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INTRODUCTION

Few of us can any longer keep up with the flood of scientific literature, even
in specialized subfields. Any attempt to do more and be broadly educated
with respect to a large domain of science has the appearance of tilting at
windmills. Yet the synthesis of ideas drawn from different subjects into new,
powerful, general concepts is as valuable as ever, and the desire to remain
educated persists in all scientists. This series, Advances in Chemical
Physics, is devoted to helping the reader obtain general information about a
wide variety of topics in chemical physics, a field that we interpret very
broadly. Our intent is to have experts present comprehensive analyses of
subjects of interest and to encourage the expression of individual points of
view. We hope that this approach to the presentation of an overview of a
subject will both stimulate new research and serve as a personalized learning
text for beginners in a field.

1. PRIGOGINE
STUART A. RicE
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INTRODUCTION TO THE ADVANCES OF
CHEMICAL PHYSICS VOLUME ON:
THE ROLE OF DEGENERATE STATES IN CHEMISTRY

The study of molecular systems is based on the Born—-Oppenheimer
treatment, which can be considered as one of the most successful theories in
physics and chemistry. This treatment, which distinguishes between the fast-
moving electrons and the slow-moving nuclei leads to electronic (adiabatic)
eigenstates and the non-adiabatic coupling terms. The existence of the
adiabatic states was verified in numerous experimental studies ranging from
photochemical processes through photodissociation and unimolecular
processes and finally bimolecular interactions accompanied by exchange
and/or charge-transfer processes. Having the well-established adiabatic
states many studies went one step further and applied the Born—
Oppenheimer approximation, which assumes that for low enough energies
the dynamics can be carried out on the lower surface only, thus neglecting
the coupling to the upper states. Although on numerous occasions, this
approximation was found to yield satisfactory results, it was soon realized
that the relevance of this approximation is quite limited and that the
interpretation of too many experiments whether based on spectroscopy or
related to scattering demand the inclusion of several electronic states. For a
while, it was believed that perturbation theory may be instrumental in this
respect but this idea was not found in many cases to be satisfactory and
therefore was only rarely employed.

In contrast to the successful introduction, of the electronic adiabatic states
into physics and mainly into chemistry, the incorporation of the comple-
mentary counterpart of the Born—Oppenheimer treatment, that is, the
electronic non-adiabatic coupling terms, caused difficulties (mainly due to
their being ‘“‘extended” vectors) and therefore were ignored. The non-
adiabatic coupling terms are responsible for the coupling between the
adiabatic states, and since for a long time most studies were related to the
ground state, it was believed that the Born—Oppenheimer approximation
always holds due to the weakness of the non-adiabatic coupling terms. This
belief persisted although it was quite early recognized, due to the Hellmann—
Feynman theorem, that non-adiabatic coupling terms are not necessarily
weak, on the contrary, they may be large and eventually become infinite.
They become infinite (or singular) at those instances when two successive
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X INTRODUCTION TO THE ROLE OF DEGENERATE STATES IN CHEMISTRY

adiabatic states turn out to be degenerate. Having singular non-adiabatic
coupling terms not only leads to the breakdown of the Born—-Oppenheimer
approximation but also rules out the possibility of keeping it while applying
perturbation theory. Nevertheless the Born—Oppenheimer approximation can
be partly ‘““‘saved,” in particular while studying low-energy processes, by
extending it to include the relevant non-adiabatic coupling terms. In this
way, a new equation is obtained, for which novel methods to solve it were
developed—some of them were discussed in this volume.

This volume in the series of Advances of Chemical Physics centers on
studies of effects due to electronic degenerate states on chemical processes.
However, since the degenerate states affect chemical processes via the
singular non-adiabatic coupling terms, a major part of this volume is
devoted to the study of features of the non-adiabatic coupling terms. This is
one aspect related to this subject. Another aspect is connected with the
Born—Oppenheimer Schrodinger equation which, if indeed degenerate states
are common in molecular systems, frequently contains singular terms that
may inhibit the possibility of solving this equation within the original Born—
Oppenheimer adiabatic framework. Thus, an extensive part of this volume is
devoted to various transformations to another framework—the diabatic
framework—in which the adiabatic coupling terms are replaced by potential
coupling—all analytic smoothly behaving functions.

In Chapter I, Child outlines the early developments of the theory of the
geometric phase for molecular systems and illustrates it primarily by
application to doubly degenerate systems. Coverage will include applica-
tions to given to (E x €) Jahn—Teller systems with linear and quadratic
coupling, and with spin—orbit coupling. The origin of vector potential
modifications to the kinetic energy operator for motion on well-separated
lower adiabatic potential surfaces is also be outlined.

In Chapter II, Baer presents the transformation to the diabatic framework
via a matrix—the adiabatic-to-diabatic transformation matrix—calculated
employing a line-integral approach. This chapter concentrates on the
theoretical-mathematical aspects that allow the rigorous derivation of this
transformation matrix and, following that, the derivation of the diabatic
potentials. An interesting finding due to this treatment is that, once the non-
adiabatic coupling terms are arranged in a matrix, this matrix has to fulfill
certain quantization conditions in order for the diabatic potentials to be
single valued. Establishing the quantization revealed the existence of the
topological matrix, which contains the topological features of the electronic
manifold as related to closed contours in configuration space. A third feature
fulfilled by the non-adiabatic coupling matrix is the curl equation, which
is reminiscent of the Yang—Mills field. This suggests, among other things,
that pseudomagnetic fields may “‘exist” along seams that are the lines
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formed by the singular points of the non-adiabatic coupling terms. Finally,
having the curl equation leads to the proposal of calculating non-adiabatic
coupling terms by solving this equation rather than by performing the
tedious ab initio treatment. The various theoretical derivations are
accompanied by examples that are taken from real molecular systems.

In Chapter I1I, Adhikari and Billing discuss chemical reactions in systems
having conical intersections. For these situations they suggest to incorporate
the effect of a geometrical phase factor on the nuclear dynamics, even at
energies well below the conical intersection. It is suggested that if this phase
factor is incorporated, the dynamics in many cases, may still be treated
within a one-surface approximation. In their chapter, they discuss the effect
of this phase factor by first considering a model system for which the two-
surface problem can also easily be solved without approximation. Since
many calculations involving heavier atoms have to be considered using
approximate dynamical theories such as classical or quantum classical, it
is important to be able to include the geometric phase factor into these
theories as well. How this can be achieved is discussed for the three-particle
problem. The connection between the so-called extended Born—Oppenheimer
approach and the phase angles makes it possible to move from two-surface
to multisurface problems. By using this approach a three-state model system
is considered. Finally, the geometric phase effect is formulated within the
so-called quantum dressed classical mechanics approach.

In Chapter IV, Englman and Yahalom summarize studies of the last
15 years related to the Yang—Mills (YM) field that represents the interaction
between a set of nuclear states in a molecular system as have been discussed
in a series of articles and reviews by theoretical chemists and particle
physicists. They then take as their starting point the theorem that when the
electronic set is complete so that the Yang—Mills field intensity tensor
vanishes and the field is a pure gauge, and extend it to obtain some new
results. These studies throw light on the nature of the Yang—Mills fields in
the molecular and other contexts, and on the interplay between diabatic and
adiabatic representations.

In Chapter V, Kuppermann and Abrol present a detailed formulation of
the nuclear Schrodinger equation for chemical reactions occurring on
multiple potential energy surfaces. The discussion includes triatomic and
tetraatomic systems. The formulation is given in terms of hyperspherical
coordinates and accordingly the scattering equations are derived. The effect
of first and second derivative coupling terms are included, both in the
adiabatic and the diabatic representations. In the latter, the effect of the non-
removable (transverse) part of the first derivative coupling vector are
considered. This numerical treatment led, finally, to the potential energy
surfaces that are then employed for the scattering calculations. The coverage
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includes a detailed asymptotic analysis and expressions for the reactive
scattering matrices, the associated scattering amplitudes and differential
cross-sections. The inclusion of the geometric phase in these equations is
discussed, as well as results of representative calculations.

In Chapter VI, Ohrn and Deumens present their electron nuclear
dynamics (END) time-dependent, nonadiabatic, theoretical, and computa-
tional approach to the study of molecular processes. This approach stresses
the analysis of such processes in terms of dynamical, time-evolving states
rather than stationary molecular states. Thus, rovibrational and scattering
states are reduced to less prominent roles as is the case in most modern
wavepacket treatments of molecular reaction dynamics. Unlike most
theoretical methods, END also relegates electronic stationary states,
potential energy surfaces, adiabatic and diabatic descriptions, and
nonadiabatic coupling terms to the background in favor of a dynamic,
time-evolving description of all electrons.

In Chapter VII, Worth and Robb discuss techniques known as direct, or
on-the-fly, molecular dynamics and their application to non-adiabatic
processes. In contrast to standard techniques, which require a predefined
potential energy surfaces, here the potential function, is provided by explicit
evaluation of the electronic wave function for the states of interest. This fact
makes the method very general and powerful, particularly for the study of
polyatomic systems where the calculation of a multidimensional potential
function is expected to be a complicated task. The method, however, has a
number of difficulties that need to be solved. One is the sheer size of the
problem—all nuclear and electronic degrees of freedom are treated
explicitly. A second is the restriction placed on the form of the nuclear wave
function as a local- or trajectory-based representation is required. This intro-
duces the problem of including quantum effects into methods that are often
based on classical mechanics. For non-adiabatic processes, there is the addi-
tional complication of the treatment of the non-adiabatic coupling. In this
chapter these authors show how progress has been made in this new and
exciting field, highlighting the different problems and how they are being
solved.

In Chapter VIII, Haas and Zilberg propose to follow the phase of the
total electronic wave function as a function of the nuclear coordinates with
the aim of locating conical intersections. For this purpose, they present
the theoretical basis for this approach and apply it for conical intersect-
ions connecting the two lowest singlet states (S; and Sp). The analysis
starts with the Pauli principle and is assisted by the permutational symmetry
of the electronic wave function. In particular, this approach allows the
selection of two coordinates along which the conical intersections are to be
found.
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In Chapter IX, Liang et al. present an approach, termed as the “crude
Born—Oppenheimer approximation,” which is based on the Born—Oppen-
heimer approximation but employs the straightforward perturbation method.
Within their chapter they develop this approximation to become a practical
method for computing potential energy surfaces. They show that to carry out
different orders of perturbation, the ability to calculate the matrix elements
of the derivatives of the Coulomb interaction with respect to nuclear
coordinates is essential. For this purpose, they study a diatomic molecule,
and by doing that demonstrate the basic skill to compute the relevant matrix
elements for the Gaussian basis sets. Finally, they apply this approach to the
H, molecule and show that the calculated equilibrium position and force
constant fit reasonable well those obtained by other approaches.

In Chapter X, Matsika and Yarkony present an algorithm for locating
points of conical intersection for odd electron molecules. The nature of the
singularity at the conical intersection is determined and a transformation to
locally diabatic states that eliminates the singularity is derived. A rotation of
the degenerate electronic states that represents the branching plane in terms
of mutually orthogonal vectors is determined, which will enable us to search
for confluences intersecting branches of a single seam.

In Chapter XI, Peri¢ and Peyerimhoff discuss the Renner—Teller coupling
in triatomic and tetraatomic molecules. For this purpose, they describe some
of their theoretical tools to investigate this subject and use the systems FeH,,
CNC, and HCCS as adequate examples.

In Chapter XII, Varandas and Xu discuss the implications of permuta-
tional symmetry on the total wave function and its various components for
systems having sets of identical particles. By generalizing Kramers’ theorem
and using double group theory, some drastic consequences are anticipated
when the nuclear spin quantum number is one-half and zero. The material
presented may then be helpful for a detailed understanding of molecular
spectra and collisional dynamics. As case studies, they discuss, in some
detail, the spectra of trimmeric species involving 2S atoms. The effect of
vibronic interactions on the two conical intersecting adiabatic potential
energy surfaces will then be illustrated and shown to have an important role.
In particular, the implications of the Jahn—Teller instability on the calculated
energy levels, as well as the involved dynamic Jahn—Teller and geometric
phase effects, will be examined by focusing on the alkali metal trimmers.
This chapter was planned to be essentially descriptive, with the
mathematical details being gathered on several appendixes.

MICHAEL BAER
GERT DUE BILLING
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dynamic Jahn-Teller and geometric phase
effects, 703-711

generalized approximation (GBO), two-
dimensional Hilbert space, 718—-721

non-adiabatic coupling, 711

total molecular wave function, 667-668,
676-678

phase-change rule, chemical reactions,
450-453
Renner-Teller effect:

nonlinear molecules, 606—-610

tetraatomic molecules, 628—631

theoretical principles, 584—585

triatomic molecules, 587-598
Hamiltonian selection, 611-615
pragmatic models, 619-621

Born-Oppenheimer-Huang equation, non-
adiabatic coupling:
future research applications, 118-119
Hilbert space, Born-Oppenheimer equations,
44-45
historical background, 40—44
minimal diabatic potential matrix, 81-89
sub-Hilbert space, 46—47
vector potential, Yang-Mills field, 93-95
Born-Oppenheimer-Schrodinger equation,
degenerate states chemistry, x—xiii
Bose-Einstein statistics, permutational
symmetry, total molecular wave
function, 677-678
Boundary conditions:
electronic states, adiabatic-to-diabatic
transformation, two-state system, 304—
309
electron nuclear dynamics (END), time-
dependent variational principle (TDVP),
328-330
geometric phase theory, single-surface
nuclear dynamics, vibronic multiplet
ordering, 27-31
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non-adiabatic coupling:
adiabatic-to-diabatic transformation
matrix, orthogonality, 123
minimal diabatic potential matrix,
noninteracting conical intersections,
88-89
theoretic-numerical approach:
three-state system in plane, 101-103
two-state system in plane:
conical intersection distribution
solution, 101
single conical intersection solution,
97-101
three-state molecular system, strongly
coupled (2,3) and (3,4) conical

intersections, “real” three-state systems,

117
Bound-state photoabsorption, direct molecular
dynamics, nuclear motion Schrodinger
equation, 365-373
Branching space dimension, conical
intersections, spin-orbit interaction,
559-561
Breakable multidegeneracy, non-adiabatic
coupling, 81
Breit-Pauli approximation:
conical intersections, spin-orbit interaction,
571-578
convergence equations, 572
H, + OH 1,2°A’ and 1°A’ states, 571572
orthogonality properties, 576—578
seam parameters:
conical parameters and invariant, 574—
576
locus, 572-574
Renner-Teller effect, triatomic molecules,
597-598
Brody distribution, permutational symmetry,
dynamic Jahn-Teller and geometric
phase effects, 708—711
Burlisch-Stoer integrator, direct molecular
dynamics, ab initio multiple spawning
(AIMS), 412-414
Butadiene molecules:
conical intersection location, 490
direct molecular dynamics, complete active
space self-consistent field (CASSCF)
technique, 408-410
loop construction, 474-482
phase-change rules:

four-electron ring closure, 455-456
two-state chemical reactions, 436—438
Butene compounds, loop construction, 478—479
Buttiker-Landauer method, time shift

calculations, 213

Car-Parinello method:
direct molecular dynamics, theoretical
background, 360-361
electron nuclear dynamics (END), structure
and properties, 327
Cartesian coordinates:
crude Born-Oppenheimer approximation,
nuclei interaction integrals, 524—527
direct molecular dynamics, vibronic coupling,
383-384
electronic state adiabatic representation, first-
derivative coupling matrix, 290-291
electronic states:
adiabatic-to-diabatic transformation, two-
state system, 303—-309
triatomic quantum reaction dynamics,
310-312
non-adiabatic coupling:
quantum dressed classical mechanics, 179
two-state molecular system:
C,H-molecule: (1,2) and (2,3) conical
intersections, 109—-112
single conical intersection solution,
98-101
permutational symmetry, degenerate/near-
degenerate vibrational levels, 728—733
Renner-Teller effect, triatomic molecules,
Hamiltonian equations, 612—615
Cauchy-integral method, molecular systems,
component amplitudes, 219-220
Center-of-mass coordinates:
crude Born-Oppenheimer approximation,
hydrogen molecule, 513-516
permutational symmetry, total molecular
wave function, 664—-668
Chemical identity, permutational symmetry,
total wave function, 674—-678
Chiral systems, phase-change rule, 456—458
C,H radical:
non-adiabatic coupling, (1,2) and (2,3) conical
intersections, two-state molecular
system, 109-112
Renner-Teller effect, multiple-state systems,
623
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cis-trans isomerization, loop construction,
ethylene photolysis, 472—473
Classical wave theory, historical background,
206-207
Coherent states:
direct molecular dynamics, non-adiabatic
coupling, 403-404
molecular systems, 212
Complete active space (CAS) wave functions,
electron nuclear dynamics (END), time-
dependent variational principle (TDVP),
334-337
Complete active space self-consistent field
(CASSCEF) technique:
conical intersection location, 492—-493
direct molecular dynamics:
non-adiabatic systems, 404—411
theoretical background, 358—-361
vibronic coupling, diabatic representation,
385-386
Complex representations, multidegenerate
nonlinear coupling, higher order
coupling, 243-244
Component amplitudes, molecular systems:
analytic theory, 214-233
Cauchy-integral method, 219-220
cyclic wave functions, 224228
modulus and phase, 214-215
modulus-phase relations, 217-218
near-adiabatic limit, 220-224
reciprocal relations, 215-217, 232-233
wave packets, 228—232
multidegenerate nonlinear coupling,
continuous tracing, component phase,
236-241
Condon approximation, direct molecular
dynamics:
ab initio multiple spawning (AIMS), 414
adiabatic systems, 374-377
vibronic coupling, diabatic representation,
386
Configuration space:
canonical intersection, historical background,
144-148
non-adiabatic coupling, extended Born-
Oppenheimer equations, 170-171
Configuration state functions (CSFs), direct
molecular dynamics, complete active
space self-consistent field (CASSCF)
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technique, non-adiabatic systems,
405-411
Conical intersections:
crude Born-Oppenheimer approximation,
theoretical background, 506—-507
degenerate states chemistry, Xi—xiii
direct molecular dynamics, vibronic coupling,
386-389
electronic states:
adiabatic representation, 291
adiabatic-to-diabatic transformation, two-
state system, 303—-309
future research issues, 493-496
geometric phase theory, 4—8
adiabatic eigenstates, 8—11
loop construction:
Longuet-Higgins loops, 461-472
cyclopentadienyl radical/cation systems,
464-472
phase-change rule, 443-446
photochemical systems, 453—460
four-electron systems, 455-458
larger four-electron systems, 458—-459
multielectron systems, 459—-460
three-electron systems, 455
qualitative molecular photochemistry, four-
electron problems, 472-482
quantitative cyclohexadiene
photochemistry, 482—-487
molecular systems:
anchors, 439-441
molecules and independent quantum
species, 439-441
electronic states, 202—205
multidegenerate nonlinear coupling:
pairing, 235-236
research background, 233-234
theoretical background, 434—435
two-state systems, 436—438
non-adiabatic coupling:
Born-Oppenheimer approximation, matrix
elements, 186—191
coordinate origins, 137-138
extended Born-Oppenheimer equations:
closed path matrix quantization, 171—
173
theoretical principles, 144—148
three-state matrix quantization, 173—174
three-state system analysis, 174—175
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Herzberg-Longuet-Higgins phase-based
treatment, Jahn-Teller model, 185-186

Jahn-Teller systems, Longuet-Higgins
phase, 119-122

Longuet-Higgins phase-based treatment,
148-168

geometric phase effect, two-dimensional

two-surface system, 148—157
three-particle reactive system, 157—-168
minimal diabatic potential matrix,
noninteracting intersections, 85-89
multidegeneracy, 80—81
quantum dressed classical mechanics,
177-183
geometric phase effect, 180—183
sign flips, geometrical interpretation,
77-80
three-state molecular system, 102—103

strongly coupled (2,3) and (3,4) conical

intersections, ‘“‘real’ three-state
systems, 113-117
two-state molecular system:
C,H-molecule: (1,2) and (2,3) conical
intersections, 109-112
distribution solution, 101
single conical intersection solution,
97-101
vector potential formulation, 191-196
orthogonal coordinates, 565-567
permutational symmetry, adiabatic states:
invariant operators, 735-737
Jahn-Teller theorem, 733-735
phase-change rule:
chemical reaction, 446-453
pericyclic reactions, 447-450
pi-bond reactions, 452—-453
sigma bond reactions, 452
comparison with other techniques,
487-493
loop construction, 443-446
coordinate properties, 443446
phase inverting reactions, 496—499
spin-orbit interaction:
derivative couplings, 569-570
electronic Hamiltonian, 559
future research issues, 578580
location, 564—-565
numerical calculations, 571-578
convergence equations, 572

H, + OH 1,2%4’ and 1?4’ states,
571-572
orthogonality properties, 576—578
seam parameters:
conical parameters and invariant,
574-576
locus, 572-574
orthogonal intersection adapted
coordinates, 565-567
perturbation theory, 561-564
research background, 558-559
time-reversal symmetry, 559-561, 563-564
topography:
conical parameters, 569
energy parameters, 568—569
transformational invariant, 567
Continuity equation, molecular systems:
component amplitude analysis, phase-
modulus relations, 217-218
modulus-phase formalism, 262-263
Continuous tracing, molecular systems,
multidegenerate nonlinear coupling,
236-241
Convergence, conical intersections, spin-orbit
interaction, 572-573
Coriolis term, non-adiabatic coupling, Longuet-
Higgins phase-based treatment, three-
particle reactive system, 159—168
Correction terms, molecular systems, modulus-
phase formalism, Lagrangean density,
269-270
Correlation functions, direct molecular
dynamics, adiabatic systems, 374-377
Coulomb interaction:
crude Born-Oppenheimer approximation:
basic principles, 507-512
derivative properties, 527-542
first-order derivatives, 529-535
second-order derivatives, 535-542
hydrogen molecule, Hamiltonian equation,
515-516
nuclei interaction integrals, 519-527
theoretical background, 507
diabatic framework, 133-134
electronic state adiabatic representation,
Born-Huang expansion, 287-289
permutational symmetry, potential energy
surfaces, 692—-694
phase inverting reactions, 499
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Coupled-perturbed multiconfiguration self-
consistent field (CP-MCSCF) technique,
direct molecular dynamics, complete
active space self-consistent field
(CASSCF) technique, non-adiabatic
systems, 406—411

Coupling matrices, electronic state adiabatic
representation:

first-derivative matrix, 290-291
second-derivative matrix, 291-292
Covariant elements, molecular systems:
modulus-phase formalism, Dirac theory
electrons, 267-268
Yang-Mills fields, pure vs. tensorial gauge
fields, 250-252

Cross-sectional analysis, electron nuclear
dynamics (END), molecular systems,
345-349

Crude Born-Oppenheimer approximation:

degenerate states chemistry, Xiii
hydrogen molecule:
Hamiltonian equation, 512-516
minimum basis set calculation, 542—550
integrals, 551-555
molecular systems, Yang-Mills fields, 260—
261
potential energy surface (PES):
angular-momentum-adopted Gaussian
matrix elements, 517-542
Coulomb potential derivatives,
527-542
first-order derivatives, 529-535
second-order derivatives, 535-542
normalization factor, 517
nuclei interaction terms, 519-527
overlap integrals, 518-519
theoretical background, 506—507
principles and equations, 507-512
Curl condition:
degenerate states chemistry, x—xiii
electronic states:
adiabatic representation, 291
adiabatic-to-diabatic transformation,
297-300
geometric phase theory, eigenvector
evolution, 13-17
molecular systems, Yang-Mills fields:
properties, 252-253
pure vs. tensorial gauge fields,
250-252
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non-adiabatic coupling:
adiabatic-to-diabatic transformation
matrix, quasidiabatic framework, 53,
56-57
conical intersection coordinates, 137—138
future research applications, 118—119
pseudomagnetic field, 95-96
theoretical background, 42—44
three-state molecular system, 102—103
two-state molecular system, single conical
intersection solution, 97—101
Yang-Mills field, 92-97
pseudomagnetic field, 95-96
vector potential theory, 93—-95
Yang-Mills field, 203-205
Cyanine dyes, direct molecular dynamics,
complete active space self-consistent
field (CASSCF) technique, 411
Cyclic wave functions, molecular systems,
component amplitude analysis, 224-228
Cyclobutadiene(CBD)-tetrahedrane system,
loop construction, 476—478
1,4-Cyclohexadiene (CHDN) molecule:
conical intersection location, 490-491
phase-change rule:
helicopter reactions, 459—-460
large four-electron systems, 458—459
photochemistry, quantitative analysis, 482—
487
quantitative photochemical analysis, 483—-487
Cyclooctatetraene (COT)semibullvalene (SB)
photorearrangement, loop construction,
482-483
Cyclooctenes, loop construction, isomerization,
473-474
Cyclopentadienyl cation (CPDC), phase-change
rule, 467-472
Cyclopentadienyl radical (CPDR), Longuet-
Higgins phase-change rule, loop
construction, 464—-467

DCCS radical, Renner-Teller effect, tetraatomic
molecules, IT electronic states, 633—640
Degenerate states:
permutational symmetry, vibrational levels,
728-733
theoretical background, ix—xiii
A electronic states, Renner-Teller effect:
tetraatomic molecules:
perturbative handling, 647—-653
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theoretical background, 625-626
triatomic molecules, 600
minimal models, 618
vibronic/spin-orbit coupling, 604—605
Demkov technique, non-adiabatic coupling,
sub/sub-sub-Hilbert construction,
67-70
Density functional theory, direct molecular
dynamics, complete active space self-
consistent field (CASSCF) technique,
non-adiabatic systems, 404—411
Density operator, direct molecular dynamics,
adiabatic systems, 375-377
Derivative couplings:
conical intersections, 569-570
direct molecular dynamics, vibronic coupling,
conical intersections, 386—389
Determinantal wave function, electron nuclear
dynamics (END), molecular systems,
final-state analysis, 342—-349
Diabatic representation:
conical intersection location, 489
defined, 41-42
degenerate states chemistry, x—xiii
direct molecular dynamics, vibronic coupling,
384-386
electronic states, adiabatic-to-diabatic
transformation, 292-293
non-adiabatic coupling:
adiabatic-to-diabatic transformation
matrix, quasidiabatic framework,
54-56
future research applications, 118-119
minimal diabatic potential matrix,
82-89
theoretical background, 41-44
properties and equations, 132—134
Renner-Teller effect, triatomic molecules,
595-598
Diabatization matrix, electronic states,
adiabatic-to-diabatic transformation,
295-300
Diagonal element:
adiabatic-to-diabatic transformation matrix,
quantization, 67
molecular systems, multidegenerate nonlinear
coupling, 247
Diatomics-in-molecule (DIM) surfaces:
electron nuclear dynamics (END), molecular
systems, 345-349
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permutational symmetry, nuclear spin
function, 679-680
Diels-Alder reaction, phase-change rule,
pericyclic reactions, 447-450
Dimensionless parameters, Renner-Teller effect,
tetraatomic molecules, perturbative
handling, 642-646
Dirac bra-ket notation, permutational symmetry,
group theoretical properties, 672—-674
Dirac 6 function, non-adiabatic coupling, curl
condition, pseudomagnetic field,
95-96
Dirac theory, molecular systems, modulus-phase
formalism:
electron properties, 266—268
topological phase electrons, 270-272
Direct integration, molecular systems,
multidegenerate nonlinear coupling,
242-243
Direct molecular dynamics:
adiabatic systems, 362—-381
Gaussian wavepacket propagation,
377-381
initial condition selection, 373-377
nuclear Schrodinger equation, 363-373
electron nuclear dynamics (END), structure
and properties, 327
future research issues, 415-417
non-adiabatic coupling:
ab initio multiple spawning, 411-414
CASSCEF techniques, 404—-411
direct dynamics, 410—411
MMYVB method, 406-410
Ehrenfest dynamics, 395-397
Gaussian wavepackets and multiple
spawning, 399-402
mixed techniques, 403-404
semiempirical studies, 414—415
theoretical background, 356-362
trajectory surface hopping, 397—-399
vibronic effects, 381-393
adiabatic properties, 382-384
conical intersections, 386—389
diabatic properties, 384—386
Hamiltonian model, 389-393
nuclear motion Schrodinger equation,
principles of, 418-420
Dirichlet conditions, electronic states, adiabatic-
to-diabatic transformation, two-state
system, 304-309
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Discrete Fourier transform (DFT), non-adiabatic
coupling, Longuet-Higgins phase-based
treatment, two-dimensional two-surface
system, scattering calculation, 153—155

Discrete variable representation (DVR):

direct molecular dynamics, nuclear motion
Schrodinger equation, 364—373
non-adiabatic coupling, quantum dressed
classical mechanics, 177-183
formulation, 181-183
permutational symmetry, dynamic Jahn-Teller
and geometric phase effects, 699-711

Dixon’s model, Renner-Teller effect, triatomic
molecules, 617-618

DMBE III calculation, permutational symmetry,
dynamic Jahn-Teller and geometric
phase effects, 699-711

Double degeneracy, geometric phase theory,
Jahn-Teller models, 2—4, 31-33

Dynamic phase, properties, 210

Eckart conditions, Renner-Teller effect,
triatomic molecules, 610-615
Ehrenfest dynamics, direct molecular dynamics:
error sources, 403-404
Gaussian wavepacket propagation, 378—383
molecular mechanics valence bond (MMVB),
409-411
non-adiabatic coupling, 395-397
theoretical background, 358-361
wave function propagation, 422-423
Eigenstates:
electronic states, triatomic quantum reaction
dynamics, partial wave expansion, 315—
317
geometric phase theory:
adiabatic eigenstates, conical intersections,
8-11
linear Jahn-Teller effect, 18—20
spin-orbit coupling, 21-22
Electromagnetic theory, geometric phase theory,
single-surface nuclear dynamics, vector-
potential, molecular Aharonovo-Bohm
effect, 26-31
Electronic Hamiltonian, conical intersections,
spin-orbit interaction, 559
Electronic states:
adiabatic representation:
Born-Huang expansion, 286-289
first-derivative coupling matrix, 290-291

nuclear motion Schrodinger equation,
289-290
second-derivative coupling matrix,
291-292
adiabatic-to-diabatic transformation:
diabatic nuclear motion Schrodinger
equation, 293-295
diabatization matrix, 295-300
electronically diabatic representation,
292-293
two-state application, 300-309
four-state molecular system, non-adiabatic
coupling:
quantization, 60-62
Wigner rotation/adiabatic-to-diabatic
transformation matrices, 92
molecular systems, theoretical background,
198-205
quantum reaction dynamics:
theoretical background, 283-286
triatomic reactions, two-state formalism,
309-319
partial wave expansion, 312-317
propagation scheme and asymptotic
analysis, 317-318
symmetrized hyperspherical coordinates,
310-312
quantum theory and, 198-205
three-state molecular system, non-adiabatic
coupling:
minimal diabatic potential matrix,
noninteracting conical intersections, 81—
89
numerical study, 134—137
extended Born-Oppenheimer equations,
174-175
quantization, 59-60
extended Born-Oppenheimer equations,
173-174
sign flip derivation, 73-77
strongly coupled (2,3) and (3,4) conical
intersections, “real” three-state systems,
113-117
theoretical-numeric approach, 101-103
Wigner rotation/adiabatic-to-diabatic
transformation matrices, 92
two-state molecular system, non-adiabatic
coupling:
Herzberg-Longuet-Higgins phase, 185
quantization, 58—59
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“real” system properties, 104—112
C,H-molecule: (1,2) and (2,3) conical
intersections, 109-112
C,H-molecule: (1,2) and (2,3) conical
intersections, ‘‘real” two-state
systems, 109-112
H; system and isotopic analogues, 103—
109
single conical intersection solution, 97—
101
Wigner rotation/adiabatic-to-diabatic
transformation matrices, 92
Electronic structure theory, electron nuclear
dynamics (END):
structure and properties, 326—327
theoretical background, 324-325
time-dependent variational principle (TDVP),
general nuclear dynamics, 334-337
Electronic wave function, permutational
symmetry, 680—682
Electron nuclear dynamics (END):
degenerate states chemistry, xii—xiii
direct molecular dynamics, structure and
properties, 327
molecular systems, 337-351
final-state analysis, 342—-349
intramolecular electron transfer,
349-351
reactive collisions, 338—-342
structural properties, 325-327
theoretical background, 323-325
time-dependent variational principle (TDVP),
327-337
basic ansatz, 330-333
free electrons, 333-334
general electron structure, 334-337
Electron properties, molecular systems,
modulus-phase formalism:
Dirac theory, 266—268
nonrelativistic states, 263-265
Electron spin, permutational symmetry,
711-712
Electron transfer:
direct molecular dynamics, 415
electron nuclear dynamics (END):
intramolecular transfer, 349-351
molecular systems, 348—349
Empirical valence bond (EVB), direct molecular
dynamics, theoretical background,
359-361
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Energy format, permutational symmetry,
737-738
Entangled states, molecular systems, Yang-Mills
fields, 261
Enthalpy properties, molecular systems,
modulus-phase formalism, 265-266
ESAB effect, phase properties, 209
Ethylene:
direct molecular dynamics, ab initio multiple
spawning, 414
loop construction, qualitative photochemistry,
472-473
Euler angles:
adiabatic-to-diabatic transformation matrix,
quantization, 66—67
electronic state adiabatic representation,
Born-Huang expansion, 287-289
electronic states:
adiabatic-to-diabatic transformation, two-
state system, 302—309
triatomic quantum reaction dynamics,
311-312
non-adiabatic coupling:
three-state molecular system, 134—137
Wigner rotation matrices, 90
permutational symmetry, rotational wave
function, 685-687
Euler-Lagrange equations, electron nuclear
dynamics (END), time-dependent
variational principle (TDVP):
basic ansatz, 330-333
free electrons, 333-334
Evans-Dewar-Zimmerman approach, phase-
change rule, 435
EWW Hamiltonian, Renner-Teller effect,
triatomic molecules, 610-615
Expanding potential, molecular systems,
component amplitude analysis, 230-232
Expectation value, crude Born-Oppenheimer
approximation, nuclei interaction
integrals, 519-527
Extended Born-Oppenheimer equations, non-
adiabatic coupling:
closed path matrix quantization, 171-173
theoretical principles, 144—-148
three-state matrix quantization, 173-174
three-state system analysis, 174—-175
Extended molecular systems, component
amplitude analysis, phase-modulus
relations, 218
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Fast Fourier transformation (FFT):
direct molecular dynamics, nuclear motion
Schrodinger equation, 364—373
non-adiabatic coupling, Longuet-Higgins
phase-based treatment:
semiclassical calculation, D + H, reaction,
164-167
two-dimensional two-surface system,
150-157
Femtosecond laser pulses, molecular systems,
211
Fermic-Dirac statistics, permutational
symmetry, total molecular wave
function, 676-678
Fermi resonance, permutational symmetry,
dynamic Jahn-Teller and geometric
phase effects, 710-711
Fermi’s Golden Rule:
direct molecular dynamics, adiabatic systems,
initial conditions, 373-377
electron nuclear dynamics (END), molecular
systems, 340—342
Feshbach projection operator, non-adiabatic
coupling:
analycity properties, 124—126
Born-Oppenheimer-Huang equation, sub-
Hilbert space, 46—-47
Field intensity tensor, molecular systems,
Yang-Mills fields, 254-255
vanishing of, sufficiency criterion, 257-259
Filtering techniques, phase interference, 207
Final-state analysis, electron nuclear dynamics
(END), molecular systems, 342—-349
First-derivative coupling matrix:
crude Born-Oppenheimer approximation,
Coulomb potential derivatives,
529-535
electronic states:
adiabatic representation, 290-291
adiabatic-to-diabatic transformation, two-
state systems, 300—309
diabatic nuclear motion Schrodinger
equation, 293-295
Floppy molecules, permutational symmetry,
dynamic Jahn-Teller and geometric
phase effects, 701-711
Floquet theory, geometric phase theory:
principles of, 33-36
single-surface nuclear dynamics, vibronic
multiplet ordering, 25-26
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Force constants, crude Born-Oppenheimer
approximation, hydrogen molecule,
minimum basis set calculation, 545-550

Forward peak scattering, electron nuclear
dynamics (END), molecular systems,
339-342

