Advances
in
Geometric Modeling

Dr. Muhammad Sarfraz

King Fahd University of Petroleum
and Minerals, Saudi Arabia

John Wiley & Sons, Ltd

Copyright © 2003 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 85Q, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books @wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, except under the terms of the Copyright, Designs and
Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency
Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of
the Publisher. Requests to the Publisher should be addressed to the Permissions Department,
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ,
England, or emailed to permreq@ wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold on the understanding that the Publisher is not engaged
in rendering professional services. If professional advice or other expert assistance is
required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L.1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available is electronic books.

A catalogue record for this book is available from the British Library
ISBN 0-470-859377

Typeset in 10/12pt Times Roman by TechBooks, New Delhi, India

Printed and bound in Great Britain by Biddles Ltd, Kings Lynn, Norfolk

This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

Contents

Preface

1.

Polygonal Subdivision Curves for Computer Graphics and Geometric Modeling

Ahmad H. Nasri (Lebanon)

1. Introduction
2. Two Basic Schemes of Subdivision Surfaces
2.1. Catmull-Clark Subdivision Scheme
2.2. Doo-Sabin Scheme
3. Background
3.1. The Curve Case
3.2. The Surface Case
4. Recursive Subdivision of Polygonal Complexes
4.1. Doo-Sabin Polygonal Complexes
4.2. Catmull-Clark Polygonal Complexes
5. Polygonal Subdivision Curves
5.1. Polygonal Doo-Sabin Curves
5.2. Polygonal Catmull-Clark Curves
6. Applications of Polygonal Subdivision Curves
6.1. Free-Form Curve Generation
6.2. Curve Interpolation
6.3. Trimming Subdivision Surfaces
6.4. Lofted Recursive Subdivision Surfaces
7. Summary
Acknowledgements
References

Planar Development of Digital Free-Form Surfaces
Phillip N. Azariadis and Nickolas S. Sapidis (Greece)

1.
2.

3.

Introduction

Criteria of Developability for Surfaces
2.1. Intrinsic Geometry of Surfaces

2.2. Isometric Mappings

2.3. Developability Criteria for Surfaces
Evaluating Planar Developments

3.1. Affine Triangle Transformations
3.2. Properties of Local Mappings

xiii

~N bR R LWL

19
20
20
22
22
24
24
26

Contents

4. Methods for Approximate Planar Development of Curved Surfaces 29
4.1. Category A: Minimization of An Energy Function 30

4.2. Category B: Employing Intrinsic Differential-Geometric Properties
of Surfaces 32
4.3, Category C: Approximation with Developable Surfaces 32
5. Application and Evaluation of Current Methods 33
5.1. The Modified Length-Area Energy Model 33
5.2. Examples 34
6. Summary 37
References 37

A Shape Preserving Representation for Rational Curves with Efficient

Evaluation Algorithm 39
Jorge Delgado and Juan M. Peiia (Spain)
1. Introduction 39
2. Evaluation Algorithms for Rational Curves 42
3. Total Positivity and Conversion to the Rational Bernstein-Bézier Form 48
4. Summary 54
References 54
Piecewise Power Basis Conversion of Dynamic B-spline Curves and Surfaces 55
Deok-Soo Kim and Joonghyun Ryu (Korea)
1. Introduction 55
2. Splitting B-spline Basis Functions 56
2.1. Representation of B-spline Basis Functions 57
2.2. Direct Expansion of B-spline Basis Functions 59
3. Direct Expansion of a Dynamic B-spline Curve 61
3.1. A Static B-spline Curve 61
3.2. A Dynamic B-spline Curve 62
4. Extension to a Dynamic Surface 64
5. Experiments and Discussion 65
6. Summary 67
References 67
Appendix: Pseudo-code for Path Enumerations 68
Computational Methods for Geometric Processing of Surfaces: Blending,
Offsetting, Intersection, Implicitization 69
Andpres Iglesias (Spain)
1. Introduction 69
2. Blending Surfaces 70
3. Offset Surfaces 71
4. Intersection of Surfaces 72
5. Implicitization 74
6. Summary 75
References 75
Weighted Nu Splines: An Alternative to NURBS 81

Muhammad Sarfraz (Saudi Arabia)
1. Introduction 82

Contents vii
2. Review of Weighted Nu Splines 83
2.1. Preliminaries 83
2.2. Parametric Representation 84
2.3. Demonstration 85
3. Development of Local Support Basis 86
4. Design Curve 89
4.1. Shape Control 90
4.2. Demonstration 92
5. Summary 94
Acknowledgements 95
References 95
7. Generation of Parting Surfaces Using Subdivision Techmque 97
C. L. Li (Hong Kong)
1. Introduction 97
2. Related Work 98
3. The Method of Extrusion 98
3.1. Inter-Locking Between Mould Halves 99
3.2. Intersecting the Part Surface 100
3.3. Validity Test 100
4. Applying the Catmull-Clark Method 102
5. Implementation and Design Example 104
6. Summary 104
References 105
8. Triadic Subdivision of Non Uniform Powell-Sabin splines 107
Evelyne Vanraes, Paul Dierckx, and Adhemar Bultheel (Belgmm)
1. Introduction 107
2. Powell-Sabin spines 108
2.1. Bézier Polynomials 108
2.2. Powell-Sabin split and the Space S}(A*) 109
3. A Normalized B-spline Representation 110
3.1. Convex Partition of Unity 110
3.2. PS-Triangles and Control Triangles 111
4. Subdivision 112
4.1. Choosing a Suitable Refinement A! of A° 112
4.2. 'The Subdivision Rules 114
5. Applications 116
5.1. Multiresolution Analysis 116
5.2. Multiresolution Editing 117
5.3. Wavelets 117
5.4. Visualization 118
6. Summary 118
References 119
9. Surface Interpolation Scheme by Distance Blending over Convex Sets 121
Lizhuang Ma, Qiang Wang (China), and Tony Chan K'Y (Singapore)
1. Introduction 122

viii Contents
2. Distance Functions over Convex Sets 122
3. Interpolating Scheme for Some Typical Convex Sets 124
4. Set-splines 126
5. Set Interpolation for Unusual Cases 128
6. Summary 129
Acknowledgement 131
References 131

10. Family of G* Spiral Transition Between Two Circles 133
Zulfigar Habib and Manabu Sakai (Japan)

1. Introduction 133
2. G? Cubic Transition 137
2.1. S-shaped Cubic Transition Curve 137
2.2. C-shaped Cubic Transition Curve 138
3. G? PH Quintic Transition 140
3.1. S-shaped PH Quintic Transition Curve 140
3.2, C-shaped PH Quintic Transition Curve 142
4. Numerical Examples and Critical Analysis 145
5. Summary 150
References 150

11. Optimal Hierarchical Adaptive Mesh Construction Using FCO Sampling 153
Panagiotis A. Dafas (UK), loannis Kompatsiaris, and Michael G. Strintzis
(Greece)

Introduction 153
2. Regular Triangle Mesh Construction 155
2.1. Regular Mesh from Unorganized Points 156
2.2. Regular Mesh from Non-optimal Meshes 156
2.3. Surface Estimation 157
3. Initial Regular Mesh Decimation 159
3.1. Hierarchical Triangulation 161
4. Experimental Results 161
5. Summary 163
References 164

12. Virtual Sculpting and Deformable Volume Modeling 167

K. C. Hui and H. C. Leung (Hong Kong)
1. Introduction 167
2. Physics Based Volume Modeling 168
3. The Boundary Element Approach 169
4, Deforming the Object 169
5. Converting Mesh Data to Volume Model 170
6. Addition and Removal of Material 170
7. Implementations and Results 170
8. Summary 172
Acknowledgement 173
References 173

Contents ix

13. Free Form Modeling Method Based on Silhouette and

Boundary Lines 175
Jun Kamiya and Hideki Aoyama (Japan)
1. Introduction 175
2. Outline of Developed System 176
2.1, Silhouette Lines Representing Form Feature of
An Automobile 176
2.2. Construction and Evaluation of An Automobile Model Form 176
3. Processes of Model Construction 177
3.1. Input and Definition of Silhouette and Boundary Lines 178
3.2. Model Construction by Basic Surfaces 179
3.3. Construction of Smooth Surfaces Between Basic Surfaces 181
4. Summary 181
References 183
14. Intuitive and Precise Solid Modeling in A Virtual Reality Environment 185
Yongmin Zhong and Wolfgang Miiller-Wittig (Singapore), and Weiyin Ma
(Hong Kong)
Introduction 185
2. Hierarchically Structured Constraint-Based Data Model 187
3. Constraint-Based Manipulations 190
3.1. Representation of Allowable Motions 191
3.2. Constraint Solving for Deriving Allowable Motions 192
3.3. Rule-Based Constraint Recognition 194
3.4, Some Special Constraint-Based Manipulations 195
4. Solid Modeling Through Constraint-Based Manipulations 197
4.1, Creation and Modification of Feature Primitives 197
4.2. Locating Feature Primitives 197
4.3. Part Creation 198
4.4. Visual Cues for Constraint-Based Manipulations 199
5. Implementation 199
6. Summary 200
References 201
15. Efficient Simplification of Triangular Meshes 203
Muhammad Hussain, Yoshihiro Okada, and Koichi Niijima (Japan)
1. Introduction 203
2. Related Work 205
3. Notation and Terminology 206
4. Overview of Our Algorithm 206
5. Error Metric 208
6. Metro 210
7. Results and Discussion 210
8. Summary 214
Acknowledgement 214

References 214

x Contents
16. Multiresolution and Diffusion Methods Applied to Surface Reconstruction
Based on T-Surfaces Framework 217
Gilson A. Giraldi, Rodrigo L. S. Silva, Walter H. Jiménez, Edilberto Strauss,
and Antonio A. F. Oliveira (Brazil)
1. Introduction 218
2. Multiresolution 218
3. PL Methods 219
4. T-Surfaces 220
4.1. Discrete Model 221
5. Segmentation Framework 222
6. Diffusion Methods 224
7. Experimental Results 226
8. Summary 227
References 228
17. A Multiresolution Framework for NUBS 229
Muhammad Sarfraz and Mohammed Ali Siddiqui (Saudi Arabia)
1. Introduction 229
2. Theory of NUBS 231
3. Multiresolution of NUBS Using Knot Decimation 231
4. Multiresolution of NUBS Using Point Decimation 232
5. Demonstration 235
6. Summary 239
Acknowledgements 240
References 240
18. Irregular Topology Spline Surfaces and
Texture Mapping 241
Jin J. Zheng and Jian J. Zhang (UK)
1. Introduction 241
2. Previous Work 242
3. C' Spline Surfaces 243
4. Mapping Functions 246
4.1. Mapping Functions for Irregular Patches 246
4.2. Mapping Functions for Irregular Spline Surfaces 246
5. Implementation 247
6. Summary 248
References 249
19. Segmentation of Scanned Surfaces: Improved Extraction of Planes 251
R. Sacchi, J.F. Poliakoff, PD. Thomas (UK), and K.-H. Hiifele (Germany)
1. Introduction 251
2. Segmentation of Surfaces 252
3. Extraction of Simple Geometric Segments 254
3.1. Simple Region Growing 254
3.2. Planar Region Growing with Super Triangles 255
3.3. Pseudo-Randomized Selection of Seed Regions 259
3.4. Automated Estimation of Tolerance 260

Contents xi

4. Results 261
5. Summary 261
References 262
20. Constraint-Based Visualization of Spatiotemporal Databases 263
Peter Revesz and Lixin Li (USA)
1. Introduction 263
2. Representation of IDW in Constraint Databases 265
2.1. High-Order Voronoi Diagrams 266
2.2. IDW in Constraint Databases 267
3. Application 268
4. Visualization 270
5. Spatiotemporal Interpolation Using IDW 273
6. Summary 275
References 275
21. Surface Oriented Triangulation of Unorganized 3D Points Based
On Laszlo’s Algorithm 277
Thomas Schdédlich, Guido Brunnett, and Marek Vanco (Germany)
1. Introduction 277
2. Laszlo’s Edge-Based Triangulation Algorithm 278
3. From Two to Three Dimensions 282
4. Implementation Details 284
4.1. Neighborhood Search 284
4.2. Tangent Place Estimation 291
4.3. Triangulation and Mesh Post-Processing 292
5. Results 294
6. Summary 294
References 296
22. Modifying the Shape of Cubic B-spline and NURBS Curves by
Means of Knots 299
Imre Juhdsz and Miklos Hoffmann
1. Introduction 299
2. Theoretical results 300
3. Shape control 302
3.1. Non-rational B-spline curve passing through a point 302
3.2. Tangential constraint for B-spline curve 306
3.3. NURBS curve passing through a point 308
3.4. Simultaneous modification of two knots 308
3.5. Modifying two weights and a knot of a NURBS curve 310
4. Summary 312
References 312

Index of Authors 315

Preface

Geometric Modeling (GM) plays a significant role in the construction, design and manufacture
of various objects. In addition to its critical importance in the traditional fields of automo-
bile and aircraft manufacturing, shipbuilding, and general product design, GM methods have
also proven to be indispensable in a variety of modern industries, including computer vision,
robotics, medical imaging, visualization, textile, designing, painting, and other media.

This book aims to provide a valuable resource, which focuses on interdisciplinary methods
and affiliate research in the area. It aims to provide the user community with a variety of
advanced geometric modeling techniques and the applications necessary for various real life
problems. It also aims to collect and disseminate information in various disciplines including:

¢ Computer Graphics

¢ Computer Vision

¢ Computer Aided Geometric Design
® Geometric Algorithms

¢ Visualization

¢ Shape Abstraction and Modeling
¢ Computational Geometry

Solid Modeling

¢ Shape Analysis and Description
® Reverse Engineering

® Multiresolution and Diffusion

® Texture Mapping

¢ CAD/CAM

¢ Industrial Applications

The major goal of this book is to stimulate discussion and provide a source where researchers
and practitioners can find the latest developments in the field of geometric modeling. Due to the
speed of scientific development, there is a great deal of thirst among the worldwide scientific
community to be equipped with state of the art theory and practice to get their problems solved
in diverse areas of various disciplines. Although a large amount of work has been done by
researchers already, a tremendous interest still increases everyday due to complicated problems
being faced in academia and industry.
This book has over twenty-two chapters focussing on new advances in the area. These

contributions are meant for geometric modeling issues including:

iy Preface

® Reviewed literature
e New techniques
e Applications

The book is useful for researchers, computer scientists, practicing engineers, and many others
who seek state of the art techniques and applications in geometric modeling. It is also useful
for undergraduate students as well as graduate students in the areas of computer science,
engineering, and mathematics.

The book is based on state of the art articles on geometric modeling techniques and appli-
cations. It will be a good reference book for the computer graphics and geometric modeling
community worldwide. The book will be specifically of interest to people in the following
industries or academic fields:

Computer Science (especially Computer Graphics)
Computer Aided Geometric Design
Computer Vision

Image Processing

Toon Rendering

Virtual Reality

Body Simulation

Engineering Disciplines
Mathematical Sciences

Font Industry

Software Industry

Information Visualization

® Manufacturing Industry

The editor is thankful to the contributors for their valuable efforts towards the completion of
this book. A lot of credit is also due to the various experts who reviewed the chapters and
provided helpful feed back. The editor is happy to acknowledge the support of King Fahd
University of Petroleurn and Minerals towards the compilation of this book. This book editing
project has been funded by King Fahd University of Petroleum and Minerals under Project
#ICS/ADV.MODEL/259.

M. Sarfraz

1

Polygonal Subdivision Curves for
Computer Graphics and
Geometric Modeling

Ahmad H. Nasri

American University of Beirut, Department of Computer Science,
PO Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon
Email: anasri@aub.edu.lb

A polygonal subdivision curve is the limit of subdivision of a polygonal complex. Such a
complex, whose shape depends on the scheme involved, is simply a control mesh that converges
to a curve rather than a surface. The use of polygonal complexes has been motivated by the
curve interpolation problem in subdivision surfaces. This is one of the major interpolation
constraints that is partially addressed in the literature. The definition of curves by polygonal
complexes carries with it cross derivative information which can be naturally embodied in
the mesh of a subdivision surface. This chapter gives an overview of such complexes, their
polygonal subdivision curves and their applications for computer graphics and geometric
modeling.

1. Introduction

Undoubtedly, subdivision surfaces are gradually becoming state of the art in both computer
graphics and geometric modeling. There are several reasons for their popularity which include
simplicity, and the ability to produce globally smooth surfaces from arbitrary topological
meshes.

Simply, a recursive division surface S is defined by a pair (P, R) where Py is an initial
configuration, and R is a refinement procedure. The configuration consists of a set of vertices,
edges and faces in the 3D space. This is often referred to as a polyhedron or polygonal mesh.
The refinement procedure is a set of rules applied to a configuration to generate another with

Advances in Geometric Modeling. Edited by M. Sarfraz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-85937-7

2 Polygonal Subdivision Curves

more vertices, edges and smaller faces than the initial one. At each level i of the refinement
process, the polygonal mesh P;_; is taken as input to the refinement R, which produces another
polygonal mesh P;, which may itself be taken as input to the next refinement step and so on.
If R satisfies certain conditions then the sequence of meshes P; converges to a smooth surface
at the limit.

This simple idea has sparked the imagination of the graphics and geometric modeling
communities. For the former, it provides a definition of models in a multiresolution fashion with
as much accuracy as needed. The possibility of migrating from coarser to finer meshes and vice
versais an aftractive one. For the geometric modeling community, subdivision not only provides
a definition of surfaces but is also a mean of interrogation. Efficient and robust algorithms for
intersecting, sectioning and interrogating such curves and surfaces can be developed. Extensive
research is still ongoing and results have revealed that modifying or generating new rules is a
source of flexibility to achieve various modifications of the limit surface. Interestingly enough,
subdivision surfaces have found their use in multiresolution and wavelets, fluid flow, movie
production, mesh processing (including fairing, compression, etc.). More details can be found
in [25-26], the site http://www.subdivision.org, and the references.

Polygonal complexes have recently proven their usefulness in Computer-Aided Geometric
Design (CAGD) and in computer graphics [10-11]. Put simply, a polygonal complex is a
control mesh whose limit under subdivision is a curve rather than a surface. At first, one may
wonder how a control mesh instead of a control polygon could be useful to define a curve. One
advantage of the former is simply that polygonal complexes permit the definition of curves
that carry with them cross derivatives information, this is explained later.

In the context of any given subdivision scheme, the definition of a polygonal complex
requires the following information:

1. Its topological and geometrical nature.
2. The required modifications (if any) to the subdivision rules of the scheme used. This should
not however involve modifying the subdivision coefficients themselves.

One particular advantage of the use of these complexes is that no modification of the subdivision
coefficients is ever required in order to achieve curve interpolation constraints. This can be
useful in various applications such as curve generation, curve interpolation, trimming and other
computer graphics applications.

This chapter is structured as follows: Section 2 outlines two basic subdivision schemes,
Section 3 gives the necessary background about Bézier curves (and surfaces) and their conver-
sions to B-spline ones. Polygonal subdivision curves are introduced in Section 4 with examples
in Doo-Sabin and Catmull-Clark schemes. The limits of these complexes are also given in
Section 5 and the applications are discussed in Section 6. Finally, conclusions and future work
are drawn in Section 7.

2. Two Basic Schemes of Subdivision Surfaces

Since their introduction in 1974, several subdivision schemes have emerged. From among
these subdivision schemes, we outlined two pioneering ones: the quadratic Doo-Sabin [4] and
the cubic Catmull-Clark [2].

2. Two Basic Schemes of Subdivision Surfaces 3

2.1. Catmull-Clark Subdivision Scheme

In a Catmull-Clark setting, the following rules are used to generate a refinement of a
polyhedron:

1. For each old face f with n vertices (v;)1<;<s, a new vertex vy is generated at the centroid
by:

l n
W:;;vi

2. For each old edge e having two vertices v; and v, which is shared by two faces f and g, a
new vertex v, is generated by:
_ v]+v2+vf+vg
T 4
3. For each old vertex v incident to n edges (e;) and shared by n faces (f;), a new vertex v, is
generated by:

n n
Uy =anzvei +ﬂnzvfi + yav
i=1 i=1

where v,; (respectively v ;) is the vertex generated from the edge e; (respectively the face
fi), and the weights «,,, 8,y, are given by:

1
an=ﬂn=;l‘§
n—2

Yn =
n

The refined polyhedron is obtained by joining each F-vertex of a face F; to the E-vertices of
the edges of this face. The V-vertex of a vertex V; is also connected to the E-vertices of the
edges incident to V;.

Figure 1.1 shows an example of such a surface.

2.2. Doo-Sabin Scheme

In the Doo-Sabin scheme (4], a refined polyhedron is generated by constructing from each
face with n vertices (v;)1<; <, @ new set of vertices (w;);<;<, using the following equation:

n
w; = E vy
j=1

where the o;; are given by:

n+5 ..

4n t=J

342co82n(i — j)/n)
4n

O!ij =

4 Polygonal Subdivision Curves

Figure 1.1 A Catmull-Clark surface of a vase and its polyhedron.

The new control mesh or polyhedron is obtained by connecting these vertices making a new
F-face, E-face and V-face from each old face, edge and vertex, respectively, as shown in
Figure 1.2.

3. Background

In this section, we outline the process of conversion between the Bézier and the B-spline
schemes that will be employed in this paper.

3.1. The Curve Case

A cubic B-spline curve segment s(u), where 0 < u < 1, can be expressed by the following
equation:

s)=U x M; x P,

Figure 1.2 The three types of faces (dashed) in Doo-Sabin approach. F-face (F), E-face (F,), V-face
(F)).

3. Background 5

where U = (u® u? u 1) and P is the matrix defining the control points pg, p1, p2 and p3:

Po
D1

P, =
5 p2
D3

The matrix M; is the B-spline basis transformation matrix and given by:

-1
1| 3
61-3

1

M, =

~APO NW
—_ 0 W
o O =

Similarly, a Bézier segment b(u), where 0 < u < 1, can be expressed by the following
equation:

buy=U x My x P,

where P, is the matrix defining the control points qq, 41, ¢ and g5:

P, = q1

-1 3 -3 1
3 -6 3 0
M=1_35 3 o o
1 0 0 O

The conversion between Bézier and B-spline basis functions proceeds by equating the appro-
priate matrix forms. So, to convert from B-spline to Bézier control points, we use:

Py=M;' x M, x P,
Conversely, to convert from Bézier to B-spline control points, we use:

Po=M'x M, x P,

3.2. The Surface Case

Following the same notation, similar matrix operations can define the conversion from a
B-spline patch to a Bézier patch and vice versa. In fact, a B-spline patch S;(u, v) can be

6 Polygonal Subdivision Curves

expressed by:

Se(u,v) =U x M; x Py x MT x VT

where V = (v v?

v 1) and P; is a 4 x4-mesh of data points:
P por Poz Po3
P = Pio Pu Pz P13
: P P21 pn ps3
P33 P31 P P33

Similarly, a Bézier patch S,(u, v) can be expressed by:
Sp(u,v) =U x M x P, beT x vT
where P, is a 4x4-mesh of data points:

doo do1 4qo02 4qo3
P, — dqio 411 912 913
b —

qd 21 4922 43

0 4931 432 433

The Bézier points can be expressed in terms of the B-spline points by:

- -1
Py =M;" x My x Py x M] x (M})
From the above expressions it can be noted that, in the conversion from a B-spline patch to

a Bézier patch, the boundary curve B = (bgy bo1 bo2 bg3) can be expressed in terms of the
following three B-spline rows (gio ¢i1 92 gi3)o<i<2, See [14] for more details.

i goo do1 4oz qo3
B=2.(4 Dx|go au g 4u|xM
q20 4921 422 423

where:

=R N
SN~ O
S AR NO
_ =0

Obtaining the B-spline control points § = (s; s2 3 s4)equivalentto B can be done through
a suitable transformation performed on B (details are omitter here). Alternatively, § can be
obtained directly through the following equation:

1 qgoo 4qo1 qoz2 4o3
§= 8(1 4 Dxlqo qu g2 413
g2 dqa1 422 423

4. Recursive Subdivision of Polygonal Complexes 7

Py P3 P P33
930 | T3 932 |33
(Mg, 4y P2
P20 gy rp- e a5 P23
' 1 If112 ;
Qor-[-r-c roeradn
E T X P E
P1o 9o0| 901 o2 |3 P13
Poo Po1 Po2 Po3

Figure 1.3 B-spline and Bézier control mesh for the same patch.

This again shows that the boundary curve of a B-spline patch depends only on the first three
rows of the mesh defining the patch; the usefulness of that will be demonstrated in the following
section.

4. Recursive Subdivision of Polygonal Complexes

In the context of any given subdivision scheme, the definition of a polygonal complex requires
the following:

1. Its topological and geometrical information.
2. The required modifications (if any) of the rules of the subdivision scheme being used,
preferably without modifying the subdivision coefficients themselves.

If the scheme has a set of rules S, a polygonal complex is then defined by the pair (P, $)
where P, is a control mesh and $ is a slight variation of S.

In this section we give two examples of such complexes, one for Doo-Sabin and one for
Catmull-Clark.

4.1. Doo-Sabin Polygonal Complexes

Topologically, a Doo-Sabin polygonal complex consists of a sequence of panels (g;)1<i<» with
the property that every two panels ¢; and ¢, have exactly one edge in common. If the two
panels g; and g, do not share an edge, they are called end-panels [4, 11]. Each panel of a
Doo-Sabin complex must be n-reflected about » mid-segments, as defined below.

ChebyChev Points: On a segment [AB], m ChebyChev points (p;);=1..» can be defined as
follows:

pi =1+ B)A+ (1 - g)Bl/2

8 Polygonal Subdivision Curves

Figure 1.4 A l-reflected panel and its mid-segment.

where:
Bi = cos((2i —)r/2m)/cos(rr/2m)
Clearly, p; = A and p,, = B.

A panel f withn(n = 2m) vertices (v;))<i<» is called singly reflected or (1-reflected) about the
segment ¢ joining the midpoints v v, and v, v, 1, if its vertices are symmetrically distributed
about the ChebyChev points (c;) defined on e. This means that two vertices v; and v, 1_; are
symmetric about (¢;); these are called opposite vertices. The edges vy v, and v, Vy,4; are called
contact edges. For an example, see Figure 1.4.

N-reflected Panels: Consider a regular #-gon (n = 2m) inscribed in a circle of radius r (the
radius r can be chosen arbitrarily) and centered at the origin, as depicted in Figure 1.5. Its

Figure 1.5 The vertices of the original n-reflected panel with one mid-segment.

4. Recursive Subdivision of Polygonal Complexes 9

L LA

R by

Figure 1.6 An n-reflected panel and its corresponding mid-segment.

vertices vy are defined by:

(((2k—1)n') . ((2k—1)n'))
vo=({rcos{——), rsin{ —————
n n

andk = 1---n[1]. The radius r can be chosen arbitrarily.

Let A; and B; be the midpoints of the v v, and v,, vn 1, respectively. Their x coordinates x4
and xp are given by:

k1
Xq4 = —Xp =FrCO8 —.
n

Itis then easy to show thatevery two vertices v; and v, —; are symmetric about the ChebyChev
point ¢; defined on A; B;. Note that A; = ¢; and B; = ¢,,. The panel F formed by the set of
vertices (v;) is then called singly reflected or 1-reflected about A, By,

It is easy to show that F is also 1-reflected about # mid-segments (A iBj)j=1..n, Where A;
and B; are the midpoints of v;_;v; and v j—1Vm4 ;. We will refer to this face as the original
n-reflected panel. Figure 1.6 shows an example of such a panel.

Definition: An n-reflected panel can then be defined as a panel with n = 2m vertices v; that
are symmetric about the ChebyChev points defined on its # mid-segments (¢;)1<;<,. Where
each e; joins the midpoints (indices are considered mod n) of v;v;; and vy ;_1Vmy; and
whose vertices are obtained by an affine map (such as rotation, translation, scaling) of the
original n-reflected one.

We further define the mid-polygon of a polygonal complex as the piecewise control polygon
whose vertices are the midpoints of the contact edges. In the case of an open curve, the centroids
of the end-panels are the end-points of this mid-polygon.

Figure 1.7 shows an example of a Doo-Sabin polygonal complex, its corresponding mid-
polygon and its limit curve,

The modification to the Doo-Sabin subdivision rules (when applied to polygonal complexes)
requires just the omission of the V-face rule [11].

10 Polygonal Subdivision Curves

Figure 1.7 A Doo-Sabin polygonal complex with two successive subdivisions and its limit curve.

4.2. Catmull-Clark Polygonal Complexes

In the Catmull-Clark setting, the simple form of a polygonal complex P, consists of a double
sequence of panels so that each panel has three shared edges. In the case of a polygonal complex
strip, each of the four corner panels has exactly two shared edges. Accordingly, a Catmull-
Clark polygonal complex CC can be defined by three rows (;), (m;) and (b;), as indicated in
Figure 1.8. The modified rules $ is the same as S, keeping in mind that my, (¢;), (b;) and m,,
are all boundary vertices.

Figure 1.8 A simple (top) and a general (bottom) Catmull-Clark polygonal complex and its limit curve.

5. Polygonal Subdivision Curves 11

A general form of this Catmull-Clark complex permits the inclusion of non 4-sided panels in
its defining mesh. In such a case, a single level of Catmull-Clark subdivision will be sufficient
to generate a rectangular structure similar to the simple form suggested above. Figure 1.8
shows examples of such a complex in both forms.

The same subdivision scheme is used here without modification.

5. Polygonal Subdivision Curves

The limit of a polygonal complex is a curve, called polygonal subdivision curve. It is not
difficult to define such a polygonal complex in a given scheme, but the challenge is to predict
the limit curve and its relation to the complex. The polygonal complexes (as described above)
converge to quadratic B-spline in the case of the Doo-Sabin scheme, and to the cubic B-spline
in the Catmull-Clark setting. The following sections discuss these issues.

5.1. Polygonal Doo-Sabin Curves

In [11], it was shown that a 1-reflected panel remains invariant under subdivision. This means
that a 1-reflected panel with a mid-segment e generates another 1-reflected panel whose mid-
segment is a Chaikin subdivision of e. This property carries to an n-reflected panel with
n mid-segment (¢;), where its subdivided one is n-reflected, with n mid-segments that are
Chaikin’s subdivision of (e;), respectively. Consequently, a Doo-Sabin polygonal complex Qg
with a mid-polygon M, converges to the piecewise quadratic B-spline curve ¢ of the control
polygon My, such that ¢ interpolates the centroid of each panel of Q. Each piece of the limit
curve starts and ends at the centroid of a panel and the continuity at the joint depends on the
contact edges of the corresponding panel. If two contact edges are opposite then the two pieces
join with C! continuity, otherwise with C° only. Figure 1.7 shows a Doo-Sabin complex and
its corresponding limit curve.

5.2. Polygonal Catmull-Clark Curves

In the simple form, the limit curve of a cubic polygonal complex CC (defined by three rows
(t:), (m;) and (b;)) can be determined piecewise.

In fact, let us consider the first piece of this complex defined by (#;)p<;<3, (M)o<i<3 and
(biJo<i<3. Assuming that these rows are the bottom three rows of a B-spline patch, we know
from the previous section that this converges to a Bézier patch with one of its boundary curves
defined by these rows. It can be deduced that the limit of this part of the complex converges to
a Bézier curve defined by (py p; p2 p3) and given by:

1 to I8} 1 13
2601 4 Dx|mg m my m3|xM
by by by b

Similarly, the second piece of the limit curve defined by (p3 ps ps ps) is given by:
1 1) 13 14

1
%(1 4 Dx|m my ma mg)| xM
b1 by by by

12 Polygonal Subdivision Curves

and so on. However, remembering what we said above, we can obtain the B-spline curve
corresponding to the whole patch directly and in a single operation:

144] n Ih-1
SZE(I 4 Dx|my m ... mp
by by ... by

To conclude, a simple CC polygonal complex converges to a piecewise Bézier Curve which
can be converted to a B-spline curve. In other words, the limit of a CC complex is a B-spline
curve determined by the above operation. Figure 1.8 shows a polygonal complex with two
subsequent divisions and its limit curve.

In the case of a general complex, the one-step refined mesh will form a simple complex
whose limit can be similarly determined as above.

6. Applications of Polygonal Subdivision Curves

Polygonal complexes have proven to be useful in geometric modeling and computer graphics.
This section gives few applications.

6.1. Free-Form Curve Generation

It may sound more complicated to define curves by a control mesh rather than a control
polygon, but the use of polygonal complexes allows the curve to carry with it cross derivative
information. This topic is investigated in more detail by the author in a forthcoming paper.

6.2. Curve Interpolation

This is a interesting application which has actually motivated the introduction of curve in-
terpolation in CAGD. The idea simply consists of incorporating polygonal complexes in the
polyhedron defining a subdivision surface. Subdivision of the polyhedron will generate a limit
surface with the limit curves of the polygonal complexes interpolated by the surface.

The main practical issue in using the above result is how the user specifies the curve to be
interpolated. Two approaches were suggested:

1. The complex approach: This consists of designing polygonal complexes of the curves to be
interpolated [11], see Figure 1.9. These complexes are then embedded into a polyhedron
to define a subdivision surface for which no further postprocessing is needed. Subdivision
will be carried out in the normal way, which will automatically take the polyhedron to a
limit surface interpolating the limit curves of the given complexes.

2. The polygonal approach: This provides a good interface to automate the process of designing
such complexes through tagging control polygons on a given polyhedron. On this mesh, the
system will then construct corresponding complexes that converge to the curves of these
tagged polygons [12], see Figure 1.10.

Certainly, the second approach is more convenient since the construction of the n-reflected
panels is done automatically. Its major drawback, however, is in the quality of the limit surface

6. Applications of Polygonal Subdivision Curves 13

Figure 1.9 The Complex Approach: A polygonal mesh for a tap with some polygonal complexes, and
its corresponding limit surface interpolating the curves defined by the complexes.

Figure 1.10 The Polygonal Approach: A hair dryer surface with two tagged control polygons, the mesh
after constructing polygonal complexes, and the limit surface (bottom) before fairing.

across the interpolated curves, a problem that can be cured by smoothing polyhedral meshes
with various constraints as suggested in [18].

In either of the suggested approaches, the challenging problem is the interpolation of inter-
secting curves. This problem has been partially addressed in the literature [8, 9, 11, 23]. In
these references, no more than two intersecting curves can be interpolated by a subdivision

14 Polygonal Subdivision Curves

Figure 1.11 A net of 16 polygonal complexes sharing one 16-reflected panel, and a net of 6 polygonal
complexes sharing the same panel.

surface such as Doo-Sabin or Catmull-Clark surfaces. Recently, in the Doo-Sabin Setting, the
use of polygonal complexes has been extended to the interpolation of an unlimited number of
curves through a point on the limit surface [19]. The idea is described below.

Each edge of an n-reflected panel can be considered as a contact edge. Consequently, with
the restriction imposed on the panels of a polygonal complex being only 1-reflected (except the
end-panels), up to n polygonal complexes can be attached to an n-reflected panel. Figure 1.11
(top) shows a 16-reflected panel with 16 polygonal complexes attached to it. It is also possible to
connect less complexes, as shown in Figure 1.11, where only six complexes are attached to the
same 16-reflected panel. Accordingly, up to n curves meeting at the centroid of an n-reflected
panel can be interpolated. The continuity between these curves at the joint depends on whether
the complexes are connected with opposite contact edges or not. Two complexes whose contact
edges are opposite can be considered as one complex giving one C! curve passing through
the common point. Therefore, up to n/2 C! curves can intersect at an extraordinary point. For
example, in Figure 1.11 eight C! curves can cross the centroid of the panel.

Alternatively, a configuration of up to n/2 curves that can all meet with C° at an extraordinary
point can also be achieved. This is simply because if we attach a complex to an edge, we do
not attach another complex to its corresponding opposite contact edge in order to avoid the C!
continuity with another curve. Since we have n/2 opposite contact edges then the number of
curves is limited to n/2. In Figure 1.11, six curves can meet at C.

Theoretically, it is important to note that n can be as large as needed, hence an unlimited
number of curves can be interpolated through the center of an n-reflected panel. Figure 1.12
shows a stamp interpolating several curves at one extraordinary point.

For the Catmull-Clark setting, a similar technique is under preparation by the author.

6.3. Trimming Subdivision Surfaces

Another application of the use of polygonal complexes is to trim a surface along its polygonal
subdivision curve. This curve can be thought of as an edge inserted on the surface as discussed
in [7]. The edge is a feature line or a shape handle along which a surface can be trimmed or

6. Applications of Polygonal Subdivision Curves 15

Figure 1.12 A stamp surface interpolating n curves meeting at the top.

split as indicated in Figure 1.13. This can be done by cutting the surface panel-wise rather than
segment-wise, L.e. leaving the panels of the complex to be shared by the two pieces apart.

Continuity across the inserted edge can be controlled. A C! continuity can be achieved if
both surfaces share the same polygonal complex. Twisting the panels of the complexes can
reduce the continuity at the joint to CY.

6.4. Lofted Recursive Subdivision Surfaces

The curve interpolation concept can be easily extended to generate lofted subdivision surfaces
known as skinning. The idea consists of constructing a polygonal mesh M, from a given
sequence of cross sections (c;), such that the limit surface of M, interpolates these cross
sections [16].

Figure 1.13 Trimming of a subdivision surface along interpolated curves. A sample surface and the
same surface trimmed and then split into 3 pieces.

16 Polygonal Subdivision Curves

Figure 1.14 A lofted Catmull-Clark pawn with fourteen cross sections.

To elaborate, given a sequence of control polygons, each defining a cubic B-spline curve,
we need to build a control mesh or a polyhedron whose Catmull-Clark surface will interpolate
the given curves. This can be done by building a polygonal complex for each of the given
curves and then connecting these complexes to get the required polyhedron. Initially, the case
where all control polygons are defined by the same number of vertices has been considered.
This was later extended to polygons with different number of vertices [20]. One advantage of
this technique is that the interpolated curve need not be iso-parametric curves.

Figure 1.14 shows 14 cross sections of a pawn and its corresponding lofted shapes.

7. Summary

Polygonal subdivision complexes are very useful in computer graphics and geometric modeling
applications. This chapter sketches on few of these applications. It is anticipated that they will
play an important role not only in designing subdivision surfaces with features but also in
providing shape control along such features. In computer graphics, a shape can be manipulated
using the complexes while keeping the limit curves on the surface.

Future work will expand the definition of these complexes and the presented applications in
various subdivision schemes.

Acknowledgements

This work was supported in part by a grant #51110-111130 from the American University
of Beirut and a grant #111130022106 from the Lebanese National Council for Scientific
Research. Thanks are due to A. Charrara for his valuable help in producing some of the
included pictures using Geomview [5]. The author is also grateful to Dr. Malcolm Sabin for
his valuable comments.

References 17

References

[1] Biemmann, H., Levin, A. and Zorin, D. “Piecewise Smooth Subdivision Surfaces With Normal Control”, Computer
Graphics Proceedings, ACM SIGGRAPH 2000, pp. 113-120, 2000.

[2] Catmull, E. and Clark, J. “Recursively Generated B-Spline Surfaces On Arbitrary Tmeshes”, Seminal Graphics,
Ed. Rosalee Wolfe, ACM Press, pp. 183-188, 1998.

[3] Chaikin, G. M. “An Algorithm For High Speed Curve Generation”, Computer Graphics And Image Processing,
(3):12, pp. 346-349, 1974,

[4] Doo, D. and Sabin, M. “Behavior Of Recursive Division Surfaces Near Extraordinary Points”, Seminal Graphics,
Ed. Rosalee Wolfe, ACM Press, pp. 177-181, 1988.

[5] Levy, A., Munzner, T. and Philips, M. “Geomview 1.6.6 GL version”, http://www.Geomview.org.

[6] Halstead, M., Kass, M. and De Rose, T. “Efficient, Fair Interpolation Using Catmull-Clark Surfaces”, Computer
Graphics Proceedings, ACM SIGGRAPH 1993, pp. 35-44, 1993.

[7] Habib, A. Three Approaches to Building Curves and Surfaces in Computer Aided Geometric Design, Ph.D.
Thesis, Rice University, 1996.

[8] Levin, A. “Interpolating Nets Of Curves By Smooth Subdivision Surfaces”, Computer Graphics Proceedings,
ACM SIGGRAPH 99, pp. 57-64, 1999.

[9] Nasri, A. “Interpolation of Meshes of Curves by Recursive Subdivision Surfaces”, presented at the Fourth SIAM
conference on Geometric Design, Nashville, Nov. 6-9, 1995.

[10] Nasri, A. “Constructing Polygonal Complexes With Shape Handles for Curve Interpolation By Subdivision
Surfaces”, Computer Aided Design, (33), pp. 753-765, 2001.

[11] Nasri, A. “Recursive Subdivision Of Polygonal Complexes And Its Applications In CAGD”, Computer Aided
Geometric Design, (17), pp. 595-619, 2000. Presented at the fifth SIAM Conference On Geometric Design,
Nashville, 1997.

[12] Nasri, A. “A Polygonal Approach For Interpolating Meshes of Curves by Subdivision Surfaces”, Proceedings of
Geometric Modeling and Processing 2000, Hong Kong, 10-12 April, IEEE, pp. 262-273, 2000.

[13] Nasri, A. “Designing Subdivision Surfaces Interpolating Triangular Meshes of Curves”, American University of
Beirut, Computer Science, Technical Report, TR-2002/4, 2002.

{14] Nasri, A. and Sabin, M. “Taxonomy of Interpolation Constraints in Recursive Subdivision Curves”, The Visual
Computer, (18):4, pp. 259-272, 2002.

[15] Nasri, A. and Sabin, M. “Taxonomy of Interpolation Constraints in Recursive Subdivision Sucfaces”, The Visual
Computer, (18):5-6, pp. 382403, 2002.

[16] Nasri, A. and Abbas, A. “Lofted Catmull-Clark Subdivision Surfaces”, Proceedings of Geometric Modeling and
Processing 2002, Japan, pp. 2002.

[17] Nasri, A. and Abbas, A. “Designing Catmull-Clark Subdivision Surfaces With Curve Interpolation Constraints”,
Computers & Graphics, (26):3, pp. 393400, 2002.

[18] Nasri, A., Kim, T. and Lee, K. Polygonal Mesh Regularization for Subdivision Surfaces Interpolating Meshes of
Curves, To appear in The Visual Computer, 2003.

[19] Nasri, A. “Interpolating an Unlimited Number of Curves Through an Extraordinary Point on Subdivision
Surfaces”. To appear in Computer Graphics Forum, special issue on subdivision, 2003.

[20] Nasri, A., Abbas, A. and Hasbini, I. “Skinning Subdivision Surfaces”, in preparation, 2003.

[21] Reif, U. “A Unified Approach To Subdivision Algorithms Near Extraordinary Vertices”, Computer Aided
Geometric Design, (12), pp. 153-174, 1995.

[22] Peters, 1. and Reif, U. “Analysis of Generalized B-spline Subdivision Algorithms”, SIAM Journal On Numerical
Analysis, (35):2, pp. 728-748, 1998.

[23] Schweitzer, J. “Analysis And Applications Of Subdivision Surfaces”, Ph.D. Thesis, University Of Washington
Seattle, 1996.

[24] Sederberg, T., Zheng, I., Sewell, D. and Sabin, M. “Non-Uniform Recursive Subdivision Surfaces”, Computer
Graphics Proceedings, ACM SIGGRAPH 98, pp. 387-394, 1998.

[25] Zorin, D. and Schrider, P. Subdivision For Modeling And Animation, ACM SIGGRAPH Course Notes, 2000.

[26] Warren, 1. and Weimer, H. Subdivision Methods For Geometric Design: A Constructive Approach, Morgan
Kaufmann Publishers, 2002.

2

Planar Development of Digital
Free-Form Surfaces

Phillip N. Azariadis
Nickolas S. Sapidis

Department of Product and Systems Design Engineering, University of the Aegean, Ermoupolis,
Svyros, 84100 Greece

There are three main goals of this chapter. First, a detailed review of differential-geometry
criteria for the developability of free-form surfaces is presented. Then, tools measuring the
accuracy of planar developments are introduced and analyzed. These tools are a prerequisite
for evaluating the numerous methods/approaches proposed for generating flat developments of
digital free-form surfaces whose level of involvement in many areas of CAD/CAM and computer
graphics is constantly increasing. Finally, some of the most efficient surface flattening methods
are analyzed and categorized followed by a discussion of representative examples.

1. Introduction

Planar development of curved surfaces is a well known problem in the manufacturing field.
Generating isometric mappings between two different surfaces has also attracted the attention
of many researchers in the computer graphics community due to its application in non-distorted
texture mapping. Historically, this problem first appeared in the context of the ‘mapmaker’
problem: mapping the surface of the Earth onto a plane. Gauss in 1828 proved that such a
mapping is not possible due to the different intrinsic curvature of the two surfaces. Thus one
can only aim at derivation of an approximately isometric mapping with minimal geometric
distortions. :

Numerous approaches have been proposed for dealing with the planar development problem
of curved surfaces. The problem is trivial when the surface has zero curvature, but becomes
significantly complicated when the surface is doubly-curved. In fact, in the latter case, it is
proven that there is actually an infinite number of different planar developments for the same

Advances in Geometric Modeling. Edited by M. Sarfraz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-85937-7

20 Planar Development

surface. Unfortunately, the vast majority of the products produced nowadays include free-form
surfaces, which are often created from clouds of points (produced using a modern digitizing
device). The selection of the right method for producing a planar development is a subtle task,
since there are many issues that have to be taken into consideration, such as the production
method, material properties, surface geometry and so on.

The primary purpose of this chapter is to provide an analytical description of developability
criteria for surfaces and present tools for measuring the accuracy of planar developments. A
classification of the many available methods for generating flat developments of free-form
surfaces is also presented. The final goal of this chapter is to help the reader understand,
following an intuitive approach, the various aspects of the surface flattening problem and of
the related solutions.

This chapter is structured as follows: in Section 2, we review results from differential
geometry related to the developability of surfaces. In Section 3, we analyze local properties
of a set of affine transformations used to approximate an isometric mapping of a doubly-
curved surface onto the plane. In Section 4, a classification of the available flattening methods
is presented. Section 5, concludes this chapter with examples and an evaluation of current
methods for obtaining adequate planar developments.

2. Criteria of Developability for Surfaces

This section reviews results from differential geometry which are applied to the development
of a set of criteria for the developability of surfaces. The interested reader is referred to
[10,19,21,32] for an in-depth analysis of the presented results. In the following, the cross
product of vectors x and y is denoted by x x y, the gross product of vectors X, y and z by
[x, v, z], and the Euclidean norm of x by ||x]|.

2.1. Intrinsic Geometrry of Surfaces

The surface x of class, C™, m > 2, is given by a parametric equation X = X(u, v). The dif-
ferential of x = x(u, v) at (¢, v) is a 1-1 and onto linear mapping dx = x,du + Xydv, which
maps the random vector (du, dv) of the uv-plane to the surface tangent vector X,du + X,dv at
X(u, v). The First Fundamental Form of x = x(u, v) is a second degree function of du and dv
given as [21]:

I(du,dv) = dx-dx
= (Xpdu + Xydv) - (Xudu + x,dv)

= (Xy - Xo)du? + 2(Xy - Xy)dudv + (Xy - X,)dv? 2.1
= Edu’® + 2Fdudv + Gdv*
where
E=xy-X3, F=Xy %, G=Xy Xy. 2.2)

The coefficients E, F and G are the First Order Fundamental Coefficients and are functions
of u and v.

2. Criteria of Developability for Surfaces 21

Xy X Xy

At every point on X = X(u, v) there is unit normal vector N = i i which defines C!
Xy X Xy

mapping N from the surface to the unit sphere (Gauss mapping) with respect to u and v. The
differential of N is a vector dN = N,du + Nydv normal to the surface tangent plane at x(u, v)
and it is called the Second Order Fundamental Form of surface x. It is given by,

(du, dv) = —dx - AN
= —(Xudu + Xydv) - Nudu + Nydv) 2.3)
= Ldu® + 2Mdudv + Ndv?

where
L=-xy'Ny, M=-1(x Ny+x,-Ny), N=-x-N,. (2.4)

The coefficients L, M and N are the Second Order Fundamental Coefficients and can be
alternatively written as:

L=Xu N, M=x,-N, N=xXuw- N 2.5

Each surface point P = x(u, v) can be characterized through the result of the scalar
A = LN — M ? in four distinct cases:

¢ Elliptic point: A > 0

® Hyperbolic point: A < 0

® Parabolic point: A =0and L2+ M2+ N2 #0
® Flatpoint A=0andL=M =N =0.

Moreover, there are two scalars, namely «; and «;, defined at P which correspond to the two
main curvatures of x at P and are given as the roots of the second degree equation:

k2 —2Hk+K =0 (2.6)
where:
EN+GL-2FM
H=1 = 2.7
0 1) = = m e 2.7)

is the mean curvature at P and is the average of «) and ;. The scalar

LN — M?

_ 28
EG — F? 28

K =KijKkz =

is the well-known Gaussian curvature at P. Comparing Equation (2.8) with A we conclude that
asurface point is elliptic, hyperbolic, parabolic or flatiff K > 0, K < Qor K = 0, respectively.

22 Planar Development

2.2, Isometric Mappings

Let f be a 1-1 mapping of a surface S onto a surface S*. Mapping f defines an isometric
mapping or an isometry if the arc length of a normal arc x = x(z) of § equals the length of its
image x* = x*(t) = f(x(¢)) on §*. If f is an isometry then f~! is an isometry from S* onto
S, too. In such a case we call S and S$* isometric. In general, it can be proved [21] that a 1-1
mapping f from S onto S* is an isometry iff for each part x = x(u, v) of S and x* = f(x(u, v))
of S* the first order fundamental coefficients are equal:

E=E* F=F*and G = G*. 2.9

2.3. Developability Criteria for Surfaces

Two surfaces S and S* are called applicable if there is a continuous family of mappings f;,
0 < A < 1, from S onto $* such that:

a fo($) =S
b. £i(S) = §*
c. mappings f) are isometric mappings from S onto f;(S), for every A € [0, 1].

Intuitively, one understand that S and S* are applicable if S can be bended continuously and
isometrically in such a way that the final bended surface coincides with S$*. Obviously, if §
and S* are applicable then they are isometric too.

Taking this into account, we can easily ascertain that a surface is developable iff it is
applicable to the plane. Thus, every developable surface can be unrolled onto a plane without
distortion, implying that a developable surface can be constructed through the smooth bend of
a plane sheet. As a result, every developable surface is isometric to the plane and therefore it
holds that LN — M 2 = 0 (meaning that all points of such a surface are parabolic or flat) and
thus its Gaussian curvature equals zero at every point. This discussion is summarized by the
following theorem:

Theorem 1. Let S be a C™, m > 2, class surface. The following properties are equivalent:

i. The surface is developable.

ii. All the surface points are parabolic or flat.
iii. The Gaussian curvature at every surface point equals zero.
iv. The surface is applicable to the plane. B

Essentially, this theorem stands as a general criterion for the developability of any surface.
However, more specific criteria can be developed for certain families of surfaces like ruled or
revolved surfaces.

2.3.1 Ruled Surfaces

A ruled surface is constructed from a one-parameter family of lines and its normal parametric
equation is given by:

X = x(u, v) = n(u) + vqu), v € (—o0, +00), (2.10)

2. Criteria of Developability for Surfaces 23

where, n = n(u) is a C™, m > 2, curve called a directrix and q = q(u) is a C™, m > 2, vector
function which defines the lines’ direction at each point n = n(u), and it is called a generatrix.
The surface normal vector is given by:
N= ot vdxg 2.11)
V(i +v@? — (n, g2

dn dq
where, n = — andq = —.
du ndd du

Theorem 2. A ruled surface is developable iff [n,q,] = 0.

Proof. A ruled surface is developable if the cross product of two normal vectors defined at
arbitrary positions v; 7 v, of the same generatrix equals zero. It holds,

[0+ vi@) x q] x [(+ v2q) % q]
= [(h 4+ v1q), q, q](n + v2q) — [(0 + v1q), q, (0 + v2Q)]q (2.12)
= (Ul - U2)[fl, q, q]q

which completes the proof. B

2.3.2 Revolved Surfaces

Let the normal parametric equation of a revolved surface be:
X =x(u,v) = (r(wycosv, ru)sinv, z(u)) 2.13)

where r = r(u), z = z(u) are the parametric equations of the surface meridians, and u is the
arc length of each meridian.

Theorem 3. A revolved surface is developable iff r” = 0.

Proof. The first order fundamental coefficients are

E=1,F=0,G=1 214
L=r7"— r”z', M=0N= rz’ (2.15)

Substituting into Equation (2.8) leads to the following expression for the Gaussian curvature
of the surface:

Vol Ml ot
K=Ku-= e —r'a) (2.16)
Y

which obviously depends only on the arc length u. Then,

I/
CR+EP=12rr 477" =0= 7" =" (2.17)

zI

24 Planar Development

Substituting Equation (2.17) into Equation (2.16) produces:

"

Ku) = —r—, (2.18)
r
which completes the proof. B

) 7/(uy)

P2y 7' (u2) =0 for every u; # u,.

Theorem 4. A revolved surface is developable iff

Proof. The surface normal vector is,
N = (—Z'(u)cos v, —7'(u) sinv, r'(u)). 2.19

Let N; and N; be two surface normal vectors defined at the same meridian for u; # u>. The
surface will be developable iff the cross product of Ny and N equals to zero. This implies that:

rlu) z'(ur)

NxNe =) 2(u)

(sinv, —cos v, 0). (2.20)

ru) zZ'(uy)
rus) Z'(u)

Taking into account that sin® v + cos? v = 1, we derivethat N; x N = 0iff

0, which completes the proof. B

3. Evaluating Planar Developments

The above criteria for developability limit the variety of surfaces that can be isometrically
unfolded onto the plane. On the other hand, the vast variety of surfaces used in today’s products
are doubly curved with arbitrarily complex shapes. For these surfaces, approximate, local
isometric-mappings should be considered, which is the subject of this section.

The surfaces considered in the present context are approximated with an adequate mesh ®
of triangles. This implies that the mesh is allowed to have variable density depending on the
local accuracy of approximation. Note that & contains only positive non-degenerated triangles,
L.e., the vertices have a counter-clockwise order and the triangle area is always positive.

3.1. Affine Triangle Transformations

Let S be a surface given by the parametric equation x = x(u, v) and the uv-plane P. Then, x!

maps three-dimensional points of S onto the plane P. If x is an isometry then the surface S is
developable. We focus on the case where x is not an isometry.

Since S is approximated with a finite number of triangular elements, we can also approximate
x using the same number of local mappings between triangular elements. We assume that there
is a mesh @ on plane P having equivalent topological characteristics with ®. There is a 1-1
correspondence between the elements of ¢ and ¢.

3. Evaluating Planar Developments 25

Let us consider an arbitrary pair of corresponding triangles V(A, B, C) of @ and V(a, b,
c) of @, where A, B, C € %3 and a, b, ¢ € R? are respectively the vertices of the triangles.
Using the Gram-Schmidt orthogonalization, we define a local orthonormal coordinate system
in each triangle as follows.

Let L be the orthonormal coordinate system with unit vectors Q; and Q; defined as:

B-A
Q=g Ay 22h
0, = €A -(C=8)- QW '

" I(C—A)—(C—A)-QnQl

The origin of L is set to be the point A.
Similarly, let £ denote the local orthonormal coordinate system with unit vectors q and g;:

q b—a
1=
ib—al
2.22
e =D (€= -aa @222

" ite —a)— ((¢ — a) - gl

The origin of £ is the point a. Then, the local coordinates of the two triangles are given, with
respect to the two local coordinate systems, by:

Al = (0,0
B = |B—A|Q = (B},0) (2.23)
C'=(C-A)-Qi,(C-A)-Q)=(C}.C})
and
a’ =(0,0)
b’ = ||b —allq = (b, 0) (2.24)

¢ =(c—a) q,(c—a) q)=(c.c)

We define an affine transformation of triangle V(A, B, C) to the triangle V(a, b, ¢) by a local
linear mapping f written in matrix form as:

by o B C;
0 c§ 0 Cf

__x' X VX X X
BL BLCL
f=| * *) (2.25)
0 S

26 Planar Development

B! !
Note that the matrix |:0x C: always has an inverse since the determinant D = B{C! is
y
nonzero. The set of all local mappings f defines an approximation of x~!. Furthermore, if the
two corresponding triangles are equal then f is an isometry and surface S is considered, in
this triangular area, locally isometric to the plane. Thus, we should focus on the study of the
properties of f, which is the subject of the next section.

3.2. Properties of Local Mappings

In this section we shall investigate both quantitative and qualitative characteristics of local
mappings f in order to ascertain whether they define an isometry or not.

3.2.1 Mapping Points

We can simplify the used notation taking into account that, since L and ¢ are orthonormal
coordinate systems, we can express the coordinates of the vertices of V(AL, BL, CL) and
V(a®, b%, ¢*) in a global coordinate system W as:

AY =(0,0) a¥ =(0,0)
BY = (BL.0) and b¥ = (b, 0) (2.26)
c¥ =(ct.ch) ¥ = (cl. cf)

In addition, we drop the use of superscripts and, in the rest of this section, we denote the
triangle vertices of Equation (2.26) as (A, B, C) and (a, b, ¢) respectively. This is illustrated
in Figure 2.1.

Let P = (X, Y) a point within triangle V(A, B, C). This point is mapped through f onto a
point p = (X, y) within triangle V(a, b, ¢) according to p = fP. If f is an isometry then the
squared Euclidean-distance d° between p and P should be zero. This distance is computed as

it

Figure 2.1 The two corresponding triangles drawn in the global coordinate system W with unit vectors
i=(1,0)and j = (0, 1).

3. Evaluating Planar Developments 27

T B
RO A P
R

=hyw*4ﬂﬁ—Wﬂ:
d*> = p™p, (2.28)

where M = (f~! —)T(f~! — I). The scalar d? expresses quantitatively the distortion caused
by f regarding the mapping of P onto p. Furthermore, expanding Equation (2.28) we find that
the mapped point p belongs to an ellipse which can be computed according to the following
theorem.

Theorem 5. Any point P = (X, Y) is mapped through finto a point p = (x, y) which belongs
to the ellipse,

(myy — Dx? 4 (miz + ma)xy + (maa — Dy +2Xx +2¥y — X* —¥? =0
where M = [m;]=(f ' —DIE 1 -D,i,j=1,2 |
Now, we focus on estimating the error introduced by the mapping f. For this purpose we
apply fon a circle of unit radius centered at (0, 0). This transformation will reveal more detailed
characteristics of the distortion that f may cause if it is not an isometry.
Let us consider a circle Xc(w) = (X (@), Y.(w)) = (cos w, sin w) of unit radius with its

center lying at the origin of the global system of reference. An arbitrary circle point is mapped,
through f = [f;;], to a point X.(w) which belongs to the ellipse,

X (W) | _ [fll f12] [Xc(w)] N
Ye(w) 0 fn||Y(w)
x(w) = fi1cosw + fizsinw
Ye(w) = fnsinw (2.29)

Then, the squared distance between the new point (x.(w), y.(w)) and the origin is:

g(w) = xX(0) + YA (o)

(2.30)
= flcos’w + (f5 + f5)sin’ @ + 2 fi1 fizcoswsinw

28 Planar Development

The angle at which the unit circle suffers the maximum or minimum deformation is computed
at g'(w) =0as:

1 2fufre

w; = < tan

2 fi-fi-fa

Substituting Equation (2.31) into Equation (2.30) the principal direction of the ellipse relative
to the x-axis of the global system is given by:

(2.31)

¢ = tan™! (yc(wl) /x. (wl)) (2.32)

The extension or shrinkage d, of the unit circle along this direction is:

dp = \/x2o1) + yi(or1). (2.33)

In a similar fashion the second component of the extension is:

dy = \[x2 (01 + T2) + Yo +) (2.34)

Having computed the lengths and the directions of the ellipse’s axis, we can write the parametric
equation of the ellipse as,

x.(u) =d,cospcosu —dgsingsinu
. . yu € [0, 2n] (2.35)
Ye(u) = dpsingpcosu + d, cos g sinu

Based on the above analysis we can state the following theorem [2].

Theorem 6. A circle of unit radius is transformed through f into an ellipse with half axis
lengths equal to d, and d,, respectively, and with its major axis inclined with an angle ¢
relative to the x-axis of the global system of reference. B

Remark 1. The ellipse components d, and d, can be also computed through the Singular
Value Decomposition of f.

In other words, f can be expressed as a matrix product f = R(8)AR(g), where R(p) and
R(9) express rotations while A is a diagonal matrix expressing the deformation along the two
dp, 0

principal axis of the ellipse, i.e., A =
0 4,

]. Thus, d, and d,; are the square roots of the

eigenvalues of the positive matrix ffT.

Remark 2. The mapping fis an isometry iffd, = 1 and d; = 1.

Remark 3. The determinant of the Jacobian of mapping f equals d,d,.

Obviously, a trivial case is when f = I.

4. Methods for Approximate Planar Development of Curved Surfaces 29

3.2.2 Measuring the Accuracy of Planar Developments

Taking into account the set of mappings f which approximate x !, we wish to derive meaningful
indices measuring the metric distortion during the planar development of a doubly-curved
surface.

Homogeneity of distortion: The distortion should be homogeneous throughout the surface
in order to avoid rapid changes in local areas of the planar development. The ratio of the
minimum over the maximum value of 4, and the corresponding ratio for d, are good measures
of the distortion variation in the first and second principal directions. The ratio of min{d,d,}
over max{d,d,}, for all triangles, characterizes the homogeneity of the distortion along both
principal directions, i.e.,

in{d,d,
_ mintdydy) (236)
max{d,d,}
Ideally, the value of % should be constant over the surface and close to the unit.

Aspect ratio: Aspect ratio should be preserved to avoid non-uniform stretching of the planar
development. This distortion can be expressed as:

_ min{d,)

r= max(d,) 2.37)

for all the elements of ®.

These indices may be used to measure the accuracy of a planar development of a doubly-
curved surface both locally and globally. Such applications will be given later in this
chapter.

4. Methods for Approximate Planar Development of Curved Surfaces

The problem of flattening a curved surface onto a plane is important not only for manufacturing
but also for the computer graphics community. In fact, the well known two-dimensional texture
mapping technique is fundamentally equivalent to the planar development of three-dimensional
surfaces. Thus, many attempts have been made to solve the problem of producing nearly
isometric flat developments of curved surfaces both for manufacturing and texture mapping
purposes. Most of these methods may be classified into three categories:

A. Methods based on the minimization of an objective function (usually called as energy
function), assuming a degree of elasticity in the surface material.

B. Methods based on intrinsic differential-geometric properties of surfaces. These are usually
employed when local accuracy in the planar development is of great importance, or when
it is necessary to insert line cuttings.

C. Methods based on the approximation of the initial surface with developable surfaces which
are isometrically unfolded onto the plane.

Current methods representing all categories are presented in the following subsections.

30 Planar Development

Figure 2.2 Example of applying the method of Ma and Lin to derive a planar development of a shoe
last.

4.1. Category A: Minimization of An Energy Function

These methods employ objective functions measuring the ‘difference’ between the planar
development and the corresponding three-dimensional surface. In other words, these functions
measure the energy needed for the planar development to be fitted onto the free-form surface or
vice-versa. The closer to zero the objective-function’s value is, the better planar development
is obtained. Clearly, for a developable surface only the corresponding objective function may
obtain a zero value. Minimization of the objective function is usually achieved using a standard
optimization method, e.g., an iterative technique.

Ma and Lin [30] were the first to present a flattening technique based on optimizing an
objective function comparing the length of triangle edges of the surface mesh ® with that of
corresponding triangle edges in the planar mesh ¢. Unfortunately, this method may produce
triangles on the plane P with the wrong orientation, leading to a planar development with
overlaps (see Figure 2.2).

Maillot ez al. [17] improve the previous method by using a new objective function, linearly
combining an energy function comparing lengths with another one based on the difference of
signed areas, which avoids definition of triangles with the wrong orientation. This is evident
in the example of Figure 2.3. An important disadvantage of both methods is that, in order for
them to converge, one must produce a good initial estimate of the planar development. Ma and
Lin propose no solution for this problem, while Maillot ez al. offer a technique not applicable
to all surfaces.

Azariadis and Aspragathos [2] further improve the aforementioned method by modifying the
area energy function and by giving a solution to the initial guess problem. They also introduce
an algorithm for preserving, during the flattening process, either isoparametric curves [2] or
arbitrary curves [3]. The usefulness of this property has been verified by using industrial
examples. In [3], it is experimentally shown that if the mesh € approximates the curved
surface with a sufficient accuracy then further refinement of @ has almost no effect on the
final result. However, estimation of the minimum size of the mesh ®, sufficient for accurate
planardevelopment, remains an open problem.

Employing the material properties of the initial curved-surface, Shimada and Tada [28, 29]
proceeded to develop a method based on the theory of finite-elements to construct planar

4. Methods for Approximate Planar Development of Curved Surfaces 31

Figure 2.3 Using the method of Maillot ez al., it is possible to derive a planar development of the shoe
last of Figure 2.2 without overlapping areas.

developments of arbitrary three-dimensional surfaces. More specifically, these researchers
propose an approximation based on solving a planar stress-problem using triangular elements.
The related objective function is minimized using a particular iterative process instead of a
classical optimization-algorithm. An important advantage of this method is that it does not
usually require an accurate initial estimate of the solution to converge. However, the method
may fail if the geometry of the surface is sufficiently complex or if overlaps appear in the
planar development.

Another method is proposed by Bennis et al. [7], where a relaxation procedure is used for the
homogeneous distribution of deformation of the geodesic-curvature error in the planar devel-
opment. A limitation of this technique is its strong dependence on the surface parameterization
and its initialization by specification of a surface parametric-curve which is mapped onto the
plane. Regarding trimmed surfaces, this method often requires decomposing the initial surface
into subparts of very simple geometry.

Yu et al. [14] present an algorithm for optimal development of a smooth continuous curved
surface onto the plane. The development process is modeled using in-plane strain from the
curved surface to its planar development. Minimization of strain in the planar development is
achieved by solving a constrained nonlinear programming problem. Another approach [8, 9]
formulates the planar development problem using a spring-mass system and calculating the
strain energy released during flattening. These authors also use a color graph to indicate areas
where cutting lines should be introduced to release more strain energy.

Sheffer and de Sturler [27] introduce a method based on the observation that a triangulated
planar mesh is fully defined by the mesh angles up to global scaling, rotation and transla-
tion. The authors formulate the parameterization problem in terms of the flat-mesh angles
and solve it in the angle space. The method also involves constraints on angles defining a
valid (continuous) planar mesh. The main part of the method is minimization of the angular
distortion of the parameterization, subject to the above constraints. Recently, the authors have
enhanced their flattening technique by minimizing both angular distortion and linear distor-
tion [27]. The authors claim that this revised method avoids foldovers in the derived planar
development.

32 Planar Development

4.2. Category B: Employing Intrinsic Differential-Geometric Properties of Surfaces

This category includes flattening methods that use intrinsic differential-geometric properties
of surfaces like the Gaussian curvature or the geodesic curvature. Taking the characteristics
of geodesic curves of a surface, Manning [22] develops a flattening method also based on an
‘isometric tree’, i.e., a network of surface points connected to each other with edges. Eventually,
this tree is projected onto a plane using an isometric mapping.

A method based on properties of the Gaussian curvature of a surface is proposed by Hinds
et al. [15] aiming at planar developments for apparel design. More specifically, since clothing
manufacturing requires that planar developments are free of foldovers, the authors focus on
developing a flattening technique that fulfils this requirement and thus, almost always, produces
developments with openings, called ‘radial developments’. McCartney er al. [23] offer another
method, aiming again at the clothing industry, which handles the insertion of darts and gussets
by creating appropriate openings.

Parida and Mudur [24] deal with the special case of composite materials and propose a robust
flattening technique based on constraints. Azariadis and Aspragathos [1] extend this method
to a general purpose surface flattening technique divided into three-stages. In the first stage,
an adequate guide-strip is located on the triangulated surface. Using this guide-strip an initial
planar development is derived by isometrically unfolding triangle strips onto the plane. At the
final stage, foldovers and cuts are eliminated according to certain criteria. A more elaborated
approach to the planar development refinement is introduced in [4} where a special genetic
algorithm has been developed for global optimization under constrains.

Wolfson and Schwartz [12], and Schwartz, Shaw and Wolfson [11] used a special MDS
(Multi-Dimensional Scaling) approach to flatten the curved surface using geodesic distances,
and by minimizing the functional presented by Sammon in [16], which resembles the Stress-1
functional. Their method involves high computational complexity and therefore is not practical.
Zigelman el al. [33}improved this method by introducing a new mapping method that preserves
both the local and the global structure of the planar development, with minimal shearing
effects.

4.3. Category C: Approximation with Developable Surfaces

These methods subdivide the initial three-dimensional surface into pieces which are approx-
imated with developable patches. These patches are defined by a one-parameter envelope of
tangent planes, which intersect pairwise and define a line in the three-dimensional space. Thus,
each plane is tangent to the constructed developable patch along this straight line, which is
called ‘generatrix’. Subdivision of the initial surface into such patches is performed so that the
surface produced is at least C° continuous.

A method for the construction of developable surfaces, along the lines of the above method-
ology, is proposed by Redont [25]. The user derives developable surfaces by specifying the
orientation of the tangent plane along a geodesic. Clearly, this is not a practical method as
it is very hard for any user to define appropriate orientation of the tangent planes so that the
desirable developable surface is constructed.

Bodduluri and Ravani [5, 6] develop a method for the design of developable surfaces based
on the concept of duality between points and planes in the three-dimensional projective space,
giving a new representation for developable surfaces in the context of ‘plane geometry’. The

5. Application and Evaluation of Current Methods 33

developable surface is designed using control planes (which are dual to points). Fitting is
performed employing existing techniques for curve design, like Bezier or B-spline fitting.

A simple method for the approximation of an arbitrary curved surface with developable
patches is proposed in [13]. More specifically, the author adopts the approach that a developable
surface may be represented as an appropriate ruled-surface. On the basis of a developability
condition for ruled surfaces, a simple algorithm is proposed for subdividing a surface into a set
of developable ruled-surfaces within a given approximation error. The result of this algorithm
is a C° composite-surface consisting of developable surfaces.

Many techniques have appeared which face the problem of designing developable surfaces
under specific conditions related to the nature of a particular problem. For example, Sundar
and Varada [31] propose a method for calculating developments of ducts, whose surface is
approximated with developable surfaces. Also, Hoschek [18] proposes a method for deriving
approximately developable surfaces from surfaces of revolution. Finally, Leopoldseder and
Pottmann [20] present a method for designing/representing approximately developable surfaces
using conic segments. Although they deal with the problem using a new approach, based on
the duality between points and planes in the Euclidean space, their method may be considered
as an extension of that proposed by Redont [25].

5. Application and Evaluation of Current Methods

We conclude this chapter by presenting a series of examples of planar developments of doubly-
curved surfaces. First, let us briefly describe one of the most commonly used approaches for
surface flattening based on an energy model.

5.1. The Modified Length-Area Energy Model

One of the most commonly used energy models for deriving planar developments of doubly-
curved surfaces is the one proposed by Ma [30] and latter extended by Mailot [17]. This
energy function is actually a convex combination of two energy functionals expressing the
metric distortion in terms of length and signed area:

E(X) = aElength(x) +{1 -) E reu(X) (238)

where 0 < g < 1. The length functional is:

(llm; — my||* — |M; — M)
Elepgin = 2 (2.39)
gth Né; M%{ (1M — M II2

where M; and my; are vertices of triangles of ® and @, respectively. €2; is the set of vertices of
all triangle edges of ® meeting at M; (i 5 j). The signed-area functional is:

(det(m;my, mimy) — | M;M; x MiM||)
Eanea = Z Z

(2.40)
[IM;M; x MMl

Mie® (j,K)eV:

34 Planar Development

Figure 2.4 A landscape surface with high-curvature areas.

where V; = {all pairs (j, k) : (M, Mj, My) define a triangle in ®} and i # j # k. Equation
(2.40) has been proposed in [3] in order to express the functional area with respect to mesh
vertices instead of mesh triangles as it was in [17]. This modification simplifies gradient
computations. The value of & is determined with respect to the complexity of the surface
geometry. Usually a value around 0.5 produces acceptable results with no foldovers. However,
for surfaces with high curvature areas smaller values are required.

5.2. Examples

In this section we compare the modified Length-Area Energy (LAE) algorithm [3] with the
FEA algorithm [28, 29] using as a benchmark the development of the landscape shown in
Figure 2.4, a significantly complex surface with high-curvature areas. This example is quite
representative for texture mapping applications.

Due to the complex geometry we have to tune the parameter a of Equation (2.38) in order
to avoid foldovers in the final planar development. A proper value for ¢ is found to be 0.2
(see Figure 2.5). On the other hand, the FEA method requires no tuning; it directly produces a

Figure 2.5 The planar development derived using the modified LAE model.

5. Application and Evaluation of Current Methods 35

Table 2.1 Landscape and last examples: Analysis of planar developments.

Homogeneity Homogeneity
index along index along Homogeneity Aspect

Flattening 1% direction 2™ direction index ratio

Method / mind, mind, mind,d, mind, Elapsed
Surface maxd, maxd, maxd,d, maxd, time(sec)
LAE/ 0.216880 0.266572 0.344655 0.578145 3.365
Landscape

FEA/ 0.253818 0.209432 0.183896 0.485494 106.743
Landscape

LAE /Last 0.687047 0.628918 0.708005 0.871228 64.894
FEA /Last 0.667407 0.698568 0.741347 0.670895 6.209

planar development without overlapping regions (Figure 2.6). Both planar developments are
filled with colors indicating the areas with low/high distortion. The darker the color, the higher
the distortion is in the planar development. The distortion is measured by comparing the edge
lengths of triangles in the surface to those in the planar development.

Comparing the two planar developments reveals some important features. It is obvious that
areas with higher distortion correspond to areas with higher curvature, as it was expected. Also,
the planar development derived with the LAE model is significantly less distorted (around
1.47 times) than that obtained using FEA, which is apparent in the two color maps. An in
depth analysis of the accuracy/quality of both planar developments, with respect to the indices
introduced in this chapter, is presented in Table 2.1. The data in this table establish that the
development based on the LAE model is better than that produced using the FEA method.
The homogeneity index (Equation (2.36)) for LAE is almost twice that of FEA. This is very
important for applications like texture mapping where sudden changes in the image quality
are easily noticed by the human eye.

Figure 2.7 illustrates the distortion of the planar development of the shoe last derived using
the LAE model. In this case, the metric distortion is much lower than the previous example

Figure 2.6 The planar development derived using the FEA flattening method.

36 Planar Development

Figure 2.7 Planar development of a shoe last using the modified LAE model.

since the surface of the last does not present areas with high-curvature. The parameter @ was set
to the default value 0.5. The high homogeneity index # guarantees homogeneous distribution
of the metric distortion within the area of the planar development. Figure 2.8, displays the
corresponding planar development obtained using FEA. In this case, the distortion of the
triangles is larger — more than twice that of the previous development. Also, the homogeneity
index is not as high as that produced by LAE. However, in this case the execution time for
FEA was significantly lower than the first example. This is due to two reasons: the algorithm

Figure 2.8 Planar development of a shoe last using the FEA method.

References 37

required fewer iterations to achieve convergence, and the triangles order was carefully designed
to minimize the bandwidth of the global stiffness matrix.

6. Summary

Classical differential geometry offers a host of results to analyze developability of free-form
surfaces. However, none of these can be extended to the case of digital surfaces, i.e., sur-
faces defined approximately by a triangular mesh, replacing an exact analytic representation.
Digital surface descriptions are gaining in popularity as CAD/CAM and computer graphics
applications are continuously shifting towards ‘digital modeling and processing’. This chap-
ter reviews related results from Differential Geometry and proceeds on to developing quality
control criteria for digital flattening (Section 3). Current flattening methods are analyzed in
Section 4 and categorized on the basis of fundamental characteristics. Finally, in Section 5,
two state-of-the-art methods for digital flattening are evaluated using realistic examples and
the criteria/metrics of Section 3.

Although many flattening methods are constantly appearing, little effort is directed towards
‘numerical quality control’ of planar developments. The latter has been the focal point of this
chapter, aiming to assist practitioners in identifying the most appropriate method for each
application.

References

[1] Azariadis P. and Aspragathos N. (1997). Design of Plane Patterns of Doubly Curved Surfaces, Computer-Aided
Design, 29(10), 675-685.

[2] Azariadis P. and Aspragathos N. (2000). On Using Planar Developments to Perform Texture Mapping on
Arbitrarily Curved Surfaces, Computers & Graphics, 24, 539-554.

[3] Azariadis P. and Aspragathos N. (2001). Geodesic Curvature Preservation In Surface Flattening Through
Constrained Global Optimization, Computer-Aided Design, 33(8), 581-591.

[4] Azariadis P., Nearchou A. and Aspragathos N. (2002). An Evolutionary Algorithm for Generating Planar Devel-
opments of Arbitrarily Curved Surfaces, Computers in Industry, 47(3), 357-368.

