MATHEMATICS OF GENOME ANALYSIS

The massive research effort known as the Human Genome Project is an at-
tempt to record the sequence of the three billion nucleotides that make up
the human genome and to identify individual genes within this sequence.
Although the basic effort is of course a biological one, the description and
classification of sequences also naturally lend themselves to mathematical
and statistical modeling.

This short textbook on the mathematics of genome analysis presents a brief
description of several ways in which mathematics and statistics are being used
in genome analysis and sequencing. It will be of interest not only to students
but also to professional mathematicians curious about the subject.
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Preface

“What is life?” is a perennial question of transcendent importance that can
be addressed at a bewildering set of levels. A quantitative scientist, met with
such a question, will tend to adopt a reductionist attitude and first seek the
discernible units of the system under study. These are, to be sure, molecular,
but it has become clear only in recent decades that the “founder” molecules
share the primary structure of linear sequences — in accord with a temporal
sequence of construction — subsequent to which chemical binding as well as
excision can both embed the sequence meaningfully in real space and create
a much larger population of molecular species. At the level of sequences,
this characterization is, not surprisingly, an oversimplification because, over-
whelmingly, the construction process of a life form proceeds via the linear
sequences of DNA, then of RNA, then of protein, on the way to an explosion
of types of molecular species. The founder population of ¢#is subsequernce is
certainly DNA, which is the principal focus of our study, but not — from an
informational viewpoint — to the exclusion of the proteins that serve as ubiqui-
tous enzymes, as well as messengers and structural elements; the fascinating
story of RNA will be referred to only obliquely.

That the molecules we have to deal with are fundamentally describable
as ordered linear sequences is a great blessing to the quantitatively attuned.
Methods of statistical physics are particularly adept at treating such entities,
and information science — the implied context of the bulk of our considera-
tions — is also most comfortable with these objects. This hardly translates to
triviality, as a moment’s reflection on the structure of human language will
make evident.

In the hyperactive field that “genomics” has become, the focus evolves very
rapidly, and “traditional” may refer to activities two or three years old. I first
presented the bulk of this material to a highly heterogeneous class in 1993,
again with modification in 1996, and once more, further modified, in 1999.
The aim was to set forth the mathematical framework in which the burgeoning
activity takes place, and, although hardly impervious to the passage of time,

X



X Preface

this approach imparts a certain amount of stability to an intrinsically unstable
divergent structure. I do, of course, take advantage of this nominal stability,
leaving it to the reader to consult the numerous technical journals, as well as
(with due caution) the increasing flood of semitechnical articles that document
the important emerging facets of the current genomics field.

It is a pleasure to acknowledge the help of Connie Engle and Daisy
Calderon-Mojar in converting a largely illegible manuscript to, it is hoped,
readable form, of Professor Ora Percus for insisting on reducing the non
sequiturs with which the original manuscript abounded, and of numerous stu-
dents who not only maintained intelligent faces, but also gently pointed out
instances of confusion in the original lectures.



1
Decomposing DNA

1.1. DNA Sequences

The realization that the genetic blueprint of a living organism is recorded
in its DNA molecules developed over more than a century — slowly on the
scale of the lifetime of the individual, but instantaneously on the scale of
societal development. Divining the fashion in which this information is used
by the organism is an enormous challenge that promises to dominate the life
sciences for the foreseeable future. A crucial preliminary is, of course, that of
actually compiling the sequence that defines the DNA of a given organism,
and a fair amount of effort is devoted here to examples of how this has been
and is being accomplished. We focus on nuclear DNA, ignoring the miniscule
mitochondrial DNA.,

To start, let us introduce the major actor in the current show of life, the
DNA chain, a very long polymer with a high degree of commonality —
99.8%, to within rearrangement of sections — among members of a given
species [see Alberts et al. (1989) for an encyclopedic account of the bio-
logy, Cooper (1992) for a brief version, Miura (1986), and Gindikin (1992)
for brief mathematical overviews]. The backbone of the DNA polymer is
an alternating chain of phosphate (POy4) and sugar (S) groups. The sugar is
deoxyribose {an unmarked vertex in its diagrammatic representation always
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JORRS. ©,
@ ©
g @ OH H

DNA deoxyribose
Skeleton

el
S

SN

o
S



2 Decomposing DNA

signifies a carbon atom) with standard identification of the five carbons
as shown. Successive sugars are joined by a phosphate group (phosphoric
acid, HsPOy, in which we can imagine that two hydrogens have combined
with 3’ and 5’OHs groups of the sugar, with the elimination of water,
whereas one hydrogen has disappeared to create a negative ion); the whole
chain then has a characteristic 5-3' orientation (left to right in typical
diagrams, corresponding to the direction of “reading,” also upstream to down-
stream). However, the crucial components are the side chains or bases

5 CH, base
O
3 H H
O
O~ =-P=0
|
O
|
5 CH, base
O
3 H H
O
O —-P=0

Details of DNA Backbone

(attached to 1’ of the sugar, again with climination of water) of four types.
Two of these are pyrimidines, built on a six-member ring of four carbons
and two nitrogens (single and double bonds are indicated, carbons are im-
plicit at line junctions). Note: Pyrimidine, cytosine, and thymine all have the
letter y.
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Cytosine (C) Thymine (T)
pyrimidines NHo 0

) N/I\/ &

AN '
AJ L

~
Ay =

® ®

Two are the more bulky purines, built on joined five- and six-member rings
(adenine, with empirical formula H5CsNjs, used to have the threatening name
pentahydrogen cyanide, of possible evolutionary significance).

Adenine (A) Guanine (G)

0 L0

® ®

purines

DNA chains are normally present as pairs, in the famous Watson—Crick
double-helix conformation, enhancing their mechanical integrity. The two
strands are bound through pairs of bases, pyrimidines to purines, by means
of hydrogen bonds (... ... ), and chemical fitting requires that A must pair
with T, G with C; thus each chain uniquely determines its partner. The DNA
“alphabet” consists of only the four letters A, T, G, and C, but the full text
is very long indeed, some 3 x 10° base pairs in the human. Roughly 3% of
our DNA four-letter information is allocated to genes, “words” that translate
into the proteins that, among other activities, create the enzymatic machinery
that drives biochemistry, as well as instructional elements, the rest having
unknown — perhaps mechanical — function.
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P04
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base pairing
Double-chain DNA is typically represented in linear fashion, e.g.,

5§ ~A-C-G-T-G-A—-C— %

3y -T-G-C—-A-C-T—-G— ¥

(although the unique base pairing means that say the single 5'-3’ chain suf-
fices), but because of the offset between 3’ and 5’ positions, the spatial structure
is that of a spiral ribbon.

paired strands

Even the small portions of DNA — the genes — that code for proteins
are not present in compact regions but, especially in the compact-nucleus
eukaryotes, are interrupted by noncoding (and often highly repetitious) in-
trons. The coding fragments — or exons — are also flanked by instructional
subsequences, so that a small gene might look like: (5') upstream enhancer,
promoter, start site, exon, intron, exon, poly-A site, stop site, downstream
enhancer (3'). However, the vast remaining “junk DNA” — also riddled by
fairly complex repeats (ALU, 300 base pairs; L1, very long; microsatellites,
very short) — aside from its obvious mechanical properties, leading, e.g., to a
supercoiled structure grafted onto the double helix, is of unknown function,
and may be only an evolutionary relic.
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The major steps inthe DNA — protein sequence are well studied. Separa-
tion of the chains allows the exon-intron gene region of one of the chains to be
read or transcribed to a pre-RNA chain of nucleotides (similar to the duplica-
tion of DNA needed in cell division) that differs from DNA by the substitution
of U (uracil) for the T of DNA and by ribose (with a 2/-OH) for deoxyribose.
The introns are then spliced out (by a signal still incompletely understood) to
create messenger RNA, or m-RNA, which almost always (RNA can also be
an end product) is itself read by transfer RNA, or :-RNA, which transiates

bound amino acid

(threonine)
t RNA
m RNA
A C G DNA

by setting up a specific amino acid for each base triplet of the m-RNA, or
codor of the DNA, the amino acids then joining to form protein. The triplets
code for 20 amino acids (as well as the start codon AUG at its first occurrence
and stop codons UAA, UAG, UGA) when present in exons, and they come
in four main varieties: nonpolar (hydrophobic), polar uncharged, 4+ charged

{ i [ .
A N ~ Nly- CH T T N | R | B
1l 11 O (1 Q

(basic), and — charged (acidic). Of course, there are always exceptions, and
stop codons seem to be responsible as well for incorporation of crucial
trace metals (selenium, zinc, etc.) into protein. Because there are 64 possible
codons, there is a good deal of ambiguity, and the third me mber of the triplet



6 Decomposing DNA

is irrelevant in most cases. As we go along a DNA double strand (5 x 10°
base pairs in E. coli, 3 x 10° - in 46 chromosomes — for us) there are six pos-
sible “reading frames™ for triplets (3 times 5 — 3’ for either strand), and the
correct one is selected by a start signal. The three-dimensional spatial or fold-
ing structure is important for the DNA and crucial for the resulting protein,
but this is determined (precisely how is only partially clear — chaperonins,
large protein templates, certainly help) by the one-dimensional sequence or
primary structure, which is what we focus on.

The initial information that we seek is then the identity of the sequence of
/23 x 10° “letters” that, e.g., mark us as human beings, and some of whose
deviations mark us as biochemically imperfect human beings. Many tech-
niques have been suggested, and more are being suggested all the time, but
almost all rely on the availability of exquisitely selective enzymes.

1.2. Restriction Fragments

Although our DNA is parceled among 46 chromosomes, (22 pairs plus 2
sex chromosomes) each is much too large to permit direct analysis. There
are many ways, mechanical, enzymatic, or other, to decompose the DNA
into more malleable fragments. In particular, there are (type II) restriction
enzymes available that cut specific subsequences (usually four, six, or eight
letters long) in a specific fashion (Nathans and Smith, 1975). These enzymes
are used by bacteria to inactivate viral DNA, while their own are protected by
methylation. They are almost all reverse palindromes (one, read 53, is the
same as the other strand, read 3'-5), for reasons not agreed on. In this way,
we create much shorter two-strand fragments, 25-500 Kb (kilobase pairs)
depending, to analyze (the loose ends can also bind other loose ends created
by the same enzyme to form recombinant DNA). In practice, many copies of
the DNA are made, and only aportion of the possible cuts is performed, so that
a highly diverse set of overlapping fragments is produced (see Section 1.3).

5...GTT+AAC...3% G+AATT C A4AGCT T

t 1 t
3...CAA4+ TTG...Y C TTAA+G T TCGA+tA
Hpa 1l Eco R1 Hind III

The fragments, which can be replicated or cloned in various ways, can
then serve as a low-resolution signature of the DNA chain, or a large seg-
ment thereof, provided that they are characterized in some fashion. Of several
in current use, the oldest characterization is the restriction-enzyme finger-
print: the set of lengths of subfragments formed, e.g., by further enzymatic
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digestion. These are standardly found, with some error, by migration in
gel electrophoresis. Typically (Schaffer, 1983) we use the empirical relation
(m —mo)( — lp) = ¢, where m is migration distance and ] is the fragment
length, with my, Iy, and ¢ obtained by least-squares fitting with a set of ac-
companying standard fragments (/;, m;): Define c(m, 1) = (m — mo)(I — lo)
and minimize Q =) ;[c(m;, ;) — Cay]* to get my, lo, and ¢ estimates, and
then compute by I = lp + cay/(m — mo). What size fragments do we expect
so that we can design suitable experiments? This is not as trivial as it sounds
and will give us some idea of the thought processes we may be called on to
supply (Waterman, 1983). A heuristic approach (Lander, 1989) will suffice
for now.

It is sufficient to concentrate on one strand, as the other supplies no further
information. Suppose the one-enzyme cut signal is a six-letter “word,” (5)
by by b3 by bsbg (37), and, as a zeroth-order approximation to the statistics
of DNA, imagine that the letters occur independently and with equal proba-
bility, p(4) = p(C) = p(T') = p(G) = 1/4, at each site. Then, for each site,
the probability of starting and completing the word to the right is simply

1 1 1 1 1 1
3X3X3gX3xX 3"y

Pp(b1bybsbabshs) = 1/4°.
Suppose we have found one word and continue down the strand looking for
the next occurrence. Assuming that bybabs3bybsbg cannot initiate a displaced
version of itself, e.g., bsbs # b1be, we start after the word ends. Then the

probability of not seeing a new word start for / — 1 moves but seeing one at
the /th move is clearly the geomerric distribution

p)y = (1 — 17451174

{or, because 1/4% is very small, p(l) ~ [(1/4%)e~"/%'], the continuous expo-
nential distribution}. The mean distance to the next word is then the mathe-
matical expectation

<o 1 1 -1
w=E({ = —(1——) 1.
zgo: 46 46

Onevaluation, [ 72 (1l —a)' ' = —a L 321 —a)f = —a 2 1 =13
we have

w(bybybsbybshs) = 4% = 4096.

The preceding argument will not hold for self-overlapping words, as the
absence of a word starting at a given site slightly biases the possibilities for
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words starting at the next six sites, but because p is so small, this correlation
effect is very small. We also have to distinguish between allowing two occur-
rences to overlap and not allowing it. In fact, a careful mathematical analysis
(Guibas and Odlyzko, 1980) shows that the relation

w=1/P

holds exactly for a long renewal process, one in which all the letters of a word
are removed before we start counting again; here p is the meanrepeat distance
from the beginning of the pattern and P is the probability that a renewal starts
at a given site. Interestingly, this is precisely the situation that is said to exist
with restriction enzymes — for a recognition site such as TAG CTA with self-
overlap after moving four bases, a subsequence TAGCTAGCTA would be
cut only once, whatever the direction of travel of the enzyme - there would
not be enough left to cut a second time (the main reason seems to be that an
enzyme needs something to hold onto and cannot work directly on a cut end).
If this is the case, the mean repeat distance will change. In this example, we
still have the basic p(TAGCTA) = 1/4%, but the unrestricted p at site n is
composed of either a repeat, say at site z, or a repeat at site n — 4, followed
by the occurrence of GCTA to complete the TA pair: p = P + 4~4P. Hence
w=1/P=(1+4"%/p =4°%+4? = 4112. More generally, we find

=41 +er/d+ - +es/4),

where ¢; = 1 for an overlap at a shift by i sites, otherwise ¢; = 0.

The relevance of the above discussion in practice is certainly marginal, as
the significance of such deviations is restricted to very short fragments, which
are generally not detected anyway. However, the assumption of independent
equal probabilities of bases is another story. To start with, these probabilities
depend on the organism and the part of the genome in question, so that we
should really write instead

p(by---bg) = p(b1) - - p(be),

and this can make a considerable difference, which is observed. To continue,
we need not have the independence p(bb") = p(b) p(¥'); rather,

gty = p® )/ pb) p(t)

measures the correlation of successive bases — it is as low as g(CG) ~ 0.4. If
this successive pair correlation or Markov chain effect is the only correlation
present, we would then have

Py -bs) = p(br)- - - p(bs) 8(b152) 8(b2b3) 8(b3 by) §(b4 bs) 8(bs be),
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and this effect too is observed, although some frequencies are more strongly
reduced, implying correlations at intersite separations as large as ten. We will
examine this topic in much greater detail in Section 3.

1.3. Clone Libraries

As mentioned, we typically start the analysis of a genome, or a portion thereof,
by creating a library of more easily analyzed fragments that we hope can be
spliced together to recover the full genome. These fragments can be repli-
cated arbitrarily, or cloned, by their insertion into a circular plasmid used as
a blueprint by bacterial machinery, by other “vectors,” and by DNA amplifi-
cation techniques. Each distinct fragment is referred to as a clone, and there
may be practical limits as to how many clones can be studied in any attempt
to cover the full portion — which we simply refer to as the genome. Assume a
genome length (in base pairs) of G, typical length L of a clone, and N distinct
clones created by mechanical fragmentation of many copies, so they might
start anyplace. How effectively can we expect to have covered the genome,
i.e., are there still “oceans” between “islands” of overlapping clones? For a
quick estimate, consider a base pair b at a particular location. The probability
of its being contained in a given clone ¢ is obtained by moving the clone start
over the G positions, only L of which contain &:

Pbeco)y=L/G,
so that

Pbhdc)y=1 L
o=1-—.
G
Hence P(b ¢ any clone) = (1 — é)N ~ e INIG 5o that the expected frac-
tion of the genome actually covered is the “coverage” (Clarke and Carbon,
1976):

f=1—e"°, ¢c=LN/G;

equally often, c itself is referred to as coverage. Note that if the clone starts
are not arbitrary, but “quantized” by being restriction sites, this on the average
just changes the units in which & and L are measured.

Let us go into detail; see, e.g., Chapter 5 of Waterman (1995). Suppose
first that we are cutting a single molecule with a single restriction enzyme.
Not all clones have exact length L, and if a clone is inserted into a plasmid
or other vector for amplification, it will be accepted only within some range

I=<=L=U.
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A clone of length L will be produced by two cuts of probability p
(e.g., ~1/4000 for Eco R1 ), separated by L no-cuts, a probability of
(1 — p)t ~ e~1?_ A located base pair b can occur at any of L sites in such a
clone, a net probability for » € C of p2Le~L?. Hence, imagining continuous
length L to convert sums to integrals, we find that the probability of that
b is in some clonable fragment — i.e., the fraction of G covered by cloned
fragments — is given by

U P U
f :/ pLe Pt 4L = —pz—/ e PldlL
1 ap i

91
=—pt— —(e7# —e7?Y)
ap p

= (1 +phe?t —(1+ pUye?Y,

close to unity only for p/ small, pU large, which is never the case in practice.

A clone library should do a better job of covering the genome, and we
can accomplish this by using, e.g., a 4-cutter on many copies of the genome,
but stopping at partial digestion. Suppose the digestion sites occur at mean
frequency p — fixed in the genome — but only a fraction p are cut, giving a
large distribution of cut sites for a system of many double strands. For a quick
estimate, again with an acceptance range of / to U, the expected number of
restriction sites between two ends of a clonable fragment is between p/ and
pU . If u is the fraction cut, the probability that such a fragment, starting at a
given restriction site, actually occurs is at least u?(1 — u)?Y. However, there
are ~Gp restriction sites all told, each the beginning of p(U —I) fragments.
The estimated number of molecules required for picking up all of these is
therefore of the order of

# = Gp*(U — /(1 — Y,

and many more will certainly do it. As an example, for E. coli, G =
5 x 10%, cutting with Eco R1, p = 4~ at u = 1/5, and cloning with pJC74,
1=19%x10% U—-1=17 x 10° yields # ~1.8 x 10%, which is much
smaller than the normally available 2 x 10° molecules. For human DNA
fragments, large cloning vectors are used to create large numbers of identical
molecules. [The problem of splicing together fragments from the soup result-
ing from such cutting procedures can be avoided if the rapid shuffling can be
avoided. For this purpose, the ideal would be to focus on a single molecule
with an undisturbed sequence. A developing technique (Schwartz et al., 1993)
does this by uniform fluorescence — staining DNA, stretching it out by fluid
flow, and fixing it in a gel. Application of a restriction enzyme then puts
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gaps in the pattern of fluorescence as the fragments contract a bit, allowing
optical measurement of the intensity and hence the length of the fragments.
For algorithmic aspects, see, e.g., Karp and Shamir (2000). Reliability is in-
creasing, but this has not yet led to the extensive sequencing available from
the techniques to be described.]

Let us return to the characterization of a subfragment of DNA, say some
fraction of a megabase. Using a single restriction enzyme, we get a set of
fragments of various lengths, cut at both ends by the enzyme; these fragments
can be analyzed at leisure, and at least named meanwhile. However, in what
order do they occur? If known, this defines a restriction map; to produce
it, we can use the method of double digestion, first by two enzymes, A and
B, separately, and then together. In other words, we have unordered lengths
(a1,---,a,) by A cutting, (b1, ---, b,) by B cutting, and (¢1,---,¢;) by A
and B cutting. What site locations are compatible with this data? Aside from
its being a hard problem to find a solution (technically, NP hard), there may be
many mathematical solutions that have to be distinguished from each other. A
major contribution to this uncertainty comes fromtypical length-measurement
uncertainties, say of A sites.

>
>
[==1

A B B
|
I

Suppose (Waterman, 1983; Lander, 1989; Selim and Alsultan, 1991) that
Paisthe probability of an A cut at a given (multiple) site and p g the probability
of a B cut. The probability that a pair of cuts is indistinguishable — an effective
A B coincidence — is the probability of an A cut at a given site, and thenof a B
cut at one of A sites, or Apa pp. Segments terminated by A B coincidence on
each side canbe freely permuted without thesetsof A, B and A or B fragment
lengths being changed. The expected number of such ambiguous cuts in a
chain of length L is

s~ LApapsg.

There are then s! orderings of fragments that are indistinguishable, which
can be very large for large L. For example, for the full human genome,
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L ~3x10°% and two 6-site restriction enzymes, we would have s ~
3 x 10% x 50/(4000)* ~ 10*. For a single chromosome, this is reduced to
200, but for as large as a megabase, it is reduced to only 0.3. For such lengths,
decent algorithms, both deterministic and stochastic, exist. Another strategy
is to make use of multiple, e.g., =3 enzymes, complete digest mapping to
reduce ambiguity, and work along these lines has been reported (Fasulo et al.,
1999).

Assignment 1

1. Consider a 2-letter alphabet, say O (purine) and 1 (pyrimidine). By
inspecting the 32 numerically ordered 5-digit numbers, 00000to 11111,
placed in sequence, find the renewal frequency of 00 and O1. Are these
consistent with your expectation?

2. Choose reasonable parameters G, L, and N. Then fix the base pair & in
a G-site double strand and randomly choose the center of a length L
clone on G — L sites. Check 1 if € clone, 0 if not, and do NV times to
find f, the fraction of the genome actually covered. Average over many
repeats, and compare with the expected answer.

3. Again fix b. Run through G, making cuts at frequency p. Check 1 if &
is in a clone of length between [ and U, otherwise 0. Repeat, average,
and compare with expectation.
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2.1. Fingerprint Assembly

We now leave the world of estimates and enter that of exact results, but for
model situations. The chain to be analyzed is imagined to be present as a set
of cloned subchains with substantial but unknown overlap. In this section, we
characterize a member of a clone by an ordered set of restriction fragments,
or just a set of restriction-fragment lengths, or a set of lengths of special
restriction fragments (e.g., those with certain characteristic repeats) called
the fingerprint of the clone. We have, in many cases, a library of randomly
chosen pieces of DNA or a section of DNA, each with a known fingerprint.
Can we order these to produce a physical map of the full sequence? To ex-
amine the degree to which this is feasible (Lander and Waterman, 1988), let
us first expand our notation. G will denote genome length (in base pairs, bp),
L the clone length, N the number of distinct clones available, p = N/G the
probability of a clone’s starting at a given site, and ¢ = LN/G = Lp the
redundancy, the number of times the genome is covered by the aggregate
length of all clones. In addition, and crucially, we let T be the nurmnber of base
pairs two clones must have in common to declare reliably that they overlap,
6 = T/L the overlap threshold ratio, and o =1 — 8 = (L — T')/L; multiple
overlap is fine. Note again that if the clones are produced by mechanical shear-
ing, they can indeed start anyplace, but if produced by enzymatic digestion,
“location” is in units of mean interrestriction site distance; this will not affect
our results, in which only length ratios appear. We will follow the elementary
treatment of (Zhang and Marr, 1992).

Clones that are declared as overlapping build up a sequence of contiguous
clones, an island, or more accurately, an apparent island, as not all overlaps
are detected. An island of two or more clones is called a contig, and the gaps
between islands are termined oceans. To see how effectively we can pick up
the full chain in question, we need the statistics of the islands.

1. First, how many islands on the average, and how big? We use the above
notation, with the tacit assumption, tobe removed in Section 2.5, that all clones

13
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have the same length and the same overlap threshold. Now we start at one
end of the genome and move through it. The probability of starting a clone at

apparent islands

a given base pair is p; the probability of starting one but not detecting a next
overlap is p(1 — p)t~T = p(1 — p)*®/? ~ pe=°° (no clone can start at the
next L — T base). Because the number of (apparent) islands is just the number
of times we leave a clone without picking up another clone by overlap, the

L-T T undetected overlap

expected number is E(Ny) = Gpe™°, or
E(N;)=Ne .

(There is a slightly subtle point in this argument: It is assumed that the event
that an island that starts its last clone at x is independent of one starting its
last clone at y. This holds because there are many identical copies of the
genome or segment under study, so that the two clones to be compared come
from independent segments; in other contexts, the independence is only an
approximation.)

2. According to the above argument, the probability that a given clone,
one starting at a specified site, terminates an island is =%, that it does not,
1 — 7% . Hence the probability that a given island has exactly j clones is

PI,J — (1 _ e*CU )J*l e*CU

(indeed Zjﬁl Py ; =1, as it should). Multiplying P; ; by the expected num-
ber of islands, E(N), gives us the expected number of j-clone islands, i.e.,

E(Npj) = Ne (1 —e 7)1,
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and the mean number of contigs, islands that have more than just one clone, is
E(Neon) = Ne™ — Ne 27
Also, of course, the mean number of clones perisland is E(j) = Y j JjPrj,or
E(j) =
Note that the expected number of islands in units of the maximum number of
islands, G/L = N /c, becomes

LE(N ) —CU
— =ce 7,
G I

a fairly sensitive (universal) function of the required overlap 6. Sample

15
E(N,)
oL =075
0.5 oo
0 2 4 5 8

values of G/L for E. coli and human, phage-derived, and yeast-derived clones
(termed YAC for yeast artificial chromosone), are given (kb stands for kilo-
base pair, Mb for megabase pair):

Phage (15kb)  Yeast (1 Mb)

E. coli 270 4
Human 200,000 3000

3. A better idea of the rate of progress lies in the actual island length as
measured in base pairs. An island of j clones will have a base-pair length of

Li=xi+x24+x3+--+xj20+L,

| |||||||,_,\_\

'—u—*{_rv_l
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where, proceeding from right to left, x; is the portion of clone i that does not
overlap the next clones and, as we have seen, occurs with a probability of

P(xi) et (L= py* ~ o7
forO0<x; <L—-T=Lo.