Fourier transform, molecular systems,
component amplitude analysis:

cyclic wave functions, 224—228
reciprocal relations, 216-217
Four-state system:
loop construction:
ammonia and chiral systems, 456—458
cis-trans isomerization, pi and sigma
electrons, 456
larger systems, 458—459
photochemical reactions, 455-458
pi-electrons, butadiane ring closure, 455—
456
qualitative photochemistry, 472—482
non-adiabatic coupling:
quantization, 60-62
Wigner rotation/adiabatic-to-diabatic
transformation matrices, 92

Franck-Condon factor, direct molecular

dynamics:

adiabatic systems, 374-377

complete active space self-consistent field
(CASSCF) technique, non-adiabatic
systems, 408—411

Free and Lombardi (FL) models, Renner-Teller
effect, triatomic molecules, 618-621

Free electrons, electron nuclear dynamics
(END), time-dependent variational
principle (TDVP), 333-334

Frozen Gaussian approximation:

direct molecular dynamics:
Gaussian wavepackets:
multiple spawning, 402
propagation, 380—381
molecular systems, component amplitude
analysis, wave packet construction, 229—
230

Fubini-Study metric, projective Hilbert space,
209-210

Full Hilbert space:

electron nuclear dynamics (END), time-
dependent variational principle (TDVP),
328-330

non-adiabatic coupling:
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analycity properties, 124—126
theoretical background, 42—-44
Full multiple spawning (FMS), direct molecular
dynamics, non-adiabatic coupling, 402
Fulvene molecule, direct molecular dynamics,
complete active space self-consistent
field (CASSCF) technique, 408—410

Gauge fields, molecular systems, Yang-Mills
fields, pure vs. tensorial gauge fields,
250-253

Gauge invariant geometric phase, properties,
3-4

Gauge theories, Yang-Mills field, 204—-205

Gauge transformation:

molecular systems, Yang-Mills fields, 254—
255
wave functions, 213-214

Gauss-Hermite basis set, non-adiabatic
coupling, quantum dressed classical
mechanics, 178-179

discrete variable representation (DVR),
181-183
geometric phase effect, 180
Gaussian basis sets, crude Born-Oppenheimer
approximation:
angular-momentum-adopted Gaussian matrix
elements, 517-542
Coulomb potential derivatives,
527-542
first-order derivatives, 529—-535
second-order derivatives, 535—-542
normalization factor, 517
nuclei interaction terms, 519-527
overlap integrals, 518-519
Coulomb potential derivatives, first-order
derivatives, 529-535
hydrogen molecule, minimum basis set
calculation, 542-550
theoretical background, 507
Gaussian wavepacket calculations:
direct molecular dynamics:
adiabatic systems, propagation techniques,
377-381
non-adiabatic coupling, 399-402
theoretical background, 358-361
non-adiabatic coupling:
Longuet-Higgins phase-based treatment:
semiclassical calculation, D + H,
reaction, 166—167
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two-dimensional two-surface system,
scattering calculation, 151-155
semiclassical calculation, D + H, reaction,
164-167
Geometric phase effect (GPE):
conical intersections, 4—8
adiabatic eigenstates, 8—11
topographical energy, 568—569
curl equations, 11-17
degenerate states chemistry, x—xiii
electronic states:

adiabatic-to-diabatic transformation, two-
state system, 301-309

quantum reaction dynamics, 284—286

electron nuclear dynamics (END), time-
dependent variational principle (TDVP),
general nuclear dynamics, 334—337

Floquet theory principles, 33—-36

historical background, 1-4, 3—4

Jahn-Teller E X € problem, 17-23

linear Jahn-Teller effect, 18—-20

quadratic Jahn-Teller effect, 22-23

spin-orbit coupling, 2E state, 20—22

molecular systems:

electronic states, 202—-205

modulus-phase formalism, Dirac electrons,
270-272

multidegenerate nonlinear coupling:
continuous tracing, component phase,

237-241
off-diagonal elements, squaring-off, 246
research background, 234
non-adiabatic coupling:

Longuet-Higgins phase-based treatment,
two-dimensional two-surface system,
148-157
quasi-Jahn-Teller model, scattering

calculation, 150-155

quantum dressed classical mechanics, 180

discrete variable representation (DVR),
181-183

quasiclassical trajectory (QCT) calculation,
three-particle reactive system, D + H,
reaction, 160-163

sign flip interpretation, 77-80

theoretical background, 42-44

two-state molecular system, H; molecule,
105-109

vector potential, Yang-Mills field, 95

permutational symmetry:
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Geometric phase effect (GPE): (Continued)
adiabatic states, conical intersections:
invariant operators, 735-737
Jahn-Teller theorem, 733-735
antilinear operator properties, 721-723
degenerate/near-degenerate vibration
levels, 728733
degenerate states chemistry, Xiii
electronic wave function, 680—-682
energy functional form, 737-738
GBO approximation and geometric phase,
two-dimensional Hilbert space model,
718-721
group theoretical issues, 668—674
nuclear spin function, 678-682
phase-change rule, 451-453
rotational wave function, 683-687
rovibronic/vibronic wave functions,
682-683
single-surface nuclear dynamics, 30-31
25 systems:
alkali metal trimers, 712-713
dynamic Jahn-Teller and geometric
phase effects, 698—-711
electron/nuclear spin effects, 711-712
1H3 isotopomers, 713—-717
nonadiabatic coupling effects, 711
potential energy surfaces, 692—694
static Jahn-Teller effect, 694—-698
theoretical background, 660—661
time-dependent Schrodinger equation,
723-728
total molecular wave function, 661—-668,
674-678
vibrational wave function, 687-692
research background, 209-210
single-surface nuclear dynamics, 23-31
molecular Aharonov-Bohm effect, vector-
potential theory, 25-31
symmetry properties, 28—31
vector-potential theory, molecular effects,
25-31
vibronic multiplet ordering, 23-24
Glory scattering, electron nuclear dynamics
(END), molecular systems,
339-342
Gradient difference (GD) vector, direct
molecular dynamics, vibronic coupling,
conical intersections, 386—-389
Ground-state wave function:

INDEX

conical intersection, anchors, molecules and
independent quantum species, 440—-441
geometric phase theory, adiabatic eigenstates,
11
permutational symmetry, static Jahn-Teller
effect, 696—698
phase-change rule:
loop construction, 441-446
pericyclic reactions, 448—-450

Hamiltonian equations:
conical intersections:
electronic Hamiltonian, spin-orbit
interactions, 559
geometric phase theory, 4—8
crude Born-Oppenheimer approximation,
hydrogen molecule, 512-516
direct molecular dynamics, vibronic-coupling
model, 389-393
molecular systems, Yang-Mills fields,
observability of, 259-261
non-adiabatic coupling:
quasiclassical trajectory (QCT) calculation,
three-particle reactive system, D + H,
reaction, 160-163
semiclassical calculation, D + H, reaction,
163-167
Renner-Teller effect:
tetraatomic molecules, basic properties,
626-628
triatomic molecules:
effective Hamiltonians, 623-624
nonlinear molecules, 606—610
nonrelativistic vs. relativistic selection,
610-615
Hamilton-Jacobi equation, molecular systems,
modulus-phase formalism, 262-265
Lagrangean density correction term, 270
nearly nonrelativistic limit, 269
Handy, Carter, and Rosmus (HCR) theory,
Renner-Teller effect, triatomic
molecules, benchmark handling,
621-623
Handy-Carter (HC) equation, Renner-Teller
effect, triatomic molecules, 611-615,
618-619
Harmonic oscillator:
crude Born-Oppenheimer approximation,
hydrogen molecule, Hamiltonian
equation, 515-516
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direct molecular dynamics, Gaussian
wavepackets and multiple spawning,
399-402
non-adiabatic coupling, Longuet-Higgins
phase-based treatment, two-dimensional
two-surface system, scattering
calculation, 151-155
permutational symmetry, degenerate/near-
degenerate vibrational levels, 731-733
Renner-Teller effect:
tetraatomic molecules:
Hamiltonian equations, 627-628
II electronic states, 632—633
triatomic molecules, 587-598
minimal models, 615-618
Hartree-Fock calculations:
direct molecular dynamics, complete active
space self-consistent field (CASSCF)
technique, non-adiabatic systems,
404-411
permutational symmetry, potential energy
surfaces, 692—-694
HCCS radical, Renner-Teller effect, tetraatomic
molecules, II electronic states, 633—-640
H,D molecule, non-adiabatic coupling, two-
state molecular system, 107—109
HD, molecule, permutational symmetry:
isotopomers, 713—-717
potential energy surfaces, 692—694
Heaviside function:
molecular systems, component amplitude
analysis, reciprocal relations, 216-217
non-adiabatic coupling, curl condition,
pseudomagnetic field, 95-96
Heitler-London ground state, geometric phase
theory, adiabatic eigenstates, 11
Helgaker algorithm, direct molecular dynamics:
nuclear motion Schrodinger equation,
371-373
theoretical background, 360-361
Helgaker-Chen algorithm, direct molecular
dynamics:
ab initio multiple spawning (AIMS),
412-414
nuclear motion Schrodinger equation,
371-373
Helicopter reactions:
phase-change rule, 459-460
quantitative photochemical analysis,
485-487
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Heller equations, direct molecular dynamics,
Gaussian wavepackets and multiple
spawning, 399-402

Hellmann-Feynman theorem:

degenerate states chemistry, ix—xiii
direct molecular dynamics:
nuclear motion Schrédinger equation, 372—
373
vibronic coupling, adiabatic effects, 382—
384
electron nuclear dynamics (END), time-
dependent variational principle (TDVP),
332-333
geometric phase theory, adiabatic eigenstates,
conical intersections, 8—11
non-adiabatic coupling:
adiabatic-to-diabatic transformation
matrix, 49-50
three-state molecular system, 134—137
two-state molecular system, H; molecule,
104-109
nuclear motion Schrodinger equation, 420

Helmzholz theorem, electronic state adiabatic
representation, first-derivative coupling
matrix, 291

Herman-Kluk method, direct molecular
dynamics, Gaussian wavepacket
propagation, 380—381

Hermite basis functions:

direct molecular dynamics, Gaussian
wavepacket propagation, 380—381
non-adiabatic coupling:
quantum dressed classical mechanics, 178—
179
semiclassical calculation, D 4 H, reaction,
163-167
Hermitian matrix:
conical intersections, spin-orbit interaction,
560-561
permutational symmetry, antilinear operators,
722-723
phase properties, 207-208
Herzberg-Longuet-Higgins phase:
non-adiabatic coupling:
historical background, 144—148
Jahn-Teller effect, 185-186
Longuet-Higgins phase-based treatment:
three-particle reactive system, 157—168
two-dimensional two-surface system,
150-157
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Herzberg-Longuet-Higgins phase:  (Continued)
quantum dressed classical mechanics,
177-183
geometric phase effect, 180—183
theoretical background, 177—-180
permutational symmetry:
dynamic Jahn-Teller and geometric phase
effects, 698-711
total molecular wave function, 667—-668
Hilbert space. See also Full-Hilbert space; Sub-
Hilbert space; Sub-sub-Hilbert space
Berry’s phase, 209-210
molecular systems, Yang-Mills fields,
untruncated Hilbert space, 253-254
non-adiabatic coupling:
adiabatic-to-diabatic transformation
matrix, quasidiabatic framework, 54—56
Born-Oppenheimer approximation, 189—
191
Born-Oppenheimer-Huang equation, 44—
45
extended Born-Oppenheimer equations,
168-171
theoretical background, 42—-44
permutational symmetry, GBO
approximation/geometric phase, Hilbert
space model, 718-721
phase properties, operators, 207-208
quantum theory, 199
"H, molecule, permutational symmetry,
rotational wave function, 686—-687
"H; molecule, permutational symmetry,
isotopomers, 713-717
H; molecule, permutational symmetry:
'H3 isotopomers, 713-717
potential energy surfaces, 692—694
Homonuclear molecules, permutational
symmetry:
electronic wave function, 680—-682
nuclear spin function, 679-680
rovibronic/vibronic wave functions,
682-683
vibrational wave function, 687-692
Hougen, Bunker, and Johns (HBJ) configuration,
Renner-Teller effect:
tetraatomic molecules, Hamiltonian
equations, 626—628
triatomic molecules, 614—-615
pragmatic models, 619-621
Hiickel’s 4n + 2 rule:
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conical intersections, two-state chemical
reactions, 436—438
phase change rule:

ammonia and chiral systems, 457-458

orbital overlap, 451-452

pericyclic reactions, 448—450

pi bond reactions, 452—453

Hund’s coupling, permutational symmetry,
rotational wave function, 684—-687
Hydrodynamic theory, direct molecular
dynamics, trajectory “swarms,” 421—
422
Hydrogen molecules:
crude Born-Oppenheimer approximation:

Hamiltonian equation, 512-516

minimum basis set calculation, 542—550

nuclei interaction integrals, 527

H; molecule:

Longuet-Higgins phase-change rule, loop
construction, 463-472

phase-change rule, 443-446

two-state system:
adiabatic-to-diabatic transformation,

301-309
non-adiabatic coupling, 104—109
H,4 molecule, phase-change rule, 443—-446
permutational symmetry, total molecular
wave function, 675-678
Hyperspherical coordinates:
electronic states:

adiabatic-to-diabatic transformation, two-
state system, 302—309

triatomic quantum reaction dynamics,
310-312

non-adiabatic coupling:

Longuet-Higgins phase-based treatment,
three-particle reactive system,
158-168

semiclassical calculation, D + H, reaction,
164-167

two-state molecular system, H; molecule,
106-109

vector potential formulation, 191-194

permutational symmetry:

potential energy surfaces, 693—-694

total molecular wave function, 668

Independent Gaussian approximation (IGA),
direct molecular dynamics, Gaussian
wavepacket propagation, 379-383
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Infinite-order sudden approximation (IOSA),
electron nuclear dynamics (END),
molecular systems, 345-349

Initial relaxation direction (IRD), direct
molecular dynamics, theoretical
background, 359-361

Inorganic compounds, loop construction,
photochemical reactions, 481-482

In-phase states:

conical intersection, two-state systems, 438
phase-change rule, pericyclic reactions, 448—
450
Integral properties, crude Born-Oppenheimer
approximation:
angular-momentum-adopted Gaussian matrix
elements:
nuclei interaction, 519-527
overlap integrals, 518-519
equations for, 551-555
Interference effects:
molecular systems, 211
phase properties, 206—207
quantum theory, 200

Intraanchor reactions, conical intersection, two-
state systems, 437-438

Intramolecular electron transfer, electron
nuclear dynamics (END), 349-351

Intrinsic reaction coordinate (IRC), direct
molecular dynamics, theoretical
background, 358-361

Invariant operators, permutational symmetry,
conical intersection, adiabatic state,
735-737

Irreducible representations (IRREPs),
permutational symmetry:

degenerate/near-degenerate vibrational levels,
728-733
electronic wave function, 681-682
group theoretical properties, 669—-674
invariant operators, 735-737
nuclear spin function, 678—-680
time-dependent equations, 727-728
total molecular wave function, 667-668
vibrational wave function, 688—692
Isomerization reactions:
loop construction:
benzene molecules, 479-481
cyclooctenes, 473-474
ethylene photolysis, 472-473
phase-change rules, loop construction, 456
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quantitative photochemical analysis, 482—-487
“Isomorfic Hamiltonian,” Renner-Teller effect,
triatomic molecules, 618
Isotopomers, permutational symmetry:
alklali metal trimers, 712-713
"H; molecule, 713-717
vibrational wave function, 689—-692

Jacobi coordinates:
electronic state adiabatic representation,
Born-Huang expansion, 286-289
electronic states, triatomic quantum reaction
dynamics, 310-312
non-adiabatic coupling, vector potential
formulation, 191-194
Jahn-Teller effect:
canonical intersection, Herzberg-Longuet-
Higgins theorem, historical background,
144-148
conical intersection location, 489
degenerate states chemistry, x—xiii
direct molecular dynamics:
conical intersections, 388—389
vibronic coupling, 381-382, 391-393
geometric phase theory:
conical intersections, 5—8
E x € problem, 17-23
linear Jahn-Teller effect, 18—-20
principles of, 2—4
quadratic Jahn-Teller effect, 22—23
spin-orbit coupling, *E state, 20—22
single-surface nuclear dynamics, vector-
potential, molecular Aharonovo-Bohm
effect, 28—-31
Longuet-Higgins phase-change rule, loop
construction, 461-472
multidegenerate nonlinear coupling:
E x € problem, 233-234, 238-241
higher order coupling, 243-248
complex representation, 243-244
interpretation, 248
nonlinear diagonal elements, 247
off-diagonal coupling, 246247
off-diagonal squaring, 245-246
non-adiabatic coupling:
Herzberg-Longuet-Higgins phase, 185-186
Longuet-Higgins phase, 119-122
two-dimensional two-surface system,
quasi-Jahn-Teller scattering
calculation, 150-155
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Jahn-Teller effect: (Continued)
theoretical background, 41-44
topological spin insertion, 70—73
two-state molecular system, 58—59

permutational symmetry:
conical intersection, adiabatic state,
733-735
dynamic effect, 698—711
electron/nuclear spin function, 712
1H3 isotopomers, 713-717
potential energy surfaces, 692—694
static effect, 694—698
phase properties, 209
Jaynes-Cummings model, phase properties,
206
Jungen-Merer (JM) pragmatic model, Renner-
Teller effect, triatomic molecules,
619-621
benchmark handling, 621-623

Kekulé structure:
conical intersections, two-state chemical
reactions, 436—438
phase-change rule, permutational mechanism,
451-453
Kinetic energy operator (KEO):
crude Born-Oppenheimer approximation,
basic principles, 507-512
direct molecular dynamics:
theoretical background, 360-361
trajectory “‘swarms,” 420-422
vibronic coupling Hamiltonian, 390-393
electronic states:
adiabatic representation, Born-Huang
expansion, 287-289
triatomic quantum reaction dynamics,
311-312
non-adiabatic coupling:
Born-Oppenheimer approximation, 187—
191
historical background, 145-148
Longuet-Higgins phase-based treatment:
semiclassical calculation, D + H,
reaction, 164—-167
three-particle reactive system, 158—168
two-dimensional two-surface system,
149-157
nuclear motion Schrodinger equation,
418-420
Renner-Teller effect:
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tetraatomic molecules:
II electronic states, 638—640
vibronic coupling, 628—631
triatomic molecules, 594-598
Hamiltonian equations, 612—-615
pragmatic models, 620-621
Kramers doublets, geometric phase theory:
linear Jahn-Teller effect, 20-22
spin-orbit coupling, 20—22
Kramers-Kronig reciprocity, wave function
analycity, 201-205
Kramers’ theorem:
conical intersections, spin-orbit interaction,
561
degenerate states chemistry, xiii
geometric phase theory, conical intersections,
6-8
permutational symmetry, 712
group theoretical properties, 669—-674
rotational wave function, 684—-687
Kronecker delta, molecular systems, Yang-Mills
fields, nuclear Lagrangean, 249-250

Lagrangian density:
electron nuclear dynamics (END), time-
dependent variational principle (TDVP),
327-328
basic ansatz, 330-333
molecular systems:
modulus-phase formalism:
correction term, 269-270
Dirac electrons, 266—-268
topological phase, 270-272
nearly nonrelativistic limit, 268—269
nonrelativistic electron, 263-265
nonrelativistic/relativistic cases,
262-263
potential fluid dynamics and quantum
mechanics, 265-266
spinor phases, 272
Yang-Mills fields, 249-250, 255-257
Lagrangian multiplier, conical intersection
location, 488-489, 565
Laguerre polynomials, Renner-Teller effect,
triatomic molecules, 589-598
Lanczos reduction:
direct molecular dynamics, nuclear motion
Schrodinger equation, 364—373
non-adiabatic coupling, Longuet-Higgins
phase-based treatment:



SUBJECT INDEX

semiclassical calculation, D + H, reaction,
164-167
two-dimensional two-surface system,
scattering calculation, 152—-155
Landau-Zener model:
direct molecular dynamics:
dependency properties, 415-416
trajectory surface hopping, 397-399
non-adiabatic coupling:
sub/sub-sub-Hilbert construction, 6770
topological spin insertion, 70-73
Laplace transform:
electronic state adiabatic representation,
Born-Huang expansion, 286289
permutational symmetry, total molecular
wave function, 664—-668
Legendre polynomials:
permutational symmetry, degenerate/near-
degenerate vibrational levels,
732-733
Renner-Teller effect, triatomic molecules,
benchmark handling, 622—-623
Legendre wave function, non-adiabatic
coupling, semiclassical calculation,
D + H, reaction, 164—-167
Lie groups, molecular systems, Yang-Mills
fields:
nuclear Lagrangean, 250
pure vs. tensorial gauge fields, 250252
Linear combinations of atomic orbitals (LCAO),
direct molecular dynamics, complete
active space self-consistent field
(CASSCEF) technique, non-adiabatic
systems, 4—5-411
Linear coupling approximation, geometric phase
theory, 3
Jahn-Teller effect, 18—-20
Linear triatomic molecules, Renner-Teller
effect:
singlet state vibronic coupling, 598-600
vibronic/spin-orbit coupling, 600—605
Line integral techniques:
adiabatic-to-diabatic transformation matrix,
50-57
quasidiabatic framework, 53—-57
single-valued diabatic potentials and
topological matrix, 50-53
non-adiabatic coupling:
three-state molecular system, sign flip
derivation, 73-77
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two-state molecular system and isotopic
analogues, 108—109
C,H-molecule: (1,2) and (2,3) conical
intersections, 111-112
Lithium compounds:
direct molecular dynamics, ab initio multiple
spawning, 413-414
permutational symmetry:
adiabatic states, conical intersections:
invariant operators, 735-737
Jahn-Teller theorem, 733-735
antilinear operator properties, 721-723
degenerate/near-degenerate vibration
levels, 728-733
degenerate states chemistry, xiii
electronic wave function, 680—-682
energy functional form, 737-738
GBO approximation and geometric phase,
two-dimensional Hilbert space model,
718-721
geometric phase theory, single-surface
nuclear dynamics, 30-31
group theoretical issues, 668—674
nuclear spin function, 678—680
phase-change rule, 451-453
rotational wave function, 683—-687
rovibronic/vibronic wave functions, 682—
683
5 systems:
alkali metal trimers, 712-713
dynamic Jahn-Teller and geometric
phase effects, 698-711
electron/nuclear spin effects, 711-712
lH3 isotopomers, 713—-717
nonadiabatic coupling effects, 711
potential energy surfaces, 692—-694
static Jahn-Teller effect, 694—-698
theoretical background, 660—661
time-dependent Schrodinger equation,
723-728
total molecular wave function, 661-668,
674-678
vibrational wave function, 687-692
Local harmonic approximation (LHA), direct
molecular dynamics, Gaussian
wavepacket propagation, 378—381
Local hyperspherical surface functions (LHSFs),
electronic states, triatomic quantum
reaction dynamics, partial wave
expansion, 315-317
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Localized molecular orbital/generalized valence
bond (LMO/GVB) method, direct
molecular dynamics, ab initio multiple
spawning (AIMS), 413-414

Longuet-Higgins phase-change rule:

conical intersections:
chemical reaction, 446—453
pericyclic reactions, 447-450
pi-bond reactions, 452—-453
sigma bond reactions, 452
comparison with other techniques, 487—
493
loop construction, 441-446
dynamic phase properties, 210
loop construction:
cyclopentadienyl cation (CPDC), 467-472
cyclopentadienyl radical (CPDR), 464—-467
Jahn-Teller theorem, 461-472
non-adiabatic coupling, 148—168
geometric phase effect, two-dimensional
two-surface system, 148—157
quasi-Jahn-Teller model, scattering
calculation, 150—155
historical background, 145-148
Jahn-Teller systems, 119-122
theoretical background, 42—-44
three-particle reactive system, 157168
D + H, reaction:
quasiclassical trajectory (QCT)
calculation, 160-163
semiclassical calculation, 163—167
H + D, reaction, quasiclassical
trajectory calculation, 167-168
permutational symmetry, 'H isotopomers,
717
theoretical background, 434—-435
Loop construction:
conical intersections, photochemical systems,
453-460
four-electron systems, 455-458
larger four-electron systems, 458—459
multielectron systems, 459—-460
three-electron systems, 455
phase-change rule and, 441-446
coordinate properties, 443—-446
qualitative molecular photochemistry, 472—
482
ammonia, 480—481
benzene derivatives, 479-480
butadiene, 474—-479

SUBJECT INDEX

cyclooctatetraene (COT), 482
cyclooctene isomerization, 473—-474
ethylene, 472-473
inorganic complexes, 481-482
theoretical background, 434-435
LSTH potential energy parameters:
non-adiabatic coupling, quasiclassical
trajectory (QCT) calculation:
H + D, reaction, 167—-168
three-particle reactive system, D + H,
reaction, 160-163
semiclassical calculation, D + H, reaction,
166-167

Manifold approximation, non-adiabatic
coupling, line integral conditions,
adiabatic-to-diabatic transformation
matrix, 53

Marcus theory, electron nuclear dynamics
(END), intramolecular electron transfer,
349-351

Maslov index, molecular systems, 212

Mass polarization effect, electronic state
adiabatic representation, Born-Huang
expansion, 287-289

Matrix elements, Renner-Teller effect, triatomic
molecules, 594—-598

Maxwell equation, non-adiabatic coupling,
pseudomagnetic field, 97

Minimal diabatic potential matrix, non-adiabatic
coupling, 81-89

Minimal models, Renner-Teller effect, triatomic
molecules, 615-618

Minimal residuals (MINRES) filter
diagonalization, permutational
symmetry:

dynamic Jahn-Teller and geometric phase
effects, 699-711
theoretical background, 660-661

Minimum energy method (MEM), direct
molecular dynamics, Gaussian
wavepacket propagation, 379-381

Minimum energy path (MEP), direct molecular
dynamics, theoretical background, 358—
361

Mixed-state trajectory:

conical intersection research, 495-496
direct molecular dynamics:

Ehrenfest dynamics, 396-399

error sources, 403—-404
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molecular mechanics valence bond
(MMVB), 411
Mixing angle, non-adiabatic coupling, two-state
molecular system, H; molecule, 104—
109
Mobius strip, phase-change rule:
ammonia and chiral systems, 457458
general bond reactions, 452—-453
pericyclic reactions, 448—-450
pi bond reactions, 452—453
sigma bond reactions, 452
Modulus-phase formalism, molecular systems,
205
component amplitude analysis, 214-215,
217-218
Lagrangean properties:
Dirac electrons, 266—-268
topological phase, 270-272
Lagrangean-density correction term, 269—
270
nearly nonrelativistic limit, 268—-269
nonrelativistic electron, 263-265
nonrelativistic/relativistic cases, 262—263
potential fluid dynamics and quantum
mechanics, 265-266
spinor phases, 272
Molecular dynamics:
adiabatic molecular dynamics, 362—381
Gaussian wavepacket propagation, 377—
381
initial condition selection, 373-377
nuclear Schrodinger equation, 363-373
conical intersection location, 491-492
degenerate states chemistry, xii—xiii
direct molecular dynamics, theoretical
background, 356-362
geometric phase theory, single-surface
nuclear dynamics, vector-potential,
molecular Aharonovo-Bohm effect,
25-31
Molecular-fixed coordinates, crude Born-
Oppenheimer approximation, hydrogen
molecule, Hamiltonian equation, 514—
516
Molecular mechanics (MM) potentials, direct
molecular dynamics:
complete active space self-consistent field
(CASSCEF) technique, non-adiabatic
systems, 406—411
theoretical background, 359-361
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Molecular mechanics valence bond (MMVB):
conical intersection location, 489-490
direct molecular dynamics:

complete active space self-consistent field
(CASSCF) technique, non-adiabatic
systems, 406—411

theoretical background, 359-361

Molecular orbital-conical intersection (MO-CI):

Longuet-Higgins phase-change rule,
cyclopentadienyl radical (CPDR),
464-467

two-state systems, 438

Molecular orbital (MO) theory:
conical intersection research, 493—-496
crude Born-Oppenheimer approximation,

hydrogen molecule, minimum basis set
calculation, 548-550
direct molecular dynamics:
ab initio multiple spawning (AIMS),
413-414
AM1 Hamiltonian, 415
complete active space self-consistent field
(CASSCF) technique, non-adiabatic
systems, 405-411
nuclear motion Schrodinger equation,
372-373
phase-change rule:
chemical reactions, 450-453
cyclopentadienyl cation (CPDC),
467-472
Molecular systems:
analytic theory, component amplitudes,
214-233
Cauchy-integral method, 219-220
cyclic wave functions, 224-228
modulus and phase, 214-215
modulus-phase relations, 217-218
near-adiabatic limit, 220-224
reciprocal relations, 215-217, 232-233
wave packets, 228232
electron nuclear dynamics (END), 337-351
final-state analysis, 342—-349
intramolecular electron transfer,
349-351
reactive collisions, 338-342
four-state molecular system, non-adiabatic
coupling:
quantization, 60—-62
Wigner rotation/adiabatic-to-diabatic
transformation matrices, 92
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Molecular systems: (Continued)
modulus-phase formalism, Lagrangean
properties:
Dirac electrons, 266—-268
topological phase, 270-272
Lagrangean-density correction term, 269—
270
nearly nonrelativistic limit, 268-269
nonrelativistic electron, 263—-265
nonrelativistic/relativistic cases, 262—263
potential fluid dynamics and quantum
mechanics, 265-266
spinor phases, 272
multiple degeneracy non-linearities, 233—-249
adiabatic-to-diabatic transformation, 241—
242
component phase continuous tracing, 236—
241
conical intersection pairing, 235-236
direct integration, 242-243
experimental phase probing, 248—-249
Jahn-Teller/Renner-Teller coupling effects,
243-248
complex representation, 243-244
generalized Renner-Teller coupling, 247
off-diagonal coupling, 246—247
off-diagonal element squaring, 245-246
phase factors, 205-214
quantum theory and, 198-205
three-state molecular system, non-adiabatic
coupling:
minimal diabatic potential matrix,
noninteracting conical intersections,
81-89
numerical study, 134—137
extended Born-Oppenheimer equations,
174-175
quantization, 59—-60
extended Born-Oppenheimer equations,
173-174
sign flip derivation, 73—-77
strongly coupled (2,3) and (3,4) conical
intersections, “real” three-state systems,
113-117
theoretical-numeric approach, 101-103
Wigner rotation/adiabatic-to-diabatic
transformation matrices, 92
two-state molecular system, non-adiabatic
coupling:
Herzberg-Longuet-Higgins phase, 185
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quantization, 58—59
“real” system properties, 104112
C,H-molecule: (1,2) and (2,3) conical
intersections, 109-112
C,H-molecule: (1,2) and (2,3) conical
intersections, “‘real” two-state
systems, 109-112
H; system and isotopic analogues, 103—
109
single conical intersection solution, 97—101
Wigner rotation/adiabatic-to-diabatic
transformation matrices, 92
Yang-Mills fields:
alternative derivation, 254-255
curl condition, 252-253
future implications, 255-257
Hamiltonian formalism, observability in,
259-261
nuclear Lagrangean equation, 249-250
pure vs. tensorial gauge fields, 251252
tensorial field vanishing criteria, 257-259
untruncated Hilbert space, 253-254
Momentum operator, non-adiabatic coupling,
Longuet-Higgins phase-based treatment,
three-particle reactive system, 157—-168
MORBID Hamiltonian, Renner-Teller effect,
triatomic molecules, benchmark
handling, 621-623
Morse oscillator:
non-adiabatic coupling:
quantum dressed classical mechanics, 179
quasiclassical trajectory (QCT) calculation,
three-particle reactive system, D + H,
reaction, 160-163
semiclassical calculation, D + H, reaction,
164-167
Renner-Teller effect, triatomic molecules,
benchmark handling, 622—-623
Morse potentials, direct molecular dynamics,
Gaussian wavepacket propagation, 378—
383
Mulliken population, electron nuclear dynamics
(END), intramolecular electron transfer,
349-351
Multiconfiguration self-consistent field
(MCSCF) technique, direct molecular
dynamics:
complete active space self-consistent field
(CASSCF) technique, non-adiabatic
systems, 404-411
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theoretical background, 358-361
vibronic coupling, diabatic representation,
385-386
Multiconfiguration time-dependent Hartree
(MCTDH) method, direct molecular
dynamics:
Gaussian wavepacket propagation, 380—381
nuclear motion Schrodinger equation, 364—
373
theoretical background, 357-361
Multidegenerate conditions:
molecular system non-linearities, 233—-249
adiabatic-to-diabatic transformation, 241—
242
component phase continuous tracing, 236—
241
conical intersection pairing, 235-236
direct integration, 242-243
experimental phase probing, 248-249
Jahn-Teller/Renner-Teller coupling effects,
243-248
complex representation, 243-244
generalized Renner-Teller coupling, 247
off-diagonal coupling, 246—247
off-diagonal element squaring, 245-246
non-adiabatic coupling, 80—81
Wigner rotation/adiabatic-to-diabatic
transformation matrices, 91-92
Multiple independent spawning (MIS), direct
molecular dynamics, non-adiabatic
coupling, 402
Multiple spawning, direct molecular dynamics:
ab initio multiple spawning, 411-414
non-adiabatic coupling, 399-402
Multivalued matrix elements, non-adiabatic
coupling:
adiabatic-to-diabatic transformation matrix,
126-132
Herzberg-Longuet-Higgins phase, Jahn-Teller
model, 185-186
minimal diabatic potential matrix, 83—89
Mystery band, direct molecular dynamics,
vibronic coupling, 381-382

NasF,; cluster, direct molecular dynamics,
semiempirical studies, 415

Near-adiabatic limit, molecular systems,
component amplitude analysis, 220-224

Near-degenerate states, permutational
symmetry, vibrational levels, 728—733
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Neumann boundary conditions, electronic states,
adiabatic-to-diabatic transformation,
two-state system, 304-309

Newton-Raphson equation, conical intersection
location:

locations, 565
orthogonal coordinates, 567
Non-Abelian theory, molecular systems,
Yang-Mills fields:
nuclear Lagrangean, 250
pure vs. tensorial gauge fields, 250—-253
Non-adiabatic coupling:
adiabatic-to-diabatic transformation matrix
analyticity, 123-126
derivation, 47-48
historical background, 40—44
line integral approach, 50-57
quasidiabatic framework, 53-57
single-valued diabatic potentials and
topological matrix, 50-53
orthogonality, 122—-123
quantization, 63—-67
single/multivaluedness, 126—132
solution conditions, 48—50
Wigner rotation matrix and, 89-92
conical intersections:
Born-Oppenheimer approximation, matrix
elements, 186—-191
coordinate origin removal, 137-138
extended Born-Oppenheimer equations:
closed path matrix quantization, 171—
173
theoretical principles, 144—148
three-state matrix quantization, 173—174
three-state system analysis, 174—175
Herzberg-Longuet-Higgins phase-based
treatment, Jahn-Teller model, 185186
Jahn-Teller systems, Longuet-Higgins
phase, 119-122
Longuet-Higgins phase-based treatment,
148-168
geometric phase effect, two-dimensional
two-surface system, 148157
three-particle reactive system, 157—168
quantum dressed classical mechanics, 177—
183
geometric phase effect, 180—183
vector potential formulation, 191-196
curl condition, Yang-Mills field, 92-97
pseudomagnetic field, 95-96
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Non-adiabatic coupling: (Continued)
vector potential theory, 93—-95
diabatic potential matrix, minimal conditions,
81-89
noninteracting conical intersections, 85—89
diabatic representation, 132—134
direct molecular dynamics:
ab initio multiple spawning, 411-414
CASSCEF techniques, 404—-411
direct dynamics, 410—411
MMVB method, 406-410
Ehrenfest dynamics, 395-397
Gaussian wavepackets and multiple
spawning, 399-402
mixed techniques, 403—-404
semiempirical studies, 414—-415
theoretical background, 356-362
trajectory surface hopping, 397-399
vibronic effects, 381-393
adiabatic properties, 382—384
conical intersections, 386—389
diabatic properties, 384—386
Hamiltonian model, 389-393
geometric phase theory, 2—3
sign flip interpretation, 77—-80
historical background, 40—44
Jahn-Teller model, Longuet-Higgins phase,
119-122
molecular systems, 203—-205
Yang-Mills fields, nuclear Lagrangean,
249-250
multidegenerate case, 80-81
nuclear motion Schrodinger equation,
principles of, 419-420
permutational symmetry, 711
quantization:
general case techniques, 63-67
model systems, 57—-63
extensions, 62—-63
four-state case, 60—62
three-state case, 59—-60
two-state system, 58—59
sub-Hilbert space construction, 67—69
sub-sub-Hilbert space construction, 69—70
theoretic-numerical approach:
three-state system in plane, 101-103
two-state system in plane:
conical intersection distribution solution,
101
single conical intersection solution,
97-101