[5] Bodduluri R. M. C. and Ravani B. (1993). Design of Developable Surfaces Using Duality Between Plane and
Point Geometries, Computer-Aided Design, 25(10), 621-632.

[6] Bodduluri R. M. C. and Ravani B. (1994), Geometric Design and Fabrication of Developable Bezier and B-spline
Surfaces, Transactions of the ASME, Journal of Mechanical Design, Vol. 116/1043.

[7] Chakib Bennis, Jean-Marc Vezien, Gerald Iglesias (1991). Piecewise Surface Flattening for Non-Distorted
Texture Mapping, Computer Graphics, 25(4), 237-246.

[8] Wang C. C. L., Chen S.-F. and Yuen M. M. F. (2001). Surface Flattening for the Fashion Industry: a Generic
Approach Using Spring-Mass System, Computers in Industry 1548, 1-10.

[9] Wang C.C.L.,ChenS.-F. and Yuen M. M. F. (2002). Surface Flattening Based on Energy Model, Computer-Aided
Design, 34, 823-833.

[10] Manfredo L. D. C. (1976). Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs, New
Jersey.

[11] Schwartz E. L., Shaw A., and Wolfson E. (1989). A Numerical Solution to the Generalized Mapmaker’s Problem:
Flattening Nonconvex Polyhedral Surfaces. IEEE Trans. on Pattern Analysis and Machine Intelligence, 11(9),
1005-1008.

[12] Wolfson E. and Schwartz E. L. (1989). Computing Minimal Distances on Polyhedral Surfaces. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 11(9), 1001-1005.

[13] Elber G. (1995). Model Fabrication Using Surface Layout Projection, Computer-Aided Design, 27(4), 283-291.

[14] Yu G., Patrikalakis N.M. and Maekawa T. (2000). Optimal Development of Doubly Curved Surfaces, Computer
Aided Geometric Design, 17, 545-577.

38 Planar Development

[15] Hinds B.K., McCartney L. and Woods G. (1991). Pattern Development for 3D Surfaces, Computer-Aided Design,
23(8), 583-592.

[16] Sammon J.W. (1969). A Nonlinear Mapping for Data Structure Analysis. IEEE Transactions on Computers,
18(5), 401-409.

[17] Maillot J., Yahia H. and Verroust A. (1993). Interactive Texture Mapping, Proc. SIGGRAPH 93, Anaheim,
California, 27-34 (1-6 Auvgust 1593).

[18] Hoschek J. (1998). Approximation of Surfaces of Revolution by Developable Surfaces, Computer-Aided Design,
30(10), 757-763.

[19] Karger A. and Novak J. (1985). Space Kinematics and Lie Groups, Gordon & Breach Science Publishers.

[20] Leopoldseder S. and Pottmann H. Approximation of Developable Surfaces With Cone Spline Surfaces, Computer-
Aided Design, 30(7), 571-582.

[21] Lipschutz M.M. (1969). Differential Geometry, McGraw-Hill, USA.

[22] Manning J.R. (1980). Computerized Pattern Cutting, Computer-Aided Design, 12(1), 43-47.

[23] McCartney J., Hinds B.K. and Seow B.L. (1999), The Flattening of triangulated Surfaces Incorporating Darts
and Gussets, Computer-Aided Design, 31, 249-260.

[24] Parida L. and Mudur S.P. (1993), Constraint-Satisfying Planar Development of Complex Surfaces, Computer-
Aided Design, 25(4), 225-232.

[25] Redont P. (1989). Representation and Deformation of Developable Surfaces, Computer-Aided Design, 21(1),
13-20.

[26] Sheffer A. and de Sturler E. (2000). Parameterization of Faceted Surfaces for Meshing using Angle Based
Flattening. Engineering with Computers 17(3) 326-337.

[27] Sheffer A. and de Sturler E. (2002). Smoothing an Overlay Grid to Minimize Linear Distortion in Texture
Mapping, ACM Transactions on Graphics, 21(4), 874-890.

[28] Shimada T. and Tada Y. (1989). Development of Curved Surface Using Finite Element Method, Proc. Ist Int.
Conf. Computer-Aided Optimum Design of Structures, Recent Advances, Springer-Verlag, 23-30.

[29] Shimada T. and Tada, Y. (1991). Approximate Transformation of an Arbitrary Curved Surface Into a Plane Using
Dynamic Programming, Computer-Aided Design, 23(2), 153-159.

[30] Ma S.0. and Lin H. (1998). Optimal Texture Mapping, Proc. EUROGRAPHICS 88, 421-428.

[31] Sundar P. and Varada R. (1995). Evolution of Generic Mathematical Models and Algorithms for the Surface
Development and Manufacture of Complex Ducts, Journal of Engineering for Industry, Vol.117, 177-185.

[32) Willmore T.J. (1972). An Introduction to Differential Geometry, Oxford University Press.

[33] GilZ., Ron K., and Nahum K. (2002). Texture Mapping using Surface Flattening via Multi-Dimensional Scaling.
IEEE Transactions on Visualization and Computer Graphics, 8(2), 198-207.

3

A Shape Preserving
Representation for Rational
Curves with Efficient Evaluation
Algorithm

Jorge Delgado
Juan Manuel Pefia

Department of Matemdtica Aplicada, University of Zaragoza, Pedro Cerbuna, 12
50009 Zaragoza, SPAIN.

In this chapter we consider two families of rational bases derived from two families of bases of
polynomials as an analternative to the Bernstein basis which have recently been introduced.
We also provide two corner cutting evaluation algorithms for rational polynomial curves
with the associated linear time complexity. The two families of rational bases are formed by
normalized totally positive bases. Therefore, they simultaneously satisfy efficiency and shape
preservation. We also provide the corner cutting algorithm for obtaining the corresponding
rational Bézier polygon (with adequate weights) from the control polygon with respect to these
bases.

1. Introduction

We introduced [6] new families of bases (¢ (1), ..., ¢y ,(1)) (1 <h < n) of the space of
polynomials of degree at most n on [0, 1] which providé shape preserving representations
of curves. The case h = n corresponds to the Bemstein basis and, when A < n, we obtained
evaluation algorithms more efficient than the de Casteljau algorithm. The computational cost of
the evaluation algorithm decreases with 4 and, for the cases A = 1, 2, we have linear complexity

Advances in Geometric Modeling. Edited by M. Sarfraz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-85937-7

40 Rational Curves with Efficient Evaluation Algorithm

(the basis corresponding to A = 1 was already considered in [5]). In this chapter we extend
the mentioned representations and algorithms to the rational case. Let us start by introducing
some basic notations.

Let U be a vector space of real functions defined on a real interval [and (uq, ..., u,) (¢t € I)
a basis of U. If a sequence Py, ..., P, of point in R is given then we define a curve y(t) =
3 o Piui(t),t € 1. The points Py, ..., P, are called control points and the corresponding
polygon Py - - - P, is called the control polygon of y. In computer aided geometric design the
functions uy, . .., u, are usually nonnegative and ZLO u;(t) =1Vt € [a, b] (i.e. the system
(ug, - - -, Up) is normalized) and in this case we say that (uo, ..., u,) is a blending system.
Let us recall that the convex hull property holds if and only if (i, ..., 1) is a blending
system.

On the other hand, it is desirable for the designer to have a precise control over what
happens at the ends of the curve. This leads to the endpoint interpolation and boundary tan-
gent properties. We say that the endpoint interpolation property holds if the first control
point always coincides with the start point of the curve and the last control point always
coincides with the final point of the curve. We say that a basis (u, ..., u,) satisfying the
endpoint interpolation property also satisfies the boundary tangent property if the segments
Py Py, P,—1 P, are, respectively, tangent to the curve y(t) = Y, Piu;(t) at the endpoints
Po, Pn.

In computer aided geometric design, the usual representation of a polynomial curve is the
so-called Bernstein-Bézier form. The Bernstein-Bézier form of a polynomial p(¢) of degree
less than or equal to # on [0, 1] is given by:

n
p(H) =) a;B}(t),t € [0, 1], 3.1)
Jj=0
where a; € i, and:

BI() = (;’) Hl—nvi,j=0,...,n,

is the corresponding Bernstein polynomial of degree n. The usual algorithm used to eval-
uate a polynomial in the form Equation (3.1) is the de Casteljau algorithm. But, although
the Bernstein-Bézier form is the usual representation of a polynomial curve (see [7] and [8])
and presents optimal shape preserving properties (see [2]), other polynomial representations
can also be useful. The computational cost of the de Casteljau algorithm for a polynomial
curve of degree n is quadratic (that is, of O(n?) elementary operations), but there are other
evaluation algorithms useful in design with linear computational cost (that is, of O(n) ele-
mentary operations). This can lead to an important reduction of the computational cost when
they are generalized for the evaluation of parametric surfaces or rational curves derived from
these representations. The evaluation algorithm for the Wang-Ball basis (see [11], [10] and
[3]) is a comer cutting algorithm and it also has linear complexity. In [4], a family of ra-
tional bases was derived from the Wang-Ball basis. However, in [5] we proved that these
rational bases are not monotonicity preserving. In contrast, the rational bases studied in this
chapter are shape preserving and, in particular, monotonicity preserving, as we shall see in
Section 3.

1. Introduction 41

Definition 1.1. Let(cg (), ..., ¢, 1(£)), n > 2, be the system of polynomials on [0, 1] defined
by:

o () = (1 —1)",
=l -ty 1<i < LgJ —1,

; 1
i) =t1-1), [%J +1<i<n-—1,

Ca @) =1"
In addition, if # is even,
) =1- (3 (1 —)it
and, if n is odd,
ntl 1 n "
Cozt 1(t)=t(l—t)‘jz" +5[1—t_jli —(1—t)%]],
=+

1 " nt n
()= 5 [1 L S t)T‘] -0

We proved in Section 3 of [6] that the family of bases from Definition 1.1 satisfies the endpoint
interpolation property but doesn’t satisfy the boundary tangent property. In the following
definition we introduce a family of bases, which satisfies both endpoint interpolation and
boundary tangent properties and also has a linear complexity evaluation algorithm (although
of greater complexity).

Definition 1.2. Let (g ,(2), ..., ¢, (1)), n > 2, be the system of polynomials on [0, 1] that
coincides with the Bernstein basis for 2 < n < 4 and that for n > 5 is defined by:

0= (7)ra-0sis,

ity =(m+1— 21—ty 2 <i < L%J ~1,

| 1
a0 = (G + (1 — 12, ["; J+15i5n—2,
a0 =(7)ra-rin-1<izn

In addition, if » is even,

ntl n+1
n _ .2 i1 2 2 i)
C%,2(t)_2]t (l—t)] +6t (l—t) +Z]t1 (l—t) ,
= —~
and, if » is odd,
n n+3 2 ntl 1 _1
Cost o) = =11 = 0% + 51 ,(0),
n 1 n—1 n+ 3 ntl 2
O o) = 5600, + —— 17 (1=

42 Rational Curves with Efficient Evaluation Algorithm

Given a sequence of positive weights wy, ..., w, and a system (ug, ..., u,) such that
Z;=0 w;u;(t) > 0, we can form the system (ro(), . . ., r4(f)) with:
wiui(t) .
rit) = =————,i=0,...,n. (3.2)
> j=0 WjUj ®

Then (ro(t), ..., r,(¢)) is a system of the corresponding space of rational functions. We say
that (ro(2), ..., r.(¢)) is a rational system associated to the system (ug, . . ., u,). Given control
points Py, ..., P, € R?, the generated curve:

y&) = Piri(t)
=0
is called a rational curve.

In Section 2 we provide two algorithms with linear complexity to evaluate polynomial rational
curves associated to the families of rational systems derived from the two families of systems
of Definition 1.1 and 1.2. In Section 3 we provide corner cutting algorithms for the conversion
between the rational systems derived from the bases (cg ,(¢), . . ., c;, ,(¢)) and the corresonding
rational Bézier systems.

2. Evaluation Algorithms for Rational Curves

This section presents two efficient evaluation algorithms for curves generated by the rational
systems derived from the two systems presented in the previous section. An n* degree rational
Bézier curve is given by:

w; B} (t)
v = Zb S W Bt

where wy, . .., w, are positive weights. A rational Bézier curve may be evaluated by applying
the de Casteljau algorithm to both numerator and denominator and finally dividing through.
But there is a warning: this method, although simple and usually effective, is not numeri-
cally stable. If some of the w; are large, the intermediate control points are no longer in the
convex hull of the original control polygon; this may result in a loss of accuracy. The usual
algorithm for evaluating a rational curve is called the rational de Casteljau algorithm, and is
given by:

Algorithm 2.1.

for i=1 to n do
wf(t) = w;
b?(t) =b;

end 1i;

for i=1 to n do
for j=0 to n-1 do

wh(t) = (1 - H (1) + t3) (1)

2. Evaluation Algorithms for Rational Curves 43

i—1

w; (1) 1)
bt =(1— btl]+1 ll
0= =0 b 0+ L
end j;
end i;

echo wyglt), by(t);

where wjj(t) = Y i_, wi B (t) and bj(r) = y(¢). But this algorithm is computationally more
expensive than the previous one. A stable and cheaper evaluation algorithm for rational curves
can be deduced for the rational systems derived from the family of systems of Definition 1.1,

w;cC (t)
and is given, if y(t) = ,—’—‘—,b :
gvn Y) Z_OUZ'—Owlll(t) y
Algorithm 2.2.
for 1=1 to n do
@(1) = w;
Vo) =V
end 1i;
for 1i=1 to n-2 do
W) =1 — t)a)i_l(l) +tat7Ne)
KON RO
vy =01-——" “_ v O+ =7 (0)
¢ wi(t) wi(t)
if ((n+1-1)%2=1) do
for j=1 to (n-2-1)/2 do
Cl) (t) - w]+1(t)
Vi) = vi310)
end J
1 _
Tl(t)~5w (t)+ %+1(’)
.) lwn l(t) 1 lw —x (t) 1
v (e —2 il + —IT t
5 "1() 5 ©) @ (1) Vet

for j=(n- 1)/2+l to n-1-i do
Py i1
W' (1) = o})
v/(6) = v
end j

else do
for j=1 to (n-1-1)/2 do

w (t) = w]_H(t)

v (t) = v]+1(t)
end J

44 Rational Curves with Efficient Evaluation Algorithm

for j=(n+1-1)/2 to n-1-i do
wl(6) = o7 (D)

vj(n) = v\ (@)

end j
epd if;
wl_()= (1 - HelZj@) + tol]] ,(t)
1 Wy l() 1 W, —x() i
=1 =0~ w0 i+t :L() vl
end i;

for i=n-1 to n do
for j=0 to n-1i do
@(8) = (1 — Hw| ' () + 1 (1)
i—1

o0 Qe
vaFoQO,%> ﬂ)Mm

end j
end i;
echo wy(?), vg(t);

then, as the following result states, wj(t) = > ;_q wic; ((t) and vy(#) = y ().

w; ?1(’)

—=i———— performing Algorithm 2.2 we have that:
Zl =0 WiC i l(l)

Theorem 2.3. if y(r) = 3 _, v;

wp(t) = Zw,-c,'{l(t) and vy(r) = y(2).

i—0

..........

k

al;=1-1t for i=je{0,k—1},

af; =t for i+1=je{lk},

ab =1 for i=j—1ef{l,....(k=3)/2} or i=je{k+1)2.....k-2}
af; =1/2 for i=(k—1)/2 and j € {(k—1)/2, (k +1)/2},

a* = 0in otherwise,

iy
and, if k is even, by:

a!‘}.:l—t for i=jef{0,k—1},
af; =t for i+1=je{l k),

ak=1 for i=j—1e{l,....k/2=1} or i=jeik/2,...,k—2},
ij J

afj = 0 in otherwise.

Taking into account that,
A Ap®) = (cf (D), ..., e 1 (D)), (3.3)

2. Evaluation Algorithms for Rational Curves 45
we can observe that,
n wO
D wicl () = Ay(r)- - Ay(r) (3.4)
i=0 w,
Using the previous algorithm we can check that,
Wo
M@ A @)] | = wp(e) (3.5)
Wy
Then, by Equations (3.4) and (3.5), we have that,
Wty =Y wic} (). (3.6)
i=0
Now, taking into account Equation (3.3), we can deduce that,
n Wy Vo
> viwe] () = M) - Au(t) : 3.7
i=0 Wn

Un

Now, let us denote by X:(t) = (Efj:")i=0.... k—1:j=0,... x the matrix given, if & is odd, by:

n k()

—kn . .
=11t -~ for i=je{0,k—1},
+1](t)
n—k
(t)

—k,n . .
iz:—_— for i+1=je{l k}
J n+1](t)
a =1 for i=j—1lefl,....(k=3)/2} or i=je{k+1)/2,....k—2},
—"’"—le—k(t) for i=(k—1)/2 and j e {(k—1)/2 &k + 1)/2}
ij 2w;+1 k(t) - J) s
a" =0, otherwise,

t

and, if k is even, by:

n—k
) W) o
Ef.‘]: =(1_t);'fi—1_k_(t; for i=je{0,k-1},
J
n—k
) . :
Ef]’nztma for l+1=]€{1’k}’
" =1 for i=j—le{l,....k/2—1} or i=jelk/2,k=2}

a.;” = 0 in otherwise.

46 Rational Curves with Efficient Evaluation Algorithm

We can easily check that:

wg Vo —_n —n Vo
Al(t)"'An(t)()] =es®A@® A0]) (3.8)
Wy,

Un Un
Using the previous algorithm we can check that:

-—n —h vO
A@ A0 - | =v@). (3.9
Un

Now, from Equations (3.7), (3.8) and (3.9) we can deduce that:
Z viwic; 1 (t) = wy(t)vy ().
i=0

Hence, and using Equation (3.6) we get:

HOED IR wic,f’l(t) =y vi—wi'—l(t)— = y(),

i=0 “’0(’) i—0 Z_Owt 1(’)

and the result follow.

Another stable method with linear complexity for rational curves formed by polynomials
of degree greater than or equal to 4 using the rational systems is derived from the family of
.. . . n wic} (1)
systems of Definition 1.2, and is given, if y (1) =) ;_vi=————=, b

y 14 Zx_() Zi__:O ; Ci’z(t) y
Algorithm 2.4.
for i=1 to n do

(1) = o

Vi) =V
end i;
for i=1 to n-4 do

wh(t)y =1 — z)wo L)+ 10l (1)

50, R0,
H=(l—t 0 l 1 4L 7 l lt
(1) = (Y—— e ® o0 ®
(1) = (1 = D71 E) + 1wl (t)
11 -1
P ();1 () ;
v1(t)—(1 t) 1()) +1¢ a)l(t) vz (t)

if ((n+1-1i)%2=1) do
for j=2 to (n-2-1i)/2 do

() = WI71(0)

v, (z) = v]H(t)
end J

1
-,(z) = Ew i (t) + w +1(t)

2, Evaluation Algorithms for Rational Curves

47

2oN (@i, ®

()——T()' (1) + —T(—)—N,H()

for j=(n-1i)/2+1 to n-2-i do
wi.(t) = wi._l(t)
Vi) = vi7(@)

end j

else do

for j=2 to (n-1-i)/2 do
W) = 73 0)
vi(r) = vl

end j

for j=(n+l-i)/2 to n-2-i do
(1) = o7 (1)

o i

vi(t) = v; ®)

end j

end if .
() = (1 — D7\, t) + tol A2

(),1 ()
Vy—1- l(t)+ W 1_,(t) Vi

nlt

nlxn—u—o"" 0

Wy, 1- l()
w;_i(t) = (1 — t)a) (t) + twn+1—t(t)

i—1
i) wigh ()
w40=ﬂ—) k);ﬂ) *Q)LJJ)
n 1 n—t
end i;
for i=n-3 to n do

for j=0 to n-i do

a)j.(t) =(1—- t)a)' l(l) + tCU]_H(t)

W) HO!
vi_(0)=(1— 1) o v+t ’ﬁ) v)
end j “
end i;

echo wfi(t), vj(t);

Analogously to the proof of Theorem 2.3 we can prove that
w(t) = 3 wici,(t) and V(1) = y(1).

Remark 2.5. If we perform Algorithm 2.2 with n > 3, then we get:

W' (1) = 0y () and Vi, (1) = Vi, (r) foralli e {1,...,
2 2 2 2

such that (n — 1 — i)/2 is even, so W ,(t) = w (t) and V' o=t)= v

(t)’

n—12}

48 Rational Curves with Efficient Evaluation Algorithm

foralli e (1,...,n — 2} such that (n —i)/2isevenif niseven,orforalli € (2,...,n — 2}

such that (n — i)/2 is even if n is odd. Analogously, if we perform Algorithm 2.4 withn > 5,

then we get @',_,_, (t) = o',,,_, (t) and v'_,_, (t) = v',,, () for alli € {1, ..., n — 4} such that
2 2 2 2

(n — 1 —i)/2iseven,so o' (t) = &'} (r) and v’ (¢) = v’} (¢) forall i € {1,...,n — 4}
such that (n — i)/2 iseven ifzn is even, cz)r forall ; € 7{2, ..y R z 4} such that (n — 1)/2 is even
if n is odd. Taking these facts into account, one can check that, in Algorithm 2.2, when n is
odd, the number of sum is 4n, the number of multiplications is 8# and the number of divisions
is 4n, and if n is even the number of sums is 4n — 2, the number of multiplications is 8r» — 4
and the number of divisions is 4n — 2. Then, in Algorithm 2.4, when n is odd, the number
of sums is 8# — 10, the number of multiplications is 16n — 20 and the number of divisions
is 8n — 10, and if n is even the number of sums is 8# — 12, the number of multiplications
is 16n — 24 and the number of divisions is 8n — 12. In contrast with the (n + 1)n sums, the
2(n + 1)n multiplications and the (n + 1)n divisions of Algorithm 2.1 (de Casteljau algorithm
for rational curves).

3. Total Positivity and Conversion to the Rational Bernstein-Bézier
Form

The collocation matrix of (ug, ..., us)atty <t <--- < t, inlis given by:
Up, ..., U
M(") = (u;(%))i=0,...,m;j=0,..,n- (3.10
10,-.-,0m

A matrix is totally positive (TP) if all its minors are nonnegative and a system of functions is
TP when all its collocation matrices Equation (3.10) are TP. In the case of a Normalized Totally
Positive (NTP) basis one knows that the curve imitates the shape of its control polygon, due to
the variation diminishing properties of TP matrices. In fact, shape preserving representations
are associated with NTP bases (see [2] and [9]). In particular, by Theorem 2.6 of [1] they are
monotonicity preserving.

Let us consider Equation (3.2). Since ay, . . . , w, > Oand 22':0 wu;(t) > 0,if (ug, ..., u,)
is NTP then (ry, . .., r,) also is NTP.

In this section, we shall present a generalization of the families of Definitions 1.1 and 1.2.
considered in [6], where we showed that these families of systems are formed by NTP bases.
Thus, the rational bases (with positive weights) derived from them are also NTP bases of the
corresponding space of rational functions and so satisfy shape preserving properties. Finally,
we shall provide for each rational basis derived an equivalent rational Bernstein basis and
between them a conversion corner cutting algorithm.

Now, let us present the families of generalized systems.

Definition 3.1. Let (c ,(t), ..., ¢, ,(t)),n = 2 and h > 1, be the system of polynomials on
[0, 1] that coincides with the Bernstein basis for 2 < n < 2h and that forn > 2h + 1 is defined

3. Total Positivity and Conversion to the Rational Bernstein-Bézier Form 49

by:
cin(t) = (';)t"(l - 0<i<h-1,
dﬂ0=("_;f?_vﬁﬂ—o“%hshsgj—h
dﬂ0=(i+?_l)ul ", { ;1J+15i5n—h
440:(?)&1—0“&n+1—h5i5m

In addition, if is even,

n+h—1 .
ch 4(1) = Z (hi1):"(1—t)f"'+1+(2hh)t"(1—t)"

j=2h
+ (,)H4“u—oh
= \J-h+]
and, if n is odd,
-l 1
n — 2 h _ a+l -1
0=\ 2_ 7 |ra-nF 43
n—1

n 1 n—1 2 L2438 h
=5+ L [fTa-o

Remark 3.2. Let us observe that the systems (cg ,(¢), . .-, ¢, ,(#)) for A =1 and 2 coincide
with the systems of Definition 1.1 and Definition 1.2 respectively for alln > 2.

Now, we shall show, for all positive weights wy, . . ., w,, a corner cutting algorithm from all
woch (1) Wl ()
el () Xwicl, (1)
@oBL(t) @, B (1)
YoBle) Y @B

rational from all rational systems) (foralln >2and h > 1)

to rational Bernstein systems () Let us start with the even case:

Theorem 3.3. if:

2m w;c s (t)

y(r)—Z S m>1h>1,

—o WiCi R (t)

where wy, . . ., wy, are positive weights and (Co, (1) AN c%g,h(t)) is given in Definition 3.1,
then, performing the following algorithm:

50 Rational Curves with Efficient Evaluation Algorithm

for i=0 to h-1 do
'a_),-=a),-
b,-=v,-

end i;

E)n=wn;

by =v,;

for i=2m+1-h to 2m do
5,‘:60,‘
bi=vi

end i;

for i=h to 2m-h do

end i;
for i=to m-1 do
for j=m-1 to 1 step -1 do
wi_=_i— i‘_l _zilwl
I am—j4i 7 2m—j+1 M

1 i

. i— .
I S B St M 2 W
T am—j4iW T T 2m—j 41 W
: 2m—j i .
i | i—1
Wy = W +————_——.a) T
M T am—j4i T am— i 2
. i . i—1
v = 2m — J aﬁm—i—lvi n ! Dom—j 1
2m—j — A 2m—j—1 RN om—j
2m — j +1i Wy 2m Jtiw,
end j
5,‘ = Cl):
b,‘ = 'U:-
Wi = wlzm_,'
bom—i = V3
end i;
eCho (501 sy 5zm)! (b09 ey b2m)§

we have that 37 o, Pty = 32 @; B¥™(¢) and
> @B

= bj——--~——.
rO =2 > @i Bt

i=0

3. Total Positivity and Conversion to the Rational Bernstein-Bézier Form 51

. 2m — j 2

Proof. Let us denote A’ := —mi— and A’Zm = —m—— foralli e {1,...,m — 1}
S 2m—j+1 T 2m—j+i

and j € (1,...,m — 1}. Now, let us consider the matrices Aﬁ"’ = (afj?’")og,-,jsz,,, for k €

{A,...,m — 1} defined by:

a™ =1 for i=jef{0,....k—1,m?2m+1—k,...,2m)},

2
j+1—k
k,2m =1- A,J+

au for i=jefk,...,m—1},
GZZM—A]‘k for i=j—-1lefk,....m—1},
akm =1 P o = jefm+1,...,2m—k),
alL;Zm_Azm i~k for i=j+le{m+1,...,2m—k},
a&?™ = 0 in otherwise.

2]

By the results of Section 3 of [6] we have:
(cn@), ..., @) = (BF"(), ..., BENO)A;™ (@) ... AT, (1). (3.11)

Now, taking into account the alorithm, we can easily check that:
Agmarm oam 1= - (3.12)

Then, by Equations (3.11) and (3.12) we can deduce that:

2m
> wicp@e) = @ BM). (3.13)
i=0

Now, from Equation (3.11) we also can deduce that:

wo (vo
CHHONINC I 0) :
m \v2m
wo Vg
= (B3"(@), ..., Bar(D)A™ ... A, E (3.14)

Wy Vom
Now, let us consider the matrices Zk = ('k ™Yo<,j<2m for k € {h, ..., m — 1} defined by:

@ =1 for i=je{0,....k—1Lm2m+1—k, .. 2m},
wf_k

2m i+1—k i , ,
am=(01-a")wf“"‘ for i=jetk....,m—1},

52 Rational Curves with Efficient Evaluation Algorithm

j—k
kO]
g’ =a" " for i=j—lelk,...,m—1},
]
2k
2 2m+l-j—ky @i ..
a:.‘jm::(l—kim+ J)W for l=]€{m+1,...,2M—k},
w2m j—k
— 2m—j—k .
A= —271—]—,(for i=j+le{m+1,....2m—k
l
ai;™™ = 0in otherwise.
We can easily check that:
wo vp @y Vo
A A | = A A (3.15)
@2m) \V2m Dm V2m
Now, using the algorithm, we can derive:
Yo bo
ara =] (3.16)
V2m bom

Then, by Equations (3.14), (3.15) and (3.16) we have:

2m 2m
Y vaci() =) _ bi@ B ().
i=0 i=0

Finally, from Equation (3.13) and the previous formula we can deduce that:

2m = R2m
(t)—Zv, w""(t) Zb,-_%’it__(’)__

'—0 w; ,h(t) = Yt @B

and the result follows.

In the following result we consider the odd case and it can be proved analogously to the previous
result,

Theorem 3.4. If;

2m+1 2m+1(t)
i l'=0 w;C ih

2m+1 (t) 2m+1

where @y, ..., w, are positive weights and (cg’, -» Comy1 £()) 18 given in Definition

3. Total Positivity and Conversion to the Rational Bernstein-Bézier Form

3.1, then, performing the following algorithm:

for i=0 to h-1 do

6,- = W;
b,' = V;
end i;
for i=2m+2-h to 2m+1 do
w; = w;
b,' =V
end i;
for i=h to 2m+1-h do
a):'_l = w;
vf"l =
end 1i;
for i=h t? m do]
i i+§(m+l) . §(m+l) -
On = T lgd m +m+l+iw'"+1

o1
i+ E(m +1) wir! -—(m +1

— Ly m+111
" m+l1+i o, " +m+l+l o,

vm+1

1 1

- 1 | + — 1
2(m+) i—1 l+2(m+)wi—l
m+1

i —— e e
R e T m+LH

i—1 +1 i—1

1
-(m+1) Wi i+ (m+1)
m+1

=2 v .
m+l+za)m+1'" m+l+l Wy i1

for j=m-1 to i step-1 do
wi__ i (1)[1 2m+1_.’ a)i
T dml—j4i d 2m+1—j+i 't
. i—1 . '
o= l wlj‘ sl 2m+1—j wtj-_Hvi'
Toam1—j+i o) m+1—j+i o I
: 2m+1—j . i
W' = S s ll
M T 1 — 40 2m+1—]+1 Vom+1-]
4 l—j Oy i “’?m+1j,1

v, .= Uy
Zm+l-j 2m+l—j+lw2m+1_J 2m+1—1+’w2m+11 Yaml)

end j
5,- = (l):
bi = 'U;
Wamt1—i = W41
o
bomy1—i = Vppyq 4
end i;
echo (@, ..., Wam+1)s (bo, .. ., b2my1);

54 Rational Curves with Efficient Evaluation Algorithm

we have that 327 w,c?m (1) = 327 5, B+ (¢) and

2m+1 @ BT
v = Z bi e)

4. Summary

In this chapter we have shown an alternative to the usual rational Bernstein-Bézier representa-
tion. Our representations also present shape preserving properties and are more efficient than
the rational de Casteljau algorithm. We also provide a stable conversion from our representa-
tions to the rational Bernstein-Bézier representation.

References

[1] Carnicer J.M., Garcia-Esnaola M. and Pefia J.M. (1996) Convexity of rational curves and total positivity. J.
Comput. and Appl. Math. 71, 365-382

[2] Camicer J.M. and Pefia J.M. (1993) Shape preserving representations and optimality of the Bernstein basis.
Advances in Computational Mathematics 1, 173-196

[3] Dejdumrong N. and Phien H.N. (2000) Efficient algorithms for Bezier curves. Comput. Aided Geom. Design 17,
247-2502.

[4] Dejdumrong N., Phien H.N., Le Tien H. and Lay K.M. (2001) Rational Wang-Ball curves. Internat. J. Math. Ed.
Sci. Tech. 32, no. 4, 247-250.

[5] Delgado J. and Pefia J.M. (2002) Monotonicity preservation of some polynomial and rational representations.
In: Information Visualization. IEEE Computer Society, Los Alamitos (CA), 57-62

[6] Delgado J. and Peiia J.M. A shape preserving representation with an evaluation algorithm of linear complexity.
To appear in Comput. Aided Geom. Design.

[7] Farin G. (1996) Curves and Surfaces for Computer Aided Geometric Design (4th edition). San Diego, Academic
Press.

[8] Hoscheck J. and Lasser D. (1993) Fundamentals of Computer Aided Geometric Design. Wellesley, AK Peters.

[9] Peiia J.M. (1999) Shape preserving representations in Computer Aided Geometric Design. Nova Science Pub-
lishers, Commack (New York)

[10] Shi-Min H., Guo-Zhao W. and Tong-Guang J. (1996) Properties of two types of generalized Ball curves.
Computer-Aided Design 28, 125-133
[11] Wang G.J. (1987) Ball curve of high degree and its geowmetric properties. Appl. Math.: A journal of Chinese

Universities 2, 126~140

4

Piecewise Power Basis
Conversion of Dynamic
B-spline Curves and Surfaces

Deok-Soo Kim

Department of Industrial Engineering, Hanyang University
17 Haengdang-Dong, Seongdong-Ku, Seoul, 133-791, Korea.

Joonghyun Ryu
Samsung SDS Co., LTD.
159-9 HIGH-TECH Center, Gumi-Dong, Bundang-Gu, Seongnam, Korea.

B-spline is one of the most popular representations for curves and surfaces in CAGD and
computer graphics. Although the recursive form of B-spline curves and surfaces is frequently
used, the piecewise power basis form is often preferred when the speed of evaluation is impor-
tant. Existing approaches handle only the conversion problem for B-spline curves and surfaces
where the positions of control points are fixed. In this chapter we present an efficient algorithm
Jor transforming a B-spline curve into a piecewise power basis form. Extension to the same
problem for surfaces is also discussed. Experiments show that the presented algorithm sig-
nificantly outperforms conventional approaches when curves or surfaces change their shapes
dynamically by moving their control points.

1. Introduction

The evaluation of points and tangent vectors on parametric curves or surfaces [10-21] is one of
the frequently required geometric calculations in CAGD and computer graphics. For shading
curved surfaces, a typical graphics API often employs the evaluation of points and normal
vectors [24]. The deformation of an object represented by parametric surfaces can be realized
via moving some control points and re-evaluating the surface [23]. Once a parametric curve

Advances in Geometric Modeling. Edited by M., Sarfraz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-85937-7

56 Piecewise Power Basis Conversion

or surface is represented in power basis form, a point evaluation can be made much faster than
represented on a Bernstein basis, since Horner’s rule can be applied. However, it should be
noted that there is the issue of numerical stability for a power basis form [5].

The piecewise power basis form of a B-spline curve can also be utilized for quickly com-
puting characteristic points such as cusps and inflection points. Note that subdivision at these
characteristic points can facilitate fast computation of intersection points between parametric
curves [7]. Moreover, IGES supports a power basis form curve as an entity type 112.

Due to the relative advantages of an implicit representation of curves or surfaces over
parametric ones in some geometric calculations such as a point inclusion test, a curve or a
surface in parametric form is often transformed into one in implicit form [1]. The implicitization
process, which uses a resultant, usually demands curves or surfaces to be represented in power
basis form [22]. Since this operation is computationally expensive, the reduction of computation
time should not be disregarded.

There are a few conventional approaches for the piecewise power basis conversion of
B-spline curves or surfaces. Since a polynomial represented in an arbitrary basis can be trans-
formed into power basis form via Taylor expansion, a conversion can be done by evaluating
an appropriate number of derivatives and factorial functions for each knot span or knot cell
[8]. Applying knot refinement and basis conversion to each piece of B-spline curves or sur-
faces can also yield piecewise power basis representations of given B-spline curves or surfaces
[2,3,4,5,6,9].

In this chapter, we discuss an algorithm for piecewise power basis conversion of B-spline
curves and surfaces. Based on the presented algorithm, the fast evaluation of B-spline curves
and surfaces is possible especially when they change their shapes dynamically.

The core part of the algorithm is to split and compute B-spline basis functions into a set of
polynomials in power basis form in each knot span. The main idea of this algorithm is to locate
appropriate linear polynomials in the segments of B-sline basis functions and to compute all
segments of a B-spline basis function in power basis form, defined as truncated basis functions,
via unfolding the recurrence formula of a B-spline basis function.

Once truncated basis functions in a knot span are obtained in power basis form, the polyno-
mial curves in power basis form of a knot span can be easily obtained by a linear combination
between control points and corresponding truncated basis functions. Repeating this operation
for each knot span, all of the polynomials of a B-spline curve are transformed into a set of
polynomials in power basis representation. In addition, the conversion of a tensor product
B-spline surface into a set of polynomials in power basis representation could be performed
through a similar procedure.

The structure of this chapter is organized as follows: Section 2 presents a procedure for
splitting B-spline basis functions into a set of polynomial segments in power basis form.
In Sections 3 and 4, the conversion of a B-spline curve and surface with moving control
points is discussed. Experiments for comparing the presented algorithm with the conventional
approaches are provided in Section 5. The conclusion of this chapter is given in Section 6.
Note that a supplementary pseudo-code is provided in the appendix.

2. Splitting B-spline Basis Functions

For splitting a B-spline basis function into a set of independent polynomials in power basis
form, let us look into its recursive representation. A B-spline curve of degree p with knot

2. Splitting B-spline Basis Functions 57

0.3

to=t1=t2=t3 ts=t9=t10=t11

(a) cubic B-spline basis functions (m=11)

to=t1=to=t3 ts=to=ti0=t11
(b) Truncated basis functions corresponding to the basis functions in (a)

Figure 4.1 B-spline basis functions and the corresponding truncated basis functions.
vector of size (m + 1) is given as follows [9]:

m—p—1
CtH=) PN,0), @.1)
i=0

where P; and N; ,(¢) are control points and a B-spline basis function of degree p defined
onthe knot vector U =1{0,...,0,tp41,...,tm—p—1, 1,... 1}, t; < t;;, respectively. N p(2)is
also defined as:

t—t tiipyi1 — 1
Nip(t) = ———N; p1(t) + — 25— Ny 1 (D),
tiyp —t Gypt+1 —tip1

4.2)
=17 <t <tiyn,
Nio(t) = {0 otherwise,
where i =0,1,..., m — p — 1. Figure 4.1(a) shows cubic B-spline basis functions and

Figure 4.1(b) shows all of the polynomial segments of the basis functions. In this figure,
each polynomial segment is denoted by t; ,, defined in Definition 1.

2.1. Representation of B-spline Basis Functions

The presented algorithm splits a B-spline basis function into a set of polynomial segments and
computes them in power basis form. Such polynomials are defined as follows:

Definition 1. A truncated basis function, 7; ,(¢),i =w — p,w —p+1,...,w,w=p,p+
1,...,m — p — 1, is a non-zero polynomial segment of N; ,(¢) in [ty,, ty+1)-

58 Piecewise Power Basis Conversion

Figure 4.2 Graph representation for B-spline basis functions.

Figure 4.1(b) shows that there are four truncated basis functions in each knot span for cubic
B-spline basis functions. In general, a B-spline basis function of degree p is splitinto (p + 1)
truncated basis functions in each knot span.

It is known that the recursive computation of Equation (4.2) follows a triangular scheme
as illustrated in Figure 4.2. For example, the computation of N, 3(t) requires both N; »(¢) and
N5 2(2) in addition to two corresponding linear polynomial terms. Again, the computation of
both Nj2(t) and N;»(t) also needs another two basis functions with two linear polynomial
terms, respectively.

To compute and rearrange truncated basis functions in power basis form, the repeation form
is used instead of the recursive form of Equation (4.2). The procedure for computing truncated
basis functions can be captured from Figure 4.3, which can be regarded as a directed graph.
The root node in Figure 4.3 corresponds to a knot span and four leaf nodes correspond to
four truncated basis functions in the knot span. In this figure, the intermediate arrows can be
interpreted as linear polynomials shown in Equation (4.2).

For the time being, let us focus on a knot span [t3, t4). Then, N3 () in Figure 4.2 corresponds
to a knot span [t3, t4) and N;3(z),i =0, ..., 3, in the triangle corresponds to four truncated
basis functions 7;3(¢),i =0, ..., 3, in the knot span. (In Figure 4.2, N;1(t) and 7; 3(¢) are
denoted as N, 3 and t; 3, respectively, for a notational convenience.)

2. Splitting B-spline Basis Functions 59

Figure 4.3 A directed graph and paths for computing Ty 5(¢).

For the convenience of discussion, let us rewrite Equation (4.2) as follows:

Nip =hi p()N; p—1 + i p(t)Niy1,p-1, 4.3)
t—1 t —t
where h; ,() = — " and v p(t) = el 77
itp — b titptl — tip1

Then, an intermediate arrow in Figure 4.2 corresponds to either h; (1) or v; ,(#). Hence, if
linear polynomials, h; ,(t) and v; ,(¢) necessary to compute t; ,,(t) are found, it is possible to
obtain the desired truncated basis function. Furthermore, given two nodes of an edge (shown
as an arrow) the linear term corresponding to the edge can be computed from the subscripts of
both nodes. (The edge between N; ;(z) and Ny ;(t)is h; ; () ifk = i,1 = j+ Lorv,_y j41(2)
ifk=1i—1,1=j+1.) Wecall such a linear polynomial an edge value.

It turns out that k; ,(¢)’s and v; ,(r)’s can be collected from the edges on the paths between
7;w(t) and N, o(t). The left side of Figure 4.3 is a directed graph, which is the subset of Figure
4.2, In the case of t; 3(t), for example, the corresponding paths are illustrated in the right side
of Figure 4.3 as rectangular grids.

In this case, all necessary paths are three and each path includes three edges and four nodes.

2.2. Direct Expansion of B-spline Basis Functions

To compute and rearrange the truncated basis functions in power basis form it is necessary to
find all paths between each root node, representing a knot span, and appropriate leaf nodes,
representing corresponding truncated basis functions, from the directed graph in Figure 4.2.
Hence, it is necessary to enumerate all paths for each truncated basis function.

This problem can be formulated as an enumeration of all possible string of size p where
the alphabets are only O and 1. The number of 0’s and 1’s are the number of horizontal and
vertical grids, respectively. For example, Figure 4.4 illustrates the enumeration of three paths
for 71 3(t) shown as three 0—1 sequences. Simple pseudo-code for this task is provided in the
appendix.

60 Piecewise Power Basis Conversion

0
(5ap>() (1,1, 0}
(s> {1,0,1}
(x> {0, 1,1}

Figure 4.4 Path enumerations.

Once three paths between 1) 3(¢) and N3 (¢) are enumerated, 7; 3(¢) can be obtained by
multiplying the appropriate edge values of each path and summing up the results of all paths.
Figure 4.5 illustrates edge values showing up in the process of computing 7, 3(t), and Equation
(4.4) provides two truncated basis functions in power basis form, 7 3(¢) and 7o 3(¢):

71,3()
= v2,1(1)v1,2(0)h1 3(t) + v2,1(2) 2 2()01 3(2) + k31 (v 2(t)v1,3(F)
4y —t tg—t t— 1 4 —t t—1t 55—t t—1t3 ts—1t ts—1t
= + + . 44
tg—tatyg—tata—t; tg—G3ta—tats—l ta—1l3ts—t3ts—13
tg—t tg—t t—1t;

70.3(8) = va 1 (D121 3(1) = .
030 = Ak = P

Note that both 7 3(¢) and 10 3(z) have as many polynomial terms as the number of paths possible
for a truncated basis function. Each polynomial term also consists of as many linear terms as

Figure 4.5 Edge values appear in the computation of 11 3(¢).

3. Direct Expansion of a Dynamic B-spline Curve 61

@ (b
© @

Figure 4.6 Grid paths for computing 7y 3(¢), 71,3(2), T2.3(¢) and 73 5(2).

the degree of a corresponding B-spline curve. Note that 1 3(¢) consists of only one polynomial
term since there is only one path.

If this procedure is repeated for each knot span, all truncated basis functions in each knot
span are obtained by expanding the multiplications and summations between linear terms
directly. For example, four truncated basis functions in [t3, t4) exist and the numbers of paths
for to3(¢), T1,3(¢), 12,3(t) and 13 3(¢) are one, three, three and one, respectively. This fact can
be verified in Figure 4.6, which shows the paths necessary for computing four truncated basis
functions.

3. Direct Expansion of a Dynamic B-spline Curve

3.1. A Static B-spline Curve

If all truncated basis functions of an arbitrary knot span, [t;, t;11), are obtained, a B-spline curve
in the knot span can be represented as Equation (4.5). Note that this equation is a polynomial
in power basis form since 1;; are already in power basis form.

Cit)= Y 1.(0)P;. (4.5)

j=i-p

In the case of cubic B-spline curve, for example, the truncated basis functions in [ts, t4) are
79,3(), T1,3(¢), 12,3(¢) and 73 3(¢). Then, a set of polynomial curves of a given B-spline curve

62 Piecewise Power Basis Conversion

can be represented in power form as Equation (4.6).

m—p—1

CH=) Cit)Nio (4.6)

i=p

Note that N; o plays the role of a filter for an appropriate polynomial curve so that the portions
of the polynomial curve exterior to the corresponding knot span are suppressed to null.

Until now, this problem has been solved using Taylor expansion (denoted as TE-approach)
or knot refinement followed by basis conversion (denoted as KR-approach). In the case of
TE-approach, after a number of hodographs are computed depending on the degree of
B-spline curve, the hodographs are evaluated and a number of factorial functions are com-
puted to solve the conversion problem. KR-approach settles the same problem via piecewise
knot refinement followed by the basis conversion of Bemnstein basis to power basis, which
actually performs a number of matrix multiplications.

It turns out that the presented approach is not computationally superior to other conventional
approaches when the control points of a B-spline curve are fixed. Equation (4.6) shows that the
computation required is not less than the existing approaches. The presented algorithm shows
an especially quadratic-like increase whereas KR-approach and TE-approach show only linear-
like increases with respect to the degrees of curves. This result is due to the fact that there are
2P paths for computing (p + 1) truncated basis functions in each knot span, when the degree
of a B-spline curve is p.

However, it is quite different when the curve changes its shape continuously by moving
some control points.

3.2. A Dynamic B-spline Curve

The presented algorithm outperforms the conventional approaches when curves or surfaces
change their shapes dynamically. Let us define such a dynamic B-spline curve as follows:

Definition 2. A dynamic B-spline curve, C4(¢) is a B-spline curve with more than one control
point moving.

Thus, Cy4(t) can be represented by Equation (4.7).

Ca) =D _ NipPi+) N, P, @7

iel jeJ

where I and J are the index sets of fixed control points P; and moving control points 13,-,
respectively. N; , denotes a basis function.

A simple, but naive, approach to transform Cy(¢) to a set of polynomials in power form is
to recalculate power basis forms of all curve segments in every knot span whenever the curve
changes its shape. This method is obviously unsatisfactory since it wastes computing time for
the knot spans where the shape has not been changed.

The efficiency of the algorithm can be improved by locating the knot spans of curve seg-
ments that changed by moved control points. KR-approach performs knot refinement and basis
conversion for the target knot spans. In the case of TE-approach, reapplying Taylor expansion

3. Direct Expansion of a Dynamic B-spline Curve 63

to the target knot spans can also only recalculate the coefficients of new polynomials where the
curve has changed its shape. The derivative information and factorial evaluation are needed
for each coefficient of the polynomial.

However, the presented algorithm, denoted as the DE-approach, shows different computa-
tional behavior. Whether control points are moving or not, all truncated basis functions remain
unchanged. It tumns out that the computational gain of the presented algorithm for a dynamic
curve is more significant than those of others if C(¢) is provided (as Equation (4.6)) as a
preprocessing tool for a dynamic curve.

Let C(¢#) be a B-spline curve before any control point moves and Cy(¢) be a dynamic curve
counterpart of C(¢). Then, C4(t) can be now rewritten as the following equation using difference
vectors, starting at the positions of old control points and ending at those of new control
points:

Ca(t) =) N p(t)Pc+ Y N; (D, (4.8)

kek jel

where K = I'|J J. Thatis, Py, k € K, is all control points of C(¢), and D; = (P; — P;) cor-
responds to the displacement of the moving control point.

Thus, from Equation (4.8), it can be found that Cg4(¢) can be obtained by the summation of
original curve C(¢) and difference vectors multiplied by the corresponding basis functions. It
is necessary to locate knot spans that are affected by the second term of Equation (4.8) so that
the transformation can be done more efficiently.

On the other hand, Cg4(t) can also be divided into two groups: the first group is the set of
curve segments whose shapes are fixed, and the second is the set of curve segments whose
shapes are changed by moving control points. Hence the following equation holds:

Co(t) =) Cu(O)Nmo(t) + Y Calt)Naolt), 49

meM neN

where M and N are index sets for knot spans of curve segments whose shapes are fixed and
changed by moving control points, respectively. In addition, C,(¢) can be again rewritten by
using truncated basis functions as follows, since C,(¢) may also have both fixed and moving
control points:

Calt) =) 1gn®Py +) Tnlt)P, (4.10)

qeQ reR

where Q and R are index sets for fixed and moving control points for C,(¢), respectively.
Therefore,

Cat) =) tn®Ps +) 1a()B, —Py), 4.11)

ses reR

where S = Q| JRand |S| = p + 1. P,, s € S, is all control points of C,(¢) before they move.
Thus, Equation (4.11) can be rewritten as Equation (4.12) using difference vector and truncated
basis function:

Co(t) =Calt) +) %a(0)D;, (4.12)

reR

64 Piecewise Power Basis Conversion

where D, = P, — P, is a difference vector whose value is the displacement of the moving
control point. Thus, for a particular knot span, a changed curve segment in power form, C,(z)
can be obtained by summing the original polynomial C,(¢) in the form of Equation (4.5) and
difference vectors multiplied by the corresponding truncated basis functions. Performing the
operation in Equation (4.12) for the knot spans that are influenced by the moving control points
completes the desired transformation for Cy(2).

4. Extension to a Dynamic Surface

The presented idea can be easily extended to the conversion problem of a B-spline surface.
The computational gain for a dynamic B-spline surface is more significant compared to its
counterpart of curve. A B-spline surface of degree p x g is defined as Equation (4.13) [9].

n—p—1lm—g—1
SG.)=Y_ D PyNip()Nj (t) for0<t<1,0<s<1, (4.13)

i=0 Jj=

(=]

where P;j, N;,(t) and N;,(¢) are control points and B-spline basis functions of de-
gree p and g on knot vectors S = {0,...,0,5,41,...,8,—p-1, 1,... 1}, 8, < sy and T =
{0,...,0,t41, ..oy tmeg—1, 1, ... 1}, & < t;41, T€SpECtively.

A similar application of the presented algorithm to a B-pline surface yields the desired power
basis representation of the surface. For a particular knot cell, [s;, si11) X ¢}, £;41), the result
will have the form as Equation (4.14).

i J
S; (s, t) = Z Z Pyitiyij (s, t) for[s;, sip1) % L8, tj41), (4.14)
k=i-pl=j-q

where 1 ;. (s, t) = Tii(5)T, ;(¢) is the multiplication between two truncated basis functions.
Thus, applying Equation (4.14) repeatedly for each knot cell completes the transformation of
a B-spline surface into a set of polynomial surfaces in power basis representation as follows:

n—p—1m—qg—1

S,)= D Y8 (s, N o()Nj (D). (4.15)

i=p j=q

A dynamic B-spline surface can be similarly defined as follows.

Definition 3. A dynamic B-spline surface, S4(s, ¢) can be defined as a B-spline surface with
more than one control point moving.

Thus, S4(s, t) can be represented by Equation (4.16).

Sa(s,)= D > PiiNip(INjo(t)+D Y PiiNi p(s)Ny (1), (4.16)

G, jel (k,he

where I and J are index sets of ordered indices for fixed and moving control points, respectively.
Then, by following the same process as the conversion problem of a dynamic B-spline curve,

5. Experiments and Discussion 65

Figure 47 Example of the evaluations of a dynamic B-spline surface.

Equation (4.17) can be obtained.

Sei(s. 0 =)) PijTijna(s,t) +)) DuaTmnkils, 1)

@,))es (m,n)cR “17)
= Sk,l(ss t) + Z Z Dm,nrm,n,k,l(sv t)-
(m.n)eR

where S=Q(JR and |S|=(p+ 1) x(g+1).P;;, (i, j)€S, is all control points of
S;, j(s, t) before they move. Dy, , = (13,,,,,l — P,) are difference vectors whose values are
the displacements of moving control points.

Thus, for the entire knot cells that the surface shape was influenced by moving control
points, performing the operation of Equation (4.17) can yield the desired power basis form of
a B-spline surface under an assumption that a B-spline surface is given as Equation (4.15) via
pre-processing.

Figure 4.6 illustrates the evaluation process of 44,100 points on a cubic dynamic B-spline
surface with four moving control points. Figure 4.7a shows a static B-spline surface evaluated
through Equation (4.15) and Figure 4.7b shows that the point evaluation is performed via
Equation (4.17).

5. Experiments and Discussion

Transformation of a dynamic B-spline curve into a set of piecewise polynomial curves in power
form through the presented algorithm consists of two steps:

® pre-processing in Equation (4.6), and
¢ the operation in Equation (4.12) for the entire knot spans where a curve changed its shape.

Suppose that one of the control points of a B-spline curve of degree p is moving. While TE
and KR-approaches have much more computational burdens, the presented algorithm takes
only (p + 1) multiplications and (p + 1) additions for a knot span since the corresponding
truncated basis functions are fixed. Thus, the presented algorithm need only O(p?) arithmetic
operations.

66 Piecewise Power Basis Conversion

Figure 4.8 Computation time vs. number of moving control points.

For (p 4+ 1) knot spans that are influenced by a control point, TE-approach need torecalculate
new polynomial curve segments. In this approach, each knot span has (p + 1) coefficients to
be computed, and each coefficient needs to evaluate a factorial function and a derivative.
If Horner’s rule is used, a derivative evaluation requires O(p) operations. Otherwise, O(p?)
operations are needed. Factorial evaluation also needs O(p) operations. Thus, TE-approach
requires O(p?) or O(p*) operations. In the case of KR-approach, knot refinement and basis
conversion from Bernstein basis to power basis should also be performed for (p + 1) knot
spans.

In Figure 4.8 the computation time for each approach is provided. The presented algorithm,
denoted by DE, outperforms other approaches and the computational gain of DE algorithm gets

Figure 4.9 Computation time vs. number of moving control points for degree 3, 4, 5, 6.

References 67

significant as the degree of curve and the number of control points increase. The computational
behavior of DE algorithm itself is provided separately in Figure 4.9. Note that the computation
time is linear with respect to the number of moving control points.

6. Summary

B-spline like representations [10, 16, 21] are for surface modeling schemes in CAGD and
computer graphics fields. It is often necessary to manipulate B-spline representations in power
basis form. Once B-spline curves or surfaces are transformed into a power basis representation,
fast evaluations are available and the computation of inflection points or cusps on a curve can
be also accelerated.

In this chapter, we have provided a new conversion algorithm for transforming a B-spline
curves or surfaces into a set of power basis polynomial curves or surfaces. In particular, the
presented algorithm focuses on the conversion problem when curves or surfaces change their
shapes continuously by moving some control points. In this case, the speed of computation is
more important than other issues.

Experiments show that the presented algorithm is computationally efficient compared to
conventional approaches. Thus, the presented algorithm is useful for intersection problems,
the blending between B-spline curves, and the visualization of deforming B-spline curves or
surfaces. In addition, the same problem for rational B-spline curves or surfaces can be handled
with ease using the algorithm presented in this chapter.

References

[1] Bloomenthal, J. (1997) Introduction to implicit surfaces. Morgan Kaufmann Publishers Inc.
[2] Boehm, W. and Prautzsch, H. (1985) The insertion algorithm. Computer-Aided Design 12, 58-59.
[3] Boehm, W. (1985) On the efficiency of knot insertion algorithms. Computer Aided Geometric Design 2, 141-143.
[4] Cohen, E., Lyche, T. and Riesenfeld, R. (1980) Discrete B-splines and subdivision techniques in computer-aided
geometric design and computer graphics. Computer Graphics and Image Processing 14, 87-111.
[5] Farin, G. (1997) Curves and surfaces for computer-aided geometric design, 3" Ed., Academic Press.
[6] Goldman, R.N. (1990) Blossoming and knot insertion algorithm for B-spline curves. Computer Aided Geometric
Design 7, 69-81.
[7] Kim, D.-§., Lee, S.-W., and Shin, H. (1998) A cocktail algorithm for planar Bezier curve intersections. Computer
Aided Design 30, 1047-1051.
[8] Lasser, D. and Hoschek, J. (1993) Fundamentals of computer aided geometric design. A. K. Peters.
[9] Piegl, L. and Tiller, W. (1995) The NURBS book, Springer.
[10] Sarfraz, M. (2003). Weighted nu splines with local support basis functions, Advances in Geometric Modeling,
Ed.: M. Sarfraz, John Wiley & Sons, Ltd. 101-118.
[11] Sarfraz, M. (2003). Optimal curve fitting to digital data. International Journal of WSCG, Vol. 11(1).
[12] Sarfraz, M. (2003). Curve fitting for large data using rational cubic splines. {nternational Journal of Computers
and Their Applications, Vol. 10(3).
[13] Sarfraz, M., and Razzak, M. E A. (2003). A web based system to capture outlines of arabic fonts. International
Journal of Information Sciences, Elsevier Science Inc., Vol. 150(3—4), 177-193.
[14] Sarfraz, M., and Razzak, M. F. A. (2002). An algorithm for automatic capturing of font outlines. International
Journal of Computers & Graphics, Elsevier Science, Vol. 26(5), 795-804.
[15] Sarfraz, M. (2002) Fitting curves to planar digital data. Proceedings of IEEE International Conference on
Information Visualization IV'02-UK: IEEE Computer Society Press, USA, 633-638.
[16] Sarfraz, M. (1992) AC 2 Rational cubic alternative to the NURBS, Computers and Graphics 16(1), 69-77.
[17] Sarfraz, M. (1992) Interpolatory rational cubic spline with biased, point and interval tension. Computers and
Graphics 16(4), 427-430.

68 Piecewise Power Basis Conversion

[18] Sarfraz, M. (1993) Designing of curves and surfaces using rational cubics. Computers and Graphics 17(5),
529-538.

[19] Sarfraz, M. (1995) Curves and surfaces for CAD using C? Rational Cubic Splines. Engineering with Computers,
11(2), 94-102.

[20] Gregory, J.A., Sarfraz, M. et al. (1994) Interactive curve design using C? rational splines. Compurers and
Graphics 18(2), 153-159.

[21] Sarfraz, M. (1994) Cubic spline curves with shape control. Computers and Graphics 18(4), 707-713.

[22] Sederberg, T.W. (1983) Implicit and parametric curves and surfaces for computer aided geometric design, Ph.
D. Thesis, Purdue University.

[23] Watt, A. and Watt, M. (1992) Advanced animation and rendering techniques, Addison Wesley.

[24] Woo, M., Neider, J., and Davis, T. (1996) OpenGL programming guide, 2. Addison Wesley.

Appendix: Pseudo-code for Path Enumerations

The following pseudo-code performs path enumerations via lexicographic ordering of zero-one
sequences. If there is a k numbers of 1’s, then there are (p) numbers of paths, which can be

obtained by enumerating lexico graphically ordered positions of 1’s. The size of each sequence
is p (the degree of B-spline curve) and each sequence has n;, zeros and n, ones (n; + n, = p).
For example, all paths for a cubic B-spline curve in a knot span are {1, 1, 1}, {1, 1, 0}, {1, 0,
1}, {0, 1,1}, {1, 0,0}, {0, 1, 0}, {0, 0, 1}, and {0, 0, O}. Hence, the number of all paths in a
knot span for a curve of degree p is as follows:

The number of all paths in a knot span increases rapidly as the degree of a curve gets
higher. However, note that a path enumeration is needed only once for a given B-spline curve
regardless of knot vector size. Once all paths for a knot span are determined, simple changes
of subscripts will produce correct paths for an arbitrary knot span. Note that 2-dimensional
array Index[][] keeps the position of ones.

! 14 P
= = 9P
(w _])'(P w4+) a Z k'(p k)' kz:() =2 4.18)

j=w-p

Initialize Index Index[0][1]1=1+1 for 1=0, ..., n,-1

n,
for j=0 n,-1 do
if(Index(i-1] [n,-j-1]1<p-3)
for k=0 to n,-j-2 do
Index[i] [k]= Index[i-1]I[k];
end k;
Index[i] [n,-j-1]1= Index[i-1][n,-j-1]+1;
for k=n,-j to n,-1 do

Index (1] [k]= Index[i][k-1]1+1;
end k; 0

for i=1 to (P) do

break;
end if
end j;
end i;

7:57 pm, Jan 31, 2005

S

Computational Methods for
Geometric Processing of Surfaces:
Blending, Offsetting, Intersection,
Implicitization

Andres Iglesias

Department of Applied Mathematics and Computational Sciences, University of
Cantabria, Avda. de los Castros s/n, E-39005, Santander, Spain.

The aim of this chapter is to provide the interested reader with a general overview of some
relevant problems in geometric processing of surfaces. To this end, the chapter offers a classified
bibliography with more than 160 selected references on computational methods for surface
blending, offsetting, intersection and implicitization. The literature referenced in this chapter
is not intended to comprise a totally exhaustive review on these topics, but it still includes
enough comments and references to be useful for the reader.

1. Introduction

Geometric processing is defined as the calculation of geometric properties of already con-
structed curves, surfaces and solids [12]. In its most comprehensive meaning, this term includes
all the algorithms that are applied to already existing geometric entities [35]. As pointed out
in [12] since geometric processing is intrinsically hard there is neither a unified approach nor
‘key developments’ such as the Bezier technique [39, 108] for design. On the contrary, the
literature on geometric processing is much more dispersed amongst different sources. The aim
of this chapter is to provide the interested reader with a general overview of some relevant
problems in geometric processing of surfaces. To this end, the chapter offers a non-exhaustive
classified bibliography with more than 160 selected references on computational methods for

Advances in Geometric Modeling. Edited by M. Sarfraz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-85937-7

70 Computational Methods for Geometric Processing

surface blending (Section 2), offsetting (Section 3), intersection (Section 4) and implicitiza-
tion (Section 5). Finally, we should remark that the chapter has been influenced by both the
extraordinary magnitude of this task and the limitations of space. Some references have had to
be omitted and many explanations have been reduced to the minimum. Due to these reasons,
the literature referenced in this chapter is not intended to comprise a totally exhaustive survey
on these topics. However, we hope that we have included enough comments and references to
make the chapter useful for our readers.

2. Blending Surfaces

We use the term blending to mean the construction of connecting curves and surfaces and the
rounding off of sharp corners or edges. Although we can easily distinguish between interior
and exterior blending, it is better to classify blending methods according to their mathematical
definition [146]. Thus, we talk about superficial blending to indicate that no explicit mathe-
matical formula is available. Superficial blending appears in the production process [27, 152,
155] in procedures such as rounding off a corner or edge with radius r. The blend described
by additional surfaces connecting smoothly to some given surfaces is usually referred to as
surface blending, while volumetric blending is used to mean the combination of objects in
a solid modeling system (see, for instance, [46, 54, 146, 156]). Finally, some authors also
consider polyhedral blending for those cases in which the objects to be blended are defined
by polyhedra. In this case, blending is performed through surface blending of the resulting
patches [76, 126] or by recursive subdivision [20, 97-99].

Especially interesting for many applied purposes is surface blending, which can be given
in either implicit or parametric form. Early works on unbounded implicit blending were con-
sidered in [14] and [117] for molecule design and free-form modeling, respectively. Field
functions, such as those used to define soft objects [15, 159], are inspired by the same ideas.
Implicit surface blending was applied to C! data interpolation by Bajaj [9] while C? data
interpolation was later analyzed in [S1] by considering rational cubic splines [50, 128] as an
alternative to NURBS [127] with applications to design [129, 130]. Other remarkable works
in this area are [63, 85, 95, 104, 118, 119]. A nice paper on blending of algebraic surfaces can
be found in [151].

Analogously, a number of methods for parametric blending have been described, ranging
from interactive methods [11, 104] to automatic methods based on calculation of intersections
of offset surfaces to the two given surfaces [79, 104]. The core of these methods is the calculation
of the trim lines. In the interactive methods such lines are defined interactively by means of a
sequence of points on the surfaces which are inverted onto the parameter planes, fitted through
B-splines [11] and then mapped back onto the surfaces. These methods are highly flexible
and they do not require the existence of any intersection curve for the surfaces to be blended.
On the contrary, some automatic methods assume that the surfaces intersect [11]. In some
special cases, it is even possible to obtain an analytic expression for the blending surface.
This is the case for B-spline trim curves: the resulting blending surface can be defined as a
B-spline tensor product surface [38, 109, 120]. Blending of tensor product B-spline or Bezier
surfaces are analyzed, for example, in [11, 28, 45, 77]. A good survey on blending methods for
parametric surfaces can be found in [156]. A more recent survey can also be found in [147].

Finally, some works have been published in the last few years where emphasis is put on
blending for pairs of implicit and parametric surfaces [54, 55] allowing G continuity (that is,

3. Offset Surfaces 71

tangent plane continuity) [56]. A solution to the problem of maintaining the G' continuity of
the blended curves by adjusting the positions of the junction points of the curve segments was
proposed in [69].

3. Offset Surfaces

Offsetting is a geometric operation which expands a given object into a similar object to a certain
extent. For instance, offset of curves and surfaces are also curves and surfaces (respectively) at
a constant distance dfrom the given initial curve or surface. Offsetting has various important
applications [78, 122]. For example, if the inner surface of a piece is taken as the reference
surface, the outer surface can be mathematically described by an offset surface corresponding to
a distance equal to the thickness of the material. Offsets also appear in cutter-path generation
for numerical control machine tools [68, 125, 139]: pieces of a surface can be cut, milled
or polished using a laser-controlled device to follow the offset [27, 103, 144]. In the case of
curves, they can be seen as the envelope corresponding to moving the center of a circle of
radius d along the initial curve. This allows us to define both the inside and outside offset
curves, with applications in milling [153]. Finally, they are fundamental tools (among others)
in the constant-radius rounding and filleting of solids or in tolerance analysis [67, 70, 73], for
definition of tolerance zones, etc.

In this chapter we restrict ourselves to offset surfaces. For the case of curves, several methods
for the computation of their offsets are described and compared in [34]. As pointed out in
[107], offsetting general surfaces is generally quite complicated, and an offset surface is often
approximated [33]. Approximations of offset surfaces by bicubic spline surfaces are described
in [40]. However, some of these approximations become inaccurate near its self-intersecting
area [3, 107]. In [24} a marching method to compute the self-intersection curve of an offset
surface is proposed. The same problem was solved in [3] for the case of offset surfaces of a
uniform bicubic B-spline surface patch and in [92, 143} for Bezier surface patches, by using
differential geometry and ray tracing, respectively. Subsequently, some approaches to remove
loops appearing in the generation of tool paths for two-and-a-half axis pocket machining by
using a pairwise intersection, the Voronoi diagram method and the Invariant-Gaus-Bonet offset
were described in [53, 57, 121], respectively.

We should note, however, that offset curves and surfaces lead to several practical problems.
Depending on the shape of the initial curve, its offset can come closer than d to the curve, thus
causing problems with collisions, for instance, when steering a tool. These collision problems
also arise in other applications, such as path-planning for robot motions, a key problem in the
current industry. To avoid this, we need to remove certain segments of the curve which start
and end at self-intersections [57, 123]. Special methods for the case of interior offsets (as used
in milling holes or pockets) can be found in [57] and [105]. Other alternatives include a method
to compute the offset of the scallop hull (a generalization of the convex hull [2, 57}) in linear
time, i.e., in time that is linearly proportional to the number of segments of the input curve
[29].

For surfaces the scenario is, by large, much more complicated: singularities at a point can
arise when the distance d of the smallest value of the principal curvature is attained at the
point. In addition, these singularities can be of many different types: cusps, sharp edges or
self-intersections [40}. Finally, the set of rational curves and surfaces is not closed under
offsetting [37]. Therefore, considerable attention has been paid to identify the curves and

72 Computational Methods for Geometric Processing

surfaces which admit rational offsets [42, 107, 111]. Special cases for surfaces whose offsets
are rational include, for example, planes, spheres, circular cylinders and cones, torus and
cyclides. The case of polynomial and rational curves with rational offsets is analyzed in [86].
In [87] the author showed that the offsets of paraboloids, ellipsoids and hyperboloids can be
rationally parameterized. On the contrary, cylinders and cones do not have any rational offset
except for the particular cases of parabolic cylinders, and cylinders and cones of revolution. In
[114] it has been shown that offsets of nondevelopable rational ruled surfaces can be rationally
parameterized in the whole space, although special care must be put on the case of finite
patches, since the offset of a rational patch may not be expressed as a rational patch. An
interesting approach for computing offsets of NURBS curves and surfaces is given in [110].
The smoothness of the offset surfaces is discussed in [59]. We also recommend [91] for a more
recent overview of offset curves and surfaces.

Other recent developments are geodesic offsets [102] (the locus of points at a constant
distance measured from an arbitrary curve C on a surface along the geodesic curve orthogonal
to C) and general offsets, first introduced in [17] and extended in [112]. Both kinds of offsets
exhibit interesting applications in manufacture. For example, geodesic offset curves are used
to generate tool paths on a part for zig-zag finishing using 3-axis machining with ball-end
cutter so that the scallop-height (the cusp height of the material removed by the cutter) will
become constant [131, 140]. This leads to a significant reduction in size of the cutter location
data and hence in the machining time. On the other hand, not only ball-end but also cylindrical
and toroidal cutters are used in 3-axis NC machining. When the center of the ball-end cutter
moves along the offset surface, the reference point on the cylindrical and toroidal cutters move
along the general offset. Finally, a nice application of general offsets to collision problems is
described in [113].

4. Intersection of Surfaces

In many applications, computation of the intersections of curves and surfaces is required.
Among them, we quote smooth blending of curves and surfaces (Section 2), the construction
of contour maps to visualize surfaces [48] (intersection with series of parallet planes, cylinders,
cones, etc), Boolean operations on solid bodies for constructive solid geometry models of the
objects, in manufacturing [12] (slicing operations for rapid prototyping, determination of
collisions) and determination of self-intersections in offset curves and surfaces (Section 3).
A significant body of literature exists on the calculation of intersections of two surfaces
(see, for example, the excellent reviews on this topic in [64] (Chapter 12) or [103] (Chapter 5)
and the references therein. We also recommend the survey in [115]. Earlier references can
be found in [36]). Basically, they can be classified into analytical and numerical methods.
Analytical methods seek exact solutions by finding some function describing the intersection
curves [22, 101]. The obvious advantage of these methods is that they are unaffected by
robustness and efficiency limitations. The simplest example for the case of surfaces is that of
an implicitparametric surface intersection. In this case, we can insert the parametric formula
into the implicit form to get a nonlinear system of four algebraic equations in five variables for
the intersection. If both the implicit and the parametric surfaces have alow degree (as is usual in
many practical cases) we can obtain an implicit curve in the parametric domain [82, 115] but it
still remains a problem for high degree surfaces. In other cases, solutions for this equation can

4, Intersection of Surfaces 73

be achieved through numerical methods [56] and differential geometry [4]. Other proposals
include a combination of algebraic and analytical methods {41], hybrid algorithms combining
subdivision (based on the divide-and-conquer methodologies), tracing and numerical methods
(mainly Newton’s method) [81], etc. Unfortunately, they exhibit a substantial loss of accuracy
making them unsuitable for practical applications. Finally, there is a family of methods known
as marching methods based on generating a sequence of points of an intersection curve branch
by stepping from a point on such a curve in a direction determined by some local differential
geometry analysis [8, 13, 80]. These methods are globally incomplete since they require starting
points for every branch of the solution. Motivated by this, great effort has been devoted to the
determination of such starting points by using hodographs [137], elimination methods [21]
or by two local methods, namely iterative optimization and Moore-Penrose pseudo-inverse
method [1].

In the case of a couple of implicit surfaces to be intersected, the analytical method yields a
system of two equations in three variables. Some methods to obtain solutions to this problem
in the case of quadric surfaces (clearly, a problem with relevance in CAD/CAM of mechanicat
parts) can be found in [43, 96, 132, 138, 154]. Other methods to solve this problem through a
combination of geometric and analytic methods are given in [100]. Also, Bajaj et al. proposed
a method for solving this problem that does not need to know the functions explicitly [8].
In [56] the concept of aumerical implicitization was proposed. This author realized that in
tracing the intersection curve of two implicit surfaces we only need to know both the values
and the gradients of the implicit function at the intersection points. The practical implica-
tions of this is that we can implicitize parametric surfaces numerically so that algorithms for
implicit-implicit surface intersection can be successfully applied to initial parametric surface
intersection problems.

Finally, the intersection of a couple of parametric surfaces can be reduced to the implicit-
parametric case by implicitizing the parametric equations of one surface (see Section 5 of this
chapter for more details on implicitization). Other techniques for parametric surfaces can be
foundin[1, 13,37, 44, 60, 137]. However, there has been no known algorithm that can compute
the intersection curve of two arbitrary rational surfaces accurately, robustly and efficiently [64].
In addition, it is known that two surface patches intersect in a curve whose degree is much
higher than the parametric degree of the two patches. Thus, two bicubic patches intersect
in a curve of degree 324! Fortunately, the situation is better when we restrict the domain of
input surfaces to simple surfaces (planes, quadrics and tori, i.e., the so-called CSG primitives)
[23, 75, 84, 96, 116, 138]. These surfaces are important in conventional solid modeling systems
for industry, since they can represent a large number of mechanical parts of a car, ship, plane,
etc. Another algorithm to deal with general ruled surfaces (which can be classified as an
algebraic method because it consists of reducing the surface intersection problem to a simpler
problem of computing an implicit curve in the parametric domain) has been described in [58].

As the reader can see, the analytical methods require many different algorithms designed
ad hoc for each kind of surface involved. While for low degree surfaces there is a number of
efficient methods, more difficulties appear for high-order surfaces. Furthermore, the analytical
methods cannot deal with non-algebraic surfaces and hence numerical methods are usually
applied instead. At their turn, numerical methods can be classified into several categories [115]:
subdivision methods, which divide the objects to be intersected into many pieces and check for
intersections of the pieces [12, 19, 30, 47, 52, 74, 83, 97, 98, 164]. The goal of these methods
is to find a polygonal approximation of the intersection curves by using face splitting of the

74 Computational Methods for Geometric Processing

surfaces, and it is mostly applied to create characters and other complicated shapes in computer
animation [31]; discretization methods, which reduce the degrees of freedom by discretizing
the surface representation in several ways, such as contouring [32, 106, 141] or parameter
discretization [12, 66], marching methods which require at least a point on the intersection
curve, called the starting point, to generate a sequence of points on the intersection curve
using local geometry of the intersecting surfaces [8, 13, 80], hybrid methods, which combine
subdivision and numerical methods [142, 163], differential methods such as the second order
boundary algebraic-differential approach in [48, 49], etc.

Other recent developments include the possibility of handling intersection singularities and
loops [8, 25, 62, 88-90, 136, 137]. Intersections of offsets of parametric surfaces are analyzed
in [150]. This problem is often of great interest: for instance, a blend surface (see Section 2)
of two surfaces can be constructed by moving the center of a sphere of given radius along the
intersection curve of two surfaces that are offset from the base surfaces by the radius of the
sphere.

5. Implicitization

In the last few years, implicit representations are being used more frequently in CAGD, al-
lowing a better treatment of several problems. For instance, the point classification problem is
easily solved with the implicit representation: it consists of a simple evaluation of the implicit
functions. This is useful in many applications, such as solid modeling for mechanical parts,
for example, where points must be defined inside or outside the boundaries of an object, or
for calculating intersections of free-form curves and surfaces. The problem of computing the
parametric-implicit (parametric-parametric) surface intersection is very often reduced to an
implicit-implicit (implicitparametric) surface intersection problem (see Section 4). Through
implicit representation, the problem is reduced to a trivial sign test. Other advantages are that
the class of implicit surfaces is closed under such operations such as offsetting, blending and
bisecting. In other words, the offset (see Section 3) of an algebraic curve (surface) is again an
algebraic curve (surface) and so on. In addition, the intersection (see Section 4) of two algebraic
surfaces is an algebraic curve. Furthermore, the implicit representation offers surfaces of de-
sired smoothness with the lowest possible degree. Finally, the implicit representation is more
general than the rational parametric one [60]. All these advantages explain why the implicit
equation of a geometric object is of importance in practical problems.

Implicitization is the process of determining the implicit equation of a parametrically de-
fined curve or surface. One remarkable fact is that this parametric-implicit conversion is always
possible [26, 133]. Therefore, for any parametric curve or surface there exists an implicit poly-
nomial equation defining exactly the same curve or surface. The corresponding algorithm for
curves is given in [134] and [135]. In addition, a parametric curve of degree # has an implicit
equation also of degree n. Further, the coefficients of this implicit equation are obtained from
those of the parametric form by using only multiplication, addition and subtraction, so con-
version can be performed through symbolic computation, with no numerical error introduced.
Implicitization algorithms also exist for surfaces [93, 94, 134, 135]. However, a triangular
parametric surface patch of degree n has an implicit equation of degree n?. Similarly, a tensor
product parametric patch of degree (2, #) has an implicit equation of degree 2mn. For example,
a bicubic patch has an implicit equation of degree 18 with 7330 terms!