Now, at fixed j, because all x; have the same distribution,
ELH=L+({—1)EXx).

If x is represented as continuous,

Lo Lo
Ex) = / xe ?* dx// e P dx
0 0

P Lo
= ——ln/ e P dx
ap Jo
s 1
=——In=(1—e?)
Spp

1
- + Lo e ?to j(1 — e7?Loy,

so that (¢ = Lp)
E(L,-):L[l e —1)% (1 —mﬂ

1 _ e*CU

Averaging over j,using E(j) = €°, we obtain the mean island length in units
of clone length:

1 1
—E(Lp=1—0+—(* —1).
L c

E(L)) 30
L

20

10

0

Lowering 6 (increasing o ) beyond 0.25 does not make too much difference
in E(Ly)or E(Ny), and so the joining of the remaining small oceans is done by
chromosome walking or “finishing,” e.g., hybridization in which two different
sets of islands, A and B, are produced (by different restriction enzyme sets).
A member of A is used to bind to one of B, then to another of A, etc., until a
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complete overlapping set is produced. More systematic walking procedures
extend an island by ~500 bp each step until one meets the next island. We
do this by using the island as a primer in a polymerase chain reaction (PCR)
(Saiki, 1988) to build the following portion of the genome, the near end of
which is then laboriously sequenced by the Sanger technique (Sanger et al.,
1977). In fact, in high-resolution studies, a section is not regarded as finished
until each site is identified from three clones. A balance must be sought
between the cost of high coverage with few unfinished sections and the cost
of finishing (Czabarlia et al., 2000).

In declaring overlap, a practical consideration concerns the rate of false
positives: overlap attributed to nonoverlapping clones, because they have a
common signature, to within experimental error. In particular (Lander and
Waterman, 1988), suppose restriction-subfragment lengths x and x(1 — 8) <
y < x(1 4 B) are taken as matching. If each is chosen randomly from an
exponential distribution (x = 0) Pr(x) = A e™** (a reasonable assumption),
the chance that such subfragments will be seen as matching is fooo f;(lljﬁ'?
(he ™ dy)redx =28/(4 — B ~ B/2. Now, as an example, suppose
the common signature is a set of k¥ subfragments of a full restriction map.
Random overlap then has a probability of 4(8/2)F (two maps have four ori-
entations), and Y 4(8/2)" = 4(8/2)*(1 + B/2) for at least k matches. This
determines the statistics to be used in conjunction with the overlap parameter
6 ~ k/n for a mean n fragments per clone.

Letusreturn briefly to drop the assumption of fixed L and 7'. The dominant
effect is the distribution of 1 — T /L = o, say p(o), suggesting that the basic
probability e~ that a given clone terminates an island be replaced with

w(c) = /p(a)e_” do = {e™).

C'

Quite generally, the average (e °°) > ¢ °°) (the exponential is convex) but

in more detail,

we have the cumulant expansion

6‘2
(e™%) = exp[ ~clo) + Fvar(o) +}
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where var(o) = ((o — (0))?), which is a first estimate for corrections for a
tight distribution p(¢). The situation is of course not that simple, as we shall
see in Section 2.5. An important generalization in another direction is to the
biologically relevant case of inhomogeneous density c(f) of clones starting at
¢. This has been carried out for the subcase & = 0 (Karlin and Macken, 1991),
and more generally we conclude (Port et al., 1995) that, for example, the
expected number of apparent islands is

E(N B G/L—o I _fz+o o(s)ds
) = ety e dr,
0

where location is measured in clone-length units.

2.2. Anchoring

A second “traditional” method of sequentially ordering clones to build up
large islands, eventually to be converted to a full physical map of the genome,
is known as anchoring (Arratia et al., 1991; Torney, 1991). Typical anchors
are relatively short subsequences — seguence-tagged sites (STSs) — occurring
at very low frequency (perhaps once) in the genome, which are used as probes
to bind a complementary subsequence somewhere in the middle of a clone
and so characterize it without the messy restriction-fragment decomposition,
but at the cost of building up a library of anchors. On the other hand, STS
signatures allow for ready pooling of data from different research groups.
Two clones are recognized as contiguous if they bind the same probe, and for
many clones at the same probe, only the two extending furthest to left and
right need be retained. We analyze this sequencing system in a fashion similar
to that for fingerprinting, but of course with its own special characteristics.
Again, we follow Zhang and Marr (1994a).

The notation is an extension of that used in Section 2.1: we have the fixed
parameters of genome length G; clone length L; number of clones N; probe
length M < L;number of probes N’; p = N/ G, the probability of a clone’s
starting at a given site; « = N’/ G, the probability of a probe starting at a given
site; c = NL/G — pL, the redundancy of clones; and d = N'L/G = &L,
the maximum anchored clone redundancy. Also, f = M/ L is the relative size
of probe to clone, and we set g =1 — p and 8 = 1 — «. We again maintain
discreteness at first to accommodate small clones and probes but mainly to
simplify the presentation. Now let us compute the following.

1. The expected number of islands. We focus on the left end of an island;
a clone starts at, say O, its first completely contained probe at one of
i =0,...,L — M, andthere is no clone tothe left of 0 and anchored by
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the same probe, i.e., none starting at{ + M — L, ..., —2, —1. Hence
the probability that an island starts at O is

i i+ M-1

Py = (pg" ™M)
i=0
N ﬁL—MJrl _ qL—M+1

B—q
(depending on L — M alone) and then the desired

=07

E(Np) = GP(D).

If we drop the discreteness by letting p, « — O at fixed coverages c =
pL,d = «L,then(l — p)* — exp—px —exp—c(x/L),(1 —«)? —
exp —d(y/L), so that

—d(1-1) _ e—c(l—t)

E(Np) = No —————,

and we would clearly want to reduce the relative probe size  (subject
to controlling false positives) in order to increase the effective c and 4.
High ¢ and 4 of course reduce the expected number of islands.

05 . (1-pe=1
E(N)) ot
GIL o

0.1 .

2 4 6 8 10
(1-t)d

anchor coverarge

2. The fraction of genome covered by islands. Define p; as the probability
that a given position is covered by i islands (i can exceed 1 because
an overlapping pair of clones need not have a common anchor, but we
can see thati < 4 for L > 2M). Then we compute po, the probability
that a given site is not covered by an island, in terms of that of &, the
probability that no clone covers the site, & that it is covered by one
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unanchored clone, and &; that it is covered by two or more unanchored
clones:

a. no clone; & = g%
b. one unanchored clone,

& = L(pg= 1 gt M+,

c. more than one unanchored clone, the left end of the leftmost unan-
chored clone covering O atu, 1 — L < u < —1;theright end of the
rightmost unanchored clone covering O at v, u + L <v < L — 1.
Hence

for €

for £,

u+ L -1

-1
2 ut+l-—1 L v—1 pv—ut2-M
= 2 S B

—L v=u+L
2 pL—M+2 (L —)(x — P)qlﬁl + .B(IBL71 - fIL*l)
=p*8 :
(r—a)
and the probability that site O is covered by an island is

E]

1—po=1—g"—Lpgt~t pr+¥+l — g,
reducing in the continuous limit to
1—pg=1—e°—celot=1xl
2 2
c(c—d+1) p-le+1-ndl _ c

—(1—t)d
c—d)y? c—ar®
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c=5, =001
al :
island 1503
coverage £=0.01
1o £=05
I l
8 10
anchor coverage d

C

Note that, for large d, pp = ¢™°, a typical Poisson process result.
3. The expected size of an island. We compute this in stages:
a. The mean distance between adjacent probes on the same island and
hence on the same clone. We fix probe P with its right end at 0,
and then take the right end of the rightmost clone anchored by P

P
0 x y L-M

as y, with probability oc ¥~ =Y. Given these, the probability that
the right nearest-neighbor probe ends at x is o« g*~# (there is no
previous probe). Hence the mean distance between probes on the
same island is

)5
O<x<y<L-M O<x<y<L-M

1 L —-M+1
7 _ 1 L-M+1 :
g1 (%) 1

.....
0 y L-M

b. The mean distance from the right most probe to the right end of an
island, and hence to the right end of the last clone is seen to be

B N L-M+1 1
dZ:( Z yq y)/( Z q y)zl L7M+1_1* .
0<y=L-M 0<y=L-M 1 1
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c. The mean island size. If there are i probes on an island, there are
i — 1 interprobic distances, so that, with / as the island size,
dy+ M-1
i — dy

— —

EQD)); = E[di( — 1)+ 2d2+ M — 1],
but the probability

mean # probes on islands

Pr (i probes) = mean # islands

N'[1 — prob (no probes on a clone)]
a E(Np)

= N1 —qg" MY/ EWND),
giving the net

Nl(l _ quMJ,»l) B

ED) =d [ EvD

1} +2dy+ M — 1.

Extension to inhomogeneous clone density has been carried out for an-
chored islands as well (Schbath et al., 2000). For example, if £, (L) isthelength
distribution of clones ending at x, Fy(L) = f, LOO f(INdL, and J(x, L) =
exp —c¢ f fo Fy1y(y)dy, then the mean number of anchored islands is found
to be

G poo
E(N;y) = ap / / F.(INJ(x—L,LYe L dx,
0 JO

c=5, =001
c=5, t=0.1

15 /
EQ) 9 c=3, £=001

L - ¢=5 t=01
3 / c=5 =05
‘__J«f://=3, t=05

0 10
d = coverage by anchors
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which reduces to our above result when f,(L') = §(L' — L). One situation
in which clone length is not tightly distributed is that of radiation hybrid
mapping (Goss and Harris, 1975; Cox et al., 1990; Slomin, 1997), in which
rodent-human cells are created fromradiation-broken human DNA fragments
to serve as sources of clones.

An extreme version of the anchoring technique, “hybridization mapping”
(Poustka, 1986), has come under increased scrutiny (Kim and Segre, 1999;
Mayraz and Shamir, 1999). It is that in which the coverage by anchors alone
is very high, producing an overlapping population of nonunique location
specifiers, and hence not representable by the above analysis. Because the
anchors themselves cover the genome, their statistics make it possible to
recognize repeated subsequences and save their incorporation until the end
of the process. Also the problem of noise during fragment construction and
recognition is reduced by the numerous anchors that connect two fragments,
as well as the concomitant interprobe distance information.

2.3. Restriction-Fragment-Length Polymorphism (RFLP) Analysis

Suppose we have obtained a physical map of the genome, or a chromo-
sorne, . . ., of an individual by means of a complete set of overlapping clones
together with their restriction-fragment-length fingerprints, now a traditional
if very lengthy activity. The net effect is then a sequence of fingerprint mark-
ers or signposts. When DNA appears altered, e.g., by a mutation or simply
by transmission of a previous alteration, this alteration can then be inherited.
However, let us recall that the chromosomal DNA contributed by one human
parent is not simply one of the pair of homologous chromosomes in each
cell. Rather, during the process of meiosis resulting in the (halved) chromo-
somal complement of a gamete, homologous strands swap segments. For any
transmitted alteration to be viable, the whole length of the gene — coding and
regulatory regions — must hang together during the crossing over, a minimum
amount, say x, of altered DNA. To keep track of such an alteration, we want
to have some marker within this minimum distance, so that the marker will
transfer with the gene. Distances on DNA are often measured operationally
in genetic linkage units: a centimorgan (cM) or a “map unit” is the separation
distance of two loci that are separated 0.01 of the time during the chromo-
some crossover period (the human genome has ~3300 cM) and a reasonable
requirement might be that every major gene locus is within 10 ¢cM of a marker
(clearly, 1 cM ~3 x 10°/3300 ~ 10° bp; the transformation from physical to
genetic distance is not really uniform, but we will neglect this fact, to leading
approximation).
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An altered gene — an allele of the reference DNA — then carries with it
an altered set of restriction-fragment lengths, termed a restriction-fragment-
length polymorphism (RFLP). To satisfy the above criterion, suppose first that
n markers are placed on a genome, or chromosome, of map length L ¢cM. What
is the probability P, (L) that the whole sequence is covered by the n intervals
of length x cM, centered at the markers? (Ideal placement would allow n =
L /x to dothe trick perfectly (Lange and Boehnke, 1982; Bishop et al., 1983).)

Except for end effects that are easily taken care of, this is the same as
the probability that # ordered points 0 < y; < y2--- < y, = L produce in-
tervals of only <x. The volume swept out by the points (y1, ..., y») of the
n-dimensional space without restriction is of course L”/n!; the restricted

volume is now
Voo (L) = /f Yty dyn,

0=y, 0=y 1 —y<x
OSL—YnSI

B, (L) = n!/L")V, (D).

A device we often use is that of a generating function. We define

O x(t) = f et v, (LydL
0

(the Laplace transform, the standard moment-generating function of prob-
ability). Switching to variables z1 = y1,Z2 =Y2 = ¥1,--+,Zn = Yn — Yu—1,
Zna1 = L — y,, this can be written as

X X
Qn,x(t)L [) e_t(Z1+m+Zﬂ+1) le dZn-H

+1 —tx +1
:(fxetzdz)n :(71_8 t )" .
0 I3

This is very simple, but how do we return to P, ,(L)? One way involves
inverting the Laplace transform; on consulting tables, we find that,

Paaly= Y (—1)]’("?1) (1—%) ,

0<j<L/x

which is numerically but not analytically useful without further transfor-
mations. A better way is by direct asymptotic evaluation of the inverse
Laplace transform. The formula for the inverse Laplace transform is most
readily obtained from that of the Fourier transform, which extracts frequency
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components and then puts them together again:
1 _
if A(x) = — - d
i hx) =~ f_ooe &y)dy
and g — O rapidly as |y| — o0,

0]

theng(z):f e h(x)dx.

—o0
Now if we let g(y) = e Ky F(¥)O(y), where
0 y<0
0(y) = {
1 y=0

is the unit step function, then e=X¥ f(1»)0(y) = &= [% [*0 e X2 f(2)0(2)
e *tdze*y gk orift =ik + Kandy = 0,

1 K+4ico o]
FO) = — et [f fl@ye ™ dz} dt,
0

278 Jg_ico

the Laplace transform inversion formula.

Here then
1 K+ico 1 — e t* n+l
V(D) = 5— et (—) at,

2mi E—ico t
or, in terms of the coverage parameter defined for present purposes as
c=nx/L,

1 w1 —e P\ 1 —e "

Vax(L)y=— e dt.
"’()211/[( t )] t

In general,

1/n

lim ‘/ a(t) b(t)dt — max |a(?t)|.
n—>CO t
In the present case, a(¢) is stationary at a real value of ¢, which is minimum
in the real direction, but maximum in the imaginary direction. It is given by

x 1, xe™

c f 1—et ’
sothat, if tx is large, then (tx/¢) — 1 = —[tx/(e"* — 1)] — Oort = ¢/x, and
[by means of Stirling’s approximation in the form (n!)!/* ~ n/e]

-1
ne
P, (L)Y ~ — V, (D)™

=1—e".

c _; 1—¢
e e
X c/x
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Hence
P, 2 (L) ~ exp — (ne™®).

Thus to have a reasonable probability of full coverage, we need n ~ €°. In
particular, for the full human genome, with x = 20 ¢cM for 10-cM resolu-
tion, L/x ~ 3300/20 ~ 165, sothat Inc = ¢/165, leading to the requirement
¢ ~ 7 orn ~ 1170. Substantially higher values of ¢ will get the probability
very close to 1.

In further detail, we may study the mean and the standard deviation of
the proportion C,, of the genome covered by n markers randomly placed on r
chromosomes of lengthsy, /2, ...,I, > x cMstrungtogether, with > {; = L.
It can be shown (Robbins, 1944), and is certainly reasonable, that the expec-
tation of the uncovered part is given by

E(Q1 - Cn) = Pln»

the probability that a randomly placed location is not covered by # randomly
placed intervals, uniform over the whole genome. Similarly,

E[(1 - C)H = pan,

the probability that two randomly placed sites are not covered by n randomly
placed intervals. Let us look at p; ,. There are two possibilities: (1) arandom
site falls inside a chromosome, at least x /2 cM from each end; this has proba-
bility (inside length/length) = (L — rx)/L = 1 — rx /L. The probability that
this site is not covered by any of the » intervals is of course (1 — x/L)Y"; or (2)
a site falls y < x/2 cM from a chromosome end with probability rx/L and
is not covered by n intervals with probability [1 — (y + x/2)/L]*. Summing
y from O to x /L and adding the three contributions, we obtain

=BG =pa=(1-7)(1-7)

2r x \n+l a\n+l
o -a-m)
n+1 2L L

or, because (1 — x/L)Y" = ¢~ ° in the continuous limit,

z rx\ 2r /2 .
Cn=1-(1-F)e — e e,
and for n ~ €°, this is again dominated by the e term.

With the coverage under control, we can take advantage of RFLPs in both
medical and forensic directions. For the moment, we just note that RFLPs
can be generated both by variation in the distribution of restriction sites, by a
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very important subcase, the variation in number of tandem repeats (VNTR),
and more recently by repeats of the very short microsatellites (with no genetic
implications). The tandem repeats are genes that were initially repeated by
recombination of pieces and then accumulated a large distribution by crossing
over; their multiple nature allows them to be preferentially selected by hy-
bridization. A typical situation involving the transmission of an altered gene
(here, one C is replaced by a T) is shown (Botstein et al., 1980).

disease CCGG _ _ _ _ CTGG _- _ _ _ €ccCcaGaG
normal ccéGg —— — — CCGG — — — — CcCGae
both both
normal ldiseasecll
— —
— e | =
I |
1
restriction | |
fragment 1\ | |
length | |
| |

gel electrophoresis

A CCGQG cutter acting on the two-strand sections of sister chromosomes
shown (white for normal, gray for diseased) produces three characteristic
restriction-fragment signatures. If the disease gene is recessive, their (two
copies on the two strands are necessary) progeny, their disease state, and their
restriction fingerprints might go as

° 9
O

¢

IO
o
|
@
|

and so the genetic risk is readily assessed.

Assignment 2

1. In fingerprint assembly, suppose that the clone density c(¢) varies lin-
early from O at each end of the genome to a maximum at the center.
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Compare E(Ny) with that obtained by using the average ¢(f) and ex-
plain the result.

. In the anchoring technique, find the probability that no gap between

islands exceeds » base pairs.

. The problem of asymptotic RFLP coverage ended up as a saddle-point

estimation. Find the coefficient in front of the exponential.

2.4. Pooling

A major use of a sequenced clone library is to answer the following question:
Where on the DNA, or chromosome, or large sequenced fragment (each
comprising a set of which the library contains fully overlapping subsets) is a
given protein, or portion thereof produced, or more generally the same for a
set of associated proteins? For this purpose, we can, e.g., translate back to a
relevant piece of m-RNA to use as a probe whose binding says that we have
located the position of the “word” in question. One obvious procedure is to
check every clone for binding by the probe, but this is slow, tedious, and error
prone. Instead, we do this by pooling (Balding and Torney, 1997; Percus et al.
1999). There are two general types of pooling:

. Adaptive pooling, prototypically patterned often on the traditional tech-

nique of detecting a (heavier) counterfeit coin. We mix half the clones

into one pool, half into another, and check each half for binding. We
divide the clones of the “positive” pool (assuming just one) into two
halves, check and repeat, etc. The desired clone, of the N in the library,
is hence located in T tries, where 27 ~ N, or T =InN/In2 = In; N.
However, this requires the retention of records, has many sequential
operations, must be redone for each subsequence to be detected, and
is also error prone.
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2. Nonadaptive one-pass pooling. An experimental design is chosen in
which each pool contains predesignated clones, the whole set of pools
is observed, and data are collected. No further experiments are carried
out.

Example: Row and column design. N = rc clones are placed at the cells
of an r-row c¢-column grid; rows and columns are pooled separately. If the

row pools

1,

| | | Eﬂ | | | | column pools

“word” is rare enough and the clone overlap is small enough, one column
and one row will show positive, and so the word-containing clone is located.
Optimally, to minimize the required number of pools, r = ¢ = N'/2, so there
are v = 2N'/2 pools. We can in principle use a D-dimensional hypercube
design with (D — 1)-dimensional slabs pooled, so v = DN'/? minimized at
D =1InN; then v = eln N is quite small, but the setup is too complicated.
Of course, when the word appears in several clones (we cannot have less than

LR
S

the coverage, on the average) there remain unresolved positions because only
the set of rows and the sef of columns are known. Wereduce this ambiguity by
applying the procedure to subsets of clones or by then examining separately
each unresolved clone, partially but minimally adaptive.
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What is an optimal “idiot-proof” design to reduce the pool number at a
given level of resolution (number of unresolved clones)? This should pre-
sumably be an “on-the-average” strategy, as the identity of the word-carrying
clones is to be regarded as unknown. We examine this issue mainly by re-
placing probability arguments by explicit Boolean operations, reducing the

1 pool 4
T
1 #o

1
1
1
1
1
1
1

! Design
1
1
1
1
1
1
clone v

s; [~ o = —————

1
1
1
1
1
N 1

artistic and strengthening the mechanistic components of our discussion. We
start in general by setting up an incidence matrix v to define our experimental
design. Here

|1 ifclone j € pool
e 0 ifjda '

Which clones are positive, i.e., contain the word being probed, is not known
to us, but the vast majority of pools will have none of the few positive clones.
These negative pools comprise the full set of resolved or definitely negative
clones. When the negative pools and resolved negative clones are excised,
we get a new small matrix ¥ that still contains all the positive information.
The simplest design criterion, and the one we adapt here, is to minimize
the number of clones left over, as they are the “noise” in which the positive
clones are embedded. (A presumably better criterion, but harder to design
for, recognizes that some positive pools in U may contain just one remaining
clone; such a clone is definite or resolved positive, and it makes sense to try
to maximize their number — but we will not do so here.)
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The way that probability enters the picture at this stage is that if the small
target word occurs only once in the full fragment, but the library coverage is
¢, it would be expected to occur ¢ times in the library. The best we can do is
introduce a clone designator

1 if clonei is (+)
T = ,
‘ 0 if clonei is (=)
i=1,...N,

with the knowledge that ¢ of the 7; are 1 on the average, the rest being 0. Thus
the average of any of the 7; is ¢/ N, and they are independent of each other.
In other words, with { ) denoting expectation,

{tiy=c¢/N =p.

The pair of sets {v;y, 7;} of known/unknown quantities, 0 or 1, completely
specifies the setup. Let us develop the required derived quantities. To start
with, we define

0 { 1 if no clone in pool is (4): « is negative
o pu—

0 if at least one clone in « is (4): « is positive

This is clearly given by the expression

N
Qoz - l_[(l -7 via);
i=1

which is 1 if and only if every 7; v;, = 0, i.e., either {v;, = 0, i notin «} or
{v;o = 1but7; = 0:1 is in @ but 7 is negative}.

Next, clone i will be proved or resolved negative if it is a member of some
negative pool, i.e., if v;;, = 1 and @, = 1 for at least one «:

i is resolved negative if

Ay = Qqvi = 1 for at least one a.

This is equivalent to saying that
[Ta-aw=o0.
a=1

Hence, if

P=1-[]0 - 4w,

a=1
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then
P { 1 if i isresolved negative
l' pu—

0 if i is not resolved negative -

Consequently, for the probability that 7 is resolved negative,

v
Pr(clone i is resolved negative) = 1 — <n(1 — A,-a)>‘
a=1

As there is no a priori way of distinguishing the characteristics of two
different clones, we might as well focus on clone #1:

Pr(#1 isresolved (=)) =1— <ﬁ(1 - Aa)>
a=1

N
where A, = Quvi,  and @, = [ [ — 7 viw).
i=1

A bit more conveniently, Pr(#1is (+)) = p means that Pr(#1 is (—)) =
1 — p; if we subtract the resolved (—) clones from the merely (—) clones,
we get the actual but unresolved (—) clones:

v
Pr(#1 is unresolved negative) — <n(1 — Aa)> - p.
a=1

Carrying out this average requires expanding the product [ [{(1 — A,) and
corresponds to the “inclusion—exclusion” theorem of probability; see, e.g.,
Percus (1971). The expansion consists, to within sign, of terms A,, pair
terms A, Ag, triplets A, Ag A, ..., with the condition that no two indices
are equal, and that permuting the order,e.g., A, Ag A, — A, A, Ay, doesnot
create a distinct term. We can take care of the latter by allowing everything, but
dividing by s!, the number of permutations of s distinct letters. In other words

v

[To-40=1-2 act 5 3 4y

Catp=1
1 v
~a Z AgAsA, + -,
"o fEy=1

and we conclude that

Pr(#1 is unresolved negative):
v

v 1 v 1
L=p =3 (Aa T3 D (Aedp) =5 D (Audpdy)....
a=1 a#f=1 a#f#Ay=1
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For the evaluation, we see first At,hat, because vlza = Vg, then A, = vy, ]_[f\]:1
I -7vie)=vie I —v) ][, 1 — 7 vig), or

N
Av =0 -mv [ [ -~z
i=2
However, (1) =--- = (1;) = p, 80
N
(A) = (1 = povia [ [ @ = puia)-
i=2
Then, using 7¥ = 71, ... 7% = 7;, we have

N
AvAp = (1 =11 vigvig [ [ (1 =7 via) (1 — 73 vig)
i=2
N

= —t)vievip [ [ —wll — (1 —via)(1 —vip)l,
i=2

and similarly
Ay Ag A,
N
=1 =) vievig vy [ {1 =1l = (1= vie)(1 = vig)(1 = viy )1},
i=2
etc., and we conclude that, in general,
(AnAg A, ..
N
=0 =pvigvigvyy ... | [ =P+ P —vie) A —vig) 1 —vip). . ]
i=2

We therefore have the relatively simple result that, af fixed design,

Pr(#1 is unresolved negative)

N
:1—Z{v1an[1—p+P(1—Via)]}

o 2

1 N
+ o - {vla Vig l:[[l —p+pd—v)d - Vi,s)]}

1 N
3 Z {ma Vig Viy l_[[l —p+pd —vi)1 =g — viy)]}
T a#pEy 2

T @.1)
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Now how in the world do we use Eq. (2.1) to, e.g., plan a design that
minimizes the number of pools required for achieving a given resolution?
Any complicated schedule would defeat the whole objective. A neat way is to
hedge our bets and choose the design in some random fashion. The simplest
is random incidence: Just choose a parameter & so that each clone occurs on
the average in k pools. Hence (>, _, vis} = k for any i, or because the v,
for different « are independent,

(Vi) = k/v, independently.

