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Preface

Several developments in recent years require essential progresses in the field of information
processing, especially in information organization and aggregation. The Artificial
Intelligence (A.l.) domain relates to the way humans process information and knowledge
and is aiming to create machines that can perform tasks similar to humans in information
processing and knowledge discovery. A.lL specifically needs new methods for information
organization and aggregation. On the other hand, the information systems in general, and
the Internet-based systems specifically, have reached a bottleneck due to the lack of the
right tools for selecting the right information, aggregating information, and making use of
the results of these operations. In a parallel development, cognitive sciences, behavioral
science, economy, sociology and other human-related sciences need new theoretical tools to
deal with and better explain how humans select, organize and aggregate information in
relation to other information processing tasks, to goals and to knowledge the individuals
have. Moreover, methods and tools are needed to determine how the information
organization and aggregation processes contribute building patterns of behavior of
individuals, groups, companies and society. Understanding such behaviors will much help
in developing robotics, in clarifying the relationships humans and robots may or should
develop, and in determining how robotic communities can aggregate in the near future.

Several methods and tools are currently in use to perform information aggregation and
organization, including neural networks, fuzzy and neuro-fuzzy systems, genetic algorithms
and evolutionary programming. At least two new domains are present today in the field of
information processing: analysis of self-organization and information generation and
aggregation in dynamical systems, including large dynamical systems, and data mining and
knowledge discovery.

This volume should be placed in this context and in relation to the development of fuzzy
systems theory, specifically for the development of systems for information processing and
knowledge discovery.

The contributors to this volume review the state of the art and present new evolutions
and progresses in the domain of information processing and organization in and by fuzzy
systems and other types of systems using uncertain information. Moreover, information
aggregation and organization by means of tools offered by fuzzy logic are dealt with.

The volume includes four parts. In the first, introductory part of the volume, in three
chapters, general issues are addressed from a wider perspective. The second part of the
volume is devoted to several fundamental aspects of fuzzy information and its organization,
and includes chapters on the semantics of the information, on information quality and
relevance, and on mathematical models and computer science approaches to the
information representation and aggregation processes. The chapters in the third part are
emphasizing methods and tools to perform information organization, while the chapters in
the fourth part have the primary objective to present applications in various fields, from
robotics to medicine. Beyond purely fuzzy logic based approaches, the use of neuro-fuzzy
systems in information processing and organization is reflected in several chapters in the
volume.

The volume addresses in the first place the graduate students, doctoral students and
researchers in computer science and information science. Researchers and doctoral students
in other fields, like cognitive sciences, robotics, nonlinear dynamics, control theory and
economy may be interested in several chapters in this volume.
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Toward a Perception-Based
Theory of Probabilistic Reasoning

Lotfi A. ZADEH

Computer Science Division and the Electronics Research Laboratory,
Department of EECs, University of California,
Berkeley, CA 94720-1776, USA, e-mail: zadeh@cs.berkeley.edu

The past two decades have witnessed a dramatic growth in the use of probability-based
methods in a wide variety of applications centering on automation of decision-making in an
environment of uncertainty and incompleteness of information.

Successes of probability theory have high visibility. But what is not widely recognized is that
successes of probability theory mask a fundamental limitation — the inability to operate on what
may be called perception-based information. Such information is exemplified by the following.
Assume that I look at a box containing balls of various sizes and form the perceptions: (a) there
are about twenty balls; (b) most are large; and (c) a few are small.

The question is: What is the probability that a ball drawn at random is neither large nor
small? Probability theory cannot answer this question because there is no mechanism within the
theory to represent the meaning of perceptions in a form that lends itself to computation. The
same problem arises in the examples:

Usually Robert retuns from work at about 6:00 p.m. What is the probability that
Robert is home at 6:30 p.m.?

I do not know Michelle's age but my perceptions are: (a) it is very unlikely that
Michelle is old; and (b) it is likely that Michelle is not young. What is the probability that
Michelle is neither young nor old?

X is a normally distributed random variable with small mean and small variance. What
is the probability that X is large?

Given the data in an insurance company database, what is the probability that my car
may be stolen? In this case, the answer depends on perception-based information that is
not in an insurance company database.

In these simple examples — examples drawn from everyday experiences — the general
problem is that of estimation of probabilities of imprecisely defined events, given a mixture of
measurement-based and perception-based information. The crux of the difficulty is that
perception-based information is usually described in a natural language--a language that
probability theory cannot understand and hence is not equipped to handle.



L.A. Zadeh / Toward a Perception-based Theory of Probabilistic Reasoning

To endow probability theory with a capability to operate on perception-based information, it
is necessary to generalize it in three ways. To this end, let PT denote standard probability theory
of the kind taught in university-level courses.

The three modes of generalization are labeled:

(a) f-generalization;
(b) f.g.-generalization, and
(c) nl-generalization.

More specifically:

(a) f-generalization involves fuzzification, that is, progression from crisp sets to fuzzy sets,
leading to a generalization of PT that is denoted as PT+. In PT+, probabilities, functions,
relations, measures, and everything else are allowed to have fuzzy denotations, that is,
be a matter of degree. In particular, probabilities described as low, high, not very high,
etc. are interpreted as labels of fuzzy subsets of the unit interval or, equivalently, as
possibility distributions of their numerical values.

(b) f.g.-generalization involves fuzzy granulation of variables, functions, relations, etc.,
leading to a generalization of PT that is denoted as PT++. By fuzzy granulation of a
variable, X, what is meant is a partition of the range of X into fuzzy granules, with a
granule being a clump of values of X that are drawn together by indistinguishability,
similarity, proximity, or functionality. For example, fuzzy granulation of the variable age
partitions its vales into fuzzy granules labeled very young, young, middle-aged, old, very
old, etc. Membership functions of such granules are usually assumed to be triangular or
trapezoidal. Basically, granulation reflects the bounded ability of the human mind to
resolve detail and store information; and

(c) nl-generalization involves an addition to PT++ of a capability to represent the meaning
of propositions expressed in a natural language, with the understanding that such
propositions serve as descriptors of perceptions. nl-gencralization of PT leads to
perception-based probability theory denoted as PTp.

An assumption that plays a key role in PTp is that the meaning of a proposition, p, drawn
from a natural language may be represented as what is called a generalized constraint on a
variable. More specifically, a generalized constraint is represented as X isr R, where X is the
constrained variable; R is the constraining relation; and isr, pronounced ezar, is a copula in which
r is an indexing variable whose value defines the way in which R constrains X. The principal
types of constraints are: equality constraint, in which case isr is abbreviated to =; possibilistic
constraint, with r abbreviated to blank; veristic constraint, with r = v; probabilistic constraint, in
which case r = p, X is a random variable and R is its probability distribution; random-set
constraint, » = rs, in which case X is set-valued random variable and R is its probability
distribution; fuzzy-graph constraint, r = fg, in which case X is a function or a relation and R is its
fuzzy graph; and usuality constraint, » = u, in which case X is a random variable and R is its usual
— rather than expected — value.

The principal constraints are allowed to be modified, qualified, and combined, leading to
composite generalized constraints. An example is: usually (X is small) and (X is large) is unlikely.
Another example is: if (X is very small) then (Y is not very large) or if (X is large) then (Y is
small).
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The collection of composite generalized constraint forms what is referred to as the
Generalized Constraint Language (GCL). Thus, in PTp, the Generalized Constraint Language
serves to represent the meaning of perception-based information. Translation of descriptors of
perceptions into GCL is accomplished through the use of what is called the constraint-centered
semantics of natural languages (CSNL). Translating descriptors of perceptions into GCL is the
first stage of perception-based probabilistic reasoning.

The second stage involves goal-directed propagation of generalized constraints from
premises to conclusions. The rules governing generalized constraint propagation coincide with
the rules of inference in fuzzy logic. The principal rule of inference is the generalized extension
principle. In general, use of this principle reduces computation of desired probabilities to the
solution of constrained problems in variational calculus or mathematical programming.

It should be noted that constraint-centered semantics of natural languages serves to translate
propositions expressed in a natural language into GCL. What may be called the constraint-
centered semantics of GCL, written as CSGCL, serves to represent the meaning of a composite
constraint in GCL as a singular constraint X is R. The reduction of a composite constraint to a
singular constraint is accomplished through the use of rules that govern generalized constraint
propagation.

Another point of importance is that the Generalized Constraint Language is maximally
expressive, since it incorporates all conceivable constraints. A proposition in a natural language,
NL, which is translatable into GCL, is said to be admissible. The richness of GCL justifies the
default assumption that any given proposition in NL is admissible. The subset of admissible
propositions in NL constitutes what is referred to as a precisiated natural language, PNL. The
concept of PNL opens the door to a significant enlargement of the role of natural languages in
information processing, decision, and control.

Perception-based theory of probabilistic reasoning suggests new problems and new
directions in the development of probability theory. It is inevitable that in coming years there will
be a progression from PT to PTp, since PTp enhances the ability of probability theory to deal
with realistic problems in which decision-relevant information is a mixture of measurements and
perceptions,

Lotfi A. Zadeh is Professor in the Graduate School and director, Berkeley initiative
in Soft Computing (BISC), Computer Science Division and the Electronics Research
Laboratory, Department of EECs, University of California, Berkeley, CA 94720-
1776, Telephone: 510-642-4959, Fax: 510-642-1712;E-Mail:
zadeh@cs.berkeley.edu. Research supported in part by ONR Contract N00014-99-
C-0298, NASA Contract NCC2-1006, NASA Grant NAC2-117, ONR Grant
N00014-96-1-0556, ONR Grant FDN0014991035, ARO Grant DAAH 04-961-0341
and the BISC Program of UC Berkeley.
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Information, Data, and
Information Aggregation in
relation to the User Model

Horia-Nicolai TEODORESCU
Romanian Academy, Calea Victoriei 125, Bucharest, Romania
and
Technical University of lasi, Fac. Electronics and Tc., Carol 1, 6600 lasi, Romania
e-mail hteodor@etc.tuiasi.ro

Abstract. In this introductory chapter, we review and briefly discuss several
basic concepts related to information, data and information aggregation, in the
framework of semiotics and semantics.

Computer science and engineering are rather conservative domains, compared to
linguistics or some other human-related sciences. However, in the 1970s and 1980s, fuzzy
logic and fuzzy systems theory has been the subject of vivid enthusiasm and adulation, or
vehement controversy, denial and refutation [1]. This strange page in the history of computer
science and engineering domains is largely due to the way fuzzy logic proposed to deal with
the very basic foundation of science, namely the logic, moreover to the way it proposed to
manipulate information in engineering. Indeed, Lotfi Zadeh has introduced a revolutionary
way to represent human thinking and information processing. Today, we are in calmer waters,
and fuzzy logic has been included in the curricula for master and doctoral degrees in many
universities. Fuzzy logic has reached maturity; now, it is largely considered worth of respect,
and respected as a classical discipline. Fuzzy logic and fuzzy systems theory is a branch of the
Artificial Intelligence (A.I) domain and significantly contributes to the processing of
information, and to establishing knowledge-based systems and intelligent systems. Instead of
competing with other branches, like neural network theory or genetic algorithms, fuzzy logic
and fuzzy systems have combined with these other domains to produce more powerful tools.

Information theory has had a smoother development. Its advent has been produced by
the development of communication applications. However, because of this incentive and
because of the domination of the concept of communication, the field had seen an evolution
that may be judged biased and incomplete. In fact, the concept of information is not covering
all the aspects it has in common-language and it does not reflect several aspects the
semiologists and semanticists would expect. Moreover, it does not entirely reflect the needs of
computer science and information science.

The boundary between data, information, and knowledge has never been more fluid than
in computer science and A.I. The lack of understanding of the subject and the disagreement
between the experts may lead to disbelief in the field and in the related tools. We should first
clarify the meaning of these terms, moreover the meaning of aggregation. Although a
comprehensive definition of the terms may be a too difficult and unpractical task in a fast
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evolving field that is constantly enlarging its frontiers, at least “working definitions” should be
provided.

While information science is an old discipline, its dynamics has accelerated during recent
years, revealing a number of new topics to be addressed. Issues still largely in debate include
the relationship and specific differences between data and information, the representation and
processing of the meaning contained in the data and information, relationship between
meaning and processing method, the quantification of the relevance, significance and utility of
information, and relationship between information and knowledge. Questions like “What is
data?,” “What is information?,” “What is meaning?,” “What makes the difference between
information and data?” “Can information be irrelevant?” have been and still are asked inside
both the philosophical and engineering communities.

According to MW [2], data means “l: factual information (as measurements or
statistics) used as a basis for reasoning, discussion, or calculation ...” and “2: information
output by a sensing device or organ that includes both useful and irrelevant or redundant
information and must be processed to be meaningful”, moreover, 3: information in numerical
form that can be digitally transmitted or processed” (selected fragments quoted.). On the
other hand, information means “l: the communication or reception of knowledge or
intelligence” or “2 ...c(1): a signal or character (as in a communication system or computer)
representing data” (selected fragments quoted.)

So, data may mean “information in numerical form...”, while information may represent
“a character representing data”. This is just an example of total confusion existing in our field.

Information is based on data and upwards relates to knowledge. Information results by
adding meaning to data. Information has to have significance. We need to address semiology,
the science of signs, to obtain the definition of information, in contrast with data, which is just
not-necessarily informant (meaningful). Meaning and utility play an important role in
distinguishing information and data.

We suggest that the difference between data and information consists at least in the
following aspects:

e Data can be partly or totally useless (redundant, irrelevant);

e Data has no meaning attached and no direct relation to a subject; data has no

meaning until apprehended and processed by a subject.

In contrast, information has the following features:

e assumes existing data;

e communicated: it is (generally) the result of communication (in any form, including
communicated through DNA);
subject-related: assumes a receiving subject that interprets the information;
knowledge-related: increases the knowledge of the subject;
usefulness: the use by the recipient of the data or knowledge.

Neither in communication theory, nor in computer science the receiving subject model is
included. Although it is essential, the relationship between the information and the subject
receiving the information is dealt with empirically or circumstantially, at most. However, if we
wish to discuss aggregation of information, the subject model should play an essential part,
because the subject’s features and criteria finally produce the aggregation. Whenever
information and knowledge are present, the model of the user should not miss.
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The model of the user cannot and should not be unique. Indeed, at least various different
utilitarian models can be established, depending on the use the information is given. Also,
various #ypological, behavioral models can be established. For example, various ways of
reacting to uncertainty may simply reflect the manner the receiving subject behaves. Media
know that the public almost always should be considered as formed of different groups and
respond in different ways to information. Many of Zadeh’s papers actually include suggestions
that the user is an active player in the information process, providing meaning to data. Zadeh’s
approach of including perception as a method to acquire information, as presented in the next
chapter, is one more approach to incorporate the user model as part of the information.

Also notice that while in communication theory the “communicated” features plays an
essential part in defining transmitting data as information, in computer science this feature
plays no role.

We suggest that the current understanding of the relationship between data and
information is represented by the equation:

Information — Data = Meaning + Organization

To aggregate (from the Latin aggregare = to add to, from ad = to and grex = flock [2])
means [2] “to collect or gather into a mass or whole”, “to amount in the aggregate to” [2],
while the adjective aggregate means “formed by the collection of units or particles into a
body, clustered in a dense mass” [2] etc. The broadness and vagueness of these definitions
transfer to the concept of “information aggregation”. This concept has many meanings,
depending on the particular field it is used, moreover depending on the point of view of the
researchers using it. For instance, in finance, security, banking, and other related fields,
information aggregation means putting together information, specifically information coming
from various autonomous information sources (see, for example, [3].) From the sociologic
point of view, information aggregation may mean opinion or belief aggregation, the way that
opinions, beliefs, rumors etc. sum-up according to specified behavioral rules. From the point
of view of a company, data aggregation may mean [4] “any process in which information is
gathered and expressed in a summary form, for purposes such as statistical analysis.”

Yet another meaning of information aggregation is in linguistics: “Aggregation is the
process by which more complex syntactic structures are built from simpler ones. It can also
be defined as removing redundancies in text, which makes the text more coherent” [5]. In
multi-sensor measurements, ‘“data gathering” and “information aggregation” are related to
“data fusion” (ie., determining synthetic attributes for a set of measurement results
performed with several sensors) and finding correlations in the data — a preliminary form of
meaning extraction.

Of a different interpretation is aggregation in the domain of fuzzy logic. Here,
aggregation means, broadly speaking, some form of operation with fuzzy quantities. Several
specific meanings are reflected in this volume, and the chapters by George Klir and by Ronald
Yager provide an extensive reference list the reader can use to further investigate the subject.

Summarizing the above remarks, the meaning of information aggregation (respectively
data aggregation) may be:

Information aggregation = gathering various scattered pieces of information (data),
whenever the collected and aggregated pieces of information (data) exhibit some kind of
relationship, and to generate a supposedly coherent and brief, summary-type result. However,
other meanings may emerge and should not be refuted.
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Aggregation is not an indiscriminate operation. It must be based on specificity, content,
utility or other criteria, which are not yet well stated. Notice that data aggregation may lead to
the generation of information, while aggregating information may lead to (new) knowledge.

An example of potentially confusing term in computer science is the phrase “data base”.
Actually, a database is already an aggregate of data structured according to some meaningful
principles, for example relations between the objects in the database. However, users regard
the database as not necessarily organized in accordance with what they look for as a meaning.
Hence, the double-face of databases: structured (with respect to a criterion), yet not
organized, unstructured data — with respect to some other criterion.

The information organization topic also covers the clustering of the data and information
into hierarchical structures, self-organization of information into dynamical structures, like
communication systems, and establishing relationships between various types of information.

Notice that “aggregating information” may also mean that information is structured.
Actually, the concept “structure” naturally relates to “aggregation”. Quoting again the
Merriam-Webster dictionary [1], structure means, among others, “the aggregate of elements
of an entity in their relationships to each other”. In a structure, constituting elements may play
a similar role, and no hierarchy exists. Alternatively, hierarchical structures include elements
that may dominate the behavior of the others. Hence, the relationship with hierarchies in
structuring information — a topic frequently dealt with in recent years, and also present in this
volume.

A number of questions have yet to be answered for we are able to discriminate between
data, information and knowledge. This progress can not be achieved in the engineering field
only. “Data” may belong to engineers and computer scientists, but “information” and
“knowledge” is shared together with semanticists, linguists, psychologists, sociologists, media,
and other categories. Capturing various features of the information and knowledge concept,
moreover incorporating them in a sound, comprehensive body of theory will eventually lead
to a better understanding of the relationship between the information, the knowledge and the
subject (user) concepts [6]. The expected benefit is better tools in information science and
significant progresses in A.l.
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Abstract. Problems addressed in this paper are based on the assumption of the so-
called reistic point of view on the world about which we know something with
certainty and we conjecture about the things when we are not certain. The result of
observation and thinking, conceived as an information, about the world must be cast
into linguistic form in order to be accessible for analysis as well as to be useful for
people in their activity. Uncertainty and vagueness (or by other words, unsharpeness
and impreciseness are empirical phenomena, their corresponding representational
systems are provided by two theories: probability theory, and fuzzy sets theory. It is
argued that legic offers the tool for systematic representation of certain information,
stochastic is the only formal tool to tame uncertainty, and fuzzy sets theory is
considered as a suitable formal tool (language) for expressing the meaning of
unsharpen notions.

1. Certainty

The aim of science is on the one hand to make statements that inform us about the world,
and on the other hand, to help us how to live happily.

Information that can be proved or derived by means of valid logical arguments is called
certain information or knowledge. Apart that, the knowledge, in opposite to information, is
sometimes required to posses an ability to be created within a system. Logic provides tools for
developing such systems, particularly in the form of a formal or formalized theories.

Let us start with a formal theory.

Suppose that there is a prori some information about a fragment of reality.

Let express this information in the form of two assertions (in the language of the first order
logical calculus):

Al. Vx: I(x, x),
A2. Vx Vy Vz: TI(x, 2) ATI(y, 2) = T(x, 2).

These two assertions are considered as specific axioms of the constructed theory. One can
see that this theory contains only one primitive notion represented by predicate symbol IT.
Let us supplement these two-expressions, by the system of logical axioms (see [1][2]):

LlLa=P=o)
L2 (a=PB=7)=(a=p)=(a=)
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L3.(-B=>-0)=2(-B=>a)=PB)
LA4. Vx, ox) = ox | 1)
L5. Vx, (= B) = (0. = Vx, B)

These five axioms jointly with two basic inference rules (substitution rule and modus ponens
rule) form an engine or machine for creating (producing) new pieces of information (this means
additional information to those given by Al and A2).

For instance one can easily prove the following assertions (called theorems):

T1. Vy Vz: Iy, z) = I1(z, y),
T2. Vx Vy Vz: II(x, y) A TI(y, 2) = I(x, 2).

One can however put the question: what is this theory (set of theorems) about?

The shortest answer is: about nothing.

Any formal theory conveys some information about a fragment of reality only after the
interpretation.

The formal theory given above by means of seven axioms (Al, A2, L1, .., L5) can be
interpreted in various domains, conceived as fragments of reality. Interpreted theorems inform us
about this reality. As an illustration let us consider a simple example. Suppose that the fragment
of reality consists of three things, which are denoted here by the following three signs: [, A, O.

Between these three entities there is the following symmetric binary relation:

s (0, O) = faise, s (O, A) = true, s (O, O) = false.

which can be read for example as “is similar”.

Suppose that predicate symbol IT is interpreted as the relation s defined above, then one can
easily check that the both axioms A] and A2 are the true assertions about the world under
consideration. This means that all theorems, which can be proved within this theory are surely
true statements about our world of three things connected by relation s.

The other approach to construction theory consists in taking a concrete domain, and next to
tries to formalize the knowledge about it.

Suppose for example, that the problem consists in ordering cups of coffee according to their
sweetness. For some pairs of cups we can definitely decide which of them is sweeter. For some
other pairs, we cannot distinguish whether one is sweeter than the other is.

There is probably a tolerance within we allow a cup of coffee to move before we notice any
difference. The relation of indifference one can define in terms of ternary relation of betweenness
as follows:

s(x, y) < B(x, y, x).

Axioms of the relation B are following (see [3]):
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Al. B(x,y,z) = B(z, ¥, x)

A2.B(x,y,2) v B(x,z,y) v B(y, x, z)

A3.(B(x, y, u) A B(y, z, u) A — B(x, y, 2)) = s(u, y) A s(u, z)
Ad. = s(u, v) = (B(x, u, v) AB(u, v, y) = B(x, u, y))
AS5.B(x,y,2) AB(y,x,2) = (s (x,y) Vv (5(z, x) A 5(z, ¥)))
A6. s(x, y) = B(x, y, 2)

These axioms are sufficient and necessary for the existence of a function f defined on the set
of all cups of coffee such that for some € > 0 holds following:

s(x, y)z{true, iffx)-f(v) <d

false, otherwise

This means that, for some threshold €, two cups x and y are indistinguishable if the absolute
difference [f{x) — flx) |, say between sweetness, is less than €. One should note that
indistinguishability in this case is defined as a usual, crisp binary relation in the terms yes-no.

It seems natural to have the desire to define indistinguishability as a graded relation i. e. as a
function taking on values from the unit interval. It turns however up (see [4]) that in this case it is
impossible to create a formal theory in a purely syntactic form. Admitting the graduality in our
understanding of the reality we must use fuzzy sets concepts as a formal tool to formulate
theories in a semantic form.

2. Uncertainty

Already Plato in his Republic distinguished between certain information, i. e. knowledge,
and uncertain information, called opinion or belief. Certain knowledge is acquired by the tools
provided by logic. The ability to obtain this kind of information is also called the art of thinking.

Pattemed after this name, J. Bemoulli had written the book under similar title, and namely
under the title the art of conjecturing, or stochastics, intending to provide tools to make belief
also an exact science. The art of conjecturing takes over where the art of thinking left off. An
exact science has been made by attaching numbers to all our uncertainties.

One distinguishes between the kind of uncertainty that characterizes our general knowledge
of the world, and the kind of uncertainty that we discover in gambling. As a consequence, one
distinguishes between two kinds of probabilities: epistemic probability, and aleatory probability.
The former is dedicated to assessing degree of belief in propositions, and the later is concemning
itself with stochastic laws of chance processes.

Chance regularities or probability laws are usually expressed by means of the so-called
cumulative distribution functions (cdf).

3. Unsharpeness
The results of thinking processes as well as conjecturing processes only after their casting

into linguistic form became available for analysis and for communication. One of the three basic
functions of language is to convey information about world.
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One of the modes of conveying information is to give appropriate definitions. Most
definitions in natural languages are made by examples. As a consequence of this, almost all
words are vague.

According to M. Black and N. Rescher a word is vague when its (denotational) meaning is
not fixed by sharp boundaries but spread over a range of possibilities, so that its applicability in
a particular case may be dubious.

Nonsharp or vague words are characterized therefore by the existence of a “gray area”
where the applicability of the word is in doubt.

L. Zadeh prefers however to call such words as fuzzy words. The meaning of fuzzy words
can be precisely defined by means of fuzzy sets, which were invented by L. Zadeh (see [5]). By
fuzzy set, or more precisely fuzzy subset of a given set U, one understands a mapping

e U—[0,1],

where X stands for a fuzzy word.

The value px(x) is interpreted as a grade of applicability of word X to a particular object
x€ X . Alternatively px(x) can be conceived as a perceived psychological distance between an
object x and the ideal prototype of a word .X.

It is worth to notice the essential difference between apparently similar phrases: “fuzzy
word” and “fuzzy set”. A fuzzy word, in another terminology, is a vague word, so that some
words may be fuzzy, while the others are not fuzzy. In the opposite, fuzzy set is a sharp, proper
name of some precisely defined mathematical object, so that the term “fuzzy set” is not fuzzy.

4. Uncertainty versus vagueness

For methodological convenience, it is useful to make a distinction between an observed
world and its representational system, whose typical example is language.

The observed world is as it is, neither certain nor uncertain. Uncertainty pertains an observer
because of his (her) ignorance and in their ability understand and to foresee events occurring in
world. Those things that the science in its current level of development cannot predict are called
contingent or random. Probability, or more generally stochastics, provides tools to tame the all
kinds of chance regularities as well as to describe all kinds of uncertainty. After Laplace, one can
rightly say that a perfect intelligence would have no need of probability, it is however
indispensable for mortal men.

On the other hand, vagueness is a property of signs of representational systems. It should
not be confused with uncertainty. Apparently these two empirical phenomena have something in
common. In both situations, an observer proclaims: “I do not know. ” But these two are very
different kinds of not knowing.

A simple example will make this assertion quite clear. Before rolling a die I do not know
which number of spots will result. This kind of uncertainty is called aleatory uncertainty. On the
other hand, before rolling a die, or even after the rolling I do knot know weather or not is the die
fair? This is epistemic uncertainty.

Suppose now that the die is cast, looking at it and seeing the spots / do not know, for
example, whether or not resulted a small number of spots. I have my doubts as to apply the
word “small” to the number four, for example. Fuzzy sets theory offers formal tools to quantify
the applicability of words to particular objects.
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From the above discussion it should be clear enough that probability theory (broadly
considered) and fuzzy sets theory are quite different formalisms invented to convey quite
different information. By other words one can also say that these are different tools invented to
cope with different (incomparable) problems.

For brevity, some distinct features of uncertainty and unsharpeness are summarized in the
following table:

Uncertainty Unsharpeness

Exists because of a lack of biunivocal

exists because of a lack of sharp definitions
correspondence between causes and consequences a1p

There are limits for certainty there are no limits for sharpening definitions
Pertains the WORLD pertains WORDS about world
Referrers to reasoning and prediction refers to classification and discrimination

it is my doubt in applicability of words because of our

Iti defect by of my ignorance . . .
15 my detect because Y ignoran (or your) carelessness in naming things

It is quantified by grades of certainty called it is quantified by grades of applicability called
probability; membership grade;
Probability is warranted by evidence applicability is warranted by convention

5. Conditional information
As a matter of fact, all information is inherently conditional, because all information has

context. Context is nothing else as just another word for condition.
Conditional information is expressed by conditional statements of the following type:

if A, then B.

Within the classical logic statements of that type of certain conditional information are
formalized by implication, 4 = B, where 4 and B are binary-valued assertions.
The truth-value of this (material) implication is defined as follows:

false, if t(4)=true, t(B) = false

true, otherwise

t(A=>B)={

In classical logic, the material implication A = B can be expressed equivalently in several
other ways:

—AVB,AAB=A,AvB=B,-BAA=0,

where 0 represents the truth value “false”.
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In case of uncertain conditional information, it would seem natural to expect some formal
hints from the side of probability theory. Unfortunately, in probability theory there are only a few
proposals, and still debatable, for the definition of conditional information of the type:

“if event A, then event B”.

Within the traditional probability theory, it is offered the conditional probability, but not a
probability of conditional event. The conditional probability of event 4, given event B, is defined
as follows:

P(ANnB)

P (B)

P(A/B)=

provided that P(B) > 0.

One needs however probability (not conditional!) of the conditional event (4 | B); that is,
one needs to define P((4 | B)).

As it is known, probability measure P is defined on the Boolean space of events, so that in
order to enable the calculation of P((4 | B)), one needs to define conditional event (4 | B) as a
Boolean element, i. e. by means of Boolean operations A, v, and —. It turns however out, that it
is impossible (see [6][7]): For that reason, various extensions of the ordinal Boolean operations
are proposed (see [6]). The problem with conditional information become more complicated,
even almost insuperable, if not only uncertainty, but also vagueness is introduced into conditional
statements of the type: “if —, then—*.

Suppose A and B are two vague terms, which are modeled by two fuzzy sets:

peU—-10,11 and peU—[0,1].
Conditional statement

ifais A, thenbis B

within the fuzzy sets theory is defined as a fuzzy relation
He: UxU—[0,1]

defined as:
e (x, y) =1 (4 (%), 18 (),

where / is an operator of the so-called fuzzy implication.
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For example, this operator can be defined us follows:

I(x,y)=min {l, | —x+yp}.

To a certain extent, the above solution is an analogue to Gordian knot. Alexander the Great
of Macedonia, when coming to Phrygia, he cut the Gordian knot with his sward. Similarly, Lotfi
Zadeh, the Great of Fuzzy World, when proposing fuzzy sets, he cut the Gordian knot of
conditionals by his definition

p-lfalsA,lhenbis B (X,y) =1 ('—lA (X), l-lB(,V))

saying it is thus fuzzy if — then rule.
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Abstract. Uncertainty-based information is defined in terms of reduction of relevant
uncertainty. It is shown how the emergence of fuzzy set theory and the theory of
monotone measures considerably expanded the framework for formalizing uncertainty
and the associated uncertainty-based information. A classification of uncertainty
theories that emerge from this expanded framework is examined. It is argued that each
of these theories needs to be developed at four distinct levels: (i) formalization of the
conceived type of uncertainty; (ii) calculus by which this type of uncertainty can be
properly manipulated; (iii) measuring, in a justifiable way, the amount of relevant
uncertainty (predictive, prescriptive, etc.) in any situation formalizable in the theory;
and (iv) various uncertainty principles and other methodological aspects. Only some
uncertainty theories emerging from the expanded framework have been thoroughly
developed thus far. They may be viewed as theories of imprecise probabilities of
various types. Results regarding these theories at the four mentioned levels
(representation, calculus, measurement, methodology) are surveyed.

1. Introduction

The recognition that scientific knowledge is organized, by and large, in terms of systems of
various types (or categories in the sense of mathematical theory of categories [1]), is an important
outcome of systems science [2]. In general, systems are viewed as relations among states of some
variables. Employing the constructivist epistemological view [3], to which | subscribe, it is
recognized that systems are constructed from our experiential domain for various purposes, such as
prediction, retrodiction, prescription, planning, control, diagnosis, etc. [2, 4]. In each system, its
relation is utilized, in a given purposeful way, for determining unknown states of some variables
on the basis of known states of some other variables. Systems in which the unknown states are
determined uniquely are called deterministic; all other systems are called nondeterministic. By
definition, each nondeterministic system involves uncertainty of some type. This uncertainty
pertains to the purpose for which the system was constructed. It is thus natural to distinguish
predictive uncertainty, retrodictive uncertainty, diagnostic uncertainty, etc. In each
nondeterministic system, the relevant uncertainty must be properly incorporated into the
description of the systems in some formalized language.

Prior to the 20™ century, science and engineering had shown virtually no interest in
nondeterministic systems. This attitude changed with the emergence of statistical mechanics at the
beginning of the 20" century [5]. Nondeterministic systems were for the first time recognized as
useful. However, these were very special nondeterministic systems, in which uncertainty was
expressed in terms of probability theory. For studying physical processes at the molecular level,
which was a problem area from which statistical mechanics emerged, the use of probability was
the right choice. It was justifiable, and hence successful, to capture macroscopic manifestations of
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enormously large collections of microscopic phenomena (random movements of molecules) via
their statistical averages. Methods employed successfully in statistical mechanics were later
applied to similar problems in other areas, such as actuarial profession or engineering design of
large telephone exchanges, where the use of probability theory was again justifiable by the
involvement of large number of random phenomena.

Although nondeterministic systems have been accepted in science and engineering since their
utility was demonstrated early in the 20" century, it was tacitly assumed for long time that
probability theory is the only framework within which uncertainty in nondeterministic systems can
be properly formalized and dealt with. This presumed equality between uncertainty and probability
became challenged shortly after World War 11, when the emerging computer technology opened
new methodological possibilities. It was increasingly realized, as most eloquently described by
Weaver [6], that the established methods of science were not applicable to a broad class of
important problems for which Weaver coined the suggestive term “‘problems of organized
complexity”. These are problems that involve considerable numbers of entities that are interrelated
in complex ways. They are typical in life, cognitive, social, and environmental sciences, as well as
applied fields such as modemn technology, medicine, or management. They almost invariably
involve uncertainties of various types, but rarely uncertainties resulting from randomness, which
can yield meaningful statistical averages.

Uncertainty liberated from its probabilistic confines is a phenomenon of the second half of the
20" century. It is closely connected with two important generalizations in mathematics. One of
them is the generalization of classical measure theory [7] to the theory of monotone measures,
which was first suggested by Gustave Choquet in 1953 in his theory of capacities [8]. The second
one is the generalization of classical set theory to fizzy set theory, introduced by Lotfi Zadeh in
1965 [9]. These generalizations enlarged substantially the framework for formalizing uncertainty.
As a consequence, they made it possible to conceive of new theories of uncertainty.

To develop a fully operational theory of uncertainty of some conceived type requires that we
address relevant issues at each of the following four levels:

¢ LEVEL | — an appropriate mathematical formalization of the conceived type of uncertainty
must be determined.

o LEVEL 2 — a calculus by which the formalized uncertainty is properly manipulated must be
developed.

o LEVEL 3 — a justifiable way of measuring the amount of uncertainty in any situation
formalizable in the theory must be determined.

o LEVEL 4 — methods for applying the theory to relevant problems must be developed.

ACTION
U-U
INFORMATION

Figure 1. The meaning of uncertainty-based information.

In general, uncertainty is an expression of some information deficiency. This suggests that
information could be measured in terms of uncertainty reduction. To reduce relevant uncertainty
(predictive, retrodictive, prescriptive, diagnostic, etc.) in a situation formalized within a
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mathematical theory requires that some relevant action be taken by a cognitive agent, such as
performing a relevant experiment, searching for a relevant fact, or accepting and interpreting a
relevant message. If results of the action taken (an experimental outcome, a discovered fact, etc.)
reduce uncertainty involved in the situation, then the amount of information obtained by the action
is measured by the amount of uncertainty reduced — the difference between a priori and «
posteriori uncertainty (Fig. 1).

Measuring information in this way is clearly contingent upon our capability to measure
uncertainty within the various mathematical frameworks. Information measured solely by
uncertainty reduction is an important, even though restricted, notion of information. To distinguish
it from the various other conceptions of information, it is common to refer to it as uncertainty-
based information [10].

Uncertainty-based information does not capture the rich notion of information in human
communication and cognition, but it is very useful in dealing with nondeterministic systems.
Given a particular nondeterministic system, it is useful, for example, to measure the amount of
information contained in the answer given by the system to a relevant question (concerning various
predictions, retrodictions, etc.). This can be done by taking the difference between the amount of
uncertainty in the requested answer obtained within the experimental frame of the system [2, 4] in
the face of total ignorance and the amount of uncertainty in the answer obtained by the system.
This can be written concisely as:

Information (4s| S, Q) = Uncertainty ( A-'l,;.,,y‘ EF,,Q) - Uncertainty (sl S, ).

where:
o S denotes a given system
o EFgdenoted the experimental frame of system S
e () denotes a given question
e Ay denotes the answer to question Q obtained solely within the experimental ~ frame £Fs

o A denotes the answer to question Q obtained by system S.

The principal purpose of this chapter is to present a comprehensive overview of generalized
information theory — a research program whose objective is to develop a broader treatment of
uncertainty-based information, not restricted to the classical notions of uncertainty. Although the
term “generalized information theory” was coined in 1991 [11], research in the area has been
pursued since the early 1980s.

The chapter is structured as follows: After a brief overview of classical information theories in
Sec. 2, a general framework for formalizing uncertainty is introduced in Sec. 3. This is followed by
a description of the most developed nonclassical theories of uncertainty in Sec. 4, and the
measurement of uncertainty and uncertainty-based information in these theories in Sec. 5.
Methodological issues regarding the various uncertainty theories, focusing primarily on three
general principles of uncertainty, are discussed in Sec. 6. Finally, a summary of main results and
open problems in the area of generalized information theory is presented in Sec. 7.

2. Classical Uncertainty Theories

Two classical uncertainty theories are recognized. They emerged in the first half of the 20"
century and are formalized in terms of classical set theory. The older one, which is also simpler
and more fundamental, is based on the notion of possibility. The newer one, which has been
considerably more visible, is based on the formalized notion of probability. For the sake of
completeness, they are briefly reviewed in this section.

[S]
o8}
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2. 1. Classical Possibility-Based Uncertainty Theory

To describe this rather simple theory, let X denote a finite set of mutually exclusive
alternatives that are of our concern (diagnoses, predictions, etc.). This means that in any given
situation only one of the alternatives is true. To identify the true alternative, we need to obtain
relevant information (e. g., by conducting relevant diagnostic tests). The most elementary and, at
the same time, the most fundamental kind of information is a demonstration (based, for example,
on outcomes of the conducted diagnostic tests) that some of the alternatives in X are not possible.
After excluding these alternatives from X, we obtain a subset £ of X. This subset contains only
alternatives that, according to the obtained information are possible. We may say that alternatives
in E are supported by evidence.

Let the characteristic function of the set of all possible alternatives, £, be called in this context
a possibility distribution function and be denoted by rg. Then,

| whenxe E

re(x) = {0 whenx g E.

Using common sense, a possibility function, Posg, defined on the power set, 2(X), is given by
the formula

Pos (A)=maxr.(x),
€4

for all 4 € 2(X). Itis indeed correct to say that it is possible that the true alternative is in 4 when 4
contains at least one alternative that is also contained in £.

Given a possibility function Posg on the power set of X, it is useful to define another function,
Necg, to describe for each 4 € Z(X) the necessity that the true alternative is in 4. Clearly, the true
alternative is necessarily in A if and only if it is not possible that it is in A , the complement of 4.
Hence,

Nec (4)=1- PosE(Z)

for all 4 € 2(X).

The question of how to measure the amount of uncertainty associated with a finite set £ of
possible alternatives was addressed by Hartley in 1928 [12]. He showed that the only meaningful
way to measure this amount is to use a functional of the form.

clog, er(x)

re¥
or, alternatively,

clog,,|E|,
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where | E | denotes the cardinality of £, and b and c are positive constants. Each choice of values b
and ¢ determines the unit in which the uncertainty is measured. Requiring, for example, that

C log,)2 = l,
which is the most common choice, uncertainty would be measured in bits. One bit of uncertainty is
equivalent to uncertainty regarding the truth or falsity of one elementary proposition. Choosing

conveniently b = 2 and ¢ = | to satisfy the above equation, we obtain a unique functional, H,
defined for any possibility function, Posg, by the formula

E|.

