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INTRODUCTION

Few of us can any longer keep up with the flood of scientific literature, even
in specialized subfields. Any attempt to do more and be broadly educated
with respect to a large domain of science has the appearance of tilting at
windmills. Yet the synthesis of ideas drawn from different subjects into new,
powerful, general concepts is as valuable as ever, and the desire to remain
educated persists in all scientists. This series, Advances in Chemical
Physics, is devoted to helping the reader obtain general information about a
wide variety of topics in chemical physics, a field that we interpret very
broadly. Our intent is to have experts present comprehensive analyses of
subjects of interest and to encourage the expression of individual points of
view. We hope that this approach to the presentation of an overview of a
subject will both stimulate new research and serve as a personalized learning
text for beginners in a field.

I. PRIGOGINE

STUART A. RICE
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INTRODUCTION TO THE ADVANCES OF

CHEMICAL PHYSICS VOLUME ON:

THE ROLE OF DEGENERATE STATES IN CHEMISTRY

The study of molecular systems is based on the Born–Oppenheimer
treatment, which can be considered as one of the most successful theories in
physics and chemistry. This treatment, which distinguishes between the fast-
moving electrons and the slow-moving nuclei leads to electronic (adiabatic)
eigenstates and the non-adiabatic coupling terms. The existence of the
adiabatic states was verified in numerous experimental studies ranging from
photochemical processes through photodissociation and unimolecular
processes and finally bimolecular interactions accompanied by exchange
and/or charge-transfer processes. Having the well-established adiabatic
states many studies went one step further and applied the Born–
Oppenheimer approximation, which assumes that for low enough energies
the dynamics can be carried out on the lower surface only, thus neglecting
the coupling to the upper states. Although on numerous occasions, this
approximation was found to yield satisfactory results, it was soon realized
that the relevance of this approximation is quite limited and that the
interpretation of too many experiments whether based on spectroscopy or
related to scattering demand the inclusion of several electronic states. For a
while, it was believed that perturbation theory may be instrumental in this
respect but this idea was not found in many cases to be satisfactory and
therefore was only rarely employed.

In contrast to the successful introduction, of the electronic adiabatic states
into physics and mainly into chemistry, the incorporation of the comple-
mentary counterpart of the Born–Oppenheimer treatment, that is, the
electronic non-adiabatic coupling terms, caused difficulties (mainly due to
their being ‘‘extended’’ vectors) and therefore were ignored. The non-
adiabatic coupling terms are responsible for the coupling between the
adiabatic states, and since for a long time most studies were related to the
ground state, it was believed that the Born–Oppenheimer approximation
always holds due to the weakness of the non-adiabatic coupling terms. This
belief persisted although it was quite early recognized, due to the Hellmann–
Feynman theorem, that non-adiabatic coupling terms are not necessarily
weak, on the contrary, they may be large and eventually become infinite.
They become infinite (or singular) at those instances when two successive
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adiabatic states turn out to be degenerate. Having singular non-adiabatic
coupling terms not only leads to the breakdown of the Born–Oppenheimer
approximation but also rules out the possibility of keeping it while applying
perturbation theory. Nevertheless the Born–Oppenheimer approximation can
be partly ‘‘saved,’’ in particular while studying low-energy processes, by
extending it to include the relevant non-adiabatic coupling terms. In this
way, a new equation is obtained, for which novel methods to solve it were
developed—some of them were discussed in this volume.

This volume in the series of Advances of Chemical Physics centers on
studies of effects due to electronic degenerate states on chemical processes.
However, since the degenerate states affect chemical processes via the
singular non-adiabatic coupling terms, a major part of this volume is
devoted to the study of features of the non-adiabatic coupling terms. This is
one aspect related to this subject. Another aspect is connected with the
Born–Oppenheimer Schrödinger equation which, if indeed degenerate states
are common in molecular systems, frequently contains singular terms that
may inhibit the possibility of solving this equation within the original Born–
Oppenheimer adiabatic framework. Thus, an extensive part of this volume is
devoted to various transformations to another framework—the diabatic
framework—in which the adiabatic coupling terms are replaced by potential
coupling—all analytic smoothly behaving functions.

In Chapter I, Child outlines the early developments of the theory of the
geometric phase for molecular systems and illustrates it primarily by
application to doubly degenerate systems. Coverage will include applica-
tions to given to (E � E) Jahn–Teller systems with linear and quadratic
coupling, and with spin–orbit coupling. The origin of vector potential
modifications to the kinetic energy operator for motion on well-separated
lower adiabatic potential surfaces is also be outlined.

In Chapter II, Baer presents the transformation to the diabatic framework
via a matrix—the adiabatic-to-diabatic transformation matrix—calculated
employing a line-integral approach. This chapter concentrates on the
theoretical–mathematical aspects that allow the rigorous derivation of this
transformation matrix and, following that, the derivation of the diabatic
potentials. An interesting finding due to this treatment is that, once the non-
adiabatic coupling terms are arranged in a matrix, this matrix has to fulfill
certain quantization conditions in order for the diabatic potentials to be
single valued. Establishing the quantization revealed the existence of the
topological matrix, which contains the topological features of the electronic
manifold as related to closed contours in configuration space. A third feature
fulfilled by the non-adiabatic coupling matrix is the curl equation, which
is reminiscent of the Yang–Mills field. This suggests, among other things,
that pseudomagnetic fields may ‘‘exist’’ along seams that are the lines
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formed by the singular points of the non-adiabatic coupling terms. Finally,
having the curl equation leads to the proposal of calculating non-adiabatic
coupling terms by solving this equation rather than by performing the
tedious ab initio treatment. The various theoretical derivations are
accompanied by examples that are taken from real molecular systems.

In Chapter III, Adhikari and Billing discuss chemical reactions in systems
having conical intersections. For these situations they suggest to incorporate
the effect of a geometrical phase factor on the nuclear dynamics, even at
energies well below the conical intersection. It is suggested that if this phase
factor is incorporated, the dynamics in many cases, may still be treated
within a one-surface approximation. In their chapter, they discuss the effect
of this phase factor by first considering a model system for which the two-
surface problem can also easily be solved without approximation. Since
many calculations involving heavier atoms have to be considered using
approximate dynamical theories such as classical or quantum classical, it
is important to be able to include the geometric phase factor into these
theories as well. How this can be achieved is discussed for the three-particle
problem. The connection between the so-called extended Born–Oppenheimer
approach and the phase angles makes it possible to move from two-surface
to multisurface problems. By using this approach a three-state model system
is considered. Finally, the geometric phase effect is formulated within the
so-called quantum dressed classical mechanics approach.

In Chapter IV, Englman and Yahalom summarize studies of the last
15 years related to the Yang–Mills (YM) field that represents the interaction
between a set of nuclear states in a molecular system as have been discussed
in a series of articles and reviews by theoretical chemists and particle
physicists. They then take as their starting point the theorem that when the
electronic set is complete so that the Yang–Mills field intensity tensor
vanishes and the field is a pure gauge, and extend it to obtain some new
results. These studies throw light on the nature of the Yang–Mills fields in
the molecular and other contexts, and on the interplay between diabatic and
adiabatic representations.

In Chapter V, Kuppermann and Abrol present a detailed formulation of
the nuclear Schrödinger equation for chemical reactions occurring on
multiple potential energy surfaces. The discussion includes triatomic and
tetraatomic systems. The formulation is given in terms of hyperspherical
coordinates and accordingly the scattering equations are derived. The effect
of first and second derivative coupling terms are included, both in the
adiabatic and the diabatic representations. In the latter, the effect of the non-
removable (transverse) part of the first derivative coupling vector are
considered. This numerical treatment led, finally, to the potential energy
surfaces that are then employed for the scattering calculations. The coverage
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includes a detailed asymptotic analysis and expressions for the reactive
scattering matrices, the associated scattering amplitudes and differential
cross-sections. The inclusion of the geometric phase in these equations is
discussed, as well as results of representative calculations.

In Chapter VI, Ohrn and Deumens present their electron nuclear
dynamics (END) time-dependent, nonadiabatic, theoretical, and computa-
tional approach to the study of molecular processes. This approach stresses
the analysis of such processes in terms of dynamical, time-evolving states
rather than stationary molecular states. Thus, rovibrational and scattering
states are reduced to less prominent roles as is the case in most modern
wavepacket treatments of molecular reaction dynamics. Unlike most
theoretical methods, END also relegates electronic stationary states,
potential energy surfaces, adiabatic and diabatic descriptions, and
nonadiabatic coupling terms to the background in favor of a dynamic,
time-evolving description of all electrons.

In Chapter VII, Worth and Robb discuss techniques known as direct, or
on-the-fly, molecular dynamics and their application to non-adiabatic
processes. In contrast to standard techniques, which require a predefined
potential energy surfaces, here the potential function, is provided by explicit
evaluation of the electronic wave function for the states of interest. This fact
makes the method very general and powerful, particularly for the study of
polyatomic systems where the calculation of a multidimensional potential
function is expected to be a complicated task. The method, however, has a
number of difficulties that need to be solved. One is the sheer size of the
problem—all nuclear and electronic degrees of freedom are treated
explicitly. A second is the restriction placed on the form of the nuclear wave
function as a local- or trajectory-based representation is required. This intro-
duces the problem of including quantum effects into methods that are often
based on classical mechanics. For non-adiabatic processes, there is the addi-
tional complication of the treatment of the non-adiabatic coupling. In this
chapter these authors show how progress has been made in this new and
exciting field, highlighting the different problems and how they are being
solved.

In Chapter VIII, Haas and Zilberg propose to follow the phase of the
total electronic wave function as a function of the nuclear coordinates with
the aim of locating conical intersections. For this purpose, they present
the theoretical basis for this approach and apply it for conical intersect-
ions connecting the two lowest singlet states (S1 and S0). The analysis
starts with the Pauli principle and is assisted by the permutational symmetry
of the electronic wave function. In particular, this approach allows the
selection of two coordinates along which the conical intersections are to be
found.
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In Chapter IX, Liang et al. present an approach, termed as the ‘‘crude
Born–Oppenheimer approximation,’’ which is based on the Born–Oppen-
heimer approximation but employs the straightforward perturbation method.
Within their chapter they develop this approximation to become a practical
method for computing potential energy surfaces. They show that to carry out
different orders of perturbation, the ability to calculate the matrix elements
of the derivatives of the Coulomb interaction with respect to nuclear
coordinates is essential. For this purpose, they study a diatomic molecule,
and by doing that demonstrate the basic skill to compute the relevant matrix
elements for the Gaussian basis sets. Finally, they apply this approach to the
H2 molecule and show that the calculated equilibrium position and force
constant fit reasonable well those obtained by other approaches.

In Chapter X, Matsika and Yarkony present an algorithm for locating
points of conical intersection for odd electron molecules. The nature of the
singularity at the conical intersection is determined and a transformation to
locally diabatic states that eliminates the singularity is derived. A rotation of
the degenerate electronic states that represents the branching plane in terms
of mutually orthogonal vectors is determined, which will enable us to search
for confluences intersecting branches of a single seam.

In Chapter XI, Perić and Peyerimhoff discuss the Renner–Teller coupling
in triatomic and tetraatomic molecules. For this purpose, they describe some
of their theoretical tools to investigate this subject and use the systems FeH2,
CNC, and HCCS as adequate examples.

In Chapter XII, Varandas and Xu discuss the implications of permuta-
tional symmetry on the total wave function and its various components for
systems having sets of identical particles. By generalizing Kramers’ theorem
and using double group theory, some drastic consequences are anticipated
when the nuclear spin quantum number is one-half and zero. The material
presented may then be helpful for a detailed understanding of molecular
spectra and collisional dynamics. As case studies, they discuss, in some
detail, the spectra of trimmeric species involving 2S atoms. The effect of
vibronic interactions on the two conical intersecting adiabatic potential
energy surfaces will then be illustrated and shown to have an important role.
In particular, the implications of the Jahn–Teller instability on the calculated
energy levels, as well as the involved dynamic Jahn–Teller and geometric
phase effects, will be examined by focusing on the alkali metal trimmers.
This chapter was planned to be essentially descriptive, with the
mathematical details being gathered on several appendixes.

Michael Baer

Gert Due Billing
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I. INTRODUCTION

Subsequent chapters deal largely with developments in the theory of geometric

phase and non-adiabatic coupling over the past 10 years, but the editors agreed

with me that there would be some value in including a chapter on early contri-

butions to the field, to provide a historical perspective. No doubt the choice of

material will seem subjective to some. Others will find it redundant to repeat

well-established results in an ‘‘Advances’’ volume, but this chapter is not
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addressed to the experts; it is primarily intended for students seeking a

pedagogical introduction to the subject. Discussion is limited to what is now

known as the quantal adiabatic (Longuet-Higgins or Berry) phase, associated

with motion on a single adiabatic electronic surface, on the assumption that the

nuclear motion occurs far from any points of electronic degeneracy. The geo-

metric phase and an associated vector potential term in the nuclear kinetic energy

operator will be seen to arise from the presence of singularities in the non-

adiabatic coupling operator, at so-called conical intersection points, but the

wave function will appear as a product of a single electronic and a single

nuclear factor.

The story begins with studies of the molecular Jahn–Teller effect in the late

1950s [1–3]. The Jahn–Teller theorems themselves [4,5] are 20 years older and

static Jahn–Teller distortions of electronically degenerate species were well

known and understood. Geometric phase is, however, a dynamic phenomenon,

associated with nuclear motions in the vicinity of a so-called conical inter-

section between potential energy surfaces.

The simplest and most widely studied case is the E � E Jahn–Teller model

[2,6,7] for which a double degeneracy at say an equilateral triangular geometry

is relieved linearly by nuclear distortions in a doubly degenerate nuclear

vibration. In the language of later discussions [8], the nuclear coordinates Q

define a two-dimensional (2D) parameter space containing the intersection point

Q0; and the geometric phase is associated with evolution of the real adiabatic

electronic eigenstates, say jxþðQÞi and jx�ðQÞi, on parameter paths around Q0:
The important points are that jx�ðQÞi are undefined at Q0, but that they can be

taken elsewhere as smooth functions of Q, in the sense that hx�ðQÞjx�ðQþ
dQÞi ! 1 as dQ! 0, over any region free of other degeneracies. It is then a

simple matter to demonstrate that the linearity of the separation between the two

adiabatic potential surfaces, say W�ðQÞ, also requires a sign change in jx�ðQÞi,
as they are transported around Q0 [2,6,7]. Note that there is no corresponding

geometric phase associated with symmetry determined electronic degeneracies

in linear molecules for which the degeneracy is relieved quadratically in the

bending coordinate [9]; in other words the two linear molecule adiabatic

potential surfaces touch at Q0 but do not intersect. Conical intersections, with

associated geometric phase, do, however, arise at accidental degeneracies in

linear molecules, between, for example, � and � electronic states [6]; they can

also occur in quite general geometries for nonsymmetric species, such as

NaKRb. The latter were taken by Longuet-Higgins [7] as test cases to resolve a

controversy over the ‘‘noncrossing rule’’ in polyatomics.

The next significant development in the history of the geometric phase is due

to Mead and Truhlar [10]. The early workers [1–3] concentrated mainly on the

spectroscopic consequences of localized non-adiabatic coupling between

the upper and lower adiabatic electronic eigenstates, while one now speaks
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of the geometric phase associated with a well-separated lower adiabatic surface,

such that the nuclear motions revolve around the intersection point Q0, without

passing close to it. Longuet-Higgins et al. [2] treat this situation in a linear

coupling approximation, but Mead and Truhlar [10] were the first to provide a

systematic formulation. Any treatment must recognize that the nature of the

nuclear wave function is necessarily affected by the electronic sign change,

since the total wave function must be a single-valued function of Q. This means

either that the boundary conditions on the nuclear wave function must

incorporate a compensating sign change for circuits around Q0 or that the real

adiabatic eigenstates, jx�i, must be defined with compensating phase factors,

such that

jn�i ¼ eic�ðQÞjx�i

is single valued around Q0: Ham [11] analyses the ordering of vibronic eigen-

values in the presence of geometric phase from the former standpoint, while

Mead and Truhlar [10] adopt the latter formulation, which leads to a vector

potential contribution to the nuclear kinetic energy, dependent on the form of the

chosen phase factor cðQÞ. Residual arbitrariness in the choice of c�ðQÞ, subject

to the single valuedness of jn�i, must cancel out in any consistent treatment of

the nuclear dynamics.

Berry [8] set the theory in a wider context, by defining a ‘‘gauge invariant’’

geometric phase, which is specific to the system in question and to the geometry

of the chosen encircling path, but is also independent of the above residual

arbitrariness. The resulting integrated geometric phase applies to quite general

situations, provided there is a single isolated point of degeneracy. The

degeneracy need not be twofold, nor need the encircling path lie in the plane

containing Q0, as demonstrated by Berry’s [8] explicit treatment of angular

momentum precession, with arbitrary 2 J þ 1 degeneracy, in a slowly rotating

magnetic field.

Macroscopic physical manifestations of the above adiabatic geometric phase

may be found in the Aharonov–Bohm effect [12] and in nuclear magnetic

resonance (NMR) systems subject to slowly rotating magnetic fields [13]. Their

observation in molecular systems is less straightforward. Books have been

written about the multisurface dynamics of Jahn–Teller systems [14,15], but

effects attributable to the geometric phase on the lowest adiabatic potential

surface are quite elusive. One example is an observed energy level dependence

on the square of a half-odd quantum number, j, in Na3 [16,17], as first predicted

by Longuet-Higgins et al. [2]. It depends, however, on the assumption of strictly

linear Jahn–Teller coupling, because j is conserved only in the absence of

corrugations on the lower surface arising from the inclusion of quadratic and

higher Jahn–Teller coupling terms (see Sections V.A and V.C). The strongest
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general prediction, for C3 point groups, is that geometric phase causes a

systematic inversion in the vibronic tunneling splitting associated with the

above corrugations [11]; thus the levels of the lowest vibronic triplet are

predicted in the order EðEÞ < EðAÞ, an order that is successively reversed and

restored in the higher triplets. The possible observation of similar geometric

phase related effects in molecular scattering situations is discussed in several of

the following chapters.

Section II begins with a general discussion of conical intersections, including

deductions from the point group and time-reversal symmetries, concerning

connections between the nuclear coordinate dependencies of different electronic

Hamiltonian matrix elements. Section III is concerned with the nature of

electronic adiabatic eigenstates close to a conical intersection. The crucial result

for later sections is that an E � E conical intersection gives rise to an adiabatic

eigenvector sign change regardless of the size and shape of the encircling loop,

provided that no other degenerate points are enclosed. Specifically, geometrical

aspects of adiabatic eigenvector evolution are discussed in Section IV, along the

lines of papers by Berry [8] and Aharonov et al. [18]. Different expressions for

its evaluation are also outlined. Various aspects of the E � E Jahn–Teller

problem, with linear and quadratic coupling, including and excluding spin–orbit

coupling, are outlined in Section V. More general aspects of the nuclear

dynamics on the lower potential sheet arising from a conical intersection are

treated in Section VI, from two viewpoints. Section VI.A expounds Ham’s

general conclusions about the order of vibronic tunneling levels from a band

theory standpoint [11], with sign-reversing boundary conditions on the nuclear

wave functions. There is also an appendix for readers unfamiliar with

Floquet theory arguments. By contrast, Section VI.B outlines the elements

of Mead and Truhlar’s theory [10], with normal boundary conditions on the

nuclear wave function and a vector potential contribution to the nuclear kinetic

energy, arising from the compensating phase factor cðQÞ, which was discussed

above. The relationship between the contributions of Aharonov et al. [18]

and Mead and Truhlar [10] are described. Aspects of the symmetry with

respect to nuclear spin exchange in the presence of geometric phase are also

discussed. Section VII collects the main conclusions and draws attention to

related early work on situations with greater complexity than the simple E � E
problem.

II. CONICAL INTERSECTIONS

Molecular aspects of geometric phase are associated with conical intersections

between electronic energy surfaces, WðQÞ, where Q denotes the set of say k

vibrational coordinates. In the simplest two-state case, the WðQÞ are eigen-

surfaces of the nuclear coordinate dependent Hermitian electronic Hamiltonian
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matrix,

HðQÞ ¼ HAAðQÞ HABðQÞ
HBAðQÞ HBBðQÞ

� �
ð1Þ

namely,

W�ðQÞ ¼
1

2
½HAAðQÞ þ HBBðQÞ
 �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½HAAðQÞ � HBBðQÞ
2 þ 4jHABðQÞj2

q
ð2Þ

Strict degeneracy between the electronic energy surfaces therefore requires the

existence of points Q0 at which HAAðQÞ ¼ HBBðQÞ and HABðQÞ ¼ 0. These two

independent conditions will rarely occur by variation of a single coordinate Q

[unless HABðQÞ ¼ 0 by symmetry]—hence the diatomic ‘‘noncrossing rule.’’

There is, however, no such prohibition in polyatomics. In the common case of a

real representation, degeneracies can clearly lie on a surface of dimensionality

k � 2, where k is the number of vibrations [6,7,19,20]. They are termed conical if

HAAðQÞ � HBBðQÞ and HABðQÞ vanish linearly in Q. Such points are symmetry

determined for Jahn–Teller systems [4], which include all electronically

degenerate nonlinear polyatomics. They also occur as a result of bending at, say

a �� � intersection in a linear molecule [6], and at more general configurations

of nonsymmetrical species. For example, Longuet-Higgins [7] shows that

Heitler–London theory for a system of three dissimilar H-like atoms, such as

LiNaK, has a pair of doublet states with eigensurfaces governed by the

Hamiltonian matrix

H ¼
W � aþ 1

2
ðbþ gÞ

ffiffi
3
2

q
ðb� gÞffiffi

3
2

q
ðb� gÞ W þ a� 1

2
ðbþ gÞ

0
@

1
A ð3Þ

where a, b, and g are exchange integrals for the three interatomic bonds. A

conical intersection therefore occurs at geometries such that a ¼ b ¼ g, which

again implies two independent constraints.

Aspects of the Jahn–Teller symmetry argument will be relevant in later

sections. Suppose that the electronic states are n-fold degenerate, with

symmetry �e at some symmetrical nuclear configuration Q0: The fundamental

question concerns the symmetry of the nuclear coordinates that can split the

degeneracy linearly in Q� Q0, in other words those that appear linearly in

Taylor series for the n2 matrix elements hAjHjBi: Since the bras hAj and kets jBi
both transform as �e and H are totally symmetric, it would appear at first sight

that the Jahn–Teller active modes must have symmetry �Q ¼ �e � �e: There
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are, however, further restrictions, dependent on whether the number of electrons

is even or odd. The following argument [4,5] uses the symmetry of the

electronic states under the time-reversal operator T̂ to establish general relations

between the various matrix elements. The essential properties are that T̂ com-

mutes with the Hamiltonian

ĤT̂ ¼ T̂Ĥ; ð4Þ

that any state jAi has a time-reverse T̂jAi, such that

hT̂bjT̂ai ¼ hbjai�; ð5Þ

and that states with even and odd electrons are symmetric and antisymmetric

under T̂2, respectively. It therefore follows that

hAjHjT̂Bi ¼ hT̂AjT̂HT̂Bi� ¼ hT̂AjHjT̂2bi� ¼ �hBjHjT̂Ai

¼ 1

2
hAjHjT̂Bi � hBjHjT̂Ai
	 


ð6Þ

where the upper and lower signs apply for even and odd electron systems,

respectively.

Suppose now that jAi and jBi belong to an electronic representation �e:
Since H is totally symmetric, Eq. (6) implies that the matrix elements hAjHjT̂Bi
belong to the representation of symmetrized or anti-symmetrized products of

the bras fhAjg with the kets fjT̂Aig: However, the set fjT̂Aig is, however, simply

a reordering of the set fjAig. Hence, the symmetry of the matrix elements in the

even- and odd-electron cases is given, respectively, by the symmetrized

½�e � �e
 and antisymmetrized f�e � �eg parts of the direct product of �e with

itself. A final consideration is that coordinates belonging to the totally symmetric

representation, �0, cannot break any symmetry determined degeneracy. The

symmetries of the Jahn–Teller active modes are therefore given by

�Q � ½�e � �e
 � �0 for even electron systems

�Q � f�e � �eg � �0 for odd electron systems

This is the central Jahn–Teller [4,5] result. Three important riders should be

noted. First, �Q ¼ 0 for spin-degenerate systems, because f�e � �eg ¼ �0. This

is a particular example of the fact that Kramer’s degeneracies, arising from spin

alone can only be broken by magnetic fields, in the presence of which H and T̂ no

longer commute. Second, a detailed study of the molecular point groups reveals

that all degenerate nonlinear polyatomics, except those with Kramer’s
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degeneracy, have at least one vibrational coordinate covered by the above rules.

Finally, no linear polyatom has such coordinates. Hence, there are no symmetry

determined conical intersections in linear molecules. The leading vibronic

coupling terms are quadratic in the nuclear coordinates, giving rise to a Renner–

Teller [9] rather than a Jahn–Teller effect.

The symmetry argument actually goes beyond the above determination of the

symmetries of Jahn–Teller active modes, the coefficients of the matrix element

expansions in different coordinates are also symmetry determined. Consider, for

simplicity, an electronic state of symmetry E in an even-electron molecule with

a single threefold axis of symmetry, and choose a representation in which two

complex electronic components, je�i ¼ 1=
ffiffiffi
2
p
ðjeAi � ijeBiÞ, and two degen-

erate complex nuclear coordinate combinations Q� ¼ re�if each have character

t�1 under the C3 operation, where t ¼ e2pi=3. The bras he�j have character t�1:
Since the Hamiltonian operator is totally symmetric, the diagonal matrix

elements he�jHje�i are totally symmetric, while the characters of the

off-diagonal elements he�jHje�i are t�2: Since t3 ¼ 1, it follows that an

expansion of the complex Hamiltonian matrix to quadratic terms in Q� takes the

form

H ¼ 0 kQ� þ lQ2
þ

kQþ þ lQ2
� 0

� �
ð7Þ

The corresponding expression in the real basis ðjeAi; jeBiÞ is

H ¼ kr cosfþ lr2 cos 2f kr sinf� lr2 sin 2f
kr sinf� lr2 sin 2f �kr cosf� lr2 cos 2f

� �
ð8Þ

after substitution for (Qþ;Q�Þ in terms of ðr;fÞ: Equation (8) defines what is

known as the E � E Jahn–Teller problem, which is discussed in Section V.

More general situations have also been considered. For example, Mead [21]

considers cases involving degeneracy between two Kramers doublets involving

four electronic components jai, ja0i, jbi, and jb0i: Equations (4) and (5),

coupled with antisymmetry under T̂2 lead to the following identities between

the various matrix elements

hajĤjai ¼ hT̂ajT̂Ĥjai� ¼ hT̂ajĤjT̂ai� ¼ ha0jĤja0i� ¼ ha0jĤja0i ð9Þ

hajĤja0i ¼ hajĤjT̂ai ¼ hT̂ajT̂ĤjT̂ai� ¼ hT̂ajĤjT̂2ai� ¼ �ha0jĤjai� ð10Þ

hajĤjbi ¼ hT̂ajT̂Ĥjbi� ¼ hT̂ajĤjT̂bi� ¼ ha0jĤjb0i� ð11Þ

hajĤjb0i ¼ hT̂ajT̂Ĥjb0i� ¼ hT̂ajĤjT̂b0i� ¼ �ha0jĤjbi� ð12Þ
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The conclusion is therefore that the 4� 4 Hamiltonian matrix, which is assumed

to have zero trace, takes the form

HðQÞ ¼

wðQÞ 0 uðQÞ vðQÞ
0 wðQÞ �v�ðQÞ u�ðQÞ

u�ðQÞ �vðQÞ �wðQÞ 0

v�ðQÞ uðQÞ 0 �wðQÞ

0
BB@

1
CCA ð13Þ

where wðQÞ is real. Consequently, there are five independent conditions for a

strict conical intersection between two Kramers doublets, although vðQÞmay, for

example, vanish in model situations (see Section V.B). Moreover, there is no

certainty that the intersection will lie in a dynamically accessible region of the

coordinate space.

III. ADIABATIC EIGENSTATES NEAR A
CONICAL INTERSECTION

Suppose that jxnðQÞi is the adiabatic eigenstate of the Hamiltonian Hðq;QÞ,
dependent on internal variables q (the electronic coordinates in molecular

contexts), and parameterized by external coordinates Q (the nuclear coordi-

nates). Since jxnðQÞi must satisfy

Hðq;QÞjxnðQÞi ¼ EnðQÞjxnðQÞi hxmjxni ¼ dmn ð14Þ

it follows by the Hellman–Feynman theorem that

½Hðq;QÞ � EnðQÞ
rQjxnðQÞi ¼ ½rQEn �rQH
jxnðQÞi ð15Þ

Thus, on expanding

rQjxnðQÞi ¼
X

m

jxmðQÞihxmjrQjxni ð16Þ

the off-diagonal matrix elements ofrQ may be derived from Eq. (15) in the form

hxmjrQjxni ¼
hxmjrQHjxni

EnðQÞ � EmðQÞ
ð17Þ

The adiabatic approximation involves neglect of these off-diagonal terms, on

the basis that jEnðQÞ � EmðQÞj � jhxmjrQHjxnij: The diagonal elements

hxnjrQjxni are undetermined by this argument, but the gradient of the normali-

zation integral, hxnjxni ¼ 1, shows that

rQhxnjxni ¼ hxnjrQxni þ hrQxnjxni ¼ hxnjrQxni þ hxnjrQxni� ¼ 0 ð18Þ
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Consequently,

hxnjrQxni ¼ �hxnjrQxni� ð19Þ

from which hxnjrQxni ¼ 0, for real jxni:
Equations (16)–(20) show that the real adiabatic eigenstates are everywhere

smooth and continuously differentiable functions of Q, except at degenerate

points, such that EnðQÞ � EmðQÞ ¼ 0, where, of course, the jxni are undefined.

There is, however, no requirement that the jxni should be real, even for a real

Hamiltonian, because the solutions of Eq. (14) contain an arbitrary Q dependent

phase term, eicðQÞ say. Second, as we shall now see, the choice that jxni is real

raises a different type of problem. Consider, for example, the model

Hamiltonian in Eq. (8), with l ¼ 0;

H ¼ kr cosf kr sinf
kr sinf �kr cosf

� �
ð20Þ

with a degeneracy at r ¼ 0 and real eigenvectors

jxþi ¼
cos f

2

sin f
2

 !
jx�i ¼

�sin f
2

cos f
2

 !
ð21Þ

It is readily verified that

hxþj
q
qf
jxþi ¼ hx�j

q
qf
jx�i ¼ 0 ð22Þ

but the new problem is that

jx�ðfþ 2pÞi ¼ �jx�ðfÞi ð23Þ

which means that jx�ðfÞi is double valued with respect to encirclement of the

degeneracy at r ¼ 0. In the molecular context, the assumption of a real adiabatic

electronic eigenstate therefore requires boundary conditions such that the associ-

ated nuclear wave function also changes sign on any path around the origin,

because the total wave function itself must be single valued. A more convenient

alternative, for practical calculations, is often to add a phase modification, such

that the modified eigenstates, jn�i, are single valued [2,10].

jnþi ¼ eicðQÞ cos f
2

sin f
2

 !
jn�i ¼ eicðQÞ �sin f

2

cos f
2

 !
ð24Þ
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with cðQf Þ � cðQiÞ ¼ �p: The simplest choice in the present context is

cðQÞ ¼ f=2 but any phase factor, eicðfÞ, that changes sign around a circuit of f
is equally acceptable. Nevertheless, the geometric phase defined in Section IV

and the associated vector potential theory outlined in Section VI.B are gauge

invariant (i.e., independent of this phase ambiguity).

We should also notice explicitly that [22]

hx�jrQjxþi ¼
ef

2r
ð25Þ

where ef is a unit vector in the direction of increasing f: Equation (25) shows

that the non-adiabatic coupling diverges at the conical intersection point, which

is of course a manifestation of the fact that jx�i are undefined at an exact

degeneracy. It is readily verified that hn�jrQjnþi and hnþjrQjnþi also diverge in

a similar way.

In turn, this leads to an important conclusion, for the general discussion, that

the above sign change, for real eigenstates such that hx�ðQþ dQÞjx�ðQÞi ! 1

as dQ! 0, arises solely from the electronic degeneracy—not from the linearity

of Eq. (20), because the adiabatic eigenstates were seen above to be smooth

continuously differentiable functions of the nuclear coordinates Q, except at the

conical intersection Q0, where the divergence occurs. To reverse a famous

argument of Longuet-Higgins [7], suppose that a sign change were observed for

an arbitrarily small path C around Q0, on which the linear approximation (20) is

valid, but not around some larger loop L, which excludes other degeneracies.

Now, imagine a continuous expansion and deformation that takes C into

L, parameterized by a monotonically increasing parameter l: There must be

some point l0, at which jx�ðQÞi, say, is sign reversing on Cðl0Þ but sign pre-

serving on Cðl0 þ dlÞ: In other words, the change from sign reversing to sign

preservation on the larger loop requires the smoothly continuous function

jx�ðQÞi to undergo a discontinuous change at l0—a logical impossibility.

Longuet-Higgins [7] actually uses the argument in reverse to infer the logical

existence of conical intersections, from the observation of sign changes around

arbitrary loops, a test that is now widely used to detect the existence of conical

intersections between ab initio potential energy surfaces [23]. A generalization

of the Longuet-Higgins argument to the case of a spin–orbit coupled doublet has

been given by Stone [24]. As discussed above [see Eq. (13)] the Hamiltonian

matrix is then intrinsically complex, and there are no real adiabatic eigenstates.

Nevertheless one can still find ‘‘parallel transported’’ states jx�i, with vanishing

diagonal elements, as in Eq. (22), which acquire a variable phase change,

according to the radius of the encircling loop. The conical intersection is now

removed by spin–orbit coupling, but it’s influence is still apparent in simple sign

changes of jx�i around very large loops. The difference from the Longuet-

Higgins case is that the phase change falls to zero on very small circles around
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the maximum on the lower adiabatic surface. This situation is further discussed

in Section V.B.

Longuet-Higgins [7] also reinforces the discussion by the following quali-

tative demonstration of a cyclic sign change for the LiNaK like system subject

to Eq. (3), in which rows and columns are labeled by the basis functions

2�1 ¼
1ffiffiffi
2
p ðcB � cCÞ

2�2 ¼
1ffiffiffi
6
p ð�2cA þ cB þ cCÞ

ð26Þ

where cA ¼ ð�abcÞ, and so on, with the b spin on atom A. Thus 2�1 may be

recognized as the Heitler–London ground state of BC in the ‘‘reactant’’ AþBC

geometry, at which b ¼ g ¼ 0: Second, there is also a ‘‘transition state’’

geometry B–A–C at which a < b ¼ g, where the lower eigenstate goes over to
2�2: The table below follows changes in the ground-state wave function as the

system proceeds through various permutations of the three possible reactant and

transition state geometries, subject to the constraint that the overlap from one

step to the next is positive.

Geometry Ground-State Wave Function

A þ BC 1ffiffi
2
p ðcB � cCÞ

A–B–C 1ffiffi
6
p ð2cB � cA � cCÞ

AB þ C 1ffiffi
2
p ðcB � cAÞ

B–A–C 1ffiffi
6
p ð�2cA þ cB þ cCÞ

B þ AC 1ffiffi
2
p ð�cA þ cCÞ

B–C–A 1ffiffi
6
p ð�cA � cB þ 2cCÞ

BC þ A 1ffiffi
2
p ð�cB þ cCÞ

Comparison between the first and last lines of the table shows that the sign of

the ground-state wave function has been reversed, which implies the existence

of a conical intersection somewhere inside the loop described by the table.

IV. GEOMETRIC PHASE

While the presence of sign changes in the adiabatic eigenstates at a conical

intersection was well known in the early Jahn–Teller literature, much of the

discussion centered on solutions of the coupled equations arising from non-

adiabatic coupling between the two or more nuclear components of the wave

function in a spectroscopic context. Mead and Truhlar [10] were the first to
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focus on the consequences for both scattering and spectroscopy on a single

adiabatic electronic energy surface, influenced by, but well separated from a

conical intersection (see Section VI). Berry [8], who coined the term geometric

phase, set the argument in a more general context. Given the existence of an

infinity of phase modified adiabatic eigenstates of any given problem, the

questions at issue are

1. Whether there are any physical invariants of the system, independent of

phase modifications.

2. How such invariants can be computed.

Berry [8] starts by assuming the existence of a single-valued adiabatic

eigenstate jnðQÞi, such as that in Eq. (24), subject to

HðQÞjnðQÞi ¼ EnðQÞjnðQÞi hmjni ¼ dnm ð27Þ

Solutions of the time-dependent Schrödinger equation

i�h
dj�ðQðtÞÞi

dt
¼ HðQðtÞÞj�ðQðtÞÞi ð28Þ

are sought then in the form

j�ðQðtÞÞi ¼ jnðQðtÞÞieigðtÞ�ði=�hÞ
Ð

EnðQðtÞÞdt gð0Þ ¼ 0 ð29Þ

as the system is taken slowly round a time dependent path QðtÞ. It readily follows

from Eq. (28) and (29) that

rQjnðQÞi � _Qþ i
dg
dt
jnðQÞi ¼ 0 ð30Þ

from which it follows by integrating around a closed path C in parameter space

that

gC ¼ gðTÞ � gð0Þ ¼ i

þ
C

hnjrQni � _Q dt ¼ i

þ
C

hnjrQni � dQ ð31Þ

It should be noted, by taking the gradient of the normalization identity that

hnjrQni ¼ �hrQnjni ¼ �hnjrQni�: ð32Þ
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In other words, hnjrQni is imaginary, making gC real. As an illustrative

example, jni may assumed to be given by Eq. (24), in which case

gC ¼ i

þ
C

hnjrQni � dQ ¼�
þ

C

rQc � dQ ¼ �½cðTÞ � cð0Þ
 ¼ �p ð33Þ

The sign of gC is actually indeterminate for this particular model because the

quantity of physical interest is eigC ¼ e�ip ¼ �1:
Equation (31) is the fundamental geometric phase formula. It is termed

geometric for two reasons. First, the combination of jrQni and _Q dt in the

central term ensures that gC depends only on the geometry of the path C—not

on the rate at which it is traversed. Second, it is gauge invariant, in the sense that

multiplication of any single-valued eigenstate jni by a phase factor ei	c, such

that 	cðTÞ ¼ 	cð0Þ leaves gC invariant. All single-valued solutions of Eq. (27)

have the same geometric phase gC: The arbitrariness in cðQÞ allows, however,

for different manifestations of Eq. (31). For example, the choice c ¼ �f=2,

coupled with Eq. (25) for the linear E � E model allows the identity

hnjrQjni ¼ irQc ¼ �i
ef

2r
¼ �ihx�jrQjxþi ð34Þ

so that Eq. (31) may be expressed as

gC ¼
þ

C

hx�jrQjxþi � dQ ð35Þ

Phase factors of this type are employed, for example, by the Baer group [25,26].

While Eq. (34) is strictly applicable only in the immediate vicinity of the coni-

cal intersection, the continuity of the non-adiabatic coupling, discussed in

Section III, suggests that the integrated value of hx�jrQjxþi is independent of

the size or shape of the encircling loop, provided that no other conical

intersection is encountered. The mathematical assumption is that there exists

some phase function, cðQÞ, such that

rQc ¼ �hx�jrQjxþi ð36Þ

a condition that requires that rQ � hx�jrQjxþi ¼ 0, because rQ �rQc ¼ 0

for any function cðQÞ: Equation (34) ensures that this curl condition is satisfied

for the linear E � E model, but it would not be valid for the spin 1
2

model

discussed below, for example (or for the isomorphous 2E � E model discussed in

Section V.B), for which the adiabatic eigenstates are intrinsically complex.
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Other forms for gC are also available. Consider, for example, the phase

modification

jnðQÞi ¼ eicðQÞjxðQÞi ð37Þ

so that c½QðTÞ
�c½Qð0Þ
¼arghx½Qð0Þ
jx½QðTÞ
i, because hn½Qð0Þ
jn½QðTÞ
i¼
1 [i.e., jnðQÞi is single valued]. It follows from Eq. (31) that

gC ¼ arghx½Qð0Þ
jx½QðTÞ
i þ i

þ
C

hxjrQxi � dQ ð38Þ

which applies to a quite general adiabatic eigenstate jxðQÞi. At one extreme, jxi
is single-valued and Eq. (38) reverts to Eq. (31), while at the opposite limit jxi is

real, hxjrQxi vanishes and gC takes values 0 or p according to whether jxi
evolves to �jxi.

Another form

gC ¼ i

ð ð
rQ � hnjrQni � dS ð39Þ

with the integral taken over an area enclosed by the contour C; was obtained by

Berry [8] by applying Stokes theorem [27] to the line integral in Eq. (31). Care is,

however, required to ensure that the chosen surface excludes the conical

intersection point, Q0, where hnjrQni diverges, because Stokes theorem requires

that hnjrQni should be continuously differentiable over the surface.

A variant of Eq. (39), with the integral taken over a surface bounded by a

path C0 that excludes Q0, is illuminating in situations where jni is given by

Eq. (37), with jxi real. One then finds that

gC0 ¼ i

ð ð
rQ �rQc � dS0¼ 0 ð40Þ

because rQ �rQc ¼ 0 for any function cðQÞ: This means that the value of gC

is independent of the size and shape of the path C, provided that no degenerate

points, other than Q0 are enclosed, because any distortion of C can be interpreted

as taking in an additional area over which the integrals in Eqs. (31) and (39) both

vanish. This Stokes theorem argument confirms the earlier topological conclu-

sions applicable to real adiabatic eigenstates jxi:
A third expression may be obtained by taking the curl inside the bracket in

Eq. (39) and using the identities

jrQni ¼
X
jmihmjrQni ð41Þ

hmjrQni ¼ �
hmjrQHjni

EmðQÞ � EnðQÞ
ð42Þ
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to yield [8,10]

gC ¼ i

ð ðX
m 6¼n

hnjrQHjmi � hmjrQHjni
½EmðQÞ � EnðQÞ
2

� dS ð43Þ

The sum excludes m ¼ n, because the derivation involves the vector product of

hnjrQ Hjni with itself, which vanishes. The advantage of Eq. (43) over Eq. (31)

is that the numerator is independent of arbitrary phase factors in jni or jmi;
neither need be single valued. On the other hand, Eq. (43) is inapplicable, for the

reasons given above if the degenerate point lies on the surface S:
Consequently, Eq. (43) is inapplicable to the model of Eq. (20), because the

eigenstates, given by Eq. (21) or (24), are only defined in the ðx; yÞ plane, which

contains the degeneracy. On the other hand, Berry [8] extends the model in the

form

H ¼ 1

2

z x� iy

xþ iy �z

� �
¼ xsx þ ysy þ zsz ð44Þ

where the components of the vector s are the Pauli spin matrices. Thus

rQH ¼ ðsx;sy;szÞ ð45Þ

Moreover, because there are only two eigenstates, it follows from the com-

pleteness property, the vanishing of hnjrQHjni and the angular momentum

commutation relations that

hnjrQHjmi � hmjrQHjni ¼ hnjrQH�rQHjni ¼ ihnjsjni ð46Þ

The level splitting for this model is EmðQÞ � EnðQÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
¼ r and

the eigenstates may be taken as

jnþi ¼
cos y

2

sin y
2

eif

 !
jn�i ¼

�sin y
2

cos y
2

eif

 !
ð47Þ

It is readily verified that

hn�jsjn�i ¼ �
r̂

2
ð48Þ

where r̂ is a unit vector perpendicular to the surface of the sphere, used for

evaluation of the surface integral. One readily finds, by use of Eqs. (43)–(47), that

gC ¼ �i

ð ð
S

ihnjsjni
r2

� dS ¼ � 1

2

ð ð
S

d
 ð49Þ
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where d
 is the solid angle element. The choice of a contour at constant z or y
therefore yields

gC ¼ �ð1� cos yÞp ð50Þ
which reduces to Eq. (33) for y ¼ p=2, a comparison that is justified by noting

that the model (44) with y ¼ p=2 reduces to that in Eq. (20), in a complex rather

than a real representation. The factors eigC for the two states, which could be

obtained more directly by substitution from Eq. (47) in Eq. (31), now take

different values for y 6¼ p=2:
There is also an interesting alternative approach by Aharonov et al. [18], who

start by using projection operators, �n ¼ jnihnj to partition the Hamiltonian

H ¼ P2

2m
þ H1ðq;QÞ ð51Þ

between the adiabatic eigenstates jni of H1ðq; rÞ, rather than immediately

assuming an adiabatic representation. Since P does not commute with the �n,

products such as �nP2�n must be interpreted as

�nP2�n ¼ �nP �
X

m

�mP�n ð52Þ

an expression that can be simplified by decomposing P into two parts; a part

P� A that acts only within an adiabatic subspace and a part A that causes non-

adiabatic transitions. Thus

½ðP� AÞ;�n
 ¼ 0 ð53Þ
while ambiguity in A can be removed by requiring that

�nA�n ¼ 0 ð54Þ

In other words, A is a strictly off-diagonal operator that can be evaluated as the

difference between P and its diagonal parts

A ¼ P�
X

m

�mP�m ¼
1

2

X
m

�m; ½�m;P
½ 
 ð55Þ

The operation of ð1=2mÞP2 within any particular subspace may therefore be

represented as

1

2m
�nP2�n ¼

1

2m
�nðP� Aþ AÞ2�n

¼ 1

2m
�nðP� AÞ�nðP� AÞ�n þ

X
m

�nA�mA�n

" #

¼ 1

2m
½�nðP� AÞ2�n þ �nA2�n
 ð56Þ

Equations (53) and (54) are used to perform the manipulations in (56).
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The strengths of this approach are that the operator A is gauge invariant and

that equation (55) can be employed for its computation, regardless of the

number of components. To see the connection with geometric phase, arguments

given by Stone and Goff [28] show that A determines a field strength operator

with components

Fij ¼ �i½Pi � Ai;Pj � Aj
 ð57Þ

the diagonal elements of which determine the phase change 	g over a loop

	r i	r j in parameter space, in the form [18]

	gn ¼ 	r i	r jhnjFi jjni ¼ i	r i	r jhnj½Ai;Aj
jni ð58Þ

In three-dimensional (3D) applications the overall phase change over a cycle

may therefore be expressed as a surface integral, analogous to Eq. (43), namely,

gn ¼ i

ð ð
S

hnj½Ai;Aj
jni dSij ð59Þ

Comparison with Eq. (43) is illuminating. By the method of construction, the

matrix elements of A are identical with the off-diagonal elements of P; thus,

with the help of Eqs. (41) and (42)

Ajni ¼
X
m6¼n

jmihmjAjni ¼ �i
X
m6¼n

jmihmjrQjni ¼ i
X
m6¼n

jmihmjrQHjni
EmðQÞ � EnðQÞ

ð60Þ

Consequently, Eqs. (43) and (59) are identical, for applications in a 3D parameter

space, except that the vector product in the former is expressed as a commutator

in the latter. Both are computed as diagonal elements of combinations of strictly

off-diagonal operators; and both give gauge independent results. Equally,

however, both are subject to the limitations with respect to the choice of surface

for the final integration that are discussed in the sentence following Eq. (43).

Equations (31)–(43) assume a 3D parameter space, Q, although the gradient

rQjni has an obvious generalization to higher dimensions. Further general-

izations, to include the curl, transform equation (38) into the integral of a two

form over the surface bounded by C, this two form being obtained by replacing

r by the exterior derivative d and � by the wedge product ^ of the theory of

differential forms [29].

V. THE E� E JAHN–TELLER PROBLEM

The E � E Jahn–Teller problem, described by Eq. (7) or (8), plus an additional

nuclear term h0ðQÞ, common to the two electronic states, is the prototype for all
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subsequent discussions. In its linear variant, with l ¼ 0 in the above equations, it

provided the first example of geometric phase, plus a less familiar half-integral

quantum number [2]. The effects of spin–orbit coupling on geometric phase

[21,24] are also conveniently illustrated. Addition of the quadratic terms in

Eq. (7) or (8) is of interest in introducing a threefold corrugation on the lower

adiabatic potential surface leading to an ‘‘inverted’’ pattern of vibronic

multiplets (E levels below A, in the lowest triplet), which is one of the clearest

experimental manifestations of geometric phase [11]. There is also an inter-

esting question concerning the relative magnitudes of the linear and quadratic

terms in Eqs. (7) and (8). We shall find that there is no geometric phase effect

unless k 6¼ 0, which raises questions as to the nature of its disappearance as

k=l! 0:

A. The Linear Jahn–Teller Effect

It is convenient to discuss the linear Jahn–Teller model in the scaled complex

representation

H ¼ h0 kre�if

kreif h0

� �
ð61Þ

where

h0 ¼ �
1

2r

q
qr

r
q
qr

� �
� 1

2r2

q2

qf2
þ 1

2
r2 ð62Þ

rather than in the real representation in Eq. (20). It is readily verified, by ignoring

the kinetic energy terms, that the eigensurfaces take the form

W� ¼
1

2
r2 � kr ð63Þ

with single-valued eigenstates

jn�i ¼
1ffiffiffi
2
p 1

�eif

� �
ð64Þ

Substitution in Eq. (33) therefore yields gC ¼ �p, in agreement with the result

obtained from the real representation of the Hamiltonian in Eq. (20).

Figure 1a shows that the eigensurfaces form an interconnected double sheet,

the lower member of which has a ring of equivalent minima at r ¼ k and

W� ¼ � 1
2

k2: As expected angular momentum is conserved, but with the

complication that it is vibronic, rather than purely vibrational in character,
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because it may be confirmed that the operator

|̂ ¼ l̂z þ sz l̂z ¼ �i
q
qf

ð65Þ

commutes with H; and |̂ includes an electronic component, sz, as well as the

vibrational term l̂z: The single valued eigenstates of |̂ , belonging to the upper and

lower potential surfaces, may be obtained by multiplying Eq. (64) by eið j�1=2Þf;

thus

juj�ðfÞi ¼
1ffiffiffi
2
p eið j�1=2Þf

�eið jþ1=2Þf

� �
j ¼ 1

2
;
3

2
;
5

2
. . . ð66Þ

They must be coupled by separate radial factors in a full calculation [2]

but, to the extent that non-adiabatic coupling between the upper and lower

Figure 1. Adiabatic potential surfaces (a) for the linear E � E case and (b) for a 2E state with

linear Jahn–Teller coupling and spin–orbit coupling to a 2A state.
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surfaces is neglected, the total lower adiabatic wave function may be expressed

as

j��i ¼ r�1=2juj�ðfÞijv�ðrÞi ð67Þ

with the radial wave function on the lower adiabatic surface, jv�ðrÞi, taken as an

eigenstate of the radial operator

ĥr ¼ �
1

2r

q2

qr2
þ j2

2r2
þ 1

2
r2 � kr ð68Þ

For large k, the approximate potential minimum lies at r ¼ k and the lower

vibronic eigenvalues are given by [2]

Ev j ¼ �
k2

2
þ vþ 1

2

� �
þ j2

2k2
ð69Þ

The presence of the half-odd quantum number j in Eq. (69) is potentially a

physically measurable consequence of geometric phase, which was first claimed

to have been detected in the spectrum of Na3 [16]. The situation is, however,

quite complicated and the first unambiguous evidence for geometric phase in Na3

was reported only in 1999 [17].

B. Spin–Orbit Coupling in a 2E State

The effects of spin–orbit coupling on geometric phase may be illustrated by

imagining the vibronic coupling between the two Kramers doublets arising from

a 2E state, spin–orbit coupled to one of symmetry 2A: The formulation given

below follows Stone [24]. The four 2E components are denoted by jeþai, je�ai,
jeþbi, je�bi, and those of 2A by je0ai, je0bi: The spin–orbit coupling operator

has nonzero matrix elements

heþbjHsoje0ai ¼ he�ajHsoje0bi ð70Þ

giving rise to a second-order splitting, of say 2	, between one Kramers doublet,

jeþai, je�bi, and the other, je�ai, jeþbi: There is also a spin-preserving vibronic

coupling term, of the form in Eq. (61), giving rise to a Hamiltonian of the

form

H ¼ h0 þ	 kre�if

kreif h0 �	

� �
ð71Þ

for one coupled pair and the complex conjugate form for the other. Notice

that Eq. (71) conforms to Eq. (13) with w ¼ 	, u ¼ kre�if, and v ¼ 0. The
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eigensurfaces now take the forms

W� ¼
1

2
r2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2r2 þ	2

p
ð72Þ

with an avoided conical intersection, as shown in Figure 1b.

It is convenient, for comparison with Section V.A, to employ substitutions

	 ¼ rðrÞcos yðrÞ kr ¼ rðrÞsin yðrÞ tan yðrÞ ¼ kr

	
ð73Þ

which convert the Hamiltonian in Eq. (71) to the form in Eq. (44). Comparison

with Eq. (50) shows that the geometric phase, for a cycle of constant radius, r, is

given by

gC ¼ �ð1� cos yðrÞÞp ð74Þ

It reverts to the unspin–orbit modified value, gC ¼ �p, for paths such that

kr � 	, but vanishes as r ! 0:
Reverting to the vibronic structure, the operator |̂ again commutes with Ĥ,

and the analogue of the lower adiabatic eigenstate of |̂ in Eq. (66) becomes

juj�ðr;fÞi ¼
1ffiffiffi
2
p

�sin y
2

eið j�1=2Þf

cos y
2

eið jþ1=2Þf

 !
j ¼ 1

2
;
3

2
;
5

2
. . . ð75Þ

where the r dependence of juj�ðr;fÞi comes from that of yðrÞ: There is also an

equivalent complex conjugate eigenstate of the complex conjugate Hamiltonian

to that in Eq. (71). One finds after some manipulation that

huj�ðr;fÞjh0jr�1=2uj�ðr;fÞi

¼ r�1=2 � 1

2

q2

qr2
þ j2 þ j cos y

2r2
þW�ðrÞ þ

1

8

dy
dr

� �2
( )

ð76Þ

The radial factor in the total wave function

j��i ¼ r�1=2juj�ðfÞijv�ðrÞi ð77Þ

must therefore be an eigenstate of

ĥr ¼ �
1

2

q2

qr2
þ j2 þ j cos y

2r2
þW�ðrÞ þ

1

8

dy
dr

� �2

ð78Þ
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The principal differences from Eq. (68) lie in the form of the potential W�ðrÞ and

in the presence of the term j cos y, of which the latter arises from the dependence

of the geometric phase on the radius of the encircling path. The eigenvalues of ĥr

are no longer doubly degenerate, but a precisely equivalent Kramer’s twin radial

Hamiltonian may be derived from the complex conjugate of Eq. (71).

C. The Quadratic Jahn–Teller Effect

The quadratic Jahn–Teller effect is switched on by including the quadratic terms

in Eq. (7); thus, with the inclusion of the additional diagonal Hamiltonian h0,

H ¼ h0 kre�if þ lr2e2if

kreif þ lr2e�2if h0

� �
ð79Þ

The eigensurfaces are given by

W�ðr;fÞ ¼
1

2
r2 � r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2klr cos 3fþ l2r2

p
ð80Þ

with a threefold corrugation around the minimum of W�ðrÞ, in place of the line

of continuous minima in Figure 1. The three absolute minima in Figure 2, at

f ¼ 0;�2p=3, correspond to three equivalent isosceles distortions of an initially

equilateral triangular molecule.

There is no simple general form for the adiabatic eigenvectors, except in the

limits, k ¼ 0 and l ¼ 0, when, for example,

jx�i ¼
e�if=2

�eif=2

 !
l ¼ 0

¼ e�if

�eif

 !
k ¼ 0 ð81Þ

In the first case, jx�i changes sign as f increases to jþ 2p, while in the

second, jx�i is single valued. There is therefore a geometric phase of �p, for

lr � k, but no geometric phase in the opposite limit, lr � k: The interesting

questions concern (1) the effects of the corrugations on the vibronic eigenvalues;

and (2) the origin of the change in geometric phase behavior as the ratio lr=k

increases.

The first of these questions is deferred to Section VI. The second is addressed

by considering the degeneracy condition Wþðr;fÞ ¼ W�ðr;fÞ: One solution

lies at r ¼ 0, and there are three others at r ¼ k=l and f ¼ p;�p=3 [30,31]. A

circuit of f with r < k=l therefore encloses a single degenerate point, which

accounts for the ‘‘normal’’ sign change, e�ip ¼ �1, whereas as circuit with

r > k=l encloses four degenerate points, with no sign change because e�4ip ¼ 1:
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Any proper treatment of the dynamics, including motion in the r variable

therefore requires knowledge of the position of the minima of W�ðr;fÞ, which

are found to lie at r ¼ k=ð1� 2l2Þ [units are dictated by the form of the scaled

restoring term r2=2 in Eq. (80)]. The potential minima therefore lie inside the

critical circle r ¼ k=l if l < 1=
ffiffiffi
3
p

and outside it if the sense of the inequality is

reversed. Single surface dynamics, in the sense to be discussed below, may

therefore be assumed to apply with a geometric phase of p if l� 1=
ffiffiffi
3
p

, and

with no geometric phase if l� 1=
ffiffiffi
3
p

: Cases with lA 1=
ffiffiffi
3
p

, with significant

wave function amplitude at the degenerate points with r ¼ k=l, cannot be

validly treated in an adiabatic approximation.

VI. SINGLE-SURFACE NUCLEAR DYNAMICS

Given the full-Hamiltonian

Hðq;QÞ ¼
X P̂2

i

2mi

r2
Qi
þ Helðq;QÞ ð82Þ

Figure 2. Contours of the lower potential surface in the quadratic E � E Jahn–Teller case.

early perspectives on geometric phase 23



and adiabatic eigenstates jnðq;QÞi, such that

Helðq;QÞjnðq;QÞi ¼ WðQÞjnðq;QÞi ð83Þ

the Born–Oppenheimer approximation to the total wave function,

j�ðq;QÞi ¼ jnðq;QÞijvðQÞi ð84Þ

requires that

X 1

2mi

½P̂2

i þ 2hnjP̂ijni � P̂i þ hnjP̂
2

i jni
 þWðQÞ
� �

jvðQÞi ¼ EjvðQÞi ð85Þ

with appropriate boundary conditions on the vibrational factors jvðQÞi. As

discussed in Section III, coupling terms of the form

hnjrQjmi ¼
hnjrQHeljmi

WnðQÞ �WmðQÞ
ð86Þ

have been neglected in the derivation of Eq. (85). The assumption is that the

wave function has negligible amplitude in the vicinity of any points at which

WðQÞ has a close degeneracy with any other eigensurface.

Geometric phase complications necessarily arise, however, whenever the

nuclear wave function has significant amplitude on a loop around an isolated

degeneracy. They can be treated in two ways, according to whether the adiabatic

eigenstate jnðq;QÞi is taken to be multivalued or single-valued around the loop

in nuclear coordinate space Q: Illustrations are given below for the two different

approaches. The first concerns the energy ordering of the vibronic eigenstates

arising from a strong quadratic Jahn–Teller effect [11]. The second outlines the

vector potential approach, due to Mead and Truhlar [10], with applications to

the above E � E linear Jahn–Teller problems and to scattering problems

involving identical nuclei.

A. The Ordering of Vibronic Multiplets

It was seen in Section V.C that quadratic Jahn–Teller coupling terms result in a

threefold corrugation around the minimum energy path on the lower potential

surface W�ðQÞ and that there is a geometric phase, gC ¼ p, provided that the

radius of the minimum energy path satisfies r < k=l: We now consider the

influence of geometric phase on the relative energies of the (A;E) symmetry

levels in different tunneling triplets. The solution, due to Ham [11], applies band

theory arguments to assess the influence of antiperiodic, cðfþ 2pÞ ¼ �cðfÞ,
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boundary conditions on solutions of the threefold periodic angular equation

�h2

2m

d2

df2
þ E � VðfÞ

� �
cðfÞ ¼ 0 V fþ 2p

3

� �
¼ VðfÞ ð87Þ

Note that there is no first derivative term in Eq. (87), because the first line of

Eq. (81) ensures that hxjq=qfjxi ¼ 0:
The first strand of Ham’s argument [11] is that VðfÞ supports continuous

bands of Floquet states, with wave functions of the form

ckðfÞ ¼ eikðEÞfxðfÞ ð88Þ

where xðfÞ has the same periodicity as VðfÞ [32]. Elements of Floquet theory,

collected in the appendix, show that the spectrum is bounded by� 3
2
< k 0 3

2
, and

that the dispersion curves, EðkÞ obtained by inversion of kðEÞ in Eq. (88), have

turning points at k ¼ 0 and k ¼ 3
2
.

A second constraint is that the relative order of the critical energies at k ¼ 0

and k ¼ 3
2

is invariant to the presence or absence of the potential VðfÞ [11]:
Equation (A.6) shows that the free motion band structure can be folded onto the

interval � 3
2
< k 0 3

2
. Consequently, preservation of relative energy orderings at

k ¼ 0 and k ¼ 3
2

implies a band structure for VðfÞ 6¼ 0, with the form shown in

Figure 3.

The question of vibronic energy ordering, with and without geometric phase,

now turns on the appropriate values of k in Eq. (88), bearing in mind that all

energy levels are doubly degenerate except those at k ¼ 0 and k ¼ 3
2
. Normal

periodic boundary conditions require integral k, with Eð0Þ < Eð�1Þ, in the

lowest energy band. However, introduction of a sign change in ckðfÞ, to

compensate the electronic geometric phase factor, introduces half odd-integral

values of k, with Eð� 1
2
Þ < Eð3

2
Þ. This ordering is seen from Figure 3 to be

reversed and restored in the successively excited bands. It may also be noted

that an explicit calculation of the lowest 89 vibrational levels of Na3 [33]

confirms that the ordering of vibronic energy levels is the clearest observable

molecular manifestation of geometric phase.

B. Vector-Potential Theory: The Molecular Aharonov–Bohm Effect

Mead and Truhlar [10] broke new ground by showing how geometric phase

effects can be systematically accommodated in scattering as well as bound state

problems. The assumptions are that the adiabatic Hamiltonian is real and that

there is a single isolated degeneracy; hence the eigenstates jnðq;QÞi of Eq. (83)

may be taken in the form

jnðq;QÞi ¼ eicðQÞjxðq;QÞi ð89Þ
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where jxðq;QÞi is real, and cðQÞ is designed to ensure that jnðq;QÞi is single

valued around the degeneracy. Consequently, Eq. (85) takes the form

X 1

2mi

½fP̂i � aig2 þ hxjP̂2

i jxi
 þWðQÞ
� �

jvðQÞi ¼ EjvðQÞi ð90Þ

where

ai ¼ ��hrQi
c ð91Þ

The term ai therefore plays the role of a vector potential in electromagnetic

theory, with a particularly close connection with the Aharonov–Bohm effect,

associated with adiabatic motion of a charged quantal system around a magnetic

Figure 3. Floquet band structure for a threefold cyclic barrier (a) in the plane wave case after

using Eq. (A.11) to fold the band onto the interval �3
2
< k0 3

2
; and (b) in the presence of a threefold

potential barrier. Open circles in case (b) mark the eigenvalues at k ¼ 0;�1, consistent with periodic

boundary conditions. Closed circles mark those at k ¼ � 1
2
; 3

2
, consistent with sign-changing

boundary conditions. The point k ¼ � 3
2

is assumed to be excluded from the band.
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flux line [12], a connection that has led to the phrase molecular Aharonov–Bohm

effect [34,35] for the influence of ai on the nuclear dynamics. Note also that

single valuedness of jnðq;QÞi allows considerable ambiguity in the definition of

cðQÞ, but it is easily verified that the substitution of ~cðQÞ for cðQÞmerely alters

the phase of jvðQÞi by a factor eiðc�~cÞ, without altering the essential dynamics:
The simplest choice cðQÞ ¼ mf, where m is a half-odd integer and f is an angle

measured around the degeneracy, is therefore normally employed in molecular

Aharonov–Bohm theory.

An advantage of Eq. (90) for computational purposes is that the solutions are

subject to single-valued boundary conditions. It is also readily verified that

inclusion of an additional factor ei	cðQÞ on the right-hand side of Eq. (89) adds a

term 	ai ¼ ��hrQi
	c to the vector potential, which leads in turn to a comp-

ensating factor e�i	cðQÞ in the nuclear wave function. The total wave function is

therefore invariant to changes in such phase factors.

We now consider the connection between the preceding equations and the

theory of Aharonov et al. [18] [see Eqs. (51)–(60)]. The tempting similarity

between the structures of Eqs. (56) and (90), hides a fundamental difference in

the roles of the vector operator A in Eq. (56) and the vector potential a in

Eq. (90). The former is defined, in the adiabatic partitioning scheme, as a strictly

off-diagonal operator, with elements hmjAjni ¼ hmjPjni, thereby ensuring that

ðP� AÞ is diagonal. By contrast, the Mead–Truhlar vector potential a arises

from the influence of nonzero diagonal elements, hnjPjni on the nuclear

equation for jvi, an aspect of the problem not addressed by Arahonov et al. [18].

Suppose, however, that Eq. (56) was contracted between hnj and jnijvi in order

to handle the adiabatic nuclear dynamics within the Aharonov scheme. The

result becomes

1

2m
hnjP2jnijvi ¼ 1

2m
hnjðP� AÞ2jnijvi þ hnjA2jnijvi
h i

ð92Þ

Given a real electronic Hamiltonian, with single-valued adiabatic eigenstates of

the form jni ¼ eicðQÞjxni and jxmi, the matrix elements of A become

hmjAjni ¼ hxmjAjxni ¼ hxmjPjxni ð93Þ

so that

hnjA2jni ¼
X

m

hnjAjmihmjAjni ¼
X

m

hxnjPjxmihxmjPjxni ¼ hxnjP2jxni ð94Þ

The sum over all m is justified by the fact that the diagonal elements hxnjPjxni
vanish in a real representation. It is also evident from the factorization of jni and
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the absence of diagonal elements of A that

hnjP� Ajni ¼ hnjPjni ¼ �hrQc ¼ �a ð95Þ

Consequently, inclusion of the nuclear derivatives of jvi leads to

hnjðP� AÞ2jnijvi ¼ ðP� aÞ2jvi ð96Þ

The upshot is that Eq. (95) goes over precisely to the kinetic energy part of

Eq. (90). Despite some phrases in the introduction to Aharonov et al. [18] there is

therefore no fundamental contradiction with Mead and Truhlar [10].

Some final comments on the relevance of non-adiabatic coupling matrix

elements to the nature of the vector potential a are in order. The above analysis

of the implications of the Aharonov coupling scheme for the single-surface

nuclear dynamics shows that the off-diagonal operator A provides nonzero

contributions only via the term hnjA2jni. There are therefore no necessary

contributions to a from the non-adiabatic coupling. However, as discussed

earlier, in Section IV [see Eqs. (34)–(36)] in the context of the E � E Jahn–

Teller model, the phase choice c ¼ �f=2 coupled with the identity

rQc ¼ �hx�jrQjxþi ¼ �
ef

2r
ð97Þ

close to the degeneracy, allows a representation for a in terms of hx�jrQjxþi,
without recourse to arguments [36,37] that have aroused some controversy [38].

The resulting ADT form for the vector potential may have computational

advantages in avoiding the need to identify the precise conical intersection

point; a number of successful applications have been reported [25,26,39]. Notice

that adoption of the first equality in Eq. (97) implies a new phase choice

(c 6¼ � 1
2
f) which must, by the continuity argument in Section III, still ensure a

single-valued adiabatic eigenstate jni: It must be emphasized, however, that such

an ADT representation for the vector potential is subject to the same restrictions

as those that apply to the corresponding representation for the geometric phase in

Eq. (35).

1. Symmetry Considerations

It is beyond the scope of these introductory notes to treat individual problems in

fine detail, but it is interesting to close the discussion by considering certain,

geometric phase related, symmetry effects associated with systems of identical

particles. The following account summarizes results from Mead and Truhlar [10]

for three such particles. We know, for example, that the fermion statistics for H

atoms require that the vibrational–rotational states on the ground 1A1 electronic

energy surface of NH3 must be antisymmetric with respect to binary exchange
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and symmetric with respect to cyclic permutations; that is, they must belong to

the A2 representation of the C3v point group. We now consider how similar

symmetry constraints are introduced in a scattering context, in the presence of

geometric phase. It is convenient to formulate the theory in a symmetrical

coordinate system, which is here taken, for historical reasons, in the form

employed by Mead and Truhlar [10]. An alternative hyperspherical formulation

is also available in the literature [40].

The three internal coordinates are expressed as combinations of squares of

the interparticle distances;

Q ¼ R2
AB þ R2

BC þ R2
CA

u ¼ R2
BC þ R2

CA � 2R2
AB ¼ S cosf

v ¼
ffiffiffi
3
p
ðR2

BC � R2
CAÞ ¼ S sinf

S2 ¼ u2 þ v2 ¼ 2½ðR2
AB � R2

BCÞ
2 þ ðR2

BC � R2
CAÞ

2 þ ðR2
CA � R2

ABÞ
2


ð98Þ

Note that Mead and Truhlar [10] employ the symbol y in place of the present f,

which is preferred here for consistency with the previous text.

There is a line of degeneracies at the equilateral geometries, S ¼ 0, and

deviations from the degeneracy line are expressed in terms of u and v, subject at

a given value of Q to u2 þ v2 � Q, this bounding circle being the locus of linear

geometries. The properties of Eqs. (98) are summarized in Figure 4, from which

Figure 4. Triangular phase diagram, showing partitions of R2
AB, R2

BC, and R2
CA, at fixed

Q > R2
AB þ R2

BC þ R2
CA. Physically allowed combinations lie inside the circle, with the conical

intersection, corresponding to equilateral triangular ABC, at the center.
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it is evident that there three equivalent specifications for u and v, according to

whether AB, BC, or CA is taken as the unique particle pair.

Mead and Truhlar [10] further demonstrate that the real adiabatic eigenstates

close to S ¼ 0 behave in the AB representation as

jþi
j�i

� �
¼

sin f
2

cos f
2

cos f
2
�sin f

2

 !
jXABi
jYABi

� �
ð99Þ

where the reference kets jXABi and jYABi are, respectively, symmetric and

antisymmetric with respect to exchange of particles A and B. The geometry also

dictates the existence of alternative basis kets ðjXBCi; jYBCiÞ and ðjXCAi; jYCAiÞ,
related to ðjXABi; jYABiÞ by

jXABi
jYABi

� �
¼

� 1
2

ffiffi
3
p

2

�
ffiffi
3
p

2
� 1

2

 !
jXBCi
jYBCi

� �

¼
� 1

2
�
ffiffi
3
p

2ffiffi
3
p

2
� 1

2

 !
jXCAi
jYCAi

� �
ð100Þ

To see the implications of Eqs. (98)–(100) for the reaction

ABþ C! Aþ BC

where A, B, and C are equivalent atoms, we note first that the reactant geometry,

RBC ARCA � RAB corresponds to f! 0, for which j�i ! jXABi and

jþi ! jYABi. It follows from the definitions of jXABi and jYABi that diatomics

in electronic states that are symmetric or antisymmetric with respect to nuclear

exchange have j�i or jþi as the ground adiabatic eigenstate, respectively. The

former possibility (applicable to �þg or ��u rather than ��g or �þu symmetry [41])

is assumed in what follows. Thus attention is focused on the state j�i.
The next step is to note that the permutation ABC! CAB corresponds to an

increase in the angle f by 2p=3 [10]. As a result

j�i ! cos
f
2
þ p

3

� �
jXABi � sin

f
2
þ p

3

� �
jYABi

¼ cos
f
2
jXCAi þ sin

f
2
jYCAi ð101Þ

where the second line follows from Eq. (100). The result is the negative of j�i as

given by Eq. (99) in the CA representation. On the other hand, repetition of the

argument, with an additional phase factor e�3if=2, shows that the four functions
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e�3if=2j�i are all symmetric under cyclic permutations, as required by both bose

and fermi statistics. Moreover, these phase modified eigenstates are also single

valued in f:
Finally, following Mead and Truhlar [10], it may be seen that an interchange

of A and B is equivalent to a sign reversal of f followed by a rotation

perpendicular to the AB bond, under the latter of which jXABi is invariant and

jYABi changes sign. The net effect is therefore to induce the transitions

e�3if=2j�i ! e�3if=2j�i and e�3if=2jþi ! �e�3if=2jþi:
The upshot of these considerations is that total solutions associated, for

example, with the state j�i must be taken in one or other of the symmetrized

forms

j�i ¼ ½jvþðQÞie3if=2 � jv�ðQÞie�3if=2
j�i ð102Þ

where jv�ðQÞi are complex functions satisfying the nuclear equations

Ĥ�jv�ðQÞi ¼ Ejv�ðQÞi ð103Þ

in which Ĥ� differ from the normal nuclear Hamiltonian by the substitution

p̂f ! p̂f � 3�h=2: Equation (102) assumes that the electronic states of the

fragment diatomics are symmetric with respect to binary exchange (e.g., �þg or

��u ), using the upper and lower signs for bose and fermi statistics, respectively. A

corresponding form with jþi in place of j�i applies when the fragments

electronic states are antisymmetric with respect to nuclear exchange (e.g., ��g or

�þu ), using lower and upper signs for the bose and fermi cases, respectively, in

view of the substitution e�3if=2jþi ! �e�3if=2jþi under binary exchange.

VII. CONCLUSIONS AND EXTENSIONS

The above discussion centers around the seminal contributions of Longuet-

Higgins [2,6,7], Mead and Truhlar [10], Berry [8], and Ham [11], supplemented

by symmetry arguments due to Jahn and Teller [4,5] and Mead [21]. Topics

covered concerned the conditions required for a conical intersection between

adiabatic potential energy surfaces (Section II); the behavior of adiabatic

electronic eigenstates near a double degeneracy (Section III); the definition and

computation of geometric phase (Section IV); and the influence of geometric

phase on the nuclear dynamics on a well-separated adiabatic potential surface

(Section VI). Illustrations were provided by the simplest and most widely

studied E � E Jahn–Teller model.

First, the starting point for the discussion is that the real smoothly varying

electronic eigenstates jxðQÞi close to a double degeneracy, Q0, are found to

change sign around any path in a nuclear coordinate plane, Q, containing the
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degeneracy. Second, this electronic sign change must be compensated by a

suitable choice of nuclear wave function, such that the total wave function is

single valued with respect to any circuit around Q0: Two possibilities are

therefore open for the nuclear dynamics; either the nuclear wave functions must

change sign on paths around Q0, or the theory must be formulated in terms

phase modified adiabatic eigenstates

jnðQÞi ¼ e�icðQÞjxðQÞi

such that jnðQÞi is single valued. There is, however, considerable ambiguity in

the choice of the phase function cðQÞ. Berry’s first contribution [8] was to show

that the integrated geometric phase

gC ¼ i

þ
C

hnjrQni � dQ

depends only on the geometry of the encircling path, regardless of the choice of

cðQÞ, provided that jnðQÞi is single valued. Moreover, there is no requirement

that the path C should lie in a plane containing Q0. In addition, Berry derived an

alternative expression for gC that relaxes the single valuedness condition on

jnðQÞi:
Simple aspects of the theory were discussed in Section V by reference to the

simplest and most widely studied E � E Jahn–Teller model. They include the

existence a half-odd quantum number j in the linear coupling model, which has

been detected in the spectroscopy of Na3 [16]. However, j is no longer

conserved in the presence of quadratic and higher coupling terms, due to the

presence of corrugations on the potential energy surface. Next, complications

due to an avoided conical intersection were illustrated by the case of a 2E state

with spin–orbit coupling, which may also be viewed as the case of a circuit in a

plane from which the intersection point is excluded. The geometric phase is then

no longer independent of the size and shape of the encircling path; it takes the

‘‘normal’’ value of p on large circuits far from the avoided intersection, but is

quenched to zero as the radius of the circuit decreases.

The two basic approaches to the influence of geometric phase on the nuclear

dynamics were outlined in Section VI. The first follows Ham [11] in using band

theory arguments to demonstrate that the nuclear sign change, characteristic of

the E � E problem with real eigenstates jxi, causes a reversal in the ordering of

vibronic tunneling triplets arising from threefold potential surface corrugations;

the normal order EðAÞ < EðEÞ; EðEÞ < EðAÞ, and so on in successive triplets is

replaced by EðEÞ < EðAÞ; EðAÞ < EðEÞ, and so on. The second follows Mead

and Truhlar [10] in replacing jxi by the above single-valued functions jni, in

which case the modifying phase cðQÞ contributes a vector potential term to the
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nuclear kinetic energy operator. There was also shown to be a geometric phase

related contribution to the nuclear spin statistics.

The above results mainly apply to the Longuet-Higgins E � E problem, but

this historical survey would be incomplete without reference to early work on

the much more challenging problems posed by threefold or higher electronic

degeneracies in molecules with tetrahedral or octahedral symmetry [3]. For

example, tetrahedral species, with electronic symmetry T1 or T2, have at least

five Jahn–Teller active vibrations belonging to the representations E and T with

individual coordinates ðQa;QbÞ and ðQx;Qy;QzÞ say: The linear terms in the

nine Hamiltonian matrix elements were shown in 1957 [3] to be

H ¼
1
2

kEðQa þ
ffiffiffi
3
p

QbÞ kT Qz kT Qy

kT Qz
1
2

kEðQa �
ffiffiffi
3
p

QbÞ kT Qx

kT Qy kT Qx �kEQa

0
@

1
A ð104Þ

and the corresponding quadratic terms are also well established [42] (see also

Appendix IV of [14]). The cubic group, vector coupling coefficients in Griffith’s

book [43] are very helpful for calculations of this kind. Mead’s recent review [44]

is largely devoted to the geometric phase aspects of this complicated case, in

which one is now concerned with possible circuits in at least a five-dimensional

(5D) parameter space (recall that CHþ4 has two vibrations with symmetry t2),

some of which encircle lines of degeneracy, while others do not. There is also no

readily tractable means to determine the adiabatic eigenvectors at arbitrary

nuclear geometries, except in the remarkable O’Brien d model [46,47] with

kE ¼ kT , which seems to be relatively little known in molecular physics. The

interesting findings, in this special case, are that the Hamiltonian (104) may be

shown to commute with the three components of a vibronic angular momentum,

somewhat analogous to the operator |̂ in Eq. (65) for the linear E � E case.

Consequently, the eigenvectors at arbitrary nuclear geometries can be expressed

in terms of Wigner matrix elements [48] and an explicit expression for the vector

potential in the Mead and Truhlar formalism has been worked out [47]. The

model is of restricted practical interest, but anyone interested in the complexities

of geometric phase, in its more challenging contexts, is strongly advised to study

these interesting papers. The review by Judd [49] adds useful mathematical

detail.

APPENDIX A: ELEMENTS OF FLOQUET THEORY

Floquet solutions of the periodic second-order equation (taken here to be

threefold periodic)

�h2

2m

d2

df2
þ E � VðfÞ

� �
cðfÞ ¼ 0 V fþ 2p

3

� �
¼ VðfÞ ðA:1Þ
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are defined to propagate from f to fþ 2p=3 in the form

ck fþ 2p
3

� �
¼ e2pikðEÞ=3ckðfÞ ðA:2Þ

so that jckðfþ 2p=3Þj ¼ jckðfÞj: The factor k=3 is introduced so that, after

threefold repetition of Eq. (A.2),

ckðfþ 2pÞ ¼ e2pikðEÞckðfÞ ðA:3Þ

It also follows that the function

xðfÞ ¼ e�ikfckðfÞ ðA:4Þ

is periodic, because on combining Eqs. (A.2) and (A.4)

x fþ 2p
3

� �
¼ e�ikðfþ2p=3Þck fþ 2p

3

� �
¼ xðfÞ ðA:5Þ

Consequently, Floquet solutions may be expressed as

ckðfÞ ¼ eikðEÞfxðfÞ ðA:6Þ

where xðfÞ has the same periodicity as VðfÞ. Equation (A.6) defines the energy

dependent wavevector kðEÞ, which is the inverse of the dispersion function EðkÞ
for the band in question. Different bands have increasingly many nodes in the

periodic factor xðfÞ:
The existence of such Floquet states, and the nature of the resulting band

structure, is explained by the following argument, due to Whittaker and Watson

[32]. Consider a pair of independent solutions of Eq. (A.1), say f1ðfÞ and f2ðfÞ,
and allow f to increase by 2p=3. In view of the periodicity of VðfÞ, the

propagated solutions fiðfþ 2p=3Þ must be expressible as linear combinations

of the fiðfÞ themselves;

f1ðfþ 2p=3Þ
f2ðfþ 2p=3Þ

� �
¼

u11 u12

u21 u22

� �
f1ðfÞ
f2ðfÞ

� �
ðA:7Þ

Now, continuity requires that the wronskian f1 f 02 � f2 f 01 is preserved, from which

it may be verified that

det u ¼ 1 ðA:8Þ
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Moreover, the trace of the matrix u, tðEÞ ¼ u11 þ u22, is invariant to a similarity

transformation; that is to an alternative choice of f1ðfÞ and f2ðfÞ. Consequently,

the eigenvalue equation,

l2 � tðEÞlþ 1 ¼ 0 ðA:9Þ

is also independent of this choice. The solutions l�, which have product unity,

take the Floquet form

l� ¼ e�2pikðEÞ=3 ðA:10Þ

implied by Eq. (A.2), if�2 < tðEÞ < 2; otherwise l� are real and different from

unity, which means, via the analogue of Eq. (A.2) that the corresponding

solutions cðfÞ increase or decrease progressively as f increases by multiples of

2p=3:
Values of l on the unit circle restrict kðEÞ to � 3

2
< k0 3

2
, with the band

edges at the special points k ¼ 0 and k ¼ 3
2
, where the two roots coincide. The

repeated root condition means that the corresponding dispersion curve EðkÞ has

turning points at its edges, while every other level is doubly degenerate. We also

note in passing that plane wave solutions can be expressed in the Floquet form

of Eq. (A.6),

eikf ¼ eiðk�3nÞfe3inf ðA:11Þ

and that n can always be chosen such that � 3
2
< k � 3n0 3

2
: Consequently, the

free motion dispersion curve, E ¼ k2�h2=2m, can always be folded onto the above

interval.

As a concrete illustration of the Floquet band structure for a threefold barrier,

Section 3.4 of Child [50] contains an explicit analytical form for the matrix u;

u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðEÞ

q
eis0ðEÞ �i ðEÞe�isðEÞ

i ðEÞeisðEÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðEÞ

q
e�is0ðEÞ

0
@

1
A ðA:12Þ

where sðEÞ and s0ðEÞ increase monotonically with E, while ðEÞ decreases

monotonically to zero as E !1: Consequently, the trace tðEÞ varies as

tðEÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðEÞ

q
coss0ðEÞ ¼ 2 cos

2pkðEÞ
3

ðA:13Þ

A proper calculation requires that s0ðEÞ and ðEÞ should be evaluated in terms of

semiclassical phase integrals, but it is sufficient for illustrative purposes to

ß ß

ß ß

ß

ß

ß

early perspectives on geometric phase 35



employ the approximations s0ðEÞ ¼ E=�ho and ðEÞ ¼ e�ðE�E0Þ=�ho, where �ho is

an appropriate energy quantum: Successive Floquet bands cover the energy

ranges for which jtðEÞj < 2 in Figure 5. The corresponding dispersion curves

shown in Figure 3 were obtained by inversion of the function kðEÞ; determined

by Eq. (A.13).
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I. INTRODUCTION

One of the most interesting observations in molecular physics was made by

Herzberg and Longuet-Higgins (HLH) [1] when they were investigating the

Jahn–Teller (JT) conical intersection (CI) problem [2–15]. These authors found

that in the presence of a CI located at some point in configuration space (CS),

the adiabatic electronic wave functions that are parametrically dependent on the

nuclear coordinates became multivalued and proposed to correct the

‘‘deficiency’’ by multiplying the adiabatic wave functions of the two states

with a unique phase factor (see Appendix A). More specifically, in the theory of

molecular dynamics the Born–Oppenheimer (BO) treatment [16] (see Appendix

B) is based on the fact that the fast-moving electrons are distinguishable from

the slow-moving nuclei in a molecular system. The BO approximation [16,17]

(see Appendix B) has been made with this distinction and once the electronic

eigenvalue problem is solved, the nuclear Schrödinger equation employing the

BO approximation should be properly modified in order to avoid wrong obser-

vations. The BO approximation implies that the non-adiabatic coupling terms

(see Appendix B) [18–30] are negligibly small, that is, it has been assumed that

particularly at low-energy processes, the nuclear wave function on the upper

electronic surface affect the corresponding lower wave function very little. As a

consequence of this approximation, the product of the nuclear wave function on

the upper electronic state and the non-adiabatic coupling terms are considered to

be very small and will have little effect on the dynamics. On the other hand,

when the non-adiabatic coupling terms are sufficiently large or infinitely large,

the use of the ordinary BO approximation becomes invalid even at very low

energies. Even though the components of the upper state wave function in the

total wave function are small enough, their product with large or infinitely large

non-adiabatic coupling terms may not be. The reason for having large non-

adiabatic coupling terms is that the fast-moving electron may, in certain

situations, create exceptionally large forces, causing the nuclei in some regions

of CS to be strongly accelerated so that their velocities are no longer negligibly

small. In this situation, when these terms responsible for this accelerated motion

are ignored within the ordinary BO approximation, the relevance of the ordinary
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BO approximation vanishes even at low energies, hence the formulation of

generalized BO equations become worth while considering.

The aim of the generalized BO treatment is to avoid multivaluedness of

the total wave function. The Longuet-Higgins suggestion [1] of obtaining a

generalized BO treatment for the JT model [2–5] by multiplying a complex

phase factor with the adiabatic wave functions of the two states responsible for

forming the CI, was reformulated by Mead and Truhlar [31–33] by introducing

a vector potential into the nuclear Schrödinger equation (SE) in order to ensure

a single valued and continuous total wave function. In their approach, the

adiabatic wave function is multiplied by the Longuet-Higgins phase and by

operating with the nuclear kinetic energy operator (KEO) on this product

function, the KEO acquire some additional terms. Terms, that appear as a vector

potential. Thus, when the nuclear coordinates travel through a closed path

around the CI, the vector potential can introduce the required sign change and

make the total wave function continuous and single valued. For general

coordinate systems and complicated molecules where the point of CI does not

coincide with any special symmetry of the coordinate system, the introduction

of a vector potential so as to obtain the extended BO equations is a more general

approach than the one that multiplies the adiabatic wave function with an HLH

phase.

For systems with three identical atoms, the JT effect is the best known

phenomena [34–37] and well investigated in bound systems [38–43]. Significant

differences in the reaction cross-section of the H þ H2 system (and its isotopic

variants) obtained by theoretical calculations and experimental measurements

indicate the complication due to the consideration of the ordinary BO separation

in the theory of electronic and nuclear motion of a molecular system having a CI

between the electronic states. In this respect, we would like to mention the

pioneering studies of Kuppermann and co-workers [44–46] and others [47–48]

who incorporated the required sign change by multiplying the adiabatic wave

function of the D þ H2 reactive system with the HLH phase. Kuppermann and

co-workers identified the effect of this geometric (or topological) phase for the

first time in a chemical reaction. Their theoretically calculated integral cross-

sections agreed well with experimental data at different energies [49–52]. In

particular, they found that such effects are noticeable in differential cross-

sections. This series of studies renewed interest in this subject.

As the CI of the ground and the excited states of the H3 system occurs at the

symmetric triangular configuration, it is possible to incorporate the HLH phase

directly in the basis functions as Kuppermann et al. did so that the nuclear SE

does not require any extra term through a vector potential. Even though this

approch could be a reasonably good approximation for the isotopic variants of

X3 with the dynamics expressed in hyperspherical coordinates, the vector

potential approach, as we mentioned earlier, will be more rigorous for general
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coordinate and reactive systems. We have formulated [53,54] the general form

of the vector potential in hyperspherical coordinates for the A þ B2 type of

reactive system even in cases where the position of the CI is arbitrary. The

influence of the vector potential on the integral and differential cross-sections of

the D þ H2 reactive system has been estimated [53–55] by quasiclassical

trajectory calculations. We found qualitatively the same relative shift of the

rotational state distribution and the change of scattering angle distributions in

the presence of the vector potential as indicated by Kuppermann et al. through

directly introducing the HLH phase change. We also performed semiclassical

calculations [56] and include either a vector potential in the nuclear SE or

incorporated a phase factor in the basis functions and again obtained the same

relative shift of the rotational state distribution.

The effect of singularities on scattering processes has also been investigated

by extending the JT model [57,58]. The geometric phase effect on the proper

symmetry allowed vibrational transition probabilities in the nonreactive and

reactive channels of a simple two-dimensional (2D) quasi-JT model is an

interesting topic. The ordinary BO equations can be extended either by

including the HLH phase [1] or by adding extra terms through a vector potential

[59,60]. Quantum mechanical calculations indicated that in the case of the

quasi-JT model, ordinary BO equations could not give the proper symmetry

allowed transitions, whereas the extended BO equations could. Finally, a two

surface diabatic calculation on the quasi-JT model confirmed the validity of the

extended BO equations. It is also important to point out that calculations were

done both in the time-independent [59] and time-dependent framework [60].

The findings were the same.

The generalization of BO equations based on the HLH phase seemed to be

the right thing to do so far, but generally two questions arise: (1) Is it really

necessary to incorporate an ad hoc correction of the HLH type into the quantum

theory of an atom and a molecule? (2) Is it guaranteed that such a treatment can

offer correct results in all cases or not? In this context, we would like to mention

the work by Baer and Englman [57]. As the non-adiabatic coupling terms

appear in the off-diagonal positions in the SE, in order to construct a single

approximated BO equation the non-adiabatic coupling terms must be shifted

from their original off-diagonal position to the diagonal position. In the first

attempt, it was shown that such a possibility may exist and an approximate

version of the extended BO equations for the two-state case has been derived. In

a subsequent article, Baer [58] derived a new set of coupled BO–SEs from first

principles (and without approximations) for the 2D Hilbert space where all the

non-adiabatic coupling terms are shifted from the off-diagonal to the diagonal

position. These two equations remain coupled but the coupling term become

potential coupling. As this potential coupling term is multiplied by the original

adiabatic wave function associated with the upper electronic state, which is
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small particularly at low energy processes, two decoupled extended BO

equations are obtained by deleting this product.

The adiabatic-to-diabatic transformation (ADT) matrix (see Appendix B) is

responsible for the transformation from the electronic adiabatic (see Appendix

B) eigenfunctions to the diabatic framework (see Appendix B). The adiabatic

framework describes the functions that govern the motion of the nuclei, namely,

on the potential energy surface (PES) and the non-adiabatic coupling terms. It is

the non-adiabatic terms that cause difficulties when studying nuclear dynamics

of a system having a CI. These terms are abruptly behaving—sometime even

spiky—functions of the coordinate [19,20,61] and therefore cause numerical

instabilities when solution of the corresponding nuclear SE is attempted. It has

been well known for quite some time that the only way to overcome this

numerical difficulty is to move from the adiabatic to diabatic framework where

the non-adiabatic coupling terms are replaced by the potential coupling terms

that are much smoother functions of the coordinates [20,62]. Recently, a direct

connection has been found between a given non-adiabatic coupling matrix and

the uniqueness of the relevant diabatic potential matrix [63,64]. It has been

proven that in order to produce a uniquely defined diabatic potential energy

matrix from the non-adiabatic coupling matrix, the ADT matrix has to fulfill

quantization-type requirements. In simple cases, these requirements become

ordinary quantizations of the eigenvalues of the non-adiabatic coupling matrix.

As, for example, for systems having a CI between two states, the average values

of the non-adiabatic coupling over a closed path is only allowed to have the

value n=2, where n is an integer. This value is the same as that given by the HLH

phase factor. Similarly, for systems having a CI among three states this average

becomes n, where n is now an integer. The main advantage of this new

derivation is that it can be extended to any N-state system. Baer and others,

along with the present authors, proved an ‘‘existence theorem’’ that shows the

possibility of a derivation of the extended BO equation for an N-state system

[65] having a CI at a particular point. We obtained extended BO equations for a

tri-state JT model [66] using quantization-type requirement of the ADT matrix

and these extended BO equations are different from those obtained by using the

HLH phase. Finally, we perform numerical calculation on the ground adiabatic

surface of the tri-state JT model using those extended BO equations obtained by

considering that three states are coupled and found that the results agreed well

with the diabatic results.

Finally, in brief, we demonstrate the influence of the upper adiabatic

electronic state(s) on the ground state due to the presence of a CI between two

or more than two adiabatic potential energy surfaces. Considering the HLH

phase, we present the extended BO equations for a quasi-JT model and for an

A þ B2 type reactive system, that is, the geometric phase (GP) effect has been

introduced either by including a vector potential in the system Hamiltonian or
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by incorporating a phase factor into the adiabatic nuclear wave function. The

effect of a topological phase on reactive and non-reactive transition probabilities

were obtained by using a time-dependent wavepacket approach in a 2D quasi-JT

model. Even when we replace the operators in the Hamiltonian (with or without

introducing a vector potential) of the D þ H2 reactive system with the corres-

ponding classical variables and calculate integral and differential cross-sections,

we can clearly identify the signature of the GP effect. Semiclassical results on

the same system also indicate an effect. We also present the results obtained by

quasiclassical trajectory calculations for the H þ D2 reaction. In case of a two-

state isolated system (a Hilbert space of dimension 2), the formulation of

extended BO equations to perform scattering calculations on a quasi-JT model

and A þ B2 type reactive systems is based on the idea of a Longuet-Higgins

phase. If more than one excited state is coupled with the ground state, the phase

factor could be different from the Longuet-Higgins phase factor as shown by

Baer et al. [65], where the phase angle is defined through the ADT matrix. It

indicates that even for reaction dynamic studies on the ground adiabatic surface

one needs to know the number of excited states coupled with the ground state

and depending on this number, the phase factor changes, hence the form of

extended BO equations will be modified. We present the outline of the derivation

of the extended version of the BO approximate equations and perform scattering

calculation on a two-arrangement–two-coordinate tri-state model system. These

calculations were done three times for each energy: Once without any approxi-

mations, that is, a diabatic calculation; next with those extended BO equations

derived by using the HLH phase; and finally with those extended BO equations

derived by using the new phase factor due to tri-state coupling. The state-to-

state (reactive and nonreactive) transition probabilities obtained indicate that

only the new approximate BO equations can yield the relevant results for a tri-

state system. In Section V, we introduce a new formulation of quantum

molecular dynamics (so-called quantum dressed classical mechanics) and give

the form of the vector potential needed for incorporating topological phase

effects if the dynamics is solved using this approach.

II. LONGUET-HIGGINS PHASE-BASED TREATMENT

As mentioned in the introduction, the simplest way of approximately accounting

for the geometric or topological effects of a conical intersection incorporates a

phase factor in the nuclear wave function. In this section, we shall consider

some specific situations where this approach is used and furthermore give the

vector potential that can be derived from the phase factor.

A. The Geometric Phase Effect in a 2D Two Surface System

The non-adiabatic effect on the ground adiabatic state dynamics can as men-

tioned in the introduction be incorporated either by including a vector potential
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into the system Hamiltonian derived by considering the HLH phase or by

multiplying the HLH phase directly on the basis functions. We have studied a

two-coordinate quasi-‘‘JT scattering’’ model [37] where the nuclear kinetic

energy operator in Cartesian coordinates can be written as,

TnðR; rÞ ¼ � �h2

2m

q2

qr2
þ q2

qR2

� �
ð1Þ

or in terms of polar coordinates we have,

Tnðq;fÞ ¼ �
�h2

2m

q2

qq2
þ 1

q

q
qq
þ 1

q2

q2

qf2

� �
ð2Þ

R and r are defined in the intervals, �1 � R � 1 and �1 � r � 1 and these

are related to q and f in the following way:

r ¼ q sin f; R ¼ q cos f; and f ¼ arctanðr=RÞ

The effective nuclear kinetic energy operator due to the vector potential is

formulated by multiplying the adiabatic eigenfunction of the system, cðR; rÞ
with the HLH phase expði=2 arctanðr=RÞÞ, and operating with TnðR; rÞ, as

defined in Eq. (1), on the product function and after little algebraic simpli-

fication, one can obtain the following effective kinetic energy operator,

T 0nðR; rÞ ¼ � �h2

2m

q2

qr2
þ q2

qR2
þ R

r2 þ R2

� �
i
q
qr
� r

r2 þ R2

� �
i
q
qR
� 1

4ðr2 þ R2Þ

� �
ð3Þ

Similarly, the expression for the effective kinetic energy operator in polar

coordinates will be,

T 0nðq;fÞ ¼ �
�h2

2m

q2

qq2
þ 1

q

q
qq
þ 1

q2

q2

qf2
� i

1

q2

q
qf
� 1

4q2

� �
ð4Þ

If the position of the conical intersection is shifted from the origin of the co-

ordinate system to (r0; R0), the relation between Cartesian and polar coordinates

for the present system can be written as, r 	 r0 ¼ q sinf, R	 R0 ¼ q cosf and

f ¼ arctanðr 	 r0=R	 R0Þ. Consequently, the effective nuclear kinetic energy

operator will be [68],

T 00n ðR; rÞ¼� �h2

2m

q2

qr2
þ q2

qR2
þ R	 R0

ðr 	 r0Þ2 þ ðR	 R0Þ2

 !
i
q
qr

"

� ðr 	 r0Þ
ðr 	 r0Þ2 þ ðR	 R0Þ2

 !
i
q
qR
� 1

4ððr 	 r0Þ2 þ ðR	 R0Þ2Þ

 !#
ð5Þ
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Hence, the expression of Eq. (5) indicates that, in a polar coordinate system,

Eq. (4) will remain unchanged even if the position of the conical intersection is

shifted from the origin of the coordinate system.

The ordinary BO equations in the adiabatic representation can also be used

for single surface calculations where the geometrical phase effect is incorpo-

rated by an HLH phase change in f. The correct phase treatment of the f
coordinate has been introduced by using a special technique [44–48] when the

kinetic energy operators are evaluated numerically. More specifically, the

geometrical phase effect has been introduced by modifying the fast Fourier

transformation (FFT) procedure when evaluating the kinetic energy terms. The

wave function cðq; fÞ is multiplied with expðif=2Þ, then after doing a forward

FFT the coefficients are multiplied with a slightly different frequency factor

containing (k þ 1
2
) instead of k and finally after completing the backward FFT

[69], the wave function is multiplied with expð�if=2Þ. The procedure needs to

be repeated in each time step of the propagation.

The transition probabilities obtained due to the above two modified treat-

ments of single-surface calculations need to be compared with those transition

probabilities obtained by two surface calculations that confirms the validity of

these former treatments.

1. Scattering Calculation with the Quasi-Jahn–Teller Model

The two adiabatic potential energy surfaces that we will use in the present

calculations, are called a reactive double-slit model (RDSM) [59] where the first

surface is the lower and the second is the upper surface, respectively,

u1ðR; rÞ ¼ 1

2
mðo0 � ~o1ðRÞÞ2r2 þ Af ðR; rÞ þ gðRÞu2ðR; rÞ

u2ðR; rÞ ¼ 1

2
mo2

0r2 � ðD� AÞf ðR; rÞ þ D

ð6Þ

with

~o1ðRÞ ¼ o1exp � R

s

� �2
 !

f ðR; rÞ ¼ exp � R2 þ r2

s2

� �� �

and

gðRÞ ¼ 0 ð7Þ

The parameters used in the above expressions for the potential energy surfaces

and the calculations are given in Table 1 of [60].
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The two surface calculations by using the following Hamiltonian matrix are

rather straightforward in the diabatic representation

H ¼ TþW

¼ Tn

1 0

0 1

� �
þ

W11 W12

W21 W22

� �
ð8Þ

where the diabatic potential matrix elements,

W11 ¼
1

2
½u1 þ u2 þ ðu1 � u2Þcosf�

W22 ¼
1

2
½u1 � u2 þ ðu1 � u2Þcosf�

W12 ¼ W21 ¼
1

2
ðu1 � u2Þsinf

ð9Þ

are obtained by the following orthogonal transformation:

W ¼ TyUT ð10Þ

with T ¼ cosf=2 �sinf=2

sinf=2 cosf=2

� �
and U ¼ u1 0

0 u2

� �

Single surface calculations with a vector potential in the adiabatic representa-

tion and two surface calculations in the diabatic representation with or without

shifting the conical intersection from the origin are performed using Cartesian

coordinates. As in the asymptotic region the two coordinates of the model

represent a translational and a vibrational mode, respectively, the initial wave

function for the ground state can be represented as,

�adðR; r; t0Þ ¼ ck0

GWPðR; t0Þ�vðr; t0Þ ð11Þ

where ck0

GWPðR; t0Þ is a Gaussian wavepacket and �vðr; t0Þ a harmonic oscilla-

tor wave function.

It is important to note that the two surface calculations will be carried out in

the diabatic representation. One can get the initial diabatic wave function matrix

for the two surface calculations using the above adiabatic initial wave function

by the following orthogonal transformation,

�1
diðR; r; t0Þ

�2
diðR; r; t0Þ

 !
¼ cosf=2 sinf=2

�sinf=2 cosf=2

� �
�adðR; r; t0Þ
0

� �
ð12Þ
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Single surface calculations with proper phase treatment in the adiabatic repre-

sentation with shifted conical intersection has been performed in polar co-

ordinates. For this calculation, the initial adiabatic wave function �adðq; f; t0Þ
is obtained by mapping �adðR; r; t0Þ into polar space using the relations,

r 	 r0 ¼ q sinf and R	 R0 ¼ q cosf. At this point, it is necessary to mention

that in all the above cases the initial wave function is localized at the positive

end of the R coordinate where the negative and positive ends of the R coordinate

are considered as reactive and nonreactive channels.

The kinetic energy operator evaluation and then, the propagation of the R; r,

or q; f degrees of freedom have been performed by using a fast Fourier transfor-

mation FFT [69] method for evaluating the kinetic energy terms, followed by

Lanczos reduction technique [70] for the time propagation. A negative imagi-

nary potential [48]

VImðRÞ ¼ �
iVmax

Im

cosh2½ðR	max � RÞ=b�
ð13Þ

has been used to remove the wavepacket from the grid before it is reflected from

the negative and positive ends of the R grid boundary. The parameters used in

the above expression and other data are given in Table II of [60].

The transition probability at a particular total energy (En) from vibrational

level i to f may be expressed as the ratio between the corresponding outgoing

and incoming quantities [71]

P	i!f ðEnÞ ¼
R1
�1 x	kf ;n

ðtÞ dtR kmax; i; n

kmin; i; n
jZðki; nÞj2 dki; n

ð14Þ

where the (þ) and (�) signs in the above expression indicate nonreactive and

reactive transition probabilities. If we propagate the system from the initial

vibrational state, i, and are interested in projecting at a particular energy, En, and

final vibrational state, f , the following equation can dictate the distribution of

energy between the translational and vibrational modes,

�h2k2
i; n

2m
þ �ho0 iþ 1

2

� �
¼ En ¼

�h2k2
f ; n

2m
þ �ho0 f þ 1

2

� �
ð15Þ

One can obtain the explicit expressions for xþkf ; n
and x�kf ; n

as defined in Eq. (13)

considering the following outgoing fluxes in the nonreactive and reactive

channels

xþf ðtÞ ¼ Re c?
f ðRþ0 ; tÞ � ð�i�h=mÞ �

qcf ðR; tÞ
qR

� �
Rþ

0

( )
ð16Þ
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and

x�f ðtÞ ¼ Re c?
f ðR�0 ; tÞ � ði�h=mÞ �

qcf ðR; tÞ
qR

� �
R�

0

( )
ð17Þ

where

cf ðR; tÞ ¼
ð1
�1

�?
adðR; r; tÞ�f ðrÞdr ð18Þ

The discrete Fourier expansion of cf ðR; tÞ can be written as

cf ðR; tÞ ¼
XNR=2

n¼�ðNR=2Þþ1

CnðtÞexp 2ipðn� 1Þ R� Rmin

Rmax � Rmin

� �� �

¼
X

n

CnðtÞexp
2ipðn� 1Þði� 1Þ

NR

� �
ð19Þ

where, R ¼ Rmin þ ði� 1ÞðRmax � RminÞ=NR and NR is total number of grid

points in R space. By substituting Eq. (18) into Eqs. (15) and (16), one can easily

arrive at

xþf ðtÞ ¼ Re

(
c?

f ðRþ0 ; tÞ
XNR=2

n¼ 0

(
2p�hðn� 1Þ

mðRmax � RminÞ

� �

� exp
2ipðn� 1Þðiþ0 � 1Þ

NR

� �
CnðtÞ

))
ð20Þ

and

x�f ðtÞ ¼ Re

(
c?

f ðR�0 ; tÞ
X�1

n¼�ðNR=2Þþ1

2p�hðn� 1Þ
mðRmax � RminÞ

� ��

� exp
2ipðn� 1Þði�0 � 1Þ

NR

� �
CnðtÞ

�)
ð21Þ

where i	0 ¼ ½ðR	0 � RminÞ=ðRmax � RminÞ� þ 1. It is important to note that in

xþf ðtÞ only positive and in x�f ðtÞ only negative values of n have been considered.

It has been numerically verified that negative components of n in xþf ðtÞ and

positive components of n in x�f ðtÞ actually have negligible contribution.
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We are now in a position to write from Eqs. (19) and (20) that,

xþf ðtÞ ¼
XNR=2

n¼0

xþkf ; n
ð22Þ

and

x�f ðtÞ ¼
X�1

n¼�ðNR=2Þþ1

x�kf ; n
ð23Þ

respectively.

The denominator in Eq. (13) can be interpreted as an average value over the

momentum distribution from the initial wavepacket, that is,

Zðki;nÞ ¼
1

2p

ð1
0

ck0

GWPðR; t0Þexpðiki; nRÞ dR ð24Þ

and the limits (kmin; i; n; kmax; i; n) of the integral in the denominator of Eq. (13)

over the variable ki; n can be obtained if we consider the wavenumber interval of

the corresponding final f channel,

kmin; f ; n ¼ kf ; n �
p

Rmax � Rmin

; kmax; f ; n ¼ kf ; n þ
p

Rmax � Rmin

ð25Þ

These values are related to the initial wavenumber intervals by the following

equations:

�h2

2m
ðkmin; i; nÞ2 þ �ho0 iþ 1

2

� �
¼ �h2

2m
ðkmin; f ; nÞ2 þ �ho0 f þ 1

2

� �
�h2

2m
ðkmax; i; nÞ2 þ �ho0 iþ 1

2

� �
¼ �h2

2m
ðkmax; f ; nÞ2 þ �ho0 f þ 1

2

� � ð26Þ

We have used the above analysis scheme for all single- and two-surface

calculations. Thus, when the wave function is represented in polar coordinates,

we have mapped the wave function, �adðq; f; tÞ to �adðR; r; tÞ in each

time step to use in Eq. (17) and as the two surface calculations are performed in

the diabatic representation, the wave function matrix is back transformed to the

adiabatic representation in each time step as

�1
adðR; r; tÞ

�2
adðR; r; tÞ

 !
¼

cosf=2 �sinf=2

sinf=2 cosf=2

 !
�1

diðR; r; tÞ
�2

diðR; r; tÞ

 !
ð27Þ

and used in Eq. (17) for analysis.
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For all cases we have propagated, the system is started in the initial

vibrational state, i ¼ 0, with total average energy 1.75 eV and projected at four

selected energies, 1.0, 1.5, 2.0, and 2.5 eV, respectively.

2. Results and Discussion

In Table I we present vibrational state-to-state transition probabilities on the

ground adiabatic surface obtained by two-surface calculations and compare with

those transition probabilities obtained by single-surface calculations with or

without including the vector potential in the nuclear Hamiltonian. In these

calculations, the position of the conical intersection coincides with the origin of

the coordinates. Again shifting the position of the conical intersection from the

origin of the coordinates, two-surface results and modified single-surface results

obtained either by introducing a vector potential in the nuclear Hamiltonian or

by incorporating a phase factor in the basis set, are also presented.

At this point, it is important to note that as the potential energy surfaces are

even in the vibrational coordinate (r), the same parity, that is, even! even and

odd! odd transitions should be allowed both for nonreactive and reactive cases

but due to the conical intersection, the diabatic calculations indicate that the

allowed transition for the reactive case are odd! even and even! odd whereas

in the case of nonreactive transitions even! even and odd! odd remain

allowed.

In Table I(a), various reactive state-to-state transition probabilities are

presented for four selected energies where calculations have been performed

assuming that the point of conical intersection and the origin of the coordinate

system are at the same point. The numbers of the first row of this table have

been obtained from two-surface diabatic calculations and we notice that only

odd! even and even! odd transitions are allowed. Single-surface results

including a vector potential not only give the correct parity for the transitions

but also good agreement between the first- and the second-row numbers for all

energies. The third row of Table I(a) indicates the numbers from a single-surface

calculation without a vector potential. We see that the parity as well as the

actual numbers are incorrect.

Again, in Table I(b), we present reactive state-to-state transition probabilities

at the four selected energies where the position of the conical intersection

is shifted from the origin of the coordinates. The first row of this table indicates

results from a two-surface diabatic calculation where in the nonreactive case the

same parity and in the reactive case opposite parity transitions appear as allowed

transitions. Calculated numbers shown in the second row came from single-

surface calculations with a vector potential and the results not only follow

the parity (same parity for the nonreactive case and different parity for the

reactive case) but also agree well for all energies with the numbers shown in the

first row of Table I(b). Results from single-surface calculations incorporating a
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phase factor into the basis set are shown in the third row of Table I(b) for the

reactive channel. Though the phase treatment can offer proper parity allowed

transitions, these numbers have for all energies less agreement with those

presented in the first and second rows of Table I(b).

TABLE I(b)

Reactive State-to-State Transition Probabilities when Calculations are Performed by Shifting the

Position of Conical Intersection from the Origin of the Coordinate System

E (eV) 0! 0 0! 1 0! 2 0! 3 0! 4 0! 5 0! 6 0! 7 0! 8 0! 9

1.0 0.0000 a 0.0119 0.0000 0.0090

0.0001 b 0.0113 0.0004 0.0060

0.0003 c 0.0363 0.0004 0.0271

1.5 0.0000 0.1043 0.0000 0.0334 0.0000 0.0571

0.0000 0.1084 0.0001 0.0346 0.0002 0.0592

0.0001 0.1390 0.0000 0.0183 0.0001 0.0050

2.0 0.0000 0.1281 0.0000 0.0561 0.0000 0.0365 0.0000 0.2443

0.0001 0.1286 0.0002 0.0604 0.0001 0.0319 0.0001 0.2609

0.0000 0.1040 0.0001 0.0853 0.0004 0.0526 0.0002 0.2185

2.5 0.0000 0.0869 0.0000 0.0909 0.0000 0.0788 0.0000 0.0211 0.0000 0.2525

0.0002 0.0864 0.0002 0.0981 0.0007 0.0750 0.0002 0.0342 0.0018 0.2387

0.0000 0.0711 0.0002 0.0877 0.0006 0.0932 0.0009 0.0479 0.0019 0.2611

a Two-surface calculation.
b Single-surface calculation with vector potential.
c Single-surface calculation with phase change.

TABLE I(a)

Reactive State-to-State Transition Probabilities when Calculations are Performed Keeping the

Position of the Conical Intersection at the Origin of the Coordinates

E (eV) 0! 0 0! 1 0! 2 0! 3 0! 4 0! 5 0! 6 0! 7 0! 8 0! 9

1.0 0.0000 a 0.0033 0.0000 0.0220

0.0001 b 0.0101 0.0008 0.0345

0.0094 c 0.0000 0.0361 0.0000

1.5 0.0000 0.1000 0.0000 0.0342 0.0000 0.0764

0.0001 0.1046 0.0001 0.0370 0.0004 0.0582

0.0719 0.0000 0.0664 0.0000 0.0827 0.0000

2.0 0.0000 0.1323 0.0000 0.0535 0.0000 0.0266 0.0000 0.2395

0.0002 0.1323 0.0000 0.0583 0.0001 0.0267 0.0007 0.2383

0.1331 0.0000 0.0208 0.0000 0.0300 0.0000 0.1963 0.0000

2.5 0.0000 0.0987 0.0000 0.0858 0.0000 0.0901 0.0000 0.0248 0.0000 0.2529

0.0001 0.0983 0.0001 0.0903 0.0005 0.0870 0.0010 0.0297 0.0007 0.2492

0.2116 0.0000 0.0382 0.0000 0.0121 0.0000 0.1783 0.0000 0.1119 0.0000

a Two-surface calculation.
b Single-surface calculation with vector potential.
c Single-surface calculation without vector potential.
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In this model calculation, using a time-dependent wavepacket approach, we

studied the extended JT model in order to investigate the symmetry effects

on the scattering processes. First, we performed two surface diabatic

calculations, which are considered to be the exact ones as they can follow

interference effects due to the conical intersection. We see that the ordinary BO

approximation has failed to treat the symmetry effect but the modified single-

surface calculations, either by including a vector potential into the nuclear

Hamiltonian or by incorporating a phase factor in the basis set, can reproduce

the two-surface results for different situations. Though the transition probabili-

ties calculated by Baer et al. [59] using the same model are qualitatively the

same as the present numbers, small quantitative differences are present,

particularly, at higher energies. We believe that some of these deviations could

be due to the dynamic effects of the potential, the vector potential, or the phase

changes in the wave function. We may therefore conclude that if the energy is

below the conical intersection, then the effect of it is well described by simply

adding a vector potential to the Hamiltonian or by the simple phase change in

the angle f, which when increased by 2p makes the system encircle the

intersection and appear to work well even in cases where the intersection is

shifted away from the origin.

B. Three-Particle Reactive System

We derive the effective Hamiltonian considering the HLH phase change for any

reaction involving three atoms and discuss integral and differential cross-

sections obtained either classically or semiclassically. An easy way of incorpo-

rating the geometric phase effect is to use the hyperspherical coordinates in

which the encircling of the intersection is connected with a phase change by 2p
of one of the hyperangles (f).

In the presence of a phase factor, the momentum operator (P̂), which is expre-

ssed in hyperspherical coordinates, should be replaced [53,54] by (P̂� �h5Z)

where 5Z creates the vector potential in order to define the effective

Hamiltonian (see Appendix C). It is important to note that the angle entering the

vector potential is strictly only identical to the hyperangle f for an A3 system.

The general form of the effective nuclear kinetic energy operator (T̂ 0) can be

written as

T̂ 0 ¼ 1

2m
ðP̂� �h5ZÞ2

¼ 1

2m
ðP̂2 � �h252Z� 2�h5ZP̂þ �h25Z5ZÞ ð28Þ

It is now convenient to introduce hyperspherical coordinates (r, y, and f),

which specify the size and shape of the ABC molecular triangle and the Euler
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angles a, b, and g describing the rotation of the molecular shape in space. If the

Euler angles are treated as classical variables and the coordinate system is such

that the z axis is aligned [67] with the total angular momentum J, the semi-

classical kinetic energy operator T̂scl for a three-particle system can be expressed

in a modified form of Johnson’s hyperspherical coordinates [72] as below,

T̂scl ¼
P̂2

2m
¼ 1

2m
P̂2
r þ

4

r2
L̂2ðy;fÞ

� �
þ Pg½Pg � 4 cos yP̂f�

2mr2 sin2 y

þ
ðJ2 � P2

gÞð1þ sin y cos 2gÞ
mr2 cos2 y

� �h2

2mr2

1

4
þ 1

sin22y

� �
ð29Þ

where r is the hyperradius, and y and f are the hyperangles with

L̂2 ¼ ��h2 q2

qy2
þ 1

sin2y

q2

qf2

� �

Due to the special choice of coordinates, the momenta conjugate to a and b are

constants of motion, that is, Pa ¼ J, Pb ¼ 0, and Pg ¼ J cosb.

When we wish to replace the quantum mechanical operators with the corres-

ponding classical variables, the well-known expression for the kinetic energy in

hyperspherical coordinates [73] is

Tcl ¼
1

2m
P2
r þ

4

r2
P2
y þ

1

sin2 y
P2
f

� �� �
þ Pg½Pg � 4 cos yPf�

2mr2 sin2 y

þ
ðP2

a � P2
gÞð1þ sin y cos 2gÞ
mr2 cos2 y

ð30Þ

The explicit expressions of the other terms in Eq. (27) can be evaluated in terms

of hyperspherical coordinates using the results of Appendix C,

� �h2

2m
52Z ¼ � �h2

2m

X
i

q2Z
qX2

i

where Xi � ðrx; ry; rz; Rx; Ry; RzÞ

¼ 4�h2

mr2 siny
f½sin y0 cos y sinf=2½sin2 y sin2 fþ ðcos y0 siny cosf

þ siny0 cos yÞ2�� þ ½sin y0 sin y sinffsin2 f cos y sin y

þ ðcos y0 sin y cosfþ sin y0 cos yÞðcos y0 cos y sinf� sin y0 sin yÞg

þ ðcos y0 sin yþ sin y0 cos y cosfÞfsin2 y sinf cosf

� cos y0 sin y sinfðcos y0 sin y cosfþ sin y0 cos yÞg�=

½sin2 y sin2 fþ ðcos y0 siny cosfþ sin y0 cos yÞ2�2g ð31Þ
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�h2

2m
5Z5Z ¼ �h2

2m

X
i

qZ
qXi

qZ
qXi

where Xi � ðrx; ry; rz; Rx; Ry; RzÞ

¼ 2�h2

mr2

½sin2 y0 sin2 fþ ðcos y0 sin yþ sin y0 cos y cosfÞ2�
½sin2 y sin2 fþ ðcos y0 sin y cosfþ sin y0 cos yÞ2�2

ð32Þ

and

� �h

m
5 ZP ¼ � �h

m

X
i

qZ
qXi

PXi
where Xi � ðrx; ry; rz; Rx; Ry; RzÞ ð33Þ

where the general form of the momenta P?
Xi

(? indicates that the Coriolis term is

not included) in hyperspherical coordinates can be expressed as

P?
Xi
¼ Pr

qr
qXi

þ Py
qy
qXi

þ Pf
qf
qXi

It is to easy to evaluate qr=qXi, qy=qXi, and qf=qXi [for Xi � ðrx; ry; rz; Rx;
Ry; RzÞ] using equation (C.2) and after introducing the Coriolis term [72], the

momenta PXi
become

Prx
¼ rx

r
Pr �

2Ry

r2
Py þ

2Rx

r2 sin y
Pf � ozry

� �

Pry
¼ ry

r
Pr �

2Rx

r2
Py �

2Ry

r2 sin y
Pf þ ozrx

� �
Prz
¼ ðoxry � oyrxÞ

PRx
¼ Rx

r
Pr þ

2ry

r2
Py �

2rx

r2 sin y
Pf � ozRy

� �

PRy
¼ Ry

r
Pr þ

2rx

r2
Py þ

2ry

r2 sin y
Pf þ ozRx

� �
PRz
¼ ðoxRy � oyRxÞ

ð34Þ

where ox, oy, and oz are the components of instantaneous angular velocity of

the rotating axes XYZ with respect to the stationary axes X0Y 0Z 0.
By substituting qZ=qXi and PXi

in Eq. (32), after some simplification we get,

� �h

m
5ZP ¼ � 4�h½sin y0 sin y sinfPy þ ðcos y0 sin yþ siny0 cos y cosfÞPf�

mr2 sin y½sin2 y sin2 fþ ðcos y0 sin y cosfþ sin y0 cos yÞ2�
ð35Þ
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It is important to note that Eq. (34) becomes independent of the Coriolis term

because the symmetrical components of P and 5Z cancel it identically.

Thus, the total effective Hamiltonian (H) in the presence of a vector potential

is now defined and it is for an X3 type reactive system (y0 ¼ 0) given by

HsclðclÞ ¼ TsclðclÞ þ
2�h2

mr2 cos2 y
� 4�hPf

mr2 sin2 y
þ Vðr; y; fÞ ð36Þ

Thus the inclusion of the geometric phase in this case adds two terms to the

Hamiltonian. The first is an ‘‘additional’’ potential term and the second has the

effect that 2�h is added to Pg in the Coriolis coupling term [see Eq. (35)].

1. Quasiclassical Trajectory (QCT) Calculation on D þ H2

The total effective Hamiltonian H, in the presence of a vector potential for an

A þ B2 system is defined in Section II.B and the coupled first-order Hamilton

equations of motion for all the coordinates are derived from the new effective

Hamiltonian by the usual prescription [74], that is,

_qi ¼
qH

qpi

_pi ¼ �
qH

qqi

ð37Þ

During initialization and final analysis of the QCT calculations, the numerical

values of the Morse potential parameters that we have used are given as

De ¼ 4:580 eV, re ¼ 0:7416 Å, and b ¼ 1:974 Å�1. Moreover, the potential

energy as a function of internuclear distances obtained from the analytical

expression (with the above parameters) and the LSTH [75,76] surface

asymptotically agreed very well.

In the final analysis of the QCT calculations, j0 is uniquely defined. By using

the final coordinate (r0) and the momentum (p0), the rotational angular

momentum (L ¼ r0 � p0) and j0 [setting L2 ¼ j0ðj0 þ 1Þ�h2] can be determined.

Once the rotational angular momentum (L) is obtained, we can find the

vibrational energy (Evib ¼ Eint � Erot). From the vibrational energy, the final

vibrational quantum number, v0, is obtained using the expression of the energy

levels of a Morse oscillator. However, at higher values of v0 the energy level

expression of the Morse oscillator may not be accurate and the following

semiclassical formula based on the Bohr–Sommerfeld quantization

v0 ¼ � 1

2
þ 1

h

þ
pr dr ð38Þ

160 satrajit adhikari and gert due billing



can be used instead. We have performed QCT calculations for obtaining integral

cross-sections of the D þ H2 (v ¼ 1; jÞ ! DHðv0; j0Þ þ H reaction at the total

energy of 1.8 eV (translational energy 1.0 eV) with the LSTH [75,76] potential

energy parameters. These studies have been done with or without inclusion of

the geometric phase and starting from initial states (v ¼ 1; j ¼ 1). For this case,

1:2� 105 trajectories are taken noting that convergence was actually obtained

with �5� 104 trajectories. The distribution of integral cross-sections with

(y0 ¼ 11:5�) or without inclusion of the geometric phase as a function of j0

(v0 ¼ 1) has been shown in Figure 1 and compared with those QCT results

obtained by using y0 ¼ 0.

In Figure 1, we see that there are relative shifts of the peak of the rotational

distribution toward the left from j0 ¼ 12 to j0 ¼ 8 in the presence of the

geometric phase. Thus, for the D þ H2 (v ¼ 1; j)!DH ðv0; j0Þ þ H reaction

with the same total energy 1.8 eV, we find qualitatively the same effect as found

quantum mechanically. Kuppermann and Wu [46] showed that the peak of the

rotational state distribution moves toward the left in the presence of a geometric

phase for the process D þ H2 (v ¼ 1; j ¼ 1Þ ! DH ðv0 ¼ 1; j0Þ þ H. It is

important to note the effect of the position of the conical intersection (y0) on the

rotational distribution for the D þ H2 reaction. Although the absolute position

of the peak (from j0 ¼ 10 to j0 ¼ 8) obtained from the quantum mechanical

calculation is different from our results, it is worthwhile to see that the peak

Figure 1. Quasiclassical cross-sections for the reaction D þ H2 (v ¼ 1; j ¼ 1Þ ! DH ðv0 ¼
1; j0Þ þ H at 1.8-eV total energy as a function of j0. The solid line indicates results obtained without

including the geometric phase effect. Boxes show the results with the geometric phase included

using either y0 ¼ 0 (dashed) or y0 ¼ 11:5� (dotted).
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position of the rotational distribution without a geometric phase effect using

classical hyperspherical calculation comes at j0 ¼ 12 (the overestimation is due

to the use of classical mechanics), which is different from the quantum

calculation having the peak at j0 ¼ 10.

The relative shift of the peak position of the rotational distribution in the

presence of a vector potential thus confirms the effect of the geometric phase for

the D þ H2 system displaying conical intersections. The most important aspect

of our calculation is that we can also see this effect by using classical mechanics

and, with respect to the quantum mechanical calculation, the computer time is

almost negligible in our calculation. This observation is important for heavier

systems, where the quantum calculations are even more troublesome and where

the use of classical mechanics is also more justified.

The effect of the GP is expected to be even more pronounced in differential

cross-sections and the computation of differential cross-sections are again

carried out by QCT calculations for the Dþ H2 (v ¼ 1; j ¼ 1Þ ! DH ðv0 ¼ 1; j0Þ þ
H reaction at the total energy of 1.8 eV (initial kinetic energy 1.0 eV) with the

London–Sato–Tr�uhlar–Horowitz (LSTH) [75,76] potential energy parameters. We

calculated the scattering angle distributions for different final rotational states

(v0 ¼ 1; j0) with or without inclusion of a geometric phase starting from the initial

state [(v ¼ 1; j ¼ 1)]. The convergence of these distributions has appeared when

there are a sufficient number of trajectories in each scattering angle. Nearly 1:0� 106

number of trajectories have been computed to obtain converged distributions for all

the final j0 states.

The rotationally resolved differential cross-section are subsequently smooth-

ened by the moments expansion (M) in cosines [77–79]:

dsRð j0; yÞ
do

¼ sRðj0Þ
4p

1þ
XM
k¼1

ck cos ðkpaðyÞÞ
" #

ck ¼
2

NRðj0Þ
XNRðj0Þ

s¼1

cos ðkpaðysÞÞ

sRðj0Þ ¼ pb2
maxNRðj0Þ=N

aðyÞ ¼ 1

2
ð1� cos yÞ

ð39Þ

where N is the total number of trajectories and NRðj0Þ is the number of reactive

trajectories leading to the DH(j0) product. Also, y is the scattering angle, s labels

the reactive trajectories leading to the same product, and bmax is the impact

parameter.

The calculations showed [54,55] significant effect of the GP on scattering

angle resolved cross-sections for a particular final rotational state. It is

interesting to see the change of these distributions due to the geometric phase
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compared to those obtained without the geometric phase. It appears that for

lower final rotational states (j0 � 10), scattering angle distributions in the

presence of the geometric phase, have higher peaks compared to those without

geometric-phase situations. Similarly, for higher final rotational states (j0 � 10),

nongeometric-phase cases have predominance over geometric-phase cases.

Finally, there are crossings between these distributions at j0 ¼ 10. The

rotationally resolved differential cross-section results as shown in [55] are

quite expected when considering the integral cross-section distributions

displayed in Figure 1. Kuppermann and Wu showed differential cross-sections

at Etot ¼ 1:8 eV (initial kinetic energy 1.0 eV) for the D þ H2 (v ¼ 1; j ¼ 1Þ !
DHðv0 ¼ 1; j0Þ þ H reaction with or without considering the geometric phase. In

their calculations, the differential cross-section distributions represented either

with or without the geometric-phase cases have crossings at j0 ¼ 8, where for

lower j0 values the ‘‘with geometric phase’’ and for higher j0 values the ‘‘without

geometric phase’’ cases have predominance. Qualitatively, we have found the

same features for differential cross-section distributions as they have obtained

except that the crossing position is in our case j0 ¼ 10 as compared to theirs

j0 ¼ 8. Again, this difference in crossing position comes about due to the use of

classical mechanics. The scattering angle resolved differential cross-sections in

the presence of a vector potential indicate and confirm the effect of the

geometric phase in the D þ H2 reaction having a conical intersection. The fact

that these effects can be seen using classical mechanics is the most important

aspect of our calculations since the computational cost in this case is very small.

2. Semiclassical Calculation on a D þ H2 Reaction

Considering the semiclassical Hamiltonian from Eq. (28), one can expand the

total wave function as,

�ðr; y; f; tÞ ¼
X

k

ckðy; f; tÞ�kðr; tÞ ð40Þ

where r; y, and f are quantum degrees of freedom and �kðr; tÞ are Hermite

basis functions with expansion coefficients ckðy; f; tÞ.
The Hermite basis functions �kðr; tÞ have the following form:

�kðr; tÞ ¼ p1=4 exp
i

�h
ðgðtÞ þ PrðtÞðr� rðtÞÞ þ Re AðtÞðr� rðtÞÞ2Þ

� �
xkðxÞ

ð41Þ

where

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Im AðtÞ

�h

r
ðr� rðtÞÞ
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and

xkðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k!2k
ffiffiffi
p
pp expð�x2=2ÞHkðxÞ

are the harmonic oscillator basis functions.

In this semiclassical calculation, we use only one wavepacket (the classical

path limit), that is, a Gaussian wavepacket, rather than the general expansion of

the total wave function. Equation (39) then takes the following form:

�ðr; y; f; t0Þ ¼ cIðy; f; t0Þ�GWPðr; t0Þ ð42Þ

where �GWPðr; tÞ is �0ðr; tÞ as defined in Eq. (39), and the expansion

coefficient [80] is

cIðy; f; t0Þ ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ð�ZÞ

p
=zgvðzÞPjðcosZÞ ð43Þ

where gv and Pj are the Morse vibrational and normalized Legendre wave

functions, respectively. The variables z and Z can be expressed using the asymp-

totic representation of y and f,

y ¼ y0 þ z sinZ

f ¼ f0 þ z cosZ

The general hyperspherical formulation of the vector potential arising due to an

arbitrary position of the conical intersection of the adiabatic potential energy

hypersurfaces of an A þ BC type reactive system has been formulated [54]. For

the H3 system, the location of the conical intersection is at y0 ¼ f0 ¼ 0 but for

the D þ H2 system it is at f0 ¼ 0 and y0 ¼ 11:5�. As we wish to compare the

results obtained by introducing a vector potential in the system Hamiltonian

with those obtained by multiplying the wave function with a complex phase

factor, we approximated the vector potential expression using y0 ¼ 0 and the

corresponding extra terms are added to the Hamiltonian.

In hyperspherical coordinates, the wave function changes sign when f is

increased by 2p. Thus, the correct phase treatment of the f coordinate can be

obtained using a special technique [44–48] when the kinetic energy operators

are evaluated: The wave function f ðf) is multiplied with expð�if=2Þ, and after

the forward FFT [69] the coefficients are multiplied with slightly different

frequencies. Finally, after the backward FFT, the wave function is multiplied

with expðif=2Þ.
The kinetic energy operator evaluation and then the propagation of the y, f

degrees of freedom have been performed using the FFT [69] method followed
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by the Lanczos iterative reduction technique [70] for the time propagation. In

the classical path picture, the propagation of the r motion has some additional

equations of motion for the width parameter AðtÞ. The variables g and its

conjugate momentum Pg are propagated using classical equations of motion and

a mean-field potential averaged over the r, y, and f dependence.

The energy and state resolved transition probabilities are the ratio of two

quantities obtained by projecting the initial wave function on incoming plane

waves ðIÞ and the scattered wave function on outgoing plane waves ðFÞ

PI!FðEÞ ¼ lim
t!1

kF

kI

j
Ð Ð

dy df
P

k

Ð
dr expð�ikFrÞ�kðr; tÞckðy; f; tÞj2

j
Ð

dr expðþikIrÞ�GWPðr; t0ÞcIðy; f; t0Þj2
ð44Þ

where the total energy, E ¼ ð�h2k2
I =2mÞ þ EI ¼ ð�h2k2

F=2mþ EF , and m is the

reduced mass for the r motion.

The integral over r can be evaluated analytically due to use of a Hermite

basis,

PI!FðEÞ ¼
kF

ki

ffiffiffiffiffi
gF

gI

r
expf�gFðPrðtÞ � �hkFÞ2 þ gIð�P0

r þ �hkIÞg

�
X
k¼0

ð ð
dy dfckðy; f; tÞcIðy; f; t0Þ � ð�1Þk Hkð�Þ expð�ikdÞffiffiffiffiffiffiffiffi

k!2k
p

�����
�����
2

ð45Þ

where Hk is a Hermite polynomial, and

d ¼ arctan
Im AðtÞ
Re AðtÞ

� �

� ¼ ffiffiffiffiffi
gF
p ðPrðtÞ � �hkFÞ

gF ¼
Im AðtÞ

2�hjAðtÞj2

gI ¼
Im Aðt0Þ
2�hjAðt0Þj

2

and t should be large enough for the interaction potential to vanish and gF to

approach a constant value.

With each random choice of g and its conjugate momentum Pg, one can have

a separate trajectory with a different final wave function. After a series of

calculations, the energy and state resolved cross-sections are obtained.
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This semiclassical method, using one wavepacket only (GWP), has been

applied for the reaction D þ H2ðv ¼ 1; j ¼ 1Þ ! DH ðv0 ¼ 1; j0Þ þ H by using

the LSTH potential energy surface [75,76], where in order to obtain integral

cross-sections we have considered the total angular momentum vector J to

be different from zero. We have performed all calculations with total energy

1.80 eV (Etr ¼ 1:0 eV) with or without introducing geometric phase effects. The

transition probabilities as a function of total energy can be obtained by Eq. (43)

for each trajectory and finally, series of trajectories can give state resolved cross-

sections with good accuracy around the total energy 1.80 eV. The trajectories

had randomly selected values of the total angular momentum in the range 0 to

Jmax ¼ 50 in units of �h. The parameter Pg as well as g are also selected

randomly. The propagation has been carried out with the initial values of width

parameters, Re Aðt0Þ ¼ 0, Im Aðt0Þ ¼ 0:5 amu t�1ð1t ¼ 10�14 s) assuming that

the quantum classical correlation will remain small during the entire collision,

that is, the traditional classical path picture is valid [81].

In Figure 2, we present integral cross-sections as a function of rotational

quantum number j0, with or without including the geometric phase effect. Each

calculation has been performed with a product-type wave function consisting of

one wavepacket (�0ðr; tÞ) and a grid size (Ny � Nf) in (y, f) space equal to

256 � 64 has been used. Though in this result the peak of the rotational state

distribution without including the geometric phase effect is at j0 ¼ 8 instead of

Figure 2. Quantum classical cross-sections for the reaction D þ H2 ðv ¼ 1; j ¼ 1Þ !
DH ðv0 ¼ 1; j0Þ þ H at 1.8-eV total energy as a function of j0. The solid line indicates results

obtained without including the geometric phase effect. Boxes show the results with geometric phase

effect included using either a complex phase factor (dashed) or a vector potential (dotted).
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at j0 ¼ 10 (corresponding to accurate quantum mechanical calculation [46]), the

result is still impressive because we have used only one basis function instead of

a grid in the r coordinate. But the important point is that the peak position is

again shifted to the left, from j0 ¼ 8–6 if the GP effect is considered either by

including the vector potential into the system Hamiltonian or by incorporating a

phase factor in the adiabatic nuclear wave function.

3. Quasiclassical Trajectory Calculations on a H þ D2 Reaction at 2.20 eV

Satisfactory agreement between experimentally measured and theoretically

(without considering the GP effect) calculated results [80,82–87] for the

reaction, H þ D2 ðv ¼ 0; j ¼ 0Þ ! HDðv0; j0Þ þ D, at a collisional energy of

2.20 eV has renewed theoretical interest in this area. As at this collisional

energy, the CI is located at 2.7 eV, a significant contribution from the geometric

phase is expected to appear. We studied the difference between results obtained

with or without including the GP effect. We have calculated integral and differ-

ential cross-sections for the same reaction using the QCT approach with or

without including the general expression of a vector potential into the system

Hamiltonian. As we mentioned earlier, the simplest way of including the phase

effect is to switch to hyperspherical coordinates, in which the HLH phase factor

is expðiZ=2Þ where the hyperangle Z increase by 2p as the conical intersection

is encircled. When the nuclear kinetic energy operator operates on the wave

function multiplied by the HLH phase factor, the Hamiltonian accumulate an

additional potential (a vector potential). In this calculation, we wish to replace

the quantum operators by classical variables. The reason for this is that the

classical trajectories are easy to integrate to obtain reliable values of integral and

differential cross-sections. In particular, our previous QCT calculations showed

that the GP effect was predicted qualitatively correct. For each trajectory, the

final vibrational quantum number (v0) is calculated using the semiclassical

formula based on the Bohr–Sommerfeld quantization rule,

v0 ¼ � 1

2
þ 1

h

þ
pr dr

Integral and differential cross-sections for the H þ D2ðv ¼ 0; j ¼ 0Þ ! DH

ðv0; j0Þ þ D reaction at total enery 2.3917 eV (collisional energy 2.20 eV) are

computed by using QCTs on the LSTH potential energy surface and these

calculations have been performed with or without including a vector potential

into the system Hamiltonian. For each case (with or without GP) �1:2�
105 QCTs are computed to get the product rotational state distributions of the

final vibrational state (v0) although convergence is nearly obtained with 5�
104 QCTs. The scattering angle distributions for different final rotational state

( j0) are calculated from 1:0� 106 QCTs for each case (with or without GP).
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Differential cross-sections for particular final rotational states (j0) of a

particular vibrational state (v0) are usually smoothened by the moment

expansion (M) in cosine functions mentioned in Eq. (38). Rotational state

distributions for the final vibrational state v0 ¼ 0 and 1 are presented in [88]. In

each case, with or without GP results are shown. The peak position of the

rotational state distribution for v0 ¼ 0 is slightly left shifted due to the GP effect,

on the contrary for v0 ¼ 1, these peaks are at the same position. But both these

figures clearly indicate that the absolute numbers in each case (with or without

GP) are different.

We have also presented scattering angle distributions for v0 ¼ 0; j0 ¼ 0–12

and v0 ¼ 1; j0 ¼ 0–12 in [88] where in each figure results obtained with or

without considering GP effect are shown. These figures clearly demonstrate that

the differential cross-section as a function of scattering angle for with or without

GP are rather different.

III. THE EXTENDED BORN–OPPENHEIMER
APPROXIMATION

The BO coupled equations in the adiabatic representation (see Appendix B) are

� �h2

2m
r2cjðnÞ þ ðujðnÞ � EÞcjðnÞ �

�h2

2m

XN

i¼1

f2tð1Þji rciðnÞ þ tð2Þji ciðnÞg ¼ 0

ð46Þ

where cjðnÞ and ujðnÞ, j ¼ 1; . . . ; N are the nuclear wave functions and the

adiabatic potential energy surfaces, r is the gradient (vector) operator, m is the

reduced mass of the system, tð1Þ is the non-adiabatic vector matrix, and tð2Þ is

non-adiabatic scalar matrix. Recalling their relation from Appendix B, Eq. (45),

they can be written in the following matrix notation:

� �h2

2m
r2�þ u� �h2

2m
t2 � E

� �
�� �h2

2m
ð2t � r þ rtÞ� ¼ 0 ð47Þ

where � is a column matrix that contains the nuclear wave functions cj, u is a

diagonal potential (adiabatic) matrix, the dot product designates a scalar

product, and t replaces tð1Þ to simplify the notation.

If we consider the transformation � ¼ A�, then Eq. (46) can be transformed

into the following diabatic matrix equation:

� �h2

2m
r2�þ ðA�1uA� EÞ� ¼ 0 ð48Þ
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where the transformation matrix (unitary) A has to satisfy the following matrix

equation:

rAþ tA ¼ 0 ð49Þ

and we are interested in exploring the detailed properties of the transformation

matrix A when it satisfies Eq. (48).

As stated in the introduction, we present the derivation of an extended BO

approximate equation for a Hilbert space of arbitary dimensions, for a situation

where all the surfaces including the ground-state surface, have a degeneracy

along a single line (e.g., a conical intersection) with the excited states. In a two-

state problem, this kind of derivation can be done with an arbitary s matrix. On

the contrary, such derivation for an N � 2 dimensional case has been performed

with some limits to the elements of the s matrix. Hence, in this sence the present

derivation is not general but hoped that with some additional assumptions it will

be applicable for more general cases.

The s matrix is an antisymmetric vector matrix with the component

sp; p ¼ x; y; z; X; Y; Z, and so on, and sp is assumed to be a product of a scalar

function tp and a constant antisymmetric matrix g (which does not depend on p).

Thus,

tp ¼ tpg

tpgji ¼ hxjjrxii
ð50Þ

If we consider G as a unitary transformation matrix that diagonalizes the g
matrix and ix is the diagonal matrix with elements ixj, j ¼ 1; . . . ; N as

the corresponding eigenvalues, it can be shown that, following the unitary

transformation performed with G, Eq. (46) becomes

� �h2

2m
ðr þ itoÞ2wþ ðW� EÞw ¼ 0 ð51Þ

where w is related to � through the transformation � ¼ Gw and the nondiagonal

diabatic potential matrix W is related to the adiabatic potential matrix u as

W ¼ GyuG. Due to the above transformation, the non-adiabatic coupling matrix

s becomes a diagonal matrix x and a new off-diagonal potential matrix is

formed that couples the various differential equations. It is important to note

that so far the derivation is rigorous and no approximations have been imposed.

Hence, the solution of Eq. (46) will be the same as the solution of Eq. (50), but it

will be convenient to impose the BO approximation in Eq. (50). For low enough

energies, all upper adiabatic states are assumed to be classically closed, that is,
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each of the corresponding adiabatic functions cj, j ¼ 2; . . . ; N is expected to

fulfill the condition

jc1j � jcjj; j ¼ 2; . . . ; N ð52Þ

in those regions of configuration space (CS) where the lower surface is energe-

tically allowed. This assumption has to be employed with great care and is

found nicely fulfilled for two- or three-state systems although some risk is

involved by extending this assumption to an arbitrary number of states. We can

analyze the product Ww for the jth equation,

ðWwÞj ¼ fðG?uGÞðG?�Þgj ¼ ðG?u�Þj ¼
XN

k¼1

G?
jkuk�k

¼ u1wj � u1

XN

k¼1

G?
jk�k þ

XN

k¼1

G?
jkuk�k

¼ u1wj þ
XN

k¼2

G?
jkðuj � u1Þck; j ¼ 1; . . . ; N ð53Þ

By substituting Eq. (52) in Eq. (50) and introducing the approximation

� �h2

2m
ðr þ itojÞ2wj þ ðu1 � EÞwj ¼ 0; j ¼ 1; . . . ; N ð54Þ

the N equations for the Nw functions are uncoupled and each equation stands on

its own and can be solved independently. These equations are solved for the

same adiabatic PES u1 but for different ojs.

Now, we assume that the functions, toj, j ¼ 1; . . . ; N are such that these

uncoupled equations are gauge invariant, so that the various w values, if

calculated within the same boundary conditions, are all identical. Again, in

order to determine the boundary conditions of the w function so as to solve

Eq. (53), we need to impose boundary conditions on the � functions. We assume

that at the given (initial) asymptote all ci
i values are zero except for the ground-

state function ci
1 and for a low enough energy process, we introduce the

approximation that the upper electronic states are closed, hence all final wave

functions c f
i are zero except the ground-state function c f

1.

Hence, in order to contruct extended BO approximated equations for an N-

state coupled BO system that takes into account the non-adiabatic coupling

terms, we have to solve N uncoupled differential equations, all related to the

electronic ground state but with different eigenvalues of the non-adiabatic

coupling matrix. These uncoupled equations can yield meaningful physical
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solutions only when the eigenvalues of the g matrix fulfill certain requirement.

For example, these eigenvalues produce gauge invariant equations, that is, its

solution will be compatible with the assumption concerning the BO approxi-

mation.

A. The Quantization of the Non-Adiabatic Coupling Matrix
Along a Closed Path

In this section, we prove that the non-adiabatic matrices have to be quantized

(similar to Bohr–Sommerfeld quantization of the angular momentum) in order

to yield a continous, uniquely defined, diabatic potential matrix WðsÞ. In

another way, the extended BO approximation will be applied only to those cases

that fulfill these quantization rules. The ADT matrix Aðs; s0Þ transforms a given

adiabatic potential matrix uðsÞ to a diabatic matrix Wðs; s0Þ

Wðs; s0Þ ¼ A?ðs; s0ÞuðsÞAðs; s0Þ ð55Þ

A?ðs; s0Þ is the complex conjugate matrix of Aðs; s0), s0 is an initial point in

CS, and s is another point. It is assumed that Wðs; s0) and uðs; s0) are uniquely

defined throughout the CS and to ensure the uniqueness of Wðs; s0Þ our aim is

to derive the features to be fulfilled by the Aðs; s0Þ.
We introduce a closed-path � defined by a parameter l. At the starting point

s0, l ¼ 0 and when the path complete a full cycle, l ¼ bð2p, in case of circle).

We now express our assumption regarding the uniqueness of Wðs; s0) in the

following way:

Wðl ¼ 0Þ ¼ Wðl ¼ bÞ ð56Þ

By using Eq. (54), we can rewrite Eq. (55) as

A?ð0Þuð0ÞAð0Þ ¼ A?ðbÞuðbÞAðbÞ ð57Þ

Hence, uðb) and uð0Þ are connected as below

uðbÞ ¼ Duð0ÞD? D ¼ AðbÞA?ð0Þ ð58Þ

The D matrix is by definition a unitary matrix (it is product of two unitary

matrices) and since the adiabatic eigenvalues are uniquely defined in CS, we

have, uð0Þ � uðbÞ. Then, Eq. (57) can be written as

uð0Þ ¼ Duð0ÞD? ð59Þ
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By performing the matrix multiplication, one can get the following relations

between the adiabatic eigenvalues ujð0Þ and the D matrix elements

X
j¼1

ðD?
kjDkj � dkjÞujð0Þ ¼ 0 k ¼ 1; . . . ; N ð60Þ

Equation (59) is valid for every arbitary point in CS and for an arbitary set of

nonzero adiabatic eigenvalues, ujð0Þ, j ¼ 1; . . . ; N, hence the D matrix

elements fulfill the relation

ðDjkÞ?Djk ¼ djk j; k ¼ 1; . . . ; N ð61Þ

Thus D is a diagonal matrix that contains diagonal complex numbers whose

norm is 1. By recalling Eq. (57), we get

AðbÞ ¼ DAð0Þ ð62Þ

Again, we already know that the ADT becomes possible only when the trans-

formation matrix A satisfy Eq. (63)

rAþ sA ¼ 0 ð63Þ

where s is the non-adiabatic coupling matrix. A uniquely defined A matrix will

be guaranteed if and only if the elements of the s matrix are regular functions of

the nuclear coordinates at every point in CS.

However, in order to obtain a uniquely defined diabatic potential matrix, it is

not necessary for the A matrix to be uniquely defined throughout CS. Still, we

ignore this difficulty and go ahead to derive A by a direct integration of Eq. (62),

AðsÞ ¼ exp �
ðs

s0

ds � t
� �

Aðs0Þ ð64Þ

where the integration is performed along a closed-path � that combines s and s0,

ds is a differential vector length element along this path, and the dot stands for a

scalar product. We already define the matrix G as the unitary transformation

matrix that diagonalizes the s matrix,

AðsÞ ¼ G exp �io
ðs

s0

ds � tðsÞ
� �

G?Aðs0Þ ð65Þ
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Hence, the matrix D along a path � takes the following form:

D ¼ G exp �io
þ
�

ds � tðsÞ
� �

G? ð66Þ

As the D matrix is a diagonal matrix with a complex number of norm 1, the

exponent of Eq. (65) has to fulfill the following quantization rule:

1

2p
oj

ð
t

ds � tðsÞ ¼ nj j ¼ 1; . . . ; N ð67Þ

where nj is an integer and if the D matrix is multiplied by (�1) the values of all

nj parameters have to be one-half of an odd integer. This fact is the necessary

conditions for Eq. (53) to be gauge invariant or this quantization requirement

that is a necessary condition for having uniquely defined diabatic potentials also

guarantees the extended BO equation. Thus, the effect of non-adiabatic coupling

terms lead to a extended BO approximation.

B. The Quantization of the Three-State Non-Adiabatic
Coupling Matrix

We concentrate on an adiabatic tri-state model in order to derive the quantiza-

tion conditions to be fulfilled by the eigenvalues of the non-adiabatic coupling

matrix and finally present the extended BO equation. The starting point is the

3� 3 non-adiabatic coupling matrix,

s ¼
0 t1 t2
�t1 0 t3
�t2 t3 0

0
@

1
A ð68Þ

where tj, j ¼ 1; 2; 3 are arbitary functions of the nuclear coordinates. The matrix

G diagonalizes s at a given point in CS

G ¼ 1

~ol
ffiffiffi
2
p

it2~o� t3t1 �it2~o� t3t1 t3l
ffiffiffi
2
p

it3~oþ t2t1 �it3~oþ t2t1 �t2l
ffiffiffi
2
p

l2 l2 t1l
ffiffiffiffiffiffiffi
ð2Þ

p
0
B@

1
CA ð69Þ

where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2
2 þ t2

3

p
, ~o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2
1 þ t2

2 þ t2
3

p
, and the three eigenvalues ð0;	i~oÞ.

We already assume that the s matrix fulfills the conditions in Eqs. (48)

and (49). These conditions ensures that the matrix G diagonalizes sðsÞ along
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a close path is independent of s and by employing Eq. (65), we obtain the

D matrix,

D ¼ ~o�2

t2
3 þ ðt2

1 þ t2
2ÞC1 t1~oS1 � 2t2t3S2 �~ot2S1 þ 2t1t3S2

t1~oS1 � 2t2t3S2 t2
2 þ ðt2

1 þ t2
3ÞC1 �t3~oS1 þ 2t1t2C2

~ot2S1 þ 2t1t3S2 t3~oS1 þ 2t1t2C2 t2
1 þ ðt2

2 þ t2
3ÞC1

0
B@

1
CA
ð70Þ

where S1 ¼ sin ð
H
~o � ds); C1 ¼ cos ð

H
~o � ds); S2 ¼ sin2 ð1

2
ð
H
~o � dsÞÞ; C2 ¼

cos2 ð1
2
ð
H
~o � dsÞÞ.

As the D matrix has to be a unit matrix in order to get a continuous, uniquely

defined diabatic matrix, the following integral is quantized as:

1

2p

þ
~o � ds ¼ 1

2p

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2
1 þ t2

2 þ t2
3

q
� ds ¼ n ð71Þ

Thus from the D matrix, it is easy to say that for three states n will be an integer

and for two states n will be one-half of an odd integer.

C. The Study of the Three-State System

The numerical calculations have been done on a two-coordinate system with q

being a radial coordinate and f the polar coordinate. We consider a 3� 3 non-

adiabatic (vector) matrix s in which sq and sf are two components. If we

assume sq ¼ 0, sf takes the following form,

sf ¼ tfg ¼ t0

q
g ð72Þ

where t0 is a constant and g is a 3� 3 matrix of the form

g ¼
0 1 0

�1 0 Z
0 �Z 0

0
@

1
A ð73Þ

where Z is a constant. The s matrix couples the ground adiabatic state to the first

excited state and then the first excited state to the second excited state. There is

no direct coupling between the ground and the second excited state.

The adiabatic coupled SE for the above 3� 3 non-adiabatic coupling matrix

are

T þ u1 þ
t2
0

2mq2
� E

� �
c1 þ

t0

mq

q
qf

c2 �
Zt2

0

2mq2
c3 ¼ 0

T þ u2 þ
t2
0ð1þ Z2Þ

2mq2
� E

� �
c2 �

t0

mq

q
qf

c1 þ
Zt0

mq

q
qf

c3 ¼ 0

ðT þ u3 þ
Z2t2

0

2mq2
� EÞc3 �

Zt0

mq

q
qf

c2 �
Zt2

0

2mq2
c1 ¼ 0

ð74Þ
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where T is the nuclear kinetic energy operator

T ¼ � 1

2m

q2

qq2
þ 1

q

q
qq
þ 1

q2

q2

qf2

� �
ð75Þ

In the case of a coupled system of three adiabatic equations, Z (which is a

constant) is chosen such that the quantization condition is fulfilled. Inserting the

following values for tj, j ¼ 1; 2; 3: t1 ¼ 1=2q, t2 ¼ 0, and t3 ¼ Z=2q, we get the

following Z value:

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2 � 1
p

for n ¼ 1! Z ¼
ffiffiffi
3
p

ð76Þ

Now, we are in a position to present the relevant extended approximate BO

equation. For this purpose, we consider the set of uncoupled equations as

presented in Eq. (53) for the N ¼ 3 case. The function ioj that appears in these

equations are the eigenvalues of the g matrix and these are o1 ¼ 2; o2 ¼ �2,

and o3 ¼ 0. In this three-state problem, the first two PESs are u1 and u2 as given

in Eq. (6) and the third surface u3 is chosen to be similar to u2 but with D3 ¼
10 eV. These PESs describe a two arrangement channel system, the reagent-

arrangement defined for R!1 and a product—arrangement defined for

R! �1.

D. Results and Discussion

We present state-to-state transition probabilities on the ground adiabatic state

where calculations were performed by using the extended BO equation for the

N ¼ 3 case and a time-dependent wave-packet approach. We have already

discussed this approach in the N ¼ 2 case. Here, we have shown results at four

energies and all of them are far below the point of CI, that is, E ¼ 3:0 eV.

In [66], we have reported inelastic and reactive transition probabilities. Here,

we only present the reactive case. Five different types of probabilities will be

shown for each transition: (a) Probabilities due to a full tri-state calculation

carried out within the diabatic representation; (b) Probabilities due to a two-

state calculation (for which Z ¼ 0) performed within the diabatic representa-

tion; (c) Probabilities due to a single-state extended BO equation for the N ¼ 3

case (oj ¼ 2); (d) Probabilities due to a single-state extended BO equation for

the N ¼ 2 case (oj ¼ 1); (e) Probabilities due to a single-state ordinary BO

equation when oj ¼ 0.

At this stage, we would like to mention that the model, without the vector

potential, is constructed in such a way that it obeys certain selection rules,

namely, only the even! even and the odd! odd transitions are allowed. Thus

any deviation in the results from these selection rules will be interpreted as a

symmetry change due to non-adiabatic effects from upper electronic states.
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Effects due to the non-adiabatic coupling terms on reactive transition

probabilities are given in Table II. The two-state results and the corresponding

extended approximated BO equation results follow the odd! even selection

rules instead of even! even or odd! odd transitions in case of an ordinary

BO scheme. This symmetry change has been discussed at length in Section

II.A.2. The more interesting results are those for the tri-state case that appa-

rently does not show any GP effect. Diabatic calculations, extended, and

ordinary adiabatic BO calculations show the same selection rules. We thought

that the extended BO equation could be partially wrong and the GP effects

would become apparent but they did not. The present calculation reveals two

points: (1) That geometrical features do not necessarily show up where they are

expected as in the present tri-state case. (2) The extended approximated BO

equation contains the correct information regarding the geometric effects. So,

TABLE II

Reactive State-to-State Transition Probabilities when Calculations are Performed Keeping the

Position of the Conical Intersection at the Origin of the Coordinate System

E (eV) 0! 0 0! 1 0! 2 0! 3 0! 4 0! 5 0! 6 0! 7 0! 8 0! 9

1.0 0.0044 a 0.0000 0.0063 0.0000

0.0000 b 0.0049 0.0000 0.0079

0.0047 c 0.0000 0.0195 0.0000

0.0000 d 0.0045 0.0000 0.0080

0.0094 e 0.0000 0.0362 0.0000

1.5 0.0325 0.0000 0.0592 0.0000 0.0311 0.0000

0.0000 0.1068 0.0000 0.0256 0.0000 0.0068

0.0419 0.0000 0.0648 0.0000 0.0308 0.0000

0.0000 0.1078 0.0000 0.0248 0.0000 0.0075

0.0644 0.0000 0.0612 0.0000 0.0328 0.0000

2.0 0.1110 0.0000 0.0279 0.0000 0.0319 0.0000 0.2177 0.0000

0.0000 0.1232 0.0000 0.0333 0.0000 0.0633 0.0000 0.1675

0.1068 0.0000 0.0172 0.0000 0.0274 0.0000 0.2277 0.0000

0.0000 0.1264 0.0000 0.0353 0.0000 0.0656 0.0000 0.1678

0.1351 0.0000 0.0217 0.0000 0.0304 0.0000 0.2647 0.0000

2.5 0.1318 0.0000 0.0295 0.0000 0.0091 0.0000 0.1375 0.0000 0.2043 0.0000

0.0000 0.0936 0.0000 0.0698 0.0000 0.1350 0.0000 0.0200 0.0000 0.2398

0.1256 0.0000 0.0155 0.0000 0.0084 0.0000 0.1545 0.0000 0.1977 0.0000

0.0000 0.0947 0.0000 0.0658 0.0000 0.1363 0.0000 0.0190 0.0000 0.2365

0.1831 0.0000 0.0343 0.0000 0.0089 0.0000 0.1607 0.0000 0.1157 0.0000

a Tri-surface calculation.
bTwo-surface calculation.
c Single-surface calculation (o ¼ 2).
d Single-surface calculation (o ¼ 1).
e Single-surface calculation (o ¼ 0).
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due to the conical intersection, in the two-state case, it contains the GP effects,

whereas in tri-state case it tells us that such effects do not exist.

IV. QUANTUM DRESSED CLASSICAL MECHANICS

It is possible to parametarize the time-dependent Schrödinger equation in such a

fashion that the equations of motion for the parameters appear as classical

equations of motion, however, with a potential that is in principle more general

than that used in ordinary Newtonian mechanics. However, it is important that

the method is still exact and general even if the trajectories are propagated by

using the ordinary classical mechanical equations of motion.

Thus it is possible to obtain a very convenient formulation, which is

appealing from a computational point of view and allows the blending of

classical and quantum concepts in a new way, by a selection of the initial time-

dependent variables as in ordinary classical mechanics and an application of

Newtons mechanics for the propagation of these parameters. Thus the classical

mechanical part of the problem can, for example, be used to decide on the

branching ratio in a chemical reaction, whereas the quantum mechanical part,

which consist of grid points with quantum amplitudes, is used to project onto

asymptotic wave functions of the product channels. In this fashion, we avoid

describing the whole of space quantum mechanically at the same time, but only

locally around the classical trajectories. The consequence is a large saving in the

number of grid points and since it is also possible to minimize the computing

effort when propagating the equations of motion, the final theory is not only

easy to program, it is also efficient from a numerical point of view.

A. Theory

We directly give the relevant equations of motion for the simplest but

nevertheless completely general scheme that involves propagation of grid points

in a discrete variable representation (DVR) of the wave function. The grid points

are propagated by classical equations of motion in a so-called fixed width

approach for the basis set. For a derivation of these equations the reader is

referred to [81,89,90]. As mentioned, the theory generates classical equations

of motion for the center of the basis set or in the DVR representation the center

of the DVR grid points. Thus, the grid points follow the classical equations of

motion in space and if an odd number of grid points is used the middle one is

the classical trajectory. For a one-dimensional (1D) problem we therefore have

the following equations of motion:

_xðtÞ ¼ pxðtÞ=m ð77Þ

_pxðtÞ ¼ �
dVðxÞ

dx

����
x¼xðtÞ

ð78Þ
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defining the trajectory. For the quantum amplitudes, we have the matrix

equation

i�h _dðtÞ ¼ ðWðtÞ þKÞdðtÞ ð79Þ

where W is a diagonal matrix and K the ‘‘kinetic coupling’’ matrix. The

elements of the kinetic matrix is for a 1D system given as

Kij ¼
�ha0

m

X
n

~fnðziÞð2nþ 1Þ~fnðzjÞ ð80Þ

where m is the mass associated with the x degree of freedom and a0 is the

imaginary part of the width parameter, that is, a0 ¼ Im A of the Gauss–Hermite

(G–H) basis set [81]. Since the kinetic operators have already worked on the

basis functions before the DVR is introduced, the above matrix is what is left of

the kinetic coupling.

We also notice that in coordinates weighted by
ffiffiffiffiffiffiffiffiffiffiffi
a0=m

p
the kinetic matrix is

universal, that is, independent of the system.

The zeros of the Nth Hermite polynomial are denoted zi and

~fnðziÞ ¼ fnðziÞ=
ffiffiffiffiffi
Ai

p
ð81Þ

Ai ¼
X

n

fnðziÞ2 ð82Þ

where

fnðzÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nn!
ffiffiffi
p
pp exp � 1

2
z2

� �
HnðzÞ ð83Þ

The elements of the diagonal matrix W are given as

WðxiÞ ¼ VðxiÞ � VðxðtÞÞ � dV

dx

����
x¼xðtÞ
ðxi � xðtÞÞ � 2a2

0

m
ðxi � xðtÞÞ2 ð84Þ

that is, the actual potential VðxÞ from which a ‘‘reference’’ potential defined

by the forces evaluated at the trajectory is subtracted. In the fixed width

approach, the second derivative term V 00 is related to the imaginary part of the

width, that is, by the equation V 00 ¼ 4 Im A2=m. This relation secures that

Im AðtÞ ¼ constant if Re Aðt0Þ ¼ 0. In the simplest possible approach, the first

derivative is furthermore taken as the classical force in the sense of Newton.
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But we emphasize that more general forces may be applied [81,91]. The grid

points follow the trajectory and are defined through

xi ¼ xðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
a0=2�h

p
zi ð85Þ

For an atom–diatom collision, it is convenient for the formulation of the time

dependent Gauss–Hermite (TDGH) discrete variable representation (DVR)

theory to use Cartesian coordinates. That is, the center-of-mass distance

R ¼ ðX; Y ; ZÞ and the three coordinates for the orientation of the diatomic

molecule r ¼ ðx; y; zÞ in a space-fixed coordinate with origo in the center of

mass of the diatomic molecules. Thus the dimension of the grid is 6 and will be

denoted ðnX ; nY ; nZ ; nx; ny; nzÞ, where ni is the number of grid points in

degrees of freedom i. Note that in this approach ni ¼ 1 is an acceptable number

of grid points (the classical limit). The dimension of the quantum problem is

then �6
i¼1ni. But since one grid point in each mode makes sense from a

dynamical point of view it is possible to explore the simplest quantum

corrections to the classical limit, namely, the corrections obtained by adding

grid points in each dimension.

The initial amplitudes diðt0Þ are obtained by projecting the initial wave

function on the DVR basis set. For the initial wave function, we use

�ðX; Y ; Z; x; y; zÞ � 1

R
�GWPðRÞ

1

r
gnðrÞYjmðy;fÞ ð86Þ

where �GWPðRÞ is a Gaussian wavepacket in R, gnðrÞ a Morse vibrational wave

function, and Yjm a spherical harmonics for the diatomic molecule. The GWP is

projected on planewave functions exp(ikR) when energy is resolving the

wavepacket.

We can pick the initial random variables for the classical coordinates and

momenta in the way it is done in an ordinary classical trajectory program.

The projection on the final channel is done in the following manner. We let

the trajectory decide on the channel—just as in an ordinary classical trajectory

program. Once the channel is determined we project the wave function (in the

DVR representation) on the appropriate wave function for that channel

1

R0
expðik0R0Þ 1

r0
gn0 ðr0ÞYj0m0 ðy0;f0Þ ð87Þ

where R0 is the center-of-mass distance between A and BC, B and AC, or C and

AB according to the channel specification. Likewise r0, y0, and f0 specify the

orientation of the diatom in the reactive channel found by the trajectory. This

projection determines the final state (n0j0m0) distribution and the amplitudes

therefore. The final probability distribution is added for all the trajectories of the

channel and normalized with the classical total reactive cross-section of that

channel to get the cross-section.
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B. The Geometric Phase Effect

As demonstrated in [53] it is convenient to incorporate the geometrical phase

effect by adding the vector potential in hyperspherical coordinates. Thus

we found that the vector potential gave three terms, the first of which was zero,

the second is just a potential term

Va ¼
2�h2

mr2 sin2 y
ð88Þ

and the third term, Vb, contains first derivative operators. By adding these terms

to the normal Hamiltonian operator, we can incorporate the geometric phase

effect.

We can express Vb as

Vb ¼ �
�h

m

X
i

qZ
qXi

P̂Xi
ð89Þ

where m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1m2m3
p

=ðm1 þ m2 þ m3Þ, Z ¼ f=2, and qf=qXi is given in

Appendix C.

In order to incorporate the geometric phase effect in a formulation based on

an expansion in G–H basis functions we need to consider the operation of the

momentum operator on a basis function, that is, to evaluate terms as

�h

i

q
qx

p1=4exp
i

�h
ðgðtÞ þ pxðtÞðx� xðtÞÞ þ Re AxðtÞðx� xðtÞÞ2Þ

� �
fnðx; tÞ ð90Þ

Since we will normally use the fixed-width approach we can simplify the

calculation by using Re AðtÞ ¼ 0. Thus we have

ð2 Im AðtÞ=�hÞ1=4
expðipxðtÞðx� xðtÞÞ=�hÞðpxðtÞfnðx; tÞ

þ ð�h=iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Im AðtÞ=�h

p
ð
ffiffiffi
n
p

fn�1 �
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

fnþ1Þ ð91Þ

where we have used

Im gðtÞ ¼ � �h

4
ln

2 Im AðtÞ
p�h

� �
ð92Þ

fnðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!2n

ffiffiffi
p
pp exp

�x2

2

� �
HnðxÞ ð93Þ

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Im AðtÞ=�h

p
ðx� xðtÞÞ ð94Þ
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C. The DVR Formulation

In the basis set formulation, we need to evaluate matrix elements over the G–H

basis functions. We can avoid this by introducing a discrete variable

representation method. We can obtain the DVR expressions by expanding the

time-dependent amplitudes anðtÞ in the following manner:

anðtÞ ¼
XN

i¼1

ciðtÞfnðziÞ ð95Þ

where zi are zeros of the N 0th Hermite polynomium and n ¼ 0; 1; . . . ; N � 1.

Thus we can insert this expansion in the expression for _anðtÞ and obtain

equations for _ciðtÞ instead. In this operation, we need to use

X
n

fnðziÞfnðzjÞ ¼ Aidij ð96Þ

X
n

fnðzjÞfnðxÞ �
dðx� zjÞ

Aj

ð97Þ

After a little manipulation, we obtain

i�h _djðtÞ ¼
X

i

diðtÞðHijdij þM
ðxÞ
ij þ TijÞ ð98Þ

where

Hij ¼ WðxiÞdij ð99Þ

M
ðxÞ
ij ¼ FxðpxðtÞdij � i�h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Im A= �h

p
A
�1=2
i A

�1=2
j

�
X

n

fnðziÞð
ffiffiffi
n
p

fn�1ðzjÞ �
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

fnþ1ðzjÞÞ
 !

ð100Þ

Tij ¼
�h Im AðtÞ

m
A
�1=2
i A

�1=2
j

X
n

fnðziÞð2nþ 1ÞfnðzjÞ ð101Þ

Thus, the matrix elements M
ðxÞ
ij are those that should be added in order to

incorporate the geometric phase effect.

Extension to six dimensions is now straightforward. We obtain similar

expressions just with the y and z components and the index n running over the

basis functions included in the particular degree of freedom. For the functions
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Fx, and so on, we obtain

Fx ¼ FðX þ x tgf=d2
1Þ ð102Þ

Fy ¼ FðY þ y tgf=d2
1Þ ð103Þ

Fz ¼ FðZ þ z tgf=d2
1Þ ð104Þ

FX ¼ Fðx� X tgfd2
1Þ ð105Þ

FY ¼ Fðy� Y tgfd2
1Þ ð106Þ

FZ ¼ Fðz� Z tgfd2
1Þ ð107Þ

where the function F is given as F ¼ �ð�h=2mÞcosf sinf=ðr � RÞ and d2
1 ¼

m1ð1� m1=MÞ=m with M ¼ m1 þ m2 þ m3 [72,73]. In six dimensions, the

amplitudes diðtÞ [in Eq. (97)] will be of dimension N ¼ �6
i¼1Ni. Here, in mass

scaled coordinates we have used [48]

r2=d2
1 ¼

1

2
r2ð1þ siny cosfÞ ð108Þ

R2d2
1 ¼

1

2
r2ð1� siny cosfÞ ð109Þ

r � R ¼ � 1

2
r2sin y sinf ð110Þ

Since the geometric phase effect is related to the angle f we express f as

tgf ¼ � r � R
r2=d1 � d1R2

ð111Þ

and obtain

qf
qx
¼ cosf sinf

r � R ðX þ x tgf=d2
1Þ ð112Þ

qf
qX
¼ cosf sinf

r � R ðx� X tgfd2
1Þ ð113Þ

plus similar expressions for the y and z components.

Note that in this TDGH–DVR formulation of quantum dynamics, the

inclusion of the geometric phase effects through the addition of a vector

potential is very simple and the calculations can be carried out with about the

same effort as what is involved in the ordinary scattering case.

Figure 3 shows the results with and without including the geometric phase

effect for the D þ H2 reaction. The basis set is taken as 1,1,1,15,15,15, that is,
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the X; Y; Z variables are treated classically. Altogether 200 trajectories were

calculated. We notice that the branching ration, that is, the total reactive cross-

section is obtained from the trajectories but the distribution is obtained by a

projection of the DVR points on final rotational–vibrational states of the

product. The maximum of the distribution is now j0 ¼ 9 (in better agreement

with full quantum calculations). It is shifted to j0 ¼ 8 if the geometric phase is

included. The agreement with experimental data is good for j0 values <8 but

overestimated at higher values. Since part of the system is still treated classi-

cally, we attribute this discrepancy to the lacking ability of classical trajectories

to yield proper state-resolved reaction cross-sections (see also Fig. 1).

V. CONCLUSION

In this chapter, we discussed the significance of the GP effect in chemical

reactions, that is, the influence of the upper electronic state(s) on the reactive

and nonreactive transition probabilities of the ground adiabatic state. In order to

include this effect, the ordinary BO equations are extended either by using a

HLH phase or by deriving them from first principles. Considering the HLH

phase due to the presence of a conical intersection between the ground and the

first excited state, the general form of the vector potential, hence the effective

Figure 3. Cross-sections obtained with a (1,1,1,15,15,15) basis set and the TDGH–DVR

method for the D þ H2 ðv ¼ 1; j ¼ 1Þ ! DH ðv0 ¼ 1; j0Þ þ H reaction at 1.8-eV total energy. The

solid line indicates the values obtained without the vector potential and the dashed with a vector

potential. The dashed line indicates the experimental results [49–52].
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kinetic energy operator, for a quasi-JT model and for an A þ B2 type reactive

system were presented.

The ordinary BO approximate equations failed to predict the proper

symmetry allowed transitions in the quasi-JT model whereas the extended

BO equation either by including a vector potential in the system Hamiltonian or

by multiplying a phase factor onto the basis set can reproduce the so-called

exact results obtained by the two-surface diabatic calculation. Thus, the

calculated transition probabilities in the quasi-JT model using the extended BO

equations clearly demonstrate the GP effect. The multiplication of a phase

factor with the adiabatic nuclear wave function is an approximate treatment

when the position of the conical intersection does not coincide with the origin of

the coordinate axis, as shown by the results of [60]. Moreover, even if the total

energy of the system is far below the conical intersection point, transition

probabilities in the JT model clearly indicate the importance of the extended BO

equation and its necessity.

The integral and differential cross-section obtained by using QCT calcula-

tions on the ground adiabatic surface of the D þ H2 system at a total energy of

1.8 eV, clearly indicates the GP effect where the ground state of this system has

a conical intersection with its’ first excited state at a total energy of 2.7 eV.

Similarly, semiclassical calculations on the same system with or without includ-

ing a vector potential in the system Hamiltonian confirms this effect. Preliminary

calculations with the new TDGH–DVR method also show a less dramatic effect.

In the case of the H þ D2 reaction at total energy 2.4 eV, calculated rotational

state and scattering angle distributions obtained from the QCT calculations on

the LSTH surface demonstrate quantitative change due to the GP effect but the

qualitative variation, at least in the integral cross-section, is not significant.

Formulation of the extended BO approximate equations using the HLH phase

is based on the consideration of two coupled states. If the ground state of a

system is coupled with more than one excited state, it has been demonstrated

that the phase factor could be different from the HLH phase factor. In this

formulation, we consider the BO coupled equations with the aim of deriving an

approximate set of uncoupled equations that will contain the effect of non-

adiabatic coupling terms. When the electronic states are degenerate, some of the

non-adiabatic coupling terms may become infinite and affect the dynamics of

the nuclei irrespective of how far it occurs from the point of the degeneracy.

Hence, the importance of non-adiabatic coupling terms has been taken into

account when deriving the uncoupled BO from the coupled ones. In this

approch, the non-adiabatic coupling terms are not eliminated but shifted from

the off-diagonal position to the diagonal one and the BO approximation has

been introduced afterward. This shift has been done with the physical

assumption that the non-adiabatic coupling matrix guarantees the continuous,

single-valued diabatic potential matrix in the CS, that is, along a close path the
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non-adiabatic coupling matrix follows the Bohr–Sommerfeld type quantization

rule. This quantization guarantees that all N decoupled equations obtained by

deleting the potential coupling terms are invariant under gauge transformations

and follow proper boundary conditions. These extended–approximated BO

equations are tested for a tri-state system. First, we performed a so-called exact

calculation in the diabatic representation to obtain reactive and nonreactive

transition probabilities on the ground adiabatic surface and then the extended–

approximated BO equations for the ground adiabatic surface are solved to get

the relevant results. State-to-state transition probabilities obtained by both

calculations indicate that the new approximate BO equations yield correct

results for a tri-state system.

Hence, systems having conical intersections between two or more than two

electronic states exhibit geometric phase effects. For two-states systems, the

HLH phase factor is the same as that obtained by Baer et al. from first principles

but the new phase factor appears to be different and depends on the number of

electronic states coupled. Considering a conical intersection between the ground

and first excited state of the D þ H2 reactive system, the extended BO equations

are the same in both of the above-mentioned approaches and we found

significant GP effect at a total energy of 1.8 eV. However, it has been possible to

obtain good agreement between experiment and theory without including the

effect for the H þ D2 system at a total energy 2.4 eV. At this point, it is worth

noting that the calculations on the H þ D2 reaction were carried out on a

different potential energy surface than the one we used in our calculations. May

be the reactivity of one potential energy surface could hide the GP effect while

another could expose it. At the same time, the importance of the GP effect is

clearly understood in the quasi-JT model. The inclusion of a simple phase factor

(HLH) or by using the extended BO equations can change the parity for

vibrational transitions in the 2D two-surface model and give good agreement

with results obtained by an exact two-state diabatic calculation. Again,

calculations on a tri-state 2D quasi-JT model using the extended BO equations

(N � 2) derived by Baer et al. not only exhibit geometric phase effects but also

the new phase factor that changes with the number of electronic states coupled.

APPENDIX A: THE JAHN–TELLER MODEL AND THE
HERZBERG–LONGUET–HIGGINS PHASE

When two electronic states are degenerate at a particular point in configuration

space, the elements of the diabatic potential energy matrix can be modeled as a

linear function of the coordinates in the following form:

W ¼ k
y x

x �y

� �
ðA:1Þ
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where k is the force constant and (x; y) are the nuclear coordinates. The

eigenvalues and eigenvectors of the above matrix represent the adiabatic poten-

tial energy surfaces and the columns of the ADT matrix, respectively. In order to

carry out this diabatization, we use the following transformations between the

Cartesian (x; y) and polar (q; f) coordinates: x ¼ q sinf and y ¼ q cosf.

The eigenvalues and eigenfunctions of this model are

u1; 2 ¼ 	kq ðA:2Þ

where q ¼ 0; 1 and f ¼ 0; 2p, and

x1 ¼
1ffiffiffi
p
p cosf=2;

1ffiffiffi
p
p sinf=2

� �

x2 ¼
1ffiffiffi
p
p sinf=2; � 1ffiffiffi

p
p cosf=2

� � ðA:3Þ

respectively.

These adiabatic eigenfunctions depend only on the angular coordinate f and

are not single valued in configuration space when f changes to fþ 2p—a

rotation that brings the adiabatic wave functions back to their initial position.

This multivaluedness of the adiabatic eigenfunctions was first revealed by

Herzberg and Longuet-Higgins. In order to avoid multivalued electronic

eigenfunctions they suggested that the corresponding nuclear wave function

be treated with care. While solving the nuclear SE, this feature needs to be

incorporated explicitly through specific boundary conditions. It is worth

mentioning that in the HLH state realistic ab initio electronic wave functions

posses the multivaluedness feature.

Longuet-Higgins corrected the multivaluedness of the electronic eigenfunc-

tions by multiplying them with a phase factor, namely,

ZjðfÞ ¼ expðiaÞxjðfÞ j ¼ 1; 2 ðA:4Þ

where a ¼ f=2. It is important to note that ZjðfÞ, j ¼ 1; 2 are single-valued

complex eigenfunctions.

APPENDIX B: THE BORN–OPPENHEIMER TREATMENT

The total electron–nuclear Hamiltonian of a molecular sytem is defined as

Ĥ ¼ T̂n þ Ĥeðe j nÞ ðB:1Þ
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where T̂n is the kinetic energy operator for the nuclei and Ĥeðe j nÞ is the

electronic Hamiltonian and

Ĥe ¼ T̂e þ V̂ðe j nÞ ðB:2Þ

with T̂e being the kinetic energy operator of the electrons and V̂ðe j nÞ the

potential energy operator as a function of electronic coordinates(e) with nuclear

coordinates(n).