References 75

In general, the implicitization algorithms are based on resultants, a classical technique
[124], Grobner basis techniques [18] and on the Wu-Ritt method [157]. Resultants provide a
set of techniques [72] for eliminating variables from systems of nonlinear equations. However,
the derived implicit equation may have extraneous factors: for example, surfaces can exhibit
additional sheets. On the other hand, symbolic computation required to obtain the implicit
expression exceeds the resources in space and time, although parallel computation might,
at least partially, solve this problem. On the other hand, given an initial set of two or three
polynomials defining the parametric curve or surface as a basis for an ideal [60}, the Grobner
basis will be such that it contains the implicit form of the curve or surface. In the rational case,
additional polynomials are needed to account for the possibility of base points [71]. Finally, the
Wau-Ritt method consists of transforming the initial set into a triangular system of polynomials.
This transformation involves rewriting the polynomials using pseudo-division and adding the
remainders to the set. The reader is referred to [72] and [157] for more details.

With respect to implementation, hybrid symbolic/numerical methods have been proposed
in [94]. Also, in [61] atractive speed-ups for Grobner based implicitization using numerical
and algebraic techniques have been obtained.

On the other hand, we remark that implicitization can be seen as a particular case of con-
version between different curve or surface forms (see, for example, [148, 149]). See also [65]
(and references therein) for a survey on approximate conversion between Bezier and B-spline
surfaces, which are also applied to offsets.

Finally, we remark that during the last few years great interest has been put on the applications
of implicit surfaces for CAGD and computer graphics. We must quote (among many others)
the seminal work of Bajaj and collaborators on implicit A-patches (algebraic patches) [5-7,
10, 162} and the work of B. Wyvill et al. on implicit surfaces for defining soft objects [15, 145,
158-161]. The interested reader is referred to [16] for a nice introduction to implicit surfaces
with applications to computer graphics and design.

6. Summary

In this chapter a general overview of some relevant computational methods for surface blend-
ing, offsetting, intersection and implicitization is given. However, the chapter must not be
understood as a survey with an exhaustive bibliography on these topics, which is beyond the
scope of this work. Our only aim is to provide the interested reader with a comprehensive and
soft introduction to the geometric processing of surfaces. To this end, more than 160 selected
and commented references have been included.

References

[1} Abdel-Malek K., Yeh H.J. (1997) On the determination of starting points for parametric surface intersections.
CAD 29, 21-35

[2} Anderson R.O. (1978) Detecting and eliminating collision in NC machining. CAD 10, 231-237

[3] Aomura S., Uehara T. (1990) Self-intersection of an offset surface. CAD 22, 417-422

f4] Asteasu C. (1988) Intersection of arbitrary surfaces. CAD 20(9), 533538

{5] Bajaj C. (1992) Surface fitting with implicit algebraic surface patches. In: Hagen H. (ed.) Topics in Surface
Modeling. STAM, 23-52

{6] Bajaj C. (1997) Implicit surface patches. In: Bloomenthal J. (ed.) Introduction to Implicit Surfaces, Morgan
Kaufman Publishers, San Francisco, CA, 98-125

76 Computational Methods for Geometric Processing

{71 Bajaj C., Chen J. er al. (1995) Modeling with cubic A-patches. ACM Transactions on Graphics 14(2), 103-133
{8] Bajaj C., Hoffmann C.M. er al. (1988) Tracing surface intersections, CAGD 5, 285-307
[9] Bajaj C.,Ihm,1. eral. (1993) Higher order interpolation and least squares approximation using implicit algebraic
surfaces. ACM Transactions on Graphics 12(4), 327-347
[10] Bajaj C., Xu G. (1999) A-splines: local interpolation and approximation using G*-continuous piecewise real
algebraic curves. CAGD 16, 557-578
{11] Bardis L., Patrikalakis N.M. (1989) Blending rational B-spline surfaces. Proceedings of EUROGRAPHICS’89,
453462
{12] Barnhill R.E. (1992) Geometric Processing for Design and Manufacturing. SIAM, Philadelphia
[13] Barnhill R.E., Kersey S.N. (1990) A marching method for parametric surface/surface intersection. CAGD 7,
257-280
{14] Blinn J.E. (1982) A generalization of algebraic surface drawing. ACM Transactions on Graphics 1, 235-256
{15] Bloomenthal J., Bajaj C. er al. (1997) Introduction to Implicit Surfaces. Morgan Kaufmann Publishers, San
Francisco, CA
{16] Bloomenthal J., Wyvill B. (1990) Interactive techniques for implicit modeling. Computer Graphics 24(2),
109-116
{17} Brechner E.L. (1992) General tool offset curves and surfaces. In: Barnhill R.E. (1992) Geometric Processing
for Design and Manufacturing. SIAM, 101-121
[18] Buchberger B. (1985) Grobner bases: an algorithmic method in polynomial ideal theory. In: Rose N.K. (ed.)
Multidimensional Systems Theory, Reidel Publishing Co., 184-232
{197 Carlson W.R. (1982) An algorithm and data structure for 3D object synthesis using surface patch intersections.
Computer Graphics 16, 255-263
{20] Catmull E.E., Clark J. (1978) Recursively generated B-spline surfaces on arbitrary topological meshes. CAD
10, 350-355
[21] Chandru V., Dutta D. er al. (1989) On the geometry of Dupin cyclides. The Visual Computer 5, 277-290
[22} Chandru V., Kochar B.S. (1987) Analytic techniques for geometric intersection problems. In: Farin G.E. (ed.)
Geometric Modeling: Algorithms and New Trends, SIAM, 305-318
{23] Chen 1.J., Ozsoy T.M. (1988) Predictor-corrector type of intersection algorithm for C? parametric surfaces.
CAD 20(6), 347-352
{24} Chen Y.J., Ravani B. (1987) Offset surface generation and contouring in computer-aided design. Journal of
Mechanics, Transmissions and Automation in Design, Transactions of the ASME 109(3), 133-142
[25] Cheng K.P. (1989) Using plane vector fields to obtain all the intersection curves of two general sur-
faces. In: Strasser W., Seidel H.P. (ed.) Theory and Practice in Geomertric Modeling, Springer, New York
187-204
{26] Chionh E.-W., Goldman R.N. (1992) Using multivariate resultants to find the implicit equation of a rational
surface. The Visual Computer 8, 171-180
[27] Choi, B.K,, Jerard, R.B. (1998) Sculprured Surface Machining. Theory and Applications. Kluwer Academic
Publishers, Dordrecht/Boston/London
[28] Choi B.K., Ju S.Y. (1989) Constant-radius blending in surface modeling. CAD 21, 213-220
[29] Chou S.Y., Woo T.C. er al. (1994) Scallop hull and its offset. CAD 26(7), 537-542
{30] CohenE., Lyche T. et al. (1980) Discrete B-splines and subdivision techniques in CAGD and computer graphics.
Computer Graphics and Image Processing 14, 87-111
[31]} DeRose T., Kaas M. er al. (1998) Subdivision surfaces in characters animation. Proceedings of SSIGGRAPH 98,
85-94
{32} Dobkin D.P,, Levy S.V.F. et al. (1990) Contour tracking by piecewise linear approximations. ACM Transactions
on Graphics 9, 389423
[33] Elber G., Cohen E. (1991) Error bounded variable distance offset operator for free form curves and surfaces.
International Journal of Computational Geometry and Applicasions 1(1), 67-78
[34] Elber G., Lee L et al. (1997) Comparing offset curve approximation methods. IEEE Computer Graphics and
Applications 17(3), 62-71
{35] Farin G.E. (1989) Trends in curve and surface design. CAD 21(5), 293-296
{36] Farin G.E. (1992) An ISS bibliography. In: Barnhill R.E. (ed.) Geomerric Processing for Design and Manu-
facsuring, SIAM, 205-207
{371 Farin G.E. (1996) Curves and Surfaces for Computer Aided Geomerric Design, Fourth Edition. Academic
Press, San Diego

References 77

{38] Farin G.E. (1999) NURB Curves and Surfaces: from Projective Geometry to Practical Use, Second Edition.
AK Peters, Wellesley, MA

{39} Farin G.E., Hansford D. (2000) The Essentials of CAGD. AK Peters, Wellesley, MA

{40} Farouki R.T. (1986) The approximation of non-degenerate offset surfaces. CAGD 3, 1543

[41] Farouki R.T. (1987) Direct surface section evaluation. In: Farin G.E. (ed.) Geometric Modeling. Algorithms
and New Trends, SIAM, 319-334

{42} Farouki R.T. (1992) Pythegorean-hodograph curves in practical use. In: Barnhill R.E. (ed.) Geometric Process-
ing for Design and Manufacturing, SIAM, 3-33

[43] Farouki, R.T., Neff. C.A. er al. (1989) Automatic parsing of degenerate quadtic-surface intersections. ACM
Transactions on Graphics 8(3), 319-334

{44} Faux 1.D., Pratt M.J. (1979) Computasional Geometry for Design and Manufacture. Ellis Horwood, Chichester

{45] Filip D.1. (1989) Blending parametric surfaces. ACM Transactions on Graphics 8(3), 164-173

[46} Glaeser G., Groller E. (1998) Efficient volume-generation during the simulation of NC-milling. In: Hege H.C,,
Polthier K. (eds.) Mathematical Visualization. Algorithms, Applications and Numerics. Springer-Verlag, Berlin
Heidelberg, 89106

[47] Goldman R.N. (1983) Subdivision algorithms for Bezier triangles. CAD 15, 159-166

[48] Grandine T.A. (2000) Applications of contonring. SIAM Review 42, 297-316

[49] Grandine T.A., Klein EW. (1997) A new approach to the surface intersection problem. CAGD 14, 111-134

[50] Gregory J.A., Sarfraz M. (1990) A rational cubic spline with tension. CAGD 7, 1-13

[51] Gregory J. A., Sarfraz M. et al. (1994) Interactive curve design using C? rational splines. Computers and
Graphics 18(2), 153-159%

[52} Griffiths J.G. (1975) A data structure for the elimination of hidden surfaces by patch subdivision. CAD 7,
171-178

[53] Hansen A., Arbab F. (1992) An algorithm for generating NC tool paths for arbitrarily shaped pockets with
islands. ACM Transactions on Graphics 11(2), 152-182

[54] Hartmann E. (1990) Blending of implicit surfaces with functional splines. CAD 22, 500-506

[55] Hartmann E. (1995) Blending an implicit with a parametric surface. CAGD 12, 825-835

[56] Hartmann E. (1998) Numerical implicitization for intersection and G” -continuous blending of surfaces. CAGD
15(4), 377-397

[57]1 Held M. (1991) On the Computational Geometry of Pocket Machining. Lectures Notes in Computer Science,
Springer Verlag, Berlin New York

{58} Heo H.S., Kim M.S. et al. (1999) The intersection of two ruled surfaces. CAD 31, 33-50

[59] Hermann T. (1998) On the smoothness of offset surfaces. CAGD 15, 529-533

[60] Hoffmann C.M. (1989%) Geometric and Solid Modeling. Morgan Kaufmann Publishers, San Francisco, CA

[61] Hoffmann C.M. (1990) Algebraic and numerical techniques for offsets and blends. In: Micchelli, S., Gasca M.
et al. (eds.) Computations of Curves and Surfaces, Kluwer Academic Publishers, 499-528

[62] Hohmeyer M.E. (1991) A surface intersection algorithm based on loop detection. International Journal of
Computational Geometry and Applications 1(4), 473—490

[63] Hoffmann C.M., Hopcroft J. (1985) Automatic surface generation in compnter aided design. TheVisual Com-
puter 1, 92-100

[64] Hoschek J., Lasser D. (1993) Fundamentals of Computer Aided Geometric Design. A K. Peters, Wellesley, MA

[65] Hoschek J., Schneider F.J. (1992) Approximate spline conversion for integral and rational Bezier and B-spline
surfaces. In: Barnhill R.E. (ed.) Geometric Processing for Design and Manufacturing, SIAM, 45-86

[66] Houghton E.G., Emnett R.F. et al. (1985) Implementation of a divide-and-conquer method for intersection of
parametric surfaces. CAGD 2, 173-183

[67} Huang Y., Oliver J.H. (1994) NC milling error assessment and tool path correction. Proceedings of
SIGGRAPH’94, Computer Graphics 28, 287-294

[68] HuiK.C.(1994) Solid sweeping inimage space-application in NC simulation. The Visual Computer 10,306-316

[69] Hui K.C. (1999) Shape blending of curves and surfaces with gcometric continuity. CAD 31, 819-828

{70} Jerard R.B., Hussaini, S.Z. er al. (1989) Approximate methods for simulation and verification on NC machining
programs. The Visual Computer 5, 329-348

[71] Kalkbrener M. (1990) Implicitization of rational parametric curves and surfaces. Technical Report, Kepler
Universitat, Linz, Austria

{72} Kapur D., Lakshman Y.N, (1992) Elimination methods. In: Donald B., Kapur D. et al. (eds.) Symbolic and
Numerical Computing for Artificial Intelligence, Academic Press, San Diego, CA

78 Computational Methods for Geometric Processing

[73] Kawashima Y., Itoh K. ez al. (1991) A flexible quantitative method for NC machining verification using a
space-division based solid model. The Visual Computer 7, 149-157
[74] Kay T.L., Kajiya J.T. (1986) Ray tracing complex scenes. Computer Graphics 20, 269-278
[75] KimK.J.,Kim M.S. (1998) Torus/sphere intersection based on configuration space approach. Graphical Models
and Image Processing 60(1), 77-92
[76] Kimura F. (1984) Geomap III: designing solids with free-form surfaces. JEEE Computer Graphics and Appli-
cations 4, 58-72
[77] Klass R., Kuhn B. (1992) Fillet and surface intersections defined by rolling balls. CAGD 9, 185-193
[78] Klass R., Schramm P. (1991) NC milling of CAD surface data. In: Hagen H., Roller D. (eds.) Geometric
Modeling. Meshods and Applications, Springer Verlag, Berlin Heidelberg, 213-226
[79] Koparkar P.A. (1991) Designing parametric blends: surface model and geometric correspondence. The Visual
Computer 7, 39-58
{80] Kriezis G.A., Patrikalakis N.M. et al. (1992) Topological and differential-equation methods for surface recon-
structions. CAD 24(1), 41-55
[81] Kriezis G.A., Prakash P.V. er al. (1990) Method for intersecting algebraic surfaces with rational polynomial
patches. CAD 22(10), 645-654
[82] Krishnan S., Manocha D. (1997) Efficient surface intersection algorithm based on lower-dimensional formu-
lation, ACM Transactions on Graphics 16(1), 74-106
[83] Lasser D. (1986) Intersection of parametric surfaces in the Bemnstein-Bezier representation. CAGD 3,
186-192
[84] Lee R.B., Fredricks D.A. (1984) Intersection of parametric surfaces and a plane. IEEE Computer Graphics and
Applications August 1984, 48-51
[85) Li I, Hoscheck J. ef al. (1990) G? functional splines for interpolation and approximation of curves, surfaces
and solids. CAGD 7, 209-220
[86] Lu W. (1995) Offset-rational parametric plane curves. CAGD 12, 601-616
[87] Lu W. (1996) Rational parameterization of quadrics and their offsets. Computing 57(2), 135-147
[88] Lukacs, G. (1994) Simple singularities in surface-surface intersections. In: Bowyer A. (ed.) Computer-Aided
Surface Geometry and Design, The Mathematics of Surfaces IV. Oxford University Press, 213-230
{89] Ma Y, Lee Y.S. (1998) Detection of loops and singularities of surface intersections. CAD 30, 1059-1067
[90] Ma Y., Luo R.C. (1995) Topological method for loop detection of surface intersection problems. CAD 27(1),
811-820
[91] Maekawa T. (1999) An overview of offset curves and surfaces. CAD 31, 165-173
[92] Maekawa T., Cho W. eral. (1997) Computation of self-intersections of offsets of Bezier surface patches. Journal
of Mechanical Design, Transactions of ASME 119(2), 275-283
[93] Manocha D., Canny J.F. (1992) Algorithmn for implicitizing rational parametric surfaces. CAGD 9, 25-50
[94] Manocha D., Canny J.F. (1992) Implicit representations of rational parametric surfaces. Journal of Symbolic
Computation 13, 485-510
[95] Middleditch A.E., Sears K.H. (1985) Blend surfaces for set theoretic volume modeling systems. Proceedings
of SIGGRAPH’85, Computer Graphics 19, 161-170
[96] Miller I., Goldman R.N. (1995) Geometric algorithms for detecting and calculating all conic sections in the
intersection of any two natural quadric surfaces. Graphical Models and Image Processing 57(1), 55-66
[97] Nasri A.H. (1987) Polyhedral subdivision methods for free-form surfaces. ACM Transactions on Graphics 6,
29-73
[98] Nasri A.H. (1991) Surface interpolation on irregular networks with normal conditions. CAGD 8, 89-96
[99] Nasri A.H. (1991) Boundary-corner control in recursive-subdivision surfaces. CAD 23, 405410
[100] Owen J.C., Rockwood A.P. (1987) Intersection of general implicit surfaces. In: Farin G.E. (ed.) Geometric
Modeling: Algorithms and New Trends, SIAM, 335-345
[101] Patrikalakis N.M. (1993) Surface-to-surface intersections. JEEE Computer Graphics and Applications 13,
89-95
[102] Patrikalakis N.M., Bardis L. (1989) Offsets of curves onrational B-spline surfaces. Engineering with Computers
5, 3946
[103] Patrikalakis N.M., Maekawa T. (2002) Skape Interrogasion for Computer Aided Design and Manufacturing.
Springer Verlag, New York Berlin Heidelberg
[104] Pegna J., Wilde D.J. (1990) Spherical and circular blending of functional surfaces. Transactrions of ASME,
Journal of Offshore Mechanics and Artic Engineering 112, 134-142

References 79

[105} Persson H. (1978) NC machining of arbitrarily shaped pockets. CAD 10, 169-174

[106} Petrie G., Kennie T.K.M. (1987) Terrain modeling in surveying and civil engineering. CAD 19, 171-187

[107} Pham B. (1992) Offset curves and surfaces: a brief survey. CAD 24, 223-229

[108] Piegl L. (1989) Key developments in Computer-Aided Geometric Design. CAD 21(5), 262-273

[109} Piegl L., Tiller W. (1997) The NURBS Book, Second Edition. Springer Verlag, Berlin Heidelberg

[110} Piegl L., Tiller W. (1999) Computing offsets of NURBS curves and surfaces. CAD 31, 147-156

[111} Pottmann H. (1995) Rational curves and surfaces with rational offsets. CAGD 12, 175-192

[112} Pottmann H. (1997) General offset surfaces. Neural, Parallel and Scientific Computations 5, 55-80

[113] Pottmann H., Glaeser G. et al. (1999) Collision-free three-axis milling and selection of cutting tools. CAD 31,
225-232

[114] Pottmann H., Lu W. et al. (1996) Rational ruled surfaces and their offsets. Graphical Models and Image
Processing 58(6), 544-552

[115} Prace M.J,, Geisow A.D. (1986) Surface-surface intersection problems. In: Gregory J.A. (ed.) The Mathematics
of Surfaces, Clarendon Press, Oxford 117-142

[116] Ratschek H., Rokne J. (1993) Test for intersection between plane and box. CAD 25(4), 249-250

[117] Ricci A. (1973) A constructive geometry for computer graphics. The Computer Journal 16, 157-160

[118] Rockwood A.P. (1984) Introducing sculptured surfaces into a geometric modeler. In: Pickett M.S., Boyse J.W.
(eds.) Solid Modeling by Computers. From Theory to Applications. Plenum Press, 237-258

[119] Rockwood A.P. (1989) The displacement method for implicit blending of surfaces in solid modeling. ACM
Transactions on Graphics 8(4), 279-297

[120] Rogers D.E. (2000) An Introduction to NURBS with Historical Perspective. Morgan Kaufmann, San Diego,
CA

[121] Rohmfeld R.F. (1998) IGB-offset curves — loop removal by scanning the interval sequences. CAGD 15(3),
339-375

[122] Rossignac J.R., Requicha A.A.G. (1986) Offsetting operations in solid modeling. CAGD 3, 129-148

[123] Saeed S.E.O., de Pennington A. er al. (1988) Offsetting in geometric modeling. CAD 20, 67-74

[124] Salmon G. (1885) Lessons Introductory to the Modern Higher Algebra, G.E. Stechert & Co., New York

[125] Saito T., Takahashi T. (1991) NC machining with G-buffer method. Proceedings of SIGGRAPH'91, Compuser
Graphics 25(4), 207-216

[126] Saitoh T., Hosaka M. (1990) Interpolating curve networks with blending patches. Proceedings of EURO-
GRAPHICS’ 90, 137-146

[127] Sarfraz M. (1992) A C? rational cubic alternative to the NURBS. Computers and Graphics 16(1), 6977

[128] Sarfraz M. (1992) Interpolatory rational cubic spline with biased, point and interval tension. Computers and
Graphics 16(4), 427-430

[129] Sarfraz M. (1993) Designing of curves and surfaces using rational cubics. Computers and Graphics 17(5),
529-538

[130} Sarfraz M. (1995) Curves and surfaces for CAD using C? rational cubic splines. Engineering with Computers
11(2), 94-102

[131] Sarma R., Dutta D. (1997) The geometry and generation of NC tool paths. Journal of Mechanical Design:
ASME Transactions 119, 253-258

[132} Sarraga R.F. (1983) Algebraic methods for intersections of quadric curfaces in GMSOLID. Computer Vision,
Graphics and Image Processing 22(2), 222-238

[133} Sederberg T.W. (1983) Implicit and parametric curves and surfaces for computer aided geometric design. Ph.D.
thesis, Purdue University, West Lafayette, IN

[134] Sederberg T.W. (1987) Algebraic geometry for surface and solid modeling. In: Farin G.E. (ed.) Geomesric
Modeling: Algorithms and New Trends, SIAM, 29-42

[135} Sederberg T.W., Anderson D.C. efal. (1984) Implicit representation of parametric curves and surfaces. Compuser
Vision, Graphics and Image Processing 28, 72-74

[136] Sederberg T.W. Christiansen H.N. er al. (1989) An improved test for closed loops in surface intersections.
CAGD 21, 505-508

[137} Sederberg T.W., Meyers R.J. (1988) Loop detection in surface patch intersections. CAGD 5, 161-171

[138} Shene C.K., Johnstone J. (1994) On the lower degree intersections of two natural quadrics. ACM Transactions
on Graphics 13(4), 400424

[139] Sourin A.IL, Pasko A.A. (1996) Function representation for sweeping by a moving solid. JEEE Transactions on
Visualization and Computer Graphics 2(2), 11-18

80 Computational Methods for Geometric Processing

{140] SureshK., Yang D.C.H. (1994) Constant scallop-height machining of freeform surfaces. Journal of Engineering
for Industry: Transactions of the ASME 116, 253-259

{141] Sutcliffe D.C. (1980) Contouring over rectangular and skewed rectangular grids. In: Brodlie K. (ed.) Mathe-
matical Methods in Computer Graphics and Design, Academic Press, 39-62

{142) Sweeney M., Bartels R. (1986) Ray tracing free-form B-spline surfaces. IEEE Computer Graphics and Appli-
cations 6, 41-49

{143] Vafiadou M.E,, Patrikalakis N.M. (1991) Interrogation of offsets of polynomial surface patches. Proceedings
of EUROGRAPHICS 91, 247-259

{144] Van Hook T. (1986) Real time shaded NC milling display. Proceedings of SIGGRAPH’86, Computer Graphics
20(4), 15-20

{145) Van Overveld K., Tigges M. er al. (1999) Soft shadows for soft objects. Proceedings of Fourth Eurographics
Workshop on Implicit Surfaces, Bordeaux, France

{146] Varady T., Martin R.R. er al. (1989) Topological considerations in blending boundary representations solid
models. In: Strasser W., Seidel H.P. (eds.) Theory and Practice of Geomerric Modeling. Springer, 205-220

{147] Vida J., Martin R. ef al. (1994) A survey of blending methods that use parametric surfaces. CAD 26, 341-365

{148] Vries-Baayens A.E. (1991) Conversion of a Composite Trimmed Bezier Surface into Composite Bezier Sur-
faces. In: Laurent P.J., Le Mehaute et al. (eds.) Curves and Surfaces in Geometric Design. Academic Press,
Boston, 485-489

{149] Vries-Baayens A.E., Seebregts C.H. (1992) Exact Conversion of a Composite Trimmed Nonrational Bezier
Surface into Composite or Basic Nonrational Bezier Surfaces. In: Hagen H. (ed.) Topics in Surface Modeling.
SIAM, Philadelphia, 115-143

{150] Wang Y. (1996) Intersections of offsets of parametric surfaces. CAGD 13, 453-465

f151] Warren J. (1989) Blending algebraic surfaces. ACM Transactions on Graphics 8(4), 263-278

{152] Welbourn D.B. (1996) Full three-dimensional CAD/CAM. CAE Journal 13, 5460, 189-192

{153] Wendand K., Dutta D. (1993) Method for offset-curve generation for sheetmetal design. CAD 25(9), 662-670

{154] Wilf 1., Manor Y. (1993) Quadric-surface intersection curves: shape and structure. CAD 25(10), 633-643

{155] Woodwark J.R. (1987) Blends in geometric modeling. In: Martin R.R. (ed.) The Mathematics of Surfaces 11,
Oxford University Press, 255-297

[156] Woodwark J.R. (1990) Blends in geometric modeling. In: Creasy C., Craggs C. (eds.) Applied Surface Modeling,
Ellis Horwood, 85-103

{1571 Wu W.T. (1986) Basic principles of mechanical theorem proving in geometries. J. of Sysfems Sciences and
Mashematical Sciences 4, 207-235

{158] Wyvill B., Bloomenthal J. ez al. (1993) SIGGRAPH'93, Course #25, Modeling and animating with implicit
surfaces

[159] Wyvill B., McPheeters C. et al. (1986) Animating soft objects. The Visual Computer 2(4), 235-242

{160] Wyvill B., Van Overveld K. (1996) Polygonization of implicitsurfaces with constructive solid geometry. Journal
of Shape Modelling 2(4), 257-274

f161] Wyvill B., Wyvill G. er al. (1987) Solid texturing of soft objects. IEEE Computer Graphics and Applications
7(12), 20-26

{162] Xu G., Bajaj C. ef al. (2001) C! modeling with A-patches from rational trivariate functions. CAGD 18(3),
221-243

{163] Yan C.G. (1987) On speeding up ray tracing of B-spline surfaces. CAD 19, 122-130

{164] YenlJ.,Spach S. et al. (1991) Parallel boxing in B-spline intersection. IEEE Computer Grapics and Applications
11,72-79

6

Weighted Nu Splines: An
Alternative to NURBS

Muhammad Sarfraz

Department of Information and Computer Science, King Fahd University of Petroleum and
Minerals, Dhahran 31261, Saudi Arabia.

A cubic spline curve method is considered to be a decent approach for designing applications in

the area of computer graphics and geometric modeling. However, due to its various limitations
like lack of freedom in shape control, a designer may not have much help in using this method.

In this study, the weighted v-spline method has been reviewed. This curve design method, in

addition to enjoying the good features of cubic splines, possesses interesting shape design

Jeatures too. It has two families of shape parameters working in such a way that one family of
parameters is associated with intervals and the other with points. These parameters provide a

variety of shape control, like point and interval tension. This is an interpolatory curve scheme,

which utilizes a piecewise cubic function in its description. However, it is desirable to extend
this idea to freeform curves, which can enjoy all the ideal properties related to B-spline theory.

This work is mainly concerned with developing such a theory. A constructive approach has been

adopted to build B-spline like basis for cubic spline curves with the same continuity constraints

as those for interpolatory weighted v-splines. These are local basis functions with local support
and having the property of being positive everywhere. The design curve, constructed through

these functions, possesses all the ideal geometric properties like partition of unity, convex hull,

and variation diminishing. This curve method not only provides a variety of very interesting

shape control, like point and interval tensions but, as a special case, also recovers the cubic
B-spline curve method. In addition, it also provides B-spline like design curves for weighted
splines, v-splines and weighted v-splines. The method for evaluating these splines is suggested
by a transformation to Bézier form.

Advances in Geometric Modeling. Edited by M. Sarfraz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-85937-7

82 Weighted Nu Splines

1. Introduction

Designing curves, especially those curves which are robust and easy to control and compute, has
been one of the significant problems of computer graphics and geometric modeling. Specific
applications including font designing, capturing hand-drawn images on computer screens,
data visualization, and computer-supported cartooning are the main motivations towards curve
design. In addition, various other applications in CAD/CAM/CAGD also provide a good reason
to study this topic. Many authors have worked in this direction. For more in depth information,
the reader is referred to [1-20].

Weighted splines [7] were discovered as a cubic spline method. It provides a C! compu-
tationally simpler alternative to the exponential splineunder-tension [4, 13, 20]. Regarding
shape characteristics, it has shape control parameters associated with each interval, which can
be used to flatten or tighten the curve locally. Nusplines [11-12] were discovered as another
cubic spline method. It provides a GC? computationally simpler alternative to the exponential
spline-under-tension [4, 13, 20]. Regarding shape characteristics, it has shape control parame-
ters associated with each point, which can be used to tighten the curve both locally and globally.
The ideas of weighted splines and Nusplines were married together to formulate another spline
called weighted Nuspline [11-12]. This curve design method covers the shape features of both
of its counterparts and provides a C! computationally economical method.

B-splines are a useful and powerful tool for computer graphics and geometric modeling.
They can be found frequently in existing CAD/CAM (Computer Aided Design/Computer
Aided Manufacturing) systems. They form a basis for the space of nth degree splines of con-
tinuity class C"~!, Each B-spline is a nonnegative nth degree spline that is nonzero only
on n + | intervals. The B-splines form a partition of unity, that is, they sum up to one.
Curves generated by summing control points multiplied by the B-splines have some very
desirable shape properties, including the local convex hull property and variation diminishing
property.

It is desirable to generalize the idea of B-spline like local basis functions for the classes
of splines with shape parameters considered in the description of continuity. The first local
basis for GC? splines was developed by Lewis [10]. In 1981, Barsky [1] generalized B-splines
to Beta splines. These splines preserve the geometric smoothness of the design curve whilst
allowing the continuity conditions on the spline functions at the knots to be varied by certain
parameters, thus giving greater flexibility. Later in 1984, Bartels and Beatty [2] developed local
bases for Beta spline curves that are equivalent to Boehm’s [3] Gamma splines. Foley [7], in
1987, constructed a B-spline like basis for weighted splines; different weights were built into
the basis functions so that the control point curve was a C! piecewise cubic with local control
of interval tension.

This paper reviews the weighted v-spline method [8] in Section 2 and then constructs, in
Section 3, a B-spline like local basis for the weighted v-spline. The design curve, in Section 4,
maintains the C! continuity of the weighted v-splines. This description of freeform weighted
v-spline not only provides a variety of interesting shape control like point, and interval tensions
but, as a special case, also recovers the cubic B-spline curve method. In addition, it also provides
B-spline like design curves for weighted splines, v-splines and weighted v-splines.

The approach adopted in the construction of local basis for the weighted v-splines is quite
different from those adopted for different spline methods in [1-7, 8, 15]. The way for evaluating
the weighted v-splines representation of a curve is suggested by a transformation to piecewise

2, Review of Weighted Nu Splines 83

defined Bézier form. This form will also expedite a proof of the variation diminishing property
for the Bézier representation.

2. Review of Weighted Nu Splines

This section gives a brief review of the weighted v-splines.

2.1. Preliminaries

For a detailed description, the reader is referred to [8]. Assume that we are given t; < t, <
cever <y, Y1, Y25 - .- Yn, point tension factors v; fori =1,2,..... , n, and interval weights
w; >0fori =1,2,..... , n, and interval weights w; > Ofori =1,2,..... , n. The weighted
v-spline interpolant is a C! piecewise cubic function S(¢) that minimizes:

n—1 fi11 n
VN =Y [Ordr+ Y ulr e,
i=1 p i=1

subject to the interpolation conditions f(#;) = y; fori =1,2,..... , n and one of the following
end conditions:

¢ Type 1: First derivative end conditions,
¢ Type 2: Natural end conditions, or
¢ Type 3: Periodic end conditions.

The v; are termed point tension factors because they ‘tighten’ a parametric curve at the ith
point in the same way that they do for the v-splines in [11-12]. The w; are termed interval
weights because they ‘tighten’ the curve on the ith interval in the same way that they do
for the weighted splines in [14]. If v; = 0 and all w; = g, where g is some constant value, then
the weighted v-spline equals the v-spline in [11-12] with tension factors v;/q. If all v; = 0,
then it equals the weighted spline given in [14].

The approach taken in [8] uses piecewise cubic Hermite basis functions to represent the

weighted v-splines. Giveny; andm; fori = 1,2, , n, aunique C! piecewise cubic function
f(z) exists that satisfies for f(;) = y; and f'(t;) =m; fori =1,2,..... , n. The unknowns
are the first derivative values, m;, i = 1,2, , n, and once they are computed, the function

f(2) can be easily evaluated using the standard piecewise cubic Hermite form. The necessary
and sufficient conditions for the function S(¢) to be the weighted v-spline interpolant are that
its derivatives m; satisfy:

1
Ck—1Mg—) + (5 v + 2001 + ZCk) g + CxMiy g

= b1 — yi) + b1 (v — ye-1h 6.1)

fork=1,2,..... ,n,wherec; = w;/h;, b; = 3c; / h; and h; = t,1; — t;. The above system of
equations provides (n — 2) equations for n unknowns, m,, .. . , m,, and the additional equations

84 Weighted Nu Splines

come from the given end conditions. The equations for Type I first derivative end conditions
are m; = f'(t;) and m, = f'(t,). For Type Il natural end conditions they are:

1
(Evl + 201) mi + cymz = bi(y2 — y1),
and
1
Cn—1Mp—1 + (Evn + 2Cn—1) My = bu1(¥n — Yu-1).
For Type 3 periodic end conditions, they are:

1 1
FU + Evn +2c1 4 2cp—1 | my + c1my + Cpo1y

=bi1(y2 — y1) + bu1(¥n — Yu-1),

and m; = m,. The linear system of equations that occurs when Type 1 or 2 end conditions
are used is tridiagonal and diagonally dominant, thus it can be solved efficiently by using a
standard tridiagonal system solver.

2.2. Parametric Representation

For parametric interpolation, suppose that we are given data points F; = (x;, y;, z;)and v; > 0
fori=1,...,nand w; >0fori=1,...,n— 1. If we let X(¢) be the weighted v-spline
interpolant to the data (¢, x;), Y (¢) be the weighted v-spline interpolant to the data (7, y;)
and Z(z) be the weighted v-spline interpolant to the data (¢, z;), then the parametric curve
S(t) = (X(2), Y(t), Z(2)), where t; <t < 1, is the weighted v-spline interpolant. It is a C
piecewise cubic function:

S() = Si(t) = F;(1 — 0)° + 30(1 — 0)*V; + 30%(1 — OW, + F; 167, (6.2)

where

t—1
6 =—, .
I 6.3)
and
hi M; hi M;

Vi=Fi+—3"‘,Wi= i+l — 3+1- 64

It is obvious that the piecewise cubic function Equation (6.2), holds the following interpolatory
properties:

6.5
SOy =M;, SV(ti1) = Min (6)

S@y=F, St)=Fu]
where S(denotes first derivative with respect to ¢t and M; denotes derivative values given at
the knots ¢;. This leads the piecewise cubic Equation (6.2) to the piecewise Hermite interpolant
S € Cly, t,).

2. Review of Weighted Nu Splines 85

The parametric weighted v-spline can be computed by solving for M;’s. This can be done
by generalizing the system of equations in Equation (6.1) as follows:

v.
cioiMi_| + (Et +2c;_1 + 26‘,') M, +eiMiyy = 3c;A; 4+ 3ci_1A 1, 6.6)

where
Ay = (Fip — Fp)/ hy.

fori =2,...,n — 1. For given appropriate end conditions (Type 1, Type 2, or Type 3), this
system of equations is a tridiagonal linear system. This is also diagonally dominant for the
following constraints on the shape parameters:

v, >0, i=1,2,...,n, and w; >0, i=12,...,n—1, 6.7

and hence has a unique solution for M;’s. As far as the computation method is concerned,
it is much more economical to adopt the LU-decomposition method to solve the tridiagonal
system. Therefore, the above discussion can be concluded in the following:

Theorem 1. For the shape parameter constraints (in Equation (6.7)), the spline solution of
the weighted v-spline exists and is unique.

Remark 1: Each component of the parametric weighted v-spline is a C! function in general,
but it has second order geometric continuity at ¢; if w;_, = w; and the tangent vector at ¢; is
nonzero and it is C? at ¢; if w;_; = w; and v; = 0.

2.3. Demonstration

Figure 6.1 is the parametric weighted v-spline interpolant to the points denoted by circles using
periodic end conditions. In Figure 6.2, interval weight, w;, of 30 is used in the base interval,
while point tension factors, v;, of 10 are used on the four vertices defining the ‘neck’. The rest
of the parameters are taken as w; = 1 and v; = 0.

Figure 6.1 The default weighted v-spline with periodic end conditions.

86 Weighted Nu Splines

Figure 6.2 The weighted v-spline with periodic end conditions using w; = 30 on the base interval,
w; = 1 otherwise, v; = 10 on the four vertices defining the ‘neck’, and v; = 0 otherwise.

3. Development of Local Support Basis

This section is devoted to constructing the local support basis B;’s to compute the cubic
weighted v-spline P(z) satisfying the following constraints:

P(ti4) L0 0 1rpg.)
POG =0 0 0 PYa | 6.8)
PO®;,) 0 ;' T_ PO)

For the purpose of the analysis, let additional knots be introduced outside the knot partition
L, <t <...<t,of the interval [¢,, t,], defined by:

to<ty<tg<ty and i, < ityy) < g2 < tha3. 6.9)
Let:
a =1/c;, (6.10)
and ¢; be cubic weighted v-spline.
o _ {0, t<t,,
o, = {1, . (6.11)
Imposing weighted v-spline constraints (Equation (6.8)), we have:
Attt
m 3
;i) = h—¢i(fi—1)- (6.12)
i-2
Atti_y:

1
[_ai—lai—2vi—l +2a_,+ 211:'—2] ¢,'(l)(ti—l) + ai—2¢i(l)(ti)

2
3a;_ 3a;_
= : 2[¢,-(r.~>—¢,-(r,-_1>]+%dnm_l). (6.13)
i-1 i—2

3. Development of Local Support Basis 87
Aty
al¢(l)(tl D+ [: 2l lvz +2a;- + 20.'] ¢fl)(ti)
3al 1
- iy [¢l (tx)] [¢l(tl) ¢i (ti—l)]- (6-14)
i l
At t,‘+1:
) 3
¢; (1) = ;[1 — ¢i(#:)]. (6.15)
From Equations (6.12) and (6.15):
hi_
ditic1) = Tz¢§l)(ti—1),
and:
h;
di(t) =1- 34°(t).
Substituting these in Equations (6.13) and (6.14), we have:
Uit + Vig V(1) = Wi, (6.16)
X0) + YioP W) = Zy, (6.17)

where:
— i—18i_ h;
U, = a 12(1 21),'_1 +ai—1 +a;—; (2+ rj)
= hi = _ 38
Vi =4 1 s K Wl = T
- (i h,-_l) his
- hi— - _ Gia;— h;
X =a (1+r2), Y, = 2 Lo+ g+ (2+h——
and:
2 _ 30,‘
" ki
Equations (6.16) and (6.17) give:
WY, —V:Z
¢i(l)(ti_1) - (_—_"TV;.—),
U:Y; - XiVy)
and:
U,Z; — W:X;
600y = L2 = WX
Y, - X:vy)

i-1

)

Weighted Nu Splines

1
where, if d; = Eaiai_lvi + a;_1 + a;, then:

—_— — 3a;_
WY, - ViZi = 24,
hi_y
— — 30,‘
iZi = WiXi = 3—di1,
S — a; ai_a
iYi = X;Vi=didi 1+ — i +hiddi_1 + —(hi_1 + hio)d;.
hi 1 hi
Let,

D; = hi_ydid;_1 + a;(hi—1 + hy)di—1 + aj—a(hioy + hisy)d;,
wi =¢in(t), ri=1-—¢),

o= ¢,-(1L)1(ti), hi = ¢,-(1)(ti),

Then,
u 3a;d;_; . 3a;_1diq
Aj=———, flj=—,
D; D;q
h,'_l hi N
i:—A', A,,'=_Avi,

24 3 i 3

and hence:
O<pi<1 0<i<1, and O<pu;+Xi <1

Now define:

B;(t) = ¢:(t) — i1 (2).

Then B; has the local support (t;_3, t;42) and an explicit representation of B; on any interval
(t;, t;11) (in particular fori = j — 2, j — 1, j, j 4+ 1) can be calculated as:

Bj(t) = (1 — 6)’B;(1:) + 6(1 — 0)*(3B;(t;) + hi B (1,))

+6%(1 — 0)(3B;(ti11) — ki B (ti11)) + 0° B;(t:41),

(6.18)
where:
Bj(t) = B (t) =0, fori#j—1,jj+1,
and:
()= W Y q.
B}(t}—l)—‘u'}—l, B}' (t}—l)—.u*}—l,
Bi(t)) = 1= —u, BO()) = %; — oy, (6.19)
Bj(tjr1) = Ajt, B,(-l)(tj+1) =—dj

Careful examination of the Bézier vertices of (B;(¢) in Equation (6.18) shows these to be
nonnegative for v;, w; satisfying Equation (6.7) and thus B;(¢) > 0, V ¢. This leads to the
following:

4. Design Curve 89

Proposition 1. The local support basis functions (Equation (6.18)) are such that the following
properties hold:

(i) (Local Support) B}‘ =0 for t¢ (tj_z, tj+2),
(ii) (Partition of unity) Y71, Bi(t) =1 for 1€ [t,),

(iif) (Positivity) B;j(r) > O for all 7.

4. Design Curve

Now, we need a convenient method to compute the curve representation. It is desirable to apply
the above local basis functions to develop a freeform weighted v-spline curve as follows:

n+1
P(ty=) Bj(t)Pj.t € [, 1], (6.20)
j=—1
where P; € RN, j =0,1,...,n+ 1, define the control points of the representation. By the

local support property,
i+2
P@) = Z Bi(OPj,telt,tiy)i=1,...,n—1

J=i—1

Substitution of Equation (6.18), ¢ € [¢;, #;,1), then gives the piecewise defined Bézier repre-
sentation,

P(t) = Pi(t) = F;(1 — 6)° +30(1 — 0)2V; + 30%(1 — OW; + F;16°, 6.21)
where:

FF=,MPa+ A =X —pu)P + wiPigy,
Vi =(1 —a))P; +a; Piyy, (6.22)
W, =8P + (1 B)Pi,

with,
R Qi
o = +h /3= ?(hi—l +),
" At
Bi=hi1+hi A= T(hi + hiy1).

This transformation to Bézier form is very convenient for computational purposes and also
leads to:

Proposition 2. (Variation Diminishing Property) The weighted v-spline curve P(¢), ¢t €
[to, t,], defined by Equation (6.20), crosses any (hyper) plane of dimension ¥ — 1 no more
times than it crosses the ‘control polygon’ joining the control points Py, Py, , Poy1.

9 Weighted Nu Splines

Proof. Following the arguments of positivity in the previous proposition, it is straight forward
that 0 <o; < 1,0 <B; <1,and 0 < o; + B; < 1. Thus, V; and W; lie on the line segment
joining P; and P;;, where V; is before W;. It can also be simply noted that:

FF=(0-yv)Wia1+nV, (6.23)
where:
hi
0 = — < 1.
=7 hiy+h; =

Thus, the control polygon of the piecewise defined Bézier representation is obtained by corner
cutting of the weighted v-spline control polygon. Since the piecewise defined Bézier repre-
sentation is variation diminishing, it follows that weighted v-spline representation is variation
diminishing.

4.1. Shape Control

The shape parameters, defined in Equation (6.7), can be used to control the local or global
shape of the design curve, To analyze such behaviors, the explicit form on (¢, #; ;1) of the
weighted v-spline design curve (Equation (6.20)) can be expressed as:

P()=1()+ e(), (6.24)
where:
Li(t) = (1 —0)F, + 8F 41, (6.25)
(1) = 0(1 — O{[(Fip1 — F) —h PO@]0 - 1)
+[(Fiy1 — F) — i PO 40)16) (6.26)

Proposition 3. Let w; = w > 1, and v; = 0, Vi are all bounded then the weighted v-spline
design curve is straightaway the standard cubic spline.

Proof. It follows from the last constraint of relation (Equation (6.8)).

Proposition 4. (Global tension) Let w; >1, Vi, be bounded and v; > v then the weighted
v-spline curve (Equation (6.20)) converges uniformly to the control polygon P, ..., P, as
v — 00.

Proof. Let v; = v, Vi then from Equation (6.1)
lim PY(t;) = 0. (6.27)
V>0

Moreover:

lim 4; =0 = lim A;, Vi.

V=00 V=00

4. Design Curve 91

This implies the following:
lim F; = P;, Vi. (6.28)
V00
More generally, for v; > v > 0, it can be shown that:
max 3] < r(v),
and,
max | i} < 5(v),
where,
iz rewy = 0 = Jiz st
and again Equations {6.27) and (6.28) hold. Hence the result.

Proposition 5. (Local Tension) Consider an interval [#, #;] for a fixed k. Then on [#,]
weighted v-spline curve converges uniformly to a line segment of the line P Py as wx — 00
where wy_; and v are bounded.

Proof. Careful examination shows:

lim Wi = he-y = Gy (SaY)
wp—>00 Ghe + hi—1 + i)
lim ‘Lk+1 = O
wy—> 00
lim A =0
Wy—+ 00
lim Ay = hk+l = ﬁk (Sa)’)
W —00 Ghe + hi—1 + i)

This implies the following:
lim Fi = (1 — &) Pc + &xPey1 = Fi (say)

wy— 00

and:
Jim Fey = fePe+ (1 = BoPen = Fep (s2y)
Obviously F and ﬁk+1 lie on P, P, and F: is before ﬁk+l asdy < (1 — ,Bk). Also:
lim (Fyrp1 — F) = lim hkP(l)(tk)
Wr—» 00 we—00

. 3hk(Pk+1 - Pk)
= lim PVt =
wk1—>oo P) Bhi + by + hiyr)

92 Weighted Nu Splines

Hence from Equations (6.24), (6.25), (6.26) if P(t) = P,(¢t) fort € (4, t;1), then:
lim P(t)=(1 —0)F, +6F,.
wy—>00

Proposition 6. (Local Tension) Consider an interval like that in Proposition 5. Then on
[t4, tey1], weighted v-spline curve converges uniformly to the linear interpolant /;(¢) as both
Uk, Uty 0, Where w1, Wi, Wi, are bounded.

Proof. It can be noted that:
lim y; = lim sy =0,
lim A = lim Ay = 0,
and:
lim PO (t,) = lim PVt 1) = 0.

This gives the desired result.

4.2. Demonstration

The tension behaviour of the weighted Nu spline is illustrated by the following simple examples
for data set in R2. Unless otherwise stated, in all the figures, the parameter v; will be assumed
as zero Vi and the parameters w; as 1 for all ;.

Figure 6.3 is the default curve, which is a cubic spline for v; = 0, and w; = 1, for all i. The
control polygon, together with the control points, is shown in the figure.

Figure 6.4 shows the effect of interval tension with w = 100 in the base of the figure. The
effect of the high tension parameter is clearly seen in the corresponding interval in the base of
the figure.

Figure 6.5 shows the effect of point tension with v = 100 at two opposite points in the figure.

Figures 6.6-6.8 illustrate the effect of progressively increasing the values of the point tension
parameters v;’s = 0, 5, 100, respectively, at all the points of the figure. This is the global tension
effect due to progressive increase.

Figure 6.3 The default weighted Nu spline.

4. Design Curve 93

Figure 6.4 The weighted Nu spline with interval tension at the base.

Figure 6.5 The weighted Nu spline with corner tension at two points.

Figure 6.6 The weighted Nu spline with global tension v = 1 (the default curve).

94 Weighted Nu Splines

Figure 6.7 The weighted Nu spline with global tension v = 5.

Figure 6.8 The weighted Nu spline with global tension v = 100.

5. Summary

A freeform C! weighted Nu spline curve design has been developed through the construction
of local support B-spline like basis functions. This cubic spline method has been developed
with a view to its application in computer graphics, geometric modeling, and CAGD. It is
quite reasonable to construct a freeform cubic spline method, which involves two families of
shape parameters in a similar way to the interpolatory weighted v-spline. These parameters
provide a variety of local and global shape controls like interval and point shape effects. The
visual smoothness of the proposed method is also C 1 which is the same as the smoothness of
interpolatory weighted v-spline. The freeform C! weighted Nu spline method can be applied
to tensor product surfaces but unfortunately, in the context of interactive surface design, this
tensor product surface is not that useful because any one of the tension parameters controls
an entire corresponding interval strip of the surface. Thus, as an application of C! spline for
the surfaces, a method similar to Nielson’s [12] spline blended methods may be attempted.
This will produce local shape control, which is quite useful regarding computer graphics and
geometric modeling applications.

References 95

Acknowledgments

This work has been supported by the King Fahd University of Petroleum and Minerals under
Project No. FT/2001-18.

References

[1] Barsky, B. A. (1981), The Beta-spline: A local representation based on shape parameters and fundamental
geometric measure, Ph.D. Thesis, University of Utah.
[2] Bartels, R. and Beatty, J. (1984), Beta-splines with a difference, Technical Report cs-83-40, Computer Science
Department, University of Waterloo, Waterloo, Canada.
[3] Boehm, W. (1985), Curvature Continuous Curves and Surfaces, Comp. Aided Geom. Design 2(2), 313-323.
[4] Cline
[5] Dierckx, P. and Tytgat, B. (1989), Generating the Bézier Points of B-spline Curve, Comp. Aided Geom. Design
6, 279-291.
[6] Farin, G. E. (1996), Curves and Surfaces for CAGD, Academic Press, New York.
[7] Foley, T. A. (1987), Local Control of Interval Tension using Weighted Splines, Comp. Aided Geom. Design 3,
281-294.
[8] Foley, T. A. (1987), Interpolation with Interval and Point Tension Controls using Cubic Weighted v-splines, ACM
Trans. Math. Software 13, 68-96.
[91 Goodman, T. N. T. and Unsworth, K. (1985), Generation of Beta Spline Curves using a Recursive Relation, In
Fundamental Algorithms for Computer Graphics. R. E. Earnshaw (Ed.), Springer, Berlin, 326-357.
[10] Lewis, J. (1975), ‘B-spline’ bases for splines under tension, Nu-splines, and fractional order splines, Presented
at the SIAM-SIGNUM-meeting, San Francisco, USA.
[111 Nielson, G. M. (1974), Some Piecewise Polynomial Alternatives to Ssplines under Tension, In Comp. Aided
Geom. Design, R. F. Barnhill (Ed.), Academic Press. New York.
[12} Nielson, G. M. (1986), Rectangular v-splines, IEEE Comp. Graph, Appl. 6, 35-40.
[13} Pruess, S. (1979), Alternatives to the Exponential Spline in Tension, Math. Comp. 33, 1273-1281.
[14] Salkauskas, K. (1984), C! Splines for Interpolation of Rapidly Varying Data, Rocky Mtn. J. Math. 14, 239-250.
[15] Sarfraz, M. (1992), A C? Rational Cubic Spline Alternative to the NURBS, Comp. & Graph. 16(1), 69-78.
[16] Sarfraz, M. (1995), Curves and surfaces for CAD using C2 rational cubic splines, International Journal of
Engineering with Computers, Springer-Verlag, Vol. 11(2), 94-102.
[17] Sarfraz, M. (1994), Freeform Rational Bicubic Spline Surfaces with Tension Control, FACTA UNIVERSITATIS
(NIS), Ser. Mathematics and Informatics, Vol. 9, 83-93,
[18] Sarfraz, M. (1994), Cubic Spline Curves with Shape Control, International Journal of Computers & Graphics,
Elsevier Science, Vol. 18(5), 707-713.
[19] Schoenburg, 1. J. (1946), Contributions to the Problem of Approximation of Equidistant Data by Analytic
Functions, Appl. Math 4, 45-99.
[201 Schweikert, D. G. (1966), An Interpolation Curve using a Spline in Tension, J. Math. Phys. 45, 312-317.

7

Generation of Parting Surfaces
Using Subdivision Technique

C.L.Li
Department of Manufacturing Engineering and Engineering Management,
City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.

Automation in the various tasks of the plastic injection mould design process has attracted a lot
of attention in the past decades. Techniques for the automatic selection of a parting direction,
determination of complex 3D parting line and the generation of a parting surface have been
reported. A common strategy in parting surface generation is the method of extrusion. Our
investigation reveals that this method fails under certain conditions. A new method based on
the subdivision method of surface generation is proposed. A variation of the Catmull-Clark
subdivision scheme is employed which ensures that the resulting surface interpolates the main
parting line of the part. The initial control mesh used in the subdivision process is obtained by
‘projecting’ the 2D medial axis of an approximating polygon to 3D. An experimental program
has been implemented to verify the feasibility of the method.

1. Introduction

CAD/CAM systems are widely used in the injection mould design and manufacturing process.
Given a plastic part in the form of a CAD model, a mould design engineer uses a CAD/CAM
system to construct the detailed design of the entire mould structure and other relevant compo-
nents (such as electrodes for electric-discharge machining) that are used in the design analysis
and manufacturing of the mould. The CAD data of the mould are then used to generate manufac-
turing information (such as CNC machining toolpath, CMM inspection instructions, machine
setup instructions etc.). Due to the widespread application, stand-alone or add-on software
packages that are specific to plastic injection mould design, such as IMOLD (developed in
Singapore), MoldWizard (used in Unigraphics IT) and PiMould (being developed in the Uni-
versity of Hong Kong and due to be released soon), are commercially available. These software

Advances in Geometric Modeling. Edited by M. Sarfraz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-85937-7

98 Generation of Parting Surfaces

packages provide automatic and semi-automatic tools to assist the human mould designer in
the various design tasks. The algorithms employed by these software packages in automating
some of the design tasks are the result of recent research efforts, which can be found in the
literature. In this chapter, we report our investigation on the automation of one of these design
tasks, namely, the automation of the parting surface generation. While automatic methods for
parting surface generation have been reported in the literature, almost all existing methods use
extrusion. In addition to this method of extrusion, we propose the use of a variation of the
Catmull-Clark subdivision surface method to solve the limitations inherent to extrusion.

This chapter is organized as follows. In the next section, related research work on automation
in the injection mould design process is summarized. Section 3 discusses the commonly used
method of extrusion and explains its two limitations. Section 4 discusses the application of
the Catmull-Clark subdivision surface method in parting surface generation. Section 5 briefly
explains the implementation and illustrates a design example. The chapter is concluded in
Section 6.

2. Related Work

Research in the automatic determination of parting direction, parting line and parting surface,
and the detection of an undercut feature have been reported. Hui and Tan [1] reported a method
that automates the task of parting direction determination. They devised a heuristic function
called blocking factor that measures the extent of blockage on moulding open due to undercut.
This function guides a searching process to identify a parting direction that gives minimum
undercut. Visibility analysis was used by Chen et al. [2, 3] to determine parting direction. They
utilized the fact that the optimal parting direction should give the maximum visibility of the
part along the parting direction in order to minimize undercut. Weinstein [4] studied the use
of heuristic rules to select the optimum parting line location and draw direction. Mouldability
analysis based on external and internal undercut features was reported by Hui [5]. Wong et al.
[6] reported a method that determines the parting line on a part with a free-form shape by an
adaptive slicing algorithm. The complex parting line is obtained by tracing the extreme points
on adjacent slices. A comprehensive classification and recognition of an undercut feature is
reported by Fu et al. [7]. Other methods that determine the parting line and parting surfaces
were also reported [8—10]. Other tasks in the mould design process that have been investigated
include the determination of gating locations [11], ejector types and ejecting locations [12], and
the extraction of sharp corner uncut that requires electric-discharge machining [13]. Recently,
the author has developed a feature-based approach to the cooling system design [14—15]. This
work is different from all existing work in CAE cooling analysis. While CAE tools only aim
at the analysis or optimization of a given cooling system design, the author’s work focuses on
the automatic design synthesis of the initial cooling system design.

The reported work that is most relevant to this project includes the methods reported by
Tan et al. [8], Fu et al. [16] and Kong et al. [10]. One common strategy employed by these
methods in the generation of the parting surface is the method of extrusion.

3. The Method of Extrusion

The parting surface is the surface that separates the mould insert into the core and cavity halves.
Given a plastic part and the main parting line, acommon approach to generate the parting surface

3. The Method of Extrusion 99

Figure 7.1 Generating parting surface by the method of extrusion.
Source: CLLi, “Application of Catmull-Clark Subdivision Method in Plastic Injection
Mould Parting Surface Design”, the proceedings of the Sixth International Conference on
Information Visualisation, 10~12 July 2002, London, England, pp 477482, (2002 IEEE).

is illustrated in Figure 7.1. For each segment on the parting line, a surface patch is generated
by extruding the parting line segment along an extrusion direction. This extrusion direction is
perpendicular to one of the boundary walls of the mould insert, and is also perpendicular to
the parting direction. The extrusion surface is then trimmed by the boundary wall of the mould
insert. After extruding all the parting line segments, a set of surface patches is obtained. Then,
corner patches are added at the junction between two adjacent parting line segments where
their extrusion directions are different. The set of extrusion surfaces and the corner patches then
form the parting surface. However, there are two major limitations of the method, namely, inter-
locking between the mould halves and intersection between extrusion surface and part surface.

3.1. Inter-Locking Between Mould Halves

Figure 7.2 illustrates the problem of inter-locking. The part is obtained by adding an opening
feature in one of the walls in the part shown in Figure 7.1. If the method of extrusion is used
to generate the parting surface, the core and cavity halves contain an inter-lock as shown in
the figure. This inter-lock will prevent the normal mould opening operation. Notice that the
opening feature itself is not an undercut feature of the plastic part. That is, the opening feature
will not prevent mould opening or part ejection, and does not require any special design, such
as a slide mechanism, for mould ejection. The inter-locking of the mould halves is exclusively
due to the limitation of the extrusion method in generating the parting surface.

100 Generation of Parting Surfaces

surface patch causes
inter-lock of mould
halves

Figure 7.2 The method of extrusion causes inter-lock between mould halves.
Source: CLLi, “Application of Catmull-Clark Subdivision Method in Plastic Injection
Mould Parting Surface Design”, the proceedings of the Sixth International Conference on
Information Visualisation, 1012 July 2002, London, England, pp 477482, (2002 IEEE).

3.2. Intersecting the Part Surface

Figure 7.3 illustrates an example of this problem. The opening feature of the part in Figure 7.2
is further extended to the shape shown in Figure 7.3. The figure shows that the extrusion
surfaces associated with the opening feature intersect a face of the mould cavity. Obviously,
such extrusion surfaces cannot be used to construct the parting surface.

Figure 7.3 The method of extrusion causes intersection between extruded surface and part surface.
Source: CLLi, “Application of Catmull-Clark Subdivision Method in Plastic Injection
Mould Parting Surface Design”, the proceedings of the Sixth International Conference on
Information Visualisation, 10-12 July 2002, London, England, pp 477482, (2002 IEEE).

3. The Method of Extrusion 101

visible

invisible

mould insert boundary

Figure 7.4 Use of 2D visibility test to determine validity of the extrusion method.

3.3. Validity Test

Due to the two problems mentioned earlier, it is necessary to perform a test in order to determine
if the extrusion method can create a valid parting surface. Instead of testing for inter-locking
between the extrusion surfaces and testing for intersection between the extrusion surfaces and
the part surface, which are obviously computationally intensive and thus not efficient, we
propose the use of a visibility test [17]. It can be shown that a simple 2D visibility analysis
can serve the purpose. Figure 7.4 illustrates the basic idea of the method. Given a plastic part
P, the main parting line PL of P that consists of a set of parting line segments {PLSi} and
parting direction d,,, the visibility test can be summarized into the following steps:

1. A 2D projection of the parting line PL’ is obtained by projecting the 3D parting line PL
along the parting direction d,, onto a plane perpendicular to dj,.

2. For each segment PLSi’ of the projected parting line PL’, its visibility along the directions
perpendicular to the mould wall boundary is checked. A segment is considered visible along
a direction if, for any point on the segment, the semi-infinite line originates at the point
along that direction and does not intersect PL’.

3. If all segments are visible in any one of the directions perpendicular to the mould inset
boundary, the entire parting line is visible and the method of extrusion can be used.

102 Generation of Parting Surfaces

Figure 7.5 The method of extrusion applied to a part where the project image of its parting line is
non-convex.
Source: CLLi, “Application of Catmull-Clark Subdivision Method in Plastic Injection
Mould Parting Surface Design”, the proceedings of the Sixth International Conference on
Information Visualisation, 10-12 July 2002, London, England, pp 477482, (2002 IEEE).

4. If not all segments are visible, then the method of extrusion can only be used on the visible
segments. For the invisible segments, a new method based on the Catmull-Clark subdivision
method is used.

All the parting line segments of the part shown in Figure 7.1 are visible in at least one direction
that is perpendicular to the mould wall insert. The method of extrusion can thus generate a
valid parting surface. For the part shown in Figures 7.2 and 7.3, there are obviously segments
of the parting line with their projected image not visible in any directions that are perpendicular
to walls of the mould insert. These segments do not pass the validity test. To fill the region
associated with these segments, the method of subdivision has to be used.

It is obvious that if the projected parting line PL’ is convex, then PL’ always passes the
validity test and thus the method of extrusion can be used. However, it should be noted that
the convexity of PL’ is a sufficient condition and not a necessary condition. Figure 7.5 shows
a part where PL’ is non-convex but visible, and thus the parting surface can be generated by
the method of extrusion.

4. Applying the Catmull-Clark Method

The subdivision methods in surface generation are becoming very popular in computer graphics
applications. Subdivision curve was first introduced by Chaikin [18], and the extension of the
method to surface generation was pioneered by Doo [19] and Catmull-Clark [20]. The basic
approach to surface generation by subdivision can be explained as follows. Given an initial
mesh, a new mesh is obtained by adding new mesh elements along the edges and at the corner
of the previous mesh. The addition of the new mesh elements can be considered as a ‘corner
cutting’ process whereby the sharp edges and corners are replaced by new mesh elements.
When this process is repeated indefinitely, Doo and Sabin [21] proved that in the limit the
mesh becomes a smooth surface.

The first step in the generation of a subdivision surface is to construct the initial control
mesh. In our current application, the initial mesh can be considered as the skeleton of the
final surface. To determine this 3D skeleton, a 2D skeleton is first determined, which can be
obtained by computing the medial axis [22] of an approximating polygon. Given a 2D polygon,
the medial axis of the polygon is defined as the set of points such that for each point P, in

4. Applying the Catmull-Clark Method 103

medial axis

\

Figure 7.6 The medial axis of a polygon.

the set, there are at least two points in the boundary of the polygon that are closest to Pp.
Figure 7.6 illustrates the medial axis of a 2D polygon. From the 2D medial axis, the 3D mesh
is then obtained by ‘projecting’ the 2D skeleton to 3D.

Given a set of curves that defines the boundary of a region to be filled by a subdivision

surface, the procedure that generates the initial mesh for subdivision can be summarized into
the following major steps:

1.

w

The set of boundary curves C is projected along the parting direction d, onto a plane
perpendicular to the d,, to obtain a 2D closed curve C’. To simplify the discussion, assume
that the plane lies on the x-y plane and the z axis is thus parallel to the parting direction d,,.

. A polygon P’ is constructed to approximate C’.
. The medial axis MA of P’ is computed.
. As P’ may be non-convex, the medial axis MA may contain parabolic segments. MA is

simplified by replacing these curved segments by line segments.

. For each boundary vertex of MA (i.e. those vertices lying on P’), its z-coordinate is obtained

from a corresponding point on the 3D boundary C.

. For eachinternal vertices V of MA (i.e. those vertices that have two or three closest points on

the polygon P’), the closest points P; on the boundary of P’ is determined. The z-coordinate
of P; is obtained from a corresponding point on the 3D boundary C. The z-coordinate of
the internal vertex V is obtained by a weighted average of the z-coordinates of P;, given by
the following formula.

_ E;:ol %(Zi + Z(i+1) mod n) X DIST (P, P+1) mod n)
v -—
?:(} DIST (pi, PG+1) mod n)

where n is the number of points that are at the same distance from V, and DIST (p;, p;)
is the Euclidean distance between 3D points p; and p;. This formula ensures that the
z-coordinate of V will not be biased towards the z-coordinates of two points that are close
together. (i.e. P, and P, in the example shown in Figure 7.7).

After the initial mesh is computed, a subdivision scheme is invoked to generate the surface.
Various subdivision schemes have been developed and they differ by the way the new mesh
elements are determined from the previous mesh. In this research, a variation of the Catmull-
Clark method developed by Levin [23] is used. Using this method, the subdivision surface
can be made to interpolate a set of curves that defines the boundary of the surface. This is

104 Generation of Parting Surfaces

Figure 7.7 Computation of the 3D skeleton.

Hrh

S A sk

Figure 7.8 Applying subdivision technique to generate a surface that interpolates a given boundary
curve.

an important property as the surface patch of the parting surface must attach to the parting
line segment. Figure 7.8 shows the 3D mesh obtained by applying the above forumula to the
polygon given in Figure 7.7, and the resulting subdvision surface generated from the 3D mesh.

5. Implementation and Design Example

An experimental program has been implemented to verify the feasibility of the proposed
method. The program is written in C++ and run on a PC. The program accepts as input a
set of NURBS curves that define the main parting line of a plastic part. The output of the
program is a set of surface patches that define the parting surface. The patches are generated
by either the method of extrusion or the subdivision method. Figure 7.9 illustrates a design
example generated by the program. Figure 7.9a shows the plastic part. Figure 7.9b shows that
extrusion surface patches are generated from two segments of the parting line, and the region
to be filled by a subdivision surface is shown. Figure 7.9c shows the polygonal approximation
of the region, and the control mesh for subdivision. Figure 7.9d shows the subdivision surface
after 4 iterations. The extrusion surface patches together with the subdivision surface patch are
shown in Figure 7.9(e).

6. Summary

There are two problems in most existing algorithms for automatic generation of parting surfaces
for injection mould design. These algorithms usually use the method of extrusion to generate a

References 105

Figure 7.9 A design example that shows the use of the subdivision method in constructing the parting
surface.
Source: CLLi, “Application of Catmull-Clark Subdivision Method in Plastic Injection
Mould Parting Surface Design”, the proceedings of the Sixth International Conference on
Information Visualisation, 10~12 July 2002, London, England, pp 477-482, (2002 IEEE).

surface patch from a parting line segment to form the parting surface. Our investigation reveals
that the extrusion surface may intersect with the part surface, or may result in interlocking of
mould halves and thus affects mould opening. A new method for automatic parting surface
generation is thus developed to solve the problems. This new method employs a variation of the
Catmull-Clark method to generate subdivision surface patches for parting line segments where
the method of extrusion fails. An experimental program has been developed to implement the
new method. The program has been tested with real parts to verify the feasibility of the method.

106 Generation of Parting Surfaces

References

[1] Hui K C and Tan S T (1992) Mould design with sweep operations. A heuristic search approach. Computer-Aided
Design, vol 24 n 2, 81-91.

[2] Chen L L, Chou SY and Woo T C (1993) Parting directions for mould and die design. Computer-Aided Design,
Vol 25, 762-768.

[3] Chen L L, Chou S'Y and Woo T C (1995) Partial visibility for selecting a parting direction in mould and die
design. Journal of Manufacturing Systems. Vol 14, 319-330.

[4] Weinstein M and Manoochehri S (1996) Geometric influence of a molded part on the draw direction range and
parting line locations. Transactions of ASME, Journal of Mechanical Design. Vol. 118, pp 29-39.

[5]1 Hui K C (1997) Geometric aspects of the mouldability of parts. Computer-Aided Design. Vol 29, 197-208.

[6] Wong T, Tan S T and Sze W S (1998) Parting line formation by slicing a 3D CAD model. Engineering with
Computers. Vol 14, 330-342.

[7) Fu MW, Fuh J Y H, A Y C Nee (1999) Undercut feature recognition in an injection mould design system.
Computer-Aided Design. Vol 31, 777-790.

[8] Tan S T, Yuen M F, Sze W S and Kwong K W (1990) Parting lines and parting surfaces of injection moulded
parts. Proc I. Mech. E Part B: Journal of Engineering Manufacture. Vol 204, 211-221.

[91 Nee AYC,FuM W,FuhJ Y H, Lee K S and Zhang Y F (1998) Automatic determination of 3-D parting lines
and surfaces in plastic injection mould design. Annual of CIRP. 47/1, 95-98.

[10] Kong L, Fuh J Y H and Lee K S (2001) Auto-generation of patch surfaces for injection mould design. Proc I.
Mech. E, Part B. Vol 215, 105-110.

[11] Saxean M and Irani R K (1992) Automated gating plan synthesis for injection molds. Proceedings of the ASME
Computers in Engineering Conference, CA, 381-389.

f12] Wang Z, Lee K S, FuhJ Y H,Li Z, Zhang Y F, Nee A Y C and Yang D C H (1996) Optimum ejector system
design for plastic injection mould. Int. J. of Materials and Product Technology. Vol 11, No 5/6, 371-385.

[13] Ding X M, FuhJ Y H, Lee K S, Zhang Y F and Nee A Y C (2000) A computer-aided EDM electrode design
system for mold manufacturing. Int. J. Prod. Res. Vol 38 no. 13, 3079-3092.

{14] CL Li (2000) A feature-based approach to injection mould cooling system design. Computer-Aided Design. Vol
33 no. 14, 1073-1090.

[15] C L Li (2001) Automatic synthesis of cooling system design for plastic injection mould. ASME Design Engi-
neering Technical Conferences and Computers and Information in Engineering Conference, Design Automation
Conference, Pittsburgh, Pennsylvania.

[16] FuM W, FuhJ Y Hand Nee A Y C (2001) Core and cavity generation method in injection mould design. Int. J.
Prod. Res. Vol 39 No 1, 121-138.

{17] Yin Z P, Ding H and Xiong Y L (2000) Visibility theory and algorithms with application to manufacturing
processes. Int. J. Prod Res. Vol 38 No 13, 2891-2909.

[18] Chaikin G (1974) An algorithm for high speed curve generation. Computer Graphics and Image Processing. Vol 3,
346-349.

[19] Doo D (1978) A subdivision algorithm for smoothing down irregularly shaped polyhedrons. Int. Conf. Interactive
Techniques in Computer-Aided Design, Bologna, Italy. 157-165.

[20] Catmull E and Clark J (1978) Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-
Aided Design. VYol 10, 350-355.

[21] Doo D and Sabin M (1978) Behaviour of recursive division surfaces near extraordinary points. Computer-Aided
Design. Vol 10, 356-360.

[22] Preparata F P (1977) The medial axis of a simple polygon. Proc. 6th Symp. Math. Foundations of Comput. Sci.,
443-450.

[23] Levin A (1999) Interpolating nets of curves by smooth subdivision surfaces. Siggraph 99, California, USA,
pp 57-64.

3

Triadic Subdivision of Non
Uniform Powell-Sabin splines

Evelyne Vanraes, Paul Dierckx, Adhemar Bultheel

Department of Computer Science, Katholieke Universiteit Leuven,
Celestijnenlaan 2004, 3001 Heverlee, Belgium.

This chapter examines the recent advances in the research on Powell-Sabin splines. We already
had at our disposal a very useful normalized B-spline representation in which the basis func-
tions form a convex partition of unity. This representation has been intensively used in different
applications for uniform Powell-Sabin splines, that is on triangulations with all equilateral
triangles, but not for Powell-Sabin splines on general triangulations. Recently we developed
a subdivision scheme for the non uniform case. It is a triadic scheme; every edge is split into
three new edges and every original triangle is split into nine new triangles. The scheme can
be used in, and leads to, many other applications. We mention multiresolution analysis and
decomposition (wavelets), local editing and visualization.

1. Introduction

Powell-Sabin splines are functions in the space S}(A*) of C! continuous piecewise quadratic
functions on a Powell-Sabin refinement. Such arefinement A* can be obtained from an arbitrary
triangulation A by splitting each triangle into six subtriangles with a common interior point
[S]. Working with triangles makes it possible to design surfaces with an arbitrary number
of edges, which is not possible with the widely used tensor product B-spline representation
that is restricted to rectangular domains. In contrast to Bézier triangles [2], where imposing
smoothness conditions between the patches requires a great number of nontrivial relations
between the coefficients to be satisfied, the C! continuity of a PS-spline is guaranteed for any
choice of the coefficients.

A first attempt to describe PS-splines was by Shi et al. [6], but their method has some serious
drawbacks from the numerical point of view. This was solved by the improved algorithm of

Advances in Geometric Modeling. Edited by M. Sarfraz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-85937-7

108 Triadic Subdivision

Dierckx [1] to construct a normalized B-spline basis. This representation has the advantage
that the basis functions form a convex partition of unity which is a useful property in CAGD
applications. Furthermore it leads to a nice geometric interpretation with control triangles that
are tangent to the surface.

The last advance in the area of Powell-Sabin splines is the development of a subdivision
scheme [9]. Given a surface on a certain triangulation, we can now calculate a B-spline repre-
sentation of the surface on arefinement of that triangulation. The result is a denser set of control
points. The availability of a subdivision scheme opens the door to many other applications.
Among them are multiresolution analysis, graphical display and the design of wavelets.

In Section 2 we recall some basic concepts of polynomials on triangles and the definition of
Powell-Sabin splines. Section 3 gives the construction of a normalized B-spline basis and how
to choose the remaining parameters. Then, in Section 4, we discuss the subdivision algorithm.
Finally we give an overview of possible applications in Section 5.

2. Powell-Sabin splines

2.1. Bézier Polynomials

Let A = (A1, A2, M3), [A| =M+ A2+ A3 =d, 2 {0, 1,...,d} using standard multi-index
notation. Consider a non degenerate triangle T (77, T3, 73) in a plane with its vertices having
Cartesian coordinates 7; (x;, y;), { = 1, 2, 3. Any point P(x, y) in that plane can be expressed
in terms of barycentric coordinates 7 = (t;, 12, 73) With respectto T : P = ZL] t; T;, where
[z] =1.

A Bézier polynomial [2] of degree d over the triangle T is defined by:

bF(P) = bi(x) = Y byBi(x), 8.1)
Jrl=d
in which b; are called Bézier ordinates, and:
d!
d _ * A Az A3
Bi(r) = ———)»1!)»2!)»3!1:1 7,713, (8.2)

are the Bernstein-Bézier polynomials on the triangle.

The domain point &, associated with the Bézier ordinate b, is the point in the (x, y) plane
with barycentric coordinates (%, %, %) The points (£, b,) are the control points for the
surfacez = b%(t) and the piecewise linear interpolant to these points is the Bézier net or control
net. This is displayed schematically in Figure 8.1 for the case d = 2. The domain points &;
are marked with dots. The control net mimics the shape of the surface and is tangent to the
polynomial surface at the three vertices of the triangle.

Continuity conditions between triangles can be expressed as relations between the Bézier
ordinates. Let b%(t) be a polynomial with Bézier ordinates b;j; on the triangle T (T3, T3, T3),
and c%(t) be a polynomial with Bézier ordinates c;jx on the triangle T* (T}, T, T3), where
T7* has barycentric coordinates A with respect to T (T}, T2, T3). A necessary and sufficient
condition for b%(t) and c%(r) to be C! continuous across the common boundary is:

CO < Cojk = bOjk, (83)
C':c1jp = hibujk + habogi+ ik + A3bojern.- (8.9)

2. Powell-Sabin splines 109

ooz

bI 0r

boyr
b 200

b110

bg20

Figure 8.1 Left: Positions of Bézier ordinates for d = 2. Right: PS-refinement. Each triangle p; is split
into six smaller triangles with a common vertex Z;.

Representing complex shapes, however, requires the use of patch complexes with a great
number of Bézier triangles. Keeping up continuity conditions between all the neighboring
patches results generally in nontrivial relations between their Bézier ordinates. The use of split
triangles can overcome this problem.

2.2. Powell-Sabin split and the Space SZI(A*)

Consider a simply connected subset Q2 [J R? with polygonal boundary 2. Suppose we have a
conforming triangulation A of €2, being constituted of triangles p;, j = 1, ..., r, and having
vertices V, with Cartesian coordinates (x, ¥), k =1, ..., n. Let A* be a Powell-Sabin re-
finement of A, which divides each triangle p; into six smaller triangles with a common vertex
Z; as follows (Figure 8.1)

1. Choose an interior point Z; in each triangle p;, so that if two triangles p; and p; have a
common edge, then the line joining these interior points Z; and Z; intersects the common
edge at a point R;; between its vertices. Choosing Z; as the incentre of each triangle p;
ensures the existence of the points R;;. Other choices may be more appropriate from the
practical point of view.