H (POSE) = lng

This functional is usually called a Hartley measure of uncertainty. Its uniqueness was later
proven on axiomatic grounds (see Sec. 5. 1) by Rényi [13]. Observe that

0 < H(Posg) < log, | X|

for any E € #(X) and that the amount of information, /(Posg), in evidence expressed by tunction
Posg is given by the formula

I(Posg) = log, | X|-log, |E].

It follows from the Hartley measure that uncertainty associated with sets of possible
alternatives results from the lack of specificity. Large sets result in less specific predictions,
diagnoses, etc., than their smaller counterparts. Full specificity is obtained when only one
alternative is possible. This type of uncertainty is thus well characterized by the term
nonspecificity.

Consider now two universal sets, X and Y, and assume that a relation R — X x Y describes a set
of possible alternatives in some situation of interest. Assume further that the domain and range of
R are sets Ry < X and Ry c 7, respectively. Then three distinct Hartley functionals are applicable,
defined on the power sets of X, ¥, and X x Y. To identify clearly which universal set is involved in
each case, it is useful (and a common practice) to write H(X), H(Y), H(X, Y) instead of H(Pos &)

H(Pos x, ) H(Posg), respectively. Functionals

HX) = log: R,
H(Y) =log, IRy

are called simple uncertainties, while function
H(X. V) =log, IRl

is called a joint uncertainty.
Two additional Hartley functionals are defined,
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H(XV):Mg,M| (n

2 er‘

H(ﬂX)zbgrEi
“|R

D
o

("

which are called conditional uncertainties. Observe that the ratio [Ry| /IRy in HWX | Y) represents
the average number of elements of X that are possible alternatives under the condition that an
element of Y has been selected. This means that /(X |Y) measures the average nonspecificity
regarding alternative choices from X for all particular choices form Y. Function H(X |Y) has
clearly a similar meaning with the roles of sets X and Y exchanged. Observe also that the
conditional uncertainties can be expressed in terms of the joint uncertainty and the two simple
uncertainties:

)
(2)

HX|Y)= HX, Y) ~ H(Y),

H(Y|X) = H(X, V) - H(X).

If possible alternatives from X do not depend on selections form Y, and visa versa, then R = X’
x Y and the sets X and Y are called noninteractive. Then, clearly,

HX| vy = H), 3

H(Y1X) = HY), 3

H(X, Y) = H(X) + H(Y), 4)

In all other cases, when sets X and Y are interactive, these equations become the inequalities

(5)

H(X|Y) < H(X),
H(Yl X < Hy), ()
H(X, Y)< HX)+ H(Y). (6)
In addition, the functional
™

THX, Y} = HX) + H(Y) - H(X, Y),

which is usually called an information transmission, is a useful indicator of the strength of
constraint between sets Ry and Ry. The Hartley measure is applicable only to finite sets. Its
counterpart for subsets of the n-dimensional Euclidean space R" (n > 1) was not available for long
time. It was eventually suggested in 1995 by Klir and Yuan [14] in terms of the functional:
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HL(Pos;)=min ln{n(l +W(E, N+ u(E)- Hp.(E, )| (8)
ceC -l ‘ ¢ )

i=1

where E, C, E, , and p denote, respectively, a subset of R", the set of all isometric transformations

form one orthogonal coordinate system to another, the i-th projection of £ in coordinate system c,
and the Lebesque measure. This functional, which is usually referred to as Hartley-like measure,
was proven to satisfy all mathematical properties that such a measure is expected to satisfy (see
Sec. 5. 1) [14, 15], but its uniqueness remains an open problem.

2. 2. Classical Probability-Based Uncertainty Theory

The second classical uncertainty theory is based on the notion of classical probability measure
[16]. Assuming again a finite set X of mutually exclusive alternatives that are of our concern,
evidence is expressed by a probability distribution function, p, on X such that p(x) € [0, 1] for each
x € Xand

2 p(x)=1

Probability measure, Pro, is then obtained for all 4 € 2(X) via the formula

Pro(A)= Zp('x).

ved

When p is defined on a Cartesian product X x Y, it is called a joint probability distribution
function. The associated marginal probability distribution functions on X and Y are determined,
respectively, by the formulas

py(x)=2 p(x,y)

vet
for each x € Xand

py(y)= 2 p(x.y)

xelX
for each v € Y. The noninteraction of pyand pyis defined by the condition

Px, y) = px) - puv)

for all x € X and all y € Y. Conditional probabilities, p(x [ ») and p(v | x), are defined in the usual
way:
p(xy)

(xy)=
P ‘ py(y)



28 G.J. Klir / Uncertainty-based Information

for all x € X, and

forally e Y.
As is well known, the amount of uncertainty in evidence expressed by a probability
distribution function p on a finite set X is measured (in bits) by the functional

S(p(x)|xe X)==~3 p(x)log, p(x). Q)

xeX

This functional, usually referred to as Shannon entropy, was introduced by Shannon in 1948
[17]. 1t was proven in numerous ways, from several well-justified axiomatic characterizations, that
the Shannon entropy is the only functional by which the amount of probability-based uncertainty
can be measured (assuming that it is measured in bits) [10].

For probabilities on X x Y, three types of Shannon entropies are recognized: joint, marginal,
and conditional. A simplified notation to distinguish them is commonly used in the literature: S(X)
instead of S(p(x) | x€X), S(X, Y) instead of S(p(x, y) |xeX, yeY), etc. Conditional Shannon
entropies are defined in terms of weighted averages of local conditional entropies as

S(X[Y) ==Y py(») Y p(x]y)log, p(x{y), (10)
veY xeX

SY|X)=-3 py(x) Y p(y|x)log, p(y|x). (10
xeX veY

As is well known [10], equations and inequalities (2) - (6) for the Hartley measure have their
exact counterparts for he Shannon entropy. For example, the counterparts of (2), (2') are the
equations

(n
an

Sx|n=sx, n-sm.
S(Y1X) = S(X, 1) - S

Moreover,

TX, Y) = S(X) + S(Y) - S(X, ¥) (12

is the probabilistic information transmission (the probabilistic counterpart of (7)).

It is obvious that the Shannon entropy is applicable only to finite sets of altenatives. At first
sight, it seems suggestive to extend it to probability density functions, g, on R (or, more generally,
on &', n > 1), by replacing in Eq. (9) p with q and the summation with integration. However, there
are several reasons why the resulting functional does not qualify as a measure of uncertainty: (i) it
may be negative; (ii) it may be infinitely large; (iii) it depends on the chosen coordinate system;
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and most importantly, (iv) the limit of the sequence of its increasingly more refined discrete
approximations diverges [10]. These problems can be overcome by the modified functional

5'[g(x),q'(x)| x eR] = .[q(x)logzi’,(—ﬂdx (13)
q'(x)

which involves two probability density functions, ¢ and ¢'. Uncertainty is measured by S in
relative rather than absolute terms.

When ¢ in (13) is a joint probability density function on & and ¢' is the product of the two
marginals of ¢, we obtain the information transmission

Tylg(x.¥).q(x),q,(M|x e R,y e R] =

14
= J: J:q(x,y)logz—q(u)—dxdv. e

gy (x)-g,(y)

This means that (14) is a direct counterpart of (12).
3. General Framework for Formalizing Uncertainty

As already mentioned in Sec. 1, the framework for formalizing uncertainty was considerably
enlarged by the generalization of classical (additive) measures to monotone measures, as well as
by the generalization of classical sets to fuzzy sets. To describe the enlarged framework, these two
generalizations must be explained first.

3. 1. Monotone Measures

Given a universal set X and a non-empty family ¢"of subsets of X (usually with an appropriate
algebraic structure), a monotone measure, g, on (X, ¢} 1s a function

g [0, =]

that satisfies the following requirements:
(gl) g(2) = 0 (vanishing at the empty set);
(g2) forall 4, B € ¢; if A < B, then g(4) < g(B) (monotonicity);
(g3) for any increasing sequence 4, C 4> C ... of sets in ¢

if UA, e then limg(4,) = g[U A,] (continuity from below),
=1 el -1

(g4) for any decreasing sequence 4, = 4> ... of sets in (7

ifﬂ A, € Cthen limg(4,) = g[n A,} (continuity from above).
i1 s =1 )
Functions that satisfy requirements (g1), (g2), and either (g3) or (g4) are equally important in
the theory of monotone measures. These functions are called semicontinuous from below or above,
respectively. When the universal set X is finite, requirements (g3) and (g4) are trivially satisfied
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and may thus be disregarded. If X € ¢"and g(X) = I, g is called a regular monotone measure (or
regular semicontinuous monotone measure). Observe also that requirement (g2) defines measures
that are actually monotone increasing. By changing the inequality g(4) < g(B) in (g2) to g(A4) >
g(B), we can define measures that are monotone decreasing. Both types of monotone measures are
useful, even though monotone increasing measures are more common in dealing with uncertainty.

For any pair 4, B € ¢"such that 4 N B = (J, a monotone measure g is capable of capturing any
of the following situations:

(a) g(4 v B) > g(4) + g(B), called superadditivity, which expresses a cooperative action or

synergy between 4 and B in terms of the measured property;

(b) g(4 U B) = g(A) + g(B), called additivity, which expresses the fact that A and B are

noninteractive with respect to the measured property;

(c) g(4 v B) < g(A) + g(B), called subadditivity, which expresses some sort of inhibitory effect

or incompatibility between A and B as far as the measured property is concerned.
Observe that probability theory, which is based on classical measure theory [7] is capable of
capturing only situation (b). This demonstrates that the theory of monotone measures provides us
with a considerably broader framework than probability theory for formalizing uncertainty. As a
consequence, it allows us-to capture types of uncertainty that are beyond the scope of probability
theory.

For some historical reasons of little significance, monotone measures are often referred to in
the literature as fuzzy measures [18, 19]. This name is somewhat confusing since no fuzzy sets are
involved in the definition of monotone measures. To avoid this confusion, the term “‘fuzzy
measures” should be reserved to measures (additive or non-additive) that are defined on families of
fuzzy sets.

3. 2. Fuzzy Sets

Fuzzy sets are defined on any given universal set of concern by functions analogous to
characteristic functions of classical sets. These functions are called membership functions. Each
membership function defines a fuzzy set on a given universal set by assigning to each element of
the universal set its membership grade in the fuzzy set. The set of all membership grades must be
at least partially ordered, but it is usually required to form a complete lattice. The most common
fuzzy sets, usually referred to as standard fuzzy sets, are defined by membership grades in the unit
interval [0, |]. Those for which the maximum (or supremum) is 1 are called normal. Fuzzy sets
that are not normal are called subnormal.

Two distinct notations are most commonly employed in the literature to denote membership
functions. In one of them, the membership function of a fuzzy set A is denoted by p, and.
assuming that A is a standard fuzzy set, its form is

wi: X—>[0,1],

where X denotes the universal set of concern. In the second notation, the membership function is
denoted by A and has, of course, the same form
A: X—>[0,1]
According to the first notation, the symbol of the fuzzy set involved is distinguished from the
symbol of its membership function. According to the second notation, this distinction is not made,

but no ambiguity results from this double use of the same symbol since each fuzzy set is
completely and uniquely defined by one particular membership function. The second notation is
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adopted in this paper; it is simpler and, by and large, more popular in the current literature on fuzzy
sets.

Contrary to the symbolic role of numbers 0 and | in characteristic functions of classical sets,
numbers assigned to relevant objects by membership functions of fuzzy sets have a numerical
significance. This significance is preserved when classical sets are viewed (from the standpoint of
fuzzy set theory) as special fuzzy sets, often referred to as crisp sets.

An important property of fuzzy sets is their capability to express gradual transitions from
membership to nonmembership. This expressive capability has great utility. For example, it allows
us to capture, at least in a crude way, the meaning of expressions in natural language, most of
which are inherently vague. Crisp sets are hopelessly inadequate for this purpose. However, it is
important to realize that meanings of expressions in natural language are strongly dependent on the
context within which they are used.

Among the most important concepts associated with standard fuzzy sets is the concept of an
a-cut. Given a fuzzy set A defined on X and a number « in the unit interval [0, 1], the a-cut of 4,
denoted by “A, is the crisp set that consists of all elements of 4 whose membership degrees in 4
are greater than or equal to «; that is,

“Y=ixe X|Ax) zal.

1t is obvious that a-cuts are classical (crisp) sets, which for any given fuzzy set 4 form a nested
family of sets in the sense that

“4 <4, wheno > .

Each standard fuzzy set is uniquely represented by the family of its a-cuts [20]. Any property
that is generalized from classical set theory into the domain of fuzzy set theory by requiring that it
holds in all a-cuts in the classical sense is called a cutworthy property.

In addition to standard fuzzy sets, various nonstandard fuzzy sets have been introduced in the
literature. Among the most important and useful in some applications are the following:

o [nterval-valued fuzzy sets, in which A(x) is a closed interval of real numbers in [0, 1] for
each x € X. These sets may also be formulated as pairs 4 = (4, A ) of standard fuzzy sets
A, A such that A(x) < A4 (x) foralix e X.

o Fuzzy sets of type 2, in which A(x) is a fuzzy interval defined on [0, 1] for each x € X [21].
More general are fuzzy sets of type £, in which A(x) is a fuzzy interval of type k£ — 1 (k> 3).

o Fuzzy sets of level 2, whose domain is a family of fuzzy sets defined on X. More general
are fuzzy sets of level £, whose domain is a family of fuzzy sets of level k ~ 1 (k> 3).

o [ntuitionistic fuzzy sets, which are defined as pairs 4 = (AM, AN) of standard fuzzy sets on
X such that 0 < AM(x) + AN(x) < 1 for all x € X. The values AM(x) and AN(x) are
interpreted, respectively, as the degree of membership and the degree of nonmembership of
xinA.

* Rough fuzzy sets, which are defined as rough approximations, Az = (4x, Ar ). of fuzzy
sets A in terms of equivalence classes on X induced by an equivalence relation R. For each
a ¢ [0, 1], the a-cuts of 4z and Ak are defined by the formulas
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“Af = u{[x],, | [x]Rg“A, xe X}
“Ap =l | x4 % @, x e x}

where [x]z denotes the equivalence class that contains x. This combination of fuzzy sets
with rough sets must be distinguished from another combination, in which a fuzzy
equivalence relation is employed in the definition of a rough set. It is appropriate to refer to
the sets that are based on the latter combination as fizzy rough sets [22].

e L-fuzzy sets, in which A(x) € L, where L denotes a recognized set of membership grades.
It is required that L be at least a partially ordered set, but it is usually assumed that it is a
complete lattice. This important type of fuzzy sets was introduced very early in the history
of fuzzy set theory by Goguen [23].

Observe that the introduced types of fuzzy sets are interrelated in numerous ways. For
example, fuzzy set of any type that employs the unit interval [0, |] can be generalized by replacing
[0. 1] with a complete lattice L; some of the types (e.g., standard, interval-valued, or type 2 fuzzy
sets) can be viewed as special cases of L-fuzzy sets; or rough sets can be viewed as special
interval-valued sets.

The overall fuzzy set theory is thus a broad class of formalized languages based upon an
appreciable inventory of interrelated types of fuzzy sets. The overall fuzzy set theory is now fairly
well developed. Many researchers have contributed to it, but perhaps the most important role in its
development, not only in its founding, was played by Zadeh. Fortunately, this role is now well
documented by two volumes of his selected papers published in the period 1965-95 [24. 25].

3. 3. Theories of Uncertainty

The emergence of fuzzy set theory and the theory of monotone measures considerably
expanded the framework for formalizing uncertainty. This expansion is two-dimensional. In one
dimension, the formalized language of classical set theory is expanded to the more expressive
language of fuzzy set theory, where further distinctions are based on special types of fuzzy sets. In
the other dimension, the classical (additive) measure theory is expanded to the less restrictive
theory of monotone measures, within which various branches can be distinguished by monotone
measures with different special properties.

The two-dimensional expansion of possible uncertainty theories is illustrated by the matrix in
Fig. 2, where the rows represent various types of monotone measures while the columns represent
various types of formalized languages. Under the entry of nonadditive measures in Fig. 2, only a
few representative types are listed. Some of them are presented as pairs of dual measures
employed jointly in some uncertainty theories (Sec. 4). Under formalized languages are listed in
Fig. 2 not only theories of classical sets and standard fuzzy sets, but also theories based on some of
the nonstandard fuzzy sets. An uncertainty theory of a particular type is formed by choosing a
formalized language of a particular type and expressing relevant uncertainty (predictive.
prescriptive, diagnostic, etc.) involved in situations described in this language in terms of a
measure (or a pair of measures) of a certain type. This means that each entry in the matrix in Fig. 2
represents an uncertainty theory of a particular type.
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4. Nonclassical Uncertainty Theories

The numbered entries in Fig. 2 indicate uncertainty theories that are currently fairly well
developed. They include the two classical uncertainty theories outlined in Sec. 2 (identified by

numbers | and 3 in the bold-line box), as well as the well-known area of probability measures of

fuzzy events [26] (identified by number 2). An overview of the other, nonclassical uncertainty
theories is presented in this section. It is facilitated by Fig. 3, which shows how the theories are
ordered by their levels of generality.

4. 1. Theory Based on Graded Possibilities

Classical possibility theory introduced in Sec. 2. 1 can be generalized by allowing graded
possibilities [27]. In the generalized form, possibility distribution functions r have the form:

rX — [O,l] and are required to satisfy the condition supr(x) =1, which is called a possibilistic
xeX

normalization. Any given possibility distribution function r characterizes a unique possibility
measure, Pos, via the formula:

Pos(A) =supr(x)
xed

for all nonempty sets 4 € AX). The associated necessity measure, Nec, is then defined for each A4
€ 7(X) by the equation

NecE(A): 1-Pos, (Z).

where A denotes the complement of 4. In a more general formulation [28] which is not followed
here, Pos and Nec may be viewed as functions from an ample field on X (a family of subsets of X'
that is closed under arbitrary unions and intersections, and under complementation in X) to a given
complete lattice.

When r is defined on X x ¥, the associated marginal distribution functions, ry and ry, are
determined by the formulas

ry(x) =supr(x,y), forallx € X and
rey

1y (y)=supr(x,y), forally e Y.

veX

33
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Figure 2. Framework for uncertainty theories.

They are noninteractive when
r(x, y) = min[ry(x), r{y)]

forallx € Xandy e Y.

It was first recognized by Zadeh [29] that possibility theory is a natural tool for representing
and manipulating evidence expressed in terms of fuzzy sets. In this interpretation of possibility
theory (entry 4 in Fig. 2), the classical (crisp) possibility and necessity measures (Sec. 2. 1 and
entry 3 in Fig. 2) are extended to their fuzzy counterparts via the a-cut representation [20]. When
evidence is expressed by a standard fuzzy set E.
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Figure 3. Ordering of theories of imprecise probabilities by levels ol their generality.

of possible alternatives, the corresponding possibility distribution function, g, is defined (as
explained in [30]) by the formula

rfx) = E(x)+ 1 - hg,
where

h,. =sup E(x).

xelY

4. 2. Theories of Imprecise Probabilities

The theory of monotone measures has been instrumental in formalizing the notion of
imprecise probabilities, whose importance has been increasingly recognized during the second half
of the 20" century. The following are some of the many convincing arguments for imprecise
probabilities;

* Imprecision of probabilities is needed to reflect the amount of information on which they
are based. The imprecision should decrease with the amount of statistical information.

®  Total ignorance can be properly modeled by vacuous probabilities, which are maximally
imprecise, but not by any precise probabilities.

* lmprecise probabilities are easier to assess and elicit than precise ones.

e We may be unable to assess probabilities precisely in practice, even if that is possible in
principle, because we lack the time or computational ability.

35



36

G.J. Klir / Uncertainty-based Information

e A precise probability model that is defined on some class of events determines only
imprecise probabilities for events outside the class.

e When several sources of information (sensors. individuals of a group in a group
decision) are combined, the extent to which they are inconsistent can be expressed by the
imprecision of the combined model.

Several theories of imprecise probabilities are now fairly well developed. Among them, two
theories, one developed by Walley [31-33] and the other one pursued by Kyburg [34], are
currently the most generai theories of imprecise probabilities. The former theory is formalized in
terms of lower and upper previsions, the latter one is based on closed convex sets of probability
distributions. Since there is a one-to-one correspondence between coherent lower previsions and
nonempty closed convex sets of probability distributions, as established by Walley, the two
theories are equally general. Some arguments have already been made that these theories should be
further generalized. Thus, for example, Kyburg and Pittarelli [35] argue for using sets of
probability distributions that are not necessarily convex, and Walley [33] argues for two
generalizations of his theory. These various prospective generalizations of existing theories are not
well developed as yet and, therefore, they are not covered in this chapter.

All theories of imprecise probabilities that are based on classical set theory share some
common characteristics. One of them is that evidence within each theory is fully described by a
lower probability function, g, or, altemnatively, by an upper probability function, g . These

functions are always regular monotone measures that are superadditive and subadditive,
respectively, and

Setxh <l Yg(txh) =1 (16)

xeX e\

In the various special theories of uncertainty, they possess additional special properties.
When evidence is expressed (at the most general level) in terms of an arbitrary closed and
convex set 27 of probability distribution functions p on a finite set X, functions g and g,

associated with D are determined for each 4 € AX) by the formulas:

g, (A =inf 3 p(x) F,(4)=sup} p(x)

PeE? veq

Since

>p(x)+ > p(x) =1,

xeA x€A

for each p € D and each 4 € P(X), it follows that

g,(A)=1-g_(A) (17)
Due to this property, functions gﬂand g, are called dual (or conjugate). One of them is

sufficient for capturing given evidence; the other one is uniquely determined by (17).
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It is common to use the lower probability function &, to capture the evidence.
As is well known [36, 37] any given lower probability function & ,,1s uniquely represented by

a set-valued function m,, for which m ) = 0 and

D m(A)=1. (18)

AeP{ Xy

Any set A € AX) for which m4A) # 0 is often called a focal element, and the set of all focal
elements with the values assigned to them by function m, is called a body of evidence. Function
myis called a Mdbius representation of g, when it is obtained for all A € AX) via the Mobius

transform

my()= Y )" g (B). (19)

B8|Bc A
The inverse transform is defined for all 4 € AX) by the formula

g, (A= m,(B) (20)

Bl8c A
1t follows directly from (17) that

g ,(A) = ;mﬂw). @n

Bng

for all 4 € AX), and it is easy to check that properties (20) and (21) are consistent with property
(18).

Assume now that evidence is expressed in terms of a given lower probability function g.
Then, the set of probability distribution functions that are consistent with g, 2X g ), which is

always closed and convex, is defined as follows:

D(g) = {p(x)\x e X, p(x)e [O,I],Zp(x) =1, g(4)< Zp(x) Jforall4 € AX)}. (22)

xel\ ved
That is, each given function g is associated with a unique set 2 and vice-versa. Functions g with

some special properties, which are the subject of special theories of imprecise probabilities, are
surveyed in Secs. 4.3 - 4.6.
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4. 3. Sugeno A-measures

Sugeno A-measures, g;, introduced by Sugeno [18], are special regular monotone measures
that satisfy the requirement

QAU B) = gi(d) + g:(B) + A gi(A) g:(B) 23

for any given pair of disjoint sets 4, B € AX), where A € (- |, ©) is a parameter by which
individual measures in this class are distinguished. 1t is well known [19] that each A-measure is
uniquely determined by values gy({x}) € [0, I] for all x € X, subject to the condition that at least
two of these values are not zero. Given values g({x}) that conform to this condition, the parameter
A is uniquely determined via the equation

veV

More specifically [18, 19] the following three cases must be distinguished:
. If Z‘_E'\‘ g, ({x}) <1, g is a lower probability and, hence, a superadditive measure; X is

determined by the root of (24) in the interval (0, =), which is unique [19].
2. If ZIE'\, g, ({x}) =1, g is a probability measure; A = 0, which is the only root of (24).
3. If ZJE'\, g, ({x})> 1, gy is an upper probability and, hence, a subadditive measure; A is

determined by the root of (24) in the interval (- L, 0), that is unique [19].
Given values g,({x}) for all x € X and the associated value A, values g,(4) are then
determined for all 4 € AX) via (23).
Let A € (0,0)and let L =-A/(A+1). Then, g, is a lower probability and g; is it's dual
upper probability [18]. Moreover, the Mébius representation m of g % is obtained for all 4 € AX)

by the formula

ilﬁll/'ng,{{x}) when A= QO
m(A) = €A h
0 whenAd = @'

as is shown in [19].
4. 4. Feasible Interval-Valued Probability Distributions

In this theory, lower and upper probabilities g(4) and g(A)are determined for all sets 4 €
AX) by intervals [g({x}), g({x})] of probabilities on singletons (x € X). Clearly, g( {x})e(0,1]
and g({x})e(0, IT and inequalities (16) must be satisfied. Each given set of probability intervals
G = {g({x}). g({x})] |x e X} is associated with a closed convex set, ZXG), of probability

distribution functions, p, defined as follows:
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2(6)= { plo) < X, pl)e [a(fed). 2] 3 o) = n}

ve.X

Sets defined in this way are clearly special cases of sets defined by (22). Their special feature is
that they always form an (n — 1)-dimensional polyhedron, where n = |X |. In general, the
polyhedron may have ¢ vertices (comers), where n < ¢ < n(n —1), and each probability distribution
function contained in the set can be expressed as a linear combination of these vertices [38].

A given set G of probability intervals may be such that some combinations of values taken
from the intervals do not correspond to any probability distribution function. This indicates that the
intervals are unnecessarily broad. To avoid this deficiency, the following concept was introduced
in the theory [38]. A given set G is called feasible if and only if for each x € X and every value v(x)
e [g({x}). g({x})] there exists a probability distribution function p for which p(x) = v(x). The

feasibility of any given set G can be easily checked: the set is feasible if and only if it passes the
following tests:

gxh)+[giyH-gUyhl<] forally e .X;

wh- g({y‘)]/l forally € X.

'JQI

%
e

If G is not feasible, it can be easily converted to the set G' = {[g({x}), g "({x |x e X}of

feasible intervals by the formulas

g'(fx}) = max{ g({x}), 1= Uy} .

yEX

g'({x}) = min{ g({x}).1- 3 g({y})}

y#X

forall x € X.
Given a feasible set G of probability intervals, the lower and upper probabilities are
determined for each 4 € AX) by the formulas

g(A)=max{}’ g({x}).1- g ({x}).

xeA

A =min{) g({x}), 1= g ({x}).

XEA véd

This special theory of imprecise probabilities is covered well in [38]. Its applicability to
generalizing Bayesian methodology is the subject of [39].



40

G.J. Klir / Uncertainty-based Information

4. 5. Choquet Capacities of Various Orders

A well-defined category of theories of imprecise probabilities is based on Choquet capacities
of various orders [8]. All these theories are generalizations of the theory based on Sugeno A-
measures [18, 19], but they are not comparable (as shown in [40]) with the theory based on
feasible interval-valued probability distributions (Fig. 3). The most general theory in this category
is the theory based on capacities of order 2 [8]. Here, the lower and upper probabilities, g and g ,

are monotone measures for which

g(AuB)Zg(AH»g(B)—g(A(\B),
g(ANB)<g(4)+g(B)-g(4wB),

for all 4, B € AX). Less general uncertainty theories are then based on capacities of order k. For
each k > 2, the lower and upper probabilities, g and g . satisfy the inequalities

gUa)> T0"g(n 4.

KGN,
K2@
_ X K|+l _
gN4)< Y n"""gU 4,
i=1 ﬁ‘;gt jeK

for all families of k subsets of X, where N;y= {1, 2, ..., k}.

Clearly, if & > k. then the theory based on capacities of order &’ is less general than the one
based on capacities of order k. The least general of all these theories is the one in which the
inequalities are required to hold for all £ > 2 (the underlying capacity is said to be of order o). This
theory, which was extensively developed by Shafer [41], is usually referred to as evidence theory
or Dempster-Shafer theory. In this theory, lower and upper probabilities are called belief and
plausibility measures. An important feature of this theory is that the Mdobius representation of
evidence in this theory (usually called a basic probability assignment function) is a positive
function (m(4) > 0 for all 4 € AX)), and, hence, it can be viewed as a probability distribution on
the power set. This feature makes it possible to develop the theory via “‘non-traditional and
sophisticated application of probability theory™ as shown convincingly by Kramosil [42]. Another
approach to evidence theory has been pursued by Smets [43].

4. 6. Other Types of Imprecise Probabilities

Theories of imprecise probabilities based on the special monotone measures surveyed in Secs.
4.3 - 4.5 are currently the most visible and the best developed ones. Other types of monotone
measures have been introduced in the literature, but the theories of imprecise probabilities based
upon them have not been adequately developed as yet. Nevertheless, two broad classes of
monotone measures seem worthy of being at least mentioned in this chapter: decomposable
measures and k-additive measures.
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For any pair of disjoint subsets 4, B of X, a monotone measure, gg, that is decomposable with
respect to a r-~conorm ® [20] is required to satisfy for every pair 4, B € AX) the following
requirement:

g2 (4 B) = ge(A) ® ge(B).

The class of Sugeno A-measures is a particular class of decomposable monotone measures, in
which t-conorms ®;, have the form

a®; b=min[a+ b+ Aab, 1].

For classical probabilities, the t-conorm is the arithmetic sum. It seems that decomposable
measures were introduced by Dubois and Prade in [44] even though they called them conorm-
based measures. In [44], they also introduced dual measures based on t-norms.

The class of k-additive measures, which was introduced and investigated by Grabisch [37], is
defined as follows: A monotone measure is said to be k-additive (k > 1) if its Mdobius
representation satisfies m(4) = 0 for any 4 such that |4]> k, and there exists at least one subset B
of X such that | B] = k and m(B) # 0. The advantage of k-additive measures, especially for small
values of k, is that they are characterized via the Mébius representation by a limited number of
parameters (focal elements). They are thus suitable for approximating other monotone measures,
as investigated by Grabisch [37]. Clearly, the 1l-additive measures are classical probability
measures.

4. 7. Fuzzification of Imprecise Probabilities

Efforts to fuzzify the various theories of imprecise probabilities have been rather limited so
far, even though some results have already been obtained for monotone measures defined on fuzzy
sets (see, €. g., Ref. [45], which is also reprinted in [19]).

Perhaps the most definitive results have been obtained in fuzzifying the theory based on
feasible interval-valued probabilities, which is outlined in Sec. 4. 4. In particular, Bayesian
methodology developed for interval-valued probability distributions in [39] was generalized to
tuzzy probability distributions in [46]. This generalization is based on extending relevant intervals
of real numbers to fuzzy intervals via the o-cut representation and on using constrained fuzzy
arithmetic [47] to perform required computations.

Numerous approaches to fuzzifying the Dempster-Shafer theory have been proposed in the
literature (see, e. g., Ref. [48], which is also reprinted in [19]), but none of them has been
adequately developed as yet. Neither any comparative study regarding these various approaches
has been conducted so far. Fuzzification of special classes of monotone measures and, in
particular, the various theories of imprecise probabilities is thus a little developed area at this time.
Moreover, the few above mentioned developments are all restricted to standard fuzzy sets.
Fuzzification involving nonstandard fuzzy sets remains in this context by and large unexplored.
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5. Measures of Uncertainty and Uncertainty-Based Information

5. I. Mathematical Requirements

In each uncertainty theory, uncertainty is represented by a function that assigns to each set of
relevant alternatives (predictions, prescriptions, etc.) a number in the unit interval [0, 1], which
expresses the degree of evidence (likelihood, belief, plausibility, etc.) that the true altemative is in
the set. Let this function be called an uncertainty function. Examples of uncertainty functions are
probability measures, possibility measures, belief measures, or more generally, lower or upper
probabilities. Uncertainty functions of each uncertainty theory satisfy certain special requirements.
which distinguish them from uncertainty functions of other uncertainty theories.

A measure of uncertainty of some conceived type in a given uncertainty theory is a functional
that assigns to each uncertainty function in the theory a nonnegative real number. This number is
supposed to measure, in an intuitively meaningful way, the amount of uncertainty of the
considered type that is embedded in the uncertainty function. Examples of measures of uncertainty
are the Hartley measure (Sec. 2. |) and the Shannon entropy (Sec. 2. 2). Uncertainty functions that
are directly involved in these measures are, respectively, possibility distribution functions and
probability distribution functions. To be accgptable as a measure of the amount of uncertainty of a
given type in a particular uncertainty theory, a proposed functional must satisfy several intuitively
essential axiomatic requirements. Specific mathematical formulation of each of the requirements
depends on the uncertainty theory involved. However, the requirements can be described
informally in a generic form, independent of the various uncertainty calculi.

The following axiomatic requirements, each expressed in a generic form, must be satisfied
whenever applicable:

1. Subadditivity — the amount of uncertainty in a joint representation of evidence (defined on

a Cartesian product) cannot be greater than the sum of the amounts of uncertainty in the
associated marginal representations of evidence.

2. Additivity — the two amounts of uncertainty considered under subadditivity become equal
if and only if the marginal representations of evidence are noninteractive according to the
rules of the uncertainty calculus involved.

3. Range — the range of uncertainty is [0, M], where 0 must be assigned to the unique
uncertainty function that describes full certainty and M depends on the cardinality of the
universal set involved and on the chosen unit of measurement.

4. Continuity — any measure of uncertainty must be a continuous functional.

5. Expansibility — expanding the universal set by alternatives that are not supported by
evidence must not affect the amount of uncertainty.

6. Branching/Consistency — when uncertainty can be computed in more ways, all intuitively
acceptable, the results must be the same (consistent).

7. Monotonocity — when evidence can be ordered in the uncertainty theory employed (as in
possibility theory), the relevant uncertainty measure must preserve this ordering.

8. Coordinate invariance — when evidence is described within the n-dimensional Euclidean
space (n > 1), the relevant uncertainty measure must not change under isometric
transformations of coordinates.

When distinct types of uncertainty coexist in a given uncertainty theory, it is not necessary
that these requirements be satisfied by each uncertainty type. However, they must be satisfied by
an overall uncertainty measure, which appropriately aggregates measures of the individual
uncertainty types.
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The strongest justification of a functional as a meaningful measure of the amount of
uncertainty of a considered type in a given uncertainty theory is obtained when we can prove that
it is the only functional that satisfies the relevant requirements and measures the amount of
uncertainty in some specific measurement units. A suitable measurement unit is uniquely defined
by specifying what the amount of uncertainty should be for a particular (and usually very simple)
uncertainty function.

5. 2. Generalized Hartley Measures

Nonspecificity, which in classical possibility theory is quantified by the Hartley measure (Sec.
2.1) is a fundamental type of uncertainty. It exists in all uncertainty theories except classical
probability theory, as explained later in this section. In each nonclassical theory of uncertainty, the
Hartley measure must be appropriately generalized.

A natural generalization of the Hartley measure of nonspecificity to the fuzzy-set
interpretation of possibility theory (introduced in Sec. 4.1) was developed by Higashi and Klir [49]
under the name U-uncertainty. For any possibility distribution function rz based on evidence
expressed in terms of a normal fuzzy set E of possible altemnatives via Eq. (15), the U-uncertainty,
U, is a functional defined by the formula

U(r,) = J.nllogz “Eldor (25)

The uniqueness of this functional for measuring nonspecificity in this case was proven on
axiomatic grounds by Klir and Mariano [50].
To cover normal as well as subnormal fuzzy sets, Eq. (25) must be replaced with the equation

Utr) = [ log,|* Elda + (1~ b ) log, |X], 26)

where X denotes the universal set of concem. This follows from the general fuzzy-set
interpretation of possibility theory derived in [30] and mentioned in Sec. 4. 1. When E is a fuzzy
subset of the #-dimensional Euclidean space for some # 2 1, the counterpart of (26) is

Utry) = [ HL("Eydoc+ (1~ b HL(X ), Qn

where HL denotes the Hartley-like measure defined by (8).

Shortly after the U-uncertainty was discovered, Dubois and Prade [51] showed how to turther
generalize it to measure nonspecificity in evidence theory. The proposed generalized Hartley
measure is a functional, GH, defined by the formula

GH(m)= Y m(4)log,

Ae (XN}

4. (28)

This functional makes good intuitive sense: it is a weighted average of the Hartley measure of
focal elements. Its uniqueness was proven by Ramer [52].
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In a recent paper, Abellan and Moral [53] generalized the measure of nonspecificity in
evidence theory, expressed by (28), to closed convex sets of probability distributions and, hence, to
the various special theories of imprecise probabilities introduced in Secs. 4.3 - 4.6 as well. This
generalized functional, GH, is defined by the formula

GH(m,)= Y m,(A)log,

AeL(\)

Al (29)

where m,, is the Mobius representation of the lower probability associated with a given closed and
convex set 2 of probability distributions (Sec. 4.2). Abellan and Moral [53] showed that the
functional GH defined by (29) possesses all the essential mathematical properties required for
measures of uncertainty. In particular, they proved that the measure has the following properties:

It has the proper range [0, log, | x| ] when measured in bits; 0 is obtained when 22 contains a
single probability distribution; log2|X | is obtained when 2 contains all probability distributions
on X and thus represents total ignorance.

It is subadditive: N(2) < N(2Zx) + N(2y), where

D, ={p|p,(x)= Z p(x, y) for some p € 2}

veY

5

2, ={p,|py(y) =Y, p(x,y) for some p € 2}

eV :

1t is additive: N(2) = N(2%) + N(2x) if and only if 2% and 2y are not interactive, which means
that forall 4 € AX) and all B € AY),

m,(AxB)=m, (A)-m, (B)

and

mAR)=0forall R+A x B.

It is monotonic: if 2 and 2 are closed convex sets of probability distributions on X such that
Dc P, then M(D) < N(D).

The nonspecificity measure defined by (29) is thus mathematically sound. It is applicable to
all the theories of imprecise probabilities that are subsumed under the theory based on closed
convex sets of probability distributions (Sec. 4.2).

S. 3. Generalized Shannon Measures

In order to get insight into the meaning of the uncertainty that is measured by the Shannon
entropy, Eq. (9) may be rewritten as

S(p(x)x e X)==3 p(x)log,[1 -3 p(y)]- (30)

xel Vvex
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The term Zm p(v) in this equation expresses the total evidential claim pertaining to all

alternatives that are different from alternative x. This evidential claim fully conflicts with the
evidential claim p(x). When using

—log,[1-Y p(1)]

VEX

instead of the term alone, as in Eq. (30), the expression of conflict between p(x) and Zm p(y)is

rescaled from [0, 1] to [0, «]. It follows from these observations that the Shannon entropy
measures the mean (expected) value of the conflict among evidential claims expressed by a
probability distribution function on a finite set of mutually exclusive alternatives. The type of
uncertainty whose amount is measured by the Shannon entropy is thus conflict.

Many studious efforts were made, primarily in the 1980s, by numerous researchers to
determine a generalized counterpart of the Shannon entropy in evidence theory. Although many
intuitively promising functionals have been proposed for this purpose, each of them was found
upon closer scrutiny to violate some of the essential requirements (Sec. 5.1). In most cases, it was
the requirement of subadditivity that was violated. A historical summary of these unsuccessful
efforts is covered in [10].

5. 4. Aggregate Measures

The long, unsuccessful, and often frustrating search for the Shannon-like measure of
uncertainty in evidence theory was replaced in the early 1990s with the search for a justifiable
aggregate measure, capturing both nonspecificity and conflict. The first attempts were to add the
well-justified measure of nonspecificity with one of the proposed candidates for measuring
conflict.Unfortunately, all the resulting functionals were again found to violate some of the
essential requirements, predominantly subadditivity.