The BO expansion of the molecular wave function

�ðe; nÞ ¼
XN

i¼1

ciðnÞxiðe j n0Þ ðB:3Þ

where the functions ciðnÞ are the nuclear coordinate-dependent coefficients,

later considered as the nuclear wave function, and the xiðe j n0Þs are the

electronic eigenfunctions satisfying the equation

Ĥeðn0Þxiðe j n0Þ ¼ uiðn0Þxiðe j n0Þ i ¼ 1; . . . ; N ðB:4Þ

Here, the uiðn0Þs are the electronic eigenvalues dependent on the nuclear

coordinate n0. Note that n0 � n is defined as the adiabatic case and n0 6¼ n is

defined as the diabatic case.

Substituting Eqs. (B.1) and (B.3) into the time-independent Schrödinger

equation H�ðe; nÞ ¼ E�ðe; nÞ, one obtains

ðT̂n þ Ĥe � EÞ
X

ciðnÞxiðe j n0Þ ¼ 0 ðB:5Þ

Below, we apply the bra–ket notation to electronic coordinates only,

hxjðnÞjxiðn0Þi ¼
gjiðn; n0Þ; forn 6¼ n0

dji; forn ¼ n0

(
ðB:6Þ

By returning back to Eq. (B.5), we have

XN

i¼1

TnciðnÞjxiðe j n0Þi þ
XN

i¼1

ciðnÞðHe � EÞjxiðe j n0Þi ¼ 0 ðB:7Þ

If we consider the ADIABATIC (n0 � n) case, we get

XN

i¼1

TnciðnÞjxiðe j nÞi þ
XN

i¼1

ciðnÞðuiðnÞ � EÞjxiðe j nÞi ¼ 0 ðB:8Þ
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Multiplying by hxjj and integrating over electronic coordinates yields

XN

i¼1

hxjjTncnðnÞjxii þ ðujðnÞ � EÞcjðnÞ ¼ 0 j ¼ 1; . . . ;N ðB:9Þ

where r is the gradient operator and Tn ¼ �ð1=2mÞr2.

Hence, the following matrix element becomes

hxjjTnciðnÞjxii ¼ �
1

2m
fdijr2ci þ 2hxjjrxii þ hxjjr2xicig ðB:10Þ

and the non-adiabatic coupling matrix elements are defined as below,

tð1Þji ¼ hxjjrxii tð2Þji ¼ hxjjr2xii ðB:11Þ

For example, in the case of the x component of the nuclear coordinates we have

tð1Þxji ¼ xj

q
qx

xi

����
�

tð2Þxji ¼ xj

q2

qx2
xi

����
�  

ðB:12Þ

Therefore, Eq. (B.10) in terms of this notation becomes

hxjjTnciðnÞjxii ¼ �
1

2m
fdjir2ci þ 2tð1Þji � rci þ tð2Þji cig ðB:13Þ

It is important to note that the non-adiabatic coupling terms have a direct effect

on the momentum of the nuclei, which is the reason it is called a dynamic

coupling. By substituting Eq. (B.13) in Eq. (B.9), we get

� 1

2m
r2cj þ ðujðnÞ � EÞcjðnÞ �

1

2m

XN

i¼1

ð2tð1Þji � rci þ tð2Þji ciÞ ¼ 0 ðB:14Þ

This is the electronic adiabatic Schrödinger equation and in the case of a single

coordinate x Eq. (B.14) takes the following form:

� 1

2m

d2

dx2
cj þ ðujðnÞ � EÞcjðnÞ �

1

2m

XN

i¼1

2tð1Þxji �
d

dx
ci þ tð2Þxji ci

� �
¼ 0 ðB:15Þ

When the non-adiabatic coupling terms tð1Þ and tð2Þ are considered negligibly

small and dropped from Eq. (B.15), we get the uncoupled approximate

Schrödinger equation

� 1

2m

d2

dx2
cj þ ðujðnÞ � EÞcjðnÞ ¼ 0 ðB:16Þ
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or more general,

1

2m
r2cjðnÞ þ ðujðnÞ � EÞcjðnÞ ¼ 0 ðB:17Þ

The approximation involved in Eq. (B.17) is known as the Born–Oppenheimer

approximation and this equation is called the Born–Oppenheimer equation.

By assuming the Hilbert space of dimension N, one can easily establish the

relation between coupling matrices sð1Þ and sð2Þ by considering the (ij)th matrix

element of r � tð1Þ,

rtð1Þij ¼ rhxijrxji ¼ hrxijrxji þ hxijr2xji

¼ hrxijrxji þ tð2Þij

We can resolve the unity operator in the following way:

I ¼
XN

k¼1

jxkihxkj

and obtain,

hrxijrxji ¼ hrxijIjrxji ¼ hxij
XN

k¼1

jxkihxk

 !
jxji

¼
XN

k¼1

hrxijxkihxkjrxji ¼ �
XN

k¼1

hxkjrxiihxkjrxji

¼ �
XN

k¼1

tð1Þki t
ð1Þ
kj ¼ �ðtð1ÞÞ

2
ij

Hence, the elements of tð1Þ and tð2Þ are related as below

tð2Þij ¼ ðtð1ÞÞ
2
ij þrt

ð1Þ
ij

and finally in matrix notation

sð2Þ ¼ ðtð1ÞÞ2 þrtð1Þ ðB:18Þ

Incorporating relation (B.18) in Eq. (B.14), we can write in matrix form,

� 1

2m
r2cþ u� 1

2m
tð1Þ2 � E

� �
c� 1

2m
ð2tð1Þ � r þ rtð1ÞÞc ¼ 0 ðB:19Þ
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which can be expressed in compact form as

� 1

2m
ðr þ tÞ2cþ ðu� EÞc ¼ 0 ðB:20Þ

So far, we have treated the case n � n0, which was termed the adiabatic

representation. We will now consider the diabatic case where n is still a variable

but n0 is constant as defined in Eq. (B.3). By multiplying Eq. (B.7) by

hxjðe j n0Þj and integrating over the electronic coordinates, we get

� 1

2m
r2 � E

� �
cjðnÞ þ

XN

i¼1

hxjðe j n0ÞjĤeðe j nÞjxiðe j n0ÞiciðnÞ¼0 ðB:21Þ

We can rewrite the electronic Hamiltonian in the following form:

Heðe j nÞ ¼ Te þ Vðe j nÞ
Heðe j n0Þ ¼ Te þ Vðe j n0Þ
Heðe j nÞ ¼ Heðe j n0Þ þ fVðe j nÞ � Vðe j n0Þg

ðB:22Þ

and by using Eq. (B.22), we can calculate the following matrix element:

hxjðe j n0ÞjHeðe j nÞjxiðe j n0Þi ¼ ujðn0Þdji þ ~nijðn j n0Þ ðB:23Þ

where

~njiðn j n0Þ ¼ hxjðe j n0ÞjVðe j nÞ � Vðe j n0Þjxiðe j n0Þi
nijðn j n0Þ ¼ ~nijðn j n0Þ þ ujðn0Þdji

ðB:24Þ

By substituting the expression for the matrix elements in Eq. (B.21), we get the

final form of the Schrödinger equation within the diabatic representation

� 1

2m
r2 � E

� �
cjðnÞ þ

XN

i¼1

njiðn j n0ÞciðnÞ ¼ 0 ðB:25Þ

where the coupling terms among the states are due to potential coupling.

By substituting the following transformation

c ¼ A� ðB:26Þ

into the adiabatic Schrödinger equation (B.20), we obtain the following

expression,

� 1

2m
fAr2�þ 2ðrAþ tAÞ � r�þ fðtþrÞ � ðrAþ tAÞg�g þ ðu� EÞA�

¼ 0 ðB:27Þ
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If the transformation matrix A is chosen in such a way that rAþ tA ¼ 0,

Eq. (B.27) can be rearranged to the following form:

� 1

2m
r2�þ ðA�1uA� EÞ� ¼ 0 ðB:28Þ

which is basically in ‘‘diabatic’’ representation and identical looking with

Eq. (B.25) and A is the adiabatic–diabatic transformation matrix.

APPENDIX C: FORMULATION OF THE VECTOR POTENTIAL

The vector potential is derived in hyperspherical coordinates following the

procedure in [54], where the connections between Jacobi and the hyperspherical

coordinates have been considered as below (see [67])

rx ¼ �
rffiffiffi
2
p cos

y
2
þ sin

y
2

� �
cos

f
2

ry ¼
rffiffiffi
2
p cos

y
2
� sin

y
2

� �
sin

f
2

rz ¼ 0

Rx ¼
rffiffiffi
2
p cos

y
2
þ sin

y
2

� �
sin

f
2

Ry ¼
rffiffiffi
2
p cos

y
2
� sin

y
2

� �
cos

f
2

Rz ¼ 0

ðC:1Þ

The interatomic distances of the triangle ABC formed due to any A þ BC type

reactive system are as follows:

R2
AB

d2
1

¼ r2

2
ð1þ sin y cosfÞ

R2
BC

d2
2

¼ r2

2
ð1þ sin y cos ðf� x2ÞÞ

R2
CA

d2
3

¼ r2

2
ð1þ sin y cos ðfþ x3ÞÞ

ðC:2Þ

and these interatomic distances can also be expressed in terms of Jacobi
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coordinates

R2
AB ¼ ðr2

x þ r2
y Þd2

1

R2
BC ¼ ðR2

x þ R2
yÞ

d2
2ð1� cos x2Þ

2
þ ðr2

x þ r2
y Þ

d2
2ð1þ cos x2Þ

2

� ðrxRx þ ryRyÞd2
2 sin x2

R2
CA ¼ ðR2

x þ R2
yÞ

d2
3ð1� cos x3Þ

2
þ ðr2

x þ r2
y Þ

d2
3ð1þ cos x3Þ

2

þ ðrxRx þ ryRyÞd2
3 sin x3

ðC:3Þ

where d2
k ¼ ðmk=mÞð1� mk=MÞ, m1 m2 and m3 are the masses of the atom A, B,

and C, respectively, in the corners of the triangle ABC. The parameters

M ¼ m1 þ m2 þ m3 and m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1m2m3=M

p
and the angles are given by x2 ¼

2 arctan ðm3=m) and x3 ¼ 2 arctan ðm2=m).

By using Eq. (C.2) one can write

tanf ¼
R2

CA

d2
3

� R2
AB

d2
1

! "
cos x2 �

R2
BC

d2
2

� R2
AB

d2
1

! "
cos x3 þ

R2
BC

d2
2

� R2
CA

d2
3

! "
R2

AB

d2
1

� R2
CA

d2
3

! "
sin x2 �

R2
BC

d2
2

� R2
AB

d2
1

! "
sin x3

ðC:4Þ

It would be convenient for obtaining the expressions of the gradient of the

hyperangle f with respect to Jacobi coordinates to introduce the physical region

of the conical intersection in the following manner:

qf
qri

¼ qf
qRAB

qRAB

qri

þ qf
qRBC

qRBC

qri

þ qf
qRCA

qRCA

qri

qf
qRi

¼ qf
qRAB

qRAB

qRi

þ qf
qRBC

qRBC

qRi

þ qf
qRCA

qRCA

qRi

ðC:5Þ

where i � x; y; z. To obtain explicit expressions for 5f, we have used Eqs.

(C.2–C.5) and after some algebra (!) it is interesting to note that 5f becomes

independent of dk and xk for any arbritrary A þ BC type reactive system. We obtain

qf
qri

¼ � 2

r2 siny
ðri sinfþ Ri cosfÞ

qf
qRi

¼ 2

r2 siny
ð�ri cosfþ Ri sinfÞ

qf
qrz

¼ 0

qf
qRz

¼ 0

ðC:6Þ
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where i � x; y. Similarly, explicit expressions for 5y are obtained using Eqs.

(C.1)

qy
qrx

¼ � 2Ry

r2

qy
qry

¼ � 2Rx

r2

qy
qRx

¼ 2ry

r2

qy
qRy

¼ 2rx

r2

qy
qrz

¼ 0

qy
qRz

¼ 0

ðC:7Þ

The azimuthal angle (Z) about the conical intersection is related with hyper-

angles y and f as

Zðy;fÞ � f0 ¼ arctan
siny sinf

cos y0 sin y cosfþ sin y0 cos y

� �
ðC:8Þ

where y0 indicates the position of the conical intersection.

The gradient of 5Z with respect to Jacobi coordinates (the vector potential)

considering the physical region of the conical intersection, is obtained by using

Eqs. (C.6–C.8) and after some simplification (!) we get,

qZ
qrx

¼ � 2

r2

½Ry sin y0 sinfþ ðcos y0 sin yþ sin y0 cos y cosfÞðrx sinfþ Rx cosfÞ�
½sin2 y sin2 fþ ðcos y0 sin y cosfþ sin y0 cos yÞ2�

qZ
qry

¼ � 2

r2

½Rx sin y0 sinfþ ðcos y0 sin yþ sin y0 cos y cosfÞðry sinfþ Ry cosfÞ�
½sin2 y sin2 fþ ðcos y0 sin y cosfþ sin y0 cos yÞ2�

qZ
qrz

¼ 0

qZ
qRx

¼ 2

r2

½ry sin y0 sinfþ ðcos y0 sin yþ sin y0 cos y cosfÞð�rx cosfþ Rx sinfÞ�
½sin2 y sin2 fþ ðcos y0 sin y cosfþ sin y0 cos yÞ2�

qZ
qRy

¼ 2

r2

½rx sin y0 sinfþ ðcos y0 sin yþ sin y0 cos y cosfÞð�ry cosfþ Ry sinfÞ�
½sin2 y sin2 fþ ðcos y0 sin y cosfþ sin y0 cos yÞ2�

qZ
qRz

¼ 0 ðC:9Þ
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For the H3 isotopic variants, we can calculate the values of y0 and f0 by

introducing RAB ¼ RBC ¼ RCA. Moreover, we get y0 ¼ f0 ¼ 0 for an A3 and

f0 ¼ 0 for an AB2 type reactive system. In case of an A þ B2 type reaction, one

can use

sin y0 ¼
d2

1 � d2
2

d2
2 cos x2 � d2

1

����
���� ðC:10Þ

and obtain y0 ¼ 11:5� for DH2 and y0 ¼ 14:5� for HD2. The actual position of

the CI on the PES is obtained through the equation, Vðr0; y0; f0Þ ¼ ECI where

ECI is the potential energy at the point of the CI.
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I. INTRODUCTION AND PREVIEW

In quantum theory, physical systems move in vector spaces that are, unlike those

in classical physics, essentially complex. This difference has had considerable im-

pact on the status, interpretation, and mathematics of the theory. These aspects

will be discussed in this chapter within the general context of simple molecular

systems, while concentrating at the same time on instances in which the

electronic states of the molecule are exactly or nearly degenerate. It is hoped
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that as the chapter progresses, the reader will obtain a clearer view of the

relevance of the complex description of the state to the presence of a degeneracy.

The difficulties that arose from the complex nature of the wave function

during the development of quantum theory are recorded by historians of science

[1–3]. For some time during the early stages of the new quantum theory

the existence of a complex state defied acceptance ([1], p. 266). Thus, both de

Broglie and Schrödinger believed that material waves (or ‘‘matter’’ or ‘‘de

Broglie’’ waves, as they were also called) are real (i.e., not complex) quantities,

just as electromagnetic waves are [3]. The decisive step for the acceptance of

the complex wave came with the probabilistic interpretation of the theory, also

known as Born’s probability postulate, which placed the modulus of the wave

function in the position of a (and, possibly, unique) connection between theory

and experience. This development took place in the year 1926 and it is remark-

able that already in the same year Dirac embraced the modulus-based inter-

pretation wholeheartedly [4]. Oddly, it was Schrödinger who appears to have, in

1927, demurred at accepting the probabilistic interpretation ([2], p. 561, footnote

350). Thus, the complex wave function was at last legitimated, but the modulus

was and has remained for a considerable time the focal point of the formalism.

A somewhat different viewpoint motivates this chapter, which stresses the

added meaning that the complex nature of the wave function lends to our

understanding. Though it is only recently that this aspect has come to the

forefront, the essential point was affirmed already in 1972 by Wigner [5] in his

famous essay on the role of mathematics in physics. We quote from this here at

some length:

‘‘The enormous usefulness of mathematics in the natural sciences is

something bordering on the mysterious and there is no rational explanation

for. . . this uncanny usefulness of mathematical concepts. . .
The complex numbers provide a particularly striking example of the

foregoing. Certainly, nothing in our experience suggests the introducing of these

quantities. . . Let us not forget that the Hilbert space of quantum mechanics is

the complex Hilbert space with a Hermitian scalar product. Surely to the

unpreoccupied mind, complex numbers. . . cannot be suggested by physical

observations. Furthermore, the use of complex numbers is not a calculational

trick of applied mathematics, but comes close to being a necessity in the

formulation of the laws of quantum mechanics. Finally, it now (1972) begins to

appear that not only complex numbers but analytic functions are destined to play

a decisive role in the formulation of quantum theory. I am referring to the rapidly

developing theory of dispersion relations. It is difficult to avoid the impression

that a miracle confronts us here [i.e., in the agreement between the properties of

the hypernumber
ffiffi
ð

p
�1Þ and those of the natural world].’’

A shorter and more recent formulation is ‘‘The concept of analyticity turns

out to be astonishingly applicable’’ ([6], p. 37).
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What is addressed by these sources is the ontology of quantal description. Wave

functions (and other related quantities, like Green functions or density matrices), far

from being mere compendia or short-hand listings of observational data,

obtained in the domain of real numbers, possess an actuality of their own. From

a knowledge of the wave functions for real values of the variables and by relying

on their analytical behavior for complex values, new properties come to the open, in

a way that one can perhaps view, echoing the quotations above, as ‘‘miraculous.’’

A term that is nearly synonymous with complex numbers or functions is

their ‘‘phase.’’ The rising preoccupation with the wave function phase in the

last few decades is beyond doubt, to the extent that the importance of phases

has of late become comparable to that of the moduli. (We use Dirac’s

terminology [7], which writes a wave function by a set of coefficients, the

‘‘amplitudes,’’ each expressible in terms of its absolute value, its ‘‘modulus,’’

and its ‘‘phase.’’) There is a related growth of literature on interference effects,

associated with Aharonov–Bohm and Berry phases [8–14]. In parallel, one has

witnessed in recent years a trend to construct selectively and to manipulate

wave functions. The necessary techniques to achieve these are also anchored in

the phases of the wave function components. This trend is manifest in such

diverse areas as coherent or squeezed states [15,16], electron transport in mesoscopic

systems [17], sculpting of Rydberg-atom wavepackets [18,19], repeated and

nondemolition quantum measurements [20], wavepacket collapse [21], and

quantum computations [22,23]. Experimentally, the determination of phases

frequently utilizes measurement of Ramsey fringes [24] or similar methods [25].

The status of the phase in quantum mechanics has been the subject of debate.

Insomuch as classical mechanics has successfully formulated and solved

problems using action-angle variables [26], one would have expected to see in

the phase of the wave function a fully ‘‘observable’’ quantity, equivalent to and

having a status similar to the modulus, or to the equivalent concept of the

‘‘number variable’’. This is not the case and, in fact, no exact, well-behaved

Hermitean phase operator conjugate to the number is known to exist. (An article

by Nieto [27] describes the early history of the phase operator question, and

gives a feeling of the problematics of the field. An alternative discussion,

primarily related to phases in the electromagnetic field, is available in [28]). In

Section II, a brief review is provided of the various ways that phase is linked to

molecular properties.

Section III presents results that the analytic properties of the wave function

as a function of time t imply and summarizes previous publications of the

authors and of their collaborators [29–38]. While the earlier quote from Wigner

has prepared us to expect some general insight from the analytic behavior of the

wave function, the equations in this section yield the specific result that, due to

the analytic properties of the logarithm of wave function amplitudes, certain

forms of phase changes lead immediately to the logical necessity of enlarging

200 r. englman and a. yahalom



the electronic set or, in other words, to the presence of an (otherwise)

unsuspected state.

In the same section, we also see that the source of the appropriate analytic

behavior of the wave function is outside its defining equation (the Schrödinger

equation), and is in general the consequence of either some very basic

consideration or of the way that experiments are conducted. The analytic

behavior in question can be in the frequency or in the time domain and leads

in either case to a Kramers–Kronig type of reciprocal relations. We propose

that behind these relations there may be an ‘‘equation of restriction,’’ but while

in the former case (where the variable is the frequency) the equation of

restriction expresses causality (no effect before cause), for the latter case (when

the variable is the time), the restriction is in several instances the basic

requirement of lower boundedness of energies in (no-relativistic) spectra

[39,40]. In a previous work, it has been shown that analyticity plays further

roles in these reciprocal relations, in that it ensures that time causality is not

violated in the conjugate relations and that (ordinary) gauge invariance is

observed [40].

As already mentioned, the results in Section III are based on dispersions

relations in the complex time domain. A complex time is not a new concept. It

features in wave optics [28] for ‘‘complex analytic signals’’ (which is an

electromagnetic field with only positive frequencies) and in nondemolition

measurements performed on photons [41]. For transitions between adiabatic

states (which is also discussed in this chapter), it was previously introduced in

several works [42–45].

Interestingly, the need for a multiple electronic set, which we connect with

the reciprocal relations, was also a keynote of a recent review ([46] and previous

publications cited there and in [47]). Though the considerations relevant to this

effect are not linked to the complex nature of the states (but rather to the

stability of the adiabatic states in the real domain), we have included in

Section III a mention of, and some elaboration on, this topic.

In further detail, Section III stakes out the following claims: For time-

dependent wave functions, rigorous conjugate relations are derived between

analytic decompositions (in the complex t plane) of phases and of log moduli.

This entails a reciprocity, taking the form of Kramers–Kronig integral relations

(but in the time domain), holding between observable phases and moduli in

several physically important cases. These cases include the nearly adiabatic

(slowly varying) case, a class of cyclic wave functions, wavepackets, and

noncyclic states in an ‘‘expanding potential.’’ The results define a unique phase

through its analyticity properties and exhibit the interdependence of geometric

phases and related decay probabilities. It turns out that the reciprocity property

obtained in this section holds for several textbook quantum mechanical

applications (like the minimum width wavepacket).
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The multiple nature of the electronic set becomes especially important when

the potential energy surfaces of two (or more) electronic states come close,

namely, near a ‘‘conical intersection’’ (ci). This is also the point in the space of

nuclear configurations at which the phase of wave function components

becomes anomalous. The basics of this situation have been extensively studied

and have been reviewed in various sources [48–50]. Recent works [51–57] have

focused attention on a new contingency: when there may be several ci’s between

two adiabatic surfaces, their combined presence needs to be taken into account

for calculations of the non-adiabatic corrections of the states and can have

tangible consequences in chemical reactions. Section IV presents an analytic

modeling of the multiple ci model, based on the superlinear terms in the

coupling between electronic and nuclear motion. This section describes in detail

a tracing method that keeps track of the phases, even when these possess

singular behavior (viz., at points where the moduli vanish or become singular).

The continuous tracing method is applicable to real states (including stationary

ones). In these, the phases are either zero or p. At this point, it might be objected

that in so far as numerous properties of molecular systems (e.g., those relating to

questions of stability and, in general, to static situations and not involving a

magnetic field) are well described in terms of real wave functions, the complex

form of the wave function need, after all, not be regarded as a fundamental

property. However, it will be shown in Section IV that wave functions that are

real but are subject to a sign change, can be best treated as limiting cases in

complex variable theory. In fact, the ‘‘phase tracing’’ method is logically

connected to the time-dependent wave functions (and represents a case of

mathematical ‘‘embedding’’).

A specific result in Section IV is the construction of highly nonlinear

vibronic couplings near a ci. The construction shows, inter alia, that the

connection between the Berry (or ‘‘topological,’’ or ‘‘geometrical’’) phase,

acquired during cycling in a parameter space, and the number of ci’s circled

depends on the details of the case that is studied and can vary from one situation

to another. Though the subject of Berry phase is reviewed in Chapter 12 in this

volume [58], we note here some recent extensions in the subject [59–61]. In

these works, the phase changes were calculated for two-electron wave functions

that are subject to interelectronic forces . An added complication was also

considered, for the case in which the two electrons are acted upon by different

fields. This can occur when the two electrons are placed in different environ-

ments, as in asymmetric dimers. By and large, intuitively understandable results

are found for the combined phase factor but, under conditions of accidental

degeneracies, surprising jumps (named ‘‘switching’’) are noted. Some applica-

tions to quantum computations seem to be possible [61].

The theory of Born–Oppenheimer (BO) [62,63] has been hailed (in an

authoritative but unfortunately unidentified source) as one of the greatest
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advances in theoretical physics. Its power is in disentangling the problem of two

kinds of interacting particles into two separate problems, ordered according to

some property of the two kinds. In its most frequently encountered form, it is

the nuclei and electrons that interact (in a molecule or in a solid) and the

ordering of the treatment is based on the large difference between their masses.

However, other particle pairs can be similarly handled, like hadronic mesons

and baryons, except that a relativistic or field theoretical version of the BO

theory is not known. The price that is paid for the strength of the method is that

the remaining coupling between the two kinds of particles is dynamic. This

coupling is expressed by the so-called non-adiabatic coupling terms (NACTs),

which involve derivatives of (the electronic) states rather than the states

themselves. ‘‘Correction terms’’ of this form are difficult to handle by con-

ventional perturbation theory. For atomic collisions the method of ‘‘perturbed

stationary states’’ was designed to overcome this difficulty [64,65], but this is

accurate only under restrictive conditions. On the other hand, the circumstance

that this coupling is independent of the potential, indicates that a general

procedure can be used to take care of the NACTs [66]. Such general procedure

was developed by Yang and Mills in 1954 [66] and has led to far reaching

consequences in the theory of weak and strong interactions between elementary

particles.

The interesting history of the Yang–Mills field belongs essentially to particle

physics [67–70]. The reason for mentioning it here in a chemical physics

setting, is to note that an apparently entirely different procedure was proposed

for the equivalent problem arising in the molecular context, namely, for the

elimination of the derivative terms (the NACTs) from the nuclear part of the BO

Schrödinger equation through an adiabatic–diabatic transformation (ADT)

matrix [71,72]. It turns out that the quantity known as the tensorial field [or

covariant, or Yang–Mills (YM) field, with some other names also in use] enters

also into the ADT description, though from a completely different viewpoint,

namely, through ensuring the validity of the ADT matrix method by satisfaction

of what is known as the ‘‘curl condition.’’ Formally, when the ‘‘curl condition’’

holds, the (classical) YM field is zero and this is also the requirement for the

strict validity of the ADT method. [A review of the ADT and alternative

methods is available in, e.g., [48,49], the latter of which also discusses the YM

field in the context of the BO treatment.] However, it has recently been shown

by a formal proof, that an approximate construction of the ADT matrix (using

only a finite, and in practice small, number of BO, adiabatic states) is possible

even though the ‘‘curl condition’’ may be formally invalid [36]. An example for

such an approximate construction in a systematic way was provided in a model

that uses Mathieu functions for the BO electronic states [73].

As noted some time ago, the NACTs, can be incorporated in the nuclear part

of the Schrödinger equation as a vector potential [74,75]. The question of a
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possible magnetic field, associated with this vector potential has also been

considered [76–83]. For an electron occupying an admixture of two or more

states (a case that is commonly designated as noncommutative, ‘‘non-

Abelian’’), the fields of physical interest are not only the magnetic field, being

the curl of the ‘‘vector potential,’’ but also tensorial (YM) fields. The latter is the

sum of the curl field and of a vector-product term of the NACTs. Physically,

these fields represent the reaction of the electron on the nuclear motion via the

NACTs.

In a situation characteristic of molecular systems, a conical intersection ci

arises from the degeneracy point of adiabatic potential energy surfaces in a

plane of nuclear displacement coordinates. There are also a number of orthogonal

directions, each representing a so-called ‘‘seam’’ direction. In this setting, it

emerges that both kinds of fields are aligned with the seam direction of the ci

and are zero everywhere outside the seam, but they differ as regards the flux that

they produce. Already in a two-state situation, the fields are representation

dependent and the values of the fluxes depend on the states the electron

occupies. (This evidently differs from conventional electro-magnetism, in which

the magnetic field and the flux are unchanged under a gauge transformation.)

Another subject in which there are implications of phase is the time evolution

of atomic or molecular wavepackets. In some recently studied cases, these

might be a superposition of a good 10 or so energy eigenstates. Thanks to the

availability of short, femtosecond laser pulses both the control of reactions by

coherent light [16,84–94] and the probing of phases in a wavepacket are now

experimental possibilities [19,95–97]. With short duration excitations the initial

form of the wavepacket is a real ‘‘doorway state’’ [98–100] and this develops

phases for each of its component amplitudes as the wavepacket evolves. It has

recently been shown that the phases of these components are signposts of a time

arrow [101,102] and of the irreversibility; both of these are inherent in the

quantum mechanical process of preparation and evolution [34]. It was further

shown in [34] (for systems that are invariant under time reversal, e.g., in the

absence of a magnetic field) that the preparation of an initially complex

wavepacket requires finite times for its construction (and cannot be achieved

instantaneously).

The quantum phase factor is the exponential of an imaginary quantity (i times

the phase), which multiplies into a wave function. Historically, a natural

extension of this was proposed in the form of a gauge transformation, which

both multiplies into and admixes different components of a multicomponent

wave function [103]. The resulting ‘‘gauge theories’’ have become an essential

tool of quantum field theories and provide (as already noted in the discussion of

the YM field) the modern rationale of basic forces between elementary particles

[67–70]. It has already been noted that gauge theories have also made notable

impact on molecular properties, especially under conditions that the electronic
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state basis in the molecule consists of more than one component. This situation

also characterizes the conical intersections between potential surfaces, as

already mentioned. In Section V, we show how an important theorem, originally

due to Baer [72], and subsequently used in several equivalent forms, gives some

new insight to the nature and source of these YM fields in a molecular (and

perhaps also in a particle field) context. What the above theorem shows is that it

is the truncation of the BO set that leads to the YM fields, whereas for a

complete BO set the field is inoperative for molecular vector potentials.

Section VI shows the power of the modulus-phase formalism and is included

in this chapter partly for methodological purposes. In this formalism, the

equations of continuity and the Hamilton–Jacobi equations can be naturally

derived in both the nonrelativistic and the relativistic (Dirac) theories of the

electron. It is shown that in the four-component (spinor) theory of electrons, the

two extra components in the spinor wave function will have only a minor effect

on the topological phase, provided certain conditions are met (nearly non-

relativistic velocities and external fields that are not excessively large).

So as to make the individual sections self-contained, we have found it

advisable to give some definitions and statements more than once.

II. ASPECTS OF PHASE IN MOLECULES

This section attempts a brief review of several areas of research on the

significance of phases, mainly for quantum phenomena in molecular systems.

Evidently, due to limitation of space, one cannot do justice to the breadth of the

subject and numerous important works will go unmentioned. It is hoped that the

several cited papers (some of which have been chosen from quite recent

publications) will lead the reader to other, related and earlier, publications. It is

essential to state at the outset that the overall phase of the wave function is

arbitrary and only the relative phases of its components are observable in any

meaningful sense. Throughout, we concentrate on the relative phases of the

components. (In a coordinate representation of the state function, the ‘‘phases of

the components’’ are none other than the coordinate-dependent parts of the

phase, so it is also true that this part is susceptible to measurement. Similar

statements can be made in momentum, energy, etc., representations.)

A further preliminary statement to this section would be that, somewhat

analogously to classical physics or mechanics where positions and momenta (or

velocities) are the two conjugate variables that determine the motion, moduli

and phases play similar roles. But the analogy is not perfect. Indeed, early on it

was questioned, apparently first by Pauli [104], whether a wave function can be

constructed from the knowledge of a set of moduli alone. It was then argued by

Lamb [105] that from a set of values of wave function moduli and of their rates
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of change, the wave function, including its phase, is uniquely found.

Counterexamples were then given [106,107] and it now appears that the

knowledge of the moduli and some information on the analytic properties of the

wave function are both required for the construction of a state. (The following

section contains a formal treatment, based partly on [30–32] and [108,109].) In

a recent research effort, states with definite phases were generated for either

stationary or traveling type of fields [110].

Recalling for a start phases in classical waves, these have already been the

subject of consideration by Lord Rayleigh [111], who noted that through

interference between the probed and a probing wave the magnitude and phase of

acoustic waves can be separately determined, for example, by finding surfaces

of minimum and zero magnitudes. A recent review on classical waves is given

by Klyshko [112]. The work of Pancharatnam on polarized light beams

[113,114] is regarded as the precursor of later studies of topological phases in

quantum systems [9]. This work contained a formal expression for the relative

phase between beams in different elliptic polarizations of light, as well as a

construction (employing the so-called ‘‘Poincare sphere’’) that related the phase

difference to a geometrical, area concept. (For experimental realizations with

polarized light beams we quote [115,116]; the issue of any arbitrariness in

experimentally pinning down the topological part of the phase was raised in

[117].) Regarding the interesting question of any common ground between

classical and quantal phases, the relation between the adiabatic (Hannay’s)

angle in mechanics and the phase in wave functions was the subject of [118].

The difference in two-particle interference patterns of electromagnetic and

matter waves was noted, rather more recently, in [119]. The two phases,

belonging to light and to the particle wave function, are expected to enter on an

equal footing when the material system is in strong interaction with an

electromagnetic field (as in the Jaynes–Cummings model). An example of this

case was provided in a study of a two-level atom, which was placed in a cavity

containing an electromagnetic field. Using one or two photon excitations, it was

found possible to obtain from the Pancharatnam phase an indication of the

statistics of the quantized field [120].

Several essential basic properties of phases in optics are contained in

[28,41,121]. It was noted in [28], with reference to the ‘‘complex analytic

signal’’ (an electromagnetic field with positive frequency components), that the

position of zeros (from which the phase can be determined) and the intensity

represent two sets of information that are intetwined by the analytic property of

the wave. In Section III, we shall again encounter this finding, in the context of

complex matter (Schrödinger) waves. Experimentally, observations in wave

guide structures of the positions of amplitude zeros (which are just the ‘‘phase

singularities’’) were made in [122]. An alternative way for the determination of

phase is from location of maxima in interference fringes ([28], Section VII.C.2).
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Interference in optical waves is clearly a phase phenomenon; in classical

systems it arises from the signed superposition of positive and negative real

wave amplitudes. To single out some special results in the extremely broad field

of interference, we point to recent observations using two-photon pulse

transition [94] in which a differentiation was achieved between interferences

due to temporal overlap (with finite pulse width) and quantum interference

caused by delay. The (component-specific) topological phase in wave functions

has been measured, following the proposal of Berry in [9], by neutron

interferometry in a number of works, for example, [123,124] with continual

improvements in the technique. The difficulties in the use of coherent neutron

beams and the possibility of using conventional neutron sources for phase-

sensitive neutron radiography have been noted in a recent review [125].

Phase interference in optical or material systems can be utilized to achieve a

type of quantum measurement, known as nondemolition measurements ([41],

Chapter 19). The general objective is to make a measurement that does not

change some property of the system at the expense of some other property(s)

that is (are) changed. In optics, it is the phase that may act as a probe for

determining the intensity (or photon number). The phase can change in the

course of the measurement, while the photon number does not [126].

In an intriguing and potentially important proposal (apparently not further

followed up), a filtering method was suggested for image reconstruction

(including phases) from the modulus of the correlation function [127]. [In

mathematical terms this amounts to deriving the behavior of a function in the

full complex (frequency) plane from the knowledge of the absolute value of the

function on the real axis, utilizing some physically realizable kernel function.]

A different spectral filtering method was discussed in [128].

Before concluding this sketch of optical phases and passing on to our next

topic, the status of the ‘‘phase’’ in the representation of observables as quantum

mechanical operators, we wish to call attention to the theoretical demonstration,

provided in [129], that any (discrete, finite dimensional) operator can be

constructed through use of optical devices only.

The appropriate quantum mechanical operator form of the phase has been

the subject of numerous efforts. At present, one can only speak of the best

approximate operator, and this also is the subject of debate. A personal

historical account by Nieto of various operator definitions for the phase (and of

its probability distribution) is in [27] and in companion articles, for example,

[130–132] and others, that have appeared in Volume 48 of Physica Scripta T

(1993), which is devoted to this subject. (For an introduction to the unitarity

requirements placed on a phase operator, one can refer to [133]). In 1927, Dirac

proposed a quantum mechanical operator f̂, defined in terms of the creation and

destruction operators [134], but London [135] showed that this is not

Hermitean. (A further source is [136].) Another candidate, eif̂ is not unitary,
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as was demonstrated, for example, in [28], Section 10.7. Following that,

Susskind and Glogower proposed a pair of operators ^cos and sı̂n [137], but it

was found that these do not commute with the number operator n̂. In 1988, Pegg

and Barnett introduced a Hermitean phase operator through a limiting procedure

based on the state with a definite phase in a truncated Hilbert space [138]. Some

time ago a comparison was made between different phase operators when used

on squeezed states [139]. Unfortunately, there is as yet no consensus on the

status of the Pegg–Barnett operators [121,140–142]. Maybe at least part of

the difficulties are rooted in problems that arise from the coupling between the

quantum system and the measuring device. However, this difficulty is a moot

point in quantum mechanical measurement theory, in general.

(For the special case of a two-state systems, a Hermitean phase operator was

proposed, [143], which was said to provide a quantitative measure for ‘‘phase

information.’’)

A related issue is the experimental accessibility of phases: It is now widely

accepted that there are essentially two experimental ways to observe phases

[9,124,144]: (1) through a two-Hamiltonian, one-state method, interfero-

metrically (viz., by sending two identically prepared rays across two regions

having different fields), (2) a one-Hamiltonian, two-state method (meaning, a

difference in the preparation of the rays), for example, [89,92]. (One recalls that

already several years ago it was noted that there are the two ways for measuring

the phase of a four-component state, a spinor [145].) One can also note a further

distinction proposed more recently, namely, that between ‘‘observabilities’’ of

bosonic and fermionic phases [146]: Boson phases are observable both locally

(at one point) and nonlocally (at extended distances, which the wave reaches as

it progresses). They can lead to phase values that are incompatible with the Bell

inequalities, while fermion phases are only nonlocally observable (i.e., by

interference) and do not violate Bell’s inequalities. The difference resides in that

only the former type of particles gives rise to a coherent state with arbitrarily

large occupation number n, whereas for the latter the exclusion principle allows

only n ¼ 0 or 1.

The question of determination of the phase of a field (classical or quantal, as

of a wave function) from the modulus (absolute value) of the field along a real

parameter (for which alone experimental determination is possible) is known as

‘‘the phase problem’’ [28]. (True also in crystallography.) The reciprocal

relations derived in Section III represent a formal scheme for the determination

of phase given the modulus, and vice versa. The physical basis of these singular

integral relations was described in [147] and in several companion articles in

that volume; a more recent account can be found in [148]. Thus, the reciprocal

relations in the time domain provide, under certain conditions of analyticity,

solutions to the phase problem. For electromagnetic fields, these were derived in

[120,149,150] and reviewed in [28,148]. Matter or Schrödinger waves were
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considered in a general manner in [39]. The more complete treatment, presented

in Section III applies the results to several situations in molecular and solid-state

physics. It is likely that the full scope and meaning of the modulus-phase

relationship await further and deeper going analyses.

In 1984, Berry made his striking discovery of time scale independent phase

changes in many-component states [9] (now variously known as Berry or

topological or geometric phase) . This followed a line of important developments

regarding the role of phases and phase factors in quantum mechanics. The

starting point of these may be taken with Aharonov and Bohm’s discovery of the

topologically acquired phase [8], named after them. (As a curiosity, it is

recorded that Bohm himself referred to the ‘‘ESAB effect’’ [151,152].) The

achievement, stressed by the authors of [8], was to have been able to show that

when an electron traverses a closed path along which the magnetic field is zero,

it acquires an observable phase change, which is proportional to the ‘‘vector

potential.’’ The ‘‘topological’’ aspect, namely, that the path is inside a multiply

connected portion of space (or that, in physical terms, the closed path cannot be

shrunk without encountering an infinite barrier), has subsequently turned out to

be also of considerable importance [153,154], especially through later

extensions and applications of the Aharonov–Bohm phase change [155] (cf.

the paper by Wu and Yang [156] that showed the importance of the phase factor

in quantum mechanics, which has, in turn, led to several developments in many

domains of physics).

In molecular physics, the ‘‘topological’’ aspect has met its analogue in the

Jahn–Teller effect [47,157] and, indeed, in any situation where a degeneracy of

electronic states is encountered. The phase change was discussed from various

viewpoints in [144,158–161] and [163].

For the Berry phase, we shall quote a definition given in [164]: ‘‘The phase

that can be acquired by a state moving adiabatically (slowly) around a closed

path in the parameter space of the system.’’ There is a further, somewhat more

general phase, that appears in any cyclic motion, not necessarily slow in the

Hilbert space, which is the Aharonov–Anandan phase [10]. Other develop-

ments and applications are abundant. An interim summary was published in

1990 [78]. A further, more up-to-date summary, especially on progress in

experimental developments, is much needed. (In Section IV we list some

publications that report on the experimental determinations of the Berry phase.)

Regarding theoretical advances, we note (in a somewhat subjective and selective

mode) some clarifications regarding parallel transport, e.g., [165]. This paper

discusses the ‘‘projective Hilbert space’’ and its metric (the Fubini-Study

metric). The projective Hilbert space arises from the Hilbert space of the

electronic manifold by the removal of the overall phase and is therefore a

central geometrical concept in any treatment of the component phases, such as

this chapter.

complex states of simple molecular systems 209



The term ‘‘Open-path phase’’ was coined for a non-fully cyclic evolution

[11,14]. This, unlike the Berry-phase proper, is not gauge invariant, but is,

nevertheless (partially) accessible by experiments ([30–32]). The Berry phase

for nonstationary states was given in [13], the interchange between dynamic and

geometric phases is treated in [117]. A geometrical interpretation is provided in

[166] and a simple proof for Berry’s area formula in [167]. The phases in off-

diagonal terms form the basis of generalizations of the Berry phase in [168,169];

an experimental detection by neutron interferometry was recently accomplished

[170]. The treatment by Garrison and Wright of complex topological phases for

non-Hermitean Hamiltonians [171] was extended in [172–174]. Further

advances on Berry phases are corrections due to non-adiabatic effects (resulting,

mainly, in a decrease from the value of the phase in the adiabatic, infinitely slow

limit) [30,175,176]. In [177], the complementarity between local and nonlocal

effects is studied by means of some examples. For more general time-dependent

Hamiltonians than the cyclic one, the method of the Lewis and Riesenfeld

invariant spectral operator is in use. This is discussed in [178].

Note that the Berry phase and the open-path phase designate changes in the

phases of the state components, rather than the total phase change of the wave

function, which belongs to the so-called ‘‘Dynamic phase’’ [9,10]. The existence

of more than one component in the state function is a topological effect. This

assertion is based on a theorem by Longuet-Higgins ([158], ‘‘Topological test

for intersections’’), which states that, if the wave function of a given electronic

state changes sign when transported around a loop in nuclear configuration

space, then the state must become degenerate with another at some point within

the loop.

From this theorem it follows that, close to the point of intersection and

slightly away from it, the corresponding adiabatic or BO electronic wave

functions will be given (to a good approximation) by a superposition of the two

degenerate states, with coefficients that are functions of the nuclear coordinates.

(For a formal proof of this statement, one has to assume, as is done in [158], that

the state is continuous function of the nuclear coordinates.) Moreover, the

coefficients of the two states have to differ from each other, otherwise they can

be made to disappear from the normalized electronic state. Necessarily, there is

also a second ‘‘superposition state,’’ with coefficients such that it is orthogonal

to the first at all points in the configuration space. (If more than two states

happen to be codegenerate at a point, then the adiabatic states are mutually

orthogonal superpositions of all these states, again with coefficients that are

functions of the nuclear coordinates.)

If now the nuclear coordinates are regarded as dynamical variables, rather

than parameters, then in the vicinity of the intersection point, the energy

eigenfunction, which is a combined electronic–nuclear wave function, will

contain a superposition of the two adiabatic, superposition states, with nuclear
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wave functions as cofactors. We thus see that the topological phase change

leads, first, to the adiabatic electronic state being a multicomponent superposi-

tion (of diabatic states) and, second, to the full solution being a multicomponent

superposition (of adiabatic states), in each case with nuclear-coordinate-

dependent coefficients.

The design and control of molecular processes has of late become possible

thanks to advances in laser technology, at first through the appearance of

femtosecond laser pulses and of pump–probe techniques [179] and, more

recently, through the realization of more advanced ideas, including feedback

and automated control [180–183]. In a typical procedure, the pump pulse pre-

pares a coherent superposition of energy eigenstates, and a second delayed pulse

probes the time-dependent transition between an excited and a lower potential

energy surface. When the desired outcome is a particular reaction product, this

can be promoted by the control of the relative phases of two fast pulses

emanating from the same coherent laser source. One of the earliest works to

achieve this is [184]. A recent study focuses on several basic questions, for

example, those regarding pulsed preparation of an excited state [92]. In between

the two, numerous works have seen light in this fast expanding and

technologically interesting field. The purpose of mentioning them here is to

single out this field as an application of phases in atomic [25,95,96] and

molecular [84–90] spectroscopies. In spite of the achievements in photo-

chemistry, summarized, for example, in [185], one hardly expects phases to play

a role in ordinary (i.e., not state-selective or photon-induced) chemical

reactions. Still, interference (of the kind seen in double-slit experiments) has

been observed between different pathways during the dissociation of water

[186,187]. Moreover, several theoretical ideas have also been put forward to

produce favored reaction products through the involvement of phase effects

[188–194]. Calculations for the scattering cross-sections in the four-atom

reaction OHþ H2 ! H2Oþ H showed a few percent change due to the effect

of phase [195].

Wavepacket reconstruction, or imaging from observed data, requires the

derivation of a complex function from a set of real quantities. Again, this is

essentially the ‘‘phase problem,’’ well known also from crystallography and

noted above in a different context than the present one [28]. An experimental

study yielded the Wigner position-momentum distribution function [88]. This

approach was named a ‘‘tomographic’’ method, since a single beam scans the

whole phase space and is distinct from another approach, in which two different

laser pulses create two wavepackets: an object and a reference. When the two

states are superimposed, as in a conventional holographic arrangement, the

cross-term in the modulus squared retains the phase information [16,90,196].

Computer simulations have shown the theoretical proposal to be feasible. In

a different work, the preparation of a long-lived atomic electron wavepacket
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in a Rydberg state, with principal quantum numbers around n ¼ 30, was

achieved [197].

Rydberg states, as well as others, can provide an illustration for another,

spectacular phenomenon: wavepacket revivals [15]. In this, a superposition of

�10 energy states first spreads out in phase space (due to phase decoherence),

only to return to its original shape after a time that is of the order of the

deviation of the spacing of the energy levels from a uniform one [198,199]. Not

only is the theory firmly based, and simulations convincing, but even an

application, based on this phenomenon and aimed at separation of isotopes, has

been proposed [200]. Elsewhere, it was shown that the effect of slow cycling on

the evolving wavepacket is to leave the revival period unchanged, but to cause a

shift in the position of the revived wavepacket [201].

Coherent states and diverse semiclassical approximations to molecular

wavepackets are essentially dependent on the relative phases between the wave

components. Due to the need to keep this chapter to a reasonable size, we can

mention here only a sample of original works (e.g., [202–205]) and some

summaries [206–208]. In these, the reader will come across the Maslov index

[209], which we pause to mention here, since it links up in a natural way to the

modulus-phase relations described in Section III and with the phase-tracing

method in Section IV. The Maslov index relates to the phase acquired when the

semiclassical wave function traverses a zero (or a singularity, if there be one)

and it (and, particularly, its sign) is the consequence of the analytic behavior of

the wave function in the complex time plane.

The subject of time connects with the complex nature of the wave function in

a straightforward way, through the definition in quantum mechanics of the

Wigner time-reversal operator [210,211]. In a rough way, the definition implies

that the conjugate of the complex wave function describes (in several instances)

the behavior of the system with the time running backward. Given, on one hand,

‘‘the time-reversal invariant’’ structure of accepted physical theories and, on the

other hand, the experience of passing time and the successes of nonequilibrium

statistical mechanics and thermodynamics, the question that is being asked is:

When and where does a physical theory pick out a preferred direction of time

(or a ‘‘time arrow’’)? From the numerous sources that discuss this subject, we

call attention to some early controversies [212–214] and to more recent

accounts [101,215–217], as well as to a volume with philosophical orientation

[102]. Several attempts have been made recently to change the original

formalism of quantum mechanics by adding non-Hermitean terms [218–220], or

by extending (rigging) the Hilbert space of admissible wave functions

[221,222]. The last two papers emphasize the preparation process as part of

the wave evolution. By an extension of this idea, it has recently been shown that

the relative phases in a wavepacket, brought to life by fast laser pulses,

constitute a unidirectional clock for the passage of time (at least for the initial
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stages of the wavepacket) [34]. Thus, developing phases in real life are

hallmarks of both a time arrow and of irreversibility. It also emerged that, in a

setting that is invariant under time reversal, the preparation of an ‘‘initially’’

complex wavepacket needs finite times to accomplish, that is, it is not

instanteneous [34,92].

Time shifts or delays in scattering processes are present in areas as diverse as

particle, molecular, and solid-state phenomena, all of which are due to the

complex nature of the wave function. For a considerable time, it was thought

that the instance of formation of a particle or of an excited state is restricted only

by the time-energy uncertainty relation. The time delay t was first recognized

by Bohm [223] and by Eisenbud and Wigner [224], and was then given by

Smith [67] a unifying expression in terms of the frequency (o) derivative of the

scattering (or S) matrix, as

t ¼ Re
q ln S

iqo
ð1Þ

The Re presymbol signifies that essentially it is the phase part of the scattering

matrix that is involved. A conjugate quantity, in which the imaginary part is

taken, was later identifed as the particle formation time [225–228]. Real and

imaginary parts of derivatives were associated with the delay time in tunneling

processes across a potential barrier in the Buttiker–Landauer approach (a

review is in [229].) Experimentally, an example of time delay in reflection was

found recently [230]. The question of time reversal invariance, or of its default, is

naturally a matter of great and continued interest for theories of interaction

between the fundamental constituents of matter. A summary that provides an

updating, good to its time of printing, is found in [231].

Another type of invariance, namely, with respect to unitary or gauge trans-

formation of the wave functions (without change of norm) is a cornerstone of

modern physical theories [66]. Such transformations can be global (i.e., co-

ordinate independent) or local (coordinate dependent). Some of the observa-

tional aspects arising from gauge transformation have caused some controversy;

for example, what is the effect of a gauge transformation on an observable

[232,233]. The justification for gauge invariance goes back to an argument

due to Dirac [134], reformulated more recently in [234], which is based on the

observability of the moduli of overlaps between different wave function, which

then leads to a definite phase difference between any two coordinate values, the

same for all wave functions. From this, Dirac goes on to deduce the invariance

of Abelian systems under an arbitrary local phase change, but the same argument

holds true also for the local gauge invariance of non-Abelian, multicomponent

cases [70].

We end this section of phase effects in complex states by reflecting on how,

in the first place, we have arrived at a complex description of phenomena that
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take place in a real world. There are actually two ways to come by this

situation.

First, the time-dependent wave function is necessarily complex and is due to

the form of the time-dependent Schrödinger equation for real times, which

contains i. This equation will be the starting point of Section III, where we

derive some consequence arising from the analytic properties of the complex

wave function. But, second, there are also defining equations that do not contain

i (like the time-independent Schrödinger equation). Here, also, the wave function

can be made complex through making some or other of the variables take

complex values. The advantage lies frequently in removing possible ambiguities

that arise in the solution at a singular point, which may be an infinity. Complex

times have been considered in several theoretical works (e.g., [42,43]). It is

possible to associate a purely imaginary time with temperature. Then,

recognizing that negative temperatures are unphysical in an unrestricted Hilbert

space, we immediately see that the upper and lower halves of the complex

t plane are nonequivalent. Specifically, regions of nonanalytic behavior are

expected to be found in the upper half, which is the one that corresponds to

negative temperatures, and analytic behavior is expected in the lower half plane

that corresponds to positive temperatures. The formal extension of the nuclear

coordinate space onto a complex plane, as is done in [44,45], is an essentially

equivalent procedure, since in the semiclassical formalism of these works the

particle coordinates depend parametrically on time. Complex topological phases

are considered in, e.g., [171,172], which can arise from a non-Hermitean

Hamiltonian. The so-called Regge poles are located in the complex region of

momentum space. (A brief review well suited for molecular physicists is in

[235]). The plane of complex-valued interactions is the subject of [236].

In addition, it can occasionally be useful to regard some physical parameter

appearing in the theory as a complex quantity and the wave function to possess

analytic properties with regard to them. This formal procedure might even

include fundamental constants like e, h, and so on.

III. ANALYTIC THEORY OF COMPLEX
COMPONENT AMPLITUDES

A. Modulus and Phase

With the time-dependent Schrödinger equation written as

i
q�ðx; tÞ

qt
¼ Hðx; tÞ�ðx; tÞ ð2Þ

[in which t is time, x denotes all particle coordinates, Hðx; tÞ is a real

Hamiltonian, and �h ¼ 1], the presence of i in the equation causes the solution
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�ðx; tÞ to be complex valued. Writing �ðx; tÞ in a logarithmic form and

separating as

ln�ðx; tÞ ¼ ln ðj�ðx; tÞjÞ þ iargð�ðx; tÞÞ ð3Þ

we have in the first term the modulus j�ðx; tÞj and in the second term arg, the

‘‘phase.’’ It is the latter that expresses the signed or complex valued nature of the

wave function. In this section, we shall investigate what, if any, interrelations

exist between moduli and phases? Are they independent quantities or, more

likely since they derive from a single equation (2), are they interconnected? The

result will be of the form of ‘‘reciprocal’’ relations, shown in Eqs. (9) and (10).

Some approximate and heuristic connections between phases and moduli have

been known before ([2] Vol. 5, Part 2, Section IV.5); [237–241]; we shall return

to these in Section III.C.3.

B. Origin of Reciprocal Relations

Contrary to what appears at a first sight, the integral relations in Eqs. (9) and

(10) are not based on causality. However, they can be related to another

principle [39]. This approach of expressing a general principle by mathematical

formulas can be traced to von Neumann [242] and leads in the present instance

to an ‘‘equation of restriction,’’ to be derived below. According to von Neumann

complete description of physical systems must contain:

1. A set of quantitative characterizations (energy, positions, velocities,

charges, etc.).

2. A set of ‘‘properties of states’’ (causality, restrictions on the spectra of

self-energies, existence or absence of certain isolated energy bands, etc.).

As has been shown previously [243], both sets can be described by eigenvalue

equations, but for the set 2 it is more direct to work with projectors Pr taking the

values 1 or 0. Let us consider a class of functions f ðxÞ, describing the state of the

system or a process, such that (for reasons rooted in physics) f ðxÞ should vanish

for x 62 D (i.e., for supp f ðxÞ ¼ D, where D can be an arbitrary domain and x

represents a set of variables). If PrDðxÞ is the projector onto the domain D, which

equals 1 for x 2 D and 0 for x 62 D, then all functions having this state property

obey an ‘‘equation of restriction’’ [244]:

f ðxÞ ¼ PrDðxÞf ðxÞ ð4Þ

The ‘‘equation of restriction’’ can embody causality, lower boundedness of

energies in the spectrum, positive wavenumber in the outgoing wave (all these

in nonrelativistic physics) and interactions inside the light cone only, conditions

of mass spectrality, and so on in relativistic physics. In the case of interest in this
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chapter, the ‘‘equation of restriction’’ arises from the lower boundedness of

energies ðEÞ, or the requirement that (in nonrelativistic physics) one must have

E > 0 (where we have arbitrarily chosen the energy lower bound as equal to

zero).

Applying to Eq. (4) an integral transform (usually, a Fourier transform) Fk,

one derives by (integral) convolution, symbolized by �k, the expression

f ðkÞ ¼ Fk½PrDðxÞ

O

k

f ðkÞ

¼
ð

Fk�k0 ½PrDðxÞ
 f ðk0Þdk0 ð5Þ

For functions of a single variable (e.g., energy, momentum or time) the

projector PrDðxÞ is simply �ðxÞ, the Heaviside step function, or a combination

thereof. When also replacing x; k by the variables E; t, the Fourier transform in

Eq. (5) is given by

Ft½�ðEÞ
 ¼ dþðtÞ �
1

2
dðtÞ � i

p
P

1

t

� �� �
ð6Þ

where P designates the principal part of an integral. Upon substitution into Eq. (5)

(with k replaced by t) one obtains after a slight simplification

f ðtÞ ¼ i

p
P

ð1
�1

1

t0 � t
f ðt0Þdt0 ð7Þ

Real and imaginary parts of this yield the basic equations for the functions

appearing in Eqs. (9) and (10). (The choice of the upper sign in these equations

will be justified in a later subsection for the ground-state component in several

physical situations. In some other circumstances, such as for excited states in

certain systems, the lower sign can be appropriate.)

1. A General Wavepacket

We can state the form of the conjugate relationship in a setting more general

than �ðx; tÞ, which is just a particular, the coordinate representation of the

evolving state. For this purpose, we write the state function in a more general

way, through

j�ðtÞi ¼
X

n

fnðtÞjni ð8Þ

where jni represent some time-independent orthonormal set and fnðtÞ are the

corresponding amplitudes. We shall write generically fðtÞ for any of the

216 r. englman and a. yahalom



‘‘component amplitudes’’ fnðtÞ and derive from it, in Eq. (15), a new function

w�ðtÞ that retains all the fine-structured time variation in ln�ðtÞ and is free of the

large-scale variation in the latter. We then derive in several physically important

cases, but not in all, reciprocal relations between the modulus and phase of wðtÞ
taking the form

1

p
P

ð1
�1

dt0½ln jwðt0Þj
=ðt0 � tÞ ¼ � arg wðtÞ ð9Þ

and

1

p
P

ð1
�1

dt0½argwðt0Þ
=ðt0 � tÞ ¼ � ln jwðtÞj ð10Þ

The sign alternatives depend on the location of the zeros (or singularities) of wðtÞ.
The above conjugate, or reciprocal, relations are the main results in this section.

When Eqs. (9) and (10) hold, ln jwðtÞj and argwðtÞ are ‘‘Hilbert transforms’’

[245,246].

Later in this section, we shall specify the analytic properties of the functions

involved and obtain exact formulas similar to Eqs. (9) and (10), but less simple

and harder to apply to observational data of, say, moduli.

In Section III.C.5, we give conditions under which Eqs. (9) and (10) are

exactly or approximately valid. Noteworthy among these is the nearly adiabatic

(slowly evolving) case, which relates to the Berry phase [9].

C. Other Phase-Modulus Relations

As a prelude to the derivation of our results, we note here some of the relations

between phases and moduli that have been known previously. The following is a

list (presumably not exhaustive) of these relations. Some of them are standard

textbook material.

1. The Equation of Continuity

This was first found by Schrödinger in 1926 starting with Eq. (2), which he

called the ‘‘eigentliche Wellengleichung.’’ (Paradoxically, this got translated to

‘‘real wave equation’’ [2].) In the form

2m
qln j�ðx; tÞj

qt
þ 2$ln j�ðx; tÞj:$arg½�ðx; tÞ
 þ $ � $arg½�ðx; tÞ
 ¼ 0 ð11Þ

(where m is the particle mass), it is clearly a differential relation between the

modulus and the phase. As such, it does not show up any discontinuity in

the phase [125], whereas Eqs. (9) and (10) do that. We further note that the above
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form depends on the Hamiltonian and looks completely different for, for

example, a Dirac electron.

2. The WKB Formula

In the classical region of space, where the potential is less than the energy, the

standard formula leads to an approximate relation between phase and modulus

in the form of the following path integral ([237], Section 28)

arg �ðxÞ ¼ �C

ðxðtÞ

0

j�ðxÞj�2
dx ð12Þ

where C is a normalization constant. This and the following example do not

arise from the time-dependent Schrödinger equation; nevertheless, time enters

naturally in a semiclassical interpretation [205].

3. Extended Systems

By extending some previous heuristic proposal [238,239], the phase in the

polarized state of a 1D solid of macroscopic length L was expressed in [240] as

arg�ðxÞ ¼ Im ln

ðL

0

e2pix=Lj�ðxÞj2dx ð13Þ

Note [240] that the phase in Eq. (13) is gauge independent. Based on the above

mentioned heuristic conjecture (but fully justified, to our mind, in the light of our

rigorous results), Resta noted that ‘‘Within a finite system two alternative

descriptions [in terms of the squared modulus of the wave function, or in terms of

its phase] are equivalent’’ [247].

4. Loss of Phase in a Quantum Measurement

In a self-consistent analysis of the interaction between an observed system and

the apparatus (or environment), Stern et al. [241] proposed both a phase-

modulus relationship ([241], Eq. (3.10)) and a deep lying interpretation.

According to the latter, the decay of correlation between states in a superposition

can be seen, equivalently, as the effect of either the environment upon the

system or the back-reaction of the system on its environment. The reciprocal

relations refer to the wave function of the (microscopic) system and not to its

surroundings, thus there is only a change of correlation not a decay. Still it

seems legitimate to speculate that the dual representation of the change that we

have found (viz., through the phase or through the modulus) might be an

expression of the reciprocal effect of the coupling between the system

(represented by its states) and its environment (acting through the potential).
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D. The Cauchy-Integral Method for the Amplitudes

Since the amplitude fðtÞ arises from integration of Eq. (2), it can be assumed to

be uniquely given. We can further assume that fðtÞ has no zeros on the real

t axis, except at those special points, where this is demanded by symmetry. The

reason for this is that, in general, fðtÞ ¼ 0 requires the solution of two

equations, for the real and the imaginary parts of fðtÞ and this cannot be

achieved with a single variable: a real t. (Arguing from a more physical angle, if

there is a zero somewhere on a the real t axis, then a small change in some

parameter in the Hamiltonian, will shift this zero to a complex t. However, this

small change cannot change the physical content of the problem and thus we

can just as well start with the case where the zeros are away from the real axis.)

We can therefore perform the decomposition of lnfðtÞ, following [248,249]:

lnfðtÞ ¼ lnfþðtÞ þ lnf�ðtÞ ð14Þ

where lnfþðtÞ is analytic in a portion of the complex t plane that includes the

real axis (or, as stipulated in [248], ‘‘including a strip of finite width about the

real axis’’) and a large semicircular region above it and lnf�ðtÞ is analytic in the

corresponding portion below and including the real axis. By defining new

functions w�ðtÞ, we separate off those parts of lnf�ðtÞ that do not vanish on the

respective semicircles, in the form:

lnf�ðtÞ ¼ P�ðtÞ þ ln w�ðtÞ ð15Þ

where ln wþðtÞ and lnw�ðtÞ are, respectively, analytic in the upper and lower half

of the complex t plane and vanish in their respective half-planes for large jtj. The

choices for suitable P�ðtÞ are not unique, and only the end result for lnf�ðtÞ is.

In the interim stage, we apply to the functions ln w�ðtÞ Cauchy’s theorem with a

contour C that consists of an infinite semicircle in the upper ðþÞ, or lower ð�Þ
half of the complex t0 plane traversed anticlockwise ðþÞ or clockwise ð�Þ and a

line along the real t0 axis from �1 to þ1 in which the point t0 ¼ t is avoided

with a small semicircle. We obtain

þ
C

ln w�ðt0Þ
ðt0 � tÞ dt0 ¼ �2pi ln w�ðtÞ or zero ð16Þ

depending on whether the small semicircle is outside or inside the half-plane of

analyticity and the sign� is taken to be consistently throughout. Further, writing

the logarithms as

ln w�ðtÞ ¼ ln jw�ðtÞj þ i arg w�ðtÞ ð17Þ
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and separating real and imaginary parts of the functions in Eq. (16) we derive the

following relations between the amplitude moduli and phases in the wave

function:

1

p

� �
P

ð1
�1

½logjw�ðt0Þj � logjwþðt0Þj

ðt0 � tÞ dt0 ¼ arg wþðtÞ þ arg w�ðtÞ ¼ arg wðtÞ

ð18Þ

and

1

p

� �
P

ð1
�1

½arg wþðt0Þ � arg w�ðt0Þ

ðt0 � tÞ dt0 ¼ logjw�ðtÞj þ logjwþðtÞj ¼ logjwðtÞj

ð19Þ

E. Simplified Cases

We shall now concentrate on several cases where relations equations (18) and

(19) simplify. The most favorable case is where lnfðtÞ is analytic in one half-

plane, (say) in the lower half, so that lnfþðtÞ ¼ 0. Then one obtains reciprocal

relations between observable amplitude moduli and phases as in Eqs. (9) and

(10), with the upper sign holding. Solutions of the Schrödinger equation are

expected to be regular in the lower half of the complex t plane (which

corresponds to positive temperatures), but singularities of lnfðtÞ can still arise

from zeros of fðtÞ. We turn now to the location of these zeros.

1. The Near-Adiabatic Limit

We wish to prove that as the adiabatic limit is approached, the zeros of the

component amplitude for the ‘‘time-dependent ground state’’ (TDGS, to be

presently explained) are such that for an overwhelming number of zeros

tr; Im tr > 0 and for a fewer number of other zeros jIm tsj � 1=�E � 2p=o,

where �E is the characteristic spacing of the eigenenergies of the Hamiltonian,

and 2p=o is the timescale (e.g., period) for the temporal variation of the

Hamiltonian. The TDGS is that solution of the Schrödinger equation (2) that is

initially in the ground state of Hðx; 0Þ, the Hamiltonian at t ¼ 0. It is known that

in the extreme adiabatic (infinitesimally slow) limit a system not crossing

degeneracies stays in the ground state (the adiabatic principle). We shall work

in the nearly adiabatic limit, where the principle is approximately, but not

precisely, true.

By expanding �ðx; tÞ in the eigenstates jni of Hðx; 0Þ, we have

�ðx; tÞ ¼
X

n

CnðtÞhxjni ð20Þ
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and we assume (for simplicity’s sake) that the expansion can be halted after a

finite number (say, N þ 1) of terms, or that the coefficients decrease in a

sufficiently fast manner (which will not be discussed here). Expressing the

matrix of the Hamiltonian H as GhnmðtÞ, where hnmðtÞ is of the order of unity and

G positive, we obtain (with the dot denoting time differentiation)

_CnðtÞ ¼ �iG
X

m

hnmðtÞCmðtÞ ð21Þ

The adiabatic limit is characterized by

j _hnmðtÞj � jGj ð22Þ

We shall find that in the TDGS [i.e., �gðx; tÞ], the coefficient CgðtÞ of hxjgi has

the form

CgðtÞ ¼ BggðtÞe�iGjg þ
X

m

BgmðtÞe�iGjm ð23Þ

Here, jm ¼ jmðtÞ are time integrals of the eigenvalues emðtÞ of the matrix hnmðtÞ

jmðtÞ ¼
ðt

0

emðt0Þdt0 ð24Þ

In the sum, the value m ¼ g is excluded and (as will soon be apparent) Bgm=Bgg is

small of the order of

j _hnmðtÞj
G

ð25Þ

To find the roots of CgðtÞ ¼ 0 we divide Eq. (23) by the first term shown and

transfer the unity to the left-hand side to obtain an equation of the form

1 ¼ c1ðtÞe�iGde1t þ c2ðtÞe�iGde2t þ � � � to N terms ð26Þ

where de1t, and so on represent the differences jm � jg and are necessarily

positive and increasing with t, for noncrossing eigenvalues of hnmðtÞ. (They are

written in the form shown to make clear their monotonically increasing character

and are exact, by the mean value theorem, with de1, etc., being some positive

function of t.) The parameters c1ðtÞ, and so on, are small near the adiabatic limit,

where G is large. It is clear that Eq. (26) has solutions only at points where

Im t > 0. That the number of (complex) roots of Eq. (26) is very large in the

adiabatic limit, even if Eq. (26) has only a few number of terms, can be seen
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upon writing eitjhnmj ¼ z and regarding Eq. (26) as a polynomial equation in z�1.

Then the number of solutions increases with G. Moreover, these solutions can be

expected to recur periodically provided the de values approach to being

commensurate.

It remains to investigate the zeros of CgðtÞ arising from having divided out by

BggðtÞe�iGjg . The position and number of these zeros depend only weakly on G,

but depends markedly on the form that the time-dependent Hamiltonian Hðx; tÞ
has. It can be shown that (again due to the smallness of c1; c2; . . .Þ these zeros

are near the real axis. If the Hamiltonian can be represented by a small number

of sinusoidal terms, then the number of fundamental roots will be small.

However, in the t plane these will recur with a period characteristic of the

periodicity of the Hamiltonian. These are relatively long periods compared to

the recurrence period of the roots of the previous kind, which is characteris-

tically shorter by a factor of

j _hnmðtÞj
G

ð27Þ

This establishes our assertion that the former roots are overwhelmingly more

numerous than those of the latter kind. Before embarking on a formal proof, let

us illustrate the theorem with respect to a representative, though specific

example. We consider the time development of a doublet subject to a

Schrödinger equation whose Hamiltonian in a doublet representation is [13,29]

HðtÞ ¼ G=2
�cos ðotÞ sin ðotÞ

sin ðotÞ cos ðotÞ

� �
ð28Þ

Here, o is the angular frequency of an external disturbance. The eigenvalues of

Eq. (28) are G=2 and �G=2. If G > 0, then in the ground state the amplitude of

jgi [¼the vector 1
0

� �
in Eq. (28)] is

Cg ¼ cos ðKtÞcos ðo t=2Þ þ ðo=2KÞsin ðKtÞsin ðot=2Þ
þ iðG=2KÞsin ðKtÞcos ðot=2Þ ð29Þ

with

K ¼ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ o2

p
� G=2 since G=o� 1 ð30Þ

Thus the amplitude in Eq. (29) becomes

CgðtÞ � exp ðiKtÞcos ðot=2Þ þ ðo=2KÞsin ðKtÞsin ðot=2Þ
� exp ðiGt=2Þ½cos ðot=2Þ � iðo=2GÞsin ðot=2Þ

þ i exp ð�iGt=2Þðo=2GÞsin ðot=2Þ ð31Þ

222 r. englman and a. yahalom



This is precisely of the form Eq. (23), with the second term being smaller than

the first by the small factor shown in Eq. (25). Equating (31) to zero and dividing

by the first term, we recover the form in Eq. (26), whose right-hand side consists

now of just one term. For an integer value of G=o ¼ M (say), which is large and

exp ð�iotÞ ¼ Z, the resulting equation in Z has �M roots with jZj > 1 (or, what

is the same, Im t > 0). As noted above, further roots of CgðtÞ will arise from the

neighborhood of cos ðot=2Þ ¼ 0, or Z ¼ �1. [The upper state of the doublet

states has the opposite properties, viz., �M roots with Im t < 0. We have treated

this case (in collaboration with Baer) in a previous work [29].]

A formal derivation of the location of the zeros of CgðtÞ for a general

adiabatic Hamiltonian can be given, following proofs of the adiabatic principle

(e.g., [250–252]). The last source, [252] derives an evolution operator U, which

is written there, with some slight notational change, in the form

UðtÞ ¼ AðtÞ�ðtÞWðtÞ ð32Þ

(Eq. XVII.86 in the reference source [252]). Here AðtÞ is a unitary transformation

(Eq. XVII.70 in [252]) that ‘‘takes any set of basis vectors of Hðx; 0Þ into a set of

basis vectors of Hðx; tÞ in a continuous manner’’ and is independent of G. In the

previously worked example, its components are of the form cos ðot=2Þ and

sin ðot=2Þ [252]. The next factor in Eq. (32) is diagonal [252] Eq. (XVII.68) and

consists of terms of the form:

�ðtÞ ¼ exp ð�iGjmÞdnm ð33Þ

Finally, the unitary transformation WðtÞ was shown to have a near-diagonal form

([252], Eq. XVII.97)

WðtÞ ¼ dnm þ
j _hðtÞj

G

� �
dWnm ð34Þ

The gg component of the evolution operator U is just Cg and is, upon collecting

the foregoing,

CgðtÞ ¼
X

m

AgmðtÞexp ð�iGjmÞ½dmg þ
j _hðtÞj

G

� �
dWmg
 ð35Þ

This can be rewritten as

CgðtÞ ¼ AggðtÞ 1þ j _hðtÞj
G

� �
dWgg

� �
exp ð�iGjgÞ

þ j _hðtÞj
G

� �X
m

0
AgmðtÞexp ð�iGjmÞdWmg ð36Þ
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with the summation excluding g. This is again of the form of Eq. (23), establishing

the generality of the location of the eigenvalues for the nearly adiabatic case.

2. Cyclic Wave Functions

This case is particularly interesting for two reasons. First, time-periodic

potentials such that arise from external periodic forces, frequently give rise to

cyclically varying states. (According to the authors of [253]: ‘‘The universal

existence of the cyclic evolution is guaranteed for any quantum system.’’) The

second reason is that the Fourier expansion of the cyclic state spares us the

consideration of the convergence of the infinite-range integrals in Eqs. (9) and

(10); instead, we need to consider the convergence of the (discrete) coefficients

of the expansion. In this section, we show that in a broad class of cyclic

functions one-half of the complex t plane is either free of amplitude zeros, or

has zeros whose contributions can be approximately neglected. As already

noted, in such cases, the reciprocal relations connect observable phases and

moduli (exactly or approximately). The essential step is that a function fðtÞ
cyclic in time with period 2p can be written as a sine–cosine series. We assume

that the series terminates at the Nth trigonometric function, with N finite. We

can write the series as a polynomial in z, where z ¼ exp ðitÞ, in the form

fðtÞ ¼
X2N

m¼ 0

cm zm�N ð37Þ

¼ z�Nc0wðtÞ

¼ z�Nc0

X2N

m¼ 0

cm

c0

zm ð38Þ

If fðtÞ is a wave function amplitude arising from a Hamiltonian that is time-

inversion invariant, then we can choose fð�tÞ ¼ f�ðtÞ for real t, where the star

denotes the complex conjugate. Then, the coefficients cm are all real. Next,

factorize in products as

wðtÞ ¼
Y2N

k¼ 1

ð1� z=zkÞ ð39Þ

where zk are the (complex) zeros of wðtÞ or fðtÞ, 2N in number. Then the

decomposition shown in Eq. (15), namely, ln wðtÞ ¼ ln wþðtÞ þ lnw�ðtÞ, will be

achieved with

ln wþðtÞ ¼
XR

k¼1

ln ð1� z=zkþÞ jzkþj � 1 ð40Þ

ln w�ðtÞ ¼
X2N

k¼Rþ1

ln ð1� z=zk�Þ jzk�j < 1 ð41Þ
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provided that R of the roots are on or outside the unit circle in the z plane and

2N � R roots are inside the unit circle. The results in Eqs. (18) and (19) for the

phases and amplitudes can now be applied directly. But it is more enlightening to

obtain the coefficients in the complex Fourier series for the phases and

amplitudes. This is easily done for Eq. (40), since for each term in the sum

jz=zkþj ¼ jexp ðitÞ=zkþj < 1 ð42Þ

and the series expansion of each logarithm converges. (When, in Eq. (42)

equality reigns, which is the case when the roots are upon the unit circle, the

convergence is ‘‘in the mean’’ [254].) Then the nth Fourier coefficient is simply

the coefficient of the term exp ðintÞ in the expansion, namely, �ð1=nÞð1=zkþÞn.

The corresponding series expansion of ln w�ðtÞ in Eq. (41) is not legitimate,

since now in every term

jz=zk�j ¼ jexp ðitÞ=zk�j > 1 ð43Þ

Therefore, we rewrite

ln w�ðtÞ ¼ �
X2N

k¼Rþ1

ln ð�zk�Þ þ ð2N � RÞit þ
X2N

k¼Rþ1

ln ð1� zk�=zÞ ð44Þ

Each logarithm in the last term can now be expanded and the ð�nÞth Fourier

coefficient arising from each logarithm is �ð1=nÞðzk�Þn. To this must be added

the n ¼ 0 Fourier coefficient coming from the first, t-independent term and that

arising from the expansion of second term as a periodic function, namely,

it ¼ �2i
X

n

ð�1Þnsin ðntÞ=n ð45Þ

For the Fourier coefficients of the modulus and the phase we note that, because of

the time-inversion invariance of the amplitude, the former is even in t and the

latter is odd. Therefore the former is representable as a cosine series and the latter

as a sine series. Formally,

ln ðwÞ ¼ lnjðwÞj þ i arg ðwÞ ¼
X

n

An cos ðntÞ þ i
X

n

Bn sin ðntÞ ð46Þ

When expressed in terms of the zeros of w, the sin–cos coefficients of the log

modulus and of the phase are, respectively,

A0 ¼ �
X2N

k¼Rþ1

ln jzk�j ð47Þ
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[This is written in terms of jzk�j, the moduli of the roots zk�, since the roots are

either real or come in mutually complex conjugate pairs. In any case, this

constant term can be absorbed in the polynomial PðtÞ in Eq. (15).]

An ¼
XR

k¼ 1

1=ðzkþÞn þ
X2N

k¼Rþ1

ðzk�Þn
" #�

n ð48Þ

Bn ¼
XR

k¼ 1

1=ðzkþÞn �
X2N

k¼Rþ1

½ðzk�Þn � 2ð�1Þn

" #�

n ð49Þ

Equations (47)–(49) are the central results of this section. Though somewhat

complicated, they are easy to interpret, especially in the limiting cases (a–d), to

follow. In the general case, the equations show that the Fourier coefficients are

given in terms of the amplitude zeros. (a) When there are no amplitude zeros in

one of the half-planes, then only one of the sums in Eq. (48) or (49) is nonzero (R

is either 0 or 2N). Consequently, the Fourier coefficients of the log modulus and

of the phase are the same (up to a sign) and the two quantities are logically

interconnected as functions of time. The connection is identical with that

exhibited in Eqs. (9) and (10). In the two-state problem formulated by Eq. (28),

the solution (29) is cyclic provided K=o is an integer. A ‘‘Mathematica’’ output

of the zeros of Eq. (29) for K=o ¼ 8 gives the following results: None of the

zeros is located in the lower half-plane, seven pairs and an odd one are in the

upper half-plane proper, a pair of zeros is on the real t axis. The reciprocal

integral relations in Eqs. (9) and (10) are verified numerically, as seen in Figure 1.

(The equality between the Fourier coefficients An and Bn was verified

independently.) (b) It is a characteristic of the above two-state problem (with

general values of K=o), and of other problems of similar type that there is one or

more roots at or near zkþ ¼ �1ðt ¼ �p; the generality of the occurrence of these

roots goes back to a classic paper on conical intersection [255].) By inspection of

the second sum in Eq. (49), we find that, if all the roots located in the upper half-

plane are of this type, then An ¼ Bn up to small quantities of the order of

ðzkþ þ 1Þ. Then again Eqs. (9) and (10) can be employed. (c) As a corollary to

the previous observation (and an important one in view of the stipulation in

Section III.C.4, that the wave function has no real zeros) a small shift in the

location of a zero originally at t ¼ �p into the complex plane either just above or

just below this location, will only have a small consequence on the Fourier

coefficients. Therefore, zeros of this type do not violate the assumptions of the

theory. (d) If either jzkþj � 1 or jzk�j � 1, it is clear from Eqs. (48) and (49) that

the contribution of such roots is small. This circumstance is important for the

following reason: Suppose that the model is changed slightly by adding to the

potential a small term, for example, adding Ecos 2ot to a diagonal matrix element
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Figure 1. Numerical test of the reciprocal relations in Eqs. (9) and (10) for Cg shown in

Eq. (29). The values computed directly from Eq. (29) are plotted upward and the values from

the integral downward (by broken lines) for K=o ¼ 16. The two curves are clearly identical.

(a) lnjCgðtÞj against (t=period). The modulus is an even function of t. (b) arg CgðtÞ against

(t=period). The phase is odd in t.
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in Eq. (28), where E is small. (In [256] terms of this type were used to describe the

nonlinear part of a Jahn–Teller effect.) Necessarily, this term will introduce new

zeros in the amplitude. It can be shown that this addition will add new roots of the

order jzkþj � 1=E or jzk�j � E. The effects of these are asymptotically negligible.

In other words, the formula (48) and (49) are stable with respect to small

variations in the model. [A similar result is known as Rouche’s theorem about the

stability of the number of zeros in a finite domain ([257], Section 3.42).]

3. Wave Packets

A time-varying wave function is also obtained with a time-independent

Hamiltonian by placing the system initially into a superposition of energy eigen-

states (jni), or forming a wavepacket. Frequently, a coordinate representation is

used for the wave function, which then may be written as

�ðx; tÞ ¼
X

m

amðtÞ exp ð�iEmtÞhxjmi ð50Þ

where hxjmi are solutions of the time-independent Schrödinger equation, with

eigenenergies Em that are taken as nondegenerate and increasing with m. In this

coordinate representation, the ‘‘component amplitudes’’ in the introduction are

just fancy words for �ðx; tÞ at fixed x [so that the discrete state label n that we

have used in Eq. (8) is equivalent to the continuous variable x] and fnðtÞ is

simply hxðtÞj�ðx; tÞi. The results in the earlier section are applicable to the

present situation. Thus, to test Eq. (9) or (10), one would look for any fixed

position x in space at the moduli (or state populations) as a function of time, as

with repeated state-probing set ups. In turn, by some repeated interference

experiments at the same point x, one would establish the phase and then compare

the results with those predicted by the equations. (Of course, the same equations

can also be used to predict one quantity, provided the time history of the second

is known.)

As in previous sections, the zeros of �ðx; tÞ in the complex t plane at fixed x

are of interest. This appears a hopeless task, but the situation is not that bleak.

Thus, let us consider a wavepacket initially localized in the ground state in the

sense that in Eq. (50), for some given x,X
m>0

jamhxjmij2 < ja0hxj0ij2 ð51Þ

Then, we expect that for this value(s) of the coordinate x, the t zeros of the

wavepacket will be located in the upper t half-plane only. The reason for this is

similar to the reasoning that led to the theorem about the location of zeros in the

near-adiabatic case. (Section III.E.1). Actually, empirical investigation of

wavepackets appearing in the literature indicates that the expectation holds in
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a broader range of cases, even when the condition (51) is not satisfied. It should

be mentioned that much of the wavepacket work is numerical and it is not easy

to theorize about it. (A review describing certain aspects of wavepackets is found

in [258].)

We now present some examples of studied wavepackets for which the

reciprocal relations hold (exactly or approximately), but have not been noted.

1. Free Particle in 1D. The Hamiltonian consists only of the kinetic energy of

the particle having mass m ([237] Section 28, [259]). The (unnormalized) energy

eigenstates labeled by the momentum index k are

ckðxÞ ¼ exp ðikxÞ ð52Þ

with corresponding energies Ek ¼ k2=2m. Initially, the wave packet is centered

on x ¼ 0 and has mean momentum K. As shown in [259], the coefficients ak

appearing in Eq. (50) are

ak ¼ exp ½�ðk � KÞ2�2
 ð53Þ

where �ð> 0Þ is the root-mean-square width in the initial wave packet. The

expanding wave packet can be written as

ln�ðx; tÞ ¼ �1=2ln ½�þ ðit=2m�Þ
 � ½x
2 � 4i�2Kðx� Kt=2mÞ


½4�2 þ 2it=m
 þ constant

ð54Þ

which is clearly analytic in the lower half t plane. (The singularity arises because

free electron wave functions are not normalizable.) We can therefore identify this

function with lnfðtÞ ¼ lnf�ðtÞ in Eq. (14), and put lnfþðtÞ ¼ 0. As a

numerical test we have inserted Eq. (54) in Eqs. (9) and (10), integrated

numerically and found (for K ¼ 0) precise agreement.

2. ‘‘Frozen Gaussian Approximation.’’ Semianalytical and semiclassical wave-

packets suitable for calculating evolution on an excited state multidimensional

potential energy surface were proposed in pioneering studies by Heller [260]. In

this method (called the frozen Gaussian approximation), the last two factors in

the summand of Eq. (50) were replaced by time-dependent Gaussians. The time

dependence arose through having time varying average energies, momenta, and

positions. Specifically, each coefficient am in Eq. (50) was followed by a function

gðx; tÞ of the form

ln gðx; tÞ ¼ �moðx� hxitÞ
2=2þ ihpitðx� hxitÞ

þ i

ðt

0

ðhpi2t =m� hgjHjgitÞdt ð55Þ
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where o is an energy characteristic of the upper potential surface, the angular

brackets are the average position and momenta of the classical trajectory and

the Dirac bracket of the Hamiltonian H is to be evaluated for each component

g separately.

For a set of Gaussians, it is rather difficult to establish the analytic behavior

of Eqs. (55), or of (50), in the t plane. However, with a single Gaussian (in one

spatial dimension) and a harmonic potential surface one classically has

hxit ¼ x0 cosot ð56Þ

hpit ¼ ðmÞ
dhxit

dt
¼ �ðox0mÞsinot ð57Þ

hgjHjgit ¼ o=2 ð58Þ

By substituting these expressions into Eq. (55), one can see after some algebra

that ln gðx; tÞ can be identified with ln w�ðtÞ þ PðtÞ shown in Section III.C.4.

Moreover, ln wþðtÞ ¼ 0. It can be verified, numerically or algebraically, that the

log-modulus and phase of ln w�ðtÞ obey the reciprocal relations (9) and (10). In

more realistic cases (i.e., with several Gaussians), Eq. (56–58) do not hold. It still

may be true that the analytical properties of the wavepacket remain valid and so

do relations (9) and (10). If so, then these can be thought of as providing

numerical checks on the accuracy of approximate wavepackets.

3. Expanding Waves. As a further application we turn to the expanding potential

problem [261–263], where we shall work from the amplitude modulus to the

phase. The time-dependent potential is of the form

Vðx; tÞ ¼ z�2ðtÞVðx=zðtÞÞ ð59Þ

Here, z2ðtÞ ¼ cþ t2, which differs from the more general case considered in

[261–263], by putting their timescale factor a ¼ 1 and making the potential real

and regular for real t, as well as time-inversion invariant. Then c is positive and,

in [261,262] b ¼ 0. The Hamiltonian is singular at t ¼ �i
ffiffiffi
c

p
, away from the real

axis. As first shown in [261], the generic form of the solution of the time-

dependent Schrödinger equation is the same for a wide range of potentials.

We shall consider the ground state for a harmonic potential VðxÞ ¼ 1=2mo2
ox2.

The log (amplitude-modulus) of the ground-state wave function (in the coor-

dinate representation) is according to [261] for real t

ln jfðx; tÞj ¼ �ð1=4Þln ðcþ t2Þ � 1=2½mox2=ðcþ t2Þ
 ð60Þ

where o2 ¼ o2
o þ c. Processing the expression in Eq. (60) as in Eq. (14), we can

arbitrarily decompose fðx; tÞ into factors that are analytic above and below the

real t axis. Thus, let us suppose that in Eq. (60) a fraction f1 of the first term and a
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fraction f2 of the second term is analytic in the upper half and, correspondingly,

fractions ð1� f1Þ and ð1� f2Þ are analytic in the lower half. Explicitly, for

complex t

ln jfðx; tÞj ¼ Ref�1=2½ f1lnð
ffiffiffi
c

p
� itÞ þ ð1� f1Þlogð

ffiffiffi
c

p
þ itÞ


� 1=2ðmox2=
ffiffiffi
c

p
Þ½ f2=ð

ffiffiffi
c

p
� itÞ þ ð1� f2Þ=ð

ffiffiffi
c

p
þ itÞ
g ð61Þ

Next, for the log term (which normalizes the wave function), we have to choose,

as in Eq. (15), suitable functions P�ðtÞ that will ‘‘correct’’ the behavior of that

term along the large semicircles. Among the multiplicity of choices, the follow-

ing are the most rewarding (since they completely cancel the log term):

PþðtÞ ¼ �f1
1

2

� �
lnð

ffiffiffi
c

p
� itÞ

¼ �ðf1=4Þ½lnðt2 þ cÞ � 2i arctanðt=
ffiffiffi
c

p
Þ


P�ðtÞ ¼ �ð1� f1Þ
1

2

� �
logð

ffiffiffi
c

p
þ itÞ

¼ � 1

4

� �
ð1� f1Þ½lnðt2 þ cÞ þ 2i arctanðt=

ffiffiffi
c

p
Þ


The right-hand side of Eq. (18) comes from the second term of Eq. (60) alone and

is

arg wðx; tÞ ¼ ð1� 2f2Þ½mox2=ðt2 þ cÞ
ðt=4
ffiffiffi
c

p
Þ ð62Þ

To complete the phase of the wave function, argfðx; tÞ, we have to reinstate

the terms P�ðtÞ that were removed in Eq. (15) so as to get w�ðx; tÞ. The result is

argfðx; tÞ ¼ �ð1� 2 f1Þ
1

2

� �
arctanðt=

ffiffiffi
c

p
Þ þ ð1� 2f2Þ½mox2=ðt2 þ cÞ
ðt=4

ffiffiffi
c

p
Þ

ð63Þ

This establishes the functional form of the phase for real (physical) times. The

phase of the solution given in [261,262] indeed has this functional form. The

fractions f1 and f2 cannot be determined from our Eqs. (17) and (18). However,

by comparing with the wave functions in [261,262], we get the following values

for them:

1� 2 f1 ¼ o=
ffiffiffi
c

p
1� 2f2 ¼ 4

ffiffiffi
c

p
=o ð64Þ
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In the excited states for the same potential, the log modulus contains higher order

terms in x (x3, x4, etc.) with coefficients that depend on time. Each term can again

be decomposed (arbitrarily) into parts analytic in the t half-planes, but from

elementary inspection of the solutions in [261,262] it turns out that every term

except the lowest [shown in Eq. (59)] splits up equally (i.e., the f ’s are just 1=2)

and there is no contribution to the phases from these terms. Potentials other than

the harmonic can be treated in essentially identical ways.

F. Consequences

The following theoretical consequences of the reciprocal relations can be noted:

1. They unfold a connection between parts of time-dependent wave

functions that arises from the structure of the defining equation (2) and

some simple properties of the Hamiltonian.

2. The connection holds separately for the coefficient of each state

component in the wave function and is not a property of the total wave

function (as is, e.g., the ‘‘dynamical’’ phase [9]).

3. The relations pertain to the fine, small-scale time variations in the phase

and the log modulus, not to their large-scale changes.

4. One can define a phase that is given as an integral over the log of the

amplitude modulus and is therefore an observable and is gauge invariant.

This phase [which is unique, at least in the cases for which Eq. (9) holds]

differs from other phases, those that are, for example, a constant, the

dynamic phase or a gauge-transformation induced phase, by its satisfying

the analyticity requirements laid out in Section I.C.3.

5. Experimentally, phases can be obtained by measurements of occupation

probabilities of states using Eq. (9). (We have calculationally verified this

for the case treated in [264].)

6. Conversely, the implication of Eq. (10) is that a geometrical phase

appearing on the left-hand side entails a corresponding geometric

probability change, as shown on the right-hand side. Geometrical decay

probabilities have been predicted in [162] and experimentally tested in

[265].

7. An important ingredient in the analysis has been the positions of zeros of

�ðx; tÞ in the complex t plane for a fixed x. Within quantum mechanics

the zeros have not been given much attention, but they have been studied

in a mathematical context [257] and in some classical wave phenomena

([266] and references cited therein). Their relevance to our study is

evident since at its zeros the phase of �ðx; tÞ lacks definition. Future

theoretical work shall focus on a systematic description of the location of

zeros. Further, practically oriented work will seek out computed or
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experimentally acquired time dependent wave functions for tests or

application of the present results.

8. Finally, and probably most importantly, the relations show that changes

(of a nontrivial type) in the phase imply necessarily a change in the

occupation number of the state components and vice versa. This means

that for time-reversal-invariant situations, there is (at least) one partner

state with which the phase-varying state communicates.

IV. NON-LINEARITIES THAT LEAD TO MULTIPLE
DEGENERACIES

In previous sections, we treated molecules and other localized systems in which

a linear electron-nuclear coupling resulted in a single degeneracy, or ci of the

electronic potential energy surfaces. A notable, symmetry-caused example of

this is the linear E � E Jahn–Teller effect (a pair of degenerate electronic states,

that can happen under trigonal or higher symmetry, which is coupled to two

energetically degenerate displacement modes) [47,157,267]. Still, some time

ago nonlinear coupling was also considered within the E � E case in [268,269]

and subsequently in [256]. Such coupling can result in a more complex

situation, in which there is a quadruplet of ci’s, such that one ci is situated at the

origin of the mode coordinates (as before) and three further ci’s are located

farther outside in the plane, at points that possess trigonal symmetry.

As of late, nonlinear coupling has become of increased interest, partly

through evidence for a weak linear coupling in the metallic cluster Na3 [52,270]

(computations of vibrational levels in a related molecule Li3 were performed in

[271,272]), and partly by attempts to computationally locate ci’s in the potential

energy landscape with a view to estimate their effect on intersurface, non-

adiabatic transitions [273]. The method used in the last reference was based on

the acquisition of the geometric phase by the total function as a ci is circled

[9,158,159,274]. Independently, the authors of [54] theoretically found a causal

connection between the number of ci effectively circled (one or four) and the

important question of the nature of the ground state. They showed that, contrary

to what had been widely thought before, the ground state may be either a

vibronic doublet or a singlet, depending on the distance (which is a function of

the parameters in the vibronic Hamiltonian) of these trigonal ci’s from the

centre. (A similar instance of ‘‘quantum phase transition’’ was noted for a

threefold degenerate system in [275] and, earlier, for an icosahedral system, in

[276]).

In a different field, location, and characteristics of ci’s on diabatic potential

surfaces have been recognized as essential for the evaluation of dynamic

parameters, like non-adiabatic coupling terms, needed for the dynamic and
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static properties of some molecules ([193,277–280]). More recently, pairs of ci’s

have been studied [281,282] in greater detail. These studies arose originally in

connection with a ci between the 12A0 and 22A0 states found earlier in computed

potential energy surfaces for C2H in Cs symmetry [278]. Similar ci’s appear

between the potential surfaces of the two lowest excited states 1A2 and 1B2 in

H2S or of 2B2 and 2A1 in Al��H2 within C2v symmetry [283]. A further, closely

spaced pair of ci’s has also been found between the 32A0 and 42A0 states of the

molecule C2H. Here the separation between the twins varies with the assumed

C��C separation, and they can be brought into coincidence at some separation

[282].

In this section we investigate the phase changes that characterize the double

and trigonal (or cubic) ci’s. We shall find that the Berry phases upon circling

around all the ci’s can take the values of 0 or 2Np (where N is an integer). It can

be shown that the different values of N can be made experimentally observable

(through probing the state populations after inducing changes in the amplitudes

of the components), in a way that is not marred by the fast oscillating dynamic

phase. Apart from the results regarding the integer N in the Berry phase, the

difference between our approach to the phase changes and those in some

previous works, especially in [273,283], needs to be noted. While these consider

the topological phase belonging to the total wave packet, we continue in the

spirit of the previous Section III and treat the open phase belonging to a single

component of the wave packet. (For the topological, full-cycle phase the two are

equivalent, but not for the open phase, that is present at interim stages.)

Explicitly, we write the (in general) time (t)-dependent molecular wave function

�ðtÞ as a superposition of (diabatic) electronic states wk as

�ðtÞ ¼
X

k

akðtÞwk ð65Þ

where the amplitudes ak are functions of the nuclear coordinates. In Section III,

we developed and used the reciprocal relations between the phases (arg ak) and

the (observable) moduli (jakj).
We also describe a ‘‘tracing’’ method to obtain the phases after a full cycling.

We shall further consider wave functions whose phases at the completion of

cycling differ by integer multiples of 2p (a situation that will be written, for

brevity, as ‘‘2Np’’). Some time ago, these wave functions were shown to be

completely equivalent, since only the phase factor (viz., eiPhase) is observable

[156]; however, this is true only for a set of measurements that are all made at

instances where the phase difference is 2Np. We point out simple, necessary

connections between having a certain 2Np situation and observations made

prior to the achievement of that situation. The phase that is of interest in this

chapter is the Berry phase of the wave function [9], not its total phase, though

this distinction will not be restated.
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A. Conical Intersection Pairs

We treat this case first, since it is simpler than the trigonal case. The molecular

displacements are denoted by x and y (with suitable choice of their origins and

of scaling). Then, without loss of generality we can denote the positions of the

ci pairs in Cartesian coordinates by

x ¼ �1 y ¼ 0 ð66Þ

or, in polar coordinates, where x ¼ q cosf, y ¼ q sinf, by

q ¼ 1 f ¼ 0; p ð67Þ

To obtain potential surfaces for two electronic states that will be degenerate at

these points, we write a Hamiltonian as a 2� 2 matrix in a diabatic representation

in the following form:

Hðx; yÞ ¼ K
�ðx2 � 1Þ yf ðxÞ

yf ðxÞ ðx2 � 1Þ

� �

¼ K
�ðq2 cos 2f� 1Þ q sinf f ðq cosfÞ
q sinf f ðq cosfÞ ðq2 cos 2f� 1Þ

� �
¼ Hðq;fÞ ð68Þ

whose two eigenvalues are

E�ðx; yÞ ¼ �K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � 1Þ2 þ ½y f ðxÞ
2

q
¼ �K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq2 cos 2f� 1Þ2 þ ½q sinf f ðqcosfÞ
2

q
¼ E�ðq;fÞ ð69Þ

For K, a (positive) constant and f ðxÞ a function that is nonzero at x ¼ �1, the

Hamiltonian in Eq. (68) can be taken as a model that yields the postulated ci

pairs, since the two eigenvalues coincide just at the points given by Eq. (66) or

(67). There may be more general models that give the same two ci’s. (Note,

however, that if f ðxÞ had a zero at x ¼ �1, the degeneracy of energies would not

be conical.) We now make the above model more specialized and show that

different values of the Berry phase can be obtained for different choices of f ðxÞ.
For definiteness we consider specific molecular situations, but these are just

instances of wider categories. (The notation of Herzberg [284] is used.)

1. 1A1 and 2A2 States in C2v Symmetry (Exemplified by
1A
ð1Þ
1 and 1A

ð2Þ
1 in Bent HCH)

If the x coordinate represents a mode displacement that transforms as B1 (e.g.,

an asymmetric stretch of CH) and y transforms as A1 (a flapping motion of the
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H2, this coordinate being the same as y in Fig. 169 of [284]), then f ðxÞ in

Eq. (68) can be taken as a constant. Without loss of generality we put for this

case f ðxÞ ¼ 1 and find that cycling adiabatically counterclockwise around the ci

that is at ð�1; 0Þ induces (in the component that is unity at f ¼ 0) a topological

phase of p, and that around ð1; 0Þ yields �p. Cycling either fully inside or

outside q ¼ 1 (the latter case encircling both ci’s), gives zero phase. We now

describe a ‘‘continuous (phase-) tracing method’’ that obtains in an unambiguous

way the phase of a real wave function. The alternative, ‘‘adiabatic cycling’’

method Section III gave the same phase change in terms of the evolution of the

complex solution of the time-dependent Schrödinger equation in the extremely

slow (adiabatic) limit. Other methods will be briefly referred to.

B. Continuous Tracing of the Component Phase

In this method, one notes that real-valued solutions of the time-independent

Hamiltonian of a 2� 2 matrix form can be written in terms of an yðf; qÞ, which

is twice the ‘‘mixing angle,’’ such that the electronic component which is

‘‘initially’’ 1 is cos ½yðf; qÞ=2
, while that which is initially 0 is sin ½yðf; qÞ=2
.
For the second matrix form in Eq. (68) (in which, for simplicity f ðxÞ ¼ 1),

we get

yðf; qÞ ¼ arctan
q sinf

q2 cos 2f � 1
ð70Þ

One can trace the continuous evolution of y (or of y=2) as f describes the circle

q ¼ constant. This will yield the topological phase (as well as intermediate,

open-path phase during the circling). We illustrate this in the next two figures for

the case q > 1 (encircling the ci’s).

In Figure 2a several important stages in the circling are labeled with Arabic

numerals. In the adjacent Figure 2b the values of yðf; qÞ are plotted as f
increases continuously. The labeled points in the two Figures correspond to each

other. (The notation is that points that represent zeros of tan y are marked with

numbers surrounded by small circles, those that represent poles are marked by

numbers placed inside squares, other points of interest that are neither zero nor

poles are labeled by free numbers.) The zero value of the topological phase

(y=2) arises from the fact that at the point 3 (at which f ¼ p=2), y retraces its

values, rather than goes on to decrease.

1. A1 and B2 States in C2v Symmetry (Exemplified by
2A1 and 2B2 in AlH2 [285])

Symmetry considerations forbid any nonzero off-diagonal matrix elements in

Eq. (68) when f ðxÞ is even in x, but they can be nonzero if f ðxÞ is odd, for

example, f ðxÞ ¼ x. (Note that x itself transforms as B2 [284].) Figure 3 shows

the outcome for the phase by the continuous phase tracing method for cycling
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outside the ci’s (q > 1). The difference between the present case and the

previous one [in which f ðxÞ was an even function of x] is that now, in the second

half of circling in the q; f plane, the wave function component angle y does not

retrace its path, but goes on decreasing. [It is interesting to remark here on an

analogy between the present results and the well-known results of contour

integration in the complex z plane. An integration of ðz2 � 1Þ�1
over a path that

encircles the two poles of the function gives zero result, but the same path

integration of zðz2 � 1Þ�1
, gives 2pi. However, the analogy does not work fully.

Thus, a simple multiplication of the integrand by a positive constant alters the

residues, but not the phase.]

However, the resulting Berry phase of�2p depends on (1) having reached the

adiabatic limit and (2) circling well away from the ci’s; that is, it is necessary

that the circling shall be done with a value of q that is either � or � 1. A

contrary case not satisfying these conditions, for example, when either q < 3 or

K < 60, would give a Berry phase of � 4p, 6p, . . ., or a number N � 2; 3; . . .
rather than 1, as might have been expected. What is perhaps remarkable is that

even in the not quite adiabatic or not very large q cases, N (though plainly

different from 1) is still close to being an integer. More study may be needed on

this result, especially in view of the possibility of observable consequences of

Figure 2. Phase tracing for the case of 1A1 and 2A2 states in C2v symmetry: (a) The left-hand

side shows the labels for the significant stages during the circling the (q; f) plane. In this and the

following figures, numbers in circles represent the positions of zeros in the argument of the arctan in

the expression of the angle [Eq. (70)], numbers in squares are poles and free numbers are other

significant stages in the circling. (b) The angle y in Eq. (70) as a function of the circling angle. The

numbers correspond to those on the adjacent part (a) of the figure. (Note: The angle y is defined as

twice the transformation or mixing angle.) The circling is with q > 1, namely, outside the ci pair.
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the value of N. The cases of ‘‘1A1 and 2A2 states in C2v symmetry’’ and of ‘‘A1

and B2 states in C2v symmetry’’ are, of course, inequivalent, since they arise

from different Hamiltonians. Their nonequivalence results not only in different

topological phases (zero and 2p), but in different state occupation probabilities.

These are defined as the probabilities of the systems being in one of the states

wk, of which the superposition in Eq. (65) is made up. In Figure 4, we show

these probabilities as functions of time for systems that differ by their having

different functions f ðxÞ in the off-diagonal positions of the Hamiltonian. The

differences in the probabilities are apparent.

2. Trigonal Degeneracies

The simplest way to write down the 2� 2 Hamiltonian for two states such that

its eigenvalues coincide at trigonally symmetric points in ðx; yÞ or ðq;fÞ, plane

is to consider the matrices of vibrational–electronic coupling of the E � E Jahn–

Teller problem in a diabatic electronic state representation. These have been

constructed by Halperin, and listed in Appendix IV of [157], up to the third

Figure 3. Phase tracing for circling outside the ci pair for the model in A1 and B2 states in C2v

symmetry. The Berry phase (half the angle shown at the extremity of the figure) is here �2p.
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order in q. The first order or linear coupling in the displacement coordinates is

of the well-known form (shown by the first term in the Hamiltonian presented

below) and yields the familiar ci at the origin, q ¼ 0. When one adds to this the

quadratic coupling, designated IðEÞ in Section IV.3 (A) of [157] and quoted

below, one obtains three further, trigonally situated ci, namely, at either

f ¼ 0;�2p=3, or f ¼ p;�4p=3, depending on whether the signs of the linear

and quadratic couplings are the same or opposite. The distance of the trigonal

ci’s from the origin varies with the relative magnitudes of the couplings: The

higher the strength of the quadratic term, the nearer the trigonal ci are to the

center. This was, of course, the physical basis of [54], in which a ground

vibronic singlet state for strong quadratic coupling was found. The resulting

Hamiltonian is of the form (to be compared with the two matrices in Eq. (68)):

Hðx; yÞ ¼ K
�ðx� 2kðx2 � y2ÞÞ yþ 4kxy

yþ 4kxy ðx� 2kðx2 � y2ÞÞ

� �

¼ K
�ðq cosf� 2kq2 cos 2fÞ q sinfþ 2kq2 sin 2f

q sinfþ 2kq2 sin 2f ðq cosf� 2kq2 cos 2fÞ

� �
¼ Hðq;fÞ ð71Þ

Figure 4. Probabilities in different models during adiabatic circling around ci’s. The square

moduli of component amplitudes as function of time are seen to be different for different models.

Long-dashed lines: the model in 1A1 and 2A2 states in C2v symmetry for circling inside the ci’s. Full

lines: the model in 1A1 and 2A2 states in C2v symmetry for circling outside the ci’s. Broken lines: the

model in A1 and B2 states in C2v symmetry (with the ‘‘xy’’ off-diagonal matrix element) for circling

outside the ci’s. In the latter model, circling inside the ci’s gives probabilities that would be

indistinguishable from unity on the figure (and are not shown).
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where k represents the ratio of the strength of the quadratic coupling to the linear

one. The trigonal ci’s are at a distance q ¼ ð2kÞ�1
, with angular positions as

described above. Now by employing the continuous phase-tracing method

introduced in Section I.D.1, one again obtains the graphs for the mixing angle.

There are now three cases to consider, namely (1) for cycling that encloses

all four ci’s ðq > ð2kÞ�1Þ the resulting phase acquired being now 2p (shown in

Fig. 5). This is an even multiple of p, as expected for four ci’s [274], but differs

from 4p (or from zero). Then (2) for intermediate radius cycling ðð2kÞ�1 >
q > ð4kÞ�1Þ (which is shown in Fig. 6) that terminates with a Berry phase of�p.

Lastly, (3) for small radius cycling ðq < ð2kÞ�1Þ. The last case has also the Berry

phase of p, but differs from the intermediate case (2), in that the initial increase is

absent.

It might be asked what happens when one adds further couplings beyond the

quadratic one? In the next higher order one finds a scalar cubic term of the form:

q3cos 3pI ð72Þ

where I is the unit matrix. This gives rise to three trigonally aligned degeneracies

([157], Appendix IV). However, these are parabolic (touching) degeneracies, not

conical intersections, and do not cause changes of sign in the wave function upon

circling round them. Higher order terms (not listed in that appendix) can give rise

Figure 5. Phase tracing for the case of trigonal degeneracies when the circle encompasses all

four ci’s and the Berry phase is 2p.
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to additional ci’s of trigonal symmetry, but the strength of these terms is expected

to be less and therefore the resulting ci’s will be farther outside, where they are

without importance for low-lying states. Still, their presence is of interest for

revealing the connection between the Berry angle and the number of ci’s circled

and we shall presently obtain nonlinear coupling terms to an arbitrarily high

power of q.

C. The Adiabatic-to-Diabatic Transformation (ADT)

Several years ago Baer proposed the use of a matrix A, that transforms the

adiabatic electronic set to a diabatic one [72]. (For a special twofold set this was

discussed in [286,287].) Computations performed with the diabatic set are much

simpler than those with the adiabatic set. Subject to certain conditions, A is the

solution of a set of first order partial differential equations. A is unitary and has

the form of a ‘‘path-ordered’’ phase factor, in which the phase can be formally

written as ðR

R0

f IJðRÞ � dR ð73Þ

Here, the integrand is the off-diagonal gradient matrix element between adiabatic

electronic states,

f IJðRÞ ¼ hIj$jJi ð74Þ

Figure 6. Phase tracing for the trigonal degeneracies. The drawings (which are explained in the

caption to Fig. 3) are for intermediate radius (q) circling.
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($ is the derivative with respect to R.) We stress that in this formalism, I and J

denote the complete adiabatic electronic state, and not a component thereof.

Both jIi and jJi contain the nuclear coordinates, designated by R, as parameters.

The above line integral was used and elaborated in calculations of nuclear

dynamics on potential surfaces by several authors [273,283,288–301]. (For an

extended discussion of this and related matters the reviews of Sidis [48] and

Pacher et al. [49] are especially informative.)

The possibility of a nongradient component in the integrand introduces some

difficulty and an alternative formulation has been proposed [273,283]. [At

positions that are close to a ci, the alternative approximates well to the angle

shown above in Eq. (73).]

The ADT phase, computed for ci pairs in [56] and denoted (in their Figs. 1–3) by

gðf j qÞ, is related to the ‘‘open-path phase’’ defined below in Eq. (75), but is

identical with it (and with Berry’s angle) only at f ¼ 2p. At this value, the

computed results of [56] are in agreement with those that were derived with

the model Hamiltonian in Eq. (68). However, in some of the cases, when the

coupling terms became zero, the sign that the phase gðf j qÞ acquires might

become ambiguous (e.g., whether it is even or odd under reflection about the

line f ¼ p). In the above analytic models the signs are given unambiguously.

Since to date summaries about the practical implementation of the line

integral have been given recently (in [108,282]; as also in the chapter by Baer in

the present volume), and the method was applied also to a pair of ci’s [282], we

do not elaborate here on the form of the phase associated with one or more ci’s,

as obtained through this method.

D. Direct Integration

The open-path phase [11,14] associated with a component amplitude can be

obtained as the imaginary part of an integral

gkðtÞ ¼ Im

ðt

0

dt0
qakðt0Þ
qt0

�
akðt0Þ ð75Þ

where, as before at several places in this chapter, akðtÞ is the amplitude of the k

component in the solution of the time-dependent Schrödinger equation in the

near-adiabatic limit. The (complex) amplitude in the integrand is (in general)

non-vanishing (unlike the real wave function amplitude in the strictly adiabatic

solution) and thus the integral is nondivergent. However, in practice, even fairly

close to the adiabatic limit, the convergence is very slow, due to oscillations in

the amplitude, noted in Section IV.C and in [29–32]. For this reason, the formula

in Eq. (75) is not a convenient one to use. Still, using the formula for increasing

values of the adiabaticity parameter [i.e., increasing K in Eq. (68) to K > 102],

we have evaluated the topological phase for the case with trigonal symmetry and
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have found it to converge close to the value 2Np, with N ¼ 1 (and not 0).

Because of the difficulties in its practical implementation, we shall not further

consider the direct integration method.

E. Higher Order Coupling in Some Jahn–Teller and
Renner–Teller Effects

A systematic derivation of forms of coupling that is superlinear in the nuclear

motion amplitude was given, partly based on Racah coefficients, in [157],

Appendix IV, but these went up only as far as the third order in the amplitudes q.

As will shortly be made apparent, there is some theoretical need to obtain higher

order terms. For the E � E Jahn–Teller case, the form of coupling to arbitrary

powers was given in [302]. Here we give a different and arguably simpler

derivation using the vector-coupling formalism of Appendix IV in [157], the

complex representation form given in [303], and a mathematical induction type

of argument.

1. Complex Representation

The mode coordinates, transforming, respectively, as the �1 and 1 components

of the E (doubly degenerate) modes, have the form:

ðg�1; g1Þ ¼ �
iffiffiffi
2

p
� �

ðgy; gEÞ
�1 1

i i

� �
¼ iffiffiffi

2
p
� �

ðqe�if;�qeifÞ ð76Þ

where the extreme right-hand member recalls the ‘‘modulus’’ q and the ‘‘phase’’

f used in the real representation. The vector coupling coefficients for for

example, octahedral symmetry, can be obtained from Table A.20 in Appendix 2

of [304], upon performing the transformation shown (76) on the real

representation. In the following Table we show the Clebsch–Gordan coefficients

defined in equation (79) below.

TABLE I

The Coupling–Coefficients UðABCjabcÞ for the Complex Form of a Doubly Degenerate

Representation in the Octahedral Group, Following G. F. Koster et al., Properties of

the Thirty-Two Point Groups, MIT Press, MA, 1963, pp. 8, 52.

A: B: C: A1 A2 E

E E:

a: b: c: a1 a2 �1 �1

U: —————————————————————————

1 1 0 0 1 0

1 �1 1=
ffiffiffi
2

p
�i=

ffiffiffi
2

p
0 0

�1 1 1=
ffiffiffi
2

p
i=

ffiffiffi
2

p
0 0

�1 �1 0 0 0 1
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To obtain nonlinear coupling terms, we consider two linearly independent,

not identical E modes, namely,

ðg�1; g1Þ ð77Þ
ðG�1;G1Þ ð78Þ

and construct bilinear expressions from these. The combination that transforms

as components of an E mode is given by

wðEjxÞ ¼
X
a;b

UðEEEjabxÞgaGb ð79Þ

The above table for U immediately shows that there are only two bilinear

combinations of g and G, namely, those a ¼ 1, b ¼ 1 and a ¼ �1, b ¼ �1.

These lead to the quadratic terms belonging to the components �1 and 1:

wðEj �1Þ ¼ g1G1 and wðEj1Þ ¼ g�1G�1.

Equation A IV.4 of [157] tells us which ket–bra operator jdihej is multiplied

by the above combinations or, equivalently, where in the 2� 2 electronic-

nuclear coupling matrix each of these terms sit. Here again we adopt for the

electronic kets a complex representation, analogous to that shown in Eq. (76).

To use the vector coupling coefficients for these, we recall that in the complex

representation the bra’s transform as the corresponding ‘‘minus-label ket’s’’ [cf.

Eq. (2.34) in [303]). By using again the vector coupling coefficients, we see that

wðEj �1Þ is the factor that multiplies j1ih�1j (and wðEj1Þ is the factor that

multiplies j �1ih1j). In the usual matrix notation [in which rows and columns

are taken in the order ð�1; 1Þ] this means that in the upper right corner one has

(for linear coupling) g�1 and G�1, and (for quadratic coupling), g1G1, and

similarly in the lower left corner g1, G1 , as well as g�1G�1. Both linear and

quadratic terms will be multiplied by different constants, whose values depend

on the physical situation and cannot be given by symmetry considerations,

except that the electronic–nuclear interaction must be Hermitean and invariant

under the symmetry operations of the group. The same construction can be

employed to derive bilinear terms on the diagonal part of the coupling matrix.

By again using the U coefficients in the above table, one obtains the forms (not

normalized)

ðg1G�1 þ g�1G1Þðj1ih1j þ j�1ih�1jÞ ð80Þ

where each factor belongs to the A1 representation and

ðg1G�1 � g�1G1Þðj1ih1j � j�1ih�1jÞ ð81Þ

where each factor belongs to the A2 representation.
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2. Squaring of Off-Diagonal Elements

The method shown affords easy generalization to higher order coupling in the

important case where a single mode is engaged, that is, G�1 ¼ g�1 ¼
�ð1=i

ffiffiffi
2

p
Þqe�if. Then the two off-diagonal terms derived above are, after

physics-based constant coefficients have been affixed, in the upper right corner

ðqe�if � 2kq2e2ifÞj1ih�1j ð82Þ

with another Hermitean conjugate expression on the other (lower left) off-

diagonal position. These were previously given in a similar form in, for example,

[157,256]. The A1 term in Eq. (80) only renormalizes the vibrational frequency.

The A2 term vanishes (for terms up to second-order in q2). Proceeding in the

same way to get further terms by cross-multiplying the second-order expression

in Eq. (82), and continuing the procedure, we obtain the following terms in the

upper right corner correct up to the fourth order in q

q3e�if; q4e2if; q4e�4if ð83Þ

The first and second terms contain phase factors identical to those previously met

in Eq. (82). The last term has the ‘‘new’’ phase factor e�4if. [Though the power of

q in the second term is different from that in Eq. (82), this term enters with a

physics-based coefficient that is independent of k in Eq. (82), and can be taken

for the present illustration as zero. The full expression is shown in Eq. (86) and

the implications of higher powers of q are discussed thereafter.] Then a new off-

diagonal matrix element enlarged with the third term only, multiplied by a (new)

coefficient l, is

ðqe�if � 2kq2e2if þ lq4e�4ifÞ ¼ qe�ifð1� 2kqe3if þ lq3e�3ifÞ ð84Þ

There is going to be an A1 (scalar) term of the form that is well known in the

literature (e.g., [157]), q3cos 3f, and an A2 (pseudoscalar) term of the form

q3sin 3f. We may once again suppose that the coefficients of all these terms are

independent (i.e., their physical origins are different) and that we may discuss

terms in diagonal and off-diagonal positions separately. Let us consider the off-

diagonal term, as given on the right-hand member of Eq. (84). The vanishing of

the first factor gives the traditional ci at the origin. The zeros of the second factor

give additional ci’s. These are all trigonally positioned, due to the phase factors

e�3if, which induce trigonal symmetry. The maximum number of trigonal ci’s (to

this, fourth-order approximation in q) is clearly 3� 3 ¼ 9. Thus, to give a

numerical example in which k ¼ 0:15, l ¼ 0:003, we obtain the following nine
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trigonal roots of Eq. (84)

q ¼ 3:95 f ¼ 0;
2p
3
;
4p
3

q ¼ 7:42 f ¼ 0;
2p
3
;
4p
3

q ¼ 11:37 f ¼ p;
p
3
;
5p
3

ð85Þ

(Clearly, the pseudoscalar term vanishes at these points; so the ci character at the

roots is maintained, no matter whether there are or are not A2 terms. Also, the

vanishing of A2 terms will not lead to new ci’s.) On the other hand, by circling

over a large radius path q !1, so that all ci’s are enclosed, the dominant term in

Eq. (84) is the last one and the acquired Berry phase is �4ð2pÞ=2 ¼ �4p.

To see that this phase has no relation to the number of ci’s encircled (if this

statement is not already obvious), we note that this last result is true no matter

what the values of the coefficients k , l, and so on are provided only that the

latter is nonzero. In contrast, the number of ci’s depends on their values; for

example, for some values of the parameters the vanishing of the off-diagonal

matrix elements occurs for complex values of q, and these do not represent

physical ci’s. The model used in [270] represents a special case, in which it was

possible to derive a relation between the number of ci’s and the Berry phase

acquired upon circling about them. We are concerned with more general

situations. For these it is not warranted, for example, to count up the total

number of ci’s by circling with a large radius.

3. General Off-Diagonal Coupling

The construction given above to obtain off-diagonal nonlinear couplings up to

order q4 can be generalized to arbitrary order. Only the final result is given. This

gives for the off-diagonal term in the upper right corner

Kqe�if½1þ q�2
X

m¼ 1;...

q3mQmþe3mif þ
X

m¼ 1;...

q3mQm�e�3mif
 ð86Þ

where Qmþ and Qm� are polynomials in q2 with coefficients that depend on the

physical system and whose leading terms will be q0. When transformed back to

the real representation, by applying the inverse of the transformation in Eq. (76),

one regains the expressions of [302]. Normally, for stable physical systems, it is

expected that, with increasing m , Qmþ and Qm� will numerically decrease and so

will, in each polynomial, the coefficients of successively higher powers q2. If we

assume only a finite number of summands in the above sums and that the highest

power of q in Eq. (86) has the phase factor e3Mif (where M is a positive or
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negative integer), then the path along a very large circle will add a topological

phase of ð3M � 1Þp. In general, 3jMj is different (either smaller or larger) than

the number of ci’s enclosed by the large contour, though it equals the number of

ci’s for the case M ¼ þ1 treated in [270]. When there are two or more different

phase factors with the same highest power of q, then the amount of topological

phase is not simply given, but can be determined, using the continuous phase-

tracing method described in Section IV.B.

4. Nonlinear Diagonal Elements

Their forms are

A1:
X

m¼ 0;...

q3mD1;mðqÞcos 3mf ð87Þ

A2:
X

m¼ 0;...

q3mD2;mðqÞsin 3mf ð88Þ

where D1;m and D2;m are polynomials in q2 with coefficients that again depend on

the physical system and whose leading terms is q0. The scalar term evidently

does not produce a ci. The zeros of the A2 term (which is applicable for systems

not invariant under time reversal) by themselves do not add to or subtract from

the ci’s.

5. Generalized Renner–Teller Coupling

The foregoing formulas in Eqs. (86 and 88) can be applied immediately to two

physically interesting situations (not treated in [302], but very recently

considered for a special model in [305]). The first is the vibronic interaction

in a system having inversion symmetry between a doubly degenerate electronic

state and an odd vibrational mode. The second situation is the more common

one of Renner–Teller coupling (e.g., a linear molecule whose doubly degenerate

orbital is coupled to a bending-type distortion) [47], formally identical to the pre-

vious. To write out the coupling to any order, one simply removes in the

previous formulas all terms having odd powers of q. In the real representation,

the coupling matrix correct to the fourth harmonics in the angular coordinate

has the following form

R1q2 cos 2fþ R2q4 cos 4fþ � � � R1q2sin 2f� R2q4 sin 4fþ � � �
R1q2 sin 2f� R2q4 sin 4fþ � � � �ðR1q2 cos 2fþ R2q4 cos 4fþ � � �Þ

 !

ð89Þ

where, as in the instances of Eqs. (86 and 88) above, R1 and R2 are polynomials

in q2 with coefficients that again depend on the physical system and whose

leading terms are of order q0.
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6. Interpretation

The key of constructing vibronic coupling terms for doubly degenerate states

and modes to an arbitrary order is the use of a complex representation. The

formal essence of the method is that in the complex representation UðEEEjxyzÞ
is nonzero only for a single z. (In Table I there is only one entry in a row.

Figuratively speaking: All coupled ‘‘coaches’’ travel to a unique ‘‘train station’’

and all trains in that station consist of coupled coaches. Moreover, this goes also

for the coupling of coupled trains, and so on. From our result, we conclude that the

Berry phase around more than one conical intersection is not uniquely given by

the number of conical intersections enclosed, but is model dependent. This has

consequences for experimental tracing of the phase, as well as for computations

of line integrals with the purpose of obtaining non-adiabatic surface jumping in

chemical rearrangement processes (e.g., in [186–195,300,301]) and as discussed

in Section II.

F. Experimental Phase Probing

Experimental observation of topological phases is difficult, for one reason

(among others) that the dynamic-phase part (which we have subtracted off in

our formalism, but is present in any real situation) in general oscillates much

faster than the topological phase and tends to dominate the amplitude behavior

[306–312]. Several researches have addressed this difficulty, in particular, by

neutron-interferometric methods, which also can yield the open-path phase

[123], though only under restricted conditions [313].

The continuous tracing method and other methods for cycling reviewed in

this section can be used in several very different areas. An example is a

mesoscopic system composed of quantum dots that is connected to several

capacitors. For this, a network of singularities was described in the parameter

space of the gate voltages [314]. It has been suggested that the outcome of

circling around these singularities, through a phased alteration of the charges on

the capacitors, is formally similar to that of circling around ci’s [211]. Although

the physical effects are different (i.e., the acquisition of a p phase by the wave

function has the effect of transferring a single electronic charge), the results of

circling obtained in this section can be associated with quantized charges

passing between quantum dots. Some related topics, for which the results of this

section can be used or extended are phase behavior in a different type of

multiple ci’s, located in a single point but common to several states. This was

studied in [169] and for an electronic quartet state in [36,59,61]. A further future

extension of the theory is to try to correlate the topological phase with a general

(representation-independent) property of the system (or of the Hamiltonian).

The phases studied in the present work are those of material, Schrödinger

waves, rather than of electromagnetic, light waves. Recently, it has been shown
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that it is possible to freeze coherent information (¼ phases) from light into

material degrees of freedom and vice versa [315,316]. This development extends

the relevance of this section to light, also. Among fields of application not

directly addressed in their recent work, let us quote from the authors of [315]

quantum information transfer [317] and Bose–Einstein condensates.

V. MOLECULAR YANG–MILLS FIELDS

A. A Nuclear Lagrangean

One starts with the Hamiltonian for a molecule Hðr;RÞ written out in terms of

the electronic coordinates ðrÞ and the nuclear displacement coordinates (R, this

being a vector whose dimensionality is three times the number of nuclei) and

containing the interaction potential Vðr;RÞ. Then, following the BO scheme, one

can write the combined wave function �ðr;RÞ as a sum of an infinite number of

terms

�ðr;RÞ ¼
X

k

zkðr;RÞwkðRÞ ð90Þ

Here, the first factor zkðr;RÞ in the sum is one of the solutions of the electronic

BO equation and its partner in the sum, wkðRÞ is the solution of the following

equation for the nuclear motion, with total eigenvalue Ek

� 1

2M
qbq

bdk
m þ Vk

mðRÞ �
1

M
tk

bmðRÞq
b þ 1

2M
tk

bnðRÞtb n
m ðRÞ

� �
wmðRÞ ¼ EkwkðRÞ

ð91Þ

The symbol M represents the masses of the nuclei in the molecule, which for

simplicity are taken to be equal. The symbol dk
m is the Kronecker delta. The

tensor notation is used in this section and the summation convention is assumed

for all repeated indexes not placed in parentheses. In Eq. (91) the NACT tk
bm

appears (this being a matrix in the electronic Hilbert space, whose components

are denoted by labels k;m, and a ‘‘vector’’ with respect to the b component of the

nuclear coordinate R). It is given by an integral over the electron coordinates

tk
bmðRÞ ¼

ð
drzkðr;RÞqbzmðr;RÞ :¼ hkjqbjmi ¼ �hmjqbjki ð92Þ

The effective potential matrix for nuclear motion, which is a diagonal matrix for

the adiabatic electronic set, is given by

Vk
mðRÞ ¼ hkjVðr;RÞjmi ð93Þ
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In the algebraic, group-theoretical treatments of non-Abelian systems [66,67–

70,77–80] the NACT is usually written in a decomposed form as

tk
bmðRÞ ¼ dðbÞðRÞðtbÞkm ð94Þ

where tb is one of the set of constant (noncommuting) matrices (the ‘‘gene-

rators’’) that define the Lie group of the system. So far, with the summation in

Eq. (90) over k running over the full electronic Hilbert space spanned by zkðr;RÞ,
the Hamiltonian treatment is exact. Shortly, we shall see that the truncation of the

summation in Eq. (90), which in practice is almost inevitable, has far-reaching

effects in the YM theory. Before that, we turn to an equivalent description,

standardly used in field theories but that has not been in use for the BO treatment

of molecules, namely, to write down a ‘‘nuclear’’ Lagrangean density LM for the

vector cðRÞ whose (transposed) row vector form is

cT ¼ ðw1; w2; w3; . . . ; wNÞ� ð95Þ

(The mixed, c� w notation here has historic causes.) The Schrödinger equation

is obtained from the nuclear Lagrangean by functionally deriving the latter with

respect to c. To get the exact form of the Schrödinger equation, we must let N in

Eq. (95) to be equal to the dimension of the electronic Hilbert space (viz., 1),

but we shall soon come to study approximations in which N is finite and even

small (e.g., 2 or 3). The appropriate nuclear Lagrangean density is for an

arbitrary electronic states

LMðc; qacÞ ¼ ð2MÞ�1ðqacÞkðqacÞk �M�1cktm
kaðqacÞm

� ð2MÞ�1ðcÞktkb
mtbn

m ðcÞn � ckVm
k cm ð96Þ

The non-Abelian nature of the formalism is apparent from the presence of

nondiagonal matrices t and V . The parameter V can be diagonalized, leading to

adiabatic energy surfaces and states, but not simultaneously with the ðtqÞ term.

Requiring now only global gauge invariance of the Lagrangean, we obtain the

usual phase-gauge theories [76,163], incorporating a vector potential. However,

by requiring invariance under a local gauge transformation, we obtain the

extension of the vector potential to a YM field [66,67]. [Actually, the local

gauge invariance is not a ‘‘luxury’’ because, if the Lagrangean is invariant under

global (constant) transformation, then it is also invariant under a gauge trans-

formation with general position dependent parameters (Section 15.2 in [70]). [A

remark on nomenclature: ‘‘field’’ and ‘‘fields’’ are used interchangeably.] Before

obtaining the equation for the field, we return for a moment to the (simpler)

Abelian case.
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B. Pure versus Tensorial Gauge Fields

To start, it is useful to put the previous result in a more elementary setting,

familiar in the context of electromagnetic force between charged particles, say

electrons. Thus, we recapitulate as follows.

In an Abelian theory [for which �ðr;RÞ in Eq. (90) is a scalar rather than a

vector function, N ¼ 1], the introduction of a gauge field gðRÞ means

premultiplication of the wave function wðRÞ by exp ðigRÞ, where gðRÞ is a

scalar. This allows the definition of a ‘‘gauge’’-vector potential, in natural units

Aa ¼ qag ð97Þ

and if we define a field intensity tensor, as in electromagnetism, by

Fbc ¼ qbAc � qcAb ð98Þ

we find that Fbc is 0, excluding singularities of Aa. Therefore, a vector potential

arising from a gauge transformation g does not give a true field (since it can be

transformed away by another gauge �g). Conversely, a vector potential Aa for

which Fbc in Eq. (98) is not zero, gives a true field and cannot be transformed

away by a choice of gauge.

In a non-Abelian theory (where the Hamiltonian contains noncommuting

matrices and the solutions are vector or spinor functions , with N in Eq. (90) >1)

we also start with a vector potential Ab. [In the manner of Eq. (94), this can be

decomposed into components Aa
b, in which the superscript a labels the matrices

in the theory). Next, we define the field intensity tensor through a ‘‘covariant

curl’’ by

Fa
bc ¼ qbAa

c � qcAa
b þ Ca

deAd
bAe

c ð99Þ

Here, Ca
bc are the structure constants for the Lie group defined by the set of the

noncommuting matrices ta appearing in Eq. (94) and which also appear both in

the Lagrangean and in the Schrödinger equation. We further define the ‘‘covariant

derivative’’ by

ðDacÞk ¼ ðqacÞk � iAb
aðtbÞmk cm ð100Þ

and write the field equations for A and F as

qaFac
b ¼ F

cf
d Cd

beAe
f þ i

dLMðc;DcÞ
dDcck

ðtbÞmn ck ð101Þ

If the vector potential components Aa
b have the property that the derived field

intensity, the YM field in Eq. (99) is nonzero, then the vector potential cannot be
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transformed away by a gauge phase gðRÞ through premultiplication of the wave

function wmðRÞ by the (unitary) factor exp ðigðRÞÞ. There is no gðRÞ that will do

this. Conversely, if there is a gðRÞ, one obtains a vector potential-matrix Aa

whose km components satisfy

Ak
am ¼ ðexp ðgðRÞÞ�1Þknqa½exp ðigðRÞÞ
nm ð102Þ

Thus, the existence of a (matrix-type) phase g represents the ‘‘pure-gauge case’’

and the nonexistence of g represents the nonpure YM field case, which cannot be

transformed away by a gauge.

C. The ‘‘Curl Condition’’

We now return to the nuclear BO Eq. (91) in the molecular context. Consider the

derivative coupling term in it, having the form

M�1tk
bmðRÞq

bwmðRÞ ð103Þ

Suppose that we want this to be transformed away by a pure gauge factor having

the form

½exp ðigðRÞÞ
km ¼ ½GðRÞ

k
m ð104Þ

where g and G are matrices. That is, we require

tk
bmðRÞ ¼ ½GðRÞ

�1
ksqb½GðRÞ
sm ð105Þ

for all b, or

½GðRÞ
sktk
bmðRÞ ¼ qb½GðRÞ
sm ð106Þ

The consistency condition for this set of equations to possess a (unique) solution

is that the field intensity tensor defined in Eq. (99) is zero [72], which is also

known as the ‘‘curl condition’’ and is written in an abbreviated form as

curl t ¼ �t� t ð107Þ

Under circumstances that this condition holds an ADT matrix, A exists such that

the adiabatic electronic set can be transformed to a diabatic one. Working with

this diabatic set, at least in some part of the nuclear coordinate space, was the

objective aimed at in [72].

Starting from a completely different angle, namely, the nuclear Lagrangean

and the requirement of local gauge invariance, we have shown in Section IV.B
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that if the very same curl condition is satisfied, there is a pure gauge field. If it is

not satisfied, then the field is not a gauge field, but something more complicated,

namely, the YM field. The set of equations that give the pure gauge g is identical

to that which yields the ADT matrix A, which was introduced in [72]. The

equivalence between a (pure) gauge phase factor and the ADT matrix does not

seem to have been made in the literature before, though the conditionality of a

pure gauge on the satisfaction of the ‘‘curl relation’’ was common knowledge.

(Indeed, they are regarded as tautologously the same.) The reason for the

omission may have been that, possibly, the ADT matrix was not thought to have

the respectability of the pure gauge. (From a naive, superficial angle it is not

evident, why one and the same condition should guarantee the elimination of the

cross-term in the molecular Schrödinger equation, which is a nonrelativistic,

second-order differential equation, and the possibility of a pure gauge for a

hadron field, which obeys entirely different equations, for example, relativistic,

first-order ones.)

D. The Untruncated Hilbert Space

Now, we recall the remarkable result of [72] that if the adiabatic electronic set in

Eq. (90) is complete (N ¼ 1), then the curl condition is satisfied and the YM

field is zero, except at points of singularity of the vector potential. (An algebraic

proof can be found in Appendix 1 in [72]. An alternative derivation, as well as an

extension, is given below.) Suppose now that we have a (pure) gauge gðRÞ, that

satisfies the following two conditions:

1. The electronic set (represented in the following by Greek indexes) is

complete.

2. The vector potential-matrix A present in the Hamiltonian (or in the

Lagrangean) arises from a dynamic coupling: meaning, that it has the

form

Aa
ab / hajqajbi ð108Þ

Then, two things (that are actually interdependent) happen: (1) The field

intensity F ¼ 0, (2) There exists a unique gauge gðRÞ and, since F ¼ 0, any

apparent field in the Hamiltonian can be transformed away by introducing a new

gauge. If, however, condition (1) does not hold, that is, the electronic Hilbert

space is truncated, then F is in general not zero within the truncated set, In this

event, the fields A and F cannot be nullified by a new gauge and the resulting YM

field is true and irremovable.

Attention is directed to a previous discussion of what happens when the

electronic basis is extended to the complete Hilbert space, [79] p. 60; especially

Eqs. (2.17)–(2.18). It is shown there that in that event the full symmetry of the

invariance group is regained (in effect, through the cancellation of the
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transformation matrix operating on the electronic and on the nuclear functions

spaces). From this result, it is only a short step to conclude that the YM field

coming from electron–nuclear coupling must be zero for a full set. However,

this conclusion is not drawn in the article, nor is the vanishing of the YM field

shown explicitly.

As was already noted in [9], the primary effect of the YM field is to induce

transitions (zm ! zk) between the nuclear states (and, perhaps, to cause finite

lifetimes). As already remarked, it is not easy to calculate the probabilities of

transitions due to the derivative coupling between the zero-order nuclear states

(if for no other reason, then because these are not all mutually orthogonal).

Efforts made in this direction are successful only under special circumstances,

for example, the perturbed stationary state method [64,65] for slow atomic

collisions. This difficulty is avoided when one follows Yang and Mills to derive

a mediating tensorial force that provide an alternative form of the interaction

between the zero-order states and, also, if one introduces the ADT matrix to

eliminate the derivative couplings.

E. An Alternative Derivation

The vanishing of the YM field intensity tensor can be shown to follow from the

gauge transformation properties of the potential and the field. It is well known

(e.g., Section II in [67]) that under a unitary transformation described by the

matrix

U ¼ UðRÞ ð109Þ

(which induces a rotation in the nuclear function space) the vector potential

transforms as

Aa ¼ AaðRÞ ! U�1AaU þ U�1qaU ð110Þ

whereas the field intensity transforms covariantly, homogeneously as

Fab ! U�1FabU ð111Þ

If now there exists a representation in which Aa is zero, then in this representation

Fab is also zero [by Eq. (99)]. Now, in a U-transformed representation (which can

be chosen to be completely general), one finds that

Aa ! U�1qaU ð112Þ

since the first term in Eq. (110) is zero, but not the second. Thus Aa is not zero.

However, the transformed Fab has no such inhomogeneous term [see Eq. (111)]
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and therefore, in the transformed representation Fab ¼ 0 and this is true in all

representations, that is, generally true. The crucial assumption was that there is a

representation in which Aa are all zero, and this holds in any diabatic

representation (where the electronic functions zkðr;RÞ are independent of R).

Then, also, derivative matrices, defined in Eq. (92), are zero and so are the

potentials Aa depending linearly on the derivative matrices. On the other hand,

the possibility of a diabatic set is rigorously true only for a full electronic set. The

existence of such a set is thus a (sufficient) condition for the vanishing of the YM

field intensity tensor Fab.

F. General Implications

The foregoing indicate that there are three alternative ways to represent the

combined field in the degrees of freedom written as r;R.

1. By starting with a Lagrangean having the full symmetry, including that

under local gauge transformations, and solving for �ðr;RÞ (this being a

solution of the corresponding Schrödinger equation in the variables r;R).

The solutions can then be expanded as in Eq. (90), utilizing the full

electronic set [the first factor on the sum Eq. (90)], or, for that matter,

employing any other full electronic set.

2. Projecting the nuclear solutions wkðRÞ on the Hilbert space of the

electronic states zkðr;RÞ and working in the projected Hilbert space of the

nuclear coordinates R. The equation of motion (the nuclear Schrödinger

equation) is shown in Eq. (91) and the Lagrangean in Eq. (96). In either

expression, the terms with tk
bm represent couplings between the nuclear

wave functions wkðRÞ and wmðRÞ, that is, (virtual) transitions (or

admixtures) between the nuclear states. (These may represent transitions

also for the electronic states, which would get expressed in finite

electronic lifetimes.) The expression for the transition matrix is not

elementary, since the coupling terms are of a derivative type.

Now the Lagrangean associated with the nuclear motion is not invariant

under a local gauge transformation. For this to be the case, the

Lagrangean needs to include also an ‘‘interaction field.’’ This field can

be represented either as a vector field (actually a four-vector, familiar

from electromagnetism), or as a tensorial, YM type field. Whatever the

form of the field, there are always two parts to it. First, the field induced

by the nuclear motion itself and second, an ‘‘externally induced field,’’

actually produced by some other particles r0;R0, which are not part of the

original formalism. (At our convenience, we could include these and then

these would be part of the extended coordinates r;R. The procedure

would then result in the appearance of a potential interaction, but not

having the ‘‘field.’’) At a first glance, the field (whether induced internally
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or externally) is expected to be a YM type tensorial field since the system is

non-Abelian, but here we meet a surprise. When the couplings tk
bm are of

the derivative form shown in Eq. (92) and when a complete set is taken for

the electronic states zkðr;RÞ, then the YM field intensity tensor Fbc
a

induced by the r;R system vanishes and the induced field is a ‘‘pure

gauge field.’’ Just as the induced four-vector potential in the Abelian case

can be transformed away by a choice of gauge, so also can the tk
bm

interaction terms. (See our previous proof, which shows that the vanishing

of the YM tensor is the condition for the possibility to transform away the

interaction term.) This serves as a reminder that with choice of a full

electronic set, the solutions �ðr;RÞ are exact and there is no residual

interaction between different �ðr;RÞ’s. Such interaction can, of course,

be externally induced by an ‘‘external’’ YM field intensity tensor Fbc
a ,

which is rooted, as before, in r0;R0, and it could be got rid off by including

these in the Hamiltonian.

3. Finally, there is the case that the electronic set zkðr;RÞ is not a complete

set. Then, neither �ðr;RÞ in Eq. (90), nor the nuclear equation (91) is

exact. Moreover, the truncated Lagrangean in Eq. (96) is not exact either

and this shows up by its not possessing a full symmetry (viz., lacking

invariance under local gauge transformation). We can (and should)

remedy this by introducing a YM field, which is not now a pure gauge

field. This means that the internally induced YM field cannot be

transformed away by a (local) gauge transformation and that it brings in

(through the back door, so to speak) the effect of the excluded electronic

states on the nuclear states, these being now dynamically coupled between

themselves.

At this stage, it would be too ambitious to extrapolate the implications of the

above molecular theory for to elementary particles and forces but, by analogy

with the fully worked out molecular model and disregarding any complications

due to the fully relativistic covariance, one might argue that particle states are

also eigenstates of some operators (Hamiltonians) and constitute full sets.

Interactions between different particles (leptons, muons, etc.) exist and when

these interactions (in their minimal form) are incorporated in the formalism, one

gets exact eigenstates (and at this stage, as yet, no interaction fields ). It is only

when one truncates the particle state manifolds to finite subsets, which may

have some internal symmetry [as the SUð2Þ multiplets: ‘‘neutron, proton,’’ or

‘‘electron, neutrino’’], that one finds that one has to pay some price for the

approximation involved in this truncation. Namely, the Lagrangean loses its

original gauge invariance, which is the formal reflection of the fact that the

original interaction field is not fully accounted for in the truncated

representation. To remedy both the formal deficiency and the neglect of part
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of the interaction, one has to introduce some new forces (electromagnetic, or

YM types and possibly others). These do both jobs.

Moreover, if the molecular analogy is further extended, these residual forces

play a further role, in addition to the two already mentioned (viz., restoring

formal invariance and reinstating the missed interaction). They bring in extra

degrees of freedoms (e.g., photons), which act on the particles (but, supposedly,

not between themselves). (In a vernacular locution, the tail that was wagged by

the dog, can also wag the dog.) In the consistent scheme that we describe here,

these extra degrees of freedom are illusory in that the residual forces are only

convenient expressions of the presence of some other particles, and would be

eliminated by including these other particles in a broader scheme. Evidently, the

above description steers clear of field theory and is not relativistic (covariant).

These, as well as other shortcomings that need to be supplied, require us to stop

our speculations at this stage.

G. An Extended (Sufficiency) Criterion for the Vanishing
of the Tensorial Field

We define the field intensity tensor Fbc as a function of a so far undetermined

vector operator X ¼ Xb and of the partial derivatives qb

Fbc mnðXÞ ¼ qbXc mn � qcXb mn � ½Xb mkXc kn � Xc mkXb kn
 ð113Þ

(The summation convention for double indices, for example, k in Eq. (113), is

assumed, as before. However, we no longer make distinction between covariant

and contravariant sets.) We set ourselves the task to find anti-Hermitean

operators Xb such that

Fbc mnðXÞ ¼ 0 ð114Þ

The matrix elements are given by

Xb km :¼ hmjXbjni :¼
ð

drzmðr;RÞXbznðr;RÞ ð115Þ

that is, the brackets represent integration over the electron coordinate r. The

zmðr;RÞ are a real orthonormal set for any fixed R. By anti-Hermiticity of the

derivative operator qb, we have already noted that

hmjqbjni ¼ �hnjqbjmi ð116Þ

Now (with qb designating a differential that operates to the right until it

encounters a closing bracket symbol) one finds that

qbhmjXcjni ¼ hðqbmÞjXcjni þ hmjqbðXcjnÞi ð117Þ
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and, further, that

qbXc mn � qcXb mn ¼ hðqbmÞjXcjni � hðqcmÞjXbjni þ hmjXcðqbnÞi
� hnjXbðqcmÞi þ Commut ð118Þ

where we designate

Commut � hmj½qbXc � qcXb
jni ð119Þ

By subtracting the derivatives in the first four terms from the X’s and adding to

compensate, we have for Eq. (118)

¼ hðqbmÞjðXc � qcÞjni � hðqcmÞjðXb � qbÞjni þ hmjðXc � qcÞjðqbnÞi
� hnjðXb � qbÞjðqcmÞi þ hðqbmÞjðqcnÞi � hðqcmÞjðqbnÞi þ Commut ð120Þ

We have ignored a term hmjðqcqb � qbqcÞjni, which is zero by the commutativity

of derivatives. The crucial step is now, as in [72] and in other later derivations,

the evaluation of the fifth and sixth terms by insertion of jkihkj (which is the unity

operator, when k is summed over a complete set)

hðqbmÞjðqcnÞi � hðqcmÞjðqbnÞi ¼ hðqbmÞjkihkjqcjni � hðqcmÞjkihkjqbjni
¼ �hmjqbjkihkjqcjni þ hmjqcjkihkjqbjni ð121Þ

where Eq. (116) has been used. We replace any derivative q by q� X and

compensate, so as to get for Eq. (121) the expression

¼ hmjqb � Xcjkihkjqc � Xbjni � hmjqc � Xcjkihkjqb � Xbjni
þ hmjXbjkihkjqc � Xcjni � hmjXcjkihkjqb � Xbjni
þ hmjqb � XbjkihkjXcjni � hmjqc � XcjkihkjXbjni
þ hmjXbjkihkjXcjni � hmjXcjkihkjXbjni ð122Þ

We now put

Xb ¼ qb þ fbðRÞ ð123Þ

where the function fbðRÞ is a c number (not an operator) and can be taken outside

brackets (where the integration variable is r). Then we find that the first three lines in

Eq. (122) cancel, and so do the four matrix elements in Eq. (120) (involving

qc � Xb). The surviving contributions to the right-hand side of Eq. (118) are,

first, the last line of Eq. (122), which is nothing else than the square brackets in
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the expression Eq. 113 for the field intensity tensor and, second, the term

in Eq. (118), defined in the line following Eq. (118). For this term to vanish for all

values of n;m, we require

qbXc � qcXb ¼ 0 ð124Þ

or, in view of Eq. (123), that the function fbðRÞ be the gradient of a scalar GðRÞ

fbðRÞ ¼ qbGðRÞ ð125Þ

In conclusion, we have shown that the non-Abelian gauge-field intensity

tensor FbcðXÞ shown in Eq. (113) vanishes when

1. The electronic set is complete.

2. The X operator has the form Xb ¼ qb þ qbGðRÞ.

It will be recognized that this generalizes the result proved by Baer in [72].

Though that work did establish the validity of the curl condition for the

derivative operator as long as some 25 years ago and the validity is nearly trivial

for the second term taken separately, the same result is not self-evident for the

combination of the two terms, due to the nonlinearity of FðXÞ. An important

special case is when GðRÞ ¼ R2=2. Then

Xb ¼ qb þ Rb ð126Þ

and the last expression is recognized as a multiple of the creation operator aþb .

This result paves the way for second-quantized or field theoretic treatments. An

additional extension is to the time derivative operator, appropriate when the

electronic states are time dependent. This extension is elementary (though this

has not been noted before), since the key relation that leads to the vanishing of

the field intensity, Fbc ¼ 0, is Eq. (116), and this also holds when the subscript b

stands for the time variable. What makes this result of special interest is the way

that it provides an extension of the results to relativistic theories, in particular to a

combination of Hamiltonians that (for the electron) is the Dirac Hamiltonian and

(for the nuclear coordinates) is the Schrödinger Hamiltonian.

H. Observability of Molecular States in a Hamiltonian Formalism

We now describe the relation between a purely formal calculational device, like a

gauge transformation that merely admixes the basis states, and observable effects.

Let us start, for simplicity, with a Hamiltonian Hðr;RÞ for two types of

particles. The particles can have similar or very different masses, but for clarity

of exposition we continue to refer to the two types of particle as electrons (r)

and nuclei (R). As before, we posit solutions of the time independent
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Schrödinger equation that have the form shown in Eq. (90) but, for complete-

ness, we attach an energy label e to each solution

�eðr;RÞ ¼
X

k

zkðr;RÞwe
kðRÞ e ¼ 0; 1; . . . ð127Þ

The electronic factor in the sum zkðr;RÞ arises from the familiar BO electronic

Hamiltonian defined for a fixed R. Since this Hamiltonian is independent of the

nuclear set we
kðRÞ, it does not carry the e label. As is well known, with each k

there is associated a potential surface VkðRÞ (the eigenenergies of the electronic

Hamiltonian). Therefore, by holding the nuclear positions fixed for a sufficiently

long time and choosing an excitation wavelength appropriate to VkðRÞ, it is

possible to excite into any of the mutually orthogonal electronic states, zkðr;RÞ.
The dependence of these functions on both of their variables can therefore be

experimentally obtained. Turning now to the nuclear equation, Eq. (91), when

the derivative terms are excluded, this equation yields the nuclear set we
kðRÞ with

a set of (constant) eigenenergies Ee
k for any given diagonal Vk. The set we

kðRÞ is

orthogonal for different e’s and the same k, but not orthogonal for different k’s

and the same e (say, the lowest energy e ¼ 0) or different e’s. By returning to

Eq. (127), it becomes clear that we can select any stationary eigenstate �eðr;RÞ
of the combined system by exciting with the proper wavelength for a sufficiently

long time (in this case, of course, without constraint on R). Thus, the dependence

of any of these superpositions on the two variables r;R can also be ascertained

and �eðr;RÞ thereby operationally obtained. By computing the projections

hzkðr;RÞj�eðr;RÞi ð128Þ

(in which both factors have been experimentally determined) we obtain the

nuclear cofactors we
kðRÞ. [See again Eq. (127).] Actually, one could have written,

instead of Eq. (127), a different superposition, sometimes called the ‘‘crude BO’’

wave function

�eðr;RÞ ¼
X

k

zkðr;R0Þwe
kðRjR0Þ e ¼ 0; 1; . . . ð129Þ

in which the electronic state refers to a fixed nuclear position R0 rather than to all

values of the nuclear coordinate. This electronic state can be operationally

obtained in a manner similar to, but actually more simple, than that which has

already been proposed to obtain zkðr;RÞ in Eq. (127), namely, by exciting at a

wavelength corresponding to VkðR0Þ and probing the r dependence of zkðr;R0Þ.
Determining �eðr;RÞ as before and forming the projection hzkðr;R0Þj�eðr;RÞi
we again obtain (gedanken experimentally) the nuclear factors we

kðRjR0Þ. While

this procedure is legitimate (and even simpler than the previous), it suffers from

260 r. englman and a. yahalom



the more problematic convergence of the superposition (129) in comparison to

(127). One could next try Eq. (127) with a truncated superposition, say involving

only N summand terms (in practice N ¼ 2 or 3 are common), rather than an

infinite number of terms. The electronic functions zkðr;RÞ (k ¼ 1; . . . ; N) can

be determined as before, and so can be the associated nuclear factors we
kðRÞ,

but here one risks to come upon inconsistencies, when from the observatio-

nally obtained full wave function �eðr;RÞ one computes the overlaps

hzkðr;RÞj�eðr;RÞi for any k above N. Then, the truncated sum on the right-

hand side vanishes, while the computed overlap on the left-hand side will in

general be nonzero. In a sense, it may be said that it is this inconsistency that the

introduction of the YM field tries to resolve. The resulting eigen state �eðr;RÞ is

an ‘‘entangled state,’’ in the terminology of measurement theory [242]. While

there appears to be no problem in principle to extract by experiment any zkðr;RÞ
(as already indicated), the question arises whether one can put the nuclear part

into any particular k state we
kðRÞ. This does not appear possible for the form in

Eq. (127) and the source of the difficulty may again be the presence of derivatives

in the nuclear equation. Can one select some observable nuclear set? It turns out

that the set fe
hðRÞ in the transformed eigenstate

�eðr;RÞ ¼
X

kh

zkðr;RÞ½GðRÞ�1
khf
e
hðRÞ e ¼ 0; 1; . . . ð130Þ

is observable. The matrix GðRÞ is the gauge factor introduced in Eq. (104). The

product zkðr;RÞGðRÞ
�1

is independent of R. [Recall that GðRÞ is identical with

the ADT matrix A]. Then fe
hðRÞ can be selected by exciting an e state such as in

Eq. (128) and then selecting one of the r states. The coefficient of the selection

will be (apart from a phase factor) the nuclear state fe
hðRÞ.

However, this procedure depends on the existence of the matrix GðRÞ (or of

any pure gauge) that predicates the expansion in Eq. (90) for a full electronic

set. Operationally, this means the preselection of a full electronic set in

Eq. (129). When the preselection is only to a partial, truncated electronic set,

then the relaxation to the truncated nuclear set in Eq. (128) will not be complete.

Instead, the now truncated set in Eq. (128) will be subject to a YM force

F. It is not our concern to fully describe the dynamics of the truncated set under

a YM field, except to say (as we have already done above) that it is the

expression of the residual interaction of the electronic system on the nuclear

motion.

I. An Interpretation

As shown in Eq. (92), the gauge field Ab
c is simply related to the non-adiabatic

coupling elements tk
bm. For an infinite set of electronic adiabatic states [N ¼ 1

in Eq. (90)], Fbc ¼ 0. This important results seems to have been first established
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by [72] and was later rederived by others. [In the original formulation of [72]

only the contracted form of the field Ab
c (appearing in the definition of F)

Ak
cm ¼ Ab

cðtbÞ
k
m ð131Þ

enters. This has the form

Ak
cm ¼ tk

cmðRÞ ð132Þ

If the intermediate summations are over a complete set, then

ðFbcÞkm ¼ Fa
bcðtaÞkm ¼ 0
 ð133Þ

This result extends the original theorem [72] and is true due to the linear

independence of the t-matrices [67]. The meaning of the vanishing of F is that, if

wkðRÞ is the partner of the electronic states spanning the whole Hilbert space,

there is no indirect coupling (via a gauge field) between the nuclear states; the

only physical coupling being that between the electronic and nuclear coordinates,

which is given by the potential energy part of Hðr;RÞ. When the electronic N set

is only part of the Hilbert space (e.g., N is finite), then the underlying electron–

nuclei coupling gets expressed by an additional, residual coupling between the

nuclear states. Then Fa
bc 6¼ 0 and the Lagrangean has to be enlarged to

incorporate these new forces.

We further make the following tentative conjecture (probably valid only

under restricted circumstances, e.g., minimal coupling between degrees of

freedom): In quantum field theories, too, the YM residual fields, A and F, arise

because the particle states are truncated (e.g., the proton-neutron multiplet is an

isotopic doublet, without consideration of excited states). Then, it is within the

truncated set that the residual fields reinstate the neglected part of the

interaction. If all states were considered, then eigenstates of the form shown in

Eq. (90) would be exact and there would be no need for the residual interaction

negotiated by A and F.

VI. LAGRANGEANS IN PHASE-MODULUS FORMALISM

A. Background to the Nonrelativistic and Relativistic Cases

The aim of this section is to show how the modulus-phase formulation, which is

the keytone of our chapter, leads very directly to the equation of continuity and to

the Hamilton–Jacobi equation. These equations have formed the basic building

blocks in Bohm’s formulation of non-relativistic quantum mechanics [318]. We

begin with the nonrelativistic case, for which the simplicity of the derivation has
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mainly pedagogical merits, but then we go over to the relativistic case that

involves new results, especially regarding the topological phase. Our conclusions

(presented in VI.H) are that, for a broad range of commonly encountered

situations, the relativistic treatment will not affect the presence or absence of the

Berry phase that arises from the Schrödinger equation.

The earliest appearance of the nonrelativistic continuity equation is due to

Schrödinger himself [2,319], obtained from his time-dependent wave equation.

A relativistic continuity equation (appropriate to a scalar field and formulated in

terms of the field amplitudes) was found by Gordon [320]. The continuity

equation for an electron in the relativistic Dirac theory [134,321] has the well-

known form [322]:

qnJn ¼ 0 ð134Þ

where the four-current Jn is given by

Jn ¼ �cgnc ð135Þ

(The symbols in this equation are defined below). It was shown by Gordon [323],

and further discussed by Pauli [104] that, by a handsome trick on the four current,

this can be broken up into two parts Jn ¼ Jn
ð0Þ þ Jn

ð1Þ (each divergence-free),

representing, respectively, a conductivity current (Leitungsstrom):

Jn
ð0Þ ¼ �

i

2mc
�hqn � i

e

c
An

� �
�c

h i
c� �c �hqn þ i

e

c
An

� �
c

h in o
ð136Þ

and a polarization current [324]

Jn
ð1Þ ¼ �

i�h

2mc
qmð�cgmgncÞ n 6¼ m ð137Þ

Again, the summation convention is used, unless we state otherwise. As will

appear below, the same strategy can be used upon the Dirac Lagrangean density

to obtain the continuity equation and Hamilton–Jacobi equation in the modulus-

phase representation.

Throughout, the space coordinates and other vectorial quantities are written

either in vector form x, or with Latin indices xk ðk ¼ 1; 2; 3Þ; the time (t)

coordinate is x0 ¼ ct. A four vector will have Greek lettered indices, such as xn
ðn ¼ 0; 1; 2; 3Þ or the partial derivatives qn. m is the electronic mass, and e the

charge.

B. Nonrelativistic Electron

The phase-modulus formalism for nonrelativistic electrons was discussed at

length by Holland [324], as follows.
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The Lagrangean density L for the nonrelativistic electron is written as

L ¼ � �h2

2m
$c� � $c� eVc�c� ie�h

2cm
A � ðc�$c� $c�cÞ þ 1

2
i�hðc� _c� _c�cÞ

ð138Þ

Here dots over symbols designate time derivatives. If now the modulus a and

phase f are introduced through

c ¼ aeif ð139Þ

the Lagrangean density takes the form

L ¼ � �h2

2m
½ð$aÞ2 þ a2ð$fÞ2
 � ea2V þ e�h

cm
a2$f � A� �ha2 qf

qt
ð140Þ

The variational derivative of this with respect to f yields the continuity equation

dL
df
¼ 0 ! qr

qt
þ $ � ðrvÞ ¼ 0 ð141Þ

in which the charge density is defined as: r ¼ ea2 and the velocity is

v ¼ 1

m
�h$f� e

c
A

� �

Variationally deriving with respect to a leads to the Hamilton–Jacobi equation

dL
da
¼ 0 ! qS

qt
þ 1

2m
$S� e

c
A

� �2

þ eV ¼ �h2r2a

2ma
þ e2A2

2mc2
ð142Þ

in which the action is defined as: S ¼ �hf. The right-hand side of Eq. (142)

contains the ‘‘quantum correction’’ and the electromagnetic correction. These

results are elementary, but their derivation illustrates the advantages of using the

two variables, phase and modulus, to obtain equations of motion that are sub-

stantially different from the familiar Schrödinger equation and have straight-

forward physical interpretations [318]. The interpretation is, of course,

connected to the modulus being a physical observable (by Born’s interpretational

postulate) and to the phase having a similar though somewhat more problematic

status. (The ‘‘observability’’ of the phase has been discussed in the literature by

various sources, e.g., in [28] and, in connection with a recent development, in

[31,33]. Some of its aspects have been reviewed in Section II.)
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Another possibility to represent the quantum mechanical Lagrangian density

is using the logarithm of the amplitude l ¼ ln a; a ¼ el. In that particular

representation, the Lagrangean density takes the following symmetrical form

L ¼ e2l � �h2

2m
½ð$lÞ2 þ ð$fÞ2
 � �h

qf
qt
� eV þ e�h

cm
$f � A

� �
ð143Þ

C. Similarities Between Potential Fluid Dynamics
and Quantum Mechanics

In writing the Lagrangean density of quantum mechanics in the modulus-phase

representation, Eq. (140), one notices a striking similarity between this

Lagrangean density and that of potential fluid dynamics (fluid dynamics without

vorticity) as represented in the work of Seliger and Whitham [325]. We recall

briefly some parts of their work that are relevant, and then discuss the

connections with quantum mechanics. The connection between fluid dynamics

and quantum mechanics of an electron was already discussed by Madelung [326]

and in Holland’s book [324]. However, the discussion by Madelung refers to the

equations only and does not address the variational formalism which we discuss

here.

If a flow satisfies the condition of zero vorticity, that is, the velocity field v is

such that $� v ¼ 0, then there exists a function n such that v ¼ $n. In that case,

one can describe the fluid mechanical system with the following Lagrangean

density

L ¼ � qn
qt
� 1

2
ð$nÞ2 � eðrÞ � �

� �
r ð144Þ

in which r is the mass density, e is the specific internal energy and � is some

arbitrary function representing the potential of an external force acting on the

fluid. By taking the variational derivative with respect to n and r, one obtains the

following equations

qr
qt
þ $ � ðr$nÞ ¼ 0 ð145Þ

qn
qt
¼ � 1

2
ð$nÞ2 � h� � ð146Þ

in which h ¼ qðreÞ=qr is the specific enthalpy. The first of those equations is the

continuity equation, while the second is Bernoulli’s equation.

Going back to the quantum mechanical system described by Eq. (140), we

introduce the following variables n̂ ¼ �hf=m; r̂ ¼ ma2. In terms of these new
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variables the Lagrangean density in Eq. (140) will take the form

L ¼ � qn̂
qt
� 1

2
ð$n̂Þ2 � �h2

2m2

ð$
ffiffiffî
r

p
Þ2

r̂
� e

m
V

" #
r̂ ð147Þ

in which we assumed that no magnetic fields are present and thus A ¼ 0. When

compared with Eq. (144) the following correspondence is noted

n̂, n r̂, r
�h2

2m2

ð$
ffiffiffî
r

p
Þ2

r̂
, e

e

m
V , � ð148Þ

The quantum ‘‘internal energy’’ ð�h2=2m2Þð$
ffiffiffî
r

p
Þ2=r̂ depends also on the

derivative of the density, unlike in the fluid case, in which internal energy is a

function of the mass density only. However, in both cases the internal energy is a

positive quantity.

Unlike classical systems in which the Lagrangean is quadratic in the time

derivatives of the degrees of freedom, the Lagrangeans of both quantum and

fluid dynamics are linear in the time derivatives of the degrees of freedom.

D. Electrons in the Dirac Theory

(Henceforth, for simplicity, the units c ¼ 1, �h ¼ 1 will be used, except at the end,

when the results are discussed.) The Lagrangean density for the particle is in the

presence of external forces

L ¼ i

2
½�cgmðqm þ ieAmÞc� ðqm � ieAmÞ�cgmc
 � m�cc ð149Þ

Here, c is a four-component spinor, Am is a four potential, and the 4� 4 matrices

gm are given by

g0 ¼ I 0

0 �I

� �
gk ¼ 0 sk

�sk 0

� �
ðk ¼ 1; 2; 3Þ ð150Þ

where we have the 2� 2 matrices

I ¼
1 0

0 1

 !
s1 ¼

0 1

1 0

 !

s2 ¼
0 �i

i 0

 !
s3 ¼

1 0

0 �1

 !
ð151Þ
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By following [323], we substitute in the Lagrangean density, Eq. (149), from the

Dirac equations [322], namely, from

c ¼ i

m
gnðqn þ ieAnÞc �c ¼ � i

m
ðqn � ieAnÞ�cgn ð152Þ

and obtain

L ¼ 1

m
ðqn � ieAnÞ�cgngmðqm þ ieAmÞc� m�cc ð153Þ

We thus obtain a Lagrangean density, which is equivalent to Eq. (149) for all

solutions of the Dirac equation, and has the structure of the nonrelativistic

Lagrangian density, Eq. (140). Its variational derivations with respect to c and �c
lead to the solutions shown in Eq. (152), as well as to other solutions.

The Lagrangean density can be separated into two terms

L ¼ L0 þ L1 ð154Þ

according to whether the summation symbols n and m in (149) are equal or

different. The form of L0 is

L0 ¼ 1

m
ðqm � ieAmÞ�cðqm þ ieAmÞcþ m�cc ð155Þ

Contravariant Vm and covariant Vn four vectors are connected through the metric

gmn ¼ diag ð1;�1;�1;�1Þ by

Vm ¼ gmnVn ð156Þ

The second term in Eq. (154), L1 will be shown to be smaller than the first in

the near nonrelativistic limit.

Introducing the moduli ai and phases fi for the four spinor components ci

(i ¼ 1; 2; 3; 4), we note the following relations (in which no summations over i

are implied):

ci ¼ aie
ifi

�ci ¼ g0
iiaie

�ifi

�cici ¼ a2
i g

0
ii ð157Þ

The Lagrangean density eqaution (153) rewritten in terms of the phases and

moduli takes a form that is much simpler (and shorter), than that which one
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would obtain by substituting from Eq. (139) into Eq. (149). It is given by

L0 ¼ 1

m

X
i

g0
ii½qnaiq

nai þ a2
i ððqnfi þ eAnÞðqnfi þ eAnÞ � m2Þ
 ð158Þ

When one takes its variational derivative with respect to the phases fi, one

obtains the continuity equation in the form

dL0

dfi

¼ � dL1

dfi

ð159Þ

The right-hand side will be treated in a following section VI.E, where we shall

see that it is small in the nearly nonrelativistic limit and that it vanishes in the

absence of an electromagnetic field. The left-hand side can be evaluated to give

dL0

dfi

¼ � 2

m
qn½a2

i ðq
nfi þ eAnÞ
 � 2qnJn

i ðno summation over iÞ ð160Þ

The above defined currents are related to the conductivity current by the relation

Jn
ð0Þ ¼

X
i

g0
iiJ

n
i ð161Þ

Although the conservation of Jn
i separately is a stronger result than the result

obtained in [104], one should bear in mind that the present result is only

approximate.

The variational derivatives of L0 with respect to the moduli ai give the

following equations:

dL0

dai

¼ � 2

m
½qnqnai � aiððqnfi þ eAnÞðqnfi þ eAnÞ � m2Þ
 ð162Þ

The result of interest in the expressions shown in Eqs. (160) and (162) is that,

although one has obtained expressions that include corrections to the non-

relativistic case, given in Eqs. (141) and (142), still both the continuity equations

and the Hamilton–Jacobi equations involve each spinor component separately.

To the present approximation, there is no mixing between the components.

E. The Nearly Nonrelativistic Limit

In order to write the previously obtained equations in the nearly nonrelativistic

limit, we introduce phase differences si that remain finite in the limit c !1.

Then

fi ¼ g0
iið�mx0 þ siÞ q0fi ¼ g0

iið�mþ q0siÞ $fi ¼ g0
ii$si ð163Þ
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We reinstate the velocity of light c in this and in Section VI.F in order to

appreciate the order of magnitude of the various terms. When contributions from

L1 are neglected, the expression in Eq. (162) equated to zero gives the following

equations, in which the large ði ¼ 1; 2Þ and small ði ¼ 3; 4Þ components are

separated.

qtsi þ
1

2m
ð$si �

e

c
AÞ2 þ eA0 ¼

$2ai

2mai

þ e2

2mc2
A2 þ 1

2mc2

�
� q2

t ai

ai

þ ðqtsiÞ2

þ 2eA0qtsi þ e2A2
0 � e2A2

�
ði ¼ 1; 2Þ ð164Þ

qtsi þ
1

2m
ð$si �

ð�eÞ
c

AÞ2 þ ð�eÞA0 ¼
r2ai

2mai

þ e2

2mc2
A2 þ 1

2mc2

�
� q2

t ai

ai

þ ðqtsiÞ2 þ 2ð�eÞA0qtsi þ e2A2
0 � e2A2

�
ði ¼ 3; 4Þ ð165Þ

In the same manner, we obtain the following equations from Eq. (160)

qtri þ $ � ðriviÞ ¼
1

c2
qt ri

qtsi þ eA0

m

� �� �

ði ¼ 1; 2Þ ri ¼ ma2
i vi ¼

$si � e
c
A

m
ð166Þ

qtri þ $ � ðriviÞ ¼
1

c2
qt ri

qtsi þ ð�eÞA0

m

� �� �

ði ¼ 3; 4Þ ri ¼ ma2
i vi ¼

$si � ð�eÞ
c

A

m
ð167Þ

The terms before the square brackets give the nonrelativistic part of the

Hamilton–Jacobi equation and the continuity equation shown in Eqs. (142) and

(141), while the term with the square brackets contribute relativistic corrections.

All terms from L0 are of the nonmixing type between components. There are

further relativistic terms, to which we now turn.

F. The Lagrangean-Density Correction Term

As noted above, L1 in Eq. (154) arises from terms in which m 6¼ n. The

corresponding contribution to the four current was evaluated in [104,323] and

was shown to yield the polarization current. Our result is written in terms of the

magnetic field H and the electric field E, as well as the spinor four-vector c and

the vectorial 2� 2 sigma matrices given in Eq. (151).

L1 ¼ � e

mc
�cðH � rÞ I 0

0 I

� �
cþ ie

mc
�cðE � rÞ 0 I

I 0

� �
c ð168Þ
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These terms are analogous to those on p. 265 of [7]. It will be noted that the

symbol c has been reinstated as in Section VI.F, so as to facilitate the order of

magnitude estimation in the nearly nonrelativistic limit. We now proceed based

on Eq. (168) as it stands, since the transformation of Eq. (168) to modulus

and phase variables and functional derivation gives rather involved expressions

and will not be set out here.

To compare L1 with L0 we rewrite the latter in terms of the phase variables

introduced in Eq. (163)

L0 ¼ 2
X

i

g0
ii �

1

2m
½ð$aiÞ2 þ a2

i ð$siÞ2
 � ðg0
iieÞa2

i A0 � a2
i

qsi

qt

� �

þ 2e

mc

X
i

a2
i $si � Aþ O

1

c2

� �
ð169Þ

which contains terms independent of c as well as terms of the order Oð1=cÞ and

Oð1=c2Þ.
In Eq. (168), the first, magnetic-field term admixes different components of

the spinors both in the continuity equation and in the Hamilton–Jacobi equation.

However, with the z axis chosen as the direction of H, the magnetic-field term

does not contain phases and does not mix component amplitudes. Therefore,

there is no contribution from this term in the continuity equations and no

amplitude mixing in the Hamilton–Jacobi equations . The second, electric-field

term is nondiagonal between the large and small spinor components, which fact

reduces its magnitude by a further small factor of Oðparticle velocity=cÞ. This

term is therefore of the same small order Oð1=c2Þ, as those terms in the second

line in Eqs. (164) and (166) that refer to the upper components.

We conclude that in the presence of electromagnetic fields the components

remain unmixed, correct to the order Oð1=cÞ.

G. Topological Phase for Dirac Electrons

The topological (or Berry) phase [9,11,78] has been discussed in previous

sections. The physical picture for it is that when a periodic force, slowly

(adiabatically) varying in time, is applied to the system then, upon a full periodic

evolution, the phase of the wave function may have a part that is independent of

the amplitude of the force. This part exists in addition to that part of the phase

that depends on the amplitude of the force and that contributes to the usual,

‘‘dynamic’’ phase. We shall now discuss whether a relativistic electron can have

a Berry phase when this is absent in the framework of the Schrödinger equation,

and vice versa. (We restrict the present discussion to the nearly nonrelativistic

limit, when particle velocities are much smaller than c.)
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The following lemma is needed for our result. Consider a matrix Hamiltonian

h coupling two states, whose energy difference is 2m

h ¼ mþ E1 cos ðot þ aÞ E2 sin ðotÞ
E2 sin ðotÞ �m� E1cos ðot þ aÞ

� �
ð170Þ

The Hamiltonian contains two fields, periodically varying in time, whose

intensities E1 and E2 are nonzero. The parameter o is their angular frequency and

is (in appropriate energy units) assumed to be much smaller than the field

strengths. This ensures the validity of the adiabatic approximation [33]. The

parameter a is an arbitrary angle. It is assumed that initially, at t ¼ 0, only the

component with the positive eigenenergy is present. Then after a full revolution

the initially excited component acquires or does not acquire a Berry phase (i.e.,

returns to its initial value with a changed or unchanged sign) depending on

whether jE1j is greater or less than m (¼ half the energy difference).

Proof: When the time-dependent Schrödinger equation is solved under

adiabatic conditions, the upper, positive energy component has the coefficient:

the dynamic phase factor �C, where

C ¼ cos
1

2
arctan

E2 sin ðotÞ
mþ E1cos ðot þ aÞ

� �� �
ð171Þ

Tracing the arctan over a full revolution by the method described in Section

IV and noting the factor 1=2 in Eq. (171) establishes our result. (The case that

jE1j ¼ m needs more careful consideration, since it leads to a breakdown of the

adiabatic theorem. However, this case will be of no consequence for the results.)

We can now return to the Dirac equations, in which the time varying forces

enter through the four-potentials ðA0;AÞ. [The ‘‘two states’’ in Eq. (28) refer

now to a large and to a small (positive and negative energy) component in the

solution of the Dirac equation in the near nonrelativistic limit.] In the expres-

sions (164 and 165) obtained for the phases si and arising from the Lagrangean

L0, there is no coupling between different components, and therefore the small

relativistic correction terms will clearly not introduce or eliminate a Berry

phase. However, terms in this section supply the diagonal matrix elements in

Eq. (28). Turning now to the two terms in Eq. (168), the first, magnetic field

term again does not admix the large and small components, with the result that

for either of these components previous treatments based on the Schrödinger or

the Pauli equations [321,324] should suffice. Indeed, this term was already

discussed by Berry [9]. We thus need to consider only the second, electric-field

term that admixes the two types of components. These are the source of the off-

diagonal matrix elements in Eq. (28). However, we have just shown that in order

to introduce a new topological phase, one needs field strengths matching the
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electronic rest energies, namely electric fields of the order of 1014V=cm. (For

comparison, we note that the electric field that binds an electron in a hydrogen

atom is four orders of magnitudes smaller than this. Higher fields can also be

produced in the laboratory, but, in general, are not of the type that can be used to

guide the motion of a charged particle during a revolution.) As long as we

exclude from our considerations such enormous fields, we need not contemplate

relativistically induced topological phases. Possibly, there may be cases (e.g.,

many electron systems or magnetic field effects) that are not fully covered by

the model represented in Eq. (28). Still, the latter model should serve as an

indicator for relativistic effects on the topological phase.

H. What Have We Learned About Spinor Phases?

This part of our chapter has shown that the use of the two variables, moduli and

phases, leads in a direct way to the derivation of the continuity and Hamilton–

Jacobi equations for both scalar and spinor wave functions. For the latter case, we

show that the differential equations for each spinor component are (in the nearly

nonrelativistic limit) approximately decoupled. Because of this decoupling

(mutual independence) it appears that the reciprocal relations between phases

and moduli derived in Section III hold to a good approximation for each spinor

component separately, too. For velocities and electromagnetic field strengths that

are normally below the relativistic scale, the Berry phase obtained from the

Schrödinger equation (for scalar fields) will not be altered by consideration of the

Dirac equation.

VII. CONCLUSION

This chapter has treated a number of properties that arise from the presence of

degeneracy in the electronic part of the molecular wave function. The existence

of more than one electronic state in the superposition that describes the

molecular state demands attention to the phase relations between the different

electronic component amplitudes. Looked at from a different angle, the phase

relations are the consequence of the complex form of the molecular

wave functions, which is grounded in the time dependent Schrödinger equation.

Beside reviewing numerous theoretical and experimental works relating to

the phase properties of complex wave functions, the following general points

have received emphasis in this chapter: (1) Relative phases of components that

make up, by the superposition principle, the wave function are observable.

(2) The analytic behavior of the wave function in a complex parameter plane

is in several instances traceable to a physics-based ‘‘equation of restriction.’’

(3) Phases and moduli in the superposition are connected through reciprocal

integral relations. (4) Systematic treatment of zeros and singularities of

component amplitudes are feasible by a phase tracing method. (5) The molecular
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Yang–Mills field is conditioned by the finiteness of the basic Born–Oppenheimer

set. Detailed topics are noted in the introductory Section I.
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I. INTRODUCTION

Electronic transitions (excitations or deexcitations) can take place during the

course of a chemical reaction and have important consequences for its

dynamics. The motion of electrons and nuclei were first analyzed in a quantum

mechanical framework by Born and Oppenheimer [1], who separated the
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motion of the light electrons from that of the heavy nuclei and assumed that

the nuclei moved on a single adiabatic electronic state or potential energy

surface (PES). This Born–Oppenheimer (BO) approximation can break down

due to the presence of strong nonadiabatic couplings between degenerate

electronic states (due to conical or glancing intersections between those states)

or between the near-degenerate ones (due to avoided crossings). These

couplings allow for the motion of nuclei on coupled multiple adiabatic

electronic states, with the BO approximation replaced by the Born–Huang

expansion [2,3] in which an arbitrary number of electronic states can be

included.

These nonadiabatic couplings that give rise to electronic transitions can be

classified into two categories: (1) Radial couplings, which have been treated by

Zener [4], Landau [5], and others [6–11], arise due to translational, vibrational,

and angular motions of the atomic or molecular species involved in the chemical

process. These couplings allow for transitions to occur between electronic states

of the same symmetry. (2) Rotational couplings, which have been studied by

Kronig [12] and others [13–19], arise as a result of a transformation of

molecular coordinates from a space-fixed (SF) frame to a body-fixed (BF) one

due to the conservation of total electron plus nuclear angular momentum. These

couplings allow for transitions between electronic states of the same as well as

of different symmetries.