2. Join each point Z; to the vertices of p;.

3. For each edge of the triangle p;
¢ which belongs to the boundary 82, join Z; to an arbitrary point of the edge.
¢ which is common to a triangle p;, join Z; to R;;.

Now we consider the space S}(A*) of piecewise C' continuous quadratic polynomials on A*,
the Powell-Sabin splines. Each of the 6¢ triangles resulting from the PS-refinement becomes the
domain triangle of a quadratic Bernstein-Bézier polynomial, i.e. we choose d = 2 in Equations
(8.1) and (8.2), as indicated for one subtriangle in Figure 8.1. Powell and Sabin [5] proved that
the dimension of the space S}(A*) equals 3n: there exists a unique solution s(x,y) O S}(A*)
for the interpolation problem,

))
SV = fio (Vi) = fekr — (V) = fyur k=1,....1. 8.5)
ox ay

110 Triadic Subdivision

So given the function and derivative values at each vertex V;, the Bézier ordinates on the
domain subtriangles are uniquely defined and the continuity conditions between subtriangles
are automatically fulfilled.

3. A Normalized B-spline Representation

3.1. Convex Partition of Unity

Dierckx [1] showed that each piecewise polynomial s(x, y) OJ SZI(A*) has a unique represen-
tation:

n 3
s,y =YY e;Blx.y), (x,yeQ, (8.6)

i=1 j=1

where the basis functions satisfy:

B/ (x,y) =0, 8.7
n 3 .
Y Bla,y=1, (8.8)

i=1 j=1

and have local support: Bij (x, ¥) is nonzero only on the so-called molecule M; of V;, being the
set of triangles p; that have V; as a vertex. The number of triangles in M; is called the molecule
number m;.

The basis functions are constructed as follows:

1. For each vertex V; [J A, identify its PS-points. This is a number of particular surrounding
Bézier domain points and the vertex V; itself. Figure 8.2 shows the PS-points S, §, S’ and
V1 for the vertex V; in the triangle p(Vi, V3, V3).

Figure 8.2 PS-points and PS-triangle.

3. A Normalized B-spline Representation 111

2. For each vertex V;, find a triangle #{Q;;, Qi2, Q:3) containing all the PS-points of V; (from
all the triangles p; in the molecule M;). Denote its vertices Q;;(X;;, Yi;). The triangles #;,
i =1,..., narecalled PS-triangles. Figure 8.2 also shows such a PS-triangle 7,. We denote
the barycentric coordinates of the PS-poinEs S:, S;, and S; with respect to the triangle ¢ (Qy,
Qi2. Qi3) with (Ly1, Liz, Li3), (Lir, Liz, Liz) and (L, L,, L}5).

3. Given the PS-triangle ¢ of a vertex V;, three linearly independent triplets of real numbers
can be found as follows:

o; = (a1, a2, a;3),

are the barycentric coordinates of V; with respect to ¢,

Yo—Ys Ya—Ya Yu—VY
Bi = (Bir, Biz: Biz) = (S AL) (8.9)
e e e
Xn—Xo Xu-Xa Xo—Xu
Yo = Vits Vizs y.-3)=(& | 2u S 19, (8.10)
e e e
Xy Y 1
where e = [X;2 Y 1. (8.1
Xz Y3 1

We have || =1 and | 8| = |yi| = 0.
4. The basis function B} (x,y) is the unique solution of the interpolation problem Equation
(8-5) with all (fk’ fx,k’ fy,k) = (Os Oa 0) except for (fn fx,i’ fy,i) = (al'ja ﬂij, }’ij)-

3.2. PS-Triangles and Control Triangles

We define the control points as:
Cij = (Qyj, ¢;j) = (Xy5, Y5, ¢ij), (8.12)
and the control triangles as:
Ti(Ci1, Ciz, Ciz)- (8.13)

The projection of the control triangles 7; in the (x,y) plane are the PS-triangles #;. We can
prove that the control triangle 7; is tangent to the surface z = s(x,y) at the point (x;, y;, s(V;))
and that the surface lies in the convex hull of the control points.

The fact that the PS-triangle # contains the PS-points of the vertex V; guarantees property
(see Equation (8.7)). Apart from this requirement there are no restrictions on the choice of the
PS-triangle. We know, however, that the larger the PS-triangle, the more linearly dependent
the basis functions are. Furthermore we prefer the control points to be close to the surface
for design purposes. Therefore we always choose a PS-triangle with a small area. In [1] the
PS-triangle with the smallest area is computed, but this requires the solution of a quadratic
programming problem for each vertex.

112 Triadic Subdivision

The outline of a practical algorithm that avoids the optimization problem is described in [7].
It is based on the observation that for a molecule with three triangles a trivial solution exists.
The six PS-points form a triangle themselves and that is of course the smallest triangle that
contains the PS-points. Other configurations with more than three triangles in the molecule
are changed step by step into the trivial case.

4. Subdivision

The goal of subdivision is to calculate the B-spline representation (Equation (8.6)) of a PS-
spline on a refinement A! of the given triangulation A°. We first choose the refinement and
then compute control points for the new vertices.

4.1. Choosing a Suitable Refinement Al of A°

4.1.1 Dyadic Subdivision

The most obvious possibility is dyadic subdivision. In this scheme a new vertex is inserted on
every edge between two old vertices and every original triangle is split into four new triangles.
Because we want to represent exactly the same surface, the lines of the old PS-refinement A
must be included in the new PS-refinement A'*. To ensure this, the new vertices have to be
placed on the points R;;. This is illustrated in Figure 8.3.

The dyadic scheme was used by Windmolders and Dierckx for uniform Powell-Sabin splines,
this is on a triangulation with all equilateral triangles. The subdivision rules for this special case
can be found in [10, 11]. In the general case, the idea of dyadic subdivision can only be used
under certain conditions. For example, the point Z;; of the PS-refinement of a triangle, must
lie inside the middle triangle (V;; V;z Vi;). This leads to conditions on the initial triangulation
A" and its PS-refinement A%, i.e. on the placement of the interior points Z;;; and the resulting
positions of the R;;: the dyadic scheme is not generally applicable.

4.1.2 Triadic Subdivision

Another possibility, shown in Figure 8.4, is triadic subdivision. In this scheme every edge is
split in three instead of two and every original triangle is split into nine new triangles. One

Figure 8.3 Principle of dyadic subdivision.

4. Subdivision 113

Figure 8.4 Principle of triadic subdivision.

new vertex is added inside the triangle on the place of the interior point Z;;;, and on the edges
two new vertices are added each at one side of the points R;;:

Vij = w;; Vi + (1 — wij)Ry;,
Vji =wj,-Vj+(l—a)j,-)R,-j, (814)
Vijk = Zijk.

In these formulas w;; and w;; have a value between (0 and 1:
0 < wy, 0 < 1. (8.15)

For the resulting refinement to exist, the interior point Z; has to lie inside the hexagon formed
by the new vertices (V;;, Vji, Vir, Vij, Vii, Vig). Itis always possible to place these new vertices,
i.e. choose a value for the w in Equation (8.14), such that this condition is fulfilled: there are
no conditions on the initial triangulation A° or its PS-refinement A%,

4.1.3 ./3-Subdivision

Triadic subdivision can also be seen as two steps of a ./3-subdivision scheme. This kind of
scheme was first introduced by Kobbelt [3] and Labsik [4] and used for uniform Powell-Sabin
splines by Vanraes [8].

The new triangulation Av? is constructed by inserting a new vertex V; j& at the position of the
interior point Z;; of each triangle. Except at the boundaries, the old edges are not preserved
in the new triangulation. Instead new edges are introduced connecting every new vertex V;j;
with the vertices of the old triangle it lies in, and connecting every two new vertices that lie
in neighboring old triangles. The upper part of Figure 8.5 shows (on the right) the result of
/3-subdivision on the triangulation A® on the left. In this figure the PS-refinement is not
shown, but notice that the new edges in Av? coincide with the lines of the PS-refinement A%
and that the original edges of A° are now part of the new PS-refinement Av>3*,

Applying the ./3-subdivision operator a second time again results in new vertices that co-
incide with the interior points that, in this case, lie on the edges of the initial triangulation A°.
As can be seen in Figure 8.5, this causes a refinement with tri-section of every original edge

114 Triadic Subdivision

Figure 8.5 Principle of ./3-subdivision. Applying ,/3-subdivision twice results in triadic subdivision.
The PS-refinements are not shown.

and splitting of each original triangle into nine subtriangles. Hence one refinement step of this
scheme can be seen as the square root of one step of the triadic scheme.

The boundaries of the domain require a special treatment. Indeed, to end up with a tri-section
of the original boundary edges, two new vertices have to be added in the second ,/3-subdivision
step in the triangles in question.

4.2. The Subdivision Rules

We prefer to use the triadic or ,/3-scheme for non uniform Powell-Sabin splines because,
in contrast to the dyadic scheme, there are no conditions on the initial triangulation and PS-
refinement. There is an easy solution for the control points of the vertex added inside each
triangle during ./3-subdivision. We will however always do two steps at once to avoid boundary
problems and therefore we call our scheme triadic [9].

To illustrate the subdivision rules we use a triangle of A® with vertices (V;, Vi, Vi) as in
Figure 8.4. The PS-refinement is also shown, with:

Rij = AiVi + (1 — AV,

Ry = ApV; + (1= A0)Vi (8.16)
Rii = A Vi + (1 — M)V,

Zijk = ajjVi + bijk Vi + cijp Vi,

4.2.1 New Control Points

The new PS-triangles are shown in Figure 8.6. In order not to overload the picture the
PS-triangles in the old vertices are not plotted.

4. Subdivision 115

Figure 8.6 PS-triangles for the new vertices.

The vertex V;j; can be considered as added in a first step of ,/3-subdivision. An easy solution
for the new control triangle is given by:

Cijk1 = LitCit + LinCin + Li3Cis,
Cijk2 = ijlcjl + Z’jZCjZ + ij3cj3, 8.17)
Cijks = LiuCit + LiaCia + LisCia,

with L; the barycentric coordinates of Q;jx,1 with respect to the old PS-triangle #; of V;, and
analogous for the others. We can easily prove that this triangle is tangent to the surface in
(Vijx> s(Vijx). The corners of the corresponding PS-triangle coincide with PS-points of the old
vertices, and the PS-triangle contains the appropriate PS-points at this intermediate level.

116 Triadic Subdivision

For the new vertex V;; on the original edge, we do a second ,/3-subdivision step and use
the same idea for the new control triangle. This leads to:

Cijn = (@ij + Ayj — 0ijAi)Cijk,1 + (1 — 015 — Aij + wijAij)Cijk .2
Cija = (wij + Aij — wijXi;)Cijw 1 + (1 — wij — Aij + wiAi;)Cijrr 2, (8.18)
Cij3 = (Li1 + wjjoyy — wijLi))Ciy + (Lijy + 03041 — wi; Lig)Cia

+ (Liz + wijotis — w;;Li3)Cia,

with L; the barycentric coordinates of Q;;3 with respect to the old PS-triangle #; of V. If
the new vertex lies on the boundary of the domain, for example V};, there is no neighboring
triangle and we choose the second control point on the boundary,

Crjz = (wrj+ dej — o jie i XLi1Cpt + Li2Crz + Li3Cus) 8.19)
+(1 = wr; — Ay + opjAi] XLjCir + LjpCia + Lj3Cji3).

For the old vertices we keep the control points. This is a valid choice because the control

triangle is still tangent to the surface and the PS-triangle contains the new PS-points. In all

these formulas we only use convex combinations of the control points on the previous level,

which means that this subdivision scheme is a stable algorithm.

4.2.2 Optimization

In the subdivision scheme as we have described it up till now, the control points in the old
vertices do not change when going to a finer level. Indeed, a control triangle of the previous
level remains valid because the corresponding PS-triangle also contains the PS-points on the
refined level. However, these PS-points are now closer to the vertex than before, so it is possible
to choose a smaller PS-triangle.

To find a better suited PS-triangle, we shrink the old PS-triangle until it hits a PS-point, but
without changing the shape. We can do the same for the interior vertex V;;, because the given
PS-triangle is not optimal anymore after the second ,/3-step. This generally does not lead to
the smallest control triangle possible, but the overhead of the optimization problem to find the
optimal triangle cannot be justified.

5. Applications

With the development of the subdivision scheme many other applications become possible.
We give a short description of some of them here.

5.1. Multiresolution Analysis

If we collect the B-spline coefficients on a certain level j in a column vector ¢/ and the
corresponding B-spline basis functions in a row vector ®/, we can write the representation
(Equation (8.6)) on different levels as:

s(x,y) = ®/¢/

— Gitlgitl (8.20)

5. Applications 117

If we also write the subdivision scheme in block matrix form:
CHl = piCY, 8.2

with the matrix P/ the subdivision matrix, and combine this with Equation (8.20), we obtain
the relation between the basis functions on different levels:

P/ = piolpJ. (8.22)

This equation establishes refinability since it states that each of the functions in ®/ can be
written as a linear combination of the functions in ®/*!. A strictly increasing sequence of
subspaces V/ = S3(A/*) is associated with the base triangulation A°:

Vicvicve... (8.23)

This is called a multiresolution analysis (MRA).

5.2. Multiresolution Editing

The support of a basis function is the molecule of the vertex. After subdivision the molecules
are smaller, and so is the support. This gives the designer more local control when manipulating
surfaces. It is now possible to make local changes on different resolutions. A change on a finer
level will influence a smaller neighborhood of the involved vertex than a change on a coarser
level.

5.3. Wavelets

Each space V/*+! of the multiresolution analysis contains splines on a finer triangulation than
the previous coarser space V- and therefore can describe more detail of a surface. These details
are captured in the algebraic complement W/ such that:

viewl =yt (8.24)

where @ denotes the inner sum of disjoint spaces. The complement space W/ is not necessarily
orthogonal to V/ and we refer to the basis functions ¥/ of W/ as wavelets.

A wavelet transform is a change of basis from the B-spline basis functions on a fine level
VJ+! to B-splines on a coarser level V/ completed with wavelet functions in W”. To calculate
the control points and the wavelet coefficients after the change of basis we use the lifting
scheme (Figure 8.7). _

First the control points C/*! are split into two sequences. The first sequence, C}*', contains
the control points that correspond to vertices in A/, and the second sequence, C{,H, contains
control points that correspond to vertices that are in AJ+!, but notin A/,

Then we treat C}*" as the control points of a surface defined on A’ and apply the subdivision
algorithm P/ that leads to the control points for the new vertices. The result is used as a
prediction for CJ*! and substracted from this sequence. This yields the wavelet coefficients
W/ on the lower branch in the picture. We call this step the prediction step.

118 Triadic Subdivision

Figure 8.7 Left: Subdivision can be used as the prediction in the lifting scheme. Right: A wavelet
function.

Often an additional update step is used to give the wavelet functions properties such as
vanishing moments. CJt" is updated with a linear combination a/ of wavelet coefficients W/.
This yields the control points C/ on the upper branch in the picture. We call this step the update
step.

With the development of Powell-Sabin wavelets come other typical wavelet applications
such as compression, noise reduction, progressive display and transmission, level of detail

control.

5.4. Visualization

The control triangles are tangent to the surface and in case of repeated subdivision, the linear
interpolant of the tangent points converges to the surface itself. Therefore subdivision is a
common technique for displaying surfaces graphically. Note that in this case the additional
shrinkage of the PS-triangles is not needed because in the end we only need the tangent points
and the corresponding shape of the basis functions is irrelevant.

6. Summary

We recalled the definition of Powell-Sabin splines, piecewise C' continuous quadratic func-
tions on Powell-Sabin splits, and how to construct a normalized B-spline basis for a certain
triangulation. This representation leads to the notion of control triangles that are tangent to the
surface. We also know that the surface lies in the convex hull of the control points.

For a triangulation with a certain PS-refinement, there are different possibilities for the
PS-triangles. The only requirement is that a PS-triangle must contain all its PS-points. We
prefer the area of the PS-triangle to be small but, as we mentioned, it is not necessary to use
the very smallest one: other more practical choices are also possible.

We described an algorithm for computing the B-spline representation of a Powell-Sabin
spline surface on a refinement of a given triangulation, We used a triadic subdivision scheme
because there are no restrictions on the initial triangulation, as opposed to the dyadic scheme.
+/3-subdivision can be seen as an intermediate level for the triadic scheme and this idea is used
in the development of the subdivision rules. Since the algorithm uses only convex combinations
it is numerically stable.

The availablity of a subdivision scheme makes other multiresolution based applications
possible for non uniform Powell-Sabin splines. We described how a multiresolution analysis
can be associated with a base triangulation and how this can be used for multiresolution editing

References 119

and the construction of wavelets. Subdivision is also a commonly used tool for the visualization
of surfaces.

References

[1] P. Dierckx. On calculating normalized Powell-Sabin splines. CAGD, 15(3):61-78, 1997.

[2] G. Farin. Triangular Bernstein-Bézier patches. CAGD, 3(2):83-128, 1986.

[3] L. Kobbelt. /3-subdivision. In Computer Graphics Proceedings, Annual Conference Series. ACM SIGGRAPH,
2000.

[4] U. Labsik and G. Greiner. Interpolatory ./3-subdivision. In Sabine Coquilart and Jr. Duke, David, editors,
Proceedings of the 21st. European Conference On Computer Graphics (Eurographics-00) (volume 19, 3 of
Computer Graphics Forum, pp. 131-138), Cambridge, August 21-25 2000. Blackwell Publishers.

[5] M. J. D. Powell and M. A. Sabin. Piecewise quadratic approximations on triangles. ACM Transactions on
Mathematical Software, 3:316-325, 1977.

[6) X. Shi, S. Wang, W. Wang and R. H. Wang. The C! quadratic spline space on triangulations. Report 86004,
Departement of Mathematics, Jilin University, Changchun, 1986,

[7] E. Vanraes, P. Dierckx, and A. Bultheel. On the choice of the PS-triangles. TW Report 353, Department of
Computer Science, Katholieke Universiteit Leuven, Belgium, February 2003.

[8] E. Vanraes, J. Windmolders, A. Bnltheel and P. Dierckx. Dyadic and ./3-subdivision for uniform Powell-Sabin
splines. In Information Visualisation Proceedings. IEEE Computer Society, 2002.

[9] E. Vanraes, J. Windmolders, A. Bultheel and P. Dierckx. Subdivision for Powell-Sabin spline surfaces. TW Report
345, Department of Computer Science, Katholieke Universiteit Leuven, Belgium, September 2002.

[10] J. Windmolders and P. Dierckx. Subdivision of uniform Powell-Sabin splines. CAGD, 16:301-315, 1999,
[11] J. Windmolders. Powell-Sabin splines for Computer Aided Geometric Design. Ph.d. Thesis, Department of
Computer Science, Katholieke Universiteit Leuven, Belgium, February 2003.

9

Surface Interpolation Scheme
by Distance Blending over
Convex Sets

Lizhuang Ma

Department of Computer Science and Engineering, Shanghai Jiaotong University,
Huashan Road 1954, Shanghai 200030, China

Qiang Wang
State Key Lab. Of CAD and CG, Zhejiang University
Hangzhou 310027, China

Tony ChanK'Y

Center for Advanced Media Technology, Nanyang Technological University,
Singapore 639798

Interpolation and approximation of different types of data points are very important in the field
of CAD/CAM, virtual reality and computer graphics. Besides interpolating sample data, we
also need to interpolate sample pieces of surfaces, textures or functions located over different
areas or sets. Here we actually intend to interpolate an infinite number of data points of any
Sfunction or pattern. In this chapter, we introduce the concept of distance from a point to a set
or area. The square of distance function is C' smooth when the set is convex. The distance
function is then used to construct a blending basis for interpolating functions or surfaces
defined on related convex sets. An explicit set-splines basis is then derived, which has many
useful properties similar to the traditional B-spline basis. These set-splines can be used to
not only interpolate sample data, but sample pieces of functions as well. The potential of this
new method is great, for instance, blending or smoothing surfaces, interpolating textures and
images, and interpolating volume data.

Advances in Geometric Modeling. Edited by M. Sarfraz
© 2003 John Wiley & Sons, Ltd ISBN: 0470-85937-7

122 Surface Interpolation Scheme by Distance Blending

1. Introduction

Interpolation of data points is a fundamental problem in the field of CAD/CAM, geometric
modeling and computer graphics and soon [1, 11-19]. Sampled or given data points are usually
interpolated by using B-splines in many applications [1, 2, 3, 11-16, 19]. However, we also
need to interpolate a set of infinitive data points, for instance, pieces of surfaces, textures,
tiling and continuous functions defined on a subset of Euclidean space. Here we interpolate
some surfaces as a whole instead of some sampled data points. The problem of finding fillet
surfaces for a set of given surfaces can be considered as an example. We aim to construct
a smooth surface in the whole domain, which interpolates these given surfaces defined on some
sub-domains. In fact, some special cases have already been studied with different methods and
view points. Given four boundary curves and corresponding derivatives along the input curves,
the Coons patches are bicubically blended with the given curve data which consists of infinite
data points [1, 5]. The C 0 Barnhill, Birkhoff and Gordon approach for triangular Coons patches
can be explained as follows. Suppose we are given three boundary curves. We seek a surface
that interpolates to all three of them, namely, a transfinite triangular interpolant [1, 6]. More
Coons type interpolants are proposed over triangles, and a general interpolant called N-sided
surface patches is proposed by J. Gregory [7]. However, they only consider a special case that
the function values are given on some curves or line segments.

In this chapter we consider a much more general problem. Suppose that we are given some

functions orpatterns, Fy, F, ..., F,,defined respectively on some convex sets, A;, Az, ..., Ay,
we seek a surface that interpolates all these given functions on the interpolation sets,
Ay, Az, ..., A,. The interpolation sets that we often encounter are points, rectangles, discs,

polygons and polyhedrons. The distance from a point P to a set A, d(p, A), can be used to
measure how the set A and point p are related to each other. Thus, it can be used to blend
the functions defined on different sets or points. We have shown that the square of distance
function, d%(p, A)is C! smooth when the set A is convex. The distance function is then used to
construct blending basis for interpolating functions or surfaces defined on related convex sets.
Some interpolation formula are discussed when the interpolation sets are rectangles, polyhe-
drons and discs. We also study the C* smooth interpolation problem. An explicit set-splines
basis of smoothness order & is explicitly derived, which has many useful properties similar to
the traditional B-spline basis. Our method has great potential, for instance, blending or smooth-
ing surfaces, interpolating textures and images, and interpolating volume data. Experimental
results show that our method works well.

2. Distance Functions over Convex Sets

Let A be a convex subset of two-dimensional Euclidean space, A C R?, and d(p, q)
denote the Euclidean distance between two points, p and g. Namely, d{(p,q)=
\/(xp — %)+ (¥p — ¥g)?, if p=(xp, ¥p), @ = (x4, ¥;). Then the distance from a point p
to a set A, d(p, A), is given by:

d(p, A) = q;?d(P’ A). .1

We use the notations int (A) and bd(A) to denote the interior and boundary points of the set A
respectively. It is clear that f(p) = d(p, A) is a continuous positive function defined on R?.
We define a function f to be a convex function on a subset S of R? if the epigraph of f is

2. Distance Functions over Convex Sets 123

f(py=d(p 4)

e A g

Figure 9.1 The section line of the distance function f(p) = d(p, A).

convex as a subset of R3. It is obvious that f(p) = d(p, A) is also a convex function [see [8],
p. 23—p. 28]. By analyzing the partial derivatives of this convex function, we can further show
that g(p) = d*(p, A) is a continuously differentiable function, namely C! on R? (refer to the
Appendix of [9]).

Suppose that A;,i = 1,2,..., n be convex sets, and A; = d*(p, A;). Let F; be given con-
tinuous functions defined on A;,i =1, 2, ..., n. To find a function F(p) that interpolates a
given set of functions F;, we set:

F(p)=_ wi(p)Fi(p), 9.2)
i=1

where

wi(p) = ﬁx, / ZI—[A : (93)
o

=1 Jj=1
j#t
F(p) is actually a weighted summary of the given functions F;(p),i = 1,2, ..., n. Since A;
is C! and so is w;, we conclude that:

Theorem 1. Let A;,i =1,2,...,n be convex subsets of R?, A; ﬂ 1Aj=¢ (the empty
sef),i,j=1,2,...,nand F; bc gIVCﬂ ¢! continuous functlonsdeﬁncdon A,,z =1,2,...,n,
namely, the domain of F; is A;. Set w; and F(p) as in Equations (9.2) and (9.3), then w;,i =
1,2,...,n form a basis of blending functions, which have the following properties:

M O<w(p) <1, w(p)=1,

Q) wi(p)=1ifandonlyif pe A;,i =1,2,...n.

3) F(p)is C 1 continuous and interpolates all given functions, namely, F(p) = F;(p), p €
A,‘,i= 1,2,...,n

(4) If the dimension of set A; is 2, then F coherently interpolates the first order derivatives of
F; on A;.

The first three properties can be verified directly. For a convex subset S of R?, the dimension of
Sis 2if and only if three different points exist that are not collinear in S. Suppose the dimension
of set A; is 2 and py is an arbitrary member. If py is an interior point of the set, then itis clear that
the partial derivatives of F coincides with that of F; since F and F; coincide with each other on
A;.Now, suppose py € bd(A;), then for every neighborhood of po, N(po) = {pld(p, po) <r},

124 Surface Interpolation Scheme by Distance Blending

there exists infinitive number of points in N(py) because A; is convex and so is N(po) N A;.

We can thus find a sequence of points in int (A;), 91,92, 43, . . ., gk, . . ., Which converges to

Po. Since Fis C! continuous, lim 9Fi(q) = 31’}(170)’ lim 9Fi(qn) = aFi(pO).Thc desired
koo x; dx; k—oo 9y dy;

result follows. When the dimension of set A; is less than 2, the conclusion in Equation (9.4)

may be false (see Section 3).

From the above Theorem, we know that the interpolated function F(p) has the well-known
convex hull property [1, 3, 10]. It is not only useful for us to estimate and control the ap-
proximation error, but also important in modeling complex objects. The so-called Barnhill,
Birkhoff and Gordon’s BBG operator for infinite interpolation over triangles can be considered
as a special case of the above formula when set A;,7 = 1, 2, 3, are three edges of the given

triangle.

3. Interpolating Scheme for Some Typical Convex Sets

Let us consider the simple and useful cases when the sample sets are rectangles, discs and
convex polygons. Here we use the notation of truncated polynomials for representing B-splines
as follows, where m is an integer and a is a real number:

m o __ (x—a)m9 ifoa,
(x—a); = [O, otherwise, o4

(a) If A = [a, b; c, d], a rectangular set, and p = (x, y). Then it is obvious that:
d*(p,A)=(@— x5+~ +x -5+ —d7. ©.5)

Therefore, the distance function is actually a quadric B-spline and is continuously differ-
entiable. The distance function has a simpler polynomial form over the 9 regions deter-
mined by the rectangle A (see Figure 9.2). It equals (@ — x)> + (y — d)%, (x — b)* + (y —
dy’, (x = by +(c = yP, (@@= xy’ + (¢ —), (y =, (x —=b)’, (¢ = y)*, (@ — x)* and
0 over religions 1, 2, 3, 4, 5, 6, 7, 8 and A respectively. If there are n functions F; defined
over n disjoint rectangles A; = [a;, b;;¢:,d;1,i = 1,2, ..., n. Then:

r = d¥(p, Ai)

9.6
= (@ —0F + @ —y; +G&—b)l +(—d). 00

A
1 5 2
d
8 A 6
€l 4 7 3
a b "

Figure 9.2 The 9 regions determined by a rectangle A.

3. Interpolating Scheme for Some Typical Convex Sets 125

The function F(p) given by Equation (9.2) interpolates F;, i = 1,2, ..., n. Notice that the
relative locations of these rectangles can be arbitrary without intersections.
(b) If A is a circular disc, A = {p = (x, y)|(x — x0)* + (¥ — yo)* < r3}, then:

Ap) = (\/(x —x0)? + (y — yo)* — "O)i

o7
=(r - ro)i.

In the second part of the above formula, the point p is represented by polar coordinates.
(c) If A is a convex polygonal area with vertices p;, i = 1,2, ..., m. Suppose that:

L:gx+by+c=0,
is the line equation on which segment p; p; .1 lies.

We can choose appropriate signs of L’ such that the interior of A is the intersection of negative
half planes L’ : a;x + b;y + ¢; < 0, namely, A = (), L'. Let d; denote the distance from
p to segment p; pi 1.

In Figure 9.3, draw two perpendicular rays through the end points p; and p;;; . The half
plane is subdivided into three regions, I, II and ITI, which are related with the computation of
distances. It is clear that:

(P—p) FP—p) Pia—p)<0,(pel
d> =4 —pi;1)% if(P—Piy1) (Pi— piy1) <0,(p € II) 9.8)
(aix + by + c)<2P otherwise, (p € I1I)

Hence,
d*(p, A) = mind,.

The above formula can then be used to compute the distance from p to a given convex set A.

*, Pitl P

L":aix+b,.y+c,.=0

o*
03
0
-
o
0

A

P,

Figure 9.3 The polygonal set and the computation of distance.

126 Surface Interpolation Scheme by Distance Blending

A more efficient but complicated algorithm can be implemented if the convex properties of the
set are carefully considered.

4. Set-splines

Although the method for setinterpolation can be easily implemented, it has similar disadvantage
to the Lagrangian interpolating method, for example, it has a high order when interpolating
many functions over sets and computation may be unstable. We try to find a set-spline basis
that is a kind of extension to the conventional B-spline functions. We will first derive the
set-spline basis in a one-dimensional case and then extend the basis to a two-dimensional case
using tensor product method. For a set-spline basis of smoothness order k, ¥;,i = 1,2,...,n
it must satisfy:

Z\Pk(x) =1,

1 > >0, O
Vi) =1,x € A; = [a;, b;].
Then we can assume that W%, i = 1,2, ..., n,is anorder 2k + 1 spline statisfying the following
equations,
Wkx) =0, ifx ¢ (bi-1, ait1),
3/ Wk (x)
ol =0,j=1...,k, 9.10)

ifx =bi_1,a;,bi, a1
\Il,k(x)=l, lfxEAi=[a,‘,bi].

It is clear that \Il,-"(x) is an interpolating spline of Herimite type on interval [b;.1, a;], and
[b;, a;+1]. Therefore, we can derive:

JEN = bk — aip)t de] [N — b)F(E — a)k dt, x € [by, @]
Wr(x) = I xela b ©.11)
0, P ¢ [b,'_1, a,-+1]

fo & = bi-k(x —apkde/ [(x = bim)Fx — ap)dt, x € [bi-1, 4]

We can obtain the set-spline without mtcgratlon signs. Let & = (a;41 +b:)/2,h; =
(ai+1 — b;)/2. Then,

¢ —a)t — bk = ((t — &7 ~ ()
—Z B Jk(t—8)2" 2 (hi Y
=D k-

9.12)

4. Set-splines 127

Hence, the set-splines W,."(x) can be represented as follows:
Z/.E (=) (B I () H Y — (x — §;)%+1-2))
0 JlWe = DI2k+1—j)

ko 1y 2 y2k+1
LD e = p ™

x € [b;, a;1]
1’ X € [aiv bl]
W (x) = | 9.13
F=00 kg b ai] A O-19
S (=D (1) (& — 8212 (Y2t
/=0 Jik— D@k +1=))

. 2 ’
> o= 1)

—(hi_)?!
X € [bi—h ai]

JWk —NCk+1-j)

One important case is the cubic spline when k = 1. The cubic set-spline ¥(x) can be repre-
sented as follows,

(2x3 — 3(ai+1 + b,~)x2 + 6a,-+1b,~x - (—a,~+1 + 3b,~)a,.2+1
(@1 — b)) '
x €[bi, aiy1]
1, € [a;, b;
W3(x) = | * € la, bil (9.14)
0, x & [bi_1,a111]
—2x3 +3(a; + bi—1)x* — 6a;b;_1x + (—bi—1 + 3a;)b7_,

(a; — b;—1)®

x €[bi_1,a]
Notice that:
Vi) + WE () =1 (9.15)

It is clear that \Ilf(x) is a piecewise polynomial with order at most 2k + 1, and is a very special
type of B-spline. We can verify that the above set-splines satisfy the desired constraints.
The shape of \Ilf(x) is similar to a hat. For the two-dimensional sets [a;, b;] % [c;,d;],i =
1,2,...,m;j=1,2,...,n we can construct a tensor-product spline basis, \Il,.k ! (x)\llfz(y) of
order k; x ky. For the given mn functions F;; defined on [a;, bi] x [cj,d;),i =1,2,...,m;
Jj =1,2,..., n, the interpolating function F can be represented as follows,

m n

F=Y 3 Fy¥xmwe®) 9.16)

i=1 j=1

It is clear that F is a smooth surfaces interpolating given function Fj; on [a;, bi]1 x [cj,d;], i =
,2,....m;j=1,2,...,n.

128 Surface Interpolation Scheme by Distance Blending

5. Set Interpolation for Unusual Cases

For the set-splines, the domain sets of the given functions are supposed to be convex, and there
is no intersection for any pair of these sets. Some unusual cases may occur, for instance; (1)
some convex sets intersect with each other; (2) the domain sets degenerate to points; (3) some
sets have lower dimensions than usual. Let int(A), bd(A) denote the set of interior points and
set of boundary points of set A respectively. We discuss the above unusual cases accordingly.

(1) Suppose some domain sets intersect with each other. We can still use our method to con-
struct a C! continuous surface F interpolating the given ¢! functions F,i = 1,2, ...,n,
if these given functions meet with C! along their intersections of these domain sets. Notice
that the denominator in Equation (9.3) may vanish if the point p lies in the intersection of
some sets. However, we can modify the interpolation formula (9.2) by defining the value

of F coincides with the interpolated functions at the domain sets, A;,i =1,2,..., A,.
Namely,
F, ifpeA
F(p)= {< . " 9.17
P =1 wipFp). ifp¢|JAn ©-17)
i=1 i=1
where

w;(p) = Hk; / Zﬁk,- . (9.18)

Since Fi,i = 1,2, ..., n meet with C! along respective common boundary (intersection
of domain set) and w;(p) is C! too, the above formula is well defined and the interpolation
function F is also smooth.

For example, let A; = [—1,1;—1,1], A =[1, 3; -1, 1], and:

F(p) = (x — 1)? + y%/3.0, (x,y) € Ay
Fx(p) = (x — 1)*/30.0 + y?/3.0, (x,y)€ Az’

Then it is clear that these two given functions meet C! along common boundary curve
Fi(p)= F2(p) = y*,x =1,0 <y < 1. Now,

M=El=0)2 + - DL+ (-1—y)% + (=12,
=0-x)2+@x =32 +(-1-»2+@-D.

It can be directly verified that the interpolation function F derived from Equation (9.17)
is C! (see Figure 9.6). However, if the given two functions do not meet with C! along the
common boundary themselves, the interpolated result is not C! either.

(2) If the domain sets degenerate to points, then the domain sets have only one boundary point
and no interior point. Let A; = (x;, y;),i = 1,2, ..., n, then ; = (x — x;)* +(y —)%
The blending functions w;, i = 1, 2, ..., n turn out to be rational polynomials.

6. Summary 129

(3) If the domain sets are degenerate, then the interpolated function F may not interpolate
the derivatives of the given function. One simple case is that if every set has only one
point, then the function F only interpolates the function value of every function at the
corresponding point. However, the derivative of F; at p; = A; is determined not only
by the function value at the point p;, but also its function values at the neighborhood set
of P,.

Let Ay, A;, Az be the three edges of a triangle, and A; = d(p, A;),i = 1,2, 3. Then, the
interpolation function F given by Equations (9.2) and (9.3) is a C° transfinite triangular
interpolant, which is similar to the so-called BBG operator (see [1]).

6. Summary

We implemented the proposed algorithm on a Pentium II 233 computer and it ran very
well. One important character of our method is that our algorithm can deal with dif-
ferent types of interpolating sets and functions. In Figure 9.4, the function F interpo-
lates three different types of functions defined on a triangle, circle and rectangular sets
respectively. Here, A; is a triangle with vertices, [2, 2], [2, 4] and [4, 2], and F| =
sin(7x) sin(7r y); A is a circular set defined by A; = {(x, W + D2+ (y =12 < 1}, F, =
x2/2 - y2/2; Aj is a rectangle, A3 = [—5, —3;—5, —3], and F3 = 0.5sin(rx)sin(ry). In
Figure 9.5, tensor product set-spline interpolation basis is used. The sets are defined by
la;, bl x [ei,di), i = 1,2 where [ay, bi] =[5, =2}, [a2, b2l = [2, 51, [¢1, di] = [-5, —2]
and[cy, da] = [1, 51, F1; = x?/2 — y*/4, where, Fi; = x2/2 — y?/4, Fy» = sin(x)sin(wy),
F>y = sin(0.75mx) cos(y), Foy = x2/3 — y%/3.

In Figure 9.6, unusual cases are considered when the given sets have a common boundary
where F| = (x — 1)? + y?/3.0and F> = (x — 1)*/300 + y?/3.0are definedon[—1, 1; —1, 1]
and [1, 3; —1, 1] respectively. The implementation of the proposed algorithm is simple. We

Figure 9.4 Different types of functions are interpolated. The three interpolating sets are respectively,
triangle, circle and rectangle.

130 Surface Interpolation Scheme by Distance Blending

Figure 9.5 Interpolation result of four given functions. Red surface patches show the given functions
Fj,i, j = 1,2, and the blue one is the transition surface.

design a basic function to calculate the distance from a point to a convex polygon, which is
classified into four cases, triangle, rectangle, disc and general ones. The experimental result
shows that different types of functions, for instance, polynomials and trigonometric functions,
can be easily blended using our method. When scattered functions or functions over regular sets
are given, we will use the general interpolation formula (9.2) or setspline interpolation formula
(9.17) respectively. Note that set-spline basis has the local property that the function defined
on set A;; only affects the interpolated function over the 9 neighboring sets A;y¢ j41, %k, =
—1, 0, 1. However, general interpolation formula (9.2) is a global method, and the greater the
distance d(p, A;), the lower the function F; effect on the interpolated function F. The proposed

Figure 9.6 The interpolation result is smooth when the given two functions meet with C! along the
common boundary.

References 131

method can be applied in many applications, for example, blending or smoothing surfaces,
interpolating textures and images, and interpolating volume data. We are now trying to extend
our method for interpolating volume data and find a more efficient algorithm for computing
the distance function from a point to a convex polyhedron or volume.

Acknowledgement
This work was supported by NSF China No. 60173035 and 69973043.

References

[1] Farin, G. (1993), Curves and Surfaces for Computer Aided Geometric Design — A Practical Guide. Academic
Press, INC, 2™ edition.

[2] de Boor, C. (1978), A Practical Guide to Splines. Springer-Verlag.

[3] Hoschek, J. and Lasser, D. (1993), Computer Aided Geometric Design. English translation by L. L. Schumaker.
A. K. Peters, Wellesley, Massachusetts.

[4] Piegl, L. and Tiller, W. (1995), The NURBS Book. Springer-Verlag Berlin.

[5]1 Coons, S. (1964), Surfaces for computer aided design. Technical Report, MIT. Available as AD 663 504 from
the National Technical Information service, Springfield, VA 22161.

[6] Barinhill, R., Birkhoff, G. and Gordon, W. (1973), Smooth interpolation in triangles. J. Approx. Theory, 8(2),
114-128.

[7] Gregory, J. (1986), N-sided surface patches, In J. Gregory, editor, The Mathematics of Surfaces, 217-232,
Clarendon Press.

[8] Rockafellar, R. T. (1972), Convex Analysis. Princeton University Press.

[9] Lizhuang, M., Youdong, L. and Qunsheng, P. (1992), Equidistant smoothing of polyhedron with arbitrary topolo-
gies Computer Graphics Forum, 11 (3), 405-414.

[10] Lizhnang, M. and Rongliang, W. (1996), Techniques for Computer Aided Geometric Modeling and Its Applica-
tions. Science Press, Beijing (in Chinese).

[11] Sarfraz, M. (2003), Optimal curve fitting to digital data, International Journal of WSCG, Vol 11(1).

[12] Sarfraz, M. (2003), Curve fitting for large data using rational cubic splines, International Journal of Computers
and Their Applications, Vol 10(3).

[13] Sarfraz, M. and Razzak, M. E A. (2003), A web based system to capture outlines of arabic fonts, International
Journal of Information Sciences, Elsevier Science Inc., Vol. 150(3-4), 177-193.

[14] Sarfraz, M. (2002), Visualization of positive and convex data by a rational cubic spline, International Journal of
Information Sciences, Elsevier Science Inc., Vol. 146(1-4), 239-254,

[15] Sarfraz, M. and Razzak, M. F. A. (2002), An algorithm for automatic capturing of font outlines, International
Journal of Computers & Graphics, Elsevier Science, Vol. 26(5), 795-804.

[16] Sarfraz, M. (2002), Fitting curves to planar digital data. Proceedings of IEEE International Conference on
Information Visualization IV’02-UK: TEEE Computer Society Press, USA, 633-638.

[17] Sarfraz, M. and Raza, A. (2002), Visualization of Data using Genetic Algorithm, Soft Computing and Industry:
Recent Applications, Eds.: R. Roy, M. Koppen, S. Ovaska, T. Furuhashi, and F. Hoffmann, ISBN: 1-85233-539-4,
Springer, 535-544.

[18] Sarfraz, M. and Raza, A. (2002), Towards automatic recognition of fonts using genetic approach, Recent Advances
in Computers, Computing, and Communications, Eds.: N. Mastorakis and V. Mladenov, ISBN: 960-8052-629,
WSEAS Press, 290-295.

[19] Sarfraz, M. (1995), Curves and surfaces for CAD using C 2 rational cubic splines, Engineering with Computers,
11(2), 94-102.

10

Family of G* Spiral Transition
Between Two Circles

Zulfigar Habib
Manabu Sakai

Department of Mathematics and Computer Science, Graduate School of Science and
Engineering, Kagoshima University, Japan.

A family of fair G* cubic and Pythagorean Hodograph (PH) quintic transition curves connecting
two circles has been obtained. We have discussed both C- and S-shaped curves. It is shown that
transition curve is a pair of two spirals. A S-shaped curve has no curvature extremum and a
C-shaped curve has a single curvature extremum. We simplified and completed the analysis of
Meek and Walton. Our scheme can generate a family of transition curves with less restrictive
constraints which are more flexible and hence most reasonable for practical use. The results
Jor the cubic curve are extended to PH quintic transition curves. A quintic is the lowest degree
PH curve that may have an inflection point with attractive properties that's arc-length is a
polynomial of its parameter, and its offset is rational. S- and C-shaped transition curves are
suitable in CAD applications like highway design, rounding corners, or for smooth transition
between two curves, e.g. two circular arcs.

1. Introduction

Parametric cubic curve segments are widely used in Computer Aided Geometric Design
(CAGD) and Computer Aided Design (CAD) applications because their flexibility makes
them suitable for use in the interactive design of curves and surfaces. Also they are the lowest
degree polynomial curves that allow inflection points (where curvature is zero), so they are
suitable for the composition of G? blending curves. The Bezier form of a parametric cubic
curve is usually used in CAD and CAGD applications because of its geometric and numerical
properties. Many authors have advocated their use in different applications like data fitting and
font designing.

Advances in Geometric Modeling. Edited by M. Sarfraz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-85937-7

134 Family of G? Spiral Transition

The importance of fair curves in the design process is well documented in the literature
{2, 5, 8,9, 11, 12-18]. Consumer products such as pingpong paddles can be designed by
blending circles. To be visually pleasing it is also desirable that the blend be fair. For applications
such as the design of highways or railways, it is also desirable that transitions be fair. In
the discussion about geometric design standards in AASHO (American Association of State
Highway officials), Hickerson [7, p. 17] states that “Sudden changes between curves of widely
different radii or between long tangents and sharp curves should be avoided by the use of
curves of gradually increasing or decreasing radii without at the same time introducing an
appearance of forced alignment”. The importance of this design feature is highlighted in [3]
which links vehicle accidents to inconsistency in highway geometric design.

Cubic curves, although smoother, are not always helpful since they may have unwanted
inflection points and singularities [4, 9, 10]. A cubic segment has the following undesirable
features:

¢ Its arc-length is the integral part of the square root of a polynomial of its parameter.
o [ts offsct is neither a polynomial, nor a rational algebraic function of its parameter.
¢ It may have more curavture extrema than necessary.

PH curves do not suffer from the first two of the aforementioned undesirable features. A quintic
is the lowest degree PH curve that may have an inflection point, as required for an S-shaped
transition curve. For application such as highway design, it is desirable that transitions G
are with a small number of curvature extrema. Spirals have several advantages of containing
neither inflection points and singularities nor curvature extrema [19]. Such curves are also very
useful for transition between two circles. The clothoid or Cornu spiral has been used in highway
design for many years [1, 6]. A major drawback in using this spiral is the fact that the highway
spiral currently used is neither polynomial nor rational. It is thus not easily incorporated in
CAD/CAM/CAGD packages that are manly based on NURBS (Non Uniform Rational B
Splines). Walton and Meek [18, 20] considered planar G? cubic and PH Quintic transition
between two circles with a fair Bezier curve. They showed there is no curvature extremum in
the case of an S-shaped transition, and there is a curvature extremum in the case of C-transition.
The constraints used by Walton and Meek are more restrictive than necessary. We not only
simplified and completed the analysis of Meek and Walton but also offered constraints which
are less restrictive, more reasonable and comfortable for practical applications. Also we found
constraints for PH quintic transition are more flexible than constraints for cubic transition.
The objectives of this chapter are:

¢ To simplify and complete the analysis of Walton and Meek [18, 20].

¢ To obtain a family of fair G? cubic and PH quintic transition curves between two non-
enclosing circles.

¢ To achieve more flexible and less restrictive constraints.

¢ To discuss and prove all the shape features of transition curve.

¢ To find the locus of the center of smaller circle.

¢ To compare PH quintic transition curve with cubic transition.

Our compact scheme also guarantees the absence of interior curvature extremum for an
S-shaped transition curve and one curvature extremum for an C-shaped transition curve. The

1. Introduction 135

problem of finding a fair parametric transition curve between two circles 2o, £2; with cen-
ters Cp, €, and radii ry, r; respectively may be solved in a Hermite-like manner, where r =
| €, — Coll. We consider the following problems:

® Forro +r; < r (the circles ;, i = 0, 1 do not intersect), find an S-shaped transition curve
from £ to ;.

® Forry — r; < r (the smaller circles £2,is not enclosed in the larger circle £2y), finda C-shaped
transition curve from Qg to ;.

In this chapter, ‘x’ stands for the two-dimensional cross product, (xo, ¥o) X (x1, Y1) = Xo¥y1 —
x1Yo and || || means the Euclidean norm. Then, for the planar curve z(¢t) (0 < ¢ < 1), its signed
curvature k(¢) and k’(¢) are given by:

k@) = @) x 27O/ 12 OIP (= ¢/ 12 OIP), (10.1)
w(t)(= KOIZEONP) = =30’ (1) - 2/ (O} + ¢’ OlIZ B> (10.2)

A spiral is a curve whose curvature does not change sign and whose curvature is monotone. G2
(Geometric continuity of second order) means continuity in position, in unit tangent, and in
signed curvature. A curve is said to match G? Hermite data if it passes from one given point to
another given point, if its unit tangent matches given unit tangents at the two given points, and
its signed curvature matches given signed curvatures at the two given points. The organization
of this chapter is as follows. In each case, this chapter treats the curve whose initial curvature
is positive. Without loss of generality, a shift and rotation enables us to assume that p, =
(0, 0) is the first point of transition curve lying on larger circle with center Cq = (0, ro); refer
to Figures 10.1-10.4. Two cases of an S-shaped and a C-shaped transition curves for both
cubic and PH quintic transition are now considered in the following sections. Sections 2 and 3
give a description of a method for cubic and PH quintic transition curves respectively. Critical
analysis and illustrative examples are then presented followed by the summary of this chapter.

P
P N
2 cl
A PZ Pa nl
r, Q, T
C,
r
Q
. > c,
r, P,
(8] N

Figure 10.1 An S-shaped cubic Bezier transition curve.

136 Family of G? Spiral Transition

5
?

Figure 10.4 A C-shaped PH quintic Bezier transition curve.

2. G? Cubic Transition 137

2. G? Cubic Transition

With r; = A%rg, 0 < A < 1, we use the cubic curve z(¢) (= (x(¢), y(¢))), 0 < ¢ < 1 of the form:
2(0) = i (3) pi(1 -1y, (10.3)
i=0 \!
with its derivative:
Z(@t) = zo(1 — 1) + 2z18(1 — 1) + 227, (10.4)
where:
zi =3Py —Pi)i=0,1,2 (10.5)

Letting T; = p; | — p;, define 6 to be the angle from Ty to T and y to be the angle from
Tito T, Asin [18], y = — 6 and y = @ are to be taken for the S- and C-shaped curves,
respectively. The two cases of the transition curves are now considered separately.

2.1. S-shaped Cubic Transition Curve
Here we consider an S-shaped transition curve z(¢) of the Equation 10.3. G? transition requires:
Lemma 1: With ug =2mrgotan 6 (0 <6 < n/2),

zo = uo(1, 0), z1 = muy(1, tan), z; = Aug(l, 0). (10.6)

Then we obtain the following theorem to guarantee a single cubic transition curve with mono-
tone decreasing curvature,

Theorem 1 (r > rg +r1): Assume that 1/6 < A < 1. Each value of m (> 2/3) determines
a G? cubic S-shaped transition curve of the form (10.3) with (10.6) between the two circles
with no curvature extremum. The curve with monotone decreasing curvature of positive and
negative signs is free of loops and cusps and has a single inflection point, i.e., it is a pair of two
spirals.

Proof: Note that the center C; of the smaller circle €2, is given by:
C1 = p; —ri(1,0) = (uo(1 + m + 1)/3, u3/(6ro) — roA?) . (10.7)
Since ||C; — Coll = r gives the determining equation f(p) = 0 in p(= u3/(4rd)) as:

F) = p* +{m*+ 201 + Mym —2(1 — A + AD)}p

10.8
-9 {r2 -1+ Az)zrg}/ (4r§) . ()

The above quadratic equation has a unique positive root since its constant term is
negative.

138 Family of G? Spiral Transition

Now, we note with p, ¢ >0, p # g,

{yA/A+ p)—y(1/A +gN}/(q - P)

2 3 3 2 2 (109)
= 6roug(1 + py (1 +q){p"+q9° + pg(3p +3q +10) + 3(p + q)}.

Since the right hand side of above equation is positive even when p = ¢, the curve is free
of loops and cusps. To show that the transition curve is a pair of spirals for m > 2/3, note
the relations (1) and (2). A symbolic manipulator Mathematica gives with ¢t = 1/(1 +), 0
<5 < 00 (from now on, we use this substitution).

ro(1 + p)*o(t) = u(s> — 1),

ro(1+ sYw(t) = —ug{suju(s) + 2rn(s)(s* + 2ms + 1)} (10.10)

where for 1/6 < A < landm > 2/3,
p) =3 —s2—As+32 >33 —s2—5+1/2>0, (10.11)
NE)= mu(s) = 2° — 24s% — 24s +A%)), (1012)

> (2/3){(6A — 1)s® + 5As + 3A(1 — A)} > 0.

Hence, k'(t) < 0 for 1/6 < A < 1, i.e., the transition is a curve with monotone decreasing
curvature and has a single inflection point. This completes the proof of Theorem 1.

Remark 1: Note (Equation 5) and refer to Figure 10.1 (the definition of 8) to get:
h(=|ip; — poll) = uo/3 = 2mrgtand)/3. (10.13)

Hence, a value of & = (4rg tan 8)/9 by Walton and Meek [18] is equivalent to m = 2/3. The
ratio of the larger to the smaller radii of the given circular arcs is constrained to be less than 36
while the ratio must be less than 9 in [18]. In addition, we note that the coefficient: 2r§(3m —-2)
of 52 (the highest term in the brackets of (Equation 1.10)) must be nonnegative for the spiral
transition curve. Therefore m > 2/3 is necessary and m = 2/3 means k'(0) = 0 since the
denominator is quintic in 5.

2.2. C-shaped Cubic Transition Curve

Here we consider a C-shaped transition curve z(¢) of the form (Equation (10.3)). Then G2
transition requires:

Lemma 2 With ug = 2mrotan 6 (0 < 6 < 7 /2),
zo = ug(1, 0), 21 = mug(l, tan), zo = Aug(cos 26, sin26). (10.14)
Then we obtain the following theorem.

Theorem 2 (r > ry — ry): Each value of m(= (1 + /1 + 31)/3(= m()))) determines a G*
cubic C-shaped transition curve of the form (10.3) with (10.14), between the two circles is a
cubic curve which is free of inflections, loops and cusps and has a single interior curvature

2. G? Cubic Transition 139

extremum. It is a pair of two spirals with monotone decreasing curvature and monotone
increasing curvature respectively.

Proof: Since C; = p; — r1 (sin 26, — co0s 20) (= (c, d)), a symbolic manipulator gives:

¢ = —roA?sin260 + 2mry/3)m + 1 + A cos 26) tan 6,

)) (10.15)
d = rgh” cos26 4+ (2mry/3)(m + A + A cos 26) tan” 6.

Conditions ||C — Cy|| = r gives the determining equation f(p) = 0in p (= tan? @) as:

fp) = 4m*rip® + 8m*ri{m + 1)(m — 1) + (1 + M)m — 1)}p?

+ [r2{4m* + 81 + A)m® — 8(1 — A + AHm? — 240(1 + \)m (10.16)

+9(1 + A%} - 9r?]p — 9{r* — ro(1 — A%V} '

Note that the constant term of f(p) is negative since the smaller circle 2, is not contained

in the larger one 2. Form > m()), Descartes’ rule of signs shows the unique of the positive

zero of the right hand side of f(p) since the signs of the coefficients of p', i = 3,2, 1,0 are
(+, + or 0, 2, —). The unique positive p determines 8 € (0, /2).

‘We examine the shape of the transition for m > m()) (> 2/3). First, consider the following
system of equations: pz'(0) + gz/(1) = Az (= z(1) —z(0)). Then:

_m +2cos? 6
T 6cos?8

_ m + 2xcos> 6

1/3
1/3), 61 cos2 6

(>1/3), (10.17)

from which the cubic curve is free of inflection points, loops and cusps [11]. Next, note Equation
(10.2) to obtain:

(1 4 p)w(0) = —64rgm*{m(3m — 2)p + 3m? — 2m — A} tan’ 6(< 0),

10.18
(1 4+ p)w(l) = 64rgm* A2 {m(3m — 20)p + 3m? — 2mA — A} tan’ 6(> 0). ()

In addition,

w'(t) = —d@BIZ"OI +42'(2) - 2P ON= —d@)Y (7). (10.19)
Use p = tan®6 to obtain:

(14 p)(1 + 5)*¢(t) = 8r2m?(2sA + m(s> + A)(1 + p)} tan’ 6 > O, (10.20)
(1 4 p)¥r(t) = 16r2m>p(at® + bt +), (10.21)

where

a =520+ pym — (1 +M)*+ (1 —1)%p] > 0,
b=—1022(1 + p)*m* —mB+ M1+ p)+ 1+ p + (1 — p)}, (10.22)
¢ =301+ py*m? —10(1 + p)m + 5(1 + p) + 27(1 — p).

Since w(0) < 0 and w(1) > 0, w(z) has a zero in I(= (0, 1)) if ¥(¢) has none or one zero

there. If ¥ () has two zeroes in 7, @ > 0 means v'(0) < 0. Then, w also has a zero in /. This
completes the proof of Theorem 2.

140 Family of G* Spiral Transition

Remark 2: Walton and Meek proposed a value of 2 = (2rg tan 6)/3 [18] which is equivalent
tom = 1since h = uy/3 = 2mrytan 8)/3.

3. G? PH Quintic Transition

With r; = A3rg, 0 < A < 1, we consider the PH quintic curve z(¢) (= (x(t), ¥(1))), 0 <t < 1
of the form:

z(t) = 2;: (f) p:(1 —1)*7'f, (10.23)
derivative of which is defined as:

Z(8) = (u(t)* — v(e)% 2u()u(D)), (10.24)
where

u(t) = uo(l —)% + 2uyt(1 — 1) + ust?,

10.25
v(t) = vo(1 — 1Y + 2vpt(1 — H+ vt ()

For Bezier points p;, 0 < i <5, the readers are referred to [20, p. 111]. Then, k'(z) is given by:

{t?(1) + VAOPK (1) = 2{u()" (1) — u” (O)v()Hu?(t) + v3(1)}

, , , , (10.26)
= 8{u()v'(1) — w' (OO Hu()u' () + v(OV (ON= 2w(2)).

Letting T; = p,,; — p;. define 6 to be the angle from T’y to T'; and y to be the angle from
T3 to T4. Asin [20], Ty|| T4 (note y = —@; refer to Lemma 3) and y = 6 are to be taken for
the S- and C-curves, respectively. The two cases of the transition curves are now considered
separately.

3.1. S-shaped PH Quintic Transition Curve

Here we consider an S-shaped transition curve z(z) of the form (10.23). Then G? transition
requires.

Lemma 3 For z; = (u;, v;), 0 < i < 2, the coefficients of u(t) and v(¢) by (Equation (10.25))
z0=1uo(1,0), z; =ug(m,ul/(4rp)), z2=ugr(1,0), (10.27)
where vg = v, = 0 gives 8 = —y.

Then we obtain the following theorem to guarantee a unique PH quintic transition curve with
monotone decreasing curvature.

Theorem 3 (r > rg + r1): Assume that 3/10 < A < 1. Each value of m (= 3/4) determines a
G? quintic S-shaped transition curve of the form (10.23) with (10.29) between the two circles
with no interior curvature extremum. It is free of loops and cusps and has a single inflection

3. G? PH Quintic Transition 141

point, i.e., it is a pair of two spirals with monotone decreasing curvature which changes its
sign from positive to negative.

Proof: First, note z(1) = (p, q),

4
p =i {—%" F82m2 +3m(1l 4 A)+3 4+ A+ 3A2)} /120,
0

. (10.28)
q = ug(4m 4+ 3 4 31)/(60ry).
With p = u$/(25r2) , the center C1 (= (c, d)) (= z(1) —r; (0, 1)) is given by:
¢ = ro/p{16m? + 240\ + Dm + 24207 4 8) + 24 — 25p}/24, (1029)
d =ro(20pm + 15pA + 150 — 120%)/12. '
ICo — C, |l = r gives the cubic determining equation f(p) = 0 where:
3 .
floy=>Y aip', (10.30)
i=0
with
a3 = 62512, a; = 100r3{8m? + 12(1 + A)m — 3% 4 141 — 3},
ay = 322 {8m* + 24(1 + \)m> + (42 + 44 + 420H)m? 1031)

—24(1 = 20 — 222 + A¥)m — 270% — 3323 4+ 3822 — 331 — 27},
ay = —=576{r* —rg(1 +2%y?}.
Since the signs of coefficients (as, a2, a;, ag) are (+, +, ?,), combine Descartes’ rule of sign
and intermediate value theorem to ensure that the above cubic equation has a unique positive
root.

Now we examine the shape of the transition curve. First, the second component y(z) of
z(t)(= (x(¢), y(1)) satisfies:

ro(1 4+ $)*y (1) = sup(s® +2ms + 1) (> 0), (10.32)

which implies that the curve is free of loops and cusps since ‘loop’ means z(a) = z(8), 0
<a < B <1,ie., y'(¢) has at least one zero and ‘cusp’ means 7'(¢) = O for some ¢ € (0, 1),
i.e., ¥'(t) has atleast one zero. Now we show that the transition curve has monotone decreasing
curvature. A symbolic manipulator Mathematica gives:

41 + sy’ w(t) = —125r2 p3[4n(s)(s® + 2ms + 1) + 25psu(s)], (10.33)

where for 3/10 <A < landm > 3/4:

3
uE) (=25 —s2 — s +20) > 283 —s?2 -5+ > 0, (10.34)

n(s)(= 2mu(s) — 3s> — 5a5% — 5hs + 322)),

10.35
=(10A —3)s> + TAs + 5+ 6A(1 —A) > 0 ()

142 Family of G? Spiral Transition

Hence, £'(t) < 0 for 3/10 < A < 1, i.e., the transition curve is a spiral whose curvature is
monotone decreasing and has a single inflection point. This completes the proof of Theorem 3.

Here we note that the coefficient 4(4m— 3) of s° (the highest term in the brackets of (Equation
10.33)) must be nonnegative for the spiral transition curve. Therefore, m > 3/4 is necessary
andm = 3 /4 means k’(0) = 0 since the numerator is quartic and the denominator is quintic in s.

3.2. C-shaped PH Quintic Transition Curve

Now we consider a C-shaped transition curve z(¢) of the form (10.23). Note that the angles
betweenp;, ~ p,_,andp;,, — p;, 1 <i <4areall §; refer to Figure 10.4. Letting p = tan® 6,
G? transition requires:

Lemma 4:

20 = 2/mrop'/*(1, 0), 21 = 2m/mrop'/*(1, \/P).

2. /mrop'/4A
2= 21— p.20),
1+p

(10.36)

Proof: Since the angle from Ty to T is 6, we obtain v; = u; tan 6. Slopes of T'3 and T,
are given by (uav) + u1v2)/(u1uz — V1v2) (= m3) and 2uzv2 /(13 — v2) (= my), respectively.
Therefore, note the angle from T3 to T4 is 6 to get (mgq — m3)/(1 +m3ymy) = tand, i.e.,

uivy — uavy = (12 +vyvp)tand, 10.37)

from which v; = u; tan 6 and v2 = u, tan 26. Next, note k(0) = 1 /rp and k(1) = 1/r, to obtain
U = “3 tan 9/(4r0), Uy = ugh cos 26.
Then we obtain the following theorem to guarantee a unique PH quintic transition curve.

Theorem 4 (r > rg — ry): Assume r < 15.37rq. refer to Figures 10.5-10.6. Then, each value
of m (€ [1, 3.22]) determines a G* quintic C-shaped transition curve of the form (10.23) with
(10.36) between the two circles with a single inteior curvature extremum. The curve is free of

Figure 10.5 Graphof y(m,A\)for0 <A <1,1 <m <3.

3. G? PH Quintic Transition 143

15 8
12.5
10 6
7.5 4
5
2
2.5
1.5 2 2.5 3 0.2 0.4 0.6 0.8 1

Figure 10.6 Graphs of ¥(m, 1) for 1< m < 3.2 (left) and (1, A) for 0 < A <1(right).

inflections, loops and cusps, i.e., it is a pair of two spirals with starting monotone decreasing
curvature and ending monotone increasing curvature.

Proof: Note:

B A=1+p)/p 1-6p+p°
C“””‘(T+p? ' (L+pP

_ (10.38)
(= Ds + rl(— sin 49, Ccos 49)).

A symbolic manipulator with C, = (c, d) gives:

151 + pYe = [2(1 — p)(1 — p)*m’ +3(1 + p){1 + p + A(1 — 3p)}m?

+ {31+ p)* + M1 — p*) + 3A%(1 — 6p + p*)}m — 150> (1 — p)lre/p,
15(1 + pY°d = ro[16(1 + p)’m>® +120(1 + p){1 + p +A(3 — p)hm?

+8xp{1 + p + 6A(1 — p)}m + 152%(1 — 6p + 6p2)]. (10.39)

Condition ||C; — Cy|| = r gives the determining equation f(p) = 0in p = u/(16rim?)) as:

5
Flo) = {r3/225(1 + p)»)} Y aip’ — 77, (10.40)
i=0

where the coefficients are given by:

as = 64mS, aq = 16m*{16m? + 12(1 + A)m — 312 — 14x — 3},
as = 8m2{48m* + 72(1 + A)m> + 6(5 — 21 + 52%)m?
—24(1 + 44X 4+ 402 + 2>ym — 27 + 330 + 3822 + 3323 — 2724},
ay = 256m® + 576(1 + Mm> + 48(13 + 101 + 132%)m*
—348(1 + A + A2+ A3m> — 16(27 + 451 + 10612 + 453
+27Am? — 24001 — 61 — 612 4+ A3)m + 225(—1 + 1*)?,
a; = 64m® + 192(1 + A)m> + 1621 + 22x + 210H)m*
—192(1 — 21 — 222 + A%Hm> — 8(27 + 1231 — 3822 + 1232°
+272Hm? — 2400(1 + 61 4+ 602 + A>)m + 450(1 + 61> + A5),
ag = 225(1 — A3)%.

(10.41)

144 Family of G? Spiral Transition

The intermediate value theorem assures the existence of the positive root since f(0) (= (r¢ —
r1)? — r?) <0, f(00) = o0o. To show the uniqueness of the positive root, note:

5
225(1 + p) f'(p) =815)_ bip', (10.42)
i=0

where using a nonnegative u(= m— 1) to show b; >0 (1 < i <5).If by > 0, then the positive
rootof f(p) = Oisunique.If by < 0, then f/(p) has a single positive zero where f'(p) changes
its sign from — to +. Therefore, f(0) < 0 and f(00) = oo mean the unique positive root of

flo)=0.

Now we examine the shape of the transition curve. First,

16mrop{2is + m(s> + A)(1 + p)}
A+ +p)

u(®Ov'(t) — ' (Ov() = (> 0), (10.43)

from which the curve is free of inflection points. Next, ‘cusps’ require z'(@) = 0,0 < @ < 1,
ie., u(a) = v(a) = 0. On the other hand:

(1 +)2 + p)v(e) = &/mrep>* (A + ms(1 + p)}(> 0), (10.44)
from which the curve is free of cusps. Thirdly, for no loops, note:
3 .
15(1 +5)°(1 + p)’y(t) = dmrop Za,-s'(> 0), (10.45)
i=0

wherea; > 0(0 <i < 3)as:

a3 = 30m(1 + p)?, az = 10(1 + p)(22 +m(3 + 4m)(1 + p)},
a; = 5(1 + p)[4m? + 3m + 9mA + 24 + m{dm + 3(1 — M)} p],
ag = 4m? + 3m + 9mr + 24 + 1222 + 2(4m? + 3m + 3ma

+ A — 6x)p + m{dm + 3(1 — L)} p%

(10.46)

If the curve had loops, at least twoa and 8 (0 <« # B < 1) would exist such that z(«) = z(8),
ie.,

x(@)/y(@) = x(B)/y(B). (10.47)

Therefore, for no loops, it suffices to show that x(#)/y(¢) is monotone decreasing or x'(#)y(t) —
x(1)y'(t) < 0. A symbolic manipulator gives:

32

2.2 6
XY = 2O () = — e TP 3 g, (1048)
=0

CI50+ ¥+ p)P 2

where coefficients b;, 0 < i < 6 are easily shown to be positive form > 1.

4. Numerical Examples and Critical Analysis 145

Finally, we show that the curve has a single curvature extremum. A symbolic manipulator
Mathematica gives:

5
(L+) + Y w(t) = ~64m*r2p*? Y " ais', (10.49)
=0

where a nonnegative u(= m— 1) shows¢; > 0,i =5,4,3, 0.
Descartes’ rule of signs implies that ¢; < 0 is a sufficient condition for the curvature to have
a single extremum, i.e., a local minimum where:

o = 4A(2m* — 12m* + A(13m — 3)
+ (6m® — 24m* + 14mA + 3A)p + m(6m® — 12m + A)p* + 2m>p%}. (10.50)

From now on, we assume that 1 < m < 3.22, where 3.22 is a necessary condition for the
following py to be positive for all A € (0, 1). Note that 2m> — 12m? + A(13m— 3) < 2m> —
12m? + 13m — 3 < 0 to obtain a sufficient condition for ¢; < 0:

0 < p < (—6m? + 12m — A + ¢(m, A))/(4m>)(= py), (10.51)

with:

¢(m,) = v/ —12m* + 48m3 + 4(36 — 25)m? — 48Am + A2. (10.52)

Hence, f(pg) > 0 gives a bound yr(m, A) for r/rg where Mathematica would give its explicit
form. This completes the proof of Theorem 4.

Figures 10.5 and 10.6 give the graphs of numerically determined upper bound ¥r(m, A) for
r/ro.

4. Numerical Examples and Critical Analysis

This section gives some numerical examples to assure our theoretical analysis. The figures
with P fixed on the larger circles show the effect of parameter m forrg = 1 where (71, r) = ro
(0.5, 2). In Figures 10.7-10.14, case m = 1 is shown with thick curves. Figures 10.7, 10.9 show
cubic S-shaped curves (m = 2/3, 1) and C-shaped curves (m = 1, 3/2) respectively. Similarly,

Figure 10.7 Family of cubic S-shaped transition (z(#),0 < ¢ < 1).

146 Family of G? Spiral Transition

1 0.2 0.4 0.6 0.8 1
0.5\ -2
0.2 0.4 > 0.8 T
-4
-0.5
-1 -6
-1.5
-8
-2
Figure 10.9 Family of cubic C-shaped transition (z(¢), 0 < ¢ < 1).
2 15
1.75
1.5 10
1.25
5
0.2 0.4 0.6 0.8 1
0.75
0.5 1
0.25

Figure 10.11 Family of PH quintic S-shaped transition (z(#),0 <t < 1).

4. Numerical Examples and Critical Analysis 147

1 0.2 0.4 0.6 0.8 1
0.5
-2
0.2 0.4 0.8 1
-0.5 -4
-1
-6
-1.5
-2 -8

Figure 10.12 Curvature plot (left) and its derivative plot (right) of z(r) in Figure 10.11.

Figure 10.13 Family of PH quintic C-shaped transition (z(f), 0 <z < 1).

12.5

1.75
10

1.5
7.5

1.25
5

1
2.5

0.75

0.5 [U8 . 0.6 0.8 1

-~2.5

0.2 0.4 0.6 0.8 1

Figure 10.14 Curvature plot (left) and its derivative plot (right) of z(r) in Figure 10.13.

Figures 10.11 and 10.13 show PH quintic S-shaped curves (m = 3/4, 1) and C-shaped curves
(m = 1, 4/3) respectively.

The cubic case is mathematically very simple when compared to PH quintic but from some
numerical results on the locus of the center of a smaller circle, we found PH quintic more
flexible than cubic transition. Locus of center of a smaller circle is a circular arc for both
S-type (Figure 10.15) and C-type (Figure 10.16) curves shown as a dotted thick arc. Its arc-
length for all possible values of m has been shown in Table 10.1 to show the flexibility
comparison between cubic and PH quintic transitions.

148 Family of G? Spiral Transition

Table 10.1 Arc-length (dotted thick circular arc in Figures 10.15
and 10.16) of locus of center of smaller circle.

Cubic transition PH quintic transition

S-shaped 1.187 (213 <m < o0) 1.54(3/4 < m < 00)
C-shaped 2.135(0.923 <m < o) 3356 (1<m <3.22)

(r0= 1,}‘1 =0.5,r=2)

R Ty

Figure 10.16 Locus of the center of smaller circle in C-case for cubic (left) and PH quintic (right).

Our constraints in cubic and PH quintic transitions are less restrictive than Walton and Meek
[18, 20] (see Table 10.2 for comparison). The tension control properties of m in cubic Bezier
transitions are demonstrated in Figures 10.17 and 10.18. The ends of S- and C-shaped curves
are shown with small circles and discs respectively.

4. Numerical Examples and Critical Analysis

149

Table 10.2 Comparison between our scheme and Walton and Meek’s [18, 20] scheme.

Our scheme ‘Walton and Meek scheme
Cubic S-shaped ro/r <36 ro/r1 <9
transition m>2/3 m=2/3
C-shaped m > (1++/14+3%)/3 m=1
PH quintic S-shaped ro/r1 < (10/3)* ~ 37 ro/r1 <8
transition m> 34 m= 3,
C-shaped r<1537n r<33np
1<m=<322 m=1

Figure 10.17 Vase profile with C-shaped: m = 1(left, middle, right) and both S-shaped: m = 2/3 (left),

2 (middle), 50 (right).

Figure 10.18 Vase profile with C-shaped: m = 2 (left), m = 50 (middle, right) and both S-shaped:
m = 2/3 (left, middle), 50 (right).

150 Family of G? Spiral Transition

5. Summary

The use of fair cubic Bezier and PH quintic curves for family of G? transitions between two
circles has been demonstrated. Such blending is often desirable in CAD, CAM and CAGD
applications. We not only completed the analysis of [18, 20], but also presented a very simple
scheme with the proof of all shape properties offering more flexible constraints. We also
guaranteed the absence of interior curvature extremum (i.e., spiral segment) in S- shaped and
a single curvature extremum (at which the curvature magnitude is a minimum) in C-shaped
for cubic and PH quintic transition curves.

Both cubic and PH quintic schemes presented in this chapter are important for users. Cubic
transition gives simple algorithm whereas PH quintic offers more flexibility than cubic (see
Table 10.1). The comparison in Table 10.2 shows that our constraints are less restrictive, more
reasonable and comfortable for practical applications. Due to this high flexibility in our scheme,
users can very effectively use m as a shape control parameter with wider range of radii and
distance between two circles. This is quite reasonable in practical applications and users do
not need to use intermediate circle which can be required in Meek and Walton’s scheme.

References

[1] Baass K. G. (1984) The use of clothoid templates in highway design. Transportation Forum 1, 47-52.

[2] Farin G. (1997) Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide. New York:
Academic Press 4th edition.

[3] Gibreel G. M., Easa S. M., Hassan Y. and El-Dimeery I. A, (1999) State of the art of highway geometric design
consistency. ASCE Journal of Transporation Engineering 125(4), 305-313.

[4] Habib Z. and Sakai M. (2002) G* two-point Hermite rational cubic interpolation. International Journal of
Computer Mathematics 79(11), 1225-1231.

[S] Habib Z. and Sarfraz M. (2001) A rational cubic spline for the visualization of convex data. Proceedings of
IEEE International Conference on Information Visualization-1V’0I-UK: IEEE Computer Society Press, USA,
744-748.

[6] Hartman P. (1957) The highway spiral for combining curves of different radii. Transactions of the American
Society of Civil Engineers 122, 389-409.

{71 Hickerson T. F. (1964) Route Location and Design. New York: McGraw-Hill.

[8] Hoschek J. and Lasser D. (1993) Fundamentals of Computer Aided Geometric Design (Translation by L. L.
Schumaker). MA: A. K. Peters, Wellesley.

[9] Sakai M. (1999) Inflection points and singularities on planar rational cubic curve segments, Computer Aided
Geometric Design 16, 149-156.

[10] Sakai M. (2001) Osculatory interpolation. Computer Aided Geometric Design 18, 739-750.

[11] Sakai M. and Usmani R. (1996) On fair parametric cubic splines. BIT 36, 359-377.

[12] Sarfraz M. (2003) Optimal curve fitting to digital data. International Journal of WSCG, Vol. 11(1).

[13] Sarfraz M. (2003) Curve fitting for large data using rational cubic splines. International Journal of Computers
and Their Applications, Vol. 10(3).

[14] Sarfraz M. and Razzak M. FE. A. (2003) A web based system to capture outlines of Arabic fonts International
Journal of Information Sciences, Elsevier Science Inc., Vol. 150(3—4), 177-193.

[15] Sarfraz M. (2003) Some algorithms for curve design and automatic outline capturing of images. To appear in
International Journal of Image and Graphics, World Scientific Publisher.

[16) Sarfraz, M. (2002) Visualization of positive and convex data by a rational cubic spline. International Journal of
Information Sciences, Elsevier Science Inc., Vol. 146(1-4), 239-254.

[17] Sarfraz M. (2002) Modelling for the visualization of monotone data. International Journal of Modelling and
Simulation, ACTA Press, Vol. 22(3), 176-185.

[18] Sarfraz M. and Razzak M. E. A. (2002) An algorithm for automatic capturing of font outlines. International
Journal of Computers & Graphics, Elsevier Science, Vol. 26(5), 795-804.

References 151

[19] Sarfraz M. (2002) Fitting curves to planar digital data. Proceedings of IEEE International Conference on Infor-
mation Visualization IV'02-UK: IEEE Computer Society Press, USA, 633-638.

{20] Sarfraz M. and Raza A. (2002) Visualization of data using genetic algorithm, Soft Computing and Industry:
Recent Applications, Eds.: Roy R., Koppen M., Ovaska S., Furuhashi T., and Hoffmann F,, ISBN: 1-85233-539-4,
Springer, 535-544.

{21] Sarfraz M. and Raza A. (2002) Towards automatic recognition of fonts using genetic approach, Recent Advances
in Computers, Computing, and Communications, Eds.: Mastorakis N. and Mladenov V., ISBN: 960-8052-62-9,
WSEAS Press, 290-295.

[22] Walton D. J. and Meek D. S. (1999) Planar G? transition between two circles with a fair cnbic Bezier curve.
Computer Aided Design 31, 857-866.

{23] Walton D. J. and Meek D. S. (2001) Cnrvature extrema of planar parametric polynomial cubic curves. Compu-
tational and Applied Mathematics 134, 69-83.

{24] Walton D. J. and Meek D. S. (2002) Planar G? transition with a fair Pythagorean hodograph quintic curve.
Computational and Applied Mathematics 138, 109-126.

11

Optimal Hierarchical Adaptive
Mesh Construction Using FCO
Sampling

Panagiotis A. Dafas

Department of Computing, School of Informatics, City University,
London EC1V OHB, United Kingdom.

