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Preface

One senses that it is out of style these days to write a book in the sciences all on
one’s own. Most works coming out today are edited compilations of others’ articles
collected into chapter-like organization. Perhaps one reason for this is the sheer size
of the scientific literature, and the resulting feelings of incompetence engendered,
although less honorable reasons are conceivable. Nevertheless, I have attempted
this task and submit this book on various aspects of what is calledab initio valence
bond theory. In it I hope to have made a presentation that is useful for bringing
the beginner along as well as presenting material of interest to one who is already
a specialist. I have taught quantum mechanics to many students in my career and
have come to the conclusion that the beginner frequently confuses the intricacies
of mathematical arguments with subtlety. In this book I have not attempted to shy
away from intricate presentations, but haveworked at removing, insofar as possible,
the more subtle ones. One of the ways of doing this is to give good descriptions of
simple problems that can show the motivations we have for proceeding as we do
with more demanding problems.
This is a book on one sort of model or trial wave function that can be used for

molecular calculations of chemical or physical interest. It is in noway a book on the
foundations of quantummechanics – there are many that can be recommended. For
the beginner one can still do little better than the books by Pauling and Wilson[1]
and Eyring, Walter, and Kimbal[2]. A more recent work is by Levine[3], and for
a more “physicsish” presentation the book by Messiah[4] is recommended. These
are a little weak on the practice of group theory for which Cotton[5] may serve. A
more fundamentalwork ongroup theory is byHammermesh[6]. Some further group
theory developments, not to my knowledge in any other book, are in Chapter 5.
Some of what we do with the theory of symmetric groups is based fairly heavily
on a little book by Rutherford[7].
This is a book onab initio valence bond (VB) theory. There is a vast literature

on “valence bond theory” – much of it devoted to semiempirical and qualitative

xiii



xiv Preface

discussions of structure and reactivity of many chemical substances. It is not my
purpose to touch upon any of this except occasionally. Rather, I will restrict myself
principally to the results and interpretation of theab initio version of the theory. It
must be admitted thatab initioVB applications are limited to smaller systems, but
we shall stick to this more limited goal. Within what practitioners callab initioVB
theory there are, in broad terms, two different approaches.

� Calculations inwhich the orbitals used are restricted to being centered on only one atomof
the molecule. They are legitimately called “atomic orbitals”. Treatments of this sort may
havemany configurations involving different orbitals. This approachmay be considered a
direct descendent of the original Heitler–London work, which is discussed in Chapter 2.

� Calculations in which the orbitals range over two or more atomic centers in the molecule.
Although the resulting orbitals are not usually called “molecular orbitals” in this context,
there might be some justification in doing so. Within this group of methods there are
subcategories that will be addressed in the book. Treatments of this sort usually have
relatively few configurations and may be considered descendents of the work of Coulson
and Fisher, which is discussed in Chapter 3.

Each of these two approaches has its enthusiasts and its critics. I have attempted an
even-handed description of them.
At various places in the text there are suggestions for further study to supple-

ment a discussion or to address a question without a currently known answer. The
CRUNCH program package developed by the author and his students is available
on the Web for carrying out these studies.1 This program package was used for all
of the examples in the book with the exception of those in Sections 2.2–2.6.
I wish to thank Jeffrey Mills who read large parts of the manuscript and made

many useful comments with regard to both style and clarity of presentation. Lastly,
I wish to thank all of the students I have had. They did much to contribute to this
subject. As time passes, there is nothing like a group of interested students to keep
one on one’s toes.

Lincoln, Nebraska Gordon A. Gallup
November 2001

1 Seehttp://phy-ggallup.unl.edu/crunch
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Introduction

1.1 History

In physics and chemistry making a direct calculation to determine the structure
or properties of a system is frequently very difficult. Rather, one assumes at the
outset an ideal or asymptotic form and then applies adjustments and corrections to
make the calculation adhere to what is believed to be a more realistic picture of
nature. The practice is no different in molecular structure calculation, but there has
developed, in this field, two different “ideals” and two different approaches that
proceed from them.

The approach used first, historically, and the one this book is about, is called the
valence bond (VB) method today. Heitler and London[8], in their treatment of the
H2 molecule, used a trial wave function that was appropriate for two H atoms at
long distances and proceeded to use it for all distances. The ideal here is called the
“separated atom limit”. The results were qualitatively correct, but did not give a
particularly accurate value for the dissociation energy of the H−H bond. After the
initial work, others made adjustments and corrections that improved the accuracy.
This is discussed fully in Chapter 2. A crucial characteristic of the VB method is
that the orbitals of different atoms must be considered as nonorthogonal.

The other approach, proposed slightly later by Hund[9] and further developed
by Mulliken[10] is usually called the molecular orbital (MO) method. Basically,
it views a molecule, particularly a diatomic molecule, in terms of its “united atom
limit”. That is, H2 is a He atom (not a real one with neutrons in the nucleus) in which
the two positive charges are moved from coinciding to the correct distance for the
molecule.1 HF could be viewed as a Ne atom with one proton moved from the
nucleus out to the molecular distance, etc. As in the VB case, further adjustments
and corrections may be applied to improve accuracy. Although the united atom limit
is not often mentioned in work today, its heritage exists in that MOs are universally

1 Although this is impossible to do in practice, we can certainly calculate the process on paper.
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4 1 Introduction

considered to be mutually orthogonal. We touch only occasionally upon MO theory
in this book.

As formulated by Heitler and London, the original VB method, which was easily
extendible to other diatomic molecules, supposed that the atoms making up the
molecule were in (high-spin)Sstates. Heitler and Rumer later extended the theory
to polyatomic molecules, but the atomicS state restriction was still, with a few
exceptions, imposed. It is in this latter work that the famous Rumer[11] diagrams
were introduced. Chemists continue to be intrigued with the possibility of correlat-
ing the Rumer diagrams with bonding structures, such as the familiar Kekul´e and
Dewar bonding pictures for benzene.

Slater and Pauling introduced the idea of using whole atomic configurations
rather thanS states, although, for carbon, the difference is rather subtle. This, in
turn, led to the introduction of hybridization and the maximum overlap criterion
for bond formation[1].

Serber[12] and Van Vleck and Sherman[13] continued the analysis and intro-
duced symmetric group arguments to aid in dealing with spin. About the same time
the Japanese school involving Yamanouchi and Kotani[14] published analyses of
the problem using symmetric group methods.

All of the foregoingworkwasof necessity fairly qualitative, andonly the smallest
of molecular systems could be handled. After WWII digital computers became
available, and it was possible to test many of the qualitative ideas quantitatively.

In 1949 Coulson and Fisher[15] introduced the idea of nonlocalized orbitals to
the VB world. Since that time, suggested schemes have proliferated, all with some
connection to the original VB idea. As these ideas developed, the importance of
the spin degeneracy problem emerged, and VB methods frequently were described
and implemented in this context. We discuss this more fully later.

As this is being written at the beginning of the twenty-first century, even small
computers have developed to the point whereab initioVB calculations that required
“supercomputers” earlier can be carried out in a few minutes or at most a few hours.
The development of parallel “supercomputers”, made up of many inexpensive per-
sonal computer units is only one of the developments that may allow one to carry
out ever more extensiveab initioVB calculations to look at and interpret molecular
structure and reactivity from that unique viewpoint.

1.2 Mathematical background

Data on individual atomic systems provided most of the clues physicists used
for constructing quantum mechanics. The high spherical symmetry in these cases
allows significant simplifications that were of considerable usefulness during times
when procedural uncertainties were explored and debated. When the time came
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to examine the implications of quantum mechanics for molecular structure, it was
immediately clear that the lower symmetry, even in diatomic molecules, causes
significantly greater difficulties than those for atoms, and nonlinear polyatomic
molecules are considerably more difficult still. The mathematical reasons for this
arewell understood, but it is beyond the scopeof this book to pursue thesequestions.
The interested reader may investigate many of the standard works detailing the
properties of Lie groups and their applications to physics. There are many useful
analytic tools this theory provides for aiding in the solution of partial differential
equations, which is the basic mathematical problem we have before us.

1.2.1 Schrödinger’s equation

Schrödinger’s space equation, which is the starting point of most discussions of
molecular structure, is the partial differential equation mentioned above that we
must deal with. Again, it is beyond the scope of this book to give even a review of
the foundations of quantum mechanics, therefore, we assume Schrödinger’s space
equation as our starting point. Insofar as we ignore relativistic effects, it describes
the energies and interactions that predominate in determining molecular structure.
It describes in quantum mechanical terms the kinetic and potential energies of the
particles, how they influence the wave function, and how that wave function, in
turn, affects the energies. We take up the potential energy term first.

Coulomb’s law

Molecules consist of electrons and nuclei; the principal difference between a
molecule and an atom is that the latter has only one particle of the nuclear sort.
Classical potential theory,which in this caseworks forquantummechanics, says that
Coulomb’s law operates between charged particles. This asserts that the potential
energy of a pair of spherical, charged objects is

V(|�r1 − �r2|) = q1q2

|�r1 − �r2| = q1q2

r12
, (1.1)

whereq1 andq2 are the charges on the two particles, andr12 is the scalar distance
between them.

Units

A short digression on units is perhaps appropriate here. We shall use either Gaussian
units in this book or, much more frequently, Hartree’s atomic units. Gaussian units,
as far as we are concerned, are identical with the old cgs system of units with the
added proviso that charges are measured in unnamedelectrostatic units, esu. The
value of|e| is thus 4.803206808× 10−10 esu. Keeping this number at hand is all
that will be required to use Gaussian units in this book.
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Hartree’s atomic units are usually all we will need. These are obtained by as-
signing mass, length, and time units so that the mass of the electron,me = 1, the
electronic charge,|e| = 1, and Planck’s constant, ¯h = 1. An upshot of this is that the
Bohr radius is also 1. If one needs to compare energies that are calculated in atomic
units (hartrees) with measured quantities it is convenient to know that 1 hartree is
27.211396 eV, 6.27508× 105 cal/mole, or 2.6254935× 106 joule/mole. The reader
should be cautioned that one of the most common pitfalls of using atomic units is
to forget that the charge on the electron is−1. Since equations written in atomic
units have nomes,es, orh̄s in them explicitly, their being all equal to 1, it is easy
to lose track of the signs of terms involving the electronic charge. For the moment,
however, we continue discussing the potential energy expression in Gaussian units.

The full potential energy

One of the remarkable features of Coulomb’s law when applied to nuclei and
electrons is its additivity. The potential energy of an assemblage of particles is
just the sum of all the pairwise interactions in the form given in Eq. (1.1). Thus,
consider a system withK nuclei, α = 1, 2, . . . , K having atomic numbersZα.
We also consider the molecule to haveN electrons. If the molecule is uncharged
as a whole, then

∑
Zα = N. We will use lower case Latin letters,i, j, k, . . . , to

label electrons and lower case Greek letters,α, β, γ, . . . , to label nuclei. The full
potential energy may then be written

V =
∑
α<β

e2ZαZβ

rαβ

−
∑
iα

e2Zα

riα
+

∑
i< j

e2

ri j
. (1.2)

Many investigations have shown that any deviations from this expression that occur
in reality are many orders of magnitude smaller than the sizes of energies we need
be concerned with.2 Thus, we consider this expression to represent exactly that part
of the potential energy due to the charges on the particles.

The kinetic energy

The kinetic energy in the Schr¨odinger equation is a rather different sort of quantity,
being, in fact, a differential operator. In one sense, it is significantly simpler than
the potential energy, since the kinetic energy of a particle depends only upon what
it is doing, and not on what the other particles are doing. This may be contrasted
with the potential energy, which depends not only on the position of the particle in
question, but on the positions of all of the other particles, also. For our molecular

2 The first correction to this expression arises because the transmission of the electric field from one particle to
another is not instantaneous, but must occur at the speed of light. In electrodynamics this phenomenon is called
aretarded potential. Casimir and Polder[16] have investigated the consequences of this for quantum mechanics.
The effect within distances around 10−7 cm is completely negligible.
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system the kinetic energy operator is

T = −
∑

α

h̄2

2Mα

∇2
α −

∑
i

h̄2

2me
∇2
i , (1.3)

whereMα is the mass of theαth nucleus.

The differential equation

The Schrödinger equation may now be written symbolically as

(T + V)� = E�, (1.4)

whereE is the numerical value of the total energy, and� is the wave function.
When Eq. (1.4) is solved with the various constraints required by the rules of
quantum mechanics, one obtains the total energy and the wave function for the
molecule. Other quantities of interest concerning the molecule may subsequently
be determined from the wave function.

It is essentially this equation about which Dirac[17] made the famous (or infa-
mous, depending upon your point of view) statement that all of chemistry is reduced
to physics by it:

The general theory of quantum mechanics is now almost complete, the imperfections that
still remain being in connection with the exact fitting in of the theory with relativity ideas.
These give rise to difficulties only when high-speed particles are involved, and are therefore
of no importance in the consideration of atomic and molecular structure and ordinary
chemical reactions. . .. The underlying physical laws necessary for the mathematical theory
of a large part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations much too
complicated to be soluble. . ..

To some, with what we might call a practical turn of mind, this seems silly. Our
mathematical and computational abilities are not even close to being able to give
useful general solutions to it. To those with a more philosophical outlook, it seems
significant that, at our present level of understanding, Dirac’s statement is appar-
ently true. Therefore, progress made in methods of solving Eq. (1.4) is improving
our ability at making predictions from this equation that are useful for answering
chemical questions.

The Born–Oppenheimer approximation

In the early days of quantum mechanics Born and Oppenheimer[18] showed that
the energy and motion of the nuclei and electrons could be separated approximately.
This was accomplished using a perturbation treatment in which the perturbation
parameter is (me/M)1/4. In actuality, the term “Born–Oppenheimer approximation”
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is frequently ambiguous. It can refer to two somewhat different theories. The first is
the reference above and the other one is found in an appendix of the book by Born
and Huang on crystal structure[19]. In the latter treatment, it is assumed, based
upon physical arguments, that the wave function of Eq. (1.4) may be written as the
product of two other functions

�(�ri , �rα) = φ(�rα)ψ(�ri , �rα), (1.5)

where the nuclear positions�rα given inψ are parameters rather than variables in
the normal sense. Theφ is the actual wave function for nuclear motion and will not
concern us at all in this book. If Eq. (1.5) is substituted into Eq. (1.4), various terms
are collected, and small quantities dropped, we obtain what is frequently called the
Schrödinger equation for theelectronsusing theBorn–Oppenheimer approximation

− h̄2

2me

∑
i

∇2
i ψ + Vψ = E(�rα)ψ, (1.6)

where we have explicitly observed the dependence of the energy on the nuclear
positions by writing it asE(�rα). Equation (1.6) might better be termed the
Schrödinger equation for the electrons using theadiabatic approximation[20].
Of course, the only difference between this and Eq. (1.4) is the presence of the
nuclear kinetic energy in the latter. A heuristic way of looking at Eq. (1.6) is to
observe that it would arise if the masses of the nuclei all passed to infinity, i.e.,
the nuclei become stationary. Although a physically useful viewpoint, the actual
validity of such a procedure requires some discussion, which we, however, do not
give.

We now go farther, introducing atomic units and rearranging Eq. (1.6) slightly,

−1

2

∑
i

∇2
i ψ −

∑
iα

Zα

riα
ψ +

∑
i< j

1

ri j
ψ +

∑
α<β

ZαZβ

rαβ

ψ = Eeψ. (1.7)

This is the equation with which we must deal. We will refer to it so frequently,
it will be convenient to have a brief name for it. It is theelectronic Schr̈odinger
equation, and we refer to it as the ESE. Solutions to it of varying accuracy have been
calculated since the early days of quantum mechanics. Today, there exist computer
programs both commercial and in the public domain that will carry out calculations
to produce approximate solutions to the ESE. Indeed, a program of this sort is
available from the author through the Internet.3 Although not as large as some of
the others available, it will do many of the things the bigger programs will do,
as well as a couple of things they do not: in particular, this program will do VB
calculations of the sort we discuss in this book.

3 The CRUNCH program,http://phy-ggallup.unl.edu/crunch/
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1.3 The variation theorem

1.3.1 General variation functions

If we write the sum of the kinetic and potential energy operators as the Hamiltonian
operatorT + V = H , the ESE may be written as

H� = E�. (1.8)

Oneof the remarkable results of quantummechanics is the variation theorem,which
states that

W = 〈�|H |�〉
〈�|�〉 ≥ E0, (1.9)

where E0 is the lowest allowed eigenvalue for the system. The fraction in
Eq. (1.9) is frequently called theRayleigh quotient. The basic use of this result
is quite simple. One uses arguments based on similarity, intuition, guess-work, or
whatever, to devise a suitable function for�. Using Eq. (1.9) then necessarily gives
us an upper bound to the true lowest energy, and, if we have been clever or lucky,
the upper bound is a good approximation to the lowest energy. The most common
way we use this is to construct a trial function,�, that has a number of parameters
in it. The quantity,W, in Eq. (1.9) is then a function of these parameters, and a
minimization ofW with respect to the parameters gives the best result possible
within the limitations of the choice for�. We will use this scheme in a number of
discussions throughout the book.

1.3.2 Linear variation functions

A trial variation function that has linear variation parameters only is an important
special case, since it allows an analysis giving a systematic improvement on the
lowest upper bound as well as upper bounds for excited states. We shall assume that
φ1, φ2, . . . , represents a complete, normalized (but not necessarily orthogonal) set
of functions for expanding the exact eigensolutions to the ESE. Thus we write

� =
∞∑
i=1

φi Ci , (1.10)

where theCi are the variation parameters. Substituting into Eq. (1.9) we obtain

W =
∑

i j Hi j C∗
i Cj∑

i j Si j C
∗
i Cj

, (1.11)

where

Hi j = 〈φi |H |φ j 〉, (1.12)

Si j = 〈φi |φ j 〉. (1.13)
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We differentiateW with respect to theC∗
i s and set the results to zero to find the

minimum, obtaining an equation for eachC∗
i ,∑

j

(Hi j − WSi j )Cj = 0 ; i = 1, 2, . . . . (1.14)

In deriving this we have used the properties of the integralsHi j = H∗
j i and a similar

result forSi j . Equation (1.14) is discussed in all elementary textbooks wherein it is
shown that aCj 
= 0 solution exists only if theW has a specific set of values. It is
sometimes called thegeneralized eigenvalue problemto distinguish from the case
whenS is the identity matrix. We wish to pursue further information about theWs
here.

Let us consider a variation function where we have chosenn of the functions,
φi . We will then show that the eigenvalues of then-function problem divide,
i.e., occur between, the eigenvalues of the (n+ 1)-function problem. In making
this analysis we use an extension of the methods given by Brillouin[21] and
MacDonald[22].

Having chosenn of theφ functions to start, we obtain an equation like Eq. (1.14),
but with onlyn× n matrices andn terms,

n∑
j=1

(
Hi j − W(n)Si j

)
C(n)

j = 0 ; i = 1, 2, . . . , n. (1.15)

It is well known that sets of linear equations like Eq. (1.15) will possess nonzero
solutions for theC(n)

j s only if the matrix of coefficients has a rank less thann.
This is another way of saying that the determinant of the matrix is zero, so we
have ∣∣H − W(n)S

∣∣ = 0. (1.16)

When expanded out, the determinant is a polynomial of degreen in the variable
W(n), and it hasn real roots ifH andS are both Hermitian matrices, andS is
positive definite. Indeed, ifSwere not positive definite, this would signal that the
basis functions were not all linearly independent, and that the basis was defective.
If W(n) takes on one of the roots of Eq. (1.16) the matrixH − W(n)S is of rank
n− 1 or less, and its rows are linearly dependent. There is thus at least one more
nonzero vector with componentsC(n)

j that can be orthogonal to all of the rows. This
is the solution we want.

It is useful to give a matrix solution to this problem. We affix a superscript(n) to
emphasize that we are discussing a matrix solution forn basis functions. SinceS(n)

is Hermitian, it may be diagonalized by a unitary matrix,T = (T †)−1

T †S(n)T = s(n) = diag
(
s(n)
1 , s(n)

2 , . . . , s(n)
n

)
, (1.17)
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where thediagonal elementsofs(n) areall real andpositive, becauseof theHermitian
and positive definite character of the overlap matrix. We may construct the inverse
square root ofs(n), and, clearly, we obtain[

T
(
s(n)

)−1/2]†
S(n)T

(
s(n)

)−1/2 = I . (1.18)

We subjectH (n) to the same transformation and obtain[
T

(
s(n)

)−1/2]†
H (n)T

(
s(n)

)−1/2 = H̄ (n), (1.19)

which is alsoHermitian andmaybediagonalizedbyaunitarymatrix,U.Combining
the various transformations, we obtain

V †H (n)V = h(n) = diag
(
h(n)

1 , h(n)
2 , . . . , h(n)

n

)
, (1.20)

V †S(n)V = I , (1.21)

V = T
(
s(n)

)−1/2
U. (1.22)

We may now combine these matrices to obtain the null matrix

V †H (n)V − V †S(n)Vh(n) = 0, (1.23)

and multiplying this on the left by (V †)−1 = U (s(n))1/2T gives

H (n)V − S(n)Vh(n) = 0. (1.24)

If we write out thekth column of this last equation, we have

n∑
j=1

(
H (n)
i j − h(n)

k S(n)
i j

)
Vjk = 0 ; i = 1,2, . . . ,n. (1.25)

When this is compared with Eq. (1.15) we see that we have solved our prob-
lem, if C(n) is thekth column ofV andW(n) is thekth diagonal element ofh(n).
Thus the diagonal elements ofh(n) are the roots of the determinantal equation
Eq. (1.16).

Now consider the variation problem withn+ 1 functions where we have added
another of the basis functions to the set. We now have the matricesH (n+1) and
S(n+1), and the new determinantal equation∣∣H (n+1) − W(n+1)S(n+1)

∣∣ = 0. (1.26)

We may subject this to a transformation by the (n+ 1)× (n+ 1) matrix

V̄ =
[
V 0
0 1

]
, (1.27)
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andH (n+1) andS(n+1) are modified to

V̄ †H (n+1)V̄ = H̄ (n+1) =




h(n)
1 0 · · · H̄ (n+1)

1n+1

0 h(n)
2 · · · H̄ (n+1)

2n+1
...

...
...

...
H̄ (n+1)

n+11 H̄ (n+1)
n+12 · · · Hn+1

n+1n+1


 (1.28)

and

V̄ †S(n+1)V̄ = S̄(n+1) =




1 0 · · · S̄(n+1)
1n+1

0 1 · · · S̄(n+1)
2n+1

...
...

.. .
...

S̄(n+1)
n+11 S̄(n+1)

n+12 · · · 1


 . (1.29)

Thus Eq. (1.26) becomes

0 =

∣∣∣∣∣∣∣∣∣∣

h(n)
1 − W(n+1) 0 · · · H̄ (n+1)

1n+1 − W(n+1)S̄(n+1)
1n+1

0 h(n)
2 − W(n+1) · · · H̄ (n+1)

2n+1 − W(n+1)S̄(n+1)
2n+1

...
...

...
...

H̄ (n+1)
n+1 1 − W(n+1)S̄(n+1)

n+1 1 H̄ (n+1)
n+1 2 − W(n+1)S̄(n+1)

n+1 2 · · · Hn+1
n+1n+1 − W(n+1)

∣∣∣∣∣∣∣∣∣∣
.

(1.30)

We modify the determinant in Eq. (1.30) by using column operations. Multiply the
i th column by

H̄ (n+1)
i n+1 − W(n+1)S̄(n+1)

i n+1

h(n)
i − W(n+1)

and subtract it from the (n+ 1)th column. This is seen to cancel thei th row element
in the last column. Performing this action for each of the firstn columns, the
determinant is converted to lower triangular form, and its value is just the product
of the diagonal elements,

0 = D(n+1)
(
W(n+1)

)
=

n∏
i=1

[
h(n)
i − W(n+1)

]

×
[
H̄ (n)

n+1n+1 − W(n+1) −
n∑

i=1

∣∣H̄ (n+1)
i n+1 − W(n+1)S̄(n+1)

i n+1

∣∣2
h(n)
i − W(n+1)

]
. (1.31)

Examination shows thatD(n+1)(W(n+1)) is a polynomial inW(n+1) of degreen+ 1,
as it should be.
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We note that none of theh(n)
i are normally roots ofD(n+1),

lim
W(n+1)→h(n)

i

D(n+1) =
∏
j 
=i

[
h(n)
j − h(n)

i

]∣∣H̄ (n+1)
i n+1 − h(n)

i S̄(n+1)
i n+1

∣∣2, (1.32)

and would be only if theh(n)
i were degenerate or the second factor| · · · |2 were

zero.4

Thus,D(n+1) is zero when the second [· · ·] factor of Eq. (1.31) is zero,

H̄ (n+1)
n+1n+1 − W(n+1) =

n∑
i=1

∣∣H̄ (n+1)
i n+1 − W(n+1)S̄(n+1)

i n+1

∣∣2
h(n)
i − W(n+1)

. (1.33)

It is most useful to consider the solution of Eq. (1.33) graphically by plotting both
the right and left hand sides versusW(n+1) on the same graph and determining
where the two curves cross. For this purpose let us suppose thatn = 4, and we
consider the right hand side. It will have poles on the real axis at each of theh(4)

i .
WhenW(5) becomes large in either the positive or negative direction the right hand
side asymptotically approaches the line

y =
4∑

i=1

(
H̄∗

i 5S̄i 5 + H̄ i 5S̄
∗
i 5 − W(5)

∣∣S̄(5)
i 5

∣∣2).
It is easily seen that the determinant ofS̄ is

|S̄| = 1−
4∑

i=1

∣∣S̄(5)
i 5

∣∣2 > 0, (1.34)

and, if equal to zero,Swould not be positive definite, a circumstance that would
happen only if our basis were linearly dependent. Thus, the asymptotic line of the
right hand side has a slope between 0 and –45◦. We see this in Fig. 1.1. The left
hand side of Eq. (1.33) is, on the other hand, just a straight line of exactly –45◦

slope and aW(5) intercept ofH̄ (5)
5 5. This is also shown in Fig. 1.1. The important

point we note is that the right hand side of Eq. (1.33) has five branches that in-
tersect the left hand line in five places, and we thus obtain five roots. The vertical
dotted lines in Fig. 1.1 are the values of theh(4)

i , and we see there is one of these
between each pair of roots for the five-function problem. A little reflection will
indicate that this important fact is true for anyn, not just the special case plotted in
Fig. 1.1.

4 We shall suppose neither of these possibilities occurs, and in practice neither is likely in the absence of symmetry.
If there is symmetry present that can produce degeneracy or zero factors of the [· · ·]2 sort, we assume that
symmetry factorization has been applied and that all functions we are working with are within one of the closed
symmetry subspaces of the problem.
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Figure 1.1. The relationship between the roots forn = 4 (the abscissa intercepts of the
vertical dotted lines) andn = 5 (abscissas of intersections of solid lines with solid curves)
shown graphically.

The upshot of these considerations is that a series of matrix solutions of the
variation problem, where we add one new function at a time to the basis, will
result in a series of eigenvalues in a pattern similar to that shown schematically in
Fig. 1.2, and that the order of adding the functions is immaterial. Since we suppose
that our ultimate basis (n → ∞) is complete, each of the eigenvalues will become
exact as we pass to an infinite basis, and we see that the sequence ofn-basis
solutions converges to the correct answer from above. The rate of convergence at
various levels will certainly depend upon the order in which the basis functions are
added, but not the ultimate value.

1.3.3 A 2× 2 generalized eigenvalue problem

The generalized eigenvalue problem is unfortunately considerably more compli-
cated than its regular counterpart whenS= I . There are possibilities for acciden-
tal cases when basis functions apparently should mix, but they do not. We can
give a simple example of this for a 2× 2 system. Assume we have the pair of
matrices

H =
[
A B
B C

]
(1.35)
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Figure 1.2. A qualitative graph showing schematically the interleaving of the eigenvalues
for a series of linear variation problems forn = 1, . . . , 5. The ordinate is energy.

and

S=
[

1 s
s 1

]
, (1.36)

where we assume for the argument thats > 0. We form the matrixH ′

H ′ = H − A+ C

2
S,

=
[
a b
b −a

]
, (1.37)

where

a = A− A+ C

2
(1.38)

and

b = B − A+ C

2
s. (1.39)

It is not difficult to show that the eigenvectors ofH ′ are the same as those ofH .
Our generalized eigenvalue problem thus depends upon three parameters,a,

b, ands. Denoting the eigenvalue byW and solving the quadratic equation, we
obtain

W = − sb

(1− s2)
±

√
a2(1− s2) + b2

(1− s2)
. (1.40)
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We note the possibility of an accident that cannot happen ifs = 0 andb 
= 0: Should
b = ±as, one of the two values ofW is either±a, and one of the two diagonal
elements ofH ′ is unchanged.5 Let us for definiteness assume thatb = asand it is
a we obtain. Then, clearly the vectorC1 we obtain is[

1
0

]
,

and there is no mixing between the states from the application of the variation
theorem. The other eigenvector is simply determined because it must be orthogonal
toC1, and we obtain

C2 =
[−s/

√
1− s2

1/
√

1− s2

]
,

so the other state is mixed. It must normally be assumed that this accident is
rare in practical calculations. Solving the generalized eigenvalue problem results
in a nonorthogonal basis changing both directions and internal angles to become
orthogonal. Thus one basis function could get “stuck” in the process. This should
be contrasted with the case whenS= I , in which basis functions are unchanged
only if the matrix was originally already diagonal with respect to them.

We do not discuss it, but there is ann× n version of this complication. If
there is no degeneracy, one of the diagonal elements of theH-matrix may be
unchanged in going to the eigenvalues, and the eigenvector associated with it is
[0, . . . , 0, 1, 0, . . . , 0]†.

1.4 Weights of nonorthogonal functions

The probability interpretation of the wave function in quantum mechanics obtained
by forming the square of its magnitude leads naturally to a simple idea for the
weights of constituent parts of the wave function when it is written as a linear
combination of orthonormal functions. Thus, if

� =
∑
i

ψi Ci , (1.41)

and〈ψi |ψ j 〉 = δi j , normalization of� requires∑
i

|Ci |2 = 1. (1.42)

If, also, each of theψi has a certain physical interpretation or significance, then
one says the wave function�, or the state represented by it, consists of a fraction

5 NB We assumed this not to happen in our discussion above of the convergence in the linear variation problem.
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|Ci |2 of the state represented byψi . One also says that theweight,wi of ψi in � is
wi = |Ci |2.

No such simple result is available for nonorthogonal bases, such as our VB
functions, because, although they are normalized, they are not mutually orthogonal.
Thus, instead of Eq. (1.42), we would have

∑
i j

C∗
i Cj Si j = 1, (1.43)

if the ψi were not orthonormal. In fact, at first glance orthogonalizing them would
mix together characteristics that one might wish to consider separately in determin-
ing weights. In the author’s opinion, there has not yet been devised a completely
satisfactory solution to this problem. In the following paragraphs we mention some
suggestions that have been made and, in addition, present yet another way of
attempting to resolve this problem.

In Section 2.8 we discuss some simple functions used to represent the H2 mole-
cule. We choose one involving six basis functions to illustrate the various methods.
The overlap matrix for the basis is




1.000 000
0.962 004 1.000 000
0.137 187 0.181 541 1.000 000

−0.254 383 −0.336 628 0.141 789 1.000 000
0.181 541 0.137 187 0.925 640 0.251 156 1.000 000
0.336 628 0.254 383−0.251 156 −0.788 501 −0.141 789 1.000 000




,

and the eigenvector we analyze is




0.283 129
0.711 721
0.013 795

−0.038 111
−0.233 374

0.017 825




. (1.44)

S is to be filled out, of course, so that it is symmetric. The particular chemical or
physical significance of the basis functions need not concern us here.

The methods below giving sets of weights fall into one of two classes: those
that involve no orthogonalization and those that do. We take up the former group
first.
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Table 1.1.Weights for nonorthogonal basis functions
by various methods.

Chirgwin– Inverse- Symmetric
Coulson overlap orthogon. EGSOa

0.266 999 0.106 151 0.501 707 0.004 998
0.691 753 0.670 769 0.508 663 0.944 675

–0.000 607 0.000 741 0.002 520 0.000 007
0.016 022 0.008 327 0.042 909 0.002 316
0.019 525 0.212 190 0.051 580 0.047 994
0.006 307 0.001 822 0.000 065 0.000 010

a EGSO= eigenvector guided sequential orthogonalization.

1.4.1 Weights without orthogonalization

The method of Chirgwin and Coulson

These workers[23] suggest that one use

wi = C∗
i

∑
j

Si j Cj , (1.45)

although, admittedly, they proposed it only in cases where the quantities were real.
As written, thiswi is not guaranteed even to be real, and when theCi andSi j are real,
it is not guaranteed to be positive. Nevertheless, in simple cases it can give some
idea for weights. We show the results of applying this method to the eigenvector
and overlap matrix in Table 1.1 above. We see that the relative weights of basis
functions 2 and 1 are fairly large and the others are quite small.

Inverse overlap weights

Norbeck and the author[24] suggested that in cases where there is overlap, the
basis functions each can be considered to have a unique portion. The “length” of
this may be shown to be equal to the reciprocal of the diagonal of theS−1 matrix
corresponding to the basis function in question. Thus, if a basis function has a
unique portion of very short length, a large coefficient for it means little. This
suggests that a set ofrelativeweights could be obtained from

wi ∝ |Ci |2/(S−1)i i , (1.46)

where thesewi do not generally sum to 1. As implemented, these weights are
renormalizedso that theydosum to1 toprovideconvenient fractionsor percentages.
This is an awkward feature of this method and makes it behave nonlinearly in some
contexts. Although these first two methods agree as to the most important basis
function they transpose the next two in importance.
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1.4.2 Weights requiring orthogonalization

We emphasize that here we are speaking of orthogonalizing the VB basis not the
underlying atomic orbitals (AOs). This can be accomplished by a transformation
of the overlap matrix to convert it to the identity

N†SN= I . (1.47)

Investigation shows thatN is far from unique. Indeed, ifN satisfies Eq. (1.47),NU
will also work, whereU is any unitary matrix. A possible candidate forN is shown
in Eq. (1.18). If we put restrictions onN, the result can be made unique. IfN is
forced to be upper triangular, one obtains the classicalSchmidt orthogonalization
of the basis. The transformation of Eq. (1.18), as it stands, is frequently called
thecanonical orthogonalizationof the basis. Once the basis is orthogonalized the
weights are easily determined in the normal sense as

wi =
∣∣∣∣∣
∑
j

(N−1)i j Cj

∣∣∣∣∣
2

, (1.48)

and, of course, they sum to 1 exactly without modification.

Symmetric orthogonalization

Löwdin[25] suggested that one find the orthonormal set of functions that most
closely approximates the original nonorthogonal set in the least squares sense and
use these to determine the weights of various basis functions. An analysis shows
that the appropriate transformation in the notation of Eq. (1.18) is

N = T
(
s(n)

)−1/2
T † = S−1/2 = (S−1/2)†, (1.49)

which is seen to be the inverse of one of the square roots of the overlap matrix and
Hermitian (symmetric, if real). Because of this symmetry, using theN of Eq. (1.49)
is frequently called asymmetric orthogonalization. This translates easily into the
set of weights

wi =
∣∣∣∣∣
∑
j

(S1/2)i j Cj

∣∣∣∣∣
2

, (1.50)

which sums to 1 without modification. These are also shown in Table 1.1. We now
see weights that are considerably different from those in the first two columns.
w1 andw2 are nearly equal, withw2 only slightly larger. This is a direct result of
the relatively large value ofS12 in the overlap matrix, but, indirectly, we note that the
hypothesis behind the symmetric orthogonalization can be faulty. A least squares
problem like that resulting in this orthogonalization method, in principle, always
has an answer, but that gives no guarantee at all that the functions produced really
are close to the original ones. That is really the basic difficulty. Only if the overlap
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matrix were, in some sense, close to the identity would this method be expected to
yield useful results.

An eigenvector guided sequential orthogonalization (EGSO)

As promised, with this book we introduce another suggestion for determining
weights in VB functions. Let us go back to one of the ideas behind inverse overlap
weights and apply it differently. The existence of nonzero overlaps between differ-
ent basis functions suggests that some “parts” of basis functions are duplicated in
the sum making up the total wave function. At the same time, consider function 2
(the second entry in the eigenvector (1.44)). The eigenvector was determined using
linear variation functions, and clearly, there is something about function 2 that the
variation theorem likes, it has the largest (in magnitude) coefficient. Therefore, we
take all of that function in our orthogonalization, and, using a procedure analogous
to the Schmidt procedure, orthogonalize all of the remaining functions of the basis
to it. This produces a new set ofCs, and we can carry out the process again with the
largest remaining coefficient. We thus have a stepwise procedure to orthogonalize
the basis. Except for the order of choice of functions, this is just a Schmidt orthog-
onalization, which normally, however, involves an arbitrary or preset ordering.

Comparing these weights to the others in Table 1.1 we note that there is now
one truly dominant weight and the others are quite small. Function 2 is really a
considerable portion of the total function at 94.5%. Of the remaining, only function
5 at 4.8% has any size. It is interesting that the two methods using somewhat the
same idea predict the same two functions to be dominant.

If we apply this procedure to a different state, there will be a different ordering, in
general, but this is expected. The orthogonalization in this procedure is not designed
to generate a basis for general use, but is merely a device to separate characteristics
of basis functions into noninteracting pieces that allows us to determine a set of
weights. Different eigenvalues, i.e., different states, may well be quite different in
this regard.

We now outline the procedure in more detail. Deferring the question of ordering
until later, let us assume we have found an upper triangular transformation matrix,
Nk, that convertsSas follows:

(Nk)
†SNk =

[
Ik 0
0 Sn−k

]
, (1.51)

whereIk is ak × k identity, andwehavedeterminedkof theorthogonalizedweights.
We show how to determineNk+1 from Nk.

Working only with the lower right (n− k) × (n− k) corner of the matrices, we
observe thatSn−k in Eq. (1.51) is just the overlap matrix for the unreduced portion
of the basis and is, in particular, Hermitian, positive definite, and with diagonal
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elements equal to 1. We write it in partitioned form as

Sn−k =
[

1 s
s† S′

]
, (1.52)

where [1 s] is the first row of the matrix. LetMn−k be an upper triangular matrix
partitioned similarly,

Mn−k =
[

1 q
0 B

]
, (1.53)

and we determineq andB so that

(Mn−k)†Sn−kMn−k =
[

1 q + sB
(q + sB)† B†(S′ − s†s)B

]
, (1.54)

=
[

1 0
0 Sn−k−1

]
, (1.55)

where these equations may be satisfied withB the diagonal matrix

B = diag
((

1− s2
1

)−1/2 (
1− s2

2

)−1/2 · · · ) (1.56)

and

q = −sB. (1.57)

The inverse ofMn−k is easily determined:

(Mn−k)
−1 =

[
1 s
0 B−1

]
, (1.58)

and, thus,Nk+1 = NkQk, where

Qk =
[
Ik 0
0 Mn−k

]
. (1.59)

The unreduced portion of the problem is now transformed as follows:

(Cn−k)
†Sn−kCn−k = [(Mn−k)

−1Cn−k]
†(Mn−k)

†Sn−kMn−k[(Mn−k)
−1Cn−k].

(1.60)
Writing

Cn−k =
[
C1
C′

]
, (1.61)

we have

[(Mn−k)−1Cn−k] =
[
C1 + sC′
B−1C′

]
, (1.62)

=
[
C1 + sC′
Cn−k−1

]
. (1.63)

Putting these together, we arrive at the totalN asQ1Q2Q3 · · · Qn−1.
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What we have done so far is, of course, no different from a standard top-down
Schmidt orthogonalization. We wish, however, to guide the ordering with the eigen-
vector. Thisweaccomplish by inserting before eachQk abinary permutationmatrix
Pk that puts in the top position theC1 + sC′ from Eq. (1.63) that is largest in
magnitude. Our actual transformation matrix is

N = P1Q1P2Q2 · · · Pn−1Qn−1. (1.64)

Then the weights are simply as given (for basis functions in a different order) by
Eq. (1.48).Weobserve that choosingC1 + sC′ as the test quantitywhosemagnitude
is maximized is the same as choosing the remaining basis function from the unre-
duced set that at each stage gives the greatest contribution to the total wave function.

There are situations in which we would need to modify this procedure for the
results to make sense. Where symmetry dictates that two or more basis functions
should have equal contributions, the above algorithm could destroy this equality.
In these cases some modification of the procedure is required, but we do not need
this extension for the applications of the EGSO weights found in this book.
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H2 and localized orbitals

2.1 The separation of spin and space variables

One of the pedagogically unfortunate aspects of quantum mechanics is the com-
plexity that arises in the interaction of electron spin with the Pauli exclusion prin-
ciple as soon as there are more than two electrons. In general, since the ESE
does not even contain any spin operators, the total spin operator must commute
with it, and, thus, the total spin of a system of any size is conserved at this level of
approximation. The corresponding solution to theESEmust reflect this. In addition,
the total electronic wave function must also be antisymmetric in the interchange
of any pair of space-spin coordinates, and the interaction of these two require-
ments has a subtle influence on the energies that has no counterpart in classical
systems.

2.1.1 The spin functions

When there are only two electrons the analysis is much simplified. Even quite
elementary textbooks discuss two-electron systems. The simplicity is a conse-
quence of the general nature of what is called thespin-degeneracy problem, which
we describe in Chapters 4 and 5. For now we write the total solution for the ESE
�(1,2), where the labels 1 and 2 refer to the coordinates (space and spin) of the two
electrons. Since the ESE has no reference at all to spin,�(1,2) may be factored
into separate spatial and spin functions. For two electrons one has the familiar result
that the spin functions are of either the singlet or triplet type,

1φ0 = [
η1/2(1)η−1/2(2)− η−1/2(1)η1/2(2)

]/√
2, (2.1)

3φ1 = η1/2(1)η1/2(2), (2.2)
3φ0 = [

η1/2(1)η−1/2(2)+ η−1/2(1)η1/2(2)
]/√

2, (2.3)
3φ−1 = η−1/2(1)η−1/2(2), (2.4)

23



24 2 H2 and localized orbitals

where on theφ the anterior superscript indicates the multiplicity and the posterior
subscript indicates thems value.Theη±1/2 are the individual electronspin functions.
If we let Pi j represent an operator that interchanges all of the coordinates of the

i th and j th particles in the function to which it is applied, we see that

P12 1φ0 = −1φ0, (2.5)

P12 3φms = 3φms; (2.6)

thus, the singlet spin function is antisymmetric and the triplet functions are sym-
metric with respect to interchange of the two sets of coordinates.

2.1.2 The spatial functions

The Pauli exclusion principle requires that the total wave function for electrons
(fermions) have the property

P12�(1,2)= �(2,1)= −�(1,2), (2.7)

but absence of spin in the ESE requires

(2S+1)�ms(1,2)= (2S+1)ψ(1,2)× (2S+1)φms(1,2), (2.8)

and it is not hard to see that the overall antisymmetry requires that the spatial
functionψ have behavior opposite to that ofφ in all cases. We emphasize that it
is not an oversight to attach noms label toψ in Eq. (2.8). An important principle
in quantum mechanics, known as the Wigner–Eckart theorem, requires the spatial
part of the wave function to be independent ofms for a givenS.
Thus the singlet spatial function is symmetric and the triplet oneantisymmetric. If

we use the variation theorem to obtain an approximate solution to the ESE requiring
symmetry as a subsidiary condition, we are dealing with the singlet state for two
electrons. Alternatively, antisymmetry, as a subsidiary condition, yields the triplet
state.
We must now see how to obtain useful solutions to the ESE that satisfy these

conditions.

2.2 The AO approximation

The only uncharged molecule with two electrons is H2, and we will consider this
molecule for a while. The ESE allows us to do something that cannot be done in the
laboratory. It assumes the nuclei are stationary, so for the moment we consider a
very stretched out H2 molecule. If the atoms are distant enough we expect each one
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to be a normal H atom, for which we know the exact ground state wave function.1

The singlet wave function for this arrangement might be written
1ψ(1,2)= N[1sa(1)1sb(2)+ 1sb(1)1sa(2)], (2.9)

where 1sa and 1sb are 1sorbital functions centered at nucleia andb, respectively,
andN is the normalization constant. This is just the spatial part of thewave function.
We may now work with it alone, the only influence left from the spin is the “+”
in Eq. (2.9) chosen because we are examining the singlet state. The function of
Eq. (2.9) is that given originally by Heitler and London[8].
Perhaps a small digression is in order on the use of the term “centered” in the last

paragraph. When we write the ESE and its solutions, we use a single coordinate
system, which, of course, has one origin. Then the position of each of the particles,
�ri for electrons and�rα for nuclei, is given by a vector from this common origin.
When determining the 1sstate of H (with an infinitely massive proton), one obtains
the result (in au)

1s(r ) = 1√
π
exp(−r ), (2.10)

wherer is the radial distance from the origin of this H atom problem, which is
where the proton is. If nucleusα = a is located atra then 1sa(1) is a shorthand for

1sa = 1s(|�r1 − �ra|) = 1√
π
exp(−|�r1 − �ra|), (2.11)

and we say that 1sa(1) is “centered at nucleusa”.
In actuality it will be useful later to generalize the function of Eq. (2.10) by

changing its size. We do this by introducing a scale factor in the exponent and write

1s′(α, r ) =
√

α3

π
exp(−αr ). (2.12)

When we work out integrals for VB functions, we will normally do them in terms
of this version of the H-atom function. We may reclaim the real H-atom function
any time by settingα = 1.
Let us now investigate the normalization constant in Eq. (2.9). Direct substitution

yields

1= 〈1ψ(1,2)|1ψ(1,2)〉 (2.13)

= |N|2(〈1sa(1)|1sa(1)〉〈1sb(2)|1sb(2)〉
+ 〈1sb(1)|1sb(1)〉〈1sa(2)|1sa(2)〉
+ 〈1sa(1)|1sb(1)〉〈1sa(2)|1sb(2)〉
+ 〈1sb(1)|1sa(1)〉〈1sb(2)|1sa(2)〉), (2.14)

1 The actual distance required here is quite large. Herring[26] has shown that there are subtle effects due to
exchange that modify the wave functions at even quite large distances. In addition, we are ignoring dispersion
forces.
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where we have written out all of the terms. The 1s function in Eq. (2.10) is
normalized, so

〈1sa(1)|1sa(1)〉 = 〈1sb(2)|1sb(2)〉, (2.15)

= 〈1sb(1)|1sb(1)〉, (2.16)

= 〈1sa(2)|1sa(2)〉, (2.17)

= 1. (2.18)

The other four integrals are also equal to one another, and this is a function of the
distance,R, between the two atoms called the overlap integral,S(R). The overlap
integral is an elementary integral in the appropriate coordinate system, confocal
ellipsoidal–hyperboloidal coordinates[27]. In terms of the function of Eq. (2.12) it
has the form

S(w) = (1+ w + w2/3) exp(−w), (2.19)

w = αR, (2.20)

and we see that the normalization constant for1ψ(1,2) is

N = [2(1+ S2)]−1/2. (2.21)

Wemaynowsubstitute1ψ(1,2) into theRayleigh quotient andobtain anestimate
of the total energy,

E(R) = 〈1ψ(1,2)|H |1ψ(1,2)〉 ≥ E0(R), (2.22)

whereE0 is the true ground state electronic energy for H2. This expression involves
four new integrals that also can be evaluated in confocal ellipsoidal–hyperboloidal
coordinates. In this case all are not so elementary, involving, as they do, expan-
sions in Legendre functions. The final energy expression is (α = 1 in all of the
integrals)

E = 2h− 2
j1(R)+ S(R)k1(R)

1+ S(R)2
+ j2 + k2
1+ S(R)2

+ 1

R
, (2.23)

where

h = α2/2− α, (2.24)

j1 = −[1− (1+ w)e−2w]/R, (2.25)

k1 = −α(1+ w)e−w, (2.26)
j2 = [1− (1+ 11w/8+ 3w2/4+ w3/6)e−2w]/R, (2.27)

k2 = {6[S(w)2(C + lnw)− S(−w)2E1(4w)+ 2S(w)S(−w)E1(2w)]

+ (25w/8− 23w2/4− 3w3 − w4/3)e−2w}/(5R), (2.28)

l2 = [(5/16+ w/8+ w2)e−w − (5/16+ w/8)e−3w]/R. (2.29)
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Of these only the exchange integral of Eq. (2.28) is really troublesome to evaluate.
It is written in terms of the overlap integralS(w), the same function of−w,
S(−w) = (1− w + w2/3)ew, the Euler constant,C = 0.577 215 664 901 532 86,
and the exponential integral

E1(x) =
∫ ∞

x
e−y dy

y
, (2.30)

which is discussed by Abramowitz and Stegun[28].
In our discussion we have merely given the expressions for the five integrals that

appear in the energy. Those interested in the problem of evaluation are referred to
Slater[27]. In practice, these expressions are neither very important nor useful. They
are essentially restricted to thediscussion of this simplest case of the H2 molecule
and a few other diatomic systems. The use of AOs written as sums of Gaussian
functions has become universal except for single-atom calculations. We, too, will
use the Gaussian scheme for most of this book. The present discussion, included
for historical reasons, is an exception.

2.3 Accuracy of the Heitler–London function

We are now in a position to compare our results with experiment. A graph ofE(R)
given by Eq. (2.23) is shown as curve (e) in Fig. 2.1. As we see, it is qualitatively
correct, showing the expected behavior of having aminimumwith the energy rising
to infinity at shorter distances and reaching a finite asymptote for largeR values.
Nevertheless, it misses 34% of the binding energy (comparing with curve (a) of
Fig. 2.1), a significant fraction, and its minimum is clearly at too large a bond
distance.2

2.4 Extensions to the simple Heitler–London treatment

In the last section, our calculation used only the function of Eq. (2.9), what is
now called the “covalent” bonding function. According to our discussion of linear
variation functions, we should see an improvement in the energy if we perform a
two-state calculation that also includes theionic function,

1ψI (1,2)= N[1sa(1)1sa(2)+ 1sb(1)1sb(2)]. (2.31)

When this is done we obtain the curve labeled (d) in Fig. 2.1, which, we see,
represents a small improvement in the energy.