An important consequence of the presence of degenerate electronic states is

the geometric phase effect. For a polyatomic system involving N atoms, where

N � 3, any two adjacent adiabatic electronic states can be degenerate for a set

of nuclear geometries even if those electronic states have the same symmetry

and spin multiplicity [20]. These intersections, occur more frequently in such

polyatomic systems than was previously believed. The reason is that these

systems possess three or more internal nuclear motion degrees of freedom, and

only two independent relations between three electronic Hamiltonian matrix

elements (in a simple two electronic state picture) are sufficient for the existence

of doubly degenerate electronic energy eigenvalues. As a result, these relations

can easily be satisfied explaining thereby the frequent occurrence of

intersections. If the lowest order terms in the expansion of these elements in

displacements away from the intersection geometry are linear (as is usually the

case), these intersections are conical, the most common type of intersection.

Assuming the adiabatic electronic wave functions of the two intersecting states

to be real and as continuous as possible in nuclear coordinate space, if the

polyatomic system is transported around a closed loop in that space (a so-called

pseudorotation) that encircles one conical intersection geometry, these

electronic wave functions must change sign [20,21]. This change of sign

requires the adiabatic nuclear wave functions to undergo a compensatory

change of sign, known as the geometric phase (GP) effect [22–26], to keep the
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total wave function single valued. This sign change of the nuclear wave

function, which is a special case of Berry’s geometric phase [25], is also

referred to as the molecular Aharonov–Bohm effect [27] and has important

consequences for the structure and dynamics of the polyatomic system being

considered, as it greatly affects the nature of the solutions of the corresponding

nuclear motion Schrödinger equation [26].

The dynamics of chemical reactions on a single ground adiabatic electronic

PES has been studied extensively over the last few decades using accurate

quantum mechanical time-dependent and time-independent methods. These

studies have been successfully applied to triatomic [28–30] and tetraatomic

[31,32] reactions in the absence of conical intersections. In the last few years,

these studies have been extended to triatomic reactions on a single adiabatic

PES including the geometric phase effect [33–37] and to include one or more

excited adiabatic electronic PESs [38–42]. These latter studies have been made

possible by the availability of ab initio non-adiabatic couplings, the calculation

of which has been reviewed previously by Lengsfield and Yarkony [43]. The

singular nature of these couplings at the conical intersections of two electronic

states, introduces numerical difficulties in the solution of the corresponding

coupled adiabatic nuclear motion Schrödinger equations. These difficulties are

circumvented by transforming the electronically adiabatic representation into a

quasidiabatic one [44–55], in which couplings still exist but do not display the

singular behavior of the adiabatic representation.

In this chapter, we present a rigorous quantum formalism for studying the

dynamics of a polyatomic system (comprising of N atoms) on n electronically

adiabatic states, in the absence of spin–orbit interactions. These can be

introduced subsequently as perturbative corrections, if they are not too large. In

Section II, we present the adiabatic n-electronic-state coupled nuclear motion

Schrödinger equations and discuss the properties of first- and second-derivative

non-adiabatic couplings in this adiabatic representation. Section III deals with

the adiabatic-to-diabatic transformation that produces an optimal diabatic

representation, in which the nonremovable couplings are minimized. The

application of this transformation to the lowest two adiabatic electronic states of

H3 [55] is also presented. In Section IV, we introduce the full three-dimensional

(3D) quantum reactive scattering formalism for a triatomic system on two

adiabatic electronic PESs, capable of providing state-to-state differential and

integral cross-sections. This formalism is an extension of the time-independent

hyperspherical formalism of Kuppermann and co-workers [33] for a triatomic

reaction on a single adiabatic electronic PES, that has been used to perform

accurate quantum mechanical reactive scattering calculations (with and without

the GP effect included) on the Hþ H2 system and its isotopic variants (Dþ H2

and Hþ D2) [33–37] to obtain differential and integral cross-sections. The

cross-sections obtained with the GP effect included were in much better
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agreement with the experimental results [56–59] than those obtained with the

GP effect excluded. The two-electronic-state reactive scattering formalism and

the associated nuclear motion hyperspherical coordinate coupled equations

presented in Section IV should provide cross-sections that can be compared

with those obtained from a one-electronic-state formalism and yield the energy

range of validity of the one-electronic-state BO approximation.

II. n-ELECTRONIC STATE ADIABATIC REPRESENTATION

A. Born–Huang Expansion

Consider a polyatomic system consisting of Nnu nuclei (where Nnu � 3) and Nel

electrons. In the absence of any external fields, we can rigorously separate the

motion of the center of mass �G of the whole system as its potential energy

function V is independent of the position vector of �G (r�G) in a laboratory-fixed

frame with origin O. This separation introduces, besides r�G, the Jacobi vectors

R0l � ðR0l1
;R0l2

; . . . ;R0lNnu�1
Þ and r0 � ðr01; r02; . . . ; r0Nel

Þ for nuclei and electrons,

respectively [26]. These Jacobi vectors are simply related to the position vectors

of those nuclei and electrons in the laboratory-fixed frame. The parameter l
refers to an arbitrary clustering scheme for the Nnu nuclei [60,61] and helps

specify different product arrangement channels during a chemical reaction.

We will omit the kinetic energy operator T̂�G of the center of mass �G, since no

external fields act on the system and consider only its internal kinetic energy

operator T̂ int given by [26]

T̂ int ¼ T̂ int
nu þ T̂el ð1Þ

where, T̂ int
nu and T̂el are, respectively, internal nuclear and electronic kinetic

energy operators in the Jacobi vectors mentioned above. If these Jacobi vectors

R0li
ði ¼ 1; 2; . . . ;Nnu � 1Þ and r0j ð j ¼ 1; 2; . . . ;NelÞ are transformed to their

mass-scaled counterparts [61] Rli
and rj, the kinetic energy operators have

relatively simple expressions given by

T̂ int
nu ¼ �

�h2

2m
r2

Rl
and T̂el ¼ �

�h2

2n
r2

r ð2Þ

where

r2
Rl
�
XNnu�1

i¼1

r2
Rli

and r2
r �

XNel

j¼1

r2
rj

ð3Þ

with the Laplacians on the left of these equivalence relations being independent

of the choice of the clustering scheme l. The transformation of Jacobi vectors to
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the mass-scaled ones is defined by

Rli
¼

mli

m

� �1=2

R0li
and rj ¼

nj

n

� �1=2

r0j ð4Þ

where

m ¼ 1

M

YNnu

i¼1

Mi

 !1=ðNnu�1Þ

and n ¼ mel
M

M þ Nelmel

� �1=Nel

ð5Þ

are the effective reduced masses of the nuclei and electrons, respectively, with

Mi being the mass of the ith nucleus. mli
and nj in Eq. (4) are the effective

masses [26] associated with the corresponding vectors R0li
and r0j, with

nj ¼
½M þ ð j� 1Þmel�mel

M þ jmel

ð6Þ

In Eqs. (5) and (6), M is the total mass of the nuclei and mel is the mass of one

electron. By using Eq. (2), the system’s internal kinetic energy operator is given

in terms of the mass-scaled Jacobi vectors by

T̂ int ¼ � �h2

2m
r2

Rl
� �h2

2n
r2

r ð7Þ

If V is the total Coulombic potential between all the nuclei and electrons in

the system, then, in the absence of any spin-dependent terms, the electronic

Hamiltonian Ĥel is given by

Ĥelðr; qlÞ ¼ �
�h2

2n
r2

r þ Vðr; qlÞ ð8Þ

where, ql is a set of 3ðNnu � 2Þ internal nuclear coordinates obtained by

removing from the set Rl three Euler angles that orient a nuclear body-fixed

frame with respect to the laboratory-fixed (or space-fixed) frame. Due to the

small ratio of the electron mass to the total mass of the nuclei, n � mel. This

approximation is used in the ab initio electronic structure calculations that use

the electronic Hamiltonian given in Eq. (8) but with the n replaced by mel.

Figure 1 illustrates for a three-nuclei, four-electron system, the corresponding

nonmass-scaled Jacobi vectors. The nuclear center of mass G is distinct from

the overall system’s center of mass �G. This distinction of the centers of mass and

the difference between n and mel is responsible for the so-called mass

polarization effect in the electronic spectra of these systems that produces
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relative shifts in the energy levels of 10�4 or less. In actual scattering

calculations, these differences are normally ignored as they introduce relative

changes in the cross-sections of the order of 10�4 or less [26].

The electronically adiabatic wave functions cel;ad
i ðr; qlÞ are defined as

eigenfunctions of the electronic Hamiltonian Ĥel with electronically adiabatic

potential energies ead
i ðqlÞ as their eigenvalues:

Ĥelðr; qlÞcel;ad
i ðr; qlÞ ¼ ead

i ðqlÞcel;ad
i ðr; qlÞ ð9Þ

The electronic Hamiltonian and the corresponding eigenfunctions and

eigenvalues are independent of the orientation of the nuclear body-fixed frame

with respect to the space-fixed one, and hence depend only on ql. The index i

in Eq. (9) can span both discrete and continuous values. The cel;ad
i ðr; qlÞ form

a complete orthonormal basis set and satisfy the orthonormality relations

hcel;ad
i ðr; qlÞjcel;ad

i0 ðr; qlÞir

¼
di;i0 for i and i0 discrete

dði� i0Þ for i and i0 continuous

0 for i discrete and i0 continuous or vice versa

8><
>:

ð10Þ

Figure 1. Jacobi vectors for a three-nuclei, four-electron system. The nuclei are P1 , P2 , P3 , and

the electrons are e1, e2, e3, e4.
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The total orbital wave function for this system is given by an electronically

adiabatic n-state Born–Huang expansion [2,3] in terms of this electronic basis

set cel;ad
i ðr; qlÞ as

�Oðr;RlÞ ¼
X

i

Z
wad

i ðRlÞcel;ad
i ðr; qlÞ ð11Þ

where,
P

i

R
is a sum over the discrete and an integral over the continuous values

of i. The wad
i ðRlÞ, which are the coefficients in this expansion, are the adiabatic

nuclear motion wave functions. The number of electronic states used in the

Born–Huang expansion of Eq. (11) can, in most cases of interest, be restricted to

a small number n of discrete states, and Eq. (11) replaced by

�Oðr;RlÞ �
Xn

i¼1

wad
i ðRlÞcel;ad

i ðr; qlÞ ð12Þ

where n is a small number. This corresponds to restricting the motion of nuclei

to only those n electronic states. In particular, if those n states constitute a sub-

Hilbert space that interacts very weakly with higher states [62], this would be a

very good approximation. The orbital wave function �O satisfies the

Schrödinger equation

Ĥintðr;RlÞ�Oðr;RlÞ ¼ E�Oðr;RlÞ ð13Þ

where

Ĥintðr;RlÞ ¼ T̂ intðr;RlÞ þ Vðr; qlÞ ð14Þ

is the internal Hamiltonian of the system that excludes the motion of its center

of mass and any spin-dependent terms and E is the corresponding system’s total

energy.

B. Adiabatic Nuclear Motion Schrödinger Equation

Let us define vadðRlÞ as an n-dimensional nuclear motion column vector, whose

components are wad
1 ðRlÞ through wad

n ðRlÞ. The n-electronic-state nuclear motion

Schrödinger equation satisfied by vadðRlÞ can be obtained by inserting Eqs. (12)

and (14) into Eq. (13) and using Eqs. (7)–(10). The resulting Schrödinger

equation can be expressed in compact matrix form as [26]

� �h2

2m
fIr2

Rl
þ 2Wð1ÞadðRlÞ � $Rl þWð2ÞadðRlÞg þ feadðqlÞ � EIg

� �
vadðRlÞ

¼ 0 ð15Þ
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where I, Wð1Þad, Wð2Þad, and ead are n� n matrices and $Rl is the column vector

gradient operator in the 3ðNnu � 1Þ-dimensional space-fixed nuclear configura-

tion space. The parameter I is the identity matrix and eadðqlÞ is the diagonal

matrix whose diagonal elements are the n electronically adiabatic PESs

ead
i ðqlÞ ði ¼ 1; . . . ; nÞ being considered. All matrices appearing in this

n-electronic state nuclear motion Schrödinger equation (15) are n-dimensional

diagonal except for Wð1Þad and Wð2Þad, which are, respectively, the first- and

second-derivative [26,43,63–68] nonadiabatic coupling matrices discussed

below. These coupling matrices allow the nuclei to sample more than one

adiabatic electronic state during a chemical reaction, and hence alter its

dynamics in an electronically nonadiabatic fashion. It should be stressed that the

effect of the geometric phase on Eqs. (15) must be added by either appropriate

boundary conditions [26,33] or the introduction of an appropriate vector

potential [23,26,69].

C. First-Derivative Coupling Matrix

The matrix Wð1ÞadðRlÞ in Eq. (15) is an n� n adiabatic first-derivative coupling

matrix whose elements are defined by

w
ð1Þad
i; j ðRlÞ ¼ hcel;ad

i ðr; qlÞj$Rlc
el;ad
j ðr; qlÞir i; j ¼ 1; . . . ; n ð16Þ

These coupling elements are 3ðNnu � 1Þ-dimensional vectors. If the Cartesian

components of Rl in 3ðNnu � 1Þ space-fixed nuclear congifuration space are

Xl1;Xl2; . . . ;Xl3ðNnu�1Þ, the corresponding Cartesian components of w
ð1Þad
i; j ðRlÞ

are

w
ð1Þad
i; j ðRlÞ

h i
l
¼
�
cel;ad

i ðr; qlÞ
���� q
qXll

cel;ad
i ðr; qlÞ

�
r

l ¼ 1; 2; . . . ; 3ðNnu � 1Þ

ð17Þ

The matrix Wð1Þad is in general skew-Hermitian due to Eq. (10), and hence its

diagonal elements w
ð1Þad
i;i ðRlÞ are pure imaginary quantities. If we require that

the cel;ad
i be real, then the matrix Wð1Þad becomes real and skew-symmetric with

the diagonal elements equal to zero and the off-diagonal elements satisfying the

relation

w
ð1Þad
i; j ðRlÞ ¼ �w

ð1Þad
j;i ðRlÞ i 6¼ j ð18Þ

As with any vector, the above nonzero coupling vectors ðwð1Þad
i; j ðRlÞ; i 6¼ jÞ can

be decomposed, due to an extension beyond three dimensions [26] of the
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Helmholtz theorem [70], into a longitudinal part w
ð1Þad
i; j;lonðRlÞ and a transverse

one w
ð1Þad
i; j;traðRlÞ according to

w
ð1Þad
i; j ðRlÞ ¼ w

ð1Þad
i; j;lonðRlÞ þ w

ð1Þad
i; j;traðRlÞ ð19Þ

where, by definition, the curl of w
ð1Þad
i; j;lonðRlÞ and the divergence of w

ð1Þad
i; j;traðRlÞ

vanish

curl w
ð1Þad
i; j;lonðRlÞ ¼ 0 ð20Þ

$Rl � w
ð1Þad
i; j;traðRlÞ ¼ 0 ð21Þ

The curl in Eq. (20) is the skew-symmetric tensor of rank 2, whose k, l element

is given by [26,71]

curl w
ð1Þad
i; j;lonðRlÞ

h i
k;l
¼ q

qXll

w
ð1Þad
i; j;lonðRlÞ

h i
k
� q
qXlk

w
ð1Þad
i; j;lonðRlÞ

h i
l

k; l ¼ 1; 2; . . . ; 3ðNnu � 1Þ
ð22Þ

As a result of Eq. (20), a scalar potential ai; jðRlÞ exists for which

w
ð1Þad
i; j;lonðRlÞ ¼ $Rlai; jðRlÞ ð23Þ

At conical intersection geometries, w
ð1Þad
i; j;lonðRlÞ is singular because of the ql-

dependence of cel;ad
i ðr; qlÞ and cel;ad

j ðr; qlÞ in the vicinity of those geometries

and therefore so is the Wð1ÞadðRlÞ � $Rl term in Eq. (15). As a result of Eq. (19),

Wð1Þad can be written as a sum of the corresponding skew-symmetric matrices

W
ð1Þad
lon and W

ð1Þad
tra , that is,

Wð1ÞadðRlÞ ¼W
ð1Þad
lon ðRlÞ þW

ð1Þad
tra ðRlÞ ð24Þ

This decomposition into a longitudinal and a transverse part, as will be

discussed in Section III, plays a crucial role in going to a diabatic representation

in which this singularity is completely removed. In addition, the presence of the

first derivative gradient term Wð1ÞadðRlÞ � $Rlw
adðRlÞ in Eq. (15), even for a

nonsingular Wð1ÞadðRlÞ (e.g., for avoided intersections), introduces numerical

inefficiencies in the solution of that equation.

D. Second-Derivative Coupling Matrix

The matrix Wð2ÞadðRlÞ in Eq. (15) is an n� n adiabatic second-derivative

coupling matrix whose elements are defined by

w
ð2Þad
i; j ðRlÞ ¼ hcel;ad

i ðr; qlÞjr2
Rl
cel;ad

j ðr; qlÞir i; j ¼ 1; . . . ; n ð25Þ
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These coupling matrix elements are scalars due to the presence of the scalar

Laplacian r2
Rl

in Eq. (25). These elements are, in general, complex but if we

require the cel;ad
i to be real they become real. The matrix Wð2ÞadðRlÞ, unlike its

first-derivative counterpart, is neither skew-Hermitian nor skew-symmetric.

The w
ð2Þad
i; j ðRlÞ are also singular at conical intersection geometries. The

decomposition of the first-derivative coupling vector, discussed in Section II.C,

also facilitates the removal of this singularity from the second-derivative

couplings. Being scalars, the second-derivative couplings can be easily included

in the scattering calculations without any additional computational effort. It is

interesting to note that in a one-electronic-state BO approximation, the first-

derivative coupling element w
ð1Þad
1;1 ðRlÞ is rigorously zero (assuming real

adiabatic electronic wave functions), but w
ð2Þad
1;1 ðRlÞ is not and might be

important to predict sensitive quantum phenomena like resonances that can be

experimentally verified.

III. ADIABATIC-TO-DIABATIC TRANSFORMATION

A. Electronically Diabatic Representation

As mentioned at the end of Section II.C, the presence of the Wð1ÞadðRlÞ �
$Rl wadðRlÞ term in the n-adiabatic-electronic-state Schrödinger equation (15)

introduces numerical inefficiencies in its solution, even if none of the elements

of the Wð1ÞadðRlÞ matrix is singular.

This makes it desirable to define other representations in addition to the

electronically adiabatic one [Eqs. (9)–(12)], in which the adiabatic electronic

wave function basis set used in the Born–Huang expansion (12) is replaced by

another basis set of functions of the electronic coordinates. Such a different

electronic basis set can be chosen so as to minimize the above mentioned

gradient term. This term can initially be neglected in the solution of the

n-electronic-state nuclear motion Schrödinger equation and reintroduced later

using perturbative or other methods, if desired. This new basis set of electronic

wave functions can also be made to depend parametrically, like their adiabatic

counterparts, on the internal nuclear coordinates ql that were defined after

Eq. (8). This new electronic basis set is henceforth referred to as ‘‘diabatic’’

and, as is obvious, leads to an electronically diabatic representation that is not

unique unlike the adiabatic one, which is unique by definition.

Let cel;d
n ðr; qlÞ refer to that alternate basis set. Assuming that it is complete

in r and orthonormal in a manner similar to Eq. (10), we can use it to expand the

total orbital wave function of Eq. (11) in the diabatic version of Born–Huang

expansion as

�Oðr;RlÞ ¼
ZX
i

wd
i ðRlÞcel;d

i ðr; qlÞ ð26Þ
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where, the cel;d
i ðr; qlÞ form a complete orthonormal basis set in the electronic

coordinates and the expansion coeffecients wd
i ðRlÞ are the diabatic nuclear wave

functions.

As in Eq. (12), we also usually replace Eq. (26) by a truncated n-term version

�Oðr;RlÞ �
Xn

i¼1

wd
i ðRlÞcel;d

i ðr; qlÞ ð27Þ

In the light of Eqs. (12) and (27), the diabatic electronic wave function column

vector wel;dðr; qlÞ (with elements cel;d
i ðr; qlÞ; i ¼ 1; . . . ; n) is related to the

adiabatic one wel;adðr; qlÞ (with elements cel;ad
i ðr;qlÞ; i ¼ 1; . . . ; n) by an n-

dimensional unitary transformation

wel;dðr; qlÞ ¼ ~UðqlÞwel;adðr; qlÞ ð28Þ

where

UyðqlÞUðqlÞ ¼ I ð29Þ

UðqlÞ is referred to as an adiabatic-to-diabatic transformation (ADT) matrix. Its

mathematical structure is discussed in detail in Section III.C. If the electronic

wave functions in the adiabatic and diabatic representations are chosen to be

real, as is normally the case, UðqlÞ is orthogonal and therefore has nðn� 1Þ=2

independent elements (or degrees of freedom). This transformation matrix

UðqlÞ can be chosen so as to yield a diabatic electronic basis set with desired

properties, which can then be used to derive the diabatic nuclear motion

Schrödinger equation. By using Eqs. (27) and (28) and the orthonormality of the

diabatic and adiabatic electronic basis sets, we can relate the adiabatic and

diabatic nuclear wave functions through the same n-dimensional unitary

transformation matrix UðqlÞ according to

vdðRlÞ ¼ ~UðqlÞvadðRlÞ ð30Þ

In Eq. (30), vadðRlÞ and vdðRlÞ are the column vectors with elements wad
i ðRlÞ

and wd
i ðRlÞ, respectively, where i ¼ 1; . . . ; n.

B. Diabatic Nuclear Motion Schrödinger Equation

We will assume for the moment that we know the ADT matrix of Eqs. (28) and

(30) UðqlÞ, and hence have a completely determined electronically diabatic

basis set wel;dðr; qlÞ. By replacing Eq. (27) into Eq. (13) and using Eqs. (7) and

(8) along with the orthonormality property of wel;dðr; qlÞ, we obtain for vdðRlÞ
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the n-electronic-state diabatic nuclear motion Schrödinger equation

� �h2

2m
fIr2

Rl
þ 2Wð1ÞdðRlÞ � $Rl þWð2ÞdðRlÞg þ fedðqlÞ � EIg

� �
vdðRlÞ

¼ 0 ð31Þ

which is the diabatic counterpart of Eq. (15). The parameter edðqlÞ is an n� n

diabatic electronic energy matrix that in general is nondiagonal (unlike its

adiabatic counterpart) and has elements defined by

ed
i; jðqlÞ ¼ hcel;d

i ðr; qlÞjĤelðr; qlÞjcel;d
j ðr; qlÞir i; j ¼ 1; . . . ; n ð32Þ

Wð1ÞdðRlÞ is an n� n diabatic first-derivative coupling matrix with elements

defined using the diabatic electronic basis set as

w
ð1Þd
i; j ðRlÞ ¼ hcel;d

i ðr; qlÞj$Rlc
el;d
j ðr; qlÞir i; j ¼ 1; . . . ; n ð33Þ

Requiring cel;d
i ðr; qlÞ to be real, the matrix Wð1ÞdðRlÞ becomes real and skew-

symmetric ( just like its adiabatic counterpart) with diagonal elements equal to

zero. Similarly, Wð2ÞdðRlÞ is an n� n diabatic second-derivative coupling

matrix with elements defined by

w
ð2Þd
i; j ðRlÞ ¼ hcel;d

i ðr; qlÞjr2
Rl
cel;d

j ðr; qlÞir i; j ¼ 1; . . . ; n ð34Þ

An equivalent form of Eq. (31) can be obtained by inserting Eq. (30) into

Eq. (15). Comparison of the result with Eq. (31) furnishes the following

relations between the adiabatic and diabatic coupling matrices

Wð1ÞdðRlÞ ¼ ~UðqlÞ½$RlUðqlÞ þWð1ÞadðRlÞUðqlÞ� ð35Þ
Wð2ÞdðRlÞ ¼ ~UðqlÞ½r2

Rl
UðqlÞ þ 2Wð1ÞadðRlÞ � $RlUðqlÞ

þWð2ÞadðRlÞUðqlÞ� ð36Þ

It also furnishes the following relation between the diagonal adiabatic energy

matrix and the nondiagonal diabatic energy one

edðqlÞ ¼ ~UðqlÞeadðqlÞUðqlÞ ð37Þ

It needs mentioning that the diabatic Schrödinger equation (31) also contains

a gradient term Wð1ÞdðRlÞ � $RlwðRlÞ like its adiabatic counterpart [Eq. (15)].
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The presence of this term can also introduce numerical inefficiency problems in

the solution of Eq. (31). Since the ADT matrix UðqlÞ is arbitrary, it can be

chosen to make Eq. (31) have desirable properties that Eq. (15) does not

possess. The parameter UðqlÞ can, for example, be chosen so as to auto-

matically minimize Wð1ÞdðRlÞ relative to Wð1ÞadðRlÞ everywhere in internal

nuclear configuration space and incorporate the effect of the geometric phase.

Next, we will consider the structure of this ADT matrix for an n-electronic-state

problem and a general evaluation scheme that minimizes the magnitude of

Wð1ÞdðRlÞ.

C. Diabatization Matrix

In the n-electronic-state adiabatic representation involving real electronic wave

functions, the skew-symmetric first-derivative coupling vector matrix

Wð1ÞadðRlÞ has nðn� 1Þ=2 independent nonzero coupling vector elements

w
ð1Þad
i; j ðRlÞ; ði 6¼ jÞ. The ones having the largest magnitudes are those

that couple adjacent adiabatic PESs, and therefore the dominant w
ð1Þad
i; j ðRlÞ

are those for which j ¼ i� 1, that is, lying along the two off-diagonal lines

adjacent to the main diagonal of zeros. Each one of the w
ð1Þad
i; j ðRlÞ elements is

associated with a scalar potential ai; jðRlÞ through their longitudinal component

[see Eqs. (19) and (23)]. A convenient and general way of parametrizing the

n� n orthogonal ADT matrix UðqlÞ of Eqs. (28) and (30) is as follows. Since

the coupling vector element w
ð1Þad
i; j ðRlÞ couples the electronic states i and j, let

us define an n� n orthogonal i; j-diabatization matrix [ui; jðqlÞ, with j > i]

whose row k and column l element (k; l ¼1; 2; . . . ; n) is designated by

u
k;l
i; jðqlÞ and is defined in terms of a set of diabatization angles bi; jðqlÞ by the

relations

u
k;l
i; jðqlÞ ¼ cosbi; jðqlÞ for k ¼ i and l ¼ i

¼ cosbi; jðqlÞ for k ¼ j and l ¼ j

¼ �sinbi; jðqlÞ for k ¼ i and l ¼ j

¼ sinbi; jðqlÞ for k ¼ j and l ¼ i

¼ 1 for k ¼ l 6¼ i or j

¼ 0 for the remaining k and l

ð38Þ

This choice of elements for the ui; jðqlÞ matrix will diabatize the adiabatic

electronic states i and j while leaving the remaining states unaltered.

As an example, in a four-electronic-state problem (n ¼ 4) consider the

electronic states i ¼ 2 and j ¼ 4 along with the first-derivative coupling vector

element w
ð1Þad
2;4 ðRlÞ that couples those two states. The ADT matrix u2;4ðqlÞ can
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then be expressed in terms of the corresponding diabatization angle b2;4ðqlÞ as

u2;4ðqlÞ ¼

1 0 0 0

0 cosb2;4ðqlÞ 0 �sinb2;4ðqlÞ
0 0 1 0

0 sinb2;4ðqlÞ 0 cosb2;4ðqlÞ

0
BB@

1
CCA ð39Þ

This diabatization matrix only mixes the adiabatic states 2 and 4 leaving the

states 1 and 3 unchanged.

In the n-electronic-state case, nðn� 1Þ=2 such matrices ui; jðqlÞ ðj > i with

i ¼ 1; 2; . . . ; n� 1 and j ¼ 2; . . . ; nÞ can be defined using Eq. (38). The full

ADT matrix UðqlÞ is then defined as a product of these nðn� 1Þ=2 matrices

ui; jðqlÞ ð j > iÞ as

UðqlÞ ¼
Yn�1

i¼1

Yn

j¼iþ1

ui; jðqlÞ ð40Þ

which is the n-electronic-state version of the expression that has appeared

earlier [72,73] for three electronic states. This UðqlÞ is orthogonal, as it is the

product of orthogonal matrices. The matrices ui; jðqlÞ in Eq. (40) can be

multiplied in any order without loss of generality. A different multiplication

order leads to a different set of solutions for the diabatization angles bi; jðqlÞ.
However, since the matrix UðqlÞ is a solution of a set of Poisson-type equations

with fixed boundary conditions, as will be discussed next, it is uniquely

determined and therefore independent of this choice of the order of

multiplication, that is, all of these sets of bi; jðqlÞ give the same UðqlÞ [73].

Remembered, however, that these are purely formal considerations, since the

existence of solutions of Eq. (44) presented next, requires the set of adiabatic

electronic states to be complete; a truncated set no longer satisfies the conditions

of Eq. (43) for the existence of solutions of Eq. (44). These formal

considerations are nevertheless useful for the consideration of truncated

Born–Huang expansion which follows Eq. (46).

We want to choose the ADT matrix UðqlÞ that either makes the diabatic first-

derivative coupling vector matrix Wð1ÞdðRlÞ zero if possible or that minimizes

its magnitude in such a way that the gradient term Wð1ÞdðRlÞ � $Rlw
dðRlÞ in

Eq. (31) can be neglected. By rewriting the relation between Wð1ÞdðRlÞ and

Wð1ÞadðRlÞ of Eq. (35) as

Wð1ÞdðRlÞ ¼ ~UðqlÞ½$RlUðqlÞ þWð1ÞadðRlÞUðqlÞ� ð41Þ
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we see that all elements of the diabatic matrix Wð1ÞdðRlÞ will vanish if and only

if all elements of the matrix inside the square brackets in the right-hand side of

this equation are zero, that is,

$RlUðqlÞ þWð1ÞadðRlÞUðqlÞ ¼ 0 ð42Þ

The structure of Wð1ÞadðRlÞ discussed at the beginning of this section, will

reflect itself in some interrelations between the bi; jðqlÞ obtained by solving this

equation. More importantly, this equation has a solution if and only if the

elements of the matrix Wð1ÞadðRlÞ satisfy the following curl-condition

[26,47,74–76] for all values of Rl:

curl w
ð1Þad
i; j ðRlÞ�k;l ¼ �½w

ð1Þad
k ðRlÞ;w

ð1Þad
l ðRlÞ�i; j k; l ¼ 1; 2; . . . ; 3ðNnu � 1Þ

ð43Þ

In this equation, w
ð1Þad
p ðRlÞ (with p ¼ k; l) is the n� n matrix whose row i and

column j element is the p Cartesian component of the w
ð1Þad
i; j ðRlÞ vector, that is,

½wð1Þad
i; j ðRlÞ�p, and the square bracket on its right-hand side is the commutator of

the two matrices within. This condition is satisfied for an n� n matrix

Wð1ÞadðRlÞ when n samples the complete infinite set of adiabatic electronic

states. In that case, we can rewrite Eq. (42) using the unitarity property

[Eq. (29)] of UðqlÞ as

$RlUðqlÞ½ �~UðqlÞ ¼ �Wð1ÞadðRlÞ ð44Þ

This matrix equation can be expressed in terms of individual matrix elements on

both sides as

X
k

ð$Rl fi;k½bðqlÞ�Þfj;k½bðqlÞ� ¼ �w
ð1Þad
i; j ðRlÞ ð45Þ

where bðqlÞ � ðb1;2ðqlÞ; . . . ; b1;nðqlÞ; b2;3ðqlÞ; . . . ; b2;nðqlÞ; . . . ; bn�1;nðqlÞÞ is

a set of all unknown diabatization angles and fp;q½bðqlÞ� with p; q ¼ i; j; k are

matrix elements of the ADT matrix UðqlÞ, which are known trignometric

functions of the unknown bðqlÞ due to Eqs. (38) and (40). Equation (45) are a

set of coupled first-order partial differential equations in the unknown dia-

batization angles bi; jðqlÞ in terms of the known first-derivative coupling vector

elements w
ð1Þad
i; j ðRlÞ obtained from ab initio electronic structure calculations

[43]. This set of coupled differential equations can be solved in principle with

some appropriate choice of boundary conditions for the angles bi; jðqlÞ.
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The ADT matrix UðqlÞ obtained in this way makes the diabatic first-

derivative coupling matrix Wð1ÞdðRlÞ that appears in the diabatic Schrödinger

equation (31) rigorously zero. It also leads to a diabatic electronic basis set that

is independent of ql [76], which, in agreement with the present formal

considerations, can only be a correct basis set if it is complete, that is, infinite. It

can be proved using Eqs. (35), (36), and (42) that this choice of the ADT matrix

also makes the diabatic second-derivative coupling matrix Wð2ÞdðRlÞ appearing

in Eq. (31) equal to zero. As a result, when n samples the complete set of

adiabatic electronic states, the corresponding diabatic nuclear motion

Schrödinger equation (31) reduces to the simple form

� �h2

2m
Ir2

Rl
þ fedðqlÞ � EIg

� �
vdðRlÞ ¼ 0 ð46Þ

where the only term that couples the diabatic nuclear wave functions vdðRlÞ is

the diabatic energy matrix edðqlÞ.
The curl condition given by Eq. (43) is in general not satisfied by the n� n

matrix Wð1ÞadðRlÞ, if n does not span the full infinite basis set of adiabatic

electronic states and is truncated to include only a finite small number of these

states. This truncation is extremely convenient from a physical as well as

computational point of view. In this case, since Eq. (42) does not have a

solution, let us consider instead the equation obtained from it by replacing

Wð1ÞadðRlÞ by its longitudinal part

$RlUðqlÞ þW
ð1Þad
lon ðRlÞUðqlÞ ¼ 0 ð47Þ

This equation does have a solution, because in view of Eq. (20) the curl

condition of Eq. (43) is satisfied when Wð1ÞadðRlÞ is replaced by W
ð1Þad
lon ðRlÞ.

We can now rewrite Eq. (47) using the orthogonality of UðqlÞ as

$RlUðqlÞ½ �~UðqlÞ ¼ �W
ð1Þad
lon ðRlÞ ð48Þ

The quantity on the right-hand side of this equation is not completely specified

since the decomposition of Wð1ÞadðRlÞ into its longitudinal and transverse parts

given by Eq. (24) is not unique. By using that decomposition and the property of

the transverse part W
ð1Þad
tra ðRlÞ given by Eq. (21), we see that

$Rl �W
ð1Þad
lon ðRlÞ ¼ $Rl �Wð1ÞadðRlÞ ð49Þ

and since Wð1ÞadðRlÞ is assumed to have been previously calculated,

$Rl �W
ð1Þad
lon ðRlÞ is known. If we take the divergence of both sides of
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Eq. (48), we obtain [using Eq. (49)]

½r2
Rl

UðqlÞ�~UðqlÞ þ ½$RlUðqlÞ� � ½$Rl
~UðqlÞ� ¼ �$Rl �Wð1ÞadðRlÞ ð50Þ

By using the parametrization of UðqlÞ given by Eqs. (38) and (40) for a finite n,

this matrix equation can be expressed in terms of the matrix elements on both

sides asX
k

½ðr2
Rl

fi;k½bðqlÞ�Þ fj;k½bðqlÞ� þ ð$Rl fi;k½bðqlÞ�Þ � ð$Rl fj;k½bðqlÞ�Þ�

¼ �$Rl � w
ð1Þad
i; j ðRlÞ ð51Þ

where fp;q are the same as defined after Eq. (45). Equations (51) are a set of

coupled Poisson-type equations in the unknown angles bi; jðqlÞ. For n ¼ 2, this

becomes Eq. (68), as shown in Section III.D. The structure of this set of

equations is again dependent on the order of multiplication of matrices ui; jðqlÞ
in Eq. (40). Each choice of the order of multiplication will give a different set of

bi; jðqlÞ as before but the same ADT matrix UðqlÞ after they are solved using

the same set of boundary conditions.

By using the fact that for a finite number of adiabatic electronic states n, we

choose a UðqlÞ that satisfies Eq. (47) [rather than Eq. (42) that has no solution],

Eq. (35) now reduces to

Wð1ÞdðRlÞ ¼ ~UðqlÞW
ð1Þad
tra ðRlÞUðqlÞ ð52Þ

This can be used to rewrite the diabatic nuclear motion Schrödinger equation for

an incomplete set of n electronic states as

� �h2

2m
fIr2

Rl
þ 2~UðqlÞW

ð1Þad
tra ðRlÞUðqlÞ � $Rl þWð2ÞdðRlÞg

�

þ fedðqlÞ � EIg
�
vdðRlÞ ¼ 0 ð53Þ

In this equation, the gradient term ~UðqlÞW
ð1Þad
tra ðRlÞUðqlÞ � $Rlv

dðRlÞ ¼
Wð1ÞdðRlÞ � $Rlv

dðRlÞ still appears and, as mentioned before, introduces

numerical inefficiencies in its solution. Even though a truncated Born–Huang

expansion was used to obtain Eq. (53), W
ð1Þad
tra ðRlÞ, although no longer zero, has

no poles at conical intersection geometries [as opposed to the full Wð1ÞadðRlÞ
matrix].

The set of coupled Poisson equations (50) can, in principle, be solved with

any appropriate choice of boundary conditions for bi; jðqlÞ. There is one choice,
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however, for which the magnitude of W
ð1Þad
tra ðRlÞ is minimized. If at the

boundary surfaces Rb
l of the nuclear configuration space spanned by Rl (and

the corresponding subset of boundary surfaces qb
l in the internal configuration

space spanned by ql), one imposes the following mixed Dirichlet–Neumann

condition [based on Eq. (48)],

½$Rb
l
Uðqb

lÞ�~Uðqb
lÞ ¼ �Wð1ÞadðRb

lÞ ð54Þ

it minimizes the average magnitude of the vector elements of the transverse

coupling matrix W
ð1Þad
tra ðRlÞ over the entire internal nuclear configuration space

as shown for the n ¼ 2 case [55] and hence the magnitude of the gradient term

Wð1ÞdðRlÞ � $Rlv
dðRlÞ. To a first very good approximation, this term can be

neglected in the diabatic Schrödinger Eq. (53) resulting in a simpler equation

� �h2

2m
fIr2

Rl
þWð2ÞdðRlÞg þ fedðqlÞ � EIg

� �
vdðRlÞ ¼ 0 ð55Þ

In this diabatic Schrödinger equation, the only terms that couple the nuclear

wave functions wd
i ðRlÞ are the elements of the Wð2ÞdðRlÞ and edðqlÞ matrices.

The �ð�h2=2mÞWð2ÞdðRlÞ matrix does not have poles at conical intersection

geometries [as opposed to Wð2ÞadðRlÞ] and furthermore it only appears as an

additive term to the diabatic energy matrix edðqlÞ and does not increase the

computational effort for the solution of Eq. (55). Since the neglected gradient

term is expected to be small, it can be reintroduced as a first-order perturbation

afterward, if desired.

In this section, it was shown how an optimal ADT matrix for an n-electronic-

state problem can be obtained. In Section III.D, an application of the method

outlined above to a two-state problem for the H3 system is described.

D. Application to Two Electronic States

In the two-electronic-state case (with real electronic wave functions as before),

Eqs. (12) and (27) become

�Oðr;RlÞ ¼ wad
1 ðRlÞcel;ad

1 ðr; qlÞ þ wad
2 ðRlÞcel;ad

2 ðr; qlÞ ð56Þ
¼ wd

1ðRlÞcel;d
1 ðr; qlÞ þ wd

2ðRlÞcel;d
2 ðr; qlÞ ð57Þ

Equations (28) and (30) are unchanged, with wel;dðr; qlÞ, wel;adðr; qlÞ, vdðRlÞ
and vadðRlÞ now being two-dimensional (2D) column vectors, and Eq. (40)

having the much simpler form

U½bðqlÞ� ¼
cosbðqlÞ �sinbðqlÞ
sinbðqlÞ cosbðqlÞ

� �
ð58Þ

involving the single real diabatization or mixing angle bðqlÞ.
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Equations (31) and (32) are unchanged, with Wð1ÞdðRlÞ, Wð2ÞdðRlÞ, and

edðqlÞ now being 2� 2 matrices. The adiabatic-to-diabatic transformation, as

for the n-state case, eliminates any poles in both the first- and second-derivative

coupling matrices at conical intersection geometries but in this case Eq. (52)

yields

Wð1ÞdðRlÞ ¼W
ð1Þad
tra ðRlÞ ð59Þ

Elements of the matrix �ð�h2=2mÞWð2Þd are usually small in the vicinity of a

conical intersection and can be added to ed to give a corrected diabatic energy

matrix. As can be seen, whereas in Eq. (15) Wð1Þad contains both the singular

matrix W
ð1Þad
lon and the nonsingular one W

ð1Þad
tra , Eq. (31) contains only the latter.

Nevertheless, the residual first-derivative coupling term W
ð1Þad
tra � $Rl does not

vanish.

A ‘‘perfect’’ diabatic basis would be one for which the first-derivative

coupling Wð1ÞdðRlÞ in Eq. (31) vanishes [10]. From the above mentioned

considerations, we conclude, as is well known, that a ‘‘perfect’’ diabatic basis

cannot exist for a polyatomic system (except when the complete infinite set of

electronic adiabatic functions is included [26,47,74,76]), which means that

Wð1ÞadðRlÞ cannot be ‘‘transformed away’’ to zero. Consequently, the

longitudinal and transverse parts of the first-derivative coupling vector are

referred to as removable and nonremovable parts, respectively. As mentioned in

the introduction, a number of formulations of approximate or quasidiabatic (or

‘locally rigorous’) diabatic states [44,45,47–54] have been considered. Only

very recently [77–82] have there been attempts to use high quality ab initio

wave functions to evaluate the nonremovable part of the first-derivative

coupling vector. In one such attempt [81], a quasidiabatic basis was reported for

the triatomic HeH2 system by solving a 2D Poisson equation on the plane in 3D

configuration space passing through the conical intersection configuration of

smallest energy. It seems that no attempt has been made to get an optimal

diabatization over the entire configuration space even for triatomic systems

until now [55], aimed at facilitating accurate two-electronic-state scattering

dynamics calculations for such systems. Conical intersections being omnipre-

sent, such scattering calculations will permit a test of the validity of the one-

electronic-state BO approximation as a function of energy in the presence

of conical intersections, by comparing the results of these two kinds of

calculations.

The ADT matrix for the lowest two electronic states of H3 has recently been

obtained [55]. These states display a conical intersection at equilateral triangle

geometries, but the GP effect can be easily built into the treatment of the reactive

scattering equations. Since, for two electronic states, there is only one nonzero

first-derivative coupling vector, w
ð1Þad
1;2 ðRlÞ, we will refer to it in the rest of this
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section as wð1ÞadðRlÞ. For a triatomic system, this vector is six dimensional

(6D).

As discussed in Section II.A, the adiabatic electronic wave functions cel;ad
i

and cel;ad
j depend on the nuclear coordinates Rl only through the subset ql

(which in the triatomic case consists of a nuclear coordinate hyperradius r and a

set of two internal hyperangles nl), this permits one to relate the 6D vector

wð1ÞadðRlÞ to another one wð1ÞadðqlÞ that is 3D. For a triatomic system, let

aIl � ðaIl; bIl; cIlÞ be the Euler angles that rotate the space-fixed Cartesian

frame into the body-fixed principal axis of inertia frame Il, and let $Il
Rl

be the

6D gradient vector in this rotated frame. The relation between the space-fixed

$Rl and $Il
Rl

is given by

$Rl ¼ ~RðaIlÞ $Il
Rl

ð60Þ

where RðaIlÞ is a 6� 6 block-diagonal matrix whose two diagonal blocks are

both equal to the 3� 3 rotational matrix RðaIlÞ. The $Il
Rl

operator can be

written as [83]

$Il
Rl
¼ GIlðnlÞp̂IlðqlÞ þHIlðnlÞĴIlðaIlÞ ð61Þ

In this expression, GIl and HIl are both 6� 3 rectangular matrices whose

elements are known functions of the internal hyperangles nl. p̂Il is a 3� 1

column vector operator whose elements contain first derivatives with respect to

the three ql coordinates and ĴIl is the 3� 1 column vector operator whose

elements are the components ĴIl
x , ĴIl

y , and ĴIl
z of the system’s nuclear motion

angular momentum operator Ĵ in the Il frame. From these properties, it can be

shown that

wð1ÞadðRlÞ ¼ RðaIlÞGIlðnlÞwð1ÞadðqlÞ ð62Þ

and that

Wð1ÞadðRlÞ � $Rlv
adðRlÞ ¼ GIlðxlÞWð1ÞadðqlÞ � $Il

Rl
vadðRlÞ ð63Þ

where

wð1ÞadðqlÞ ¼ hcel;ad
1 ðr; qlÞjp̂IlðqlÞcel;ad

2 ðr; qlÞir ð64Þ

is a 3D column vector and Wð1ÞadðqlÞ is a 2� 2 skew-symmetric matrix whose

only nonzero element is the wð1ÞadðqlÞ vector. By using the symmetrized

hyperspherical coordinates defined in Section IV.A for a triatomic system, the
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elements of p̂Il are the spherical polar components of the 3D gradient

associated with the polar coordinates r; y;fl [84]:

p̂Il ¼

q
qr

1
r

q
qy

1
r sin y

q
qfl

0
BB@

1
CCA ð65Þ

The corresponding cartesian gradient $ql
is given by

$ql
¼

siny cosfl cosy cosfl �sinfl
siny sinfl cosy sinfl cosfl

cosy �siny 0

0
@

1
Ap̂Il ð66Þ

in a space whose polar coordinates are r; y;fl.

The wð1ÞadðqlÞ vector can also be decomposed into a longitudinal and a

transverse part

wð1ÞadðqlÞ ¼ $ql
aðqlÞ þwð1Þad

tra ðqlÞ ð67Þ

where, aðqlÞ is a scalar potential. It can be shown using Eq. (58) and the two-

electronic-state counterpart of Eq. (47) that bðqlÞ ¼ aðqlÞ. The diabatization

angle bðqlÞ can be obtained by taking the divergence of Eq. (67) and solving for

the resulting Poisson equation

r2
ql
bðqlÞ ¼ sðqlÞ ð68Þ

where

sðqlÞ ¼ rql
�wð1ÞadðqlÞ ð69Þ

is known because wð1ÞadðqlÞ has been accurately calculated and fitted over the

entire ql space of interest [84]. The nuclear–electronic rotational couplings

associated with the rotation of the H3 molecular plane relative to a space-fixed

frame vanish identically if the mass-scaled nuclear and electronic coordinates of

Eqs. (4) and (5) are used and the electronically adiabatic PESs are calculated

accordingly. This is not, however, done in standard electronic structure

calculations, as mentioned after Eq. (8), and as a result such couplings do not

vanish. We have, however, in our electronic wave function calculations [84],

found them to be at least two orders of magnitude smaller than the jwð1ÞadðqlÞj.
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This justifies the use of the simpler ql language over the Rl one. The solution of

the Poisson equation and the boundary conditions used are explained in detail

elsewhere [55]. Here, we will present some selected results.

The internal coordinates used in the calculation are the hyperradius r, and

the hyperangles y and fl, described in Section IV.A. The equation y ¼ 0�

corresponds to conical intersection geometries and y ¼ 90� to collinear ones.

For a fixed r and y, as fl is varied from 0 to 2p, the system executes a loop in

internal configuration space around the corresponding conical intersection

geometry. In Figure 2, the diabatization angle b is displayed for several values

of r as a function of y and fl. Use of this b and Eq. (67), furnishes the

transverse part wð1Þad
tra ðqlÞ over the entire dynamically important region of

internal configuration space. This is displayed in Figure 3. These sets of b and

wð1Þad
tra ðqlÞ were obtained using an optimal mixture of Dirichlet and Neumann

Figure 2. The diabatization angle bðr; y;flÞ, in degrees, for the H3 system at (a) r ¼ 2 b, (b)

r ¼ 4 b, (c) r ¼ 6 b, and (d) r ¼ 8 b. The equatorial view of b contours is also given at (e) r ¼ 2 b,

(f) r ¼ 4 b, (g) r ¼ 6 b, and (h) r ¼ 8 b.

304 aron kuppermann and ravinder abrol



conditions for the solution of the above-mentioned Poisson equation. Using pure

Dirichlet conditions instead gives a different transverse part, displayed in

Figure 4. Comparison with Figure 3 clearly shows that the optimal boundary

conditions significantly reduce the magnitude of the transverse part as compared

to all-Dirichlet condition. Comparison of the average magnitude of the

transverse vector over the entire internal configuration space for both the

optimal and the all-Dirichlet boundary conditions, shows that the optimal

condition average was �4.7 times smaller than the all-Dirichlet one. This

result indicates that use of the optimal mixed set of Neumann and Dirichlet

boundary conditions for solving the Poisson Eq. (68) does indeed significantly

reduce the average magnitude of the transverse part of the first-derivative

coupling vector.

Figure 2 (Continued)

quantum reaction dynamics for multiple electronic states 305



Figure 3. Transverse (nonremovable) part of the ab initio first-derivative coupling vector,

w
ð1Þad
tra ðr; y;flÞ as a function of fl for r ¼ 4, 6, and 8 b and (a) y ¼ 1� (near-conical intersection

geometries), (b) y ¼ 30�, (c) y ¼ 60�, and (d) y ¼ 90� (collinear geometries).
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Figure 4. Same as Figure 3 for transverse (nonremovable) part of the ab initio first-derivative

coupling vector w
ð1Þad
tra;6Dðr; y;flÞ, obtained using the all-Dirichlet boundary conditions.
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The vector wð1ÞadðqlÞ [or wð1Þad
1;2 ðqlÞ] can also provide a good first

approximation to the second-derivative coupling matrix Wð2ÞadðqlÞ, which in

a two-electronic-state approximation is given by

Wð2ÞadðqlÞ ¼
wð2Þad

1;1 ðqlÞ wð2Þad
1;2 ðqlÞ

wð2Þad
2;1 ðqlÞ wð2Þad

2;2 ðqlÞ

 !
ð70Þ

In the two-electronic-state Born–Huang expansion, the full-Hilbert space of

adiabatic electronic states is approximated by the lowest two states and furni-

shes for the corresponding electronic wave functions the approximate closure

relation

jcel;ad
1 ðr; qlÞihcel;ad

1 ðr; qlÞj þ jcel;ad
2 ðr; qlÞihcel;ad

2 ðr; qlÞj � 1 ð71Þ

By using this equation and the fact that for real electronic wave functions the

diagonal elements of Wð1ÞadðqlÞ vanish, it can be shown that

wð2Þad
1;1 ðqlÞ ¼ wð2Þad

2;2 ðqlÞ ¼ �w
ð1Þad
1;2 ðqlÞ �w

ð1Þad
1;2 ðqlÞ

wð2Þad
1;2 ðqlÞ ¼ wð2Þad

2;1 ðqlÞ ¼ 0
ð72Þ

For the H3 system, since wð1Þad
1;2 ðqlÞ is known over the entire ql space [84],

Eq. (72) can be used to obtain the two equal nonzero diagonal elements of the

Wð2ÞadðqlÞ matrix. Since this matrix appears with a multiplicative factor of

ð��h2=2mÞ in the adiabatic nuclear motion Schrödinger equation giving it the

units of energy, both ð��h2=2mÞ wð2Þad
1;1 ðqlÞ and ð��h2=2mÞ wð2Þad

2;2 ðqlÞ can be

labeled as eð2Þad. In Figure 5, this quantity is displayed in units of kilocalories

per mole (kcal/mol) for several values of r as a function of y and fl. It shows

the singular behavior of the diagonal elements of Wð2ÞadðqlÞ at conical

intersection geometries (y ¼ 0�). Being a repulsive correction to the adiabatic

energies, this singular behavior prevents any hopping of the nuclei from one

electronic state to another in the close vicinity of the conical intersection.

By using the diabatic version of the closure relation (71), and Eq. (59), the

elements of the diabatic second-derivative coupling matrix Wð2ÞdðqlÞ of Eq. (36)

can be expressed as

wð2Þd1;1 ðqlÞ ¼ wð2Þd2;2 ðqlÞ ¼ �w
ð1Þad
1;2;traðqlÞ �w

ð1Þad
1;2;traðqlÞ

wð2Þd1;2 ðqlÞ ¼ wð2Þd2;1 ðqlÞ ¼ 0
ð73Þ
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where, both ð��h2=2mÞ wð2Þd1;1 ðqlÞ and ð��h2=2mÞ wð2Þd2;2 ðqlÞ can be labeled as

eð2ÞdðqlÞ. The values of this (approximate) eð2ÞdðqlÞ calculated from this

equation are smaller than 0.08 kcal/mol over the entire nuclear configuration

space involved, and to a very good approximation can be neglected.

IV. TWO-ELECTRONIC-STATE QUANTUM REACTION DYNAMICS
FORMALISM FOR TRIATOMIC REACTIONS

In a two-lowest-electronic-state Born–Huang description for a chemical

reaction, the nuclei can move on both of two corresponding PESs during the

reaction, due to the electronically non-adiabatic couplings between those states.

A reactive scattering formalism for such a reaction involving a triatomic system

Figure 5. Second-derivative coupling term eð2ÞadðqlÞ defined at the end of Section III.D for

the H3 system at (a) r ¼ 2 b, (b) r ¼ 4 b, (c) r ¼ 6 b, and (d) r ¼ 8 b. The following contours

are displayed 0–0.1 kcal/mol every 0.01 kcal/mol, 0.1–1.0 kcal/mol every 0.1 kcal/mol and

1.0–10.0 kcal/mol every 0.5 kcal/mol.
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is presented below. This formalism is an extension of the time-independent

coupled-channel hyperspherical method [26,33–37] that has been used in the

past to study triatomic reactions on a single adiabatic electronic state.

A. Symmetrized Hyperspherical Coordinates

Consider a triatomic system with the three nuclei labeled Aa, Ab, and Ag. Let

the arrangement channel Al þ AnAk be called the l arrangement channel,

where lnk is a cyclic permutation of abg. Let R0l; r
0
l be the Jacobi vectors

associated with this arrangement channel, where r0l is the vector from An to Ak

and R0l the vector from the center of mass of AnAk to Al. Let Rl; rl be the

corresponding mass-scaled Jacobi coordinates defined by

Rl ¼
ml;nk
m

� �1=2

R0l and rl ¼
mnk
m

� �1=2

r0l ð74Þ

where mnk is the reduced mass of AnAk, ml;nk the reduced mass of the Al;AnAk

pair, and m the system’s overall reduced mass given by

m ¼ mambmg

ma þ mb þ mg

� �1=2

ml being the mass of atom Al (l ¼ a; b; g). We define a set of symmetrized

hyperspherical coordinates r;ol; gl [85,86] by

r ¼ R2
l þ r2

l

� �1=2 ð75Þ

and

Rl ¼ r cosðol=2Þ rl ¼ r sinðol=2Þ 0 � ol � p ð76Þ

where r is independent of the arrangement channel [60,61]. The corresponding

internal configuration space Cartesian coordinates are defined by

Xl ¼ r sinol cos gl
Y ¼ r sinol singl

Zl ¼ r cosol

ð77Þ

where gl is the angle between Rl and rl (or R0l and r0l) in the 0 to p range and

ol; gl are the polar angles of a point in this space. The alternate internal

configuration space symmetrized hyperspherical coordinates y;fl are defined

310 aron kuppermann and ravinder abrol



as the polar angles associated with the interchanged axes O�Xl ¼ OZl,

O�Yl ¼ OXl, and O�Zl ¼ OYl for which

�Xl ¼ Zl ¼ r siny cosfl

�Yl ¼ Xl ¼ r siny sinfl

�Z ¼ Y ¼ r cosy

ð78Þ

The coordinates r, y and fl are limited to the ranges

0 � r <1 0 � y � p=2 0 � fl < 2p ð79Þ

The relation between y;fl and ol; gl is [using Eqs. (77) and (78)]

siny cosfl ¼ cosol

siny sinfl ¼ sinol cosgl
cosy ¼ sinol singl

ð80Þ

Let GxIlyIzIl be a body-fixed frame Il, whose axes are the principal axes of

inertia of the three nuclei and whose Euler angles with respect to the space-fixed

frame Gxsfysfzsf are al; bl; cl with G being the center of mass of the three

nuclei. The senses of these axes are chosen to result in a 1:1 correspondence

between r; y;fl; al; bl; cl coordinates and the space-fixed Cartesian coordi-

nates of Rl and rl. In addition, the Il axes are labeled so as to order the

corresponding principal moments of inertia according to

Ilz � Ilx � Iy ð81Þ

Furthermore, let �l refer collectively to the five hyperangles ðy;fl; al; bl; clÞ,
ql to the three internal coordinates ðr; y;flÞ and Rl to all six hyperspherical

coordinates.

The coordinates r;�l are called the principal axes of inertia symmetrized

hyperspherical coordinates. The nuclear kinetic energy operator in these

coordinates is given by

T̂nuðRlÞ ¼ �
�h2

2m
r2

Rl
¼ T̂rðrÞ þ

�̂2ð�lÞ
2mr2

ð82Þ

where, T̂rðrÞ is the hyperradial kinetic energy operator

T̂rðrÞ ¼ �
�h2

2m
1

r5

q
qr

r5 q
qr

ð83Þ
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and �̂2ð�lÞ is the grand canonical angular momentum operator

�̂2ð�lÞ ¼ �̂2
oðy;flÞ þ

4ĴIl2

z

cos2y

þ 2

1þ siny
Ĵ2 � ĴIl2

z

2
þ

ĴIl2

þ þ ĴIl2

�
4

� ĴIl2

z

" #

þ 1

sin2 y
Ĵ2 � ĴIl2

z

2
�

ĴIl2

þ þ ĴIl2

�
4

" #

� 2�h
cosy
sin2 y

ðĴIl
þ � ĴIl

� Þ
q

qfl
ð84Þ

where

�̂2
oðy;flÞ ¼ �4�h2 1

sin2y
q
qy

sin2y
q
qy
þ 1

sin2y
q2

qf2
l

 !
ð85Þ

and

ĴIl
� ¼ ĴIl

x � iĴIl
y ð86Þ

ĴIl
x , ĴIl

y , and ĴIl
z are the components of the total orbital angular momentum Ĵ of

the nuclei in the Il frame. The Euler angles al; bl; cl appear only in the Ĵ2, ĴIl
z ,

and ĴIl
� angular momentum operators. Since the results of their operation on

Wigner rotation functions are known, we do not need their explicit expressions

in terms of the partial derivatives of those Euler angles.

B. Partial Wave Expansion

In the two-adiabatic-electronic-state Born–Huang description of the total orbital

wave function, we wish to solve the corresponding nuclear motion Schrödinger

equation in the diabatic representation

� �h2

2m
fIr2

Rl
þWð2ÞdðqlÞg þ fedðqlÞ � EIg

� �
vdðRlÞ ¼ 0 ð87Þ

for the diabatic orbital nuclear wave function column vector vdðRlÞ

vdðRlÞ ¼
wd

1ðRlÞ
wd

2ðRlÞ

 !
ð88Þ

In Eq. (87), the gradient term containing the transverse coupling has been

dropped because its inclusion in this formalism leads to numerical inefficiencies

312 aron kuppermann and ravinder abrol



in the very efficient logarithmic derivative propagator [87,88] used in solving

Eq. (103). In the process of obtaining the ADT matrix, the magnitude of the

transverse coupling vector is minimized over the entire internal nuclear

configuration space following the procedure described in Section III. This

makes dropping the gradient term a very good approximation. After the

diabatization, since we know the transverse coupling vector, the effect of

the gradient term on the scattering results obtained without it can be assessed

using perturbative or other methods. In Eq. (87), edðqlÞ is a 2� 2 diabatic

energy matrix

edðqlÞ ¼
ed

11ðqlÞ ed
12ðqlÞ

ed
12ðqlÞ ed

22ðqlÞ

� �
ð89Þ

and Wð2ÞdðqlÞ is a 2� 2 second-derivative diabatic coupling matrix

Wð2ÞdðqlÞ ¼
wd

1;1ðqlÞ wd
1;2ðqlÞ

wd
2;1ðqlÞ wd

2;2ðqlÞ

� �
ð90Þ

The Wð2Þd and w
ð2Þd
i; j ði; j ¼ 1; 2Þ now depend on ql only rather than on the full

Rl. The reason is as follows. The r2
Rl

appearing in the three body and two-

electronic-state version of Eq. (36) contains terms in r; y;fl as well as in the

aIl, the latter through the angular momentum operators ĴIl2

x , ĴIl2

y , ĴIl2

z , which

are the squares of the components of the total angular momentum vector Ĵ in the

principal axes of inertia frame that also appeared in Eq. (61). Since, as discussed

in Section II.A, cel;ad
i and therefore cel;d

i ði ¼ 1; 2Þ depend only on ql (rather on

the full Rl), the result of the application of those angular momentum operators

on these diabatic electronic wave functions is zero. Therefore, the only

contributions to r2
Rl
cel;d

i ðr; qlÞ come from the terms in r2
Rl

that contain ql
only, which is different from the first-derivative $Rl coupling elements for

which the ~RðaIlÞ factor in the right-hand side of Eq. (60) results in a

dependence of Wð1Þd on aIl when using Eq. (61).

Since the second-derivative coupling matrix Wð2Þd is only an additive term in

Eq. (87), we can merge it with the diabatic energy matrix and define a 2� 2

diabatic matrix

�edðqlÞ ¼ edðqlÞ �
�h2

2m
Wð2ÞdðqlÞ ð91Þ

By using Eq. (91), we can rewrite Eq. (87) as

� �h2

2m
Ir2

Rl
þ f�edðqlÞ � EIg

� �
vdðRlÞ ¼ 0 ð92Þ
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The two diabatic nuclear wave functions wd
1 and wd

2 can be expressed as linear

combinations of auxiliary nuclear wave functions wd;JM	

1 and wd;JM	


2 , respec-

tively (the linear combinations referred to as partial wave expansions and the

individual wd;JM	

1 and wd;JM	


2 referred to as partial waves), such that if we

define another nuclear wave function column vector

vd;JM	
ðRlÞ ¼
wd;JM	


1 ðRlÞ
wd;JM	


2 ðRlÞ

 !
ð93Þ

then vd;JM	
 is a simultaneous eigenfunction of the diabatic matrix Ĥnu (given

by the expression inside the square brackets in the left-hand side of Eq. (87)

with the EI term omitted), of the square of the total nuclear orbital angular

momentum Ĵ, of its space-fixed z-component Ĵz and of the inversion operator Î

of the nuclei through their center of mass G according to the expressions

Ĥnuvd;JM	
 ¼ Evd;JM	


Ĵ2vd;JM	
 ¼ JðJ þ 1Þ�h2vd;JM	


Ĵzv
d;JM	
 ¼ M�hvd;JM	


Îvd;JM	
 ¼ ð�1Þ	vd;JM	


ð94Þ

In these equations, J and M are quantum numbers associated with the angular

momentum operators Ĵ2 and Ĵz, respectively. The number 	 ¼ 0, 1 is a parity

quantum number that specifies the symmetry or antisymmetry of the vd;JM	


column vector with respect to the inversion of the nuclei through G. Note that

the same parity quantum number 	 appears for wd;JM	

1 and wd;JM	


2 . Also, the

same irreducible representation symbol 
 in these two components of vd

appears, which does not mean that these diabatic nuclear wave functions

transform according to the irreducible representation 
. Its meaning instead is

as follows. The electronuclear Hamiltonian of the system is invariant under the

group of permutations of identical AlAnAk atoms. For A3 it is the P3 group, for

A2B it is the P2 group and for three distinct atoms ABC it is the trivial identity

group. As a result, the �Oðr;RlÞ that appears in Eq. (56) must transform

according to an irreducible representation 
 of the corresponding permutation

group. The superscript 
 signifies that the transformation properties of vd;JM	


are such that when taken together with the transformation properties of

wel;dðr; qlÞ, they make �Oðr;RlÞ belong to 
. The separate factors wd;JM	

i and

cel;d
i ðr; qlÞ do not individually belong to 
 but that their product does. In

addition, it is important to stress that these diabatic vd;JM	
 are single valued,

that is, are unchanged under a pseudorotation [26]. This behavior is the opposite
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to that of the adiabatic vad;JM	
, which must change sign under such

pseudorotations, due to the geometric-phase effect.

Let us now expand the two nuclear motion partial waves wd;JM	

1 and wd;JM	


2

according to the following vector equation:

w
d;JM	
;n0l�

0
l

1 ðr;�lÞ

w
d;JM	
;n0l�

0
l

2 ðr;�lÞ

 !

¼ r�5=2
X
�l

DJ	
M�l
ð�ð1Þl Þ

P
n1l

b
d;J	
n0l�

0
l

1;n1l
;�l
ðr; �rÞ�d;	


1;n1l
;�l
ð�ð2Þl ; �rÞP

n2l
b

d;J	
n0l�
0
l

2;n2l ;�l
ðr; �rÞ�d;	


2;n2l ;�l
ð�ð2Þl ; �rÞ

0
@

1
A ð95Þ

where, �
ð1Þ
l refers to the set of three Euler angles aIl, �

ð2Þ
l refers to the set of

two hyperangles y, fl and �l � 0 is the absolute magnitude of the quantum

number for the projection of the total angular momentum onto the body-fixed

GzIl axis. Furthermore, the DJ	
M�l
ð�ð1Þl Þ are the parity-symmetrized Wigner

rotation functions defined as [33]

DJ	
M�l
ð�ð1Þl Þ ¼

2J þ 1

16p2½1þ ð�1ÞJþ	d�l;0�

( )1=2

� DJ
M�l
ð�ð1Þl Þ þ ð�1ÞJþ	þ�lDJ

M;��l
ð�ð1Þl Þ

h i
ð96Þ

where DJ
M�l
ð�ð1Þl Þ is a Wigner rotation function of the Euler angles �

ð1Þ
l [89].

The symmetrized Wigner functions have been orthonormalized according toð
DJ0	0

M0�0l
DJ	

M�l
dt ¼ d

J0	0M0�0l
J	M�l

ð97Þ

where dt is the volume element for the Euler angles.

In Eq. (95), �d;	

1;n1l ;�l

ð�ð2Þl ; �rÞ and �d;	

2;n2l ;�l

ð�ð2Þl ; �rÞ are the diabatic 2D (in

y;fl) local hyperspherical surface functions (LHSFs) that depend parame-

trically on �r and are defined as the eigenfunctions of a diabatic reference

hamiltonian ĥ�l
d . This Hamiltonian can be chosen to be block diagonal, that is,

ĥ�l
d ðy;fl; �rÞ ¼

1

2m�r2
�̂2

oðy;flÞ þ
4�2

l�h
2

cos2y

� �
1 0

0 1

� �

þ
�ed

11ðy;fl; �rÞ 0

0 �ed
22ðy;fl; �rÞ

 !
ð98Þ
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or have the off-diagonal diabatic couplings built in, that is,

ĥ�l
d ðy;fl; �rÞ ¼

1

2m�r2
�̂2

oðy;flÞ þ
4�2

l�h
2

cos2 y

� �
1 0

0 1

� �

þ
�ed

11ðy;fl; �rÞ �ed
12ðy;fl; �rÞ

�ed
21ðy;fl; �rÞ �ed

22ðy;fl; �rÞ

 !
ð99Þ

In the former case, �d;	

1;n1l

;�l
ð�ð2Þl ; �rÞ and �d;	


2;n2l
;�l
ð�ð2Þl ; �rÞ are solutions of

uncoupled second-order partial differential equations, whereas in the latter case

they are solutions of coupled differential equations and therefore their

calculation requires a larger computational effort than to obtain the former.

Since, however, the reference Hamiltonian ĥ�l
d is independent of the total

energy E of the system, the LHSFs need to be evaluated only once whereas the

resulting scattering equations given by Eq. (101) must be solved for many

values of E. As the off-diagonal diabatic couplings are built into Eq. (99), a

smaller number of the corresponding LHSFs will be needed for convergence of

the solutions of the scattering equations, as opposed to the ones resulting from

Eq. (98), which do not have this off-diagonal coupling built in. Given the fact

that the computational effort for solving those scattering equations scales with

the cube of the number of LHSFs used, it is desirable to use LHSFs obtained

from Eq. (99) rather than Eq. (98).

With either of these diabatic reference Hamiltonians, the LHSFs satisfy the

eigenvalue equation

ĥ�l
d ðy;fl; �rÞ

�d;	

1;n1l ;�l

ðy;fl; �rÞ

�d;	

2;n2l ;�l

ðy;fl; �rÞ

0
@

1
A ¼ Ed;	


1;n1l ;�l
ð�rÞ�d;	


1;n1l ;�l
ðy;fl; �rÞ

Ed;	

2;n2l ;�l

ð�rÞ�d;	

2;n2l ;�l

ðy;fl; �rÞ

0
@

1
A
ð100Þ

The diabatic LHSFs are not allowed to diverge anywhere on the half-sphere of

fixed radius �r. This boundary condition furnishes the quantum numbers n1l and

n2l , each of which is 2D since the reference Hamiltonian ĥ�l
d has two angular

degrees of freedom. The superscripts n0l;�
0
l in Eq. (95), with n0l refering to the

union of n01l and n02l , indicate that the number of linearly independent solutions

of Eqs. (94) is equal to the number of diabatic LHSFs used in the expansions of

Eq. (95).

In the strong interaction region, the diabatic eigenfunctions �d;	

i;nil

;�l

ðy;fl; �rÞ; i ¼ 1; 2 are themselves expanded in a direct product of two

orthonormal basis sets [90], f�l
niyl
ðy; �rÞ and g	
�l

nifl
ðfl; �rÞ, where nil �

ðniyl ; nifl
Þ. Both f�l

niyl
and g	
�l

nifl
are chosen to be simple linear combinations

of trignometric functions [33] such that the resulting diabatic nuclear wave
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functions transform under the operations of the permutation symmetry group of

identical atoms as described after Eqs. (94). Equations (100) are then

transformed into an algebraic eigenvalue eigenvector equation involving the

coefficients of these expansions, which is solved numerically by linear algebra

methods. In the weak interaction region, where the coordinates r;ol; gl of

Eq. (77) are used, the diabatic LHSFs are eigenfunctions of the appropriate

reference hamiltonian expressed in those coordinates [33,90] and are labelled

�d;	

i;nil

;�l
ðol; gl; �rÞ; i ¼ 1; 2. These new LHSFs are expanded in the direct

product of the associated Legendre functions of cosgl and at a set of functions

of ol determined by the numerical solution of a one-dimensional (1D)

eigenfunction equation in ol [33,90]. Once the diabatic LHSFs are known, they

provide the basis of functions in terms of which the expansion in Eq. (95) is

defined. The diabatic nuclear wave function vector of that equation is then inserted

into the first equation of Eqs. (94). Use of the orthonormality of the symmetrized

Wigner functions (Eq. (97)) and integration over the 2D diabatic LHSFs, yields

a set of coupled hyperradial second-order ordinary differential equations (also

called coupled-channel equations) in the coefficients b
d;J	
n0l�

0
l

1;n1l ;�l
ðr; �rÞ and

b
d;J	
n0l�

0
l

2;n2l ;�l
ðr; �rÞ. Let us define the column vectors b

d;J	
n0l�
0
l

i ðr; �rÞ (i ¼ 1; 2) as

the vectors whose elements are scanned by nil ;�l considered as a single row

index.

Let us also define a matrix Bd;J	
ðr; �rÞwhose n0l;�
0
l column vector is obtained

by stacking the vector b
d;J	
n0l�

0
l

2 ðr; �rÞ under the vector b
d;J	
n0l�

0
l

1 ðr; �rÞ. These

vectors, for different n0l;�
0
l, are then placed side-by-side thereby generating a

square matrix Bd;J	
 whose dimensions are the total number of LHSFs

(channels) used. The coupled hyperradial equation satisfied by this matrix has

the form

� �h2

2m
I

d2

dr2
þ Vd;J	
ðr; �rÞ

� �
Bd;J	
ðr; �rÞ ¼ EBd;J	
ðr; �rÞ ð101Þ

where Vd;J	
ðr; �rÞ is the interaction potential matrix obtained by this derivation

procedure and that encompasses �edð�rÞ:

Vd;J	
ðr; �rÞ ¼
Vd;J	


11 ðr; �rÞ Vd;J	

12 ðr; �rÞ

Vd;J	

21 ðr; �rÞ Vd;J	


22 ðr; �rÞ

 !
ð102Þ

Its dimensions are those of Bd;J	
ðr; �rÞ.

C. Propagation Scheme and Asymptotic Analysis

The strong and weak interaction regions of the internal configuration space is

divided into a certain number of spherical hyperradial shells. The 2D diabatic
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LHSFs are determined at the center �r of each shell. These LHSFs are then used

to obtain the coupling matrix Vd;J	
ðr; �rÞ given in Eq. (102). The coupled

hyperradial equations in Eq. (101) are transformed into the coupled first-order

nonlinear Bessel–Ricatti logarithmic matrix differential equation

dFd;J	
ðr; �rÞ
dr

þ ½Fd;J	
ðr; �rÞ�2 þ 2m

�h2
½EI� Vd;J	
ðr; �rÞ� ¼ 0 ð103Þ

where

Fd;J	
ðr; �rÞ ¼ ½ðd=drÞBd;J	
ðr; �rÞ�½Bd;J	
ðr; �rÞ��1 ð104Þ

is the logarithmic derivative matrix and associated with Bd;J	
. Equation (103)

is integrated from the beginning of each sector to its end using a highly efficient

fourth-order logarithmic-derivative method [87,88] , and matched smoothly

from one shell to another.

By using this method, the Fd;J	
 matrix is propagated from a very small

value of r ¼ ro, where a WKB solution is applicable, through a value rs that

separates the strong and weak interaction regions, to an asymptotic value

r ¼ ra where the interactions between different arrangement channels l has

become negligible. At this asymptotic ra, the diabatic vd;JM	
 is transformed to

its adiabatic representation using the ADT matrix and matched to the

asymptotic atom–diatom wave functions. This asymptotic analysis furnishes

the reactance matrix RJ	
 and from it the scattering matrix SJ	
 [91,92]. For

total energies E at which no electronically excited states of the isolated atoms or

diatomic molecules are open, the elements of the open parts of these matrices

correspond to the ground electronic atom and diatom products only. This is done

for all 
 and both parities (	 ¼ 0; 1) and for a sufficiently large number of

values of J (i.e., of partial waves) for the resulting differential and integral

cross-sections to be converged. This numerical procedure for the current two-

electronic-state case is closely related to that for a single-electronic-state

described in [33].

V. SUMMARY AND CONCLUSIONS

A general treatment of quantum reaction dynamics for multiple interacting

electronic states is considered for a polyatomic system. In the adiabatic

representation, the n-electronic-state nuclear motion Schrödinger equation is

presented along with the structure of the first- and second-derivative

nonadiabatic coupling matrices. In this representation, the geometric phase

must be introduced separately and the presence of a gradient term introduces

numerical inefficiencies for the solution of that Schrödinger equation, even if

318 aron kuppermann and ravinder abrol



the nonadiabatic couplings do not display any singular behavior at the

intersections of adjacent electronic states. This makes it desirable to go to a

diabatic representation that incorporates automatically the geometric phase

effect. In addition, appropriate boundary conditions can be chosen so as to

impart desired properties on the diabatic version of the n-electronic-state

nuclear motion Schrödinger equation. One such property is the minimization of

the magnitude of that gradient term. If a complete (infinite) set of adiabatic

electronic wave functions is used in a Born–Huang expansion of the system’s

electronuclear wave function (which is not possible in practice), this term

vanishes automatically. In practice, a finite number n of adiabatic states are

included for the treatment of chemical reactions. For this case, the gradient term

survives in the diabatic representation as a nonremovable derivative coupling

term, which, however, does not diverge at conical intersection geometries. A

general method is presented that minimizes this nonremovable coupling term

over the entire internal nuclear configuration space, leading to an optimal

diabatization. As a very good first approximation, this gradient term can be

neglected in the diabatic nuclear motion Schrödinger equation. Since that

nonremovable coupling is obtained as a part of the diabatization process, its

effect on the scattering cross-sections can be studied subsequently by

perturbative or other methods.

A reactive scattering formalism for a triatomic reaction on two interacting

electronic states is also presented. This formalism is an extension of the time-

independent hyperspherical method [26,33] for one adiabatic electronic state.

The extended formalism involves obtaining diabatic local hyperspherical

surface functions (LHSFs) for each hyperradial shell. The partial wave diabatic

nuclear wave functions are expanded in terms of these diabatic surface functions

and the coefficients of the expansion propagated to an asymptotic value of the

hyperradius, where the diabatic nuclear wave function is transformed to its

adiabatic counterpart. An asymptotic analysis of the adiabatic nuclear wave

function gives the partial wave scattering matrices needed to obtain the desired

differential and integral cross-sections. A comparison of the cross-sections

obtained using this two-electronic-state formalism with those obtained using

only the adiabatic ground electronic state with the geometric phase included,

should provide an estimation of the energy range for which the one-electronic-

state BO approximation is valid.
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I. INTRODUCTION

Reactive atomic and molecular encounters at collision energies ranging from

thermal to several kiloelectron volts (keV) are, at the fundamental level,

described by the dynamics of the participating electrons and nuclei moving under

the influence of their mutual interactions. Solutions of the time-dependent

Schrödinger equation describe the details of such dynamics. The representation

of such solutions provide the pictures that aid our understanding of atomic and

molecular processes.

Traditionally, for molecular systems, one proceeds by considering the

electronic Hamiltonian Hel, which consists of the quantum mechanical operators

for the kinetic energy of the electrons, their mutual Coulombic repulsions, and
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their attractions to each of the atomic nuclei. Commonly, the nuclear–nuclear

repulsion energy is included in Hel. The time-dependent Schrödinger equation

with this Hamiltonian describes the electron dynamics in a field of stationary

nuclei. Methods of solving the time-independent electronic Schrödinger

equation, commonly referred to as electronic structure theory, have reached

considerable refinement and accuracy over the past decades. The bulk of such

work consists of development of approximate many-electron theory and its

implementation in terms of sophisticated computer software for solution of

Heljni ¼ EnðRÞjni ð1Þ

that is, finding approximate stationary state solutions jni with characteristic

electronic energies EnðRÞ for one fixed nuclear geometry at a time.

While experiments by their very nature are carried out in a laboratory

coordinate frame, theory commonly proceeds via the introduction of internal

coordinates in terms of molecule fixed axes. Done properly, this means that the

kinetic energy of the center-of-mass motion is first separated from the other

degrees of freedom. The origin of the internal coordinates, of course, can be

chosen in a number of ways. The center of mass of the nuclei is a convenient

choice that does not introduce kinetic energy coupling terms between electronic

and nuclear degrees of freedom. No matter what is the choice of origin of the

internal system of coordinates the result is a set of modified kinetic energy

operators with reduced particle masses and so-called mass polarization terms.

The latter, which are sums of products of momenta of different particles, are as a

rule small and usually neglected.

For some systems consisting of two-to-four atoms of light elements it is

currently feasible to consider enough points for, say, the ground-state electronic

energy E0ðRÞ such that appropriate interpolation techniques can produce the

energy for all nuclear geometries below some suitable energy cutoff. The

resulting function E0ðRÞ is the Born–Oppenheimer (BO) potential energy

surface (PES) of the system. Traditional molecular reaction dynamics proceeds

by considering such a PES to be the potential energy for the nuclear dynamics,

which, of course, may be treated classically, semiclassically, or by employing

quantum mechanical methods. The other energy eigenvalues EnðRÞ similarly

yield potential energy surfaces for electronically excited states. Each PES

usually exhibits considerable structure for a polyatomic system and can provide

instructive pictures with reactant and product valleys, local minima identifying

stable species, and transition states providing gateways for the system to travel

from one local minimum to another. Avoided crossings or more generally

conical intersections and potential surface crossings are regions of dramatic

chemical change in the system. The PES in this way provides attractive pictures

of dynamical processes, which since the very beginning of molecular reaction

dynamics have dominated our ways of thinking about molecular processes.
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Quantum mechanical methods using high-quality potential energy surfaces have

produced results in excellent agreement with the best experiments for small

systems of the lightest elements at low energies. However, high quality potential

energy surfaces exist only for a few systems. The difficulty of their determi-

nation increases rapidly with the number of atoms in the system. The deter-

mination of a PES in 3n� 6 dimensions for an n-atom system is not only costly,

but a PES in six or more dimensions is very hard to visualize and thus less useful.

One way to proceed for larger systems is to identify active modes and to freeze

or discretize other degrees of freedom. Such procedures tend to be subjective,

and may introduce artificial features into the dynamics. In this traditional ap-

proach to dynamics, each process is studied at a fixed total angular momentum.

Many molecular beam experiments are performed at collision energies from

a fraction of an electron volt to tens of electron volts. In such cases two or more

stationary molecular electronic states and their potential energy surfaces can

provide an adequate description provided also the effects of the nonadiabatic

coupling terms are taken into account. Even in cases where a single PES is

sufficient to describe the relevant forces on the participating nuclei one should

augment the Born–Oppenheimer PES with the diagonal kinetic energy

correction to produce the so-called adiabatic approximation, something that is

only rarely done in practice.

Ion–atom and ion–molecule collisions at energies in the kiloelectron volts

range are common in studies of energy deposition and stopping of swift

particles in various materials. Theoretical treatments of such processes often

employ stationary electronic states and their potential energy surfaces. At such

elevated energies the relevant state vector of the system is an evolving state,

which may be expressed as a superposition of a number of such energy states. In

fact, the system moves on an effective PES, which is the dynamical average of a

number of adiabatic surfaces and should in principle also include effects of the

nonadiabatic coupling terms.

Obviously, the BO or the adiabatic states only serve as a basis, albeit a useful

basis if they are determined accurately, for such evolving states, and one may

ask whether another, less costly, basis could be just as useful. The electron

nuclear dynamics (END) theory [1– 4] treats the simultaneous dynamics of

electrons and nuclei and may be characterized as a time-dependent, fully

nonadiabatic approach to direct dynamics. The END equations that approximate

the time-dependent Schrödinger equation are derived by employing the time-

dependent variational principle (TDVP).

II. STRUCTURE AND DYNAMICS

The most accurate information about quantum systems is obtained via

spectroscopic measurements. Such measurements have, until quite recently,
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been capable of only rather long-time averages of molecular events. Such

studies emphasize structure and the associated electronic structure theory can

successfully calculate molecular spectra and properties by applying the time-

independent Schrödinger equation and focusing on stationary electronic states.

The methods and techniques of electronic structure theory have a long history,

and coupled with the development of ever more powerful computers this area of

study has reached a very high degree of sophistication.

Development of laser technology over the last decade or so has permitted

spectroscopy to probe short-time events. Instead of having to resort to the study

of reactants and products and their energetics and structures, one is now able to

follow reactants as they travel toward products. Fast pulsed lasers provide

snapshots of entire molecular processes [5] demanding similar capabilities of

the theory. Thus, explicitly time-dependent methods become suitable theoretical

tools.

The dominant theoretical approaches to study molecular processes break the

problem down into separate parts, the first being the determination of one or

more potential energy surfaces. This involves electronic structure calculations

for a large number of nuclear geometries and interpolation techniques [6–8] to

provide as accurate as possible a functional form of each PES. Electronic

structure methods and algorithms have been developed into efficient codes such

as Gaussian [9], and ACES II [10], which can be used with minimal knowledge

of electronic structure theory. These and many other codes have made

computational chemistry a working tool for the bench chemist on an equal

footing with various spectroscopic methods.

Given a ground-state PES the dynamics methods that have dominated the

field since the beginning proceed by treating the nuclear motion with quantum

mechanics, semiclassical or quasiclassical techniques, or with classical

trajectory methods. For processes where more than one electronic stationary

state is involved one needs preconstructed PESs for all states and also

nonadiabatic coupling terms in order to study the dynamics. Several workers

have contributed significantly to the developments of a variety of methods for

molecular dynamics with active electronic degrees of freedom [11–17]. The

electronic basis employed for the evolution of approximate solutions to the

time-dependent Schrödinger equation may consist of the electronic energy

eigenstates and the nonadiabatic effects can be accounted for by calculated and

interpolated coupling terms or simulated by phenomenological surface hopping.

A major drawback to the approaches that use preconstructed PESs is that

there are many more interesting systems undergoing reactive dynamical

processes than there are available PESs. It would be much better if the

electronic structure part of the problem, which provides the forces for the

nuclear dynamics, could be performed simultaneously with the dynamics part,

thus making possible the treatment of systems for which preconstructed PESs
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do not exist. Such approaches are referred to as direct dynamics methods.

The popularity of the Car–Parinello method [18] is ample evidence for the

need of such theoretical dynamics treatments. Car–Parinello uses density

functional theory for the electronic degrees of freedom and may be considered

to be a direct dynamics method for processes that strictly follow the electronic

ground state.

Potential energy surfaces, although purely theoretical constructs, are

extremely useful and attractive tools in providing illustrative pictures of

molecular processes and are essential for understanding the energetics. When

the dynamics takes place on a single surface one can picture the dynamics

moving from a reactant valley to a product valley passing through a transition

state region. When several PESs are involved one tends to picture the dynamics

as following one surface or another with the nonadiabatic coupling terms

providing the means for transitions from one surface to the other. Strictly

speaking, nonadiabatic dynamics takes place between PESs and one can very

well use a different basis from that of electron energy eigenstates in describing

the evolving system. The challenge is then to develop simple and illustrative

alternative pictures of the molecular process to that provided by PESs.

Electron nuclear dynamics theory is a direct nonadiabatic dynamics approach

to molecular processes and uses an electronic basis of atomic orbitals attached

to dynamical centers, whose positions and momenta are dynamical variables.

Although computationally intensive, this approach is general and has a

systematic hierarchy of approximations when applied in an ab initio fashion.

It can also be applied with semiempirical treatment of electronic degrees of

freedom [4]. It is important to recognize that the reactants in this approach are

not forced to follow a certain reaction path but for a given set of initial

conditions the entire system evolves in time in a completely dynamical manner

dictated by the interparticle interactions.

III. TDVP AND END

The TDVP employs the quantum mechanical action

A ¼
ðt2

t1

Lðc�;cÞdt ð2Þ

where the Lagrangian is (�h ¼ 1)

L ¼ hcji q
qt
� Hjci=hcjci ð3Þ
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with H the total Hamiltonian of the system and requires the action to be

stationary under variations of the wave function, that is,

dA ¼
ðt2

t1

dLðc�;cÞdt ¼ 0 ð4Þ

The total molecular system wave function is subject to the boundary conditions

djci ¼ dhcj ¼ 0 ð5Þ

at the endpoints t1 and t2.

When the wave function is completely general and permitted to vary in the

entire Hilbert space the TDVP yields the time-dependent Schrödinger equation.

However, when the possible wave function variations are in some way

constrained, such as is the case for a wave function restricted to a particular

functional form and represented in a finite basis, then the corresponding action

generates a set of equations that approximate the time-dependent Schrödinger

equation.

The time dependence of the molecular wave function is carried by the wave

function parameters, which assume the role of dynamical variables [19,20].

Therefore the choice of parameterization of the wave functions for electronic

and nuclear degrees of freedom becomes important. Parameter sets that exhibit

continuity and nonredundancy are sought and in this connection the theory of

generalized coherent states has proven useful [21]. Typical parameters include

molecular orbital coefficients, expansion coefficients of a multiconfigurational

wave function, and average nuclear positions and momenta. We write

jci 	 jcðzÞi 	 jzi ð6Þ

where z denotes an array of suitable, and in general complex, wave function

parameters.

By using Eq. (5), we can write the Lagrangian in a more symmetric form as

L ¼ i

2
ðhzj _zi � h _zjziÞ � hzjHjzi

� ��
hzjzi ð7Þ

where the dot denotes differentiation with respect to the time parameter t.

Variation of the Lagrangian, dL, with respect to all the parameters introduces jd _zi
and hd _zj, which can be eliminated by the introduction of the total time derivatives

d

dt

hzjdzi
hzjzi ð8Þ
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and

d

dt

hdzjzi
hzjzi ð9Þ

and the boundary conditions Eq. (5). This results in a set of equations

0 ¼ dA ¼
ðt2

t1

dL dt

¼
ðt2

t1

X
a

X
b

i
q2 ln S

qz�aqzb
_zb �

qE

qz�a

" #
dz�a

 

þ
X
a

X
b

�i
q2 ln S

qzaqz�b
_z�b �

qE

qza

" #
dza

!
dt ð10Þ

where S ¼ Sðz�; zÞ ¼ hzjzi and E ¼ Eðz�; zÞ ¼ hzjHjzi=hzjzi, and where the

chain rule has been applied to the time differentiation.

Since dza and dz�a are independent variations it must follow that

i
X
b

Cab _zb ¼
qE

qz�a
ð11Þ

�i
X
b

C�ab _z
�
b ¼

qE

qza
ð12Þ

where Cab ¼ q2 ln S=qz�aqzb. These equations govern the time evolution of the

wave function parameters. The time evolution of the overall phase factor exp ig
is controlled by the equation

_g ¼ i

2

X
a

_za
q
qza
� _z�a

q
qz�a

� �
ln S� E ð13Þ

Note that for a stationary state all parameters satisfy _z ¼ 0 and thus g ¼ �Et,

yielding the phase-factor exp� iEt as expected.

In matrix block form the equations that govern the time evolution of the

parameters can be expressed as

iC 0

0 �iC�


 �
_z
_z�


 �
¼ qE=qz�

qE=qz


 �
ð14Þ

electron nuclear dynamics 329



If the wave function parameters are chosen appropriately, then the Hermitian

matrix C ¼ ½Cab� has an inverse and we can write

_z
_z�


 �
¼ �iC�1 0

0 �iC��1


 �
qE=qz�

qE=qz


 �
ð15Þ

It is possible to introduce a generalized Poisson bracket by considering two

general differentiable functions f ðz; z�Þ and gðz; z�Þ and write

ff ; gg ¼ ½qf=qzT qf=qzy� �iC�1 0

0 �iC��1

 !
qg=qz�

qg=qz

� �

¼ �i
X
a;b

qf

qza
ðC�1Þab

qg

qz�b
� qg

qza
ðC�1Þab

qf

qz�b

" #
ð16Þ

It follows straightforwardly that

_z ¼ fz;Eg ð17Þ
_z� ¼ fz�;Eg ð18Þ

which shows that the time evolution of the wave function parameters is governed

by Hamilton-like equations. The time evolution of the molecular system can then

be viewed as occurring on a phase space made up of the complex wave function

parameters z and z� acting as conjugate positions and momenta and Eðz; z�Þ
being the Hamiltonian or the generator of infinitesimal time translations. This is

obviously not a flat phase space. Such coupled sets of first-order differential

equations can be integrated by a great variety of methods (see [22]).

A. The Basic END Ansatz

The END theory can be implemented at various levels of approximation.

The simplest approximation develops a Lagrangian for classical nuclei or

distinguishable atomic nuclei represented by traveling Gaussian wavepackets in

the narrow width limit, and for quantum electrons represented by a single

determinant built from nonorthogonal, complex spin orbitals [23]. The principle

of least action using this Lagrangian yields the dynamical equations of minimal

END.

At this level of approximation, the molecular wave function can be expressed

as

j�ðtÞi ¼ jRðtÞ;PðtÞijzðtÞ;RðtÞ;PðtÞi ð19Þ
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where

hXjRðtÞ;PðtÞi ¼
Y

k

exp � 1

2

Xk � Rk

b


 �2

þ iPk � ðXk � RkÞ
" #

ð20Þ

and

hxjzðtÞ;RðtÞ;PðtÞi ¼ det wiðxjÞ ð21Þ

with the spin orbitals

wi ¼ ui þ
XK

j¼Nþ1

ujzjiðtÞ ð22Þ

expanded in terms of atomic spin orbitals

fuigK
1 ð23Þ

which in turn are expanded in a basis of traveling Gaussians,

ðx� RxÞlðy� RyÞmðz� RzÞn exp �aðx� RÞ2 � i

�hM
P � ðx� RÞ

� �
ð24Þ

centered on the average nuclear positions R and moving with velocity P=M.

In the narrow wavepacket limit, b!1, the Lagrangian may be expressed as

L ¼
X

i; j

Pjl þ
i

2

q ln S

qRjl

� q ln S

qR0jl

 !" #
_Rjl þ

i

2

q ln S

qPjl

� q ln S

qP0jl

 !
_Pjl

( )

þ i

2

X
p;h

q ln S

qzph

_zph �
q ln S

qz�ph

_z�ph


 �
� E ð25Þ

with S ¼ hz;R0;P0jz;R;Pi and

E ¼
X

jl

P2
jl=2Ml þ hz;R0;P0jHeljz;R;Pi=hz;R0;P0jz;R;Pi ð26Þ

Here, Hel is the electronic Hamiltonian including the nuclear–nuclear repulsion

terms, Pjl is a Cartesian component of the momentum, and Ml the mass of

nucleus l. One should note that the bra depends on z� while the ket depends on z

and that the primed R and P equal their unprimed counterparts and the prime

simply denotes that they belong to the bra.
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The Euler–Lagrange equations

d

dt

qL

q _q
¼ qL

qq
ð27Þ

can now be formed for the dynamical variables

q ¼ Rjl;Pjl; zph; z�ph ð28Þ

and collected into a matrix equation

iC 0 iCR iCP

0 �iC� �iC�R �iC�P

iC
y
R �iCT

R CRR �Iþ CRP

iC
y
P �iCT

P Iþ CPR CPP

2
66664

3
77775

_z

_z�

_R

_P

2
6664

3
7775 ¼

qE=qz�

qE=qz

qE=qR

qE=qP

2
6664

3
7775 ð29Þ

where the dynamical metric contains the elements

ðCXYÞik; jl ¼ �2Im
q2 ln S

qXikqYjl

����
R0¼R; P0¼P

ð30Þ

ðCXik
Þph ¼ ðCXÞph;ik ¼

q2 ln S

qz�ikqXik

����
R0¼R; P0¼P

ð31Þ

which are the nonadiabatic coupling terms, and

Cph;qg ¼
q2 ln S

qz�phqzqg

����
R0¼R; P0¼P

ð32Þ

In this minimal END approximation, the electronic basis functions are

centered on the average nuclear positions, which are dynamical variables. In the

limit of classical nuclei, these are conventional basis functions used in

molecular electronic structure theory, and they follow the dynamically changing

nuclear positions. As can be seen from the equations of motion discussed above

the evolution of the nuclear positions and momenta is governed by Newton-like

equations with Hellman–Feynman forces, while the electronic dynamical

variables are complex molecular orbital coefficients that follow equations that

look like those of the time-dependent Hartree–Fock (TDHF) approximation

[24]. The coupling terms in the dynamical metric are the well-known

nonadiabatic terms due to the fact that the basis moves with the dynamically

changing nuclear positions.
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The time evolution of molecular processes in the END formalism employs a

Cartesian laboratory frame of coordinates. This means that in addition to the

internal dynamics overall translation and rotation of the molecular system are

treated. The six extra degrees of freedom add work, but become less of a burden

as the complexity of the system grows. The advantage is that the kinetic energy

terms are simple and no mass polarization terms need to be discarded.

Furthermore, the complications of having to choose different internal

coordinates for product channels exhibiting different fragmentations are not

present. One can treat all product channels on an equal footing in the same

laboratory frame. Since the fundamental invariance laws with respect to overall

translation and rotation are satisfied within END [4] it is straightforward to

extract the internal dynamics at any time in the evolution.

Better END approximations are defined by the introduction of more

general molecular wave functions leading to larger and more involved

parameter spaces.

B. Free Electrons

In this context, it is interesting to explore the possibilities of the END theory to

describe molecular processes that involve free electrons either as reagents or as

products. Electron-molecule scattering or ionization processes in molecular

collisions are commonly treated separately from general molecular reaction

dynamics. The principal idea in extending END to include free electron

capabilities is to center electronic basis functions on independent positions in

space. This means that such basis centers, so-called free centers, move on their

own and are not associated with nuclear positions, however, the positions and

conjugate momenta of these free centers are dynamical variables, which evolve

according to the appropriate Euler–Lagrange equations.

The electronic basis for the free centers is similar to that in Eq. (24) and more

precisely can be written as

ðx� rxÞlðy� ryÞmðz� rzÞn exp �cðx� rÞ2 � i

�h
p � ðx� rÞ

� �
ð33Þ

with x ¼ ðx; y; zÞ an electron coordinate, r the center coordinate, and p the

average electronic momentum. We can add such electronic orbitals to the

minimal END wave function considered in Section III.A. The electronic basis

centered on the atomic nuclei are standard basis functions ui suitable for the

particular element, while on the free centers the basis is the union wi ¼ ui [ vi,

where vi is a set of diffuse functions. In order to create an initial state for an

ionizing atomic or molecular collision, one performs an self-consistent field

(SCF) calculation in the bound state basis ui to obtain the orbitals fi ¼
P

k ukcki.

The initial state component on a free center is then constructed using the
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projector jwihwjwi�1hwj to obtain

�fk ¼
X

l;k

wlðD�1Þlmhwmjfki ð34Þ

In an electron scattering or recombination process, the free center of the in-

coming electron has the functions wi ¼ ui [ vi and the initial state of the free

electron is some function vi the width of which is chosen on the basis of the

electron momentum and the time it takes the electron to arrive at the target. Such

choice is important in order to avoid nonphysical behavior due to the natural

spreading of the wavepacket.

In a completely general and flexible application of END one may choose to

include some number, say Nion, of nuclei described as in Eq. (20) completely

void of electronic basis functions, and some number (NA) of nuclei with

electronic basis functions, as well as some number (NF) of free centers.

C. General Electron Nuclear Dynamics

When constructing more general molecular wave functions there are several

concepts that need to be defined. The concept of geometry is introduced to mean

a (time-dependent) point in the generalized phase space for the total number of

centers used to describe the END wave function. The notations R and P are used

for the position and conjugate momenta vectors, such that

R ¼ ðRk; k ¼ 1; . . . ;NA þ NF þ NionÞ ð35Þ

These notations are used for positions and momenta, when the nuclei are treated

as classical particles and denote average positions and momenta when they are

treated quantum mechanically.

Another concept is that of electronic structure, which is defined as an

electronic wave function associated with a geometry. For the case that the

electrons are described by a single determinantal wave function it would be

meaningful to consider multiple different electronic structures associated with

the same geometry. In general, it would also be meaningful to consider multiple

geometries, each evolving with its own electronic structure. The reason for this

particular definition of electronic structure is that it would not be meaningful to

consider multiple geometries with a single electronic structure, since the BO

approximation provides a very good description. In Table I, we list the three

possible combinations of geometry and electronic structure.

The wave function for the electronic structure can in principle be any of the

constructions employed in electronic structure theory. The preferred choice in

this context is a wave functions that can be classified as single and multi-

configurational, and for the latter type only complete active space (CAS) wave
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functions are really useful. The reason for this is that such constructions have a

well-established coherent (or vector coherent) state description, so that the

parameters define a well-behaved phase space for a dynamical Hamiltonian

system. Because in the END formulation of molecular dynamics the wave

function parameters are the dynamical variables it is essential that they are

nonredundant and continuous.

The Thouless determinantal electronic wave function jzi ¼ det wiðxjÞ in

Eq. (21) is an example of such proper parametrization. The dynamical spin

orbitals are expressed in terms of atomic spin orbitals centered on the various

nuclei

wi ¼ ui þ
X

j

ujzji ð36Þ

with time-dependent complex coefficients zji being the dynamical variables. This

parameterization guarantees that all possible determinantal wave functions in

terms of the atomic orbitals are accessible during imposed dynamical changes of

the system. Numerical stability is ensured as long as the z coefficients are small

in comparison to unity. This can be assured by the capability to switch from one

local parameterization or chart that during the dynamics may have led to large

parameter values and therefore numerically unstable equations, to another chart

more suitable for that part of the dynamics. Such change of charts must be

possible without introduction of any artificial discontinuities in trajectories and

various calculated properties.

We consider the example of a particular trajectory of the Hþ þ H2ð0; 0Þ !
H2ðv; jÞ þ H at an energy of 1.2 eV in the center-of-mass frame. By using an

atomic orbital basis and a representation of the electronic state of the system in

terms of a Thouless determinant and the protons as classical particles, the

leading term of the electronic state of the reactants is

jð1s1 þ 1s2Það1s1 þ 1s2Þb1s3aj ð37Þ

TABLE I

The Three Meaningful Combinations of Electronic Structure a

SG MG

SES �ðX; x;R;PÞ Not meaningful

MES
P

m cm�mðX; x;R;PÞ
P

m;g cm;g�mðX; x;Rg;PgÞ
a single electronic structure (SES), multiple electronic structure (MES), single geometry (SG), and

multiple geometry (MG).

The symbols X and x denote the quantum mechanical coordinates of the nuclei and electrons,

respectively. The index m runs over electronic structures and g over geometries.
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where 1 and 2 label the protons of the reactant molecule and 3 that of the pro-

jectile atom, and 1si is an atomic orbital centered on proton i. Let the reactive

trajectory proceed by exchange of protons 2 and 3 making the leading term of the

product electronic state

jð1s1 þ 1s3Það1s1 þ 1s3Þb1s2aj ð38Þ

The original chart or Thouless parameterization

1s1aþ 1s2aza12

1s1bþ 1s2bz
b
12 þ 1s3bz

b
13

1s3aþ 1s2aza22

ð39Þ

represents the state in Eq. (37) with

za12 ¼ 1

za22 ¼ 0

z
b
12 ¼ 1

z
b
13 ¼ 0

ð40Þ

but cannot properly represent the state in Eq. (38), that is,

za12 ¼ undefined

za22 ¼ 1

z
b
12 ¼ 0

z
b
13 ¼ 1

ð41Þ

Numerically, it shows up in za12 and za22 coefficients becoming very large in

comparison to unity making the integration of the dynamical equations less

accurate. The ENDyne code then automatically switches to a new chart with the

coefficients more suitable to the product side, that is,

1s1aþ 1s3aza13

1s1bþ 1s2bz
b
12 þ 1s3bz

b
13

1s2aþ 1s3aza23

ð42Þ
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which represents the state Eq. (38) when

za13 ¼ 1

za23 ¼ 0

z
b
12 ¼ 0

z
b
13 ¼ 1

ð43Þ

Although the leading term of the electronic wave function of the system is thus

changed, the total wave function has not and the calculated trajectory and

properties exhibit no discontinuous behavior.

Some details of END using a multiconfigurational electronic wave function

with a complete active space (CASMC) have been introduced in terms of an

orthonormal basis and for a fixed nuclear framework [25], and were recently [26]

discussed in some detail for a nonorthogonal basis with electron translation

factors.

The full dynamical treatment of electrons and nuclei together in a laboratory

system of coordinates is computationally intensive and difficult. However, the

availability of multiprocessor computers and detailed attention to the develop-

ment of efficient software, such as ENDyne, which can be maintained and

debugged continually when new features are added, make END a viable

alternative among methods for the study of molecular processes. Furthermore,

when the application of END is compared to the total effort of accurate

determination of relevant potential energy surfaces and nonadiabatic coupling

terms, faithful analytical fitting and interpolation of the common pointwise

representation of surfaces and coupling terms, and the solution of the coupled

dynamical equations in a suitable internal coordinates, the computational effort

of END is competitive.

IV. MOLECULAR PROCESSES

The END equations are integrated to yield the time evolution of the wave

function parameters for reactive processes from an initial state of the system.

The solution is propagated until such a time that the system has clearly reached

the final products. Then, the evolved state vector may be projected against a

number of different possible final product states to yield corresponding transition

probability amplitudes. Details of the END dynamics can be depicted and cross-

section cross-sections and rate coefficients calculated.

The approximations defining minimal END, that is, direct nonadiabatic

dynamics with classical nuclei and quantum electrons described by a single

complex determinantal wave function constructed from nonorthogonal spin
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orbitals with electron translation factors centered on the dynamically changing

nuclear positions, yield results for hyperthermal atomic and molecular reactive

collisions that are usually in agreement with available experimental data. It is

interesting to ask to what extent this level of treatment applies to low energy

processes. The experience gained from several applications is that some

quantities that are not too sensitive to the detailed dynamics, such as integral

cross-sections, can be described quite well, while other properties, notably

differential cross-sections, are not. This is understandable from the fact that at

thermal energies the dynamics follows closely the ground-state potential energy

surface, which for minimal END is the ground-state SCF surface.

In order to make END better suited to the application of low energy events it

is important to include an explicitly correlated description of the electron

dynamics. Therefore multiconfigurational [25] augmentations of the minimal

END are under development.

However, for molecular events involving more than one electronic state, even

when they take place at low energies, minimal END direct dynamics appear to

do well. Electron transfer is an example of such processes. Ion–atom collisions

have been studied at a great variety of energies [27–29], ranging from a few tens

of an electron volt to hundreds of kiloelectron volts, usually achieving

agreement with available experimental data. Minimal END for Hþ2 þ H2 at 0.5–

4.0 eV [30] yields integral cross-sections for formation of Hþ3 and for electron

transfer in good agreement with experiment.

A. Reactive Collisions

Bimolecular reactive encounters, atom–molecule, ion–molecule, and ion–atom

collisions at a great variety of energies and initial states can be studied with the

END theory. If we use classical nuclei this means that in addition to the initial

electronic state of the system the nuclear geometries or internal states of the

participating molecular species must be chosen. Several END trajectories have to

be calculated, which means that for, say, gas-phase processes a sufficient number

of relative orientations of the reactants must be considered so that directional

averages can be obtained. Also, a range of impact parameters must be employed

ranging from zero for head on collisions to such values that produce nonreactive

trajectories. This simply corresponds to studying the processes for a range of

total angular momenta.

The general problem of molecular reactive scattering can be studied with the

machinery of formal time-dependent (or time-independent) scattering theory.

However, for the implementation of END theory with classical nuclei it is useful

to remind ourselves of some of the concepts of classical potential scattering.

The consideration of the scattering of two structureless particles interacting via

a potential energy UðRÞ can suffice for reminding the reader of some of the

features of classical scattering. The collision energy is E ¼ mv2=2 with m the
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reduced mass and v the relative speed. The angular momentum of the system is

J ¼ mvb with b the impact parameter. The scattering angle y in the laboratory

frame is the absolute value of the deflection function �ðbÞ as [31]

y ¼ j�ðbÞj ¼ p� 2b

ð1
R0

R�2½1� UðRÞ=E � b2=R2��1=2
dR

����
���� ð44Þ

The classical scattering cross section for a given process is simply

sðEÞ ¼ 2p
ðbmax

0

PðE; bÞb db ð45Þ

where PðE; bÞ is the so-called opacity function, which can be directly obtained

from the evolved END wave function and the appropriate final state in the same

basis, giving the fraction of collisions leading to the considered reaction products

for a given collision energy and impact parameter. The corresponding classical

differential cross-section is

dsðE; yÞ ¼ PðE; bÞ b

sinyjdy=dbj ð46Þ

or when more than one impact parameter bi produces the same scattering angle

dsðE; yÞ ¼
X

i

PðE; biÞ
bi

sin yjdy=dbij
ð47Þ

The well-known glory scattering or forward peak scattering for small y and

rainbow scattering at angles for which dy=db ¼ 0 causes singularities in the

classical differential cross-sections for which semiclassical corrections [32–34]

usually work well. The particular considerations of semiclassical corrections in

END theory have been thoroughly treated by Morales et al. [35]. A particularly

elegant and useful semiclassical treatment of the scattering amplitude for small

angle scattering at higher energies has been developed by Schiff [36]. He sums

the infinite Born series for the scattering amplitude by approximating each term

in the sum by the stationary phase method. This approach has been applied to

minimal END [27] with great success for ion–atom, atom–atom, and ion–

molecule collisions in the kiloelectron volt range. The scattering amplitude in

the small angle Schiff (semiclassical) approximation is

f ðyÞ ¼ ik

ð1
0

f1� exp½�idðbÞ�gJ0ðqbÞb db ð48Þ
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with J0 a Bessel function of order zero, and where q ¼ jki � kf j is the momentum

transferred during the collision, y is the angle between the initial wave vector

of the projectile ki and final wave vector in the direction of the detector kf .

The semiclassical phase shift dðbÞ is related to the deflection function through

(see [31])

�ðbÞ ¼ 2

ki

ddðbÞ
db

ð49Þ

The END trajectories for the simultaneous dynamics of classical nuclei and

quantum electrons will yield deflection functions. For collision processes with

nonspherical targets and projectiles, one obtains one deflection function per

orientation, which in turn yields the semiclassical phase shift and thus the

scattering amplitude and the semiclassical differential cross-section

ds
d�
¼ kf

ki

j f ðyÞj2 ð50Þ

For a particular process, this expression should be multiplied with the probability

for that process as determined by projection of the END evolved state cðtÞ for the

system on the appropriate final state cf described within the same basis set and at

the same level of approximation as the evolved state, that is, the amplitude

hcf jcðtÞi at a sufficiently large time t.

It is interesting to note the similarity of the expression in Eq. (48) with the

result obtained through a WKB or eikonal type of argument [37,38]. The

eikonal approximation resorts to straight-line trajectories, while the END

application of the Schiff approximation uses fully dynamical trajectories. Schiff

[36] demonstrates that the scattering wave function obtained through his

procedure of summing the Born series contains an additional term, which is

essential for the correct treatment of the scattering and is not present in the

eikonal or WKB approaches to the problem. This formula of the scattering

amplitude [Eq. (48)] is also considered to be in principle valid for all scattering

angles (see [38], p. 604).

Many experimental techniques now provide details of dynamical events on

short timescales. Time-dependent theory, such as END, offer the capabilities to

obtain information about the details of the transition from initial-to-final states

in reactive processes. The assumptions of time-dependent perturbation theory

coupled with Fermi’s Golden Rule, namely, that there are well-defined

(unperturbed) initial and final states and that these are occupied for times,

which are long compared to the transition time, no longer necessarily apply.

Therefore, truly dynamical methods become very appealing and the results from

such theoretical methods can be shown as movies or time lapse photography.
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We have found that display of nuclear trajectories and the simultaneous evolu-

tion of charge distributions to yield insightful details of complicated processes.

Such descriptions also map more readily to the actual experimental conditions

than do the more conventional time-independent scattering matrix descriptions.

As an illustration of how results from time-dependent treatments of reactive

molecular collisions can be represented, we present some recent results [61] on

the D2 þ NHþ3 reaction at energies from 6 to 16 eV in the center-of-mass frame.

Recent molecular beam experiments have been carried out on this system in

the group of Zare [39–41] at energies from 1 to 10 eV in the center of mass.

These studies seek to gain insight into the mechanisms of the reaction by

considering several different initial conditions with varying amounts of energy

in translational and vibrational degrees of freedom of the reactants. At these

energies the two main mechanisms are the abstraction

NHþ3 þ D2 ! NH3Dþ þ D ð51Þ

and the competing exchange reaction

NHþ3 þ D2 ! NH2Dþ þ HD ð52Þ

In applying minimal END to processes such as these, one finds that different

initial conditions lead to different product channels. In Figure 1, we show a

somewhat truncated time lapse picture of a typical trajectory that leads to

abstraction. In this rendering, one of the hydrogens of NH3Dþ is hidden. As an

example of properties whose evolution can be depicted we display interatomic

distances and atomic electronic charges. Obviously, one can similarly study the

time dependence of various other properties during the reactive encounter.

At low energies the abstraction process dominates and at higher energies the

exchange mechanism becomes more important. The cross-sections for the two

processes crossing at �10 eV. The END calculations yield absolute cross-

sections that show the same trend as the experimentally determined relative

cross-sections for the two processes. The theory predicts that a substantial

fraction of the abstraction product NH3Dþ, which are excited above the

dissociation threshold for an N��H bond actually dissociates to NH2Dþ þ H or

NHþ3 during the almost 50-ms travel from the collision chamber to the detector,

and thus affects the measured relative cross-sections of the two processes.

One can note some interesting features from these trajectories. For example,

the Mulliken population on the participating atoms in Figure 1 show that the

departing deuterium carries a full electron. Also, the deuterium transferred to

the NHþ3 undergoes an initial substantial bond stretch with the up spin and down

spin populations separating so that the system temporarily looks like a biradical

before it settles into a normal closed-shell behavior.
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B. Final-State Analysis

The determinantal wave function in Eq. (21) is built [23] from complex

dynamical spin orbitals wi. Even when the basis orbitals uk in Eq. (22) are

orthogonal these dynamical orbitals are nonorthogonal, and for a basis of

nonorthogonal atomic orbitals based on Gaussians as those in Eq. (24) the metric

of the basis becomes involved in all formulas and the END theory as

implemented in the ENDyne code works directly in the atomic basis without

invoking transformations to system orbitals.

The product analysis of the END system wave function is quite general, but

for simplicity we consider the case of two product fragments, A and B. As these

Figure 1. The trajectory of ground-state D2 colliding with ground-state NHþ3 at 8 eV leads to

abstraction with the NH3Dþ ion highly vibrationally excited. The time evolution of the interatomic

distances (c) and of the atomic charges (b) show which product species are generated.
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fragments separate the corresponding dynamical spin orbitals may be expressed

as

wi ¼ wA
i þ wB

i ð53Þ

with negligible overlap of the atomic orbitals centered on the nuclei of fragment

A with those on fragment B. At any given point in time t after which the

separation of products has taken place, a particular molecular product fragment

has a particular nuclear geometry and its electronic wave function can be

projected on an electronic eigenstate of that geometry determined in the same

electronic basis set to obtain probabilities for state-to-state events. Specifically, a

molecular orbital basis is obtained for each fragment by performing an SCF

calculation at the geometry for a given final time t. Then Slater determinants are

formed with these local fragment orbitals for the entire system exhibiting various

degrees of intrafragment excitations. These Slater determinants are orthogonal

and can be sorted according to charge and spin state depending on the number

and spin of system electrons assigned to each fragment. Projection of the END

evolved determinant against each of these determinants then yields the desired

probabilities.

In many ion–atom and ion–molecule collisions, one is often only interested

in the projections on various charge states, which can be given a very simple

treatment. The Thouless determinant at separation of the two product fragments

can be expressed as

hxjzðtÞ;RðtÞ;PðtÞi ¼ fjwA
1 w

A
2 � � � wA

N jg þ fjwB
1 w

A
2 � � � wA

N jg þ � � � fjwB
1 w

B
2 � � � wB

N jg
ð54Þ

where each curly bracket contains all ðN
M
Þ determinants with M ¼ 0; 1; . . . ;N

fragment B orbitals, respectively. A canonical orthonormalization of the atomic

orbitals of each fragment, that is,

fi ¼
X

j

ujðUs�1=2Þji ð55Þ

with the atomic orbital metric D being diagonalized by a unitary transformation

U, such that

s ¼ UyDU ð56Þ

makes it possible to write

wC
i ¼

X
l

ulcli ¼
X

k;l

fC
k ðs1=2UCyÞklcli ¼

X
k

fC
k dki ð57Þ
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For each of the fragment determinants in Eq. (54), the following expansion or its

analogues applies:

jwA
1 w

B
2 � � � wB

N j ¼
X

i1;i2;...;iN

dA
i11dB

i22 � � � dB
iN N jf

A
i1
fB

i2
� � �fB

iN
j ð58Þ

in terms of orthonormal determinants. The relevant transition probability to a

particular charge state can then be obtained by squaring the coefficients

dA
i11dB

i22 � � � dB
iN N , add them up, and divide by the total normalization of the

Thouless determinant.

Rovibrational final-state analysis can also be achieved even for the case of

classical nuclei. A product fragment with classical nuclei rotates and vibrates as

a classical object. A classical quantum correspondence is adopted, such that this

classical object is described by an evolving coherent state. For the case of a

diatomic fragment when rotational excitations can be neglected or decoupled,

the dynamics can be resolved into quantum states [42]. For low excitations with

near equidistant splittings between consecutive vibrational energy levels the

harmonic oscillator coherent state provides an excellent basis for obtaining

vibrationally resolved cross-sections [43]. As a general approach valid for

polyatomic molecular product fragment a multidimensional Prony [44] method

has been developed [45], which can produce rovibrationally resolved cross-

sections for the case of weak coupling between rotation and vibrational modes.

The mass weighted position of a single nucleus n in the center-of-mass frame

of a molecule with N atomic nuclei at time points t is obtained from an END

trajectory and can be expressed as

Rn½t� ¼ O½t � 1� En þ
Xp

j¼1

Tn; jcje
ð2pi�jðt�1Þ�tþjjÞ

" #
ð59Þ

where the interval (time step) between data points is �t, p is the number of

vibrational modes of the molecule, O½t� is a rotation matrix (O½0� ¼ 1), En is the

equilibrium position of nucleus n. The direction and magnitude of the

displacement of nucleus n in the jth normal mode is Tn; j, the weight of this

normal mode is cj, and its frequency and phase is �j and jj, respectively.

The generalized Prony analysis can extract a great variety of information

from the ENDyne dynamics, such as the vibrational energy Evib and the

frequency for each normal mode. The classical quantum connection is then made

via coherent states, such that, say, each normal vibrational mode is represented

by an evolving state

jai ¼ exp � 1

2
jaj2


 �X
n

anffiffiffiffi
n!
p jni ð60Þ
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in terms of the harmonic oscillator eigenstates jni, and where a is a time-

dependent complex parameter. Since the energy of such an evolving state above

the ground state is Evib ¼ �hojaj2 we find jaj2 ¼ Evib=�ho and we can conclude

that the probability of the fragment occupying a particular eigenstate jni is

Pn ¼
ðEvib=�hoÞn

n!
expð�Evib=�hoÞ ð61Þ

By using this approach, it is possible to calculate vibrational state-selected

cross-sections from minimal END trajectories obtained with a classical descri-

ption of the nuclei. We have studied vibrationally excited H2ðnÞ molecules

produced in collisions with 30-eV protons [42,43]. The relevant experiments

were performed by Toennies et al. [46] with comparisons to theoretical

studies using the trajectory surface hopping model [11,47] (TSHM). This

system has also stimulated a quantum mechanical study [48] using diatomics-

in-molecule (DIM) surfaces [49] and invoking the infinite-order sudden

approximation (IOSA).

In Figure 2, we show the total differential cross-section for product

molecules in the vibrational ground state (no charge transfer) of the hydrogen

molecule in collision with 30-eV protons in the laboratory frame. The

experimental results that are in arbitrary units have been normalized to the END

Figure 2. Total differential cross-section versus laboratory scattering angle for vibrational

ground state of hydrogen molecules in single collisioins with 30-eV protons.

electron nuclear dynamics 345



results at the rainbow angle. The experimental estimate of the rainbow angle

and the END calculated one are very close, �7�. The theoretical results using

THSM and IOSA are shown for comparison. In Figure 3, the vibrational state

resolved differential cross-section is shown for the fourth excited state (n ¼ 4).

Results of similar quality are obtained for products in other vibrational states as

long as the use of the harmonic oscillator coherent state can be justified.

State resolved differential cross-sections for H2O in collisions with 46-eV

protons in the center of mass were deduced [50] from time-of-flight energy loss

spectra. The vibrational states are labeled ½n1; n2; n3�, where n1 denotes the

number of quanta in the symmetric stretch mode, and n2 and n3, similarly

denote the bending and asymmetric stretch, respectively. The experimental

analysis assumes that the progressions ½n1; 0; 0� and ½n1; 1; 0� are the principal

final states of the water molecules. This assumption is corroborated by our

calculations. We show in Figure 4 the total differential cross-section for vibra-

tional excitation (NT) and the state-resolved differential cross-sections for

[0; 0; 0], [0; 1; 0], and [1; 0; 0]. The experimental energy resolution is such that it

is not possible to distinguish between the symmetric and asymmetric stretching

modes, so only one stretching mode is considered and denoted by n1.

The generalized Prony analysis of END trajectories for this system yield total

and state resolved differential cross-sections. In Figure 5, we show the results.

The theoretical analysis, which has no problem distinguishing between the

symmetric and asymmetric stretch, shows that the asymmetric mode is only

excited to a minor extent. The corresponding state resolved cross-section is

about two orders of magnitude less than that of the symmetric stretch.

Figure 3. State resolved differential cross-section versus laboratory scattering angle for

vibrational excitation of hydrogen molecules into state n ¼ 4 in single collisions with 30-eV protons.
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Figure 4. The experimental [50] total and three-state resolved differential cross-sections of

vibrational excitations of the water molecule in collisions with 46-eV protons.

Figure 5. The theoretical total and state resolved differential cross-sections of vibrational

excitations of water molecules in collisions with 46-eV protons.
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One reason that the symmetric stretch is favored over the asymmetric one

might be the overall process, which is electron transfer. This means that most of

the END trajectories show a nonvanishing probability for electron transfer and

as a result the dominant forces try to open the bond angle during the collision

toward a linear structure of H2Oþ. In this way, the totally symmetric bending

mode is dynamically promoted, which couples to the symmetric stretch, but not

to the asymmetric one.

Also, rotational state resolution of cross-sections can be obtained by

employing a coherent state analysis [51] for the situation of weak coupling

between rotational and vibrational degrees of freedom. A suitable rotational

coherent state can be expressed as

ja; b; g; d; E; zi ¼ e�z=2
X
IMK

DI
MIða; b; 0ÞDI

KIð�g; d; EÞ
z1=2ffiffiffiffi

I!
p jIMKi ð62Þ

where DI
MKða; b; gÞ ¼ e�iaMdI

MKe�igK are rotational matrices [52], and where the

angle parameters are related to the average values of the body fixed L and space-

fixed J angular momentum components calculated with this coherent state, that

is,

hLxi ¼ z cos g sin d hJxi ¼ z cosasinb

hLyi ¼ z sin g sind hJyi ¼ z sina sinb

hLzi ¼ z cos d hJzi ¼ z cosb

ð63Þ

and

hL2i ¼ hJ2i ¼ zðzþ 2Þ ð64Þ

From these relations it follows that z is related to the angular momentum

modulus, and that the pairs of angle a; b and g; d are the azimuthal, and the polar

angle of the hJ2i and the hL2i vector, respectively. The angle E is associated with

the relative orientation of the body-fixed and space-fixed coordinate frames. The

probability to find the particular rotational state jIMKi in the coherent state is

PIMKðz; b; dÞ ¼ ½dI
MIðbÞ�

2½dI
KI �

2 z
I

I!
e�z ð65Þ

The use of the rotational coherent state is then analogous to the use of the

vibrational coherent state and can be used to study rotational state resolved

properties. We note that the resolution of the identity applies here as well, that is,

X1
I¼ 0

XI

M¼�I

XI

K¼�I

PIMKðz; b; dÞ ¼ 1 ð66Þ
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Final state analysis is where dynamical methods of evolving states meet the

concepts of stationary states. By their definition, final states are relatively long

lived. Therefore experiment often selects a single stationary state or a statistical

mixture of stationary states. Since END evolution includes the possibility of

electronic excitations, we analyze reaction products in terms of rovibronic states.

C. Intramolecular Electron Transfer

Minimal END has also been applied to a model system for intramolecular

electron transfer. The small triatomic system LiHLi is bent C2v structure. But the

linear structure presents an unrestricted Hartree–Fock (UHF) broken symmetry

solution with the two charge localized structures

Li��H��Liþ Ð Liþ��H��Li ð67Þ

These charge-transfer structures have been studied [4] in terms a very limited

number of END trajectories to model vibrational induced electron transfer. An

electronic 3-21Gþ basis for Li [53] and 3-21G for H [54] was used. The

equilibrium structure has the geometry with a long Li(2)��H bond (3.45561 a.u.)

and a short Li(1)��H bond (3.09017 a.u.). It was first established that only the

Li��H bond stretching modes will promote electron transfer, and then initial

conditions were chosen such that the long bond was stretched and the short

bond compressed by the same (%) amount. The small ensemble of six

trajectories with 5.6, 10, 13, 15, 18, and 20% initial change in equilibrium bond

lengths are sufficient to illustrate the approach.

The END approach to electron-transfer processes is quite different from the

current paradigm of Marcus theory, which due to its conceptual simplicity has

guided much theoretical and experimental development. Introduced in the late

1950s [55], this theory has been extensively reviewed, revised, and extended

[56–59]. This approach is characterized by the assumptions that there is a

reaction coordinate that the reactants travel to the products and that there is a

coupling H12 between the donor and acceptor states. Figure 6 shows a typical

picture of participating adiabatic and diabatic states along a reaction coordinate

for normal electron transfer according to the Marcus theory. END by its very

nature constructs dynamical trajectories in wave function phase space, including

the electronic degrees of freedom, from which transition probabilities are

obtained. In this approach, there is no need to break the transfer process into two

separate steps, that is geometry change and electronic transition. Instead END

describes the full evolution and the coupling of these two aspects of the process.

Initiation of electron transfer is accomplished by simply distorting the molecule

and letting the system evolve in time.

A simple measure of the electron density distribution over the participating

atoms is the Mulliken population [60]. For linear Li��H��Li the alpha spin is
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arbitrarily chosen in excess in the single determinantal electronic state. In

Figure 7, the alpha Mulliken populations are shown for the six END trajectories

over 10,000 a.u. of time.

A transfer rate constant can be obtained by applying a Boltzmann

distribution, and by writing the concentration of reactant present as

XðtÞ ¼
X

n

eEn=kT PnðtÞ ð68Þ

Figure 6. Diabatic and corresponding adiabatic potential energy along a relevant reaction

coordinate for normal electron transfer.

Figure 7. Alpha Mulliken population on Li(2) as functions of time for different initial

conditions.
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where En is the energy above the ground state and Pn the probability of electron

transfer for initial state n. The electron transfer in this case is effectively a one-

electron process and since for such a case the transfer probability is directly

related to the Mulliken population one may write

PnðtÞ ¼ 2� 2MnðtÞ=Mmax
n ð69Þ

where Mn is the alpha Mulliken population on Li(2) for initial state n, and Mmax
n

is the maximum value of this population. In this case, Mmax
N ¼ 2 and Pn becomes

a number between 0 and 1 yielding the probability that an electron will move

from Li(2) to Li(1).

The small statistical sample leaves strong fluctuations on the timescale of the

nuclear vibrations, which is a behavior typical of any detailed microscopic

dynamics used as data for a statistical treatment to obtain macroscopic

quantities.

However, as can be seen from Figure 8 a simple exponential expected from

first-order kinetics can be fitted to the data yielding a limiting concentration of

0.005, and a rate constant of 0.0003 a.u., which translates to 1:25� 1013 s�1 at

300 K.

References
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I. INTRODUCTION

Knowledge of the underlying nuclear dynamics is essential for the classification

and description of photochemical processes. For the study of complicated

systems, molecular dynamics (MD) simulations are an essential tool, providing

information on the channels open for decay or relaxation, the relative popula-

tions of these channels, and the timescales of system evolution. Simulations are

particularly important in cases where the Born–Oppenheimer (BO) approxima-

tion breaks down, and a system is able to evolve non-adiabatically, that is, in

more than one electronic state.

In this chapter, we look at the techniques known as direct, or on-the-fly,

molecular dynamics and their application to non-adiabatic processes in

photochemistry. In contrast to standard techniques that require a predefined

potential energy surface (PES) over which the nuclei move, the PES is provided

here by explicit evaluation of the electronic wave function for the states of

interest. This makes the method very general and powerful, particularly for the

study of polyatomic systems where the calculation of a multidimensional

potential function is an impossible task. For a recent review of standard non-

adiabatic dynamics methods using analytical PES functions see [1].

Direct dynamics methods are, however, still in their infancy, and have a

number of difficulties that need to be solved. One is the sheer size of the

problem—all nuclear and electronic degrees of freedom are treated explicitely.

A second is the restriction placed on the form of the nuclear wave function as a

local, trajectory-based, representation is required. This introduces the problem

of including quantum effects into methods that are often based on classical

mechanics. For non-adiabatic processes, there is the additional complication of

the treatment of the non-adiabatic coupling. In this chapter, we will show how

progress has been made in this new and exciting field, highlighting the different

problems and how they are being solved. Complimentary reviews on applying

direct dynamics to adiabatic problems are given in [2,3].

Interaction with light changes the quantum state a molecule is in, and in

photochemistry this is an electronic excitation. As a result, the system will no

longer be in an eigenstate of the Hamiltonian and this nonstationary state

evolves, governed by the time-dependent Schrödinger equation

i�h
q
qt
�ðR; r; tÞ ¼ ĤðR; rÞ�ðR; r; tÞ ð1Þ
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Central to the description of this dynamics is the BO approximation. This

separates the nuclear and electronic motion, and allows the system evolution to

be described by a function of the nuclei, known as a wavepacket, moving over a

PES provided by the (adiabatic) motion of the electrons.

Coupling between the electronic and nuclear motion can, however, result in

the breakdown of the BO approximation, which leads to an effective coupling

between the adiabatic states of the system, providing pathways for fast, radia-

tionless, electronic transitions. The wavepacket in non-adiabatic systems, as

these are known, must therefore be described as evolving over a manifold of

coupled PES. Non-adiabatic coupling is particularly important in regions where

the PES are degenerate, or near-degenerate, and it can lead to an interesting

topology of the surfaces. Typical features are avoided crossings, where the

surfaces seem to repel one another, or conical intersections, where the surfaces

meet at a point or seam. While avoided crossings are well established in

chemical ideas through the noncrossing rule, it is only in recent years that the

importance of conical intersections in photochemistry has emerged [4–8].

The idea of conical intersections has a long history [9–14]. Their general

acceptance was delayed by the difficulties in conclusively demonstrating their

existence in large molecules, due to the problems in calculating wave functions

for excited states.

If the PES are known, the time-dependent Schrödinger equation, Eq. (1), can

in principle be solved directly using what are termed wavepacket dynamics

[15–18]. Here, a time-independent basis set expansion is used to represent the

wavepacket and the Hamiltonian. The evolution is then carried by the expansion

coefficients. While providing a complete description of the system dynamics,

these methods are restricted to the study of typically 3–6 degrees of freedom.

Even the highly efficient multiconfiguration time-dependent Hartree (MCTDH)

method [19,20], which uses a time-dependent basis set expansion, can handle no

more than 30 degrees of freedom.

For larger systems, various approximate schemes have been developed,

called mixed methods as they treat parts of the system using different levels of

theory. Of interest to us here are quantum-semiclassical methods, which use full

quantum mechanics to treat the electrons, but use approximations based on

trajectories in a classical phase space to describe the nuclear motion. The prefix

quantum may be dropped, and we will talk of semiclassical methods. There are

a number of different approaches, but here we shall concentrate on the few that

are suitable for direct dynamics molecular simulations. An overview of other

methods is given in the introduction of [21].

As mentioned above, the correct description of the nuclei in a molecular

system is a delocalized quantum wavepacket that evolves according to the

Schrödinger equation. In the classical limit of the single surface (adiabatic)

case, when effectively �h! 0, the evolution of the wavepacket density
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(amplitude squared) can be simulated by a ‘‘swarm’’ of trajectories, each driven

by classical (e.g., Newtonian) mechanics. Note that this does not mean that the

nuclei are being treated as classical particles, each is being represented by a set

of classical pseudoparticles that together simulate the behavior of the nucleus.

Methods based on this approximation are sometimes termed quasiclassical.

A different approach is to represent the wavepacket by one or more Gaussian

functions. When using a local harmonic approximation to the true PES, that is,

expanding the PES to second-order around the center of the function, the

parameters for the Gaussians are found to evolve using classical equations of

motion [22–26]. Detailed reviews of Gaussian wavepacket methods are found in

[27–29].

To add non-adiabatic effects to semiclassical methods, it is necessary to

allow the trajectories to sample the different surfaces in a way that simulates the

population transfer between electronic states. This sampling is most commonly

done by using surface hopping techniques or Ehrenfest dynamics. Recent

reviews of these methods are found in [30–32]. Gaussian wavepacket methods

have also been extended to include non-adiabatic effects [33,34]. Of particular

interest here is the spawning method of Martı́nez, Ben-Nun, and Levine [35,36],

which has been used already in a number of direct dynamics studies.

In traditional dynamics calculations, the first step is to find a representation

of the PES. For accurate calculations, this involves fitting a function to ab initio

data, maybe with final adjustments using experimental data. A major hurdle to

the calculation of information about the excited state PES of molecules,

required for a description of photochemistry, is the development of appropriate

quantum chemical methods. Probably the most general method is the complete

active space self-consistent field (CASSCF) method [37]. This is a multi-

configuration self-consistent field (MCSCF) method that uses a full configura-

tion interaction (CI) within an active space of the important molecular orbitals.

As it is an MCSCF method, both the orbitals and the CI coefficients are

optimised. Unlike other, maybe more powerful methods, calculation of analytic

gradients is relatively straightforward using CASSCF, which makes it suitable

for direct dynamics. Although care is needed in its application, accurate results

are possible, particularly when combined with perturbation theory to correct for

the missing so-called dynamic electron correlation [38–41].

Techniques have been developed within the CASSCF method to characterize

the critical points on the excited-state PES. Analytic first and second derivatives

mean that minima and saddle points can be located using traditional energy

optimization procedures. More importantly, intersections can also be located

using constrained minimization [42,43]. Of particular interest for the

mechanism of a reaction is the minimum energy path (MEP), defined as the

line followed by a classical particle with zero kinetic energy [44–46]. Such

paths can be calculated using intrinsic reaction coordinate (IRC) techniques
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[47,48]. For systems in which conical intersections play a role, however, the

concept of an IRC must be extended. Due to the topology of the region more

than one path may be accessible after crossing from the upper electronic state to

the lower one (i.e., the wavepacket may bifurcate). For this situation, the initial

relaxation direction (IRD) method has been developed [49,50] to identify the

open channels on the ground-state PES moving away from the minimum energy

intersection point. The MEP can then be used to explore each channel to the

products. For more information on the study of PES critical points using

quantum chemistry techniques, see the recent reviews [51,52].

An alternative method that can be used to characterize the topology of PES

is the line integral technique developed by Baer [53,54], which uses pro-

perties of the non-adiabatic coupling between states to identify and locate

different types of intersections. The method has been applied to study the

complex PES topologies in a number of small molecules such as H3 [55,56] and

C2H [57].

Information about critical points on the PES is useful in building up a picture

of what is important in a particular reaction. In some cases, usually thermally

activated processes, it may even be enough to describe the mechanism behind a

reaction. However, for many real systems dynamical effects will be important,

and the MEP may be misleading. This is particularly true in non-adiabatic

systems, where quantum mechanical effects play a large role. For example, the

spread of energies in an excited wavepacket may mean that the system finds an

intersection away from the minimum energy point, and crosses there. It is for

this reason that molecular dynamics is also required for a full characterization of

the system of interest.

Calculating points on a set of PES, and fitting analytic functions to them is a

time-consuming process, and must be done for each new system of interest. It is

also an impossible task if more than a few (typically 4) degrees of freedom are

involved, simply as a consequence of the exponential growth in number of ab

initio data points needed to cover the coordinate space.

For this reason, there has been much work on empirical potentials suitable

for use on a wide range of systems. These take a sensible functional form with

parameters fitted to reproduce available data. Many different potentials, known

as molecular mechanics (MM) potentials, have been developed for ground-state

organic and biochemical systems [58–60]. They have the advantages of simpli-

city, and are transferable between systems, but do suffer from inaccuracies and

rigidity—no reactions are possible. Schemes have been developed to correct for

these deficiencies. The empirical valence bond (EVB) method of Warshel

[61,62], and the molecular mechanics–valence bond (MMVB) of Bernardi et al.

[63,64] try to extend MM to include excited-state effects and reactions. The

MMVB Hamiltonian is parameterized against CASSCF calculations, and is thus

particularly suited to photochemistry.
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A further model Hamiltonian that is tailored for the treatment of non-

adiabatic systems is the vibronic coupling (VC) model of Köppel et al. [65].

This provides an analytic expression for PES coupled by non-adiabatic effects,

which can be fitted to ab initio calculations using only a few data points. As a

result, it is a useful tool in the description of photochemical systems. It is also

very useful in the development of dynamics methods, as it provides realistic

global surfaces that can be used both for exact quantum wavepacket dynamics

and more approximate methods.

Direct dynamics attempts to break this bottleneck in the study of MD,

retaining the accuracy of the full electronic PES without the need for an analytic

fit of data. The first studies in this field used semiclassical methods with

semiempirical [66,67] or simple Hartree–Fock [68] wave functions to treat the

electrons. These first studies used what is called BO dynamics, evaluating

the PES at each step from the electronic wave function obtained by solution of

the electronic structure problem. An alternative, the Ehrenfest dynamics

method, is to propagate the electronic wave function at the same time as the

nuclei. Although early direct dynamics studies using this method [69–71]

restricted themselves to adiabatic problems, the method can incorporate non-

adiabatic effects directly in the electronic wave function.

Major impetus in the field was given by the introduction of the Car–

Parrinello method [72–74]. Related to the Ehrenfest dynamics method, this is a

very efficient algorithm that propagates the electronic wave function using a

fictitious mass to produce classical equations of motion for the expansion

coefficients. For full efficiency, however, it requires a plane-wave basis set,

which is inefficient for the description of isolated molecules. Recent work using

Gaussian functions points the way to the solution of this problem [75]. The

method is usually restricted to adiabatic dynamics, although the method has

been applied to excited states using a very simple wave function [76]. We shall

ignore Car–Parrinello methods in the following.

An important step forward in the study of molecular systems was afforded by

the introduction of an efficient propagation algorithm by Helgaker et al. [77]

and further improved by Chen et al. [78]. With the large step-size made possible

by this method it became feasible to simply reevaluate the electronic wave fun-

ction at each step, thus opening up all the power of electronic structure

calculations for direct BO dynamics. By combining the Helgaker–Chen

algorithm with a surface hopping method, a number of dynamics studies of

photochemical systems have been made using the MMVB empirical Hamiltonian

[79–85]. These studies have allowed us to gain much experience in the behavior

of trajectories over coupled PES. The method has then been applied to direct

dynamics study using CASSCF wave functions [86,87].

The Gaussian wavepacket based spawning method, mentioned above, has

also been used in direct dynamics where it is called ab initio multiple spawning
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(AIMS) [88]. The inclusion of quantum effects directly in the nuclear motion

may be a significant step, as the motion near a conical intersection is known to

be very quantum mechanical.

The present state of the art is not able to use direct dynamics to calculate

accurate dynamical properties: For this many trajectories are required, and it is

simply too expensive. Even so, as we shall show, mechanistic information can

be gained directly from the calculations, extending the minimum energy path

picture to include a dynamical term, which is certainly important in the study of

excited molecules. A further use, still to be explored fully, is to use the

information from direct dynamics trajectories to efficiently generate the PES

for more accurate calculations. The ground work for this has been laid by the

work of Collins and co-workers [89–93], who developed a scheme to generate a

PE function by interpolating information on the surface (the energy, and its

first and second derivatives) at a set of points. These points could be generated

by direct dynamics, thus sampling only the areas of configuration space

important for the system dynamics. The accuracy of the method has been

shown recently in state-of-the-art four-dimensional (4D) quantum scattering

calculations [94].

By its nature, the application of direct dynamics requires a detailed

knowledge of both molecular dynamics and quantum chemistry. This chapter is

aimed more at the quantum chemist who would like to use dynamical methods

to expand the tools at their disposal for the study of photochemistry, rather than

at the dynamicist who would like to learn some quantum chemistry. It tries

therefore to introduce the concepts and problems of dynamics simulations,

stressing that one cannot strictly think of a molecule moving along a trajectory

even though this is what is being calculated.

To demonstrate the basic ideas of molecular dynamics calculations, we shall

first examine its application to adiabatic systems. The theory of vibronic

coupling and non-adiabatic effects will then be discussed to define the sorts of

processes in which we are interested. The complications added to dynamics

calculations by these effects will then be considered. Some details of the

mathematical formalism are included in appendices. Finally, examples will be

given of direct dynamics studies that show how well the systems of interest can

at present be treated.

Throughout, unless otherwise stated, R and r will be used to represent the

nuclear and electronic coordinates, respectively. Boldface is used for vectors

and matrices, thus R is the vector of nuclear coordinates with components Ra.

The vector operator $, with components

ra ¼
q

qRa
ð2Þ
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forms the derivative vector when applied to a function, for example,

$V ¼ qV

qR1

;
qV

qR2

; . . .

� �
ð3Þ

If the nuclear coordinates are mass-scaled Cartesian coordinates,

Ra ¼
ffiffiffiffiffiffiffi
Ma
p

xa ð4Þ

where Ma is the mass associated with the coordinate, then the kinetic energy

operator can be written

T̂ ¼
X3N

a¼1

� �h2

2Ma

q2

q2xa
¼ � �h2

2
r2 ð5Þ

The full system Hamiltonian is partitioned so as to define an electronic

Hamiltonian, Ĥel

ĤðR; rÞ ¼ T̂nðRÞ þ ĤelðR; rÞ ð6Þ

Here, T̂n is the nuclear kinetic energy operator, and so all terms describing the

electronic kinetic energy, electron–electron and electron–nuclear interactions,

as well as the nuclear–nuclear interaction potential function, are collected

together. This sum of terms is often called the clamped nuclei Hamiltonian as it

describes the electrons moving around the nuclei at a particular configuration R.

II. ADIABATIC MOLECULAR DYNAMICS

In this section, the basic theory of molecular dynamics is presented. Starting

from the BO approximation to the nuclear Schrödinger equation, the picture of

nuclear dynamics is that of an evolving wavepacket. As this picture may be

unusual to readers used to thinking about nuclei as classical particles, a few

prototypical examples are shown.

In the full quantum mechanical picture, the evolving wavepackets are

delocalized functions, representing the probability of finding the nuclei at a

particular point in space. This representation is unsuitable for direct dynamics as

it is necessary to know the potential surface over a region of space at each point

in time. Fortunately, there are approximate formulations based on trajectories in

phase space, which will be discussed below. These local representations, so-

called as only a portion of the PES is examined at each point in time, have a

classical flavor. The delocalized and nonlocal nature of the full solution of the

Schrödinger equation should, however, be kept in mind.
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In what is called BO MD, the nuclear wavepacket is simulated by a swarm of

trajectories. We emphasize here that this does not necessarily mean that the

nuclei are being treated classically. The difference is in the chosen initial

conditions. A fully classical treatment takes the initial positions and momenta

from a classical ensemble. The use of quantum mechanical distributions instead

leads to a semiclassical simulation. The important topic of choosing initial

conditions is the subject of Section II.C.

Finally, Gaussian wavepacket methods are described in which the nuclear

wavepacket is described by one or more Gaussian functions. Again the

equations of motion to be solved have the form of classical trajectories in phase

space. Now, however, each trajectory has a quantum character due to its spread

in coordinate space.

A. Quantum Wavepacket Propagation

Using the BO approximation, the Schrödinger equation describing the time

evolution of the nuclear wave function, wðR; tÞ, can be written

i�h
q
qt

��wðR; tÞ� ¼ ðT̂N þ VðRÞÞ
��wðR; tÞ

�
ð7Þ

In this picture, the nuclei are moving over a PES provided by the function VðRÞ,
driven by the nuclear kinetic energy operator, T̂N . More details on the derivation

of this equation and its validity are given in Appendix A. The potential function

is provided by the solutions to the electronic Schrödinger equation,

Helðr;RÞ
��cðr;RÞ

�
¼ VðRÞ

��cðr;RÞ
�

ð8Þ

where Hel is the electronic (clamped nucleus) Hamiltonian defined in Eq. (6). In

this equation it must be remembered that R is a parameter defining the nuclear

configuration, and cðr;RÞ an electronic eigenfunction at this configuration. A

PES is thus formed by following one of the roots of this equation (e.g., the second

root for the first excited state) as the nuclear geometry changes. Approximate

solutions to this equation are the results of the standard quantum chemistry

computer packages, such as GAUSSIAN [95], GAMESS [96], MOLCAS [97],

MOLPRO [98], and COLUMBUS [99].

To solve this equation, an appropriate basis set ffaðRÞg is required for the

nuclear functions. These could be a set of harmonic oscillator functions if the

motion to be described takes place in a potential well. For general problems, a

discrete variable representation (DVR) [100,101] is more suited. These functions

have mathematical properties that allow both the kinetic and potential energy
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operators to be easily represented. In coordinate space, they are effectively d
functions, and so the potential can be represented on a grid of points. The wave

function is then expanded in this set

wðR; tÞ ¼
X
a

caðtÞfaðRÞ ð9Þ

and Eq. (7) transformed to a matrix equation,

i�h _v ¼ Hv ð10Þ

where the nuclear function is a vector in the space provided by the basis, that is,

the components are the expansion coefficients ca, and the Hamiltonian matrix

elements are

Hab ¼
�
fa

��T̂N þ VðRÞÞ
��fb

�
ð11Þ

If VðRÞ is known and the matrix elements Hab are evaluated, then solution of

Eq. (10) for a given initial wavepacket is the numerically exact solution to the

Schrödinger equation.

Efficient techniques for the direct solution of Eq. (10) have been developed

using either a DVR or FFT-based method [102] to generate a representation of the

wavepacket and Hamiltonian on a grid in coordinate space [15,16,18,103]. In

principle, the differential equation can be directly solved, using a standard

integrator (predictor–corrector, Runge–Kutte, etc.) to propagate the vector v
forward in time using the time derivative, which is calculated using simple

matrix–vector multiplication. Alternatively, for a time-independent Hamilto-

nian, Eq. (10) can be written in integral form

vðtÞ ¼ exp � i

�h
Ht

� �
wð0Þ ð12Þ

The problem is then reduced to the representation of the time-evolution operator

[104,105]. For example, the Lanczos algorithm could be used to generate the

eigenvalues of H, which can be used to set up the representation of the exponen-

tiated operator. Again, the methods are based on matrix–vector operations, but

now much larger steps are possible.

Unfortunately, the resources required for these numerically exact methods

grow exponentially with the number of degrees of freedom in the system of

interest. Without the use of clever algorithms to optimize the basis set used

[106,107], this limits the range of systems treatable to 4–6 degrees of freedom

(3–4 atoms). For larger systems, the MCTDH method [19,20,108] provides a
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flexible, yet accurate method. This method uses a time-dependent basis set, and

has treated, for example, the dynamics of the pyrazine molecule after

photoexcitation including all 24 vibrational modes and 2 coupled electronic

states [109]. A time-dependent basis is efficient because it follows the

evolving wavepacket, and does not waste effort in describing regions of empty

space. In effect, the semiclassical methods described below are using a set of

classical trajectories or Gaussian wavepackets as a time-dependent basis set.

The connection between the MCTDH basis functions and trajectories has

recently been explored [110], and it has been shown that a set of coupled

trajectories can act as a basis set for full quantum dynamics calculations. The

connection between a time-dependent basis set and the Gaussian wavepacket

methods is more obvious.

Before progressing, it is useful to review the dynamics of typical molecular

systems. We consider three types: scattering (chemical reaction), photodissocia-

tion, and bound-state photoabsorption (no reaction).

The HþH2 ! H2þH hydrogen atom exchange reaction is the simplest

atom–molecule scattering system. Molecules and atoms colliding is a basic step

in chemical reactivity, and much work has been made to understand this system

in all its details [111,112]. As well as experimental work, extensive calculations

have been made using both a time-independent framework [113] and

wavepacket methods [114–116] to obtain fully state resolved cross-sections

for the reaction. This system is best described by Jacobi coordinates, shown in

Figure 1a, and the reaction is dominated by the colinear configuration. The

PES for this configuration (i.e., a cut with y ¼ 0�) has a C-shaped minimum

energy channel, with a saddle point as a transition region at the apex. This is

shown in Figure 2.

The evolution of a wavepacket representing the HþH2 scattering reaction

for a particular set of initial conditions is plotted on Figure 2 as a series of snapshots.

To display the three-dimensional (3D) wavepacket on a two-dimensional (2D)

plot, the reduced density

rðRd;RvÞ ¼
ð2p

0

dy wðRd;Rv; yÞw�ðRd;Rv; yÞ ð13Þ

is plotted. The system stays close to the colinear configuration, and so integrating

over the angular coordinate does not lead to significant loss of information. Note,

however, that the results from a 2D calculation in which the angle is kept fixed

would be different.

In the reactant channel leading up to the transition region, motion along Rd

represents the H atom approaching the molecule, while motion along Rv is the

vibrational motion of the atom. The initial wavepacket is chosen to represent the

desired initial conditions. In Figure 2, the H2 molecule is initially in the ground
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vibrational state, and the atom is located relative to the molecule by a

Gaussian distribution of positions, moving with an initial momentum toward the

molecule. The initial packet is thus close to a product of Gaussian functions.

The quantum mechanical nature of the system means that the wavepacket

possesses a distribution of momenta, and therefore energies. The figure shows

how the wavepacket moves along the reactant channel, and is split as it hits the

energy barrier representing the molecule–atom collision. Part of the packet

moves on into the product channel (hydrogen atom exchange), and part is

reflected back to the reactants (no exchange). The wavepacket can then be

analyzed to obtain information about the transfer of population from the initial

state to the final states over the energies contained in the packet.

A different category of dynamics is found in photodissociation processes, in

which a molecule breaks up after absorbing a photon. A simple example is

found in the NOCl molecule after excitation to the first singlet, S1, state [117].

The molecule is initially in the ground vibrational state on the ground electronic

surface. After the photoexcitation, this nuclear wave function is moved

vertically onto the excited state. The S1 PES as calculated by Schinke et al.

[118] is shown in Figure 3. This is again in Jacobi coordinates, which are shown

in Figure 1b. For the plot the angular coordinate, which plays only a minor role

in the process, is at the ground-state equilibrium value of 127�.
The evolution of the nuclear wavepacket is also traced by a number of

snapshots of the absolute values of the wavepacket, again integrating over the

Figure 1. Coordinates used for describing the dynamics of (a) H þ H2 (b) NOCl, (c)

butatriene. (a), (b) Are Jacobi coordinates, where Rd and Rv are the dissociative and vibrational

coordinates, respectively. (c) Shows the two most important normal mode coordinates, Q5 and Q14

which are the torsional and central C��C bond stretch, respectively.
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Figure 2. Wavepacket dynamics of

the H þ H! H2 þ H scattering reaction,

shown as snapshots of the density (wave

packet amplitude squard) at various times.

The coordinates, in au, are described in

Figure 1a, and the wavepacket is initially

moving to describe the H atom approach-

ing the H2 molecule. The density has been

integrated over the angular coordinate.

The PES is plotted for the collinear

interaction geometry, y¼ 180�.
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angular coordinate. The wavepacket evolves away from its initial Gaussian-like

form down the valley, which leads to direct dissociation. The structure formed in

the wavepacket leads to structure in the absorption spectrum, which is absent if

the angle y is frozen, and is thus due to the flow of energy between the bend and

stretch motions. Even more complicated behavior would be found if the PES

contained a barrier to the dissociation, which would lead to a break up of the

packet.

Figure 3. Wavepacket dynamics of the

photodissociation of NOCl, shown as snap-

shots of the density (wavepacket amplitude

squared) at various times. The coordinates, in

au, are described in Figure 1b, and the

wavepacket is initially the ground-state

vibronic wave function vertically excited

onto the S1 state. Increasing Rd corresponds

to chlorine dissociation. The density has been

integrated over the angular coordinate. The

S1 PES is ploted for the geometry, y¼ 127�,
the ground-state equilibrium value.

368 g. a. worth and m. a. robb



The third major category of processes are dynamics after bound–bound

transitions, such as photoexcitation to a bound state. In Figure 4, the system

dynamics of the butatriene radical cation are shown after excitation from the

neutral molecule ground state to a simple model of the cationic first excited

state, a process related to the first excited band in the photoelectron spectrum.

The dynamics are dominated by two vibrational modes, the central C��C stretch,

labeled Q14 and the torsion, Q5. These coordinates are shown in Figure 1c. In

this simple model, the PES is taken as a harmonic approximation around the

minimum energy point, which is found to be shifted along the Q14 mode. Here,

non-adiabatic effects have been ignored. As will be shown in Section III.D,

there is in fact strong vibronic coupling to the cationic ground state via the

torsional mode, and the true dynamics after excitation into this state is radically

altered. This model is, however, a reasonable representation of a bound state in which

vibronic coupling does not play a role. The systems dynamics in the space of the

two normal modes shown is fairly simple. The initial Gaussian shaped wavepacket

representing the neutral ground-state wave function moves back and forth across

the well, driven by the initial force due to the shifted energy minimum.

For bound state systems, eigenfunctions of the nuclear Hamiltonian can be

found by diagonalization of the Hamiltonian matrix in Eq. (11). These functions

are the possible nuclear states of the system, that is, the vibrational states. If

these states are used as a basis set, the wave function after excitation is a

superposition of these vibrational states, with expansion coefficients given by

the Frank–Condon overlaps. In this picture, the dynamics in Figure 4 can be

described by the time evolution of these expansion coefficients, a simple

phase factor. The periodic motion in coordinate space is thus related to a

discrete spectrum in energy space.

B. Born–Oppenheimer Molecular Dynamics

In a classical limit of the Schrödinger equation, the evolution of the nuclear wave

function can be rewritten as an ensemble of pseudoparticles evolving under

Newton’s equations of motion

M�R ¼ �$V ð14Þ

where VðRÞ is the potential and �R is the second-derivative with respect to time of

the position, that is, the acceleration. They are referred to as pseudoparticle

trajectories as, as explained above, the ensemble might be simulating the motion

of a quantum wavepacket, in which case a single particle is being represented by

a number of pseudoparticles.

This picture is often referred to as ‘‘swarms of trajectories,’’ and details are

given in Appendix B. The nuclear problem is thus reduced to solving Newton’s

equations of motion for a number of different starting conditions. To connect
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Figure 4. Wavepacket dynamics of

photoexcitation, shown as snapshots of the

density (wavepacket amplitude squared)

at various times. The model is a 2D model

based on a single, uncoupled, state of the

butatriene redical cation. The initial struc-

ture represents the neutral ground-state

vibronic wave function vertically excited

onto the ~A state of the radical cation.
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this picture to the delocalized quantum mechanical one, the wavepacket is being

represented by a time-dependent basis set of ‘‘functions’’ that are the points

describing the trajectory of the classical pseudoparticle. The nuclear wave-

packet is then being approximated by a vector, the elements of which are the

populations of the trajectories in the initial ensemble.

The force experienced by a pseudoparticle is simply

FaðRÞ ¼ �raVðRÞ ð15Þ
¼ �rahcðr;RÞjHeljcðr;RÞi ð16Þ

where ra is a component of the derivative operator in coordinate space. The

obvious approach is thus to calculate the electronic wave function at time t, and

then directly calculate the required derivatives. The nuclei can then be pro-

pagated forward a step, and the process repeated. This algorithm is usually

termed BO dynamics, and it was the method used in the first direct dynamics

studies [66–68].

While it is conceptually simple, however, the method suffers from the exp-

ense of requiring the full electronic wave function at each step, for example, by

solving the electronic structure problem using an SCF technique. For the me-

thod to be feasible, a large time-step is therefore required to minimise

the number of these expensive evaluations that need to be made. Classical MD

simulations typically use integration schemes based on either the Gear

predictor-corrector [119] or the Verlet [120] algorithms (see [121] for overview

of these methods, and [122] for other useful integrators). These give reasonable

time-steps with low memory requirements for large systems, and require only

first derivatives of the potential, the forces, at each step.

A different approach comes from the idea, first suggested by Helgaker et al.

[77], of approximating the PES at each point by a harmonic model. Integration

within an area where this model is appropriate, termed the trust radius, is then

trivial. Normal coordinates, Q, are defined by diagonalization of the mass-

weighted Hessian (second-derivative) matrix, so if

D ¼ R� R0 ð17Þ

where R0 is the present position, then

Q ¼ Lm
1
2D ð18Þ

g ¼ Lm�
1
2G ð19Þ

x2 ¼ Lm�
1
2 Hm�

1
2 Ly ð20Þ

where x2 is the (diagonal) matrix of eigenvalues from transforming the mass-

weighted Hessian, H, using the unitary matrix L, and g and G are the forces (first
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derivatives) in the two coordinate sets. The diagonal matrix m contains the

masses associated with each coordinates. If R0 is a minimum on the PES, then x
are the vibrational frequencies, and Q the vibrational modes of the molecule.

In this representation, Newton’s equations of motion separate to 3N � 6

equations

�Qa ¼ �ga � o2
aQa ð21Þ

that have different analytical solutions depending on whether the ‘‘frequency’’ o
is real, zero, or imaginary. These solutions are used to integrate the equations of

motion from R0 to Rt, where t is controlled by the trust radius. This radius

changes, guided by the difference between the information about the PES

calculated at xt, and that estimated from the harmonic model.

This algorithm was improved by Chen et al. [78] to take into account the

surface anharmonicity. After taking a step from R0 to R0t using the harmonic

approximation, the true surface information at R0t is then used to fit a (fifth-

order) polynomial to form a better model of the surface. This polynomial model

is then used in a corrector step to give the new Rt.

The Helgaker–Chen algorithm results in very large steps being possible, and

despite the extra cost of the required second derivatives, this is the method of

choice for direct dynamics calculations. A number of systems have been treated,

and a review of the method as applied to chemical reactions is given in [2].

The gradient of the PES (force) can in principle be calculated by finite

difference methods. This is, however, extremely inefficient, requiring many

evaluations of the wave function. Gradient methods in quantum chemistry are

fortunately now very advanced, and analytic gradients are available for a wide

variety of ab initio methods [123–127]. Note that if the wave function depends

on a set of parameters {l}, for example, the expansion coefficients of the basis

functions used to build the orbitals in molecular orbital (MO) theory,

c � cðR; kÞ ð22Þ

then a component of the force, Fa is

Fa ¼
qV

qRa
þ
X

i

qV

qli

qli

qRa
ð23Þ

where V is defined in Eqs. (15) and (16). If the wave function is derived using a

variational method, then qV=qli ¼ 0. Further, if the basis set is independent of

R, which is the case when it is complete, then Eq. (23) can be used to show that

$hcjĤeljci ¼ hcj$Ĥeljci ð24Þ
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This, the well-known Hellmann–Feynman theorem [128,129], can then be used

for the calculation of the first derivatives. In normal situations, however, the use

of an incomplete atom-centered (e.g., atomic orbital) basis set means that further

terms, known as Pulay forces, must also be considered [130].

C. Choosing Initial Conditions

The time-dependent Schrödinger equation governs the evolution of a quantum

mechanical system from an initial wavepacket. In the case of a semiclassical

simulation, this wavepacket must be translated into a set of initial positions and

momenta for the pseudoparticles. What the initial wavepacket is depends on the

process being studied. This may either be a physically defined situation, such as

a molecular beam experiment in which the particles are defined in particular

quantum states moving relative to one another, or a theoretically defined

situation suitable for a mechanistic study of the type ‘‘what would happen

if . . . .’’

In photochemistry, we are interested in the system dynamics after the

interaction of a molecule with light. The absorption spectrum of a molecule is

thus of primary interest which, as will be shown here, can be related to the

nuclear motion after excitation by the capture of a photon. Experimentally, the

spectrum is given by the Beer–Lambert law

IðzÞ ¼ I0e�srz ð25Þ

where IðzÞ is the intensity of the light, propagated along the z axis, as it changes

from I0 due to absorption by molecules at a density of r. The molecular

interaction with the light is contained here in the cross-section for the capture of a

photon, s, which describes the absorption properties of the sample.

The simplest theoretical description of the photon capture cross-section is

given by Fermi’s Golden Rule

sðoÞ � ojhwf ðRÞjlfiðRÞjwiðRÞij
2dðofi � oÞ ð26Þ

where

lfi ¼ hcf je � djcii ð27Þ

is the transition dipole moment, which connects the initial electronic state, ci, to

the final state, cf , by the component of the molecular dipole moment operator, d,

along the electric field vector of the incident light, e. The delta function ensures

that spectral density is found only when the frequency of the incident light, o,

equals the frequency difference between the initial and final vibronic states,

ofi ¼ of � oi. This expression is valid for the usual light strengths used in
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spectroscopy, which act as a weak perturbation on the molecules. For more

details on the derivation of this expression, and the time-dependent version

below see [131].

Using the Condon approximation, the transition dipole moment is taken to be

a constant with respect to the nuclear coordinates. Equation (26) then reduces to

the familiar expression

sðoÞ � ojhwf ðRÞjwiðRÞij2dðofi � oÞ ð28Þ

where hwf ðRÞjwiðRÞi is called the Frank–Condon factor. The spectral lines thus

appear at a frequency of ofi, with an intensity related to the overlap between

initial- and final-state functions.

To make a clearer connection to the molecular dynamics, this expression can

be transformed to the time domain. In this picture, which was initially deve-

loped by Heller and co-workers [132,133], the absorption spectrum is given by

the expression

sðoÞ � o
ð1
�1

dt eiotCðtÞ ð29Þ

which is the Fourier transform of the autocorrelation function

CðtÞ ¼ hwð0ÞjwðtÞi ð30Þ

It is interesting to note that the use of correlation functions in spectroscopy is an

old topic, and has been used to derive, for example, infrared (IR) spectra, from

classical trajectories [134,135]. Stock and Miller have recently extended this

approach, and derived expressions for obtaining electronic and femtosecond

pump–probe spectra from classical trajectories [136].

Equation (29) directly incorporates our ideas about molecular dynamics after

photoexcitation. The system is initially in a particular state at t ¼ 0, for

example, the ground vibrational state on the ground-state PES. On interacting

with a photon, this state is vertically excited into the upper electronic state, that

is, the electronic state changes while the nuclear function remains unchanged.

Dynamics then takes place with this nuclear wavepacket, no longer an eigen-

function of the Schrödinger equation, driven by the appropriate Hamiltonian.

The examples in Section II.B use this picture. Other functions have been derived

for other spectra, for example, emission and Raman [133].

As it stands, the picture of dynamics from Eq. (29) is derived from the inter-

action of molecules with a continuous light source, that is, the system is at

equilibrium with the oscillating light field. It is also valid if the light source is an

infinitely short laser pulse, as here all frequencies are instantaneously excited.
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Problems arise if a light pulse of finite duration is used. Here, different frequen-

cies of the wave packet are excited at different times as the laser pulse passes,

and thus begin to move on the upper surface at different times, with resulting

interference. In such situations, for example, simulations of femtochemistry

experiments, a realistic simulation must include the light field explicitely [1].

To return to the simple picture of vertical excitation, the question remains as

to how a wavepacket can be simulated using classical trajectories? A classical

ensemble can be specified by its distribution in phase space, rclð p; qÞ, which

gives the probability of finding the system of particles with momentum p and

position q. In contrast, it is strictly impossible to assign simultaneously a

position and momentum to a quantum particle.

A number of procedures have been proposed to map a wave function onto a

function that has the form of a phase-space distribution. Of these, the oldest and

best known is the Wigner function [137,138]. (See [139] for an exposition using

Louiville space.) For a review of this, and other distributions, see [140]. The

quantum mechanical density matrix is a matrix representation of the density

operator

r̂ ¼ j�ðxÞih�ðxÞj ð31Þ

where x is the variable being used here for the system particle coordinates. The

density operator is used to link quantum mechanics to statistical mechanics, and

effects of temperature are easily included via the concept of ‘‘mixed states’’

[141]. In coordinate space the matrix representation of the density operator is

rðx; x0Þ ¼ hxjr̂jx0i ð32Þ

which at x ¼ x0 gives the probability of finding the particle at this point in space.

The Wigner distribution uses the new coordinates q ¼ 1
2
ðxþ x0Þ and s ¼

1
2
ðx� x0Þ along with the momentum, p, conjugate to s to make the transforma-

tion, in one dimension (1D),

rwð p; qÞ ¼
ð1
�1

ds e2ipshqþ sjr̂jq� si ð33Þ

Extension to the multidimensional case is trivial. Wigner developed a complete

mechanical system, equivalent to quantum mechanics, based on this distribution.

He also showed that it satisfies many properties desired by a phase-space

distribution, and in the high-temperature limit becomes the classical distribution.

Note that despite the form this cannot be interpreted as the probability of

finding a particle at a point in phase space, and in fact the function can become

negative. Obtaining rw for a system is also not straightforward. For a harmonic
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oscillator, which can be taken as an approximation to the ground-state vibratio-

nal function, there is, however, an analytic expression

rwð p; q; bÞ ¼ 1

p�h
tanh

1

2
b�ho

� �
exp � 2

�ho
tanh

1

2
b�ho

� �
HHO

	 

ð34Þ

where b ¼ 1=kT is the thermodynamic temperature, and

HHO ¼
1

2m
p2 þ mo

2
q2 ð35Þ

is the harmonic oscillator Hamiltonian. At zero temperature, when only the

ground-vibrational state is occupied this expression becomes

rw ðp; q; bÞ ¼ 1

2p�h
exp � 1

�ho
HHO

	 

ð36Þ

and the distribution is a product of Gaussian functions in p and q.

For many applications, it may be reasonable to assume that the system

behaves classically, that is, the trajectories are real particle trajectories. It is then

not necessary to use a quantum distribution, and the appropriate ensemble of

classical thermodynamics can be taken. A typical approach is to use a

microcanonical ensemble to distribute energy into the internal modes of the

system. The normal-mode sampling algorithm [142–144], for example, assigns

a desired energy to each normal mode, Qa as a harmonic amplitude

Aa ¼
ffiffiffiffiffiffiffiffi
2Ea
p

oa
ð37Þ

where oa is the harmonic frequency. The momentum and initial position are then

sampled by adding a random phase, xa

Qa ¼ Aa cosð2pxaÞ ð38Þ
_Qa ¼ �Aa oa sinð2pxaÞ ð39Þ

After transforming to Cartesian coordinates, the position and velocities must be

corrected for anharmonicities in the potential surface so that the desired energy is

obtained. This procedure can be used, for example, to include the effects of zero-

point energy into a classical calculation.

One of the basic problems in molecular dynamics is how to sample

infrequent events. Typically a reaction must pass over a barrier, and effort would

be wasted if many trajectories are run that do not reach the reactant channel.
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One way to overcome this problem is to start by setting up the ensemble of

trajectories (or wavepacket) at the transition state. If these trajectories are then

run back in time into the reactants region, they can be used to set up the

distribution of initial conditions that reach the barrier. These can then be run

forward to completion, that is, into the products, and by using transition state

theory a reaction rate obtained [145]. These ideas have also been recently

extended to non-adiabatic systems [146].

In a mechanistic study, the aim is not to quantitatively reproduce an

experiment. As a result it is not necessary to use the methods outlined above.

The question here is what drives a reaction in a particular direction, or what

would happen if the molecule is driven in different ways. The initial conditions

are then at the disposal of the investigator to be chosen in a way to answer the

relevant question, using a suitable spread of positions and energies.

D. Gaussian Wavepacket Propagation

A different approach that also leads to a representation of the nuclear wave

function suitable for direct dynamics is to follow the work of Heller on the time

evolution of Gaussian wavepackets. The nuclear wave function in Eq. (7) is

represented by one or more Gaussian functions. Equations of motion for the

parameters defining these functions are then determined, which are found to

have properties that can be related to classical mechanics. The underlying idea

is the observation that a wavepacket with a Gaussian form retains this form

when moving in a harmonic potential, and under these circumstances the

method can be equivalent to full quantum mechanical wavepacket propagation

[147]. In more complicated cases, a harmonic approximation to the true

potential is used, and the method becomes a semiclassical one. The dynamics

shown in Figures 3 and 4 support the idea, as the wavepacket retains a form that

is approximately a distorted Gaussian at all times.

The fundamental method [22,24] represents a multidimensional nuclear

wavepacket by a multivariate Gaussian with time-dependent width matrix, At,

center position vector, Rt, momentum vector, pt, and phase, gt

GðR; tÞ ¼ exp
i

�h
ðR� RtÞT AtðR� RtÞ þ pT

t ðR� RtÞ þ gt

� �
ð40Þ

where the superscript T denotes the transpose of a vector. Note that the width

matrix allows the Gaussian to distort in any direction. The potential surface is

represented by a harmonic expansion about the center point of the wavepacket,

H ¼ �
X3N

a¼1

�h2

2ma

q2

qR2
a
þ Vt þ ðR� RtÞT V0 þ 1

2
ðR� RtÞT V 00ðR� RtÞ ð41Þ
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where Vt;V0, and V00 are the value, first derivative vector, and second derivative

matrix of the potential surface at Rt. This is known as the local harmonic

approximation (LHA). By using this approximate Hamiltonian, equations of

motion for the parameters in Eq. (40) can be obtained using the time-dependent

Schrödinger equation. These are

_Rt ¼ m�1pt ð42Þ
_pt ¼ �V0 ð43Þ

_At ¼ �2At m�1At �
1

2
V00 ð44Þ

_gt ¼ i�h Trðm�1�AtÞ þ pT
t
_Rt � E ð45Þ

where m is the diagonal matrix of masses associated with each coordinate, Tr

denotes the trace over the matrix product, and E ¼ hHðRt; ptÞi is the expectation

value of the Hamiltonian at the center of the packet.

The center of the wavepacket thus evolves along the trajectory defined by

classical mechanics. This is in fact a general result for wavepackets in a

harmonic potential, and follows from the Ehrenfest theorem [147] [see

Eqs. (154,155) in Appendix C]. The equations of motion are straightforward

to integrate, with the exception of the width matrix, Eq. (44). This equation is

numerically unstable, and has been found to cause problems in practical

applications using Morse potentials [148]. As a result, Heller introduced the

P–Z method as an alternative propagation method [24]. In this, the matrix At is

rewritten as a product of matrices

At ¼
1

2
Pt � Z�1

t ð46Þ

with the definition that

_Zt ¼ m�1�Pt ð47Þ

From Eqs. (46), (47), and (44),

_Pt ¼ �V00 � Zt ð48Þ

and so Pt;Zt have the form of equations of motion for a matrix harmonic

oscillator. These new equations are stable and soluble.

The big advantage of the Gaussian wavepacket method over the swarm of

trajectory approach is that a wave function is being used, which can be easily

manipulated to obtain quantum mechanical information such as the spectrum, or

reaction cross-sections. The initial Gaussian wave packet is chosen so that it
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describes the quantum mechanical function as well as possible, rather than

selecting the initial momentum and position, p0;R0, from a phase-space

distribution. A second advantage is the efficiency. Again looking at the

dynamics of Figures 3 and 4 a qualitatively correct result would be expected

propagating a single Gaussian function, a total of N2 þ 2N þ 1 parameters,

where N is the number of degrees of freedom. In contrast, hundreds of

trajectories may be required in the swarm to attain reasonable results.

One drawback is that, as a result of the time-dependent potential due to the

LHA, the energy is not conserved. Approaches to correct for this approximation,

which is valid when the Gaussian wavepacket is narrow with respect to the

width of the potential, include that of Coalson and Karplus [149], who use a

variational principle to derive the equations of motion. This results in replacing

the function values and derivatives at the central point, Vt;V0, and V 00 in Eq. (41),

by values averaged over the wavepacket.

The method will, however, fail badly if the Gaussian form is not a good

approximation. For example, looking at the dynamics shown in Figure 2, a

problem arises when a barrier causes the wavepacket to bifurcate. Under these

circumstances it is necessary to use a superposition of functions. As will be seen

later, this is always the case when non-adiabatic effects are present.

Sawada et al. [26] made a detailed study of the methodology and numerical

properties of the method. They paid particular attention to the problem of using

a superposition of Gaussian wavepackets

wðR; tÞ ¼
X

n

GnðR; tÞ ð49Þ

In earlier work, the Gaussian functions were always taken to be independent of

each other, the independent Gaussian approximation (IGA). Here the case was

also studied for interacting Gaussians, and equations of motion worked out for

the parameters. The minimum energy method (MEM) was used in the derivation,

which like the variational methods used by Coalson and Karplus goes beyond the

LHA approximation. The accuracy of both the IGA and the LHA were then

tested, and found to be inadequate in a few cases. They also dealt with the

problem of how to choose the initial Gaussians, as the flexibility in Eq. (49)

allows many different ways in which the Gaussian parameters can be chosen.

There is of course a balance between flexibility of the wave function (large

numbers of functions) and efficiency (small number of functions). Furthermore,

when using interacting Gaussians it was found that a large number of functions

can lead to numerical instability if the overlap between the functions becomes

too large.

The lack of generality and the numerical problems [150] seem to have

effectively stopped this otherwise attractive and pictorial method. This line of
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investigation has, however, recently been reopened by Burghardt et al. [34], who

have incorporated general Gaussian functions into the MCTDH wavepacket

propagation method. How well this mixed scheme will perform is to be seen.

An alternative to using a superposition of Gaussian functions is to extend the

basis set by using Hermite polynomials, that is, harmonic oscillator functions

[24]. This provides an orthonormal, in principle complete, basis set along the

trajectory, and the idea has been taken up by Billing [151,152]. The basic

problem with this approach is the slow convergence of the basis set.

To deal with the problem of using a superposition of functions, Heller also

tried using Gaussian wave packets with a fixed width as a time-dependent basis

set for the representation of the evolving nuclear wave function [23]. Each

‘‘frozen Gaussian’’ function evolves under classical equations of motion, and

the phase is provided by the classical action along the path

_gt ¼ pt � _Rt � Hð pt;RtÞ ð50Þ

Singly, these functions provide a worse description of the wave function than the

‘‘thawed’’ ones described above. Not requiring the propagation of the width

matrix is, however, a significant simplification, and it was hoped that collectively

the frozen Gaussian functions provide a good description of the changing shape

of the wave function by their relative motions.

Coming from a different line of research, Herman and Klux [25] showed the

relationship between the frozen Gaussian approximation and rigorous semi-

classical mechanics. The initial wave function is represented by a superposition

of an (overcomplete) set of Gaussian functions, which thus cover elements in

phase space. Replacing the quantum mechanical propagator [shown in a matrix

representation in Eq. (12)] by a semiclassical propagator

exp � i

�h
Ĥt

� �
� CðSÞexp

i

�h
S

� �
ð51Þ

where S is the classical action along a path in Eq. (50), and C is a preexponential

factor depending on the action, then leads to a formula for the propagation of a

wave packet in terms of the evolution of the fixed Gaussians. The initial

conditions are taken from the classical phase space, typically using Monte Carlo

integration to sample the space.

The Herman–Kluk method has been developed further [153–155], and used

in a number of applications [156–159]. Despite the formal accuracy of the

approach, it has difficulties, especially if chaotic regions of phase space are

present. It also needs many trajectories to converge, and the initial integration is

time consuming for large systems. Despite these problems, the frozen Gaussian

approximation is the basis of the spawning method that has been applied to
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non-adiabatic systems with much success. This approach is described below in

Section IV.C.

III. VIBRONIC COUPLING AND NON-ADIABATIC EFFECTS

The adiabatic picture developed above, based on the BO approximation, is basic

to our understanding of much of chemistry and molecular physics. For example,

in spectroscopy the adiabatic picture is one of well-defined spectral bands, one

for each electronic state. The structure of each band is then due to the shape of

the molecule and the nuclear motions allowed by the potential surface. This is in

general what is seen in absorption and photoelectron spectroscopy. There are,

however, occasions when the picture breaks down, and non-adiabatic effects

must be included to give a faithful description of a molecular system [160–163].

Non-adiabatic coupling is also termed vibronic coupling as the resulting

breakdown of the adiabatic picture is due to coupling between the nuclear and

electronic motion. A well-known special case of vibronic coupling is the

Jahn–Teller effect [14,164–168], in which a symmetrical molecule in a doubly

degenerate electronic state will spontaneously distort so as to break the

symmetry and remove the degeneracy.

The majority of photochemistry of course deals with nondegenerate states,

and here vibronic coupling effects are also found. A classic example of non-

Jahn–Teller vibronic coupling is found in the photoelectron spectrum of

butatriene, formed by ejection of electrons from the electronic eigenfunctions

(approximately the molecular orbitals). Bands due to the ground ~X2B2g and first

excited ~A2B2u states of the radical cation are found at energies predicted by

calculations. Between the bands, however, is a further band, which was termed

the mystery band [169]. This band was then shown to be due to vibronic

coupling between the states [170].

A different example of non-adiabatic effects is found in the absorption

spectrum of pyrazine [171,172]. In this spectrum, the S1 state is a weak

structured band, whereas the S2 state is an intense broad, fairly featureless band.

Importantly, the fluorescence lifetime is seen to dramatically decrease in the

energy region of the S2 band. There is thus an efficient nonradiative relaxation

path from this state, which results in the broad spectrum. Again, this is due to

vibronic coupling between the two states [109,173,174].