The averaging of Eq. (2.1) is then next to trivial: The sum >, . .,
(Ag, -+ Ag,) contains v(v — 1) -- - (v — (s — 1)) terms, all of which have the
same value v(v — 1) — (v — (s — 1))/s! = v!/slv — 5!, the binomial coeffi-
cient (:), and every v is replaced by k/v in the average. We thus have

1

ﬁ Pr(#1 is unresolved negative)

QO rer )
OO -]
et

Also, N is large, but p is small, and p[1 — (1 — %)‘] even smaller, so we can
use (1 — x)¥~! — ¢~N* Finally, because 1 — p = Pr(#1 is negative), we can
write

Py s = Pr[#1 is unresolved (—) | #1 is (—)]

1
= =7 Pr(#1 is unresolved (—))

_ §(~1)I (%) (%) exp —c [1 - (1 - %)] L)

where Np = c is just the coverage.

This is a nice explicit formula, but it has v terms, and they almost can-
cel [if the exponential were constant, we would have Zfzo(—l)r(%) =
(1 — 1)” = 0]. Therefore numerical evaluation and tabulation are problems.
We prefer that numerical evaluation be at the conclusion of analytical pro-
cessing, so that, at the very least, we can get a better feeling for parametric
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dependence. A number of analytic tricks are available. Here is one: We intro-
duce the asymmetric difference operator

AYFE) =AfG+D—fE& =0 E—1f(s),

and hence
v v N v+t v t
@9f@=@E—Df®=%X4V(JAf@+m

so that in fact

— _ky
= e (=1 (AY) e o

=e (=AY ey (1 - %)

p-

inde

s=0
However,
k st k st k k (s+1)¢
R
v v v v
k t k st
I GHIIGHE
v v v
8O

k
v
k —yt vt —t —ket c —t
:2(1—# )Ee NZe et (2.3)

where

Now all terms are positive, so computation is quick and accurate.

In practice, a restricted random-incidence design, in which we impose a
fixed number of pools entered by each clone, >, vio =k for each i, has
experimental advantages. It can be treated similarly, but the analysis is a bit
more involved.

Assignment 3

1. Choose reasonable values of ¢, k, and v in Eq. (2.2) and carry out the
evaluation at a few levels of precision to see how much computational
accuracy is needed.
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2. Because Eq. (2.3) has only positive terms, analytic approximations are
controllable. Try one or two and compare with problem 1.

2.5. Reprise

There are, as we have seen, various ways of joining clones and building up
islands for the purpose of constructing maps of the genome, and more are
being suggested all the time. A dominant role in the increasing common
whole genome “shotgun sequencing” is now being played by the use of end-
characterized clones, i.e., those in which a few hundred base pairs at each
end are identified, base after base, by use of the old Sanger technique (Sanger
et al., 1977). Then overlap is recognized if the leading end of a “new” clone
overlaps, by at least 7 base pairs, the trailing end of the last clone of the
currently developed island. Rather than develop a new clever technique of
analysis each time, it might pay to create a descriptive machinery that is
tailored to the general concept and therefore allows diverse questions to be
answered more routinely. This is not a novel concept, but let us carry it a bit
further than is usually done (Percus and Percus, 1999). We deal here with only
the basic fingerprint assembly at fixed clone length L and overlap criterion
T, but in a fashion that extension to a distribution of clone size and overlap
threshold can be carried out with relative ease.

If genome end effects are unimportant, we can imagine that the island-
building process starts with a clone whose left end is at site 1, its right end
at its length L. Now we build up an island by putting down a clone at step
k, starting at site k, with probability p(= N/G). If it overlaps the current
(k — 1) island sufficiently, a new island with right end at Ry =k +L — 1
will be produced, if it does not, the island terminates at the previous value
Ri_1. If no clone is found starting at &, with probability ¢ =1 — p, then
Rk = Rk—1~

The first crucial criterion is that of sufficient overlap, T'. In the basic case
we are considering, this simply requires that a clone be found starting at site
k such that

Ri1=k+T—1.

The complementary criterion is that of the island terminating; it will do so

k+L-1
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atstep k — 1 assoon as Ry_; =k + 7 — 2, for then a clone starting at k can
have an overlap of at most 7 — 1. Hence, at step %,

Ry=k+T—1: stop.

Pictorially, then, the island develops as a random walk in which at each
step, Ak = 1, either a clone is added, so that Ry jumps to k + L — 1, or
no clone is added, so that R, = Ry_;, but the island stops if this results in
Ry=k+7T-—1.

What we want to do now is to find

Pr(R),

which is the probability that our developing island at step &k has length R.

Ry R=kFk+L-1

Because an island is completed when Ry = k& + 1" — 1, the expected length
of an island will be just

X0
E(L)=) (k+T—=1) Pek+T—1).
k=1
Py(R) is to be found iteratively. If the island has “arrived” at the point
(k, R), it can have done so in two ways. Either (1) R =k + L — 1, corre-
sponding to an overlapping clone appearing at step k, and this has probability
p providing that R;_; was anything between its minimum (¥ — 1) + 7" and
its maximum (k — 1) 4+ (L — 1),

k—24+L

Pk+L—-1)=p > PR,
R'=k—-1+4T

or (2) R = Ry_; because no clone appears at step k, and of course Ry_;
cannot have been smaller than (¢ — 1) + T (or the island would already have
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terminated):
Pi(Ry=q P,y (R) if R=k—-1+T, R<k—-2+41L.
Finally, the whole process starts at
Pi(R)=3g 1

(the Kronecker delta §; ; = 1if i = j, otherwise 0).

The “walk” that we are analyzing is one with a reflecting barrier along the
slope R =k + L — 1, an absorbing barrier along R =k + 7 — 1. Analysis
is much easier if the barriers are fixed, so we set

Ptk + j) = 2e()),
and thus have
L1
QL —1)=p ) Qea(d),
i=T
() =qCk(G+1D) for j=T-1, j=L-2,
Q1(j) = 8;, L1,
subsequent to which

ELp) =) (k+T—1) QT —1).

k=1

For solving this, the method of choice is usually a generating function. We
set

Qx, j) = x* Qu(j)
k=1

(o)
=x8j 14 Y xF Q)
k=2

Now we multiply the recursion relations by x* and sum over k from 2 to co.
We see that

L1
O, L-1)=x+p Y x 0, i),
i=T
O, )=qxQx, j+1) for L=2>j>T-1,
E(Lp) =08Q(x, T — 1)/dxllym1 + (T — 1) Q(1, T — 1),

Working up from Q(x, T — 1) in the second relation, we have Q(x, j) =
Q, T — 1)/(gx)’t1-T for j = T — 1, and substituting this into the first
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relation, we obtain

0k, T —1) Ui S |
@orT T e T= 1); (gxy+1=T

powr ol () 1] /Ge)
=x4+=00x, T-D|{— —1 — 1),
q gx gx

Q(x, T —1) = [x(1 —qx)(gx)" T 1/[1 — gx — px(1 —gx)*"7)]
= [x(1 —gx)(gx)" TV[1 — x + px(gx)* ).
We see that Q(1, T — 1) = 1, which just says that the probability that the

island ends someplace is 1. What we need then is @/,(1, T — 1), and a brief
calculation shows that

so that

0.1, T-1)=—[¢g%"" —q],

|

from which we conclude that
1
EL)=T+—[¢*" P —1],
p
or, because g =41 = (1 — p)y==1) = 22— for small p, that
1
E(L) =T+~ [e24=D —1],
p
which we have already seen.
What deeper questions can we ask? The simplest might be about the dis-

persion, or standard deviation, of L; (after all, a mean of 10 isnot too germane
if 10% of the population are 100 and the rest are 0):

o(Ly) = [E(L}) — E(L*]Y?

cO co 2
=1 QT 1)~ {Z k Qu(T — 1)}
1 1

(the constant part of L; does not contribute)

1/2

= [Q1(1) + Q,(1) — OL(1)*]?
= [(In @,)"(1) + (In Q,Y(1)]V2,
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where the argument 7 — 1 is omitted. After some minor algebra,

M S
pZ pqL‘T p2q2(L—T) 4 4 qL—T

T2 g 2L I
Tl p el T T D

— ! e?t=1) |:1 - (L - 1) pePE=D ] ,
p 2

in fact very close to E (L) itself, as in an exponential, or basic survival time,
distribution — which this is very close to.

It is a bit more complicated to restrict the islands to contigs, which are
the objects would really pick up. This means omitting those islands that have
not hit the upper barrier, i.e., that have not encountered at least one weight-p
jump. For this purpose, we simply refrain from using the fact that p + ¢ =1
in our first expression for @(x, T — 1):

o(Ly)

0,0, T 1) =¢"Tx T (1 —gu)/ll - (@ +@)x + px gt TxtT]
The coefficient of p* then represents the weight of the (k + 1)-clone islands.
Subtracting out Qo(x, T — 1) gives the contig-generating function

Qeon(x, T =1) = Q(x, T — 1) — Qox, T — 1)

=" T T pa® [l — (@™ T — 2+ pxign)t T,

which is no longer normalized: Qeon(1, T —1) =1 — g%~ T, so that

g= T Lt2-T 1— (g7

con >T71 -3 T_7 .
Ceonldts T2 D = T P00 T3 gt T

Hence

1
Quon(1,T —1) =1+ ;q‘“‘” LD

T—LqgtT

1
E(Ljcon)+—q & D4 .
p 1—gt T

The advantage of this mode of derivation is that generalization to a distribu-
tion of clone lengths, f(L), and a distribution of overlap detection thresholds,
w(T"), is easy to carry out. Although a complete closed-form analysis is avail-
able in only special cases, means and variances of required characteristics can
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be obtained quite generally. For example, for the mean island length, we find

[es] R
E(Lp=) F® / [Te0,
0 0

where

F(RY=) f(L), q)=1-pw@r)F@).

R+1

In the continuum limit, in which the unit length, say 75, corresponds to very
many base pairs, writing

feh) = Jim To f@ Ty, W) = w/To), o =Top.

we see that this reduces to
l
Eay) = f Full) exp (p / Fan W) df) i,
0

showing that the generalization in Section 2.1 from the fixed clone length,
F(R) = 6(L — R), fixed threshold, w(R) = 6(R — T'), case was a bit naive.
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Sequence Statistics

Once we can assume that long stretches of DNA are completely sequenced,
it is possible to analyze the information contained therein. In the “language”
of DNA, there are many “verbal” biases — dialects, accents, pauses — that
have evolved for broad reasons of physical and biochemical accessibility and
function. They contribute to the “default state,” the random or null hypoth-
esis with respect to which additional information must be assessed. Igno-
rance of this background bias not only ignores available information but
also poses as noise against which a signal must compete. In broad out-
line, as we have noted, we know that DNA is not homogeneous, but con-
tains regions that code for specific proteins as well as those with associ-
ated regulatory functions. Each of the former is divided into exons, which
(three bases at a time) are transcribed and translated into amino acids, in-
frons, which are spliced out during this process, and instructional subse-
quences. The latter are often confined to a flanking region of this coding
section, all residing in a sea of “junk DNA,” which may or may not be
functional.

3.1. Local Properties of DNA

To start with, the bases are not even at equal frequencies. For example, for the
human mitochondrion (17,000 bp), we have typically [see, e.g., Weir (1990),
Chap. VII]

A C G T

0.31 0.31 025 0.13

For different regions of the human fetal globin gene, the pair G,, A,,, the
distributions are given in the following table.

42
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‘ Total Length A C G T

5" flanking (2) 1000 033 023 022 022
3 flanking (2) 1000 029 015 026 030
Introns (4) 1996 027 017 027 029
Exons (6) 882 024 025 028 022
Intergenic (1) 2487 032 019 018 031

Clearly, this bias should be taken into account, and we should bunch to-
gether, for statistical purposes, only subsequences of similar character. How-
ever, even if this is not done (choosing 140,000 bp from 166 vertebrate se-
quences as an example), an additional local structure immediately appears:
If p; is the relative frequency of base i, p;; of the pair 5+ - -ij - .- 3/, then the
pair correlation ratio

Dij / pip;

is not at all unity, as it would be for independent placement, but rather is as
in the following table.

| A C G T Second Base

A | 115 084 116 085
First C | 1.1S 118 042 126
Base G | 1.04 099 114 082
T

065 1.00 129 1.07

Observe the very small CG frequency, which presumably is due to geometric
“mismatch.”

Bunching together sequences of different singlet frequencies will mas-
querade as pair correlation, e.g., (; 3) + (g f) = ((1)0 18) does not have the
form N, Nz when the full sequence consists of two internally uncorrelated
sequences; hence the tacit assumption of homogeneity is implicit in assessing
correlations.

A fairer test for pair correlations is to stick to a single functional entity,
here a chicken 8-globin gene exon, organized again according to the number

of successive pairs of sequences of the 16 possible types.

A C G T  Total

23 26 23 15 87
37 51 14 41 143
25 38 36 19 118

2 29 44 14 87

HaQ 0w

Total | 87 144 117 89 437
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Note that the &;; in this contingency table, the actual number of times 7
is found, do not quite satisfy N;. = N,;, etc., where N;. = Zj Ni;, N; =
2_; Nji, because the left base of the leftmost pair of the chain cannot be the
right base of any pair, etc.

The standard test for independent model probabilities is the x % fest (Cramer,
1946). This goes as follows: Suppose the result of a measurement is indexed
by «, with N, the number of times « occurs, and of course mel N, =N,
for s types of result, is the total number of trials. If the probability of « is
Da, then, on the assumption of independence, the set {N,} occurs with a

probability
5 k)
(N!/“Nu!) []22
a=1 a=1

If N is large, we let N, = Nx,, which converts the above to

P{N,} = [N!/ li[(Nxa)!:| ﬁpé\rm’
a=1 1

and we then use Stirling’s formula n! ~ /27n(n/e)” to obtain

N 1/2
N! 5 pae X 5
PiNa) ™ o Ny N [H ( X, ) } /(l:[x) '

Now x, In (pye/x,) has a single maximum at x, = pg:

XoIn(pee/xy) = pa — (xa_pa)z”'

2Pa
so that the Nth power in P {N,} has a very sharp maximum, and

N1/NNN
(T127 N po)V/2

depending on only the quantity

P{N,} ~ ~(N /D) L Gapa) P

" (X — Pu)2 (No — PaN)2

2NN ¥e fol Nt VT Perl)
X ; Pa Za: DPaoN

-y (e = N

(N} '

24

where we have used (and will use) the notation (N,) interchangeably with
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E(N,). Introducing the new variable

we see that the distribution is independent of the p,. For large N, we may
regard the y, as continuous versions of the N,, as under a change AN, = 1,
we have Ay, = NY2 p;V% Axy = (Npo) Y2 AN, = (Np,)~V/2. If the {y.}
were independent, the probability for the {y,} would then be determined by
Piyat Ay = P{N, (AN, ), or

_ NI v LN e
p{y.} = N!/(N/e) - e

where

The reason for the large prefactor N!/(N/e)¥ ~ /2n N will appear in a
moment.

Now what is the distribution of x*? The y’s are not free in s-dimensional
y space because they are restricted to the hyperplane > N, = N, or

Xs:péﬂya:(l
1

and it is the surface “thickness” of only ~ N on the restricted lattice of
the {y,} that is responsible for the above /27 N. However, we do not have
to worry about normalization; it can be supplied as the last step. In general,
suppose there are r linear homogeneous relations that the N, — (N,), and
hence the y,, have to satisfy. Then the space is reduced to dimensionality

~1/2

v=s-—r,

the number of degrees of freedom, but the intersection of the spherically
symmetric unconstrained distribution with the hyperplane through the origin
of restrictions remains spherically symmetric Gaussian on the v-dimensional
space. Call the new coordinates in this space the {¥.}. Then we seek the
distribution of

x2=2v:Y§
1
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where

v ,
Y — e[—(1/2)Ya]}
p{Ya) ]:[1{ —

(the constant is now obtained by the normalization condition [ --- [ p{¥,}
dY’ = 1). Because

1 2
e VX — / e gy
=1 o
=1 +2)7"

defines f;° p(x®) e "% dx?, we readily find, on consulting inverse Laplace
transform tables, that the x * distribution for v degrees of freedom is

vV
Py = (A e 2 (S 1),

from which it follows that, for any sizable v, p, (x?) is also sharply distributed,
with E(x?%) = v.

Now back to our example. We want to test for independent juxtaposition,
i.e., whether (noting the distinction between a left member of a pair and a
right member, because of end effects) the observed {NV;;} are consistent with
the p;;, computed as

Pij = Pi. D-j-
We do not actually know the p;. and p.;; we have to estimate them by
meansof p;. = 1/N 3, Nij = Ni./N, p.; = N.;/N, and then the question is
whether

(Nij} = Ni.Nj/N

is a valid estimate, modified of course by known restrictions. However, there
are many restrictions, because Zj(Nij — M}ffv"') =2 (Nijj — M;IV,') =0, as
isreadily verified, amounting to [2 x 4] — 1 = 7 independent restrictions. We

compute

. N2
=3 (N _ Nﬁ‘f) /(N,-,N,,-/N) ~3593

ij
for the example quoted, compared with the E(x?%) = 16 — 7 = 9 degrees
of freedom. This shows that the assumption p;; = p;.p.; is extremely
inconsistent with the data.
However, is the strictly pair-associating Markov chain assumption good
enough? Maybe there are really three, or four, or more successive intrinsic
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base correlations. Let us use the notation

5.(j) = 1, base j is at site x
)= 0, basei # j is at site x

Then the multisite correlations are defined as

pi = Av 8,(@),
Dij = Avy 8,(1) 8, 11()),
Pijie = Avx 85 (1) 8x41(j) 8apall) ..,
where Av, means moving the beginning of the multiplet over all possible

chain positions and averaging. The corresponding conditional correlations
are then defined as

Pjli = pij/ pi, Drjij = Pijk/DPij s+

for independence, a Markov chain of order 0, p;; = p;, or pix =

PiPjPr- 5
for a Markov chain of order 1, pgi; = pij, OF Pijkr.. = %;
. J
for a Markov chain of order K, pjji..i; = Pjjip_gs;-i; for L = K, or

o pil‘“l'K+1pl’z‘“iK+2pl'3‘“iK+3 c

pill'zm -

Pigigyy Pig-oprya ™

Because pi,..ix,; = 2_;, Pij-igs» the Kth-order chain is fully specified by
4%+l 1 independent parameters, and the crucial p ili--ix DY 3 % 4% (as
Zj pj = 1). Clearly we need a lot of data—i.e., very long chains — to deter-
mine these parameters, assuming homogeneity of the chain.

Perhaps we can at least get the intrinsic correlation length in the sense of
the order of K of the underlying Markov chain (Katz, 1981); one technique is
(Tong, 1975; Tavare and Giddings, 1989) the Bayesian information criterion
(BIC). Consider the subsequence i, i, 1 -- - iy, g/ on the test sequence as the
{(x, K" piece of data, data(x, K*), and choose some subset of the {(x, K")}.
Giventhis data, then, according to the familiar compound probability theorem,
the a posteriori probability that a given K is the correct order is

P[K | {data(x, K')}] = P[{data(x, K)}|K] P(K)/P[{data(x, K")}].

Hence we want to choose K to maximize the likelihood P [{data(x, K')} |[K]=
]_[(X,K) Pldata(x, K)| K], evaluated as

[T PUxe Lo e Ko,
1y dx 1)
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where n(j1, .. ., jk+1) is the number of times the subsequence ji ... jgy1 is

encountered in the data. In other words, we want to maximize
n(j1---jrs1)

2nr- ik D)

In P[{data(x, K"} | K] = Z n(jr... jgs)In

e

However, there are 3 x 4% parameters that are implicitly determined in the
process, each astheresultof n = Zﬁmﬁm n(j1- - jx+1) pieces of data. This
suggests a parametric-overkill penalty function, and Kpc is defined as the K
that maximizes

B(K)= ) a(ji- jks)n

Jredr s

T 1
ORI SEY) — 23 x 4% mnn.

2 jgk i) 2

The penalty function is not unique, satisfying here weak information-theoretic
criteria, but we can indeed show that

lim Pr(KBIc = Ktrue) =1.
n—Cc0
Example: The 48,500-bp “head region” of phage A. We have

K 0 1 2 3 4
—2B(K) | 23,532 23,352 23,113 24,114 28434

showing (weakly) that K = 2 is suggested, consistent at least with the triplet
structure of DNA — amino acid translation.

Once an estimate of K is made, we can return to estimate the parameters
Dilji —jx - Because there are far too many for a reasonable statistical estimation
on a guaranteed homogeneous piece of DNA, one way out is to model the
parameter set (see, e.g., Raftery, 1985)

K
Piljijx = ;Mm,
where :
Zkl =1 (K — 1parameters),
1
Zq;u =1 (12parameters),

a total of only K + 11 parameters. These can then be found from the same
log-likelihood estimator, i.e.,

k
L=Y n(i-jxDIn) rgi,
=1
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subject to
k

Zkz =1, Zf]iu =1,

1

without the necessity of an additional penalty function.

3.2. Long-Range Properties of DNA

Regions of uniform A, C, G, and T distribution at low resolution are called iso-
chores (Bernardi, 1989); they can stretch from kilobase pairs (Kb) to hundreds
of kilobase pairs. Because DNA data as a whole consist of double strands, dis-
tributions are often specified by the G + C content of either or both strands,
which shifts when the isochore switches. One way (Romdn-Rolddn, 1998)
of detecting an isochore or other segmented structure is (Bernaola-Galvan
et al., 2000) by means of the Jensen—Shannon entropy. If the sequence S is
decomposed into segments .S;, /; long and with base frequencies p;,, then
the S; entropy per site is defined as H(S;) = — >, i« Iz pig, and the total
Jensen—Shannon entropy is

IS(S) =) W/L)H(S) — H(S)] = 0,

i

where

L:Zl,-.

i=1
For each decomposition of an intelligently refined set of likely decomposi-
tions, we find the probability P that arandom decomposition of S has a value
equal to or less than JS{S;} and takes the maximizing decomposition {S;} at
fixed P as the optimal decomposition at confidence level P. Other statistical
techniques have been suggested (Ramensky et al., 2000).

If this structure is believed literally, it must be detected and taken into
account. However, are there correlations within such long stretches, between
successive ones, and how do we measure them? These are questions concern-
ing the long-range properties of DNA.

3.2.1. Longest Repeat

A rather general criterion of obvious biological relevance — typical of a num-
ber of tests used by Karlin and collaborators (see, e.g., Karlin et al. 1989)
but not directly expressible in terms of correlations, is as follows. For a very
long sequernce, any subsequence may be expected to repeat, e.g., a seven-base
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subsequence every 4’ ~ 16,000 bp, but longer ones may perhaps not repeat at
all. Arepeat of alonger subsequence might indicate biological function, evolu-
tionary history, etc., and indeed be significant. The most concise way of check-
ing would be to look at the longest subsequence that repeats and ask whether
this is areasonable consequence of the length of the full sequence. For that pur-
pose, a good thing to do would be to compute the mean and the variance of the
longest repeat length, e.g., for simplicity on the assumption of independently
distributed bases, and compare with observation. Therefore let us consider a
chain of length n in base pairs. To search for subsequence repeats (computa-
tionally, we may first amass low-order repeats, and successively refine them
by raising the threshold order), we construct the self-comparison “dot matrix”

{1,ifx #ybut j, = j,
xy —

»

0, otherwise
where base type is denoted by j, base location by x, v,...;

A T TGA T
A .

here, 1s in the matrix are represented by dots, Os by no entry. A run of r dots
down some upper or lower diagonal (i.e., at —45°) then signifies a repeat of
an r subsequence (AT in the example shown). This matrix is symmetric. If
we run half the diagonals — say the upper ones — one after the other, creating
a string of n(n — 1)/2 sites, we will include only a negligible fraction r/n of
sites within r of the end of a diagonal that are recorded as possible members
of r runs, but should not be. Also, although the n x n matrix represents only
n pieces of information, the probability of finding a repeat at the longest
repeating subsequence is very small to start with, so we do not have to worry
about correlations between run locations.
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Hence the probability that the longest repeat is of length r is the same as
the probability P; (r = max) that the longest run of “successes,” or dots on
a chain of length [ ~ % n?, is r. A success means the matching of two bases
and hence occurs with probability

Now P; (r = max) in turn is simply the probability that there isno » + 1 run
minus the probability that there is no » run:

P (r = max) = Pl(l‘ + 1 - Pl(l‘)

over a sequence of length I = % n?%. [Technically, P(r = max) = P(r
run and nor +1run) =1 — P(nor run, oranr 4+ 1run) = 1 — P{r run)—
Pir+1run)— Pmorrun but an » +1lrun)=1—P{r)— P(r +1) —0.]
Let g =1 — p. Then, for P;(r), we have typically s success runs of length
<r — 1, separated by s — 1 failures, where/ =s — 1 + ijl l;,

i b L
— X

Xover —

a probability of g°~! pZ{ k. To sum up these probabilities at given / and r,
we construct the generating function

S Bt =)" 3 glptibp il

s {ij=r-1}
r—1 5
= @ [Z(pz)l}
K =0
S ot [ L ’
21: [ 1 —pz }

[ (pZ)r} /{1 gzl - (pZ)"]}
1—pz
[

—(p)' /11 —z + qz(pz)'].