2 The quantity we have calculated here is appropriately compared toDe, the bond energy from the bottom of
the curve. This differs from the experimental bond energy,D0, by the amount of energy due to the zero point
motion of the vibration. There is no vibration in our system, since the nuclei are infinitely massive. We use the
theoretical result for comparison, since it is today considered more accurate than experimental numbers.



28 2 H2 and localized orbitals

−1.15

−1.10

−1.05

−1.00

0 2 4 6 8 10

E
ne
rg
y 
(h
ar
tr
ee
)

H   H distance (bohr)

(e)

(d)
(c)

(b)

(a)

---

Figure 2.1. Energies of H2 for various calculations using the H-atom1s orbital functions;
(b) covalent+ ionic, scaled; (c) covalent only, scaled; (d) covalent+ ionic, unscaled;
(e) covalent only, unscaled. (a) labels the curve for the accurate function due to Kolos and
Wolniewicz[31]. This is included for comparison purposes.

Amuch larger improvement is obtained if we follow the suggestions ofWang[29]
and Weinbaum[30] and use the 1s′(1) of Eq. (2.12), scaling the 1s H function at
each internuclear distance to give the minimum energy according to the variation
theorem. In Fig. 2.1 the covalent-only energy is labeled (c) and the two-state energy
is labeled (b). There is nowmore difference between the one- and two-state energies
and the better binding energy is all but 15% of the total.3 The scaling factor,α,
shows a smooth rise from≈1 at large distances to a value near 1.2 at the energy
minimum.
Rhetorically, we might ask, what is it about the ionic function that produces

the energy lowering, and just how does it differ from the covalent function? First,
we note that the normalization constants for the two functions are the same, and,
indeed, they represent exactly the same charge density. Nevertheless, they differ in
their two-electron properties.1ψC (adding a subscriptC to indicate covalent) gives
a higher probability that the electrons be far from one another, while1ψI gives

3 Perhaps we should note that in this relatively simple case, we will approach the binding energy from below as
we improve the wave function. This is by no means guaranteed in more complicated systems where both the
equilibrium and asymptotic wave functions will be approximate. One of the most important problems of bond
energy calculations is to have a “balanced” treatment. This happens if the accuracies at the equilibrium and
asymptotic geometries are sufficiently high to give an accurate difference. More realistically in larger systems,
one must have any errors at the two geometries sufficiently close to one another to obtain a useful value of the
difference. We will take up this question again later.
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just the opposite. This is only true, however, if the electrons are close to one or the
other of the nuclei. If both of the electrons are near the mid-point of the bond, the
two functions have nearly the same value. In fact, the overlap between these two
functions is quite close to 1, indicating they are rather similar. At the equilibrium
distance the basic orbital overlap from Eq. (2.19) is

S= 〈1s′s|1s′b〉 = 0.658 88. (2.32)

A simple calculation leads to

� = 〈
1ψC

∣∣1ψI
〉 = 2S

1+ S2
= 0.918 86. (2.33)

(We consider these relations further below.) The covalent function has been char-
acterized by many workers as “overcorrelating” the two electrons in a bond.
Presumably, mixing in a bit of the ionic function ameliorates the overage, but
this does not really answer the questions at the beginning of this paragraph. We
take up these questions more fully in the next section, where we discuss physical
reasons for the stability of H2.
At the calculated energy minimum (optimumα) the total wave function is found

to be

� = 0.801 9811ψC + 0.211 7021ψI . (2.34)

The relative values of the coefficients indicate that the variation theorem thinks
better of the covalent function, but the other appears fairly high at first glance.
If, however, we apply the EGSO process described in Section 1.4.2, we obtain
0.996 501ψC + 0.083 541ψ ′

I , where, of course, the covalent function is unchanged,
but1ψ ′

I is the new ionic function orthogonal to
1ψC. On the basis of this calculation

we conclude that the the covalent character in the wave function is (0.996 50)2 =
0.993 (99.3%) of the total wave function, and the ionic character is only 0.7%.
Further insight into this situation can be gained by examining Fig. 2.2, where a

geometric representation of the basis vectors and the eigenfunction is given. The
overlap integral is the inner product of the two vectors (basis functions) and is the
cosine of the angle between them. Since arccos(�) = 23.24◦, some care was taken
with Fig. 2.2 so that the angle between the vectors representing the covalent and
ionic basis functions is close to this value. One conclusion to be drawn is that these
two vectors point, to a considerable extent, in the same direction. The two smaller
segments labeled (a) and (b) show how the eigenfunction Eq. (2.34) is actually put
together from its two components. Now it is seen that the relatively large coefficient
of 1ψI is required because it is poor in “purely ionic” character, rather than because
the eigenvector is in a considerably different direction from that of the covalent
basis function.



30 2 H2 and localized orbitals

 Covalent 

 Ionic 

 Eigenvector 
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Figure 2.2. A geometric representation of functions for H2 in terms of vectors forR= Req.
The small vectors labeled (a) and (b) are, respectively, the covalent and ionic components of
the eigenvector. The vectors with dashed lines are the symmetrically orthogonalized basis
functions for this case.

It is important to realize that the above geometric representation of the H2

Hilbert space functions ismore than formal. The overlap integral of two normalized
functions is a real measure of their closeness, as may be seen from

〈(
1ψC − 1ψI

)∣∣(1ψC − 1ψI
)〉 = 2(1− �), (2.35)

and, if the two functions were exactly the same,� would be 1. As pointed out
above,� is a dependent uponS, the orbital overlap. Figure 2.3 shows the relation
between these two quantities for the possible values ofS.
In addition, in Fig. 2.2 we have plotted with dashed lines the symmetrically

orthogonalized basis functions in this treatment. It is simple to verify that

〈
1ψC − S1ψI

∣∣1ψI − S1ψC
〉 = 0, (2.36)

whereS is the orbital overlap. Therefore, the vectors given in Fig. 2.2 are just the
normalized versions of those in Eq. (2.36). Since they must be at right angles, they
must move out 33.38◦ from the vector they are supposed to approximate. Thus, the
real basis functions are closer together than their orthogonalized approximations
are to the functions they are to represent. Clearly, writing the eigenfunction in
terms of the two symmetrically orthogonalized basis functions will require nearly
equal coefficients, a situation giving a very overblown view of the importance of
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the “ionic” component of the eigenfunction.4 Since cos 30◦ = √
3/2, this situation

will be the same for any pair of vectors withS>
√
3/2. Only whenS� √

3/2, is it
likely that the symmetrical orthogonalization will, in the two-vector case, produce
coefficients that are qualitatively useful.
Another interesting conclusion can be drawn from Fig. 2.2. The linear combina-

tion of AOs-molecular orbital (LCAO-MO) function for H2 is

�MO = 0.510 46
(
1ψC + 1ψI

)
, (2.37)

and, although it has not been shown in the figure to reduce crowding, the vector
corresponding to�MO would appear halfway between the two for1ψC and1ψI . It
is thus only a little farther from the optimum eigenfunction than1ψC alone.

2.5 Why is the H2 molecule stable?

Our discussion so far has not touched upon the origin of the stability of the H2

molecule. Reading from the articles of the earlyworkers, one obtains the impression
that most of them attributed the stability to “resonance” between the 1sa(1)1sb(2)
form of the wave function and the 1sa(2)1sb(1) form. This phenomenon was new
to physicists and chemists at the time and was frequently invoked in “explaining”
quantum effects. Today’s workers prefer explanations that use classical language,

4 Although the function is more complicated, this is actually what happened in the third column of Table 1.1,
where the first two entries are nearly equal compared to those in other columns.



32 2 H2 and localized orbitals

insofar as possible, and attempt to separate the two styles of description to see as
clearly as possible just where the quantum effects are.

2.5.1 Electrostatic interactions

Equation (2.23) is not well adapted to looking at the nature of the bonding. We
rearrange it so that we see the terms that decrease the energy beyond that of two H
atoms. This gives

E(R) = 2EH + J(R)+ K (R)

1+ T(R)
. (2.38)

HereEH is the energy of a normal hydrogen atom,J(R), K (R), andT(R) were
called by Heitler and London the Coulomb integral, the exchange integral, and
the overlap integral, respectively. The reader should perhaps be cautioned that the
terms “Coulomb”, “exchange”, and “overlap” integrals have been used by many
other workers in ways that differ from that initiated by Heitler and London. In the
present section we adhere to their original definitions, as follows:

J(R) = 〈1sa(1)1sb(2)|V(1,2)|1sa(1)1sb(2)〉, (2.39)

K (R) = 〈1sa(1)1sb(2)|V(1,2)|1sb(1)1sa(2)〉, (2.40)

T(R) = 〈1sa(1)1sb(2)|1sb(1)1sa(2)〉, (2.41)

= 〈1sa(1)|1sb(1)〉2,
and

V(1,2)= −1/r2a − 1/r1b + 1/r12 + 1/Rab. (2.42)

These equations are obtained by assigning electron 1 to protona and 2 tob, so
that the kinetic energy terms and the Coulomb attraction terms−1/r1a − 1/r2b give
rise to the 2EH term in Eq. (2.38).V(1,2) in Eq. (2.42) is then that part of the
Hamiltonian that goes to zero for the atoms at long distances. It is seen to consist of
two attraction terms and two repulsion terms. As observed by Heitler and London,
the bonding in the H2 molecule arises from the way these terms balance in theJ
andK integrals. We show a graph of these integrals in Fig. 2.4. Before continuing,
we discuss modifications of Eq. (2.38) when scaled 1s orbitals are used.
With the 1s′ function of Eq. (2.12), we obtain

E(α, R) = 2EH + (α − 1)2 + α
J(αR)+ K (αR)

1+ T(αR)
, (2.43)

which reduces to the energy expression of Eq. (2.38) whenα = 1. The changes
brought by including the scale factor are only quantitative in nature and leave the
qualitative conclusions unmodified.
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Figure 2.4. The relative sizes of theJ(R) andK (R) integrals.

It is important to understandwhy theJ(R) andK (R) integrals have the sizes they
do. We considerJ(R) first. As we have seen from Eq. (2.42),V(1,2) is the sum of
four different Coulombic terms from the Hamiltonian. If these are substituted into
Eq. (2.39), we obtain

J(R) = 2 j1(R)+ j2(R)+ 1/R,

j1(R) = 〈1sa| − 1/rb|1sa〉 = 〈1sb| − 1/ra|1sb〉,
j2(R) = 〈1sa(1)1sb(2)|1/r12|1sa(1)1sb(2)〉.

The quantityj1(R) is seen to be the energy of Coulombic attraction between a point
charge and a spherical charge distribution,j2(R) is the energy of Coulombic repul-
sion between two spherical charge distributions, and 1/R is the energy of repulsion
between two point charges.J(R) is thus the difference between two attractive and
two repulsive terms that cancel to a considerable extent. The magnitudeof the
charges is 1 in every case. This is shown in Fig. 2.5, where we see that the resulting
difference is only a few percent of the magnitudes of the individual terms.
This is to be contrasted with the situation for the exchange integral. In this case

we have

K (R) = 2k1(R)S(R)+ k2(R)+ S(R)2/R,

k1(R) = 〈1sa| − 1/rb|1sb〉 = 〈1sa| − 1/ra|1sb〉,
k2(R) = 〈1sa(1)1sb(2)|1/r12|1sa(2)1sb(1)〉.
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Figure 2.5. Comparison of the sizes ofj2 + 1/R and−2 j1 that comprise the positive and
negative terms in the Coulomb integral.

The magnitude of the charge in the overlap distribution, 1sa1sb, is S(R), and here
again the overall result is the difference between the energies of attractive and
repulsive terms involving the same sized charges of different shaped distributions.
The values are shown in Fig. 2.6, where we see that now there is a considerably
greater difference between the attractive and repulsive terms. This leads to a value
of about 20% of the magnitude of the individual terms.
These values forJ(R) andK (R)may be rationalized in purely electrostatic terms

involving charge distributions of various sizes and shapes.5 From the point of view
of electrostatics,J(R) is the interaction of points and spherical charge distributions.
The well-known effect, where the interaction of a point and spherical charge at a
distanceR is due only to the portion of the charge inside a sphere of radiusR, leads
to an exponential fall-offJ(R), asR increases.
The situation is not so simple withK (R). The overlap charge distribution is

shown in Fig. 2.7 and is far from spherical. The upshot of the differences is that the
k2(R) integral is theself-energyof the overlap distribution and is more dependent
upon its charge than upon its size. In addition, at any distance there is ink1(R) a
portion of the distribution that surrounds the point charge, and, again, the distance
dependence is decreased. The overall effect is thus that shown in Fig. 2.4.

5 It should not be thought that the result|J(R)| � |K (R)| is peculiar to the 1s orbital shape. It is fairly easy to
show that a single spherical Gaussian orbital in the place of the 1s leads to a qualitatively similar result. In
addition, twosphybrid orbitals, oriented toward one another, show the effect, although compared with spherical
orbitals, the disparity betweenJ andK is reduced.
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We have not yet spoken of the effect of optimizing the scale factor in Eq. (2.43).
Wang[29] showed, for the singlet state, that it varies from 1 atR= ∞ to about
1.17 at the equilibrium separation. Since bothJ andK have relatively small slopes
near the equilibrium distance, the principal effect is to increase the potential energy
portion of the energy by about 17%. The (α − 1)2 term increases by only 3%. Thus
the qualitative picture of the bond is not changed by this refinement.
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2.5.2 Kinetic energy effects

When we go beyond the simple covalent treatment and include an ionic function in
theHeitler–London treatment,weobtain a further lowering of the calculatedenergy.
At first glance, perhaps this is surprising, since the ionic function hasmore electron
repulsion than the covalent. Although we saw in Section 1.3.2 that any additional
linear variation term must lower the energy, that does not give any physical picture
of the process. We will now give a detailed analysis of how the lowering comes
about and its physical origin.
In the previous section we examined the variational result of the two-term wave

function consisting of the covalent and ionic functions. This produces a 2×2
Hamiltonian, which may be decomposed into kinetic energy, nuclear attraction,
and electron repulsion terms. Each of these operators produces a 2×2 matrix.
Along with the overlap matrix these are

S=
[
1 SIC
SC I 1

]
; T =

[
TI I TIC
TC I TCC

]
;

Vn =
[
VI I VIC
VC I VCC

]
; Ge =

[
GI I GIC

GCI GCC

]
.

As we discussed above, the two functions have the same charge density,6 and this
implies thatTI I = TCC andVI I = VCC, but we expectGI I > GCC.
The normalization of the wave function requires

1= C2
I + 2SICCI CC + C2

C. (2.44)

Two similar expressions give us the expectation values ofT amdVn,

〈T〉 = C2
I TI I + 2TICCI CC + C2

CTCC, (2.45)

〈Vn〉 = C2
I VI I + 2VICCI CC + C2

CVCC. (2.46)

Multiplying Eq. (2.44) byTCC andVCC in turn and subtracting the result from the
corresponding Eq. (2.45) or Eq. (2.46), we arrive at the equations

〈T〉 − TCC = 2(TIC − TCCSIC )CICC, (2.47)

〈Vn〉 − VCC = 2(VIC − VCCSIC )CICC, (2.48)

and we see that the differences depend on how the off-diagonal matrix elements
compare to the overlap times the diagonal elements. A similar expression forGe is
more complicated:

〈Ge〉 − GCC = 2(GIC − GCCSIC )CICC + (GI I − GCC)C
2
I . (2.49)

6 They have the same first order density matrices.
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Table 2.1.Numerical values for overlap, kinetic energy, nuclear attraction,
and electron repulsion matrix elements in the two-state calculation.

S T V G

II 1.0 1.146 814 1 −3.584 134 6 0.705 610 0
CI 0.933 221 6 0.954 081 4 −3.322 881 7 0.600 313 7
CC 1.0 1.146 814 1 −3.584 134 6 0.584 097 3

The numerical values of thematrix elements forR= Rminare shown in Table 2.1
Putting in the numbers we see thatTIC − TCCSIC = −0.116 15, and, therefore,
the kinetic energy decreases as more of the ionic function is mixed in with the
covalent. The nuclear attraction term changes in the opposite direction, but by
only about one fifth as much,VIC − VCCSIC = 0.021 910. The magnitudes of the
numbers in theG column are generally smaller than in the others and we have
GIC − GCCSIC = 0.055 221 andGI I − GCC = 0.121 513. SinceCI is not very
large, the squared term in Eq. (2.49) is not very important. AsCI grows from zero
the decrease in the energy is dominated by the kinetic energy until the squared term
in Eq. (2.49) can no longer be ignored.
Therefore, theprincipal role of the inclusionof the ionic term in thewave function

is the reduction of the kinetic energy from the value in the purely covalent wave
function. Thus, this is the delocalization effect alluded to above. We saw in the last
section that the bonding in H2 could be attributed principally to the much larger
size of the exchange integral compared to the Coulomb integral. Since the electrical
effects are contained in the covalent function, they may be considered a first order
effect. The smaller added stabilization due to the delocalization when ionic terms
are included is of higher order in VB wave functions.
We have gone into some detail in discussing the Heitler–London treatment of

H2, because of our conviction that it is important to understand the details of the
various contributions to the energy. Our conclusion is that the bonding in H2 is due
primarily to the exchange effect caused by the combination of the Pauli exclusion
principleand the requiredsinglet state.Thepeculiar shapeof theoverlapdistribution
causes the exchange effect to dominate. Early texts (see, e.g., Ref. [1]) frequently
emphasized theresonancebetween the direct and exchange terms, but this is
ultimately due to the singlet state and Pauli principle. Those more familiar with
the language of the molecular orbital (MO) picture of bonding may be surprised
that the concept ofdelocalization energydoes not arise here. That effect would
occur in the VB treatment only if ionic terms were included. We thus conclude that
delocalization is less important than the exchange attraction in bonding.
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2.6 Electron correlation

We have pushed this basis to its limit. In fact, it has a basic defect that does not
allow a closer approach to the correct answer. The electrons repel each other, and
the variation theorem tries to arrange that they not be too close together on the
average. This type of effect is called electron correlation, i.e., if the electrons stay
away from each other to some extent, their motion is said to be correlated. This
calculation does produce some correlation, since we saw that the covalent function
tends to keep the electrons apart. This is, however, only in a direction parallel to the
bond. When the molecule forms there is also the possibility for angular correlation
around the bond direction. Our simple basis makes no provision for this at all, and
a significant fraction of the remaining discrepancy is due to this failing. In addition,
Rosen[32] addedpz AOs to each center to produce polarization. These, in addition
to pπ orbitals, will provide more correlation of the type important when the atoms
are close as well as correlation of the type generally called van der Waal’s forces.
We will correct some of these defects in the next section.

2.7 Gaussian AO bases

We now turn to considering calculations with the AOs represented by sums
of Gaussians. This approach was pioneered by Boys[33], and is used almost
universally today. We will settle on a particular basis and investigate its use for
a number of different VB-like calculations.

A double-ζ + polarization basis

We define a ten-function AO basis for the H2 molecule that has two differents-type
orbitals and onep-type set on each H atom. It will be recalled that Weinbaum
allowed the scale factor of the 1s orbital to adjust at each internuclear distance.
Using two “different sized”s-type orbitals on each center accomplishes a similar
effect by allowing the variation theorem to “choose” the amount of each in the
mixture. Our orbitals are shown in Table 2.2. Thes-type orbitals are a split version
of the Huzinaga 6-Gaussian H function and thep-type orbitals are adjusted to
optimize the energy at the minimum. It will be observed that thepσ andpπ scale
factors are different. We will present an interpretation of this below.

2.8 A full MCVB calculation

The author and his students have used the term multiconfiguration valence bond
(MCVB) to describe a linear variation calculation involving more than one VB
structure (function). This practice will be continued in the present book. Other
terms have been used that mean essentially the same thing[34]. We defer a fuller
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Table 2.2.A double-zeta plus polarization (DZP) basis for H2 calculations.

1s 1s′ pσ pπ

exp c exp c exp c exp c

68.160 0 0.00 255 0.082 217 0.24 260 0.9025 1.0 0.5625 1.0
10.246 5 0.01 938
2.346 48 0.09 280
0.673 320 0.29 430
0.224 660 0.49 221
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Figure 2.8. A global view of the adiabatic energies of the H2 molecule with the DZP basis.

discussion of these terms until Chapter 7. When the MCVB calculation consists
of all of the n-electron functions the basis can support, the treatment is said to
befull.7

In the present case we have ten AO basis functions, and these provide a set
of 55 symmetric (singlet) spatial functions. Only 27 of these, however, can enter
into functions satisfying the spatial symmetry,1�+

g , of the ground state of the
H2 molecule. Indeed, there are only 14 independent linear combinations for this
subspace from the total, and, working in this subspace, the linear variation matrices
are only 14× 14. We show the energy for this basis as the lowest energy curve in
Fig. 2.8. We will discuss the other curves in this figure later.

7 Compare with the term “full CI” used in the MO regime.
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Table 2.3.Comparison of MCVB coefficients for orthogonalized AOs and “raw”
AOs at the equilibrium internuclear distance. The ordering is determined

by the orthogonalized AOs.

No. Type Symmetry function Orth. AOs Raw AOs

1 C (1sa 1sb) 0.743 681 90 0.762703 95
2 I (1sb 1sb)+ (1sa 1sa) 0.144 201 30 0.064 562 30
3 C (1sa 1s′b)+ (1s′a 1sb) −0.104 077 87 −0.036 49999
4 C (1s′a 1s

′
b) 0.050 698 84 0.065531 68

5 I (1s′a 1s
′
a)+ (1s′b 1s

′
b) −0.036 309 53 −0.069 27156

6 C (pza 1sb) − (1sa pzb) −0.025 12735 −0.034 23223
7 I (pxb pxb)+ (pyb pyb)

+ (pxa pxa)+ (pya pya) −0.024 702 92 −0.024 70292
8 I (pza pza)+ (pzb pzb) −0.018 42072 −0.018 420 85
9 I (1s′b pzb)− (1s′a pza) 0.016 544 02 0.026 116 73
10 I (1sa 1s′a)+ (1sb 1s′b) −0.015 623 66 0.137650 60
11 I (1sa pza)− (1sb pzb) −0.011 973 50 0.009689 91
12 C (1s′a pzb)− (pza 1s′b) −0.011 494 85 0.009130 60
13 C (pxa pxb)+ (pya pyb) −0.007 198 05 −0.007 19805
14 C (pza pzb) −0.006 66028 −0.006 660 48

2.8.1 Two different AO bases

TheGaussian group functions given in Table 2.2 could beused in “raw” form for our
calculation, or we could devise two linear combinations of the raw functions that
are orthogonal. Themost natural choice for the latter would be a linear combination
that is the best H1s orbital and the function orthogonal to it. It should perhaps be
emphasized that the energies are identical for the two calculations, except for minor
numerical rounding differences. We show the MCVB coefficients for each of these
in Table 2.3. Thep-type orbitals are already orthogonal to thes-type and to each
other, of course. It will be observed that we orthogonalize only on the same center,
not between centers. This is, of course, thesine qua nonof VB methods.
Examination of the coefficients shows that, although the numbers are not greatly

different, there are some significant equalities and differences between the two sets.
Considering theequalities first,wenote that this occurs for functions7and13.These
contribute to angular correlation around the internuclear axis and are completely
orthogonal to all of the other functions. This is the reason that the coefficients are
the same for the two bases.
At any internuclear separation, the overlap of the raws-type orbitals at the same

center is

〈1sa|1s′a〉 = 0.709 09, (2.50)

which is fairly large. This produces the greatest difference between the two sets,
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Table 2.4.Comparison of EGSO weights for orthogonalized AOs and “raw”
AOs at the equilibrium internuclear distance. The ordering

is determined by the orthogonalized AOs.

No. Type Symmetry function Orth. AOs Raw AOs

1 C (1sa 1sb) 0.946 195 61 0.980 762 89
10 I (1sa 1s′a)+ (1sb 1s′b) 0.043 836 16 0.002 08027
7 I (pxb pxb)+ (pyb pyb)

+ (pxa pxa)+ (pya pya) 0.004 199 01 0.004 19901
3 C (1sa 1s′b)+ (1s′a 1sb) 0.002 147 20 a

11 I (1sa pza)− (1sb pzb) 0.002 071 71 0.009 689 91
2 I (1sb 1sb)+ (1sa 1sa) 0.000 662 56 a

12 C (1s′a pzb)− (pza 1s′b)
a 0.003 052 99

5 I (1s′a 1s
′
a)+ (1s′b 1s

′
b)

a 0.000 654 57

a These and the functions not listed contribute < 0.01%.

functions 2 and 10. For the orthogonalized set, the 1sa and 1sb are good approxima-
tions to the H1s orbital and are important in the ionic function. With the raw AOs
the most important ionic term becomes function 10, which mixes the two types.
The fact that the function 1 coefficient is larger for the raw AOs than for the other
basis should not be considered too important. There is a rather larger amount of
overlap8 for the former basis.
We now compare the EGSO weights of the important functions between the

orthogonalized and raw bases. These are shown in Table 2.4. At first glance, in
looking at the covalent function, one might be surprised at how much larger the
weight is for the raw orbital. A little reflection will show, however, that this is to be
expectedand is related to theway thesecalculationsaccomplish theeffects of orbital
scaling. It will be recalled that the orbital scale factor in Eq. (2.12) was optimally
≈1.2 at the equilibrium internuclear separation in the simple calculation. The raw
AO called 1sin Table 2.4 does not have the long range component contained in
the optimized AO. Therefore, the raw AO is “tighter” and the closer of the two to
the AO the molecule desires atReq. On the other hand the orthogonalized 1s AO
is the functionappropriate for long range.The “ionic” function (1sa 1s′a)+ (1sb 1s′b),
which contains both short and long range orthogonalized AOs, compensates for
the too diffuse character of the orthogonalized 1s. We note that the sum of the
first two weights is 0.990 031 77 for orthogonalized AOs and 0.982 843 16 for raw
AOs. These are not too far from one another and indicate a similar representation
of the total wave function.

8 This is measured by the determinant of 14×14 MCVB overlap matrix. The smaller this is, the larger are all of
the coefficients of the VB functions.
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Table 2.5.Comparison of MCVB coefficients for orthogonalized
AOs and raw AOs at the internuclear distance of 20 bohr.

No. Type Symmetry function Orth. AOs Raw AOs

1 C (1sa 1sb) 1.000 000 00 0.661 346 76
2 C (1sa 1s′b)+ (1s′a 1sb) 0.000 000 00 0.197 293 67
3 C (1s′a 1s

′
b) 0.000 000 00 0.058 856 86

Table 2.6.Comparison of EGSO weights for orthogonalized
and raw AOs at an internuclear distance of 20 bohr.

No. Type Symmetry function Orth. AOs Raw AOs

1 C (1sa 1sb) 1.000 000 00 0.942 329 44
2 C (1sa 1s′b)+ (1s′a 1sb) 0.000 000 00 0.056 814 21
3 C (1s′a 1s

′
b) 0.000 000 00 0.000 856 35

When we make these same comparisons for an internuclear separation of
20 bohr, we obtain the coefficients shown in Table 2.5 and the weights shown in
Table 2.6. Now the orthogonalized AOs give the asymptotic function with one con-
figuration, while it requires three for the raw AOs. The energies are the same, of
course. The EGSO weights imply the same situation. A little reflection will show
that the three terms in the raw VB function are just those required to reconstruct
the proper H1sorbital.
It should be clear that coefficients and weights in such calculations as these

depend on the exact arrangement of the basis, and that their interpretations also
depend upon how much physical or chemical significance can be associated with
individual basis functions.

2.8.2 Effect of eliminating various structures

Aswestatedabove, thereare14different symmetry functions in the fullMCVBwith
the present basis we are discussing. It will be instructive to see how the adiabatic
energy curve changes as we eliminate these various functions in a fairly systematic
way. This is the source of the higher-energy curves in Fig. 2.8. We showed all of
them there in spite of the fact that they are not all easily distinguishable on that
scale, because that gives a better global view of how they change. We “blow up”
the region around the minimum and show this in Fig. 2.9 where the six lowest
ones are labeled (a)–(f). In addition, the Kolos and Wolniewicz curve is shown for
comparison and marked “K&W”.
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Figure 2.9. A detailed view of the adiabatic energies of theH2moleculewith theDZPbasis.

(a) This is the full calculation with all of the functions of Table 2.3.
(b) This has had functions 7 and 13 (see Table 2.3) removed. These give angular correlation

around the internuclear axis.
(c) This has had functions 4 and 5 eliminated (in addition to 7 and 13). This clearly does

not have much effect. We can categorize different structures according to how many
electrons are in orbitals that might be considered “excited”. In this case all of the AOs
except the two H1s orbitals will be considered excited. Functions 7 and 13 are of a sort
we will call “double excitations” and do not contribute much to the energy.

(d) Now 6, 8, 9, 11, 12, and 14 have been eliminated. These are the configurations that
contain thepσ AO. These are fairly important, it is seen.

(e) When we now eliminate 3 and 10 and we are left with only the covalent and ionic
configurations of the asymptotic H1sfunction.

(f) This is only function 1, the covalent one. It is seen that the ionicterm contributes fairly
little at this level.

The energy increments from omitting selected basis functions are not additive,
thus, using the amount that the energy is raised by elimination as a measure of
the importance of various configurations is not a unique process, since the result
depends upon the order of elimination. Nevertheless, the previous exercise was
instructive.
Although one would not expect a good answer, we show one more calculation

with a limited basis – that is the H1s “ionic” function by itself. It does not fall in
the region plotted in Fig. 2.9, but is shown in Fig. 2.8 where it is marked “Ionic”.
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Table 2.7.A TZ2P1Da basis for H2 calculations.

s,s′,s′′ p,p′ d

expb cc expb cc expb cc

68.160 0 0.002 55 5.027 243 0.092 05 1.140 046 1.0
10.246 5 0.019 38 1.190 621 0.474 06
2.346 48 0.092 80
0.673 320 0.294 30 0.450 098 0.578 60

0.224 660 0.492 21

0.082 217 0.242 60

a Triple-zeta+ 2 p-functions+ 1 d-function.
b exp= exponential scale factor.
c c = coefficient.

2.8.3 Accuracy of full MCVB calculation with 10 AOs

The fullMCVBcalculationgives thebest answerwehaveobtainedso far.Compared
to the Kolos and Wolniewicz result we now have 91.5% of the binding energy, but
the minimum is at 0.778 instead of 0.741 A

�

, almost 5% too large. One must realize
that the difficulty here isnotwith the VB method, but, rather, with the underlying
AO basis. We are evaluating the energy for the full calculation, which would be
the same whether we are using the VB method, orthogonal MOs followed by a full
configuration interaction (CI), or some combination.9

2.8.4 Accuracy of full MCVB calculation with 28 AOs

It is instructive to increase the size of the AO basis to see where we get to in
calculating the binding energy of H2. This is a so-called triple-ζ basis with a split
p set and ad set on each center. It is shown in Table 2.7 and is based upon
the same six-function Huzinaga orbital as is used in the previous Gaussian basis,
Table 2.2. There are 406 singlet functions that can be made from this basis, but
only 128 of them can enter into1�+

g molecular states, and these give 58 linearly
independent1�+

g functions. The 1s, 2s, 3s, 1p, and 2p orbitals we use are the
eigenfunctions of the H-atom Hamiltonian matrix in thes, s′, s′′, p, andp′ group
function basis. There is only oned-function, and it needs no modification.
The results are considerably improved over the basis of Table 2.7.We now obtain

98.6% of the binding energy and the minimum is at 0.7437 A
�

, which is only 0.3%

9 It is perhaps not too difficult to see that a nonsingular linear transformation of the underlying AObasis produces a
nonsingular linear transformation of then-electron basis. Thus, theH andSmatrices imply the sameeigenvalues,
although the coefficients in the sum giving the wave function will differ. Nevertheless, the actual wave function
for a given eigenvalue (nondegenerate ones, at least) will be the same.
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Table 2.8.EGSO weights (>0.001) for two bases.

10 AOs 28 AOs

1 (1sa 1sb) 0.946 195 61(C) 0.947 336 55(C) (1sa 1sb)
2 (1sa 2sa)+ (1sb 2sb) 0.043 836 16(I) 0.030 228 93(I) (1sa 2sa)+ (1sb 2sb)
3 0.012 119 46(C) (1sa 3sb)+ (1sb 3sa)
4 (pxa pxa)+ (pya pya) (1pxa 1pxa)+ (1pya 1pya)

+ (pxb pxb)+ (pyb pyb) 0.004 199 01(I) 0.003 736 22(I) + (1pxb 1pxb)+ (1pyb 1pyb)
5 (1sa 2sb)+ (2sa 1sb) 0.002 147 20(C)
6 0.002 316 93(C) (1sa 1pzb)+ (1sb 1pza)
7 (1sa pza)+ (1sb pzb) 0.002 071 71(I)

Total 0.998 449 70 0.995 738 09 Total

too large.We could improve these results further, but for our purposes in discussing
VB theory this is not particularly pertinent. Rather, we compare the EGSOweights
of the two calculations to ascertain how much they change.

2.8.5 EGSO weights for 10 and 28 AO orthogonalized bases

In Table 2.8 we show a comparison of the EGSO weights for the two full MCVB
calculations we have made with orthogonalized Gaussian bases. These are quite
close to one another. We have only listed functions with weights> 0.001, and in
each case there are five.
We can interpret the various weights as follows.

1. Covalent The principal function in each case is the conventional Heitler–London co-
valent basis function with a weight very close to 95%.

2. Ionic The function, in eachcase,with thenext highestweight, 3–4%, is ionic and involves
a singleexcitation into the 2sAO. This contributes to adjusting the electron correlation
and also contributes to adjusting the size of the wave function along the lines of the
scale adjustment of the Weinbaum treatment. As we have shown, it also contributes to
delocalization.

3. Covalent This function at 1.2% appears only with the larger basis set involving, as it
does, the higher 3s-function. It will contribute to scaling.

4. Ionic At ≈0.4% the next function type appears in both sets and contributes to the angular
correlation around the internuclear line.

5. Covalent At ≈0.2% the next function appears only with the smaller basis. It is the
counterpart of the 3scovalent function with the larger basis, but is relatively less
important.

6. CovalentAt ≈0.2% this function contributes to polarization with the larger basis.
7. Ionic Again, at ≈0.2% this function contributes to polarization with the smaller
basis.
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These functions contribute over 99%of the total wave function in both cases. The
smaller value for the larger basis reflects the larger number of small contribution
basis functions in that case. Although the fairly large number of basis functions
that contribute with only minor weights have an important impact on lowering the
energy, the large weight of the covalent function indicates that the bond in the H2

molecule is just as chemists always describe it: a covalent bond.
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H2 and delocalized orbitals

We now examine VB functions where the orbitals are allowed to take much more
general forms, but only one configuration is used. This more general form allows
the orbitals to range over more than one atomic center. As we shall see later, the
restriction to one configuration is appropriate only to two-electron systems, so
we must postpone the discussions of more configurations until we treat the more
advanced methods in Chapter 5.

3.1 Orthogonalized AOs

Before we examine the more general case, let us look at an unusual result due
to Slater. Earlier, in discussing solids Wannier[35] had shown how linear combi-
nations of the AOs could be made that rendered the functions orthogonal while
retaining a relatively large concentration on one center. Slater adapted this idea
to the H2 molecule. In modern language this is just making a symmetric orthogo-
nalization (see Section 1.4.2) of the basis, which in this case is a H1s function
on each of two centers, 1sa and 1sb. We are here again, following Slater, us-
ing the correct exponential functions of Eq. (2.10). The overlap matrix for this
basis is

S̄ =
[

1 S
S 1

]
, (3.1)

and the inverse square root is

S̄−1/2 =
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where S = 〈1sa|1sb〉, and the signs are appropriate for S > 0. This orthogonaliza-
tion gives us two new functions (see Eq. (1.48))

|A〉 = P|1sa〉 + Q|1sb〉, (3.3)

|B〉 = Q|1sa〉 + P|1sb〉, (3.4)

where

P = 1

2
√

1 + S
+ 1

2
√

1 − S
, (3.5)

Q = 1

2
√

1 + S
− 1

2
√

1 − S
. (3.6)

We use these in a single Heitler–London covalent configuration,

�orth = A(1)B(2) + B(1)A(2),

and calculate the energy. When R → ∞ we obtain E = −1 au, just as we should. At
R = 0.741 A

❛

, however, where we have seen that the energy should be a minimum,
we obtain E = −0.6091 hartree, much higher than the correct value of –1.1744
hartree. The result for this orthogonalized basis, which represents not only no
binding but actual repulsion, could hardly be worse.

It is interesting to consider this function in terms of the covalent and ionic func-
tions of Chapter 2. If the |A〉 and |B〉 functions in terms of the basic AOs are
substituted into �orth and the result normalized, one sees that

�orth =
√

1 + S2

1 − S2
(ψC − SψI ),

where, as always, S is the orbital overlap. Thus, this is exactly the symmetrically
orthogonalized function closer to ψC discussed above, and its vector representation
in Fig. 2.2 is clearly a considerable distance from the optimum eigenvector. Thus we
should not be surprised at the poor value for the variational energy corresponding
to �orth.

The early workers do not comment particularly on this result, but, in light of
present understanding, we may say that the symmetric orthogonalization gives very
close to the poorest possible linear combination for determining the lowest energy.
This results from the added kinetic energy of the orbitals produced by a node that is
not needed. Alternatively, one could say that the symmetric orthogonalization yields
antibonding orbitals where bonding orbitals are needed. This is a good example of
how the orthogonalization between different centers can have serious consequences
for obtaining good energies and wave functions. We shall see shortly that there are,
however, linear combinations determined in other ways that work quite well.
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3.2 Optimal delocalized orbitals

We now investigate orbitals that range over both centers with linear combinations
that minimize the calculated energy. For this simple two-electron system these may
all be viewed as extensions of the Coulson–Fisher approach we describe next. We
use the basis of Table 2.2 and compare these results with the appropriate full MCVB
calculations of Section 2.8.

3.2.1 The method of Coulson and Fisher[15]

The first calculation of the energy of H2 for optimal delocalized orbitals used

A = 1sa + λ1sb, (3.7)

B = λ1sa + 1sb, (3.8)

and, using the “covalent” function, A(1)B(2) + B(1)A(2), in the Rayleigh quotient,
adjusted the value of λ to minimize the energy. We will not duplicate this calculation
here, but bring this up, because the methods we will discuss are generalizations of
the Coulson–Fisher approach where we use in the orbitals all of the functions of
our basis with the appropriate symmetry.

3.2.2 Complementary orbitals

It will be observed that the Coulson–Fisher functions satisfy the relations

σh A = B (3.9)

and

σh B = A, (3.10)

where σh is the operation of D∞h that reflects the molecule end for end. If A and B
are also of σ symmetry,1 the “covalent” function A(1)B(2) + B(1)A(2) is of 1	+

g

symmetry. Thus, the overall state symmetry is correct, although the orbitals do not
belong to a single irreducible representation. For our first calculation we take all of
the σ-type AOs of the basis and form (the unnormalized)

A = 1sa + a1sb + b2sa + c2sb + dpza + epzb (3.11)

and

B = σh A, (3.12)

1 The reader should note carefully the two different uses of the symbol σ here. One is a group operation, the other
the state designation of an orbital.
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Table 3.1. Energies of optimal orbital calculations.

Distance Complementary Unsymmetric
A
❛

orbitals orbitals Full MCVB

0.741 −1.143 356 −1.147 368 −1.148 052
∞ −1.0 −1.0 −1.0

−3 −2 −1
0

1
2

3 −3
−2

−1
0

1
2

3

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

z-coordinate

x-coordinate

Orbital value

Figure 3.1. Altitude drawing of the A optimal complementary orbital for values in the x–z
plane. The H nuclei are on the z-axis. The two vertical lines point at the nuclei.

where a, . . . , e are the variation constants to be optimized.2 These orbitals are
inserted in the covalent function, and the Rayleigh quotient minimized with respect
to the variation parameters. We show the results for two internuclear distances in
the second and fourth columns of Table 3.1 together with the calculation of the full
MCVB using the same AO basis, i.e., omitting the pπ AOs.

It will be recalled by examining Table 2.3 that there are 12 independent σ -AO-
only VB functions in the MCVB. Our complementary orbital function has only five
independent parameters, so it certainly cannot duplicate the MCVB energy, but it
reproduces 96.8% of the binding energy of the latter calculation.

We show a 3D altitude drawing of the amplitude of the A orbital in Fig. 3.1. It is
easily seen to be extended over both nuclei, and it is this property that produces in the
wave function the adjustment of the correlation and delocalization that is provided
by the ionic function in the linear variation treatment with the same AO basis.

We point out that these results are obtained without any “ionic” states in the wave
function and such are not needed. As we argued in Chapter 2, the principal role of
the ionic functions is to provide delocalization of the electrons when the molecule

2 We note that we cannot introduce the pπ AOs here and retain the 1	+
g state symmetry.
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forms. Since the orbital is itself delocalized, the wave function requires nothing
further.

We also anticipate the discussion of Chapter 7 by pointing out that the wave
function we have obtained here is a simple version of Goddard’s generalized valence
bond (GGVB) or the spin coupled valence bond SCVB treatment of Gerratt, Cooper,
and Raimondi. The GGVB in general has orthogonality prescriptions that do not,
however, arise in the two electron case.

3.2.3 Unsymmetric orbitals

Instead of using Eq. (3.12) we might use a B defined as

B ′ = 1sb + a′ 1sa + b′ 2sb + c′ 2sa + d ′ pzb + e′ pza. (3.13)

Of course, if this is used in A(1)B ′(2) + B ′(1)A(2), the result does not have the
correct symmetry, therefore we must use a projection operator to obtain the 1	+

g

state. Defining A′ = σh B ′ and B = σh A, we have

1

2
[I + σh][A(1)B ′(2) + B ′(1)A(2)]

= 1

2
[A(1)B ′(2) + B ′(1)A(2) + B(1)A′(2) + A′(1)B(2)], (3.14)

and when this ten-parameter function is optimized with the Rayleigh quotient we
obtain the results in the third column of Table 3.1 We now have 99.5% of the full
binding energy, which is a credible showing. These orbitals are visibly different
from the complementary optimal orbital as can be seen in the plots of A in Fig. 3.2
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Figure 3.2. Altitude drawing of the A optimal unsymmetric orbital for values in the x–z
plane. The H nuclei are on the z-axis. The two vertical lines point at the nuclei.
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Figure 3.3. Altitude drawing of the A′ optimal unsymmetric orbital for values in the x–z
plane. The H nuclei are on the z-axis. The two vertical lines point at the nuclei.

and A′ in Fig. 3.3. This A is more evenly distributed over the molecule, and A′ is
less so, being somewhat outside of the region between the nuclei.

The question might be asked: can angular correlation be included in an optimal
orbital treatment? The answer is yes, but it is somewhat troublesome in general
with infinite groups like D∞h . We merely need to generalize the trick we pulled to
obtain the wave function of Eq. (3.14). The projection operator there guarantees
the g (gerade) subscript on the state symmetry, 1	+

g . If we add pπ orbitals to our
unsymmetric optimal orbitals we must also apply a projection operator to guarantee
the 	 part of the state symmetry. The appropriate operator in general is then

1

4π
(I + σh)

∫ 2π

0
Cφdφ, (3.15)

where Cφ is a rotation about the z-axis of φ radians. This is not an operation
convenient to deal with on a digital computer. We will not pursue these ideas
further. As stated, such integral projection operators are troublesome to implement,
and, in particular, they are clearly not very useful if there is no symmetry, which is
true of most molecules.
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Three electrons in doublet states

In Chapter 5 we give an analysis of VB functions that is general for any number
of electrons. In order to motivate some of the considerations we discuss there
we first give a detailed example of the requirements when one is to construct
an antisymmetric doublet eigenfunction of the spin for a three-electron system.
Pauncz[36] has written a useful workbook on this subject.

We will first give a discussion of some results of general spin-operator algebra;
not much is needed. This is followed by a derivation of the requirements spatial
functions must satisfy. These are required even of the exact solution of the ESE. We
then discuss how the orbital approximation influences the wave functions. A short
qualitative discussion of the effects of dynamics upon the functions is also given.

4.1 Spin eigenfunctions

The total spin operator and operator for thez-component are

�S2 = �S2
1 + �S2

2 + �S2
3, (4.1)

Sz = Sz1 + Sz2 + Sz3, (4.2)

where we see that both operators aresymmetric1 sums of operators for the three
identical electrons. Many treatments of spin discuss the raising and lowering oper-
ators for thez-component of the total spin[4]. These are symmetric operators we
symbolize as

S+ = Sx + i Sy (4.3)

for raising and

S− = Sx − i Sy (4.4)

1 The termsymmetricis used in a variety of ways by mathematicians and in this book. The important point here
is that the term implies that forn particles these spin operators commute with any permutation ofn objects.
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for lowering. With these, two alternative forms of�S2 are possible:

�S2 = S−S+ + Sz(Sz + 1), (4.5)

= S+S− + Sz(Sz − 1). (4.6)

These are quite useful for constructing spin eigenfunctions and are easily seen to
be true, not only for three electrons, but forn.

In Chapter 2 we usedη±1/2 to represent individual electron spin functions, but
we would now like to use a more efficient notation. Thus we take [+ + +] to
represent the product of threems = +1/2 spin functions, one for electron 1, one for
electron 2, and one for electron 3. As part of the significance of the symbol we
stipulate that the+ or – signs refer to electrons 1, 2, and 3 in that order. Thus, in
the notation of Chapter 2, we have, for example,

[+ + −] = η1/2(1)η1/2(2)η−1/2(3). (4.7)

Familiar considerations show that there are all together eight different [± ± ±],
they are all normalized and mutually orthogonal, and they form a complete basis
for spin functions of three electrons.

The significance of Eqs. (4.5) and (4.6) is thatany spin functionφ with the
properties

S+φ = 0 (4.8)

and

Szφ = MSφ, (4.9)

is automatically alsoaneigenfunctionof the total spinwitheigenvalueMS(MS + 1).
Similarly, if φ satisfies

S−φ = 0 (4.10)

and

Szφ = MSφ, (4.11)

it is automatically also an eigenfunction of the total spin with eigenvalueMS

(MS − 1).
We may use this to construct doublet eigenfunctions of the total spin for our three

electrons. Thus, consider

φ = a[− + +] + b[+ − +] + c[+ + −], (4.12)

where, clearly, we haveSzφ = 1/2φ. Applying the operatorS+ to this gives

S+φ = (a + b + c)[+ + +]. (4.13)

According to our requirements, this must be zero ifφ is to be an eigenfunction of the
total spin, therefore, we must have (a + b + c) = 0, since [+ + +] certainly is not
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zero. We have one (homogeneous) equation in three unknowns so there is more than
one solution – in fact, there are an infinite number of solutions. Nevertheless, all of
them may be written as linear combinations of (in this case) just two. We observe
that we can write three solutions of the form (a, b, c) = (1,−1,0), (1,0,−1), and
(0,1,−1), but that any one of these may be written as the difference of the other
two. Thus, there are only twolinearly independentsolutions among our three, and
anydoublet spin function for three electrons may be written as a linear combination
of these two.

When dealing with spin functions it is normally convenient to arrange the bases
to be orthonormal, and we obtain two functions,

2φ1 = 1√
6
(2[+ + −] − [+ − +] − [− + +]) (4.14)

and

2φ2 = 1√
2
([+ − +] − [− + +]). (4.15)

For simplicity we do not label these functions with theMS value. Our work in VB
theory and solving the ESE seldom needs any but the principal spin function with
MS = S. TheS− operator is always available should otherMS values be needed.

With the spin eigenfunctions of Eqs. (4.14) and (4.15) we have an example of
thespin degeneracyalluded to in Chapter 2. Unlike the single singlet function we
arrived at for two electrons in Section 2.1.1 we now obtain two.2 Writing out the
equations specifically,

�S2 2φ1 = 1/2
(
1/2 + 1

)2
φ1, (4.16)

�S2 2φ2 = 1/2
(
1/2 + 1

)2
φ2, (4.17)

we see that both of the functions have the same eigenvalue, and it is degenerate. In
Chapter 5 we shall see that the degree of this degeneracy is related to the sizes of
irreducible representations of the symmetric groups. We defer further discussion
until that place.

4.2 Requirements of spatial functions

We now have a significant difference from the case of two electrons in a singlet
state, namely, we have two spin functions to combine with spatial functions for a
solution to the ESE rather than only one. For a doublet three-electron system our
general solution must be

2� = 2ψ1
2φ1 + 2ψ2

2φ2, (4.18)

2 Four really, considering that each2φ1 and2φ2 has bothmS = ±1/2 forms, also.
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and, apparently, we have two spatial functions to determine.Wehave not yet applied
the antisymmetry requirement, however. With this it will develop that2ψ1 and2ψ2

are not really independent and only one need be determined.
We must now investigate the effect of the binary interchange operators,Pi j on

the2φi functions. We suppress the2 spin-label superscript for these considerations.
It is straightforward to determine

P12φ1 = φ1, (4.19)

P12φ2 = −φ2, (4.20)

P13φ1 = (2[− + +] − [+ − +] − [+ + −])/
√

6

= −1

2
φ1 −

√
3

2
φ2, (4.21)

P13φ2 = ([+ − +] − [+ + −])/
√

2

= −
√

3

2
φ1 + 1

2
φ2, (4.22)

P23φ1 = (2[+ − +] − [+ + −] − [− + +])/
√

6

= −1

2
φ1 +

√
3

2
φ2, (4.23)

P23φ2 = ([+ + −] − [− + +])/
√

2

=
√

3

2
φ1 + 1

2
φ2, (4.24)

and the results of applying higher permutations may be determined from these.
We now apply thePi j operators to� and require the results to be antisymmetric.