Another example of the role played by a nonradiative relaxation pathway is

found in the photochemistry of octatetraene. Here, the fluorescence lifetime is

found to decrease dramatically with increasing temperature [175]. This can be

assigned to the opening up of an efficient nonradiative pathway back to the

ground state [6]. In recent years, nonradiative relaxation pathways have been

frequently implicated in organic photochemistry, and a number of articles

published on this subject [4–8].
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In this section, the adiabatic picture will be extended to include the non-

adiabatic terms that couple the states. After this has been done, a diabatic

picture will be developed that enables the basic topology of the coupled surfaces

to be investigated. Of particular interest are the intersection regions, which may

form what are called conical intersections. These are a multimode phenomena,

that is, they do not occur in 1D systems, and the name comes from their shape—

in a special 2D space it has the form of a double cone. Finally, a model

Hamiltonian will be introduced that can describe the coupled surfaces. This

enables a global description of the surfaces, and gives both insight and

predictive power to the formation of conical intersections. More detailed review

on conical intersections and their properties can be found in [1,14,65,176–178].

A. The Complete Adiabatic Picture

In Section II, molecular dynamics within the BO approximation was introduced.

As shown in Appendix A, the full nuclear Schrödinger equation is, however,

ðT̂n þ ViÞjwii �
X

j

	̂ijjwji ¼ i�h
q
qt
jwii ð52Þ

Comparison with Eq. (7) shows that the the non-adiabatic operator matrix, 	̂, has

been added. This is responsible for mixing the nuclear functions associated with

different BO PES.

The non-adiabatic operator matrix, K̂ can be written as a sum of two terms; a

matrix of numbers, G, and a derivative operator matrix

	̂ij ¼
�h2

2
Gij þ 2Fij � $

 �

ð53Þ

Both terms on the right are related to the rate of change of the adiabatic electronic

functions with respect to the nuclear coordinates. The first term Gij is given by

Gij ¼
�
cad

i

��r2cad
j

�
ð54Þ

while the second term in Eq. (53) is the dot product of two vectors, the derivative

operator with components

ra ¼
q

qRa
ð55Þ

and the matrix elements with components

Fa
ij ¼

�
cad

i

��rac
ad
j

�
ð56Þ
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Importantly, this term is a derivative (nonlocal) operator on the nuclear

coordinate space.

The matrix G can in fact be expressed in terms of F (see Appendix A),

Gij ¼ $ � Fij þ
X

k

Fik � Fkj ð57Þ

And using this equation the nuclear Schrödinger equation can be written in

matrix form [54,179]

� �h2

2
$þ Fð Þ2þV

	 

v ¼ i�h

q
qt

v ð58Þ

The matrix of vectors F is thus the defining quantity, and is called the non-

adiabatic coupling matrix. It gives the strength (and direction) of the coupling

between the nuclear functions associated with the adiabatic electronic states.

The elements of these vectors can be evaluated using an off-diagonal form of

the Hellmann–Feynmann theorem, which in Cartesian coordinates, xa, is

Fa
ij ¼

1ffiffiffiffiffiffiffi
Ma
p 1

Vj � Vi

hcad
i j

qĤel

qxa
jcad

j i ð59Þ

Nonscaled coordinates are used here to explicitely include the mass to show that

the coupling is modulated by two factors. The first is the mass associated with the

coordinate, Ma (atomic mass in Cartesian coordinates, reduced mass in normal

mode coordinates, etc.), and the larger the mass the smaller the coupling. This is

the basis of the justification for the BO approximation: The mass of the electron

is so much smaller than the mass of the nuclei that the motion of the electrons is

effectively independent of the nuclear motion, and the electrons instantaneously

adjust to the nuclear geometry. The second factor, however, depends inversely on

the energy gap between the adiabatic surfaces. This will overwhelm the mass

factor as the surfaces approach one another, until at a degenerate point the

coupling is infinitely large.

As written, Eq. (52) depends on all the (infinite number of) adiabatic

electronic states. Fortunately, the inverse dependence of the coupling strength

on energy separation means that it is possible to separate the complete set of

states into manifolds that effectively do not interact with one another. In

particular, Baer has recently shown [54] that Eq. (57), and hence Eq. (58) also

holds in the subset of mutually coupled states. This finding has important

consequences for the use of diabatic states explored below.

Choosing a basis set for the nuclear functions ffag allows us to write

Eq. (52) in a matrix form, similar to Eq. (10) for the single-surface case, now as
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a matrix of matrices

H11 H12 � � �
H21 H22 � � �
..
. ..

. . .
.

0
B@

1
CA

v1

v2

..

.

0
B@

1
CA ¼ i�h

_v1

_v2

..

.

0
B@

1
CA ð60Þ

where the indexes of Hij and vi, which relate to the adiabatic electronic states,

run over the states included in the manifold.

The supermatrix notation emphasizes the structure of the problem. Each

diagonal operator drives a wavepacket, just as in the adiabatic case of Eq. (10),

but here the motion of the wavepackets in different adiabatic states is mixed by

the off-diagonal non-adiabatic operators. In practice, a single matrix is built for

the operator, and a single vector for the wavepacket. The operator matrix

elements in the basis set ffag are

Hiið Þab ¼
�
fa

��T̂N þ Vi � 	̂ii

��fb

�
ð61Þ

Hij


 �
ab ¼

�
fa

��� 	̂ij

��fb

�
ð62Þ

which are arranged in the blocks. All the methods mentioned in Section II.B for

wavepacket dynamics can then be used.

B. The Diabatic Picture

The adiabatic picture is the standard one in quantum chemistry for the reason

that, not only is it mathematically well defined, but it is also that used in ab initio

calculations, which solve the electronic Hamiltonian at a particular nuclear

geometry. To see the effects of vibronic coupling on the potential energy

surfaces one must move to what is called a diabatic representation [1,65,180,

181].

In a diabatic representation, the electronic wave functions are no longer

eigenfunctions of the electronic Hamiltonian. The aim is instead that the

functions are so chosen that the (nonlocal) non-adiabatic coupling operator

matrix, 	̂ in Eq. (52), vanishes, and the couplings are represented by (local)

potential operators. The nuclear Schrödinger equation is then written

T̂njwii þ
X

j

Wijjwji ¼ i�h
q
qt
jwii ð63Þ

where W is the new (nondiagonal) potential matrix, and the coupling between

states is now achieved by the off-diagonal elements of this matrix. The adiabatic

surfaces are the eigenfunctions of W.
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The diabatic electronic functions are related to the adiabatic functions by

unitary transformations at each point in coordinate space

/ðRÞ ¼ SðRÞwðRÞ ð64Þ

From the time-dependent Schrödinger equation in the matrix form of Eq. (58), it

can be shown [54] that if SðRÞ is chosen so that

Sy $þ Fð ÞS ¼ 0 ð65Þ

the basis set transformation changes the operators in Eq. (58) to

� �h2

2
Sy $þ Fð Þ2S ¼ � �h2

2
$2 ¼ T ð66Þ

SyVS ¼ W ð67Þ

and the diabatic representation is rigorously equivalent to the adiabatic

representation in the subspace of the coupled states. Baer [53,54] has obtained

solutions to this equation, and analyzed the validity of the transformation in

regions where the non-adiabatic coupling becomes singular. Note that derivative

operators in both terms act on SðRÞ, and so this is not a local transformation.

Note also that the diabatic basis is only defined up to a constant rotation. As a

result, it is possible to select a point at which the diabatic and adiabatic functions

are identical. This simplifies various mathematical manipulations.

Assuming that the diabatic space can be truncated to the same size as the

adiabatic space, Eqs. (64) and (65) clearly define the relationship between

the two representations, and methods have been developed to obtain the trans-

formation matrices directly. These include the line integral method of Baer

[53,54] and the block diagonalization method of Pacher et al. [179]. Failure of

the truncation assumption, however, leads to possibly important nonremovable

derivative couplings remaining in the diabatic basis [55,182].

Difficulties in obtaining the non-adiabatic coupling elements for polyatomic

molecules have lead to the development of alternative approaches to provide the

diabatic representation, typically using states that are smooth in a molecular

property [183]. Although there is no formal justification for this approach, it

seems to work well in practice. Properties used include the dipole moment

[184], or retention of the configurational character from an MCSCF wave

function [185], or maximization of the overlap between wave functions at

neighbouring sites [186]. It has also been shown that the CASSCF method

provides a good framework for the definition of diabatic states [187]. A simple

scheme that removes the leading terms of the non-adiabatic coupling matrices
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using information from the adiabatic surfaces only has also been recently

proposed [188]. For a fuller account of ways to construct diabatic states see [1].

Despite the difficulties in obtaining diabatic states they provide an extremely

useful picture for many descriptive purposes. They are in many ways the natural

choice for dynamics calculations as the kinetic energy operator is diagonal in

this basis, and the singularities associated with the non-adiabatic operator where

the adiabatic surfaces meet are not present. In principle, as the electronic basis

set is only weakly dependent on R, the electronic character of a state is

preserved. The range of properties used to define diabatic states shows the sort

of properties that are conserved within them. A typical example is in electron-

transfer theory, which uses smooth diabatic states to define the donor–acceptor

and charge-transfer states. A more important example in photochemistry is that

photoexcitation in the Condon approximation should be modelled as taking

place vertically to a single diabatic state, as in this picture the transition matrix

element is relatively constant with respect to the nuclear geometry [1].

C. Conical Intersections

For a two-state system, the eigenfunctions of the diabatic potential matrix of

Eq. (63) in terms of its elements are

V� ¼
1

2
ðW11 þW22Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W2 þW2

12

q
ð68Þ

where 
W ¼ 1
2
ðW22 �W11Þ. The functions Vþ and V� are the adiabatic PES,

and they will meet when


W ¼ 0 ð69Þ
W12 ¼ 0 ð70Þ

In Section III.D, we shall investigate when this happens. For the moment,

imagine that we are at a point of degeneracy. To find out the topology of the

adiabatic PES around this point, the diabatic potential matrix elements can be

expressed by a first order Taylor expansion.

Setting the diabatic basis equal to the adiabatic basis at the degenerate point,

R0, the expansions can be written in vector notation as


W ¼ x1 � Q ð71Þ
W12 ¼ x2 � Q ð72Þ

where Q is the vector of nuclear displacements away from the intersection. Note

that the constants in both expansions are zero due to the adiabatic–diabatic
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correspondence at R0. The vectors that form the first-order coefficients are

xa1 ¼
q

qQa

W ð73Þ

xa2 ¼
q

qQa
W12 ð74Þ

evaluated at R0. Also due to the adiabatic–diabatic correspondence at this point,

these can be written as the gradient difference (GD) vector

xa1 ¼
q

qQa
ðVþ � V�Þ ð75Þ

and the derivative coupling (DC) vector

xa2 ¼
�
cad

i

���� qĤel

qQa

����cad
j

�
ð76Þ

This latter relationship is obtained by evaluating

q
qQa
hcijĤeljcji ¼ ci

����Ĥel

���� qcj

qQa

�
þ
�

qci

qQa

����Ĥel

����cj

� �
þ hcij

qĤel

qQa
jcji ð77Þ

at R0. In the diabatic basis, the first two terms on the right are zero. Due once

again to the adiabatic–diabatic correspondence at R0 the third term on the right-

hand side is

hcij
qĤel

qQa
jcji ¼ ðVj � ViÞ

�
cad

i

���� qc
ad
j

qQa

�
ð78Þ

[see Eqs. (130)–(132) in Appendix A]. And so the expansion coefficient vector

lies in the same direction as the adiabatic coupling vector.

The major features of the PES around the degenerate point can now be easily

analysed if we write the vector Q in the basis of ðx1; x2; . . .Þ where the

unspecified n� 2 basis vectors are orthogonal to the ðx1; x2Þ plane, which is

called the branching space. First, moving in the n� 2-dimensional space

orthogonal to the branching space the degeneracy is retained. Second, moving

in the plane of the branching space, the degeneracy will be lifted. Ignoring the

term 1
2
ðW11 þW22Þ, which is the same for both surfaces, the adiabatic PES have

the form

V� � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q
ð79Þ
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where x1; x2 are the components of Q along the respective vectors, and so the

topology of the surfaces around the degenerate point is that of a double cone.

Hence, this is called a conical intersection. A sketch of such a point is given in

Figure 5.

Conical intersections can be broadly classified in two topological types:

‘‘peaked’’ and ‘‘sloped’’ [189]. These are sketched in Figure 6. The peaked case

is the classical theoretical model from Jahn–Teller and other systems where the

minima in the lower surface are either side of the intersection point. As

indicated, the dynamics of a system through such an intersection would be

expected to move fast from the upper to lower adiabatic surfaces, and not return.

In contrast, the sloped form occurs when both states have minima that lie on the

same side of the intersection. Here, after crossing from the upper to lower

surfaces, recrossing is very likely before relaxation to the ground-state

minimum can occur.

A final point to be made concerns the symmetry of the molecular system.

The branching space vectors in Eqs. (75) and (76) can be obtained by evaluating

the derivatives of matrix elements in the adiabatic basis

q
qQa

�
cad

i

��Hel

��cad
j

�
ð80Þ

with i ¼ j required for x1 and i 6¼ j for x2. These elements are only nonzero if the

product of symmetries of the adiabatic functions �i, �j, and the symmetry of

the nuclear coordinate, �Qa contains the totally symmetric irrep

�i � �Qa � �j � Ag ð81Þ

Figure 5. Sketch of a conical intersection. The vectors x1 and x2 are the GD and DC

respectively, that lift the degeneracy of the two adiabatic surfaces. The plane containing these

vectors is known as the branching space.
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If the symmetries of the two adiabatic functions are different at R0, then only a

nuclear coordinate of appropriate symmetry can couple the PES, according to the

point group of the nuclear configuration. Thus if Q are, for example, normal

coordinates, x1 will only span the space of the totally symmetric nuclear

coordinates, while x2 will have nonzero elements only for modes of the correct

symmetry.

D. The Vibronic-Coupling Model Hamiltonian

A more general description of the effects of vibronic coupling can be made

using the model Hamiltonian developed by Köppel, Domcke and Cederbaum

[65]. The basic idea is the same as that used in Section III.C, that is to assume a

quasidiabatic representation, and to develop a Hamiltonian in this picture. It is a

useful model, providing a simple yet accurate analytical expression for the

coupled PES manifold, and identifying the modes essential for the non-adiabatic

effects. As a result it can be used for comparing how well different dynamics

methods perform for non-adiabatic systems. It has, for example, been used to

perform benchmark full-dimensional (24-mode) quantum dynamics calculations

Figure 6. Two-dimensional (top) and 3D (bottom) representations of a peaked (a) and sloped

(b) conical intersection topology. There are two directions that lift the degeneracy: the GD and the

DC. The top figures have energy plotted against the DC while the bottom figures represent the energy

plotted in the space of both the GD and DC vectors. At a peaked intersection, as shown at the bottom

of (a), the probability of recrossing the conical intersection should be small whereas in the case of a

sloped intersection [bottom of (b)], this possibility should be high. [Reproduced from [84] courtesy

of Elsevier Publishers.]
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on the photoabsorption of pyrazine into the S2/S1 manifold [109]. Here it will be

used to demonstrate the effect of a conical intersection on a systems dynamics

using the butatriene radical cation as an example.

The Hamiltonian again has the basic form of Eq. (63). The system is

described by the nuclear coordinates, Q, which are relative to a suitable nuclear

configuration Q0. In contrast to Section III.C, this may be any point in

configuration space. As a diabatic representation has been assumed, the kinetic

energy operator matrix, T, is diagonal with elements

Tii ¼
Xf

a¼1

� �h2

2

q2

qQ2
a

ð82Þ

The potential matrix elements are then obtained by making Taylor expansions

around Q0, using suitable zero-order diabatic potential energy functions,

V
ð0Þ
a ðQÞ.

Wij � V
ð0Þ
i dij ¼ hcijHeljcji þ

Xf

a¼1

q
qQa
hcijHeljcjiQa þ � � � ð83Þ

where the integrals and derivatives are evaluated at the point Q0. The diabatic

functions are again taken to be equal to the adiabatic functions at Q0, and so

Wii ¼ V
ð0Þ
i þ Ei þ

Xf

a¼1

kðiÞa Qa þ � � � ð84Þ

Wij ¼
Xf

a¼1

lðijÞa Qa þ � � � ð85Þ

The model is that the ground-state PES is first altered by the electronic

excitations (on-diagonal coupling leads to a change in equilibrium geometry and

frequency), and these smooth diabatic states are then further altered by vibronic

(off-diagonal) coupling.

The eigenvalues of this matrix have the form of Eq. (68), but this time the

matrix elements are given by Eqs. (84) and (85). The symmetry arguments used

to determine which nuclear modes couple the states, Eq. (81), now play a crucial

role in the model. Thus the linear expansion coefficients are only nonzero if the

products of symmetries of the electronic states at Q0 and the relevant nuclear

mode contain the totally symmetric irrep. As a result, on-diagonal matrix

elements are only nonzero for totally symmetric nuclear coordinates and, if the

electronic states have different symmetry, the off-diagonal elements will only
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be nonzero for a suitable nonsymmetric mode, as given by the product of the

electronic-state symmetries.

For states of different symmetry, to first order the terms 
W and W12 are

independent. When they both go to zero, there is a conical intersection. To

connect this to Section III.C, take Q0 to be at the conical intersection. The

gradient difference vector in Eq. (75) is then a linear combination of the

symmetric modes, while the non-adiabatic coupling vector in Eq. (76) is a linear

combination of the appropriate nonsymmetric modes. States of the same

symmetry may also form a conical intersection. In this case it is, however, not

possible to say a priori which modes are responsible for the coupling. All totally

symmetric modes may couple on- or off-diagonal, and the magnitudes of the

coupling determine the topology.

A conical intersection needs at least two nuclear degrees of freedom to form.

In a 1D system states of different symmetry will cross as Wij ¼ 0 for i 6¼ j and

so when Wii ¼ 0 the surfaces are degenerate. There is, however, no coupling

between the states. States of the same symmetry in contrast cannot cross, as

both Wij and Wii are nonzero and so the square root in Eq. (68) is always

nonzero. This is the basis of the well-known non-crossing rule.

If the states are degenerate rather than of different symmetry, the model

Hamiltonian becomes the Jahn–Teller model Hamiltonian. For example, in

many point groups E � E � E and so a doubly degenerate electronic state can

interact with a doubly degenerate vibrational mode. In this, the E � E Jahn–

Teller effect the first-order Hamiltonian is then [65]

H ¼ ðT þ V0Þ1þ k
Qx Qy

Qy �Qx

� �
ð86Þ

where x; y denote the two components of the degenerate vibrational mode, 1 is

the 2� 2 unit matrix, and the zero-order Hamiltonian

T þ V0 ¼
X
i¼x;y

oi

2
� q2

qQ2
i

þ Q2
i

� �
ð87Þ

is the unperturbed harmonic state (written here in mass-frequency scaled

coordinates). This model results in the splitting of the degeneracy to form a

symmetrical moat around a central conical intersection.

The Hamiltonian provides a suitable analytic form that can be fitted to the

adiabatic surfaces obtained from quantum chemical calculations. As a simple

example we take the butatriene molecule. In its neutral ground state it is a planar

molecule with D2h symmetry. The lowest two states of the radical cation,

responsible for the first two bands in the photoelectron spectrum, are ~X2B2g and
~A2B2u. The vibronic coupling model Hamiltonian is set up using the ground-state
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normal modes, of which there are 15, expanding around the neutral equilibrium

geometry using the harmonic ground state as a zero-order surface. Taking

symmetry into account, to first order these states can only be coupled by a

nuclear degree of freedom with Au symmetry, of which there is only one, the

Figure 7. The PES of the ~X2B2g and ~A2B2u states of the butatriene radical cation. (a) Diabatic

surfaces. (b) Adiabatic surfaces. The surfaces are obtained as eigenfucations of the vibronic coupling

model Hamiltonain that fitted to reproduce quantum chemical calculations. The coordinates are

shown in Figure 1c. See Section III. D for further details.
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torsional motion labeled Q5. Four Ag modes are present, which may have first-

order expansion coefficients on the diagonal of the diabatic potential matrix.

After the parameters for the Taylor expansions are fitted to quantum chemical

calculations [170,190], it is found that only one symmetric mode, the central

C��C stretch Q14, has a significant linear coupling constant, k. Thus this system

can be well described considering only two modes, Q5 and Q14.

In Figure 7a the diabatic surfaces are plotted, that is, the on-diagonal

functions from the potential matrix. These diabatic PES are interlocking

harmonic wells, and they would be the adiabatic surfaces in the absence of non-

adiabatic coupling. Compared to the neutral ground-state surface, the two

minima have been shifted along the totally symmetric coordinate. Now,

including the off-diagonal vibronic coupling term, the adiabatic surfaces change

dramatically. They are plotted in Figure 7b, where the PES has been cut away to

reveal the conical intersection between the two surfaces. Note also that the

minima are now shifted significantly along the torsional, Q5, axis. This

deformation away from the D2h symmetry is thus due to non-adiabatic effects.

In Section II.B, the molecular dynamics was examined after excitation to the
~A state ignoring the coupling to the ~X state, that is, the PES in Figure 4 is the

higher energy diabatic well in Figure 7a. Figure 8 shows the same dynamics

including the non-adiabatic coupling. Starting in the ~A state, the wavepacket is

seen to transfer very fast to the lower ~X state, with the transfer taking place

around the intersection point. Notice the complicated dynamics of the

wavepacket on the lower surface that runs around the double well. After 40 fs,

the wavepacket has returned to the intersection point, and a small recrossing is

seen to the upper surface.

The vibronic coupling model has been applied to a number of molecular

systems, and used to evaluate the behavior of wavepackets over coupled

surfaces [191]. Recent examples are the radical cation of allene [192,193], and

benzene [194] (for further examples see references cited therein). It has also

been used to explain the lack of structure in the S2 band of the pyrazine

absorption spectrum [109,173,174,195], and recently to study the photoisome-

rization of retinal [196].

IV. NON-ADIABATIC MOLECULAR DYNAMICS

As shown above in Section III.A, the use of wavepacket dynamics to study non-

adiabatic systems is a trivial extension of the methods described for adiabatic

systems in Section II.B. The equations of motion have the same form, but now

there is a wavepacket for each electronic state. The motions of these packets are

then coupled by the non-adiabatic terms in the Hamiltonian operator matrix

elements. In contrast, the methods in Section II that use trajectories in phase

space to represent the time evolution of the nuclear wave function cannot be
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Figure 8. Wavepacket dynamics of the butatriene radical cation after its production in the ~A

state, shown as snapshots of the adiabatic density (wavepacket amplitude squared) at various times.

The 2D model uses the coordinates in Figure 1c, and includes the coupled ~A and ~X states. The PES

are plotted in the adiabatic picture (see Fig. 7b). The initial structure represents the neutral ground-

state vibronic wave function vertically excited onto the diabatic ~A state of the radical cation.
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easily extended to systems that evolve in a manifold of coupled electronic

states. For this, we need mixed methods that treat the electronic degrees of

freedom using quantum mechanics, while using the classical or semiclassical

methods for the nuclei.

The standard semiclassical methods are surface hopping and Ehrenfest

dynamics (also known as the classical path (CP) method [197]), and they will be

outlined below. More details and comparisons can be found in [30–32]. The

multiple spawning method, based on Gaussian wavepacket propagation, is also

outlined below. See [1] for further information on both quantum and

semiclassical non-adiabatic dynamics methods.

A. Ehrenfest Dynamics

Both the BO dynamics and Gaussian wavepacket methods described above in

Section II separate the nuclear and electronic motion at the outset, and use the

concept of potential energy surfaces. In what is generally known as the

Ehrenfest dynamics method, the picture is still of semiclassical nuclei and

quantum mechanical electrons, but in a fundamentally different approach the

electronic wave function is propagated at the same time as the pseudoparticles.

These are driven by standard classical equations of motion, with the force

provided by an instantaneous potential energy function

_Ra ¼
Pa

ma
ð88Þ

_Pa ¼ �
q

qRa
hcðr; tÞjHelðRÞjcðr; tÞi ð89Þ

and a time-dependent Schrödinger-like equation for the electronic wave function

i _cðr; tÞ ¼ HelðRÞcðr; tÞ ð90Þ

Note that the Hamiltonian is time dependent due to the time dependence of R.

There is also a phase corresponding to each trajectory

i _A ¼ �hcðr; tÞjHelðRÞjcðr; tÞiA ð91Þ

Details of the derivation of these equations are given in Appendix C.

The expression for the force on the nuclei, Eq. (89), has the same form as the

BO force Eq. (16), but the wave function here is the time-dependent one. As can

be shown by perturbation theory, in the limit that the nuclei move very slowly

compared to the electrons, and if only one electronic state is involved, the two

expressions for the wave function become equivalent. This can be shown by

comparing the time-independent equation for the eigenfunction of Hel at time t
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with the wave function at time t obtained from time-dependent perturbation

theory expression using a suitable slow perturbation due to the nuclear motion.

Apart from a phase factor the two functions are the same (see e.g., [198]). Away

from this limit, however, cðtÞ does not remain an eigenfunction of the electronic

Hamiltonian, and this provides correlation between the electronic and nuclear

motion as the electrons do not instantaneously follow the nuclei.

If more than one electronic state is involved, then the electronic wave

function is free to contain components from all states. For example, for non-

adiabatic systems the electronic wave function can be expanded in the adiabatic

basis set at the nuclear geometry RðtÞ

cðr; tÞ ¼
X

j

cjðtÞcad
j ðr;RðtÞÞ ð92Þ

Setting this into Eq. (90) and multiplying from the left by
�
cad

i ðr;RðtÞÞ
�� then

gives

i�h _ci ¼
X

j

�
cad

i

��HelðRÞ
��cad

j

�
cj � i�h

X
a

_Ra

�
cad

i

���� qc
ad
j

qRa

�
ð93Þ

where the chain rule for the time-derivative operator has been used to take care of

the implicit time dependence (through R) of the adiabatic functions in the

expansion. This can be rearranged to

i�h _ci ¼ ciVi � i�h
X

j

_R � Fijcj ð94Þ

where Fij are the derivative coupling vector matrices defined in Eq. (56). This

expression for the state amplitudes provides a simple measure for the population

(amplitudes squared) of the different adiabatic electronic states at RðtÞ as time

progresses.

This method thus leads to the concept of a mixed-state trajectory. A trajectory

starting on one surface starts to evolve driven by this PES. As the non-adiabatic

coupling increases (the surfaces approach one another), population will be

transferred from the initial state to the other. In a region where the non-adiabatic

coupling is negligible, however, there is no population transfer. Thus if a

trajectory comes out of a region of strong non-adiabatic coupling with

appreciable populations in both states, the trajectory will continue in both states

at the same time.

The mixed-state character of a trajectory outside a non-adiabatic region is a

serious weakness of the method. As the time-dependent wave function does not
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depend on R, the Ehrenfest force in Eq. (89) can be evaluated using the wave

function Eq. (92) by�
cðtÞ

��$Hel

��cðtÞ� ¼X
ij

c�i cj

�
cad

i

��$Hel

��cad
j

�
ð95Þ

Note that the exact adiabatic functions are used on the right-hand side, which in

practical calculations must be evaluated by the full derivative on the left of

Eq. (24) rather than the Hellmann–Feynman forces. This form has the advantage

that the R dependence of the coefficients, ci, does not have to be considered.

Using the relationship Eq. (78) for the off-diagonal matrix elements of the right-

hand side then leads directly to

_P ¼ �
X

i

cij j2$Vi �
X
i6¼j

c�i cj Vj � Vi


 �
dij ð96Þ

The first term on the right of this equation is the average force from the adiabatic

potential energy surfaces. The second term is a force due to the non-adiabatic

coupling. This mean-field potential is inherent in the method. That it leads to

practical problems can be seen by considering the case of a bound state coupled

to a dissociative state. Non-adiabatic forces will cause the dissociative state to

be populated. The mean-field force, however, gives a bound component to the

experienced potential, which may prevent the trajectory from reaching the

dissociative region. A discussion of this incorrect behavior is found in [199].

B. Trajectory Surface Hopping

The simplest way to add a non-adiabatic correction to the classical BO dynamics

method outlined above in Section II.B is to use what is known as surface

hopping. First introduced on an intuitive basis by Bjerre and Nikitin [200] and

Tully and Preston [201], a number of variations have been developed [202–205],

and are reviewed in [28,206]. Reference [204] also includes technical details of

practical algorithms. These methods all use standard classical trajectories that use

the hopping procedure to sample the different states, and so add non-adiabatic

effects. A different scheme was introduced by Miller and George [207] which,

although based on the same ideas, uses complex coordinates and momenta.

The motivation comes from the early work of Landau [208], Zener [209], and

Stueckelberg [210]. The Landau–Zener model is for a classical particle moving

on two coupled 1D PES. If the diabatic states cross so that the energy gap is

linear with time, and the velocity of the particle is constant through the non-

adiabatic region, then the probability of changing adiabatic states is

P2!1 ¼ exp
�2pH2

12

�hvjF1 � F2j

� �
ð97Þ
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where v is the velocity of the particle, Fi ¼ �dHii=dR is the force on the ith

diabatic surface, and Hij is the Hamiltonian matrix elements in the diabatic basis.

All quantities are evaluated at the crossing point. The result is that for high

velocity, or small diabatic coupling, the probability of staying on a diabatic

surface (changing adiabatic state) approaches 1. The opposite happens for low

velocities and strong couplings.

Stueckelberg derived a similar formula, but assumed that the energy gap is

quadratic. As a result, electronic coherence effects enter the picture, and the

transition probability oscillates (known as Stueckelberg oscillations) as the

particle passes through the non-adiabatic region (see [204] for details).

The basic idea is that non-adiabatic interactions occur in localized regions of

configuration space, where the adiabatic surfaces are close together, and away

from these regions the BO description is a useful one. In the interaction regions,

the non-adiabatic interactions are such that they cause population transfer from

one state to the other. This can be simulated by the trajectory ‘‘hopping’’

from one surface to the other with a certain probability. The ensemble of

trajectories on each state thus simulates the relevant wavepackets, with the

population transfer made by the hopping. The trajectories are driven only by a

single potential surface, which means that they are able to behave suitably in the

asymptotic limit.

In principle, the Landau–Zener formula could be used to calculate a hop

probability for a trajectory, but this is often not practical as it requires

knowledge about the position of the crossing point. Studies [32,211] indicate

instead that the best method for accuracy and simplicity is the fewest switches

algorithm [203]. The aim is that the percentage of trajectories in each state

equals the state populations with a minimum number of transitions occurring to

maintain this. The state populations are provided by integrating the equation for

state amplitudes Eq. (94). Changes in the populations over a time step then

mean that for a two-state system the probability of a trajectory changing out of

state 2 into state 1 is

P2!1 ¼ �
d

dt
log jc2j2 ð98Þ

This expression being set to zero if the right-hand side is negative. The switching

probability is then

g2!1 ¼ P2!1Dt ð99Þ

which achieves the desired result. Notice in particular that no switches occur

when the coupling is weak as then P2!1 � 0.

After a hop has been made, adjustments have to be made to conserve the

energy of a trajectory. There is a variety of ways in which this can be done, but
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the most common way is to rescale the momentum in the direction of the

derivative coupling. This has been justified by semiclassical arguments

[205,212] and experience [213]. Other possibilities include the Miller–George

expression, which is used in [214].

The use of the time-dependent Schrödinger equation to calculate the state

populations means that coherence effects due to the electronic states are

correctly accounted for, although this coherence is lost if many passes through a

non-adiabatic region are made. One drawback of the method is that a double

ensemble of trajectories is required for convergence: One is required for the

initial conditions, and then each initial trajectory requires an ensemble of hops

in the non-adiabatic region to generate good statistics. A second problem is that

situations can arise where not enough energy is available to make a predicted

hop. These aborted hops means that the state populations are not correctly

reflected by the ensemble of trajectories. Despite these problems, the methods

have often given good results.

Formulations have also been made that try to combine the best of the

Ehrenfest and surface hopping methods. These effectively use the mixed-state

approach through a non-adiabatic region, and then force the trajectories to exit

the region on a single surface. This can be achieved, for example, by using a

complex Hamiltonian to project the electronic wave function into a single

adiabatic state after coming out of the non-adiabatic region [199]. Alternatively,

a switching function may be used as in the recently proposed continuous surface

switching algorithm [215], where the function is designed to preserve the

electronic populations over the ensemble of trajectories.

C. Gaussian Wavepackets and Multiple Spawning

The first work on generalizing the Gaussian wavepacket methods to account for

non-adiabatic effects was made by Sawada and Metiu [33]. They used a wave

function described by a single Gaussian function for the nuclear wavepacket in

each electronic state, and derived equations of motion for the Gaussian

parameters that are similar to the Heller equations Eqs. (42)–(45), but include

terms with the non-adiabatic coupling. This direct Gaussian wavepacket

approach has been applied to model systems [216], but the inflexibility of the

wave function form makes it unable to obtain more than qualitative information.

Recently, the method has been extended to use a harmonic oscillator (Gauss–

Hermite) basis set representing the packets on each surface [217], which may

add enough flexibility for reasonable results.

A more comprehensive Gaussian wavepacket based method has been

introduced by Martı́nez et al. [35,36,218]. Called the multiple spawning

method, it has already been used in direct dynamics studies (see

Section V.B), and shows much promise. It has also been applied to adiabatic

problems in which tunneling plays a role [219], as well as the interaction of a
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molecule with an ultrashort laser pulse [220]. The method has two elements.

The first part sets up equations of motion for the nuclear wavepacket using

Gaussian wavepackets as a basis set. The second part is an algorithm to place

basis functions when and where they are required to describe non-adiabatic (or

tunneling) events.

In Section III.A, it was shown that the nuclear wavepacket can be represented

by a packet associated with each electronic state, wi. Each of these packets can

be expanded in a set of Gaussian functions, wðiÞa ,

wiðRÞ ¼
X
a

DðiÞa wðiÞa ðRÞ ð100Þ

where i labels the different electronic states. While the Gaussian functions evolve

along classical trajectories using the Heller equations of motion, Eqs. (42), (43),

(45), equations of motion for the expansion coefficients, D
ðiÞ
a , are obtained from a

variational solution of the Schrödinger equation. For the expansion coefficients

for the wavepacket on the ith state in vector notation these are

_D
ðiÞ ¼ �iS�1½ðHðiiÞ � i _SÞDðiÞ þHðijÞDð jÞ� ð101Þ

H are the Hamiltonian matrices

H
ðijÞ
ab ¼

�
wðiÞa
��Ĥij

��wðjÞb � ð102Þ

where the operators Ĥij in the adiabatic picture are those in Eqs. (61) and (62).

The matrix S is the overlap

Sab ¼
�
wðiÞa
��wðiÞb � ð103Þ

and _S is related to the time evolution of the overlap of the Gaussian functions

_Sab ¼
�
wðiÞa
�� q
qt

��wðiÞb � ð104Þ

The picture here is of uncoupled Gaussian functions roaming over the PES,

driven by classical mechanics. The coefficients then add the quantum

mechanics, building up the nuclear wavepacket from the Gaussian basis set.

This makes the treatment of non-adiabatic effects simple, as the coefficients are

driven by the Hamiltonian matrices, and these elements couple basis functions

on different surfaces, allowing transfer of population between the states. As a

variational principle was used to derive these equations, the coefficients describe

the time dependence of the wavepacket as accurately as possible using the given
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basis, and if the basis is complete at all times the method will deliver the full

quantum wavepacket.

For efficiency the number of Gaussian functions used must be kept as small

as possible, otherwise time spent building and inverting the matrices will

become prohibitive. The big question is where to put the Gaussian functions for

the initially unoccupied state to ensure that they are present in regions of strong

non-adiabatic coupling when required. The multiple spawning method does this

by generating new functions in non-adiabatic regions when required, that is,

when the wavepacket enters the region [218].

For simplicity, imagine that the wavepacket is initially described by a single

Gaussian function, which evolves along a trajectory as in the simple Heller

method. The first problem is to define when it enters a non-adiabatic region. For

a calculation using an adiabatic electronic basis this is done using an effective

non-adiabatic coupling [36]

Heff
ij ðRÞ ¼

�� _R � Fij

�� ð105Þ

For diabatic calculations, the equivalent expression uses the diabatic potential

matrix elements [218]. When the value of this coupling becomes greater than a

pre-defined cutoff, the trajectory has entered a non-adiabatic region. The

propagation is continued from this time, t1, until the trajectory moves out of the

region at time t2.

The time spent in the non-adiabatic region, t2 � t1, is then divided into Ns

equal intervals, where Ns is a predefined parameter. At each interval, a new basis

function is ‘‘spawned’’ (generated) on the PES of the initially unoccupied state.

In line with the practices of surface hopping, the function is placed at the same

position as the parent function, adjusting the momentum along the non-adiabatic

coupling vector to conserve energy. Other possible choices for the function

placement are discussed in [218]. To avoid the linear dependence of spawned

functions, the overlap between the new function and all other basis functions is

calculated and the spawn attempt rejected if an overlap is large. The parameter

Ns thus controls the number of spawned functions. If it is too small the basis set

will be poor, if it is too large, effort will be wasted in generating rejected

functions. Calculations should be converged with respect to this parameter, to

ensure that the coupling is correctly treated.

The parent and spawned functions provide the basis set for the propagation in

the non-adiabatic region, which now needs to be repeated as the evolution of the

coefficients D have not yet been calculated including the new functions. The

new and old functions are propagated back in time to t1, and the equations of

motion solved anew from this point including coupling between all of them.

Any spawned functions that fail to become populated during the passage

through the region of non-adiabatic events are subsequently removed.
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While it is not essential to the method, frozen Gaussians have been used in

all applications to date, that is, the width is kept fixed in the equation for the

phase evolution. The widths of the Gaussian functions are then a further para-

meter to be chosen, although it appears that the method is relatively insensitive

to the choice. One possibility is to use the width taken from the harmonic

approximation to the ground-state potential surface [221].

As usual there is the question of the initial conditions. In general, more than

one frozen Gaussian function will be required in the initial set. In keeping with

the frozen Gaussian approximation, these basis functions can be chosen by

selecting the Gaussian momenta and positions from a Wigner, or other appro-

priate phase space, distribution. The initial expansion coefficients are then

defined by the equation

DðiÞa ¼
X
b

S�1
ab

�
wðiÞb
��wiðt ¼ 0Þ

�
ð106Þ

where S is the overlap matrix for the Gaussian functions associated with the ith

state and wiðt ¼ 0Þ is the initial wavepacket on the ith state.

A technical difference from other Gaussian wavepacket based methods is that

the local harmonic approximation has not been used to evaluate any integrals, but

instead Martı́nez et al. use what they term a saddle-point approximation. This

uses the localization of the functions to evaluate the integrals by

�
wi
a

�� f ðRÞ��w j
b

�
¼
�
wi
a

��w j
b

�
f ð�RÞ ð107Þ

where �R ¼
�
wi
a

��R̂��w j
b

�
is the center of the function overlap [36]. The quality of

this approximation is difficult to ascertain. It does, however, result in significant

simplification as only first derivatives are now required for the propagation

scheme.

In addition to the full multiple spawning (FMS) described here, in which all

basis functions—original and spawned—are coupled, it is also possible to use

simplified versions [222]. One possibility is to ignore coupling between

spawned functions from different initial starting points. A second possibility,

more radical still, is to run trajectories from different starting points independ-

ently of one another. This method, which is closer to the other mixed methods

discussed above that also use independent trajectories, is called the FMS–M

(M for minimal) method [also called the multiple independent spawning (MIS)

method [35]]. It should still produce qualitative correct results with significant

savings of computational effort due to the smaller size of the matrices H and S
involved in the propagation of the expansion coefficients, Eq. (101).
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D. Validation of Mixed Methods

How well do these quantum-semiclassical methods work in describing the

dynamics of non-adiabatic systems? There are two sources of errors, one due to

the approximations in the methods themselves, and the other due to errors in their

application, for example, lack of convergence. For example, an obvious source

of error in surface hopping and Ehrenfest dynamics is that coherence effects due

to the phases of the nuclear wavepackets on the different surfaces are not included.

This information is important for the description of short-time (few femto-

seconds) quantum mechanical effects. For longer timescales, however, this loss

of information should be less of a problem as dephasing washes out this infor-

mation. Note that surface hopping should be run in an adiabatic representation,

whereas the other methods show no preference for diabatic or adiabatic.

A problem in the evaluation of their validity is the lack of exact quantum

mechanical results for realistic systems. One-dimensional models covering a

range of situations have been used to discuss the performance of the Ehrenfest

and surface hopping methods [30,203,205,223]. The results were found to be

generally of good accuracy compared to exact quantum mechanical calcula-

tions. As expected, Ehrenfest dynamics have problems when trajectories are in

mixed states that have very different characteristics. In contrast, surface hopping

suffers when trajectories have to recross a region of non-adiabatic coupling

many times, due to loss of electronic phase coherence.

Truhlar and co-workers have also made studies of the performance of these

two methods applying them to atom–molecule scattering reactions containing

non-adiabatic effects [32,211,213,224]. The reaction studied is for the

quenching of an excited atom by collision with a diatomic, and these references

provide good sources of how to run and analyze semiclassical scattering cal-

culations. Systems both with avoided crossings and conical intersections were

examined. In these cases, qualitative agreement was found between the exact

calculations and all methods tried. The errors in more detailed properties such

as rearrangement channel probabilities are, however, quite large and system

dependent. It seems that the continuous surface switching method [215] shows

promise, being in general more robust and accurate than the other methods [32].

The same test systems have also been used to test the minimal model of the

multiple spawning method, denoted FMS–M, whereby the initial trajectories are

independent [222]. This method was found to perform at least as well as fewest

switches surface hopping.

Other studies have also been made on the dynamics around a conical

intersection in a model 2D system, both for dissociative [225] and bound-state

[226] problems. Comparison between surface hopping and exact calculations

show reasonable agreement when the coupling between the surfaces is weak,

but larger errors are found in the strong coupling limit.
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Müller and Stock [227] used the vibronic coupling model Hamiltonian,

Section III.D, to compare surface hopping and Ehrenfest dynamics with exact

calculations for a number of model cases. The results again show that the

semiclassical methods are able to provide a qualitative, if not quantitative,

description of the dynamics. A large-scale comparison of mixed method and

quantum dynamics has been made in a study of the pyrazine absorption

spectrum, including all 24 degrees of freedom [228]. Here a method related to

Ehrenfest dynamics was used with reasonable success, showing that these

methods are indeed able to reproduce the main features of the dynamics of non-

adiabatic molecular systems.

V. DIRECT DYNAMICS OF NON-ADIABATIC SYSTEMS

In the preceeding sections, the dynamics theory required to study non-adiabatic

systems has been outlined. Now, a review will be made of direct dynamics

studies on such systems in the literature. The number of studies is small, but

growing. A range of photochemical systems have been covered, mostly using

MCSCF electronic wave functions, but semiempirical methods have also been

used to study some large molecules. Studies using the MMVB empirical

Hamiltonian are also included. Although no wave function is explicitely

calculated, the Hamiltonian is a matrix for which the integrals are parametrised

against CASSCF calculations, and the surfaces are calculated on-the-fly from

this matrix rather than from an analytic function. These are thus direct dynamics

studies in the sense that they simulate CASSCF direct dynamics calculations at

a low cost, so enable valuable experience to be gained in this new field.

The aim here is not to give exhaustive descriptions, but to emphasize the

questions being asked and the information obtained. With a few exceptions the

studies are mechanistic in nature, and we will show the additional, sometimes

critical, insight gained over traditional nondynamics studies.

A. Using CASSCF Methods

To use direct dynamics for the study of non-adiabatic systems it is necessary to

be able to efficiently and accurately calculate electronic wave functions for

excited states. In recent years, density functional theory (DFT) has been gaining

ground over traditional Hartree–Fock based SCF calculations for the treatment

of the ground state of large molecules. Recent advances mean that so-called

time-dependent DFT methods are now also being applied to excited states. Even

so, at present, the best general methods for the treatment of the photochemistry

of polyatomic organic molecules are MCSCF methods, of which the CASSCF

method is particularly powerful.
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MCSCF methods describe a wave function by the linear combination of M

configuration state functions (CSFs), �K , with CI coefficients, CK ,

�ðrÞ ¼
XM

K¼1

CK�K ð108Þ

In practice, each CSF is a Slater determinant of molecular orbitals, which are

divided into three types: inactive (doubly occupied), virtual (unoccupied), and

active (variable occupancy). The active orbitals are used to build up the various

CSFs, and so introduce flexibility into the wave function by including

configurations that can describe different situations. Approximate electronic-

state wave functions are then provided by the eigenfunctions of the electronic

Hamiltonian in the CSF basis. This contrasts to standard HF theory in which only

a single determinant is used, without active orbitals. The use of CSFs, gives the

MCSCF wave function a structure that can be interpreted using chemical pictures

of electronic configurations [229]. An interpretation in terms of valence bond

structures has also been developed, which is very useful for description of a

chemical process (see the appendix in [230] and references cited therein).

The MCSCF method then optimizes both the molecular orbitals, represented

as usual in SCF calculations by linear combinations of atomic orbitals (LCAO),

and the CI expansion coefficients to obtain the variational wave function for one

state. The optimization of the orbitals for a particular state, however, will not

converge if a degeneracy, or a near degeneracy, of states is present, as the wave

function will have problems following a single state. To overcome this, state-

averaged orbitals (SA–MCSCF) must be used [231,232]. Rather than optimizing

a single eigenvalue of the Hamiltonian matrix, an averaged energy function is

used so that the orbitals describe all the states of interest simultaneously to the

same accuracy.

CASSCF is a version of MCSCF theory in which all possible configurations

involving the active orbitals are included. This leads to a number of simpli-

fications, and good convergence properties in the optimization steps. It does,

however, lead to an explosion in the number of configurations being included,

and calculations are usually limited to 14 electrons in 14 active orbitals.

A simple example would be in a study of a diatomic molecule that in a

Hartree–Fock calculation has a bonded s orbital as the highest occupied MO

(HOMO) and a s� lowest unoccupied MO (LUMO). A CASSCF calculation

would then use the two s electrons and set up four CSFs with single and double

excitations from the HOMO into the s� orbital. This allows the bond

dissociation to be described correctly, with different amounts of the neutral

atoms, ion pair, and bonded pair controlled by the CI coefficients, with the

optimal shapes of the orbitals also being found. For more complicated systems
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the orbitals involved in a particular process must be selected and included in the

captive space. This is both the strength and weakness of the method. Only the

important orbitals are used, so accurate calculations can be made relatively

cheaply. If the active space is, however, badly chosen, this may lead to

qualitatively incorrect results due to imbalances in the basis set.

Importantly for direct dynamics calculations, analytic gradients for MCSCF

methods [124–126] are available in many standard quantum chemistry

packages. This is a big advantage as numerical gradients require many evalua-

tions of the wave function. The evaluation of the non-Hellmann–Feynman

forces is the major effort, and requires the solution of what are termed the

coupled-perturbed MCSCF (CP–MCSCF) equations. The large memory

requirements of these equations can be bypassed if a direct method is used

[233]. Modern computer architectures and codes then make the evaluation of

first and second derivatives relatively straightforward in this theoretical

framework.

Using MCSCF methods it is also possible to obtain the non-adiabatic

coupling terms using analytic procedures [232,234,235]. SA–MCSCF must

again be used in the calculation of the non-adiabatic coupling elements, as the

functions for the two states must be described to the same level of accuracy. One

important point to note is that the derivative coupling matrix elements contain a

relative phase between the functions of the coupled states that must remain

continuous along a trajectory. It is possible that standard computer packages

ignore this phase, as it is not important for static properties, resulting in a

random phase being generated as the geometry is changed. This can be

eliminated by comparison between orbitals at neighboring steps [236].

1. The MMVB Method

The present high cost of full CASSCF direct dynamics means that it is not

possible to use such calculations to run large numbers of trajectories. As a result

it cannot be used to build up experience of the types of effects to be found in

dynamical studies of organic photochemistry, and in their interpretation. This

problem can be remedied by performing calculations using the MMVB force

field [63,64].

MMVB is a hybrid force field, which uses MM to treat the unreactive

molecular framework, combined with a valence bond (VB) approach to treat the

reactive part. The MM part uses the MM2 force field [58], which is well adapted

for organic molecules. The VB part uses a parametrized Heisenberg spin

Hamiltonian, which can be illustrated by considering a two orbital, two electron

description of a sigma bond described by the VB determinants

jfað1Þ�fbð2Þj jfbð1Þ�fað2Þj ð109Þ
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The Hamiltonian in the basis set of these configurations is

Hs ¼
Qab Kab

Kab Qab

����
���� ð110Þ

where Qab and Kab are the usual Coulomb and exchange integrals in the atomic

basis. The eigenvalues and eigenfunctions of this determinant are the ground-

state singlet and excited-state triplet functions. If the integrals are fitted as

functions of bond length to the full CASSCF values, then this Hamiltonian can be

used as a model of the PES. Adding many determinants, a model Hamiltonian for

a complicated molecular system can be built up.

The method has been validated by comparison against full CASSCF

calculations for a number of systems (see references below and the references

cited therein). In general, the topology of the surface is faithfully reproduced,

although the energetics may sometimes differ. Dynamics calculations have been

made using this force field on a number of systems. In most cases, a simple

surface hopping model, based on the fewest switches method described above,

was used. A trajectory is propagated on the initial (upper) surface until the state

population, calculated by solving Eq. (94), approaches a value of 0.5, when an

unconditional hop is made. No return hop was then considered. The initial

conditions were chosen by adding random energy, up to a given threshold, to the

normal modes. This gives a wavepacket character to the set of trajectories.

For the mechanistic studies made, this protocol is able to give information

about how dynamical properties affect the evolution of a photochemical

reaction, but is not accurate enough for quantitative results. The information

obtained relates to aspects of the surface such as the relative steepness of

regions on the lower slopes of the conical intersection, and the relative width of

alternative channels.

The first study was made on the benzene molecule [79]. The S0/S1

photochemistry of benzene involves a conical intersection, as the fluorescence

vanishes if the molecule is excited with an excess of 3000 cm�1 of energy over

the excitation energy, indicating that a pathway is opened with efficient

nonradiative decay to the ground state. After irradiation, most of the molecules

return to benzene. A low yield of benzvalene, which can lead further to fulvene,

is, however, also obtained.

Calculations indicate that the S1 surface does have a conical intersection

leading to the ground state [237], as well as a minimum. The starting point for

the trajectories was then taken as halfway between the minimum and the lowest

energy conical intersection point, and the vector connecting these points taken

as the reaction coordinate. Various trajectories were started with different

random sampling of the normal modes orthogonal to the reaction path, and

adding different excess energy in the form of momentum along this path.
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Trajectories with low excess energies do not reach the conical intersection,

but are trapped in the S1 minimum and lead to fluorescence. Increasing the

excess energy leads to nonradiative transfer to the ground state, seen by hops on

the trajectory, which indicates quenching of the fluorescence. Interestingly,

higher excess energies lead to a higher proportion of benzvalene being formed

after crossing between the states. Increasing the width of a packet, however,

leads to a decrease of benzvalene production. This is related to the fine details of

the intersection topology, the benzvalene structure is on a narrow plateau, and

by spreading the wavepacket or reducing the excess energy the wavepacket

‘‘falls off’’ the plateau back into the benzene minimum.

A second study [80] looked at the anomalous fluorescence of azulene (from

S2 rather than S1), which has been known about for many years. Despite a paper

from Beer and Longuet-Higgins [238] suggesting fast S1 ! S0 internal

conversion via an intersection, this system has a long history of measurements

trying to ascertain the mechanism. These conclusively show that the lifetime of

the S1 state is under 1 ps. The MMVB dynamics calculations support these

findings by showing that, not only is there a conical intersection between the

surfaces, but also that a nuclear wave packet would find the intersection within a

single vibrational period. This results in extremely efficient internal conversion.

Trajectories were run from around the Franck–Condon point. Even starting

with no excess energy, that is, at the Franck–Condon point with an initial

momentum of zero, the energy in running down into the S1 minimum is enough

to reach the conical intersection and cross to the ground state. Increasing the

excess energy by sampling the normal modes does not change the general

picture as they all find the crossing within a vibrational period. It is, however,

found that at higher energies trajectories cross with increasingly large S1–

S0 energy gap. This can be simply understood from the effective increase in

non-adiabatic coupling due to the higher momentum [see Eq. (94)]. These

trajectories are thus crossing near to, but not at, the conical intersection.

The dynamics after excitation of fulvene similarly shows that high-energy

starting points can cross away from the minimum energy conical intersection

point [81]. The ground-state equilibrium structure is planar. The S1 surface has a

double minima on the crossing where the methyl group is rotated perpendicular

to the ring in either direction. Crossing via these minima could thus lead to

cis–trans isomerization. Increased kinetic energy leads, however, to crossing

where the structure remains planar, and so isomerization is not likely to take

place.

A more demanding dynamical study aimed to rationalize the product

distribution in photochemical cycloaddition, looking at butadiene–butadiene

[82]. A large number of products are possible, with two routes on the excited S1

state leading back to channels on the ground state. The results are promising, as

the MMVB dynamics find the major products found experimentally. They also
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indicate that the distributions depend on the initial conditions, and thus altering

the experimental parameters could lead to different product ratios. As the exact

decay path is unknown, it is assumed that the reaction must go through the two

transitions states on S1, and so the initial conditions sampled around these

points. No sampling was made along the transition vector, so the trajectory could

find its own (excess energy dependent) path across the PES to the products.

One transition state involves an intermolecular interaction between the two

butadiene molecules. With low excess energy, half of the trajectories run into

the minimum on the S1 surface (resulting in fluorescence), while the other half

cross to the ground state—most of which ends as 1,3-divinylcyclobutane, with

some unreacted butadiene. Increasing the excess energy leads to a lower rate of

crossing, indicating that the channel from the transition state to the S1 minimum

is wider than that for crossing to S0. The other transition state involves an

intramolecular (bonded) interaction between the butadiene molecules. Over

90% of trajectories now run to the ground state, and 40% end up as the major

photoproducts. These results are fairly independent of initial conditions, due to

the steepness of the PES at the transition state that produces a large kinetic

energy at the crossing point.

The photochemistry of polyenes is another complicated process. The MMVB

dynamics with surface hopping has also been used to study what happens after

photoexcitation in the alternant hydrocarbons C6H8, C8H10, and C12H14 [83]. A

conical intersection has been identified between S1 and S0 that involves an out-

of-plane ��(CH)3�� kink, with four unpaired electrons spread over the three

methyl groups. Two paths have also been identified from this intersection back

to the ground state. One is direct relaxation, with reformation of the ground-

state double bonds. The second is more interesting, and has a plateau with a

p-diradical structure, with a p bond sandwiched between two radical structures,

for example, ðC1����C2��C3Þ���C4����C5��ðC6Þ�. Such structures under the name of

neutral soliton pairs have been used to explain the absorption spectrum in

polyacetylene.

Trajectories starting from structures sampled around the conical intersection

are found to decay by three different mechanisms. The first is direct decay, while the

second and third involve the p-diradical structures. Interestingly, even though

there is no minimum on the PES for these structures, a trajectory can become

locked into this region of configuration space for significant amounts of time—

and in the case of C10H12 up to 1 ps. This stability is seen to be due to motion of

the ��(CH)3�� kink along the chain. ‘‘Locked’’ and ‘‘direct’’ trajectories have

also been found in ground-state dynamics simulations, where they have been

related to statistical and nonstatistical distributions of products, respectively

[239].

The MMVB force field has also been used with Ehrenfest dynamics to

propagate trajectories using mixed-state forces [84]. The motivation for this is
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that surface hopping may not cope too well with situations where trajectories

pass more than once through a non-adiabatic region. Hexatriene and azu-

lene provide two contrasting conical intersections. In the classification of

Atchity et al. [189] (see Fig. 6), the former has a peaked, while the latter has a

sloped topology. The sloped intersection results in multiple passes.

In both cases, about one-third of the trajectories decay directly to the ground-

state. The remaining trajectories form mixed-states before decaying. For

hexatriene, this decay is a steady process. Studying trajectories around the

peaked conical intersection run separately on the two surfaces, the trajectories

on the lower surface leave the non-adiabatic region immediately. On the upper

surface, however, the trajectory stays near this region. As a result, the mixed-

state trajectory is held near the intersection until decay has progressed far

enough for the ground-state surface to dominate and the system moves away. In

contrast, for azulene the population transfer takes place stepwise, each step

corresponding to a recrossing of the non-adiabatic region. Such a stepwise

transfer is compatible with time-resolved measurements [240]. Averaging over

the trajectories produces a biexponential decay, again a behavior observed

experimentally. These calculations support the idea that Ehrenfest dynamics

perform well for bound-state systems—recrossings ensure that the system is not

trapped in a mixed state.

Ehrenfest dynamics with the MMVB method has also been applied to the

study of intermolecular energy transfer in anthryl–naphthylalkanes [85]. These

molecules have a naphthalene joined to a anthracene by a short alkyl��ðCHÞn��
chain. After exciting the naphthalene moiety, if n ¼ 1 emission is seen from

both parts of the system, if n ¼ 3 emission is exclusively from the anthracene.

The mechanism of this energy exchange is still not clear. This system is at the

limits of the MMVB method, and the number of configurations required means

that only a small number of trajectories can be run. The method is also unable to

model the zwitterionic states that may be involved. Even so, the calculations

provide some mechanistic information, which supports a stepwise exchange of

energy, rather than the conventional direct process.

2. Direct Dynamics

The first study in which a full CASSCF treatment was used for the non-adiabatic

dynamics of a polyatomic system was a study on a model of the retinal

chromophore [86]. The cis–trans photoisomerization of retinal is the primary

event in vision, but despite much study the mechanism for this process is still

unclear. The minimal model for retinal is 2-cis-C5H6NHþ2 , which had been

studied in an earlier quantum chemistry study [230]. There, it had been

established that a conical intersection exists between the S1 and S0 states with

the cis–trans defining torsion angle at approximately a ¼ 80� (cis is at 0�). Two
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paths run away from this intersection, leading to either trans (products) or cis

(reactants) isomers.

Four trajectories were run, starting at the Franck–Condon point, varying the

torsion angle a from 0–20�. In all cases, the same behavior was seen. Initial

motion away from the Franck–Condon region involved stretching motion along

the molecular backbone. After � 60 fs, the motion then changes, with energy

being transfered to the torsional mode. This motion then takes the system to the

intersection, and the resulting (diabatic) hop takes the system to the trans

isomer. This dynamic behavior is consistent with calculations on retinal using

semiempirical surfaces [241], and using adiabatic direct dynamics on the

excited state [242]. It also supports the use of low-dimensional models that have

been used in quantum mechanical calculations on retinal [196].

Model systems for cyanine dyes have also been studied [87]. In this case, it is

important to understand the mechanism by which relaxation to the ground-state

occurs so as to design efficient dye molecules, that is, without fast internal

conversion. The simplest model is trans-NH2��(CH)3–NHþ2 . Although this

molecule has a structural similarity to the retinal model investigated above, the

dynamics after photoexcitation are quite different. A trajectory starting from

near the Franck–Condon point is sketched in Figure 9. The initial motion is

dominated by conrotatory torsional motion around the C��C bonds, which after

50 fs changes to disrotatory motion. This last only 20 fs until the molecule

reaches the minima on the S1 surface. Here, the torsion remains twisted at

�104�, and large amplitude motion involving skeletal stretching and pyra-

midalization of a terminal nitrogen atom. The system oscillates in the minima

for � 50 fs, before crossing to the ground-state near the conical intersection.

This crossing leads to the cis conformer, and so isomerization has taken place.

This behavior is consistent with experimental data. For high-frequency

excitation, no fluorescence rise-time and a biexponential decay is seen. The lack

of rise-time corresponds to a very fast internal conversion, which is seen in the

trajectory calculation. The biexponential decay indicates two mechanisms, a

fast component due to direct crossing (not seen in the trajectory calculation but

would be the result for other starting conditions) and a slow component that

samples the excited-state minima (as seen in the trajectory). Long wavelength

excitation, in contrast, leads to an observable rise time and monoexponential

decay. This corresponds to the dominance of the slow component, and more

time spent on the upper surface.

B. Ab Initio Multiple Spawning

The multiple spawning method described in Section IV.C has been applied to a

number of photochemical systems using analytic potential energy surfaces. As

well as small scattering systems [36,218], the large retinal molecule has been

treated [243,244]. It has also been applied as a direct dynamics method,
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combining the basic algorithm with quantum chemical input for the potential

surfaces and non-adiabatic coupling elements, when it is called AIMS.

In contrast to both the surface hopping and Ehrenfest methods, for the

spawning method it is necessary to calculate the full non-adiabatic operator,

Eq. (53), as the equation of motion for the expansion coefficients, Eq. (101)

involves the full Hamiltonian in the matrix elements of H. To simplify the

calculations, the orbital contribution to the derivative coupling was ignored in

the calculation of the non-adiabatic coupling matrix, Fij. The second-order

derivative terms, Gij, were also ignored. In fact, in all studies second-derivative

(Hessian) information was not used. A standard Burlisch–Stoer integrator was

used in place of the Helgaker–Chen algorithm, with step sizes � 0.25 fs. Small

steps of 0.025 fs were required in non-adiabatic regions. The saddle-point

approximation for the evaluation of the matrix elements in the Gaussian basis

set also means that the Hessian is not required for the description of the

potential surface.

Figure 9. Schematic reprsentation of a classical trajectory moving on the S1 and S0 energy

surfaces of the NH2��(CH)3��NHþ2 trans!cis photoisomerization, starting near the planar Franck–

Condon geometry. The geometric coordinates are (a) torsion of the C2��C3 and C3��C4 bonds and

(b) asymmetric stretching coupled with pyramidalization. Both S1 and S0 intersect at a conical

intersection (S1/S0 CI) located near the minimum of the S1 surface (Min-C1) where the C2C3C4N5

torsion angle is 104�. [Reproduced with permission from [87]. Copyright # 2000 Amercian

Chemical Society].
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The first direct dynamics application of the spawning method was on the

collision dynamics of sodium iodide [245,246]. This is a classic diatomic

system in which the lowest two adiabatic electronic states change character on

dissociation. Thus the neutral atoms approach each other on the ground-state,

and when close enough together an electron is exchanged to form the ionic

species. As a 1D nuclear problem this system does not contain a conical

intersection, but the non-adiabatic coupling is still strong where the surfaces

come close together. This is the crossing point, where the electron transfer takes

place.

This system is small enough that the full multiple spawning method, with

coupled trajectories could be applied. The number of spawns, however, was

restricted to one per pass of the intersection. In the system studied, the atoms

cross the non-adiabatic region on their approach. As there is no third body to

remove the energy, after formation of the ionic collision complex the atoms

bounce off the repulsive wall, pass back through the non-adiabatic region, and

separate. Some population is now in the excited state, and so a proportion

separate as ions. The biggest challenge here was to develop a method to

describe the long-range harpoon mechanism that is involved in the electron

exchange. For this a method termed the localized molecular orbital/generalized

valence bond (LMO/GVB) method has been developed, which combines the

pictorial nature of VB theory with the computational efficiency of an MO

method.

The second system studied was the quenching of excited Li(2p) by collision

with H2 [236], which is a simple system for the study of energy transfer. The

electronic wave function was treated using configurations based on Hartree–

Fock molecular orbitals. The orbitals were ‘‘occupation averaged’’, which

means that the lithium valence electron was split between the ground-state

HOMO and LUMO [� the Li (2s) and Li (2p)]. This is a simplified form of the

state averaging used in the SA–CASSCF methods mentioned above, used to

prevent bias of the basis toward the ground state. The singly occupied HOMO

and LUMO then provide the reference configurations. A basis set with all single

excitations from the references were then used as a basis set for the wave

function. As the reference orbitals were not reoptimized this is termed a CAS–

CI rather than a full SA–CASSCF calculation.

There is a sloped conical intersection between the adiabatic states. Thus as

the reactants approach on the upper surface, they are seen to cross to the ground

state, followed shortly afterward by a recrossing to the upper state. The system

is thus only partially quenched, parting still in the excited state. Up to 25 initial

functions were included, and up to 15 functions per state were spawned,

resulting in a large nuclear basis set for the description of the problem.

Interestingly, even though a low-impact energy was used, some trajectories were

found to describe reactions of LiþH2 ! LiHþH.
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After this, Martı́nez and Ben-Nun applied the method to the photoexcitation

of ethylene [88,247]. The lowest energy excitation is the HOMO–LUMO

p! p� transition. These states are labeled N1
þg and V1
þu . Close in energy to

the excited state is also the doubly excited Z1A1. The electronic wave function

was again treated using the occupation averaged orbital reference configurations

for the three states to build a set of single excitation configurations. The lowest

two eigenfunctions of this CI space were then taken to form the surfaces of

interest in the AIMS studies, ignoring any non-adiabatic coupling between V

and Z states.

A number of independent trajectories, with up to 10 spawns each, were run to

study the dynamics after excitation, with the initial conditions taken from the

Wigner distribution. The results shows that initial motion is along the torsional

motion to form the D2d twisted conformation. After a slight lag of 50–250 fs,

this structure starts to distort by pyramidalization of one of the ethylene groups.

Crucially for the system dynamics, this leads to a conical intersection between

S1 and S0. At this point, the system relaxes to the ground-state, but with an

efficiency much less than 100% per pass of the intersection region. Interestingly,

the character of the wave function at this point indicates that in fact the

molecule is in the Z state, which in the distorted structure lies lower than the V.

A study of the ethylene PES using more sophisticated quantum chemical

methods [248] supports the observations from the dynamics that the relaxation

mechanism for this system is not from the twisted structure as conventionally

thought.

In an ambitious study, the AIMS method was used to calculate the absorption

and resonance Raman spectra of ethylene [221]. In this, sets starting with 10

functions were calculated. To cope with the huge resources required for these

calculations the code was parallelized. The spectra, obtained from the auto-

correlation function, compare well with the experimental ones. It was also found

that the non-adiabatic processes described above do not influence the spectra,

as their profiles are formed in the time before the packet reaches the

intersection, that is, the observed dynamic is dominated by the torsional motion.

Calculations using the Condon approximation were also compared to

calculations implicitly including the transition dipole, and little difference

was seen.

C. Other Studies

Jones et al. [144,214] used direct dynamics with semiempirical electronic wave

functions to study electron transfer in cyclic polyene radical cations.

Semiempirical methods have the advantage that they are cheap, and so a

number of trajectories can be run for up to 50 atoms. Accuracy is of course

sacrificed in comparison to CASSCF techniques, but for many organic

molecules semiempirical methods are known to perform adequately.
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The AM1 Hamiltonian with a 2� 2 CAS-CI (two electrons in the space of

the HOMO and LUMO) was used to describe the surfaces and coupling

elements. The electron-transfer process studied takes place on the ground-state,

with the upper state providing ‘‘diabatic effects,’’ that is, passage to this surface

can delay, or even hinder, the transfer process. A surface hopping approach was

used for the dynamics with a Landau–Zener hopping probability and using the

Miller–George correction for the momentum after a hop. The charge distri-

bution was used to describe the positions along the reaction coordinate with

charge localization on the left and right corresponding to reactant and product,

and the symmetric delocalized charge denoting the non-adiabatic region. The

studies used trajectories taken from thermalized ensembles to provide detailed

dynamic information for the transfer processes, and the relationship between

energy gap, electronic coupling between states and rates of transfer.

A final study that must be mentioned is a study by Hartmann et al. [249] on

the ultrafast spectroscopy of the Na3F2 cluster. They derived an expression for

the calculation of a pump–probe signal using a Wigner-type density matrix

approach, which requires a time-dependent ensemble to be calculated after the

initial excitation. This ensemble was obtained using fewest switches surface

hopping, with trajectories initially sampled from the thermalized vibronic

Wigner function vertically excited onto the upper surface.

The process of interest is the photoisomerization taking place via a conical

intersection, which is reached after the breaking of two bonds. The electronic

structure problem was solved using a simplified restricted open-shell Hartree–

Fock (ROHF) procedure, which seems to produce reasonable results for this

system at a low cost, and for which analytic gradients and non-adiabatic

coupling elements are possible. As a result, a connection between the pump–

probe signal and the underlying dynamics could be made. For example,

timescales for the breaking of the two bonds, and for reaching the conical

intersection could be ascertained.

VI. SUMMARY AND CONCLUSIONS

For the understanding of photochemical systems it is necessary to look carefully

at non-adiabatic effects, as these may provide unexpected pathways for efficient

transitions between electronic states. In cases where non-adiabatic coupling is

strong, which is seen as conical intersections or avoided crossings between

adiabatic PES, dynamic effects also need to be considered. This is because

where a system undergoes interstate crossing depends not only on the PES

topology, but on the initial conditions, that is, the spread of momenta and

positions in the wavepacket after the interaction with the light field.

This dependency is seen in the Landau–Zener expression for the probability

of a classical particle changing states while moving through a non-adiabatic
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region, Eq. (97), and in the Ehrenfest dynamics expression for the state

amplitudes, Eq. (94), which both depend on the particle velocity. It is also seen

in the dynamics calculations reviewed in Section V.A, where higher initial

kinetic energy often leads to crossing away from the lowest energy point on an

intersection seam. Where the crossing occurs is important, as this determines

the outcome of a photochemical process—returning to the ground state at

different points may lead to different products.

Full quantum wavepacket studies on large molecules are impossible. This is

not only due to the scaling of the method (exponential with the number of

degrees of freedom), but also due to the difficulties of obtaining accurate

functions of the coupled PES, which are required as analytic functions. Direct

dynamics studies of photochemical systems bypass this latter problem by

calculating the PES on-the-fly as it is required, and only where it is required.

This is an exciting new field, which requires a synthesis of two existing

branches of theoretical chemistry—electronic structure theory (quantum

chemistry) and mixed nuclear dynamics methods (quantum-semiclassical).

Quantum chemical methods, exemplified by CASSCF and other MCSCF

methods, have now evolved to an extent where it is possible to routinely treat

accurately the excited electronic states of molecules containing a number of

atoms. Mixed nuclear dynamics, such as swarm of trajectory based surface

hopping or Ehrenfest dynamics, or the Gaussian wavepacket based multiple

spawning method, use an approximate representation of the nuclear wavepacket

based on classical trajectories. They are thus able to use the information from

quantum chemistry calculations required for the propagation of the nuclei in the

form of forces. These methods seem able to reproduce, at least qualitatively, the

dynamics of non-adiabatic systems. Test calculations have now been run using

direct dynamics, and these show that even a small number of trajectories is able

to produce useful mechanistic information about the photochemistry of a

system. In some cases it is even possible to extract some quantitative infor-

mation.

Many problems still remain, in particular the question of the best dynamics

method is still not clear. Surface hopping is the simplest method, but suffers

from its ad hoc nature—it is not possible to say when it will fail, although the

fewest switched method seems reasonably reliable as long as a non-adiabatic

region is not recrossed. It may also suffer from slow convergence. Ehrenfest

dynamics has some intuitive appeal, and correctly treats electronic coherences

through the non-adiabatic region. The problem of getting stuck in a mixed state

can, however, be serious, although this does not seem to be the case in bound-

state photochemical systems. The continuous surface switching method may

solve this problem. Using Gaussian wavepackets to include some quantum

effects into the nuclear dynamics using multiple spawning also has some

advantages, although the overhead seems to be large.
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Being able to run direct dynamics calculations will add an extra, important,

tool to help chemists understand photochemical systems. This chapter has

outlined the present standpoint of the theory and practice of such calculations

showing that, although much work remains to be done, they are already bringing

new insight to mechanistic studies of photochemistry.

APPENDIX A: THE NUCLEAR SCHRÖDINGER EQUATION

The starting point for the theory of molecular dynamics, and indeed the basis

for most of theoretical chemistry, is the separation of the nuclear and electronic

motion. In the standard, adiabatic, picture this leads to the concept of nuclei

moving over PES corresponding to the electronic states of a system.

In its Cartesian form, the Hamiltonian can be written

ĤðR; rÞ ¼ T̂nðRÞ þ V̂nnðRÞ þ T̂eðrÞ þ V̂eeðrÞ þ V̂enðR; rÞ ðA:1Þ
¼ T̂nðRÞ þ ĤelðR; rÞ ðA:2Þ

where T̂ is the kinetic energy operator, and V̂ the potential energy operator with

subscripts n and e relating to the nuclei and electrons, respectively. The second

line sums together the last four terms of Eq. (A.1) to define the clamped nucleus

electronic Hamiltonian, Ĥel, which depends on both the electronic and nuclear

coordinates.

The separation of nuclear and electronic motion may be accomplished by

expanding the total wave function in functions of the electron coordinates, r,

parametrically dependent on the nuclear coordinates

�ðR; r; tÞ ¼
X

i

wiðR; tÞcad
i ðr;RÞ ðA:3Þ

Further, the time-independent electronic basis functions are taken to be the

eigenfunctions of the electronic Hamiltonian,

Ĥelðr;RÞcad
i ðr;RÞ ¼ Vic

ad
i ðr;RÞ ðA:4Þ

and there is one set of eigenfunctions for each value of R. This is known as the

Born representation [250]. The superscript ad denotes the functions as

‘‘adiabatic.’’

Substituting the expansion Eq. (A.3) in the time-dependent Schrödinger

equation, Eq. (1), and multiplying from the left by the bra hcad
i j leads to

X
j

hcad
i jT̂njcad

j wji þ Vijwii ¼ i�h
q
qt
jwii ðA:5Þ
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Introducing the non-adiabatic operators

	̂ijðRÞ ¼ T̂n � hcad
i jT̂njcad

j i ðA:6Þ
¼ hcad

i j½T̂n; jcad
j i� ðA:7Þ

the time-dependent Schrödinger equation can finally be written as

ðT̂n þ ViÞjwii �
X

j

	̂ijjwji ¼ i�h
q
qt
jwii ðA:8Þ

The familiar BO approximation is obtained by ignoring the operators K̂
completely. This results in the picture of the nuclei moving over the PES

provided by the electrons, which are moving so as to instantaneously follow the

nuclear motion. Another common level of approximation is to exclude the off-

diagonal elements of this operator matrix. This is known as the Born–Huang, or

simply the adiabatic, approximation (see [250] for further details of the possible

approximations and nomenclature associated with the nuclear Schrödinger

equation).

Finally, we shall look briefly at the form of the non-adiabatic operators.

Taking the kinetic energy operator in Cartesian form, and using mass-scaled

coordinates Ra ¼
ffiffiffiffiffiffiffi
Ma
p

xa, where Ma is the nuclear mass associated with the ath

nuclear coordinate,

T̂ ¼
X3N

a¼1

� �h2

2

q2

qR2
a
¼ � �h2

2
r2 ðA:9Þ

the non-adiabatic operators can be written as

	̂ij ¼ �
�h2

2
ðr2 �

�
cad

i

��r2
��cad

j

�
Þ ðA:10Þ

¼ �h2

2
Gij þ 2Fij � $

 �

ðA:11Þ

the expression in Eq. (53) in Section III.A. Both Gij and Fij involve the first and

second derivatives of the adiabatic electronic functions with the nuclear

coordinates

Gij ¼
�
cad

i

��r2cad
j

�
ðA:12Þ

Fa
ij ¼

�
cad

i

��rac
ad
j

�
ðA:13Þ

Note that these matrix elements are numbers, in comparison with the term on the

right-hand side of Eq. (A.10), which involves matrix elements of the second
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derivative operator. Notice also that the product of Fij and $ results in a nonlocal

operator on the nuclear coordinate space.

The elements of the matrix G can be written in terms of F, which is called

the non-adiabatic coupling matrix. For a particular coordinate, a, and dropping

the subscript for clarity,

q
qR

�
cad

i

���� qc
ad
j

qR

�
¼
�
qcad

i

qR

���� qc
ad
j

qR

�
þ
�
cad

i

���� q
2cad

j

q2R

�
ðA:14Þ

As the eigenfunctions form a complete set

�
qcad

i

qR

���� qc
ad
j

qR

�
¼
X

k

�
qcad

i

qR

����cad
k

��
cad

k

���� qc
ad
j

qR

�
ðA:15Þ

and as the derivative operator is anti-Hermitian,

�
cad

i

���� qc
ad
j

qR

�
¼ �

�
qcad

i

qR

����cad
j

�
ðA:16Þ

we obtain

Gij ¼ $ � Fij þ
X

k

Fik � Fkj ðA:17Þ

While this derivation uses a complete set of adiabatic states, it has been shown

[54] that this equation is also valid in a subset of mutually coupled states that do

not interact with the other states.

By using this expression for G, it is possible to write the nuclear Schrödinger

equation (A.8) in matrix form [54,179] as

� �h2

2
$þ Fð Þ2þV

	 

v ¼ i�h

q
qt

v ðA:18Þ

where V is the diagonal potential operator matrix, and v is the vector of nuclear

functions. The first term stands for the product

$þ Fð Þ2¼ r21þ $ � Fþ F � $þ F � F ðA:19Þ

where 1 is the unit matrix.
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The adiabatic coupling matrix elements, Fa
ij, can be evaluated using an off-

diagonal form of the Hellmann–Feynman theorem

q
qR
hcad

i jĤeljcad
j i ¼

�
cad

i

����Ĥel

���� qc
ad
j

qR

�
þ
�
qcad

i

qR

����Ĥel

����cad
j

�
þ hcad

i j
qĤel

qR
jcad

j i

ðA:20Þ

As cad
i and cad

j are eigenvalues of Ĥel at all values of R, this expression at a

particular set of nuclear coordinates reduces to

0 ¼ Vi

�
cad

i

���� qc
ad
j

qR

�
þ
�
qcad

i

qR

����cad
j

�
Vj þ hcad

i j
qĤel

qR
jcad

j i ðA:21Þ

Finally, making use of the anti-Hermitian properties of the derivative operator,

�
cad

i

���� qc
ad
j

qR

�
¼ 1

Vj � Vi

hcad
i j

qĤel

qR
jcad

j i ðA:22Þ

Thus, as the adiabatic PES become degenerate the adiabatic coupling matrix

elements become singular.

APPENDIX B: SWARMS OF TRAJECTORIES

As described above in Appendix A, within the BO approximation the nuclear

Schrödinger equation is

ðT̂n þ VÞjwi ¼ i�h
q
qt
jwi ðB:1Þ

with the nuclear kinetic energy operator given by Eq. (A.9) and the potential

provided by the eigenvalues of the electronic Hamiltonian. Subscripts labeling

the state have been dropped for clarity. Following Bohm [251] and Messiah

[147], it is possible to take a classical limit to this equation in which the nuclear

wave function can be represented by a ‘‘swarm’’ of trajectories.

Making use of the polar representation of a complex number, the nuclear

wave function can be written as a product of a real amplitude, A, and a real

phase, S,

wðRÞ ¼ AðRÞexp
i

�h
SðRÞ

� �
ðB:2Þ
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Inserting this completely general wave function into Eq. (B.1), multiplying by

expð� i
�h SðRÞÞ, and separating the real and imaginary parts leads to

_Sþ ð$SÞ2

2m
þ V ¼ �h2

2m

$2A

A
ðB:3Þ

_Aþ 1

2m
2$S$Aþ A$2S

 �

¼ 0 ðB:4Þ

In the classical limit, �h! 0, and so the right-hand side of Eq. (B.3) can be

ignored. Multiplying Eq. (B.4) by 2A and rearranging, the classical equations of

motion are

_Sþ ð$SÞ2

2m
þ V ¼ 0 ðB:5Þ

ð _A2Þ þ 1

m
$ � ðA2$SÞ ¼ 0 ðB:6Þ

The hydrodynamical analogy now follows by comparing Eq. (B.6) to the

conservation law for a classical fluid

_Pþ $ � J ¼ 0 ðB:7Þ

that is, the rate of change of the density, P, and the divergence of the current

vector, J, is conserved. The quantum fluid ‘‘density’’ is thus defined as

P ¼ A2 ðB:8Þ

and the quantum ‘‘current’’ as

J ¼ 1

m
P$S ðB:9Þ

By using the relationship between the fluid current and its velocity field, J ¼ Pv,

a quantum fluid velocity field of

v ¼ $S

m
ðB:10Þ

Substituting Eq. (B.10) into Eq. (B.5),

_Sþ mv2

2
þ V ¼ 0 ðB:11Þ
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and substituting Eq. (B.10) into the gradient in space of this equation, we obtain

m _vv ¼ �$V ðB:12Þ

This proves that the pseudoparticles in the quantum fluid obey classical mecha-

nics in the classical limit.

APPENDIX C: PROPAGATING THE ELECTRONIC
WAVE FUNCTION

In the classical picture developed above, the wavepacket is modeled by pseudo-

particles moving along uncorrelated Newtonian trajectories, taking the electrons

with them in the form of the potential along the trajectory. In this spirit, a

classical wavepacket can be defined as an incoherent (i.e., noninteracting)

superposition of configurations, wiðR; tÞciðr; tÞ

�ðR; r; tÞ ¼
X

i

AiðtÞwiðR; tÞciðr; tÞ ðC:1Þ

Note that, although there is a resemblance, this ansatz is quite different from the

Born representation of Eq. (A.3) due to the time dependence of the electronic

functions. By taking a single configuration,

�ðR; r; tÞ ¼ AðtÞwðR; tÞcðr; tÞ ðC:2Þ

and inserting this form into the time-dependent Schrödinger equation leads to

equations of motion for the coefficient and the functions.

i _A ¼ �hwcjHeljwciA ðC:3Þ

i _c ¼ hwjHeljwic ðC:4Þ
i _w ¼ Tn þ hcjHeljcið Þw ðC:5Þ

If we assume that w are localized in space, these reduce to

i _A ¼ �hcjHelðRÞjciA ðC:6Þ
i _c ¼ HelðRÞc ðC:7Þ
i _w ¼ Tn þ VðRÞð Þw ðC:8Þ

In a final step, we follow the ideas of Ehrenfest [252], who first looked for

classical structures in the equations of quantum mechanics, and look at the time
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evolution of the expectation values of the nuclear position and momentum

operators. For a general operator, Ô

q
qt
hÔi ¼ �ih½Ô;H�i ðC:9Þ

where hÔi ¼ hwjÔjwi and ½Ô;H� is the commutator of the operator with the

Hamiltonian. Evaluating the commutators ½R̂;H� and ½P̂;H� leads to the

Ehrenfest theorem

q
qt
hR̂i ¼ 1

m
hP̂i ðC:10Þ

q
qt
hP̂i ¼ �

�
qV

qR

�
ðC:11Þ

The localized nature of the nuclear functions means that these reduce to classical

equations of motion

_Ri ¼
Pi

m
ðC:12Þ

_Pi ¼ �
qV

qR

����
R¼Ri

ðC:13Þ

Solving the Eqs. (C.6–C.8,C.12,C.13) comprise what is known as the Ehrenfest

dynamics method. This method has appeared under a number of names and deri-

vations in the literature such as the classical path method, eikonal approximation,

and hemiquantal dynamics. It has also been put to a number of different

applications, often using an analytic PES for the electronic degrees of freedom,

but splitting the nuclear degrees of freedom into quantum and classical parts.

In the derivation used here, it is clear that two approximations have been

made—the configurations are incoherent, and the nuclear functions remain

localized. Without these approximations, the wave function form Eq. (C.1)

could be an exact solution of the Schrödinger equation, as it is in 2D MCTDH

form (in fact is in what is termed a natural orbital form as only ‘‘diagonal’’

configurations are included [20]).
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65. H. Köppel, W. Domcke, and L. S. Cederbaum, Adv. Chem. Phys. 57, 59 (1984).

66. I. Wang and M. Karplus, J. Am. Chem. Soc. 95, 8160 (1973).

67. A. Warshel and M. Karplus, Chem. Phys. Lett. 32, 11 (1975).

68. C. Leforestier, J. Chem. Phys. 68, 4406 (1978).

69. R. Barnett, U. Laudman, and A. Nitzan, J. Chem. Phys. 89, 2242 (1988).

70. A. Selloni, P. Carnevali, R. Car, and M. Parinello, Phys. Rev. Lett. 59, 823 (1987).

71. E. Fois, A. Selloni, M. Parinello, and R. Car, J. Phys. Chem. 92, 3268 (1988).

72. R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).

73. D. Remler and P. Madden, Mol. Phys. 70, 921 (1990).

applying direct molecular dynamics to non-adiabatic systems 425



74. D. Marx and J. Hutter, in Modern Methods and Algorithms of Quantum Chemistry,

J. Grotendorst, ed., John von Neumann Institute for Computing, Jülich, Germany, 2000,
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I. INTRODUCTION

Conical intersections, introduced over 60 years ago as possible efficient funnels

connecting different electronically excited states [1], are now generally believed

to be involved in many photochemical reactions. Direct laboratory observation of

these subsurfaces on the potential surfaces of polyatomic molecules is difficult,

since they are not stationary ‘‘points’’. The system is expected to pass through

them very rapidly, as the transition from one electronic state to another at the

conical intersection is very rapid. Their presence is surmised from the following

data [2–5]:

Very rapid (subpicosecond) decay of electronically excited states.

Lack of fluorescence.

Rapid formation of ground-state products.

In recent years, computational testimonies for the existence of conical inter-

sections in many polyatomic systems became abundant and compelling [6–11].

The current consensus concerning the ubiquitous presence of conical intersec-

tions in polyatomic molecules is due in large part to computational ‘‘experi-

ments.’’

In this chapter, we present an analysis of conical intersections, based on

chemical reaction concepts. It is argued that conical intersections leading to

the ground state can be identified and characterized by considering properties of

the ground-state surface only. The basis of the model is the Longuet-Higgins

phase-change rule [12,13] (Section II), which provides a simple criterion for the

existence of a degeneracy on the electronic ground state. Longuet-Higgins

showed that a degeneracy necessarily exists within a region enclosed by a loop,

if the total electronic wave function changes sign upon being transported around

the loop. (For more details, see Section II). We propose to construct the loop

discussed by Longuet-Higgins from reaction coordinates of elementary

reactions converting the reactant to the desired product and other possible
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products. In this sense, our approach is ‘‘chemical’’ in nature. In order to

properly search for the elementary reactions, the need for an agreed definition of

common terms such as a molecule and a transition state arises. This reaction is

carried out in this section, based on the concept of electron spin pairing [14,15].

The reacting system (reactant and product) are treated as a two-state system

[16]. The spirit of this strategy is akin to the Evans–Dewar–Zimmerman

approach [17–21], and is closely related to the concept of aromaticity and anti-

aromaticity, which is dealt with in Section III.

The phase change of the total polyelectronic wave function in a chemical

reaction [22–25], which is more extensively discussed in Section III, is central

to the approach presented in this chapter. It is shown that some reactions may be

classified as phase preserving (p) on the ground-state surface, while others are

phase inverting (i). The distinction between the two can be made by checking

the change in the spin pairing of the electrons that are exchanged in the reaction.

A complete loop around a point in configuration space may be constructed using

a number of consecutive elementary reactions, starting and ending with the

reactant A. The smallest possible loop typically requires at least three reactions:

two other molecules must be involved in order to complete a loop; they are the

desired product B and another one C, so that the complete loop is A! B !
C!A. Two types of phase inverting loops may be constructed: those in which

each reaction is phase inverting (an i3 loop) and those in which one reaction is

phase inverting, and the other two phase preserving (an ip2 loop). At least one

reaction must be phase inverting for the complete loop to be phase inverting and

thus to encircle a conical intersection and lead to a photochemical reaction.

It follows, that if a conical intersection is crossed during a photochemical

reaction, in general at least two products are expected, B and C. A single

product requires the existence of a two-component loop. This is possible if one

of the molecules may be viewed as the out-of-phase combination of a two-

state system. The allyl radical (Section IV, cf. Fig. 12) and the triplet state are

examples of such systems. We restrict the discussion in this chapter to singlet

states only.

In Section IV, the construction of phase inverting loops is described. A

conical intersection is an example of an electronic degeneracy; A well-known

case of electronic degeneracy in polyatomic molecules occurs in the Jahn–Teller

effect. Systems of high symmetry tend to distort to lower symmetry if their

electronic ground state is degenerate. We show (Section V) that the Longuet-

Higgins loop treatment can be applied to these systems, making them part of the

general conical intersections concept.

The method discussed in this chapter allows, in principle, the detection

of all conical intersections connecting the ground with the excited state. Assum-

ing that photochemical products are mainly formed through conical intersec-

tions, it therefore provides a means to design selection rules for photochemistry.
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A. A Chemical Reaction as a Two-State System

The concept of two-state systems occupies a central role in quantum mechanics

[16,26]. As discussed extensively by Feynmann et al. [16], benzene and ammonia

are examples of simple two-state systems: Their properties are best described by

assuming that the wave function that represents them is a combination of two

base states. In the cases of ammonia and benzene, the two base states are

equivalent. The two base states necessarily give rise to two independent states,

which we named twin states [27,28]. One of them is the ground state, the other an

excited states. The twin states are the ones observed experimentally.

The extra stabilization of benzene in the ground state, as compared to a

single Kekulé structure, is assigned to a resonance between the two equivalent

base states. In standard textbooks, the fact that the combination is in-phase (i.e.,

that the two Kekulé structures in the ground-state combination carry the same

sign) is taken for granted. In Section III, it is shown that whether the ground state

is representing by the in-phase or out-of-phase combination of the two states is

determined by the permutational symmetry of the electronic wave function, and

may be traced to Pauli’s principle. Hückel’s 4nþ 2 rule [29] arises from the fact

that there is an odd number of electron pairs in this system.

Stabilizing resonances also occur in other systems. Some well-known ones are the

allyl radical and square cyclobutadiene. It has been shown that in these cases, the

ground-state wave function is constructed from the out-of-phase combination of

the two components [24,30]. In Section III, it is shown that this is also a necessary

result of Pauli’s principle and the permutational symmetry of the polyelectronic

wave function: When the number of electron pairs exchanged in a two-state

system is even, the ground state is the out-of-phase combination [28]. Three electrons

may be considered as two electron pairs, one of which is half-populated. When

both electron pairs are fully populated, an antiaromatic system arises (Section III).

During a chemical reaction, a chemical system (or substance) A is converted

to another, B. Viewed from a quantum chemical point of view, A and B together

are a single system that evolves with time. It may be approximated by a combi-

nation of two states, A at time zero and B as time approaches infinity. The first is

represented by the wave function jAi and the second by jBi. At any time during

the reaction, the system may be described by a combination of the two

jRiðtÞ ¼ cAðtÞjAi þ cBðtÞjBi ð1Þ

where cAðt ¼ 0Þ ¼ 1; cBðt ¼ 0Þ ¼ 0; cAðt ¼ 1Þ ¼ 0; cBðt ¼ 1Þ ¼ 1:
Within the Born–Oppenheimer (BO) approximation, jAi and jBi may be

written as the product of an electronic wave function, jMiel and a nuclear wave

function jMin.

jMi ¼ jMieljMin ðM ¼ A;BÞ ð2Þ
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It is useful to represent the polyelectronic wave function of a compound by a

valence bond (VB) structure that represents the bonding between the atoms.

Frequently, a single VB structure suffices, sometimes it is necessary to use

several. We assume for simplicity that a single VB structure provides a faithful

representation. A common way to write down a VB structure is by the spin-

paired determinant, that ensures the compliance with Pauli’s principle: (It is

assumed that there are 2n paired electrons in the system)

jAiel ¼
X

p

Ep P1ð1Þ2ð2Þ 	 	 	 2nð2nÞ½að1Þbð2Þ � bð1Það2Þ�½að3Þbð4Þ

� bð3Það4Þ� 	 	 	 ½að2n� 1Þbð2nÞ � bð2n� 1Það2nÞ� ð3Þ

Where the summation is over all 2n! permutations P each with parity Ep. We use a

short-hand notation:

jAiel ¼ ð12� 12Þð34� 34Þ 	 	 	 ð2n� 12n� 2n� 12nÞ ð4Þ

As the electronic and nuclear wave functions are separated in the BO approxi-

mation, a single electronic wave function may be associated with many different

nuclear configurations. Furthermore, the electronic energy of the system depends

parametrically on the nuclear configuration fQg. It is convenient to introduce a

term for all systems having a specific spin-pairing scheme, independent of the

nuclear configuration. We use the term anchor to represent this group of systems.

We may now distinguish two classes of reactions:

1. The system does not change the spin-pairing scheme during the process.

In this case, jAiel remains put throughout the reaction, and only the

internuclear distances or angles change. Such transformations are called

intraanchor reactions.

2. The spin-pairing scheme of the product, jBiel, is different from that of the

reactant. This happens if at least two pairs of electrons have exchanged

partners. In other words, at least three electrons need to be involved.

If the reaction is elementary, there is only a single transition state between A

and B. At this point the derivative of the total electronic wave function with

respect to the reaction coordinate QA!B vanishes:

qjRiel;TS=qQA!B ¼ 0 ð5Þ

In the transition state region, the spin-pairing change must take place. At this

nuclear configuration, the electronic wave function may be written as

jRiel;TS ¼ kAjAiel þ kBjBiel ð6Þ
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If the sign of kA is equal to that of kB, the reaction is phase preserving, if the signs

are different, the reaction is phase inverting.

We shall assume, for simplifying the notation, that the k values are positive.

For a phase-inverting reaction, the wave function of the transition state is

therefore written as

jRiel;TS ¼ kAjAiel � kBjBiel ðphase invertingÞ ð7Þ

It is important to recall, that the reaction takes place on the ground-state surface.

Clearly, at the same nuclear configuration, the other combination

jRi�el;TS ¼ k�AjAiel þ k�BjBiel ðphase preservingÞ ð8Þ

lies on an excited state surface.

The distinction between an in-phase and an out-of-phase combination of the

two base states is easy for degenerate two-state systems (such that the two

components are equivalent). In these cases, the transition state has an additional

symmetry element not present in either of the two base states. In other words, it

belongs to a group of higher symmetry. The electronic wave function at the

transition state nuclear configuration transforms as the totally symmetric

representation of the new group if the transition state is the in-phase

combination. If it is the out-of-phase combination, it transforms as one of the

nontotally symmetric representations. In this case, the motion along the reaction

coordinate is antisymmetric with respect to the new symmetry element [28]. For

example, the ground state of the C2v allyl radical transforms as B1 (not A2), and

the ground state of square cyclobutadiene (D4h symmetry) as B1g (not A1g). The

symmetry properties of the transition states are more easily established using

the VB approximation than the molecular orbital–configuration interaction

(MO–CI) one. The character of the bonding before and after the reaction does

not matter: The transfer of electrons from one atom to another to form a

covalent, ionic, or coordinate bond is always accompanied by a change in spin

pairing [31,32], and is clearly represented by the VB structures. The MO–CI

method can also be used successfully, but several configurations are ordinarily

required in the general case, as shown, for example, in [33].

By using the determinant form of the electronic wave functions, it is readily

shown that a phase-inverting reaction is one in which an even number of

electron pairs are exchanged, while in a phase-preserving reaction, an odd

number of electron pairs are exchanged. This holds for Hückel-type reactions,

and is demonstrated in Appendix A. For a definition of Hückel and Möbius-type

reactions, see Section III.
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B. Anchors

Intuitively, a molecule is defined as an assembly of atoms bound by chemical

bonds, which lies in a local minimum on the potential surface. The molecule

preserves its identity when the nuclei are transported from their minimum energy

position, as long as the gradient of the electronic energy with respect to the

displacement maintains its sign. As soon as this gradient changes its sign, the

system undergoes a chemical change in an elementary reaction. The idea that a

molecule is defined by the spin-pairing arrangement of the valence electrons

seems to be at odds with this concept of a molecule. In particular, a definite

structure is not assumed.

An anchor, as defined above, contains stable molecules, conformers, all pairs

of radicals and biradicals formed by a simple bond fission in which no spin

re-pairing took place, ionic species, and so on. Figure 1 shows some examples

of species belonging to the same anchor. Thus, an anchor is a more general and

convenient term used in the discussion of spin re-pairing.

C. Anchors, Molecules and Independent Quantum Species

At this point, it is instructive to discuss the distinction between molecules,

anchors, and quantum mechanical wave functions that represent them. The topic

is best introduced by using an example. Consider the H4 system [34].

H H H H

a

b
a

H

H

b

H

H
H

H H
H

H H

I II

1

2

3
4

1
4

3

Single-bond fission

3. Butadiene anchor 4. Twisted ethylene anchor

1

2

3

4

2

3

4

1

s-cis s-trans

1,2

3
4

The conversion from I to II is by the transfer of a
proton from one carbon atom to the other. No
change in spin pairing.

1

3,4

2

Two conformers

2

1. Hydrogen molecule anchor 2. Bicyclobutane anchor

Figure 1. Examples of species residing in the same anchor.
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The most stable nuclear configuration of this system is a pair of H2 mole-

cules. There are three possible spin coupling combinations for H4 corresponding

to three distinct stable product H2 pairs: H1:H2 with H3:H4, H1:H3 with

H2:H4, and H1:H4 with H2:H3. Each H atom contributes one electron, the dot

diagrams indicate spin pairing. The three combinations are designated as H(I),

H(II), and H(III), respectively. They may be interconverted via square transition

states, Figure 2.

The electronic wave functions of the different spin-paired systems are not

necessarily linearly independent. Writing out the VB wave function shows that

one of them may be expressed as a linear combination of the other two.

Nevertheless, each of them is obviously a separate chemical entity, that can be

clearly distinguished from the other two. [This is readily checked by considering

a hypothetical system containing four isotopic H atoms (H, D, T, and U). The

anchors will be HD þ TU, HT þ DU, and HU þ DT].

In short-hand notation, the electronic wave functions of the three spin-paired

combinations may be written as

jHðIÞi ¼ ð12� 12Þð34� 34Þ ¼ 1234� 1234� 1234þ 1234 ð9aÞ
jHðIIÞi ¼ ð13� 13Þð24� 24Þ ¼ 1324� 1324� 1324þ 1324 ð9bÞ
jHðIIIÞi ¼ ð14� 14Þð23� 23Þ ¼ 1423� 1423� 1423þ 1424 ð9cÞ

Since exchanging two columns in a determinant changes its sign, simple algebra

shows that

�jHðIIIÞi ¼ jHðIÞi þ jHðIIÞi ð10Þ

Thus, the electronic wave function of H(III) is (to within a multiplication

constant) equal to the in-phase combination of the electronic wave functions of

4
2

3
1

2 3

1

4

TS(II-III)

H(II)

2

3

1

4

4
3

2
1

3
4

2
1

TS(III-I) TS(I-II)

H(I)

2

3

1

4

H(III)

Figure 2. The H4 system. TS are transition

states.
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H(I) and H(II). This fact does not provide any information on the nuclear

structure of this species at the energy minimum. By symmetry, it is clear that

the system has three equivalent minima on the ground-state surface, which were

designated as the three diatomic pairs. The nuclear geometry of each of these

minima is quite different from that of the other two.

There are two nuclear configurations on the ground-state surface that are of

special interest to the chemist: One is the energy minimum for the in-phase

combination of jHðIÞi and jHðIIÞi, which is the equilibrium geometry of H(III).

The second is also a stationary point on the ground-state surface, but for the out-

of-phase combination of jHðIÞi and jHðIIÞi—it is the TS between H(I) and

H(II). Clearly, the geometries (nuclear configuration) of these two species are

quite different. Each of these structures is constructed from two base functions,

and is therefore a two-state system. As for any two-state system, each has a twin

state on the electronic excited surface. Thus, the in-phase combination of the

two electronic wave functions jHðIÞi and jHðIIÞi at the nuclear configuration of

the transition state is found on the excited-state potential surface. Likewise, the

out-of-phase combination at the nuclear geometry of the minimum energy of

jHðIIIÞi also lies on the excited-state potential. Thus a given spin-paired scheme

of the H4 system is seen to support very different nuclear geometries on the each

potential surfaces.

We can now proceed to discuss the phase-change rule and its use to locate

conical intersections.

II. THE PHASE-CHANGE RULE AND THE
CONSTRUCTION OF LOOPS

Herzberg and Longuet-Higgins noted the singular behavior of the electronic

wave function around a degeneracy [12,13]. This observation is the basis of the

present approach to molecular photochemistry. Let fðr;RÞ be the total

polyelectronic wave function of a polyatomic molecule, where r and R denote

the electronic and nuclear coordinates, respectively. Within the BO approxima-

tion, this wave function is an explicit function of r for a given set of nuclear

coordinates R0. It must be continuous everywhere in the electronic coordinates r,

but may change sign in an abrupt, seemingly discontinuous manner when the R’s

are slightly changed. If fðr;RÞ is nondegenerate throughout a certain region of

the nuclear configuration space, it will be a real continuous function of the R’s as

well as of the r’s. If it changes abruptly at some point, there must be two

electronic states with the same energy at this point, in other words the function is

degenerate at that point.

Consider the function at a certain set of R’s, R0, where fðr;RÞ is nondegene-

rate. When the nuclei move away from that point, and approach it back via a

different route, the wave function must return to its original value. However, in
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the process it may change sign, since if fðr;R0Þ is a solution of the electronic

wave, so is �fðr;R0Þ. Thus one can distinguish two kinds of paths leading by a

closed loop from R0 back to itself: sign preserving and sign reversing.

Longuet-Higgins stated and proved the following theorem [13]:

Let S be any simply connected surface in nuclear configuration space,

bounded by a closed-loop L. Then, if fðr;RÞ changes sign when transported

adiabatically round L, there must be at least one point on S at which fðr;RÞ is

discontinuous, implying that its potential energy surface intersects that of

another electronic state.

The proof was by reduction ad absurdum.

Let l1 be any line in S that bisects the area enclosed by L, and let L1 and M1

be the two loops created (Fig. 3). If L is sign reversing and if fðr;RÞ is

continuous everywhere on S, than either L1 or M1 must be sign reversing. If L1

and M1 were both sign reversing or sign preserving, than L would also be sign

preserving, in contradiction with the assumption. Let L1 be the sign reversing

loop. It encloses a simply connected surface S1 which is smaller than S. We now

bisect S1 by a line l2 and repeat the argument. In this fashion, a large number of

successively smaller loops are created, all of them sign reversing. These loops

converge to a point P on the surface, where fðr;RÞ is discontinuous in R,

because of the sign change. Thus, the function cannot be single valued—it must be

degenerate. In other words, two potential surfaces cross at this point. Longuet-

Higgins’ proof assumed that the electronic wave function is real everywhere.

Stone [35] showed that the theorem applies also for a general phase change.

Thus, when the nuclei return to their original configuration R0, the wave

function may undergo a change phase Z ¼ ei�, since if fðr;R0Þ is a solution of

the electronic wave equation, so is ei�fðr;R0Þ.
The proof runs analogously to the original Longuet-Higgins one, and is not

reproduced here.

Figure 3. Longuet-Higgins’ rule proof.
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A. Construction of Loops: Nature of the Coordinates

Herzberg and Longuet-Higgins [12] explicitly discussed the H3 system. This is a

three-electron problems, which has the same spin-pairing properties as the four-

electron system H4. The loop is constructed by considering the three possible

spin-pairing options for these systems (Fig. 4), compare Figure 2. The transition

states for the H3 system are linear [36] and their wave functions are the out-of-

phase combination of the two wave functions of the reactant and product

systems. As mentioned above for H4, Pauli’s principle and the permutational

symmetry of the polyelectronic wave function are the ultimate reason for the fact

that the ground-state surface in this case is the out-of-phase combination, rather

than the in-phase one.

Generalizing on [12], we construct a loop by using a sequence of three

elementary reactions. It is emphasized that the reactions comprising the loop

must be elementary ones: There should not be any other spin pairing combina-

tion that connects two anchors. This ensures that the loop in question is indeed

the ‘‘smallest’’ possible one. Inspection of the loops depicted in Figure 4

shows that the H3 and H4 systems are entirely analogous. We include the H3

system in order to introduce the coordinates spanning the plane in which the

loop lies, and as a prototype of all three-electron systems.

There are two independent coordinates that define the plane of a loop. If the

loop is phase inverting, one of these coordinates must be phase inverting, the

other, phase preserving. Out of the infinite number of possible candidates, a

convenient choice are reaction coordinates (Section I). Any one of the three

reaction coordinates connecting two of the anchors can be used for the

Figure 4. The H3 and H4 loops. At the center, the conical intersections are shown

schematically: an equilateral triangle for H3 and a perfect tetrahedron for H4, Qp, and Qi are the

phase-preserving and phase-inverting coordinates, respectively.
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phase-inverting coordinates. Let us use the H4 system, and choose the reaction

H1H2 þ H3H4! H1H3 þ H2H4; this coordinate is designated as Qi, Figure 4.

The coordinate connecting the transition state of this reaction with the third

anchor is phase preserving (Qp in the figure), which may be shown as follows.

Consider the coordinate that transforms the nuclear configuration of H(III) at

the minimum energy with the corresponding configuration of TS(I–II). In the

former, atoms 1 and 4 are close together, as are atoms 2 and 3. The separation

between the two pairs is large. In other words, if Rij is the separation between

atoms i and j, we have

R14 ¼ R23 � R12;R13;R24;R34 ðat HðIIIÞ minimumÞ

In the latter,

R12 ¼ R23 ¼ R34 ¼ R41 ðat the transition state between HðIÞ and HðIIÞÞ

Moving along this coordinate without changing the phase of the electronic wave

function (solid line in Fig. 5), leads from the ground state to the excited state of

the system. The dashed line shows the motion along the coordinate connecting

the transition state with the configuration of H(III). Keeping the phase constant

also leads from the ground to the excited state.

It is clear from Figure 5 that the phase of the electronic wave function of the

ground state is constant when moving along the Qp coordinate, until a certain

Figure 5. A cut across the ground state (GS) and the excited state (ES) potential surfaces of the

H4 system. The parameter Qp is the phase preserving nuclear coordinate connecting the H(III) with

the transition state between H(I) and H(II) (Fig. 4). Keeping the phase of the electronic wave

function constant, this coordinate leads from the ground to the excited state. At a certain point, the

two surfaces must touch. At the crossing point, the wave function is degenerate.
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configuration (point in phase space) is reached, in which it changes sign. This

‘‘point’’ is the out-of-phase transition state. The same holds for the electronic

wave function of the excited state. The two potential curves cross at some point,

where the electronic wave function becomes degenerate. The crossing along this

coordinate is permitted, since the two curves are of different symmetry.

This situation arises when the electronic wave function of the transition state

is described by the out-of-phase combination of the two base functions. If

the electronic wave function of the transition state is described by the in-phase

combination, no curve crossing occurs.

In the vicinity of the crossing point of the two electronic states of the H4

system, we can therefore define two coordinates along which the potential

surface of the system is constructed. The phase-preserving coordinate Qp

connecting the H(I) minimum with TS(II–III), and the phase-inverting

coordinate Qi connecting the minima of H(II) and H(III). A plot of the energies

of the two surfaces has the shape of double cone. Moreover, as nothing but spin

pairing was assumed in the derivation, the situation is not unique to the H4

system: It holds for any four-electron system. Figure 6 depicts the general case,

in which the potential energy surface relevant to three chemical species A, B,

Figure 6. A schematic representation of a conical intersection. The bottom part of the cone

belongs to the ground state, the upper, to the electronically excited state.
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and C is shown. The species A, B, and C consist of the same atoms, and differ

only in their spin pairing schemes. We assume that the electronic wave function

of C, jCi, may be expressed as the in-phase combination of jAi and jBi, while

the transition state between A and B TS(AB) is represented by the out-of-phase

combination. Here C is a local minimum on the ground-state surface. At

the geometry of the transition state, the in-phase combination of jAi and jBi lies

on the excited potential surface.

The H4 system is the prototype for many four-electron reactions [34]. The

basic tetrahedral structure of the conical intersection is preserved in all four-

electron systems. It arises from the fact that the four electrons are contributed by

four different atoms. Obviously, the tetrahedron is in general not a perfect one.

This result was found computationally for many systems (see, e.g., [37]). Robb

and co-workers [38] showed that the structure shown (a tetraradicaloid conical

intersection) was found for many different photochemical transformations.

Having the form of a tetrahedron, the conical intersection can exist in two

enantiomeric structures. However, this feature is important only when chiral

reactions are discussed.

The two coordinates defined for H4 apply also for the H3 system, and the

conical intersection in both is the most symmetric structure possible by the

combination of the three equivalent structures: An equilateral triangle for H3

and a perfect tetrahedron for H4. These structures lie on the ground-state

potential surface, at the point connecting it with the excited state. This result is

generalized in the Section. IV.

III. PHASE CHANGE IN A CHEMICAL REACTION

The phase change occurring upon carrying out a complete loop around a point, as

discussed by Longuet-Higgins and Herzberg, does not explicitly consider phase

changes in chemical reactions. However, the proof concerning H3 depends on the

phase change taking place during the methathesis reaction H1H2 þ H3! H1 þ
H2H3 [12]. In this section, we discuss the general case—a phase change taking

place upon an arbitrary chemical reaction.

A chemical reaction takes place on a potential surface that is determined by

the solution of the electronic Schrödinger equation. In Section, we defined an

anchor by the spin-pairing scheme of the electrons in the system. In the

discussion of conical intersections, the only important reactions are those that

are accompanied by a change in the spin pairing, that is, interanchor reactions.

We limit the following discussion to these class of reactions.

The concept of phase change in chemical reactions, was introduced in

Section I, where it was shown that it is related to the number of electron pairs

exchanged in the course of a reaction. In every chemical reaction, the

fundamental law to be observed is the preservation permutational symmetry of
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the polyelectronic wave function: Pauli’s principle must be obeyed. Phase

changes are not generally regarded as important parameters in understanding

the fundamentals of chemical reactions. Goddard tried to utilize the phase-

change concept for a better understanding of chemical transformations [22,39].

Up to now, these efforts do not seem to have significantly affected the way

chemists conceive reactions. We propose that the study of phase change in

chemical reaction may become a substantial ingredient in photochemical theory,

since conical intersections appear to be of major importance in this field. The

phase-change rule is closely related to conical intersections on one hand, and to

the phase change on the other. We suggest that a loop can always be constructed

from several reactions, and the total phase change deduced from the

combination of changes incurred in the individual steps [25,40,41]. If this

hypothesis proves to be correct, phase changes taking place on the ground-state

surface will play an important role in photochemistry.

In this section, we illustrate the applicability of the model to some important

special cases, and summarize the relationship between aromaticity and chemical

reactivity, expressed in the properties of transition states.

A. Pericyclic Reactions

The special case of pericyclic reactions is an appropriate means of introducing

the subject: These reactions are very common, and were extensively studied

experimentally and theoretically. They also provide a direct and straightforward

connection with aromaticity and antiaromaticity, concepts that turn out to be

quite useful in analyzing phase changes in chemical reactions.

Already in 1938, Evans and Warhurst [17] suggested that the Diels–Alder

addition reaction of a diene with an olefin proceeds via a concerted mechanism.

They pointed out the analogy between the delocalized electrons in the transition

states for the reaction between butadiene and ethylene and the p electron system

of benzene. They calculated the resonance stabilization of this transition state

by the VB method earlier used by Pauling to calculate the resonance energy of

benzene. They concluded that the extra ‘‘aromatic’’ stabilization of this

transition state made the concerted route more favorable then a two-step

process. In a subsequent paper [18], Evans used the Hückel MO theory to

calculate the transition state energy of the same reaction and some others. These

ideas essentially introduce a chemical reacting complex (reactants and products)

as a two-state system. Dewar [42] later formulated a general principle for all

pericyclic reactions (Evans’ principle): Thermal pericyclic reactions take place

preferentially via aromatic transition states. Aromaticity was defined by the

amount of resonance stabilization. Evans’ principle connects the problem of

thermal pericyclic reactions with that of aromaticity: Any theory of aromaticity

is also a theory of pericyclic reactions [43]. Evans’ approach was more recently

used to aid in finding conical intersections [44], (cf. Section VIII).
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Several theories of aromaticity have been suggested, starting with Hückel’s

4n þ 2 rule [29]. All of them consider the entities in question as two-state

systems (Section I), and consider the relative phase relations of adjacent

p orbitals as playing a major role. It has been pointed out by many authors

[19,21,45–47] that in a conjugated systems there can be two cases. If all

neighboring lobes of p- orbitals have a the same sign, the system is denoted as a

Hückel one. If, on the other hand, there is a phase change at one point (termed

phase dislocation by Craig [46]), the system is a Möbius one (one of the

p orbitals is inverted by 180�, forming a Möbius strip). This definition may be

generalized [19]: In a Hückel system, the number of dislocations is even, in a

Möbius system, it is odd. Möbius systems are sometimes termed anti-Hückel.

A more general classification considers the phase of the total electronic wave

function [13]. We have treated the case of cyclic polyenes in detail [28,48,49] and

showed that for Hückel systems the ground state may be considered as the

combination of two Kekulé structures. If the number of electron pairs in the system

is odd, the ground state is the in-phase combination, and the system is aromatic. If

the number of electron pairs is even (as in cyclobutadiene, pentalene, etc.), the

ground state is the out-of-phase combination, and the system is antiaromatic.

These ideas are in line with previous work on specific systems [40,50].

The results of the derivation (which is reproduced in Appendix A) are

summarized in Figure 7. This figure applies to both reactive and resonance

stabilized (such as benzene) systems. The compounds A and B are the reactant

and product in a pericyclic reaction, or the two equivalent Kekulé structures in

an aromatic system. The parameter x is the reaction coordinate in a pericyclic

reaction or the coordinate interchanging two Kekulé structures in aromatic (and

antiaromatic) systems. The avoided crossing model [26–28] predicts that the

two eigenfunctions of the two-state system may be formed by in-phase and out-

of-phase combinations of the noninteracting basic states jAi and jBi. State jAi
differs from jBi by the spin-pairing scheme.

The ground state is the in-phase combination ðjAi þ jBiÞ for an odd number

of electron pairs exchanged, while if the number is even, the out-of-phase

ðjAi � jBiÞ combination is the ground state. The other combination is an

electronically excited state. Classical VB theory predicts the curves shown as

solid lines. The energy ordering of the in-phase and out-of-phase combinations,

and the energy splitting between them is due primarily to the pairwise trans-

position permutations (Appendix A). The effect of the cyclic permutation term

[32], shown by the dashed lines, is to modify the splitting: In systems for which

an odd number of electron pairs are exchanged, the cyclic permutation term acts

in harmony with the classical term, and increases the gap between the ground

and excited state. In the even parity systems, it acts to decrease the gap. When

the cyclic term is large enough, a single minimum in the ground state is

obtained—this is the origin of the extra stability of benzene, for example. In
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other systems, the barrier is reduced but not eliminated. The result is a stabilized

aromatic transition state [51].

Adopting the view that any theory of aromaticity is also a theory of pericyclic

reactions [19], we are now in a position to discuss pericyclic reactions in terms

of phase change. Two reaction types are distinguished: those that preserve the

phase of the total electronic wave-function – these are phase preserving reactions

(p-type), and those in which the phase is inverted – these are phase inverting

reactions (i-type). The former have an aromatic transition state, and the latter an

antiaromatic one. The results of [28] may be applied to these systems. In dis-

tinction with the cyclic polyenes, the two basis wave functions need not be

equivalent. The wave function of the reactants jRi and the products jPi,
respectively, can be used. The electronic wave function of the transition state

may be represented by a linear combination of the electronic wave functions of

the reactant and the product. Of the two possible combinations, the in-phase one

[Eq. (11)] is phase preserving (p-type), while the out-of-phase one [Eq. (12)], is

i-type (phase inverting), compare Eqs. (6) and (7). Normalization constants are

assumed in both equations:

jAromatic TSi ¼ jAi þ jBi Phase-preserving transition state ð11Þ
jAntiaromatic TSi ¼ jAi � jBi Phase-inverting transition state ð12Þ

Figure 7. Aromatic and antiaromatic systems in the ground state (GS) and the twin excited

state (ES). The parameter x is the coordinate that transforms A to B.
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The Woodward–Hoffmann method [52], which assumes conservation of

orbital symmetry, is another variant of the same idea. In it, the emphasis is put on

the symmetries of molecular orbitals. Longuet-Higgins and Abramson [53] noted

the necessity of state-to-state correlation, rather than the orbital correlation,

which is not rigorously justified (see also, [30,44]). However, the orbital

symmetry conservation rules appear to be very useful for most thermal reactions.

A symmetry that holds for any system is the permutational symmetry of the

polyelectronic wave function. Electrons are fermions and indistinguishable, and

therefore the exchange of any two pairs must invert the phase of the wave

function. This symmetry holds, of course, not only to pericyclic reactions.

B. Generalization to Any Reactions

In this chapter, we restrict the discussion to elementary chemical reactions,

which we define as reactions having a single energy barrier in both directions. As

discussed in Section I, the wave function jRi of any system undergoing an

elementary reaction from a reactant A to a product B on the ground-state surface,

is written as a linear combination of the wave functions of the reactant, jAi, and

the product, jBi [47,54]:

jRi ¼ CAjAi þ CBjBi ð13Þ

CA and CB may have the same or opposite signs.

Within the Born–Oppenheimer approximation, the electronic wave function

jRiel, is well defined, throughout the reaction and may be written analogously

[cf. Eq. (6)]

jRðtÞiel ¼ kAðtÞjAiel þ kBðtÞjBiel ð14Þ

where kA is unity in the beginning of the reaction (t ¼ 0) and kB is unity at the

end (t ¼ 1) [26]. A phase change involves the introduction of a new node (or an

odd number of nodes) along the reaction coordinate, which is equivalent to

changing the total electronic angular momentum of the system along that

coordinate. The role of nodes and nodal parity was discussed extensively for

correlated molecular orbitals during a reaction [21]. A similar approach, using

VB, was suggested by Mulder and Oosterhof for pericyclic reactions [32]. We

emphasize the properties of the total wave function, a concept that is difficult to

visualize in a graphic manner.

There are two mechanisms by which a phase change on the ground-state

surface can take place. One, the orbital overlap mechanism, was extensively

discussed by both MO [55] and VB [47] formulations, and involves the creation

of a negative overlap between two adjacent atomic orbitals during the reaction

(or an odd number of negative overlaps). This case was termed a phase

dislocation by other workers [43,45,46]. A reaction in which this happens is
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termed Möbius- or anti-Hückel type. A well-known example is conrotatory ring

closure in pericyclic reactions. Another is the antarafacial sigmatropic

migration. A reaction in which all overlaps between adjacent atomic orbitals

along the reaction coordinate are positive (or such that the number of negative

overlaps is even) is termed Hückel type. Only Hückel-type reactions are

possible when s orbitals are the sole ones involved in the reaction. With

p orbitals, both Hückel- and Möbius-type reactions are possible. Figure 8

depicts two examples.

The second mechanism, due to the permutational properties of the electronic

wave function is referred to as the permutational mechanism. It was introduced

in Section I for the H4 system, and above for pericyclic reactions and is closely

related to the aromaticity of the reaction. Following Evans’ principle, an

aromatic transition state is defined in analogy with the hybrid of the two Kekulé

structures of benzene. A cyclic transition state in pericyclic reactions is defined

as aromatic or antiaromatic according to whether it is more stable or less stable

than the open chain analogue, respectively. In [32], it was assumed that the in-

phase combination in Eq. (14) lies always the on the ground state potential. As

discussed above, it can be shown that the ground state of aromatic systems is

always represented by the in-phase combination of Eq. (14), and antiaromatic

ones—by the out-of-phase combination.

The concepts may be extended to describe transition states of any chemical

reaction. Since the only assumption made was that the VB structures represent

the molecules, and that an exchange of two columns in the determinant rep-

resenting the VB structures changes the sign, the result is general (Appendix A).

Figure 8. Hückel and Möbius reactions. Top left: the Hþ H2 reaction. The second line shows

the structure of the linear transition state, the circles in the third line denote s-type orbitals, the

arrows designate the electron spin vectors. Top right: the Hþ ClH reaction. The second line shows

the structure of the linear transition state, the symbols in the third line denote s- and p-type orbitals,

the arrows designate the electron spin vectors. Bottom left: A disrotatory ring closure reaction of

butadiene, showing the p-orbitals of the carbon atoms that exchange the spin-pairs. Bottom right: A

conrotatory ring closure reaction of butadiene, showing one negative overlap between p-orbitals of

the carbon atoms that exchange the spin-pairs.
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We term the in-phase combination an aromatic transition state (ATS) and the

out-of-phase combination an antiaromatic transition state (AATS). An ATS is

obtained when an odd number of electron pairs are re-paired in the reaction, and

an AATS, when an even number is re-paired. In the context of reactions, a

system in which an odd number of electrons (3, 5, . . .) are exchanged is treated

in the same way—one of the electron pairs may contain a single electron. Thus,

a three-electron system reacts as a four-electron one, a five-electron system as a

six-electron one, and so on.

Finally, the distinction between Hückel and Möbius systems is considered.

The above definitions are valid for Hückel-type reactions. For aromatic Möbius-

type reations, the reverse holds: An ATS is formed when an even number of

electron pairs is re-paired.

These general ideas will be demonstrated by considering a few examples.

1. Reactions Involving Sigma Bonds Only

The H3 and H4 systems were discussed above. Another type of sigma bonds

involves a p orbital lying along the reaction coordinate, as, for example, in

reaction (15) (Fig. 8).

Hþ ClH! HClþ H ð15Þ
This is an example of a Möbius reaction system—a node along the reaction

coordinate is introduced by the placement of a phase inverting orbital. As in the

H þ H2 system, a single spin-pair exchange takes place. Thus, the reaction is

phase preserving. Möbius reaction systems are quite common when p orbitals (or

hybrid orbitals containing p orbitals) participate in the reaction, as further

discussed in Section III.B.2.

A phase change takes place when one enantiomer is converted to its optical

isomer. As illustrated in Figure 9, when the chiral center is a tetra-substituted

carbon atom, the conversion of one enantiomer to the other is equivalent to the

exchange of two electron pairs. This transformation is therefore phase inverting.

2. Reactions Involving p Bonds

Hückel-type systems (such as Hückel pericyclic reactions and suprafacial

sigmatropic shifts) obey the same rules as for sigma electron. The rationale for

this observation is clear: If the overlap between adjacent p-electron orbitals is

positive along the reaction coordinate, only the permutational mechanism can
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4Figure 9. The phase-inverting transformation of a

chiral system with a tetra-substituted carbon atom.
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lead to sign inversion. In Möbius-type systems (antarafacial reactions), the

system will change phase only if an even number of electron spin pairs

exchanges takes place.

Electrocyclic reactions are examples of cases where p-electron bonds

transform to sigma ones [32,49,55]. A prototype is the cyclization of butadiene

to cyclobutene (Fig. 8, lower panel). In this four electron system, phase

inversion occurs if no new nodes are formed along the reaction coordinate.

Therefore, when the ring closure is disrotatory, the system is Hückel type, and

the reaction a phase-inverting one. If, however, the motion is conrotatory, a new

node is formed along the reaction coordinate just as in the HCl þ H system. The

reaction is now Möbius type, and phase preserving. This result, which is in line

with the Woodward–Hoffmann rules and with Zimmerman’s Möbius–Hückel

model [20], was obtained without consideration of nuclear symmetry. This

conclusion was previously reached by Goddard [22,39].

IV. LOOP CONSTRUCTION FOR
PHOTOCHEMICAL SYSTEMS

In this section, the systematic search for conical intersections based on the

Longuet-Higgins phase-change rule is described. For conciseness sake, we limit

the present discussion to Hückel-type systems only, unless specifically noted

otherwise. The first step in the analysis is the determination of the LH loops

containing a conical intersection for the reaction of interest.

In general, at least three anchors are required as the basis for the loop, since

the motion around a point requires two independent coordinates. However,

symmetry sometimes requires a greater number of anchors. A well-known case

is the Jahn–Teller degeneracy of perfect pentagons, heptagons, and so on, which

will be covered in Section V. Another special case arises when the electronic

wave function of one of the anchors is an out-of-phase combination of two spin-

paired structures. One of the vibrational modes of the stable molecule in this

anchor serves as the out-of-phase coordinate, and the loop is constructed of only

two anchors (see Fig. 12).

We have seen (Section I) that there are two types of loops that are phase

inverting upon completing a round trip: an i3 one and an ip2 one. A schematic

representation of these loops is shown in Figure 10. The other two options, p3

and i2p loops do not contain a conical intersection. Let us assume that A is the

reactant, B the desired product, and C the third anchor. In an ip2 loop, any one of

the three reaction may be the phase-inverting one, including the B! C one.

Thus, the A! B reaction may be phase preserving, and still B may be

attainable by a photochemical reaction. This is in apparent contradiction with

predictions based on the Woodward–Hoffmann rules (see Section VIII). The

different options are summarized in Figure 11.
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The two coordinates that define the ‘‘plane’’ in which the loop located were

discussed in Section II. In loops that encircle a conical intersection, there is

always at least one phase-inverting reaction—we can choose its coordinate as

the phase-inverting one. Let us assume that this is the reaction connecting A and

B. The phase changes near the transition state lying along this coordinate. It

must therefore be positive close to that locality. The electronic wave function of

C, the third anchor is obtained from the in-phase combination of jAi and jBi, as

shown in Section I. Therefore, there is always a phase-preserving coordinate

connecting C and the vicinity of the TS between A and B. We shall make use of

this property in the practical application of the method.

A given pair of anchors may be part of several loops, containing different

conical intersections. A systematic search for the third anchor is conducted by

considering the electrons that are to be re-paired (i.e., that form the chemical

bonds that are created in the reaction). A pragmatic and systematic way of doing

this is by considering first the re-pairing of the smallest possible number of

C

A

C

C-A

A

An i3 loop

φ > 0

φ < 0

An ip2 loop

φ > 0

φ < 0

B

B

Figure 10. A cartoon showing

the phase change in loops contain-

ing a conical intersection.
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Figure 11. Three typical loops for the case where A is the reactant and B—the desired product.

Loops in which a conical intersection may be found are (a) and (c). A loop that does not encircle a

conical intersection is (b). In loop (a) the A! B reaction is phase inverting, and in loops (b) and (c)

it is phase preserving.
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electrons that change their pairing under the energy constraints of the reaction.

In closed shell systems, at least four electrons must be involved since at least

one phase inverting reaction is required. Next, reactions involving six electrons

are considered, and so on.

A. Three-Electron Systems

We begin by considering a three-atom system, the allyl radical. A two anchor

loop applies in this case as illustrated in Figure 12: The phase change takes place

at the allyl anchor, and the phase-inverting coordinate is the asymmetric stretch

C3 mode of the allyl radical. Quantum chemical calculations confirm this

qualitative view [24,56]. In this particular case only one photochemical product

is expected.

The allyl radical plays an important role in many photochemical transfor-

mations, as further discussed in Section IV.

B. Four-Electron Systems

Here the prototype is H4—as only three spin-pairing arrangements are possible,

this system is simple to analyze. It turns out to be very frequently encountered in

practice, even in rather complex systems.

1. Four p Electrons: Butadiene Ring Closure

The classic example is the butadiene system, which can rearrange photochemi-

cally to either cyclobutene or bicyclobutane. The spin pairing diagrams are shown

in Figure 13. The stereochemical properties of this reaction were discussed in

Section III (see Fig. 8). A related reaction is the addition of two ethylene

derivatives to form cyclobutanes. In this system, there are also three possible spin

pairing options.

1

22

3

1

A A A
3

Phase preserving coordinate
Phase inverting coordinate

A

2

{12,3} {1,23}

{13,2}

1 3

� −

Resonance stabilized out-of-phase combination

Figure 12. The allyl/cyclopropyl radical loop.
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2. cis–trans Isomerization: 2 p and 2 s Electrons

Although this reaction appears to involve only two electrons, it was shown by

Mulder [57] that in fact two p and two s electrons are required to account for this

system. The three possible spin pairings become clear when it is realized that a

pair of carbene radicals are formally involved, Figure 14. In practice, the conical

intersection defined by the loop in Figure 14 is high-lying, so that often other

conical intersections are more important in ethylene photochemistry. Hydrogen-

atom shift products are observed [58]. This topic is further detailed in Section VI.

3. Ammonia and Chiral Systems

Ammonia is a two-state system [16], in which the two base states lie at a

minimum energy. They are connected by the inversion reaction with a small

barrier. The process proceeds upon the spin re-pairing of four electrons (Fig. 15)

and has a very low barrier. The system is analogous to the tetrahedral carbon one

2 1

Phase preserving coordinate
Phase inverting coordinate

{14,23}

{13,24}

2

3

1

4

2 3

1

4

3 4

4

1

2

3

{12,34}

�

Figure 13. Anchors, coordinates, and loop for the butadiene system.
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Phase inverting coordinate
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C
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{14,23}

B
1

4

CB

A

{12,34}

Two perpendicular methylenes

Figure 14. Same as Figure 13, for ethylene isomerization.

456 yehuda haas and shmuel zilberg



(Fig. 9). Two loops based on these anchors are active in the photochemistry of

ammonia, discussed in Section VI.

Another way to obtain the phase change taking place during this reaction is

by assuming that the lone pair can tunnel through the barrier, while the spin-

pairing of all NH bonds remains unchanged. This is then a two-electron

Möbius-type reaction, which is phase inverting. Many examples of the

equivalence of a four-electron Hückel system with a two-electron Möbius one

are known.

A similar situation holds for a molecule containing a tetrahedral carbon is

shown in (Figure 16). The reaction converting one enantiomer to another, is

formally equivalent to the exchange of two sigma-bond electron pairs, and

{12,34}

N

H

H

H
1 2

3

4

Phase preserving coordinate
Phase inverting coordinate

{14,23}

N

H

H

H
1

23

4

{13,24}

N

H

H H

N

H H

H

2 3

4

1

Planar transition state

Figure 15. Three pairing schemes for the ammonia system.
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Figure 16. Chiral system anchors and coordinates.
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therefore is a phase inverting reaction. A planar transition state may be imagi-

ned for this system [59]. The third anchor may be envisioned as a carbene plus a

molecule, in which a new bond is formed between the two radicals created by

the dissociation of two carbon–ligand bonds. The enantiomer conversion

reaction does not take place thermally, possibly due to the very high barrier.

C. Four Electrons in Larger Systems

The main application of the loop method is to analyze complex systems, that can

support several low-lying conical intersections. The idea is to provide a simple

systematic, not intuition dependent, method for finding the accessible conical

intersections.

The simplest loops would be i3 loops in which all three reactions exchange

two electron pairs (ip2 loops require the re-pairing of at least three electron

pairs). For a given system, valence electrons are considered (neglecting core

electrons) in order of their increasing binding energy: p electrons first, then

combination of p and s electrons, and finally two pairs of s electrons. Rydberg

electrons need to be considered only in deep ultraviolet (UV) applications.

We illustrate the method for the relatively complex photochemistry of 1,4-

cyclohexadiene (CHDN), a molecule that has been extensively studied [60–64].

There are four p electrons in this system. They may be paired in three different

ways, leading to the anchors shown in Figure 17. The loop is phase inverting

(type i3), as every reaction is phase inverting), and therefore contains a conical

intersection; Since the products are highly strained, the energy of this conical

intersection is expected to be high. Indeed, neither of the two expected products

was observed experimentally so far.

Next, we consider one pair of p electrons and one pair of s electrons. The s
electrons may originate from a CH or from a CC bond. Let us consider the loop

enclosed by the three anchors formed when the electron pair comes from a C–H

bond. There are only three possible pairing options. The hydrogen-atom

originally bonded to carbon atom 1, is shifted in one product to carbon atom 2,

{12,34}

Phase preserving coordinate
Phase inverting coordinate

*

*

*

*

*

*

*

*

{13,24}

*

*

*

*

{14,23}

Figure 17. Possible spin-pairing schemes for CHDN, involving p electrons only.
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to form bicyclo-[3,1,0]hex-2-ene [BCE(I)], and in the other to carbon atom 3, to

form 1,3-cyclohexadiene (1,3-CHDN). In case the two electrons originate from

a C–C single bond, one product is again BCE, but using isotopic labeling, it is

clear that it is different from the molecule formed upon hydrogen migration. It

is therefore labeled as BCE(II). The second product is vinylcyclobutene. As

seen from Figure 18, both loops are phase inverting (i3 type), and enclose

conical intersection. When a CH bond is cleaved, an H/allyl conical intersection

is obtained and when a C–C bond is involved, a vinyl/allyl conical intersection.

Both were reported in [65]. We designate the BCE isotopomer formed from the

H/allyl loop as BCE(I). Both products of the loop encircling the vinyl/allyl CI

were not observed experimentally. One of them, BCE(II), is the isotopomer

expected from the di-p methane rearrangement [66].

The exchange of two pairs of s electrons is expected to lead to a high-lying

conical intersection that is not likely to be important in the UV photochemistry

of CHDN. This winds up the possibilities of loops involving two-electron pair

exchanges only.

D. More Than Four Electrons

The next simplest loop would contain at least one reaction in which three

electron pairs are re-paired. Inspection of the possible combinations of two four-

electron reactions and one six-electron reaction starting with CHDN reveals that

they all lead to phase preserving i2p loops that do not contain a conical

intersection. It is therefore necessary to examine loops in which one leg results in

a two electron-pair exchange, and the other two legs involve three electron-pair

exchanges (ip2 loops). As will be discussed in Section VI, all reported products

(except the ‘‘helicopter-type’’ elimination of H2) can be understood on the basis

of four-electron loops. We therefore proceed to discuss the unique helicopter

BCE(I)

*

*

*

*

*
*

*

*

* *

*

*

i

i

i

H/allyl conical intersection loop vinyl/allyl conical intersection loop

BCE(II)

*

*

*

*

*

*

*

*

*

*

*

i

i

i

*

Figure 18. H/allyl (left) and vinyl/allyl (right) loops for CHDN.
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reaction, in which the H2 molecule departs from the carbon ring in a helicopter

type motion [61,62].

The concerted CHDN! benzene þ H2 reaction (Fig. 19a) has an aromatic

transition state [67,68] and is thermally allowed (phase preserving). Three

electron pairs are re-paired in the reaction. In order to construct a conical

intersection containing Longuet-Higgins loop that has this reaction as one of the

legs, we must look for another reaction of CHDN (or benzene þ H2) that is

phase inverting. The reaction must involve the two hydrogen atoms (that are

eliminated in the benzene-forming reaction), so that all four electrons of the two

CH bonds must participate in the reaction. Obviously, other bonds must also

change, so that in order for the reaction to be phase inverting, at least two more

electron pair exchanges are required. Thus the simplest loop that contains a CI

and leads to benzene and H2 in a concerted reaction is of ip2 type, in which the

phase-inverting leg involves eight electrons. A reaction that suggests itself is the

isomerization CHDN(I)! CHDN(II), in which a shift of the two double bonds

takes place, along with the associated transposition of hydrogen-atom bonds

(Fig. 19b). Being a thermally ‘‘forbidden’’ reaction, it is likely to have a high

barrier. The loop encircling the conical intersection that is defined by these three

reactions is shown in Fig. 19c. The loops described in this section are the basis

for the computation procedure detailed in Section VI.
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*

*

*

*

* *

* *

H2

*

*

*

*
CHDN(II)

3

4

8

7

2

5

1

6

p

{12,34,56,78}

{23,45,78,16}

{82,34,57,16}

3

4

8

7

2

5

3

4

8

7

2

5

1

6

i

(a)

{13,45,67,82}{12,34,56,78}

i

p p

(b)

(c)

Figure 19. The proposed phase-inverting loop for the helicopter-type elimination of H2 off

CHDN. The asterisks denote the H atoms that were originally bonded in the 1,4 positions of CHDN.

Parts (a) and are (b) the anchors and (c) is the loop.
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V. LONGUET-HIGGINS LOOPS AND THE
JAHN–TELLER THEOREM

Longuet-Higgins loops are closely related to the Jahn–Teller theorem [69,70]. In

this section, we show that the Longuet-Higgins loop method renders the same

results as the standard Jahn–Teller treatment. The H3 system (a well-known

Jahn–Teller case) was used as an example by Herzberg and Longuet-Higgins

[12,13]. They showed that by symmetry, the electronic degeneracy occurs at the

equilateral geometry. We shall extend the discussion to a more complicated case,

and show that the correspondence holds for them. The case of several

neighboring degeneracies will be covered. While the usual treatment of the

Jahn–Teller problem emphasizes the degeneracy point, the Longuet-Higgins rule

considers the neighborhood (loop) around the degeneracy (conical intersection).

The Jahn–Teller theorem [69] states that ‘‘the nuclear configuration of any

nonlinear polyatomic system in a degenerate electronic state is unstable with

respect to nuclear displacements that lower the symmetry and remove the

degeneracy.’’ A more rigorous formulation [71] is ‘‘If the potential energy

surface of a nonlinear polyatomic system has two or more branches that

intersect at one point, then at least one of them has no extremum at this point.’’

An example (the E � E case, [70]) is shown in Figure 20. Since the nuclear

displacement lowers the energy of the system, the point of degeneracy becomes

Figure 20. The potential surface near the degeneracy point of a degenerate E state that distorts

along two coordinates QE and Qy. The parameter EJT is the stabilization energy of the ground state

(the depth of the ‘‘moat’’). [Adapted from [70]].
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a crossing point between an excited and the ground state, that is, a conical

intersection. In that sense, a Jahn–Teller system may be viewed as a special case

of the more general problem of electronic degeneracy. In fact, by the Longuet–

Higgins theorem, any degeneracy that connects the ground-state potential and

the excited-state one, must be surrounded by a Longuet-Higgins loop, which can

be formed by proper spin-paired combinations.

There is no analytic proof of the Jahn–Teller theorem. It was shown to be

valid by considering all possible point groups one by one. The theorem is

traditionally treated within perturbation theory: The Hamiltonian is divided into

three parts

H ¼ HðrÞ þ HðRÞ þ Vðr;RÞ ð16Þ

where HðrÞ is the pure electronic part, HðRÞ is the nuclear kinetic energy, and

Vðr;RÞ is the electron–nuclear interaction. The parameter Vðr;RÞ is expanded

with respect to small nuclear displacement from the initial configuration R0:

Vðr;RÞ ¼ Vðr;R0Þ þ
X
a

ðqV=qQaÞQa þ 1=2
X
a;b

ðq2V=qQaqQbÞQa 	 Qb þ 	 	 	

ð17Þ
The terms

P
aðqV=qQaÞQa and 1=2

P
a;bðq

2V=qQaQbÞQaQb are the linear and

quadratic vibronic coupling terms, respectively. For small Qa values, they may

be considered as a perturbation.

If the solution of the zero-order Schrödinger equation [i.e., all terms in (17)

except Vðr;R0Þ are neglected] yields an f-fold degenerate electronic term, the

degeneracy may be removed by the vibronic coupling terms. If j�i and j�0i are

the two degenerate wave functions, then the vibronic coupling constant

F��
Qa ¼ h�ðqV=qQaj�0i ð18Þ

is nonzero for some coordinate Qa (this is ensured by the lack of extremum at this

point).

An example that is closely related to organic photochemistry is the E � E
case [70]. A doubly degenerate E term is the ground or excited state of any

polyatomic system that has at least one axis of symmetry of not less than third

order. It may be shown [70] that if the quadratic term in Eq. (17) is neglected,

the potential surface becomes a moat around the degeneracy, sometimes called

‘‘Mexican hat.’’ The polar coordinates r and f, shown in Figure 20, can be used

to write an expression for the energy:

E�ðr;fÞ ¼ 1=2KEr2 � r½F2
E þ G2

Er
2 þ 2FEGEr cos 3f�1=2 ð19Þ

FE and GE are the linear and coupling quadratic terms, respectively.
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If the quadratic coupling cannot be neglected, the potential surface acquires

three minima at f ¼ 0, 2p=3 and 4p=3. The two wave functions corresponding

to the two branches are

�� ¼ cosð�=2Þjyi � sinð�=2ÞjEi ð20Þ
�þ ¼ sinð�=2Þjyi þ cosð�=2ÞjEi ð21Þ

where jyi and jEi are the two electronic wave functions that are degenerate at

r ¼ 0. tan y ¼ ðFE sinf� jGEjr sin 2fÞ=FE cosfþ jGEjr cos 2fÞ.
When GE ¼ 0, it turns out that the two wave functions [Eqs. (20) and (21)]

are not single valued: They change their sign when moving in a complete circle

at the bottom of the moat! Since the total wave function must be single valued,

this means that the electronic wave function must be multiplied by a phase

factor eimf, with half-integer values of m. The energy is a function of m2, so that

all levels are doubly degenerate, including the ground state.

It follows that the Jahn–Teller effect is a special case of the Longuet-Higgins

rule, for systems of high nuclear symmetry. The degeneracy is removed as one

moves away from the highly symmetric structure. The symmetry of the two

electronic states that are formed for a given distortion may be determined from

the symmetry of the problem, and was worked out for all point groups. The

distortion in the Jahn–Teller problem are usually expressed in terms of the

normal coordinates of the (fictitious) highly symmetric molecule that would

have existed if a distortion did not take place.

In the more general case of nonsymmetric systems, we have shown that one

can use reaction coordinates connecting two different spin-paired anchors.

These two approaches should be equivalent; We shall show that this is indeed

the case by discussing some examples.

Herzberg and Longuet-Higgins used the special case of the H3 system to

demonstrate the relation of the Jahn–Teller theorem to the Longuet-Higgins

loop [12]. We repeated their arguments in Section II (Figs. 4 and 5). Longuet-

Higgins went on to show, that the fact that three minima are obtained is not

related to the C3v symmetry of the problem—the rule works for an arbitrary

ABC system [13]. According to VB theory, any three-atom system for which

the wave function of the transition state on the ground state is an out-of-phase

combination of the wave functions of the reactant and products behaves in

the same way. As we have seen (Sections I and III), this arises from a more

fundamental symmetry property of the system: the permutational symmetry of

the polyelectronic wave function and Pauli’s principle.

Accepting the Longuet-Higgins rule as the basis for the search of conical

intersection, it is necessary to look for the appropriate loop. The E-type

degeneracy of a Jahn–Teller system is removed by a nonsymmetric motion,
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leading to a splitting into two electronic states of A and B symmetry (in C2v).

For a given geometry, one of the states, say the A state, is the ground state and

the other, an excited state. However, for a different geometry, their relative

energy must switch, as we have seen for the H3 and H4 systems. We shall find

that this is the case for other Jahn–Teller systems. In particular, if the minima

transform as an A-type representation, the TS transform as B-type.

There is an odd number of equivalent spin-paired structures around the

degeneracy: for a D3h case, three, for D5h case, five, and so on. These structures

occupy separate minima around the conical intersection, or are located around

an isoenergetic moat in the Mexican hat. The transition between them requires a

change in the spin pairing, which, by the Longuet-Higgins rule, must be phase

inverting. This means that the symmetry of electronic wave function at

the transition state is in general different than that of the minima. Thus, the

electronic wave function of different nuclear geometries on the ground-state

surface may transform according to different symmetry species.

A. An Example: The Cyclopentadienyl Radical
and Cation Systems

The cyclopentadienyl radical and the cyclopentadienyl cation are two well-

known Jahn–Teller problems: The traditional Jahn–Teller treatment starts at the

D5h symmetry, and looks for the normal modes that reduce the symmetry by first-

or second-order vibronic coupling. A Longuet-Higgins treatment will search for

anchors that may be used to form the proper loop. The coordinates relevant to

this approach are reaction coordinates.

1. Cyclopentadienyl Radical (CPDR)

This system was analyzed using ab initio (MO–CI) methods [72,73]. In the

cyclopentadienyl radical, three electrons occupy a pair of e001 p MOs that are

degenerate in D5h symmetry. This gives rise to a degenerate 2E001 state, which by

the Jahn–Teller theorem should distort away from D5h symmetry along a

degenerate e02-type vibration. The resulting states are of A2 and B1 symmetry.

Five equivalent minima of C2v symmetry are obtained, which may be connected

by a motion that does not pass through the central D5h-symmetric structure. It

turns out [73,74] that the barriers between the five equivalent structures are small,

so that the system can pseudorotate among them—a typical Mexican hat case.

A simple VB approach was used in [75] to describe the five structures. Only

the lowest energy spin-pairing structures I (B1 symmetry) of the type {12,34,5}

were used (Fig. 21). We consider them as reactant–product pairs and note that

the transformation of one structure (e.g., Ia) to another (e.g., Ib) is a three-

electron phase-inverting reaction, with a type-II transition state. As shown in

Figure 22, a type-II structure is constructed by an out-of-phase combination of
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the two type-I structures. The degenerate 2E001 state is the lowest state of D5h

symmetry: It lies on the ground-state surface and is constructed from a

combination of the five. Type-II are A2 symmetry structures, and they turn out to

be isoenergetic with type-I. Their relatively strong stabilization is due to the

allyl-type resonance. Their description as transition states is thus a matter of

choice—type-I structures could be considered as transition states between two

type-II structures.

The electronic spectrum of the radical has been recorded long before a

satisfactory theoretical explanation could be provided. It was realized early on

that the system should be Jahn–Teller distorted from the perfect pentagon

symmetry (D5h point group). Recently, an extensive experimental study of the

high-resolution UV spectrum was reported [76], and analyzed using Jahn–Teller

formalism [73].

It was shown by several workers that in this case the first-order Jahn–Teller

distortion is due to an e02 vibration, and that the second-order distortion vanishes.

Therefore, in terms of simple Jahn–Teller theory, the ‘‘moat’’ around the

symmetric point should be a Mexican hat type, without secondary minima. This

expectation was borne out by high-level quantum chemical calculations, which

showed that the energy difference between the two expected C2v structures (2A2

and 2B1) were indeed very small [73].

The system provides an opportunity to test our method for finding the conical

intersection and the stabilized ground-state structures that are formed by the

distortion. Recall that we focus on the distinction between spin-paired structures,

rather than true minima. A natural choice for anchors are the two C2v structures

having A2 and B1 symmetry shown in Figures 21 and 22: In principle, each set

can serve as the anchors. The reaction converting one type-I structure to another

is phase inverting, since it transforms one allyl structure to another (Fig. 12).
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Figure 21. The five equivalent spin-paired structures of CPDR.
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= − Figure 22. An out-of-phase combination of two

type-I (B1 symmetry) structures yields a type-II structure

(A2 symmetry).
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Type-II structures are formally the out-of-phase transition states between two

type-I structures, even if there is no measurable barrier.

The complete loop is shown in Figure 23: It has five phase-inverting

reactions, and therefore is a phase-inverting loop. The degeneracy that lies

within the loop is the symmetric D5h structure—at this symmetry all five type-I

structures are degenerate. Alternatively, the five B1 structures could serve as

anchors, the transitions between any pair are also phase inverting, with the A2

structures functioning as transition states. This example emphasizes the cardinal

importance of spin pairing as the basis for choosing anchors—the conventional

choice is a nuclear structure that lies in an energy minimum, but this is not an

essential requirement.

This example may be used to address another issue concerning Longuet-

Higgins loops: What is the minimum number of anchors needed to form a loop.

Formally, one might choose three anchors (e.g., Ia, Ic, and Id), and use them as a

loop. Inspection of Figure 23 shows that the conical intersection is formally

encircled by a loop connecting these structures. It is also easily verified that the

loop is an ip2 phase inverting one: The Ic! Id reaction is phase inverting, and

the Ia! Ic and the Ia! Id reactions are phase preserving. However, one of the

conditions for a proper loop was that all reactions must be elementary, that is,

there must not be an intermediate between any two anchors. This condition is

not satisfied for the transformation Ia! Ic (or Ia! Id): motion along this

trajectory leads up-hill (on the slope of the cone leading to the E001 degeneracy).

Somewhere on the way, the minimum energy path will lead the system to Ib,

which is therefore an intermediate. Thus, the smallest loop must pass through all

five type-I structures.

Ia

IbIe

IcId

IIea = Ie − Ia IIab = Ia − Ib

IIde = Id − Ie IIbc = Ib − Ic

IIcd
= Ic − Id

Q invert

Q preserve

Figure 23. A Longuet-Higgins loop

around the Jahn–Teller degeneracy of CPDR

at D5h symmetry. Qpreserve and Qinvert are the

phase-inverting and phase-preserving coor-

dinates that define the loop.
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Other spin-pairing forms that may in principle be used to construct a loop are

shown in Figure 24.

Structures III and IV that have different spin-pairing schemes are expected to

be higher in energy than type-I because of the strain introduced by the

cyclopropyl rings. They may be anchors for secondary conical intersections

around the most symmetric one.

2. Cyclopentadienyl Cation (CPDC)

In the case of the cyclopentadienyl cation, there are only two electrons in the e001
p molecular orbitals that are degenerate in D5h symmetry. The MO treatments

[72,77] predict three low-lying electronic states: 3A02 (which is the ground state),
1A01, and a degenerate 1E02 state. As in the case of the radical, an e0-type

vibrational mode is expected to lower the symmetry of the system and produce a

lower energy singlet state. In this case, the E state splits to states of A1 and B2

symmetry. This system is thus analogous to the cyclopentadienyl radical one—

five equivalent C2v structures are expected to be formed upon distortion of the

D5h one. These structures are situated around the degeneracy in a Mexican hat

arrangement. The MO calculations found two very close lying 1A1 structures

[72,77]. The B1 state, expected from the Jahn–Teller treatment, was not

discussed by [72].

Figure 25 shows the results of the C2v distortion induced by a degenerate e02
vibration that removes the D5h degeneracy (compare Fig. 23). By symmetry, five

III IV Figure 24. Other spin-paired structures of CPDR.

Va

VbVe

VcVd

VIde VIbc

VIcd

VIea VIab

Figure 25. A suggested explanation for

the pseudorotation motion around the degen-

eracy in the cyclopentadienyl cation. (Adapted

from Ref. [72])
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equivalent type-V and five equivalent type-VI structures result (as shown). The

system can pseudorotate around the degenerate D5h structure, along the route

delineated by the 10 C2v structures. According to this scheme [72], the central

symmetric structure is surrounded by totally symmetric structures (in C2v

symmetry). This is in apparent contradiction to the Jahn–Teller theorem, since a

first order distortion must generate a nonsymmetric state.

Simple VB theory [75] uses for the basis set five low-lying structures that

differ in their spin pairing characteristics, as shown in Figure 26. Similar to the

case of the radical, the degenerate 1E02 state is the lowest singlet state of D5h

symmetry. It lies on the lowest singlet surface and is constructed by the

combination of the five type-V structures (in fact, only four are linearly

independent). These structures transform as A1 in C2v, and will be referred to as

A1(I) structures.

As shown in Figure 27, an in-phase combination of type-V structures leads to

another A1 symmetry structures (type-VI), which is expected to be stabilized by

allyl cation-type resonance. However, calculation shows that the two structures

are isoenergetic. The electronic wave function preserves its phase when

transported through a complete loop around the degeneracy shown in Figure 25,

so that no conical intersection (or an even number of conical intersections)

should be enclosed in it. This is obviously in contrast with the Jahn–Teller

theorem, that predicts splitting into A1 and B2 states.

The key to the correct answer is the fact that the conversion of one type-V

(or VI) structures to another is a phase-inverting reaction, with a B2 species

transition state. This follows from the observation that the two type-V (or VI)

structure differ by the spin pairing of four electrons. Inspection shows (Fig. 28),

that the out-of-phase combination of two A1 structures is in fact a B2 one,

Va Vb Vc Vd Ve
Figure 26. Five equivalent VB struc-

tures for CPDC.

VIab VIbc VIcd VIde VIea

VIcd Vc Vd

A1(I)

�

Figure 27. Top: One of the allylic

type-VI structures, formed by in-phase

combination of type-V structures. Bottom:

The five type-VI structures.
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type-VII. It may be conceived as a three-electron combination spread over four

carbon atoms. A single electron resides on the fifth carbon atom.

Types-VI and -VII structures can be formed from the symmetric D5h

structure by the e02 vibration as shown in Figure 29, in accord with the Jahn–

Teller theorem.

The B2 form of the cyclopentadienyl cation was not studied extensively.

In [77], it was referred to as an electronically excited state. According to the

Jahn–Teller theorem, at a certain geometry it should be part of the ground state,

formed by the distortion of the degenerate structure. This requirement is

fulfilled, of course, if it is indeed a TS between two ground-state species. We

computationally verified this proposition as follows. The exact structure of the

system at the degeneracy point was searched for under D5h symmetry constraint.

The C–C bond distance rC��C for the symmetric D5h cation at the conical

intersection was found by calculating the energy of the two states point by point

with different rC��C values. A minimum energy was obtained at rC��C ¼ 1:437 Å.

At this point, the D5h symmetry was removed, and a search for an electronic

state of B2 symmetry was conducted. A structure with the geometry shown in

Figure 30 was found. At this geometry, the B2 state is lower in energy than any

other, and therefore lies on the ground-state surface. Going either way to the

type-VI structure, still on the ground-state surface, the energy decreased—the

VIab

VIIbe VIIac VIIbd

VIea Va Vb Ve Va Vb Ve VIIbe

VIIce VIIad

− = − − = − =

Figure 28. Top: Construction of type-VII structure of B2 symmetry. Bottom: the five type-VII

structures.

VIbc (A1) e ′ vibration VIIbd (B 22 )

Figure 29. The effect of the phase-preserving component of the degenerate e02 distorting mode.

It may be regarded as a major component of the reaction coordinate that leads to the A1 structure

(going left, one phase of the mode). Going right, the other phase of the same vibration, the B2 state is

formed. (A type-V structure is also obtained along the same coordinate).
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type-VII species is indeed a transition state between two A1 symmetry species.

The ground-state equilibrium structures of the two A1 species are also shown in

Figure 30. Note that the type-VII structure is very slightly distorted from the

perfect pentagon, in agreement with previous results [77].

In the B1 structure, the positive charge is centered near one of the bases,

rather than at a vertex, as in the A1 structures.

Figure 31 shows the proposed Longuet-Higgins loop for the cyclopentadienyl

cation. It uses the type-VI A1 anchors, with the type-VII B1 structures as

transition states between them. This situation is completely analogous to that of

the radical (Fig. 23). Since the loop is phase inverting, a conical intersection

should be located at its center—as required by the Jahn–Teller theorem.

A final comment concerns the presence of other conical intersections near the

central one. They are enclosed by loops consisting of two A1 (type-VI) and one

A1 (type-V) species, as depicted in Figure 32. This is a phase-inverting ip2 loop.

Thus, the main Jahn–Teller degeneracy is surrounded by five further

degeneracies, arranged in a symmetrical fashion.

This figure shows that there are many touching points between the lower and

upper excited states. The shown structures are all on the ground-state surface. At

Type-V (A1)

1.461

1.367

1.545

1.434 1.524

1.450 1.398

Cl

1.418 1.437 1.357

Type-VII (B 2) E 2(D 5h) Type-VI (A1)′

Figure 30. The calculated [CAS (4,5)/DZV] structures of the ground-state species V(A1),

VII(B2), VI(A1) and the conical intersection species.

VIcd

VIabVIea

VIdeVIbc

VIIab VIIea

VIIcd

VIIde VIIcd

Figure 31. A phase-inverting loop ac-

counting for the pseudorotation motion around

the degeneracy in the cyclopentadienyl cation.
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the geometry of the B2 transition state, the A1 state is of higher energy, and thus

an excited states, even if by a small margin.

The case of CPDC can be used to address the issue of the loop’s size and the

number of conical intersections near a Jahn–Teller degeneracy. If we carry

the system around a loop encircling all six degeneracies, the total electronic

wave function will not change sign, and the phase-change theorem will appear

to be violated. This point, relating to the ‘‘radius’’ of the loop, was raised by

several authors [11,78]. Zwanziger and Grant [78] showed that in the case of the

22E0 state of Na3, three degeneracies are found nearby the main Jahn–Teller one.

They analyzed the system using linear and quadratic coupling terms. Our

discussion of the cyclopentadienyl radical shows how a problem of this nature

is treated by the spin-pairing model. The extra five satellite conical intersections

of CPDR arise from the fact that there are more spin-paired functions

surrounding the main degeneracy point. In the case of the first degeneracies of

the H3 and Na3 systems, the lowest 2E0 state (12E0) displays a single degeneracy.

The Zwanziger–Grant effect arises in the second 2E0 state, since other spin

VIcd

Vd

VIIbe

VIIbd
VIbc

VIIac

VIab VIea

Va

Ve

Vb Ve

VIIad

VIde
VIcemain

Cl

main conical intersection
secondary conical intersectionS

S S

SS

S

Figure 32. The main symmetric conical intersection of cyclopentadienyl cation, and five

secondary conical intersections around it.
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pairing structure with similar energies are possible on the excited-state surface,

for example, such that involve 3p electrons. Due to symmetry, only three such

structures are possible, giving rise to three secondary loops, in analogy with the

five loops shown in Figure 32.

VI. EXAMPLES

In this section, we apply the phase-change rule and the loop method to some

representative photochemical systems. The discussion is illustrative, no

comprehensive coverage is intended. It is hoped that the examples are sufficient

to help others in applying the method to other systems. This section is divided

into two parts: in the first, loops are constructed and a qualitative discussion

of the photochemical consequences is presented. In the second, the method is

used for an in-depth, quantitative analysis of one system—photolysis of 1,4-

cyclohexadiene.

A. Loops in Molecular Photochemistry: Qualitative Discussion

Some prototype systems were presented in Sections I–IV; here, we offer a more

extended discussion and application to realistic photochemical systems.

1. Four-Electron Problems

The prototype system for all four electron problem is the H4 system, discussed in

Section II.

Ethylene. A possible loop for ethylene photolysis was presented in Figure 14.

Experimentally, irradiation into the first absorption band [populating the

B(11B1u) state] leads to cis–trans isomerization as well as to a H atom shift.

The covalent A state lies at a very high energy in the planar form [79,80], but is

the lowest excited singlet in the perpendicular one. This system was studied

as early as 1985 by Ohmine [6], who reported a conical intersection that

involves pyramidalization, and may lead to hydrogen-atom transfer. He

calculated the conical intersection to be found along two coordinates—a phase

inverting one (rotation around the double bond) and a phase preserving one,

forming a methyl carbene (hydrogen-atom transfer) or a charge separated

intermediate. Similar results were obtained more recently by the extensive

studies of Ben-Nun and Martinez ([10] and references cited therein). Figure 33

shows a phase-inverting loop for the cis–trans isomerization, that leads also to a

hydrogen-atom shift. The third anchor in this loop may appear as a carbene

(CH3CH:) or as a zwitterion (CH�2 CHþ2 ), see Figure 1(4). The conical

intersection encircled by the loop is termed CIH, for hydrogen-atom transfer.
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The transformation of ethylene to the carbene requires the re-pairing of three

electron pairs. It is a phase-preserving reaction, so that the loop is an ip2 one.

The sp3-hybridized carbon atom formed upon H transfer is a chiral center;

consequently, there are two equivalent loops, and thus conical intersections,

leading to two enantiomers.

Assuming that the cis isomer is the reactant, the trans isomer product is

expected to be accompanied by others arising from secondary reactions of the

biradical, as observed experimentally [58].

The carbene anchor includes the ionic pyramidal one, as established in

Section I, since both have the same spin-pairing scheme [81]. The geometry of

the ionic pyramidal structure is quite different from that of the carbene, raising

the possibility of two minima for this anchor. Ionic structures like this were

predicted by MO theory and since their dipole moment was found to depend

steeply on geometry, this phenomenon was termed the sudden polarization

effect [2, p. 212; 82]. It leads to reduction of the excited state’s energy in the

presence of polar solvents, which results in efficient crossing to the ground state.

On the ground state, this structure is calculated to be a local minimum, but to

our knowledge has not been observed experimentally. Since the structure is

ionic, it may promote the coupling between the ionic B state and the otherwise

largely covalent ground state.

The Cyclooctene Isomerization. A reaction that attracted some attention in

recent years is the cis–trans isomerization of cyclooctene [84]. The cis isomer is

much less strained than the trans, but the latter is readily formed upon direct

photolysis and also upon photosensitization. In this case, two enantiomeric

trans isomers are formed. The appropriate loop is a variation of that shown in

Figure 14, as shown in Figure 34. This is a phase inverting i3 -type loop, that

1

3

{13,24,56}

a

1 2

4

b

a

2

4

5
6

b

3
5

{12,35,46}

b
1

3

{14,23,56}

a

2

4

5
6

i

p p

ClH

6

H-shift loop of ethylene

Figure 33. A loop containing a conical intersection for the

cis–trans ethylene isomerization.
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contains a conical intersection. In this case, the ring closure makes the two trans

isomers distinguishable—being enantiomers, they belong to two different

anchors. The proposed loop is consistent with the fact that the only reaction

observed is cis–trans isomerization—the enclosed conical intersection is

expected to be low lying, and to lead smoothly only to the trans isomers and

back to the cis reactant.

Butadiene

UNSUBSTITUTED BUTADIENE. Butadiene anchors were presented in Figures 1(3)

and 13. The basic tetrahedral character of the conical intersection (as for H4) is

expected to be maintained, when considering the re-pairing of four electrons.

However, the situation is more complicated (and the photochemistry much

richer), since here p electrons are involved rather than s electrons as in H4. It

is therefore necessary to consider the consequences of the p-orbital rotation,

en route to a new sigma bond.

As shown in Figure 13, which is completely analogous to Figure 2, three

independent spin pairing schemes exist: in the planar butadiene, the pairing is

{12,34}; in cyclobutene, {14,23}. The third possibility {13,24} corresponds to

bicyclobutane. Since the loop between these three structures is an i3 one (for

Hückel-type reactions), a conical intersection must be present inside the it.

Irradiation of butadiene is thus expected to lead to both cyclobutene

and bicyclobutane. The latter is not observed at room temperature, but is

found when the reaction is carried out in cryogenic matrices, where highly

strained structures may be observed due to rapid cooling [83,85]. A room

temperature experiment that may reveal the bicyclobutane anchor, is the

scrambling of carbon atoms expected to be found in recovered butadiene, using

labeled 13C isotopes. A given spin-pairing scheme (anchor) accommodates

different conformers (Fig. 1), which may also be revealed in low-temperature

i i

i

Cyclootene loop

Figure 34. Anchors for the cis–trans isomerization

of cyclooctene.
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experiments [83,85]. For example, photochemical s-cis/s-trans isomerization of

butadiene is observed.

SUBSTITUTED BUTADIENES. The consequences of p-type orbitals rotations,

become apparent when substituents are added. Many structural isomers of

butadiene can be formed (Structures VIII–XI), and the electrocylic ring-closure

reaction to form cyclobutene can be phase inverting or preserving if the motion

is conrotatory or disrotatory, respectively. The four cyclobutene structures XII–

XV of cyclobutene may be formed by cyclization. Table I shows the different

possibilities for the cyclization of the four isomers VIII–XI. These structures are

shown in Figure 35.

In a similar way Table II summarizes how the phase changes upon

interconversion among the isomers. Inspection of the two tables shows that for

any loop containing three of the possible isomers (open chain and cyclobutene

ones), the phase either does not change, or changes twice. Thus, there cannot be

a conical intersection inside any of these loops; in other words, photochemical

transformations between these species only cannot occur via a conical

intersection, regardless of the nature of the excited state.

TABLE I

The Phase Change Upon Cyclization of Different s-cis Cyclobutadiene

Isomersa

Product XII XIII XIV XV

Reactant

VIII i i p p

IX i i p p

X p p i i

XI p p i i

a The p stands for phase-preserving reaction, the i for phase inverting.

TABLE II

The Phase Change Upon Interconversion Reactions Between Different

s-cis Cyclobutadiene Isomersa

Product VIII IX X XI

Reactant

VIII p i i

IX p i i

X i i p

XI i i p

a The p stands for the phase-preserving reaction, the i for the phase

inverting.
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With bicyclobutane as the third anchor, several different conical intersections

may be found for certain reactant–product pairs, which in turn can be identified

using Tables I and II. For example, structure IX may cyclize to XII or XIII, but

not to XIV or XV, as shown in Figure 36. In a similar way, isomer VIII may

convert to either X or XI but not to IV. In each of these cases, a second product

that can be traced to either the cyclopropyl biradical or bicyclobutane (BCB)

form of the third anchor (Fig. 1) is also formed. Although the relative yield of

the products cannot be estimated from this analysis, these selection rules are

strict for reactions in which conical intersections are involved, and they can

predict which pairs of products are possible. In Figure 36a and 36b, the two

possible modes of ring closure are shown: suprafacial and antarafacial—the

BCBs (or cyclopropyl biradicals) formed are different isomers. In Figure 36a,

we show the conical intersection as a tetra radicaloid, allowing re-pairing of all

four electrons. The biradical form was chosen in order to explain more clearly

the thermal formation of the two final products—cyclopropyl derivatives XVII

and XVIII. This result may generalized as follows: Reactions in which all four p
electrons participate, cannot result in cis–trans isomerization or cyclobutane

formation only. These photochemical transformations involving a four-electron

system must be accompanied by an additional, fairly strained one in which there

is a cyclopropyl ring, or by a bicyclobutane product.

THE CYCLOBUTADIENE–TETRAHEDRANE SYSTEM. A related reaction is the photo-

isomerization of cyclobutadiene (CBD). It was found that unsubstituted CBD

does not react in an argon matrix upon irradiation, while the tri-butyl substituted

derivative forms the corresponding tetrahedrane [86,87]. These results may be

understood on the basis of a conical intersection enclosed by the loop shown in

Figure 37. The analogy with the butadiene loop (Fig. 13) is obvious. The two

CBDs and the biradical shown in the figure are the three anchors in this system.

With small substituents, the two lobes containing the lone electrons can be far

a b

a b b a

b

a b

b b

a

a

b

a

a

2 3 2 3 2 3 2 3

1 4 1 4 1 4 1 4

2 3

1 4

2 3

1 4

VIII IX X XI

XII XIII XIV XV

Figure 35. Structures VIII–XV.
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Figure 36. Possible butadiene photoche-

mical reactions.
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apart. The biradical reverts back to the CBD structure, and so interconversion of

the two CBDs is the sole net reaction. When large substituents are present,

the two lobes are pushed together, helping the formation of a new bond to yield

a tetrahedrane. This expectation is in agreement with experimental results on

CBD and tert-butyl substituted CBD [86].

1-BUTENE. As shown in Figure 38, a group attached to C-1 can migrate from

position 1 to 3 (1,3 shift) to produce an isomer. If it is a methyl group, we

recover a 1-butene. If it is a hydrogen atom, 2-butene is obtained. A third

possible product is the cyclopropane derivative. The photochemical re-

arrangement of 1-butene was studied extensively both experimentally [88]

a

b
i

1

2

3

4

a

b

1

2

3

4

{13,24}

{12,34}

a b

1

2

3
4

Small substituents

1

2

3

Large substituents

a b

Tetrahedrane

or
a b

4

{14,23}

i

i

Figure 37. Formation of tetrahedrane from cyclobutadiene.
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and theoretically [89]. Orbital symmetry rules [52] predict that the major

photochemical pathway be a [1,3] suprafacial sigmatropic shift that preserves

the molecular stereochemistry. It is found experimentally that a [1,3] shift does

indeed take place, but in addition, a cyclopropane derivative is obtained, and

that the [1,3] shift reaction is indeed stereospecific—the methyl group migrates

via a supra path, with retention of the configuration. No evidence for an antara

path products was reported. This system provides an example of the H-allyl

conical intersection: The transition between A and B is via an allyl type

transition state. This is a four electron antiaromatic transition state, which is an

out-of-phase combination of the two bond alternating structures of the reactant

and product. Anchor C may include both the biradical and the cyclopropane

derivative—they have the same spin-pairing scheme. All three reactions are

phase inverting, the loop is an i3 one and contains a conical intersection.

If A transforms to B by an antara-type process (a Möbius four electron

reaction), the phase would be preserved in the reaction and in the complete loop

(An i2p loop), and no conical intersection is possible for this case. In that case,

the only way to equalize the energies of the ground and excited states, is along

a trajectory that increases the separation between atoms in the molecule.

Indeed, the two are computed to meet only at infinite interatomic distances, that

is, upon dissociation [89].

BENZENE–BENZVALENE ISOMERIZATION. The photochemical valence isomerization

of benzene to form benzvalene [90, p. 357] is another example in which allyl

radical structures (Fig. 12) play a central role. The system is analyzed in

Figure 39. In order to follow the pattern of the previous examples, we show the

in Figure 39a two benzvalene isomers as two anchors, and benzene as the third.

This is an example of type C loop shown in Figure 11. The two benzvalene

isomers, are connected via the shown allylic prebenzvalene TS structure, which

is the out-of-phase combination of the two allyl structures shown at the top of

the figure. The benzvalene! benzene transformation is thermally allowed

(phase preserving) [91]. The coordinate connecting benzene with the allyl-type

transition state is phase preserving. Thus, the phase-change rule predicts the

existence of a conical intersection in the region enclosed by these anchors.

High-level computations indicate that the prebenzvalene moiety is in fact an

intermediate [92]. In that case, the two-anchor loop shown in Figure 39b

applies, with the same results.

In a photochemical experiment, irradiation of benzene leads to S1, which

connects to the ground-state surface via the conical intersection shown.

Benzene, the much more stable species, is expected to be recovered

preferentially, but the prebenzvalene structure which transforms to benzvalene

is also formed. Another possible route from the prebenzvalene, along a different

coordinate, will lead to fulvene [90, p.357] after a hydrogen-atom transfer from
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one of the carbon atoms to another. This scenario, which is observed

experimentally [90], was corroborated computationally [92].

PHOTOLYSIS OF AMMONIA. Restricting the discussion to neutral species only

(ionic ones require high energy, and are not important in the 170–220-nm UV

range, where ammonia absorbs strongly), the two low-energy reaction channels

to ground state products are

NH3 ! NH2ðX2B1Þ þ Hð2SÞ Dissociation to ground-state atomic hydrogen

NH3 ! NHða1�Þ þ H2 Dissociation to molecular hydrogen

The nonbonding electrons of the nitrogen atom are important in determining spin

re-pairing, and thus the conical intersections. This is the physical origin of the

topicity concept developed by Salem and co-workers [2,30]. Two different spin

TS
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Figure 39. Benzene to benzvalene reaction. (a) Assuming that the prebenzvalene structure is a

transition state. The two benzvalene isomers are anchors. (b) Assuming that prebenzvalene is an

intermediate. A two-anchor loop results, compare Figure 12.
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pairing schemes for ammonia were shown in Figure 15. They were based on the

observation that the umbrella inversion is a reaction in which electrons are

re-paired (a phase inverting reaction). In Figure 40 this reaction forms one leg of

two possible Longuet-Higgins loops. In the left-hand one the third anchor is

the NH2ð2B1Þ þ Hð2SÞ, as shown in Figure 15 this is an i3 loop. The right-hand

loop has the pair H2ð1�þg Þ þ NHða1�Þ as the third anchor: the reactions

connecting the two ammonia anchors with it re-pair six electrons—this is an ip2

loop. Both loops therefore encircle conical intersection, and both channels are

expected to be photochemically active on the basis of the phase-change

rule. Note that the hydrogen-atom dissociation channel requires planarization

en route to the conical intersection. This expectation was verified computa-

tionaly [93].

INORGANIC COMPLEXES. The cis–trans isomerization of a planar square form of a

d8 transition metal complex (e.g., of Pt2þ) is known to be photochemically

allowed and thermally forbidden [94]. It was found experimentally [95] to be an

intramolecular process, namely, to proceed without any bond-breaking step.

Calculations show that the ground and the excited state touch along the reaction

coordinate (see Fig. 12 in [96]). Although conical intersections were not

mentioned in these papers, the present model appears to apply to these systems.

Consider a metal M bound to four ligands, L1–L4, lying at the corners of a

square around the metal. Three anchors can be written for this system, as shown

in Figure 41. They consist of all three possible geometrical permutations of

pairs of ligands lying across the metal ion. The conical intersection in this

case is a tetrahedron (cf. Fig. 2). There are two different (though energetically

Figure 40. Ammonia photochemistry. (a) A loop for the NH3 ! NH2ðX2B1Þ þ Hð2SÞ
reaction. (b) A loop for the NH3 ! NHða1�Þ þ H2 reaction.
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equivalent) conical intersections, as the tetrahedral structure can exist in two

enantiomeric forms. A possible way to distinguish between them is by using a

chiral molecule as one of the ligands, so that the two conical intersections

become diastereomers rather than enantiomers. These conical intersections

allow the photoisomerization to proceed without breaking a single bond. In

the ground state, a bond-breaking—bond-recombination mechanism is often

energetically more favorable. An example for such a system is provided by the

photoisomerization of Pt(gly)2Cl2 [95].

2. More Than Four Electrons

Cyclooctatetraene (COT)! Semibullvalene (SB) Photorearrangement. Irra-

diation of COT yields semibullvalene [97], in spite of the fact that this

photochemical reaction is forbidden by orbital conservation rules. The Longuet-

Higgins loop for this system actually predicts that this should happen, although

the reaction is phase preserving. (Fig. 42). This is another example of type C

loop (Fig. 11). Only six of the eight electrons re-pair as COT transforms to SB.

The reaction is made possible by the fact that COT valence isomerization, a

phase-inverting reaction (four electron-pair Hückel system), takes place

simultaneously. One expects to produce in the reaction a COT isomer, that

can be detected solely by proper substitution.

B. A Quantitative Example: The Photochemistry
of 1,4-Cyclohexadiene (CHDN)

The construction of loops relevant to this system was described in Section IVD.

In this section, the computational search for the conical intersection using the
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Figure 41. A loop for the photochemistry of

a planar ML4 complex.
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loop method is described in some detail [98]. The phase-change rule requires that

in order for a conical intersection to be enclosed in a loop, at least one of the

reaction coordinates forming it must be phase inverting. Motion along this

coordinate leads to an antiaromatic transition state (AATS), discussed in

Section III. The coordinate connecting this transition state and the third anchor

is phase preserving, (cf. Fig. 5). Thus, the conical intersection lying within the

region encircled by the three anchors, may be found by moving first along the

phase-inverting reaction coordinate from CHDN to the AATS and then along

the phase-preserving coordinate to the third anchor. In practice, the geometry of

the AATS is calculated and the system is transported vertically to the first

electronically excited-state surface. This state is the twin state of the AATS, and

is low lying [28,49]. From this point, relaxation along the steepest gradient

downward on the electronically excited state is performed, under two

constraints: The system is kept at the same symmetry it had at the AATS

geometry (viz., the migrating H atom(s) midway between the original and

destination carbon atoms], and the molecule is kept along the phase-preserving

reaction coordinate in the direction of the third anchor. Recall that the twin

excited state and the third anchor have the same spin-pairing scheme

(Section I.C). All other coordinates are optimized for minimum energy—this

is a constrained minimum energy path leading to the product. The point at which

the system reaches the ground-state potential lies on the CI. It is not necessarily

the minimum energy point on the CI; rather, the locus reached by this process is

obtained upon moving along the shortest path to the product from the excited-

state surface (at the AATS geometry). The numerical data cited below are for

these points on the CI.

{18,26,34,57}

{18,23,45,67}{12,34,56,78}

i

pp

Q p

Q i

Figure 42. The cyclooctateteraene

to semibullvalene reaction.
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We demonstrate this procedure by an explicit example—finding the H/allyl

CI shown in Figure 18. In this case, any one of the three reaction channels may

be used to begin the search, since all are phase inverting and therefore have an

antiaromatic transition state. For example, the system is propagated along the

reaction coordinate from CHDN to 1,3-CHDN, and the geometry and energy of

the AATS of this reaction is computed. Next, vertical excitation leads to the first

excited singlet state (S1) lying above this AATS. Subsequently, motion along is

initiated along the phase-preserving coordinate connecting this point on S1 and

the third anchor, BCE in this example, (which lies on S0). This procedure did

indeed result in locating the conical intersection, as confirmed by calculating the

energy gap between the two electronic states, while moving along.

As a check on the performance of the procedure, the formation of the three

possible products on the ground-state potential surface was validated after

the search for the conical intersection was concluded. Immediately following

the crossing of the conical intersection, the system was allowed to relax to an

energy minimum on the S0 surface. Removing all constraints led to one of the

three anchors. The other two were sought by first ‘‘nudging’’ the atoms slightly

in the direction of their geometry, and then letting the system find a minimum

energy. The physical justification of the ‘‘nudging’’ is the ever present

redistribution of energy on the ground-state surface (IVR). Recovery of the

three anchors without encountering a barrier confirmed the location of the

conical intersection in the loop and the validity of the process.

The energies of this CI and of the other ones calculated in this work are listed

in Table III. The calculated CASSCF values of the energies of the two lowest

electronically states are 9.0 eV (S1, vertical) and 10.3 eV (S2, vertical) [99].

They are considerably higher than the experimental ones, as noted for this

method by other workers [65]. In all cases, the computed conical intersections

lie at much lower energies than the excited state, and are easily accessible upon

excitation to S1. In the case of the H/allyl CI, the validity confirmation process

recovered the CHDN and 1,3-CHDN anchors. An attempt to approach the third

anchor [BCE(I)] resulted instead in a biradical, shown in Figure 43. The

biradical may be regarded as a resonance hybrid of two allyl-type biradicals.