A measure of total uncertainty in evidence theory that possesses all the required mathematical
properties was eventually found (independently by several authors in 1993-94), but not as a
composite of measures of uncertainty of the two types [10]. This aggregate uncertainty measure,
AU, is defined for each function Bel defined on AX) by the formula

AU(BeI):mpax

Hel

{— > p(x)log, p(X)} 31

rel\

where the maximum is taken over the set Pg of all probability distributions p on X that are
consistent with the given belief measure Bel, which means that they satisfy the constraints

Bel(4) <Y p(x) forallAe 2(X),

ved

in addition to the usual axiomatic constraints of probability theory.

Since the aggregate measure AU is defined in terms of the solution to a nonlinear optimization
problem, its practical utility was initially questioned. Fortunately, a relatively simple and fully
general algorithm for computing the measure was developed and its correctness proven [54].
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Observe that AU defined by (31) can be readily generalized to the theory based on closed
convex sets of probability distributions. The generalized formula is

AUD) = max[Z— p(x)log, p(x)] (32)
red vel :

where 2 denotes a given closed convex set of probability distributions on X.

Although the functional AU is acceptable on mathematical grounds as an aggregate measure
of uncertainty in the theory based on closed convex sets of probability distributions (and thus in
the various special theories), it has a severe shortcoming: it is highly insensitive to changes in
evidence.

To illustrate this undesirable feature, let us examine a very simple example. Let X = }x|, xa},
m({xi})=a, m({x>})=h,and m(X)=1-a— b, where a+ b < 1. Then, AU(m) = 1 for all a € [0.
.5]and b € [0, .5].

Moreover, when a > .5, AU is independent of b and, similarly, when b > .5, AU is independent
ofa.

On the basis of this critical appraisal of the aggregate measure AU, Smith [55] proposed three
complementary measures of total uncertainty in evidence theory. To describe them, let S and S
denote, respectively, the maximum and minimum Shannon measure within all probability
distributions that are consistent with the given body of evidence. Observe that in this convenient
notation § = AU.

The first proposed measure of total uncertainty, 7U,, is defined as a linear combination of S
and GH,

TU, =85 +(1-8)GH (33)

where & e (0, 1). This measure has two favorable features. First, it satisfies all essential axiomatic
requirements (since both S and GH satisfy them). Second, it overcomes the insensitivity of
measure AU (=S ). In particular, it distinguishes total ignorance (when m(X) = 1) from the uniform
probability distribution by values log, | xland & log Ixl. respectively. The choice of the value of
8 remains an important open problem regarding this measure. It seems that the proper value of &
should be determined in the context of each interpretation of evidence theory. This can be easily
done, for example, by specifying the desired value of 7U, for the uniform probability distribution.
However, it is also conceivable that it may be derived on mathematical grounds.

The second proposed measure, 70U, is defined as the pair consisting of functionals GH and
S - GH:

TU, =(GH,5 -GH) (34)
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It is assumed here that the axiomatic requirements are defined in terms of the sum of the two
functionals involved, which is always the well-justified aggregate measure S(=4 U). In this sense,
the measure satisfies trivially all the requirements. Its advantage is that measures of both types of
uncertainty that coexist in evidence theory (nonspecificity and conflict) are expressed explicitly.
However, an open problem is to justify that the ditference S-GHisa genuine generalization of
the Shannon measure in evidence theory, and not only a superficial artifact.

The third proposed measure, TUs, is defined as the pair

1U, = (GH, 3. 5) (35)

where the second component expresses the whole range of values of the Shannon measure that are
obtained for all probability measures that are consistent with the given body of evidence. This
measure is more expressive than the other two in the sense that it captures all possible values of the
Shannon measure that are associated with the given body of evidence.

However, though the measure makes good sense conceptually, it is not yet clear how to define
a meaningful ordering for it, one that would satisfy the requirement of subadditivity. Moreover, no
efficient algorithm for computing S has been developed as yet.

Due to the mathematically sound generalization of the measure of nonspecificity by Abellan
and Moral [53] and due to the fact that the measures S and S can be defined for any closed convex
set of probability distributions, these three measures of total uncertainty are applicable not only to
evidence theory, but also to a considerably more general theory based on arbitrary closed convex
sets of probability distributions.

This means, in turn, that they are applicable to all theories of imprecise probabilities that are
subsumed under this highly general theory (as depicted in Fig. 3).

5. 5. Measures of Fuzziness

Nonspecifity and conflict are types of uncertainty that coexist in appropriate forms in all
nonclassical uncertainty theories. When the theories are fuzzified, they include one additional type
of uncertainty: fuzziness. However, this type of uncertainty is fundamentally different from the
other two. While nonspecificity and conflict result from information deficiency, fuzziness results
from the lack of linguistic precision.

When, for example, a given measurement of temperature belongs to the fuzzy set capturing (in
a given context) the meaning of the linguistic term “high temperature” with the membership
degree 0.7, this degree does not express any lack of information (the actual value of the
temperature was measured as is thus known), but rather the compatibility of the known value with
the imprecise (vague) linguistic term.

This means that fuzziness does not properly belong to this chapter, whose subject is the
relationship between uncertainty and information. It is mentioned here only to clarify the important
distinction between information-based uncertainty and linguistic uncertainty.

Various approaches to measuring fuzziness of fuzzy sets have been suggested in the literature.
One of them is based on expressing fuzziness of any given fuzzy set in terms of the lack of
distinction between the set and its complement. This approach is developed in detail in Ref. [56].
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6. Principles of Uncertainty

Although the utility of relevant uncertainty measures is as broad as the utility of any relevant
measuring instrument, their role is particularly significant in three fundamental principles for
managing uncertainty. These principles are a principle of minimum uncertainty, a principle of
maximum uncertainty, and a principle of uncertainty invaniance [10].

The principle of minimum uncertainty is basically an arbitration principle. It facilitates the
selection of meaningful alternatives from solution sets obtained by solving problems in which
some amount of the initial information is inevitably lost. According to this principle, we should
accept only those solutions for which the loss of the information is as small as possible. This
means, in turn, that we should accept only solutions with minimum uncertainty.

' Examples of problems for which the principle of minimum uncertainty is applicable are
simplification problems and conflict resolution problems of various types. Consider, for example,
that we want to simplify a finite-state nondeterministic system by coarsening state sets of its
variables. This requires that each state set be partitioned in a meaningful way (e. g., preserving a
given order of states) into a given number of subsets. This can usually be done in many different
ways. The minimum uncertainty principle allows us to compare the various competing partitions
by their amounts of relevant uncertainty (predictive, diagnostic, etc.) and consider only those with
minimum uncertainty.

As another example, let us consider a set of systems, Sj, S, ..., S, that share some variables.
Assume that these systems are locally inconsistent in the sense that projections from individual
systems into variables they share (e.g., marginal probabilities, marginal bodies of evidence, etc.)
are not the same. To resolve the local inconsistencies, we need to replace each system S, with
another system, C,, such that systems C,, C», ..., C, be locally consistent. This, of course, can be
done in many different ways, but the proper way to do that is to minimize the loss of information
caused by these replacements. Denoting the relevant uncertainty measure by UNC, the principle of
minimum uncertainty is applicable to deal with this problem by formulating the following
optimization problem:

Minimize Y [UNC(C,)-UNC(S,)]
i=l
subject to the following three types of constraints:

» axioms of the theory in which systems S;and C; (i = 1, 2, ..., n) are formalized;

s equations by which all conditions of local consistency among systems C, Cs, ..., C, are

defined;

o UNC(C)=UNC(S) foralli=1,2, ..., n,toavoid introducing bias.

The second principle, the principle of maximum uncertainty, is essential for any problem that
involves ampliative reasoning. This is reasoning in which conclusions are not entailed in the given
premises. Using common sense, the principle may be expressed as follows: in any ampliative
inference, use all information supported by available evidence but make sure that no additional
information (unsupported by given evidence) is unwittingly added. Employing the connection
between information and uncertainty, this definition can be reformulated in terms of uncertainty:
any conclusion resulting from ampliative inference should maximize the relevant uncertainty
within constraints representing given premises. This principle guarantees that we fully recognize
our ignorance when we attempt to make inferences that are beyond the information domain
defined by the given premises and, at the same time, that we utilize all information contained in the
premises. In other words, the principle guarantees that our inferences are maximally non-
committal with respect to information that is not contained in the premises.
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Let f and UNC(f) denote, respectively, a relevant uncertainty function (probability or
possibility distribution function, basic probability assignment function, etc.) and the associated
measure of uncertainty. Then, the principle of maximum uncertainty is operationally formulated in
terms of the following generic optimization problem:

Determine f for which UNC(Y) reaches its maximum under the following constraints:

e axioms upon which uncertainty functions are based,

e constraints £, £>, ..., which represent partial information about f (e.g., marginal

distributions, lower or upper bounds, values of f for some sets, etc.).

Ampliative reasoning is indispensable to science and engineering in many ways and, hence,
the underlying principle of maximum uncertainty has great utility. For example, whenever we
make predictions based on a given scientific model, we employ ampliative reasoning. Similarly,
estimating microstates from the knowledge of relevant macrostates and partial knowledge of the
microstates (as in image processing and many other problem areas) requires ampliative reasoning.
The problem of the identification of an overall system from some of its subsystems is another
example that involves ampliative reasoning and, hence, the principle of maximum uncertainty.

The principles of minimum and maximum uncertainty are well developed within classical
information theory, where they are referred to as the principles of minimum and maximum entropy.
The great utility of these principles, particularly in developing predictive models, is perhaps best
demonstrated by the work of Christensen [57]. The principle of maximum entropy, which was
presumably founded by Jaynes in the mid 20" century [58], is now covered extensively in the
literature. The book by Kapur [59] is an excellent overview of the astonishing range of
applications of the principle.

Optimization problems that emerge from the minimum and maximum uncertainty principles
outside classical information theory have yet to be properly investigated and tested in praxis. Each
of the three measures of total uncertainty in DST, which are introduced in Sec. 5.4, open special
challenges in this area of research. In my view, however, it is sufficient to use nonspecificity alone
in most applications of the principle.

By minimizing or maximizing nonspecificity, we fully control imprecisions in probabilities in
line with given evidence. Using only nonspecificity has two advantages. First, measures of
nonspecificity are well justified in all theories of imprecise probabilities. Second, measures of
nonspecificity are linear functions and, hence, no methods of nonlinear optimization are needed.
contrary to minimum and maximum entropy principles.

The third uncertainty principle, the principle of uncertainty invariance (also called the
principle of information preservation), i1s of relatively recent origin [60]. It was introduced to
facilitate meaningful transformations between the various uncertainty theories. According to this
principle, the amount of uncertainty (and the associated uncertainty-based information) should be
preserved in each transformation of uncertainty from one mathematical framework to another.
Examples of applications of this principle are probability-possibility transformations and
approximations of imprecise probabilities formalized in a particular theory by their counterparts in
a less general theory.

Thus far, significant results have been obtained for uncertainty-invariant probability-
possibility transformations. It was determined by a thorough mathematical analysis [61] that these
tranisformations do exists and are unique only under log-interval scales. They are also meaningful,
but not unique, under ordinal scales [62]. In this case, additional. context-dependent requirements
may be used to make the transformations unique.

7. Conclusions

The principal aim of generalized information theory have been threefold: (i) to liberate the
notions of uncertainty and uncertainty-based information from the narrow confines of classical set
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theory and classical measure theory; (ii) to conceptualize a broad framework within which any
conceivable type of uncertainty can be characterized; and (iii) to develop theories for the various
types of uncertainty that emerge from the framework at each of the four levels: formalization,
calculus, measurement, and methodology. Undoubtedly, these are long-term aims and it is
questionable if they can ever be fully achieved. Nevertheless, they serve well as a blueprint for a
challenging, large-scale research program.

The basic tenet of generalized information theory, that uncertainty is a broader concept than
the concept of classical probability theory, has been debated in the literature since the late 1980s
(for an overview, see Ref. [63]). As a result of this ongoing debate as well convincing advances in
generalized information theory, limitations of classical probability theory in dealing with
uncertainty and uncertainty-based information are increasingly recognized within academic
community. A

The two-dimensional framework for conceptualizing uncertainty, as illustrated in Fig. 2, is
quite instrumental in guiding future research in generalized information theory. However, the
framework still needs to be refined by refining each of its dimensions and, perhaps. needs to be
extended by introducing additional useful dimensions.

In addition to demonstrating limitations of classical uncertainty theories and conceptualizing a
fairly comprehensive framework for studying the full scope of uncertainty, a respectable number
of nonclassical uncertainty theories have already been developed within generalized information
theory. Notwithstanding the significance of these developments, they represent only a tiny fraction
of the whole area, as can be seen from Fig. 2. Most prospective theories of uncertainty and
uncertainty-base information are still undeveloped.

The role of information in human affairs has become so predominant that it is now quite
common to refer to our society as information society. It is thus increasingly important for us to
develop a good understanding of the broad concept of information. In the generalized information
theory, the concept of uncertainty is conceived in the broadest possible terms, and uncertainty-
based information is viewed as a commodity whose value is its potential to reduce uncertainty
pertaining to relevant situations. The theory does not deal with the issues of how much uncertainty
of relevant users (cognitive agents) is actually reduced in the context of each given situation, and
how valuable this uncertainty reduction is to them. However, the theory, when adequately
developed, will be an adequate base for developing a conceptual structure to capture semantic and
pragmatic aspects relevant to information users under various situations of information flow. Only
when this is adequately accomplished, a genuine science of information will be created.
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Abstract: We review the basic ideas of fuzzy systems modeling. We introduce a
framework for fuzzy systems model called a Hierarchical Prioritized Structure (HPS).
We review its structure and operation. We carefully look at the Hierarchical Updation
(HEU) operator that is used to combine information from different levels of the HPS.
Some alternative forms for this operator are described. We next turn to the issue of
constructing the HPS. First we consider the DELTA method which provides an
algorithm that can dynamically adapt the model based on observations. We next
consider the construction of the HPS where rules are provided by an expert. Here our
focus is on obtaining the appropriate ordering the rules.

1. Introduction

Fuzzy systems modeling [1] provides a framework for the representation of information about
complex relationships between variables. An important feature of this approach is the use of
granularity and gradualarity [2]. The basic element used in this approach is a fuzzy if -then rule [3].
These rules are essentially fuzzy relationships or what Kosko calls patches [4]. With the aid of an
inference mechanism called fuzzy reasoning one is able to manipulate the information in a fuzzy
rule base to generate new knowledge that is only implicitly contained in the model. In [5][6][7] we
introduced an extension of this fuzzy modeling technology in which we allowed a hierarchical
representation of the rules. This framework is called the Hierarchical Prioritized Structure (HPS).
In order to use this hierarchical framework to make inferences, generate an output for a given
input, we had to provide a new aggregation operator to allow the passing of information between
different levels of the hierarchy. This new aggregation operator is called the Hierarchical Updation
(HEU) operator.

Essentially the HPS provides a framework using a hierarchical representation of knowledge in
terms of fuzzy rules which is equipped with an appropriate machinery for making inferences,
generating a system output given an input. An important feature of the inference machinery of the
HPS is related to the implicit prioritization of the rules, the higher the rule is in the HPS the higher
its priority. The effect of this is that we look for solutions in an ordered way starting at the top.
Once an appropriate solution is found we have no need to look at the lower levels. This type of
structure very naturally allows for the inclusion of default rules, which can reside at the lowest
levels of the structure. 1t also has an inherent mechanism for forgetting by adding levels above the
information we want to forget.

An important issue related to the use of the HPS structure is the building of the model itself.
This involves determination of the rules residing in the model as well the determination of the level
at which a rule shall appear. This is essentially a kind of learning problem. As in all knowledge
based systems learning can occur in many different ways. One extreme is that of being told the
knowledge by some, usually human, expert. Early examples of expert systems were generally of
this type. At the other extreme is the situation in which we are only provided with input-output
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observations and we must use these to generate the rules. Many cases lie between these extremes.
The type of forgetting mechanism described above provides the HPS with an infrastructure that
can allow the implementation of dynamic adaptive learning techniques that continuously modify
the model.

Here we shall discuss two instruments useful with respect to the construction/learning of HPS
model. In the first situation we initialize the HPS with expert provided default rules and then use
input-output observations to modify and adapt this initialization. In the second situation we begin
with the total collection of rules that constitute the HPS and are interested in arranging these rules
in the appropriate hierarchical configuration.

This new framework was called the Hierarchical Prioritized Structure (HPS). With the aid of
this structure one is able to introduce exceptions to more general rules by giving them a priority.
introducing them at a higher level in the hierarchy. These exceptions can be themselves rules or
specific points. In this work we continue the development of these HPS models by considering
some issues related to their construction.

We note another interesting approach to the leamning of the HPS, which we shall not discuss
here, developed by Rozich, loerger and Yager [8]. This methodology called FURL uses a batch
learning algorithm. It begins by using the data to construct the simplest rules and then refines these
rules and places these refinements higher up in the HPS.

2. Introduction to Fuzzy Systems Modeling

Fuzzy systems modeling is a technique for modeling complex nonlinear relationships using a
rule based methodology. Central to this approach is a partitioning of the input/output space. In this
section we provide a brief introduction to fuzzy systems modeling, more details can be found in
17

Consider a system or relationship U = ¥, W), U is the output (or consequent) variable and V
and W are the input (or antecedent) vanables. In fuzzy systems modeling we represent this
relationship by a collection, R, of fuzzy if then rules of the form

[fVisAfand WisB,»Ihen UISD,

The A4;'s, B/s and D;'s are normal fuzzy subsets over the spaces X, Y and Z. In using fuzzy
systems modeling we are essentially partitioning the input space X x Y into fuzzy regions 4, x B,
in which we know the output value, D;

Given values for the input variables ¥ = x* and W =y, we calculate the value of U as a
fuzzy subset E by using a process called fuzzy inference:

1. For each rule we find the firing level A, = A(x" )AB,(y" ).

2. We calculate the effective output of each rule £;.

3. Combine individual effective rule outputs to get overall system output £.

Denoting input V = x" and W = ", as INPUT we denote this process as £ = R ® Input.

Two different paradigms have been typically used for implementing steps two and three in the
above procedure. The first paradigm, suggested by Mamdani and his associates [9][10], called the
Min-Max inference procedure, uses E,(z)= A, A D () for the effective rule outputs.
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It then uses a union of these outputs to get the overall output £ :UE, hence E(z)=
=1
Max[E(z)].
The second paradigm uses arithmetic operations instead of the Min-Max operation. In this
l " i . R R
approach E(z) = A*D(z) and E(z)= FZE[(Z) where T = Zl/ . As a simplified expression

J=1

”n . )\‘ .
of this we have E(z)= ZE’(Z) where £{(z) = w; D(z) with w, = ?’ We shall call this the
=]
arithmetic inference procedure.
When we desire a crisp output value =z rather than a fuzzy one we use a defuzzification step

> zE(z)
[11] such as the center of area (COA) method where we calculate z' =

Y E@)

At a meta level this inference process is one in which we start out with the empty set as our
possible solutions and then add solutions provided by each rule depending on its firing level. In
particular we can look at the fuzzy inference process as an iterative procedure. In the Max-Min
paradigm we can express this as

H(z)=H, (2)vVE(z), i=l..,n

with H ,(z) = and with the overall output £ equal to /.

In the arithmetic paradigm we can express this iterative procedure as
Hi(z) = Hiy(z) + Ei(z)

where we use E(z) = W, * D(z). Again in this case we use H ,(z) =< and overall output £ is
equal to H,.

A number of modifications of the basic procedure have been suggested. A most important one
was suggested by Sugeno [12][13]. Sugeno suggested replacing the consequent fuzzy subset by a

crisp value, D, = {—— . He further suggested the possibility of using linear functional relations in

i

the consequent. Filev [14] suggested a generalization of this idea in which we can use any
functional form in the consequent. It is also possible to associate weights or importances with each
of the rules. Thus we can associate with each rule a value o, which indicates the weight of the

rule. When including these importances we first modify each of the D/s into D /s before applying
the inference procedure. If we are using the max-min model we perform this modification as

follows D, (z) = D,(z) A a,. If we use the arithmetic approach we use [),-(Z) =D/ (2)*a,.

o
n
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3. HPS Model

In [5][6][7] Yager suggested an extension of the basic fuzzy systems modeling framework.
The purpose of this extension was to allow for a prioritization of the rules by using a hierarchical
representation of the rules. This formulation is called the Hierarchical Prioritized Structure (HPS).
In the following we shall briefly describe this structure and its associated reasoning procedure.
Figure 1 will be useful in this discussion.

Assume we have a system we are modeling with inputs ¥ and # and output U. At each level
of the HPS we have a collection of fuzzy if - then rules. Thus for level j we have a collection of n,
rules

”VIS Aj; and WLSBI, then Uis Dj,', i=1 ..., n;.

We shall denote the collection of rules at the jith level as R;. We denote the application of the
basic inference process with a given input, ¥ = x* and W = ", to this sub—ule base as F, = R
® Input.

In the HPS we denote the output of the jth level as G;. G; is obtained by combining the output
the previous level, G,.,, with F; using the Hierarchical Updation (HEU) aggregation operator
subsequently to be defined. The output of the last level, G,, is the overall model output £. We
initialize the process by assigning Go = @.

The HEU aggregation operator is defined as

G,(2)=G, () +(1-a,,)F,(2).

Here o, = Max_[G,_ (z)], the largest membership grade in G,.,.

Input (¥, W)

Ourpur U
Figure 1. Hierarchical Prioritized Structure

Let us look at the functioning of this operator. First we see that it is not pointwise in that the
value of G{(z) depends, through the function a ,_, , on the membership grade of elements other than

z. We also note that if a, | =1 no change occurs. More generally the larger o, the less the

effect of the current level. Thus we see that a ;|

acts as a kind of choking function. In particular, if
for some level j we obtain a situation in which G; is normal, has as element with membership grade
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one, the process of aggregation stops. It is also clear that G;.; and F; are not treated symunetrically.
We see that as we get closer to having some elements in G;.; with membership grade one then the
process of adding information slows. The form of the HEU essentially implements a prioritization
of the rules. The rules at highest level of the hierarchical are explored first if they find a good
solution we look no further at the rules.

Figure 2 provides an alternative view of the HPS structure.

X
O0RN0RENNNR:

%
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%

g‘g‘,/
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Figure 2. Alternative View of HPS

We shall illustrate the application of this structure with the following example

Figure 3. Structure of F(U, V)

Example: Consider a function W = F(U, V) defined on U = [0, 10] and ¥ = [0, 10]. Refer to
figure 3 for the following discussion. We shall assume that in the white areas the value of the
function is small and in the black area the value of the function is large. The figure could for
example be representative of a geospatial mapping in which W is the altitude and the black areas
correspond to a mountain range.

We can describe this function relationship by the following three level HPS structure.

Level-1: If U is close to five then /¥ is small (Rule-1)

2 .5
Level-2: If (U - 5)‘ + (V - 5)2 )0 is about two then W is large (Rule-2)
Level-3: If U and V are anything else then # is small (Rule-3)

For our purposes we define the underlined fuzzy subsets as follows:

57
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0306|0603 0306 1 06 03
Small =1 =272 2 "2 S5 Large={22 L 00 02
5°6°7 8 217227237247 25
Ww-sy
closeto five(U)=e 93 | about two(r)=e "

Let us look at three special cases. 1. U = 5 and ¥ = 6. Here rule one fires to degree |.

.3 06 1 0.6 0.
Hence the output of the first level is G, = {E%—ﬁﬂ} Since this has maximal

membership grade equal to one the output of the system is G;.
2. U= 6and V= 6. Here the firing level of rule one is 0.02 and the output of the first level is

G = {B 0202 0.2 %} and has maximal firing level 0.2. Applying the input to rule-2 we

get a firing level of 1. Thus F, = 0—30—6LE£ .
(212223 24 25

Thus G, = {0—2—2,2-0—22,(—)—2—4 Q—ﬁ % 0—46- 0. 24} and therefore a, =0.8.

5 6 7 8 9 22 237 247 25

Defuzzifying this value we get W = 16.3.

3. U=9and V = 8. In this case the firing level of rule one is 0, thus G, = @. Similarly the
firing level of rule 2 is also 0, and hence G, = @. The firing level of rule 3 is one and hence the
overall output is small.

4. Hierarchical Updation Operator

Let us look at some of the properties of this Hierarchical Updation (HEU) operator which we
denote asy . If 4 and B are two fuzzy sets then we have y(4, B) = D where D{(z) = A(z) + (I -
a)B(z) with o = Max__, (A(x)). This operator is not pointwise as o depends on A(x) for all
x € X . This operator is a kind of union operator, we see that Y(4,J)= A4 and y(J,B)=B.
This operator is not commutative y(A4, B) # y(B, A) . The operator is also not monotonic. Consider
D=y(A,B)and D'= y(A',B) where A(z) < A'(z) for all z, A < A'. In this case o < a . Here
D'(2) = A@@) + (1 - a') B(z) and D(z) = A(z) + (1 - ) B(z). Here D'(z) - D(z) = A'(2) - A(2) +
B(z)(a — ). Thus while A'(z) - A(z)>0 we have (ot —~ )< 0 and therefore there is no guarantee
that D'(z) > D(z). Also we note that while y (X, B) = B we have y(4, X) = D where D(z) = A(2) +
(1-a)

We can suggest a general class of operators that can serve as hierarchical aggregation
operators. Let T be any t-norm and S be any r-conorm. [15] A general class of hierarchical
updation operators can be represented as D = HEU(A, B) where
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a
D(z) =S(A@z), T(1 - , B(z))),
with o = Max.(A(2)).

First let us show that our original operator is a member of this class. Assume S is the bounded
sum, S{a, b) = Min[1, a + b] and T is the product, S(a, b) = a * b. In this case D(z) = Min [1, A(z) +
a B(z)]. Consider the term A(z) + o B(z). Since o= Max,[A(z)] then o< A(z) and therefore
A@yt o B(z)< A(z)H(1-A(2))B@z)< 1. Thus D(z) =A4(z) + (1 - o) B(z) which was our original
suggestion. We can now obtain other forms for this HEU operator by selecting different
instantiations of S and 7. If §= Max(v) and T= Min(A) we get

D(2)= A(2)v (o A B(2)).
If §'is the algebraic sum, S(a, b) = a+b - ab and T is the product then
D(z)= A(z)+aB(z)-a(z)B(z)= A(z)+a4(z)B(z)

If we use S as the bounded sum and T as the Min we get

D(z)= Min[l, Az)+a@n B(z)]
Since « < A(z) then A(z) + a AB(E) SAE) + (1 - A@) N B(z) =A4(z) + (] - A(z)) < 1 hence we
get

D(z) = A(z)+ an B(z).
More generally if S'is the bounded sum and T is any #-norm then

D(z)= Min[l, Az)+ T(E A B(z))] .
Since T(® A B(z)) < & <1 - A(z) then
D(z)= A(z)+T(a, B(z)).
5. The DELTA Method for Learning an HPS from Observations

In the preceding we have described the inference mechanism associated with a given
hierarchical prioritized structure. We have said nothing about how we obtained the rules in the
model. The issue of the construction of the HPS model is an important one. The format of HPS
model will allow many different methods for obtaining the model.

In this section we shall outline a dynamic learning approach for the construction of an HPS
which allows continuous learning. We shall call this the DELTA (Default Exception Learning
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That's Adaptive) method for HPS. In this approach we initialize the HPS by providing a default
representation of the relationship we are trying to model. With this default relationship we allow
the system builder to provide an initial model of the system which will be augmented as we get
more data about the performance of the actual system. This default model can be as simple or as
complex as the designers knowledge of the system can support. In this approach the augmentation
of the model will be one in which we add specific observations and rules to the HPS. The addition
of knowledge to the structure will be driven by observations that are exceptions to what we already
believe the situation to be. The exceptions will be captured and stored at the top level of the
hierarchy. Groups of exceptions shall be aggregated to form new rules that will be stored at the
next level of the hierarchy.

We shall use a three level HPS model as shown in figure 4. For ease of explanation we shall
assume a model having a single input. The extension to multiple inputs is straight forward.

Jmpul U

Levely I: Exceptions

Level# 2 Exception Bused Rules

i
Levelu3: Default Rules

‘mm v

Figure 4. Exception Based Hierarchy

The construction of the structure is initialized with the first and second levels being empty.
The third level is initialized with our default information about the structure of the relationship
between the input and output variables ¥ and U. In particular the third level contains default rules
of the form

If Vis A then U is f(V).

In the above f{¥) is some prescribed function relationship and A4 is a fuzzy subset indicating
the range of that default rule. The knowledge in the default can be any manifestation of the prior
expectation of the system modeler. It could be a simple rule that says U = b for all values of V, a
linear relationship that says U = k; + k¥ for all values of ¥ or a collection of more complex rule
base on some partitioning of the input space.

The HPS model will be learned from observations presented to it, especially observations
which are exceptions to what we already believe. In particular the information in level one and two
will be obtained from the observations presented to the model. As we shall see level one will
contain facts about individual observations that are exceptions to what we already believe. Level
two shall contain rules that aggregate these exceptions. The aggregation process used here is very
much in the spirit of the mountain clustering method [14][16][17] introduced by Yager and Filev.
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In figure 5 we provide a flow diagram of the basic learning mechanism used in this approach.
In the following we describe the basic mechanism for the construction of this type of HPS. An
observation (x, y) is presented to the HPS model. We calculate the output for the input x, denote
this y*. We then compare this calculated output with the desired output. If y and y* are close to
each other we can disregard this data and assume it doesn't provide any leamning. If y and y* are
not close we use this data to modify the HPS.

More specifically for the pair (y, y*) we calculate the value Close(y, y*), [0, 1] indicating the
degree of closeness of the observed value and the calculated value. If Close(y, y*) 2, a
threshold level, we disregard the data. If Close(y, y*) < a we use this data to update the model.
We denote for this observation P = 1 - Close(y, y*) as a measure of this observations ability to
count as an exception, its strength of exception.

We add to the top level of the current HPS model this observation in the form of a point rule,

if Vis x then U is y.

For simplicity we shall denote this rule as the point(x, y). We further associate with this rule a
value M that we initialize as P, its strength of exception. As we shall see this M value will be used
in the same way as the mountain function is used in the mountain method to help in the
aggregation of point exceptions to form exception rules.

We next update the M value for all the other exception rules in the top level of the HPS.
Specifically for any point rule, if V'is x; then U is y,, in the top level we update M, as

B ALSREES

Y S
i
e e &

Figure 5. Schematic of Learning Process

Thus we see that as a result of experiencing an observation that is considered an exception we
add this observation to a current model and modify the M value of all other exceptions by adding
to them a value proportional to the strength of the current exception modulated by its distance to
the current exception.

We next check to see if the addition of this new exception has caused a accumulation of the
exceptions which can be gathered to form an exception rule, here we use the M values.

Specifically we find the data point in the top level that now has the highest A value. Let us

denote this value as A and assume it occurs for the point (%, 7). If M > S8, 3 being a threshold
value for exception rule formation, we create a new rule of the form

If V is about X then U is about .

6l
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Where, as we have noted above, X and J are the coordinates of the data point with the largest M

value. This new rule is added to the second level of HPS. Thus we see that a collection of
exceptions close to each other, focused at (x, y), form an exception rule at the second level. We
emphasize that it is with the aid of the M function that we measure the power of a exception point
in the first level to be the nucleus of an exception rule in the second level.

The final step is the cleansing and reduction of the top level by eliminating the individual
exception rules that are now accounted for by the formulation of this new rule at the second level.

We first modify our function M at each point (x, y) in the top level to form M where
MI(X,y) - M(x.y) _ Me~Dl.\lam-u1(r,_r)—(i.)"))

We next eliminate all point rules for which M (x,y)<1-o.

Furthermore we let 4 and B be the fuzzy subsets about x and y . For each exception point in
the top level we calculate /i(x,)and B( y,) and let t; = Min (A(x;), B(v))). We then eliminate all
exceptions for which ¢, > v, a threshold for exception cleansing.

It should be noted that the above procedure has a number of parameters effecting our actions.
In particular we introduced o, £ and y. It is with the aid of these parameters that we are able to

control the uniqueness of the learning process. For example, the smaller we make a the more
rigorous our requirements are for indicating a observation as an exception, it is related to our
sensitivity to exceptions. The parameter [3 determines are openness to the formulation of new
rules. The choice of these parameters is very much in the same spirit as choice of the leaming rate
used in the classical gradient learning techniques such as back propagation. Experience with the
use of this exception base machinery will of course sharpen our knowledge of the effect of
parameter selection. At a deeper level the selection of these parameters should be based upon how
we desire the leaming to perform and gives us a degree of freedom in the design of our leamning
mechanism. This results, just as in the case of human learning, in highly individualized learning.

It is important to emphasize some salient features of the DELTA mechanism for constructing
HPS models. We see this has an adaptive type leaming mechanism. We initialize the system with
current user knowledge and then modify this initializing knowledge based upon our observations.
In particular, like a human being, this has the capability for continuous leamning. That is even while
its being used to provide outputs it can learn from its mistakes. Also we see that information enters
the systems as observations and moves its way down the system in rules very much in the humans
process information in the face of experience.

6. Using Priority Relations to Obtain the HPS

One can envision another mode for constructing the HPS. Here we start with a collection of
already provided rules and are interested in inserting these rules into the different levels of the
HPS. Here we assume we have a set of rules, H = {h,, h,, . . ., h,}. In order to construct the HPS
we need a ordering of these rules regarding their priorities. The issue of assigning priorities to rules
is very complex and highly domain dependent. First we shall briefly touch upon general some
considerations useful for distinguishing priorities among rules. In suggesting these guidelines it
must be kept in mind that the effect of assigning a higher priority to one rule over the other is that
if both rules fire for some input then the higher priority rule can block the lower priority from
effecting the solution. We essentially look to the higher priority rule for the answer.
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A first consideration is that any default or unqualified rule should have a strictly lower priority
than a qualified rule. A second consideration is the certainty associated with a rule, the higher the
certainty the more priority you give to the rule. Another consideration is the specificity of the
antecedent of the rule, the more specific the antecedent higher the priority. Thus a rule that says
“dogs are non-aggressive” should have a lower priority than a rule that says “rapid dogs are
aggressive. " Implicit in this guideline is that rules corresponding to a particular object or point
should have the highest priority. Thus a rule that says “if x = 3 then / = 15" should have the
highest priority. In this spirit if R is a rule and R is a rule indicating an exception to this rule then
R should have a higher priority.

Even using these guidelines the construction a total ordering over all of the rules is hard. In
cases in which there are a large number of rules it may be difficult to directly comprehend the
totality of the ordering. A second reason is that their may be an incomparability of different rules
regarding their relative priorities, our information about the priorities may not complete. One way
to avoid the difticulty of requiring an expert to provide a total ordering over all the rules together is
to use a pairwise priority comparison of the rules. Pairwise priority comparisons are generally easy
for human experts to provide. A pairwise priority comparison leads to the establishment of a
binary relationship over the space of rules. if this binary relationship is well behaved we can use
results from preference theory to construct an ordering over the set of all rules. However, the
problem of incomparability often requires the introduction of some additional meta knowledge to
complete the information. Before describing the process for constructing this ordering from
pairwise comparison we shall briefly review some ideas from preference theory [18].

Assume X is a collection of elements, a relationship S on X is a subset on the cartesian space
X x X . Thus § consists of pairs (x, y) where x, y € X . If (x,y) € S we shall denote this as x S y.
We can also associate with S a membership function such that S(x, y) = 1 iftx Sy and S(x, y) = 0 if
x 8 y. Three cases can be identified regarding any two pairs of elements from X. In the first case
we have x Sy and ySx , we say that x has a strictly higher priority then y, we denote thisx P y. In
the second case we have x S y and y S x, here we say that x and y have the same priority and
denote this x / y. In the third case we have x$y and v $x, here we say that x and y are
incomparable and denote this as x 7' y.

A number of basic properties can be associated with binary relationships. S is called reflexive
if x §x Sx x) =1, for all x. S is called complete if x S y or y S x for all x and vy,
S(x,v)+S(y,x)21. S is called transitive if x S y and y S z implies that x S z, formally we can
express this as S(x,y)+S5(y,z)—S(x,z) <1. Relationships possessing combinations of these
properties are given special name. A relationship S is called a weak ordering if it is reflexive,
complete and transitive. It is called a quasi-ordering if it is reflexive and transitive.

If § is a weak ordering for all pairs x and v one of the following is always true; x Py, y P x or x
/y. We can associated with any weak ordering a function

2= S(x.x,),

ved

called the scoring function of S. It can be shown that this function has the following properties:

xPyifgx) > g
y1yifge) =gw).
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If the binary relationship S resulting from a pairwise priority comparison is a weak ordering
we easily obtain the overall ordering of the objects by using the scoring function.

In order to provide a method for obtaining the overall ordering from the pairwise relationship
we need one further idea, relational composition. This will help us assure transitivity. Assume S,
and S; are two relationships on X we denote the composition of S| and S, as 53 = S10 5,. S; is also a
relationship on X where S,(x,2) = A{avx[S ,(x, ) A(y,2)]. For any relationship on S we denote &

= So S and more generally § = §*' oS. Using this idea of composition we can define the transitive
closure of any relationship. Assume X has cardinality n then the transitive closure of S is defined as

S where
S=SuS?uS’.uUS".

Two properties about transitive closures are important here. The first is that S is always a

transitive relationship and the second is that if S is transitive than S = S.

We are now are in a position to describe the procedure for obtaining the HPS from a
collection of rules. Assume we have a collection of rules H = {h', K, . .., A"}. We first obtain a
relationship S on H as follows.

Algorithm I:

1. We initiate S as the empty set
2. Foreach h, € H we add the tuple (k;, h)to S°
3. For each pair of rules A; and 4; in H are proceed as follows:
i. If we know #; to have a higher priority than #; we add the tuple (4, #) to S”
ii. If we know 4; and 4; to have the same priority we add the tuples (#;, #;) and (h;, h;) to S ‘
iii. If we can't make a comparison between #; and A, regarding the priorities we do nothing
4.1f S’ is transitive we stop and set S = S°
5168 is not transitive we calculate its transitive closure and set this equal to S.
As a result of this algorithm we have a relationship S on H which is a quasi-ordering, reflexive

and transitive. We next test whether S is complete, S(h;, #;) + S(h;, h;) = | for all pairs A; and ;. If §
is complete then S is a weak ordering. If S is a weak ordering we can then construct the HPS as

follows. For each h, € H we calculate its score g(h,) = ZS (h,,h,) . Using g(h;) we construct

i=1
the HPS by assigning those rules with the highest score to the highest priority level of the HPS.
The rules with the second highest score get assigned to the second level. We continue in this
manner until all rules are assigned

Example: Let H = {hi, hy, h3, hi}. Assume we have the following information regarding the
priorities of these rules:
h; has priority over h; h;Sh,

h; and h; are of the same priority hySh; & h; S h,
h: has priority over hy h:Shy
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From this we can obtain § =’ 0 1 1 1 . It can be seen that this is not transitive.
3
"0 0 0 1
by hy hy oy
1 1 11
n
. * . I 0 1 1 .
We now apply our transitive closure procedure on S to obtain S =/2 o111l It is
13
slo 0 0 1

easy to see that S is complete and hence a weak ordering. Applying our scoring function to S we
get g(h) = 4; g(hy) = 3; g(hs) = 3 and g(hs) = 1. From this we get the HPS structure shown in
figure 6.