Using the fact that theφi are linearly independent, forP12 we obtain

P12� = −� = (P12ψ1)φ1 − (P12ψ2)φ2,

P12ψ1 = −ψ1, (4.25)

P12ψ2 = ψ2, (4.26)

and the others in a similar way give

P13ψ1 = 1

2
ψ1 +

√
3

2
ψ2, (4.27)

P13ψ2 =
√

3

2
ψ1 − 1

2
ψ2, (4.28)

P23ψ1 = 1

2
ψ1 −

√
3

2
ψ2, (4.29)

P23ψ2 = −
√

3

2
ψ1 − 1

2
ψ2, (4.30)
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and, finally,

P12P13ψ1 = −1

2
ψ1 +

√
3

2
ψ2, (4.31)

P12P13ψ2 = −
√

3

2
ψ1 − 1

2
ψ2, (4.32)

P12P23ψ1 = −1

2
ψ1 −

√
3

2
ψ2, (4.33)

P12P23ψ2 =
√

3

2
ψ1 − 1

2
ψ2. (4.34)

With all of these relations it is not surprising that we can find several that express
ψ2 in terms of sums of permutedψ1 functions. An example is

ψ2 = (P13 − P23)ψ1/
√

3. (4.35)

This allows us to obtain some information about the normalization of theψi

functions, since

〈ψ2|ψ2〉 = 1

3
〈(P13 − P23)ψ1|(P13 − P23)ψ1〉,

= 1

3
〈ψ1|(I − P13P23 − P23P13 + I )ψ1〉,

= 1

3
〈ψ1|(2I − P12P13 − P12P23)ψ1〉,

= 〈ψ1|ψ1〉, (4.36)

where we have used Eqs. (4.31) and (4.33).3 Thus, the spin eigenfunction–
antisymmetry conditions require thatψ1 and ψ2 have the same normalization,
whatever it is. Furthermore, thePi j operators commute with the Hamiltonian of the
ESE, and an argument similar to that leading to Eq. (4.36) yields

〈ψ2|H |ψ2〉 = 〈ψ1|H |ψ1〉. (4.37)

These considerations may now be used to simplify the Rayleigh quotient for�,
and we see that

〈�|H |�〉
〈�|�〉 = 〈ψ1|H |ψ1〉 + 〈ψ2|H |ψ2〉

〈ψ1|ψ1〉 + 〈ψ2|ψ2〉 , (4.38)

= 〈ψ1|H |ψ1〉
〈ψ1|ψ1〉 , (4.39)

and contrary to what appeared might be necessary above, we need to determine
only one function to obtain the energy. We emphasize that Eq. (4.39) is true even

3 We remind the reader that all permutations are unitary operators. Since binary permutations are equal to their
own inverses, they are also Hermitian. Products of commuting binaries are also Hermitian.
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for the exact solution to the ESE. The constraints that our spin eigenfunction–
antisymmetry conditions impose on the wave function require thatψ1 andψ2 be
closely related, and, if a method is available for obtainingψ1, ψ2 may then be
determined usingPi j operators.

If we wish to apply the variation theorem toψ1, we still need the condition it must
satisfy. Reflecting back upon the two-electron systems, we see that the requirement
of symmetry for singlet functions could have been written

1

2
(I + P12)

1ψ(12)= 1ψ(12). (4.40)

Examining our previous results we see that a corresponding relation for the three-
electron case may be constructed:

1

3
(2I − P12P13 − P12P23)

2ψ(123)= 2ψ(123). (4.41)

This has the correct form: it is Hermitian and idempotent, but that it is actually
correct will be more easily ascertained after our general discussion of the next
chapter.

4.3 Orbital approximation

We now specialize ourψ-function, considering it to be a linear combination of
products of only three independent orbitals. At the outset we usea, b, andc to
represent threedifferent functions that are to beusedasorbitals. To keep thenotation
from becoming too cumbersome, we use an adaptation of the [· · ·] symbols above.
Thus we let

[abc] = a(1)b(2)c(3), (4.42)

[bca] = b(1)c(2)a(3), (4.43)

etc. There are, of course, six such functions, since there are six permutations of
three objects.

Applying the doublet projector in Eq. (4.41) to each of the six product functions,
we obtain the six linear combinations,

w1 = {2[abc] − [bca] − [cab]}/3, (4.44)

w2 = {2[bca] − [cab] − [abc]}/3, (4.45)

w3 = {2[cab] − [abc] − [bca]}/3, (4.46)

w4 = {2[acb] − [cba] − [bac]}/3, (4.47)

w5 = {2[cba] − [bac] − [acb]}/3, (4.48)
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and

w6 = {2[bac] − [acb] − [cba]}/3. (4.49)

It is easy to see that these are not all linearly independent: in fact,

w1 + w2 + w3 = 0 (4.50)

and

w4 + w5 + w6 = 0. (4.51)

There are, therefore, apparently four functions based upon these orbitals to be
used for doublet states. Again, there seems to be too many, but we now show how
these are to be used. To proceed, we dispense withw3 andw6, since they are not
needed.

We now construct functions that satisfy Eqs. (4.25) and (4.26). By direct calcu-
lation we find that

P12w1 = −w4 − w5, (4.52)

P12w2 = w5, (4.53)

P12w4 = −w1 − w2, (4.54)

and

P12w5 = w2. (4.55)

Thews constitute a basis for a matrix representation ofP12

P12 =
[

0 A
A 0

]
, (4.56)

where

A =
[−1 −1

0 1

]
. (4.57)

A has eigenvalues±1 and is diagonalized by the (nonunitary) similarity trans-
formation:

M−1AM =
[−1 0

0 1

]
, (4.58)

M =
[

1 1
0 −2

]
. (4.59)

We now subjectP12 to a similarity transformation byN,

N =
[
M −M
M M

]
, (4.60)
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and obtain

N−1P12N =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 . (4.61)

We may work outP23 in the same way and subject it to the same similarity trans-
formation to obtain

N−1P23N =




1/2 3/2 0 0
1/2 −1/2 0 0

0 0 −1/2 −3/2
0 0 −1/2 1/2


 . (4.62)

These do not yet quite satisfy the conditions on antisymmetry given in Eqs. (4.25),
(4.26), (4.29), and (4.30), but further transformation by

Q =




1 0 0 0
0 −1/

√
3 0 0

0 0 0 1
0 0 1/

√
3 0


 (4.63)

yields

Q−1N−1P12NQ =




−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


 (4.64)

and

Q−1N−1P23NQ =




1/2 −√
3/2 0 0

−√
3/2 −1/2 0 0

0 0 1/2 −√
3/2

0 0 −√
3/2 −1/2


 , (4.65)

which do agree. SinceP13 = P12P23P12 the requirements for that matrix will also
be satisfied. Putting together all of the transformations we eventually arrive at

x = Q−1N−1w, (4.66)
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wherew= [w1 w2 w4 w5]† with the components defined in Eqs. (4.44), (4.45),
(4.47), and (4.48), respectively. Thus we have the four functions,4

x1 = {[abc] − [cab] + [acb] − [bac]}/2, (4.67)

x2 = {2[bca] + 2[cba] − [cab] − [acb] − [abc] − [bac]}/√
12, (4.68)

x3 = {2[bca] − 2[cba] − [cab] + [acb] − [abc] + [bac]}/√
12, (4.69)

and

x4 = {−[abc] + [cab] + [acb] − [bac]}/2. (4.70)

Therefore, the four linearly independent functions we obtain in the orbital approx-
imation can be arranged into two pairs of linear combinations, each pair of which
satisfies the transformation conditions to give an antisymmetric doublet function.
The most general total wave function then requires another linear combination of
the pair of functions. In this case Eq. (4.18) can be written

2� = (x1 + αx3)
2φ1 + (x2 + αx4)

2φ2, (4.71)

whereα is a new variation parameter that is characteristic of the doublet case when
we use orbital product functions. The same value,α, is required in both terms
because of Eq. (4.35). In addition, Eq. (4.39) is still valid, of course, so that the
energy is calculated from

W = 〈(x1 + αx3)|H |(x1 + αx3)〉
〈(x1 + αx3)|(x1 + αx3)〉 . (4.72)

Thus, even without mixing in configurations of different orbitals, determining the
energy of a doublet system of three electrons in three different orbitals is a sort of
two-configuration calculation.

The way this function represents the system is strongly influenced by the dy-
namics of the problem, as well as the flexibility allowed. If we were to find the set
of three orbitals and value ofα minimizing W, we obtain essentially the SCVB
wave function. What this looks like depends significantly on the potential energy
function. If we are treating theπ system of the allyl radical, where all three orbitals
are nearly degenerate, we obtain one sort of answer. If, on the other hand, we treat
a deep narrow potential like the Li atom, we would obtain two orbitals close to one
another and like the traditional 1s orbital of self-consistent-field (SCF) theory. The
third would resemble the 2sorbital, of course.

4 These are displayed with an arbitrary overall normalization. This is unimportant in the Rayleigh quotient so long
as the functions’ normalizations are correct relative to one another. The real normalization constant depends
upon the overlaps, of course.
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If, as a further approximation, we force the two inner orbitals of the Li-atom
treatment to be the same, the need forα disappears. In Eqs. (4.67)–(4.70) we put
c = b, and the result is

x1 = [abb] − [bab], (4.73)

x2 = {2[bba] − [bab] − [abb]}/√3, (4.74)

and

x3 = x4 = 0, (4.75)

and we no longer havetwo pairs of functions with the correct properties. There
is not an extra variation parameter to determine in this case. The most general
wave function of this sort with optimized orbitals is the ordinary spin-restricted
open-shell Hartree–Fock (ROHF) function.5

If we have three orbitals the same,c = b = a, we then see that all of thexi

vanish identically. This is clearly the familiar answer: the Pauli exclusion principle
prohibits three electrons having the same spatial part of their spin orbitals.

In Chapter 10, after we have discussed the generaln-electron problem, we will
illustrate these two three-electrondoublet systemswith somecalculations.Wedelay
these examples because notational problems will be considerably simpler at that
time.

Above, we commented on the unfortunate increase in complexity in going from
a two-electron singlet system to a three-electron doublet system. Unfortunately, the
complexity accelerates as the number of electrons increases.

5 The ordinary unrestricted Hartree–Fock (UHF) function is not written like either of these. It is not a pure spin
state (doublet) as are these functions. The spin coupled VB (SCVB) function is lower in energy than the UHF
in the same basis.
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Advanced methods for larger molecules

As was seen in the last chapter, the effect of permutations on portions of the wave
function is important in enforcing their correct character. The permutations of
n entities form a group in the mathematical sense that is said to be one of the
symmetric groups.1 In particular, when we have all of the permutations ofn entities
thegroup is symbolizedSn. In this chapterwegive, using the theoryof thesymmetric
groups, a generalization of the special treatment of three electrons discussed above.
There are several more or less equivalent methods for dealing with the twin

problemsof constructingantisymmetric functions that arealsoeigenfunctionsof the
spin. Where orbitals are orthogonal the graphical unitary group approach (GUGA),
based upon the symmetric group and unitary group representations, is popular
today.WithVB functions, which perforce have nonorthogonal orbitals, a significant
problem centers around devising algorithms for calculating matrix elements of the
Hamiltonian that are efficient enough to be useful. In the past symmetric group
methods have been criticized as being overcomplicated. Nevertheless, the present
author knows of no other techniques for obtaining what appears to be the optimal
algorithm for these calculations.
This chapter is the most complicated and formal in the book. Looking back

to Chapter 4 we can obtain an idea of what is needed in general. In this chapter
we:

1. outline the theory of the permutation (symmetric) groups and their algebras. The goal
here is the special, “factored” form for the antisymmetrizer of Section 5.4.10, since, in
this form the influence of the spin state on the spatial functions is especially transparent;

2. show how the resultant spatial functions allow an optimal algorithm for the evaluation
of matrix elements of the Hamiltonian, which is given;

3. show the way to generate HLSP functions from the previous treatment.

1 A word of caution here is in order. Groups describing spatial symmetry are frequently spoken of as symmetry
groups. These should be distinguished from thesymmetric groups.
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These are the principal ideas of this chapter although the order is not exactly given
by the list, and we start with an outline of permutation groups.

5.1 Permutations

Theword permutation has twomeanings in commonusage. The standard dictionary
definition “an arrangement of a number of objects” is one of them, but we will
reserve it to meanthe act of permuting a set of objects. In this work the word
“arrangement” will be used to refer to the particular ordering and “permutation”
will always refer to the act of changing the arrangement. The set of “acts” that result
in a particularrearrangement is not unique, but we do not need to worry about this.
We just consider it the permutation producing the rearrangement.
In Chapter 4 we used symbols likePi j to indicate a binary permutation, but

this notation is much too inefficient for general use. Another inefficient notation
sometimes used is (

↓ 1 2 3 · · · n
i1 i2 i3 · · · i n

)
,

wherei1, i2, . . . , i n is a different arrangement of the firstn integers. We interpret
this to mean that the object (currently) in positionj is moved to the positioni j
(not necessarily different fromj ). The inversepermutation could be symbolized
by reversing the direction of the arrow to↑. There is too much redundancy in this
symbol for convenience, and permutations are most frequently written in terms of
theircycle structure.
Every permutation can be written as a product, in the group sense, of cycles,

which are represented by disjoint sets of integers. The symbol (12) represents the
interchange of objects 1 and 2 in the set. This is independent of the number of
objects.
A cycle of three integers (134) is interpreted as instructions to take the object

in position 1 to position 3, that in position 3 to position 4, and that in position
4 to position 1. It should be clear that (134), (341), and (413) all refer to actions
with the same result. A permutation may have several cycles, (12)(346)(5789). It
should be observed that there are no numbers common between any of the cycles.
A unary cycle, e.g., (3), says that the object in position 3 is not moved. In writing
permutations unary cycles are normally omitted.
The group nature of the symmetric groups arises because the application of two

permutations sequentially is another permutation, and the sequential application
can be defined as the group multiplication operation. If we write the product of two
permutations,

(124)× (34)= (1243), (5.1)
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we say (34) is applied first and then (124). Working out results like that of
Eq. (5.1) is fairly simple with a little practice. If we decide to write cycles with the
smallest number in them first, we would start by searching the product of cycles
from the right for the smallest number, which is 1. The rightmost reference to 1
says “1→ 2”, the rightmost reference to 2 says “2→ 4”, the rightmost reference
to 4 says “4→ 3”, the rightmost reference to 3 says “3→ 4”, but 4 appears again
in the left factor where “4→ 1”, closing the cycle. If two cycles have no numbers
in common, their product is just the two of them written side by side. The order is
immaterial; thus they commute. It may be shown also that the product defined this
way is associative, (ab)c = a(bc).
The inverse of a cycle is simply obtained by writing the numbers in reverse

order. Thus (1243)−1= (3421)= (1342), and (1243)(1342)= I, the identity, which
corresponds in this case to no action, of course. We have here all the requirements
of a finite group.

1. A set of quantities with an associative law of composition yielding another member of
the set.

2. An identity appears in the set. The identity commutes with all elements of the set.
3. Corresponding to eachmember of the set there is an inverse. (The first two lawsguarantee
that an element commutes with its inverse.)

A cycle can be written as a product of binary permutations in a number of ways.
One of these is

(i1i2i3 · · · i n−1i n) = (i1i2)(i2i3) · · · (i n−1i n). (5.2)

The ternary cycle that is the product of two binary permutations with one number
in common can be written in three equivalent ways, (i1i2)(i2i3) = (i2i3)(i1i3) =
(i1i3)(i1i2). Clearly, these transformations could be applied to the result of Eq. (5.2)
to arrive at a large number of products of different binaries. Nevertheless, each one
contains the same number of binary interchanges.
A cycle of n numbers is always the product ofn− 1 interchanges, regardless

of the way it is decomposed. In addition, these decompositions can vary in their
efficiency. Thus, e.g., (12)(23)(14)(24)(14)= (23)(13)(12)= (13) all represent the
same permutation, but they all have anodd number of interchanges in their
representation.
In general, a permutation is the product ofm2 binary cycles,m3 ternary cycles,m4

quaternary cycles, etc., all of which are noninteracting. If all of these are factored
into (now interacting) binaries, the number is

σ =
jmax∑
j=2
( j − 1)mj , (5.3)
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which is called thesignatureof the permutation. A permutation is said to be even or
odd according to whetherσ is an even or odd number. The value ofσ depends upon
the efficiency of the decomposition, but its oddness or evenness does not. Therefore,
the product of two even or two odd permutations is even, while the product of an
even and an odd permutation is odd.

5.2 Group algebras

We need to generalize the idea of a group to that of group algebra. The reader has
probably already used these ideas without the terminology. Theantisymmetrizer
we have used so much in earlier discussions is just such an entity for a symmetric
group,Sn,

A = 1

n!

∑
π∈Sn

(−1)σπ π, (5.4)

= A2, (5.5)

whereσπ is the signature of the permutation defined in Eq. (5.3). We note that
Eq. (5.4) describes an entity in which we havemultiplied group elements by scalars
(±1) and added the results together. Equation (5.5) implies that we may multiply
two such entities together, collect the terms by adding together the coefficients of
like permutations, and write the result as an algebra element. Hence,A is idem-
potent. NB The assumption that we can identify the individual group elements
to collect coefficients is mathematically equivalent to assuming the group ele-
ments themselves form alinearly independentset of algebra elements.2 The reader
may feel that couching our argument in terms of group algebras is unnecessarily
abstract, but, unfortunately, without this idea the arguments become excessively
tedious.
Thus, we define the operations of multiplying a group element by a scalar and

adding two or more such entities. In this, we assume the elements of the group to
be linearly independent, otherwise the mathematical structure we are dealing with
would be unworkable. An element,x, of the algebra associated withSn can be
written

x =
∑
ρ∈Sn

xρρ, (5.6)

wherexρ is, in general, a complex number. Two elements of the algebra may be

2 In most arguments involving spatial symmetry, the group character projections used are implicitly (if not
explicitly) elements of the algebra of the corresponding symmetry group.
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added, subtracted, or multiplied

x ± y =
∑
ρ∈Sn

(xρ ± yρ)ρ (5.7)

and

xy=
∑
ρ∈Sn

∑
π∈Sn

xρ yπρπ

=
∑
η∈Sn

(∑
ρ∈Sn

xρ yρ−1η

)
η, (5.8)

whereπ = ρ−1η. The way the product is formed in Eq. (5.8) should be care-
fully noted. We also note that individual elements of the group necessarily possess
inverses, but this is not true for the general algebra element.
These considerations make the elements of a group embedded in the algebra

behave like a basis for a vector space, and, indeed, this is a normed vector space.
Let x be any element of the algebra, and let [[x]] stand for the coefficient ofI in x.
Also, for all of the groups we consider in quantum mechanics it is necessary that
the group elements (not algebra elements) are assumed to be unitary. There will
be more on this below in Section 5.4 This gives the relationρ† = ρ−1. Thus we
have

||x||2 = [[x†x]] =
∑

ρ

|xρ |2 ≥ 0, (5.9)

where the equality holds if and only ifx = 0. One of the important properties of
[[xy]] is

[[xy]] = [[ yx]] (5.10)

for any two elements of the algebra. We will frequently use the “[[· · ·]]” notation in
later work.
Since the group elements we are working with normally arise as operators on

wave functions in quantum mechanical arguments, by extension, the algebra ele-
ments also behave this way. Because of the above, one of the important properties
of their manipulation is

〈φ|xψ〉 = 〈x†φ|ψ〉. (5.11)

The idea of a group algebra is very powerful and allowed Frobenius to show con-
structively the entire structure of irreduciblematrix representations of finite groups.
The theory is outlined by Littlewood[37], who gives references to Frobenius’s
work.
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5.3 Some general results for finite groups

5.3.1 Irreducible matrix representations

Many works[5, 6] on group theory describe matrix representations of groups. That
is, we have a set of matrices, one for each element of a group,G, that satisfies

D(ρ)D(η) = D(ρη), (5.12)

for each pair of group elements.3 Any matrix representation may be subjected to a
similarity transformation to obtain an equivalent representation:

D̄(ρ) = N−1D(ρ)N; ρ ∈ G, (5.13)

whereN is any nonsingularmatrix. Amongst all of the representations, unitary ones
are frequently singled out. This means that

D(ρ)−1 = D(ρ−1) = D(ρ)†, (5.14)

and, for a finite group, such unitarity is always possible to arrange. For our work,
however, we need to consider representations that are not unitary, so some of the
results quoted below will appear slightly different from those seen in expositions
where the unitary property is always assumed.
The theory of group representation proves a number of results.

1. There is a set of inequivalent irreducible representations. The number of these is equal
to the number of equivalence classes among the group elements. If theαth irreducible
representation is anfα × fα matrix, then∑

α

f 2α = g, (5.15)

whereg is the number of elements in the group.
2. The elements of the irreducible representation matrices satisfy a somewhat complicated
law of composition: ∑

ρ

Dα
j i (ρ

−1)Dβ

lk(ηρ) = δαβδ jk
g

fα
Dα
li (η). (5.16)

3. If we specify in the previous item thatη = I , theorthogonality theoremresults:∑
ρ

Dα
j i (ρ

−1)Dβ

lk(ρ) = δαβδ jkδi l
g

fα
. (5.17)

Equation (5.17) has an important implication. Consider a large table with entries,
Dα
i j (ρ

−1), and the rows labeled byρ and the columns labeled by the possible values
of α, i, and j . Because of Eq. (5.15) the table is square, and may be considered

3 The representation property does not imply, however, thatρ �= η impliesD(ρ) �= D(η).
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a g× g matrix. Because of Eq. (5.17) the matrix is necessarily nonsingular and
possesses an inverse. The inversematrix is then an array withg rows andg columns
where the entries4 are (fα/g)Dα

j i (ρ), the rows are labeled byα, i, and j , and the
columns byρ. In the theory of matrices, it may be proved that matrix inverses
commute, therefore we have another relation among the irreducible representation
matrix elements: ∑

αi j

fα
g
Dα

j i (η)D
α
i j (ρ

−1) = δηρ, (5.18)

whereδηρ is 1 or 0, according asη andρ are or are not the same.

5.3.2 Bases for group algebras

The matrices of the irreducible representations provide one with a special set of
group algebra elements. We define

eα
i j = fα

g

∑
ρ

Dα
j i (ρ

−1)ρ, (5.19)

and using Eq. (5.16) one can show that

eα
i j e

β

kl = δαβδ jke
α
i l . (5.20)

Equation (5.19) gives the algebra basis as a sum over the group elements. Using
Eq. (5.18) we may also write the group elements as a sum over the algebra basis,

ρ =
∑
αi j

Dα
i j (ρ)e

α
i j (5.21)

and, ifρ is taken as the identity, ∑
αi

eα
i i = I . (5.22)

In the theory of operators over vector spaces Eq. (5.22) is said to give theresolution
of the identity, since by Eq. (5.20) each (eα

i i )
2 = eα

i i , and isidempotent.
We note another important property of these bases. Irreducible representation

matrices may be obtained from theeα
i j by using the relation

Dα
i j (ρ) = [[

ρeα
j i

]]
, (5.23)

where we have used the [[· · ·]] notation defined above to obtain the coefficient of
the identity operation.

4 NB In the inverse we have interchanged the index labels of the irreducible representation matrix.
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The theory ofmatrix representations of groups ismore commonly discussed than
the theory of group algebras. The latter are, however, important for our discussion
of the symmetric groups, becauseYoung (this theory is discussed byRutherford[7])
has shown, for these groups, how to generate the algebra first and obtain the matrix
representations from them. In fact, we need not obtain the irreducible representation
matrices at all for our work; the algebra elementsare the operators we need to
construct spatial VB basis functions appropriate for a given spin.

5.4 Algebras of symmetric groups

5.4.1 The unitarity of permutations

Before we actually take up the subject of this section wemust give a demonstration
that permutations are unitary. This was deferred from above.
Then-particle spatial (or spin) functions we work with are elements of a Hilbert

space in which the permutations are operators. If
(1,2, . . . ,n) andϒ(1,2, . . . , n)
are two such functions we generally understand that

〈
|ϒ〉 ≡
∫


(1,2, . . . , n)∗ϒ(1,2, . . . , n)dτ1dτ2 · · ·dτn. (5.24)

If Pop andQop are operators in the Hilbert space and

〈Qop
|ϒ〉 = 〈
|Popϒ〉 (5.25)

for all 
 andϒ in the Hilbert space,Qop is said to be theHermitian conjugateof
Pop, i.e.,Qop = P†

op. Consider the integral∫

(1,2, . . . ,n)∗πϒ(1,2, . . . , n)dτ1dτ2 · · ·dτn

=
∫
[π−1
(1,2, . . . , n)]∗ϒ(1,2, . . . , n)dτ1dτ2 · · ·dτn, (5.26)

whereπ is some permutation. Equation (5.26) follows because of the possibility
of relabeling variables of definite integrals, and, since it is true for all
 andϒ ,

π † = π−1. (5.27)

This is the definition of a unitary operator.

5.4.2 Partitions

The theory of representations of symmetric groups is intimately connected with
the idea of partitions of integers. Rutherford[7] gives what is probably the most
accessible treatment of these matters. Apartition of an integern is a set of smaller
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integers, not necessarily different, that add ton. Thus 5= 3+ 1+ 1 constitutes a
partition of 5. Partitions are normally written in{· · ·}, and another way of writing
the partition of 5 is{3,12}. We use exponents to indicate multiple occurrences of
numbers in the partition, and we will write them with the numbers in decreasing
order. The distinct partitions of 5 are{5}, {4,1}, {3,2}, {3,12}, {22,1}, {2,13}, and
{15}. There are seven of them, and the theory of the symmetric groups says that this
is also the number of inequivalent irreducible representations for the groupS5 made
up of all the permutations of five objects. We have written the above partitions of
5 in the standard order, such that partitioni is before partitionj if the first number
in i differing from the corresponding one inj is larger than the one inj . When we
wish to speak of a general partition, we will use the symbol,λ.

5.4.3 Young tableaux andNN andPP operators

Associated with each partition there is a table, called by Young atableau. In our
example using 5, we might place the integers 1 through 5 in a number of rows
corresponding to the integers in a partition, each row having the number of entries
of that part of the partition, e.g., for{3,2}and{22,1}we would have

[
1 2 3
4 5

]
and


1 2
3 4
5


 ,

respectively. The integersmight be placed in another order, but, for now, we assume
they are in sequential order across the rows, finishing each row before starting the
next.
Associated with each tableau, we may construct two elements of the group

algebra of the corresponding symmetric group. The first of these is called therow
symmetrizerand is symbolized byP. Each row of the tableau consists of a distinct
subset of the integers from 1 throughn. If we add together all of the permutations
involving just those integers in a row with the identity, we obtain the symmetrizer
for that row. Thus for the{3,2} tableau, the symmetrizer for the first row is

I + (12)+ (13)+ (23)+ (123)+ (132)

and for the second is

I + (45).

Thus, the total row symmetrizer,P is
P = [ I + (12)+ (13)+ (23)+ (123)+ (132)][I + (45)]. (5.28)
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The second of these is thecolumn antisymmetrizerand is symbolized byN . As
might be expected, for the{3,2} tableau the column antisymmetrizer is the product
of the antisymmetrizer for each column and is

N = [ I − (14)][I − (25)]. (5.29)

In these expressions a symmetrizer is the sum of all of the corresponding permu-
tations and the antisymmetrizer is the sum with plus signs for even permutations
and minus signs for odd permutations. In Eqs. (5.28) and (5.29) the specificP and
N are given for the arrangement of numbers in the{3,2} tableau above. A different
arrangement of integers in this same shape would in many, but not all, cases give
differentPP andNN operators.
As a further example we give theP andN operators for the above tableau

associated with the shape{22,1}. For this we have
P = [ I + (12)][I + (34)],
N = [ I − (13)− (15)− (35)+ (135)+ (153)][I − (24)].

Here, again,I is the only operation in common betweenP andN .
A central result of Young’s theory is that the productNP is proportional to an

algebra element that will serve as one of theeα
i i basis elements discussed above,

and the proportionality constant isfα/n!, n! being the value ofg in this case. The
productPN serves equally well, but is, of course, a different element of the algebra,
sinceN andP do not normally commute.

5.4.4 Standard tableaux

In a tableau corresponding to a partition ofn, there are, of course,n! different
arrangements of the way the firstn integers may be entered. Among these there is a
subset that Young calledstandard tableaux. These are those for which the numbers
in any row increase to the right and downward in any column. Thus, we have for
{3,2}[
1 2 3
4 5

]
,

[
1 2 4
3 5

]
,

[
1 2 5
3 4

]
,

[
1 3 4
2 5

]
, and

[
1 3 5
2 4

]
,

and among the 120 possible arrangements, only five are standard tableaux. These
standard tableaux have been ordered in a particular way called alexical sequence.
We label the standard tableaux,T1, T2, . . . and imagine the numbers of the tableau
written out in a line, row 1, row 2,. . . . We say thatTi is beforeTj if the first number
of Tj that differs from the corresponding one inTi is the larger of the two. In our
succeeding work we express the idea ofTi being earlier thanTj with the symbols
Ti < Tj .
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The operatorsP i andN i corresponding toTi are, of course, different and, in
fact, have no permutations in common other than the identity. The first important
result is that

[[NiPi ]] = 1, (5.30)

since the only permutationN i andP i have in common isI, and the numbers adding
to the coefficient of the identity cannot cancel. ThusN iP i is never zero.
The second important result here is that

PiN j = N jPi = 0, if Ti < Tj . (5.31)

This is so because there is some pair of numbers appearing in the same row ofTi
that must appear in the same column ofTj , if it is later. To see this suppose that
the entries in the tableaux are (Ti )kl and (Tj )kl , wherek and l designate the row
and column in the shape. Let the first difference occur at rowm and columnn.
Thus, (Tj )mn > (Ti )mn, but (Ti )mn must appear somewhere inTj . Because of the
way standard tableaux are ordered it must be (Tj )m′n′ , wherem′ > m andn′ < n.
Now, also by hypothesis, (Tj )mn′ = (Ti )mn′ , since this is in the region where the two
are the same. Therefore, there is a pair of numbers in the same row ofTi that appear
in the same column ofTj . Calling these numbersp andq, we have

Pi = (1/2)Pi [ I + (pq)], (5.32)

= (1/2)[I + (pq)]P i , (5.33)

N j = (1/2)Nj [ I − (pq)], (5.34)

= (1/2)[I − (pq)]N j , (5.35)

and

[ I + (pq)][ I − (pq)] = [ I − (pq)][ I + (pq)] = 0. (5.36)

One should not conclude, however, thatP jNi = NiP j = 0 if Ti < Tj . Although
true in somecases,wesee that it doesnothold true for thefirst and last of the tableaux
above. No pair in a row of the last is in a column of the first. In fact, the nonstandard
tableau

T ′ =
[
1 5 3
4 2

]

can be obtained fromT5 by permutations within rows and fromT1 by permutations
within columns. Thus,P ′ = P5 andN ′ = ±N 1, and, therefore,

P5N1 = ±P ′N ′ �= 0. (5.37)

This would also be true for the operators written in the other order.
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We stated above that there is an inequivalent irreducible representation ofSn
associated with each partition ofn, and we use the symbolfλ to represent the
number of standard tableaux corresponding to the partition,λ. Using induction on
n, Young proved the theorem ∑

λ

f 2λ = n!, (5.38)

which should be compared with Eq. (5.15).
Young also derived a formula forfλ, but, as will be seen, we need only a small

number of partitions for our work with fermions like electrons. These are either
{n− k,k} or {2k,1n−2k} for all k = 0, 1, . . . , such thatn− 2k ≥ 0. In fact, the
shapes of the tableaux corresponding to these two partitions are closely related,
beingtransposesof one another. Lettingn = 5 andk = 2, the shape of{3,2} may
be symbolized with dots as

• • •
• •

If we interchange rows and columns in this shape, we obtain

• •
• •
•

which is seen to be the shape of the partition{22,1}. Partition shapes and tableaux
related this way are said to beconjugates, and we use the symbolλ̃ to represent the
partition conjugate toλ.
It should be reasonably self-evident that the conjugate of a standard tableau

is a standard tableau of the conjugate shape. Therefore,fλ = fλ̃, and irreducible
representations corresponding to conjugate partitions are the same size. In fact, the
irreducible representations are closely related. IfDλ(ρ) is one of the irreducible
representation matrices for partitionλ, one has

Dλ̃(ρ) = (−1)σρ Dλ(ρ), (5.39)

whereσρ is the signature ofρ.
As we noted above, Young derived a general expression forfλ for any shape.

For the partitions we need there is, however, some simplification of the general
expression, and we have for either{n− k,k} or {2k,1n−2k}

fλ = n− 2k + 1
n+ 1

(
n+ 1
k

)
, (5.40)

(
p
q

)
= p!

q!( p− q)!
. (5.41)
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5.4.5 The linear independence ofNNN iPPP i andPPP iNNN i

The relationships expressed in Eq. (5.31) can be used to prove the very important
result that the set of algebra elements,N iP i , is linearly independent. First, from
Eq. (5.30) we have seen that they are not zero, so we suppose there is a relation∑

i

aiNiPi = 0. (5.42)

We multiply Eq. (5.42) on the right, starting with the final oneNf , and, because of
Eq. (5.31), we obtain

afN fP fN f = 0. (5.43)

Therefore, eitheraf orN fP fN f , or both must be 0. We observe, however, that

[[NiPiNi ]] = [[N 2
i Pi

]]
(5.44)

= gN [[NiPi ]] (5.45)
= gN , (5.46)

wheregN is the order of the subgroup ofN , and this is true for anyi . Thus,
N fP fN f is not zero andaf in Eq. (5.43) must be. Now that we knowaf is zero,
we may multiply Eq. (5.42) on the right byN f−1, and see thataf−1 must also be
zero. Proceeding this way until we reachN 1, we see that all of theai are zero, and
the result is proved.
Permutations are unitary operators as seen in Eq. (5.27). This tells us how to take

the Hermitian conjugate of an element of the group algebra,

x† =
(∑

π

xππ

)†
, (5.47)

=
∑
π

x∗
ππ−1, (5.48)

=
∑
π

x∗
π−1π. (5.49)

In passing we note thatN andP are Hermitian, since the coefficients are real and
equal for inverse permutations.
In generalPiNi is not equal toNiPi but is itsHermitian conjugate, since (ρπ)† =

π †ρ†. Therefore, it should be reasonably obvious that thePiNi operators are also
linearly independent. We note that an alternative, but very similar, proof that all
ai = 0 in Eq. (5.42) could be constructed by multiplying on the left byP j ; j =
1,2, . . . , f sequentially.
It is now fairly easy to see that we could form a new set of linearly independent

quantities

xiNiPi ; i = 1,2, . . . , f, (5.50)
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wherexi is any set of elements of the algebra that do not result inxiNiPi = 0.
Corresponding results are true for right multiplication (i.e.,NiPi xi ). As is probably
not surprising there are parallel results for right or left multiplication onPiNi . An
important application of this result (for leftmultiplication) is analgebra element like
xi = ρPi , whereρ is any operation of the group, with corresponding expressions
for the other cases.
The operatorsPi andP j differ only in being based upon a different arrangement

of the numbers in the standard tableau they are associated with. Therefore, there
exists a permutation,πi j that will interconvertPi andP j with the relation

πi jP j = Piπi j , (5.51)

with a similar expression forN i andN j . The theorems of this section can thus
be stated in a different way. For example, we see that the quantities,P1N1π1 j =
π1 jP jN j , satisfy the definition of Eq. (5.50), and are thus linearly independent.
Threesimilar resultspertain for theother threepossiblecombinationsof theordering
of the products ofP andN on either side of the equation. Explicitly, for one of
these cases, we may write that the relation∑

i

P1N1π1i ai = 0 (5.52)

implies that allai = 0, with similar implications for the other cases.

5.4.6 Von Neumann’s theorem

VonNeumannprovedaveryuseful theorem for ourwork (quotedbyRutherford[7]).
Using our notation it can be written

PxN = [[PxN ]]PN , (5.53)

wherex is any element of the algebra andN andP are based upon the same tableau.
A similar expression holds forN xP.

5.4.7 Two Hermitian idempotents of the group algebra

Wewill choose arbitrarily to work with the first of the standard tableaux5 of a given
partition. With this we can form the twoHermitianalgebra elements

u= θPNP (5.54)

5 Any tableau would do, but we only need one. This choice serves.
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and

u′ = θ ′NPN , (5.55)

whereθ andθ ′ are real. Wemust work out what to set these values to so thatu2 = u
andu′2 = u′.
We stated at the end of Section 5.4.3 that (f/g)NP or ( f/g)PN , g = n!, will

serve as an idempotent element of the algebra associated with the partition upon
which they are based, although these are, of course, not Hermitian. This means that

NPNP = g

f
NP. (5.56)

Thus, observing thatP2 = gPP, we have
(PNP)2 = PNP2NP, (5.57)

= gPPNPNP, (5.58)

= ggP
f

PNP, (5.59)

wheregP is the order of the subgroup of theP operator. Thus, we obtain

u= f

ggP
PNP (5.60)

as an idempotent of the algebra that is Hermitian. A very similar analysis gives

u′ = f

ggN
NPN , (5.61)

wheregN is the order of the subgroup of theN operator. Although portions of the
following analysis could be done with the original non-Hermitian Young idempo-
tents, the operators of Eqs. (5.60) and (5.61) are required near the end of the theory
and, indeed, simplify many of the intervening steps.

5.4.8 A matrix basis for group algebras of symmetric groups

In the present section we will give a construction of the matrix basis only for
the u= θPNP operator. The treatment for the other Hermitian operator above is
identical and may be supplied by the reader.
Consider now the quantities,

mi j = πi1uπ1 j , (5.62)

= (mji )†, (5.63)

= π−1
i uπ j ; π j = π1 j , (5.64)
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none of which is zero. Since u is based upon the first standard tableau, from now
on we suppress the “1” subscript in these equations. This requires us, however, to
use the inverse symbol, as seen. Now familiar methods are easily used to show
thatmi j �= 0 for all i and j . In fact, the above results show that themi j constitute
f 2 linearly independent elements of the group algebra that, because of Young’s
results, completely span the space associated with the irreducible representation
labeled with the partition. Thus, because of Eq. (5.38) we have found a complete
set of linearly independent elements of the whole group algebra.
We now determine the multiplication rule formi j andmkl ,

mi j mkl = π−1
i uπ jπ

−1
k uπl . (5.65)

Examining the inner factors of this product, we see that

uπ jπ
−1
k u= θ2PNPπ jπ

−1
k PNP, (5.66)

θ = f

ggP
. (5.67)

We now apply Eq. (5.53) to some inner factors and obtain

Pπ jπ
−1
k PN = [[Pπ jπ

−1
k PN ]]PN , (5.68)

= [[
π jπ

−1
k PNP]]PN , (5.69)

uπ jπ
−1
k u= θ2

[[
π jπ

−1
k PNP]]PNPNP, (5.70)

= θ2g−1
P

[[
π jπ

−1
k PNP]]PNPPNP, (5.71)

= Mkju, (5.72)

Mkj = g−1
P

[[
π−1
k PNPπ j

]]
. (5.73)

Putting these transformations together,

mi j mkl = Mkjmil . (5.74)

All of the coefficients inPNP are real and the matrixM is thus real symmetric
(and Hermitian). Since themi j are linearly independent,M must be nonsingular.
In addition,g−1

P [[PNP]] is equal to 1, so the diagonal elements ofM are all 1.M
is essentially an overlap matrix due to the non-orthogonality of themi j .
Wenote that if thematrixM were the identity, themi j would satisfyEq. (5.20).An

orthogonalization transformation ofM may easily be effected by the nonsingular
matrixN

N†MN = I , (5.75)
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as we saw in Section 1.4.2. It should be recalled thatN is not unique; added condi-
tions are required tomake it so.Wewishm11 to be unchangedby the transformation,
and an upper triangularN will accomplish both of these goals. If we require all of
the diagonal elements ofN also to be positive, it becomes uniquely determined.
Making the transformations we have

ei j =
∑
kl

(N†)ik Nl j mkl, (5.76)

ei j ekl = δ jkeil , (5.77)
e11 = m11, (5.78)

as desired. Theseei j s constitute a real matrix basis for the symmetric group and,
clearly, generate a real unitary representation through the use of Eq. (5.23).

5.4.9 Sandwich representations

The reader might ask: “Is there a parallel to Eq. (5.23) for the nonorthogonal matrix
basiswehave just described?”Weanswer this in theaffirmativeandshow the results.
Clearly, we can define matrices

T(ρ)i j = [[ρmi j ]] , (5.79)

and it is seen that a normal unitary representation may be obtained from

D(ρ)i j =
∑
kl

(N†)ikT(ρ)kl Nl j , (5.80)

where we have used Eq. (5.76). The upshot of these considerations is that theT(ρ)
matrices satisfy

T(ρ)M−1T(π ) = T(ρπ ), (5.81)

and these have been calledsandwich representations, because of a fairly obvious
analogy. In arriving at Eq. (5.81) we have used

NN† = M−1, (5.82)

which is a consequence of Eq. (5.75).
We may also derive a result analogous to Eq. (5.21),

ρ =
∑
λi jkl

(M−1)λki T(ρ)
λ
kl(M

−1)λl j m
λ
i j , (5.83)

where we have added a partition label to each of our matrices and summed over it.
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5.4.10 Group algebraic representation of the antisymmetrizer

As we have seen in Eq. (5.21), an element of the group may be written as a sum
over the algebra basis. For the symmetric groups, this takes the form,

ρ =
∑
λi j

Dλ
i j (ρ)e

λ
i j . (5.84)

Wewish to apply permutations, and the antisymmetrizer to products of spin-orbitals
that provide a basis for a variational calculation. If each of these represents a pure
spin state, the function may be factored into a spatial and a spin part. Therefore, the
whole product,�, may be written as a product of a separate spatial function and a
spin function. Each of these is, of course, a product of spatial or spin functions of
the individual particles,

� = 
�Ms, (5.85)

where
 is a product of orbitals and�Ms is a sum of products of spin functions that
is an eigenfunction of the total spin. It should be emphasized that the spin function
has a definiteMs value, as indicated. If we apply a permutation to�, we are really
applying the permutation separately to the space and spin parts, and we write

ρ� = ρr
ρs�Ms, (5.86)

where ther or s subscripts indicate permutations affecting spatial or spin func-
tions, respectively. Since we are defining permutations that affect only one type of
function, separate algebra elements also arise:eλ

i j ,r ande
λ
i j ,s. These considerations

provide us with a special representation of the antisymmetrizer6 that is useful for
our purposes:

A = 1

g

∑
ρ∈Sn

(−1)σρρrρs (5.87)

=
∑

ρ

∑
λi j

∑
λ′i ′ j ′

Dλ
i j (ρ)e

λ
i j ,r D

λ̃′
i ′ j ′(ρ)e

λ′
i ′ j ′,s (5.88)

=
∑
λi j

1

fλ
eλ
i j ,r e

λ̃
i j ,s, (5.89)

where we have used Eq. (5.18) and the symbol for the conjugate partition.
In line with the last section we give a version of Eq. (5.89) using the non-

orthogonal matrix basis,

A =
∑
λi jkl

1

fλ
(M−1)λi j m

λ
jk,r (M

−1)λklm
λ̃
i l ,s, (5.90)

where we need not distinguish between theM−1 matrices for conjugate partitions.
6 We use the antisymmetrizer in its idempotent form rather than that with the (

√
n! )−1 prefactor.
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5.5 Antisymmetric eigenfunctions of the spin

In this section we investigate the connections between the symmetric groups
and spin eigenfunctions. We have briefly outlined properties of spin operators in
Section 4.1. The reader may wish to review the material there.
One of the important properties of all of the spin operators is that they are

symmetric. Thetotal vector spin operator is a sum of the vector operators for
individual electrons

�S=
n∑

i=1
�Si , (5.91)

indicating that the electrons are being treatedequivalentlyin these expressions.
This means that everyπ ∈ Sn must commute with the total vector spin operator.
Since all of the other operators,�S2, raising, and lowering operators, are algebraic
functions of the components of�S, they also commute with every permutation. We
use this result heavily below.

5.5.1 Two simple eigenfunctions of the spin

Consider ann electron system in a pure spin stateS. The associated partition is
{n/2+ S,n/2− S}, and the first standard tableau is[

1 · · · n/2− S · · · n/2+ S
n/2+ S+ 1 · · · n

]
,

where we have written the partition in terms of theS quantum number we have
targeted.We consider also an array of individual spin functions with the same shape
and allη1/2 in the first row andη−1/2 in the second[

α · · · α · · · α

β · · · β

]
,

where we have used the common abbreviationsα = η1/2 andβ = η−1/2. Associat-
ing symbols in corresponding positions of these two graphical shapes generates a
product ofαs andβs with specific particle labels,

� = α(1) · · · α(n/2+ S)β(n/2+ S+ 1) · · · β(n), (5.92)

Sz� = MS�, (5.93)

MS = S. (5.94)

If nowweoperate upon�withN (corresponding to{n/2+ S,n/2− S}) we obtain
a function withn/2− Santisymmetric products of the [αβ− βα] sort,

N� = [α(1)β(n/2+ S+ 1)− α(n/2+ S+ 1)β(1)] · · · α(n/2+ S). (5.95)
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The spin raising operator (see Eq. (4.3)) may now be applied to this result, and we
obtain

S+N� = NS+�,

= 0, (5.96)

where we have used the commutation ofS+ with all permutations. The following
argument indicates why the zero results. The terms ofS+ give zero with eachα
encountered but turn eachβ encountered into anα. ThusS+� is n/2− S terms
of products, each one of which has no more thann/2− S− 1 β functions in it.
Considering how these would fit into the tableau shape, we see that there would
have to be, for each term, one column in the tableau that has anα in both rows.
This column, with its corresponding factor fromN , would thus appear as

[ I − (i j )]α(i )α( j ),
which is clearly zero. Eq. (5.96) is the consequence.
Thus,N� is an eigenfunction of�S2 because of Eq. (4.5),

�S2N� = S(S+ 1)N�, (5.97)

and has total spin quantum numberS (also theMS value for this function). Other
values ofMS are available withS− should they be needed.
We now investigate the behavior of� when we apply our two simple Hermitian

idempotents discussed earlier,

�PNP = θPNP�, (5.98)

= gPθPN�, (5.99)

�NPN = θ ′NPN�. (5.100)

SinceS+ andSz both commute withN andP, both�PNP and�NPN are eigen-
functions of the�S2 operator with total spinSandMS = S.
Heretofore in this sectionwehavebeenworkingwith the partitionλ = {n/2+ S,

n/2− S}, but references to it in the equations have been suppressed. We now write
�λ

PNP and�
λ
NPN. Applying the antisymmetrizer to the function of both space and

spin that contains�λ
PNP,

A�λ
PNP =

∑
λ′i j

1

fλ′
eλ̃′
i j ,r
e

λ′
i j ,s�

λ
PNP. (5.101)

If the antisymmetrizer has been conditioned (see Eqs. (5.75)–(5.78)) so thateλ′
11,s

is θPNPλ′
, we obtain

eλ′
i j ,s�

λ
PNP = δ1 j δλλ′eλ

i1,s�
λ
PNP, (5.102)

because of the orthogonality of theeλ
i j for differentλs.
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We make a small digression and note that thespin-degeneracy problemwe have
alluded to before is evident in Eq. (5.102). It will be observed thati = 1, . . . , fλ
in the index ofeλ

i1,s�
λ
PNP, and these functions are linearly independent since the

eλ
i j ,s are. There are, thus,fλ linearly independent spin eigenfunctions of eigenvalue
S(S+ 1). Each of these has a full complement ofMS values, of course. In view
of Eq. (5.40) the number of spin functions increases rapidly with the number of
electrons. Ultimately, however, the dynamics of a system governs if many or few
of these are important.
Returning to our antisymmetrized function, we see it is now

A�PNP = 1

fλ

∑
i

eλ̃
i1,r
e

λ
i1,s�

λ
PNP, (5.103)

and we are in a position to examine its properties with regard to the Rayleigh
quotient.
Considering first the denominator, we have

〈A�PNP|A�PNP〉 = f −2
λ

∑
i j

{〈
eλ̃
i1,r


∣∣eλ̃
j1,r


〉
× 〈

eλ
i1,s�

λ
PNP

∣∣eλ
j1,s�

λ
PNP

〉}
, (5.104)

= f −1
λ

〈



∣∣eλ̃
11,r


〉〈
�PNP

∣∣eλ
11,s�

λ
PNP

〉
, (5.105)

since 〈
eλ̃
i1,r


∣∣eλ̃
j1,r


〉 = 〈



∣∣eλ̃
1i,r e

λ̃
j1,r


〉
, (5.106)

= δi j
〈



∣∣eλ̃
11,r


〉
, (5.107)

with a very similar expression for the spin integral. Since the Hamiltonian of the
ESE commutes with all permutations and symmetric group algebra elements, the
same reductions apply to the numerator, and we obtain

〈A�PNP|H |A�PNP〉 = f −1
λ

〈



∣∣H ∣∣eλ̃
11,r


〉〈
�λ

PNP

∣∣eλ
11,s�

λ
PNP

〉
. (5.108)

This result should be carefully compared to that of Eq. (4.37), where there were
two functions that have the same integral. Here we havefλ of them.7

Our final expression for the Rayleigh quotient is

E = 〈A�PNP|H |A�PNP〉
〈A�PNP|A�PNP〉 , (5.109)

=
〈

|H |eλ̃

11

〉

〈

|eλ̃

11

〉 . (5.110)

7 We may note in passing that the partition for three electrons in a doublet state is{2,1}and fλ for this is 2. That
is why we found two functions in our work in Chapter 4.
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We are now done with spin functions. They have done their job to select the correct
irreducible representation to use for the spatial part of the wave function. Since
we no longer need spin, it is safe to suppress thes subscript in Eq. (5.110) and all
of the succeeding work. We also note that the partition of the spatial functionλ̃ is
conjugate to the spin partition, i.e.,{2n/2−S,22S}. From now on, if we have occasion
to refer to this partition in general by symbol, we will drop thetilde and represent
it with a bareλ.

5.5.2 The
 function

Wehaveso far said little about thenatureof thespace function,
. Earlierwe implied
that it might be an orbital product, but this was not really necessary in our general
work analyzing the effects of the antisymmetrizer and the spin eigenfunction. We
shall now be specific and assume that
 is a product of orbitals. There are many
ways that a product of orbitals could be arranged, and, indeed, there are many
of these for which the application of theeλ

11 would produce zero. The partition
corresponding to the spin eigenfunction had at most two rows, and we have seen
that the appropriate ones for the spatial functions have at most two columns. Let
us illustrate these considerations with a system of five electrons in a doublet state,
and assume that we have five different (linearly independent) orbitals, which we
labela,b, c,d, ande. We can draw two tableaux, one with the particle labels and
one with the orbital labels,

a b
c d
e


 and


1 4
2 5
3


 .