Ioannis Kompatsiaris
Michael G. Strintzis

Informatics and Telematics Institute, 1st Km. Thermi — Panorama Road,
570 01 Thermi — Thessaloniki, Greece.

This chapter introduces an optimal hierarchical adaptive mesh construction algorithm using
the Face-Centered Orthorhombic lattice (FCQ) sampling, which is a natural extension of the
quincunx lattice to the 3-dimensional case. A scheme for construction of adaptive meshes is pre-
sented. Initially, a highly detailed and densely sampled regular mesh is obtained from geometry
scanning or from a non-optimal polygon mesh. The adaptive triangle mesh is constructed by
using fixed position vertices along with an efficient adaptive triangulation technique. The dec-
imation is based on FCO sampling and surface estimation filters. The result is a progressive
sequence of meshes consisting of more triangles wherever sharp edges exist and fewer in
uniform plane regions. Experimental results demonstrate the usage and performance of the
algorithm.

1. Introduction

Today we can accurately acquire finely detailed, arbitrary topology surfaces with millions
(and recently) billions of vertices. Such models place large strains on computation, storage,

Advances in Geometric Modeling. Edited by M. Sarfraz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-85937-7

154 Optimal Hierarchical Adaptive Mesh Construction

transmission and display resources. Thus, polygonal surface approximation is an essential
preprocessing step in applications such as scientific visualization [1], [2], digital terrain mod-
eling [3] and 3-D model-based video coding [4]. Compression is essential in these settings and
in particular progressive compression, where an early, coarse approximation can subsequently
be improved through the transmission of additional bits. While compression of images has
achieved a high level of sophistication, compression of surfaces is arelatively new area, which
is currently evolving.

Several progressive and adaptive triangle reduction techniques have been presented in the
literature [5-8]. Delaunay triangulation was used in [9], where a planarity criterion was used
to decide which vertices should be removed. Quadtrees [10] are adaptive data structures in
which planar shapes are recursively subdivided according to certain rules. Quadtree-based
methods [11] were mainty proposed for radiosity meshing, where the mesh was controlled by
the illumination gradient. In [12] the Restricted Quadtree Triangulation (RQT), an adaptive
hierarchical triangulation model, was first applied to terrain visualization. Its main contribution
was an efficient method for screen-space error metric calculation, and efficient scene culling
and vertex selection according to the error metric. In [13] two alternative vertex selection
algorithms based on RQT were proposed and a more intuitive triangle strip construction method
was provided. In [14] the binary tree of triangles was introduced and used for the design of
an incremental mesh optimization algorithm. In [15] an algorithm was presented seeking to
minimize an energy function explicitly modeling the competing requirements of conciseness
of representation and fidelity to the data. In [16] the Wavelet Transform (WT) was used as an
overall mathematical framework controlling the data approximation. It was assumed that the
WT provides a local spectral estimate of the data and describes local variations, which define
the coarseness of the surface mesh. After the simplification procedure, the resulting mesh is
coded for efficient transmission or storage. In [17] the geometry to be compressed is converted
into a generalized mesh form, which requires much less information, with little loss in quality.
However, the coding/compression scheme is not integrated with the simplification scheme.
For an excellent overview of 3-D geometry compression see [18].

Although the performance of the above algorithms has in many ways been quite satisfactory,
several persistent problems remain unresotved. Particularly troublesome are the high compu-
tational costs of local triangulation, due to the requirement of extensive work on data structures
and list management (as is often the case with Delaunay triangularization), and the lack of a
consistent hierarchical representation of the approximated surface, which is useful in many
applications [19], [20]. Compression is essential in these settings and in particular progressive
compression [21], [22], where an early, coarse approximation can subsequently be improved
through additional bits. In [23], progressive meshes are introduced, and complete correspon-
dence between vertices in different levels of the hierarchy is established, something that cannot
be easily achieved for triangles/faces at different levels. Improved results are obtained with
the use of the compressed progressive meshes approach introduced in [24]. The construction
of wavelets over arbitrary meshes has been also used for progressive compression [25].

In [26] the generalization of signal processing tools such as downsampling, upsampling and
filters to irregular connectivity triangle meshes was presented. In this chapter the generaliza-
tion of the well known and useful FCO subsampling interpolation scheme is presented [27],
[28]. This chapter introduces the optimal hierarchical adaptive mesh construction using FCO
sampling. The hierarchical representation of meshes achieved by the adaptive triangulation
method provides [29], [30]:

2. Regular Triangle Mesh Construction 155

¢ Mesh Compression: In order to represent accurate complex surfaces, a large number of
triangles are necessary. Hence, mesh compression is essential for efficient transmission and
storage.

¢ Mesh Simplification: The meshes created by modeling and scanning systems are seldom
optimized for rendering efficiency. These meshes can be replaced by almost indistinguishable
approximations, which have more triangles in regions of high detail and fewer in uniform
regions.

¢ Progressive Transmission: Progressive mesh transmission provides, during the transmission
state, low-detail mesh approximations. This is useful, for instance, in browsing through large
databases and in Internet-based applications.

¢ Prioritized transmission of the mesh: In addition to the hierarchy of meshes, each level in the
pyramid of meshes must be transmitted in a prioritized way. In this manner, the rendering
performance is optimized, even if the transmission is not entirely completed for each level
in the pyramid of meshes.

¢ Correspondence between successive scales: Straightforward correspondence between trian-
gles of successive levels allows properties of the mesh to be calculated at lower levels and
be propagated through the pyramid.

¢ Selective refinement: Sometimes it is desirable to adapt the level of refinement in selected
regions where the interest of the user is focused.

¢ Computational efficiency: The computational efficiency of the algorithm is important to
rapidly produce the required multiresolution representation.

This chapter is organized as follows. In the next section the construction of the initial dense
regular mesh is presented. In Section 3 the decimation of the dense mesh using FCO subsam-
pling and surface estimation filters is given. Experimental results demonstrate the efficiency
of the algorithm in section 4.

2. Regular Triangle Mesh Construction

Initially, a regular mesh is constructed at the highest detail level of our mesh hierarchy. This
regular mesh is obtained from unorganized points captured by three-dimensional range scan-
ning or from a non-optimal polygonal mesh. In both cases an appropriate discrete distance d
is chosen, depending on the application, and the surface is described by dense fixed position
vertices inside its bounding box. In this manner, the information of the surface is described by
a three dimensional binary sequence with region of definition the bounding box of the surface:

x[nl, n = [n1, n2, 1317, (11.1)

where [ny,n,,n3]7 denotes the position of the vertices in the 3D space and n; €
[Nimins - - - » Nimax] 15 as shown in Figure 11.1. The binary sequence x[r] in constructed in
the following way:

1 if n € surface,

xIn] = [O if m ¢ surface. (112)

The procedure for deriving this binary sequence from unorganized scanned points and
non-optimal meshes is described elsewhere.

156 Optimal Hierarchical Adaptive Mesh Construction

Figure 11.1 Bounding box of a 3D object.

2.1. Regular Mesh from Unorganized Points

The sequence in Equation (11.1) is obtained in a straightforward manner from the unorganized
points by simply selecting the appropriate resolution distance d and rounding all points to the
nearest value of an integer multiple of d. Specifically, if #; is a point from the set of unorganized
points, then the new points n; are:

n; = round (R;) = kd, (11.3)

where ||it; — kd|| < || — Id]], VI: integer # k.

2.2. Regular Mesh from Non-optimal Meshes

In this case the set of fixed position vertices will be constructed from an initial non-optimal
mesh defined by a set of 3D vertices and their interconnected triangles. For each 3D point n as
defined in Equation (11.1), a sequence x4, is found representing the distance of the 3D point
n from the surface of the model defined by the set of interconnected triangles. Each triangle
defines a plane with normal vector [a b ¢ d]7. For the estimation of xg[n] the closest
triangle to the point is used. Thus,

ang+ bny +cny+d

xdist["] = m (1 1'4)
The binary sequence (see Equation (11.1)) can be obtained as follows:
d
1 if rgln] < 121
x[n] = 11.5
[r] Wl (1L.5)

0 ifxd,-s,[n] > T

2. Regular Triangle Mesh Construction 157

By using the sequence x[r], a 3D point is part of x if its distance from the surface is less

than M
2

2.3. Surface Estimation

Since the set of fixed position 3D points describing the surface is available, an efficient trian-
gulation algorithm is applied in order to reconstruct the surface at the highest detail. A regular
triangle mesh will be constructed using only the vertices with coordinates (n;, ny, 73) of the
non-zero element of the x[n] sequence.

The FCO is a natural extension of the quincunx lattice to the 3D case, and is in fact quincunx
in all dimensions [27]. The FCO sampling matrix M is defined by [31].

1 0 1
M=|-1 -1 1]. (11.6)
0 -1 0

Three dimensional subsampling can be depicted as follows:
xk+1[n] = xi1[Mn] (1.7

where k denotes the stage of the subsampling procedure. In Figure 11.2 the FCO subsampling
procedure is presented. At each stage k, the points marked with k leave from the lattice
LAT(M*1) . Note that a finite power of the FCO sampling matrix is an integer multiple of
the identity matrix:

M3 =21 (11.8)

6 1 4

Figure 11.2 FCO subsampling. At each stage k the points marked with & leave from the lattice) LAT
(Mk—l)

158 Optimal Hierarchical Adaptive Mesh Construction

Figure 11.3 Possible triangulations using first order vertices.

The construction of the regular wireframe will be based on the the fixed position vertices and
the FCO sampling matrix and is implemented in the following three steps:

¢ Step 1: In this step the triangles shown in Figure 11.3 as well those resulting from rotations
of /2 rads around the axes are constructed. The nodes ‘0’ are retained from FCO sampling
of all nodes in the bounding box and nodes ‘1’ are first order neighbouring nodes, meaning
that they are only one vertex away from node ‘0’. Each time x{n] = 1 for ‘0’ and at least
one ‘1’ node the finite number of possible triangles as shown in Figure 11.3 are constructed.
In this step both vertical and horizontal surfaces are triangulated.

¢ Step 2: In this step the triangles shown in Figure 11.4 as well those resulting from rotations of
7 /2 rads around the axes are constructed. Again nodes ‘0’ are derived from FCO sampling
of the initial bounding box and nodes ‘2’ are used for triangulation. In this step oblique
surfaces are triangulated.

¢ Step 3: In this step the triangles shown in Figure 11.5 as well those resulting from rotations of
7 /2 rads around the axes are constructed. In this step first, second and third order neighbours
are used for triangulation.

The result of the triangulation procedure is a regular triangle mesh. Several examples of the
triangulation algorithm are given at the experimental results section. Note that in this phase
no nodes are discarded due to a FCO subsampling procedure. The FCO matrix is used only in
order to define the positions for triangulation.

Figure 11.4 Possible triangulations using first and second order vertices.

3. Initial Regular Mesh Decimation 159

Figure 11.5 Possible triangulations using first, second and third order vertices.

3. Initial Regular Mesh Decimation

Given the initial regular mesh construction as described in the previous section, the algorithm
generates successive lower density meshes consisting of more triangles wherever sharp edges
exist and fewer in uniform plane regions due to the use of the surface estimation filters.

At each stage k of the subsampling FCO procedure, the ‘surface estimation filters’
81(n), gr+1(m) and g, o(n) are applied to the surface in order to identify whether planar sur-
faces, which can be simplified, exist. Vertices of the triangular mesh, which belong on a planar
surface, are rejected according to the procedure described in the following. The surface estima-
tion filters represent an averaging procedure around each node and their output is used in order
to determine whether any planar surfaces of any orientation exist which are then simplified.
The gk, (7) is applied at stage k of the algorithm and #n; indicates the estimation of a planar
surface along the n; direction.

The information of the surface of the model is represented by the binary sequence with
non-zero values being the vertices of the triangular regular mesh. In the following relations,
function f;(n1, nz, n3) returns the coordinate a vertex if f;(n1, nz, n3)equals one for this vertex:
ni ifx(nl, na, n3) =1,

fi(ni, na, n3) = [(11.9)

0 ifx(n;,ny,n3)=0.

Each of the following relations is in fact an averaging of the neighboring to (n, nz, n3)
coordinates in different directions. In all summations i and j take values —d, +d.

Silni +i,n2,n3) + fi(ny,n2 +i,n3) + fi(ny, na, n3 + i)
x(nq +i,ng, n3) + x(n1, ng + i, n3) + x(ny, ng, n3 +i)
(11.10a)
falny + i, n2,m3) + fo(ny, np +i,n3) + falng, np,n3 +19)
x(ni +i,np, n3) + x(n1,np +i,n3) +x(ng, ng,n3 +i)
(11.10b)
f3n1 +i,n2,n3)+ f3(ni,nz + i, n3) + f3(ny, n,n3 +0)
x(n1+1i,n2,n3) + x(nq, 2 +i,n3) + x(ny,ng,n3 +i)
(11.10¢)

gk,nl(nh n29 n3) = Z

i

gk‘nz(nlv n27 n3) = Z
i

gk,ng(nh na, n3) = Z
i

160 Optimal Hierarchical Adaptive Mesh Construction

filmi + im0+ j,n3) + filni,na + j,n3 +1)

x(ny+i,na+ jom) +x(ming + jona+i)
(11.11a)

folni +i,n2+ j,n3)+ folmi,na + j,n3 +1)

x(ni+imy+ jon3) +x(ny,ny + jomy +i0)
(11.11b)

Bk+1,m (N1, N2, M3) = ZZ Bt hmtjm)t fsBum) ms4i)

i

Sktim (N1, n2, 13) = Z
j

i

gk+l,n2(nlv na, n3) = Z
J

i

x(ny +i,ny + jon3) +x(ni,no+ jony+i)

(11.11¢)

filni +i,na,ns + j)
mN1,n2,n3) = : i’ H-Az
gk+2,, (N1, N2, N3) ,Zj x(ni+i,nz,n3+ j) (!
frny +i, 03,034 j) (11.12b)

gk+2,n2(n’19 na, n3) = Z
]

i

ni+i,n,ny+j
Qoo i,y mz) = 3 3 Lt L s) (11.12¢)
i

x(ni+i,ny,n3+j)’

x(ny+i,ny,n3+ j)

For each stage k the following errors are estimated in order to be used for the determination
of any planar surfaces:

en, = fi(ni +ny +n3) — g n, (01, 0y, n3),
n, = f2(n1 4+ 12 4 13) — g, (n1, 12, 13), (11.13)
€r, = f3(n1 + ny 4 n3) — g, (n1, 02, 13).

These differences are an estimate of the surface roughness. More specifically:

¢ Point (ny, nz, n3) lies on a plane if:
€n = €n, =€y, =0, (11.14)
or,
€ny = €nyy€ny 0,
€n, = €n,, n, # 0, (11.15)

€ny = €nys ny F 0.

® Point (n1, na, n3) lies along on edge if:

en, =0,e,, #0,e,, #0,
en, =0,e, #0,en, #0, (11.16)
en, =0,e, #0,e, #0.

Using these differences point (n1, n2, 13) is rejected if it belongs to a plane or along an edge
since it carries no information. In this case, point (n;, n2, n3) belong to a uniform region that
can be represented with fewer and larger triangles.

An example of this operation can be presented with the help of the Figure 11.6. We assume
that all nodes lie on the same plane and that there are no nodes lying outside this plane in this

4. Experimental Results 161

Ny
I(n,, ny+d, ny)

(ny=d, ny, ny) Ny, Ny, N (ny+d, ny, ny)
1 29 1 {ny, Ny, ny)

N

T("v nz—d, ng)

Figure 11.6 Example of application of filter g, », (n, n2, n3).

region. In this case, filter g ,, (n1, 12, n3) is applied to node (n;, nz, n3):

n+d+n—d+n+n+0+0

. 11.16
T+1+1+1 i (11.16)

8k,n, (N1, N2, N3) =

fi(n1, na, n3 £ d) = O since we assume that there are no nodes lying outside this plane in this
region. If we perform the above operation for gk 5, (71, n2, n3) and gy ., (11, ny, n3) wWe reach:

en, =€p, =€pn, =0, (11.17)

indication that (n1, nz, n3) lies on a plane as is the case.

3.1. Hierarchical Triangulation

Every time that a vertex is rejected from the mesh the hierarchical triangulation algorithm
simplifies the mesh at this specific region. In this way the final mesh will have more triangles
wherever curve planes exist and fewer in uniform plane regions. The mesh simplification
procedure is shown in Figure 11.7.

4. Experimental Results

The proposed hierarchical adaptive triangulation algorithm of 3D surfaces was evaluated for
3D mesh adaptive representation of the surfaces ‘Sphinx’ and ‘Sphere’. The ‘Sphere’ surface
is the most difficult case for the presented algorithm since it contains no planar patches making
the task of adaptive triangulation very demanding. The original surfaces are shown in Figures
11.8a and 11.9a, respectively. The ‘Sphinx’ surface consists of 1919 vertices and 2832 triangles.
The ‘Sphere’ surface consists of 7170 vertices and 8592 triangles.

First the regular triangle mesh was constructed for each algorithm, using the methods pre-
sented in Section 2. For the construction of the regularly distributed vertices, the technique
presented in subsection 2.2 was used, since the input to the algorithm is a non-optimal mesh.
After this step, the set of fixed position 3D points describing the surface was available and the

162 Optimal Hierarchical Adaptive Mesh Construction

Figure 11.7 Stages of the hierarchical triangulation procedure for a plane region.

efficient triangulation algorithm presented in subsection 2.3 was applied in order to reconstruct
the surface at the highest detail. Finally, the algorithm generates successive lower density
meshes consisting of more triangles wherever sharp edges exist and fewer in uniform plane
regions due to the use of the surface estimation filters presented in Section 3.

In Figure 11.8b aregular mesh generated for the ‘Sphinx’ surface is shown. In Figures 11.9b
and 11.9c, a regular mesh with different value of the resolution parameters d is generated for
the surface ‘Sphere’. The mesh is still extremely good.

As a measure of the quality of the reconstructed surface, the Mean Square Error (MSE)
between the original and the reconstructed surface was calculated. In order to achieve a MSE
equal to 26.5 x 1073, for the ‘Sphinx’ surface, only 306 vertices and 514 triangles must be
used, resulting in a decimation ration of 1:5.8. For the ‘Sphere’ surface, for MSE = 0.126,
3162 vertices and 4165 triangles are needed, resulting to a decimation ratio of 1:2.03, These
experimental results are summarized in Table 11.1.

Figure 11.8 (a) Initial model ‘Sphinx’, (b) regular mesh of the ‘Sphinx’ with resolution parameter 4.

5. Summary

163

Table 11.1 Experimental results of the proposed scheme for
the model ‘Sphinx’ and ‘Sphere’. (M.S.E. = Mean

Square Error)

Sphinx Sphere
Initial Points 1919 7170
Initial Triangles 2832 8592
Transmitted Points 306 3162
Transmitted Triangles 514 4165
Compression Ration 5.8 2.03
M.S.E 26.5-1073 12.6-1072
Time 1.02 sec 8.94 sec
Bit Rare 14.4 Kbps 14.4 Kbps

Figure 11.9 (a) Initial model ‘Sphere’, (b) regular mesh of the ‘Sphere’ with resolution parameter d,
(c) regular mesh of the ‘Sphere’ with resolution parameter 2d.

S. Summary

In this chapter, an optimal hierarchical adaptive mesh construction algorithm using the FCO
sampling was presented. FCO is a natural extension of the quincunx lattice to the 3-dimensional
case. Initially, a highly detailed and densely sampled regular mesh is obtained from geometry
scanning or from a non-optimal polygon mesh. The adaptive triangle mesh is constructed
by using fixed position vertices along with an efficient adaptive triangulation technique. The
decimation is based on FCO sampling and surface estimation filters. The result is a progressive

164 Optimal Hierarchical Adaptive Mesh Construction

sequence of meshes consisting of more triangles wherever sharp edges exist and fewer in
uniform plane regions. The latter property is valuable when high quality progressive coding
is desired such as when browsing in large databases of 3D models, where a low-detail, high-
quality preview is usually required. This procedure extends from the finer to the coarser level,
until the desired detail of the mesh is reached. The resulting number of vertices is a measure of
the efficiency of the decimation procedure. As can be seen from the experimental results section,
the proposed algorithm achieves high decimation ratios, therefore the requirements introduced
in Section 1 number 1 and 2 are met. Progressive transmission properties can be clearly seen
from the presented results at different levels (requirements 3 and 4). Furthermore, precise
correspondence between triangles at each level is achieved resulting in a fully hierarchical
representation of the mesh (requirement 5). The triangulation mechanism results in an accurate
and parsimonious representation of the surface.

References

[1] G. M. Nielson, Modeling and Visualizing Volumetric and Surface-on-Surface Data. New York: Springer, 1993,
pp. 191-242.

[2] P. Heckbert and M. Garland, “Multiresolution modeling for fast rendering,” in Proc. Graphics Interface, 1994,
pp. 1-8.

[3] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hughes, N. Faust and G. Turner, “Real-time, continuous level of
detail rendering of height fields,” in Proc. SIGGRAPH '96 Conf., H. Rushmeier, Ed., New Orleans, LA, Aug.
4-9, 1996, pp. 109-118.

[4] L. Haibo, P. Roivanen and R. Forcheimer, “3-D motion estimation in modelbased facial image coding,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 15, pp. 545-555, June 1993. Commun., vol. 44, Jan. 1996, pp. 18-23.

[5] P. S. Heckbert and M. Garland, “Survey of polygonal surface simplification algorithms,” presented at the SIG-
GRAPH 97, Course Notes 25, 1997.

[6] P. Cignoni, C. Montani and R. Scopigno, “A comparison of mesh simplification algorithms,” Comput. Graph.,
vol. 22, no. 1, 1998, pp. 37-54.

[7]1 L. De Floriani, P. Marzano and E. Puppo, “Multiresolution models for topographic surface description,” Vis.
Comput., vol. 12, Aug. 1996, pp. 317-345.

[8] L. De Floriani and E. Puppo, “Hierarchical triangulation for multiresolution surface description,” ACM Trans.
Graph., vol. 14, no. 4, 1995, pp. 363411.

[91 W. J. Schrider, J. A, Zarge and W. E. Lorensen, “Decimation of triangular meshes,” in Proc. SIGGRAPH'92,
1992, pp. 65-70.

[10] R. Sivan and H. Samet, “Algorithms for constructing quadtree surface maps,” in Proc. S5th Int. Symp. Spatial
Data Handling, Aug. 1992, pp. 361-370.

[11] H. Samet, “The quadtree and related hierarchical data structures,” ACM Comput. Surv., vol. 16, 1984, pp. 187-260.

[12] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust and G. A. Turner, “Real-time, continuous level of
detail rendering of height fields,” in Proc. SIGGRAPH, 1996, pp. 109-118.

[13] R. Pajarola, “Large scale terrain visualization using the restricted quadtree triangulation,” in Proc. Visualization
’98, vol. 515, LosAlamitos, CA, 1998, pp. 19-26.

[14] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich and M. B. Mineev-Weinstein, “Roaming
terrain: Real-time optimally adapting meshes,” in Proc. Visualization, Los Alamitos, CA, 1997, pp. 81-88.

[15] H. Hoppe, T. DeRose, T. DuChamp, J. McDonald and and W. Stuetzle, “Mesh optimization,” presented at the
SIGGRAPH ’93, Anaheim, CA, Aug. 1993.

[16] M. Gross, O. Staadt and R. Gatti, “Efficient triangular surface approximations using wavelets and quadtree data
structures,” JEEE Trans. Visual. Comput. Graph., vol. 2, June 1996, pp. 130-143.

[17] M. E Deering, “Geometry compression,” in Proc. SSGGRAPH *95 Conf., R. Cook, Ed., Los Angeles, CA, Aug.
6-11, 1995, pp. 13-20.

[18] G. Taubin and J. Rossignac, “3D geometry compression,” in Proc. SIGGRAPH, 1999.

[19] William Horn Gabriel Taubin, Andre Geuziec and Francis Lazarus, “Progressive forest split compression,” in
SIGGRAPH 98. ACM SIGGRAPH, 1998, pp. 123-132, Addison Wesley.

References 165

[20] Oliver G. Staadt, Markus H. Gross and Roger Weber, “Multiresolution compression and reconstruction,” in IEEE
Visualization '97, Roni Yagel and Hans Hagen, Eds. IEEE, November 1997, pp. 337-346.

[21] A.Khodakovsky, P. Schrider and W. Sweldens, “Progressive geometry compression,” in Proc. SIGGRAPH 2000
Conf., 2000.

[22] C. L. Bajaj, V. Pascucci and G. Zhuang, “Progressive compression and transmission of arbitrary triangular
meshes,” in Proc. Visualization 99, Los Alamitos, CA, 1999, pp. 307-316.

[23] H. Hoppe, “Progressive meshes,” in Proc. SIGGRAPH 96 Conf., New Orleans, LA, Aug. 4-9, 1996, pp. 99-108.

[24] R. Pajarola and J. Rossignac, “Compressed progressive meshes,” IEEE Trans. Vis. Comput. Graph., vol. 6, Jan.
2000, pp. 79-93.

[25] D. Cohen-Or, D. Levin and O. Remez, “Progressive compression of arbitrary triangular meshes,” in Proc.
Visualization '99, Los Alamitos, CA, 1999, pp. 67-72.

[26] I. Guskov, W. Sweldens, P. Shroder, “Multiresolution Signal Processing for Meshes,” in Proc. SIGGRAPH ’99,
1999.

[27] D. Tzovaras and M. G. Strintzis, “Optimal Construction of Reduced Pyramids For Lossless And Progressive 3D
Volume Data Coding,” in IMDSP '98, Austria, Jun. 1998.

[28] Panagiotis Dafas, Ioannis Kompatsiaris and Michael G. Strintzis, “Optimal Hierarchical Adaptive Mesh Con-
struction Using FCO Sampling”, International Conference on Information Visualisation, London, England,
19-21 July 2000.

[29] I. Kompatsiaris, D. Tzovaras and M. G. Strintzis, “Hierarchical Representation and Coding of Surfaces using 3D
Polygon Meshes”, IEEE Trans. on Image Processing, vol 10, no. 8, August 2001.

[30] I.Kompatsiaris, D. Tzovaras and M. G. Strintzis, “Hierarchical Representation of Surfaces Using 3D Wireframes,”
in 8th International Conference in Central Europe on Computer Graphics, Visualization and Interactive Digital
Media '2000, Pizen, Chech Republic, February 2000.

[31] P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice-Hall, 1993.

12

Virtual Sculpting-A Boundary
Element Approach

Based on “Virtual Sculpting and Deformable Volume Modeling” K. C. Hui, H. C.
Leung. The proceedings of the 6th International Conference on Information
Visualisation 10-12 July 2002, London.

K. C. Hui and H. C. Leung

Department of Automation and Computer-Aided Engineering,
The Chinese University of Hong Kong, Shatin, Hong Kong.

Volume modeling techniques are capable of modeling objects with possible changes in topology
and are widely used in virtual sculpting. A common practice are to provide shape-editing tools
for adding or removing material from a volume model. However, sculpting may also involve the
constant volume deformation of a model (e.g. the deformation of a clay model). This usually
requires the use of physically based deformation techniques. One approach is to use the Finite
Element Modeling (FEM) technique. This requires generating solid meshes from the volume
data, which is a time consuming process. A modification in the volume data will require a
solid mesh to be regenerated for the deformation process. In this chapter, an approach based
on the Boundary Element Method (BEM) is discussed. The deformation is computed based on
the iso-surface of the volume data. This eliminates the need for generating solid mesh from
the volume data. By converting the deformed mesh to volume data, a deformed volume model
can be further manipulated with existing volume modeling techniques.

1. Introduction

Volume modeling is known to be a powerful technique for visualizing volumetric data
[1-4]. Techniques for deforming volume model extended the applications of volume modeling
for applications such as virtual sculpting, and the simulation of tissue responds in medical
applications. Galyan and Hughes [S] proposed using sculpting tools such as a toothpaste tube,
heat gun, and sandpaper for modifying the shape of a volume model. Wang and Kaufman [6]

Advances in Geometric Modeling. Edited by M. Sarfraz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-85937-7

168 Virtual Sculpting-A Boundary Element Approach

extended the method for voxels with attributes such as color and texture. Other works based
on the same approach have been reported [7, 8].

Early work in the modeling of elastic objects [9, 10] assumed the objects are represented as
superquadrics so that a grid generated on the surface of the object can be mapped to a volume
in the corresponding parametric space of the superquadrics. The grid can thus be used for the
computation of deformation. This approach can be applied for objects represented as volumes
in a parametric space, but may not be applied for objects in other representations. Gibson [11]
simulated the deformation of a volume model by assuming adjacent voxels to be connected with
springs. This produces good visual simulation of an elastic object but may not be applicable
when material properties of the object are to be considered. Recent work in this area employed
the finite element analysis technique for evaluating the deformation of tissue for medical
applications [12, 13, 14] as well as the animation of synthetic human [15], and product design
[16, 17]. A characteristic of the finite element technique is the requirement of a mesh that may
have to beregenerated ifthere is a change in object shape. A good survey of various techniques in
the deformation of objects can be found in [18]. In this chapter, the boundary element technique
is adopted. This eliminates the need for regenerating the solid mesh of an object whenever the
object is modified. By converting the mesh of a deformed object to a volume model, further
volume operations (e.g. engraving, gluing, etc) can be performed on the deformed object. This
gives a virtual sculpting system that allows physics based deformation of objects.

2. Physics Based Volume Modeling

A volume model is a representation of a closed object X defined with a function f : R* — R.
A point p is in the interior of the objectif f(p) > k, where k is a threshold value. A point p is
on X if f(p) =k, and out of X if f(p) < k. A volume model is a three dimensional grid of
points or voxels enclosing the object X. Values of the voxels are the function values f(p) so
that the voxels completely define the object X. The boundary of the object are the locations at
which f(p) = k, i.e. the iso-surface at f(p) = k.

Adjusting the function values of the voxels can deform a volume model. This allows oper-
ations such as cutting and gluing of material. However, an elastic deformation of the object
requires a physical model of the object satisfying the boundary conditions on the iso-surface
of the volume model. This corresponds to the forces or displacements on the isosurface of
the object. Denoting u as the displacement of a point p = (x, y, z) of the object, then the
equilibrium condition of the object is given by the Navier equation:

1 F
Via+ ——V(V-u)+— =0, (2.1
1-2v u

where 1 = (lli e and E, v are respectively the Young’s modulus and Poisson’s ratio of

the material used, F is the body force at p.

Various approaches have been developed for solving the Navier equation. The most popular
one is the FEM [19]. The finite element approach evaluates the displacement and forces at
the vertices of a mesh of solid elements approximating the object. Given a volume model,
this requires generating the mesh of solid elements from the volume data. An alternative is
to adopt the Boundary Element (BE) approach [20} in which the displacements and forces

4. Deforming the Object 169

are evaluated directly on a mesh of polygons approximating the surface of the object. Since a
triangular mesh of a volume model can be easily obtained using the Marching Cube method
[21], the BE approach can be directly applied to the iso-surface of a volume model.

3. The Boundary Element Approach

The BE approach expresses the displacement of a surface point p of an object in terms of
the fundament solution to Equation 12.1. Using tensor notations, and assuming there is no
body forces, t = (t,, ty, t,) is the traction (or force) at p, the boundary integral equation can be
expressed as:

ureﬁ+f5']}jujds=f5'Uijtde, (12.2)

where § is the surface of the object, T;;, U;; is a fundamental solution of Equation 12.1,
and U is the deformation at the reference point pes. U;;,T;; are the deformation and traction
respectively at p obtained with a unit load applied to an interior point pre¢ of an infinite domain.
Using a point on the boundary S as a reference point, Equation 12.2 is rewritten as:

C,'jumfj +fﬂjude=fUijtde, (12.3)
N M

where Cj; is a function of the reference point.

By approximating S with a set of node points, and applying each of the node points as
reference point in Equation 12.3, a set of linear equations relating # and ¢ can be obtained.
Denoting (u;x i, Ui;), (tix ty) as the deformation and traction at the ith node point,
then:

AU = BT, (12.4)
where U = [uo, uoy o, U1x U1y Uigeeonn. Upx Uny u,,Z]T,
T = [fox foy for tix ty Pigewooen tux tny tngll

A is a function of C;; and Tj;,
B is a function of Uj;.

4. Deforming the Object

Deformation is applied to a set of node points on §, while constraints are applied to selected
node points on §. Denoting Uy as the displacements of the nodes where the deformation is
applied, Uy, as the displacement of nodes to be determined, T as the traction at the free nodes,
and Ty is the traction to be determined, Equation 12.1 can be expressed as:

A Ao ||Uv | _|Bow Bn Tuil
Ap A || Ug By Bu || Tk |’

Since the traction at all free nodes are zero, i.e. Tx¢ = 0, hence,

AwUy + ApUg = By Ty,
AUy + AUx = BTy

170 Virtual Sculpting-A Boundary Element Approach

Eliminating Ty gives:
Uy = [Boo 'Ago — Bio 'A10] ' [Bio 'A1; — Boo 'Api] Uk, (12.5)

Given the constraints and deformations at certain nodes of the object, the displacement of the
other free nodes can be computed using Equation 12.5.

5. Converting Mesh Data to Volume Model

In order to allow volume operations on the deformed model, a surface model has to be converted
into a volume model before operations such as gluing and removal of voxels can be applied.
There are various approaches for converting object models to a volume model [22-24]. In this
chapter, a simple approach is adopted. Each voxel q is classified with respect to the deformed
object. The value of the voxel is 1 if q is in the object. Otherwise, the voxel is 0. This gives
a rough volume model of the object because of the discrete voxel values. The iso-surface
generated from these voxel values may consist of sharp jaggy corners. To obtain a smooth
iso-surface, a convolution process may be applied to the volume model.

A box and a Gaussian filter are adopted for the smoothing operation. These filters are
associated with a sculpting tool. By adjusting the size of the sculpting tool, the convolution
process can be applied to the whole or part of the volume model.

6. Addition and Removal of Material

Altering the voxel values in the workspace can perform addition and removal of material.
The same approach as stated in [5] is adopted. A sculpting tool specifies the region of the
workspace where material is to be attached or removed. Consider a sculpting tool defined
with a function g(x, y, z) < 0. In an operation for the addition of material, the value of the
voxels at locations satisfying g(x, ¥, z) < 0 are changed to 1. In a material removal operation,
voxels located in the intersection of the sculpting tool and the object (i.e. at locations where
glx,y,2) < 0N f(x, y, 2) < 0) are changed to 0.

7. Implementations and Results

A virtual sculpting system was implemented on a personal computer. Starting with a primitive
shape such as a sphere, cylinder, etc., a volume model is generated. A user is allowed to
remove voxels from the model using a spherical tool of which sizes can be adjusted. Figure
12.1a shows a volume model of a block. Figure 12.1b shows the tool position for a material
removal operation. The result of the material removal operation is shown in Figure 12.1c.
Similarly, voxels can be glued to the model by pointing to a location interactively (Figure
12.2). Figures 12.3 and 12.4 illustrate two engravings which are the result of applying the
removal and addition tools. Figure 12.5 shows the process of deforming a plate into a flower
like object. The center point at the bottom of the plate (Figure 12.5b) is fixed or constrained
in position. Deformations are applied to the corners of the plate. The flower (Figure 12.5d) is
obtained in three consecutive deformations.

7. Implementations and Results 171

Figure 12.1 Removing material from volume model: (a) a volume model of a block, (b) positioning
the removal tool, (c) result of the removal operation.

Figure 12.2 Adding material to a volume model: (a) Positioning the sculpting tool, (b) result of the
addition.

Figure 12.3 An engraving created with the Figure 12.4 An engraving created with the
removal tool. addition tool.

172 Virtual Sculpting-A Boundary Element Approach

Figure 12.5 Deformation of a volume model: (a) The undeformed plate, (b) first deformation, (c) second
deformation, (d) result before the smoothing operation, (e) result after the smoothing
operation.

Figure 12.6a shows a jar modeled by removing material from a cylindrical block. The handle
is created by adding material to the block. A deformation is applied to obtain the final shape
(Figure 12.6b) of the object.

8. Summary

Existing volume sculpting techniques usually allow materials to be added to or removed from
a volume model. However, a physics based deformation operation is essential for providing a
clay like deformation effect in a sculpting operation. In the proposed virtual sculpting system,
the boundary element technique is adopted for deforming a volume model. The boundary
element technique only requires the surface mesh of an object for evaluating the deformation

References 173

Figure 12.6 A jar model: (a) Model constructed by removing and adding material to a block, (b) the
final shape created by applying a deformation.

of an object. Since the boundary mesh of a volume model is readily available, boundary element
analysis can be directly applied to a volume model. In order to allow further volume operations
on the deformed volume model, the deformed surface mesh has to be converted into a volume
model. Although the time required for evaluating deformation increases with the mesh sizes,
experiments showed that a practical approach is to use a coarse model (model with fewer
triangles) for the deformation. The deformed object can then be smoothed to obtain the final
object at the required resolution.

Acknowledgement

This work is partially supported by a Direct Grant (ID 2050210) of the Chinese University of
Hong Kong.

References

[1] A Kaufman, Volume Visualization, IEEE Computer Society Press, Los Almitos, CA 1991.
[2] A Kaufman, D Cohen, R Yagel, “Volume graphics”, IEEE Computer, Yol. 26, No. 7, July 1993, pp. 51-64.

174 Virtual Sculpting-A Boundary Element Approach

[3] B Collins, “Data Visualization, Directions in Geometric Computing”, Edited by R Martin, Information Geometers,
1993, pp. 31-80.

[4] G M Nielson, P Brunet, M Gross, H Hagen, S V Klimenko, “Research issues in data modeling for scientific
visualization”, IEEE Computer Graphics and Applications, March, 1994, pp. 70~73.

[5] T A Galyean,] F Hughes, “Sculpting: An interactive volumetric modeling technique”, Computer Graphics, Vol.
25, No. 25, 1991, pp. 267-274.

[6] S Wang, A Kaufman, “Volume sculpting”, Proc. Symposium on Interactive 3D Graphics, ACM SIGGRAPH,
1995, pp. 151-156.

[7] I Fujishiro, Y Maeda, H Sato, Y Takeshima, “Interval volume: A solid fitting technique for volumetric data
display and analysis”, Proceedings of Visualization ‘95, Oct-Nov. 1995, pp. 151-158.

[8] E Ferley, M P Cani,] D Gascuel, “Practical volumetric sculpting”, The Visual Computer, Vol. 16, 2000, pp.
469—-480.

[91 D Terzopoulos, K Fleischer, “Deformable models”, The Visual Computer, Vol. 4, 1988, pp. 306-331.

[10] I Essa, S Sclaroff, A Pentland, “Physically based modelling for graphics and vision, Directions in Geometric
Computing”, Edited by R Martin, Information Geometers, 1993, pp. 161-196.

[11] S FF Gibson, “Beyond volume rendering: visualization, haptic exploration, physical modeling of voxel-based
objects”, Visualization in Scientific Computing '95, Proceedings of the Eurographics Workshop in Chia, Italy,
May 35, 1995, pp. 10-24.

[12] T Kunii, “Research issues in modeling complex object shapes”, IEEE Computer Graphics and Applications,
March, 1994, pp. 80-83.

[13] M Bro-Nielsen, S Cotin, “Real-time volumetric deformable models for surgery simulation using finite elements
and condensation”, Computer Graphics Forum, Vol. 15, No. 3, (Eurographics '96), 1996, pp. C57-C461.

[14] M Bro-Nielsen, “Modelling elasticity in solids using Active Cubes—Application to simulated operations”, Proc.
Computer Vision, Virtual Reality and Robotics in Medicine (CYRMed'95), 1995, pp. 535-541.

[15] J P Gourret, N M Thalmann, D Thalmann, “Simulation of object and human skin deformations in a grasping
task”, Proc. SIGGRAPH’89, 1989, pp. 21-30.

[16] H K Kang, A Kak, “Deforming virtual objects interactively in accordance with an elastic model”, Computer
Aided Design, Vol. 28, No. 4, 1995, pp. 251-262.

[17] K C Hui, N N Wong, “Hands on a virtually elastic object”, The Visual Computer, Vol. 18, No. 3, 2002, pp.
150-163.

[18] S F Gibson, B Mirtich, “A survey of deformable models in computer graphics”, Technical Report TR-97-19,
Mitsubishi Electric Research Laboratories, Cambridge, MA, November 1997.

[19] K J Bathe, Finite Element Procedures, Prentice Hall, 1996.

[20]1 A A Becker, The Boundary Element Method in Engineering — A complete course, McGraw-Hill, 1992.

[21] W E Lorensen, H E Cline, “Marching Cubes: A high resolution 3D surface construction algorithm”, Computer
Graphics, Vol. 21, No. 4, 1987, pp. 163-169.

[22] M W Jones, “The production of volume data from triangular meshes using voxelisation”, Computer Graphics
Forum, Vol. 15, No. 5, 1996, pp. 311-318.

[23] T Huang, R. Yagel, V Filippov, Y Kurzion, “An accurate method for voxelizing polygon meshes”, Proc. 1998
Volume Visualization Symposium, IEEE, Oct 1998, pp. 119-126.

[24] F Dachille 1X, A Kaufman, “Incremental Triangle Voxelization”, Proc. Graphics Interface 2000, May 2000, pp.
205-212.

13

Free Form Modeling Method
Based on Silhouette and
Boundary Lines

Jun Kamiya

Hideki Aoyama

Keio University, Department of System Design Engineering
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Japan.

In the initial process of exterior design of a product, designers often get the idea of a designing
product form as silhouette lines and boundary lines. Therefore, if the 3-D model is constructed
from silhouerte lines and boundary lines, designers will be significantly assisted in the process
of external form design. This chapter describes a system to construct a 3-D model with complex
curved surfaces from silhouette and boundary lines. The silhouette and boundary lines can
be easily given by a computer mouse or a tablet and are then approximated by cubic Bezier
curves linked with curvature continuity at the connected points. A Bezier surface is defined
fromthe four lines as the silhouette or the boundary by an originally developed algorithm. The
3-D model is then constructed by Bezier surfaces with curvature continuity on the connecting
lines. Since the system does not obstruct a designer’s thinking due to simple operations of the
system, designers can elaborate and confirm the idea by considering and examining the form
indicated by the system.

1. Introduction

It is not just the function which is becoming an important factor when a customer selects and
buys an industrial product as the external form is also important. External form design: style
design, is creative activity depending on a designer’s sensibility [1], [2]. Many Computer-Aided
Design (CAD) systems have been developed for modeling the form satisfying functions of a
product and they have served to increase design efficiency. However, there are very few systems

Advances in Geometric Modeling. Edited by M. Sarfraz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-85937-7

176 Free Form Modeling Method

for supporting design of the external form of a product because the current CAD systems hinder
a designer in getting an idea of an external form due to the complicated operations.

In the initial design process of the external form of a product, designers embody it from
the image and concept of the targeted product by silhouette and boundary lines. Therefore, if
a 3-D model is directly and easily constructed from such lines and the designed form can be
examined and evaluated, much support is given for design activity of an external form of a
product.

In this chapter, in order to support the design process of the external form of automobiles,
an algorithm is proposed to easily construct a 3-D model by the silhouette lines and boundary
lines given by a designer’s handwriting. The effectiveness of a system implemented according
to the proposed algorithm is examined.

2. Outline of Developed System

2.1. Silhouette Lines Representing Form Feature of An Automobile

The objective of this study is to develop a system to construct the 3-D model of an automobile
from the silhouette lines and boundary lines. Figure 13.1 shows the silhouette lines in the side
view of an automobile: the base line, shoulder line, roof line, front window line, rear window
line, face line, and tail line. The lines directly and obviously represent form features of an
automobile. Form expression of an automobile such as speed, stability, attractiveness, size
deluxe, and so on are typically determined by the silhouette lines. All types of automobiles
can be expressed by combining the silhouette lines.

2.2. Construction and Evaluation of An Automobile Model Form

The silhouette and boundary lines can be input into the developed system by writing with a
mouse or a tablet. The developed system constructs the 3-D model of an automobile from the
silhouette lines and boundary lines in the views from the four directions as shown in Figure 13.2.
The constructed model is presented to the designer and is evaluated with the views from various
directions. If the presented form does not satisfy a designer’s sensibility, the silhouette and
boundary lines are modified by input once more and another model is then re-formed. The
processes are repeated until a designer obtains a satisfactory form. In the process, the model

Figure 13.1 Silhouette lines in the side view of an automobile.

3. Processes of Model Construction 177

Figure 13.2 Silhouette and boundary lines to construct an automobile model.

can be evaluated with different colors, different scenes, and different types of light source.
Since the modeling processes are executed by very simple operations, the developed system
does not hinder designers in creating and embodying ideas.

3. Processes of Model Construction

Figure 13.3 shows the processes to construct a 3-D model from the silhouette and boundary
lines. In the following, the detailed procedure of each process is described.

Input silhouette and boundary lines

v

Construction of basic surfaces
from silhouette and boundary lines

!

Construction of connecting surfaces
between basic surfaces

!

Construction of 3-D model

Figure 13.3 Processes to construct 3-D model.

178 Free Form Modeling Method

Figure 13.4 Definition of silhouette boundary lines.

3.1. Input and Definition of Silhouette and Boundary Lines

The silhouette and boundary lines shown with lines in Figure 13.4 are defined by making
approximations with cubic Bézier equations from discrete point data shown with white circles
in this figure input by a mouse and a tablet. The approximated Bézier curves are evaluated
by the locus of the center of curvature as shown in Figure 13.5. Figure 13.5(a) shows the
locus of the center of curvature of the cubic Bézier curve directly approximated from the input
data. The cubic Bézier curve is modified according to the evaluation of the curvature locus.
Figure 13.5(b) shows the modified Bézier curve and its locus of the center of curvature.

The intersections shown with black circles in Figure 13.4 between the approximated Bézier
equations are then derived. The approximated cubic Bézier curves are fragmented with the
intersections and the control points to define each fragmented cubic Bézier curves are de-
rived. The derived control points of the fragmented Bézier curves are shown with triangles in

Figure 13.5 Evaluation of line shape by locus of curvature center.

3. Processes of Model Construction 179

Figure 13.6 Boundary lines to define surface.

Figure 13.4. Thus, a Bézier curve defined by two intersections and two control points shown
with the black circles and triangles in this figure respectively, plays a role as a boundary line
to define a basic surface.

3.2. Model Construction by Basic Surfaces

The following is the procedure to define basic surfaces of a model. Figure 13.6 shows the four
Bézier curves to restrict the boundary form of a surface. Each Bézier curve is defined by the
four control points shown with the circles in Figure 13.6 that are derived by the procedure
mentioned in Section 3.1. When a basic surface is defined by a cubic Bézier equation, another
four control points Py;, Py3, P33, and P3; shown with triangles in Figure 13.6 are needed for
the twelve control points Pog, Po;1, Poz, Po3, Pio, P13, P2o, P23, Py, P3y, Pi,, and P33. The four
control points Pyy, P13, P21, and Py, are derived by the Equations (13.1) and (13.2).

P3gc = Pyg + (Py — P3g) + (P31 — P3o) |
Pypa = P3g + (Pao — P30) + (P32 — P3o)
Poo: = Pog + (FPor — Poo) + (P20 — Poo)
Popa = Poo + (Poz — Poo) + (Pao — Poo)
Po3g = Po3 + (Poy — Po3) + (P13 — Po3)
Pran = Pra +(Py — Pp3) + (P13 — Po3)
n — Po3) + (P23 — Po3)
n = Po3) + (P — Fo3) |
o — Pio) + (P51 — Pa)
10 — P30) + (P32 — Pyo)
10 — P30) + (P31 — Pyo)
. 20— Pyo)+ (P2 — Py)
" 13— Pa3)+ (P31 — P33)
13— P33) + (P32 — P33)
13 — P33) + (P51 — P33)
13— P33)+ (P32 — P33) |

(13.1)

180 Free Form Modeling Method

Figure 13.7 Element points.

Pyu(u,v) =(1.0—v)- (1.0 — &) - Poog + u - Posg)
+v-((1.0 = u) - Psoq +u - P33a)
Plz(u, U) = (10 - ‘U) . ((10 — u) . PO()b +u- P[|3b)
+v-((1.0 — u) - Pyop +u - P33p)
Py(u,v) =(1.0—v)- (1.0 — u) - Pyoc +u - Py3.)
+v- ((10 - u) - P3UC +u- P33C)
Pyy(u, v) = (L0 —v)- ((1.0 — u) - Poog + u - Pza)
+v-((1.0—u)- Pyq +u- Pg)

(13.2)

In Equations (13.1) and (13.2), P;; means the position vector of the points P;;. As shown in
Figure 13.7, Pooa, Poos, Poocs Poods Posa, Poss» Poses Pozas Paoas Psos> Psocs Paoas P3aa P3abs
Py3., and P33, are the position vectors of points of the originally introduced element points.
And u and v are the parameters defining the Bézier surface.

A basic surface is defined with the position vectors of the twelve control points defining the
boundary lines and the position vectors of the four control points Py, Pi2, P2;, and Py, derived
by Equations (13.1) and (13.2) as a cubic Bézier surface by Equations (13.3) and (13.4).

When the silhouette and boundary lines shown in Figure 13.2 are given, the basic surfaces
are determined according to the procedure mentioned above

S(u, v) = [wo(u) wi(u) wo(u) ws(u)]
Py Py Pp Pp| | we()
Py Py P Pu||w(((13.3)
Py Py Py Pu| |wav)
Py Py Py Py | wi(v)
w® =1 -1 wy(t)=3t(1 - ,)2}

w () =321 -1 wst)=1 (13.4)

and the constructed model is shown in Figure 13.8.

4. Summary 181

Figure 13.8 Constructed model by basic surfaces.

3.3. Construction of Smooth Surfaces Between Basic Surfaces

As shown in Figure 13.8, the basic surfaces defined from the silhouette and boundary lines are
connected with only position continuity at the joined lines. In the next process, the developed
system makes surfaces connecting the basic surfaces with curvature continuity.

The borders of the basic surfaces are cut as shown in Figure 13.9(a). The cut widths
of the borders and the curvature of the connecting surface are determined by the required
roundness at the joined lines of the basic surfaces. New surfaces are then constructed at the
opening area between the basic surfaces by using the original surface equation [3], [4] as
shown in Figure 13.9(b). The original surfaces can easily make smooth connection: curva-
ture continuity, between the basic surfaces. Figure 13.10 shows an example of a constructed
3-D model.

4. Summary

This chapter summarized as follows:

(1) An easy 3-D modeling method using silhouette and boundary lines was proposed.

(2) The silhouette and boundary lines are easily given by writing using a mouse and a tablet
and are defined with cubic Bézier curves by approximation.

(3) The approximated silhouette and boundary lines are evaluated by the locus of the center
of curvature.

(4) Basic cubic Bézier surfaces are automatically defined from the silhouette and boundary
lines.

(5) New surfaces are constructed at the border area of the basic surfaces and make a smooth
connection between the basic surfaces.

The developed system can easily construct a 3-D model and can examine the form with various
view directions, colors and scenes.

182 Free Form Modeling Method

Figure 13.9 Construction of smooth surfaces between basic surfaces.

Figure 13.10 Constructed 3-D model.

References 183

References

[11 S. Yoshida, S. Miyazawa, T. Hoshino, T. Ozeki, J. Hasegawa, T. Yasuda, S. Yokoi: “Spatial Sketch System for Car
Styling Design”, International Archives of Photogrammetry and Remote Sensing, XXXIII, Part B5 (2000), 919.

[2] T. Harada: “Study of Quantitative Analysis of the Characteristics of a Curve, Forma, 12(1997), 55.

[3] H. Aoyama, 1. Inasaki, T. Kishinami, K. Yamazaki: “A New Method for Constructing a Software Model of
Sculptured Surfaces with C? Continuity from a Physical Model”, Advancement of Intelligent Production, Japan
Society for Precision Engineering, 1994, 7.

[4] M. Ota, H. Aoyama: “Aesthetic Design Based on KANSEI LANGUAGE", Initiatives of Precision Engineering at
the Beginning of a Millennium (10** International Conference on Precision Engineering (ICPE)), Japan Society
for Precision Engineering, 2001, 917,

14

Intuitive and Precise Solid
Modeling in A Virtual Reality
Environment

Yongmin Zhong

Wolfgang Miiller-Wittig

Centre for Advanced Media Technology, Department of Computer Engineering,
Nanyang Technological University, Nanyang Avenue, Singapore.

Weiyin Ma
Department of Manufacturing Engineering and Engineering Management,
City University of Hong Kong, Hong Kong, China.

This chapter presents an efficient approach for solid modeling in a Virtual Reality (VR) en-
vironment. A hierarchically structured constraint-based data model is developed to support
solid modeling in the VR environment. Solid modeling in the VR environment is precisely
performed in an intuitive manner through constraint-based manipulations. Constraint-based
manipulations are accompanied with automatic constraint recognition and precise constraint
satisfaction to establish the hierarchically structured constraintbased data model and are re-
alized by allowable motions for precise 3D interactions in the VR environment, The allowable
motions are represented as a mathematical matrix for conveniently deriving allowable mo-
tions from constraints. A procedure-based degree-of-freedom incorporation approach for 3D
constraint solving is presented for deriving the allowable motions. A rule-based constraint
recognition engine is developed for both constraint-based manipulations and implicitly incor-
porating constraints into the VR environment.

1. Introduction

Virtual Reality (VR) technology is regarded as a natural extension to 3D computer graphics
with advanced input and output devices. It brings a completely new environment to the CAD

Advances in Geometric Modeling. Edited by M. Sarfraz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-85937-7

186 Intuitive and Precise Solid Modeling

community. VR offers many advantages compared with traditional CAD. It provides intuitive
3D interaction, direct manipulation and 3D immersion. The use of VR enhances the user’s un-
derstanding of a virtual object. It helps to speed up the design process and permits a designer
to smoothly develop their concepts, thus fully developing their creativity. However, most of
the existing VR systems [8, 12, 17, 18] only offer very limited tools for solid modeling and
lack sophisticated modeling and modification tools for creating complex solid models in a VR
environment. Among others, the finite resolution of virtual objects without topological infor-
mation is not suitable for representing solid models for design purposes. The limited accuracy
and reliability of 3D input and output devices also prevents users from precise design activities.
This chapter presents an efficient approach for intuitive and precise solid modeling in a VR
environment. A hierarchically structured constraint-based data model is developed to support
solid modeling in the VR environment. The data model integrates a high-level constraint-based
model for precise object definition, a mid-level CSG/Brep hybrid solid model for hierarchical
geometry abstractions and object creation, and a low-level polygon model for real-time visu-
alization and interaction in the VR environment. Constraints are embedded in the solid model
and are organized at different levels to reflect the modeling process from features to parts.
Solid modeling in the VR environment is precisely performed in an intuitive manner through
constraint-based manipulations. Constraint-based manipulations are accompanied with auto-
matic constraint recognition and precise constraint satisfaction to establish the hierarchically
structured constraint-based data model and are realized by allowable motions for precise 3D
interactions in the VR environment. The allowable motions are represented as a mathemati-
cal matrix for conveniently deriving allowable motions from constraints. A procedure-based
Degree-Of-Freedom (DOF) incorporation approach for 3D constraint solving is presented for
deriving the allowable motions. A rule-based constraint recognition engine is developed for
both constraint-based manipulations and implicitly incorporating constraints into the VR envi-
ronment. A prototype system has been implemented for precise solid modeling in an intuitive
manner through constraint-based manipulations in the VR environment.

The use of VR for CAD is not totally new. In the area of 3D modeling, one of the earliest
systems was 3DM that allows users to interactively create simple geometric objects such as
cylinders and spheres in the VR environment [2]. 3DM includes several grid and snap functions.
It however lacks many other aids and constraints that are necessary to accomplish precise
modeling work. JDCAD also tackled many issues for interactive 3D object modeling [13].
Users could directly interact in 3D space using a 6-DOF input device. However, only simple
solids can be created in JDCAD. Fa et al. introduced some results on 3D objects placement [4].
Fernando et al. further extended these results into a shared virtual environment [S] and presented
a software architecture of a constraint-based virtual environment [6]. The most important
contribution of their method is the concept in constraining 3D direct manipulations through
the allowable motions of the object being manipulated for precise locations and operations.
However, only simple geometries and constraints are treated and simple solid models can be
created in the VR environment. Complex models are still created from CAD systems and then
are imported into the VR environment. Dani and Gadh [3] presented a COVIRDS system for
concept design in a VR environment. This system performs object modeling based on design
features and the geometric modeling kernel ACIS has been used for their development. The
precise interactions mainly rely on voice commands other than 3D direct manipulations. Stork
and Maidhof also reported some work on interactive and precise solid modeling using a 3D
input device [16]. Precise solid modeling is realized through 3D grids, grid snapping and

2. Hierarchically Structured Constraint-Based Data Model 187

discretized dimensions. Constraint-based interactions for feature-based modifications depend
on some pre-defined rules. Although precise solid modeling can be ensured, the constraint-
based interactions are too rigid for extensive use. Kiyokawa et al. also reported a two-handed
modeling environment VLEGO for efficient manipulations in the VR environment [11]. The
result was extended to a collaborative VR environment for object creation [12]. However, only
simple objects can be created in this system and complex models are created by placing some
simple objects together. Nishino reported some work on gesture-based 3D shape creation [15].
A 3D modeler is developed for creating complex shapes by combining the defined hand actions
while excluding any discussions on precise interactions. Gao reported a method on constraint-
based solid modeling in a VR environment [8]. In this method, the manipulations to a primitive
depend on some Shape Control Points (SCP) on the primitive other than the primitive itself and
a 3D mouse must be set to the SCP for manipulating the SCP. Furthermore, the SCP cannot
sufficiently reflect the natural behaviors of the geometric elements of a primitive. Therefore,
the interactions in the virtual environment are unintuitive and inconvenient.

We also reported some preliminary results on precise solid modeling in the VR environ-
ment [14, 19, 20]. Some results (in [14]) reported on creating assemblies with embedded
constraints between mating features through direct manipulations while [19] reported some
results on creating parts by features through direct manipulations. However, the details on
the model representation for supporting solid modeling in the VR environment, the constraint
solving approach for deriving constraint-based manipulations and the process of solid mod-
eling through constraint-based manipulations were not discussed in [14, 19]. A hierarchically
structured constraint-based data model for supporting solid modeling in the VR environment
was reported in [20] while the details on how to derive constraint-based manipulations from
the constraints in this model and how to establish this model through constraint-based manip-
ulations were not discussed.

This chapter is based on our previous work and presents the details on solid modeling in
the VR environment. Constraint-based manipulations are elaborated for precise solid model-
ing in the VR environment. A procedure-based DOF incorporation approach for solving 3D
constraints is presented for deriving the allowable motions. A rule-based constraint recog-
nition engine is developed for automatic constraint recognition. Furthermore, the details on
solid modeling through constraint-based manipulations and the establishment of the model
representation during the modeling process are also discussed.

2. Hierarchically Structured Constraint-Based Data Model

A fundamental problem for solid modeling in a virtual environment is model representation.
In the graphics and VR community, active research on model decimation, multi-resolution,
level-of-detail management and zone culling are currently being carried out [1, 9, 10]. Com-
paratively little research has been conducted for accommodating precise CAD models in a VR
environment [7]. If CAD formats were directly used in a VR environment, the online process-
ing time for visualizing a typical CAD model would make it impossible to interact in real-time.
The polygon model used in most VR systems provides the illusion of being immersed, but it
may not be able to precisely define the object geometry. The use of a high-resolution model
in a VR environment can increase model precision. The system may however not be able to
respond in real-time either. On the other hand, it is difficult to perform modeling because of the
lack of topological relationships and constraint information in the polygon model. Therefore,

188 Intuitive and Precise Solid Modeling

Figure 14.1 The hierarchically structured constraint-based data model.

it is necessary to develop a suitable model representation to support solid modeling in a VR
environment. The model representation not only needs to support real-time visualization and
interaction in a VR environment, but it also needs to support modeling activities as well as
reflect the modeling process.

A hierarchically structured constraint-based data model is presented to support solid model-
ing in the VR environment (Figure 14.1). This data model includes five levels of information,
i.e. parts, features, feature elements, geometric and topological relationships, and polygons.
The data model integrates a high-level constraint-based model for precise object definition,
a mid-level (Conlogical Solid Geometry/Boundary representation) CSG/Brep hybrid solid
model for hierarchical geometry abstractions and object creation, and a low-level polygon
model for real-time visualization and interaction in the VR environment. The information in
the high-level model used for modeling can be divided into two types, i.e. the object informa-
tion on the different levels and the constraint information on the different levels. The object
can be a part, a feature or a feature element. The constraints on each object level that sum-
marize the associativities between the individual objects on the same level not only provide
precise object definition, but also provide a convenient way to realize precise 3D interactions.
The mid-level solid model is the geometric and topological description of an object and is
represented as a CSG/Brep hybrid structure. It not only provides the geometric and topological
information of an object to support the hierarchical geometry abstractions and object creation,
but also provides a convenient way for interactive feature-based solid modeling. The low-level
polygon model provides the polygon data that corresponds to the mid-level Brep solid model
for real-time visualization and interaction in the VR environment. It describes each face in the
Brep model as a common array of vertices together with a connection list that defines each
facet as a set of indices into the array of vertices.

Constraints are embedded in the solid model and are organized at different levels to reflect
the modeling process from features to parts (Figure 14.2).

Level 1 is the feature-based part model representation. A part consists of features and the
constraints between these features. The constraints on this level represent the spatial position
relationships between the different features and they are called the external feature constraints.
An external feature constraint has one direction and this direction is dependent on those of the
external element constraints included in this external feature constraint.

Level 2 and Level 3 are the feature element based part model representations. The constraints
on Levels 2 and 3 are those between feature elements. Since an external feature constraint

2. Hierarchically Structured Constraint-Based Data Model 189

Figure 14.2 The hierarchical structure in the constraint-based model.

between features is difficult torepresent, we subdivide a feature into a set of feature elements and
the constraints between these feature elements. Correspondingly, an external feature constraint
on Level 1 is broken up into a set of constraints between the feature elements that individually
belong to different features.

The constraints on Level 2 represent the spatial position relationships between the feature
elements that individually belong to different features and they are called the external element
constraints. An external feature constraint on Level 1 is subdivided into a set of external element
constraints on this level. An external element constraint has one direction and this direction
points to the feature element that has been constrained. Typical external element constraints
include against, alignment and distance, etc.

Level 3 is the feature model representation. A feature consists of feature elements and the
constraints between these feature elements. The constraints on this level represent the spatial
position relationships between the feature elements that belong to a feature and they are called
the internal element constraints. The internal element constraints define the shape of a feature
and are non-directional. They can be further divided into internal element geometric constraints
and internal element topological constraints according to their properties. The internal elements
geometric constraints represent the spatial position relationships between the feature elements
that belong to a feature and are described as a face-based representation, such as parallel faces,

190 Intuitive and Precise Solid Modeling

perpendicular faces, distance faces and angular faces, etc. The internal element topological
constraints represent the topological relationships between the feature elements that belong to
a feature and are described as an edge-based representation, such as co-edge and cocircle.

The details on how to represent the objects and constraints at the different levels can be
found in [20].

3. Constraint-Based Manipulations

The framework of constraint-based manipulations is shown in Figure 14.3. For every object in
the VR environment, such as a feature element, a feature and a part, an event list is regarded
as the attribute of this object and is attached to this object. An action list is connected to every
event in the event list of the object. This action list shows the actions that will be done as soon
as the event occurs. The constraint-based manipulations are realized by these basic interactive
events and the actions being performed when these events occur. These basic interactive events
are attached to every object. Examples for the basic interactive events are the grasping event,

Figure 14.3 The framework of constraint-based manipulations.

3. Constraint-Based Manipulations 191

the moving event and the dropping event. An action for acquiring the current allowable motions
of an object is attached to the grasping event. An action for recognizing the constraints between
objects is attached to the moving event and the dropping event. As soon as the user grasps an
object, the grasping event occurs and the current allowable motions of this object are derived
from the hierarchically structured constraint-based data model through constraint solving. The
constraint-based manipulations are acquired by constraining the motions of 3D hands to the
allowable motions. This is done by transferring 3D motion data from the 3D input devices
into the allowable motions of the object. The constraint-based manipulations not only ensure
that the precise positions of an object can be obtained, but also guarantee that the existing
constraints will not be violated during future operations.

Once a constraint is recognized during the constraint recognition, it will be highlighted
and will await the user’s confirmation. Once it is confirmed, the recognized constraint will be
precisely satisfied under the current allowable motions of the object and will be inserted into
the constraint-based data model. The satisfied constraint will further restrict the subsequent
motions of the object.

3.1. Representation of Allowable Motions

The constraints between objects are implicitly created by the constraintbased manipulations
with automatic constraint recognition and precise constraint satisfaction. The newly created
constraint reduces the DOFs of the object being manipulated and implicitly provides a confine-
ment to the future operations applied to the object. The remaining DOFs define the allowable
motions of the object. The allowable motions explicitly describe the next possible operations
and ensure that future operations will not violate the existing constraints. The allowable mo-
tions are represented as a mathematical matrix for conveniently deriving the allowable motions
of an object from the constraints applied to this object.

Forevery object in free space, its configuration space has six DOFs: 3 translational DOFs and
3 rotational DOFs. To simplify the computation and to clarify the presentation of the allowable
motions, we divide the configuration space along three linear independent directions: X-axis,
Y-axis and Z-axis. Therefore, some basic DOFs, i.e. 3 translational DOFs and 3 rotational
DOFs can be obtained. Furthermore, the 3 basic translational or rotational DOFs are linear-
independent among each other. Any remaining DOFs used to define the allowable motions
can be described by these basic DOFs, therefore the allowable motions can be represented by
these basic DOFs as the following matrix:

X Txmin Txmax Rxmin R):ma.x
Ry max (14.1)

z Tz min Tz max Rz min Rz max

R
Ry Ty min Ty max Ry min
R

NS

where the first column elements T, T, and T, are the linear translations along X-axis, Y-axis
and Z-axis respectively and the second column elements R,, Ry and R, are the rotations about
the corresponding axis respectively. The values of these elements in the matrix are either 0
or 1. Integer 1 indicates that the motion is allowable in the direction along the corresponding
axis. Integer 0 indicates that the motion is not allowable in the corresponding axial direction.
The third and fourth column elements are the allowable ranges of the 3 translations, which
are defined by the minimum and maximum values of the 3 translations. For example, Ty nin

192 Intuitive and Precise Solid Modeling

and T .y are the minimum and maximum values of the translation along X-axis, The fifth
and sixth column elements are the allowable ranges of the 3 rotations, which are defined by
the minimum and maximum values of the 3 rotations. For example, min R, yin and Ry pax
are the minimum and maximum values of the rotation about the X-axis. If the translation or
rotation along some axis is not allowable, the corresponding minimum and maximum values are
Z€ero.

3.2. Constraint Solving for Deriving Allowable Motions

Since most constraints are geometric constraints and they are shown as the limitation of relative
geometric displacements between objects, i.e. the limitation of DOFs, the constraints applied to
an object can correspond to the DOFs of the object. In fact, the correspondence from constraints
to DOFs can be extended to the correspondence from a set of constraints to the incorporation
of DOFs. Therefore, the representaion of constraint relationships can be obtained by analyzing
and reasoning the DOFs of an object. Furthermore, constraint solving can also be regarded
as a process of analyzing and reasoning the DOFs of an object. Based on this, we present
a procedure-based DOF incorporation method for 3D constraint solving (Figure 14.4). This
method has an intuitive manner for constraint solving since it combines DOF analysis with 3D
direct manipulations in the VR environment.

As shown in Figure 14.4, the current allowable motions of an object are derived from the
current remaining DOFs of this object. The action of grasping an object is interpreted by
the constraint solver as requesting the current remaining DOFs of the object. The current
constraints applied to the object can be obtained from the hierarchically structured constraint-
based data model. Initially, the object is unconstrained and has six remaining DOFs, If there is
only one constraint applied to the object, the current remaining DOFs can be directly obtained
by DOF analysis. If there are multi-constraints (more than one) applied to the object, the current
remaining DOFs of the object can be obtained by DOF incorporation. The DOF incorporation
for solving multi-constraints is based on the DOF analysis for solving individual constraints.
Under the limitation of the current remaining DOFs determined by the current constraints, the
object aims to satisfy a new constraint recognized by the current constraint-based manipulations

g

e el

E

Figure 14.4 The procedure-based DOF incorporation method for constraint solving.

3. Constraint-Based Manipulations 193

Figure 14.5 The ‘against’ and ‘line-alignment’ constraints between two cylinders.

applied to the object. The new constraint is precisely satisfied under the current allowable
motions of the object and is further inserted into the hierarchically structured constraint-based
data model to update the current constraints applied to the object. The update of the current
constraints results in the update of the current remaining DOFs of the object and further results
in the update of the current allowable motions of the object. Finally, the constraint-based
manipulations applied to the object are updated correspondingly.

3.2.1 DOF Analysis

Since DOFs are divided into the 3 basic translational DOFs and the 3 basic rotational DOFs,
it is easy to connect a constraint with remaining DOFs by analyzing the remaining basic
translational and rotational DOFs that correspond to this constraint. On the other hand, the
allowable motion matrix introduced in Section 3.1 is described by the 3 basic translational DOFs
and the 3 basic rotational DOFs. Therefore, the allowable motion matrix that corresponds to a
constraint can be directly obtained by analyzing the remaining basic translational and rotational
DOFs that correspond to this constraint.

For example, if a small cylinder is placed on a big cylinder and they are also needed to be
axis-aligned (Figure 14.5), the constraints between two cylinders are the ‘against’ and ‘line-
alignment’ constraints. By DOF analysis, the allowable motion matrices that correspond to the
two individual constraints are (14.2) and (14.3) respectively.

1 0 —-100 100 0 O

01 o0 0 0 2x (14.2)
|1 0 -100 100 0 O |

[0 0 0O 0 0 07

1 1 —10.0 100 0 2x (14.3)
00 o 0 0 0]

Similarly, the allowable motions matrices that correspond to other individual constraints can
also be obtained by DOF analysis.

3.2.2 DOF Incorporation

The DOF incorporation is used to represent the remaining DOFs that correspond to multi-
constraints. It refers to the intersection within DOF of the allowable motions that corre-
spond to individual constraints respectively. The DOF incorporation can be divided into the

194 Intuitive and Precise Solid Modeling

incorporation of translational DOFs and the incorporation of rotational DOFs since transla-
tional and rotational DOFs are a closed set respectively.

Furthermore, any translational DOFs can be represented by the 3 basic translational DOFs
due to the linear independence of the 3 basic translational DOFs. Therefore, the incorporation
of translational DOFs can be further divided into the individual incorporations of the 3 basic
translational DOFs. Similarly, the incorporation of rotational DOFs can be further divided into
the individual incorporations of the 3 basic rotational DOFs. Accordingly, the DOF incorpora-
tion can be further regarded as the individual incorporations of the 3 basic translational DOFs
and the individual incorporations of the 3 basic rotational DOFs.

On the other hand, an allowable motion matrix is described by the 3 basic translational DOFs
and the 3 basic rotational DOFs. Therefore, the DOF incorporation can be finally represented
as the incorporation of the allowable motion matrices that correspond to individual constraints
respectively. The incorporation of the allowable motion matrices that correspond to individual
constraints respectively can be realized by the ‘AND’ Boolean operation of the allowable
motion matrices that correspond to individual constraints respectively. For example the ‘AND’
Boolean operations of the corresponding elements with the same position at the first and the
second columns and the intersections of the allowable ranges of the translations or rotations
along the same axis in the allowable motion matrices correspond to individual constraints
respectively.

In this way, the remaining DOFs of an object that correspond to multi-constraints can be
obtained and the allowable motion matrix that corresponds to multi-constraints can also be
acquired. For example, for the ‘against’ and ‘line-alignment’ constraints shown in Figure 14.5,
the allowable motion matrices that correspond to the two individual constraints are (14.2) and
(14.3) respectively. By DOF incorporation, the final allowable motion matrix that corresponds
to the two constraints is (14.4).

0 000O0 O
01000 2n (14.4)
000 0O0 O

3.3. Rule-Based Constraint Recognition

Constraints are implicitly incorporated into the VR environment by automatic constraint recog-
nition. Constraint recognition refers to the verification of the current positions and orienta-
tions between two objects to see if they satisfy a particular type of constraint within a given
tolerance.

The framework of constraint recognition is shown in Figure 14.6. While performing direct
manipulations, as soon as a moving event or a dropping event occurs, an automatic constraint
recognition process is triggered to detect all the possible constraints between the related ob-
jects. The system recognizes the constraints between objects from the current position and
orientation of the manipulated object according to a rule base. The rule base defines some of
the rules applied to the constraint recognition for recognizing some specified constraints (Table
14.1). The constraints include against, alignment, parallelism, perpendicularity and distance,
etc. If the current positions and orientations between two objects satisfy the conditions of
some constraint within the given tolerance, the correspondent constraint is recognized. Once
a constraint is recognized within the given tolerance, it is highlighted and awaits the user’s

3. Constraint-Based Manipulations 195

Figure 14.6 The framework of rule-based constraint recognition.

confirmation. If the object is further manipulated continuously within the given time, the cur-
rent recognized constraint is ignored and the constraint recognition is restarted. Otherwise, the
current recognized constraint is confirmed and the desired constraint is obtained. Furthermore,
a dynamic tolerance is adopted into the constraint recognition to improve the efficiency of
constraint recognition. If the desired constraint is not recognized within the given tolerance,
the tolerance is enlarged according to the given step until the desired constraint is recognized.

3.4. Some Special Constraint-Based Manipulations

To reduce the searching time for detecting various types of constraints from various objects
and to enhance the modeling efficiency, some special constraint-based manipulations are also
implemented as modeling operations for solid modeling in the VR environment. These oper-
ations include <placement>, <alignment>, <distance> and <insertion>. For each of the
operations, the constraint recognition process is triggered to detect a particular pair of elements
that satisfies some special constraint within the given tolerance.

The <placement> operation is responsible for locating an object relative to another object
and is used as the initial locating operation of an object. It refers to an action of placing one
object onto another object or placing two objects together. The constraint involved in this
operation is an ‘against’ constraint. If the recognized ‘against’ constraint is precisely satisfied,
the <placement> operation is stopped.

The <alignment> operation is responsible for locating an object relative to another object
and is used as the precise locating operation of an object. The constraint involved in this
operation is an ‘alignment’ constraint. The <alignment> operation can be classified into two
types according to the elements involved in it, i.e., <face-alignment> and <line-alignment>.

The <distance> operation is also responsible for locating an object relative to another
object and is used as the precise locating operation of an object. The constraint involved in

196 Intuitive and Precise Solid Modeling

Table 14.1 Some typical rules for constraint recognition.

Rules for detecting two against planar faces:

o Parallel: the product of the two unit normal vectors approaches to 0.0;

o Direction: the dot product of the two unit normal vectors approaches to 1.0;

o Close: the distance between a point on one facet to the projected point on the other facet is smaller
than a given tolerance;

e Overlapping: the project of one facet on the other facet is not zero.

Rules for detecting two aligning planar faces:

o Parallel: the product of the two unit normal vectors approaches to 0.0;

o Close: the distance between a point on one facet to the projected point on the other facet is smaller
than a given tolerance.

Rules for detecting two distance planar faces:

o Parallel: the product of the two unit normal vectors approaches to 0.0;

o Distance: calculate the distance between a point on one facet to the projected point on the other facet.

Rules for detecting two parallel lines:

o The praduct of the two unit vectors of the line segments approaches to 0.0.

Rules for detecting two perpendicular lines:

e The dat product of the two unit vectors of the line segments approaches to 0.0.

Rules for detecting two co-linear lines/axis:

o Parallel: the product of the two unit vectors of the line segments approaches to 0.0;

o Close: the distance between a point on one line to the projected point onto the other line is smaller
than a given tolerance.

Rules for detecting two distance lines/axis:

o Parallel: the dot product of the two unit vectors of the line segments approaches to 0.0;

o Distance: calculate the distance between a point on one line to the prajected point onto the other line.

Rules for detecting the face-linear distance:

e Parallel: the product between the unit normal vectors of the face and the unit vectors of the line
segment approaches to 0.0;

o Distance: calculate the distance between a point on one line to the projected point onto the face.

Rules for detecting two parallel faces:

o The product between the unit normal vectors of the two faces approaches to 0.0.

Rules for detecting two perpendicular faces:

o The dot product between the unit normal vectors of the two faces approaches to 0.0.

Rules for detecting two co-edge faces:

o Co-edge: all deviations between selected sample points on the two edges approach to 0.0,

Rules for detecting two co-circle faces:

o Co-circle: twao circles with the same orientation and dimension.

this operation is a ‘distance’ constraint. The <distance> operation can be classified into three
types according to the elements involved iniit, i.e., <face-face distance>, <line-line distance >
and <face-line distance>. The value of the distance is displayed nearby the object being
manipulated for the user to acquire the precise distance. A toolbox with cursor and displaying
number is also provided for the user to acquire the precise distance according to a given
step.