TABLE III

The CASSCF(8,8)/DZV Energies of Some Stable Molecules and Conical Intersections Relevant to

1,4-cyclohexadiene (CHDN) Photochemistry (kcal/mole with respect to CHDN)

Molecules 1,4-CHDN 1,3-CHDN BCE benzeneþH2 BCE/allyl biradical

Energy 01 �8:1 18.9 13.7 39.6

Conical H/Allyl Helicopter-type

Intersections

Energy 103.2 148.1

Note: In Hartree units, �231:84363
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The combination is in this case an out-of-phase one (Section I). This biradical

was calculated to be at an energy of 39.6 kcal/mol above CHDN (Table III), and

to lie in a real local minimum on the S0 potential energy surface. A normal

mode analysis showed that all frequencies were real. (Compare with the

prebenzvalene intermediate, discussed above. The computational finding that

these species are bound moieties is difficult to confirm experimentally, as they

are highly reactive.)

The search for the conical intersection leading to the concerted ejection of H2

(the helicopter-type reaction) was facilitated by the fact that the AATS between

CHDN(I) and CHDN(II) has an added nuclear symmetry element with respect

to the reactant: the molecule has a C2v symmetry, which distorts to C2 on the

way to the transition state (compare Section I.A). When the system reaches the

AATS, the symmetry becomes again C2v (with different symmetry elements).

The ground-state electronic wave function of this AATS (of A2 symmetry) is

formed by an out-of-phase combination of the electronic wave functions of the

two VB structures having the same geometry but different spin pairing schemes.

The electronic wave functions of such transition states transform as one of the

nontotally symmetric irreducible representations of the group (Section I.A). In

the case at hand, as the A2 representation of C2v. From Figure 19, it is clear, that

the (11A1/11A2) conical intersection, by symmetry, is to be found on the

coordinate connecting the AATS between the two isomeric hexadienes and the

third anchor—benzene and H2 (A1 symmetry in C2v).

The potential surfaces of the ground and excited states in the vicinity of the

conical intersection were calculated point by point, along the trajectory leading

from the antiaromatic transition state to the benzene and H2 products. In this

calculation, the HH distance was varied, and all other coordinates were

optimized to obtain the minimum energy of the system in the excited electronic

state (1A1). The energy of the ground state was calculated at the geometry

optimized for the excited state. In the calculation of the conical intersection

*

*

*
* *

*

*
* *

*

*
*

1.514

1.514
1.401

BCE/allyl-biradical BCE biradical(I)

BCE biradical, calculated

,,,,

BCE biradical(II)
,,,,

� −

Figure 43. The structure of the BCE biradical (CASSCF(8,8)/DZV).
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locality, the system was constrained to C2v symmetry, that is the rotational

motion of the two hydrogen atoms forming the H2 molecules was frozen. It

was found that the two surfaces (1A1 and 1A2, cf. Fig. 44) did cross at a certain

geometry, representing a conical intersection, as expected from the phase-

change rule. Some numerical results are reported in Figure 45. The approach to

the conical intersection from the hexadiene side is much more gradual than from

the benzene and H2 side. The geometry of this conical intersection, shown in

Figure 45, is found to be similar to that of the AATS. In both, the C–C bonds

have very similar values. The HH distance is much larger in the AATS, while

the H2 center-of-mass distance to the carbon ring is larger in the conical

intersection. The angle between the line connecting the two hydrogen atoms and

the line connecting the two carbon atoms to which they were originally bonded

changes due to the rotational motion of two hydrogen atoms with respect to the

C6H6 fragment. It is 30� at both the AATS and at the conical intersection.

ATS

AATS

A1
A2

X1

X2

H H

2.2 2.15 2.1 2.05 2 1.95 1.9

−25

−20

−15

0
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Conical
Intersection

Figure 44. The helicopter-type conical intersection for CHDN. Bottom: A cartoon showing the

anchors and the conical intersection. Top: The calculated energies (kcal/mole) of S0 and S1 near the

conical intersection.
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The two departing hydrogen atoms perform a complex motion from their

initial positions to the conical intersection: contracting of the distance between

them, rotation that brings them to the position above the center of the ring and

increasing the distance between the center of mass (CM) of the H2 fragment and

the carbon ring. The angular momentum created in this motion is the origin of

the observed helicopter-type one. It may be traced to the participation of the

isomerization reaction in the Longuet-Higgins loop encircling the conical

intersection which induces the necessary angular momentum.

The two proposed conical intersections provide a model that is consistent

with the experimental results on the CHDN system [60–64].

VII. COMPARISON WITH OTHER METHODS FOR LOCATING
CONICAL INTERSECTIONS

The method presented in this chapter is aimed mainly at providing information

on the presence of conical intersections in large molecules, and helps in the

calculation of their energies and structures. In this section, we review briefly

some other procedures used to characterize conical intersections, and compare

them with the present method.

The practical implementation of all schemes requires high-level quantum

mechanical calculations. The major advances achieved in this field in the last

two decades appear to be a major factor for the revival of interest in the subject.

Several efficient computational methods are currently available for finding

conical intersections in polyatomic systems and calculating their properties. The

field is very active at the moment, and the prospects for further progress are very

promising. Yet, it is still true, as summarized by Worth and Cederbaum [100]:

The complete evaluation of potential energy surfaces is an impossible task for

systems comprising more than a few atoms. Approximations have to be made—

the different methods are distinguished mostly by the nature of the approxima-

tions.

Figure 45. The structure of the helicopter-type

conical intersection of CHDN.
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The phase-change rule, also known as the Berry phase [101], the geometric

phase effect [102,103] or the molecular Aharonov–Bohm effect [104–106], was

used by several authors to verify that two near-by surfaces actually cross, and

are not repelled apart. This point is of particular relevance for states of the same

symmetry. The total electronic wave function and the total nuclear wave

function of both the upper and the lower states change their phases upon being

transported in a closed loop around a point of conical intersection. Any one of

them may be used in the search for degeneracies.

Ruedenberg and co-workers [33,107], found by exact quantum chemical

calculations a crossing point between the two lowest 1A1 states of ozone. They

used the phase-change rule to verify that the electronic wave function changes

its sign when transported in a closed loop around this point. This was done by

considering the phase change of the dominant configurations of the ground-state

wave functions. Initially, only C2v symmetry was considered, later, a complete

seam of conical intersections was calculated [107].

Yarkoni [108] developed a computational method based on a perturbative

approach [109,110]. He showed that in the near vicinity of a conical intersection,

the Hamiltonian operator may be written as the sum a nonperturbed Hamiltonian

H0 and a linear perturbative term. The expansion is made around a nuclear

configuration Qx, at which an intersection between two electronic wave

functions takes place. The task is to find out under what conditions there can be

a crossing at a neighboring nuclear configuration Qy. The diagonal Hamiltonian

matrix elements at Qy may be written as

HIIðQyÞ ¼ EIðQxÞ þ gIðQzÞdQ ð22Þ

where gI
aðQxÞ ¼ cIðQxÞy½qHðQxÞ=qQa�cIðQxÞ ¼ ½dEIðQxÞ=qQa. gI

aðQxÞ is thus

the gradient of the energy along a small displacement dQ ¼ Sa½qQaqa�, with a

unit vector in the a direction.

The off-diagonal elements are written as

HIIðQyÞ ¼ hIJðQxÞydQ ð23Þ

hIJ
a ðQxÞ ¼ cIðQxÞy½qHðQxÞ=qQa�cJðQxÞ ð24Þ

In the special case of a triatomic system, gI
aðQxÞ and hIJ

a ðQxÞ are one-

dimensional vectors, spanning the g–h plane. A closed loop in the g–h plane

will change the sign of the electronic wave function. The degeneracy is preserved

through first order provided dQ is restricted to motion along the g–hy plane,

orthogonal to the g–h plane. The line connecting all degeneracies is the conical

intersection seam. More generally, the conical intersection will be a 3N � 8

dimensional surface.
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The search for a conical intersection is based on the assumption that it is not

feasible (or desirable) to characterize the entire surface of the conical

intersection. Conical intersections of interest are those with energies accessible

in chemical processes. Furthermore, it is desired to restrict the search to nuclear

configurations of chemical interest. These constraints may be expressed

mathematically (e.g., by Lagrange multiplier techniques). The Schrödinger

equation is solved for the two states in question, and points of near crossing are

checked by the phase change rule to verify whether the wave function indeed

changes sign.

As shown by several authors, the sign ambiguity of the electronic wave

function found by Longuet-Higgins near surface crossing in the adiabatic

approximation (usual BO case) can be removed [102,103,111,112]. This is done

by transforming to a diabatic framework, or representation, in which the

Hamiltonian matrix is diagonalized near the conical intersection. The resulting

diabatic states are coupled by potential coupling terms that can be calculated to

a high degree of accuracy. It turns out that the number of important coupling

terms is small, making the approximation practical. These coupling terms are

closely related to the Jahn–Teller distortive modes, and in our model, to the

coordinates connecting two anchors. Using this approach, Mebel et al. [113]

showed that a conical intersection connecting the two low-lying states of C2H

actually cross. The change in phase angle upon a complete loop around the

point was calculated, using the coupling elements that were obtained by

quantum calculations. Only when the loop enclosed a single conical intersection,

the phase changed. When the loop enclosed two (or no) conical intersection, the

phase did not change.

Robb, Bernardi, and Olivucci (RBO) [37] developed a method based on the

idea that a conical intersection can be found if one moves in a plane defined by

two vectors: x1 and x2, defined in the adiabatic basis of the molecular

Hamiltonian H. The direction of x1 corresponds to the gradient difference

x1 ¼ qðE1 � E2Þ=qq ð25Þ

where E1 and E2 are the energies of the two electronic states in the BO

approximation, and dq is a vector of nuclear displacement.

The direction of x2 is parallel to the direction g of the diabatic coupling

matrix mentioned above

g ¼ <�1 	 ðq�2=qqÞ ð26Þ
where �1 and �2 are the eigenfunctions of H. Note the formal similarity between

the vectors x1 and x2 on one hand, and gI
aðQxÞ and hIJ

a ðQxÞ [Eqs. (22–24)] on the

other.

The system is propagated along the two vectors, until the separation between

the two surfaces vanishes upon reaching the conical intersection geometry.
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The practical application of the RBO method is helped by selecting the

required coordinates based on chemical intuition or calculations. The original

papers made use of the MMVB method [114]. The advantage of the MMVB

method is that it is many orders of magnitude less expensive computationally

than the currently high-level CASSCF method. A disadvantage is that it can

only describe covalent states [114]. Minima on the conical intersection hyper-

surface are optimized using an algorithm developed by Bearpark et al. [115].

For the purpose of finding an efficient funnel connecting an excited

electronic state and the ground state, the scrupulous distinction between ‘‘real’’

crossing and ‘‘near’’ crossing may be of theoretical importance only. In practice,

the system will jump from one to other with similar effectiveness. Therefore, the

conical intersection may be found by following the energy gap between the two

states to a value close to zero. This method was used to analyze the

photochemistry of a large number of molecules [9,37]. An example that lends

itself to facile comparison with our method is the photochemistry of butadiene.

[38,116]. Figure 46 summarizes their finding in a simple scheme. The conical

intersection is presented as a tetraradical, which may stabilize by forming three

types of bonds, depending on the electron pairs that form the bonds. This

scheme is directly comparable to Figure 36. The upper reaction is an

intraanchor reaction, the middle two are identical to those shown in Figure

36 and discussed in Section VI.A1. The reaction shown at the bottom of the

scheme (trans–cis isomerization around one of the double bonds) would require,

in our method, a different loop than the other three.

Wilsey and Houk [65] used the RBO method to find conical intersections in

several olefins, including 1,4-cyclohexadiene (CHDN). This was done by using

a

4

3

2

1

h υ

a

4

3

2

1

a

4

3

2

1

a

12

3 4

a 1

4
3

2

a

4

3

2

1

2
3

1
4

2
3

1

4

2

3

1
4

2
3

1
4

Figure 46. Butadiene conical intersec-

tion (Adapted from [117]).
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chemical reactions coordinates to identify the gradient difference vector x1 and

the non-adiabatic vector x2: When x1 corresponds to the motion leading to

a trimethylene radical and x2 to the formation of the isomeric [1,3]-shift

product, the H/allyl conical intersection is found (Section VI.B). When x1

corresponds to the motion leading to a C–C bond cleavage to form a diradical

and x2 to the formation of the isomeric [1,3]-shift product, the vinyl–allyl

conical intersection is found. This chemically oriented method is similar in

spirit to our approach. Their strategy allows the finding of several conical

intersections, by defining the gradient difference vector along a desired

coordinate. Implicit in their approach is the idea that several conical

intersections may be photochemically active for a specific system.

Köppel et al. [111] considered the so-called symmetry-allowed conical

intersections. These intersections result from the allowed crossing of potential

energy functions of two electronic states, which transform according to different

irreducible representations of an appropriate symmetry group along a certain

reaction coordinate. A further deformation, which lowers the symmetry, leads to

interactions of the two states in first order in the displacement, converting the

crossing to a conical intersection. The search for a conical interaction in this

case is greatly helped by symmetry considerations, as has been recently

demonstrated for malonaldehyde, pyrrol and chlorobenzene [7].

Worth and Cederbaum [100], propose to facilitate the search for finding a

conical intersection if the two states have different symmetries: If they cross

along a totally symmetric nuclear coordinate, then the crossing point is a conical

intersection. Even this simplifying criterion leaves open a large number of

possibilities in any real system. Therefore, Worth and Cederbaum base their

search on large scale nuclear motions that have been identified experimentally

to be important in the evolution of the system after photoexcitation.

A major motivation for the study of conical intersections is their assumed

importance in the dynamics of photoexcited molecules. Molecular dynamics

methods are often used for this purpose, based on available potential energy

surfaces [118–121]. We briefly survey some methods designed to deal with

relatively large molecules (>5 atoms). Several authors combine the potential

energy surface calculations with dynamic simulations. A relatively straightfor-

ward approach is illustrated by the work of Ohmine and co-workers [6,122].

Ab initio calculations of the ground and excited potential surfaces of polyatomic

molecules (ethylene and butadiene) were performed. Several specific nuclear

motions were chosen to inspect their importance in inducing curve crossing.

These included torsion, around C����C and C–C bonds, bending, stretching and

hydrogen-atom migration. The ab initio potentials were parametrized into an

analytic form in order to solve the dynamic equations of motion. In this way,

Ohmine was able to show that hydrogen migration is important in the

radiationless decay of ethylene.
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Köppel co-workers [121] developed a method that uses accurately calculated

potential surfaces for dynamic simulations. The initially calculated adiabatic

potential surfaces are diabatized, to avoid singularities that hamper dynamic

calculations. Once the diabatic potential surfaces are determined, along with the

off-diagonal coupling constants between them,wave-packet dynamics can be

performed. The off-diagonal coupling constants are large along the conical

intersection seam. The method was demonstrated for a triatomic molecules (O3,

H2S, NO2 ), but is claimed to be suitable for larger systems [121].

Martinez and Ben-Nun [10,123] proposed a combined approach, in which

the potential surfaces and the dynamics are treated on equal footing. In their

AIMS method, ab initio quantum chemistry and nonadiabatic quantum dynamics

are united. The electronic and nuclear Schrödinger equations are solved

simultaneously, that is, the electronic structure problem is solved ‘‘on the fly’’ as

dictated by the quantum mechanical nuclear dynamics. This method has

recently been applied to ethylene. It was found that electronic excitation leads to

an excited state that favors a twist of the two methylene groups to a per-

pendicular geometry, as well as pyramidalization of one of them. The combined

effect lowers the energy of the excited state, and leads to several symmetry

allowed crossings, the final one being to the ground state.

Our qualitative approach [40,41], which is based on the phase change

theorem of Longuet-Higgins, considers spin pairing as the principal factor for

locating conical intersections. We consider transitions from the first excited

state to the ground-state, and form the loop on the ground-state surface. A given

spin-paired system (anchor) may support many nuclear configurations on the

ground state surface, but only one of them is usually at an energy minimum. As

in all other methods mentioned above, the task is to find the two coordinates

defining the loop that surrounds the conical intersection. We use for this purpose

the reaction coordinates connecting the chosen anchors: A pair of reaction

coordinates is sought, of which one is phase preserving (p) and the other phase

inverting (i). There are many such pairs in a polyatomic molecule, which may

be sorted out systematically. For any specific product, the reaction coordinate

leading from the starting material is a natural choice. The phase change asso-

ciated with this coordinate is well defined (either phase preserving or inverting).

The second coordinate may be chosen from among all other reactions of the

reactant, which may be found by considering all possible electron re-pairings. In

practice, experiment and chemical intuition are used to facilitate and shorten the

search. The three anchors of the loop, which are A—the reactant, B—the

desired product, and C—another product, must form a phase inverting loop.

This means that either all three reactions (A! B, B! C, and C! A) are

phase inverting, or that only one of them is. The loops formed are designated as

i3and ip2, respectively. As shown in Section VI, the method is readily combined

with high level quantum calculations for polyatomic systems.

492 yehuda haas and shmuel zilberg



Bornemann and Klessinger [124] used this approach in the analysis of the

photoreactions of 2H-azirines. They implemented the method by calculating the

ground- and excited-state geometries using the CASSCF method, starting from

previous MNDOC–CI results [125]. The coordinates along which the conical

intersection was searched for were determined by the phase change rule. The

main application of the method described in this paper is expected to be in

the analysis of the photochemistry of large systems. The initial location of the

conical intersection is not dependent on a numerical algorithm, but on basic

principles. The assignment of spin pairing is a relatively straightforward job,

and can be done systematically. In principle, the method relies mostly on

ground-state species, whose properties are either experimentally accessible, or

may be computed. The numerical application, briefly described in Section VI, is

still being developed. Methods specializing in the calculations of ground-state

properties are notably efficient and accurate. Currently, the properties of both

the ground and the excited states need to be computed. In principle, as all

conical intersections leading to the ground state are ‘‘points’’ on the ground-

state surface, their properties may be calculated by methods specialized for this

state.

VIII. IMPACT ON MOLECULAR PHOTOCHEMISTRY
AND FUTURE OUTLOOK

Conical intersections are important in molecular photochemistry, according to

the current consensus, which is based on the combination of experimental and

theoretical data. In this chapter, we tried to show that the location and

approximate structure of conical intersections may be deduced by simple

considerations of the changes in spin-pairing accompanying a reaction. We have

also shown how these ideas may be put to practical computational application.

Chemists have developed several simple rules and methods that have helped

to predict the course of photochemical reactions. In this section, we summarize

some of these ideas and discuss their relation to the conical intersection model.

In distinction with thermal reactions, photochemical ones involve at least two

potential surfaces. Attempts to understand them may be divided into two

categories: those treating the ground and excited states separately, and those

considering the coupling between the two as an essential ingredient. The

first category analyzes photochemical reactions in terms of a kinetic

mechanism, and seeks transition states and intermediates, in a manner that is

commonly used for thermal reactions [126–128]. The rate-determining step, as

a rule, is considered to be on the excited-state surface and the mechanism for the

return from the excited to the ground state is not specified—it is assumed that

the system will somehow find its way down. This approach, which views the

photochemical process as a sequence of elementary reactions, each proceeding
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on a single reaction coordinate, may be termed the single coordinate model. In

the second category, the coupling between the excited and the ground state is of

central importance. This is the two coordinate model, in which concerted

motion along two coordinates is essential for understanding the photochemical

process. One coordinate carries the reactant to the product, the other couples the

excited state with the ground state. The situation is identical to the case of the

Jahn–Teller effect, where motions along two coordinates are equally important

in removing the degeneracy.

A corollary of the single coordinate model is the idea that the photochemical

process can be analyzed by a correlation diagram based on a single coordinate.

Both MO [19,52] and VB [30,31,39] models have been proposed, and were

widely used. The MO-based orbital symmetry conservation rules offered by

Woodward an Hoffmann (WH) [52], gained special popularity. These rules,

though not based on a solid theoretical basis, were of paramount importance in

systematizing organic reactions. They are easy to apply and work very well for

thermal reactions [53,54]. For photochemical reactions, the correlation between

an occupied MO and an unoccupied one (in the ground state) is considered. In

that sense, the WH rules assume that the reaction proceeds on the excited-state

surface and results in an electronically excited product. It is usually accepted,

that the rules for photochemical reactions and thermal ones are mutually

exclusive: reactions that are ‘‘forbidden’’ thermally, are ‘‘allowed’’ photochemi-

cally.

The VB model considers the entire system, rather than molecular orbitals; At

its heart is the passage of the system from one bonding mode to another

[17,18,31,32,45,47] (in our nomenclature, change in spin pairing). This model

was considered by some authors to be superior to the MO approach for thermal

reactions, as it accounts naturally for the energy barrier found in thermal reac-

tions [44]. As pointed out by Oosterhoff and co-workers [47] for the example of

butadiene ring closure, the WH approach considers an antisymmetric excited

state, while their model shows that a symmetric excited state is important. They

show that for this state, the disrotatory ring-closure mode has an energy

minimum along the reaction coordinate on the excited-state potential surface.

The system will therefore move along this route, rather than the conrotatory one

(preferred on the ground state. In both the WH and the Oosterhoff models, the

reaction is taking place on the excited-state surface, and the return to the ground

state is assumed to occur somehow (in Oosterhoff’s theory, near the minimum).

Thus, both models, based on essentially two-state paradigm, do not consider

explicitly the equivalent importance of two coordinates.

The concept of biradicals and biradicaloids was often used in attempts to

account for the mechanism of photochemical reactions [2,20,129–131]. A

biradical (or diradical) may be defined as [132] an even-electron molecule that

has one bond less than the number permitted by the standard rules of valence.
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Biradical or biradicaloid minima are introduced in simple MO theory in cases

where a pair of nearly degenerate approximately nonbonding orbitals is

occupied with a total of only two electrons in the ground state [2, p. 187; 30,

133]. The approximate degeneracy of the two MOs can usually occur only at

certain nuclear geometries, referred to as biradicaloid geometries. In both VB

and MO theories, the spacing between the ground and excited state surfaces of

biradicals are small, so that these species are considered as efficient funnels for

radiationless transitions [2,133,134]. Salem and co-workers used biradical

structures to construct correlation diagrams to analyze photochemical reactions.

Their method differs from the WH approach in two respects [30, p. 136]. First,

they use resonance structures, rather than the WH orbital configurations;

Second, they chose as a symmetry element a reaction plane that does not cut

through bonds being made. In distinction with Oosterhoff, Salem explicitly

considered the direct passage from an excited reactant to a ground state product.

His correlation diagrams are essentially represented by Figure 5—they are

plotted against a phase preserving coordinate. As discussed there, it corresponds

to a cut across the conical intersection along the phase preserving coordinate.

Likewise, the WH and Oosterhoff correlation diagrams are a cut across the

conical intersection along a phase-inverting coordinate (see Fig. 6). The conical

intersection model uses both for the full account of photochemical reactions.

Biradicals were central building blocks in the construction of MO-based

correlation diagrams, in which orbital symmetry was assumed to be preserved

(as in the WH treatment) [129,135,136]. For example, the H4 system was

studied by Gerhartz et al. [34] in some detail. The biradical approach leads to a

3� 3 CI treatment, which allows the construction of correlation diagrams along

certain reaction coordinates. The perfect tetrahedral geometry was recognized

as a touching ‘‘point’’ of S1 and S0. It was also admitted that neither the 3� 3

CI approach, nor the simple VB one are satisfactory: In MO, more than three

configurations are required, in VB, ionic terms in addition to covalent ones [129].

The biradical model suggests a connection between the single coordinate

model, emphasizing reactions on a single energy surface, and the two-coordinate

model, in which the coupling between states is important.

These couplings between the states were introduced as perturbations that mix

the ground and excited state (the g and d parameters [2,136]). For example, the

electronegativity difference between orbitals is parametrized by d, their energy

difference, as a function of the nuclear configuration. In biradicals such as

twisted ethylene, even a weak polarizing perturbation d causes an essentially

complete uncoupling of the two zwitterionic configurations (in VB language).

This leads to a highly polar character of S1, near the perpendicular

configuration, a phenomenon known as ‘‘sudden polarization’’ [82,137].

By using these parameters, the single coordinate scheme becomes, in

practice, a two-coordinate one, the coordinate along which the d parameter
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changes serving as the second one. Comparison with the spin-pairing model

shows that the biradicaloid model reaches the same conclusions, using

essentially perturbation methods (via the parameters g and d). For example,

in the case of butadiene photocyclization, the g perturbation leads to

cyclobutene, and the d perturbation, to bicyclobutane. On the other hand,

no perturbations are required in the spin-pairing model. It postulates two

independent nuclear coordinates from the outset, and finds the asymmetric

conical intersection in a conceptually simple way.

Robb and Bernardi and their co-workers [44] used the Evans VB-based

model as the starting point for their analysis. Their model is based on the

coordinate leading from the reactant to the product (in our notation—the phase-

inverting coordinate). However, they recognized the importance of the coupling

between the ground and excited state, and introduced specifically a coordinate

that leads to the minimization of the energy gap between the two (the gradient

difference coordinate [Eq. (25)]. This coordinate was found computationally,

but the physical meaning assigned to it was not specified.

The method outlined in this chapter continues the trend proposed by [44],

and uses the phase-change concept to provide the physical meaning. It acknow-

ledges the fact that two spin-paired species only are not sufficient to account for

a photochemical reaction. A third one is required. The third anchor provides a

simple interpretation to the second coordinate, used in the Bernardi–Robb

model, as well as in the biradicaloid one. It leads to the same qualitative results

as the orbital correlation method and the biradical hypotheses, but it does not

introduce ad hoc assumptions. The conical intersection is not a biradical in the

simple sense, but the fact that electrons can be re-paired in its neighborhood in

several different ways, makes it appear as if the electrons are independent. How-

ever, in general these ‘‘biradicals’’ are not intermediates, and cannot be trapped

or observed directly by spectroscopic methods. This accounts for the general

failure to isolate many proposed ‘‘intermediate’’ biradicals. The model also ex-

plains naturally how apparently photochemically ‘‘forbidden’’ reaction products

are obtained in practice. The results obtained are based on the phase change

rule, which is a direct consequence of Pauli’s principle. The method can be used

to make simple qualitative applications, enabling the prediction of photo-

chemical products and their stereospecificity. On the other hand, it can be used

to guide high-level quantum chemical calculations on fairly complex systems. It

can therefore be used by both experimentalists and computational chemists.

APPENDIX A. PHASE INVERTING REACTIONS

I. THE MODEL (see 28)

Consider a molecule consisting of more than three atoms, with an even number

of valence electrons, 2n ðn � 2Þ. The basic assumption of the model is that the
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system will tend to form as many valence electron pairs between the atoms as

possible. Each pair of electrons that are spin paired, form a bond between the

atoms from which they originated. If the pair happens to be situated on a single

atom, the pair is counted as a nonbonding pair (as in the lone pair of ammonia).

In the reaction, compound A transforms to B; the total number of electron

pairs is preserved, but at least four electrons are assumed to change spin

partners.

The task is now to calculate the structure and energy of the system in the

transition state between A and B. Its wave function is assumed to be constructed

from a linear combination of the two. It is convenient to use VB terminology for

this purpose. Let the wave function of A be denoted by a VB function jAi and

that of B by jBi.
The jAi wave functions is written in the standard fashion:

jA ¼
X

p

Ep P 1ð1Þ2ð2Þ 	 	 	 2nð2nÞ½að1Þbð2Þ � bð1Það2Þ�½að3Þbð4Þ

� bð3Það4Þ 	 	 	 ½að2n� 1Þbð2nÞ � bð2n� 1Það2nÞ� ðA:1Þ

We use a short hand notation:

fA ¼ jAi ¼ ð12� 12Þð34� 34Þ 	 	 	 ð2n� 12n� 2n� 12nÞ ðA:2Þ

With fA containing a normalization factor and all permutations over the atomic

orbital wave functions i ð1 ¼ 1; 2; . . . 2nÞ. Likewise, if all electron pairs were

exchanged in a cyclic manner, the product wave function, fB, has the form:

jBi ¼ ð12n� 12nÞð2n� 12n� 2� 2n� 12n� 2Þ 	 	 	 ð32� 32Þ ðA:3Þ

If the exchange was done in a different pattern, an corresponding expression

would result. If only part of the pairs were re-paired, some of the factors of Eq.

(A.3) stay put, and some change. In that case, one can always transform jBi to a

form jB0i where all the unchanged factors are grouped together. Each

transposition multiplies the determinant by �1. Therefore, if an even number

of transpositions are needed, the signs of jAi and jB0i are equal. If an odd number

is required, jAi and jB0i have opposite signs. The actual wave function of the

system is constructed from the combination of the two VB structures jAi and jBi.
Two combinations are possible, an in-phase one jAi þ jBi, and an out-of-phase

one jAi � jBi. We disregard possible different coefficients, since we are only

interested in the sign of the combination. Their energies are given by

E� ¼ HAA þ HBB � 2HAB

2� 2SAB

ðA:4Þ
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According to Eq. (A.4), if HAB < 0, the ground state will be the in-phase

combination, and the out-of-phase one, an excited state. On the other hand, if

HAB > 0, the ground state will be the out-of-phase combination, while the in-

phase one is an excited state. This conclusion is far reaching, since it means that

the electronic wave function of the ground state is nonsymmetric in this case, in

contrast with common chemical intuition. We show that when an even number of

electron pairs is exchanged, this is indeed the case, so that the transition state is

the out-of-phase combination.

In order to show this, we have to evaluate the matrix element

HAB ¼ hAjHjBi. We begin by writing out the orbital part of the A wave

function explicitly

jAi ¼ ð12� 12Þð34� 34Þ 	 	 	 ð2n� 1 2n� 2n� 1 2nÞ ¼ f1 2 3 4 	 	 	

2n� 12n� 12 3 4 	 	 	 2n� 1 2n� 12 3 4 	 	 	 2n� 1 2n

þ 	 	 	 ð�1Þn12 34 	 	 	 2n� 1 2ng ðA:5Þ

The sign of the last term depends on the parity of the system. Note that in the first

and last term (in fact, determinants), the spin–orbit functions alternate, while in

all others there are two pairs of adjacent atoms with the same spin functions. We

denote the determinants in which the spin functions alternate as the alternant spin

functions (ASF), as they turn out to be important reference terms.

Next, assuming that all pairs were exchanged in a cyclic pattern, we

transform the VB function jBi [Eq. (A.3)] to a form similar to jAi by making

n� 1 transpositions of the form (2n,2), (2n� 1; 3), and so on. Each trans-

position multiplies the function by �1, obtaining

jBi ¼ ð�1Þn�1f1 2 3 4 	 	 	 2n� 1 2n� 1 2 3 4 	 	 	 2n� 1 2n� 1 2 3 4 5 6 	 	 	

2n� 1 2nþ 	 	 	 þ ð�1Þn1 2 3 4 	 	 	 2n� 1 2ng

¼ ð�1Þn�1f1 2 3 4 	 	 	 2n� 1 2ng þ 	 	 	 þ ð�1Þ2n�1f1 2 3 4 	 	 	 2n� 1 2ng
ðA:6Þ

It is evident that the only determinants that appear in both jAi and jBi are the

ASFs.

The cross-term hAjHjBi in Eq. (A.4) can now be evaluated. This term may be

written as (omitting the normalization constant):

HAB;CL ¼ ð�1Þn�1
2fQþ K12 þ K23 þ 	 	 	Kiiþ1 þ 	 	 	K2nl

þ higher exchange integralsg ðA:7Þ
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Where the Coulomb integral Q is

Q ¼ h1 2 3 4 	 	 	 2n� 1 2njHj1 2 3 4 	 	 	 2n� 1 2ni
¼ h1 2 3 	 	 	 2n� 1 2njHj1 2 3 	 	 	 2n� 1 2ni

The exchange integrals Kij contain terms such as hi; iþ 1jgjiþ 1; ii þ 2Si;iþ1

hijhjiþ 1i [138]. The second term, representing the attractive interaction

between two nuclei and the electronic overlap charge between them, is the

dominant one and completely outweighs the first repulsive term. Ki;iþ1 therefore

has the same sign as the Coulomb integral Q. (For a similar derivation, see [139].)

In Eq. (A.7), HAB;CL is the cross-term obtained by classic VB theory [140], in

which only contributions from electron pairwise transposition permutations were

considered. Bonding in these systems is due mainly to the exchange integrals

Ki;iþ1 between orbitals in the same cycle [138]. Pauling [140] showed that the

most important contributions are due to neighboring orbitals, justifying the

neglect of the smaller terms in Eq. (A.7).

Because of the orthogonality of the spin functions, and since we assume no

spin–orbit coupling, only the first and last terms in Eqs. (A.5) and (A.6) will

contribute to the Coulomb integral in HAB;CL. The Coulomb integrals together

with the exchange ones between neighbors, Kiiþ1, are larger than all other terms

and determine which will be the ground state. The sign of their contributions is

determined as follows:

When n is odd, the first ASF in both jAi and jBi is positive, while the second

is negative. The two resulting Coulomb integrals are equal contributing

together 2Q.

When n is even, the two terms in jAi have equal signs, as in jBi, but the sign

in jBi is opposite to that in jAi. Therefore, the total contribution to the

energy is �2Q.

Since Q is negative, and HAB;CL for the ground state must be a negative sign, it

follows that the ground state for the odd parity case is the in-phase combination,

while for the even parity case, the out-of-phase wave function is the ground state.

This classical VB picture, using only pairwise electron transpositions in the

permutations, in which the spins of the two electrons of every bond are paired, is

sometimes termed ‘‘the perfect pairing approximation’’ [138]. Figure 7 shows a

schematic representation of the different contributions to the in-phase and out-

of-phase combinations. Note that the energies of the twin excited states shown

in Figure 7 can also be calculated from Eq. (A.7). Their destabilization with

respect to the HAA þ HBB reference due to the cross-term will be larger than the

stabilization of the ground state, due to the different contributions of the overlap

integral in the denominator of Eq. (A.4).
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If only part of the electron pairs were exchanged in the reaction (the usual

case), the argument follows similar lines. The important factor is the parity of

the exchanges: for an even number of electron pairs exchanged, the out-of-phase

combination is always of lower energy than the in-phase one. Therefore, the

transition state is phase inverting. For an odd number of electron pairs

exchanged, the reaction is phase preserving.
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I. INTRODUCTION

The introduction of the conventional Born–Oppenheimer (BO) approximation

introduces the concept of electronic potential energy surface (PES), which lays

the foundation of the majority of our concepts about molecular systems.

However, the crossing of two adiabatic PES is also a consequence of such an

adiabatic approximation. There has been much research done in an attempt to

remove the singularity brought about by this crossing of multi-dimensional

surfaces, namely, the conical intersections. Recently, characterization of conical

intersection in molecules and the role played by conical intersection in

femtosecond processes have attracted considerable attention [1–4]. The conical

intersection is conventionally determined by the use of the adiabatic

approximation. There are a number of so-called adiabatic approximations for

the time-independent quantum mechanical treatment of molecules [5–13]. The

most prominent of them are the BO approximation and the Born–Huang (BH)

approximation. This latter name of BH approximation was suggested by

Ballhausen and Hansen, but the theory was actually formulated by Born

himself. It has also been described as the BO correction, the variational BO

approximation and the Born–Handy formula. First, these approximations all

start with the separation of the total molecular Hamiltonian into terms of

different magnitude. Second, it is very common that, while trying to sort out

terms of different magnitude, attempts were given to argue that the crossing

terms coupling the momenta of the various atoms in the molecule are negligible

after proper transformations. Ballhausen and Hansen made a very ins-

tructive comment saying that [8] ‘‘The effect of these cross-terms is to correlate

the internal motion, so to speak, in such a way that the linear momentum as well

as the angular momentum of the entire molecule stay constant.’’ It is worth

noting that actually these cross-terms are not only crucial for keeping the

momentum constant, but also are important for keeping the energy constant.

This point has not been proved rigorously, but it can be understood by noticing

that the concept of electronic potential energy is a direct consequence of the

adiabatic approximation. The negligence of the nuclear kinetic energy term and

the fixation of the nuclear coordinates (and thus the frozening of the dependence

of the cross-terms on the nuclear coordinates) are the causes of the dependence

of the electronic energy on the nuclear configuration.

The separation of the electronic degrees of freedom from nuclear motions

through adiabatic approximation has brought success to the ab initio quantum

chemistry computations, but it is also the reason why we are confronted with the

very difficult problem of potential energy crossing, in particular, the conical

intersections. There may be other approaches, however, in which the energies of the

states depend neither functionally nor parametrically on the nuclear configuration,

and hence no crossing of energy levels may occur. If an approach like this can
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be developed, and if it is computationally tractable, then it may be a good method

complement to the contemporary quantum chemistry packages for treating the cases

in which potential energy surfaces crossing may happen in the traditional approach.

An alternative approximation scheme, also proposed by Born and

Oppenheimer [5–7], employed the straightforward perturbation method. To

tell the difference between these two different BO approximation, we call the

latter the crude BOA (CBOA). A main purpose of this chapter is to study the

original BO approximation, which is often referred to as the crude BO

approximation and to develop this approximation into a practical method for

computing potential energy surfaces of molecules.

In this chapter, we demonstrate the approach of the CBOA, and show that to

carry out different orders of perturbation, the ability to calculate the matrix

elements of the derivatives of Coulomb interaction with respect to nuclear

coordinates is essential. Therefore, we studied the case of the diatomic molecule,

and here we demonstrate the basic skill of computing the relevant matrix

elements in Gaussian basis sets. The formulas for diatomic molecules, up to the

second derivatives of the Coulomb interaction, are shown here to demonstrate

that some basic techniques can be developed to carry out the calculation of

the matrix elements of even higher derivatives. The formulas obtained may be

complicated. First, they are shown to be nonsingular. Second, the Gaussian basis set

with angular momentum can be dealt with in similar ways. Third, they are expressed

as multiple finite sums of certain simple functions, of order up to the angular

momentum of the basis functions, and thus they can be computed efficiently and

accurately. We show the application of this approach on the H2 molecule. The

calculated equilibrium position and force constant seem to be reasonable. To

obtain more reliable results, we have to employ a larger basis set to higher

orders of perturbation to calculate the equilibrium geometry and wave functions.

II. CRUDE BORN–OPPENHEIMER APPROXIMATION

The theory discussed in this section is based on the work of Born and others

[5,7]. However, some of the approaches that are not suitable for our need are

modified, and proper notations are adopted accordingly.

For a molecular system, we shall separate the total Hamiltonian into three parts:

Ĥ ¼ T̂e þ Vðr;RÞ þ T̂N ð1Þ

The T̂ operators are the usual kinetic energy operators, and the potential energy

V r;Rð Þ includes all of the Coulomb interactions:

V r;Rð Þ ¼ e2

2

X
i 6¼j

1

ri j

� e2
X
A;i

ZA

rA;i
þ e2

2

X
A 6¼B

ZAZB

RAB

ð2Þ
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Let us consider the simplified Hamiltonian in which the nuclear kinetic energy

term is neglected. This also implies that the nuclei are fixed at a certain

configuration, and the Hamiltonian describes only the electronic degrees of

freedom. This electronic Hamiltonian is

Ĥ0 r;Rð Þ ¼ T̂e þ V r;Rð Þ ð3Þ

and the complete adiabatic electronic problem to solve is

Ĥ0jfni ¼ Unjfni ð4Þ

Note that the last term in expression (2) of V does not depend on electronic

coordinates, and therefore it may be neglected in Ĥ0. The adiabatic Hamiltonian

still depends parametrically on R, and so is the electronic wave funcion jfi. If

we expand the nuclear coordinates or some of the nuclear coordinates with

respect to a given configuration, that is, if we define

R ¼ R0 þ kRR ð5Þ

where k is a natural perturbation parameter that will be described later, then we

shall expand the Hamiltonian in powers of k as

Ĥ0 ¼ Ĥ
0ð Þ

0 þ kĤ
1ð Þ

0 þ k2Ĥ
1ð Þ

0 þ 	 	 	 ð6Þ

Here

Ĥ
0ð Þ

0 ¼ Ĥ0 r;R0ð Þ ð7Þ

Ĥ
1ð Þ

0 ¼
X

i

qĤ0

qRi

� �
R¼R0

Ri ð8Þ

Ĥ
2ð Þ

0 ¼
1

2

X
i; j

q2Ĥ0

qRiqRj

� �
R¼R0

RiRj ð9Þ

..

.

Note that the electronic kinetic energy operator does not depend on the nuclear

configuration explicitly. Therefore, we can conclude that

Ĥ
1ð Þ

0 ¼
X

i

qV

qRi

� �
R¼R0

Ri ð10Þ

Ĥ
2ð Þ

0 ¼
1

2

X
i; j

q2V

qRiqRj

� �
R¼R0

RiRj ð11Þ

..

.
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The electronic wave functions and electronic energies are also expanded

jfi ¼ jf 0ð Þi þ kf 1ð Þ þ k2jf 2ð Þi þ 	 	 	 ð12Þ
Un ¼ U 0ð Þ

n þ kU 1ð Þ
n þ k2U 2ð Þ

n þ 	 	 	 ð13Þ

In the following, it shall always be assumed that the zeroth-order solution is

known, that is, we have a complete set of eigenvalues and wave functions,

labeled by the electronic quantum number n, which satisfy

Ĥ
0ð Þ

0 jf
0ð Þ

n i ¼ U 0ð Þ
n jf 0ð Þ

n i ð14Þ

Next, we shall consider how the nuclear kinetic energy is taken into consi-

deration perturbatively. The natural perturbation index k is chosen to be

k ¼ 4

ffiffiffiffiffiffi
m

M0

r
ð15Þ

where m is the electron mass and M0 is some quantity to do with the mass of

nuclei. In rectangular coordinates, T̂N can be written as

T̂N ¼ �
X

i

�h2

2m

 m

M0


M0

Mi

q2

qXi
2
þ q2

qYi
2
þ q2

qZi
2

� �

¼ �k4
X

i

�h2

2m

M0

Mi

q2

qXi
2
þ q2

qYi
2
þ q2

qZi
2

� �

� k4Ĥ1 ð16Þ

Since the nuclear coordinates are expanded according to Eq. (5), we can write the

derivatives in the kinetic energy expression as

q2

qRi
2
¼ 1

k2

q2

qRi
2

ð17Þ

Thus, we have

k4Ĥ1 ¼ k2Ĥ
2ð Þ

1 ð18Þ

where in Ĥ
2ð Þ

1 , all of the derivatives with respect to nuclear coordinates R are

replaced by derivatives with respect to R , while the rest of the expression remains

unchanged. In this case, the total Hamiltonian can be expanded into power series

of k as

Ĥ ¼ Ĥ
0ð Þ

0 þ kĤ
1ð Þ

0 þ k2 Ĥ
2ð Þ

0 þ Ĥ
2ð Þ

1

� �
þ 	 	 	 ð19Þ
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The total Schrödinger equation is

Ĥjcni ¼ Enjcni ð20Þ

where the energy and the wave function are also to be expanded into power series

of k

jcni ¼ jc 0ð Þ
n i þ kjc 1ð Þ

n i þ k2jc 2ð Þ
n i þ 	 	 	 ð21Þ

En ¼ E 0ð Þ
n þ kE 1ð Þ

n þ k2E 2ð Þ
n þ 	 	 	 ð22Þ

In the zeroth-order approximation,

ðĤ 0ð Þ
0 � U 0ð Þ

n Þjf
0ð Þ

n i ¼ 0 ð23Þ

ðĤ 0ð Þ
0 � E 0ð Þ

n Þjc
0ð Þ

n i ¼ 0 ð24Þ

Since Ĥ
0ð Þ

0 is an operator on electronic degrees of freedom only, it can be

summarized that

E 0ð Þ
n ¼ U 0ð Þ

n ð25Þ
jc 0ð Þ

n i ¼ jw 0ð Þ
n ijf 0ð Þ

n i ð26Þ

Here, jw 0ð Þ
n i is an arbitrary function of nuclear coordinates. It cannot be

determined from Eq. (24) alone, but has to be determined from higher ordered

perturbation equations.

In the first-order approximation, we find

ðĤð0Þ0 � U 0ð Þ
n Þjf 1ð Þ

n i ¼ �ðĤ
1ð Þ

0 � U 1ð Þ
n Þjf 0ð Þ

n i ð27Þ
ðĤ 0ð Þ

0 � U 0ð Þ
n Þjc

1ð Þ
n i ¼ �ðĤ

1ð Þ
0 � E 1ð Þ

n Þjc
0ð Þ

n i ð28Þ

The electronic wave functions can be found to be

jf 1ð Þ
n i ¼

X
m6¼n

hf 0ð Þ
m jĤ

1ð Þ
0 jf 0ð Þ

n i
U

0ð Þ
n � U

0ð Þ
m

jf 0ð Þ
m i ð29Þ

The total energy, on the other hand, can be shown to follow:

E 1ð Þ
n ¼ U 1ð Þ

n ¼ 0 ð30Þ
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This requires that the initially chosen R0 be the equilibrium configuration of this

electronic level. Also, we reach the conclusion that the wave function will be of

the form

jc 1ð Þ
n i ¼ jw 0ð Þ

n c 1ð Þ
n i þ jw 1ð Þ

n c 0ð Þ
n i ð31Þ

jw 1ð Þ
n i also has to be determined later.

In the second-order approximation, we have

ðĤ 0ð Þ
0 � U 0ð Þ

n Þjc
2ð Þ

n i ¼ �Ĥ
1ð Þ

0 jc
1ð Þ

n i � ðĤ
2ð Þ

0 þ Ĥ
2ð Þ

1 � E 2ð Þ
n Þjc

0ð Þ
n i ð32Þ

ðĤ 0ð Þ
0 � U 0ð Þ

n Þjf 2ð Þ
n i ¼ �Ĥ

1ð Þ
0 jf 1ð Þ

n i � ðĤ
2ð Þ

0 � U 2ð Þ
n Þjf 0ð Þ

n i ð33Þ

It can be shown that [7]

jf 2ð Þ
n i ¼ C 2ð Þ

nn jf
0ð Þ

n i þ
X
m6¼n

C 2ð Þ
nm jf

0ð Þ
m i ð34Þ

where

C 2ð Þ
nm ¼

1

U
0ð Þ

n � U
0ð Þ

m

X
k 6¼n

hf 0ð Þ
m jĤ

1ð Þ
0 jf

0ð Þ
k ihf

0ð Þ
k jĤ0jf 0ð Þ

n i
U

0ð Þ
n � U

0ð Þ
k

þ hf 0ð Þ
m jĤ

2ð Þ
0 jf

0ð Þ
n i

" #

ð35Þ

and

C 2ð Þ
nn ¼

1

2

X
k 6¼n

hf 0ð Þ
k jĤ0jf 0ð Þ

n i
U

0ð Þ
n � U

0ð Þ
k













2

ð36Þ

The full wave function and the electronic potential energy are

jc 2ð Þ
n i ¼ jw 0ð Þ

n f 2ð Þ
n i þ jw 1ð Þ

n f 1ð Þ
n i þ jw 2ð Þ

n f 0ð Þ
n i ð37Þ

U 2ð Þ
n ¼ hf

0ð Þ
n jĤ

2ð Þ
0 jf

0ð Þ
n i þ

X
m 6¼n

jhf 0ð Þ
n jĤ

1ð Þ
0 jf

0ð Þ
m ij

2

U
0ð Þ

n � U
0ð Þ

m

ð38Þ

Furthermore, we obtain the equation of motion of the zeroth-order nuclear wave

function:

ðĤ 2ð Þ
1 þ U 2ð Þ

n � E 2ð Þ
n Þjw 0ð Þ

n i ¼ 0 ð39Þ

the crude born–oppenheimer adiabatic approximation 511



We can only determine E 2ð Þ
n and jw 0ð Þ

n i up to now. Later, we shall demonstrate that

this equation is just the equations of motion of harmonic nuclear vibrations. The

set of eigenstates of Eq. (43) can be written as jwnvif g, symbolizing that they are

the vibrational modes of the nth electronic level, where v ¼ v1; v2; . . . ; vNð Þ if RR
is N dimensional, and vi is the vibrational quantum number of the ith mode.

In the third-order approximation, the equations are

ðĤ 0ð Þ
0 � U 0ð Þ

n Þjc 3ð Þ
n i ¼ �Ĥ

1ð Þ
0 jc 2ð Þ

n i � ðĤ
2ð Þ

0 þ Ĥ
2ð Þ

1 � E 2ð Þ
n Þjc 1ð Þ

n i
� ðĤ 3ð Þ

0 � E 3ð Þ
n Þjc

0ð Þ
n i ð40Þ

ðĤ 0ð Þ
0 � U 0ð Þ

n Þjf
3ð Þ

n i ¼ �Ĥ
1ð Þ

0 jf
2ð Þ

n i � ðĤ
2ð Þ

0 � U 2ð Þ
n Þjf

1ð Þ
n i � ðĤ

3ð Þ
0 � U 3ð Þ

n Þjf
0ð Þ

n i
ð41Þ

The electronic wave functions and potential energy can be determined in ways

similar to those done in the first and second order. Here we wish to emphasize

that, the full wave function in this order is

jc 3ð Þ
n i ¼ jw 0ð Þ

n f 3ð Þ
n i þ jw 1ð Þ

n f 2ð Þ
n i þ jw 2ð Þ

n f 1ð Þ
n i þ jw 3ð Þ

n f 0ð Þ
n i þ j f 3ð Þ

n i ð42Þ

where j f 3ð Þ
n i satisfies

ðĤ 0ð Þ
0 � U 0ð Þ

n Þj f 3ð Þ
n i ¼

�h2

m

X
a;i

M0

Ma

� �
q

qRa;i
jw 0ð Þ

n i
 !

q
qRa;i

jf 1ð Þ
n i

 !
ð43Þ

This means that the electronic and nuclear wave functions cannot be separated

anymore, and therefore the adiabatic approximation cannot be applied beyond

the second-order perturbation.

In the following, we shall demonstrate techniques for calculating the

electronic potential energy terms up to the second order. For simplicity, we shall

study the case of H2 molecule, the simplest multi-electron diatomic molecule.

III. HYDROGEN MOLECULE: HAMILTONIAN

Consider a diatomic molecule as shown in Figure 1. The nuclear kinetic energy

is expressed as

T̂N ¼ �
�h2

2

1

M1

q2

qX2
1

þ q2

qY2
1

þ q2

qZ2
1

� �
þ 1

M2

q2

qX2
2

þ q2

qY2
2

þ q2

qZ2
2

� �
 �
ð44Þ
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Transferring into the center-of-mass coordinates, where

R0 ¼ X0; Y0; Z0ð Þ ¼ M1X1 þM2X2

M1 þM2

;
M1Y1 þM2Y2

M1 þM2

;
M1Z1 þM2Z2

M1 þM2

� �
ð45Þ

R ¼ X; Y ; Zð Þ ¼ X2 � X1; Y2 � Y1; Z2 � Z1ð Þ ð46Þ

where R0 is the coordinate of the center of mass, one can rewrite the nuclear

kinetic energy:

T̂N ¼
��h2

2

1

M1 þM2

� �
r2

0 þ
M1 þM2

M1M2

r2
R


 �

¼ ��h2

2 M1 þM2ð Þ r
2
0 þ

M1 þM2ð Þ2

M1M2

r2
R

" #

¼ �k4 �h2

2m
r2

0 þ
m
R2

q
qR

R2 q
qR

� �
þ m

R2
r2

�

� �
ð47Þ

Here, we have defined

k � 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

M1 þM2

r
� 0:1285 for H2ð Þ ð48Þ

m � M1 þM2ð Þ2

M1M2

¼ 4 for H2ð Þ ð49Þ

R � ðR;XÞ � R; y;fð Þ ð50Þ

r2
0 ¼

q2

qX2
0

þ q2

qY2
0

þ q2

qZ2
0

� �
ð51Þ

r2
X �

1

siny
q
qy

siny
q
qy

� �
þ 1

sin2 y
q2

qf2
ð52Þ

Figure 1. A model two-atom molecule.
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Although all of the nuclear coordinates participate in this kinetic energy operator,

and in our previous discussions, all of the nuclear coordinates are expanded, with

respect to an equivalent position, in power series of the parameter k , here in the

specific case of a diatomic molecule, we found that only the R coordinate seems

to have an equilibrium position in the molecular fixed coordinates. This

means that actually we only have to, or we can only, expand the R coordinate, but

not the other coordinates, in the way that

R ¼ R0 þ kR ð53Þ

By replacing q=qR with q=kqR we have

T̂N ¼ �k2 �h2

2m

m
R2

q
qR

R2 q
qR

� �
� k4 �h2

2m
r2

0 þ
m
R2
r2

X

n o
ð54Þ

In other words, for calculating the second-order energy (the vibrational energy),

we only have to keep the term to do with the interatomic distance. The other

terms, then, will enter the total Schrödinger equation in higher orders.

Now let us use a more specific coordinate system shown in Figure 2 for H2

molecule. The z axis is taken to be along the internuclei vector R . Adapting this

coordinate-system, the consequence is that only the z coordinate of the nucleus

are to be expanded in powers of k. That is, we define

Z ¼ R0 þ kR ð55Þ

Figure 2. Molecular-fixed coordinates.
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Due to our choice of the coordinates, Z is actually identical with R. Therefore,

we rewrite the following definitions:

Ĥ
2ð Þ

1 ¼ �
�h2m
2m

1

R2

q
qR

R2 q
qR

ð56Þ

Ĥ
1ð Þ

0 ¼
qV

qR

� �
R¼R0

R ð57Þ

Ĥ
2ð Þ

0 ¼
1

2

q2V

qR2

� �
R¼R0

R2 ð58Þ

U 2ð Þ
n ¼

1

2
hf 0ð Þ

n j
q2V

qR2

� �
R¼R0

jf 0ð Þ
n i þ

X
m6¼n

jhf 0ð Þ
n j qV

qR

� �
R¼R0
jf 0ð Þ

m ij
2

U
0ð Þ

n � U
0ð Þ

m

( )
R2 ð59Þ

Thus, the equation we are going to solve for the zeroth-order nuclear motion is

� �h2m
2m

1

R2

q
qR

R2 q
qR
þ 1

2
hf 0ð Þ

n j
q2V

qZ2

� �
0

jf 0ð Þ
n i þ

X
m 6¼n

jhf 0ð Þ
n j qV

qZ

� �
0
jf 0ð Þ

m ij
2

U
0ð Þ

n � U
0ð Þ

m

" #
R2

( )
jw 0ð Þ

n i

¼ E 2ð Þ
n jw 0ð Þ

n i ð60Þ

Equation (60) is a standard equation of motion of a harmonic oscillator. It

can be easily solved as long as the term corresponding to the force constant can

be evaluated. To do that with Eq. (66), we need to know how to calculate the

matrix elements hf 0ð Þ
n j q

2V=qZ2
� �

0
jf 0ð Þ

n i and hf 0ð Þ
n j qV=qZð Þ0jf

0ð Þ
m i for the given

molecular basis set fjf 0ð Þ
n ig.

In modern quantum chemistry packages, one can obtain molecular basis set

at the optimized geometry, in which the wave functions of the molecular basis

are expanded in terms of a set of orthogonal Gaussian basis set. Therefore, we

need to derive efficient formulas for calculating the above-mentioned matrix

elements, between Gaussian functions of the first and second derivatives of the

Coulomb potential terms, especially the second derivative term that is not

available in quantum chemistry packages. Section IV is devoted to the

evaluation of these matrix elements.

In the work of King, Dupuis, and Rys [15,16], the matrix elements of the

Coulomb interaction term in Gaussian basis set were evaluated by solving the

differential equations satisfied by these matrix elements. Thus, the Coulomb

matrix elements are expressed in the form of the Rys’ polynomials. The

potential problem of this method is that to obtain the matrix elements of the

higher derivatives of Coulomb interactions, we need to solve more complicated

differential equations numerically. Great effort has to be taken to ensure that the

differential equation solver can solve such differential equations stably, and to

the crude born–oppenheimer adiabatic approximation 515



make sure that the result is accurate. In this work, we have carried out the

integrals explicitly up to the second-order derivatives of the Coulomb

interaction. After the lengthy derivations, it should be clear that the results

we obtain, in the form of a finite series (with number of terms <12 for the

extreme case in which h orbitals are taken into the basis set) of error functions

and exponential functions, are simple to calculate, and the numerical accuracy is

high, thanks to the existing numerical libraries providing accurate computation

of error function.

The starting point of our technique is to make use of the equality

1

r
¼ 1ffiffiffi

p
p
ð1
�1

e�t2r2

dt ð61Þ

By using the geometry defined in Figure 2, the coordinates of the electrons with

respect to the nucleus will be written as

1

rAi

¼ xi; yi; zi þ R=2ð Þ ¼ 1ffiffiffi
p
p
ð1
�1

e�t2 x2
iþy2

iþ ziþR=2ð Þ2½ �dt ð62Þ

1

rBi

¼ xi; yi; zi � R=2ð Þ ¼ 1ffiffiffi
p
p
ð1
�1

e�t2 x2
iþy2

iþ zi�R=2ð Þ2½ �dt ð63Þ

Thus, it can be seen that the first-derivatives w. r. t. R are

q
qR

1

rAi

¼ 1ffiffiffi
p
p
ð1
�1
�t2zAie

�t2 x2
iþy2

iþ ziþR=2ð Þ2½ �dt ð64Þ

q
qR

1

rBi

¼ 1ffiffiffi
p
p
ð1
�1

t2zBie
�t2 x2

iþy2
iþ zi�R=2ð Þ2½ �dt ð65Þ

and the second derivatives are

q2

qR2

1

rAi

¼ 1ffiffiffi
p
p
ð1
�1

� t2

2
þ t4z2

Ai

� �
e�t2 x2

iþy2
iþ ziþR=2ð Þ2½ �dt ð66Þ

q2

qR2

1

rBi

¼ 1ffiffiffi
p
p
ð1
�1

� t2

2
þ t4z2

Bi

� �
e�t2 x2

iþy2
iþ zi�R=2ð Þ2½ �dt ð67Þ

The matrix elements of these derivatives are to be evaluated with R equal to its

equilibrium value R0. However, to keep the notation simple, we shall still write R

in place of R0 in later text unless ambiguity may occur.

With the following discussions, it can also be seen that higher order deriva-

tives can be evaluated with similar technique.
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IV. MATRIX ELEMENTS OF ANGULAR-MOMENTUM-ADOPTED
GAUSSIAN FUNCTIONS

In this work, we shall use the notation

jga ið Þi ¼ 2a
p

� �3=4

e�a ri�Rað Þ2 ð68Þ

to represent a normalized Gaussian wave function. Here, a is the label to specify

the nuclei, which will be either A or B in our cases, and i is the label to

specify the electron 1 or 2. In the context in which the label of electron is

immaterial, we shall drop the i index.

To incorporate the angular dependence of a basis function into Gaussian

orbitals, either spherical harmonics or integer powers of the Cartesian

coordinates have to be included. We shall discuss the latter case, in which a

primitive basis function takes the form

jZi ¼ Nn;l;m;a xnylzme�ar2 ð69Þ

This type of basis functions is frequently used in popular quantum chemistry

packages. We shall discuss the way to evaluate different kinds of matrix elements

in this basis set that are often used in quantum chemistry calculation.

A. Normalization Factor

hZjZi ¼ N2
n;l;m;a

ð
dt x2ny2lz2me�2ar2

¼ N2
n;l;m;a

ð1
�1

dx x2ne�2ax2

ð1
�1

dy y2le�2ay2

ð1
�1

dz z2me�2az2

¼ N2
n;l;m;aIxIyIz ð70Þ

By using the integral formula in Appendix A, we can obtain the proper

expressions for Ix, Iy, and Iz, so that

hZjZi ¼ N2
n;l;m;a

2nð Þ! 2lð Þ! 2mð Þ!
n!l!m! 8að Þ nþlþmð Þ

p
2a

� �3=2

ð71Þ

Therefore, the normalization factor is

Nn;l;m;a ¼
n!l!m! 8að Þ nþlþmð Þ

2nð Þ! 2lð Þ! 2mð Þ!
2a
p

� �3=2
" #1=2

ð72Þ
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B. The Overlap Integrals

Next, we consider the simple overlap integral of two such basis functions with

different powers of Cartesian coordinates and different Gaussian width, centered

at different points. Let nuclei 1 locate at the origin, and let nuclei 2 locate at

�R, then

jZ1i ¼ Nn1;l1;m1;a1
xn1 yl1 zm1 e�a1 x2þy2þz2ð Þ ð73Þ

jZ2i ¼ Nn2;l2;m2;a2
xþ Xð Þn2 yþ Yð Þl2 zþ Zð Þm2 e�a2 xþXð Þ2þ yþYð Þ2þ zþZð Þ2½ � ð74Þ

It can be observed that we can separate the overlap integral into the product of

three independent spatial integrals

hZ1jZ2i ¼ Nn1;l1;m1;a1
Nn2;l2;m2;a2


 IxIyIz ð75Þ

Ix ¼
ð1
�1

dx xn1 xþ Xð Þn2 e�a1x2

e�a2 xþXð Þ2 ð76Þ

Iy ¼
ð1
�1

dy yl1 yþ Yð Þl2 e�a1y2

e�a2 yþYð Þ2 ð77Þ

Iz ¼
ð1
�1

dz zm1 zþ Zð Þm2 e�a1z2

e�a2 zþZð Þ2 ð78Þ

Obviously, we do not need to calculate all three integrals. We shall calculate Ix

and apply the formula to the other integrals.

Ix ¼
ð1
�1

dx xn1 xþ Xð Þn2 e� a1þa2ð Þx2�2a2Xx�a2X2

¼ e�a2X2

ð1
�1

dx xn1 xþ Xð Þn2 e� a1þa2ð Þ xþa2X= a1þa2ð Þ½ �2þa2
2
X2= a1þa2ð Þ

¼ e�a1a2X2= a1þa2ð Þ
ð1
�1

dx xn1 xþ Xð Þn2 e� a1þa2ð Þx02 ð79Þ

where x0 ¼ xþ a2X= a1 þ a2ð Þ. Therefore x ¼ x0 � a2X= a1 þ a2ð Þ, and xþ X ¼
x0 þ a1X= a1 þ a2ð Þ. Thus, by changing the dummy variables, we have

Ix ¼ e�a1a2X2= a1þa2ð Þ
ð1
�1

dx x� a2X

a1 þ a2

� �n1

xþ a1X

a1 þ a2

� �n2

e� a1þa2ð Þx2

¼ e�a1a2X2= a1þa2ð Þ
Xn1

n¼0

Xn2

m¼0

n1!

n1 � nð Þ!n!
n2!

n2 � mð Þ!m!

�a2

a1 þ a2

� �n1�n a1

a1 þ a2

� �n2�m


 Xn1þn2�n�m 

ð1
�1

dx xnþme� a1þa2ð Þx2 ð80Þ
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According to the results shown in Appendix A, the integral in Eq. (80) is

nonvanishing only when nþ mð Þ is even. Consequently, Ix is a polynomial of

order n1 þ n2 in X. If n1 þ n2 is even, Ix is an even polynomial; If n1 þ n2 is odd,

Ix is an odd polynomial. Therefore, we can write the result as

Ix ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
a1 þ a2

r
e
� a1a2

a1þa2
X2

Xn1þn2



Xn1

n¼0

Xn2

m¼0

n1!n2! nþ mð Þ!
n1 � nð Þ!n! n2 � mð Þ!m! nþ m=2f g!

1þ ð�1Þnþm

2


 4 a1 þ a2ð Þ½ ��ðnþmÞ=2
X�n�m ð81Þ

Iy and Iz are obtained in exactly the same way.

C. Interaction Terms with the Nuclei

Next, we shall consider four kinds of integrals. The first is the expectation value

of the Coulomb potential by one nucleus for one of the primitive basis function

centered at that nucleus. The second is the expectation value of the Coulomb

potential by one nucleus for one of the primitive basis function centered at a

different point (usually another nucleus). Then, we will consider the matrix

element of a Coulomb term between two primitive basis functions at different

centers. The third case is when one basis function is centered at the nucleus

considered. The fourth case is when both basis functions are not centered at that

nucleus. By that we mean, for two Gaussian basis functions defined in Eqs. (73)

and (74), we are calculating

hZ1j
1

r
jZ1i ¼

N2
1ffiffiffi
p
p
ð1
�1

dt

ð
dt x2n1 y2l1 z2m1 e�2a1r2

e�t2r2

hZ2j
1

r
jZ2i ¼

N2
2ffiffiffi
p
p
ð1
�1

dt

ð
dt xþ Xð Þ2n1 yþ Yð Þ2l1 zþ Zð Þ2m1 e�2a2 rþRj j2 e�t2r2

hZ1j
1

r
jZ2i ¼

N1N2ffiffiffi
p
p

ð1
�1

dt

ð
dt xn1 xþ Xð Þn2 yl1 yþ Yð Þl2 zm1 zþ Zð Þm2


 e�a1r2

e�a2 rþRj j2 e�t2r2

hZ1j
1

rþ R0j jjZ2i ¼
N1N2ffiffiffi

p
p

ð1
�1

dt

ð
dt xn1 xþ Xð Þn2 yl1 yþ Yð Þl2 zm1 zþ Zð Þm2


 e�a1r2

e�a2 rþRj j2 e�t2 rþR0j j2
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N1 and N2 are the normalization constants. Let us consider

I1 ¼
ð1
1

dt

ð
dt x2ny2lz2me�2ar2

e�2t2r2

¼
ð1
1

dt

ð1
1

dx x2ne� 2aþt2ð Þx2

ð1
1

dy y2le� 2aþt2ð Þy2

ð1
1

dz z2me� 2aþt2ð Þz2

¼ p3=2 2nð Þ!
n!4n


 �
2lð Þ!
l!4l


 �
2mð Þ!

m!4m


 � ð1
�1

dt 2aþ t2
� �� nþlþmþ3=2ð Þ

¼ p3=2 2nð Þ!
n!4n


 �
2lð Þ!
l!4l


 �
2mð Þ!

m!4m


 �
2að Þ� nþlþmþ3=2ð Þ

ð1
�1

dt 1þ t2

2a

� �� nþlþmþ3=2ð Þ

¼ p3=2 2nð Þ!
n!4n


 �
2lð Þ!
l!4l


 �
2mð Þ!

m!4m


 �
2að Þ� nþlþmþ1ð Þ

ð1
�1

d
tffiffiffiffiffiffi
2a
p
� �

1þ t2

2a

� �� nþlþmþ3=2ð Þ

¼ p3=2 2nð Þ!
n!4n


 �
2lð Þ!
l!4l


 �
2mð Þ!

m!4m


 �
2að Þ� nþlþmþ1ð Þ

ð1
�1

dt 1þ t2
� �� nþlþmþ3=2ð Þ ð82Þ

By making use of Eq. (A.12), we find

I1 ¼ p3=2 2nð Þ!
n!4n


 �
2lð Þ!
l!4l


 �
2mð Þ!

m!4m


 �
2að Þ� nþlþmþ1ð Þ2 nþ lþ mð Þ!½ �24nþlþm

2nþ 2lþ 2mþ 1ð Þ!

¼
ffiffiffiffiffiffi
2a
p 2nð Þ! 2lð Þ! 2mð Þ!

n!l!m! 8að Þnþlþm

p
2a

� �3=22 nþ lþ mð Þ!½ �24nþlþm

2nþ 2lþ 2mþ 1ð Þ!

¼
ffiffiffiffiffiffi
2a
p

N�2
n;l;m;a

2 nþ lþ mð Þ!½ �24nþlþm

2nþ 2lþ 2mþ 1ð Þ! ð83Þ

Therefore

hZ1j
1

r
jZ1i ¼

2 n1 þ l1 þ m1ð Þ!½ �24n1þl1þm1

2n1 þ 2l1 þ 2m1 þ 1ð Þ!

ffiffiffiffiffiffiffi
2a1

p

r
ð84Þ

There are two kinds of integrals involving two different centers. The first case is

hZ2j
1

r
jZ2i ¼

N2
2ffiffiffi
p
p
ð1
�1

dt

ð
dt xþ Xð Þ2n2 yþ Yð Þ2l2 zþ Zð Þ2m2 e�2a2 rþRj j2 e�t2r2

¼ N2
2ffiffiffi
p
p
ð1
�1

dt

ð1
�1

dx xþ Xð Þ2n2 e�2a2 xþXð Þ2 e�t2x2



ð1
�1

dy yþ Yð Þ2l2 e�2a2 yþYð Þ2 e�t2y2

ð1
�1

dz zþ Zð Þ2m2 e�2a2 zþZð Þ2 e�t2z2

ð85Þ
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Consider the integral

I2 ¼
ð1
�1

dt

ð1
�1

dx x2ne�2ax2

e�t2 x2�2XxþX2ð Þ



ð1
�1

dy y2le�2ay2

e�t2 y2�2YyþY2ð Þ
ð1
�1

dz z2me�2az2

e�t2 z2�2ZzþZ2ð Þ

¼
ð1
�1

dt e�t2R2

ð1
�1

dx x2ne� 2aþt2ð Þx2þ2t2Xx



ð1
�1

dy y2le� 2aþt2ð Þy2þ2t2Yy

ð1
�1

dz z2me� 2aþt2ð Þz2þ2t2Zz

¼
ð1
�1

dt e�t2R2

ð1
�1

dx x2ne� 2aþt2ð Þ x�t2X=ð2aþt2Þ½ �2 et4X2=ð2aþt2Þ



ð1
�1

dy y2le� 2aþt2ð Þ y�t2Y=ð2aþt2Þ½ �2 et4Y2=ð2aþt2Þ



ð1
�1

dz z2me� 2aþt2ð Þ z�t2Z=ð2aþt2Þ½ �2 et4Z2=ð2aþt2Þ

¼
ð1
�1

dt e�2at2=ð2aþt2ÞR2

ð1
�1

dx xþ t2X

2aþ t2

� �2n

e� 2aþt2ð Þx2



ð1
�1

dy yþ t2Y

2aþ t2

� �2l

e� 2aþt2ð Þy2

ð1
�1

dz zþ t2Z

2aþ t2

� �2m

e� 2aþt2ð Þz2

¼
ð1
�1

dt e�2at2R2=ð2aþt2Þ
X2n

n¼0

2nð Þ!
2n� nð Þ!n!

t2X

2aþ t2

� �2n�nð1
�1

xne� 2aþt2ð Þx2

dx

" #



X2l

l¼0

2lð Þ!
2l� lð Þ!l!

t2Y

2aþ t2

� �2l�lð1
�1

yle� 2aþt2ð Þy2

dy

" #



X2m

m¼0

2mð Þ!
2m� mð Þ!m!

t2Z

2aþ t2

� �2m�mð1
�1

zme� 2aþt2ð Þz2

dz

" #

¼
ð1
�1

dt e�2at2R2=ð2aþt2Þ
Xn

n¼0

2nð Þ!
2n� 2nð Þ! 2nð Þ!

t2X

2aþ t2

� �2n�2nð1
�1

x2ne� 2aþt2ð Þx2

dx

" #



Xl

l¼0

2lð Þ!
2l� 2lð Þ! 2lð Þ!

t2Y

2aþ t2

� �2l�2lð1
�1

y2le� 2aþt2ð Þy2

dy

" #



Xm

m¼0

2mð Þ!
2m� 2mð Þ! 2mð Þ!

t2Z

2aþ t2

� �2m�2mð1
�1

z2me� 2aþt2ð Þz2

dz

" #

¼
ð1
�1

dt e�2at2R2=ð2aþt2Þ
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Xn

n¼0

2nð Þ!
2n� 2nð Þ! 2nð Þ!

t2X

2aþ t2

� �2n�2n
2nð Þ!

4nn! 2aþ t2ð Þn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
2aþ t2

r" #



Xl

l¼0

2lð Þ!
2l� 2lð Þ! 2lð Þ!

t2Y

2aþ t2

� �2l�2l
2lð Þ!

4ll! 2aþ t2ð Þl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

2aþ t2

r" #



Xm

m¼0

2mð Þ!
2m� 2mð Þ! 2mð Þ!

t2Z

2aþ t2

� �2m�2m
2mð Þ!

4mm! 2aþ t2ð Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
2aþ t2

r" #

¼ 2
Xn

n¼0

Xl

l¼0

Xm

m¼0

2nð Þ! 2lð Þ! 2mð Þ!p3=2X2n�2nY2l�2lZ2m�2m

2n� 2nð Þ!n! 2l� 2lð Þ!l! 2m� 2mð Þ!m!4nþlþm



ð1

0

dt e�2at2R2=ð2aþt2Þ 1

2aþ t2ð Þnþlþmþ3=2

t2

2aþ t2

� �2 nþlþm�n�l�mð Þ
ð86Þ

Now, let

x � tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aþ t2
p ð87Þ

Since

dx
dt
¼ 2a

2aþ t2ð Þ3=2
ð88Þ

we find

dt ¼ 2aþ t2ð Þ3=2

2a
dx ð89Þ

Also, noticing that when t ¼ 0, x ¼ 0, and x ¼ 1 when t ¼ 1, and

2a
2aþ t2

¼ 1� x2 ð90Þ

we have

I2 ¼
1

a

Xn

n¼0

Xl

l¼0

Xm

m¼0

2nð Þ! 2lð Þ! 2mð Þ!p3=2X2n�2nY2l�2lZ2m�2m

2n� 2nð Þ!n! 2l� 2lð Þ!l! 2m� 2mð Þ!m!4nþlþm



ð1

0

dx e�2aR2x2 1� x2
� �nþlþm

2að Þnþlþm
x2 2 nþlþm�n�l�mð Þ½ �

¼ 1

a

Xn

n¼0

Xl

l¼0

Xm

m¼0

2nð Þ! 2lð Þ! 2mð Þ!p3=2X2n�2nY2l�2lZ2m�2m

2n� 2nð Þ!n! 2l� 2lð Þ!l! 2m� 2mð Þ!m! 8að Þnþlþm



Xnþlþm
k¼0

nþ lþ mð Þ!
nþ lþ m� kð Þ!k! �1ð Þk

ð1

0

dx x2 2 nþlþm�n�l�mð Þþk½ �e�2aR2x2

ð91Þ
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According to Eq. (A.16),

ð1

0

dx x2se�2aR2x2 ¼ 2sð Þ!
s! 8aR2ð Þs

1
2

ffiffiffiffiffiffiffiffiffiffi
p

2aR2

r
erf

ffiffiffiffiffiffiffiffiffiffi
2aR2
p� �


� e�2aR2
Xs�1

j¼0

j!

2jþ 1ð Þ! 8aR2
� �j

#
ð92Þ

where s ¼ 2 nþ lþ m� n� l� mð Þ þ k. Also,

I2 ¼
1

a

Xn

n¼0

Xl

l¼0

Xm

m¼0

2nð Þ! 2lð Þ! 2mð Þ!p3=2X2n�2nY2l�2lZ2m�2m

2n� 2nð Þ!n! 2l� 2lð Þ!l! 2m� 2mð Þ!m! 8að Þnþlþm



Xnþlþm
k¼0

nþ lþ mð Þ!
nþ lþ m� kð Þ!k! �1ð Þk

ð1

0

dx x2 2 nþlþm�n�l�mð Þþk½ �e�2aR2x2

¼ 2að Þ3=2N�2
n;l;m;a

a

Xn

n¼0

Xl

l¼0

Xm

m¼0

n!l!m! 8að Þnþlþm�n�l�m
X2n�2nY2l�2lZ2m�2m

2n� 2nð Þ!n! 2l� 2lð Þ!l! 2m� 2mð Þ!m!



Xnþlþm
k¼0

nþ lþ mð Þ!
nþ lþ m� kð Þ!k! �1ð Þk

ð1

0

dx x2 2 nþlþm�n�l�mð Þþk½ �e�2aR2x2 ð93Þ

Therefore

hZ2j
1

r
jZ2i ¼

ffiffiffiffiffiffiffi
8a2

p

r Xn2

n¼0

Xl2

l¼0

Xm2

m¼0


 n2!l2!m2! 8a2ð Þn2þl2þm2�n�l�mX2n2�2nY2l2�2lZ2m2�2m

2n2 � 2nð Þ!n! 2l2 � 2lð Þ!l! 2m2 � 2mð Þ!m!
Xnþlþm
k¼0


 nþ lþ mð Þ!
nþ lþ m� kð Þ!k! �1ð Þk

ð1

0

dx x2 2 n2þl2þm2�n�l�mð Þþk½ �e�2a2R2x2

ð94Þ

Next, we consider

hZ1j
1

r
jZ2i

¼ N1N2ffiffiffi
p
p

ð1
�1

dt

ð
dt xn1 xþ Xð Þn2 yl1 yþ Yð Þl2 zm1 zþ Zð Þm2 e�a1r2�a2 rþRj j2�t2r2
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¼ N1N2ffiffiffi
p
p

ð1
�1

dt

ð1
�1

dx xn1 xþ Xð Þn2 e� a1þa2þt2ð Þx2�2a2Xx�a2X2



ð1
�1

dy yl1 yþ Yð Þl2 e� a1þa2þt2ð Þy2�2a2Yy�a2Y2



ð1
�1

dz zm1 zþ Zð Þm2 e� a1þa2þt2ð Þz2�2a2Zz�a2Z2

¼ N1N2ffiffiffi
p
p

ð1
�1

dt e�a2R2

ð1
�1

dx xn1 xþ Xð Þn2 e� a1þa2þt2ð Þ xþa2X=ða1þa2þt2Þ½ �2þa2
2
X2=ða1þa2þt2Þ



ð1
�1

dy yl1 yþ Yð Þl2 e� a1þa2þt2ð Þ yþa2Y=ða1þa2þt2Þ½ �2þa2
2
Y2=ða1þa2þt2Þ



ð1
�1

dz zm1 zþ Zð Þm2 e� a1þa2þt2ð Þ zþa2Z=ða1þa2þt2Þ½ �2þa2
2
Z2=ða1þa2þt2Þ

¼ N1N2ffiffiffi
p
p

ð1
�1

dt e�a2 a1þt2ð ÞR2=ða1þa2þt2Þ
ð1
�1

dx xn1 xþ Xð Þn2 e� a1þa2þt2ð Þ xþa2X=ða1þa2þt2Þ½ �2



ð1
�1

dy yl1 yþ Yð Þl2 e� a1þa2þt2ð Þ yþa2Y=ða1þa2þt2Þ½ �2



ð1
�1

dz zm1 zþ Zð Þm2 e� a1þa2þt2ð Þ zþa2Z=ða1þa2þt2Þ½ �2

¼ N1N2ffiffiffi
p
p

ð1
�1

dt e�½a2 a1þt2ð Þ=ða1þa2þt2Þ�R2



ð1
�1

dx x� a2X

a1 þ a2 þ t2

� �n1

xþ a1 þ t2ð ÞX
a1 þ a2 þ t2

� �n2

e� a1þa2þt2ð Þx2



ð1
�1

dy y� a2Y

a1 þ a2 þ t2

� �l1

yþ a1 þ t2ð ÞY
a1 þ a2 þ t2

� �l2

e� a1þa2þt2ð Þy2



ð1
�1

dz z� a2Z

a1 þ a2 þ t2

� �m1

zþ a1 þ t2ð ÞZ
a1 þ a2 þ t2

� �m2

e� a1þa2þt2ð Þz2 ð95Þ

The three integrals of the Cartesian coordinates have the same form. Take the

integral with respect to x as, for example,

ð1
�1

dx x� a2X

a1 þ a2 þ t2

� �n1

xþ a1 þ t2ð ÞX
a1 þ a2 þ t2

� �n2

e� a1þa2þt2ð Þx2

¼
Xn1

n1¼0

Xn2

n2¼0

n1!n2!

n1! n1 � n1ð Þ!n2! n2 � n2ð Þ!
�a2X

a1 þ a2 þ t2

� �n1�n1 a1 þ t2ð ÞX
a1 þ a2 þ t2

� �n2�n2



ð1
�1

dx xn1þn2 e� a1þa2þt2ð Þx2 ð96Þ
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According to Eqs. (A.2) and (A.6), this integral is not zero only if n1 þ n2 is an

even integer. That is,ð1
�1

dx x� a2X

a1 þ a2 þ t2

� �n1

xþ a1 þ t2ð ÞX
a1 þ a2 þ t2

� �n2

e� a1þa2þt2ð Þx2

¼
Xn1

n1¼0

Xn2

n2¼0

n1!n2!X
n1þn2� n1þn2ð Þ

n1! n1 � n1ð Þ!n2! n2 � n2ð Þ!
�a2

a1 þ a2 þ t2

� �n1�n1 a1 þ t2

a1 þ a2 þ t2

� �n2�n2


 1þ ð�1Þn1þn2

2

� �
n1 þ n2ð Þ!

ffiffiffi
p
p

2n1þn2 ðn1 þ n2Þ=2½ �! a1 þ a2 þ t2ð Þ n1þn2þ1ð Þ=2
ð97Þ

Manipulating all three integrals in similar way, we have

hZ1j
1

r
jZ2i

¼ pN1N2

Xn1

n1¼0

Xn2

n2¼0

Xl1

l1¼0

Xl2

l2¼0

Xm1

m1¼0

Xm2

m2¼0

1þ �1ð Þn1þn2

2

� �


 1þ �1ð Þl1þl2

2

 !
1þ �1ð Þm1þm2

2

� �


 Cn1
n1

Cn2
n2

Cl1
l1

Cl2
l2

Cm1
m1

Cm2
m2

n1þn2ð Þ! l1þl2ð Þ! m1 þ m2ð Þ! �a2ð Þn1þl1þm1�n1�l1�m1

2n1þn2þl1þl2þm1þm2
n1þn2

2

� �
! l1þl2

2

� �
! m1þm2

2

� �
!


 Xn1þn2�n1�n2 Yl1þl2�l1�l2 Zm1þm2�m1�m2

ð1
�1

dt e½�a2 a1þt2ð Þ=ða1þa2þt2Þ�R2


 a1 þ t2
� �n2þl2þm2�n2�l2�m2


 a1 þ a2 þ t2
� �� n1þn2þl1þl2þm1þm2� n1þn2þl1þl2þm1þm2ð Þ=2þ3=2½ � ð98Þ

where Cn
n ¼ n!=fðn� nÞ!n!g. The remaining integral of t is

I ¼
ð1
�1

dt
a1 þ t2ð Þ= a1 þ a2 þ t2ð Þ½ �n2þl2þm2�n2�l2�m2

a1 þ a2 þ t2ð Þn1þl1þm1� n1�n2þl1�l2þm1�m2ð Þ=2þ3=2
e½�a2 a1þt2ð Þ=ða1þa2þt2Þ�R2

¼ 2

ð1
0

dt
a1 þ t2ð Þ= a1 þ a2 þ t2ð Þ½ �n2þl2þm2�n2�l2�m2

a1 þ a2 þ t2ð Þn1þl1þm1� n1�n2þl1�l2þm1�m2ð Þ=2þ3=2
e½�a2 a1þt2ð Þ=ða1þa2þt2Þ�R2

ð99Þ

Introducing the new variable x

x ¼ tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ a2 þ t2
p ð100Þ

the crude born–oppenheimer adiabatic approximation 525



By considering the limits of integration, we find that when t ¼ 0, x ¼ 0, and

when t ¼ 1, x ¼ 1. Also,

dx
dt
¼ a1 þ a2

a1 þ a2 þ t2ð Þ3=2
ð101Þ

dt ¼ a1 þ a2 þ t2ð Þ3=2

a1 þ a2

dx ð102Þ

1

a1 þ a2 þ t2
¼ 1� x2

a1 þ a2

ð103Þ

a1 þ t2

a1 þ a2 þ t2
¼ a1 þ a2x

2

a1 þ a2

ð104Þ

Therefore

I ¼ 2

a1 þ a2

ð1

0

dx e�a2ða1þa2Þx2R2=ða1þa2Þ a1 þ a2x
2

a1 þ a2

� �n2þl2þm2�n2�l2�m2


 1� x2

a1 þ a2

� �n1þl1þm1� n1�n2þl1�l2þm1�m2ð Þ=2

ð105Þ

Now, let K1 ¼ n1 þ l1 þ m1 � n1 � n2 þ l1 � l2 þ m1 � m2ð Þ=2, K2 ¼ n2þ
l2 þ m2 � n2 � l2 � m2. Notice that K2 is an integer, and K1 þ K2 ¼ n1 þ n2þ
l1 þ l2 þ m1 þ m2 � n1 þ n2 þ l1 þ l2 þ m1 þ m2ð Þ=2 is also an integer, there-

fore K1 must be an integer. Thus,

I ¼ 2e�a1a2R2=ða1þa2Þ

a1 þ a2ð ÞK1þK2þ1

ð1

0

dx e�a
2
2
R2=a1þa2x

2

1� x2
� �K1 a1 þ a2x

2
� �K2

¼ 2e�a1a2R2=ða1þa2Þ

a1 þ a2ð ÞK1þK2þ1

XK1

k1¼0

XK2

k2¼0

CK1

k1
CK2

k2
�1ð Þk1aK2�k2

1 ak2

2

ð1

0

dx x2 k1þk2ð Þe�a
2
2
R2x2=ða1þa2Þ

ð106Þ

Again, making use of Eq. (A.16), we obtainð1

0

dx x2 k1þk2ð Þe�a
2
2
R2x2=ða1þa2Þ ¼ 2k1 þ 2k2ð Þ!

k1 þ k2ð Þ! 4a2
2R2=ða1 þ a2

� �
gk1þk2


 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ a2ð Þp

p
a2R

erf
a2Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ a2

p
� �

� e�a
2
2
R2=ða1þa2Þ

(



Xk1þk2�1

k¼0

k!

2k þ 1ð Þ!
4a2

2R2

a1 þ a2

� �k
)

ð107Þ
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By using the notation defined in Eq. (A.13), we find

I ¼ 2e�a1a2R2=ða1þa2Þ

a1 þ a2ð ÞK1þK2þ1

XK1

k1¼0

XK2

k2¼0

CK1

k1
CK2

k2
�1ð Þk1aK2�k2

1 ak2

2 Jk1þk2

a2
2R2

a1 þ a2

� �
ð108Þ

Further, defining this integral as

KK1;K2
R; a1; a2ð Þ �

ð1
�1

dt
a1 þ t2ð ÞK2

a1 þ a2 þ t2ð ÞK1þK2
e�½a2 a1þt2ð Þ=ða1þa2þt2Þ�R2 ð109Þ

we find

hZ1j
1

r
jZ2i

¼ pN1N2

Xn1

n1¼0

Xn2

n2¼0

Xl1

l1¼0

Xl2

l2¼0

Xm1

m1¼0

Xm2

m2¼0

1þ �1ð Þn1þn2

2

� �
1þ �1ð Þl1þl2

2

 !


 1þ �1ð Þm1þm2

2

� �
Cn1
n1

Cn2
n2

Cl1
l1

Cl2
l2

Cm1
m1

Cm2
m2


 n1 þ n2ð Þ! l1 þ l2ð Þ! m1 þ m2ð Þ! �a2ð Þn1þl1þm1�n1�l1�m1

2n1þn2þl1þl2þm1þm2
n1þn2

2

� �
! l1þl2

2

� �
! m1þm2

2

� �
!


 Xn1þn2�n1�n2 Yl1þl2�l1�l2 Zm1þm2�m1�m2 KK1;K2
R; a1; a2ð Þ ð110Þ

with K1 and K2 defined as above.

In the case of hydrogen molecule, the term hZ1j1=jrþ R0j2jZ2i, which

involves three centers, does not show up in the calculation. We will not discuss

this integral in the present work.

D. Derivatives of the Coulomb Potential

In fact, the Coulomb integrals discussed in Section IV.C are available in

contemporary quantum chemistry packages. We do not really need to develop

our own method to calculate them. However, it is necessary to master the

algebra so that we can calculate the matrix elements of the derivatives of the

Coulomb potential. In the following, we shall demonstrate the evaluation of

these matrix elements.

Since the derivative is taken with respect to the nuclear coordinate, it is

important to choose the convenient coordinates. Earlier, we assigned the origin

on one of the nuclei. Now, we will assign the origin on the middle point of the

two nuclei. The geometry is shown in Figure 3. Furthermore, the z axis is taken

to be along R. That is, the coordinates of the position of the nuclei A is
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RA ¼ 0; 0;�R=2ð Þ, and similarly RB ¼ 0; 0;R=2ð Þ. Later, to calculate the

Coulomb interaction terms, we will be dealing with the following terms:

1

rA1

¼ 1ffiffiffi
p
p
ð1
�1

dt e�t2r2
A1 ¼ 1ffiffiffi

p
p
ð1
�1

dt e�t2x2
1
�t2y2

1
�t2 z1þR=2ð Þ2 ð111Þ

1

rB1

¼ 1ffiffiffi
p
p
ð1
�1

dt e�t2r2
B1 ¼ 1ffiffiffi

p
p
ð1
�1

dt e�t2x2
1
�t2y2

1
�t2 z1�R=2ð Þ2 ð112Þ

The quantities 1=rA2 and 1=rB2 are defined similarly. In such cases, the first

derivatives are

q
qR

1

rAi

� �
0

¼ 1ffiffiffi
p
p
ð1
�1

dtð�t2Þ zi þ R0=2ð Þe�t2r2
Ai ð113Þ

q
qR

1

rBi

� �
0

¼ 1ffiffiffi
p
p
ð1
�1

dt t2 zi � R0=2ð Þe�t2r2
Bi ð114Þ

The second derivatives are

q2

qR2

1

rAi

� �
0

¼ 1ffiffiffi
p
p
ð1
�1

dt � t2

2
þ t4 zi þ

R0

2

� �2
" #

e�t2r2
Ai ð115Þ

q2

qR2

1

rBi

� �
0

¼ 1ffiffiffi
p
p
ð1
�1

dt � t2

2
þ t4 zi �

R0

2

� �2
" #

e�t2r2
Bi ð116Þ

Also, the notations of the wave functions are to be changed. We shall denote

the Gaussian function centered at nucleus A as jZAi, and the function centered at

nucleus B as jZBi.

Figure 3. Molecular-fixed coordinates.
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1. First-Order Derivatives

hZAj
q
qR

1

rA1

� �
0

jZAi

¼ N2
Affiffiffi
p
p
ð1
�1

dtð�t2Þ
ð

dt1 x2n
1 y2l

1 z1 þ R0=2ð Þ2mþ1
e �2a1�t2ð Þr2

A1

¼ N2
Affiffiffi
p
p
ð1
�1

dtð�t2Þ
ð1
�1

dx1 x2n
1 e �2a1�t2ð Þx2

1

ð1
�1

dy1 y2l
1 e �2a1�t2ð Þy2

1



ð1
�1

dz1 z2mþ1
A1 e �2a1�t2ð Þz2

A1 ð117Þ

Obviously, this matrix element is zero due to the integral over z. Similarly, we

know that

hZBj
q
qR

1

rB1

� �
0

jZBi ¼ 0 ð118Þ

hZAj
q
qR

1

rA2

� �
0

jZAi ¼ 0 ð119Þ

hZBj
q
qR

1

rB2

� �
0

jZBi ¼ 0 ð120Þ

Then, we consider

hZAj
q
qR

1

rB1

� �
0

jZAi ¼
N2

Affiffiffi
p
p
ð1
�1

dtð�t2Þ
ð

dt1 x2n
1 y2l

1 z2m
A1 zB1e�2aAr2

A1 e�t2r2
B1 ð121Þ

By introducing a new variable for the z coordinate z ¼ zA1, since zB1 ¼ z� R, we

find that

hZAj
q
qR

1

rB1

� �
0

jZAi

¼ N2
Affiffiffi
p
p
ð1
�1

dtð�t2Þ
ð1
�1

dx1 x2n
1 e� 2aAþt2ð Þx2

1

ð1
�1

dy1 y2l
1 e� 2aAþt2ð Þy2

1



ð1
�1

dz z2m z� Rð Þe� 2aAþt2ð Þz2þ2t2Rz�t2R2 ð122Þ
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According to Eqs. (A.2) and (A.6), the integral over x1 and y1 can be easily

carried out, but the integral over z has to be manipulated.

Iz ¼
ð1
�1

dz z2m z� Rð Þe� 2aAþt2ð Þz2þ2t2Rz�t2R2

¼ e�2aAt2R2= 2aAþt2ð Þ
ð1
�1

dz z2m z� Rð Þe� 2aAþt2ð Þ z�t2R=ð2aAþt2Þ½ �2

¼ e�2aAt2R2= 2aAþt2ð Þ
ð1
�1

dz zþ t2R

2aA þ t2

� �2m

z� 2aAR

2aA þ t2

� �
e� 2aAþt2ð Þz2

ð123Þ

We shall expand the polynomial of z. But recalling that only terms of the even

power of z do not vanish, we can write the expansion in the following form:

Iz ¼ e�2aAt2R2= 2aAþt2ð Þ �2aAR

2aA þ t2

Xm

m¼0

C2m
2m

t2R

2aA þ t2

� �2m�2mð1
�1

dz z2me� 2aAþt2ð Þz2

(

þ
Xm

m¼1

C2m
2m�1

t2R

2aA þ t2

� �2m�2mþ1ð1
�1

dz z2me� 2aAþt2ð Þz2

)

¼ e�2aAt2R2= 2aAþt2ð Þ
�
�2aAR

2aA þ t2

t2R

2aA þ t2

� �2m ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

2aA þ t2

r

þ
Xm

m¼1

C2m
2m

t2R

2aA þ t2

� �2m�2m
2m

2m� 2mþ 1

t2R

2aA þ t2
� 2aAR

2aA þ t2

� �



ð1
�1

dz z2me� 2aAþt2ð Þz2

�
ð124Þ

By inserting the expression for the integral over z, we find

Iz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
2aA þ t2

r
e�2aAt2R2= 2aAþt2ð Þ � 2aR

2aA þ t2

t2R

2aA þ t2

� �2m
(

þ
Xm

m¼1

C2m
2m

t2R

2aA þ t2

� �2m�2m
2m

2m� 2mþ 1

t2R

2aA þ t2
� 2aAR

2aA þ t2

� �
2mð Þ!

22mm!


 1

2aA þ t2

� �m�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
2aA þ t2

r
e�2aAt2R2= 2aAþt2ð Þ Xm

m¼0

C2m
2m

2mð Þ!
22mm!

(


 2m
2m� 2mþ 1

t2R

2aA þ t2
� 2aAR

2aA þ t2

� �
t2R

2aA þ t2

� �2m�2m
1

2aA þ t2

� �m
)
ð125Þ
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Thus, we obtain

hZAj
q
qR

1

rB1

� �
0

jZAi

¼ pN2
A

Xm

m¼0

C2m
2m

2nð Þ! 2lð Þ! 2mð Þ!
4nþlþmn!l!m!

ð1
�1

dt
1

2aA þ t2

� �nþlþm�1þ3=2
t2R

2aA þ t2

� �2m�2mþ1


 2aA

2aA þ t2
� 2m

2m� 2mþ 1

t2

2aA þ t2

� �
e�2aAt2R2=ð2aAþt2Þ ð126Þ

By introducing the new variable

x � tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aA þ t2
p ð127Þ

we have

t2

2aA þ t2
¼ x2 ð128Þ

1

2aA þ t2
¼ 1� x2

2aA

ð129Þ

dt ¼ 2aA þ t2
� �3=2

dx ð130Þ

Therefore,

hZAj
q
qR

1

rB1

� �
0

jZAi

¼ 2pN2
A

Xm

m¼0

C2m
2m

2nð Þ! 2lð Þ! 2mð Þ!
4nþlþmn!l!m!� 1

1

2aA

� �nþlþm�1

R2m�2mþ1



ð1

0

dx 1� x2
� �nþlþm�1

x2
� �2m�2mþ1

1� 2mþ 1

2m� 2mþ 1
x2

� �
e�2aAR2x2

¼ 2pN2
A

Xm

m¼0

C2m
2m

2nð Þ! 2lð Þ! 2mð Þ!
4nþlþmn!l!m!

1

2aA

� �nþlþ2m�mþ1

R2m�2mþ1


 2aA

ð1

0

dx 1� x2
� �nþlþm�1

2aAx
2

� �2m�2mþ1
e�2aAR2x2




� 2mþ 1

2m� 2mþ 1

ð1

0

dx 1� x2
� �nþlþm�1

2aAx
2

� �2m�2mþ2
e�2aAR2x2

�
ð131Þ
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According to Eq. (106), let us define the integral

XK1;K2;a1;a2
Rð Þ �

ð1

0

dx 1� x2
� �K1 a1 þ a2x

2
� �K2

e�a
2
2
R2x2=ða1þa2Þ

¼
XK1

k1¼0

XK2

k2¼0

CK1

k1
CK2

k2
�1ð Þk1aK2�k2

1 ak2

2

ð1

0

dx x2 k1þk2ð Þe�a
2
2
R2x2=ða1þa2Þ

¼
XK1

k1¼0

XK2

k2¼0

CK1

k1
CK2

k2
�1ð Þk1aK2�k2

1 ak2

2 Jk1þk2

a2
2

a1 þ a2

R2

� �
ð132Þ

With Eq. (131), letting a1 ¼ 0, a2 ¼ 2aA, we find that

hZAj
q
qR

1

rB1

� �
0

jZAi

¼ �2pN2
A

Xm

m¼0

C2m
2m

2nð Þ! 2lð Þ! 2mð Þ!
4nþlþmn!l!m!� 1

1

2aA

� �nþlþ2m�mþ1

R2m�2mþ1


 2aAXnþlþm�1;2m�2mþ1;0;2aA
Rð Þ � 2mþ 1

2m� 2mþ 1
Xnþlþm�1;2m�2mþ2;0;2aA

Rð Þ

 �

ð133Þ

The matrix element between Gaussian functions at different centers is in

general of the form

hZAj
q
qR

1

rA1

� �
0

jZBi

¼ NANBffiffiffi
p
p

ð1
�1

dtð�t2Þ
ð

dt xnA

A1xnB

B1ylA
A1ylB

B1zmAþ1
A1 zmB

B1 e�aAr2
A1
�t2r2

A1
�aBr2

B1 ð134Þ

Since we can use the relations xA1 ¼ xB1 ¼ x1 � x, yA1 ¼ yB1 ¼ y1 � y,

zA1 ¼ zB1 þ R, and let z � zB1, we have

hZAj
q
qR

1

rA1

� �
0

jZBi

¼ NANBffiffiffi
p
p

ð1
�1

dtð�t2Þ
ð1
�1

dx xnAþnB e� aAþaBþt2ð Þx2

ð1
�1

dy ylAþlB e� aAþaBþt2ð Þy2



ð1
�1

dz zþ Rð ÞmAþ1
zmB e� aAþaBþt2ð Þz2�2 aAþt2ð ÞRz� aAþt2ð ÞR2
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¼ NANBffiffiffi
p
p

ð1
�1

dtð�t2Þe� aAþt2ð ÞR2

ð1
�1

dx xnAþnB e� aAþaBþt2ð Þx2



ð1
�1

dy ylAþlB e� aAþaBþt2ð Þy2



ð1
�1

dz zþ Rð ÞmAþ1
zmB e� aAþaBþt2ð Þz2�2 aAþt2ð ÞRz

¼ NANBffiffiffi
p
p 1þ �1ð ÞnAþnB

2

� �
1þ �1ð ÞlAþlB

2

 !
nA þ nBð Þ! lA þ lBð Þ!

2nAþnBþlAþlB nAþnB

2

� �
! lAþlB

2

� �
!



ð1
�1

dt �t2
� �

e� aAþt2ð ÞR2 p
aA þ aB þ t2

� �
1

aA þ aB þ t2

� � nAþnBþlAþlBð Þ=2



ð1
�1

dz zþ Rð ÞmAþ1
zmB e� aAþaBþt2ð Þ zþðaAþt2Þ=ðaAþaBþt2Þ½ �2þ aAþt2ð Þ2R2=ðaAþaBþt2Þ

¼ NANBffiffiffi
p
p 1þ �1ð ÞnAþnB

2

� �
1þ �1ð ÞlAþlB

2

 !
nA þ nBð Þ! lA þ lBð Þ!

2nAþnBþlAþlB nAþnB

2

� �
! lAþlB

2

� �
!



ð1
�1

dt �t2
� �

e�aB aAþt2ð ÞR2=ðaAþaBþt2Þ p
aAþaBþt2

� �
1

aAþ aBþt2

� � nAþnBþlAþlBð Þ=2



ð1
�1

dz zþ aB

aA þ aB þ t2
R

� �mAþ1

z� aA þ t2

aA þ aB þ t2
R

� �mB

e� aAþaBþt2ð Þz2

ð135Þ

Note that

ð1
�1

dz zþ aB

aA þ aB þ t2
R

� �mAþ1

z� aA þ t2

aA þ aB þ t2
R

� �mB

e� aAþaBþt2ð Þz2

¼
XmBþ1

mA¼ 0

XmB

mB¼ 0

CmAþ1
mA

CmB
mB

aBR

aA þ aB þ t2

� �mA�mAþ1 � aA þ t2ð ÞR
aA þ aB þ t2


 �mB�mB



ð1
�1

dz zmAþmB e� aAþaBþt2ð Þz2

¼
XmAþ1

mA¼ 0

XmB

mB¼ 0

CmAþ1
mA

CmB
mB

aBR

aA þ aB þ t2

� �mA�mAþ1 � aA þ t2ð ÞR
aA þ aB þ t2


 �mB�mB


 1þ �1ð ÞmAþmB

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

aA þ aB þ t2

r
mA þ mBð Þ!

2mAþmB mA þ mB=2ð Þ!
1

aA þ aB þ t2

� � mAþmBð Þ=2

ð136Þ
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Therefore

hZAj
q
qR

1

rA1

� �
0

jZBi

¼ �2pNANB

XmAþ1

mA¼0

XmB

mB¼0

1þ �1ð ÞnAþnB

2

� �
1þ �1ð ÞlAþlB

2

 !
1þ �1ð ÞmAþmB

2

� �


 CmAþ1
mA

CmB
mB

nA þ nBð Þ! lA þ lBð Þ! mA þ mBð Þ!
2nAþnBþlAþlBþmAþmB

nAþnB

2

� �
! lAþlB

2

� �
! mAþmB

2

� �
!
RmAþmB�mA�mBþ1



ð1

0

dt

aA þ aB þ t2ð Þ3=2
amA�mAþ1

B

t2

aA þ aB þ t2

aB

aA þ aB þ t2
� 1

� �mB�mB


 1

aA þ aB þ t2

� � nAþnBþlAþlBþ2mA�mAþmBð Þ=2

e�aB aAþt2ð ÞR2=ðaAþaBþt2Þ ð137Þ

By introducing the new variable x ¼ t=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aA þ aB þ t2
p

as usual, we have

hZAj
q
qR

1

rA1

� �
0

jZBi

¼ �2pNANB

XmAþ1

mA¼0

XmB

mB¼0

1þ �1ð ÞnAþnB

2

� �
1þ �1ð ÞlAþlB

2

 !
1þ �1ð ÞmAþmB

2

� �


 CmAþ1
mA

CmB
mB

nA þ nBð Þ! lA þ lBð Þ! mA þ mBð Þ!
2nAþnBþlAþlBþmAþmB

nAþnB

2

� �
! lAþlB

2

� �
! mAþmB

2

� �
!
RmAþmB�mA�mBþ1


 amA�mAþ1
B �1ð ÞmB�mB

1

aA þ aB

� � nAþnBþlAþlBþ2mAþ2mB�mA�mBð Þ=2

e�aAaBR2=ðaAþaBÞ



ð1

0

dx x2 1� x2
� � nAþnBþlAþlBþ2mA�mAþmBð Þ=2

aA þ aBx
2

� �mB�mB e�a
2
BR2x2=ðaAþaBÞ

ð138Þ

The integral over x in Eq. (138) is discussed in the Appendix. From Eq. (A.18),

we can find the expression for this integral. Inserting it into Eq. (138), we

have

hZAj
q
qR

1

rA1

� �
0

jZBi

¼ �2pNANB

XmAþ1

mA¼0

XmB

mB¼0

1þ �1ð ÞnAþnB

2

� �
1þ �1ð ÞlAþlB

2

 !
1þ �1ð ÞmAþmB

2

� �
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 CmAþ1
mA

CmB
mB

nA þ nBð Þ! lA þ lBð Þ! mA þ mBð Þ!
2nAþnBþlAþlBþmAþmB

nAþnB

2

� �
! lAþlB

2

� �
! mAþmB

2

� �
!
RmAþmB�mA�mBþ1


 amA�mAþ1
B �1ð ÞmB�mB

1

aA þ aB

� � nAþnBþlAþlBþ2mAþ2mB�mA�mBð Þ=2

e�aAaBR2=ðaAþaBÞ


 Ix 1;
nA þ nB þ lA þ lB þ 2mA � mA þ mB

2
;mB � mB; aA; aB;R

� �
ð139Þ

2. Second-Order Derivatives

To calculate the matrix elements of second-order derivatives, we have

hZAj
q2

qR2

1

rA1

� �
0

jZAi

¼ N2
Affiffiffi
p
p
ð1
�1

dt

ð
dt t4z2

A1 �
t2

2

� �
x2n

A1y2l
A1z2m

A1 e� 2aAþt2ð Þr2
A1 ð140Þ

Neglecting the subscripts of the coordinates for simplicity, one obtains

hZAj
q2

qR2

1

rA1

� �
0

jZAi

¼ N2
Affiffiffi
p
p

ð1
�1

dt t4

ð1
�1

dx x2ne� 2aAþt2ð Þx2

ð1
�1

dy y2le� 2aAþt2ð Þy2

ð1
�1

dz z2mþ2e� 2aAþt2ð Þz2




�
ð1
�1

dt
t2

2

ð1
�1

dx x2ne� 2aAþt2ð Þx2

ð1
�1

dy y2le� 2aAþt2ð Þy2

ð1
�1

dz z2me� 2aAþt2ð Þz2

�

¼ N2
Affiffiffi
p
p 2nð Þ! 2lð Þ! 2mþ 2ð Þ!

22nþ2lþ2mþ2n!l! mþ 1ð Þ!

ð1
�1

dt t4 p
2aA þ t2

� �3=2
1

2aA þ t2

� �nþlþmþ1
"

� 2nð Þ! 2lð Þ! 2mð Þ
22nþ2lþ2mn!l!m!

ð1
�1

dt
t2

2

p
2aA þ t2

� �3=2
1

2aA þ t2

� �nþlþm
#

¼ pN2
A

2nð Þ! 2lð Þ! 2mð Þ!
22nþ2lþ2mn!l!m!

2mþ 1ð Þ
ð1

0

dt

2aA þ t2ð Þ3=2
t4 1

2aA þ t2

� �nþlþmþ1
"

�
ð1

0

dt

2aA þ t2ð Þ3=2
t2 1

2aA þ t2

� �nþlþm
#

¼ pN2
A

2nð Þ! 2lð Þ! 2mð Þ!
22nþ2lþ2mn!l!m!

2m

ð1
0

dt

2aA þ t2ð Þ3=2

t2

2aA þ t2

� �2
1

2aA þ t2

� �nþlþm�1
"

�
ð1

0

dt
2aA

2aA þ t2ð Þ3=2

t2

2aA þ t2

1

2aA þ t2

� �nþlþm
#

ð141Þ
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It has to be noted that, when reduced to the pure Gaussian case, that is, when

nþ lþ m ¼ 0, m must always be 0, and

hZAj
q2

qR2

1

rA1

� �
0

jZAi ¼ �pN2
A

ð1
0

dt
2aA

2aA þ t2ð Þ3=2

t2

2aA þ t2
ð142Þ

By introducing a new variable

x ¼ tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aA þ t2
p ð143Þ

dx ¼ 2aAdt

2aA þ t2ð Þ3=2
ð144Þ

we find that

hZAj
q2

qR2

1

rA1

� �
0

jZAi ¼ �pN2
A

ð1

0

x2 dx

¼ � pN2
A

3
ð145Þ

In the general cases where nþ lþ m > 0, it is guaranteed that nþ lþ m�
1 � 0. Therefore, by using the same new variable, we find

hZAj
q2

qR2

1

rA1

� �
0

jZAi

¼ pN2
A

2nð Þ! 2lð Þ! 2mð Þ!
8aAð Þnþlþm

n!l!m!
2m

ð1

0

dx x4 1� x2
� �nþlþm�1�

ð1

0

dx x2 1� x2
� �nþlþm


 �
ð146Þ

where we have made use of the fact that

1� x2 ¼ 2aA

2aA þ t2
ð147Þ

By noticing thatð1

0

dx x2n 1� x2
� �m ¼

Xm

m¼0

Cm
m �1ð Þm

ð1

0

dx x2 nþmð Þ

¼
Xm

m¼0

Cm
m

�1ð Þm

2 nþ mð Þ þ 1
ð148Þ
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we find that

hZAj
q2

qR2

1

rA1

� �
0

jZAi

¼ pN2
A

2nð Þ! 2lð Þ! 2mð Þ!
22nþ2lþ2mn!l!m!

2m
Xnþlþm�1

m¼0

Cnþlþm�1
m

�1ð Þm

2 mþ 2ð Þ þ 1

"

�
Xnþlþm

m¼0

Cnþlþm
m

�1ð Þm

2 mþ 1ð Þ þ 1

#
ð149Þ

In the second case,

hZAj
q2

qR2

1

rB1

� �
0

jZAi

¼ N2
Affiffiffi
p
p
ð1
�1

dt

ð
dtx2n

A1y2l
A1z2m

A1 t4z2
B1 �

t2

2

� �
e�2aAr2

A1
�t2r2

B1 ð150Þ

By using the relations: xB1 ¼ xA1, yB1 ¼ yA1, and zB1 ¼ zA1 � R, we shall

simplify Eq. (150) by letting x ¼ xA1, y ¼ yA1, and z ¼ zA1. Thus

hZAj
q2

qR2

1

rB1

� �
0

jZAi

¼ N2
Affiffiffi
p
p
ð1
�1

dt

ð1
�1

dx x2ne� 2aAþt2ð Þx2

ð1
�1

dy y2le� 2aAþt2ð Þy2



ð1
�1

dz z2m t4 z� Rð Þ2� t2

2


 �
e� 2aAþt2ð Þz2þ2t2Rz�t2R2

¼ N2
Affiffiffi
p
p 2nð Þ! 2lð Þ!

22nþ2ln!l!

ð1
�1

dt
p

2aA þ t2

� �
1

2aA þ t2

� �nþl

e�2aAt2R2= 2aAþt2ð Þ



ð1
�1

dz z2m t4 z� Rð Þ2� t2

2


 �
e� 2aAþt2ð Þ z�t2R= 2aAþt2ð Þ½ �2 ð151Þ

By making a change of the variable z0 ¼ z� t2R= 2aA þ t2ð Þ and by ignoring the

prime sign in the dummy index results in

hZAj
q2

qR2

1

rB1

� �
0

jZAi

¼ N2
Affiffiffi
p
p 2nð Þ! 2lð Þ!

22nþ2ln!l!

ð1
�1

dt
p

2aA þ t2

� �
1

2aA þ t2

� �nþl

e�2aAt2R2= 2aAþt2ð Þ



ð1
�1

dz zþ t2R

2aA þ t2

� �2m

t4 z� 2aAR

2aA þ t2

� �2

� t2

2

" #
e� 2aAþt2ð Þz2 ð152Þ
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Note that

Iz �
ð1
�1

dz zþ t2R

2aA þ t2

� �2m

t4 z� 2aAR

2aA þ t2

� �2

� t2

2

" #
e� 2aAþt2ð Þz2

¼
ð1
�1

dz zþ t2R

2aA þ t2

� �2m

t4z2 � t4 4aAR

2aA þ t2
zþ t4 2aAR

2aA þ t2

� �2

� t2

2

" #
e� 2aAþt2ð Þz2

¼ t4
Xm

m¼0

C2m
2m

t2R

2aA þ t2

� �2m�2mð1
�1

dz z2 mþ1ð Þe� 2aAþt2ð Þz2

� t4 4aAR

2aA þ t2

Xm�1

m¼0

C2m
2mþ1

t2R

2aA þ t2

� �2m�2m�1ð1
�1

dz z2 mþ1ð Þe� 2aAþt2ð Þz2

þ t4 2aAR

2aA þ t2

� �2

� t2

2

" #Xm

m¼0

C2m
2m

t2R

2aA þ t2

� �2m�2mð1
�1

dz z2me� 2aAþt2ð Þz2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
2aA þ t2

r
t4
Xm

m¼0

C2m
2m

t2R

2aA þ t2

� �2m�2m
2mþ 2ð Þ!

22mþ2 mþ 1ð Þ!
1

2aA þ t2

� �mþ1
(

� t4 4aAR

2aA þ t2

Xm�1

m¼0

C2m
2mþ1

t2R

2aA þ t2

� �2m�2m�1
2mþ 2ð Þ!

22mþ2 mþ 1ð Þ!
1

2aA þ t2

� �mþ1

þ t4 2aAR

2aA þ t2

� �2

� t2

2

" #Xm

m¼0

C2m
2m

t2R

2aA þ t2

� �2m�2m
2mð Þ!

22mm!
1

2aA þ t2

� �m
)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
2aA þ t2

r
t2
Xm

m¼0

C2m
2m

t2R

2aA þ t2

� �2m�2m
2mð Þ!

22mm!
1

2aA þ t2

� �m
2mþ 1

2

t2

2aA þ t2

� �(

� 4aA

Xm�1

m¼0

C2m
2m

t2R

2aA þ t2

� �2m�2m
2mð Þ!

22mm!
1

2aA þ t2

� �m

m� mð Þ t2

2aA þ t2

� �

þ t4 2aAR

2aA þ t2

� �2

� t2

2

" #Xm

m¼0

C2m
2m

t2R

2aA þ t2

� �2m�2m
2mð Þ!

22mm!
1

2aA þ t2

� �m
)

ð153Þ

In the second summation, we find that, since m� m ¼ 0 when m ¼ m, we can

safely extend the upper limit to m. Thus,

Iz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
2aA þ t2

r
t2
Xm

m¼0

C2m
2m

t2R

2aA þ t2

� �2m�2m
2mð Þ!

22mm!
1

2aA þ t2

� �m
2mþ 1

2

t2

2aA þ t2

� �(

� 4aA

Xm�1

m¼0

C2m
2m

t2R

2aA þ t2

� �2m�2m
2mð Þ!

22mm!
1

2aA þ t2

� �m

m� mð Þ t2

2aA þ t2

� �
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þ t4 2aAR

2aA þ t2

� �2

� t2

2

" #Xm

m¼0

C2m
2m

t2R

2aA þ t2

� �2m�2m
2mð Þ!

22mm!
1

2aA þ t2

� �m
)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
2aA þ t2

r Xm

m¼0

C2m
2m

t2R

2aA þ t2

� �2m�2m
2mð Þ!

22mm!
1

2aA þ t2

� �m


 2mþ 1

2
t2 t2

2aA þ t2

� �
� 4aA m� mð Þ t2

2aA þ t2

� �
þ t4 2aAR

2aA þ t2

� �2

� t2

2

" #

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
2aA þ t2

r Xm

m¼0

C2m
2m

t2R

2aA þ t2

� �2m�2m
2mð Þ!

22mm!
1

2aA þ t2

� �m


 4a2
AR2 t2

2aA þ t2

� �2

þ mt2 � 4aA m� mð Þ � aA

� � t2

2aA þ t2

( )
ð154Þ

By inserting Eq. (154) into Eq. (152), we found that

hZAj
q2

qR2

1

rB1

� �
0

jZAi

¼ 2pN2
A

2nð Þ! 2lð Þ!
22nþ2ln!l!

Xm

m¼0

C2m
2m

2mð Þ!
22mm!

ð1
0

dt

2aA þ t2ð Þ3=2

1

2aA þ t2

� �nþlþm
t2R

2aA þ t2

� �2m�2m


 4a2
AR2 t2

2aA þ t2

� �2

þ mt2 � 4aA m� mð Þ � aA

� � t2

2aA þ t2

( )
e�2aAt2R2= 2aAþt2ð Þ

ð155Þ
By introducing the new variable as in Eq. (143), one obtains

hZAj
q2

qR2

1

rB1

� �
0

jZAi

¼ 2pN2
A

2nð Þ! 2lð Þ!
8aAð Þnþln!l!

Xm

m¼0

C2m
2m

2mð Þ!
8aAð Þmm!R

2m�2m
ð1

0

dx 1� x2
� �nþlþm

x2
� �2m�2m


 4a2
AR2 x2
� �2þ 2maA

x2

1� x2
� 4aA m� mð Þ � aA


 �
x2

� �
e�2aAR2x2

¼ 2pN2
A

2nð Þ! 2lð Þ!
8aAð Þnþl

n!l!

Xm

m¼0

C2m
2m

2mð Þ!
8aAð Þmm!R

2m�2m


 4a2
AR2

ð1

0

dx 1� x2
� �nþlþm

x2
� �2m�2mþ2

e�2aAR2x2

�

þ 2maA

ð1

0

dx 1� x2
� �nþlþm�1

x2
� �2m�2mþ2

e�2aAR2x2

� aA 4 m� mð Þ þ 1½ �
ð1

0

dx 1� x2
� �nþlþm

x2
� �2m�2mþ1

e�2aAR2x2

�
ð156Þ
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The second integral in Eq. (155) seemed to be singular when nþ lþ m ¼ 0.

However, in this case, m must be zero, and consequently this term will never

contribute to the final result for being suppressed by the prefactor. With the

definition in Eq. (132), we can write

hZAj
q2

qR2

1

rB1

� �
0

jZAi

¼ 2pN2
A

2nð Þ! 2lð Þ!
8aAð Þnþl

n!l!

Xm

m¼0

C2m
2m

2mð Þ!
8aAð Þmm!R2m�2m


 4a2
AR2Xnþlþm;2m�2mþ2;0;2aA

Rð Þ= 2aAð Þ2m�2mþ2
n
þ 2maAXnþlþm�1;2m�2mþ2;0;2aA

Rð Þ= 2aAð Þ2m�2mþ2

� aA 4 m� mð Þ þ 1½ �Xnþlþm;2m�2mþ1;0;2aA
Rð Þ= 2aAð Þ2m�2mþ1

o
ð157Þ

The last kind of second-order derivative considered is of the following form:

hZAj
q2

qR2

1

rA1

� �
0

jZBi

¼ NANBffiffiffi
p
p

ð1
�1

dt

ð
dt xnA

A1xnB

B1ylA
A1ylB

B1zmA

A1 zmB

B1 t4z2
A1 �

t2

2

� �
e� aAþt2ð Þr2

A1 e�aBr2
B1 ð158Þ

With the specific geometry, we can let xA1 ¼ xB1 ¼ x, yA1 ¼ yB1 ¼ y, zA1 ¼ z,

and zB1 ¼ z� R. After changing these variables, we obtain

hZAj
q2

qR2

1

rA1

� �
0

jZBi

¼ NANBffiffiffi
p
p

ð1
�1

dt

ð1
�1

dx xnAþnB e� aAþaBþt2ð Þx2

ð1
�1

dy ylAþlB e� aAþaBþt2ð Þy2



ð1
�1

dz zmA z� Rð ÞmB t4z2
A1 �

t2

2

� �
e� aAþaBþt2ð Þz2þ2aBRz�aBR2

¼ NANBffiffiffi
p
p

ð1
�1

dt
1þ �1ð ÞnAþnB

2

� �
1þ �1ð ÞlAþlB

2

 !
nA þ nBð Þ lA þ lBð Þ

2nAþnBþlAþlB nAþnB

2

� �
! lAþlB

2

� �
!


 p
aA þ aB þ t2

� �
1

aA þ aB þ t2

� � nAþnBþlAþlBð Þ=2

e�aB aþt2ð Þ=ðaAþaBþt2ÞR2 
 Iz

ð159Þ
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where

Iz ¼
ð1
�1

dz zþ aB

aA þ aB þ t2
R

� �mA

z� aA þ t2

aA þ aB þ t2
R

� �mB


 t4 zþ aB

aA þ aB þ t2

� �2

� t2

2

" #
e� aAþaBþt2ð Þz2

¼
XmA

mA ¼ 0

XmB

mB ¼ 0

CmA
mA

CmB
mB

aBR

aA þ aB þ t2

� �mA�mA

� aA þ t2

aA þ aB þ t2
R

� �mB�mB


 t4

ð1
�1

dz zmAþmBþ2e� aAþaBþt2ð Þz2 þ 2aBRt4

aA þ aB þ t2

ð1
�1

dz zmAþmBþ1e� aAþaBþt2ð Þz2

�

þ t2aBR

aA þ aB þ t2

� �2

� t2

2

" # ð1
�1

dz zmAþmB e� aAþaBþt2ð Þz2

)

¼
XmA

mA ¼ 0

XmB

mB ¼ 0

CmA
mA

CmB
mB

aBR

aA þ aB þ t2

� �mA�mA

� aA þ t2

aA þ aB þ t2
R

� �mB�mB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
aA þ aB þ t2

r


 1þ �1ð ÞmAþmB

2

� �
t4 mA þ mB þ 2ð Þ!

2mAþmBþ2 mAþmBþ2
2

� �
!

1

aA þ aB þ t2

� � mAþmBþ2ð Þ=2

8<
:
þ 1þ �1ð ÞmAþmB

2

� �
t2aBR

aA þ aB þ t2

� �2

� t2

2

" #
mA þ mBð Þ!

2mAþmB
mAþmB

2

� �
!

1

aA þ aB þ t2

� � mAþmBð Þ=2

þ 1� �1ð ÞmAþmB

2

� �
2aBRt4

aA þ aB þ t2

mA þ mB þ 1ð Þ!
2mAþmBþ1 mAþmBþ1

2

� �
!

1

aA þ aB þ t2

� � mAþmBþ1ð Þ=2

9=
;

ð160Þ

Note that the first two integrals in Eq. (160) have nonvanishing prefactors when

mA þ mB is even, while the last integral has nonvanishing prefactor when mA þ mB

is odd. They do not contribute in the final form at the same time. By inserting

Iz into Eq. (159), the familiar forms of integral over t as in the calculation

of other matrix elements appear. Again, by changing into the variable

x ¼ t=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aA þ aB þ t2
p

and integrating, it can be shown that

hZAj
q2

qR2

1

rA1

� �
0

jZBi

¼ 2pNANB

1þ �1ð ÞnAþnB

2

� �
1þ �1ð ÞlAþlB

2

 !
nA þ nBð Þ! lA þ lBð Þ!

2nAþnBþlAþlB nAþnB

2

� �
! lAþlB

2

� �
!



XmA

mA¼0

XmA

mB¼0

CmA
mA

CmA
mA

e
� aAaB

aAþaB
R2

amA�mA

B �1ð ÞmB�mB RmAþmB�mA�mB
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 1

aA þ aB

� � nAþnBþlAþlBþ2mAþ2mB�mA�mBð Þ=2�
1þ �1ð ÞmAþmB

2

� �
mA þ mBð Þ!

2mAþmB
mAþmB

2

� �
!





mA þ mB þ 1

2

ð1

0

dx x2
� �2

1� x2
� � nAþnBþlAþlBþ2mA�mAþmBð Þ=2�1


 aA þ aBx
2

� �mB�mB e�a
2
BR2x2=ðaAþaBÞ

þ a2
BR2

aA þ aB

ð1

0

dx x2
� �2

1� x2
� � nAþnBþlAþlBþ2mA�mAþmBð Þ=2


 aA þ aBx
2

� �mB�mB e�a
2
BR2x2=ðaAþaBÞ �

ð1

0

dx x2 1� x2
� � nAþnBþlAþlBþ2mA�mAþmBð Þ=2�1


 aA þ aBx
2

� �mB�mB e�a
2
BR2x2=ðaAþaBÞ

�
þ 1þ �1ð ÞmAþmB

2

� �
mA þ mB þ 1ð Þ!

2mAþmBþ1 mAþmBþ1
2

� �
!


 2aBRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aA þ aB

p
ð1

0

dx x2
� �2

1� x2
� � nAþnBþlAþlBþ2mA�mAþmB�1ð Þ=2


 aA þ aBx
2

� �mB�mB e�a
2
BR2x2=ðaAþaBÞ

�
ð161Þ

These integrals over x are discussed in the appendix. Inserting the formulas for

these integrals obtained from Eq. (A.18) into Eq. (161), we will obtain an

expression for computation.

V. HYDROGEN MOLECULE: MINIMUM BASIS
SET CALCULATION

To calculate the matrix elements for H2 in the minimal basis set, we approximate

the Slater 1s orbital with a Gaussian function. That is, we replace the 1s radial

wave function

fS rð Þ ¼ z3

p

� �1=2

e�zr ð162Þ

with a Gaussian function jgi defined earlier.

It can be shown that

SAB ¼ hgA 1ð ÞjgB 1ð Þi ¼ 2
ffiffiffiffiffiffiffiffiffiffi
aAaB
p

aA þ aB

� �3=2

e�aAaBR2=ðaAþaBÞ ð163Þ

hgA 1ð ÞgA 2ð Þj 1

r12

jgA 1ð ÞgA 2ð Þi ¼ 2ffiffiffi
p
p ffiffiffiffiffi

aA

p ð164Þ
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hgB 1ð ÞgB 2ð Þj 1

r12

jgB 1ð ÞgB 2ð Þi ¼ 2ffiffiffi
p
p ffiffiffiffiffi

aB

p ð165Þ

hgA 1ð ÞgA 2ð Þj 1

r12

jgB 1ð ÞgB 2ð Þi ¼ hgB 1ð ÞgB 2ð Þj 1

r12

jgA 1ð ÞgA 2ð Þi

¼ 2ffiffiffi
p
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aA þ aB

2

r
4aAaB

aA þ aBð Þ2

" #3=2

e�ða
2
A
þa2

BÞR2=ðaAþaBÞR2 ð166Þ

hgA 1ð ÞgB 2ð Þj 1

r12

jgA 1ð ÞgB 2ð Þi ¼ hgB 1ð ÞgA 2ð Þj 1

r12

jgB 1ð ÞgA 2ð Þi

¼ 1

R
erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aAaB

aA þ aB

r
R

� �
ð167Þ

hgA 1ð ÞgB 2ð Þj 1

r12
jgB 1ð ÞgA 2ð Þi ¼ hgB 1ð ÞgA 2ð Þj 1

r12
jgA 1ð ÞgB 2ð Þi

¼ 2ffiffiffi
p
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aA þ aB

2

r
4aAaB

aA þ aBð Þ2

" #3=2

e�aAaBR2=ðaAþaBÞ ð168Þ

and

hgA 1ð Þj 1

rB1

jgA 1ð Þi ¼ 1

R
erf

ffiffiffiffiffiffiffiffi
2aA

p
R

� �
ð169Þ

hgB 1ð Þj 1

rA1

jgB 1ð Þi ¼ 1

R
erf

ffiffiffiffiffiffiffiffi
2aB

p
R

� �
ð170Þ

hgA 1ð Þj 1

rA1

jgB 1ð Þi ¼ 4aAaBð Þ3=4

aB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aA þ aB

p e�aAaBR2=ðaAþaBÞ 1

R
erf

aBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aA þ aB

p R

� �
ð171Þ

hgA 1ð Þj 1

rB1

jgB 1ð Þi ¼ 4aAaBð Þ3=4

aA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aA þ aB

p e�aAaBR2=ðaAþaBÞ 1

R
erf

aAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aA þ aB

p R

� �
ð172Þ

Now we can calculate the ground-state energy of H2. Here, we only use one

basis function, the 1s atomic orbital of hydrogen. By symmetry consideration,

we know that the wave function of the H2 ground state is

j�gi ¼ ks
þ
s
� ji ð173Þ

where

jsi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ SABð Þ

p jw1s;Ai þ jw1s;Bi
� �

ð174Þ
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and

jw1s;Ai ¼

ffiffiffiffiffi
z3

p

s
e�z r�RAj j ð175Þ

Here, we shall replace w1s;A with a single Gaussian wave function jgA ið Þi as

defined earlier. That is, we have used the approximation

js ið Þi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ SABð Þ

p jgA ið Þi þ jgB ið Þið Þ ð176Þ

For H2, let us write down the zeroth-order electronic Hamiltonian (in atomic

unit):

Ĥ
0ð Þ

0 ¼ �r
2
1

2
� 1

rA1
� 1

rB1

� �
þ �r

2
2

2
� 1

rA2
� 1

rB2

� �
þ 1

r12
þ 1

R
ð177Þ

Let

ĥ0 �
1

R
; ĥ2 �

1

r12

ĥ1 � ĥ1 1ð Þ þ ĥ1 2ð Þ ¼ �r
2
1

2
� 1

rA1

� 1

rB1

� �
þ �r

2
2

2
� 1

rA2

� 1

rB2

� �

we have

h�gjĤ 0ð Þ
0 j�gi

¼ 1

2
hsþ 1ð Þs� 2ð Þ � s

�
1ð Þsþ 2ð ÞjĤ 0ð Þ

0 js
þ

1ð Þs� 2ð Þ � s
�

1ð Þsþ 2ð Þi

¼ 1

2
hsþ 1ð Þs� 2ð ÞjĤ 0ð Þ

0 js
þ

1ð Þs� 2ð Þi
h

þ hs� 1ð Þsþ 2ð ÞjĤ 0ð Þ
0 js
�

1ð Þsþ 2ð Þi

� hsþ 1ð Þs� 2ð ÞjĤ 0ð Þ
0 js
�

1ð Þsþ 2ð Þi � hs� 1ð Þsþ 2ð ÞjĤ 0ð Þ
0 js

þ
1ð Þs� 2ð Þi

i
ð178Þ

The last two terms in (178) with negative signs vanish after integrating out the

spin part, and, consequently,

h�gjĤ 0ð Þ
0 j�gi ¼ hs 1ð Þs 2ð Þj ĥ0 þ ĥ1 1ð Þ þ ĥ1 2ð Þ þ ĥ2

� �
js 1ð Þs 2ð Þi

¼ ĥ0 þ 2hs 1ð Þjh1 1ð Þjs 1ð Þi þ hs 1ð Þs 2ð Þjĥ2js 1ð Þs 2ð Þi ð179Þ
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Next, we expand them into the atomic orbitals

hs 1ð Þjĥ1 1ð Þjs 1ð Þi

¼ 1

2 1þ SABð Þ hgA 1ð Þ þ gB 1ð Þjĥ1 1ð ÞjgA 1ð Þ þ gB 1ð Þi

¼ 1

2 1þ SABð Þ hgAjĥ1jgAi þ hgBjĥ1jgBi þ 2hgAjĥ1jgBi
� �

ð180Þ

where

hgAjĥ1jgAi ¼ Eg Hð Þ � hgAj
1

rB1

jgAi ð181Þ

hgBjĥ1jgBi ¼ Eg Hð Þ � hgBj
1

rA1

jgBi ð182Þ

hgAjĥ1jgBi ¼ Eg Hð ÞSAB � hgAj
1

rA1

jgBi ð183Þ

Therefore,

hs 1ð Þjĥ1 1ð Þjs 1ð Þi

¼ Eg Hð Þ � 1

2 1þ SABð Þ hgAj
1

rB1

jgAi þ hgBj
1

rA1

jgBi þ 2hgAj
1

rA1

jgBi

 �

The quantity hs 1ð Þs 2ð Þj1=r12js 1ð Þs 2ð Þi can also be expanded but we do

not show the final result here. In Figure 4, we show the calculated result of

the quantity h�gjĤ 0ð Þ
0 j�gi � 2Eg Hð Þ. We have simply taken z ¼ 1. The corres-

ponding equilibrium position is marked in the figures, which is 0:9112 Å. This

value is not realistic, however, the magnitude and the feature of the PES are

reasonable. We believe that the more realistic value can be obtained by using

larger basis set.

To obtain the force constant for constructing the equation of motion of the

nuclear motion in the second–order perturbation, we need to know about the

excited states, too. With the minimal basis set, the only excited-state spatial

orbital for one electron is

js�i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� SABð Þ

p jw1s;Ai � jw1s;Bi
� �

ð184Þ
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With symmetry considerations, we can write down all of the possible spin

orbitals:

j�1i ¼ ks
þ
s
þ �ji ð185Þ

j�2i ¼ ks
�
s
� �ji ð186Þ

j�3i ¼
1ffiffiffi
2
p ksþ s� �ji þ ksþ � s�ji
� �

ð187Þ

j�4i ¼
1ffiffiffi
2
p ksþ s� �ji � ksþ � s�ji
� �

ð188Þ

j�5i ¼ ks
þ � s
� �ji ð189Þ

Nonvanishing matrix element only exists between j�3i and the ground state for

any one-electron operator Ô1 that does not involve spin. Obviously, h�1jÔ1j�gi
and h�2jÔ1j�gi are zero after integrating over the spin part. It is then clear that all

of the triplet states will result in vanishing matrix elements. Therefore h�4jÔ1j�gi
is also zero. For the doubly excited singlet state, however, we have

h�5jÔ1j�gi ¼ 0 because both spatial orbitals are different in j�gi and j�5i.
The only excited state that we need to calculate, therefore, is the singly excited

singlet state j�ei ¼ j�3i. Although these can be easily demonstrated, we shall

neglect the algebra here.

Figure 4. The ground-state potential energy surface with z ¼ 1.
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Consequently, the term U 2ð Þ
n is reduced to

U 2ð Þ
g ¼ h�gjĤ 2ð Þ

0 j�gi þ
jh�ejĤ 1ð Þ

0 j�gij2

U
0ð Þ

g � U
0ð Þ

e

ð190Þ

where we have changed the subscripts to g and e for convenience. We have to

calculate U 0ð Þ
e , h�gjĤ 2ð Þ

0 j�gi, and h�ejĤ 1ð Þ
0 j�gi to obtain U 2ð Þ

g . The zeroth-order

excited state energy U 0ð Þ
e is

U 0ð Þ
e ¼ h�ejĤ 0ð Þ

0 j�ei

¼ 1

2
hðjsþ s� �j þ jsþ � s� jÞjĤ 0ð Þ

0 jðjs
þ
s
� �j þ jsþ � s�jÞi

¼ 1

2
ðhjsþ s� �jjĤ 0ð Þ

0 jjs
þ
s
� �ji þ hjsþ s� �jjĤ 0ð Þ

0 jjs
þ � s
� ji

þ hjsþ � s� jjĤ 0ð Þ
0 jjs

þ
s
� �ji þ hjsþ � s� jjĤ 0ð Þ

0 jjs
þ � s
� jiÞ ð191Þ

Expanding the Slater determinants and integrating out the spin part and

collecting terms that are the same under exchange of electron indices, we have

U 0ð Þ
e ¼ hss�jĤ

0ð Þ
0 jss�i þ hss�jĤ

0ð Þ
0 js�si

¼ 1

R
þ hsjĥ1jsi þ hs�jĥ1js�i þ hss�jĥ2jss�i þ hss�jĥ2js�si ð192Þ

By expanding the spatial orbitals into atomic orbitals and manipulating them

properly, we have

hsjĥ1jsi ¼ Eg Hð Þ �
hwAj 1

rB1
jwAi þ hwBj 1

rA1
jwBi þ 2hwAj 1

rA1
jwBi

2 1þ SABð Þ ð193Þ

hs�jĥ1js�i ¼ Eg Hð Þ �
hwAj 1

rB1
jwAi þ hwBj 1

rA1
jwBi � 2hwAj 1

rA1
jwBi

2 1� SABð Þ ð194Þ

hss�jĥ2jss�i þ hss�jĥ2js�si

¼ 1

2 1� S2
AB

� �
 
hwAwAj

1

r12

jwAwAi�hwAwAj
1

r12

jwAwBi�hwAwBj
1

r12

jwAwAi

þ hwAwBj
1

r12

jwAwBi þ hwBwAj
1

r12

jwAwAi � hwBwAj
1

r12

jwAwBi

� hwBwBj
1

r12

jwAwAi þ hwBwBj
1

r12

jwAwBi
!

ð195Þ
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Putting them all together, and letting z ¼ 1, we can obtain the excited-state

potential energy surface (see Fig. 5). We wish to emphasize again that we

calculate the energy for a range of the nuclear coordinate because we need to find

the minima. In crude BOA, further properties of the molecules, such as

vibrational mode frequency (determined by the force constant), anharmonicity,

and so on, can be calculated in higher order perturbation, instead of being

extracted from the PES curve.

In Figure 5, it can be seen that there is a minimum in the excited state as

well. In more realistic calculations, such minimum was not observed. Note that

the crude BOA is based on expanding the total wave function in terms of the

basis functions obtained at the equilibrium position. In the expression, it seems

that we have to find the equilibrium position for each electronic level. This is

not practical because if we choose different center of expansion for different

electronic levels, we will have to calculate a lot of matrix elements with

different centers. Further, this might be impossible because there will be excited

states that do not have an equilibrium geometry. Therefore, we chose to expand

everything in terms of the basis function at the equilibrium position of the

ground electronic state. The zeroth-order electronic energy U 0ð Þ
e is also

calculated under the equilibrium geometry of the ground state. In other words,

the vertical energy difference is used in Eq. (190).

Figure 5. The vertical axis is the potential energy minus 2Eg (H) in hartree, and the x axis is R

in a0. Both Uð0Þg and Uð0e were plotted for comparison.
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It can be shown that

h�ej
qV

qR

� �
0

j�gi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1� S2
AB

� �q
"
hwAj

q
qR

1

rB1

� �
0

jwAi � hwBj
q
qR

1

rA1

� �
0

jwBi

þ hwAj
q
qR

1

rA1

� �
0

jwAi � hwBj
q
qR

1

rB1

� �
0

jwBi
#

ð196Þ

but both hwAj q
qR

1
rA1

� �
0
jwAi and hwBj q

qR
1

rB1

� �
0
jwBi are zero, and

h�gj
q2V

qR2

� �
0

j�gi ¼
2

R3
� 1

1þ SAB

"
hwAj

q2

qR2

1

rA1

� �
0

jwAi

þ 2hwAj
q2

qR2

1

rA1

� �
0

jwBi þ hwBj
q2

qR2

1

rA1

� �
0

jwBi

þ hwAj
q2

qR2

1

rB1

� �
0

jwAi þ 2hwAj
q2

qR2

1

rB1

� �
0

jwBi

þ hwBj
q2

qR2

1

rB1

� �
0

jwBi
#

ð197Þ

By replacing all of the atomic orbitals with Gaussian functions, we calculate

the matrix elements

hgAj
q
qR

1

rB1

� �
0

jgAi ¼
1

R2

1

2
erf

ffiffiffiffiffiffiffiffi
2aA

p
R

� �
�

ffiffiffiffiffiffiffiffi
2aA

p
Rffiffiffi

p
p e�2aAR2


 �
ð198Þ

hgBj
q
qR

1

rA1

� �
0

jgBi ¼
1

R2

1

2
erf

ffiffiffiffiffiffiffiffi
2aB

p
R

� �
�

ffiffiffiffiffiffiffiffi
2aB

p
Rffiffiffi

p
p e�2aBR2


 �
ð199Þ

hgAj
q2

qR2

1

rA1

� �
0

jgAi ¼ �
2aAð Þ3=2

3
ffiffiffi
p
p ð200Þ

hgBj
q2

qR2

1

rB1

� �
0

jgBi ¼ �
2aBð Þ3=2

3
ffiffiffi
p
p ð201Þ

hgAj
q2

qR2

1

rA1

� �
0

jgBi ¼
1ffiffiffi
p
p 4aAaBð Þ3=4 e�aAaBR2=ðaAþaBÞ

a2
B

aAþaB
R2

� �3=2

" ffiffiffi
p
p

2
erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

B

aA þ aB

s
R

0
@

1
A

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

B

aA þ aB

s
Re
�

a2
B

aAþaB
R2

� a2
B

aA þ aB

R2

� �3=2

e�a
2
BR2=aAþaB

#

ð202Þ
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hgAj
q2

qR2

1

rB1

� �
0

jgAi ¼
1ffiffiffi
p
p

R3

" ffiffiffi
p
p

2
erf

ffiffiffiffiffiffiffiffi
2aA

p
R

� �

�
ffiffiffiffiffiffiffiffi
2aA

p
Re�2aAR2 � ð2aAR2Þ3=2

e�2aAR2

#
ð203Þ

We found that

U 2ð Þ
g ¼ 0:179874 ð204Þ

in the atomic unit. This is the force constant of the oscillator. To demonstrate that

this number agrees reasonably with that extracted from the potential energy

curve obtained in other quantum chemical calculation, we wish to show that the

parabolic curve defined by

U ¼ U 2ð Þ
g R� R0ð Þ2þU0 ð205Þ

matches the shape of the potential energy curves obtained in other calculations

near the bottom of the potential. For this purpose, we chose to compare our result

to that from the simple MO calculation done by Slater [14]. This comparison is

shown in Figure 6. The equilibrium position is shifted to coincide with that

calculated by Slater. Our force constant value appears to be reasonable.

Figure 6. Matching the calculated harmonic potential to the potential curve obtained by Slater

with simple MO theory.
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VI. CONCLUSIONS

In the crude BO approximation, the problem of PES crossing can be avoided.

However, the price is to pay. First, there will be degeneracy instead of crossing

that we would encounter; second, all of the molecular properties have to be

obtained by carrying out the perturbation calculation, which involves the com-

putation of a huge number of matrix elements in realistic cases; third, since the

expansion is around one nuclear configuration, the speed of convergence of

the perturbation series might be a problem when the nuclear motion is significant.

Nevertheless, the examination of the applicability of the crude BO approxi-

mation can start now because we have worked out basic methods to compute the

matrix elements. With the advances in the capacity of computers, the test of

these methods can be done in lower and lower cost. In this work, we have

obtained the formulas and shown their applications for the simple cases, but

workers interested in using these matrix elements in their work would find that

it is not difficult to extend our results to higher order derivatives of Coulomb

interaction, or the cases of more-than-two-atom molecules.

APPENDIX A: USEFUL INTEGRALS

First, it will be very useful to remember that

I0 �
ð1
�1

e�ax2

dx

I2
0 ¼

ð1
r¼0

ð2p

y¼0

e�ar2

r dr dy ¼ 2p
ð1

0

e�ar2

r dr ¼ p
ð1

0

e�ar2

dr2

¼ � p
a

ð0

1

de�ar2 ¼ p
a

I0 ¼
ffiffiffi
p
a

r
ðA:1Þ

With a positive integer n, we find

I2n�1 �
ð1
�1

dx x2n�1e�ax2 ¼ 0 ðA:2Þ

I2n �
ð1
�1

dx x2ne�ax2 ¼ 2

ð1
0

dx x2ne�ax2 ¼
ð1

0

x2n�1e�ax2

dx2

¼ � 1

a

ð1
x¼0

x2n�1de�ax2 ¼ � 1

a
x2n�1e�ax2




1
x¼0
� 2n� 1ð Þ

ð1
0

dx x2 n�1ð Þe�ax2


 �

¼ 2n� 1

a

ð1
0

dx x2 n�1ð Þe�ax2 ¼ 2n� 1

2a
I2 n�1ð Þ ðA:3Þ

the crude born–oppenheimer adiabatic approximation 551



By doing this iteratively, we can show that

I2n ¼
2n� 1ð Þ!!

2nan
I0 ¼

2n� 1ð Þ!!
2nan

ffiffiffi
p
a

r
ðA:4Þ

Note that

2n� 1ð Þ!! ¼ 2nð Þ!
2nð Þ!! ¼

2nð Þ!
2nn!

ðA:5Þ

we have

I2n ¼
2nð Þ!

22nn!an

ffiffiffi
p
a

r
ðA:6Þ

The following integral is often encountered

I2nþ1 �
ð1
�1

dt 1þ t2
� �� nþ3=2ð Þ ðA:7Þ

Letting t ¼ tan y, and noticing that dt ¼ dy=cos 2y, and 1þ t2ð Þ� nþ3=2ð Þ¼
cos yð Þ2nþ3

, we obtain

I2nþ1 ¼
ðp=2

y¼�p=2

cos yð Þ2nþ1
dy

¼
ðp=2

y¼�p=2

cos yð Þ2nd siny

¼ siny cos yð Þ2n


p=2

y¼�p=2
þ2n

ðp=2

y¼�p=2

cos yð Þ2n�1
sin2y dy

¼ �2n
ðp=2

y¼�p=2

cos yð Þ2nþ1
dyþ 2n

ðp=2

y¼�p=2

cos yð Þ2n�1
dy ðA:8Þ

¼ �2nI2nþ1 þ 2nI2n�1 ðA:9Þ

Therefore,

I2nþ1 ¼
2n

2nþ 1
I2n�1 ðA:10Þ
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Consequently,

I2nþ1 ¼
2n

2nþ 1
I2n�1

I2n�1 ¼
2n� 2

2n� 1
I2n�3

..

.

I3 ¼
2

3
I1

and

I1 ¼
ðp=2

y¼�p=2

cos y dy

¼
ðp=2

y¼�p=2

dsiny

¼ 2 ðA:11Þ

Thus

I2nþ1 ¼
2nð Þ!!

2nþ 1ð Þ!! I1

¼ 2
2nð Þ!! 2nð Þ!!
2nþ 1ð Þ!

¼ 2
4n n!ð Þ2

2nþ 1ð Þ! ðA:12Þ

Next, we shall consider the integral basically corresponding to the Rys’

polynomial problem [15,16]. Letting

Jn að Þ ¼
ð1

0

dx x2ne�ax2 ðA:13Þ

we find that

Jn ¼
1

2

ð1

0

x2n�1e�ax2

dx2 ¼ � 1

2a

ð1

x¼0

x2n�1de�ax2

¼ � 1

2a
x2n�1e�ax2




1
x¼0
� 2n� 1ð Þ

ð1

0

x2 n�1ð Þe�ax2

dx


 �

¼ �e�a

2a
þ 2n� 1

2a

ð1

0

x2 n�1ð Þe�ax2

dx

¼ �e�a

2a
þ 2n� 1

2a
Jn�1 ðA:14Þ
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We can write down the iterative formula

Jn ¼
�e�a

2a
þ 2n� 1ð Þ!!

2a 2n� 3ð Þ!! Jn�1

2n� 1ð Þ!!
2a 2n� 3ð Þ!! Jn�1 ¼

2n� 1ð Þ!!
2a 2n� 3ð Þ!!

�e�a

2a
þ 2n� 1ð Þ!!

2að Þ2 2n� 5ð Þ!!
Jn�2

2n� 1ð Þ!!
2að Þ2 2n� 5ð Þ!!

Jn�2 ¼
2n� 1ð Þ!!

2að Þ2 2n� 5ð Þ!!
�e�a

2a
þ 2n� 1ð Þ!!

2að Þ3 2n� 7ð Þ!!
Jn�3

..

.

2n� 1ð Þ!!
2að Þn�1

1ð Þ!!
J1 ¼

2n� 1ð Þ!!
2að Þn�1

1ð Þ!!
�e�a

2a
þ 2n� 1ð Þ!!

2að Þn J0

Summing up all these formula and noticing that

J0 ¼
ð1

0

e�ax2

dx ¼
ffiffiffi
p
p

2
ffiffiffi
a
p erf

ffiffiffi
a
p� �

ðA:15Þ

we found

Jn að Þ ¼ 2n� 1ð Þ!!
2að Þn

ffiffiffi
p
p

2
ffiffiffi
a
p erf

ffiffiffi
a
p� �
� 2n� 1ð Þ!!e�a

2að Þn
1

1!!
þ 2a

3!!
þ 	 	 	 þ 2að Þn�1

2n� 1ð Þ!!

" #

¼ 2n� 1ð Þ!!
2að Þn

ffiffiffi
p
p

2
ffiffiffi
a
p erf

ffiffiffi
a
p� �
� 2n� 1ð Þ!!e�a

2að Þn
Xn�1

k¼0

2að Þk

2k þ 1ð Þ!!

¼ 2nð Þ!
n! 4að Þn

ffiffiffi
p
p

2
ffiffiffi
a
p erf

ffiffiffi
a
p� �
� 2nð Þ!e�a

n! 4að Þn
Xn�1

k¼0

k! 4að Þk

2k þ 1ð Þ!

¼ 2nð Þ!
n! 4að Þn

1

2

ffiffiffi
p
a

r
erf

ffiffiffi
a
p� �
� e�a

Xn�1

k¼0

k!

2k þ 1ð Þ! 4að Þk
" #

ðA:16Þ

Finally, we discuss the integral of the form

Ix n1; n2; n3; aA; aB;Rð Þ

�
ð1

0

dx x2n1 1� x2
� �n2 aA þ aBx

2
� �n3

e
�

a2
B

R2

aAþaB ðA:17Þ
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which is a more general form of Eq. (131). The modification is simple:

Ix n1; n2; n3; aA; aB;Rð Þ

¼
Xn2

n2¼0

Xn3

n3¼0

Cn2
n2

Cn3
n3
�1ð Þn2an3�n3

A an3

B

ð1

0

dx x2 n1þn2þn3ð Þe�a
2
2
R2x2=ða1þa2Þ

¼
Xn2

n2¼0

Xn3

n3¼0

Cn2
n2

Cn3
n3
�1ð Þn2an3�n3

A an3

B Jn1þn2þn3

a2
B

aA þ aB

R2

� �
ðA:18Þ
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I. INTRODUCTION

Conical intersections are known to play a key role in nonrelativistic, spin-

conserving electronically nonadiabatic processes [1]. If we include the spin–

orbit interaction we introduce new nonadiabatic pathways and unexpected

complications. By coupling states of different spin-multiplicity the spin–orbit

interaction gives rise to spin-nonconserving transitions while making conical

intersections out of intersections that otherwise would not be. However, the spin–

orbit interaction produces a more subtle but no less significant effect when the

molecule in question has an odd number of electrons. Let Z be the dimension of

the branching space, the space in which the conical topography is evinced. More

precisely, the branching space is the smallest space in whose orthogonal

complement the degeneracy is lifted only at quadratic or higher order in dis-

placements, if it is lifted at all. The orthogonal complement of the branching

space is referred to as the seam. The dimension of the seam is W ¼ N int � Z,

where N int is the number of internal coordinates. Here Z ¼ 2 in the nonrelativistic

case and when the spin–orbit interaction is included, provided the molecule has

an even number of electrons. However, for a molecule with an odd number of

electrons, an odd electron molecule, the dimension of the branching space is 5, in

general, or 3 when the system is restricted to Cs symmetry [2].

To study the ramifications of this change, the locus of the seam should be

known. However, locating points on this seam of conical intersection is a

challenging undertaking. To better understand the difficulty of the task, consider

the history of the accidental same-symmetry intersection. For the nonrelativistic

Coulomb Hamiltonian, conical intersections can be classified using the point

group symmetry of the intersecting states. Intersections are symmetry-required,

accidental symmetry-allowed, or accidental same-symmetry, according to

whether the electronic states in question carry a multidimensional irreducible

representation, distinct one-dimensional irreducible representations, or the

same irreducible representation of the spatial point group. While the existence

of same-symmetry conical intersections was firmly established over 70 years ago

[3], until approximately a decade ago [4,5], virtually all conical intersections

based on ab initio wave functions were determined with the help of symmetry.

This is a consequence, in part, of the fact that to locate a single point of conical

intersection for a same symmetry intersection a two-dimensional branching

plane must be searched, whereas for an accidental symmetry-allowed inter-

section only an one-dimension search is required. Indeed, it was only in the last

decade, after the introduction of efficient algorithms [6,7] for locating same-

symmetry intersections, that their true significance began to emerge. The

situation for odd electron molecules when the spin–orbit interaction is included

in the Hamiltonian is similar, but even more extreme, since a five- (or three-)

dimensional branching space must be searched.

558 spiridoula matsika and david r. yarkony



Contrary to this gloomy assessment, it is rapidly becoming possible to

describe non-adiabatic processes driven by conical intersections, for which the

spin–orbit interaction cannot be neglected, on the same footing that has been so

useful in the nonrelativistic case. An effective algorithm for locating points of

conical intersection for odd electron molecules has been developed [8] and an

analytic representation of the energies and derivative couplings in the vicinity of

these points of conical intersection has been determined [9,10] based on

degenerate perturbation theory [11,12]. These advances, in addition to providing

conceptual insights, will lead to a more rigorous approach to nonadiabatic

dynamics whose computational utility increases with the size of the spin–orbit

interaction.

In this chapter, recent advances in the theory of conical intersections for

molecules with an odd number of electrons are reviewed. Section II presents the

mathematical basis for these developments, which exploits a degenerate per-

turbation theory previously used to describe conical intersections in non-

relativistic systems [11,12] and Mead’s analysis of the noncrossing rule in

molecules with an odd number of electrons [2]. Section III presents numerical

illustrations of the ideas developed in Section II. Section IV summarizes and

discusses directions for future work.

II. THEORY

A. The Electronic Hamiltonian

In this work, relativistic effects are included in the no-pair or large component

only approximation [13]. The total electronic Hamiltonian is Heðr;RÞ ¼
H0ðr;RÞ þ Hsoðr;RÞ, where H0ðr;RÞ is the nonrelativistic Coulomb Hamilto-

nian and Hsoðr;RÞ is a spin–orbit Hamiltonian. The relativistic (nonrelativistic)

eigenstates, �e
i ð�0

I Þ, are eigenfunctions of Heðr;RÞðH0ðr;RÞÞ. Lower (upper)

case letters will be used to denote eigenfunctions He ðH0Þ. A point of conical

intersection of states i; j of He½I; J of H0� will be denoted Rx; ij½Rx; IJ �.

B. Time-Reversal Symmetry

Table I summarizes the differences in the dimension of the branching space.

The origin of these differences is the behavior of the wave functions under

TABLE I

Z the Dimension of Branching Space

No. of e� H0 He

Even 2 2

Odd 2 5a

aZ ¼ 3 when Cs symmetry is present.
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time-reversal symmetry [14,15]. The time-reversal operator, T is an antiunitary

operator, that is, hfjci� ¼ hTfjTci. In addition T2 ¼ þ1ð�1Þ if the number of

electrons is even (odd). For a molecule with an odd number of electrons

hfjTfi� ¼ hTfjT2fi ¼ �hTfjfi ¼ �hfjTfi� so that hfjTfi ¼ 0

ð1aÞ

that is, f and Tf are orthogonal and degenerate, since T commutes with He. This

degeneracy owing to time-reversal symmetry is referred to as Kramers’ de-

generacy [16]. For a molecule with an even number of electrons, f and Tf are

linearly dependent. With the choice f ¼ Tf

hfjHeci� ¼ hTfjTHeci ¼ hTfjHeTci ¼ hfjHeci ð1bÞ

so that hfjHeci is real valued. For an odd electron system

hfjHeTci� ¼ hTfjTHeTci ¼ hTfjHeT2ci ¼ �hcjHeTfi� ð1cÞ

so that, for example, for f ¼ c; hfjHeTfi ¼ 0.

A set of functions will be referred to as time-reversal adapted, provided that

for each f in the set Tf is also in the set.

We are now in a position to explain the results of Table I. As a consequence

of the degeneracy of f and Tf, at a conical intersection there are four degen-

erate functions �e
i ; �

e
j and T�e

i 
 �e
Ti; T�e

j 
 �e
Tj. By using Eq. (1c), an

otherwise arbitrary Hermitian matrix in this four function time-reversal adapted

basis has the form

He ¼
ðHe

ii þ He
jjÞ

2
Iþ

��He
ji He

ij 0 He
iTj

He�
ij �He

ji �He
iTj 0

0 �He�
iTj ��He

ji He�
ij

He�
iTj 0 He

ij �He
ji

0
BBB@

1
CCCA ð2aÞ

The eigenvalues of this matrix are [17]

e�ðRÞ ¼
He

iiðRÞ þ He
jjðRÞ

2
� ½�He

jiðRÞ
2 þ jHe

ijðRÞj
2 þ jHe

iTjðRÞj
2�1=2 ð2bÞ

each of which is twofold degenerate. Since �He
ij is real valued while He

ij and He
iTj

are complex valued, the five conditions for degeneracy at Rx; i j are

�He
jiðRx; ijÞ ¼ 0 He

ijðRx; ijÞ ¼ 0 He
iTjðRx; ijÞ ¼ 0 ð3Þ
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When Cs symmetry is present, �e
k and T�e

k k ¼ i; j can be chosen to transform

according to the e0 and e00 irreducible representations of the Cs double group

(see Table II) so that He
iTjðRÞ ¼ 0 by symmetry. In this case, there are only

three conditions for a degeneracy �He
jiðRÞ ¼ 0 and He

ijðRÞ ¼ 0; He is block

diagonal

He ¼
ðHe

ii þ He
jjÞ

2
Iþ

��He
ji He

ij 0 0

He�
ij �He

ji 0 0

��He
ji He�

ij

He
ij �He

ji

0
BBB@

1
CCCA ð2cÞ

and clearly evinces Kramers’ degeneracy. Finally, for the even electron case the

T�e
i are linearly dependent and only one of the diagonal blocks survives,

He ¼
ðHe

ii þ He
jjÞ

2
Iþ

��He
ji He

ij

He
ij �He

ji

� �
ð2dÞ

and He
ij is real valued, so only two conditions need be satisfied.

This analysis is heuristic in the sense that the Hilbert spaces in question are

in general of large, if not infinite, dimension while we have focused on spaces of

dimension four or two. A form of degenerate perturbation theory [3] can be used

to demonstrate that the preceding analysis is essentially correct and, to provide

the means for locating and characterizing conical intersections.

C. Perturbation Theory

�e
i is expanded in a basis of time-reversal adapted configuration state functions

[8] (TRA–CSFs, we)

�e
i ðr;RÞ ¼

XNCSF

a¼1

di
aðRÞce

aðr;RÞ ð4aÞ

TABLE II

Cs Double Group

E s R s3

a0 1 1 1 1

a00 1 �1 1 �1

e0 1 i �1 �i

e00 1 �i �1 i
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The di 
 dr; i þ idi; i are the solution of the electronic Schrödinger equation in the

TRA–CSF basis

½He; rðRÞ þ iHe; iðRÞ � Ee
kðRÞ�dkðRÞ ¼ 0 ð4bÞ

where He ¼ He; r þ iHe; i. Near Rx; ij the eigenvalue problem in Eq. (4) can be

simplified with the use of a crude adiabatic basis

�c
kðr;RÞ ¼

XNCSF

a¼1

dk
aðRx; ijÞce

aðr;RÞ ð5Þ

Expanding HeðRÞ to second order gives

HeðRÞ ¼ HeðRx; ijÞ þ rHeðRx; ijÞ � dRþ 1=2dR � rrHeðRx; ijÞ � dR ð6Þ

where dR ¼ R� Rx; ij. Reexpressing this result in the crude adiabatic basis gives

~HeðRþ dRÞ 
 dyðRx; ijÞHeðRÞdðRx; ijÞ ð7aÞ
� dðRx; ijÞy½HeðRx; ijÞ þ rHeðRx; ijÞ � dR

þ 1=2dR � rrHeðRx; ijÞ � dR�dðRx; ijÞ ð7bÞ


 EeðRx; ijÞ þ ~H
½1� � dRþ 1=2dR � ~H½2� � dR ð7cÞ

where y denotes the complex conjugate transpose,

EeðRx; ijÞkl ¼ dklE
e
l ðRx; ijÞ ð7dÞ

a single (double) bar under a quantity denotes a vector (matrix) of matrices, so

that

~H
½1� ¼ ð~Hð1Þ;1; ~Hð1Þ;2; . . . ; ~Hð1Þ;N intÞ ð8aÞ

~H
½2� ¼ ð~Hð2Þ;11; ~Hð2Þ;21; ~Hð2Þ;31; . . . ; ~Hð2Þ;N

intN intÞ ð8bÞ

with

~Hð1Þ;kmn ðRÞ ¼ dmy ðRx;ijÞ q
qRk

HeðRÞ

 �

dnðRx;ijÞ ð9aÞ

and

~Hð2Þ;kk
0

mn ðRÞ ¼ dmy ðRx;ijÞ q
qRkqRk0

HeðRÞ

 �

dnðRx;ijÞ ð9bÞ
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The �e
k are expanded in the crude adiabatic basis

�e
kðr;RÞ ¼

X
l2Q

xk
l ðRÞ�c

l ðr;RÞ þ
X
l2P

�k
l ðRÞ�c

l ðr;RÞ ð10Þ

where Q is spanned by the degenerate functions at Rx;ij and P is its orthogonal

complement. To describe the vicinity of a conical intersection we require the

first-order contributions in dR to Eq. (4b). To accomplish this, we expand

Ee
i ðRÞ; nðRÞ; NðRÞ in powers of dR, giving

nkðRÞ ¼ nð0Þ;kðRx;ijÞ þ nð1Þ;kðRx;ijÞ � dRþ 1=2dRy � nð2Þ;kðRx;ijÞ � dR ð11aÞ

NkðRÞ ¼ Nð1Þ;kðRx;ijÞ � dRþ 1=2dRy � Nð2Þ;kðRx;ijÞ � dR ð11bÞ

Ee
kðRÞ ¼ Ee

kðRx;ijÞ þ E
e;ð1Þ
k ðRÞ þ E

e;ð2Þ
k ðRÞ ð11cÞ

In Eq. (11b), we observed that since the crude adiabatic basis is used Nð0Þk ¼ 0,

for keQ. Therefore the degeneracy is lifted at first order in the Q-space only,

which is therefore used to identified the branching space. The first-order result is

ð~H½1� � dR� E
e;ð1Þ
i ðRÞÞnð0Þ;iðRx;ijÞ ¼ 0 ð12Þ

Equation (12) and the qualifying equalities, Eqs. (8) and (9) are the lynchpin for

the remainder of this work.

D. Perturbation Theory, Time-Reversal Symmetry,
and Conical Intersections

To procede further, it is essential to distinguish between even and odd electron

systems. While Eq. (12) is formally independent of the dimension of Q, in the

former case there are two independent degenerate functions at Rx;ij; �e
i and �e

j

and ~H
½1�

is symmetric; while in the later case there are four degenerate functions

�e
i ; �

e
j and T�e

i 
 �e
Ti; T�e

j 
 �e
Tj, and ~H

½1�
is Hermitian. Here we restrict our

attention to the later case. The analysis for real-valued case (using H0) can be

found in [12].

For odd electron systems in the absence of spatial symmetry ~H
½1� � dR in

Eq. (12) becomes

~H
½1� � dR ¼ dRy � sijIþ dRy �

�gij hij 0 hiTj

hij� gij �hiTj 0

0 �hiTj� �gij hij�

hiTj� 0 hij gij

0
BBB@

1
CCCA ð13aÞ
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where

2gij ¼ gi � gj; 2sij ¼ gi þ gj ð13bÞ
hijðRÞ 
 diðRx;ijÞyrHeðRÞd jðRx;ijÞ 
 hr;ijðRÞ þ ihi;ijðRÞ ð13cÞ

hiTjðRÞ 
 diðRx;ijÞyrHeðRÞdT jðRx;ijÞ 
 hr;iTjðRÞ þ ihi;iTjðRÞ ð13dÞ

and

giðRÞ 
 diðR0ÞyrHeðRÞdiðR0Þ ð13eÞ

Equation (13) and definitions (8), (9), and (11) enable a description of the energy

near, and the singular part of the derivative coupling at, Rx;ij.

E. Conical Intersections: Location

At the conical intersection the dk; k ¼ i; j; Ti; Tj are defined only up to a unitary

transformation among themselves. As a result, for a particular point R0 in the

region where Eq. (13) is justified, gijðRx;ijÞ; hijðRx;ijÞ, and hiTjðRx;ijÞ can be

chosen such that R0 � Rx;ij is parallel to gijðRx;ijÞ. In this case, expanding Eq. (3)

about R0, with R0 þ dR ¼ Rx;ij

��EijðR0Þ ¼ Rer½ðdiðR0Þ þ djðR0ÞÞyHeðRÞððdiðR0Þ � djðR0ÞÞ� � dR


 rV1ðRÞ � dR ð14aÞ
0 ¼ hijðR0Þ � dR ¼ r½ðdiðR0ÞyHeðRÞdjðR0Þ� � dR


 rðV2 þ iV3Þ � dR ð14bÞ
0 ¼ hiTjðR0Þ � dR ¼ r½ðdiðR0ÞyHeðRÞdTjðR0Þ� � dR


 rðV4 þ iV5Þ � dR ð14cÞ

where

�EijðR0Þ ¼ Re½ðdiðR0Þ þ djðR0ÞÞyHeðR0ÞðdiðR0Þ � djðR0ÞÞ� ¼ V1ðR0Þ
ð14dÞ

Equations (14a)–(14d) form the basis for our algorithm for locating conical

intersections. However, these equations determine only five (or three when Cs

symmetry can be imposed) internal nuclear coordinates. Determination of any

remaining internal degrees of freedom requires additional constraints. We

employ the approach used in our algorithm for determining seams of conical

intersection for the nonrelativistic Hamiltonian [7] where geometrical constraints

K iðRÞ ¼ 0, and/or minimization of the energy of the crossing, provide the
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additional conditions. Geometrical constraints can also be used to map out the

seam of conical intersection in its full dimensionality. This constrained

minimization can be accomplished by minimizing the following Lagrangian [7]:

LijðR; n; kÞ ¼ Ee
i ðRÞ þ

X5

i¼1

ViðRÞxi þ
XNcon

i¼1

KiðRÞli ð15aÞ

where n and k are Lagrange multipliers. Expanding Lij through second order

yields the Newton–Raphson equations [7]:

QijðR; n; kÞ vðRÞ kðRÞ
vðRÞy 0 0

kðRÞy 0 0

2
4

3
5 dR

dn
dk

2
4

3
5 ¼ � giðRÞ þ vynþ kyk

VðRÞ
KðRÞ

2
4

3
5 ð15bÞ

where rVi 
 vi and rKi 
 ki and Qij 
 rrLij. The gradients v are more

costly to evaluate than their nonrelativistic counterparts. For this reason, it is

useful to search along the direction corresponding to dR while �Ee
ij decreases.

This simple extension of an idea from conjugate gradient theory can significantly

reduce the computational effort needed to solve Eq. (15b). The performance of

Eq. (15b) is discussed in Section III.

F. Conical Intersections: Description

In this section, notions used to describe nonrelativistic conical intersections are

extended to the present case. For simplicity, unless otherwise specified we

consider the Z ¼ 3 case. The analogous treatment for Z ¼ 5 will be reported in

[17].

1. Orthogonal Intersection Adapted Coordinates

At a point of conical intersection, Rx;ij, the four degenerate wave functions are

defined up to a rotation U, consistent with time-reversal symmetry. As a

consequence of this arbitrariness the gijðRÞ; hr;ijðRÞ; hi;ijðRÞ; hr;iTjðRÞ; hi;iTjðRÞ
need not be orthogonal. Orthogonality of gijðRÞ; hr;ijðRÞ; hi;ijðRÞ; hr;iTjðRÞ;
hi;iTjðRÞ greatly simplifies the analysis of Eq. (13). In the nonrelativistic, Z ¼ 2,

case, the degenerate �0
K; K ¼ I; J are defined only up to a one parameter

rotation. We used this flexibility to require orthogonality of gIJ and hIJ : Below we

demonstrate how this orthogonality requirement can be extended to the Z ¼ 3

case.

For Z ¼ 3 define the rotated states by

ð~d T~dÞ ¼ d TdÞUð ð16aÞ
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where

dy ¼ ðdiy d jy Þ U ¼ u 0
0 u�

� �
ð16bÞ

and

u ¼
eiðaþgÞ=2 cos b=2 �eið�aþgÞ=2 sin b=2

e�ið�aþgÞ=2 sin b=2 e�iðaþgÞ=2 cos b=2

 !
ð16cÞ

Then, using Eqs. (16), in Eqs. (13b)–(13d) we deduce

~g ji ¼ ð�g ji cos bþ hr; ji sin b cos gþ hi;ij sin b sin gÞ ð17aÞ

and

~h ji ¼ ~hr; ji þ i~hi; ji ð17bÞ
where

~hr; ji ¼ g ji sin b cos aþ hr; jiðcos b cos g cos a� sin g sin aÞ
þ hi;ijðcos b sin g cos aþ cos g sinaÞ ð17cÞ

~hi; ji ¼ g ji sin b sin a� hr; jiðcos b cos g sin a� sin g cos aÞ
� hi;ijðcos b cos g sin a� cos g cosaÞ ð17dÞ

Then the three requirements

n1 ¼ ~g ji � ~hr; ji ¼ 0 ð18aÞ
n2 ¼ ~g ji � ~hi; ji ¼ 0 ð18bÞ
n3 ¼ ~hr; ji � ~hi; ji ¼ 0 ð18cÞ

define a; b; g. For example, Eqs. (17a) and (17c) with a ¼ g ¼ 0 give the

nonrelativistic limit for Eq. (18a)

n1 ¼ 0 ¼ ð�g ji cos bþ hr; ji sin bÞ � ðg ji cos bþ hr; ji sin bÞ ð19aÞ

The solution to Eq. (19a) is

2g ji � hr; ji=ðhr; ji � hr; ji � g ji � g jiÞ ¼ tan 2b ð19bÞ

as obtained previously [18]. Further, choosing b ¼ p=2; g ¼ 0; a ¼ 0 and

b ¼ p=2; g ¼ 0; a ¼ p=2 shows that gij, hr;ij, and hi;ij are interchangeable at a

conical intersection. The solution to the nonlinear Eqs. (18a)–(18c) can be
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obtained numerically using the following Newton–Raphson procedure

niðxn þ dxÞ ¼ 0 ¼ niðxnÞ þ rniðxnÞ � dx i ¼ 1--3 ð20aÞ

so that

xnþ1 ¼ xn � FðxnÞ�1nðxnÞ ð20bÞ

where Fji 
 ðq=qxjÞni is computed by divided difference and x ¼ ða; b; gÞ. The

properties of the solutions of Eq. (20) will be discussed in Section III.

The orthogonal gij, hr;ij, and hi;ij define a set of Cartesian axes ẑ ¼ gij=gij;
x̂ ¼ hr;ij=hr;ij; ŷ ¼ hi;ij=hi;ij; where gij ¼ jjgijjj; hr;ij ¼ jjhr;ijjj, and hi;ij ¼ jjhi;ijjj
that span the branching space. The associated coordinates (x; y; z) are referred

to as orthogonal intersection adapted coordinates.

2. A Transformational Invariant

In the nonrelativistic case, at a given Rx;IJ , the quantity gIJ � hIJ was shown to be

invariant under the transformation in Eq. (16), for a ¼ g ¼ 0. This invariant,

whose value depends on Rx;IJ , was used to systematically locate confluences,

[18–21], intersection points at which two distinct branches of the conical

intersection seam intersect. Here, we show that the scalar triple product,

gij � hr;ij�hi;ij is the invariant for Z ¼ 3. Since the gij; hr;ij, and hi;ij cannot be

assumed orthogonal the scalar triple product has the following form (suppressing

the ij superscripts)

g� hr � hi ¼ ðgxiþ gy jþ gzkÞ � ðhr
xiþ hr

y jþ hr
zkÞ � ðhi

xiþ hi
y jþ hi

zkÞ
¼ ðgxhr

y � gyhr
xÞhi

z þ ðgyhr
z � gzh

r
yÞhi

x þ ðgzh
r
x � gxhr

zÞhi
y ð21Þ

To demonstrate the invariance insert, Eqs. (17a), (17c), and (17d) into Eq. (21)

giving

~I ¼ ~g� ~hr � ~hi

¼ fðhr
xhi

y � hr
yhi

xÞðsin b sin aÞ þ ð�gxhi
y þ gyhi

xÞðcos a sin gþ cos g cos b sin aÞ
þ ðgxhr

y � gyhr
xÞð�cos a cos gþ cos b sin a sin gÞgf�gzsin b sin a

� hr
zðsin g cos aþ cos b sin a cos gÞ � hi

zðcos b sin a sin g� cos g cos aÞg
þ cyclic permutations

¼ fð�hr
xhi

y þ hr
yhi

xÞgz þ ðhr
yhi

z � hr
zh

i
yÞgx þ ðhi

xhr
z � hi

zh
r
xÞgygfðsin2b sin2aÞ

þ ðcos a sin gþ cos g cos b sin aÞ2 þ ðcos b sin asin g� cos g cos aÞ2g
¼ �hi � hr � g ¼ g� hr � hi ¼ I ð22Þ

The use of this invariant is discussed in Section III.
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3. Local Topography: Energy

The topography of a conical intersection affects the propensity for a nonadiabatic

transition. Here, we focus on the essential linear terms. Higher order effects are

described in [10]. The local topography can be determined from Eq. (13). For

Z ¼ 3, Eq. (13) becomes, in orthgonal intersection adapted coordinates

~H
½1� � dR ¼ ðsij � dRÞI� gijzrz þ hr;ijxrx � hi;ijyry ð23Þ

where I is a 2� 2 unit matrix, and the r are the Pauli matrices.

To determine the eigenfunctions and eigenvalues of Eq. (23), it is convenient

to introduce spherical polar coordinates, x ¼ r cos f sin y; y ¼ r sin f sin y,

and z ¼ r cos y and make the definitions

hi;ij sin f ¼ hðfÞ sin zðfÞ hr;ijcosf ¼ hðfÞ cos zðfÞ ð24aÞ

hðfÞ2 ¼ ðhi;ij sin fÞ2 þ ðhr;ij cos fÞ2 tan zðfÞ ¼ hi;ij

hr;ij
tan f ð24bÞ

hðfÞ sin y ¼ qðy;fÞ sin lðyÞ gij cos y ¼ qðy;fÞ cos lðyÞ ð24cÞ

qðy;fÞ2 ¼ ðhðfÞ sin yÞ2 þ ðgij cos yÞ2 tan lðy;fÞ ¼ hðfÞ
gij

tan y ð24dÞ

Then Eq. (23) becomes

~H
½1� � dR ¼ Iðsij � dRÞ þ rqðy; fÞð�rz cos lðy; fÞ þ sin lðy; fÞMðeizðfÞÞrxÞ

ð25Þ

where MijðxÞ ¼ dijðxd1j þ x�d2jÞ. This Hamiltonian can be diagonalized by the

transformation

Uðy; fÞ ¼
cos lðy; fÞ=2 sin lðy; fÞ=2

�e�izðfÞ sin lðy; fÞ=2 e�izðfÞ cos lðy; fÞ=2

� �
ð26aÞ

that is

Uy ~H
½1� � dRU ¼ ðsij � dRÞI� rqðy; fÞrz ð27Þ

From the preceding analysis, it is seen that the coordinate space near Rx;ij can

be usefully partitioned into the branching space described in terms of

intersection adapted coordinates ðr; y; fÞ or (x; y; z) and its orthogonal

complement the seam space spanned by a set of mutually orthonormal set

wi; i ¼ 4� N int. From Eq. (27), spherical radius r is the parameter that lifts the

degeneracy linearly in the branching space spanned by x̂; ŷ; and ẑ.
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These results can be simplified by introducing scaled orthogonal intersection

adapted coordinates x0 ¼ xhr;ij; y0 ¼ yhi;ij, and z0 ¼ zgij. In these coordinates,

rhðfÞ ¼ r0h0ðf0Þ ¼ r0; rqðy; fÞ ¼ r0q0ðy0; f0Þ ¼ r0; zðfÞ ¼ z0ðf0Þ ¼ f0, and

lðy;fÞ ¼ l0ðy0; f0Þ ¼ y0, where x2 þ y2 ¼ r2. This is the coordinate system

to be used to consider Berry’s geometric phase theorem [22].

4. Local Topography: Conical Parameters

In the nonrelativistic case, the key linear portion of the double cone is

characterized by four conical parameters: a strength parameter d ¼
H½ðgIJ2Þ þ ðhIJ2Þ=2�, an asymmetry parameter � ¼ ðgIJ2Þ � ðhIJ2Þ=ðgIJ2Þ þ ðhIJ2Þ,
and two tilt parameters sIJ

w =d; w ¼ x; y. If sij ¼ 0 the double cone is vertical. The

affect of these parameters on nuclear dynamics has been investigated using time

dependent wavepackets [23]. Here the situation is similar but more complicated.

In this case, the six parameters, sij
w w ¼ x; y; z; gij; hr;ij, and hi;ij can be used to

define a strength parameter, d ¼ H½ðgij2Þ þ ðhr;ij2Þ þ ðhi;ij2Þ�, three tilt parameters

sij
w=d w ¼ x; y; z and two asymmetry parameters, �2ðfÞ ¼ ½ðhðfÞ2 � gij2Þ=
ðhðfÞ2 þ gij2Þ and �1 ¼ ðhr;ij2Þ � ðhi;ij2Þ=ðhr;ij2Þ þ ðhi;ij2Þ�: In future work, the

affect of these and higher order parameters on nuclear dynamics will be

considered.