Associating symbols in corresponding positions from these two tableaux we may
write down a particular product
 = a(1)c(2)e(3)b(4)d(5). There are, of course,
5! = 120 different arrangements of the orbitals among the particles, and all of the
products are linearly independent. When we operate on them with the idempotent8

e11, however, the linear independence is greatly reduced and instead of 120 there are
only f = 5 remaining.9 This reduction is discussed in general by Littlewood[37].
For ourwork, however, we note thate11=m11=u, and uπi are linearly independent
algebra elements. Therefore, using Eq. (5.64), the set consisting of the functions,
uπi a(1)c(2)e(3)b(4)d(5); i = 1, . . . ,5 is linearly independent.10 There are many
sets of five that have this property, but we only need a set that spans the vector

8 We now suppress theλ superscript.
9 At the beginning of Section 5.4.4 we saw that there were five standard tableau for the conjugate of the current
shape.

10 The linear independence of this sort of set is discussed in Section 5.4.5.
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space of these functions, and the ones given here, based upon standard tableaux,
will serve. We saw in Eq. (4.71) that there are two linearly independent orbital
functions for the three-electron doublet state in the most general case, this being a
consequence of the spin degeneracy of two. The result here is merely an extension.
For the partition and tableau above the spin degeneracy is five, and the number of
independent orbital functions is the same.
We saw in Chapter 4 that the number of independent functions is reduced to

one if two of the three electrons are in the same orbital. A similar reduction
occurs in general. In our five-electron example, ifb is set equal toa andc �= d,
there are only two linearly independent functions, illustrating a specific case of the
general result that the number of linearly independent functions arising from any
orbital product is determined only by the orbitals “outside” the doubly occupied
set. This is an important point, for which now we take up the general rules.

5.5.3 The independent functions from an orbital product

Assumewehave a set ofm linearly independent orbitals. In order to do a calculation
we must havem ≥ n/2+ S, wheren is the number of electrons. Any fewer than
this would require at least sometriple occupancyof some of the orbitals, and any
such product,
, would yield zero when operated on by uπi . This is the minimal
number; ordinarily there will be more. Any particular product can be characterized
by anoccupation vector,�γ = [γ1 γ2 . . . γm] whereγi = 0,1,or,2, and

m∑
i=1

γi = n. (5.111)

Clearly, the number of “2”s among theγi cannot be greater thann/2− S.
It is not difficult to convince oneself that functions with different�γ s are linearly

independent. Therefore, the only cases we have to check are those produced from
one occupation vector. Littlewood[37] shows how this is done consideringstandard
tableauxwith repeated elements.We choose anordering for the labels of the orbitals
we are using,a1 < a2 < · · · < ak; n/2+ S≤ k ≤ n that is arbitrary other than a
requirement that theai with γi = 2 occur first in the ordering.11We now place these
orbitals in a tableau shape with the rule that all symbols arenondecreasingto the
right in the rows anddefinitely increasingdownward in the columns. Considering
our five-electron case again, assume we have four orbitalsa < b < c < d anda
is doubly occupied. The rules for standard tableaux with repeated elements then

11 This ordering can be quite arbitrary and, in particular, need not be related to an orbital’s position in a product
with a different�γ .
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produce 
a a
b c
d


 and


a a
b d
c




as the two possible arrangements for this case. Using only three orbitals,a < b < c,
with a andb doubly occupied, we obtain only one such tableau,

a a
b b
c


 .

The general result states that the number of linearly independent functions from
the set uπi
(�γ ); i = 1, . . . , f is the number of standard tableaux with repeated
elements that can be constructed from the labels in the
 product. As a general
principle, this is not so easy to prove as some of the demonstrations of linear
independence we have given above. The interested reader might, however, examine
the case of two-column tableaux with which we are concerned. Examining the
nature of theπi for this class of tableau, it is easy to deduce the result usingNPN .
This is all that is needed, of course. The number of linearly independent functions
cannot depend upon the representation.
Wenowsee that for each�γ wehavef �γ linearly independent functions, uπ �γ

i 
(�γ ),
whereπ �γ

i ; i = 1, . . . , f �γ is some subset12 of all of theπi appropriate for
(�γ ).
The method for putting together a CI wave function is now clear. After choosing

the �γ s to be included, one obtains
u� = u

∑
i �γ

Ci �γ π
�γ
i 
(�γ ), (5.112)

where theCi �γ are the linear variation parameters to optimize the energy. u� is
thus a function satisfying the antisymmetry and spin conditions we choose and
suitable for use with the ESE. We recall that u� is all that is needed to determine
the energies. Minimizing the energy given by the Rayleigh quotient

E = 〈u�|H |u�〉
〈u�|u�〉 (5.113)

= 〈�|H |u�〉
〈�|u�〉 (5.114)

leads to a conventional nonorthogonal CI.

12 We see now why there were relatively few spin functions generated by operators from the symmetric groups.
For the partition{n/2+ S,n/2− S} and anMS = S, there is only one standard tableau with repeated elements
for the orderingα < β. Thus only theπ−1

i NPN� are linearly independent. All expressions of the form
NPNπ j�, π j �= I are zero.
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Now that we know the number of linearly independentn-particle functions for
a particular�γ , we can ask for the total number of linearly independentn-particle
functions that can be generated frommorbitals.Weyl[38] gave a general expression
for all partitions and we will only quote his result for our two-column tableaux.
The total number of functions,D(n,m, S), i.e., the size of a full CI calculation is

D(n,m, S) = 2S+ 1
m+ 1

(
m+ 1

n/2+ S+ 1
) (

m+ 1
n/2− S

)
. (5.115)

This is frequently called the Weyl dimension formula. For smallSand largem and
n, D can grow prodigiously beyond the capability of any current computer.13

5.5.4 Two simple sorts of VB functions

We saw in Section 5.4.7 that there were two Hermitian idempotents of the algebra
that were easily constructed for each partition. Using these alternatives gives us two
different (but equivalent) specific forms for the spatial part of the wave function.
Specifically, if we choose u= θNPN , we obtain the standard tableau functions
introduced by the author and his coworkers[39]. If, on the other hand, we take
u′ = θ ′PNP, we obtain the traditional Heitler–London–Slater–Pauling (HLSP)
VB functions as discussed by Matsen and his coworkers[40]. In actual practice
the π

�γ
i for this case are not usually chosen from among those giving standard

tableaux, but rather to give the Rumer diagrams (see Section 5.5.5). We asserted
above that the permutations giving standard tableaux were only one possible set
yielding linearly independent elements of the group algebra. This is a case in point.
For the two-column tableaux the Rumer permutations are an alternative set that
can be used, and are traditionally associated with different bonding patterns in the
molecule.
Of these twoschemes, it appears that the standard tableaux functionshaveproper-

ties that allowmore efficient evaluation. This is directly related to the occurrence of
theN on the “outside” ofθNPN . Tableau functions have the most antisymmetry
possible remaining after the spin eigenfunction is formed. TheHLSP functions have
the least. Thus the standard tableaux functions are closer to single determinants,
with their many properties that provide for efficient manipulation.14Our discussion
of evaluation methods will therefore be focused on them. Since the two sets are
equivalent, methods for writing the HLSP functions in terms of the others allow
us to compare results for weights (see Section 1.1) of bonding patterns where this

13 These considerations are independent of the nature of the orbitals other than their required linear independence.
Thus,D is the size of the full Hamiltonian matrix in either a VB treatment or an orthogonal molecular orbital
CI.

14 One may compare this difference with Goddard’s[41] discussion of what he termed the G1 and Gf methods.
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is desired. If only energies and other properties calculated from expectation values
are needed, the standard tableaux functions are sufficient.
We note finally that if f �γ = 1 for a particular product function the standard

tableaux function and HLSP function are the same.

5.5.5 Transformations between standard tableaux and HLSP functions

Since the standard tableaux functions and the HLSP functions span the same vector
space, a linear transformation between them is possible. Specifically, it would
appear that the task is to determine theai j s in

θNPNπi =
∑
j

ai j θ
′PNPρ j , (5.116)

where theπi are the permutations interconverting standard tableaux, andρ j sim-
ilarly interconvert Rumer diagrams. It turns out, however, that Eq. (5.116) cannot
be valid. The difficulty arises because on the left of the equal sign the left-most
operator isN , while on the right it isP. To see that Eq. (5.116) leads to a
contradiction multiply both sides byN . After factoring out some constants, one
obtains

θNPNπi =
∑
j

ai j
1

gN gP
NPρ j , (5.117)

which has a right hand side demonstratively different from that of Eq. (5.116). The
left hand sides are, however, the same, so the two together lead to a contradiction.
Wemustmodify Eq. (5.116) by eliminating one or the other of the offending factors.
It does not matter which, in principle, but the calculations are simpler if we use
instead

θNPNπi =
∑
j

ai j
f

g
NPρ j . (5.118)

In order to see why this modified problem actually serves our purpose, we digress
to discuss some results for non-Hermitian idempotents.
The perceptive reader may already have observed that the functions we use

can take many forms. Consider the non-Hermitian idempotent (f/g)PN . Using
the permutations interconverting standard tableaux, one finds that (f/g)PNπi
;
i = 1, . . . , f is a set of linearly independent functions (if
 has no double occu-
pancy). Defining a linear variation function in terms of these,

� = f

g
PN

∑
i

aiπi
, (5.119)
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one obtains for the matrix system,

Hi j = K × 〈πi
|HNPN |π j
〉, (5.120)

Si j = K × 〈πi
|NPN |π j
〉, (5.121)

which is easily seen to be the same system as that obtained from the Hermitian
idempotent,θNPN . The “K ” is different, of course, but this cancels between the
numerator and denominator of the Rayleigh quotient. Thus,

� ′ = f

ggN
NPN

∑
i

aiπi
 (5.122)

will produce the same eigensystem and eigenvectors as the variation function�

of Eq. (5.119), but the resulting spatial functions are not equal,� �= � ′. Some
considerable care is required in interpreting this result. It must be remembered that
the spatial functions under discussion are only a fragment of the total wave function,
and are related to expectation values of the total wave function only if the operator
involved commutes with all permutations ofSn. There are two important cases that
demonstrate the care that must be used in this matter.
Consider an operator commonly used to determine the charge density:

Dop =
∑
i

δ(�ri − �ρ), (5.123)

where�ρ is the position at which the density is given andi now labels electrons. This
operator commutes with all permutations and is thus satisfactory for determining
the charge density from�,� ′, or the whole wave function. The spatial probability
density is another matter. In this case the operator is

Pop =
∏
i

δ(�ri − �ρ i ), (5.124)

where the�ρ i are the values at which the functions are evaluated. As it stands, this
is satisfactory for the whole wave function, but for neither� nor� ′. To work with
the latter two, we must make it commute with all permutations, and it must be
modified to

P′
op = 1

n!

∑
τ∈Sn

τ−1∏
i

δ(�ri − �ρ i )τ, (5.125)

where the permutations do not operate on the�ρ i . The P
′
op form gives the same

value in all three cases.
After this digression we now return to the problem of determining the HLSP

functions in terms of the standard tableaux functions. We solve Eq. (5.118) by
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multiplying both sides byπ−1
k and evaluating both sides for the identity element:15

1

gN

[[NPNπiπ
−1
k

]] =
∑
j

[[NPρ jπ
−1
k

]]
aji (5.126)

Mki =
∑
j

Bk jaji , (5.127)

and denoting byA the matrix with elementsai j , we obtain

A = B−1M. (5.128)

In Eq. (5.128)

Mki = 1

gN

[[
π−1
k NPNπi

]]
, (5.129)

is the “overlap” matrix forθNPN (see Eq. (5.73) and following).
For singlet systems the bonding patterns for Rumer diagrams are conventionally

obtained by writing the symbols for the orbitals in a ring (shown here for six), and
drawing all diagrams where all pairs of orbital symbols are connected by a line and
no lines cross[2, 13].

e
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e
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b
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Our treatment hasbeenoriented towardsusing tableaux to represent functions rather
than Rumer diagrams, and it will be convenient to continue. Thus, corresponding
to the five canonical diagrams for a ring of six orbital symbols one can write

a b
c d
e f




R


a f
b c
d e




R


a b
c f
d e




R


a d
b c
e f




R


a f
b f
c d




R

where the symbols in the same row are “bonded” in the Rumer diagram. We have
made a practice in using [ ] around our tableaux, and those that refer to func-
tions where we usePNP will be given “R” subscripts to distinguish them from
functions where we have usedNPN . This notational device will be used exten-
sively in Part II of the book where many comparisons between standard tableaux
functions and HLSP functions are shown.

15 We commented above that the form of Eq. (5.118) was simpler than the result of removingN from the other
side. This arises because determining [[PNPτ ]] is, in general, much more difficult than evaluating [[NPτ ]],
because simple expressions forPNP are known only for singlet and doublet systems.
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The tableaux in the last paragraph are, of course, not unique. In any row either
orbital could be written first, and any order of rows is possible. Thus, there are
23×3!= 48 different possible arrangements for each. We have made them unique
by settinga < b < c < d < e< f , making each row increase to the right and
the first column increase downward. These are not standard tableaux – the second
column is not alway increasing downward. Using

1 4
2 5
3 6




for the particle label tableau, it is seen that the permutationsI , (25 364), (365),
(254), and (23 564) will generate all five orbital tableaux from the first, and can be
used for theρi of Eq. (5.118).
This transformation is tedious to obtain by hand, and computer programs are to

be preferred. A few special cases have been given[39]. An example is also given in
Section 6.3.2.

5.5.6 Representingθθθ NNNPPPNNN
 as a functional determinant

For the efficient evaluation of matrix elements, it is useful to have a representation
of θNPN
 as a functional determinant. We consider subgroups and their cosets
to obtain the desired form.
The operatorN consists of terms for all of the permutations of the subgroupGN ,

andP those for the subgroupGP . Except for the highestmultiplicity case,S= n/2,
GN is smaller than the whole ofSn. Let ρN ∈ GN andτ1 �∈ GN . Consider all of
the permutationsρN τ1 for fixedτ1 asρN runs overGN . This set of permutations is
called aright cosetofGN . The designation as “right” arises becauseτ1 is written to
the right of all of the elements ofGN . We abbreviate the right coset asGN τ1. There
is also aleft cosetτ1GN , not necessarily the same as the right coset. Consider a
possibly different right cosetGN τ2, τ2 �∈ GN . This set is either completely distinct
fromGN τ1 or identical with it. Thus, assume there is one permutation in common
between the two cosets,

ρ1τ1 = ρ2τ2; ρ1, ρ2 ∈ GN (5.130)

ρ3ρ1τ1 = ρ3ρ2τ2; ρ3 ∈ GN , (5.131)

and, asρ3 ranges overGN , the right and left hand sides of Eq. (5.131) run over the
two cosets and we see they are the same except possibly for order. The test may be
stated another way: if

τ2τ
−1
1 = ρ−1

2 ρ1 ∈ GN , (5.132)

τ1 andτ2 generate the same coset.
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We conclude that one can find a number of right coset generators giving distinct
cosets until the permutations ofSn are exhausted. Symbolizing the right coset
generators asτ1 = I , τ2, . . . , τp, we have

Sn = GN I ⊕ GN τ2 ⊕ · · · ⊕ GN τp, (5.133)

where the first coset isGN itself. This leads to the often quoted result that the order
of any subgroup must be an integer divisor of the order of the whole group and, in
this case, we have

p =
(

n
n/2− S

)
. (5.134)

Our goal now is to find a convenient set of right coset generators forGN that
givesSn. Let us now consider specifically the case for the{2k 1n−2k} partition with
k = n/2− S, and the tableau,




1 n− k + 1
...

...
k n

k + 1
...

n− k




.

The order ofGN is gN = (n− k)!k!. Now let i1, i2, . . . , i l bel ≤ k of the integers
from the first column of our tableau and letj1, j2, . . . , jl be the same number
from the second column. These two sets of integers define a special permutation
[(i )( j )]l = (i1 j1) · · · (i l jl ), which is a product ofl noninteracting binaries. Since
each binary contains a number from each column, none withl > 0 are members of
GN . Some, but not all, are members ofGP , however. Amongst all of these there is
a subset that we callcanonicalin which i1 < i2 < · · ·< i l and j1 < j2 < · · ·< jl .
The number of these is (

n− k
l

) (
k
l

)
,

and it is easily shown that

k∑
l=0

(
n− k
l

) (
k
l

)
=

(
n
k

)
. (5.135)
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Thus, if the distinct canonical [(i )( j )] generate distinct cosets, we have all of them,
since

gN

(
n
k

)
= n!. (5.136)

Considering [(i )( j )]l and [(i ′)( j ′)]l ′ , we use Eq. (5.132) to test whether they
generate the same coset. The [(i )( j )]l are, of course, their own inverses, and for the
present test we have

[(i )( j )]l [(i ′)( j ′)]l ′
?∈ GN . (5.137)

If [( i )( j )]l and [(i ′)( j ′)]l ′ have any binaries with no numbers in common then
these will remain unaffected in the product, and since none of the binaries is a
member ofGN , neither is the product and the cosets must be different. If there
are any binaries in common these cancel and there remain only binaries that have
numbers connected in one or more chains. Consider a simple two-member chain,
(a b)(c b) = (a c)(a b). The binary (a c) ∈ GN but (a b) is not, so this chain cannot
be a member ofGN , and, again, the cosets are different. Our simple two-member
chain could, however, be the start of a longer one, and proceeding this way we see
that we always arrive at the conclusion that the canonical [(i )( j )]ls generate all of
the cosets.
Going back toθNPN , we write out theN on the right explicitly and carry out

a number of transformations.

θNPN = θNP
∑

ν∈GN

(−1)σν ν, (5.138)

= θN
∑

ν∈GN

(−1)σν νν−1Pν, (5.139)

= f

n!
NB, (5.140)

B = 1

gN

∑
ν∈GN

ν−1Pν, (5.141)

and we see that theB operator is a sort of symmetrization of theP operator. We
note first that [[B]] = 1. The operatorP is a sum of terms

P = I +
k∑

l=1
pl , (5.142)

where pl is a sum over all of the sort of [(i )( j )]l that correspond tol and have
“horizontal” binaries only. There are (kl ) permutations inpl . Next, we observe that
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each term in Eq. (5.141) has the form

∑
ν

ν−1plν = (n− k)!k!

(
k
l

) (
n− k
l

)−1(
k
l

)−1
bl , (5.143)

= gN

(
n− k
l

)−1
bl , (5.144)

wherebl is thesumofall of thecoset generators corresponding tol . Equation (5.143)
is obtained merely by the correct counting: the factors on the right are the number
of terms in the sum andpl divided by the number of terms inbl . Thus,

θNPN = f

g
NB, (5.145)

= f

g
N

k∑
l=0

(
n− k
l

)−1
bl , (5.146)

= f

g
BN , (5.147)

where we knowN andB commute, since they are both Hermitian and so isNPN .
As an example of howN andbl operators work together we observe that the full

antisymmetrizer corresponding toSn may be written withNand thebl operators,

A = 1

n!
N

k∑
l=0
(−1)l bl , (5.148)

since the right hand side has each permutation once and each will have the correct
sign. We emphasize that this is valid for anyk.
Nowconsidern functionsu1,u2, . . . , un and form then-particle product function


 = u1(1)u2(2) · · ·un(n). Using the form of the antisymmetrizer of Eq. (5.148) we
see that

A
 = 1

n!

∣∣∣∣∣∣∣
u1(1) · · · un(1)
...

...
u1(n) · · · un(n)

∣∣∣∣∣∣∣ , (5.149)

and for eachkofEq. (5.148)wehaveawayof representingadeterminant. Thesecor-
respond to different Lagrange expansions that can be used to evaluate determinants,
and, in particular, the use ofk = 1 is closely associated with Cramer’s rule[42].
We now define another operator (group algebra element) using thebl coset

generator sums,

D(q) =
k∑

l=0
qlbl , (5.150)
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whereq could be complex. WithN this new operator may be applied to the orbital
product
. A little reflection will convince the reader that the result may be written
as a functional determinant,

ND(q)
 =
∣∣∣∣ P Q
−qR S

∣∣∣∣ , (5.151)

whereP,Q,R, andSareblocks from thedeterminant inEq. (5.149). Their sizesand
shapes depend uponk: P is (n− k)× (n− k), Q is (n− k)× k, R is k × (n− k),
andSisk × k. Theblock−qRrepresents the variable−qmultiplyingeach function
in theR-block. We note that ifq = −1 the operatorD(q) is just the sum of coset
generators in Eq. (5.148), and the determinant in Eq. (5.151) just becomes the one
in Eq. (5.149).
We may now use theβ-function integral[28],∫ 1

0
t l (1− t)n−k−l dt = (n− k + 1)−1

(
n− k
l

)−1
, (5.152)

and, lettingq = t/(1− t), convertD(q) to B. Thus, one obtains

(n− k + 1)
∫ 1

0
(1− t)(n−k)D[(t /(1− t))] dt = B. (5.153)

Putting together these results, we obtain the expression forθNPN
 as the
integral of a functional determinant,

θNPN
 = (n− k + 1) f
g

∫ 1

0
(1− t)(n−k)

∣∣∣∣ P Q
−qR S

∣∣∣∣dt, (5.154)

q = t

1− t
. (5.155)

The same sort of considerations allow one to determine matrix elements. Let
v1(1) · · · vn(n) = ϒ be another orbital product. There is a joint overlap matrix
between thev- andu-functions:

S(v̄, ū) =




〈v1|u1〉 · · · 〈v1|un〉
...

...
〈vn|u1〉 · · · 〈vn|un〉


 , (5.156)

and we may use it to assemble a functional determinant. Thus, we have

〈ϒ |θNPN
〉 = (n− k + 1) f
g

∫ 1

0
(1− t)(n−k)

∣∣∣∣ P′ Q′

−qR′ S′

∣∣∣∣dt, (5.157)

q = t

1− t
, (5.158)
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where the primed blocks of the determinant come fromS(v̄, ū) in the same way as
the blocks of Eq. (5.151) were obtained from the determinant of Eq. (5.149). Some-
what more complicated but similar considerations provide for the determination of
the matrix elements of the Hamiltonian.
When there are doubly occupied orbitals among theui , simplifications occur in

theseexpressions. In addition, the integrand is apolynomial int of degreen− k, and
may be evaluated exactly in computer applications using an optimal Gauss quadra-
ture formula[28]. For further details on both these points, the reader is referred to
the literature[39]. The VB calculations reported on in Part II of the book were all
carried out by a computer program implementing the discussion of this section.



6

Spatial symmetry

Spatial symmetry plays a role in a large number of the examples in Part II of this
book. This can arise in a numberways, but the twomost important are simplification
of the calculations and labeling of the energy states. We have devoted considerable
time and space in Chapter 5 to the effects of identical particle symmetry and spin.
In this chapter we look at some of the ways spatial symmetry interacts with anti-
symmetrization.
We first note that spatial symmetry operators and permutations commute when

applied to the functions we are interested in. Consider a multiparticle function
φ(�r 1, �r 2, . . . , �r n), where each of the particle coordinates is a 3-vector. Applying a
permutation toφ gives

πφ(�r 1, �r 2, . . . , �r n) = φ(�r π1, �r π2, . . . , �r πn), (6.1)

where{π1, π2, . . . , πn} is some permutation of the set{1,2, . . . ,n}. Now consider
the result of applying a spatial symmetry operator,1 i.e., a rotation, reflection, or
rotary-reflection, toφ. Symbolically, we write for a spatial symmetry operation,R,

R�r = �r ′, (6.2)

Rφ(�r 1, �r 2, . . . , �r n) = φ
( �r ′

1, �r ′
2, . . . , �r ′

n
)
, (6.3)

and we see that

πR�r = Rπ �r , (6.4)

= φ
( �r ′

π1,
�r ′

π2, . . . ,
�r ′

πn

)
. (6.5)

1 In physics and chemistry there are two different forms of spatial symmetry operators: the direct and the indirect.
In the direct transformation, a rotation byπ/3 radians, e.g., causes all vectors to be rotated around the rotation
axis by this angle with respect to the coordinate axes. The indirect transformation, on the other hand, involves
rotating the coordinate axes to arrive at new components for the same vector in a new coordinate system. The
latter procedure is not appropriate in dealing with the electronic factors of Born–Oppenheimer wave functions,
since we do not want to have to express the nuclear positions in a new coordinate system for each operation.

97
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6.1 The AO basis

The functionsweuse are products of AOs, and, to be useful in a calculation, theAOs
must be a basis for a representation of the spatial group. Since the spatial operations
and permutations commute, the tableau functions we use also provide a basis for
a representation of the spatial group. This is generally true regardless of the nature
of the representation provided by the AOs themselves[43]. Nevertheless, to work
with tableaux on computers it greatly simplifies programs if the AO basis provides
a representation of a somewhat special sort we callgeneralized permutation. If we
have an appropriate AO basis, it supports a unitary representation of the spatial
groupGS = {I , R2, R3, . . . , Rf },

Riχ j =
∑
k

χkD(Ri )k j , (6.6)

whereχ j are the AOs and theD(Ri )k j are, in general, reducible.D(Ri ) is a gen-
eralized permutation matrix if every element is either zero or a number of unit
magnitude. Because of the unitarity, each row or column ofD(Ri ) has exactly one
nonzero element, and this one is±1. As it turns out, this is not an extremely spe-
cial requirement, but it is not always possible to arrange. The following are some
guidelines as to when itis possible.2

� GS is abelian.
� GS has a principal rotation axis of order>2, and no atoms of the molecule are centered
on it. This frequently requires the coordinate axes for the AOs to be different on different
atoms.

� GS transforms thex-, y-, and z-coordinate axes into± themselves, and we use
tensorial rather than sphericald, f , . . . functions. That is, ourd-set transforms as
{x2, y2, z2, xy, xz, yz} with similar sets for the higherl -values.

In cases where these guidelines cannot be met, one must use the largest abelian
subgroup from the trueGS of the molecule. We will show some examples later.

6.2 Bases for spatial group algebras

Just as we saw with the symmetric groups, groups of spatial operations have asso-
ciated group algebras with a matrix basis for this algebra,

eα
i j = fα

g

g∑
i=1

D(Ri )
α∗
i j Ri . (6.7)

2 We emphasize these rules are not needed theoretically. They are merely those that the symmetry analysis in
CRUNCH requires to work.



6.3 Constellations and configurations 99

This should be compared with Eq. (5.19), but in this case we can assume that the
irreducible representation is unitary without causing any complications. The law
of combination is identical with the earlier Eq. (5.20),

eα
i j e

β

kl = δ jkδαβe
α
i l . (6.8)

We use the same symbol for the two kinds of groups. This normally causes no
confusion. These operators of course satisfy(

eα
i j

)† = eα
j i , (6.9)

and, thus,eα
i i is Hermitian. All of thee

α
i j also commute with the Hamiltonian.

The elementeα
11 is a projector for the first component of theα

th irreducible
representation basis. Using standard tableaux functions we can select a function of
a given symmetryanda given spin state with

ψα
j = eα

11θNPNTj , (6.10)

whereTj is a product of AOs associated with thej th standard tableau. When we
evaluate matrix elements of either the overlap or the Hamiltonian between two
functions of these types we have〈

ψα
j

∣∣ψβ

k

〉 = 〈
eα
11θNPNTj

∣∣eβ

11θNPNTk
〉
, (6.11)

= δαβ

〈
Tj

∣∣eβ

11θNPNTk
〉
, (6.12)〈

ψα
j

∣∣H ∣∣ψβ

k

〉 = δαβ

〈
Tj

∣∣H ∣∣eβ

11θNPNTk
〉
. (6.13)

6.3 Constellations and configurations

In quantum mechanical structure arguments we often speak of a configuration
as a set of orbitals with a particular pattern of occupations. In this sense, if we
consider the first of a set of standard tableaux,T1, we can see that it establishes
a configuration of orbitals. The other standard tableaux,T2, . . . , Tf , all establish
the same configuration. Consider, however, the result of operating onT1 with an
element ofGS. It is simple to see why the assumption that the representationD(R)
in Eq. (6.6) consists of generalized permutationmatrices simplifies the result of this
operation: in this caseRi T1 is just another product function±T ′. It may involve
the same configuration or a different one, but it is just a simple product function.
We use the termconstellationto denote the collection of configurations that are
generated by all of the elements operating uponRi T1; i = 1,2, . . . ,g. Putting this
another way, a constellation is a set of configurations closed under the operations
of GS. It will be useful to illustrate some of these ideas with examples. We give
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Table 6.1.Transformation of H2O AOs.

I C2 σxz σzy

2s 2s 2s 2s
2px −2px 2px −2px
2py −2py −2py 2py
2pz 2pz 2pz 2pz
1sa 1sb 1sb 1sa
1sb 1sa 1sa 1sb

three: aC2v system, H2O; aC3v system, NH3; and aD6h system, theπ system of
benzene.

6.3.1 Example 1. H2O

Consider a water molecule with a minimal basis on the atoms. We have a 1s,
2s,2px,2py,2pz set on the O atom and 1sa and 1sb on the H atoms. We assume
the molecule is oriented in they–zplane with the O on thez-axis and the center of
mass at the origin of a right-handed Cartesian coordinate system. It does not detract
from this illustration if we ignore the O1s, and we suppress them from all tableaux.
H2O belongs to theC2v symmetry group, which is abelian and, hence, satisfies one
of our guidelines above. Table 6.1 gives the transformation of the AOs under the
operations of the group.
Consideraconfiguration2s22p2x1s

2
a2py2pz. The identityandσzyoperations leave

it unchanged and the other two give 2s22p2x1s
2
b2py2pz, and these configurations

comprise one of the constellations for H2O and this basis. The projector for theA1
symmetry species ofC2v is

eA1 = 1

4
(I + C2 + σxz+ σzy), (6.14)

and taking 

2s 2s
2px 2px
1sa 1sa
2py 2pz




as the defining tableau, we obtain

eA1



2s 2s
2px 2px
1sa 1sa
2py 2pz


 = 1

2






2s 2s
2px 2px
1sa 1sa
2py 2pz


 −



2s 2s
2px 2px
1sb 1sb
2py 2pz





 , (6.15)
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as theA1 symmetry function based upon this constellation. If, alternatively, we
used theB2 projector,

eB2 = 1

4
(I − C2 − σxz+ σzy), (6.16)

we would obtain the same two tableaux as in Eq. (6.15), but with a+ sign between
them. The other two projectors yield zero.
The symmetry standard tableaux functions are not always so intuitive as those in

the first case we looked at. Consider, e.g., the configuration 2s2p2x2p
2
y2pz1sa1sb,

forwhich there are two standard tableaux andnoothermembers in the constellation,

2px 2px
2py 2py
2s 2pz
1sa 1sb


 and



2px 2px
2py 2py
2s 1sa
2pz 1sb


 .

When we applyeA1 to the first of these, we obtain

eA1



2px 2px
2py 2py
2s 2pz
1sa 1sb


 = 1

2






2px 2px
2py 2py
2s 2pz
1sa 1sb


 +



2px 2px
2py 2py
2s 2pz
1sb 1sa





 , (6.17)

where the second term on the right isnota standard tableau, but may be written in
terms of them. Using the methods of Chapter 5 we find that


2px 2px
2py 2py
2s 2pz
1sb 1sa


 =



2px 2px
2py 2py
2s 2pz
1sa 1sb


 −



2px 2px
2py 2py
2s 1sa
2pz 1sb


 , (6.18)

and thus

eA1



2px 2px
2py 2py
2s 2pz
1sa 1sb


 =



2px 2px
2py 2py
2s 2pz
1sa 1sb


 − 1

2



2px 2px
2py 2py
2s 1sa
2pz 1sb


 , (6.19)

which is a projected symmetry function, although not manifestly so.
It is not difficult to show that

eA1



2px 2px
2py 2py
2s 1sa
2pz 1sb


 = 0, (6.20)

and the second standard tableau does not contribute to1A1 wave functions. This
result indicates that the first standard tableau is not by itself a pure symmetry
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Table 6.2.Transformation of NH3 AOs.

I C3 C23 σx σy
a σz

a

2s 2s 2s 2s 2s 2s
2px 2py 2pz 2px 2pz 2py
2py 2pz 2px 2pz 2py 2px
2pz 2px 2py 2py 2px 2pz
1sxb 1sy 1sz 1sx 1sz 1sy
1syb 1sz 1sx 1sz 1sy 1sx
1szb 1sx 1sy 1sy 1sx 1sz

a Each reflection plane is labeledwith the coordinate
axis that is contained in it.

b Each H-atom orbital is labeled with the reflection
plane it resides on.

type but containsA1 andB2 components, while the second is pureB2. The linear
combination of Eq. (6.19) removes the unwanted part from the first tableau.
We emphasize that these results are specific to the way we have ordered the

particle numbers in the AOs. Other arrangements could give results that look quite
different, but which would, nevertheless, be equivalent as far as giving the same
eigenvalues of the ESE is concerned.

6.3.2 Example 2. NH3

C3v is not an abelian group, but it is not difficult to orient a minimal basis involving
s and p orbitals to make the representation of the AO basis a set of generalized
permutation matrices. We orient theC3-axis of the group along the unit vector
{1/√3,1/√3,1/√3}. The center of mass is at the origin and the N atom is on the
C3-axis in the negative direction from the origin. The three reflection planes of the
groupmaybedefinedby the rotationaxis and the threecoordinateaxes, respectively.
There is an H atom in each of the reflection planes at an N---H bond distance from
the N atom and at an angle of≈76◦ from the rotation axis. In our description we
suppress theclosed1s2 coreasbefore.Table6.2 shows the transformationproperties
of the basis. We consider the configuration 2s22px2py2pz1sx1sy1sz, which is the
only member of its constellation. Once we have chosen a specific arrangement for
the first tableau, the other four standard tableaux may be given


2s 2s
2px 1sx
2py 1sy
2pz 1sz






2s 2s
2px 1sx
2py 2pz
1sy 1sz






2s 2s
2px 2py
1sx 1sy
2pz 1sz






2s 2s
2px 2py
1sx 2pz
1sy 1sz






2s 2s
2px 1sy
1sx 2pz
2py 1sz


 ,
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and these will be symbolized byT1, . . . , T5 in the order given. TheA1 projector for
C3v is

eA1 = 1

6

(
I + C3 + C23 + σx + σy + σz

)
, (6.21)

and usingsymgenn from the CRUNCH suite, we find thatθNPNT1 is a 1A1
symmetry function on its own,

eA1θNPNT1 = θNPNT1. (6.22)

Applying eA1 to θNPNT2 yields

eA1θNPNT2 = 1

6
θNPN (2T2 + 2T3 − T4 + 3T5). (6.23)

UsingeA1 withT3,T4, orT5 doesnot givea function linearly independent of thosewe
have found already. Thus, there are two linearly independent1A1 functions that can
be formed from the configuration above. The first of these is not hard to understand
when one examines the consequences of the antisymmetry of the columns of the
standard tableaux functions. The second, however, is much less obvious and would
be very tedious to determine without the computer program.
To obtain the symmetry functions in terms of HLSP functions we can transform

the standard tableaux functions using themethods of Chapter 5. The transformation
matrix is given in Eq. (5.128):

A =




0 0 0 0 −2/3
−1/3 −1/3 1/3 1/3 −1/3
−1/3 1/3 −1/3 1/3 −1/3

0 2/3 2/3 2/3 −2/3
−1/3 1/3 1/3 −1/3 −1


 , (6.24)

and multiplying this by the coefficients of the symmetry functions of Eqs. (6.22)
and (6.23), we obtain

A



1 0
0 1/3
0 1/3
0 −1/6
0 1/2


 =




0 −1/3
−1/3 −2/9
−1/3 −2/9

0 0
−1/3 −2/9


 , (6.25)
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as the coefficients of1A1 symmetry HLSP functions. The Rumer tableaux,T (R)i ,
for the HLSP functions are



2s 2s
2px 1sx
2py 1sy
2pz 1sz



R



2s 2s
2px 1sx
1sy 2pz
2py 1sz



R



2s 2s
1sx 2py
2px 1sy
2pz 1sz



R



2s 2s
1sx 2py
1sy 2pz
2px 1sz



R



2s 2s
2py 1sy
1sx 2pz
2px 1sz



R

These Rumer tableaux are based upon the following diagrams:

1sz

2px

2py 2pz

1sx 1sz

2px
1sx 1sz

2px

1sx 1sz

2px

1sy

2py

1sx 1sz

2px

2pz
1sy

2py

1sx

2pz2py
1sy

2pz2py
1sy

2pz
1sy

where we have arranged3 the orbitals below the 2s pair in a circle.T (R)1 andT (R)4

are the two “Kekulé”4 diagrams and the others are the “Dewar” diagrams.T (R)1 is
the HLSP function with three electron pair bonds between the 2pi orbital and the
closest 2si . One sees that theT

(R)
4 Kekulé structure is completely missing from the

1A1 functions.We, of course, could have determined the symmetry HLSP functions
by examining them directly. ClearlyT (R)1 is by itself a symmetry function and a
sum of the three Dewar structures is also. It is not so obvious thatT (R)4 does not
contribute.
One must confess that theseA1 symmetry results we have obtained for NH3

are reasonably simple, because we chose the order of the AOs the way we did.
One could arrange the orbitals in some other order and obtain valid results, but have
symmetry functions that are very nonintuitive. The reader is urged to experiment
with symgenn to see this.
This is also evident when we considerA2 symmetry, the projector for which is

eA2 = 1

6

(
I + C3 + C23 − σx − σy − σz

)
. (6.26)

As eA2 is applied to theTi in turn, we obtain zero until

eA2θNPNT4 = 1

2
θNPN (T4 − T5). (6.27)

3 The order of these Rumer diagrams is determined by the automatic generation routine in the computer program.
4 Although NH3 does not have the spatial symmetry of a hexagon, we still may use this terminology in describing
the structures.
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T5 gives thesame function.This functionmaybewritten in termsofRumer tableaux,
T (R)i also, and we obtain

1

2
θNPN (T4 − T5) = 1

9
NP(

T (R)1 + T (R)2 + T (R)3 + 2T (R)4 + T (R)5

)
, (6.28)

not a result that is particularly intuitive.T (R)4 is present in this sum, and we will see
shortly that this Rumer tableau is the only one that has anA2 component. It is not
pure, as is seen fromEq. (6.28), but noneof theother tableauxhaveanyA2 part at all.
There are two linear combinations of the standard tableaux functions that com-

prise a pair ofE symmetry. TheE projectors are

eE11 = 1

3

(
I − 1/2C3 − 1/2C

2
3 + σx − 1/2σy − 1/2σz

)
, (6.29)

eE21 = 1

3

(√
3/2C3 −

√
3/2C

2
3 +

√
3/2σy −

√
3/2σz

)
. (6.30)

The computations show that

eE11θNPNT2 = 1

3
θNPN (2T2 − T3 − T4), (6.31)

eE21θNPNT3 =
√
3

6
θNPN (−T3 + T4), (6.32)

where the energy for either component will be the same. Again, the functions may
be expressed in terms of the Rumer structures, and we obtain

1

3
θNPN (2T2 − T3 − T4) = 2

9
NP( − 2T (R)2 + T (R)3 + T (R)5

)
, (6.33)

√
3

6
θNPN (−T3 + T4) = 1√

27
NP(

TR
3 − TR

5

)
. (6.34)

As we commented on above,TR
4 is missing from all of the functions except for the

one ofA2 symmetry.

6.3.3 Example 3. Theπ system of benzene

InChapter15wegiveanextensive treatmentof theπ systemof benzene,butherewe
outline briefly some of the symmetry considerations.We consider the configuration
p1p2p3p4p5p6, wherepi stands for a C2pz orbital at thei th C atom, numbered se-
quentially and counterclockwise around the ring. The set of five standard tableaux is

 p1 p2
p3 p4
p5 p6





 p1 p2
p3 p5
p4 p6





 p1 p3
p2 p4
p5 p6





 p1 p3
p2 p5
p4 p6





 p1 p4
p2 p5
p3 p6



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and we label themT1, . . . , T5 in that order. TheeA1g in merely the sum of all of the
elements of theD6h symmetry group divided by 24, the value ofg. We obtain two
linear combinations

eA1gθNPNT1 = θNPNT1, (6.35)

eA1gθNPNT2 = 1

6
θNPN (3T1 − T2 − T3 + 2T4 − 3T5). (6.36)

Here again, the second of these is not obviously a symmetry function.
The Rumer diagrams for benzene actually mirror the real spatial symmetry, and

thus the Kekul´e and Dewar structures emerge,

p6

p1

p5
p4

p3

p2 p6

p5
p4

p1
p2

p3 p5

p6

p1
p2

p3 p5
p4

p3 p5

p6

p1

p4

p3

p2p2

p1
p6

p4

and with these we associate the Rumer tableaux
 p1 p2
p3 p4
p5 p6



R


 p1 p2
p3 p6
p4 p5



R


 p1 p4
p2 p3
p5 p6



R


 p1 p6
p2 p3
p4 p5



R


 p1 p6
p2 p5
p3 p4



R

·

The transformation from standard tableaux functions to HLSP functions is inde-
pendent of the spatial symmetry and so we need theA-matrix in Eq. (6.24) again.
This time the results are

A



1 1/2
0 −1/6
0 −1/6
0 1/3
0 −1/2


 =




0 1/3
−1/3 2/9
−1/3 2/9

0 1/3
−1/3 2/9


 · (6.37)

In this case the symmetry functions in termsof theRumer tableau are fairly obvious,
as can be seen by inspection of the Rumer diagrams added together in them.
We give more details of symmetry in benzene in Chapter 15.
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Varieties of VB treatments

The reader will recall that in Chapter 2 we gave examples of H2 calculations in
which the orbitals were restricted to one or the other of the atomic centers and
in Chapter 3 the examples used orbitals that range over more than one nuclear
center. The genealogies of these two general sorts of wave functions can be
traced back to the original Heitler–London approach and the Coulson–Fisher[15]
approach, respectively. For the purposes of discussion in this chapter we will say
the former approach useslocal orbitalsand the latter,nonlocal orbitals. One of
the principal differences between these approaches revolves around the occurrence
of the so-called ionic structures in the local orbital approach. We will describe the
two methods in some detail and then return to the question of ionic structures in
Chapter 8.

7.1 Local orbitals

The use in VB calculations of local orbitals is more straightforward than the alter-
native. In its simplest form, when atomic AOs are used and considered fixed, the
wave function is

� =
∑

i

Ci φi , (7.1)

where theφi aren-electron basis functions as described in Chapter 5. The wave
function presents a linear variation problem, and the only real problem is the practi-
cal one of choosing a suitable set ofφi functions.Wewill discuss this latter problem
more fully in Chapter 9.
A primary characteristic of this approach is that eachφi can be interpreted as a

representation of the molecule in which each atom has a more-or-less definite state
or configuration. In thisway themolecule asawholemaybe thought of as consisting
of a mixture of atomic states including ionic ones, and in ideal circumstances we
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may calculate fractional weights for these states. The focus here is thus on the way
atoms in a number of states interact to form the molecule.
This is, of course, the approach used by all of the early VB workers. In more

recent times, after computing machinery allowedab initio treatments, this is the
sort of wave function proposed by Balint-Kurti and Karplus[34], which they called
amultistructure approach. The present author and his students have proposed the
multiconfiguration valence bond (MCVB) approach, which differs from the Balint-
Kurti–Karplus wave function principally in the way theφi are chosen.
The local approach may be extended, as Hiberty[44] suggests, by allowing the

AOs to “breathe”. This is accomplished in modern times by writing the orbitals
in φi as linear combinations of more primitive AOs, all at one nuclear center, and
optimizing these linear combinations along with the coefficients in Eq. (7.1). The
breathing thus contributes anonlinearcomponent to the energy optimization. This
latter is, of course, only a practical problem; it contributes no conceptual difficulty
to the interpretation of the wave function.
We may summarize the important characteristics of VB calculations with local

orbitals.

1. Then-electron basis consists of functions that have a clearcut interpretation in terms of
individual atomic states or configurations.

2. Many atomic states inφi are of the sort termed “ionic”.
3. In a highly accurate energy calculation many terms may be required in Eq. (7.1).
4. If Rumer tableaux are used forφi , thesemay inmany cases be put in a one-to-one relation

with classical bonding diagrams used by chemists.
5. In its simplest form the energy optimization is a linear variation problem.
6. If a molecule dissociates, the asymptotic wave function has a clear set of atomic states.

7.2 Nonlocal orbitals

In all of the various VB methods that have been suggested involving nonlocal
orbitals it is obvious that the orbitals must be written as linear combinations of AOs
atmany centers. Thus one is always facedwith some sort of nonlinearminimization
of the Rayleigh quotient.
Historically, the first of the modern descendents of the Coulson–Fisher method

proposed was the GGVB approach. Nevertheless, we will postpone its description,
since it is a restricted version of still later proposals.
We describe first the SCVB proposal of Gerrattet al. We use here the notation

and methods of Chapter 5. These workers originally used thegenealogical repre-
sentationsof the symmetric groups[7], but so long as the irreducible representation
space is completely spanned, any representation will give the same energy and
wave function. Balint-Kurti and van Lenthe proposed using an equivalent wave
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function. The principal differences between these proposals deal with methods of
optimization. We will continue to use the SCVB acronym for this method.
Consider a system ofn electrons in a spin stateS. We know that there are forn

linearly independent orbitals

f = 2S+ 1

n + 1

(
n + 1

n − S/2

)
(7.2)

linearly independent standard tableaux functions or HLSP functions that can be
constructed from these orbitals. In the present notation the SCVB wave function is
written as the general linear combination of these:

�SCVB=
f∑

i =1

Ci φi (u1, . . . , un), (7.3)

where the orbitals inφi are, in general, linear combinations of the whole AO basis.1

The problem is to optimize theRayleigh quotient for thiswave functionwith respect
toboth theCi and the linear coefficients in theorbitals.Using familiarmethodsof the
calculus of variations, one can set the first variation of the energy with respect to
the orbitals and linear coefficients to zero. This leads to a set of Fock-like operators,
one for each orbital. Gerrattet al. use a second order stabilized Newton–Raphson
algorithm for the optimization. This gives a set of occupied and virtual orbitals
from each Fock operator as well as optimumCi s.
The SCVB energy is, of course, just the result from this optimization. Should

a more elaborate wave function be needed, the virtual orbitals are available for a
more-or-less conventional, but nonorthogonal, CI that may be used to improve the
SCVB result. Thus an accurate result here may also involve a wave function with
many terms.
The GGVB[41] wave function can have several different forms, each one of

which, however, is a restricted version of a SCVB wave function. As originally
proposed, a GGVB calculation uses just one of the genealogical irreducible rep-
resentation functions and optimizes the orbitals in it, under a constraint of some
orthogonality. In general, the orbitals are ordered into two sets, orthogonality is
enforced within the sets but not between them. Thus, there aref different GGVB
wave functions, depending upon which of the genealogicalφi functions is used.
Goddard designated these as the G1, G2,. . . , Gf methods, the general one being
Gi. Each of these, in general, yields a different energy, and one could choose the
wave function for the lowest as the best GGVB answer. In actual practice only the
G1 or Gf methods have been much used. In simple cases the Gf wave function is a
standard tableaux function while the G1 is a HLSP function. For Gf wave functions

1 The requirements of symmetry may modify this.
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wemay show that the above orthogonality requirement is not a real constraint on the
energy. FromChapter 5 we have, forn electrons in a singlet state, the unnormalized
function

�G f = θNPNu1(1) · · · um(m)v1(m + 1) · · · vm(n), (7.4)

wherem = n/2, and theus andvs are the two sets of orbitals. In principle, we
could optimize the energy and orbitals corresponding to Eq. (7.4), and afterwards
the presence of theN will allow the formation of linear combinations among theus
and, in general, different ones among thevs that will render the two sets internally
orthonormal. This does not change the value of�G f , of course, except possibly for
its overall normalization.
On the other hand, no such invariance of G1 or HLSP functions occurs, so the

orthogonality constraint has a real impact on the calculated energy.
We saw in Chapter 3 how the delocalization of the orbitals takes the place of the

ionic terms in localized VB treatments, and this phenomenon is generally true for
n electron systems.
We now summarize the main characteristics of VB calculations with nonlocal

orbitals.

1. The wave function is reasonably compact, normally having no more thanf terms.
2. There are no structures in the sum that must be interpreted as “ionic” in character. For

many people this is a real advantage to these VB functions.
3. The SCVB function produces a considerable portion of the correlation energy.
4. If Rumer tableaux are used forφi , thesemay inmany cases be put in a one-to-one relation

with classical bonding diagrams used by chemists.
5. If a molecule dissociates, the asymptotic wave function has a clear set of atomic states.

Illustrations of both of these classes of VB functions will be given for a number
of systems in Part II of this book.
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The physics of ionic structures

The existence of many ionic structures in MCVB wave functions has often been
criticized by some workers as being unphysical. This has been the case particularly
when a covalent bond between like atoms is being represented. Nevertheless, we
have seen in Chapter 2 that ionic structures contribute to electron delocalization in
the H2 molecule and would be expected to do likewise in all cases. Later in this
chapter we will see that they can also be interpreted as contributions from ionic
states of the constituent atoms. When the bond is between unlike atoms, it is to be
expected that ionic structures in the wave function will also contribute to various
electric moments, the dipole moment being the simplest. The amounts of these ionic
structures in the wave functions will be determined by a sort of “balancing act”
in the variation principle between the “diagonal” effects of the ionic state energies
and the “off-diagonal” effect of the delocalization.

In this chapter we will also focus on the dipole moment of molecules. With these,
some of the most interesting phenomena are the molecules for which the electric
moment is in the “wrong” direction insofar as the atomic electronegativities are
concerned. CO is probably the most famous of these cases, but other molecules
have even more striking disagreements. One of the larger is the simple diatomic
BF. We will take up the question of the dipole moments of molecules like BF in
Chapter 12. In this chapter we will examine in a more general way how various
sorts of structures influence electric moments for two simple cases. For some of the
discussion in this chapter we restrict ourselves to descriptions of minimal basis set
results, since these satisfactorily describe the physics of the effects. In other cases
a more extensive treatment is necessary.