SUBJECT INDEX

three-state molecular systems:

numerical study, 134—137

sign flip derivation, 73-77

strongly coupled (2,3) and (3,4) conical
intersections, “real” three-state systems,
113-117

theoretic-numerical in plane, 101-103

topological spin, 70-73
two-state molecular systems:

C,H-molecule: (1,2) and (2,3) conical
intersections, “‘real”’ two-state systems,
109-112

H; system and isotopic analogues, “‘real”
systems, 103—109

theoretic-numerical approach, in-plane
systems:
conical intersection distribution solution,

101
single conical intersection solution, 97—
101
Noncrossing rule, geometric phase theory, 2
Nondemolition measurements, phase
interference, 207
Nonlinear coupling, multidegenerate conditions:
higher order coupling, complex
representations, 243-244
molecular systems, 233-249

adiabatic-to-diabatic transformation, 241—
242

component phase continuous tracing, 236—
241

conical intersection pairing, 235-236

direct integration, 242-243

experimental phase probing, 248—249

Jahn-Teller/Renner-Teller coupling effects,
243-248
complex representation, 243244
generalized Renner-Teller coupling, 247
off-diagonal coupling, 246-247
off-diagonal element squaring, 245-246

Nonlinear molecules:
permutational symmetry:

electronic wave function, 681-682

static Jahn-Teller effect, 696—698

vibrational wave function, 688—-692

Renner-Teller effect, 606—-610
Nonrelativistic states:
conical intersections, spin-orbit interaction,
seam loci, 573-574
molecular systems, modulus-phase
formalism:
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electron configuration, 263-265
nearly nonrelativistic limit, 268—269
theoretical background, 262-263
Nonremovable couplings, electronic states,
adiabatic-to-diabatic transformation,
two-state systems, 301-309
Nonvanishing matrix elements, crude Born-
Oppenheimer approximation, hydrogen
molecule, minimum basis set
calculation, 546-550
Normalization factor, angular-momentum-
adopted Gaussian matrix elements, crude
Born-Oppenheimer approximation, 517
Nuclear dynamics. See also Quantum reaction
dynamics
electron nuclear dynamics (END), time-
dependent variational principle (TDVP),
general reactions, 334-337
geometric phase theory:
quadratic Jahn-Teller effect, 22—23
single-surface nuclear dynamics, 23-31
molecular Aharonov-Bohm effect,
vector-potential theory, 25-31
vibronic multiplet ordering, 24—-25
permutational symmetry:
adiabatic states, conical intersections:
invariant operators, 735-737
Jahn-Teller theorem, 733-735
antilinear operator properties, 721-723
degenerate/near-degenerate vibration
levels, 728-733
degenerate states chemistry, xiii
electronic wave function, 680—682
energy functional form, 737-738
GBO approximation and geometric phase,
two-dimensional Hilbert space model,
718-721
geometric phase theory, single-surface
nuclear dynamics, 30-31
group theoretical issues, 668—674
nuclear spin function, 678-682
phase-change rule, 451-453
rotational wave function, 683—-687
rovibronic/vibronic wave functions, 682—
683
25 systems:
alkali metal trimers, 712-713
dynamic Jahn-Teller and geometric
phase effects, 698—711
electron/nuclear spin effects, 711-712
1H3 isotopomers, 713-717
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nonadiabatic coupling effects, 711
potential energy surfaces, 692—694
static Jahn-Teller effect, 694—698
theoretical background, 660—661
time-dependent Schrodinger equation,
723-728
total molecular wave function, 661-668,
674-678
vibrational wave function, 687—-692
Nuclear Lagrangean equation, molecular
systems, Yang-Mills fields, 249-250,
255-257
Nuclear motion Schrodinger equation:
direct molecular dynamics, 363-373
vibronic coupling, adiabatic effects,
382-384
electronic states:
adiabatic representation, 289-290
adiabatic-to-diabatic transformation,
293-295
diabatization matrix, 296—300
diabatic representation, 292—-293
triatomic quantum reaction dynamics,
partial wave expansion, 313-317
principles of, 417-420
Nuclear spin function, permutational symmetry,
678-680, 711-712
Nuclei subsystems, permutational symmetry,
total molecular wave function,
677-678

Off-diagonal elements:
adiabatic-to-diabatic transformation matrix,
quantization, 67
conical intersection location, 488489
multidegenerate nonlinearity:
generalized coupling, 246-247
squaring-off method, 245-246
permutational symmetry, total molecular
wave function, 666—668
One-dimensional representations:
conical intersections, spin-orbit coupling,
558-559
Renner-Teller effect:
theoretical principles, 585-586
triatomic molecules, pragmatic models,
620-621
On-the-fly molecular dynamics. See Direct
molecular dynamics
Oosterhoff correlation diagram, conical
intersection research, 494—-496
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Open-path phase:
molecular systems, multidegenerate nonlinear
coupling, 242-243
properties, 210
Operator definitions, phase properties, 206—207
Optical phases, properties, 206—207
Orbital overlap mechanism, phase-change rule,
chemical reactions, 450-453
Orthogonal transformation matrix:
conical intersections, spin-orbit interaction:
invariant parameters, 574—576
seam loci, 576-578
molecular systems, 204—205
non-adiabatic coupling:
adiabatic-to-diabatic transformation,
122-123
Longuet-Higgins phase-based treatment,
two-dimensional two-surface system,
scattering calculation, 151-155
two-state molecular system, H; molecule,
104-109
Orthonormalization:
electron nuclear dynamics (END), molecular
systems, final-state analysis, 343-349
permutational symmetry, GBO
approximation/geometric phase, Hilbert
space model, 719-721
Out-of-phase states:
conical intersection, two-state systems, 438
loop construction, benzene molecules,
479-481
phase-change rule, pericyclic reactions, 448—
450
phase inverting reactions, 496—499
quantitative photochemical analysis, 485-487
Overlap integrals, crude Born-Oppenheimer
approximation, angular-momentum-
adopted Gaussian matrix elements,
518-519

Pairing approximation, phase inverting
reactions, 499

Pancharatnam phase, properties, 206

Parabolical insertions, non-adiabatic coupling,
topological spin, 70-73

Parallel transported eigenstates, geometric phase
theory, 10—11

Partial wave expansion, electronic states,
triatomic quantum reaction dynamics,
312-317

SUBJECT INDEX

Pauli principle:
conical intersections:
phase-change rule, chemical reaction,
446-453
pericyclic reactions, 447-450
pi-bond reactions, 452-453
sigma bond reactions, 452
two-state chemical reactions, 436—438
degenerate states chemistry, xii—xiii
loop construction, coodinate properties,
443-446
permutational symmetry, rotational wave
function, 685-687
Pauli spin matrices, geometric phase theory,
eigenvector evolution, 14—-17
Pegg-Barnett operators, phase properties,
207-208
Pericyclic reactions, phase-change rule,
447-450
Permutational symmetry:
adiabatic states, conical intersections:
invariant operators, 735-737
Jahn-Teller theorem, 733-735
antilinear operator properties, 721-723
degenerate/near-degenerate vibration levels,
728-733
degenerate states chemistry, xiii
electronic wave function, 680—-682
energy functional form, 737-738
GBO approximation and geometric phase,
two-dimensional Hilbert space model,
718-721
geometric phase theory, single-surface
nuclear dynamics, 30-31
group theoretical issues, 668674
nuclear spin function, 678—680
phase-change rule, 451-453
rotational wave function, 683-687
rovibronic/vibronic wave functions,
682-683
g systems:
alkali metal trimers, 712-713
dynamic Jahn-Teller and geometric phase
effects, 698-711
electron/nuclear spin effects, 711-712
1H3 isotopomers, 713-717
nonadiabatic coupling effects, 711
potential energy surfaces, 692—694
static Jahn-Teller effect, 694—-698
theoretical background, 660—661
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time-dependent Schrodinger equation,
723-728
total molecular wave function, 661-668,
674-678
vibrational wave function, 687—-692
Perturbation theory:
conical intersections:
location, 488—-489
spin-orbit interaction, 559, 561-563
time-reversal symmetry, 563—-564
crude Born-Oppenheimer approximation,
basic principles, 510-512
electronic states, quantum reaction dynamics,
285-286
non-adiabatic coupling, two-state molecular
system, single conical intersection
solution, 97—-101
permutational symmetry, total molecular
wave function, 665-668
Renner-Teller effect:
tetraatomic molecules:
A electronic states, 647—-653
II electronic states, 641—-646
triatomic molecules, minimal models,
615-618
Petelin-Kiselev (PK) model, Renner-Teller
effect, tetraatomic molecules, 625-633
II electronic states, 634—640
Phase-change rule. See Longuet-Higgins phase-
change rule
Phase factors. See also Modulus-phase
formalism
canonical intersection, historical background,
144-148
geometric phase theory, eigenvector
evolution, 13-17
molecular systems, 205-214
experimental probing, 248-249
non-adiabatic coupling:
Longuet-Higgins phase-based treatment,
three-particle reactive system, 157-168
theoretical background, 43-44
observability, 208
quantum theory, 200
Phase-inverting reactions:
molecular model, 496-499
phase-change rule, pericyclic reactions, 449—
450
Phase-preserving reactions, phase-change rule,
pericyclic reactions, 449-450

791

Photochemistry:
direct molecular dynamics, vibronic coupling,
381-382
future research issues, 493-496
loop construction, 453—460
four-electron systems, 455-458
larger four-electron systems, 458—459
multielectron systems, 459—-460
qualitative analysis, 472—482
ammonia, 480-481
benzene derivatives, 479-480
butadiene, 474-479
cyclooctatetraene (COT), 482
cyclooctene isomerization, 473-474
ethylene, 472-473
inorganic complexes, 481-482
quantitative analysis, 482—487
three-electron systems, 455
Photodissociation, direct molecular dynamics,
nuclear motion Schrodinger equation,
365-373
Photoelectron spectroscopy (PES), non-
adiabatic coupling, Born-Oppenheimer-
Huang equation, 45
Photon capture, direct molecular dynamics,
adiabatic systems, initial conditions,
373-377
© bonds, phase-change rule, 452—-453
isomerization reactions, 456
large four-electron systems, 458—459
II electronic states:
permutational symmetry, electronic wave
function, 680-682
Renner-Teller effect:
tetraatomic molecules:
ABBA models, 631-633
Hamiltonian equations, 626—628
HCCS radical, 633-640
perturbative handling, 641-646
theoretical background, 625-626
triatomic molecules:
minimal models, 615-618
vibronic coupling, singlet states,
599-600
vibronic/spin-orbit coupling,
452-453
Planar molecules, permutational symmetry:
electronic wave function, 681-682
rotational wave function, 685—-687
vibrational wave function, 687-692
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Podolsky method, Renner-Teller effect,
triatomic molecules, Hamiltonian
equations, 612-615

Poincare sphere, phase properties, 206

Point group symmetry:

conical intersections, geometric phase theory,
5-8
permutational symmetry:
electronic wave function, 681-682
group theoretical properties, 669—-674
Poisson equations:
electronic states, adiabatic-to-diabatic
transformation, 296—300
two-state system, 303-309
permutational symmetry, dynamic Jahn-Teller
and geometric phase effects, 708—711
Polar coordinates:
electronic states, adiabatic-to-diabatic
transformation, two-state system, 303—
309
non-adiabatic coupling:
Jahn-Teller systems, Longuet-Higgins
phase, 119-122
Longuet-Higgins phase-based treatment,
two-dimensional two-surface system,
scattering calculation, 154—155
three-state molecular system, 134—137
two-state molecular system, single conical
intersection solution, 98—101
permutational symmetry, degenerate/near-
degenerate vibrational levels, 730-733
Polyene molecules:
direct molecular dynamics:
complete active space self-consistent field
(CASSCEF) technique, 409-410
semiempirical studies, 414—-415
phase-change rule, pericyclic reactions, 448—
450
Pople-Longuet-Higgins model, Renner-Teller
effect:
tetraatomic molecules, 629-631
II electronic states, 633
triatomic molecules, 616-618
Potential energy surface (PES):
conical intersection, nonadiabatic coupling,
148
crude Born-Oppenheimer approximation:
angular-momentum-adopted Gaussian
matrix elements, 517-542
Coulomb potential derivatives, 527-542

first-order derivatives, 529-535
second-order derivatives, 535-542
normalization factor, 517
nuclei interaction terms, 519-527
overlap integrals, 518-519
hydrogen molecule, minimum basis set
calculation, 542-550
theoretical background, 506—507
direct molecular dynamics:
adiabatic systems, 362—381
Gaussian wavepacket propagation, 377—
381
initial condition selection, 373-377
nuclear Schrodinger equation, 363-373
Gaussian wavepackets and multiple
spawning, 399-402
molecular mechanics valence bond
(MMVB), 408411
nuclear motion Schrodinger equation, 419—
420
theoretical background, 356—-362
trajectory surface hopping, 397-399
vibronic coupling, 382-393
electronic states:
adiabatic representation:
Born-Huang expansion, 286—289
first-derivative coupling matrix, 290—
291
nuclear motion Schrodinger equation,
289-290
second-derivative coupling matrix, 291—
292
adiabatic-to-diabatic transformation:
diabatic nuclear motion Schrodinger
equation, 293-295
diabatization matrix, 295-300
electronically diabatic representation,
292-293
two-state application, 300—-309
theoretical background, 283—-286
triatomic reactions, two-state formalism,
309-319
partial wave expansion, 312-317
propagation scheme and asymptotic
analysis, 317-318
symmetrized hyperspherical coordinates,
310-312
electron nuclear dynamics (END):
structure and properties, 325-327
theoretical background, 324—325
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non-adiabatic coupling:
extended Born-Oppenheimer equations,
170-171
Longuet-Higgins phase-based treatment,
155-157
permutational symmetry:
format, 737-738
2§ systems, 692—-694
Renner-Teller effect, theoretical principles,
585-586
Potential fluid dynamics, molecular systems,
modulus-phase formalism, quantum
mechanics and, 265-266
Pragmatic models, Renner-Teller effect,
triatomic molecules, 618-621
Probability densities, permutational symmetry,
dynamic Jahn-Teller and geometric
phase effects, 705-711
Projection operators, geometric phase theory,
eigenvector evolution, 16—17
Projective Hilbert space, Berry’s phase, 209—
210
Prony analysis, electron nuclear dynamics
(END), molecular systems, 344—-349
Propagation techniques, electronic states,
triatomic quantum reaction dynamics,
317-318
Pseudomagnetic fields:
degenerate states chemistry, x—xiii
non-adiabatic coupling:
curl equation, 95-96
vector potential, Yang-Mills field, 94-95
Pseudoparticles, direct molecular dynamics:
nuclear motion Schrodinger equation, 371—

373
trajectory “swarms,” 421-422
Pseudorotation:
electronic states, quantum reaction dynamics,
284-286

permutational symmetry, dynamic Jahn-Teller
and geometric phase effects, 702—711
Pseudoscalar term, multidegenerate
nonlinearity, off-diagonal elements,
squaring-off, 246
Pump-probe techniques, molecular systems, 211

Quadratic coupling, geometric phase theory,
Jahn-Teller effect, 22-23
Quantal adiabatic phase:
geometric phase theory, 2
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quantum theory, 199-200
Quantization:
degenerate states chemistry, x—xiii
non-adiabatic coupling:
curl condition, pseudomagnetic field, 96
extended Born-Oppenheimer equations,
171-173
three-state systems, 173-174
future research applications, 118—-119
general case techniques, 63—67
model systems, 57-63
extensions, 62—-63
four-state case, 60—62
three-state case, 59-60
two-state system, 58—59
theoretical background, 41-44
Quantum chemistry, direct molecular dynamics,
416
Quantum correction, molecular systems,
modulus-phase formalism, 264-265
Quantum dressed classical mechanics, non-
adiabatic coupling, 177-183
geometric phase effect, 180—183
theoretical background, 177—180
Quantum measurements, component amplitude
analysis, phase-modulus relations, phase
losses, 218
Quantum mechanics:
adiabatic molecular dynamics, theoretical
background, 362-363
molecular systems, modulus-phase
formalism, potential fluid dynamics and,
265-266
Quantum numbers:
permutational symmetry, dynamic Jahn-Teller
and geometric phase effects, 702—-711
Renner-Teller effect:
nonlinear molecules, 607-610
triatomic molecules, 592—-598
Quantum reaction dynamics, electronic states:
adiabatic representation:
Born-Huang expansion, 286—289
first-derivative coupling matrix, 290—291
nuclear motion Schrodinger equation, 289—
290
second-derivative coupling matrix, 291—
292
adiabatic-to-diabatic transformation:
diabatic nuclear motion Schrodinger
equation, 293-295
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Quantum reaction dynamics, electronic
states: (Continued)
diabatization matrix, 295-300
electronically diabatic representation,
292-293
two-state application, 300-309
theoretical background, 283-286
triatomic reactions, two-state formalism,
309-319
partial wave expansion, 312-317
propagation scheme and asymptotic
analysis, 317-318
symmetrized hyperspherical coordinates,
310-312
Quantum theory, molecular systems, 198—205
Quasiclassical trajectory (QCT) calculation,
non-adiabatic coupling, Longuet-
Higgins phase-based treatment, three-
particle reactive system:
D + H, reaction, 160—163
H + D, reaction, 167-168
Quasidiabatic framework, non-adiabatic
coupling, adiabatic-to-diabatic
transformation matrix, line integral
approach, 53-57
Quasi-Jahn-Teller model, non-adiabatic
coupling, Longuet-Higgins phase-based
treatment, two-dimensional two-surface
system, scattering calculation, 150—155

Racah coefficients, multidegenerate nonlinear
coupling, higher order coupling, 243
Reactive collisions, electron nuclear dynamics
(END), molecular systems, 338—342
final-state analysis, 343—-349
Reactive double-slit model (RDSM), non-
adiabatic coupling, Longuet-Higgins
phase-based treatment, two-dimensional
two-surface system, scattering
calculation, 150-155
Reactive transitions, non-adiabatic coupling,
extended Born-Oppenheimer equations,
175-177
Reciprocal relations:
molecular systems, component amplitude
analysis:
cyclic wave functions, 225-228
modulus-phase formalism, 215
origins, 215-217
theoretical consequences, 232—233
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wave function analycity, 201-205
Reference configuration:
permutational symmetry, 737-738
Renner-Teller effect, triatomic molecules,
614-615
Regge poles, molecular systems, phase
properties, 214
Relativistic states:
conical intersections, spin-orbit interaction:
future research issues, 578—-580
seam loci, 573-574
molecular systems, modulus-phase
formalism, 262-263
Renner effect, historical background, 584—-585
Renner parameter, Renner-Teller effect:
tetraatomic molecules:
perturbative handling, 642—646
II electronic states, 635-640
II electronic states, 632—633
triatomic molecules, vibronic/spin-orbit
coupling, 600-605
Renner-Teller effect:
degenerate states chemistry, xiii
historical background, 584585
multidegenerate nonlinear coupling, higher
order coupling, 243-248
complex representation, 243-244
generalized coupling, 247
interpretation, 248
nonlinear diagonal elements, 247
off-diagonal coupling, 246247
off-diagonal squaring, 245-246
non-adiabatic coupling, topological spin
insertion, 70-73
nonadiabatic coupling, two-state molecular
system, 59
tetraatomic molecules:
delta electronic states, perturbative
handling, 647-653
II-electronic states:
ABBA molecules, 631-633
HCCS radical, 633-640
perturbative handling, 641-646
theoretical principles, 625—-633
Hamiltonian equation, 626—628
vibronic problem, 628—-631
theoretical principles, 585-586
triatomic molecules:
benchmark handling, 621-623
effective Hamiltonians, 623-624
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Hamiltonian equations, 610-615
minimal models, 615-618
multi-state effects, 624
pragmatic models, 618-621
spectroscopic properties, 598-610
linear molecules:
singlet state vibronic coupling, 598—
600
vibronic/spin-orbit coupling, 600—605
nonlinear molecules, 606-610
theoretical principles, 587-598
Restricted open-shell Hartree-Fock (ROHF)
procedure, 415
Restriction equations, molecular systems,
component amplitude analysis,
reciprocal relations, 215-217
Robb, Bernardi, and Olivucci (RBO) method,
conical intersection location, 489—-490
Rotational couplings:
electronic states, 284—286
electron nuclear dynamics (END), final-state
analysis, 348-349
Rotational wave function, permutational
symmetry, 683—-687
Rovibrational states, electron nuclear dynamics
(END), molecular systems, final-state
analysis, 344-349
Rovibronic wave function, permutational
symmetry, 682—683
Rydberg states:
Renner-Teller effect, tetraatomic molecules,
625
wavepacket revivals, 212
Rys’ polynomials:
crude Born-Oppenheimer approximation,
hydrogen molecule, Hamiltonian
equation, 515-516
integral equations, 553—-555

Sayvetz condition, Renner-Teller effect,
triatomic molecules, 614-615
Scattering calculations:
direct molecular dynamics, nuclear motion
Schrodinger equation, 365-373
electronic states, triatomic quantum reaction
dynamics, 309-319
electron nuclear dynamics (END), molecular
systems, reactive collisions, 338-342
non-adiabatic coupling, Longuet-Higgins
phase-based treatment, two-dimensional
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two-surface system, quasi-Jahn-Teller
scattering calculation, 150—155
time shifts, 213
Schiff approximation, electron nuclear dynamics
(END), molecular systems, 339—-342
Schrodinger equation:
canonical intersection, historical background,
145-148
crude Born-Oppenheimer approximation:
basic principles, 510-512
hydrogen molecule, Hamiltonian,
514-516
degenerate states chemistry, xi—xiii
diabatization, 42
electronic states:
adiabatic-to-diabatic transformation,
298-300
Born-Huang expansion, adiabatic
representation, 289
Longuet-Higgins phase-change rule, loop
construction, 462—-472
molecular systems:
component amplitude analysis:
phase-modulus relations, 217-218
time-dependent equation, 214-215
time-dependent ground state, 220-224
Yang-Mills fields, nuclear Lagrangean, 250
non-adiabatic coupling:
Born-Oppenheimer approximation, 187—
191
extended Born-Oppenheimer equations,
three-state molecular system, 174—175
Jahn-Teller systems, Longuet-Higgins
phase, 121-122
vector potential, Yang-Mills field, 94-95
nuclear motion equation:
direct molecular dynamics, 363-373
electronic states:
adiabatic representation, 289-290
diabatic representation, 292—293
principles of, 417-420
permutational symmetry, total molecular
wave function, 661-668, 674—678
quantum theory, 199
Renner-Teller effect:
tetraatomic molecules, vibronic coupling,
628-631
triatomic molecules, 587-598
benchmark handling, 621-623
Hamiltonian selection, 610-615
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Schrodinger equation:  (Continued)
time-dependent equation:
direct molecular dynamics, 356—362
Ehrenfest dynamics, 395-397
initial conditions, 373-377
trajectory surface hopping, 399
vibronic coupling, diabatic
representation, 385—-386
electron nuclear dynamics (END):
structure and properties, 325-327
theoretical background, 323-325
permutational symmetry, 723-728
wave function propagation, 422—423
time-dependent wave function, 214
Seam loci:
conical intersections, spin-orbit interaction:
algorithms, 572-574
convergence, 572-573
H, + OH 1,2?4’ and 1%4’ states, 571-572
invariant parameters, 574-576
orthogonal parameters, 576—578
permutational symmetry, 'H; isotopomers,
716-717
Second-derivative coupling matrix:
crude Born-Oppenheimer approximation,
Coulomb potential derivatives, 535—-542
direct molecular dynamics, ab initio multiple
spawning (AIMS), 412-414
electronic state adiabatic representation, 291—
292
electronic states:
adiabatic-to-diabatic transformation, two-
state system, 304—-309
triatomic quantum reaction dynamics,
partial wave expansion, 313-317
Self-consistent field (SCF) calculations, electron
nuclear dynamics (END), time-
dependent variational principle (TDVP),
333-334
Semiclassical approximation:
direct molecular dynamics:
non-adiabatic coupling, 395-397
theoretical background, 358-361
electron nuclear dynamics (END), molecular
systems, 339-342
molecular systems, 212
non-adiabatic coupling, Longuet-Higgins
phase-based treatment, three-particle
reactive system, D + H, reaction,
163-167
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Semiempirical wave functions:
direct molecular dynamics, 414—415
permutational symmetry, potential energy
surfaces, 692—-694
o bonds, phase-change rule, 452
isomerization reactions, 456
large four-electron systems, 458—-459
Y electronic states:
permutational symmetry, electronic wave
function, 680-682
Renner-Teller effect, triatomic molecules,
587
minimal models, 618
multiple-state models, 623
nonlinear molecules, 606—-610
pragmatic models, 620—621
vibronic coupling, 598-600
vibronic/spin-orbit coupling, 600-605
Sign flips:
non-adiabatic coupling:
geometrical interpretation, 77—80
three-state molecular system, 73—77
permutational symmetry, 'H; isotopomers,
716-717
Single coordinate model, molecular
photochemistry, 493-496
Single-surface nuclear dynamics:
geometric phase theory, 23-31
molecular Aharonov-Bohm effect, vector-
potential theory, 25-31
symmetry properties, 28—31
non-adiabatic coupling, Longuet-Higgins
phase-based treatment, two-dimensional
two-surface system, scattering
calculation, 150-155
permutational symmetry, total molecular
wave function, 665-668
Singlet state molecules, triatomic molecules,
vibronic coupling, Renner-Teller effect,
598-600
Single-valued adiabatic state:
geometric phase theory, evolution of,
12-17
non-adiabatic coupling:
adiabatic-to-diabatic transformation
matrix, 126-132
Herzberg-Longuet-Higgins phase, Jahn-
Teller model, 185-186
Single-valued diabatic potentials, non-adiabatic
coupling, two-state molecular system
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and isotopic analogues, C,H-molecule:
(1,2) and (2,3) conical intersections,
111-112
Single-valued potential, adiabatic-to-diabatic
transformation matrix, non-adiabatic
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I. INTRODUCTION

Subsequent chapters deal largely with developments in the theory of geometric
phase and non-adiabatic coupling over the past 10 years, but the editors agreed
with me that there would be some value in including a chapter on early contri-
butions to the field, to provide a historical perspective. No doubt the choice of
material will seem subjective to some. Others will find it redundant to repeat
well-established results in an ‘“Advances” volume, but this chapter is not
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addressed to the experts; it is primarily intended for students seeking a
pedagogical introduction to the subject. Discussion is limited to what is now
known as the quantal adiabatic (Longuet-Higgins or Berry) phase, associated
with motion on a single adiabatic electronic surface, on the assumption that the
nuclear motion occurs far from any points of electronic degeneracy. The geo-
metric phase and an associated vector potential term in the nuclear kinetic energy
operator will be seen to arise from the presence of singularities in the non-
adiabatic coupling operator, at so-called conical intersection points, but the
wave function will appear as a product of a single electronic and a single
nuclear factor.

The story begins with studies of the molecular Jahn-Teller effect in the late
1950s [1-3]. The Jahn-Teller theorems themselves [4,5] are 20 years older and
static Jahn—Teller distortions of electronically degenerate species were well
known and understood. Geometric phase is, however, a dynamic phenomenon,
associated with nuclear motions in the vicinity of a so-called conical inter-
section between potential energy surfaces.

The simplest and most widely studied case is the E x € Jahn—Teller model
[2,6,7] for which a double degeneracy at say an equilateral triangular geometry
is relieved linearly by nuclear distortions in a doubly degenerate nuclear
vibration. In the language of later discussions [8], the nuclear coordinates Q
define a two-dimensional (2D) parameter space containing the intersection point
0o, and the geometric phase is associated with evolution of the real adiabatic
electronic eigenstates, say |x;(Q)) and |x_(Q)), on parameter paths around Q.
The important points are that |x.(Q)) are undefined at Qy, but that they can be
taken elsewhere as smooth functions of Q, in the sense that (x.(Q)|x+(Q+
8Q)) — 1 as 8Q — 0, over any region free of other degeneracies. It is then a
simple matter to demonstrate that the linearity of the separation between the two
adiabatic potential surfaces, say W, (Q), also requires a sign change in |x4(Q)),
as they are transported around Q [2,6,7]. Note that there is no corresponding
geometric phase associated with symmetry determined electronic degeneracies
in linear molecules for which the degeneracy is relieved quadratically in the
bending coordinate [9]; in other words the two linear molecule adiabatic
potential surfaces touch at Qy but do not intersect. Conical intersections, with
associated geometric phase, do, however, arise at accidental degeneracies in
linear molecules, between, for example, 3 and II electronic states [6]; they can
also occur in quite general geometries for nonsymmetric species, such as
NaKRb. The latter were taken by Longuet-Higgins [7] as test cases to resolve a
controversy over the ‘“‘noncrossing rule” in polyatomics.

The next significant development in the history of the geometric phase is due
to Mead and Truhlar [10]. The early workers [1-3] concentrated mainly on the
spectroscopic consequences of localized non-adiabatic coupling between
the upper and lower adiabatic electronic eigenstates, while one now speaks
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of the geometric phase associated with a well-separated lower adiabatic surface,
such that the nuclear motions revolve around the intersection point Qy, without
passing close to it. Longuet-Higgins et al. [2] treat this situation in a linear
coupling approximation, but Mead and Truhlar [10] were the first to provide a
systematic formulation. Any treatment must recognize that the nature of the
nuclear wave function is necessarily affected by the electronic sign change,
since the total wave function must be a single-valued function of Q. This means
either that the boundary conditions on the nuclear wave function must
incorporate a compensating sign change for circuits around Qg or that the real
adiabatic eigenstates, |x.), must be defined with compensating phase factors,
such that

Ins) = eV |x)

is single valued around Qy. Ham [11] analyses the ordering of vibronic eigen-
values in the presence of geometric phase from the former standpoint, while
Mead and Truhlar [10] adopt the latter formulation, which leads to a vector
potential contribution to the nuclear kinetic energy, dependent on the form of the
chosen phase factor \s(Q). Residual arbitrariness in the choice of . (Q), subject
to the single valuedness of |n.), must cancel out in any consistent treatment of
the nuclear dynamics.

Berry [8] set the theory in a wider context, by defining a ““gauge invariant”
geometric phase, which is specific to the system in question and to the geometry
of the chosen encircling path, but is also independent of the above residual
arbitrariness. The resulting integrated geometric phase applies to quite general
situations, provided there is a single isolated point of degeneracy. The
degeneracy need not be twofold, nor need the encircling path lie in the plane
containing Qy, as demonstrated by Berry’s [8] explicit treatment of angular
momentum precession, with arbitrary 2J 4 1 degeneracy, in a slowly rotating
magnetic field.

Macroscopic physical manifestations of the above adiabatic geometric phase
may be found in the Aharonov—Bohm effect [12] and in nuclear magnetic
resonance (NMR) systems subject to slowly rotating magnetic fields [13]. Their
observation in molecular systems is less straightforward. Books have been
written about the multisurface dynamics of Jahn-Teller systems [14,15], but
effects attributable to the geometric phase on the lowest adiabatic potential
surface are quite elusive. One example is an observed energy level dependence
on the square of a half-odd quantum number, j, in Naz [16,17], as first predicted
by Longuet-Higgins et al. [2]. It depends, however, on the assumption of strictly
linear Jahn-Teller coupling, because j is conserved only in the absence of
corrugations on the lower surface arising from the inclusion of quadratic and
higher Jahn-Teller coupling terms (see Sections V.A and V.C). The strongest
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general prediction, for Cs point groups, is that geometric phase causes a
systematic inversion in the vibronic tunneling splitting associated with the
above corrugations [11]; thus the levels of the lowest vibronic triplet are
predicted in the order E(E) < E(A), an order that is successively reversed and
restored in the higher triplets. The possible observation of similar geometric
phase related effects in molecular scattering situations is discussed in several of
the following chapters.

Section II begins with a general discussion of conical intersections, including
deductions from the point group and time-reversal symmetries, concerning
connections between the nuclear coordinate dependencies of different electronic
Hamiltonian matrix elements. Section III is concerned with the nature of
electronic adiabatic eigenstates close to a conical intersection. The crucial result
for later sections is that an E X € conical intersection gives rise to an adiabatic
eigenvector sign change regardless of the size and shape of the encircling loop,
provided that no other degenerate points are enclosed. Specifically, geometrical
aspects of adiabatic eigenvector evolution are discussed in Section IV, along the
lines of papers by Berry [8] and Aharonov et al. [18]. Different expressions for
its evaluation are also outlined. Various aspects of the E x e Jahn-Teller
problem, with linear and quadratic coupling, including and excluding spin—orbit
coupling, are outlined in Section V. More general aspects of the nuclear
dynamics on the lower potential sheet arising from a conical intersection are
treated in Section VI, from two viewpoints. Section VI.A expounds Ham’s
general conclusions about the order of vibronic tunneling levels from a band
theory standpoint [11], with sign-reversing boundary conditions on the nuclear
wave functions. There is also an appendix for readers unfamiliar with
Floquet theory arguments. By contrast, Section VI.B outlines the elements
of Mead and Truhlar’s theory [10], with normal boundary conditions on the
nuclear wave function and a vector potential contribution to the nuclear kinetic
energy, arising from the compensating phase factor (Q), which was discussed
above. The relationship between the contributions of Aharonov et al. [18]
and Mead and Truhlar [10] are described. Aspects of the symmetry with
respect to nuclear spin exchange in the presence of geometric phase are also
discussed. Section VII collects the main conclusions and draws attention to
related early work on situations with greater complexity than the simple E X €
problem.

II. CONICAL INTERSECTIONS

Molecular aspects of geometric phase are associated with conical intersections
between electronic energy surfaces, W(Q), where Q denotes the set of say k
vibrational coordinates. In the simplest two-state case, the W(Q) are eigen-
surfaces of the nuclear coordinate dependent Hermitian electronic Hamiltonian
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matrix,
Haa(Q) Hap(Q)
n@ = (58] i) W
namely,
W2 (Q) = 5 [Fan(Q) + Hn(0)] % 5/ [Han(©) — Hin (Q)F + 4IHrs(Q)F

(2)

Strict degeneracy between the electronic energy surfaces therefore requires the
existence of points Qg at which Haa(Q) = Hpp(Q) and Hag(Q) = 0. These two
independent conditions will rarely occur by variation of a single coordinate Q
[unless Hap(Q) = 0 by symmetry]—hence the diatomic “noncrossing rule.”
There is, however, no such prohibition in polyatomics. In the common case of a
real representation, degeneracies can clearly lie on a surface of dimensionality
k — 2, where k is the number of vibrations [6,7,19,20]. They are termed conical if
Haa(Q) — Hgp(Q) and Hag(Q) vanish linearly in Q. Such points are symmetry
determined for Jahn-Teller systems [4], which include all electronically
degenerate nonlinear polyatomics. They also occur as a result of bending at, say
a X — Il intersection in a linear molecule [6], and at more general configurations
of nonsymmetrical species. For example, Longuet-Higgins [7] shows that
Heitler—London theory for a system of three dissimilar H-like atoms, such as
LiNaK, has a pair of doublet states with eigensurfaces governed by the
Hamiltonian matrix

Woa+iB+y) B

H =
\/é(ﬁ—v) Wto—3(B+7v)

(3)

where o, B, and y are exchange integrals for the three interatomic bonds. A
conical intersection therefore occurs at geometries such that o« = 8 = vy, which
again implies two independent constraints.

Aspects of the Jahn-Teller symmetry argument will be relevant in later
sections. Suppose that the electronic states are n-fold degenerate, with
symmetry I', at some symmetrical nuclear configuration Qy. The fundamental
question concerns the symmetry of the nuclear coordinates that can split the
degeneracy linearly in Q — Qy, in other words those that appear linearly in
Taylor series for the n> matrix elements (A|H|B). Since the bras (A| and kets |B)
both transform as I', and H are totally symmetric, it would appear at first sight
that the Jahn—Teller active modes must have symmetry I'p = I', x I',. There
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are, however, further restrictions, dependent on whether the number of electrons
is even or odd. The following argument [4,5] uses the symmetry of the
electronic states under the time-reversal operator T to establish general relations
between the various matrix elements. The essential properties are that 7 com-
mutes with the Hamiltonian

HT = TH; (4)
that any state |A) has a time-reverse T]A), such that
(T|Tor) = (Bloy); (5)

and that states with even and odd electrons are symmetric and antisymmetric
under 772, respectively. It therefore follows that

(A|H|TB) = (TA|THTB)* = (TA|H|T*B)* = +(B|H|TA)
1

((A|H|TB) + (B|H|TA)) (6)

NS}

where the upper and lower signs apply for even and odd electron systems,
respectively.