This is a ratio of polynomials, Q,_1(z)/ Q,(z) (the factor 1 — pz cancels out
and the subscript indicates order) and hence can be partial-fractioned as

D 2/ - 20)
o=l
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where 7z, (# 1/ p) satisfies 1 — z4 + gzo(pz.)” = 0 and
ay = zlg? 0, 1)z —22)/0,@) = Q1 (2)/ O (2a)

-1
1 — (pzo) Ze — 2

-1 +qr (pzo) B —Zo +rZe—1) '
Now > ! _1a0/(z —z0) = > hy > (—a1/z,) (z'/Z}), and we conclude that

Zh

Pyr)=
27
For very large /, only the z,, called z*, of smallest absolute value will con-
tribute, so

Z**Z_l 1

'3, _ q
filr) = 7t —r(zt — 1) ¢

For z*, assuming sufficiently large r, we simply iterate: z* =1 + gz*
(pz*Y =1+4gp” + - -. Hence, to leading order, P;(r) = exp (—Igp”), or
Py(r = max) = elar™ _ p-lar
— p—lar (ehfp' _ 1)
=exp[—Igp" +1n (elqu’ -1)].
This has a sharp maximum with respect to r, located at
~1gnp)p” +1g*(np)p" 77 [(4F 1)
=lq(np)p'[-1+4/(1 - 47)] =0,
or (1/p)y =1g*/(In1/p). The derivative vanishes at the maximizing value,

7 =In(lq*/In1/p)/(n1/p),
and for the second derivative we have
1an piglp (~1+g/1 — &4
=lg(np)p'[-Inp+qinp/l — e e’
—1g%(n p)e_lqu'/(l - e‘lqlpr)zp’]
= —I¢* inp)* p¥e 7 /g* = ~I’¢* (ln p)* p**
= —p/g*(np)*.
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Expanding the exponent of P;(r = max) yields
1 1\*
Pi(r =max) =Cexp—— % <ln—) r —7)*%,
24 p

where C is a normalization constant, and we end up with

1 In{1 4%/ In1
E(rmy =2 00 2GR
Inl/p Inl/p

o (rmax) = (¢%/P)/(In1/py* .

See also Karlin and Ost (1988) and Mott et al. (1990). A brief derivation in a
more general context will be given in Section 4.1.4.

As an immediate application, we can look at the full DNA (chosen as
extremes) of SV40 and A phage:

|E(rmax) Fmax Observed o

SvV40 12 72 2
A phage 15 15 2

The 72-bp repeat is obviously significant.

Assignment 4

1. Suppose we collapse the DNA information into purines (0) and pyrim-
idines (1). Show that the x? test for independence has v = 1 degrees of
freedom, evidenced by the fact that all four of the observed |N§/ 2 Vol
are the same.

2. How would you generalize the longest repeat result to accord with the
order-1 Markov chain as random default?

3.2.2. Displaced Correlations

Let us examine the long-range structure more systematically. To get a feel-
ing for the quantities of interest, suppose first that we are not far from the
independent placement of bases (with the base type now denoted by s, £, . . .).
The most general question we might ask would be about the nature of the L-
subsequence distribution, which, in view of the approximate independence,
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we write as
E[8,41(s51) 5x+2(52) o Sepr(sL)]

= Ay, l—[ {pst x+x (5:) pSi]}

) (n”*‘f)f‘vx {1 btk
- i=1 psi
+ Z [BIH(SI‘)?])*‘Z] [ax-l-j(Sj)*PSJ] —1—}

ij=L Ds,Ps,

Ps,s; G- — Ps; Ds; o
(T [ ]

i<j<L

Here we have taken advantage of the definition p; = Av, 8,(s), as well as of
the translation invariance — to within end effects — of the averaging, which
allows us to write

Av[851i(8)xy ;)] = psr (j —1) for i < j.
Thus it is sufficient at this level of analysis to know the covariances,

Cssr(n) = Cov[d,(s), 51+n(SI)]
- pss’(n) — PsPsits

the mean product of base type s, and type s/, fluctuations when » sites apart.
In fact, we now phrase a set of significant questions directly in terms of the
Css(n), without approximation.

3.2.3. Nucleotide-Level Criteria

Imagine then a long fragment of a single strand of DNA. We expect that for
the whole fragment, pa, pc, pe, pr will be different, although it is true that
if we average over fragments of two-strand complementary DNA, we should
find that ps = pr and ps = pc In fact, these equalities tend to hold even
for a long-enough piece of a single strand, the so-called strand-symmetry
condition, e.g., consider (Zhang and Marr, 1994b) the completely known
315-kb single strand of the yeast Saccaromyces cerevisiae Chromosome II1
(predominantly exon), in which we find p4 = 0.31, pr = 0.30, pg = 0.19,
and pc = 0.20. We might attribute this symmetry, for example, to anomalous
crossover events that result in frequent inclusion of segment inversions.
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In greater detail, we want to study base correlations, the covariances Cy, (1),
or the corresponding correlation coefficients

rst(n) = pst(n)/ PsP:.

The first question is that of persistence, the way that rs,(n) decays on the

r =1
AA
0.1 -
0.05
A N
0 v n
1 2 3 4
10 10 10 10

average to its random value of 1. All four bases in this chromosome behave
similarly in this respect, with a range of ~1500 nt (nucleotides). 744 and 77
are very similar, whereas rcc, similar to rgg, ends with higher amplitude
fluctuation. It is not possible at this level to distinguish among detailed decay
forms for rg; — 1, such as e and n—°.

Going on to displaced cross correlations 7, (n), it is useful to distinguish

H,

A CQ G purines

[ O 11
rimidines
T C py

on the basis of pairing type, two or three hydrogen bonds, and heterocyclic
type, purine or pyrimidine. A first result is that 7, 5 () and 7y, py(n) have
negative correlations (r — 1 < Q) for n > 4, with a range of ~150 nt. For
7 py.py (1) andr . 5, (1), with pairs not complementary in the sense of pairing
type either (i.e., A and C, G and T), we start with small-n negative corre-
lations, which then reverse. Finally, for a complementary pair, there is small
negative correlation, up to ~150 nt. Although the wide fluctuations do not
let us say much more, there is one significant regularity in the data: On the
average,

rs(n) = riz(n)
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(where the overbar indicates complementary base), a much more detailed
strand symmetry that would be exactly true for a pair of complementary
strands.

We obtain some reduction in fluctuations by further amalgamating the
bases. One such amalgamation or figure of merit is the mutual information
function of Li (1990),

M) =) pa(n) Iz [pe(n)/ ps pi]

which vanishes if and only if p,,(n) factorizes as p; p;. In the human co-
agulation factor (HUMCEF) VII of 12,830 nt (~0.76 intron, 0.11 exon), this
gives an extended correlation range of ~800 nt, consistent with the general

1 scrambled

10 ordered
M) 1027 /
1074 \/\AVA -
1 10 10 2 10 3 n

observation that introns tend to have long correlations. Compared with the
scrambled sequence of the same base ratios, but randomly placed bases, the
result is quite sharp. Another statistical quantity used (Voss, 1992) that is
symmetric over the bases

C) =t Cor(m) = Y [ Pos(m) — P2

has quite similar behavior, as does (Li et al., 1994)

Cmy =Y Colmyus - uy,

where the vector u, is one of the four vertices of a tetrahedron at distance 1

from the origin (clearly u; - u;, = 1, u, - u, = f% for s £ ¢).

Expansion—-Mutation Model. There is no particular reason for total sym-
metry, and so we may choose to only distinguish between dual pairs,

1
Co(n) = E[CA+T,A+T(71) + Coiccrc(®)]

(where Csiy 511 = Css + Cst + Cis + Cyy), or heterocyclic type

1
Cp(n) = E[CA+G,A+G(H) + Coirorr®)]
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Of course, because §,(A) 4+ 6,(G) = 1 — 8,(C) — 8,(T) at each site, it is clear
that Carc a+c(®M) = Coxrcor(m). It is similarly clear that, in terms of the
variance, e.g.,

Verr—a—c(®) = Coyr—a—c,cor-a-c(n),

we have

1
Cr(n) = 2 Verr—a—g() = Vayg@®).

In either event, we are reduced to a sequence of two symbols, say §,(A) +
8,(G) =0 or 1, and ask for the genesis of extended persistence. A number
of models have been suggested, in particular for what is claimed (Peng et al.,
1992) to be a fractal or power-law decay n~* dominated by noncoding DNA.
One of these (Li and Kaneko, 1992) is evolutionary expansion with error. In
its most primitive version, this is a simple cellular automaton (Lindenmayer,
1968) model with stochastic evolution: For a string of Os and 1s at some point
in time, a normal step is a doubling of an element, 0 = 00or1 — 11, buta
certain fraction of the time (p) this isreplaced with an error,0 — lor1 — 0.
Thus there is a mean expansionrate per sittof k =2(1 — p)+p =2 — pat
each time step. A heuristic consequence is this. Let pgv)(n) be the probability
that a pair st is separated by n after N time steps. Then assume some transition
law (now s and ¢ are O or 1)

N+1 N
P)St + )(I’l) - Z T:rm,s’t’n’ Pi:t:)(ﬂ/)-
s'tin!

For N — oo, we will have p; p; = > Tyn sitm Pt Pur, SO that the covariance
Cs(;v)(n) = pﬁv)(n) — Ps D: satisfies the same equation. However, the transi-
tion from »’ to n will be dominated by the same expansion rate as the system:
n ~ kn'; thus we can write instead (assuming no further # dependence)

C¥Pm) =3 Tpww COY 0/ K.

sy
If A >1 is the maximum eigenvalue of the 2 x 2 matrix 7 and v is the
corresponding eigenvector, then asymptotically we must have

WD my =2 CM /),
where C is the v component of C. This has the obvious stationary solution
O(n) oc nlH/ 0k

the desired power law. This may indeed be valid in prebiotic expansion and
in larger entities that are repeated, with mistakes.



58 Sequence Stafistics

Simple Sequence Repeats. Inthe preceding subsection, the symbols 0, 1, and
more might refer to small subsequences that are duplicated. Hence we might
not be surprised to find many repeats, such as (GT)" with  as large as 20, al-
though their probable number in the two-strand human genome under random
equivalent placement of bases would be only ~2 x (3 x 107)/4% ~0.005.
Actually, such microsatellites with n > 10 occur ~10° times in the human
genome; they are highly polymorphic in length and provide a nongenetic sig-
nature of an individual much used for forensic purposes. What sort of length
distribution would we expect?

Suppose (Bell, 1994) that a seed of ng repeats of length 7, with m = ngl, is
required for viability and that this appears by mutation from a “neighboring”
sequence. The latter must be correct at m — 1 positions and wrong at 1 of
the m positions, and so will occur with probability p; = (3/4) m(1 /41 In
the counting, a sequence (7' G)* will be equivalent to (GT ), and also (on the
other strand) to (CAY* or (AC)" — an equivalence class of Nog = 4 [Whereas
(AT)" would have Ny = 2]. Also, a next-upstream entry of the last base of
a repeat would signal a different repeat and not be counted (probability 3 /4
that the desired repeat is recognized), whereas a downstream repeat of the
repeat unit [probability (1/4)'] would be entered as a new value of 7. Hence
the actual probability to be used is

3 2 1 m—1 1 i
== Neg | = 1—1- .
A=(3) (5 - ()]
For G base pairs, there are G possible starting positions for the sequence
(ignoring end effects), so if R is the mean base substitution rate — hence

R/3 for a correct substitution — then we have a source of ng-fold repeats
given by

S == Gp}.

Thus, for (GT )™, knowingthat G = 3 x 10°bpand R ~ 5 x 10° per bp/year,
we would have S = 0.66 (genome/year) for ng = 2, 0.062 for np = 3, etc.
Given the source of np-fold repeats, we need a model for the dynamics.
Withn = no + &k — 1, so that £ = 1 initially, imagine a birth—death process
of A Aunit time per excess repeat, i.e., probability Ak/unit time for k — k + 1
and also Ak for k — &k — 1. Thus, if P(1, k, t) is the probability of having n
repeats at time ¢, given that we started with & = 1, counting the disappearance
fromthe k pool, the arrivals fromk — 1, and the arrivals fromk 4 1, we clearly
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have

d
i PA,k,t)=—22 Pk, ) +Ark —1D)PQ,k—1,1)
+ Ak + P k+1,0)

for k =1,2,.... On the other hand, if £ descends to O, the repeat is not
feasible and the process stops,

d
— PA,0,H=1P(,1,0),
o PA0.0=0P, 11
and of course we have the initial condition
P(1,k,0) = &..

We solve the difference equation in standard fashion by setting up the
generating function

(e}
Pz, )= P,k 07,
k=0

multiplying the difference equation by z*, summing over k = 1,2, ... and
adding its £ = O partner; we find

a% Pz, ) =iz —1D? Pz, 0),

P(z,0) =z.
This is readily solved as
z—1
Pz,H)=14 —re,
A SR TSY:
yielding the distribution
()t
Pk t)y = ———— for k=1
(1 + Ap)ktl

[sothat P(1,0,t) = At/(1 + Af)]. With a steady source S of seeds from? =0
tot = T, the total number at 7 is

T S AT \F
N(l,k,T):Sf Pk, 1)dt = — ,
0

A\ 1+ AT
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the full distribution. Note that the total number of repeat sequences is

© S (<1
N(T) = ZN(I,k,T) ~ —/ — kAT g
k=1 A1

k
S 1
= 7 El N
k AT

in terms of the exponential integral E; and has the asymptotic large-7" form
S
N(T) ~ x(ln AT +y)

(y = 0.577...is Euler’s constant), a very slow increase even in the absence
of mutational deterioration.

Length Distributions. Repeatsneed not be so simple, need not be in tandem,
and need not be confined to noncoding regions. For example, it has been
suggested on numerous occasions that not only are genes just a shuffling of a
smaller number of exons (Gilbert, 1997, Stoltzfus et al., 1994) (but see Doritt
et al., 1990), but also (see, e.g., Dwyer, 1998) that exons are composed of
relatively small numbers of ancestral units, of course evolved to some extent.
One thing is certain: The three-letter codons are highly repeated, but are not
equally likely, and this can very much affect the correlation structure within
an exon. That is, if codon (u, v, w) occurs at relative frequency f,,.,, then,
neglecting any correlations between codons in a very long exon, we will have
(Herzl and Grosse, 1997)

1
Pf?(?’k) — g Z (fww ftv’w’ + fvsw fv’ tw! + fvws fv’w’t)

vl

independently of k, and

1
p_?to(Sk + 1) - g Z (fsvwfu'tw + fuswfu’w’t + fuwsftwwf) B P?So(3k - 1)

o
w'w!

Thus a symmetric probe such as the mutual information function M (n) will
simply have a fine structure with period 3.

For a distribution of finite exon lengths p(I), matters are more interesting.
We first note that for weak dependence, i.e., small Cs;(n) = psi(n) — ps b1,
the mutual information can be expanded as

1
M) =23 Culm?/ ps pr

Now suppose, as in prokaryotes, we have almost all exons. Then the dominant
correlations are still for a pair within an exon, but there are only ! — n possible
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placements, compared with L — n ~ L for the full-length L sequence, so that
[ee)
Cu(m)y =Y p)1 —n)/L C(n).
I=n

The factor z(n) = > p()( —n)/L produces an exponential distribution if
p(l) is exponential and a power law o« n?~? if p(I) & —F above some cut-
off, and so in fact the long-range correlation represented by p(n) is a direct
reflection of the exon length distribution.

The length distribution of ORF’s (open reading frame — DNA stretch
between a start codon and a stop codon in the same frame = coding sequence)
in a number of organisms has been studied (Li, 1999), with the conclusion
that these are always exponential, although the exponent may change abruptly
at a few x 102 bp. Thus the exon contribution to asymptotic correlations will
only be exponential. On the other hand, it was noted (Almirantis and Provata,
1999) that there is empirical evidence that the length distribution of purine
and pyrimidine clusters has the large-/ form

py o 1714,

which suggests that the distribution be modeled as a stable distribution (Feller,
1950). If this is the case, then a noncoding region, modeled as a concatenation
of Pu and Py clusters, will have the same asymptotic length distribution, with
the same consequernces for sets of introns.

3.2.4. Batch-Level Criteria

To improve the statistics, we should use bigger batches of data. Most ob-
vious is to accumulate information in windows of bases, Wy (x), N bases
starting at x, and average over x (Fickett and Tung, 1992). The windows,
as expanded points, should be made much shorter than the fragment being
examined and will then give meaningfully resolved statistics. We distinguish
between correlations within a window and between windows.

Within-Window Correlations

For a window of size N, we tally #s, the number of occurrences of s in a given
window, and construct

Cov™(#s, #) = Av, (#s — #s))(H — (#1)) .

In practice, the xs are usually chosen so that the windows do not over-
lap, thereby avoiding overt correlations between windows, but it turns out
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empirically that none of the significant results alter if we let x run over
all sites, and we shall do so. Of course, (#s) = Np;, but also, because #s =
300 8 (), we have Cov®™ s, #1) = N1 37170 CovIdy (), Sy ()],
or, gathering together common values of |[r — r/| = n,
N-1
Cov™hs, #1) = N(psds — pop) + ) (N =) [Cor(n) + Cos@)]
n=1
and, as an important special case, the variance
N-1
Var™(#s) = Covi™ (s, #s) = Npo(1 — ps) +2 ) (N — 1) Cys(n) .
1

A convenient construct is the correlation coefficient of standard statistical
usage (not to be confused with the correlation coefficient r;, (n) of Subsection
3.2.3)

corr™ s, #) = Cov™(#s, #1) / [Var'™ (#s) var'™ @) 112

where it is readily verified that —1 < corr™ < 1. Note that if the base place-
ment were independent (Bernoulli), so that Cs,(rn) = 0, we could have

Var™ #s) = Np,(1 — p,),
corr™(#s, #) = —[pe/(1 — p) 12 [p,/(1 — p)1V? fors # ¢

(the latter being —1/3 when all p; = 1/4).

Let us look a bit at VarY)(#s) [similar considerations apply to
Cov®™(#s, #1)]. If the correlation is short range, e.g., Cys(n) ~ Ae™*", as
in Markov order 1, then Y "(N —n)Cys(n) ~ fON(N —n)Ae "dn = Ae N
(8/9a) ﬁ)N e dn = (AJa)N — A[(1 — e~*M /%], so that asymptotically

Var(#s) = N [ps(l — P+ 2‘4} T
[54

still varies as N. On the other hand, if the decay is slower, e.g., the power law
Cys(n) ~ An™%, where 0 < @ < 1, then fON(N —n)An~%dn =A/(1 — )
(2 — a)N*~¢, and

Vars) ~ A NP p )N
1 -2 —w
is dominated by a power higher than N L
What happens in animal genomes? Typically the extremes of human (usu-
ally with the ¢-DNA which is complementary to the processed RNA that
codes for proteins, excluded as being special) and E. coli bacteria are studied.
The first observation is that variances are much larger than those of Bernoulli
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or even any reasonable (e.g., 10) Markov order. For example, at N ~ 1000,
we have Var ~ 10,000 for the full human combined A + T content, 2300 for

AG

cT human
4
10 AT
5 AC GC
10 GT
N 2
10
101
109 4 I l
-0.5 0 0.5

correlation coefficient

corresponding E. coli, in a kilobase-pair window, compared with ~250 for
independence. There are also dramatic effects in correlations (Fickett and
Tung, 1992) that start at ~ —1/3, as expected for small windows, but quickly
depart to extreme values, and by 1.2 kb have arrived at

corr(A, C) = —0.78, corr(A, G) = —0.65, corr(A, T) = 0.42,
corr(G, T) = —0.77, corr(C, T) = —0.67, corr(C, G) = 0.45.

The AT and GC correlations quickly becomes larger and positive, perhaps ap-
proaching the corr(A, T) = 1 = corr(G, C) for full strand symmetry in which
#A = #1 and #G = #C. This justifies focusing on A + T or G 4 C content,
ironing out fluctuations, without losing information.

There is as well the qualitative fact that closely

corr(#s, #t) = corr(#u, #v),

where s, £, #, and v cover all four base types, in any order — an equality
that holds to ~1% when we look at the corresponding covariances. This is
actually not too informative. At fixed N, #s +# = —(#u + #v) + N, so Var
(#s + #) = Var(#u + #v) or Var(#s) + 2 Cov(#s, #f) + Var(#) = Var(#u) +
2Cov(#u, #v) + Var(#v), equivalent to

Var(#A) = Var(#C) = Var(#G) — Var(#T) ,

which is hardly surprising.
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Between-Window Correlations
Here the persistence effect noted in the previous subsection again appears.
Define
corrar(d) = Cov™[#A + 4T, (H#A + #T)(d)] / Var'™V (#A + #T)

at fixed window size N, say 1 kb, between contents of two windows a distance
d apart. Then both human and E. coli DNA have very large ranges indeed.
Note that, quite generally,

1 1
human

E.coli
Corr
P74 NI,
0 sop O 7kb
N-1
Cov™[#s, #1(d)] = Y Cov[8,4r(5), Sxirra(®)]
r,r'=0

0 N
=2 1+ N)Cu(d+n)+ ) (n = N)Culd +n)
-N 1

— NZCSI (d) >

where C,(d) is atriangularly weighted average of covariances at separations
fromd — N tod + N (of course, d > N).

Fuctorial Moments

Higher within-window moments of #s, or of combined bases, e.g., #s + #f,
have been considered as well (Mohanty and Narayana Rao, 2000), and in
particular the normalized factorial moments

FM(#s) = ((#)1/ (s — 1) / (Hs)*

have some desirable properties. For example, if #s is Poisson distributed,
Pr(#s) = A% /(#s)! e, then all FéN )(s) = 1. For a number of test DNA se-
quences, both with and without introns, there appears to be a monotonic
trend as a function of the window size N: for N < N, ~ 10% — 10° bp,
all FéN ) <1, variances increase as N and fluctuations appear Gaussian;
for N > N, FéN ) > 1, variances increase as N1 and fluctuations ap-
pear to be non-Gaussian. The Gaussian property can be assessed (Allegrini
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et al., 1998) by means of the kurtosis

(U
nN) =1-3—--=,
(UN))»
where U(N) is the window-N sum U (N) = Zi\l:l u(x +ryofu(x) = {£l as
the base at x is a pyrimidine or purine}. For a Gaussian distribution, n(N) = 0,
whereas a model of correlated base sequences embedded in a sea of uncorre-

lated bases reproduces observations of the preceding type quite well.

3.2.5. Statistical Models

Patch Model

We return to the question of the genesis of long-range correlations, as assessed
again by means of the window-N quantities

#u = #C +#T — #A — #G,

whose per-site value is # = 41 for a pyrimidine and # = —1 for a purine
(Karlin and Brendel, 1993). As we have seen, Var,(n) = 4 Varct(n), and so
Var™ (#u) = 4 Var'™) (#C + #T) as well, but let us stick to the variable #u
instead, which, as N increases, executes a simple random walk, A(#u) = £1
at each step, on the integers. We have, in the usual way (but noting that here
ut =1),
N-1
VarlV () = N +2) (N — n) Cuuln).
1

104
103 A phage
o //// shuffled
Var  #u) 102 ///
10 /
1

2 3 4
10 10 10 10

A plot of the bacteriophage A sequence shows an increase of faster than N'
compared with the shuffled sequence, which indeed goes as N. In fact, a
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HUMHBB
23107 A phage 600 human P—globin
gene
#u 0
10° #u
—600
shuffled
0 T T T T T 4 -1200 T f T T
1 2 3 4 5x10 20K 40K 60K 30K
N N
(b) (c)

simple count of #u(N) at a fixed starting position shows an expected linear
increase for shuffled A phage compared with piecewise linear sections for
A itself and even more pieces for a section of human genome, looking as
if we have patches of different uniform u# (or CT) composition, i.e., small-
scale isochores. We can model this situation most simply by supposing two
types of patch or subregion, one with (#) = u™, the other with (u) =u".
The probabilities that # = +1(CT) and that # = —1(AG) are, respectively,
7(1 +u*) and 3(1 — u™®) in these two regions. Now suppose that there are
no correlations within each region, i.e., Bernoulli or Markov order 0. Then
the joint probabilities for u = 1 or —1 at sites O and », conditional on 0 and
n being in u™ regions (the first and the second arguments u* are distinct) are
given by

1 + 1 + 1 + 1— +
[ puln |u,u®)  proin |uE, u®) ] _ [ = - ]

2
p-11(m | u®, ui) P11 | ui,ui) 1—u* l-i-zui 1—2ui 1—214i

—U

2
What we need are the probabilities of 0 and # being in u*, u* regions, which
depends on how many uniform intervals separate 0 and z.