The operations mentioned before are responsible for the precise location of an object before
modeling and are called the locating operations. However, the <insertion> operation is used
for performing a specific modeling task and is responsible for determining the final position

4. Solid Modeling through Constraint-Based Manipulations 197

Figure 14.7 Resizing a feature primitive by constraint-based manipulations and a toolbox.

of an object. The basic motion of this operation is a translation. The constraint involved in the
insertion operation is a ‘face-alignment’ constraint.

4. Solid Modeling through Constraint-Based Manipulations

4.1. Creation and Modification of Feature Primitives

Feature primitives, such as blocks, spheres, cylinders and cones, are regarded as the basic
building blocks for solid modeling. A user can create a primitive through directly selecting the
icon of this primitive in a 3D menu by the laser beam emitted from the hands. When the iconofa
feature primitive is selected, the feature solid with standard sizes stands in 3D space. At the same
time, the corresponding feature elements and the internal element constraints between these
feature elements are established and stored in the hierarchically structured constraint-based
data model. A user can directly resize the feature solid through constraint-based manipulations
applied to the feature elements of the feature (see the left image in Figure 14.7).

The constraint-based manipulations are derived from the internal element geometric con-
straints applied to the feature element being manipulated. The actual dimensions of the feature
are dynamically displayed nearby the manipulated elements for a user’s reference. A user can
also resize the feature solid by changing the parameters of the feature through a toolbox (see
the right image in Figure 14.7). During the resizing process, the feature shape is dynamically
updated through solving the internal element topological constraints applied to the feature
element being manipulated.

4.2. Locating Feature Primitives

Feature primitives are located by some kinds of feature locating ways. These locating ways
are provided by the combinations of the locating operations introduced in Section 3.4. The
location of a feature primitive relative to other features in a part can be completely determined
by each of the locating ways. Some typical locating ways are:

¢ «one <placement> operation + two <face-face distance> operations»
® «one <placement> operation + two <face-alignment> operations»

198 Intuitive and Precise Solid Modeling

Figure 14.8 Two examples for locating feature primitives.

® «one <placement> operation + two <face-line distance> operations»

® «one <placement> operation + one <face-alignment> operation + one <face-face
distance> operation»

¢ «one <placement> operation + one <face-line distance> operation + one <line-line
distance> operation»

e «one one <placement> operation + one <line-alignment> operation»

Two examples for locating feature primitives are shown in Figure 14.8. The left image shows
that the small block is located by the locating way «one <placement> operation + two <face-
alignment> operations». The right image shows that the cylinder is located by the locating
way «one <placement> operation + one <line-alignment> operation».

4.3. Part Creation

The process of creating a part is that of establishing the external feature constraints between
the features that constitute this part. In fact, the process of creating a part is that of establishing
the external element constraints since an external feature constraint is represented as a set of
external element constraints.

A part is created by Boolean operations after a feature primitive is located. The feature
generated by the union operation directly inherits the constraints involved in the locating
operations and these constraints are also inserted into the hierarchically structured constraint-
based data model. For the Boolean subtraction operation, the <insertion> operation is used
to further determine the final position of the feature primitive before the Boolean subtraction.
Since the feature primitive is located by the selected locating way, the <insertion> operation
can be triggered after the constraint involved in the initial locating operation <placement>
is released. It means that the constraint involved in the <insertion> operation replaces the
constraint involved in the <placement> operation to further locate the feature primitive and
the corresponding constraints are directly inherited by the feature generated from the Boolean
subtraction. After Boolean operations, the system automatically checks if there are other newly
satisfied constraints between the generated feature and the reference features except for the
directly inherited constraints. The newly satisfied constraints are also inserted into the hier-
archically structured constraint-based data model. Figure 14.9 gives two parts that have been
intuitively created by precise constraint-based 3D direct manipulations in the VR environment.

5. Implementation 199

Figure 14.9 Two parts created by constraint-based manipulations in the VR environment.

4.4. Visual Cues for Constraint-Based Manipulations

Visual cues are given to a user to obtain the desired constraint-based manipulations during
the solid modeling process. This is done by visualizing the allowable motions of an object.
The allowable motions can be clearly visualized to convene a message to auser for obtaining the
desired constraint-based manipulations. As shown in Figure 14.10, a coordinate frame with a
set of allowable motion flags and other visual cues are used to display the allowable motion
information. The origin of the coordinate frame is located nearby the object being manipulated
and the three axes respectively represent the X-axis, Y-axis and Z-axis. The normal arrow at
the end of each axis indicates an allowable translation along the axis and the inverse arrow at
the end of each axis indicates an allowable rotation along the axis.

5. Implementation

A prototype system is implemented on the Division VR software based on a SGI Onyx2 graph-
ics workstation. In this system, a user can intuitively create solid models in the VR environ-
ment by precise constraint-based 3D direct manipulations. The system framework is shown in
Figure 14.11. The body actor communicated with other actors handles all aspects of user inter-
action. It receives and processes the information from the input actor, monitors and processes
the events and actions that happened in the VR environment and output the processed results
to the visual actor and the audio actor. A 3D mouse controlled by the input actor is mainly
used as the input device to carry out 3D manipulations. A six-degree-of-freedom head tracker

Figure 14.10 Visual cues for constraint-based manipulations.

200 Intuitive and Precise Solid Modeling

Figure 14.11 System framework.

and CrystalEyes shutter glasses controlled by the visual actor are used for stereo display. Two
sound blasters controlled by the audio actor are used for audio. The collide actor resides in
the system to detect the possible collisions between the objects in the VR environment. A
rule base and related algorithms for constraint processing are developed to support constraint
modeling. A feature library for providing some basic primitives is developed to support fea-
ture modeling. A geometric kernel ACIS is employed to support CAD-related operations.
The ACIS kernel is also employed to support polygon modeling through its triangulation
function.

For efficiently integrating CAD with VR, a triple database concept is adopted for solid
modeling in the VR environment. The variation in the DVS database is propagated into the
CSG/B-rep hybrid database to change the geometries of objects and further results in the
variation in the constraint database to change or maintain the constraints between objects. On
the other hand, the variation in the constraint database is propagated into the CSG/B-rep hybrid
database to change the geometries of objects and further results in the variation in the DVS
database.

6. Summary

This chapter presents an efficient approach for intuitive and precise solid modeling in a VR
environment. A hierarchically structured constraintbased data model is developed to support

References 201

solid modeling in the VR environment. The data model integrates a high-level constraint-based
model for precise object definition, a mid-level CSG/Brep hybrid solid model for hierarchical
geometry abstractions and object creation, and a low-level polygon model for real-time visu-
alization and interaction in the VR environment. Constraints are embedded in the solid model
and are organized at different levels to reflect the modeling process from features to parts.
Solid modeling in the VR environment is performed in an intuitive manner through precise
constraint-based manipulations. Constraint-based manipulations are accompanied with auto-
matic constraint recognition and precise constraint satisfaction to establish the hierarchically
structured constraintbased data model and are realized by allowable motions for precise 3D
interactions in the VR environment. The allowable motions are represented as a mathemati-
cal matrix for conveniently deriving allowable motions from constraints. A procedure-based
DOF incorporation approach for 3D constraint solving is presented for deriving the allowable
motions. A rulebased constraint recognition engine is developed for both constraint-based
manipulations and implicitly incorporating constraints into the VR environment. A proto-
type system has been implemented for precise solid modeling in an intuitive manner through
constraint-based manipulations in the VR environment.

References

[1] Andujar, C., Saona-Vazquez, C. and Navazo, 1. (2000) LOD visibility culling and occluder synthesis. Computer-
Aided Design, Vol. 32, No. 13, 773-783.

[2] Butterworth, J., Davidson, A., Hench, S. and Olano, T.M. (1992) 3DM: a three dimensional modeler using a
head-mounted display. ACM Computer Graphics: Proc. 1992 Symp. on Interactive 3D Graphics, Vol. 25, No. 2,
197-208.

[3] Dani, T. and Gadh, R. (1997) COVIRDS: Shape modeling in a virtual reality environment. ASME 1997 Computers
in Engineering Conference, Sacramento, California.

[4] Fa, M., Fernando, T. and Dew, PM. (1993) Interactive constraint-based solid modeling using allowable motion.
Proc. of 2nd ACM Symposium on Solid Modeling and Applications, Montreal, Canada, 243-252.

[5] Fernando, T., Dew, PM. and Fa, M. (1995) A shared virtual workspace for constraint-based solid modeling.
Virtual Environment’93: Selected papers of the Eurographics workshops in Barcelona, Spain, Springer Wien,
New York, 185-198.

[6] Fernando, T., Muttay, N., Tan, K. and Wimalaratne, P. (1999) Software architecutre for a constraint-based virtual
environment. Proceedings of the ACM Symposium on Virtual reality software and technology, London, UK,
147-154.

[7] Figueiredo, M. and Teixeira, J. (1994). Solid modeling as a framework in virtual environments. Proc. of the IFIP
WG 5.10 Workshops on Virtual Environments and Their Applications and Virtual Prototyping, Rix, J., Haas, S.
and Teixeira, J. (eds.), 99-112.

[8] Shuming, G. Wan, H. and Peng, Q. (2000) An approach to solid modeling in a semi-immersive virtual environ-
ment. Computer & Graphics, No 24, 191-202.

[9] Gobbetti, E. and Bouvier, E. (2000) Time-critical multiresolution rendering of large complex models. Computer-
Aided Design, Vol. 32, No. 13, 785-803.

[10] Kahler, K., Rossl, C., Schaeider, R., Vorsatz, J. and Seidel, H.-P. (2001) Efficient processing of large 3D meshes.
Proc. of International Conference on Shape Modeling and Applications, Genova, Italy, 228-237.

[11] Kiyokawa, K., Takemura, H. and Katayama, Y. (1998) VLEGO: A simple two-handed 3D modeler in a virtual
environment. Eletronics and Communications in Japan, Part 3, Vol. 8, No. 11, 1517-1526.

[12] Kiyokawa, K., Takemura, H. and Yokoya, N. (2000) SeamlessDesign for 3D object creation. IEEE Multimedia,
No.l1, Vol. 7, 22-33,

[13] Liang, J. and Green, M. (1994) JDCAD: a highly interactive 3D modeling system. Computer & Graphics, Vol.
18, No. 4, 499-506.

[14] Ma, W., Tso, S.-K. and Zhong, Y. (1998) Constraint-based modeling in a virtual environment. Proc. of CIRP
Design Seminar on New Tools and Workflows for Product Development, Berlin, 221-232.

202 Intuitive and Precise Solid Modeling

[15] Nishino, H., Fushimi, M. and Utssumiya, K. (1999) A virtual environment for modeling 3D obejcts through
spatial interaction. 1999 IEEE International Conference on Systems, Man, and Cybernetics, Oita University,
Japan, 81-86.

[16] Stork, A. and Maidhof, M. (1997) Efficient and precise solid modeling using a 3D input device. Proc. of Fourth
Symposium on Soild Modeling and Applications, Altanta, 181-194.

[17] Tan, J., Liu, Z. and Zhang, S. (2001) Intelligent assembly modeling based on semantics knowledge in virtual
environment. The Sixth International Conference on Computer Supported Cooperative Work in Design, London,
Ontario, Canada, 568-571.

[18] Whyte, J., Bouchlaghem, N., Thorpe, A. and McCaffer, R. (2000) From CAD to virtual reality: modeling
approaches, data exchange and interactive 3D building design tools. Automation in Construction, No.10, 43-55.

[19] Zhong, Y., Yang, H. and Ma, W. (1999) A constraint-based approach for intuitive and precise solid modeling
in a virtual reality environment. The Sixth International Conference on Computer Aided Design & Computer
Graphics, Shanghai, China, 1164-1171.

[20] Zhong, Y., Mueller-Wittig, W. and Ma, W. (2002) A model representation for solid modeling in a virtual reality
environment. IEEE International Conference on Shape Modeling and Applications, Banff, Alberta, Canada,
183-190.

15

Efficient Simplification of
Triangular Meshes

Muhammad Hussain

Yoshihiro Okada

Koichi Niijima

Graduate School of Information Science and Electrical Engineering,
Kyushu University, 6-1, Kasuga-koen, Kasuga, Fukuoka 816, Japan.

We have proposed a new edge collapse simplification algorithm that can efficiently produce
high quality approximations of closed manifold surface models. To reduce the number of
triangular faces in a polygonal model, a sequence of edge collapses is performed and to
choose the appropriate sequence of edge collapses, we have introduced a new error metric
based on a quantity proportional to the volume of a tetrahedron. Our proposed algorithm
is simple, fast and memory efficient and can efficiently reduce very large polygonal surface
models. Moreover, simplified models created using our method preserve the essential features
of a model and compare favorably with many well-known published simplification techniques
in terms of maximum geometric error and mean geometric error and bear high visual reliability
even after significant simplification.

1. Introduction

A polygonal surface model M consists of a fixed set of vertices V = {vg, v(, v2, ..., v} anda
fixed set of faces F = { fy, fi, f2. ..., fa}. Without loss of generality, we can assume that the
faces constituting the surface model are triangular. The objective of polygonal simplification
is to produce a simplification M’ of an original model M such that M’ contains fewer polygons
than M and is as similar as possible to M. Advanced technological systems such as laser range
scanners, computer vision systems, medical imaging devices, and CAD systems have given
rise to vast databases of polygonal surface models which are often very complex and highly
detailed. Models consisting of millions of polygons are commonplace. Different areas like

Advances in Geometric Modeling. Edited by M. Sarfraz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-85937-7

204 Efficient Simplification of Triangular Meshes

Figure 15.1 In an edge collapse operation, edge e, will be substituted with vertex v and triangles ¢,
and 7, will be eliminated.

distributed virtual environments and finite element methods involve such models and require
them to be simplified to achieve acceptable running times. In recent years, the polygonal
simplification problem attracted the attention of researchers and many algorithms have been
developed. One of the major goals of research in this area involves computing a multiresolution
model, a surface representation which can accommodate a wide range of viewing contexts, of
an object.

Among various approaches to polygonal simplification, edge collapse based techniques
have emerged as the most popular one. Edge collapse operation is attractive because it allows
us to position the new vertex in a manner that helps preserve the location and shape of the
original surface, and does not need the invocation of a triangular algorithm. One of the earliest
algorithms based on this approach was proposed by Hoppe et al. [7] and it provides a foundation
for most existing simplification algorithms of this category. An algorithm belonging to this
class usually involves two ingredients: edge collapse operation, a topological operation to
modify the topology of a surface model, and an error metric which reflects the error measure
between the simplification and the original model. To be specific an edge collapse operation
substitutes two end vertices of an edge with a single vertex, thereby eliminating the collapsed
edge and its incident triangles, see Figure 15.1.

The general edge collapse algorithm has two decisions to make: where to place the substitute
vertex resulting from an edge collapse operation, and choosing the order of edges to collapse
using appropriate error measure. Existing edge collapse algorithms differ only in making these
two decisions. As far as the positioning of the substitute vertex is concerned, two approaches
are in common use: subset placement or half-edge collapse, and optimal placement. Subset
placement causes one of the endpoints to be selected as the target position and is the simplest
strategy one can adopt. In optimal placement, the position of the substitute vertex is allowed to
float freely in space in order to minimize some error metric. In our algorithm, we have opted
for subset placement because it results in a more concise representation of polygonal surface
model which is useful for progressive compression as well as for view-dependent dynamic
level of detail management. To determine the sequence of edge collapses, we have proposed
an error metric defined using the area measure swept out by an edge when an edge collapse
operation is applied, weighted by the angle between the old and new positions of an adjacent
triangular face.

2. Related Work 205

The subsequent arrangement of this chapter is as follows. In Section 2, we give an overview
of related edge collapse algorithms. Notation and terminology adopted throughout is presented
in Section 3. Section 4 gives an overview of our simplification method. Error metric used in our
method has been detailed in Section 5. Sections 6 deals with quality check respectively. Results
of our simplification algorithm have been reported in Section 7 and Section 8 concludes the
chapter.

2. Related Work

In this section, we give an overview of some of the related edge collapse algorithms. During
last few years many researchers have had an interest in developing algorithms of this type due
to the simplicity and effectiveness of this approach. The basic differentiating factor among
different algorithms of this kind is how to define an error metric reflecting the error introduced
when an edge collapse occurs.

Some authors have defined error metrics based on an elaborate measure of error to decide
the order in which the edges will be collapsed . For example, the progressive mesh of Hoppe
[7] uses an error metric that is defined as the average distance from the proposed new triangles
in the mesh to a set of sample points on the original model. The distance to the sample
points is also used to define a quadratic energy functional which is minimized to select a new
vertex position. This algorithm produces high quality results, but several distance-to-surface
measurements make it quite slow. Simplification of a very large model might take several
hours. Gueziec [5, 6] defines a tolerance volume as a convex combination of spheres located
at each vertex of the simplification. He selects edges based on shortest edge length and then
chooses a new vertex position such that the original surface is guaranteed to lie within that
volume. This algorithm also produces good quality results, and appears to be slow, but it is
faster than Hoppe’s [7].

Another common and generally less expensive approach is to define error metric using
local surface properties. Ronfard and Rossignac [13] assign to each vertex the set of planes
associated with its incident triangles. As aresult of one edge collapse operation, two vertices are
merged into one and the new vertex inherits the planes of the merged vertices. The maximum
distance from the new vertex to its supporting planes is used as an error metric to measure
the edge collapse cost. Garland and Heckbert [4] used this work as the starting point of their
own simplification algorithm. Instead of maintaining a list of planes, they measure the squared
distance from the collection of planes associated with triangles incident on a vertex and store
them as a symmetric 4 x4 matrix, one matrix per vertex. This error metric called quadric
error metric is used both to select the new vertex position and the edge to collapse. While
their approach is fast and gives high quality approximations, it is not memory efficient. For
each vertex it stores ten floats and for a polygonal model consisting of some million polygons
a very large amount of memory is occupied. The memoryless algorithm recently developed
by Lindstrom and Turk [8, 9] uses linear constraints, based primarily on the conservation of
volume, to decide the edge collapse sequence and the position of the new vertex. The most
interesting aspect of this algorithm is that it makes decisions based purely on the current
approximation alone; all other mentioned algorithms keep track of some kind of geometric
history. It produces good quality simplifications and is fairly efficient, particularly in memory
consumption. But it is rather slow when compared to that by Garland and Heckbert [4].

206 Efficient Simplification of Triangular Meshes

Figure 15.2 (i) [v], edges incident on vertex v (ii) [e], triangles incident on edge e. (iii) | e}, vertices
associated with e (iv) [TvT], triangles incident on vertex v (v) |[v7]], vertices associated
with vertex v (vi) [l e]l, edges associated with edge e (vii) [[Le]ll, triangles associated with
edge e.

3. Notation and Terminology

Before presenting the details of our simplification algorithm, a brief description of terminology
and notation is in order. In computer graphics, a 3D model is usually represented by a triangular
mesh. A triangular mesh is specified by a pair (P, K), where P is a set of n point positions
P={v; €R3|1 <i <n}and K is an abstract simplicial complex, which contains all the
topological information. In simple words, P and K describe the geometry and topology of a
polygonal mesh. The complex K is the set of subsets of {1, 2,3, ..., n}. These subsets are
known as simplices and three types of them are in common use: 0-simplex, 1-simplex and
2-simplex which are usually known as a vertex, an edge and triangular face respectively. We
denote 0-simplex or vertex by v with its geometric counterpart as a 3D vector v. An edge e
or 1-simplex is a subset {v{, vi}. We represent an oriented edge as an order pair (vg, v{) and
denote it by é. A triangle ¢ or 2-simplex is a set of oriented edges i.e. t = {2, €1, €2}.

Following the definitions of simplex operators [] and | | as adopted in [8], [v], {TvTl, v1l,
{e] stand for edges incident on v, triangles incident on v, neighboring vertices of v, vertices
of e respectively and, [|e]] and {[|e]]] represent edges and triangles respectively incident upon
the end vertices of e as shown in Figure 15.2.

A mesh is known to be a closed manifold (open manifold) if for a vertex v, [[vT] is topo-
logically equivalent to a disk (half disk respectively). A mesh is referred to as non-manifold if
it does not satisfy this criterion.

4. Overview of Our Algorithm

Our simplification method, like most related algorithms, is a simple greedy procedure. It
iteratively selects an edge with minimum cost, collapses it to one of the end vertices, and then
re-evaluates the cost of the edges affected by this edge collapse operation. More precisely, it
involves the following steps.

4. Overview of Our Algorithm 207

¢ [t computes the cost of collapse for each edge in the surface model using our proposed error
metric and determines the sequence of edge collapses in increasing order of the magnitude
of the cost of edge collapse.

¢ [t chooses an edge ¢ = {vp, v;} with the minimum cost of simplification and substitutes it
either with vg or v;. During this operation triangles [e¢] become singular and are discarded.
The remaining edges [le]] — {e} and triangles [[|e]]] — [e] incident upon vy and v; are
updated such that all occurrences of v, (or vg) are replaced with v; (or vy).

® The cost of collapse for the edges [le]] — {e} is re-evaluated and the sequence of edge
collapses is updated

Most of the simplification algorithms based on iterative edge collapse involve this basic struc-
ture. We prefer to use subset-placement or half-edge collapse as a topological operator in our
algorithm because we believe that a topological operator must be as simple as possible. It is a
common observation that the choice of a particular topological operator has no significant ef-
fect on the results. What matters the most is the criterion which decides where to apply the next
simplification operator. We have not only adopted subset replacement because of its simplicity,
but also because of its other advantages. It does not involve any undefined degree of freedom
which would have to be determined by local optimization. It does not invent new geometry by
allowing some heuristic to decide about the position of the substitute vertex. The vertices of the
simplified mesh always form a proper subset of the original vertices. This makes the progressive
transmission of meshes more effective and is crucial for an integrated level of detail.

The most important task of a simplification algorithm is to assign a cost of collapse to
each edge in the mesh to form a sequence of edge collapses. In fact, this cost of collapse
reflects an error that will be introduced into the simplification as a result of an edge collapse.
The way of determining this cost is the basic differentiating factor among algorithms of this
family. Many authors have proposed various error metrics. Some of them measure global
error and are very sophisticated [5, 6, 7]. These result in high quality simplifications, but have
very high computational cost. Some others are based on local error and give rise to very fast
algorithms [10, 11, 12, 14], but they result in approximations which deviate substantially from
the original ones. Recently some error metrics have been developed which stand in between
these two extremes [4, 8, 9]. The primary motivation behind our work is also to develop an
error metric which leads to an algorithm which has a good trade off between accuracy, time
complexity and memory consumption. In Section 5, we have proposed a new error metric based
on the area of an error triangle defined by the old and the expected new position, resulting from
an edge collapse, of an edge and the edge to be collapsed and the angle between the positions
of an associated triangle before and after edge collapse, see Figure 15.3.

The basic achievements of our algorithm are as follows:

® Memory consumption: It is one of the important factors which affects the efficiency of an
algorithm. Our algorithm does not consume extra memory other than that is necessary to
store the basic geometrical and topological information of a mesh. So itis capable of reducing
very big models quite easily. Memory consumption of our algorithms is less than half of
that consumed by Garland’s algorithm [4].

® Computational time: Our algorithm is little bit slower than that by Garland, but it is faster
than Peter’s Algorithm [8, 9], which is also a memory less algorithm.

208 Efficient Simplification of Triangular Meshes

Figure 15.3 (i) Error triangle, (ii) two positions of an adjacent triangular face before and after an edge
collapse.

® Accuracy: Simplifications resulted from our algorithm are comparable with those by standard
methods such as quadric error metric method and memoryless algorithm. It preserves the
essential features of a model even after significant reduction.

5. Error Metric

We have defined an error metric based on the observation that when an edge collapse operation
takes place, some edges from [le]] undergo displacement and some triangles from [[le]]]
undergo angular displacement, see Figure 15.4(i). The area of the triangle defined by the old
and displaced positions of an adjacent edge and the collapsed edge e; and the angle between
the old and the rotated adjacent triangles reflect the error which will be introduced in the model
as a result of an edge collapse.

To be precise, when edge e, collapses, vy will move towards v and will coincide with v,
see Figure 15.3(i). At the same time, edge eg; = {vg, v1} Wwill sweep an area equal to the area

Figure 15.4 (i) When edge ¢, is collapsed, triangles 7o, 11, , are moved to ¢, #), ¢, and edges e, ¢), €2, €3
are displaced to ¢}, ¢}, ¢, €; respectively. (i) Triangle ¢ will fold over when edge e will
collapse.

5. Error Metric 209

of triangle t” = (vp, vy, v2). This area reflects the introduced error. Thus error associated with
edge eg is as follows:

1
Qe (V) = fla x bl,

wherea=vo—vi,andb=v» —v;.

In some cases, this may not measure simplification error accurately. For example, when all
triangles in {Tv7] are coplanar or nearly coplanar, then edge collapse operation will only reduce
redundancy in the mesh and will not introduce any error. In this situation Q(v) must assume
zero value but practically it does not happen.

So as a remedy to this drawback, we weight Q(v) with the angle 6 between the triangles
t = (vo, v1, vz) and ' = (vq, va, v) see Figure 15.3(ii).

This choice of weights has another added advantage. Note Figure 15.4(ii), foldings may
appear when an edge to be collapsed is surrounded by a very concave polygon. When edge
e; = {vo, v}, collapses and vy coincides with v, triangle ¢t = (vo, v1, v2) will fold over, thus
creating folds in the mesh. In this situation, the angle between the triangles t = (vg, vy, v2),
and t' = (v, v2, v) will bear greater value and will cause greater value to be added to the cost
of edge collapse thereby preventing this edge collapse.

The cost of collapse of an edge will be the weighted sum of errors associated with each edge
in [v] — {e}, i.e.

Cost(e;) = Z 6. Q. (v).

e€[v]—{e }

To preserve the geometry of a model, it is necessary that the flat vertices i.e. the vertices for
which [[v7] are nearly coplanar, must be removed first; then the edge vertices v;, i.e. the vertices
along a feature edge of an object and for which triangles [[v;]] can roughly be divided into
two groups according to their orientation, can be removed and their collapse must be along the
feature edge. The removal of a corner vertex, i.e. the vertex at a sharp corner of the surface, will
certainly affect the geometry of the object model and so it should be the last to be removed. Our
proposed metric causes us to keep track of this hierarchy and preserve the visual appearance
of the model, as is obvious from Figure 15.5.

Figure 15.5 Face vertices will be collapsed first, then edge vertices and lastly corner vertices.

210 Efficient Simplification of Triangular Meshes

6. Metro

To assess the quality of our method, more rigorous error measures are needed. One of the most
well-known metrics for making geometric comparison between two surfaces is Hausdorff
Metric. Its asymmetric form is defined as follows:

doo(X1, X2) = max min d(x, y),
x€X) yEX2
where X; and X, are the sets of points on the two surfaces to be compared and d(x, y) is
Euclidean metric. Its symmetric form is as follows:

d(X1, X2) = max{deo(X1, X2), doo(X2, X1)}-

Simplification envelopes [3] is based on bounding this error measure. Another well-known
metric for the geometric comparison of surfaces is mean geometric error. Its discrete version
is given as follows;

(X1 Xo) = s |+|X2| (}: d(x, Xo) +) d(x, Xl))

xeX, XEXQ

where | X| stands for the number of elements in X and d(x, X) = mind(x, y).

Metro [2] is a geometric comparison tool which has been developed to evaluate the quality
of simplified models. It uses the above mentioned measures of error to compare surfaces. To
eliminate bias, we use the metro tool to determine the quality of simplified models created by
our method.

7. Results and Discussion

We have tried our implementation of SFME on several large triangular models and have
achieved encouraging results. Our method can simplify very large models consisting of millions
of triangular faces in a fairly short amount of time and the simplified models bear good visual
resemblance with the originals. To evaluate our method, we make a comparison with QSlim
[4] and memoryless simplification [8, 9] because among the existing standard simplification
algorithms, the former is the fastest one and the latter generates better quality simplifications
and can reduce very large models efficiently. We choose the Stanford bunny and hand as test
models because of their complex structure.

Table 15.1 lists the computation time taken by QSlim and SFME to simplify hand and
horse models shown in Figure 15.8. Notice that our algorithm is almost two times slower than
QSlim. We run both the algorithms on 800MHz Intel Pentium III machine with 384 MB of

Table 15.1 Time taken in seconds to reduce to one face.

Model Model Size (faces) SFME QSlim

Horse 96,966 9.8 4.5
Hand 654,666 71.33 39.9

7. Results and Discussion 211

10 ——rrr——Tr « 100 F—r—rrrrr———rr
: --® - SFME S E : - - --SFME
§ F —8— Memoryless Simp| g - —&— Memoryless Simp.
S i o I
e 1F 4 § 10f E
= E i € E 3
IS o 1 8 L]
g f 15 | :
D 01 E E 1 =
§ 1 E | E
o r = F]
£ i 8 []
0.01 RN TH TSIt S R E 0.1 PR R RS T PR R AT L) 1t
100 1000 10000 100000 100 1000 10000 100000
medel size (faces) medel size (faces)
Figure 15.6 Maximum and mean geometric errors for horse model.
10— 100 g
£ ! : --e- SFME O E - =% --SFME
§ N : —a— Memoryless Simp. g r —&— Memaryless Simp.|
@ L —o—?ﬂm o L
2 1 : 4 8B1of 3
g’ 3 g £]
8 1 8 i
20.1 ----------------------- - g 1 = 3
g i £]
1S] % L]
0.01 Lo n) |:|||||| Do E0.1 ; : N
100 1000 10000 100000 1000000 100 1000 10000 100000 1000000
medel size(faces) medel size(faces)

Figure 15.7 Maximum and mean geometric errors for hand model.

main memory. From the results reported in [8] (see Table 15.1), it is obvious that memoryless
simplification is about 5 times slower than QSlim; so we can safely conclude that our method
is about 2.5 times faster than memoryless simplification.

Graphs shown in Figures 15.6 and 15.7 illustrate the mean geometric and maximum geo-
metric errors between the original and the simplified models created by SFME, QSlim and
memoryless simplification. We plotted 1000 times the ratio of the error and the bounding box of
the original model along logarithmic y-axis and the number of faces along logarithmic x-axis.
It is apparent that our algorithm is almost as accurate as QSlim in terms of mean geometric
error and compares well with both QSlim and memoryless simplification in terms of maximum
geometric error. Keeping in view these and the results reported in [8], we can claim that our
method compares well with standard simplification algorithms in terms of mean and maximum
geometric error.

Simplified models shown in Figure 15.8 demonstrate how fairly our method preserves the
essential features of a model. All the major detail of the original model remains even after
significant simplification. Observe the model depicted in Figure 15.8 (top right), it is the
simplified model of hand consisting of 4266 triangular faces, 0.65% of the original model
which consists of 654,666 faces. It can be seen that the major features of the original model
still remain in spite of being highly simplified.

212 Efficient Simplification of Triangular Meshes

Figure 15.8 Original hand (top left), horse (middle left) and fandisk (bottom left) models and the
corresponding reduced models on the right side of each original model.

213

7. Results and Discussion

and teeth models and corresponding sim-

»

Original balljoint (top left), club (middle left)

Figure 15.9

plified models on the right side of the original model.

214 Efficient Simplification of Triangular Meshes

The model shown in Figure 15.8 (middle left) is a horse model consisting of 96,966 triangular
faces. Figure 15.8 (middle right) shows its simplified version comprising only 3996 faces, just
4.1% of the original size. Despite drastic simplification, ears, nostrils, hoofs and the contour
on the rear leg are finely preserved. Also observe balljoint, club and teeth models, consisting
of 274,120 faces, 419,554 faces and 233,204 faces respectively, shown in Figure 15.9, corre-
sponding simplified models, containing 5,196 faces, 5,396 faces and 4,396 faces respectively,
although being drastically reduced yet show the essential detail of the original ones.

The Fandisk model, originally consisting of 12,946 faces and simplified containing 496
faces, has been shown in Figure 15.8. Even after 96.1% reduction, features lines are apparent.

The polygonal simplification is NP hard problem, so no one of the existing methods can be
regarded as the best one. Each of these has some added advantages over the others. Our algo-
rithm is faster than memoryless simplification and can simplify very large models consisting
of millions of triangular faces. It is useful for applications that require good visual fidelity, but
not tight error bounds.

8. Summary

‘We have presented a polygonal simplification method based on a new measure of approximation
error which we derive from the area swept by an edge when an edge collapse takes place. Our
method has very good trade off between memory consumption, computation time and accuracy.
It can simplify huge models consisting of millions of triangular faces in relatively short time.
The quality of simplifications is good. It preserves the essential features of an object even after
significant reduction. We intend to extend it to include surface attributes.

Acknowledgement

The authors would like to thank Dr. Sarfraz for his valuable comments to improve the quality
of this document.

References

[1] A. Ciampalini, P. Cignoni, C. Montani and R. Scopigno. Multiresolution Decimation based on Global error. The
Visual Computer, 13:228-246, 1997.

[2] P. Cignoni, C. Rocchini and R. Scopigno. Metro: Measuring error on simplified surfaces. Computer Graphics
Forum, 17(2):167-174, June 1998.

[3] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. Brooks and W. Wright. Simplification
Envelopes. In Proc. SIGGRAPH’96, pages 119-128.

[4] M. Garland and P. S. Heckbert. Surface Simplification using Quadric error metric. In Proc. SIGGRAPH’97, pages
209-216, August 1997.

[5] A. Guéziec. Surface Simplification inside a Tolerance volume. Technical report, York Town Heights, NY 10598,
May 1997. IBM Research Report RC 20440(90191).

[6] A. Guéziec. Locally Toleranced Surface Simplification. IEEE Transactions on Visualization and Computer
Graphics, 5(2):168-189, April-June 1999.

{71 H. Hoppe. Progressive Meshes. In Proc. SIGGRAPH’96, pages 99-108, August 1996.

[8] P. Lindstrom and G. Turk. Fast and Memory efficient Polygonal Simplification. In Proc. IEEE Visualization’98,
pages 279-286, 544 Oct. 1998.

[9] P. Lindstrom and G. Turk. Evaluation of Memoryless Simplification. /EEE Transactions on Visualization and
Computer Graphics, 5(2):98-115 April-June 1999.

References 215

[10] Maria-Elena Algori and F. Schmitt. Mesh Simplification. Computer Graphics Forum, 15(3), August 1996, Proc.
Eurographics’'96.

[11] S.Melax. A. Simple Fast and Efficient Polygon Reduction Algorithm. Game Developer, pages 4449, November
1998.

[12] M. Reddy. SCROOGE: Perceptually-Driven Polygon Reduction. Computer Graphics Forums, 15(4):191-203,
1996.

[13] R. Ronfard and J. Rossignac. Full Range Approximation of Triangular Polyhedra. Computer Graphics Forum,
15(3), 1996. Proc. Eurographics’96.

[14] J. C. Xia and A. Varshney. Dynamic View-Dependent Simplification for Polygonal Models. In Proc. Visual-
izaion'96, pages 327-334. Oct. 1996.

[15] R. Qn, and M. Sarfraz. A New Approach to the Improvement of Surface Triangulations using Local Algorithms.
Parallel & Scientific Computations (Special Issue on Computer Aided Geometric Design), 5(1-2), Dynamic
Publishers, USA, 221-238, 1997.

[16] M. Sarfraz. Designing of 3D Rectangular Objects, Lecture Notes in Computer Science 1024: Image Analysis
Applications and Computer Graphics, Eds.: R. T. Chin, H. H. S. Ip, A. C. Naiman, and T-C. Pong, 1995,
Springer-Verlag, 411-418.

[17] M. Sarfraz. Curves and surfaces for CAD using C2 rational cubic splines. Engineering with Computers, Springer-
Verlag, Vol.11(2), 94-102, 1995.

[18] M. Sarfraz. Designing of Curves and Surfaces using Rational Cubics. Computers and Graphics, Elsevier Science,
Vol. 17(5), 529-538, 1993.

16

Multiresolution and Diffusion
Methods Applied to Surface
Reconstruction Based on
T-Surfaces Framework

Gilson A. Giraldi

Rodrigo L. S. Silva

Walter H. Jiménez

Department of Computer Science, National Laboratory for Scientific Computing,
Av. Getulio Vargas, 333, 25651-070, Petrdpolis, RJ, Brazil.

Edilberto Strauss

Federal University of Rio de Janeiro, Department of Electronics Engineering —
DEL/EE, Rio de Janeiro, RJ, Brazil.

Antonio A. F. Oliveira

Federal University of Rio de Janeiro, Computer Graphics Laboratory,
Mail Box 68511, CEP 21945-970, Rio de Janeiro, RJ, Brazil.

In this chapter we present a new approach, which integrates the T-Surfaces framework and a
multiresolution method in a unified methodology for segmentation and surface reconstruction.
For noise images, we can improve the result by anisotropic diffusion. Despite this improvement,
some manual intervention may be required to complete the reconstruction. Thus, we take
advantage of the topological capabilities of T-Surfaces to enable the user to modify the topology
of a surface. Besides, we discuss the utility of diffusion-reaction schemes for vector fields in
our approach. Finally, we present some results for both synthetic and actual medical image

volumes.

Advances in Geometric Modeling. Edited by M. Sarfraz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-85937-7

218 Multiresolution and Diffusion Methods Applied to Surface Reconstruction

1. Introduction

Parametric Deformable Models, which include the popular snake models (6] and deformable
surfaces [13], are well known techniques for boundary extraction and tracking in both 2D and
3D images.

In this chapter we focus on parametric surface models. These models basically consist of
an elastic surface, which can dynamically conform to the object shapes, in response to both
internal and external forces (image forces and constraint forces).

Recently, McInerney and Terzopoulos [8,9] have proposed the T-Surfaces/T-Snakes model
to add topological capabilities (splits and merges) to a parametric model. The basic idea is to
embed a discrete deformable model within the framework of a simplicial domain decomposition
(triangulation) of the image domain. Also, T-Surfaces depend on some threshold to define a
normal force, which is used to drive the model towards the targets [8].

Based on these elements (threshold and simplicial decomposition framework) we proposed
in [2] a segmentation approach for 2D images based on multiresolution methods and the
T-Snakes model.

In this work we firstly extend that approach for 3D through the T-Surfaces. Thus, we also
assume a scale restriction for the targets. In a first stage, we use this restriction to define the
coarsest image resolution that guarantees not to split the objects. From the corresponding grid,
we make a simple CF-triangulation of the image domain. The low-resolution image field is
thresholded to get a binary function, which we call an Object Characteristic Function. Then, a
simple continuation method is used to extract a set of closed polygonal surfaces, which contain
the anatomical structures.

The grid resolution is application dependent. However, an important point of our method is
its multiresolution/multigrid nature: having resolved (segmented) the image in a coarser (grid)
resolution, we can detect regions where the grid has to be refined and then recursively apply
the method only over these regions.

The polygonal surfaces so extracted are in general rough approximations of the surfaces of
interest. We improve these approximations by using the T-Surfaces model [8] whose framework
is the basic one for this chapter. For noisy images, we can increase the efficiency by pre-
processing the original image through anisotropic diffusion [10].

If the segmentation remains incomplete at the finest resolution, we propose an interactive
procedure based on the T-Surfaces framework to cut a surface and complete the segmentation.

In the following text we first present the multiresolution method used. In Section 4 we de-
scribe the T-Surfaces model. The segmentation and geometry extraction framework is presented
in Section 5. In Section 6 we analyze scalars and vector diffusion methods in the context of our
work. Section 7 discusses experimental results. Conclusions and future works are presented in
Section 8.

2, Multiresolution

In this chapter we are interested in applications where the intensity (grey level) patterns of
an object O (or of the background) can be characterized by a threshold 7', or some statistics
(mean p and variance ¢) of the image field I [2, 7].

That means p € O if:

I(p)>Tor|I(p)—ul <o (16.1)

3. PL Methods 219

Figure 16.1 (a) Original image and characteristic Function. (b) Boundary approximation.

First, we assume a local scale property: Given a point p € O let rp, be the radius of a hyperball
B, which contains p and lies entirely in the object region. We assume that, forall p € O , we
haver, > 1.

The local scale property guarantees that the image resolution can be reduced without losing
the object of interest. In this way, we incorporate the basic philosophy of some nonparametric
multiresolution techniques used in image segmentation [5]: as the resolution is decreasing,
small background artifacts become less significant relative to the object(s) of interest.

Observe a simple example pictured in Figure 16.1. In this case, the object is easily segmented
by thresholding (T < 150). In the Figure 16.1(a) we have a CF triangulation whose grid
resolution is 10 x 10.

So, we can define a simple function, called a Object Characteristic Function, as follows:

x: %2 > {0, 1), (16.2)

where x (p) =11if I(p) < T and x(p) = 0 otherwise, where p is a node of the triangulation.

A step further can be done as shown in Figure 16.1(b). The picture describes a curve that
belongs to the triangles in which the characteristic function (marked nodes) changes its value.
Observe that this curve approximates the boundary we seek.

This scheme is adaptive in the sense that resolution can be increased inside the extracted
curve. To increase the resolution we just refine the coarser grid and sample the image over the
corresponding grid nodes.

The generation of that curve (Figure 16.1(b)) is a process, which fits well in the subject of
Piecewise Linear Manifolds (PL Manifolds) and is discussed next.

3. PL Methods

Firstly, let’s see some useful definitions: We call an edge T of a triangle o completely labeled
in respect to x if this function changes its value in t . A triangle o in %* is called transverse,
with respect to x, if it contains a completely labeled edge.

A fundamental concept in this theory is the Piecewise Linear Manifold (PL Manifold).
For this discussion, given a bidimensional manifold M implicitly defined, it is enough to
say that a PL Manifold M is a polygonal {cell) representation of that manifold with the
following properties: (1) The intersection oy N oy of two cells 0y, 072 € M is empty, or a

220 Multiresolution and Diffusion Methods Applied to Surface Reconstruction

common edge/node of both cells; (2) An edge t is common to at most two cells of M; (3) M
is locally finite, that is, any compact subset of M meets only finitely many cells of M.

The following definition will be useful next. Let’s suppose two simplices oy, o3, which have
a common face, and the vertices, v1 € a1 and v, € 0, both opposite the common face. The
process of obtain v, from v is called pivoting.

Each connected component of the bidimensional PL. Manifold can be generated by the
following algorithm [1]:

PL Generation Algorithm:
0y = FindTransverseTriangle();
> = {oo};
V(oyp) = GetVertices{ay);
while V(o) # 0 for some o £) do
get o € Y such that V () # 0 do
v = getVertice(V(o));

o’ = getPivoted(oc , Vv);

if IsTransverse(o’) = 0 do
dropVertice(v, V(o));

else

if o7 €), do
dropVertice(v, V(o));
dropVertice(v’', V(o'));
else
Y= +t0";
V(o’') = GetSetOfvertices(o’);
dropVertice (v, V(g));
dropvVertice(v', V(o'));
end while

In this pseudocode, the procedure ‘getPivoted’ performs the pivoting of vertex v into v', as
defined above, and returns the new simplex ¢ * generated by the common face and v~ .

The obtained PL. manifolds are in general not smooth, and do not fit well to the desired
boundary, as we can verify in Figure 16.1(b). Next, we present the deformable model which
we use to improve the result.

4. T-Surfaces

The T-Surface approach is composed basically by three components [8]: a triangulation of the
domain of interest, in our case a closed subset D C R3, a particle model of the deformable
surface and a characteristic function defined similarly in Equation (16.2) but distinguishing
the interior (Int (S)) from the exterior (Ext (S)) of a surface S : x(p) = 1 if p € Int (S) and
x(p) = 0 otherwise, where p is a node of the triangulation.

In this framework, the reparameterization of a surface is done by [8, 9]: (1) Taking the
intersection points of the surface with the triangulation grid; (2) Carrying out topological
changes by applying the PL. Generation Algorithm to get the transverse triangles; (3) For each
completely labeled edge chose an intersection point. These points will be used to define the
surface cells.

4. T-Surfaces 221

4.1. Discrete Model

A T-Surface, can be seen as a discrete form of the classical parametric deformable surfaces
[13].

It is defined as a closed elastic mesh, consisting of a set of nodes which are the vertices of
a PL Manifold defined by the corresponding characteristic function (defined above).

When a cell is quadrilateral, we can go a step further and subdivide it in two triangles to get
a triangular mesh. In this case, each triangle of the mesh is called a triangular element, each
node is called a node element and each pair of nodes v;, v;, is called a model element.

The node elements are linked by a springs with a null natural length. Hence, given the
deformations r;; = [|v; — vj||, we define a tensile force given by:

a; =6‘Zrij, (16.3)
J

where c is a scale factor. The model also has a normal force which can be a weight like in
(8, 91:

o . n; - ni
F; =k - sign; = Mn; = Z R (16.4)
where 7; is the normal vector at node i, sign; = +1 if I(v;) > T and sign; = —1 otherwise
(T is defined in expression (16.1) and I{v;) is the image intensity in v;), and & is a scale factor.
This force is used to push the model towards image edges until it is opposed by external image
forces.

The external (image) force is given by:

fi=—wnvivIP, (16.5)

The evolution of the surface is governed by the following dynamical system:
o0 = of iy (6 + B+ f), (16.6)

where 4; is an evolution step. During the T-Surfaces evolution some grid nodes become interior
to a surface. Such nodes are called burnt nodes and its identification is fundamental to update
the characteristic function [8, 9]. To deal with self-intersections of the surface the T-Surface
model incorporates an entropy condition: once a node is burnt it stays burnt. A termination
condition is obtained based on the number of deformation steps that a triangle has remained a
transverse one.

The threshold T used in the normal force (16.4) plays an important role in the T-Surfaces
model. If it was not properly chosen, the T-Surface can stop in a region far from the target(s)
[2]. The choice of T is more critical when two objects to be segmented are too close, as shown
in Figure 16.2.

For the T-Surface (T-Snake) to separate the objects pictured, it has to burn the grid nodes
marked. To accomplish this, force parameters in Equations (16.3)-(16.5) should be chosen
properly to advance the T-Snake over these nodes which is a nontrivial task.

The basic point to propose the following framework is that if we have a local scale property,
we can use the threshold T to initialize the T-Surface closer to the structures of interest. To

222 Multiresolution and Diffusion Methods Applied to Surface Reconstruction

Figure 16.2 T-Snake and grid nodes marked.

accomplish this, we just take the object characteristic function (expression (16.2)) as the start
characteristic function of T-Surfaces model.

Moreover, once a T-Surface is also a PL manifold, the polygonal surfaces extracted by the
algorithm of Section 3 can be used to initialize the T-Surfaces model.

5. Segmentation Framework

The segmentation method proposed by this chapter is based on the following steps: (1) Extract
region based statistics; (2) Coarser image resolution and triangulation; (3) Define the Object
Characteristic Function; (4) PL Manifold extraction by the algorithm of Section 3; (5) Apply
T-Surfaces model.

We assume a local scale property for the structures of interest. So, according to Section 2,
we do not need to concern ourselves with merge of regions. Also, the following properties are
supposed by the objects boundaries: (a) Closedness, (b) Orientedness, (c) Connectedness.

These topological constraints are satisfied by the PL Generation Algorithm results and, as a
consequence, are consistent with the T-Surfaces reparameterization of Section 4. Due to these
constraints, when a connected component is generated, we should not apply the PL. Generation
Algorithm inside it. In this way, we can maintain a spherical topology without the need of
topological preservation methods [8, 9].

Among the surfaces extracted, there may be open surfaces which start and end in the image
frontiers, small surfaces corresponding to artifacts or noise in the background. The former is
discarded by a simple automatic inspection. To discard the latter, we need a set of pre-defined
features (volume, surface area, etc), and corresponding lower bounds [11]. For instance, from
the local scale property and the triangulation used we can set the volume lower bound as 8r;.

Besides, some polygonal surfaces may contain more than one object of interest (see
Figure 16.3). Now, we can use upper bounds for the features. These upper bounds are ap-
plication dependent (anatomical elements can be used). The surfaces whose interior have
volumes larger than the upper bound will be processed in a finer resolution. It is important to
stress that the upper bound(s) is not an essential point for the method. It’s role is only to avoid
expending time computation in regions were the boundaries enclose only one object.

5. Segmentation Framework 223

Figure 16.3 (a) OPL manifolds for resolution 3 x 3. (b) Result with the highest (image) resolution.

For instance, in images like in Figure 16.3, the outer scale corresponding to the separation
between the objects may be finer than the local scale property of the objects of interest. Hence,
the coarsest resolution could not separate the objects. This happens for the bottom-left cells
on Figure 16.3(a). To correct that result we increase the resolution in those regions to account
for more details (Figure 16.3(b)).

The result of step {4) can be improved by anisotropic diffusion (see the next section) [10].
Such approaches enables us to blur small discontinuities (improving the surface extraction)
as well as to enhance edges (improving the T-Surface result). Mathematical morphological
operators could also be used [12].

However, for images like those in Figure 16.3, some manual intervention may be required,
even with these improvements. To free hand split a T-Snake/T-Surface represented in two
components, it is only a matter of taking the following steps: (a) Define a cutting plane; (b)
Set to zero the grid nodes belonging to the triangles that the plane cuts and that are interior to
the T-Surface; (c) Apply steps (4) and (5) above.

The grid nodes set to zero become and burnt nodes. Thus, the entropy condition will prevent
intersections of the two T-Surfaces generated during the evolution. Hence, we can efficiently
guarantee that these surfaces will not merge again.

It is important to highlight that T-Surfaces models can deal naturally with the self-
intersections that may happen during the evolution of the surfaces obtained by step (4). This
is an important advantage of T-Surfaces.

Also, we must emphasize that our approach is multigrid/multiresolution when segmenting
the image but not when applying the T-Surfaces. This deformable model is used at the end of
the boundary extraction stage.

We do not need to use multiscale relaxation methods [3] in that final step because we take
the full resolution of the image for evolving T-Surfaces. Besides, when the grid resolution of
T-Surfaces is increased we just reparameterize the model through the finer grid and evolve the
corresponding T-Surfaces.

224 Multiresolution and Diffusion Methods Applied to Surface Reconstruction

6. Diffusion Methods

In image processing, diffusion schemes for scalar and vector fields have been successfully
applied [4, 14]. Gaussian blurring is the most known one [4].

Other approaches are the anisotropic diffusion and the Gradient Vector Flow [10, 14]. Below,
we summarize these methods and conjecture their unification.

In the next section, we will apply anisotropic diffusion to improve the results obtained
through the methodology described in Section 5.

Anisotropic diffusion is defined by the following general equation:

ol(x,y, 1)
at
where [is the gray level image intensity [10].
In this method, the blurring over parts with high gradient can be made much smaller than
in the rest of the image.

To show this property, we follow Perona-Malik’s work [10]. Firstly, we suppose that the
edge points are oriented in the x direction. Thus, Equation (16.7) becomes:

x, y, 1) _ dclx, y, 1) Li(x, ¥, 1)

a dx '

If ¢ is a function of the image gradient, c(x,y,?) = g{l(x,y,t)), we can define
o) = g(1,) - I, and then rewrite Equation (16.8) as:

l(x,y,) 9l

a ax

=diviclx,y,t) v I), (16.7)

(16.8)

(@) = ¢'(L) - Lix. (16.9)
We are interested in the time variation of the slope %. If ¢(x, y,?) > O we can change the
order of differentiation and with a simple algebra to demonstrate that:

al al, "

a—t" =5, =9 T2+ (L) - Lexs (16.10)
At the edge points we have I,, = 0 and I,,, << 0 as these points are local maxima of the
image gradient intensity [4, 10]. Thus, there is a neighborhood of the edge point in which the

derivative 8—: has a sign opposie to ¢'(I,). If ¢'(1;) > 0 the slope of the edge point decrease

in time. Otherwise it increases, that means, the border becomes sharper.

So, the diffusion scheme given by Equation {16.7) allows us to blur small discontinuities
and to intensify the stronger ones.

In this work, we have used ¢ as follows:

\vZ 4
L+ IvII/KP

where ¢ is given by expression (16.11) with K = 300. The number of interactions, in the
numerical scheme used to solve this equation [10], was 4. Figure 16.4(c, d) shows the cross
section corresponding to the slice 40.

We observe that with anisotropic diffusion the result is closer to the boundary. Also, the final
result is more precise when pre-processing with anisotropic diffusion (Figure 16.4(f)) where
the constant K can be determined by a histogram of the gradient magnitude.

¢ = (16.11)

6. Diffusion Methods 225

Figure 16.4 (a)-(b) Result for steps (1)—(4) with Gaussian and Anisotropic Diffusion, respectively.
(c)~(d) Cross section of (a),(b) for slice 40, respectively. (e)—(f) Final solution for (c),(d)
respectively.

In the above scheme, I is a scalar field. For vector fields, a useful diffusion scheme is
the Gradient Vector Flow (GVF). It was introduced in [14] and can be defined through the
following diffusion-reaction equation:

du
o =V @vw+h-vf) (16.12)
ux,0) = vf.

where f is a function of the image gradient (for example, f = || |?) and g(x), h(x) are
nonnegative functions defined on the image domain.

The field obtained by solving the above equation is a smooth version of the original one,
which tends to be extended far away from the object boundaries. When used as an external
force for deformable models it makes the methods less sensitive to initialization [14].

226 Multiresolution and Diffusion Methods Applied to Surface Reconstruction

As the result of steps (1)~(5), of Section 5, is in general close to the target we could apply
this method to push the model towards the boundary when the grid is turned-off.

However, for noisy images some kind of diffusion (smoothing) must be used before applying
GVF. Gaussian diffusion has been used [14] but precision may be lost due to the nonselective
blurring [4, 10].

The anisotropic diffusion scheme presented above is an alternative smoothing method. Such
observation points forward the possibility of integrating anisotropic diffusion and the GVF in
an unified framework.

A straightforward way of doing this is allowing g and 4 to be dependent upon the vector
field u. The key idea would be to combine the selective smoothing of anisotropic diffusion
with the diffusion of the initial field obtained by GVF. Besides, we expect to get a more stable
numerical scheme for noisy images.

7. Experimental Results

The first point to be demonstrated is the utility of multiscale methods in our work. We take
a synthetic 150 x 150 x 150 image volume composed by a sphere with radius 30 and an
ellipsoid with axes 45, 60 and 30 inside an uniform noise specified by the image intensity
range 0-150.

Figure 16.4 shows the result for steps (1)—(4) applied to this volume after (a) gaussian
diffusion; and (b) the anisotropic diffusion defined by the equation:

%; = div(¢), (16.13)

This is in accordance with the discussion in Section 6: Equation (16.13) enables us to blur
small discontinuities (gradient magnitude bellow K) as well as enhancing edges (gradient
magnitude above K) [10].

Another point becomes clear in this example: the topological abilities of T-Surfaces enable
us to correct the defects observed in the surface extracted through the steps (1)—(4). Hence, after
few interactions, the method gives one connected component which is a better approximation
of the target.

The T-Surface parameters are: ¢ = 0.65, k = 1.32 and r = 0.01. The grid resolution is
5 x 5 x 5, the freezing point is set to T € (120, 130) and threshold T € (120, 134) in Equa-
tion (16.4). The number of deformation steps for T-Surfaces was 17. The extracted surfaces
approximates the real ones with an error below 4.38 which we consider fine in this case.

Figure 16.5(a) shows an example where the steps (1)—(5) where not able to complete the
segmentation. This can be resolved by user interaction through the method described in the
last section (steps (a)—(d)). Figure 16.5(b) shows the final result. The parameters are the same
as the last example.

Finally, we segment an artery from an 155 x 170 x 165 image volume obtained from the
Visible Human project. The T-Surfaces parameters are: ¢ = 0.75,k = 1.12 and y = 0.3, grid
resolution is 4 x 4 x 4 and freezing point is set to 10. The (correct) result is pictured in Figure
16.6(b) which was obtained through anisotropic diffusion.

An important point to highlight is that by initializing the T-Surfaces with steps (1)-(4) we
achieve speed ups even for finer grid resolutions.

8. Summary 227

Figure 16.5 (a) Partial result. (b) Final solution after manual cut.

Figure 16.6 (a) Result without and (b) after anisotropic diffusion.

8. Summary

The implemented PL Generation algorithm shares the basic elements used in isosurface gen-
eration methods.

However, these methods in general do not incorporate the scale and topological restrictions
(connectedness and closedness) which formalize our prior knowledge of the structures of
interest.

The topological abilities of T-Surfaces enable an efficiently initialization through steps
{1)~(4) as well as an interactive procedure to change the topology of a surface. Anisotropic
diffusion can improve the step (4) as well as the T-Surfaces result.

Future directions for this work will be to generalize the user interaction method by substi-
tuting the plane by a scalpel and allowing the user to drag the scalpel. Besides, we aim to apply
GVF variants to improve the results of our method.

228 Multiresolution and Diffusion Methods Applied to Surface Reconstruction

References

[1] Allgower, E. L. and Georg, K. 1990. Numerical Continuation Methods: An Introduction. Springer-Verlag Berlin
Heidelberg.

[2] Giraldi, G. A.; Strauss, E.; Oliveira, A. F. (2000). A Boundary Extraction Approach Based on Multi-resolution
Methods and the T-Snakes Framework. In: International Symposium on Computer Graphics, Image Processing
and Vision (SIBGRAPI’2000).

[3] Heitz, F,; Perez, P.; Bouthemy, P. (1994). Multiscale Minimization of Global Energy Functions in Some Visual
Recovery Problems. CVGIP: Image Understanding, Vol. 59, No. 1, pp. 125-134, January.

[4] Jain, A. (1989). Fundamentals of Digital Image Processing. Prentice-Hall.

[5] Jolion, J. M. and Montanvert, A. (1992). The Adaptive Pyramid: A framework for 2D Image Analysis. CVGIP:
Image Understanding, 55(3), 339-348.

[6] Kass, M.; Witkin, A.; Terzopoulos, D. (1987). Snakes: Active contour models, Proc. First Int. Conf. Comput.
Vision, pp. 259--268, London, 1987.

[7] Lorensen, W. and Cline, H. (1987). Marching Cubes: A High Resolution 3D Surface construction Algorithm,
Computer Graphics, Yol 21, No. 4, July 1987.

[8] McInemey, T. and Terzopoulos, D. (1999). Topology Adaptive Deformable Surfaces for Medical Image Volume
Segmentation. IEEE Transactions on Medical Imaging, 18(10), 840-850.

[9] MclInemey, T. (1997). Topologically Adaptable Deformable Models for Medical Image Analysis. Ph.D. thesis,
Department of Computer Science, University of Toronto.

[10] Perona, P. and Malik, J. (1990). Scale-Space and Edge Detection Using Anisotropic Diffusion. IEEE Trans. on
Patter Analysis and Mach. Intell., 12(7), 629-639.

[11] Samtaney, R.; Silver, D.; Zabusky, N.; Cao, J. (1994). Visualizing Features and Tracking their Evolution, JEEE
Computer 271, No. 7, pp. 20-27, July 1994.

[12] Sarti, A.; Ortiz, C.; Lockett, S.; Malladi, R. (1998). A Unified Geometric Model for 3D Confocal Image Analysisin
Cytology. Proc. International Symposium on Computer Graphics, Image Processing, and Vision (SIBGRAPI’98),
69-76.

[13] Singh, A.; Goldgof, D.; Terzopoulos, D. (1998). Deformable Models in Medical Image Analysis. IEEE Computer
Society Press.

[14] Xu, C., and Prince, J. (1998). Snakes, Shapes, and Gradient Vector Flow. IEEE Trans. Image Proc., March,
pp- 359-369.

17

A Multiresolution Framework
for NUBS

Muhammad Sarfraz
Mohammed Ali Siddiqui

Department of Information and Computer Science, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia.

The piecewise polynomial B-spline representation is a flexible tool in Computer Aided Geo-
metric Design (CAGD) for representing and designing the geometric objects. In the field of
Computer Graphics (CG), Computer Aided Design (CAD), or Computer Aided Engineering
(CAE), a very useful property for a given spline model is to have locally supported basis func-
tions. This allows localized modification of the shape. Unfortunately this property can also
become a serious disadvantage when the user wishes to edit the global shape of a complex
object. A multiresolution representation, for Non-uniform B-splines (NUBS), is proposed as a
solution to alleviate this problem. The proposed model has features that it uses control point
decimation strategy for decomposing NUBS curves and it is efficient in both time and space
utilization. A comparative study of the proposed work is also made with an alternate approach
in the literature, which is based upon knot decimation.

1. Introduction

In the field of geometric modeling, the construction of efficient, intuitive, and interactive editors
for geometric objects is a fundamental objective, but it is still a difficult challenge. In many
freeform geometric modeling systems the users are allowed to work in the framework of a
specific data model, e.g. Bezier or non-uniform rational B-splines [S]. This imposes constraints
on the set of geometric manipulation operations that can be performed, the man-machine
interface and the type of objects which can be modeled.

There are various curve manipulation techniques, which have been proposed in current
literature. For example, the Euclidean distances between the point of modification and the

Advances in Geometric Modeling. Edited by M. Sarfraz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-85937-7

230 A Multiresolution Framework for NUBS

control points of a B-spline curve were used as weights to affect the control points in [3]. The
difficulty with this approach appears when the two separate portions of the curve are close. To
alleviate the difficulty in editing freeform shapes while matching engineering specifications,
constraint based approaches were proposed in [1, 18]. Direct and interactive manipulation tools
of freeform curves and surfaces are investigated in [4].

In the field of computer graphics or Computer Aided Design (CAD), a very useful prop-
erty for a given spline model is to have locally supported basis functions in order to allow
localized modifications of the shape. Unfortunately this property can also become a serious
disadvantage when the user wishes to edit the global shape of a complex object. Piecewise
polynomial B-spline representation is common in many contemporary geometric modeling
systems. While this is a powerful tool with many desirable properties, the same properties
impose some undesirable constraints on the user. For example, the most attractive property,
locality, restricts the user to perform global operations on the object being modeled. To perform
a global operation, it has to be transformed into a series of local operations affecting only a
small portion of the curve, which makes the process time wasting and precision hazardous
[10]. The ability to simultaneously perform both local and global operations at will would add
significant functionality to any modeling system.

Multiresolution representation is a possible solution, which addresses this problem, because
it allows the user to edit objects at different resolution levels. Both local as well as global
operations can be performed on curves by representing them using multiresolution decompo-
sition. Several approaches [7, 15-17] have been proposed for multiresolution representation
of splines, mostly based on wavelets. All these approaches involve expensive pre-calculations
and, in the case of open curves and surfaces, often require specific treatment of boundary
control points. Moreover, these approaches depend on the given spline model they manipulate;
the whole scheme has to be redefined when it comes to manipulating other spline models, only
the philosophy of the calculus can potentially be reused [10].

Among the type of B-splines, NUBS [2, 6, 9, 11] have been receiving considerable attention
in the areas of computer graphics and geometric modeling. NUBS are industry standard tools
for the representation and design of geometry. The term NUBS is given to it because they are
defined on a knot vector where the interior knots spans are not equal. NUBS are useful because:

¢ By manipulating the control points and knot vector, NUBS provide the facility to design a
variety of shapes.

¢ They offer a common mathematical form for representing and designing freeform curves
and surfaces.

¢ Evaluation is reasonably fast and computationally stable.

¢ NUBS have clear geometric tool kit (knot insertion/deletion, degree elevation etc.), which
can be used to design, analyze, process and interrogate objects.

In this work, a multiresolution representation has been proposed for NUBS based on control
point decimation. Section 2 describes the general theory of B-splines and NUBS. In Section 3,
we review the multiresolution representation method [5] for B-splines. Section 4 is about the
proposed method for multiresolution representation for NUBS. In Section 5, the proposed
method is demonstrated by means of some pictures and graphics. This section also contains a
comparison analysis of the proposed method with the method reviewed in Section 3. Finally,
we conclude in Section 6.

3. Multiresolution of NUBS Using Knot Decimation 23

2. Theory of NUBS

The mathematical or natural spline is a piecewise polynomial of degree p with continuity of
derivatives of order p—1 at common joints between segments. A spline curve is specified by a
given set of coordinates positions, called control points, indicating the shape of a curve. Spline
curve is defined, modified and manipulated with operations on the control points. Control
points are then fitted with piecewise continuous parametric polynomial functions in one of two
ways. The first type of splines is called approximatory splines in which the polynomials are
fitted to the general control point path without necessarily passing through any control point
and the resulting curve is said to approximate the set of control points. The second type of
splines is called interpolatory splines in which the curve passes through each control point and
the resulting curve is said to interpolate the set of control points.

The general expression for the calculation of coordinate positions along a B-spline curve in
a blending function formulation is of the form:

S =) 5iBip(t) tmin < < log, 2< p<m+1,
i=0

where s;,i =0,1,...,n, is an input set of n 4+ 1 control points and the B-spline blending
functions B; , are polynomials of degree p. The Cox Deboor [11] recursive formula for the
B-spline basis can be defined as:

_ 19 lf L <t <tiyr,
Biy(ny= {0, otherwise,

and

(t—1) B; p_1(2) 4 (tiep — 1) Big1,p-1(1)

Bi,p(t) =
Liyp—1— 1 tivp — lin1

NUBS are Non-Uniform B-Splines and is the term given to curves that are defined on a knot
vector where the interior knot spans are not equal. As an example, we may have interior knots
with spans of zero. Some common curves require this type of non-uniform knot spacing.
The use of this option allows better shape control and the ability to model a larger class of
shapes. The shape of NUBS not only depends on the control points but also on the knot vector
associated with the set of control points.

3. Multiresolution of NUBS Using Knot Decimation

In this section, for the sake of completeness and comparative study, a review of an already
existing approach for the multiresolution representation of B-splines is briefly presented. This
deals with the multiresolution control for NUBS, which uses the knot decimation and least
squares approximation. This method, for the multiresolution representation of NUBS, has been
presented in [5] in detail. The multiresolution decomposition of the freeform NUBS curve is
computed using least-squares approximation based on existing data reduction techniques.
The least-squares decomposition allows the support of NUBS curves, but it also imposes some
processing penalties in both time and space compared to techniques for multiresolution uniform
B-spline curves.

232 A Multiresolution Framework for NUBS

Let Ci(t) be a B-spline curve of order n and /; control points, defined over the knot vector
7, where k € Z%. Let V;, be the space induced by 1, and let 7,1 C 4. The new space induced
by 13-, denoted by V,_; is clearly a strict subspace of V. Now, suppose Cy_1(¢) (€ Vi) be
the least-squares approximation of C(¢) in the space V;_1, and their difference be the detail
Dy (t) € Vg, given by:

D1 (1) = Ci(t) — Gy (@),

This process of decomposing a curve into two parts, one low resolution approximation and
one high resolution detail can be applied recursively. Cy(t) could then be expressed as:

k—1
Ce = Co(t) + Y_ Di(1),
i=0

where Co(?) € Vp and D;(¢) € V4.

In order to construct a multiresolution decomposition of a NUBS curve as in the earlier
equation, the knot sequence t;, inducing the subspaces V; must first be defined. ; is the knot
vector of the original curve, the subsequent knot vectors 7;, 0 < i < k, can be constructed
such that 7; C 1,4, and 2|1;| &~ |1;4,|, where || denotes the size of the knot vector. The end
conditions of the original curve must be preserved, hence theknots 7; € 7;,0 < j < nand/; <
j<li +n,¥0 <i <k are unmodified, where /; denotes the number of control points defining
C;i(¢) over 1;. In general, /; = |t;| + n. This knot decimation process defines the function space
hierarchy and is independent of the specific curve being decomposed.

For a B-spline curve with knot vector 7; of size 2%, k subspaces will be constructed; each
induced by approximately half the knots of the previous level. The lowest resolution approxi-
mation Co(t) will be a single polynomial curve. That is, the knot vector 7y has no interior knots
(10 = 2n). Least-squares techniques are employed to find the curve C;(t) € V;, defined over
7;, best approximating Cy(#).

Knots are selected so as to minimize the local effect on the curve due to removals from
level i to level i + 1. Hence, consecutive knots should not be removed in one step. Removing
every n'™ knot, where # is the order of the curve will cause the least change from one level to
the next, yet affecting the entire curve. As the degree of a NUBS curve is increased, the curve
becomes smoother and smoother due to the low pass property of the basis functions of the
representation. Therefore, as n increases, by selecting every n® knot for removal, the knots
are removed at larger intervals yet the curve becomes smoother. In practice, it is found that
removing every alternate knot still retains a sufficient number of resolution levels to enable
an effective multiresolution control. Moreover, the computational overhead required for the
algebraic summation is kept at interactive speeds.

4. Multiresolution of NUBS Using Point Decimation

By using the ability to control a B-spline curve by changing the position and order of the control
points, we can come up with a multiresolution representation for NUBS. In this work we use
the control point decimation for the purpose of multiresolution representation of NUBS.

Let Ci(2) be a NUBS curve, defined over the set of polygon vertices or control points Py
{consisting of corresponding weight values for each point in addition to X and Y co-ordinate

4. Multiresolution of NUBS Using Point Decimation 233

values) containing /; points, using the knot vector 7, where k is a positive integer, greater
than zero. There are various methods proposed for the calculation of non-uniform knots, a
popular method is to calculate the knot vector proportional to the chord lengths between the
defining polygon vertices. We use the same knot calculation method. The NUBS curve Cy(z)
is calculated from the control points P, as described in detail in Section 2.

Let V; be the space of all the curves that can be defined using control points P,. Now, we
find a subset P, of P, (P;,—; C P.), clearly the space V,—; induced by P,_, is a subset of
Vi. Let Cir_(2) € Vi_1 be a curve defined over the control points P;_;, and we found out that
it is the approximation to the higher resolution curve Cy(¢). To find P,_; from P;, we use the
process of decimation.

Let a unary operator d; is defined for decimation, where j denotes the interval that is used
to decimate the control points. If j is 2 then every 2°¢ (alternate) control point is decimated,
if j is 3 then select every 3™ control point (i.., control points numbered 3, 6, 9, ...) for
removal. Similarly, if j is i then decimate every i control point. Mathematically control point
decimation is given by:

Py =d;(P).

To minimize the local effect on the resulting curve Ci_;(¢), consecutive control points from
Py should not be removed to obtain P,_;. It is observed that removing every alternate point
causes the acceptable amount of local effect and still retains a sufficient number of resolution
levels to enable an effective multiresolution control. The lost control points can be captured as
Q1.

Let another unary operator ¢; is defined to capture the decimated control points. Here also
Jj denotes the interval used to decimate the points. Mathematically Q;_; can be computed as:

Or—1 = ¢;(Pp).

The process of decomposition can be applied recursively until Py, which contains only n control
points, where n is the order of the B-spline curve. The algorithm in Figure 17.1 summarizes the
multiresolution decomposition process and the flow chart in Figure 17.2 shows it pictorially.
The reconstruction of P; from P;_; and Q;_, is carried out by merging the sets P;_; and
Qi_1. A binary operator r; is defined for the process of reconstructing P; from P;_; and Q; .

INPUT:
Ck(1), a NUBS Curve.
OUTPUT:
PO, Qi, 0 < i <k, the multiresolution decomposition of C(r).
AIGORITHM:
® P, < Control Points of Ci(r);
® fori=+k1to0step-1do

begin
P;=di(Piy);
0;=¢;(Puy);
end;

Figure 17.1 The algorithm.

234 A Multiresolution Framework for NUBS

(START)

Y

P, = Control Points of Cy(f)

i=k-1
_—
Y
P=d(p,)
Y
NO Q= cj(Pi+l)

i=i-1

Figure 17.2 Flow chart of the multiresolution decomposition process.

The reconstruction is mathematically represented as:

P =r;j(Pi-1, Qi-1).

While reconstructing, the criteria used for the decomposition should be followed. For example,
if every j™ point is decimated during decomposition, then the reconstruction of P; is obtained
by rearranging P;_; and Q;_; while placing (j — 1) points from P;_; and one point from Q;_,
in the same order and so on.

5. Demonstration 235

By means of recursively applying the reconstruction operator the original set of control
points can be represented in terms of its multiresolution components as:

Py =r;(Py, Qo, 01, Q2. ..., Qi-1). (17.1)

The above recursion comes through the following procedure:

Pk = rj(rj(POs QO)’ Ql’ QZ» e Qk—l)a
= rj(Ph le Q2s [ERX) Qk—l)’
=r;(rj(P1, 1), @2, ..., Qr-1),

=r;(Pr_1, Qr-1).

5. Demonstration

In this section, the proposed multiresolution representation is demonstrated by applying it
to NUBS curves. Figure 17.3 shows a Star Shaped NUBS curve, whose details are given in
Table 17.1. Figure 17.4 shows all its decomposition levels using the knot decimation mul-
tiresolution method of Section 3. In this figure, five lower resolution levels are obtained.
Figure 17.4(a) is the original curve. Figures 17.4(b) to 17.4(f) show its lower level curves.
In each figure the original curve is shown by thin line and the decomposed curve is shown
by thick line. The average execution time is recorded as 1.73 seconds. Figure 17.5 shows

Figure 17.3 A Star Shaped NUBS curve.

236 A Multiresolution Framework for NUBS

Table 17.1 Attributes of Figure 17.4.

Property Value
Type of Curve NUBS
Degree 2

No. of Control Points 100

the multiresolution decomposition levels of the same curve by the proposed scheme (control
point decimation method) in this paper. With this method, five lower resolution levels are also
possible. The average execution time is recorded as 0.07 seconds.

Another example, for the implementation of the proposed method, is also considered. Fig-
ure 17.6 shows another NUBS curve drawn with 259 control points. After applying the mul-
tiresolution decomposition, the decomposed curves are obtained as shown in Figure 17.6.
Figures 17.7(a) through 17.7(f) contain 130, 66, 34, 18, 10, and 6 control points respectively.

Figure 17.8 shows a NURBS curve of degree 3 consisting of 319 control points with default
weight values. In total, six multiresolution levels are obtained for this curve, as shown in
Figure 17.9. The original curve is shown in thin lines and the curves in thick lines are the
decomposed versions at each level of multiresolution. The original curve is said to be at
level 6, the curve in Figure 17.9(a) consists of 159 control points and is at /eve/ 5. Similarly
the curves in Figure 17.9(b) through Figure 17.9(f) contain 80, 40, 20,10, and 5 control points
and are at decomposition levels 4, 3, 2, 1, and 0 respectively.

Figure 17.4 Multiresolution decomposition of the curve, in Figure 17.3, with Knot Decimation.

5. Demonstration 237

Figure 17.5 Multiresolution decomposition of the curve, in Figure 17.3, with point decimation.

The idea of curve multiresolution has been extended to rectangular surfaces too. The details
of this method are not in the scope of this work and will be described in a later version.
However, for the sake of sample demonstration, an example has been quoted here in Figures
17.10 and 17.11.

As part of muiltiresolution representation of NURBS surfaces, Figure 17.10 shows a NUBS
surface drawn with 30 x 30 mesh of control points. This surface is decomposed by applying the
multiresolution decomposition to obtain the low-resolution versions as shown in Figure 17.11.

Figure 17.6 A NUBS Curve.

238 A Multiresolution Framework for NUBS

Figure 17.7 Multiresolution decomposition of the curve, in Figure 17.6, with point decimation.

Figure 17.8 A NUBS Curve.

Figure 17.9 Multiresolution decomposition of the NUBS curve of Figure 17.8.

6. Summary 239

Figure 17.10 A NUBS Surface.

Figure 17.11 Multiresolution decomposition levels of the surface in Figure 17.10.

6. Summary

A framework for multiresolution representation of NUBS is developed for use in various
computer graphics applications which require both local as well as global operations to be
performed on B-splines. The developed method of multiresolution can be used for the purpose
of performing editing on the B-splines. The proposed method is very efficient with respect to
eXecution time as it uses a very simple technique for the decomposition, which does not require
extensive calculations. As a future work, the authors think that a continuous multiresolation
control would add a significant functionality to this method; investigation of any such method
would be a major addition to the proposed model. The work can also be extended by using
some other spline models like in [12—14]. This work is under consideration of the auathors.

240 A Multiresolution Framework for NUBS

Acknowledgments

This work has been supported by the King Fahd University of Petroleum and Minerals under
Project No. FT/2001-18.