Suppose now that |A) and |B) belong to an electronic representation I',.
Since H is totally symmetric, Eq. (6) implies that the matrix elements (A|H|TB)
belong to the representation of symmetrized or anti-symmetrized products of
the bras {(A|} with the kets {|TA)}. However, the set {|TA)} is, however, simply
a reordering of the set {|A)}. Hence, the symmetry of the matrix elements in the
even- and odd-electron cases is given, respectively, by the symmetrized
[, x T',] and antisymmetrized {T', x T',} parts of the direct product of T', with
itself. A final consideration is that coordinates belonging to the totally symmetric
representation, I'yg, cannot break any symmetry determined degeneracy. The
symmetries of the Jahn—Teller active modes are therefore given by

I'p CclexT,]—Ty for even electron systems
I'p c{l, xT,} =Ty for odd electron systems

This is the central Jahn—Teller [4,5] result. Three important riders should be
noted. First, Iy = 0 for spin-degenerate systems, because {I', x I',} = I'y. This
is a particular example of the fact that Kramer’s degeneracies, arising from spin
alone can only be broken by magnetic fields, in the presence of which H and T no
longer commute. Second, a detailed study of the molecular point groups reveals
that all degenerate nonlinear polyatomics, except those with Kramer’s
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degeneracy, have at least one vibrational coordinate covered by the above rules.
Finally, no linear polyatom has such coordinates. Hence, there are no symmetry
determined conical intersections in linear molecules. The leading vibronic
coupling terms are quadratic in the nuclear coordinates, giving rise to a Renner—
Teller [9] rather than a Jahn-Teller effect.

The symmetry argument actually goes beyond the above determination of the
symmetries of Jahn—Teller active modes, the coefficients of the matrix element
expansions in different coordinates are also symmetry determined. Consider, for
simplicity, an electronic state of symmetry E in an even-electron molecule with
a single threefold axis of symmetry, and choose a representation in which two
complex electronic components, |ex) = 1/v/2(|ex) *+ ileg)), and two degen-
erate complex nuclear coordinate combinations Q. = re™® each have character
t*! under the C; operation, where T = ¢*™/3, The bras (e. | have character T7'.
Since the Hamiltonian operator is totally symmetric, the diagonal matrix
elements (ei|H|ey) are totally symmetric, while the characters of the
off-diagonal elements (ex|H|e+) are 1=2. Since 1° =1, it follows that an
expansion of the complex Hamiltonian matrix to quadratic terms in Q. takes the
form

B 0 kQ_ + 10
= <kQ+ 2 0 +) )

The corresponding expression in the real basis (Jea), |es)) is

[ krcosd + Ir* cos 2¢ krsin ¢ — Ir? sin2¢ (8)
~ \ krsing — Ir*sin2¢p  —krcos ¢ — Ir? cos 2

after substitution for (Q,,Q_) in terms of (r, ). Equation (8) defines what is
known as the E x € Jahn—Teller problem, which is discussed in Section V.

More general situations have also been considered. For example, Mead [21]
considers cases involving degeneracy between two Kramers doublets involving
four electronic components |o), |o), |B), and |B’). Equations (4) and (5),
coupled with antisymmetry under 77 lead to the following identities between
the various matrix elements

(ofHer) = (To|THo)" = (TolH|To)" = (o |Hle)" = (of |H|o!) ©)
(o) = (ol H|To) = (To|TH|Te)" = (To|H|T?0)" = —(o/|H|e)"  (10)
(ulH|B) = (Te|THI|B)" = (To|H|TB)" = («/|H|B)" (11)
(ol H|B') = (To|TH|B')" = (TolH|TH')" = —(o/|H|B)" (12)
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The conclusion is therefore that the 4 x 4 Hamiltonian matrix, which is assumed
to have zero trace, takes the form

w(@) 0 u(@)  v(Q)
Q@ —v(@) -w@) 0
Q) u(Q) 0 —w(©Q)

~

where w(Q) is real. Consequently, there are five independent conditions for a
strict conical intersection between two Kramers doublets, although v(Q) may, for
example, vanish in model situations (see Section V.B). Moreover, there is no
certainty that the intersection will lie in a dynamically accessible region of the
coordinate space.

III. ADIABATIC EIGENSTATES NEAR A
CONICAL INTERSECTION

Suppose that |x,(Q)) is the adiabatic eigenstate of the Hamiltonian H(g; Q),
dependent on internal variables g (the electronic coordinates in molecular
contexts), and parameterized by external coordinates Q (the nuclear coordi-
nates). Since |x,(Q)) must satisfy

H(q; Q)1xa(Q)) = Eo(Q)1xa(Q))  (Xuln) = Sy (14)
it follows by the Hellman—Feynman theorem that
[H(q; Q) — Ex(Q)]Volxn(Q)) = [VoEn — VoH]|xa(Q)) (15)
Thus, on expanding

Volua(Q)) = Y bin(Q)) (un| Volxa) (16)

the off-diagonal matrix elements of V, may be derived from Eq. (15) in the form

(Xm| VoH |xn)
En(Q) - Em(Q)
The adiabatic approximation involves neglect of these off-diagonal terms, on
the basis that |E,(Q) — En(Q)| > |(xm|VoH|x,)|. The diagonal elements

(x4|Vg|x,) are undetermined by this argument, but the gradient of the normali-
zation integral, (x,|x,) = 1, shows that

VQ<xn|xn> = <xn|van> + <van|xn> = <xn|van> + <xn‘van>* =0 (18)

(| Volxn) = (17)
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Consequently,
(a|Voxn) = —(xa| Vo) (19)

from which (x,|Vox,) = 0, for real |x,).

Equations (16)—(20) show that the real adiabatic eigenstates are everywhere
smooth and continuously differentiable functions of Q, except at degenerate
points, such that E,(Q) — E,,(Q) = 0, where, of course, the |x,) are undefined.
There is, however, no requirement that the |x,) should be real, even for a real
Hamiltonian, because the solutions of Eq. (14) contain an arbitrary Q dependent
phase term, V(@) say. Second, as we shall now see, the choice that |x,) is real
raises a different type of problem. Consider, for example, the model
Hamiltonian in Eq. (8), with [ = 0;

[ krcosd krsin ¢
H= < krsing —krcos ) (20)

with a degeneracy at r = 0 and real eigenvectors

cos % —sin %
)= ) = ) (21)
sin 3 cos 3

It is readily verified that
0 0
— ={x_|zx_) = 22
<x+|a¢|x+> (.X' |a¢|‘x > 0 ( )

but the new problem is that
s (¢ +2m)) = —|x+(4)) (23)

which means that |x4(¢)) is double valued with respect to encirclement of the
degeneracy at r = 0. In the molecular context, the assumption of a real adiabatic
electronic eigenstate therefore requires boundary conditions such that the associ-
ated nuclear wave function also changes sign on any path around the origin,
because the total wave function itself must be single valued. A more convenient
alternative, for practical calculations, is often to add a phase modification, such
that the modified eigenstates, |n.), are single valued [2,10].

) in &
. cos = . —sin %
" " < sin é) "= e ( cos 29) 4

2 2
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with (Qr) — ¥(Q;) = £n. The simplest choice in the present context is
V(Q) = ¢/2 but any phase factor, ¢"¥(®), that changes sign around a circuit of ¢
is equally acceptable. Nevertheless, the geometric phase defined in Section IV
and the associated vector potential theory outlined in Section VI.B are gauge
invariant (i.e., independent of this phase ambiguity).

We should also notice explicitly that [22]

_%

(v [ Vohy) =52 (25)
where ey is a unit vector in the direction of increasing ¢. Equation (25) shows
that the non-adiabatic coupling diverges at the conical intersection point, which
is of course a manifestation of the fact that |x.) are undefined at an exact
degeneracy. It is readily verified that (n_|Vg|ny) and (n|Vg|n.) also diverge in
a similar way.

In turn, this leads to an important conclusion, for the general discussion, that
the above sign change, for real eigenstates such that (x5 (Q + 00)|x+(Q)) — 1
as 0Q — 0, arises solely from the electronic degeneracy—not from the linearity
of Eq. (20), because the adiabatic eigenstates were seen above to be smooth
continuously differentiable functions of the nuclear coordinates Q, except at the
conical intersection g, where the divergence occurs. To reverse a famous
argument of Longuet-Higgins [7], suppose that a sign change were observed for
an arbitrarily small path C around Qy, on which the linear approximation (20) is
valid, but not around some larger loop L, which excludes other degeneracies.
Now, imagine a continuous expansion and deformation that takes C into
L, parameterized by a monotonically increasing parameter A. There must be
some point Ag, at which |x_(Q)), say, is sign reversing on C(A¢) but sign pre-
serving on C(Ag + dA). In other words, the change from sign reversing to sign
preservation on the larger loop requires the smoothly continuous function
|x_(Q)) to undergo a discontinuous change at Ap—a logical impossibility.

Longuet-Higgins [7] actually uses the argument in reverse to infer the logical
existence of conical intersections, from the observation of sign changes around
arbitrary loops, a test that is now widely used to detect the existence of conical
intersections between ab initio potential energy surfaces [23]. A generalization
of the Longuet-Higgins argument to the case of a spin—orbit coupled doublet has
been given by Stone [24]. As discussed above [see Eq. (13)] the Hamiltonian
matrix is then intrinsically complex, and there are no real adiabatic eigenstates.
Nevertheless one can still find ““parallel transported” states |x.), with vanishing
diagonal elements, as in Eq. (22), which acquire a variable phase change,
according to the radius of the encircling loop. The conical intersection is now
removed by spin—orbit coupling, but it’s influence is still apparent in simple sign
changes of |x4) around very large loops. The difference from the Longuet-
Higgins case is that the phase change falls to zero on very small circles around
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the maximum on the lower adiabatic surface. This situation is further discussed
in Section V.B.

Longuet-Higgins [7] also reinforces the discussion by the following quali-
tative demonstration of a cyclic sign change for the LiNaK like system subject
to Eq. (3), in which rows and columns are labeled by the basis functions

2‘I’l = (\l’B - ‘ch)
(26)

Wy = —(—2Va + Vg + Ve)

S-Sl

where 5, = (@bc), and so on, with the B spin on atom A. Thus >¥; may be
recognized as the Heitler—London ground state of BC in the ‘“‘reactant” A +BC
geometry, at which =y =0. Second, there is also a ‘“transition state”
geometry B-A-C at which o < B = vy, where the lower eigenstate goes over to
2W,. The table below follows changes in the ground-state wave function as the
system proceeds through various permutations of the three possible reactant and
transition state geometries, subject to the constraint that the overlap from one
step to the next is positive.

Geometry Ground-State Wave Function
A + BC ﬁ(‘l’B =)

A-BC )
AB + C ﬁ(‘l’B —Va)

B-A-C % (=2Ya + ¥ +¥c)
B + AC %(*‘JIA + V)
B-C-A % (=Va — Vg +2¥c)
BC + A L (g + )

Comparison between the first and last lines of the table shows that the sign of
the ground-state wave function has been reversed, which implies the existence
of a conical intersection somewhere inside the loop described by the table.

IV. GEOMETRIC PHASE

While the presence of sign changes in the adiabatic eigenstates at a conical
intersection was well known in the early Jahn-Teller literature, much of the
discussion centered on solutions of the coupled equations arising from non-
adiabatic coupling between the two or more nuclear components of the wave
function in a spectroscopic context. Mead and Truhlar [10] were the first to
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focus on the consequences for both scattering and spectroscopy on a single
adiabatic electronic energy surface, influenced by, but well separated from a
conical intersection (see Section VI). Berry [8], who coined the term geometric
phase, set the argument in a more general context. Given the existence of an
infinity of phase modified adiabatic eigenstates of any given problem, the
questions at issue are

1. Whether there are any physical invariants of the system, independent of
phase modifications.

2. How such invariants can be computed.

Berry [8] starts by assuming the existence of a single-valued adiabatic
eigenstate |n(Q)), such as that in Eq. (24), subject to

H(Q)|n(Q)) = E.(Q)[n(Q))  (mln) = 8 (27)
Solutions of the time-dependent Schrodinger equation

A1)

200 mom)|w(0) (28)

are sought then in the form

W(0(1))) = [n(Q(1)))e™ /M JE@O ) — ¢ (29)

as the system is taken slowly round a time dependent path Q(¢). It readily follows
from Eq. (28) and (29) that

V(@) - Q+i % ju(@)) = 0 (30)

from which it follows by integrating around a closed path C in parameter space
that

Ye = (T) = y(0) = ,-4;

(n|Vqn) -Qdt = ijL (n|Vqgn) -dQ (31)
c

C

It should be noted, by taking the gradient of the normalization identity that

(n|Vgn) = —(Vgnln) = =(n|Von)™. (32)
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In other words, (n|[Vqn) is imaginary, making v real. As an illustrative
example, |n) may assumed to be given by Eq. (24), in which case

ve =i (Von)-4Q = ~§ Vou-dQ = ~[y(1) ~¥(0)] = Fx (33

The sign of y. is actually indeterminate for this particular model because the
quantity of physical interest is e’c = ¢ = —1.

Equation (31) is the fundamental geometric phase formula. It is termed
geometric for two reasons. First, the combination of |Vgn) and Qudt in the
central term ensures that v~ depends only on the geometry of the path C—not
on the rate at which it is traversed. Second, it is gauge invariant, in the sense that
multiplication of any single-valued eigenstate |1) by a phase factor ¢’2¥, such
that Ay/(T) = A(0) leaves v, invariant. All single-valued solutions of Eq. (27)
have the same geometric phase Y. The arbitrariness in Y(Q) allows, however,
for different manifestations of Eq. (31). For example, the choice |y = —¢/2,
coupled with Eq. (25) for the linear E x € model allows the identity

(n|Vgln) = iVolr = —i% = —i{x_|Volx,) (34)

so that Eq. (31) may be expressed as
ve = (x-[Vok.) - 4@ (39)

Phase factors of this type are employed, for example, by the Baer group [25,26].
While Eq. (34) is strictly applicable only in the immediate vicinity of the coni-
cal intersection, the continuity of the non-adiabatic coupling, discussed in
Section III, suggests that the integrated value of (x_|Vgql|x4) is independent of
the size or shape of the encircling loop, provided that no other conical
intersection is encountered. The mathematical assumption is that there exists
some phase function, y(Q), such that

Vol = —(x_|Volr,) (36)

a condition that requires that Vg x (x_|Vgqlx;) = 0, because Vg x Vo =0
for any function \(Q). Equation (34) ensures that this curl condition is satisfied
for the linear E x € model, but it would not be valid for the spin % model
discussed below, for example (or for the isomorphous 2E x € model discussed in

Section V.B), for which the adiabatic eigenstates are intrinsically complex.
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Other forms for y. are also available. Consider, for example, the phase
modification

In(Q)) = ¢"'9[x(Q)) (37)

so that Y[O(T)]—V[Q(0)] =arg(x[Q(0)]|x[Q(T)]), because (n[Q(0)]|n[Q(T)]) =
1 [i.e., |n(Q)) is single valued]. It follows from Eq. (31) that

ve = arg(x[Q0)]X[Q(T)]) + ijgc (¥ Vox) -dQ (38)

which applies to a quite general adiabatic eigenstate |x(Q)). At one extreme, |x)
is single-valued and Eq. (38) reverts to Eq. (31), while at the opposite limit |x) is
real, (x|Vqx) vanishes and vy, takes values O or m according to whether |[x)
evolves to +|x).

Another form

YC:,-“vQ X (n[Vgn) - dS (39)

with the integral taken over an area enclosed by the contour C, was obtained by
Berry [8] by applying Stokes theorem [27] to the line integral in Eq. (31). Care is,
however, required to ensure that the chosen surface excludes the conical
intersection point, Qo, where (n|Vn) diverges, because Stokes theorem requires
that (n|Von) should be continuously differentiable over the surface.

A variant of Eq. (39), with the integral taken over a surface bounded by a
path C’ that excludes Qy, is illuminating in situations where |n) is given by
Eq. (37), with |x) real. One then finds that

Yo = iJJVQ X VQ\I! -dS'=0 (40)

because Vo x Vo = 0 for any function (Q). This means that the value of v,
is independent of the size and shape of the path C, provided that no degenerate
points, other than Qy are enclosed, because any distortion of C can be interpreted
as taking in an additional area over which the integrals in Egs. (31) and (39) both
vanish. This Stokes theorem argument confirms the earlier topological conclu-
sions applicable to real adiabatic eigenstates |x).

A third expression may be obtained by taking the curl inside the bracket in
Eq. (39) and using the identities

Vo) =Y lm)(m|Vgn) (41)
(m|VoH|n)

Em(Q) - En(Q) (42)

<m|VQn> =—
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to yield [8,10]

. <n|VQH|m) X <m|VQH|n> .
te=i]] 2 b0 -l )

The sum excludes m = n, because the derivation involves the vector product of
(n|V o H|n) with itself, which vanishes. The advantage of Eq. (43) over Eq. (31)
is that the numerator is independent of arbitrary phase factors in |n) or |m);
neither need be single valued. On the other hand, Eq. (43) is inapplicable, for the
reasons given above if the degenerate point lies on the surface S.

Consequently, Eq. (43) is inapplicable to the model of Eq. (20), because the
eigenstates, given by Eq. (21) or (24), are only defined in the (x,y) plane, which
contains the degeneracy. On the other hand, Berry [8] extends the model in the
form

1 z X —1iy
H2<x+iy . > = x0, + YO, + 20, (44)

where the components of the vector ¢ are the Pauli spin matrices. Thus

vQI{ = (Gxa Gy, GZ) (45)
Moreover, because there are only two eigenstates, it follows from the com-
pleteness property, the vanishing of (n|VyH|n) and the angular momentum
commutation relations that

(n|VoH|m) x (m|VoH|n) = (n|VoHxVqH|n) = i(n|c|n) (46)

The level splitting for this model is E,,(Q) — E,(Q) = v/x* +y*+ 22 =r and
the eigenstates may be taken as

- cos [ —sin g )
In-c) = singei¢ In-) = cos geid) (

It is readily verified that
r
(nslofne) =+ (48)

where T is a unit vector perpendicular to the surface of the sphere, used for
evaluation of the surface integral. One readily finds, by use of Eqgs. (43)—(47), that

o= [ ) a5 L[ ao "
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where dfQ is the solid angle element. The choice of a contour at constant z or 6
therefore yields
Yo ==£(1 —cosO)n (50)

which reduces to Eq. (33) for 6 = n/2, a comparison that is justified by noting
that the model (44) with 6 = 7/2 reduces to that in Eq. (20), in a complex rather
than a real representation. The factors e'’c for the two states, which could be
obtained more directly by substitution from Eq. (47) in Eq. (31), now take
different values for 6 # /2.

There is also an interesting alternative approach by Aharonov et al. [18], who
start by using projection operators, II,, = |n)(n| to partition the Hamiltonian

2

P
H:%"i-Hl((I?Q) (51)

between the adiabatic eigenstates |n) of Hj(g;r), rather than immediately
assuming an adiabatic representation. Since P does not commute with the II,,
products such as I1,P?II,, must be interpreted as

IT,P°II, = TI,P - > " 1I,,PII, (52)
an expression that can be simplified by decomposing P into two parts; a part
P — A that acts only within an adiabatic subspace and a part A that causes non-
adiabatic transitions. Thus

[(P—A),IL] =0 (53)
while ambiguity in A can be removed by requiring that

In other words, A is a strictly off-diagonal operator that can be evaluated as the
difference between P and its diagonal parts

A=P-> TI,PI, = %Z[Hm, [IL,,,, P]] (55)

The operation of (1/2m)P? within any particular subspace may therefore be
represented as

1 1
— TII,P?II, = —1I1,,(P — A + A)*TIL,
2m 2m ( +4)
1
= — |IL,(P — A)IL,(P — A)II, I1,AlIL,AIL,
o ( )L )L, + ;
1
=5 - [TL(P A)TL, + IT,AL,] (56)
m

Equations (53) and (54) are used to perform the manipulations in (56).
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The strengths of this approach are that the operator A is gauge invariant and
that equation (55) can be employed for its computation, regardless of the
number of components. To see the connection with geometric phase, arguments
given by Stone and Goff [28] show that A determines a field strength operator
with components

Fy = —ilPi — A;, P; — A)] (57)

the diagonal elements of which determine the phase change Ay over a loop
AriAr/ in parameter space, in the form [18]

Ay, = AriArj<n\Fij|n> = iAriArj<n|[A,~,Aj}|n> (58)

In three-dimensional (3D) applications the overall phase change over a cycle
may therefore be expressed as a surface integral, analogous to Eq. (43), namely,

=i | ol Ay as (59)

Comparison with Eq. (43) is illuminating. By the method of construction, the
matrix elements of A are identical with the off-diagonal elements of P; thus,
with the help of Eqgs. (41) and (42)

Aln) = Z|m (m|Aln) = —lZ|m (m|Vgl|n) —ZZ

mtn mn m Q)

|m m|VQH|n> (60)

Consequently, Egs. (43) and (59) are identical, for applications in a 3D parameter
space, except that the vector product in the former is expressed as a commutator
in the latter. Both are computed as diagonal elements of combinations of strictly
off-diagonal operators; and both give gauge independent results. Equally,
however, both are subject to the limitations with respect to the choice of surface
for the final integration that are discussed in the sentence following Eq. (43).

Equations (31)—(43) assume a 3D parameter space, (, although the gradient
Vo|n) has an obvious generalization to higher dimensions. Further general-
izations, to include the curl, transform equation (38) into the integral of a two
form over the surface bounded by C, this two form being obtained by replacing
V by the exterior derivative d and x by the wedge product A of the theory of
differential forms [29].

V. THE E x ¢ JAHN-TELLER PROBLEM

The E x € Jahn-Teller problem, described by Eq. (7) or (8), plus an additional
nuclear term /p(Q), common to the two electronic states, is the prototype for all
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subsequent discussions. In its linear variant, with / = 0 in the above equations, it
provided the first example of geometric phase, plus a less familiar half-integral
quantum number [2]. The effects of spin—orbit coupling on geometric phase
[21,24] are also conveniently illustrated. Addition of the quadratic terms in
Eq. (7) or (8) is of interest in introducing a threefold corrugation on the lower
adiabatic potential surface leading to an “inverted” pattern of vibronic
multiplets (E levels below A, in the lowest triplet), which is one of the clearest
experimental manifestations of geometric phase [11]. There is also an inter-
esting question concerning the relative magnitudes of the linear and quadratic
terms in Eqgs. (7) and (8). We shall find that there is no geometric phase effect
unless k # 0, which raises questions as to the nature of its disappearance as
k/1 — 0.

A. The Linear Jahn-Teller Effect

It is convenient to discuss the linear Jahn—Teller model in the scaled complex
representation

_( hy  kre™
H= (kreiq’ ho ) (61)
where
h 77ig g ,La_erl 2 (62)
°" T2 or rar 2r279p* 2 d

rather than in the real representation in Eq. (20). It is readily verified, by ignoring
the kinetic energy terms, that the eigensurfaces take the form

1
W. = Er2 + kr (63)
with single-valued eigenstates
1 1
) = ( a0 ) (64
Substitution in Eq. (33) therefore yields Y- = —m, in agreement with the result

obtained from the real representation of the Hamiltonian in Eq. (20).

Figure 1a shows that the eigensurfaces form an interconnected double sheet,
the lower member of which has a ring of equivalent minima at r =k and
W_ = —%k2. As expected angular momentum is conserved, but with the
complication that it is vibronic, rather than purely vibrational in character,
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(a)

®)

Figure 1. Adiabatic potential surfaces (a) for the linear E x € case and (b) for a 2E state with
linear Jahn-Teller coupling and spin—orbit coupling to a 2A state.

because it may be confirmed that the operator

j=l+o, L =—ir (65)
commutes with H; and j includes an electronic component, G, as well as the
vibrational term /,. The single valued eigenstates of 7, belonging to the upper and
lower potential surfaces, may be obtained by multiplying Eq. (64) by ¢/l/~1/2)¢;
thus

1 el i—1/2)¢ 135
|u/i(¢)> :75 (iei(j+1/2)¢> J 2575,5 (66)

They must be coupled by separate radial factors in a full calculation [2]
but, to the extent that non-adiabatic coupling between the upper and lower



20 M. S. CHILD

surfaces is neglected, the total lower adiabatic wave function may be expressed
as

0-) =Pl (9)) v- (1)) (67)

with the radial wave function on the lower adiabatic surface, |v_(r)), taken as an
eigenstate of the radial operator

j 1
b=y 2 gy (68)

For large k, the approximate potential minimum lies at » = k and the lower
vibronic eigenvalues are given by [2]

K> N 2
Evj:—2+(v+2>+2k2 (69)

The presence of the half-odd quantum number j in Eq. (69) is potentially a
physically measurable consequence of geometric phase, which was first claimed
to have been detected in the spectrum of Naj [16]. The situation is, however,
quite complicated and the first unambiguous evidence for geometric phase in Najz
was reported only in 1999 [17].

B. Spin-Orbit Coupling in a °E State

The effects of spin—orbit coupling on geometric phase may be illustrated by
imagining the vibronic coupling between the two Kramers doublets arising from
a 2E state, spin—orbit coupled to one of symmetry 2A. The formulation given
below follows Stone [24]. The four ?E components are denoted by |e. o), |e_a),
le4B), |e_B), and those of 2A by |ea), |eoB). The spin—orbit coupling operator
has nonzero matrix elements

(e4B|Hsoleoor) = (e—0t|HsoeoB) (70)

giving rise to a second-order splitting, of say 2A, between one Kramers doublet,
lesa), |e—PB), and the other, |e_a), |e, B). There is also a spin-preserving vibronic
coupling term, of the form in Eq. (61), giving rise to a Hamiltonian of the
form

o+ A kre ™
H= ( kre'® ho—A> (71)

for one coupled pair and the complex conjugate form for the other. Notice
that Eq. (71) conforms to Eq. (13) with w = A, u = kre *®, and v = 0. The
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eigensurfaces now take the forms
Lol /on 2
Wizir:t Kr2+ A (72)
with an avoided conical intersection, as shown in Figure 1b.
It is convenient, for comparison with Section V.A, to employ substitutions

kr

A = p(r)cos0(r) kr = p(r)sin0(r) tan 0(r) = A (73)

which convert the Hamiltonian in Eq. (71) to the form in Eq. (44). Comparison
with Eq. (50) shows that the geometric phase, for a cycle of constant radius, r, is
given by

Ye=—(1—cosO(r))n (74)

It reverts to the unspin—orbit modified value, y- = —m, for paths such that
kr > /\, but vanishes as r — 0.

Reverting to the vibronic structure, the operator j again commutes with H,
and the analogue of the lower adiabatic eigenstate of j in Eq. (66) becomes

. (75)

|

1 —sin %ei(j*1/2)¢ 13
|uj*(r7¢)>_ﬁ COSgei(j+l/2)¢ ]_5757

where the r dependence of |u;_(r, $)) comes from that of 8(r). There is also an
equivalent complex conjugate eigenstate of the complex conjugate Hamiltonian
to that in Eq. (71). One finds after some manipulation that

(uj (r, &) lolr™"u; (r, 9))
19> j24jcosb 1 /do\?
_ ) Lo g Ajcosh 1/db
’ { 207 T 2 +WUHS(W) (76)

The radial factor in the total wave function

0-) = 1Pl (§))lv-(r)) (77)

must therefore be an eigenstate of

hy=—-—S+——=5—+W_(r)+<

" 10> j*+4jcosh 1 /do\*
: 20r2 2r2
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The principal differences from Eq. (68) lie in the form of the potential W_(r) and
in the presence of the term j cos 0, of which the latter arises from the dependence
of the geometric phase on the radius of the encircling path. The eigenvalues of h,
are no longer doubly degenerate, but a precisely equivalent Kramer’s twin radial
Hamiltonian may be derived from the complex conjugate of Eq. (71).

C. The Quadratic Jahn-Teller Effect

The quadratic Jahn—Teller effect is switched on by including the quadratic terms
in Eq. (7); thus, with the inclusion of the additional diagonal Hamiltonian Ay,

ho kre=¢ 4 [r2e%®
H = ) , 79
(kre’d’ + Ir2e2i0 ho (79)

The eigensurfaces are given by

1
Wgn¢):§#ir¢ﬂ+aumm3¢+ﬂﬂ (80)

with a threefold corrugation around the minimum of W_(r), in place of the line
of continuous minima in Figure 1. The three absolute minima in Figure 2, at
¢ = 0, £21/3, correspond to three equivalent isosceles distortions of an initially
equilateral triangular molecule.

There is no simple general form for the adiabatic eigenvectors, except in the
limits, k = 0 and / = 0, when, for example,

oid/2
|x_) = o =0
—idp
(iw> k=0 (81)

In the first case, |x_) changes sign as ¢ increases to ¢ + 2w, while in the
second, |x_) is single valued. There is therefore a geometric phase of +m, for
Ir < k, but no geometric phase in the opposite limit, /r > k. The interesting
questions concern (1) the effects of the corrugations on the vibronic eigenvalues;
and (2) the origin of the change in geometric phase behavior as the ratio Ir/k
increases.

The first of these questions is deferred to Section VI. The second is addressed
by considering the degeneracy condition W, (r,d) = W_(r,d). One solution
lies at r = 0, and there are three others at r = k/l and ¢ = nr, /3 [30,31]. A
circuit of ¢ with r < k/I therefore encloses a single degenerate point, which
accounts for the ‘“normal” sign change, e™™ = —1, whereas as circuit with
r > k/I encloses four degenerate points, with no sign change because e*#* = 1.
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Quadratic case: lower surface

vk
o
|

x/k

Figure 2. Contours of the lower potential surface in the quadratic £ x € Jahn—Teller case.

Any proper treatment of the dynamics, including motion in the » variable
therefore requires knowledge of the position of the minima of W_(r, ¢), which
are found to lie at r = k/(1 — 2/?) [units are dictated by the form of the scaled
restoring term 72 /2 in Eq. (80)]. The potential minima therefore lie inside the
critical circle r = k/Iif I < 1/+/3 and outside it if the sense of the inequality is
reversed. Single surface dynamics, in the sense to be discussed below, may
therefore be assumed to apply with a geometric phase of m if / < 1/ V3, and
with no geometric phase if /> 1//3. Cases with /== 1/+/3, with significant
wave function amplitude at the degenerate points with r = k/I, cannot be
validly treated in an adiabatic approximation.

VI. SINGLE-SURFACE NUCLEAR DYNAMICS

Given the full-Hamiltonian

P2
H(q,Q) =) V5 + Ha(g: Q) (82)
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and adiabatic eigenstates |n(g; Q)), such that

Ha(gq; Q)ln(g; Q)) = W(Q)In(g; Q)) (83)

the Born—Oppenheimer approximation to the total wave function,

W(g, Q) = In(g; 2))|v(Q)) (84)

requires that
(3 50 7+ 2000Bi) -+ 1))+ W(0) ) (@) = EI(Q)) (59

with appropriate boundary conditions on the vibrational factors |v(Q)). As
discussed in Section III, coupling terms of the form

(n|V gHa|m)

(86)

have been neglected in the derivation of Eq. (85). The assumption is that the
wave function has negligible amplitude in the vicinity of any points at which
W(Q) has a close degeneracy with any other eigensurface.

Geometric phase complications necessarily arise, however, whenever the
nuclear wave function has significant amplitude on a loop around an isolated
degeneracy. They can be treated in two ways, according to whether the adiabatic
eigenstate |n(g; Q)) is taken to be multivalued or single-valued around the loop
in nuclear coordinate space Q. Illustrations are given below for the two different
approaches. The first concerns the energy ordering of the vibronic eigenstates
arising from a strong quadratic Jahn—Teller effect [11]. The second outlines the
vector potential approach, due to Mead and Truhlar [10], with applications to
the above E X € linear Jahn-Teller problems and to scattering problems
involving identical nuclei.

A. The Ordering of Vibronic Multiplets

It was seen in Section V.C that quadratic Jahn—Teller coupling terms result in a
threefold corrugation around the minimum energy path on the lower potential
surface W_(Q) and that there is a geometric phase, Y- = m, provided that the
radius of the minimum energy path satisfies » < k/I. We now consider the
influence of geometric phase on the relative energies of the (A, E) symmetry
levels in different tunneling triplets. The solution, due to Ham [11], applies band
theory arguments to assess the influence of antiperiodic, V(¢ + 21) = —\(d),
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boundary conditions on solutions of the threefold periodic angular equation

{ch:;—i-E— v(¢)}¢(¢) =0 v<¢+23”) =V()  (87)

Note that there is no first derivative term in Eq. (87), because the first line of
Eq. (81) ensures that (x|0/0¢|x) = 0.

The first strand of Ham’s argument [11] is that V(¢) supports continuous
bands of Floquet states, with wave functions of the form

Vi) = e E0¢(¢) (88)

where &(¢) has the same periodicity as V(¢) [32]. Elements of Floquet theory,
collected in the appendix, show that the spectrum is bounded by — % <k<Z %, and
that the dispersion curves, E(k) obtained by inversion of k(E) in Eq. (88), have
turning points at k = 0 and k = %

A second constraint is that the relative order of the critical energies at k = 0
and k :% is invariant to the presence or absence of the potential V(¢) [11].
Equation (A.6) shows that the free motion band structure can be folded onto the
interval —% <k<Z % Consequently, preservation of relative energy orderings at
k=0and k = % implies a band structure for V(¢) # 0, with the form shown in
Figure 3.

The question of vibronic energy ordering, with and without geometric phase,
now turns on the appropriate values of k in Eq. (88), bearing in mind that all
energy levels are doubly degenerate except those at k =0 and k = % Normal
periodic boundary conditions require integral k, with E(0) < E(£1), in the
lowest energy band. However, introduction of a sign change in 5 (¢d), to
compensate the electronic geometric phase factor, introduces half odd-integral
values of k, with E(+1) < E(3). This ordering is seen from Figure 3 to be
reversed and restored in the successively excited bands. It may also be noted
that an explicit calculation of the lowest 89 vibrational levels of Naj [33]
confirms that the ordering of vibronic energy levels is the clearest observable
molecular manifestation of geometric phase.

B. Vector-Potential Theory: The Molecular Aharonov—-Bohm Effect

Mead and Truhlar [10] broke new ground by showing how geometric phase
effects can be systematically accommodated in scattering as well as bound state
problems. The assumptions are that the adiabatic Hamiltonian is real and that
there is a single isolated degeneracy; hence the eigenstates |n(q; Q)) of Eq. (83)
may be taken in the form

In(g; Q) = ¢"@lx(g; 0)) (89)
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Floquet band structure

scaled energy

k

Figure 3. Floquet band structure for a threefold cyclic barrier (a) in the plane wave case after
using Eq. (A.11) to fold the band onto the interval —% <kZ %; and () in the presence of a threefold

potential barrier. Open circles in case (b) mark the eigenvalues at k = 0, =1, consistent with periodic

boundary conditions. Closed circles mark those at k = i%,%, consistent with sign-changing

boundary conditions. The point k = f% is assumed to be excluded from the band.

where |x(g; Q)) is real, and (Q) is designed to ensure that |n(g; Q)) is single
valued around the degeneracy. Consequently, Eq. (85) takes the form

1 ~ 2 ~2
(sz,[{l’i —a} + (<P 0] + W(Q)) M) =Ev(@)  (90)
where
a; = —hVo (1)
The term a; therefore plays the role of a vector potential in electromagnetic

theory, with a particularly close connection with the Aharonov—Bohm effect,
associated with adiabatic motion of a charged quantal system around a magnetic
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flux line [12], a connection that has led to the phrase molecular Aharonov—Bohm
effect [34,35] for the influence of a; on the nuclear dynamics. Note also that
single valuedness of |n(q; Q)) allows considerable ambiguity in the definition of
Y(Q), but it is easily verified that the substitution of y(Q) for y(Q) merely alters
the phase of [v(Q)) by a factor e/V~¥), without altering the essential dynamics.
The simplest choice (Q) = pud, where p is a half-odd integer and ¢ is an angle
measured around the degeneracy, is therefore normally employed in molecular
Aharonov—-Bohm theory.