There are many models for such interval distributions, but the simplest
is to suppose that the switches from region to region, or patch to patch,
occur independently and randomly at rate A. Then Pr (0 and n both in
same type region) = Pr (even number of switches) = Pr (no switch) +
Pr (two switches) +- -+ = (1 =AY + (DAX1 -V 24 = 11 -
A)+ AT+ [(1 — &) — AJ"} = 2[1 + (1 — 24)"], and similarly Pr (O and n on
different regions )= % [1 — (1 —2A)"]. We conclude that

1 4 2 N2
Pr1(n) = Z[1+(12A>"]K”’2“ ) +(1+2“ )}

asa oo (21+u+ 1+u_)

2

1
4
ut +u\* 1 fut —u\?
1+ T8 ) o () a -y
(1+555) +3 (555) a-or,
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sothat C11(n) = pri(n) — p11(co) = %(u*‘ —u7)X(1 — 2)". It follows that

N-1
Var(N)(#u) =N+ %(Lﬂ’ — u‘)z Z(N —n)(1 =20 .
1

In fact, for large patches, A ~ O, we have

1
var™M@#u) = N + E(LPL —u P NN - 1),

which, in form, matches the observed N dependence as well as the “fractal”
N+ yN 2-a,

However, quantitative comparison is not reliable, and evidence has accu-
mulated that the long-range power-law dependence of correlations is indeed
the norm. In particular, Peng et al. (1994) (see also Bernaola-Galvén et al.,
1996), have examined in greater detail the extent to which a patch model —
and there certainly are patches — can mimic long-range power-law correla-
tions. They did this by first dividing the sequence into subsequences of length
I ~ 10?%, small compared with anticipated patches, finding an optimal linear
fit to #u(N) in each subregion, and subtracting it out (detrending), thus elim-
inating any patch bias. The resulting #u 4.¢(N) hence fluctuates around zero,
and it is to this that the window standard-variation analysis is applied. When
this is done, the power-law variation is recovered as well as the threshold /
that measures the entree of patch contributions.

With confidence that the power-law variation is intrinsic, the analysis was
formalized (Lu et al., 1998) in terms of the Hurst index for self-similar pat-
terns. That is, if X is a measured characteristic averaged over a block of
length m, and the system is divided into concatenated blocks indexed by i,
then the assertion that

) = (X7 - X][X - X]), = kP Adk)

with slowly varying A, independently of m for large m, defines a Hurst index
H=1- %,8 for the self-similar sequence in question. Actually, a related
assessment, that of the dimensionality of a walk constructed with A, T, G,
and C as %1 steps on coordinate axes in the plane, had been carried out
much earlier (Berthelsen et al., 1992). The conclusion (implicitly by use
of the approximate equality of A and T steps and G and C steps) was that
dimensionality could be defined and is anomalously small compared with that
of a random sequence, consistent with power-law asymptotic correlations.

Hidden Markov Models

The Karlin—Brendel model is a special case of a class of stochastic models
(Gusfield, 1997; Baldi and Brunak, 1998; Durbin et al., 1998) that is being
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used more and more to represent partially random data economically, e.g.,
in pattern recognition. We imagine a “hidden” set of main states {s; € S}
and associated first-order Markov transition probabilities {Tse = Pr(s | s°)}.
The process can be regarded either as starting with a state distribution P, or,

P

Tsys Ts, 5, _
0 ! 51 171 o 8y e Sy _p nin— sy E
Qoys, l Q“z‘zl Co,s,
[¢51 oy o,

equivalently, as having a fixed starting state O appended to the set .S of possible
states, with Tj,5, = Py, 85,0 Likewise, we may stop it “by hand” at the nth
stage or we can append an end state £ and associated stopping probabilities
Tg,, with the convention T; g = &, g, thus producing a probabilistic stopping
point.

To complete the description, there are the observed or “emitted” states
{a; € A} that are independently chosen by means of the transition probabili-
ties Qus = Pr (¢ | 5). Hence, at fixed n,

Pr (al, oo an) - Z Qozns,1 Tsnsﬂ_l Qan_lsn_l e
$1,--5n

A 7—:9251 QO!]S] Psl,

and we can as usual inquire about correlations such as

n—m
Pss’(”) — Z Pr(ax =8, Qyym — S[).
x=1

There are two extreme classes of transition matrices, the first being that of
recurrent matrices, in which Ty, # O for all main states. For example, in the
Karlin—Brendel model, with two isochore types,

1—-4 A
=[5

with start and stop included by extending this to

0 0
y(l—2) 12
YA y(l =2
1-y 11—y

o0 oo
o O O I
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For the emission process, we would have
f-u") 31— uﬂ]
2 +um) 5 +uh)

A second class is termed left to right. Here, we are looking for an underly-
ing pattern, say s!, s2, ..., 5™, and so we have main states s, 52, .. ., s™, and
X (for anything), with transitions restricted to X — X or s!, buts! — 52 —
-+ — s™ — X. A typical problem associated with a such a hidden Markov
model (HMM) is that of extracting the most likely hidden state sequence
{s;} given the output {«;}, which we may accomplish, e.g., by first maxi-
mizing Pr («1,... ¢, | T, Q) to find optimal {7, @}, and then maximizing
Pr(sy,...sn01...0y).

HMMs are accessible examples of a broad class of models ((a) in the figure
below) in which coupled outputs are controlled by hidden coupled inputs.

Srprrd TV

1 n

() @

In (b) in the figure the outputs are coupled only to the inputs, i.e., Bernoulli,
and we have a highly reduced model only acceptable at a sufficiently coarse
level of resolution. The HMM, (c) in the figure, is a further specialization. At a
finer level, the outputs should presumably at least be coupled informationally
to their neighbors, (d) in the figure, and this is the thought behind the next
model we consider.

Walking Markov Model

The hallmark of the Karlin—-Brendel model was a set of “hidden” instructions,
namely a subdivision into distinct homogeneous regions that was itself sta-
tistically determined. We therefore had a Bernoulli sampling with parameters
directed by an independent interval process, which is in fact a special case of
aMarkov process (strictly speaking, “process” refers to a continuous iteration
of the transition event, valid here only if the base-to-successive-base interval
is regarded as infinitesimal). To do a better job on short-range structure, we
would probably want each homogeneous subregion to be at least a first-order
Markov chain (“chain” means a discrete iteration, and the interval between
bases is certainly not small for low-order Markov). To do a better job on the
long-range structure, we could replace the independent intervals or patches
with a general first-order Markov process, making transitions between various
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types of patches (Elton, 1974) but, equivalent and more readily analyzed, we
choose a model (Churchill, 1989; Fickett and Tung, 1992) in which a transi-
tion is attempted, with very low frequency, at every base, thereby succeeding
on only a larger scale. The model of Fickett and Tung that we now turn to also
focuses on A + T occupation, consistent with the high degree of correlation
between A and T'.

Imagine then a first-order base-to-base Markov chain that depends on a
hidden parameter w (or parameter set) that varies from step to step. The
assumption is that w wanders autonomously by small increments, with tran-
sition probability W(w | w’). Then at each site there is a combination of base
s and parameter w —a Markov chain on a higher space — and we can proceed
sequentially, starting, say with (7, wp), at site 0:

site 0: (r, wy)
site 1: (s1, wy) with probability py,|, (wy) W(w; | wp)
site 2: (59, wy) with probability

ZPSQLﬁ (wz)fW(wz | w1) psyjr(w1) W(wy | wo) dw

1

and at site NV, the probability of (s, w), given (r, wp) initially, is
N N-1
PP L) = 3 putw) [ Wew | plf P aw
t

©)

where p,,

(w | wg) = &5 S(w — wy).

Now we specialize to the two-state context, AT versus GC. A 2x 2

Markov transition matrix must have the form [1;” 1 f ﬁ], so that

{PE{?MT(W | wo):|

N
PE}&AT(TU | wo)
WN-1

= [1 — () B(w) }/W(w | w') {pAﬂAT(wl | wO):| do/

aw) 11— Bw) Peciar(e | wo)

and similarly for probabilities conditioned on GC. If (AT, wy) initially has
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probability p(wq) f(wp), this becomes, on integration over wy,
(N-1)

) )
Parar@) | [1-a(w)  pw) [ Pararen]
[ 50 (wJ_[ o 1 Dty | [ | S

Pgc ar Pge.ar w')

PE?%‘,AT(WO) 1

O = p(wo) f(wo)| |-
PGC’AT(WO)

where

Adding the two rows, we see that
N N
pM(w) = png),AT(w) + pt(GC),AT(w)
satisfies

PN (w) = f Ww | w) eV Dw)dw,

pOw) = pw) f(w).

This allows us to eliminate pgvc) ar(w), obtaining, with p%-) 4r(w) abbrevi-
ated as p™(w),

VW) = [1 — e(w) — Bw)] f W(w | wpPDwhdw + pw)e™(w),

PO (w) = p(w) f (w).

It is convenient to choose the parameter w as the value of the probability p

that the system is “aiming” at: (lfp) = [1;” l_ﬁﬂ](lfp) orp=4/(c+8) =

w, and introduce y = « + 8, the total deviation from independence. Hence
aw) =(1—-w)yw), Bw) =wy(w).
Taking the initial p(w) = w, as well, we therefore have
pMw) =1 - V(W))fW(w | w) p™ Dy dw + wyw) PN (w),
where

pM(w) = f Ww | w) o™ P dw,

POw) = pP(w) = w f(w),
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subsequent to which, of course,

PAT,AT(N)=/P(N)(U))dw.

What we need is the function y(w). In practice, we can find this by taking
kilobase-pair windows from the sequence of interest, putting them in bins of
common w + %Aw and fitting y to each bin. In the analysis of Fickett and
Tung, it turns out that 1 < y < 1.1, very close to independence, parjar =
par|Ge, and hence to the standard HMM. To the extent that y = 1 is valid,
the statistics degenerate to

parAr(N) — / wp™ (w) duw,
where

pM(w) = f W(w | wh p™ P’y dw,

pP(w) = wf (w).

There remains the question of the diffusion of w, as represented by o™ (w),
the iterated action of W(w | w') on p@(w) = wf(w). Assuming that there
is only a small change in w each time, we can set p™M(w') = p™(w) +
(W — w) (3/0w)p™M(w) + L(w' — w)* (8*/9whp™(w) + - - - + inthe tran-
sition equation. If the transitions are symmetric, W(w | w') = W(w' | w),
then f(w' —w)W(w | w)dw = 0;hence { W(w | w)dw = [ W(w | w)
dw =1, and we define o*(w) = f(w' — w)*W(w | w)dw'. The “dynam-
ics” then takes on the Fokker—Planck form (Feller, 1950, Chap. X1V)

1 %
P (w) = p NP (w) = S0 (w) o p NP (w).

Finally, regarding the dependence on N as continuous, we can write this

as

2

N = o)
(w, Ny = S0 (w)

@P(W, N),

W'O
p(w, 0) = w f(w),

a standard diffusion equation.
In Fickett and Tung (1992) the assumption is made that o2(w) = o2 is
a constant on the allowed range of w and is obtained by fitting the large N
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asymptotic solution to the bin distribution above. For the human genome,
this corresponds to % <w < %, with o = 0.0015, and for E. coli to 0.40 <
w < 0.58, ¢ = 0.0025. Further, f(w) was taken as uniform over the full
w interval. The nondegenerate diffusion problem, with full y(w), was then
solved by simulation, and the AT, AT (N) correlation coefficient computed.
The results for E. coli are very good, whereas that for human DNA decays
a bit too rapidly, perhaps because of the assumption of w-independent o' or
truncated uniform f(w).

E coli

Assignment 5

1. What is the general class of base-symmetric figures of merit C(n)?
Compute the relevant coefficients in Li’s C(n).

2. If Var'™)(#u) is known as an explicit function of N, find an expression
for the required C,, (n).

3. Show explicitly how to specialize the walking Markov model to our
version of the Karlin—Brendel patch model.

3.3. Other Measures of Significance

3.2.1. Spectral Analysis

In Section 3.2 we looked at correlations in nominally homogeneous DNA
“matter.” Now we will start tohome in on substructures or meaningfulinhomo-
geneities in pattern. We will soon use the evolutionarily relevant technique
of recognizing significance by its presence in more than one species of DNA
(or RNA, or protein, or a long segment of DNA) but here we discuss very
briefly how we might pick up substructures by internal analysis alone. Again,
we need to bunch data in some fashion to reduce noise-driven details, but
primitive compressions such as py(CT) or pu(AG) make less sense — they
would for example poorly single out things like (GT)” repeats.
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The simplest bunching then consists of continuing to identify bases, and,
for a fragment of length N, we define the Fourier transform

N
a(s) =5 ) N a,(s),
x=1

integer |k| < N/2,

for each s. Corresponding to this is the power spectrum

1 &
Fes)' = Nla(s)" = = 3, e N 5,(5)8,(s)
1

X, y=
1 1 N-1 . . N—n
= 57 2 8s) 5 D[R e BN Y T 5,(5) 81 a(5),
n=1 1

which can be amalgamated as F;> = > Fi(s)*. Noting that (1/N) " 8.(s) =
Py (/N =) ) 7 8,(5)84n(s) = Cos(m) + pLand >N N (N — n)cos 27
kn/N = 0 for k # 0 (show this!), we readily find that, for large N,

Fr=1 —2Zp3+2§: |:0052n]]:[n Zc“(n)], k 0.
n=1 n

On the one hand, we have sz =1 -2 p?for random occurrence of bases
and F? oc k®~2 for 3" Cy,(n) ~ n~ (show this too!) if fractal correlations
are indeed a real phenomenon.

On the other hand, F, k2 is ideal for picking up repeating substructures. Sup-
pose that a repeated pattern P is described by dx ,(s) =v,, x =1,...,p
for several values of X; then, for each one, there is a contribution to N g (s)
of

2
Ze%rlk(X+x)/N 3X+x(5) = ezka/N fk(P),

x=1

where
7 .
fk(P) — Zezﬁlkx/N vx
1

is the form factor for the pattern P. If the pattern is effectively random, we
expect |fk(P)|2 ~ p.Nowifthe {I;},j =1,..., g, are the intervals between
occurrences of P, so that

J
Xj=) L
1
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the coefficient of f;(P) in ai(s) will be

1 &, y
_ - ik/NYY A I
be(q) = Ze e
Jj=1
If the intervals are estimated as independent and identically distributed, with
mean I and variance o2 (but I; is just a half-interval, as is I, 11), then
N=Y%"1 =gl and

1 : P 7 : To72 k2 N2s2\ j—1/2
bk(q)NNZ<627“k/N[>J 1/2NNZ(ezmk/N1 2n k/No)J /~
J

q 1
-1 =1

27 i /N

Hence if k is any multiple of ¢, k = rg =rN/I, so that e =1, we

have

1 7 e 2,2,.2,F°
brq(Q) ~ N Ze G=1/2)2x*r*c*/I
j=1

1 e -
_ N(l — e N g sinh(n? r? 0/ T2).
For o small,o < I/r,thisjust givesb,4(q) ~ 1/1,a contribution of ~ pN/I*
to sz, which can be way above noise. As an example, the 128-bp AT-rich
spacer region of Xenopus 5S DNA is shown: The strong peak at k = +16
is strong evidence of an eight-base repeated motif, and indeed the observed

amplitude is several units of pN/I? = 4. Of course, if ro/I is not small,

15
10
E{Z
5
AN ANANAANNANA NN | F
0 1 64 127

br4(q) sinks rapidly, and at higher k, the random | fe(P)|? ~ p is approached
(see k = 32 in the above figure).

For coding regions, the third base of a triplet is a reflection mainly of
the mean base frequency in the full sequence, and so one might expect a
significant k¥ = 3 peak for any variant distribution; this observation has in
fact been used to detect genes. The trigonometric functions in the Fourier
transform are not especially appropriate for functions that are always small
integers, e.g., 0 or 1 for occupancy by a base. More suitable are the Walsh
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functions, essentially discrete sines and cosines; see, e.g., Tavare and
Giddings, 1989. The first five Walsh functions are shown, defined on the
interval [0, 1) more generally by

0, 1
Wolx) =1, x[0,1), Wix)= 71 } e [1 2)’
x €3 1)
1
N x e [(1), 2)
U Wax — D [ x e [1, 1)
_ Wa@n) x [0, 3)
Wan1(x) = (—1y"* W (2x — 1)} xeld 1)

For discrete x as well, say x = j/N, where N = 27, we set

We(j/N) = wk, j) for 0< j,k <N =27,
and then we define the Walsh transform for the sequence s; belonging to the
base « (e.g., s = 0, 1 as the base at j is not, or is, «) by

N-1

1 .
ap = }\; Zw(k,])é'j.

0

If this is really to be the analog of the Fourier transform, we will want the
inverse to take the same form:

N-1

5= w(,ka

0

To prove this, we need orthonormality. For this purpose, the representation

wk, j) = (—1)Zr= FErtbo—r)) — (),
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where

r-1 -1
i=Y 02 k=)"k?, (nk =01,
0 0

is used, which is readily seen to satisfy the preceding recursion relations.
Then

Zw(k Hw, j)= Z( 1)2 ey thp 1 HE,_ AR, )

{Jr}

— l_[ Z( l)J(kp r+kp r— 1+kp ,+k/_, 1)

r j=0,1
=27 [ | Swoaz(kp—r + kp—r1 + Ky, +K, 1)

= Nl_[fSk,,k,f = N g,
:

which is all we need.
At this point, we can proceed exactly as in the Fourier case, first defining

N-1

1
a(@) = 5 > wlk, ))8;(e)

0

for each base and noting that 3 §;(«) = 1 implies that 22:1 ax() = 8 0,
and also that ao(«) is the frequency p,. Then comes the power spectrurmm:

F} =N a(a).

This is a bit harder to interpret, but in the same example as before, period 8
certainly

e k
1 &4 127

comes up as a very sharp peak with respect to k. In practice, a combination
of Fourier and Walsh produces a signature that the expert can easily interpret,
but scarcely uniquely.

An analytic technique designed to be particularly sensitive to structure
at a given spatial scale in a hierarchical set of scales is that of wavelet
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analysis (see, e.g., Meyer, 1992, for a high-level treatment). For a prototype,
we might imagine replacing the transform kemnel ¢/** in a Fourier transform
with e ¢=*®=XY creating a “local” Fourier transform that depends on
both frequency k and location X. Most (continuous) wavelet transforms that
are used take the form

fk, X) :km/t//(kx —X) f(x)dx

for special ¥, and the {k, X} are arranged, typically with k = 2/, such that
the Yix(y = kY% ¥(kx — X) form an orthnormal set of functions, leading
to the usual sorts of expansion theorems. The f(k, X) are useful descrip-
tive parameters even if the vy are not orthonormal, and of course extend
at once to discrete variables. For a typical application to DNA, see Tsonis
et al. (1996).

The task of discovering the words and the phrases of DNA, not to mention
the grammar, from internal — one-sequence — indications alone is not difficult
in one respect: There are a number of unequally spaced exact and inexact
repeats of long (words?) and very long (phrases?) identifiable subsequences.
For example, there are Alu, 300bp, 5% of the human genome, or L1, very long,
4% of the human genome. These are transposable elements, RNA mediated
with reverse transcription, and are sufficient, e.g., to identify human DNA in
a nonhuman cell. There are also shorter frequent motifs or “sites,” picked up
out of noise, e.g., by the r-scan technique of Karlin et al. (1989), in which
the statistics of distances between identical or almost identical subsequences,
spaced r subsequences apart, is examined for significance. However, most of
the progress made in finding the longer words of DNA, RNA, and proteins,
has come from comparisons of sequences, and it is to this that we will soon
turn our attention.

3.2.2. Entropic Criteria

Spectral methods (see, e.g., Li, 1997) are particularly good at picking up re-
peats and near repeats; the human genome, for example, is estimated
as consisting of approximately half repeated subsequences. These repeats, as
has been noted, come in many flavors — aside from the obvious codon repeats
in exons — from small tandem repeats, through SINES (short interspersed
repeat sequences, 10 — 10° bp) and on to LINES (long interspread repeat
sequences, ~ 10*bp). There are effective algorithms (Apostolico, 2000) for
detecting repeats without the impossibly laborious checking of sequence after
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sequence. Also, repeats are but one example of anomalously represented sub-
sequences; underrepresented ones occur as well. The existence of a core
of strictly avoided words in fact sets up a complex structure of avoidance,
which has recently been investigated (Hao et al., 2000). For a survey of the
statistics of such events under prototypical random placement, see Karlin
et al. (1989). Of course, repeats are not the only special constructs found in
the DNA “language”—reverse palindromes are frequent, and “syllables” that
are only found together are common as well (Trifonov, 1988).

Thus the DNA language is far from random, both in its coding and in its
noncoding subsequences, and a first estimate of where the information resides
might proceed by finding the information content, the negative entropy, of
selected segments. The entropy per site,

4
— > ps log, ps,
s=1

where p; is the relative frequency of base s, is a very primitive indica-
tor. Clearly O < Hy < 2, with Hy = 2 for the purely random p, = 1/4, and
even GC-wide regions can reduce this substantially, but for sizable genomes,

~ 1.9 — 2.0 is universal. More informatively, we can look at words w of
length n, occurring at frequency p, and construct

H, =% —p% log, p%
w

The n = 3 codons in coding regions typically produce Hz ~ 5.9, close to the
purely random 6, but at large 7 a better indicator is excess entropy:

hn — iiy4 ] — Hm
In fact, it is seen at once that

Z — P log, [p+D / p)]

- (log2 Pr [s | w™]),

averaged over n words and the following base, s, so that /i, is a measure of the
unpredictability of the next base that is added. More sophisticated definitions
of excess entropy (Loewenstern and Ylanilos, 1999) indeed show a substantial
reduction, to #,, ~ 1.6 for a variety of genomes.
A relatively unbiased measure of excess entropy is obtained from
h= lim h,,

n—"c”
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{where “co” is a lot smaller than the genome length L), as &, would in fact
saturate at k,, for an m-memory Markov chain. The full dependence of &,
on n is a better indicator (Herzl et al., 1994) of a repetitive structure. We can
see this quickly without going into great detail, but by focusing on n words
that can overlap the left edge of a specific length  repeat R by k bases, where
1 < k =n — 1. Suppose the repetition rate is p per site, so that in length L
there are p L repeats. Then, because k bases are fixed, the expected number of
occurences of the word, i.e., of matches on the genome, is clearly p L /4"~ for
those that overlap the left edge of an R by k bases and L’ /4™ for those that do
not and hence are free. L’ ~ L is the number of slots for n words that do not
overlap an R. Thus the frequency of such a word is p /4™ % + 1/4". Now if we
append a base to the right end of the word, only one base 2 is allowed when
the word does overlap, but the expected number of (n 4 1)-word matches in
the rest of the genome is now L’/4"t1. Hence the entropy contribution to %,

1S
o 1 P 1
_ ]0g2 Pr (b | w) = ]og2 (4n—k + 4’1) /(4nk 4 4n+1)

=2 —log, (1 + 451 p/1 4 4% p),

which changes from 2 at small & to O at large k, a rapid change occurring for
k. ~logy 1/p.Soifn < k., the n dependence will be smooth, but as n passes
through k., a rapid shift can occur, giving us an estimate of the frequency p.
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Sequence Comparison

Having examined aspects of the general structure of the language of DNA,
we continue to home in on the words, phrases, etc., of the language. A word
of course is a subsequence that recurs in the same or another organism,
either exactly, or distorted, or in synonym form; a phrase consists of key
words together perhaps with filler. We will save for Section 4.3 the question
of how potential words or phrases are located in the first place in our new
more general context, and concentrate now on the degree of confidence with
which we can assert that these objects have indeed been found. It must be
emphasized that we are only attending to linear ordering, the primary structure
of the molecule, so that proteins, for example, correspond simply to coding
linear subsequences; the fashion in which the distinctive three-dimensional
structure arises, clearly crucial for proteins and hardly irrelevant for DNA, is
not being addressed.

4.1. Basic Matching

The prototypical situation to be analyzed is this: Two linear chains of length /
{nucleotides, amino acids, .. . ,), when aligned, are found to have a common
{contiguous) subsequence of r units. What is the probability that this was a
random event and not an indicator of a functional or an evolutionary relation-
ship between the chains? At the most primitive level of resolution, random
means independent selection of the units at the overall frequencies, p, for
the ath type of unit, « =1, ...,n (n =4,20,...). In this case, essentially
the same as that of Subsection 3.2.1, the probability of a match at a given
location will be

n
p=>
o=1

and the probability of not matching will be § =1 — p. Note that the term
“match” depends very much on the way equivalent units are defined; the
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20 amino acids, for example, can for most purposes be simplified to four or
five equivalence classes.

4.1.1. Mutual-Exclusion Model

Our precise question will be: what is the probability P, under the assumption
of randomness, that a match of length >r will occur? Then, if this event
occurs, randomness can be rejected in favor of significance at a confidence
level of 1 — P. The key to our present analysis (Percus and Percus, 1994) is
that the result will be interesting precisely when P is small, so that any of
the probabilities of events of which it is composed will be very small. This
means that although the different matches that can occur are not mutually
exclusive, i.e., if (Aand B) = A - B, we have P(A - B) # 0; nonetheless
P(A - B) will be second order in smallness, and we can act as if

P(AUB) = P(A) + P(B),

i.e., just add the component probabilities.
Back to >r matches (“successes”) out of {: the possibilities are that

1. atleast r matches in sequence (we term this an r match) start at the left
end, probability p,

2. an r match starts at one of s = 2,3,...1 +1 — r; hence a mismatch
at location s — 1 is followed by r matches, probability gp.

The single events of type 1. and{ — r of type 2. give us, under the assumption
of additivity,

PLo=p +(—ryqp
=[1+@—rylp” forr=1

Example: At 0.999 confidence level, a tail probability of £ = 0.001, and
with p = 1/4, amatch of >~ In(0.751/1073)/In4 = Iny 7501, e.g., r > 15
for I = 10%, would be significant.