References

[1] Celniker G. and Gossard D. (1991), Deformable Curve and Surface Finite Elements for Freeform Shape Design,
Computer Graphics, 25(4).
[2] Chughtai M. S. A. (1999), ANURBS: An Alternative to the NURBS of Degree Three, MS Thesis, King Fahd
University of Petroleum & Minerals, Dhahran Saudi Arabia.
[3] Cobb E. (1984), Design of Sculptured Surfaces using the B-spline Representation,” Ph. D. Thesis, University of
Utah, USA.
[4] ConnerD,, Snibble S., Herndon K., Robins D., Zeleznic R. and Van-Dam A. (1992), Three Dimensional Widgets,
In the Proceedings of the Symposium on Interactive 3D Graphics.
[5] Gershon E. and Craig G. (1995), Multi-resolution Control for Nonuniform B-spline Curve Editing, In Pacific
graphics '95.
[6] Gerald F. (1996), Curves and Surfaces for Computer Aided Geometric Design: A practical Guide, Academic
Press Inc.
[7] AdamF. and David S. (1994), Multi-resolution Curves, In proceedings of SIGGRAPH, ACM, New York, 261-268.
[8] Foley T., VanDam A, Feiner S., Hughes J. and Phillips R. (1994), Computer Graphics, Prentice Hall International.
[9] Gregory J. A., Sarfraz M. and Yuen P. K. (1994), Interactive Curve Design using C2 Rational Splines, Computers
and Graphics, 18(2), 153-159.
[10] Laurent G., Christophe S. and Carole B. (1997), An Hermitian Approach for Multi-resolution Splines, Technical
report no. 1192-97, LaBRI.
[11] Rogers D. F. and Adams A. J. (1990), Mathematical Elements for Computer Graphics, 2™ Edition, McGraw-Hill
International.
[12] Sarfraz M. (1995), Curves and Surfaces for CAD Using C2 Rational Cubic Splines, Engineering with Computers,
11(2), 94-102.
[13] Sarfraz M. (1994), Cubic Spline Curves with Shape Control, Computers & Graphics, 18(5), 707-713.
[14] Sarfraz M. (1994), Generalized Geometric Interpolation for Rational Cubic Splines, Computers and Graphics,
18(1), 61-72.
[15] StollnitzE. J., DeRose D. T. and Salesin H. D. (1995), Wavelets for Computer Graphics: A Primer, Part-1, IEEE
Computer Graphics and Applications, 15(3), 76~84.
[16] Stollnitz J. E., DeRose D. T. and Salesin H. D. (1995), Wavelets for Computer Graphics: A Primer, Part-2, IEEE
Computer Graphics and Applications, 15(4), 75-85.
[17] Stollnitz]. E.,DeRose D. T. and Salesin H. D. (1996), Wavelets for Computer Graphics: Theory and Applications,
Morgan Kaufman Publishers, San Francisco, USA.
[18] Welch W. and Witkin A. (1992), Variational Surface Modeling, Computer Graphics, 26(2).

18

Irregular Topology Spline
Surfaces and Texture Mapping

Jin J. Zheng
Jian J. Zhang

National Centre for Computer Animation, Bournemouth University
Poole, Dorset BH12 5BB, United Kingdom

It is easy to texture map a surface model with triangular or rectangular patches. However, it
is not so for irregular topology models with irregular patches (n-sided patches where n > 4)
due to lack of proper global parameters for these irregular patches. In this chapter a texture
mapping function capable of texturing an irregular surface model is proposed based on a
spline surface model of irregular topology.

1. Introduction

Texture mapping is a powerful technique for adding realism to a computer-generated scene
with less computational cost [1], [2]. It is widely used in computer graphics [3]. Basically, a
texture map lays a texture pattern (image) onto an object in a scene, i.e., a geometric point
on an object is associated with a pair of texture coordinates. For a parametric surface, texture
mapping is to define a mapping function, which links the geometric parameters of a point
on the surface to its texture coordinates. The quality of the final image is dependent on the
quality of the mapping function. Due to the variety of curved surfaces and their geometric
characteristics such as curvature, twist and topology, much effort in texture mapping has been
expended to the development of proper mapping functions.

Texture mapping for surfaces of triangular and rectangular patches is relatively easy to
perform. This is because the parameters of these surfaces can serve as the texture coordinates.
A standard method is to treat the parametric coordinates of a surface as the texture coordinates.
The texture values can then be interpolated across the surface.

Advances in Geometric Modeling. Edited by M. Sarfraz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-85937-7

242 Irregular Topology Spline Surfaces

However, problems arise if we want to map a piece of texture onto an object with holes and
branches. This often comes with an irregular topology model, i.e., a model contains n-sided
surface patches, where n > 4, such as pentagons and hexagons. One understands that such an
irregular surface patch does not have global parameters which can be used to interpolate the
textures across the surface patch [4]. This problem also arises with the popular subdivision
surfaces [5], and polygonal models, which are often used in building animated characters.

To overcome this limitation, in this chapter we first introduce a C! smooth spline surface
over an irregular topology mesh by using Zheng-Ball surface [6]. Based on this spline surface,
we then construct an analytical mapping function for texture mapping irregular surfaces. This
mapping function provides a C' continuous interpolation scheme, which is used to index the
texture map in the texture space. It is able to texture any n-sided surface area and can be
incorporated into subdivision surface models to texture the neighborhood of the extraordinary
points.

This proposed method is based on the use of Zheng-Ball surface patches [6] and Catmull-
Clark subdivision rules [5]. Instead of keeping subdividing an irregular mesh to infinity, our
method only subdivides the mesh once. A mapping function is then developed over the irregular
surface. The steps of generating the mapping function can be summarized as follows:

e Subdividing an initial surface mesh in the 3D space R using Catmull-Clark subdivision
rules, and subdividing the corresponding initial single texture image once within the texture
space using the same rules.

¢ Constructing a C! smooth spline surface, which consists of regular rectangular sub-patches
and irregular n-sided sub-patches.

¢ Generating a mapping function for each regular or irregular sub-patch. Applying texture to
each sub-patch has then become trivial.

The rest of this chapter is organised as follows: Section 2 gives a survey of the related work
in texture mapping. Section 3 introduces a spline surface over an irregular topology mesh.
In Section 4, a mapping function is developed for texture mapping of irregular patches and
the procedure of texture mapping of irregular objects is explaind, followed by the results and
examples in Section 5. Section 6 concludes this chapter.

2. Previous Work

Traditionally texture mapping of irregular surfaces required either a high amount of human
intervention or degrading of visual quality. This applies to both smooth surfaces and polygonal
modeling.

One method used quite often by animators is to split an irregular surface model into a number
of triangular or quadrilateral pieces. Each of these pieces can be individually texture mapped
using its texture coordinates. The problem of this approach, as can be easily understood, is
the discontinuity between the seams. This problem further exacerbates when the model is
animated, due to a lack of coherence of the moving images.

Two-part texture mapping, one of the early popular techniques proposed by Bier and Sloan
[7] is another method employed in irregular surface texture mapping. Despite it effectiveness in
many applications, it is not very easy to use, especially when the surface is arbitrarily concave.

3. C! Spline Surfaces 243

Solid texturing [8] is theoretically applicable to both solids and surfaces of any complexity.
In practice, however, it is tedious if one is to render a surface using solid texturing. A large
amount of human intervention is required.

Subdivision surfaces have in recent years become a popular surface-modelling scheme in
computer animation due to their capability of irregular topology. Several texture mapping
methods have been proposed for such surface models. Since a large part of a subdivision
surface model is usually covered by ordinary surface patches, such as B-Spline and Bézier
patches, the focal point is on the texture mapping of the irregular regions. A method proposed
by DeRose et al. [4] interpolates the texture coordinates with the surface subdivision rules,
which are used to compute the texture values. It is proved that the interpolation scheme using the
same subdivision rules as for the surface mesh produces a smooth mapping over the surface.
Effective as it is, it heavily relies on the use of the subdivision procedure, which in theory
requires an infinite number of iteration. In other words, this is not an analytical method. As
a result, it makes any further operations, such as differentiation a difficult job, although not
entirely impossible [9]. Another recent texture mapping method [10] was proposed by Piponi
and Borshukov where a subdivision surface model is divided into a number of regions. Using a
simplistic mass-spring system to even out the surface deformation, this method, called pelting,
is able to produce a continuous color map by combining together the separate regions. Although
it is not aiming for arbitrarily n-sided surface types, it is effective for subdivision surfaces.

3. C! Spline Surfaces

To texture map an irregular topology model, a C! smooth spline surface is introduced in this
section. The spline surface model is based on the following n-sided quadratic Zheng-Ball [6]
patch:

1

r@ =Y D Bawra, (18.1)

j=0 min A=j
where n > 3, A = (A1, Az, . .., A,) Tepresents the n-ple subscripts. min A = min?_,{};}. u =

(u1, uz, ..., u,) represents n parameters of which only two are independent. r; stands for the
control points in R?, as shown in Figure 18.1, where we use a hexagon as an example.

T'000020 Tooo110 Fooo200

T200000 T110000 To020000

Figure 18.1 Control points for a 6-sided Zheng-Ball Patch.

244 Irregular Topology Spline Surfaces

B; (u) are the associated basis functions whose expressions are given as:

2 2\ =
()(x.)nl“?’(1+fx(u))+s, A=(,..., 1
H Jj=

i
Bi(u) = ! (18.2)

(2) (;) ﬁ u;\.’(l + fa(w)), for other A’s
iJ j=1

A

where,

2\ 2\
Swy=1-3 (k__l) (A) [T« + Awy, (18.3)

A toj=1

and the functions fi(#) and the parameters are given by:

e n=73
Jos, (W) = —2u;i Uiy, (18.4)
J6i46,, (W) = —uiy2, (18.5)
fiwy=0 for A=(1,1,1), (18.6)
Uy + Uz +us = 2uguaus + 1, (18.7)

e n>5
fH@) =0, (18.8)
w1 [io1.ds + Tjpiiadi (18.9)

ZZ:lnj;ék—l,kdj
in which d; are auxiliary variables satisfying:
2 .

diy+diy1=142cos - d, i=12,...,n (18.10)

The starting point of this method is a user-defined irregular mesh M°, which is a collection of
vertices, edges and faces.
There are two steps in the construction of the spline surface model.

Step 1. Applying Catmull-Clark subdivision once over the initial mesh M°.

The purpose of the first step is to sort out the mesh irregularity so that all faces of the mesh
have exactly four edges. Given a user-defined irregular mesh M, a new refined mesh M can
be created by carrying out Catmull-Clark subdivision once. However, if all its faces are already
4-sided, the user may use the mesh directly. This will create a spline surface closest to the
initial mesh M°.

For a given mesh, three types of points are identified when applying Catmull and Clark [1]
subdivision. They are the face points f, edge points e and vertex points v. All these points may
be either ordinary or extraordinary depending on their valence. Vertices of valence 4 are called
ordinary, and the others are called extraordinary.

3. C! Spline Surfaces 245

Figure 18.2 Applying Catmull-Clark subdivision once to vertex V whose valence is 7.

Clearly, each vertex V of valence n of mesh M? is incident to » faces and n edges. In the
refined mesh M!, the new vertices associated with vertex V are computed by:

f; = centroid of the surrounding vertices of the ith face incident to vertex
Vi=1,...,n), (18.11)

1
e,'=Z(V+fi_1-{—f,'+Vi) i=1,...,n, (18.12)

where subscripts are taken modulo the valence » of vertex V, and V, is the end point of the ith
edge emanating from V.

1 1 & 1<
=—-[2V+ - f,' - if- 18.13
v 4(+n; +n;e) ()

Note that all faces of the new mesh M! are now 4-sided. The valence of the new vertex point v
remains n. The valence of a new edge point is 4. The valence of a new face point is the number
of edges of the corresponding face of mesh M?.

Step 2. Constructing one sub-patch for each vertex in the resulting mesh.

The second step is to construct one surface patch for each vertex of mesh Mm! ensuring all such
patches join together smoothly. For an ordinary vertex, as it is surrounded by four 4-sided
faces, a bi-quadratic Bézier patch is used. For an extraordinary vertex, an n-sided quadratic
Zheng-Ball patch will be generated where # is the valence of the vertex. Every edge of a patch
of either type is a quadratic Bézier curve defined by three control points, two end-points and
one mid-point. Understandably, the end-points are also the corner points of the corresponding
surface patch, such as ¢y, .. ., ¢5 in Figure 18.3.

Figure 18.3 Control points generated corresponding to a vertex of valence 5.

246 Irregular Topology Spline Surfaces

Suppose that d is a vertex in the resulting mesh around which a surface patch is to be
constructed. The control points for a corresponding patch can be generated using the following
rules:

e A corner control point is defined as the centroid of the corresponding surrounding face.
® A mid-edge control point is found as the midpoint of the edge emanating from vertex d.
e The central control point is identical to vertex d.

The output of the above two steps is a collection of sub-patches, which are either tensor product
Bézier patches or quadratic Zheng-Ball patches with an overall C' smoothness.

4. Mapping Functions

4.1. Mapping Functions for Irregular Patches

A texture mapping function can be viewed as one that maps a scalar value (color in this case)
from a planar 2D space to a curved 2D space (the curved surface). In other words, it is to
construct functions f(u, v) and g(u,v) for each pair of parameters s and ¢, such that:

s = f(u,v),
t = g(u,v),

where u, v are the parameters of the target surface; s, ¢ are the original texture coordinates which
are used to index the texture map to color a point on the surface. So, at each geometric point
on the surface with parameters (u, v), there is correspondingly a pair of texture coordinates
(s, t), which will index a unique color for the surface point.

To arrive at a mapping function for irregular patches, we propose that both () and g() also
be constructed by formula (18.1), under the condition that both the texture map and the surface
to be textured have the same topology.

In practice, the 2D texture coordinate associated with a geometric control point ry of an
n-sided surface is considered as the fourth and the fifth components of the control point. So, at
each parameter vector & of the surface (Equation 18.1), not only a 3D geometric surface point
but its associated 2D texture coordinates will be obtained as well. The 2D texture coordinate
is then used to index a color value on the texture map. In this way, the original texture pattern
is mapped across all the surface points.

A mapping function so constructed provides a smooth transformation from the original
texture map to the mapping on the surface. To prove the smoothness is not difficult. Suppose
the original scalar texture function T = T (s, ¢) is differentiable. Since formula (18.1) is dif-
ferentiable, so are the mapping functions f and g. It follows that the new texture function
T = T(f(u, v), gu, v)) is differentiable.

4.2. Mapping Functions for Irregular Spline Surfaces

Once all the sub-patches are identified, their texture mapping becomes straightforward using
the proposed mapping function (18.1).

Suppose there is a pair of texture coordinates (s;, ;) for each initial mesh vertex P;. With
the aforementioned subdivision procedure, these two texture coordinates are considered as the

5. Implementation 247

fourth and fifth coordinates of each vertex undergoing the same subdivision operation. As a
result, a new refined mesh M is produced, so are a set of new vertices, each associated with a
pair of new texture coordinates.

In the process of constructing the sub-patches, the control points of each sub-patch are
generated. The fourth and fifth coordinates of each control point are its associated texture
coordinates. The texture coordinates of these vertices are then used to define the texture
vertices used in mapping function (Equation (18.1)). Now we are ready to texture map the
sub-patches.

To texture map a regular Bézier or B-spline patch is quite easy. As mentioned above, there
are many methods available such as linear or bilinear interpolation. It is a challenge if irregular
n-sided patches are involved. The method provided in this chapter is applicable to both regular
and irregular patches.

As mentioned in the last section, we represent both the geometric control points and the
texture control points by r; in Equation (18.1). Since they all employ the same function, it
is intuitive to combine both the geometric and texture information together for each point on
the spline surface. This means that we represent a surface patch in a 5D space. The first three
coordinates, x, y, z are its real coordinates in 3D and the last two coordinates s and t are
its texture coordinates. Hence, for each parameter vector # a vector r(x) in 5D space results.
Substituting the texture coordinates into a given texture function gives the texture color of a
point on the patch.

5. Implementation

The texturing method presented in this chapter is implemented in a Pentium IIT 850 dual CPU
PC using VC++ and OpenGL.

Figure 18.4a shows a textured regular pentagon consisting of 5 triangles. Figure 18.4b shows
a deformed pentagon model, where discontinuity of the circled pattern is clearly visible. By
using the texture mapping method provided in this chapter, no discontinuity occurs, as shown
in Figure 18.4c.

Figure 18.5a shows a regular pentagonal texture. The texture is mapped onto a geometric
model in Figure 18.5b. In Figure 18.5c, the model is concavely deformed, which is then
smoothly textured with the same pattern (Figure 18.5d).

Figure 18.4 (a) Textured regular pentagon. (b) Texture mapped with five triangles. (c) Texture mapped
using the method provided in this chapter.

248 Irregular Topology Spline Surfaces

whe

Figure 18.5 (a) Textured regular pentagon. (b) Texture mapped onto a model. (c) Deformed model.
(d) Deformed model with smoothly mapped texture.

6. Summary

Texture mapping a regular surface has been well studied and many effective methods are
developed based on the use of their natural parametric coordinates. It represents more of a
challenge, however, for irregular surfaces due to lack of such global parameters.

In this chapter a C! smooth spline surface is presented. This spline surface can be used to
represent irregular topology models.

Based on the C! smooth spline surface, a mapping function is developed to texture map
a model of irregular topology. To represent both the geometric and texture information con-
cisely, a point on a curved surface is regarded as a 5-dimensional vector, where the first three
components are the geometric coordinates and the last two are the texture coordinates. This
method consists of three steps:

¢ Apply the Catmull-Clark subdivision rules once to a single texture map that corresponds to
the initial mesh, resulting in one pair of new texture coordinates for each new mesh point.

e The texture coordinates are considered as the fourth and fifth components of new mesh
points. Generate the control points of a sub-patch around each mesh point so that the fourth
and fifth components of each control point are its texture coordinates.

* Substitute these new 5D control points into Equation (18.1) to create the texture coordinates
of any point on the sub-patch. Surface texturing is then undertaken using these texture
coordinates.

References 249

It is worth noting that texturing an n-sided surface has been made amiable to production only
with recent popular development of subdivision surfaces. But these subdivision surface based
texture mapping methods rely on the use of the subdivision rules. Because it is procedural,
analytical properties may not be easily derived. The proposed method is actually also applicable
to subdivision surfaces, as can be seen from the construction process. There may be a small
amount of geometric discrepancy between the spline surfaces proposed here and the subdivision
surfaces in the neighborhood of the extraordinary points. But the discrepancy has negligible
effects on the texture mapping results. The fact that the mapping function is differentiable will
make further operations much easier.

References

[1] Catmull, E.D. (1974), A subdivision algorithm for computer display of curved surfaces, PhD Thesis, University
of Utah.

[2] Heckbert, P.S. (1986}, Survey of texture mapping, IEEE Computer Graphics and Applications 6(11), 56-67.

[3] Zhang, J.J. (1998), Lease distorted bump mapping onto surface patches. Computer and Graphics 22(2-3). 233—
242,

[4] DeRose, T, Kass, M. and Trong, T. (1998), Subdivision surfaces in character animation. SIGGRAPH'98. 85-94.

[5] Catmull, E. and Clark J. (1978), Recursively generated B-spline surfaces on arbitrary topological meshes.
Computer Aided Design 10(6), 350-355.

[6] Zheng, J.J. and Ball A A. (1997), Contro! point surfaces over non-four-sided areas. Computer Aided Geometric
Design 14(9). 807-820.

[7] Bier, E.A. and Sloan, K.R. (1986), Two-part texture mapping. IEEE Computer Graphics and Application 6(9).
40-53.

[8] Peachey, D.R. (1985), Solid texturing of complex surfaces. SIGGRAPH'85. 279-286.

[9] Stam, J. (1998), Exact evaluation of Catmull-Clark subdivision surface at arbitrary parameter values.
SIGGRAPH’98. 395-404.

[10] Piponi, D. and Borshukov, G. (2000). Seamless texture mapping of subdivision surfaces by model pelting and

texture blending. SIGGRAPH 2000. 471-478.

19

Segmentation of Scanned
Surfaces: Improved Extraction
of Planes

R. Sacchi
JLF. Poliakoff
P.D. Thomas

Department of Computing and Mathematics, The Nottingham Trent University,
Burton St., Nottingham, NG1 4BU, England.

K.-H. Hiifele

Forschungszentrum Karlsruhe, Institut fiir Angewandte Informatik,
Postfach 3640, D-76021 Karlsruhe, Germany.

Reverse engineering often involves the production of a digital representation of a physical
object in order to copy or modify the object. The object surface is scanned to produce a large
number of points, or point cloud. A triangulated surface can always be generated from an
unstructured point cloud, so in all cases adjacency information can be obtained. The original
object is often made up of a number of simple geometric components and could therefore be
represented much more simply. We aim to segment a discretely represented surface into a small
number of such simple geometric components using a ‘region growing’ approach. This chapter
describes our improved algorithm for planar extraction using ‘super triangles’. The algorithm
requires only the data point coordinates together with some form of adjacency information. A
new idea is presented for improving extraction using ‘pseudo-randomization’ of the data.

1. Introduction

Computer Aided Design (CAD) packages are used by engineers to design objects for
production by Computer Aided Manufacturing (CAM) systems [9, 15, 16]. Such an object

Advances in Geometric Modeling. Edited by M. Sarfraz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-85937-7

252 Segmentation of Scanned Surfaces

often consists of a fairly small number of parts of simple geometric shapes, which, when
represented appropriately, can be relatively easy to manipulate or modify before manufacture.
In some cases a physical prototype is produced and then modified directly, whereas in others
the initial design consists of a physical object, which has to be copied. In many cases, a process
of reverse engineering is required in order to create a digital representation of the object [18].
During reverse engineering a large number of surface points are measured to form what is
known as a point clond. Our aim is to develop algorithms for the automated segmentation
of such a digitally represented surface, or point cloud, where possible, into simple geometric
parts.

The measurement of the data points for reverse engineering may involve a tactile method,
such as a contact probe, or the process can be nontactile, for example laser scanning. The
measured data points may form what is known as a structured point cloud, i.e. it includes
adjacency information derived from the scanning process; very often the points are collected
in order along straight lines as the scanning device moves over the object. In some cases, the
points may project onto a grid in, say, the x-y plane, which means that they can be easily
parametrized. In the most general case, however, such a 214D property cannot be assumed.
Previous methods for segmentation have often relied on the fact that the data points are related
to such a grid, for example so-called range data [2] or image data based on pixels.

In cases when the data points form an unstructured point cloud, it is still possible to derive
a structured representation. This can be done by generating a triangulated surface from the
original points [6, 8, 19]. Our aim is to take such a general surface containing some form of
adjacency information and to segment it into a relatively small number of simple geometric
components. Such a segmented surface can then be manipulated easily by a CAD system. Each
component must have all its data points lying, within a given tolerance, on part of a simple
geometric shape or primitive. We have assumed that the geometric shape is to be one of the
following: a plane, a sphere, a cylinder, cone or a torus. In many cases it is relatively easy for
a human operator to classify regions into one of these types. For example, the surface shown
in Figure 19.1 can be seen to contain seven planar segments. Merely looking at this one view
of it allows others to be recognized as parts of cylinders, cones and, probably, spheres and
tori. In the following sections we give a brief survey of segmentation methods and explain
our algorithm for fast extraction of planar segments, which uses only data points and simple
adjacency information.

The POMOS (POint-based MOdelling System) system has been developed at the Research
Centre Karlsruhe to handle large sets of digitized data. It is able to triangulate completely
unstructured 214D data [6], as well as to take manually segmented triangulated surfaces and
approximate them with free-form surfaces [5]. The surfaces generated can then be further
analyzed. We have used this system as a platform for the development and testing of our
algorithms.

2. Segmentation of Surfaces

Previous work in segmentation of surfaces has mainly involved range data or image data 3,
11]. Split-and-merge is a top-down method for which the splitting process has usually relied on
having parametrized data. Another approach involves starting bottom-up with a seed point and
continuing to add further data points until no more suitable ones can be found [13]. Sometimes

2. Segmentation of Surfaces 253

Figure 19.1 An example of a triangulated surface of a technical object which has been rendered.
Components of many simple geometric shapes can be seen, including planes, cylinders
and cones.

the regions grown can be merged subsequently whenever there is a close match between
parameters. During the growing process, surface shape parameters may need to be adjusted.
Curvature has been used to provide preliminary information about surface quality [2]. One
approach to segmentation is to attempt to join up points where curvature is high in order to
identify ridge lines which form the boundaries of surface segments [12]. Some boundaries can
be found in this way. However, when there is a smooth join between two segments, such as
a plane and a cylinder joined tangentially, it cannot be identified in this way because there is
no ridge. There will often be a small change in the curvature itself but this cannot be detected
reliably in the presence of noisy data. Clustering methods, such as the Hough Transform, have
been applied successfully to range data, but many rely on having parametrized data [7]. Genetic
algorithms for primitive extraction are computationally intensive [14], so they are unsuitable
for many of the complex objects which occur in reverse engineering.

We have found that the region growing approach is the most appropriate for general trian-
gulated surfaces [15, 16]. Suitable ‘seed’ points are chosen and then all adjacent points are
tested and added whenever they approximate to the required geometric shape. Readjustment of
shape parameters is usnally needed during this growing process. We have developed a method
for fast planar extraction based on the region growing approach. This method can be applied
to general surface data, only provided that it contains some sort of adjacency information.

Planar patches are very important, because many mechanical objects are made up largely
of planes, as explained by Ashbrook ez al. [1]. In 1982 Hebert et al. [7] described a method
for extracting geometric primitives using the Hough transform but it is time-consuming and
memory-intensive. Since then other methods have been proposed for the extraction of planar
segments from range images, but they rely on having a parametrized surface [4, 10, 17].

254 Segmentation of Scanned Surfaces

Our approach to segmentation of triangulated surfaces using region growing has been pre-
viously described in detail [15, 16]. The work has been based on our curvature estimation
algorithm for triangulated surfaces. Our region growing algorithm starts with an initial region
consisting of a triangle of low estimated mean curvature. The idea of this is to avoid false starts
by choosing only triangles that have a good chance of belonging to a planar segment.

We have found, however, that in the case of planar segments the time taken for curvature
estimation is longer than the time saved in avoiding false starts. We have therefore proposed a
modification of the approach to the segmentation problem by first extracting planar segments
without using curvature estimation. Subsequent curvature estimation will then take less time,
because it needs to be applied only to points remaining after the planar segments have been
extracted. Without the curvature estimation (which relies on the triangulation of the surface)
the method can be adapted immediately to more general surfaces with some sort of adjacency
information. Our new algorithm, described in Section 3.2, was based on an idea proposed
by Roth et al. [14] for representing a geometric primitive by an appropriate minimal set of
points.

3. Extraction of Simple Geometric Segments

We initially developed a region growing algorithm for triangulated surfaces [15, 16]. We
describe these algorithms briefly in Section 3.1. The simplest type of geometric primitive is
the plane and in many cases a considerable proportion of the surface area of an object is made
up of planar parts. Therefore a reduction in the time taken for the extraction of planes would
make a considerable difference to the total extraction time for the objects. For the extraction
of planes is not essential to have curvature estimation but it is needed for other geometric
primitives. We have found that one factor which was particularly time-consuming during the
whole process was the time for adjustment of the geometric primitive whenever a new point
was added to the region. We have therefore modified the region growing for planes by making
the adjustment less frequently and only allowing certain planes to be used for the adjustment, as
described in Section 3.2. The method involves ‘representative triangles’ and ‘super triangles’,
based on the idea of Roth et al.

Finally Section 3.3 presents a method for improving the selection of seed regions for the
many surfaces where the points have been stored systematically. With this improvement the
‘tilt’ problem is much less likely to occur.

3.1. Simple Region Growing

The first stage of simple region growing for a given geometric primitive involves finding a
‘seed’ region of a number of adjacent points which therefore define an initial region for the
geometric primitive. In the case of a plane, three non-collinear points are sufficient to define a
seed plane. For the other types of geometric primitive appropriate initial parameters need to be
calculated using at least four non-coplanar points. The growing stage consists of an attempt to
add a new point to the current region. To be added the new point must be able to satisfy certain
tolerance criteria. Each candidate point must be adjacent to a point which is already part of the
region. The growing process then continues until no more such points can be added. When a
point is considered for addition, one of two cases will occur:

3. Extraction of Simple Geometric Segments 255

(i) The point lies within the given tolerance of the geometric primitive associated with the
current region;
(ii) it is not within the given tolerance of the geometric primitive.

In case (i) the point is added immediately to the region and the parameters of the geometric
primitive are adjusted to the new region. In case (ii) it is considered for addition to the region.
An attempt is made to adjust the geometric primitive so that all the points of the region together
with the new point lie within the required tolerance of it. When this can be done the candidate
point is added to the region and the plane is updated accordingly.

If the above approach is used, many very small regions will be extracted. Therefore, in order
to prevent this from happening, an additional parameter is needed. For example we could set
minimum number of points allowed for a segment, so that a region will not be extracted as a
segment if it contains fewer points than that minimum. (We have used a minimum number of
triangles in our implementation.)

The geometric primitive is adjusted every time a point is added in order to achieve a new
geometric primitive which best fits the new set of data points. However, this adjustment adds
considerably to the time taken for the region growing process. Our new algorithm speeds up the
process in the case of planes by adjusting less frequently and reducing the number of possible
planes.

3.2. Planar Region Growing with Super Triangles

In the case of planes the simple algorithm from Section 3.1 has been modified to be faster, as
described below.

‘We have found that planar region growing can be made even faster by restricting the possible
planes to those defined by any set of three points within the current region. We call the triangle
formed by such a set of points a ‘representative triangle’ for the plane. We attempt to grow this
representative triangle by making its area as large as possible. The idea is that for reasonably
large regions there will only be a small ‘tilt’ to the plane caused by adjusting the plane when
another point is added. This restriction could cause failure of some seeds to grow successfully.
However, for any region which is approximately planar there will be many possible seed regions
available.

At each stage of the region growing process, therefore, the current region is associated with
a current plane defined by a representative triangle (with vertices among the points in the
current region). There is also associated a ‘super triangle’ of area at least as large as that of the
representative triangle. Initially the two triangles are both defined by the triangle consisting of
the three non-collinear points of the seed region.

In case (ii), we consider the plane defined by the super triangle. If all the points (including
the candidate point) lie within an ‘adjustment tolerance’ of this plane, it becomes the new
plane and the candidate point is added to the region. The current super triangle thus becomes
the new representative triangle and the super triangle is modified (see below). Therefore the
area of the representative triangle will never decrease and will tend to increase, because of the
way the super triangle is found. Figure 19.2 shows an example where a single planar segment
has been extracted together with the final super triangle.

256 Segmentation of Scanned Surfaces

Figure 19.2 An example of a triangulated surface consisting of a hemisphere on a plane. As expected,
a single planar segment (shaded) has been found in 2 sec. The final super triangle has
been superimposed. (3473 points, tolerance 0.0005, adjustment tolerance 30%, minimum
triangles 150.)

Now, if case (i) occurs, the new point is added to the region and the super triangle is modified
using the new point, as described below. However, the representative triangle (and therefore
the current plane) is left unchanged.

We now describe how a new super triangle is found (in such a way that the area will tend to
increase). The new triangle is generated from the current one using both the new point and the
last point added previously. An attempt is made to replace the current triangle by one of larger
area by checking all possible triangles with vertices chosen from the above two points together
with the current triangle’s three vertices. If an increase in area is possible, the replacement is
chosen as a triangle with the largest area. Otherwise, the current triangle is retained.

We have found that, if the adjustment tolerance has the same value as the given tolerance
for fitting, then case (ii) can lead to a considerable tilting of the super triangle, as shown
in Figure 19.3. This can prevent further region growth and result in the ‘splitting’ of one
approximately planar part into several planar segments. Figure 19.4 shows the extraction results
for the data from Figure 19.3 viewed from above so that the splitting into three segments can
be seen. Therefore we have used a smaller value than the given tolerance, which reduces the
tilting without having much effect on the size of region grown. In Figures 19.3 and 19.4 three
planar segments were extracted using adjustment tolerance 100%. However, when the same
data is used but with adjustment tolerance of 30% a single planar segment is obtained, as shown
in Figure 19.2 and is found more quickly. For the examples in Figures 19.5, 19.6 and 19.7 the
adjustment tolerance was set to 50% of the given tolerance.

3. Extraction of Simple Geometric Segments 257

Figure 19.3 The data from Figure 19.2 has been processed again but with the adjustment tolerance
equal to the given tolerance. In the side view it can be seen that the final super triangle is
now tilted. Three planar segments are found instead of one and the time taken was 13 sec.

Figure 19.4 The extraction results from Figure 19.3 viewed from above. The tilting has caused splitting
of the planar component into three segments which can be seen, together with the three
super triangles.

258 Segmentation of Scanned Surfaces

Figure 19.5 An example of a plane intersected by part of an ellipsoid. As expected, a single planar
segment has been found in 10 sec. (2750 points, tolerance 0.00068, adjustment tolerance
50%, minimum triangles 150.)

Figure 19.6 Seven planar segments have been found in 25 sec. for the surface from Figure 19.1. Six
of them resemble planes but one segment appears to be part of a cylinder of large radius.
(4018 points, tolerance 0.279, adjustment tolerance 50%, minimum triangles 100.)

3. Extraction of Simple Geometric Segments 259

Figure 19.7 Twenty planar segments have been extracted in 23 sec. for this scanned surface consisting
of several hexagonal nuts arranged in different positions. (3666 points, tolerance 0.0005,
adjustment tolerance 50%, minimum triangles 20.)

3.3. Pseudo-Randomized Selection of Seed Regions

The results from region growing are always likely to be affected significantly by the order in
which the points or triangles are stored. We have found that many data sets are derived from
surfaces which have been scanned and stored in a systematic way. Sometimes the data points
are roughly equally spaced on a grid relative to a particular plane, as is the case for the data for
the surface in Figures 19.1 and 19.6. Typically a sensor will travel over the surface in straight
lines, passing backwards and forwards traversing the object until the complete surface has been
scanned.

For such data sets the first seed points selected from a known geometric component are
nearly always close to the boundary of that component. In the planar case the initial plane is
then sometimes tilted, giving a bad approximation to the actual planar component of the
surface. Adjustment may not be able to compensate for the tilt and the region will be unable
to grow very far. There may be many attempts at region growing with different seeds before
a segment can be extracted. The first successful segment will be the one nearest the boundary
that manages to achieve the given minimum number of triangles for a region and therefore
may still be somewhat tilted. In such cases the region is unlikely to be able to grow sufficiently
to extract the entire planar component. Thus, the extracted segments may still be small, again
causing splitting of planar components.

If this ‘boundary effect’ can be avoided, the results are likely to be improved, reducing both
time taken and splitting. We have attempted to do this by altering the order in which the points
are chosen as seed points using a ‘pseudo-randomization’ technique. This does not prevent a
point close to a boundary from being chosen but it makes it very much less likely. We have

260 Segmentation of Scanned Surfaces

found that using this technique has both increased the speed of the process and reduced splitting
of planar components, as expected.

3.4. Automated Estimation of Tolerance

Another problem withregion growing is when the value of tolerance is set inappropriately by the
user. Ifit is too low, the segments extracted will tend to be small, because the user’s requirement
is too strict, and splitting will often be the result. On the other hand, if the tolerance chosen is
too large, the likelihood of tilting will be increased, again causing splitting. Therefore we have
developed algorithms for estimation of tolerance, whereby a more appropriate tolerance value
is derived from the data itself. The idea is to obtain an estimate of the measurement errors
present in the data based a small region of low curvature.

Automatic estimation of tolerance is performed during the extraction of the first planar
segment. For this case alone the tolerance restriction is not applied until the region reaches a
certain size. (We have used a fixed number of triangles for the size, 10 triangles in the examples
shown here.) This ‘test region’ of the given size is then assessed for low curvature as follows.
A ‘minimum separation’ is calculated as the length of the shortest edge among the triangles
in the test region. Then a ‘curvature tolerance’ is found as half of this minimum separation.
If all the points in the test region are within half this curvature tolerance of the current super
triangle, then the estimated tolerance is calculated from it, as described below. If some points
are not within the curvature tolerance, the test region is discarded and the process continues
until a suitable one is found. Provided that the surface contains some parts of low curvature,

Figure 19.8 Thirteen segments have been extracted in about 11 secs. from the scanned surface of a
keyboard but many small ones have been missed altogether. (Approximately 1100 points,
adjustment tolerance 50%, minimum triangles 150.)

5. Summary 261

from which planar segments can be extracted, it is likely that a successful test region will be
found.

Once a successful test region has been found, the distance of each point in the region from
the super triangle is found and the average distance a is calculated. By assuming that the
measurement errors have a normal distribution and demanding that about 99% of points are
fitted within the tolerance of the plane, the standard deviation can be calculated as o = 2.6a.
Leaving a small additional margin, we have used an estimated tolerance value of 7, = 3a,
slightly larger than o itself. We have found that this value gives satisfactory results when it is
used for subsequent extraction of planer segments and it has been used for our examples in
Figures 19.2, 19.5-19.8.

4. Results

Fast planar segment extraction using both pseudo-randomization of seeds and estimated toler-
ance has been implemented within the POMOS system on a Silicon Graphics O2 workstation.
Figures 19.2, 19.5-19.8 show the results of planar segment extraction for various triangulated
surfaces using adjacency information alone. It can be seen that the planar regions found gener-
ally correspond well to what was expected. In both Figures 19.2 and 19.5 one planar segment
has been extracted surrounding the domed part of the object. In Figure 19.2, where there is a
large angle between the hemisphere and the plane, region growing stops appropriately at the
join between hemisphere and plane. The surface in Figure 19.5 presents a greater challenge to
the process, because the angle between ellipsoid and plane is much smaller. Again the region
growing process has successfully distinguished between the two parts.

In Figure 19.6 it can be seen that seven planar segments have been extracted from the surface
from Figure 19.1. Of these, six were as expected but one additional region has been grown
on a part resembling a cylinder of large radius. This is not a fault in the implementation of
the process but demonstrates the fact that this part of the cylinder does indeed lie within the
tolerance of a plane. Such an effect will become more likely as the radius of the cylinder
increases. It could be avoided by increasing the value of the minimum triangles parameter but
then some small, genuinely planar, segments may be missed. In Figures 19.7 and 19.8 most of
the planar parts have been extracted as single planar segments, although there is some splitting
and some very small planar parts have been missed, probably because they do not have the
minimum number of triangles demanded for a region.

5. Summary

Preliminary results have shown that the new algorithm is successful in achieving planar segment
extraction when a suitable value of tolerance is provided.

Pseudo-randomization allows successful seeds to be found more quickly and the chance of
splitting is reduced. The pseudo-randomization technique has the advantage that it is equally
applicable to any region growing process. Whenever the points are stored systematically based
on adjacency, pseudo-randomization is likely to both speed up region growing and reduce
splitting. For surfaces with data already effectively randomized, however, little difference
could be expected in the results.

The automatic estimation of tolerance has given promising results, as shown here, avoiding
the need for the user to provide a tolerance value. Further investigation is needed to evaluate

262 Segmentation of Scanned Surfaces

its performance for a larger sample of surfaces. The current algorithmic performance is by
no means optimal, because of the data structure used in POMOS. On a dedicated system we
expect that the computational time would be noticeably lower.

References

[1] Ashbrook A.P, Fisher R.B. et al. (1997) Segmentation of Range Data into Rigid Subsets using Planar Surface
Patches. Proc. British Machine Vision Conference, Essex, 530-539.
[2] BeslPJ., Jain R.C. (1988) Segmentation Through Variable-Order Surface Fitting. [EEE Transactions on Pattern
Analysis & Machine Intelligence, 10, No. 2, 167-192.
[3] Biswas PK., Biswas S.S. et al. (1995) An SIMD Algorithm for Range Image Segmentation. Pattern Recognition,
28, No.2, 255-267.
[4] Faugeras O.D., Hebert M. et al. (1983) Segmentation of Range Data into Planar and Quadric Patches. Proc. 3™ d
Conference on Computer Vision and Pattern Recognition, Arlington, VA, 8-13.
[5] Hifele K.-H. (1996) POMOS - POint Based MOdelling System in: Hoschek, J., Dankwort, W. (Eds.) Reverse
Engineering, Verlag B.G. Teubner, Stuttgart, Germany.
[6] Hifele K.-H., Hellmann M. (1996) 3D-MeBdatenaufbereitung und Weiterverarbeitung mit POMOS. 2. Workshop
Optische 3D-Formerfassung Groper Objekte, Esslingen, Germany.
[7] Hebert M., Ponce J. (1982) A New Method for Segmenting 3-D Scenes into Primitives. Proc. International
Conference on Pattern Recognition, Munich, 836-838.
[8] Hoppe H. (1994) Surface Reconstruction from Unorganised Points, PhD Thesis, University of Washington.
[9] Hoschek J., Lasser D. (1993) Fundamentals of Computer Aided Geometric Design. A K. Peters, Wellesley,
Massachusetts.
[10] Jiang X.Y., Bunke H. (1994) Fast Segmentation of Range Images into Planar Regions by Scan Line Grouping.
Machine Vision & Applications, 7, No. 2, 115-122,
[11] Leonardis A., Gupta A. et al. (1995) Segmentation of Range Images as the Search for Geometric Parametric
Models. Int. Journal of Computer Vision, 14, No. 3, 253-277.
[12] Lukdcs G., Andor L. (1998) Computing Natural Division Lines on Free-Form Surfaces Based on Measured Data.
in: Daehlen M., Lyche T., Schumaker L.L. (Eds.) Mathematical Methods for Curves and Surfaces II, 319-326.
[13] Maitre G., Hiigli H. er al. (1990) Range Image Segmentation Based on Function Approximation. in: Gruen, A.
and Baltsavias, E. (Eds.) Close-Range Photogrammetry Meets Machine Vision, SPIE 1395, 275-282.
[14] Roth G., Levine M.D. (1994) Geometric Primitive Extraction using a Genetic Algorithm. /EEE Transactions on
Pattern Analysis and Machine Intelligence, 16, No. 9, 901-905.
[15] Sacchi R., Poliakoff J.F. (1999) Curvature Estimation for Segmentation of Triangulated Surfaces. Proc. 2r Int,
Conference on 3-D Digital Imaging and Modeling, Ottawa, Canada, 536-544.
[16] Sacchi R. (2001) Primitive-Based Segmentation for Triangulated Surfaces, PhD Thesis, the Nottingham Trent
University.
[17] Taylor R.W., Savini M. (1989) Fast Segmentation of Range Imagery into Planar Regions. J. Computer Vision,
Graphics and Image Processing, 45, No. 1, 42-60.
[18] Varady T., Martin R.R. et al. (1997) Reverse Engineering of Geometric Models — An Introduction. Computer-
Aided Design, 29 No. 4, 255-268.
[19] Yemez Y., Schmitt F. (1999) Progressive Multilevel Meshes from Octree Particles. Proc. 2nd Int. Conference on
3D Digital Imaging and Modeling, Ottawa, 290-299.

20

Constraint-Based Visualization of
Spatiotemporal Databases

Peter Revesz

Lixin Li

Computer Science and Engineering Department, University of Nebraska-Lincoln
Lincoln, NE 68588, U.S.A.

We propose using a constraint relational representation for spatial and spatiotemporal data
derived using an inverse distance weighting interpolation method. The advantage of our ap-
proach is that many queries that could not be done in traditional GIS systems can now be
easily expressed and evaluated in constraint database systems. The data visualization can also
be based on constraint techniques.

1. Introduction

To visualize and query a set of spatial data in GIS (Geographic Information Systems) applica-
tions, we often need spatial interpolation, that is, to estimate the unknown values at unsampled
locations with a satisfying level of accuracy. For example, suppose we have the following two
sets of sensory data in our database:

1. Incoming (y, t, u) records the amount of incoming ultraviolet radiation u for each pair of
latitude degree y and time ¢, where time is measured in days.

2. Filter (x, y, r) records the ratio r of ultraviolet radiation that is usually filtered out by the
atmosphere above location (x, y) before reaching the earth.

Figures 20.1 and 20.2 illustrate the locations of the (y, ¢) and (x, y) pairs where the mea-
surements for # and 7 are recorded. Tables 20.1 and 20.2 show the corresponding instances of
these two relations.

Advances in Geometric Modeling. Edited by M. Sarfraz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-85937-7

264 Constraint-Based Visualization

Table 20.1 Incoming. Table 20.2 Filter.
D Y T 8) D X Y R
1 0 1 60 1 2 1 09
2 13 22 20 2 2 14 05
3 33 18 70 3 25 14 03
4 29 0 40 4 25 1 08
1
y
24 2 .
16
16 y *2 *3
8
8
0 1 1] 1 :71 > y [] 1 1 1 1® 4 > X
8 16 24 32 0 8 16 24
Figure 20.1 The sample points in Incoming. Figure 20.2 The sample points in Filter.

Since Incoming (y, t, u) and Filter (x, y, r) only record incoming ultraviolet # and filter ratio
r at a few sampled locations, they cannot be displayed directly. Some spatial interpolation is
needed to estimate » and r for all the locations in the domain. The spatial interpolation is
usually used to calculate the interpolation values at each pixel to be displayed. This will result
in pixel-based data.

Pixel-based data are of great use for GIS applications, where the basic idea is to map each
data value to a pixel in display. Many algorithms developed for pixel-based data stem from the
graphics and image processing areas, such as the algorithms for planar transformation, shape
filling, and clipping [7]. An overview of the pixel-based visualization technique is given in
[13]. However, the resulting pixel-based data file of interpolation has some potential problems.
For example, the number of pixels in the display is limited. In some applications, the number of
data values may exceed the number of available pixels. In this case, the pixel file will not have
complete information. Therefore, it is difficult to use to answer many queries. For example,
consider the following query:

Query 1.1 Find the amount of ultraviolet radiation for each ground location (x, y) at time z.

Let INCOMING (y, t, u) and FILTER (x, y, r) be the relations that represent the interpolations
of Incoming (v, t, u) and Filter (x, y, r), respectively. Then the above query can be expressed
in Datalog as follows:

GROUND (x, y, t, i) : — INCOMING (y, t, u),
FILTER (x, v, 1), (20.1)
i=u(l —r).

The above query could be also expressed in SQL style or relational algebra. Whatever language
is used, it is clear that the evaluation of the above query requires a join of the INCOMING and

2. Representation of IDW in Constraint Databases 265

FILTER relations. Unfortunately, join operations are difficult to perform on pixel-based files
and are not supported by most GIS systems, including the ArcGIS systems.

Several authors noted that interpolation constraints can be stored in constraint relations,
which can be easily joined together, making the evaluation of queries like Query 1.1 feasible.
(The textbook [20] discusses the relationship of constraint databases and GIS data models.)
Also, in contrast to the pixel data representation, the constraint representation is capable of an
arbitrary precision.

Chen eral. [3] and Revesz et al. [21] considered piecewise linear interpolation of time series
data. Grumbach et al. [10] considered linear interpolation between snapshots of moving points
and the interpolation of a landscape surface based on TIN (Triangular Irregular Network)
elevation data. Chen and Revesz [4] used a similar linear interpolation for landscape elevation,
aspect, slope, and related data. All of these interpolations are represented in linear constraint
databases.

Cai er al. [2], and Tossebro and Giiting [24] considered the interpolation of snapshots of
moving regions. Cai er al. [2] represent the interpolation by sets of parametric rectangles,
and Tossebro and Giiting [24] represent the interpolation by a sliced representarion that was
introduced by Forlizzi er al. [8]. Both parametric rectangles and sliced representations can be
translated into linear constraint relations.

However, many practical spatial interpolations, such as inverse distance weighting [5, 23],
Kriging [6, 18], splines [9], trend surfaces [26], and Fourier series [11], require non-linear
constraints. In this paper, we focus on the Inverse Distance Weighting (IDW) interpolation,
which is non-linear, relatively easy, and gives good results in practice [14]. We also look at
visualization, which is generally ignored in the earlier papers. This chapter also sees beyond
[22] by applying IDW to real spatiotemporal data.

The rest of this chapter is organized as follows. Section 2 discusses how to represent IDW
interpolation in polynomial constraint databases. Section 3 describes the application of IDW in
constraint databases to the example in this section. Section 4 gives some visualization results.
Section 5 discusses using IDW for spatiotemporal interpolation. Finally, in Section 6, we
present some ideas for future work.

2. Representation of IDW in Constraint Databases

The rationale for IDW is consistent with most natural properties of spatial data, in particular,
that their values vary continuously and tend to be similar at closer than at further locations.
In IDW, the measured values (known values) closer to a prediction location will have more
influence on the predicted value (unknown value) than those farther away. More specifically,
IDW assumes that each measured point has a local influence that diminishes with distance.
Thus, points in the near neighborhood are given high weights, whereas points at a far distance
are given small weights.
According to reference [12}, the general formula of IDW interpolation is the following:

1 p
: @)
wix, y) =Y ko, k= :

i=1 B N i 7
k=1 d,

(20.2)

266 Constraint-Based Visualization

d1 Wo
Wy d2

ds
W \d;

W3

Figure 20.3 IDW interpolation.

As shown in Figure 20.3, w is the predicted value for location (x, y), N is the number of
nearest known points surrounding (x, y), A; are the weights assigned to each known point
value w; at location (x;, y;), d; are the distances between each (x;, y;) and (x, y), and p is the
exponent, which influences the weighting of w; on w. The optimal value of the exponent is
de%endent on the statistical characteristics of the data set. Please note that in Equation (20.2),

Zi:l A =1

Query 2.1 Suppose (x1, y;) = (0, 0), (x2, y2) = (10, 0) and (x3, y3) = (10, 5) are the three
closest sampled locations to the location (x,y) = (8,2), as shown in Figure 20.4. Let
wi=1, w;=2 and w; =3 be the values of the three sampled locations and d; =
V(x; — x)? + (¥ — y)2. We can interpolate the unknown value w at location (x, y) by IDW
with N =3 and p =2 as:

3
w = Z A.,‘wi
i=1

ICEOEOE

=0.07x1+035%x2+4+0.58 x3 =251

2.1. High-Order Voronoi Diagrams

To represent the IDW interpolation, we first need to find the nearest neighbors for a given
point. Therefore, we borrow the idea of higher-order Voronoi diagrams (or k-th order Voronoi
diagrams) from computational geometry. Higher-order Voronoi diagrams generalize ordinary
Voronoi diagrams by dealing with k closest points. The ordinary Voronoi diagram of a finite set
S of points in the plane is a partition of the plane so that each region of the partition is the locus
of points which are closer to one member of S than to any other member [19]. The higher-order
Voronoi diagram of a finite set S of points in the plane is a partition of the plane into regions

2. Representation of IDW in Constraint Databases 267

y
A
W3
5r (x3.y3)
B 4
ok W
L dq xy) \d: Wa
1 1 1 1 1 1 1 1 1 (X2,YZ)
0(x4,y1) 8 10 "

Figure 20.4 IDW example with three neighbors.

such that points in each region have the same closest members of S. As in an ordinary Voronoi
diagram, each Voronoi region is still convex in a higher-order Voronoi diagram.

From the definition of higher-order Voronoi diagrams, it is obvious that the problem of
finding the k closest neighbors for a given point in the whole domain, which is closely related
to the IDW interpolation method with N = k, is equivalent to constructing k-th order Voronoi
diagrams.

Although higher-order Voronoi diagrams are very difficult to create by imperative languages,
such as C, C++, and Java, they can be easily constructed by declarative languages, such as
Datalog. For example, we can express a 2nd order Voronoi region for points (x;, y1), (x2, ¥2)
in Datalog as follows.

At first, let P(x, y) be a relation that stores all the points in the whole domain. Also
let Dist (x,y,x1,y,d;) be a Euclidean distance relation where d; is the distance be-
tween (x, y) and (x;, y1). It can be expressed in Datalog as Dist (x, y, x1, y1,d1) :i— d) =
VE —x)2+ -

Note that any point (x, y) in the plane does not belong to the 2nd order Voronoi region of
the sample points (x;, y;) and (x2, y,) if there exists another sample point (x3, y3) such that
(x, y) is closer to (x3, y3) than to either (x;, ¥1) or (x2, y2). Using this idea, the complement
can be expressed as:

Not_2Vor (x, y, X1, Y1, X2, ¥2) : — P(x3, y3), Dist (x, ¥, x1, y1, d1),
Dist (x, y, x3, y3, d3), di > d;.
Not 2Vor (x, y, x1, Y1, X2, ¥2) : — P(x3, y3), Dist (x, y, x2, y2, d2),
Dist (x, Yy, X3, V3, d3), dl > d3.
Finally, we take the negation of the above to get the 2nd order Voronoi region as:
2Vor(x, y, x1, Y1, X2, ¥2) :— not Not 2Vor (x, y, x1, y1, X2, ¥2).

The 2nd order Voronoi diagram will be the union of all the nonempty 2nd order Voronoi
regions. Similarly to the 2nd order, we can also construct any kth-order Voronoi diagram.

2.2, IDW in Constraint Databases

After finding the closest neighbors for each point by constructing higher-order Voronoi dia-
grams, we can represent IDW interpolation in constraint databases. In this section, we describe
how to represent the IDW interpolation with N = 2 and p = 2. The representation of other

268 Constraint-Based Visualization

IDW interpolations in constraint databases is straightforward. The representation is obtained
by constructing the appropriate Nth-order Voronoi diagram (where N > 2) and using Equation
(20.2) with the proper p.

Based on the previous section, assume that the 2nd order Voronoi region for points (x1, y;),
(x3, y2) is stored by the relation Vor2nd (x, y, x, ¥1. x2, ¥2), which is a conjunction C of
some linear inequalities corresponding to the edges of the Voronoi region. Then, the value w
of any point (x, y) inside the Voronoi region can be expressed by the cubic constraint tuple as
follows:

R(x,y, w)i— (x —x)* + (¥ — y2)* + (x — x)* + (y — y1))w
=((x — 0+ = y)Hw +((x —x)’+ @ —y)PHw, (20.3)
+ Vor2ndx, y, x1, y1, X2, ¥2)-

or equivalently as,

ROy, wyi— (x =0l + =y +(x —x)? + (y — y)Dw
= ((x = 1)+ = y)P)wr +((x = x)* + (= y))Hw, + C.

In the above polynomial constraint relation, there are three variables x, y and w. The highest-
order terms in the relation are 2x2w and 2 y?w, which are both cubic. Therefore, this is a cubic
constraint tuple.

(20.4)

3. Application

Let us return now to the example in Section 1. Figures 20.5 and 20.6 show the 2nd order
Voronoi diagrams for the sample points in Incoming (y, t, u) and Filter (x, y, r), respectively.
Please note that some 2nd order Voronoi regions are empty. For example, there is no (1, 3)
region in Figure 20.5, and there are no (1, 3) and (2, 4) regions in Figure 20.6.

Based on Equation (20.4), INCOMING (y, t, u) and FILTER (x, y, r), which are the IDW in-
terpolation for Incoming (y, t, u) and Filter (x, y, r), can be represented in constraint databases
as shown in Tables 20.3 and 20.4. Note that the five tuples in Table 20.3 represent the five 2nd

Figure 20.5 The 2nd order Voronoi diagram Figure 20.6 The 2nd order Voronoi diagram
for incoming. for filter.

3. Application 269

Table 20.3 INCOMING (y, t, u).

Y T U

13y +7t — 286 <0,2y -3t - 12 <0,y < 15,
y t u (v — 132 + (¢ — 22160 + (3% + (¢ — 1)")20
=((y—132+ @ -222+y2 4+ (¢ — 1P
2y -3t —-12>0,2y +5t—-60<0,2y +t —44 <0,
y t u ((y ~ 297 + 1260 + (y* 4 (t — 1)1)40
=y =292+ +y>+ (@1 — 1))u
2y +t-44>0,7y—-t—136>0,8y — 11t —47 >0,
y t u ((r — 29 + 370+ ((y — 33)% + (¢ — 18)%)40
=((y =292+ 2+ (y — 33> +(t — 18)")u
8y — 11t —47<0,y+3t —54>0,13y + 7t — 286 > 0,
y t u ((y — 33 + (¢ — 18))20 + ((y — 13)* + (— 22)*)70
=y =332+ —-182+ (- 13+ —22)")u
y>15,y+3t-54<0,7y—t—136 < 0,2y + 5t - 60 > 0,
y t u ((y — 29 + £2)20 + ((y — 13)* + (¢ — 22)*)40
=((y =292+ 2+ (y — 132+ (t — 22)")u

order Voronoi regions in Figure 20.5. These five regions are (1, 2), (1, 4), (3, 4), (2, 3) and
(2, 4). Similarly, the four tuples in Table 20.4 represent the four 2nd order Voronoi regions in
Figure 20.6. These four regions are (1, 2), (1, 4), (3, 4) and (2, 3).

The final result of the Datalog query, GROUND (x, y, t, i), can be represent by Table 20.5.
Since there are five tuples in INCOMING (y, t, u) and four tuples in FILTER (x, y, r), there
should be twenty tuples in GROUND (x, y, t,i). Note that the constraint relations can be
easily joined by taking the conjunction of the constraints from each pair tuples of the two input

Table 20.4 FILTER (x, y, 1).

X Y R

2x—y—20<0,12x+7y — 216 <0,
X y r ((x =22+ (y = 149209+ ((x — 2> + (y — 1)?)0.5
=Qx -2+ (- 14"+ - D

2x—y—-20>0,12x + 7y — 216 <0,

X y r (x — 2572 + (y — D09 + ((x — 2> + (¥ — 1)*)0.8
=20y — 1P+ & —25+(x - 2)r
X y r 2x —y—20>0,12x + 7y - 216 > 0,

((r — 258 + (y — 149908 + ((x =25 +(y — 1?03
=2 =25 +(y — 149+ & — D

2x—y—20<0,12x + 7y — 216 > 0,
X y r ((x =252 + (3 ~ 14H0.5 + ((x — 2)* + (v — 14)%)0.3
=2y — 147+ (x — 25" + (x — 2)))r

270 Constraint-Based Visualization

Table 20.5 GROUND (x, v, ¢, i).

X Y T 1

2x —y—20<0,12x +7y — 216 < 0,13y + 7t — 286 < 0,
2y—3t-12<0,y <15,i =u(l —r),
((x =272 + (3 — 1490.9 4 ((x — 2 + (y — 1))0.5
x oy t i =Q2(x -2+ (y — 147 + (3 — D,
((r — 137 + (¢ — 2260 + (3 + (¢ — 1)1)20
=((y— 13+ (¢ =22 + y* + (¢t — 1)

2% —y—202>0,12x + 7y — 216 < 0, 13y + 7t — 286 < 0,
2y -3t —12<0,y <15,i =u(l —7r),
((x =25 + (y = D09 + ((x —2)* + (y — 1)2)0.8
=20y — D* +(x — 25 + (x — 2P)r,
x y t i ((y — 132 + (1 = 22060 + (2 + (t — 1)*)20
=y =132+ -2 +y*+ (¢ - 1)

relations. Finally, in a constraint database system the constraint in each tuple are automatically
simplified by eliminating the unnecessary variables # and r. We do not show the result of the
simplification step.

4. Visualization

In Section 2, we have described how to represent IDW interpolation in constraint databases. In
Section 1, we have seen it is very easy to express queries (such as join operation) in constraint
database on interpolation data. In this section, we will discuss how to visualize interpolation
data and give some analysis on the quality of IDW interpolation.

For visualization, six basic colors are chosen: red, yellow, green, turquoise, blue, and purple.
The 24 bits RGB values for these colors are the following: red = (255, 0, 0), yellow = (255,
255, 0), green = (0, 255, 0), turquoise = (0, 255, 255), blue = (0, 0, 255), purple = (255, 0,
255). 400 smoothly changing colors have been used for the color plot. These 400 colors are
created by a linear interpolation scheme that is used between each of the following pair of the
basic colors:

red and yellow,
yellow and green,
green and turquoise,
turquoise and blue,
blue and purple.

This color rendering yields a smooth change of colors in the visualization.

4. Visualization 271

Figure 20.7 IDW (n = 3, p = 2) on 255 points.

In Figures 20.7 and 20.8, the graphical interface for the presentation of IDW interpola-
tion data is illustrated. Specifically, these two figures illustrate IDW interpolation with n = 3
and p = 2 on randomly selected DEM (Digital Elevation Model) data over the same area.
Figure 20.7 visualizes the interpolation data based on 255 input points, while Figure 20.8
visualizes the interpolation data based on 1271 input points.

Figure 20.8 IDW (n = 3, p = 2) on 1271 points.

272 Constraint-Based Visualization

300 400 500 600 700 800 900 1000 11001200 1300
Number of Sample Points

Figure 20.9 MAE result.

Experiments have been conducted to analyze the quality of IDW interpolation according to
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The definition of MAE
and RMSE is as follows:

N
AR — el =0 oo [T = 0
N ’ N ’

where N is the number of test houses, /; is the interpolated house price, and O; is the original
house price. A set of sample points have been selected from a DEM surface in the northern part
of San Francisco, which has 1525991 original points. The numbers of randomly selected points
are 255, 509, 763 and 1271. For each dataset, three kinds of IDW interpolation methods with
different n (the number of neighbors) and p (exponent) have been experimented: (i) n = 3,
p=1;(@{i)n =3, p=2; (iil)) n = 4, p = 2. The number of pixels in the display is between
214775 and 215380.

Figure 20.9 and illustrates the quality analysis of IDW interpolation based on different sets of
randomly selected points from the DEM data. We can see that under the condition of randomly
selecting points, MAE almost decreases to half when the number of sample points increases
from 255 to 1271. In particular, when n = 4, p = 2, and the dataset contains 1271 points, the
MAE is 16.34, which is approximately 17.3% of 94.55, the original average elevation value.
This is a very good result, considering that the size of input points is condensed over 1200
times, that is from 1525991 to 1271. RMSE result is very similar as MAE result shown in
Figure 20.9.

Although we only discuss the visualization of interpolation data in this section, the same
visualization technique can apply to animating, that is, visualizing for each time instance, a
query result, such as GROUND (x, y, t, i) in the Datalog query in Equation (20.1).

5. Spatiotemporal Interpolation Using IDW 273

Region-based
High-Order
Voronoi Regions

Thiessen
Polygons

Point-based

Constraint-
based Polygons

Constraint-based

Figure 20.10 The relationship among spatiotemporal databases.

5. Spatiotemporal Interpolation Using IDW

IDW can also be used for spatiotemporal interpolation. There exist different types of spa-
tiotemporal databases (STDBs), such as point-based, region-based, and constraint-based. The
relationship among these STDBs is illustrated in Figure 20.10.

Edge A in Figure 20.10 represents the conversion from point-based STDBs to constraint-
based STDBs. The conversion can be achieved by multiple methods, such as shape functions
[1, 25], spline functions, and Kriging and IDW. We are interested in using the IDW method
for the conversion indicated by Edge A. The other edges in Figure 20.10 between STDBs
can be found in [17]. There are two fundamentally different ways to approach spatiotemporal
interpolation. These methods can be described briefly as follows [15]:

Reduction. This way is to try to reduce the spatiotemporal interpolation problem to the
2-dimensional case. First, for each sample point separately we interpolate (using any
1-dimensional interpolation) all the measured values. This yields a function of time for
the measured value at each sample point. Then by substituting the desired time instant into
these functions, any of the 2-dimensional spatial interpolation methods can be used. As-
sume we are interested in the value of the unsampled point at location (x, y) and time #. This
approach first finds the nearest neighbors of for each unsampled point and calculates the
corresponding weights A;. Then, it calculates the value at time ¢ by some time interpolation
method for each neighbor. Assume the value at sampled point i at time #; is w;;, and at
time #, the value is w;». If we use a simple linear interpolation in time, the formula of this
approach can be expressed as [16]:

wix, y, 1) = Y hwy(t), M=

_ ARG (20.5)
v (z)

274 Constraint-Based Visualization

Table 20.6 Sample (X, ¥, t, p). Table 20.7 Test (x, y, t).
X Y T P(price/ft’) X Y T
888 115 4 56.14 115 1525 16
888 115 76 76.02 115 1525 58
1630 115 118 86.02 115 1525 81
1630 115 123 83.87 115 1610 63
2215 110 27 60.57 115 1610 119
2215 110 77 69.11 890 1880 36
2215 110 114 75.20 890 1880 75
2650 1190 78 70.34 1065 680 91
1950 1760 33 65.44 930 785 115
2240 2380 51 91.87 120 1110 30
2650 1190 43 63.27 615 780 59
where,
tin —t t—t
w;(t) = 2 w1 + A wi2. (20.6)
2 — L2 —

Each neighbor may have different beginning and ending times #;; and #;, in Equation (20.6)
if each points are sampled at different times.

Extension. Several of the interpolation methods can be extended from 2- to 3-dimensional
space. Hence for these methods, we can treat time as the third dimension. Since this method
treats time as a third dimension, the IDW based spatiotemporal formula is of the form of
Equation (20.2) withd; = /(x; — x)2 + (y; — y)* + (& — 1)2.

To test IDW spatiotemporal interpolation methods, we randomly select 126 residential
houses from a quarter of a section of a township, which covers an area of 160 acres. Fur-
thermore, from these 126 houses, we randomly select 76 houses as sample data, and the other
50 houses as test data. Tables 20.6 and 20.7 show instances of these two data-sets. Based on
the fact that the earliest sale of the houses in this neighborhood is in 1990, we encode the time
in such a way that 1 represents January 1990, 2 represents February 1990, ..., 148 represents
April 2002. Note that some houses are sold more than once in the past, so they have more than
one tuple. For example, the house at the location (2215, 110) was sold three time in the time
at time 27, 77, and 114 (which represent 3/1992, 5/1996, and 6/1999).

We use the 76 house sale history information to estimate the remaining 50 test house sale
histories, using both the reduction and the extension methods based on IDW with n = 3 and
p = 1. We compare the estimated values of price per square foot with the true values for each
sale instance of the 50 test houses according to MAE and RMSE. The result is summarized in
Table 20.8.

References 275

Table 20.8 IDW spatiotemporal interpolation

MAE and RMSE result.
Method MAE RMSE
Reduction 10.05 11.96
Extension 11.14 13.63

6. Summary

This paper discusses the representation, querying and visualization of IDW interpolation in
polynomial constraint databases. In constraint databases, the details of the interpolation are ata
lower level, which is transparent for the users. This property makes querying and visualization
easy in constraint databases [20].

Kriging [18] is similar to IDW but the weights are derived using error statistics of the data.
Beside IDW), it is easy to see that Kriging is also representable by constraint relations if the
variogram, or the statistically derived function of weight and distance, is representable using
constraints, If we take some (distance, weight) samples from the variogram, then we get a time
series data, which can be interpolated and translated into a linear constraint relation using the
algorithm in [21].

We are currently extending our work to animation using a 3D spatial interpolation that is
the combination of a 2D spatial interpolation and a function of time. That is, at each sample
point we would no longer have a constant value measured, but we would have a time series of
the measurements. If the time series is itself interpolated, then we get a function of time that
can be combined with the spatial interpolation to get a 3D spatiotemporal interpolation that is
also representable by constraint relations.

References

[1] Buchanan G.R. (1995) Finite Element Analysis. McGraw-Hill, New York

[2] Cai M. Keshwani D. and Revesz P. (2000) Parametric rectangles: A model for querying and animating spatiotem-
poral databases. Proc. 7th International Conference on Extending Database Technology, volume 1777 of Lecture
Notes in Computer Science, 430-444. Springer-Verlag

[3] Chen R. Ouyang M. and Revesz, P. (2000} Approximating data in constraint databases. Proc. Symposium on
Abstraction, Reformulation and Approximation, volume 1864 of Lecture Notes in Computer Science, 124-143.
Springer-Verlag.

[4] Chen R. and Revesz P. (2000) Geo-temporal data transformation and visualization. Proc. Ist International
Conference on Geographic Information Science, 240-242, Savannah, Georgia, USA

[5]1 Demers M.N. (2000} Fundamentals of Geographic Information Systems, 2nd edition. John Wiley & Sons, New
York.

[6] Deutsch C.V. and Journel A.G. (1998) GSLIB: Geostatistical Software Library and User’s Guide, 2nd edition.
Oxford University Press, New York

[7] Foley 1.D. Dam A.V. Feiner S.K. and Hughes J.F. (1996) Computer Graphics: Principles and Practice, Second
Edition in C. Addison-Wesley

[8] Forlizzi L. Guting R.H. Nardelli E. and Schneider M. (2000} A data model and data structure for moving object
databases. Proc. ACM SIGMOD International Conference on Management of Data, 319-330

[9] Goodman J.E. and O’Rourke J. eds (1997) Handbook of Discrete and Computational Geometry. CRC Press,
Boca Raton, New York

276 Constraint-Based Visualization

[10] Grumbach S. Rigaux P. and Segoufin L. (2000) Manipulating interpolated data is easier than you thought. Proc.
IEEE International Conference on Very Large Databases, 156-165

[11] Harbaugh J.W. and Preston EW. (1968) Fourier analysis in geology. Spatial Analysis: A Reader in Statistical
Geography, 218-238. Prentice-Hall, Englewood Cliffs

[12} Johnston K. Ver Hoef J.M. and Krivoruchko K. and Lucas N. (2001} Using ArcGIS Geostatistical Analyst. ERSI
Press

[13] Keim D.A. (1996) Pixel-oriented database visualizations. SIGMOD Record (ACM Special Interest Group on
Management of Data), 25(4):35-39

[14] Lam N.S. (1983) Spatial interpolation methods: A review. The American Cartographer, 10(2):129-149

[15] Li L. and Revesz P. (2002) A comparison of spatio-temporal interpolation methods. Proc. of the Second Inter-
national Conference on GlScience 2002, 145-160, Egenhofer M. and Mark D. eds, Vol. 2478 of Lecture Notes
in Computer Science, Springer-Verlag

[16] Li L. and Revesz P. (in press, 2003) Interpolation methods for spatio-temporal geographic data. Computers,
Environment and Urban Systems, Elsevier

[17] LiL. (2003) Spatiotemporal interpolation methods in GIS. Doctoral Dissertation, University of Nebraska-Lincoln

[18] Oliver M.A. and Webster R. (1990) Kriging: A method of interpolation for geographical information systems.
International Journal of Geographical Information Systems, 4(3):313-332

[19] Preparata F.P. and Shamos M.I. (1985) Computational Geometry: An Introduction. Springer-Verlag

[20] Revesz P. (2002) Introduction to Constraint Databases. Springer-Verlag

[21] Revesz P. Chen R. and Ouyang M. (2001) Approximate query evaluation using linear constraint databases. Proc.
Symposium on Temporal Representation and Reasoning, 170-175, Cividale del Friuli, Italy

[22] Revesz P. and Li Li. (2002) Constraint-based visnalization of spatial interpolation data. Proc. of the Sixth
International Conference on Information Visualization, 563-569, IEEE Press, London, England

[23] Shepard D. (1968) A two-dimensional interpolation function for irregularly spaced data. Proc. 23nd National
Conference ACM, 517-524, ACM Press

[24] Tossebro E. and Giiting R.H. (2001) Creating representation for continuonsly moving regions from observations.
Proc. 7th International Symposium on Spatial and Temporal Databases, 321-344, Redondo Beach, CA

[25] Zienkiewics O.C. and Taylor R.L. (2000) Finite Element Method, Vol. 1, The Basis. Butterworth Heinemann,
London

[26] Zurflueh E.G. (1967) Applications of two-dimensional linear wavelength filtering. Geophysics, 32:1015-1035

21

Surface Oriented Triangulation of
Unorganized 3D Points Based On
Laszlo’s Algorithm

Thomas Schidlich
Guido Brunnett
Marek Vanco

Computer Graphics and Visualization, Faculty of Computer Science, Technical
University of Chemnitz, D-09107 Chemnitz, Germany.

This chapter is concerned with the triangulation of unorganized 3D points in the context of
reverse engineering. A new method is presented that extends Laszlo’s edge based triangulation
algorithm to 3D. The approach is surface oriented, thus it is very fast and provides excellent
reconstruction results.

1. Introduction

This chapter in concerned with the triangulation of unstructured sets of 3D points in the context
of reverse engineering. Reverse engineering addresses the problem of automatic reconstruction
of CAD models from digitized 3D objects. For the digitization a fast and reliable laser range
scanner can be used these have become widely available over the past few years. Difficulties
arise when objects are too complex to be scanned in a single pass and multiple viewpoints must
be used to get a representative sample of the surface. As a result the point set representing the
objects boundary will be completely unstructured.

For the reconstruction of the object a triangulation of the point set is often required as an
intermediate step. Due to the importance of this problem several algorithms for triangulation
of unorganized point sets have been presented. For a good overview of these methods see
[9]. Existing methods for 3D triangulation can be broadly classified into volumetric oriented
methods and surface oriented methods.

Advances in Geometric Modeling. Edited by M. Sarfraz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-85937-7

278 Surface Oriented Triangulation of Unorganized 3D Points

Most of the algorithms for 3D triangulation follow the volumetric approach which is based
on the idea of creating a volumetric reconstruction of the whole object. Very often the Delaunay
tetrahedrization is used as an initial structure for the solid. The triangulation is then extracted
from the boundary of the reconstructed solid. An early influential paper was published by
Boissonnat [3] in 1984. Three dimensional «-shapes, carefully chosen subsets of the Delaunay
triangulation, were introduced by Edelsbrunner and Miicke [6]. Recently, Amenta et al. [1, 2]
published a volumetric method called the crust method.

The volumetric approach is useful if an object with a closed boundary has to be reconstructed
since holes in the boundary do not occur. However, if the original part contains holes this effect
may be unwanted. Furthermore, the volumetric method is very time and memory consuming
due to the computation of the Delaunay tetrahedrization. This is especially so for the crust
algorithm developed by Amenta et al. There, the point set is extended by points in the interior
of the object before the tetrahedrization is applied. Since the quadratic worst case behavior of
the tetrahedrization usually does not occur if all data points lie on the object’s boundary this
extension has an unfavorable effect on the performance of the method.

In contrast to volumetric methods, surface oriented methods intend to triangulate the 3D
points directly. Unfortunately, existing methods of this category cannot be applied to unor-
ganized point sets since they exploit an underlying structure of the gathered sites or do not
provide satisfactory results with respect to the quality of the reconstruction. The triangulation
method presented in this chapter is surface oriented but avoids the above mentioned problems,
i.e. it is a general purpose method that provides very good results for most data sets available.

The layout of this chapter is as follows. In Section 2 we describe Laszlo’s algorithm for the
computation of 2D Delaunay triangulations. In our presentation we already point out problems
that may arise in a 3D generalization. In Section 3 the general outline of the 3D triangulation
method is given which consists of the following consecutive steps: neighborhood search,
tangent plane estimation, triangulation and postprocessing. In this chapter we omit the details
of how the neighborhood search and the tangent plane estimation is actually performed. Only
the triangulation is described in more detail in Section 4. In the final section we demonstrate
how the algorithm works in practice, evaluate its time and space efficiency and show a few
reconstructed objects.

2. Laszlo’s Edge-Based Triangulation Algorithm

Let S be aset of n > 3 sites in general position in R2. In the following we describe an algorithm
for computing the Delaunay triangulation of S, which was first suggested by Laszlo [8]. In this
algorithm the triangulation grows face by face in contrast to, for example, divide-and-conquer
methods. The algorithm’s time complexity is O(n?).

First, it is important to realize that each edge in a two-dimensional triangulation has exactly
two adjacent triangles (or faces), one of which may be the unbounded plane in case the edge
connects two sites that lie on the convex hull of S. As a vital data structure, the algorithm
maintains a set of oriented edges which form the current triangulation’s ‘frontier’. Edges can
thus be classified as ‘dormant’ (undiscovered), ‘live’ (edge is in the frontier, one of its adjacent
triangles is known), and ‘dead’ (edge has been removed from the frontier, both adjacent triangles
have been found). At the beginning, the frontier consists of a single edge between an arbitrary
site and its closest neighbor. This edge is part of the Euclidean minimum spanning tree of

2. Laszlo’s Edge-Based Triangulation Algorithm 279

S and thus also of its Delaunay triangulation. Sites are then incrementally (i.e. one by one)
inserted by arbitrarily choosing an edge from the frontier and searching a third vertex (called
the ‘mate’ of the edge). If a mate has been found, a new triangle is created, the chosen edge
dies and new edges may be inserted into the frontier.

The notion of orientation will become important in later chapters. In R3(py, p2, ps, pa)
have positive orientation, if looking from p; to plane spanned by ps, ps, pa (P2, P3, P4) are
counterclockwise in order. In R? (p,, p,, ps) are positively oriented if p; lies to the left of the
line directed from p; to p;. All edges in the frontier are oriented such that their unknown face
lies on the right hand side. Correct edge orientation is extremely important for the algorithm
and must be maintained throughout the entire computation.

The pseudo-code for Laszlo’s randomized incremental Delaunay triangulation algorithm
can be given as follows.

Algorithm TRIANGULATE

Input: a set S of sites, n = |S]
Output: the Delaunay triangulation D (S)
1 bp={}
2 8’= closest neighbor of arbitrary site 8 € S
3 initialize frontier to contain edges (s, s’') and (s’, s)
4 while frontier # @ do
5 remove some edge e = (8, 8’) from frontier
6 if there exists a mate m of e then
7 add triangle (s, 8’, m) to D
8 update the frontier

9 end if
10 end while
11 return D

Finding the Mate of an Edge. Recall that S is a finite set of sites in R2. For any edge e = (s, s)
contained in the frontier, a third site m is sought such that s, s, and m form e’s yet unknown
face in the Delaunay triangulation of S. m is called the mate of e. To find m, observe that
edge e defines an infinite family of circles whose centers lie along e’s perpendicular bisector
(Figure 21.1). The bisector can be parameterized such that each parametric value o corresponds
to the center C,, of a circle (denoted by C,). Assuming the current frontier contains e, one of
e’s faces is already known. Let C,, denote the circumcircle of this face and let . > —oo be the
corresponding parametric value; 4 = —oo if and only if the known face of e is the unbounded
plane. Now, the smallest parametric value v > g is sought such that some site m (m #s, m #s’)
lies on the boundary of the circle C, associated with v. To find v, the algorithm selects only
sites R C § that lie to the right of e thus forcing v > wu. If there are none (R = @) then e has no
mate. Otherwise, a parametric value v, is computed for each site r € R as the intersection of
the perpendicular bisectors of (s, s") and (s, r). The mate m of e is the site r with the smallest
value of v,: let v = min,¢g v, then m = r,. Figure 21.2 depicts, how the mate of an edge
e = (s, §') is chosen from the sites lying to the right of e.