8.1 A silly two-electron example

In Chapter 2 we described several treatments of the H2 molecule, and, of course,
there the question of dipole moments was irrelevant, although we could have
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calculated a quadrupole moment. We want here to consider the properties of a
covalent VB structure for H2 using a silly basis set consisting of 1s orbitals for the
two atoms that have different scale factors. Such a wave function is certain not to
have the correct1�+

g symmetry for H2 and will not have a credible energy, but an
important point emerges. Let the singlet standard tableaux function,ψ , be

ψ = N [1s′a 1sb], (8.1)

where, as indicated by the prime, we use differently scaled AOs at the two cen-
ters. The question we ask is: What is the electric dipole moment implied by this
wave function? Assuming the molecule is situated along thez-axis, thex- and
y-components of the moment are zero. In atomic units thez-component of the
moment is

µz = za + zb − za + zb + 2S〈1s′a|z|1sb〉
1 + S2

,

= S[S(za + zb) − 2〈1s′a|z|1sb〉]
1 + S2

, (8.2)

whereS= 〈1s′a|1sb〉. It is clear from Eq. (8.2) that, whatever its value at small
distances,µz goes to zero as the interatomic distance goes to infinity, sinceSalso
goes to zero.µz is not zero, however, at 0.7 A

�

, a distance near that at equilibrium
in H2. Taking the scale of 1s to be 1.0 and that of 1s′ to be 1.2, a value close to
that which is optimum for the molecule,1 we obtainµz = −0.118 D. STO6Gs were
used andzb < za, i.e., the less diffuse orbital is in the positivez-direction from the
other. This calculated moment is not very large, but it arises from apurely covalent
function. If we do the same calculation for the triplet function,[

1s′a
1sb

]
,

we obtainµz = 0.389 D, in the direction opposite to that for the singlet function.
In the singlet case the electron distribution is more toward the less extended AO
and in the triplet case more toward the more extended AO.

It is useful to state this result in different language. In general, we expect more
electronegative atoms to have tighter less diffuse orbitals in comparable shells than
atoms of lower electronegativity. In our case this means we have a surrogate atom
for higher electronegativity in the positivez-direction from the other. Therefore,
bonding interactions have the electrons moving toward the more electronegative
atom and antibonding interactions have them moving toward the less electronegative
atom. The usual sign convention confusion occurs, of course; the dipole moment
points in a direction opposite to the electron movement.

1 We note that if the orbitals were scaled equally 2〈1sa|z|1sb〉 = S(za + zb) andµz is correctly zero at all distances.
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Figure 8.1. The electric dipole function versus the internuclear distance for LiH using the
two ionic and one covalent functions, individually. The sign of the moment for Li−−H+
has been changed to facilitate plotting and comparison of the magnitudes.

It is clear, when we calculate the electric moment with a more realistic wave
function, that even the so-called covalent functions can make nonzero contributions
when symmetry allows.

8.2 Ionic structures and the electric moment of LiH

There are two rather different questions that arise when considering ionic structures
in VB wave functions. The first of these we discuss is the contribution to electric
dipole moments. LiH is considered as an example. In the next section we take up
ionic structures and curve crossings, using LiF to illustrate the points.

LiH is the simplest uncharged molecule that has a permanent electric dipole
moment.2 We examine here some of the properties of the simplest VB functions
for this molecule. The molecule is oriented along thez-axis with the Li atom in the
positive direction.

Figure 8.1 shows the expectation values of the electric moment for the Li+−H−

and covalent structures. The graph gives thenegativeof the moment for Li−−H+

for easy comparison. In addition, the moment for the three-term wave function
involving all three of the other functions is given. Although such a simple wave

2 The small moments in isotopic hydrogen, HD and HT, for example, do not interest us here.
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function does not reproduce the total moment accurately, qualitatively the signs
are correct. The behavior of the three expectation values deserves comment.

1. Li−−H+ From the point of view of electrostatics this structure is the simplest. We have
a spherical Li− ion and a bare proton. The dipole moment should just be−R in atomic
units, and the line giving the dependence of the moment onR should be straight with a
slope of−45◦ and through the origin. (NB The sign of this curve has been changed in
Fig. 8.1 to facilitate comparison of magnitudes.)

2. Li+−H− At longer distances the molecule is essentially an undistorted Li+ ion and an
H− ion. As such, the moment equals the internuclear distance. As the ions approach
one another, the Pauli principle interaction between the Li1s and H1s AOs causes the
moment to be larger than the value due only to the distance. It should be noted that the
effect of the Pauli principle is in the same direction as is the triplet example we gave
earlier for the H2 molecule with unequally scaled AOs, i.e., the charge density is pushed
toward the more diffuse orbital. The exchange interaction between two doubly occupied
orbital distributionsis essentially like the triplet interaction between two singly occupied
orbitals of the same sort.

3. Covalent The dipole moment of the covalent structure is never larger than 1 (in atomic
units) and is always positive. A simple analysisis not so easy here, but the same Li1s
and H1s interaction as appeared above occurs in this case also.

Figure 8.2 shows the coefficients of the three structures in the total three-term
wave function. As expected, the covalent term predominates at all distances, but
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Figure 8.2. The coefficients of the three structures in the simple three-term wave function.
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Figure 8.3. The dipole function for the full valence wave function of LiH. It is a little
difficult to see on the present scale, but the moment is –0.033 au at an internuclear distance
of 0.2 bohr.

the Li+−H− term is the next largest at all distances. The structure with the “wrong”
sign is always the smallest in the range of the graph. Figure 8.2 admittedly does not
allow a quantitative analysis of the way the three terms produce the total moment,
but it does provide a suggestive picture of how the various terms contribute.

When a full valence calculation is done with the present basis, there are 48
standard tableaux functions that produce 451�+ functions. Figure 8.3 shows the
dipole moment function for this wave function. The figure also shows the “45◦”
line that would be the moment if the charges at the ends were unit magnitude. The
curve has some interesting structure. As noted in the caption, even this molecule
shows the dipole going the “wrong” way to a slight extent at very close internuclear
distances. As the distance increases the moment rises above the 45◦ line, indicating
an effective charge on the ends greater in magnitude than one au. By the time the
equilibrium distance is reached (3.019 bohr), the effective charges have fallen so that
the moment is 5.5 D with the positive end at the Li, as the electronegativities predict.

8.3 Covalent and ionic curve crossings in LiF

Lithium and fluorine form a diatomic molecule that has a large dipole moment
in the gas phase; it has been measured to be 6.3248 D in the ground vibrational
state. The equilibrium internuclear distance is 1.564 A

�

, and, therefore, the apparent
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Figure 8.4. The first four1� states of LiF near the ionic–covalent curve crossing region.
The electric dipole moment is also given showing its change in relation to the crossing of
the first two states. The energy curves refer to the left vertical axis and the dipole moment
to the right.

charge on the atoms is±0.84 electrons. When there is a long distance between
them, the overall ground state is the pair of atoms, each in its neutral ground state.
The first excited overall state has the Li atom excited 2s→ 2p at 1.847 eV. The
ionization potential of Li is 5.390 eV and the electron affinity of F is 3.399 eV, so
the next state up is the transfer of an electron from Li to F at an energy of 1.991 eV.
This is a lower energy than any 2s→ 3l states of Li or any 2p→ 3s states of F.

If there were no other interaction the energy of the atoms in the Li+−F− state
would fall as they approach each other from∞. The energy of this state would
cross the ground state at about 12 bohr. In actuality the states interact, and there is
an avoided crossing. The energies of the first four states of LiF are shown in Fig. 8.4
as a function of internuclear distance. In addition, the electric dipole moment is
shown.

The point we wish to bring out here is that the dipole moment curve around
6–7 bohr is very nearly the value expected for± one electronic charge separated
by that distance. As one moves outward, the avoided crossing region is traversed,
the state of the molecule switches over from Li+−F− to Li–F and the dipole falls
rapidly.

The avoided crossing we have discussed occurs between the two curves in
Fig. 8.4 labeledE1 andE2. Another avoided crossing, farther out than our graph
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shows, occurs between the Li+−F− state curve andE3 andE4. These latter two
states involve Li2pσ –F2pσ and Li2pπ–F2pπ , both coupled to1�+. The crossing
in these cases occurs at such large distances there is very little interaction.

The calculations in this illustration were not done with a minimal basis set, since,
if such were used, they would not show the correct behavior, even qualitatively.
This happens because we must represent both F and F− in the same wave function.
Clearly one set of AOs cannot represent both states of F. Li does not present such
a difficult problem, since, to a first approximation, it has either one orbital or
none. The calculations of Fig. 8.4 were done with wave functions of 1886 standard
tableaux functions. These support 10201�+ symmetry functions. We will discuss
the arrangement of bases more fully in Chapter 9.
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9

Selection of structures and arrangement of bases

Since, for anybut thesmallest of systems, a full VBcalculation is out of thequestion,
it is essential to devise a useful and systematic procedure for the arrangement of the
bases and for the selection of a manageable subset of structures based upon these
orbitals. These two problems are interrelated and cannot be discussed in complete
isolation from one another, but we will consider the basis question first. In our
two-electron calculations we have already addressed some of the issues, but here
we look at the problems more systematically.

9.1 The AO bases

The calculations described in this section of the book have, for the most part, been
carried out using three of the basis sets developed by the Pople school.

STO3GAminimalbasis.Thiscontainsexactly thenumberoforbitals thatmightbeoccupied
in each atomic shell.
6-31GA valence double-ζbasis. This basis has been constructed for atoms up through Ar.
6-31G∗ A valence double-ζbasis with polarization functions added. Polarization functions
are functions of one largerl -value than normally occurs in an atomic shell in the ground
state.

Any departures from these will be spelled out at the place they are used.
Our general procedure is to represent the atoms in a molecule using the Hartree–

Fock orbitals of the individual atoms occurring in the molecule. (We will also
consider the interaction of molecular fragments where the Hartree–Fock orbitals of
the fragments are used.) These are obtainedwith the above bases in the conventional
way using Roothaan’s RHF or ROHF procedure[45], extended where necessary.
ROHF calculations are not well defined, and the reader is cautioned that this

term has meanings that differ among workers. Some computational packages,
GAMESS[46] is an example, in doing a single-atom calculation, do not treat the

121
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atom in a spherical environment. For example, for N in its4Sground state, the three
p orbitals are divided intoσ andπ sets and are not all equal. This is not a matter of
any importance in that milieu. An atom in a molecule will not be in a spherically
symmetric environment for the Hartree–Fock function to be determined.
In all of the calculations described here, however, we use the original Roothaan

specifications that produce sets ofl -functions that transform into one another under
all rotations. This can have an important consequence in our VB calculations, if we
treat a problem in which the energies of the system are important as we move to
asymptotic geometries. An example will clarify this point. C2 is in a1�+

g ground
state, but there are two couplings of two C atoms, each in a3Pe ground state, that
have this symmetry. In our calculations these two will have the correct asymptotic
degeneracy only if we use “spherical” atoms.
Conventional basis set Hartree–Fock procedures also produce a number of

virtual orbitals in addition to those that are occupied. Although there are experi-
mental situations where the virtual orbitals can be interpreted physically[47], for
our purposeshere theyprovide thenecessary fine tuningof theatomic basis asatoms
form molecules. The number of these virtual orbitals depends upon the number of
orbitals in thewhole basis and the number of electrons in the neutral atom. For the B
through F atoms from the second row, the minimal STO3G basis does not produce
any virtual orbitals. For these same atoms the 6-31Gand 6-31G∗ bases produce four
and nine virtual orbitals, respectively. There is a point we wish to make about the
orbitals in these double-ζ basis sets. A valence orbital and the corresponding virtual
orbital of the samel -value have approximately the same extension in space. This
means that the virtual orbital can efficiently correct the size of the more important
occupied orbital in linear combinations. Aswe saw in the two-electron calculations,
this can have an important effect on the AOs as amolecule forms.Wemay illustrate
this situation using N as an example.
The 6-31G basis for N has threes-type Gaussian groups. In the representation of

the normal atom the 1s and 2s occupied orbitals are two linear combinations of the
three-function basis and thes-type virtual orbital is the third. For convenience, we
will call the last orbital 3s, but it should not be thought to be a good representation
of a real orbital of that sort in an excited atom. A typical Hartree–Fock calculation
yields

1s = 0.996 224 75g6 + 0.019 984 19g3 − 0.004 639 97g1, (9.1)

2s = −0.226 268 21g6 + 0.515 913 17g3 + 0.568 841 00g1, (9.2)

3s = 0.091 019 32g6 − 1.5148 075 3g3 + 1.478 256 46g1, (9.3)

whereg6,g3, andg1 are, respectively, the 6, 3, and 1Gaussian groups from the basis.
The1sorbital is predominantly theg6 function, but the other twohave roughly equal
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(in magnitude) parts ofg3 andg1. Therefore, a linear combination,a2s+ b3swith
a fairly smallb can have an extension in space differing from that of 2s itself. If
b/a < 0 it is more compact; ifb/a > 0 it is less compact.

9.2 Structure selection

Our discussion of the structure selection must be somewhat more involved. In part,
this is a discussion of a crucial member of the CRUNCH package, the program
entitledsymgenn. It possesses a number of configuration selection devices, for
the details of which the reader is referred to the CRUNCH manual. The present
discussion will focus on the desired outcome of the selections rather than on how
to accomplish them. Again, it is convenient to describe these by giving an example,
that of the N2 molecule, which will be discussed quantitatively in Chapter 11.

9.2.1 N2 and an STO3G basis

N2 has 14 electrons and there are 10 orbitals in an STO3G basis. The Weyl
dimension formula, Eq. (5.115), gives 4950 configurations1 for a singlet state.
Physical arguments suggest that configurations with electrons excited out of the 1s
cores should be quite unimportant. If we force a 1s2a1s2b occupation at all times,
Eq. (5.115) now gives us 1176 configurations, a considerable reduction. These are
not just�+

g states, of course.Symgenn will allow us to select linear combinations
having this spatial symmetry only. This reduces the size of the linear variation ma-
trix to 102×102, a further significant reduction. Another number thatsymgenn
tells us is that, among the 1176 configurations, only 328 appear as any part of a
linear combination giving a�+

g state. This number would be difficult to determine
by hand.2

At this stagesymgenn has done its job and the matrix generator uses the
symgenn results to compute the Hamiltonian matrix. Thus, we would call this
a full valencecalculation of the energy of N2 with an STO3G basis.

9.2.2 N2 and a 6-31G basis

We still have 14 electrons, but the larger basis provides 18 orbitals in the basis.
The full calculation now has 4 269 359 850 configurations, a number only slightly

1 This is the number of linearly independent standard tableaux or Rumer functions that the entire basis supports.
2 To be precise, we should point out that we havesymgenn treat N2 as aD4h system, rather than the completely
correctD∞h. In projecting symmetry blocks out of Hamiltonian matrices, it is never wrong to use asubgroup
of the full symmetry, merely inefficient. It would be a serious error, of course, to use too high a symmetry. It
happens for the STO3G basis that there is no difference betweenA1g D4h and�+

g D∞h projections.
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smaller than 232. Forcing a 1s2a1s2b occupation reduces this to 4 504 864, which is a
considerable reduction, but still much too large a number in practice. The reduction
of these to�+

g states is not known, but the number is still likely to be considerable.
Instead, we use physical arguments again to reduce the number of configurations
further. Many of the 4 504 864 configurations have mostly virtual orbitals occupied
and we expect these to be unimportant. The number of occupied orbitals from the
6-31G basis is the same number as the total number of orbitals from the STO3G
basis. Therefore, there are again 102�+

g functions from the occupied orbitals.
These include charge separations as high as±3. We add to this full valence set
those configurations that have one occupied orbital replaced by one virtual orbital
in the valence configurations with charge separation no higher than±1.Symgenn
could work out the number of configurations resulting, but we have not done this.
If this selection scheme is combined with�+

g symmetry projection, we obtain a
1086×1086 Hamiltonian matrix, an easily manageablesize.

9.2.3 N2 and a 6-31G∗ basis

When we addd orbitals to the basis on each atom we have the possibility that
polarization can occur. Of course, as far as an atom in the second or third rows is
concerned, thed orbitalsmerely increase the number of virtual orbitals and increase
the number of possibilities for substitutions from the normally filled set. We do not
give any of the numbers here, but will detail them when we discuss particular
examples.

9.3 Planar aromatic andπ systems

In later chapters we give a number of calculations of planar unsaturated systems.
Because of the plane of symmetry, the SCF orbitals can be sorted into two groups,
those that are even with respect to the symmetry plane, and those that are odd.
The former are commonly calledσ orbitals and the latterπ orbitals. Although it
is an approximation, there has been great interest in treating theπ parts of these
systems with VB methods and ignoring theσ parts. The easiest way of doing this,
while still usingab initiomethods, is to arrange all configurations to have all of the
occupiedσ orbitals doubly occupied in the sameway. In addition,σ virtual orbitals
are simply ignored. Theπ AOs may then be used in their raw state or in any linear
combinations desired. In this sort of arrangement, theπ electrons are subjected to
what is called thestatic-exchange potential (SEP)[39] of the nuclei andσ core.
Themost important molecules of this sort are the aromatic hydrocarbons, but many
examples containing oxygen and nitrogen also exist.
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Four simple three-electron systems

In this chapterwedescribe four rather different three-electron systems: theπ system
of theallyl radical, theHe+2 ionicmolecule, thevalenceorbitalsof theBeHmolecule,
and the Li atom. In linewith the intent of Chapter 4, these treatments are included to
introduce the reader to systems that are more complicated than those of Chapters 2
and 3, but simple enough to give detailed illustrations of the methods of Chapter 5.
In each case we will examine MCVB results as an example of localized orbital
treatments and SCVB results as an example of delocalized treatments. Of course,
for Li this distinction is obscured because there is only a single nucleus, but there
are, nevertheless, noteworthy points to be made for that system. The reader should
refer back to Chapter 4 for a specific discussion of the three-electron spin problem,
but wewill nevertheless use the general notation developed in Chapter 5 to describe
the results because it is more efficient.

10.1 The allyl radical

All of the calculations on allyl radicals are based upon a conventional ROHF
treatment with a full geometry optimization using a 6-31G∗ basis set. Theσ “core”
was used to construct an SEP as described in Chapter 9. The molecule possesses
C2v symmetry. TheC2 symmetry axis is along thez-axis and the nuclei all reside in
thex–z plane. Thus the “π” AOs consist of thepys,dxys, anddyzs, of which there
are 12 in all for this basis. At each C there is a 2py, a 3py, a 3dxy, and a 3dyz. The
2py is the SCF orbital for the atomic ground state, and the 3py is the virtual orbital
of the same symmetry. Table 10.1 shows for reference the pertinent portions of the
C2v character table. We number theπ orbitals from one end of the molecule and
use 2p1, 2p2, and 2p3, remembering that they are all of the 2py sort. The effect of
theσxz andσyz operations of the group is seen to be

σyz2pi = −2pi , (10.1)

σxz2p1 = 2p3, (10.2)

125
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Table 10.1.C2v characters.

C2v I C2 σxz σyz

A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 1 −1
B2 1 −1 −1 1

Table 10.2.Results of 128-function MCVB calculation.

−116.433 248 63 au SCF energy
−116.477 396 60 au MCVB energy

1.201 eV Correlation energy

0.9003 EGSO pop. of

[
2p1 2p2
2p3

]

σxz2p2 = 2p2, (10.3)

σxz2p3 = 2p1. (10.4)

The effect of theC2 operation is easily determined sinceC2 = σxzσyz. There
is, of course, a completely parallel set of relations for the 3py set of orbitals.
Writing out the corresponding relations for the 3d orbitals is left to the interested
reader.

10.1.1 MCVB treatment

An MCVB calculation with a full set of configurations involving the six 2py and
3py orbitals with further configurations involving all possible single excitations
out of this set into thed-set gives 256 standard tableau functions, which can form
128 2A2 symmetry functions and a Hamiltonian matrix of the same dimension.
Table 10.2 gives several results from the calculation, and we see that there is about
1.2 eV of correlation energy. Because of the static exchange core, all of this is in
theπ system, of course. In addition we see that the EGSO population suggests that
the wave function is 90% of the basic VB function with unmodified AOs. This is
true, of course, for either standard tableaux functions or HLSP functions.
It is instructive to examine the symmetry of the standard tableaux function of

highest EGSO population given in Table 10.2. The effects of the two symmetry
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planes ofC2v on the 2pi orbitals are given above, and, consequently,

σyz

[
2p1 2p2
2p3

]
= −

[
2p1 2p2
2p3

]
, (10.5)

σxz

[
2p1 2p2
2p3

]
=

[
2p3 2p2
2p1

]
, (10.6)

= −
[
2p1 2p2
2p3

]
. (10.7)

It is important to recognize why Eq. (10.7) is true. From Chapter 5 we have[
2p1 2p2
2p3

]
= θNPN2p1(1)2p3(2)2p2(3), (10.8)

except for normalization. SinceN is a column antisymmetrizer, if we interchange
2p1(1)2p3(2), the sign of the whole function changes, and this standard tableaux
function has2A2 symmetry. The spatial projector forA2 symmetry may be con-
structed from Table 10.1,

eA2 = 1/4[ I + C2 − σxz− σyz], (10.9)

and we see that

eA2
[
2p1 2p2
2p3

]
=

[
2p1 2p2
2p3

]
. (10.10)

The second standard tableaux function[
2p1 2p3
2p2

]

is not a pure symmetry type; in fact, it is a linear combination of2A2 and 2B2. Since
there cannot be three linearly independent functions from these tableaux, the two
2A2 functions must be the same, and we do not need the second standard tableaux
function for this calculation. TheeA2 operator may be applied to this tableau to
obtain the result in a less formal fashion,

eA2
[
2p1 2p3
2p2

]
= 1

2

([
2p1 2p3
2p2

]
−

[
2p3 2p1
2p2

])
, (10.11)

where we have a nonstandard tableau in the result. Again, themethods of Chapter 5
come to our aid, and we have[

2p3 2p1
2p2

]
=

([
2p1 2p3
2p2

]
−

[
2p1 2p2
2p3

])
, (10.12)
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Table 10.3.Results of smaller VB calculations.

−116.433 248 63 au SCF energy

32-function MCVB –d-functions removed

−116.470 007 69 au MCVB energy
1.000 eV Apparent correlation energy

0.9086 EGSO pop. of

[
2p1 2p2
2p3

]
4-Function MCVB – 2p1, 2p2, 2p3 only

−116.461 872 28 au MCVB energy
0.779 eV Apparent correlation energy

0.9212 EGSO pop. of

[
2p1 2p2
2p3

]

2-function VB – 2p1, 2p2, 2p3 covalent only

−116.413 426 76 Energy

and substituting this result into Eq. (10.11), we obtain

eA2
[
2p1 2p3
2p2

]
= 1

2

[
2p1 2p2
2p3

]
. (10.13)

Our ability to represent the wave function for allyl as one standard tableaux
function should not be considered too important. If we had ordered our 2p orbitals
differently with respect to particle labels, there are cases where the2A2 function
would require using both standard tableaux functions.
This happens when we consider the most important configuration using HLSP

functions. The two Rumer diagrams are shown with dots to indicate the extra
electron.

p1

p2
p3 p1

p2
p3

Transforming our wave function to the HLSP function basis,1 we obtain

2A2 = 0.41115

([
2p2 2p1
2p3

]
R

−
[
2p2 2p3
2p1

]
R

)
+ · · · . (10.14)

where we have used Rumer tableaux (see Chapter 5). We emphasize that the EGSO
populations are the same regardless of the basis.
In Table 10.3 we give data for smaller calculations of the allylπ system. As

expected, the MCVB energies increase as fewer basis functions are included, the

1 Details of this sort of calculation are given in the next section.
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apparent correlation energy decreasing by about 0.5 eV. In fact, unlike the case
with H2, the covalent only VB energy isabovethe SCF energy. This is a frequent
occurrence in systems where resonance occurs between equivalent structures. It
arises because of the delocalization tendencies of the electrons. We will take this
question up in greater detail in Chapter 15 when we discuss benzene.
In actuality, the two smaller correlation energies shown in Table 10.3 are not

very significant, since the AO basis is really different from that giving the SCF
energy. What is significant is the relative constancy of the EGSO weight for the
most important configuration.
Since there are only four terms, we give the whole wave function for the smallest

calculation. In terms of standard tableaux functions one obtains

2A2 = 0.730 79

[
2p1 2p2
2p3

]

+ 0.140 64

([
2p1 2p1
2p3

]
−

[
2p3 2p3
2p1

])

+ 0.139 95

([
2p2 2p2
2p3

]
−

[
2p2 2p2
2p1

])

+ 0.061 32

([
2p1 2p1
2p2

]
−

[
2p3 2p3
2p2

])
. (10.15)

The HLSP function form of this wave function is easily obtained with the method
of Section 5.5.5,

2A2 = 0.411 88

([
2p2 2p1
2p3

]
R

−
[
2p2 2p3
2p1

]
R

)
+ three other terms the same as in Eq.(10.15). (10.16)

The reader will recall that a given configuration has different standard tableaux
functions and HLSP functions if and only if it supports more than one standard
tableaux function (or HLSP function).
It will be instructive to detail the calculations leading from Eq. (10.15) to

Eq. (10.16). This provides an illustration of the methods of Section 5.5.5.

10.1.2 Example of transformation to HLSP functions

The permutations we use are based upon the particle label tableau[
1 3
2

]
,
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and, therefore,

1/6NPN = 1/3
[
I − (12)+ 1/2(13)+ 1/2(23)

− 1/2(123)− 1/2(132)
]
, (10.17)

1/3NP = 1/3[I − (12)+ (13)− (132)]. (10.18)

The standard tableaux for the present basis are

[
2p1 2p2
2p3

]
and

[
2p1 2p3
2p2

]
;

it should be clear that the permutation yielding the second from the first is (23).
Thus, the permutations of the sort defined in Eq. (5.64) are{πi } = {I , (23)}, and
we obtain

M =
[
1 1/2
1/2 1

]
, (10.19)

where we have used anNPNversion of Eq. (5.73), and the numbers are obtained
from the appropriate coefficient in Eq. (10.17).
The Rumer tableaux may be written

[
2p1 2p2
2p3

]
R

and

[
2p3 2p2
2p1

]
R

and the{ρi } set is{I , (12)}. Thus the matrixB from Eq. (5.126) is

B =
[
1 −1
0 −1

]
, (10.20)

andA from Eq. (5.128) is

A = B−1M =
[

1/2 −1/2

−1/2 −1

]
. (10.21)

We also give the inverse transformation

A−1 =
[

4/3 −2/3

−2/3 −2/3

]
. (10.22)
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The results ofmultiplyingEqs. (10.17) and (10.18) by (23) and (12), respectively,
from the right are seen to be

1/6NPN (23)= 1/3
[
1/2I − 1/2(12)− 1/2(13)+ (23)− (123)+ 1/2(132)

]
,

1/3NP(12)= 1/3 [−I + (12)+ (123)− (23)] ,

and we obtain

1/3NP[
1/2I − 1/2(12)

] = 1/6NPN , (10.23)
1/3NP[ − 1/2I − (12)

] = 1/6NPN (23). (10.24)

For completeness we also give the inverse transformation:

1/6NPN [
4/3I − 2/3(23)

] = 1/3NP, (10.25)
1/6NPN [ − 2/3I − 2/3(23)

] = 1/3NP(12). (10.26)

Wenow return to the problem, and, using the first rowof thematrix inEq. (10.21),
we see that

[
2p1 2p2
2p3

]
= 1

2

([
2p1 2p2
2p3

]
R

−
[
2p3 2p2
2p1

]
R

)
, (10.27)

= 1

2

([
2p1 2p2
2p3

]
R

−
[
2p2 2p3
2p1

]
R

)
. (10.28)

This result does not quite finish the problem, however, in that it deals withunnorma-
lized functions. The coefficients that we show are given assuming the tableau func-
tions of either sort are individually normalized to 1. We must therefore consider
some normalization integrals.
The normalization and overlap integrals of the two standard tableaux functions

may be written as a matrix

Sst fi j = 〈
2p12p22p3

∣∣π−1
i θNPNπ j

∣∣2p12p22p3〉,
Sst f =

[
0.365 144 70 0.182 572 36

0.313 656 66

]
. (10.29)
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The corresponding normalization and overlap integrals for the HLSP functions are
then obtained with the transformation of Eq. (10.22),

SR =
[
0.463 976 0 −0.266 313 37

0.463 976 03

]
. (10.30)

It is seen that the two diagonal elements ofSR are equal, reflecting the symmetrical
equivalence of the two Rumer tableaux and diagrams. The coefficients in the wave
functions Eqs. (10.15) and (10.16) are all appropriate for each individual tableau
function’s being normalized to 1. Therefore, (1/

√
Sst f11 )θNPN2p12p22p3 is a nor-

malized standard tableaux function, with a similar expression for the HLSP func-
tions. In terms of normalized tableau functions we have

1√
Sst f11

[
2p1 2p2
2p3

]u
= 1

2

√
SR11
Sst f11


 1√

SR11

[
2p1 2p2
2p3

]u
R

− 1√
SR22

[
2p2 2p3
2p1

]u
R


 , (10.31)

where we have designated unnormalized tableau functions with a superscript “u”.
We now see that1/2

√
SR11/S

st f
11 should convert the coefficient of the standard table-

aux function in Eq. (10.15) to the coefficient of the HLSP function in Eq. (10.16),
i.e.,

0.730 79× 1

2

√
0.463 976 0

0.365 144 70
= 0.411 88. (10.32)

For a system of any size, these considerations are tedious and best done with a
computer.

10.1.3 SCVB treatment with corresponding orbitals

The SCVB method can also be used to study theπ system of the allyl radical. As
we have seen already, only one of the two standard tableaux functions is required
because of the symmetry of the molecule. We show the results in Table 10.4, where
we see that one arrives at 85% of the correlation energy from the largest MCVB
calculation in Table 10.2. There is no entry in Table 10.4 for the EGSO weight,
since it would be 1, of course.
The single standard tableaux function is[

2p1 2p2
2p3

]
,
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Table 10.4.Results of SCVB calculation.

−116.433 248 63 au SCF energy
−116.470 933 15 au SCVB energy

1.025 eV Correlation energy
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Figure 10.1. The first SCVB orbital for the allyl radical. The orbital amplitude is given in
a plane parallel to the radical and 0.5 A

�

distant.

and the orbitals satisfy

σyz2p1 = 2p3, (10.33)

σyz2p2 = 2p2, (10.34)

σyz2p3 = 2p1, (10.35)

eachoneconsistingofa linear combinationofall of theπ AOsallowedbysymmetry.
In terms of HLSP functions the wave function has two terms, of course:

0.537 602 87

([
2p2 2p1
2p3

]
R

−
[
2p2 2p3
2p1

]
R

)
,

and the overlap between the two HLSP functions is−0.730 003.
In Fig. 10.1 we show an altitude drawing of the orbital amplitude of the first

of the SCVB orbitals of the allylπ system. The third can be obtained by merely
reflecting this one in they–z plane of the molecule. It is seen to be concentrated at
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Figure 10.2. The second SCVB orbital for the allyl radical. The orbital amplitude is given
in a plane parallel to the radical and 0.5 A

�

distant.

one end of the radical, with the amplitude falling off fairly rapidly as one moves
away from that end. The second SCVB orbital is shown in Fig. 10.2. It is seen to be
concentrated on the middle carbon atom with lobes symmetrically placed on either
end carbon. Both of these drawings are plotted for amplitudes in a plane 0.5 A

�

from
the plane in which the nuclei occur. Since these areπ orbitals, the amplitude is, of
course, zero in the nuclear plane.

10.2 The He+2 ion

The He+2 ion has the archetype three-electron bond originally described by Pauling
[1], and this section gives a description of MCVB calculation and SCVB treatments
for this system. All of these use a Huzinaga 6-G 1s function split (411), a 4-G 2s
function and apz function with the scale set to 0.9605. We take up the MCVB
treatment first.

10.2.1 MCVB calculation

The basis described was used to generate one 1s occupied and four virtual RHF
orbitals.Using thesea full calculation yields 250 standard tableaux functions,which
may be combined into 125 functions of2	+

u symmetry. The results for energy,
bond distance, and vibrational frequency are shown in Table 10.5. We see that the
agreement forDe is within 0.1 eV, forRe is within 0.01 A

�

, and forωe is within
20cm−1. Evenat theequilibriumnuclear separation, thewave function is dominated
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Table 10.5.Dissociation energy, bond distance, and
vibrational frequency from MCVB calculation of He+

2 .

De eV Re A
�

ωe cm−1

Calc. 2.268 1.088 8 1715.8
Exp. 2.365 1.080 8 1698.5

Table 10.6.Energy differences ESCVB − EMCVB for He+2 .

�E(Rmin) eV �E(R∞) eV

1.088 1.214

by the first term, and only the second is of further importance,

�
(2

	+
u

) = 0.967 975

([
1sa 1sa
1sb

]
−

[
1sb 1sb
1sa

])

−0.135 988

([
2sa 2sa
1sb

]
−

[
2sb 2sb
1sa

])
+ · · · . (10.36)

10.2.2 SCVB with corresponding orbitals

The three orbitals we use are two we label 1sa and 1sb that are symmetrically
equivalent and one 2pσ that has the symmetry indicated. Thus ifσh is the horizontal
reflection fromD∞h we have the transformations

σh1sa = 1sb,

σh1sb = 1sa,

σh2pσ = −2pσ .

When these orbitals are optimized, the energies of the SCVB wave functions are
higher, of course, than those of the full MCVB wave functions. We show the
differences at the equilibrium and infinite internuclear separations in Table 10.6.
The energy curves are parallel within≈0.1 eV, but the SCVB energy is about
1.1 eV higher.
Because of the spatial symmetry there is only one configuration (as with allyl),

and in this case the HLSP function function is the simpler of the two. We have for
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Figure 10.3. The first SCVB orbital for the He+
2 ion. The orbital amplitude is given in the

x–z plane, which contains the nuclei.

the two forms

�SCVB =
[
1sa 1sb
2pσ

]
R

,

= 1.282 557 82

[
1sa 1sb
2pσ

]
− 0.803 090 63

[
1sa 2pσ

1sb

]
, (10.37)

where each of the tableaux functions is individually normalized. The second
standard tableaux function on the right hand side of Eq. (10.37) is of pure2	+

g sym-
metry, as can be seen by methods we have used above. Thus the other tableau is of
mixed symmetry, and the second term subtracts out the “wrong” part from the first.2

The 1sa orbital is shown in Fig. 10.3, and it is seen to be located predomi-
nately on one of the nuclei. We may compare this orbital to that for H2 given in
Section 3.2.2. The present one is seen to bemore localized near the nuclei, reflecting
the larger nuclear charge for He. The 1sb orbital is obtained by reflecting withσh.
The 2pσ orbital is shown as an altitude drawing in Fig. 10.4, where it is seen to
have the symmetry indicated by its symbol.

10.3 The valence orbitals of the BeH molecule

In this section we give the results of MCVB and SCVB treatments of BeH us-
ing a conventional 6-31G∗∗ basis.3 Although there are some similarities to the
He+

2 ion, the lack ofg–u symmetry in this case introduces a number of interesting

2 The relative values of the coefficients in Eq. (10.37) are not determined by the variation theorem, but are imposed
by the symmetry and overlaps.

3 That is, there is a set ofd orbitals on Be and a set ofp orbitals on H.



10.3 The valence orbitals of the BeH molecule 137

Table 10.7.Dissociation energy, bond distance,
vibrational frequency, and electric dipole moment

from full MCVB calculation of BeH.

De eV Re A
�

ωe cm−1 µ D

Calc. 1.963 1.348 6 211 7.1 0.262
Exp. 2.034 1.342 6 206 0.8
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Figure 10.4. The third SCVB orbital for the He+
2 ion. The orbital amplitude is given in the

x–z plane.

differences. The use of corresponding orbitals does not arise, since there is no
symmetry requirement to be satisfied.

10.3.1 Full MCVB treatment

A full MCVB calculation on BeH with the above basis yields 504 doublet stan-
dard tableaux functions, and these combine into 3442	+ symmetry functions. In
Table 10.7 we give some details of the results with experimental values for com-
parison. The calculatedDe is within 0.1 eV of the experimental value, the values of
Reare quite close, and the vibrational frequency iswithin 60 cm−1. Anexperimental
value for the dipole moment is apparently not known.
Theprincipal configurations in thewave function are shownasHLSP functions in

Table 10.8 and as standard tableaux functions in Table 10.9. Considering the HLSP
functions, the first is the ground state configuration of the separated atoms, the next
twoarebonding functionswith thes–phybridofBeand the fourth contributespolar-
ization to the Be2pz component. The corresponding entries in the third and fourth
columns of Table 10.9 do not include the tableau function with the 3pz orbital,
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Table 10.8.The principal HLSP function
configurations in BeH at R= Re.

Coef. Tableau

0.332 76

[
2s 2s
1s

]
R

0.295 79

[
1s 2pz
2s

]
R

−0.280 28

[
2s 1s
2pz

]
R

0.126 09

[
1s 3pz
2s

]
R

Table 10.9.Large components of the wave function for distances
on either side of the cross-over from negative to positive dipole
moments. The n= 1 orbitals are on H and the n= 2 or 3
orbitals are on Be. The Be1s orbitals from the core

are omitted in the tableaux.

R= 1.0 A
�

R= Re

Coef. Tableau Coef. Tableau

0.552 01

[
2s 1s
2pz

]
0.530 40

[
2s 1s
2pz

]

−0.272 34

[
2s 2s
1s

]
−0.332 76

[
2s 2s
1s

]

0.187 00

[
2s 1s
3pz

]
0.152 74

[
2s 1s
3pz

]

0.107 65

[
2pz 2pz
1s

]
0.117 30

[
1s 1s
2s

]

−0.079 44

[
1s 3pz
2pz

]
0.103 57

[
2pz 2pz
1s

]

0.059 29

[
1s 1s
2pz

]
0.089 61

[
1s 1s
2pz

]

but do include the ionic functions involving 1s22s. Overall, therefore the two dif-
ferent sorts of functions give similar pictures of the bonding in this system.
We now consider the dipole moment, which we will analyze in terms of standard

tableaux functions only. Our calculated value for themoment is fairly small, but it is
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Figure 10.5. The dipolemoment function from theMCVB calculation of BeH. The vertical
dotted line marks the calculated equilibrium internuclear distance.

in the “right” direction according to the electronegativity difference. The molecule
is oriented with the Be atom in the positivez-direction in these calculations. We
show the dipole as a function of distance in Fig. 10.5. One sees that theRe of BeH is
fairly close to a point at which themoment changes sign to the “wrong” direction. In
Table 10.9we give themajor tableau in thewave function on either side of the cross-
over to see how the dipole moment depends upon distance. At both distances the
first three tableaux are covalent and do not have large moments. We saw, however,
in Chapter 8 that covalent functions could have small moments in the direction of
less diffuse orbitals. The biggest difference here is the overlap of the H1swith the
Be1s, and we expect the covalent functions to have small negative moments. The
H1sand Be2sorbitals are not so different in size and will not contribute so much.
The fourth function atRe is ionic with a largemoment in the positive direction. This
sort of function does not come in until the sixth place atR= 1.0 A

�

and then with
a coefficient only half the size. Thus the main contribution to a positive moment
recedes as the distance gets smaller.

10.3.2 An SCVB treatment

The allyl radical and the He+2 ion both have end-for-end symmetry and thus the
corresponding orbital SCVB treatment is applied. Consequently, there was only
one tableau function in each of those cases. BeH is different in this regard. In the



140 10 Four simple three-electron systems

−2
−1

0
1

2   z-distance (Å) −2
−1

0
1

2

x-distance (Å)

−0.6
−0.4
−0.2
0.0

0.2

Orbital amplitude

Figure 10.6. The first SCVB orbital for the BeH molecule and associated with the Be
nucleus. This has the general appearance of ans–p hybrid pointed toward the H atom, and
we denote it theinner hybrid, hi . The orbital amplitude is given in thex–z plane, which
contains the nuclei.

−2
−1

0
1

2z-distance (Å) −2
−1

0
1

2

x-distance (Å)

−0.6

−0.4

−0.2

0.0

0.2

Orbital amplitude

Figure 10.7. The second SCVB orbital for the BeH molecule and associated with the Be
nucleus. This has the general appearance of ans–p hybrid pointed away from the H atom,
and we denote it theouterhybrid,ho. The orbital amplitude is given in thex–zplane, which
contains the nuclei.

wave function there are three different orbitals and, consequently, two independent
tableaux (of either sort) and an extra variation parameter associated with their
mixing. To a considerable extent we may associate two of the orbitals with the
Be nucleus and one with the H nucleus. Altitude drawings of the three orbitals
are shown in Figs. 10.6, 10.7, and 10.8. They are all orthogonal to the Be1s core
orbitals and this results in the sharp negative peak at the Be nucleus. The two
Be orbitals in Figs. 10.6 and 10.7 have the general characters ofs–p hybrids
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Table 10.10.Energy differences between
SCVB and MCVB treatment of BeH.

�E(Re) eV �E(R∞) eV

0.653 0.772
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Figure 10.8. The SCVB orbital for the BeH molecule associated with the H nucleus. The
orbital amplitude is given in thex–z plane, which contains the nuclei.

pointed toward and away from the H atom, respectively. We denote these the inner
and outer hybrids,hi andho. The third orbital shown in Fig. 10.8 and locatedmainly
on the H atom we will denote simply by 1s. The energy differences atRe and∞
geometries are in Table 10.10, where it is seen that the two curves are parallel within
about 0.12 eV.
The extra variation parameter with the two tableaux that occur here is shown by

the coefficients in Table 10.11, where we use the orbital symbols defined above.
The representation of the total wave function is rather similar with the two different
sorts of tableau functions. Nevertheless, the HLSP functions have a slight edge in
that the perfect pairing function between the inner hybrid and the H1s is a better
single-function approximation to the wave function than any of the other tableaux.
This is very clear from the EGSO weights that are given.

10.4 The Li atom

As we stated in Chapter 4, the Li atom has a much deeper and narrower potential
for three electrons than does the allyl radical. One consequence is that the nuclear
attraction part of the dynamical effects is relatively more important in Li. Because
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Table 10.11.Coefficients and tableaux for standard tableaux functions
and HLSP functions for SCVB treatment of BeH.
The orbital symbols are defined in the text.

Standard tableaux functions HLSP functions

Coef. EGSO Wt Tableau Coef. EGSO Wt Tableau

1.003 58 0.877 5

[
hi 1s
ho

]
1.009 08 0.9991

[
hi 1s
ho

]
R

−0.235 80 0.122 5

[
hi ho
1s

]
0.011 28 0.0009

[
1s ho
hi

]
R

it resembles the SCF result, we, in this case, take up the SCVB wave function
first.
These Li atom calculations used Huzinaga’s (10/73) basis set[48], further split

to (10/73/5221) to yield four basis functions. This is an “s” only basis, so our treat-
ments will not produce any angular correlation, but the principles are well illus-
trated, nevertheless.

10.4.1 SCVB treatment

There is no added symmetry in this example to cause one of the standard tableaux
functions to disappear. Thus, the SCVB wave function is

� = A

[
1s 1s′

2s

]
+ B

[
1s 2s
1s′

]
, (10.38)

where 1s, 1s′, and 2s are three different linear combinations of the four basis
functions. In this case the tableaux in Eq. (10.38) can be interpreted as either the
standard or the Rumer sort. The energies and wave functions obtained are shown
in Table 10.12. We observe that the wave function in terms of HLSP functions is a
little simpler in that the function with 1s and 1s′ coupled to singlet is very nearly
all of it. It has been observed that correlation energies are frequently close to 1 eV
per pair of electrons, particularly in atoms. The value in Table 10.12 is only a third
of that. This is to be expected since we have included the possibility of only radial
correlation in our wave function.4

4 We do not go into this, but only observe that there are three directions in which electrons may avoid one another.
In many cases each direction contributes approximately 1/3 of the correlation energy.
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Table 10.12.Results of SCVB calculation. The A and B
in line 4 are defined in Eq. (10.38).

−7.432 300 22 au SCF energy
−7.444 280 860 8 au SCVB energy
0.326 eV Correlation energy

A B
Standard tableaux 1.012 989 45 −0.156 041 34
Rumer tableaux 0.993 746 95 −0.006 921 54
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Figure 10.9. The three SCVB orbitals for the Li atom. The orbital amplitudes times the
radial coordinate are shown.

In terms of the primitive split Gaussian basis, we obtain for the three SCVB
orbitals

1s= 0.670 361 39s1 + 0.421 010 56s2 + 0.094 469 35s3 − 0.094700 67s4,

1s′ = 0.196 626 76s1 + 0.861 563 17s2 − 0.088 741 86s3 + 0.089 095 19s4,

2s= −0.071 16488s1 − 0.102 382 30s2 + 0.683 095 99s3 + 0.365 043 02s4,

wheres1, . . . , s4 are the four functions in increasing order of diffuseness. These
SCVB orbitals are plotted in Fig. 10.9 where we see that the inner shell orbitals
are split and show radial correlation. The outer orbital has one radial node like the
familiar 2s orbital of SCF theory, but in this case it is exactly orthogonal to neither
of the inner orbitals.
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Table 10.13.Results of MCVB calculation for Li.

−7.432 300 22 au SCF energy
−7.446 822 77 au MCVB energy
0.395 eV Correlation energy

0.9746 EGSO pop. of

[
1s 1s′
2s

]

10.4.2 MCVB treatment

We now describe the full MCVB treatment of the Li atom using a basis consisting
of the three SCVB orbitals 1s,1s′, and 2s to which we add the primitives4 for
completeness. The Hamiltonian matrix is 20×20, and the energy is of course the
same regardless of the sort of CI performed, so long as it is “full”. The results are
shown in Table 10.13, wherewe see that the SCVB calculation arrived at about 83%
of the correlation energy available from this basis. The EGSO population of the
principal SCVB standard tableaux function is very high. The additional correlation
energy from the MCVB is principally from intershell correlation and is produced
by the accumulation of a number of configurations with fairly small coefficients.
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Second row homonuclear diatomics

For many years chemists have considered that an understanding of the theory of
the bonding of the homonuclear diatomic molecules from the second row of the
periodic table is central tounderstandingall of bonding, andweconsider thesestable
molecules first from our VB point of view. The stable molecules with interesting
multiple bonds are B2, C2, N2, O2, and F2. Of course, F2 has only a single bond
by ordinary bonding rules, but we include it in our discussion. Li2 is stable, but,
qualitatively, is similar toH2. Thequestionof theexistenceofBe2 is also interesting,
but is really a different sort of problem from that of the other molecules. Of the five
molecules we do consider, B2 and C2 are known only spectroscopically, while the
other three exist at room temperature all around us or in the laboratory.

11.1 Atomic properties

Before we launch into the discussion of the molecules, we examine the nature of
the atoms we are dealing with. As we should expect, this has a profound effect on
the structure of the molecules we obtain. We show in Fig. 11.1 the first few energy
levels of B through F with the ground state taken at zero energy. TheL-S term
symbols are also shown. The ground configurations of B and F each support just
one term,2P, but the other three support three terms. All of these are at energies
below≈4.2 eV (relative to their ground state energies). The states from the ground
configuration are connected with lines marked with a G in Fig. 11.1.
We also consider two sorts of excited states.

� Those arising from configurations that differ from the ground configuration by one
2s→2p transition. This may be called avalenceexcited configuration. The lines con-
necting these states are marked with a “V”.

� Those arising from a 2p→3s transition. This is the first configuration of a Rydberg-like
series. The lines connecting these states are marked with an “R”.

145
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Figure 11.1. Energy levels for five atoms.

In the cases of B and C three terms have been observed from the valence excited
configuration. Apparently only one has been observed for the others. Only one
state has been plotted for the Rydberg state. We note that the energy of the lowest
valence excited state crosses the lowest Rydberg state energy between C and N. As
two identical atoms from the group approach one another to form a molecule, the
ground and several excited states mix together in the final structure. The general
point we make is that we expect valence states to be more important than Rydberg
states in bonding,1 and the atoms at the start of the list have much lower valence
state energies than those later, and the valence states shouldmix inmore easily upon
molecule formation. The energy necessary for the excitation of the atomic states
must come from the bonding energy. We analyze the bonding of these molecules
using the above general ideas.

11.2 Arrangement of bases and quantitative results

A goal of this chapter is to show, for the diatomic molecules under discussion, both
the capability of the VB method in providing quantitative estimates of molecular
properties and its capability of giving qualitative pictures of the bonding. The
quantitative results are illustrated in Table 11.1, where we give values forRe, the
equilibrium bond distance, andDe,2 determined theoretically with STO3G, 6-31G,

1 Among other things, the 3s orbital is too diffuse to overlap other orbitals well.
2 D0 + ωe/2, see Huber and Herzberg[49].
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Table 11.1.Bond distances and De for some second row
homonuclear diatomics.

Source B2 C2 N2 O2 F2

Exp. Re A
�

1.590 1.243 1.098 1.208 1.412
De eV 3.085 6.325 9.905 5.214 1.659

STO3G Re 1.541 1.261 1.198 1.263 1.392
De 3.778 6.851 6.452 4.529 2.082

6-31G Re 1.623 1.243 1.137 1.290 1.502
De 2.781 6.164 7.666 3.830 1.565

6-31G∗ Re 1.610 1.261 1.129 1.257 1.436
De 3.053 6.331 8.768 4.580 1.867

Table 11.2.Number of symmetry functions for 6-31G
and 6-31G∗ basis sets.

Basis B2 C2 N2 O2 F2

6-31G 777 991 1086 697 109
6-31G∗ 1268 1864 1812 1188 131

and 6-31G∗ bases comparedwith those fromexperiment. All of the VB calculations
here have the two 1s2 shells in each atom completely closed, and, in order to save
space, noneof the tableaux shown in tables later in this chapter include theseorbitals
explicitly.
In Chapter 9 we gave a somewhat generic description of the way we arrange

basis sets. More details are given here.

STO3G Each of the treatments may be described as afull valencecalculation. The details
of numbers of VB structures is given below in Table 11.4.
6-31G The VB structure basis is a full valance set augmented by structures involving a
single excitation from one valence orbital to one virtual orbital, using all possible combi-
nations of the excitation (outside the 1s shells). Table 11.2 shows the number of symmetry
functions (the dimension of theH andSmatrices) for each case.
6-31G∗∗∗∗∗ TheAObasis in this case is the sameas that for the 6-31G set with a set ofd orbitals
added. In these calculations thedσ and thedπ orbitals are included in the virtual orbital set
in which single excitations are included in generating structures. Thedδ orbitals were not
used. The inclusion of thesed orbitals provides polarization when the molecule is formed.

