my 1my  lmy vy 1wy 2wy 2my
1s, 1s, g vy 1my |g 1ss 1sy g 1, 1, g
Ci(inf) 0.70968 0.16856 —0.13408 —0.09804

Table 16.10The leading Rumer tableaux in the wave function for the saddle
point state of formaldehyde dissociation.

1 2 3 4
Num. 1 1 1 1
1y  lmy 1my 1y Imy  lmy oy 1wy
Tab Iny  1my ey 1wy 1ls, 50’ 271)’, 271')’,
) 1ls, 50’ s, 1sy s,  1my 1s, 50’
1ss 27y |, S 27y | 2y 27y | 1s,  1my |
Ci(sad) 1.30647 0.46132 0.40368 0.20990

16.2.3 Wave functions during separation

The wave functions change character, of course, during the dissociation process.
The asymptotic region is the simplest and we start with that. Table 16.9 shows
the most important Rumer tableaux when CO and¢ well separated from one
another.

1. The leading term is clearly the closed sHel; state of CO in combination with the
HLSP function for H.
. These two terms give the closed-shell CO with the ionic termyof H
. These two terms give the closed-shell CO with a breathing term for th@ibitals.
4. The last two terms shown give the electron correlation inthtghell of CO and the
leading HLSP function term of H

w N

The wave function for this geometry is very simple to interpret.
In Table 16.10 we show the principal Rumer tableaux for the wave function at
the saddle point.
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Table 16.11The leading terms in the wave function for the equilibrium geometry

of formaldehyde.
1 2 3 4
Standard Num. 1 2 2 2
tableaux 1my  1my 50/ 5o’ 1my  1my 1my  1my
functions Tab lmy 1my 1my  1my 1my 1my 1ny 1my
ap. 1ss 50’ lmy 1my 27r)/, 2]'[)/, 1y 50’
1s, 2713’, 1s, 2713’, 1, 50’ 2713’, 1sd
Ci(min) 0.296 23 0.178 83 0.136 65 0.119 13
HLSP Num. 1 2 2 2
functions 1my  1my 50’ 5o’ 1my  1my 1my  1my
Tab lmy 1my 1my 1wy 17y 1my lmy 1my
|1y 50 ln, 1m ls, 50’ 2n, 2n)
1, 2m, R 1ls, 2m, R 27y, 1sb r Ll 50’ R
Ci(min) 0.31008 0.178 83 0.159 18 —0.136 65

. The leading term represents a structure \aithelectron pair bond between one H and

the 50’ orbital and another between the other H and th@@daital.

. This term together with the first provides the two Rumer diagrams for the bonding

scheme. That this has such a large coefficient indicates that electron pair bonds are not
near perfect pairing.

. This term involves correlation and polarization on the CO portion o$yiseem with the

electron pair bonds to the Hs still in place.

. The fourth term involves a further rearrangement of the electrons on the CO portion of

the system. In this case one H is now bonded to theidstead of the 2] orbital. These
terms provide correlation, polarization, and also give a combination of both bonding and
antibondingry orbitals so that this sort of bond will disappear and C—H bonds and
O nonbonding orbitals will appear as the molecule forms.

Table 16.11 shows the leading terms in the wave function at the equilibrium

geometry of HCO in both standard tableaux function and HLSP function form.

1.

The first standard tableaux function term is essentially triple¢rhlich elongated, of
course) coupled with thT, state of CO. The HLSP function has the same interpretation.

. The second terms are the same and are an ionic type associated with the first term. These

provide delocalization.

. The third standard tableaux function and fourth HLSP function terms are the same. These

are both ionic and provide antibonding character inytftirection to “remove” that part
of the original triple bond in CO.

. The fourth standard tableaux function term and the third HLSP function term are the

same configuration but not the same function. In both cases, however, the terms involve
breathing for the 1srbitals in the H atoms.
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In summary we see that the barrier to dissociation €8 can be ascribed
to an avoided crossing of the same sort as we described in the dissociation of
cyclopropane. The two fragmentsin triplet couplings bond as they approach and that
state crosses the state where they are separately in singlet states. At the saddle point
position the triplet fragment states still dominate to some extent, but asymptotically
the two fragments are certainly in their respective singlet states.
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