Figure 6. HPS from priority relationship
7. Completion of Quasi-Ordering by Maximal Buoyancy

In situations in which some of the rules in our knowledge base are incomparable with each
other the relationship S is not complete. In this case the relationship S resulting from the
application of algorithm / is not a weak ordering, it is only a quasi-ordering, and we can't use a
scoring function to construct the HPS. In order to enable us to use a scoring function to construct
the HPS we must obtain from the quasi-ordering a weak ordering by completing S. We now look
at the process of completing quasi-ordering. The completion of this quasi-ordering will be based
upon the principle of maximal buoyancy introduced in [19][20][21]. The use of this principle leads
to a completion which introduces the least unjustified information. The principle of maximal
buoyancy is very much in the spirit of the principle of maximal entropy.

Definition: Assume S| is a quasi-ordering a weak ordering S, is said to be a completion of S;:

L. If for all pairs 4; and 4; in H we make S| complete by

1. if h; P; hy we assign h; P> h;
2. if hil; h; we assign hi 1> by
3. if hi T; hy (incomparable) we assign either h; I h; or h; P h;.
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11. This completion is done in a way to retain the transitivity.

Essentially we complete a quasi-ordering by turning all incomparable pairs into either strict
preference or equality, while leaving all strict preference and identity relationships as they are.

While any quasi-ordering can be completed and turned into a weak ordering, unfortunately, as
the following example illustrates, there can be many ways to complete a quasi-ordering.

2

Figure 7. A quasi-ordering

Example: Consider the quasi-ordering shown in figure 7.
Acceptable completions of these quasi-ordering are shown in figure 8.

Figure 8. Possible completions of quasi-ordering of figure 6.

Some additional extemnal criteria must be used to select from the multiple possible
completions of a quasi-ordering an appropriate one. In [19][20]{21] Yager has suggested such an
approach based upon the principle of maximum buoyancy. We shall now describe this process.

We first must introduce the measure of buoyancy associated with a weak ordering. Assume S

is a weak ordering and let g be the scoring function g(h,) = ZS (h,.h,). Let ¥, be a normalized

1=l
_glh) : -5 i
scored, ¥, = =—— . The measure of buoyancy of S is defined as Buo(s) = Z w,a, , where a; is
n P
the jrh largest of the ¥, and w; are a set of weights such that: 1. w, € [0, l], 2. Z ,w, =1 and 3. w,

> w; if i <j. An appropriate set of weights is w; = (0. SY fori=1ton-1andw,=(0.5)". Using
this measure the process we use for completing a quasi-ordering is as follows. Let O be a quasi-

ordering and let S, . . ., S, be the set of all weak orderings that are completions of Q. Let § " be
the weak ordering in this set such that

Buo(S") = Max, [Buo(S,)]-
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S" is the completion of O with the maximum buoyancy. We use this S" as our completion. Once

having determined S " we use the scoring function associated with S" to order the rules in the
HPS. Yager [19][20][21] discusses the justification of the principle of maximum buoyancy, which
is very much in the spirit of maximum entropy. Essentially the basis of this method is as follows.
In selecting a completion of a quasi-order to be used in an HPS structure we desire to pick one that
introduces the least possible unjustified information. The information is related to the specificity of
any resulting inference. It can be shown that in using the principle of maximum buoyancy we are
essentially selecting weak ordering introducing the least information.

8. Mathematical Programming for Completion

If the dimension of A is not small it becomes infeasible to just test all the possible completions
of our quasi-ordering and select the one with the maximum buoyancy. In this-case we need some
help in determining the best one In this section we shall describe a mathematical programming
approach to determine the weak order that is the best completion.

Assume S is a quasi-ordering which we desire to complete. Let R indicate the desired
completed ordering based on the principle of maximal buoyancy. In the following we shall let R,
indicate the membership function of R, R; = R(h;, h;). Since R; must be either 1 or 0, we note that
R; must be a binary integer variable.

To find R we can solve an integer programming problem whose objective is to maximize the
buoyancy of R. There are six sets of constraints that we must impose upon our problem:

1. Reflexivity Constraints

2. Fuithfuiness to S Constraints
3. Completion Constraints

4. Transitivity Constraints

5. Scoring Constraints

6. Runge of R

The reflexivity constraints are n constraints of the form R, =1 fori=1to n.

The next set of constraints assure us that R is an extension of S. For each pair 4; and A; for
which we have A; P h; in S, S(h;, hj) =1 and S(h;, h;) = 0, we add the two constraints R; = 1 and R;;
= 0. For each pair 4; and h; where h; [ h; in S, S(h;, hy) = S(h;, h;) = 1, we add the constraint R;; + R;; =
2. With these constraints we assure ourselves that the resulting relationship will be faithful to the
relationship S with respect to already established preferences and equalities.

We next add a collection of constraints that assure us that the resulting R is a complete
ordering. For each pair 4 and A; which is not complete in S, not covered by the above two
conditions, we add a constraint R; + R; > 1. Next we add a collection of constraints that assure us
that R is transitive. For each pair /; and #;, we add a collection of constraints of the form

Rij + Ry — Ry <1 forkequaltoall I, . ... nexceptjandi.

From this we see that for any k if Ry = 1 and R,; = 1 we must have R, = 1 to satisfy the condition
and thus these conditions guarantee transitivity. We next include conditions defining the scoring

. . 1 . .
function of R. In particular for each 4; we have a constraint v, = ~[Z R; ] . Finally we require
nl S

that each R; must be a binary integer variable, R; € {0, 1}.
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The above collection of constraints assures us that R is a weak ordering which is a completion
of our oniginal S.

The objective function, which we desire to maximize, is the Buo(R). However, we must recall
that the calculation of the buoyancy function requires an ordering over the set of scores associated
with the v,. Thus the objective function is not a simple linear calculation. In order to implement this
approach we use a method suggested by Yager [22] for converting objective functions involving
an ordering of the arguments into one that doesn't. We first introduce a collection of variables y, . .
.. y» Where y; is used to indicate the ith largest of the calculated scores, the v;. We next use as our
objective function

where the w; are the weights associated with our buoyancy measure. We next must introduce some
constraints that assure us that the y;'s are in the appropriate order. We first introduce a collection of
constraints guarantying the ordering of the y;'s,

Y=y, <0, i=l..,n-1

We next introduce a collection of constraints assigning the y;'s to the appropriate ¥ value. For
each i = | to n we introduce the foliowing set of constraints

y,—v,—1000Z, <0, j=12,..n

n

ZZ,.,. <n-I

=1

We also require that each Z; must be an integer 0 - | variable.
In [22] Yager discusses how the introduction of these constraints works to obtain the ordering.

9. Conclusion

We discussed the approach to fuzzy systems modeling known as the hierarchical prioritized
structure. An important part of this is the HEU operator that is used to combine information from
different levels of the HPS. Some alternative formulations for this operator were suggested. We
considered the issues related to the leaming of the HPS and discussed two methodologies that can
be used in appropriate situations. First we considered the DELTA method which provides an
algorithm that can dynamically adapt the HPS model based on observations. We next considered
the situation where rules are provided by an expert and focused on obtaining the appropriate
ordering of the rules within the HPS. Here we used the principle of maximal buoyancy to help
complete quasi—orderings.
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Abstract. In what follows, we approach the problem of information organization
from the viewpoint of generalized structures (fuzzy structures and hyperstructures).
The fuzzy quantitative information can be modeled by fuzzy numbers, while the
fuzzy qualitative information has its counterpart in Ayperstructures, in the sense
that, for example, two (fuzzy) informations yield a set of possible consequences. The
significance of information appears most clearly in structures; this induces the
necessity of studying the fuzzy algebraic structures (fuzzy groups, rings, ideals,
subfields and so on) as a means towards the better understanding and processing of
information. This report presents some recent results and methods in the rapidly
growing fields of fuzzy algebraic structures and hyperstructures and some
connections between them. Some results on fuzzy groups, fuzzy rings and fuzzy
subfields are given. Likewise, the consideration of diverse sets of fuzzy numbers and,
more notably, of the structures that these sets can be endowed with is of utmost
importance. In this direction, the operations with fuzzy numbers play a major role
and a number of questions regarding these operations are still open. A sample of the
different notions of fuzzy number and of the operations with fuzzy numbers and
their properties is given in this report. The similarity relations (fuzzy
generalizations of equivalence relations) are in direct connection with shape
(pattern) recognition. Diverse types of similarity classes and partitions are studied.
Several notions of fhypergroup, which combine fuzzy structures and
hyperstructures, are presented and studied. Some results that put forward a two-way
connection between L-fuzzy structures and hyperstructures are given.

1. Introduction

In what follows, we deal with the problem of information organization from the viewpoint
of generalized structures (fuzzy structures and hyperstructures).

Generally speaking, one can accept the fact that “to solve a problem (not necessarily of a
mathematical nature)” means “to determine a set” (the set of the solutions), based upon the
problem data (that is, upon a set of informations). But, to determine a set means to give a
characteristic property, in other words, to obtain an information. In this context, a classification
of properties (informations) may be useful. One can distinguish between qualitative properties
(corresponding to the linguistic level of information) and quantitative properties (corresponding
to the numerical level of information). In most cases, the information is not crisp, precise, but
vague and imprecise, “fuzzy”. The fuzzy quantitative information can be modeled by fizzy
numbers, while the fuzzy qualitative information has its counterpart in hyperstructures, in the
sense that, for example, two (fuzzy) informations yield a set of possible consequences.

The significance of information appears most clearly in structures; this induces the necessity
of studying the fuzzy algebraic structures (fuzzy groups, rings, ideals, subfields and so on) as a
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means towards the better understanding and processing of information. The theory of algebraic
hyperstructures has surprising connections with the fuzzy structures, which can be interpreted as
connections between the two types of information described above. The similarity relations
(fuzzy generalizations of equivalence relations) are in direct connection with shape (pattern)
recognition.

This report presents some recent results and methods in the rapidly growing fields of fuzzy
algebraic structures and hyperstructures and some connections between them. Some results on
fuzzy groups, fuzzy rings and fuzzy subfields are given. Likewise, the consideration of diverse
sets of fuzzy numbers and, more notably, of the structures that these sets can be endowed with is
of utmost importance. In this direction, the operations with fuzzy numbers play a major role and
a number of questions regarding these operations are still open. A sample of the different notions
of fuzzy number and of the operations with fuzzy numbers and their properties is given in this
report. Diverse types of similarity classes and partitions are studied. Several notions of f-
hypergroup, which combine fuzzy structures and hyperstructures, are presented and studied.
Some results that put forward a two-way connection between L-fuzzy structures and
hyperstructures are given.

2. Preliminaries
2.1. Fuzzy sets

The theory of fuzzy sets extends the area of applicability of mathematics, by building the
instruments and the framework for the management of the imprecision inherent to the human
language and thinking. The starting point is generalizing the notion of subset of a set. It is
well-known that a subset A’ of the set A is perfectly determined by its characteristic function

Lifxe A
0,otherwise -

x4 {01} x,-(x)={

One generalizes the notion of “belonging to” the subset 4’ by introducing a gradual
transition from “does not belong to” to “belongs to” (L. Zadeh, 1965). L. Zadeh succeeded in
imposing the theory of fuzzy sets, by exhibiting applications of the theory. The idea of rejecting
the principle “tertium non datur” is directly connected to the generalization above. It goes back
to Aristotle and appears in the modal logic (Mac Coll, 1897) or multivalued logics. The
generalization of the concept of “characteristic function” was given by H. Weyl (1940) and
appears again in a new interpretation in papers by A. Kaplan & H. F. Schott and K. Menger.

1.1. DEFINITION. Let U be a nonempty set. A pair (U, p), where p: U — [0, 1] is a
mapping, is called a fuzzy set. If x € U, p(x) is understood as the “degree to which x belongs to
the fuzzy set determined by . We shall also call p: U — [0, 1] a fuzzy subset of U and denote
FU):=[0, 11"={u|u: U — [0, 1]} the set of fuzzy subsets of U.

It is sometimes useful to replace the interval [0, 1] (which is a lattice with respect to the
usual order relation) with a lattice (L, A, v). Thus, a pair (U, p), where u: U — L, is called an
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L-fuzzy set or L-fuzzy subset of U. Many definitions and results on fuzzy sets can be transferred
to L-fuzzy sets, provided some conditions on L are imposed.
1.2. Definition. Let (U, w) be a fuzzy set and € [0, 1]. The set

WU ={xe Ulpx 2
(also denoted L) is called the o-level set of (U, ). Let supp W: = {x € U | u(x) # 0}.
1.3. PROPOSITION. Let (Uu)ue s P(U) be a famxly of subsets of U. Then (Uu)ue 0,1 is
the family of level sets of a fuzzy subset 1. U — [0, 1] if and only if it satisfies the conditions:
a) Up=U.

b) Vo, B € [0, 1], o < B implies Uy < Us,.
c) For any increasing sequence (04)i >0, @ € [0, 1], Vie N, having limit ¢, we have

Uu = ﬂizﬂ Uu'

A fuzzy set is completely determined by the family of its level sets:

1.4. Proposition. Let X be a set and let p a fuzzy subset of X. Then
ux)=sup{ke [0,1]/x e X}

1.5. Definition.

i) kg € F (U) given by ug(x) =0, Vx € U, is called the empty fuzzy subset of U.
ii) Ifu, T € F (U), the inclusion 1\ < 1 is defined by u(x) < 1(x), Vx e U.

iif) Ifu, 1€ F (U), define u U T (the union of the fuzzy subsets | and 1) by

pUt:U - [01], @0 t)emax{ u ), t ().

The intersection is defined by p N1 : U — [0,1], (0 N7T)(x) = min{p(x),7(x)}. These
definitions extend to families of fuzzy subsets: if {1;}:c; < F (U), then we set:

o, U = 01} o, fx)=inf fu, (x)};

up, U = [0,1} o p, Nx)= supfu, (x)}.

iv) For 1 € F (U), the fuzzy subset u' € F (U) given by p' (x) =1 — u(x), Vx € U, is called
the complement of |1.

1.6. REMARK. (F (U), N, U, ") is a de Morgan algebra (as opposed to (P (1), N, U, )
which is a Boole algebra). Note that {0, 1} has a Boole algebra structure (with respect to min,
max, x’ = 1 — x), while [0, 1] with the same operations is just a de Morgan algebra. On F (U) the
following operations can be defined:
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“+”byp+1: U — [0, 1], (1 + T)(x) = p(x) + o(x) — u(x)t (x), Vx € U.
“?byu-t: U — [0, 1], (1 -T)*) =x)T (x), Vxe U.

“@” byn@ U — [0, 1], (1 @ D) =min{ 1, u(x) + 1)}, Vx € U
“O”byp Q1: U — [0, 1], (1 Q1)(x) =max{0, u(x) + 1) - 1}, Vxe U

2.2. Hyperstructures

The concept of hypergroup was introduced in 1934 by F. Marty as a natural generalization
of the notion of group. Many applications in geometry, combinatorics, group theory, automata
theory etc. have tumed hypergroup theory and subsequently hyperstructure theory into a
relevant domain of modem algebra.

Let H be a nonempty set. Let P*(H)=P(H)\ {D} ={4|Ac H, A + D}.

2.1. DEFINITION. A hyperoperation “.” on H is mapping .. Hx H — P*(H). Foranyae H
and B C H, B # D, we denote by: a*B=| Ja*b.
beB

Similarly one defines B * a. If 4, B € P*(H), let A*B:Ua*b.

o€ A
beB
A nonempty set endowed with a hyperoperation “.” on H is called a hypergroupoid. If, Va,
b, c € H,we have a * (b * ¢) = (a * b) * c (associativity), then H is called a semihypergroup. If a
semihypergroup (H, *) satisfies a * H=H * a= H, Va € H (reproducibility) then H is called a
hypergroup. A hypergroup is called commutative if, Va, be H,a*b=b*a.

2.2. REMARK. A hyperoperation * defined on a set H induces two hyperoperations 7 and
“A”. For every x, y € H, define:

x/y={ae H|xe a*xy}, x\y={be H|xe y*b}.

If “” is commutative, then x / y=x \ y, Vx, ye H. Also, the reproducibility axiom is
equivalent to the condition: Vx,ye H,x/y# D andx\y# .

2.3. DEFINITION. A commutative hypergroup (H, *) is called a join space if, Va, b,c,d € H,
a/b( c/d # D implies a*d (| bxc = B.

3. Fuzzy algebraic structures
3.1. Fuzzy subgroups

1.1. DEFINITION. Let (G, -, e) be a group and let p: G — [0, 1] be a fuzzy subset of G. We
say that [ is a fuzzy subgroup of G if:

1) W(xy) 2 min{ p(x), u(»)}, Vx, y € G;

Hpuexy 2 ux), Vxe G.

If moreover W(xy) = W(x), Vx, ye G, then p is called a normal fuzzy subgroup of G.
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1.2. REMARK. If L is a fuzzy subgroup of G, then u(x™") = u(x) < p(e), Vx € G. Moreover,
1L is a normal fuzzy subgroup if and only if u(y ~'xy) = u(x), Vx, y € G.

The next characterization is typical for all “fuzzy substructures”.

1.3. PROPOSITION. A fuzzy set i: G — [0, 1] is a (normal) fuzzy subgroup of G if and only
if the level subsets G, are (normal) subgroups of G for all a0 € Im .

1.4. DEFINITION. We say the fuzzy set (F, W) satisfies the sup property if, for every
nonempty subset A of Im p, there exists x € {y € F'/(y) € A} such that p(x) = sup 4. In other
words, | has the sup property if and only if any nonempty subset 4 of Im [ has a greatest
element.

1.5. PROPOSITION. Let (G, -, e), (H, -, €) be groups, f: G — H group homomorphism and
W, M\ fuzzy subgroups of G, respectively H. Then f'(W)) is a fuzzy subgroup of G. If (G, W) has
the sup property, then f{1L) is a fuzzy subgroup of H.

3.2, Fuzzy ideals

2.1. DEFINITION. Let (R, +, -) be a unitary commutative ring.
i) A fuzzy subset 6 : R — [ is called a fuzzy subring of R if, Vx, y € R:

Hx — ) 2 min{ i(x), u()}; H(xy) 2 min{ u(x), W)}
ii) A fuzzy subset 6 : R — [ is called a fuzzy ideal of R if, Vx, y € R:

H(x - y) 2 min{(x), u()1}; H(xy) 2 max{{(x), K(»)}-

2.2. PROPOSITION. Let |1 : R — [0, 1] be a fuzzy ideal of R. Then:
) (1) = ux) = u(=x) = W(0), Vx € R;

i) ux —y) =W(0) = ux) =), Vx y€ R;

i) (9 < PO, Yy € R = B(x - ) = B8) = By - ).

2.3. PROPOSITION. A fuzzy subset L : R — [0, 1] is a fuzzy subring (ideal) of R if and only if
all level subsets ,Rq, ot € Im p, are subrings (ideals) of R.

2.4. REMARK. The intersection of a family of fuzzy ideals of R is a fuzzy ideal of K. This
leads to the notion of fuzzy ideal generated by a fuzzy subset o of R, namely the intersection of
all fuzzy ideals that include G, denoted < 6 >. We have: <6 >: R — [0, 1] is given by

<> (x)=sup{ae [0, 1]|xe <R.>}.

2.5. PROPOSITION. The union of a totally ordered (with respect to the relation
p<N & U (x) £N(x), Vx € R) family of fuzzy ideals of R is a fuzzy ideal of R.

2.6. DEFINITION. Let 1, 8 be fuzzy ideals of R. The product of | and 6 is:

w08 [011,6::0))= sup {min {min [ () 0e)}, ¥xe k.

x=2 Vizi

s

The sum of L and 0 is:
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H+6:R— [0, 1], (1 +6)(x)=sup{min{p(y), 6z)}| . z€ R,y +z=x},

Vx e R.

2.7. REMARK. In general, for y, 8 fuzzy subsets of a set S endowed with a binary operation
“, one defines the product p9 : S — [0, 1],

sup{min{u(y),8(z)}}, if there exist y,z € S such that x = yz,
“WO=],

yz=x
0, otherwise
For any p, 6 fuzzy ideals of R, we have -6 = <u >.

2.8. PROPOSITION. Let f: R — R’ be a surjective ring homomorphism and p a fuzzy ideal of
R, y'a fuzzy ideal of R'. Then:

i) f) is a fuzzy ideal of R,

i) ') is a fuzzy ideal of R.

2.9. DEFINITION. A nonconstant fuzzy ideal p (Jlm @] > 1) of a ring R is called a fizzy prime
ideal if, for any fuzzy ideals 6, 0 of R, O Cu =>0cgcpuorbgp.

3.3. Fuzzy rings of quotients

The study of the fuzzy prime ideals of a ring leads naturally to the question of the existence
of a “fuzzy localization” device, that is, to the problem of the construction of a fuzzy ring of
quotients. Let R be unitary commutative ring. R* denotes the set of the invertible elements of R.

3.1. DEFINITION. A fuzzy subset 6: R — [0, 1] is called a fizzy multiplicative subset (FMS
for short) if:

i) o(xy) 2 min (O(x), 5(»)), Vx, y € R.

i) 0(0) = min {o(x): x € R};

iil) 0(1) = max {o(x): x € R}.

3.2. PROPOSITION. The fuzzy subset © of the ring R is a FMS if and only if every level subset
6 = {x € R: o(x) 2 t}, t > (0), is a multiplicative system (in the classical sense).

Recall that a multiplicative subset S of R is saturated if xy € S impliesx, y € S.

3.3. DEFINITION. A FMS o of a ring R is called saturated if, for any x, y € R,
o(xy) = min (6(x), 6(y))-

3.4. PROPOSITION. The fuzzy subset © of the ring R is a saturated FMS if and only if every
level subset 6, is a saturated multiplicative system, V t > 6(0).

3.5. PROPOSITION. If y is a fuzzy prime ideal of a ring R, then 11 is a saturated FMS.
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3.6. PROPOSITION. Let G be a FMS of the ring R. Then the fuzzy subset G, defined by
6(x) = sup{o(xy): ye R}

is a saturated FMS, with o < & . Moreover, if 1 is a saturated FMS with 6< 1, then G < 1.

This result entitles us to call G above the saturate of o.

Let o be a FMS of the ring R and m = o(0). For every ¢ > m, we may construct the classical
ring of fractions o' R=S, with respect to the multiplicative subset o, Let @, denote the
canonical ring homomorphism R — S,. If s < ¢, since 0, C ,, the universality property of the ring
of fractions yields the existence of a unique ring homomorphism @, S, — S, such that
@50, = @. The system of rings and homomorphisms (S;, @), t, s € [m, 1] is an inductive system
(if [m, 1] is endowed with the reverse of the usual order). Let 6™'R denote the inductive limit of
this system and let ¢ be the canonical ring homomorphism R — 67'R (the inductive limit of the
@, t >m). It is natural to call G 'Rthe ring of quotients relative to the FMS o.

3.7. PROPOSITION. With the notations above, ¢ has the following universality property: for
every t>o(0), ¢(c) < (G”IR)*; if T is a ring and y: R — T is a ring homomorphism such
that for every t > 6(0), @(c,) < T*, then it exists a unique ring homomorphism f: 6'R > T such
that fop = y.

3.8. PROPOSITION. There is a canonical isomorphism \J : 6'R>5 'R
If$:R— & 'R denotes the canonical homomorphism, then =y . @
By applying Zom’s Lemma to the set P, one proves:

3.9. PROPOSITION. If g is a FMS in R and W is a fuzzy ideal such that i (] 6=, then the
set P={n: n is a fuzzy ideal of R, 1[N 0=, pcn} has maximal elements and any such
element is a fuzzy prime ideal. Thus it exists a fuzzy prime ideal T such that x| 6=O.

3.10. PROPOSITION. Let R~ be a fuzzy prime in R and denote by Ry the ring (1 — ) “'R. Then
Ry is alocal ring.

3.4. Fuzzy intermediate fields

Let F/K be a field extension and let J(F/K) = {L/ L subfield of F, K < L} be the lattice of its
intermediate fields (we also called them subextensions of F/K). If F/K is a field extension and

¢ € Fis algebraic over K, then we denote by Irr{(c, K) € K[X] the minimal polynomial of ¢ over
K

4.1. DEFINITION. Let F/K be an extension of fields and yt: F — [0, 1] a fuzzy subset of F.
We call u a fuzzy intermediate field of F/K if, Vx, y € F:

Mex _.y) 2 min{u(x), ()}
wey ) 2 minf{u(x), w(y)} if y # 0;
W(x) < W), Vk e K.
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Let FI(F/K) denote the set of all fuzzy intermediate fields of F/K. If u € FI(F/K), then  is

a constant on K.
For any fuzzy subset t: F — [0, 1] and s € [0, 1], define the leve! set:

W:={xe F[u(x)=s}.

It is well known that a fuzzy subset u: F — [0, 1] is a fuzzy intermediate field if and only if|
Vs € Im p, the level set s is an intermediate field of F/K.

4.2. THEOREM. Let F/K be a field extension. Then every fuzzy intermediate field of F/K has
the sup property iff there are no infinite strictly decreasing sequences of intermediate fields of
F/K.

4.3. REMARK. This result can be applied, mutatis mutandis, to any algebraic structure for
which is defined a notion of *“fuzzy substructure”. For instance, let (G, -) be a group and 1 is its
neutral element. By replacing in Theorem 4. 2 “intermediate field” with “subgroup” and K (the
base field) with the trivial subgroup {1}, one obtains the following fact:

4.4. PROPOSITION. Let G be a group. Then every fuzzy subgroup of G has the sup property
if and only if there are no infinite strictly decreasing sequences of subgroups of G.
Similarly, in the case of fuzzy ideals, we have:

4.5. PROPOSITION. Let R be a unitary commutative ring. Then every fuzzy ideal of R has the
sup property if and only if R is Artinian (there are no infinite strictly decreasing sequences of
ideals of R).

4.6. DEFINITION. [2] Let F/K be an extension of fields and u € FI(F/K). Then y is called a
fuzzy chain subfield of F/K if Vx, y € F, p(x) = w(y) & K(x) = K(y).
Here is a fuzzy characterization of the fact that J(F/K) is a chain.

4.7. THEOREM. [[2], Th. 3. 3]. The intermediate fields of F/K are chained if and only if F/K
has a fuzzy chain subfield.

4.8. THEOREM. Let F/K be an extension such that the intermediate fields of F/K are chained.
Then:

a) F/K is algebraic.

b) Any intermediate field L of F/K with L # F is a finite simple extension of K.

c) (J(F/K), <) satisfies the descending chain condition (there is no strictly decreasing
sequence of intermediate fields of F/K). Thus, (J)F/K), <) is well ordered.
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4.9. Corollary. Let F/K be a field extension.

a) Assume that any proper intermediate field of F/K is a finite extension of K. Then every
W € FI(F/K) has the sup property.

b) If the intermediate fields of F/K are chained, then every W e FJ(F/K) has the sup

property.
¢) If every L € FI(F/K) has the sup property, then F/K is algebraic.

4. Applications and connections
4.1. Fuzzy numbers

@,

1.1. DEFINITION. Let (G, -) be a set endowed with a binary operation
Let u, 8 € F (G). We use the definition 3.2.7 for p *6 € F (G),

(usually a group).

ya=x

( {sup{min{p( ).0{z}}}, if there exist y,z € S such that x = yz,
pLxOfx)=

0, otherwise

Thus, “*#” is a binary operation on F (G).
If G is a group and e is its neutral element, we denote ), by €. For any p € F (G), let

i:G—-1[0,1), filx)=plx"), vxe G.

1.2. Proposition. Let G be a group.

i) The operation “+#” on F (G) is associative;

ii) If G is commutative, then “#”” is commutative.
i) Ve F (G), L *e =€ *u =,
iviecpu*{l,ec i+

1.3. Proposition. Let 1, T, v € F (G). Then:
DUCT=U*VET *V,VEUCV *T;
DuxEUV=@E*9U @*v); U *p =@+ U (v+py;
HRF (T V)= (% 1) A (V) (EA V) * = (T % ) A (v * ).

1.4. DEFINITION. 4 fuzzy number is a mapping | : R — [0, 1] (where R is the field of real
numbers) such that there exists x, € R with u(x,) = 1, the set {x | L (x) # 0} is bounded and the
level sets R, are closed intervals (o € [0, 1]).

For any r € R, the mappings 7 : R — [0, 1],

~ 1, x=r
Flx)= {0' otherwise » are called degenerate fuzzy numbers.

One usually takes the fuzzy numbers of the following type:
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0 ,x<a
n,(x).xe [a.b);

nx)=41 ,XE [b,c] N
n,(x)xe (c,d] ;
0 ,x>d.

)

where a < b < ¢ < d are reals, and 1), ™;: R — R satisfy the conditions that turn p in a fuzzy
number as in the definition. For:

d-
d-c

=

m()=222 n,(x)=

one gets trapezoidal fuzzy numbers. If b=c, triangular fuzzy numbers are obtained. A
trapezoidal fuzzy number as above is denoted by 4 = (a, b, ¢, d), respectively 4 =(a, b, d) for
triangular fuzzy numbers.

The operations with fuzzy numbers |1, 1} are defined as in the case of F (G) above:

urn:R-[01]  (u*n)(z)=sup {min {u(x)n(»)}},

xoy=z

By replacing “o” with “+”, “, “=*, “. *, one obtains the operations “@”, respectively “Q”,
“97,“0”.

We use the following notations:

- Ris the set of nondegenerate fuzzy numbers;

-R.={pe R|u(x)>0=>x>0},R_={pe R|Wx)>0=x<0},

-RE=R.UR

1.5. REMARK. For any g, ne Randre R, we have, Vx € R:

(F@OuXx)=n(r-x); (@n)Xx)= s:g{min {uy)dn(x-y)}k

u{ﬁ} r#0
r -

(r Oll)(x)=‘{l’x=0 ~ ’

, r=
0,x#0

(1 O™X) = i&f{m{“m"& ]}} x#0
max{u(O)n(0)}),  x=0
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1.6. REMARK. Fuzzy numbers can be characterized by a family of intervals (intervals of
confidence). Let pe R, ae [0, 1]. Define p, =[.Eu,;ui where x,=inf{x] wx)=o}, and

%, =sup{xju(x) = a}. If  is of the type (1), we get:

[l Gohns ob] L ozt
B %= {[b,c] , o=1

The conditions 7, strictly increasing and 7, strictly decreasing determine the fuzzy number if
the confidence intervals are given. For the numbers of the type 7 (r € R) the use of confidence
intervals is superfluous. In this context the operations with fuzzy numbers can be defined as

follows: Vi, € R, withu =[x, X, 1,M,= [V, V], we define:

@MW, =[x, typ XV, (WO My=[x,— Vs X=X

MO M), =[min{x, V., X, Vo> ¥aVor Xy Vo Is MAX{X Y X Vo> Xy Yoo Xy Vo 1]

@ON),= | mind X2 *a Zo Fal ppiXe Yo Za Tl irgg n (o (0, 1).
Yo Vo Fa Va Vo Yo Va Va

1.7. REMARK. For trapezoidal or triangular fuzzy numbers, 4 =(a, b, ¢, d), respectively
A=(a, b, c), the confidence intervals are 4, = [(b— a)a. + a, (c — d)a + d], respectively:

A =[(b-a)o+a,(b-c)a+c],ae [0,1]
In these cases, 4g = [a, c], respectively 4, ={a, b].
Since Ag and 4, determine completely the triangular fuzzy number 1, sometimes it is taken

the following definition (for A =(ay, by, ¢1), B = (ay, b, ¢2)):

A@B=(aitay b +tby,c tc); A QO B=(aya, biby, c1¢), for ay, a, 2 0;

a b c
L L foray,a;,>0.
¢, b a

AO B=(a;—ay, by—by,c1—c2); A®B=[
If A1s a triangular fuzzy number, 4 =(a, b, ¢), we denote also —4 =(—a, —b, —) and
A=, 6", a™")ifa>0. Forany e R, let Oy =(~0,, 0, o) and for any o> 1, let I, =(o.”,

1, o). We have 0, @ Op =0 p, 1o Q 1p=1ep.

1.8. DEFINITION. We define on the set of triangular fuzzy numbers R, the following relations:
Ay=(ay, b, c1) and A, = (ay, by, ;) are @-equivalent (and write 4, ~g4,) if there exist 0,, Op

such that 4, @ 0, =4, @ Op.
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We say that 4, =(ay, b, 1) and 4, = (az, by, ¢;) are O -equivalent (we write A, ~o 4,) if
there exist 1, 1p such that 4,0 1,=4, O 1.

It is easy to see that 0, ~g Og forevery o, Be Rand 1o ~o 1p foreveryo, 21.

1.9. PROPOSITION. The relations ~g ~q are equivalence relations.

Let Rg = R/~g and for every 4 € R, denote Ae R ¢ the equivalence class of 4.
For A, Be Re, we define X[+]§ = A[+]B.

1.10. PROPOSITION. The operation [+] is well defined and (R, [+]) is an abelian group, T.,

being its neutral element (Vo € R); A isthe symmetrical element of A.

1.11. REMARK. A similar result can be obtained for Ro = .R/~o, where . R, is the set of
triangular fuzzy numbers (a, b, c) witha > 0.

We note the fact that the operations “Q ” or “© " defined before (using p *1) or confidence
intervals) do not necessarily lead to triangular numbers if one starts with triangular numbers. For

Jite [0,1]'

(1=1, 1, 1)). This justifies somehow the operations defined
0, otherwise

instance, T O 7={
above (“component-wise”), but the deviations for the variant given by “*” for product and
quotient are considerable. On the other hand, one obtains for usual real numbers (considered as
fuzzy numbers) the usual operations. The problem of building an acceptable arithmetic for fuzzy
number is still open.

4.2. Similarity relations and partitions

The role played by the notion of relation in the structure of mathematical concepts is well
known. We review known results on the introduction of this notion in the framework of fuzzy
set theory.

2.1. DEFINITION. Let X and Y be sets. We call a fuzzy relation between X and Y any fuzzy
subset p: X x Y — [0, 1] of the (usual) cartesian product X x Y. If X = ¥, we say that p is a fuzzy
relation on X.

Let R(X) be the set of all fuzzy relations on X.

1 ifx=

The diagonal fuzzy relation on Xis A: X x X — [0, 1], A(x, y) = { 1.fx v,

0 ifxzy

Ifp: Xx Y — [0, 1] is a fuzzy relation between X and Y, then p": Yx X — [0, 1] defined
by p ' (v, x) = p(x, y) is called the inverse of p.

In the same manner as in the classical case, since the fuzzy relations are, in fact, fuzzy
subsets, one may introduce the operations U and (1 with fuzzy relations, as well as defining the
inclusion between the fuzzy relations. Among the many possibilities of composing the fuzzy
relations, we present the definition due to Zadeh:

Let X, Y, Z be sets and p: XxY—[0, 1], & YxZ—[0, 1] fuzzy relations. The
composition of the fuzzy relations p and § is the fuzzy relation p o &: X x Z — [0, 1], defined by
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pof )= sup inf{p(x,y).&(y.2)}.

yeyt
Forpe R(X), wesetp’=Aandp" ' =p"ap,Vne N.

2.2. PROPOSITION. i) If pi: XX Y= [0, 1], p2: YXZ— [0, 1], p3: Zx U — [0, 1] are fuzzy
relations, then (piop2)ops = pro(P20ps)-
i) Let p: YXZ — [0, 1], py and p;: Xx Y — [0, 1] be fuzzy relations such that p, C p..
Then piop C pPaop.
iif) Let p: YX Z — [0, 1], py and p: X x Y — [0, 1] be fuzzy relations. Then
(P1Up2) ep=(p2op)U(p20op)and (piM1p2) op < (P2op) N (p2op).

2.3. DEFINITION. Let p be a fuzzy relation on a fuzzy set (X, p).
— p is called reflexive if p(x, x) = (x), for any x € X (p(x, x) = 1 for an usual set);
— p is called symmetric if p(x, y) = p(y, x), forany (x, y) € XX X;
- p is called Z-transitive if p(x, z) 2 sup min{p(x, y), p(y, 2)}, forany x, z € X
yeX
The fuzzy counterpart of the classical equivalence relation is the similarity relation.

2.4. DEFINITION. A relation p : Xx X — [0, 1] is called a similarity relation on X if it is
reflexive, symmetric and Z-transitive.

2.5. PROPOSITION. Let p : XX X — [0, 1] be a similarity relation and x, y, z € X. Then:
p(x, y) =P, 2) or p(x, 2) = p(y; 2) or p(x, 2) = p(x, ).

By using the level subsets, one obtains:

2.6. PROPOSITION. The relation p: X x X — [0, 1] is a similarity relation if and only if, for
any o € [0, 1], o(X x X), is an equivalence relation on X.

2.7. PROPOSITION. Let p: Xx X — [0, l] be a fuzzy relation on X. The smallest similarity
relation p; with p C ps is ps(x, y) =sup {(p Ua U p Y (x, y)| n € N}. The notion of equivalence
class leads, in this setting, to the notion of similarity class. Let p: X x X — [0, 1] be a similarity
relation and x € X. The similarity class of representative x is p: X — [0, 1], p«(y) = p(x, y), for
any y € X. Unlike the equivalence classes, the similarity classes are not necessarily disjoint (with
respect to fuzzy intersection). We point out some connections with the fuzzy partitions.

Let Xbeasetand /= {1, 2, ..., n}. The symbols “”, “@”, “Q ” denote the operations on
F (X) defined at 2. 1. 6.

2.8. DEFINITION. The fuzzy sets [, Wy, ..., Ly € F (X) are called:
- s-disjoint, if, Vi € J, (@ ics-tily) O =2

- wdisjoint, if Q 1<i<n Wi=;

- i-disjoint, if,Vr,s e Jyr#s, 1, N W,=3

- t-disjoint, if, Vr, s € J,r# s, 1, W= 2.
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We say that the letters s, w, i, ¢ are associated, respectively, to the operations “@”, “Q ",
un n, u.n.

2.9. REMARK. The above definitions can be extended in a natural manner to a countable
Samily of fuzzy sets of F (X): Vae {s, w, i, 1}, i, Ha, - .., Pn, -..€ F (X) are called o-disjoint if,
foranyn € N, yy, pa, ..., M, are o-disjoint.

2.10. REMARK. a) If i1, N W, =D then i, O W, =D. The converse is not generally true.

It is true if |1, and p, are characteristic functions.

D O K= < (I @ H2)(X)=i(x) + Pox), Vx € X.

c) Let (4)es a family of n subsets of X and let y; the characteristic function of 4,
Vie JTheny, i € J, are s-disjoint if and only if, Vi, j € J, i #j impliesy; QO x,=9.

d) N M2 =@ if and only if p, - o =D.

€) Wi, M2, - .., 1a are s-disjoint = p,, {, ..., J1, are w-disjoint.

2.11. Proposition. We have:

Wi, K2, - .., Mo are s-disjoint < Vxe X, 1(x) + pa(x) + ...+ p(x) < 1;

Wi, K2, .., Mo are s-disjoint <> Vxe X, Zie ) 1ix) = @ ics M{X);

Wi, Ha, ..., Ha are w-disjoint < Vxe X, 'i(x) + p'a(x) + ...+ pa(x) < 1;
Wi, Ha, -.., Mo are w-disjoint & Vxe X, pui(x) + Hao(x) + ...+ p(x) <n—-1.
Correspondingly, we obtain the notion of G-partition withc € {s, w, i, t}.

2.12. DEFINITION. Let G be an element of {s, w; i, f} and let ® be the associated operation.
The family {p;}ies < F (X) is called a fuzzy o-partition of ne F (X) if Wi, pa, ..., o are
o-disjoint and @y ; p; = p. Similarly, one can define the countable partitions of a fuzzy subset of
X. When L =, with 4 subset of X, the o-partition is called a fuzzy o-partition of A.

2.13. REMARK. If {,, 2, ..., M.} is an s-partition of i and v < , then:
{V Wi,V "Mz, ..., V "M} is an s-partition for v -W.