An advantage of Eq. (90) for computational purposes is that the solutions are
subject to single-valued boundary conditions. It is also readily verified that
inclusion of an additional factor ¢'2¥(@) on the right-hand side of Eq. (89) adds a
term Aa; = —hV, Ay to the vector potential, which leads in turn to a comp-
ensating factor e “2¥(@) in the nuclear wave function. The total wave function is
therefore invariant to changes in such phase factors.

We now consider the connection between the preceding equations and the
theory of Aharonov et al. [18] [see Egs. (51)-(60)]. The tempting similarity
between the structures of Eqgs. (56) and (90), hides a fundamental difference in
the roles of the vector operator A in Eq. (56) and the vector potential a in
Eq. (90). The former is defined, in the adiabatic partitioning scheme, as a strictly
off-diagonal operator, with elements (m|A|n) = (m|P|n), thereby ensuring that
(P — A) is diagonal. By contrast, the Mead-Truhlar vector potential a arises
from the influence of nonzero diagonal elements, (n|P|n) on the nuclear
equation for |v), an aspect of the problem not addressed by Arahonov et al. [18].
Suppose, however, that Eq. (56) was contracted between (n| and |n)|v) in order
to handle the adiabatic nuclear dynamics within the Aharonov scheme. The
result becomes

(n[P2[m)|v) = 21 (nl(P — A)*[m)[v) + <n|A2\n>\V>} (92)

1 1
2m © 2m

Given a real electronic Hamiltonian, with single-valued adiabatic eigenstates of
the form |n) = ¢¥(Q|x,) and |x,,), the matrix elements of A become
(m|Aln) = (oulAlxa) = (ou[Pxa) (93)

so that

(n|A%[n) =" (n|Alm) (m]Aln) = (6 |Plen) (xu[Plrs) = (6P ]x) - (94)

m m

The sum over all m is justified by the fact that the diagonal elements (x,|P|x,)
vanish in a real representation. It is also evident from the factorization of |n) and
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the absence of diagonal elements of A that
(n|P — Aln) = (n|P|n) = iV = —a (95)
Consequently, inclusion of the nuclear derivatives of |v) leads to
(n|(P — AP [n)lv) = (P —a)’|v) (96)

The upshot is that Eq. (95) goes over precisely to the kinetic energy part of
Eq. (90). Despite some phrases in the introduction to Aharonov et al. [18] there is
therefore no fundamental contradiction with Mead and Truhlar [10].

Some final comments on the relevance of non-adiabatic coupling matrix
elements to the nature of the vector potential a are in order. The above analysis
of the implications of the Aharonov coupling scheme for the single-surface
nuclear dynamics shows that the off-diagonal operator A provides nonzero
contributions only via the term (n|A?|n). There are therefore no necessary
contributions to a from the non-adiabatic coupling. However, as discussed
earlier, in Section IV [see Eqgs. (34)—(36)] in the context of the E x € Jahn—
Teller model, the phase choice y = —¢/2 coupled with the identity

Vol = —(x[Volx,) = ~ 3 ©7)

close to the degeneracy, allows a representation for a in terms of (x_|Vgl|x,),
without recourse to arguments [36,37] that have aroused some controversy [38].
The resulting ADT form for the vector potential may have computational
advantages in avoiding the need to identify the precise conical intersection
point; a number of successful applications have been reported [25,26,39]. Notice
that adoption of the first equality in Eq. (97) implies a new phase choice
W #+ % ¢) which must, by the continuity argument in Section III, still ensure a
single-valued adiabatic eigenstate |n). It must be emphasized, however, that such
an ADT representation for the vector potential is subject to the same restrictions
as those that apply to the corresponding representation for the geometric phase in
Eq. (35).

1. Symmetry Considerations

It is beyond the scope of these introductory notes to treat individual problems in
fine detail, but it is interesting to close the discussion by considering certain,
geometric phase related, symmetry effects associated with systems of identical
particles. The following account summarizes results from Mead and Truhlar [10]
for three such particles. We know, for example, that the fermion statistics for H
atoms require that the vibrational-rotational states on the ground A, electronic
energy surface of NH3 must be antisymmetric with respect to binary exchange
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and symmetric with respect to cyclic permutations; that is, they must belong to
the A, representation of the C3, point group. We now consider how similar
symmetry constraints are introduced in a scattering context, in the presence of
geometric phase. It is convenient to formulate the theory in a symmetrical
coordinate system, which is here taken, for historical reasons, in the form
employed by Mead and Truhlar [10]. An alternative hyperspherical formulation
is also available in the literature [40].

The three internal coordinates are expressed as combinations of squares of
the interparticle distances;

0 = Rig + Ric + Rea
u=Ri.+R:, — 2Rz = Scosd
v =V3(R3c — R:,) = Ssind
2 2 2
S*=u +v* =2[(Rig — Ric)” + (Ric — Rea)” + (Rea — Rap)’]

(98)

Note that Mead and Truhlar [10] employ the symbol 8 in place of the present ¢,
which is preferred here for consistency with the previous text.

There is a line of degeneracies at the equilateral geometries, S = 0, and
deviations from the degeneracy line are expressed in terms of u and v, subject at
a given value of Q to u*> + v?> < Q, this bounding circle being the locus of linear
geometries. The properties of Eqs. (98) are summarized in Figure 4, from which

2
R

AB
BC CA
r v
u
2 2
Fca AB Rac

Figure 4. Triangular phase diagram, showing partitions of Rz, R3c, and RZ,, at fixed
Q > R%; + R3. + R%,. Physically allowed combinations lie inside the circle, with the conical
intersection, corresponding to equilateral triangular ABC, at the center.
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it is evident that there three equivalent specifications for # and v, according to
whether AB, BC, or CA is taken as the unique particle pair.

Mead and Truhlar [10] further demonstrate that the real adiabatic eigenstates
close to S = 0 behave in the AB representation as

|[+) sin % cos % |XAB)
= (99)

=) cos % —sin % |YaB)
where the reference kets |Xap) and |Yap) are, respectively, symmetric and
antisymmetric with respect to exchange of particles A and B. The geometry also

dictates the existence of alternative basis kets (|Xgc), |Ysc)) and (|Xca), |Yca)),
related to (|Xag), |Yas)) by

<XAB>> _ -1 (|XBC
|YaB) —\/75 —1 |Ygc
1

(100)

I

/
S

| |
N
~—
T
5 &
> >
- < <
~—

To see the implications of Egs. (98)—(100) for the reaction
AB+C — A+ BC

where A, B, and C are equivalent atoms, we note first that the reactant geometry,
Rpc =Rca > Rap corresponds to ¢ — 0, for which |—) — |Xap) and
|[+) — |YaB). It follows from the definitions of |Xap) and |Yap) that diatomics
in electronic states that are symmetric or antisymmetric with respect to nuclear
exchange have |—) or |+) as the ground adiabatic eigenstate, respectively. The
former possibility (applicable to 2; or X, rather than X, or YF symmetry [41])
is assumed in what follows. Thus attention is focused on the state |—).

The next step is to note that the permutation ABC — CAB corresponds to an
increase in the angle ¢ by 2r/3 [10]. As a result

|—) — cos (dz)—l—;c) |XaB) — sin (2—1—2) |YaB)

= cos %|XCA> + sin §|YCA> (101)

where the second line follows from Eq. (100). The result is the negative of |—) as
given by Eq. (99) in the CA representation. On the other hand, repetition of the
argument, with an additional phase factor e39/2 ghows that the four functions
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e/ 2|+) are all symmetric under cyclic permutations, as required by both bose
and fermi statistics. Moreover, these phase modified eigenstates are also single
valued in ¢.

Finally, following Mead and Truhlar [10], it may be seen that an interchange
of A and B is equivalent to a sign reversal of ¢ followed by a rotation
perpendicular to the AB bond, under the latter of which |Xag) is invariant and
|Yap) changes sign. The net effect is therefore to induce the transitions
e:t3i¢/2|_> N eqt3i¢/2|_> and ei3i¢/2|+> _ —e13i¢/2|+>.

The upshot of these considerations is that total solutions associated, for
example, with the state |—) must be taken in one or other of the symmetrized
forms

0) = (v (2))e™®2 £ [v-(Q))e **/2)|-) (102)

where |v4(Q)) are complex functions satisfying the nuclear equations

Hi|v:(0)) = Elv<(0)) (103)

in which A differ from the normal nuclear Hamiltonian by the substitution
Do — Po £3h/2. Equation (102) assumes that the electronic states of the
fragment diatomics are symmetric with respect to binary exchange (e.g., Z: or
¥.), using the upper and lower signs for bose and fermi statistics, respectively. A
corresponding form with |+) in place of |—) applies when the fragments
electronic states are antisymmetric with respect to nuclear exchange (e.g., i, or
Y1), using lower and upper signs for the bose and fermi cases, respectively, in
view of the substitution e*3®/2|4+) — —¢¥3®/2| 1) under binary exchange.

VII. CONCLUSIONS AND EXTENSIONS

The above discussion centers around the seminal contributions of Longuet-
Higgins [2,6,7], Mead and Truhlar [10], Berry [8], and Ham [11], supplemented
by symmetry arguments due to Jahn and Teller [4,5] and Mead [21]. Topics
covered concerned the conditions required for a conical intersection between
adiabatic potential energy surfaces (Section II); the behavior of adiabatic
electronic eigenstates near a double degeneracy (Section III); the definition and
computation of geometric phase (Section IV); and the influence of geometric
phase on the nuclear dynamics on a well-separated adiabatic potential surface
(Section VI). Illustrations were provided by the simplest and most widely
studied E x € Jahn—Teller model.

First, the starting point for the discussion is that the real smoothly varying
electronic eigenstates |x(Q)) close to a double degeneracy, Qy, are found to
change sign around any path in a nuclear coordinate plane, O, containing the
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degeneracy. Second, this electronic sign change must be compensated by a
suitable choice of nuclear wave function, such that the total wave function is
single valued with respect to any circuit around Qy. Two possibilities are
therefore open for the nuclear dynamics; either the nuclear wave functions must
change sign on paths around Qy, or the theory must be formulated in terms
phase modified adiabatic eigenstates

n(Q)) = e9|x(Q))

such that |n(Q)) is single valued. There is, however, considerable ambiguity in
the choice of the phase function \(Q). Berry’s first contribution [8] was to show
that the integrated geometric phase

ve=i§ (Vgn) -0

depends only on the geometry of the encircling path, regardless of the choice of
(Q), provided that |n(Q)) is single valued. Moreover, there is no requirement
that the path C should lie in a plane containing Q. In addition, Berry derived an
alternative expression for y. that relaxes the single valuedness condition on
n(0)).

Simple aspects of the theory were discussed in Section V by reference to the
simplest and most widely studied E x € Jahn-Teller model. They include the
existence a half-odd quantum number j in the linear coupling model, which has
been detected in the spectroscopy of Naz [16]. However, j is no longer
conserved in the presence of quadratic and higher coupling terms, due to the
presence of corrugations on the potential energy surface. Next, complications
due to an avoided conical intersection were illustrated by the case of a 2E state
with spin—orbit coupling, which may also be viewed as the case of a circuit in a
plane from which the intersection point is excluded. The geometric phase is then
no longer independent of the size and shape of the encircling path; it takes the
“normal” value of © on large circuits far from the avoided intersection, but is
quenched to zero as the radius of the circuit decreases.

The two basic approaches to the influence of geometric phase on the nuclear
dynamics were outlined in Section VI. The first follows Ham [11] in using band
theory arguments to demonstrate that the nuclear sign change, characteristic of
the E x € problem with real eigenstates |x), causes a reversal in the ordering of
vibronic tunneling triplets arising from threefold potential surface corrugations;
the normal order E(A) < E(E), E(E) < E(A), and so on in successive triplets is
replaced by E(E) < E(A), E(A) < E(E), and so on. The second follows Mead
and Truhlar [10] in replacing |x) by the above single-valued functions |n), in
which case the modifying phase /(Q) contributes a vector potential term to the
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nuclear kinetic energy operator. There was also shown to be a geometric phase
related contribution to the nuclear spin statistics.

The above results mainly apply to the Longuet-Higgins E x € problem, but
this historical survey would be incomplete without reference to early work on
the much more challenging problems posed by threefold or higher electronic
degeneracies in molecules with tetrahedral or octahedral symmetry [3]. For
example, tetrahedral species, with electronic symmetry 7} or 7», have at least
five Jahn—Teller active vibrations belonging to the representations E and T with
individual coordinates (Q,, Qp) and (Qx, Qy, Q;) say. The linear terms in the
nine Hamiltonian matrix elements were shown in 1957 [3] to be

%kE(Qa + \/ng) kTQz kTQy
H= krQ; 1kp(Qu — V30Qy)  krQOx (104)
kT Q_v kTQx _kE Qa

and the corresponding quadratic terms are also well established [42] (see also
Appendix IV of [14]). The cubic group, vector coupling coefficients in Griffith’s
book [43] are very helpful for calculations of this kind. Mead’s recent review [44]
is largely devoted to the geometric phase aspects of this complicated case, in
which one is now concerned with possible circuits in at least a five-dimensional
(5D) parameter space (recall that CH; has two vibrations with symmetry 7,),
some of which encircle lines of degeneracy, while others do not. There is also no
readily tractable means to determine the adiabatic eigenvectors at arbitrary
nuclear geometries, except in the remarkable O’Brien d model [46,47] with
kg = kr, which seems to be relatively little known in molecular physics. The
interesting findings, in this special case, are that the Hamiltonian (104) may be
shown to commute with the three components of a vibronic angular momentum,
somewhat analogous to the operator j in Eq. (65) for the linear E X € case.
Consequently, the eigenvectors at arbitrary nuclear geometries can be expressed
in terms of Wigner matrix elements [48] and an explicit expression for the vector
potential in the Mead and Truhlar formalism has been worked out [47]. The
model is of restricted practical interest, but anyone interested in the complexities
of geometric phase, in its more challenging contexts, is strongly advised to study
these interesting papers. The review by Judd [49] adds useful mathematical
detail.

APPENDIX A: ELEMENTS OF FLOQUET THEORY

Floquet solutions of the periodic second-order equation (taken here to be
threefold periodic)

{%%+E—v<¢>}w<¢>=o ve+X) v (an)
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are defined to propagate from ¢ to ¢ + 271/3 in the form
2n 2mik(E) /3
Vel ¢+ 3)=¢ V() (A2)

so that |y, (¢ + 21/3)| = [V (d)|. The factor k/3 is introduced so that, after
threefold repetition of Eq. (A.2),

Vi +2m) = BN, (¢) (A3)

It also follows that the function

E(¢) = e (9) (A4)

is periodic, because on combining Egs. (A.2) and (A.4)
2n i - 21
(o) ety (04 F) —e) S

Consequently, Floquet solutions may be expressed as

Ve() = " E0¢(¢) (A.6)

where &(¢) has the same periodicity as V(¢). Equation (A.6) defines the energy
dependent wavevector k(E), which is the inverse of the dispersion function E(k)
for the band in question. Different bands have increasingly many nodes in the
periodic factor £(¢).

The existence of such Floquet states, and the nature of the resulting band
structure, is explained by the following argument, due to Whittaker and Watson
[32]. Consider a pair of independent solutions of Eq. (A.1), say f1($) and f2(¢),
and allow ¢ to increase by 27m/3. In view of the periodicity of V(¢), the
propagated solutions f;(¢ + 21/3) must be expressible as linear combinations
of the f;(¢$) themselves;

<f1(¢+2“/3)) (Mll Mlz)(fl(d)))

= (A7)
H(d+21/3) up un ) \f2(9)

Now, continuity requires that the wronskian fi f; — f> f{ is preserved, from which

it may be verified that

detu =1 (A.8)
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Moreover, the trace of the matrix u, 1(E) = uy; + us», is invariant to a similarity
transformation; that is to an alternative choice of fi(¢$) and f>(¢). Consequently,
the eigenvalue equation,

A —tEA+1=0 (A.9)

is also independent of this choice. The solutions A, which have product unity,
take the Floquet form

Xi — eiznik(E)/3 (AIO)

implied by Eq. (A.2), if —2 < #(E) < 2; otherwise A are real and different from
unity, which means, via the analogue of Eq. (A.2) that the corresponding
solutions Y(¢) increase or decrease progressively as ¢ increases by multiples of
2n/3.

Values of A on the unit circle restrict k(E) to —3 < k< 3, with the band
edges at the special points k = 0 and k = 3, where the two roots coincide. The
repeated root condition means that the corresponding dispersion curve E(k) has
turning points at its edges, while every other level is doubly degenerate. We also
note in passing that plane wave solutions can be expressed in the Floquet form

of Eq. (A.6),

okd — pitk=3n)d ,3ind (A.11)

and that n can always be chosen such that —% <k-3n< % Consequently, the
free motion dispersion curve, £ = k2h? /2m, can always be folded onto the above
interval.

As a concrete illustration of the Floquet band structure for a threefold barrier,
Section 3.4 of Child [50] contains an explicit analytical form for the matrix u;

1 +%2(E)e® B —ix(E)e o®)
U= , 3 (A.12)
l‘%(E)elO'(E) 1+ %2 (E)eflo' (E)

where o(E) and o’(E) increase monotonically with E, while »(E) decreases
monotonically to zero as E — oo. Consequently, the trace #(E) varies as

21k (E)
3

t(E) = 24/1 + %*(E) cos &' (E) = 2 cos (A.13)

A proper calculation requires that 6'(E) and »(E) should be evaluated in terms of
semiclassical phase integrals, but it is sufficient for illustrative purposes to
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Trace diagram
3 T I 1

Trace (u)/2

T

scaled energy

Figure 5. Variation of trace(u) with scaled energy, E/hiw, derived from Eq. (A.13) with
Ey = 0.5 ho. The Floquet bands in Figure 3b cover energy ranges such that |trace(u)| < 2.

employ the approximations ¢'(E) = E/ho and x(E) = e~ E=£0)/m® where ho is
an appropriate energy quantum. Successive Floquet bands cover the energy
ranges for which |#(E)| < 2 in Figure 5. The corresponding dispersion curves
shown in Figure 3 were obtained by inversion of the function k(E), determined
by Eq. (A.13).
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I. INTRODUCTION

One of the most interesting observations in molecular physics was made by
Herzberg and Longuet-Higgins (HLH) [1] when they were investigating the
Jahn-Teller (JT) conical intersection (CI) problem [2—15]. These authors found
that in the presence of a CI located at some point in configuration space (CS),
the adiabatic electronic wave functions that are parametrically dependent on the
nuclear coordinates became multivalued and proposed to correct the
“deficiency”” by multiplying the adiabatic wave functions of the two states
with a unique phase factor (see Appendix A). More specifically, in the theory of
molecular dynamics the Born—-Oppenheimer (BO) treatment [16] (see Appendix
B) is based on the fact that the fast-moving electrons are distinguishable from
the slow-moving nuclei in a molecular system. The BO approximation [16,17]
(see Appendix B) has been made with this distinction and once the electronic
eigenvalue problem is solved, the nuclear Schrédinger equation employing the
BO approximation should be properly modified in order to avoid wrong obser-
vations. The BO approximation implies that the non-adiabatic coupling terms
(see Appendix B) [18-30] are negligibly small, that is, it has been assumed that
particularly at low-energy processes, the nuclear wave function on the upper
electronic surface affect the corresponding lower wave function very little. As a
consequence of this approximation, the product of the nuclear wave function on
the upper electronic state and the non-adiabatic coupling terms are considered to
be very small and will have little effect on the dynamics. On the other hand,
when the non-adiabatic coupling terms are sufficiently large or infinitely large,
the use of the ordinary BO approximation becomes invalid even at very low
energies. Even though the components of the upper state wave function in the
total wave function are small enough, their product with large or infinitely large
non-adiabatic coupling terms may not be. The reason for having large non-
adiabatic coupling terms is that the fast-moving electron may, in certain
situations, create exceptionally large forces, causing the nuclei in some regions
of CS to be strongly accelerated so that their velocities are no longer negligibly
small. In this situation, when these terms responsible for this accelerated motion
are ignored within the ordinary BO approximation, the relevance of the ordinary
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BO approximation vanishes even at low energies, hence the formulation of
generalized BO equations become worth while considering.

The aim of the generalized BO treatment is to avoid multivaluedness of
the total wave function. The Longuet-Higgins suggestion [1] of obtaining a
generalized BO treatment for the JT model [2-5] by multiplying a complex
phase factor with the adiabatic wave functions of the two states responsible for
forming the CI, was reformulated by Mead and Truhlar [31-33] by introducing
a vector potential into the nuclear Schrodinger equation (SE) in order to ensure
a single valued and continuous total wave function. In their approach, the
adiabatic wave function is multiplied by the Longuet-Higgins phase and by
operating with the nuclear kinetic energy operator (KEO) on this product
function, the KEO acquire some additional terms. Terms, that appear as a vector
potential. Thus, when the nuclear coordinates travel through a closed path
around the CI, the vector potential can introduce the required sign change and
make the total wave function continuous and single valued. For general
coordinate systems and complicated molecules where the point of CI does not
coincide with any special symmetry of the coordinate system, the introduction
of a vector potential so as to obtain the extended BO equations is a more general
approach than the one that multiplies the adiabatic wave function with an HLH
phase.

For systems with three identical atoms, the JT effect is the best known
phenomena [34-37] and well investigated in bound systems [38—43]. Significant
differences in the reaction cross-section of the H + H, system (and its isotopic
variants) obtained by theoretical calculations and experimental measurements
indicate the complication due to the consideration of the ordinary BO separation
in the theory of electronic and nuclear motion of a molecular system having a CI
between the electronic states. In this respect, we would like to mention the
pioneering studies of Kuppermann and co-workers [44—46] and others [47-48]
who incorporated the required sign change by multiplying the adiabatic wave
function of the D + H, reactive system with the HLH phase. Kuppermann and
co-workers identified the effect of this geometric (or topological) phase for the
first time in a chemical reaction. Their theoretically calculated integral cross-
sections agreed well with experimental data at different energies [49-52]. In
particular, they found that such effects are noticeable in differential cross-
sections. This series of studies renewed interest in this subject.

As the CI of the ground and the excited states of the H; system occurs at the
symmetric triangular configuration, it is possible to incorporate the HLH phase
directly in the basis functions as Kuppermann et al. did so that the nuclear SE
does not require any extra term through a vector potential. Even though this
approch could be a reasonably good approximation for the isotopic variants of
X3 with the dynamics expressed in hyperspherical coordinates, the vector
potential approach, as we mentioned earlier, will be more rigorous for general
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coordinate and reactive systems. We have formulated [53,54] the general form
of the vector potential in hyperspherical coordinates for the A + B, type of
reactive system even in cases where the position of the CI is arbitrary. The
influence of the vector potential on the integral and differential cross-sections of
the D 4 H, reactive system has been estimated [53-55] by quasiclassical
trajectory calculations. We found qualitatively the same relative shift of the
rotational state distribution and the change of scattering angle distributions in
the presence of the vector potential as indicated by Kuppermann et al. through
directly introducing the HLH phase change. We also performed semiclassical
calculations [56] and include either a vector potential in the nuclear SE or
incorporated a phase factor in the basis functions and again obtained the same
relative shift of the rotational state distribution.

The effect of singularities on scattering processes has also been investigated
by extending the JT model [57,58]. The geometric phase effect on the proper
symmetry allowed vibrational transition probabilities in the nonreactive and
reactive channels of a simple two-dimensional (2D) quasi-JT model is an
interesting topic. The ordinary BO equations can be extended either by
including the HLH phase [1] or by adding extra terms through a vector potential
[59,60]. Quantum mechanical calculations indicated that in the case of the
quasi-JT model, ordinary BO equations could not give the proper symmetry
allowed transitions, whereas the extended BO equations could. Finally, a two
surface diabatic calculation on the quasi-JT model confirmed the validity of the
extended BO equations. It is also important to point out that calculations were
done both in the time-independent [59] and time-dependent framework [60].
The findings were the same.

The generalization of BO equations based on the HLH phase seemed to be
the right thing to do so far, but generally two questions arise: (1) Is it really
necessary to incorporate an ad hoc correction of the HLH type into the quantum
theory of an atom and a molecule? (2) Is it guaranteed that such a treatment can
offer correct results in all cases or not? In this context, we would like to mention
the work by Baer and Englman [57]. As the non-adiabatic coupling terms
appear in the off-diagonal positions in the SE, in order to construct a single
approximated BO equation the non-adiabatic coupling terms must be shifted
from their original off-diagonal position to the diagonal position. In the first
attempt, it was shown that such a possibility may exist and an approximate
version of the extended BO equations for the two-state case has been derived. In
a subsequent article, Baer [58] derived a new set of coupled BO-SEs from first
principles (and without approximations) for the 2D Hilbert space where all the
non-adiabatic coupling terms are shifted from the off-diagonal to the diagonal
position. These two equations remain coupled but the coupling term become
potential coupling. As this potential coupling term is multiplied by the original
adiabatic wave function associated with the upper electronic state, which is
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small particularly at low energy processes, two decoupled extended BO
equations are obtained by deleting this product.

The adiabatic-to-diabatic transformation (ADT) matrix (see Appendix B) is
responsible for the transformation from the electronic adiabatic (see Appendix
B) eigenfunctions to the diabatic framework (see Appendix B). The adiabatic
framework describes the functions that govern the motion of the nuclei, namely,
on the potential energy surface (PES) and the non-adiabatic coupling terms. It is
the non-adiabatic terms that cause difficulties when studying nuclear dynamics
of a system having a CI. These terms are abruptly behaving—sometime even
spiky—functions of the coordinate [19,20,61] and therefore cause numerical
instabilities when solution of the corresponding nuclear SE is attempted. It has
been well known for quite some time that the only way to overcome this
numerical difficulty is to move from the adiabatic to diabatic framework where
the non-adiabatic coupling terms are replaced by the potential coupling terms
that are much smoother functions of the coordinates [20,62]. Recently, a direct
connection has been found between a given non-adiabatic coupling matrix and
the uniqueness of the relevant diabatic potential matrix [63,64]. It has been
proven that in order to produce a uniquely defined diabatic potential energy
matrix from the non-adiabatic coupling matrix, the ADT matrix has to fulfill
quantization-type requirements. In simple cases, these requirements become
ordinary quantizations of the eigenvalues of the non-adiabatic coupling matrix.
As, for example, for systems having a CI between two states, the average values
of the non-adiabatic coupling over a closed path is only allowed to have the
value n/2, where n is an integer. This value is the same as that given by the HLH
phase factor. Similarly, for systems having a CI among three states this average
becomes n, where n is now an integer. The main advantage of this new
derivation is that it can be extended to any N-state system. Baer and others,
along with the present authors, proved an “‘existence theorem’ that shows the
possibility of a derivation of the extended BO equation for an N-state system
[65] having a CI at a particular point. We obtained extended BO equations for a
tri-state JT model [66] using quantization-type requirement of the ADT matrix
and these extended BO equations are different from those obtained by using the
HLH phase. Finally, we perform numerical calculation on the ground adiabatic
surface of the tri-state JT model using those extended BO equations obtained by
considering that three states are coupled and found that the results agreed well
with the diabatic results.

Finally, in brief, we demonstrate the influence of the upper adiabatic
electronic state(s) on the ground state due to the presence of a CI between two
or more than two adiabatic potential energy surfaces. Considering the HLH
phase, we present the extended BO equations for a quasi-JT model and for an
A + B type reactive system, that is, the geometric phase (GP) effect has been
introduced either by including a vector potential in the system Hamiltonian or
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by incorporating a phase factor into the adiabatic nuclear wave function. The
effect of a topological phase on reactive and non-reactive transition probabilities
were obtained by using a time-dependent wavepacket approach in a 2D quasi-JT
model. Even when we replace the operators in the Hamiltonian (with or without
introducing a vector potential) of the D + H, reactive system with the corres-
ponding classical variables and calculate integral and differential cross-sections,
we can clearly identify the signature of the GP effect. Semiclassical results on
the same system also indicate an effect. We also present the results obtained by
quasiclassical trajectory calculations for the H + D, reaction. In case of a two-
state isolated system (a Hilbert space of dimension 2), the formulation of
extended BO equations to perform scattering calculations on a quasi-JT model
and A + B, type reactive systems is based on the idea of a Longuet-Higgins
phase. If more than one excited state is coupled with the ground state, the phase
factor could be different from the Longuet-Higgins phase factor as shown by
Baer et al. [65], where the phase angle is defined through the ADT matrix. It
indicates that even for reaction dynamic studies on the ground adiabatic surface
one needs to know the number of excited states coupled with the ground state
and depending on this number, the phase factor changes, hence the form of
extended BO equations will be modified. We present the outline of the derivation
of the extended version of the BO approximate equations and perform scattering
calculation on a two-arrangement—two-coordinate tri-state model system. These
calculations were done three times for each energy: Once without any approxi-
mations, that is, a diabatic calculation; next with those extended BO equations
derived by using the HLH phase; and finally with those extended BO equations
derived by using the new phase factor due to tri-state coupling. The state-to-
state (reactive and nonreactive) transition probabilities obtained indicate that
only the new approximate BO equations can yield the relevant results for a tri-
state system. In Section V, we introduce a new formulation of quantum
molecular dynamics (so-called quantum dressed classical mechanics) and give
the form of the vector potential needed for incorporating topological phase
effects if the dynamics is solved using this approach.

II. LONGUET-HIGGINS PHASE-BASED TREATMENT

As mentioned in the introduction, the simplest way of approximately accounting
for the geometric or topological effects of a conical intersection incorporates a
phase factor in the nuclear wave function. In this section, we shall consider
some specific situations where this approach is used and furthermore give the
vector potential that can be derived from the phase factor.

A. The Geometric Phase Effect in a 2D Two Surface System

The non-adiabatic effect on the ground adiabatic state dynamics can as men-
tioned in the introduction be incorporated either by including a vector potential
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into the system Hamiltonian derived by considering the HLH phase or by
multiplying the HLH phase directly on the basis functions. We have studied a
two-coordinate quasi-“JT scattering” model [37] where the nuclear kinetic
energy operator in Cartesian coordinates can be written as,

wor o
T, R,r)=—— |—=+— 1
n(R,1) 2m [ar2 * GRJ m
or in terms of polar coordinates we have,
wlo* 190 10
T, 0) = — o |25+ o+ s 2
@0 == [aqz W ad)z} @

R and r are defined in the intervals, —oo < R < oo and —oo < r < 0o and these
are related to ¢ and ¢ in the following way:

r=gsin ¢, R = gcos ¢, and ¢ = arctan(r/R)

The effective nuclear kinetic energy operator due to the vector potential is
formulated by multiplying the adiabatic eigenfunction of the system, (R, r)
with the HLH phase exp(i/2arctan(r/R)), and operating with T,(R,r), as
defined in Eq. (1), on the product function and after little algebraic simpli-
fication, one can obtain the following effective kinetic energy operator,

T’(R )—_h_z 6_2_|_a_2+ R 'g_ r '3_71
O T om e TR T\ ) o P+ R) R AP+ R
(3)

Similarly, the expression for the effective kinetic energy operator in polar
coordinates will be,

hz{az 1o 13> 190 1]
2

-5 S S

!
T,(q,:9) = aq2+qaq+qza¢2 i 336 iq
If the position of the conical intersection is shifted from the origin of the co-
ordinate system to (rp, Ryp), the relation between Cartesian and polar coordinates
for the present system can be written as, r + rg = gsin ¢, R + Ry = g cos ¢ and
¢ = arctan(r + ry/R = Ry). Consequently, the effective nuclear kinetic energy
operator will be [68],
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Hence, the expression of Eq. (5) indicates that, in a polar coordinate system,
Eq. (4) will remain unchanged even if the position of the conical intersection is
shifted from the origin of the coordinate system.

The ordinary BO equations in the adiabatic representation can also be used
for single surface calculations where the geometrical phase effect is incorpo-
rated by an HLH phase change in ¢. The correct phase treatment of the ¢
coordinate has been introduced by using a special technique [44-48] when the
kinetic energy operators are evaluated numerically. More specifically, the
geometrical phase effect has been introduced by modifying the fast Fourier
transformation (FFT) procedure when evaluating the kinetic energy terms. The
wave function (g, ¢) is multiplied with exp(i¢/2), then after doing a forward
FFT the coefficients are multiplied with a slightly different frequency factor
containing (k + %) instead of k and finally after completing the backward FFT
[69], the wave function is multiplied with exp(—i¢/2). The procedure needs to
be repeated in each time step of the propagation.

The transition probabilities obtained due to the above two modified treat-
ments of single-surface calculations need to be compared with those transition
probabilities obtained by two surface calculations that confirms the validity of
these former treatments.

1. Scattering Calculation with the Quasi-Jahn—Teller Model

The two adiabatic potential energy surfaces that we will use in the present
calculations, are called a reactive double-slit model (RDSM) [59] where the first
surface is the lower and the second is the upper surface, respectively,

(R, r) = 3m(en = 51(R)*P + A7 (R, 1) + ¢(Rhs(R, 1

: (©)
(R, r) = Emw(z)r2 —(D-A)(R,r)+D

= ((3))
i -en(-(*55))

g(R)=0 (7)

The parameters used in the above expressions for the potential energy surfaces
and the calculations are given in Table 1 of [60].

with

and
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The two surface calculations by using the following Hamiltonian matrix are
rather straightforward in the diabatic representation

H=T+W

1 0 W w
_7, n 11 12 (8)
0 1 Wor Wa
where the diabatic potential matrix elements,

1
Wi = 5 [ + uy 4 (1 — uz)cos ]

Wy = % [ur — uz + (1 — ua)cos ¢] )

1

W12 = W21 = E(ul — uz)sind)

are obtained by the following orthogonal transformation:

W = TIUT (10)

. _ [cosd/2 —sind/2 (w0
with T_<sin¢/2 coscb/Z) and U_<O1 u2>

Single surface calculations with a vector potential in the adiabatic representa-
tion and two surface calculations in the diabatic representation with or without
shifting the conical intersection from the origin are performed using Cartesian
coordinates. As in the asymptotic region the two coordinates of the model
represent a translational and a vibrational mode, respectively, the initial wave
function for the ground state can be represented as,

\IIad(Rv r, tO) = \lllé)WP(Ra l())q)v(}’, tO) (11)

where Ygyp(R, o) is a Gaussian wavepacket and @, (r, 7y) a harmonic oscilla-
tor wave function.

It is important to note that the two surface calculations will be carried out in
the diabatic representation. One can get the initial diabatic wave function matrix
for the two surface calculations using the above adiabatic initial wave function
by the following orthogonal transformation,

DR, r 10) \ [ cosd/2 sind/2 [ WalR, 1, to)
(\If?ﬁ(R, r, to)> B (—sin¢/2 COS¢/2> (o ) (12)
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Single surface calculations with proper phase treatment in the adiabatic repre-
sentation with shifted conical intersection has been performed in polar co-
ordinates. For this calculation, the initial adiabatic wave function W.q(gq, ¢, #)
is obtained by mapping W,4(R, r, fp) into polar space using the relations,
r4+ry=gsind and R + Ry = gcos ¢. At this point, it is necessary to mention
that in all the above cases the initial wave function is localized at the positive
end of the R coordinate where the negative and positive ends of the R coordinate
are considered as reactive and nonreactive channels.

The kinetic energy operator evaluation and then, the propagation of the R, r,
or ¢, ¢ degrees of freedom have been performed by using a fast Fourier transfor-
mation FFT [69] method for evaluating the kinetic energy terms, followed by
Lanczos reduction technique [70] for the time propagation. A negative imagi-
nary potential [48]

iV

a coshz[(Ri —R)/B]

max

Vim(R) =

(13)

has been used to remove the wavepacket from the grid before it is reflected from
the negative and positive ends of the R grid boundary. The parameters used in
the above expression and other data are given in Table II of [60].