5. Derivative Couplings

By using Eq. (10), the derivative couplings

f ijðRÞ ¼ h�e
i ðr;RÞjr�e

j ðr;RÞir ð28aÞ

are given by

f ijðRÞ ¼
X
l2Q

xi
lðRÞrx

j
lðRÞ þ

X
l2P

Ni
lðRÞrNj

lðRÞ þ CSFf ijðRÞ ð28bÞ

where the nonsingular term CSFf ijðRÞ is largely negligible near a conical

intersection [20]. As in the nonrelativistic case, f ij is singular at a conical

intersection. The singularity appears in the lowest order contribution:

fkl;ð0Þ ¼
X
a2Q

~xð0Þ;ka ðy;f;wÞr~xð0Þ;la ðy;f;wÞ k; l 2 i; j ð28cÞ

To evaluate fkl;ð0Þ the ~nð0Þ;wðr ¼ 0; y;f), are required. These are given in terms of

Uðy;fÞ by

ð~nð0Þ;iðr ¼ 0; y;fÞ; ~nð0Þ; jðr ¼ 0; y;fÞÞ 
 ðnð0Þ;iðRx;ijÞ; nð0Þ; jðRx;ijÞÞUðy;fÞ ð29Þ
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Note that since the eigenfunctions are determined only up to an overall phase, the

following transformations also diagonalize ~H
½1� � dR:

Vðy;fÞ ¼ eizðfÞ=2 cos lðy;fÞ=2 eizðfÞ=2 sin lðy;fÞ=2

�e�izðfÞ=2 sin lðy;fÞ=2 e�izðfÞ=2 cos lðy;fÞ=2

 !
ð26bÞ

Bðy;fÞ ¼ cos lðy;fÞ=2 eizðfÞ sin lðy;fÞ=2

�e�izðfÞ sin lðy;fÞ=2 cos lðy;fÞ=2

 !
ð26cÞ

As discussed in detail in [10], equivalent results are not obtained with these

three unitary transformations. A principal difference between the U; V, and B
results is the phase of the wave function after being transported around a closed

loop C, centered on the z axis parallel to but not in the (x; y) plane. The

perturbative wave functions obtained from Uðy; fÞ or Bðy; fÞ are, as seen from

Eq. (26a) or (26c), single-valued when transported around C that is

h�e
i ðr;R0Þj�e

i ðr;RnÞi ¼ 1, where R0 ¼ Rn denote the beginning and end of

this loop. This is a necessary condition for Berry’s geometric phase theorem

[22] to hold. On the other hand, the perturbative wave functions obtained from

V(y; f) in Eq. (26b) are not single valued when transported around C.

U, V, and B also yield different fkk. By using Eqs. (24a)–(24d) and (26a) the

derivative couplings are

fij;ð0Þ ¼ 1=2ðrlÞ þ iðrzÞð1=2Þ sin l ð30aÞ
f ii;ð0Þ ¼ �iðrzÞ sin 2l=2 ð30bÞ
f jj;ð0Þ ¼ �iðrzÞcos 2l=2 ð30cÞ

From Eqs. (30a)–(30c), the singularity in fkl, as the conical intersection is

approached, is of order 1=r. Only f ij
o ; o ¼ y; f are singular [10]. As in the

nonrelativistic case, knowledge of the singular part of the derivative coupling can

be used to construct a local diabatic representation that removes the singularity

[10].

If Vðy; fÞ had been used in lieu of Uðy; fÞ; jf ij;ð0Þj would be unchanged, but

fkk;ð0Þ becomes fkk;ð0Þ;V , which is given by

f ii;ð0Þ;V ¼ f ii;ð0Þ þ irz=2 ¼ iðcos lÞ=2rz ð30dÞ
f jj;ð0Þ;V ¼ f jj;ð0Þ þ irz=2 ¼ �iðcos lÞ=2rz ð30eÞ

Finally, had Bðy;fÞ been used, f ii;ð0Þ would be unchanged, but

f jj;ð0Þ;B ¼ f jj;ð0Þ þ irz ¼ iðrzÞ sin 2l=2 ¼ �f ii;ð0Þ ð30fÞ
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III. NUMERICAL RESULTS

In this section, the spin–orbit interaction is treated in the Breit–Pauli [13,24–26]

approximation and incorporated into the Hamiltonian using quasidegenerate

perturbation theory [27]. This approach, which is described in [8], is commonly

used in nuclear dynamics and is adequate for molecules containing only atoms

with atomic numbers no larger than that of Kr.

A. 1,22A0 and 12A0 States of H2 þOH

The nonrelativistic 1,22A0 conical intersection seam in the H2 þ OH super-

molecule has been well studied [28–30] because of its role in the non-adiabatic

quenching reaction

H2 þ OHðA2�þÞ ! H2 þ OHðX2	Þ or H2Oþ Hð2SÞ

The C1v portion of this seam is a 2�þ � 2	 symmetry-allowed conical

intersection. The character of the seam including spin–orbit coupling can be

understood by starting with the degenerate 12	 and 12�þ states. Turning on the

spin–orbit interaction within the 2	 manifold splits the 2	 state into a (lower

energy) 2	3=2 state and (higher energy) 2	1=2 state (see Fig. 1). Then with the

full spin–orbit interaction included the molecule can distort to make either the

upper pair, the 2E0 and 3E0 states, or the lower pair, the 1E0 and 2E0 states,

degenerate. From Figure 1, for C1v geometries the 2E0 � 3E0 intersection is a

‘‘same symmetry’’, 
 ¼ 1=2; 1=2, intersection, while the 1E0 � 2E0 intersection

is a different symmetry 
 ¼ 3=2; 1=2 intersection. However, both intersections

are conical intersections since both 
 ¼ 3=2 and 
 ¼ 1=2 states decompose into

one E0 and one E00 (Kramers’ doublets) when the molecule is distorted to Cs

configurations. Here, we consider the more computationally challenging same

Figure 1. Representation of degenerate states from nonrelativistic components. (a) Degenerate

zeroth-order states at Rx 
 Rx;IJ . (b) Spin–orbit interaction splits 2	 state. (c) With full spin–orbit

interaction turned on, degeneracy is restored by changing geometry to Re;x 
 Rx;ij.
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symmetry, 2E0 � 3E0, intersection to illustrate the ideas developed in Section

2.F.5. This system provides a stringent test of the numerical procedures since the

spin–orbit interaction is relatively modest and the energy splitting changes

rapidly in the region of interest.

The nonrelativistic states are described at the first-order configuration

interaction level using a six orbital, eight electron, active space with the oxygen

1s orbital kept doubly occupied. The molecular orbitals were constructed from a

state-averaged multiconfigurational self-consistent field procedure [31] using an

extended atomic orbital basis on oxygen and hydrogen. The details of this

description can be found in [30].

In the present calculations, the molecule is restricted to Cs symmetry.

There are five internal degrees of freedom (the out-of-plane mode is excluded

to preserve Cs symmetry). Nuclear configurations will be denoted R ¼
ðRðH1��OÞ; RðO��H2Þ; RðH2��H3Þ; ffH1OH2; ffOH2H3Þ corresponding to the

arrangement H1��O��H2��H3. It will be convenient to refer to the R by their

RðH2��H3Þ value, writing, RðRðH2��H3Þ ¼ bÞ 
 RðbÞ ¼ ðRðH1��OÞ; RðO��H2Þ;
RðH2��H3Þ ¼ b; ffH1OH2; ffOH2H3Þ. For collinear geometries, the two angles

will be suppressed. Equation (14) defines only three internal coordinates.

Therefore two additional constraints are needed. These are provided by the

value of RðH2��H3Þ ¼ b and/or the energy minimization requirement.

B. Convergence of Eq. (15b)

Figure 2 illustrates the efficacy of Eq. (15), considering convergence, in the

absense of geometrical constraints, to a local energy minimum on the relativistic

seam of conical intersection. Reported are the relativistic energy separation �Ee
32

and the nonrelativistic energy separation, �E22A0;12A0 . The search was initiated at

the structure indicated on the left-hand side of Figure 2, a point slightly displaced

from the nonrelativistic seam. At this point, �E22A0;12A0 � 11 cm�1 and

�Ee
32 � 70 cm�1. At the converged structure, achieved after 15 iterations,

pictured on the right-hand side, �Ee
32 < 0:2 cm�1 while �E22A0;12A0 � 70 cm�1.

The large changes in �Ee
32 between iterations 8 and 9, and 12 and 13, reflect, in

part, the use of the ‘‘conjugate gradient’’ extrapolation noted previously. These

results strongly support the utility of the present approach. It is worth noting that

once an initial point on a seam is found locating additional points is facilitated by

the fact that given an Rx;ij corresponding to given K, Eq. (15b) can be used to

predict a good starting value for a neighboring Rx;ij0 corresponding to K0 [32].

C. The Seam: Locus

Further evidence of the efficacy of the algorithm for locating points of conical

intersection is provided in Figure 3, which reports additional points on the 2E0–
3E0 intersection seam, determined by introducing the geometrical constraint,
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RðH2��H3Þ ¼ b. Note that C1v symmetry was not imposed. The points located

on the 2E0–3E0 seam of conical intersection, which are degenerate to <1 cm�1,

all had C1v symmetry. Figure 3 shows, that while the Z ¼ 3 seam is necessarily

distinct from the nonrelativistic seam the separation is not large. In future work,

it will be interesting to see how this conclusion changes as the magnitude of the

spin–orbit interaction increases. Along the nonrelativistic seam the relativistic

energy difference, �Ee
32ðRx:IJðRðH2��H3ÞÞ, is �70 cm�1 > 50% of the OH(2	)

fine structure splitting [33] suggesting that when heavier atoms such a chlorine,

where Aso is �780 cm�1 [34], or even bromine or iodine are involved,

�Ee
jiðRx;IJÞ, will be much larger, so that nonadiabatic effects may be

significantly reduced at the nonrelativistic seam by the inclusion of spin–orbit

coupling.

The small �Ee
32ðRx;ijðRðH2��H3ÞÞ <1 cm�1 and much larger �E22A0;12A

ðRx;ijðRðH2��H3ÞÞ, also �70 cm�1, provide prima facie evidence for a conical

intersection of He. However, since numerical degeneracies are never exact, an

Figure 2. EðrelÞ 
 �Ee
32 and EðnonrelÞ 
 �E22A0 ;12A0 at each iteration of the solution of

Eq. (15b) for OHþ H2 using multireference configuration interaction wave functions.
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alternative means is required to prove the existence of a conical intersection.

The demonstration that g� hr � hi 6¼ 0, that is, that g; hr; hi are linearly

independent, serves to confirm the ‘‘conical’’ character near the intersection. It

is to the determination of these quantities that we now turn.

D. The Seam: Conical Parameters and the Invariant

The lowest order contributions to the energy are described by the conical

parameters g; hr; hi, and sk; k ¼ x; y; z, or by d; �i ¼ 1; 2 and sk; k ¼ x; y; z.

Here and below the superscript ij is suppressed when no confusion will result. We

also will use the nonrelativistic convention gijjjx̂; hr;yjjŷ and hi;ijjjẑ, where jj is

real ‘‘is parallel to.’’ These parameters [9] are reported in Figure 4a and b. Their

continuity is attributable to the use of orthogonal intersection adapted coor-

dinates. For comparison, Figure 4a and b reports the nonrelativistic quantities

gIJ ; hIJ , and sIJ , respectively. While noting that there is no unique correspondence

Figure 3. The relativistic seam Rx;ijðRðH2��H3ÞÞ: RðO–H1Þ, (empty squares), RðO��H2Þ
(empty diamonds) E 
 E2E0 ðRðH2��H3ÞÞ (empty circles) on the 2E��3E seam of conical intersection.

Filled markers on 12A0 � 22A0 nonrelativistic seam of conical intersection. The zero of energy is

EðnrÞ 
 E12A0 ðRx;IJðRðH2��H3Þ ¼ 2:336ÞÞ ¼ �76:486688 a.u.
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between the relativistic and nonrelativistic seam points, here the energy

optimization in Eq. (15b) allows RðH2��H3Þ to define a correspondence. From

Figure 4a it is seen that for the slowly changing jjgijjj; jðjjgIJ jj�jjgijjjÞj=jjgIJ jj is
small while for the more rapidly varying hij; jðjjhIJ jj � jjhr;ijjjÞj=jjhIJ jj is perhaps

not unexpectedly, larger but still modest, <0:4.

The invariant I ¼ g� hr � hi is reported in Figure 4c, again as a function of

RðH2��H3Þ. Although I decreases as RðH2��H3Þ decreases, it is clear that it does

not vanish for reasonable values of RðH2��H3Þ. This confirms the conical

character of the intersections reported herein.

The relative magnitudes of g, hr, hi, and si i ¼ x; y; z describe the orientation

and shape of the double cone. The relation between these attributes and near

Figure 4. Conical parameters on the relativistic seam. (a) g (open circles), hr (open squares), hi

(open triangles). The nonrelativistic quantities, g (filled circle) and hðnrÞ (filled square); (b) sw;w ¼
x (circles), y (squares), z (triangles). Filled (open) markers from nonrelativistic (relativistic)

calculations. (c) Magnitude of the invariant I ¼ g� hr � hi as a function of RðH2��H3Þ.
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conical intersection dynamics has been discussed previously for nonrelativistic

conical intersection [23,35]. For the conical intersections encountered here

�sx < hr;ijð�sz > hi;ijÞ so that the cone is slightly (significantly) tilted in the

xðzÞ direction. Such a topography faciliates the downward (upward) transitions

from negative xðzÞ direction [23]. The linear coupling in the z direction, hi, is,

however, quite small so that quadratic terms dominate except very close to the

conical intersection. This will limit the role of this coordinate in inducing non-

adiabatic transitions. It will be interesting to see how this changes as the size of

the spin–orbit interaction increases.

E. Characterizing the Seam: Orthogonal g, hr, and h
i

The conical parameters describe the topography of the conical intersection. The

directions for g, hr, and hi relate the abstract x; y; z directions to actual molecular

Figure 4 (Continued)
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displacements. Figure 5 reports g; hr, and hi and their orthogonalized counter-

parts, ~g; ~hr, and ~hi at Rx;ij(2.53), which is typical. The nascent g; hr, and hi

vectors are clearly not symmetry-adapted. The orthogonalization procedure

removes this deficiency, with g and hi being symmetry preserving s
displacements and hr being a p displacement.

Figure 6 reports ~gIJ , ~hIJ and the seam coordinates wi; i ¼ 1–3 for

Rx;IJð2:336Þ ¼ ð2:774; 1:873; 2:336Þ. Comparing Figures 5 and 6 illustrates

the general observation that, ~gIJ is parallel to ~gij, and ~hIJ is parallel to ~hr;ij. These

similiarities clearly depend on the use of the orthogonalized vectors. ~hi;ij is a

linear combination of two nonrelativistic symmetry preserving seam coordi-

nates.

Figure 4 (Continued)
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IV. THE FUTURE

In the nonrelativistic case much has been, and continues to be, learned about the

outcome of nonadiabatic processes from the locus and topography of seams of

conical intersection. It will now be possible to describe nonadiabatic processes

driven by conical intersections, for which the spin–orbit interaction cannot be

neglected, on the same footing that has been so useful in the nonrelativistic case.

This fully adiabatic approach offers both conceptual and potential computational

Figure 5. For Z ¼ 3, the vec-

tors g, hr, and hi. Nascent (right-

hand column) and orthogonalized

(left-hand column) results at

Rx;ij(2.53). For orthogonal vectors

hr ¼ 0:0430; g ¼ 0:0825, and

hi ¼ 0:000233. Vectors are scaled

for visual clarity.
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advantages over approaches currently in use [36,37]. It will now be possible to

address a key conceptual question: when does the relativistic description with

intersections based on He, provide a better qualitative picture of a nonadiabatic

process than a description with intersections based on H0. On the computational

side, these new capabilities will enable a more rigorous approach whose com-

putational utility increases with the size of the spin–orbit interaction. Diabatic

bases deduced from a systematically improvable adiabatic representation will be

possible.

Figure 6. For Z ¼ 2, the ortho-

gonal vectors g;h and seam vectors

wi; i ¼ 1–3. Orthogonal g and h

and three seam coordinates at

Rx;IJ (2.33). g ¼ 0:0835; h ¼ 0:0514.

Vectors are scaled for visual clarity.
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At the present time, the solution of the electronic structure problem using full

four component wave functions is far from routine [38]. In the future, as

progress is made in this area, extension of the present approach to full four

component wave functions can be expected.

In summary, the techniques outlined in this work represent the first step on a

path that will lead to increased understanding of, and more accurate compu-

tational approaches for treating, nonadiabatic processes in which relativistic

effects cannot be neglected.
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I. RENNER OR RENNER–TELLER?

It is not usual to begin a review with the discussion of its title; we find, however,

that we have to do that in the present case. In the very representative book

Computational Molecular Spectroscopy [1], published last year, two papers

written by eminent authors and devoted to the same subject, but with different

titles, appeared back-to-back; one of them was entitled The Renner effect (Jensen

and Bunker [2]), the title of the other was The Renner-Teller effect (Brown [3]).

In his article, Brown explained this controversy in the following way: ‘‘The

description of the vibrational levels for this pair of nearly degenerate potentials

was first investigated in detail by Renner (1934) for a � electronic state.

However, the generalities of the problem had already been discussed by

Herzberg and Teller in a preceding paper (1933). It is for this reason that some

authors refer to vibronic coupling in a linear molecule as the Renner–Teller effect

while the others prefer to call it simply the Renner effect. Both names are used in

the literature to describe a single phenomenon. In this chapter, we follow

Herzberg (1991) and refer to it as the Renner–Teller or R–T effect.’’

Formally, there was little reason to give Teller half of the credit for

discovering such an important phenomenon. In the very extensive paper [4]

referred to by Herzberg [5] as justification for the name ‘‘The Renner–Teller

effect,’’ there are only a few sentences that discuss in general the consequences

of the reduced symmetry in linear molecules upon bending on the reliability of

the Born–Oppenheimer approximation [6] and thus on the vibrational structure

of molecular spectra. Moreover, the first author of this paper is Herzberg

himself. One can, of course, claim that this is the heart of the problem, but we

do not believe that such a conclusion required too much intellectual effort of

renowned theoreticians/spectroscopists who knew the works by Wigner, Born,

and Oppenheimer. On the other hand, seldom has a completely new topic been

elaborated on as thoroughly as in Renner’s paper [7]. We cannot agree with

Jungen and Merer when they state in their excellent review [8] that ‘‘Renner’s

original paper seems not to have received the recognition which we feel it

deserves, possibly because it is in difficult German and in old notation.’’ We do

not find Renner’s notation much different from that used today nor his German

more difficult than Herzberg’s and Teller’s; in almost all papers devoted to this

subject up to, say, the 1980s the name ‘‘Renner effect’’ had been used. The
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situation has gradually changed in the last two decades, which should at least

partially be ascribed to Herzberg’s authority (By the way, Jungen and Merer

were among the first to adopt the name ‘‘R–T effect.’’) We join here with those

people who accept his recommendation, because he must have known the

circumstances better than anybody else.

II. INTRODUCTION

The Renner–Teller effect (in the following text we shall use acronym R–T) arises

when the potential energy surface of an electronic state spatially degenerate at the

linear molecular geometry (�, �, . . .) splits upon bending into two surfaces.

From the group-theoretical point of view, this splitting is a consequence of

reduction of the axial symmetry C1u, D1h upon bending to Cs, Cu, the latter two

point groups possessing only one-dimensional (1D) irreducible representations. At

small distortions of linearity the two (nondegenerate) electronic states, corresponding

to these potential surfaces, lie close to each other, which manifests itself in

a complicated vibrational and rotational structure of the corresponding spectra.

The origin of the R–T effect can be interpreted in different terms: [8] (1) as a

consequence of the electrostatic interaction between two components of an

electronic state with a nonzero angular momentum; (2) as a coupling of two

different electronic states through the electronic–rotational Coriolis interaction;

(3) from the quantum chemical standpoint, the R–T effect is a consequence of

violation of validity of the Born–Oppenheimer approximation.

In his classical paper, Renner explicitly considered only one of several cases

that differ from each other from a quantitative point of view, namely, that in

which the molecular potential energy surfaces for both components of a � state

have the minimum at the linear geometry (we shall call this situation ‘‘weak

R–T effect’’). The reason for his restriction to � states was that he realized that

the manifestation of the breakdown of the Born–Oppenheimer (BO)

approximation seen in the spectral features would be most spectacular just in

this case; at the same time this was the only situation for which closed formulas

for vibronic (vibrational–electronic) energy levels could be derived by hand (in

the framework of the perturbation theory). A generalization of his theory to the

cases in which one or both of these potential surfaces has/have a minimum at a

bent nuclear arrangement and to other degenerate electronic species is (at least

from the conceptual point of view) more or less straightforward. It requires,

however, other computational approaches (numerical, variational) to solve the

corresponding equations.

As argued above, it is not Renner who should be blamed for his paper being

forgotten for almost 25 years. The reason is that the experimentalists needed this

much time to obtain the first spectrum showing the features predicted by him

[9,10]. The effect that might have looked exotic in the 1930s has become one of
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the most usual and best studied spectroscopic problems. A great part of radicals

being of crucial interest from an astrophysical/chemical point of view and/or

playing as reaction intermediates an important role in various chemical

processes have spatially degenerate ground states and thus exhibit the R–T

effect. This circumstance determines not only the spectral features of such

radicals, but also their behavior in chemical reactions.

A consequence of the continuously growing importance of such systems is

the appearance of several excellent reviews devoted to this subject. A

comprehensive presentation of the theoretical and experimental situation in

this field up to 1974 is given by Duxbury (one of very few ‘‘R–T’’ titles up to

that time) [11]. Jungen and Merer’s [8] breakthrough paper from 1976 presents

various theoretical aspects of the R–T effects in triatomics, particularly the

relationship between two apparently opposite, but in fact equivalent, points of

views (electrostatic interaction within a degenerate electron state—Coriolis

interaction between two separate states). A critical exposure of different models

for handling the R–T effect is given by Brown and Jørgensen [12]: It

is recommended to everyone who is interested in this subject, particularly to

those who really want to understand it completely, although we find this article

the most difficult of all mentioned so far. Köppel et al. [13] and Köppel and

Domcke [14] present the R–T effect as a particular case of a general multistate

and multimode problem. Their models are deliberately so simplified that they

enable clear insight into the mechanisms being otherwise obscured. Recently,

Brown [3] has given a very clear presentation of the effective Hamiltonian

approaches used in experimental investigations of the R–T effect, and a very

detailed description of a highly sophisticated theoretical approach has been

presented by Jensen et al. [2]. Furthermore, the R–T effect is described in detail

in several standard textbooks, for example, by Herzberg [5]. and Bunker and

Jensen [15]. Finally, let us mention the reviews by the present authors, which

refer to early ab initio studies on triatomic [16,17] and tetraatomic [18] species.

Taking into account that there already exists such a comprehensive literature

on the R–T effect, the question naturally arises: Is there a need to write a new

review devoted to this subject? Is it, for example, possible to add anything

relevant to the review by Brown and Jørgensen [12], to present the matter more

clearly than Jungen and Merer [8], or more elegantly than Köppel et al. [13,14]?

However, most of the reviews mentioned above are based on the results of their

authors and reflect the authors’ particular point of view. We feel that a

comparison of different approaches is still missing. This is what we try to do in

this chapter. Emphasis will be put on results of ab initio methods, but a

discussion of approaches based on the use of experimentally derived parameters

(potential energy surfaces, equilibrium geometries, etc.) will also be included,

because these approaches can be employed equally well (and several of them

have been) if the parameters are generated in ab initio calculations.
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III. TRIATOMIC MOLECULES

A. Theoretical Treatment

Let us start with a description of the bending vibrations in singlet � electronic

states of linear triatomic molecules. Already, this simple sentence reflects some

of the difficulties with which one is confronted by handling the present subject:

The adjective ‘‘linear’’ looks pleonastic in connection with ‘‘� states,’’ because

only linear molecules can have � electronic states. On the other hand, we speak

about bending of molecules in � states. The rigorous meaning of the mentioned

sentence is that we consider the bending vibrations of a molecule with linear

equilibrium geometry, at which it is in a � electronic state; upon bending, the

state of the molecule transforms into one of the species classified according to the

irreducible representations of the lower symmetry point group corresponding to

the bent nuclear arrangement. In this chapter we shall frequently be forced, in

order to save time and space, to use similar phrases that may not be strictly

correct from a scientific and/or linguistic point of view. Returning now to our

problem, we assume the model Hamiltonian in the form

H ¼ He þ Tb þ Tz
r ð1Þ

where He is the electronic Hamiltonian involving the kinetic energy of electrons,

their mutual interaction, and the interaction of the electrons with the nuclei.

Furthermore, we assume that He also includes the nuclear repulsion term. The

term Tb is the kinetic energy operator for the bending vibrations of nuclei. It

involves the derivatives of the coordinate r, defined as a supplement of the bond

angle (in radian) and can be written in the form

Tb ¼ �
1

2
T1ðrÞ

q2

qr2
þ T2ðrÞ

q
qr
þ T0ðrÞ

� �
ð2Þ

[Atomic units (me � 1; qe � 1; �h � 1) are used throughout this chapter.] The

coefficients T1, T2, and T0 are assumed to be in general analytical functions of

the bending coordinate r. The term Tz
r represent the operator describing the

rotation of the molecule around the (principal) axis z corresponding to the

smallest moment inertia—this axis coincides at the linear nuclear arrangement

with the molecular axis. Now Tz
r can be written in the form

Tz
r ¼ AðrÞR2

z ð3Þ

where A ¼ 1=ð2Izz) is the rotational constant and Rz is the z component of the

angular momentum of the nuclei. The operator Rz is defined as

Rz ¼ �i
q
qf

ð4Þ
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where f represents the angle between the instantaneous molecular plane and the

space-fixed plane with which it has a common z axis. The model Hamiltonian

[Eq. (1)] commutes with Rz and thus the quantum number l corresponding to the

latter operator is a good quantum number. It is an integer as any quantum number

for projection of a spatial angular momentum. The literature often refers to l as

the absolute value of the eigenvalue Rz; we shall consider it here as a signed

quantity.

Explicit forms of the coefficients Ti and A depend on the coordinate system

employed, the level of approximation applied, and so on. They can be chosen,

for example, such that a part of the coupling with other degrees of freedom

(typically stretching vibrations) is accounted for. In the space-fixed coordinate

system at the infinitesimal bending vibrations, Tb þ Tz
r reduces to the kinetic

energy operator of a two-dimensional (2D) isotropic harmonic oscillator,

lim
r*0

T ¼ T0 ¼ �
1

2m
q2

qr2
þ 1

r
q
qr
þ 1

r2

q2

qf2

� �
ð5Þ

where m is the corresponding reduced mass. The Hamiltonian [Eq. (1)] does not

involve the terms describing the stretching vibrations and the end-over-end

rotations. It is supposed that these degrees of freedom can be separated from

those considered here.

The wave function corresponding to the Hamiltonian [Eq. (1)] can be

assumed in the form

�l;n ¼ c
1ffiffiffiffiffiffi
2p
p eilff l;mðrÞ ð6Þ

where � represents the electronic wave function and f is the r-dependent part of

the nuclear function. Here m is the running index numbering vibrational states

corresponding to a particular l state. After integrating over the electronic

coordinates and f, the Schrödinger equation corresponding to the Hamiltonian

(1) becomes

� 1

2
T1

q2

qr2
þ T2

q
qr
� l2T3 þ T0

� �
þ VðrÞ

� �
f ðrÞ ¼ Ef ðrÞ ð7Þ

VðrÞ represents the potential energy surface for bending vibrations obtained by

solving the electronic Schrödinger equation in the BO approximation; it is two

dimensional, but invariant with respect to the coordinate f. In the harmonic

approximation, the potential energy function V(r) is represented by 1/2 k r2,

where k is the force constant for the bending vibrations, and the kinetic energy

operator is then given by Eq. (5) (with q2=qf2 replaced by �l2). The solutions
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of the corresponding Schrödinger equation are E ¼ ðuþ 1Þo, where o is

the harmonic bending frequency, o ¼ pðk=mÞ (to simplify the orthography we

use for the bending frequency symbol o instead of more usual o2). The

corresponding wave functions are

Ru;lðrÞ ¼ Nu;lð
ffiffiffi
l
p

rÞjljLu;lð
ffiffiffi
l
p

rÞe�1=2lr2 ð8Þ

where Lu;l are Laguerre polynomials and

l ¼
ffiffiffiffiffi
km

p
¼ mo ð9Þ

RðrÞ is thus the harmonic approximation counterpart of the function f ðrÞ. To

simplify the orthography, we use symbol Lu;l instead of the usual Ll
ðu�lÞ=2. For a

given u, the quantum number l takes values �u,�uþ 2, . . ., 1 or 0, . . ., u� 2, u.

Since the bending energy (in the harmonic approximation) depends only on the

quantum number u, a vibrational level is thus uþ 1 times degenerate.

In the harmonic approximation, the bending vibrational energy scheme for a

singlet � electronic state corresponds to the upper part of the left-hand side of

Figure 1 (given below in Section III.B). Anharmonicity of the bending potential

would cause splitting of the levels with the same quantum number u but

different l; while the latter of them remains a good quantum number, because

the axial symmetry of the problem is also preserved when the anharmonicity is

introduced, the former becomes an approximate good quantum number. In the

framework of this model (� electronic states, neglected effects of end-over-end

rotations, etc.) the bending energy does not depend on the sign of l; this is a

reason for the above mentioned widely used convention that assumes l to be a

nonnegative integer and for representing the levels corresponding to the same

absolute value of l by a single line in Figure 1. Remember, however, that every

jlj 6¼ 0 level is twofold degenerate.

Let us see now how the situation is changed if the molecule is a spatially

degenerate electronic state. This state has two components that are at linear

molecular geometry exactly degenerate with each other. Upon bending,

however, the symmetry of the nuclear framework is reduced, consequently

having a splitting of the potential surfaces for these component states. At least at

small deviation from linearity these two electronic surfaces lie energetically

close to each other and the ansatz [Eq. (6)], which assumes the vibronic wave

function as a product of a single electronic species with the corresponding

vibrational function, ceases to be reliable. Instead, we have to employ the wave

function of the form

� ¼ c1 f1ðr;fÞ þ c2 f2ðr;fÞ ð10Þ
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Figure 1. Relationship between bending vibrational structure in � electronic states and

vibronic strucure in � states. Left, top: Bending vibrational structure in a � electronic state of a

triatomic molecule with linear equilibrium geometry. Left, bottom: Bending vibrational structure of

two � electronic states with the same minimum of bending potential curves. Right: Vibronic

structure of a � electronic state of a molecule with linear equilibrium geometry (A3�u state of NCN)

[28,29]. Solid curve: Bending potential curve for the lower lying adiabatic electronic state. Dashed

curve: Bending potential curve for the upper adiabatic electronic state. Dash–dotted curve: Mean

bending potential. Solid horizontal lines: l ¼ 0 vibrational levels for � electronic states, K ¼ 0

vibronic levels for � electronic state. Dashed lines: l ¼ 1 and K ¼ 1 levels. Dash–dotted lines: l ¼ 2

and K ¼ 2 levels. Dotted lines: l ¼ 3 and K ¼ 3 levels. Vibrational levels are assigned by the

quantum numbers u2. u�2 , and uþ2 quantum numbers in the bottom left part of figure denote

vibrational levels belonging to the lower and upper � electronic state, respectively.
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where c1 and c1 are electronic (at the moment not specified more precisely)

species and f1, f2 are function of the nuclear coordinates.

Now, we have besides the vibrational, the electronic angular momentum; the

latter is characterized by the quantum number � corresponding to the magnitude

of its projection along the molecular axis, Lz. Here we shall consider � as a

unsigned quantity, that is, for each � 6¼ 0 state there will be two possible

projections of the electronic angular momentum, one corresponding to � and

the other to ��. The operator Lz can be written in the form

Lz ¼ �i
q
qy

ð11Þ

where y is the coordinate describing collective rotations of the electrons around

the z axis. This one-electron approximation was severely criticized by Brown and

Jørgensen [12]. Note that, although it will be used in this chapter in several

instances in order to achieve a simple presentation of some results, it will never

be necessary to apply explicitly expression (11). In handling the R–T effect, one

actually needs the (electronic) matrix elements of the operator Lz, which can be

derived without assuming that the operator has the form (11). Trying, however, to

reconcile the ansatz (11) with justified critics of the authors of [13], we can

interpret y as a coordinate (in general without obvious physical meaning)

conjugate to the electronic angular momentum Lz.

The presence of two angular momenta has as a consequence that only their

sum, representing the total angular momentum in the case considered, necessary

commutes with the Hamiltonian of the system. Thus only the quantum number

K, associated with the sum, Nz, of Rz and Lz,

Nz ¼ Rz þ Lz ¼ �i
q
qf
þ q
qy

� �
ð12Þ

that is,

K ¼ l� � ð13Þ

must be a good quantum number, not necessarily l and �. It can be easily shown

that this is really the case, that is, that l and � are generally not even

approximately good quantum numbers. The operator for rotation of the nuclei

around the z axis can now be written as

Tz
r ¼ AðrÞR2

z ¼ AðrÞðNz � LzÞ2 ð14Þ

Now, we add to (1) the operator describing the spin–orbit (SO) coupling, so

that our model Hamiltonian becomes

H ¼ He þ Tb þ Tz
r þ HSO ð15Þ
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We shall consider only the leading part of the spin–orbit operator assumed in the

phenomenological form

Hso ¼ AsoLzSz ð16Þ

where Aso is the ‘‘spin–orbit constant’’ and Sz the z component of the electronic

spin operator. The Hamiltonian [Eq. (15)] commutes with the z component of the

spin operator, Sz, and of the total angular momentum, Jz ¼ Nz þ Sz. Conse-

quently, the corresponding quantum numbers � (we choose this symbol in spite

of the fact that it is also used to denote � ¼ 0 electronic states and K ¼ 0

vibronic species) and P ¼ K þ � are good quantum numbers. In the framework

of this model, such also remains the quantum number K. This is not rigorously

the case in treatments of the R–T effect at higher levels of sophistication. It can

be stated, however, that K is one of the best among ‘‘bad’’ quantum numbers used

in molecular spectroscopy. Thus the handling of the R–T effect in the framework

of this model can be carried out within a particular K and P (i.e., �) subspace

separately. In this chapter, we consider K, �, and P to be signed; since the

vibronic (vibration–electronic) levels with jKj 6¼ 0 (and jPj 6¼ 0) are always

doubly degenerate in the framework of this model [one state corresponding to

K ¼ þjKj and the other to K ¼ �jKj (and analogously for P ¼ þjPj and

P ¼ �jPj)], we shall deal, as a rule with nonnegative values for K and P only.

Until now we have implicitly assumed that our problem is formulated in a

space-fixed coordinate system. However, electronic wave functions are naturally

expressed in the system bound to the molecule; otherwise they generally also

depend on the rotational coordinate f. (This is not the case for � electronic

states, for which the wave functions are invariant with respect to f.) The

eigenfunctions of the electronic Hamiltonian, cþe and c�e , computed in the

framework of the BO approximation (‘‘adiabatic’’ electronic wave functions)

for two electronic states into which a spatially degenerate state of linear

molecule splits upon bending,

Hec
þ ¼ Vþcþ Hec

� ¼ V�c� ð17Þ

are labeled by a plus or minus according to their behavior with respect to

reflection in the molecular plane. The species cþ (of A1 or B2 symmetry in the

C2v point group, and of A0 in Cs) is invariant upon this reflections, and c�

(belonging to B1 or A2 irreducible representation in the C2v point group, and to

A00 in Cs) changes sign. For the sake of convenience, we assume throughout this

chapter that the phase factor in c� is i. Both Vþ and V� are the corresponding

adiabatic potentials. Therefore, these wave functions rotate together with the

molecular plane. It is thus convenient (although not necessary) to formulate the

complete problem in the coordinate system rotating with the molecule in the way
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that a plane of this frame (we chose it to be xz) coincides with the instantaneous

molecular plane at bent nuclear arrangements. We introduce the coordinate

transformation

w ¼ f a ¼ y� f ð18Þ

a is therefore the electronic azimuthal coordinate with respect to the molecular

plane. It is easy to prove that the nuclear, electronic, and total (excluding spin)

angular momenta defined with respect to the molecule-bound frame are

Rz ¼ �i
q
qw
� q
qa

� �
¼ Nz � Lz Lz ¼ �i

q
qa

Nz ¼ �i
q
qw

ð19Þ

Apparently, the most natural choice for the electronic basis functions consist

of the adiabatic functions cþe and c�e defined in the molecule-bound frame. By

making use of the assumption that K is a good quantum number, we can write

the complete vibronic basis in the form

1ffiffiffiffiffiffi
2p
p eiKw cþ�ðaÞ fþ;K;nðrÞ 1ffiffiffiffiffiffi

2p
p eiKw c��ðaÞ f�;K;nðrÞ ð20Þ

The electronic functions are assumed to be eigenfunctions of the spin operator

and are thus assigned by the spin quantum number �. Their dependence on a,

indicated in Eq. (20), should not be taken too seriously; it should just remind us

that the functions are defined in the molecule-bound frame, that is, that they do

not depend on the nuclear rotational coordinate f. The bending functions fþ and

f�, corresponding to the electronic species cþ and c�, respectively, are

additionally labeled by K and a running index n. The electronic Hamiltonian and

the operator Tb are diagonal in the adiabatic electronic basis. The operator Rz

couples the functions cþ and c� with each other. Although only the nuclear

angular momentum Rz appears explicitly in the model Hamiltonian [Eq. (15)],

the electronic angular momentum creeps into its matrix representation as a

consequence of the first of relations (19) and the form of the basis functions. The

adiabatic electronic functions are, namely, not the eigenfunctions of Lz. Let us

denote the electronic matrix elements of the operators Lz and L2
z by

hcþðaÞjL2
z jcþðaÞi ¼ Cþþ hc�ðaÞjL2

z jc�ðaÞi ¼ C��

hcþðaÞjLzjc�ðaÞi ¼ Bþ� ¼ hc�ðaÞjLzjcþðaÞi
ð21Þ

The remaining combinations vanish for symmetry reasons [the operator Lz

transforms according to B1 (A00) irreducible representation]. The nonvanishing of

the off-diagonal matrix element Bþ� is responsible for the coupling of the

adiabatic electronic states.
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Since the form of the electronic wave functions depends also on the

coordinate r (in the usual, ‘‘parametric’’ way), the matrix elements (21)

are functions of it too. Thus it looks at first sight as if a lot of cumbersome

computations of derivatives of the electronic wave functions have to be carried

out. In this case, however, nature was merciful: the matrix elements in (21)

enter the Hamiltonian matrix weighted with the rotational constant A, which

tends to infinity when the molecule reaches linear geometry. This means that

only the form of the wave functions, that is, of the matrix elements in (21), in

the r ! 0 limit are really needed. In the above mentioned one-electron

approximation

lim
r!0

cþðaÞ ’ cþ0 ðaÞ ¼
1ffiffiffi
p
p cos ð�aÞx�ðreÞ

lim
r!0

c�ðaÞ ’ c�0 ðaÞ ¼
iffiffiffi
p
p sin ð�aÞx�ðreÞ

ð22Þ

x�ðreÞ represents the part of the electronic functions depending on all spatial and

spin electronic coordinates except y. In the lowest order approximation, which is

usually sufficiently reliable, it is the same for both electronic species in question.

With these electronic functions

hcþ0 ðaÞjL2
z jc
þ
0 ðaÞi ¼ �2 ¼ hc�0 ðaÞjL2

z jc
�
0 ðaÞi

hcþ0 ðaÞjLzjc�0 ðaÞi ¼ � ¼ hc�0 ðaÞjLzjcþ0 ðaÞi
ð23Þ

Note that the relations (23) are valid also if (22) is questionable. Brown [19]

refined the approximation (23) by introducing the ‘‘gK factor,’’ describing the

deviation of the mean values for Lz and L2
z from integers. Validity of the

approximation (23) has been checked by means of explicit ab initio calculations,

for example, in [20,21].

After integrating over the electronic coordinates and w, the model

Hamiltonian (15) is represented by the matrix whose elements are

Hþþ ¼ Vþ � 1

2
T1

q2

qr2
þ T2

q
qr
þ T0

� �
þ AðK2 þ CþþÞ

H�� ¼ V� � 1

2
T1

q2

qr2
þ T2

q
qr
þ T0

� �
þ AðK2 þ C��Þ

Hþ� ¼ ð�2KAþ �AsoÞBþ� ¼ H�þ

ð24Þ

This matrix represents an effective operator that still has to act on the bending

functions fþðrÞ, f�ðrÞ. A generalization of (24) to the case when the kinetic

energy operator (i.e., the coefficients Ti and A) has a different form in the
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electronic states cþ and c� can be carried out straightforwardly. In order to have

expressions more suitable for discussing the spectroscopic aspects of this

problem, we now replace the matrix elements B and C by their asymptotic values

(23) and the kinetic energy operator by its small-amplitude counterpart (5) [note,

however, that the asymptotic forms of the electronic wave functions, Eq. (25),

cannot be employed for calculation of the matrix elements of the electronic

operator He]:

Vþ � 1
2m

q2

qr2 þ 1
r

q
qr� K2þ�2

r2

� �
� 2�KA

r2 þ ��Aso

� 2�KA
r2 þ ��Aso V� � 1

2m
q2

qr2 þ 1
r

q
qr� K2þ�2

r2

� �
0
@

1
A ð25Þ

The basis consisting of the adiabatic electronic functions (we shall call it

‘‘bent basis’’) has a serious drawback: It leads to appearance of the off-diagonal

elements that tend to infinity when the molecule reaches linear geometry (i.e.,

r ! 0). Thus it is convenient to introduce new electronic basis functions by the

transformation

c�ðyÞ ¼ 1ffiffiffi
2
p ei�fðcþ þ c�Þ c��ðyÞ ¼ 1ffiffiffi

2
p e�i�fðcþ � c�Þ ð26Þ

We write them as c��ðyÞ to stress that now we use the space-fixed coordinate

frame. We shall call this basis ‘‘diabatic,’’ because the functions (26) are not the

eigenfunction of the electronic Hamiltonian. The matrix elements of He are

hc�ðyÞjHejc�ðyÞi ¼ Vþ þ V�

2
¼ hc��ðyÞjHejc��ðyÞi

hc�ðyÞjHejc��ðyÞi ¼ e�2i�f Vþ � V�

2

hc�i�ðyÞjHejc�ðyÞi ¼ e2i�f Vþ � V�

2

ð27Þ

We shall call this basis also ‘‘linear’’ because in the one-electron approximation

at r ! 0 the functions (26) become

lim
r!0

c�ðyÞ ’ c�
0 ðyÞ ¼

1ffiffiffiffiffiffi
2p
p ei�y x�ðreÞ

lim
r!0

c��ðyÞ ’ c��0 ðyÞ ¼
1ffiffiffiffiffiffi
2p
p e�i�y x�ðreÞ

ð28Þ

that is, they reduce to the functions describing free rotation of electrons around

the molecular axis. These asymptotic forms of the basis functions may be used in
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computation of the matrix elements of the kinetic energy operator and the spin–

orbit part of the model Hamiltonian. The functions (28) are the eigenfunctions of

Lz. We can utilize this fact by expanding the rovibrational (rotational–

vibrational) part of the complete rovibronic functions in the basis consisting of

the eigenfunctions of a 2D harmonic oscillator,

�u;l ¼
1ffiffiffiffiffiffi
2p
p eilfRu;lð

ffiffiffi
l
p

rÞ ð29Þ

where Ru;l are defined by Eq. (8). Applying the operator Nz [Eq. (12)] onto the

product of asymptotic electronic basis functions (28) and rovibrational functions

(29) one obtains

Nzc
�
0 �u;l ¼ ðlþ �Þc�

0 �u;l Nzc
��
0 �u;l ¼ ðl� �Þc��0 �u;l ð30Þ

Thus, for a particular value of the good quantum number K, the only possible

values for l are K � �. The matrix representation of the model Hamiltonian in

the linear basis, obtained by integrating over the electronic coordinates and f, is

thus

H�;� ¼ Vþ þ V�

2
� 1

2
T1

q2

qr2
þ T2

q
qr
þ T0

� �

þ A K2 þ Cþþ þ C��

2
� 2KBþ�

� �
þ �Bþ�Aso

H��;�� ¼ Vþ þ V�

2
� 1

2
T1

q2

qr2
þ T2

q
qr
þ T0

� �

þ A K2 þ Cþþ þ C��

2
þ 2KBþ�

� �
� �Bþ�Aso

H�;�� ¼ Vþ � V�

2
¼ H��;�

ð31Þ

Employing simplifications arising from the use of asymptotic forms of the

electronic basis functions and the zeroth-order kinetic energy operator, we obtain

�V � 1
2m

q2

qr2 þ 1
r

q
qr�

ðK��Þ2
r2

h i
þ ��Aso

Vþ � V�

2
Vþ � V�

2
�V � 1

2m
q2

qr2 þ 1
r

q
qr�

ðKþ�Þ2
r2

h i
� ��Aso

0
BB@

1
CCA

�V � Vþ þ V�

2

ð32Þ
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The diagonal elements of the matrix [Eqs. (31) and (32)], actually being an

effective operator that acts onto the basis functions Ru;l, are diagonal in the

quantum number l as well. The factors expð�2i�fÞ [Eqs. (27)] determine the

selection rule for the off-diagonal elements of this matrix in the vibrational

basis—they couple the basis functions with different l values with one another

(i.e., with l0 ¼ l� �).

The matrices (24) and (31) [or Eqs. (25) and (32)] are equivalent—one can

be obtained from another by a unitary transformation. They reflect the two ways

of interpreting the R–T effect mentioned in Section II [(2) and (1) respectively].

We employ the general scheme presented above as a starting point in our dis-

cussion of various approaches for handling the R–T effect in triatomic mole-

cules. We find it reasonable to classify these approaches into three categories

according to the level of sophistication at which various aspects of the problem

are handled. We call them (1) minimal models; (2) pragmatic models; (3) ben-

chmark treatments. The criterions for such a classification are given in Table I.

In Table I, 3D stands for three dimensional. The symbol r2� symbol in con-

nection with the bending potentials means that the bending potentials are consi-

dered in the lowest order approximation; as already realized by Renner [7], the

splitting of the adiabatic potentials has a r2� dependence at small distortions of

linearity. With ‘‘exact’’ form of the spin–orbit part of the Hamiltonian we mean

the microscopic (i.e., nonphenomenological) many-electron counterpart of, for

example, The Breit–Pauli two-electron operator [22] (see also [23]).

Let us stress immediately that ‘‘minimal’’ must not be understood in a

pejorative sense: Frequently it is more difficult to develop a simple model

TABLE I

Model Minimal Pragmatic Benchmark

Bent–stretch Neglected Indirectly Full 3D vibrational

coupling treatment

b,c Rotations Separated Separated Full vibrational–rotational

treatment

Bending potential r2� Fully anharmonic

Kinetic energy Small amplitude Large amplitude Exact

Good quantum K, P, J K, P, J J

numbers

hLzi, hL2
z i Integer Integer ‘‘Exact’’

Hso Phenomenologic Phenomenologic ‘‘Exact’’

Other electronic Neglected Neglected Accounted for

states

Approach Perturbative Numerical/variational Numerical/variational
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incorporating essential features of a phenomenon (as, e.g., those by Köppel et al.

[13,14]) than to carry out the most complex computations employing highly

sophisticated but straightforward approaches. We refer ‘‘benchmark’’ to those

approaches that do not involve any a priori approximation (like, e.g., neglect or

indirect handling of the bend–stretch coupling), except of those not playing a

significant role in chemical problems (as, e.g., relativistic effects beyond

spin–orbit coupling). It should also not be thought that the results of

‘‘benchmark’’ calculations are necessarily more accurate than those achieved

in a ‘‘pragmatic’’ handling (as, e.g., in the framework of the approach developed

by Jungen and Merer [24–27]). We shall discuss this topic in Sections III.C–

III.H. Before doing that, we consider, in Section III.B, the spectroscopic aspects

of the R–T effect combined with spin–orbit coupling.

B. Spectroscopic Features

In this section, we briefly discuss spectroscopic consequences of the R–T

coupling in triatomic molecules. We shall restrict ourselves to an analysis of the

vibronic and spin–orbit structure, determined by the bending vibrational

quantum number u (in the usual spectroscopic notation u2) and the vibronic

quantum numbers K, P.

1. Vibronic Coupling in Singlet States of Linear Molecules

Let us consider a singlet � electronic species (right-hand side of Fig. 1) and first

assume that the magnitude for the splitting of the potential surfaces upon bending

is negligible, that is, that the electronic state remains degenerate at small-

amplitude bending vibrations (this degeneracy is ‘‘accidental,’’ because it does

not follow for symmetry reasons), and that the bending potential is harmonic.

The bending potential then has the same form as that presented on the left-hand

side of Fig. 1 (top), representing a � electronic state, but it consists of two

potential energy surfaces coinciding with each other. In the � state, we also

have the electronic angular momentum besides the vibrational state. In the

(hypothetical) case we consider (no splitting of the potential surfaces),

the presence of the additional electronic angular momentum has no effects on

the position of vibronic energy levels. That becomes obvious if we look at matrix

(32)—its off-diagonal elements vanish in this case. On the other hand, the

number of levels is doubled. Furthermore, the presence of two angular momenta

has as a consequence that the vibronic levels have to be classified according to

the quantum number corresponding to their sum being the only angular

momentum that commutes with the Hamiltonian. A simple bookkeeping shows

that the lowest lying (nondegenerate) vibrational level of the � electronic state,

characterized with the quantum numbers u ¼ 0, l ¼ 0, correlates with the

(doubly degenerate) u ¼ 0, K ¼ 1 level of the � state, that the u ¼ 1, l ¼ 1 level
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of � state corresponds, to the manifold of two K ¼ 0 and a K ¼ 2, u ¼ 1 levels

of the � electronic species and so on.

Now, let us consider a realistic case when the splitting of the potential

surfaces is small, but not negligible. These potentials are drawn on the left-hand

side of Figure 1, bottom (they correspond quantitatively to the A3�u state of

NCN [28,29]), and on the right-hand side of both the bottom and the top part of

Figure 1. Besides, the mean potential is depicted on the right-hand side, having

the same form as the potential on the left-hand side of Figure 1, top, that we

considered in the above discussion. All potentials are assumed to be harmonic.

On the right-hand side of Figure 1 are also displayed the vibronic energy levels

for the A3�u state of NCN (corresponding to the value zero of the spin quantum

number).

The bottom part of Figure 1 corresponds to the ‘‘bent’’ and the upper part to

the ‘‘linear’’ point of view in interpreting the R–T effect. The right-hand side of

the upper part shows how the splitting of the potential surfaces affects the

positions of vibronic levels; so, for example, the three u ¼ 1 levels now have

different energies, and the only degeneracy that remains is that of the two

components (K ¼ 2 and �2) of the jKj ¼ 2 vibronic level. The two K ¼ 0

levels differ in their symmetry with respect to reflection in the molecular plane

(þ=�). The K ¼ 2 level has the energy close to that of the unperturbed

vibrational level u ¼ 1; l ¼ 1. This is a general characteristic of the lowest lying

level (‘‘unique’’ level [8]) for each K 6¼ 0 vibronic series. The explanation is

simple: While the other u, K 6¼ 0 vibronic species result in the first

approximation from the interaction between the u, l ¼ K � � (� ¼ 1 in the

present case) and u, l ¼ K þ � sublevels, the unique levels, for which

K ¼ uþ �, correspond exclusively to u, l ¼ K � � unperturbed levels, because

the u, l ¼ K þ � ¼ uþ 2� levels do not exist (remember that jlj � u).

The ‘‘bent’’ point of view offers the explanation of one other aspect of the

vibronic energy pattern presented. On the left-hand side of the bottom part of

Figure 1 are presented the bending levels for two � electronic states having the

same potential surface as the components of the � state considered. This

situation can be looked upon as a particular case, � ¼ 0, of the matrix

representation (25); the coupling between the electronic states vanishes and

each of them has its own bending levels with the pattern analogous to that on the

left-hand side of Figure 1, top. The difference in the vibronic structure of two �
and a � electronic state is caused by the presence of the off-diagonal elements

of the matrix (25) in the latter case. However, even in � electronic states the off-

diagonal elements vanish for the particular case K ¼ 0 and these vibronic levels

belong exclusively to one of the adiabatic electronic states. This is indicated

symbolically on the right-hand side of Figure 1 by the corresponding energy

level lines matching exactly one of the adiabatic potential curves. The þ=�
symmetry of a K ¼ 0 level is determined by the symmetry of the adiabatic state
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it belongs to (þ for A1, B2, A0, � for B1, A2, A00). Because for � electronic states

� ¼ 1, these levels coincide exactly with the l ¼ 1 (i.e., K ¼ 1) levels of one of

the � electronic species. The existence of vibrational levels not being perturbed

by the vibronic coupling is of great importance for spectroscopists, because it

enormously facilitates the derivation of the shape of the adiabatic potential

surfaces from measured data.

All vibronic levels in spatially degenerate electronic states except K ¼ 0

species are more or less shared between both the adiabatic electronic states. The

unique levels are almost equally shared between two adiabatic electronic

states—their energetic position is such as if they belong to the mean adiabatic

potential (Vþ þ V�Þ=2. We indicate this on the right-hand side of Figure 1 by

the vibronic energy lines matching exactly with the mean potential curve. The

other K 6¼ 0 levels belong predominantly to a particular adiabatic electronic

state; this is indicated by the lines nearly matching one of the potential curves

on the right-hand side of Figure 1.

The situation in singlet � electronic states of triatomic molecules with linear

equilibrium geometry is presented in Figure 2. This vibronic structure can be

interpreted in a completely analogous way as above for � species. Note that in

� electronic states there is a single unique level for K ¼ 1, but for each other

K 6¼ 0 series there are two levels with a unique character.

2. Combined Vibronic and Spin–Orbit Coupling in Linear Molecules

Let us see now how the situation is changed in the presence of the spin–orbit

coupling. In the central part of Figure 3 are presented the low-lying vibronic

levels of the A3�u state of NCN, as obtained in recent ab initio calculations

[28,29]. On the left and right edge of the figure are displayed the bending

vibrational levels corresponding to the case when both the vibronic and spin–

orbit coupling are absent.

Going from left to right, we show in the second column the results of

calculations in which the spin–orbit constant is set to be Aso ¼ �37 cm�1 (as

computed in the mentioned studies) and the vibronic coupling is neglected

(e ¼ 0). The parameter e is the ‘‘Renner parameter,’’ defined for � electronic

states as the ratio of the (quadratic) force constants for the difference and

the sum of the adiabatic bending potentials. Inspection of the secular equation

(32) shows that in this case there exist three doubly degenerate effective bending

potentials, involving the mean electronic energy and the contribution from the

spin–orbit part of the Hamiltonian, with the energy spacing equal to jAsoj: The

lowest energy ones correspond to �ð¼ 1Þ, � ¼ 1 and ��, � ¼ �1; the next

two to �, � ¼ 0 and ��, � ¼ 0; and the highest energy pair to �, � ¼ �1 and

��, � ¼ 1. Each zeroth-order vibrational level with a particular value u is now

split into three levels, each one belonging to one of the effective potentials.

These levels are generally degenerate, involving all possible K species with the
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combinations of quantum numbers ��, � associated with the effective potential

in question. The exception are the u ¼ 0 levels, being nondegenerate (except for

the �jKj degeneracy).

Introduction of the vibronic coupling (e 6¼ 0) causes removal of the above

degeneracy and leads to the general vibronic–spin–orbit pattern presented in the

central part of Figure 3. Each vibronic level is characterized by a particular K

Figure 2. Relationship between bending vibrational structure in � electronic states and

vibronic structure in � states. Left, top: Bending vibrational structure in a � electronic state of a

triatomic molecule with linear equilibrium geometry. Left, bottom: Bending vibrational structure of

two � electronic states with the same minimum of bending potential curves. Right: Vibronic

structure of a � electronic state of a molecule with linear equilibrium geometry. Solid curve:

Bending potential curve for the lower lying adiabatic electronic state. Dashed curve: bending

potential curve for the upper adiabatic electronic state. Dash–dotted curve: mean bending potential.

Bending vibrational structure in a � electronic state of a triatomic molecule with linear equilibrium

geometry. Solid horizontal lines: l ¼ 0 vibrational levels for � electronic states, K ¼ 0 vibronic

levels for � electronic state. Dashed horizontal lines: l ¼ 1 and K ¼ 1 levels. Dash–dotted lines:

l ¼ 2 and K ¼ 2 levels. Dotted lines: l ¼ 3 and K ¼ 3 levels. Vibrational levels are assigned by the

quantum numbers u2. The u�2 and uþ2 quantum numbers at the bottom left part of the figure denote

vibrational levels belonging to the lower and upper � electronic state, respectively.
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and P ¼ K þ � quantum number (i.e., by a particular K, � combination). The

exception represents the K ¼ 0, P ¼ �1 levels remaining degenerate with each

other. In the case when the vibronic coupling is weak compared to the spin–orbit

coupling (eo� Aso) the coarse structure of the spectrum is determined by the

spin–orbit effects. This is illustrated in Figure 3 with the case e ¼ �0:0085

Figure 3. Low-energy vibronic spectrum in a 3� electronic state of a linear triatomic molecule,

computed for various values of the Renner parameter e and spin–orbit constant Aso (in cm�1).

The spectrum shown in the center of figure (e ¼ �0:17; Aso ¼ �37cm�1) corresponds to the A3�u

state of NCN [28,29]. The zero on the energy scale represents the minimum of the potential energy

surface. Solid lines: K ¼ 0 vibronic levels; dashed lines: K ¼ 1 levels; dash-dotted lines: K ¼ 2

levels; dotted lines: K ¼ 3 levels. Spin–vibronic levels are denoted by the value of the corresponding

quantum number PðP ¼ K þ �; note that � is in this case spin quantum number).
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(corresponding to eo ¼ �4:5 cm�1Þ;Aso ¼ �37 cm�1; note, for example, that

the u ¼ 1, K ¼ 0 levels are divided into three pairs of close-lying levels, with

successive energetic separation between these pairs nearly equal to the value of

the spin–orbit constant.

Now, let us consider the rising of the vibronic–spin–orbit structure from the

‘‘opposite side,’’ that is, when the vibronic interaction is dominant compared to

the spin–orbit coupling (right-hand side part of Figure 3). The structure of

the vibronic spectrum for the nonzero value of the Renner parameter (in the

concrete case e ¼ �0:17) and Aso ¼ 0 has been disussed above (Fig. 1).

The only difference is that each vibronic level is now threefold spin degenerate.

When an additional weak spin–orbit interaction is added [Fig. 3, e ¼ �0:17,

Aso ¼ �5 cm�1 (arbitrary choice)], the spin degeneracy of the vibronic levels is

removed, but the energy pattern is quite different from that corresponding to the

oposite case of strong spin–orbit and weak vibronic coupling, discussed above.

The coarse structure of the spectrum is the same as in the case of no spin–orbit

coupling, with the latter interaction causing a relatively small additional

splitting of vibronic levels. This splitting is maximally pronounced in unique

levels, where it is nearly equal to the value of Aso, and almost negligible in

nonunique levels. This is a consequence of the composition of the

corresponding wave functions. In the first approximation, the magnitude of

the spin–orbit splitting is given by Aso hLzi, where hLzi is the mean value of the

electronic angular momentum operator in the vibronic state considered. While

the unique level belongs almost exclusively to a single diabatic electronic

state (þ�) and thus hLzi is nearly equal to � for it, the other levels belong

predominantly to a particular adiabatic electronic species, or, in other words

they are nearly equally shared between the diabatic states þ� and �� with the

result that hLzi is close to zero in them. Each K ¼ 0 level, being threefold spin

degenerate at Aso ¼ 0, splits at nonvanishing spin–orbit coupling into two

levels; the single one corresponds to � ¼ 0 (i.e., K ¼ P ¼ 0), and the twofold

degenerate level involvs �� 1 spin states. The latter vibronic states cannot be

exactly classified into þ and � species according to their behavior upon

reflections in symmetry planes.

When the vibronic and spin–orbit coupling are comparably strong, as in the

A3�u state of NCN (actually, although eo and Aso are in this case of the same

magnitude order, the former quantity is roughly by a factor of 3 largen than the latter),

the coarse structure of the part of the spectrum corresponding to a particular

quantum number u is characterized by (1) a relatively large energetic separation

of the unique level from its nonunique counterparts; (2) relative proximity of

nonunique levels with different K values; (3) relatively large spin–orbit splitting

(roughly equal to the magnitude of Aso) of the unique level; (4) an efficiently

quenched spin–orbit splitting in other levels. Figure 4 presents the ab initio

computed dependence of the spin–orbit splitting in K ¼ 1 and 2 levels on the
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value of the bending quantum number u. It shows a ‘‘sawtooth’’ pattern,

reflecting the erratic change of the vibronic mean value for the electronic

angular momentum from one level to the other, typical for such systems (see

also [26]).

The above results of ab initio calculation for the A3�u state of NCN

(completed by those employing hypothetical values for e and Aso) correspond to

the schematic presentation of the effect of combined vibronic and spin–orbit

couplings onto the spectral structure of 3� states of linear triatomics, carried out

by Hougen [32] and reproduced in Herzberg’s book (see Fig. 9 and

accompanied discussion in [5]). A more detailed insight can be achieved by

inspecting the perturbative formulae given in Appendix A.

The vibronic structure of a 3� electronic state at variable strengths of the

vibronic and spin–orbit coupling is presented in Figure 5. The splitting of the

Figure 4. Spin–orbit splitting in K ¼ 1 and 2 vibronic levels of the A3�u state of NCN. Solid

lines connect the results of calculations that employ ab initio computed potential curves [28]. For

comparison the results obtained by employing experimentally derived potential curves (dashed lines)

[30,31] are also given. Full points represent energy differences between P ¼ K � 1 and P ¼ K spin

levels, and crosses are differences between P ¼ K þ 1 and P ¼ K levels.
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adiabatic bending potential curves is assumed in to be in the form

Vþ � V� ¼ cr4. Note that in � states the maximal splitting of the vibronic

levels upon spin–orbit coupling (taking place in unique levels) is 2Aso. The

vibronic structure of the 3� electronic state is not considered explicitly in

Herzberg’s book.

Figure 5. Low-energy vibronic spectrum in a 3� electronic state of a linear triatomic

molecule. The parameter c determines the magnitude of splitting of adiabatic bending potential

curves, Aso is the spin–orbit coupling constant, which is assumed to be positive. The zero on the

energy scale represents the minimum of the potential energy surface. ———— : K ¼ 0 vibronic

levels; - - - - - - : K ¼ 1 levels; — � — : K ¼ 2 levels; . . . . . . . . . :K ¼ 3 levels; — . . . — : K ¼ 4

levels; . . . — . . . : K ¼ 5 levels. Spin-vibronic levels are denoted by a minus (� ¼ �1) , zero

(� ¼ 0), or plus (� ¼ þ1). Note that � is in this case spin quantum number.
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3. Renner–Teller Effect in Nonlinear Molecules

Now, we discuss briefly the situation when one or both of the adiabatic electronic

states has/have nonlinear equilibrium geometry. In Figures 6 and 7 we show two

characteristic examples, the X2�u state of BH2 and NH2, respectively. The BH2

potential curves are the result of ab initio calculations of the present authors

[33,34], and those for NH2 are taken from [25].

Let us first list the common characteristics of both systems. First at all, it is

clear that in these case the ‘‘bent point of view,’’ as defined above, is a logical

starting point in the discussion, particularly for the NH2 case. Except in the

neighborhood of the joint point of the potential curves at linear geometry, the

energy separation of the adiabatic electronic states is so large that the reliability

of the BO approximation is in a large area of molecular geometries not

threatened. This is reflected also in the structure of the vibronic secular equation

(25): For large value of the bending coordinate r, the off-diagonal elements

Figure 6. Bending potential curves for the X2A1; A2B1 electronic system of BH2 [33,34]. Full

hotizontal lines: K ¼ 0 vibronic levels; dashed lines: K ¼ 1 levels; dash–dotted lines: K ¼ 2 levels;

dotted lines: K ¼ 3 levels. Vibronic levels of the lower electronic state are assigned in ‘‘bent’’

notation, those of the upper state in ‘‘linear’’ notation (see text). Zero on the energy scale

corresponds to the energy of the lowest vibronic level.
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become small compared to their diagonal counterparts. In the energy region

below the joint point, the lower electronic state practically does not feel the

existence of its higher energy counterpart. While the K vibronic energy pattern

in linear molecules (see Section III.1) is analogous to that of a slightly perturbed

2D harmonic oscillator, with the levels of a particular K series associated with

either even or odd vibrational quantum numbers u (which means that the

spacing between two neighboring K levels is 2o), the K structure of the lower

electronic states of BH2 and NH2 in the energy region below the barrier to

linearity is a typical rotational one: For each vibrational level there are sublevels

Figire 7. Bending potential curves for the X2B1; A2A1 electronic system of NH2 [25]. Full

horizontal lines: K ¼ 0 vibronic levels; dashed lines: K ¼ 1 levels. Zero on the energy scale

corresponds to the energy of the lowest vibronic level.
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corresponding to all possible K quantum numbers, with the spacing between

successive sublevels being much smaller than that between neighboring

vibrational levels, and increasing roughly quadratically with an increase of K.

This structure corresponds to the Hamiltonian consisting of the sum of operators

for a one-dimensional (1D) harmonic oscillator and a 1D free rotator with the

moment of inertia I ¼ 1=mr2
e , where re represents the equilibrium value of

the bending coordinate r for the state in question. The gradual transformation of

the Hamiltonian we use is easy to explain: First, if we change the volume

element from rdr (as asummed above) into dr, the term in the kinetic energy

operator involving the first derivative of r [for the following qualitative analysis

it suffices to consider its simple form given by Eq. (5)] disappears; in the region

around the equilibrium geometry of a bent state the molecule vibrates with

small amplitudes so that we can replace r in the expression 1=r2 by re. Thus the

complete kinetic energy operator becomes of the form T ¼ �1=2m q2=qr2

�1=ðmr2
eÞ q2=qf2, while the potential, in the quadratic approximation, is

1
2

k ðr� reÞ2. The spin–orbit splitting of the levels far below the barrier to

linearity is small and regular (Hund’s case b).

With increasing quantum number u, that is, by approaching the barrier to

linearity, the spacing between vibrational levels generally diminishes, reaching

minimum in the vicinity of the barrier, as first observed by Dixon [35]. At the

same time, the K pattern becomes irregular, reflecting the gradual change of the

rotational structure of the bent molecule into the linear molecule vibrational

structure. The most spectacular manifestation of this is that at the energy close

to that of the joint point of two adiabatic potentials, the K ¼ 1 level of the lower

electronic state falls below its K ¼ 0 counterpart corresponding to the same

quantum number u (see also [8] and [24]).

A consequence of the reordering of vibronic levels described above is the

ambiguity concerning the definition of the bending vibrational frequency and

the corresponding quantum number u (one should not wonder about that; such

problems are always possible when one uses ‘‘bad’’ quantum numbers; more

seriously, the quantum numbers not exactly determining the eigenvalues of

the complete Hamiltonian of the system considered). In a bent molecule,

the vibrational frequency is (nearly) equal to the separation of two neighboring

levels with the same rotational quantum number. In a linear molecule this

energy difference is divided by 2. What about the energy region around the

barrier? Formally, the problem could be solved by accepting either the former or

the latter definition and by employing it consequently. We can label each series

of K levels beginning from the lowest one with the running number u. This is

what is called ‘‘bent notation’’ (ub
2 in Fig. 6). However, if we do that, we have

the situation that above the barrier to linearity the energy difference between the

vibronic levels with the same quantum number u (and different K) is

comparable to the bending frequency. But the main role of a quantum number
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associated with the Hamiltonian is just to give at least rough information about

the energy of the level labeled by it. That is the reason that besides this ‘‘bent

notation’’ the ‘‘linear notation’’ is also employed, the latter one assuming a 2D

harmonic oscillator as the zeroth-order problem. In Figure 6, we label in this

way (ul
2) the levels of the upper electronic state. Note that the problem with two

notations, none of them being universally satisfactory, is a consequence of

large-amplitude bending vibrations the in course of which a molecule with bent

equilibrium geometry passes though the linear nuclear configuration, and thus

appears also in electronic states (�) not exhibiting the R–T effect. The

relationship between the vibrational quantum numbers is simple, ulin
2 ¼ 2 ub

2 þ jlj
(in order to avoid confusion with the quantum number l we use here superscript

‘‘lin’’ for ‘‘linear’’), but unfortunately they are many papers in which it has not

been explicitly quoted which notation has been meant.

In the upper electronic state, the BH2 molecule has linear equilibrium

geometry. This has as a consequence a peculiar vibronic structure: The lowest

lying level belonging to this state is a K ¼ 0 species with the energy of 2o
(linear notation). That is so, because it correlates with the lowest lying l ¼ 1

(ulin ¼ 1) vibrational level. This fact has been overlooked in early ab initio

studies on BH2 [36], which has contributed to the misstatement that the theory

has failed to reproduce the experimental findings reliably [37] in this apparently

simple case (with only seven electrons, BH2 is the smallest polyatomic molecule

whose spectrum has been analyzed in detail thus far). On the other hand, the

upper electronic state of NH2 shows a typical example of quasilinearity, with a

single vibrational level lying below the joint point of adiabatic electronic states

at linear geometry.

An important difference between the weak and strong R–T effect is that in the

latter case there are no levels with clearly pronounced unique character. Instead,

for each K 6¼ 0 value there are several levels in the energy region around the

joint point of the potential surfaces that share among themselves the unique

character, in the sense, for example, that their spin–orbit splitting, while being

much smaller than the value of the spin–orbit coupling constant, is appreciably

larger than that for the levels that belong predominantly to a particular adiabatic

electronic state. This is reflected in Figure 6 by missing of the u2 ¼ 0, K ¼ 1

vibronic level attributed to the upper electronic state.

As mentioned above, the R–T coupling in the systems with one or both

adiabatic electronic states having bent equilibrium geometry is in general

pronounced only in the neighborhood of the joint point of the potential surfaces.

The exception represents the cases when a vibrational level belonging to the

lower potential surface lies accidentally close to a counterpart of the upper

electronic state. Note that ‘‘pragmatic’’ approaches that use pure ab initio

calculated potential surfaces (as, e.g., those employed by the present authors)

generally fail to describe such Fermi-type (local) interactions reliably, because
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the restricted accuracy of the potential surfaces (errors of typically several

hundred reciprocal centimeters) and neglect or approximate handling of some

interactions (e.g., bend-stretch) consequently have inherent under- or over-

estimating of the energy gap between such levels [16,17].

C. Choice of Hamiltonian

We find it convenient to reverse the historical ordering and to start with (nearly)

exact nonrelativistic vibration–rotation Hamiltonians for triatomic molecules.

From the point of view of molecular spectroscopy, the optimal Hamiltonian is

that which maximally decouples from each other vibrational and rotational

motions (as well different vibrational modes from one another). It is obtained by

employing a molecule-bound frame that takes over the rotations of the complete

molecule as much as possible. Ideally, the only remaining motion observable in

this system would be displacements of the nuclei with respect to one another, that

is, molecular vibrations. It is well known, however, that such a program can be

realized only approximately by introducing the Eckart conditions [38].

Xn

A¼1

mAðr0
A � rAÞ ¼ 0 ð33Þ

where mA represents the mass of the nucleus A, rA is the instantaneous position,

and r0
A its equilibrium position in the moving frame. The parameter n is the

number of nuclei. The fulfillment of condition (33) ensures decoupling of

vibrations from rotations (only) at infinitesimal vibrations. The corresponding

quantum mechanical vibration–rotation Hamiltonian in terms of the (vibrational)

normal coordinates was derived by Wilson et al. [39,40], and simplified by

Watson [41,42]; we shall refer to it as the EWW Hamiltonian. It has (for

molecules with nonlinear equilibrium geometry) the form

H ¼ 1

2

X
a;b

mabðJa � pa � La � SaÞðJa � pa � La � SaÞ

þ 1

2

X3n�6

r

P2
r �

1

8

X
a

maa þ V ð34Þ

where m�1
ab (a; b ¼ x; y; or z) represents the element of a matrix that is nearly

equal to the instantaneous moment of inertia matrix; Ja; pa; La; Sa are the

components of the total, vibrational, electronic, and spin angular momentum

operator respectively; Pr is the momentum conjugate with the normal

coordinates Qr; and V is the potential for vibrational motion expressed in terms

of Qr. The natural handling of the corresponding Schrödinger equation is to

expand mab and V in Taylor series in Qr about the equilibrium geometry and to

apply the perturbation theory.
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Use of the Hamiltonian where the vibrational and rotational motions, as well

as different vibrational modes, are maximally decoupled from one another

should be expected to enable the most consequent realization of the main idea

followed in a theoretical, particularly ab initio treatment of the R–T effect,

namely, to separate the variables in the Schrödinger equation as much as

possible from one another before the actual computations are started. However,

while the separation of the nuclear from electronic coordinates in the framework

of the BO approximation is practically always carried out (at least as the starting

point), the EWW scheme in not the only possible and often not even the most

convenient for the treatment of the vibration–rotation problem. First, let us

stress that the Eckart’s approach assumes the existence of a relatively deep

minimum on the potential surface, being well separated from all other (local)

minima. Second, the EWW Hamiltonian has the serious drawback that it has

different forms for molecules with nonlinear and linear equilibrium geometry.

Both of these facts cause difficulties in the description of quasilinear molecules.

Furthermore, the nature of interaction between certain vibrational and rotational

modes is sometimes such that they have to be treated simultaneously, as, for

example, between the bending vibrations and the z-axis rotations in the R–T

effect. It should also be mentioned that the form of the normal coordinates is not

known in advance and that the transformation of the potential, normally

computed as a function of some internal coordinates into the series in normal

coordinates is complicated by the fact that the transformation from internal into

normal coordinates is nonlinear for noninfinitesimal vibrations [43]. Application

of the EWW formalism, being predestinated for a perturbative treatment, loses

much of its attractiveness if one intends to solve the complete (or a part) of the

vibration–rotation problem by a variational approach. Therefore, it is often

advantageous to abandon the Eckart constraints and the use of normal

coordinates in order to gain additional flexibility that can be utilized for

designing more convenient forms for the particular parts of the Hamiltonian

(e.g., to avoid some unpleasant singularities in the vibrational Hamiltonian

[44]); furthermore, this enables derivation of explicit analytical expressions for

the vibrational–rotational Hamiltonian, as will be shown below. Although some

of the disadvantages mentioned above have disappeared in the last few years (so

Estes and Secrest [45] derived a unified variant of the Watson’s Hamiltonian

valid for both nonlinear and linear molecules—the present authors are not able

to judge whether it is correct; Wei and Carrington [46] recently presented an

exact Eckart-embedded kinetic energy operator in bond coordinates for

triatomic molecules; for a review of other various possibilities see, e.g., [47]),

for the reasons mentioned above the complete EWW Hamiltonian seems to

never have been used in handling the R–T effect.

An alternative form of exact nonrelativistic vibration–rotation Hamilto-

nian for triatomic molecules (ABC) is that used by Handy, Carter (HC), and
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co-workers [48–51]. It is given in terms of the geometrically defined vibrational

coordinates, we denote by r1, r2, and W. The parameter r1 is the instantaneous

value of the distance between the nuclei A and B, r2 the distance between C

and B, and W is the instantaneous ABC bond angle (W ¼ p� r; this symbol

should be not confused with the electronic angular coordinate y). The molecule-

fixed axes are defined such that the molecule lies in the zx plane with the x axis

(being parallel to the axis) bisecting the ABC angle and the A nucleus lying in

the positive zx quadrant. Thus the z axis coincides with the molecular axis at

linear nuclear arrangements. The apparently arbitrary choice of the coordinate

axes might look strange; it is not motivated by physical reasons, that is, it does

not worry about the strength of the coupling between different motion modes.

This becomes understandable in terms of a statement by HC: ‘‘. . . we are not

interested in least squares fit procedures for the identification of spectra, and it is

possible to label our states from the energies we obtain . . .’’ [50]. The origin of

this Hamiltonian is not quite clear: In the first paper in which they used it [48],

HC claimed that they had taken it over from Carney et al. [52] (and transformed

to the volume element sinW dr1 dr2 dW, in our notation) The latter authors also

mention Lai and Hagstrom, but the trace is lost somewhere in the library of

Indiana University [53]. It is, however, of little importance who the actual author

of this Hamiltonian is, because a derivation of such a vibration–rotation

Hamiltonian for triatomic molecules employing the chain rule for transforma-

tion of the derivatives in Cartesian space-fixed coordinates into curvilinear

internal coordinates, using the Podolsky approach [54] (see also [55]) for trans-

forming the classical Hamiltonian in curvilinear coordinate into its quantum-

mechanical counterpart, or a combination of both methods (see, e.g., [56]) is not

a serious problem (even if it is carried out without the use of computer algebra).

The real contribution of HC was to show how to solve the corresponding

Schrödinger equation, particularly in the presence of vibronic coupling.

The (kinetic energy part of the) Hamiltonian we are speaking about can be

written in the following form:

T ¼ TV þ TVR ð35Þ
with

TV ¼ �
1

2m1

q
qr2
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and

TVR ¼
1
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with

m1 ¼
mAmB

mA þ mB

m2 ¼
mBmC

mB þ mC

ð38Þ

In Eq. (37) �J, L, and S are the total, electronic, and spin angular momentum,

respectively, all of them defined with respect to the molecule fixed-coordinate

axes. In order to avoid problems with the anomalous commutation relations for

the components of the total angular momentum, it is following Van Vleck [57]

replaced in (37) by its counterpart with a negative sign. (Note that Handy and co-

workers prefer to change the sign of J rather than signs of the internal momenta L
and S, as suggested in the original paper by Van Vleck; for a discussion of this

matter see [58] and [59].

The approaches for treating the vibration–rotation problem employing two

types of Hamiltonians as described above lead to considerable computational

requirements in larger molecules (already for a tetraatomic molecule the

potential surface depends on six vibrational coordinates) and/or if some of the

vibrational modes are characterized by large amplitudes. For this reason,

another strategy is also applied. The vibrational modes are divided into two

classes: to the first belong those that are accompanied by relatively small

displacements of the nuclei and can easily be handled perturbationally (or even

in the harmonic approximation); the second class is build by the vibrational

modes for which a large-amplitude handling is necessary, so that they require a

more sophisticated treatment. So, for example, in quasilinear molecules

(particularly triatomics and tetraatomics, considered in the present study) the

bending vibration(s) play(s) a special role. Quite frequently in electronic spectra

one observes relatively long progressions in the bending mode, because the

equilibrium angles could have very different values in various electronic states,
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in contrast to the bond lengths, which generally vary less from state to state.

This makes a large-amplitude treatment for the bending motion imperative,

while the stretching motions can usually be assumed to occur with small

amplitudes. Another peculiarity of the bending mode is its relation to the

rotations: When a molecule during the bending vibrations approaches linear

geometry, a gradual transformation of one of its rotational degrees of freedom

into the degenerate bending vibration takes place. Both of these facts play

crucial roles in the R–T effect. Such situations have motivated a number of

authors to develop various methods in which the emphasis is placed on an

accurate treatment of the effective bending problem, while the other nuclear

modes are treated more or less conventionally. Among those, the greatest

popularity enjoys the approach introduced for triatomic molecules by Hougen,

Bunker and Johns (HBJ) [60] and developed further by Bunker and his co-

workers, particularly Jensen [61–67].

In the formalism of Bunker et al., the so-called reference configuration plays

the role that has the equilibrium configuration in the EWW scheme. It

is characterized by fixed bond lengths and the variable valence angle, and is

chosen such that the bending motion at each value of the bending coordinate r
is minimally coupled with the stretching vibrations. This is achieved by

introducing in addition to (33) (with the equilibrium configuration replaced by

reference configuration) the Sayvetz [68] condition,

X
a;i

miðai � aref
i Þ

qai

qr
¼ 0 ð39Þ

where ref stands for ‘‘reference.’’ In analogy with the EWW scheme, the

molecular potential and the elements of the m-matrix are expanded around the

reference configuration into Taylor series in the two stretching normal

coordinates, with the coefficients depending on r,

mab ¼ mref
ab �

X
g;d;r

mref
agagd

r mref
dbQr

V ¼ V0ðrÞ þ
X

r

VrQr þ
1

2

X
r

lrQ
2
r þ

1

6

X
r;s;t

VrstQrQsQt þ � � �
ð40Þ

[The appearance of the (normally small) linear term in V is a consequence of the

use of reference, instead of equilibrium configuration]. Because the stretching

vibrational displacements are of small amplitude, the series in Eqs. (40) should

converge quickly. The zeroth-order Hamiltonian is obtained by neglecting all but

the leading terms in these expansions, mref
ab and V0ðrÞ þ 1=2

P
lrQ

2
r and has the
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form

H0 ¼ 1

2

X
a;b

mref
abJaJb þ

1

2
mrrJ2

rr þ V0ðrÞ ð41Þ

where Jr ¼ �i q=qr and mrr is the inverse of the ‘‘reduced mass’’ for the large

amplitude bending vibrations. The Hamiltonian (41) is an essentially 1D

operator (in r). The coupling between r and the other degrees of freedom can be

taken into account perturbationally [62,64], or indirectly as in the framework of

the semirigid beneder model by Bunker and Landsberg [63], by allowing the

bond lengths to vary smoothly with changes in r an by correcting correspond-

ingly the potential V0ðrÞ.

D. Minimal Models

In his classical paper, Renner [7] first explained the physical background of the

vibronic coupling in triatomic molecules. He concluded that the splitting of the

bending potential curves at small distortions of linearity has to depend on r2�,

being thus mostly pronounced in � electronic state. Renner developed the

system of two coupled Schrödinger equations and solved it for � states in the

harmonic approximation by means of the perturbation theory.

For a long time, Renner’s paper had been unique. There are two main reasons

for this: There have been no reliable experimental results that could have

confirmed Renner’s predictions and, on the other hand, this work has been

carried out so thoroughly that there have been no reasons to try to improve it.

The situation changed almost 25 years later, but it changed completely. In 1957–

1958 Dressler and Ramsay [9,10] carried out a detailed vibrational and

rotational analysis of the absorption spectrum of NH2 and attributed it to an

electronic transition from the ground state in which the molecule is bent, to an

exited state in which the molecule ‘‘vibrates about a linear configuration.’’ They

stated that ‘‘The excited state exhibits a previously unobserved and complex

pattern of vibronic and rotational energy levels. The vibronic structure of this

pattern. . . may be understood if it is assumed that the combining states are

derived from a hypothetical � state. . . . The large splittings observed are due to

an interaction between electronic and vibrational motion of the type predicted

by Herzberg and Teller (1933) and discussed in detail by Renner’’ [10]. Thus

the experimental data, which Renner vainly had expected to find in the CO2

spectrum, were eventually available and, on the other hand, the type of the

splitting of the potential surfaces was not that which Renner had considered.

This situation motivated Pople and Longuet-Higgins [69] to extend Renner’s

work to the case when in the lower Renner–Teller component state the molecule

has a bent equlibrium geometry, and in the upper state it is linear. Before

skipping to this work, let us make, however, two small comments concerning

renner–teller effect and spin–orbit coupling 615



the above quotations. Note that Dressler and Ramsay did not explicitly state that

the equilibrium geometry of the upper state is linear; they found that the

vibrational structure clearly showed that NH2 behaves as a linear molecule

above the (0, 3, 0) level, which was the lowest observed one. They did not

exclude the possibility of a small potential maximum at the linear geometry.

The second point is that the theoretical work by Pople and Longuet-Higgins

paralleled the Dressler–Ramsay’s analysis of the spectrum, so that the results of

the former work were utilized to interpret the experimental findings.

Pople and Longuet-Higgins (PL–H) developed a model they described by

the words: ‘‘We shall adopt a simplified model. . . (which) incorporates the

essential features of the situation in, for example, the NH2 radical; that is to say,

the resulting equations of motion are mathematically equivalent to those

obtained by Renner from more sophisticated premisses’’ [69]. They restricted

the treatment to three degrees of freedom represented by the coordinates y, r,

and f (in our notation). The coordinate y was defined as the angular distance of

the odd electron around the molecular axis, as measured from a fixed plane. The

PL–H stated that it is ‘‘more properly regarded as the coordinate conjugate to

the axial momentum of all the electrons, but the simple interpretation is

physically more illuminating.’’ The model Hamiltonian was assumed in the

form H0 þ H0, where H0 is the Hamiltonian describing the molecule in the

absence of the vibronic coupling and H0 the term responsible for the R–T effect.

The operator H0 was assumed as the Hamiltonian for a 2D harmonic oscillator

with the eigenfunctions of the form

ju l� �i ¼ e�i�yeilfRu;lðrÞ ð42Þ

corresponding to the asymptotic form of the ‘‘linear basis’’ functions we defined

above (with the normalization factor absorbed in Ru;l). The coupling term H0 was

expanded into a series being a symmetric function on the relative angular

electronic coordinate a ¼ y� f,

H0 ¼ V0ðrÞ þ V1ðrÞ½eiðy�fÞ þ e�iðy�fÞ� þ V2ðrÞ½e2iðy�fÞ þ e�2iðy�fÞ� þ � � �
ð43Þ

where VmðrÞ was assumed to be of the order rm at r ! 0. The matrix

representation of the perturbation (43) in the electronic basis j��i ¼ 1=
pð2pÞ

exp (� i � y), with � ¼ 1 (for � electronic state) is

V0 V2e�2if

V2e2if V0

� �
ð44Þ

that is, only the constant and quadratic term from the expansion (43) contribute

to it. Diagonalization of the matrix (44) leads to the first-order energies
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Vþ ¼ V0 þ V2 and V� ¼ V0 � V2 (actually, effective operators acting onto

functions of r and f), corresponding to the zeroth-order vibronic functions of the

form cos ðy� fÞ and sin ðy� fÞ, respectively. PL–H computed the vibronic

spectrum of NH2 by carrying out some additional transformations (they found it

to be convenient to take the unperturbed situation to be one in which the bending

potential coincided with that of the upper electronic state, which was supposed to

be linear) and simplifications (the potential curve for the lower adiabatic

electronic state was assumed to be of quartic order in r, the vibronic wave

functions for the upper electronic state were assumed to be represented by sums

and differences of pairs of the basis functions with the same quantum number u
and l ¼ K � �) to keep the problem tractable by means of simple perturbation

theory; they are, however, of no direct concern to us. By deriving the parameters

entering their model from the experimental data for unperturbed K ¼ 0 vibronic

levels, PL–H succeeded in achieving a near coincidence between theoretical and

experimental results for all vibronic species. They concluded their paper with the

statement that their theory was ‘‘limited by a number of severe approximations.’’

Note that Brown and Jørgensen’s opinion about this model is not very favorable,

but for other reasons [12].

At this place, we make a chronological jump to comment on the paper by

Dixon [35], representing a direct continuation of the story about the NH2

spectrum. This work was motivated by new experimental results (unpublished at

that time) by Ramsay et al. for low-lying vibronic levels of the upper electronic

state. They indicated, particularly in connection with the predictions based on

the Walsh’s rules [70], that the upper state could have a slightly nonlinear

equilibrium geometry. Thus Dixon allowed both bending curves to have a

double minima. These potentials were approximated by a combination of

quadratic functions and Gaussian functions. The model was otherwise equivalent

to that of PL–H (both of them neglect the coupling of the bending vibrations

with the stretching modes and end-over-end rotations, as well as the spin–orbit

coupling, and employ the zeroth-order kinetic energy operator). The vibronic

problem was solved by diagonalization of a truncated infinite Hamiltonian

matrix using a computer. It was found that the molecule is in the upper

electronic state quasilinear (equilibrium bond angle of 144�), with only a single

K ¼ 0 level lying below the barrier to linearity. Dixon’s results significantly

improved the agreement between theory and experiment.

The first theoretical handling of the weak R–T combined with the spin–orbit

coupling was carried out by Pople [71]. It represents a generalization of the

perturbative approaches by Renner and PL–H. The basis functions are assumed

as products of (42) with the eigenfunctions of the spin operator corresponding to

values � ¼ �1=2. The spin–orbit contribution to the model Hamiltonian was

taken in the phenomenological form (16). It was assumed that both interactions

are small compared to the bending vibrational frequency and that both the
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vibronic quantum number K and the spin quantum number � are conserved. The

main conclusions following from this study were: the positions of K ¼ 0 levels

are shifted with respect to the case when the spin–orbit coupling is neglected

and their þ=� classification ceases to be precise; the lowest K 6¼ 0 levels are

due to the spin–orbit coupling split into pairs of levels, separated from each

other by the value of the spin–orbit coupling constant; all other K 6¼ 0 vibronic

levels are only slightly split through the spin–orbit interaction. Pople’s study

concerns doublet electronic states, but it can be modified straightforwardly to

other multiplicities. Unfortunately, formulas (3.7) and (3.8) in the original work

are erroneous as observed by Hougen, who corrected them in a subsequent study

[72] (see also [5]).

The expressions for the rotational energy levels (i.e., also involving the end-

over-end rotations, not considered in the previous works) of linear triatomic

molecules in doublet and triplet � electronic states that take into account a spin

orbit interaction and a vibronic coupling were derived in two milestone studies

by Hougen [72,32]. In them, the ‘‘isomorfic Hamiltonian’’ was introduced,

which has later been widely used in treating linear molecules (see, e.g., [55]).

The first handling of the R–T effect in a � electronic state of a triatomic was

carried out experimentally and theoretically by Merer and Travis [73]. It con-

cerned the A2� state of CCN. These authors derived the second-order perturba-

tive formulas for the combined effect of the weak vibronic and spin–orbit

couplings. The splitting of the bending potential curves due to the R–T inter-

action was assumed to involve a single term being of fourth order in the bending

coordinate; on the other hand, the mean adiabatic potential was assumed to be

harmonic. Curiously enough, also in this case the perturbative formulas printed

in the original reference were not correct (caused by a trivial error of a factor of

4 concerning the norm of the basis functions used, see [12]).

E. Pragmatic Models

We shall now comment in some detail on the approach developed by Barrow,

Dixon, and Duxbury (BDD) [74], historically the first one of those we classify in

the category of ‘‘pragmatic’’ ones. BDD extracted from the complete vibration–

rotation Hamiltonian the terms describing the bending vibrations and the z-axis

rotations. They employed the operator derived by Freed and Lombardi (FL) [75],

differing from Eqs. (35)–(37) in the choice of the molecule-bound coordinate

system. In the FL’s Hamiltonian, the axes of the moving system are attached to

the instantaneous principal moments of inertia of the molecule, being the optimal

choice for handling the molecular rotations. In the case of symmetric triatomics

(ABA) undergoing infinitesimal stretching vibrations, the axes of the HC’s

molecule-bound frame [48,50] coincide with those preferred by FL (note that the

last term in the FL’s operator H3 should be multiplied by 2 to become equal to the

correspond term in the HC Hamiltonian).
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The first form of the BDD Hamiltonian corresponds to the bending plus

z-rotation part of the FL Hamiltionian for symmetric (ABA) molecules,

supposed to undergo infinitesimal stretching vibrations. BDD corrected this

operator following the idea by FL that the high-frequency stretching vibrations

and the low-frequency bending can be handled in a way analogous to the

treatment of electronic and vibrational motions in the framework of the usual

BO approximation. Thus they carried out integration over the stretching

coordinates (assuming parametric dependence of the stretching vibrational

frequencies on the bending coordinate r) and incorporated the leading part of

the stretch–bend coupling, taken in the second-order perturbation theory, into

the bending Hamiltonian. This operator has nearly the same form as the zeroth-

order bending Hamiltonian by HBJ [60]. In handling the R–T effect, BDD

carried out a contact transformation, chosen to diagonalize all of the 2� 2

matrix, representing the effective bending operator, except the nuclear kinetic

energy operator. This ansatz unifies the ‘‘bent’’ and ‘‘linear’’ ones described

above: for small values of r the BDD secular problem reduces to (31), at large r
values to (24.). The bending potential energy curves were assumed to be that of

a harmonic oscillator perturbed by a Lorenzian hump, and the system of coupled

R–T equations was solved by the Cooley–Numerov numerical integration

technique [76]. The spin–orbit part of the Hamiltonian was assumed in the

phenomenological form (16). The end-over-end rotations were handled

separately. The B rotational constant was computed as an average value of

the expression involving the reciprocal value of the instantaneous principal

moment of inertia corresponding to the bisector of the valence angle. An

accurate calculation of the C rotational constant is somewhat more complex;

because of the Coriolis interaction, the factor multiplying the operator J2
y in the

expression (37) does not reduce to 1=ð2I0
yyÞ even if symmetric triatomics

undergoing infinitesimal stretching vibrations are considered. This becomes,

however, the case when the adiabatic transformation analogous to that described

above (for taking into account the stretch–bend interaction) is applied [75]; for a

more refined treatment see the original [74].

The BDD approach has been applied in a number of studies that employ the

parameters derived from the experimental findings [77–85]. The approach has

been extended by Duxbury an co-workers, particularly Alijah; in its present

version, involving the new stretch-bender Hamiltonian [84,85], which follows

the idea by HBJ [60], it approaches the methods we tentatively call ‘‘benchmark.’’

The approach developed by Jungen and Merer (JM) [24] is of a similar level

of sophistication. The main difference is that JM prefer to remove the coupling

between the electronic states by a transformation of the Hamiltonian matrix

(i.e., vibronic energy matrix), rather that of the Hamiltonian itself. They first

calculate the large amplitude bending functions for one of the adiabatic

potentials, as if it belonged to a � electronic state. These functions are used as
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the basis for matrix representation of the secular problem given by Eq. (31). In

the next step, the off-diagonal elements of the Hamiltonian matrix are

minimized by a similarity transformation. The resulting matrix is finally

diagonalized.

JM employ the semirigid bender Hamiltonain by Bunker and Landsberg [63].

They also neglect the x, y rotations in handling the vibronic problem, that is,

they assume K to be a good quantum number. The spin–orbit operator is taken in

the phenomenological form involving only z components of the angular

momenta. On the other hand, their approach allows considering the dependence

of the mean value of Lz on the bending coordinate. JM applied this approach to

calculate the vibronic spectra in the X2B1, A2A1 (2�u) state of NH2 and H2Oþ

[25,26] and the A1�u state of C3 [27]. They used the potential energy curves

derived by fitting of experimentally determined positions of K ¼ 0 levels, not

undergoing R–T coupling. The results of these calculations impressively

demonstrated that their approach was able to reproduce reliably not only the

positions of all K 6¼ 0 vibronic levels measured, but also very fine effects

like erratic pattern of the spin–orbit splitting of these levels and the variation of

the rotational constants from level to level.

The approach having been employed by the present authors in their ab initio

handling of the R–T effect in a series of triatomic molecules (these results are

reviewed in [16,17,21,86]) is not very different from the two described above.

We have employed the same kind of the kinetic energy operator for large

amplitude bending and the same form of the spin–orbit operator as DBB and

JM. The vibronic energy levels and wave functions have been computed

variationally, by employing as basis functions either the eigenfunctions of a

suitably chosen 2D harmonic oscillator [21], or Fourier series in r [86].

All matrix elements appearing in the vibronic secular equations are computed

by using simple recurrence formulas. Although our program package allows for

handling of the R–T effect along both the ‘‘linear’’ and ‘‘bent’’ formalisms, the

great majority of the calculations have been carried out in the framework of

the first one.

The use of ab initio computed potentials and other relevant quantities has its

advantages, as well as its drawbacks. The greatest advantage is that there are no

problems like those that are caused by a shortage or insufficient quality of

experimental data. Further, some quantities that are difficult to extract from the

experimental findings, like variation of the bond lengths or the mean value for Lz

upon bending, are easy to compute. The greatest drawback of a pure ab initio

handling of the R–T effect is the limited accuracy of quantities entering the

model Hamiltonan, particularly of potential energy surfaces. However, the high

accuracy achieved in the handling the R–T effect by using the potential curves

and structural parameters derived by fitting the experimental data can be

deceptive, because it can be based on cancellation of the errors in the potential
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and kinetic energy part of the model Hamiltonian. An example is the X2B1,

A2A1 (2�u) system of H2Oþ: The calculations of JM [25,26] excellently

reproduced all the experimental findings, although the potentials they employed

were based on an incorrect numbering of the vibronic levels observed, as it was

shown in later ab initio studies [87,88]. Let us also note that the discrepancy

between the ab initio computed bending potential curves and their counter-

parts derived by fitting the experimentally observed features must not be

automatically ascribed to the inaccuracy of the former. The ‘‘experimental’’

potentials correspond to expressions with a certain number of free parameters

that are chosen so that the eigenvalues of the 1D model Hamiltonian (into which

these parameters enter) match experimentally observed vibronic levels. In this

way, they effectively incorporate all kinds of coupling with the other degrees of

freedom and the other electronic states. On the other hand, the ab initio potential

curves are well-defined 1D sections of the three-dimensional (3D) potential

surfaces computed in the framework of the BO approximation. A part of the

coupling with the other modes and states can be indirectly incorporated, but this

always represents an approximation. Thus both sets of curves do not represent

exactly the same quantity; they obtain the same meaning only if the 1D

approach is realistic. This matter has been discussed in detail in [17].

The essential equivalence of all three approaches for handling the R–T effect

presented in this section have been demonstrated through the computations in

which the same input data have been used, that is, in [78] BDD and JM are

compared and in [21] and [86] our approach with these two. The result of the

latter two studies showed that JM had exaggerated claiming that for a direct

diagonalization of the vibronic matrix ‘‘it would be necessary to chose an

enormous basis in order to avoid truncation errors’’ [24]. We were able to

reproduce their results by diagonalizing matrices of dimensions < 100. With

this observation we do not want to question the general utility of the

Hamiltonian- or matrix transformations implemented in the approaches by BDD

and JM; in the approaches tailored to lean on experimental findings such a

subtle handling is of much more relevance than in the ab initio calculations

where in some steps the brute force philosophy can be applied without

undesirable consequences.

F. Benchmark Handling

Let us first stress that the program of a ‘‘benchmark’’ handling of the R–T effect,

as presented in Table I, represents an idealization; in none of the studies that have

been published thus far has it been realized in all points.

The most consequent and the most straightforward realization of such a

concept has been carried out by Handy, Carter, and Rosmus (HCR) and their co-

workers. The final form of the vibration–rotation Hamiltonian and the handling

of the corresponding Schrödinger equation in the absence of the vibronic
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coupling is a result of a short but exciting discussion between HC and Sutcliffe

[48,49,89,90]. In variational handling of the R–T effect in singlet electronic

states, HC employ the bending–electronic–rotational basis functions of the

form [50]

�J;K;�
u2
ðW; b; g; rÞ ¼ PjK��jn2

ðcosWÞDJ
0Kðb; gÞ��

e ðrÞ ð45Þ

(in our notation). Note again that W denotes the bond angle, and not the

coordinate conjugate to Lz. The functions PðcosWÞ are associated Legendre

polynomials of degree n2 ¼ 2u2 � jlj, where jlj ¼ jK � �j. The functions �e are

the electronic species of type (26), and DJ
oKðb; gÞ are the M ¼ 0 (end-over-end)

rotational wave functions depending on the Euler angles b and g. The bond

stretching expansion functions are expressed in terms of Morse oscillator basis

functions. In handling doublet electronic states, this basis is completed by

appropriately chosen spin functions [51]. The matrix elements of the

Hamiltonian (35)–(37) in this basis are obtained partly analytically and partly

by a numerical integration. The only good quantum number assumed in this

treatment of the R–T effect is J, corresponding to the total angular momentum of

the molecule.

Handy and co-workers are certainly right in claiming that they use ‘‘probably

the most appropriate general Hamiltonian’’ [48]. However, in praxis they solve

the corresponding Schrödinger equation by making several approximations,

some of them being avoided in another treatments: They neglect the geometrical

dependence of the mean value of Lz, use the spin–orbit operator in the

phenomenological form (16), and assume the spin–orbit coupling constant to be

really a constant.

HCR and co-workers carried out a number of studies by employing 3D

potential energy surfaces calculated by means of highly sophisticated ab initio

approaches [88,91–101]. The results of these computations are in impressive

agreement with the corresponding experimental findings. The discrepancies in

the order of 100 wavenumbers, as in early ab initio studies [16,17], have been

reduced in the HCR studies to only a few wavenumbers. In conclusion of their

paper on the X2B1, A2A1 (2�u) system of NH2, Gabriel et al. state: ‘‘We believe

that the results presented in this paper are near as possible definitive from the

theoretician. It has been a major challenge to us for 15 years to be able to

compute these properties of NH2 to such accuracy. . .’’ [97].

The excellent agreement of the results of HCR ab initio studies with the

corresponding experimental findings clearly shows that the strongest influence

on the numerical accuracy of the vibronic levels have effects outside of the R–T

effect, that is, primarly the replacement of the effective bending approaches

employed in previous works by a full 3D treatment of the vibrational motions

(for an analysis of this matter see, e.g., [17]). Let us note, however, that such a
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high level of accuracy seems never to have been achieved without a slight

modification of the ab initio computed potential surfaces (typically, they have

been shifted by �100 wavenumbers). This is at least partially caused by neglect

of some fine effects, like for, example, non-adiabatic corrections of the potential

surfaces. On this basis, it can be concluded that the HCR’ predictions

concerning the yet unobserved spectra are somewhat less reliable.

An alternative ‘‘benchmark’’ approach for handling the R–T effect in

triatomic molecules has been developed by Jensen and Bunker (JB) and co-

workers. It is based on the use of ‘‘MORBID’’ Hamiltonian [66,67,102], a very

sophisticated variant of the above described approaches that handle the bending

motion in a different way than their stretching counterparts. This method is

described in great detail in a recent book [2], so that we restrict ourselves here

only to a small comment. It might look anachronistic (this approach postpones

that of HCR) to develop a very ambitious approach not employing ‘‘probably

the most appropriate general Hamiltonian.’’ A justification is given by JB in their

book [15]: ‘‘However, one disadvantage (. . .of the approaches like HC’s. . .) is

the fact that in practice, many (if not most) interactions between molecular basis

states are weak and could be successfully treated by perturbation theory in the form

of a contact transformation. In the variational approaches, these weak interactions

are treated by direct matrix diagonalization at a high cost of computer time and

memory.’’ We cannot judge if this sentence is relevant in the case of triatomics,

but it certainly gains weight when the larger molecules are to be handled.

In several papers [102–105] JB presented the results of their calculations on

CH2, CHþ2 , and BH2. We find their study of the X2A1, A2B1 state of BH2

particularly interesting [104], because this system was treated also by Brommer

and HCR [94]. The results of JB et al. are of comparable accuracy with those by

HCR; like the latter authors, JB were forced to modify their original ab initio

potentials slightly to improve the agreement with the available experimental

data. An attempt was undertaken to make a direct comparison of both

approaches, but it did not lead to a final conclusion, because of difficulties in

transforming the HCR potentials into the form they enter within the JB

algorithms. Let us note that both works confirmed the conclusion of our old ab

initio study [33] that the assignment of the bands observed in the of A2B1 X2A1

absorption spectrum, made by Herzberg and Johns [37], was not correct.

G. Effective Hamiltonians

Another group of approaches for handling the R–T effect are those that employ

various forms of ‘‘effective Hamiltonians.’’ By applying perturbation theory, it

is possible to absorb all relevant interactions into an effective Hamiltonian,

which for a particular (e.g., vibronic) molecular level depends on several

parameters whose values are determined by fitting available experimental data.

These Hamiltonians are widely used to extract from high-resolution [e.g.,
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electron spin resonance (ESR)] spectra precise values for molecular para-

meters [19,106–111]. Since the main subject of this chapter is ab initio handling

of the R–T effect, we refrain from description of the effective Hamiltonian

approaches and refer instead to the excellent review published recently by

Brown [3].

H. Beyond the Two-State Renner–Teller Effect

In many cases, the two electronic states building an R–T pair are energetically

well separated from all other electronic species and the two-state model

expressed by the ansatz (10) is quite reliable. However, there are also many

exceptions from this rule. Even when a spatially degenerate electronic species

represents the ground state of the molecule, its interactions with the other

species, possibly at nuclear arrangements differing considerably from the

equilibrium geometry of the molecule (as found, e.g., in the series of closely

related molecules NH2 ½20�, PH2 ½112�, and SHþ2 ½113�), can take place. When

the R–T state is an excited electronic species, the interactions with the other

electronic states represents a normal situation. The energetic vicinity of

neighboring species has dramatic effects on the vibronic structure within the

R–T state. This topic has been investigated by many authors, particulary by

Köppel, Domcke, and Cederbaum [13,14,114]. We present here only an

example.

The C2H radical, a species of great astrophysical–chemical interest and

an important intermediate in many chemical reactions, has a 2� ground

electronic state and an extremely low-lying 2� excited species. At the

equilibrium geometry of the ground state, the energy difference between them is

�4000 cm�1, but it diminishes drastically upon C��C stretching, so that at larger

C��C bond lengths the ordering of the states is reversed [115]. A consequence

of these facts is a peculiar structure of the vibronic spectrum in both electro-

nic states, which can be understood only in the framework of a coupled three-

state electronic problem. This was realized already in early experimental studies

carried out by Curl et al. [116]; for an exhaustive literature survey up to 1992

the reader is referred to [117]. The controversies concerning the X2�, A2�
spectrum of C2H have motivated a series of ab initio studies on this three-state

system, involving computations of its vibronic, spin–orbit and magnetic

hyperfine structure [117–124]. The results of these studies contributed to

elucidation of a number of measured spectral features and have been used

in later experimental works to help in the assignment of the measured data

[125–129]. On the other hand, relative simplicity of the theoretical treatment

and low computational efforts caused restricted numerical accuracy of the

results. Ten years later, Carter et al. [130] published a really impressive ab initio

study, which was able to reproduce all available experimental finding

quantitatively.
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IV. TETRAATOMIC MOLECULES

A. Theoretical Treatment

1. General Remarks

The first evidence of the R–T effect in a tetraatomic molecule was reported by

Herzberg in 1963 [131]. Contrary to the situation with triatomics, the first

theoretical model (Petelin and Kiselev (PK) [132]) appeared almost 10 years

after Herzberg’s observation. The theory of the R–T effect in tetraatomic

molecules is much more complicated than in triatomics, because of the existence

of two bending modes. PK elaborated a perturbative approach for singlet �
electronic states, which described several special coupling cases, the majority

of them concerning the situation in which only one bending vibration is excited.

Thus most of the perturbative formulas derived were effectively equivalent

to their counterparts in the framework of the classical Renner’s theory

for triatomics. The equations derived by PK have been used by Colin et al. [133]

for an analysis of the high-resolution absorption spectrum of acetylene in the

1205–1255-Å region and by several other authors who have studied the structure

of spectra of highly exited (Rydberg) states of acetylene [134,135] and the ground

state of C2Hþ2 [136–138]. This approach was extended by Tang and Saito [139]

and applied to analyze the ground state of HCCS.

The idea of PK was employed by the present authors [140] who developed

a variational approach for an ab initio treatment of the Renner–Teller effect

in tetraatomic molecules. The approach by PK was extended to handle both

� and � electronic states and to treat the bending vibrations beyond the

harmonic approximation. The main practical advantage of this method was of

course that it enabled us to obtain the term values and the wave functions for all

(bending) vibronic levels of interest. It was applied to compute the vibronic

structure of two Rydberg-type electronic states of acetylene. Unfortunately, lack

of corresponding experimental findings made it impossible to check the

reliability of these results. The approach was later extended to take into account

the interplay between the vibronic, spin–orbit [141], magnetic hyperfine

[142,143] couplings, and the effects of noninfinitesimal bending vibrations

[144,145].

For a long time after Herzberg’s observation [131], the experimental

information on the R–T effect in tetraatomic molecules has been very scarce.

The situation has changed, however, in the last decade in which a series of

experimental studies on the Rydberg states of acetylene [134,135,146], and of

the ground state of the acetylene ion [136–138,147] has been published. This

made it possible for us to judge the validity of the ab initio approach proposed

[140]. The results of the ab initio computations enabled a very reliable

interpretation of all available experimental findings concerning the ground state
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of C2Hþ2 [141,148]. The method was also applied to predict the vibronic

structure of heretofore unobserved spectra of B2H2 (11�g electronic state)

[149,150] and B2Hþ2 (X2�u state) [142,143] and to interpret the spectra of

HCCO [145,151] and HCCS [152]. The key points of this approach will be

described in Section IV.2. For a more detailed description, the reader is referred

to the original references and the reviews [18,153,154].

2. Hamiltonian

The complexity of the problem makes it almost imperative to employ

every sensible simplification. For this reason, we immediately exclude from

consideration the stretching vibrations and the end-over-end rotations. Since

we will restrict ourselves to linear and quasilinear tetraatomic molecules

(ABCD), this represents a quite acceptable approximation. We are left thus

with four nuclear coordinates. We make the following choice: the supplement

of the ABC bond angle, r1; the supplement of the BCD bond angle,

r2 ðr1 ¼ r2 ¼ 0 at the linear molecular geometry); the angle between the plane

ABC and a space-fixed plane with the common z axis (coinciding with the BC

bond length), f1; the angle between the plane BCD and the same space-fixed

plane, f2. We denote the bond lengths A��B, C��D and B��C by r1, r2, and r3,

respectively.

The complete vibration–rotation Hamiltonian for acetylene-like tetraatomic

molecules has been derived by Handy et al. by hand [155] and using a computer

algebra program [156]. (Note that in both of the mentioned papers there are

some minor errors, see also [144,157,158]). Handy uses as bending coordinates

W1 and W2, connected with those we prefer by the relations W1 ¼ p� r1 and

W2 ¼ p� r2, and instead of our f1 and f2 the torsional and z-rotational

coordinates g and f, respectively. In [144], from this Hamiltonian was extracted

the part involving derivatives with respect to the above mentioned coordinates,

and the volume element sinW1 sinW2 � dqi was replaced by r1 r2 � dqi. This

resulted in a two-bending/z-rotation Hamiltonian given by Eqs. (6)–(8) of [144],

which allows the treatment of the large-amplitude bending vibrations at constant

bond lengths. This kinetic energy operator may look oversimplified. Indeed,

some more sophisticated variant can be used, for example, by taking into

account the bend–stretch coupling in line with the BDD [74] or HBJ [60,63]

approach. Note that there already exist several effective bending operators

derived to describe reliably large-amplitude bending in quasilinear tetraatomics

[159,160]. We find, however, that there are other type of problems, that are more

important for the understanding of spectral features and leave the discussion

about optimal kinetic energy operator for a future review. In this chapter, we

make a further simpification by considering only the small-amplitude form of
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the Hamiltonian derived in [144]:

T0 ¼ T0
1 þ T0

2 þ T0
12

¼ � 1

2

1

m1r2
1

þ 1

m3r2
3

þ 2

mBr1r3

� �
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qr2
1

þ 1

r1

q
qr1

þ 1

r2
1

q2

qf2
1

 !

� 1
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1

m2r2
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mCr2r3
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q2

qr2
2

þ 1

r2

q
qr2

þ 1

r2
2

q2

qf2
2

 !

þ 1

m3r2
3

þ 1

mBr1r3

þ 1

mCr2r3

� ��
cos ðf2 � f1Þ

q2

qr1qr2

þ 1

r1r2

q2

qf1qf2

� �

þ sin ðf2 � f1Þ
1

r1

q2

qr2qf1

� 1

r2

q2

qr1qf2

� ��
ð46Þ

where

m1 ¼
mAmB

mA þ mB

m2 ¼
mCmD

mC þ mD

m3 ¼
mBmC

mB þ mC

ð47Þ

The bond lengths appearing on the right-hand side of Eq. (46) are assumed to

take their equilibrium (constant) values.

For symmetric tetraatomic molecules (ABBA), it is convenient to introduce

the symmetry coordinates corresponding to the trans and cis bending by the

vector relations

qT ¼
q1 � q2

2
qC ¼

q1 þ q2

2
ð48Þ

q1 and q2 represent the displacement vectors of the nuclei A and D (the

corresponding polar coordinates are r1, f1 and r2, f2, respectively); qT and qC

are the displacement vectors and rT , fT and rC, fC the corresponding polar

coordinates of the terminal nuclei at the (collective) trans-bending and cis-

bending vibrations, respectively. As a consequence of the use of these symmetry

coordinates the nuclear kinetic energy operator for small-amplitude bending

vibrations represents the kinetic energy of two uncoupled 2D harmonic

oscillators:

T0 ¼ T0
T þ T0

C ¼ �
1

2mT

q2

qr2
T

þ 1

rT

q
qrT

þ 1

r2
T

q2

qf2
T

 !

� 1

2mC

q2

qr2
C

þ 1

rC

q
qrC

þ 1

r2
C

q2

qf2
C

 !
ð49Þ

renner–teller effect and spin–orbit coupling 627



where

mT ¼
2mMR2r2

MR2 þ mðRþ 2rÞ2
mC ¼

2mMr2

M þ m
ð50Þ

are the reduced masses for the trans and cis bending vibrations respectively.

m � mA, M � mB, r � A–B, R � B–B.

3. Vibronic Problem

The model Hamiltonian we use is of the form

H ¼ He þ T ð51Þ

where He represents the electronic operator and T the nuclear kinetic energy

operator (46) or (49). The vibronic wave functions describing the situation when

two electronic states are coupled with each other are assumed in the same general

form as for triatomics,

� ¼ c1 f1 þ c2 f2 ð52Þ

where c1 and c2 are electronic species, and f1, f2 are functions of nuclear

(bending, torsional, and z rotational) coordinates. In [18,153], various possible

electronic basis sets for ab initio handling of the R–T effect in tetraatomic

molecules were discussed. In the present approach, we employ the basis

consisting of the functions

c1 ¼ c� ¼ 1ffiffiffi
2
p ei�tðcþ þ c�Þ

c2 ¼ c�� ¼ 1ffiffiffi
2
p e�i�tðcþ � c�Þ

ð53Þ

where cþ and c� represent the solutions of the electronic Schrödinger equation

in the framework of the BO approximation (we assume c� to be imaginary):

Hec
þ ¼ Vþcþ Hec

� ¼ V�c� ð54Þ

t is a ‘‘rotational angle,’’ which determines the spatial orientation of the adiabatic

electronic functions cþ and c�. In triatomic molecules, this orientation follows

directly from symmetry considerations. So, for example, in a � state one of the

electronic wave functions has its maximum in the molecular plane and the other

one is perpendicular to it. If a treatment of the R–T effect is carried out

employing the space-fixed coordinate system, the angle t appearing in Eqs. (53)
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reduces in triatomics to the angle f between the instantaneous molecular plane

and a space-fixed plane with the common z axis. However, at an arbitrary nuclear

arrangement, a tetraatomic molecules does not possess any symmetry elements

and thus the orientation of its electronic wave functions, that is, the angle t,

cannot be determined on the basis of symmetry considerations. The angle t in

such cases is a function of all nuclear coordinates involved.

The relationship between the angle t and the nuclear coordinates considered

can be derived in the framework of the model analogous to that developed by

Pople and Longuet-Higgins [69] for triatomic molecules. Let us consider a

tetraatomic molecule in an electronic state that is twofold spatially degenerate at

linear nuclear geometry, at which it is described by the Hamiltonian H0. We

represent the molecular Hamiltonian at bent geometries as a sum of H0 and an

additional (electronic) part H0, disappearing in the linear limit. We assume the

basis electronic wave function of the system in the form given by Eq. (28), we

denote now j�i and j��i . We suppose that H0 consists of two terms, the first,

V, having only diagonal elements in this basis (being the same for both basis

functions), and the second, W, coupling the basis electroinic states. The matrix

representation of H0 is thus

h�jV j�i h�jW j � �i
h��jW j�i h��jV j � �i

� �
�

�V �W

�W
� �V

� �
ð55Þ

The first-order energy correction with respect to the unperturbed problem is then

V� ¼ �V �
ffiffiffiffiffiffiffiffiffiffiffi
�W
� �W

p
ð56Þ

and the zeroth-order wave functions are

cþ ¼ 1ffiffiffi
p
p cos ½�ðy� tÞ� x�ðreÞ c� ¼ iffiffiffi

p
p sin ½�ðy� tÞ� x�ðreÞ ð57Þ

with

t ¼ 1

2�
arctan i

�W � �W�

�W þ �W�

� �
ð58Þ

Another useful relation is

e�2i�t ¼
�Wffiffiffiffiffiffiffiffiffiffi
�W �W

p � ð59Þ

The quantities V� given by Eq. (56) represent the first-order approximation for

the adiabatic bending potentials. If these potentials are known, �V can be
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determined as �V ¼ ðVþ þ V�Þ=2. On the other hand, the potentials V� do not

completely determine the quantity �W, but only the product �W �W
�
,
ffip ð �W �W

�Þ ¼
ðVþ � V�Þ=2.

A convenience of electronic basis functions (53) is that they reduce at

infinitesimal-amplitude bending to (28) with the same meaning of the angle y;

we may employ these asymptotic forms in the computation of the matrix

elements of the kinetic energy operator and in this way avoid the necessity of

carrying out calculations of the derivatives of the electronic wave functions with

respect to the nuclear coordinates. The electronic part of the Hamiltonian is

represented in the basis (53) by

hc�jHejc�i ¼ Vþ þ V�

2
¼ hc��jHejc��i

hc�jHejc��i ¼ e�2i�t Vþ � V�

2
hc��jHejc�i ¼ e2i�t Vþ � V�

2

ð60Þ

The matrix elements (60) represent effective operators that still have to act on the

functions of nuclear coordinates. The factors expð�2i�tÞ determine the

selection rules for the matrix elements involving the nuclear basis functions.

In a general case, we assume the potential energy part of the Hamiltonian in

the form of an expansion involving the terms rm
a r

n
b cos ½kðfb � faÞ� (a and b

stand for 1 and 2 in the case of ABCD molecules, and for T and C if we

consider symmetric ABBA species), subject to certain symmetry constraints

(see [144]).

The vibrational part of the molecular wave function may be expanded in the

basis consisting of products of the eigenfunctions of two 2D harmonic

oscillators with the Hamiltonians H0
a ¼ T0

a þ 1=2kar2
a and H0

b ¼ T0
b þ 1=2kbr2

b,

�ua;la;ub;lb ¼
1

2p
eilafaeilbfbRua;laðraÞRub;lbðrbÞ ð61Þ

where the functions Ru;l are defined by Eq. (8). It is easy to verify that the model

Hamiltonian we use commutes with the projection of the total angular

momentum (excluding spin) onto the z axis, Nz,

Nz ¼ Ra
z þ Rb

z þ Lz � Rz þ Lz ð62Þ

where

Ra
z ¼ �i

q
qfa

Rb
z ¼ �i

q
qfb

Lz ¼ �i
q
qy

ð63Þ
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It follows that the only possible values for la þ lb are K � � and the computation

of vibronic levels can be carried out for each K block separately. Matrix elements

of the electronic operator He, diagonal with respect to the electronic basis [first

of Eqs. (60)], and the matrix elements of T are diagonal with respect to the

quantum number l ¼ la þ lb. The off-diagonal elements of He [second and third

of Eqs. (60)] connect the basis functions with l ¼ la þ lb and l0 ¼ l0a þ l0b ¼
l� 2�.

The spin–orbit coupling in vibronic states is taken into account assuming the

spin–orbit part of the Hamiltonian in the phenomenological form is given by

Eq. (16). This operator is added to (51) and the total Hamiltonian is diagonalized

in the basis of the above basis functions, assumed that the electronic functions

are eigenfunctions of the spin operator, with the eigenvalue �. The total model

Hamiltonian (including spin–orbit operator) commutes with the projection of

the total angular momentum on the z axis so that the vibronic secular equation

can be solved for each value of the quantum number P ¼ K þ � separately. In

the lowest order approximation (Aso assumed to be constant) with the electronic

basis (53) the spin–orbit contribution to the total model Hamiltonian is diagonal

with respect to all quantum numbers (�; la; ua; lb, and ub) labeling the basis

functions.

Although the present approach formally does allow for a treatment of large

amplitude bending vibrations (when the corresponding kinetic energy operator

and the form of the potentials also involving higher order terms in nuclear

coordinates is applied) the restrictions of the model imply a more limited

viewpoint. The most critical point is the estimate for the angle t, being related to

the low-order approximation of the molecular potentials (this topic is discussed

in [145]). Thus we expect that the model in its present form will be reliable at

relatively small-amplitude bending vibrations (typically ra; rb � 40�) around

linear equilibrium geometry.

In Section IV.A.4, we show what this general model looks like in the case of

� electronic states of symmetric tetraatomic molecules. The situation in �
states of asymmetric tetraatomics is briefly discussed in Section IV.B, where we

present the handling of a concrete case, the X2�u state of the HCCS radical. For

� states the reader is referred to original references [18,149,150,153].

4. � Electronic States of ABBA Molecules

In this section, we consider � electronic state ð� ¼ 1Þ of ABBA type molecules.

The additional Hamiltonian H0 is of the form

H
0 ¼ V þW ¼ VðrT ; rCÞ þ VTðrTÞbe2iðy�fT Þ þ e�2iðy�fT Þc

þ VCðrCÞ½e2iðy�fCÞ þ e�2iðy�fCÞ� ð64Þ
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As already noted by PK, [132], the term involving VTCðrT; rCÞ exp½�ið2y�
fT � fCÞ� does not appear for molecules belonging to the D1h point group for

symmetry reasons.

In the harmonic approximation, V does not involve the cross-term � rTrC

because rT and rC are the symmetry coordinates. It is thus of the form

V ¼ 1

2
kTr2

T þ
1

2
kCr2

C ð65Þ

In the same approximation,

VTðrTÞ ¼
1

2
eT kTr2

T VCðrCÞ ¼
1

2
eCkCr2

C ð66Þ

where eT and eC are dimensionless parameters analogous to the Renner parameter

e for triatomic molecules. The first-order adiabatic energies [Eq. (56)] are

V� ¼ V �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

T þ V2
C þ 2VT VC cos ½2ðfT � fCÞ�

q
ð67Þ

and the angle t

t ¼ 1

2
arctan

VT sin ð2fTÞ þ VC sin ð2fCÞ
VT cos ð2fTÞ þ VC cos ð2fCÞ

� �
ð68Þ

First, let us note that the adiabatic potentials Vþ and V� [Eq. (67)], even in

the lowest order (harmonic) approximation, depend on the difference of the

angles fT and fC; this is an essential difference with respect to triatomics where

the adiabatic potentials depend only on the radial bending coordinate r. The

forms of the functions V , VT , and VC are determined by the adiabatic potentials

via the following relations

V ¼ Vþ þ V�

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

T þ V2
C þ 2VT VCcos ½2ðfT � fCÞ�

q
¼ Vþ � V�

2
ð69Þ

The second of these relations reduces at rC ¼ 0 to

VT ¼
Vþ � V�

2

� �
rC ¼ 0

ð70Þ

and for rT ¼ 0

VC ¼
Vþ � V�

2

� �
rT ¼ 0

ð71Þ
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Thus the function VT represents one-half of the splitting of the adiabatic

potentials computed for pure trans bending, and VC one-half of the splitting of

the cis-bending curves.

By employing the angle t defined by (68), the perturbative Hamiltonina H0

can be formulated in the form completely analogous to the Pople and Longuet-

Higgins’ ansatz [69]:

H0 ¼ V þ V2be2iðy�tÞ þ e�2iðy�tÞc ð72Þ

where

V2 ¼
Vþ � V�

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

T þ V2
C þ 2VTVC cos ½2ðfT � fCÞ�

q
ð73Þ

Thus the angle t plays the role analogous to that of the angle f defining the

orientation of the instantaneous molecular plane in triatomic molecules.

Employing the relations (69) and (59) one obtains

e�2it Vþ � V�

2
¼ VT e�2fT þ VCe�2ifC ð74Þ

Thus in the lowest order approximation the angle t is eliminated from the off-

diagonal matrix elements of He [second and third of Eqs. (60)]; it solely

determines the selection rules for matrix elements of He with respect to nuclear

basis functions.

B. An Example: X2� Electronic State of HCCS

To illustrate the reliability of the above described model for handling the R–T

effect and spin–orbit coupling in tetraatomic molecules, we present here the

results of calculation of the spectrum for the X2�u state of the HCCS radical. In

spite of its importance from the astrophysical–chemical point of view and due to

its relationship to a number of other radicals of interest involving carbon,

hydrogen, sulfur, and oxygen, HCCS has been subject to a relatively small

number of experimental and theoretical studies, which all have left a number of

questions open. An absorption spectrum detected by Krishnamachari and

Venkitachalam [161] in the region 3770 and 4170 Å during the flash photolysis

of thiophene, and tentatively assigned to C4H3, was latter attributed by

Krishnamachari and Ramsay [162] to a 2�–2� electronic transition of HCCS.

The complexity of the spectrum, characterized by large spin–orbit splitting in

several bands, precluded a definitive determination of the vibrational funda-

mentals, particularly for the bending modes [163]. The value for the spin–orbit

coupling constant of �185 cm�1 was estimated [164]. An extensive study of the

R–T effect in the ground electronic states of HCCS and DCCS was undertaken by

Tang and Saito [139]. They derived perturbative formulas for the coupling cases
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not considered by PK [132] and applied it to interpret the microwave spectra

obtained in the frequency range between 160 and 400 GHz. In the simulation of

the spectrum they used the Renner parameters ab initio computed by Szalay

[165], and concluded that a reliable reproduction of experimental findings was

obtained with the value of the spin–orbit coupling constant assumed to be

270 cm�1. This value disagreed with the results of ab initio computations by

Goddard (�360 cm�1) [166] and Szalay and Blaudeau (�347 cm�1) [167], as well

as with the estimate of the previous experimental study by Vrtilek et al. [164].

An extensive ab initio study was thus undertaken with the goal of providing a

reliable interpretation of the available experimental findings, and to predict the

structure of yet unobserved parts of the HCCS and DCCS long-wavelengths

spectra [152]. Potential energy surfaces for the electronic states of the HCCS

radical correlating at linear nuclear arrangement with the X2� state were

calculated by means of a large scale multireference configuration-interaction

approach (for details see [152]). Particular attention was paid to calculate

accurate 3D potential surfaces involving variations of two bending and torsional

coordinates that play the central role in vibronic interactions, determining,

together with the spin–orbit coupling, the structure of spectra of this radical.

In the lowest order (quadratic) approximation for � electronic states of

asymmetrical (ABCD) tetraatomics, the electronic matrix elements (60) have

the forms [18,152,153]:

1

2
ðVþ þ V�Þ ¼ 1

2
k1r2

1 þ
1

2
k2r2

2 � K12r1r2cos ðf2 � f1Þ ð75Þ

e�2i�t Vþ � V�

2
¼ 1

2
e01r

2
1 e�2i�f1 þ 1

2
e02r

2
2 e�2i�f2 þ e012r1r2 e�i�ðf1þf2Þ ð76Þ

In this approximation, the angle t does not appear explicitly in the vibronic

secular equation. From Eq. (76) it follows that

1

2
ðVþ � V�Þcos 2t ¼ 1

2
e01r

2
1 cos 2f1 þ

1

2
e02r

2
2 cos 2f2 þ e012r1r2 cos ðf1 þ f2Þ

ðVþ � V�Þ2 ¼ e
02
1 r

4
1 þ e

02
2 r

4
2 þ 4e

02
12r

2
1r

2
2 þ 2e01e

0
2r

2
1r

2
2cos 2ðf2 � f1Þ

þ 4ðe01r2
1 þ e02r

2
2Þe012r1r2 cos ðf2 � f1Þ ð77Þ

The expressions (75) and (77) can be used to extract the parameters

k1; k2; k12; e01; e
0
2, and e012 from the mean adiabatic potential and the difference

of the adiabatic potentials for two components of the electronic state spatially

degenerate at linear molecular geometry.

Thus only six parameters are required to determine the potentials entering

our model for handling the R–T effect in asymmetric tetraatomic molecules
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with linear equilibrium geometry in the lowest order approximation, reliable for

description of relatively small-amplitude bending (for � states of ABBA

molecules the number of parameters is just four). They can be extracted from

few ab initio computed electronic energies for both adiabatic components of the

� electronic states. So, for example, k1 and e01 may be obtained from the values

of the electronic energies at the linear geometry and, say, the energies at

r1 ¼ 20�; r2 ¼ 0, because for r2 ¼ 0 the expressions (75) and (76)/(77) reduce

to (Vþ þ V�Þ=r2
1 ¼ k1 and (Vþ � V�Þ=r2

1 ¼ e01. (Strictly speaking, not even the

value at linear geometry, r1 ¼ r2 ¼ 0, is necessary). In an analogous way, the

values for k2 and e02 can be determined. Having determined the ‘‘diagonal’’

force constant and Renner parameters, one needs only one additional point to

estimate the values of k12 and e012. The simplest way is to use points computed at

cis- (f2 ¼ f1) or trans-planar (f2 � f1 ¼ p) geometry: In the former case

(Vþ þ V�Þ=2 ¼ 1=2k1r2
1 þ 1=2k2r2

2 � k12r1r2, in the latter one (Vþ þ V�Þ=2 ¼
1=2k1r2

1 þ 1=2k2r2
2 þ k12r1r2. In order to get more reliable results, one can,

however, fit a somewhat larger sample of ab initio computed energies.

Particularly convenient for this purpose are some special cases of formulas (75–

77). So, for example, at f2 ¼ f1 (cis-planar geometry),

Vþ � V� ¼ e01r
2
1 þ e02r

2
2 þ 2e012r1r2 ð78Þ

which further reduces for r1 ¼ r2 � r to (Vþ � V�Þ=r2 ¼ e01 þ e02 þ 2e012. For

f2 � f1 ¼ p (trans-planar geometry),

Vþ � V� ¼ e01r
2
1 þ e02r2

2 � 2e012r1r2 ð79Þ

reducing at r1 ¼ r2 � r to (Vþ � V�Þ=r2 ¼ e01 þ e02 � 2e012. Summarizing, all

the parameters required can be obtained by employing the electronic energies

computed at planar geometries.

On the basis of the above analyses, it follows that there is no need to compute

multidimensional potential surfaces if one wishes to handle the R–T effect in the

framework of the model proposed. In spite of that, such computations were

carried out in [152] in order to demonstrate the reliability of the model for

handling the R–T effect and to estimate the range in which it can safely be

applied in its lowest order (quadratic) approximation. The 3D potential surfaces

involving the variation of the bending coordinates r1; r2 and the relative

azimuth angle g ¼ f2 � f1 were computed for both component of the X2� state.

Determination of the parameters entering the model Hamiltonian for

handling the R–T effect (quadratic force constant for the mean potential and

the Renner parameters) was carried out by fitting special forms of the functions

[Eqs. (75) and (77)], as described above, and using not more than 10 electronic

energies for each of the X2� component states, computed at cis- and trans-

planar geometries. This procedure led to the above mentioned six parameters
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which, according to the model, suffice to anticipate the form of complete 3D

potential surfaces involving variations of the coordinates r1,r2, and g at

relatively small distortions of linearity. The corresponding functions,

1=2ðVþ þ V�) and the square root of the second of functions (77), are drawn

in Figures 8 and 9. Different symbols in this figures denote the points actually

calculated. The agreement between the electronic energies determined by the

Figure 8. Three-dimensional mean-potential surface for the X2� state of HCCS,
�Vðr1; r2; gÞ, presented in form of its 1D sections. Curves represent the function given by

Eq. (75). (with k1 ¼ 0:0414; k2 ¼ 0:952; k12 ¼ 0:0184) for fixed values of coordinates r1 and r2

(attached at each curve) and variable g ¼ f2 � f1. Here g ¼ 0 corresponds to cis-planar geometry

and g ¼ p to trans-planar geometry. Symbols: results of explicit ab initio computations.

636 miljenko perić and sigrid d. peyerimhoff



three-parameter formulas (75) and (77) and those actually calculated looks very

satisfactory. Some significant discrepancies can be noted only at large

deviations from linearity (r1 ¼ 30�; r2 ¼ 30�), where the harmonic approx-

imation is not expected to be reliable.

For the variational calculations of the vibronic spectrum and the spin–orbit

fine structure in the X2� state of HCCS the basis sets involving the bending

functions up to u1 ¼ u2 ¼ 11 with all possible l1 and l2 values are used. This

leads to the vibronic secular equations with dimensions �600 for each of the

vibronic species considered. The bases of such dimensions ensure full

Figure 9. Energy difference (absolute value) between the components of the X2� electronic

state of HCCS as a function of coordinates r1; r2, and g. Curves represent the square root of the

second of functions given by Eq. (77) (with e
0

1 ¼ �0:011; e
0

2 ¼ 0:013; e
0

12 ¼ 0:005325) for fixed

values of coordinates r1 and r2 (attached at each curve) and variable g ¼ f2 � f1. Here g ¼ 0

corresponds to cis-planar geometry and g ¼ p to trans-planar geometry. Symbols: results of explicit

ab initio calculations.
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convergence of vibronic energies in the energy range from 0 to 2500 cm�1 with

respect to the minimum of the potential surface.

Two sets of calculations for the vibronic spectrum were carried out. In the

first, the zeroth-order kinetic energy operator given by Eq. (46) is employed.

The second set of calculations is performed using the kinetic energy operator for

large-amplitude bending with bond lengths kept constant [144]. The results of

both sets of calculations do not differ from one another by more than a few

wavenumbers (see [152] for a more detailed analysis) and thus we present

below only those obtained using the zeroth-order kinetic energy operator.

The results of calculation of the HCCS vibronic spectrum are displayed in

Figure 10. Let us skip at this place from the notation used thus far (u1; l1; u2; l2)

to the usual spectroscopic one, according to which the indexs 4 and 5 are

employed for (predominantly) H��C��C and C��C��S bending modes,

respectively. Three sets of vibronic energy levels are given: The first one

represent zeroth-order values obtained by neglecting the R–T effect and the

spin–orbit coupling—they correspond thus to the mean potential surface for

the X2� electronic state. The second set of vibronic energy values is generated

in computations in which the R–T coupling is taken into account, but the spin–

orbit coupling is neglected. We present the results for K ¼ 0, 1, 2, and 3 states.

The third sample of vibronic energies represents the final results obtained by

including both the vibronic and spin–orbit coupling effects. In all cases the

composition of the vibronic wave functions in terms of dominating basis

functions (denoted by the vibrational quantum numbers u4; u5) is given. The

low-lying vibronic states, computed at different levels of approximation,

correlating (approximately) with one another are connected with thin lines.

Since the basis functions employed in variational calculations are not

expressed in terms of the normal coordinates, the labeling of the vibronic levels

by the quantum numbers u4 and u5 is approximate (so, e.g., the lowest lying

K ¼ 0 vibronic state, assigned to u4 ¼ 0, u5 ¼ 1, contains an appreciable

contribution from the basis function with u4 ¼ 1, u5 ¼ 2), Harmonic bending

frequencies computed in the this study (o4 ¼ 579 cm�1, o5 ¼ 374 cm�1) are in

very good agreement with the corresponding experimental findings (565,

380 cm�1, respectively) [139]. The spin–orbit coupling constant (�261 cm�1) is

in excellent agreement with the value extracted by Tang and Saito [139] from

the experimental findings.

We do not wish to go into the details of Figure 10. As an illustration of the

reliability of the present results we compare, however, in Figure 11, the

structure of the measured HCCS spectrum published by Tang and Saito (Fig. 3

of [139]) with the results of the theoretical study. Taking into account the very

complex and unusual structure of this kind of spectra, we find the agreement

between our ab initio theoretical results and those following from the

interpretation of experimental spectra more than satisfactory. While strongly
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Figure 10. Low-energy vibronic levels in the X2� state of HCCS computed in various

approximations [152]. H0: zeroth-order approximation (both vibronic and spin–orbit couplings

neglected). H2: vibronic coupling taken into account, spin–orbit interaction neglected. H2 þ Hso:

both vibronic and spin–orbit couplings taken into account. Solid horizontal lines: K ¼ 0 vibronic

levels; dashed line: K ¼ 1; dash–dotted lines: K ¼ 2; dotted lines: K ¼ 3. Values of the quantum

numbers N4;N5 of the basis functions dominating the vibronic wave function of the level in question

are indicated. Approximate correlation of vibronic states computed in various approximations is

indicated by thin lines. In all cases the stretching quantum numbers are assumed to be zero.
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supporting the analysis of the experimental findings, carried out by Tang and

Saito, the results of the ab initio study offered a number of additional data that

could be helpful in future experimental work on this subject.

V. CONCLUSION

In this chapter, we give a review of results of ab initio treatments of the R–T

effect and spin–orbit coupling in triatomic and tetraatomic molecules. We have

tried to present a comprehensive up to date literature survey and to compare

various approaches with one another. Our prime goal was to present

the development of ideas that finally resulted in those methods that are nowadays

widely used to produce numerical results serving to interpret and to predict

features of concrete molecular systems. A consequence of these restrictions is

that we only mentioned those model treatments in which the main goal is rather

to explain qualitative aspects of the vibronic coupling than to consider particular

molecules, and the effective Hamiltonian approaches that do not rely on ab initio

computations; we did not even mention several alternative theoretical

approaches [168,169] not directly on the main stream we followed in this study.

We have tried to document that the handling of the R–T effect by means of

modern ab initio techniques not only offers reliable interpretation of experi-

mental findings but also has reached the level of numerical accuracy so that it can

compete with high-resolution spectroscopy.

Figure 11. Left: Vibronic structure of the X2� state of HCCS derived by Tang and Saito from

experimental findings (Fig. 3 of [139]). Right: Corresponding results of the ab initio study presented

in [152].
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APPENDIX A: PERTURBATIVE HANDLING OF THE
RENNER–TELLER EFFECT AND SPIN–ORBIT COUPLING

IN � ELECTRONIC STATES OF TETRAATOMIC MOLECULES

The perturbation theory has for a long time been the leading tool for handling

the R–T effect in triatomic molecules (for an overview see, e.g. [8] and [12]).

It was also applied in the first theoretical paper on tetraatomic molecules [132]

to singlet � states of both symmetric (ABBA) and asymmetric (ABCD) species.

The combined effect of vibronic and spin–orbit coupling in the lowest lying

vibronic species was considered by Tang and Saito [139]. Several new

perturbative formulas for singlet � states of symmetric tetraatomic molecules

were derived in [153], and a perturbative treatment of 1� electronic states of

the same molecular species was presented in [150]. In two recent studies

[170,171] the present authors gave the second-order perutbative formulas for

the combined effect of vibronic and spin–orbit coupling in � and � electronic

states of triatomic and symmetric tetraatomic molecules with linear equilibrium

geometry. They were derived employing two schemes for partitioning the

model Hamiltonian: In the first, the term descibing the spin–orbit coupling is

tretad as perturbation (together with the term responsible for vibronic

interaction). In the second approach, reliable for the cases when the spin–orbit

coupling constant is comparable in magnitude to the bending frequency, the

spin–orbit operator is included into the zeroth-order Hamiltonian. In this

chapter, we give only the formula obtained via the first scheme. Moreover, we

restrict ourselves to tetraatomic molecules, because the perturbative formulas for

triatomics can be looked upon as special cases of their counterparts for

tetraatomic species.

The perturbative handling of the R–T effect in molecules with more than

three atoms is much more complicated than that for triatomics, because of the

presence of more than one bending mode contributing to the vibronic

interaction. A consequence is that the perturbative formulas cannot be derived

for a general case, because the level of degeneracy of zeroth-order vibronic

levels increases rapidly with increasing values for the bending quantum

numbers (in the case of triatomics all zeroth-order vibronic levels are either

nondegenerate or twofold degenerate).

The present perturbative treatment is carried out in the framework of the

minimal model we defined above. All effects that do not crucially influence the

vibronic and fine (spin–orbit) structure of spectra are neglected. The kinetic

energy operator for infinitesimal vibrations [Eq. (49)] is employed and the

bending potential curves are represented by the lowest order (quadratic)

polynomial expansions in the bending coordinates. The spin–orbit operator is

taken in the phenomenological form [Eq. (16)]. We employ as basis functions
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the species

���;�;K;uT ;lT ;uC ;lC ¼ x�ðreÞ
1ffiffiffiffiffiffi
2p
p e�i�y 1ffiffiffiffiffiffi

2p
p eilTfT

1ffiffiffiffiffiffi
2p
p eilCfC RuT ;lT ðrTÞRuC ;lC ðrCÞ

��;�;K;u0
T
;l
0
T
;u0

C
;l
0
C
¼ x�ðreÞ

1ffiffiffiffiffiffi
2p
p ei�y 1ffiffiffiffiffiffi

2p
p eil

0
TfT

1ffiffiffiffiffiffi
2p
p eil

0
C
fC Ru0

T
;l
0
T
ðrTÞRu0

C
;l
0
C
ðrCÞ

ðA:1Þ

After integrating over all electronic coordinates except for y, the electronic

operator He transforms into the potential for bending vibrations has the form

V ¼ 1

2
kTr2

T þ
1

2
kCr2

C þ
1

2
eT kTr2

T ½e2iðy�fT Þ þ e�2iðy�fT Þ�

þ 1

2
eCkCr2

C½e2iðy�fCÞ þ e�2iðy�fCÞ� ðA:2Þ

The force constants kT ; kC and the dimensionless Renner parameters eT ; eC are

defined by the adiabatic potentials for the components of the � state at pure trans

(VþT ;V�T ) and pure cis (VþC ;V�C ) bending vibrations,

1

2
kTr2

T ¼
1

2
ðVþT þ V�T Þ

1

2
kCr2

C ¼
1

2
ðVþC þ V�C Þ

1

2
eT kTr2

T ¼
1

2
ðVþT � V�T Þ

1

2
eCkCr2

C ¼
1

2
ðVþC � V�C Þ

ðA:3Þ

We introduce the dimensionless bending coordinates qT �
ffiffiffi
l
p

TrT and

qC �
ffiffiffi
l
p

CrC with lT � ffip ðkTmTÞ ¼ mToT , lC �
ffiffi
ð

p
kCmCÞ ¼ mCoC, where oT

and oC are the harmonic frequencies for pure trans- and cis-bending vibrations,

respectively. After integrating over y, we obtain the effective Hamiltonian

H ¼ H0 þ H0, which is employed in the perturbative handling of the R–T effect

and the spin–orbit coupling. Its zeroth-order part is of the form

H0 ¼ � 1

2

q2

qq2
T

þ 1

qT

q
qqT

� l2
T

q2
T

� �
þ 1

2
q2

T

� �
oT

þ � 1

2

q2

qq2
C

þ 1

qC

q
qqC

� l2C
q2

C

� �
þ 1

2
q2

C

� �
oC ðA:4Þ

The operators q2=qf2
T and q2=f2

C are replaced in (A.4) by their eigenvalues �l2T
and �l2C. The functions RðrTÞ and RðrCÞ appearing in (A.1) are the

eigenfunctions of the first and the second part of this Hamiltonian, respectively.

They are of the form (8). Both lT and lC are the quantum numbers for the nuclear
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angular momentum caused by the 2D trans and cis bending vibrations, respec-

tively. Their algebraic sum with the electronic angular quantum number � gives

the good (in the framework of the present model) quantum number

K;K ¼ lT þ lC � � ¼ l0T þ l0C þ �. The sum of K and the spin quantum

number � results in the quantum number for the projection of the total angular

momentum along the molecular axis, P ¼ K þ �.

The perturbative part of the effective Hamiltonian is of the form

H0 ¼ 1

2
eToT q2

Tðe�2ifT þ e2ifT Þ þ 1

2
eCoCq2

Cðe�2ifC þ e2ifC Þ � �Aso ðA:5Þ

We introduce for the basis functions the notation

juT lT uC lC �i �
1ffiffiffiffiffiffi
2p
p eilTfT

1ffiffiffiffiffiffi
2p
p eilCfC RuT ;lT ðqTÞRuC ;lCðqCÞ lT þ lC ¼ K þ �

juT lT uC lC þi �
1ffiffiffiffiffiffi
2p
p eilTfT

1ffiffiffiffiffiffi
2p
p eilCfC RuT ;lT ðqTÞRuC ;lCðqCÞ lT þ lC ¼ K � �

ðA:6Þ

The zeroth-order Hamiltonian and the spin–orbit part of the perturbation

are diagonal with respect to the quantum numbers K;�;P; uT ; lT ; uC and lC. The

matrix elements h� lC uC lT uT jH0ju0T l0T u0C l0C þi of the remaining part of the

perturbative operator can be different from zero only if l0T ¼ lT � 2; u0T ¼
uT ; uT � 2; l0C ¼ lC; u0C ¼ uC, or l0T ¼ lT ; u0T ¼ uT ; l0C ¼ lC � 2; u0C ¼ uC;
uC � 2. These selection rules automatically comprise the g/u symmetry

restrictions.

As mentioned above, as a consequence of the fact that the degeneracy of the

zeroth-order vibronic levels in tetraatomic molecules increases rapidly with

increasing value of the bending quantum numbers uT and uC [it is equal to

2ð2uT þ 1Þð2uC þ 1Þ if spin is neglected] and thus the secular equations to be

solved in the framework of the perturbation theory are multidimensional, only

several special coupling cases can be handled efficiently. We present here those

for which the dimension of the secular equation is effectively not larger than 2;

however, some other cases can also be handled, particularly if the spin–orbit

coupling is relatively large compared to the separation of the electronic states at

relevant bent geometries.

Case Aa uT 6¼ 0; uC ¼ 0

In this case, the situation is essentially equivalent to that for triatomics

molecules. (We shall always assume that uT � uC; the formulas for the opposite

case, uT � uC, are obtained from those to be derived by interchanging simply
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the indexes T and C.) There are two possible cases:

Case Aa1 K ¼ uT þ 1ð¼ KmaxÞ

There is a single nondegenerate zeroth-order vibronic state juT uT 00þi. The

zeroth-, first-, and second-order formulas read

Eð0Þ ¼ ðuT þ 1ÞoT þ oC ðA:7Þ
Eð1Þ ¼ �Aso ðA:8Þ

Eð2Þ ¼ �1

8
KðK þ 1Þe2

ToT �
1

4
e2

CoC ðA:9Þ

Thus the complete expression up to second order is

E ¼ ðuT þ 1ÞoT þ �Aso �
1

8
ðuT þ 1ÞðuT þ 2Þe2

ToT þ 1� 1

4
e2

C

� �
oC ðA:10Þ

For oT ¼ o; eT ¼ e; uT ¼ u, and oC ¼ 0, this formula reduces to its

counterparts for unique levels of triatomic molecules.

Case Aa2 K < uT þ 1:

The zeroth-order energy level is juT K�1 0 0�i � 14i twofold degenerate—

the corresponding vibronic states are juT Kþ1 0 0 �i � j1i and juT K�1 0 0

þi � j2i. The zeroth-order energy is given by the expression (A.7). The first-

order energy correction is

E
ð1Þ
1=2
¼ � 1

2
D ðA:11Þ

with

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2A2

so þ ½ðuT þ 1Þ2 � K2�e2
T o

2
T

q
ðA:12Þ

The corresponding wave functions are of the form

�1 ¼ c11j1i þ c12j2i �2 ¼ c21j1i þ c22j2i ðA:13Þ

where

c11 ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffi
1� B

D

r
c12 ¼ �

1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ B

D

r

c21 ¼ �c12 c22 ¼ c11

ðA:14Þ
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with D given by (A.12) and

B ¼ �2�Aso ðA:15Þ

The second-order energy correction is

E
ð2Þ
1=2
¼ � 1

8
ðuT þ 1Þ 1� 2K�Aso

D

� �
e2

ToT �
1

4
e2

CoC ðA:16Þ

Thus the complete energy expression is

E1=2 ¼ ðuT þ 1Þð1� 1

8
e2

TÞoT þ ð1�
1

4
e2

CÞoC

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2A2

so þ ½ðuT þ 1Þ2 � K2� e2
T o

2
T

q

� KðuT þ 1Þ�Asoe2
ToT

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2A2

so þ ½ðuT þ 1Þ2 � K2� e2
T o

2
T

q ðA:17Þ

If we put oT ¼ o; eT ¼ e; uT ¼ u, and oC ¼ 0, the energy given by

Eq. (A.17) becomes identical to the corresponding expression for triatomic

molecules.

Case Ab K ¼ uT þ uC þ 1 ¼ Kmaxðunique levelsÞ

Zeroth-order level, corresponding to the vibronic state juT lT uC lC þi ¼
juT uT uC uC þi is nondegenerate. The zeroth, first- and second-order energies

are

Eð0Þ ¼ ðuT þ 1ÞoT þ ðuC þ 1ÞoC ðA:18Þ

Eð1Þ ¼ �Aso ðA:19Þ

Eð2Þ ¼ � 1

8
ðuT þ 1ÞðuT þ 2Þe2

ToT �
1

8
ðuC þ 1ÞðuC þ 2Þe2

CoC ðA:20Þ

For uC ¼ 0, the sum of expressions (A.18–A.20) becomes identical to (A.10).

Case Ac K ¼ uT þ uC � 1ð¼ Kmax � 2ÞuT � uC 6¼ 0

Let us use the notation uT � u; uC ¼ K � uþ 1 andffiffiffiffiffi
uT

p
eToT � u

ffiffiffiffiffi
uC

p
eCoC � t ðA:21Þ
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The zeroth-order vibronic level is threefold degenerate, with the wave

functions ju u K�uþ1 K�uþj�i � j1i; ju u K�uþ1 K�u�1 þi � j2i
and ju u�2 K�uþ1 K�uþ1þi � j3i. The zeroth-order energy is given by

Eq. (A.18). The first-order energy corrections are

E
ð1Þ
2 ¼ �Aso E

ð1Þ
1=3
¼ �D ðA:22Þ

where

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2A2

so þ u2 þ t2

q
ðA:23Þ

The corresponding wave functions are

�2 ¼
uffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ t2
p j2i � tffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ t2
p j3i

�1=3 ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �Aso

D

r
j1i � 1ffiffiffi

2
p tffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ t2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �Aso

D

r
j2i

� 1ffiffiffi
2
p uffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ t2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �Aso

D

r
j3i

ðA:24Þ

The second-order energy correction are

E
ð2Þ
2 ¼ �

1

8ðuTe2
To

2
T þ uCe2

Co
2
CÞ

� fuTðuT þ 1Þ½ðuT þ 2Þe2
To

2
T þ uCe2

Co
2
C�e2

ToT

þ uCðuC þ 1Þ½uTe2
To

2
T þ ðuC þ 2Þe2

Co
2
C�e2

CoCg ðA:25Þ

E
ð2Þ
1=3
¼ � 1

8
ðuT þ 1Þ 1þ t2

u2 þ t2

� �
e2

ToT �
1

8
ðuC þ 1Þ 1þ u2

u2 þ t2

� �
e2

CoC

� �Aso

8D
ðuT þ 1Þ u2

u2 þ t2
� uT

� �
e2

ToT þ ðuC þ 1Þ t2

u2 þ t2
� uC

� �
e2

CoC

� �
ðA:26Þ

The formulas for E1=3 are valid also for the case uC ¼ 0: They are identical to

(A.17) if in the latter, K is replaced by uT � 1.

The �Aso ¼ 0 limits of the formulas presented in this subsection cover all

particular cases (including uT ¼ 1; uC ¼ 1, and uT ¼ 2; uC ¼ 1) handled in the

previous works [18,132,153].
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APPENDIX B: PERTURBATIVE HANDLING OF THE
RENNER–TELLER EFFECT AND SPIN–ORBIT COUPLING IN
� ELECTRONIC STATES OF TETRAATOMIC MOLECULES

We restrict ourselves again to symmetric tetraatomic molecules (ABBA) with

linear equilibrium geometry. After integrating over electronic spatial and spin

coordinates we obtain for � electronic states in the lowest order (quartic)

approximation the effective model Hamiltonian H ¼ H0 þ H0, which zeroth-

order part is given by Eq. (A.4) and the perturbative part of it of the form

H0 ¼ aToT q4
T þ aCoCq4

C þ b0

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p
q2

T q2
C

þ b2

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p
q2

T q2
C½e2iðfT�fCÞ þ e�2iðfT�fCÞ�

þ cToT q4
T ½e�4ifT þ e4ifT � þ cCoCq4

C½e�4ifC

þ e4ifC � þ cTC

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p
q2

T q2
C½e�2ifT e�2ifC

þ e2ifT e2ifC � � 2�Aso ðB:1Þ

The dimensionless parameters aT ; . . . ; cTC appearing in the last expression are

connected with the sums and differences of the adiabatic potentials as shown

elsewhere [149,150]. This effective Hamiltonian acts onto the basis functions

(A.1) with � ¼ 2.

The zeroth-order Hamiltonian and the spin–orbit part of the perturbation are

diagonal with respect to the quantum numbers K; �; P; uT ; lT ; uC, and lC.

The terms of H0 involving the parameters aT ; aC, and b0 are diagonal with

respect to both the lT and lC quantum numbers, while the b2 term connects with

one another the basis functions with l0T ¼ lT � 2; l0C ¼ lC � 2. The c terms

couple with each other the electronic species �� and �. The selection rules for

the vibrational quantum numbers are u0T=C ¼ uT=C; uT=C � 2; uT=C � 4.

As in the case of � electronic states of tetraatomic molecules, because of

generally high degeneracy of zeroth-order vibronic leves only several particular

(but important) coupling cases can be handled efficiently in the framework of

the perturbation theory. We consider the following particular cases:

Case Ba uC ¼ 0

Case Ba1 K ¼ uT þ 2

The zeroth-order vibronic wave function is juT uT 0 0þi. The zeroth-order

energy is

Eð0Þ ¼ ðuT þ 1ÞoT þ oC ðB:2Þ
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The first- and second-order energy corrections are

Eð1Þ ¼ ðuT þ 1ÞðuT þ 2ÞaToT þ 2aCoC þ ðuT þ 1Þb0

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p þ 2�Aso

Eð2Þ ¼ � 1

2
ðuT þ 1ÞðuT þ 2Þð4uT þ 9Þa2

ToT � 9a2
CoC

� 1

2
ðuT þ 1Þb2

0 ðuT þ 1ÞoT þ oC þ
oToC

oT þ oC

� �

� b2
2 4uToT þ ½ðuT þ 1ÞðuT þ 2Þ þ 2� oToC

oT þ oC

þ uTðuT � 1Þ oToC

oC � oT

� �

� 2ðuT þ 1ÞðuT þ 2ÞaT b0

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p � 4ðuT þ 1ÞaCb0

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p ðB:3Þ

� 1

4
ðuT þ 1ÞðuT þ 2ÞðuT þ 3ÞðuT þ 4Þc2

ToT � 6c2
CoC

� ðuT þ 1ÞðuT þ 2Þc2
TC

oToC

oT þ oC

Case Ba2 K ¼ uT

The zeroth-order wave function is juT uT�2 0 0 þi

Eð1Þ ¼ uTðuT þ 5ÞaToT þ 2aCoC þ ðuT þ 1Þb0

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p þ 2�Aso

Eð2Þ ¼ � 1

2
uTðuT þ 1Þð4uT þ 35Þa2

ToT � 9a2
CoC

� 1

2
b2

0 ðuT þ 1Þ2oT þ ðuT þ 1ÞoC þ
2uToToC

oT þ oC

þ ðuT � 1ÞoToC

oC � oT

� �

� b2
2 ð12uT � 8ÞoT þ ðu2

T þ uT þ 6Þ oToC

oT þ oC

�
ðB:4Þ

þ ðuT � 1ÞðuT � 2Þ oToC

oC � oT

�

� 2uTðuT þ 5ÞaT b0

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p � 4ðuT þ 1ÞaCb0

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p

� 1

4
uTðuT þ 1ÞðuT þ 2ÞðuT þ 35Þc2

ToT � 6c2
CoC

� c2
TC 4uToT þ uTðuT þ 1Þ oToC

oC þ oT

� �

Case Ba3 K < uT
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The zeroth-order energy level is twofold degenerate. The corresponding

vibronic basis functions are juT Kþ2 0 0 �i � j1i and juT K�2 0 0 þi � j2i.
The first-order energy correction is

E
ð1Þ
1=2
¼ 1

2
ð3u2

T þ 6uT � K2ÞaToT þ 2aCoC þ ðuT þ 1Þb0

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p � 1

2
D ðB:5Þ

where

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ðKaToT þ �AsoÞ2 þ 9ðu2

T � K2Þ½ðuT þ 2Þ2 � K2�c2
To

2
T

q
ðB:6Þ

The corresponding vibronic wave functions are of the form (A.13) and

(A.14) with D given by (B.6) and

B ¼ �4ðKaToT þ �AsoÞ ðB:7Þ

The second-order energy corrections are of the form

E
ð2Þ
1 ¼ c2

11H11 þ c2
12H22 þ 2c11c12H12

E
ð2Þ
2 ¼ c2

21H11 þ c2
22H22 þ 2c21c22H12

ðB:8Þ

where

H11=22 ¼ �
1

4
ðuT þ 1Þ½17uTðuT þ 2Þ � 9KðK � 4Þ�a2

ToT � 9a2
CoC

� 1

8
b2

0

�
4ðuT þ 1Þ2oT þ 4ðuT þ 1ÞoC

þ ½u2
T � ðK � 2Þ2� oToC

oC � oT

þ ðuT � KÞðuT � k þ 4Þ oToC

oC þ oT

�

� 1

2
b2

2

�
4½uTðuT þ 2Þ � KðK � 4Þ � 4�oT þ ½uTðuT � 2Þ

þ KðK � 4Þ þ 4� oToC

oC � oT

þ ½uTðuT þ 6Þ þ KðK � 4Þ þ 12� oToC

oC þ oT

�
� ½3uTðuT þ 2Þ � KðK � 4Þ�aT b0

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p � 4ðuT þ 1ÞaCb0

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p

� 1

8
ðuT þ 1Þð2� KÞc2

ToT ½17uTðuT þ 2Þ � 3Kð5K � 12Þ� � 6c2
CoC

� 1

4
c2

TC 4ðuT � KÞðuT � K þ 2ÞoTf þ ðuT � KÞðuT � K þ 2Þ oToC

oC � oT

þ ðuT � KÞðuT � K þ 2Þ oToC

oC þ oT

�
ðB:9Þ
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and

H12 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2

T � K2Þ½ðuT þ 2Þ2 � K2�
q �

17

2
ðuT þ 1ÞaT cToT

þ 3b0cT

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p þ 1

2
b2cTC 4oT þ

oToC

oC � oT

þ oToC

oC þ oT

� ��
ðB:10Þ

If we put oT ¼ o; oC ¼ 0; aT ¼ a; cT ¼ c; aC ¼ b0 ¼ b2 ¼ cC ¼ cTC ¼ 0

all the formulas for case (Ba) reduce to those describing the R–T effect in

triatomic molecules.

Case Bb K ¼ uT þ uC þ 2ð¼ KmaxÞ

The zeroth-order vibronic wave function is juT uT uC uC þi. The zeroth-

order energy is

Eð0Þ ¼ ðuT þ 1ÞoT þ ðuC þ 2ÞoC ðB:11Þ

The first- and second-order energy corrections are

Eð1Þ ¼ ðuT þ 1ÞðuT þ 2ÞaToT þ ðuC þ 1ÞðuC þ 2ÞaCoC

þ ðuT þ 1ÞðuC þ 1Þb0

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p þ 2�Aso ðB:12Þ

Eð2Þ ¼ � 1

2
ðuT þ 1ÞðuT þ 2Þð4uT þ 9Þa2

ToT �
1

2
ðuC þ 1ÞðuC þ 2Þð4uC þ 9Þa2

CoC

� 1

2
b0ðuT þ 1ÞðuC þ 1Þ

�
ðuT þ 1ÞoT þ ðuC þ 1ÞoC þ

oToC

oC þ oT

�

� b2
2

�
2uTðuC þ 1ÞðuC þ 2ÞoT þ 2uCðuT þ 1ÞðuT þ 2ÞoC

þ ðuT � uCÞð2uTuC þ uT þ uC � 1Þ oToC

oC � oT

þ ½ðuT þ 1ÞðuT þ 2Þ þ ðuC þ 1ÞðuC þ 2Þ� oToC

oC þ oT

�

� 2ðuT þ 1ÞðuT þ 2ÞðuC þ 1ÞaTb0

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p

� 2ðuT þ 1ÞðuC þ 1ÞðuC þ 2ÞaCb0

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p

� 1

4
ðuT þ 1ÞðuT þ 2ÞðuT þ 3ÞðuT þ 4Þc2

ToT

� 1

4
ðuC þ 1ÞðuC þ 2ÞðuC þ 3ÞðuC þ 4Þc2

CoC

� 1

2
ðuT þ 1ÞðuT þ 2ÞðuC þ 1ÞðuC þ 2Þc2

TC

oToC

oC þ oT

ðB:13Þ
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For uC ¼ 0, the formulas (B.12) and (B.13) reduce to (B.3).

Case Bc K ¼ uT þ uCð¼ Kmax � 2ÞuC > 0

The zeroth-order level is twofold degenerate. The corresponding vibronic

basis functions are juT uT uC uC�2 þi � j1i and juT uT�2uC uC þi � j2i.
The zeroth-order energy is (B.11). The first-order energy correction is

E
ð1Þ
1=2
¼ ðu2

T þ 4uT þ 1ÞaToT þ ðu2
C þ 4uC þ 1ÞaCoC

þ ðuT þ 1ÞðuC þ 1Þb0

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p � 1

2
Dþ 2�Aso ðB:14Þ

where

D ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðuT � 1ÞaToT � ðuC � 1ÞaCoC�2 þ 16uTuCb2

2oToC

q
ðB:15Þ

The corresponding wave functions have the form (A.13) and (A.14). In the

present case, D is given by (B.15) and

B ¼ �2ðuT � 1ÞaToT þ 2ðuC � 1ÞaCoC ðB:16Þ

The second-order energy corrections have the form (B.8) with

H11 ¼ �
1

2
ðuT þ 1ÞðuT þ 2Þð4uT þ 9Þa2

ToT �
1

2
uCðuC þ 1Þð4uC þ 35Þa2

CoC

� 1

2
b2

0ðuT þ 1Þ
�
ðuT þ 1ÞðuC þ 1ÞoT þ ðuC þ 1Þ2oC � ðuC � 1Þ oToC

oC � oT

þ 2uC

oToC

oC þ oT

�
� b2

2

�
2ðu2

TuC � 2u2
T þ 7uTuC � 6uT þ 6uC � 4ÞoC

þ 2uTuCðuC þ 1ÞoT þ ð3u2
T þ u2

C þ 9uT þ uC þ 6Þ oToC

oC þ oT

þ ð2u2
TuC � 2uTu2

C � u2
T � u2

C þ 4uTuC � 3uT þ 3uC � 2Þ oToC

oC � oT

�

� 2ðuT þ 1ÞðuT þ 2ÞðuC þ 1ÞaT b0

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p � 2uCðuT þ 1ÞðuC þ 5ÞaCb0

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p

� 1

4
ðuT þ 1ÞðuT þ 2ÞðuT þ 3ÞðuT þ 4Þc2

ToT �
1

4
uCðuC þ 1ÞðuC þ 2ÞðuC þ 35Þc2

CoC

� 1

2
c2

TCuCðuT þ 1ÞðuT þ 2Þ 4oC þ ðuC þ 1Þ oToC

oC þ oT

� �
ðB:17Þ
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and

H12 ¼ �
ffiffiffiffiffiffiffiffiffiffi
uTuC

p f12ðuT þ 1ÞaT b2

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p þ 12ðuC þ 1ÞaCb2

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p

þ b0b2

�
4ðuT þ 1ÞoT þ 4ðuC þ 1ÞoC þ ðuT þ uC þ 2Þ oToC

oC þ oT

þ ðuT � uCÞ
oToC

oC � oT

�
þ 4ðuT þ 1ÞðuT þ 2ÞcT cTC

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p

þ 4ðuC þ 1ÞðuC þ 2ÞcCcTC

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p g ðB:18Þ

The expression for H22 is obtained by interchanging indexes T and C on

the right-hand side of Eq. (B.17) (cCT � cTC). For uC ¼ 0; E
ð2Þ
2 ¼ H22 and

the second-order energy formula for E2 reduces to that derived for the case

Ba2.

Case Bd uT ¼ 1; uC ¼ 1; K ¼ 0

In other cases, the zeroth-order vibronic levels are generally more than

twofold degenerate and the perturbative handling is much more compli-

cated. An exception is the case uT ¼ 1; uC ¼ 1; K ¼ 0 with the twofold

degenerate zeroth-order level. The basis functions are j1 1 1 1�i � j1i and

j1 �1 1 �1þi � j2i. The zeroth-order energy is

Eð0Þ ¼ 2oT þ 2oC ðB:19Þ

The first-order energy correction is

E
ð1Þ
1=2
¼ 6aToT þ 6aCoC þ 4b0

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p � 1

2
D ðB:20Þ

where

D ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2A2

so þ 4c2
TCoToC

q
ðB:21Þ

The second-order energy correction is

E
ð2Þ
1=2
¼ H11 �

8cTC
ffiffiffiffiffiffiffiffiffiffiffiffi
oToC
p

D
H12 ðB:22Þ
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with

H11 ¼ �39a2
ToT � 39a2

CoC � 2b2
0 2oT þ 2oC þ

oToC

oC þ oT

� �

� 12b2
2 oT þ oC þ

oToC

oC þ oT

� �
� 24aT b0

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p � 24aCb0

ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p

� 54c2
ToT � 54c2

CoC � 2c2
TC 2oT þ 2oC þ

oToC

oC þ oT

� �
ðB:23Þ

H12 ¼ �24ðaTcTC þ aCcTC þ 2b2cT þ 2b2cCÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
oToC

p

� 8b0cTCoT � 8b0cTCoC � 4b0cTC

oToC

oC þ oT

ðB:24Þ
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656 miljenko perić and sigrid d. peyerimhoff
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I. INTRODUCTION

The full quantum mechanical study of nuclear dynamics in molecules has

received considerable attention in recent years. An important example of such

developments is the work carried out on the prototypical systems H3 [1–5] and

its isotopic variant HD2 [5–8], Li3 [9–12], Na3 [13,14], and HO2 [15–18]. In

particular, for the alkali metal trimers, the possibility of a conical intersection

between the two lowest doublet potential energy surfaces introduces a compli-

cation that makes their theoretical study fairly challenging. Thus, alkali metal

trimers have recently emerged as ideal systems to study molecular vibronic

dynamics, especially the so-called geometric phase (GP) effect [13,19,20] (often

referred to as the molecular Aharonov–Bohm effect [19] or Berry’s phase

effect [21]); for further discussion on this topic see [22–25], and references cited

therein. The same features also turn out to be present in the case of HO2, and

their exact treatment assumes even further complexity [18].

For Li3, Gerber and Schumacher [9] reported the lowest vibrational levels

and showed that vibronic coupling is essential to describe the electronic ground

state giving rise to the so-called dynamic Jahn–Teller effect. In turn, Mayer and

Cederbaum [10] studied the rovibronic coupling in the electronic A system of

Li3. Most recently, Kendrick [14] reported quantum mechanical calculations on

the vibrational spectrum of Na3 using a generalized Born–Oppenheimer

treatment. However, a question emerges when we carry out quantum mechanical

calculations using a filter diagonalization [26] technique, namely, the efficient

minimal residuals (MINRES) filter diagonalization method [11,27] hereafter

referred to shortly as MFD. For example, for the vibrational states of the 1H3

electronic ground state, one may compute the full spectrum of the corresponding

Hamiltonian, and hence, the problem arises of whether all calculated eigen-

functions are ‘‘true’’ physical molecular vibrational states. We will provide an

answer to this question in the following sections of this chapter.

Symmetry considerations have long been known to be of fundamental

importance for an understanding of molecular spectra, and generally molecular

dynamics [28–30]. Since electrons and nuclei have distinct statistical proper-

ties, the total molecular wave function must satisfy appropriate symmetry
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requirements. Thus, not all calculated states have to be physically acceptable

states, and symmetry considerations may allow us to distinguish the

‘‘mathematical states’’ from the ‘‘physical states.’’ In this chapter, we discuss

the permutational symmetries of the total wave function and its various

components for a molecule under the permutation of identical particles. Double

group theory will be used as a powerful tool to analyze the molecular states, and

an extension of Kramers’ theorem [28,30] to its most general form presented.

The significant role of nuclear spin will then be emphasized, and some severe

consequences will be demonstrated. Thus, the material presented here may be

helpful for a detailed understanding of molecular spectra and collisional

dynamics.

II. TOTAL MOLECULAR WAVE FUNCTION

The molecular time-independent nonrelativistic Schrödinger equation assumes

the form

Ĥ�ðR0; i; r0; sÞ ¼ E�ðR0; i; r0; sÞ ð1Þ

where �ðR0; i; r0; sÞ is the total molecular wave function, Ĥ is the total molecular

Hamiltonian operator, and E is the total energy; R0 and r0 stand collectively for

the nuclear and electronic coordinates in the space-fixed (SF) frame, and i and s
denote the corresponding nuclear and electronic spin coordinates. For a system

consisting of N nuclei and n electrons, there are 3N nuclear spacial coordinates

and 3n electronic ones. In the case of a triatomic molecule, the six nuclear

coordinates relative to the center of mass consist of three internal and three

external coordinates. The former may be taken as the hyperspherical coordinates

[2,31–35] ðr ; y;fÞ, while the external or orientational coordinates are chosen to

be the usual Euler angles ða; b; gÞ [36]. As illustrated in Figure 1, these define the

orientation of the body-fixed (BF) relative to the SF frames. In the following

sections, we will differentiate between these two types of coordinates by

expressing R0 ¼ ðR; R̂Þ, where R ¼ ðr ; y;fÞ and R̂ ¼ ða; b; gÞ.
In the strictest meaning, the total wave function cannot be separated since

there are many kinds of interactions between the nuclear and electronic degrees

of freedom (see later). However, for practical purposes, one can separate the

total wave function partially or completely, depending on considerations relative

to the magnitude of the various interactions. Owing to the uniformity and

isotropy of space, the translational and rotational degrees of freedom of an

isolated molecule can be described by cyclic coordinates, and can in principle

be separated. Note that the separation of the rotational degrees of freedom is not

trivial [37].
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Consider now the adiabatic approximation [38,39] to the solution of

Schrödinger’s equation. Such an approximation is based on the fact that the

nuclear masses are much larger than the electronic ones and therefore, on

average, the nuclei move much more slowly than the electrons. The latter are

thus able to follow the nuclear displacements: Their distribution in space is

determined by the instantaneous nuclear configuration. To a first approximation,

the nuclei may then be regarded as fixed. Accordingly, the total molecular wave

function can be divided in two parts: one refers to the electronic wave function

ceðr; s;RÞ, the other to the nuclear wave function wnucðR0; iÞ. Regarding the

nuclear wave function, it is possible to separate the translational part if the

interaction between the translational and the other (rotational and vibrational)

nuclear degrees of freedom can be ignored. This case is typical in studies of

spectroscopy and collisional dynamics where the measured properties depend

on the motions of the interacting species relative to each other but not on the

motion of the system as a whole (the space is assumed to be uniform and

Figure 1. The space-fixed (XYZ) and body-fixed (xyz) frames. Any rotation of the coordinate

system (XYZ ) to (xyz) may be performed by three successive rotations, denoted by the Euler angles

(a, b, g), about the coordinate axes as follows: (a) rotation about the Z axis through an angle

að0 � a < 2pÞ, (b) rotation about the new y1 axis through an angle bð0 � b � pÞ, (c) rotation about

the new z2 axis through an angle gð0 � g < 2pÞ. The relative orientations of the initial and final

coordinate axes are shown in panel (d).
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Figure 1 (Continued)
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isotropic). In this case, after separation of the center of mass motion,2 the total

Hamiltonian operator can be written as

Ĥ ¼ � �h2

2m
r2 þ Ĥeðr; s;RÞ ð2Þ

where Ĥeðr; s;RÞ is the electronic Hamiltonian that depends parametrically

on the R coordinates. For a triatomic molecule, r2 is the Laplacian with respect

to the six nuclear coordinates R0; m is the three-body reduced mass m ¼
ðmAmBmC=MÞ1=2

; mA, mB, and mC are the masses of nuclei A, B, and C; and

M ¼ mA þ mB þ mC. Note that we have separated the nuclear wave functions

from the electronic wave functions, and also assumed that the electronic

Hamiltonian is written in BF coordinates. Thus, the total molecular wave

function can be expanded in the form [39]

�ðR0; i; r; sÞ ¼
X

n

wnðR0; iÞcnðr; s;RÞ ð3Þ

Figure 1 (Continued)

2 The problem of separating the center-of-mass motion in a molecular system is an intricate one that

has no implications in the present work; the interested reader is referred to [40] for details.
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where wnðR0; iÞ are the nuclear wave functions, and cnðr; s;RÞ form a complete

set of electronic wave functions in BF (the summation should in principle include

an integration over the continuum) obtained by solving, for each set of nuclear

positions R, the following eigenequation:

Ĥeðr; s;RÞcnðr;RÞ ¼ VnðRÞcnðr; s;RÞ ð4Þ

As usually indicated by the semicolon, both the wave functions and eigenvalues

[VnðRÞ] depend parametrically on the internal nuclear coordinates.

Substitution of Eq. (3) into the molecular Schrödinger equation leads to a

system of coupled equations in a coupled multistate electronic manifold

� �h2

2m
r2 þ 2FðR0; iÞ 	 r þGðR0; iÞ
� �

þ VðRÞ
� �

wðR0; iÞ ¼ EwðR0; iÞ ð5Þ

or, in compact form,

HðR0; iÞwðR0; iÞ ¼ EwðR0; iÞ ð6Þ

where wðR0; iÞ is a column vector whose components are the nuclear wave

functions wnðR0; iÞ and the matrix elements of FðR0; iÞ, GðR0; iÞ, and VðRÞ are

given by

FmnðR0; iÞ ¼ hcmðr; s;RÞjrcnðr; s;RÞi ð7Þ
GmnðR0; iÞ ¼ hcmðr; s;RÞjr2cnðr; s;RÞi ð8Þ

VmnðRÞ ¼ hcmðr; s;RÞjĤeðr; s;RÞjcnðr; s;RÞi ð9Þ

where (and hereafter) the bra–ket notation hji is used to specify integration over

the electronic coordinates r and s only, and r implies taking the gradient with

respect to all the nuclear degrees of freedom. Note that the nonadiabatic coupling

terms [of first-order, FmnðR0; iÞ, and second-order, GmnðR0; iÞ] couple the various

electronically adiabatic states, and hence are responsible for electronically

nonadiabatic transitions. Note further that in the adiabatic approximation, the

matrix formed by the elements Vmn ¼ Vndmn is diagonal, whereas the matrix

C ¼ � �h2

2m
2FðR0; iÞ 	 r þGðR0; iÞ½ � ð10Þ

derived from the operator of kinetic energy of the nuclei is nondiagonal.

As is well known, perturbation theory for a single state is different from

that for degenerate states. The former leads to the traditional adiabatic
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approximation whereas, for degenerate or nearly degenerate states, it results into

the vibronic Hamiltonian that allows the nonadiabatic mixing of electronic states

having the same or close energies. First, let us examine the case of a non-

degenerate electronic state cnðr; s;RÞ. To first order of degenerate perturbation

theory, this is equivalent to considering just the diagonal elements of the

Hamiltonian matrix HðR0; iÞ or to neglecting all terms in Eq. (3) but the nth one

�ðR0; i; r; sÞ ¼ wnðR0; iÞcnðr; s;RÞ ð11Þ

Thus, the neglect of the off-diagonal matrix elements allows the change from

mixed states of the nuclear subsystem to pure ones. The motion of the nuclei

leads only to the deformation of the electronic distribution and not to transitions

between different electronic states. In other words, a stationary distribution of

electrons is obtained for each instantaneous position of the nuclei, that is, the

electrons follow the motion of the nuclei adiabatically. The distribution of the

nuclei is described by the wave function wnðR0; iÞ in the potential Vnn þ Cnn,

known as the proper adiabatic approximation [41]. The off-diagonal operators

Cmn in the matrix C, which lead to transitions between the states cn and cm, are

called operators of nonadiabaticity and the potential Vn ¼ VnnðRÞ due to the mean

field of all the electrons of the system is called the adiabatic potential.