Note that C, is site-free on the left hand side of e, because C, is contained in C,, and C,,
is site-free. Furthermore, C, is also site-free on the right hand side of e because if there
was any site in the interior of C,, the parametric value associated with its circumcircle
would have been smaller than v, contradicting to the choice of v. Therefore it follows by

280 Surface Oriented Triangulation of Unorganized 3D Points

SROIPRIGIENIAL..0L.rer0rreresssecsgrsbreessepersns
ibisector | o'«\ 3 F >

circle centers

Figure 21.1 Family of circles.

induction over all edges that the triangulation created by the presented algorithm is the Delaunay
triangulation.

Updating the Frontier. If in step 6 of the algorithm a mate m for edge e = (s, s') was found,
as explained in the previous paragraph, the frontier must be updated. Recall that e had already
been removed from the frontier in step 5. To bring the frontier up to date, the following three
cases have to be checked in the order given.

1.1 Edge (s', m) is already in the frontier. Remove edges (', m), insert edge (s, m) into
frontier.

1.2 Edge (m, s) is already in the frontier. Remove edge (m, s) and insert only edge (m, s');
this case is depicted in Figure 21.3.

2.1 m is the vertex of exactly one edge, not equal to (', m) and (m, s) in the frontier. If m
is an edge source then insert merely edge (s’, m), else if m is an edge destination, insert
merely edge (m, s). This case only applies in R3.

2.2 m is the vertex of exactly two edges, not equal to (s', m) and (m, 8), in the frontier. This
brings about a potentially dangerous situation, as depicted in the left image of Figure 21.4,

Figure 21.2 Finding the mate.

2. Laszlo’s Edge-Based Triangulation Algorithm 281

3.1

Figure 21.3 Case 1.2.

Figure 21.4 Case 2.2.

which was not considered by Laszlo’s original algorithm. It frequently occurs when re-
constructing surfaces in three dimensions as well as in two-dimensional site sets which
are not in a general position. If this phenomenon is encountered for the first time, edge
(s, 8) is re-inserted into the frontier and the frontier update subroutine reports a failure,
causing the triangle (s, s’, m) to be removed from D(S). The idea behind this strategy is
simply the hope that this situation will be resolved elsewhere. If it is not, and the same
configuration occurs again, it is safe to assume that (s, s’, m) must indeed be a part of the
Delaunay triangulation, e.g. like the triangle in the right image of Figure 21.4. Then edges
(s, m) and (m, §') are inserted into the frontier.

m is not a vertex of any edge in the frontier but occurs in the triangulation. To detect this
case, each site has a flag associated with it that determines whether the site has already
been discovered by the algorithm. If it has, (s', m) or (m, s) potentially cross the frontier
which is strictly prohibited (Figure 21.5). Edge (s, §') is not re-inserted into the frontier; it
simply dies. This case only applies when surfaces are reconstructed in three dimensions.

Figure 21.5 Cases 3.1 and 3.2.

282 Surface Oriented Triangulation of Unorganized 3D Points

3.2 m is not a vertex of any edge in the frontier and does not occur in the triangulation. This
is the simplest case of all. m is actually an undiscovered site, therefore (s, m) and (m, s')
are inserted into the frontier, as shown in the right image of Figure 21.5, and m is marked
‘traversed’.

Naturally, the frontier should be represented by a search tree supporting fast site and edge
retrieval.

3. From Two to Three Dimensions

In this section, we are going to reveal the fundamental concepts behind our triangulation
method and explain in detail how Laszlo’s two-dimensional algorithm is generalized to three
dimensions,

An obvious approach to triangulating § is consequently to reduce the three-dimensional
problem to two dimensions. In particular, a plane 7 must be chosen which the sites can
be projected onto. A two-dimensional Delaunay triangulation of the projected sites is then
computed and ‘lifted’ back to R3. ‘Lifting the triangulation’ implies that s, s’ € § C R? are
connected by an edge, if and only if there is an edge connecting the projections of s and s’
in the corresponding planar triangulation. It is immediately apparent that a single projection
plane 7 is insufficient to reliably recover M. Therefore we will choose an entire set of planes
{=(e)}, one for each edge e = (s, §'). Recall that a particular iteration of the incremental
triangulation algorithm described in Section 2 starts by selecting an edge e from the frontier.
Then, as a new feature of our three-dimensional reconstruction algorithm, a plane 7 (e) and a
set of candidate sites for the edge’s mate C(e) are computed, Next, the algorithm projects e
and the candidate sites onto the plane; it finds e’s mate m in two dimensions and lifts the result
back to three dimensional space, i.e. (s, s, m) becomes a triangle in the triangulation of S.
Finally, the frontier of oriented edges has to be updated. This process is repeated, until the
frontier is empty.

It remains to clarify how the plane () and the candidate sites C(e) should be computed.
Informally speaking, the neighborhood of a site s is a set of sites N(s) geometrically close to s.
A single site in N(s) called neighbor of s. Candidates for the mate m of a given edge e = (s, §')
are all sites which lie in the intersection of the neighborhoods of s and s':

C(e) = N(s) N N(s). (21.1)

Finally, a proper plane n(e) has to be found for each edge e. n(e) must represent the local
geometry of M well enough to assure that lifting the newly created triangle (s, s’, m) to three
dimensions is topologically correct. An obvious choice for 7 (e) is therefore an approximate
tangent plane. Let t(s) : n(s) - (p — ¢(s)) = 0 be the tangent plane of site s, estimated in a
least-squares sense from N (s), n(s) is the surface normal and ¢(s) some point on the plane.
Then,

m(e): (21.2)

n(s) + n(s) ' (_ c(s) +c(s’)) —0
"I n(sy+n(s") |)

2

The fact that e’s tangent plane n(e) is estimated from local site neighborhoods N(s) U N
(s’) supports the fundamental assumption on which the entire algorithm is based — lifting

3. From Two to Three Dimensions 283

Figure 21.6 Orientation fault in small neighborhoods.

(s, §, m), where s, s, m € C(e), C(e) = N(s) N N (s'), always produces a valid triangle.
Indeed, this prerequisite is met in practice, as demonstrated by our results, provided site
neighborhoods are carefully selected.

Recall that Laszlo’s algorithm requires a frontier consisting of properly oriented edges. In
three dimensions, however, sites can only be classified as lying to the left or right of a plane;
directed edges are insufficient to specify an orientation. Therefore, in R? the term ‘oriented
edges’ refers to ‘projected oriented edges’. Specifically, if a directed edge, contained in the
frontier, is projected onto its tangent plane n (e), the unknown face of e must lie to the right
of e. Only sites that project to the right of e are considered when computing the mate. Now
suppose tangent planes z(s) have been estimated from comparatively smatl neighborhoods,
as shown in the left image of Figure 21.6. The frontier is forging ahead from left to right as
indicated by the arrows. Figure 21.6 depicts the puzzling situation that evolves. Note how
the orientation reverses: first, m lies to the right of (s, s), later it lies to its left, causing the
frontier to advance in the wrong direction! This is because the tangent planes subtend an
angle of more than n/2. Therefore, neighborhoods chosen must be large enough to assure
‘smooth’ transitions between tangent planes of geometrically close sites. This not only helps
to maintain the frontier orientation; it is also a prerequisite for consistent normal alignment,
which is required for properly building a local coordinate system. Naturally, tangent planes
estimated from large neighborhoods may not provide a perfectly close approximation to the
actual situation on the manifold M. However, here we are only interested in planes that allow
lifting the mate to three dimensions, and that change smoothly across the surface, i.e. close
subtend an angle < /2.

The pseudo-code for the algorithm now looks as follows:

Algorithm RECONSTRUCTSURFACE

Input: a set S of sites on or near M, n = |S|
Output: a triangulation of S

1p={}

2 for each site 8 € S do

3 determine neighborhood N(s)

4 estimate tangent plane 1 (8)

5 end for

284 Surface Oriented Triangulation of Unorganized 3D Points

consistently orient all tangent planes

8’'=closest neighbor of arbitrary site s € S

initialize frontier to contain edges (8,8‘) and (s8',s8)

9 while frontier # @ do

10 remove edge e = (8,8') from frontier in a FIFO manner
11 determine m(e) and build a local coordinate system

12 project e and candidate sites C(e) onto x(e)

13 if there exists a mate m of projected e then

o -1 O

14 add triangle (s,8‘,m) to D
15 update the frontier
16 end if

17 end while
18 return D

This algorithm reconstructs the oriented two-dimensional manifold M to the extent possible.
It may, however, due to the lifting, produce triangles of arbitrary poor aspect ratio (especially
in areas of high curvature).

4. Implementation Details

The complete surface reconstruction algorithm, fundamentals of which have been described in
the previous section, can be split into four conceptually different phases. First, neighborhood
search is carried out. During this important step, a neighborhood N(s) is computed for each
site s € S. Phase one is indispensable for all subsequent computations and the obtained neigh-
borhoods have great influence on the outcome of the entire reconstruction algorithm. During a
second phase, surface tangent planes are estimated from the neighborhoods computed in step
one. They are consistently oriented such that their normals vectors point towards the object’s
exterior. Third, the set of unorganized sites is triangulated using the ideas and concepts which
were introduced in Section 3. Finally, the triangular mesh reconstructed in that way is rendered
and displayed.

This section elaborates on the different phases of the algorithm. Specifics of vital data
structures are given; problems that occurred with inadequate approaches are described, several
possible solutions introduced, and their chances of success are considered.

4.1. Neighborhood Search

The objective of the algorithm’s first phase, neighborhood search, is to find an neighborhood
N(s) for each site s € §. N(s) contains sites, called neighbors of s, which are geometrically
close to s. This can be either:

1. all sites within a given Euclidean distance r from s, or
2. the & sites which are closest to s,

depending on the approach that was taken. Other metrics for deciding which sites are ‘geo-
metrically close’ to a given site may exist, but may not be as straightforward to compute and
have therefore not been explored.

4. Implementation Details 285

As mentioned before, finding neighbors is the crucial first step of the algorithm. All succeed-
ing computations build on the results acquired here. Due to its significance, various approaches
for neighborhood search have been implemented and investigated. They differ in quality of
the resulting neighborhoods for reconstruction purposes; in performance, coging complexity
and userfriendliness. A common feature of all such algorithms is some sort of spatial subdi-
vision structure to avoid the worst-case of having to compute all inter-site distances which
would result in a time complexity of O(n?) for a set S of n sites. Formally, spatial subdivision
dicomposes some spatial domain D into a set of smaller pieces. Problems involving D can
in that way be reduced to smaller (and simpler) subproblems. For example, the volume of a
polyhedron may be computed as the sum of the volumes of the tetrahedra of its Delaunay trian-
gulation. In practice, hierarchical subdivision schemes are popular, which recursively partition
D. The subdivision structure that was tested first is, however, nonhierarchical and probably
the simplest of all — a grid.

The Grid Method. Our goal is to find all sites N(s) that lie within a given distancer of s € §.
Problems of this type are called spherical range queries and the sphere with radius r centered
atsis termed a range. r will be referred to as the search radius. The problem can be generalized
to other types of ranges (such as cubes, cones etc.) but in our case a sphere will suffice.

A series of range queries, one for each site s € S, must be performed because neighborhoods
are required for all sites in the set. It is thus advantageous to organize the sites in a spatial data
structure which efficiently supports range queries. For now, a grid is the structure of choice. It
divides some domain D into a regular lattice of small cells. For spherical range queries, a grid
can be constructed as follows. First, compute the axis-parallel bounding box of S, represented
by two points by, and bmax. For simplicity, cubical cells with an edge length equal to the
search radius r will be used. The number of grid cells in each dimension is computed as;

n, = [bmax,x :bmin,x:I L ny = [bmax.y :bmin,y] np = [bmu,z :bmin,z] . (21'3)

Next, the bounding box is adjusted to contain an integer number of cells. For its x-coordinates,
the formulas are:

b;nin,x = bminx — (Mx? — (bmax,» — bmin x))/2
b;na.x,x = bmax,x + (Nx? ~ (bmax,x — bmin,x))/2 (21.4)

Similarly, the bounding box is extended in y and z direction. Each cell C in the gridis associated
with three coordinates C(c;, ¢y, c;). To determine the cell in which a given site s = (s,, sy, §;)
is contained, the cell’s coordinates are computed as follows:

Cy = [_—sx _ b;m'n,x] R Cy = [__sy _ bl,'nin,y] , Cz = [—sz _ bll'nin,z] . (215)

r r r

A grid can thus be constructed in O(n) linear time from a set of sites. To use it for efficient
range querying, recall that the cell edge length is equal to the search radius r. When deter-
mining the neighborhoods N(s) for all sites s in an arbitrary cell C, the distances between
these sites and those contained in any cell C” adjacent to C (including C itself) have to be
computed. As depicted in Figure 21.7, the spherical range centered about some s € C may

286 Surface Oriented Triangulation of Unorganized 3D Points

Figure 21.7 Range covers adjacent cells.

cover all adjacent grid cells, validating the just stated rule. In three dimensions, up to 27 such
cell-to-cell comparisons would be necessary to determine neighborhoods for all sites in a given
(central) grid cell. A single such comparison consequently involves computing the intersite
distances between every two sites s € C, s’ € C” in cells C and C” and adding sites that are
within range r to each others neighborhood. Note that for range queries, ‘neighborhood’ is a
symmetric relationship: s € N(s') © ¢’ € N(s). We can use this observation to limit the number
of cell-to-cell comparisons by traversing the grid in a specific, e.g. lexicographic, order. The
core for a spherical range query could then look as follows:

1 for z = 0 to n, do
2 for y =0 to n, do

3 for x = 0 to n, do
4 cell-to-cell compare
(x, ¥y, 2) to (%, ¥y, 2),
(x, v, z) to (x+1, v, z),
(x, ¥y, z) to (x-1, y+1,z),
(x, yv. z) to (x, y+1, z),
(x, ¥, z) to (x+1, y+1, z),
(x, v, 2) to (..., ..., 2z+1)[9x]

Figure 21.8 illustrates how range queries are efficiently performed on a grid consisting of
square cells. The total asymptotic run time can be derived as follows: Let m be the maximum
number of sites in a cell of the grid. Then the number of site-to-site comparisons for any single
cell-to-cell comparison is bounded by O(m?). Now let ¢ denote the total number of cells,
¢ = nynyn,. Because each cell is compared to at most fourteen others, as shown in the pseudo-
code, there are total O(c) cell-to-cell comparisons and the overall number of individual site-
to-site comparisons is consequently O(cm?). Because the total number of sites # is bounded
by O(cm), and building the grid takes O(n) time, the entire algorithm has a complexity of
O(nm). The O(n?) worst case occurs if there is only a single cell, namely the bounding box,
and thus m = n. In practice, m << n. The grid method performs pretty well, also because it
introduces little overhead into the computation.

4. Implementation Details 287

Figure 21.8 Efficient grid range querying.

One disadvantage of the grid method is its memory inefficiency. If the search radius r is
chosen too small, the number of cells in the grid easily exceeds 232 and thus the address space
of a 32-bit CPU. The user should therefore be provided with an estimate of r to avoid such
situations. Assume the site set is bounded by a box with diagonal length d = |bpax — bminl.
This bounding box is regarded as a cube with the same diagonal length d and an edge length
a = d/,/3. The number of cells in the grid is then given as ¢ = [a/r]?. Assuming a uniform
site distribution within the bounding cube, the number m of sites per cell is approximately:

¢ lgad 1(d\ d

n n\r n \.3r 33 /nm
Empirically, m = 27 gives acceptable results for many site sets. Thus, r can be approximated
as:

r~0.19245- L. @L7)
n

Jn

Though the user is given an idea of r’s magnitude, the above formula still only provides an
estimate of the search radius. For large site sets, relatively small changes to » may cause
¢ > 2%2 and the application to crash. Furthermore, the grid method is inefficient if the sites are
unevenly distributed. Many cells remain empty while others contain a large number of sites,
resulting in the performance being pushed towards the O(n?) worst case. In conclusion, the
grid method is easy to code, but not flexible enough for the purpose of surface reconstruction.

The kD-Tree. To overcome the grid’s disadvantages, in particular its inefficient memory usage
and lack of flexibility, an adaptive hierarchical subdivision scheme is now introduced. Instead of
creating cells of constant size, each containing a variable number of sites, adaptive subdivision
generates cells of variable size, each enclosing approximately the same amount of sites. In
other words, the cell size varies in response to the distribution of the sites. Subdivision is fine
where the sites are dense and coarse. Examples of data structures that support adaptive spatial
subdivision are quad-trees and oct-trees, respectively.

For spherical range queries, a k-dimensional binary search tree, or kD-tree, is practical. This
is a binary tree that recursively subdivides k- dimensional space by alternating cut planes which

288 Surface Oriented Triangulation of Unorganized 3D Points

X-cut

T

y-cut y-cut

/N /N

z-cut z-cut z-cut z-cut

/

X-cut ...

Figure 21.9 Alternating tree cuts.

are parallel to the coordinate planes. The three-dimensional case, i.e. building a 3D-tree, is
naturally of particular interest to surface reconstruction. For £ = 3, cut planes parallel to the
¥z coordinate plane will be referred to as x-cut. Equivalently, y-cuts and z-cuts are defined.
Cut directions alternate when descending down the tree, as shown in Figure 21.9,

Briefly explained, a 3D-tree can be constructed as follows. First, the sites in S are presorted
inx, y, and z direction, respectively. During each step of the recursive construction, the present
set of n sites is split into two roughly equal parts along the current cut direction. The median
m is taken from position n/2 of the set that was presorted by the split coordinate. This median
is stored in the tree node just created; it uniquely determines the cut plane associated with it.

Now, the two remaining presorted site sets are each partitioned into two halves; one half
contains all sites smaller than m, the other all sites greater than m. The split is carried out, such
that ordering in the two newly created subsets is preserved. Essentially, this operation performs
the opposite of a merge in merge sort. Tree construction then continues recursively on both
subsets of the three presorted sets, generating the left and right son of the current tree node,
until a set consists of only a single site. Figure 21.10 depicts how the initial set is split into
two subsets. A complete 2D-tree and the subdivision structure associated with it are shown in
Figure 21.11.

If, during the tree’s construction, a set contains an even number of sites, the median is chosen
such that the larger subset is always associated with the left son of the current tree node. Then,
the size, or number of nodes in the kD-tree is bounded by 2U°8:"1, Just like a heap, the kD-tree
can therefore be very memory efficiently implemented as an array.

Figure 21.10 Splitting the presorted sets.

4. Implementation Details 289

Figure 21.11 Querying the 2D-tree.

kD-trees allow fast spherical range queries for any query center s and search radius r by
recursing through the tree. For the current tree node, we first check whether site m associated
with this node lies within the range. If this is the case, m is added to N(s). Next, if a part of the
spherical range lies to the left, top, or front respectively, of the current cut plane through the
median, m’s left son is queried recursively. Symmetrically, if a part of the spherical range lies
to the right, bottom, or back, respectively, of the current cut plane, m’s right son is queried.
This way it is assured that the query is restricted to one son whenever possible. Figure 21.11
illustrates a two-dimensional range search.

A kD-tree can be constructed in O(n log n) time. For k = 3, a single range query that
reports r sites takes O(r?® + r). The total time complexity for a complete neighborhood
search is thus O(n°/ + nr). The kD-tree performs almost as well as a grid; it is much more
flexible and consumes considerably less memory. The implementation is, however, slightly
more complicated. kD-trees can be efficiently computed for large sets of sites.

One problem still remains: determining a suitable search radius r requires some knowledge
about the distribution of the sites within the bounding box. Though one can use the same
approximation for r as the grid method uses to get an idea of r’s magnitude, r still largely
depends on properties of the site set. This disadvantage is common to all methods that determine
neighborhoods using range search.

K Nearest Neighbors. We are now going to present the technique that is currently used in
our software to find site neighborhoods for surface reconstruction. In it, instead of specifying
a search radius r, the user provides an integer constant k. For each site s € S, the application
searches the k sites closest to s which then form N(s). This computational task is also called
the k-nearest neighbors problem. Obviously, k can be chosen independent of the object’s scale,
which is a huge advantage over the range search approaches. The application can now be used
more conveniently and intuitively. Neighborhood sizes | N (s)| may be directly specified, the ra-
dius of a neighborhood (i.e. the distance to the farthest neighbor) adapts to the local site density.

All the advantages just mentioned are bought at the expense of performance, however. Solving
the k-nearest neighbors problem is more complex than carrying out a series of range searches.
The best known theoretical time bound for k-nearest neighbors search is due to Callahan [4].
He computes the Well Separated Pairs Decomposition (WSPD) for a site set based on its fair
split tree in O(n log r). Geometric properties of the WSPD allow for solving the k-nearest
neighbors problem in additional O(kn) steps. We implemented the algorithm and it proved

290 Surface Oriented Triangulation of Unorganized 3D Points

Figure 21.12 Findingr.

not to be useful in practice. Though the fair split tree and the WSPD of the site set can be
computed efficiently, obtaining the k nearest neighbors for each site takes too much time and
space. There is a large constant, about 50, hidden in the O (kn) asymptotic time which accounts
for the overhead of the method and makes it unsuitable.

Other approaches to the k-nearest neighbors problem yield better performance, although
their theoretical bounds are worse. We have developed our own method. We use a kD-tree to
determine a search radius for each site which guarantees to return at least k neighbors. The
algorithm can be described as follows. If, during the construction of a kD-tree, there are n > k
sites in the current set, only n/2 — 1 < k of which will be associated with the right son, a
bounding box is computed for the current set (Figure 21.12). For each coordinate of any sites s
in the present set, the two distances to its corresponding bounding box planes are derived. Let
r be the vector, the components of which are the larger of the two distances. Then the length
of r is the search radius r for site s. After the kD-tree has been constructed, search radiuses for
most sites have been obtained that way.

Finally, r needs to be determined for sites s representing high-level internal tree nodes. This is
done by searching an adjacent kD-tree node which contains > k sites and the median of which
has already been assigned a search radius. Within this node, the site closest to s is found. The
search radius of s is then the sum of the distance to the closest site and the closest site’s search
radius (Figure 21.13). This computation is carried out top-down for each node, the median of
which has not yet been assigned a search radius, starting at the root node of the kD-tree. After
having assigned some radius r to each site s € S, a range search is carried out to obtain > k
sites in the vicinity of s. Then, the k nearest sites are found in linear time by selecting the k-th

Figure 21.13 Finding r.

4. Implementation Details 291

median and retrieving all closer sites. Note that the search radius r is always a conservative
estimate. In many cases, especially if the data is scattered, r can be chosen smaller. Over all
neighborhoods N(s), the application therefore determines a confidence factor < 1 by which
the estimated search radiuses can be diminished without losing the property of having at least &
sites within range of each site s € S. The confidence factor can be used to speedup subsequent
searches for the same number of neighbors in the same set of sites. The neighbors N(s) are
sorted by increasing distance from s and are represented as a fixed-size array of pointers.

Despite the fact that the k-nearest neighbors problem cannot be solved as fast as a series of
individual range queries, it is very well suited for neighborhood search in surface reconstruction.
This is mainly because the method guarantees a certain neighborhood size without having to
worry about the local distribution and scale of the site set.

As an additional feature, the user can reduce site neighborhoods after they have been deter-
mined. The basic idea is that the surface triangulation algorithm requires large neighborhoods
(i.e. large k) in coarsely sampled regions which in turn may be oversize in high-curvature areas
where tangent planes are inaccurately estimated as a result. Principal component analysis is
used to compute the smallest eigenvalue of the covariance matrix of a site neighborhood. The
user can specify an upper bound for this eigenvalue, i.e. a maximum value for variance in
normal direction. The application successively removes neighbors, starting with the farthest,
until the smallest eigenvalue drops below the given maximum. The smaller the smallest eigen-
value, the better the neighborhood can be approximated by plane. As three distinct points
always lie on a common plane, the smallest eigenvalue is zero for neighborhoods of size three
or less.

4.2. Tangent Plane Estimation

Given the neighborhoods N(s), tangent planes t (s) : n(s) - (p — ¢(s)) = 0 can be estimated
for each site s € S. The plane’s normal n(s) and its centroid ¢(s) are computed. Denote the
k = |N(s)| neighbors of s as:

N(s) = (mi}e_,. (21.8)

The centroid of N (s), which corresponds to the neighborhood’s center of gravity, is then simply
obtained by averaging the neighbors of s:

k
c(s) = % Zn,-. (21.9)
i=1

Principal component analysis can now be employed to estimate the tangent plane’s normal
vector. If ¢(s) is regarded as the sample mean vector, the sample variance-covariance matrix S
may be computed by evaluating the following sum:

k
§= k_i] ;("f — () — (&) (21.10)

Sis a3 x 3, positive semi-definite matrix and can thus be decomposed into real eigenvalues
A1 = Az > A3 = 0 and the corresponding eigenvectors, T(s)’s normal vector n(s) is chosen to

292 Surface Oriented Triangulation of Unorganized 3D Points

o untraversed o
o traversed

closest —— '

Figure 21.14 EMST.

be the eigenvector associated with the smallest eigenvalue A;. The tangent plane thus obtained
is optimal in a least-squares sense in that it minimizes the sum of squared distances between the
n; and t(s). The above eigenproblem is solved by utilizing an appropriate LAPACK (Linear
Algebra Package) driver routine.

Having estimated tangent planes for all sites s € S, they need to be properly oriented, such
that every normal n(s) points towards the objects exterior. Correct tangent plane orientation is
crucial when local coordinate systems are constructed during surface triangulation, Erroneous
planes may cause topologically incorrect triangles to be generated or, what is just as serious,
the entire frontier could collapse.

To orient tangent planes, we have adopted the approach of Hoppe et al. [7]. The procedure
starts at the site s € S with the smallest z-coordinate, the normal vector of which is aligned such
that its z-value is negative. Because the n; are sorted by increasing distance to s, the nearest
neighbor n; of s can be found in O(1). Now, the dot product n(s) - n(n;) of the two normal
vectors is considered. Under the assumption made in Section 3, tangent planes of adjacent
sites must enclose an angle of less than 7/2. Consequently, if the above scalar product is less
than zero, n(m,) is incorrectly oriented and must be flipped by multiplying it with — 1. Next,
n; is marked ‘traversed’ to indicate that its tangent plane normal is now valid. In the i-th step
of the algorithm, i + 1 sites have been traversed. Some of these sites possess a closest, yet
untraversed neighbor. The algorithm continues checking the normal orientation of closest such
neighbor among all traversed sites (Figure 21.14).

To do this efficiently, a heap of untraversed sites, sorted by distance to a traversed neighbor,
is maintained. It allows the sought minimum to be retrieved in O(1). Note that this algorithm
practically constructs a Euclidean Minimum Spannning Tree (EMST) of the neighborhood
graph. By propagating orientation information over the EMST, consistent tangent planes can
be obtained, as geometrically close sites are likely to have similar tangent planes. Normal ori-
entation fails if the neighborhood graph is not connected, i.e. if some sites remain untraversed.
In this case, the user should increase the neighborhood size.

4.3. Triangulation and Mesh Post-Processing

During the algorithm’s third phase, the site set S is triangulated based on the sites’ neighbor-
hood and tangent plane information which have been computed before. The triangular mesh
thus created undergoes a post-processing procedure which involves checking and probably
correcting triangle orientations, filling holes and smoothing the mesh.

4. Implementation Details 293

Figure 21.15 Local coordinate system.

In its entirety, the triangulation process was described in Sections 2 and 3. Recall that each
step consists of selecting an edge e = (s, §") from the frontier, deriving a set of candidate sites
C(e) and a plane 7 (e) = n(e) - (p— c(e)), projecting e and C(e) onto 7 (e), and finding the mate
m of e in two dimensions. Then, the triangle (s, s’, m) is added to the mesh and the frontier of
oriented edges is updated. This section elaborates on some aspects of the triangulation process
that have not been covered in previous sections.

Assume, edge e = (s, §') has been removed from the frontier in the current triangulation
step. The frontier is implemented as a randomized braided binary search tree. It combines
two basic data structures, a tree and a list. Each tree node represents an edge of the frontier
and contains pointers to its left and right child in the tree as well as one to the next node in
the list, or braid, which is maintained in a FIFO manner. Thus, removing the braid’s head
yields the ‘oldest’ edge in the tree, namely e. To assure efficient dictionary operations, the
search tree should be balanced. So, each node is additionally assigned a random value, called
priority. Besides the standard binary search tree rule, i.e. items in the left subtree are smaller
than items in the right subtree, it must now also be assured that the priority of each node is
smaller than the priority of every one of its descendants. This is done by applying appropriate
rotations when inserting or deleting tree nodes. It can be proven that the expected depth of a
tree node is O(log n) if n is the total number of edges currently stored in the frontier. Retriev-
ing an edge involves finding the head of the braid in O(1) and removing the corresponding
node in expected O(log n) from the tree. Having computed C(e) and 7 (e), the candidates
sites must be projected onto the plane to reduce the problem of finding e’s mate to two di-
mensions. For this purpose, a local (1, v, r)-coordinate system has to be built. Its n-axis
is simply given by 7 (e)’s normalized normal n(e). The uaxis corresponds to e’s projection
onto 7 (e). Let & = (8, §) denote this projected edge, where § = s + [n(e) - c(e) — n(e) - s]n(e)
(analog for §'), Normalizing & yields the sought u-axis and § is taken as the origin of the lo-
cal coordinate system. The v-axis is chosen such that it is directed towards e’s known face,
v=uxn

To find the mate of e, each candidate site contained in C(e) is transformed into local (&, v,
n)-coordinates by means of a basis transformation. Disregarding the n-coordinate yields the
desired two-dimensional, projected sites. Only candidates which have a negative v-coordinate,
and thus lie to the right of & (i.e. on the side of &s unknown face), are considered for mate

A A7

search. Having found a mate 1i in two dimensions, the triangle (8, §, 1f1) is ‘lifted’ merely by

294 Surface Oriented Triangulation of Unorganized 3D Points

inserting (s, s’, m) into the mesh. Then, the frontier is updated and mate search starts all over
again, until the frontier contains no more edges.

Mesh post-processing begins while the triangulation is in progress. When a triangle (s, ', m)
is created and added to the mesh, the algorithm investigates whether it is properly oriented.
To that end, the post-processing procedure maintains a separate tree data structure which is
similar to the binary search tree that represents the frontier of oriented edges. It checks if any
of the triangle’s three sides (s, 8), (s’, m), or (m, s) occur in the tree. If this is not the case, then
the triangle is consistent with the mesh and added to it. At the same time, all three edges of the
triangle are inserted into the tree. If, on the other hand, any of the triangle’s edges are found in
the search tree, an orientation fault has occurred, e.g. due to improperly chosen neighborhoods.
In this case, the triangle’s orientation is flipped and an attempt is made to add it again. If it still
cannot be inserted into the mesh, the triangle is ignored. This strategy guarantees to generate a
consistent, though not necessarily connected, mesh. Correct triangle orientations are required
for backface culling and lighting as the mesh is rendered.

The application is furthermore capable of filling holes that may remain in the final mesh.
It first removes all edges from the edge tree which occur twice, in reverse orientation. Then,
edges that cannot be deleted correspond to mesh boundaries. For each such edge e = (s, §°),
the algorithm checks whether a third site m exists which is a neighbor of both s and s’ and
also a part of at least one other boundary edge in the tree. If such a site m exists, a hole filling
triangle (s, s’, m) can be added to the mesh.

A further feature of the application is mesh smoothing. Just like smoothing filters in image
processing, mesh smoothing can be used to remove small wrinkles from the surface which
occur, for example, due to noise in the scanning process. Though the result may be visu-
ally pleasing, subtle surface detail can be lost. Many approaches to mesh smoothing have
been suggested. More complicated methods attempt to increase the quality of the mesh while
keeping gentle features of the surface. We have used the simplest possible smoothing algo-
rithm, however. Let the mesh reighbors of a site s in the set be all sites 8" that share an edge
e = (s, ') with s in the triangulation of S. Note that the mesh neighborhood M(s) can easily be
obtained from the edge tree which is created during the triangulation as described previously.
To smooth the mesh, a site s is repositioned to the coordinates of the centroid of M(s). Then,
the smoothing procedure is invoked recursively on all unsmoothed neighbors of s. The effects
of this approach will be evaluated in Section 5.

5. Results

Numerous, different kinds of objects can properly and efficiently be reconstructed and vi-
sualized from unorganized points using the method described in this chapter. Figure 21.16
shows nine reconstructions. Most of the three-dimensional data was taken from Hoppe et al.
Table 21.1 contains some statistical information about the time and space required for recon-
structing each particular model. It has been obtained on a machine equipped with a 500 MHz
AMD-K7 and 256 MB RAM running RedHat Linux. In this table, » = || is the total number
of sites in the set, k the neighborhood size (i.e. the number of neighbors), f the confidence
factor, and A3** an upper bound on the smallest eigenvalue of the local covariance matrix.
‘#Tri’s’ refers to the total number of triangles in the reconstructed mesh and is followed by

5. Results 295

Figure 21.16 Reconstruction results.

“Time’, indicating how many seconds the entire reconstruction process took. ‘KNN’ specifies
what portion of the total time the k-nearest neighbors search accounted for. The penultimate
column provides a quality measure for the sample (first number) and its reconstruction (second
number). Quality can be either 1 (poor), 2 (fair), 3 (good), or 4 (perfect).

In evaluating the results, it can first be determined that sets consisting of up to several ten
thousand sites may be reconstructed. Two facts have proven prohibitive to larger sets. First, as all
sites are required simultaneously (the algorithm is not incremental in this sense), the amount
of actually installed physical memory is a serious limiting factor. Moreover, neighborhood
parameters, especially k, require careful tuning which is worn intensive if reconstruction times
exceed a few minutes.

296 Surface Oriented Triangulation of Unorganized 3D Points

Table 21.1 Statistical data on reconstruction results.

Model Name n k f AR #Tri’s Time[s] KNN[%] Quality
Cat 6779 32 0.64 1.0E+10 13501 9.58 70.8 3/4
Club 16864 28 077 1.0E+10 33695 22.53 74.9 4/4
Cutout 10639 38 0.78 1.0E+10 21294 16.49 70.3 3/3
DistCap 12745 40 0.80 3.8E-04 25224 23.50 57.0 172
FanDisk 16475 28 081 1.0E+10 32958 18.85 64.9 4/4
Hypersheet 6752 30 0.68 1.0E+10 13054 8.88 71.2 4/4
Holes 2650 31 0.74 1.0E+10 5308 341 72.1 3/4
Knot 10000 35 0.79 1.0E-03 19999 14.74 64.9 4/4
Mannequin 12772 48 0.88 1.0E+10 25504 33.70 81.4 4/4
MechPart 4102 34 069 2.0E-03 8228 6.38 69.4 2/3
Moeller 20021 26 071 1.0E+10 39947 17.67 67.9 4/4
Monkey 19208 28 0.86 1.0E+10 37783 25.76 67.0 4/4
Nascar 20621 25 070 1.0E+10 40890 24.93 73.8 4/4
OilPump 30933 10 0.70 1.0E+10 61205 27.75 72.0 212
Skidoo 37974 14 0.82 1.0E+10 75520 20.18 57.7 4/4
Sphere 409 28 079 1.0E+10 8188 4.08 64.7 4/4
Teapot 25667 58 061 1.0E+10 51314 62.18 73.7 4/4
Thor 71292 35 066 5.5E+01 141927 110.16 76.0 372

Most objects can be reconstructed in a matter of seconds which is quite fast. For example,
the recently published crust algorithm by Amenta et al. [1] requires 12 minutes to reconstruct,
‘Club’ almost 32 times as much as the method introduced in this thesis. On the other hand, our
application may require several runs to fine-tune neighborhood parameters. But for all data sets
considered thus far, less than ten tests were necessary to achieve a satisfactory reconstruction
quality, which makes our algorithm comparatively efficient. The table of results further indi-
cates that the total run time is dominated by k-nearest neighbors search. As the currently used
algorithm is a straightforward approach to solving the problem, more sophisticated methods
could yield even better performance for both, large k and n.

6. Summary

This chapter has successfully presented a new method concerned with the triangulation of unor-
ganized 3d points. This method is meant for the reverse engineering solution. It is based on the
surface oriented approach. This newly designed method has been constructed in such a way that
it extends Laszlo’s edge based triangulation alogrithm into 3D. The demonstration of the results
has shown that the method is reasonably fast and provides excellent reconstruction results.

References

[1] Amenta, N., Bern, M., and Kamvysselis, M. (1998), A new Voronoi-Based Surface Reconstruction Algorithm.
SIGGRAPH ’98 Proceedings, 415-421.

[2] Amenta, N., and Bern, M. (1998), Surface Reconstruction by Voronoi Filtering. Proceedings 14" ACM Sympo-
sium on Computer Geometry, 39-48.

References 297

[3] Boissonnat, J-D. (1984), Geometric Structures for Three-Dimensional Shape Representation. ACM Transactions
on Graphics 3:266-286.

[4] Callahan, P. (1995), Dealing with Higher Dimensions—The Well-Separated Pairs Decomposition and Its Appli-
cations. PAD Thesis, John Hopkins University, Baltimore.

[5] Curless, B., and Levoy, M. (1996), A Volumetric Method for Building Complex Models from Range Images.
SIGGRAPH ’96 Proceedings, 303-312,

[6] Edelsbrunner, H., and Micke, E. (1994), Three-Dimensional Alpha Shapes. ACM Transactions on Graphics
13:43-72.

[7] Hoppe, H. et al. (1992), Surface Reconstruction from Unorganized Points. SSGGRAPH ’92 Proceedings, 71-78.

[8] Laszlo, M. (1996), Computation Geometry and Computer Graphics in C++, Prentice-Hall, Upper Saddle River,
New Jersey.

[9] Mencl, R., and Miiller, H. (1998), Interpolation and Approximation of Surfaces from Three-Dimensional Scat-
tered Data Points. In Computer Graphics Forum (EUROGRAPHICS ’96 Proceedings), State of the Art Report
(STAR), 17.

[10] Turk, G., and Levoy, M. (1994), Zippered Polygon Meshes from Range Images. SIGGRAPH ’94 Proceedings,
311-318.

22

Modifying the Shape of Cubic
B-spline and NURBS Curves by
Means of Knots

Imre Juhdsz
Department of Descriptive Geometry, University of Miskolc, Egyetemvdros H-3515, Hungary

Miklés Hoffmann

Institute of Mathematics and Computer Science, Kdroly Eszterhdzy College Lednyka str. 4-6.
H-3300 Eger, Hungary

Shape control methods of cubic B-spline and NURBS curves by the modification of their knot
values, and simultaneous modification of weights and knots are presented in this chapter.
Theoretical aspects of knot modification concerning the paths of points of a curve, and the
existence of an envelope for the family of curves obtained by the modification of a knot are
also discussed for curves of order k.

1. Introduction

B-spline and NURBS curves are standard description methods of CAD systems and widely
used in computer aided design today. There are several books and papers on these curves
describing their properties, with the help of which one can apply them as powerful design
tools.

A k% order B-spline curve is uniquely defined by its control points and knot values, while in
terms of NURBS curves the weight vector has to be specified in addition. The shape modifica-
tion of these curves plays central role in CAD, hence numerous methods have been published
that discuss how to control the shape of a curve by modifying one of its data mentioned above.
The most basic possibilities can be found in any book of the field, such as in [6]. Further con-
trol point-based shape modification is discussed in [2] and [5], weight-based modification is

Advances in Geometric Modeling. Edited by M. Sarfraz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-85937-7

300 Modifying the Shape of Cubic B-spline and NURBS Curves

described, in [3], [5] and [8], while others present shape control by the simultaneous modifi-
cation of control points and weights, cf. [1] and [7].

It is also well-known that the change of the knot vector affects the shape of the curve. The
properties of this change however, have not been described yet. The aim of this chapter is to
present the geometrical and mathematical representation of the effects of knot modification for
B-spline curves. After the basic definitions some theoretical results are presented, by means
of which one can describe the effects of the modification of a knot value on the shape of the
curve, In the subsequent section constraint-based shape control possibilities are discussed that
utilize the modification of knot values of non-rational B-spline curves, while the effect of the
simultaneous modification of knots and weights is presented for the rational case. In the latter
section we restrict our consideration to curves of degree 3, since this is the most widely used
type of B-spline and NURBS curves.

2. Theoretical results

In this section the modification of a knot value of a k™ order B-spline curve will be examined.
We begin our discussion with the basic definitions.

Definition 1. The recursive function ¥ Jk (u) given by the equations

lifuelu;,ujvi),
1 _ s ®j+
Nj(w) = {0 otherwise,

—Uj; _ Uu; — U _
NKu) = L N) + —LE—NA),

j+1
Wjrk—1 = Uj Wjpk —Ujy1 ?

is called normalized B-spline basis function of order & (degree k — 1). The numbers u; <
uj+1 € R are called knot values or simply knots, and 0/0 = 0 by definition.

Definition 2. The curve s(«) defined by
n
sw) =Y N1, u € (w1,],
=0

is called B-spline curve of order k (degree k — 1), where Nf(u) is the /™" normalized B-spline
basis function, for the evaluation of which the knots ug, 1, . . . , 4,1« are necessary. The points
d; are called control points or de Boor-points, while the polygon formed by these points is
called control polygon.

The j*® span of the B-spline curve can be written in the form

J
siw =Y Niwd, uelujuin).
I=j—k+1

Modifying the knot «;, the point of this span associated with the fixed parameter value

2. Theoretical results 301

it € [uj, ujy1) will move along the curve

J
s uy= Y Ni@udd, i € Uiy, uppl.
I=j—k+1
Hereafter, we refer to this curve as the path of the point s;(%). In [4] the authors proved the
following basic properties of these paths:

Theorem 1. Modifying the knot value u; € [u;_,, u; 1] ofa k™ order B-spline curve, the points
of the spans 8;_j1(u), ..., Siyx—2(u) move along rational curves. The degree of these paths
decreases symmetrically from k — 1 to 1 as the indices of the spans getting farther from i,
i.e., the paths S;_,,(#i, u;) and s; ,n—1(f, u;) are rational curves of degreek — m with respect
touj,(m=1,...,k-1).

The theorem states that modifying u; € [1;-1, u; 1] the points of the spans s; 1 (i, ;) and
S; vk—2(il, u;) move along straight lines. One can easily prove the following corollary, which
will be strongly used in the next section.

Corollary. If u; runs from u;_y to u;,,, then the points of the spans s;_¢1(fi, u;) and
S;+k—2(f, u;} move along straight lines parallel to the sides d;_;, d;_y 1 and d;_y, d; of the
control polygon, respectively.

Beside these paths we can also consider the one-parameter family of B-spline curves with
the family parameter u;

n
k
s, wi) =) Nf@udy, w € [uim1, tpial, wi € [uimr, win1),
=0

which is resulted by the modification of the knot value u;.

In case of k = 3 the spans of the curves are parabolic arcs. It is a well-known fact, that
the tangent lines of these arcs at the knot values coincide with the corresponding sides of the
control polygon. Modifying a knot value u; the tangent line remains the same, which can be
interpreted as the side of the control polygon is an envelope of the family of these quadratic
B-spline curves. The generalization of this property has also been proved by the authors for
arbitrary k, cf. [4].

n
Theorem 2. The family of the k™ order B-spline curves s(u, u;) = 3 N," (u, u;), (k > 2)has
1=0
an envelope which is also a B-spline curve of order (k — 1), and can be written in the form

i—1
b)=) N, velvio,ul,
I=i—k+1

where

’

{ uj if j<i
vy = . . .
ujp if j=i

that is the i knot value is removed from the knot vector of the original curves.

302 Modifying the Shape of Cubic B-spline and NURBS Curves

Figure 22.1 The envelope of the family of cubic B-spline curves is a quadratic B-spline curve with the
same control polygon.

Until now, only non-rational B-spline curves have been examined, but similar results hold for
the rational case. A rational B-spline curve can always be considered as a central projection of
a non-rational B-spline curve. The degree of a curve cannot increase by a central projection,
thus Theorem 1 and its corollary hold for paths of the points of a NURBS curve, except the
property that parallel paths become concurrent, which will be discussed in the next section.
Similarly, Theorem 2 holds for the rational case too, but the envelope will also be a NURBS
curve. Figure 22.1 shows the envelope of the family of cubic B-spline curves resulted by the
modification of one of the knot values.

These theoretical results help us to develop some interesting tools for shape control of B-
spline and NURBS curves by the modification of their knot values, that will be examined in
the next section.

3. Shape control

For the sake of simplicity we restrict our consideration for the case k = 4. Cubic curves are
powerful design tools for most of the applications in the plane as well as in the 3D space.
Some of the algorithms discussed below can be generalized for arbitrary k, while others use
the specific properties of cubic curves.

3.1. Non-rational B-spline curve passing through a point

Let s(u) be a non-rational cubic B-spline curve with control pointsd;, (i =0, ..., n) and knot
valuesu;j, (j =0, ..., n + 4). Until now, the only possibility for the modification of this curve
has been the repositioning of its control points. Now, we give an algorithm for changing this -
curve by modifying its knot values in such a way that the curve will pass through a given point
p at the given parameter value #. This point, of course cannot be anywhere: the algorithm
works if this point is inside the region defined by the sides of the control polygon and the
envelopes mentioned in Theorem 2, which are parabolic arcs in the cubic case.

3. Shape control 303

Let the point p be in the region defined by the control points d;_2, d;_,, d;. Let a parameter
valueii € [u;, u;2)bealso given. Consider a quadratic B-spline curve b (v) with the same con-
trol points and the knot values vg = g, ..., Vj_1 = Uj_1, Vj = Uj, Vjp1 = Ujy2, -, Uny3 =
tn+4. Hence for the given value & € [v;, v;4;) holds. Consider the j™ span of the quadratic
curve

J
bj(v) = Z N,3(‘U)d[, vV eE [Uj, ‘Uj+1).
I=j-2

Using the monotonicity of the knot values, one can write

V= =Wj1 —Vj-1) — (W1 — V)

Vipz — V= (Vjz2 — V) — (v —v)).
Substituting these formulae to the original equation we obtain the form

b;(w) =d,;_; + N}_,(v)(dj—2 — d;-1) + N} (v)(d; — d;-y).

Let us consider the affine coordinate system the origin of which is d;_; and the base vectors
are ¢ =d; > —d;_; and e; =d; —d;_;. Let the coordinates of the given point p in this
coordinate system be x and y. This yields the following system of equations:

_ (Vjr1 — V)
Vi1 — Vi)V — vy)
_ (v—v;?

y -)
(Vjy2 — Vil V41 — V))

X

Since x,y and v = # are given, one can choose two unknowns from the knot values
(vj-1, v, Yj41, Vj42). The system can be solved for any two of them, but to avoid the un-
necessary changes of farther spans it is better to chose two neighboring values, thus 8 spans
will be modified. Solving the system, e.g., for v;_;, v; and considering the quadratic curve
b(v) with these knot values, b(iZ) = p holds. Therefore, because of Theorem 2, the cubic curve
S(u) with the knot values (...uj_1 = vj_j, 4; = Vj, ujy1 = @l, Uj42 = Vj41, - ..) alsO passes
through the point p at the parameter value . As we have mentioned above, the point p cannot
be chosen arbitrarily. The general permissible area of p can be seen in Figure 22.2 (the shaded
area), but the choice of the parameter and the two unknown knot values enable us to specify
further restrictions for the positions of p. Fixing a parameter value i these restricted areas are
subsets of the general permissible area and differ from each other for every pair of unknowns.
The boundaries of these areas are special rational curves which can be described as paths of
certain points of the quadratic B-spline curve when one of its knot values is altered. Now, we
will discuss these areas in detail.

3.1.1 The unknowns are v;_, and v;

In this case the boundaries of the area for a given parameter value # can be described as follows.
Considering the knot values (v;_2, vj_, v}, vj41) of the quadratic B-spline curve arc b;(v)

304 Modifying the Shape of Cubic B-spline and NURBS Curves

Figure 22.2 The permissible positions of the point p and the extreme tangent directions of the parabolic
arc.

and the parameter value # € |v;, v;41), the two unknowns can be altered between the fixed
values v;_; and # to keep the monotonicity. Hence the extreme situations are

M) vjoa=vj1=vj <@ <vjyy,
(2) Vjp =Vj1 <y =i < Vjt1,
(3) Vj2 < Vj_1 =1Vj =i < Vitl.

The first two positions are connected by the path of the point b(#) of the quadratic B-spline
curve with the knot vector {... vj_3 = v;_| = v;, v;4 ...} with the alteration of the knot value
v € [vj-i, #]. Similarly, the positions (1) and (3) are connected by the path of the same point
of the same B-spline curve altering the knot value v;_; = v; € [v;_2, #] (here the moving knot
value has the multiplicity 2). Finally, the positions (2) and (3) are connected by the path of the
point b(@) of the quadratic B-spline curve with the knot vector {...v;_2 = v;_1, &, vj41...}
varying the knot value v;_; between v;_; and &. These boundaries can be seen in Figure 22.3a).

3.1.2 The unknowns are v;_; and v;

The boundaries of the permissible positions of the point p in this case are the paths connecting
the following four extreme positions of a point of the quadratic B-spline curve arc b;(v),

3. Shape control 305

(vj—1 € [vj—2,v;land vy € [&, vji2])

M) vjo=v;1 <V <@l =Vj41 < Vju,
2) Vi = Vj- < VUj <@l <Ujy) =Vjy2,
(3) Vi <Vj1 =V; < = Vil < Vjqo,
(4) Vj2 <Vj1 =V; < i< Vjy1 = Vjy2.

The paths can be described similarly to the preceding case, but only three of them form the
actual boundaries, the other three paths run inside the region. The boundaries can be seen in
Figure 22.3b).

3.1.3 The unknowns are v;_; and v;,

The boundaries in this case are straight line segments due to the corollary of Theorem 1. The
paths connect the following extreme positions:

M vjo= Vjol < Vj <8 < Vjy1 = Vjy2 < Vjy3,
(2) via=vj < V) <@ < Vjp < Vjg2 = Vjy3,
(3) Vi <Vj1 =V; < < Vigl = Vj42 < Vju3,

@) vjoa <vjo1 =V <@l < Vjp1 < Vjp2 = Vjys.

In this case only four of the six paths form the boundary of the permissible area that can be
seen in Figure 22.3c).

3.1.4 The unknowns are v; and v;

With this choice of unknowns the four extreme cases are the following (v; € [v;_,, #] and
Vi € [@, vjqal)

D) vioi=v; <l =vj4 <Vjy2,
@) vjo1 < vy =0 =vj3 < Vjy2,
B)vjsi=v; <@l <V = V4,
4) vj_1 <V =8 <Vjy =Vj42.

As one can see in Figure 22.3d), generally this case gives the largest permissible area, which
also includes the control point d;_,. As a further advantage, the number of modified spans of
the original curve is the least in this case as well, hence the two unknowns are neighboring
knot values.

3.1.5 The unknowns are v; | and vj,2

This case yields similar effect and area to that one, with the unknowns v;_1, v; due to the
symmetry of the problem with respect to the parameter value ii. Now, we have only three

306 Modifying the Shape of Cubic B-spline and NURBS Curves

extreme cases which are the following (v;41, vj42 € [&, v;43]):

(1) v <8 =vj41 = Vj42 < Vj43,
(2) Vj < = Vjp1 < Vjp2 = Vjq3,
(3) v < it < Vjp1 = Vj42 = V3.

The permissible area can be seen in Figure 22.3e).

3.1.6 The unknowns are v; and v,

Due to the symmetry mentioned above, this final case is similar to that one with the unknowns
Vj_1, Vj41. The four extreme cases can be described as follows (v; € [v;_;, %] and v;4; €

[Vjt1, vig3]):

(1) Vjo1 =V; < i< Vjp1 = Vjyp2 < Vju3,
(2) Vi1 <V; = i< Vipl = Vjy2 < Vju3,
(B) vj_i =V <@l <Vjy <Vjyp =Vj43,
(4) Vj—1 <V =i <Vjy1 < Vjpo = V3.

The resulted region can be seen in Figure 22.3f).

3.2. Tangential constraint for B-spline curve

Since we have four free parameters v;_;, v;, v;4; and v;,,, some additional constraints can
be imposed on the quadratic curve b(v). Such a constraint can be the prescribed tangent
direction at p, but the initial position of p and the given direction cannot be arbitrary. To
describe the permissible positions and directions, consider the parabolic arcs with the tangent
lines d;_5,d;_; and d;, d;_;. The points of contact are b (v;) and b (v;1), i.e., the points
where the spline arcs are connected. The extreme positions of the points b (v;) and b (v;4)
of the parabolic arc are d;_ and d;, respectively. If the position of both end-points is extreme,
then the parabolic arc (the Bézier curve) defined by the control points d;_,,d;_;, d; will be
obtained, hence the point p can be given in the region defined by this arc and the two legs
(d;j_2,d;_; and d;_,, d;) of the control polygon (see the shaded area in Figure 22.2).

If the point p is on this arc, then the tangent direction cannot be prescribed, since a parabolic
arc is uniquely defined by two of its points and the tangents at them. However, if the point p is
an inner point of the area mentioned above, then the tangent line can be specified in addition.

The extreme positions of this tangent line are determined by the tangents of the extreme
parabolic arcs passing through the point p and fulfilling the conditions. To obtain these extreme
arcs, consider the following two situations: b (v;) = d;_; and b (v;) is an inner point of the
segmentd;_,, d;, and the other, when b (v;,) = d; and b (v;) is an inner point of the segment
d;_>,d;_,. These parabolic arcs can easily be calculated by considering the affine coordinate
system described at the beginning of this section, in which let the coordinates of the point p
be (x, y). The control points of the first extreme arc are: d;_»,d;_,d;_; + puez, u < 1, and
it can be written in the parametric form

c(v) =d;_; + (1 — v)’e; + v’ e

3. Shape control 307

cesnemeTREG

Figure 22.3 A cubic B-spline curve with the knot vector {0, 0,0,0,0.1,0.2,...,0.8,09,1,1,1,1}.
The shaded region shows the permissible positions of the point p in general. Bold lines
form the boundary of the permissible positions of p at # = 0.4 if the two unknowns of the
system are chosen as: @) vj_, v;;b) v;_1, Vjt1; €) Vi, Vjg2; d) V), Vg1 €) Vi, Vjs2s
v, vigo.

One of its points will be the point p at the parameter value v, € (0, 1). For this point
p=d;_; +xe; +ye

holds. The vectors €, and e; are linearly independent, hence from the equation p = e(v,)

308 Modifying the Shape of Cubic B-spline and NURBS Curves

v
AT

Figure 22.4 Modifying the weight w3 and the knot value u4 the NURBS curve passes through the given
point p which is outside the area accessible by the only modification of w,.

we obtain the solutions v, = 1 — /X, u = y/(1 — /x)*. Figure 22.2 shows the two extreme
parabolic arcs passing through p along with their tangent lines there. The tangent direction can
be prescribed in this angular domain.

3.3. NURBS curve passing through a point

It is a well-known fact, that the modification of the weight w; of a NURBS curve causes a
perspective functional translation of points of the effected arcs, i.e., it pulls/pushes points of
the curve toward/away from the control point d;. If a given point is on one of the line segments
of the paths of this perspective change, one can easily compute the new weight value in such a
way, that the new curve will pass through the given point. This point can almost be anywhere
in the convex hull, but for £ > 3 these concurrent line segments starting from d; do not sweep
the entire area of the triangled;_;, d;, d; 1, cf. the gray area in Figure 22.4. If the given point
is close to the side of the control polygon, i.e., it is out of the shaded region of Figure 22.4,
the problem can only be solved with the change of two neighboring weights. Now, we give an
algorithm to solve this problem with the change of one weight and one knot value.

Let s (u) be a cubic NURBS curve and p a point in the triangle d;_;,d;, d; ;. Consider
the quadratic envelope b(v) of the family of NURBS curves s(u, u ;). This parabolic arc
intersects all the lines in this triangle starting from d;, thus suitably changing the weight w;,
there will be a parameter value #, for which b(?) = p. If we modify the knot value u;_ | of the
cubic curve to be u ;1 = ¥, the cubic curve will also pass through the point p. This type of
shape modification is illustrated in Figure 22.4.

3.4. Simultaneous modification of two knots

In the previous subsection the quadratic envelope has been modified by a weight, where the
points of the curve moves along straight lines toward a control point. Similar effect, however,
can be achieved in terms of non-rational quadratic B-spline curves by appropriate simultaneous
modification of two knot values. More precisely, from the definition of the B-spline functions
and the Corollary of Theorem 1, we can prove the following property:

3. Shape control 309

Figure 22.5 Simultaneous modification of two knot values yields a perspective change of the span of
a non-rational quadratic B-spline curve.

Theorem 3. Consider the quadratic non-rational B-spline curve s(u), and simultaneously
modify its knots u; and u; .3 in an equal manner, i.e., let u; = u; + A, Ujy3 = U413 — A. As a
result of this modification, points of the span s;,1(u) move along concurrent straight lines, if
and only if,

Ujp2 — U = Uiz — Uiyqd,

holds. The common point of these straight lines is d; (see Figure 22.5).

Proof. As we have seen above, the span s;;(«) can be written in the form
sipi() =di + N2y (@) (dicy — &) + NPy () (diyy — o).

Applying the knot modification of the thcorcm, we obtain the family of curves
u
Siv1(, A) = d; + ———— N2 (u) (di—s — dy)
Uipp — Ui — A
U— Uiyl

_— dii 1 —d;
o e N 0 @i =).

Assuming the equality 8 = u,42 — u; = u; 3 — u; 1, wecan factorout 1 /(8 — A) and we obtain

1
S+, A) = di + =— ((u,+z — u)N? (u) (d;-y — d;)

+(u— ul+l)N,'+1 (W) (diyy — dl))

310 Modifying the Shape of Cubic B-spline and NURBS Curves

which is a family of straight line segments and the pencil of lines determined by them has the
center d;.

Conversely, if u;+7 — u; # u;+3 — u;+1 then the rational curves described above have two
points at infinity (one at A = u; 5 — u; and another at A = u; 3 — u;¢), therefore they can
not be straight lines.

The modification of these two knot values, of course, is not so effective, than that of a
weight, because the region of change is greater in the latter case while the number of changing
spans is fewer (7 for the two knot values and 3 for the weight), but we have to emphasize, that
this theorem allows us to modify non-rational quadratic B-spline curves similarly to NURBS
curves.

Similar theorem holds for higher order B-spline curves. The generalization of Theorem 3
for arbitrary order is the following:

Theorem 4. The points of the arc S; 1, —2(u) of a k™ order B-spline curve move along straight
line segments when the knots u; and u; o3 are simultaneously and equally modified, if and
only if, the equality u; -1 — u; = Uj k-3 — U; k2 IS Satisfied.

As we have seen, these straight lines are concurrent in the case of k = 3. If k = 4, the span
S;+2(u, A) is of interest which has the form

Uig — U

Siv2(u, A) = (Ny @)+ N} (“)) d;

Uita — Uit

U—u;
+ <~—$N?+1) + N2, (u)) i
Ujra — Uit
Uiz —u
— = — NP (u) (i — d))
Uiz — U — A
U—ujy2

Upps — A — Uiy ' H2 (@) (i — diy1)

The coefficients of d; and d;; are non-negative and sum to 1, i.e., the constant part of the
sum is a convex linear combination of the control points d; and d; ;. Therefore paths of the
arc are straight line segments the extension of which intersect the side d;, d;4; at its inner

points moreover, they are parallel to the plane determined by the directions d,_; — d; and
di+2 - d,‘+1, cf. Figure 22.6.

3.5. Modifying two weights and a knot of a NURBS curve

If we modify two neighboring weights w;, w;1 of a NURBS curve the points of the curve move
along straight lines toward or away from the legd, d;,; of the control polygon. This translation
is neither perspective nor parallel. This property can be made more intuitive geometrically by
the modification of a knot value in addition. Thus we can achieve that the points of a span of
the curve will move along concurrent lines passing through any given point of theline d;, d; ;
except the inner points of the leg. As we have mentioned in the preceding section, modifying
a knot value u; of a cubic NURBS curve the points of the spans s;_3 (u), 8;42 («) will move
along a family of concurrent straight lines each. Considering the span s;_3 («) and assuming

3. Shape control 311

Figure 22.6 Shape modification of a cubic (k = 4) B-spline curve by means of symmetric alteration of
knots u¢ and u,;. Paths of points of the arc sg(#) are also shown along with their extensions
which intersect the side dg, d of the control polygon.

Figure 22.7 Modifying the knot «7, points of the span s, (#) move along concurrent straight lines the
center of which depends on w3 and w, and can be arbitrary located on the line of d3, d4,
except the inner points of the segment.

312 Modifying the Shape of Cubic B-spline and NURBS Curves

that w;_4 # w;_3 the following result can be achieved: modifying the knot value «; the points
of this span move along concurrent lines the center of which is on the line d;, d;;, and its
barycentric coordinates are

" .
Wj g —Wj_3 Wij—4— Wj-_3

One can easily see, that one of its coordinates must be negative with the usual assumption
w; > 0, Vj. Hence this center cannot be on the leg d;, d;; but on the rest of the line.
Figure 22.7 shows a case of such a modification.

4. Summary

This chapter has been devoted to the shape control of cubic B-spline and NURBS curves.
These curves can be uniquely defined by their degree, control points, weights and knot vector.
While the effect of the modification of the preceding data has been widely published and used,
the geometric effect of the change of the knot vector has not been studied yet. In the second
section some theoretical results have been presented in terms of the paths of the points of the
curve when one of its knot values is modified, and the existence of an envelope of the resulted
family of curves. Applying these results, some shape control methods have been presented in
the third section. Modifying one or more of the knot values of a non-rational B-spline, one
can achieve constraint-based modification, such as obtaining a curve passing through a given
point, or a shape modification which is similar to the effect of the modification of a weight in
the rational case. For NURBS curves, the simultaneous change of one or two weights and knot
values have been presented, the result of which is a NURBS curve passing through a given
point or a geometrically simple perspective shape modification.

The objective of further research, besides the knot-based constrained shape modification of
curves of arbitrary order £, is the study of the theoretical aspects of knot modifications for
surfaces, which will hopefully generate some shape control methods both for B-spline and
NURBS surfaces. One can also think to extend the theory for those curve schemes [9-19],
which have ideal geometric features together with shape control characteristics.

References

[1] Au, C. K, Yuen, M. M. F (1995) Unified approach to NURBS curve shape modification. Computer-Aided
Design, 27, 85-93.

[2] Fowler B, Bartels R. (1993) Constrained-based curve manipulation. IEEE Computer Graphics and Applications,
13(5), 43-49.

[3] Juhdsz, 1. (1999) Weight-based shape modification of NURBS curves. Computer Aided Geometric Design, 16,
377-383.

[4] Juh4sz 1, Hoffmann M. (2001) The effect of knot modifications on the shape of B-spline curves. Journal for
Geometry and Graphics, 5(2), 111-119.

[5] Piegl, L. (1989) Modifying the shape of rational B-splines. Part 1: curves. Computer-Aided Design, 21, 509-518.

[6] Piegl, L., Tiller, W. (1995) The NURBS book. Springer-Verlag, Berlin

[7] Sénchez-Reyes, J. (1997) A simple technique for NURBS shape modification. IEEE Computer Graphics and
Applications, 17, 52-59.

[8] Sarfraz, M, (2003), Weighted Nu Splines: An Alternative to NURBS, Advances in Geometric Modeling, Ed.: M.
Sarfraz, John Wiley, 81-95.

4. Summary 313

[91 Sarfraz, M. (2003), Optimal Curve Fitting to Digital Data, International Journal of WSCG, Vol 11(1), 128-135.

[10] Sarfraz, M. (2003), Curve Fitting for Large Data using Rational Cubic Splines, International Journal of Computers
and Their Applications, Vol 10(3).

[11] Sarfraz, M., and Razzak, M..F. A., (2003), A Web Based System to Capture Outlines of Arabic Fonts, International
Journal of Information Sciences, Elsevier Science Inc., Vol. 150(3—4), 177-193.

[12] Sarfraz, M., and Razzak, M. F. A , (2002), An Algorithm for Automatic Capturing of Font Outlines, International
Journal of Computers & Graphics, Elsevier Science, Vol. 26(5), 795-804.

[13] Sarfraz M. (2002) Fitting curves to planar digital data. Proceedings of IEEE International Conference on Infor-
mation Visualization IV’02-UK: IEEE Computer Society Press, USA, 633-638.

[14] Sarfraz, M. (1992) A C? Rational Cubic Alternative to the NURBS, Computers and Graphics 16(1), 69-77.

[15] Sarfraz, M. (1992) Interpolatory rational cubic spline with biased, poit and interval tension. Computers and
Graphics 16(4), 427-430.

[16] Sarfraz, M. (1993) Designing of Curves and Surfaces using Rational Cubics. Computers and Graphics 17(5),
529-538.

[17] Sarfraz, M. (1995) Curves and Surfaces for CAD using C2 Rational Cubic Splines, Engineering with Computers,
11(2), 94-102.

[18] Gregory, J. A., Sarfraz, M., Yuen, P. K. (1994) Interactive Curve Design using C2 Rational Splines, Computers
and Graphics 18(2), 153-159.

[19] Sarfraz, M. (1994) Cubic Spline Curves with Shape Control, Computers and Graphics 18(4), 707-713.

Index of Authors

Aoyama, H.
Azariadis, P. N.
Brunnett, G.
Bultheel, A.
ChanK Y, T.
Dafas, P. A.
Delgado, J.
Dierckx, P.
Giraldi, G. A.
Habib, Z.
Hifele, K.-H.
Hui, K. C.
Hussain, M.
Iglesias, A.
Jiménez, W. H.
Kamiya, J.
Kim, D-S.
Kompatsiaris, L.
Li, C. L.

Li, L.

Ma, L

Ma, W.

Miiller-Wittig, W.

Nasri, A. H.

Niijima, K.
Okada, Y.
Oliveira, A. A.E
Peiia, J. M.
Poliakoff, J. F.
Revesz, P.

Ryu, J.

Sacchi, R.
Sakai, M.
Sapidis, N. S.
Sarfraz, M
Schiadlich, T.
Siddiqui, M. A.
Silva,R. L. S.
Strauss, E.
Strintzis, M. G.
Thomas, P. D.
Vanco, M.
Vanraes, E.
Wang, Q
Zhang,J.J.
Zheng, J.J.
Zhong, Y.

Advances in Geometric Modeling. Edited by M Sarfraz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-85937-7

Index

Affine, 9, 24, 306

Algorithm, 30, 31, 33, 40, 42, 43, 129, 161,
162, 176, 204, 205, 207, 254, 255, 278,
290

Allowable motions, 186, 187, 191-193, 199,
201

Anisotropic diffusion, 224, 226

Arc, 23, 147, 301, 306

Basis, 39, 40, 48, 82, 83, 89, 86, 108, 110,
111, 117, 126, 230, 231

Basis conversion, 55-66

BEM, 167

Bermnstein-Bézier, 40, 48, 49, 51, 53, 54

Bézier, 2, 4-7, 11, 12, 39, 40, 42, 48-54,
178-181

Bézier patch, 243-246

Beizer points, 88-90

Boundary element, 169

Boundary line, 176, 178

Branches, 242

B-spline, 82, 107, 108, 110, 124, 127,
230--232, 243, 299, 300, 302, 306

CAD, 97, 175, 185, 187, 203, 230, 251, 252
CAGD, 2, 108

CAM, 97, 251

Car modeling, 73

Catmull-Clark subdivision, 3

ChebyChev point, 7, 9

Cloud, 251

CMM, 97

CNC, 97

Compression, 154

Computer graphics, 2, 122, 206, 230

Cone, 72, 197, 252

Constraint database, 200, 265, 267, 268

Constraint recognition, 186, 187, 191,
194-196

Constraint solving, 186, 187, 192

Constraint-based manipulations, 186, 187,
190, 191, 195, 197, 199

Control mesh, 1-7, 12, 16, 102

Control point, 5, 40, 42, 82, 89, 108, 111,
114, 117, 187, 231, 233, 243, 246, 247,
300

Control polygon, 2, 12, 40, 42, 48, 90, 300

Convex hull, 40, 42, 82, 111, 124,278

Convex set, 122-125, 128

Coons patch, 122

Comer cutting, 40, 42, 48, 49, 90, 102

Corner panel, 10

Cubic, 2, 4, 11, 82, 86, 127, 133, 134, 137,
138, 141, 147, 148, 150, 268, 302

Curvature, 19, 31, 34, 71, 134, 138, 145,
181, 241, 253, 254, 260

Curve, 4, 11, 12, 23, 4048, 71, 74, 82, 102,
134-138, 229, 231, 235, 300, 302

Curved Surfaces, 19, 241

Cusp, 72

Cylinder, 72, 198, 261

Data point, 6, 84, 122, 252, 255, 259, 278
Data visualization, 82

Advances in Geometric Modeling. Edited by M. Sarfraz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-85937-7

318

Index

Database, 155, 200, 203, 263, 267, 273

De Boor point, 300

Decimation, 155, 162, 231, 232, 235

Decomposition, 85, 218, 230-236, 289

Deformable model, 218, 220, 223, 225

Deformation, 168, 169, 172, 221

Degree, 20, 21, 29, 40, 42, 46, 72-74, 82,
133, 134, 186, 207, 231, 263, 300, 301,
302

Delaunay tetrahedrization, 278

Delaunay triangulation, 154, 278-281

Design curve, 82, 89, 90

Design surface, 107

Diffusion, 224, 225

Diffusion methods, 218-227

Distance function, 122, 124

Dormant, 278

Down-sampling, 154

Dyadic subdivision, 112

Dynamic curve, 63

Edge, 3, 8, 14, 35, 109, 112, 160, 190,
205208, 219, 220, 224, 245, 278, 279,
285, 293

Edge-collapse, 204, 205, 208

Efficient adaptive triangulation, 163

Eigenvalue, 291, 292, 294

Eigenvector, 292

Elastic surface, 218

Envelope, 32, 71, 301, 302

Euclidean, 20, 26, 103, 122, 135

Euclidean distance, 229, 284

Evaluation algorithm, 39, 4043

Extrusion, 98-102, 105

Face, 3,4, 9, 73, 100, 176, 244, 245, 279, 283
FCO sampling, 157, 158

FEM, 167, 168

Filter, 154, 159, 162, 170, 263, 265
Flattening, 29-33

Force, 168, 169, 218, 221

Freeform, 94, 230

Gaussian diffusion, 226
Geometric modeling, 2, 229, 230
Geometric processing, 69

GIS, 263, 264
Grid, 168, 186, 218, 252, 285-287

Hierarchical triangulation, 154, 161
Holes, 242, 278, 292

Image, 154, 198, 218, 219, 222, 224, 241

IMOLD, 97

Implicitization, 73-75

Inflection, 133, 134, 142

Inter-lock, 99

Interpolation, 2, 12-15, 40, 122, 124, 128,
130, 242, 243, 247, 263-265, 273

Intersection determination, 72

Interval tension, 81, 82

Inverse distance weighting, 265

Irregular patches, 246

Irregular spline surface, 246

Irregular topology, 242, 243, 248

Isometric mapping, 19, 22

Iso-surface, 168, 170

Knot, 82, 232, 233, 300, 308, 310
Knot decimation, 231, 232

Lattice, 157, 285

Level of detail, 118, 204, 207
Lofted subdivision surface, 15
Loop, 71, 74, 137-144

Manifold, 206, 283

Mass-spring system, 243
Mathematica, 138, 141, 145
Medial axis, 102, 103
Mid-polygon, 9

Minimum spanning tree, 278
Monotone, 137, 142, 144
Multi-resolution, 2, 155, 204, 218, 230-235
Multi-resolution analysis, 116, 117
Multi-resolution editing, 117
Multi-resolution modeling, 187

Neighborhood, 117, 123, 265, 282-284, 286,
289, 291, 294, 295

n-gon, 8

n-reflected panel, 8, 9, 11, 14

Index 319

Nu spline, 92 Powell-Sabin split, 109
NURBS, 70, 72, 104, 134, 299, 302, 308, Power form, 62, 64, 65
310 Principal component analysis, 291

Projection, 111, 282, 302
Object characteristic function, 218, 219, 222 Pseudo-code, 220, 283

Offset, 71, 72, 74 Pseudo-randomization, 261
Optimal hierarchical adaptive mesh Pythagorean Hodograph, 133-136, 140-143,
construction, 154 146-150
Optimization, 30, 98, 116
Order, 20-22, 73, 74, 122, 123, 126, 127, Quad trees, 154
135, 158, 204-207, 231-233, 259, 268, Quadratic splines, 119
299 Quality control, 37
Orientation, 30, 32, 159, 194, 209, 279,292, Quintic, 133135, 138, 140, 142, 147, 148,
294 150
Panel, 8,9, 11, 14 Radiation, 263
Parabolic, 103, 301, 302, 306, 308 Rational, 72, 75, 128, 265, 302
Parameter, 34, 36, 70, 74, 82, 94, 180, 241, Rational curves, 71, 301, 303, 310
243, 246, 301, 303 Ray, 71
Parametric surfaces, 70, 73 Rectangular patch, 241
Parting line, 98, 99, 101, 102, 104 Recursive, 1,7, 15, 231, 288, 300
Parting surface, 98, 99, 102, 104 Refinement, 1-3, 30, 107, 109, 113, 114,
Partition of unity, 82, 108, 110 112, 155
Patch, 6, 12, 32, 71, 74, 99, 104, 109, 242, Region growing, 253-255, 259
246 Regular topology, 247
Path, 231, 301, 304, 305, 311 Resolution, 156, 162, 186, 187, 218, 219,
Pelting, 243 226, 232,233
Piecewise, 9, 11, 83, 84, 127 Reverse engineering, 252, 253, 277
Piecewise linear manifold, 219
*Piecewise polynomial, 230 Sample data, 121, 275
Planar developments, 24, 29 Seed, 253-260
Planar extraction, 251, 253 Segmentation, 217, 222
Planar patches, 253 Set-spline, 121-123
Plane, 22, 32, 72, 156, 160, 252, 254, 255, Shape control, 81, 82, 94, 150, 299, 300,
267, 279, 282, 283, 293, 291 302,312
Plastic injection mould, 97 Shape parameters, 81, 82, 85, 90, 94, 95, 253
Point, 21, 25, 27, 101, 122, 125, 135, 160, Shape preservation, 39
168, 206, 241, 246, 265, 267 Silhouette lines, 175, 176
Point cloud, 252 Simulation, 167, 168
Point decimation, 232, 233 Snake model, 218
Point tension, 83 Solid modeling, 70, 73, 74, 185-188
Polygonal complex, 2, 7, 9-12, 14 Solid texturing, 243
Polygonal subdivision, 6, 11, 12 Span, 56, 58, 59, 61-66
Polyhedron, 1, 3, 4, 12, 16 Spatial interpolation, 264, 265, 273, 275
Polynomial, 108, 231 Spatiotemporal data, 263, 265, 273

Powell-Sabin spline, 107, 108 Spatiotemporal database, 273

320 Index

Spatial interpolation, 264, 265, 273, Triadic subdivision, 112-114, 118
275 Triangular meshes, 203

Sphere, 21, 74, 186, 197 Triangular patch, 74, 122

Spiral, 134-138, 140, 142, 150 Triangulation, 107, 112, 158, 164, 277, 278,

Spline, 4, 6, 7, 12 282,292

Spline surface, 56, 64, 65, 71, 75-80 Trimming, 2

Subdivision, 2, 9, 11 Trimming subdivision surface, 14, 15

Subdivision curve, 1-16 T-snake, 218, 221, 223

Subdivision surface, 12 T-surface, 218, 220-223, 226

Super triangles, 251, 254, 257 Twist, 241

Surface, 1, 5, 14, 20-22, 24

Surface blending, 69, 70, 75 Ultraviolet radiation, 263

Surface deformation, 243 Up-sampling, 154

Surface intersection, 72-74

Surface offsetting, 71 Valid intersection intervals, 101

Surface reconstruction, 218-228 Variation diminishing, 89

Surface simplification, 154, 161 Vertex, 3, 4, 117, 161, 206, 245, 280, 281

Virtual reality, 185

Taylor expansion, 56, 62 Virtual sculpting, 168, 170, 172

Texture, 241, 242, 246-248 Visibility test, 101

Texture co-ordinates, 241, 246, 247, 248 Visualization, 154, 186, 264, 272

Texture mapping, 29, 34, 241-243, 246 Volume, 168, 170, 205, 222, 285

Texture pattern, 241, 246 Volume data, 122, 168

Thiessen polygon, 273 Volume modeling, 167, 168

Threshold, 168, 218, 221 Voronoi diagram, 266, 267

Time complexity, 278, 285, 289

Topological meshes, 1 Wavelets, 118

Topology, 153, 206, 246 Weight, 3, 83, 89, 265, 266, 308, 310

Torus, 72, 252 Weighted Nu spline, 82, 83, 94

Total positivity, 48, 49, 51, 53 Weighted spline, 82, 83

Transmission, 155, 207
Transverse, 219, 220 Zheng-ball patch, 245