Let p: Xx X — [0, 1] be a non-degenerate similarity relation (there exist x, y€ X, x#y,
such that p(x, y) = 1). In the following we consider that X is a finite or countable set. For any
x € X we denote 1, : X — [0, 1] the function such that p, (y) = 1 if p(x, ¥) = 1 and p, () =0 if
pix, y) = 1.

2.14. PROPOSITION. In the conditions above, if 3 z € X such that n(z) = p(y) =1, then
W, = 1. The relation on X, defined by x~y if and only if |, = J,, is an equivalence relation on X.
Let K = X/~ and denote by [x] the class of x, Vx € X. Define py, = L.

2.15. PROPOSITION. The set H = {j, | x € X} is a fuzzy w-partition and a fuzzy i-partition
of X.
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4.3. Connections between hyperstructures and fuzzy sets

The connections between algebraic hyperstructures and the fuzzy sets may take into account
the following variants:

Let H be a nonempty set. One may replace (in the definition 2. 2. 1 of a hyperoperation on
H) P"(H) with F "(H), where F "(H) = {i: H — [0, 1]: 3x € H such that p(x) # 0}

(the “family of nonempty fuzzy subsets of H”’).

B. For a given hyperstructure, define a fuzzy subhyperstructure in an analogous manner to
the one used to introduce the fuzzy subgroups.

C. Associating a hyperstructure to a fuzzy set (and conversely).

Concerning the variant A above, we have:

3.1. DEFINITION. Let H be a nonempty set. An application ; Hx H — F "(H) is called an
f-hyperoperation on H.
Fora, be H,Ke P'(H), p € F "(H), we define:

a@d b={xe H|(a*b)(x)£0},a B K=Uiexa B b,k & a=Ux k & g;
a®b={xe H|(aob)x)=1},a ® K=Upexa Bk k ® a=Uwxk & a;
asK € F '(H), (aeK)(x) = sup{(a®k)(x) | ke K}, Vxe H.

Kea e F'(H), (Kea)(x) = sup{(kea)(x) | ke K}, Vx e H.

as|L = aesupp(iL); lLea = supp(iL)ea, where supp(L): = {x € H | W(x) # 0}.

We introduce some conditions related to reproducibility. We say that the f~hyperoperation
“e” on H satisfies the condition:

(Ry) if: aoH = yy= Hea, Va € H;

Ry ifea @™ H=H=H & a,Vae H,

Ry)ifa®@H=H=H®X a,Vae H.

3.2. DEFINITION. A nonempty set H endowed with an f~hyperoperation eis called an
fi-hypergroup (i € {1,2,3}) if “#” is associative (a®(bec) = (a®b)ec, Va, b, c € H) and satisfies
the condition R;.

3.3. PROPOSITION. a) (H, ) is a fi-hypergroup = (H, ®) is a fi-hypergroup = (H, ®) is a
So-hypergroup.

b) Foranyie {1,2, 3}, if (H, ®) is a f-hypergroup, then (H, &) is a hypergroup.

¢) If (H, *) is a hypergroup, then (H, ) is a f-hypergroup, foranyi e {1, 2, 3}, where o:

Hx H — F(H) is given by (ash)(x) = {] yxe a*b.

0 otherwise

The variant C above can be used in the following manner: if u: 4 — L is an L-fuzzy set,
where (L, A, V) is a lattice, define the following hyperoperation on A:

(N asb={xe 4: pa)ap (b) U< 1 (@)vi(b) }, where “ < is the order relation on L.

3.4. Proposition. In the conditions above, for every a, b, c € A, we have:
i)a€ asb;

ii) axb = bsa;

iii) ax(axb) = axb = (ara)xb = (asa)x (bxb) = (arb)+b.
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3.5. ProrosiTION. If (L) is a distributive sublattice in L (it is stable with respect to the
operations A and v and aA(bvc) = (aab)v (anc), for any a, b, c e u(L)), then:
iv) (asb)sc = as(bsc), foreverya, b,ce A.

From 3. 4. i) it follows at once that a«4 = Asa, for any a in A. Together with 3. 4. i) and 3.
5. iv), this allows us to say that (4, ) is a commutative hypergroup if W(L) is a distributive
sublattice in L. Moreover, 3. 4. iif) shows that (a«a)+(b+b) = as+b; the set a+b depends only on
a+a and beb.

3.6. QUESTION. A natural problem arises: characterize the lattices L (e.g. by means of identi-
ties) with the property that, the hyperoperation induced on L — viewed as an L-fuzzy set by:

1: L > L - asin (1) is associative. The result 3. 4. iv) says that the class of lattices with this
property includes the distributive lattices. In the case L= [0, 1] (or, more generally, a totally
ordered set), the hypergroup obtained above is even a join space.

Suppose now that (L) is a sublattice which possesses a greatest element denoted 1 (that is,
x < 1 for any x in u(L)). We then have the additional properties:

3.7. Proposition. In the conditions above, there exists W€ A, such that:
v)Forany a, b € A, the condition a«= b implies a«a = bsb;
vi) For any a, b € A, there exist m, M € A such that

M*o=({x*® :xea*b}and

Nix*o:x*0o{ablf=m*o.

Let us consider the reverse problem: given a hyperstructure (H, +) satisfying the properties
i}-ii) and v)-vi) above, can one find a lattice L and a mapping p1: H — L such that “+” is the
hyperoperation induced by I, as in (1)? In order to answer this, let H satisfy the properties
above. Define a relation “~” on H by:

a~b iff asa = beb.

One readily checks that this is an equivalence relation on A. Let L be the factor set H/~ (the
set {a: a € H}, where a = {xe H: x~a} is the equivalence class of a). Define a relation p on L
by:
for any a,be L,apbiff b*bca*w

The relation p is well-defined (does not depend on the representatives a and b). This is in
fact an order relation on L and the ordered set (L, p) is a lattice. Define now the application
W:H — L as the canonical projection: 1(a) = a, for any a € H, define the hyperoperation *.” in
Hasin(1).
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3.8. Proposition. In the conditions above, for any a and b in H,

ash={x e 4: Wa)A(b) < p(x) < p(a)vp(b)}.
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Abstract

Most real-world databases contain some amount of inaccurate data. Reliability of
critical attributes can be evaluated from the values of other attributes in the same data
table. This paper presents a new fuzzy-based measure of data reliability in continuous
attributes. We partition the relational schema of a database into a subset of input
(predicting) and a subset of target (dependent) attributes. A data mining model, called
information-theoretic connectionist network, is constructed for predicting the values of a
continuous target attribute. The network calculates the degree of reliability of the actual
target values in each record by using their distance from the predicted values. The
approach is demonstrated on the voting data from the 2000 Presidential Elections in the
UsS.

1. Introduction

Modem database systems are designed to store accurate and reliable data only. However, the
assumption of zero defect data (ZDD) is far from being true in most real-world databases,
especially when their data comes from multiple sources. The issue of data reliability has been in
the focus of the recent controversy regarding the results of the Year 2000 presidential elections in
the State of Florida. After the elections, the leaders of the Democratic Party questioned the
accuracy of the official voting results in certain Florida counties, based on the demographic
characteristics of the voters in those counties. Their suspicions have led to a manual re-count of
the votes, which was aimed at improving the reliability of the results. Though the accuracy of the
punch card counting machines, used in some counties, was known to be limited, a complete
manual re-count of all Florida votes was not feasible within a several weeks time frame.
Eventually, the courts stopped the manual re-count process and Mr. George W. Bush was
declared as the new President of the United States.

In small databases the users have enough time to check manually every record “suspected”
of poor data quality and correct data, if necessary. In a large database, like the data on Florida
voting results, this approach is certainly impractical. The task of assuring data reliability and data
quality, known as ‘“‘data cleaning”, becomes even more acute in rapidly emerging Data
Warehouses. Thus, there is a strong need for an efficient automated tool, capable of detecting,
filtering, representing and analyzing poor quality data in large databases.

In our previous work (see [18] - [20]), we have introduced an information-theoretic fuzzy
method for evaluating reliability of discrete (nominal) attributes. Our methodology for data
quality assurance includes three main stages: modification of the database schema, induction of a
data mining model (information-theoretic network), and using the constructed network to
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calculate reliability degrees of attribute values. In this paper, we present a new fuzzy-based
measure for evaluating the reliability of continuous attributes and demonstrate it on a set of real
voting data from the US presidential elections.

Our paper is organized as follows. In Section 2 we present an overview of existing
approaches to various aspects of data quality and data reliability. Section 3 briefly describes the
algorithm for building an information-theoretic connectionist network from relational data. In
Section 4, we present the fuzzy-based approach to evaluating data reliability of continuous
attributes. In Section 5 we apply the info-fuzzy methodology presented in Sections 3 and 4 to a
set of real voting data. Section 6 concludes the paper with summarizing the benefits of our
approach to data reliability and representing a number of issues for the future research.

2. Data Quality and Data Reliability

As indicated by Wang et al. [32], data reliability is one of data quality dimensions. Other
data quality dimensions include ([31] - [33]): accuracy, timeliness, relevance, completeness,
consistency, precision, etc. Various definitions of these and other dimensions can be found in
[33]. Ahituv et al. [1] refer to accuracy and relevance as content attributes of an information
system. According to Wand and Wang [31], the reliability “indicates whether the data can be
counted on to convey the right information™. Unreliable (deficient) data represents an
inconformity between the state of the information system and the state of the real-world system.
The process of mapping a real-world state to a wrong state in an information system is termed by
[31] as “garbling”. Two cases of garbling are considered: the mapping to a meaningless state and
the mapping to a meaningful, but wrong state. In the first case the user knows that the data is
unreliable, while in the second case he relies upon an incorrect data. Wand and Wang suggest to
solve the garbling problem by adding data entry controls, like check digits and control totals,
methods that are not applicable to qualitative data. The paper follows a “Boolean™ approach to
data reliability: the information system states are assumed to be either correct or incorrect. No
“medium” degree of reliability is provided.

An attribute-based approach to data quality is introduced by Wang ez al. in [33]. It is based
on the entity-relationship (ER) model (see [13]) and assumes that some attributes (called qualiry
indicators) provide objective information (metadata) about data quality of other attributes. The
data quality is expressed in terms of quality parameters (e.g., believability, reliability, and
timeliness). Thus, if some sources are less reliable than the others, an attribute data source may
be an indicator of data reliability. Each quality parameter has one or more quality indicators
attached to it via quality keys. A quality indicator may have quality indicators of its own, leading
easily to an exponential total number of quality indicators. Wang er al. [33] suggest integration of
quality indicators, to eliminate redundancy and inconsistency, but no methodological approach to
this problem (crucial for dimensionality reduction) is presented.

An extended database, storing quality indicators along with data, is defined as a qualir:
database. The quality indicator values are stored in quality indicator relations. The quality
database is strictly deterministic: once the values of quality indicators are given, the values of
quality parameters are uniquely defined by the database structure. The values of quality
parameters are often qualitative and subjective (like “highly reliable” vs. “unreliable™). Wang et
al. [33] wamn that quality parameters and quality indicators are strongly user-dependent and
application-dependent. The database structure described by [33] enables an experienced user to
infer manually from values of quality indicators about the quality of relation attributes, but their
work provides no method for automated evaluation of data quality in large databases.
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Kandel et a/. [11] mention unreliable information as one of sources of data uncertainty, other
sources including fuzziness of human concepts, incomplete data, contradicting sources of
information, and partial matching between facts and events. According to Kandel et al. (1996),
the main drawback of the probabilistic approaches to uncertainty (e.g., the Bayesian approach) is
their limited ability to represent human reasoning, since humans are not Bayesian when
reasoning under uncertainty.

Kurutach [14] discusses three types of data imperfection in databases: vagueness, or
Jfuzziness (the attribute value is given, but its meaning is not well-defined), imprecision (the
attribute value is given as a set of possible items), and uncertainty (the attribute value is given
along with its degree of confidence). All these types of imperfection are defined by users
themselves during the data entry process. The author suggests a unified approach, based on fuzzy
set theory, to incorporating these aspects of imperfection in an extended relational database
containing, primarily, discretely-valued, qualitative data. In addition to imprecision and
uncertainty, Motro [22] defines a third kind of imperfect data: erroneous information. Database
information is erroneous, when it is different from the true information. Motro [22] follows the
binary approach to errors: both “small” and “large” errors in a database should not be tolerated.
He also mentions inconsistency as one of the important kinds of erroneous information.

Since, in a general case, data reliability is a /inguistic variable (the data can be considered
“very reliable”, “not so reliable”, “quite unreliable”, etc.), the models of fuzzy databases seem to
be helpful for treating reliability of database attributes. As indicated by Zemankova and Kandel
[35], the main problem of fuzzy databases is to propagate the level of uncertainty associated with
the data (reliability degree in our case) to the level of uncertainty associated with answers or
conclusions based on the data. The fuzzy relational algebra proposed by Klir and Yuan [12]
enables to check similarity between values of fuzzy attributes by using a similarity relation
matrix and a pre-defined threshold level of minimum acceptable similarity degree.

Zemankova and Kandel [35], Kandel [10] propose a Fuzzy Relational Data-Base (FRDB)
model which enables to evaluate fuzzy queries from relational databases. The attribute values in
the FRDB can represent membership or possibility distributions defined on the unit interval [0,
1]. According to this model, a single value of a membership distribution can be used as a value of
a fuzzy attribute. Another model of fuzzy querying from regular relational databases (called
SQL) is presented by Bosc and Pivert [2]. The main purpose of this model is to define imprecise
answers based on precise data and on fuzzy conditions (which contain fuzzy predicates and fuzzy
quantifiers).

The Fuzzy Data model developed by Takahashi [29] assumes that some nonkey attributes
may have values defined by fuzzy predicates (e.g., “very reliable”). All key attributes and some
other attributes are assumed to have nonfuzzy values only. Any tuple in Takahashi data model
has a truth value z defined over the unit interval {0, 1]. The value of z is interpreted as a degree to
which the tuple is true, with two special cases: z = 0 when the tuple is completely false and z = [
when the tuple is completely true. This approach treats a tuple as a set of attribute values, all
having the same truth-value. The case of different truth-values associated with values of different
attributes in the same tuple is not covered by the model of [29]. A similar idea of associating a
single truth value (a weight) with each tuple is described by Petri [25]. Petri terms such tuples as
weighted tuples and defines their weight as a membership degree expressing the extent to which
a tuple belongs to a fuzzy relation. Three possible meanings of tuple weights are proposed. One
of them is “the certainty of information stored in the tuple”, i.e. the reliability of all tuple
attributes. The concept of reliability degree associated with every column in a fuzzy spreadsheet
table is used by [23]. According to their definition, the degree of reliability can take any
continuous value between 0 and 1, but no explicit interpretation of this variable is provided.
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All the above-mentioned models assume that both crisp and fuzzy quality dimensions of
database attributes are available from the database users. Obviously, this assumption may not be
realistic for large and dynamically changing databases. Consequently, there is a need for methods
that perform automated assessment of data quality. An information theoretic approach to
automated data cleaning is presented by Guyon et al. [8]. The paper assumes that erroneous
(“garbage™) data has a high information gain. The information gain is defined by [8] as a self-
information (logarithm of probability) of predicting the correct data value. This means that the
most “surprising” patterns (having the lowest probability to be predicted correctly) are suspicious
to be unreliable. The authors propose a computer-aided cleaning method where a human operator
must check only those patterns that have the highest information gain and remove from the
database patterns, which are truly corrupted, while keeping all the rest. The prediction itself is
performed in [8] by using a neural network trained with a “cross-entropy” cost function. One can
easily accept the approach of [8] that values having lower probability are more likely to be
erroneous. However, the values having the same probability (and, accordingly, the same
information gain) cannot be treated alike in different databases. Reliability may also depend on
the inherent distributions of database attributes and some other, user-related factors. Thus, the
approach of [8] should be enhanced to cope with real-world problems of data quality.

In [19], we have presented a fuzzy-based approach to automated evaluation of data
reliability. The method of [19] is aimed at detecting unreliable nominal data by integrating
objective (information-theoretic) and subjective (user-specific) aspects of data quality. In this
paper, we extend the method of [19] to handle partially reliable continuous attributes.

3. Information-Theoretic Connectionist Networks

Uncertainty is an inherent part of our life. Delivery time of manufactured products is not
constant, stock prices go up and down, and people vote according to their personal beliefs. Most
real-world phenomena cannot be predicted with perfect accuracy. The reasons for that may
include limited understanding of the true causes for a given phenomenon (e.g., detailed
considerations of each specific voter), as well as missing and erroneous data (e.g., incomplete or
inaccurate voting results).

Data mining methods (see [4], [5], [17], [21], [26], and [27]) are aimed at reducing the
amount of uncertainty, or gaining information, about the data. More information means higher
prediction accuracy for future cases. If a model is useless, it does not provide us with any new
information and its prediction accuracy is not higher than just a random guess. On the other hand,
the maximum amount of information transferred by a model is limited: in the best case, we have
an accurate prediction for every new case. Intuitively, we need more information to predict a
multi-valued outcome (e.g., percentage of votes for a certain candidate) than to predict a binary
outcome (e.g., customer credibility).

The above characteristics of the data mining problem resemble the communication task:
predictive attributes can be seen as input messages and each value of the system output as an
output message. If we have a model with a perfect accuracy, each output value can be predicted
correctly from the values of input attributes. In terms of the Information Theory (see [3]), this
means that the entropy of the output Y, given the input X is zero, i.e., the mutual information
between Y and X is maximal.

The information-theoretic approach to data mining (see [6], [7]. [15]. [16], [18], [19]. and
[20]) is a powerful methodology for inducing information patterns from large sets of imperfect
data, since it uses meaningful network structure, called information-theoretic connectionist
network. The measures of information content, expressed by the network connection weights,
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include mutual information, conditional mutual information, and divergence. The connection
weights can incorporate prior knowledge on probability distributions of database values.
Information-theoretic connectionist techniques have been successfully applied to the problems of
extracting probabilistic rules from pairs of interdependent attributes [6], speech recognition [7],
feature selection [15], and rule induction [16]. The procedure for constructing a multi-layer
information-theoretic network is briefly described in the next sub-sections. Complete details can
be found in [20].

3. 1 Extended Relational Model

We use the following formal notation of the relational model [13]:
® R =(A4,,..., Ay) - a schema of a relation (data table) containing N attributes
e ;- the domain of an attribute A4;.
¢ J;- the value j in the domain D;.
e 1[A/] - value of an attribute 4; in a tuple &, #;[A4,] € D..
To build an information-theoretic network, we define the following types of attributes in a
relation schema:
1.A subset Oc R of target (“output”) attributes (|O| 21). This'is a subset of attributes, which
can be predicted by the information-theoretic network. If the values of these attributes
are already available, we can evaluate their reliability by using the method of Section 4
below.
2.A subset Cc R of candidate input attributes (|C| = 1). These attributes can be used to
predict the values of target attributes.
The following constraints are imposed on the above partition of the relation schema:
1.CnO =, 1.e. the same attribute cannot be both a candidate input and a target.
2.C WO < R, ie. some attributes are allowed to be neither candidate inputs nor
targets.Usually, these will be the key (identifying) attributes.
Now we proceed with describing the structure of a connectionist network designed to predict
the values of target attributes.

3. 2 Connectionist Network Structure

An information-theoretic connectionist network has the following components:

1. / - a subset of input (predicting) attributes selected by the network construction algorithm
from the set C of candidate input attributes.

2. |I} - total number of hidden layers (levels) in a network. Unlike the standard decision tree
structure [27], where the nodes of the same tree level are independent of each other, all nodes of
a given network layer are labeled by the same input attribute associated with that layer.
Consequently, the number of network layers is equal to the number of input attributes. In layers
associated with continuous attributes, an information network uses multiple splits, which are
identical at all nodes of the corresponding layer. The first layer in the network (Layer 0) includes
only the root node and is not associated with any input attribute.

3. L, - a subset of nodes z in a hidden layer /. Each node represents an attribute-based test,
similarly to a standard decision tree. If a hidden layer / is associated with a nominal input
attribute, each outgoing edge of a non-terminal node corresponds to an attribute distinct value.
For continuous features, the outgoing edges represent the intervals obtained from the
discretization process. If a node has no outgoing edges, it is called a terminal node. Otherwise, it
is connected by its edges to the nodes of the next layer, which correspond to the same subset of
input values.



94 M. Last and A. Kandel / Automated Quality Assurance of Continuous Data

4. K - a subset of target nodes representing distinct values in the domain of the target
attribute. For continuous target attributes (e.g., percentage of votes for certain candidate), the
target nodes represent the user-specified intervals of the attribute range. The target layer does not
exist in the standard decision-tree structure. The connections between terminal nodes and the
nodes of the target layer may be used for predicting the values of the target attributes and
extracting information-theoretic rules (see [16]).

3. 3 The Network Construction Procedure

The network construction algorithm starts with defining the target layer, where each node
stands for a distinct target value, and the “root” node representing an empty set of input
attributes. The connections between the root node and the target nodes represent unconditional
(prior) probabilities of the target values. The network is built only in one direction (top-down).
After the construction process is stopped, there is no bottom-up post-pruning of the network
branches. The process of pre-pruning the network is explained below.

A node is split on the values of an input attribute if it provides a statistically significant
increase in the mutual information of the node and the target attribute. Mutual information, or
information gain, is defined as a decrease in the conditional entropy of the target attribute (see
[3]). If the tested attribute is nominal, the splits correspond to the attribute values. Splits on
continuous attributes represent thresholds, which maximize an increase in mutual information.

At each iteration, the algorithm re-computes the best threshold splits of continuously-valued
candidate input attributes and chooses an attribute (either discrete, or continuous), which
provides the maximum overall increase in mutual information across all nodes of the current
final layer.

The maximum increase in mutual information is tested for statistical significance by using
the Likelihood-Ratio Test [28]. This is a general-purpose method for testing the null hypothesis
H, that two discrete random variables are statistically independent. If H, is rejected, a new
hidden layer is added to the network and a new attribute is added to the set / of input attributes.

The nodes of a new layer are defined for a Cartesian product of split nodes of the previous
final layer and the values of a new input attribute. According to the chain rule (see [3]), the
mutual information between a set of input attributes and the target (defined as the overall
decrease in the conditional entropy) is equal to the sum of drops in conditional entropy across all
the layers.

If there is no candidate input attribute significantly decreasing the conditional entropy of the
target attribute, no more layers are added and the network construction stops.

The main steps of the construction procedure for a single target attribute are summarized in
Table 1. If a data table contains several target attributes, a separate network is built, by using the
same procedure, for each target attribute. Complete details are provided in [20].

3. 4 Predicting Continuous Target Values

Like in decision trees, a predicted target value is assigned to every terminal node of an
information-theoretic network. Each record of a training set is associated with one and only one
terminal node, which can be found by the procedure described in

Table 2 below.

The predicted value Pred; of a continuous target attribute 4; at a terminal node z is
calculated as the expected value of 4; over all the training records associated with the node z.
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Table 1. Network Construction Algorithm

Input: The set of n training instances; the set C of candidate input attributes (discrete and continuous); the
target (classification) attribute 4;; the minimum significance level sign for splitting a network node
(default: sign = 0. 1%).
Output: A set [ of selected input attributes and an information-theoretic network. Each input attribute has a
corresponding hidden layer in the network.
Step 1 Initialize the information-theoretic network (single root node representing all records, no hidden
layers, and a target layer for the values of the target attribute).
Step 2 While the number of layers |/| < |C] (number of candidate input attributes) do
Step 2.1 For each candidate input attribute 4;” ¢ / do
If 4;” is continuous then
Return the best threshold splits of 4,".
Return the conditional mutual information cond M1, between A, and the target attribute A,.
End Do
Step 2.2 Find the candidate illpﬁt attribute 4, "* maximizing cond_ MI;’
Step 2.3 It cond_MI;"* =0, then
End Do.
Else
Expand the network by a new hidden layer associated with the attribute 4;’, and add 4, " to the set /
of selected input attributes.
Step 2.4 End Do
—ﬁggep 3 Return the set of selected input attributes / and the network structure
Table 2. Associating Record with a Terminal Node
‘! Input: The set / of selected input attributes; the values of input attributes in a tuple (record) £; the
[‘ information-theoretic network
Output: The ID of a terminal node corresponding to the tuple 4: Node_Fy
Step | Initialize the current node ID: z =0
Step 2 Initialize the layer number: m = 0
Step 3 If a node z is terminal, then go to Step 7
Else, go to the next step
Step 4 Increment the number of layers: m = m-+1
Step 5 Find the next hidden node z by following the edge corresponding to the value of the input attribute
m in the tuple &
Step 6 Go to Step 3
Step 7 Return Node _F; =z
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4. Evaluating Reliability of Target Attributes
4. 1 Fuzzy Approach to Data Reliability

The main cause of having unreliable data in a database are the errors committed by an
information source, which may be a human user, an automated measuring device, or just another
database. In the case of the Year 2000 elections in the State of Florida, the Democrats have
argued that the votes were not counted properly. The legal controversy was focused on the so-
called “undervotes”, votes not tabulated by the counting machine due to apparent defects in the
punch cards. The claim of the Democrats was that the undervotes have biased the results in favor
of their opponent, the Republican Candidate George W. Bush. For example, they have
questioned the voting results of Palm Beach County, which seemed particularly unreliable based
on the demographic characteristics and the voting traditions of people in that specific county
[24].

An expert user examining a familiar database can estimate quickly, and with a high degree
of confidence, the reliability of stored information. He, or she, would define some records as
“highly reliable”, “not so reliable”, “doubtful”, “absolutely unreliable™, etc. However, what is the
exact definition of “‘data reliability”?

The most common “crisp” approach to data reliability is associated with data validity: some
attribute values are valid while others are not. For example, if the valid range of a numeric
attribute is [50, 100], the value of 100.1 is considered invalid and will be rejected during the data
entry process. This is similar to the statistical concept of confidence intervals: any observation
outside the interval boundaries is rejected, which means that its statistical validity is zero. The
limitations of this approach are obvious: a real validity range may have “soft” boundaries.

It seems reasonable to define the reliability of an attribute value as a mean frequency (or
probability) of that particular value, since values of low probability may be assumed less reliable
than the most common values. This is similar to the information gain approach of [8]: the most
surprising patterns are suspicious as unreliable. However, the information gain approach is not
readily applicable to evaluating reliability of continuous attributes, which can take an infinite
number of distinct values, each having a very low probability of occurrence.

Noisy data is not necessarily unreliable data, and vice versa. In some areas, like the stock
market, the data may be inherently noisy (having a high variance and a high entropy), because
the real-world phenomenon, it represents, depends on many independent and dynamic, mostly
unknown, factors. Still, the source of noisy data may be completely reliable. On the other hand,
the information on a very stable phenomenon (having a low variance) may be corrupted during
the data entry process.

Statistical information, obtained from training data, is certainly not sufficient for
distinguishing between reliable and unreliable values. People use their intuition, background
knowledge, and short-time memory, rather than any probabilistic criteria, for detecting lowly
reliable data. Moreover, as indicated by Kandel ez a/. [10], the probabilistic approach seems to be
against the nature of human reasoning. Thus, we tumn to the fuzzy set theory, which is a well-
known approach to catching different aspects of human perception and making use of available
prior knowledge.

The fuzzy set theory provides a mathematical tool for representing imprecise, subjective
knowledge: the fuzzy membership functions. These functions are used for mapping precise
values of numeric variables to vague terms like “low”, high”, “reliable”. etc. The form of a
specific membership function can be adjusted by a set of parameters. For example, a triangular
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membership function is defined by its prototype, minimum, and maximum values. For modeling
human perception of reliability, the non-linear, sigmoid function seems more appropriate, since
more probable values are usually perceived as more reliable, though all lowly reliable values are
considered unreliable to nearly the same degree. The shape of this membership function depends
on user perception of unexpected data, ranging from a “step function” (the crisp approach: only
values in a specific range are reliable) to a continuous membership grade, giving a non-zero
reliability degree even to very distant and unexpected values.

Thus, adopting the fuzzy logic theory and looking at the reliability degree as a fuzzy measure
seems an appropriate approach to automating the human perception of data reliability. In [19],
we have proposed the following definition for the degree of data reliability:

Definition 1. Degree of Reliability of an attribute A in a tuple k is defined on a unit interval
{0, 1] as the degree of certainty that the value of attribute A stored in a tuple k is correct from
user’s point of view.

This definition is consistent with the definition of fuzzy measures in Klir and Yuan [12],
since a set of correct attribute values can be viewed as a “crisp” set, and we are concerned with
the certainty that a particular attribute belongs to that set. It is also related to the fuzzy concept of
“usuality” [34], where the fuzzy set of normal (or regular) values is considered the complement
of a set of exceptions. Two special cases of Definition 1 are: degree of reliability = 0 (the data is
clearly erroneous) and degree of reliability = 1 (the data is completely reliable, which is the
implicit assumption of most database systems).

According to Definition 1, the degree of reliability is an attribute-dependent, tuple-dependent
and user-dependent measure. It may vary for different attributes of the same tuple, for the same
attribute in different tuples and for different users who have distinct views and purposes with
respect to the same data. The subjectiveness of data reliability was best demonstrated in the 2000
election controversy. While the Democrats complained about the unreliable voting results, the
same numbers seemed perfectly accurate to their political opponents.

Data correctness does not imply precision. It just means that if a user could know the exact
state of the real-world system, his or her decision, based on that data, would not be changed.
After the 2000 elections, the real controversy was not about the exact number of votes for each
candidate, which could be determined only by a tedious hand count. Both parties were just eager
to know who won the majority of votes in the State of Florida.

4. 2 Calculating Degree of Reliability

After finding a predicted value of the target attribute 4; in a tuple &, we compute the degree
of reliability of the actual target value by the following formula:

2
t|R|= ——— 1
AR ]= M
where:

a - exponential coefficient expressing the user perception of “unexpected” data. Low values
of o (about 1) make it a sigmoid function providing a gradual change of reliability degree
between 0 and 1 within the attribute range. Higher values of a (like 10 or 20) make it a step
function assigning a reliability degree of zero to any value, which is different from the expected
one.

di — a measure of distance between the actual value #[4;] and the predicted value Pred;« (z*
= Node_F}) of a target attribute 4, in a tuple k. For continuous target attributes, the distance
measure is calculated by:
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_ abs(t,( [A..]— Pred.,. )
- Range,

d

i )
where Range; is the difference between the maximum and the minimum values of the attribute
A;. According to Equation 2, di is a linear measure of the difference between predicted and
actual values, which is normalized to the [0, 1] range. The reliability degree in Equation 1 is
defined on the same range, but it represents the non-linearity of reliability perception as a
function of data deviation from the expected value, which can be predicted from the information-
theoretic network.
In

. Figure 1, we show the reliability degree # [R;] as a function of the distance d for two
different values of a: =1 and a = 5. Equation 1 satisfies the four requirements of a fuzzy
measure (see [12], p. 178): boundary conditions, monotonicity, continuity from below and
continuity from above. The way to verify that is to look at the proximity to the predicted value as
a reciprocal of the distance dx. Then the reliability of the empty set (zero proximity, or infinite
distance) is zero and the reliability of the complete set (infinite proximity, or zero distance) is
one. Reliability degree is a continuous monotonic function of proximity by its mathematical
definition in Equation 1.

Figure 1. Reliability perceptions for different values of alpha

5. Case Study: Palm Beach Election Data

We have applied the information-theoretic fuzzy approach to the precinct-level voting data
of the 2000 Presidential Election in Palm Beach County, Florida. The results of the initial count
and the demographic data on each precinct (including voter registration information) have been
downloaded from the web page of Dr. Bruce E. Hansen [9] in November 2000. The original
source for the data was Palm Beach County web page. The list of attributes in the Palm Beach
dataset is presented in Table 3 below). The raw data included absolute numbers (number of votes
and number of voters). We have normalized these numbers to the percentage out of the total
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number of votes / voters in the corresponding precinct. Since there is a strong dependency
between the percentages of votes for each major candidate in the same precinct, we have
arbitrarily chosen the percentage of votes for Bush as the target attribute. After normalization, the
values of the target attribute have been discretized to five intervals of approximately equal
frequency. The Palm Beach dataset includes 14 candidate-input atiributes, representing the
percentage of registered voters in each party and the distribution of the voting population across
several age groups. The dataset has 494 records referring to all the voting precincts of Palm
Beach County. The 106 absentee precincts were excluded from the analysis due to the lack of
demographic information.

Table 3 Palm Beach Dataset - List of Attributes

SerNo  Attribute Name Meaning Type Use in Network
1 Precinct Precinct No Nominal None
2 Bush Percentage of Votes Continuous Target
3 Gore Percentage of Votes Continuous None
4 Nader Percentage of Votes Continuous None
5 Buchanan Percentage of Votes Continuous None
6 Total_Vote Percentage of Votes Continuous None
7 McCollum Percentage of Votes Continuous None
8 Nelson Percentage of Votes Continuous None
9 DEM_PTY Percentage of Registered Voters Continuous Candidate [nput
10 REP_PTY Percentage of Registered Voters Continuous Candidate Input
11 OTHER _PTY Percentage of Registered Voters Continuous Candidate Input
12 WHITE Percentage of Registered Voters Continuous Candidate Input
13 BLACK Percentage of Registered Voters Continuous Candidate Input
14 HISPANIC Percentage of Registered Voters Continuous Candidate Input
15 OTHER_RACE Percentage of Registered Voters Continuous Candidate Input
16 MALE Percentage of Registered Voters Continuous Candidate Input
17 FEMALE Percentage of Registered Voters Continuous Candidate Input
18 AGE 18-20 Percentage of Registered Voters Continuous Candidate Input
19 AGE 21-29 Percentage of Registered Voters Continuous Candidate Input
20 AGE _30-55 Percentage of Registered Voters Continuous Candidate Input
21 AGE 56-04 Percentage of Registered Voters Continuous Candidate Input
22 AGE_065&UP Percentage of Registered Voters Continuous Candidate Input

The results of applying the information-theoretic procedure of sub-section 3.3 above to the
Palm Beach Dataset are shown in

Table 4. Only three out of 14 candidate input attributes (REP_PTY, WHITE, and
DEM PTY) have been identified as statistically significant and included in the Information-
Theoretic Network. The column “Conditional MI” in Table 4 shows the net decrease in the
entropy of the target attribute “Bush” due to adding each input attribute. The first input
attribute (REP_PTY) alone contributes nearly 90% of the overall mutual information (1. 435
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bits). This attribute is shown in bold. The next two input attributes (WHITE and DEM_PTY)
contribute about 8% and 2% respectively. The first and the third input attributes are not
surprising, since people tend to vote by their political association. The input attribute No. 2
(White) is an indicator of some weak relationship between the racial origin of the voters and their
votes.

Table 4 Palm Beach Dataset - Summary of Results

Attribute Mutual Conditional  Percentage = Conditional
Iteration Name Information MI Of MI Entropy
0 REP_PTY 1.282 1.282 89.3% 1.04
1 WHITE 14 0.118 8.2% 0.922
2 DEM_PTY 1.435 0.035 2.4% 0.887

The constructed information-theoretic network has been used for evaluating the reliability of
the target attribute (percentage of Bush votes in each precinct) by the fuzzy-based method of
Section 4 above. We have calculated the degrees of reliability with a = 1.00. The resulting
reliability degrees range between 0.617 and 1.000. As indicated above, these reliability degrees
refer to the initial voting results certified by the Palm Beach County after the Election Day.
During the following weeks, these results were in the center of a legal controversy until the US
Supreme Court halted the vote recount on December 12, 2000. However, the public was still
interested to know the “ground truth”: who would be the actual winner of the Election in Florida,
if the hand recount could be continued to its completion? For this reason, the Miami Herald and
other media organizations have conducted a complete review of the “undervote™ ballots in all
Florida counties. The precinct-level results have been posted on the Miami Herald web site [30].
To evaluate the usefulness of the data reliability calculations, we have examined the number of
undervotes and the resulting change in the gap between the candidates for the precincts having
the highest and the lowest reliability degrees (see Tables 5 and 6).

The total number of undervotes in 20 precincts having the lowest reliability degrees (Table
5) is much larger than the number of undervotes in 20 precincts with highest reliability (Table 6).
In other words, starting the count of undervotes in low reliability precincts would help to detect
significant gaps, like the one in Precinct No. 191, as early as possible. From a close look at the
data of this precinct, one can see that the predicted percentage of Bush votes is high (51.5%) due
to high percentages of Republicans and whites among the voters. However, Mr. Bush has got
only 37.2% of votés in this precinct. The low reliability of this result (0.838) has been confirmed
by the count of undervotes, which has added the net amount of 28 votes to Bush.
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Table 5 Low Reliability Precincts

101

Under Under  Total Under Abs.
Precinct Dem Rep White Pred. Vote Act. Vote Reliability votes- Bush votes-Gore ~ votes ~ Gain
154C 412 8402 9794 0515 0.866 0.617 4 0 4 4
33 13.17 77.72  98.37 0.515 0.846 0.637 0 1 1 1
154B 13.18 74.00 99.63 0.515 0.797 0.687 2 1 3 1
167 1525 69.50 97.34 0.515 0.761 0.724 1 0 1 1
1621 8.07 78.60 97.54 0.515 0.758 0.727 0 0 0 0
37 5220 37.11 59.21 0.295 0.519 0.749 0 5 5 5
122A° 49.66 2416 73.83 0.251 0452 0.773 0 1 1 1
001A  15.79 67.64 97.68 0.515 0.679 0.814 6 2 8 4
36 46.83 38.03 78.52 0.404 0.562 0.820 0 0 0 0
148E 3743 4599 7647 0.515 0.667 0.827 0 1 1 1
151 17.68 60.10 91.92 0.515 0.659 0.836 0 1 1 1
163 30.87 4823 9486  0.515 0.372 0.837 0 1 1 1
191 29.73  50.23  96.77 0.515 0372 0.838 84 56 140 28
121A  36.14 4257 89.11 0.398 0.53 0.850 0 0 0 0
158 3534 48.54 9825 0.515 0.394 0.863 2 1 3
225 32.62 4634 9234 0.515 0.398 0.867 23 21 44
90 17.31 6424 96.24 0.515 0.631 0.867 1 1 2
045A 3319 46.36 93.51 0.515 0.399 0.868 5 11 16 6
49 3522 4534 97.03 0.333 0.448 0.869 0 4 4
093A 3978 4037 9450 0398 0.511 0.871 1 1 1
Total 236 62




102 M. Last and A. Kandel / Automated Quality Assurance of Continuous Data

Table 6 High Reliability Precincts

Under Total
Under votes- Under  Abs.
Precinct Dem Rep White Pred. Vote Act. Vote Reliability votes- Bush  Gore votes  Gain

156C  41.76 31.87 79.12  0.326 0.322 0.996 0 0 0 0
38 8269 820 296 0.072 0.069 0.997 0 0 0 0
78 42.18 4047 8397 0.404 0.401 0.997 0 1 1 1
110 4339 3931 91.10 0.398 04 0.997 6 9 15 3

128G 4326 3380 8026 0.326 0.328 0.997 1 1 2 0

1597 36.03 4024 84.63 0.404 0.406 0.997 2 1 3 1

201 35.63 43.19 9048  0.398 0.396 0.997 3 0 3 3

003B 3208 4264 9500 0.398 0.4 0.998 2 2 4 0
114 68.21 1944 2654 0.253 0.255 0.998 0 2 2 2
119 40.12 4193 9518 0.398 0.397 0.998 2 3 5 1
120 4500 2750 8453  0.251 0.249 0.998 0 3 3 3

144E 4419 3499 7535 0.326 0.324 0.998 33 43 76 10

162A 8042 9588 98.19 0.072 0.074 0.998 0 2 2 2

205E  41.51 35.82 9255 0.28 0.279 0.998 4 1 S 3

007A 3171 6098 95.12 0.515 0.515 0.999 0 0 0 0

018] 5045 3332 9399 0.28 0.281 0.999 1 7 8 6
88 37.09 4229 9281 0.398 0.397 0.999 5 1 6 4
115 4553 4130 93.12 0.398 0.397 0.999 4 S 9 1

203 29.88 52.74 96.34 0.515 0.515 1.000 0 0 0 0

Total 144 40

6. Conclusion

In this paper, we have presented a novel fuzzy-based approach to evaluating reliability of
continuous attributes in a relational database. The approach includes partition of a data table into
input and target attributes, induction of a data mining model (information-theoretic network)
from a set of training data, and calculation of reliability degrees for target values based on their
distance from the values predicted by the network.