To obtain the Hamiltonian at zeroth-order of approximation, it is necessary

not only to exclude the kinetic energy of the nuclei, but also to assume that the

nuclear internal coordinates are frozen at R ¼ R0, where R0 is a certain

reference nuclear configuration, for example, the absolute minimum or the

conical intersection. Thus, as an initial basis, the states cnðr; sÞ ¼ cnðr; s;R0Þ
are the eigenfunctions of the Hamiltonian Ĥeðr; s;R0Þ. Accordingly, instead of

Eq. (3), one has

�ðR0; i; r; sÞ ¼
X

n

wnðR0; iÞcnðr; sÞ ð12Þ

Substitution of Eq. (12) into the Schrödinger equation leads to a system of

coupled differential equations similar to Eq. (5), but with the following

differences: the potential matrix with elements

VmnðRÞ ¼ hcmðrÞjĤeðR; rÞjcnðrÞi ð13Þ

is nondiagonal in the new basis, whereas the matrix of the kinetic energy operator

for the nuclei vanishes as the basis functions do not depend on R. For the

nondegenerate state case, one has to take into account only the diagonal elements

of the Hamiltonian,

Hn ¼ � �h2

2m
r2 þ Vnn ð14Þ
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where Vnn plays the role of the potential energy of the nuclei. This is equivalent

to looking for solutions of the form in Eq. (11). If a complete basis set is

assumed, the eigenvalues of the potential matrix then coincide with the adiabatic

potentials Vn from Eq. (4).

This approach is called the Born–Oppenheimer (BO) approximation [38]. It

is linked to the proper adiabatic approximation by the unitary transformation of

the electronic basis and from this point of view they are equivalent. Of course,

such an equivalence is valid only for exact solutions. In fact, the convergence of

approximate solutions is different for those two cases. In particular, the BO

approximation necessarily involves the expansion of the potential energy in a

power series with respect to nuclear displacements from the point R0, and hence

leads to a different convergence when compared with the adiabatic approxima-

tion. In some cases though, the weak convergence or even nonvalidity of the BO

approximation is caused not by the large contribution of the operator of

nonadiabaticity but by the signficant anharmonicity of the potential energy

surface, especially in the case of nonrigid molecules where the adiabatic

approximation may possibly work. On the other hand, the BO approximation is

convenient since it allows the use of symmetry considerations due to the fact

that the electronic states fcnðrÞg form the basis of irreducible representations

(IRREPs) of the symmetry group appropriate to the nuclear configuration R0.

However, for some polyatomic systems, there are electronic states for which

the adiabatic and the BO approximations are inapplicable. In such cases, the

electronic term energies are very close or coincide at some number (finite or

infinite) of points of the configurational space of the nuclei. Such a degeneracy

of the terms in the electronic subsystem is usually due to the high symmetry of

the nuclear configuration at the point R0. This is the case, for example, when

the potential energy surface shows a conical intersection. As a result of such

degeneracies, the BO approximation described in the previous paragraph

breaks down. In fact, as first pointed out by Longuet-Higgins and Herzberg [42–

44], due to such a conical intersection, a real electronic wave function changes

sign when traversing a nuclear path that encircles the degeneracy point. On the

other hand, the total electronuclear wave function must be continuous and

single-valued, which implies that the nuclear wave function must change sign to

compensate that of the electronic wave function. This may be achieved by

introducing a geometry-dependent phase factor in the Born–Huang [39] type

development as follows:

� R0; i; r; sð Þ ¼
X

n

wn R0; ið ÞeiAn Rð Þcn r; s;Rð Þ ¼
X

n

wn R0; ið Þ~cn r; s;Rð Þ ð15Þ

where cn r; s;Rð Þ are the real-valued solutions of Eq. (4), and the An Rð Þ are

chosen to make ~cn r; s;Rð Þ [and hence � R0; i; r; sð Þ] be single valued. Of course,
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Eq. (15) may alternatively be written as

� R0; i; r; sð Þ ¼
X

n

~wn R0; ið Þcn r; s;Rð Þ ð16Þ

where the complex nuclear wave functions ~wn R0; ið Þ are now chosen to make

� R0; i; r; sð Þ be single valued. Clearly, the R dependence of An Rð Þ must reflect

the presence of any conical intersection in accordance with the Berry phase

condition, and hence can generally be constructed only after the conical

intersections have been located. Although a general approach for determining

An Rð Þ has been suggested by Kendrick and Mead [45], it remains a nontrivial

task. As shown in Appendix A, a simpler approach is possible if one assumes a

two-dimensional (2D) Hilbert space model, that is, only two electronic states.

Mead and Truhlar [19,46,47] showed that the ansatz of Eq. (15) leads to the

appearance of a vector potential in the nuclear Schrödinger equation. For a

X3-type molecule, the same result can be achieved by multiplying the real

nuclear wave function by a complex phase factor such that it changes sign on

encircling the conical intersection, and hence makes the resulting complex

nuclear wave function single valued [48–50]. Billing and Markovic [51]

adopted hyperspherical coordinates within this complex phase factor approach

to include such a GP effect in X3 molecules that have a single D3h conical

intersection, since in this coordinate system the GP effect concerns in principle

only the f hyperangle. A similar approach has been utilized by the present

authors [2] to study the transition state resonances and bound vibrational states

of H3 using a time-dependent wavepacket method. Because all the above

methods still use only one electronically adiabatic potential energy surface, they

can be said to be based on a generalized BO approximation [52]. Within this

spirit, we have also reported [4], following the approach of Baer and

Englmann [53] and Xu et al. [5], a generalized BO equation [4] to study the

nuclear dynamics in the vicinity of the conical intersection (see Appendix A).

Such studies on both the electronically ground doublet state [11] and first-

excited doublet state [12] of trimeric hydrogenic systems have shown that the

GP effect plays a significant role, and should be taken into account if accurate

dynamics results are aimed.

III. GROUP THEORETICAL CONSIDERATIONS

As is well known, when the electronic spin–orbit interaction is small, the total

electronic wave function ceðr; s;RÞ can be written3 as the product of a spatial

wave function c0eðr;RÞ and a spin function cesðsÞ. For this, we can use either

3 Although for a Slater-type determinant wave function this is true only for two-particle systems, the

following discussion is independent of such a restriction.
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the SF or the BF coordinate systems. As shown below, it is more appropriate to

use BF spin functions, since they will be affected by molecular symmetry

operations, and hence must belong to one of the irreducible representations

of the symmetry point group of the molecule. For example, for integer spin

values, the transformation expðimSjÞ for rotation by j ¼ 2p, where mS ¼ S;
S� 1; . . . ;�S, leads to a retrieval of the spin function to itself [28]. However,

when the spin is a half-integer, such a transformation (i.e., a rotation by 2p) will

lead to a sign change of the spin function. Indeed, if j0 ¼ jþ 2p and mS ¼ l=2,

where l is an integer, one has expðimSj0Þ ¼ �expðimSjÞ. The spin function will

then be double valued: A rotation by 2p will not bring the system to its starting

point, which can only be achieved through a 4p rotation. A rotation by 2p is

therefore a new symmetry element, called R (to denote the corresponding

operator we use R̂; such a hat notation is also generally used in this work for

other operators), with respect to which any spin function may be either

symmetric or antisymmetric. As a result there are new symmetry elements R̂Yi,

where Yi stands for any of the original symmetry elements (e.g., C2; s;C3; . . .).
Such extended point groups are commonly referred to as double groups [28],

and we give some examples in Table I; the dashed lines on this table indicate the

separation between the traditional point group and its extension. Note that, for

twofold axes (C2) and planes of symmetry (s), the new elements (R̂C2 and R̂s)

belong to the same class as the original elements and cause only a doubling of

the class. For axes more than twofold and the center of symmetry, they cause a

doubling of the number of classes. For example, the class designed 2Ĉ3 of the

ordinary point group D3h has two elements C3 and C2
3, while the double group

has two extra elements C4
3 and C5

3 in the class 2Ĉ2
3, since R̂C3 ¼ C4

3 and R̂C2
3 ¼

C5
3. Similarly, one has R̂S3 ¼ S5

3; for further details, the reader is referred to

Herzberg’s [28] book.

Note also that on reducing the symmetry of a system, the spin functions for

integer spin are resolved by reducing degeneracies [28]. In simple words, this

means that by reducing the symmetry, the degenerate spin states in the high-

symmetry group split into different states in the lower symmetry group.

However, the spin functions for half-integer spin are at most resolved into

functions that are still doubly degenerate. Indeed, we may see from Table II that,

for integer total electronic spin S or integer total nuclear spin I, on going from

D3h to C2v the E00 representation transforms to B1 þ B2. Conversely, for the S or

I half-integer, the same resolution maintains the E-type degenerate representa-

tion. This remaining degeneracy is usually called Kramers’ degeneracy to honor

the author who first discovered it [28,30]. According to Kramers’ theorem,

provided that no external magnetic field is present, the degeneracy of a system

consisting of an odd number of identical particles with half-integer spin

(fermions) is even. This is due to the fact that, as long as no magnetic field is

present, there is in all atomic and molecular systems an additional symmetry
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element that corresponds to the antilinear time reversal operator T̂ (see

Appendix B): The evolution of a system (classical or quantum) is invariant

when the time t is replaced by �t. In fact, an extension of Kramers’ theorem

will be demonstrated to be valid also for systems with a half-integer total

angular momentum quantum number F.

Consider then the total angular momentum F defined by the vectorial sum of

all the angular momenta of the system

F ¼ Sþ Iþ Lþ N ð17Þ

TABLE I

Species and Characters of the Extended C2, C2v, C3v, and D3h Point Groupsa

C2 Î Ĉ2ðzÞ R̂

A 1 1 1

B 1 �1 1

E a
1=2 2 0 �2

C2v Î Ĉ2ðzÞ ŝvðxzÞ ŝvðyzÞ R̂

A1 1 1 1 1 1

A2 1 1 �1 �1 1

B1 1 �1 1 �1 1

B2 1 �1 �1 1 1

E1=2 2 0 0 0 �2

C3v Î 2Ĉ3 3ŝv R̂ 2Ĉ2
3

A1 1 1 1 1 1

A2 1 1 �1 1 1

E 2 �1 0 2 �1

E1=2 2 1 0 �2 �1

E3=2 2 �2 0 �2 2

D3h Î 2Ŝ3ðzÞ 2Ĉ3ðzÞ ŝh 3Ĉ2 3ŝv R̂ 2Ŝ5
3 2Ĉ2

3

A01 1 1 1 1 1 1 1 1 1

A02 1 1 1 1 �1 �1 1 1 1

A001 1 �1 1 �1 1 �1 1 �1 1

A002 1 �1 1 �1 �1 1 1 �1 1

E00 2 1 �1 �2 0 0 2 1 �1

E0 2 �1 �1 2 0 0 2 �1 �1

E1=2 2
ffiffiffi
3

p
1 0 0 0 �2 �

ffiffiffi
3

p
�1

E3=2 2 0 �2 0 0 0 �2 0 2

E5=2 2 �
ffiffiffi
3

p
1 0 0 0 �2

ffiffiffi
3

p
�1

aAs usual, the indices 1=2, 3=2, and 5=2 that appear in the doubly degenerate E representation

indicate the values of the projection of the angular momentum vector, mJ ¼ �1=2;�3=2;�5=2; see

also the text.
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where S; I; L, and N are the total electronic spin, nuclear spin, electronic orbital

angular momentum, and nuclear orbital angular momentum. For this general

case, we can prove that Kramers’ theorem still applies since spin and orbital

angular momenta must obey the same time-reversal properties (see Appendix C),

namely,

T̂ ŜT̂�1 ¼ �Ŝ T̂ L̂T̂�1 ¼ �L̂ ð18Þ
T̂ ÎT̂�1 ¼ �Î T̂N̂T̂�1 ¼ �N̂ ð19Þ

where Â represents as usual the operator corresponding to the angular

momentum (vector) A, while the quantum number A defines the eigenvalue

AðAþ 1Þ of Â2. Thus,

T̂ Ŝþ L̂
� �

T̂�1 ¼ � Ŝþ L̂
� �

T̂ Î þ N̂
� �

T̂�1 ¼ � Î þ N̂
� �

ð20Þ
T̂ Ŝþ Î
� �

T̂�1 ¼ � Ŝþ Î
� �

T̂ L̂þ N̂
� �

T̂�1 ¼ � L̂þ N̂
� �

ð21Þ

and hence

T̂F̂T̂�1 ¼ �F̂ ð22Þ

Equations (18)–(22) imply that all types of angular momenta have the same time-

reversal properties. In fact, it is well known [54,55] that quantities such as

energy, coordinates, electric field strength, and so on are invariant under time

reversal: The corresponding operators must be time invariant. In turn, the

velocity, linear momentum, angular momentum, magnetic field strength, and so

on, change sign under time reversal: The corresponding operators must reflect

the same property.

Moreover, as also shown in Appendix C for the electronic spin, one has

T̂2
S ¼ ð�1̂Þ2S ð23Þ

TABLE II

Species of Spin Functions for Some Important Double Groups

S or I C2 C2v C3v D3h

0 A A1 A1 A01
1
2

E1=2 E1=2 E1=2 E1=2

1 Aþ 2B A2 þ B1 þ B2 A2 þ E A02 þ E00
3
2

2E1=2 2E1=2 E1=2 þ E3=2 E1=2 þ E3=2

2 3Aþ 2B 2A1 þ A2 þ B1 þ B2 A1 þ 2E A01 þ E0 þ E00
5
2

3E1=2 3E1=2 2E1=2 þ E3=2 E1=2 þ E3=2 þ E5=2
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where hereafter the operator T̂A stands for a time-reversal operation on the A
variable. Similarly, for the nuclear spin, one has

T̂2
I ¼ ð�1̂Þ2I ð24Þ

Thus,

T̂2
I T̂2

S ¼ ð�1̂Þ2ðIþSÞ ð25Þ

and finally

T̂2
F ¼ ð�1̂Þ2F ð26Þ

since

T̂2
L ¼ ð�1̂Þ2L ¼ 1̂ T̂2

N ¼ ð�1̂Þ2N ¼ 1̂ ð27Þ

Note that T̂S, T̂I , T̂L, and T̂N operate on the corresponding degrees of freedom,

and hence mutually commute. Note especially that L and N always assume

integer values.

At this stage, we are ready to prove that Kramers’ theorem holds also for the

total angular momentum F. We will do it by reductio ad absurdum. Then, let

j�Ei be the eigenvector of Ĥ with eigenvalue E,

Ĥj�Ei ¼ Ej�Ei ð28Þ

where hereafter we use the Dirac bra–ket notation. Since T̂ commutes with Ĥ,

one gets

ĤT̂ j�Ei ¼ ET̂j�Ei ð29Þ

Suppose now that the total wave function (state) is nondegenerate, and F is half-

integer. From Eq. (29), it then follows

T̂j�Ei ¼ cj�Ei ð30Þ

where c is a constant, and hence

T̂2j�Ei ¼ T̂cj�Ei ¼ c�T̂ j�Ei ¼ jcj2j�Ei ð31Þ
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Note that the third equality in Eq. (31) holds due to the fact that T̂ is antiunitary

(see Appendix B), and hence can be expressed as

T̂ ¼ ÛK̂ ð32Þ

where Û is an unitary operator and K̂ the complex conjugate operator. Clearly,

Eq. (31) is in contradiction with the initial hypothesis that T̂2 ¼ �1̂. The

eigenstates of a system with half-integer F must therefore be degenerate, as we

wished to demonstrate.

We now prove that the degeneracy must be even. For this, we should first

demonstrate two Lemmas: (1) j�Ei is orthogonal to T̂ j�Ei if T̂2 ¼ �1̂; (2)

T̂ j�0
Ei; j�Ei and T̂ j�Ei form a set of mutually orthogonal functions, provided

that j�0
Ei is orthogonal both to j�Ei and T̂ j�Ei. By first considering Lemma 1,

one has

h�EjðT̂ j�EiÞ ¼ �ðh�EjT̂y2ÞðT̂j�EiÞ ð33Þ
¼ � ðh�EjT̂yÞðT̂yT̂ j�EiÞ

� �� ð34Þ
¼ � ðh�EjT̂yÞj�Ei

� �� ð35Þ
¼ �h�EjðT̂ j�EiÞ ð36Þ

where the first equality is obtained owing to the fact that T̂2 ¼ �1̂; the second to

the fact that T̂ is antilinear, and hence obeys the property hcjðT̂ jjiÞ ¼ ðhcjT̂Þjji
� ��

(see Appendix B); the third results from the unitary property of T̂ (i.e.,

T̂yT̂ ¼ 1̂); finally, Eq. (36) follows from applying again the fact that T̂ is

antilinear, and hence hjjðT̂ jciÞ ¼ ðhcjT̂yÞjji
� ��

. Thus, Eqs. (33)–(36) imply

that h�EjðT̂ j�EiÞ ¼ 0, which completes the proof of Lemma 1.

Let us now prove Lemma 2. One has

hT�0
Ej�Ei ¼ ðh�0

EjT̂yÞj�Ei ð37Þ
¼ h�0

EjðT̂yj�EiÞ
� �� ð38Þ

¼ h�0
EjðT̂y2T̂ j�EiÞ

� �� ð39Þ
¼ � h�0

EjðT̂ j�EiÞ
� �� ð40Þ

¼ 0 ð41Þ

and

hT�0
EjðT̂ j�EiÞ ¼ ðh�0

EjT̂yÞðT̂ j�EiÞ ð42Þ
¼ h�0

EjðT̂yT̂j�EiÞ
� �� ð43Þ

¼ h�0
Ej�Ei

� �� ð44Þ
¼ 0 ð45Þ

which completes the desired proof.
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Finally, we can demonstrate that the degeneracy is even when the total

angular momentum quantum number F is half-integer, again via a reductio ad

absurdum method. Suppose that the degeneracy of the eigenstates is k, then we

have k degenerate states j�E;ii ði ¼ 1; . . . ; kÞ, which have in common the same

eigenvalue E. One can then form orthogonal pairs of such states such as j�Ei
and T̂j�Ei. If k is odd, there will be a single state (e.g., jfi), which has no pair.

However, as mentioned above, T̂ jfi will be orthogonal to all the k states, and

T̂ jfi is nonzero. This implies that the number of total states of the same

eigenvalue E is ðk þ 1Þ, which contradicts our initial hypothesis. Thus, we

conclude that k must be even, and hence proved the generalized Kramers’

theorem for total angular momentum. The implication is that we can use double

groups as a powerful means to study the molecular systems including the

rotational spectra of molecules. In analyses of the symmetry of the rotational

wave function for molecules, the three-dimensional (3D) rotation group SOð3Þ
will be used.

IV. PERMUTATIONAL SYMMETRY OF
TOTAL WAVE FUNCTION

The total Hamiltonian operator Ĥ must commute with any permutations P̂X

among identical particles (X) due to their indistinguishability. For example, for

a system including three types of distinct identical particles (including

electrons) like 7Li2
6Li2 with a Td conformation, one must satisfy the following

commutative laws:

P̂e; Ĥ
� �

¼ 0 P̂7Li; Ĥ
� �

¼ 0 P̂6Li; Ĥ
� �

¼ 0 ð46Þ

and hence P̂X ðX ¼ e; 7Li; 6LiÞ are conserved quantities. For a system with N

distinct sets of identical particles, there must be N such commutative laws

similar to those in Eq. (46), which are relative to the various kinds of

permutations; thus, there will be N permutational restrictions on the total wave

function �ðR0; i; r; sÞ. Note from Figures 1d and 2 that under the permutation of

two identical nuclei, the hyperspherical coordinates for a three-particle system

transform as ðr ; y;f; a; b; gÞ ! ðr ; y;�f; a; b; gþ pÞ.
We will now explain the meaning of the word ‘‘identical’’ used above.

Physically, it is meant for particles that possess the same intrinsic attributes,

namely, static mass, charge, and spin. If such particles possess the same intrinsic

attributes (as many as we know so far), then we refer to them as physically

identical. There is also another kind of identity, which is commonly referred to

as chemical identity [56]. As discussed in the next paragraph, this is an im-

portant concept that must be stressed when discussing the permutational

properties of nuclei in molecules.
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Then, let us first examine 7Li3 in a D3h structure. In this molecule, the three

nuclei not only have the same intrinsic attributes but also have the same

molecular environments due to the fact that they are in chemically equivalent

positions. Thus, the three nuclei can be exchanged by rotations of the molecule

and the permutational symmetry requirement must be satisfied. Now, consider a

molecule like methanol (CH3OH) with four physically identical hydrogens. For

any conformation, the methyl hydrogens will be distinguishable from one

another through their positions relative to that of the hydroxyl hydrogen.

However, the barrier for internal rotation of CH3 around the CO axis is low, and

tunneling from one equivalent conformation to another may occur. Thus, the

permutational symmetry requirement must be applied to the methyl hydrogens.

A third example is the linear conformation of NNO, with two physically

identical nitrogen nuclei. In principle, the permutational symmetry requirement

should also be applied to the two 14N nuclei since they are physically identical.

However, the two nuclei are placed at different molecular environments, that is,

one lies adjacent to the oxygen nucleus while the other does not. Since their

permutation involves an extremely high energy process, we may regard such

nitrogen nuclei as distinguishable. They can then be said to be chemically

nonequivalent [56], and hence not subject to the permutational symmetry

Figure 2. The space-fixed (XYZ ) and body-fixed (xyz) frames in a diatomic molecule AB. The

nuclei are at A and B, and 1 represents the location of a typical electron. The results of inversions of

their SF coordinates are A ! A0, B ! B0, and 1 ! 10, respectively. After one executes only the

reinversion of the electronic SF coordinates, one obtains 10 ! 1. The net effect is then the exchange

of the SF nuclear coordinates alone.
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requirement in low-energy spectroscopic studies. We should note though that, if

their interchange becomes feasible by increasing the energy, the potential

energy surface must satisfy the full permutational symmetry requirement

dictated by the physical identity alone; this is typically the case in reaction

dynamics studies. Another example is the molecule H12C������13CH where two

hydrogen atoms have nonequivalent chemical environments. Again, although

the two hydrogen atoms may be distinguishable from the spectroscopic point of

view, the corresponding full potential energy surface must generally be

symmetric with respect to their permutation; note that in the BO approximation,

the potential energy surface does not depend on the mass of the nuclei, and

hence it is the same as for H12C������12CH. In summary, the permutational

symmetry requirement should be applied only to identical particles that are both

physically and chemically indistinguishable. In this case, chemical identity

implies physically identical particles that have equivalent environments in the

molecule and can be brought about by proper rotations of the nuclear

framework, or else physically identical particles that may have equivalent

chemical environments through some feasible dynamical process. Thus, the

concept of chemical identity depends on the energy regime under consideration.

Ideally, one should therefore carry out the nuclear dynamics studies using a

global potential energy surface [57,58], which has built-in the full permutational

symmetry implied by the physical identity of the atoms. Of course, if the

equivalent minima are separated from each other by high energy barriers, then it

may be an excellent approximation to have just the representation for one of the

equivalent minima if one assumes that underbarrier tunneling is negligible. In

other words, the concept of chemical identity delimits the nuclei motion to a

part of the molecule configuration space. Hereafter, we will refer to identical

particles with the above understanding.

Let us examine a special but more practical case where the total molecular

Hamiltonian, Ĥ, can be separated to an electronic part, Ĥeðr; s;R0Þ, as is the

case in the usual BO approximation. Consequently, the total molecular wave

function �ðR0; i; r; sÞ is given by the product of a nuclear wave function

wnucðR0; iÞ and an electronic wave function ceðr; s;R0Þ. We may then talk

separately about the permutational properties of the subsystem consisting of

electrons, and the subsystem(s) formed of identical nuclei. Thus, the following

commutative laws P̂e; Ĥe

� �
¼ 0 and P̂X; ĤN

� �
¼ 0 must be satisfied; X ¼

A;B; . . . , and all other symbols have their usual meaning.

As pointed out in the previous paragraph, the total wave function of a

molecule consists of an electronic and a nuclear parts. The electrons have a

different intrinsic nature from nuclei, and hence can be treated separately when

one considers the issue of permutational symmetry. First, let us consider the

case of electrons. These are fermions with spin 1
2
, and hence the subsystem of

electrons obeys the Fermi–Dirac statistics: the total electronic wave function
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must be antisymmetric under permutation of any two electrons. This require-

ment implies the Pauli exclusion principle, which states that two electrons

cannot occupy the same spin orbital.

Commonly, nuclear dynamics treatment in molecules neglect the interactions

between the nuclear spin and the other nuclear and electronic degrees of

freedom in the system Hamiltonian. As a result, the eigenenergies become

independent of the nuclear spin. In this case, one must impose the requirements

that the symmetry properties of the nuclear spin on the total wave function are

satisfied, since the nuclei in the molecule have their specific statistical properties.

As it is well known, nuclei having zero or integer nuclear spin quantum numbers

are bosons and must obey the Bose–Einstein statistics: The nuclear wave

function must therefore be symmetric under permutation of any two identical

bosonic particles. On the other hand, nuclei having half-integer spin quantum

numbers are fermions and must obey the Fermi–Dirac statistics: The nuclear

wave function must in this case be antisymmetric with respect to the permutation

of any two fermionic nuclei. For example, 7Li is a fermion with nuclear spin 3
2
,

and 6Li is a boson with nuclear spin 1. Thus, the total wave function of 7Li3
must be antisymmetric under the permutation of the three identical nuclei (note

that this involves a three-pair change); see the corresponding S3 permutational

group in Table III. Conversely, the total wave function of 6Li3 must be

symmetric under the permutation of the three identical nuclei. In turn, the total

wave function of 7Li2
6Li must be antisymmetric under the permutation S2 of

the two identical 7Li nuclei (see also Table III for the S2 permutational group).

Following the same reasoning, the total wave function of 6Li2
7Li must be

symmetric under the permutation of the two identical 6Li nuclei.

Let us discuss further the permutational symmetry properties of the nuclei

subsystem. Since the electronic spatial wave function ceðr; s;R0Þ depends

parametrically on the nuclear coordinates, and the electronic spacial and spin

coordinates are defined in the BF, it follows that one must take into account the

effects of the nuclei under the permutations of the identical nuclei. Of course,

TABLE III

Species and Characters of the S2 and S3 Permutational Groups

S2 (1) (12)

[2] 1 1

½12� 1 �1

S3 ð1Þ 2ð123Þ 3ð12Þ

½3� 1 1 1

½13� 1 1 �1

½21� 2 �1 0
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the spin part of the electronic wave function is independent of the permutational

properties of the nuclei, which implies that one does not need to take care of the

electronic spin wave function when dealing with the permutational properties of

the nuclei. However, as it is will be further discussed in Section VIII, the

electronic spin S will influence the permutational symmetry properties through

the total angular momentum J. Accordingly, we address in the following

sections the consequences of such rules based on the premise that the total wave

function �ðR0; i; r; sÞ may be written as

�ðR0; i; r; sÞ ¼ ceðr; s;R0ÞwvðRÞwrðR̂ÞwnsðiÞ ð47Þ

where ceðr; s;R0Þ, wvðRÞ, wrðR̂Þ, and wnsðiÞ are the electronic, vibrational,

rotational, and nuclear spin functions, respectively.

V. PERMUTATIONAL SYMMETRY OF NUCLEAR
SPIN FUNCTION

As discussed before, the nuclear spin functions must belong to one of the

irreducible representations of the double group of the molecule. For example,
6Li3 may have nuclear spin quantum numbers I ¼ 0, 1, 2, and 3, and hence the

permutational symmetries under S3 will be given according to Table II: A01 for

I ¼ 0; A02 þ E00 for I ¼ 1; A01 þ E0 þ E00 for I ¼ 2, and so on. For a molecule

with half-integer nuclear spin, all the IRREPs are double-valued due to the

Kramers’ degeneracy. For example, for 7Li3, the nuclear spin quantum numbers

I are half-integer ranging in steps of 1 from 1
2

up to 9
2
. Thus, from Table II, the

permutation symmetries under S3 will be E1=2 for I ¼ 1
2
; E1=2 þ E3=2 for I ¼ 3

2
;

E1=2 þ E3=2 þ E5=2 for I ¼ 5
2
, and so on.

For a nucleus with spin quantum number I 6¼ 0, there are ð2I þ 1Þ values of

the z component mI of the spin nuclear angular momentum, with mI ¼
�I;�I þ 1; . . . ; I � 1; I. For two such nuclei, the total number of mI combi-

nations will be ð2I þ 1Þ2
. Assuming that wmI

ð1Þ is the nuclear spin function of

nucleus 1 with quantum number mI, there are ð2I þ 1Þ spin functions of the

form wmI
ð1ÞwmI

ð2Þ, which are symmetric. Of the remaining ð2I þ 1Þ2� ð2I þ 1Þ
ones, one-half can be combined in symmetric states

wS
nsð1; 2Þ ¼ 1ffiffiffi

2
p wmI

ð1Þwm0
I
ð2Þ þ wm0

I
ð1ÞwmI

ð2Þ
h i

mI 6¼ m0
I ð48Þ

and the other one-half in antisymmetric ones

wA
nsð1; 2Þ ¼ 1ffiffiffi

2
p wmI

ð1Þwm0
I
ð2Þ � wm0

I
ð1ÞwmI

ð2Þ
h i

mI 6¼ m0
I ð49Þ
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The total number of symmetric states is then

2I þ 1þ 1

2
½ð2I þ 1Þ2 � ð2I þ 1Þ� ¼ ð2I þ 1ÞðI þ 1Þ ð50Þ

and the total number of antisymmetric states is

1

2
½ð2I þ 1Þ2 � ð2I þ 1Þ� ¼ ð2I þ 1ÞI ð51Þ

In summary, for a homonuclear diatomic molecule there are generally ð2I þ 1Þ
ðI þ 1Þ symmetric and ð2I þ 1ÞI antisymmetric nuclear spin functions. For

example, from Eqs. (50) and (51), the statistical weights of the symmetric and

antisymmetric nuclear spin functions of 7Li2 will be 5
8

and 3
8
, respectively. This is

also true when one considers 7Li2
6Li and 6Li2

7Li. For the former, the statistical

weights of the symmetric and antisymmetric nuclear spin functions are 5
8

and 3
8
,

respectively; for the latter, they are 2
3

and 1
3

in the same order.

For a homonuclear triatomic molecule there are similarly [29] ð2I þ 1Þ
ð2I þ 3ÞðI þ 1Þ=3 symmetric, ð2I þ 1Þð2I � 1ÞI=3 antisymmetric, and ð2I þ 1Þ
ðI þ 1Þð8IÞ=3 degenerate nuclear spin functions. For 7Li3, one therefore has 20

symmetric, 4 antisymmetric, and 40 degenerate nuclear spin functions. The

corresponding statistical weights will then be 5
16

, 1
16

, and 10
16

. Following a similar

reasoning for 6Li3 one finds 10 symmetric, 1 antisymmetric, and 16 degenerate

nuclear spin functions. Thus, the corresponding statistical weights are 10
27

, 1
27

,

and 16
27

.

Now, consider a linear polyatomic molecule. If this is of the type

Z 	 	 	BAAB 	 	 	Z with D1h geometry, a Ĉ2 rotation about an axis perpendicular

to the molecular axis at its midpoint will exchange pairs of identical nuclei. If

the nuclei A;B; . . . ;Z contain an odd number of fermions, the Ĉ2 rotation leads

to a change of sign of the total wave function; otherwise, it will remain

unchanged. By repeated application of the two identical nuclei case, the total

number of possible nuclear spin wave functions will be given by ð2IA þ 1Þ2
ð2IB þ 1Þ2 	 	 	 ð2IZ þ 1Þ2

, where IX denotes the nuclear spin of X ðX ¼ A;
B; . . . ;ZÞ. Similarly, the number of possible symmetric and antisymmetric

nuclear spin functions can be obtained by an extension of the method used for

diatomic molecules. The total number of symmetric states is then given by [56]

ð2IA þ 1Þð2IB þ 1Þ 	 	 	 ð2IZ þ 1Þ ð2IA þ 1Þð2IB þ 1Þ 	 	 	 ð2IZ þ 1Þ þ 1½ �=2

ð52Þ

and the total number of antisymmetric states is [56]

ð2IA þ 1Þð2IB þ 1Þ 	 	 	 ð2IZ þ 1Þ ð2IA þ 1Þð2IB þ 1Þ 	 	 	 ð2IZ þ 1Þ � 1½ �=2

ð53Þ
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which represent the corresponding nuclear statistical weights. For molecules of

the form Z 	 	 	BARAB 	 	 	Z with D1h symmetry, the corresponding numbers

must each be multiplied by [56] ð2IR þ 1Þ.

VI. PERMUTATIONAL SYMMETRY OF ELECTRONIC
WAVE FUNCTION

In considering the nuclear permutational properties of the total wave function,

we must have in mind the corresponding properties of the electronic

wave function, since this depends parametrically on the nuclear geometry.

The permutational properties of ceðr; s;R0Þ under identical-nuclei exchange are

determined by those of Ĥeðr; s;R0Þ, and hence of VnðRÞ. Since this represents

the potential energy of the electrons in the field of the fixed nuclei, it must have

the symmetry of the molecule in its nth electronic state. The electronic eigen-

functions for nondegenerate states can therefore only be symmetric or

antisymmetric with respect to each symmetry operation that is allowed by the

symmetry of the molecule in its equilibrium geometry. For degenerate states, a

symmetry operation can only transform an eigenfunction into a linear

combination of the degenerate eigenfunctions such that the electron density

remains unaltered.

Let us begin by considering a homonuclear diatomic molecule. Clearly,

permutation of the nuclei does not affect the internuclear distance, but it does

affect the electronic spatial coordinates, since they are defined with respect to

the BF axes. To find the effect of interchanging nuclei on the electronic wave

function, we invert first the SF coordinates of the nuclei and electrons, and then

carry out a second inversion of the SF electronic coordinates alone. The net

effect will be the exchange of the SF coordinates of the two nuclei as illustrated

in Figure 2. Note that the inversion of the SF does not affect electronic and

nuclear spin coordinates. The eigenvalues (�1) of such an inversion operator

indicate the parities of the wave function under consideration. The first

inversion (equivalent to a reflection ŝv) leaves the electronic wave functions

unchanged (i.e., with even parity) for �þ;	þ; . . . electronic states, while it

changes their sign (i.e., with odd parity) for ��;	�; . . . electronic states. This is

due to the fact that reflection in the plane containing the nuclei changes (leaves

unchanged) the sign of wave function for � (þ) states. Because only the �þ and

�� have different energies [56], it has often omitted the � sign for degenerate

states such as 	; 
 . . . provided that �-type doubling is ignored. The second of

the above inversion operations (which inverts back the electronic SF co-

ordinates), inverts the electronic BF coordinates since the nuclei are unaffected

by this step, and hence the electronic wave functions can be classified as g or u

states according to whether such inversion of the electronic BF coordinates

changes or leaves unchanged the sign of the electronic wave function. Thus,
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�þ
g ;�

�
u ;	

þ
g ;	

�
u 	 	 	 electronic states have wave functions that are symmetric

under permutation of identical nuclei, whereas ��
g ;�

þ
u ;	

�
g ;	

þ
u 	 	 	 electronic

states are antisymmetric under such a permutation. The permutational symmetry

for linear polyatomics D1h follows similar arguments.

We now consider planar molecules. The electronic wave function is

expressed with respect to molecule-fixed axes, which we can take to be the

abc principal axes of inertia, namely, by taking the coordinates ðx; y; zÞ in

Figure 1 coincided with the principal axes ða; b; cÞ. In order to determine the

parity of the molecule through inversions in SF, we first rotate all the electrons

and nuclei by 180� about the c axis (which is perpendicular to the molecular

plane); and then reflect all the electrons in the molecular ab plane. The net effect

is the inversion of all particles in SF. The first step has no effect on both the

electronic and nuclear molecule-fixed coordinates, and has no effect on the

electronic wave functions. The second step is a reflection of electronic spatial

coordinates in the molecular plane. Note that such a plane is a symmetry plane

and the eigenvalues of the corresponding operator ŝv then determine the parity

of the electronic wave function.

In order to determine the permutational symmetry of a nonlinear molecule,

one can invoke the permutation group. Here, we give some examples. As is

known, the permutation group S3 is isomorphic to the point group C3v, and ½13�
irreducible representation in the S3 is antisymmetric with the interchange (12)

of any two indentical particles (see Tables I and III). Thus, the A2 electronic

state for a molecule of C3v geometry must be antisymmetric with such

interchange of the indentical nuclei. It is obvious that the totally symmetric

IRREPs in point groups always correspond to the ½n� IRREPs in groups Sn.

Let us focus on the electronic wave function of ground state Li3, which is

known to have B2 symmetry at its equilibrium geometry in the C2v point group.

In order to determine the permutation symmetry of the B2 electronic state under

the interchange of identical nuclei, we notice a correlation between IRREPs of

the group C2v and those of the group C2 (see Tables I and III). It is found that B2

IRREP in the group C2v is correlated with the B IRREP in the group C2. In

addition, we know that the group C2 is isomorphic to the permutation group S2,

and the B IRREP in C2 corresponds to the antisymmetric IRREP ½12� in S2.

Accordingly, the B2 electronic state must be antisymmetric with the interchange

of the two identical nuclei. In fact, in the B2 IRREP of C2v, the wave function

changes sign under a Ĉ2 operation. In contrast, the electronic wave function at

the lowest point of the conical intersection on the upper sheet of the Li3
potential energy surface has degenerate character under S3, since this geometry

transforms as E0 in the D3h symmetry point group. Next, consider the

isotopomer 7Li2
6Li. With the substitution of 7Li by the isotope 6Li, the

permutational symmetry group of the system has been reduced from S3 to S2.

Thus, if existing, the spatial degeneracy upon permutation of the nuclei can be
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removed in part or completely, since F is an integer. This is indeed the case for

the ground state of 7Li2
6Li, with the electronic wave function at the minimum

of the lower sheet of the potential energy surface being antisymmetric under S2.

Similarly, the electronic wave function at the lowest point of the conical

intersection on the upper sheet of the 7Li2
6Li potential energy surface will be

symmetric or antisymmetric4 under S2. The spatial degeneracy of the electronic

wave function has therefore been removed when resolving D3h into C2v, since

the E0 state of the lowest energy structure has been resolved into A1 � B2

(see Table IV, where the same axis convention as in [28] has been followed: the

highest order proper axis always coincides with the z axis.) which correspond to

symmetric and antisymmetric wave functions in S2.

VII. PERMUTATIONAL SYMMETRY OF ROVIBRONIC AND
VIBRONIC WAVE FUNCTIONS

Since the total wave function must have the correct symmetry under the

permutation of identical nuclei, we can determine the symmetry of the rovi-

bronic wave function from consideration of the corresponding symmetry of the

nuclear spin function. We begin by looking at the case of a fermionic system for

which the total wave function must be antisymmetric under permutation of any

two identical particles. If the nuclear spin function is symmetric then the

rovibronic wave function must be antisymmetric; conversely, if the nuclear spin

function is antisymmetric, the rovibronic wave function must be symmetric

under permutation of any two fermions. Similar considerations apply to bosonic

systems: The rovibronic wave function must be symmetric when the nuclear

spin function is symmetric, and the rovibronic wave function must be

antisymmetric when the nuclear spin function is antisymmetric. This warrants

TABLE IV

Resolution of Species of Symmetric Point Groups into Some Point Groups of Lower Symmetry

Kh D3h C3v C2v Cs

D0
g � Sg A01 A1 A1 A0

D0
u � Su A001 A2 A2 A00

D1
g � Pg A02 þ E00 A2 þ E A2 þ B1 þ B2 A0 þ 2A00

D1
u � Pu A002 þ E0 A1 þ E A1 þ B1 þ B2 2A0 þ A00

D2
g � Dg A01 þ E0 þ E00 A1 þ 2E 2A1 þ A2 þ B1 þ B2 3A0 þ 2A00

D2
u � Du A001 þ E0 þ E00 A2 þ 2E A1 þ 2A2 þ B1 þ B2 2A0 þ 3A00

4 This and the previous statements can be understood from Tables IX and X, which will be discussed

in more detail in subsequent sections.
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that the total wave function is totally symmetric under permutation of any two

indistinguishable bosons.

As was shown in the preceding discussion (see also Sections VIII and IX),

the rovibronic wave functions for a homonuclear diatomic molecule under the

permutation of identical nuclei are symmetric for even J rotational quantum

numbers in �þ
g and ��

u electronic states; antisymmetric for odd J values in �þ
g

and ��
u electronic states; symmetric for odd J values in ��

g and �þ
u electronic

states; and antisymmetric for even J values in ��
g and �þ

u electronic states. Note

that the vibrational ground state is symmetric under permutation of the two

nuclei. The most restrictive result arises therefore when the nuclear spin

quantum number of the individual nuclei is 0. In this case, the nuclear spin

function is always symmetric with respect to interchange of the identical nuclei,

and hence only totally symmetric rovibronic states are allowed since the total

wave function must be symmetric for bosonic systems. For example, the 12C

nucleus has zero nuclear spin, and hence the rotational levels with odd values of

J do not exist for the ground electronic state (1�þ
g ) of 12C2.

Let us now examine the features of the nuclear probability density of a X3

molecule (X is an 2S atom) in its electronic ground- and first-excited doublet

states. For the lowest vibronic A1 states, such a nuclear probability density must

clearly concentrate5 at the regions where the potential energy surface itself has

A1 symmetry, which correspond in the case of homonuclear trimeric 2S systems

to the saddle points of the potential energy surface having 2A1 symmetry in C2v.

Instead, the nuclear probability density of the lowest A2 vibronic states will

concentrate at regions where the potential energy surface has A2 symmetry; note

that the potential energy surface at the minima has 2B2 symmetry in C2v, and

hence A2 in S3. Both the A1 and A2 probability densities display threefold

symmetries on a relaxed triangular plot such as that employed in Figure 3 to

represent the Li3 potential energy surface. Although the nuclear probability

density of each component for the E vibronic state has twofold symmetry, their

sum must also have threefold symmetry.

VIII. PERMUTATIONAL SYMMETRY OF ROTATIONAL
WAVE FUNCTION

The permutational symmetry of the rotational wave function is determined by

the rotational angular momentum J, which is the resultant of the electronic spin

S, electronic orbital L, and nuclear orbital N angular momenta. We will now

examine the permutational symmetry of the rotational wave functions. Two

important remarks should first be made. The first refers to the J ¼ 0 rotational

5 Of course, for highly excited states, the density is expected to cover wide portions of the molecular

configuration space.
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state, which must be totally symmetric. The second emerges from the extended

Kramers’ theorem, which imposes half-integer J rotational states to be

degenerate. Thus, the lowest rotational state for the electronic ground state of

Li3 corresponds to J ¼ 1
2
, and must be degenerate.

Next, we address some simple cases, begining with homonuclear diatomic

molecules in 1� electronic states. The rotational wave functions are in this case

the well-known spherical harmonics: for even J values, wrðR̂Þ is symmetric

under permutation of the identical nuclei; for odd J values, wrðR̂Þ is antisym-

metric under the same permutation. A similar statement applies for any D1h

type molecule.

When the molecule is not in a 1� state there is an interaction between the

rotation of the molecule and S and/or L, and the details of coupling the angular

momenta are involved. Most nonsinglet molecules with electronic orbital

angular momentum � ¼ 0 obey Hund’s case (b) coupling. In Case (b), the

electronic orbital angular momentum combines with the nuclear orbital angular

Figure 3. Relaxed triangular plot [68] of the Li3 ground-state potential energy surface using

hyperspherical coordinates. Contours, are given by the expression EnðeVÞ ¼ �0:56þ 0:045ðn� 1Þ
with n ¼ 1; 2; . . . , where the dashed line indicates the level �0:565 eV. The dissociation limit

indicated by the dense contouring implies Li2ðX1�þ
g Þ þ Li.
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momentum to give a total angular momentum associated with the quantum

number N ¼ �;�þ 1;�þ 2; . . . . Note that in this case, N is the proper

rotational angular momentum. Accordingly, for even N values, wrðR̂Þ is

symmetric under permutation of the identical nuclei; for odd N values, wrðR̂Þ is

antisymmetric under the same permutation. Thus, since the N ¼ 0; 2; 4; . . .
rotational levels for the 3��

g electronic state of 16O2 are symmetric with

respect to the interchange two 16O nuclei, they cannot exist according to the

Pauli principle (see later). For most molecules with electronic orbital angular

momentum � > 0 one has Hund’s case (a). In Case (a), the axial components

of electronic orbital angular momentum combine with the electronic spin

angular momentum to give a resultant axial component of total electronic

angular momentum associated with the quantum number � ¼ j�þ �j. The

resultant angular momentum then combines with the nuclear orbital angular

momentum to give a total angular momentum (exclusive of nuclear spin) J,

where J ¼ �;�þ 1;�þ 2; . . . . If J is a half-integer, the rotational levels will

be doubly degenerate in the zeroth-order approximation. Yet, the interaction

between electronic and rotational motions can lead to the splitting of the

degenerate 	 electronic level into the nondegenerate 	þ and 	� electronic

states (so-called �-type doubling).

Now, we consider the case of a planar molecule. In general, the rotational

wave functions depend on the Eulerian angles ða; b; gÞ. For planar symmetric

tops, the angles a and b give the orientation of the positive direction of the

molecular symmetry axis with respect to SF coordinates, while g is the angle of

rotation about the symmetry axis. The angles a and b are unchanged by

inversion, while g is increased by p. The angle g enters the symmetric top wave

function as the factor expðiKgÞ, where the quantum number K is the component

of the rotational angular momentum J along the molecule-fixed axis. Thus, the

inversion multiplies the rotational wave function by expðiKpÞ ¼ ð�1ÞK
and its

parity will be even for even K and odd for odd K. For planar asymmetric tops,

the symmetric top wave functions that occur in the expansion of a given

asymmetric top wave function all have either even values of K or odd values of

K. A planar symmetric top must be an oblate top. If the asymmetric top

level correlates with an oblate top level with K even, then it must be a linear

combination of oblate top functions with even K values; similarly for the K-odd

correlation. Thus, parities of the asymmetric top wave functions are determined

by the values of K. Consider now a homonuclear triatomic molecule, where K is

the quantum number for the rotational angular momentum component

perpendicular to the plane defined by the three atoms. The rotational contri-

bution to the permutational symmetry [59] is then symmetric if K ¼ 0, sym-

metric or antisymmetric if K is a nonzero integer multiple of three, and

degenerate if K is not an integer multiple of three (this includes the half-integer

cases referred to above).
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We now turn to some well-established cases where severe consequences arise

due to the nuclear spin quantum number of the individual nuclei being 0 or 1
2
.

Consider the simplest case of spinless nuclei such as 16O2. Since the total wave

function must be symmetric, it follows that only even rotational states are

allowed for the ground vibrational state (this is always symmetric; see Section

IX) when the electronic wave function is symmetric; conversely, only odd

rotational states are allowed if the electronic wave function is antisymmetric.

Since the ground electronic state of 16O2 is 3��
g , and hence antisymmetric, it

then follows that its lowest rotational state must have the rotation quantum

number N ¼ 1, with one-half of the expected levels being absent in the corres-

ponding Raman spectrum. Similarly, for transitions involving � electronic states

in homonuclear diatomic molecules with I ¼ 0, alternating lines will be missing

in the rotational fine structure spectrum. If the nuclei are not identical (e.g., if

one is 16O and the other is 17O), the above missing transitions will be restored.

A second well-known example is 1H2. Since the nuclear spin quantum

number of 1H is 1
2
, the total nuclear spin quantum number I can be 0 or 1. When

I ¼ 0 the nuclear spin function is antisymmetric with respect to the interchange

of the two protons. Conversely, the spin functions with I ¼ 1 are symmetric

under the same operation. Since transitions between the I ¼ 0 and I ¼ 1 states

are forbidden, one may view the hydrogen molecule as consisting of two

distinct species: para-H2 with I ¼ 0, and ortho-H2 with I ¼ 1. The electronic

ground state of H2 is a 1�þ
g state, and hence para-H2 can only possess rotational

states with even or zero J values in order to preserve the antisymmetric nature of

the total wave function; on the other hand, ortho-H2 will have only odd

J rotational states. Of course, in statistical equilibrum at room temperature there

will be three times as many H2 molecules in ortho states than in para states. As a

result, the alternating lines in the rotational fine structure spectrum show a 3:1

intensity ratio. Such a ratio in the intensities of the rotational fine structure lines

for a general homonuclear diatomic with nuclear spin quantum number I is

ðI þ 1Þ=I: for bosons, it represents the relative statistical weight of symmetric to

antisymmetric states; for fermions, the relative statistical weight of antisym-

metric to symmetric states. Clearly, the nuclear statistical weights of rotational

levels will affect the rotational partition function, and hence have implications

in various fields such as thermodynamics and reaction kinetics. For linear

molecules with identical nuclei that are interchangeable by rotation, the nuclear

statistical weights can be calculated by the methods discussed in Section V.

Finally, let us consider molecules with identical nuclei that are subject to Ĉn

(n � 2) rotations. For C2v molecules in which the Ĉ2 rotation exchanges two

nuclei of half-integer spin, the nuclear statistical weights of the symmetric and

antisymmetric rotational levels will be one and three, respectively. For

molecules where Ĉ2 exchanges two spinless nuclei, one-half of the rotational

levels (odd or even J values, depending on the vibrational and electronic states)
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will be missing. For symmetric and spherical tops, there are three or more

identical nuclei interchangeable by rotation. For example, for the symmetric top

methyl chloride (CH3Cl), the K ¼ 0; 3; 6; . . . rotational levels have twice the

statistical weight of the K ¼ 1; 2; 4; . . . rotational levels for the symmetric

vibronic states [56]. The rotational levels with different nuclear statistical

weights must be summed over separately. However, for sufficiently high

temperatures, it may be a good approximation to calculate the rotational

partition function by giving to each rotational level an average statistical weight

equal to the total spin multiplicity ð2IA þ 1Þð2IB þ 1Þ . . . ð2IZ þ 1Þ divided by a

symmetry number that represents the number of different indistinguishable

orientations obtained by proper rotations of the nuclear framework. For

example, the symmetry numbers of C1v and D1h molecules are one and two,

respectively. For nonlinear molecules, the symmetry number is equal to the

order of the rotational subgroup, for example, 12 for both C6H6 and CH4.

IX. PERMUTATIONAL SYMMETRY OF VIBRATIONAL
WAVE FUNCTION

We now consider the permutational properties of the vibrational wave function.

Similar to the discussion on the permutational symmetry for homonuclear

diatomic molecules (and, in general, D1h molecules), in order to find the effect

of interchanging the nuclei on the vibrational wave function we first invert the

SF coordinates of the nuclei and all displacement vectors, and then carry out a

back-inversion of the SF displacement vector coordinates alone. The net effect

is therefore just the exchange of the SF coordinates of the nuclei. For D1h

molecules, such an inversion of the nuclear coordinates exchanges all pairs of

identical nuclei. Thus, the first inversion leaves the sign of the vibrational wave

function unchanged for �þ;	þ; . . . vibrational states, while it changes its sign

for ��;	�; . . . vibrational states. The second inversion classifies the vibrational

wave functions in g or u according to whether the back-inversion of the

displacement vectors leaves the wave function unchanged (the corresponding

operator has a þ1 eigenvalue) or changes its sign (eigenvalue �1). We conclude

that the vibrational wave functions are symmetric for �þ
g ;�

�
u ;	

þ
g ;	

�
u ; . . .

vibrational states while being antisymmetric under permutation of identical

nuclei for ��
g ;�

þ
u ;	

�
g ;	

þ
u ; . . . vibrational states. Finally, we note that the

ground vibrational states of homonuclear diatomics and, in general, D1h

molecules are always symmetric under permutation of identical nuclei.

We now consider planar molecules. The electronic wave function is expres-

sed with respect to molecule-fixed axes, which we can take to be the abc

principal axes of inertia, namely, by taking the coordinates (x; y; z) in Figure 1

coincided with the principal axes (a; b; c). In order to determine the parity of the

molecule through inversions in SF, we first rotate all the displacement vectors
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and and nuclei (in their equilibrum positions) by 180� about the c axis (which is

perpendicular to the molecular plane); and then reflect all the displacement

vectors in the molecular ab plane. The first step has no effect on both the

displacement vectors and the vibrational wave functions. The second step is a

reflection of the displacement vectors in the molecular plane. Note that such a

plane is a symmetry plane in this case, and the eigenvalues of the corresponding

operator then determine the parity of the vibrational wave function. For a

molecule with only in-plane vibrational modes, for example, H2O, the parity of

the vibrational wave function is even. For BF3, there is a out-of-plane mode.

The normal coordinate for such an out-of-plane mode is antisymmetric with

respect to reflection in the molecular plane. Thus, the parities of the vibrational

eigenfunctions of BF3 are determined by ð�1Þvn, where vn is the vibrational

quantum number of the out-of-plane mode.

In order to determine the permutational symmetry of a nonlinear molecule,

one can invoke the permutation group. The method is similar to that discussed

in Section VI. We can see that the A2 vibrational state for a molecule of C3v

geometry must be antisymmetric with an interchange of the two indentical

nuclei. Similarly, the totally symmetric IRREPs in the point group always

coorespond to [n] IRREPs in groups Sn. Let us consider the vibrational wave

function of the electronic ground-state (B2) Li3. Noticing that the correlation

between IRREPs of the group C2v and those of the group C2, and that the group

C2 is isomorphic to the permutation group S2, one can say the B2 vibrational

state must be antisymmetric with the interchange of the two indentical nuclei.

Thus, for 7Li2
6Li and 6Li2

7Li, there are symmetric (A ffi ½2� IRREP in the S2

permutation group) and antisymmetric (B ffi ½12� in S2) vibrational states that

are allowed by symmetry, and hence can be observed spectroscopically.

However, drastic consequences may arise if the nuclear spin is 0 or 1
2
. In these

cases, some rovibronic states cannot be observed since they are symmetry

forbidden. For example, in the case of 12C16O2, the nuclei are spinless and the

nuclear spin function is symmetric under permutation of the oxygen nuclei.

Since the ground electronic state is �þ
g , only even values of J exist for the

ground vibrational level ðv1; vl2
2 ; v3Þ ¼ ð0000Þ, where ðv1; v2; v3Þ are the

quantum numbers of symmetric stretching (n1), degenerate bending (n2), and

antisymmetric stretching (n3) normal modes, respectively. As usual, l2 denotes

the quantum number for vibrational angular momentum around the internuclear

axis of the linear molecule in the degenerate vibrational mode n2, which can be

shown to assume the values l2 ¼ v2; v2 � 2; . . . ; 1 or 0 (see Appendix D).

Similarly, the vibrational mode n1 is �þ
g , and hence the odd J rotational levels of

the ð1000Þ vibrational state are missing, since they are antisymmetric. Following

the same reasoning, the even J rotational levels of the ð0001Þ vibrational state

will be missing due to the fact that the vibrational mode n3 has �þ
u symmetry.

Most severe consequences arise also when the total nuclear spin quantum
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number is 1
2
. For example, for the ground electronic state of 1H3 and 3H3 at

J ¼ 0, the vibrational states of A1 symmetry will not be allowed and only the

vibrational states of A2 and E symmetry can be observed.

As discussed above, the permutational symmetry of the total wave function

requires the proper combination of its various contributions. These are summarized

in Tables V–XII for all isotopomers of Li3. Note that the conclusions

hold provided that the various wave functions have the appropriate symmetries.

If, for some reason, one of the components fails to meet such a requirement,

then the symmetry of the total wave function will fail too. For example,

even if the vibrational wave functions are properly assigned, the total wave

TABLE V

The Symmetry Properties of Wave Functions of 7Li3 Electronically

Ground State in S3 Permutation Group

Total Nuclear Spin Rovibronic Vibronic Electronica Rotationalb Vibrational

A2 A1 A2 A1 A2 A2 A2

A2 A1 A2 A2 A2 A1 A1

A2 A1 A2 E A2 E E

A2 A2 A1 A1 A2 A1 A2

A2 A2 A1 A2 A2 A2 A1

A2 A2 A1 E A2 E E

A2 E E A1 A2 E A2

A2 E E A2 A2 E A1

A2 E E E A2 A1 � A2 � E E

a At minimum of the lower sheet of potential energy surface.
b Rotation about the axis perpendicular to the plane of the molecule.

TABLE VI

The Symmetry Properties of Wave Functions of 7Li3 Electronically

First-Excited State in S3 Permutation Group

Total Nuclear Spin Rovibronic Vibronic Electronica Rotationalb Vibrational

A2 A1 A2 A1 E A2 E

A2 A1 A2 A2 E A1 E

A2 A1 A2 E E E A1 � A2 � E

A2 A2 A1 A1 E A1 E

A2 A2 A1 A2 E A2 E

A2 A2 A1 E E E A1 � A2 � E

A2 E E A1 E E E

A2 E E A2 E E E

A2 E E E E A1 � A2 � E A1 � A2 � E

a At minimum of the conical intersection on the upper sheet of potential energy surface.
b Rotation about the axis perpendicular to the plane of the molecule.
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TABLE VII

The Symmetry Properties of Wave Functions of 6Li3 Electronically

Ground State in S3 Permutation Group

Total Nuclear Spin Rovibronic Vibronic Electronica Rotationalb Vibrational

A1 A1 A1 A1 A2 A1 A2

A1 A1 A1 A2 A2 A2 A1

A1 A1 A1 E A2 E E

A1 A2 A2 A1 A2 A2 A2

A1 A2 A2 A2 A2 A1 A1

A1 A2 A2 E A2 E E

A1 E E A1 A2 E A2

A1 E E A2 A2 E A1

A1 E E E A2 A1 � A2 � E E

a At minimum of the lower sheet of potential energy surface.
b Rotation about the axis perpendicular to the plane of the molecule.

TABLE VIII

The Symmetry Properties of Wave Functions of 6Li3 Electronically

First-Excited State in S3 Permutation Group

Total Nuclear Spin Rovibronic Vibronic Electronica Rotationalb Vibrational

A1 A1 A1 A1 A2 A1 A2

A1 A1 A1 A2 A2 A2 A1

A1 A1 A1 E A2 E E

A1 A2 A2 A1 A2 A2 A2

A1 A2 A2 A2 A2 A1 A1

A1 A2 A2 E A2 E E

A1 E E A1 A2 E A2

A1 E E A2 A2 E A1

A1 E E E A2 A1 � A2 � E E

a At minimum of the conical intersection on the upper sheet of potential energy surface.
b Rotation about the axis perpendicular to the plane of the molecule.

TABLE IX

The Symmetry Properties of Wave Functions of 7Li2
6Li Electronically Ground State

in S2 Permutation Group

Total Nuclear Spin Rovibronic Vibronic Electronica Rotationalb Vibrational

B A B A B B B

B A B B B A A

B B A A B A B

B B A B B B A

a At minimum of the lower sheet of potential energy surface.
b Rotation about the axis through the 6Li and perpendicular to the 7Li2.
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function of systems with conical intersections such as Li3 may have no physical

significance due to failure of the electronic wave function to meet the

requirement of single valuedness (i.e., no change of sign when traversing a path

that encircles the crossing point). In other words, one needs to include GP

effects or treat the dynamics more accurately (e.g., by solving the 2� 2 coupled

TABLE X

The Symmetry Properties of Wave Functions of 7Li2
6Li Electronically First-Excited State

in S2 Permutation Group

Total Nuclear Spin Rovibronic Vibronic Electronica Rotationalb Vibrational

B A B A A� B B A� B

B A B B A� B A B� A

B B A A A� B A A� B

B B A B A� B B B� A

a At minimum of the conical intersection on the upper sheet of potential energy surface.
b Rotation about the axis through the 6Li and perpendicular to the 7Li2.

TABLE XI

The Symmetry Properties of Wave Functions of 6Li2
7Li Electronically Ground State

in S2 Permutation Group

Total Nuclear Spin Rovibronic Vibronic Electronica Rotationalb Vibrational

A A A A B A B

A A A B B B A

A B B A B B B

A B B B B A A

a At minimum of the lower sheet of potential energy surface.
b Rotation about the axis through the 7Li and perpendicular to the 6Li2.

TABLE XII

The Symmetry Properties of Wave Functions of 6Li2
7Li Electronically First-Excited State

in S2 Permutation Group

Total Nuclear Spin Rovibronic Vibronic Electronica Rotationalb Vibrational

A A A A A� B A A� B

A A A B A� B B B� A

A B B A A� B B A� B

A B B B A� B A B� A

a At minimum of the conical intersection on the upper sheet of potential energy surface.
b Rotation about the axis through the 7Li and perpendicular to the 6Li2.
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state dynamics problem) in order to warrant the correct symmetry properties of

the total wave function. This will be further discussed in Section X.

X. CASE STUDIES: Li3 AND OTHER 2S SYSTEMS

A. Potential Energy Surfaces

H3 (and its isotopomers) and the alkali metal trimers (denoted generally for the

homonuclears by X3, where X is an 2S atom) are typical Jahn–Teller systems

where the two lowest adiabatic potential energy surfaces conically intersect.

Since such manifolds of electronic states have recently been discussed [60] in

some detail, we review in this section only the diabatic representation of such

surfaces and their major topographical details. The relevant 2� 2 diabatic

potential matrix W assumes the form

W ¼ W11 W12

W21 W22

� �
ð54Þ

where W12 ¼ W21. Specifically, for H3 and Li3, two systems that we discuss in

detail in this chapter, the matrix elements in Eq. (54) are written as [61]

W11 ¼
X3

i¼1

Q0
i þ X

ð3Þ
EHF þ

1

2
ð2J 0

1 � J 0
2 � J 0

3Þ þ Vdc ð55Þ

W22 ¼
X3

i¼1

Q0
i þ X

ð3Þ
EHF �

1

2
ð2J 0

1 � J 0
2 � J 0

3Þ þ Vdc ð56Þ

W12 ¼ W21 ¼
ffiffiffi
3

p

2
ðJ 0

2 � J 0
3Þ ð57Þ

where the Q and J values are the well-known Coulomb and exchange integrals

that can be obtained semiempirically [62–65] from the lowest singlet and triplet

diatomic potential curves, X
ð3Þ
EHF is a three-body extended Hartree–Fock type

energy, and Vdc the total dynamical correlation energy. Note that the prime in

the Q and J parameters express the fact that such quantities are calculated from

the extended Hartree–Fock curves alone [61].

Diagonalization of W then leads to the two adiabatic surfaces

V� ¼
1

2
½ðW11 þW22Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW11 �W22Þ2 þ 4W2

12

q
� ð58Þ

which may cross when W11 ¼ W22 and W12 ¼ 0. For X3 systems, such a cros-

sing seam is representative of a so-called conical intersection: For a fixed
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perimeter of the molecule, the crossing seam corresponds to the appex of the

double cone defined by the two adiabatic potential energy surfaces Vþ and V�.

Although these become nondegenerate due to the so-called Jahn–Teller effect

(see Section X.B), the degeneracy at the locus of conical intersection remains.

The location of this crossing seam is defined by the conditions rAB ¼ rBC ¼ rAC,

where rAB, rBC, and rAC are the interatomic distances. Thus, for homonuclear

systems such as Li3, the conical intersection occurs for D3h symmetries but, for

the heteronuclear systems, they may arise at lower symmetries or even do not

occur at all [5,66,67]. Clearly, the potential matrix defined in Eq. (54) has the

correct asymptotic behavior in the vicinity of the conical intersection (see

Appendix E).

In the remainder of this section, we focus on the two lowest doublet states of

Li3. Figures 3 and 4 show relaxed triangular plots [68] of the lower and upper

sheets of the Li3 DMBE III [69,70] potential energy surface using hyper-

spherical coordinates. Each plot corresponds to a stereographic projection of the

Figure 4. Relaxed triangular plot [68] of the Li3 first-excited state potential energy surface

using hyperspherical coordinates. Contours are given by the expression EnðeVÞ ¼ �0:56þ
0:045ðn� 1Þ with n ¼ 2; 3; . . . . The dissociation limit indicated by the dense contouring implies

Li2ðb3
Pþ

u Þ þ Li.
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surface of an upper one-half of the sphere. The b? coordinate is associated to

sinðy=2Þcosj, while g? denotes sinðy=2Þsinj. The hyperangle y runs from zero

at the north pole (center of plot) to p=2 at the equator (the outside circle). The

hyperangle j is measured from the positive g? axis and grows on going

counterclockwise. For the lower sheet, it is noted that the lowest point along the

D3h conical intersection seam is located at the origin of the plot and corresponds

to an equilateral triangular configuration. As can be seen, the threefold

symmetry gives rise to three wells that are equally spaced by 120� intervals

around the origin. The minimum energy of the barrier for pseudorotation

relative to the bottom of such wells (i.e., the height of the saddle points between

the three wells), and the energy of the lowest point along the conical inter-

section seam are6 0.4 meV and 0.0542 eV, respectively. Note that the motion along

the hyperradius r corresponds to the symmetric stretching mode. Moreover, at the

bottom of the well just above the origin, motion along the g? axis corresponds to

the bending mode while motion along the b? axis corresponds to the antisym-

metric stretching mode. In addition, motion along the hyperangle j about the

origin corresponds to the pseudorotational motion. Finally, note that the origin

in the plot of the upper sheet corresponds to an equilateral triangular geometry.

B. Static Jahn–Teller Effect

Now, we examine the effect of vibronic interactions on the two adiabatic

potential energy surfaces of nonlinear molecules that belong to a degenerate

electronic state, so-called static Jahn–Teller effect.

For a X3 molecule in the D3h symmetry point group, we have a totally

symmetric A01 and a doubly degenerate E0 vibrational normal modes in the

harmonic-oscillator approximation as illustrated in Figure 5. However, for a real

molecule that vibrates anharmonically, we must consider the effects due to

anharmonicity. As discussed in Appendix D, we must then use the set of

quantum numbers ðv1; v2; l2Þ instead of ðv1; v2a; v2bÞ, and employ the notation

ðv1; vl2
2 Þ to label the vibrational levels; l2 is the vibrational angular momentum

quantum number with respect to the symmetry axis. Table XIII gives the

assignments of the lowest vibrational levels for Li3 in the D3h symmetry point

group. From this assignment, one can determine the symmetry of the level. For

example, the ground vibrational state ð0; 00Þ is A01 and the level ð1; 11Þ is E0,
since v1 is totally symmetric and A01 ! E0 ¼ E0. In turn, for multiply excited

degenerate vibrations [28,59], the symmetry A01 corresponds to l2 ¼ 0, A01 � A02
to l2 ¼ 3; 6; . . . and E0 to l2 ¼ 1; 2; 4; 8; . . . ; note that l2 is a good quantum

number, and hence can be used to specify the symmetry of the vibrational level.

For example, the level ð0; 31Þ has E0 symmetry while ð0; 33Þ is A01 � A02. Also

6 Units conversion factors are a.u. of energy¼ Eh ¼ 27.211652 eV¼ 4.3598 aJ¼ 2.194746�
105 cm�1; a.u. of bond length¼ a0¼ 0.529177 Å¼ 0.529177� 10�10 m.
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note that anharmonicity splits the degeneracy of the vibrational levels obtained

in the harmonic approximation [28].

We now take vibronic interactions into account. In this case, we must

determine vibronic states rather than the electronic and vibrational ones. For

example, if X3 in a degenerate E0 vibration is singly excited in an E0 electronic

state, we obtain the vibronic states evA01 � evA02 � evE0, since vE0 ! eE0 ¼
evA01 � evA02 � evE0. If the same vibration is doubly excited (e.g., if v2 ¼ 2, with

the symmetric product being vE0 !v E0½ � ¼ vA01 � vE0: Note that the associated

antisymmetric product is vA02), we get the vibronic species ðv
A01 � vE0Þ ! eE0 ¼

evA01 � evA02 � 2evE0. Table XIII shows the symmetries of the lowest 25

vibrational and vibronic states. In turn, the lowest 26 levels calculated for Li3

Figure 5. Definition of the normal mode coordinates for a D3h X3 molecule.
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using the Li3 double many-body expansion [58,60,71] potential energy surface

(DMBE III [69,70]) are shown in Tables XIV and XV.

Now consider the splitting of the potential energy surface for nontotally

symmetric (i.e., vE0 in D3h) displacements of the nuclei. For such geometries the

symmetry is lower, and in general the electronic states become nondegenerate

(e.g., eA1 � eB2 in C2v) instead of being doubly degenerate (eE0 in D3h). Thus,

for displaced positions of the nuclei, we obtain two nondegenerate electronic

states of different energy. Jahn and Teller [72] were the first to show that, for a

nonlinear molecule, there is always one nontotally symmetric normal mode at

least that causes a splitting of the potential energy surface such that the minima

do not occur at the most symmetric geometry. They are rather at a certain

distance from the most symmetric configuration, with the distance increasing

with the magnitude of the vibronic interaction. Consequently, several equivalent

minima arise on the potential energy surface for unsymmetric molecular

conformations. If the vibronic interaction is strong, a significant amount of

vibrational energy may then be required to bring the molecule from one

minimum to another, and hence one must regard the molecule as nonsymmetric.

Conversely, for weak vibronic interactions, only a small amount of vibrational

energy may suffice to make the system flow from one minimum to another. In

this case, the molecule may be regarded as symmetric, and the vibronic

interaction is treated as a perturbation. Appendix E gives a proof of the Jahn–

Teller theorem for a X3 molecule following Moffitt and Liehr [73].

TABLE XIII

Vibronic Species of the Vibrational States of Li3 with Consideration of Geometric Phase Effecta

Assignment Symmetry of Symmetry of Assignmentb

ðv01; v
0l2
2 Þ in D3h Vibrational States Vibronic States ðv1; v2; v3Þ in C2v

ð0; 00Þ A01 E0 E0ð0; 0; 0Þ
ð0; 11Þ E0 A01 � A02 � E0 A02ð0; 0; 0Þ; A01ð0; 0; 0Þ; E0ð0; 0; 1Þ
ð1; 00Þ A01 E0 E0ð0; 1; 0Þ
ð1; 11Þ E0 A01 � A02 � E0 A02ð0; 0; 1Þ; E0ð1; 0; 0Þ; A01ð0; 0; 1Þ
ð0; 20Þ A01 E0 E0ð0; 0; 2Þ
ð0; 22Þ E0 A01 � A02 � E0 A02ð0; 1; 0Þ; E0ð0; 1; 1Þ; A01ð0; 1; 0Þ
ð1; 20Þ A01 E0 E0ð0; 2; 0Þ
ð1; 22Þ E0 A01 � A02 � E0 A02ð1; 0; 0Þ; E0ð1; 0; 1Þ;A01ð1; 0; 0Þ
ð0; 31Þ E0 A01 � A02 � E0 A02ð0; 0; 2Þ; E0ð0; 0; 3Þ; A01ð0; 0; 2Þ
ð0; 33Þ A01 � A02 2E0 E0ð1; 1; 0Þ; E0ð0; 1; 2Þ
ð2; 20Þ A01 E0 E0ð2; 0; 0Þ
ð2; 22Þ E0 A01 � A02 � E0 A02ð0; 1; 1Þ; E0ð0; 2; 1Þ A01ð0; 1; 1Þ
a For simplicity, the left superscripts v and ev are omitted in denoting the vibrational and vibronic

states.
b In this assignment, we keep the symmetry species of the vibronic state in D3h but indicate the

vibrational quantum numbers for the C2v normal modes. The energy increases from left to right, and

up to down.
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The treatment of the Jahn–Teller effect for more complicated cases is similar.

The general conclusion is that the appearance of a linear term in the off-

diagonal matrix elements Hþ� and H�þ leads always to an instability at the

most symmetric configuration due to the fact that integrals of the type

hcþjĥþ1 jc�i do not vanish there when the product c?
þc� has the same species as

a nontotally symmetric vibration (see Appendix E). If � is the species of the

degenerate electronic wave functions, the species of c?
þc� will be that of �2,

which is the symmetric product of � with itself. For example, for a D3h

molecule, we have the symmetric product eE0 ! eE0½ � ¼ eA01 � eE0 (the

associated antisymmetric product is feE0 ! eE0g ¼ eA02), and hence it is the
vE0 degenerate normal mode that causes the instability since it has the same

symmetry as the eE0 term which arises from the symmetric product. For a D4h

molecule, we have the symmetric product eEg ! eEg

� �
¼ eA1g � eB1g � eB2g

TABLE XIV

The Losest 26 Energy Levels (in eV) for Ground State Li3 Without

Consideration of the GP Effect

Symmetry of Assignment

Number En(eV) Vibration ðv1; v2; v3Þ in C2v

1 �0:52816464978 A1 ð0; 0; 0Þ
2 �0:52086641058 E ð0; 0; 0Þ
3 �0:50562197957 E ð0; 0; 1Þ
4 �0:50240784221 A1 ð0; 0; 1Þ
5 �0:48957138875 A2 ð0; 0; 0Þ
6 �0:48950339062 E ð0; 0; 2Þ
7 �0:48710210168 A1 ð0; 1; 0Þ
8 �0:48054432662 A1 ð1; 0; 0Þ
9 �0:47611328568 E ð0; 1; 0Þ

10 �0:47273766106 A1 ð0; 0; 2Þ
11 �0:47267009384 E ð0; 0; 3Þ
12 �0:46728845390 E ð1; 0; 0Þ
13 �0:46008142773 E ð0; 1; 1Þ
14 �0:45726050697 A1 ð0; 1; 1Þ
15 �0:45698549489 E ð0; 0; 4Þ
16 �0:45570955951 A2 ð0; 0; 1Þ
17 �0:45041884404 A1 ð1; 0; 1Þ
18 �0:44765547757 E ð1; 0; 1Þ
19 �0:44399503522 E ð0; 1; 2Þ
20 �0:44373568206 A1 ð0; 0; 3Þ
21 �0:44362378636 A2 ð0; 1; 0Þ
22 �0:43949743434 E ð0; 0; 5Þ
23 �0:43945450351 A1 ð0; 2; 0Þ
24 �0:43472274424 A1 ð1; 1; 0Þ
25 �0:43394121998 E ð1; 0; 2Þ
26 �0:43100452644 E (0,2,0)

permutational symmetry and the role of nuclear spin 697



(note that the associated antisymmetric product is feEg ! eEgg ¼ eA2g), and

hence it is either the vB1g or vB2g normal modes that cause the instability, since

they have the same nontotally symmetric behavior as the eB1g and eB2g terms

that arise from the symmetric product.

C. Dynamical Jahn–Teller and Geometric Phase Effects

We begin by discussing the energy levels that arise when a Jahn–Teller

instability is present, that is, the dynamic Jahn–Teller effect and the related GP

effect. This stems from the observation made by Longuet-Higgins and Herzberg

[42–44] that a real-valued electronic wave function changes sign when the

nuclear coordinates traverse a closed path encircling a conical intersection. This

result has been shown [74] to be valid even for systems that show no symmetry

such as LiNaK. In fact, such a geometric phase effect has been rediscovered in a

wider context by Berry [21], and hence it is often referred to as the Berry’s

TABLE XV

The Lowest 26 Energy Levels (in eV) for Ground State Li3 with Consideration of the GP Effect

Symmetry of Assignment

Number En(eV) Vibration ðv1; v2; v3Þ in C2v

1 �0:52524282512 E ð0; 0; 0Þ
2 �0:51783314253 A1 ð0; 0; 0Þ
3 �0:50903972588 A2 ð0; 0; 0Þ
4 �0:50128197060 E ð0; 0; 1Þ
5 �0:49188205106 E ð0; 1; 0Þ
6 �0:48752020977 A1 ð0; 0; 1Þ
7 �0:48169581419 E ð1; 0; 0Þ
8 �0:47506737423 E ð0; 0; 2Þ
9 �0:47429223744 A2 ð0; 0; 1Þ

10 �0:47257962805 A1 ð0; 1; 0Þ
11 �0:47109350982 E ð0; 1; 1Þ
12 �0:46486144408 A2 ð0; 1; 0Þ
13 �0:45992435398 A1 ð1; 0; 0Þ
14 �0:45743322309 E ð0; 2; 0Þ
15 �0:45609295233 A1 ð0; 0; 2Þ
16 �0:45572118311 E ð1; 0; 1Þ
17 �0:45380222742 A2 ð1; 0; 0Þ
18 �0:44725687996 E ð0; 0; 3Þ
19 �0:44322850657 E ð1; 1; 0Þ
20 �0:44211312570 A1 ð0; 1; 1Þ
21 �0:44025040532 E ð0; 1; 2Þ
22 �0:44004503298 A2 ð0; 0; 2Þ
23 �0:43625851187 E ð2; 0; 0Þ
24 �0:43557972347 E ð0; 2; 1Þ
25 �0:43004385753 A2 ð0; 1; 1Þ
26 �0:42970907209 A1 ð1; 0; 1Þ
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phase effect (as pointed out in the introduction, a further designation [19] is the

molecular Aharonov–Bohm effect since it manifests also in the treatment of a

charged particle moving in the presence of a magnetic solenoid).

To be specific, we focus this discussion on studies of the vibrational spectrum

of ground state Li3, which we have carried out using the DMBE III [69,70] Li3
potential energy surface. All eigenvalues of the system Hamiltonian have been

calculated using the MINRES filter diagonalization technique [27]. In turn, the

action of the Hamiltonian operator on the nuclear wave function has been

evaluated by the spectral transform method in hyperspherical coordinates by

using a fast-Fourier transform for r and j and a DVR–FBR transformation for

y2. In such studies, the GP effect has also been taken into consideration. Thus,

six separate sets of calculations have been performed, which include (1) no

consideration of GP effect using a basis set of A1 symmetry; (2) no consi-

deration of GP effect using a basis set of A2 symmetry; (3) no consideration of

GP effect using a basis set of E symmetry; (4) consideration of GP effect

using a basis set of A1 symmetry; (5) consideration of GP effect using a basis

set of A2 symmetry; (6) consideration of GP effect using a basis set of E

symmetry. The total number of calculated eigenvalues amounted to 3524

without consideration of GP effect, and 3211 with consideration of GP effect.

The full spectra have therefore been calculated, which cover the full range of

energies up to the threshold for Li2ðX1�þ
g Þ þ Li dissociation. Of the total

number of calculated vibrational levels, 953 (920), 750 (817), and 1621 (1474)

have been found to belong to A1, A2, and E symmetries when GP effects were

not (were) taken into consideration. Figures 6–8 show the lowest 40 calculated

levels of A1;A2; and E symmetries and the corresponding assignments. As one

would expect, each vibrational level is associated to three different vibronic

levels, for example, the (0,0,0) vibrational level in C2v is related to the
vA01ð0; 0; 0Þ, vA02ð0; 0; 0Þ, and vE0ð0; 0; 0Þ levels in D3h. Note that in an obvious

correspondence the vibrational states vA01ðv1; v2; v3Þ, vA02ðv1; v2; v3Þ, and
vE0ðv1; v2; v3Þ are associated to the vibronic states evA02ðv1; v2; v3Þ,
evA01ðv1; v2; v3Þ, and evE0ðv1; v2; v3Þ; see Tables XIII–XV. Note also that the

notation ðv1; v2; v3Þ implies that the quantum numbers are associated to the

symmetric stretching, bending, and asymmetric streching vibrational modes in

C2v. They are of A1, A1, and B2 symmetries, respectively; the correlation bet-

ween the assignments in D3h and C2v is given in Table XIII.

For very small vibronic coupling, the quadratic terms in the power series

expansion of the electronic Hamiltonian in normal coordinates (see Appendix E)

may be considered to be negligible, and hence the potential energy

surface has rotational symmetry but shows no separate minima at the bottom

of the moat. In this case, the pair of vibronic levels A1 and A2 in S3 become

degenerate by accident, and the D3h quantum numbers ðv1; v2; l2Þ may be used

to label the vibronic levels of the X3 molecule. When the coupling of the
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Figure 6. The vibrational levels of the lowest 40 bound states of A1 symmetry for 7Li3
calculated without consideration and with consideration of GP effect.

Figure 7. As in Figure 6 for the lowest 40 bound states of A2 symmetry.
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vibrational and electronic motions is strong, ðv1; v2; l2Þ are no longer a good set

of quantum numbers. In this case, it is more reasonable to think of the vibronic

motion as a result of a vibration of an oscillator with C2v symmetry and a

rotation corresponding to the motion on the potential valley around the D3h

symmetry axis. Such motion may also be viewed as arising from the circular

motion of each Li nucleus around their equilibrium positions in the D3h

geometry. As we have noted, there is a vibrational angular momentum on the

symmetry axis, and hence the rotation of the molecule as a whole is allowed

even when the total angular momentum vanishes; indeed, for l2 6¼ 0, the

molecule must possess a genuine rotation to compensate the vibrational angular

momentum such that J ¼ 0.

The spectra of floppy molecules such as Li3 may therefore have different

interpretations. For example, the spectra of specific symmetries have been fitted

[11] to within a few percent of error by using the simple vibrational normal

mode formula

Eðv1; v2; v3Þ ¼
X3

i¼ 1

vi þ
1

2

� �
oi þ

X3

j� i¼ 1

vi þ
1

2

� �
vj þ

1

2

� �
xij

þ
X3

k� j� i¼ 1

vi þ
1

2

� �
vj þ

1

2

� �
vk þ

1

2

� �
yijk ð59Þ

Figure 8. As in Figure 6 for the lowest 40 bound states of E symmetry.
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where vi are the vibrational quantum numbers, oi are (in energy units) the

harmonic frequencies, and xij and yijk are higher order anharmonic corrections.

Alternatively, Eq. (59) may be interpreted in terms of pseudorotational energies.

According to this interpretation, the first and part of the second summations

would represent the pseudorotational energy of a S3 molecule, while the

remaining terms would contain the second and higher order coupling

pseudorotational terms; the pseudorotational quantum numbers are now defined

by ji ¼ vi þ 1
2

� �
for i ¼ 1; 2; 3. For X3 molecules, ji ¼ 1

2
; 5

2
; 7

2
; 	 	 	 will belong to

E species, while ji ¼ 3
2
; 9

2
; 15

2
; 	 	 	 to A1 or A2 [28] (see also the discussion later

about the quantum number m).

Since there are potential barriers along the pseudorotational path, one must

also consider the effects due to tunneling. Each specified level then splits into

three owing to such tunneling effects. In fact, now we have distinct zero-point

energies for each of the three vibronic states, with their energy differences

being determined by the pseudorotational motion that includes the tunneling

effects.

The vibronic motion may be described by using the ðr ; y;jÞ coordinates. In

particular, the wave functions for the pseudorotational motion along the

hyperangle j that encircles the origin in a X3 system may assume the form [11]

wprðjÞ ¼ f ðr ; yÞexp i
lj
2

� �
expðinjÞ n ¼ 0;�1;�2; . . . l ¼ 0; 1 ð60Þ

where l ¼ 0ð1Þ for the case without (with) consideration of the GP effect.

Clearly, they are eigenfunctions of the kinetic energy operator [11] K̂j with

eigenvalues given by

m ¼ nþ l

2

� �2

ð61Þ

Thus, we can use the approximate quantum number m to label such levels.

Moreover, it may be shown [11] that (1)
ffiffiffiffi
m

p
is one-half of an integer for the

case with consideration of the GP effect, while it is an integer or zero for the case

without consideration of the GP effect; (2) the lowest level must have m ¼ 0 and

be a singlet with A1 symmetry in S3 when the GP effect is not taken into

consideration, while the first excited level has m ¼ 1 and corresponds to a

doublet E; conversely, with consideration of the GP effect, the lowest level must

have m ¼ 1
4

and be a doublet with E symmetry in S3, while the first excited level

corresponds to m ¼ 9
4

and is a singlet A1. Note that such a reversal in the

ordering of the levels was discovered previously by Hancock et al. [59]. Note

further that jj ¼
ffiffiffiffi
m

p
has a meaning similar to the ji quantum numbers described

after Eq. (59). The full set of quantum numbers would then be ð jr ; jy; jjÞ,
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which could be employed for a description of the vibronic motion. The energies

of the vibronic levels will then assume the form

Eð jr ; jy; jjÞ ¼
X

i¼r ;y;j

jioi þ
X
j� i

ji jj xij þ
X

k� j� i

ji jj jkyijk ð62Þ

where oi are the frequencies, xjj is the pseudorotational constant for the j
motion in energy units, and so on for the other xij and yijk ði; j; k � r ; y;jÞ
coefficients.

Since Li3 in its electronic ground doublet state is a very floppy molecule and

the vibrational levels are dense, one may expect the vibrational spectrum to be

irregular. To understand such behavior, the Li3 vibrational spectrum has been

analyzed statistically with basis on random matrix theory [75]. It has been found

[11] that the full spectrum is more regular than each symmetry block per se,

which can be understood by recalling that the levels can interact with each other

within a symmetry block, while the full spectrum consists of a random

superposition of unrelated sequences of energy levels belonging to different

symmetries. As discussed in detail elsewhere [11], the spectrum is found to be

quasiregular in short range and quasiirregular in long range. It should also be

mentioned that the interactions among the levels of the same symmetry result

mainly from the so-called Fermi resonances that occur when two or more levels

become nearly degenerate and have the same symmetry. Fermi resonances are

produced by the anharmonicity of the potential energy surface and make near-

degenerate levels (in the harmonic-oscillator approximation) to repel each other.

Thus, they originate extra irregularity in the spectrum of a specific symmetry.

One may think that the dynamical Jahn–Teller effect is equivalent to take

into consideration the GP effect that arises, for example, due to the conical

intersection in X3-type systems formed from 2S atoms. We find it pedagogical

from our calculations for Li3 to distinguish three situations. The first corres-

ponds to the calculations in sets (1)–(3) mentioned above, that is, using only one

electronic adiabatic BO potential energy surface without consideration of the

GP effect. The second refers to the generalized BO treatment in which the GP

effect is also considered. Finally, one has the exact (or nearly exact) solution,

which is obtained by solving the multistate quantum dynamics (vibronic)

problem; see also Section X.D. If one thinks of the first approach as

corresponding to include the dynamic Jahn–Teller effect alone, then

Table XIV shows that such an effect has a remarkable importance on the

vibrational levels as it may be seen by comparing states with equal sets of

quantum numbers ðv1; v2; v3Þ in the C2v point group. In turn, the calculations of

sets (4)–(6) would include both the dynamic Jahn–Teller and GP effects. The

difference between the above two series of results were then attributable to the

GP effect alone; see Figures 6–8. This is found [11] to lead to further shifts of
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the energy levels, while playing a significant role in the bound vibrational states

of Li3, not only quantitative but also qualitative.

Note that all genuine vibronic degeneracies remain no matter how strong the

vibronic interaction is, due to the fact that the permutation–inversion symmetry

is unchanged, and hence the potential function retains its original symmetry. For

example, the degenerate evE0 vibronic levels cannot split even when large

amplitude motions are possible. Only the interaction with rotation can produce

such a splitting [28].

Next, we discuss the J ¼ 0 calculations of bound and pseudobound

vibrational states reported elsewhere [12] for Li3 in its first-excited electronic

doublet state. A total of 1944 (1675), 1787 (1732), and 2349 (2387) vibrational

states of A1, A2, and E symmetries have been computed without (with) consi-

deration of the GP effect up to the Li2ðb3Pþ
u Þ þ Li dissociation threshold of

�0:0422 eV. Figure 9 shows the energy levels that have been calculated without

consideration of the GP effect up to the dissociation threshold of the lower

surface, �1:0560 eV, in a total of 41, 16, and 51 levels of A1, A2, and E

symmetries. Note that they are genuine bound states. On the other hand, the

cone states above the dissociation energy of the lower surface are embedded in a

continuum, and hence appear as resonances in scattering experiments or long-

lived complexes in unimolecular decay experiments. They are therefore pseudo-

bound states or resonance states if the full two-state nonadiabatic problem is

considered. The lowest levels of A1, A2, and E symmetries lie at �1:4282,

Figure 9. Vibrational levels of the first-excited state Li3 calculated without consideration

(NGP) and with consideration (GP) of geometric phase effect [12].
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�1:2729, and �1:3716 eV, respectively; the minimum energy of the conical

intersection seam is �1:5692 eV. Dynamical Jahn–Teller effects are therefore

seen to have a drastic influence on the vibrational levels (resulting in energy

shifts of "0:1 eV). As one would expect, the lowest level in the complete

spectrum without consideration of GP effects has A1 symmetry [11].

The assignment of vibrational quantum numbers to the fundamental modes

has been done by inspection of the corresponding nuclear probability density

plots. Similarly to the plots obtained for the lower sheet [11], the nuclear

probability densities of A1 and A2 symmetries show a threefold symmetry, while

each component of E symmetry has twofold symmetry about the line b ¼ 0.

The nuclear probability densities of the lowest vibrational states concentrate at

narrower regions than the corresponding states for the lower sheet, which

reflects the fact that the topographies of the two sheets of the potential energy

surface are quite different. Although the lowest 100 levels or so obtained for the

lower sheet of the potential energy surface could be fit reasonably well using a

C2v normal mode expansion, this is not at all the case for the levels in the upper

sheet where only the few lowest levels can be unambigously assigned. Indeed,

the higher states are rather anharmonic, and nearly degenerate vibrational states

occur frequently. Thus, the normal mode scheme employed for the assignment

of the vibrational levels in the lower sheet cannot be used in this case, a

difficulty that can be attributed to the conical intersection seam. Note that the

five lowest levels of A1 symmetry have been assigned by ascending order of

energy as ð0; 00Þ, ð1; 00Þ, ð2; 00Þ, ð0; 11Þ, and ð3; 00Þ. Note especially that the

notation ðv1; vl2
2 Þ is used here (and hereafter) to denote the quantum numbers for

the symmetric stretching mode (v1), the degenerate mode (v2), and vibrational

angular momentum (l2) [28] referring to D3h. Similarly, the five lowest levels of

A2 symmetry have been assigned by ascending energy to ð0; 00Þ, ð1; 00Þ, ð2; 00Þ,
ð0; 11Þ, and ð3; 00Þ. In turn, the four lowest levels of E symmetry are ð0; 00Þ,
ð1; 00Þ, ð0; 11Þ, and ð2; 00Þ, again by ascending order in energy. Thus, the

fundamental frequencies for the symmetric stretching mode (A1 symmetry in

the D3h point group) are 354.26, 351.01, and 353:34 cm�1 for the A1, A2, and E

symmetries in the S3 permutational group, respectively. In turn, the fundamental

frequencies for the degenerate mode (E symmetry in the D3h point group) are

824.62, 696.41, and 410.35 cm�1 for A1, A2, and E symmetries in S3,

respectively.

Similar calculations with consideration of the GP effect have also been

reported [12]. A total of 24, 24, and 50 levels of A1, A2, and E symmetries have

been found below the dissociation threshold of the lower surface, �1:0560 eV.

These are therefore genuine bound states; the cone states lying above such a

dissociation threshold are pseudobound states. The lowest levels of A1, A2, and

E symmetries are found to lie at �1:3475, �1:3438, and �1:3989 eV, respec-

tively. The notable feature is that the energy levels have been shifted due to the
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GP effect, with the shifts being equal to þ0:0807, �0:0709, and �0:0273 eV for

the A1, A2, and E symmetries, respectively. Clearly, such shifts are larger than

those obtained in the calculations for the lower adiabatic potential energy

surface, namely, þ0:0104, �0:0194, and �0:0043 eV (in the above order).

Similar to the case without consideration of the GP effect, the nuclear

probability densities of A1 and A2 symmetries have threefold symmetry, while each

component of E symmetry has twofold symmetry with respect to the line

defined by b ¼ 0. However, the nuclear probability density for the lowest E state

has a higher symmetry, being cylindrical with an empty core. This is easyly

understand since there is no potential barrier for pseudorotation in the upper

sheet. Thus, the nuclear wave function can move freely all the way around the

conical intersection. Note that the nuclear probability density vanishes at the

conical intersection in the single-surface calculations as first noted by Mead

[76] and generally proved by Varandas and Xu [77]. The nuclear probability

density of the lowest state of A1 (A2) locates at regions where the lower sheet of

the potential energy surface has A2 (A1) symmetry in S3. Note also that the A1

levels are raised up, and the A2 levels lowered down, while the order of the E

levels has been altered by consideration of the GP effect. Such behavior is

similar to that encountered for the ‘‘trough states’’ [11].

The five lowest levels of A1 and A2 symmetries are found to keep the same

order irrespectively of having or not considered the GP effect; by ascending

order of energy they are ð0; 00Þ, ð1; 00Þ, ð2; 00Þ, ð0; 11Þ, and ð3; 00Þ. However,

the GP effect is found to alter the order of the levels ð0; 11Þ and ð2; 00Þ with E

symmetry. The fundamental frequencies for the symmetric stretching mode (A1

symmetry in the D3h point group) are 352.79, 352.87, and 353:83 cm�1 for A1,

A2, and E symmetries in the S3 permutational group, respectively. In turn, the

fundamental frequencies for the degenerate bending mode (E symmetry in the

D3h point group) are 702.44, 748.50, and 769:94 cm�1 for A1, A2, and E

symmetries in S3, respectively. Thus, no significant changes are observed in the

fundamental frequencies of the symmetric stretching modes due to considera-

tion of the GP effect, which implies similar shifts for the two involved eigen-

energies. Note that due to the GP effect, the electronic wave function changes

sign when traversing a path that encircles the conical intersection. However, the

nuclear wave function now has a corresponding change of sign to compensate

that in the electronic wave function. The lowest level in the complete spectrum

with consideration of the GP effect is then of E symmetry in the S3 permutation

group. As seen, there are considerable differences in the E vibronic wave

functions due to inclusion of the GP effect. This can be attributed to having

imposed the proper boundary conditions into the wave function and the fact that

the E states involve a pseudorotation along the j coordinate.

We now address the fact that the symmetry of the vibrational modes must be

adapted to the nuclear spin multiplicity. Since 7Li is a fermion with nuclear spin
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I ¼ 3
2
, the possible nuclear spin multiplicities are 2, 4, 6, 8, and 10. Thus, for the

total nuclear wave function to be antisymmetric under permutation of the three

identical nuclei, the modes with A1 and A2 symmetry in S3 must be adapted to

the nuclear spin multiplicities 2, 4, 6, and 8, and the modes with E symmetry

to the nuclear multiplicities 2, 4, 6, 8, and 10. It is well known [29] (see Section

V) that there are ð2I þ 1Þð2I þ 3ÞðI þ 1Þ=3 symmetric nuclear wave functions,

ð2I þ 1Þð2I � 1ÞI=3 antisymmetric, and ð2I þ 1ÞðI þ 1Þð8IÞ=3 degenerate. This

amounts in the case of 7Li3 to 20 symmetric, 4 antisymmetric, and 40

degenerate nuclear spin functions. Thus, the corresponding statistical weights

wA1
, wA2

, and wE will be 5
16

, 1
16

, and 10
16

. Let the nuclear spin weights be wns
A1

, wns
A2

,

and wns
E , and wv

A1
¼ wv

A2
¼ wv

E ¼ 1 the weights associated to the vibrational

wave functions. Keeping in mind the direct products A1 ! E ¼ E, A2 ! E ¼ E,

and E ! E ¼ A1 þ A2 þ E, the statistically averaged frequencies assume the

form

o ¼ ðw ns
A1
þ w ns

A2
Þwv

EoE þ
1

3
w ns

E ðwv
A1
oA1

þ wv
A2
oA2

þ wv
EoEÞ ð63Þ

After simplification, the average fundamental frequencies becomes [12]

o ¼ 1� 2

3
w ns

E

� �
oE þ

w ns
E

3
ðoA1

þ oA2
Þ ð64Þ

where o stands for o1 and o2. Equation (64) gives for the symmetric stretching

mode 353.04 (353.43) cm�1 without (with) consideration of the GP effect. In

turn, for the fundamental frequency of the degenerate bending mode, one obtains

556.25 (751.41) cm�1 without (with) consideration of the GP effect. Clearly, the

fundamental frequency for the symmetric stretching mode has remained almost

unaltered due to consideration of the GP effect, while the fundamental frequency

for the degenerate bending mode was significantly affected. This is due to the

fact that the twofold degenerate bending vibration is a kind of pseudorotation

along the j direction that encircles the conical intersection, and hence is subject

to the GP effect. Conversely, consideration of the GP effect is not expected to

influence the symmetric stretching vibrational motion along the r coordinate

much, as indeed verified.

We now compare the results calculated for the fundamental frequency of the

symmetric stretching mode with the only available experimental datum [78] of

326 cm�1. The theoretical result is seen to exceed experiment by only "8.3%. It

should be recalled that the 7Li3 and 6Li3 trimers have for lowest J the values 0

and 1
2
, respectively. Thus, the istopic species 6Li3 cannot contribute to the

nuclear spin weight in Eq. (64), since the calculations for half-integer J should

employ different nuclear spin weights. Note that atomic masses have been used
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to calculate the vibrational frequencies, which may be justified due to no speci-

fication of 7Li3 in [78]. Yet, test calculations have shown that the vibrational

levels should not change by >1 or 2 cm�1 when 7Li3 is instead considered. In

summary, to resolve the remaining discrepancy one requires to refine the

potential energy surface and take full consideration of nonadiabatic effects.

As for the trough states, a statistical analysis has been carried out for the

calculated cone states [12]. The nearest neighbor spacings are calculated by

si ¼ �Eiþ1 � �Ei ð65Þ

where �E is the unfolded energy. In turn, the mean level spacing is given by

hsi ¼
Xn

i¼ 1

si=ðn� 1Þ ð66Þ

while the second moment assumes the form

hs2i ¼
Xn

i¼ 1

s2
i =ðn� 1Þ ð67Þ

From these first and second moments, one can calculate the quantity hs2i=hsi2
.

The results so obtained [12] are given in Table XVI, while Figure 10 shows the

corresponding neighbor spacing distributions. It is seen that the level

distributions Pðs=hsiÞ take values in the interval 0 < Pð0Þ < 1 for all spectra,

which implies in the strict sense of their definitions that they do not obey

Wigner, Poisson, or Brody distributions. All spectra seem near Brody type in

each block, while the full spectra look like near Poisson type. For each

symmetry block, the spectra turn out to be more irregular than the full spectra,

irrespectively of taking or not the GP effect into consideration. This is due to the

strong interations among states with the same symmetry. However, there is no

interation between states with different symmetry, and hence the spectra for

each symmetry block are nearly irregular. In turn, the random superposition of

unrelated sequences of energy levels leads the full spectra to be more regular.

TABLE XVI

Calculated hs2i=hsi2 for the Vibrational Levels of the First-Excited

Electronic Doublet State of Li3

Method A1 A2 E Full Spectrum

NGP 1.33 1.34 1.32 1.82

GP 1.32 1.36 1.30 1.75
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Thus, the spectra can be said to be quasiregular in short range and quasiirregular

in long range [11].

One should also note that the unfolding procedure makes the average density

of levels uniform over the entire energy range. Thus, the difference


2 ¼ S2 � �S2 ð68Þ
where S2 ¼ hs2i=hsi2

is calculated by using the raw spectra, and �S2 ¼ hs2i=hsi2
is obtained by using the unfolded spectra, represents a measure of the non-

uniformity of the spectrum. Such nonuniformity arises from (1) the secular

Figure 10. Level spacing distributions Pðs=hsiÞ for the cone states of the first-excited

electronic doublet state of Li3 with consideration of GP effects [12]: (a) A1 symmetry; (b) A2

symmetry; (c) E symmetry; (d) full spectrum. Also shown by the solid lines are the corresponding

fits to a Poisson distribution.
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variation of the level spacings that decrease with energy, and (2) the accidental

degeneracies and near degeneracies. If such degeneracies can be removed, the

uniformity of a spectrum will increase. By this 
2 standard, it is found that

the spectra (full and those of each symmetry block) are more nonuniform for the

cone states than for the trough states. To explain such a finding, one should

note the significant differences between the lower and upper adiabatic sheets of

the Li3 potential energy surface, in particular the fact that there is no barrier for

pseudorotation on the upper adiabatic sheet. Thus, the pseudorotational motion

in the upper sheet is faster than in the lower sheet, which implies a frequency o2

for pseudorotation of the degenerate mode considerably larger than that of the

breathing mode (o1). For example, from our results for the A1 symmetric

vibrational states with consideration of the GP effect, one has o2 ¼ 702 cm�1,

which is nearly twice the value of the frequency o1 ¼ 353 cm�1 for the sym-

metric stretching mode. Thus, a lot of levels are expected to gather together

leading to frequent accidental degeneracies or near degeneracies. Since in many

cases the symmetry requirement for the occurence of Fermi resonances is

absent, such degeneracies and near degeneracies cannot be removed. As a result,

the first moment hsi will be small, and hence S2 becomes large and leads to an

increase in nonuniformity of each symmetry block. Consider, for example, the

ideal case where o2 ¼ 2o1. Obviously, the states ð2mþ n; kl2Þ and ½n; ðmþ kÞl0
2 �

are degenerate in the harmonic oscillator approximation since the energy does

not depend on the value of the vibrational angular momentum quantum number.

Then, it can be demonstrated by induction that the level ð2mþ n; kl2Þ is

intðk=2Þ þ int ðk þ mÞ=2½ � þ 2½ �-fold degenerate in the above approximation

(this will lead to a near degeneracy in the anharmonic approximation); ðn; kÞ are

integers or zero, and m is a nonzero integer. If the above levels have the same

symmetry, a Fermi resonance will occur; otherwise, it will be absent. For

example, if m is odd there can be no Fermi resonance since the vibrational

angular momentum quantum numbers are different. Specifically, for m ¼ 1, the

ð2þ n; 00Þ and ðn; 11Þ levels will not suffer a Fermi resonance, with the same

being true for the degenerate levels ð2þ n; 11Þ, ðn; 22Þ, and ðn; 20Þ. Instead, for

m even, there will be 2 int k=2Þ þ 1ð �½ , which will be subject to Fermi resonances.

As a specific case, consider m ¼ 2: the levels 4þ n; 00Þð and ðn; 20Þ will suffer a

Fermi resonance, while it will be absent for the ð4þ n; 00Þ and ðn; 22Þ levels. In

the case of m arbitrary but even, the number of levels that cannot be subject to

Fermi resonances is given by int½ðk þ mÞ=2� � intðk=2Þ½ �. Clearly, this number

increases with increasing m. In summary, at least more than one-half of the

degeneracies cannot be removed through Fermi resonances. As a result, the

levels will be nonuniformly distributed, leading to an increased nonuniformity

of the spectra.

To summarize, the dynamical Jahn–Teller effect is found to be more signi-

ficant (about one order of magnitute larger) than the GP effect as far as the
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vibrational states of Li3 are concerned. Regarding nonadiabatic coupling effects,

a comparison of the Li3 calculations with the only available experimental datum

suggests that they play a minor role (at most 0:004 eV, i.e., one order of

magnitute smaller than that of the GP effect). Moreover, from the neighbor

spacing distributions of the vibrational levels, it has been found that the spectra

are quasiregular in short range and quasiirregular in long range, while the 
2

standard indicates that the spectra are more nonuniform for the cone states than

for the trough ones.

D. Nonadiabatic Coupling Effects

Nonadiabatic coupling between adiabatic (BO) potential energy surfaces leads

to a breakdown of the BO approximation. The proper treatment then requires a

coupled multistate calculation, which would lead to the exact vibronic levels.

For X3-type systems such as Li3, we have two adiabatic potential energy

surfaces that intersect originating an upper sheet with the shape of an inverted

cone, and a lower sheet that looks like a trough. If one carries out a single

surface generalized BO calculation (i.e., only with consideration of the GP

effect), one obtains either the cone or trough states. For Li3, the cone states are

bound states, although we must distinguish two types of cone states depending

on whether they have energies higher than the dissociation energy of the lower

surface or not. If they lie above the dissociation threshold, they are imbedded in

a continuum and would show up as resonances in reactive scattering or long-

lived complexes in studies of unimolecular decomposition. As a result, these

states (which are pseudobound states in the single surface calculation) are trully

resonance states. If the energies of the cone states are not above the dissociation

limit of the lower surface, they are imbedded in the discrete spectrum of the

trough states. In this case, they are genuine bound states, and will interact

strongly with any other states of the same symmetry. The levels associated to

those states, as well as of states that are near the intersection seam, will further

shift if nonadiabatic coupling is fully taken into account on the treatment of the

problem. A quantitative assessment of such shifts would require the knowledge

of the observed frequencies or rigorous nonadiabatic calculations carried out on

the same potential energy surface. Unfortunately, such comparisons cannot be

done at present.

E. Effects of Electron Spin and Nuclear Spin

For molecules with an even number of electrons, the spin function has only

single-valued representations just as the spatial wave function. For these

molecules, any degenerate spin–orbit state is unstable in the symmetric

conformation since there is always a nontotally symmetric normal coordinate

along which the potential energy depends linearly. For example, for an 3E state

of a C3v molecule, the spin function has species esA2 and esE that upon
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multiplication by the species eoE of the orbital wave function leads to total

electronic wave functions of species ðesA2 � esEÞ ! eoE ¼ eA1 � eA2 � 2eE.

Thus, the 3E state splits into four states of which only two eE states will be

unstable. Similarly, for an 3A1 state that is orbitally stable, a splitting into
eA2 � eE will occur due to the spin–orbit coupling, of which only the first term

is stable (the second, eE, is unstable). However, the eE component is only

slightly unstable since in an orbitally nondegenerate state the spin–orbit

coupling is always very small [28].

The situation is different for an electronic system with an odd number of

electrons. By Kramers’ theorem, the vibronic coupling cannot remove the

degeneracy caused by the half-integer spin S. Moreover, as Jahn [79] has shown,

the antisymmetric product of the species of the spin–orbit wave function with

itself must have the same species as one of the nontotally symmetric normal

vibrations in order to make the Jahn–Teller instability possible. For all axial

point groups, the antisymmetric product of any doubly degenerate two-valued

representation with itself is totally symmetric; that is, E1=2; E3=2; . . . states

cannot be split by vibronic coupling. Therefore, for all axial point groups when

spin–orbit interaction is strong, there is no Jahn–Teller instability. Only a

magnetic field such as that connected with a rotation can remove the degen-

eracy. As follows from the previous discussion, for an 2E state, the orbital part

of the degeneracy will lead to a Jahn–Teller instability if the spin–orbit coupling

is weak. For a strong spin–orbit interaction, 2E will split into two states
eoE ! esE1=2 ¼ eE1=2 � eE3=2, with each doublet component remaining doubly

degenerate for arbitrary displacements of the nuclei. The general conclusion is

that spin–orbit coupling for half-integer spin reduces the instability caused by

orbital degeneracy. The above discussion can be applied to the nuclear spin if

we consider the nucleus-spin electron–orbit coupling. However, since this

coupling is generally smaller than the electron spin–orbit coupling, it may be

necessary to take it into account only in special cases, for example, for large

values of J.

F. Other Alkali Metal Trimers

In this section, we extend the above discussion to the isotopomers of X3

systems, where X stands for an alkali metal atom. For the lowest two electronic

states, the permutational properties of the electronic wave functions are similar

to those of Li3. Their potential energy surfaces show that the barriers for

pseudorotation are very low [80], and we must regard the concerned particles as

identical. The 23Na atom has a nuclear spin 3
2
; 39K, 40K, and 41K have nuclear

spins 3
2
, 4, and 3

2
; 85Rb and 87Rb have nuclear spins 5

2
and 3

2
; and 133Cs has a

nuclear spin 7
2
. From the above discussion, it then follows that the permutation

properties of molecules having individual half-integer spin nuclei will be similar
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to those involving 7Li; conversely, the permutational properties of molecules

consisting of integer spin nuclei will be similar to those containing 6Li.

G. 1H3 and Its Isotopomers

Now, briefly we discuss the molecule 1H3 and its isotopomers, while also

highlighting their differences with respect to 7Li3. For the title systems, there

have been many investigations, for example, [2,4,5,7,8,59,81], and references

cited therein. Similarly to the lithium trimer, H3 and its isotopomers are

important Jahn–Teller systems where the vE0 normal coordinates cause

instability and lead to the splitting of the potential energy in the form of a

conical intersection between the two involved adiabatic potential energy

surfaces (~X2A0 and 22A0). Note that intersections of similar kind may occur [81]

involving higher states (viz. between the 22A0 and 32A0 electronically adiabatic

potential energy surfaces), although this issue of multiple intersections is out of

the scope of this work, it will not be discussed here any further. The major

difference between the H3 and Li3 potential energy surfaces is the fact that the

lower sheet of H3 is of the hat type and can support only resonance states.

Moreover, these are mainly located in the collinear saddle-point region that is

far from the conical intersection, which may explain why the GP effect

calculated on the accurate H3 DMBE potential energy surface [82] is found [2]

to play a minor role on such transition state resonances. Note further that the

three equivalent saddle points are located on the outer circle that delimits the

potential energy surface when this is viewed as a relaxed triangular plot [68]

using hyperspherical coordinates, and are separated from each other by 2p=3.

This feature is illustrated in Figure 11, which shows clearly the double-cone

shape of the intersection between the ~X2A0 and 22A0 adiabatic potential energy

surfaces near the degeneracy point (this corresponds to the structure with lowest

energy along the D3h symmetry line).

As discussed in preceding sections, 1H and 3H have nuclear spin 1
2
, which

may have drastic consequences on the vibrational spectra of the corresponding

trimeric species. In fact, the nuclear spin functions can only have A1 (quartet

state) and E (doublet) symmetries. Since the total wave function must be

antisymmetric, A1 rovibronic states are therefore not allowed. Thus, for J ¼ 0,

only resonance states of A2 and E symmetries exist, with calculated states of A1

symmetry being purely ‘‘mathematical states.’’ Similarly, only E-symmetric

pseudobound states are allowed for J ¼ 0. Indeed, even when vibronic coupling

is taken into account, only A2 and E vibronic states have physical significance.

Table XVII–XIX summarize the symmetry properties of the wave functions for
1H3 and its isotopomers.

Calculations of bound vibrational levels have been carried out for the first

electronically excited state of H3 with (and without) consideration of the GP

effect using the GBO equation; [4,5,53], see Appendix A, Eq. (A.14). The
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Figure 11. Perspective view [60] of a relaxed triangular plot [68] for the two DMBE adiabatic

potential energy surfaces of H3 using hyperspherical coordinates.

TABLE XVII

Symmetry Properties of 1H3 and 3H3 Wave Functions in the S3 Permutation Group

Total Nuclear Spina Rovibronic Rotationalb Pseudorotational

A2 A1 A2 A1 A2

A2 A1 A2 A2 A1

A2 A1 A2 E E

A2 E E A1 E

A2 E E A2 E

A2 E E E A1 � A2 � E

a Nuclear spin I ¼ 1
2
.

b Total angular momentum quantum number J ¼ 0; 1; 2; . . . .

TABLE XVIII

Symmetry Properties of 2H3 Wave Functions in the S3 Permutation Group

Total Nuclear Spina Rovibronic Rotationalb Pseudorotational

A1 A1 A1 E E

A1 A2 A2 E E

A1 E E E A1 � A2 � E

a Nuclear spin I ¼ 1.
b Total angular momentum quantum number J ¼ 1

2
; 3

2
; 5

2
; . . . .
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lowest calculated levels are shown graphically in Figure 12. It is seen that the GP

effect plays an important role in the spectra of the first excited electronic state

of H3.

Calculations of the GP effect have also been reported for isotopomers of X3

systems, which we address in the remainder of this section. For such systems, a

TABLE XIX

Symmetry Properties of 2H1H2, 3H1H2, 2H3H2, and 1H3H2 Wave Functions

in the S3 Permutation Group

Total Nuclear Spina Rovibronic Rotationalb Pseudorotational

B A B A B

B A B B A

B B A A A

B B A B B

a Nuclear spins are: I ¼ 1
2

for 1H and 3H, and I ¼ 1 for 2H.
b Total angular momentum quantum number J ¼ 1

2
; 3

2
; 5

2
; . . . .

Figure 12. Vibrational levels for the first-excited electronic state of H3 calculated [4] using:

Longuet-Higgins phase AðRÞ ¼ j=2; Eq. (A.14) with a path-dependent phase AðRÞ ¼ gðr ; y;jÞ.
The extra levels arising in one calculation but not in the other are indicated by longer line segments.
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complication arises due to the mass scaling procedure involved in defining the

hyperspherical coordinates. To cope with it, Kuppermann and Wu [83] studied

the GP effect in DH2 using a mass-scaled Jacobi-vectors [84] formula. An

alternative approach has been suggested by the present authors, an issue that is

discussed next.

The location of the crossing seam (or seam) for an X3 system is established

from the requirement that rAB ¼ rBC ¼ rAC, where rAB, rBC, and rAC are the

interatomic distances. Since the goal are the the geometric properties produced

by this seam, hyperspherical coordinates ðr ; y;jÞ suggest themselves as best

suited for this purpose. However, if only two atomic masses are equal, say

mB ¼ mC, the seam is defined [5] by

ys ¼ 2 sin�1 mB � mA

mB þ 2mA

����
���� ð69Þ

while js assumes the value p when mA > mB, and the value zero when

mA < mB. On the other hand, if all three masses are equal, then one has ys ¼ 0,

and js ¼ 0 (or p).

The crossing seam in H3 is therefore characterized by ys ¼ 0 [5]. Such a

feature warrants that any loop formed by varying j from 0 to 2p, for fixed

values of y and r , will encircle the seam. For HD2, the equation of the straight

line for the seam is defined by ðys ¼ 0:5048 rad; js ¼ 0Þ. Since ys is no longer

zero, only closed paths (these may be thought of as circular ones, although this

does not need to be so) with y larger than a threshold value (ys) will enclose the

seam: all others for y < ys will not satisfy that requirement, and hence will not

show a sign flip on the wave function when this is transported adiabatically

along such a closed loop.

A convenient technique to study the sign flip of the wave function is the line-

integral approach suggested by Baer [85,86] (an alternative, though more

combersome approach, will be to monitor the sign of the wave function along

the entire loop [74]). Calculations have been reported [5] using such a line-

integral approach for H3, DH2, and HD2 using the 2� 2 diabatic DMBE

potential energy surface [1]. First, we have shown that the phase obtained by

employing the line-integral method is identical (up to a constant) to the mixing

angle of the orthogonal transformation that diagonalizes the diabatic potential

matrix (see Appendix A). We have also studied this angle numerically along the

line formed by fixing the two hyperspherical coordinates r and y and letting j
vary within the interval ½0; 2p�. For H3, such a line always encircles the seam,

and hence the value of the corresponding line integral produces the value p for

the geometric (Berry’s) phase (of course, deviations may occur if intersections

of any of the involved states with higher excited ones are present [81]; this

cannot be the case here for H3 since only two states are considered). In the cases of

the two heteronuclear isotopomers, we find similar results but also verify that
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for substantial regions of configuration space where such loops do not encircle

the seam, the line integrals yield the value zero for the geometric phase. Such a

result may be used to explain why the GP effect has a more remarkable

influence on the spectra of H3 than on its isotopic variants [6], as a set of

calculations carried out using the split basis technique [6], the coordinate-

transformation approach [8], and the GBO equation (A.14) have consistently

demonstrated. Note that the first two approaches employed the traditional

Longuet-Higgins phase, AðRÞ ¼ j=2, whereas Eq. (A.14) uses a path-

dependent phase, AðRÞ ¼ gðr ; y;jÞ. The lowest levels calculated by such

methods are collected in Figure 13, being the reader addressed to the original

papers for details concerning the numerical techniques.

XI. CONCLUDING REMARKS

In this chapter, we discussed the permutational symmetry properties of the total

molecular wave function and its various components under the exchange of

identical particles. We started by noting that most nuclear dynamics treatments

carried out so far neglect the interactions between the nuclear spin and the other

nuclear and electronic degrees of freedom in the system Hamiltonian. Due to

Figure 13. Vibrational levels for the first-excited electronic state of HD2 calculated [8] using:

split basis (SB) technique with AðRÞ ¼ j=2; coordinate-transformation (CT) treatment with

AðRÞ ¼ j=2; Eq. (A.14) with AðRÞ ¼ gðr ; y;jÞ. Shown by the longer line segments are the levels

assuming different values in two sets of calculations.
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such neglect, one must impose the symmetry properties of the nuclear spin in

the total wave function. This requires that the total wave function for identical

fermions (bosons) must be antisymmetric (symmetric) under the permutation of

the identical particles. Kramers’ theorem has been generalized to the case of

total angular momentum F. It has then been shown that the states of a system

with half-integer total angular momentum quantum number must be degenerate.

Because molecular double groups are subgroups of the 3D spatial rotation group

SOð3Þ, the former can be used as a powerful means to study the rotational

properties of any molecular system. Based on the permutational symmetry

requirements of the total wave function and the extented Kramers’ theorem,

some severe consequences have then been demonstrated for cases where the

nuclear spin quantum number is one-half or zero. The theory has been

illustrated by considering in detail the vibrational spectra of the alkali metal

trimers where vibronic coupling has been shown to dominate. In this context,

we have also reviewed the static and the dynamic Jahn–Teller effects, the

GP effect, nonadiabatic coupling, and electron and nuclear spin effects in X3

(2S) systems. Although the discussion on 1H3 and its isotopomers has been

brief, it has been pointed out that, for 1H3, the A1 rovibronic states will not be

allowed. Thus, for J ¼ 0, only resonant states (hat states) of A2 and E

symmetries have physical significance, while only E states are allowed for the

pseudobound states (cone states). The implication is that after computing the full

spectrum by solving Schr
odinger’s equation without consideration of nuclear

spin effects, one must carefully distinguish the physically allowed solutions

from the unphysical (mathematical) ones. For brevity, no attempt has been made

to discuss transition selection rules; the interested reader is referred to

[28]. Although the material presented in this chapter focused on Li3 and H3,

the theory that has been reviewed, and in some occasions extended, is

general and should be of interest to help understand a wider class of systems.

APPENDIX A: GBO APPROXIMATION AND GEOMETRIC PHASE
FOR A MODEL TWO-DIMENSIONAL (2D) HILBERT SPACE

Ignoring all nonadiabatic couplings to higher electronic states, the nuclear

motion in a two-state electronic manifold is described explicitly in the adiabatic

representation by

��h2

2m
ðr2

Rþhc1jr2
Rc1iÞþV1�E

� �
w1¼

�h2

2m
hc1jr2

Rc2iþ2hc1jrRc2i 	 rR

� �
w2

ðA:1Þ

� �h2

2m
ðr2

Rþhc2jr2
Rc2iÞþV2 � E

� �
w2 ¼

�h2

2m
hc2jr2

Rc1iþ2hc2jrRc1i 	 rR

� �
w1

ðA:2Þ
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where we have supressed obvious coordinate dependences on cif g and

fwjg.

Then, let the two real electronically adiabatic wave functions be written

as [4]

c1 ¼
cosgðRÞ
singðRÞ

� �
c2 ¼

�singðRÞ
cosgðRÞ

� �
ðA:3Þ

where gðRÞ is the R-dependent mixing angle [5,87–91], which diagonalizes the

diabatic potential matrix. By assuming that the electronic basis is orthonorma-

lized, one gets

hc1jrRc2i ¼ �rRgðRÞ ðA:4Þ
hc2jrRc1i ¼ �hc1jrRc2i ¼ rRgðRÞ ðA:5Þ

Similarly, one has

hcI jr2
RcIi ¼ �hrRcI jrRcIi ¼ � rRgðRÞ½ �2 ðA:6Þ

while, for I 6¼ J, one obtains hrRcI jrRcJi ¼ 0. Moreover, one gets

hc1jr2
Rc2i ¼ rRhc1jrRc2i � hrRc1jrRc2i ¼ �r2

RgðRÞ ðA:7Þ

and

hc2jr2
Rc1i ¼ r2

RgðRÞ ðA:8Þ

By replacing Eqs. (A.4)–(A.8) into Eqs. (A.1) and (A.2), yields

�
� �h2

2m
r2

R � ðrRgðRÞÞ2
h i

þ V1 � E

�
w1

¼ � �h2

2m
r2

RgðRÞ þ 2rRgðRÞ 	 rR

� �
w2 ðA:9Þ�

� �h2

2m
r2

R � ðrRgðRÞÞ2
h i

þ V2 � E

�
w2

¼ �h2

2m
r2

RgðRÞ þ 2rRgðRÞ 	 rR

� �
w1 ðA:10Þ

Now, consider a complex nuclear wave function given by a linear combination

of the two real nuclear wave functions [42,53],

~w ¼ 1ffiffiffi
2

p ðw1 þ iw2Þ ðA:11Þ
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After some algebraic manipulation, Eqs. (A.1) and (A.2) lead to the following

single-surface equations [4]�
�h2

2m
�r2

R þ ðrRgðRÞÞ2
h

þ ir2
RgðRÞ þ 2irRgðRÞ 	 rR

�
þ V1 � E

�
~wþ iffiffiffi

2
p ðV2 � V1Þw2 ¼ 0 ðA:12Þ�

�h2

2m
�r2

R þ ðrRgðRÞÞ2
h

þ ir2
RgðRÞ þ 2irRgðRÞ 	 rR�

þ V2 � E

�
~wþ iffiffiffi

2
p ðV1 � V2Þw1 ¼ 0 ðA:13Þ

By neglecting the second term in Eq. (A.12), one gets

�h2

2m
�r2

R þ ðrRgðRÞÞ2 þ ir2
RgðRÞ þ 2irRgðRÞ 	 rR

h i
þ V1;2 � E

� �
~w ¼ 0

ðA:14Þ

which should be valid whenever motion of the nuclei can be confined to the

vicinity of the conical intersection, where V1 ’ V2. Note that Eq. (A.14) leads to

different sets of eigenvalues depending on whether V1 or V2 are used, except, of

course, when V1 ¼ V2, which happens only at the conical intersection.

Conversely to Baer and Englmann [25,53], our derivation of Eq. (A.14) has

not been based on the assumption (so-called BEB approximation in [92] for the

lower sheet equation) that w2 is small enough everywhere, but on the milder

premise that w1 and w2 are well behaved. Of course, Eq. (A.14) leads to the

corresponding BO equations when the derivative coupling elements are constant

or zero.

Now, we discuss how the geometric phase is related to the mixing angle in

this two-state model. We begin by writing Eq. (A.11) as the gauge trans-

formation

~w ¼ exp½iAðRÞ�w ðA:15Þ

where w is a real wave function, and AðRÞ is a geometric phase. By analogy, the

complex electronic wave function may be written in the form

~c ¼ exp½iAðRÞ�c ðA:16Þ

and then

~c ¼ 1ffiffiffi
2

p ðc1 þ ic2Þ ðA:17Þ
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where ci is the real-valued electronic wave function corresponding to the wave

function wi. In the complex plane jw1i; ijw2if g, the complex vector state j~wi will

then be characterized by the argument AðRÞ ¼ arg ~w and, similarly, in the

complex plane jc1i; ijc2if g, j~ci will satisfy AðRÞ ¼ arg ~c.

By using Eq. (A.17), the first derivative coupling for the complex electronic

wave function assumes the form [4]

h~cjrR
~ci ¼ ihc1jrRc2i ðA:18Þ

where we have used the fact that hcijrRcii ¼ 0, and hc1jrRc2i ¼
�hc2jrRc1i. On the other hand, by noting that c is real, one obtains

h~cjrR
~ci ¼ irRAðRÞ ðA:19Þ

A comparison of Eq. (A.18) with Eq. (A.19) then yields

hc1jrRc2i ¼ rRAðRÞ ðA:20Þ

which shows that, for a set of two electronic states, the derivative coupling is

given by the gradient of the geometric phase. A similar result (except for the

sign) has been obtained by Baer [25] using a different approach. Note that

Eq. (A.20) holds exactly in the vicinity of the crossing seam where the phase

AðRÞ is identical for both sheets. From Eqs. (A.4) and (A.20), one then gets

rRAðRÞ ¼ �rRgðRÞ ðA:21Þ

which shows that the geometric phase is identical to the mixing angle, except

for the sign and a constant term that have no physical implications. Thus,

provided that we chose such a constant term to be zero, one has

AðRÞ ¼ gðRÞ ðA:22Þ

Note that the mixing angle has the correct sign-change behavior [5]: 
gðRÞ ¼ p
for a closed path encircling the crossing seam, and 
gðRÞ ¼ 0 for a closed path

that does not encircle it. Thus, the geometric phase defined from Eq. (A.22)

displays the correct sign change behavior, while depending on the full set of

internal coordinates. Moreover, close to the seam, it shows [5] a behavior

similar to the traditional Longuet-Higgins phase of j=2, where j is the

pseudorotation angle.

APPENDIX B: ANTILINEAR OPERATORS AND
THEIR PROPERTIES

In this appendix, we review some important properties of antilinear operators

that are used in the text and Appendix C. Let us then consider an operator Ô that
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acts on a state jci to give Ôjci, with the original state being restored after

acting twice, that is, Ô2jci ¼ cjci. Clearly, the space-inversion operator Î is a

well-known example of such an operator. Moreover, as will be shown, the time-

reversal T̂ and complex conjugate K̂ operators provide further examples of such

operators.

By the very meaning of a physical state, we must require that

hÔcjÔci ¼ hcjci ðB:1Þ

This should apply both to linear and antilinear operators, hereafter denoted,

respectively, by L̂ and Â. For a linear operator, the action on a general state

c1jc1i þ c2jc2i is expressed by

L̂ðc1jc1i þ c2jc2iÞ ¼ c1L̂jc1i þ c2L̂jc2i ðB:2Þ

while, for an antilinear operator [93], it assumes the form

Âðc1jc1i þ c2jc2iÞ ¼ c�1Âjc1i þ c�2Âjc2i ðB:3Þ

where ci ði ¼ 1; 2Þ are complex numbers. As for linear operators (where we

have the definition of Hermitian conjugate of L̂jci to be hcjL̂y), we define

the Hermitian conjugate of ðÂjciÞ as ðhcjÂyÞ; recall that the parentheses

are necessary. Note that Eq. (B.1) implies that the norm of a vector cannot be

altered both for linear and antilinear operators. More generally, a linear operator

cannot change the internal product of two vectors, and hence must be unitary.

Conversely, antilinear operators change the internal product to its complex

conjugate, and hence are called antiunitary [54]. One has

hcjfi ¼ hfjci� ðB:4Þ

which indicates that the unit operator is linear with respect to the ket and

antilinear to the bra. In general, a linear operator is linear with respect to the ket

and antilinear to the bra. Thus, for an antilinear operator, we have by definition

hcjðÂjfiÞ ¼ ½ðhcjÂÞjfi�� ðB:5Þ

where the parentheses in hcjðÂjfiÞ indicate the order of the action, with ðÂj	Þ
being antilinear with respect to both the bra and the ket. In turn, ð	jÂÞ is linear

with respect to both the bra and the ket.

From the definition of Hermitian conjugate and Eq. (B.5), one then gets

hcjðÂjfiÞ ¼ hfjðÂyjciÞ ðB:6Þ

This implies that the Hermitian conjugate of an antilinear operator is also

antilinear. It should also be pointed out that the product of two antilinear

722 a. j. c. varandas and z. r. xu



operators is linear, while the product of a linear and an antilinear operators is

antilinear. In general, an antilinear operator may be expressed as a product of a

linear and an antilinear operators. From Eq. (B.5), we also have

½ðhcjÂyÞðÂjciÞ�� ¼ hcjðÂyÂjciÞ ¼ hcjci� ¼ hcjci ðB:7Þ

Thus,

ÂyÂ ¼ ÂÂy ¼ 1̂ ðB:8Þ

a property that is also satisfied by unitary operators.

APPENDIX C: PROOF OF EQS. (18) AND (23)

Let us consider the time evolution of a quantum system, which satisfies the

time-dependent Schrödinger equation [55]

i�h
q
qt
jcðtÞi ¼ ĤjcðtÞi ðC:1Þ

where Ĥ does not depend explicitly on time. Now, by defining the time-reversal

state jcrevð�tÞi as

jcrevð�tÞi ¼ T̂ jcðtÞi ðC:2Þ

such a state must satisfy the corresponding time-dependent Schrödinger

equation

i�h
q

qð�tÞ jcrevð�tÞi ¼ Ĥjcrevð�tÞi ðC:3Þ

Now, consider the complex conjugate of Eq. (C.1),

i�h
q

qð�tÞ jcðtÞi
� ¼ ĤjcðtÞi� ðC:4Þ

If there is an unitary operator Û such that

ÛĤÛy ¼ Ĥ ðC:5Þ

one has, after the action of Û on Eq. (C.4),

i�h
q

qð�tÞ ÛjcðtÞi� ¼ ÛĤjcðtÞi� ðC:6Þ

¼ ĤÛjcðtÞi� ðC:7Þ
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By comparing Eq. (C.6) with Eqs. (C.2) and (C.3), the time-reversal operator

can be expressed as a product of an unitary and a complex conjugate operators

as follows

T̂ ¼ ÛK̂ ðC:8Þ

Thus, the time-reversal state can be written as

jcrevð�tÞi ¼ T̂ jcðtÞi ¼ ÛK̂jcðtÞi ¼ ÛjcðtÞi� ðC:9Þ

It is now required for observable quantities that the expectation value of any

operator Ô taken with respect to jcrevð�tÞi must be the same as that of the

operator Ôrev taken relative to jcðtÞi, that is,

hcrevð�tÞjÔjcrevð�tÞi ¼ hcðtÞjÔrevjcðtÞi ðC:10Þ

Since

hcrevð�tÞjÔjcrevð�tÞi ¼ hÛcðtÞjÔjÛcðtÞi ðC:11Þ
¼ hcðtÞjÛyÔÛjcðtÞi ðC:12Þ

a comparison with Eq. (C.10), and the fact that any operator associated to an

observable quantity is Hermitian, leads to

ÔT
rev ¼ ÛyÔÛ ðC:13Þ

where the superscript T in the time-reversal operator ÔT
rev denotes the transpose.

Now, consider the case of spinless particles not subject to external electronic

and magnetic fields. We may now choose the unitary operator Û as the unit

operator, that is, T̂ ¼ K̂. For the coordinate and momentum operators, one then

obtains

T̂ r̂T̂�1 ¼ K̂r̂K̂�1 ¼ r̂ ðC:14Þ
T̂ p̂T̂�1 ¼ K̂p̂K̂�1 ðC:15Þ

¼ K̂ð�i�hrÞK̂�1 ðC:16Þ
¼ i�hr ¼ �p̂ ðC:17Þ

As a result, the orbital agular momentum operator satisfies the relation

T̂L̂T̂�1 ¼ T̂ðr̂ � p̂ÞT̂�1 ðC:18Þ
¼ �ðr̂ � p̂Þ ¼ �L̂ ðC:19Þ

Next, let us address the case of half-spin particles. One has

Ŝ ¼ Ŝx 	 iþ Ŝy 	 jþ Ŝz 	 k ðC:20Þ
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where

Ŝi ¼
1

2
�hsi ðC:21Þ

with the matrices si ði ¼ x; y; zÞ being the Pauli matrices

sx ¼
0 1

1 0

� �
sy ¼

0 �i

i 0

� �
sz ¼

1 0

0 �1

� �
ðC:22Þ

If we now choose the unitary operator to be real, then it may assume the form

Û ¼ isy ðC:23Þ

By applying Eq. (C.13) to the spin operators Ŝi and using Eq. (C.22), one then

gets after some matrix multiplications

ÛyŜxÛ ¼ �Ŝx ÛyŜyÛ ¼ Ŝy ÛyŜzÛ ¼ �Ŝz ðC:24Þ

We are now ready to prove that

T̂ ŜT̂�1 ¼ �Ŝ ðC:25Þ

since we have

T̂ ŜxT̂�1 ¼ isyK̂ŜxK̂s�1
y i�1 ðC:26Þ

¼ syK̂ŜxK̂sy ðC:27Þ
¼ �syK̂Ŝxsy ðC:28Þ

¼ � 1

2
�hsyK̂

0 1

1 0

� �
0 �i

i 0

� �
ðC:29Þ

¼ � 1

2
�hsyK̂

i 0

0 �i

� �
ðC:30Þ

¼ � 1

2
�hsy

�i 0

0 i

� �
ðC:31Þ

¼ � 1

2
�h

0 �i

i 0

� � �i 0

0 i

� �
ðC:32Þ

¼ � 1

2
�h

0 1

1 0

� �
ðC:33Þ

¼ �Ŝx ðC:34Þ
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and, similarly,

T̂ ŜyT̂�1 ¼ �Ŝy T̂ ŜzT̂
�1 ¼ �Ŝz ðC:35Þ

Clearly, the above equations and Eq. (C.20) prove Eq. (C.25).

Finally, we demonstrate that

T̂2 ¼ ð�1̂Þ2S ðC:36Þ

From Eqs. (C.8) and (C.23), we have for S ¼ 1
2

T̂2
1=2 ¼ ðisyK̂Þ2 ¼ �s2

y ¼ �1̂ ðC:37Þ

where 1̂ is the unit operator in a 2� 2 vector space. Note that, for spinless

particles, we have chosen Û to be the unit operator in a 1� 1 vector space (and

hence T̂0 ¼ K̂), which leads to

T̂2
0 ¼ K̂2 ¼ 1̂ ðC:38Þ

and hence proves Eq. (C.36).

The above discussion is now generalized to arbitrary spin values. First, we

note that twice application of the time-reversal operator leads the system back to

its original state c, that is, T̂2c ¼ cc. Thus, we have T̂2 ¼ c1̂. Next, consider

the following two relations

hT̂fjT̂2ci ¼ ðhfjT̂yÞðT̂2jciÞ ¼ hfjðT̂yT̂2jcÞ
� �?¼ hfjT̂ci

� �?¼ hT̂cjfi ðC:39Þ
hT̂fjT̂2ci ¼ chT̂fjci ðC:40Þ

Thus, we have

hT̂cjfi ¼ chT̂fjci ðC:41Þ

Similarly, we can show that

hT̂cjT̂2fi ¼ hT̂fjci ðC:42Þ
hT̂fjci ¼ chT̂cjfi ðC:43Þ

from Eqs. (C.41) and (C.43) we can obtain

hT̂cjfi ¼ c2hT̂cjfi ðC:44Þ

and hence

c2 ¼ 1 ðC:45Þ
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which proves that T̂2 ¼ �1̂. Now, by substituting Eq. (C.8) in T̂ r̂T̂�1, T̂ p̂T̂�1,

and T̂ ŜT̂�1, we may show that Û satisfies equations similar to Eqs. (C.24) and

(C.25).

As a first application, consider the case of a single particle with spin quantum

number S. The spin functions will then transform according to the IRREPs

DðSÞðaÞ of the 3D rotational group SOð3Þ, where a is the rotational vector,

written in the operator form as [36]

D̂ðSÞðaÞ ¼ exp � i

�h
Ŝ 	 a

� �
ðC:46Þ

The spin operator Ŝ is an irreducible tensor of rank one with the following

transformational properties

D̂ðSÞðaÞŜD̂ðSÞðaÞ�1 ¼ ĝðaÞŜ ðC:47Þ

where ĝðaÞ is an operator of SOð3Þ. Let us then take ĝðaÞ to be a rotation by p
around the y axis. Thus, from Eqs. (C.46) and (C.47), one gets

exp � i

�h
Ŝy

� �
Ŝx exp

i

�h
Ŝy

� �
¼ �Ŝx ðC:48Þ

exp � i

�h
Ŝy

� �
Ŝy exp

i

�h
Ŝy

� �
¼ Ŝy ðC:49Þ

exp � i

�h
Ŝy

� �
Ŝz exp

i

�h
Ŝy

� �
¼ �Ŝz ðC:50Þ

Comparing Eqs. (C.48)–(C.50) with Eq. (C.24), one obtains

Û ¼ exp � i

�h
pŜy

� �
ðC:51Þ

Since ŜT
y ¼ �Ŝy, we then have

Ûy ¼ exp � i

�h
pŜT

y

� �
ðC:52Þ

¼ exp
i

�h
p Ŝy

� �
ðC:53Þ

¼ exp � i

�h
2pŜT

y

� �
exp � i

�h
pŜy

� �
ðC:54Þ

¼ D̂ðSÞð2pjÞÛ ðC:55Þ
¼ ð�1Þ2S

Û ðC:56Þ
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where 2pj indicates a 2p rotation about the y axis. Thus, we have

T̂ ¼ exp � i

�h
pŜy

� �
K̂ ðC:57Þ

and finally, by comparing with Eq. (C.51), one gets

T̂2 ¼ ð�1̂Þ2S ðC:58Þ

Finally, for a system of n identical particles, the result is

Û ¼ exp � i

�h
pŜy;1

� �
exp � i

�h
pŜy;2

� �
	 	 	 exp � i

�h
pŜy;n

� �
ðC:59Þ

and hence

T̂2 ¼ ð�1̂Þ
Pn

i¼1
2Si ¼ ð�1̂Þ2S ðC:60Þ

APPENDIX D: DEGENERATE AND NEAR-DEGENERATE
VIBRATIONAL LEVELS

Here, we discuss the motion of a system of three identical nuclei in the vicinity

of the D3h configuration. The conventional coordinates for the in-plane motion

are employed, as shown in Figure 5. The normal coordinates ðQx;Qy;QzÞ, the

plane polar coordinates ðr ;j; zÞ, and the Cartesian displacement coordinates

ðxi; yi; ziÞ of the three nuclei ði ¼ 1; 2; 3Þ are related by [20,94]

Qx ¼ r cosj ¼ 1ffiffiffi
3

p �x1 þ
1

2
x2 þ

ffiffiffi
3

p

2
y2

� �
þ 1

2
x3 �

ffiffiffi
3

p

2
y3

� �� �
ðD:1Þ

Qy ¼ r sinj ¼ 1ffiffiffi
3

p y1 þ
ffiffiffi
3

p

2
x2 �

1

2
y2

� �
þ �

ffiffiffi
3

p

2
x3 �

1

2
y3

� �� �
ðD:2Þ

Qz ¼ z ¼ 1ffiffiffi
3

p �x1 þ
1

2
x2 �

ffiffiffi
3

p

2
y2

� �
þ 1

2
x3 þ

ffiffiffi
3

p

2
y3

� �� �
ðD:3Þ

where the coordinates ðQx;QyÞ are the doubly degenerate modes belonging to

the E0 IRREP in D3h, and Qz belongs to the A01 one. Note that Qx is symmetric

with respect to the xz plane, while Qy is antisymmetric.

The coordinates of interest to us in the following discussion are Qx and Qy,

which describe the distortion of the molecular triangle from D3h symmetry. In

the harmonic-oscillator approximation, the factor in the vibrational wave
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function due to the two degenerate modes is then (except for a normalization

constant and dependence on Qz) given by

w v1; v2a; v2bð Þ ’ Hv2a

ffiffiffiffiffi
a2

p
Qxð ÞHv2b

ffiffiffiffiffi
a2

p
Qy

� �
exp½�a2ðQ2

x þ Q2
yÞ=2� ðD:4Þ

where Hv2a
and Hv2b

are Hermite polynomials of order v2a and v2b, respectively;

v2a and v2b are the vibrational quantum numbers, and a2 ¼ 2pn2=�h, with n2

being the frequency of the degenerate mode.

Let us then consider the case where the degenerate mode is doubly excited.

In this case, v2 ¼ v2a þ v2b ¼ 2 and the corresponding vibrational energy level

will be triply degenerate with the associated wave functions being given by

w1 ¼ wðv1; 2; 0Þ " 4a2Q2
x � 2 ðD:5Þ

w2 ¼ wðv1; 1; 1Þ " 4a2QxQy ðD:6Þ

w3 ¼ wðv1; 0; 2Þ " 4a2Q2
y � 2 ðD:7Þ

Note that only the polynomial factors have been given, since the exponential

parts are identical for all wave functions. Of course, any linear combination of

the wave functions in Eqs. (D.5)–(D.7) will still be an eigenfunction of the

vibrational Hamiltonian, and hence a possible state. There are three such

linearly independent combinations which assume special importance, namely,

w01 ¼ w1 � w3 þ 2iw2 " 4a2ðQ2
x � Q2

y þ 2iQxQyÞ ðD:8Þ

w02 ¼ w1 þ w3 " 4a2ðQ2
x þ Q2

yÞ � 4 ðD:9Þ

w03 ¼ w1 � w3 � 2iw2 " 4a2ðQ2
x � Q2

y � 2iQxQyÞ ðD:10Þ

By using the plane polar coordinates defined in Eq. (D.1), one obtains

w01 ’ 4a2r2expð�a2r2=2Þexpð2ijÞ ðD:11Þ

w02 ’ 4ða2r2 � 1Þexpð�a2r2=2Þ ðD:12Þ

w03 ’ 4a2r2expð�a2r2=2Þexpð�2ijÞ ðD:13Þ

These new wave functions are eigenfunctions of the z component of the angular

momentum p̂z ¼ �i�h q
qj with eigenvalues mv2

¼ þ2; 0;�2 in units of �h. Thus,

Eqs. (D.11)–(D.13) represent states in which the vibrational angular momentum

of the nuclei about the molecular axis has a definite value. When treating the

vibrations as harmonic, there is no reason to prefer them to any other linear

combinations that can be obtained from the original basis functions in
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Eqs. (D.5)–(D.7). However, when perturbations occur due to anharmonicity,

the wave functions in Eqs. (D.11)–(D.13) will provide the correct zeroth-

order ones. The quantum numbers v2a and v2b are therefore not physically

significant, while v2 and mv2
or v2 and l2 ¼ jmv2

j are. It should also be pointed

out that the degeneracy in the vibrational levels will be split due to anhar-

monicity [28].

Now, consider the general case of a v2 multiply excited degenerate

vibrational level where v2 > 2, which is dealt with by solving the Schrödinger

equation for the isotropic 2D harmonic oscillator with the Hamiltonian

assuming the form [95]

Ĥv ¼
�h
ffiffiffi
l

p

2
� q2

qq2
x

� q2

qq2
y

þ q2
x þ q2

y

 !
ðD:14Þ

where we have used the dimensionless normal coordinates qi ¼
ffiffiffiffiffi
a2

p
Qi

ði ¼ x; yÞ, with a2 ¼ 2pn2=�h ¼
ffiffiffi
l

p
=�h. The transformation of such a Hamil-

tonian into polar coordinates leads to

Ĥv ¼ � �h
ffiffiffi
l

p

2

q2

qr2
þ 1

r
q
qr

þ 1

r2

q2

qj2
� r2

� �
ðD:15Þ

Separation of variables can then be achieved by using

wv ¼ RðrÞ�ðjÞ ðD:16Þ

where

RðrÞ ¼ FðrÞexpð�r2=2Þ ðD:17Þ

and

FðrÞ ¼ r s
X1
n¼ 0

anrn ðD:18Þ

Assuming now that the power series expansion in FðrÞ can be terminated to

keep RðrÞ well behaved at large r values, it may be shown [95] that

�ðjÞ ¼ ð2pÞ�1=2
expðimv2

jÞ mv2
¼ �v2;�ðv2 � 2Þ; . . . ;�1 or 0 ðD:19Þ

RðrÞ ¼ Nv2l2r
l2 Ll2

n ðr2Þexpð�r2=2Þ l2¼jmv2
j n¼ðv2 þ l2Þ=2 ðD:20Þ
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where Ll2
n ðr2Þ are the associated Laguerre polynomials of order n, and the

normalization factor assumes the form

Nv2l2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ðv2 � l2Þ=2�!
f½ðv2 þ l2Þ=2�!g3

s
ðD:21Þ

Let us now examine the case of a 3D harmonic oscillator possessing three

degenerate normal coordinates ðQ1;Q2;Q3Þ, with the degenerate mode being v

multiply excited; v ¼ v1 þ v2 þ v3. There are then ðvþ 1Þðvþ 2Þ=2 degenerate

vibrational wave functions and energy levels for each value of v, corresponding

to the possible different combinations of v1, v2, and v3. It is now convenient to

define the polar coordinates ðr ; y;jÞ by the corresponding dimensionless

normal coordinates ðq1; q2; q3Þ according to

q1 ¼ r siny cosj

q2 ¼ r sinysinj

q3 ¼ r cosy

ðD:22Þ

In such coordinates, the Hamiltonian assumes the form [95]

Ĥv ¼
�h
ffiffiffi
l

p

2
� q2

qq2
1

� q2

qq2
2

� q2

qq2
3

þ q2
1 þ q2

2 þ q2
3

� �
ðD:23Þ

Transformation of the Hamiltonian into polar coordinates then leads to

Ĥv ¼ � �h
ffiffiffi
l

p

2

1

r2

q
qr

r2 q
qr

� �
þ 1

r2

1

siny
q
qy

siny
q
qy

� �
þ 1

r2

1

sin2 y

q2

qj2
� r2

� �
ðD:24Þ

while the vibrational wave equation assumes the form

1

r2

q
qr

r2 q
qr

� �
þ 1

r2

1

siny
q
qy

siny
q
qy

� �
þ 1

r2

1

sin2y
q2

qj2
þ 2E

�h
ffiffiffi
l

p � r2

� �� �
wv ¼ 0

ðD:25Þ

Separation of variables may now be obtained by using

wv ¼ RðrÞ�ðyÞ�ðjÞ ðD:26Þ
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which upon insertion into Eq. (D.25) leads to

d2

d2j
þ m2

� �
� ¼ 0 ðD:27Þ

1

siny
d

dy
siny

d

dy

� �
þ lðlþ 1Þ � m2

sin2y

� �� �
� ¼ 0 ðD:28Þ

1

r2

d

dr
r2 d

dr

� �
þ 2E

�h
ffiffiffi
l

p � r2 � lðlþ 1Þ
r2

� �� �
R ¼ 0 ðD:29Þ

These have as solutions

�ðjÞ ¼ ð2pÞ�1=2
expðimjÞ ðD:30Þ

�ðyÞ ¼ NljmjP
jmj
l ðcos yÞ ðD:31Þ

RðrÞ ¼ Nvlr lLlþ1=2
t ðr2Þexpð�r2=2Þ ðD:32Þ

where

l ¼ v; v� 2; v� 4; . . . ; 1 or 0 ðD:33Þ
m ¼ 0;�1;�2; . . . ;� l ðD:34Þ
t ¼ ðvþ lþ 1Þ=2 ðD:35Þ

The functions P
jmj
l are associated Legendre polynomials of order jmj and degree

l, and L
lþ1=2
t ðr2Þ are associated Laguerre polynomials of degree ðv� 1Þ=2 in

r2. In turn, the normalization factors are found to be

Nljmj ¼
ð�1Þl

2ll!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

2

ðl� jmjÞ!
ðlþ jmjÞ!

s
ðD:36Þ

Nvl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½ðv� 1Þ=2�!
f½ðvþ lþ 1Þ=2�!g3

s
ðD:37Þ

In the configuration space spanned by ðq1; q2; q3Þ, we may then define the

vibrational angular momentum p through its classical components, that is,

p1 ¼ q2p3 � q3p2 and its ð123Þ cyclic permutations ðD:38Þ

where pi are the conjugate momenta associated to qi ði ¼ 1; 2; 3Þ. The operators

associated with p2 ¼ p2
1 þ p2

2 þ p2
3 and its projection pz (denoted M3 in [95])
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along the z axis assume in polar coordinates the form

p̂2 ¼ ��h2 q2

qy2
þ cosy

siny
q
qy
þ 1

sin2 y
q2

qj2

� �
ðD:39Þ

p̂z ¼ �i�h
q
qj

ðD:40Þ

As for the 2D case, it can be shown that wv in Eq. (D.26) are eigenfunctions of

both p̂2 and p̂z defined by

M̂2wv ¼ lðlþ 1Þ�h2wv ðD:41Þ
M̂zwv ¼ m�hwv ðD:42Þ

Thus, l and m quantize the vibrational angular momentum and its z component.

So far, we have considered interactions that are degenerate at the harmonic-

oscillator level of approximation. For two levels that are nearly degenerate by

accident in such an approximation, large perturbations may arise due to

anharmonicity that are known as Fermi resonances. It should be noted that

Fermi resonances occur only between states of the same symmetry. Thus, they

cannot occur between two levels with different values of the vibrational angular

momentum quantum number l. As usual, Fermi resonances increase the energy

of the upper level while decreasing that of the lower one (in common language,

they repel each other). Thus, the spectrum of a specific symmetry tends to be

more irregular in the presence of Fermi resonances.

APPENDIX E: ADIABATIC STATES IN THE VICINITY OF A
CONICAL INTERSECTION

I. JAHN–TELLER THEOREM

Following Moffitt and Liehr [73], in this appendix we give a proof of the Jahn–

Teller theorem for X3 molecules pertaining to the D3h point group. Let c1 and

c2 be the two electronic eigenfunctions that belong to the degenerate electronic

states of E0 symmetry (denoted eE0). The two degenerate normal coordinates are

Qx and Qy, the former being symmetric and the latter antisymmetric with

respect to the xz plane (see Appendix D). Defining complex normal coordinates

and electronic eigenfunctions as

Qþ ¼ Qx þ iQy ¼ rexpðijÞ ðE:1Þ

Q� ¼ Qx � iQy ¼ rexpð�ijÞ ðE:2Þ
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and

cþ ¼ c1 þ ic2 ðE:3Þ
c� ¼ c1 � ic2 ðE:4Þ

the electronic energy of the system is in degenerate-state perturbation theory

obtained by solving the secular equation

Hþþ �W Hþ�
H�þ H�� �W

����
���� ¼ 0 ðE:5Þ

where the matrix elements are given by

Hþþ ¼ hcþjĤejcþi H�� ¼ hc�jĤejc�i ðE:6Þ

Hþ� ¼ hcþjĤejc�i H�þ ¼ hc�jĤejcþi ðE:7Þ

and the integrations are defined with respect to all the electronic coordinates.

Then, by developing Ĥe in a power series expansion of the normal coordinates,

one gets

Ĥe ¼ ĥ0 þ ĥþ1 Q� þ ĥ�1 Qþ þ ĥþ2 Q2
� þ ĥ�2 Q2

þ þ 	 	 	 ðE:8Þ

where we have considered only the dependence on the degenerate complex

normal coordinates Qþ and Q�. Substitution of Eq. (E.8) in Eqs. (E.6) and (E.7)

gives

Hþþ ¼ hcþjĥ0jcþi þ hcþjĥþ1 jcþiQ� þ hcþjĥ�1 jcþiQþ

þ hcþjĥþ2 jcþiQ2
� þ hcþjĥ�2 jcþiQ2

þ þ 	 	 	 ðE:9Þ

Hþ� ¼ hcþjĥ0jc�i þ hcþjĥþ1 jc�iQ� þ hcþjĥ�1 jc�iQþ

þ hcþjĥþ2 jc�iQ2
� þ hcþjĥ�2 jc�iQ2

þ þ 	 	 	 ðE:10Þ

with similarly expressions for H�� and H�þ.

For a Ĉ3 rotation, Qþ, cþ, and c?
� are multiplied by o ¼ expð2pi=3Þ while

Q�, c�, and c?
þ are multiplied by o� ¼ expð�2pi=3Þ. Since the Hamiltonian

must be totally symmetric, it follows that ĥþ1 , ĥ�1 , ĥþ2 , and ĥ�2 are multiplied by

o, o�, o2, and o�2, respectively. The integrals in Eqs. (E.9) and (E.10) will then

be different from zero only if the integrands are invariant under all symmetry

operations allowed by the symmetry point group, in particular under Ĉ3. It is

readily seen that the linear terms in Qþ and Q� vanish in Hþþ and H��. In turn,
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the first term in Hþ� and H�þ vanishes while one of the linear terms (Qþ for

Hþ�, and Q� for H�þ) does not vanish. Thus, neglecting quadratic (and higher

order) terms, one obtains

Hþþ ¼ H�� ¼ W0 Hþ� ¼ cQþ H�þ ¼ cQ� ðE:11Þ

Substitution of Eq. (E.11) into Eq. (E.5), leads to

W� ¼ W0 � c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
QþQ�

p
¼ W0 � cr ðE:12Þ

Clearly, Eq. (E.12) shows that to a first approximation the electronic energy

varies linearly with displacements in r , increasing for one component state

while decreasing for the other. Thus, the potential minimum cannot be at r ¼ 0.

This is the statement of the Jahn–Teller theorem for a X3 molecule belonging to

the D3h point group.

II. INVARIANT OPERATORS

We follow Thompson and Mead [13] to discuss the behavior of the electronic

Hamiltonian, potential energy, and derivative coupling between adiabatic states

in the vicinity of the D3h conical intersection. Let Â be an operator that

transforms only the nuclear coordinates, and Â be one that acts on the electronic

degrees of freedom alone. Clearly, the electronic Hamiltonian satisfies

ðÂĤeÞÂc ¼ ÂĤec ðE:13Þ

since, if c is an eigenfunction of Ĥe, Eq. (E.13) just expresses the fact that Âc is

an eigenfunction of the transformed Hamiltonian with the same eigenvalue (for

an arbitrary c, it also follows upon its expansion in eigenfunctions of Ĥe). Thus,

ðÂĤeÞÂ ¼ ÂĤe ðE:14Þ

If Eq. (E.14) is satisfied for all elements of some point group G, Â will be an

invariant operator [13] (the Hermitian conjugate as well as the sum and/or

product of two invariant operators are also invariant operators). Such an

operator can be expanded in the form

Ĥe ¼
X
�gs

ĥ�gsQ�gs ðE:15Þ

where Q�gs is a nuclear coordinate transforming as the g th component of the �
IRREP of G, the index s refers to different occurrences of the same IRREP, and
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ĥ�gs is an electronic operator that is independent of the nuclear coordinates. The

requirement of Eq. (E.14) thus becomes

X
�gg0s

ĥ�gsD
�
gg0 ðAÞQ�g0s

h i
Â ¼ Â

X
�g0s

ĥ�g0sQ�g0s ðE:16Þ

This holds independently of the values of the coordinates, and hence term by

term for each Q�gs. One has,X
g

ĥ�gsD
�
gg0 ðAÞÂ ¼ Âĥ�g0s ðE:17Þ

or, equivalently,

Âĥ�g0sÂ
�1 ¼

X
g

ĥ�gsD
�
gg0 ðAÞ ðE:18Þ

Thus, the operators ĥ�g0s transform under Â 	 	 	 Â�1 according to the � IRREP

of G.

Now, consider the subgroup C3v of D3h (since no out-of-plane bending is

possible for a triatomic system, and hence the subgroup C3v may be used for the

discussion). Then, Eq. (E.15) contains only four symmetry types of electronic

operators: ĥA1
, ĥA2

, ĥx, and ĥy. The direct product decompositions for C3v may

then be shown (see Table 57 of [28]) to assume the form

uA1
vA1

/ A1 uA1
vA2

/ A2 uA1
vx / x uA1

vy / y ðE:19Þ
uA2

vA2
/ A1 uA2

vx / y uA2
vy / �x ðE:20Þ

uxvx þ uyvy / A1 uxvy � uyvx / A2 ðE:21Þ
�uxvx þ uyvy / x uxvy þ uyvx / y ðE:22Þ

where the symbol / means transforms under C3v as, and vx and vy are arbitrary

functions with the transformation properties of the corresponding subscripts

(similarly for A1 and A2). For example, for hEjĥA2
jEi, one has

hxjĥA2
jyi ¼ hxjuA2

vyi ¼ �1 ðE:23Þ
hxjĥA2

jxi ¼ hxjuA2
vxi ¼ 0 ðE:24Þ

and so on. Similarly, for hEjĥxjEi, one gets

hxjĥxjyi ¼ hxjuxvyi ¼ 0 ðE:25Þ
hxjĥxjxi ¼ hxjuxvxi ¼ �1 ðE:26Þ
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Thus, the nonzero submatrices are

hA1jĥA1
jA1i ¼ 1 hA2jĥA1

jA2i ¼ 1 ðE:27Þ

hEjĥA1
jEi ¼

�
1 0

0 1

�
ðE:28Þ

hA1jĥA2
jA2i ¼ 1 hA2jĥA2

jA1i ¼ 1 ðE:29Þ

hEjĥA2
jEi ¼

�
0 �1

1 0

�
ðE:30Þ

hA1jĥxjEi ¼ ð 1 0 Þ hA1jĥyjEi ¼ 0 1ð Þ ðE:31Þ
hA2jĥxjEi ¼ ð 0 1 Þ hA2jĥyjEi ¼ �1 0ð Þ ðE:32Þ

hEjĥxjA1i ¼
�

1

0

�
hEjĥyjA1i ¼

�
0

1

�
ðE:33Þ

hEjĥxjA2i ¼
�

0

1

�
hEjĥyjA2i ¼

��1

0

�
ðE:34Þ

hEjĥxjEi ¼
��1 0

0 1

�
hEjĥyjEi ¼

�
0 1

1 0

�
ðE:35Þ

III. FUNCTIONAL FORM OF THE ENERGY

Since the potential matrix W is invariant and restricted to E space, it has the

form

W ¼ WA1

1 0

0 1

� �
þWA2

0 �1

1 0

� �
þWx

�1 0

0 1

� �
þWy

0 1

1 0

� �
ðE:36Þ

where WA1
, and so on, are functions of the nuclear coordinates transforming

under C3v as indicated by their subscripts. On the other hand W must be

Hermitian, and in our case can be real, from which it follows that WA2
¼ 0. The

energies that reduce to the degenerate pair at the reference configuration are

then just the eigenvalues of W:

W� ¼ WA1
�WR ðE:37Þ

where

WR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

x þW2
y

q
ðE:38Þ

permutational symmetry and the role of nuclear spin 737



To all orders, the general form for functions with transformation properties

uA1
, and so on, may be shown [13] to be

uA1
¼ f1 z; r2; r3cosð3jÞ

� �
ðE:39Þ

uA2
¼ r3sinð3jÞ f2 z; r2; r3ðcos3jÞ

� �
ðE:40Þ

ux ¼ rcosj f3 z; r2; r3cosð3jÞ
� �

þ r2cosð2jÞ f4 z; r2; r3cosð3jÞ
� �

ðE:41Þ
uy ¼ rsinj f3 z; r2; r3cosð3jÞ

� �
� r2sinð2jÞ f4 z; r2; r3cosð3jÞ

� �
ðE:42Þ

where fi ði ¼ 1; 2; 3; 4Þ are functions formally representable as a double power

series in their arguments other than z, with the coefficients being constant or

functions of z. From Eq. (E.37)–(E.42), one then obtains

WA1
¼ WA1

z; r2; r3cosð3jÞ
� �

ðE:43Þ
WR ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ r2g2 þ 2r fg cosð3j

p
Þ ðE:44Þ

! rw z; r2; r cosð3jÞ
� �

ðr ! 0Þ ðE:45Þ

where f ¼ f ðz; r2; r3 cosð3jÞÞ, g ¼ gðz; r2; r3 cosð3jÞÞ, and w are formally

analytic functions of their arguments. These equations define the correct

behavior of the potential energy in the vicinity of the conical intersection, and

hence may be valuable in delineating fitting forms, as it was the case for the H3

DMBE potential energy surface [82].
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78. J.-P. Wolf, G. Delacrétaz, and L. Wöste, Phys. Rev. Lett. 63, 1946 (1989).

79. H. A. Jahn, Proc. R. Soc. London Ser. A 164, 117 (1938).

80. A. J. C. Varandas and V. M. F. Morais, Mol. Phys. 47, 1241 (1982).

81. R. Abrol, A. Shaw, A. Kuppermann, and D. R. Yarkony, J. Chem. Phys. 115, 4640 (2001).

82. A. J. C. Varandas, F. B. Brown, C. A. Mead, D. G. Truhlar, and N. C. Blais, J. Chem. Phys. 86,

6258 (1987).

83. A. Kuppermann and Y.-S. M. Wu, Chem. Phys. Lett. 205, 577 (1993).

84. A. Kuppermann, Chem. Phys. Lett. 32, 374 (1975).

85. M. Baer, Chem. Phys. Lett. 35, 112 (1975).

86. M. Baer, Mol. Phys. 40, 1011 (1980).

87. A. J. C. Varandas, J. Chem. Phys. 107, 867 (1997).

740 a. j. c. varandas and z. r. xu



88. A. J. C. Varandas, A. I. Voronin, and P. J. S. B. Caridade, J. Chem. Phys. 108, 7623 (1998).

89. R. K. Preston and J. C. Tully, J. Chem. Phys. 54, 4297 (1971).

90. D. Grimbert, B. Lassier-Govers, and V. Sidis, Chem. Phys. 124, 187 (1988).

91. F. Gianturco, A. Palma, and F. Schnider, Chem. Phys. 137, 177 (1989).

92. B. K. Kendrick, C. A. Mead, and D. G. Truhlar, J. Chem. Phys. 110, 7594 (1999).

93. E. P. Wigner, J. Math. Phys. 1, 409 (1960).

94. R. N. Porter, R. M. Stevens, and M. Karplus, J. Chem. Phys. 49, 5163 (1968).

95. S. Califano, Vibrational States, John Wiley & Sons, Inc., London, 1976.

permutational symmetry and the role of nuclear spin 741



THE ELECTRONIC NON-ADIABATIC COUPLING

TERM IN MOLECULAR SYSTEMS:

A THEORETICAL APPROACH

MICHAEL BAER

Applied Physics Division, Soreq NRC, Yavne, Israel

CONTENTS

I. Introduction

II. The Born–Oppenheimer–Huang Treatment

A. The Born–Oppenheimer Equations for a Complete Hilbert Space

B. The Born–Oppenheimer–Huang Equation for a (Finite) Sub-Hilbert Space

III. The Adiabatic-to-Diabatic Transformation

A. The Derivation of the Adiabatic-to-Diabatic Transformation Matrix

B. The Necessary Condition for Having a Solution for the

Adiabatic-to-Diabatic Transformation Matrix

IV. The Adiabatic-to-Diabatic Transformation Matrix and the Line Integral Approach

A. The Necessary Conditions for Obtaining Single-Valued Diabatic Potentials

and the Introduction of the Topological Matrix

B. The Quasidiabatic Framework

1. The Adiabatic-to-Diabatic Transformation Matrix and the Diabatic Potentials

2. The Curl Condition

V. The Quantization of the Non-Adiabatic Coupling Matrix

A. The Quantization as Applied to Model Systems

1. The Two-State Case

2. The Three-State Case

3. The Four-State Case

4. Comments Concerning Extensions

B. The Treatment of the General Case

VI. The Construction of Sub-Hilbert Spaces and Sub-Sub-Hilbert Spaces

A. The Construction of Sub-Hilbert Spaces

B. The Construction of Sub-Sub-Hilbert Spaces

The Role of Degenerate States in Chemistry: Advances in Chemical Physics, Volume 124.
Edited by Michael Baer and Gert Due Billing. Series Editors I. Prigogine and Stuart A. Rice.

Copyright # 2002 John Wiley & Sons, Inc.
ISBNs: 0-471-43817-0 (Hardback); 0-471-43346-2 (Electronic)

39



VII. The Topological Spin

VIII. An Analytical Derivation for the Possible Sign Flips in a Three-State System

IX. The Geometrical Interpretation for Sign Flips

X. The Multidegenerate Case

XI. The Necessary Conditions for a Rigorous Minimal Diabatic Potential Matrix

A. Introductory Comments

B. The Noninteracting Conical Intersections

XII. The Adiabatic-to-Diabatic Transformation Matrix and the Wigner Rotation Matrix

A. Wigner Rotation Matrices

B. The Adiabatic-to-Diabatic Transformation Matrix and the Wigner d j Matrix

XIII. Curl Condition Revisited: Introduction of the Yang–Mills Field

A. The Non-Adiabatic Coupling Term as a Vector Potential

B. The Pseudomagnetic Field and the Curl Equation

C. Conclusions

XIV. A Theoretic-Numeric Approach to Calculate the Electronic

Non-Adiabatic Coupling Terms

A. The Treatment of the Two-State System in a Plane

1. The Solution for a Single Conical Intersection

2. The Solution for a Distribution of Conical Intersections

B. The Treatment of the Three-State System in a Plane

XV. Studies of Specific Systems

A. The Study of Real Two-State Molecular Systems

1. The H3-System and Its Isotopic Analogues

2. The C2H-Molecule: The Study of the (1,2) and the (2,3) Conical Intersections

B. The Study of a Real Three-State Molecular System: Strongly Coupled (2,3)

and (3,4) Conical Intersections

XVI. Summary and Conclusions

Appendix A: The Jahn–Teller Model and the Longuet–Higgins Phase

Appendix B: The Sufficient Conditions for Having an Analytic Adiabatic-to-Diabatic

Transformation Matrix

I. Orthogonality

II. Analyticity

Appendix C: On the Single/Multivaluedness of the Adiabatic-to-Diabatic

Transformation Matrix

Appendix D: The Diabatic Representation

Appendix E: A Numerical Study of a Three-State Model

Appendix F: The Treatment of a Conical Intersection Removed from the

Origin of Coordinates

Acknowledgments

References

I. INTRODUCTION

Electronic non-adiabatic effects are an outcome of the Born–Oppenheimer–

Huang treatment and as such are a result of the distinction between the fast

moving electrons and the slow moving nuclei [1,2]. The non-adiabatic coupling

terms, together with the adiabatic potential energy surfaces (which are also an

outcome of this treatment) form the origin for the driving forces that govern the
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motion of the atoms in the molecular system. Still they differ from the potential

energy surfaces because they are, as we shall show, derivative coupling and as such

they are vectors, in contrast to adiabatic potential energy surfaces, which are scalars.

The ordinary way to get acquainted with objects like the non-adiabatic

coupling terms is to derive them from first principles, via ab initio calculations

[4–6], and study their spatial structure—somewhat reminiscent of the way

potential energy surfaces are studied. However, this approach is not satisfactory

because the non-adiabatic coupling terms are frequently singular (in addition to

being vectors), and therefore theoretical means should be applied in order to

understand their role in molecular physics. During the last decade, we followed

both courses but our main interest was directed toward studying their physical–

mathematical features [7–13]. In this process, we revealed (1) the necessity to

form sub-Hilbert spaces [9,10] in the region of interest in configuration space

and (2) the fact that the non-adiabatic coupling matrix has to be quantized for

this sub-space [7–10].

In the late 1950s and the beginning of the 1960s Longuet-Higgins and

colleagues [14–17] discovered one of the more interesting features in molecular

physics related to the Born–Oppenheimer–Huang electronic adiabatic eigen-

functions (which are parametrically dependent on the nuclear coordinates).

They found that these functions, when surrounding a point of degeneracy in

configuration space, may acquire a phase that leads to a flip of sign of these

functions. Later, this feature was explicitly demonstrated by Herzberg and

Longuet-Higgins [16] for the Jahn–Teller conical intersection model [18–29]

(see also Appendix A). This interesting observation implies that if a molecular

system possesses a conical intersection at a point in configuration space the

relevant electronic eigenfunctions that are parametrically dependent on the

nuclear coordinates, are multivalued (this finding was later confirmed for a real

case following ab initio calculations [30]). No hints were given to the fact that

this phenomenon is associated with the electronic non-adiabatic coupling terms.

In this chapter, we not only discuss this connection but also extend the two-state

case to the multistate cases.

In molecular physics, one distinguishes between (1) the adiabatic framework

that is characterized by the adiabatic surfaces and the above-mentioned non-

adiabatic coupling terms [31–46] and (2) the diabatic framework that is chara-

cterized by the smoothly behaving potential couplings (and the nonexistence of

non-adiabatic couplings) [31–53]. The adiabatic framework is in most cases

inconvenient for treating the nuclear Schrödinger equation because of two

reasons. (1) The non-adiabatic coupling terms are usually spiky [3,54] and

frequently singular [3,36,55,56] so that any numerical recipe for solving

this equation becomes unstable. (2) The singular feature of the non-adiabatic

coupling terms dictates certain boundary conditions that may not be easily

implemented for deriving the solution within this framework [56]. Therefore,
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transforming to the diabatic framework, to be termed diabatization, is ess-

entially enforced when treating the multistate problem as created by the Born–

Oppenheimer–Huang approach.

The diabatization can be carried out in various ways—and we discuss some

of them here—but the way recommended in the present composition is based

on the following two-step process: (1) Forming the Schrödinger equation within

the adiabatic framework (which also includes the non-adiabatic coupling terms)

and (2) employing a unitary transformation that eliminates these terms from the

adiabatic Schrödinger equation and replacing them with the relevant potential

coupling terms [34–36,57]. This two-step process creates, as will be shown, an

opportunity to study the features of the non-adiabatic coupling terms and the

results of this study constitute the main subject of this chapter.

The theoretical foundations for this study were laid in a 1975 publication

[34] in which this transformation matrix, hence to be termed the adiabatic-to-

diabatic transformation matrix, was shown to be a solution of an integral

equation defined along a given contour. In what follows, this equation will be

termed as a line integral. The line integral reduces, for the two-state case, to an

ordinary integral over the corresponding non-adiabatic coupling term, and

yields the adiabatic-to-diabatic transformation angle [34–36]. In addition, the

sufficient conditions that guarantee the existence and the single-valuedness of

the integral-equation solution (along a contour in a given region in configuration

space) were derived. In this context, it was shown that these conditions, hence

termed the curl conditions, are fulfilled by the system of Born–Oppenheimer–Huang

eigenfunctions that span a full-Hilbert space [34], and sometimes, under certain

conditions, also span a sub-Hilbert space [8–10].

These two findings form a connection of the theory of the electronic non-

adiabatic coupling terms with the Yang–Mills isotopic gauge transformation

[58,59]. The existence of the curl conditions may lead to nonzero Yang–Mills

fields as will be proposed in Section XIV. Still, it is important to emphasize that

the curl condition as it emerges from our theory and the Yang–Mills field that is

a quantum mechanical extension of the classical electromagnetic theory are far

from being identical or of the same origin.

In 1992, Baer and Englman [55] suggested that Berry’s topological phase

[60–62], as derived for molecular systems, and likewise the Longuet-Higgins

phase [14–17], should be related to the adiabatic-to-diabatic transformation

angle as calculated for a two-state system [56] (see also [63]). Whereas the

Baer–Englman suggestion was based on a study of the Jahn–Teller conical

intersection model, it was later supported by other studies [11,12,64–75]. In

particular, it can be shown that these two angles are related by comparing the

‘‘extended’’ Born–Oppenheimer approximation, once expressed in terms of the

gradient of the Longuet-Higgins phase (see Appendix A) and once in terms of

the two-state non-adiabatic coupling term [75].
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Although the two angles seem to serve the same purpose, there is one

fundamental difference between the two: The Longuet-Higgins phase (or the

molecular Berry phase), when followed along a closed contour becomes, due to

an ansatz, a multiple of p. Contrary to this ansatz, the situation with respect to

the adiabatic-to-diabatic transformation angle is much more fundamental,

because of the close relationship between the non-adiabatic coupling terms and

the diabatic potentials. It was proved that the corresponding non-adiabatic

coupling matrix has to be ‘‘quantized’’ (see Section IV) in order to yield single-

valued diabatic potentials. This ‘‘quantized’’ non-adiabatic coupling matrix

yields, in the case of a two-state isolated system, an adiabatic-to-diabatic

transformation angle, with features as demanded by the Longuet-Higgins ansatz.

In other words, the adiabatic-to-diabatic transformation angle when calculated

along closed contours becomes, just like the Longuet-Higgins phase, a multiple

of p (or zero).

The next question asked is whether there are any indications, from ab initio

calculations, to the fact that the non-adiabatic transformation angles have this

feature. Indeed such a study, related to the H3 system, was reported a few years

ago [64]. However, it was done for circular contours with exceptionally small

radii (at most a few tenths of an atomic unit). Similar studies, for circular and

noncircular contours of much larger radii (sometimes up to five atomic units and

more) were done for several systems showing that this feature holds for much

more general situations [11,12,74]. As a result of the numerous numerical

studies on this subject [11,12,64–75] the quantization of a quasi-isolated

two-state non-adiabatic coupling term can be considered as established for

realistic systems.

Like the curl condition is reminiscent of the Yang–Mills field, the quanti-

zation just mentioned is reminiscent of a study by Wu and Yang [76] for the

quantization of Dirac’s magnetic monopole [77–78]. As will be shown,

the present quantization conditions just like the Wu and Yang conditions result

from a phase factor, namely, the exponential of a phase and not just from a

phase.

As mentioned above, the starting point in this field is the Born–

Oppenheimer–Huang treatment. However in the first derivations [34] it was

always assumed that the corresponding Born–Oppenheimer–Huang eigenfunc-

tions form a full-Hilbert space. Here, the derivation is repeated for a finite sub-

Hilbert space, which is defined by employing features of the non-adiabatic

coupling terms. It will be shown that this particular sub-space behaves,

for all practical purposes, as a full-Hilbert space [8–10]. These subjects are

treated in Sections II and III. The connection between the non-adiabatic

coupling matrix and the uniqueness of the relevant diabatic potential matrix is

presented in Section IV; the quantization of the non-adiabatic coupling matrix

is discussed in Section V and the conditions for breaking up the complete
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Hilbert space into sub-Hilbert spaces and sub-sub-Hilbert spaces are given in

Section VI. Three subjects related to topological effects are presented

in Sections VII–IX, and multidegeneracy at a point is further (briefly) discussed

in Section X. Section XI is devoted to a practical aspect of the theory, namely,

how and when one may/can diabatize an electronic adiabatic framework. An

interesting relationship between the adiabatic-to-diabatic transformation matrix

and Wigner’s rotation matrix is discussed in Section XII. Two ‘‘exotic’’

subjects—one related to pseudomagnetic fields in molecular systems and the

other related to the possibility of calculating the non-adiabatic coupling terms

from the curl equations—are presented in Sections XIII and XIV, respectively.

Throughout the review, we show results as derived from ab initio calculations.

However, more situations and examples are given in Section XV. A summary

and conclusions are presented in Section XVI.

II. THE BORN–OPPENHEIMER–HUANG TREATMENT

A. The Born–Oppenheimer Equations for a Complete Hilbert Space

The Hamiltonian, H, of the nuclei and the electrons is usually written in the

following form:

H ¼ Tn þHeðe j nÞ ð1Þ

where Tn is the nuclear kinetic energy, He(e j n) is the electronic Hamiltonian

that also contains the nuclear Coulombic interactions and depends parametri-

cally on the nuclei coordinates, and e and n stand for the electronic and the

nuclear coordinates, respectively.

The Schrödinger equation to be considered is of the form:

ðH� EÞ�ðe; nÞ ¼ 0 ð2Þ

where E is the total energy and �(e;n) is the complete wave function that

describes the motions of both the electrons and the nuclei. Next, we employ the

Born–Oppenheimer–Huang expansion:

�ðe; nÞ ¼
XN

i¼1

ciðnÞziðe j nÞ ð3Þ

where the ci(n), i ¼ 1; . . . ; N are nuclear-coordinate dependent coefficients

(recognized later as the nuclear wave functions) and ziðe j nÞ; i ¼ 1; . . . ; N are

the electronic eigenfunctions of the above introduced electronic Hamiltonian:

½Heðe j nÞ � uiðnÞ�ziðe j nÞ ¼ 0 i ¼ 1; . . . ;N ð4Þ
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Here uiðnÞ; i ¼ 1; . . . ;N are the electronic eigenvalues recognized, later, as the

(adiabatic) potential energy surfaces (PES) that governs the motion of the nuclei.

In this treatment, we assume that the Hilbert space is of dimension N.

Substituting Eq. (3) in Eq. (2), multiplying it from the left by zjðe j nÞ, and

integrating over the electronic coordinates while recalling Eqs. (1) and (4), yields

the following set of coupled equations:

XN

i¼1

hzjjTnciðnÞjzii þ ðujðnÞ � EÞcjðnÞ ¼ 0 j ¼ 1; . . . ;N ð5Þ

where the bra–ket notation means integration over electronic coordinates. To

continue, we recall that the kinetic operator Tn can be written (in terms of mass-

scaled coordinates) as

Tn ¼ �
1

2m
$2 ð6Þ

where m is the mass of the system and $ is the gradient (vector) operator. By

substituting Eq. (6) in Eq. (5) yields the more explicit form of the Born–

Oppenheimer–Huang system of coupled equations:

� 1

2m
r2cj þ ðujðnÞ � EÞcj �

1

2m

XN

i¼1

ð2sð1Þji � rci þ tð2Þji ciÞ ¼ 0

j ¼ 1; . . . ;N ð7Þ

where s(1) is the non-adiabatic (vector) matrix of the first kind with the elements:

sð1Þji ¼ hzjjrzii ð8aÞ

and sð2Þ is non-adiabatic (scalar) matrix of the second kind, with the elements:

sð2Þji ¼ hzjjr2zii ð8bÞ

For a system of real electronic wave functions, sð1Þ is an antisymmetric matrix.

Equation (7) can also be written in a matrix form as follows:

� 1

2m
r2Wþ ðu� EÞW� 1

2m
ð2sð1Þ � r þ sð2ÞÞW ¼ 0 ð9Þ

where W is column vector that contains nuclear functions.
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B. The Born–Oppenheimer–Huang Equation for a (Finite)
Sub-Hilbert Space

Next, the full-Hilbert space is broken up into two parts—a finite part, designated

as the P space, with dimension M, and the complementary part, the Q space

(which is allowed to be of an infinite dimension). The breakup is done according

to the following criteria [8–10]:

sð1Þij ffi 0 for i � M j > M ð10Þ

In other words, the non-adiabatic coupling terms between P and Q states are all

assumed to be zero. These requirements will later be reconsidered for a relaxed

situation where these coupling terms are assumed to be not necessarily

identically zero but small, that is, of the order e in regions of interest.