The transition probability at a particular total energy (E,) from vibrational
level i to f may be expressed as the ratio between the corresponding outgoing
and incoming quantities [71]

-
5 = B0 »
' Jmen (ki) i

where the (+) and (—) signs in the above expression indicate nonreactive and
reactive transition probabilities. If we propagate the system from the initial
vibrational state, 7, and are interested in projecting at a particular energy, E,;, and
final vibrational state, f, the following equation can dictate the distribution of
energy between the translational and vibrational modes,

ik, 1 K, 1

One can obtain the explicit expressions for &,ﬁ; and &k_f as defined in Eq. (13)
considering the following outgoing fluxes in the nonreactive and reactive
channels

G
& (1) = Re{q/;(Rg, 1) x (~ih/m) x (%“))m} (16)

0
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and
() = Re{w;(Ro, o g < (U220 } )
where
bR = [ W R ) (19)

The discrete Fourier expansion of (R, t) can be written as

Ng/2

V(R 1) = n?(NZRm 1 Cal(t)exp {21'%(" -1 (%ﬂ
= ZC Jexp [Zmn—N—lR)(z—l)] (19)

where, R = Ryin + (i — 1)(Rmax — Rmin)/Nr and Ng is total number of grid
points in R space. By substituting Eq. (18) into Egs. (15) and (16), one can easily
arrive at

Ng/2 n—
&/ (1) = Re{\Lf;(RS, Ny, { (H)

n=0

 oxp [2m(n— D(i§ — 1)} c,,(;)}} 20)

Ng
and

() = Re{\vfueo,) > () )

n=—(Ng/2)+1

Xexp[zin(n—l)(ig—1)}6,”@}} 1)

Ng

where it = [(R¥ — Ruin)/(Rmax — Rmin)] + 1. It is important to note that in
if (t) only positive and in & (#) only negative values of n have been considered.
It has been numerically verlﬁed that negative components of n in if (¢) and
positive components of n in &f (¢) actually have negligible contribution.



154 SATRAJIT ADHIKARI AND GERT DUE BILLING

We are now in a position to write from Eqgs. (19) and (20) that,

Ng/2
g =&, (22)
n=0
and
-1
gEn= > &, (23)
n=—(Ng/2)+1
respectively.

The denominator in Eq. (13) can be interpreted as an average value over the
momentum distribution from the initial wavepacket, that is,

L= .
(ki) = %L VAo (R, 10)exp(ikinR) dR (24)
and the limits (kmin, i, n, kmax,i,») Of the integral in the denominator of Eq. (13)
over the variable k; , can be obtained if we consider the wavenumber interval of
the corresponding final f channel,

T T

S Kmax.fn =k p +—— 25
Rmax - Rmin ’ o T Rmax - Rmin ( )

kmin,f,n - kf,n -
These values are related to the initial wavenumber intervals by the following
equations:

h—z(k- )+ hoo (i1 —ﬁ(k- S
m min, i,n 0| ! ) - m min, f,n 0 ) (26)
L (k. 1.n) -+ 00 (i 42 _® (Kinax,f,n)" + T +1
m max, i,n o (¢ ) - m max, f, n Q)] f )

We have used the above analysis scheme for all single- and two-surface
calculations. Thus, when the wave function is represented in polar coordinates,
we have mapped the wave function, W,4(q, &, ) to W,(R, r, t) in each
time step to use in Eq. (17) and as the two surface calculations are performed in
the diabatic representation, the wave function matrix is back transformed to the
adiabatic representation in each time step as

MR, r 1)\ [cosd/2  —sind/2 UL(R, 1, 1) o
V2R, r, 1) )\ sing/2 cosd/2 ) \ Vi (R, 1, 1)

and used in Eq. (17) for analysis.
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For all cases we have propagated, the system is started in the initial
vibrational state, i = 0, with total average energy 1.75 eV and projected at four
selected energies, 1.0, 1.5, 2.0, and 2.5 eV, respectively.

2. Results and Discussion

In Table I we present vibrational state-to-state transition probabilities on the
ground adiabatic surface obtained by two-surface calculations and compare with
those transition probabilities obtained by single-surface calculations with or
without including the vector potential in the nuclear Hamiltonian. In these
calculations, the position of the conical intersection coincides with the origin of
the coordinates. Again shifting the position of the conical intersection from the
origin of the coordinates, two-surface results and modified single-surface results
obtained either by introducing a vector potential in the nuclear Hamiltonian or
by incorporating a phase factor in the basis set, are also presented.

At this point, it is important to note that as the potential energy surfaces are
even in the vibrational coordinate (r), the same parity, that is, even — even and
odd — odd transitions should be allowed both for nonreactive and reactive cases
but due to the conical intersection, the diabatic calculations indicate that the
allowed transition for the reactive case are odd — even and even — odd whereas
in the case of nonreactive transitions even — even and odd — odd remain
allowed.

In Table I(a), various reactive state-to-state transition probabilities are
presented for four selected energies where calculations have been performed
assuming that the point of conical intersection and the origin of the coordinate
system are at the same point. The numbers of the first row of this table have
been obtained from two-surface diabatic calculations and we notice that only
odd — even and even — odd transitions are allowed. Single-surface results
including a vector potential not only give the correct parity for the transitions
but also good agreement between the first- and the second-row numbers for all
energies. The third row of Table I(a) indicates the numbers from a single-surface
calculation without a vector potential. We see that the parity as well as the
actual numbers are incorrect.

Again, in Table I(b), we present reactive state-to-state transition probabilities
at the four selected energies where the position of the conical intersection
is shifted from the origin of the coordinates. The first row of this table indicates
results from a two-surface diabatic calculation where in the nonreactive case the
same parity and in the reactive case opposite parity transitions appear as allowed
transitions. Calculated numbers shown in the second row came from single-
surface calculations with a vector potential and the results not only follow
the parity (same parity for the nonreactive case and different parity for the
reactive case) but also agree well for all energies with the numbers shown in the
first row of Table I(b). Results from single-surface calculations incorporating a
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TABLE I(a)

Reactive State-to-State Transition Probabilities when Calculations are Performed Keeping the
Position of the Conical Intersection at the Origin of the Coordinates

Ee) 0-0 0—-1 0—-2 0—-3 0—4 0—-5 0—6 0—-7 0—8 0—9
1.0 0.0000¢ 0.0033 0.0000 0.0220
0.0001% 0.0101 0.0008 0.0345
0.0094¢ 0.0000 0.0361 0.0000
1.5 0.0000 0.1000 0.0000 0.0342 0.0000 0.0764
0.0001 0.1046 0.0001 0.0370 0.0004 0.0582
0.0719  0.0000 0.0664 0.0000 0.0827 0.0000
2.0 0.0000 0.1323 0.0000 0.0535 0.0000 0.0266 0.0000 0.2395
0.0002 0.1323 0.0000 0.0583 0.0001 0.0267 0.0007 0.2383
0.1331  0.0000 0.0208 0.0000 0.0300 0.0000 0.1963 0.0000
2.5 0.0000 0.0987 0.0000 0.0858 0.0000 0.0901 0.0000 0.0248 0.0000 0.2529
0.0001  0.0983 0.0001 0.0903 0.0005 0.0870 0.0010 0.0297 0.0007 0.2492
0.2116  0.0000 0.0382 0.0000 0.0121 0.0000 0.1783 0.0000 0.1119 0.0000
“ Two-surface calculation.
b Single-surface calculation with vector potential.
¢ Single-surface calculation without vector potential.
TABLE I(b)

Reactive State-to-State Transition Probabilities when Calculations are Performed by Shifting the
Position of Conical Intersection from the Origin of the Coordinate System

Eev 0—-0 0—-1 0—-2 0—-3 0—-4 0—-5 0—6 0—-7 0—-8 0—9
1.0 0.0000“ 0.0119 0.0000 0.0090
0.0001” 0.0113 0.0004 0.0060
0.0003¢ 0.0363 0.0004 0.0271
1.5 0.0000 0.1043 0.0000 0.0334 0.0000 0.0571
0.0000 0.1084 0.0001 0.0346 0.0002 0.0592
0.0001  0.1390 0.0000 0.0183 0.0001 0.0050
2.0 0.0000 0.1281 0.0000 0.0561 0.0000 0.0365 0.0000 0.2443
0.0001 0.1286 0.0002 0.0604 0.0001 0.0319 0.0001 0.2609
0.0000 0.1040 0.0001 0.0853 0.0004 0.0526 0.0002 0.2185
2.5 0.0000 0.0869 0.0000 0.0909 0.0000 0.0788 0.0000 0.0211 0.0000 0.2525
0.0002 0.0864 0.0002 0.0981 0.0007 0.0750 0.0002 0.0342 0.0018 0.2387
0.0000 0.0711 0.0002 0.0877 0.0006 0.0932 0.0009 0.0479 0.0019 0.2611

¢ Two-surface calculation.
b Single-surface calculation with vector potential.
¢ Single-surface calculation with phase change.

phase factor into the basis set are shown in the third row of Table I(b) for the
reactive channel. Though the phase treatment can offer proper parity allowed
transitions, these numbers have for all energies less agreement with those
presented in the first and second rows of Table I(b).
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In this model calculation, using a time-dependent wavepacket approach, we
studied the extended JT model in order to investigate the symmetry effects
on the scattering processes. First, we performed two surface diabatic
calculations, which are considered to be the exact ones as they can follow
interference effects due to the conical intersection. We see that the ordinary BO
approximation has failed to treat the symmetry effect but the modified single-
surface calculations, either by including a vector potential into the nuclear
Hamiltonian or by incorporating a phase factor in the basis set, can reproduce
the two-surface results for different situations. Though the transition probabili-
ties calculated by Baer et al. [59] using the same model are qualitatively the
same as the present numbers, small quantitative differences are present,
particularly, at higher energies. We believe that some of these deviations could
be due to the dynamic effects of the potential, the vector potential, or the phase
changes in the wave function. We may therefore conclude that if the energy is
below the conical intersection, then the effect of it is well described by simply
adding a vector potential to the Hamiltonian or by the simple phase change in
the angle ¢, which when increased by 2m makes the system encircle the
intersection and appear to work well even in cases where the intersection is
shifted away from the origin.

B. Three-Particle Reactive System

We derive the effective Hamiltonian considering the HLH phase change for any
reaction involving three atoms and discuss integral and differential cross-
sections obtained either classically or semiclassically. An easy way of incorpo-
rating the geometric phase effect is to use the hyperspherical coordinates in
which the encircling of the intersection is connected with a phase change by 21
of one of the hyperangles (¢).

In the presence of a phase factor, the momentum operator (P), which is expre-
ssed in hyperspherical coordinates, should be replaced [53,54] by (P — htyn)
where /M creates the vector potential in order to define the effective
Hamiltonian (see Appendix C). It is important to note that the angle entering the
vector potential is strictly only identical to the hyperangle ¢ for an Az system.

The general form of the effective nuclear kinetic energy operator (7”) can be
written as

. 1 . 2
1=, (P hym)
A2

1,

P - R*7*n — 2P + iPyn vn) (28)

It is now convenient to introduce hyperspherical coordinates (p, 6, and ),
which specify the size and shape of the ABC molecular triangle and the Euler
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angles a, 3, and v describing the rotation of the molecular shape in space. If the
Euler angles are treated as classical variables and the coordinate system is such
that the z axis is aligned [67] with the total angular momentum J, the semi-
classical kinetic energy operator Ty for a three-particle system can be expressed
in a modified form of Johnson’s hyperspherical coordinates [72] as below,

s P +—= L 0,
= T = (0,0)| +
_ p2 ; 2
(J? Py)(1 + sin 6 cos2y) _h l_,_ 1 29)
up? cos? 0 2up? |4 sin’20

PY [P, — 4cosOPy]
2up? sin% 0

where p is the hyperradius, and 0 and ¢ are the hyperangles with

. o? 1 @
= R |l—=4——
&w*sm%a&]

Due to the special choice of coordinates, the momenta conjugate to o and [ are
constants of motion, that is, P, = J, Pg = 0, and P, = J cos .

When we wish to replace the quantum mechanical operators with the corres-
ponding classical variables, the well-known expression for the kinetic energy in
hyperspherical coordinates [73] is

1 4 1 P[P, —4cosOP
m:—ﬁ+—G§ e%ﬂ+dy J

2u p? 2up? sin’ O
P2 — p? l+51n90052
L (PP v) 0
up2cos? 6

The explicit expressions of the other terms in Eq. (27) can be evaluated in terms
of hyperspherical coordinates using the results of Appendix C,

2
—— = 2uzaxz where  X; = (ry, ry, 17, Ry, Ry, R;)

= upji}zne {[sin By cos 0 sin ¢p/2[sin* O sin> ¢ + (cos O sin O cos
+ sin 0 cos 0)%]] + [sin O, sin O sin G{sin® ¢ cos O sin O
+ (cos B sin 0 cos ¢ + sin By cos B)(cos By cos B sin ¢ — sin By sin0) }
+ (cos 09 sin O + sin Oy cos O cos $){sin* O sin ¢ cos
— cos B sin 0 sin ¢(cos Oy sin 0 cos ¢ + sin By cos0)}]/

[sin? 0 sin” ¢ + (cos O sin O cos ¢ + sin O, cos 0)]*} (31)
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" I = 0n o
2p YWV T 5 2 Bx; ax,

where X; = (ry, 1y, 17, Ry, Ry, R;)

B 27?12 [sin 0o sin® & + (cos O sin O + sin Oy cos O cos P)?]
1p? [sin” O sin® ¢ + (cos Oy sin O cos ¢ + sin Oy cos 0)*]*

(32)

where  X; = (ry, 1y, 17, Ry, Ry, R;) (33)

where the general form of the momenta Py, (x indicates that the Coriolis term is
not included) in hyperspherical coordinates can be expressed as

op 0

P* Pan—|—Pea +P¢aX

It is to easy to evaluate Op/0X;, 06/0X;, and 0¢/0X; [for X; = (r, 1y, 17, Ry,

R;)] using equation (C.2) and after introducing the Coriolis term [72], the
momenta Py, become

Ty 2R, 2R,
Prx = Epp__'Pe‘i’—Pd)—(Dzry

p? p?sin B
p,=(2p, - BRep, 2R p g
T \p P pr Y prsing ¢ e
P, = (0,ry — 0,1y
= (@ — o) »
Pr = (Bep, 4 20py— 2 py R
ke p P2 0= p sme o
2ry 2r,
Pe = (R, + 2py s 2 5Po + OR,
p p? p? sin

P, = (0:Ry — 0yRy)

where oy, oy, and ®, are the components of instantaneous angular velocity of
the rotating axes XYZ with respect to the stationary axes X'Y'Z’.
By substituting On/0X; and Py, in Eq. (32), after some simplification we get,

I p 4h[sin O sin O sin $Py + (cos Oy sin O + sin Oy cos O cos ¢)Py]

1p? sin B[sin® O sin” ¢ + (cos O sin O cos ¢ + sin O cos )]
(35)
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It is important to note that Eq. (34) becomes independent of the Coriolis term
because the symmetrical components of P and 5/ cancel it identically.

Thus, the total effective Hamiltonian (H) in the presence of a vector potential
is now defined and it is for an X3 type reactive system (8y = 0) given by

212 4hP

— V(p, 0 36
T 70?0 ppsin?@ (p, 6, 9) (36)

Hscl(cl) = Tscl(cl)

Thus the inclusion of the geometric phase in this case adds two terms to the
Hamiltonian. The first is an “‘additional” potential term and the second has the
effect that 27 is added to P, in the Coriolis coupling term [see Eq. (35)].

1. Quasiclassical Trajectory (QCT) Calculation on D + H,

The total effective Hamiltonian H, in the presence of a vector potential for an
A + B, system is defined in Section II.B and the coupled first-order Hamilton
equations of motion for all the coordinates are derived from the new effective
Hamiltonian by the usual prescription [74], that is,

. OH
qA:—
" Opi

37
 w (37)
pii aql

During initialization and final analysis of the QCT calculations, the numerical
values of the Morse potential parameters that we have used are given as
D, =4.580 eV, r, =0.7416 A, and B =1.974 AL, Moreover, the potential
energy as a function of internuclear distances obtained from the analytical
expression (with the above parameters) and the LSTH [75,76] surface
asymptotically agreed very well.

In the final analysis of the QCT calculations, j is uniquely defined. By using
the final coordinate (/) and the momentum (p’), the rotational angular
momentum (L = ' x p’) and j [setting L> = j/(j' + 1)#*] can be determined.
Once the rotational angular momentum (L) is obtained, we can find the
vibrational energy (Evi, = Eint — Erot). From the vibrational energy, the final
vibrational quantum number, V', is obtained using the expression of the energy
levels of a Morse oscillator. However, at higher values of V' the energy level
expression of the Morse oscillator may not be accurate and the following
semiclassical formula based on the Bohr—Sommerfeld quantization

I 1
/7 RS —
Vo= 2+h1;p,dr (38)
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can be used instead. We have performed QCT calculations for obtaining integral
cross-sections of the D + H, (v =1, j) — DH(V, j/) + H reaction at the total
energy of 1.8 eV (translational energy 1.0 eV) with the LSTH [75,76] potential
energy parameters. These studies have been done with or without inclusion of
the geometric phase and starting from initial states (v = 1, j = 1). For this case,
1.2 x 10° trajectories are taken noting that convergence was actually obtained
with ~5 x 10* trajectories. The distribution of integral cross-sections with
(8p = 11.5°) or without inclusion of the geometric phase as a function of j’
(v = 1) has been shown in Figure 1 and compared with those QCT results
obtained by using 6y = 0.

In Figure 1, we see that there are relative shifts of the peak of the rotational
distribution toward the left from j/ =12 to j/ =8 in the presence of the
geometric phase. Thus, for the D+ H, (v =1, j)—DH (v, j/) + H reaction
with the same total energy 1.8 eV, we find qualitatively the same effect as found
quantum mechanically. Kuppermann and Wu [46] showed that the peak of the
rotational state distribution moves toward the left in the presence of a geometric
phase for the process D+ H, (v=1,j=1)—=DH( =1,j)+H. It is
important to note the effect of the position of the conical intersection (0y) on the
rotational distribution for the D 4 H, reaction. Although the absolute position
of the peak (from j/ = 10 to j/ = 8) obtained from the quantum mechanical
calculation is different from our results, it is worthwhile to see that the peak

0.25 T T T T T T T T
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&
<
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J
Figure 1. Quasiclassical cross-sections for the reaction D+ H, (v=1,j=1) - DH (v =
1, /) + H at 1.8-eV total energy as a function of ;. The solid line indicates results obtained without

including the geometric phase effect. Boxes show the results with the geometric phase included
using either 0y = 0 (dashed) or 6, = 11.5° (dotted).
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position of the rotational distribution without a geometric phase effect using
classical hyperspherical calculation comes at j/ = 12 (the overestimation is due
to the use of classical mechanics), which is different from the quantum
calculation having the peak at j/ = 10.

The relative shift of the peak position of the rotational distribution in the
presence of a vector potential thus confirms the effect of the geometric phase for
the D 4+ H; system displaying conical intersections. The most important aspect
of our calculation is that we can also see this effect by using classical mechanics
and, with respect to the quantum mechanical calculation, the computer time is
almost negligible in our calculation. This observation is important for heavier
systems, where the quantum calculations are even more troublesome and where
the use of classical mechanics is also more justified.

The effect of the GP is expected to be even more pronounced in differential
cross-sections and the computation of differential cross-sections are again
carried out by QCT calculations forthe D+ H, (v =1,j=1) = DH(V =1, ) +
H reaction at the total energy of 1.8 eV (initial kinetic energy 1.0 eV) with the
London-Sato-Truhlar—-Horowitz (LSTH) [75,76] potential energy parameters. We
calculated the scattering angle distributions for different final rotational states
(V' = 1, j)) with or without inclusion of a geometric phase starting from the initial
state [(v = 1, j = 1)]. The convergence of these distributions has appeared when
there are a sufficient number of trajectories in each scattering angle. Nearly 1.0 x 10°
number of trajectories have been computed to obtain converged distributions for all
the final ;' states.

The rotationally resolved differential cross-section are subsequently smooth-
ened by the moments expansion (M) in cosines [77-79]:

dGR (j,a e)
do

- GZ(/) 1+ ick cos (kma(0))
T =1

Ng(/")

Cp = %(]—/) Z; cos (kma(6y)) (39)
or(j') = by Ne(/) /N
a(0) = %(1 —cos0)

where N is the total number of trajectories and Ng(j) is the number of reactive
trajectories leading to the DH(j') product. Also, 0 is the scattering angle, s labels
the reactive trajectories leading to the same product, and b, is the impact
parameter.

The calculations showed [54,55] significant effect of the GP on scattering
angle resolved cross-sections for a particular final rotational state. It is
interesting to see the change of these distributions due to the geometric phase
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compared to those obtained without the geometric phase. It appears that for
lower final rotational states (/' < 10), scattering angle distributions in the
presence of the geometric phase, have higher peaks compared to those without
geometric-phase situations. Similarly, for higher final rotational states (j/ > 10),
nongeometric-phase cases have predominance over geometric-phase cases.
Finally, there are crossings between these distributions at j/ = 10. The
rotationally resolved differential cross-section results as shown in [55] are
quite expected when considering the integral cross-section distributions
displayed in Figure 1. Kuppermann and Wu showed differential cross-sections
at Ey,, = 1.8 eV (initial kinetic energy 1.0 eV) forthe D+ H, v =1,j=1) —
DH(V' = 1, j') + H reaction with or without considering the geometric phase. In
their calculations, the differential cross-section distributions represented either
with or without the geometric-phase cases have crossings at j/ = 8, where for
lower j/ values the ““with geometric phase” and for higher j’ values the “without
geometric phase” cases have predominance. Qualitatively, we have found the
same features for differential cross-section distributions as they have obtained
except that the crossing position is in our case j/ = 10 as compared to theirs
J = 8. Again, this difference in crossing position comes about due to the use of
classical mechanics. The scattering angle resolved differential cross-sections in
the presence of a vector potential indicate and confirm the effect of the
geometric phase in the D 4 H; reaction having a conical intersection. The fact
that these effects can be seen using classical mechanics is the most important
aspect of our calculations since the computational cost in this case is very small.

2. Semiclassical Calculation on a D + H, Reaction

Considering the semiclassical Hamiltonian from Eq. (28), one can expand the
total wave function as,

\I’<p, 0, ¢, t) = Z\Ijk(ea o, t)q)k(pa t) (40)

where p, 0, and ¢ are quantum degrees of freedom and ®(p, 7) are Hermite
basis functions with expansion coefficients s, (0, ¢, 7).
The Hermite basis functions ®;(p, ¢) have the following form:

Ba(p, 1) = ' exp £ 10 + Po(0)(p — pl0) + ReAG)(p = p(1)) ) u(r)

(41)

where

-~ Tt)
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and

£ () = ———— exp(—x/2) Hy(x)

NN

are the harmonic oscillator basis functions.

In this semiclassical calculation, we use only one wavepacket (the classical
path limit), that is, a Gaussian wavepacket, rather than the general expansion of
the total wave function. Equation (39) then takes the following form:

\Ij(p’ ea d)v tO) = \ljl(ea d)a IO)(I)GWP(p’ fo) (42)

where Pgwp(p, 1) is Po(p, ) as defined in Eq. (39), and the expansion
coefficient [80] is

Vi (0, 9, 10) = py/sin (—n)/Cgv(C)Pj(cos ) (43)

where g, and P; are the Morse vibrational and normalized Legendre wave
functions, respectively. The variables { and 1 can be expressed using the asymp-
totic representation of 6 and ¢,

0 =00+ Csinn
¢ =y +Ccosn

The general hyperspherical formulation of the vector potential arising due to an
arbitrary position of the conical intersection of the adiabatic potential energy
hypersurfaces of an A 4 BC type reactive system has been formulated [54]. For
the Hj system, the location of the conical intersection is at 8y = ¢, = 0 but for
the D + H; system it is at ¢ = 0 and 0y = 11.5°. As we wish to compare the
results obtained by introducing a vector potential in the system Hamiltonian
with those obtained by multiplying the wave function with a complex phase
factor, we approximated the vector potential expression using 6p = 0 and the
corresponding extra terms are added to the Hamiltonian.

In hyperspherical coordinates, the wave function changes sign when ¢ is
increased by 2m. Thus, the correct phase treatment of the ¢ coordinate can be
obtained using a special technique [44—48] when the kinetic energy operators
are evaluated: The wave function f(¢) is multiplied with exp(—i¢/2), and after
the forward FFT [69] the coefficients are multiplied with slightly different
frequencies. Finally, after the backward FFT, the wave function is multiplied
with exp(id/2).

The kinetic energy operator evaluation and then the propagation of the 0, ¢
degrees of freedom have been performed using the FFT [69] method followed
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by the Lanczos iterative reduction technique [70] for the time propagation. In
the classical path picture, the propagation of the p motion has some additional
equations of motion for the width parameter A(¢). The variables y and its
conjugate momentum P, are propagated using classical equations of motion and
a mean-field potential averaged over the p, 0, and ¢ dependence.

The energy and state resolved transition probabilities are the ratio of two
quantities obtained by projecting the initial wave function on incoming plane
waves (I) and the scattered wave function on outgoing plane waves (F')

PIHF(E) — lim k_F|ffde dd) Zkfdpexp(_ika)(bk(p7 t)\llk(ev d)? t)|2

= ki | [ dpexp(+ikip)Pawe(p, 0)V;(0, P, 1o)]
where the total energy, E = (1*k?/2p) + E; = (h*k2/2u + Er, and p is the
reduced mass for the p motion.

The integral over p can be evaluated analytically due to use of a Hermite
basis,

k
Pror(E) =0\ [ exp(=gr(Pyle) = Bke)* + g1(= P} + ko))

1

Ho(A) exp(—ikd)|”

VkI2k

X

S [ [0 donue, o, 0000, 0. 1) x (1)
k=0
(45)

where H; is a Hermite polynomial, and

d = arctan (ImA(t))

Re A(t)
A = VER(Py (1) — kr)
~ ImA(r)
7 2nlAwP
_ ImA(1)”
817 2nlA(10))|

and ¢ should be large enough for the interaction potential to vanish and gg to
approach a constant value.

With each random choice of y and its conjugate momentum P,, one can have
a separate trajectory with a different final wave function. After a series of
calculations, the energy and state resolved cross-sections are obtained.



166 SATRAJIT ADHIKARI AND GERT DUE BILLING

This semiclassical method, using one wavepacket only (GWP), has been
applied for the reaction D + Hy(v=1,j=1) — DH (v/ = 1, ) 4+ H by using
the LSTH potential energy surface [75,76], where in order to obtain integral
cross-sections we have considered the total angular momentum vector J to
be different from zero. We have performed all calculations with total energy
1.80 eV (E;; = 1.0eV) with or without introducing geometric phase effects. The
transition probabilities as a function of total energy can be obtained by Eq. (43)
for each trajectory and finally, series of trajectories can give state resolved cross-
sections with good accuracy around the total energy 1.80 eV. The trajectories
had randomly selected values of the total angular momentum in the range O to
Jmax = 50 in units of %. The parameter P, as well as y are also selected
randomly. The propagation has been carried out with the initial values of width
parameters, Re A(ty) = 0, ImA(ty) = 0.5 amu t~' (1t = 10~!*s) assuming that
the quantum classical correlation will remain small during the entire collision,
that is, the traditional classical path picture is valid [81].

In Figure 2, we present integral cross-sections as a function of rotational
quantum number j, with or without including the geometric phase effect. Each
calculation has been performed with a product-type wave function consisting of
one wavepacket (®o(p, 7)) and a grid size (Np x Ny) in (8, ¢) space equal to
256 x 64 has been used. Though in this result the peak of the rotational state
distribution without including the geometric phase effect is at j/ = 8 instead of

0.12 T T T T T T T T

5
R
T

2
)

o

o

®
I

Cross-section (A

Figure 2. Quantum classical cross-sections for the reaction D+ H, (v=1,/=1) —
DH (V' =1,j)+H at 1.8-eV total energy as a function of j. The solid line indicates results
obtained without including the geometric phase effect. Boxes show the results with geometric phase
effect included using either a complex phase factor (dashed) or a vector potential (dotted).
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at j/ = 10 (corresponding to accurate quantum mechanical calculation [46]), the
result is still impressive because we have used only one basis function instead of
a grid in the p coordinate. But the important point is that the peak position is
again shifted to the left, from j/ = 8-6 if the GP effect is considered either by
including the vector potential into the system Hamiltonian or by incorporating a
phase factor in the adiabatic nuclear wave function.

3. Quasiclassical Trajectory Calculations on a H 4 D, Reaction at 2.20 eV

Satisfactory agreement between experimentally measured and theoretically
(without considering the GP effect) calculated results [80,82-87] for the
reaction, H+ D, (v=10,j=0) — HD(V, ) + D, at a collisional energy of
2.20 eV has renewed theoretical interest in this area. As at this collisional
energy, the CI is located at 2.7 eV, a significant contribution from the geometric
phase is expected to appear. We studied the difference between results obtained
with or without including the GP effect. We have calculated integral and differ-
ential cross-sections for the same reaction using the QCT approach with or
without including the general expression of a vector potential into the system
Hamiltonian. As we mentioned earlier, the simplest way of including the phase
effect is to switch to hyperspherical coordinates, in which the HLH phase factor
is exp(in/2) where the hyperangle 1 increase by 2w as the conical intersection
is encircled. When the nuclear kinetic energy operator operates on the wave
function multiplied by the HLH phase factor, the Hamiltonian accumulate an
additional potential (a vector potential). In this calculation, we wish to replace
the quantum operators by classical variables. The reason for this is that the
classical trajectories are easy to integrate to obtain reliable values of integral and
differential cross-sections. In particular, our previous QCT calculations showed
that the GP effect was predicted qualitatively correct. For each trajectory, the
final vibrational quantum number (V') is calculated using the semiclassical
formula based on the Bohr—Sommerfeld quantization rule,

Y
Integral and differential cross-sections for the H + D,(v =0, j =0) — DH
(v, j') + D reaction at total enery 2.3917 eV (collisional energy 2.20 eV) are
computed by using QCTs on the LSTH potential energy surface and these
calculations have been performed with or without including a vector potential
into the system Hamiltonian. For each case (with or without GP) ~1.2 x
10° QCTs are computed to get the product rotational state distributions of the
final vibrational state (V') although convergence is nearly obtained with 5 x
10* QCTs. The scattering angle distributions for different final rotational state
(j') are calculated from 1.0 x 10% QCTs for each case (with or without GP).
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Differential cross-sections for particular final rotational states (j) of a
particular vibrational state (V') are usually smoothened by the moment
expansion (M) in cosine functions mentioned in Eq. (38). Rotational state
distributions for the final vibrational state v/ = 0 and 1 are presented in [88]. In
each case, with or without GP results are shown. The peak position of the
rotational state distribution for v/ = 0 is slightly left shifted due to the GP effect,
on the contrary for v/ = 1, these peaks are at the same position. But both these
figures clearly indicate that the absolute numbers in each case (with or without
GP) are different.

We have also presented scattering angle distributions for v/ = 0, j/ = 0-12
and v =1, = 0-12 in [88] where in each figure results obtained with or
without considering GP effect are shown. These figures clearly demonstrate that
the differential cross-section as a function of scattering angle for with or without
GP are rather different.

III. THE EXTENDED BORN-OPPENHEIMER
APPROXIMATION

The BO coupled equations in the adiabatic representation (see Appendix B) are

h2 hz N
= 5= VAU () + () = ENy(n) = - {25 V(n) + ()} = 0
i=1
(40)
where ;(n) and u;(n), j=1, ..., N are the nuclear wave functions and the

adiabatic potential energy surfaces, V is the gradient (vector) operator, m is the
reduced mass of the system, (1) is the non-adiabatic vector matrix, and @ is
non-adiabatic scalar matrix. Recalling their relation from Appendix B, Eq. (45),
they can be written in the following matrix notation:

W, o, "
—— VU —— 1T —E|V—-——21-V+V)¥ =0 47
2m +{M 2mT } 2m( ' +V1) (47)

where V¥ is a column matrix that contains the nuclear wave functions \|/] uisa
diagonal potential (adiabatic) matrix, the dot product designates a scalar
product, and t replaces (") to simplify the notation.

If we consider the transformation ¥ = A®, then Eq. (46) can be transformed
into the following diabatic matrix equation:

hz
—2—v2<1> + (AT THA —E)® =0 (48)
m
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where the transformation matrix (unitary) A has to satisfy the following matrix
equation:

VA+1A =0 (49)

and we are interested in exploring the detailed properties of the transformation
matrix A when it satisfies Eq. (48).

As stated in the introduction, we present the derivation of an extended BO
approximate equation for a Hilbert space of arbitary dimensions, for a situation
where all the surfaces including the ground-state surface, have a degeneracy
along a single line (e.g., a conical intersection) with the excited states. In a two-
state problem, this kind of derivation can be done with an arbitary t matrix. On
the contrary, such derivation for an N > 2 dimensional case has been performed
with some limits to the elements of the t matrix. Hence, in this sence the present
derivation is not general but hoped that with some additional assumptions it will
be applicable for more general cases.

The t matrix is an antisymmetric vector matrix with the component
T,,p =X, Y, 2, X, Y, Z, and so on, and 7, is assumed to be a product of a scalar
function ¢, and a constant antisymmetric matrix g (which does not depend on p).
Thus,

T =18

g = (§IVE)) 0

If we consider G as a unitary transformation matrix that diagonalizes the g
matrix and i is the diagonal matrix with elements iw;, j=1,..., N as
the corresponding eigenvalues, it can be shown that, following the unitary
transformation performed with G, Eq. (46) becomes

i (V + itw)*y + (W - E)y =0 (51)

2m

where y is related to ¥ through the transformation ¥ = Gy and the nondiagonal
diabatic potential matrix W is related to the adiabatic potential matrix u as
W = G'uG. Due to the above transformation, the non-adiabatic coupling matrix
T becomes a diagonal matrix @ and a new off-diagonal potential matrix is
formed that couples the various differential equations. It is important to note
that so far the derivation is rigorous and no approximations have been imposed.
Hence, the solution of Eq. (46) will be the same as the solution of Eq. (50), but it
will be convenient to impose the BO approximation in Eq. (50). For low enough
energies, all upper adiabatic states are assumed to be classically closed, that is,
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each of the corresponding adiabatic functions \;, j =2, ..., N is expected to
fulfill the condition

in those regions of configuration space (CS) where the lower surface is energe-
tically allowed. This assumption has to be employed with great care and is
found nicely fulfilled for two- or three-state systems although some risk is
involved by extending this assumption to an arbitrary number of states. We can
analyze the product Wy for the jth equation,

(Wy); = {(G"uG)(G* W)}, = (G*u¥), Z Gy

N
= ulxj — U Z G;}(\I/k + Z Gfkuk\I/k
k=1 k=1

—ulXj—i_Zij Uy — ug \Ijka ]:laaN (53)

By substituting Eq. (52) in Eq. (50) and introducing the approximation

R . .
_%(V+zt0}j)2xj+(u1—E)Xj:O, j=1,...,N (54)

the N equations for the Ny functions are uncoupled and each equation stands on
its own and can be solved independently. These equations are solved for the
same adiabatic PES u; but for different w;s.

Now, we assume that the functions, tw;, j =1, ..., N are such that these
uncoupled equations are gauge invariant, so that the various yx values, if
calculated within the same boundary conditions, are all identical. Again, in
order to determine the boundary conditions of the y function so as to solve
Eq. (53), we need to impose boundary conditions on the ¥ functions. We assume
that at the given (initial) asymptote all \I/f values are zero except for the ground-
state function \|Ii1 and for a low enough energy process, we introduce the
approximation that the upper electronic states are closed, hence all final wave
functions \I!{ are zero except the ground-state function \I/J? .

Hence, in order to contruct extended BO approximated equations for an N-
state coupled BO system that takes into account the non-adiabatic coupling
terms, we have to solve N uncoupled differential equations, all related to the
electronic ground state but with different eigenvalues of the non-adiabatic
coupling matrix. These uncoupled equations can yield meaningful physical
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solutions only when the eigenvalues of the g matrix fulfill certain requirement.
For example, these eigenvalues produce gauge invariant equations, that is, its
solution will be compatible with the assumption concerning the BO approxi-
mation.

A. The Quantization of the Non-Adiabatic Coupling Matrix
Along a Closed Path

In this section, we prove that the non-adiabatic matrices have to be quantized
(similar to Bohr—Sommerfeld quantization of the angular momentum) in order
to yield a continous, uniquely defined, diabatic potential matrix W(s). In
another way, the extended BO approximation will be applied only to those cases
that fulfill these quantization rules. The ADT matrix A(s, so) transforms a given
adiabatic potential matrix u(s) to a diabatic matrix W(s, s¢)

Wi(s, s0) = A*(s, so)u(s)A(s, so) (55)

A*(s, so) is the complex conjugate matrix of A(s, so), so is an initial point in
CS, and s is another point. It is assumed that W(s, s¢) and u(s, so) are uniquely
defined throughout the CS and to ensure the uniqueness of W(s, so) our aim is
to derive the features to be fulfilled by the A(s, so).