An examination of the values in Table 11.1 shows a variety of results for the
different molecules and bases. In general, the values ofRe are too large except for
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B2 and F2 values using the STO3G basis. The 6-31G∗ values average about 0.03 A
�

too large.
The calculatedDe values vary somewhat more randomly. In general the values

for B2 and C2 are the closest to the experimental ones, followed by those for F2.
The values ofDe for N2 are the hardest to obtain followed by those for O2. With
the 6-31G∗ basis set, the calculatedDe values for B2, C2, and F2 are all within
0.2 eV of experiment, while N2 is off by more than 1 eV. It is not clear why N2
presents such a challenge.

11.3 Qualitative discussion

If one wishes a qualitative picture of the bonding and structure of a molecule it
has become evident that this is most easily determined from a reasonably minimal
basis calculation. As one increases the size of the basis, the set of important struc-
tures remains reasonably stable, but there is frequently some jockeying around.
As we argued earlier, the STO3G set was historically optimized to be appropriate
for molecular geometries, therefore it is, perhaps, not surprising that it gives a rea-
sonable picture of molecular structure, even when taken over to the VB method.
In spite of this bias toward the molecular state, the STO3G basis also gives a good
account of the states that the system migrates into as the separation between the
atoms goes to∞. In the present section we therefore examine the wave functions
obtained with this basis for the molecules we are discussing to determine the VB
picture of their bonding.
In Table 11.3 we show the ground states of the atoms and the ground state of

the diatomic molecules they form. Except possibly for B2, all of these are well
established spectroscopically. This same table shows the total degeneracy for two
infinitely separated atoms. For example, atomic boron is in a2Po state, which,
ignoring spin-orbit coupling (i.e., using the ESE), is six-fold degenerate. Each
of these states can couple with each in another atom, so, all together, we expect
6× 6= 36different states tocome togetherat∞. Thiswill includesinglets, triplets,
�,�, and� states with variousg andu and+ and− labels, but the number will
add up to 36. We are not interested in discussing most of these but the interested
reader can make calculations for each of the symmetries with CRUNCH.
As we stated earlier, all of the configurations we use have the two 1s2 shells

occupied. Thus if we allow all possible occupations of the remaining eight valence
orbitals in the STO3G basis, wemay speak of afull valenceVB.We have this same
number of valence orbitals in all of themoleculeswe treat this way. Aswe pass from
B2 to F2, the number of electrons that the orbitals must hold increases, however,
causing a considerable variation in the number of allowed states. We show the



11.3 Qualitative discussion 149

Table 11.3.Atomic ground states and asymptotic
molecular symmetries.

Molecular states

Atom Atomic state Deg. at∞ Bonding state

B 2Po 36 3�−
g

C 3Pe 81 1�+
g

N 4So 16 1�+
g

O 3Pe 81 3�−
g

F 2Po 36 1�+
g

Table 11.4.Statistics of full valence calculations for STO3G basis.

Number of Number of Number of symmetry
Molecule 2S+ 1 electronsa constellations functions

B2(3�−
g ) 3 6 18 41

C2(1�+
g ) 1 8 35 84

N2(1�+
g ) 1 10 76 102

O2(3�−
g ) 3 12 18 30

F2(1�+
g ) 1 14 8 8

a Outside a 1s2a1s
2
b core.

numbers in Table 11.4, where it is seen that the total size of the variational problem
is a maximum for the case of N2. We now proceed to a discussion of the individual
molecules.

11.3.1 B2

The very first question that we might ask is: From our knowledge of the properties
of VB functions and knowing that the atom is in a2Po state, can we predict the
likely ground state symmetry of the molecule? With B2 this may be tricky. We list
some conjectures.

1. The very first guess might be that, outside of the two 2s2 closed subshells, a sin-
gle σ bond is formed from the twop orbitals in theσ orientation. A singlet state is
expected.

2. A more intricate situation arises if the excited configuration, 2s2p2, can come into play.
Then the two 2s and two 2pσ electrons can each form an electron pair bond, but there
are still two 2pπ electrons hanging around.
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Table 11.5.Principal standard tableaux function
structures for B2 at an asymptotic bond distance.

1 2 3

Num.a 2 8 8

Tab.b



2sa 2sa
2sb 2sb
pxa
pyb






2sa 2sa
pxb pxb
pxa
pyb






pxa pxa
pyb pyb
pxb
pya




Ci (∞) 0.665 111 24 −0.118 177 21 0.020 997 77

a Thenumberof terms in thesymmetry function that isgenerated
from the tableau shown. (See text.)

b These tableau symbols exclude the core orbitals.

Table 11.6.Principal HLSP function structures for B2
at an asymptotic bond distance.

1 2 3

Num.a 2 8 8

Tab.b



2sa 2sa
2sb 2sb
pxa
pyb



R



2sa 2sa
pxb pxb
pxa
pyb



R



pxa pxa
pyb pyb
pxb
pya



R

Ci (∞) 0.665 111 24 −0.118 177 21 0.020 997 77

a Thenumber of terms in the symmetry function that is generated
from the tableau shown. (See text.)

b These tableau symbols exclude the core orbitals.

(a) The two 2pπ orbitals could form an electron pair bond. Thus we would expect a1�g

state with three bonds.
(b) The two 2pπ electrons could arrange themselves in two one-electron bonds, one for

thex-direction and one for they-direction.
i. If the two electrons are singlet coupled, we have a1�+

g state.
ii. If the two electrons are triplet coupled, we have a3�−

g state.

We have collected some results for standard tableaux functions and HLSP func-
tions in Tables 11.5 and 11.6. The structure of these tableswill be repeated in several
later sections, and we describe it here.

1. The unlabeled row gives the ordinal number of the following entries.
2. The “Num.” row givesthe number of tableau functions in a symmetry function. Thus
the “2” for column one indicates that the tableau function below it is the first of a two
function sum that has the correct 1�+

g symmetry.
3. The “Tab.” row gives the actual tableaux in terms of AO symbols.
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Table 11.7.Principal standard tableaux function structures for B2

at energy minimum bond distance.

1 2 3 4

Num. 2 2 2 2

Tab.



2sa 2sb
pza pzb
pxa
pyb






2sa 2sa
2sb pza
pxb
pyb






2sa 2sa
2sb 2sb
pxa
pyb






2sa 2sb
pza pyb
pzb
pxa




Ci (Rmin) 0.215 367 05 −0.206 418 77 0.198 518 19 0.115 67619

4. TheCi are the coefficients in thewave function correspondingto the tableaux. The values
assume that the actual tableau function is normalized to 1 as well as the overall wave
function. The “∞” indicates the values in this case are for largeR-values. Elsewhere,
other arguments appear.

We return to consideration of the entries in these tables, where we give the principal
structures for two B atoms at long distance. It can be seen that we did not need
to give two tables since they are the same. The reader should recall that the two
sorts of VB functions are the same when there is only one standard tableau, as is
the case here. Focusing on Table 11.5 we see that the principal structure involves
the orbitals of the atomic configuration 2s22p on each atom. The relatively small
coefficient is caused by the fact that the principal structure is really

0.665 111 24






2sa 2sa
2sb 2sb
pxa
pyb


 +



2sa 2sa
2sb 2sb
pxb
pya





 ,

i.e., there are two terms in the symmetry function. If the symmetry function were
normalized in the form (f + g)/

√
2 the coefficient would be≈0.941. We also

emphasize that the footnotes in Tables 11.5 and 11.6 apply equally well to all of
the tables in this chapter that show tableaux and coefficients.
Thesecondand third terms involveexcitedstates thatproduceelectroncorrelation

(particularly of the angular sort) in the closed 2s2 shells of the atoms. Therefore,
the wave function for the asymptotic geometry is essentially the product of two
atomic wave functions.
When the two atoms are at the geometry of the energyminimum the results are as

shown in Tables 11.7 and 11.8, where, as before, we give both the standard tableaux
function and HLSP function results. It is clear that the wave function is now amore
complicated mixture of many structures. In addition, the apparent importance of
the structures based upon the values of the coefficients is somewhat different for the
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Table 11.8.Principal HLSP function structures for B2 at the energy
minimum bond distance.

1 2 3 4

Num. 2 2 2 2

Tab.



2sa 2sa
2sb 2sb
pxa
pyb



R



2sa 2sa
2sb pza
pxb
pyb



R



2sb pza
2sa pzb
pxa
pyb



R



2sa 2sa
2sb 2sb
pxa
pya



R

Ci (Rmin) 0.198 518 19 −0.134 559 43 −0.118 190 06 0.097 154 09

standard tableaux function and HLSP function bases. Considering Table 11.7 first,
we see that structure 1 consists of orbitals from the excited valence configuration
of each atom, 2s2p2. Structure 4 is another of the nine standard tableaux from this
arrangement. Structure 2 has the orbitals of one atom in the ground state and one
in the excited valence state. Structure 3 is from the two atoms each in their ground
states. Thus, the VB picture of the B2 molecule consists of roughly equal parts of
these three atomic configurations. There are, of course, many smaller terms leading
to electron correlation.
The picture from the results of Table 11.8 is not significantly different. Structure

3 from before is now 1 (with the same coefficient, of course), but we have amixture
of the same atomic configurations. The new structures 2 and 3 show standard two-
electron bonds involving 2s and 2pz orbitals on opposite atoms. This feature is not
so clear from the standard tableaux functions.

11.3.2 C2

The ground state of the C atom is3P from a 2s22p2 configuration. In the case of
B we saw that the excited valence configuration played an important role in the
structures describing the B2 molecule. C2 has more electrons with the possibility
of more bonds, and, thus, there may be more tendency for the valence excited
configuration to be important in this molecule than in B2.
Our conjectures concerning the lowest state of C2 are as follows.

1. The two3P atoms could formapσ−pσ bondwith the two remainingpπ orbitals coupled:
(a) 3�− as in B2;
(b) 1� to give a doubly degenerate ground state.

2. The two3P atoms could form twopπ bonds to produce a1�+ ground state. If the valence
excited state is important as argued above, these two5Sstates could also couple to1�+

interacting strongly with the twopπ bonds.

It is this last situation that pertains.
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Table 11.9.Principal standard tableaux function structures
for C2 at an asymptotic bond distance.

1 2 3

Num. 2 4 2

Tab.



2sa 2sa
2sb 2sb
pza pzb
pxa pxb






2sa 2sa
pyb pyb
pza pzb
pxa pxb






pxa pxa
pxb pxb
pza pzb
pya pyb




Ci (∞) 0.690 603 71 −0.106 757 10 0.016 503 07

Table 11.10.Principal HLSP function structures for C2
at an asymptotic bond distance.

1 2 3 4

Num. 2 2 8 4

Tab.



2sa 2sa
2sb 2sb
pza pzb
pxa pxb



R



2sa 2sa
2sb 2sb
pzb pxa
pza pxb



R



2sa 2sa
pyb pyb
pza pzb
pxa pxb



R



2sa 2sa
pyb pyb
pza pzb
pxa pxb



R

Ci (∞) 0.398 720 24 −0.398 720 24 −0.061 636 24 0.009 528 05

First, however, we examine the asymptotic geometry. The principal structures are
shown in Tables 11.9 and 11.10. In the standard tableaux function case structure 1
is one of the possible1�+ couplings of two3P atoms, and structures 2 and 3
produce electron correlation in the closed 2sshell. The results with HLSP functions
are essentially the same with some differences in the coefficients. The apparently
smaller coefficients in the latter case result mainly from the larger number of terms
in the symmetry functions.
Weshow thestandard tableaux function results for theenergyminimumgeometry

in Table 11.11. Here we see that the valence excited configuration has become
the dominant structure, and the1�+

g coupling of the
3P atomic ground states is

structure 2. Structure 3 is a mixture of the5S and3P states while structure 4 is
another of the standard tableau associated with structure 1.
We call attention to a significant similarity between structure 1 and the tableau

for the5Satomic state, which is 

2s
2pz
2px
2py


 .
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Table 11.11.Principal standard tableaux function structures for C2 at the
energy minimum bond distance.

1 2 3 4

Num. 1 1 4 1

Tab.



2sa 2sb
pza pzb
pxa pxb
pya pyb






2sa 2sa
2sb 2sb
pxa pxb
pya pyb






2sb 2sb
pya pya
2sa pzb
pxa pxb






2sa 2sb
pza pxb
pzb pya
pxa pyb




Ci (Rmin) 0.438 636 13 0.293 039 91 0.158 969 69 −0.131 203 05

Table 11.12.Principal HLSP function structures for C2 at the energy
minimum bond distance.

1 2 3 4

Num. 1 1 2 2

Tab.



2sa 2sa
2sb 2sb
pxa pxb
pya pyb



R



2sb pza
2sa pzb
pxa pxb
pya pyb



R



2sa 2sa
pyb pyb
2sb pza
pxa pxb



R



2sb 2sb
pya pya
2sa pzb
pxa pxb



R

Ci (Rmin) 0.240 701 83 −0.179 769 81 −0.165 030 55 0.127 710 28

This function is antisymmetricwith respect to the interchangeof anypair of orbitals.
The samepertains to structure 1of Table 11.11with respect to either of the columns.
Thus the dominant structure is very much two5Satoms.
The results forHLSP functions in Table 11.12 showa somewhat different picture.

In this case the dominant (but not by much) structure is the one with twoπ bonds
and structures 3 and 4 provide aσ bond. Structure 2 is the double5S structure,
but, since HLSP functions do not have a close relationship to the actual5Sstate as
above, there is less importance to just one Rumer coupling scheme.

11.3.3 N2

We commented above that the energies of the first excited valence states of B and
C are fairly low and there is a large jump between C and N. The reason for this
is principally the Coulomb repulsion energy in the states. For B and C the excited
valence state has one less paired orbital than the corresponding ground state, while
forN,O, andF the numbers are the same.Since theCoulomb repulsion energy tends
to be largest between two electrons in the same orbital, this trend is not surprising.
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Table 11.13.Principal standard tableaux
function structure for N2 at an asymptotic

bond distance.

1

Num. 1

Tab.



2sa 2sa
2sb 2sb
pza pzb
pxa pxb
pya pyb




Ci (∞) 1.000 001 54

Table 11.14.Principal HLSP function structures for N2
at an asymptotic bond distance.

1 2 3

Num. 1 1 1

Tab.



2sa 2sa
2sb 2sb
pzb pxa
pza pxb
pya pyb



R



2sa 2sa
2sb 2sb
pxa pxb
pzb pya
pza pyb



R



2sa 2sa
2sb 2sb
pza pzb
pxb pya
pxa pyb



R

Ci (∞) 0.471 403 79 0.471 403 79 0.471 403 79

In addition, we are comparing these molecules with a minimal basis. With eight
valence orbitals and ten electrons, configurations that produce some angular corre-
lation in the 2s shell cannot occur in the asymptotic region. The upshot is that there
is just one principal standard tableaux function at long distance, and this is shown
in Table 11.13. Because of the antisymmetry in the columns of standard tableaux
functions, we see that this function represents two noninteracting4SN atoms.
The situation is not so simple with HLSP functions. They do not have the anti-

symmetry characteristic mentioned above, and the asymptotic state requires a sum
of three of them as shown in Table 11.14.
When two4SN atoms form a molecule we have the possibility that there could

be three bonds, one from the twopσ orbitals, and two from the fourpπ orbitals.
Some mixing of the 2swith the pσ orbitals might lead to hybridization. No other
possibilities seem likely.Weshow theprincipal configurations in theHLSP function
and standard tableaux function cases in Tables 11.15 and 11.16, respectively. We
see that the same orbitals are present in both main structures. The situation with
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Table 11.15.Principal HLSP function structures for N2 at the energy
minimum bond distance.

1 2 3 4

Num. 1 1 2 4

Tab.



2sa 2sa
2sb 2sb
pza pzb
pxa pxb
pya pyb



R



2sa 2sa
pzb pzb
2sb pza
pxa pxb
pya pyb



R



2sa 2sa
2sb 2sb
pxa pxa
pyb pyb
pza pzb



R



2sa 2sa
2sb 2sb
pzb pzb
pya pya
pxa pxb



R

Ci (Rmin) 0.207 439 81 0.103 862 35 0.081 907 16 −0.075 261 88

Table 11.16.Principal standard tableaux function structures for N2 at the
energy minimum bond distance.

1 2 3 4 5

Num. 1 1 2 1 1

Tab.



2sa 2sa
2sb 2sb
pza pzb
pxa pxb
pya pyb






2sa 2sa
2sb 2sb
pza pxb
pzb pya
pxa pyb






2sa 2sa
pzb pzb
2sb pza
pxa pxb
pya pyb






2sa 2sa
2sb 2sb
pza pxa
pzb pxb
pya pyb






2sa 2sa
2sb 2sb
pza pzb
pxa pya
pxb pyb




Ci (Rmin) 0.329 868 28 −0.158 776 96 0.112 11670−0.111 073 50−0.110 745 84

the HLSP functions is somewhat simpler. The main structure has three electron
pair bonds involving the 2p orbitals, and structure 2 involves one atom in the first
excited valence state with an electron pair bond between 2s and 2pσ orbitals. This
latter occurrence, of course, indicates a certain amount ofs–p hybridization in the
σ bond. Structures 3 and 4 represent ionic contributions to theπ andσ bonds,
respectively.
The results for the standard tableaux functions at the energy minimum are

shown in Table 11.16. Structures 1, 2, 4, and 5 are different standard tableaux cor-
responding to two ground state atoms and represent mixing in different states from
the ground configurations. The standard tableaux functions are not so simple here
since they do not represent three electron pair bonds as a single tableau. Structure 3
represents one of the atoms in the first excited valence state and contributes tos–p
hybridization in theσ bond as in the HLSP function case.
It is clear that, regardless of the sort of basis function we use, our results give

the bonding picture of N2 as a triple bond. There is, in addition, some indication
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that the excited valence configuration is less important compared to the ground
configuration than was the case with B2 and C2. Two properties of the atoms could
contribute to this.

� As already mentioned, the excited valence state is of higher energy and is less likely to
mix as strongly.

� Exciting the atom in this case does not change the number of paired electrons, and, thus,
a no greater opportunity for bonding presents itself than in the ground state.

11.3.4 O2

From Table 11.3 we see that the ground state of O is3P, and there are only two
unpaired orbitals in the ground configuration. Since theL shell is more than half
full, valence excitations will not reduce the number of double occupations. We can
make the following conjectures.

1. The two free 2p orbitals from each atom could combine to form twoπ bonds to give a
1�+

g state.
2. One of the 2p orbitals on each atom could join with the other to form aσ bond.
(a) The other 2p orbitals could combine as a pair ofπ bonds to give a1�u state.
(b) The other single 2p orbitals could combine with the doubly occupied orbital on the

other atom to form twothree-electron bonds[1], giving a3�−
g state.

It is, of course, the last case that occurs, and we consider first the nature of a
three-electron bond.
Any elementary inorganic structure bookwill describe, inMO terms, theπ bonds

in O2 as each having a doubly occupied bonding orbital and a singly occupied
antibonding orbital. (This is the MO description of a three-electron bond.) Wemay
analyze this description, using the properties of tableau functions, to see how it
relates to the VB picture.
We take a very simple case of a pair of orbitalsa andb that can bond. We

assume the orbitals are at two different centers. The simplest LCAO approximation
to the bonding orbital isσ = A(a+ b), and the antibonding counterpart isσ ∗ =
B(a− b). HereA = 1/

√
2(1+ S) andB = 1/

√
2(1− S), whereS is the overlap

integral, are thenormalization constants.Consider the simple three-electrondoublet
wave function

ψ =
[

σ σ

σ ∗

]
, (11.1)

= A2B

[
a+ b a+ b
a− b

]
. (11.2)
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Table 11.17.Principal standard tableaux
function structures for O2 at an asymptotic

bond distance.

1 2

Num. 2 2

Tab.




2sa 2sa
2sb 2sb
2pxa 2pxa
2pyb 2pyb
2pza 2pzb
2pxb
2pya







2sa 2sa
2sb 2sb
2pxa 2pxa
2pyb 2pyb
2pza 2pxb
2pzb
2pya




Ci (∞) 0.612 374 06 −0.612 374 06

It will be recalled from our discussion of Chapter 5 that the tableau in Eq. (11.2)
is a shorthand for the result of operating upon a particular orbital product with
the operatorθ NPN , andN is the column antisymmetrizer. Thus, our function
contains a 2×2 functional determinant involvinga± b and two particles in all
terms. Any row or column operations legal in a determinantmay be used to simplify
our function, and the determinant may be converted to the equal one involving just
2a and−b. Equation (11.2) becomes

ψ = A2B

[
2a a+ b
−b

]
, (11.3)

= 2A2B

([
b b
a

]
−

[
a a
b

])
, (11.4)

and shows us how the three-electron bond is represented in the VB scheme. We
also emphasize that the tableaux of Eqs. (11.2) and (11.4) are of the sort where
the standard tableaux functions and the HLSP functions are the same. Thus, that
distinction does not affect our picture.
Now, let us consider the principal structures for the asymptotic geometry shown

in Tables 11.17 and 11.18. Both forms of the wave function correspond to3�−
g

couplings of the two atoms in their3P ground states.
When we consider the principal structures at the energy minimum geometry we

see the three-electron bonds discussed above. These are shown in Tables 11.19 and
11.20. Considering the principal tableaux of either sort, we see there are two three-
electron sets present,p2xapxbandp

2
ybpya. There is, of course, a normal two-electron

σ bond present also. When we move to the second structure, there are differences.
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Table 11.18.Principal HLSP function structures
for O2 at an asymptotic bond distance.

1 2

Num. 2 2

Tab.




2sa 2sa
2sb 2sb
2pxa 2pxa
2pyb 2pyb
2pza 2pzb
2pxb
2pya



R




2sa 2sa
2sb 2sb
2pxa 2pxa
2pyb 2pyb
2pya 2pxb
2pzb
2pza



R

Ci (∞) 0.500 000 0 0.500 000 0

Table 11.19.Principal standard tableaux function structures for O2 at the energy
minimum bond distance.

1 2 3 4 5

Num. 2 2 2 2 2

Tab.




2sa 2sa
2sb 2sb
2pxa 2pxa
2pyb 2pyb
2pza 2pzb
2pxb
2pya







2sa 2sa
2sb 2sb
2pxa 2pxa
2pya 2pya
2pza 2pzb
2pxb
2pyb







2sa 2sa
2sb 2sb
2pxa 2pxa
2pyb 2pyb
2pza 2pxb
2pzb
2pya







2sa 2sa
2sb 2sb
2pza 2pza
2pxb 2pxb
2pyb 2pyb
2pxa
2pya







2sa 2sa
2sb 2sb
2pxb 2pxb
2pya 2pya
2pza 2pxa
2pzb
2pyb




Ci (Rmin) 0.385 67656 −0.190 603 83 −0.189 268 76 0.175 54111−0.164 445 74

Table 11.20.Principal HLSP function structures for O2 at the energy
minimum bond distance.

1 2 3 4

Num. 2 2 2 4

Tab.




2sa 2sa
2sb 2sb
2pxa 2pxa
2pyb 2pyb
2pza 2pzb
2pxb
2pya



R




2sa 2sa
2sb 2sb
2pza 2pza
2pxb 2pxb
2pyb 2pyb
2pxa
2pya



R




2sa 2sa
2sb 2sb
2pxa 2pxa
2pya 2pya
2pza 2pzb
2pxb
2pyb



R




2sa 2sa
2sb 2sb
2pza 2pza
2pxa 2pxa
2pyb 2pyb
2pxb
2pya



R

Ci (Rmin) 0.327 172 36 0.175 541 11 −0.171 075 55 −0.113 001 07
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Table 11.21.Principal standard tableaux
and HLSP function structures for F2
at an asymptotic bond distance.

1

Num. 2

Tab.




2sa 2sa
2sb 2sb
pza pza
pzb pzb
pxa pxa
pxb pxb
pya pyb




Ci (∞) 0.707 106 78

1. With standard tableaux functions:
(a) structure 2 is ionic, having the two three-electron bonds pointed the same way;
(b) structures 3 and 4 are the other standard tableau associated with structure 1;
(c) structure 5 makes ionic contributions to all bonds, but in such a way that the net

charge on the atoms is zero. The charge in a three-electron bond is one way, and the
charge in theσ bond is opposite.

2. With HLSP functions:
(a) structure 2 is ionic with a zero net atomiccharge. This is similar to structure 5 in

terms of the standard tableaux functions;
(b) structure 3 is ionic with a net charge. The two three-electron bonds point in the same

direction;
(c) structure 4 is ionic with respect to theσ bond.

11.3.5 F2

As we pass to F2, with a minimal basis the amount of flexibility remaining is small.
The only unpaired orbital in the atom is a 2p one, and these are expected to form
aσ electron pair bond and a1�+

g molecular state. In fact, with 14 electrons and 8
orbitals (outside the core) there can be, atmost, one unpaired orbital set in any struc-
ture. Therefore, in this case there is no distinction between the standard tableaux
and HLSP function representations of the wave functions, and we give only one
set of tables. As is seen from Table 11.21, there is only one configuration present
at asymptotic distances. That shown is one of the1�+

g combinations of two
2P

atoms.
Table 11.22 shows the principal structures at the energy minimum bond dis-

tance. Structure 1 is aσ bond comprising the twopσ orbitals, and structure 2 is
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Table 11.22.Principal standard tableaux and HLSP function
structures for F2 at the energy minimum bond distance.

1 2 3 4

Num. 1 2 2 2

Tab.




2sa 2sa
2sb 2sb
pxa pxa
pxb pxb
pya pya
pyb pyb
pza pzb







2sa 2sa
2sb 2sb
pzb pzb
pxa pxa
pxb pxb
pya pya
pyb pyb







2sa 2sa
pzb pzb
pxa pxa
pxb pxb
pya pya
pyb pyb
2sb pza







2sa 2sa
pza pza
pxa pxa
pxb pxb
pya pya
pyb pyb
2sb pzb




Ci (Rmin) 0.779 221 33 −0.232 134 50 0.053 53427 0.044 702 64

ionic, contributing to correlation in the bond. Structures 3 and 4 contribute tos–p
hybridization in the bond.

11.4 General conclusions

In Section 11.1 we pointed out that B andC atoms have relatively low-lying valence
excited states compared to the other atoms considered. It is seen that these valence
excited states comprise the principal structures in the bonded state of B2 andC2, but
not in the other molecules where they contribute less than the ground configuration.
We shall discuss these effects in further detail for C atoms in Chapter 13. If we treat
the one- and three-electron bonds as one-half a bondwe see that B2, C2, N2, O2, and
F2 have two, three, three, two, and one bond(s) in themolecule, respectively.Were it
not for the low-lying valence excited states in B andC, themolecules corresponding
to these might be expected to have one and two bonds, respectively. Nevertheless,
the more open structure of the valence excited states allows more bonding between
the atoms.
The two molecules that have one- or three-electronπ bonds show triplet ground

states. This conforms to Hund’s rule in atoms where one has unpaired electrons
distributed among degenerate orbitals to produce the highest possible multiplicity.
The othermolecules all have electron pair bonds or unshared pairs and are in singlet
states.
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Second row heteronuclear diatomics

The consideration of isoelectronic sequences can provide considerable physical
understanding of structural details.We here give details of the calculation of a series
of isoelectronic diatomic molecules from the second row of the periodic table, N2,
CO, BF, and BeNe. By studying this sequence we see how the competition between
nuclear charges affects bonding. All of these are closed-shell singlet systems, and,
at least in the cases of the first two, conventional bonding arguments say there is a
triple bond between the two atoms. We expect, at most, only a Van der Waals type
of bond between Be and Ne, of course. Our calculations should predict this.
The three polar molecules in the series are interesting because they all have

anomalous directions to their dipole moments, i.e., the direction is different
from that predicted by an elementary application of the idea of electronegativity,
accepting the fact that there may be ambiguity in the definition of electronegativity
for Ne. We will see how VB ideas interpret these anomalous dipole moments.
We do the calculations with a 6-31G∗ basis in the same way as was done in

Chapter 11 and for three arrangements of STO3G bases. This will allow us both to
judge the stability of the qualitative predictions to the basis and to assess the ability
of the calculations to obtain quantitative answers.
Wehavealready treatedN2 inChapter 11, butwill look at it here fromasomewhat

different point of view.

12.1 An STO3G AO basis

Results of calculations carried out with three different selection schemes and an
STO3G AO will be described. The reader will recall that the scale factors for this
basis are traditionally adjusted to give molecular geometries, and this must be
remembered when interpreting the results. By now the reader should suspect that
such a basis will not produce very accurate energies. Nevertheless, we see that the
qualitative trends of the quantities match the experimental values.

162



12.1 An STO3G AO basis 163

Table 12.1.Dissociation energies and equilibrium distances for isoelectronic
series with an STO3G basis and a full calculation. Energies are in electron volts

and distances are in̊angstroms.

Basis N2 CO BF BeNe

Exp.
De 9.905 11.226 7.897
Rm 1.098 1.128 1.263

STO3G (±1, grouped)
De 6.101 8.988 6.917 0.023
Rm 1.199 1.195 1.257 2.583

(±1, ungrouped)
De 6.448 9.444 7.162 0.123
Rm 1.198 1.196 1.265 2.159

(full)
Ed 6.452 9.460 7.181 0.125
Rm 1.265 1.196 1.264 2.151

6-31G∗ Full valence+Sa
De 8.768 11.053 7.709 0.053
Rm 1.129 1.155 1.278 3.066

a S is an abbreviation for ‘single excitations’.

The three ways in which the structures are selected for the calculation follow,
and in all cases the 1sorbitals of the atoms are doubly occupied.

� “±1, grouped” This indicates that the structures included in the VB calculation are re-
stricted to those in which there is at most only one electron transferred from one atom to
the other and in which there are sixσ, two πx, and twoπy electrons.

� “±1, ungrouped” This indicates that the structures included in the VB calculation are
restricted to those in which there is at most only one electron transferred from one atom
to the other.

� “full” This is the full (valence) VB calculation.

Dissociation energies and minimum energy atomic separations from the STO3G
bases are given in Table 12.1 along with those for the 6-31G∗ basis, which we will
discuss later.We note that the restriction to±1 ionicities has an effect on the energy
of at most 10–20 meV for this basis.
Wegive tablesof the important structures in the full wave functionusing spherical

AOs and using thes–p hybrids, 2s± 2pz. The energies are, of course, the same for
these alternatives, but the apparent importance of the standard tableaux functions
or HLSP functions differs. We also discuss EGSO results for the series.
Again we see that theDe of N2 is the most poorly predicted in this series. We

have no clear explanation for this at present.
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Table 12.2.N2: The most important terms in the wave function when spherical
AOs are used as determined by the magnitudes of the coefficients. Results

for standard tableaux and HLSP functions are given. See text.

1 2 3 4

Num. 1 1 2 1

STF



2sa 2sa
2sb 2sb
2pza 2pzb
2pxa 2pxb
2pya 2pyb






2sa 2sa
2sb 2sb
2pza 2pxb
2pzb 2pya
2pxa 2pyb






2sb 2sb
2pza 2pza
2sa 2pzb
2pxa 2pxb
2pya 2pyb






2sa 2sa
2sb 2sb
2pza 2pxa
2pzb 2pxb
2pya 2pyb




Ci (min) 0.329 86 −0.158 78 −0.112 12 −0.111 07

Num. 1 1 2 1

HLSP



2sa 2sa
2sb 2sb
2pza 2pzb
2pxa 2pxb
2pya 2pyb




R



2sa 2sa
2pzb 2pzb
2sb 2pza
2pxa 2pxb
2pya 2pyb




R



2sa 2sa
2sb 2sb
2pxa 2pxa
2pyb 2pyb
2pza 2pzb




R



2sa 2sa
2sb 2sb
2pza 2pza
2pyb 2pyb
2pxa 2pxb




R
Ci (min) 0.207 44 0.103 86 0.081 91 –0.075 26

12.1.1 N2

In Table 12.2 we show the four most important structures in the wave function as
determined by themagnitude of the coefficients for standard tableaux functions and
for HLSP functions. Table 12.3 shows the same information for theσ AOs formed
into s–p hybrids. The symbols “hox” or “ hix” represent the outward or inward
pointing hybrids, respectively. Using the size of the coefficients as a measure of
importancewesee that theexpectedstructure involvingoneσ and twoπ bonds is the
largest in thewave function. It appears that the hybrid orbital arrangement is slightly
preferred for standard tableaux functions while the spherical orbital arrangement
is slightly preferred for HLSP functions, but the difference is not great. These
results suggest that an intermediate rather than one-to-one hybridization might be
preferable, but a great difference is not expected. Nevertheless, it is clear that the
VB method predicts a triple bond between the two atoms in N2.
The layout of Tables 12.3 and 12.4 is similar to that of Tables 11.5 and 11.6

described inSection11.3.1. There is, nevertheless, onepoint concerning the “Num.”
row that merits further comment. In Chapter 6 we discussed how the symmetric
group projections interact with spatial symmetry projections. Functions 1, 2, and
4 are members of one constellation, and the corresponding coefficients may not be
entirely independent. There are three linearly independent1�+

g symmetry functions
from the five standard tableaux of this configuration. The 1, 2, and 4 coefficients
are thus possibly partly independent and partly connected by group theory. In none
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Table 12.3.N2: The most important terms in the wave function when s–p hybrid
AOs are used as determined by the magnitudes of the coefficients. Results for

standard tableaux and HLSP functions are given.

1 2 3 4

Num. 1 1 1 2

STF




hoa hoa
hob hob
hia hib
2pxa 2pxb
2pya 2pyb







hoa hoa
hob hob
hia 2pxb
hib 2pya
2pxa 2pyb







hoa hoa
hob hob
hia hib
2pxa 2pya
2pxb 2pyb







hob hob
hia hia
hoa hib
2pxa 2pxb
2pya 2pyb




Ci (min) 0.337 43 −0.144 76 −0.107 25 0.099 41

Num. 1 4 1 1

HLSP




hoa hoa
hob hob
hia hib
2pxa 2pxb
2pya 2pyb




R




hoa hoa
hob hob
hia hia
2pxb 2pxb
2pya 2pyb




R




hoa hoa
hia hia
hob hib
2pxa 2pxb
2pya 2pyb




R




hoa hoa
hob hob
2pxb 2pxb
hia hib
2pya 2pyb




R
Ci (min) 0.189 12 −0.089 64 0.086 69 0.086 31

of the tables do we attempt to elucidate this sort of question. It really requires a
detailed examination of the output of thesymgenn segment of theCRUNCHsuite.
Table 12.4 shows spherical and hybrid AO results when subjected to the EGSO

weight analysis. Unlike the coefficients, the EGSO analysis for these results shows
that an ionic function is the single structure that contains the largest fraction of the
wave function in both of these cases. This is a common result in molecules with
multiple bonding. We have seen that the ionic structures contribute to delocaliza-
tion of the electrons (see Chapter 2) and thereby reduce the kinetic energy of the
structure. In a complicated symmetry function involving the sum of several terms
themixing of the improved correlation energy of the covalent functions and the im-
proved kinetic energy of the ionic functions can produce a symmetry constellation
that has the highest weight. It is thus important to interpret these results correctly.
We may comment that the principal configuration with spherical AOs measured

by coefficient in the wave function,

2sa 2sa
2sb 2sb
2pza 2pzb

2pxa 2pxb

2pya 2pyb


 ,

is not present among the first four functionsmeasured by the EGSOweights. In fact
its weight is 0.012 69, a little lower than those in the table. The situation is similar



166 12 Second row heteronuclear diatomics

Table 12.4.N2: EGSO weights (standard tableaux functions) for spherical AOs,
upper group, and s–p hybrids, lower group. These are weights forwhole
symmetry functionsrather than individual tableaux. It should be recalled

from Chapter 6 that the detailed forms of symmetry functions are
dependent on the particular arrangement of the orbitals in

the tableaux and are frequently nonintuitive.

1 2 3 4

Num. 4 2 6 4

STF



2sa 2sa
2sb 2sb
2pxa 2pxa
2pza 2pzb
2pya 2pyb






2sa 2sa
2sb 2sb
2pza 2pza
2pxa 2pxb
2pya 2pyb






2sa 2sa
2pzb 2pzb
2pxa 2pxa
2sb 2pza
2pya 2pyb






2sa 2sa
2pza 2pza
2pxa 2pxa
2pyb 2pyb
2sb 2pzb




Wt 0.558 62 0.200 53 0.066 58 0.040 89

Num. 4 2 6 2

STF




hoa hoa
hob hob
2pxa 2pxa
hia hib
2pya 2pyb







hoa hoa
hob hob
hia hia
2pxa 2pxb
2pya 2pyb







hoa hoa
hia hia
2pyb 2pyb
hob hib
2pxa 2pxb







hoa hoa
hob hob
2pxa 2pxa
2pyb 2pyb
hia hib




Wt 0.611 66 0.156 66 0.057 14 0.038 70

with the hybrid orbitals. In this case the standard tableaux function


hoa hoa

hob hob

hia hib

2pxa 2pxb

2pya 2pyb




hasanEGSOweightof0.005 32, rather smaller than thevalue in thecaseof spherical
functions. The reader should not find these small contributions too unexpected. The
ionic structures singled out by the EGSO can be looked at as one-third ionic and
two-thirds covalent. When the orthogonalization inherent in the method works, the
effect of the purely covalent functions is considerably depressed and is already
taken care of by the mixed functions.

12.1.2 CO

The set of tables we give for CO follows the pattern given for N2 in the last section.
Table 12.5 shows the four most important structures in the wave function of CO
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Table 12.5.CO: The most important terms in the wave function when spherical
AOs are used as determined by the magnitudes of the coefficients. Results for

standard tableaux and HLSP functions are given.

1 2 3 4

Num. 2 1 1 1

STF



2sa 2sa
2sb 2sb
2pxb 2pxb
2pza 2pzb
2pya 2pyb






2sa 2sa
2sb 2sb
2pzb 2pzb
2pxa 2pxb
2pya 2pyb






2sa 2sa
2sb 2sb
2pza 2pzb
2pxa 2pxb
2pya 2pyb






2sb 2sb
2pzb 2pzb
2sa 2pza
2pxa 2pxb
2pya 2pyb




Ci (min) 0.205 59 −0.192 23 0.149 09 −0.120 44

Num. 2 1 2 1

HLSP



2sa 2sa
2sb 2sb
2pxb 2pxb
2pza 2pzb
2pya 2pyb




R



2sa 2sa
2sb 2sb
2pzb 2pzb
2pxa 2pxb
2pya 2pyb




R



2sa 2sa
2sb 2sb
2pzb 2pzb
2pxb 2pxb
2pya 2pyb




R



2sa 2sa
2sb 2sb
2pxb 2pxb
2pyb 2pyb
2pza 2pzb




R
Ci (min) 0.179 15 −0.157 016 −0.094 20 0.093 19

as determined by the magnitude of the coefficients for standard tableaux functions
and HLSP functions. Table 12.6 shows the same information for theσ AOs formed
into s–p hybrids. The symbols “hox” or “ hix ” are used as before. Using the size
of the coefficients as a measure of importance, we see that VB theory predicts CO
to have only two covalent bonds between the atoms. We saw in Section 11.1 that
C and O are both in3P ground states, thus elementary considerations suggest that
there is oneσ covalent bond and oneπ covalent bond cylindrically averaged to
achieve1�+ symmetry. This view, although too simplistic, is different from that
often seen where CO is written like N2 with a triple bond. The latter must also
be too simplistic, since, if CO had anything close to an evenly shared triple bond,
its dipole moment would be large, although in the experimentally correct direc-
tion. We will discuss the dipole moments of the polar molecules all together in
Section 12.3.
The triple bond structure appears in the third place with spherical AOs and

standard tableaux functions, but is not among the first four with HLSP functions.
This is actually misleading due to the arbitrary cutoff at four functions in the table.
The HLSP function triple bond has a coefficient of 0.09182, only slightly smaller
that function 4 in the table. The appearance of the triple bond structure in this
wave function is the quantum mechanical manifestation of the “πback-bonding”
phenomenon invoked in qualitative arguments concerning bonding. We thereby
have a quantitative approach to the concept.
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Table 12.6.CO: The most important terms in the wave function when s–p hybrid
AOs are used as determined by the magnitudes of the coefficients. Results for

standard tableaux and HLSP functions are given.

1 2 3 4

Num. 2 1 1 1

STF




hoa hoa
hob hob
2pyb 2pyb
hia hib
2pxa 2pxb







hoa hoa
hob hob
hib hib
2pxa 2pxb
2pya 2pyb







hoa hoa
hob hob
hia hib
2pxa 2pxb
2pya 2pyb







hob hob
hib hib
hoa hia
2pxa 2pxb
2pya 2pyb




Ci (min) 0.274 04 0.222 04 0.188 09 0.146 23

Num. 2 1 1 2

HLSP




hoa hoa
hob hob
2pxb 2pxb
hia hib
2pya 2pyb




R




hoa hoa
hob hob
hib hib
2pxa 2pxb
2pya 2pyb




R




hoa hoa
hob hob
2pxb 2pxb
2pyb 2pyb
hia hib




R




hoa hoa
hob hob
hib hib
2pxb 2pxb
2pya 2pyb




R
Ci (min) 0.240 94 0.181 73 0.138 44 0.125 86

Comparing Tables 12.5 and 12.6 with those for N2, Tables 12.2 and 12.3, we
see that CO prefers hybrid orbitals to a somewhat greater extent. The differences
are not great, however. The EGSO weights shown in Table 12.7 display a be-
havior rather different from those for N2. In this case the principal configuration
is the same for both sorts of measure. The smaller EGSO weights are different,
however.

12.1.3 BF

The pattern of tables for BF follows the earlier treatments in the chapter. Table 12.8
shows the four most important structures in the wave function of BF as determined
by the magnitude of the coefficients for standard tableaux functions and HLSP
functions. Table 12.9 shows the same information for theσ AOs formed intos–p
hybrids.Weuse the “hox” or “ hix ” symbolsasbefore. In this case,all of theprincipal
structures except number 4 for the hybrid AOs have no more than one unpaired set
of orbitals. Therefore, the coefficients for the standard tableaux functions and the
HLSP functions differ in that case only. The hybrid orbital arrangement is again
preferred, but thedifference isonly somewhatgreater than that forCO.Theprincipal
configuration is definitely a singleσ bond between the two atoms.When interpreted
as a configuration of BF, the most important one from CO changes to the ionic sort.
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Table 12.7.CO: EGSO weights (standard tableaux functions) for spherical AOs,
upper group, and s–p hybrids, lower group. These are weights forwhole
symmetry functionsrather than individual tableaux. It should be recalled

from Chapter 6 that the detailed forms of symmetry functions are
dependent on the particular arrangement of the orbitals in

the tableaux and are frequently nonintuitive.

1 2 3 4

Num. 2 1 2 2

STF



2sa 2sa
2sb 2sb
2pyb 2pyb
2pza 2pzb
2pxa 2pxb






2sa 2sa
2sb 2sb
2pzb 2pzb
2pxa 2pxb
2pya 2pyb






2sb 2sb
2pzb 2pzb
2pyb 2pyb
2sa 2pza
2pxa 2pxb






2sa 2sa
2sb 2sb
2pzb 2pzb
2pxa 2pxa
2pyb 2pyb




Wt 0.550 208 0.140 467 0.105 266 0.033 16

Num. 2 1 2 1

STF




hoa hoa
hob hob
2pyb 2pyb
hia hib
2pxa 2pxb







hoa hoa
hob hob
hib hib
2pxa 2pxb
2pya 2pyb







hob hob
hib hib
2pyb 2pyb
hoa hia
2pxa 2pxb







hoa hoa
hob hob
2pxb 2pxb
2pyb 2pyb
hia hib




Wt 0.637 66 0.099 84 0.041 74 0.031 57

Table 12.8.BF: The most important terms in the wave function when spherical
AOs are used as determined by the magnitudes of the coefficients. Results for

standard tableaux and HLSP functions are the same.

1 2 3 4

Num. 1 2 1 1

STF
or
HLSP



2sa 2sa
2sb 2sb
2pxb 2pxb
2pyb 2pyb
2pza 2pzb






2sa 2sa
2sb 2sb
2pzb 2pzb
2pyb 2pyb
2pxa 2pxb






2sa 2sa
2sb 2sb
2pzb 2pzb
2pxb 2pxb
2pyb 2pyb






2sb 2sb
2pzb 2pzb
2pxb 2pxb
2pyb 2pyb
2sa 2pza




Ci (min) 0.277 78 −0.224 278 −0.217 808 −0.135 735

For spherical AOs it is not among the first four, but appears in the eighth position
with a coefficient of 0.114 16, and for hybrids it is the eighth one down with a
coefficient of 0.120 80. We therefore predict that, quantitatively, there is lessπ

back-bonding in BF than in CO. For neither arrangement of orbitals is the triply
bonded structure of N2 important for BF.
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Table 12.9.BF: The most important terms in the wave function when hybrid
AOs are used as determined by the magnitudes of the coefficients. Results for

standard tableaux and HLSP functions are the same.

1 2 3 4

Num. 1 1 2 2

STF
or
HLSP




hoa hoa
hob hob
2pxb 2pxb
2pyb 2pyb
hia hib







hoa hoa
hob hob
hib hib
2pxb 2pxb
2pyb 2pyb







hoa hoa
hob hob
hib hib
2pyb 2pyb
2pxa 2pxb







hob hob
hib hib
2pyb 2pyb
hoa hia
2pxa 2pxb




Cst f
i (min) 0.335 49 0.260 92 0.228 79 0.160 75

Chlsp
i (min) 0.335 49 0.260 92 0.228 79 0.147 62

Table 12.10.BF: EGSO weights (standard tableaux functions) for spherical
AOs, upper group, and hybrid AOs, lower group. These are weights

for whole symmetry functions.

1 2 3 4

Num. 2 1 1 2

STF



2sa 2sa
2sb 2sb
2pzb 2pzb
2pyb 2pyb
2pxa 2pxb






2sa 2sa
2sb 2sb
2pxb 2pxb
2pyb 2pyb
2pza 2pzb






2sb 2sb
2pzb 2pzb
2pxb 2pxb
2pyb 2pyb
2sa 2pza






2sb 2sb
2pzb 2pzb
2pyb 2pyb
2sa 2pza
2pxa 2pxb




Wt 0.464 83 0.302 50 0.082 13 0.028 11

Num. 1 2 2 1

STF




hoa hoa
hob hob
2pxb 2pxb
2pyb 2pyb
hia hib







hoa hoa
hob hob
hib hib
2pyb 2pyb
2pxa 2pxb







hob hob
hib hib
2pyb 2pyb
hoa hia
2pxa 2pxb







hob hob
hia hia
2pxb 2pxb
2pyb 2pyb
hoa hib




Wt 0.486 57 0.252 67 0.078 54 0.036 12

TheEGSOweights shown inTable 12.10 for the twoorbital arrangements display
an interesting switch. For the spherical AOs a cylindrically averagedπ bond is the
principal configuration and theσ bond is the second one. The hybrid AOs show the
opposite order with theσ bond structure relatively more strongly favored than in
the spherical case. In both cases there is considerable competition between the two
bond types, and the VB prediction is that they are strongly mixed in the molecule.
We defer a discussion of the dipole moment until later.
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Table 12.11.BeNe: The most important terms in the wave function when
spherical AOs are used, as determined by the magnitudes of the
coefficients. Results for standard tableaux and HLSP functions

are the same for these terms in the wave function.

1 2 3 4

Num. 1 2 1 1

STF
or
HLSP



2sa 2sa
2sb 2sb
2pzb 2pzb
2pxb 2pxb
2pyb 2pyb






2sb 2sb
2pzb 2pzb
2pxa 2pxa
2pxb 2pxb
2pyb 2pyb






2sa 2sa
2sb 2sb
2pxb 2pxb
2pyb 2pyb
2pza 2pzb






2sb 2sb
2pza 2pza
2pzb 2pzb
2pxb 2pxb
2pyb 2pyb




Ci (min) 0.879 46 −0.188 65 −0.186 14 −0.144 05

Table 12.12.BeNe: The most important terms in the wave function when s–p
hybrid AOs are used as determined by the magnitudes of the coefficients.

Results for standard tableaux and HLSP functions are the same
for these terms in the wave function.

1 2 3 4

Num. 1 1 1 2

STF
or
HLSP




hob hob
hib hib
2pxb 2pxb
2pyb 2pyb
hoa hia







hoa hoa
hob hob
hib hib
2pxb 2pxb
2pyb 2pyb







hob hob
hia hia
hib hib
2pxb 2pxb
2pyb 2pyb







hob hob
hib hib
2pxb 2pxb
2pya 2pya
2pyb 2pyb




Ci (min) 0.718 54 0.429 47 0.298 39 –0.188 64

12.1.4 BeNe

When we arrive at BeNe in our series we expect no real electron pair bond between
the two atoms, but we provide the same sorts of tables as before. Table 12.11 shows
the four most important structures in the wave function of BF as determined by the
magnitude of the coefficients for standard tableaux functions or HLSP functions.
Table 12.12 shows the same information for theσ AOs formed intos–p hybrids.
The symbols “hox” or “ hix ” are used as before. In this case, where none of the
principal structures has more than one pair of unpaired orbitals, there is no dif-
ference in the coefficients between the standard tableaux functions and the HLSP
functions. For BeNe the spherical AO arrangement is definitely preferred. Exam-
ination of Table 12.12 shows an unusual inner–outer hybrid pairing on Be in the
principal configuration. This pairing is not a good substitute for the 2s2 ground
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Table 12.13.BeNe: EGSO weights (standard tableaux functions) for
spherical AOs. These are weights for whole symmetry functions.

1 2 3 4

Num. 1 2 1 1

STF



2sa 2sa
2sb 2sb
2pzb 2pzb
2pxb 2pxb
2pyb 2pyb






2sb 2sb
2pzb 2pzb
2pxa 2pxa
2pxb 2pxb
2pyb 2pyb






2sa 2sa
2sb 2sb
2pxb 2pxb
2pyb 2pyb
2pza 2pzb






2sb 2sb
2pza 2pza
2pzb 2pzb
2pxb 2pxb
2pyb 2pyb




Wt 0.845 66 0.078 54 0.035 88 0.020 73

Num. 1 1 1 2

STF




hob hob
hib hib
2pxb 2pxb
2pyb 2pyb
hoa hia







hoa hoa
hob hob
hib hib
2pxb 2pxb
2pyb 2pyb







hob hob
hia hia
hib hib
2pxb 2pxb
2pyb 2pyb







hob hob
hib hib
2pxa 2pxa
2pxb 2pxb
2pyb 2pyb




Wt 0.573 15 0.208 39 0.093 72 0.078 54

state of Be and leads to the somewhat smaller value of the coefficient compared to
the primary structure in the case of spherical AOs. Because of the column antisym-
metry of the standard tableaux functions the hybrids on Ne do not cause a similar
difficulty.
Comparing the two sets of weights in Table 12.13 shows the same phenomenon.