The proposed approach combines objective information about the data, which is represented
by an information-theoretic network, with a subjective, user-specific perception of data quality.
In our case study, we have shown that the method can be an efficient tool for detection of
inaccurate information in a real-world database.

Related issues, to be further studied, include: integrating the method with other data mining
models, evaluating reliability of input attributes, and detecting unreliable information in non-
relational data.
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Relevance of the fuzzy sets and
fuzzy systems
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Abstract. The readability of the fuzzy models is related to its organizational
structure and the correspondent rules base. In order to define methodologies for
organizing the information describing a system, it is important to specify metrics
that define the relative importance of a set of rules in the description of a given
region of the input/output space. The concept of relevance, landmarked by a set of
intuitive axioms, enables this measurement. Considering this, a new methodology
for organizing the information, Separation of Linguistic Information Methodology
(SLIM), was developed. Based on these results, different algorithms were proposed
for different structures: the Parallel Collaborative Structure (PCS) — SLIM-PCS
algorithm and the Hierarchical Prioritized Structure (HPS), SLIM-HPS algorithm.
Finally, a new Fuzzy Clustering of Fuzzy Rules Algorithm (FCFRA) is proposed.
Typically, the FCM (Fuzzy C-means) algorithms organize clusters of points with
same similarity. The FCFRA organize the rules of a fuzzy system in various fuzzy
sub-systems, interconnected in a structure. Its application in the organization of
information of a fuzzy system in HPS and CPS structures are demonstrated as well.

1. Introduction

Fuzzy modeling is a very important and active research field in fuzzy logic systems.
Compared to traditional mathematical modeling and pure neural network modeling, fuzzy
modeling possesses some distinctive advantages, such as the mechanism of reasoning in human
understandable terms, the capacity of taking linguistic information from human experts and
combining it with numerical data, and the ability of approximating complicated non-linear
functions with simpler models. In recent years, a variety of different fuzzy modeling approaches
have been developed and applied in engineering practice [11{2][3][4][5][6]- These approaches
provided powerful tools to solve complex non-linear system modeling and control problems.
However, most existing fuzzy modeling approaches concentrate on model accuracy that simply
fit the data with the highest possible accuracy, paying little attention to simplicity and
interpretability of the obtained models, which is considered a primary merit of fuzzy rule-based
systems. Often, users require the model to not only predict the system's output accurately but
also to provide useful description of the system that generated the data. Such a description can
be elicited and possibly combined with the knowledge of experts, helping to understand the
system and validate the model acquired from data. Thus, it is desired to establish a fuzzy model
with satisfactory accuracy and good interpretation capability.

In order to organize the fuzzy rules and reduce its number, it is of utmost importance to
define metrics to quantify each one of the fuzzy rules that describes the process. It should be
noted that the relative importance of different sets of rules describing a region of the
input/output space in a fuzzy system might not be directly related to the contribution for the
minimization of the error in the output. Possibly, the various rules of the system will assume
different contexts, with some rules covering large regions of the space, while others may be

This work was supported by FCT — POSI/SRI/33574/1999.
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related to regions where the gradient is higher. Moreover, one rule can be relevant in a particular
aspect of the model.

This work addresses this fundamental aim of fuzzy modeling. As result of a new concept
recently proposed by Paulo Salgado [7], namely the relevance of the rule set, this objective is
near at hand. The relevance is a measure of the relative importance of sets of rules, in the
description of a given region of the input/output space. Depending on the context where the
relevance is to be measured, different metrics may be defined. The spread of definition of
relevance in the boundary regions is proposed here. These new concepts bounded by a set of
intuitive axioms open the doors for new types of fuzzy systems. These axioms lead to a set of
properties that are analyzed in some detail.

In order to corroborate the validity of the new concept, a new methodology is reviewed. It
has been called SLIM, Separation of Linguistic Information Methodology [7][8]. It is useful for
organizing the information in a fuzzy system: a system f{x) is organized as a set of n fuzzy sub-
systems fi(x), f2(x),..., fa(x). Each of these systems may contain information related with
particular aspects of the system f{x).

Two main structures are introduced: firstly, HPS (Hierarchical Prioritized Structure),
which allows organizing the information in the prioritized fashion, Yager [9][10][11]. Contrarily,
PCS (Parallel Collaborative Structure), where each model collaborates equally with the other
models, is presented. With the HPS structure, Yager has introduced a new perspective. Instead
of a fuzzy system consisting of a set of rules with no ordering, apparently all with the same
relative importance, priorities are defined, these priorities being connected to the importance of
the rules in the description of the process being modeled. The method suggested by Yager for
ordering the rules is based on the comparison of every pair of rules in the system. This leads to
the establishment of binary relations between the rules. Using some results from preference
theory [11], and if the relations are well behaved, it is possible to define a ranking order for the
rules. However, the proposed method is not adequate for situations where the number of rules is
large. On the contrary, in the PCS structure, each system works independently and collaborates
with the others, without any order or inhibition factor. However, different sub-systems and fuzzy
rules will have different relevance values.

The application of the SLIM methodology in these structures is here used to organize the
information, by exchanging information among various layers of the structure. It is also possible
to reduce the number of rules representing the original system by discarding rules with lower
relevance values.

Finally, two algorithms that implement Fuzzy Clustering of Fuzzy Rules are presented. By
using the proposed algorithm, it is possible to group a set of rules in ¢ subgroups (clusters) of
similar rules. It is a generalization of the fuzzy c-means clustering algorithm, here applied to
rules instead of points in R [12]. With this algorithm, the system obtained from the data is
transformed into a new system, organized into subsystems, in PCS or HPS structures.

In order to corroborate the proposed concepts, experimental results are presented for the
organization of information, namely in the fuzzy identification and fuzzy clustering of fuzzy
rules. Practical experiments have been conducted in the identification of environmental variables
in agricultural greenhouse (temperature and humidity).

The paper is organized as follows. The concept of relevance of a set of rules is defined in the
section 2. The SLIM methodology and different structures (HPS and PCS) is discussed in
section 3. In section 4 a new Fuzzy Clustering of Fuzzy Rules (FCFR) strategy is proposed.
Different examples and experimental tests are presented in section 5. Finally, the main
conclusions are outlined in section 6.
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2. The concept of relevance
2.1. Relevance in well-defined support region S

Fuzzy systems are based on a set of rules that map regions in input space, U, to regions in
output space, ¥, describing a region in product space § = U x V. For this relationship, the
contributions of the different rules will be unequal. One main question will be formulated:

“How to measure the relative importance of the rules that describe the region S$7”.
Moreover, the fuzzy system can’t completely describe the region S: “How to measure the quality
of fuzzy system in describing the S region?” or “Is the region S perfectly described by fuzzy
system?”. In any case, the concept of relevance is expected to help clarifying those questions.

Thus, adopting the fuzzy logic theory and looking at the relevance degree as an extended
fuzzy measure seems to be an appropriate approach to automating relevance perception of the
rules and fuzzy systems. In [7], it was proposed the following definition for the relevance of a set
of rules.

Definition 1: Consider G a set of rules from U into ¥, covering the region § = U x V' in the
product space. Any function defined as a measure of relevance must be of the form
R, :P(3)—[0, 1], where P(33) is the power set of G (the set of all subsets of rules in 3).

Contrarily of a fuzzy measure, the relevance measures involve the relativity of a support
region. Only in the case where the support of rules agrees with region S, the fuzzy measure is a
relevance measure. So, the relevance is a generalization of a fuzzy measure.

Given 4, a set of rules defined in P(3) (4 = P(3)), the function %s associates a value
%s(A) to each subset of rules 4 in 3. This value is the measure of the relevance of the subset of
rules in the description of the space S.

The concept is defined by a set of axioms, which are illustrated, by a set of properties.  In
order to qualify as a measure of relevance, any function %s (4) must obey the following five
axioms.

Axiom 1 (border conditions): %s(2) =0 and %x(3) = 1.

Axiom 2 (monotony): For all 4, B ¢ P(3), if 4 =B, then %5(4) < %s«(B).

Axiom 3: Given the space S partitioned in 7 regions S= 5, ., uS,and 4 ¢ P(3), then:

Axiom 4 (continuity): Consider a sequence of sub-regions in S, §i555 ... or SicSH <.,
and let B ¢ P(3) be a set of rules that describe the region of the space T S. If the sub-region

§* =lim S, exists then R . (B)= !1}:9{5 (B).

Axiom 5: Consider the sequence of sub-regions in S, 571 5 75 5 ., associated to the
sequence of sets of rules B, B, B, . so that the rules in B; cover the region 7; and only this

region. Then lim R, (B,) =R, ( lim B, )

The following properties may be derived from axioms and its proof founded in [7][8].
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Property 1: Let 4, B ¢ P(3). If C=A B, then Rg(C) > max (R(4), R(B)), i.e., R(C) =
S(9%(4), Rs(B)), where S represents any S-norm operation.

Property 2: Let 4, B ¢ P(3).1f C=A ~ B, then R(C) < min(Rs(4), Fs(B)), i-e., Rs(C) =
T(%Rs(4), Rs(B)), where T represent any T-norm operation.

Property 3: If S; is a sub-region of S, ;= S, and 4 ¢ P(3) is a subset of the rules that
describe the region S, then Rs{(4) < R(4).

Property 4: If 4 is a set of rules which only covers the region T =S, then Rs(4) = Rr (4).

Property 5: Consider a sequence of sub-regions in S, S| 55, 5., and let B ¢ P(3) be the
set of rules defining the T S region. If the sub-region S = '11_2"1 S, exists, and if:

T A S: sz when i _ o (the intersection of the two regions tends to zero, as i tends to
infinity), then R . (B) = !L“_"ﬁs. (B)=0.

In determined conditions, given by theorem 1, it’s possible to exchange the support spaces
S, without changing the relevance of a set of rules.

Theorem 1: Let G a set of rules covering the region S. Let, also, the function f that maps a
region Sin R.

f:S—R

If the relation map f is a bijective function, the relevance values of rules G in space S have
the same values in space R, R; (3) =R, (3).

Next, we review the definition of relevance for a rule in a single point of the product space
and the measure of relevance for a rule in a region of the space.

Definition 2: Let G be a set of rules that map U into V, describing a region S=U x V in the
product space. The relevance of a rule /S in a point of the product space (x, y) e S is defined as

R (1. (x,))=max(G,/G) m

i.e, the relevance in (x, y) is the maximum of the ratio between the value of the output
membership function of rule / in (x y), and the value of the membership of the union of all the
functions in (x, ).

Definition 3: Let G be a set of rules that map U into ¥, describing a region § = U x ¥ in the
product space. The relevance of a rule / ¢ S in the product space S is here defined as

R, (I)=ngx R, (l,(x,y)) V(x,y)eS )

i.e., the maximum of the value for all points (x, y) ¢ S, of the ratio between the membership
output function of rule /, and the value of the union of all the output membership functions.
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In many situations, e.g. in control and modeling applications, it is desirable to have a crisp
value y* for the output of a fuzzy system, instead of a fuzzy value y. As example, the center of
area defuzzification method, applied to fuzzy sets obtained by using the arithmetic inference
mechanism, result:

F(x)=30'(x)0 ®

M
where p'(x)=p'(x)/ Y ' (x) is the fuzzy basis functions (FBF), M represent the number of
=1

rules, g’ is the point at which the output fuzzy set / achieves its maximum value, and || is the
membership of antecedent of rule /.

This result can be interpreted as the sum of the output membership centroids [13][14],
weighted by the relevance values of each rule in the point (x, y) ¢ S.

y*=

M=

o R, (L(x.y)) @

This result and equation (3) lead us to a definition of a type of relevance of a rule.

Definition 4: Let G be a set of rules that map U into ¥, describing completely the region S.
The relevance of a rule R; ¢ G, of fuzzy system (3) in S space is defined as

R, (x,) = 5—2— )

ie., the relevance in (x, y) is the maximum of the ratio between the value of the output
membership function of rule / in (x, y), and the value of the membership of the union (sum) of all
the functions in (x, y). From axiom 1, it is easy to see that the relevance of all rules is the sum of
the relevance of each rule in the point x, € S and equal to one:

Mk

9‘:‘(-"k): 9‘1(-“‘t‘)=1 6)

In the traditional systems, as equation (3), all the rules are considered as having the same
contribution in the characterization of the fuzzy system. Other times, the rules were weighed
with different weights (g), which express our faith or conviction on its validity. In any way, this
didn't implicate any differentiation in the fuzzy system, even if a given area of the space was
described by a single rule with low weight. Now, for the existence of a function of relevance, the
weight of the rules has impact in the characterization of the system through its relevance.
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2.2, The relevance in the transition region

In the previous section, the S region has been considered as a crisp set, i.e., its boundary has
been well defined in the Universe of Space X. Definitions 2 and 3 have been made for non-fuzzy
region S. However, in the generality of the fuzzy systems, the validity of fuzzy system outside
the region of support S is not guaranteed. In other situations, the behavior of the fuzzy system
inside the region S leads us to disbelief of its real support. Otherwise, it is not possible to have an
exact knowledge of region S. This result can be expressed as a belief measure.

The functionality of a fuzzy system containing various sub-systems with different supports
and interconnected in different structures is only possible by a definition of relevance of fuzzy
systems, to take into account the boundary regions. The firing fuzzy rules in the boundary
regions decaying strongly to zero, in so far as the characterization of regions by fuzzy rules is
smaller. This result can be expressed by a membership function, which varies in the range [0,1].
So, the previous definitions of relevance will be now incorporating its approaches. The definition
5 introduces one possible approach.

Definition 5: Let S be a region of the universe space X defined by a set of rules 3. The
membership function characterization in the space S is defined as

1 ;if maxG(y)2S!
is (%, ¥) =1 max G(y) )

4 ;outherwise
SI

where S/ is the threshold level that discriminates regions S.

As max G(y) — 0, the value of the membership function of the space S tends to zero.
¥y
From property 2, the jointly relevance can be defined as follows.

Definition 6: Let G be a set of rules that map U into V, describing a region S, a sub-region
of Universe X. The relevance of a rule / ¢ G in a point of the product space (x, y) ¢ S is defined
as

R, (l,(x,y)):mfx(T(?"(x,y),ps)) ]

where R’ (x, y) is the relevance of / rule.
The relevance of fuzzy rule / in the point (x, y) of space S is obtained by intersecting the
relevance of rule / with its relevance covering of region. R'(x, y) is done by definition 3.

Definition 7: Let G be a set of rules that map U into ¥, describing a region S, a sub-region of
Universe X. The relevance of a rule / ¢ G in S region is defined as

R, (l)=max(T(9§'(x,y),},ls)) &)

x.y
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Therefore, the relevance of one rule or a set of rules characterizes simultaneously the
relevance importance of the rule in its region and the region cover degree by the fuzzy system.
This new proposal enables the aggregation of different fuzzy systems, with a different set of
rules and different or shared cover regions.

This result can be now incorporated in the fuzzy system (3). The relevance of equation (4)
will contain the relevance of system in the transition region.

Definition 8: Let S be a region of the universe space X defined by a set of rules g, of fuzzy
system (3). The relevance of rule / in describing the region S in point x; is defined as

f . {
’MM"‘ s if G(x,)2 81
lx '6’
%, ()= 24 (%) (10)
! /
Ll_(ik_)_'_S_ ; outherwise
St

M
where G(x,)=Y 1 (x,)-8 and Sl is the threshold level that discriminates regions S. The
=1

expression is the result of the defuzzification process of a fuzzy relevance.
3. SLIM, Separation of Linguistic Information Methodology
3.1. SLIM methodology

In order to corroborate the validity of the concept of relevance, a new methodology based
on this concept is presented. It has been named SLIM, Separation of Linguistic Information
Methodology. The SLIM methodology may be used to rank the rules in a system and/or to
distribute them among the various layers of an organized structure.

When the number of rules in a system is large, the hierarchical organization of the rules and
the reduction of their number become one important scope [15]. It is render possible by
discarding rules with a lower measure of relevance.

Let R={R', .., R} be a set of rules, which describes a region S. The idea is to separate the
information of this set in # sets, R,, R,,..., R,, making sure that the description of S given by the
new sets will be identical to the description given by R.

A generic algorithmic description for implementing the SLIM methodology, using two sets,
follows.

SLIM methodology

Step I: Let R, =R.

Step 2: Choose an appropriate number n of rules for R,. Initiate R, with a set of n rules in S,
with the restriction of these rules having no relevance in S, i.e. Rs(R;) = 0. That is to say, the
transfer function of the new system is the transfer function of the previous system.

Step 3: Diminish the relevance of every rule in R;, and compensate this effect by increasing
the relevance, and possibly tuning, rules in R,, under the condition of maintaining the transfer
function of the system invariant.

Step 4: Eliminate the rules in R, whose values of relevance are considered sufficiently low.
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The steps 3 and 4 may be repeated.

SLIM methodology, involving more than two steps levels, running in same way, i.e., by
using the behind process, applied to all combinational pairs of levels.

As referred to before, the SLIM methodology may be used with different structures.
3.2, SLIM structures

The SLIM methodology organizes a fuzzy system f{x) as a set of n fuzzy systems fi(x),
So(x), .., fx(x). Each of these subsystems may contain information related with particular aspects
of the system f{x). Different interconnections will be made in order to build complex fuzzy

systems structures. We follow with a description of the PCS and HPS structures in the SLIM
context.

A. PCS structure

The figure 1 shows a PCS structure with two fuzzy subsystems. It’s possible to observe that
sub-system have an extra output, that indicate the relevance of its output, y.

Figure 1: A practical implementation of PCS.

Therefore, the output of the SLIM model is the integral of the individual contributions of
fuzzy subsystems:

£(x)= ] A(x)9, () an

where R, (x) represents the relevance function of the i* fuzzy subsystem covering the point x,
of the Universe of Discourse, and the | an aggregation operator.

The relevance of aggregated system can be done by:

R (x)=R (x)u--UR, (x) (12)
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Naturally, if the i* fuzzy subsystem covers appropriately the region of the point x, its
relevance value is high (very close to one), otherwise the relevance value is low (near zero or
zero). The separation of information may be used to organize the information of a system.
Consequently, it’s possible to reduce the number of rules representing the original system by
discarding sets of rules with lower relevance values.

Afterwards, there are going propose a SLIM algorithm, for PCS structure of figure 1. The
generalizations of this algorithm to a PCS structure with more than two levels are overcome
without any difficulty.

Let f; a fuzzy subsystem with early null output values for all domain (or relevance null). M,
and M,, are the number of rules of the f| and f;, respectively. The first subsystems can be
expressed by:

fau(x)=a3(x) Y (13)

where ¢y (x)=¢(x)®R, ie, qm(x)=[q"‘ (x)-(x",q”(x)-(x",--~,q"" (x)~0.l"':|T is the

.
inner product between the FBF vector and the relevance vector ¥ = [?" P2, 9 | s the

vector (or matrix) of all the centers of output membership functions.

The parameter o is closely connected to the relevance of the rule in the fuzzy system.
When o is equal to unity, rule /, has maximum relevance, while for nulla’ , the rule loses its
relevance. If o' =1 for all /,=1,..., M, then f',=f;. If parametera, associated to rule /,,
converges to null, rule /; is eliminated from function f;,. If this is possible for all rules of f; then
/i is eliminated (lim £ =0).

Similarly, the second fuzzy system is expressed by:
faa(x)=p"(x)- 0y (14

where 8y is the inner product between the © vector and the relevance vector. Initially, f;
contains all the information, X, (/)=1, V/e{l,2,--,M}, whie f, is empty, ie,
9{, (12) =0 (69"1 :O), Vlz € {1,2,~--,M2},ﬁ‘,2(xk) =(Q.

The relevance of the rules of f; decreases at the same proportion that f, assumes a greater
importance. Thus, during this transfer of process information there is no change in the sum of
the models. By the end of this process, all or part of the rules of model f; may have null or
almost null relevance and under these circumstances they should be eliminated. Those who keep

a significant relevance index should not be eliminated, as they still contain relevant information.
Considering what was stated, the problem consists on the optimization of the cost function

J: minJ(e)=min (o) -0 subject to

f(x)=fa, (¥)+ Jz2 (%) (1s)

The purpose is then to keep the invariability of the identification model (i = 1, 2,...,
iteration) and, simultaneously, to reduce the importance of model f; in favor of f>. In order to
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achieve this, the Lagrange multipliers technique has been used. For optimization problem
purposed, the Lagrange multipliers technique has been used. So, the previous problem become
transformed in the optimization of function L=1/2-&" -a—A" (Q-(1-a)-P-8), where Q

and P are the matrix, which rows are the g7 (x, ) and p™(x,) vectors, respectively.
SLIM-PCS Algorithms

Step 1 and Step 2 are as explained before.

Step 3: Diminish the relevance of every rule in R,, and compensate this effect by increasing
the relevance, and possibly tuning, rules in R, under the condition of maintaining the transfer
function of the systemn invariant, equation (15).

Step 4: Eliminate the rules in R, whose values of relevance are considered sufficiently low.

Obviously, if the radius of the rules of f; is so small that the center of the rule is a point
representative of the region covered by the rule. Then, the resolution of the problem has been

constrained to the set of M, points. Under these circumstances, the solution of the problem is
obtained by solving the following system of non-linear equations:

Q-0+e=R (16)

M, M,

where R=Y p(x,)/5" is a vector, Q=2(p(x,)-(p(x,))r)/i' is a symmetric matrix
k=1 k=1

with M\sM, dimension and & is a vector error.

T

a,:l—”y'e for k=1---,M, an

r °

If the og value for rule & is a null value or near zero then the rule can be discharged.
The singular value decomposition (SVD) of @ matrix is there used to solve the equation
(16). Results a factorization of the matrix into a product of three matrices@ = UZV , where

U,V e R*** are orthogonal matrices and X=diag(0,,0,,+,0,, ) is a diagonal matrix,

which elements are called the singular values of Q.
In practice, the minimum 2-norm solution of equation (16) is usually approximated by:

- 4Ry,
o=y = (18)
i=1 i

where < M, is some numerically determined value. The existence of small singular values
implies the presence of redundant or less important rules among the rules that comprise the
underlying model. If the input membership functions are static then equations (17)-(18) provide
a systematic way of transferring the information from system f; to system f; in one step.
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Otherwise, the tuning of membership parameters will improve the minimization of J cost
function.
An iterative procedure can be used:

+ i aj
a;'zap—rra—a (19)

where a,, withp=1,---, np, are parameters of input memberships function, with np the total
number of parameters liable to optimization procedure, and i the current number of the iteration
optimization step.

The SLIM-PCS algorithm results in the association of tuning of the input memberships
functions, eq. (19), with the tuning of the center of fuzzy outputs sets, egs. (17)-(18). Finally, if
the o value for rule £ is a null value or near zero, then the rule can be discharged. In the section
6, this algorithm is used to modeling the environmental climate variable of an agriculture
greenhouse. This algorithm was so been used in modeling of various real systems [16][17].

B. HPS structure

The HPS structure, illustrated in figure 2, allows for prioritization of the rules by using a

hierarchical representation, as defined by Yager [11]. If i < the rules in level i will have a higher
priority than those in level ;.

Input u

Level 2
Ofn—l

Vn-l

Level n

Figure 2. Hierarchical Prioritized Structure (HPS)

Consider a system with  levels, i=1,__, n-1, each level with M, rules:
D If Uis Ayand 7, ,is low, then ¥ is B;and rule IT is used
mnis?v,

Rule 1 is activated if two conditions are satisfied: U is 4; and ¥,_,is low. ¥,_, which is the
maximum value of the output membership function of ¥;.;, may be interpreted as a measure of
satisfaction of the rules in the previous levels. If these rules are relevant, i.e. ¥, is not low, the
information conveyed by these rules will not be used. On the other hand, if the rules in the
previous levels are not relevant, i.e. ¥, is low, this information is used.

Rule IT states that the output of level i is the union of the output of the previous level with
the output of level i.
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The output of a generic level i is given by the expression
M,
G.‘ =((l-ai—l )AUE‘, ]UGi—l (20)
I=1

where F' = 4, (x) AB,, I=1,---,M, is the output membership function of rule / in level i.
Equation (20) can be interpreted as an aggregation operation, for the hierarchical structure.
The coefficient ¢y translates the relevance of the set of rules in level i. Level 1 gets from level 0:

o0, Go=3
Yager proposes [11]:

a, =max G, (y) 21

The relevance, as is defined by equation (21), restricts the contribution of one level, i, to the
maximum value of its membership G, (y), in the output domain. The relevance contributions of

a significant number of rules are disregarded. However, each level contains a fuzzy system, in
which doesn’t exist a prioritized relevance of rules.

Moreover, it’s our intuition that the information containing in each rule can be
complemented by the others rules, increasing the relevance of the level’s fuzzy system. Using the
axiomatic presented in this paper, other functions of relevance may be defined.

Definition 9 (Relevance of fuzzy system just i level): Let S; be the input-output region
covered by the set of rules of level i. The relevance of the set of rules in level i is defined as:

R (R AR B

where S and T are, respectively, S-norm e T-norm operations, and R is restricted by the
proposed axiomatic.

Taking ¢s.,=R(G:;.1), and applying Property 1 and Property 2, we verify that ¢ is a measure
of relevance. R (F;') represent the relevance of rule / in level i, defined in (15). Using the

product implication rule, and considering B; a centroid of amplitude § centered in )=y, then
ERs, (Fil)z A,-,(x')~8,, 23)

When the relevance of a level i is 1, the relevance of all the levels below is null.

If the S-norm and T-norm operations used in (22) are continuous and derivable, and given a
cost function, it is possible to develop an optimization process for tuning the parameters of the
membership functions of the rules in a HPS system.

An algorithm implementing the SLIM methodology for the HPS structure is presented. For
simplicity, the algorithm is presented for a particular HPS structure (with three levels, n=3, two
inputs, ni=2, and one output, no=1). All the rules are of the type:
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D) If Uis 4 and ¥_ is low, then ¥, is g; and rule IT is used
A

The consequent rules are of the Sugeno type, with singleton membership functions, g;. The
antecedent sub-sets A; (product aggregation of the input membership functions) are of the
Gaussian type. The system output is obtained by a defuzzification center of area:

" iG (bn:i)'er:i
y. _ = ,,j=IM,. 4)
2.2.G.(5)

=t j=1

F; may be written as

r<0f%)

and G, [11]:

G, (b;)=(1-_) 4, (x) (26)

Y

Equation (18) can be rewritten as:

M, My
(1-0/)-8/ My, (x)+(l—(x,)426§ -qu’(x)+(1—cx2)-ZG; “ty (%)
Al P2 I @7)

31 (1=t () (1-0)- Bty (9)+1-06)- S, (4

J=

M=

where y* = f(x) and o/ is associated to the relevance of rule j of level 1.

Wheno! =0 the rule j of level 1 has the original relevance value. Ifat/ =1, the relevance of

rule ; is null and so its contribution to the model is very low.

Parameters o and ¢y, are associated with the relevance of the sets of rules in levels 1 and 2,
respectively. For a given point in the input space, the associated relevance value can be obtained
using equation (22), which is here considered as continuous and derivable. It is clear that, when
the relevance of a given rule becomes sufficiently low, the rule can be discarded.

This problem can be formalized as follows:

M,
Min J = 2(1 -0 )2 , subject to: f(x)is invariant, Vo € [O,l] 28)
=1
The solution to this problem with restrictions can be obtained using the Lagrange method,
which converts the previous problem in a dual problem without restrictions:

117
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W)= 3 (1-o) 25 (1 ()1 (x) )

where A is the Lagrange multiplier, X is the vector with the adjustable parameters of £, f® is the
original fuzzy function and p is the number of significant points that cover the region of interest.

Formulated in this way, the problem can be solved using the generic SLIM algorithm
presented in section 0. Some details for this particular case are given below.

SLIM-HPS Algorithms

Step 1 and Step 2 are as explained before.

Step 3 is divided in two parts Step 3.1 and Step 3.2.

Step 3.1: Diminish the relevance of every rule in R, and compensate this effect by increasing
the relevance, and possibly tuning, rules in R, by solving equation (29). The relevance of the
rules in level 2 is considered null.

Step 3.2: Diminish the relevance of every rule in R, and compensate this effect by increasing
the relevance, and possibly tuning, rules in R;, by solving equation (29).

Step 4: Eliminate the rules in R, whose values of relevance are considered sufficiently low.

Equation (29) can be solved by using an iterative optimization method, e.g. gradient
descendent; # may be minimized in two steps by solving iteratively a system of non-linear
equations [18].

The interconnection of HPS and PCS structures will make a General Structure (GS). The
resulting structure has necessarily merged the characteristics of both HPS and PCS. The
generalization of SLIM methodology at a GS is an extended case.

4. Fuzzy rules clustering algorithms
4.1. Probabilistic and possibilistic clustering algorithm

Clustering numerical data forms the basis of many modeling and pattem classification
algorithms. The purpose of clustering is to find natural groupings of data in a large data set
revealing patterns that can provide a concise representation of data behavior [5].

The classification problem consists on the separation of a set of objects @ ={o0,,0,,--,0,}
in ¢ clusters, according to a similarity criterion, using all available data, X ={x,,xz,---,x_},
where x; can be any element (for example, x, € R”).

A real matrix U of dimensions ¢y, called the fuzzy partition matrix, can be used to show
the results of classifying the data X into clusters. This is achieved interpreting each element [ux]
as a measure representing the degree of membership of a data vector x; belonging to the cluster

L.
The Fuzzy C-Means Clustering Algorithm, FCM is based on the calculation of the fuzzy
partition matrix U under the following constraints:

u,ef0l1],1<i<c, 1<k<n (30)
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Su,=1, 1sk<n 31)

0<iuik<n, Vie{l, 2,-, ¢} (32)

k=1

A central issue in FCM, also namely probabilistic algorithm, is the constraint of equation
(31) that is strongly influenced by probability theory: the sum of the membership values for all
clusters of a data vector equals one. This constraint prevents the trivial solution U=0 and
provides reasonable results when the degree of membership of each vector to a cluster is
interpreted as a probability, or as the degree of sharing an attribute. On the contrary, the fuzzy
partition matrix that results from the application of FCM should not be used in cases when the
degree of membership implies typicality or compatibility. Having these facts in mind,
Krishnapuram and Keller [19] reformulated the fuzzy clustering problem in a way that the fuzzy
partition matrix value can be considered as deviations from typicality. So, in the Possibilistic
Clustering Algorithm and its c-means algorithm (P-FCM), the condition (31) is dropped.

For the FCM and P-FCM algorithms, the objective is then to find a U=[uy] and
V =[v,v,+,v.] with v,e R” where:

ZZu,k (x,v,), l<m<eo (33)

k=1 i=1

is minimized [20].

The fuzzifier that controls the fuzziness of the final partition is m > 1, ¢ > 2 is the number of
clusters of the final partition, and » is the number of the available data points. D () is a measure
of the distance between the data vector x; and the prototype vector v; of cluster i.

It can be shown that the following algorithm may lead the pair (U”,}") to a minimum [21].

The fuzzifier that controls the fuzziness of the final partition is m > 1, ¢ > 2 is the number of
clusters of the final partition, and # is the number of the available data points. D (-) is a measure
of the distance between the data vector x; and the prototype vector v; of clusteri. It can be
shown that the following algorithm may lead the pair (U,V") to a minimum[21]:

Probabilistic and Possibilistic Fuzzy C-Means Algorithm

Step 1- For a set of points X={x, x»,..., X, }, with x,c R” , keep ¢, 2 < ¢ <n, and initialize
U% M,
Step 2 — On the " iteration, with =0, 1, 2,..., compute the ¢ mean vectors.

n

ICOR

Y = 34

1 n

2[ [f))

=]
where [u,?;’] =UY, =12, c

Step 3- Compute the new partition matrix {*" using the expression:
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g =—L (39)
i d.(") -1

&\ a0
1
dl(r) L_l

1+ —2%

yn

for 1 <i<c, 1 <k <n, whered'” denotes D(x‘ ,v}')) and ry belongs to R.

Step 4 — Compare U with U“"; If || U*"-U|| < ¢ then the process ends. Otherwise let
r=r+1 and go to step 2. g is a small real positive constant.

ui(;”) =

(36)

Equations (35) and (36) defines, respectively, the probability (FCM) and the possibility (P-
FCM) membership function for cluster i in the universe of discourse of all data vectors X. The
values of 1y control the distance from the prototype vector of cluster i where the membership
function becomes 0.5, i.e., the point(s) with the maximum fuzziness.

4.2. Fuzzy Clustering of Fuzzy Rules

If the fuzzy system entirely characterizes one region of product space U x ¥, for any existing
characterization (operation) of the input-output space map, there will be one correspondence in
the rules domain (Theorem 1). The fuzzy clustering of fuzzy rules here proposed, as well as one
clustering of data or region of space, corroborates this idea.

The objective of the fuzzy clustering partition is the separation of a set of fuzzy rules 3={R,,
R,,..., Ry} in c clusters, according to a “similarity” criterion, finding the optimal clusters center,
¥, and the partition matrix, U. Each value u; represents the membership degree of the ¥* rule,
R, belonging to the i cluster i, A;, and obeys to equations (30)-(32).

Let x; ¢ S be a point covered by one or more fuzzy rules. Naturally, the membership degree
of point x; belonging to i* cluster is the sum of products between the relevance of the rules / in
x; point and the membership degree of the rule / belong to cluster i, u;, for all rules, i.e.:

c

M
Yu, R (x)=1, Vx,€§ (37

For the fuzzy clustering proposes, each rule and x; point, will obey simultaneously to
equations (30)-(32). These requirements and the relevance condition of equation (6) are
completely satisfied in equation (37).

So, for the Fuzzy Clustering of Fuzzy Rules Algorithm, FCFRA, the objective is to find a
U=[us] and V =[v,,v,, --,v.] with v.e R? where:
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0.) =3 S ) o | oo

=1 [_i=1 I=1
is minimized, with a weighting constant m>1, with constrain of equation (37). It can be shown
that the following algorithm may lead the pair (U’,V") to a minimum:

Also in previous section, the models specified by the objective function (38) were minimized
using alternating optimization. The results can be express in fellow algorithm:

Fuzzy Clustering algorithms of fuzzy rules — FCAFR

Step 1- For a set of points X={xi, x,..., X,}, With x;cS, and a set of rules G={Ry, R;,...,
Ry}, with relevance %, (x,), k=1, ., M, keep ¢, 2 < ¢ <n, and initialize U%¢ M,

Step 2—- On the " iteration, with r=0, 1, 2,..., compute the ¢ mean vectors.

(r) _ I=1 k=1
Vil —, o & - (39)
2[(“:1 ) 'Z(SRI(XI())
I=1 k=1
where[ ] v, i=1,2,.,c.
Step 3- Compute the new partition matrix U¢*" using the expression:
ul™ = I withl<i<ce, 1 </<M  (40)

il 2

. i(ﬂ(,(xk ka g

j=1 < _
Z(m,(xk ka v,

-1

b
I

x~
KK

Step 4- Compare U with U“*": If | U*"-U")|| < ¢ then the process ends. Otherwise let
r=r+1 and go to step 2. ¢ is a small real positive constant.

If the rules describe one region S, instead of a set of points, the equation (39) and (40) will
be exchange the sum by integral:

S () L) e

p) = L2 (1)

S )]

=1
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y = 1 2 .
(L o)

= L (ER, (x))” "x - vf,"

u

-dx

1t’s possible to proof that: for the condition where the membership functions of fuzzy rules
are symmetrical, and in the same way, the relevance functions of the rules, the equation (41) and
(42) can be rewrite as:

] (43)

u!rvl) - __—1___2_ (44)

where X, is the center of rule / and o, = _L (R, (x))" dx is one form factor.

If all rules have the same shape, the fuzzy clustering of fuzzy can be obtaining by
considering only the center of rules, as a normal fuzzy c-means algorithm process.

Possibilistic Fuzzy Clustering algorithms of fuzzy rules — P-FCAFR

Step 1 and Step 2 are as explained in FCAFR.
Step 3— Compute the new partition matrix L " using the expression:

1
L b
c m , -1
( (ER/(XI:)) ’||xk_",”/r|l]’
J=1 k=1
with 1 <i<c, 1 </ <M.

Step 4 Compare U™ with U**Y: If || U*V-U)| < g then the process ends. Otherwise let
r=r+1 and go to step 2. ¢ is a small real positive constant.

(r+1) _
il =

45)

This methodology allows separating the original fuzzy system in the sum of ¢ fuzzy systems,
in form of equation (11), where each system (subsystem) represents one cluster.
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L (X) = (46)
du(x)

I=]

The Rule Clustering Algorithm, organize the rules of fuzzy systems in the PCS structure.
So, the FCAFR take part of the SLIM methodology, where the partition matrix can be
interpreted as containing the values of the relevance of the sets of rules in each cluster.

As same manner as in FCAFR algorithms, if the rules describe one region S, instead of a set
of points, the equation (45) will be reformulate to:

u'_(lm) = 1 - 7)
: dx/nl )m_l

;(L(sm(x))”-

X — v,(')

and still more the membership of relevance function of the rules was symmetrical, the last
equation can be rewrite as:

L) = 1 @8)

T z
$ s

where X; is the center of rule /.

The same conclusion of FCAFR algorithms are obtaining: If all rules have the same shape,
the possibilistic fuzzy clustering of fuzzy can be determined by only considering the center of
rules.

This methodology allows expand the original fuzzy system in the HPS structure. For fuzzy
systems (11), the P-FCM result in following HPS structure, of the equation form(27):

o g(: T (x)~u,.,] -

c

Z(gu’(x)-uﬂ)

i=l

In conclusion, the FCAFR organize the information of fuzzy systems in PCS structures,
while the P-FCAFR algorithm organizes fuzzy systems in the HPS structure form.

5. Experimental results

In this section it was tested the SLIM methodology in two cases. The first one, it’s the
modeling of a volcano surface with the hierarchical model. The second case, the SLIM
methodology is applied to modeling the greenhouse environmental variables with real data.

Example 1: Volcano Description as in HPS structure.
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The figure 3a shown a volcano surface, generated with 40,40 data points. The exercise is to
capture in an HPS system the description of the function. First, we identified the raw data using
the nearest neighborhood identification method, with a radius of 0.4, with a negligible error. A
set of 400 fuzzy rules has been generated.

It is general perception that the volcano function, W=F(U,V), can been generated by the
following three level hierarchic HPS structure, with one rule in each level:

Level I: TF (U,V) is very close to (5,5) THEN W is quasi null (Rule 1)

Level 2: TF (U,V) is close to (5,5) THEN W is high (Rule 2)

Level 3: TF U and V are anything THEN W is low (Rule 3)

The fuzzy sets membership functions very close, close, anything, quasi null, high and low
can be defined as follows as two-dimensional Gaussian functions:

xl ~% I A[i__"_l].
By (%) e % Jxe\™ ) with¥=(x,x,) and ] ={"very close", "close", "anything"}

My (w)= {%,}= {}6} with J ={"quasi null", "high", "low "} ;

where X; andO;; are the central value and the width of the input membership functions and g is

the central value of the singleton output membership function for the i level. Because there is
only a rule in each level its subscript was omitted.