We introduce a closed-path I" defined by a parameter A. At the starting point
50, » = 0 and when the path complete a full cycle, A = B(2m, in case of circle).

We now express our assumption regarding the uniqueness of W(s, so) in the
following way:

WL =0)=W(OL=p) (56)

By using Eq. (54), we can rewrite Eq. (55) as
A*(0)u(0)A(0) = A*(B)u(B)A(B) (57)

Hence, u(pB) and u(0) are connected as below
u(B) =Du(0)D” D= A(B)A™(0) (58)

The D matrix is by definition a unitary matrix (it is product of two unitary
matrices) and since the adiabatic eigenvalues are uniquely defined in CS, we
have, u(0) = u(B). Then, Eq. (57) can be written as

u(0) = Du(0)D* (59)
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By performing the matrix multiplication, one can get the following relations
between the adiabatic eigenvalues #;(0) and the D matrix elements

STDDy 8w (0) =0  k=1,...,N (60)
=T

Equation (59) is valid for every arbitary point in CS and for an arbitary set of
nonzero adiabatic eigenvalues, u;(0), j=1,..., N, hence the D matrix
elements fulfill the relation

Dj) Dy =8 j,k=1,...,N (61)

Thus D is a diagonal matrix that contains diagonal complex numbers whose
norm is 1. By recalling Eq. (57), we get

A(B) = DA(0) (62)

Again, we already know that the ADT becomes possible only when the trans-
formation matrix A satisfy Eq. (63)

VA+1tA=0 (63)

where 1 is the non-adiabatic coupling matrix. A uniquely defined A matrix will
be guaranteed if and only if the elements of the t matrix are regular functions of
the nuclear coordinates at every point in CS.

However, in order to obtain a uniquely defined diabatic potential matrix, it is
not necessary for the A matrix to be uniquely defined throughout CS. Still, we
ignore this difficulty and go ahead to derive A by a direct integration of Eq. (62),

Al =exp|- [ as-<|a) (64)

So

where the integration is performed along a closed-path I" that combines s and s,
ds is a differential vector length element along this path, and the dot stands for a
scalar product. We already define the matrix G as the unitary transformation
matrix that diagonalizes the t matrix,

A(s) = Gexp [—iw J ds - t(s)] G*A(s0) (65)

5o
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Hence, the matrix D along a path I' takes the following form:
D =Gexp <—iw§; ds - t(s)) G* (66)
r

As the D matrix is a diagonal matrix with a complex number of norm 1, the
exponent of Eq. (65) has to fulfill the following quantization rule:

1 .
%mjjtds%(s):nj j=1,...,N (67)

where 7; is an integer and if the D matrix is multiplied by (—1) the values of all
n; parameters have to be one-half of an odd integer. This fact is the necessary
conditions for Eq. (53) to be gauge invariant or this quantization requirement
that is a necessary condition for having uniquely defined diabatic potentials also
guarantees the extended BO equation. Thus, the effect of non-adiabatic coupling
terms lead to a extended BO approximation.

B. The Quantization of the Three-State Non-Adiabatic
Coupling Matrix
We concentrate on an adiabatic tri-state model in order to derive the quantiza-
tion conditions to be fulfilled by the eigenvalues of the non-adiabatic coupling
matrix and finally present the extended BO equation. The starting point is the
3 x 3 non-adiabatic coupling matrix,

0 5] 15
T= —h 0 13 (68)
—t 13 0

where #;, j = 1,2, 3 are arbitary functions of the nuclear coordinates. The matrix
G diagonalizes t at a given point in CS

q ih®d — Kt —ith® — 31 1‘37\,\/5
G=——>| ind+ny —itz® + tty —6r02 (69)
A2 ) 5
A » /@)

where A = /15 + 13, ® = /1] + 13 + 13, and the three eigenvalues (0, +i®).
We already assume that the t matrix fulfills the conditions in Eqs. (48)
and (49). These conditions ensures that the matrix G diagonalizes t(s) along
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a close path is independent of s and by employing Eq. (65), we obtain the
D matrix,
B+ (8 +6)C 1S — 2615, —®nS| + 261135,
D =62 n0S, — 2655, B+ (B +8)C —108] + 266,Cy
OnS) + 2615 6OS) + 26160, g+ (B+153)C
(70)
where S| =sin(§®-ds); C; =cos(§@-ds); S, =sin’(L(f&-ds)); C=

cos? (3 (@ - ds)).
As the D matrix has to be a unit matrix in order to get a continuous, uniquely
defined diabatic matrix, the following integral is quantized as:

1 [. 1
E#w-ds:ﬁ§\/ﬁ+t§+t§'ds:n (71)

Thus from the D matrix, it is easy to say that for three states n will be an integer
and for two states n will be one-half of an odd integer.

C. The Study of the Three-State System

The numerical calculations have been done on a two-coordinate system with g
being a radial coordinate and ¢ the polar coordinate. We consider a 3 x 3 non-
adiabatic (vector) matrix t in which t, and t4 are two components. If we
assume 1, = 0, 14 takes the following form,

Ty
T =18 =8 (72)
q
where f( is a constant and g is a 3 x 3 matrix of the form
0 1 0
g=|-1 0 n (73)
0O —m O

where 1 is a constant. The t matrix couples the ground adiabatic state to the first
excited state and then the first excited state to the second excited state. There is
no direct coupling between the ground and the second excited state.

The adiabatic coupled SE for the above 3 x 3 non-adiabatic coupling matrix
are

1 o O MG

<T+M1 +2mq2 E>\|11 +mqa¢\l/2 zqu \ll3 = O
2(1+n?) fp O Nt 0

T AL A ) - = =\, = 74

2. 2
LR Nty 0 Ny
T ) P P L R PR
(Tt us + 2mg> Vs mq 0 2mg> i
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where T is the nuclear kinetic energy operator

1 /> 10 1 &
re (412,18 as)

2m\0¢> " 40 " ¢*3¢?

In the case of a coupled system of three adiabatic equations, mn (which is a
constant) is chosen such that the quantization condition is fulfilled. Inserting the
following values for #;, j = 1,2,3: 1 = 1/2¢, t, = 0, and 13 = 1/2¢g, we get the
following m value:

n=Van -1 for n=1-n=+3 (76)

Now, we are in a position to present the relevant extended approximate BO
equation. For this purpose, we consider the set of uncoupled equations as
presented in Eq. (53) for the N = 3 case. The function iw; that appears in these
equations are the eigenvalues of the g matrix and these are ®; = 2; 0, = —2,
and @3 = 0. In this three-state problem, the first two PESs are u; and u; as given
in Eq. (6) and the third surface us is chosen to be similar to u, but with D; =
10 eV. These PESs describe a two arrangement channel system, the reagent-
arrangement defined for R — oo and a product—arrangement defined for
R — —o0.

D. Results and Discussion

We present state-to-state transition probabilities on the ground adiabatic state
where calculations were performed by using the extended BO equation for the
N =3 case and a time-dependent wave-packet approach. We have already
discussed this approach in the N = 2 case. Here, we have shown results at four
energies and all of them are far below the point of CI, that is, £ = 3.0 eV.

In [66], we have reported inelastic and reactive transition probabilities. Here,
we only present the reactive case. Five different types of probabilities will be
shown for each transition: (a) Probabilities due to a full tri-state calculation
carried out within the diabatic representation; (b) Probabilities due to a two-
state calculation (for which 1 = 0) performed within the diabatic representa-
tion; (c) Probabilities due to a single-state extended BO equation for the N = 3
case (w; = 2); (d) Probabilities due to a single-state extended BO equation for
the N =2 case (w; = 1); (e) Probabilities due to a single-state ordinary BO
equation when ®; = 0.

At this stage, we would like to mention that the model, without the vector
potential, is constructed in such a way that it obeys certain selection rules,
namely, only the even — even and the odd — odd transitions are allowed. Thus
any deviation in the results from these selection rules will be interpreted as a
symmetry change due to non-adiabatic effects from upper electronic states.
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TABLE II
Reactive State-to-State Transition Probabilities when Calculations are Performed Keeping the
Position of the Conical Intersection at the Origin of the Coordinate System

Eev 0-0 0—-1 0—-2 0—-3 0—-4 0—-5 0—6 0—-7 0—8 0—9

1.0 0.0044¢ 0.0000 0.0063 0.0000
0.0000% 0.0049 0.0000 0.0079
0.0047¢ 0.0000 0.0195 0.0000
0.0000¢ 0.0045 0.0000 0.0080
0.0094¢ 0.0000 0.0362 0.0000

1.5 0.0325 0.0000 0.0592 0.0000 0.0311 0.0000
0.0000 0.1068 0.0000 0.0256 0.0000 0.0068
0.0419 0.0000 0.0648 0.0000 0.0308 0.0000
0.0000 0.1078 0.0000 0.0248 0.0000 0.0075
0.0644 0.0000 0.0612 0.0000 0.0328 0.0000

2.0 0.1110 0.0000 0.0279 0.0000 0.0319 0.0000 0.2177 0.0000
0.0000 0.1232 0.0000 0.0333 0.0000 0.0633 0.0000 0.1675
0.1068 0.0000 0.0172 0.0000 0.0274 0.0000 0.2277 0.0000
0.0000 0.1264 0.0000 0.0353 0.0000 0.0656 0.0000 0.1678
0.1351 0.0000 0.0217 0.0000 0.0304 0.0000 0.2647 0.0000

2.5 0.1318 0.0000 0.0295 0.0000 0.0091 0.0000 0.1375 0.0000 0.2043 0.0000
0.0000 0.0936 0.0000 0.0698 0.0000 0.1350 0.0000 0.0200 0.0000 0.2398
0.1256  0.0000 0.0155 0.0000 0.0084 0.0000 0.1545 0.0000 0.1977 0.0000
0.0000 0.0947 0.0000 0.0658 0.0000 0.1363 0.0000 0.0190 0.0000 0.2365
0.1831 0.0000 0.0343 0.0000 0.0089 0.0000 0.1607 0.0000 0.1157 0.0000

“ Tri-surface calculation.
bTwo-surface calculation.

¢ Single-surface calculation (o = 2).
4 Single-surface calculation (» = 1).
¢ Single-surface calculation (o = 0).

Effects due to the non-adiabatic coupling terms on reactive transition
probabilities are given in Table II. The two-state results and the corresponding
extended approximated BO equation results follow the odd — even selection
rules instead of even — even or odd — odd transitions in case of an ordinary
BO scheme. This symmetry change has been discussed at length in Section
II.A.2. The more interesting results are those for the tri-state case that appa-
rently does not show any GP effect. Diabatic calculations, extended, and
ordinary adiabatic BO calculations show the same selection rules. We thought
that the extended BO equation could be partially wrong and the GP effects
would become apparent but they did not. The present calculation reveals two
points: (1) That geometrical features do not necessarily show up where they are
expected as in the present tri-state case. (2) The extended approximated BO
equation contains the correct information regarding the geometric effects. So,
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due to the conical intersection, in the two-state case, it contains the GP effects,
whereas in tri-state case it tells us that such effects do not exist.

IV. QUANTUM DRESSED CLASSICAL MECHANICS

It is possible to parametarize the time-dependent Schrédinger equation in such a
fashion that the equations of motion for the parameters appear as classical
equations of motion, however, with a potential that is in principle more general
than that used in ordinary Newtonian mechanics. However, it is important that
the method is still exact and general even if the trajectories are propagated by
using the ordinary classical mechanical equations of motion.

Thus it is possible to obtain a very convenient formulation, which is
appealing from a computational point of view and allows the blending of
classical and quantum concepts in a new way, by a selection of the initial time-
dependent variables as in ordinary classical mechanics and an application of
Newtons mechanics for the propagation of these parameters. Thus the classical
mechanical part of the problem can, for example, be used to decide on the
branching ratio in a chemical reaction, whereas the quantum mechanical part,
which consist of grid points with quantum amplitudes, is used to project onto
asymptotic wave functions of the product channels. In this fashion, we avoid
describing the whole of space quantum mechanically at the same time, but only
locally around the classical trajectories. The consequence is a large saving in the
number of grid points and since it is also possible to minimize the computing
effort when propagating the equations of motion, the final theory is not only
easy to program, it is also efficient from a numerical point of view.

A. Theory

We directly give the relevant equations of motion for the simplest but
nevertheless completely general scheme that involves propagation of grid points
in a discrete variable representation (DVR) of the wave function. The grid points
are propagated by classical equations of motion in a so-called fixed width
approach for the basis set. For a derivation of these equations the reader is
referred to [81,89,90]. As mentioned, the theory generates classical equations
of motion for the center of the basis set or in the DVR representation the center
of the DVR grid points. Thus, the grid points follow the classical equations of
motion in space and if an odd number of grid points is used the middle one is
the classical trajectory. For a one-dimensional (1D) problem we therefore have
the following equations of motion:

(1) = pult)/m (17)
o) = - V0 (78)
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defining the trajectory. For the quantum amplitudes, we have the matrix
equation

ihd(r) = (W(r) + K)d(z) (79)

where W is a diagonal matrix and K the ‘“kinetic coupling” matrix. The
elements of the kinetic matrix is for a 1D system given as

ho ~ ~
Kj == 0,() 20+ 1)d,(5) (80)
where m is the mass associated with the x degree of freedom and oy is the
imaginary part of the width parameter, that is, oy = Im A of the Gauss—Hermite
(G-H) basis set [81]. Since the kinetic operators have already worked on the
basis functions before the DVR is introduced, the above matrix is what is left of
the kinetic coupling.

We also notice that in coordinates weighted by +/0/m the kinetic matrix is
universal, that is, independent of the system.

The zeros of the Nth Hermite polynomial are denoted z; and

J)n(zi) = d)n(zl)/\/‘?l (81)
A=Y (@) (82)
where
1 1
d,(2) = NG exp ( 5?) H,(z) (83)

The elements of the diagonal matrix W are given as

dv

W(x:) = V(x) — V(x(t) - .

(7 —x(1)) == (xi = x(0)* (84)

x=x(1)

that is, the actual potential V(x) from which a “reference” potential defined
by the forces evaluated at the trajectory is subtracted. In the fixed width
approach, the second derivative term V” is related to the imaginary part of the
width, that is, by the equation V” =4ImA?/m. This relation secures that
ImA(t) = constant if Re A(7y) = 0. In the simplest possible approach, the first
derivative is furthermore taken as the classical force in the sense of Newton.
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But we emphasize that more general forces may be applied [81,91]. The grid
points follow the trajectory and are defined through

x; = x(t) + /o / 20z (85)

For an atom—diatom collision, it is convenient for the formulation of the time
dependent Gauss—Hermite (TDGH) discrete variable representation (DVR)
theory to use Cartesian coordinates. That is, the center-of-mass distance
R = (X, Y, Z) and the three coordinates for the orientation of the diatomic
molecule r = (x, y, z) in a space-fixed coordinate with origo in the center of
mass of the diatomic molecules. Thus the dimension of the grid is 6 and will be
denoted (ny, ny, nz, ny, ny, n;), where n; is the number of grid points in
degrees of freedom i. Note that in this approach n; = 1 is an acceptable number
of grid points (the classical limit). The dimension of the quantum problem is
then H?:ln,-. But since one grid point in each mode makes sense from a
dynamical point of view it is possible to explore the simplest quantum
corrections to the classical limit, namely, the corrections obtained by adding
grid points in each dimension.

The initial amplitudes d;(#) are obtained by projecting the initial wave
function on the DVR basis set. For the initial wave function, we use

WX, Y, Z, %, 3, ) ~ 2 Bawe(R) (1) Yin(0.0) (56)

where Ogwp(R) is a Gaussian wavepacket in R, g,(r) a Morse vibrational wave
function, and Y}, a spherical harmonics for the diatomic molecule. The GWP is
projected on planewave functions exp(ikR) when energy is resolving the
wavepacket.

We can pick the initial random variables for the classical coordinates and
momenta in the way it is done in an ordinary classical trajectory program.

The projection on the final channel is done in the following manner. We let
the trajectory decide on the channel—just as in an ordinary classical trajectory
program. Once the channel is determined we project the wave function (in the
DVR representation) on the appropriate wave function for that channel

1 . 1
ﬁexp(zk'R’) S8 ()Y (6, 0") (87)

where R’ is the center-of-mass distance between A and BC, B and AC, or C and
AB according to the channel specification. Likewise 7/, &', and ¢’ specify the
orientation of the diatom in the reactive channel found by the trajectory. This
projection determines the final state (n'j'm’) distribution and the amplitudes
therefore. The final probability distribution is added for all the trajectories of the
channel and normalized with the classical total reactive cross-section of that
channel to get the cross-section.
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B. The Geometric Phase Effect

As demonstrated in [53] it is convenient to incorporate the geometrical phase
effect by adding the vector potential in hyperspherical coordinates. Thus
we found that the vector potential gave three terms, the first of which was zero,
the second is just a potential term

2
V= (88)
up? sin” 0
and the third term, V}, contains first derivative operators. By adding these terms
to the normal Hamiltonian operator, we can incorporate the geometric phase
effect.
We can express V), as

Vp=—— Py 89
b uiax,- % ( )

where p = /mimyms/(m; +my +m3), n= /2, and 0¢p/0X; is given in
Appendix C.

In order to incorporate the geometric phase effect in a formulation based on
an expansion in G-H basis functions we need to consider the operation of the
momentum operator on a basis function, that is, to evaluate terms as

e enp (4 10+ o) = 2(0) 4 ReAL(0(x = x0)) ) 1) (90

Since we will normally use the fixed-width approach we can simplify the
calculation by using Re A(f) = 0. Thus we have

(2ImA(1) /1) exp(ip. (1) (x = x(1)) /A) (P (1), (x, 1)

+ (1/i)\/ImA(1) /h(Vnd,_y — Vi +10,4,) (91)
where we have used
Imy(z) = —Zln (21272@) (92)

ol 1) =~ exp (i) H,(2) (93)
\/nl2n/n 2

& = /2ImA(1) /h(x — x(1)) (94)
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C. The DVR Formulation

In the basis set formulation, we need to evaluate matrix elements over the G-H
basis functions. We can avoid this by introducing a discrete variable
representation method. We can obtain the DVR expressions by expanding the
time-dependent amplitudes a,(¢) in the following manner:

Mz

Cl d)n Zl (95)
i=1

where z; are zeros of the N'th Hermite polynomium and n =0, 1, ..., N — 1.

Thus we can insert this expansion in the expression for ,(f) and obtain
equations for ¢;() instead. In this operation, we need to use

Z b (@) da(z) = Aidy (96)

36 (E) ~ @ 97)

J

After a little manipulation, we obtain

ihd 1 Z di(1) (Hyd; + M) + Ty) (98)
where
= Fu(pu(1)8; — ih/ImA/ A, /A

X (Z d)n(zi)(\/;ld)nfl(zj) —vn+ 1¢n+l(zj))> (100)

7y = MMAW 1241257 6 ()2 4+ 1), (5) (101)

m

Thus, the matrix elements Mgf) are those that should be added in order to

incorporate the geometric phase effect.

Extension to six dimensions is now straightforward. We obtain similar
expressions just with the y and z components and the index n running over the
basis functions included in the particular degree of freedom. For the functions
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F,, and so on, we obtain

F,=F(X +xtgd/d}) (102)
Fy=F(Y +ytg¢/d}) (103)
F,=F(Z+ztgd/d}) (104)
= F(x — Xtg od?) (105)
= F(y - Yigdd}) (106)
=F(z— Ztg od?) (107)

where the function F is given as F = —(/i/2p)cos ¢sin¢/(r-R) and d? =
m (1 —my/M)/p with M =m; +my +ms [72,73]. In six dimensions, the
amplitudes d;(¢) [in Eq. (97)] will be of dimension N = H?:]N,-. Here, in mass
scaled coordinates we have used [48]

?/dF = %z(l—i-sinecosd)) (108)
1

R*d} = 5P p?(1 —sin@cos ) (109)

r-R:—%pzsinGSind) (110)

Since the geometric phase effect is related to the angle ¢ we express ¢ as

r-R

tgd):—m (111)
and obtain
0p  cos¢sind 2
0¢ cosdsind 2
&_W(X Xtgddy) (113)

plus similar expressions for the y and z components.

Note that in this TDGH-DVR formulation of quantum dynamics, the
inclusion of the geometric phase effects through the addition of a vector
potential is very simple and the calculations can be carried out with about the
same effort as what is involved in the ordinary scattering case.

Figure 3 shows the results with and without including the geometric phase
effect for the D + H, reaction. The basis set is taken as 1,1,1,15,15,15, that is,
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Figure 3. Cross-sections obtained with a (1,1,1,15,15,15) basis set and the TDGH-DVR
method for the D+ H, (v=1,j=1) — DH (v =1, j) + H reaction at 1.8-eV total energy. The
solid line indicates the values obtained without the vector potential and the dashed with a vector
potential. The dashed line indicates the experimental results [49-52].

the X, Y, Z variables are treated classically. Altogether 200 trajectories were
calculated. We notice that the branching ration, that is, the total reactive cross-
section is obtained from the trajectories but the distribution is obtained by a
projection of the DVR points on final rotational-vibrational states of the
product. The maximum of the distribution is now j/ = 9 (in better agreement
with full quantum calculations). It is shifted to j/ = 8 if the geometric phase is
included. The agreement with experimental data is good for j/ values <8 but
overestimated at higher values. Since part of the system is still treated classi-
cally, we attribute this discrepancy to the lacking ability of classical trajectories
to yield proper state-resolved reaction cross-sections (see also Fig. 1).

V. CONCLUSION

In this chapter, we discussed the significance of the GP effect in chemical
reactions, that is, the influence of the upper electronic state(s) on the reactive
and nonreactive transition probabilities of the ground adiabatic state. In order to
include this effect, the ordinary BO equations are extended either by using a
HLH phase or by deriving them from first principles. Considering the HLH
phase due to the presence of a conical intersection between the ground and the
first excited state, the general form of the vector potential, hence the effective
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kinetic energy operator, for a quasi-JT model and for an A 4 B, type reactive
system were presented.

The ordinary BO approximate equations failed to predict the proper
symmetry allowed transitions in the quasi-JT model whereas the extended
BO equation either by including a vector potential in the system Hamiltonian or
by multiplying a phase factor onto the basis set can reproduce the so-called
exact results obtained by the two-surface diabatic calculation. Thus, the
calculated transition probabilities in the quasi-JT model using the extended BO
equations clearly demonstrate the GP effect. The multiplication of a phase
factor with the adiabatic nuclear wave function is an approximate treatment
when the position of the conical intersection does not coincide with the origin of
the coordinate axis, as shown by the results of [60]. Moreover, even if the total
energy of the system is far below the conical intersection point, transition
probabilities in the JT model clearly indicate the importance of the extended BO
equation and its necessity.

The integral and differential cross-section obtained by using QCT calcula-
tions on the ground adiabatic surface of the D + H, system at a total energy of
1.8 eV, clearly indicates the GP effect where the ground state of this system has
a conical intersection with its’ first excited state at a total energy of 2.7 eV.
Similarly, semiclassical calculations on the same system with or without includ-
ing a vector potential in the system Hamiltonian confirms this effect. Preliminary
calculations with the new TDGH-DVR method also show a less dramatic effect.
In the case of the H 4+ D, reaction at total energy 2.4 eV, calculated rotational
state and scattering angle distributions obtained from the QCT calculations on
the LSTH surface demonstrate quantitative change due to the GP effect but the
qualitative variation, at least in the integral cross-section, is not significant.

Formulation of the extended BO approximate equations using the HLH phase
is based on the consideration of two coupled states. If the ground state of a
system is coupled with more than one excited state, it has been demonstrated
that the phase factor could be different from the HLH phase factor. In this
formulation, we consider the BO coupled equations with the aim of deriving an
approximate set of uncoupled equations that will contain the effect of non-
adiabatic coupling terms. When the electronic states are degenerate, some of the
non-adiabatic coupling terms may become infinite and affect the dynamics of
the nuclei irrespective of how far it occurs from the point of the degeneracy.
Hence, the importance of non-adiabatic coupling terms has been taken into
account when deriving the uncoupled BO from the coupled ones. In this
approch, the non-adiabatic coupling terms are not eliminated but shifted from
the off-diagonal position to the diagonal one and the BO approximation has
been introduced afterward. This shift has been done with the physical
assumption that the non-adiabatic coupling matrix guarantees the continuous,
single-valued diabatic potential matrix in the CS, that is, along a close path the
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non-adiabatic coupling matrix follows the Bohr—Sommerfeld type quantization
rule. This quantization guarantees that all N decoupled equations obtained by
deleting the potential coupling terms are invariant under gauge transformations
and follow proper boundary conditions. These extended—approximated BO
equations are tested for a tri-state system. First, we performed a so-called exact
calculation in the diabatic representation to obtain reactive and nonreactive
transition probabilities on the ground adiabatic surface and then the extended—
approximated BO equations for the ground adiabatic surface are solved to get
the relevant results. State-to-state transition probabilities obtained by both
calculations indicate that the new approximate BO equations yield correct
results for a tri-state system.

Hence, systems having conical intersections between two or more than two
electronic states exhibit geometric phase effects. For two-states systems, the
HLH phase factor is the same as that obtained by Baer et al. from first principles
but the new phase factor appears to be different and depends on the number of
electronic states coupled. Considering a conical intersection between the ground
and first excited state of the D 4+ Hj reactive system, the extended BO equations
are the same in both of the above-mentioned approaches and we found
significant GP effect at a total energy of 1.8 eV. However, it has been possible to
obtain good agreement between experiment and theory without including the
effect for the H + D, system at a total energy 2.4 eV. At this point, it is worth
noting that the calculations on the H 4 D, reaction were carried out on a
different potential energy surface than the one we used in our calculations. May
be the reactivity of one potential energy surface could hide the GP effect while
another could expose it. At the same time, the importance of the GP effect is
clearly understood in the quasi-JT model. The inclusion of a simple phase factor
(HLH) or by using the extended BO equations can change the parity for
vibrational transitions in the 2D two-surface model and give good agreement
with results obtained by an exact two-state diabatic calculation. Again,
calculations on a tri-state 2D quasi-JT model using the extended BO equations
(N > 2) derived by Baer et al. not only exhibit geometric phase effects but also
the new phase factor that changes with the number of electronic states coupled.

APPENDIX A: THE JAHN-TELLER MODEL AND THE
HERZBERG-LONGUET-HIGGINS PHASE

When two electronic states are degenerate at a particular point in configuration
space, the elements of the diabatic potential energy matrix can be modeled as a
linear function of the coordinates in the following form:

W:k(y x> (A.1)

=y
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where k is the force constant and (x, y) are the nuclear coordinates. The
eigenvalues and eigenvectors of the above matrix represent the adiabatic poten-
tial energy surfaces and the columns of the ADT matrix, respectively. In order to
carry out this diabatization, we use the following transformations between the
Cartesian (x, y) and polar (g, ¢) coordinates: x = gsin¢$ and y = gcos ¢.

The eigenvalues and eigenfunctions of this model are

uyr = tkq (A.2)

where ¢ =0, oo and ¢ = 0,27, and

g = (\}E cos ¢ /2, % sin4>/2)

£y = (\/LE sin /2, —ﬁ cosd>/2)

respectively.

These adiabatic eigenfunctions depend only on the angular coordinate ¢ and
are not single valued in configuration space when ¢ changes to ¢ + 2n—a
rotation that brings the adiabatic wave functions back to their initial position.
This multivaluedness of the adiabatic eigenfunctions was first revealed by
Herzberg and Longuet-Higgins. In order to avoid multivalued electronic
eigenfunctions they suggested that the corresponding nuclear wave function
be treated with care. While solving the nuclear SE, this feature needs to be
incorporated explicitly through specific boundary conditions. It is worth
mentioning that in the HLH state realistic ab initio electronic wave functions
posses the multivaluedness feature.

Longuet-Higgins corrected the multivaluedness of the electronic eigenfunc-
tions by multiplying them with a phase factor, namely,

n;() = exp(i)§;(9)  j=1,2 (A.4)

where o = ¢/2. It is important to note that n;(¢), j = 1, 2 are single-valued
complex eigenfunctions.

APPENDIX B: THE BORN-OPPENHEIMER TREATMENT

The total electron—nuclear Hamiltonian of a molecular sytem is defined as

H=T,+H,(e|n) (B.1)
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where T, is the kinetic energy operator for the nuclei and H,(e | n) is the
electronic Hamiltonian and

H,=T,+ V(e|n) (B.2)

with T, being the kinetic energy operator of the electrons and V(e | n) the
potential energy operator as a function of electronic coordinates(e) with nuclear
coordinates(n).

The BO expansion of the molecular wave function

N

W(e, n) =D Wi(n)&i(e | no) (B.3)

i=1

where the functions {;(n) are the nuclear coordinate-dependent coefficients,
later considered as the nuclear wave function, and the &;(e | ng)s are the
electronic eigenfunctions satisfying the equation

I:Ie(no)E_,i(e | no) = ui(no)&;(e | no) i=1,...,N (B.4)

Here, the u;(ng)s are the electronic eigenvalues dependent on the nuclear
coordinate ny. Note that ny = n is defined as the adiabatic case and ny # n is
defined as the diabatic case.

Substituting Eqs. (B.1) and (B.3) into the time-independent Schrodinger
equation HU (e, n) = E¥(e, n), one obtains

(Tu+ He = E) Y _Ui(n)&;(e | no) =0 (B.5)
Below, we apply the bra—ket notation to electronic coordinates only,

(&, (m)IE;(no)) = {g”"(”’ oo 7 1o (B.6)

dji; forn = ng

By returning back to Eq. (B.5), we have

N N

> Tali(m)l&ile [ no)) + D Wi(n)(He — E)|gi(e | ng)) = 0 (B.7)

i=1 i=1
If we consider the ADIABATIC (ny = n) case, we get
N

Y Tai(n)[g(e | n) + Z\Ifi(n)(ui(n) —E)[Gi(e[n)) =0 (B.8)

i=1
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Multiplying by (£;| and integrating over electronic coordinates yields

Z<§j|Tn‘Ijn(n)|E.ai> + (uj(n) _E)\Ijj(n> =0 j=1...,N (B9)

i=1

where V is the gradient operator and T, = —(1/2m)V>.
Hence, the following matrix element becomes

1
(GIT;(n)|E;) = _E{Sijv2\|’i +2(§|VE;) + <E.~j|v2‘i>\|/i} (B.10)
and the non-adiabatic coupling matrix elements are defined as below,

W =(glve) 1 =gV (B.11)

For example, in the case of the x component of the nuclear coordinates we have

m_ /.| @ _
Tii = <§j a§i> i = <§j

Therefore, Eq. (B.10) in terms of this notation becomes

62
55 (B.12)

I IE) = — 5 (872, + 20 Vg + 5P} (B13)

It is important to note that the non-adiabatic coupling terms have a direct effect
on the momentum of the nuclei, which is the reason it is called a dynamic
coupling. By substituting Eq. (B.13) in Eq. (B.9), we get

LN~ ) )y —

Z(ZTji Vi1 ;) =0 (B.14)

i=1

1
2m

VA, + (5(n) = E)j(n)

" 2m

This is the electronic adiabatic Schrodinger equation and in the case of a single
coordinate x Eq. (B.14) takes the following form:

L& L~ (. 4 @)
o ) = BN — 55 (25 S ) =0 (813)

When the non-adiabatic coupling terms t(!) and t® are considered negligibly
small and dropped from Eq. (B.15), we get the uncoupled approximate
Schrodinger equation

Lk ) — ENn) =0 (8.16)
2mdx? win = ’
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or more general,

1

%Vz\l/j(n) + (uj(n) — E)y;(n) = 0 (B.17)

The approximation involved in Eq. (B.17) is known as the Born—-Oppenheimer
approximation and this equation is called the Born—Oppenheimer equation.

By assuming the Hilbert space of dimension N, one can easily establish the
relation between couplmg matrices 1) and t(® by considering the (ij)th matrix
element of V - 1(!

Vrfj” — V(&[VE) = (VE|VE) + (&]V7E)
= (V&|V§) + ng2>

We can resolve the unity operator in the following way:

N
=> e

k=1

and obtain,

(VEIVE) = (VE|IIVE) = <|<Zak><ak>|a>

k=
N N
=) (VEIEN(EIVE) = = > (EIVENEIVE)
k=1 k=1
H_(1
= _Zrl(ci)rl(cj) = _(1'(1)),'2/
k=1

Hence, the elements of (1) and 1@ are related as below
1@ = (r(”)izj + Vrl(-jl)
and finally in matrix notation

1@ = (W) 4 v (B.18)

Incorporating relation (B.18) in Eq. (B.14), we can write in matrix form,

—2—v2\|f+<u—2ir<‘ )q/—i(zr” V4+viy=0 (B.19)
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which can be expressed in compact form as

b

5 (V+ )+ (u—EW =0 (B.20)

So far, we have treated the case n = ny, which was termed the adiabatic
representation. We will now consider the diabatic case where n is still a variable
but ny is constant as defined in Eq. (B.3). By multiplying Eq. (B.7) by
(€;(e | no)| and integrating over the electronic coordinates, we get

1, N 5
(-5 7~ E )yt + > (g el mlite [ e e (=0 (321)
We can rewrite the electronic Hamiltonian in the following form:
H,(e|n)=T,+V(e|n)
H,(e |ny) =T, + V(e |no) (B.22)
Hc(e [ n) = He(e [ no) +{V(e |n) = V(e|no)}

and by using Eq. (B.22), we can calculate the following matrix element:
(e | no)lHe(e [ n)|E;(e | mo)) = u(no)dji + Vyi(n | no) (B.23)
where

Vii(n [ no) = (&j(e | no)[V(e [ n) = V(e | no)|&;(e | no))

¢ (B.24)
vii(n | no) = vi(n | no) + u;j(no)d;i

By substituting the expression for the matrix elements in Eq. (B.21), we get the
final form of the Schrodinger equation within the diabatic representation

(— ﬁw _ E) V() + > vii(n | no)W(n) =0 (B.25)
i=1

where the coupling terms among the states are due to potential coupling.
By substituting the following transformation
Y =Ad (B.26)

into the adiabatic Schrédinger equation (B.20), we obtain the following
expression,

- ﬁ {AV?® + 2(VA +14) - V& + {(t1 + V) - (VA +14)}®} + (u — E)AD
=0 (B.27)
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If the transformation matrix A is chosen in such a way that VA 4+ 1A =0,
Eq. (B.27) can be rearranged to the following form:

I 1
—— VP AT'uA — E)P = B.2
3 V0 + (A" u ) 0 (B.28)

which is basically in “diabatic” representation and identical looking with
Eq. (B.25) and A is the adiabatic—diabatic transformation matrix.

APPENDIX C: FORMULATION OF THE VECTOR POTENTIAL
The vector potential is derived in hyperspherical coordinates following the

procedure in [54], where the connections between Jacobi and the hyperspherical
coordinates have been considered as below (see [67])

0 9) ¢
= — cos— + sm2 cos—

}(2 z
¢

cos— — sin— |sin—
) 2

( sg+ sin )sin%

cos? — sin? )eos
2 S 0082

%!v

%\

%\

The interatomic distances of the triangle ABC formed due to any A + BC type
reactive system are as follows:

2 2

Iii%B %(1+sinecosd))
I

Ry p?

% 5 (1 +sinBcos (¢ — &,)) (C2)
2

RZ ’

% %(1+smecos(¢+§3))
3

and these interatomic distances can also be expressed in terms of Jacobi
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coordinates
2 2 2\ 2
RAB = (rx + ry)dl

RZBC:(RZ—&—RZ)d%(liCOSE"Z) (r2+r2)d§(1+00552)
X y x

2 y 3
— (reRy + 1yR))d5 sin &, (C3)
d;(1 - &2(1
R, = (R + Rg)w e )%

+ (1R, + ryR,)d3 sin &,

where d? = (my/p)(1 — my /M), my my and mjy are the masses of the atom A, B,
and C, respectively, in the corners of the triangle ABC. The parameters
M =my +mp +m3 and p = \/mymyms;/M and the angles are given by &, =
2 arctan (m3/p) and &; = 2 arctan (my/p).