The principal spherical AO structure represents over 80%of the total wave function
while the weights for the hybrid structures fall off more slowly. It addition it will
be observed that the principal terms in the wave functions and the EGSO weights
are completely parallel in the case of BeNe. This is in contrast to other members in
this series of molecules.
We see that the third function in any of the spherical AO series is an ionic

structure equivalent to the principal configuration for BF and thus represents one
σ bond. This is a relatively minor constituent of the wave function, but, never-
theless, has a surprisingly large coefficient. It is possible that this sort of term
is overemphasized in the STO3G basis, since it predicts an improbably short
bond between Be and Ne, judged by the value obtained with the higher-quality
6-31G∗ basis.1 As a test of this conjecture, a recalculation of the STO3G structures
at the 6-31G∗ equilibrium distance reduces the importance of this ionic struc-
ture to the fourth place with an EGSO weight of 0.4%. Theπ back-bonding

1 This is very likely a manifestation ofbasis set superposition errorthat occurs frequently in MO calculations,
also.
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Table 12.14.Statistics on 6-31G∗ calculations for N2, CO, BF, and
BeNe. The dipole moments are also given. See Section 12.3

for a discussion of the signs of the moments.

Moment (D)

Molecule NI
a NS

b Calc. Exp.

N2 6964 1812 0.0 0.0
CO 5736 2986 −0.087 −0.122
BF 3166 1680 −1.084 −0.5c
BeNe 1210 672 −0.312 ?

a The number of basis functions involved in1�+
g or

1�+ symmetry functions.
b The number of symmetry functions supported.
c Forν = 0.

structure at≈0.01% is even less important in this molecule. It appears that VB
theory predicts there to be no electron pair bonds between the two atoms here.
The minimum in the internuclear potential curve is due to Van der Waals interac-
tions. In spite of this the molecule has a small dipole moment, which we discuss
below.

12.2 Quantitative results from a 6-31G∗ basis

In Chapter 11 we described calculations using the occupied AOs in a full MCVB
with added configurations involving single excitations into all of the atomic virtual
orbitals excepting thedδ. We give the values forDe andRm in Table 12.1. The
results for N2 are the same, of course, as those in Table 11.1. As was the case
with the homonuclear molecules in Chapter 11, we again see that the calculated
energy for N2 is the farthest from experiment for the known values. There seems
at the moment no good explanation for this. Nevertheless, the higher-quality basis
gives closer agreement with experiment. In Table 12.14 we present statistics for the
number ofn-electron basis functions involved in the calculations.
Apparently there are no experimental data on BeNe. If we fit a Morse function

to the parameters we obtain for the dissociation curve, it is estimated that there
would be 14–15 bound vibrational states for this Van der Waals molecule. Thus,
VB theory predicts the existence of stable gaseous BeNe, if it is cold enough, since
De is only 2kT for room temperature.
As stated above, we consider the dipole moments of the heteronuclear molecules

in the next section, but we give in Table 12.14 the dipolemoments at the equilibrium
geometry and determined with the 6-31G∗ basis.
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12.3 Dipole moments of CO, BF, and BeNe

Elementary discussions define the electronegativity of an atom as a measure of
its ability to attract electrons to itself. Several authors, Pauling[50], Mulliken[51],
and Allen[52], have devised quantitative values as a measure of this ability. Such
elementary discussions usually emphasize the connection between the dipole
moments of heteronuclear bonds and the comparative electronegativities of the
atoms involved. In particular the expectation is that the electronegativity difference
should tell the direction of the moment. In general, this idea works well with many
diatomicmolecules that have single bonds between the atoms. Examples are hydro-
gen halides and (gaseous) alkali halides. Discussions of LiH and LiF representing
this sort of system are in Chapter 8. There are, nevertheless, a number of diatomic
molecules that have an anomalous direction of the dipolemoment between different
atoms. CO is probably the most notorious of these anomalies but others are known.
Huzinagaet al.[53] have examined a number of these and describe the effects in
terms of MO theories. The interested reader is referred to the article for the details,
since this work stresses VB analyses of chemical phenomena.

12.3.1 Results for 6-31G∗ basis

Figure 12.1 shows the dipole moment functions in termsof internuclear distance
of CO, BF, and BeNe, calculated with our conventional 6-31G∗ basis arrangement.

−3

−2

−1

0

1

2

3

4

0 1 2 3 4 5

E
le
ct
ric
 d
ip
ol
e 
m
om

en
t (
D
)

Internuclear distance (Å)

BF

CO

BeNe

Figure 12.1. The dipole moment functions for CO, BF, BeNe calculated at a number of
distances with the conventional 6-31G∗ basis arrangement.
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The curves for CO and BF show the form typical of these systems as is emphasized
in Ref. [53]. In our discussion of LiF in Section 8.3 we emphasized how the nature
of awave function could change from ionic to covalentwith a change in internuclear
distance. Here again we appear to have the “signature” of this sort of phenomenon:
thechangeof signof themomentat internucleardistancesaround1.0–1.5A

�

strongly
suggests the interplay of two effects where the winning one changes fairly rapidly
with distance. On the other hand the sign of BeNe does not change and this suggests
that one of these effects is absent in this molecule.
From the signs on the moments and our work in Chapters 2 and 8 we interpret

these curves as follows (for the interpretation of the signs the reader is reminded
that all three of our systems are oriented with thelesselectronegative atom in the
positivez-direction).

1. At internuclear distances intermediate, but greater than equilibrium, the familiar ideas of
electronegativity win out, and the more electronegative atom has an excess of negative
charge.At themaxima the chargeonO inCO is around−0.29|e|andonF inBF−0.70|e|.
It is not surprising that in BF the effect is larger. No legitimate argument would suggest
that Ne has any sort of negative ion propensity, and we do not see a maximum in that
curve.

2. When systems are pushed together, nonbonded electrons, on the other hand, tend to
retreat toward the system that has the more diffuse orbitals. In this case that is C, B, or
Be. Since the nonbonded electrons are generally in orbitals less far out, this effect occurs
at closer distances and, according to our calculations, wins out at equilibrium distances
for CO and BF. This is the only effect for BeNe, and the moment is in the same direction
at all of the distances we show. This retreat of electrons is definitely a result of the Pauli
exclusion principle.

Both sorts of physical effects tend to fall off exponentially as thedistancebetween
the atoms increases – the dipole moment must go to zero asymptotically. A close
examination of the CO results shows that the moment goes to very small negative
values again around 4.0 A

�

. Whether this is real is difficult to decide without further
calculations. It might be that thePauli exclusion effect wins again at these distances,
the result might be different for a still larger basis. Also, Gaussian basis functions
can cause troubles at larger distances because individually they really fall off much
too rapidly with distance.

12.3.2 Difficulties with the STO3G basis

We also calculated the dipole moment functions for CO, BF, and BeNe with an
STO3G basis, and it can be seen in Fig. 12.2 that there are real difficulties with
the minimal basis. We have argued that the numerical value and sign of the electric
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Figure12.2. The dipole moment functions for CO, BF, BeNe calculatedat a number of
distances with the full valenceminimal STO3G basis.

dipole moment in these molecules is the result of a balance between two opposing
effects. When we pass to the STO3G basis, this balance is thrown off.2 It is instruc-
tive, nevertheless, to see that STO3Gs reproduce the Pauli exclusion effect better
than the formation of a partial negative ion at the more electronegative end of the
molecule. This is expected. The more diffuse 6-31G∗ basis, with its capability for
allowing the AOs to breathe and polarize can much better represent the negative
ions.

2 This is in spite of the qualitatively reasonable energies the basis yields. Such an outcome is a familiar one,
however – the energy is the result of a variational calculation and is expected to be produced to higher order
than quantities like the electric moment. In addition, the minimal basis does better in the region of the minimum
and asymptotically than elsewhere. Thus,De may not suffer too greatly.
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Methane, ethane and hybridization

In Chapter 11 we discussed the properties of the atoms in the second row of the
periodic table and how these might influence molecules formed from them. We
focus on carbon in this chapter and examine how the bonding changes through
the series CH, CH2, CH3, and CH4. The first three of these are known only
spectroscopically, in matrix isolation, or as reaction intermediates, but many of
their properties have been determined. The reader will recall that carbon exhibits
relatively low-energy excited valence configurations. For carbon the excitation
energy is around 4 eV, and among the atoms discussed in Chapter 11, only boron
has a lower excitation energy. If this excited configuration is to have an important
role in the bonding, the energy to produce the excitation must be paid back by the
energy of formation of the bond or bonds. We shall see that VB theory predicts this
happens between CH and CH2. After our discussion of these single carbon com-
pounds, we will consider ethane, CH3CH3, as an example for dealing with larger
hydrocarbons.

13.1 CH, CH2, CH3, and CH4

13.1.1 STO3G basis

We first give calculations of these four molecules with an STO3G basis. The total
energies and first bond dissociation energies are collected in Table 13.1.We see that,
evenwith theminimal basis, the bondenergies arewithin 0.4 eVof the experimental
values except for CH3, which has considerable uncertainty. The calculated values
tend to be smaller, as expected for a minimal VB treatment.
We now give a discussion of each of the molecules, first considering the atomic

structure of the carbon atom and attempting to predict the bonding pattern. The
predictions are followed by the results of the STO3G calculations.

177
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Table 13.1.CHn STO3G energies.

n Energy (au) Dissociation Energy (eV) Exp. (eV)a

0 C (3P) −37.438 66
1 CH (2�) −38.050 28 DC−H 3.065 3.465
2 CH2 (3B1) −38.693 63 DCH−H 3.901 4.33
3 CH3 (2A′′

2) −39.338 38 DCH2−H 3.939 ≤4.90
4 CH4 (1A1) −39.989 73 DCH3−H 4.118 4.406

a See Refs. [49, 54].

Table 13.2.Principal standard tableaux functions for CH at the
equilibrium internuclear distance. This is the x-component

of aπ -pair.

1 2 3 4

Num.a 1 1 1 1

Tab.b
[
2s 2s
1s 2pz
2px

] [
2s 2s
1s 2px
2pz

] [
2s 2s
2pz 2pz
2px

] [
2pz 2pz
2s 1s
2px

]

Ci (min) 0.729 684 53 −0.320 400 21 0.227 852 03 0.168 832 87

a The number of terms in the symmetry function that is generated from the tableau
shown. (See text.)

b These tableau symbols exclude the core orbitals.

CH

The3P (we call it 3P(1)) ground state of the C atom has two unpairedp electrons.
When an H atom approaches, it should be able to form an electron pair bond with
one of these orbitals, while the other would remain unpaired. This scenario leads
to the expectation that CH should have a2� ground state. We have commented on
the possible involvement of the excited C5S state, but symmetry prohibits such
mixing here. There is a higher energy3P(2) valence state that is allowed to interact
through symmetry.
There are 75 standard tableaux functions in a full valence treatment, but only

36 are� states, half beingx-components and halfy-components. The variation
problem therefore has two 18× 18 matrices. The principal standard tableaux
functions in thewave function are shown in Table 13.2. The predominant term in the
wave function clearly involves the C atom in its3P(1) state. The calculated dipole
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Figure 13.1. Orientation of the CH2 diradical.

moment at the equilibrium separation for this basis is 1.4983 D with H the positive
end.

CH2

The methylene radical has enjoyed a certain notoriety concerning the nature of the
ground state. It is now known to be in a triplet state with a bent geometry. This
is perhaps not what is expected if we just think of an H atom interacting with the
remaining unpairedporbital of CH, an outcome that should lead to a singlet state of
some geometry. At this stage in our series we will see, however, that the excited5S
state becomes dominant in the wave function. A quintet state coupled with two
doublet H atoms can have no lower multiplicity than triplet. In Fig. 13.1 we show
the orientation of the CH2 diradical in a Cartesian coordinate system and assume
C2v symmetry.
With six electrons and six orbitals in a full valence calculation we expect 189

standard tableaux functions. These support 513B1 symmetry functions that, how-
ever, involve a total of only 97 standard tableaux functions out of the possible
189. Table 13.3 shows the principal terms in the wave function for the equilibrium
geometry.
The principal standard tableaux function is

T AO
1 =



2s 1sa

2px 1sb

2py

2pz


 , (13.1)

where the subscripts on the 1s orbitals are associated with the corresponding sub-
scripts on the H atoms in Fig. 13.1, and the 1sa orbital is on the positivey side of
thex–zplane with 1sb on the other side. We add a superscript “AO” to the tableau
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Table 13.3.Principal standard tableaux functions for CH2 at the
equilibrium internuclear geometry.

1 2 3 4

Num.a 1 2 2 1

Tab.b



2s 1sa
2px 1sb
2py
2pz






2py 2py
2s 1sa
2px
2pz






2s 2s
2px 1sb
2pz
1sa






2s 2s
2px 2py
1sa
1sb




Ci (min) 0.379 324 12 0.092 437 13 –0.091 619 94 –0.088 823 52

a The number of terms in the symmetry function that is generated from the
tableau shown. (See text).

b These tableau symbols exclude the core orbitals.

symbol to distinguish it from tableaux we introduce later that have hybrid orbitals
in them.
As we have pointed out many times previously, the columns of the standard

tableaux functions are antisymmetrized, and the orbitals in a column may be
replaced by any linear combination of them with no more than a change of an
unimportant overall constant. In this case, consider a linear combination that has
two hybrid orbitals that point directly at the H atoms in accord with Pauling’s
principle of maximum overlap. Using the parameterφ we have three orthonormal
hybrids

ha = cos(θ )(2s) + sin(θ )[sin(φ/2)(2py) + cos(φ/2)(2pz)],

hb = cos(θ )(2s) + sin(θ )[−sin(φ/2)(2py) + cos(φ/2)(2pz)],

hz = cos(φ/2) sin(θ)(2s) −cos(θ )(2pz)√
cos2(θ ) + cos2(φ/2) sin2(θ )

,




(13.2)

whereφ (>π/2)1 is the angle between these two hybrids, and

θ = arccot
[√− cos(φ)

]
.

We keep the 2px orbital unchanged. This set is a variant of the canonicalsp2 hybrid
set in which, however, all three orbitals are not symmetrically equivalent. Ifφ is the
H–C–H angle,ha andhb point directly at the H atoms. Because of the invariance

1 Hybrids consisting ofs and p orbitals without this angle restriction can be complex. We are not interested in
such cases.
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Table 13.4.Energies for TAO
1 and Th R

1 as a function
of hybrid angle.

〈
T AO
1 |H |T AO

1

〉
〈
T AO
1 |T AO

1

〉 au

〈
T h R
1 |H |T h R

1

〉
〈
T h R
1 |T h R

1

〉 au
Hybrid angle

120.0 38.479 436 −38.595 532
130.0 −38.479 436 −38.599 825
140.0 −38.479 436 −38.597 295
150.0 −38.479 436 −38.590 391

of the function in Eq. (13.1), we obtain

T AO
1 =




ha 1sa

hb 1sb

hz

2px


 . (13.3)

We have written out these hybrids, but the reader should realize that the eight-
electron wave function (including the 1s2) based upon the standard tableaux
function of Eq. (13.3) has an energy expectation value independent2 of the angle
parameter used in the hybrids, so long asφ > π/2. There are, however, nine stan-
dard tableaux functions for the orbital configuration in Eq. (13.3). These may be
combined into five other combinations of3B1 symmetry. TheT AO

1 above is the only
one that shows the invariance to hybrid angle. When we combine all five in a wave
function, theenergydoesdependupon thehybrid orbital directions.Nevertheless, as
we addmore andmore structures to the wave function, we eventually arrive at a full
calculation, and the energy is again invariant to the hybrid orbital directions. Thus
the principal ofmaximumoverlap has ameaning only for wave functions that do not
involve a linear combination of all possible structures for the underlying AO basis.
Some further numerical examplesare illuminatingwhenwecompare thestandard

tableaux function results with those of HLSP functions. We define

T h R
1 =




ha 1sa

hb 1sb

2px

hz




R

. (13.4)

Consider the energies in Table 13.4, where we see that the energy ofT h R
1 varies

up and down around 100–200 meV in the angle range shown, while that ofT AO
1 is

2 This does not mean that the energy of thisT h
1 is independent of the actual angle in the molecule. Among other

things, the nuclear repulsion energy depends upon the distance between the H atoms.
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constant. Using the methods of Chapter 5, we may writeT h R
1 in terms of standard

tableaux functions:

T h R
1 = 12

5




ha 1sa

hb 1sb

hz

2px


 − 6

5




ha 1sa

hb hz

1sb

2px


 + 6

5




ha 1sa

hb 2px

1sb

hz




− 6

5




ha hb

1sa 1sb

hz

2px


 + 3

5




ha hb

1sa hz

1sb

2px


 − 3

5




ha hb

1sa 2px

1sb

hz




− 9

5




ha 1sb

1sa hz

hb

2px


 + 9

5




ha 1sb

1sa 2px

hb

hz


 − 6

5




ha hz

1sa 2px

hb

1sb


 . (13.5)

We see immediately thatT AO
1 , the standard tableaux function invariant to the hybrid

angles, is actually the largest term inT h R
1 , but not overwhelmingly so. The others

all depend on the hybrid angles and, therefore, so doesT h R
1 . We may also note that

using hybrid orbitalsT h R
1 has a lower energy by≈3 eV, but, as seen fromTable 13.1,

the full calculation, with either sort of basis, is still more stable by another≈3 eV.
The calculated value of the dipole moment is 0.6575 D for this basis with the

charge positive at the H-atom end of the bonds.

CH3

Adding an H atom to CH2 might be expected to do little more than regularize the
hybrids we gave in Eq. (13.2), converting them to a canonicalsp2 set. With this we
expect a planar doublet system. Whether the molecule is really planar is difficult
to judge from qualitative considerations. Calculations and experiment bear out the
planarity, however.
A full valence orbital VB calculation in this basis involves 784 standard tableaux

functions, of which only 364 are involved in 682A2
′′ symmetry functions. For CH3

we present the results in terms ofsp2 hybrids. This has no effect on the energy,
of course. We show the principal standard tableaux functions in Table 13.5. The
molecule is oriented with theC3-axis along thez-axis and one of the H atoms on the
x-axis. The three trigonal hybrids are oriented towards the H atoms. The “x” sub-
script on the orbital symbols in Table 13.5 indicates the functions on thex-axis, the
“a” subscript those 120◦ from the first set, and the “b” subscript those 240◦ from the
first set.
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Table 13.5.Principal standard tableaux function structures for CH3

at equilibrium bond distances.

1 2 3 4

Num.a 1 1 1 3

Tab.b




hx 1sx
ha 1sa
hb 1sb
2pz







hx 1sa
1sx 1sb
ha 2pz
hb







hx 1sx
ha 1sb
1sa 2pz
hb







hx hx
ha 1sa
hb 1sb
2pz




Ci (min) 0.521 922 72 −0.320 281 42 −0.211 957 78 0.175 124 90

a The number of terms in the symmetry functionthat is generated from the
tableau shown. (See text.)

b These tableau symbols exclude the core orbitals.

Table 13.6.Second moments of the charge for CH3.

Component Value (D A
�

)a

(x x + yy + zz) −24.160 72
(2zz− x x − yy)/2 −1.829 70
(x x − yy)/2 0.0
xz 0.0
yz 0.0
x y 0.0

a Units of debye a
�

ngstroms.

Returning to the entries in Table 13.5, we see that the principal standard tableaux
function is based upon the C5Sstate in line with our general expectations for this
molecule with three C—H bonds. We considered in some detail the invariance of
this sort of standard tableaux function to hybrid angle in our CH2 discussion. We
do not repeat such an analysis here, but the same results would occur. As we have
seen in Chapter 6, standard tableaux functions frequently are not simply related
to functions of definite spatial symmetry. The second and third standard tableaux
functions are members of the same constellation as the first, but are part of pure
2A2

′′ functions only when combined with other standard tableaux functions with
smaller coefficients that do not show at the level to appear in the table. These
other standard tableaux functions are associated withL S-coupled valence states of
carbon at higher energies than that of5S. The fourth term is ionic and associated
with a negative C atom and partly positive H atoms.
The dipole moment of CH3 is zero, of course, but the second moments of the

charge have been determined, and〈r 2〉 and the quadrupole moments are given in
Table 13.6. The sign of thez-axial quadrupole term indicates the distribution of
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Figure 13.2. Drawing of positive axial quadrupole.

charge in the wave function. Figure 13.2 shows the general shape of thez-axial
quadrupole with the signs of the regions. Since the moment of the molecule is
negative, we see that its signs are reversed compared to those in the figure, and the
individual C—H bonds are relatively positive at the H-atom ends.
We may arrive at this conclusion another way. In Table 13.6 the components

(x x − yy)/2, x y, xz, and yz are zero indicating that the quadrupole field is
cylindrically symmetric about thez-axis. Theaxial moment around thex- or
y-axis is

(2x x − yy − zz)/2= 3(x x − yy)/4− (2zz− x x − yy)/4, (13.6)

= (2yy − x x − zz)/2, (13.7)

= 0.91485 DA
�

, (13.8)

for which the positive sign again indicates the positive nature of the H end of the
C—H bonds. This direction of the dipole moment is the same as that of CH and
CH2, and is again expected because of the relative predominance in the wave
function of the ionic term shown in Table 13.5.

CH4

Weexpect methane to be formed by the combination of an H-atomwith the remain-
ing unpairedpz orbital of CH3. If the principal configuration is still that involving
the C5Sstate and its nondirectional character predominates, we expect methane to
be tetrahedral, thereby minimizing the repulsion energy between pairs of H atoms.
This is borne out by the calculations as we see in Table 13.7.
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Table 13.7.Principal standard tableaux function structures for CH4

at equilibrium bond distances.

1 2 3 4

Num.a 1 1 4 1

Tab.b




ha 1sa
hb 1sb
hc 1sc
hd 1sd







ha 1sb
1sa 1sc
hb hd
hc 1sd







hd hd
ha 1sa
hb 1sb
hc 1sc







ha 1sa
hb 1sc
1sb hd
hc 1sd




Ci (min) 0.372 037 96 −0.155 900 88 0.129 792 00−0.105 365 69

a The number of terms in the symmetry function that is generated from the
tableau shown. (See text.)

b These tableau symbols exclude the core orbitals.

Table 13.8.Apparent partial electronic charge on H atoms
based upon lowest nonzero moment and the corresponding

calculated bond lengths, STO3G basis.

Molecule Charge RCHA
�

CH 0.254|e| 1.231
CH2 0.137 1.163a

CH3 0.194 1.145
CH4 0.188 1.150

a The H—C—H bond angle is 129.1◦.

A full valence calculation on CH4 gives 1764 standard tableaux functions, and
all of these are involved in the 1641A1 symmetry functions. The second and fourth
tableaux are also present in the principal constellation and, as with the earlier cases,
these are not simple symmetry functions alone. The third tableau is ionic with the
negative charge at the C atom. As before, this contributes to the relative polarity of
the C—H bonds.
This is seen from a calculation of the electric moments. Methane has no nonzero

dipoleorquadrupolemoments, but thex yzcomponentof theoctopole is1.144DA
�

2.
All of the others are zero if themolecule has the orientation in the coordinate system
that is used here. The value is positive, showing the same qualitative electronic
distribution in C—H bonds as was seen for the other CHn molecules we have
examined. Quantitatively, the octopolemoment is equivalent to a charge of 0.204|e|
at the H-atom nuclei.
For easy comparison we show in Table 13.8 the apparent charge on the H atom

in each of our molecules. The trend in these charges is broken between one and
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Table 13.9.Statistics for 6-31G∗ calculations of CHn.

Num. symm. Number of
State funcs. tableaux

CH 2� 213 546
CH2

3B1 828 1651
CH3

2A′′
2 1597 9375

CH4
1A1 2245 26 046

two H atoms. The likely interpretation here is that this is the place where the most
important atomic configuration changes as one progresses through the list. This is
seen clearly in Tables 13.2, 13.3, 13.5, and 13.7, where the principal configuration
in the wave functions is shown.
In the early days of VB theory workers were concerned with the “valence state”

of carbon[55]. Our calculations cannot really address this question because it is well
defined only within a perfect pairing single tableau wave function.3 The notion was
contrived to explain the relatively constant bond energies through the CHn series,
while there is a requirement to pay back the energy loss in having the principal
configuration change to higher energy. In the context of a full valence calculation
we may only give a somewhat more qualitative argument. The5S state of C is
about 4 eV above the ground state. This suggests that each of the actual C—H bond
energies in CH2 with respect to some hypothetical frozen carbon state is about
2 eV higher than the apparent calculated or measured value. We attribute this to the
greater effectiveness for bonding whenspn hybrids are involved.

13.1.2 6-31G∗ basis

After our discussionof theSTO3G resultswe, in this section, compare someof these
obtainedwith a 6-31G∗ basis arranged as described in Chapter 9. As before, we find
that the larger basis gives more accurate results, but the minimal basis yields more
useful qualitative information concerning the states of the atoms involved and the
bonding. The statistics on the number of symmetry functions and standard tableaux
functions for the various calculations are given in Table 13.9.
FromTable 13.10we see that the bond distances are reproduced better in this case

than with the STO3G basis. We see that the break in the trend between CH and CH2

again appears, and we continue to attribute it to the change in the important atomic
configuration at this juncture in the list. The calculated bond distances are about
4.2% high. The success in calculating bond energies is more difficult to assess,
since there is considerably more uncertainty in the experimental results.

3 Even then, it is a purely theoretical concept. There appears to be no experimental approach to the energy of this
state.
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Table 13.10.Energies, bond distances, and bond energies of CHn

for 6-31G∗ bases.

Bond length (A
�

) De (eV)

Energy (au) Calc. Exp. Dissociation Calc. Exp.

C −37.712 51
CH −38.321 54 1.169 1.1190 DC−H 2.978 3.462
CH2 −38.983 55 1.104a 1.029 DCH−H 4.502 4.33
CH3 −39.624 08 1.109 1.079 DCH2−H 3.918 ≤4.90
CH4 −40.295 47 1.119 1.094 DCH3−H 4.758 4.406

a The H—C—H bond angle is 130.5◦.

Table 13.11.Various multipole moments and the apparent
charges on H atoms from 6-31G∗ calculations.

Momenta Value Charge

CH D 1.20030 0.214|e|
CH2 D 0.53033 0.119
CH3 AQ −1.33895 0.152
CH4 O 0.58764 0.022

a D, dipole; AQ, axial quadrupole; O, octopole.

The apparent charges on the H atoms in this basis are shown in Table 13.11.
These may be compared to the similar values in Table 13.8. We see that the larger
basis yields smaller values, particularly for methane. Nevertheless, we still predict
that the H atoms in these small hydrocarbons are more positive than the C atom.

13.2 Ethane

Ethane presents a considerably greater challenge for calculation than the single
carbon molecules above. Even if we continue the practice of putting 1s electrons
in the “core” we have seven bonds and 14 electrons. A full minimal basis calcula-
tion, such as with STO3Gs, will produce 2 760 615 standard tableaux functions or
HLSP functions for the total 14-electron basis. Not all of these are1A1g (assum-
ing D3d symmetry) but the number would be considerable. With 14 electrons and
14 orbitals, none doubly occupied, there are 429 possible Rumer diagrams or stan-
dard tableaux functions. We will not attempt any “full” calculations with ethane,
but rather focus on basis set arrangements that are designed to yield useful results
with greater efficiency.
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Table 13.12.Energies for covalent only calculations of D3d and D3h ethane.

Energy (hartree)
Num. symm.

Treatment funcs. D3d D3h

Cartesian AO 52 −78.367 895 a

Hybrid AO 52 −78.577 391 −78.575 229
Perfect pairing (hybrid) 1 −78.565 885 −78.563 937

a This was not run.

We first contrast using a Cartesian basis withsp3 hybrids on the C atoms for a
covalent-only calculation.4 Table 13.12 shows these along with the perfect pairing
energy. We see that there is a considerable lowering of the energy at
E = 5.7 eV
from using hybrid orbitals on the C atom instead of the original Cartesian basis.
The hybrids are arranged to be pointing at the H atoms and the other C atom. We
also see that the perfect pairing wave function is not a great deal higher in energy
than the full covalent-only energy at
E = 0.313 or 0.307 eV for theD3d or D3h

geometry, respectively. The perfect pairing function is the only Rumer tableau that
is a symmetry function by itself. We saw earlier that a perfect pairing function with
Cartesian AOs is frequently not sensible, and this is another such case.
Because they have no ionic states, the previous covalent-only results have too

high a kinetic energy contribution, as discussed in Chapter 2. Adding all possible
ionic states would lead to the very large number of basis functions quoted in the
first paragraph of the discussion of ethane. We will consider the following physical
arguments that may be used to limit the number of ionic state functions. This will
all be done in the context of hybrid orbitals on the C atoms.

1. Adjacent ionic structures are themost important. This is expected since reductions in the
kinetic energy will only occur if the overlap between the orbitals is fairly sizable. This is
accomplished by assigning two electrons to each pair of orbitals that are arranged to bond
in the molecule, and then requiring that this pair always have two electrons occupying
them.

2. Only a few ionic bonds are required. We accomplish this by restricting the number of
doubly occupied orbitals in a structure.

3. Highlychargedatomsareunlikely.Weaccomplish thisbypreventing thechargedepletion
or build-up on either C atom from being outside±1.

Table 13.13 shows the energies for several treatments of ethane using these argu-
ments. The first addition of one set of ionic structures per basis function produces

4 The reader is reminded that different linear combinations of the AOs yield different energies for less than full
treatments.
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Table 13.13.Energies for various hybrid orbital calculations
of D3d and D3h ethane.

Energy (hartree)
Ionic Num. symm.
structures funcs. Tableaux D3d D3h

0 52 429 −78.577 391 −78.575 228
1 214 2277 −78.731 700 −78.730 171
2 448 4797 −78.742 547 −78.741 195

Table 13.14.Internal rotation barrier in ethane.

Energy (eV)
Ionic
structures Theory Exp.

0 0.059
1 0.042
2 0.037

0.127a

a See Ref. [56].

a lowering of≈4.2 eV, or nearly 0.6 eV per bond. The second ionic structure pro-
duces only 0.04 eV more per bond. In Chapter 2 the lowering of the energy in H2

when the ionic states are added is nearly 1 eV. The overlap there is rather greater at
≈0.9 than the values here, which are around 0.7 for either a C—H or a C—C bond.
We have calculated ethane in bothD3d andD3h geometries. From Table 13.13

we obtain the calculated barriers to internal rotation given in Table 13.14. It is seen
that the calculated barrier height is falling as the number of ionic states increases.
It is not yet converged, but we do not give the result obtained by including three
ionic structures in the basis functions. The interested reader can work this out. The
trend here with the addition of ionic states runs counter to predictions using another
method published by Pophristic and Goodman[57].
In addition it appears that this minimal basis calculation is unable to give a result

close to the experimental value for the rotation barrier.We do not pursue this further
here, but leave it as an open question.

13.3 Conclusions

In its original form VB theory was proposed using only states of atoms like the5S
for C that we have invoked in describing our results. These are produced by standard
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tableaux functions of the particular sort that is antisymmetric with respect to the
interchange of any of the four C orbitals 2s, 2px, 2py, and 2pz. The functions based
upon the other standard tableaux of the constellation correspond to the inclusion of
otherL S states of the same configuration. Although not as important in the wave
function, these functions do enter and allow one to infer that the step suggested by
Slater and Pauling, the inclusion of all states of a configuration, was an important
addition to the VB method.
Our results in this chapter also show that using hybrid orbitals with restricted

bases can make an important improvement in the wave functions, at least when the
criterion is energy lowering.
We also see that the number of basis functions grows rapidly with the number

of electrons. In Chapter 16 we will discuss another method for dealing with the
escalation of basis size with greater numbers of atoms and electrons.



14

Rings of hydrogen atoms

In this chapter we examine some results for four model systems consisting of
rings of H atoms. These calculations show how the number of atoms in a complex
reaction may influence rates of reaction, particularly through the activation energy.
The systems are as follows.

� Four H atoms in a rectangular geometry ofD2h symmetry. The rectangle is characterized
by two distances,RAandRB. We map out a region of the ground state energy for this
four-electron system as a function of the two distances.

� Six H atoms in a hexagonal geometry ofD3h symmetry. This is not aregularhexagon, in
general, but, like the system of four H atoms, is characterized by two distances we also
labelRAandRB. These two distances alternate around the ring. We also calculate the
map of the ground state energy for this six-electron system.

� Eight H atoms in an octagonal geometry ofD4h symmetry and the specific shape char-
acterized by theRAandRBvariables as above. For this larger system we only determine
the saddle point with respect to the same sort of variables.

� Ten H atoms in a decagonal geometry ofD5h symmetry and theRAandRBvariables.
Again, we determine only the saddle point.

Since the geometries of these systems are in most regions not regular polygons,
we will symbolize them as (H2)n, emphasizing the number of H2 molecules rather
than the total number of atoms.
For any of these, ifRA= 0.7 A

�

andRB is quite large, the rings represent 2–5
normal H2 molecules well separated from one another. If the roles ofRAandRB
are reversed, the H2 molecules have executed a metathesis in which the molecules
transform into an equivalent set.
Theseare,withoutdoubt, somewhatartificial systems.For real systems,onecould

not tell if anything happened, unless isotopic labeling could be arranged. An even
greater problem would occur in the gas phase, since the entropy penalty required
for these peculiar geometries would be expected to make them very improbable.

191
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Table 14.1.Number of symmetry functions of three types for
H-ring calculations of (H2)2 and (H2)3.

Base configs. Single exc. Double exc. Total State

(H2)2 8 17 33 58 1A1g

(H2)3 13 130 411 554 1A′
1

Table 14.2.Number of symmetry functions for saddle point
calculations of (H2)4 and (H2)2.

Num. Symm. Funcs. Num. tab. State

(H2)4 146 1134 1A1g

(H2)5 768 7602 1A′
1

Nevertheless, the results have considerable interest, bearing, as they do, on the same
sort of considerations as the Woodward–Hoffman rules[58].

14.1 Basis set

The calculationswere all performedwith an “s”-only basis of a 1sand a “2s” at each
center. These are written in terms of the Huzinaga 6-Gaussian function as (6/42).
This is thespart of the basis used in Chapter 2 for the H2 molecule and is shown in
Table 2.2. It will be recalled that the “2s” orbital is not a real H2s orbital, but the
second eigenfunction for this basis. As such it provides orbital breathing flexibility
in the wave function. We show some statistics for these calculations in Table 14.1.
Ionic states are restricted to±1 at any center. The saddle point calculations for the
larger two systems were carried out with more restricted bases involving valence-
only covalent and single-, and double-ionic structures. The statistics for these are
shown in Table 14.2.

14.2 Energy surfaces

The energy surface for (H2)2, divided by 2, is shown in Fig. 14.1, and that for (H2)3,
divided by 3, is in Fig. 14.2. Because of the division by the number of H2molecules,
the energy goes to−1 hartree asRAandRBboth grow large. Examination of the
two surfaces shows clearly that they are quite different. The (H2)2 energy surface
has a fairly sharp ridge between the two stable valleys. This is completely missing
in the (H2)3 case. The difference between the energies

EH4/2− EH6/3
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Figure 14.1. The energy surface for the conversion of 2H2 → 2H2 in D2h geometries. The
energy is per H2 molecule.
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Figure 14.2. The energy surface for the conversion of 3H2 → 3H2 in D3h geometries. The
energy is per H2 molecule.

for the two surfaces is plotted in Fig. 14.3. This is everywhere>−0.001 eV within
the region of the plot. ThusEH4/2 is always relatively higher.

In Table 14.3 we show the saddle points and activation energies of the four
systems. It is seen that there is a tendency for the quantities to alternate between
higher and lower values as the number of H2 molecules is either even or odd.
The differences decrease, however, as the rings become larger, and it appears
that further calculations might show that the effect levels out. Nevertheless, the
activation energy for the (H2)2 system is almost three times higher than that of the
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Table 14.3.Properties of the saddle points for
the four hydrogen rings.

Activation
RAA

�

RBA
�

Energy au energy eV

(H2)2 1.310 1.310 –1.0367 3.04
(H2)3 0.998 0.998 –1.1067 1.14
(H2)4 1.203 1.203 –1.0475 2.75
(H2)5 1.107 1.107 –1.0819 1.81
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Figure 14.3. The difference between the energy surfaces for the conversion of 2H2 → 2H2
in D2h geometries and 3H2 → 3H2 in D3h geometries. The energy is per H2 molecule. NB
We have changed the aspect from that of Figs. 14.1 and 14.2.

(H2)3 system, the saddle point is 0.3 A
�

farther out and therefore more difficult to
reach.
We can gain further insight into the differences between these two systems from

an examination of the two 2× 2 matrix systems based upon the Kekul´e-like HLSP
functions. These are, of course, the only structures for (H2)2, but for this comparison
we ignore the long-bond functions in the other rings.We show the elements of these
two matrix systems in Table 14.4. These systems are particularly simple since the
diagonal elements ofH are equal, giving simple expressions for the eigenvalues of
the problem,viz.,

E = H11 ± H12

1± S12
, (14.1)

= H11 ± H12 − S12H11

1± S12
. (14.2)
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Table 14.4.Values of elements in the two-state HLSP function matrix
systems for four hydrogen rings, all evaluated at the saddle points.

2H11/n(= 2H22/n) 2H12/n S12 2(H12 − S12H11)/n

(H2)2 −1.0113 0.7058 −0.6763 0.02196
(H2)3 −1.0279 −0.6308 0.5752 −0.03955
(H2)4 −1.0422 0.3284 −0.3015 0.01418
(H2)5 −1.0452 −0.2474 0.2242 −0.01307

As we see from Table 14.4, there is a peculiar alternation in sign in passing
through the series. This results in the lower energy arising from the upper or lower
sign in Eq. (14.2) forn odd or even in (H2)n, respectively. If we represent the two
Kekulé structure functions by the symbolsK (n)

1 andK (n)
2 , the wave function at the

saddle point is

�
(n)
sad= Nn

[
K (n)

1 − (−1)nK (n)
2

]
. (14.3)

The immediate consequence of this is a tendency for the electrons to stay away
from the center of the ring for the evenn systems. For example, consider then = 2
case:

�
(2)
sad= 0.54615

([
a b
c d

]
R

−
[
b c
d a

]
R

)
, (14.4)

wherea, b, c, andd are the four orbitals around the ring, in order. This function
would certainly be zero if the electrons were at locations such that all of the orbitals
were of equal value. Because of the Pauli principle each of the Rumer tableaux
functions is also zero at such a point, but there is an extra tendency toward zero
because of the difference in Eq. (14.4). These do not occur in the oddn cases. Such
a point is the center of the ring. Therefore, we interpret the in-and-out alternation
of the saddle point as a result of the extra tendency of the electrons in the even
systems to avoid the center. As the ring becomes larger and the center farther away,
the effect would be expected to decrease.
We also note that the values of the energy and overlap elements vary monoton-

ically with n, contrary to the alternating characteristic so far emphasized. Their
specific values give a maximum atn = 3 in the last column, however. The max-
imum remains after division by (1± S12). Thus the (H2)3 system has the largest
interaction at the saddle point, as measured by the energy decrease when the two
structures interact. It is also interesting thatH11 decreases asn increases. An im-
mediate explanation for this is not available.
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The real reactions that most resemble these are the production of cyclobu-
tane from two ethylene molecules ((H2)2) and the Diels–Alder reaction between
butadiene and ethylene ((H2)3). Even these cannot be made to react in the bare
forms, but fairly simple activation by substituents will allow the (H2)3 analog to
proceed. Apparently, no form of the (H2)2 analog has ever been observed. Our
analysis suggests that there is a fundamental difference between the four-electron
and six-electron systems that produces the effect. The book by Woodward and
Hoffman[58] may be consulted for a rationalization of these results based upon
MO theory.
As we continue to larger rings, the results are not so clearcut. There is a tendency

for the saddle points to alternate in and out somewhat, but the interaction energy
appears to beamaximumat the ring of six atoms. These lastmore-or-less qualitative
comments have been based upon just the two simple Kekul´e-like structures of
the rings, and may not be able to show the proper behavior. The actual surface
calculations of (H2)2 and (H2)3 included many more structures and show strikingly
different qualitative behavior.
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Aromatic compounds

Benzene is the archetypal aromatic hydrocarbon and its study has been central to the
understanding of aromaticity and resonance from the early times. In addition, it has
the physical property of having itsπ electrons reasonably independent from those
in σ bonds, leading early quantummechanicsworkers to treat theπ electrons alone.
Since benzene is a ring and the rules for forming Rumer diagrams have one draw
noncrossing lines between orbital symbols written in a circle, the Rumer diagrams
correspond to the classical Kekulé and Dewar bond schemes that chemists had
postulated far earlier than the VB treatments occurred. This parallel has intrigued
people since its first observation and led to many discussions concerning its signifi-
cance. It has also led to considerable work in more qualitative “graphical methods”
for which the reader is directed to the literature. (See,inter alia, Randić[59].)
We will examine benzene with different bases and also discuss some of the ideas

that consideration of this molecule has led to, such as resonance and resonance
energy.
We show again the traditional five covalent Rumer diagrams for six electrons and

six orbitals in a singlet coupling and emphasize that the similarity between the ring
of orbitals and the shape of the molecule considerably simplifies the understanding
of the symmetry for benzene.
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Most of the discussion we give here on the nature of the wave function will focus
on HLSP functions. An earlyab initio study by Norbeck and the present author

197
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Table 15.1.The four most important categories of HLSP functions in
the wave function for benzene.

1 2 3 4

Num.a 2 3 12 12

HLSPb

[
2pa 2pb
2pc 2pd
2pe 2pf

]
R

[
2pb 2pc
2pa 2pd
2pe 2pf

]
R

[
2pa 2pa
2pc 2pd
2pe 2pf

]
R

[
2pa 2pa
2pc 2pc
2pe 2pf

]
R

Ci
c 0.160 88 −0.057 63 0.051 62 0.027 44

a The number of terms in the symmetry function that is generated from the tableau
shown. (See text.)

b These tableau symbols exclude the core orbitals.
c In this case all of the terms in a symmetry function have the same sign as well as
magnitude for the coefficient.

on benzene[60] focused more on interpretation of the standard tableaux function
representation of the wave functions. Thus, the present discussion now differs from
that earlier in some respects.

15.1 STO3G calculation

The Weyl dimension formula (Eq. (5.115)) tells us that six electrons in six orbitals
in a singlet state yield 175 basis functions. These may be combined into 221A1g

symmetry functions. Table 15.1 shows the important HLSP functions for aπ-only
calculation of benzene for the SCF optimum geometry in the same basis. Theσ

orbitals are all treated in the “core”, as described in Chapter 9, and theπ electrons
are subjected to its SEP. We discuss the nature of this potential farther in the next
section. The functions numbered in the first row of Table 15.1 have the following
characteristics.

1. The two functionsof this type are the classical Kekul´e structures forbenzene. Onemight
expect the coefficient to be larger, but we will see below why it is not.

2. These three functions are the classical Dewar structures.
3. The third set of functions, 12 in number, are all of the possible singly ionized structures
where the charges are adjacent, and there are no long bonds.

4. The fourth set of functions are all of the doubly charged structures with the+ and−
charges adjacent and no long bonds.

When there is a relatively high degree of symmetry as in benzene, the interpreta-
tion of the parts of thewave functionmust be carried out with some care. This arises
from an apparent enhancement of the magnitude of the coefficient of a structure in
the wave function when whole symmetry functions are used. Let us consider the
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Kekulé structures and denote them byK1 andK2. As discussed in Chapter 5, when
these HLSP functions are projected from the appropriate product ofp orbitals

K1 = θ ′PNPρ1,

K2 = θ ′PNPρ2,

they are not normalized to 1. The “raw” 2×2 overlap matrix is[
2.246 364 9
0.799 515 5 2.246 364 9

]
,

and, hence, the true overlap between a normalizedK1 andK2 is 0.355 915 2. Thus,
if we consider the1A1g symmetryfunction involvingK1 andK2, we obtain in its
normalized form

1A1g = 0.607 251 7(K1 + K2),

and, if the wave function is written in terms of this symmetry function, its co-
efficient would be 0.264 931 3 instead of the number listed in Table 15.1 for the
individualKekulé structures. In these terms, the Kekulé structures appear to have a
larger coefficient. A similar analysis for the Dewar structures leads to an apparent
enhancement of the coefficient magnitude to−0.133 825 9.
The apparent enhancement we are discussing here is more pronounced, in gen-

eral, the greater the number of terms in the symmetry function. We now consider
the third sort of function from Table 15.1. These are the 12 short-bond singly ionic
functions, and in this case the enhancement of the coefficient is a factor of 5.0685,
i.e., the reciprocal of the normalization constant for the symmetry function that is
the sum of the individually normalized HLSP functions. The resulting coefficient
would then be 0.261 637, a number essentially the same as the coefficient of the
Kekulé symmetry function.
Are the Kekulé functions and the short-bond singly ionic functions really of

nearly equal importance in the wave function? This appears to be the only possible
conclusion andmay be rationalized as follows.We have seen that the covalent-only
structures provide for a considerable electron correlation, lowering their potential
energies, but constrain the space available to the electrons, thereby raising their
kinetic energies. Ionic structures allow delocalization that lowers the kinetic energy
while not raising the potential energy enough to prevent an overall decrease in
energy.When there are six bonds to be delocalizedwe expect the effect in the singly
ionic structures to be roughly six times that for only one bond. Those we discuss
are the adjacent only ionic structures and are expected to be the most important.
We also observe that the diagonal element of the Hamiltonian for a single Dewar

structure is about 1.8 eVhigher than a diagonal element of a singleKekulé structure.
This is a very reasonable number for the difference in energies between a long and
a short bond. The short-bond singly ionic structures have a diagonal element of the



200 15 Aromatic compounds

Hamiltonian that is about 8.6 eV above the single Kekul´e structure. This number
is not exactly comparable to the ionic structures in H2 discussed in Chapter 2.
Consider the two ionic structures,

f
a−

e
d

c
d

c

I1 I2

b+ b−
a+

e

f

which are two of the 12 short-bond adjacent singly ionic structures in benzene. The
2×2 secular equation corresponding to these two functions is∣∣∣∣ 8.562− E

−1.442− 0.0995E 8.562− E

∣∣∣∣ = 0,

where we have converted the energies to electron volts and have reset the zero to the
energyof thesingleKekul´e structure,K1. The lower root of this equation is6.476eV,
which is≈2 eV lower than the energy ofI1 alone. We should compare this with
the corresponding value for H2, obtained with methods of Section 2.4, wherein
5.82 eV is obtained. Thus the effect on the diagonal energy of forming the ionic
structure pair is in the same direction for the two systems, but much larger in the
more compact H2.

15.1.1 SCVB treatment ofπ system

We have so far emphasized the nature of the wave function. We now examine the
energiesof somedifferentarrangementsof thebases. InTable15.2weshowenergies
for five levels of calculation, Kekul´e-only, Kekulé plus Dewar, SCF, SCVB, and
full π structures, where energies are given as the excess energy due to theπ system
over that from the core. Cooperet al.[61] gave the SCVB treatment of benzene.
We note first that the covalent-only calculations give a higher energy than the

SCF wave function. We noted this effect with the allyl radical in Chapter 10, and it
happens again herewith benzene. This is again amanifestation of the delocalization
provided by ionic structures in the wave function and the concomitant decrease in
the kinetic energy of the electrons. Since this phenomenon does not occur in cases
where resonance is absent, we expect it to be greater where there are possibilities
for greater numbers of more or less equivalent resonance structures.
There is only one equivalent orbital in a highly symmetricπ system like that in

benzene. This is shown as an altitude plot in Fig. 15.1. We see that each orbital is
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Table 15.2.Comparison of different calculations
of theπ system of benzene. All energies

are in hartrees.

E − Ecore
a

K1 −6.711 44
K1 & K2 −6.755 53
Full cov. −6.760 79
SCF −6.834 10
SCVB −6.904 88
Full π −6.911 87

a Ecore = −222.142 48.
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Figure 15.1. Altitude plot of the SCVB orbital for theπ system of benzene. There are six
symmetrically equivalent versions of this around the ring. The amplitude is given in a plane
0.5 A

�

in the positivez-direction from the plane of the nuclei.

predominantly a single 2pz with smaller “satellites” in the ortho positions, essen-
tially nothing at the meta positions, and a negative contribution at the para position.
The coefficients in the two covalent-only wave functions,�(pure 2pz) and

�(SCVB 2pz) are not very different:

�(pure 2pz) = 0.402 88(K1 + K2)− 0.150 26(D1 + D2 + D3),

�(SCVB 2pz) = 0.403 53(K1 + K2)− 0.122 03(D1 + D2 + D3).

Wemay, however, examine the 2×2 Kekulé-only matrices for these two cases. For
the pure 2pz orbitals we have, in hartrees, the secular equation∣∣∣∣−6.711 44− E

−2.448 49− 0.355 92E −6.711 44− E

∣∣∣∣ = 0,
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Table 15.3.Lowering of the energy from resonant
mixing for pure and SCVB2pz orbitals.

Pure eV SCVB eV

K − only −1.199 −0.870
K + D −1.343 −0.878

Table 15.4.Comparison of some one- and
two-electron matrix elements for pure and SCVB

2pz orbitals. All energies are in hartrees.

Pure SCVB

Ta 1.2299 1.0891
Vb −2.9613 −2.8750
[11|11]c 0.5795 0.5125
[11|22]d 0.3242 0.3352

a Kinetic energy.
b Nuclear and core potential energy.
c Orbital self-repulsion energy.
d Adjacent orbital repulsion energy.

and for the SCVB orbitals,∣∣∣∣−6.872 56− E
−4.616 57− 0.664 00E −6.872 56− E

∣∣∣∣ = 0.

We see that theK1–K1 diagonal element for the SCVB orbitals is already about
4.4 eV below that for the pure 2pz orbitals. This is the most immediate explanation
for the lower energy of the SCVB result. In fact, this is the larger effect. As seen in
Eq. (14.2), the amount of energy lowering in 2× 2 systems like these is

H12− S12H11

1+ S12
.