Now, we begin building the HPS structure as mentioned in the SLIM-HPS Algorithm. At
first, all 400 rules are placed in the first level. As the membership functions of the other levels are
unknown, we will assume arbitrary values as starting values. The next step consists in
diminishing the relevance of the rules in level 1, in favor of the rules in level 3. This is
accomplished by tuning the membership functions of level 3 to compensate for the alterations in
level 1. This has been done minimizing the equation

w(X.A =i 1-af )ZH)i(f (x)- /(%)) (50)

k=1

using the gradient-descendent method [8]. We repeat the process for diminishing the relevance
of the rules in level 1, in favor of the rules in level 2.
The output of the resulting HPS system, after these two processes, can be seen in figure 4b).

The end values ¢ (at this stage), associated to the relevance of the rules, are shown in figure
2c). The value of each ¢/ is presented located at the center of the associated rule.

One should note that the majority of the rules were assimilated by the levels 2 and 3, with
the exception of the ones that represent the volcano opening, where the coefficients o/ are close
to null. These are the rules that, as a whole, constitute the level with the highest priority. Next
we suppress, from level 1, the rules with low relevance (o/> 0.9). This results in keeping 49
rules in level 1, without significant loss of the model quality, as we can observe in figures 4d).
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Figure 3 - SLIM methodology applied to Volcano description

Example 2: Environmental Greenhouse model, in PCS structure

The greenhouse climate model describes the dynamic behavior of the state variables by the
use of differential equations of temperature, humidity and CO, concentrations. In this paper the
CO, concentration model is not considered. The model equations can be written by deriving the
appropriate energy and mass balances

dT,, 1
7 - Cszp (QT,'I - QT,uur + Q.mi[ + QT.’"d) (51)
dHexl 1
@ C__((Dh.c,m - (Dkv-“w“") Y

cap.h

where, Crom, [J m?°C™], Ccor [Kg m?], Cyqp [m] are the heat and mass capacities per square
meter.

The energy balance in the greenhouse air is affected by the energy supplied by heating
system, Or, [W m™], by energy losses to outside air due to transmission through the greenhouse
cover and forced ventilation exchange, Qo [W m'z], by the energy exchange with the soil Qo
[W m?}, and by the heat supply by sun radiation, Qr,.s [W m?].
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The humidity balance in the greenhouse air is determined by canopy and soil transpiration,
Bcar ][kg m?s"'], and by the free and forced ventilation exchange with the outside air dy_i..s [kg
m°s’].

Energy and mass transport phenomena at greenhouse cover and the contribution of
ventilation, induced by temperature differences between the inside and outside air is only
significant at very low wind speeds [22], and consequently they are neglected in this model.

This model requires a great domain of the physical process and measurement accuracy on
the process variables. Fuzzy modeling can be an alternative representation for describing the
process and is easily interpretable by someone.

The model can be significantly improved if it is divided in sub models. The temperature and
humidity models are breaking in two parts: the daylight and night sub models for the
temperature and with and without forced ventilations for the humidity sub models.

Daylight Temperature (DT) sub model (RAD>0) Night temperature (NT) sub-model
dar,, dT.
2= frmp (AT R0, 000, 0) (59 2= Srmg (AT Outes Qo) 59

where AT(t)=T,,(t)—T,,(t) is the inside and outside temperature difference; RAD is the
sunlight radiation intensity; Q.. (1)=U,pec(t) (T, ~T,,,(¢)) is the heat flux from the heating
system. Tp is the temperature of the coil water of the heating (about 60 °C);
0..0=U,_,) (T, ()-T,() is the heat flux exchange with the outside air
andQ, , (t)=(T,,(¢)-T.,(¢)) is the heat exchange with the greenhouse soil.

Low Dynamical Humidity (LDH) sub model (U,x=0) | High Dynamical Humidity (HDH) sub model
(Uren0)
dH dH
T“’:f,,(AHS,AH) (55) T“’:f,, (Pene) (56)

where HS(T) is the dewpoint humidity of the air at T (°C) temperature;
AH (t)=H,,(t)-H,,(t) is the difference between inside and outside absolute humidity’s;
6...(0)=U,,(¢) (H_()-H_,(¢)) is the water mass exchange between the inside and outside
air and AHS (t) = HS (T, (1)) - H., (t) is the difference between the dewpoint humidity of the
air, at temperature Tes{(f), and the absolute humidity in the greenhouse air.

Here, the required task is to develop the above fuzzy systems that can match all the N pairs
of collected data (temperature, humidity,...) to any given accuracy.

The SLIM methodology has been applied to the identification of the dynamic behavior of
temperature and humidity in an agricultural greenhouse. Three different fuzzy identification
techniques have been applied to model the data: back propagation [2], table lookup [23] and the
RLS [16]. The idea is to compare a system organized by the SLIM methodology against the
systems produced by the reference methods: The structure for the organization of information
adopted in this case was a PCS structure with two fuzzy subsystems. The number of rules
chosen for the level f;, was 10, for each one temperature and humidity sub-models. The
identification of the above models was realized by using daily input-output data points collected
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from the process, between January 15 and February 4, 1998, at |-minute sample time. Two
others periods of data were been used for test the models: 8 to 14 of January and 5 to 11 of
April.

The first step is to capture the greenhouse models in a PCS system from real data. The
identification process was performed with the RLS identification method, with a radius of 0.4
and 4x10™, respectively for temperature and humidity model.

In order to proceed, the information starts to be transferred from the sub-system f; to f; in
the PCS structure. Previously, all the original rules are placed in the first level. The next step
consists in diminishing the relevance of the rules in level 1, in favor of the rules in level 2. This is
accomplished by tuning the membership functions of level 2 to compensate for the relevance
rules in level 1.

The optimization procedure is achieved by using equation (17) and equation (18).

The output of the resulting PCS system after applying the SLIM methodology is
represented in Figure 4 for temperature model and in Figure 5 for the absolute humidity model:
The results are obtained in the test period 5 to 11 of April.

Real data curves are also represented for comparison purposes. The variances of the errors
between the simulations and the experimental data for temperature and humidity, for each one of
Fuzzy Methods, are indicated in Table | and 2 respectively.

s

Figure 4 - Temperature Fuzzy model
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e

AR,
Figure 5 — Humidity Fuzzy model.

Experimental work shows that the fuzzy identification systems created with the reference
methods are made of a very high number of IF...THEN rules. The SLIM methodology, applied
to the systems produced with the RLS method, has produced systems with a number of rules
that varies between 2% and 20% of the number of rules of the other systems, with negligible
differences in the behavior, as illustrated in Table 1 and 2. The “slimed” system, with a superior
organization, contains the same level of information, and uses a lower number of rules.

Table 1: Errors, number of rules and iterations of the different temperature fuzzy system models

Temperature Error - £ (E)©
(°C)
n. of
F X \! X to 4 of F Sat 11 of Apri
‘uzzy Method n. of rules iteration 8o 14 Jan 150fJanto 4 of Feb | Sat 11 of April
Back- 50 (day)
. 1000 0,98 (0,79 0,81 (0,56 1,01 (0,77
Propagation 50 (night) ©.79) (0.36) @7
777 (day)
RLS 1 0,88 (0,70) 0,74 (0,53) 1,07 (0,86)
349 (night)
596 (day)
Table-lookup ] 1 1,00 (0.83) 0.55 (0.54) 1.15(0.85)
201 (night)
10 (day)
MSIL-PCS - 1 0.88 (0.73) 0.82 (0.649) 1.18(1.01)
10 (night)

(*) E and E are the mean square error and the means error, respectively.
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Table 2: Errors, number of rules and iterations of the different humidity’s fuzzy system models

Absolute Humidity Error - £ ( E )x10* kg m>®
Fuzzy n. of 15 of Jan to 4 of Satllde
. 8to 14 Jan.
Method n. of rules iterations o 14 Jan Feb. April
- 50 (Uyene =0
Back i (oo 0) 1000 3.56(2.83) 447 (3.13) 7.17 (4.56)
Propagation 10 (Uyene >0)
143 (Uyems =0)
RLS 1 3.04 (2.07) 3.84 (2.46) 7.90 (5.53)
134 (Uyen, >0)
175 (Usons =0)
Table-lookup | 4.52 (3.41) 4.58(3.14) 5.58 (3.79)
52 (Usen >0)
10 (Uyew =0)
MSIL-PCS 1 3.62 (2.18) 4.81 (2.94) 6.80 (491)
10 (Usem >0)

(*)E and E are the mean square error and the means error, respectively.
6. Conclusions and future work

The concept of relevance, presented in the paper, responds to some important questions in
the field of fuzzy systems. Its applicability has been demonstrated in a methodology for the
separation of information (SLIM), in HPS and PCS structures.

Also in this work, the mathematical fundaments for fuzzy clustering of fuzzy rules were
presented, where the relevance concept has a significant importance. Based in this concept, it is
possible to make a fuzzy clustering algorithm of fuzzy rules, which is naturally a generalization
of fuzzy clustering algorithms. Moreover, it was proved that different clusters strategies lead it’s
to the SLIM methodology and of a structured organization of information.

The definition of new relevance functions opens new perspectives in other fields, namely in
pattern recognition. Work is this field is under way, in image pattern recognition [24]. Another
promising line of work is the stability analysis of fuzzy systems.
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Abstract. The first section is introductory and is devoted to clarify the meanings
we use in this paper for “information aggregation.” In the second section, fuzzy-
coupled map networks and other uncertainty-carrying networks are introduced
and analyzed. Several examples are discussed throughout this chapter.
Simulation results, a discussion and conclusions are presented in the next
sections,

1. Introduction

Recently, it has been a large interest in the scientific community in the structures that self-
organize. Many volumes (see, for instance, [1], [2], [3]) and a large number of papers (e.g.,
[4]-[11]) have been published on the theory and applications of such systems in physics

biology, chemistry, and in almost any other domain.

Self-organizing structures are structures that dynamically produce clustering, patterns, or
other form of structuring during their temporal or spatial evolution. There are numerous
examples of self-organization in natural processes, from crystals to people aggregating into
communities. Some of these processes are entirely due to the laws of physics, like the
crystals, while other processes involve information, utility and knowledge to produce the
aggregation. We are interested here in the last category, especially emphasizing the case of

systems involving uncertainty. We aim to build models for such processes.

In this chapter, the meanings of “information aggregation” is according to the subsequent
description, which partially departs from the usual definitions [12]. We shall mean by

information (data) aggregation any technique that:

i) relates a dynamical behavior to another dynamical behavior and possibly

produces a measure of relationship, or

if) relates two or several parameters in some specific way, for example as

representing the coordinates of the elements of a class, or

1if) relates the dynamic behavior of a time-dependent membership function to the

dynamics of other time-dependent membership functions, or

iv) forces data in a system to self-aggregate in some way or another, ie., to self
organize. Self-organization is seen in this chapter as the most interesting way of

information aggregation, and will be given considerable emphasis.
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Throughout this chapter, we make little distinction between certainty factors, truth-
values in the frame of fuzzy logic, and belief degrees. In fact, replacing fuzzy systems with
certainty factors based systems or similarly with other uncertainty-based systems does not
change the essence of our discussion, nor the general formal framework. However, for
brevity, we will exemplify all processes for fuzzy systems only.

We introduce and discuss in this chapter a class of entities that can be used in information
aggregation, namely the uncertain information-based coupled map networks (UCMNSs). We
are especially interested in the dynamics of information aggregation when a large number of
players behave in a specified manner and how the informations they manipulate aggregate the
players. Here, the players are represented by “cells” (nodes) in a network. The analysis of
these structures is by no means exhaustive, but aims to provide illustrative resuits.

2. Coupled Map Networks and information aggregation
2.1. Coupled Map Networks

A Coupled Map Network (CMN), also named Coupled Lattice Map, or Coupled Map
Lattice (CML) is an entity defined by:
i) a lattice topology, typically isomorphic with Z, 72, or more generally, with Z" ora
subset of Z¥,
i) the characteristic function(s) of a set of “cells” laying in the nodes of the lattice, the
cells performing operations on the signals it receives, while the state space of the
cells is either continuous, or, at least, uncountable.

A coupled map lattice with all cells having the same characteristic function is named
homogeneous CMNs. We will discuss only homogeneous CMNs in this chapter. The
propagation of the information in the lattice is performed by various mechanisms, for example
by shifting, diffusion, and one-way mechanisms.

CMLs are produced as a result of the dxscxetlzatmn of partial differential equations
(PDE), see Annex 1 and Annex 2, or as a result of discrete modeling of processes. Examples,
namely an infinite “linear” lattice and the finite “ring topology” 1D-lattice, are shown in
Figure 1.

Figure 1. Examples of 1D lattices: (a) infinite linear lattice and (b) ring lattice, connected in one direction
only, both with two lags

A linear infinite CMN is described by the initial state (initial condition) {,ri IO]LN and the
equation of the lattice. The equation describing the lattice in Figure 1 a) is
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M+l _ =1 i
Xp+l = f(xn ’xn)

where the index n stands for the number of times the map f has been iterated. The function
f(-) defines the nodes. In the linear case,

i+l

=g ™ ypox!

A set of selected nodes can be source nodes, i.e., they are given values not related to the
recurrence relation. For example, if x° =sin(n-#), the 0" node is a source node. Source
nodes are frequently named boundary conditions, because in physical applications, the
boundary has valued assumed independent on the process (here, independent on the iteration
process). If the boundary is “rigid”, then x? = constant . Frequently, the evolution of the linear
CMN is represented as an image, with successive lines standing for successive time moments.

A (crisp), planar, CML, consists of rows of elements connected in one direction only,
from one row to the next. The rows can extend to indefinitely, or be finite; in the last case,
boundary conditions should be stated. In another version, CMNs have finite rows on the

surface of a cylinder, 1.e., the rows are placed along parallel closed curves (e.g., circles.) This

translates by the conditions: x” =x®, x"" =x7!, ..., for a CMN with rows including T

nodes.

The information signal is introduced as initial condition of the system; also, information
can be input continuously in time, as excitation to the cells in the first row. The data
propagate from one row to the next. Cells in a neighborhood act on a cell on the next row
(Figure 2). This propagation can be interpreted as space-domain or as time-domain
propagation, depending on the application. Notice that the elements in the networks are also
named nodes, cells, agents, players etc.

Figure 2. A semi-planar coupled map network (a) with infinite rows, and (b) with boundary conditions. (The
shaded nodes may have fixed values or simply reproduce the values of the corresponding boundary nodes on
the first row.)

Every cell is defined by the same characteristic function, f. For convenience, we may
choose £ :[0,11%¢"" -[0,1] or f :[-1,112¢*" - [~1,1]. Thus, the output of a cell is:
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52 = f(xf g ¥l guis¥hg) )

where the neighborhood is centered on the current column and is 20Q+1 wide, j is the rank of
the row, and i is the index of the current cell (node) in the network. The initial condition is

9} IeR.

A typical class of coupled maps is governed by the equation:

k=—0

’*'-f[ $w-o k] weelol, T, =1 @)

where w, are the weights and are generally assumed symmetric (w; =w_, ). One of the best-
known examples of a similar case is [13]:

Ly ) M ifm) 0<ksl 3)

2Q,‘

which becomes, for 0= 1,
=k el 2R et ) )

and after linearization,
x/ =k xf +¥ oy +x,) @)

The relationship of the equations (3), (3’) with the numerical integration of the diffusion
process is briefly presented in Annex 1.
Another frequently used coupled map equation is:

X/ =k'f(xij)+%§:f(w"f'xij)+§!
k=1

where &/ ("";{‘ << 1) represents a noise term. With less generality,

N
= £ )+ Yowy -x! @)

k=1

where N is the number of cells in the row. Quite often, the function f represents a process that
can generate chaos by iteration, for example f(x)=7-x-(1-x). For a symmetric vicinity
coupling, and applying the function f only to the current j node:
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@l Sonat ©)
k=—0

Symmetric (w;,, =w;_;) and anti-symmetric (w,,, =-w;_;) coupling are frequently
used. Notice that in all the above CMNss, the neighborhood includes elements on both sides.
This type is named diffusion-type CMN. In contrast, if the neighborhood includes only
elements on one side only, like in Figure 1, the CMN has one-way coupling. Such networks
are also named unidirectionally coupled map lattice. In case of one-way coupling, the
equations should be rewritten accordingly; for example, equation (3”) becomes:

xij+1 :k-xij+(1—k)~x,{1 3

A time-delayed map is defined by equations involving time lags larger than 1, for
example:

o =k p 2 )+ LR (e o rlete) ©

In the above description of the planar CMNSs, the time variable has not been present.
Notice that a planar CMN with no time variable involved is an interesting object per se. For
example, if the initial condition represent the pixels of an original image, the CMN is
equivalent to an image transform. Also notice that a planar CMN with no time involved
should not be confused with a 1D, time-dependent CMN, the former having a 2D vector of
initial conditions, while the latter has a 1D vector of initial data.

The above-described planar structures can be extended to three dimensions, like in
Figure 3, with an appropriate definition of the vicinity. Propagation takes place from one
plane to the next plane, and spatial or spatio-temporal aggregation may be produced.

el b

Figure 3. A bi-planar coupled map
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The operation of the 3D structure in Figure 3 may be described by the equation:

xg',-“ =f (x;:t)l

(hk)eVicinityof (i, j)

where ¢ denotes the number of the plane in the layered structure.

Coupled map networks have been applied in physics, biology, and economics. They are
good models for space-time propagation of epidemics and spreading of populations, for flow
in fluid layers etc. CMNs have also been proposed as means to encrypt images and in several
other engineering applications.

The behavior of the CMNss is depending on both the topology of interconnection (type of
vicinity) and the operation of the nodes, i.e., the characteristic function of the nodes.
Specifically, the synchronization and pattemns produced are dependent on the graph-
theoretical properties of the underlying coupling topology and the type of nonlinearity of the
nodes. The spatio-temporal pattern formation in networks of oscillating or chaotic systems
can be derived by nonlinear stability analysis ([3].)

Linear and finite length, non-cylindrical CMNs (i.e., CMNs like in equations (3’) and
(3’"), with finite number of cells on a row and with no boundary conditions transforming
them into cylindrical CMNs) are apparently of little interest. Nevertheless, they are very
popular under the name of “cascaded linear filters”. Indeed, because of the linearity, we can
apply the Z transform to obtain the z-space transfer function corresponding to the
transformation of one row in the next one. For example, for the CMN described by equation

(37’):
141
H(z)=4?%-)-)=c+(l—(:)~z_l
Z\x,

Thus, the CMN is equivalent to repeatedly applying a linear transform (filter, in terms of
signal processing) to the initial values. Let us denote by H(w) the corresponding Fourier
transfer function of the transform in equ. (3’). Then, the spectrums of the rows are obtained
as:

S (@) = H(w)- S (@)= H(w)- H(®)- S™(0)=...= Ho) H(o)... H() SO()

where $™(w) denotes the spectrum of the n* row. Notice that the filter is a low-pass one,
because in H(z) both coefTicients are positive. Therefore, high-frequency components will be
eliminated.

Because the initial sequence {x} is finite, the spectrum $)(e) includes important low-
frequency components due to the finitude (the spectrum is dominated by the spectrum of the
“window”.) Denoting by H~(w)= lim H"(w), we conclude that after a reasonable number

of iterations, the spectrums of the rows tend to be identical, possibly dominated by the
windowing effect.

There are several extensions of the CMNs, namely the Cellular Automata (CAs), Cellular
Neural Networks, CNNs, and various certainty/fuzzy coupled map networks (U/FCMNs)
that we will introduce in this chapter. The cellular automata represent networks of cells
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situated according to a grid on a line, in the plane or space, like CMNs; every cell has
connections in a 1D, 2D, or 3D vicinity. What differentiate CAs and CMNss is that in CAs,
the states of the cells in the nodes belong to a countable set (discrete, countable state space).
In many cases of well-known CAs, like “the game of life”, the state space includes just two
states (“alive” and “dead”, for the game of life.) Because of the finite number of states, the
operation of the nodes in a CAs is easily described by rules. Consequently, CAs have many
applications in fields related to biology and human activities, like traffic control, which are
effectively described by rules. The CNNs are specific, continuous-time networks,
representing an analog version of CMNs and being easily implemented in analog electronic
circuits. The U/FCMNSs are introduced below.

2.2. Uncertain Information-based Coupled Map Networks (UCMNs) [14-17]

In this section, we introduce several types of structures with lattice topologies inherited
from the CMNs, but using uncertain information-based systems and propagating uncertain
information through the network. For exemplification in this chapter, the uncertainty will be
fuzzy-type uncertainty. Specifically, in Fuzzy CMNs (FCMN:Ss), the crisp cells are replaced by
fuzzy systems. The nodes transmit to their neighbors either crisp (defuzzified) values, or both
crisp and fuzzy values.

Consider first fuzzy systems with defuzzified outputs and consider that only the
defuzzified output values are used in the coupling. Then, the FCMN acts in a similar manner
to the crisp CMNs. Thus, these coupled fuzzy map networks are actually crisp CMNs, with
the cell law implemented by a fuzzy system with defuzzified output. Therefore, such CMNs
do not really deserve the “fuzzy” attribute in their name; we will denote them as CFMNs.

Subsequently, we introduce the concept of fuzzy-coupled (fuzzy-) map networks (F-
CMNs). These CMNs make use of the intrinsic properties of the fuzzy cells, by carrying
fuzzy information from one cell to the cell on the next row (see Figure 4). The type of fuzzy
information sent to the next row and the way of aggregating this information with other
pieces of information will define the particularities and the class of FCMNs.

* Defuzzified value
= Belief degrees in
N selected consequents y

Figure 4. A fuzzy cell in a F-CMN may transfer to its neighbors the numerical (defuzzified) output value,
moreover information on the values of the output membership functions. Here, a Sugeno-type fuzzy system is
implementing a node in a F-CMN
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Under a general framework, in a fuzzy-coupled map network, the values of the
membership functions of a cell:

e are functions of the crisp (defuzzified) output values of the neighboring fuzzy cells on
the previous row, moreover

o are functions of the values of the membership functions of the neighboring fuzzy cells
on the previous row.

The general equation of a F-CMN is:

b= ' T !
Mo f’{ [pr,-’.g]""'[u’i'—gn]’ ’ I:u’ilw]’ LV‘_Q”J] ™

= k=1,..., pis the index of the membership functions defining a cell;
. IJ-:,-.. is the k" membership function value of the i fuzzy cell on the j* row, for the

current set of input values;

where:

k k k
S A EE) e L] are the vectors of the values of the membership
*i-g Xi—Q+h XirQ

functions of the neighboring cells;
,~j_Q+;, is the vector of crisp values at the output of the neighboring cells, and
£, (1) is one of the k functions defining the cells.

Example 1.
Consider a Sugeno system having three Gaussian input membership functions (m.f.):

2
uk(u)=exp[—w] . k=123; a; s;€R,5,>0 8)

Sk

The output singletons b; have certainty factors p, («) , where u is the crisp input value. Then,
for a 3-neighbors case and assuming identical nodes,

”:,"*' =f [[”:{_,]'[“ k’ ][uk"])

Here, we have dropped the crisp output vector, I}’,{QH, ], (see equ. (7)) because, in case
of identical nodes, the output is a function of the values of the membership functions only:

Wb, +1L,b, +11,5,

y(u)= By, H ®
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(we have dropped the indices /). Therefore, we can see the F-CMN as operating solely with

the values of the membership function.
The meaning of equation (7) will be further presented in the subsequent sections.

2.3. Interpretation and examples

What is specific in the manner we build the coupled map network is that we take into
account the membership functions values of the cells in the vicinity, beyond considering the
defuzzified outputs. In this way, the (fuzzy) information contained in the previous row cells is
aggregated in a direct manner, not just mediated by the defuzzified values. This can be
paralleled with the way of operation of an expert system-user tandem: the user needs not only
the result, but the HOW information too (“How have you arrived at this conclusion?”). It is
typical that a user changes his/her decision by contrasting the degree of belief in partial results
she/he has and the belief degrees in the partial results of the adviser. Indeed, if the adviser has
a strong belief in a partial conclusion, this can change our reasoning way. This shows that
only the defuzzified output is not enough for a fuzzy cell to aggregate fuzzy information and
that information on the values of the membership functions leading to the defuzzified values
is also needed. Hence, the use of the equation (7) for a fuzzy-coupled map network.

Such networks can be also models for opinion dissemination and rumor spreading. For
example, the first row can be the rumor generating persons, while the propagation takes place
from friends-to-friend, based on the degrees of confidence people have in the opinion,
authority and judgements of their friends, neighbors, or advisors. Buying goods and services
like insurance policies is frequently based on such opinion and rumor spreading.

A special way to transfer the fuzzy information is to allow a cell on the previous row to
exert its influence on a specific membership function of the cell on the next row. For
example, the fuzzy aggregation may work as follows:

IF The next left neighbor has the value of the membership function “LOW”
significantly LARGER than that of the current cell, THEN it exerts its influence on the
output by lowering it through domination on the LOW membership function,

ELSE  the neighbor exerts no influence.

This can be written as:

Low Low |, P, Low (; 41
[Tyt :max(uxj (mput to xi, ),ux_jﬂ (mput toxi* )J
1

i-1 i

The strategy in the above rule can be summarized as:

Every neighbor exerts its influence (dominates) on its expertise domain.

As a matter of example:

IF next left neighbor is RED and redder than the current cell, THEN it exerts its

influence on the output through domination on the RED color spectrum,
ELSE  the neighbor exerts no influence.
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These strategies can be further elaborated using extra rules like:

IF the second left neighbor is GREEN, moreover GREENER than the current
element,

THEN it exerts its influence on the output through the domination on the GREEN
color membership function

ELSE  the second-to-left neighbor exerts no influence

Example 2.
Another example of rules for uncertain information propagation is:

IF Difference Current-Neighbor is Negative_Big,
THEN  Neighbor dominates the LOWEST membership function (m.f,)

IF Difference Current-Neighbor is Negative,
THEN  Neighbor dominates the SECOND_LOWEST m.f.

IF Difference Current-Neighbor is ZERO,
THEN  Neighbor dominates NO m.f.

Example 3. Model of a panel

Consider a panel sitting in a line at the panel table. Every panelist is identified by a
number j, when counted from left to right. Every panelist can discuss with his close neighbors
only. They have to discuss some issue related to three choices and should determine an
averaged optimum of the three choices. For example, the question to be decided could be:
“What would be the best guess of the inflation rate (IR) next year and the years to come?”
The panelists start the decision process with some initial guess for the IR next year, u (the
“initial opinion”, “initial condition.)

We assume that all panelists are modeled (behave) in the same “rational” manner, except
the initial guess, which is based on experience or intuition. Precisely, each panelist uses three
linguistic attributes for the IR, namely, #1 “low”, #2 “average”, and #3 “high”, then they all
determine in the same way the belief degrees for the attributes, p,,u,, and p,. Based on
these, they determine the “best guess” for the inflation rate, applying the formula (see equ.
):

Uy = Wb +1,b, +13b,
" My +Ho + My

where b,b, and b; are constants and j1,,j1,, and p; are derived as explained below. Notice
that this is equivalent to assuming that the panelists aggregate the three choices according to a
Sugeno system (see the method presented in Example 1.)

We assume that, for some reason or another, every panelist believes that his left-side
neighbor is an expert in the matter covered by the attribute #1. Moreover, every panelist
believes that the right-side neighbor is an expert in matter covered by the attribute #3, while
she/he thinks to be the expert in matters covered by attribute #2.

The rules of the panel require that the panelists write down their opinion in two copies
and pass them to their close neighbors, i.e., to the panelist sitting at left, and respectively at
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right of her/him. They write down the overall result of their guesses, moreover the three
values pj,1,, and p,. The panelists at the ends of the row receive only information from a

single neighbor.

After receiving the information, they aggregate the information and form their guess. The
guess is computed according to the rules:

i) Aggregate the values guessed by himself and the neighbors as:

PRI ) B

J
X P 2

n+l

IR
2

i) Determine u{,2,3(x,{+|).
i) If pf (7)< {7 () thenassign pl(x),) €n{T ().
V) If pd(xl,) < uf" (/i) thenassign pi(x7,,) € pf* (<]

n n+l /7

v) Use the aggregation formula (9) for the guess:

Z Wby 10y + by
HitHy +Hs

Upy)

The guess, together with the three values p,,p,, and p, will be communicated to their
close neighbors at the next time moment. All opinions are communicated simultaneously.
Then, the opinion formation process and the opinion communication restarts, as above.

The described process can be modeled by a F-CMN; indeed, the panelists transmit both
crisp values and information on the membership degrees. The problem is to determine the
dynamics of the guesses for successive years and how patterns of opinions, if any, form in the
panel.

Most of the comments in sections 2.2 and 2.3 are valid for any type of network,
including CMNs and fuzzy ganglions [18].

2.4. A broader perspective on information aggregation in networks

In this sub-section, we draw a parallel between some aggregation methods for uncertain
information and Sugeno-type systems. A certainty factor- (belief degree-) aggregator is a
system performing some operation on the belief degrees. The operation may be arithmetic,
for instance a weighting of the belief degrees, or a selection-type operation, for example
picking the highest or lowest belief degree.

For example, if {#[k]},.s denotes a set of belief degrees (values of the membership

functions), the following represent aggregations:
h=" Wkl h="Y w,-h[k], max{a[k]} ,min{A[k1}
oy poy ke S kesS

First, notice that a Sugeno system can be seen from a different perspective as an
aggregator of belief degrees.
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Indeed, the formula providing the output value':
output = Y h[k]-b,
k

can be seen as a weighted value of the belief degrees. If o, € [— l,]], then the weighting
interpretation is more clear. Indeed, this provides the idea of yet another version of
aggregating fuzzy information, namely, to use values of the coefficients o, in the [— l,l]
interval, or even a, € {-1,0,1}, to aggregate information on the belief degrees. Two “paired

systems”, one with the classical interpretation as Sugeno system, and the other one in the new
interpretation, can be associated to produce a hybrid formal cell to model such behaviors.

Figure 5. A couple of Sugeno systems

The model is shown in Figure 5, where the output B of the node is the result of the belief
degree aggregation. Using these notations, the equations of a F-CMNs with 3 node-vicinity
are:

4 = g(4f,, 4, 4%,,8/ .8/ ,B},)

(M i+ i+

Bij+I =g(Aij;l’Al:i’Ar{H’B'{I’Bij’Bi{H)

L3

! This formula is valid when the input membership functions are isoscelous triangular and equal,

and they superpose two by two. In this case, it is easy to prove that Zh[k] =1. Therefore, equation (9)
k

becomes output = Eh[k] -b, and allows us the above interpretation of the Sugeno system.
k
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Example 4.

Consider the situation in Example 3, except that here, the panelists communicate to their
neighbors an aggregated belief index, for example the maximal value of the three membership
functions. The rules of the panel, including the rules determining the guess should be slightly
modified accordingly. We leave this task to the reader.

2.5. Information aggregation and decision mechanisms
Aggregation performed at the level of a node determines the output of the node. For a

version of the aggregation operation, the computation of the membership function values to
be used in determining the output is performed in the following way:

B ARRD

J€Vicinity

where A/*![k] stands for the ¥* belief degree of the node i in a linear F-CMN, at time moment
#1, and »; stands for the crisp output of the node j at time moment 7, j being any index of a

node in the vicinity of the current node.
Altematively, when the system yields a weighted sum of belief degrees, the formula
providing the values of the membership degrees of the predecessor is:

n k)= r(n) k)

j€Vicinity

as y is a function of the membership degrees; indeed, y' = y(h}[k]) in a Sugeno system

(see equ. (9)). The successor may take into account in an “optimistic” way the belief degrees
expressed by its predecessors. The “optimistic” way means that the successor increases its
own belief degrees depending on the values of the belief degrees of the predecessors, if the
last ones are higher:

W= max (k)

JeVicinity

where the index j is according to the vicinity. If the vicinity is symmetric and includes 20+1
neighbors:

(wt,, k]

k] =
Al Jet-0....0}

max

o

Alternatively, the successor may take into account in a “pessimistic”” way the belief degrees
expressed by its predecessors. The “pessimistic” way means that the successor decreases its
own belief degrees to the values of the belief degrees of the predecessors, if the last ones are
lower:

WOl = min [y, L)
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The following mechanisms are examples of mechanisms that can be used in aggregation:

a)

b)

<)

d)

e)

h)

In

Single dominance, single influence, “optimistic” strategy. Compare only certainty
factors with a selected rank, k, i.e., compare 4/, [k] (r for the predecessors) with
h/*'[k]. If one of the predecessors has the selected certainty factor higher than the
current cell, then force /*'[k] = A/ [k]. (In case several predecessors satisfy the
condition, choose the one with the higher value of the selected certainty factor.) The
other membership functions are not changed.

Single dominance, single influence, “pessimistic” strategy. Compare only certainty
factors with a selected rank, k, i.c., compare 4/, [k] (r for the predecessors) with
h/*'[k]. If one of the predecessors has the selected certainty factor lower than the
current cell, then force A/*'[k] = 4/,[k]. When several predecessors satisfy the
condition, choose the one with the lower value of the selected certainty factor.) The
other membership functions are not changed.

Single dominance, global influence, “optimistic” strategy. Compare only certainty
factors with a selected rank, &, i.c., compare k% [k] with A/*'[k]. If one of the
predecessors has the selected certainty factor higher than the current cell, then force
all the £/*'[1]= &/, [1] (forall L)

Single dominance, global influence, “pessimistic” strategy. Compare only certainty
factors with a selected rank, &, i.e., compare A/, [k] with A/*'[k]. If one of the
predecessors has the selected certainty factor lower than the current cell, then force
allthe #/*'[1]= nZ,[1] (forall2)

Global dominance, single influence, “optimistic” strategy. Compare a// certainty
factors, i.e., compare for all /, &/, [I] with the corresponding #/*'[/]. If one of the
predecessors has all the certainty factors higher than the current cell, then force only
certainty factors with a selected rank, k, i.e., /*'[k]= &7, [k].

Global dominance, single influence, “pessimistic” strategy. Similarly to the above.
Aggregated dominance, single influence, “optimistic” strategy. Compare an
aggregated index of certainty factors; for example, compare 4/, [1]+ 4%, [2]- 47, [3],
with the corresponding #/*'[1]+ 473! [2]- #/*'[3]. If one of the predecessors has the
aggregated index higher than the current cell, then force only certainty factors with a
selected rank, &, i.e., 4/ [k]= &7 [k].

Aggregated dominance, single influence, “pessimistic” strategy. Similarly to the
above.

summary, combinations of the following choices, among others, can be used to build

uncertain information-based cellular map networks:

Choices for the input u aggregation:

a)Classic aggregation way, even if the output represents certainty factors, for example:

ué kapa*x_prev(i] + (1.-kapa)/2)*(x_prev[i-1]+x_prev(i+1])
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b)Transfer dominated by a rule of domination, as explained in the text.
¢ Choices for the output A function:

(@ A=Y a, -kl / Y h{ a, € R.No restriction on the o, values (output singletons).
(b) Other defuzzification rules.

¢ Choices for the output B function:

B=3,w-hl, welol], Y w =1

b)B=Y w -kl , w e{-101}
c)B=hl"

e Choices for the way of transferring information on the membership functions:
a) None
b) Compare a single certainty factor for the current and the neighboring cells
¢) Compare some weighted sum of certainty factors for the current and the neighboring cells
d) Compare each certainty factor for the current and the neighboring cells

¢ Choices for the dominance of the certainty factor:

a) None

b) If one of the predecessors has the selected certainty factor (with a selected rank, k)
higher than the current cell, #/*'[k] € 4/, [k]. The other membership functions are
unchanged.

c) If one of the predecessors has the selected certainty factor lower than the current cell,

h* k] € w, [k].

We will name strategy or behavior any combination of the above; for example, acdb is a
strategy. For a given optimization problem, the strategies can be evolved to find the best one
solving the problem in a societal game, i.e. to optimize the societal behavior in a game
framework. One of the purposes of the game may be to obtain the best opinion aggregation in
an expert panel like in Example 3.

For a sketch of an information propagation theory leading to models represented by
CMN:s as presented in this chapter, see Annex 3.

3. Examples and algorithms

In this section, we use Sugeno O-type fuzzy systems, with the singletons o;,i=1,...,q
and their truth-degree denoted by #;. Let be the rules describing the system given by the

couples (k, i), where k is the index of the input interval associated with the i output
singleton:

IF input is Ay THEN outputis o, € R
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We associate the neighbor #j ( j = -g...q) to the i, membership function of the systems

(cells), i.e., the j neighbor causes the o j, to appear with the belief degree:

h,;

e = h{output of neighbor # j).

Define a fuzzy coupled map by:
Every neighbor exerts its influence (dominates) on the corresponding domain (interval):
partial result #1 is o, j, occurs with A e = h(output of neighbor # j)

MOREOVER,
IF input is A with 1, (x,)

THEN  partial result #2 is o, with h=p 4 (xo)
The final result is
o; with h; =max(h,-,hl.q | g =i)

The corresponding algorithm is:

1. input prev_x [i]
2.forj=0to N

©ENO O AW

fori =0 to Nr_cells_in_rows
x[i] € fuz_cell_X(i, prev_x [], Q, a, b, alpha[ ], w[ ]}
plot (i, j, color(x[i]))

endi

for i = 0 to Nr_cells_in_rows
prev_x [i] € x[i]

.endj

The procedure fuzz_cell_X ( ), where X stands for the version number (1,2, ...), has

various versions used to implement various strategies, as previously discussed.

The procedure fuzz_cell_1 (), for the case of aggregating when the neighbor # i+h-Q in

the 2Q+1 vicinity acts on the membership function / only.

1. fuz_cell_X(i, prev_x[ ], Q, a, b, alpha[ ], wW{ ])

CENDNRWN

/1 actually, in this procedure, w{ ] has no effect
for h =0 to 2Q+1
ifh<>0
u € prev_x[i]
r € compute_m_f(h, u, a,b)
u € x[i+h-Q]
s € compute_m_f(h, u, a,b)
height{h] € max(r,s)
else
height[h] € r
out € out + height[h]*alpha[h]
sum_height € sum_height + height[h]
end for h
out € out/sum
return out

The line 8 can be replaced by a weighted maximum version:
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8. height[h] € min(1, max(r, s_weigt*s) )

where s_weight can be, for example, 1.5, to give a higher emphasis to the neighbors.

The procedure compute_m_f(h, u, a, b) is used when the input membership functions
are triangular. This procedure computes the membership function value, for the h-th input
membership function, for the  input value, assuming the parameters a, b and 4 are enough to
determine the membership function. (This is true for equal, equally spaced triangular
membership functions). The procedure is written depending on the type of the input
membership functions used. In most cases, in this chapter we use Gauss membership function
at the input.

In another version of the algorithm for the F-CMN, the aggregation is based on the
comparison of an aggregated result of the neighbors with the result of the current cell:

1. fuz_cell_2 (i, previous_x[ }, Q, a, b, alpha[ }, w[ 1)

2 for h = 0 to 2Q+1

3 y € aggregate_neighbors (i, previous_x[ ], Q, w[ )
4 for h = 0 to 2Q+1

5. u €previous_x[i]

6 r €compute_m_f(h, u, a,b)

7 u €y

8 s €compute_m_f(h, u, a,b)

© . . by

. height[h] € max(r,s)
10. out € out + height[h]*alphalh)
1. sum_height € sum_height + heightfh]
12. end for h
13 out €out/sum
14. return out

In all the examples below, the Gauss membership functions associated to the cells have
the centers in the set singleton = {- 0.4, 0.5, 0.1, - 0.5, 0.9}, and the spreading is spread =
0.5. The input to the network is a random sequence (shown for convenience in every figure
and represented by the left-side bar.)