Now, more realistically, we consider chains of lengths /7 < /; and ask for
a match of > r units in a row in one chain with > r in a row someplace along
the other, i.e., not necessarily in register. We do this by sliding one chain over
the other, and we treat the length in common as a pair of chains in register, to
which we can apply the above result. We have the following possibilities:

1. The Iz chain fits inside the /1 chain at {; + 1 — [ different starting
places, each contributing [1 + (I — r)g]p".
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2. The I} chain starts to the left of {5, with I < I3 (and [ > r) sites over-
lapping, a contribution of [1 + (I — r)g]p’.

3. 2 is repeated on the right. Hence
L-1

PhE = +1 -1+ @G —rglp +2) [+ —rglp
I=r

=[+G-nNth-nNt+h-rnl-rglp’, 1<r<h

Example: Two DNA fragments, of lengths [y = 154 and {, = 103, with
nominal p = 1/4, would have, if exactly computed, P9 = 0.039. The above
estimate yields P4 = 0.040, which is very close.

Of course, some substitutions can be tolerated without changing func-
tionality of biological subsequences. Suppose for example that the matching
frame is =>r, but only m < r sites have to match, including as well the first
and the last that define . Now the elementary composite-match probability,
instead of being p’, is determined by one match, m — 2 out of » — 2 matches,
then another match, a probability of p(;;zz) P2 g" " p. We conclude that
the only effect is the replacement:

m . F—m

for m out of r, replace: p” — r—2

More reasonable might be that at least m out of » match, leading to

o, N (r—2 K _r—k
for =m out of r, replace: p ﬁg(mZ)p 1

The assumption that all successful » matches are “space filling,” and there-
fore mutually exclusive, is clearly an assumption that holds only if the elemen-
tary events have sufficiently small probabilities that the mutual probabilities
are fully negligible. If we are not sure, some estimate is needed. The simplest
goes like this: Consider the basic matching problem. If A ; is the event that a
match, at >r contiguous sites, starts at j,for j =1,...,1 +1 —r, then

Pl =PAIUAU---UAp ).

However, now we can use the first of the Benferroni inequalities (see,
e.g., Feller, 1950, p. 100). These are most easily obtained in terms of Venn
diagrams on the space of elementary events. Representing the composite
events A, B, C, ..., by circles and simply counting, we have P(A U B) =
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P(AY+ P(B)— P(A- B), so that

P(A)+ P(B)> P(AUB)= P(A)+ P(B) — P(A- B)

At the next stage,
S

P(AUBUC) = P(A)+ P(B)+ P(C)— P(A-B)— P(4-C)
—P(B-C)+P(A-B-O),

so that

P(A)+ P(B)+ P(C) = P(AUBUC) = P(A) + P(B) + P(C)
—P(A-B)— P(A-C)— P(B-0O),

and, more generally (Frechet, 1940),

41—r 4+1—r
> P4y = P(U Aj)

j=1 j=1
I+1—r
= > PMAp— > P A
=1 1<j<k=i4l—r

Applying this to the basic matching problem, we have P(A;) = p’, and
P(Aj))=gqp for j >1.1f j <k < j+r, then Ay overlaps or abuts A,
so that k cannot be the starf of an r match, and P(A; - Ay) =0.If k£ >
j + 7, Aj and Ay are independent, so P(A; - Ay) = P(A;) P(Ag). Thus the
nonvanishing contributions to the correction come from j = 1,7 +1 <k <
[+1—r,atotalof (I — 2r)p'gp",andl < j <1 —-2r,r; <k <I+41-—r,
atotal of Y5 (L +1—2r — j)gp")? = 50— 2r + 1) — 2r)(gp")*. We

conclude that (see, e.g., Uspensky, 1937)
[+ =rglp" = P,z [1+—r)qlp’

(- 2r)[1 n % a4 —2r— 1)}41)”.
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Example: For a “fair” coin, p = %, tossed 2059 times, the exact result
to four places is P13 = 0.1176. From our inequality, 0.1249 > P>2{’359 >
0.1172, indicating as well the rapid convergence of the alternating series
of which we have used only the first two terms.

The general result is that, for the first-order error, AP ~ P?. However,
even more importantly, the extremely simple upper bound that we get with the
mutual-exclusion model is precisely what we need to ensure nonrandomness
at a given level of confidence.

4.1.2. Independence Model

A different kind of approximation assumes that successful » matches are inde-
pendent events, as indeed most of themare. Then1 — P = P(A; - Ap--) ~
[ P(A) =T1;[1 — P(A)] or, for small P(4;),

1—P ~exp— Y P(A)
i

in Poisson distribution form. Here, too, the corrections can be arranged to
supply bounds on the error made. Let us introduce the variable X; = (0, 1),
with X; = 1 — X;, and use the notation

A;oceurs & X; =1,
A; doesnot occur < X; = 0.

We can then, quite generally, proceed as in Subsection 3.2.2, but we
shall do so with a little more control. We want to find 1 — P = Pr(J] 4))
= E[][;(1 — X;)], but instead we look at

Iy)= 1n<ﬂ<1 — yx,-)>.

Now

I'y)=- <Z X [Ja - yX,-)) / <ﬂ<1 - ij>> ,

i J#i J
I'"(y) = <Z X x; []a—vxo / []a - ka>>
i£j ki, j k

- <ZX g(l ka)> /<]:[(1 — ka)ﬂz.
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Clearly,
10)=0, I'0)=-) (X,

2
1'(0) = <fo Xj> - <in>
i#j i
=D (X = XX — (X — D (X,
i#£j i
so that if

A= Z(Xi>,

a Taylor series expansion gives

P =1 _ 1 _ g~ H1/DIO)...
1
=1—e?—— e ["0). ...
5 O

Still being very general, suppose there is a distance d (i, j) defined withrespect
to indices such that A; and A ; are independent for d(i, j) > r. Then I”(0)
simplifies to

i£]

I"0y= (X X;) — (X)) (X)) = D (X;)?

dG, jy=r
=by — b

where

bi= Y (X).(X;), b= ) (XiX)).

4G, p=r a, Nt=r
i

The Chen—Stein theorem (Chen, 1975) converts this to a somewhat more
conservative but rigorous bound:

Y

1_
P—(1—e™) = (b1 + b2).

In particular, in our typical applications, X; and X ; will be mutually exclusive
ford(i, j) <rbuti # j, and so we will have by = 0.

Computation for the Chen—Stein estimate (Arratia et al., 1990) makes use
of precisely the same information as we needed previously in Subsection4.1.1.
We must make sure that the required independence and mutual exclusivity are
satisfied, and we will formalize our previous assertion a bit for this purpose.



4.1. Basic Matching 87

Consider first the in-register >r-match problem (as in coin tossing). Let the
independent variables C; = 0, 1 denote failure or success of a match at site
k; then X; for a success run > r starting at site / is simply

i+r-1
Xi=(1-CG.) [[ 6. (©=0)

k=1
Clearly X; is independent of X; if j > i +r (they have no Cy in com-
mon) whereas X;X; =0 if { < j<i+r (X; contains C;_; but
X; contains 1— C;_;). Furthermore, A= (O X;)=[1+( —r)qlp,
as in Subsection 4.1.1, and b1 =3 ;i (Xi) (X;) =( —2r) qp¥
+ 3 —2r)(1 —2r — 1)g? p*, for which a very good estimate is (show this)

2r +1
b1< i

AF2Ap".

Example: Fair coin, I = 2047, p = %, r— 14
|P2Y —0.06059| < 6 x 107,

Continuing to two sequences, {X;) of length /; and {Y;} of length I, we
define C;; = 1if X; = ¥; and p = (C};). Now the indices are pairs, and, for
an > r run starting at (i, j),

Yij =0 —Ci1,j-1)Cij Civrj11- - Cigrot,jir-1-
Here d(ij, k!) = min(|i — k|, |j —{|), and again #, = 0. In the same fashion
as before, we find
A=l +h-2r+ 1)+ 0 —rl—rylp,
(2r 4 DHa?
<
hh—r+Dilz2—r+1)

by +2Ap".

4.1.3. Direct Asymptotic Evaluation

On the assumption of independent base placement in DNA [extension to
low-order Markov changes very little (Karlin et al., 1989)], many match-
ing problems can be solved exactly, in principle, and in rapidly convergent
asymptotic series, in practice. Consider once more the prototypical run of
=>r successes in a chain of length /. We have seen in Subsection 3.2.1 that
for the complementary probability Isir of having no run of » or more, then
decomposing the sequence into successive runs of less than r, separated by
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failures, there results

=) co {r-1}
G)=Y PLZ=>" 3 (p)' qz(pz)rqz- - (p2)*
=0 =0 {,=0}

=[1—(p2)1/[1 —z+qz(pz)'].

The simplest expansion is in y = p” at fixed I:

f_’i, =coeffz'inl — yz'/(1 —z + yqz’*tH
1_ ¥
= coeffz! in Yz
-z 1+yzqz/l —z
n — qz (q2)*
= coeffz’ in 11—y |1 -y 25 2 @27
4y )[ vir s

1 r r+4l1
= coeffz! in 1Z|: z +q z }y

1-z “(1-27?
. 22+l . 2242 2i| 2
(1—z)2q (1_2)311 Yot
yielding
PL =1-P.,

=[14q(-nly - [q(l —2r) +4* (l _22")} vioo.,

just as before.

However, we can just as easily have more structured matching criteria
{(Peng et al., 1992). Suppose we demand at least f-match sequences of length
>r to declare a match. This is almost as easy. Now we “tag” any subse-
quence of r or more matches by a variable £ in order to recognize it. Then
we replace the strict failure combination Z{,*l prF =1 —przH/A — pz2)
with 307! pr 2k + & 370 p¥ ek = (1 — p'z" + p' 2'€)/(1 — p2), giving us
instead
1—-p'zi+&p" 2

G =1 Tap 71— &)

Failing configurations are those in which only the powers 1, &, & 2 ... & -1
are present. Because

(Z £)

(coeff £° + coeff &1 + - - + coeff£'™1) G(z, &) = coeff £~} T
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we conclude that now
1 11—y —=8&)7"
1—¢1-z+yq(l—&)z+!

Pht = coeffz'¢'~lin

from which

Ft4r-1 Fi4t 1—
Pi: =y’ g’ coeffz! in @ pz )/(1 2)
= (I —z+yqztly

and so, to leading order, which is %, we have

I+1—rt [ —rt
() ()]

In particular, if [ rt, then (")~ —rey/tl, (P~ —re)
=D /et ~ (1 —rtY/t!, and therefore
PY oyt (l —r) /1!
~ylgtlt e—rzz/l/t!.

4.1.4. Extreme-Value Technique

When an analysis of the significance of an observed sequence is carried out, it
is certainly preferable to focus first on a single criterion and then examine the
confidence with which we can assert significance. Such a single criterion, as
was mentioned in Subsection 3.2.1, might be an extreme value like the length
of the longest match formed, to be assessed by its random reference expected
value, variance, and so forth. Now, at fixed /,

Prrmae = R) = Pog — Popy1,

Hence

<o
E(rmx) = Y R(P=g — P-gy1)
0

jee]

RP.g— Y (R—1)P-g
1

P>Ra

>
0
>
1
and, in the same fashion,

E(rl,) =Y QR—1)P.y.
1
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The asymptotic analysis of Subsection 4.1.3 is not useful for this purpose, as
it yields probabilities much larger than 1 for small 7. The Chen-Stein bounds
donot suffer from the defect at small A, and indeed Subsection 4.1.3 can easily
be modified to accord with fixed A, but asymptotic in /. However, especially
as criteria become more complex, quicker estimates are useful and can be
obtained by extre me-value methods (see, e.g., Waterman, 1995, Chapter 11).

As aprototype, again consider the standard run problem. A run must start
following a failure, and for !/ trials there are ~ Ig failures, sharply distributed
for large {. Following a failure, length R to the next failure has probability
qu, and the probability of length < R is 26_] gp’ =1- pX . However, then

counting the lg failures in order. Hence P.p= Pr{rmex = R)=1-
Pr(rpee < R)=1-]], Pr(R; <« R) =1- Pr(R; < R =1-(1-pRi
~ 1 — e—‘H’M, the familiar Gumbel distribution [Gu58]. Then, converting
sums to integrals, we obtain

Em)= [ (- ar
0

If we define u =gp~l, then duju=—[In(1/p)ldR, 50 E(rmax)=
(1/ln l/p)foqz(l fe'“)du{u. For large gl, we rewrite the integral as
ql pi —1 gt rql —t ql —t

Jo foQjmyetdtdu = [ [ (1/u)duetdt = [ (Ingl —Int)e tdt =
Ingl+,...,s50

E(rmax) = (Ingl)/(Inl/p).

The evaluation of the variance is a bit harder, but it can be shown that

72

—_— .
6(ln1/p)?
Now let us match two sequences /4 and /, of the same base frequen-

cies and complicate the matching criterion to lead to tests we will perform
later: If compared off register, an r match is now defined as a match of

Var (7)) =




4.1. Basic Matching 91

{1 — «)r out of r successive comparisons. Consider base s; there are clearly,
on the average, I; ps - Iops possible matches of base s between the two se-
quences, and ) I1ps - laps = l1l2p matches of any bases; hence there are
Il — lilop = lil2q failures in the complete set of comparisons. Again, an r
match begins after a failure. We then need Pr(rpax = R) — Pr(rmateh With r >
R). If the base matches were contiguous, this would be the same as Pr(rmatch
with » = R, and no restrictions on succeeding sites), and although this
is only an approximation for « # 0, we will use it anyway. Because
there are (1 — «)R successes and « R failures required, the latter quantity
will be given by (%) pR %% g% 50 now Pr(rmex < R) = Pr(allR; < R)=
[1— (4) pRRegR1ee o exp — [hiloq () pRR2gRe]. We can use the
central-limit theorem to approximate the binomial by a Gaussian:

RN preragre o 1 kzmoia-ar
Ru /27 Rpg

Setting u = I11,q(1/+/27 Rpq)e~ R/ 2P0Xa—2 we have du/u — —[(1/2R) +
(g — @)*/(2pg)]1dR, or dropping the 1/« R in the dominant large R region,
but taking 0 and /;/,q as the limits for u, we have E(rmax) = fooo Pr(rmax = R)
dR = {(2pg)/[(g — @ P} fy ™ (1 — e*)du/u, so that

Etrmee) = 2% nhbg+,...,
(@ —a)

with Var (rpax) again /1, independent.

Two points are to be made. First, the coefficient of Inijl,g diverges as
o — g, so that weakening the match criterion leads to the breakdown of
the In/ form. Second, however, the central-limit theorem only applies to a
large neighborhood of ¢ — «, not including the tail, which dominates for
small «; thus it is incorrect for @ = 0. This is trivially mended: Instead of the
normal approximation to the binomial, we just insert Stirling’s approximation
x! o~ «/2mx(x/e) into the binomial coefficient. This gives us, after a little
algebra,

()= (22) @] /v

1l —«

and changes nothing but the coefficient of Inl;/,g; we now find

1l —«

E(rmax) ~ 1n(1112q)/ [(1 — taln ’ﬂ I

This isindeed correct as« — 0, and coincides with the normal approximation
as ¢ — q.
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Assignment 6

1. Suppose that base correlations were fractal in form; what effect would
this have on the Fourier power spectrum and on the Walsh power spec-
trum?

2. Apply the mutual-exclusion model to joint >r matches for simultane-
ous comparison of three sequences.

3. For comparison of two sequences, how does amalgamating units ex-
plicitly affect the statistics of rmax? How does grouping units, i.e., into
nonoverlapping doublets or triplets, affect it?

4.2. Matching with Imperfections

4.2.1. Score Distribution

The general procedure in comparing two sequences, protein, DNA, ..., isto
algorithmically produce a best alignment and then assess the alignment for
significance. If found, we deduce functional similarity, an old example being
between platelet growth factor and the v-sis oncogene product, suggesting a
growth factor in the latter. Of course, because of ambiguity, replication errors,
mutations, evolution, etc., the matches need not be perfect toreflect similarity.
We now study how to include this possibility.

When the characterization of an imperfect match is no longer as simple
as the length of a sequence of perfect matches (the 7, f criterion of A3), it is
convenient to define a single quantity, termed a score, to epitomize the quality
of the match. The (local) score of a two-sequence comparison, s(A, B), will
be defined as the maximum score of aligned subsequence conformations,
ie., of s(Z, J), where I C A and J C B, at this stage, I is required to be
a contiguous subsequernce, as is J. Once we have settled on the basic score
s(I, J), the crucial statistical datum for the two-sequence comparison is the
curnulative tail probability

F(S) = Pr[s(A, B) = 5]
=1—Pr[s(A, B) < 5]
=1-Pr[s(I, )< S, all(I,])C (A, B)]
—1 < [T & XIJ(S)]>,
I, J)C(A,B)

where X;;(S) = 1 is the indicator of the event that s(Z, J) > S; otherwise
X17(S) = 0. As arule, the failure of some intelligently chosen subset denoted
by (I, J}, of the full set of (1, J)is sufficient to imply that of the full set. Now
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if the corresponding X ;;(S) are small in probability and nearly independent,
the effect of the Chen-Stein theorem, and of any number of approxima-
tion methods (Goldstein, 1990), is to reduce the preceding probability to the
Poisson form:

FiS$ =1 exp{ > Prls( )= S]}.

{1,J}C(A,B)

For this equation to be valid and useful, it is important to select the pairs {I, J}
to avoid redundancy. This of course does not imply the absence of further
collusion between subsets of pairs; the assumption that it does, effectively
restricts us to “greedy” match criteria.

In the primitive case of exact matching of units, in which the score is the
maximum matching length, we can use the same strategy as in the extreme-
value technique of Subsection 4.1.4. Suppose that A and B have lengths /; and
{,. Then we choose a pair (7, j) of starting positions of 7 and J, which are of
lengths precisely S, restricted so that f — 1, j — 1) is not a matching pair. Of
the ({; +1 — S)({, + 1 — S)possible pairs, justg(l; + 1 —S)i +1 — S)on
the average, but sharply distributed, will have the desired property. A complete
match of I and J satisfies Pr[s(I, J) = S] = p®, independently of 7 and J;
the corresponding events both exhaust all possibilities of s(Z, J) = S and are
nearly independent of each other. Neglecting S compared with /; and o, we
see that the Gumbel form

F(S$)=1—exp(—lil2gp®)

follows at once.

We can relax the match definition by allowing up to k¥ mismatches in any
subsequence comparison, but we retain the score s as the total length of the
comparison made; the test is then parameterized by k. With this criterion, we
can still proceed by choosing (i, j)to always follow a failure to match, /3 /29
pairs in all, and then impose the condition of <k mismatches on the next
S units. The probability is Pr{s(Z, J) = S] = 3&()p5 " ¢, which again
includes all s > S in larger subsequence pairs. Although the weak dependence
of the I, J matches is further increased, we can still approximate F(S) = 1 —
expl—I1{2 210‘( ,‘: y p5— g +1]. A fraction « of allowed mismatches proceeds
in the same fashion.

The above tests are all characterized by a representation in which the only
quantities required are

Pris(,J)=8]=C($)p*
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for a selected subclass {7, J}, and there is no explicit 7, J dependence. Here
C(S) is a slowly varying function (at least slower than exponential) for large
S; p is to be computed as

p = lim (Pr[s(I,J) = S}'/$,
S—o0

and C(S) as the remaining ratio. If Pr[s(I, J) = S] = Zy a,(S) is the sum
of a series of at most S™ (positive) terms for fixed m, then max, a,(S) <
Pr = §” max, a,(S), and we have simply

/s
p = lim [max ay(S)] .
S—o0 1%

For an exact match, of course p = p, C = 1; for < k mismatches, p = p
but C(S) ~ (Sq/p)/k!. For a fraction « < p/q of mismatches, p =
(p/1 —a)'=%(g/a)* and C ~ const. In all of these cases, we have seen (Sub-
section 3.1.4) that

E(Smax) ~ InL/1In1/p,
Var (Smax) ~ (6/7%)/(In1/p)?,

where L is the number of 7J pairs required. Of course, this characteristic
In L dependence is valid only if p < 1; the p = 1 situation must always be
handled separately.

A more intuitively satisfying way of defining a similarity score is by re-
warding matches and penalizing mismatches. The prototype is the linear ex-
pression

s(I, Iy =r(I, 1) — nk(I, 1),

where r is the number of matches, £ of mismatches, and the sp,x test is param-
eterized by A. A = co would select only runs of exact matches, whereask = 0
would accept matches no matter how far they are spread apart. We can analyze
this very similarly, while realizing that now s = S for a pair 7, J no longer
implies s > S for supersequences. Thus the common length of 7 and J, say
n, is another parameter. After choosing the starting pair (7, j), we must find
the probability that s.,,, > .S over all (, J) starting at (Z, j). If their common
length is n, the probability that s = S is simply max,, er tk=n (”r’k )P gk,
but there are two regimes to examine. If A > p/g, then the maximum of
the summand, at » = np, k = ng, occurs outside of the cross-hatched re-
gion r — Ak > §. Thus the maximum term in the sum occurs at r +k = n,
r — Ak = S (to within a fractional remainder) and the probability that s = S
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for some value of n satisfies

k k
Z (r N ) P’ g" = Pr(smax = §) = max (r + ) o 4.
roak=s N T r—xk=S

r
Clearly then
r+k 1/s
= lim Pr =SS = 1i 7Ll .
p = Jm P (S = 577 = lim | max (- ) P4
n e
\\\\ r—Ak=S5
r r+k=n
np
0 ng n
k

For large A, k must be small, so observing that p = p in the special case
r =8,k =0, we see that p = p. For A not far from p/gq, we are close to the
maximum of the binomial probability (af the maximum if r, k — ©0), which
can therefor be approximated by the normal distribution

r+k ; _ 1
( N ) Pt~ 2n(G + k) pgl P exp — [r — pr K1 /G +K) pg.
Setting £ = SK, we have r = S(1 + AK), and we find that this becomes

Q7 pg SIL+ (G + 1)K17V?
x exp —{(S/2pq)lg + (g — PYK1*)/[1 + (x + D KD,

whose asymptotic Sth root is exp —{(1/2pg)lg + (Ag — p) K11+
(A + DK% On maximizing over K, we find

p ~ exp — L 1)\.—1
Pola+ag \p '

On the other hand, if A is large compared with p/g, only r ~ S and £ ~ 0
contribute to p, which hence has the appearance shown.

If A < p/gq, the maximum in the previous figure is in the allowed region,
so that Pr(spax = S) ~ 1 for large enough #; (this is because the penalty
is small enough that the match sequence will simply become as large as
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possible), and we expect that, for sequence length ~I, E(syax) ~ Ip —Alg =
1g [(p/q) — A]. There is then a “phase transition” (Waterman et al., 1987)
froma lnl to a ¢l dependence when A = p/q.

A nonparametric score incorporating match/mismatch assessment has been
suggested andused (Otto, 1992), based onthe least likely contiguous sequence
of matches and mismatches. In one version of this very general strategy, we

set
k
s=-In (r+ ) P q,
r

using the same notation as before, and seek the maximum S over r and £,
starting at (i, j). We estimate

. rEY
Pr[smax(l,.];r,k)zs] as Z ( r )p qk,

(rk)els

where [g is the set of (r, k) defined by (rfk)p’qk < e~5, but to compute the
parameter p, only the maximum term in the sum, e~5, is required. Hence
p = 1/e, C =1, allowing us to conclude, as in Section 3.1, that

E(S) ~1nlily, Var(S)~ 1.

To check the adequacy of the predicted distribution, F(S) = exp —(l;l;¢5)
for random sequences, a large simulation was carried out, and the distribu-
tion of the function F = F(S) plotted. Because F = fOS Pr($'ydS’, then we
should have Pr(S)dS = Pr(F)dF = Pr(F) Pr(S)dsS, or Pr(¥) = 1 if F(S)
is correct. This was verified to high accuracy.

Mismatches are not the only imperfections we should expect. The insertion
of bases — e.g., of three-base codons — or deletions may have only a marginal
effect on the resulting protein coding or regulatory sequences. These are
termed indels. For two-sequence comparison, we can allow for either one by
inserting blanks in either sequence when testing an alignment and penalize
each blank (but not two blanks at the same site, as there was no reason to
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include them to start with). In other words, although the linear parametric
form is not necessarily optimal (Benner et al., 1993), and in particular, the
interior indels of a continuous sequence of indels will certainly “cost” less
than the first and last indels, we now set

s(L,TY=r(, 1) — ak(I,J) — ub(1, 1),

where b is the number of (unpaired) blanks in the alignment. Now, = co
returns us to the no-indel case and A = p = 00 to the perfect-match case,
whereas A = p = 0, caring neither about mismatches nor insertions, should
produce very high scores, of the order of the sequence length, with a line
of phase transitions in between the extremes. The A = p = 0 situation, with
its anticipated uninformative E(S) o¢ L, is nonetheless one that we can say
something about.