To continue, we define the following two relevant Feshbach projection

operators [79], namely, PM, the projection operator for the P space

PM ¼
XM

j¼1

jzjihzjj ð11aÞ

and QM , the projection operator for the Q space

QM ¼ I � PM ð11bÞ

Having introduced these operators, we are now in a position to express the

P part of the sð2Þ matrix (to be designated as sð2ÞM ) in terms of the P part of sð1Þ (to

be designated as sð1ÞM ). To do that, we consider Eq. (8a) and derive the following

expression:

rtð1Þji ¼ rhzjjrzii ¼ hrzjrzii þ hzjjr2zii

or, by recalling Eq. (8b), we get

sð2Þji ¼ �hrzjjrzii þ rsð1Þji ð12Þ

The first term on the right-hand side can be further treated as follows:

hrzjjrzii ¼ hrzjPM þ QMjrzii

which for i; j � M becomes

hrzjjrziijM ¼ hrzjjPM jrzii ¼
XM
k¼1

hrzjjzkihzkjrzii ð13Þ
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(the contribution due to QM can be shown to be zero), or also:

hrzjjrziijM ¼ ðs
ð1Þ
M Þ

2
ij i; j � M ð13aÞ

where sð1ÞM is, as mentioned above, of dimension M. Therefore within the Pth

subspace the matrix sð2ÞM can be presented in terms of sð1ÞM in the following way:

sð2ÞM ¼ ðs
ð1Þ
M Þ

2 þrsð1ÞM ð14Þ

Substituting the matrix elements of Eq. (14) in Eq. (7) yields the final form of the

Born–Oppenheimer–Huang equation for the P subspace:

� 1

2m
r2Wþ u� 1

2m
t2

M � E

� �
W� 1

2m
ð2sM � r þ rsMÞW ¼ 0 ð15Þ

where the dot designates the scalar product, W is a column matrix that contains

the nuclear functions fci; i ¼ 1; . . . ;Mg, u is a diagonal matrix that contains the

adiabatic potentials, and sM , for reasons of convenience, replaces sð1ÞM . Equation

(15) can also be written in the form [9]:

� 1

2m
ðr þ sMÞ2Wþ ðu� EÞW ¼ 0 ð16Þ

which is writing the Schrödinger equation more compactly. (A similar

Hamiltonian was employed by Pacher et al. [41] within their block-diagonalized

approach to obtain quasidiabatic states.)

III. THE ADIABATIC-TO-DIABATIC TRANSFORMATION

A. The Derivation of the Adiabatic-to-Diabatic Transformation Matrix

The aim in performing what is termed the adiabatic-to-diabatic transformation is

to eliminate from Eq. (16) the eventually problematic matrix, sM , which is done

by replacing the column matrix W in Eq. (16) by another column matrix U where

the two are related as follows:

W ¼ AU ð17Þ

At this stage, we would like to emphasize that the same transformation has to be

applied to the electronic adiabatic basis set in order not to affect the total wave

function of both the electrons and the nuclei. Thus if x is the electronic basis set

that is attached to U then f and n are related to each other as

n ¼ fAy ð18Þ
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Here, A is an undetermined matrix of the coordinates (Ay is its Hermitian

conjugate). Our next step is to obtain an A matrix, which will eventually simplify

Eq. (16) by eliminating the sM matrix. For this purpose, we consider the

following expression:

ðr þ sMÞ2AU ¼ ðr þ sMÞðr þ sMÞAU

¼ ðr þ sMÞðArUþ ðrAÞ�þ sMAUÞ
¼ 2ðrAÞ � rUþ Ar2Uþ ðr2AÞUþ ðrsMÞAU

þ 2sMðrAÞUþ 2sMAðrUÞ þ s2
MAU

which can be further developed to become

; ¼ Ar2Uþ 2ðrAþ sMAÞ � rUþ fðsM þrÞ � ðrAþ sMAÞgU

where the r parameters, in the third term, do not act beyond the curled

parentheses {}. Now, if A (henceforth to be designated as AM in order to remind

us that it belongs to the M-dimensional P subspace) is chosen to be a solution of

the following equation:

rAM þ sMAM ¼ 0 ð19Þ

then the above (kinetic energy) expression takes the simplified form:

ðr þ sMÞ2AU ¼ AMr2U ð20Þ

and therefore Eq. (16) becomes

� 1

2m
r2Uþ ðWM � EÞU ¼ 0 ð21Þ

where we used the fact that AM is a unitary matrix (seen Appendix B) and WM ,

the diabatic potential matrix, is given in the form:

WM ¼ ðAMÞyuMAM ð22Þ

Equation (21) is the diabatic Schrödinger equation.

In what follows, the A matrix (or the AM matrix) will be called the adiabatic-

to-diabatic transformation matrix.

B. The Necessary Condition for Having a Solution for the
Adiabatic-to-Diabatic Transformation Matrix

The A matrix has to fulfill Eq. (19). It is obvious that all features of A are

dependent on the features of the s-matrix elements. Thus, for example, if we
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want the adiabatic-to-diabatic transformation matrix to have second derivatives

or more in a given region, the s-matrix elements have to be analytic functions in

this region, namely, they have to have well-defined derivatives. However, this is

not enough to guarantee the analyticity of A. In order for it to be analytic, there

are additional conditions that the elements of this matrix have to fulfill, namely,

that the result of two (or more) mixed derivatives should not depend on the order

of the differentiation. In other words, if p and q are any two coordinates then the

following condition has to hold:

q2

qpqq
A ¼ q2

qqqp
A ð23Þ

The conditions for that to happen are derived in Appendix B (under

Analyticity) and are given here:

q
qp

sq �
q
qq

sp � ½sq; sp� ¼ 0 ð24Þ

which can also be written more compact as a vector equation:

curl s� ½s� s� ¼ 0 ð25Þ

For a two-state system Eq. (25) simplifies significantly to become

curl s ¼ 0 ð26Þ

In what follows, Eq. (25) [and Eq. (26)] will be referred to as the curl condition.

In Appendix C it is proved, employing the integral representation [see Eq. (27)],

that the fulfillment of this condition at every point throughout a given region,

guarantees the single valuedness of the A matrix throughout this region.

The importance of the adiabatic-to-diabatic transformation matrix is in the

fact that given the adiabatic potential matrix it yields the diabatic potential

matrix. Since the potentials that govern the motion of atomic species have to be

analytic and single valued, and since the adiabatic potentials usually have these

features, we expect the adiabatic-to-diabatic transformation to yield diabatic

potentials with the same features. Whereas the analyticity feature is guaranteed

because the adiabatic-to-diabatic transformation matrix is usually analytic it is

more the uniqueness requirement that is of concern. The reason being that in

cases where the electronic eigenfunctions become degenerate in configuration

space the corresponding non-adiabatic coupling terms become singular (as is

well known from the Hellmann–Feynman theorem [3,36]) and this as is proved

in Appendix C, may cause the adiabatic-to-diabatic transformation matrix to become

multivalued. Thus we have to make sure that the relevant diabatic potentials will
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also stay single-valued in cases where the adiabatic-to-diabatic transformation

matrix is not. All these aspects will be discussed in Section IV.

By returning to the diabatic potentials as defined in Eq. (22), the condition

expressed in Eq. (25) also guarantees well-behaved (namely, single-valued)

diabatic potentials. However, it is known (as was already discussed above) that

the s-matrix elements are not always well behaved because they may become

singular, implying that in such regions Eq. (25) is not satisfied at every point. In

such a situation the analyticity of the adiabatic-to-diabatic transformation matrix

may still be guaranteed (except at the close vicinity of these singular points) but

no longer its single-valuedness. The question is to what extent this ‘‘new’’

difficulty is going to affect the single-valuedness of the diabatic potentials

(which have to be single valued if a solution for the corresponding Schrödinger

equation is required). Section IV is devoted to this issue.

IV. THE ADIABATIC-TO-DIABATIC TRANSFORMATION
MATRIX AND THE LINE INTEGRAL APPROACH

From now on, the index M will be omitted and it will be understood that any

subject to be treated will refer to a finite sub-Hilbert space of dimension M.

Equation (19) can also be written as an integral equation along a contour in

the following way [34–36]:

Aðs; s0 j �Þ ¼ Aðs0 j �Þ �
ðs

s0

ds0 � sðs0 j �ÞAðs0; s0 j �Þ ð27Þ

where � is the given contour in the multidimensional configuration space, the

points s and s0 are located on this contour, ds0 is a differential vector along this

contour, and the dot is a scalar product between this differential vector and the

(vectorial) non-adiabatic coupling matrix s. Note that the s matrix is the kernel of

this equation and since, as mentioned above, some of the non-adiabatic coupling

terms may be singular in configuration space (but not necessarily along the

contour itself), it has implication on the multivaluedness of both the A matrix

and the diabatic potentials.

A. The Necessary Conditions for Obtaining Single-Valued Diabatic
Potentials and the Introduction of the Topological Matrix

The solution of Eq. (19) can be written in the form [57]:

Aðs; s0Þ ¼ } exp �
ðs

s0

ds � s
� �

Aðs0Þ ð28Þ
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where the symbol } is introduced to indicate that this integral has to be carried

out in a given order [57,80]. In other words, } is a path ordering operator. The

solution in Eq. (28) is well defined as long as s, along �, is well defined.

However, as mentioned earlier, the solution may not be uniquely defined at every

point in configuration space. Still, we claim that under certain conditions such a

solution is of importance because it will lead to uniquely defined diabatic

potentials. This claim brings us to formulate the necessary condition for

obtaining uniquely defined diabatic potentials.

Let us consider a closed path � defined in terms of a continuous parameter l
so that the starting point s0 of the contour is at l ¼ 0. Next, b is defined as the

value attained by l once the contour completes a full cycle and returns to its

starting point. For example, in the case of a circle, l is an angle and b ¼ 2p.

With these definitions we can now look for the necessary condition(s). Thus,

we assume that at each point s0 in configuration space the diabatic potential

matrix WðlÞ ½�Wðs; s0Þ� fulfills the condition:

Wðl ¼ 0Þ ¼Wðl ¼ bÞ ð29Þ

Following Eq. (22), this requirement implies that for every point s0 we have

Ayð0Þuð0ÞAð0Þ ¼ AyðbÞuðbÞAðbÞ ð30Þ

Next, we introduce another transformation matrix, B, defined as

B ¼ AðbÞAyð0Þ ð31Þ

which, for every s0 and a given contour �, connects uðbÞ with uð0Þ:

uðbÞ ¼ Buð0ÞBy ð32Þ

The B matrix is, by definition, a unitary matrix (it is a product of two unitary

matrices) and at this stage except for being dependent on � and, eventually, on

s0, it is rather arbitrary. In what follows, we shall derive some features of B.

Since the electronic eigenvalues (the adiabatic PESs) are uniquely defined at

each point in configuration space we have uð0Þ � uðbÞ, and therefore Eq. (32)

implies the following commutation relation:

½B; uð0Þ� ¼ 0 ð33Þ

or more explicitly:

X
j¼1

ðB�kjBkj � dkjÞujð0Þ ¼ 0 ð34Þ
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Equation (34) has to hold for every arbitrary point s0 ð� l ¼ 0Þ on the path

� and for an essential, arbitrary set of nonzero adiabatic eigenvalues,

ujðs0Þ; j ¼ 1; . . . ;M. Due to the arbitrariness of s0, and therefore also of the

ujðs0Þ values, Eqs. (34) can be satisfied if and only if the B-matrix elements

fulfill the relation:

B�kjBkj ¼ dkj j; k � M ð35Þ

or

Bjk ¼ djkexpðiwkÞ ð36Þ

Thus B is a diagonal matrix that contains in its diagonal (complex) numbers

whose norm is 1 (this derivation holds as long as the adiabatic potentials are

nondegenerate along the path �). From Eq. (31), we obtain that the B-matrix

transforms the A-matrix from its initial value to its final value while tracing a

closed contour:

AðbÞ ¼ BAð0Þ ð37Þ

Let us now return to Eq. (28) and define the following matrix:

D ¼ } exp �
ð

‘

�

ds � s
� �

ð38Þ

Notice from Eq. (28) that if the contour � is a closed loop (which returns

to s0) the D matrix transforms Aðs0Þ to its value Aðs ¼ s0js0Þ at the end of the

closed contour, namely;

Aðs ¼ s0 j s0Þ ¼ DAðs0Þ ð39Þ

Now, by comparing Eq. (37) with Eq. (39) it is noticed that B and D are

identical, which implies that all the features that were found to exist for the B
matrix also apply to the matrix D as defined in Eq. (38).

Returning to the beginning of this section, we established the following: The

necessary condition for the A matrix to yield single-valued diabatic potentials is

that the D matrix, defined in Eq. (38), be diagonal and has, in its diagonal,

numbers of norm 1. Since we consider only real electronic eigenfunctions these

numbers can be either (þ1) or (�1) established. By following Eq. (39), it is also

obvious that the A matrix is not necessarily single-valued because the D matrix,

as was just proved, is not necessarily a unit matrix. In what follows, the number

of (�1) values in a given matrix D will be designated as K.
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The D matrix plays an important role in the forthcoming theory because it

contains all topological features of an electronic manifold in a region

surrounded by a contour � as will be explained next.

That the electronic adiabatic manifold can be multivalued is a well-known

fact, going back to Longuet-Higgins et al. [14–17]. In this section, we just

proved that the same applies to the adiabatic-to-diabatic transformation matrix

and for this purpose we introduced the diabatic framework. The diabatic

manifold is, by definition, a manifold independent of the nuclear coordinates

and therefore single-valued in configuration space. Such a manifold always

exists for a complete Hilbert space [36b] (see Appendix D). Next, we assume

that an approximate (partial) diabatic manifold like that can be found for the

present sub-Hilbert space defined with respect to a certain region in

configuration space. This approximate diabatic manifold is, by definition,

single valued. Then, we consider Eq. (18), in which the electronic diabatic

manifold is presented in terms of the product zAy, where z is the adiabatic

electronic manifold. Since this product is singled valued in configuration space

(because it produces a diabatic manifold) it remains single valued while tracing

a closed contour. In order for this product to remain single valued, the number of

wave functions that flip sign in this process has to be identical to the topological

number K. Moreover the positions of the (�1)s in the D matrix have to match

the electronic eigenfunctions that flip their sign. Thus, for example, if the third

element in the D matrix is (�1) this implies that the electronic eigenfunction

that belongs to the third state flips sign.

It is known that multivalued adiabatic electronic manifolds create topological

effects [23,25,45]. Since the newly introduced D matrix contains the

information relevant for this manifold (the number of functions that flip sign

and their identification) we shall define it as the Topological Matrix.

Accordingly, K will be defined as the Topological Number. Since D is

dependent on the contour � the same applies to K thus: K ¼ Kð�Þ.

B. The Quasidiabatic Framework

In Section IV.A, the adiabatic-to-diabatic transformation matrix as well as the

diabatic potentials were derived for the relevant sub-space without running

into theoretical conflicts. In other words, the conditions in Eqs. (10) led to a finite

sub-Hilbert space which, for all practical purposes, behaves like a full (infinite)

Hilbert space. However it is inconceivable that such strict conditions as presented

in Eq. (10) are fulfilled for real molecular systems. Thus the question is to what

extent the results of the present approach, namely, the adiabatic-to-diabatic

transformation matrix, the curl equation, and first and foremost, the diabatic

potentials, are affected if the conditions in Eq. (10) are replaced by more realis-

tic ones? This subject will be treated next.

the electronic non-adiabatic coupling term 53



The quasidiabatic framework is defined as the framework for which the

conditions in Eqs. (10) are replaced by the following less stricked ones [81]:

sð1Þij ffi OðeÞ for i � M j > M ð40Þ

Thus, we still relate to the same sub-space but it is now defined for P-states that

are weakly coupled to Q-states. We shall prove the following lemma: If

the interaction between any P- and Q-state measures like O(e), the resultant

P-diabatic potentials, the P-adiabatic-to-diabatic transformation matrix elements

and the P-curl t equation are all fulfilled up to Oðe2Þ.

1. The Adiabatic-to-Diabatic Transformation Matrix

and the Diabatic Potentials

We prove our statement in two steps: First, we consider the special case of a

Hilbert space of three states, the two lowest of which are coupled strongly to each

other but the third state is only weakly coupled to them. Then, we extend it to the

case of a Hilbert space of N states where M states are strongly coupled to each

other, and L ð¼ N �MÞ states, are only loosely coupled to these M original

states (but can be strongly coupled among themselves).

We start with the first case where the components of two of the s-matrix

elements, namely, t13 and t23, are of the order of OðeÞ [see Eq. (40)].

The 3� 3 A matrix has nine elements of which we are interested in only

four, namely, a11, a12, a21, and a22. However, these four elements are coupled

to a31 and a32 and, therefore, we consider the following six line integrals [see

Eq. (27)]:

aijðsÞ ¼ aijðs0Þ �
X3

k¼1

ðs

s0

ds � tikðsÞakjðsÞ i ¼ 1; 2; 3 j ¼ 1; 2 ð41Þ

Next, we estimate the magnitudes of a31 and a32 and for this purpose we

consider the equations for a31 and a32. Thus, assuming a1j and a2j are given, the

solution of the relevant equations in Eq. (41), is

a3jðsÞ ¼ a3jðs0Þ �
ðs

s0

ds0 � ðt31a1j þ t32a2jÞ ð42Þ

For obvious reasons, we assume a3jðs0Þ ¼ 0. Since both, a1j and a2j, are at most

(in absolute values) unity, it is noticed that the magnitude of a31 and a32 are of the

order of OðeÞ just like the assumed magnitude of the components of ti3 for

i ¼ 1; 2. Now, returning to Eq. (41) and substituting Eq. (42) in the last term in

each summation, one can see that the integral over ti3a3j; j ¼ 1; 2 is of the second
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order in e, which can be specified as Oðe2Þ. In other words, ignoring the coupling

between the two-state system and a third state introduces a second-order error in

the calculation of each of the elements of the two-state A matrix.

To treat the general case, we assume A and s to be of the following form:

A ¼ AðMÞ AðM;LÞ

AðL;MÞ AðLÞ

� �
ð43aÞ

and

s ¼ sðMÞ sðM;LÞ

sðL;MÞ sðLÞ

� �
ð43bÞ

where we recall that M is the dimension of the P sub-space. As before, the

only parts of the A matrix that are of interest for us are AðMÞ and AðL;MÞ. By

substituting Eqs. (43) in Eq. (27), we find for AðMÞ the following integral

equation:

AðMÞ ¼ A
ðMÞ
0 �

ðs

s0

ds � sðMÞAðMÞ �
ðs

s0

ds � sðM;LÞAðL;MÞ ð44Þ

where A stands for A(s) and A0 for Aðs0Þ. Our next task is to get an estimate for

AðL;MÞ. For this purpose, we substitute Eqs. (43) in Eq. (19) and consider the first-

order differential equation for this matrix:

rAðL;MÞ þ sðL;MÞAðMÞ þ tðLÞAðL;MÞ ¼ 0 ð45aÞ

which will be written in a slightly different form:

rAðL;MÞ þ sðLÞAðL;MÞ ¼ �sðL;MÞAðMÞ ð45bÞ

in order to show that it is an inhomogeneous equation for AðL;MÞ (assuming the

elements of AðMÞ are known). Equation (45b) will be solved for the initial

conditions where the elements of AðL;MÞ are zero (this is the obvious choice in

order for the isolated sub-space to remain as such in the diabatic framework

as well). For these initial conditions, the solution of Eq. (45a) can be shown

to be

AðL;MÞ ¼ exp �
ðs

s0

ds0 � sðLÞ
� � ðs

s0

exp

ðs0

s0

ds} � sðLÞ
 !

ds0 � sðL;MÞAðMÞ
( )

ð46Þ

In performing this series of integrations, it is understood that they are carried

out in the correct order and always for consecutive infinitesimal sections along

the electronic non-adiabatic coupling term 55



the given contour � [57]. Equation (46) shows that all elements of AðL;MÞ are

linear combinations of the (components of the) tðL;MÞ elements, which are all

assumed to be of first order in e. We also reiterate that the absolute values of all

elements of AðMÞ are limited by the value of the unity.

Now, by returning to Eq. (44) and replacing AðL;MÞ by the expression in

Eq. (46) we find that the line integral to solve AðMÞ is perturbed to the second

order, namely,

AðMÞ ¼ A
ðMÞ
0 �

ðs

s0

ds � sðMÞAðMÞ þ Oðe2Þ ð47Þ

This concludes our derivation regarding the adiabatic-to-diabatic transforma-

tion matrix for a finite N. The same applies for an infinite Hilbert space (but

finite M) if the coupling to the higher Q-states decays fast enough.

Once there is an estimate for the error in calculating the adiabatic-to-diabatic

transformation matrix it is possible to estimate the error in calculating the

diabatic potentials. For this purpose, we apply Eq. (22). It is seen that the error

is of the second order in e, namely, of Oðe2Þ, just like for the adiabatic-to-

diabatic transformation matrix.

2. The Curl Condition

Next, we analyze the P-curl condition with the aim of examining to what

extent it is affected when the weak coupling is ignored as described in Section

IV.B.1 [81]. For this purpose, we consider two components of the (unperturbed)

s matrix, namely, the matrices sq and sp, which are written in the following form

[see Eq. (43)]:

sx ¼
sðMÞx sðM;LÞ

x

sðL;MÞx sðLÞx

 !
x ¼ q; p ð48Þ

Here, sðMÞx (and eventually sðLÞx Þ; x ¼ p; q are the matrices that contain the strong

non-adiabatic coupling terms, whereas sðM;LÞ
x [and sðL;MÞx �; x ¼ p; q are the

matrices that contain the weak non-adiabatic coupling terms, all being of the

order OðeÞ. Employing Eqs. (24) and (25) and by substituting Eq. (48) for sq and

sp, it can be seen by algebraic manipulations that the following relation holds:

qsðMÞp

qq
� qsðMÞq

qp
� ½sðMÞp ; sðMÞq � ¼ fsðM;LÞ

p sðL;MÞq � sðM;LÞ
q sðL;MÞp g ð49Þ

Notice, all terms in the curled parentheses are of Oðe2Þ, which implies that the

curl condition becomes

curl tðMÞ � ½tðMÞ � tðMÞ� ¼ Oðe2Þ ð50Þ

namely, the curl condition within the sub-space, is fulfilled up to Oðe2Þ.
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Obviously, the fact that the solution of the adiabatic-to-diabatic transforma-

tion matrix is only perturbed to second order makes the present approach rather

attractive. It not only results in a very efficient approximation but also yields an

estimate for the error made in applying the approximation.

V. THE QUANTIZATION OF THE NON-ADIABATIC
COUPLING MATRIX

One of the main outcomes of the analysis so far is that the topological matrix D,

presented in Eq. (38), is identical to an adiabatic-to-diabatic transformation

matrix calculated at the end point of a closed contour. From Eq. (38), it is noticed

that D does not depend on any particular point along the contour but on the

contour itself. Since the integration is carried out over the non-adiabatic coupling

matrix, s, and since D has to be a diagonal matrix with numbers of norm 1 for any

contour in configuration space, these two facts impose severe restrictions on the

non-adiabatic coupling terms.

In Section V.A, we present a few analytical examples showing that the

restrictions on the s-matrix elements are indeed quantization conditions that go

back to the early days of quantum theory. Section V.B will be devoted to the

general case.

A. The Quantization as Applied to Model Systems

In this section, we intend to show that for a certain type of models the above

imposed ‘‘restrictions’’ become the ordinary well-known Bohr–Sommerfeld

quantization conditions [82]. For this purpose, we consider the following non-

adiabatic coupling matrix s:

sðsÞ ¼ gtðsÞ ð51Þ

where tðsÞ is a vector whose components are functions in configuration space and

g is a constant antisymmetric matrix of dimension M. For this case, one can

evaluate the ordered exponential in Eq. (38). Thus substituting Eq. (51) in

Eq. (38) yields the following solution for the D matrix:

D ¼ G exp �x
ð

‘

�

ds � tðsÞ
� �

Gy ð52Þ

where x is a diagonal matrix that contains the eigenvalues of the g matrix and G
is a matrix that diagonalizes g (Gy is the Hermitian conjugate of G). Since g is an

antisymmetric matrix all its eigenvalues are either imaginary or zero.

Next, we concentrate on a few special cases.

the electronic non-adiabatic coupling term 57



1. The Two-State Case

The g matrix in this case is given in the form:

g ¼ 0 1

�1 0

� �
ð53Þ

The matrix G that diagonalizes it is

G ¼ 1ffiffiffi
2
p 1 1

i �i

� �
ð54Þ

and the corresponding eigenvalues are �i. Substituting Eq. (54) in Eq. (52) and

replacing the two o parameters by �i yields the following D matrix:

D ¼
cos

ð

‘

�

tðsÞ � ds

� �
�sin

ð
‘

�

tðsÞ � ds

� �

sin

ð

‘

�

tðsÞ � ds

� �
cos

ð
‘

�

tðsÞ � ds

� �
0
BBB@

1
CCCA ð55Þ

Next, we refer to the requirements to be fulfilled by the matrix D, namely,

that it is diagonal and that it has the diagonal numbers that are of norm 1. In

order for that to happen, the vector-function tðsÞ has to fulfill along a given

(closed) path � the condition: ð

‘

�

tðsÞ � ds ¼ np ð56Þ

where n is an integer. These conditions are essentially the Bohr–Sommerfeld

quantization conditions [82] (as applied to the single term of the two-state s
matrix).

Equation (56) presents the condition for the extended conical intersection

case. It is noticed that if n is an odd integer the diagonal of the D matrix contains

two (�1) terms, which means that the elements of the adiabatic-to-diabatic

transformation matrix flip sign while tracing the closed contour in Eq. (56) [see

Eq. (39)]. This case is reminiscent of what happened in the simplified Jahn–

Teller model as was studied by Herzberg–Longuet–Higgins [16] in which they

showed that if two eigenfunctions that belong to the two states that form a

conical intersection, trace a closed contour around that conical intersection, both

of them flip sign (see Appendix A).

If the value of n in Eq. (56), is an even integer, the diagonal of the D matrix

contains two (þ1) terms, which implies that in this case none of the elements of
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the adiabatic-to-diabatic transformation matrix flip sign while tracing the closed

contour. This situation will be identified as the case where the above mentioned

two eigenfunctions trace a closed contour but do not flip sign—the case known

as the Renner–Teller model [15,83]. Equation (56) is the extended version of the

Renner–Teller case.

In principle, we could have a situation where one of the diagonal elements is

(þ1) and one (�1) but from the structure of the D matrix one can see that this

case can never happen.

In our introductory remarks, we said that this section would be devoted to

model systems. Nevertheless it is important to emphasize that although this case

is treated within a group of model systems this model stands for the general case

of a two-state sub-Hilbert space. Moreover, this is the only case for which we

can show, analytically, for a nonmodel system, that the restrictions on the D
matrix indeed lead to a quantization of the relevant non-adiabatic coupling term.

2. The Three-State Case

The non-adiabatic coupling matrix s will be defined in a way similar to that in the

Section V.A [see Eq. (51)], namely, as a product between a vector-function tðsÞ
and a constant antisymmetric matrix g written in the form

g ¼
0 1 0

�1 0 Z
0 �Z 0

0
@

1
A ð57Þ

where Z is a (constant) parameter. By employing this form of g, we assumed that

g13 and g31 are zero (the more general case is treated elsewhere [80]). The

eigenvalues of this matrix are

o1;2 ¼ �io o3 ¼ 0 o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z2

p
ð58Þ

and the corresponding matrix, G, that diagonalizes the matrix g is

G ¼ 1

o
ffiffiffi
2
p

1 1 Z
ffiffiffi
2
p

io �io 0

�Z �Z
ffiffiffi
2
p

0
@

1
A ð59Þ

By again employing Eq. (52), we find the following result for the D matrix

D ¼ o�2
Z2 þ C oS Zð1� CÞ
oS o2C �ZoS

Zð1� CÞ ZoS 1þ Z2C

0
@

1
A ð60Þ
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where

C ¼ cos w

þ
�

tðsÞ � ds

� �
and S ¼ sin w

þ
�

tðsÞ � ds

� �
ð61Þ

Notice that the necessary and sufficient condition for this matrix to become

diagonal is that the following condition:

o
ð

‘

�

tðsÞ � ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z2

p ð

‘

�

tðsÞ � ds ¼ 2np ð62Þ

be fulfilled. Moreover, this condition leads to a D matrix that contains in its

diagonal numbers of norm 1 as required. However, in contrast to the previously

described two-state case, they, all three of them, are positive, namely, (þ1). In

other words the ‘‘quantization’’ of the matrix s as expressed in Eq. (62) leads to a

D matrix that is a unit matrix, and therefore will maintain the adiabatic-to-

diabatic transformation matrix single valued along any contour that fulfills this

quantization. This is, to a certain extent, an unexpected result but, as we shall see

in the Section V.A.3, it is not the typical result. Still it is an interesting result and

we shall return to it in Sections X and XII.

3. The Four-State Case

The g matrix in this case will be written in the form

g ¼

0 1 0 0

�1 0 Z 0

0 �Z 0 s
0 0 �s 0

0
BB@

1
CCA ð63Þ

where Z and s are two parameters. The matrix G that diagonalizes g is

G ¼ 1ffiffiffi
2
p

ilq ilq �ilp �ilp

plq �plq �qlp qlp

ilp ilp ilq ilq

qlp �qlp plq �plq

0
BB@

1
CCA ð64Þ

where p and q are defined as

p ¼ 1ffiffiffi
2
p ðv2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v4 � 4s2
p

Þð1=2Þ

q ¼ 1ffiffiffi
2
p ðv2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v4 � 4s2
p

Þð1=2Þ
ð65Þ
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and lp and lq are defined as

lp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 1

p2 � q2

s
lq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p2 � q2

s
ð66Þ

and v as

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ Z2 þ s2Þ

p
ð67Þ

From Eq. (65), it is obvious that p > q. The four eigenvalues are

ðo1;o2;o3;o4Þ � ðip;�ip; iq;�iqÞ ð68Þ

Again, by employing Eq. (52) we find the following expressions for the

D-matrix elements:

D11ðaÞ ¼ l2
qCp þ l2

pCq D12ðaÞ ¼ pl2
qSp þ ql2

pSq

D13ðaÞ ¼ lplqð�Cp þ CqÞ D14ðaÞ ¼ lplqð�qSp þ pSqÞ
D22ðaÞ ¼ p2l2

qCp þ q2l2
pCq D23ðaÞ ¼ lplqðpSp � qSqÞ

D24ðaÞ ¼ pqlplqðCp � CqÞ D33ðaÞ ¼ ðl2
pCp þ l2

qCq

D34ðaÞ ¼ �ðql2
pSp þ pl2

qSqÞ D44ðaÞ ¼ q2l2
pCp þ p2l2

qCq

D21ðaÞ ¼ �D12ðaÞ D31ðaÞ ¼ D13ðaÞ D32ðaÞ ¼ �D23ðaÞ
D41ðaÞ ¼ �D14ðaÞ D42ðaÞ ¼ D24ðaÞ D43ðaÞ ¼ �D34ðaÞ

ð69Þ

where

Cp ¼ cosðpaÞ and Sp ¼ sinðpaÞ ð70Þ

and similar expressions for Cq and Sq. Here a stands for

a ¼
ð

‘

�

tðs0Þ � ds0 ð71Þ

Next, we determine the conditions for this matrix to become diagonal (with

numbers of norm 1 in the diagonal), which will happen if and only if when p and

q fulfill the following relations:

pa ¼ p

ð

‘

�

tðs0Þ � ds0 ¼ 2pn ð72aÞ

qa ¼ q

ð

‘

�

tðs0Þ � ds0 ¼ 2p‘ ð72bÞ
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where n ð>1Þ and ‘, defined in the range n > ‘ � 0, are allowed to be either

integers or half-integers but m ð¼ n� ‘Þ can only attain integer values. The

difference between the case where n and ‘ are integers and the case where both

are half-integers is as follows: By examining the expressions in Eq. (69), notice

that in the first case all diagonal elements of D are (þ1), so that, D is, in fact, the

unit matrix and therefore the elements of the adiabatic-to-diabatic transformation

matrix are single valued in configuration space. In the second case, we get from

Eq. (69), that all four diagonal elements are (�1). In this case, when the adiabatic-

to-diabatic transformation traces a closed contour all its elements flip sign.

Since p and q are directly related to the non-adiabatic coupling terms Z and

s [see Eqs. (65) and (66)] the two conditions in Eqs. (72) imply, again,

‘‘quantization’’ conditions for the values of the s-matrix elements, namely, for Z
and s, as well as for the vectorial function tðsÞ.

It is interesting to note that this is the first time that in the present framework

the quantization is formed by two quantum numbers: a number n to be termed

the principal quantum number and a number ‘, to be termed the secondary

quantum number. This case is reminiscent of the two quantum numbers that

characterize the hydrogen atom.

4. Comments Concerning Extensions

In Sections V.A.1–V.A.3, we treated one particular group of s matrices as

presented in Eq. (51), where g is an antisymmetric matrix with constant

elements. The general theory demands that the matrix D as presented in Eq. (52)

be diagonal and that as such it contains (þ1) and (�1) values in its diagonal. In

the three examples that were worked out, we found that for this particular class of

s matrices the corresponding D matrix contains either (þ1) or (�1) terms but

never a mixture of the two types. In other words, the D matrix can be represented

in the following way:

D ¼ ð�1ÞkI ð73Þ

where k is either even or odd and I is the unit matrix. Indeed, for the two-state

case k was found to be either odd or even, for the three-state case it was found to

be only even, and for the four-state case it was again found to be either odd or

even. It seems to us (without proof) that this pattern applies to any dimension. If

this really is the case, then we can make the following two statements:

1. In case the dimension of the s matrix is an odd number, the D matrix will

always be the unit matrix I, namely, k must be an even number. This is so

because an odd dimensional g matrix, always has the zero as an

eigenvalue and this eigenvalue produces the (þ1) in the D matrix that

dictates the value of k in Eq. (73).
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2. In case the dimension of the s matrix is an even number, the D matrix will

(always) be equal either to I or to ð�IÞ.
3. These two facts imply that in case of an odd dimension the quantization is

characterized by (a series of) integers only [as in Eq. (62)] but in case of

an even dimension it is characterized either by (a series of) integers or by

(a series of) half-integers [as in Eqs. (72)].

B. The Treatment of the General Case

The derivation of the D matrix for a given contour is based on first deriving the

adiabatic-to-diabatic transformation matrix, A, as a function of s and then

obtaining its value at the end of the arbitrary closed contours (when s becomes

s0). Since A is a real unitary matrix it can be expressed in terms of cosine and sine

functions of given angles. First, we shall consider briefly the two special cases

with M ¼ 2 and 3.

The case of M ¼ 2 was treated in Section V.A.4. Here, this treatment is

repeated with the aim of emphasizing different aspects and also for reasons of

completeness. The matrix Að2Þ takes the form:

Að2Þ ¼ cosg12 sing12

�sing12 cosg12

� �
ð74Þ

where g12, the adiabatic-to-diabatic transformation angle, can be shown to be [34]

g12 ¼
ðs

s0

s12ðs0Þ � ds0 ð75Þ

Designating a12 as the value of g12 for a closed contour, namely,

a12 ¼
ð

‘

�

s12ðs0Þ � ds0 ð76Þ

the corresponding Dð2Þ matrix becomes accordingly [see also Eq. (55)]:

Dð2Þ ¼ cosa12 sina12

�sina12 cosa12

� �
ð77Þ

Since for any closed contour Dð2Þ has to be a diagonal matrix with (þ1) and (�1)

terms, it is seen that a12 ¼ np where n is either odd or even (or zero) and

therefore the only two possibilities for Dð2Þ are as follows:

Dð2Þ ¼ ð�1ÞkI ð78Þ

where I is the unit matrix and k is either even or odd.
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The case of M ¼ 3 is somewhat more complicated because the correspond-

ing orthogonal matrix is expressed in terms of three angles, namely, g12, g13,

and g23 [36,84,85]. This case was recently studied by us in detail [85] and here

we briefly repeat the main points.

The matrix Að3Þ is presented as a product of three rotation matrices of the

form:

Q
ð3Þ
13 ðg13Þ ¼

cosg13 0 sing13

0 1 0

�sing13 0 cosg13

0
@

1
A ð79Þ

[the other two, namely, Q
ð3Þ
12 ðg12Þ and Q

ð3Þ
23 ðg23Þ, are of a similar structure with the

respective cosine and sine functions in the appropriate positions) so that Að3Þ

becomes:

Að3Þ ¼ Q
ð3Þ
12 Q

ð3Þ
23 Q

ð3Þ
13 ð80Þ

or, following the multiplication, the more explicit form:

Að3Þ ¼
c12c13 � s12s23s13 s12s23 c12s13 þ c12s23c13

�s12c13 � c12s23s13 c12c23 �s12s13 þ c12s23c13

�c23s13 �s23 c23c13

0
@

1
A ð81Þ

Here, cij ¼ cosðgijÞ and sij ¼ sinðgijÞ. The three angles are obtained by solving

the following three coupled first-order differential equations, which follow from

Eq. (19) [36,84,85]:

rg12 ¼ t12 � tang23ð�t13 cosg12 þ t23 sing12Þ
rg23 ¼ �ðt23 cosg12 þ t13 sing12Þ
rg13 ¼ �ðcosg23Þ�1ð�t13 cosg12 þ t23 sing12Þ

ð82Þ

These equations were integrated as a function of j (where 0 � j � 2pÞ, for a

model potential [85] along a circular contour of radius r (for details see

Appendix E). The j-dependent g angles, that is, gijðj j rÞ, for various values of

r and �e (�e is the potential energy shift defined as the shift between the two

original coupled adiabatic states and a third state, at the origin, i.e., at r ¼ 0:Þ are

presented in Figure 1. Thus for each j we get, employing Eq. (81), the Að3ÞðjÞ
matrix elements. The relevant Dð3Þ matrix is obtained from Að3Þ by substituting

j ¼ 2p. If aij are defined as

aij ¼ gijðj ¼ 2pÞ ð83Þ

then, as is noticed from Figure 1, the values of aij are either zero or p. A simple

analysis of Eq. (81), for these values of aij, shows that Dð3Þ is a diagonal matrix

with two (�1) terms and one (þ1) in the diagonal.
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This result will now be generalized for an arbitrary Dð3Þ matrix in the

following way: Since a general Að3Þ matrix can always be written as in Eq. (81)

the corresponding Dð3Þ matrix becomes diagonal if and only if:

aij ¼ gijðj ¼ 2pÞ ¼ nijp ð84Þ

Figure 1. The three adiabatic–diabatic transformation angles [obtained by solving Eqs. (77) for

a 3� 3 diabatic model potential presented in Section XIII.B] g12ðjÞ, g23ðjÞ, g13ðjÞ as calculated

for different values ofr and�e: (a)g ¼ g12, �e ¼ 0:0; (b)g ¼ g12, �e ¼ 0:05; (c)g ¼ g12,�e ¼ 0:25;

(d) g ¼ g23, �e ¼ 0:0; (e) g ¼ g23, �e ¼ 0:05; ( f ) g ¼ g23, �e ¼ 0:25; (g) g ¼ g13, �e ¼ 0:0;

(h) g ¼ g13, �e ¼ 0:05; (i) g ¼ g13, �e ¼ 0:25. ———— r ¼ 0:01; - - - - - - - r ¼ 0:1; ..............

r ¼ 0:5.
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the diagonal terms can, explicitly, be represented as

D
ð3Þ
ij ¼ dij cosajn cosajm j 6¼ n 6¼ m j ¼ 1; 2; 3 ð85Þ

This expression shows that the Dð3Þ matrix, in the most general case, can have

either three (þ1) terms in the diagonal or two (�1) terms and one (þ1). In the first

case, the contour does not surround any conical intersection, whereas in the

second case it surrounds either one or two conical intersections (a more general

discussion related to the solution of the corresponding line integral is given in

Section VIII and a discussion regarding the ‘‘geometrical’’ aspect is given in

Section IX).

It is important to emphasize that this analysis, although it is supposed to hold

for a general three-state case, contradicts the analysis we performed of the

three-state model in Section V.A.2. The reason is that the ‘‘general (physical)

case’’ applies to an (arbitrary) aggregation of conical intersections whereas the

previous case applies to a special (probably unphysical) situation. The

discussion on this subject is extended in Section X. In what follows, the cases

for an aggregation of conical intersections will be termed the ‘‘breakable’’

situations (the reason for choosing this name will be given later) in contrast to

the type of models that were discussed in Sections V.A.2 and V.A.3 and that are

termed as the ‘‘unbreakable’’ situation.

Before discussing the general case, we would like to refer to the present

choice of the rotation angles. It is well noticed that they differ from the ordinary

Euler angles that are routinely used to present three-dimensional (3D)

orthogonal matrices [86]. In fact, we could apply the Euler angles for this

purpose and get identical results for Að3Þ (and for Dð3Þ). The main reason we

prefer the ‘‘democratic’’ choice of the angles is that this set of angles can be

extended to an arbitrary number of dimensions as will be done next.

The M-dimensional adiabatic-to-diabatic transformation matrix AðMÞ will be

written as a product of elementary rotation matrices similar to that given in

Eq. (80) [9]:

AðMÞ ¼
YM�1

i¼1

YM
j> i

Q
ðMÞ
ij ðgijÞ ð86Þ

where Q
ðMÞ
ij ðgijÞ [like in Eq. (79)] is an M �M matrix with the following terms:

In its (ii) and (jj) positions (along the diagonal) are located the two relevant

cosine functions and at the rest of the (M� 2) positions are located (þ1)s; in the

(ij) and (ji) off-diagonal positions are located the two relevant �sine functions

and at all other remaining positions are zeros. From Eq. (86), it can be seen that

the number of matrices contained in this product is MðM � 1Þ=2 and that this is

also the number of independent gij angles that are needed to describe an M �M
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unitary matrix (we recall that the missing MðM þ 1Þ=2 conditions follow from

the ortho-normal conditions). The matrix AðMÞ as presented in Eq. (86) is

characterized by two important features: (1) Every diagonal element contains at

least one term that is a product of cosine functions only. (2) Every off-diagonal

element is a summation of products of terms where each product contains at least

one sine function. These two features will lead to conditions to be imposed on the

various gij angles to ensure that the topological matrix, DðMÞ, is diagonal as

discussed in the Section IV.A.

To obtain the gij angles one usually has to solve the relevant first-order

differential equations of the type given in Eq. (82). Next, like before, the aij

angles are defined as the gij angles at the end of a closed contour. In order to

obtain the matrix DðMÞ, one has to replace, in Eq. (86), the angles gij by the

corresponding aij angles. Since DðMÞ has to be a diagonal matrix with (þ1) and

(�1) terms in the diagonal, this can be achieved if and only if all aij angles are

zero or multiples of p. It is straightforward to show that with this structure the

elements of DðMÞ become [9]:

D
ðMÞ
ij ¼ dij

YM
k 6¼ i

cosaik ¼ dijð�1Þ
PM

k 6¼ i
nik i ¼ 1; . . . ;M ð87Þ

where nik are integers that fulfill nik ¼ nki. From Eq. (87), it is noticed that along

the diagonal of DðMÞ we may encounter K numbers that are equal to (�1) and the

rest that are equal to (þ1). It is important to emphasize that in case a contour does

not surround any conical intersection the value of K is zero.

VI. THE CONSTRUCTION OF SUB-HILBERT SPACES AND
SUB-SUB-HILBERT SPACES

In Section II.B, it was shown that the condition in Eq. (10) or its relaxed form in

Eq. (40) enables the construction of sub-Hilbert space. Based on this possibility

we consider a prescription first for constructing the sub-Hilbert space that

extends to the full configuration space and then, as a second step, constructing of

the sub sub-Hilbert space that extends only to (a finite) portion of configuration

space.

In the study of (electronic) curve crossing problems, one distinguishes

between a situation where two electronic curves, EjðRÞ; j ¼ 1; 2, approach each

other at a point R ¼ R0 so that the difference �EðR ¼ R0Þ ¼ E2ðR ¼ R0Þ� E1

is relatively small and a situation where the two electronic curves interact so

that �EðRÞ � Const is relatively large. The first case is usually treated by the

Landau–Zener formula [87–92] and the second is based on the Demkov

approach [93]. It is well known that whereas the Landau–Zener type interactions are
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strong enough to cause transitions between two adiabatic states, the Demkov-

type interactions are usually weak and affect the motion of the interacting

molecular species relatively slightly. The Landau–Zener situation is the one that

may become the Jahn–Teller conical intersection in two dimensions [15–21].

We shall also include the Renner–Teller parabolic intersection [15,22,26,83],

although it is characterized by two interacting potential energy surfaces that

behave quadratically (and not linearly as in the Landau–Zener case) in the

vicinity of the above mentioned degeneracy point.

A. The Construction of Sub-Hilbert Spaces

By following Section II.B, we shall be more specific about what is meant by

‘‘strong’’ and ‘‘weak’’ interactions. It turns out that such a criterion can be

assumed, based on whether two consecutive states do, or do not, form a conical

intersection or a parabolical intersection (it is important to mention that only

consecutive states can form these intersections). The two types of intersections

are characterized by the fact that the nonadiabatic coupling terms, at the points of

the intersection, become infinite (these points can be considered as the ‘‘black

holes’’ in molecular systems and it is mainly through these ‘‘black holes’’ that

electronic states interact with each other.). Based on what was said so far we

suggest breaking up complete Hilbert space of size N into L sub-Hilbert spaces of

varying sizes NP;P ¼ 1; . . . ; L where

N ¼
XL

P¼1

NP: ð88Þ

(L may be finite or infinite.)

Before we continue with the construction of the sub-Hilbert spaces, we make

the following comment: Usually, when two given states form conical intersections,

one thinks of isolated points in configuration space. In fact, conical intersections

are not points but form (finite or infinite) seams that ‘‘cut’’ through the

molecular configuration space. However, since our studies are carried out for

planes, these planes usually contain isolated conical intersection points only.

The criterion according to which the break-up is carried out is based on

the non-adiabatic coupling term sij as were defined in Eq. (8a). In what follows,

we distinguish between two kinds of non-adiabatic coupling terms: (1) The

intra-non-adiabatic coupling terms sðPÞij , which are formed between two

eigenfunctions belonging to a given sub-Hilbert space, namely, the Pth sub-

space:

sðPÞij ¼ hz
ðPÞ
i jrz

ðPÞ
j i i; j ¼ 1; . . . ;NP ð89Þ
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and (2) Inter-non-adiabatic coupling terms sðP;QÞij , which are formed between two

eigenfunctions, the first belonging to the Pth sub-space and the second to the Qth

sub-space:

sðP;QÞij ¼ hzðPÞi jrz
ðQÞ
j i i ¼ 1; . . . ;NP j ¼ 1; . . . ;NQ ð90Þ

The Pth sub-Hilbert space is defined through the following two requirements:

1. All Np states belonging to the Pth sub-space interact strongly with

each other in the sense that each pair of consecutive states have at least

one point where they form a Landau–Zener type interaction. In other

words, all sðPÞjjþ1; j ¼ 1; . . . :;NP � 1 form at least at one point in configura-

tion space, a conical (parabolical) intersection.

2. The range of the Pth sub-space is defined in such a way that the lowest

(or the first) state and the highest (the NPth) state that belong to this sub-

space form Demkov-type interactions with the highest state belonging to

the lower (P� 1)th sub-space and with the lowest state belonging to the

upper (Pþ 1)th sub-space, respectively (see Fig. 2). In other words, the

two non-adiabatic coupling terms fulfill the conditions:

sðP�1;PÞ
NP�11 � OðeÞ and sðP;Pþ1Þ

NP1 � OðeÞ ð91Þ

At this point, we make two comments: (a) Conditions (1) and (2) lead to a

well-defined sub-Hilbert space that for any further treatments (in spectroscopy

or scattering processes) has to be treated as a whole (and not on a ‘‘state by

state’’ level). (b) Since all states in a given sub-Hilbert space are adiabatic

states, strong interactions of the Landau–Zener type can occur between two

consecutive states only. However, Demkov-type interactions may exist between

any two states.

B. The Construction of Sub-Sub-Hilbert Spaces

As we have seen, the sub-Hilbert spaces are defined for the whole configuration

space and this requirement could lead, in certain cases, to situations where it will

be necessary to include the complete Hilbert space. However, it frequently

happens that the dynamics we intend to study takes place in a given, isolated,

region that contains only part of the conical intersection points and the question

is whether the effects of the other conical intersections can be ignored?

The answer to this question can be given following a careful study of these

effects employing the line integral approach presented in terms of Eq. (27).

For this purpose, we analyze what happens along a certain line � that surrounds
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one or several conical intersections. To continue, we employ the same procedure

as discussed in Section IV.B: We break up the adiabatic-to-diabatic trans-

formation matrix A and the s matrix as written in Eq. (43). In this way, we can

show that if, along the particular line �, the noninteresting parts of the s matrix

are of order e the error expected for the interesting part in the A matrix is of

order Oðe2Þ [81]. If this happens for any contour in this region, then we can

ignore the effects of conical intersection that are outside this region and carry

out the dynamic calculations employing the reduced set of states.

VII. THE TOPOLOGICAL SPIN

Before we continue and in order to avoid confusion, two matters have to be

clarified: (1) We distinguished between two types of Landau–Zener situations,

which form (in two dimensions) the Jahn–Teller conical intersection and the

Renner–Teller parabolical intersection. The main difference between the two is

Figure 2. A schematic picture describing the three consecutive sub-Hilbert spaces, namely, the

(P� 1)th, the Pth, and the (Pþ 1)th. The dotted lines are separation lines.
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that the parabolical intersections do not produce topological effects and therefore,

as far as this subject is concerned, they can be ignored. Making this distinction

leads to the conclusion that the more relevant magnitude to characterize

topological effects, for a given sub-space, is not its dimension M but

NJ , the number of conical intersections. (2) In general, one may encounter more

than one conical intersection between a pair of states [12,22,26,66,74]. However,

to simplify the study, we assume one conical intersection for a pair of states

so that ðNJ þ 1Þ stands for the number of states that form the conical inter-

sections.

So far, we introduced three different integers M, NJ , and K. As mentioned

earlier, M is a characteristic number of the sub-space (see Section VI.B) but is

not relevant for topological effects; instead NJ , as just mentioned, is a

characteristic number of the sub-space and relevant for topological effects, and

K, the number of (�1) terms in the diagonal of the topological matrix D
(or the number of eigenstates that flip sign while the electronic manifold traces a

closed contour) is relevant for topological effects but may vary from one

contour to another, and therefore is not a characteristic feature for a given

sub-space.

Our next task is to derive all possible K values for a given NJ . First, we

refer to a few special cases: It was shown before that in case of NJ ¼ 1 the D
matrix contains two (�1) terms in its diagonal in case the contour surrounds

the conical intersection and no (�1) terms when the contour does not surround

the conical intersection. Thus the allowed values of K are either 2 or 0. The

value K ¼ 1 is not allowed. A similar inspection of the case NJ ¼ 2 reveals that

K, as before, is equal either to 2 or to 0 (see Section V.B). Thus the values K ¼ 1

or 3 are not allowed. From here, we continue to the general case and prove the

following statement:

In any molecular system, K can attain only even integers in the range [9]:

K ¼ f0; 2; . . . ;KJg
KJ ¼ NJ NJ ¼ 2p

KJ ¼ ðNJ þ 1Þ NJ ¼ 2pþ 1

�
ð92Þ

where p is an integer.

The proof is based on Eq. (87). Let us assume that a certain closed contour

yields a set of aij angles that produce a number K. Next, we consider a slightly

different closed contour, along which one of these aij parameters, say ast,

changed its value from zero to p. From Eq. (87), it can be seen that only two D
matrix elements contain cosðastÞ, namely, Dss and Dtt. Now, if these two matrix

elements were positive following the first contour, then changing ast from

0! p would produce two additional (�1) terms, thus increasing K to K þ 2; if

these two matrix elements were negative, this change would cause K to decrease

to K � 2; and if one of these elements was positive and the other negative, then

the electronic non-adiabatic coupling term 71



changing ast from 0! p would not affect K. Thus, immaterial to the value of

NJ , the various K values differ from each other by even integers only. Now, since

any set of K values also contains the value K ¼ 0 (the case when the closed loop

does not surround any conical intersections), this implies that K can attain only

even integers. The final result is the set of values presented in Eq. (92).

The fact that there is a one-to-one relation between the (�1) terms in the

diagonal of the topological matrix and the fact that the eigenfunctions flip sign

along closed contours (see discussion at the end of Section IV.A) hints at the

possibility that these sign flips are related to a kind of a spin quantum number

and in particular to its magnetic components.

The spin in quantum mechanics was introduced because experiments

indicated that individual particles are not completely identified in terms of their

three spatial coordinates [87]. Here we encounter, to some extent, a similar

situation: A system of items (i.e., distributions of electrons) in a given point in

configuration space is usually described in terms of its set of eigenfunctions.

This description is incomplete because the existence of conical intersections

causes the electronic manifold to be multivalued. For example, in case of two

(isolated) conical intersections we may encounter at a given point in configuration

space four different sets of eigenfunctions (see Section VIII).

ðaÞ ðz1; z2; z3Þ
ðbÞ ð�z1;�z2; z3Þ
ðcÞ ðz1;�z2;�z3Þ
ðdÞ ð�z1; z2;�z3Þ

ð93Þ

In case of three conical intersections, we have as many as eight different sets of

eigenfunctions, and so on. Thus we have to refer to an additional characterization

of a given sub-sub-Hilbert space. This characterization is related to the number

NJ of conical intersections and the associated possible number of sign flips due to

different contours in the relevant region of configuration space, traced by the

electronic manifold.

In [7,8,80], it was shown that in a two-state system the nonadiabatic coupling

term, t12, has to be ‘‘quantized’’ in the following way:ð

‘

�

s12ðs0Þ � ds0 ¼ np ð94Þ

where n is an integer (in order to guarantee that the 2� 2 diabatic potential be

single valued in configuration space). In case of conical intersections, this

number has to be an odd integer and for our purposes it is assumed to be n ¼ 1.

Thus each conical intersection can be considered as a ‘‘spin.’’ Since in a given
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sub-space NJ conical intersections are encountered, we could define the spin J of

this sub-space as (NJ=2). However, this definition may lead to more sign flips

than we actually encounter (see Section VIII). In order to make a connection

between J and NJ as well as with the ‘‘magnetic components’’ MJ of J and the

number of the actual sign flips, the spin J has to be defined as [9]:

J ¼ 1

2

KJ

2

KJ ¼ NJ NJ ¼ 2p

KJ ¼ ðNJ þ 1Þ NJ ¼ 2pþ 1

�
ð95Þ

and, accordingly, the various MJ values are defined as

MJ ¼ J � K=2 where K ¼ f0; 2; . . . ;KJg ð96Þ

For the seven lowest NJ values, we have the following assignments:

For NJ ¼ 0 fJ ¼ 0 MJ ¼ 0g
For NJ ¼ 1 fJ ¼ 1=2 MJ ¼ 1=2;�1=2g
For NJ ¼ 2 fJ ¼ 1=2 MJ ¼ 1=2;�1=2g
For NJ ¼ 3 fJ ¼ 1 MJ ¼ 1; 0;�1g
For NJ ¼ 4 fJ ¼ 1 MJ ¼ 1; 0;�1g
For NJ ¼ 5 fJ ¼ 3=2 MJ ¼ 3=2; 1=2;�1=2;�3=2g
For NJ ¼ 6 fJ ¼ 3=2 MJ ¼ 3=2; 1=2;�1=2;�3=2g
For NJ ¼ 7 fJ ¼ 2 MJ ¼ 2; 1; 0;�1;�2g

ð97Þ

The general formula and the individual cases as presented in Eq. (97)

indicate that indeed the number of conical intersections in a given sub-space and

the number of possible sign flips within this sub-sub-Hilbert space are

interrelated, similar to a spin J with respect to its magnetic components MJ . In

other words, each decoupled sub-space is now characterized by a spin quantum

number J that connects between the number of conical intersections in this

system and the topological effects which characterize it.

VIII. AN ANALYTICAL DERIVATION FOR THE POSSIBLE
SIGN FLIPS IN A THREE-STATE SYSTEM

In Section IX, we intend to present a geometrical analysis that permits some

insight with respect to the phenomenon of sign flips in an M-state system

(M > 2). This can be done without the support of a parallel mathematical study

[9]. In this section, we intend to supply the mathematical foundation (and

justification) for this analysis [10,12]. Thus employing the line integral approach,

we intend to prove the following statement:
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If a contour in a given plane surrounds two conical intersections belonging

to two different (adjacent) pairs of states, only two eigenfunctions flip sign—the

one that belongs to the lowest state and the one that belongs to the highest one.

To prove this, we consider the following three regions (see Fig. 3): In the first

region, designated s12, is located the main portion of the interaction, t12,

between states 1 and 2 with the point of the conical intersection at C12. In the

second region, designated as s23, is located the main portion of the interaction,

t23, between states 2 and 3 with the point of the conical intersection at C23.

In addition, we assume a third region, s0, which is located in-between the two

and is used as a buffer zone. Next, it is assumed that the intensity of the

interactions due to the components of t23 in s12 and due to t12 in s23 is � 0. This

situation can always be achieved by shrinking s12ðs23Þ toward its correspond-

ing center C12ðC23Þ. In s0, the components of both t12 and t23 may be of

arbitrary magnitude but no conical intersection of any pair of states is allowed to

be there.

Figure 3. The breaking up of a region s, which contains two conical intersections (at C12 and

C23), into three subregions: (a) The full region s defined in terms of the closed contour �. (b) The

region s12, which contains a conical intersection at C12 and is defined by the closed contour �12.

(c) The region s0, which is defined by the closed contour �0 and does not contain any conical

intersection. (d) The region s23, which contains a conical intersection at C23 and is defined by the

closed contour �23. It can be seen that � ¼ �12 þ �0 þ �23.
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To prove our statement, we consider the line integral [see Eq. (27)]:

A ¼ A0 �
ð

‘

�

ds � sA ð98Þ

where the integration is carried out along a closed contour �, A is the 3� 3

adiabatic-to-diabatic transformation matrix to be calculated, the dot stands for a

scalar product, and s is the matrix of 3� 3 that contains the two non-adiabatic

coupling terms, namely,

sðsÞ ¼
0 t12 0

�t12 0 t23

0 �t23 0

0
@

1
A ð99Þ

Note the components of t13 � 0. This assumption is not essential for the proof,

but simplifies the derivation.

The integral in Eq. (98) will now be presented as a sum of three integrals (for

a detailed discussion on that subject: see Appendix C), namely,

A ¼ A0 �
ð

‘

�12

ds � sA�
ð

‘

�0

ds � sA�
ð

‘

�23

ds � sA ð100Þ

Since there is no conical intersection in the buffer zone, s0, the second integral is

zero and can be deleted so that we are left with the first and the third integrals. In

general, the calculation of each integral is independent of the other; however, the

two calculations have to yield the same result, and therefore they have to be

interdependent to some extent. Thus we do each calculation separately but for

different (yet unknown) boundary conditions: The first integral will be done for

G12 as a boundary condition and the second for G23. Thus A will be calculated

twice:

A ¼ Gij �
ð

‘

�ij

ds � sA ð101Þ

Next are introduced the topological matrices D, D12, and D23, which are related

to A in the following way [see Eq. (39)]:

A ¼ DA0 ð102aÞ
A ¼ D12G12 ð102bÞ
A ¼ D23G23 ð102cÞ
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The three equalities can be fulfilled if and only if the two G matrices, namely,

G12 and G23, are chosen to be

G12 ¼ D23A0 and G23 ¼ D12A0 ð103Þ

Since the D matrices are diagonal the same applies to D12 and D23 so that D
becomes

D ¼ D13 ¼ D12D23 ð104Þ

Our next task will be to obtain D12 and D23. For this purpose, we consider s12 and

s23—the two partial s matrices—defined as follows:

s12ðsÞ ¼
0 t12 0

�t12 0 0

0 0 0

0
@

1
A and s23ðsÞ ¼

0 0 0

0 0 t23

0 �t23 0

0
@

1
A ð105Þ

so that

s ¼ s12 þ s23 ð106aÞ

We start with the first of Eqs. (101), namely,

A ¼ G12 �
ð

‘

�ij

ds � s12A ð107Þ

where s12 replaces s because s23 is assumed to be negligibly small in s12. The

solution and the corresponding D matrix, namely, D12 are well known (see

discussion in Sections V.A.1 and V.B). Thus

D12 ¼
�1 0 0

0 �1 0

0 0 1

0
@

1
A ð108Þ

which implies (as already explained in Section IV.A) that the first (lowest) and

the second functions flip sign. In the same way, it can be shown that D23 is equal

to

D23 ¼
1 0 0

0 �1 0

0 0 �1

0
@

1
A ð109Þ
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which shows that the second and the third (the highest) eigenfunctions flip sign.

Substituting Eqs. (108) and (109) in Eq. (104) yields the following result for D13:

D13 ¼
�1 0 0

0 1 0

0 0 �1

0
@

1
A ð110Þ

In other words, surrounding the two conical intersections indeed leads to the flip

of sign of the first and the third eigenfunctions, as was claimed.

This idea can be extended, in a straightforward way, to various situations as

will be done in Section IX.

IX. THE GEOMETRICAL INTERPRETATION FOR SIGN FLIPS

In Sections V and VII, we discussed the possible K values of the D matrix and

made the connection with the number of signs flip based on the analysis given in

Section IV.A. Here, we intend to present a geometrical approach in order to gain

more insight into the phenomenon of signs flip in the M-state system (M > 2).

As was already mentioned, conical intersections can take place only between

two adjacent states (see Fig. 4). Next, we make the following definitions:

1. Having two consecutive states j and (jþ 1), the two form the conical

intersection to be designated as Cj as shown in Figure 4, where NJ conical

intersection are presented.

Figure 4. Four interacting adiabatic surfaces presented in terms of four adiabatic curves. The

points Cj; j ¼ 1,2,3, stand for the three conical intersections.
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2. The contour that surrounds a conical intersection at Cj will be designated

as �jjþ1 [see Fig. 5(a)].

3. A contour that surrounds two consecutive conical intersections that is, Cj

and Cjþ1 will be designated as �jjþ2 [see Fig. 5(b)]. In the same way a

contour that surrounds n consecutive conical intersections namely Cj;
Cjþ1 . . .Cjþn will be designated as �jjþn [see Fig. 5(c) for NJ ¼ 3].

4. In case of three conical intersections or more, a contour that surrounds Cj

and Ck but not the in-between conical intersections will be designated as

�j;k. Thus, for example, �1;3 surrounds C1 and C3 but not C2 (see Fig. 5d).

We also introduce an algebra of closed contours based on the analysis given

in Section VIII (see also Appendix C):

�jn ¼
Xn�1

k¼j

�kkþ1 ð111Þ

and also

�j;k ¼ �jjþ1 þ �kkþ1 where ðk > jþ 1Þ ð112Þ

This algebra implies that in case of Eq. (111) the only two functions (out of n)

that flip sign are z1 and zn because all in-between z functions get their sign

flipped twice. In the same way, Eq. (112) implies that all four electronic

functions mentioned in the expression, namely, the jth and the (jþ 1)th, the kth

and the (k þ 1)th, all flip sign. In what follows, we give a more detailed

explanation based on the mathematical analysis of the Section VIII.

In Sections VII and VIII, it was mentioned that K yields the number of

eigenfunctions that flip sign when the electronic manifold traces certain closed

paths. In what follows, we shall show how this number is formed for various NJ

values.

The situation is obvious for NJ ¼ 1. Here, the path either surrounds or does

not surround a C1. In case it surrounds it, two functions, that is, z1 and z2, flip

sign so that K ¼ 2 and if it does not surround it no z function flips sign and

K ¼ 0. In case of NJ ¼ 2, we encounter two conical intersections, namely, C1

and the C2 (see Fig. 5a and 5b). Moving the electronic manifold along the path

�12 will change the signs of z1 and z2, whereas moving it along the path �23 will

change the signs z2 and z3. Next, moving the electronic manifold along the path,

�13 (and Fig. 5b) causes the sign of z2 to be flipped twice (once when

surrounding C1 and once when surrounding C2) and therefore, altogether, its

sign remains unchanged. Thus in the case of NJ ¼ 2 we can have either no

change of sign (when the path does not surround any conical intersection) or

three cases where two different functions change sign.
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Figure 5. The four interacting sur-

faces, the three points of conical intersec-

tion and the various contours leading to

sign conversions: (a) The contours �jjþ1

surrounding the respective Cj; j ¼ 1; 2; 3

leading to the sign conversions of the jth

and the ( jþ 1)th eigenfunctions. (b) The

contours �jjþ2 surrounding the two (re-

spective) conical intersections namely Cj

and Cjþ1; j ¼ 1; 2 leading to the sign

conversions of the jth and the ( jþ 2)th

eigenfunctions but leaving unchanged the

sign of the middle, the ( jþ 1), eigenfunc-

tion. Also shown are the contours �jjþ1

surrounding the respective Cj; j ¼ 1; 2; 3

using partly dotted lines. It can be seen that

�jjþ2 ¼ �jjþ1 þ �jþ1jþ2. (c) The contour

�14 surrounding the three conical intersec-

tions, leading to the sign conversions of the

first and the fourth eigenfunctions but

leaving unchanged the signs of the second

and the third eigenfunctions. Based on

Figure (5b) we have �14 ¼ �12 þ �23 þ
�34: (d) The contour �1;3 surrounding the

two external conical intersections but not

the middle one, leading to the sign con-

versions of all four eigenfunctions, that is,

ðz1; z2; z3; z4Þ;! ð�z1; �z2; _�z3; �z4Þ.
Based on Figure (5b) we have �1;3 ¼
�12 þ �34.
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A somewhat different situation is encountered in case of NJ ¼ 3, and

therefore we shall briefly discuss it as well (see Fig. 5d). It is now obvious that

contours of the type �jjþ1; j ¼ 1; 2; 3 surround the relevant Cj (see Fig. 5a) and

will flip the signs of the two corresponding eigenfunctions. From Eq. (111), we

get that surrounding two consecutive conical intersections, namely, Cj and Cjþ1,

with �jjþ2; j ¼ 1; 2 (see Fig. 5b), will flip the signs of the two external

eigenfunctions, namely, zj and zjþ2, but leave the sign of zjþ1 unchanged. We

have two such cases—the first and the second conical intersections and the

second and the third ones. Then we have a contour �14 that surrounds all three

conical intersections (see Fig. 5c) and here, like in the previous where NJ ¼ 2

[see also Eq. (111)], only the two external functions, namely, z1 and z4 flip sign

but the two internal ones, namely, z2 and z3, will be left unchanged. Finally,

we have the case where the contour �1;3 surrounds C1 and C3 but not C2 (see

Fig. 5d). In this case, all four functions flip sign [see Eq. (112)].

We briefly summarize what we found in this NJ ¼ 3 case: We revealed six

different contours that led to the sign flip of six (different) pairs of functions

and one contour that leads to a sign flip of all four functions. The analysis of

Eq. (87) shows that indeed we should have seven different cases of sign flip and

one case without sign flip (not surrounding any conical intersection).

X. THE MULTIDEGENERATE CASE

The emphasis in our previous studies was on isolated two-state conical

intersections. Here, we would like to refer to cases where at a given point three

(or more) states become degenerate. This can happen, for example, when two

(line) seams cross each other at a point so that at this point we have three surfaces

crossing each other. The question is: How do we incorporate this situation into

our theoretical framework?

To start, we restrict our treatment to a tri-state degeneracy (the generalization

is straightforward) and consider the following situation:

1. The two lowest states form a conical intersection, presented in terms of

t12ðrÞ, located at the origin, namely, at r ¼ 0.

2. The second and the third states form a conical intersection, presented in

terms of s23ðr;j j r0;j0Þ, located at r ¼ r0, j ¼ j0 [24].

3. The tri-state degeneracy is formed by letting r0 ! 0, namely,

lim
r0!0

s23ðr;j j r0;j0Þ ¼ s23ðr;jÞ ð113Þ

so that the two conical intersections coincide. Since the two conical intersections

are located at the same point, every closed contour that surrounds one of them

will surround the other so that this situation is the case of one contour �ð¼ �13Þ
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surrounding two conical intersections (see Fig. 5b). According to the discussion

of Section IX, only two functions will flip signs (i.e., the lowest and the highest

one). Extending this case to an intersection point of n surfaces will not change the

final result, namely, only two functions will flip signs, the lowest one and the

highest one.

This conclusion contradicts the findings discussed in Sections V.A.2 and

V.A.3. In Section V.A.2, we treated a three-state model and found that functions

can never flip signs. In Section V.A.3, we treated a four-state case and found

that either all four functions flip their sign or none of them flip their sign. The

situation where two functions flip signs is not allowed under any conditions.

Although the models mentioned here are of a very specialized form (the non-

adiabatic coupling terms have identical spatial dependence), still the fact that

such contradictory results are obtained for the two situations could hint to the

possibility that in the transition process from the nondegenerate to the

degenerate situation, in Eq. (113), something is not continuous.

To date, this contradiction has not been resolved but we still would like to

make the following suggestion. In molecular physics, we may encounter two

types of multidegeneracy situations: (1) The one described above is formed

from an aggregation of two-state conical intersections and depends on external

coordinates (the coordinates that form the seam). Thus this multidegeneracy is

created by varying these external coordinates in a proper way. In the same way,

the multidegeneracy can be removed by varying these coordinates. Note that

this kind of a degeneracy is not an essential degeneracy because the main

features of the individual conical intersections are unaffected while assembling

or disassembling this degeneracy. We shall term this degeneracy as a breakable

multidegeneracy. (2) The other type mentioned above is the one that is not

formed from an aggregation of conical intersections and therefore will not

breakup under any circumstances. Therefore, this degeneracy is termed the

unbreakable multidegeneracy.

XI. THE NECESSARY CONDITIONS FOR A RIGOROUS
MINIMAL DIABATIC POTENTIAL MATRIX

This Section considers one of the more important dilemmas in molecular

physics: Given a Born–Oppenheimer–Huang system, what is the minimal sub-

Hilbert space for which diabatization is still valid.

A. Introductory Comments

When studying molecular systems one encounters two almost insurmountable

difficulties: (1) That of numerically treating the non-adiabatic coupling terms

that are not only spiky—a feature that is in itself a ‘‘recipe’’ for numerical
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instabilities—but also, singular. (2) That of having to consider large portions of

the Hilbert space. As we will show in this section, the two apparently unrelated

difficulties are strongly interrelated. Moreover, we will show that resolving the

first difficulty may, in many cases, also settle the second.

As discussed earlier, one distinguishes between (1) the adiabatic framework

that is characterized by the adiabatic surfaces and the non-adiabatic (derivative)

coupling terms and (2) the diabatic framework that is characterized by the fact

that derivative couplings are eliminated and replaced by (smoothly behaving)

potential couplings. Because of the unpleasant features of the non-adiabatic

coupling terms the dynamics is expected to be more easily carried out within the

diabatic framework. Therefore, transforming to the diabatic framework (also to

be termed diabatization) is the right thing to do when treating the multistate

problem as created by the Born–Oppenheimer–Huang approach [1,2]. However,

because the non-adiabatic coupling terms are frequently singular functions may

cause difficulties and therefore the diabatization becomes more of a theoretical–

mathematical problem rather than a numerical one.

In 1975, Baer suggested that the diabatic arrangement be reached by first

forming the adiabatic framework and then transforming it to the diabatic one by

employing the non-adiabatic coupling terms [34]. This approach becomes

particularly simple when applied to two states, because it amounts to the

calculation of an angle (related to a 2� 2 orthogonal matrix), which is formed

by integration over the (1,2) non-adiabatic coupling term along a given contour

[34–36]. This approach was successfully employed to treat charge-transfer

processes [54,94–97], which until that time were solely carried out using

classical trajectories [3,98,99], reactive exchange processes between neutrals

[100–102] and photodissociation processes [103,104].

Because of difficulties in calculating the non-adiabatic coupling terms, this

method did not become very popular. Nevertheless, this approach, was

employed extensively in particular to simulate spectroscopic measurements,

with a ‘‘modification’’ introduced by Macias and Riera [47,48]. They suggested

looking for a symmetric operator that behaves ‘‘violently’’ at the vicinity of

the conical intersection and use it, instead of the non-adiabatic coupling term, as

the integrand to calculate the adiabatic-to-diabatic transformation. Conse-

quently, a series of operators such as the electronic dipole moment operator, the

transition dipole moment operator, the quadrupole moment operator, and so on,

were employed for this purpose [49,52,53,105]. However, it has to be empha-

sized that immaterial to the success of this approach, it is still an ad hoc

procedure.

For example, there are also other approaches by Pacher et al. [106], Romero

et al. [107], Sidis [40], and Domcke and Stock [42], which developed recipes for

construction ab initio diabatic states. These methods can be efficient as long as

one encounters, at most, one isolated conical intersection in a given region in
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configuration space but have to be further developed, if several conical

intersections are located at the region of interest.

Now we intend to present the purpose of this section. In order to do this in a

comprehensive way, we need to explain what is meant, within the present

framework, by the statement that ‘‘the diabatization is non-physical.’’ The procedure

discussed above is based on a transformation matrix of a dimension M derived

within a sub-Hilbert space of the same dimension. The statement ‘‘a

diabatization is non-physical’’ implies that some of the elements of the diabatic

matrix formed in this process are multivalued in configuration space. (In this

respect, it is important to emphasize that the nuclear Schrödinger equation

cannot be solved for multivalued potentials.) We show that if an M-dimensional

sub-Hilbert space is not large enough, some elements of the diabatic potential

matrix will not be single valued. Thus a resolution to this difficulty seems to be

in increasing the dimension of the sub-Hilbert space, that is, the value of M.

However, increasing M indefinitely will significantly increase the computational

volume. Therefore it is to everyone’s interest to keep M as small as possible.

Following this explanation, we can now state the purpose of this section:

We intend to show that an adiabatic-to-diabatic transformation matrix based

on the non-adiabatic coupling matrix can be used not only for reaching the dia-

batic framework but also as a mean to determine the minimum size of a sub-Hilbert

space, namely, the minimal M value that still guarantees a valid diabatization.

For example: one forms, within a two-dimensional (2D) sub-Hilbert space, a

2� 2 diabatic potential matrix, which is not single valued. This implies that

the 2D transformation matrix yields an invalid diabatization and therefore the

required dimension of the transformation matrix has to be at least three. The

same applies to the size of the sub-Hilbert space, which also has to be at least

three. In this section, we intend to discuss this type of problems. It also leads us

to term the conditions for reaching the minimal relevant sub-Hilbert space as

‘‘the necessary conditions for diabatization.’’

In this section, diabatization is formed employing the adiabatic-to-diabatic

transformation matrix A, which is a solution of Eq. (19). Once A is calculated,

the diabatic potential matrix W is obtained from Eq. (22). Thus Eqs. (19) and

(22) form the basis for the procedure to obtain the diabatic potential matrix

elements.

Note that since the adiabatic potentials are single valued by definition, the

single valuedness of W (viz, the single valuedness of each of its terms) depends

on the features of the A matrix [see Eq. (22)]. It is also obvious that if A is

single valued, the same applies to W [the single valuedness of the A matrix in a

given region is guaranteed if Eq. (25) is fulfilled throughout this region].

However, in Section (IV.A) we showed that A does not have to be single valued

in order to guarantee the single valuedness of W. In fact, it was proved that the

necessary condition for having single-valued diabatic potentials along a given
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contour � is that the D matrix introduced in Eq. (38) is diagonal with numbers

of norm 1, namely, numbers that are either (þ1) or (�1). If this condition

is fulfilled for every contour in the region of interest, then we may say that for

this particular dimension M the diabatic potential is single valued or in other

words the diabatization is valid. However, if this condition is fulfilled for a give

value M but not for (M � 1), then M is the minimal value for which diabatization

is valid in this particular case.

According to Section VI, the size M of the sub-Hilbert space is determined

whether the respective M states form an isolated set of states fulfilling Eqs. (91).

In this case, diabatization is always valid for this subsystem. However, it can

happen that under certain geometrical situations the size of the sub-Hilbert

space for which diabatization is valid is even smaller than this particular M

Figure 6. Equi-nonadiabatic coupling lines for the terms s12ðx; yÞ and s23ðx; yÞ as calculated

for the C2H molecule for a fixed C��C distance, that is, rCC ¼ 1:35 Å. (a) Equi-non-adiabatic

coupling term lines for the s12ðx; yÞ. (b) Equi-non-adiabatic coupling term lines for s23ðx; yÞ. The

Cartesian coordinates (x; y) are related to (q; y) as follows: x ¼ q cosy; y ¼ q siny, where q and y are

measured with respect to the midpoint between the two carbons.
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value. These geometrical situations are considered in Section XI.B, and to

simplify the discussion we refer to M ¼ 3.

B. The Noninteracting Conical Intersections

Let us consider a system of three states where the two lower states are coupled by

s12ðsÞ and the two upper ones by s23ðsÞ (see Section VIII for details). By the

concept ‘‘noninteracting conical intersections’’ we mean the case where the

spatial distribution of s12ðsÞ and s23ðsÞ is such that they overlap only slightly at

the region of interest. As an example we may consider a case where the main

intensity of s12ðsÞ is concentrated along one ridge and the main intensity of s23ðsÞ
is concentrated along another ridge. Next, we assume that these two ridges are

approximately parallel and located far enough apart so that the overlap between

s12ðsÞ and s23ðsÞ is minimal (see Figs. 6 and 7).

We are interested in calculating the diabatic potentials for a region in

configuration space, that contains the two conical intersections. According

Figure 6 (Continued)
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to Section VI, for this purpose we need the three states because the two

lowest states (1 and 2) and the two highest states (2 and 3) are strongly

coupled to each other. Next, we examine to see if under these conditions this is

really necessary or could the diabatization be achieved with only the two lowest

states.

For this purpose, we consider Figure 8 with the intention of examining what

happens along the contour �, in particularly when it gets close to C23. Note that

some segments of the contour � are drawn as full lines and others are as dashed

lines. The full lines denote segments along which s12ðsÞ is of a strong intensity

but s23ðsÞ is negligibly weak. The dashed lines denote segments along which

s12ðsÞ is negligibly weak.

Next, consider the following line integral [see Eq. (27)]:

AðsÞ ¼ Aðs0Þ �
ðs

s0

ds � sA ð114Þ

Figure 7. The geometrical positions (with respect to the CC axis) of s12ðx; yÞ and s23ðx; yÞ. All

distances are in angstroms (Å). The Cartesian coordinates (x; y) are related to (q; y) as follows:

x ¼ q cosy; y ¼ q siny, where q and y are measured with respect to the midpoint between the two

carbons.
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where AðsÞ and sðsÞ are of dimensions 3� 3 [the explicit form of sðsÞ is given in

Eq. (99)]. We also consider the two other s matrices, namely, s12ðsÞ and s23ðsÞ
(see Eq. (105)] and it is easy to see that

sðsÞ ¼ s12ðsÞ þ s23ðsÞ ð106bÞ

Figure 8. The representation of an open contour � in terms of an open contour �12 in the

vicinity of the conical intersection at C12 and a closed contour �23 at the vicinity of a conical

intersection at C23: � ¼ �12 þ �23. It is assumed that the intensity of s12 is strong along �12 (full

line) and weak along �23 (dashed line). (a) The situation when C23 is outside the closed contour �23.

(b) The situation when C23 is inside the closed contour �23.
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To continue, the contour �, along which the integration in Eq. (114) is carried

out, is assumed to be the sum of two contours [see Fig. 8]:

� ¼ �12 þ �23 ð115Þ

where �23 is a closed contour in the vicinity of C23 that may or may not

surround it and �12 is an open contour near C12. By substituting Eq. (115) in (114)

we get

AðsÞ ¼ Aðs0Þ �
ð
�12

ds0 � sðs0ÞAðs0Þ �
ð

‘

�23

ds0 � sðs0ÞAðs0Þ ð116Þ

Next, by recalling the assumptions concerning the intensities of s12ðsÞ and s23ðsÞ
we replace sðsÞ, in the second term of Eq. (116) with s12ðsÞ and in the third term

with s23ðsÞ. As a result Eq. (116) becomes

AðsÞ ¼ Aðs0Þ �
ð
�12

ds0 � s12ðs0ÞAðs0Þ �
ð

‘

�23

ds0 � s23ðs0ÞAðs0Þ ð117Þ

By defining A23 as the following (constant) matrix,

A23 ¼ Aðs0Þ �
ð

‘

�23

ds0 � s23ðs0ÞAðs0Þ ð118Þ

Eq. (117) becomes

AðsÞ ¼ A23 �
ð
�12

ds0 � s12ðs0ÞAðs0Þ ð119Þ

where the matrix A23 is the corresponding ‘‘boundary’’ value matrix. As for A23,

it is noticed to be the solution of Eq. (118), namely, the outcome of an integration

performed along a closed contour (�23) where s23 is the kernel. Consequently,

this matrix can be presented as [see Eq. (39)]:

A23 ¼ D23Aðs0Þ ð120Þ

where from the analysis in Section VIII we get that D23 will have a (þ1) at

position (1,1) and a (�1) at positions (2,2) and (3,3) when it surrounds the

conical intersection at C23.

Now, by returning to Eq. (119) it can be shown that if A12 is the solution of

the equation

A12ðsÞ ¼ A0 þ
ð
�12

ds0 � s12ðs0ÞA12ðs0Þ ð121Þ
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where the contour �12 can be any contour, then

AðsÞ ¼ D23A12ðsÞ ð122Þ

To summarize: Following the theory presented above, we have to distinguish

between two situations. (1) As long as � does not surround C23 the matrix AðsÞ
is given in the form

AðsÞ ¼
cosg12 sing12 0

�sing12 cosg12 0

0 0 1

0
@

1
A ð123Þ

where g12ðsÞ is given in the form

g12ðsÞ ¼ g12ðs0Þ �
ðS

s0

ds � s12ðsÞ ð124Þ

(2) In the case where � surrounds the C23 conical intersection, the value of g12ðsÞ
may change its sign (for more details see Ref. [108]).

Since for any assumed contour the most that can happen, due to C23, is that

g12ðsÞ flips its sign, the corresponding 2� 2 diabatic matrix potential, WðsÞ,
will not be affected by that as can be seen from the following expressions:

W11ðsÞ ¼ u1ðsÞcos2g12ðsÞ þ u2ðsÞsin2g12ðsÞ

W22ðsÞ ¼ u1ðsÞsin2g12ðsÞ þ u2ðsÞcos2g12ðsÞ

W12ðsÞ ¼ W21ðsÞ ¼
1

2
ðu2ðsÞ � u1ðsÞÞsinð2g12ðsÞÞ

ð125Þ

In other words, the calculation of W can be carried out by ignoring C23 [or s23ðsÞ]
altogether.

XII. THE ADIABATIC-TO-DIABATIC TRANSFORMATION
MATRIX AND THE WIGNER ROTATION MATRIX

The adiabatic-to-diabatic transformation matrix in the way it is presented in

Eq. (28) is somewhat reminiscent of the Wigner rotation matrix [109a] (assuming

that Aðs0Þ � IÞ. In order to see this, we first present a few well-known facts

related to the definition of ordinary angular momentum operators (we follow the

presentation by Rose [109b] and the corresponding Wigner matrices and then

return to discuss the similarities between Wigner’s djðbÞ matrix and the

adiabatic-to-diabatic transformation matrix.
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A. Wigner Rotation Matrices

The ordinary angular rotation operator R(k,y) in the limit y! 0 is written as

Rðk; yÞ ¼ expð�iSðk; yÞÞ ð126Þ

where k is a unit vector in the direction of the axis of rotation, y is the angle of

rotation, and S(k,y) is an operator that has to fulfill the condition Sðk; yÞ ! 0 for

y! 0 to guarantee that in this situation (i.e., when y! 0) Rðk; yÞ ! I.

Moreover, since Rðk; yÞ has to be unitary, the operator Sðk; yÞ has to be

Hermitian. Next, it is shown that Sðk; yÞ is related to the total angular momentum

operator, J, in the following way:

Sðk; yÞ ¼ ðk � JÞy ð127Þ

where the dot stands for scalar product. By substituting Eq. (127) in Eq. (126) we

get the following expression for Rðk; yÞ:

Rðk; yÞ ¼ expð�iðk � JÞyÞ ð128Þ

It has to be emphasized that in this framework J is the angular momentum

operator in ordinary coordinate space (i.e., configuration space) and y is a

(differential) ordinary angular polar coordinate.

Next, Euler’s angles are employed for deriving the outcome of a general

rotation of a system of coordinates [86]. It can be shown that Rðk; yÞ is

accordingly presented as

Rðk; yÞ ¼ e�iaJz e�ibJy e�igJz ð129Þ

where Jy and Jz are the y and the z components of J and a, b, and g are the

corresponding three Euler angles. The explicit matrix elements of the rotation

operator are given in the form:

D
j
m0mðyÞ ¼ h jm0jRðk; yÞj jmi ¼ e�iðm0aþmgÞh jm0je�ibJy j jmi ð130Þ

where m and m0 are the components of J along the Jz and Jz0 axes, respectively,

and jjmi is an eigenfunction of the Hamiltonian of J2 and of Jz. Equation (130)

will be written as

D
j
m0mðyÞ ¼ e�iðm0aþmgÞd j

m0mðbÞ ð131Þ

The D j matrix as well as the d j matrix are called the Wigner matrices and are

the subject of this section. Note that if we are interested in finding a relation

between the adiabatic-to-diabatic transformation matrix and Wigner’s matrices,

we should mainly concentrate on the d j matrix. Wigner derived a formula for
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these matrix elements [see [109b], Eq. (4.13)] and this formula was used by us

to obtain the explicit expression for j ¼ 3
2

(the matrix elements for j ¼ 1 are

given in [109b], p. 72).

B. The Adiabatic-to-Diabatic Transformation Matrix and
the Wigner d j Matrix

The obvious way to form a similarity between the Wigner rotation matrix and the

adiabatic-to-diabatic transformation matrix defined in Eqs. (28) is to consider the

(unbreakable) multidegeneracy case that is based, just like Wigner rotation

matrix, on a single axis of rotation. For this sake, we consider the particular set

of s matrices as defined in Eq. (51) and derive the relevant adiabatic-to-

diabatic transformation matrices. In what follows, the degree of similarity

between the two types of matrices will be presented for three special cases,

namely, the two-state case which in Wigner’s notation is the case, j ¼ 1
2
, the

tri-state case (i.e., j ¼ 1) and the tetra-state case (i.e., j ¼ 3
2
).

However, before going into a detail comparison between the two types of

matrices it is important to remind the reader what the elements of the Jy matrix

look like. By employing Eqs (2.18) and (2.28) of [109b] it can be shown that

h jmj Jyj jmþ ki ¼ d1k

1

2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð jþ mþ 1Þð j� mÞ

p
ð132aÞ

h jmþ kjJyj jmi ¼ �d1k

1

2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð j� mþ 1Þð jþ mÞ

p
ð132bÞ

Now, by defining ~Jy as

~Jy ¼ iJy ð133Þ

it is seen that the ~Jy matrix is an antisymmetric matrix just like the s matrix.

Since the d j matrix is defined as

d jðbÞ ¼ expð�ibJyÞ ¼ expðb~JyÞ ð134Þ

It is expected that for a certain choice of parameters (that define the s matrix) the

adiabatic-to-diabatic transformation matrix becomes identical to the correspond-

ing Wigner rotation matrix. To see the connection, we substitute Eq. (51) in

Eq. (28) and assume Aðs0Þ to be the unity matrix.

The three matrices of interest were already derived and presented in

Section V.A. There they were termed the D (topological) matrices (not related

to the above mentioned Wigner D j matrix) and were used to show the kind

of quantization one should expect for the relevant non-adiabatic coupling

terms. The only difference between these topological matrices and the
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adiabatic-to-diabatic transformation matrices requested here, is that in Eqs. (55),

(61), and (72) the closed-line integral [see Eq. (76)] is replaced by gðsÞ defined

along an (open) contour [see Eq. (75)]:

For the three cases studied in Section V.A, the similarity to the three

corresponding Wigner matrices is achieved in the following way:

1. For the two-state case (i.e., j ¼ 1
2
), d1=2ðbÞ is identified with the corres-

ponding adiabatic-to-diabatic transformation matrix [see Eq. (74)] for

which b ¼ g.

2. For the tri-state case ( j ¼ 1), we consider Eq. (60). The corresponding

d1ðbÞ matrix is obtained by assuming Z ¼ 1 [see Eq. (57)], and therefore

o ¼
ffiffiffi
2
p

. From Eq. (61) or (62), it is seen that b ¼ g
ffiffiffi
2
p

. For the sake of

completeness we present the corresponding d1ðbÞ matrix [109b]:

d1ðbÞ ¼ 1

2

1þ CðbÞ
ffiffiffi
2
p

SðbÞ 1� CðbÞffiffiffi
2
p

SðbÞ 2CðbÞ �
ffiffiffi
2
p

SðbÞ
1� CðbÞ

ffiffiffi
2
p

SðbÞ 1þ CðbÞ

0
@

1
A ð135Þ

where CðbÞ ¼ cosb and SðbÞ ¼ sinb.

3. For the tetra-state case (j ¼ 3
2
), we consider Eq. (69). The corresponding

d3=2ðbÞ matrix is obtained by assuming Z ¼
ffiffiffiffiffiffiffiffi
4=3

p
and s ¼ 1 [see

Eq. (63)]. This will yield for v the value v ¼
ffiffiffiffiffiffiffiffiffiffi
10=3

p
[see Eq. (67)]. Since

b ¼ pg [see Eqs. (72)] we have to determine the value of p, which can be

shown to be p ¼
ffiffiffi
3
p

[see Eq. (65)] and therefore b ¼ g
ffiffiffi
3
p

. For the sake of

completeness, we present the d3=2ðbÞ matrix:

d3=2ðb0Þ ¼

C3 �
ffiffiffi
3
p

C2S �
ffiffiffi
3
p

S2C S3ffiffiffi
3
p

C2S Cð1� 3S2Þ �Sð1� 3C2Þ �
ffiffiffi
3
p

S2C

�
ffiffiffi
3
p

S2C Sð1� 3C2Þ Cð1� 3S2Þ �
ffiffiffi
3
p

C2S

�S3 �
ffiffiffi
3
p

S2C
ffiffiffi
3
p

C2S C3

0
BB@

1
CCA ð136Þ

where C ¼ cosðb=2Þ and S ¼ sinðb=2Þ.

The main difference between the adiabatic-to-diabatic transformation and the

Wigner matrices is that whereas the Wigner matrix is defined for an ordinary

spatial coordinate the adiabatic-to-diabatic transformation matrix is defined for a

rotation coordinate in a different space.

XIII. CURL CONDITION REVISITED: INTRODUCTION
OF THE YANG–MILLS FIELD

In this section, the curl condition is extended to include the points of singularity

as discussed in Appendix C. The study is meant to shed light as to the origin of
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the non-adiabatic coupling terms and to connect them with pseudomagnetic

fields.

A. The Non-Adiabatic Coupling term as a Vector Potential

In Section III.B, and later in Appendix C, it was shown that the sufficient

condition for the adiabatic-to-diabatic transformation matrix A to be single

valued in a given region in configuration space is the fulfillment of the following

‘‘curl’’ condition [8,34]:

curl s� ½s� s� ¼ 0 ð137Þ

This condition is fulfilled as long as the components of t are analytic functions at

the point under consideration (in case part of them become singular at this point,

curl t is not defined).

The expression in Eq. (137) is reminiscent of the Yang–Mills field, however,

it is important to emphasize that the Yang–Mills field was introduced for a

different physical situation [58,59]. In fact, what Eq. (137) implies is that for

molecular systems the Yang–Mills field is zero if the following two conditions

are fulfilled:

1. The group of states, for which Eq. (137) is expected to be valid, forms a

sub-Hilbert space that is isolated with respect to other portions of the

Hilbert space following the definition in Eqs. (40).

2. The s-matrix elements are analytic functions (vectors) in the above-

mentioned region of configuration space.

In what follows, we assume that indeed the group of states form an isolated

sub-Hilbert space, and therefore have a Yang–Mills field that is zero or not will

depend on whether or not the various elements of the s matrix are singular.

In order to extend the existence of Eq. (137) for the singular points as well

we write it as follows:

curl s� ½s� s� ¼ H ð138Þ

where H is zero at the regular points.

In order to get more insight, we return to the Born–Oppenheimer–Huang

equation [1,2] as written in Eq. (16) and, for simplicity, limit ourselves to the

two-state case:

� 1

2m
ðr þ tÞ2�þ ðu� EÞ� ¼ 0 ð139Þ

so that s is given in the form

s ¼ 0 t
�t 0

� �
ð140Þ
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Although Eq. (139) looks like a Schrödinger equation that contains a vector

potential s, it cannot be interpreted as such because s is an antisymmetric matrix

(thus, having diagonal terms that are equal to zero). This ‘‘inconvenience’’ can

be ‘‘repaired’’ by employing the following unitary transformation:

� ¼ G� ð141Þ

where G is the (constant) matrix

G ¼ 1ffiffiffi
2
p 1 1

i �i

� �
ð142Þ

By substituting Eq. (141) in Eq. (139) and multiplying it from the left by Gy

yields

1

2m
ð�irþ tÞ2�þ ðw� EÞ� ¼ 0 ð143Þ

where t is now a diagonal matrix

t ¼ s 0

0 �s

� �
ð144Þ

and w is an ordinary potential matrix of the kind

w ¼ 1

2

u1 þ u2 �ðu2 � u1Þ
�ðu2 � u1Þ u1 þ u2

� �
ð145Þ

The important outcome from this transformation is that now the non-

adiabatic coupling term s is incorporated in the Schrödinger equation in the

same way as a vector potential due to an external magnetic field. In other words,

s behaves like a vector potential and therefore is expected to fulfill an equation

of the kind [111a]

curl s ¼ H ð146Þ

where H is a pseudomagnetic field. Equation (146) looks similar to Eq. (138) but

is in fact identical to it because in the case of two states the cross-term ½s� s� is
zero. Now, by returning to the Yang–Mills field we recall that H 6¼ 0 at the

singular points of s. In the present study, we consider a case of one singular point.

The question is if in reality such magnetic fields exist. It turns out that such

fields can be formed by long and narrow solenoids [111b]. It is well known that

in this case the magnetic fields are nonzero only inside the solenoid but zero
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outside it [111b]. Moreover, it has a nonzero component along the solenoid axis

only. Thus simulating the molecular seam [36,54,110] as a solenoid we can

identify the non-adiabatic coupling term as a vector potential produced by an

infinitesimal narrow solenoid.

The quantum mechanical importance of a vector potential A, in regions

where the magnetic field is zero, was first recognized by Aharonov and Bohm in

their seminal 1959 paper [112].

B. The Pseudomagnetic Field and the Curl Equation

To continue, we assume the following situation: We concentrate on an x–y plane,

which is chosen to be perpendicular to the seam. In this way, the pseudomagnetic

field is guaranteed to be perpendicular to the plane and will have a nonzero

component in the z direction only. In addition, we locate the origin at the point of

the singularity, that is, at the crossing point between the plane and the seam. With

these definitions the pseudomagnetic field is assumed to be of the form [113].

H ¼ Hz ¼ 2p
dðqÞ

q
f ðyÞ ð147Þ

Here, dðqÞ is the Dirac d function and f ðyÞ is an arbitrary function to be

determined [it can be shown that any function of the type f ðq; yÞ leads to the

same result because of the dðqÞ function]. By considering Eq. (146) for the z

component, we obtain (employing polar coordinates):

1

q

qty
qq
� qtq

qy

� �
¼ 2p

dðqÞ
q

f ðyÞ ð148Þ

Here, (tq; ty) are the radial and the angular components of s (the z component,

i.e., the out-of-plane component, is by definition equal to zero). Equation (148)

can be shown (by substitution) to have the following solution:

tyðq; yÞ �
ðq

0

dq
qtq

qy
¼ phðqÞ f ðyÞ ð149Þ

where hðqÞ is the Heaviside function

hðqÞ ¼ 1 q � 0

0 q < 0

�
ð150Þ

Since q is a radius it is always positive, and therefore Eq. (149) can be

written, without loss of generality, as

tyðq; yÞ �
ðq

0

dq
qtq

qy
¼ pf ðyÞ ð151Þ
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Next, we consider the ‘‘quantization’’ condition introduced earlier [see

Eq. (94)]. Assuming � to be a circle with radius q, Eq. (94) implies

ð2p

0

tyðq; yÞdy ¼ np ð152Þ

A similar integration over y along the (0,2p) range can be carried out for

Eq. (151). Thus, let us first consider the integration over the second term

ð2p

0

dy
ðq

0

dq
qtq

qy
¼
ðq

0

dq

ð2p

0

qtq

qy
dy ¼

ðq

0

dqðtqðq; y ¼ 2pÞ � tqðq; y ¼ 0ÞÞ

In Section XIV.A, it is proved that tqðq; yÞ is, for every value of q, single valued

with respect to y so that we have

ð2p

0

dy
ðq

0

dq
qtq

qy
¼ 0 ð153Þ

Combining Eqs. (151)–(153) yields the following outcome:

ð2p

0

f ðyÞ dy ¼ n ð154Þ

In other words, the quantization that was encountered for the non-adiabatic

coupling terms is associated with the ‘‘quantization’’ of the intensity of the

‘‘magnetic’’ field along the seam. Moreover, Eq. (154) reveals another feature,

namely, that there are fields for which n is an odd integer, namely, conical

intersections and there are fields for which n is an even integer, namely,

parabolical intersections.

Equation (151) can be applied to obtain f ðyÞ. Ab initio calculation for small

enough q values will yield tyðy; q � 0Þ and these, as is seen from Eq. (151), can

be directly related to f ðyÞ:

f ðyÞ � 1

p
tyðq � 0; yÞ ð155Þ

where the contribution of the second term on the left-hand side (for small enough

q values) is ignored.

C. Conclusions

This section is devoted to the idea that the electronic non-adiabatic coupling

terms can be simulated as vector potentials. For this purpose, we considered
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a two-state system, shifted (rigorously) the off-diagonal non-adiabatic coupling

terms to the diagonal and employed the relevant Maxwell equation. As is also

noticed, the simulation created a connection between the ‘‘curl’’ condition as

fulfilled by the non-adiabatic coupling terms and the Yang–Mills field.

As noticed, a pseudomagnetic field is assumed to exist along the seam

formed by varying indirect coordinates (i.e., coordinates not related to the plane

for which the vector potential is not zero) of a given molecular system. In this

respect, we want to suggest that eventually the pseudomagnetic field is

‘‘formed,’’ semiclassically, by the zero-point vibrational motion of the indirect

coordinates. For this purpose, we consider a three-atom molecular system ABC

and assume the AB distance to be the indirect coordinate. Varying the AB

distance builds up, semiclassically, a motion along the seam. Consequently, the

zero-point vibrational motion along the AB bond creates, semiclassically, a

periodic motion along the seam. This motion eventually causes charges that are

concentrated along the seam (or its vicinity) to oscillate and in this way to form

a pseudoelectromagnetic field.

XIV. A THEORETIC-NUMERIC APPROACH TO CALCULATE
THE ELECTRONIC NON-ADIABATIC COUPLING TERMS

In this section, we discuss the possibility that the electronic non-adiabatic

coupling terms will be derived, not by ab initio treatments but, by solving the curl

equations for a given set of boundary conditions obtained from ab initio

calculations [114,115]. In other words, instead of performing an ab initio

calculation at any point in configuration space we suggest solving the relevant

differential equations for boundary conditions obtained from a (limited) ab initio

calculation [64–74] or perturbation theory [66,67].

A. The Treatment of the Two-State System in a Plane

1. The Solution for a Single Conical Intersection

The curl equation for a two-state system is given in Eq. (26):

curl s ¼ 0 ð26Þ

Equation (26) is fulfilled at any point in configuration space for which the

components of s are analytic functions.

Equation (26) is a set of partial first-order differential equations. Each

component of the Curl forms an equation and this equation may or may not be

‘‘coupled’’ to the other equations. In general, the number of equations is equal

to the number of components of the Curl equations. At this stage, to solve this

set of equation in its most general case seems to be a formidable task.

the electronic non-adiabatic coupling term 97



In what follows, we shall limit ourselves to the following situation. Assuming

a system of N coordinates ðz1; z2; . . . ; zNÞ, with the following components:

tzj
¼ tzj
ðz1; z2; . . . zNÞ j ¼ 1; 2; . . . ;N ð156aÞ

and assume that two of them, that is, sz1
and sz2

depend only on their own

coordinates, namely, (z1; z2), thus

szj
¼ szj

ðz1; z2Þ j ¼ 1; 2 ð156bÞ

then the following partial curl equation

qsz1

qz2

� qsz2

qz1

¼ 0

is the only equation to be considered within the (z1; z2) space because due to

Eq. (156b) all the other relevant components lead to the results

qszn

qz1

¼ qszn

qz2

0 n ¼ 3; . . . ;N

In what follows, the 2D space is assumed to be a plane, and therefore we

apply either the polar coordinates ðq; yÞ or the Cartesian coordinates (x; y).

We start treating the curl equation expressed in terms of polar coordinates:

1

q

qsy
qq
� qsq

qy

� �
¼ 0) qsy

qq
� qsq

qy
¼ 0 ð157Þ

Integrating the second equation with respect to q along the interval [0;q] yields

syðq; yÞ �
ðq

0

dq
qsq

qy
¼ tyðq � 0; yÞ ð158aÞ

Next, Eq. (158a) is integrated with respect to y along the interval [0,2p] and we

get

ð2p

0

syðq; yÞdy�
ð2p

0

ðq

0

dq
qsq

qy
dy ¼

ð2p

0

syðq � 0; yÞdy ð158bÞ

which due to the fact that syðq; yÞ is quantized (for every value of q) in the

following way [see Eq. (94)]:

ð2p

0

syðq; yÞdy ¼ np ð159Þ

98 michael baer



yields the result: ð2p

0

dy
ðq

0

dq
qsq

qy
¼ 0 ð160Þ

If we evaluate the integrand and change the order of integration we get

ð2p

0

dy
ðq

0

dq
qsq

qy
¼
ðq

0

dq

ð2p

0

qsq

qy
dy ¼

ðq

0

dqðsqðq; y ¼ 2pÞ � sqðq; y ¼ 0ÞÞ

This result implies that sqðq; yÞ is, for every value of q, single valued with

respect to y.

In what follows, we assume that the second term in Eq. (158a) is negligibly

small and as a result syðq; yÞ becomes independent of q. Thus

syðq; yÞ ¼ syðq ¼ q0; yÞ ð161aÞ

where q0 is a fixed q value and syðq ¼ q0; yÞ is a boundary value (at q0 � 0) for

syðq; yÞ determined either by ab initio calculations or perturbation theory. We

also recall that syðq; yÞ fulfills the quantization condition as written in Eq. (159).

To examine our assumption regarding the dependence of syðq; yÞ on q, we

consider the well-known (collinear) conical intersection of the C2H molecule

formed by the two lowest states, namely, the 12A0 and the 22A0 states

[12,72,105]. Figure 9 presents syðq; yÞ as calculated for a fixed C��C distance,

that is, RCC ¼ 1:35 Å and for different q values. It is seen that the basic shape of

syðq; yÞ is approximately preserved although q is varied along a relative large

interval, that is, the [0.05, 1.0 Å] interval. It is noticed that the shape syðq; yÞ is

significantly affected only when q ¼ 1 Å and y � p. The reason is that in this

situation the point ðq ¼ 1 Å; y ¼ pÞ gets very close to one of the carbons (the

distance becomes �0.3 Å) and therefore the ab initio values for syðq; yÞ are not

for an isolated conical intersection anymore as it should be [12].

In Section XIV.A.2, we intend to obtain the vector function sðq; yÞ for a

given distribution of conical intersections. Thus, first we have to derive an

expression for a conical intersection removed from the origin, namely, assumed

to be located at some point, (qj0; yj0), in the plane.

Combining Eqs. (151), (158a), and (161a) we get that syðq; yÞ can be writtern

as:

syðq; yÞ ¼ p f ðyÞ ð161bÞ

To shift it to some arbirtrary point (qj0; yj0) we first express Eq. (161b) in

terms of Cartesian coordinates, and then shift the solution to the point of

interest, namely, to ðxj0; yj0Þ½� ðqj0; yj0Þ�. Once completed, the solution is

transformed back to polar coordinates (for details see Appendix F). Following
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this procedure, syðq; yÞ and sqðq; yÞ (which is now different from zero) become

sqðq; yÞ ¼ �fjðyjÞ
1

qj

sinðy� yjÞ

syðq; yÞ ¼ fjðyjÞ
q

qj

cosðy� yjÞ
ð162Þ

where qj and yj are the coordinates of an arbitrary point, Pðq; yÞ, with respect to

the conical intersection position. The coordinates (qj; yj) are related to ðq;yÞ as

follows:

qj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq cosy� qj0 cosyj0Þ2 þ ðq siny� qj0 sinyj0Þ2

q
cosyj ¼

q cosy� qj0 cosyj0

qj

ð163Þ

Figure 9. The syðq; yÞ—the angular non-adiabatic coupling term as a function of y—as

calculated for different q values. (a) q ¼ 0:05 Å; (b) q ¼ 0:2 Å; (c) q ¼ 0:5 Å; (d) q ¼ 1:0 Å.
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and fjðyjÞ is defined as
fjðyjÞ � tjyðqj � 0; yjÞ ð164Þ

In Eq. (162) [as well as in Eq. (164)], we attached a subscript j to f ðyÞ to

indicate that each conical intersection (in this case the jth one) may form a

different spatial (angular) distribution.

Note that for qj0 ¼ 0 the solution in Eq. (161b) is restored (and sq becomes zero).

2. The Solution for a Distribution of Conical Intersections

With the modified expression we can now extend the solution of Eq. (162) to any

number of conical intersections. The solution in Eq. (162) stands for a single

conical intersection located at an arbitrary point (qj0; yj0). Since syðq; yÞ and

sqðq; yÞ are scalars the solution in case of N conical intersections located at the

points ðqj0; yj0Þ; j ¼ 1; . . . ;N are obtained by summing up the individual

contributions [114]:

sqðq; yÞ ¼ �
XN

j¼1

fjðyjÞ
1

qj

sinðy� yjÞ

syðq; yÞ ¼ q
XN

j¼1

fjðyjÞ
1

qj

cosðy� yjÞ
ð165Þ

Equation (165) yields the two components of sðq; yÞ, the vectorial non-

adiabatic coupling term, for a distribution of two-state conical intersections

expressed in terms of the values of the angular component of each individual

non-adiabatic coupling term at the closest vicinity of each conical intersection.

These values have to be obtained from ab initio treatments (or from perturbation

expansions); however, all that is needed is a set of these values along a single

closed circle, each surrounding one conical intersection.

To summarize our findings so far, we may say that if indeed the radial

component of a single completely isolated conical intersection can be assumed

to be negligible small as compared to the angular component, then we can present,

almost fully analytically, the 2D ‘‘field’’ of the non-adiabatic coupling terms for

a two-state system formed by any number of conical intersections. Thus, Eq. (165)

can be considered as the non-adiabatic coupling field in the case of two states.

In Section XIV.B, this derivation is extended to a three-state system.

B. The Treatment of the Three-State System in a Plane

To study the three-state case, we consider two non-adiabatic coupling terms: one,

between the lowest and the intermediate state, designated as t12 with its origin

located at Paðqa; yaÞ, and the other between the intermediate and the highest

state, designated as t23 with its origin located at Pbðqb; ybÞ. As will be seen, in

addition to t12 and t23 we also have to consider t13, although no degeneracy point
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exists between the lowest and the highest states. In other words, we shall show

how the interaction between the above mentioned two conical intersections

builds up t13, which does not have a source of its own. Thus the s matrix for the

most general case has to be of the form:

s ¼
0 t12 t13

�t12 0 t23

�t13 �t23 0

0
@

1
A ð166Þ

The curl equation for three (or more) states is given in Eq. (25) and is

presented here again for the sake of completeness:

curl s� ½s� s� ¼ 0 ð25Þ

It is well noted that, in contrast to the two-state equation [see Eq. (26)],

Eq. (25) contains an additional, nonlinear term. This nonlinear term enforces a

perturbative scheme in order to solve the required s-matrix elements.

The derivation of the s-matrix elements will be done in two steps: (1) first by

considering each of the conical intersection as being isolated, namely, the one

independent of the other; and (2) secondly by employing Eq. (20) to treat the

two conical intersections as one complete system. Thus within the first step

we obtain zeroth-order expressions for s12 and s23, that is, s012 and s023,

respectively, whereas within the second step we not only correct these expres-

sions so that Eq. (25), is (�) fulfilled for three states, but also derive the missing

s13 term. The study is done, as before, for a plane in configuration space

employing polar coordinates.

To study the two isolated conical intersections, we have to treat two-state curl

equations that are given in Eq. (26). Here, the first 2� 2 s matrix contains the

(vectorial) element, that is, s012 and the second 2� 2 s matrix contains s023. As

before each of the non-adiabatic coupling terms, s012 and s023 has the following

components:

s0jjþ1 ¼ ðs0q jjþ1; s0yjjþ1Þ j ¼ 1; 2 ð167Þ

where s0qjjþ1 and s0yjjþ1; j ¼ 1, 2, were derived in Section XIV.A [see Eqs. (165)],

and therefore no further treatment is necessary.

In Section XI.B, we discussed situations (based on ab initio calculations) where

the two non-adiabatic coupling terms t12 and t23 slightly overlap [12,108].

Based on ab initio calculations (as were carried out for the C2H molecule) it was

found that in many cases the non-adiabatic coupling is not evenly distributed

around its point of degeneracy but rather is concentrated along a radial ridge

that starts at the point of degeneracy (see Figs. 6 and 7). Therefore, in these

cases, only slight overlaps are expected, in particular, when the two points of

degeneracy Pxðqx; yxÞ; x ¼ a; b are located far enough from each other [108].
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Thus if tjjþ1—the full non-adiabatic coupling term—and the unperturbed

non-adiabatic coupling term, t0jjþ1, are assumed to be related to each other as

sjjþ1 ¼ s0jjþ1 þ dsjjþ1 j ¼ 1; 2 ð168Þ

then it follows, from the above discussion, that the components of the two

vectorial perturbations (i.e., dsq jjþ1 and dsyjjþ1) are likely to be (much) smaller

than the corresponding components, namely, s0q jjþ1 and s0yjjþ1.

Next, we return to Eq. (25) and recall that we are interested only in the

components of sjjþ1 j ¼ 1; 2 in a plane perpendicular to the z axis. It can be

shown that if s0jjþ1; j ¼ 1; 2 do not posses a z component, the same applies to

the perturbations dsjjþ1 j ¼ 1; 2, as well as to t13.

Substituting Eq. (168) in Eq. (166) and the result in Eq. (25) yields the

(inhomogeneous) differential equations for the components of dsjjþ1; j ¼ 1; 2

curlðd12Þ ¼
qðdsq12Þ

qy
� qðdsy12Þ

qq
¼ sy13s0q23 � sq13s0y23

curlðds23Þ ¼
qðdsq23Þ

qy
� qðdsy23Þ

qq
¼ sq13s0y12 � sy13s0q12

ð169Þ

where the second-order terms were deleted. In this derivation, we employed the

fact that:

curl s012 ¼ curl s023 ¼ 0 ð170Þ

In the same way, with similar assumptions, we obtain the (inhomogeneous)

differential equation for the components of s13

curl t13 ¼
qsq13

qy
� qsy13

qq
¼ s0y12s0q23 � s0q12s0y23 ð171Þ

Equation (171) is the an explicit ‘‘curl’’ equation for a coupling that does not has

a ‘‘source’’ of its own but is formed due to the interaction between two ‘‘real’’

conical intersection.

Equations (169) and (171), together with Eqs. (170), form the basic equations

that enable the calculation of the non-adiabatic coupling matrix. As is noticed,

this set of equations creates a hierarchy of approximations starting with the

assumption that the cross-products on the right-hand side of Eq. (171) have small

values because at any point in configuration space at least one of the multipliers

in the product is small [115].
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XV. STUDIES OF SPECIFIC SYSTEMS

In this section, we concentrate on a few examples to show the degree of relevance

of the theory presented in the previous sections. For this purpose, we analyze the

conical intersections of two real two-state systems and one real system

resembling a tri-state case.

A. The Study of Real Two-State Molecular Systems

We start by mentioning the studies of Yarkony et al. [64] who were the first to apply

the line integral approach to reveal the existence of a conical intersection for a

‘‘real’’ molecular system—the H3 system—by calculating the relevant non-

adiabatic coupling terms from first principles and then deriving the topological

angle a [see Eq. (76)]. Later Yarkony and co-workers applied this approach to

study other tri-atom system such as AlH2 [65], CH2 [66,69], H2S [66], HeH2

[68], and Li3 [70].

Recently, Xu et al. [11] studied in detail the H3 molecule as well as its two

isotopic analogues, namely, H2D and D2H, mainly with the aim of testing the

ability of the line integral approach to distinguish between the situations when

the contour surrounds or does not surround the conical intersection point. Some

time later Mebel and co-workers [12,72–74,116] employed ab initio non-

adiabatic coupling terms and the line-integral approach to study some features

related to the C2H molecule.

Some results of these studies will be presented in Sections XV.A.1–XV.A.3.

1. The H3-System and Its Isotopic Analogues

Although the study to be described is for a ‘‘real’’ system, the starting point was

not the ab initio adiabatic potential energy surfaces and the ab initio non-

adiabatic coupling terms but a diabatic potential [117], which has its origin in the

LSTH potential [118] improved by including three-center terms [119]. These

were used to calculate the adiabatic-to-diabatic transformation angle g by

employing the Hellmann–Feynman theorem [3,36]. However, we present our

results in term of the diabatic-to-adiabatic transformation angle b, which is also

know as the mixing angle. We start by proving, analytically that these two angles

are identical up to an integration constant.

We consider a 2D diabatic framework that is characterized by an angle,

bðsÞ, associated with the orthogonal transformation that diagonalizes the

diabatic potential matrix. Thus, if V is the diabatic potential matrix and if u
is the adiabatic one, the two are related by the orthogonal transformation

matrix A [34]:

u ¼ AyVA ð172Þ
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where Ay is the complex conjugate of the A matrix. For the present two-state

case, A can be written in the form:

A ¼ cosb �sinb
sinb cosb

� �
ð173Þ

where b—the above mentioned mixing angle—is given by [36a]:

b ¼ 1

2
tan�1 2V12

V11 � V22

ð174Þ

Recalling g(s), the adiabatic-to-diabatic transformation angle [see Eqs. (74) and

(75)] it is expected that the two angles are related. The connection is formed by

the Hellmann–Feynman theorem, which yields the relation between the s

component of the non-adiabatic coupling term, s, namely, ss, and the charac-

teristic diabatic magnitudes [13]

ssðsÞ ¼ ðu2 � u1Þ�1A�1
qV

qs
A2 ¼

sin2b
2W12

A�1
qV

qs
A2 ð175Þ

where Ai, i ¼ 1; 2 are the two columns of the A matrix in Eq. (173). By replacing

the two Ai columns by their explicit expressions yields for ts the expression

ssðsÞ ¼
sin2b
2V12

�sin2b
2

q
qs
ðV11 � V22Þ þ cos2b

q
qs

V12

� �
ð176Þ

Next, by differentiating Eq. (174) with respect to s

q
qs
ðV11 � V22Þ ¼ 2 V12

q
qs

cot 2bþ cot 2b
q
qs

V12

� �
ð177Þ

and by substituting Eq. (177) in Eq. (176), yields the following result for ssðsÞ:

ssðsÞ ¼
qb
qs

ð178Þ

Comparing this equation with Eq. (75), it is seen that the mixing angle b is, up to

an additive constant, identical to the relevant adiabatic-to-diabatic transforma-

tion—angle g:

gðsÞ ¼ bðsÞ � bðs0Þ ð179Þ

This relation will be used to study geometrical phase effects within the diabatic

framework for the H3 system and its two isotopic analogues. What is meant by
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this is that since our starting point is the 2� 2 diabatic potential matrix, we do

not need to obtain the adiabatic-to-diabatic transformation angle by solving a

line integral; it will be obtained simply by applying Eqs. (174) and (178). The

forthcoming study is carried out by presenting bðjÞ as a function of an angle j to

be introduced next.

In the present study, we are interested in finding the locus of the seam defined

by the conditions rAB ¼ rBC ¼ rAC [14–17] where rAB, rBC, and rAC are the

interatomic distances. Since we intend to study the geometrical properties

produced by this seam we follow a suggestion by Kuppermann and co-workers

[29,120,121] and employ the hyperspherical coordinates (r; y;j) that were

found to be suitable for studying topological effects for the H��H2 (and its

isotopic analogues) because one of the hyperspherical (angular) coordinates

surrounds the seam in case of the pure-hydrogenic case. Consequently,

following previous studies [29,122–124], we express the three above-mentioned

distances in terms of these coordinates, that is,

r2
AB ¼

1

2
dCr2 1þ sin

y
2

cosðjþ wACÞ
� �

r2
BC ¼

1

2
dAr2 1þ sin

y
2

cosðjÞ
� �

r2
AC ¼

1

2
dBr2 1þ sin

y
2

cosðj� wABÞ
� � ð180Þ

where

d2
X ¼

mX

m
1� mX

M

� �
wXY ¼ 2 tan�1 mZ

m

� �

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mAmBmC

M

r
M ¼ mA þ mB þ mC

ð181Þ

Here X,Y ,Z stand for A,B,C and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

AB þ r2
AC þ r2

BC

q
ð182Þ

By equating the three interatomic distances with each other, we find that the seam

is a straight line, for which r is arbitrary but j and y have fixed values js and ys

determined by the masses only.

js ¼ tan�1

coswAC � t coswAB �
dA

dC

� �2

þ t
dA

dB

� �2

sinwAC � t sinwAB

8>>><
>>>:

9>>>=
>>>;

ð183Þ
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and

ys ¼ 2 sin�1

dA

dB

� �2

�1

cosðjs � wABÞ � dA

dB

� �2

cosjs

8>>><
>>>:

9>>>=
>>>;

ð184Þ

where t is given in the form

t ¼ dA

dC

� �2

�1

" #
dA

dB

� �2

�1

" #�1

ð185Þ

Equations (182)–(185) are valid when all three masses are different. In case two

masses are equal, namely, mB ¼ mC, we get for ys the simplified expression

ys ¼ 2 sin�1 mB � mA

mB þ 2mA

%%%%
%%%%

� &
ð186Þ

and for js the value p when mA > mB and the value zero when mA < mB. In case

all three masses are equal (then t ¼ 1), we get ys ¼ 0 and js ¼ p.

In what follows, we discuss the H2D system. For this purpose Eq. (186) is

employed for which it is obtained that the straight line seam is defined for the

following values of ys and js, namely, ys ¼ 0:4023 rad, and js ¼ p. In the H3

case, the value of ys is zero and this guarantees that all the circles with constant

r and y encircle the seam. The fact that ys is no longer zero implies that not all

the circles with constant r and y encircle the seam; thus, circles for which

y > ys will encircle the seam and those with y < ys will not.

In Figure 10 are presented bðjÞ curves for H2D, all calculated for r ¼ 6a0. In

this calculation, the hyperspherical angle j, defined in along the [0;2p] interval,

is the independent angular variable. Figure 10a shows two curves for the case

where the line integral does not encircle the seam, namely, for y ¼ 0:2 and

0.4 rad and in Figure 10b for the case where the line integral encircles the seam,

namely, for y ¼ 0:405 and 2.0 rad. Notice that the curves in Figure 10a reach

the value of zero and those in Figure 10b reach the value of p. In particular, two

curves, that in Figure 10a for y ¼ 0:4 rad and the other in Figure 10b for

y ¼ 0:405 rad, were calculated along very close contours (that approach the

locus of the seam) and indeed their shapes are similar—they both yield an abrupt

step—but one curve reaches the value of zero and the other the value p. Both

types of results justify the use of the line integral to uncover the locus of the

seam. More detailed results as well as the proper analysis can be found in [11].

These results as well as others presented in [11] are important because on

various occasions it was implied that the line integral approach is suitable only
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Figure 10. The mixing angle b, for the H2D system, as a function of hyperspherical angle

j, calculated for hyperspherical radius r ¼ 6 a0: (a) Results for y ¼ 0:2 rad ———— and y ¼
0.4 rad ............... . (b) The same as (a) but for y ¼ 2:0 rad ————; and y ¼ 0:405 rad ............... .
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for cases when relatively small radii around the conical intersection are applied

[64]. In [11], it is shown for the first time that this approach can be useful even

for large radii, which does not mean that it is relevant for any assumed contour

surrounding a conical intersection (or for that matter a group of conical

intersections) but means that we can always find contours with large radii that

will reveal the conical intersection location for a given pair of states.

2. The C2H-Molecule: The Study of the (1,2) and the

(2,3) Conical Intersections

In the first part of this study, we were interested in non-adiabatic coupling terms

between the 12A0 and 22A0 and between the 22A0 and 32A0 electronic states. The

calculations were done employing MOLPRO [6], which yield the six relevant

non-adiabatic coupling elements as calculated with respect to the Cartesian

center-of-mass coordinates of each atom. These coupling terms were then

transformed, employing chain rules [12,73], to non-adiabatic coupling elements

with respect to the internal coordinates of the C2H molecule, namely, hzijqzj=qr1i
ð¼ tr1

Þ; hzijqzj=qr2ið¼ tr2
Þ, and hzijqzj=qjið¼ tjÞ. Here r1 and r2 are the C��C

and C��H distances, respectively, and j is the relevant CC � � �CH angle. The

adiabatic-to-diabatic transformation angle, gðjjr1; r2Þ, is derived next employing

the following line integral [see Eq. (75)], where the contour is an arc of a circle

with radius r2:

gðj j r1; r2Þ ¼
ðj

0

dj0tjðj0 j r1; r2Þ ð187Þ

The corresponding topological phase, aðr1; r2Þ [see Eq. (76)] defined as gðj ¼
2p j r1; r2Þ, was also obtained for various values of r1 and r2.

First, we refer to the (1,2) conical intersection. A detailed inspection of the

non-adiabatic coupling terms revealed the existence of a conical intersection

between these two states, for example, at the point fj ¼ 0; r1 ¼ 1:35 Å,

r2 ¼ 1:60 ÅÞ as was established before [105]. More conical intersections of this

kind are expected at other r1 values. Next, were calculated the gðj j r1; r2Þ
angles as a function of j for various r2. The tjðj j r1; r2Þ functions as well as

the adiabatic-to-diabatic transformation angles are presented in Figure 11 for

three different r2 values, namely, r2 ¼ 1:8; 2:0; 3:35 Å. Mebel et al. [12] also

calculated the topological angle aðr1; r2Þ for these three r2 values employing

Eq. (76) and got, for the first two r2 values, the values 3.136 and 3.027 rad,

respectively—thus, in both cases, values close to the expected p value. A

different situation is encountered in the third case when the circle surrounds the

two (symmetrical) CIs as can be seen from the results presented in the third

panel of Figure 11e and f. In such a case, the angle a is expected to be either an

even multiple of p or zero. The integration according to Eq. (76) yields the value
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of 0.048 rad, namely, a value close to zero. It is important to mention that we

also performed integrations along closed circles that do not surround any

conical intersections and got the value zero as was proved in Appendix C (for

more details about these calculations see [12]).

In this series of results, we encounter a somewhat unexpected result, namely,

when the circle surrounds two conical intersections the value of the line integral

is zero. This does not contradict any statements made regarding the general

theory (which asserts that in such a case the value of the line integral is either a

multiple of 2p or zero) but it is still somewhat unexpected, because it implies

that the two conical intersections behave like vectors and that they ar-

range themselves in such a way as to reduce the effect of the non-adiabatic

coupling terms. This result has important consequences regarding the cases

where a pair of electronic states are coupled by more than one conical

intersection.

On this occasion, we want also to refer to an incorrect statement that we

made more than once [72], namely, that the (1,2) conical intersection results

indicate ‘‘that for any value of r1 and r2 the two states under consideration form

an isolated two-state sub-Hilbert space.’’ We now know that in fact they do not

form an isolated system because the second state is coupled to the third state via

a conical intersection as will be discussed next. Still, the fact that the series of

topological angles, as calculated for the various values of r1 and r2, are either

multiples of p or zero indicates that we can form, for this adiabatic two-state

system, single-valued diabatic potentials. Thus if for some numerical treatment

only the two lowest adiabatic states are required, the results obtained here

suggest that it is possible to form from these two adiabatic surfaces single-

valued diabatic potentials employing the line-integral approach. Indeed,

recently Billing et al. [104] carried out such a photodissociation study based

on the two lowest adiabatic states as obtained from ab initio calculations. The

complete justification for such a study was presented in Section XI.

Reference [73] presents the first line-integral study between two excited

states, namely, between the second and the third states in this series of states.

Here, like before, the calculations are done for a fixed value of r1 (results are

reported for r1 ¼ 1:251 ) but in contrast to the previous study the origin of the

system of coordinates is located at the point of this particular conical inter-

section, that is, the (2,3) conical intersection. Accordingly, the two polar

coordinates (j; q) are defined. Next is derived the j-th non-adiabatic coupling

term i.e. tj ð¼ hz2jqz3=qjiÞ again employing chain rules for the transformation

ðtg; tr2Þ ! tj(tq is not required because the integrals are performed along a

circle with a fixed radius q—see Fig. 12).

Figure 12 presents tjðj j qÞ and gðj j qÞ for three values of q, that is,

q ¼ 0:2; 0:3; 0:4 . The main features to be noticed are (1) The function

tjðj j qÞ exhibits the following symmetry properties: tjðjÞ ¼ tjðp� jÞ and

Å

Å
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tjðpþ jÞ ¼ tjð2p� jÞ, where 0 � j � p. In fact, since the origin is located

on the C2v axis we should expect only jtjðjÞj ¼ jtjðp� jÞj and jtjðpþ jÞj ¼
jtjð2p� jÞj, where 0 � j � p but due to continuity requirements these

relations also have to be satisfied without the absolute signs. (2) It is seen that

the adiabatic-to-diabatic transformation angle, gðj j qÞ, increases, for the

two smaller q-values, monotonically to become að� j qÞ, with the value of p (in

fact, we got 0.986p and 1.001p for q ¼ 0:2 and 0.3 Å, respectively). The two-

state assumption seems to break down in case q ¼ 0:4 Å because the calculated

value of að� j qÞ is not anymore p but only 0.63p. The reason being that the

q ¼ 0:4-Å circle not only passes too close to two (3,4) conical intersections—

the distances at the closest points are �0.04 Å—and so the (2,3) system can not

be considered anymore as an isolated sub-Hilbert space but in fact surrounds

these two conical intersections (see third panel of Fig. 12). More details are

given in Section XV.B [116].

Figure 12. Results for the C2H molecule as calculated along a circle surrounding the 22A0–32A0

conical intersection. The conical intersection is located on the C2v line at a distance of 1.813 Å from

the CC axis, where r1 (����CC distance)¼ 1.2515 Å. The center of the circle is located at the point of

the conical intersection and defined in terms of a radius q. Shown are the non-adiabatic coupling

matrix elements tjðjjqÞ and the adiabatic-to-diabatic transformation angles gðjjqÞ as calculated for

(a) and (b) where q ¼ 0:2 Å; (c) and (d) where q ¼ 0:3 Å; (e) and ( f ) where q ¼ 0:4 Å. Also shown

are the positions of the two close-by (3,4) conical intersections (designated as X34).
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B. The Study of a Real Three-State Molecular System: Strongly Coupled
(2,3) and (3,4) Conical Intersections

We ended Section XV.A by claiming that the value að� j q ¼ 0:4 Þ is only

0.63p instead of p (thus damaging the two-state quantization requirement)

because, as additional studies revealed, of the close locations of two (3,4) conical

intersections. In this section, we show that due to these two conical intersections

our sub-space has to be extended so that it contains three states, namely,

the second, the third, and the fourth states. Once this extension is done, the

quantization requirement is restored but for the three states (and not for two

states) as will be described next.

In Section IV, we introduced the topological matrix D [see Eq. (38)] and

showed that for a sub-Hilbert space this matrix is diagonal with (þ1) and (�1)

terms a feature that was defined as quantization of the non-adiabatic coupling

matrix. If the present three-state system forms a sub-Hilbert space the resulting

D matrix has to be a diagonal matrix as just mentioned. From Eq. (38) it is

noticed that the D matrix is calculated along contours, �, that surround conical

intersections. Our task in this section is to calculate the D matrix and we do this,

again, for circular contours.

The numerical part is based on two circles, C3 and C4, related to two

different centers (see Fig. 13). Circle C3, with a radius of 0.4 Å, has its center at

the position of the (2,3) conical intersection (like before). Circle C4, with a

radius 0.25 Å, has its center (also) on the C2v line, but at a distance of 0.2 Å from

the (2,3) conical intersection and closer to the two (3,4) conical intersections.

The computational effort concentrates on calculating the exponential in Eq. (38)

for the given set of ab initio 3� 3 s matrices computed along the above

mentioned two circles. Thus, following Eq. (28) we are interested in calculating

the following expression:

Aðj j qÞ ¼ } exp �
ðj

0

sjðj0 j qÞdj0
� �

ð188Þ

where value of q determines the circular contour. The matrix DðqÞ is, accor-

dingly:

DðqÞ ¼ Aðj ¼ 2p j qÞ ð189Þ

To calculate Aðj j qÞ the angular interval f0;jg is divided into n (small

enough) segments with fj0ð¼ 0Þ;j1; . . . ;jnð¼ jÞg as division points, so that

the A matrix can be presented as

Aðj ¼ jnÞ ¼
Yn

k¼1

exp �
ðjk

jk�1

sðj0Þdj0
 !

ð190Þ

Å
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Figure 13. The NACT v(j) (see text) and the ADT matrix diagonal elements AiiðjÞ;
i ¼ 1,2,3, as calculated for two contours surrounding all three CIs: (a) and (c) Results for the C3

contour (q ¼ 0:4 Å). (b) and (d) Results for the C4 contour (q ¼ 0:25 Å). The upper panels present

the geometrical situation for each case: The contour C3 has its center at the point of the (2,3) CI and

its radius is q ¼ 0:4 Å. The contour C4 has its center (at a distance of 0.2 Å) in-between the (2,3) CI

point and the two (3,4) CIs axis and its radius is q ¼ 0:25 Å.
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where the variable q is deleted. By following the procedure described in [57], one

presents AðjnÞ as

AðjnÞ ¼
Yn

k¼1

G
y
kEðjkÞGk ð191Þ

where Gk is a unitary matrix that diagonalizes tðjÞ at the mid-point of the kth

segment: ~jk ¼ ðjk þ jk�1Þ=2 and EðjkÞ is a diagonal matrix with elements

ðm ¼ 1; 2; . . . ;MÞ:

EmðjkÞ ¼ exp �
ðjkþ1

jk

tmðjÞdj
 !

¼ expð�tmð~jkÞ�jÞ ð192Þ

Here, tmð~jÞ; m ¼ 1; 2; . . . ;M are the eigenvalues of tð~jÞ and �j is the angular

grid size. The order of the multiplication in Eq. (191) is such that the k ¼ 0 term

is the first term from the right-hand side in the product. With these definitions the

matrix D is defined as DðqÞ ¼ Aðj ¼ jN j qÞ, where jN ¼ 2p [see Eq. (189)].

Going back to our case and recalling that tðj j qÞ is a 3� 3 antisymmetric

matrix it can be shown that one of its eigenvalues is always zero and the others

are two imaginary conjugate functions, namely, �ivðjÞ where vðjÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

12 þ t2
23 þ t2

13

p
. In Figure 13a and b we present vðjÞ functions as calculated

for the two circles C3 and C4 (see the relevant upper panels of Fig. 13). The two

strong spikes are due to the two (3,4) conical intersections and they occur at

points where the circles cross their axis line.

To perform the product in Eq. (191) we need the G matrices and, for this

3� 3 matrix, these can be obtained analytically [7,80]. Thus

G ¼ 1

vl
ffiffiffi
2
p

it13v� t23t12 �it13v� t23t12 t23l
ffiffiffi
2
p

it23vþ t13t12 �it23vþ t13t12 �t13l
ffiffiffi
2
p

l2 l2 t12l
ffiffiffi
2
p

0
B@

1
CA ð193Þ

where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

23 þ t2
13

p
.

In Figure 13c and d we present the three diagonal elements of the

corresponding adiabatic-to-diabatic transformation matrices Aðj j qÞ as calcu-

lated for the two circles. Note that A11ðj j qÞ, in both cases, behaves smoothly

while varying essentially undisturbed, from (þ1) to (�1). The second diagonal

term in each case, that is, A22ðj j qÞ, follows the relevant A11ðj j qÞ, until the

contour enters the region of the (3,4) conical intersections. There the A22ðj j qÞ
terms start to increase like they would do if only one (3,4) conical intersection

were present. However, once they have reached the region of the second (3,4)

conical intersection this conical intersection pushes the curve down again so that
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finally the A22ðj j qÞ terms become (�1), instead of (þ1). The third term,

A33ðj j qÞ in each case, proceeds undisturbed as long as it is out of the range of

the two (3,4) conical intersections. Once it enters the region of the first conical

intersection, the curve starts to decrease and eventually becomes (�1) as it

should if only one conical intersection was present. However, as the contour

reaches the region of the second conical intersection, A33ðj j qÞ is pushed back

and ends up with the value of (þ1), instead of (�1). The value of each term

Aiiðj ¼ 2p j qÞ; i ¼ 1; 2; 3 constitutes the diagonal of the D matrix for the

particular contour:

The results for C4ðq ¼ 0:25 Þ are as follows:

D11 ¼ �0:9998; D22 ¼ �0:9999; D33 ¼ 0:9997:

The results for C3ðq ¼ 0:4 Þ are as follows:

D11 ¼ �0:990; D22 ¼ �0:988; D33 ¼ 0:997:

While studying these results we have to pay attention to two features: (1) In

each case, these numbers must, in absolute value, be as close as possible to 1;

and (2) two of these numbers have to be negative. Then, we also have to be able

to justify the fact that it is the first two diagonal elements that have to be

negative and it is the third one that must be positive. Note that these Dii terms

are reasonably close to fulfilling the expected features just mentioned:

For the three relevant (absolute) numbers, the two different calculations

yielded Djj values (three for each case) all in the range 0:99 � jDjjj � 0:9999—

thus the quantization is fulfilled to a very high degree.

The values due to the two separate calculations are of the same quality we

usually get from (pure) two-state calculations, that is, very close to 1.0 but two

comments have to be made in this respect: (1) The quality of the numbers are

different in the two calculations: The reason might be connected with the fact

that in the second case the circle surrounds an area about three times larger than

in the first case. This fact seems to indicate that the deviations are due ‘‘noise’’

caused by CIs belonging to neighbor states [e.g., the (1,2) and the (4,5) CIs].

(2) We would like to remind the reader that the diagonal element in case of the

two-state system was only (�)0.39 [73] [instead of (�)1.0] so that incorporating

the third state led, indeed, to a significant improvement.

The requirement of having two negative values and one positive is also

fulfilled. Since this subject has been treated several times before (see Sections

VIII and IX) it will be discussed within the next subject, related to the locations

of the negative terms, that requires some analysis.

The positions of the (�1) terms in the diagonal indicate which of the

electronic eigenfunction flips sign upon tracing the closed contour under

Å

Å
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consideration [see Section (IV.A)]. The results of this study show that in both

cases the eigenfunctions of the two lower states (i.e., 22A0 and 32A0) flip sign,

whereas the sign of the third function (i.e., 42A0) remains the same. In situations

where we have a single conical intersection between each consecutive pair of

states it is the first and the third eigenfunctions that flip sign (see Section VIII).

Here, we encounter the situation of one conical intersection between the lower

pair of states but two (not one) conical intersections between the upper pair of

states.

To analyze this case, we employ, as before, ‘‘contour algebra’’ (see Section

IX): From Figure 14, it is noticed that �23 is a contour that surrounds the (2,3)

conical intersection, �34 is the contour that surrounds the two (3,4) conical

intersections, and �24 is a contour that surrounds all three conical intersections.

According to ‘‘contour algebra’’ the event that ‘‘takes place’’ along �24 is the

sum of the events along each individual contour. Thus,

�24 ¼ �23 þ �34 ð194Þ

Next, we are aware of the fact that if the system traces �23 it will be the two

lower eigenfunctions that flip signs. If the system traces �34, then no function

flips its sign because two such conical intersections cancel each other

[12,22,26,74,125]. Now, if the system traces �24 then, from Eq. (194) it follows

that again, only the two lowest functions flip their sign, so that the effect due to

the single lower CI will be preserved. In other words, the two-state topological

effects are not disturbed along those contours that surround all three CIs. The

results will be different once we choose a contour that surrounds, in addition to

the lower CI, only one of the two upper CIs [see Ref. (117b)].

Figure 14. The three contours for the three situations discussed in the text: �23 surrounds the

(2,3) CI, �34 surrounds the two (3,4) CIs, and �24 surrounds all three CIs.
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XVI. SUMMARY AND CONCLUSIONS

This field currently differs from others fields in molecular physics mainly in two

ways: (1) It is a highly theoretical field and as such it requires chemical–physical

intuition and mathematical skill. (2) This field is still open to new developments

that could significantly affect chemistry when treated on the molecular level. In

this chapter, we tried to summarize the various findings related to this field and to

give the reader its state of the art. Some of the subjects presented here were

already discussed in previous reviews [8,13]. Still, due to last year’s intensive

efforts, we managed to include several new issues—some of them may open new

venues for more research in this field. Since, as mentioned, part of the subjects

presented here were already summarized in a previous review [13], in this section

we will mainly concentrate on the implications of new subjects thus avoiding

unnecessary repetition. We distinguish between two kinds of topics: (1) Practical

ones that are associated with the possibility of treating dynamical processes

related to excited states, namely, the diabatization process. (2) Less practical

ones, which are interesting from a theoretical point of view but with potential

prospects.

We start summarizing our findings regarding diabatization. There is no doubt

that diabatization is essential for any dynamical study that involves

electronically excited states. Diabatization is applied (on and off) for almost

three decades mainly for studying charge-transfer processes between ion and

molecules [54,94–97,125,127–131] and sporadically for other purposes [100–

104]. However, only recently the conditions for a correct diabatization, subject

to minimal numerical efforts, were formulated [108]. This subject is discussed

in Section XI. The diabatization as presented here is shown to be closely

connected with the fact that the non-adiabatic coupling matrix has to be

quantized to guarantee single-valued diabatic potentials. One of the more

fundamental answers regarding the quantization of the nonadiabatic coupling

matrix were given in a series of ab initio calculations for different molecules

[64–74]. The quantization for two-state systems for real systems was discussed

in our previous reviews [8,13] but here, in Section XV.B, we extended the

discussion to a three-state case found to exist for the second, third, and fourth

states of the C2H molecule [117]. This study is particularly important because it

produces, for first time, the proof that the quantization is a general feature that

goes beyond the two-state systems.

The two other subjects, as we already mentioned, are more theoretical but

eventually may lead to interesting practical findings.

In Section XIII, we made a connection between the curl condition that was

found to exist for Born–Oppenheimer–Huang systems and the Yang–Mills field.

Through this connection we found that the non-adiabatic coupling terms can

be considered as vector potentials that have their source in pseudomagnetic
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fields defined along seams. We speculated that these fields could be,

semiclassically, associated with the zero-point vibrational motion [113].

Another subject with important potential application is discussed in Section

XIV. There we suggested employing the curl equations (which any Bohr–

Oppenheimer–Huang system has to obey for the for the relevant sub-Hilbert

space), instead of ab initio calculations, to derive the non-adiabatic coupling

terms [113,114]. Whereas these equations yield an analytic solution for any

two-state system (the abelian case) they become much more elaborate due to the

nonlinear terms that are unavoidable for any realistic system that contains more

than two states (the non-abelian case). The solution of these equations is subject

to boundary conditions that can be supplied either by ab initio calculations or

perturbation theory.

This chapter centers on the mathematical aspects of the non-adiabatic

coupling terms as single entities or when grouped in matrices, but were it not for

the available ab initio calculation, it would have been almost impossible to

proceed thus far in this study. Here, the ab initio results play the same crucial

role that experimental results would play in general, and therefore the author

feels that it is now appropriate for him to express his appreciation to the groups

and individuals who developed the numerical means that led to the necessary

numerical outcomes.

APPENDIX A: THE JAHN–TELLER MODEL AND THE
LONGUET–HIGGINS PHASE

We consider a case where in the vicinity of a point of degeneracy between two

electronic states the diabatic potentials behave linearly as a function of the

coordinates in the following way [16–21]

W ¼ k
y x

x �y

� �
ðA:1Þ

where (x; y) are some generalized nuclear coordinates and k is a force constant.

The aim is to derive the eigenvalues and the eigenvectors of this potential matrix.

The eigenvalues are the adiabatic potential energy states and the eigenvectors

form the columns of the adiabatic-to-diabatic transformation matrix. In order to

perform this derivation, we shall employ polar coordinates (q,j), namely,

y ¼ q cosj and x ¼ q sinj ðA:2Þ

By substituting for x and y, we get j-independent eigenvalues of the form

u1 ¼ kq and u2 ¼ �kq where q ¼ f0;1g and j ¼ f0; 2pg
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As noticed from Figure 15, the two surfaces u1 and u2 are conelike potential

energy surfaces with a common apex. The corresponding eigenvectors are

f1 ¼ cos
j
2
; sin

j
2

� �
f2 ¼ sin

j
2
; �cos

j
2

� � ðA:3Þ

The components of the two vectors (n1, n2), when multiplied by the electronic

(diabatic) basis set (jf1i; jf2i), form the corresponding electronic adiabatic basis

set ðjZ1i; jZ2iÞ:

jZ1i ¼ cos
j
2
jf1i þ sin

j
2
jf2i

jZ2i ¼ sin
j
2
jf1i � cos

j
2
jf2i

ðA:4Þ

The adiabatic functions are characterized by two interesting features: (1) they

depend only on the angular coordinate (but not on the radial coordinate) and

(2) they are not single valued in configuration space because when j is replaced

by (jþ 2p)—a rotation that brings the adiabatic wave functions back to their

Figure 15. The two interacting cones within the Jahn–Teller model.
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initial position—both of them change sign. This last feature, which was revealed

by Longuet-Higgins [14–17], may be, in certain cases, very crucial because

multivalued electronic eigenfunctions cause the corresponding nuclear wave

functions to be multivalued as well, a feature that has to be incorporated

explicitly (through specific boundary conditions) while solving the nuclear

Schrödinger equation. In this respect, it is important to mention that ab initio

electronic wave functions indeed, possess the multivaluedness feature as

described by Longuet–Higgins [30].

One way to eliminate the multivaluedness of the electronic eigenfunctions is

by multiplying it by a phase factor [15], namely,

zjðjÞ ¼ expðiWÞZjðjÞ j ¼ 1; 2 ðA:5Þ

where a possible choice for W is

W ¼ j=2 ðA:6Þ

Note that zjðjÞ; j ¼ 1; 2 are indeed single-valued eigenfunctions; however,

instead of being real, they become complex.

The fact that the electronic eigenfunctions are modified as presented in

Eq. (A.5) has a direct effect on the non-adiabatic coupling terms as introduced

in Eqs. (8a) and (8b). In particular, we consider the term tð1Þ11 (which for the

case of real eigenfunctions is identically zero) for the case presented in

Eq. (A.5):

sð1Þ11 ¼ hz1jrz1i ¼ irWþ hZ1jrZ1i

but since

hZ1jrZ1i ¼ 0

it follows that sð1Þ11 becomes

sð1Þ11 ¼ irW ðA:7Þ

In the same way, we obtain

sð2Þ11 ¼ ir2W� ðrWÞ2 ðA:8Þ

The fact that now sð1Þ11 is not zero will affect the ordinary Born–Oppenheimer

approximation. To show that, we consider Eq. (15) for M ¼ 1, once for a real
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eigenfunction and once for a complex eigenfunction. In the first case, we get

from Eq. (15) the ordinary Born–Oppenheimer equation:

� 1

2m
r2cþ ðu� EÞc ¼ 0 ðA:9Þ

because for real electronic eigenfunctions sð1Þ11 � 0 but in the second case for

which sð1Þ11 6¼ 0 the Born–Oppenheimer approximation becomes

� 1

2m
ðr þ irWÞ2cþ ðu� EÞc ¼ 0 ðA:10Þ

which can be considered as an ‘extended’ Born–Oppenheimer approximation for

a case of a single isolated state expressed in terms of a complex electronic

eigenfunction [132]. This equation was interpreted for some time as the adequate

Schrödinger equation to describe the effect of the conical intersection that

originate from the two interacting states. As it stands it contains an effect due to

an ad hoc phase attached to a ground-state electronic eigenfunction [63].

The extended Born–Oppenheimer approximation based on the nonadiabatic

coupling terms was discussed on several occasions [23,25,26,55,56,133,134]

and is also presented here by Adhikari and Billing (see Chapter 3).

APPENDIX B: THE SUFFICIENT CONDITIONS FOR HAVING
AN ANALYTIC ADIABATIC-TO-DIABATIC

TRANSFORMATION MATRIX

The adiabatic-to-diabatic transformation matrix, Ap, fulfills the following first-

order differential vector equation [see Eq. (19)]:

$AM þ tMAM ¼ 0 ðB:1Þ

In order for AM to be a regular matrix at every point in the assumed region of

configuration space it has to have an inverse and its elements have to be analytic

functions in this region. In what follows, we prove that if the elements of the

components of tM are analytic functions in this region and have derivatives to

any order and if the P subspace is decoupled from the corresponding Q subspace

then, indeed, AM will have the above two features.

I. ORTHOGONALITY

We start by proving that AM is a unitary matrix and as such it will have an inverse

(the proof is given here again for the sake of completeness). Let us consider the
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complex conjugate of Eq. (B.1):

rA
y
M � A

y
MsM ¼ 0 ðB:2Þ

where we recall that sM , the non-adiabatic coupling matrix, is a real anti-

symmetric matrix. By multiplying Eq. (B.2) from the right by AM and Eq. (B.1)

from the left by A
y
M and combining the two expressions we get

A
y
MrAM þ ðrA

y
MÞAM ¼ ðrA

y
MAMÞ ¼ 0) A

y
MAM ¼ constant

For a proper choice of boundary conditions, the above mentioned constant matrix

can be assumed to be the identity matrix, namely,

A
y
MAM ¼ I ðB:3Þ

Thus AP is a unitary matrix at any point in configuration space.

II. ANALYTICITY

From basic calculus, it is known that a function of a single variable is analytic at a

given interval if and only if it has well-defined derivatives, to any order, at any

point in that interval. In the same way, a function of several variables is analytic

in a region if at any point in this region, in addition to having well-defined deri-

vatives for all variables to any order, the result of the differentiation with respect

to any two different variables does not depend on the order of the differentiation.

The fact that the AM matrix fulfills Eq. (B.1) ensures the existence of deri-

vatives to any order for any variable, at a given region in configuration space, if

sM is analytic in that region. In what follows, we assume that this is, indeed, the

case. Next, we have to find the conditions for a mixed differentiation of the AM

matrix elements to be independent of the order.

For that purpose, we consider the p and the q components of Eq. (B.1) (the

subscript M will be omitted to simplify notation):

q
qp

Aþ spA ¼ 0

q
qq

Aþ sqA ¼ 0

ðB:4Þ

By differentiating the first equation according to q we find

q
qq

q
qp

Aþ q
qq

sp

� �
Aþ sp

q
qq

A ¼ 0

the electronic non-adiabatic coupling term 123



or

q
qq

q
qp

Aþ q
qq

sp

� �
A� spsqA ¼ 0 ðB:5aÞ

In the same way, we get from the second equation the following expression:

q
qp

q
qq

Aþ q
qp

sq

� �
A� sqspA ¼ 0 ðB:5bÞ

Requiring that the mixed derivative is independent of the order of the differen-

tiation yields

q
qp

sq �
q
qq

sp

� �
A ¼ ðsqsp � spsqÞA ðB:6Þ

or (since A is a unitary matrix):

q
qp

sq �
q
qq

sp ¼ ½sq; sp� ðB:7Þ

Thus, in order for the A matrix to be analytic in a region, any two components of

s, locally, have to fulfill Eq. (B.7). Equation (B.7) can also be written in a more

compact way

curl s� ½s� s� ¼ 0 ðB:8Þ

where � stands for a vector product.

The question to be asked is: Under what conditions (if at all) do the com-

ponents of s fulfill Eq. (B.8)? In [34] it is proved that this relation holds for any

full Hilbert space. Here, we shall show that this relation holds also for the P sub-

Hilbert space of dimension M, as defined by Eq. (10). To show that we employ,

again, the Feshbach projection operator formalism [79] [see Eqs. (11)].

We start by considering the pth and the qth components of Eqs. (8a)

qsq

qp

� �
jk

¼
'
qzj

qp

%%%% qzk

qq

(
þ
'
zj

%%%% q2zk

qpqq

(
j; k � M ðB:9aÞ

and

qtp

qq

� �
jk

¼
'
qzkj

qq

%%%% qzk

qp

(
þ
'
zj

%%%% q2zk

qqqp

(
j; k � M ðB:9bÞ
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Subtracting Eq. (B.9b) from Eq. (B.9a) and assuming that the electronic eigen-

functions are analytic functions with respect to the nuclear coordinates yields the

following result:

q
qp

tq �
q
qq

tp

� �
jk

¼
'
qzkj

qp

%%%% qzk

qq

(
�
'
qzj

qq

%%%% qzk

qp

(
j; k � M ðB:10Þ

Equation (B.10) stands for the ( j,k) matrix element of the left-hand side of

Eq. (B.7). Next, we consider the ( j,k) element of the first term on the right-hand

side of Eq. (B.7), namely,

ðsqspÞjk ¼
XM
i¼1

'
zj

%%%% qzi

qq

('
zi

%%%% qzk

qp

(

Since for real functions

'
zj

%%%% qzi

qq

(
¼ �

'
qzj

qq

%%%%zi

(

we get for this matrix element the result

ðsqspÞjk ¼ �
XM
i¼1

'
qzj

qq

%%%%zi

('
zi

%%%% qzk

qp

(
¼ �

'
qzj

qq

%%%% XM

i¼1

jziihzij
 !%%%% qzk

qp

(

Recalling that the summation within the round parentheses can be written as

[1� QM], where QM is the projection operator for Q subspace, we obtain

ðsqspÞjk ¼ �
'
qzj

qq

%%%% qzk

qp

(
�
XN

i¼Mþ1

'
qzj

qq

%%%%zi

('
zi

%%%% qzk

qp

(
j; k � M

Since under the summation sign each term is zero (no coupling between the

inside and the outside subspaces) [see Eq. (10)] we finally get

ðsqspÞjk ¼ �
'
qzj

qq

%%%% qzk

qp

(
ðB:11aÞ

A similar result will be obtained for Eq. (B.7), namely,

ðspsqÞjk ¼ �
'
qzj

qp

%%%% qzk

qq

(
ðB:11bÞ
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Subtracting Eq. (B.11b) from Eq. (B.11a) yields Eq. (B.10), thus proving the

existence of Eq. (B.7).

Summary: In a region where the sM elements are analytic functions of the

coordinates, AM is an orthogonal matrix with elements that are analytic

functions of the coordinates.

APPENDIX C: ON THE SINGLE/MULTIVALUEDNESS OF THE
ADIABATIC-TO-DIABATIC TRANSFORMATION MATRIX

In this appendix, we discuss the case where two components of sM , namely, sMp

and sMq ( p and q are Cartesian coordinates) are singular in the sense that at least

one element in each of them is singular at the point Bð p ¼ a; q ¼ bÞ located on

the plane formed by p and q. We shall show that in such a case the adiabatic-to-

diabatic transformation matrix may become multivalued.

We consider the integral representation of the two relevant first-order

differential equations [namely, the p and the q components of Eq. (19)]:

q
qp

AM þ sMpAM ¼ 0

q
qq

AM þ sMqAM ¼ 0

ðC:1Þ

In what follows, the subscript M will be omitted to simplify the notations. If the

initial point is Pðp0; q0Þ and we are interested in deriving the value of Að� AMÞ
at a final point Qðp; qÞ then one integral equation to be solved is

Aðp; qÞ ¼ Aðp0; q0Þ �
ðp

p0

dp0spðp0; q0ÞAðp0; q0Þ �
ðq

q0

dq0sqðp; q0ÞAðp; q0Þ

ðC:2aÞ

Another way of obtaining the value of Aðp; qÞ [we shall designate it as ~Aðp; qÞ]
is by solving the following integral equation:

~Aðp; qÞ ¼ Aðp0; q0Þ �
ðq

q0

dq0sqðp0; q
0Þ~Aðp0; q0Þ �

ðp

p0

dp0spðp0; qÞ~Aðp0; qÞ

ðC:2bÞ

In Eq. (C.2a), we derive the solution by solving it along the path �0

characterized by two straight lines and three points (see Fig. 16a):

�0: Pðp0; q0Þ ! P0ðp0; qÞ ! Qðp; qÞ ðC:3aÞ
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Figure 16. The rectangular paths �0 and �00 connecting the points (p0; q0) and (p; q) in the

(p; q) plane.
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and in Eq. (C.2b) by solving it along the path �00 also characterized by two

(different) straight lines and the three points (see Fig. 16b)

�00: Pðp0; q0Þ ! Q0ðp; q0Þ ! Qðp; qÞ ðC:3bÞ

Note that �, formed by �0 and �00 written schematically as

� ¼ �0 � �00 ðC:4Þ

is a closed path.

Since the two solutions of Eq. (C.1) presented in Eqs. (C.2a) and (C.2b) may

not be identical we shall derive the sufficient conditions for that to happen.

To start this study, we assume that the four points P, P0, Q0, and Q are at small

distances from each other so that if

p ¼ p0 þ�p q ¼ q0 þ�q

then �p and �q are small enough distances as required for the derivation.

Subtracting Eq. (C.2b) from Eq. (C.2a) yields the following expression:

�Aðp; qÞ ¼ �
ðq0þ�q

q0

dq0ðsqðp0; q0ÞAðp0; q0Þ � sqðp; q0ÞAðp; q0ÞÞ

þ
ðp0þ�p

p0

dp0ðspðp0; q0ÞAðp0; q0Þ � spðp0; qÞAðp0; qÞÞ ðC:5Þ

where

�Aðp; qÞ ¼ Aðp; qÞ � ~Aðp; qÞ ðC:6Þ

Next, we consider two cases.

1. The case where the point Bða; bÞ is not surrounded by the path � (see

Fig. 17a). In this case, both sp and sq are analytic functions of the

coordinates in the region enclosed by �, and therefore the integrands of

the two integrals can be replaced by the corresponding derivatives

calculated at the respective intermediate points, namely,

�Aðp; qÞ ¼ �p

ðq0þ�q

q0

dq0
qðsqð~p; q0ÞAð~p; q0ÞÞ

qp

��q

ðp0þ�p

p0

dp0
qðspðp0; ~qÞAðp0; ~qÞÞ

qq
ðC:7Þ
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Figure 17. The differential closed paths � and the singular point Bða; bÞ in the (p; q) plane:

(a) The point B is not surrounded by �. (b) The point B is surrounded by �.
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To continue the derivation, we recall that �p and �q are small enough

so that the two integrands vary only slightly along the interval of

integration so, that �A becomes

�Aðp; qÞ ¼ �p�q
qðsqð~p; ~~qÞAð~p; ~~qÞÞ

qp
� qðspð~~p; ~qÞAð~~p; ~qÞ

qq

� &
ðC:8Þ

If we assume again that all relevant functions are smooth enough, the

expression in the curled parentheses can be evaluated further to become

�Aðp; qÞ ¼ qsqðp; qÞ
qp

� qspðp; qÞ
qq

� �
� ½sq; sp�

� &
Aðp; qÞ�p�q ðC:9Þ

where Eqs. (C.1) were used to express the derivatives of Aðp; qÞ. Since the

expression within the curled parentheses is identically zero due to Eq. (24),

�A becomes identically zero or in other words the two infinitesimal paths

�0 and �00 yield identical solutions for the A matrix. The same applies to

ordinary (viz., not necessarily small) closed paths because they can be

constructed by ‘‘integrating’’ over closed infinitesimal paths (see Fig. 18).

2. The case when one of the differential closed paths surrounds the point

Bða; bÞ (see Fig. 17b). Here the derivation breaks down at the transition

from Eqs. (C.5)–(C.7) and later, from Eqs. (C.7)–(C.8), because sp and sq

become infinitely large in the close vicinity of Bða; bÞ, and therefore their

Figure 18. The closed (rectangular) path � as a sum of three partially closed paths �1; �2; �3:
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Figure 19. The closed path � as a sum of three closed paths �d ; �p; �i. (a) The closed

(rectangular) paths, that is, the large path � and the differential path �d both surrounding the singular

point Bða; bÞ. (b) The closed path �p that does not surround the point Bða; bÞ. (c) The closed path �i

that does not surround the point Bða; bÞ.
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intermediate values cannot be estimated. As a result it is not clear whether

the two solutions of the A matrix calculated along the two different

differential paths are identical or not. The same applies to a regular size

(i.e., not necessarily small) path � that surrounds the point Bða; bÞ. This

closed path can be constructed from a differential path �d that surrounds

Bða; bÞ, a path �p that does not surround Bða; bÞ, and a third, a connecting

path �i, which, also, does not surround Bða; bÞ (see Fig. 19). It is noted

that the small region surrounded by �d governs the features of the A
matrix in the entire region surrounded by �, immaterial of how large � is.

APPENDIX D: THE DIABATIC REPRESENTATION

Our starting equation is Eq. (3) in Section II.A with one difference, namely, we

replace ziðe j nÞ by ziðe j n0Þ; i ¼ 1; . . . ;N, where n0 stands for a fixed set of

nuclear coordinates. Thus

�ðe; n j n0Þ ¼
XN

i¼1

ciðnÞziðe j n0Þ ðD:1Þ

Here, ziðe j n0Þ, like ziðe j nÞ, is an eigenfunction of the following Hamiltonian

ðHeðe j n0Þ � uiðn0ÞÞziðe j n0Þ ¼ 0 i ¼ 1; . . . ;N ðD:2Þ

Figure 19 (Continued)
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where uiðn0Þ; i ¼ 1; . . . ;N are the electronic eigenvalues as calculated for this

(fixed) set of nuclear coordinates. Substituting Eqs. (1) and (D.1) in Eq. (2) yields

the following expression:

XN

i¼1

TnciðnÞjziðe j n0Þi þ
XN

i¼1

ciðnÞ½Heðe j nÞ � E�jziðe j n0Þi ¼ 0 ðD:3Þ

It has to be emphasized that whereas n0 is fixed, n is a variable. Substituting

Eq. (6) for Tn, multiplying Eq. (D.3) by hzjðe j n0Þj, and integrating over the

electronic coordinates yields the following result:

� 1

2m
r2 � E

� �
cjðnÞ þ

XN

i¼1

hzjðe j n0ÞjHeðe j nÞjziðe j n0ÞiciðnÞ ¼ 0 ðD:4Þ

Recalling

Heðe j nÞ ¼ Te þ uðe j nÞ ðD:5aÞ

and, therefore, also

Heðe j n0Þ ¼ Te þ uðe j n0Þ ðD:5bÞ

where uðe j nÞ is the Coulombic field, we can replace Heðe j nÞ in Eq. (D.4) by

the following expression:

Heðe j nÞ ¼ Heðe j n0Þ þ fuðe j nÞ � uðe j n0Þg ðD:6Þ

Equation (D.6) is valid because the electronic coordinates are independent of the

nuclear coordinates. Having this relation, we can calculate the following matrix

element:

hwjðe j n0ÞjHeðe j nÞjwiðe j n0Þi ¼ ujðn0Þdji þ vijðn j n0Þ ðD:7Þ

where

vijðn j n0Þ ¼ hwjðe j n0Þjuðe j nÞ � uðe j n0Þjwiðe j n0Þi ðD:8Þ

Defining

Vijðn j n0Þ ¼ vijðn j n0Þ þ ujðn0Þdji ðD:9Þ
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and recalling Eq. (D.7), we get for Eq. (D.4) the expression

� 1

2m
r2 � E

� �
cjðnÞ þ

XN

i¼1

Vjiðn j n0ÞciðnÞ ¼ 0 ðD:10Þ

This equation can be also written in matrix form

� 1

2m
r2�þ ðV� EÞ� ¼ 0 ðD:11Þ

Here, V is the diabatic potential matrix and, in contrast to u in Eq. (9) of

Section (II.A), it is a full matrix. Thus Eq. (D.11) is the Schrödinger equation

within the diabatic representation.

APPENDIX E: A NUMERICAL STUDY OF
A THREE-STATE MODEL

In Section V.B, we discussed to some extent the 3� 3 adiabatic-to-diabatic

transformation matrix Að� Að3ÞÞ for a tri-state system. This matrix was expres-

sed in terms of three (Euler-type) angles gij; i ¼ 1; 2; 3 [see Eq. (81)], which

fulfill a set of three coupled, first-order, differential equations [see Eq. (82)].

In what follows, we treat a tri-state model system defined in a plane in terms

of two polar coordinates ðr;jÞ [85]. In order to guarantee that the non-adiabatic

matrix s, yields single-valued diabatic potentials we shall start with a 3� 3

diabatic potential matrix and form, employing the Hellmann–Feynman theorem

[3,36,85], the corresponding non-adiabatic coupling matrix s. The main purpose

of studying this example is to show that the A matrix may not be uniquely

defined in configuration space although the diabatic potentials are all single

valued.

The tri-state diabatic potential that is employed in this study is closely related

(but not identical) to the one used by Cocchini et al. [39,135] to study the

excited states of Na3. It is of the following form (for more details see [85]):

V ¼
eE þ U1 U2 W1 �W2

U2 eE � U1 W1 þW2

W1 �W2 W1 þW2 eA

0
@

1
A ðE:1Þ

Here eE and eA are the values of two electronic states (an E-type state and an

A-type state, respectively), Ui; i ¼ 1; 2 are two potentials defined as

U1 ¼ kr cosjþ 1

2
gr2 cosð2jÞ ðE:2aÞ
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and

U2 ¼ kr sinj� 1

2
gr2 sinð2jÞ ðE:2bÞ

Wi; i ¼ 1; 2 are potentials of the same functional form as the Ui parameters but

defined in terms of a different set of parameters f and p, which replace g and k,

respectively. The numerical values for these four parameters are [135]

k ¼
ffiffiffi
2
p

p ¼ 5:53 a:u: and g ¼
ffiffiffi
2
p

f ¼ 0:152 a:u:

Equation (82) is solved, for fixed r values, but for a varying angular

coordinate, j, defined along the interval (0,2p). Thus r serves as a parameter

and the results will be presented for different r values. A second parameter that

will be used is the potential energy shift, �eð¼ eE � eAÞ, defined as the shift

between the two original coupled adiabatic states and the third state at the origin,

that is, at r ¼ 0 (in case �e ¼ 0, all three states are degenerate at the origin).

The results will be presented for several of its values. In Figure 20 are shown the

three non-adiabatic coupling terms tjijðjÞ; i; j ¼ 1; 2; 3ði > jÞ as calculated for

different values of r and �e. The main feature to be noticed is the well-defined

(sharp) tri-peak structure of tj12 and tj23 as a function of j. There are other

interesting features to be noticed but these are of less relevance to the present

study (for a more extensive discussion see [85]).

Figure 1 presents the three g angles as a function of j for various values of r
and �e. The two main features that are of interest for the present study are

(1) following a full cycle, all three angles in all situations obtain the values

either of p or of zero. (2) In each case (viz., for each set of r and �e), following

a full cycle, two angles become zero and one becomes p. From Eq. (81) notice

that the A matrix is diagonal at j ¼ 0 and j ¼ 2p but in the case of j ¼ 0 the

matrix A is the unit matrix and in the second case it has two (�1) terms and

one (þ1) in its diagonal. Again recalling Eq. (39), this implies that the D matrix

is indeed diagonal and has in its diagonal numbers of norm 1. However, the most

interesting fact is that D is not the unit matrix. In other words, the adiabatic-to-

diabatic transformation matrix presented in Eq. (81) is not single valued in

configuration space although the corresponding diabatic potential matrix is

single valued, by definition [see Eqs. (E.1) and (E.2)]. The fact that D has two

(�1) terms and one (þ1) in its diagonal implies that the present s matrix

produces topological effects, as was explained in the last two paragraphs of

Section IV.A: Two electronic eigenfunctions flip sign upon tracing a closed path

and one electronic function remains with its original sign.

As much as the results in the last section (Appendix D) are interesting the

rather more interesting case is the one for �e ¼ 0, namely, the case where the

three states degenerate at one point. Here we find that even in this case D is not
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the unit matrix but it keeps the features it encountered for �e 6¼ 0. In other

words, the transition from the �e 6¼ 0 situation to the �e ¼ 0 situation is

continuous as was discussed in Section X. However, the present �e ¼ 0 D
matrix is in contradiction with the D matrix in Section V.A.2, which was derived

for a particular type of a 3� 3 s matrix that also refers to a trifold degeneracy at

Figure 20. The three non-adiabatic coupling terms (obtained for the model potential described

in Appendix E, see also Section V.B) s12jðjÞ,s23jðjÞ,s13jðjÞ as a function j calculated for

different values of r and �e: (a) t ¼ t12, �e ¼ 0:0; (b) t ¼ t12, �e ¼ 0:05; (c) t ¼ t12, �e ¼ 0:5;

(d) t ¼ t23, �e ¼ 0:0; (e) t ¼ t23, �e ¼ 0:05; ( f ) t ¼ t23, �e ¼ 0:5; (g) t ¼ t13, �e ¼ 0:0; (h)

t ¼ t13, �e ¼ 0:05; (i) t ¼ t13, �e ¼ 0:5. ———— r ¼ 0:01; – – – – – – r ¼ 0:1; - - - - - - -

r ¼ 0:5; ................. r ¼ 1:0.
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a single point. In this case, as we may recall, it was proved that it has to be a unit

matrix if it is expected to yield single-valued diabatic potentials. These two

examples support the finding of Section X where we distinguished between

breakable and unbreakable multidegeneracy. The Cocchini et al. [135] model

belongs, of course, to those models that yield the breakable degeneracy.

APPENDIX F: THE TREATMENT OF A CONICAL
INTERSECTION REMOVED FROM THE

ORIGIN OF COORDINATES

We start by writing the curl equation in Eq. (157) for a vector tðx; yÞ in Cartesian

coordinates.

qtx

qy
� qty

qx
¼ 0 ðF:1Þ

The solution to Eq. (F.1)

tðx; yÞ ¼ f
y

x

� ��yix þ xiy

x2 þ y2
ðF:2Þ

where ix and iy are unit vectors along the x and the y axes, respectively. To shift

this solution from the origin to some given point (xj0; yj0) the variable x is

replaced by (x� xj0) and the variable y by (y� yj0) so that the solution of

Eq. (F.1) is given in the form

tðx; yÞ ¼ f
y� yj0

x� xj0

� �
�ðy� yj0Þix þ ðx� xj0Þiy
ðx� xj0Þ2 þ ðy� yj0Þ2

ðF:3Þ

Next, we are interested in expressing this equation in terms of polar coordinates

(q; y). For this purpose, we recall the following relations:

x ¼ q cosy y ¼ q siny ðF:4Þ

and introduce the following definitions:

x� xj0 ¼ qj cosyj y� yj0 ¼ qj sinyj ðF:5Þ

Since we are interested in the polar components of tðq; yÞ, that is, tq and ty, we

need to know their relation with tx and ty as well, which was derived sometime
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ago [84].

tq ¼
'
w1

%%%% qqq
w2

(
¼ cosytx þ sinyty

ty ¼
'
w1

%%%% qqy w2

(
¼ qð�sinytx þ cosytyÞ

ðF:6Þ

where w1 and w2 are the two lowest electronic adiabatic wave functions. By

employing Eqs. (F.3), (F.5), and (F.6), we finally get

tqðq; yÞ ¼ �f ðyjÞ
1

qj

sinðy� yjÞ

tyðq; yÞ ¼
q

qj

f ðyjÞcosðy� yjÞ
ðF:7Þ

Equations (F.7) are the equations employed in the text [see Eqs. (164)].
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42. W. Domcke and G. Stock, Adv. Chem. Phys. 100, 1 (1997).
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Öhrn, Y., 325(1-4), 328(20), 332(24), 333(4),

337(25-26), 338(25,27-30), 339(27),

344-345(42-43), 348(51), 349(4), 351–352

Oka, T., 625(147), 657

Olivucci, M.: 234(279), 281; 357(6-7), 358(42),

359(49-52,63-64), 360(79-87), 381(6-7),

405(230), 406(63-64), 407(79,237),

408(80-82), 409(83-84), 410(85-86,230),

411-412(87), 424–426, 430; 434(9),

479(89,92), 480(92), 490(9), 500, 502;

446(37-38), 489(37,114), 490(37-38,116),

491(117), 501, 503

Olsen, J., 363(97), 427

Oosterhoff, L. J., 438(31-32), 448(47), 450(47),

494(47), 500–501

Opik, U.: 2-3(2), 9(2), 18-20(2), 31(2), 36;

41-42(14), 53(14), 106(14), 121(14), 139;

145(36), 195

Oppenheimer, J. R.: 40(1), 82(1), 138; 144(16),

194; 202(62), 274; 283(1), 319;

506-507(5), 555; 584(6), 653; 662(38),

667(38), 739

O’Raifeartaigh, L., 42(59), 93(59), 140

Oreiro, J., 338(30), 352

Orloff, D., 349(60), 353

Orloff, H., 349(60), 353

Ortiz, J. V., 363(95), 426

Osmann, G., 583(2), 586(2), 604(2),

623(2,104-105), 653, 656

Osnaghi, S., 200(20), 273

Ostojic, B., 586(18), 621(18), 625(144),

626(18,144,150,153), 627(144),

628(18,153), 630(144), 631(18,150,153),

634(18,153), 638(144), 641(150,153),

646(18,153), 647(150), 654, 657

Ottani, S., 446(38), 490(38), 501

Ozimba, P. A., 213(235), 279

Pacher, T.: 41(38,41), 47(41), 82(106), 139, 141;

144(25,30), 195; 202-203(49),

242(49,297), 274; 285(44-45), 301(44-45),

321; 383(179), 385(179), 419(179), 429

Pack, R. T.: 29(40), 31(40), 37; 284(17),

286(69), 320–321; 660(18), 668(52),

739–740

Paddon-Row, M. N., 376(144), 399(214),

414(144,214), 428, 430

Paganin, A., 207(125), 217(125), 276

Page, M., 460(67), 502

Pais, A. C. C., 693(69-70), 699(69-70), 740

Paley, R. A. E. C., 219(248), 280

Palivan, H., 619(84), 655

Palma, A., 719(91), 741

Palmer, I., 407(237), 430

Palmer, I. J., 479-480(92), 502

Palmieri, P., 622(99), 624(130), 656–657

Pancharatnam, S., 206(113), 276

756 author index



Panten, D., 622(101), 656

Papanikolas, J. M., 204(89), 208(89), 211(89),

275

Papousek, D., 624(127-128), 657

Parinello, M.: 215(238), 218(238), 279; 327(18),

352; 360(70-72,76), 425–426

Park, J. L., 212(219), 279

Parravicini, G. P., 247(305), 281

Pati, A. K., 200(11,14), 210(11,14), 242(11,14),

270(11), 273

Pauli, W.: 205(104), 263(104), 276; 597(22), 654

Pauling, L., 435(15), 499(141), 500, 504

Peasly, K., 358(38), 424

Peat, F. D., 209(151), 277

Pegg, D. T., 208(138,141), 277

Peiponen, K. E., 208(148), 277

Pellisier, M., 385(186), 429

Peng, C. Y., 363(95), 426

Percival, I. C., 212(206), 279

Perel’man, N. F., 200(15), 201(40), 212(15,199),

213(227-228), 215(243-244), 273–274,

278–280

Perez-Mercader, J., 212(216), 279

Peric, M.: 82(105), 109(105), 141; 202(51),

234(278), 274, 281; 586(16-18),

590(28-29), 594(20-21), 599-600(28-29),

602(28-29), 604(28), 606(33-34),

610(16-17), 612(56), 620(16-17,21,86),

621(17,21,86-87), 622(16-17), 623(33),

624(20,112-113,117-126), 625(140-145),

626(18,141-145,148-154), 627(144),

628(18,153), 630(144), 631(18,145,

149-150,153), 634(18,152-153), 635(152),

638(144,152), 641(150,153,170-171),

646(18,153,172-173), 647(149-150),

654–658

Persico, M.: 385(185), 403(225-226), 429–430;

491(119), 503

Persson, J., 622(98), 656

Peshkin, M., 209(153,155), 277

Peskin, M. E., 203-204(69), 212(218), 250(69),

275, 279

Peslherbe, G., 356(2), 372(2), 423

Petelin, A. N., 625(132), 632(132), 634(132),

641(132), 646(132), 657

Peterson, K., 41(6), 138

Petersson, G. A., 363(95), 426

Petrongolo, C.: 41(42-43), 82(52-53), 140;

144(28), 195; 290(63), 321; 491(119), 503;

640(168), 658

Pettitt, B., 359(59), 425

Peyerimhoff, S. D.: 82(105), 109(105), 141;

144(28), 195; 202(51), 234(278), 274, 281;

290(63), 321; 406(235), 430; 455(56), 501;

586(16-17), 594(20-21), 597(23), 606(33),

610(16-17), 612(56), 620(16-17,21,86),

621(21,86-87), 622(16-17), 624(20,

112-113,115,117-124), 625(140-142),

626(141-142,148,152,154), 634-635(152),

638(152), 641(170-171), 654–658

Pfelzer, C., 624(125), 656

Phillips, D. F., 249(316), 282

Phillips, J., 411(243), 431

Piel, J., 410(240), 430

Pines, A.: 3(13), 37; 248(307), 281

Pires, M. V., 290(64), 321

Piskorz, P., 363(95), 426

Pistolesi, F., 210(168), 277

Pittner, J., 415(249), 431

Pitzer, R., 41(6), 138
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Schütz, M., 363(97), 427

Schwartz, R. L., 571(28), 581

Schwenke, D. W.: 82(101-102), 118(101-102),

141; 144(29), 195; 398(211), 399(213),

403(211,213,224), 430

Scully, M. N.: 201(41), 206-207(41), 274;

375(140), 428

Scuseria, G., 360(75), 363(95), 426

Sebald, P.: 3(17), 20(17), 37; 248(310), 281

Secrest, D., 611(45), 654

Seekamp-Rahn, K., 167(80,82,86), 196

Segal, G. A., 145(39-40), 195

Seijo, L., 363(97), 427

Seliger, R. L., 265(325), 282

Selloni, A.: 215(238), 218(238), 279;

360(70-71), 425

Semple, T. C., 474(85), 475(85), 502

Senent, M. L., 622(99), 656

Sepulveda, M. A., 358(29), 424

Serrano-Andrés, L.: 363(97), 427; 472(80),

484(99), 502–503

Shafar-Ray, N. E., 145(52), 195

Shafer, N. E., 286(58-59), 321

Shaik, S. S., 436(26-27), 448(26-27), 449(51),

450(26), 500–501

Shapere, M., 204(77-79), 209(78), 250(77-79),

253(79), 270(78), 275

Shapiro, J. H., 206(121), 208(121), 276

author index 759



Shapiro, M., 200(16,18),

204(16,84-87,90-91,93),

211(16,84-87,90,196), 273, 275, 278

Shaw, A.: 41(46), 140; 303(84), 308(84), 322;

715-716(81), 740

Shedaded, R., 625(135), 657

Shepard, R., 363(99), 372(126), 406(126), 427

Shepard, S. R., 206(121), 208(121), 276

Shih, S.: 455(56), 501; 624(115), 656

Shin, C., 118(130), 142

Shin, S., 118(130), 142

Shinke, R., 660(17), 739

Shirkov, D. V., 263(322), 267(322), 282

Shirley, D. A., 625(136), 657

Shtrikman, H., 200(17), 273

Shvartsman, N., 232(266), 280

Siday, R. E., 209(152), 277

Sidis, V.: 41(40), 82(40), 139; 144(24), 195;

202-203(48), 242(48), 274; 285(46), 321;

719(90), 741

Siegbahn, P.: 104(119), 142; 160-161(75),

166(75), 196; 363(97), 427

Silberberg, Y., 211(181), 278

Silver, D. M., 450(54), 494(54), 501

Simah, D., 285(39), 321

Simon, B.: 42(61), 140; 209(154), 277

Simon, R., 248(308), 281
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