In this case we have 1.20 eV and 0.87 eV for the pure 2pz and SCVB orbitals,
respectively, and the resonance appears somewhat more beneficial for the localized
orbital. These results are included in Table 15.3.
We may obtain more information from a comparison of some of the one-

and two-electron integrals for the individual orbitals. The values are shown in
Table 15.4. It is seen that the changes in the potential energy terms nearly cancel
with the repulsive self-energy and the nuclear and core potential energies chang-
ing in opposite directions. The change in the adjacent repulsion energy is also not
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Table 15.5.Comparison of different calculations
of theπ system of linear 1,3,5-hexatriene. All

energies are in hartrees.

E − Ea
core

K1 −6.129 74
Full cov. −6.133 78
SCF −6.164 40
SCVB −6.251 49
Full π −6.252 41

a Ecore = −223.91056.

large. There remains only the kinetic energy term, for which the difference is nearly
3.8 eV, with the SCVB orbital lower. This is easily interpreted to be the result of
the delocalization in that orbital, and it thus makes the same sort of contribution
as do ionic structures in MCVB wave functions. The values of then-electron ma-
trix elements are the result of an interplay of considerable complexity among the
simpler one- and two-electron matrix elements, and it is not really possible to say
much more about the effects of these latter quantities upon the total energies.
We show another aspect of these numbers in Table 15.3, where we detail the

effects of resonance between the two Kekulé structures and among all of the co-
valent structures for the two sorts of 2pz orbitals. The results suggest that within
one structure the SCVB orbitals duplicate, to some extent, the effect of multiple
structures, and the configurationalmixing produces less energy loweringwith them.
Those familiarwith the longhistoryof theattackson thequestionof the resonance

energy of benzene may be somewhat surprised at the small numbers in Table 15.3.
The energy differences that are given there are for just the sort of process that might
be expected to yield a theoretical value for the resonance energy, but experimental
determinations yield numbers in the range1.7–2.3 eV. This is an important question,
which we will take up in Section 15.3, where it will turn out that some subtleties
must be dealt with.

15.1.2 Comparison with linear 1,3,5-hexatriene

In order to put the structure of benzene into better perspective, we give a similar
calculation of 1,3,5-hexatriene for comparison. Table 15.5 shows the energies for
a set of calculations parallel to those in Table 15.2 for benzene. The most obvious
difference is the smaller total spread in the energies, about 3.3 eV rather than the
5.5 eV for benzene, and the SCVB energy is closer to the fullπ than in benzene.
Standard arguments say that there is only a rather small amount of resonance
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Figure 15.2. Altitude plot of the first SCVB orbital for theπ system of 1,3,5-hexatriene.
There are two symmetrically equivalent versions of this at each end of the molecule. The
amplitude is given in a plane 0.5 A

�

in the positivez-direction from the plane of thenuclei.
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Figure 15.3. Altitude plot of the second SCVB orbital for theπ system of 1,3,5-hexatriene.
There are two symmetrically equivalent versions of this at each end of the molecule. The
amplitude is given in a plane 0.5 A

�

in the positivez-direction from the plane of the nuclei.

in linear hexatriene, since only the one Kekul´e structure has only short bonds,
nevertheless, the SCF energy is lower than the full covalent energy.
There are three inequivalent SCVB orbitals for hexatriene, and these are given in

Figs. 15.2, 15.3, and 15.4. The first of these shows a principal peak at the first 2pz

orbital and a small satellite at the adjacent position. The second is more interesting
with the principal peak at the second C atom, but showing a larger satellite at
position 1 thanat position 3. This is consistentwith having essentially a double bond
between atoms 1 and 2 or 5 and 6, with single bonds between 2 and 3 and 4 and 5.
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Table 15.6.Comparison of different calculations of
theπ system of benzene with a 6-31G∗ basis.

All energies are in hartrees.

E − Ecore
a

SCF −6.416 20
Full valenceπ −6.464 30
SCVB −6.479 44
Full valenceπ + Sb −6.496 50

a Ecore = −224.275 51.
b Single excitation.
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Figure 15.4. Altitude plot of the third SCVB orbital for theπ system of 1,3,5-hexatriene.
There are two symmetrically equivalent versions of this at each end of the molecule. The
amplitude is given in a plane 0.5 A

�

in the positivez-direction from the plane of the nuclei.

The third orbital has a similar interpretation with a larger satellite at position 4
than at position 2.
The overall conclusion is that there is considerably less resonance in hexatriene

than in benzene, and the bond lengths and types alternate along the chain unlike
the equivalence in benzene.

15.2 The 6-31G∗ basis

The SCF, SCVB, full valenceπ , and full valenceπ + S results of using a 6-31G∗

basis on benzene are given in Table 15.6. The geometry used is that of theminimum
SCF energy of the basis. In this case the SCVB energy is lower by 0.4 eV than the
full valenceπ energy. This is principally due to the 3d polarization orbitals present
in the SCVB orbital, but absent in the valence calculation. The SCVB orbital is
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Table 15.7.The centroids of charge implied by the
second moment of the charge distribution of the nuclear
andσ framework. The C and H nuclear positions are

those of the 6-31G∗ SCF equilibrium geometry.

Charge Radial distance (A
�

)

C+6 1.3862
−5|e| 1.8730
H+1 2.4618

quantitatively so close to that from STO3G orbitals shown in Fig. 15.1 that the
eye cannot detect any difference, and we do not draw a 6-31G∗ version of the
orbital.
The SEP is used again to represent the core, and the following analysis may be

made to get a crude picture of its nature. The second moment of thexx(= yy)
charge distribution of the core is 0.481 10 bohr2. At each apex of the hexagon
there is a C nucleus and an H nucleus farther out. There are also five electrons per
apex contributed by theσ system. The (quadratic) centroid of this charge may be
calculated from the second moment, and is shown in Table 15.7. The overlap and
kinetic energy one-electron matrix elements of theπ AOs are unaffected by the
SEP. In addition, our centroid picture does not include any of the exchange effects
present.1 The main point is that arguments using a nuclear charge effect of+1 for
eachπ AO may be too simplistic for many purposes.
We saw in Chapter 14 that a ring of six H atoms does not want to be in a regular

hexagonal geometry at the minimum energy. A question concerning benzene arises
then: Is benzene a regular hexagon because of or in spite of the resonance in the
π system? The previous calculations have all been done with the regular hexagon
geometry forced on the molecule. We now relax that constraint to test the sta-
bility of the ring against distortion into an alternating bond length geometry. In
Table 15.8 we show the values and first and second derivatives of the SCF,
core, valence, and total energies with respect to two distortion directions in the
molecule. The first direction we call “a1g” is a symmetric breathing motion involv-
ing the change in length of only theC—Cbonds. (TheC—Hbonds are unchanged.)
The second we call “b2u”, and it involves an alternating increase and decrease in
the lengths of the C—Cbonds around the rings.2 (C—C—C, C—C—Hangles, and
C—H distances are not changed.)

1 These are not expected to be very large in a system like benzene where there is a natural symmetry-based
orthogonality between theπ andσ systems.

2 These group species symbols correspond to the symmetry of vibrational normal modes of the same sort.
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Table 15.8.Energies and derivatives of energies relating to the stability
of the regular hexagonal structure of benzene.

SCF Core π Total

Energya −230.691 71 −224.275 51 −6.496 50 −230.772 02
∂E/∂(
R)b a1g −0.013 8 −2.050 6 1.981 1 −0.069 5

b2u 0.0 0.0 0.0 0.0
∂2E/∂(
R)2c a1g 3.492 7 5.287 8 −1.878 2 3.409 6

b2u 5.513 7 16.742 9 −10.517 4 6.225 5

a Hartrees.
b Hartrees/bohr.
R is the change in the C—C distance in the ring in all cases.
c Hartrees/bohr2.

At first glance the numbers in Table 15.8 suggest that the answer to the question
in the last paragraph is the “in spite of” alternative. The last row of the table shows
that theb2u distortion has a stable minimum in the core but a maximum in theπ

energy. The values are such that the total has a stable minimum. The calculations
thus correctly predict that there is no force tending to distort the regular hexagon
at the point represented by the regular geometry.
Nevertheless, there is a difficulty with the interpretation in the last paragraph.

There has developed over the years a considerable literature on this question, with
manyopinionsonbothsides.Shaiket al. havewrittenarticleson this subject[62, 63].
Such a situation frequently indicates the existence of ambiguities in the definition,
and that certainly applies to this case. We may describe the situation according to
our current terms.
As stated above, we have used the SEP to obtain separate energies for the

σ core and theπ system. Conventionally, this consists of attributing the whole of
the nuclear repulsion energy to the core. We called attention, however, to the nature
of the energy surface for six H atoms in a ring (see Chapter 14), which, unlike
the benzeneπ system in our treatment, does have nuclear repulsion included.
It might be expected that we would need to make some sort of partitioning of
the nuclear repulsion energy to make the H atom and theπ systems comparable.
One way to do this would be to imagine the effect of one unit charge from the C
nuclei being subtracted from the core energy and added to theπ energy. None of the
totals is affected, of course. The result for the repulsion energy for six|e| charges
at the positions of the C atoms is 4.185 55 hartrees, but more important for our pur-
poses is that the second derivative is 0.8067 hartrees/bohr2 in terms of the same
R
coordinate used in Table 15.8. It is seen that it would take the switch of many more
charges from thecore to theπ system thanareactually present to reverse its tendency
to distort the regular hexagon. Thus, we need not revise the earlier conclusion.
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Table 15.9.Energies and derivatives of energies relating
to the stability of the square geometry of cyclobutadiene.

Core π Total

Energya −150.522 61 −3.080 46 −153.603 07
∂E/∂(
R)b b2u 0.0 0.0 0.0
∂2E/∂(
R)2c b2u 5.9223 −6.9506 −0.7283
a Hartrees.
b Hartrees/bohr.
c Hartrees/bohr2.

The size of the ring is seen to be a compromise between attraction due to the
π system and repulsion due to the core. Again, the sizes of the second derivatives
add to give a stable minimum. If we assume that the system behaves harmonically,
the derivatives in the last column imply that the ring C—Cbond distances are about
0.0204 bohr (0.0108 A

�

) longer than the value used for the first row of the table,
which are the SCF minimum distances.

15.2.1 Comparison with cyclobutadiene

It is illuminating to compare thebehavior of benzene3 upon theb2u typeof distortion
with a similar calculation in cyclobutadiene.We do not repeat all of the calculations
of the last section, but do include the results inTable15.9,wherewegive theenergies
and the derivatives for theb2u distortion from the geometry of a square. It will be
recalled from Chapter 14 that the energy surface for the ring of four H atoms has
a higher peak at the square geometry than the six-atom ring does at the regular
hexagon. The same situation applies here. The second derivative for theπ system
is larger in magnitude than the core derivative, making the square an unstable
structure for C4H4. Thus we predict that cyclobutadiene in a singlet state has no
tendency to form a molecule with equal ring bond lengths as happens in benzene.
In these discussions of benzene and cyclobutadiene we have compared MCVB

level calculations of theπ system with SCF level calculations of the core. We do
not expect that using correlated wave functions for core energies would change the
results enough to give a different qualitative picture.

15.3 The resonance energy of benzene

Once Kekulé had deduced the correct structure of benzene, chemists soon realized
that the double bonds in it were considerably more stable than isolated double

3 The same species symbol can serve inD4h symmetry.
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bonds in aliphatic hydrocarbons. The principal evidence is that reaction conditions
leading toaddition to an aliphatic double bond with the removal of the multiple
bond do not normally affect benzene, and more vigorous conditions cause an at-
tack that removes a ring H atom and leaves the double bonds unchanged. The
conclusion was that the “conjugated” ring double bonds possess an added stability
due to their environment. It remained for quantum mechanics to explain this ef-
fect in terms of what has come to be called “resonance” among a number of bond
structures.
Experimental approaches to determining the resonance energy (called stabiliza-

tion energy by some) have involved comparing thermodynamic measurements of
benzene with those of three cyclohexenes. Heats of combustion and heats of hy-
drogenation have been used. Most feel the hydrogenation method to be superior,
since it is expected to involve smaller differencing errors in the determination. The
energies and processes are

C6H6 + 3H2 → C6H12;
H = −2.13eV,

C6H10+ H2 → C6H12;
H = −1.23eV.

The difference,4 −1.54 eV, corresponds to the lower energy the three double bonds
in benzene have than if they were isolated. This is not much larger than the “pure
2pz” entry in the second row of Table 15.4. It was pointed out by Mulliken and
Parr[64], however, that this precise comparison is not what should be done.
The number in the table from our calculation does not involve any change in the
bond lengthswhereas the experiment certainly does. Changes in energy due to bond
length change come from both theπ bonds and theσ core.
It is possible to make a successful comparison of theory with experiment for the

resonance energy modified according to the Mulliken and Parr prescription[60],
but there are still many assumptions that must be made that have uncertain con-
sequences. A better approach is to attempt calculations that match more closely
what experiment gives directly. This still requires making calculations on what is a
nonexistent molecule, but the unreality pertains only to geometry, not to restricted
wave functions.
Following these ideas, Table 15.10 shows results of 6-31G∗ calculations of the

π system of normal benzene and benzene distorted to have alternating bond lengths
matching standard double and single bonds, which we will call cyclohexatriene.
The cyclohexatriene molecule has a wave function considerably modified from

that of benzene. The first few terms are shown in Table 15.11, where the two

4 Most workers change the sign of this tomake it positive, but logically an energy corresponding to greater stability
should be negative.
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Table 15.10.Calculations ofπ energies for normal
and distorted benzene.

SCF MCVB

Benzene −6.416 20 −6.496 50a
Cyclohexatriene −6.363 07 −6.442 91b

EeV −1.446 −1.458
a This gives 3211 tableaux functions formed into 280
symmetry functions.

b This gives 3235 tableaux functions formed into 545
symmetry functions.

Table 15.11.The first terms in the MCVB wave function for cyclohexatriene.

1 2 3 4

Num. 1 6 1 3

HLSP

[
2pa 2pb
2pc 2pd
2pe 2pf

]
R

[
2pa 2pa
2pc 2pd
2pe 2pf

]
R

[
2pb 2pc
2pd 2pe
2pa 2pf

]
R

[
2pc 2pd
2pb 2pe
2pa 2pf

]
R

Ci 0.275 450 0.082 38 0.053 11 −0.040 78

“Kekulé” structures have quite different coefficients. We interpret the terms as
follows.

1. This is the standard Kekul´e structure with theπ bonds principally at the short distance.
2. The second group of functions, six in number, are adjacent single ionic structures corre-
sponding to bonds in the position marked in function 1.

3. Function 3 is the other Kekul´e structure. Its importance in the wave function is low,
indicating littleπ bonding at the long positions.

4. The fourth group consists of the three “Dewar” structures and is also relatively unim-
portant.

When we look at the energies from Table 15.10, perhaps the most striking fact
is that the correlation energy in theπ system makes so little difference in the
E
values. As we indicated above, the experimental value for the resonance energy
from heats of hydrogenation is−1.54 eV, in quite satisfactory agreement with the
result in Table 15.10. The fact that our value is a little lower than the experimental
one may be attributed to the small amount of residual resonance remaining in the
cyclohexatriene, whereas the isolated double bonds in the experiment are truly
isolated in separate molecules.5

5 There is still interest in the resonance energy of benzene. Beckhauset al.[65] have synthesized a molecule with
a strained benzene ring in it and measured heats of hydrogenation. This is an experimental attempt to assay what
we did theoretically. They found similar results.
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Table 15.12.Core,π SCF, andπ MCVB energies for various calculations
of naphthalene. An STO3G basis is used, and all energies are in hartrees.

Energy Num. symm. funcs.

Core −366.093 70
SCFπ −14.398 73

“Kekulé” VB −14.221 75 1
Covalent MCVB −14.277 12 16
Covalent+ single- MCVB −14.476 32 334
ionic

Covalent+ single- MCVB −14.524 33 1948
and double-ionic

Full π MCVB −14.529 93 4936

15.4 Naphthalene with an STO3G basis

Wenowconsider naphthalene,which possesses 42 covalentRumer diagrams.Many
of these, however, will have long bonds between the two rings and are probably
not very important. To the author’s knowledge no systematicab initio study has
beenmade of this question. Themolecule hasD2h symmetry, and these 42 covalent
functions are combined into only 161Ag symmetry functions.
As with benzene we study only theπ system using the SEP to account for the

presence of theσ orbitals. It is not the purpose of this book to compare MCVB
with molecular orbital configuration interaction (MOCI) results, but we do it in this
case.

15.4.1 MCVB treatment

We first give the MCVB results in Table 15.12, which shows energies for se-
veral levels of calculations with an STO3G basis. A fullπ calculation for naph-
thalene consists of 19 404 singlet tableau functions, which may be combined
into 4936 1Ag symmetry functions. The covalent plus single ionic calculation
involves 1302 singlet tableau functions, which may be combined into 334 sym-
metry functions, and the covalent, single-, and double-ionic treatment produces
7602 singlet tableau functions, which may be combined into 1948 symmetry
functions.
The results in Table 15.12 show again that the SCF function has a lower energy

than the covalent-only VB.Although a thorough study has not beenmade, it appears
that this difference increases with the size of the system. Certainly, the decrease in
energy upon adding the single-ionic structures to the basis is greater here than in
benzene,<4.1 eV for benzene versus 5.42 eV for naphthalene. Again we see the
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Table 15.13.Energies for MOCIπ -only calculations of
naphthalene for different levels of excitation.

Energy Num. symm. funcs.

Core −366.093 70
SCF −14.398 73 1
Single −14.398 73 7
Double −14.512 40 98
Triple −14.514 83 522
Quadruple −14.528 82 1694
Full −14.529 93 4936

importance of delocalization in the wave function. The full delocalization energy
provided by including all ionic structures is 6.88 eV compared with 4.11 eV for
benzene (see Table 15.2). The ratio here is 1.67, remarkably close to the ratio of the
numbers of electrons in the twoπ systems. In contrast, the delocalization energy in
1,3,5-hexatriene is only 3.23 eV (see Table 15.5) and delocalization is less effective
in that molecule.
The addition of the doubly ionic structures to theMCVBwave function produces

an energy only 0.15 eV above the full calculation and, therefore, has produced just
about all the necessary delocalization.

15.4.2 The MOCI treatment

In this case the wave function consists of the Hartree–Fock function with added
configurations involving “excitations” of electrons from the occupied to the vir-
tual orbitals. With ten electrons we could have excitations as high as ten-fold,
but we do not explicitly work out those between four-fold and the full calcula-
tion, which is, of course, the same as the full one from the MCVB. The results
are shown in Table 15.13. The first thing we notice is the correct result that sin-
gle excitations do not contribute to the CI energy.6 Perhaps the next most note-
worthy aspect is that the fifth through tenth excitations contribute very little to
the energy lowering. Indeed, the double excitations contribute the biggest part by
themselves.
The delocalization is, of course, not a problem for MOCI calculations, but the

electron correlation is. Thenumbers show that the double excitations producea con-
siderable portion of the correlation energy possible with this basis, while including
excitations up through quadruple produces essentially all.

6 This is a consequence of Brillouin’s theorem.



15.4 Naphthalene with an STO3G basis 213

15.4.3 Conclusions

In the introduction we pointed out that calculations in chemistry and physics fre-
quently start from an “ideal” model and proceed to improvements. This procedure
is clear in the following two cases.

MCVB Theprincipal function is completely open-shell, in that it involves noelectron paired
in a single orbital. As ionic functions are added to the wave function, these, in many but not
all cases, involve electrons paired in a single orbital and begin to contribute a closed-shell
nature to the description of the system. (These ionic structures also cause delocalization, as
we have seen.)
MOCI The principal function here is completely closed-shell and the added configurations
serve to decrease this characteristic. Since the electrons become correlated under these
circumstances, the delocalization is necessarily reduced.

How these two characteristics balance out depends upon the system. Neverthe-
less, since the MCVB “ideal” is the separated atom state, it gives a description of
molecule formation that picturesmolecules with more-or-less intact atoms in them.
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Interaction of molecular fragments

In previous chapters we have repeatedly emphasized that the principal difficulty
in calculating the dissociation energy of a bond is the correct treatment of the
change in electron correlation as the bond distance changes. This observation also
applies to reactions where bonds are both formed and broken. In many important
cases, however, the particular atom–atom distances that change significantly during
a reaction are relatively few in number, and a method for accurately treating the
correlation in only those “bonds” would have a clear advantage in efficiency. The
MCVBmethod provides amethod for targeting certain bonds to treat the correlation
in them as well as possible. We call this proceduretargeted correlation, and in this
chapter we give examples using it. The SCVB method could also be used in this
context.
In our previous work we have used SCF solutions of the atoms as the ingredients

of then-electron VB basis functions. With targeted correlation we go one step up
and use SCF solutions of molecular fragments as the ingredients. As the name
implies, this must be tailored to the specific example and must be done with a
careful eye to the basic chemistry and physics of the situation at hand.

16.1 Methylene, ethylene, and cyclopropane

In this section we consider some molecules that can be viewed as consisting of
methylene radicals in some combination. Earlier publications[39, 66] have covered
some of the aspects of the subjects covered here. These earlier studies used an
STO3G minimal basis, and provide information to make comparisons of results
with the 6-31G∗ results that are presented here. We will describe the minimal basis
results more completely in a later section. Here, however, we make one comment
concerning the way one must handle these different bases. When using minimal
baseswith targeted correlation qualitatively reasonable results are obtained, but this
is, in part, due to the less satisfactory representation of the fragments. When we use

214
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a larger basis, the fragment is better described, but the orbitals are not sowell condi-
tioned to themolecules that onewishes to construct from them. Therefore, whenwe
use a 6-31G∗ basis it is necessary to allow the open orbitals to breathe as distances
change, as suggested by Hiberty[44]. We will discuss the methylene biradical first.

16.1.1 The methylene biradical

ThestructureofCH2wasdiscussedbyacompletelyMCVB treatment inChapter15.
Here we look at it from an ROHF point of view. The structure of CH2 was uncertain
for a number of years, but it is now known that the ground state is triplet with a bent
geometry inC2v symmetry. Conventions dictate that CH2 be oriented with theC2-
andz-axes coincident and the molecule in they–zplane. Consequently the ground
state is3B1, and the MO configuration is

1a212a
2
11b

2
23a11b1.

The first excited state is the singlet configuration

1a212a
2
11b

2
23a

2
1,

which has1A1 symmetry. The SCF energies for these are rather too far apart since
there ismoreelectroncorrelation in thesinglet coupling.Weshall beable to interpret
our results for ethylene and cyclopropane in terms of these states of the methylene
biradical.

16.1.2 Ethylene

Our treatments of ethylene are all carried out with two methylene fragments that
have the 1a212a

2
11b

2
2 parts of both of their configurations doubly occupied in all VB

structures used. The 12 electrons involved can be placed in the core as described in
Chapter 9, which means that there are only four electrons, those for the C—Cσ and
π bonds, that are in the MCVB treatment. For simplicity we shall rename the other
two methylene orbitalsσi andπi , wherei = 1,2 for the two ends of the molecule.
TheWeyl dimension formula tells us that there are 20 linearly independent tableaux
from four electrons distributed in four orbitals. When we useD2h symmetry, how-
ever, only 12 of them are involved in eight1A1 functions.
As indicated above, theσi andπi orbitals are not the “raw” orbitals coming out

of the ROHF treatment of methylene, but linear combinations of the occupied and
selected virtual orbitals of that treatment, which provides the breathing adjustment.
Specifically, we use

σi = c13a1+ c24a1+ c35a1+ c46a1+ c57a1, (16.1)

πi = d11b1+ d22b1+ d33b1, (16.2)



216 16 Interaction of molecular fragments

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10

E
ne
rg
y 
(e
V
)

C—C bond length (A)

21A1

11A1

Figure 16.1. Dissociation curve for the double bond in CH2=CH2.

and optimize the six independent (each orbital is normalized) parameters at each
C—Cdistance. This includes all of theb1 virtual orbitals but omits the highest three
a1 virtual orbitals. These latter are mostly involved with the 1s function of the basis
and will not influence bonding significantly. Figure 16.1 shows the ground and first
excited singlet states of ethylene as a function of the C—C distance. The molecule
is held in a plane and possessesD2h symmetry at all distances. The H—C—H
angle, as determined from SCF minimizations, changes by about a degree in this
transformation, but this nicetywas not included, the angle being held at the ethylene
value for all distances.
At RCC = ∞, the ground state wave function is particularly simple in terms of

standard tableaux functions,

�0(R= ∞) =
[

σ1 σ2

π1 π2

]
, (16.3)

where we assume the tableau symbol includes its normalization constant. This
is easily interpreted as two triplet systems coupled to singlet. In terms of HLSP
functions the results are not so simple. We have

�0(R= ∞) = 0.577 35
[

σ1 σ2

π1 π2

]
R

− 0.577 35
[

σ2 π1

σ1 π2

]
R

, (16.4)

since these do not represent the triplet states so easily. In neither case are there any
ionic terms, of course.
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Table 16.1.The principal terms in the ground state wave function for RCC at the
energy minimum. The two sorts of tableaux are given.

1 2 3 4

Standard
tableaux
functions

Num. 1 2 2 1

Tab.
[
σ1 σ2
π1 π2

] [
σ2 σ2
π1 π2

] [
π2 π2
σ1 σ2

] [
σ1 π1
σ2 π2

]
Ci (min) 0.536 47 0.148 46 −0.128 37 −0.124 77

HLSP
functions

Num. 1 2 2 2

Tab.
[
σ1 σ2
π1 π2

]
R

[
σ2 σ2
π1 π2

]
R

[
π1 π1
σ1 σ2

]
R

[
σ1 σ1
π2 π2

]
R

Ci (min) 0.473 51 0.148 46 −0.128 37 −0.121 06

The first excited state wave function is also more complicated atRCC = ∞. In
terms of standard tableaux functions it is

�1(R= ∞) = 0.912 69
[

σ1 σ1

σ2 σ2

]
− 0.399 26

[
σ1 σ1

π2 π2

]

−0.399 26
[

σ2 σ2

π1 π1

]
+ 0.087 09

[
π1 π1

π2 π2

]
. (16.5)

The first term is the combination of two1A1 methylenes, and the others provide
some electron correlation in these two structures. Since Eq. (16.5) has only doubly
occupied tableaux, the HLSP functions are the same.
We show the ground state wave function atRmin in terms of standard tableaux

functions and HLSP functions in Table 16.1. We see that the representation of the
wave function is quite similar in the two different ways. Considering the HLSP
functions first, we note that the principal term represents two electron pair bonds,
oneσ and oneπ . The next two are ionic structures contributing to delocalization,
and the fourth is a nonionic contribution to delocalization.
The standard tableaux function representation is similar. The principal term is

the same as the only term atR= ∞, and together with the fourth term (the other
standard tableau of the constellation) represents the two electron pair bonds of the
double bond. The second and third terms are the sameas those in theHLSP function
representation and even have the same coefficients, since there is only one function
of this sort.
Whenwemake a similar analysis of the terms in thewave function for the first ex-

cited state,more ambiguous results are obtained. These are shown in Table 16.2. For
both standard tableaux functions and HLSP functions the principal structure is the
sameas that in thegroundstate.Higher termsareof anopposite sign,whichprovides
the necessary orthogonality, but the character of the wave function is not very clear
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Table 16.2.The principal terms in the first excited state wave function
for RCC at the energy minimum. The two sorts of tableaux are given.

1 2 3 4

Standard
tableaux
functions

Num. 1 2 2 1

Tab.
[
σ1 σ2
π1 π2

] [
π2 π2
σ1 σ2

] [
σ1 σ1
π2 π2

] [
σ1 σ1
π1 π2

]
C1i 0.711 57 0.478 12 0.337 33 0.216 83

HLSP
functions

Num. 1 2 2 2

Tab.
[
σ1 σ2
π1 π2

]
R

[
π1 π1
σ1 σ2

]
R

[
σ1 σ1
π2 π2

]
R

[
σ1 σ1
π1 π2

]
R

C1i 0.578 01 0.478 12 0.337 33 0.216 83

from these terms. We give this example, because we will contrast it with an excited
statewave function of an unambiguous sort whenwediscuss cyclopropane. There is
onemore point that should be discussed before we go on to cyclopropane, however.
The 1a212a

2
11b

2
2 orbitals on one of the two CH2 fragments are not orthogonal to

those on the other CH2, but this does not cause the core valence separation any
problems. It does, however, represent a repulsion: that which is normally expected
between closed-shell systems. In this case the overlap and the repulsion are small.
During the calculations of the core matrix elements a measure of the overlap is
computed. This number is exactly 1.0 if there is zero overlap between the fragment
core orbitals. As more overlap appears the number rises and can be as high as 100.
For ethylene we never press the CH2 fragments close enough together to reach
numbers higher than about 1.02. This is quite small and is the reason we know that
the core repulsion is small in this system.

16.1.3 Cyclopropane with a 6-31G∗ basis

We examine the two lowest singlet states of cyclopropane as one of the CH2 groups
is pulled away from the other two. Figure 16.2 shows the basic arrangement of the
molecule with the three C atoms in thex–y plane. The C atom on the right is on the
y-axis, andR1 is its distance to the midpoint of the other two Cs.R2 is the distance
between the two Cs that will become part of ethylene andφ is the angle out of
planarity. We have labeled the C atoms 1, 2, and 3 to identify the three different
methylenes for designating orbitals.
The wave function is an extension of the one we used for the dissociation of

ethylene. We now have 18 electrons in nine core orbitals, and six electrons in the
threeσ and threeπ orbitals that will make up the C—C bonds. As before, the
valence orbitals are allowed to breathe (see Eqs. (16.1) and (16.2) for the linear
combinations) as the system changes. According to the Weyl dimension formula
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Figure 16.2. The geometric arrangement of the atoms of cyclopropane during the dissoci-
ation to ethylene and methylene. The system is maintained inC2v geometry asR1, R2, and
φ change.
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Figure 16.3. The two lowest1A1 states during the dissociation of cyclopropane along the
C2H4 relaxed path.The dashed lines, indicating the diabatic energies, were not computed
but have been added merely to guide the eye.

there are 175 different structures possible, but in this case there are only 173 of
them involved in 921A1 (C2v) symmetry functions. The core overlap criterion never
becomes larger than 1.021 for these calculations.
In Fig. 16.3 we show the two lowest1A1 states as a function ofR1 for optimum

values of theR2 andφ parameters, and in Fig. 16.4 we show the path by giving
R2 andφ as functions ofR1. Qualitatively, the two energy curves have the classic
appearance of anavoided crossingbetween two diabatic states. The dashed lines
in Fig. 16.3 are not computed, but have been added to guide the eye.
Although we have been speaking of our process as the dissociation of cy-

clopropane, it is simpler to discuss it as if proceeding from the other direction.
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Figure 16.4. The variation ofR2 andφ during the dissociation of cyclopropane.

Considering the dissociated system, we see that the geometry has relaxed to that
of an ethylene molecule with a methylene radical at some distance. Our treatment
allows methylene to have only two electrons in open shells so it must be in either a
singlet or a triplet state. Since the overall system is in a singlet state, the ethylene
portion must also be either singlet or triplet, respectively, to match. At the same
time ethylene is singlet in its ground state and triplet in its first excited state with
a fairly large excitation energy, while methylene is triplet in its ground state and
singlet in its first excited state with a relatively small excitation energy. These facts
tell us that, at long distances, the lower1A1 state is a combination of ground state
ethylene and singlet methylene. The Rumer tableau that corresponds to this case is


 σ1 σ1

σ2 σ3

π2 π3



R

,

where the subscripts identify the particular methylene fragment as given in
Fig. 16.2. There is, of course, another Rumer structure corresponding to this orbital
set. Table 16.3 gives the coefficients in the wave function.
At long distances the first excited1A1 state, on the other hand, is a combination

of triplet ethylene and ground state (triplet) methylene. The important tableaux in
the wave function are shown in Table 16.4, and in this case the principal tableau of
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Table 16.3.The leading tableaux for the ground state wave function
of C2H4+CH2 at infinite separation.

1 2 3 4

Standard
tableaux
functions

Num. 1 1 2 2

Tab.

[
σ1 σ1
σ2 σ3
π2 π3

] [
π1 π1
σ2 σ3
π2 π3

] [
σ1 σ1
σ2 σ2
π2 π3

] [
σ1 σ1
σ2 π2
σ3 π3

]

Ci (∞) 0.529 89 −0.156 11 0.146 58 −0.128 41

HLSP
functions

Num. 1 2 1 2

Tab.

[
σ1 σ1
σ2 σ3
π2 π3

]
R

[
σ1 σ1
σ2 σ2
π2 π3

]
R

[
π1 π1
σ2 σ3
π2 π3

]
R

[
σ1 σ1
π2 π2
σ2 σ3

]
R

Ci (∞) 0.463 18 0.146 58 −0.136 47 −0.120 81

Table 16.4.The leading tableaux for the first excited state wave function
of C2H4+CH2 at infinite separation.

1 2 3 4

Standard
tableaux
functions

Num. 1 1 2 2

Tab.

[
σ1 σ2
σ3 π2
π1 π3

] [
σ1 σ3
σ2 π2
π1 π3

] [
σ3 σ3
σ1 π2
π1 π3

] [
σ1 σ3
σ2 π1
π2 π3

]

Ci (∞) 0.414 52 0.325 77 −0.206 49 0.09643

HLSP
functions

Num. 1 2 1 2

Tab.

[
σ2 σ3
π1 π2
σ1 π3

]
R

[
σ2 σ3
σ1 π1
π2 π3

]
R

[
σ3 σ3
π1 π2
σ1 π3

]
R

[
σ3 σ3
σ1 π1
π2 π3

]
R

Ci (∞) 0.801 48 0.383 16 0.245 93 0.133 59

the state is more easily written1 in terms of standard tableaux functions as
σ1 σ2

σ3 π2

π1 π3


 = −


 σ2 σ3

π2 σ1

π3 π1


 ,

where there are, of course, four more standard tableaux that could be written. We
may actually use the tableau shapes to see that this is the correct interpretation of

1 In this book the entries in tables like Table 16.4 are generated semiautomatically from computer printout.
Although this almost completely eliminates the dangers of misprints the computer programs do not always
arrange the tableaux in the most convenient way for the discussion. In this case we use the properties of standard
tableaux functions to make the transformation used.
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Table 16.5.The leading tableaux for the ground state wave function of C3H6 at
the equilibrium geometry.

1 2 3 4

Standard
tableaux
functions

Num. 1 1 1 1

Tab.

[
σ1 σ2
σ3 π2
π1 π3

] [
σ1 σ3
σ2 π1
π2 π3

] [
σ1 σ2
σ3 π1
π2 π3

] [
π1 π1
σ2 σ3
π2 π3

]

Ci (min) 0.134 41 0.130 92 −0.123 14 0.102 56

HLSP
function

Num. 1 1 1 2

Tab.

[
σ2 σ3
π1 π2
σ1 π3

]
R

[
σ1 σ2
σ3 π1
π2 π3

]
R

[
π1 π1
σ2 σ3
π2 π3

]
R

[
π3 π3
σ1 σ2
π1 π2

]
R

Ci (min) 0.132 70 −0.125 19 0.086 67 0.085 38

the states of the separate pieces of our system. The last tableau given above can
also be written symbolically as

 σ2 σ3

π2

π3


 + [

σ1

π1

]
,

where the two triplet tableaux can fit together to form the earlier singlet shape. We
have not emphasized this sort of combining of tableaux in our earlier work, but it
is particularly useful for systems in asymptotic regions. There are more structures
for this state and set of orbitals than for the lower one, because this set must also
represent a still higher coupling of ethylene and methylene, both in a1B1 state.
We do not show the energy curve for the state that goes asymptotically to that
coupling.
The wave functions for the ground and first excited1A1 states for the cyclo-

propane equilibrium geometry are shown in Tables 16.5 and 16.6. In the case of
the ground state either the principal standard tableaux function or HLSP function
can be transformed as follows:


σ1 σ2

σ3 π2

π1 π3


 = −


σ2 σ3

π2 σ1

π3 π1


 ,


σ2 σ3

π1 π2

σ1 π3



R

=

σ2 σ3

π2 σ1

π3 π1



R

.
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Table 16.6.The leading tableaux for the first excited state wave function of C3H6

at the equilibrium geometry.

1 2 3 4

Standard
tableaux
functions

Num. 1 1 1 1

Tab.

[
π1 π1
σ2 σ3
π2 π3

] [
σ1 σ3
σ2 π2
π1 π3

] [
σ1 σ3
σ2 π1
π2 π3

] [
σ1 σ2
σ3 π1
π2 π3

]

Ci (min) 0.205 06 −0.182 87 0.176 27 −0.165 80

HLSP
functions

Num. 1 1 1 1

Tab.

[
σ2 σ3
π1 π2
σ1 π3

]
R

[
π1 π1
σ2 σ3
π2 π3

]
R

[
σ1 σ2
σ3 π1
π2 π3

]
R

[
σ2 σ3
σ1 π1
π2 π3

]
R

Ci (min) 0.182 33 −0.173 96 0.168 55 0.167 47

The first of these is the same as the transformation above for the first excited
asymptotic wave function. Thus, at the minimumgeometry we see that the leading
term in thewave function is the sameas that for the first excited state at∞, and there
has been a cross-over in the character of the wave function for the two geometries.
The leading coefficients are rather small for these functions. This is in part

because the orbital set in terms of which we have expressed the functions is not
the most felicitous. We have usedσi andπi relating to the local geometry of each
methylene. Alternatively, we can form hybrid orbitals

hi1 = N(σi + πi ),

hi2 = N(σi − πi ),

which, in each case, are directed towards a neighboring methylene. The signs of
the orbitals are such that these combinations yield

h12 ↔ h21,
h22 ↔ h31,
h32 ↔ h11,

as thepairs that overlapmost strongly. Table 16.7 shows theHLSP function tableaux
for the ground state in terms of these hybrids. This representation gives little clue
as to the asymptotic state this might be connected with, but does show a rather
conventional picture of cyclopropane as having three electron pair bonds holding
the ring together. There is also the expected mix of covalent and ionic functions.
When we get to the first excited state at the geometry of the energy minimum

(Table 16.6), it is seen that most important tableaux in the wave function in terms
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Table 16.7.The leading HLSP functions for the ground state wave function
of C3H6 at the equilibrium geometry when hybrid orbitals are used.

1 2 3 4

Num. 1 6 6 2

Tab.

[
h32 h11
h12 h21
h22 h31

]
R

[
h11 h11
h12 h21
h22 h31

]
R

[
h11 h11
h31 h31
h12 h21

]
R

[
h11 h11
h21 h21
h31 h31

]
R

Ci (min) 0.354 55 0.098 99 0.052 40 0.046 07

of σi andπi orbitals is not very easily interpreted, although the leading term, in
the case of HLSP functions, is the same as that for the ground state. We do not
give them here, but the first excited state in terms of the hybrid orbitals is likewise
poorly illuminating. We may look at the problem in another way.
As cyclopropane dissociates, we see that the geometry changes happen rather

rapidly over a fairly narrow range as the character of the energy states changes in
the neighborhood ofR1 = 2.4A� . (See Fig. 16.4.) At asymptotic geometries we
saw that the characters of the wave functions for the first two states are clearcut.
As the one methylene moves, the two pieces in the first excited state, consisting of
two triplet fragments, attract one another more strongly and the potential energy
curve falls, see Fig. 16.3. The ground state, consisting of two singlet fragments
appears repulsive. These two sorts of states would cross if they did not interact.
They, in fact, do interact: there is an avoided crossing, and a barrier appears on the
lower curve. This interaction region is fairly narrow, and, inside the cross-over, the
lower curve continues downward representing the bonding that holds C3H6
together. Thus, this targeted correlation treatment predicts that there is a 1.244 eV
barrier to the insertion of singlet methylene into ethylene to form cyclopropane.
We do not show it here[39], but triplet methylene and singlet ethylene repel each
other strongly at all distances, and thus should not react unless there should be a
spin cross-over to a singlet state. This occurrence of a barrier due to an avoided
crossing has been invoked many times to explain and rationalize reaction pathways
[67, 69].

16.1.4 Cyclopropane with an STO-3G basis

Some years ago a short description of a more restricted version of the problem in
the last section was published[39]. Using an STO-3G basis, the earlier calculation
examined the two lowest1A1 energies as a singlet methylene approached an ethy-
lene molecule. In this case, however, the ethylene was not allowed to relax in its
geometry. The curves are shown in Fig. 16.5. The important point is that we see
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Figure 16.5. The two lowest1A1 states showing the attack of singlet methylene on a rigid
ethylene. These energies were obtained using an STO-3G basis, with which we obtain a
barrier of about 0.8 eV.

the same qualitative behavior in this much more approximate calculation as that
shown in Fig. 16.3, where the results using a larger basis and fuller optimization is
presented.

16.2 Formaldehyde, H2CO

When formaldehyde is subjected to suitable optical excitation it dissociates into H2

and CO. The process is thought to involve an excitation to the first excited singlet
state followed by internal conversion to a highly excited vibrational state of the
ground singlet state that dissociates according to the equation

H2CO
hν→ H2CO

∗ → H2+ CO.

Conventional counting says that H2COhas four bonds in it, and the final product has
the same number arranged differently. Our goal is to follow the bonding arrange-
ment from the initial geometry to the final. This is said to occur on theS0 (ground
state singlet) energy surface, which in full generality depends upon six geometric
parameters. Restricting the surface to planar geometries reduces this number to
five, and keeping the C—O distance fixed reduces it to four. We will examine
different portions of theS0 surface for different numbers of geometric coordinates.
Some years ago Vance and the present author[68] made a study of this surface

with the targeted correlation technique using a Dunning double-zetabasis[70] that,
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Table 16.8.Orbitals used and statistics of MCVB calculations on the S0

energy surface of formaldehyde. For the 6-31G∗ basis the full set of
configurations from the unprimed orbitals was used and
single excitations into the primed set were included.

Orbitals Total C2v Cs

STO3G basis H:1sa,1sb
CO:3σ,3σ,5σ,6σ,1π,2π 1120 565 1120

6-31G* basis H:1sa,1sb,2s′
a,2s

′
b

CO:5σ,1π,5σ ′,2π,2π ′ 131 70 131

except for the lack of polarization functions, is similar to a 6-31G∗ basis. To keep
consistency with the remainder of this book we redo some of the calculations from
the earlier study with the latter basis, but will mix in some of the earlier results,
which are essentially the same, with the current ones.
We show the results of calculations at the STO3G and 6-31G∗ levels of the AO

basis. Table 16.8 shows the orbitals used and the number of functions produced for
each case. These statistics apply to each of the calculations we give.
The important difference between the STO3G and 6-31G∗ bases is the arrange-

ment of orbitals on the CO fragment. In its ground state CO has an orbital config-
uration of

Core: 3σ 24σ 25σ 21π4.

The 5σ function is best described as a nonbonding orbital located principally on
the C atom. In Table 16.8 the 2π orbital is the virtual orbital from the ground state
RHF treatment. The primed orbitals on H are the same as we have used before,
but those on CO are based upon an ROHFn → π∗ calculation of the first triplet
state. The “raw” 5σ , 5σ ′, 2π , and 2π ′ taken directly from the calculations will
not work, however. Their overlaps are much too large for anSmatrix of any size
(>2 or 3) to be considered nonsingular by standard 16-place accuracy calculations.
Therefore, for each high-overlap pair the sum and difference were formed. These
are orthogonal, and do not cause any problems.

16.2.1 The least motion path

We first comment on the so-called least motion path (LMP), in which the two
H atoms move away from the CO atoms, maintaining aC2v symmetry, as shown
in Fig. 16.6. Earlier calculations of all sorts indicate that this path does not cross
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Figure 16.6. A representation of the LMP for the dissociation of H2CO.
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Figure 16.7. The true saddle point for the dissociation of H2CO. This figure is drawn to
scale as accurately as possible.

the lowest saddle point for the reaction. In fact, there is no real saddle point in
geometries constrained to beC2v. Earlier workers have, however, imposed further
constraints and produced a pseudo saddle point of this sort. This is done because
it illustrates a typical four-electron rearrangement similar to the process discussed
in Chapter 14 for four H atoms. This is classified by Woodward and Hoffman[58]
as a “forbidden” process, which means, of course, that the energy required for it
is relatively high compared to the energy for other geometries that may break the
symmetry giving the orbital crossing. In any event the forces on the nuclei along
restricted paths such as this tend to lead to separation of all three parts of the
molecule rather than the formation of CO and H2.

16.2.2 The true saddle point

Calculations using both MCVB and MOCI wave functions predict a very different
geometry at the saddle point for theH2COdissociation. Themolecule is still planar,
but otherwise has no elements of symmetry. We do not describe calculations here
that search out the saddle point, but we do show the nature of the wave function
there, which will make clear why it has the relatively peculiar geometry shown in
Fig. 16.7. This position is such that the tendency of the molecule is to form a H2

molecule. Depending upon themethod of calculation the barrier height is estimated
to be 4.05–4.06 eV, approximately the energy of one H—H bond. Theoretically2

the exothermicity of the process is very close to 0.0 so the parts separate with at
least the activation energy.

2 The process we are discussing is a so-calledisodesmicreaction. Thismeans that the number of bonds is constant.
It has been argued that calculations of this sort of process using changes in SCF energies are useful because the
correlation energies tend to cancel when taking the difference. See Ref. [71].
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Table 16.9.The leading Rumer tableaux for the asymptotic state of formaldehyde,
H2+CO. In this case the standard tableaux functions

are the same for these terms.

1 2 3 4

Num. 1 2 2 2

Tab.



5σ 5σ
1πx 1πx
1πy 1πy

1sa 1sb



R



1sa 1sa
5σ 5σ
1πx 1πx

1πy 1πy



R



5σ 5σ
1πx 1πx
1πy 1πy

1sa 1s′
b



R



5σ 5σ
1πx 1πx
2πy 2πy

1sa 1sb



R

Ci (inf ) 0.709 68 0.168 56 −0.134 08 −0.098 04

Table 16.10.The leading Rumer tableaux in the wave function for the saddle
point state of formaldehyde dissociation.

1 2 3 4

Num. 1 1 1 1

Tab.



1πx 1πx

1πy 1πy

1sb 5σ ′

1sa 2π ′
y



R



1πx 1πx

1πy 1πy

1sa 1sb
5σ ′ 2π ′

y



R



1πx 1πx

1sb 5σ ′

1sa 1πy

2πy 2π ′
y



R



1πx 1πx

2π ′
y 2π ′

y
1sb 5σ ′

1sa 1πy



R

Ci (sad) 1.306 47 0.461 32 0.403 68 0.209 90

16.2.3 Wave functions during separation

The wave functions change character, of course, during the dissociation process.
The asymptotic region is the simplest and we start with that. Table 16.9 shows
the most important Rumer tableaux when CO and H2 are well separated from one
another.

1. The leading term is clearly the closed shell1A1 state of CO in combination with the
HLSP function for H2.

2. These two terms give the closed-shell CO with the ionic term of H2.
3. These two terms give the closed-shell CO with a breathing term for the H1s orbitals.
4. The last two terms shown give the electron correlation in theπ shell of CO and the
leading HLSP function term of H2.

The wave function for this geometry is very simple to interpret.
In Table 16.10 we show the principal Rumer tableaux for the wave function at

the saddle point.
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Table 16.11.The leading terms in the wave function for the equilibrium geometry
of formaldehyde.

1 2 3 4

Standard
tableaux
functions

Num. 1 2 2 2

Tab.



1πx 1πx
1πy 1πy
1sa 5σ ′
1sb 2π′

y






5σ ′ 5σ ′
1πx 1πx
1πy 1πy
1sa 2π′

y






1πx 1πx
1πy 1πy
2π′

y 2π′
y

1sb 5σ ′






1πx 1πx
1πy 1πy
1sb 5σ ′
2π′

y 1sa′




Ci (min) 0.296 23 0.178 83 0.136 65 0.119 13

HLSP
functions

Num. 1 2 2 2

Tab.



1πx 1πx
1πy 1πy
1sb 5σ ′
1sa 2π′

y



R



5σ ′ 5σ ′
1πx 1πx
1πy 1πy
1sb 2π′

y



R



1πx 1πx
1πy 1πy
1sa 5σ ′
2π′

y 1sb′



R



1πx 1πx
1πy 1πy
2π′

y 2π′
y

1sb 5σ ′



R

Ci (min) 0.310 08 0.178 83 0.159 18 −0.136 65

1. The leading term represents a structure withan electron pair bond between one H and
the 5σ′ orbital and another between the other H and the 2π′

y orbital.
2. This term together with the first provides the two Rumer diagrams for the bonding
scheme. That this has such a large coefficient indicates that electron pair bonds are not
near perfect pairing.

3. This term involves correlation and polarization on the CO portion of thesystem with the
electron pair bonds to the Hs still in place.

4. The fourth term involves a further rearrangement of the electrons on the CO portion of
the system. In this case one H is now bonded to the 1πy instead of the 2π ′

y orbital. These
terms provide correlation, polarization, and also give a combination of both bonding and
antibondingπy orbitals so that this sort of bond will disappear and C—H bonds and
O nonbonding orbitals will appear as the molecule forms.

Table 16.11 shows the leading terms in the wave function at the equilibrium
geometry of H2CO in both standard tableaux function and HLSP function form.

1. The first standard tableaux function term is essentially triplet H2 (much elongated, of
course) coupledwith the3
y stateofCO.TheHLSP functionhas thesame interpretation.

2. The second terms are the same and are an ionic type associated with the first term. These
provide delocalization.

3. The third standard tableaux function and fourthHLSP function terms are the same. These
are both ionic and provide antibonding character in they-direction to “remove” that part
of the original triple bond in CO.

4. The fourth standard tableaux function term and the third HLSP function term are the
same configuration but not the same function. In both cases, however, the terms involve
breathing for the 1sorbitals in the H atoms.
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In summary we see that the barrier to dissociation in H2CO can be ascribed
to an avoided crossing of the same sort as we described in the dissociation of
cyclopropane. The two fragments in triplet couplingsbondas theyapproachand that
state crosses the state where they are separately in singlet states. At the saddle point
position the triplet fragment states still dominate to some extent, but asymptotically
the two fragments are certainly in their respective singlet states.
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