4.2.2. Penalty-Free Limit

Suppose A =a;---a, is a sequence and S =57 - 5, iS a sequence with
m < n. If both mismatches and insertions are to be ignored, we should now
define S as a subsequence of A if for some 1 <1i; <-.- < i, < n, we have
a;, = sx. For sequences A and B, taken for convenience as having a common
length n, we then define

v(A, B) — max length of subsequence common to A and B,
identical with the A = . = 0 score. We now look for
lim E[v(A, B)]/n,
n—Cco

assuming a k-letter alphabet with equal probability of unit selection (Chvatal
and Sankoff, 1983; Deken, 1983). Oddly enough, the important conclusion
that the limit is bounded from below is easy to show. We simply observe that
the maximum occupation of each sequence by some unit must exceed the
average, which is n/k, and tag each sequence by its dominant unit, say a.
Clearly, any two a sequences have a common subsequence of length >n/k.
If N, is the number of a-tagged sequences, then there are Nz pairs with
v(A, B) > n/k. Hence E[v(A, B)]/n = Y 5_| N2/N?. (1/k), where N =
Z N,. However, N?is convex, so that %Z Ng > (% Z Na)z. We conclude
that
1
Elv(A, B)l/n = 7+

of course, it is possible to do better.
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It is harder to show that the limit is bounded from above by something less
than 1. To do so, we define F(n, S, k) as the number of length # sequences
containing a fixed sequence S of length m. We claim that

F(n, S, )= G)(k 1y

j=m

This is certainly true for n = 1, and so we shall carry out induction on 7.
Note first that the assertion is also true for m = n and for m = 1 {the number
containing a given unit is the total number, minus the total number lacking
that unit, i.e., k" — (k — 1)" = [1 4+ (k — 1)]* — (k — 1)”, which agrees with
the m = 1 case}. Thenif 1 <m < n and S C A is a subsequence, we define
A =ay...a,1,8 =51...5,_1. The set {A} is divided into (1) those sites
for which a,, = s, here ' C A/, so there are F(n — 1, m, k) possibilities for
A’, and (2) sets for which a,, # s, here S C A’, and a,, is free tohave k — 1
different values, a total of (k — 1)F(n — 1, m, k) possibilities. Hence

Faomky—Fn—-1lm—-1,k+E&k—-—DFn—1,mk),

which is indeed satisfied by the asserted formula.

Actually, the expression for F(n, S, k) is stronger than we need. Note
that if j > n/k, then (jj_l Yk — 1y =il < (;’.)(k — 1y"=J; it follows that (';)
[k =D/ = (';?)(k — 1y for j = m > n/k, from which

7
F(n,m, k) < n( )(k — 1™ whenm > n/k.
m

The next step, on defining & = m/n > 1/k;, is to show that for large n, the
proportion £\ (8) of pairs (A, B) of length 7 with v(A, B) > 6, is bounded
by

WP (©) < He(0)™

where

h9/271 (k _ 1)179

Hi () = 071 — oy

We do this by “overcounting,” i.e., ignoring the fact that the same pair may
have more than one common subsequence and just using subsequences to
build up pairs. In other words, if g(n,m, k) is the number of pairs with
v(A, B) = m and G(n, m, k) is the number of triplets (4, B, S) with A and
B of length n, S of length =m, then certainly g(n,m, k) < G(n,m, k). It
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follows that if 8 > n/k,
ym, k) Ga,m, k)
kn = k2n

Fn,s, k)? , 2

1/n 2n
_ Va1, (1-0 n
~fema-v ()]

which, by virtue of Stirling’s approximation, can be shown to imply the
preceding equation.

Now we use this result. First, by examining (d/d8)ln H (), we find that
the equation H(6) = 1 has a unique solution & = V; in the interval [1/k, 1]
and that H;(8) < 1 for 8 > V. Then, for any 6, V; < & < 1, we divide the
k* pairs of sequences into two categories: (1) those for which 0 < v(A, B)
< 0n, and (2) those forwhich n < v(A, B) < n. With the above definition of
B (0)then E[v(A, B)] < 6n[l — hi(@)] + nhi”(8) < n[6 + Hi(6)*]; but
H;(8) < 1, and we can let 8 approach Vi. Hence, lim,_, o, E[v(A, B)]/n <
8 — V;, the desired linear upper bound.

h}({n)g(ﬂ

4.2.3. Effect of Indel Penalty

Let us return to the more informative and controllable score for sequences
with gaps, s =r — A k — p b. The needed score distribution is not known
exactly, even for the Markov-0 models that we have been considering, but has
been approximated on numerous occasions (see, e.g., Zhang and Marr, 1995;
Mott and Tribe, 1999; Drasdo et al., 2000). Evolutionary models to assess the
confidence with which biological similarity can be inferred from such scores
have appeared as well (Hwa and Lassig, 1996), and this is obviously a more
realistic direction to take. Here, however, we will attend to a quick and dirty
extension of the argument of Subsection 4.2.1 to the statistics of gapped align-
ment of two thoroughly random sequences. The subsystems being compared
now constitute a sequence of matches, mismatches, and unpaired vacancies
with respective probabilities p, g, and y —now p + ¢ + y = 1 — and rather
than maximize over n = r + k + b, we will simply sum:

- r+k+b
Pr(smax = S) = Z — " pT "yt

kB!
rAkabes rikib!

We can enforce the inequality restriction by inserting a unit step (Heaviside)
function8(x) = fc &' /2 itdt, where ¢ is areal line contour indented below
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the origin in the complex plan. Hence

. k+b!
Pr(smax = S) = / lte—rthktub) % prgfyPdr /2wt

— /e’“/(l — pe it — g™ —yelydt Jomit,
c

where we have used the identity Zal,,,,an[(al 4+t a, D/ (a!...a,D]
x& L x% = (1 —xp...x,) L
It follows by a standard argument that if p = e'! is the root of

l—p/p—qp —yp*=0
of maximum amplitude, then lim;_, o Pr(smax > S) = p. For p close to 1, we
expand each p® = exp o Inptosecondorderinlnp,anduse p +¢g +y =1
to obtain

Inp P —rqg—yu.

- pHATg tity
IfAg, yu, and p are of the same order of magnitude and small, we canrewrite

this as
—lnp:Z(Ag-i—yli—l),
p p

which indeed reduces properly at the previously analyzed p = 0 case. When
n # 0, we see that the general structure of the distribution is unchanged,
except for the replacement A — A 4 u (y/q) in the determination of p. For
A and/or p not small, the original equation is required, and p asymptotes to
p- Also when, at small A, i, we have

AG + YU =p,

p reaches 1 and the linear regime takes over. To be sure, here, as in the case
of the gap-free score, the full distribution function depends as well on the
slowly varying C(s) and the number of relevant pairs {7, J}.

4.2.4. Score Acquisition

The maximum-score criterion for comparison of sequences A and B is useful
provided thatthe scores(Z, J), I C A, J C B,foranalignment canberapidly
computed and that alignments can be generated rapidly. At the very least, we
should be able to verify that a score is locally optimal, so that s(/,J) >
s(I’, J") for (I', J') in a suitably defined neighborhood of (1, J). All of this
depends very much on the precise nature of the score that isused. We have seen
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that, roughly speaking, scores may be expected to have a behavior with respect
to sequence length / that goes between In/ and ¢/. Different considerations
apply to the two extremes.

Let us first focus on the ¢/ regime, where the constant ¢ has been esti-
mated (Sankoff and Mainville, 1983) for many equiprobable letters, £, in
the alphabet — and in the case of mismatch and indel penalty-free criteria —
as 2/kY?. In fact, the matching criterion can be weakened even further if
the test subsequences are allowed to be permuted arbitrarily for the purpose
of the test. Hence the maximal subsequence for a sequence A containing

n‘f, - ,n,f letters of types 1, ..., k, and similarly for B, is represented as
ny = min(n{, nf), ..., n) = min@my, nf). We can certainly regard Z]{ n’
as the length of this match, but how do we penalize the remaining letters,
|n‘fl — nf? [..., |n,f — n,§| in number, that do not match with anything? Such

a penalty should be nonnegative and vanish only for the identical letter content
of the two sequences. Perhaps the simplest is just a weighted rms form

k
d(A, BY = w; (1 —nPB)?,
1

(nj) = % (n] +17),
where w; = 1/{n;} would produce a x?* form.

If the letters are bases, the aggregate information estimated by the above
d(A, B) — just that of base frequencies — is not a very incisive measure of
sequence similarity. However, in the work of Tomey et al. (1990), the units
are taken as the complete set of k = 4™ words of m nucleotides, or even those
between my, and my in length. The predictive power of this score is claimed
to be very decent.

Most of the scores traditionally used have been in the In/ category. Sellers
has emphasized (Sellers, 1985; 1986) that these scores tend to rely on the
common form

S(4,B) = max (1)),

s(I,7)y = pl(I, 1) — d(I, ]),
d(1,7) = mind(, J, A),

where I(/, J) measures the length of the (/, J) pair (e.g., the mean length of /
and J), d(I, J, A) is a dissimilarity function depending on which alignment
A is being considered, and p is a relative weight. These can be much more
strict as to declaring a match, but do have the option of gap insertion in either
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sequence, the indels previously referred to. How should we organize the
possible alignments? A convenient representation, similar in concept to that
of Subsection 3.2.1, for the alined gap-inserted subsequences, goes like this:
We consider, for example, two subsequences, I = abccab and J = acbbbe,
aligned as

1 abcc—ab—
A
J a——cbbbc,
pictorially, we have a vertical line for a gap in sequence J, horizontal for one

in sequence I, and diagonal otherwise; each diagonal line can be a match or
a mismatch. Sellers sets

d(l,J, A) = # mismatches + 2 x # gaps,

a ¢ b b b b

o [

ix}

(the first corresponding to mismatches, the second to evolutionary deletions),
which is a special case of the Smith—Waterman form of Subsection 3.2.1; in
the above alignment, d(Z, J,A) =1+ (2 x 4) =9.

With this representation, there is a 1:1 correspondence between (I, J, A)
alignments and paths (of south, southeast, and east links) from upper left to
lower right. There are a number of algorithms for obtaining the dissimilarity
d{l,J) =miny d(I, J, A). The simplest is to define a neighborhood of A as
any intersecting path; because d(/, J, A) is additive on subpaths, comparison
is easily made, but may result in only a local minimum. There are, however,
dynamical programming methods that solve recursion relations for the scores
of truncated subsequences. The Needleman—Wunsch (1970) prototype takes
the form

d(i, j) =min{d(i — 1, j) + Alai, -), d@ — 1, j — 1) + Ala;, b)),
xd@,j— 1)+ A(=, b)),

where I and J are truncated to their first { and first j elements, respectively
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(d = O for negative argument), and A is the penalty for the pair or link repre-
sented. There is as well a more recent technique (Zhang and Marr, 1995) that
uses statistical mechanical methods to compute directly a weighted average
ofd(l, J, A) over all A.

We now have a global assessment of the match between I and J; the re-
maining problem is to determine the optimal pair (I, J) of (A, B). Rather
than tally all subsequence pairs I, J, we can at least accept (I, J) only if
the optimal alignment Ag satisfies s(Z, J, Ao) = pl(I, J) —d(I, J, Ao) > O;
then p > d/I, the mismatch density. Following this, accept only if either
(1) for any separation Ag = Ay + Ay, d(Ao)/1 < p as well; or (2) If Ag is
overlapped by A, then plo — dp = pli — d1. In fact, a large subclass can
be computed by a modified dynamical programming routine; if s(7, j) is the
maximum for sequences ending at i, j, it takes the form

s(i, j) = max{0,s( — 1, j — 1)+ Aa;, b)), sG — 1, j) — Ala;, —),
x s, j —1) — A(—, by)}.

However, agreement on the parameters to be used in A is not universal.

4.3. Multisequence Comparison

We continue with the question of how to locate and/or characterize sequences
with functional similarity mirrored by structural similarity, but now at the
multisequence level.

4.3.1. Locating a Common Pattern

Suppose that we have a collection of sequences associated with a common
function, such as containing a binding domain for a protein-effecting trans-
cription. How do we characterize this domain, which may very well consist
of discernible units — conserved subpieces — but not necessarily with invariant
spacings? Presumably there will be an optimal offset of each sequence with
respect to the others for lining up the subpieces, but the number of possible
off-register arrangements is astronomical. If we have some idea of the length
k of the subdomains involved, then one shortcut instead is as follows (Stormo
and Hartzell, 1989): We take each sequence, say of common length L, and
decompose it into its L 4+ 1 — k (overlapping) constituent words of length k.
Now we start with sequence #1, split into L + 1 — k words. We take each
word of sequence #2, similarly decomposed, and test it for maximum match
among words of #1, append it to its optimal partner in #1, and, in case of a
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tie, keep both pairs. Then we test the words of #3 against the set of pairs and
append to the closest pair, and so forth, until the sequences are exhausted.

However, what do we mean by the best match of a word to an »n tuplet
of words? A standard assessment is in terms of “information content.” If p;
is the relative frequency of base s in the genome and f;; that of base s at
location j in the whole set of asserted functional fragments, then

4
Ij(f/P) = Zf:vj ln2(f:vj/Ps)
1

is the information content of the set at location j; foraword j =1,...,%,
we correspondingly set I = lele I;. In the preceding procedure, then, the
best matching new word is that which gives the highest information content
when combined with the previous set. After all sequences are combined, we
end up with a set of =L 4+ 1 — k weight matrices (see also Bucher, 1990),
each being a 4 x k array of f;;, the most informative of which, as in the
figure, signifies a discovered motif. This scheme applies of course to protein
as well as to DNA, but the controlling amino acid interactions depend more
on physical category than specific identity (Miyazawa and Jernigan, 1985),
so that the “threading” techniques (Lathrop and Smith, 1996) used to allocate
sequence to structure to function effectively deal with equivalence classes of
amino acids. Note that, if f;; ~ p;, then a Taylor expansion yields

J“m

related to x2. Note too that

wr-n=1(3)=1(5)
=> (- p:)ln(f‘)

is a metric on probability distribution functions, always >0 and only =0 for
identical distributions.



4.3. Multisequence Comparison 105

We can generalize in another way. Suppose that {A} is a putative set of
markers asserted to characterize (by presence or absence), e.g., the exis-
tence of a type of binding domain, and that these occur at relative frequency
{f(A)} in the sample. In “random,” modeled by a parameter set {£2}, the
model frequencies would be { po(A)}. Is { f(A)} a significant departure from
randomness? In the above, A would be taken as a configuration of all bases
at all positions in the length & windows. If we imagine the data as the result
of N — ¢o trials with independent selection of the {A}, then the probability
of (F(A) = Nf(A)} wouldbe Py = (N!/[], F(A) [1, pa(A) ™). The
normalized (negative) log likelihood

1
[ = lim —— InPy,
Nooo N

which, by means of Stirling’s approximation, works out to

1= f(M)I[f(A) pa(A)],
A

would then be a legitimate measure of the deviation from randomness. Note
that if A is decomposed into assertedly independent A; (say the base at site ),
so that po(A) = []; pa(A;), and only f(A) =[], f(A;) is computed, then
we have instead

I=Y"3" fA)I[f(A)/palan],
Ay

i

which was used in the above.

4.3.2. Assessing Significance

If there is expected to be a common motif, appearing in various mangled
forms, but short enough — a minimal functional unit — that insertions and
deletions need not be considered, this should be picked up by similarity in —
and out of register — multiple occupancy. Because we are looking at a sequence
of locations, it is really the significance of an unlikely “run” that is being as-
sessed, and there is no reason why the pair-matching technology should not
be extended to this case. Again, let us take the random reference as an inde-
pendent choice of letters at each site, with probability p, for type «. Suppose
that we have obtained an optimally aligned sample of # sequences. The pos-
sibility of a nonlethal mismatch need not be negligible; we therefore define a
match at a given location as >k of the n sequences exhibiting the same letter.
If we observe a contiguous r-site match in the sense just described (extension
to f-repeated » matches is direct), then a first estimate of significance would
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be a comparison with E(r, ), after which we can fine tune by comparison
with the distribution of 7pax.

The question then is that of E(ry,y) over all (out-of-register) comparisons
of sequences of lengths /; - - -/,. Proceeding exactly as we did in the two-
sequence comparison, we find that the expected number of sites with at least
k out of n matching letters would be the sum over permutations (i.e., which
J are the same)

DD b2 pa) - U Pe)lis1 ) - (I Ga)

Jj=k perm o

Y3 () st

o j=k
= pli--ly.

Again, a run starts after a failure at any of ¢/, .. .J, multisequence points,
which tells us that

E(rmax) = Inyyp(gl- - 1n) +- -

where
r=22 () it
o k

The technical problem of computing p for large n is not trivial and is
often solved by large-deviation theory. However, we can be quite direct. The
quantity we need is

Ix)= Z (") (1 —xy
— \J

where k > nx in the region of interest, so that a normal approximation is
unsuitable. A Poisson approximation can be used, but still better, let us put
I(x)inintegral form, so that it is completely controllable. To do so, we simply
observe that, from (;‘.) n—j)= (J.:‘_l)(j + 1), then

I'ex) = Z (’;) jR T =Xy - Z (Z’)(n — i —xyi!

k k
= Z (") JR T =y - Z ('f)jxf-l(l —xy
FERY 1 N

= n!l/k— 1ln — kOx* 11 — x)"*.
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Hence

n! *
I — k-1 1— n—kd
(x) kl!n_k!/() y Tl =y tay

in terms of the incomplete beta function.

Because the integrand is maximumat yo =k — 1/n — 1, but x < yp, the
integrand rises rapidly as y approaches x, so we can approximate

X
fo YU =y dy

= / x =y —x +yFay
0

x k-1 n—k
= X101 —x)”’k/ (1 Z) (1 + 2 ) dy
0 X 1 —x

® y y
~x*1 —x)"*"/ exp—[(k— D= +(n—k) i|dy
0 X 1—x
= x* 21— xy [k - 1) — (n — 1x].
We conclude that p has the very computable form
k-2 ,n—k—1

pu qu A
p=\> k

—~k—1—ps(n—1) k

to which, e.g., the Poisson approximation, can also be applied.

Assignment 7

In a model of random evolution, an organism is defined by a string of /
composite sites, each one of which can assume one of two forms, labeled
by 0 or 1. Transitions from O to 1 or 1 to O occur at a rate of y per site per
generation, from an initial progenitor. After 7' generations, two members of
the population are compared, according to the score

s =r — Ak,

where r is the number of matches in homologous n-site stretches of the two
members, £ is the number of mismatches, and sp,x is the maximum of s over
all n.

1. What is the probability that two corresponding sites are the same;
different?
2. Find the distribution of s at fixed 5, the distribution of s,,,.
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3. Show that the dependence of E(syax) on/ changes qualitatively when
A =coth2yT.

4.3.3. Category Analysis

In attempting to understand the language of DNA, we know that there are
broad categories of function that constitute the basic structure. These are both
in the form of general instructions: splice out the intron that starts here, start
transcribing in another 30 bases, . . ., and translated properties: this is an exon,
this will be involved in phosphorylation, ... . In numerous cases, we have
a collection of subsequences known to have a common characteristic, and
the objective is to find out in what fashion this can be read off as a common
characteristic of the base sequence involved, for then the property could be
routinely identified from sequence data alone.

An important example is that of splicing signals. Introns are removed from
pre-m-RNA by RNA splicing. First the pre-RNA is cleaved at a 5'-splice site
of the intron, separating the sequence into - - - exon + intron exon . .., and
then cleaved at a 3'-splice site of the intron, with the intron “lariat” removed
by a spliceosome (of small ribonuclear protein). A great deal of study on
higher eukoryotes has led to the conclusion (Mount, 1982) that consensus
subsequences

§ — exon — (i) AG|GT (g) AGT —intron — %,

5 — intron — (g) N(?)AGHG exon — 3’
n>10

are involved; here (i) indicates that either C or A isrequired, N stands for any
base, and the cut takes place at ||. The problem is to decide what combinations
of the variable bases indeed give a splice command. A traditional technique is
to choose the characteristic being tested for, say identification as a splice sig-
nal, construct the corresponding weight matrix (f,;) of relative frequencies of
base « at site j for alargesample of cases that have been found, and thenregard

W= fay ()

as the score for the sequence being tested, which must exceed some thresh-
old to be evaluated as a “success.” Here, again, §;(«) = 1 if base « is at
site j, else 0. There are a number of intelligent modifications that have been
made to accord with presumed composite structure. For example (Shapiro and
Senapathy, 1987) in the 3'-splice problem, there are 10 sites to the left of N
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and 4 to the right that appear to be significant. Let %; be the highest sum of
the highest 8 weights out of 10 in the “training” sample, /; the lowest sum of
the lowest 8 weights, /7 the highest sum of 4 weights, I, the lowest. Then if
f1 as the highest weight of 8 out of 10 in the test sequence, £, the sum of the
4 weights, the score

W:L‘l—ll 3[2—12

h— 1 28— Iy
has empirically proven quite effective.

The above is more than a little bit ad hoc. What we are really trying to
do is to separate the sample “points”, i.e., subsequence configurations, into
two clusters or categories, so that a test “point” can be assessed as to which
cluster it is closer to. Quite generally, the nonweighted cluster problem is to
separate n data points into ¢ clusters, which can be translated as the following:
minimize

n c

J(w,c) = Z Wig d’?a
1

i=l a=

subject to

Z Wia = 1,

a=1
where w;, = 1 if point i is assigned to cluster ¢ and d;, is the Euclidean
distance between point i and the centroid of cluster 4. This can be solved by
“simulated-annealing” minimization techniques.

An alternative approach is by means of classical linear discriminant analy-
sis. Fickett and Tung (1992) looked at the problem of distinguishing between
coding (exon) and noncoding segments (introns) of DNA. Among various
suggested criteria, they found that dicodon usage — the frequencies of the
4096 different hexamers in a segment — was as effective as any more so-
phisticated criterion. The formalism produces a coefficient vector such that
for a window characterization vector f, the window is “coding” if¢- f > ¢
for some threshold ¢. Here, we determine ¢ by maximizing the ratio of the
between-population variation of ¢ - f to the within-population variation of
¢ - f. Specifically, suppose that f,,,; is the dicodon — j frequency for the wh
window observed of class v (coding or noncoding), f, j» is the mean over w,
and f j is the mean over w and v. Then the total covariance matrix 7' is given

by
Tjk = Z(fwvj - fj)(fka - fk),
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the within-covariance W by
ij - Z(fwvj - fvj)(fka - ka),

and the between-covariance by B =T — W. Maximizing the ratio of varia-
tions ¢ - Bc/c- Wc means that ¢ belongs to the maximal eigenvalue A of B
with weight W : Bc = AW, or

W1 Bc = ac,

and the threshold ¢ is generally determined so that the fraction of errors on
coding windows equals the fraction on noncoding windows.

Computationally, the evaluation of W~! can be a problem, especially be-
cause redundancy of information makes W nearly singular. We can avoid this
by replacing W with its diagonal part Wp, resulting in what is equivalent to
the Penrose discriminant. It is this version that was used, resulting in a 70%
accuracy in the above study.

A similar technique has been used (Hayashi, 1952; Tida, 1987, 1988) for
splice signal identification; here the 3’'-splice signature was taken as the full
16 nucleotide stretch corresponding to the consensus ( g mhiN (g JAG||G.The
training sample was described by 3?”"’)(05) = {(1)} asbase « is or isnot present
atsite j inthe w' item froma collection of Ny splice (v = 1) and N, nonsplice
(v = 2) sequences. A linear scor

SO =3 Cia) 88 ]
5
was set up for the item (v, w), and the problem was expressed as that of
finding the 64 weights, not simply as a frequency weight matrix, but so that
the v = 1 scores are clustered as far fromthe v = 2 scores as possible. Again,
the traditional criterion was used: We define

s = Ni D st 5= % Do se,

vVow v, W

1 -
ofor = N D (sv -3)",

v,w
Oper = %ZNU(S@) - 5)°
v
= (N1 Ny/NH(SH - 5y

and maximize oigy/07o7, i-€., We maximize the distance between centers of
mass relative to the total standard deviation. The {C;(«)} evaluated in this
way of course tell us which sites are important and which contribute mainly
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%

score

%

to the noise. The corresponding scores, § = > o Cile)d;lal, then applied
to the training data, show a very good separation between type 1 and type 2,
yielding greater than 90% selection accuracy, and have been used to predict
new splice sites as well

4.3.4. Adaptive Techniques

Bayesian Analysis

There is a more direct estimation of category (see, e.g., Farber et al., 1990;
Baldi and Brunak, 1998). Suppose that the datum to be classified consists
of a sequence S = {s;} of bases, or of codons, or of dicodons, or of amino
acids, or, . . ., each unit of which may be specified in various redundant ways
by a bit sequence. For example, 5 bits for an amino acid or spacer (end of
protein) will suffice, but we can also use 21 bits, all of which vanish but one —
a typical neural net specification which we also used in the lida example. If
the categories are labeled by ., Bayes’s theorem tells us that the probability
that a sequence S being tested belongs to ¢ can be written as

Pu|S)=PS | w)P)/P(S
where

P(S)=) P(S|v)PW).
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Here, P(u) and P(S | pt) are in principle estimated by analysis of the prior
training data, but this is not feasible if S is too long: A given S may never have
occurred in the training data, making P(S | p) impossible to estimate. The
simplest way of avoiding this problem is by modeling P(S | i). We can, for
example, regard the units s of S as independent (but then these units should
be composite, to afford more information), i.e.,

p@m):]f[P(si ),

where, of course,

P(si | u)=E[8(s)| ¢l

(the event that s; is at i) in our previous notation.