By using Eq. (C.2) one can write

RZ RZ RZ RZ RZ RZ
CA AB BC AB BC C.
(o ) cos & — (G ) eos &+ (T - )

LA AR (C4)
—— — — ] SIn — |- — Sin
(G~ ) sin & — (e ) sin &

tan =

It would be convenient for obtaining the expressions of the gradient of the
hyperangle ¢ with respect to Jacobi coordinates to introduce the physical region
of the conical intersection in the following manner:

0p O ORap , O ORpc O ORca

a—l"i_aRAB ar,- E)RBC a}",' E)RCA ar,»

0p O ORap , O ORpc =~ O ORca
OR; ORasg OR;, ORpc OR;  ORca OR;

(C.5)

where i = x, y, z. To obtain explicit expressions for ¢, we have used Egs.
(C.2-C.5) and after some algebra (!) it is interesting to note that \7¢ becomes
independent of dy and &, for any arbritrary A 4+ BC type reactive system. We obtain

g—ij: —ﬁ(nsin(b—i—&cosd))
op 2
OR; p?sin®
0

X0
or,

9 _
oR.

(—ricosd + R; sin d)
(C.6)

0
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where i = x, y. Similarly, explicit expressions for 570 are obtained using Eqs.
(C.1)

o _ 2R
or,  p?
00 2R,
ory - p?
00 2y
OR, p?
00 2pr (€7
oR,  p*
00

Lo

or,

00

&0

The azimuthal angle (n) about the conical intersection is related with hyper-
angles 0 and ¢ as

sin 0 sin ¢

C.
cos B sin 0 cos ¢ + sin Oy cos O (C8)

n(0, ¢) = ¢’ = arctan

where 0 indicates the position of the conical intersection.

The gradient of \/n with respect to Jacobi coordinates (the vector potential)
considering the physical region of the conical intersection, is obtained by using
Egs. (C.6-C.8) and after some simplification (!) we get,

on 2 [RysinBysin¢ + (cos By sin O + sin O cos O cos §) (r, sin d + Ry cos )]

o, p? [sin® O sin” ¢ + (cos O sin O cos ¢ + sin O cos 9)2]

on 2 [RsinBysin ¢ + (cos By sin O + sin O cos 0 cos §)(ry sin P + Ry cos )]
ory p? [sin® 0 sin” ¢ 4 (cos Oy sin O cos ¢ + sin O cos 0)7]

on

~1_0

or,

on 2 [rysinBgsin ¢ + (cos O sin O + sin 6y cos 0 cos §)(—r, cos 4 R, sin )]
OR, p? [sin” 0 sin® ¢ + (cos O sin O cos ¢ + sin By cos 6)?]
2

on 2 [r,sinOgsin ¢ + (cos O sin O + sin Oy cos 0 cos §)(—r, cos d 4 R, sin )]
[sin? O sin® ¢ + (cos O sin O cos ¢ + sin O cos 0)?]

oR, p?

on _
OR,

S o

(C.9)
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For the Hj3 isotopic variants, we can calculate the values of 8y and ¢, by
introducing Rag = Rpc = Rca. Moreover, we get 6y = ¢, = 0 for an Az and
o = 0 for an AB, type reactive system. In case of an A + B, type reaction, one
can use

& - &

sinfp = | 5———
d3cos&, — d?

(C.10)

and obtain 0y = 11.5° for DH; and 6y = 14.5° for HD,. The actual position of
the CT on the PES is obtained through the equation, V(p,, 09, ¢y) = Ecr where
E¢y is the potential energy at the point of the CI.
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I. INTRODUCTION AND PREVIEW

In quantum theory, physical systems move in vector spaces that are, unlike those
in classical physics, essentially complex. This difference has had considerable im-
pact on the status, interpretation, and mathematics of the theory. These aspects
will be discussed in this chapter within the general context of simple molecular
systems, while concentrating at the same time on instances in which the
electronic states of the molecule are exactly or nearly degenerate. It is hoped
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that as the chapter progresses, the reader will obtain a clearer view of the
relevance of the complex description of the state to the presence of a degeneracy.

The difficulties that arose from the complex nature of the wave function
during the development of quantum theory are recorded by historians of science
[1-3]. For some time during the early stages of the new quantum theory
the existence of a complex state defied acceptance ([1], p. 266). Thus, both de
Broglie and Schrodinger believed that material waves (or “matter” or “de
Broglie” waves, as they were also called) are real (i.e., not complex) quantities,
just as electromagnetic waves are [3]. The decisive step for the acceptance of
the complex wave came with the probabilistic interpretation of the theory, also
known as Born’s probability postulate, which placed the modulus of the wave
function in the position of a (and, possibly, unique) connection between theory
and experience. This development took place in the year 1926 and it is remark-
able that already in the same year Dirac embraced the modulus-based inter-
pretation wholeheartedly [4]. Oddly, it was Schrodinger who appears to have, in
1927, demurred at accepting the probabilistic interpretation ([2], p. 561, footnote
350). Thus, the complex wave function was at last legitimated, but the modulus
was and has remained for a considerable time the focal point of the formalism.

A somewhat different viewpoint motivates this chapter, which stresses the
added meaning that the complex nature of the wave function lends to our
understanding. Though it is only recently that this aspect has come to the
forefront, the essential point was affirmed already in 1972 by Wigner [5] in his
famous essay on the role of mathematics in physics. We quote from this here at
some length:

“The enormous usefulness of mathematics in the natural sciences is
something bordering on the mysterious and there is no rational explanation
for. .. this uncanny usefulness of mathematical concepts. . .

The complex numbers provide a particularly striking example of the
foregoing. Certainly, nothing in our experience suggests the introducing of these
quantities. . . Let us not forget that the Hilbert space of quantum mechanics is
the complex Hilbert space with a Hermitian scalar product. Surely to the
unpreoccupied mind, complex numbers... cannot be suggested by physical
observations. Furthermore, the use of complex numbers is not a calculational
trick of applied mathematics, but comes close to being a necessity in the
formulation of the laws of quantum mechanics. Finally, it now (1972) begins to
appear that not only complex numbers but analytic functions are destined to play
a decisive role in the formulation of quantum theory. I am referring to the rapidly
developing theory of dispersion relations. It is difficult to avoid the impression
that a miracle confronts us here [i.e., in the agreement between the properties of
the hypernumber \/( —1) and those of the natural world].”

A shorter and more recent formulation is “The concept of analyticity turns
out to be astonishingly applicable’ ([6], p. 37).
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What is addressed by these sources is the ontology of quantal description. Wave
functions (and other related quantities, like Green functions or density matrices), far
from being mere compendia or short-hand listings of observational data,
obtained in the domain of real numbers, possess an actuality of their own. From
a knowledge of the wave functions for real values of the variables and by relying
on their analytical behavior for complex values, new properties come to the open, in
a way that one can perhaps view, echoing the quotations above, as ‘“miraculous.”

A term that is nearly synonymous with complex numbers or functions is
their ““phase.” The rising preoccupation with the wave function phase in the
last few decades is beyond doubt, to the extent that the importance of phases
has of late become comparable to that of the moduli. (We use Dirac’s
terminology [7], which writes a wave function by a set of coefficients, the
“amplitudes,” each expressible in terms of its absolute value, its ‘“‘modulus,”
and its “phase.”) There is a related growth of literature on interference effects,
associated with Aharonov—Bohm and Berry phases [8—14]. In parallel, one has
witnessed in recent years a trend to construct selectively and to manipulate
wave functions. The necessary techniques to achieve these are also anchored in
the phases of the wave function components. This trend is manifest in such
diverse areas as coherent or squeezed states [15,16], electron transport in mesoscopic
systems [17], sculpting of Rydberg-atom wavepackets [18,19], repeated and
nondemolition quantum measurements [20], wavepacket collapse [21], and
quantum computations [22,23]. Experimentally, the determination of phases
frequently utilizes measurement of Ramsey fringes [24] or similar methods [25].

The status of the phase in quantum mechanics has been the subject of debate.
Insomuch as classical mechanics has successfully formulated and solved
problems using action-angle variables [26], one would have expected to see in
the phase of the wave function a fully “observable” quantity, equivalent to and
having a status similar to the modulus, or to the equivalent concept of the
“number variable”’. This is not the case and, in fact, no exact, well-behaved
Hermitean phase operator conjugate to the number is known to exist. (An article
by Nieto [27] describes the early history of the phase operator question, and
gives a feeling of the problematics of the field. An alternative discussion,
primarily related to phases in the electromagnetic field, is available in [28]). In
Section II, a brief review is provided of the various ways that phase is linked to
molecular properties.

Section IIT presents results that the analytic properties of the wave function
as a function of time ¢ imply and summarizes previous publications of the
authors and of their collaborators [29-38]. While the earlier quote from Wigner
has prepared us to expect some general insight from the analytic behavior of the
wave function, the equations in this section yield the specific result that, due to
the analytic properties of the logarithm of wave function amplitudes, certain
forms of phase changes lead immediately to the logical necessity of enlarging
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the electronic set or, in other words, to the presence of an (otherwise)
unsuspected state.

In the same section, we also see that the source of the appropriate analytic
behavior of the wave function is outside its defining equation (the Schrodinger
equation), and is in general the consequence of either some very basic
consideration or of the way that experiments are conducted. The analytic
behavior in question can be in the frequency or in the time domain and leads
in either case to a Kramers—Kronig type of reciprocal relations. We propose
that behind these relations there may be an ‘“‘equation of restriction,”” but while
in the former case (where the variable is the frequency) the equation of
restriction expresses causality (no effect before cause), for the latter case (when
the variable is the time), the restriction is in several instances the basic
requirement of lower boundedness of energies in (no-relativistic) spectra
[39,40]. In a previous work, it has been shown that analyticity plays further
roles in these reciprocal relations, in that it ensures that time causality is not
violated in the conjugate relations and that (ordinary) gauge invariance is
observed [40].

As already mentioned, the results in Section III are based on dispersions
relations in the complex time domain. A complex time is not a new concept. It
features in wave optics [28] for “complex analytic signals” (which is an
electromagnetic field with only positive frequencies) and in nondemolition
measurements performed on photons [41]. For transitions between adiabatic
states (which is also discussed in this chapter), it was previously introduced in
several works [42—45].

Interestingly, the need for a multiple electronic set, which we connect with
the reciprocal relations, was also a keynote of a recent review ([46] and previous
publications cited there and in [47]). Though the considerations relevant to this
effect are not linked to the complex nature of the states (but rather to the
stability of the adiabatic states in the real domain), we have included in
Section III a mention of, and some elaboration on, this topic.

In further detail, Section III stakes out the following claims: For time-
dependent wave functions, rigorous conjugate relations are derived between
analytic decompositions (in the complex ¢ plane) of phases and of log moduli.
This entails a reciprocity, taking the form of Kramers—Kronig integral relations
(but in the time domain), holding between observable phases and moduli in
several physically important cases. These cases include the nearly adiabatic
(slowly varying) case, a class of cyclic wave functions, wavepackets, and
noncyclic states in an “‘expanding potential.” The results define a unique phase
through its analyticity properties and exhibit the interdependence of geometric
phases and related decay probabilities. It turns out that the reciprocity property
obtained in this section holds for several textbook quantum mechanical
applications (like the minimum width wavepacket).
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The multiple nature of the electronic set becomes especially important when
the potential energy surfaces of two (or more) electronic states come close,
namely, near a ““conical intersection” (ci). This is also the point in the space of
nuclear configurations at which the phase of wave function components
becomes anomalous. The basics of this situation have been extensively studied
and have been reviewed in various sources [48-50]. Recent works [51-57] have
focused attention on a new contingency: when there may be several ci’s between
two adiabatic surfaces, their combined presence needs to be taken into account
for calculations of the non-adiabatic corrections of the states and can have
tangible consequences in chemical reactions. Section IV presents an analytic
modeling of the multiple ci model, based on the superlinear terms in the
coupling between electronic and nuclear motion. This section describes in detail
a tracing method that keeps track of the phases, even when these possess
singular behavior (viz., at points where the moduli vanish or become singular).
The continuous tracing method is applicable to real states (including stationary
ones). In these, the phases are either zero or 1. At this point, it might be objected
that in so far as numerous properties of molecular systems (e.g., those relating to
questions of stability and, in general, to static situations and not involving a
magnetic field) are well described in terms of real wave functions, the complex
form of the wave function need, after all, not be regarded as a fundamental
property. However, it will be shown in Section IV that wave functions that are
real but are subject to a sign change, can be best treated as limiting cases in
complex variable theory. In fact, the ‘“phase tracing” method is logically
connected to the time-dependent wave functions (and represents a case of
mathematical “embedding”).

A specific result in Section IV is the construction of highly nonlinear
vibronic couplings near a ci. The construction shows, inter alia, that the
connection between the Berry (or “topological,” or ‘“‘geometrical”’) phase,
acquired during cycling in a parameter space, and the number of ci’s circled
depends on the details of the case that is studied and can vary from one situation
to another. Though the subject of Berry phase is reviewed in Chapter 12 in this
volume [58], we note here some recent extensions in the subject [S9-61]. In
these works, the phase changes were calculated for two-electron wave functions
that are subject to interelectronic forces . An added complication was also
considered, for the case in which the two electrons are acted upon by different
fields. This can occur when the two electrons are placed in different environ-
ments, as in asymmetric dimers. By and large, intuitively understandable results
are found for the combined phase factor but, under conditions of accidental
degeneracies, surprising jumps (named “‘switching’”) are noted. Some applica-
tions to quantum computations seem to be possible [61].

The theory of Born—Oppenheimer (BO) [62,63] has been hailed (in an
authoritative but unfortunately unidentified source) as one of the greatest
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advances in theoretical physics. Its power is in disentangling the problem of two
kinds of interacting particles into two separate problems, ordered according to
some property of the two kinds. In its most frequently encountered form, it is
the nuclei and electrons that interact (in a molecule or in a solid) and the
ordering of the treatment is based on the large difference between their masses.
However, other particle pairs can be similarly handled, like hadronic mesons
and baryons, except that a relativistic or field theoretical version of the BO
theory is not known. The price that is paid for the strength of the method is that
the remaining coupling between the two kinds of particles is dynamic. This
coupling is expressed by the so-called non-adiabatic coupling terms (NACTs),
which involve derivatives of (the electronic) states rather than the states
themselves. ‘“Correction terms’ of this form are difficult to handle by con-
ventional perturbation theory. For atomic collisions the method of “perturbed
stationary states” was designed to overcome this difficulty [64,65], but this is
accurate only under restrictive conditions. On the other hand, the circumstance
that this coupling is independent of the potential, indicates that a general
procedure can be used to take care of the NACTs [66]. Such general procedure
was developed by Yang and Mills in 1954 [66] and has led to far reaching
consequences in the theory of weak and strong interactions between elementary
particles.

The interesting history of the Yang—Mills field belongs essentially to particle
physics [67-70]. The reason for mentioning it here in a chemical physics
setting, is to note that an apparently entirely different procedure was proposed
for the equivalent problem arising in the molecular context, namely, for the
elimination of the derivative terms (the NACTs) from the nuclear part of the BO
Schrodinger equation through an adiabatic—diabatic transformation (ADT)
matrix [71,72]. It turns out that the quantity known as the tensorial field [or
covariant, or Yang-Mills (YM) field, with some other names also in use] enters
also into the ADT description, though from a completely different viewpoint,
namely, through ensuring the validity of the ADT matrix method by satisfaction
of what is known as the ““curl condition.” Formally, when the “‘curl condition”
holds, the (classical) YM field is zero and this is also the requirement for the
strict validity of the ADT method. [A review of the ADT and alternative
methods is available in, e.g., [48,49], the latter of which also discusses the YM
field in the context of the BO treatment.] However, it has recently been shown
by a formal proof, that an approximate construction of the ADT matrix (using
only a finite, and in practice small, number of BO, adiabatic states) is possible
even though the “curl condition’ may be formally invalid [36]. An example for
such an approximate construction in a systematic way was provided in a model
that uses Mathieu functions for the BO electronic states [73].

As noted some time ago, the NACTS, can be incorporated in the nuclear part
of the Schrodinger equation as a vector potential [74,75]. The question of a
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possible magnetic field, associated with this vector potential has also been
considered [76-83]. For an electron occupying an admixture of two or more
states (a case that is commonly designated as noncommutative, ‘“non-
Abelian”), the fields of physical interest are not only the magnetic field, being
the curl of the “vector potential,” but also tensorial (YM) fields. The latter is the
sum of the curl field and of a vector-product term of the NACTs. Physically,
these fields represent the reaction of the electron on the nuclear motion via the
NACTs.

In a situation characteristic of molecular systems, a conical intersection ci
arises from the degeneracy point of adiabatic potential energy surfaces in a
plane of nuclear displacement coordinates. There are also a number of orthogonal
directions, each representing a so-called ‘“‘seam” direction. In this setting, it
emerges that both kinds of fields are aligned with the seam direction of the ci
and are zero everywhere outside the seam, but they differ as regards the flux that
they produce. Already in a two-state situation, the fields are representation
dependent and the values of the fluxes depend on the states the electron
occupies. (This evidently differs from conventional electro-magnetism, in which
the magnetic field and the flux are unchanged under a gauge transformation.)

Another subject in which there are implications of phase is the time evolution
of atomic or molecular wavepackets. In some recently studied cases, these
might be a superposition of a good 10 or so energy eigenstates. Thanks to the
availability of short, femtosecond laser pulses both the control of reactions by
coherent light [16,84-94] and the probing of phases in a wavepacket are now
experimental possibilities [19,95-97]. With short duration excitations the initial
form of the wavepacket is a real “doorway state”” [98—100] and this develops
phases for each of its component amplitudes as the wavepacket evolves. It has
recently been shown that the phases of these components are signposts of a time
arrow [101,102] and of the irreversibility; both of these are inherent in the
quantum mechanical process of preparation and evolution [34]. It was further
shown in [34] (for systems that are invariant under time reversal, e.g., in the
absence of a magnetic field) that the preparation of an initially complex
wavepacket requires finite times for its construction (and cannot be achieved
instantaneously).

The quantum phase factor is the exponential of an imaginary quantity (i times
the phase), which multiplies into a wave function. Historically, a natural
extension of this was proposed in the form of a gauge transformation, which
both multiplies into and admixes different components of a multicomponent
wave function [103]. The resulting “‘gauge theories’” have become an essential
tool of quantum field theories and provide (as already noted in the discussion of
the YM field) the modern rationale of basic forces between elementary particles
[67-70]. It has already been noted that gauge theories have also made notable
impact on molecular properties, especially under conditions that the electronic
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state basis in the molecule consists of more than one component. This situation
also characterizes the conical intersections between potential surfaces, as
already mentioned. In Section V, we show how an important theorem, originally
due to Baer [72], and subsequently used in several equivalent forms, gives some
new insight to the nature and source of these YM fields in a molecular (and
perhaps also in a particle field) context. What the above theorem shows is that it
is the truncation of the BO set that leads to the YM fields, whereas for a
complete BO set the field is inoperative for molecular vector potentials.

Section VI shows the power of the modulus-phase formalism and is included
in this chapter partly for methodological purposes. In this formalism, the
equations of continuity and the Hamilton—Jacobi equations can be naturally
derived in both the nonrelativistic and the relativistic (Dirac) theories of the
electron. It is shown that in the four-component (spinor) theory of electrons, the
two extra components in the spinor wave function will have only a minor effect
on the topological phase, provided certain conditions are met (nearly non-
relativistic velocities and external fields that are not excessively large).

So as to make the individual sections self-contained, we have found it
advisable to give some definitions and statements more than once.

II. ASPECTS OF PHASE IN MOLECULES

This section attempts a brief review of several areas of research on the
significance of phases, mainly for quantum phenomena in molecular systems.
Evidently, due to limitation of space, one cannot do justice to the breadth of the
subject and numerous important works will go unmentioned. It is hoped that the
several cited papers (some of which have been chosen from quite recent
publications) will lead the reader to other, related and earlier, publications. It is
essential to state at the outset that the overall phase of the wave function is
arbitrary and only the relative phases of its components are observable in any
meaningful sense. Throughout, we concentrate on the relative phases of the
components. (In a coordinate representation of the state function, the “phases of
the components” are none other than the coordinate-dependent parts of the
phase, so it is also true that this part is susceptible to measurement. Similar
statements can be made in momentum, energy, etc., representations.)

A further preliminary statement to this section would be that, somewhat
analogously to classical physics or mechanics where positions and momenta (or
velocities) are the two conjugate variables that determine the motion, moduli
and phases play similar roles. But the analogy is not perfect. Indeed, early on it
was questioned, apparently first by Pauli [104], whether a wave function can be
constructed from the knowledge of a set of moduli alone. It was then argued by
Lamb [105] that from a set of values of wave function moduli and of their rates
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of change, the wave function, including its phase, is uniquely found.
Counterexamples were then given [106,107] and it now appears that the
knowledge of the moduli and some information on the analytic properties of the
wave function are both required for the construction of a state. (The following
section contains a formal treatment, based partly on [30-32] and [108,109].) In
a recent research effort, states with definite phases were generated for either
stationary or traveling type of fields [110].

Recalling for a start phases in classical waves, these have already been the
subject of consideration by Lord Rayleigh [111], who noted that through
interference between the probed and a probing wave the magnitude and phase of
acoustic waves can be separately determined, for example, by finding surfaces
of minimum and zero magnitudes. A recent review on classical waves is given
by Klyshko [112]. The work of Pancharatnam on polarized light beams
[113,114] is regarded as the precursor of later studies of topological phases in
quantum systems [9]. This work contained a formal expression for the relative
phase between beams in different elliptic polarizations of light, as well as a
construction (employing the so-called ‘“‘Poincare sphere’’) that related the phase
difference to a geometrical, area concept. (For experimental realizations with
polarized light beams we quote [115,116]; the issue of any arbitrariness in
experimentally pinning down the topological part of the phase was raised in
[117].) Regarding the interesting question of any common ground between
classical and quantal phases, the relation between the adiabatic (Hannay’s)
angle in mechanics and the phase in wave functions was the subject of [118].
The difference in two-particle interference patterns of electromagnetic and
matter waves was noted, rather more recently, in [119]. The two phases,
belonging to light and to the particle wave function, are expected to enter on an
equal footing when the material system is in strong interaction with an
electromagnetic field (as in the Jaynes—Cummings model). An example of this
case was provided in a study of a two-level atom, which was placed in a cavity
containing an electromagnetic field. Using one or two photon excitations, it was
found possible to obtain from the Pancharatnam phase an indication of the
statistics of the quantized field [120].

Several essential basic properties of phases in optics are contained in
[28,41,121]. It was noted in [28], with reference to the ‘“‘complex analytic
signal” (an electromagnetic field with positive frequency components), that the
position of zeros (from which the phase can be determined) and the intensity
represent two sets of information that are intetwined by the analytic property of
the wave. In Section III, we shall again encounter this finding, in the context of
complex matter (Schrédinger) waves. Experimentally, observations in wave
guide structures of the positions of amplitude zeros (which are just the “phase
singularities’”) were made in [122]. An alternative way for the determination of
phase is from location of maxima in interference fringes ([28], Section VII.C.2).
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Interference in optical waves is clearly a phase phenomenon; in classical
systems it arises from the signed superposition of positive and negative real
wave amplitudes. To single out some special results in the extremely broad field
of interference, we point to recent observations using two-photon pulse
transition [94] in which a differentiation was achieved between interferences
due to temporal overlap (with finite pulse width) and quantum interference
caused by delay. The (component-specific) topological phase in wave functions
has been measured, following the proposal of Berry in [9], by neutron
interferometry in a number of works, for example, [123,124] with continual
improvements in the technique. The difficulties in the use of coherent neutron
beams and the possibility of using conventional neutron sources for phase-
sensitive neutron radiography have been noted in a recent review [125].

Phase interference in optical or material systems can be utilized to achieve a
type of quantum measurement, known as nondemolition measurements ([41],
Chapter 19). The general objective is to make a measurement that does not
change some property of the system at the expense of some other property(s)
that is (are) changed. In optics, it is the phase that may act as a probe for
determining the intensity (or photon number). The phase can change in the
course of the measurement, while the photon number does not [126].

In an intriguing and potentially important proposal (apparently not further
followed up), a filtering method was suggested for image reconstruction
(including phases) from the modulus of the correlation function [127]. [In
mathematical terms this amounts to deriving the behavior of a function in the
full complex (frequency) plane from the knowledge of the absolute value of the
function on the real axis, utilizing some physically realizable kernel function.]
A different spectral filtering method was discussed in [128].

Before concluding this sketch of optical phases and passing on to our next
topic, the status of the “‘phase” in the representation of observables as quantum
mechanical operators, we wish to call attention to the theoretical demonstration,
provided in [129], that any (discrete, finite dimensional) operator can be
constructed through use of optical devices only.

The appropriate quantum mechanical operator form of the phase has been
the subject of numerous efforts. At present, one can only speak of the best
approximate operator, and this also is the subject of debate. A personal
historical account by Nieto of various operator definitions for the phase (and of
its probability distribution) is in [27] and in companion articles, for example,
[130-132] and others, that have appeared in Volume 48 of Physica Scripta T
(1993), which is devoted to this subject. (For an introduction to the unitarity
requirements placed on a phase operator, one can refer to [133]). In 1927, Dirac
proposed a quantum mechanical operator 4) defined in terms of the creation and
destruction operators [134], but London [135] showed that this is not
Hermitean. (A further source is [136].) Another candidate, ¢® is not unitary,
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as was demonstrated, for example, in [28], Section 10.7. Following that,
Susskind and Glogower proposed a pair of operators c6s and sin [137], but it
was found that these do not commute with the number operator 7. In 1988, Pegg
and Barnett introduced a Hermitean phase operator through a limiting procedure
based on the state with a definite phase in a truncated Hilbert space [138]. Some
time ago a comparison was made between different phase operators when used
on squeezed states [139]. Unfortunately, there is as yet no consensus on the
status of the Pegg—Barnett operators [121,140-142]. Maybe at least part of
the difficulties are rooted in problems that arise from the coupling between the
quantum system and the measuring device. However, this difficulty is a moot
point in quantum mechanical measurement theory, in general.

(For the special case of a two-state systems, a Hermitean phase operator was
proposed, [143], which was said to provide a quantitative measure for “‘phase
information.””)

A related issue is the experimental accessibility of phases: It is now widely
accepted that there are essentially two experimental ways to observe phases
[9,124,144]: (1) through a two-Hamiltonian, one-state method, interfero-
metrically (viz., by sending two identically prepared rays across two regions
having different fields), (2) a one-Hamiltonian, two-state method (meaning, a
difference in the preparation of the rays), for example, [89,92]. (One recalls that
already several years ago it was noted that there are the two ways for measuring
the phase of a four-component state, a spinor [145].) One can also note a further
distinction proposed more recently, namely, that between “observabilities” of
bosonic and fermionic phases [146]: Boson phases are observable both locally
(at one point) and nonlocally (at extended distances, which the wave reaches as
it progresses). They can lead to phase values that are incompatible with the Bell
inequalities, while fermion phases are only nonlocally observable (i.e., by
interference) and do not violate Bell’s inequalities. The difference resides in that
only the former type of particles gives rise to a coherent state with arbitrarily
large occupation number n, whereas for the latter the exclusion principle allows
only n =0 or 1.

The question of determination of the phase of a field (classical or quantal, as
of a wave function) from the modulus (absolute value) of the field along a real
parameter (for which alone experimental determination is possible) is known as
“the phase problem” [28]. (True also in crystallography.) The reciprocal
relations derived in Section III represent a formal scheme for the determination
of phase given the modulus, and vice versa. The physical basis of these singular
integral relations was described in [147] and in several companion articles in
that volume; a more recent account can be found in [148]. Thus, the reciprocal
relations in the time domain provide, under certain conditions of analyticity,
solutions to the phase problem. For electromagnetic fields, these were derived in
[120,149,150] and reviewed in [28,148]. Matter or Schrodinger waves were
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considered in a general manner in [39]. The more complete treatment, presented
in Section IIT applies the results to several situations in molecular and solid-state
physics. It is likely that the full scope and meaning of the modulus-phase
relationship await further and deeper going analyses.

In 1984, Berry made his striking discovery of time scale independent phase
changes in many-component states [9] (now variously known as Berry or
topological or geometric phase) . This followed a line of important developments
regarding the role of phases and phase factors in quantum mechanics. The
starting point of these may be taken with Aharonov and Bohm’s discovery of the
topologically acquired phase [8], named after them. (As a curiosity, it is
recorded that Bohm himself referred to the “ESAB effect” [151,152].) The
achievement, stressed by the authors of [8], was to have been able to show that
when an electron traverses a closed path along which the magnetic field is zero,
it acquires an observable phase change, which is proportional to the ‘““vector
potential.” The “topological” aspect, namely, that the path is inside a multiply
connected portion of space (or that, in physical terms, the closed path cannot be
shrunk without encountering an infinite barrier), has subsequently turned out to
be also of considerable importance [153,154], especially through later
extensions and applications of the Aharonov—Bohm phase change [155] (cf.
the paper by Wu and Yang [156] that showed the importance of the phase factor
in quantum mechanics, which has, in turn, led to several developments in many
domains of physics).

In molecular physics, the “topological” aspect has met its analogue in the
Jahn-Teller effect [47,157] and, indeed, in any situation where a degeneracy of
electronic states is encountered. The phase change was discussed from various
viewpoints in [144,158-161] and [163].

For the Berry phase, we shall quote a definition given in [164]: “The phase
that can be acquired by a state moving adiabatically (slowly) around a closed
path in the parameter space of the system.” There is a further, somewhat more
general phase, that appears in any cyclic motion, not necessarily slow in the
Hilbert space, which is the Aharonov—Anandan phase [10]. Other develop-
ments and applications are abundant. An interim summary was published in
1990 [78]. A further, more up-to-date summary, especially on progress in
experimental developments, is much needed. (In Section IV we list some
publications that report on the experimental determinations of the Berry phase.)
Regarding theoretical advances, we note (in a somewhat subjective and selective
mode) some clarifications regarding parallel transport, e.g., [165]. This paper
discusses the “projective Hilbert space” and its metric (the Fubini-Study
metric). The projective Hilbert space arises from the Hilbert space of the
electronic manifold by the removal of the overall phase and is therefore a
central geometrical concept in any treatment of the component phases, such as
this chapter.
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The term “Open-path phase” was coined for a non-fully cyclic evolution
[11,14]. This, unlike the Berry-phase proper, is not gauge invariant, but is,
nevertheless (partially) accessible by experiments ([30-32]). The Berry phase
for nonstationary states was given in [13], the interchange between dynamic and
geometric phases is treated in [117]. A geometrical interpretation is provided in
[166] and a simple proof for Berry’s area formula in [167]. The phases in oft-
diagonal terms form the basis of generalizations of the Berry phase in [168,169];
an experimental detection by neutron interferometry was recently accomplished
[170]. The treatment by Garrison and Wright of complex topological phases for
non-Hermitean Hamiltonians [171] was extended in [172-174]. Further
advances on Berry phases are corrections due to non-adiabatic effects (resulting,
mainly, in a decrease from the value of the phase in the adiabatic, infinitely slow
limit) [30,175,176]. In [177], the complementarity between local and nonlocal
effects is studied by means of some examples. For more general time-dependent
Hamiltonians than the cyclic one, the method of the Lewis and Riesenfeld
invariant spectral operator is in use. This is discussed in [178].

Note that the Berry phase and the open-path phase designate changes in the
phases of the state components, rather than the total phase change of the wave
function, which belongs to the so-called ‘“Dynamic phase” [9,10]. The existence
of more than one component in the state function is a topological effect. This
assertion is based on a theorem by Longuet-Higgins ([158], “Topological test
for intersections’’), which states that, if the wave function of a given electronic
state changes sign when transported around a loop in nuclear configuration
space, then the state must become degenerate with another at some point within
the loop.

From this theorem it follows that, close to the point of intersection and
slightly away from it, the corresponding adiabatic or BO electronic wave
functions will be given (to a good approximation) by a superposition of the two
degenerate states, with coefficients that are functions of the nuclear coordinates.
(For a formal proof of this statement, one has to assume, as is done in [158], that
the state is continuous function of the nuclear coordinates.) Moreover, the
coefficients of the two states have to differ from each other, otherwise they can
be made to disappear from the normalized electronic state. Necessarily, there is
also a second “‘superposition state,” with coefficients such that it is orthogonal
to the first at all points in the configuration space. (If more than two states
happen to be codegenerate at a point, then the adiabatic states are mutually
orthogonal superpositions of all these states, again with coefficients that are
functions of the nuclear coordinates.)

If now the nuclear coordinates are regarded as dynamical variables, rather
than parameters, then in the vicinity of the intersection point, the energy
eigenfunction, which is a combined electronic—nuclear wave function, will
contain a superposition of the two adiabatic, superposition states, with nuclear
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wave functions as cofactors. We thus see that the topological phase change
leads, first, to the adiabatic electronic state being a multicomponent superposi-
tion (of diabatic states) and, second, to the full solution being a multicomponent
superposition (of adiabatic states), in each case with nuclear-coordinate-
dependent coefficients.

The design and control of molecular processes has of late become possible
thanks to advances in laser technology, at first through the appearance of
femtosecond laser pulses and of pump-probe techniques [179] and, more
recently, through the realization of more advanced ideas, including feedback
and automated control [180-183]. In a typical procedure, the pump pulse pre-
pares a coherent superposition of energy eigenstates, and a second delayed pulse
probes the time-dependent transition between an excited and a lower potential
energy surface. When the desired outcome is a particular reaction product, this
can be promoted by the control of the relative phases of two fast pulses
emanating from the same coherent laser source. One of the earliest works to
achieve this is [184]. A recent study focuses on several basic questions, for
example, those regarding pulsed preparation of an excited state [92]. In between
the two, numerous works have seen light in this fast expanding and
technologically interesting field. The purpose of mentioning them here is to
single out this field as an application of phases in atomic [25,95,96] and
molecular [84-90] spectroscopies. In spite of the achievements in photo-
chemistry, summarized, for example, in [185], one hardly expects phases to play
a role in ordinary (i.e., not state-selective or photon-induced) chemical
reactions. Still, interference (of the kind seen in double-slit experiments) has
been observed between different pathways during the dissociation of water
[186,187]. Moreover, several theoretical ideas have also been put forward to
produce favored reaction products through the involvement of phase effects
[188-194]. Calculations for the scattering cross-sections in the four-atom
reaction OH + H, — H,O + H showed a few percent change due to the effect
of phase [195].

Wavepacket reconstruction, or imaging from observed data, requires the
derivation of a complex function from a set of real quantities. Again, this is
essentially the “phase problem,” well known also from crystallography and
noted above in a different context than the present one [28]. An experimental
study yielded the Wigner position-momentum distribution function [88]. This
approach was named a ‘“‘tomographic’’ method, since a single beam scans the
whole phase space and is distinct from another approach, in which two different
laser pulses create two wavepackets: an object and a reference. When the two
states are superimposed, as in a conventional holographic arrangement, the
cross-term in the modulus squared retains the phase information [16,90,196].
Computer simulations have shown the theoretical proposal to be feasible. In
a different work, the preparation of a long-lived atomic electron wavepacket
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in a Rydberg state, with principal quantum numbers around n = 30, was
achieved [197].

Rydberg states, as well as others, can provide an illustration for another,
spectacular phenomenon: wavepacket revivals [15]. In this, a superposition of
~10 energy states first spreads out in phase space (due to phase decoherence),
only to return to its original shape after a time that is of the order of the
deviation of the spacing of the energy levels from a uniform one [198,199]. Not
only is the theory firmly based, and simulations convincing, but even an
application, based on this phenomenon and aimed at separation of isotopes, has
been proposed [200]. Elsewhere, it was shown that the effect of slow cycling on
the evolving wavepacket is to leave the revival period unchanged, but to cause a
shift in the position of the revived wavepacket [201].

Coherent states and diverse semiclassical approximations to molecular
wavepackets are essentially dependent on the relative phases between the wave
components. Due to the need to keep this chapter to a reasonable size, we can
mention here only a sample of original works (e.g., [202-205]) and some
summaries [206-208]. In these, the reader will come across the Maslov index
[209], which we pause to mention here, since it links up in a natural way to the
modulus-phase relations described in Section III and with the phase-tracing
method in Section IV. The Maslov index relates to the phase acquired when the
semiclassical wave function traverses a zero (or a singularity, if there be one)
and it (and, particularly, its sign) is the consequence of the analytic behavior of
the wave function in the complex time plane.

The subject of time connects with the complex nature of the wave function in
a straightforward way, through the definition in quantum mechanics of the
Wigner time-reversal operator [210,211]. In a rough way, the definition implies
that the conjugate of the complex wave function describes (in several instances)
the behavior of the system with the time running backward. Given, on one hand,
“the time-reversal invariant™