If the units are not only independent but also identically distributed under
change of location, as in codon usage criteria, then the above equation reduces
to

PS | =[P 1w,

where N; is the number of times that s occurs in .S = {s;}, so that

P(u)exp NsIn P(s | )
S L,PW)expY  NyInP(s | v)

In particular, for dichotomic u, i.e., true or false, we can write

_ P(T) exp ), NsIn p;

~ P(T)exp)_, N;Inps + p(F) exp)_, N, Ing,

B 1

T Itexp(y, TN, +6)

where p, = P(s | T), g5 = 1—py, Ty = Ing,/py,and0 = In [P(F)/P(I)],
all of which are obtainable from the training set. This sigmoidal form, O for
large argument, 1 for small — or the reverse — is a standard transformation

from quantitative data to approximate yes or no.
A more sophisticated model uses a Markov chain:

P(S|T)=Pi(s1)Pra(s2 | s1) - Pnoi Gy [sn-1)
= Pio(s1, 52) Po3(s2, 83)- - - Pv_1 v(sv, sv—1)/Pa(s2)- - - Py_1(sn-1)

= Pi(s1)- - Pn(sn) 812051, 82) - - - gn—1,N(SN—1, SN),

P(u|S) =

P(T|3)

where g(s,¢) = P(s, t)/ P(s) P(t) is the neighbor correlation coefficient. For
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identically distributed singlets and pairs, we have, in obvious notation,

PSIT)=[]p¥]]peNoss
s 5.t

leading, in equally obvious notation, to
P(T|8)=1/1 +exp(ZTst + TN +a).
s st

Neural Networks

There is certainly more significant information available in the independently
but not identically distributed site model. Suppose that z is not necessarily
dichotomic, and in conformity with computational realizations, let us indeed
imagine that we have adopted a binary string representation, with the » pos-
sibilities at each composite site represented by a 1 in a substring of # bits, all
of the others being 0. Then if p;(u) = prob(x; =1 | &), we have

N
PX | @) =[] piw™,
1

so that if w,; =1n p;(u) and b, =1n P(u), we can write

P(u|X) e“”@/ze““@,

where
Upg = 2 :w#:jxj +by.
J

The problem of course is to use training information to determine the para-
meters w,,;, b, which can thereafter be used for testing mystery data. Once
this is done, the © to be allocated to the data would, e.g., be that which
maximizes P[u | X]; ideally, the maximum would be close to 1 and the
others close to 0. In the end, we will have developed in this way a vector of
functions [ f,.(X)] whose values will be the type u probabilities associated
with the input data X. The specific form, P(u | X), given above isreasonable
but relies on simplifying assumptionsto be able to estimate the unknown para-
meters in the function from limited training data. A class of representation
functions, more complex (but hardly general) and with similar components,
is that termed “neural networks.” Here, the unit is the multiple input-few
output function P (u | X), which by itself represents all networks of the two-
layer “perceptron” architecture. If the units are cascaded by “hidden layers”
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between actual input and output, then it is termed a neural network. In either
case, the nonlinearity at any level can be accentuated if any P(u | X) is re-
placed with &” @)/ € “w@ which as y — oo is indeed 1 for the max-
imum g, otherwise 0. In strictly binary representation, which is the norm,
this is equivalent to [P(1 | X), P(0 | X)] = %{1 + sgn [u(X) — uo(X)]},
and would certainly be used for the output layer if the training data were
used one piece at a time, as its value is then deterministic, not probabilistic.

output
hidden

input

There are then many internal parameters, which we can designate as the
set {w, }, that enter into the input—output function denoted by F), (x, w). Inthe
process of “training” the network, we want to home in on optimal values of
the parameters w, to best represent the input—output relationship. In practice,
some feeling as to how the inputs should be clustered in a qualitative fashion
means that many connections will not be made, i.e., the corresponding w are
set equal to 0 and do not appear in F,(x, w). Then if training sets x® are
entered, whose output characteristics, say pg‘), are known, the w are to be

adjusted so that the errors between the F,,(x®), w) and the p¥ are minimized.
This depends on how we define the error. One definition is simply to sum the
mean square error over the whole training set

E=)"[pP - F,65 w]

kg

and minimize to obtain the optimal w. Minimization of a many-variable func-
tion is a fine art, the most primitive version of which (“conjugate gradient™)
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is an iteration in which a guess w is corrected by setting
Aw, = —yIdE/dw,;

if this is really a small change, then AE =Y (BE/9w,)Aw, =
—y 3 (E/dw,)? < 0, as desired. If the uncorrected w is the result of the
previous training sets and the correction is that which is due to inclusion of
further sets, we speak of backpropagating the error to modify the w. Other
techniques, such as simulated annealing, allow a fraction of increases in E as
well, to avoid any local-minimum traps.

A simple modification often used is to balance the total weights of the
categories in the training set, e.g.,

E=) ()~ B, w)'/N,,
ku

where N, is the number of times that 1 occurs in the training set. A rather
different form maximizes the mutual information previously introduced. For
this purpose, we first need the relative frequency p,, , of inserting a training
pattern characterized by v and concluding that the pattern is u, for a given
{w,}. The mutual information is then n

M{w) =" pu (P, o/ Pu P-2)-

“

Neural networks are not magic; they deal with a very small subset of
parameterized output functions of the available input. However, if we have
empirical, even anecdotal, information as to the important paths from input
data to output characterization, this can be incorporated into the neural net-
work structure (conversely, the optimal set of {w, } determined in the process
may give a hint as to the biochemical paths involved — this is certainly the
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case for the organization of analogous linguistic data in the so-called connec-
tionist form). For example, the prediction of an « helix, a 8 sheet, or a coil
secondary structure of proteins from the primary amino acid sequence, by
use of the three-output network structure given above (Stolorz et al., 1992),
does no better than 60%-70% accuracy, whereas a corresponding highly
structured network for detecting E. coli transcriptional promoters (Abremski
et al., 1991) has close to 100% accuracy in postdiction and is very effective
in prediction. Here, the 4 bases AC GT were given a 4-bit representation, and
the significant information was that of 6 bases from the —10 region, 6 from
the —35 region, which however could be separated from the —10 region by
15-21 bases. Then, in the neural network, the 7 possible overlapping 6 —
base regions, together with the 6 — base region at —10, were represented by
72 input units and connected to 8 hidden units, 1-24 to the first, 5-28 to the
second, etc. The 8 were then connected to 1 output unit. In the perceptron
version, all 72 were connected to the single output. Both versions had the
high accuracy quoted above, showing how important assessment of relevant
information becomes.

Hopfield Networks

In the feed-forward network design, the training of the network requires feed-
back as well, which we do “by hand” by setting the network parameters to
minimize the difference between output and desired output. More complex
processing of the input could be carried out if feedback existed in the net-
work itself, creating what is termed a Hopfield network; see, e.g., Beale and
Jackson, 1990. The power of a Hopfield network is more evident in a some-
what different, but also somewhat related, application, in which the network,
completely connected, node to node, starts out with a “memory” of many
possible outputs. Given any input, it then proceeds in an unsupervised way to
find the most closely related output.
Specifically, suppose we want to remember a set of patterns

o' ={of; i=1,...N}, s=1,....M
where
O'i::i:]..

Then an idealized discrete dynamics might update the setting according to

N
o] = sgn (ZT,-J-UJ-).
1
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How should the node i—node j connection matrix be determined? An
obvious choice would be

| M
L = 37 201 o
s=1

because if the patterns were orthogonal,
S ojo=Nb,
Jj

then we would have ) Tj; th- = ({1/M) Zsi,- of aj-cf]f = (N/M) o}, and the
updating would stop as soon as any pattern p* is reached. In practice, a sizable
fraction of M nonorthogonal patterns still serve as attractors of the dynamics.



5
Spatial Structure and Dynamics of DNA

5.1. Thermal Behavior

We have paid little attention to the way in which DNA transmits its informa-
tion. There are many physicochemical steps involved, with a common theme
of energy propagation and localization. Much activity has been devoted to the
large-scale behavior of DNA, modeled, e.g., as a belt with elastic properties
and giving rise to the “supercoiled” configuration responsible for placing lin-
early distant sections in close proximity, spatially. The double strand under
such motions is stiff (“persistent”) at aresolution of some 50 bp. On the other
hand, the overt mechanism of information transmission is that of transcription
to RNA involving a “transcription bubble” or strand separation of only some
20 bp, activated by RNA polymerase contact. Of course, strand separation
should be easier where it is required, and if we heat DNA — as a metaphor
for uniform energy transfer — the “melting” is stepwise and nonuniform, pre-
sumably a function of the local properties of the (double) molecule. In fact,
we might anticipate that such heterogeneous dynamics would appear even
in homogeneous DNA, as this would imply greater sensitivity to external
stimuli.

Quite different aspects are involved in the dynamics of DNA, RNA, and
protein. The first minimally realistic model to be solved along these lines
was that of local denaturation (H-bond breaking) of DNA, a requirement
for strand separation to allow for transcription (Maddox, 1989, in Nature,
said in effect that this work was the greatest discovery since the zipper). The
model (Techera et al., 1989; Peyrard and Bishop, 1989) is literally that of
H-bond connections that lose their integrity when stretched too far by chain
vibrations, taken here as thermally excited. As model energy we will choose
the ultrasimplified

K
H = Z { u + U 7[(“71 - unfl)2 + (s — Unfl)z] + V(u, — Un)}

118
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Vi —v) = D[e_“(”_”)/ﬁ - 1]2.

Only the out-of-phase y, = % (u, — v,) motions stretch bonds, so we can
eliminate the x, = (1/ \/E) (1, + v,), retaining only the y energy:

m . K a
Hy=) [5y3 + 5O Va1 + D(e " — 1)2} :

In this reduced model, in which one pays homage to the strong directionality
of the hydrogen bond, the twist of the two-strand ladder, and indeed any
motion transverse to y,, becomes irrelevant — but the basic phenomenology
is not disturbed.

A first step in the analysis is traditionally that of assuming that the sys-
tem is in thermal equilibrium, and we accomplish this by asserting that, at
reciprocal temperature B, the unnormalized probability of a configuration
(V1.5 YN» Y1, ..., YN 1S given by the Boltzmann factor

p(y, ) = e RO,

The basic construct in statistical mechanics is the normalization factor, or
partition function, subsequent to whose computation all of the system’s prop-
erties are readily found. Here then, the partition function E is

o) :/[ e BIEN 4y dyy
//e BEOw waF o BDE™ D gy gy

The velocity integrations separate out, so if we are interested in positional
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amplitudes alone, it suffices to consider

= /,,./e—ﬁ%(yn—yn-l)ﬂe—ﬂme-%—l)2 dyy---dyn.

Of course, we have notreally defined the problemuntil we supply information
as to what happens at the end of the chain. If the chain is long enough,
this should not affect any significant properties, so we will choose periodic
boundary conditions: With coordinates yi, y2, ..., yn, weactasif yy 41 = y1,
as a mathematical convenience. Hence we can write

03]

E/:/"'/T(yl,y2)T(y2,))3)"'T())Nfl,YN)T())N,yl)d))l'"dyN

where
K
T(y,y)=exp—B [z(y — Y+ D™ — 1)2] ,

termed the transition operator, can be regarded as a matrix with continuous
indices, so that

B =TrTV.

Now what are we looking for? Presumably, for a qualitative change in the
distribution of strand separation as temperature is raised. However, the system
can be regarded as a set of one-dimensional particles yi, ... yny under an
external potential V (y) and with next-neighbor interaction % K — ya1)?,
and a theorem of van Hove assures us that, even in the limit N — co needed to
show a sharp phase transition, (1/N) In &’ and associated physical quantities
remain analytic in all parameters. Indeed, if we seek a state in which the yy
are localized — so that we can delocalize them by raising the temperature,
this would require a trapped phase in equilibrium with a phase of zero vapor
pressure, which certainly will not happen in one dimension. One way of
enabling a qualitative change is by a limiting operation, imagining K as
arbitrarily large, so that elasticity appears only on a large length scale. Without
actually scaling every thing so that the limit can be taken, let us see how this
works out.

Leaving the potential D(e~* — 1)* = U(y) unspecified for the moment,
we need to carry out the operation

Tf(y) = f Ty ) dy

_ U f e FKI2-YR 13y dy.
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Because the Fourier transform fe”‘y fe—ﬂK/%y—y’)zf(y/) dy'dy =
Jf O fE f(yydydy! = () BK)V? e~FEK [ W f(y)dy =
(277:/‘3[()1/2 f[ezp;;((d/dy/)?eikyl]f(y/) dy/ — (271,/‘3[()1/2 feikyfe?ﬂ]ix (dfdy'y?
f(y)dy', we can write

Tf(y) — e~ BUW gzpix (d/dyy? f(y)(Zﬂ'/,BK)lﬂ

so that
B = r/BEKYN Ti[e#VO ergxw/dyﬁ]i\f
= (Zﬂ/,BK)N’Q Tr[eilf BU) efﬁy(d/d)’)2 87% ﬂU(y)]N

According to a slightly modified Baker—Campbell-Hausdorf expansion
(Hausner and Schwartz, 1968) we have

1 1
412 B A2 _ exp (A + B+ E[B’ [B, A]l - Q[A’ [A, B]] +>

where
[A,B]=AB — BA,
SO

o3 FUD) popx @149V ,—38U ()
1
- —gU —_(d/dy)*
eXp( 8 (y)+2,91(( /dy)
! 24U (y)* +1/(488K a U’
X B/ (y)+/(ﬁ)d—3;2 6]

+21U”( )£+U”( )d—2 +
dy Y dy Y dy? '
Neglecting the 1/K? terms, we therefore have made the replacement

2

T = Qr/BK) ?exp — { —_

5K a2 TP+ U“(y)2/24K]} :

Now it is easily seen that the expectation of y; (equivalent to that of any
y;j)is given by
Ey)=TryT"V/Trr¥.

However, we know that, for large N, if A9 is the largest eigenvalue of the real
symmetric operator T, then (T/Ax0)™ (v, ¥) — ¢o(y) $o(¥), where ¢y is the
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normalized eigenfunction belonging to 1¢, and so

E(y) = / y do(y)* dy.

Finding ¢o(y) depends of course on the precise potential U(y) that is used,
but the two general possibilities are easily seen. If Ay is part of the discrete
spectrum, then ¢o(y)is localized and a finite E(y)results; if there isno discrete
spectrum, ¢(y) can be normalized only if the domain of y is restricted to
being finite, and then E(y) will diverge as the size of the domain increases.
There will thus be a phase transition to unbounded transverse motion if the
discrete spectrum disappears at some value of 8. Clearly,

ro = e 02/ BK)V?

where

~25K DO TBUGI$0) = 50600),
where s is the lowest eigenvalue of the accompanying operator and U is the
modified potential, as above.

Now an even one-dimensional potential (the crucial point is that I/(co) =
U (—c0)) with a trough below its lowest asymptotic value will always have
a localized discrete eigenvalue state. However, {7 is not of this form, and
so for sufficiently high temperature — low 8 — there will be no bound state,
leading to a y-probability distribution stretching out uniformly to infinity. A
quick estimate of the temperature at which rapid delocalization in this sense
occurs is given by the standard JWKB method of solving the Schrédinger
equation satisfied by ¢y (y) and gives precisely the same result as a “semiclas-
sical” hand-waving estimate, which is as follows. In the usual Schrédinger
equation of quantum physics, say for unit mass, the parameter 8K is equated
with 1 /}‘1'2, where % denotes (1/27) times Planck’s constant, and then, not
distinguishing between U and U, the classical mechanics being analyzed has
the energy £ = % p? + BU(y). Each discrete eigenstate of energy E covers
a volume 2k — 27/./BK in (y, p) space, a shell whose midsurface is pre-
cisely % p* + BU(y) = E. Hence the nurmber of discrete eigenstates up to the
energy value F is given by

1
N(E) - 5 = f/ dydp/(2n/\/ FK)

12 +BU(y)<E

1
=~ JFK f (2LE — UG dy,
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integrated over the range in which the square root is real, and so the number
of states up to the continuum, which starts at £ = U(00), dips below 1 when

1
S7/VEK = / / 281U (c0) — UGV dy,

or
1
5 = (B/m) / [U(c0) = UM dy.
In particular, for the (Morse) potential of the Peyrard-Bishop model,
1 O
~ = «/Sk/n'/ DY22e™® — o722 4y
B ~lm2
= (4/ma)~ KD

5.2. Dynamics

The fact that the original two-strand model “evaporated” to separation in ther-
mal equilibrium [Zh97] is a consequence of the energy fluctuations available
in a thermal ensemble defined as being supplied by a heat bath, e.g., the
aqueous environment. A more relevant question might be this: Suppose that
the temperature is low enough that unseparated pairs of strands are at least
metastable, and localized energy is supplied, e.g., by RNA polymerase; what
then will be the time development of the resulting strand separation profile? To
start with, let us anchor the pair of strands in its potential minimum {(y, =y}
and look at the small-amplitude motions in the vicinity of this state. For this
purpose, then

Hy—) %y,f +) UM+ % DU On -+ % > On— e

so the equations of motion for {& = y, —yo} take the form
En - wg(;rt+l =20+ Gam1) Jf‘a)% {n = 0 (where @g =K/m and a)% =
U”(y)/m). Rather than solve this easily solvable linear equation, let us ob-
serve that, on summing over 7,

2
%an+w%2£‘n =0,

so if, e.g., we add pure kinetic energy at time 0, with > £,(0) = 0, then

D 6 = Asinoyt.
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On the other hand, multiplying by 7% and summing, we obtain

2
%anfn + @y Zn Ln —ZW%ZEn,

with the solution

Zn L) = — —tcoswlt

In other words, not only does an initial localized excitation oscillate as ex-
pected, but it spreads spatially as well.

The above linear analysis need not be valid beyond a short time. At longer
time, the spreading of any initial distribution is very much affected by the
omitted nonlinear terms. There are many ways of seeing this, but perhaps the
simplest is that of equivalent linearization (Krylov and Bogoliubov, 1947)
an intelligent modification of the familiar variation-of-constants approach.
Suppose that the potential minimumoccurs at y = 0, as it does in the Peyrard—
Bishop model. The basic solution of the linearly truncated dynamics is of
course exponential, in both the variables n and ¢ : y, = &["~“1 where
substitution into the linearized equation shows that

w(0)* = w} + 2031 — cos ).

We now create a time-dependent envelope:

1
ORI VAGESS R HOE S

and ask when this can satisfy the full equation.
A neat procedure is to work with the Lagrangian rather than the
Hamiltonian:

K
Ly =3 257 = 2 3 0l — ya1F = Y UL,

and, because we are interested in the slowly varying envelope F,(t), we
average the Lagrangian over a few cycles of the basic oscillation. Thus by
setting

¢ =nb —w(@)t
and then using (¢'£¢) = 0 for any integer K # 0, we have
1 . , . '
<Z yf) = 3 2 B —iw B’ + (B +ioENe )

= %Z(F,, —iw E)(E +iwF
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and similarly
(3 00—y} = S = By )6 (8 = By e
= %Z(Fn ~ F, e (F;} - Fj_ ),
whereas for U(y) = (e=* — 1)?, we use

1
YV, = |F,| cos (9 + 2,lnli',,/li;:‘)
i
to obtain (Ip and I; are the usual modified Bessel functions)

(Y von)=DY @ —2e 1)
= D) [l a|F,]) —2Io (al F )+ 1].

Hence

(Ly) = % Y (B —iwF)F) +ioF))

K . .
- Y By~ By e )F} — FF€)
— D) [l 2a|F,|) — 21y (a|F, ) + 1],

yielding the equations of motion (d/dt)(3(L,)/dF}) = (3(L,)/9F)}), or

Fy, —2iwE, — 0* Fy, = 03 (Fyp1 €% — 2F, + F,_1e7'9)
4aD 1
——— By — [l Qa|Fu]) — hi(alFuD].
m | P
Because we know that F,, = const is a solution at small F,, we subtract
—w?F, = 2w(cos 6 — 1)F, — [(4aD)/m] % F,, giving us

Fp —2i0F, = 0}cos8 (Fyp1 — 2F, + Fy 1) +iw?sing (Fpyy — Fy1)

4aD 1 1
——— F—— 10 Qa|F,) — | L (@|Fu) — s alFul |-
m | Fy 2

If the envelope changes slowly in space on the scale of base—base separa-
tion, we can replace this with

Fy — 0 cosOF! = 2iwF, + 2w} siné F,

—4aDF—1 5L QalFy|) — L (@| Fxl) : | £
- n a |ty - a|t'y|) — = 4|1’y 5
m " |E, ! ! 2
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in which form some qualitative aspects are apparent. For example, imagine a
frequency-shifted traveling envelope (Remoissenet, 1986)

Fo(t) =" F(n — vb),
so that
(w§cos® —v?) F" 4 2i [wfsind — (w — 8 v] ¥’
= [2w] + f (a|F|) — §*] F,
where

w?=2a’D/m, f(x)=-

1
|:Il(2X) - II(X) - 5 X] .

o | =

This will have a real solution if
v = w% sinf /(w — &)

[note that because w? = w? + 2w} (1 — cos ), then @ (dw/d0) = w§ sin0,
S0 vy = w} sin 0 /w is the group velocity of a wave packet), and then will take
the form

MF" = —V'(F),

with the double-hill potential V ("), as shown. This, we can see, means that
at finite amplitude we have a solution (dashed line in figure) with a moving
“kink” if M > Q, but otherwise (and for M < () only a moving wave train.

v

N

5.3. Effect of Heterogeneity

Of course, the essence of DNA lies in its heterogeneity, and we typically might
expect that varying the chain—chain interactions, e.g., having a random set
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{U,(y,)} rather than a common one U(y,), would impart a detailed structure
to the dynamics, as well as to the thermally equilibrated state. Numerical
work has shown that this is not the case. However, a hint as to what might
be going on is supplied by the observation that if the stiffness K in the basic
model is given a y, dependence, e.g.,

K — Ky + (K2 — Ky e ?/?,

thereby accentuating the effect of any fluctuations in the {y,}, the homoge-
neous “melting” transition appears to sharpen to first order (Peyrard, 1988).
This suggests that it is the variation in stiffness that is responsible for spatially
preferred domains of separation. Simulations with the randomness applied to
K(y) instead (Cule and Hwa, 1997) have also verified this supposition. No
corresponding analytic work exists.

Assignment 8

1. Examine the statistics of the traditional score W =3 f,; x;(a) of
Subsection 3.3.3.

2. Discuss the relevance of the Arnold-Kolmogorov theorem on the re-
cursive representation of many-variable functions to design of neural
networks.

3. How is the Peyrard-Bishop analysis of H-bond breaking modified by
inhomogeneity in the twin strand?
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allele, 24
anchoring, 18-23

back propagation, 115

Baker—Campbell-Hausd orf expansion, 120

base, 2-3

frequencies, 42
Bayes’ theorem, 111
Benferroni inequality, 83
Boltzmann equation, 119

Chen—Stein theorem, 86
chi square test, 44
chromosome walking, 16
clone

density, 18, 22

end-characterized, 36

library, 9-12

resolved negative, 31
codon, 6

dicodon usage, 109
concensus, 108
conjugate gradient method, 114
contig, 13, 14, 40
correlation

coefficient, 62

cross, 55

displaced, 53

factorial moments, 64

persistence, 55

power law, 67

ratio, 43

window, 61-4
covariance and variance, 54, 61-5
coverage, 9, 13, 19
cumulant expansion, 17

design, experimental, 29
diffusion, 72

Index

DNA, 1-6
complementary, 62
dynamics, 123-6
functional regions, 42
inhomogeneity in, 73, 126
strand symmetry, 54
supercoiled, 118
thermal behavior, 118-23
dot matrix, 50, 102
dynamical programming, 102

entropy (see also information)
Jensen-Shannon, 49
per site, 79
equivalent linearization, 124
evaporation, 123
evolution, stochastic, 57
exon, 4, 60, 108-11
expansion-mutation model, 56-7

fingerprint assembly, 13-18, 36-41
Fokker—Planck equation, 72
form factor, for repeated pattern, 74
fragment size distribution, 7

gel electrophoresis, 7
gene, 3,4,24,27
generating function, 24, 38, 51, 59

hidden layer, 113
Hopfield network, 115
Hurst index, 67

incidence matrix, 30
inclusion-exclusion theorem, 32
indel, 96, 99-100
information (see also entropy)
content, 104-5
mutual, 56
power spectrum, 73-8
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intron, 4, 108-11
island, 13, 18, 36
isochore, 49, 66, 69

JWKB method, 122
kurtosis, 65
Lagrangian form, 124-5

likelihood, 47, 105
linkage unit, genetic, 23

map
linkage, 23
physical, 13

restriction, 10
Markov models

basic, 8

hidden, 67-9

higher order, 47

walking, 69-73
matching, 81

aligned, 92, 102

asymptotic ex pansion, 87-89

common pattern, 103
gaps, 99

greedy, 93
imperfections, 92
indels, 96, 102
independence model, 85
mismatch, 94

mutual exclusion model, 82

N-tuplet, 103
penalty-free, 97
Morse potential, 123

neural network, 113

ocean, 13
orthogonal patters, 117

partial digestion, 10
partition function, 119
patch model, 65-67
Penrose discriminant, 110
perceptron, 113
persistence length, 118
pooling, 28-35
power spectrum, 73-8
probability distribution
chi square, 46

Index

cluster size, 61
extreme value, 89
Gumbel, 90, 93
normal, 91
Poisson, 17, 85, 93
protein, 5, 8, 92, 104
purine, 3, 55
pyrimidine, 2, 55

random incidence, 34
reading frame, 6
open, 61
repeats
exon, 60
longest, 49
simple sequence, 58
subsequence, 78
tandem variation, 27
RNA, 5
splice signal, 108
restriction enzyme, 6, 10
restriction fragment length polymorphism,
23
runs, distribution of, 81-01

score (see also sequence comparision)
acquisition, 100-3
distribution, 92
linear regime, 100-1
log regime, 94, 101
nonparametric, 96
phase trasition, 96
phase transition, 96
sequence comparison (see also matching)
dissimilarity, 101
scrambled, 56
shuffled, 65
sequence-tagged site, 18
sequencing methods
anchoring, 18
fingerprint, 13
hybridization, 23
optical, 10
shotgun, 36
sigmoidal form, 112
statistical models of sequence correlation
cluster distribution, 61
expansion—mutation, 56-7
patch model, 65-7
hidden Markov, 67-9
walking Markov, 69-73



Stirling approximation, 25, 45, 91, 105
subsequence analysis

categories, 108

clusters, 109

linear disriminant, 109

repeats, 78

training set, 114

transcription, 5
bubble, 118

transform
Fourler, 24, 74
Laplace, 24

Index

Walsh, 76

wavelet, 77
transition operator, 120
translation, 5

Van Hove theorem, 120
vector, 10
Venn diagram, 83

weight matrix, 103
window
correlation within, 61-3
correlation between, 64
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