In the next examples, we use aggregation formulas with integer weights {-1, 0, 1} to
compute the output of the Sugeno system with Gauss input membership functions. We use
the input aggregation law (see equ. (5)):

u€ kappa*x_prev[i] + (1.-kappa)/2)*(x_prevfi-1]+x_prev[i+1])

For various combinations of weights, the results yielded by the fuzzy coupled map
networks are shown in Figures 6 a) —e).

In all figures below, the left-hand side pictures represent, by colors (gray shades), the
output values of the cells in the network, while the right-hand side represents the variation of
the values on the last computed row in the cell. (In most figures, the last row has the number
800, whatever the settings of the display are.)

Of course, the way of choosing the value-color correspondence may play an essential
part in showing the self-organization of the outputs of the cells.
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a) Output generated by a system retumning the value h{3}-h{0]+h{2]+h{5].
Graph drawn time samples # 0 to 800.

b) Conditions as above; the returned value is h{3]-h[4]+h(2].

d) Conditions as above; the retuned value is h{1].
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¢) Conditions as above; the returned value is h[1] - h[4].

¢) Conditions as above; the returned value is h[2] ~ h[4]
Figure 6. Examples of results obtained with F-CMNs.

The graphs in Figure 7 a), b) are obtained with a non-adaptive but information-sensitive
system based on the conditions:

if (i>0) AND (i<N2-1)
if h[1]>hh_prev[i-1][1]
h[K] €<hh_prev[i+1][K]
return h[2]

a) Results obtained for the first 800 time samples (i = 0..800)
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b) Results obtained for the time samples i = 2000..2800
Figure 7. Results obtained with an information-sensitive system

Finally, as a matter of example, we notice that geometric shapes can also be obtained, like
in Figure 8.

Figure 8. Example of simple geometric image obtained using a F-CMN

An example of procedure used to take into account previous values of the membership
functions is provided below.

Procedure pseudo-Sugeno

1. out € 0, out_sum < 0.

2. forK=0toM

3. if v = u-c[k])*2/spread[k] <1000.

4. hlk] € exp (-v)

5. eise

6. abort

7. if h[0] < h_previous [i ~1J[0] AND i>0

/I The comparison of only the first m.f. of the current and the previous
/Inodes decide on the change (inheritance) of all the membership functions
8. hlk] € h_previousi]{k-1]
I/ Notice that a shifting in the k index is enforced here (k €k-1)
9.  out € out+hlk]*singleton[k]
10. out_sum < out_sum +h[k]
11. float vv €out/out_sum
12, return h[3)-h[0]+h[2]+h[5)
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4. Discussions
4.1. Discussion of the adaptation issues

An “adaptation” procedure can be envisaged either to model an adaptation process of the
individual players, or to perform an adaptation of the network to a specific task. Here, we
discuss only the first case.

For modeling purposes, we may assume that a “player” changes its strategy when one of
its predecessors provides a different answer than the player. For example, the adaptation can
be performed by changing the input by a constant bias, whenever the third membership
function of the left-side neighbor has higher value than the third membership function of the
current cell:

if h[3]>hh_prev[i-1][3]
u€u+0.5;

Above, the first membership function value of the left-side neighbor has been taken into
account in a dramatic manner. Namely, if that value was higher then the value of the first
membership function of the current cell, then the behavior of the current cell is replaced by
that of the left-side neighbor:

if h[0]<hh_prev[i-1][0]) AND i>0
h[K] €hh_prev[i][K]
out_Sugeno += h[K]*singleton[K]
out_sum +=h[k]
end K

The output of the cell is the weighted-sum of four of its membership functions:
return h[3]-h[0]+h[2]+h[5]

‘We may choose that, if another membership function of the left neighbor dominates, other
types of “adaptation” occur, for instance, if h[0]<hh_prev[i-1][0] then h[K]=hh_prev[i|[K].

The aggregation may use a “prudent” strategy, copying the behavior of the neighbors
when they have belief degrees that are less then the belief degrees of the current player (cell).
Moreover, a single neighbor having a single belief degree less then the corresponding belief
degree of the current player may trigger the decrease of the “optimism” (belief degree) of the
current player. For example:
for all K

if h[2]>hh_prev[i-1][2]
then h{K] €hh_prev[i-2][K]

while another strategy, asymmetric. to the first, may be used for some other membership
function:

IF h[3]>hh_prev[i-1][3) THEN u = u+0.5

To date, there is no systematical way to choose the adaptation (decision mechanism), except
the modeling requirements — when the method is used in creating models.
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4.2. Clustering, fuzzy clustering, and texture definition

In the previous sections, we have adopted an empirical manner of visualization the
clustering and texturing properties. This manner, which is generally used in the literature, let
the clustering and texturing be visualized by an arbitrary choice of colors for values of the
output falling in some interval of the output space.

Formally, the clustering can be defined as follows.

Let U be the output space of the cells in the network, U c R; U is considered bounded.

conditions:

LcU, ,NI;=0Vk=j,U=UI,
k

We need another concept, which it looks to be undefined and dealt with intuitively
(empirically) in the literature, namely the way we use to geometrically arrange the nodes for
visualizing them.

We define the “visualization topology” the map ¥ — {(x,y)}, i.e., the way we place the
nodes in the plane. For sake of convenience, we choose the visualization topology obtained
by applying the rules:

i) the nodes with no in-edge are placed all in the same row, on a line, equally spaced, at

distance (arbitrarily) equal to 1 in the plane; the line should be parallel to the Ox axis;

ii) all nodes having in-edges from the previously drawn row are placed in the same row,

on a line, equally spaced, at distance equal to 1; moreover, the distance between one line
and the previous one should be 1; also, the nodes connected by the edges corresponding
to the indices / and /*' should be placed at distance equal to 1, along a parallel to the Oy
axis.
The above recursive procedure guarantees the visualization “as usually” of the
rectangular-shape CMNSs.
Define on the set of nodes of the network, V, a distance d( ). For example, the usual
distance on a graph may be used. We define a visual cluster in ¥ a subset C of ¥ with the
properties:
a) all nodes in the cluster belong to the same interval in the partition Q, ve I, Vve C;
b) every node in the cluster has a neighbor in the cluster, i.e. a node in the cluster at
distance 1; .

¢) no “foreign nodes” are admitted in a cluster, i.e., no node with a different color or
sets of nodes of different colors should be surrounded by the class, except when
those nodes form together themselves a class’;

d) the dimension of a cluster, along both plane directions, should be at least a threshold

value (for example, 3).

The above definitions allow us to create algorithms for automatically checking the
existence of clusters in a network. What is disputable in the above definitions is the arbitrary
way of choosing the partition for coloring. We may find it preferable to use an adaptive
partition, with the intervals determined by conditions like “maximize the total number of
nodes belonging to a cluster, while preserving the number of clusters.”

2 Notice that a class can be included into another class.
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Fuzzy clusters may also be defined, by allowing nodes to belong with some membership
degree to fuzzy intervals and coloring the nodes with the color of the interval to which the
nodes “‘mainly” belongs.

The formation of repetitive patterns (textures) is also an interesting behavior of the
CMNs. The automatic recognition of the patterns requires statistical techniques as applied in
image processing.

5. Conclusions

In this chapter, we have introduced several new types of structures processing
information with various types of uncertainty. We have been interested into the propagation
of information and the self-organization processes driven by various types of local
information aggregation procedures, while the adaptations are driven by information and
uncertainty.

The discussed networks may be the basis for modeling a large variety of processes in
social sciences, macro-economics, and biology. The interpretation of the various local
functions and propagation procedures discussed in this chapter should be given in relation to
the modeled process. :

We presented preliminary argumnents on the power of this new theoretical and modeling
tool and on the possible use of uncertain-information driven networks in several domains. We
have argued that the dynamic process should include local decision based on uncertain
information in the network, to account for the adaptive behavior of real agents in economic,
social and biologic processes. The presented results demonstrate that the methodology we
have introduced produces much richer results than the classic similar methods. The rational of
using elaborated methods of transferring the uncertain information from one node to the
others, and especially the asymmetric and “preference based” ways suggested consists in the
observation of such processes in economy and sociology. It is well known, as a matter of
example, that the asymmetric information concept and related economic theories have won
two times in 5 years the Nobel Prize in economy [19].

The CMNSs are frequently related to ODEs solving and specifically to the flow problems
solving. On the other side, the understanding we have of the Navier-Stokes equations is not
satisfactory (see the Clay Mathematics Institute description of the problem, [20], whose
solution is 1 million worth.)

Further developments should establish a more detailed methodology for transferring
uncertain information to a node from its vicinity and develop a complete theory of dynamic
behavior for such networks. Extensions to cellular automata and other types of networks
should also be carried on.
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Annex 1. Coupled Map Lattice for diffusion modeling

The diffusion equation for homogeneous media is a parabolic partial derivative equation:
e s
Y-pY°L-paflx All
o=0 3 =n 8t (ALY

where D is the diffusion coefficient. We will consider a single spatial variable:

v

aZ
=D~ax—{ (A12)
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We use the following notation for discretization: f{x,1)— f (xi,t j)—+ /7 . The equation can

be discretized according to various schemes. According to a common scheme,

Bl JH _ )
or =i /i
0? 1,

e rind: -2f 1
The diffusion equation becomes:
. . 1T ., . .
fx‘j“ -5 :DE[ iil -2f/ +/;‘il

or
7 =(-D) f/ +D% " +fi{\] (A13)

The numerical integration is stable if D <1. Notice that the above is equivalent to a
convolution operation with the coefficients in the window: [—122, 1-D, g] , the window being
centered on the current point. Compare equation (Al.3) with equation (3) and the

subsequent ones. The physical interpretation of the equation (A1.3) is that the amount of
material at time moment j+1 at location i is composed by:

¢ the amount at that location at previous time moment minus the amount that diffused
toward other locations (the term —D- f;/), plus

o the amount of material that diffused into the respective location from the neighboring
locations, namely the term D% [f,{q +f7 ]
Annex 2. Coupled Map Lattice for flow modeling

The steady flow equation in a tube without losses, fluid generation or transfer is’:

S LI _
Sre 220 (A2.1)

where c is a coefficient. Based on the Taylor series expansion, we obtain:

? This is a very simple case. Navier-Stokes equations governing the general flow processes can be
found in the literature, for example (20].
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S = [m% %uzg_2+ ]f’

where u is the discretization step. Neglecting terms of order higher than 1:
= [1 + u-—] 1
and taking into account (A2.1), we obtain:
M= (1 uc—] 1/
Using the left-hand side derivation formula, after computation [21 p. 84], we obtain:
S ==c) f7 +e- 1
This is the equation of a unidirectionally coupled map network.

Annex 3. Modeling the information propagation in societal systems

In this Annex, we briefly propose an outline for a theory of information propagation
theory, to model information spreading in societal systems. At our best knowledge, such a
theory is lacking, although it is obviously needed in social sciences, behavioral sciences,
economics, and other human-related sciences. We borough much from mechanist paradigms
to build our model. The result is that CMNs and F-CMNs naturally appear as models of
information propagation.

Information may be characterized by several attributes: quantity, flux (quantity of
transmitted information per time unit), entropy, relevance, and credibility, while the sources
of information are characterized by attributes like credibility, expertise etc. All these
attributed should be used to model the information propagation in societal systems. In what
follows, we sketch a set of rules to build such a model.

First, we notice that information is transmitted from individual to individual, i.e., between
discrete partners. Therefore, while time may be continuous, space should be discrete in
information transmission.

Second, we notice that at least two different types of information exist, namely, linguistic
and numerical. For example “this cake is sweet”, “this cake is fresh” are linguistic
information, while “this cake is 27 hour old” is numerical information.

Rule 1. The source of information transmits information without loss of information.
Denoting by = the quantity of information at the source,

s =0 (A3.1)
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where Z,, is the received information.

Indeed, the information transmitted is not lost at the source, as it is with physical
quantities like mass, heat, or energy, when transmitted from a source of mass, heat, or energy
to the surrounding environment.

Rule 2. We assume that the flux of transmitted (received) information is proportional to
the relevance of information. The relevance of information is considered proportional to the
difference between the levels of information at the source and at the destination. Namely,
denoting by =, the information at the receptor:

=
(=1

,=c(8,-E,) (A3.2)

Y|

In discrete time, this equation reads:

el T2y —C'(Eu "Ert)
or
e =C 8y, +(1_C) g, (A3.2")

where ¢ is the time moment the information is transmitted.

The relevance of information is the counterpart of the gradient in physical laws. The
reason for the formula (A3.2) is that when the receptor is poorly informed (in a specific field),
any new information is “absorbed” with a low rejection ratio. (It may be the case of
adolescents, who a keen to get new information in various domains.)

Rule 3 (law of optimistic receptor). Information on a specific subject arriving in a
receptor from two different sources aggregate in information that has the credibility equal to
the level of the higher source credibility. Namely,

Sresl (hl )_:'EH—:Z(hZ)=Er€—:(max(h|’h2 )) (A33)

where “+” means an aggregation operation, with result as in the right-hand side, & is the
belief degree associated to the information, and the indices sy, s, indicate the information
sources, while the index in =, indicates that information is transmitted from the source s
toward the receptor r.

Combining equations (A3.2") and (A3.3), we obtain for the case of multiple sources,
single receptor:
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Z, =cza,_,(m3x(h,))+(1-c).a,_, (A32")

5

Rule 4 (law of pessimistic receptor). Information arriving in a receptor from two
different sources aggregate in an information that has the credibility equal to the level of the
lower source credibility:

E1(m)+E,5(hy )= (min(hy, hy) (A3.3)

Rule 5 (law of aggregation at the receptor). Information arriving at the receptor is
added to the existing information at the receptor site whenever non-contradictory, while it
annihilates the existing information, when contradictory. In case of linguistic information, this
can be written as:

o, =S

r

ot E.T (A34)

In case of numerical information, aggregation operations that combine the numerical data
should be used, according to the application in hand, for example a weighted sum, as:

' =a.nl +(1-a)n

Other numerical aggregations may be conceived as well.
Annex 4. Statistical CMNs
In this annex, we introduce another class of CMNs, whose nodes operation is based on

statistical operation. For brevity, we name a statistical CMN any CMN obeying the general
equation:

x:j” =f(xi];Q’xij;Q+l""'xij;-Q) (A4.1)

where f{ ) is a statistical function. Notice that the equ. (A4.1) is identical with equ. (1), but we
impose a restrictive condition to the function f{ ). For example, the operation described by

ja_ |5 if |xil‘;|<°'
=1

X else

(A4.2)
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where ¥ is the average value in a vicinity of x/, and o is the corresponding spreading, is a
statistical operation. Such a CMN acts as a “sigma-filter”.

Example. This is a good mode! for some societal games, when the actors keep their own
opinions unchanged, except if the average opinion significantly differs from theirs. In the last
case, many people tend to adopt the average opinion, according to (A4.2) or according to
more intricate laws. More complex adaptations may be represented by:

x/ il xf ——f‘ <o
it =1x/ +a~(x,-’ ~f) i 0<‘xi’ —.Y‘ <20 (A4.2)
X else
where a is a constant.
Also, the node operation described by:
x/*' = median (xi{tk)(k=—2Q.,+2Q (A43)

represents a statistical operation. Notice that the weighted-average can also be seen as a
statistical operation, along with formulas (A4.1-3).
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Abstract. Generalized Nets (GNs) and intuitionistic fuzzy logic are briefly
reminded. The concepts of Third and Fourth types of intuitionistic fuzzy GNs are
defined and some of their properties and applications in abstract systems theory are
discussed. It is stated that they are conservative extensions of the ordinary GNs.

1. Introduction

Generalized Nets (GNs) are extensions of Petri nets and Petri net modifications and
extensions. They were defined in 1982 (see [1]). Their transitions have two temporal
components (moment of transition firing and its duration), two indexed matrices (the (i, j)-th
element of the first one is a predicate that determines whether a token from the i-th input place
can be transferred to the j-th output place; the (i, j)-th element of the second one determines the
capacity of the arc between these two places). GNs have three giobal time-components: moment
of GN-activation, elementary time-step and duration of the GN-functioning. The GN-tokens
enter the GN with initial characteristics and at the time of their transfer in the net they obtain next
(current and final) characteristics. A large number of operations, relations and operators (global,
local, dynamical, and others) are defined over the GNs.

Intuitionistic Fuzzy Sets (IFSs), defined in 1983, are extensions of fuzzy sets (see [2]). They
have two degrees — degree of membership (1) and degree of non-membership (v ) such that
their sum can be smaller that 1, i.e,, a third degree — of uncertainty (t=1-pn—v) — can be
defined, too. A variety of operations, relations and operators (from modal, topological and other
types) are defined over the IFSs. These ideas are transferred also to Intuitionistic Fuzzy Logics
(IFLs), which we shall discuss shortly below.

GNs have so far over 20 extensions. The first one, proposed in 1985 (see [3]), was called
Intuitionistic Fuzzy GN (IFGN). The transition condition predicates of these nets are estimated
in intuitionistic fuzzy sense. Later, this extension was called IFGN of type 1, because IFGN of a
second type was defined. In it, the tokens were replaced by “quantities” that flew throughout the
net. Now it was places, instead of tokens those obtain characteristics. For both extensions of the
GNss (as it is done for all other GN-extensions) it is proved that they are conservative extensions
of the ordinary GNs (for instance, e.g., of the GNs, which themselves are not conservative
extensions of the ordinary Petri nets). Here a third and a fourth types of IFGNs will be defined
and their properties will be discussed. Now, in addition to transition condition predicates and /or
the form of the tokens being intuitionistic fuzzy, the tokens characteristics can be intuitionistic
fuzzy, too. Below we discuss applications of the [FGNs from the three types in the areas of
Artificial Intelligence, abstract systems theory, medicine, chemical industry and others.
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2. Short introduction to Generalized Nets

Since 1983, more than 400 papers related to the concept of the Generalized Nets (GNs)
have been published. A large part of them is included in the Petri Nets database, which can be
consulted at the Internet address www. daimi. aau. dk/PetriNets/bibl/aboutpnbibl. html.

GNis are defined as extensions of the ordinary Petri nets and their modifications, but in a way
that is in principle different from the ways of defining the other types of Petri nets. The additional
components in the GN-definition provide more and greater modeling possibilities and determine
the place of the GNs among the individual types of Petri nets, similar to the place of the Turing
machine among the finite automata.

The first basic difference between GNs and the ordinary Petri nets is the “place — transition”
relation [4). Here, the transitions are objects of a more complex nature. A transition may contain
m input and n output places where m, n 2 1.

Formally, every transition is described by a seven-tuple (Figure 1):

Z=<L,Lt. t,r,M0O>

Figure 1.

where:

(a) L' and L" are finite, non-empty sets of places (the transition's input and output places,
respectively); for the transition in Figure | theseare L ={,L;,....I. }and L' ={i[,1},....L. };

(b) 1, is the current time-moment of the transition's firing;

(©) 1, is the current value of the duration of its active state;

(d) r is the transition's condition determining which tokens will pass (or fransfer) from the
transition’s inputs to its outputs; it has the form of an Index Matrix (IM; see [5]):

LY. 0 0

L1
r

R= LI (r,;— predicate)
i ml j n
LI
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r; j is the predicate that corresponds to the i-th input and j-th output places. When its truth
value is true, a token from i-th input place transfers to j-th output place; otherwise, this is not
possible;

(e) M is an IM of the capacities of transition’s arcs:

I = l’r’,ru. I’,,",_ ’

L
mij
M= Ii (m;; O - natural number)
a i ml j n
I'n

(f) 01 is an object of a form similar to a Boolean expression. It may contain as variables the
symbols that serve as labels for transition's input places, and [J is an expression built up from

variables and the Boolean connectives A and v. When the value of a type (calculated as a
Boolean expression) is true, the transition can become active, otherwise it cannot.

The ordered four-tuple
E=<< A,m,,7,,c[,8,0,><Kmn,,0,><T,1° 1t ><X,0b>

is called a Generalized Net (GN) if:

(a) A is a set of transitions;

(b) m,is a function giving the priorities of the tramsitions, i. €., ®,: 4 — N, where
N={0,1,2,..}u{l}

(c) m, is a function giving the priorities of the places, i.e., &, : L= N, where and pr,X is
the i-th projection of the n-dimensional set, where ne N, n>1 and 1<k 2 n(obviously, L is the
set of all GN-places);

(d) c is a function giving the capacities of the places, i.e., c:L—> N ;

(e) fis a function that calculates the truth values of the predicates of the transition's
conditions (for the GN described here let the function f have the value false or true, i.c., a value
from the set {0,1},

() 6, is a function giving the next time-moment when a given transition Z can be activated,
ie, 0,(t)=1, where pr,Z=t,t'e [7,T+1"] and ¢ <. The value of this function is calculated
at the moment when the transition terminates its functioning;

(g) 0, is a function giving the duration of the active state of a given transition Z, i.e.,
0,(t)=1", where pr,Z=te [T,T+t'J and ¢ > 0. The value of this function is calculated at the
moment when the transition starts its functioning;

(h) X is the set of the GN's tokens;

(i) m, is a function giving the priorities of the tokens, i.e., w, (K >N ;

(j) 6is a function giving the time-moment when a given token can enter the net, ie.,

8, (a)=t, where are K and te [T,T+t'];
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(k) T is the time-moment when the GN starts functioning. This moment is determined with
respect to a fixed (global) time-scale;

(@ ¢°is an elementary time-step, related to the fixed (global) time-scale;

(m) ¢ is the duration of the GN functioning;

(n) Xis the set of all initial characteristics the tokens can receive on entering the net;

(0) @ is a characteristic function that assigns new characteristics to every token when it
makes the transfer from an input to an output place of a given transition;

(p) b is a function giving the maximum number of characteristics a given token can receive,
e, b:K—oN.

For example, if b(ct)=1 for some token o, then this token will enter the net with some
initial characteristic (marked as its zero-characteristic) and subsequently it will keep only its
current characteristic.

When b{o.)=1, the token o. will keep all its characteristics.

When b{o)=k <1, except its zero-characteristic, the token o will keep its last k
characteristics (characteristics older than the last k will be “forgotten’).

Hence, in the general case, every token o. has b(ce)+1 characteristics on leaving the net.

A given GN may lack some of the above components. In these cases, any missing
component will be omitted. GNs of this kind form a special class of GNs called reduced GNs.

The definition of a GN is more complex than the definition of a Petri net. Thus the
algorithms of the tokens' transfer in the GNs are also more complex. On the other hand, as the
GNs are more general, the algorithms for movement of tokens in the GN are more general than
those of Petri nets. In a Petri net implementation, parallelism is reduced to a sequential firing of
its transitions and the order of their activation in the general case is probabilistic or dependent on
the transitions’ priorities, if such exist. The GN's algorithms provide a means for a more detailed
modeling of the described process. The algorithms for the token’s transfers take into account the
priorities of the places, transitions and tokens, i.e., they are more precise.

Operations and relations are defined as over the transitions, as well as over the GNs in
general.

The operations, defined over the GNs — “union”, “intersection”, “‘composition” and
“iteration” (see [1]) do not exist anywhere else in the Petri net theory. They can be transferred to
virtually all other types of Petri nets (obviously with some modifications concerning the structure
of the corresponding nets). These operations are useful for constructing GN models of real
processes.

In [1] different properties of the operations over transitions and GNs are formulated and
proved. Certain relations over transitions and GNs are also introduced there.

The idea of defining operators over the set of GNs in the form suggested below dates back
to 1982 (see [1]). It is a proper extension of the idea of self-modifying Petri nets.

Now, the operator aspect has an important place in the theory of GNs. Six types of
operators are defined in its framework. Every operator assigns to a given GN a new GN with
some desired properties. The comprised groups of operators are:

- global (G-) operators,

- local (P-) operators,

- hierarchical (H-) operators,

- reducing (R-) operators,

- extending (O-) operators,

- dynamic (D-) operators.
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The global operators transform, according to a definite procedure, a whole given net or all
its components of a given type. There are operators that alter the form and structure of the
transitions (G, Gy, Gs, G4, Gg), temporal components of the net (G;, Gs); the duration of its
functioning (Gy), the set of tokens (Gyo), the set of the initial characteristics (G;); the
characteristic function of the net (Gy;) (this function is the union of all places’ characteristic
functions); the evaluation function (G3), or other net’s functions (Gs, Gy, ..., Gao)-

One of the global operators can collapse a given GN to a GN-transition (G,). Another
operator (G4) adds two special places and, connected to two special transitions of the GN: a
general input place, where all tokens enter the net and are later distributed among the net's
actual input places; and a general output place that collects all tokens leaving the GN from their
respective output places.

Another global operator (G;) transforms a given GN after its functioning so that it removes
all tokens which have not participated in the process and all places which have not been visited
by tokens. The new net has the same functional behavior as the original one, however, all its
tokens and places are actually involved in the modeled process.

Some global operators (Gs, G, ..., Ga) alter the different (global) functions defined on the
net.

The second type of operators is local operators. They transform single components of some
of the transitions of a given GN. There are 3 types of local operators:

- temporal (Py, P,, Ps, Py), that change the temporal components of a given transition,

- matrix (Ps, Ps), that change some of the index matrices of a given transition,

- other operators: these alter the transition’s type (P7), the capacity of some of the places in
the net (Ps) or the characteristic function of an output place (Ps), or the evaluation function
associated with the transition condition predicates of the given transition (Pyc).

For any of these operators, a continuation (P,1<i<10) to a global one (P;,1<i<10)
can be made by defining the corresponding operator in such a way that it would transform all
components of a specified type in every transition of the net.

The third type of operators are the hierarchical operators. These are of 5 different types and
fall into two groups according to their way of action:

- expanding a given GN (H,, H; and Hs),

- shrinking a given GN (H>, H, and Hs).

The Hs operator can be expanding as well as shrinking, depending on its form;

According to their object of action the operators fall again into two groups:

- acting upon or giving as a result a place (H, and H,),

- acting upon or giving as a result a transition (H, H, and Hs).

The hierarchical operators A, and H; replace a given place or transition, respectively, of a
given GN with a whole new GN. Conversely, operators /4, and H, replace a part of a given GN
with a single place (#>) or transition (/). Finally, operator /s changes a subnet of a given GN
with another subnet. Expanding operators can be viewed as tools for magnifying the modeled
process' structure; while shrinking operators — as a means of integration and ignoring the
irrelevant details of the process.

The next (fourth) group of operators defined over the GNs produces a new, reduced GN
from a given net. They would allow the construction of elements of the classes of reduced GNs.
To find the place of a given Petri net modification among the classes of reduced GNs, it must be
compared to some reduced GN obtained by an operator of this type. These operators are called
reducing operators.

Operators from the fifth group extend a given GN. These operators are cailed extending
operators. The extending operators are associated with every one of the GN extensions.
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Finally, the operators from the last sixth group are related to the ways the GN functions, so
that they are called dynamic operators. These are the following:

- operators D(l, {)that determine the procedure of evaluating the transition condition
predicates (1<i<18).

- operators governing token splitting: one that allows (D(2,1)) and one that prohibits
splitting (D(2,2)), respectively; and operators governing the union of tokens having a common
predecessor: an allowing one ( D(2,4)) and a prohibiting one ( D(2,...3));

- operators that determine the strategies of the tokens transfer: one by one at a time vs. all in
groups (the operator D(3,2); the operator D(3,1) does not allow this);

- operators related to the ways of evaluating the transition condition predicates: predicate
checking (D(4,1)); changing the predicates by probability functions with corresponding forms
(D(4,2)); expert estimations of predicate values ( D(4,3)); predicates depending on solutions of
optimization problems (e.g., transportation problem) (D(4,4)).

The operators of different types, as well as the others that can be defined, have a major
theoretical and practical value. On the one hand, they help us study the properties and the
behavior of GNs. On the other hand, they facilitate the modeling of many real processes. The
basic properties of the operators are discussed in [1][6]. “A4 Self-Modifying GN”’ (SMGN) is
constructed and described in details in [1]. The SMGNs has the property of being able to alter its
structure (number of transitions, places, tokens, transition condition predicates, token
characteristics, place and arc capacities, etc.) and the token transfer strategy during the time of
the GN-functioning. These changes are done by operators that can be defined over the GN. Of
course, not all operators can be applied over a GN during the time of its functioning. Some of
them are only applicable before, and others — after the GN-functioning. The necessary conditions
for an operator to be applicable during the time of the GN-functioning are discussed in [1].

TR
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Figure 2.

The relations between the GNs and the most important classes of Petri net modifications are
shown on Figure 2, where .y, Zpys Zroys Zgws Zopws Zsuns Zerow s Zpmvs Zsvs Lo s
v Zoupy and X, are the respective classes of all ordinary Petri nets, all E-nets, all time
Petri nets, all stochastic Petri nets, all color Petri nets, all self-modifying Petri nets, all PRO-nets,
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all predicative-transition nets, all super nets, all M-nets, all generalized E-nets, all generalized
modified Petri nets and all GNs.

3. The Basics of Intuitionistic Fuzzy Logic
To each proposition (in the classical sense) we can assign its truth-value: truth — denoted by
1, or falsity — 0. In the case of fuzzy logic this truth-value is a real number in the interval [0, 1}

and may be called “truth degree” of a particular proposition. Here we add one more value —
“falsity degree” — that will be in the interval [0,1] as well. Thus two real numbers, p(p) and

v(p), are assigned to the proposition p with the following constraint to hold (see [2]):
up)+v(p)<1

Let this assignment be provided by an evaluation function V' defined over a set of
propositions § in such a way that:

V(p)=<u(p)v(p)>.

The evaluation of the negation —p of the proposition p will be defined as:

~V(p)=V(-p)=<v(p)u(p)>.

When the values ¥ (p) and ¥(g) of the propositions p and ¢ are known, the evaluation
function V can be extended also for the operations “& “, “v’” through the definition:

V(p)&V(g)=V(p &g)=<min(u(p) n(g)), max (v(p).v(g))>

)
V(p)vv(g)=V(pv q)=<max(u(p)u(g))min(v(p)v (q))>

V(p)=V(q)=V(p — q)=<max(v(p)u(q))min(u(p).v(g))>

)

For the needs of the discussion below we shall define the notion of intuitionistic fuzzy
tautology (IFT) through:

“4isan IFT” iff a > b, where V(4)=<a,b>.
Shortly, the quantifiers are represented by

V(Vx4) = < min u(4), max v(4)>,
X X

¥ (3x4) = < max u(4), min v(4)>
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It is very interesting to note that the intuitionistic fuzzy quantifier interpretations coincide
with the intuitionistic fuzzy interpretations of the two topological operators “interior” and
“closure”, respectively.

Let A be a fixed propositional form for which

V(d)=<a,b>.
The two basic modal operators can be defined as follows:

v(OAd)=<a,1-a>,
V{(04)=<1-b,b>

and they can be extended for every two 4,4 € [0, 1]:

V(D (4)=<a+a-(1-a-b),b+(1-a)-(1-a-b)>,
V(F,s(4))=<a+a-(1-a-b)b+B-(1-a-b)>, for a +B <1,
V(Gu_,,(A Y=<o-a,B-b>,
V(H,p(4))=<0-a,b+B-(1-a-b)>
V(H,3*(4)=<0-a,b+B-(1-a-a-b)>,
(4)=<a+a-(1-a-b)p-b>,

ll

(#
V{Jup
v, “(A )=<a+a-(1-a-B-b)B-b>.

Level, temporal and other operators are defined in IFL, too (see [2]).
4. Short Remarks on the Extensions of Generalized Nets

First, we shall note that the GNs have more than 20 conservative extensions (i.e., extensions,
the functioning and the results of working of each of which can be represented by an ordinary
GN).

The most important of them are:

- Intuitionistic fuzzy GNs of type 1: their transition condition predicates are evaluated into
the set [0,1 with a degree of truth () and a degree of falsity (v ) for which p+v<1 (see
B

- Intuitionistic fuzzy GNs of type 2 are intuitionistic fuzzy GNs of type 1, which have
“quantities” instead of tokens, which “flow” from input to output GN places;

- Color GNs are GNs whose tokens and transition arcs are painted in different colors and the
tokens transfer depends on these colors;

- GNs with global memory have a global tool (i.e,, common for all GN-components) for
keeping data (during the functioning of the GN) or for determining of the values of various
parameters related to the modeled processes;
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- GNs with optimization components use optimization procedures for determining of the
way tokens transfer from transition input to output places;

- GNs with additional clocks comprise tools for taking into account the duration of the
predicates' truth-values evaluation; should this process take up more time than a specified limit, it
is stopped and the predicate is assigned its previous value determining the:future functioning of
the net;

- GNs with complex transition types have additional conditions for activation of the GN
transition types;

- GNs with stop-conditions have additional conditions for termination of the GN
functioning;

- Opposite GNs — their tokens transfer (within a separate GN area) in the opposite direction,
i.e., from output to input places. This enables searching for necessary conditions for the desired
flow of a given process;

- GNs where tokens can obtain variables as characteristics can be used for solving
optimization problems related to the processes modeled by the GNs.

5. Definitions of Two New Types of Intuitionistic Fuzzy Generalized Nets

Here we shall introduce two new types of IFGNs, to be called Third type of IFGNs
(IFGNS3s) and Fourth type of IFGNs (IFGN4s). They will be extensions of IFGNIs and
IFGN2s, respectively. The idea is generated on the basis of the idea of an abstract system with
properties (see next chapter). Now, the token characteristics will be estimated in intuitionistic
fuzzy sense and only when their estimations (intuitionistic fuzzy tuples) satisfy the definition of
intuitionistic fuzzy tautology, the tokens will obtain characteristics. Therefore, the two new types
of GNs allow for describing situations where the model determines its status with degrees of
validity and of non-validity.

Every IFGN3 has the form:

E=<< 4,0 ,1,,c,[,0,,0, > <K, ,0, ><T,1° "> < X,0,b>>

where the elements of the set 4 (of the IFGN3-transitions) are the same as the GN-transitions.
All other components, without the components f'and @ are also the same. The function @ (as
in the case of the IFGNI1s) gives to each token (let us denote it by o) as a current characteristic
(let us mark it as x(;, two values: the first coincides with the token characteristic in the sense of
the GN's (let us denote it by x7, ; the second value is an ordered tuple with real numbers, each of
which is an element of the set[0, 1]. They are equal to the truth values of the predicate of the

transition condition between the place whence the token o transfer starts and the place where
this transfer ends. The function f calculates these two values of the corresponding predicate 7,

of the transition condition index matrix in the form
Slry)=<nly vl )>,

where u(r,.j) is the degree of truth of the predicate r,, v(r,.j ) is its degree of false, and:
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e Jovly )<

Therefore, x%, =< xcv, u(ry ),v(r,l. ) >.

For instance in IFGN1s, function @ is estimated too, i.c., now there are two real numbers
H(XSU ) and V(xgu )’ such that u(xgu )’ V(xgu )E [0,1] and U(xgu )+ V(xgu )S 1.

The following two theorems hold.

THEOREM 1: The functioning and the results of the work of every IFGN3 can be
described by an ordinary GN.

THEOREM 2: The set of all [FGN3 Z,.;,, is a conservative extension of the set of all
ordinary GNs X, .

Now, we proceed to define the concept of “Fourth type of IFGN” (IFGN4). In this net,
tokens are some “quantities” moving throughout the net.

The values of the transition condition's predicates can be intuitionistic fuzzy, i.e. they can
have degrees of truth and of false, as in the cases of [FGN1s and IFGN3s. The IFGN2 has the
form

E=<< AN ,,1,,c,f,0,,0,><K,r, .0, ><T,° 1t ><®,b>>

where A4 is the set of the net's transitions which have the ordinary GN-form and there exists only
one difference: here the index matrix M contains as elements real numbers — capacities of the
transition's arcs.

The functions in the first component are similar to those of [IFGN1 and they satisfy the same
conditions.

The essential difference between [IFGN2s and IFGN4s on the one hand, and the rest of GNs,
on the other, is the set K and the functions related to it. Now the elements of K are some
“quantities”, that do not receive characteristics. Function &, gives the time-moment when a given
token will enter the net as in the ordinary GNs.

The temporal components are also as in the other GN-types.

For both types of GNs — IFGN2s and IFGN4s, function ® has new meaning. Now it is
assigns the places characteristics (the quantities of the tokens from the different times in the
corresponding places). As in GNs, it can be extended: it can give also other data about the
modeled process (e.g. the time-moments for the entry of the “quantities” in the places).

For instance, in [IFGN2s and similarly to the IFGN3s, function ® in the IFGN4s is
estimated too, i.e., as above, for each token o. this function gives two real numbers u(x"_fu ) and
V(xgu )’ such that u(xgu )’ V(xgu )E [O:I] and u(xgu )+V(Xgu )S 1.

The following two theorems hold:

THEOREM 3: The functioning and the results of the work of every IFGN4 can be
described by an ordinary GN.
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THEOREM 4: The set of all IFGN4 X ..., is a conservative extension of the set of all
ordinary GNs Z,, .

6. On the Concept of Intuitionistic Fuzzy Abstract System

In a series of eight papers, collected in [6], the author shows the possibilities for GN-
interpretations of abstract systems theory elements, using notations from [7, 8, 9, 10].

Let a family V= {V | iel } of sets be given, where / is an index set. A (general) system is a
relation on nonempty (abstract) sets (cf. [9]):

SCQK

A component set ¥,(icI) is referred to as a system object. Let I I, I,cI,
I.nI, =@, 1, vl =1 Thesets

X= HV dY HV

are named the input and the output objects of the system, respectively. The system S is then
ScXxY

and will be referred to as an input-output system. If S is interpreted as a function
S: XY

it is referred to as a function-type (or functional) system.
Given a general system S, let C be an arbitrary set and R a function,

R:(CxX)>Y
such that
(x,y)eS iff (@c)Rlc.x)=y),

C is then a global state object or set, its elements being global states, while R is a global
(systems)-response function (for S).

Some GN-interpretations of such described system are discussed in [6].

In [11] two new extensions of the concept of an abstract system were introduced. The first
of them is called an Abstract System with Properties (ASP). It is an abstract system, which
input(s), output(s), global state object(s), time component(s) and response function(s) have
additional properties.

171
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Let X be one of the above system components (inputs, outputs, etc.) and let P(X) be the
list of its properties. Of course, this list may be empty or have just one element (property). Let
CP(X) be the cardinality of the set P(X). Let P be the set of the different properties the
systems components may have. If we want to discuss the form of this set from the standpoint of
the NBG-axiomatic set theory, P may be a class.

Leta family ¥ = {V|i € I} of sets be given, where [ is an index set. An ASP is a relation on
nonempty (abstract) sets

cP(v,) CP(c)
S C[I’:’[(V,. xP )]xP *
The last member of (*) shows that the system S can have specific properties, not
representable by the other properties, related to the individual system components. Of course, for
the system, these properties will have a global nature.
As above, let C be a global state object for a given ASP S and R be a global (system)-
response function (for S). Now, the form of R is: R : (Cx(Px X x P)— ¥ x P, such that

(x,P(x).y.P(¥)eS i (Bc)e,Plc)x, P(x))=(r.P(y) & P(R)

Now, the set of time-moments 7" can also be characterized with some properties.

Component P(T) can be interpreted, e.g., as the condition that set T be discrete or
continuous, finite or infinite, etc.

In [11], a GN is constructed that describes the functioning of the results of the work of an
ASP. Now we can use the additional conveniences that the [FGN3 gives.

In [11], the concept of an Intuitionistic Fuzzy Abstract Systems with Properties (IFASP) is
being introduced, too. Now we have intuitionistic fuzzy estimations not only of the system
components behavior, but also of the validity of the system components properties. Now, the
form of the new system is

Sc []‘[(V,. x[0,1F x(Px[0,1] )""""))x[o,l]2 x(px[o, 1S

el

We can extend the above model in the following sense. The ASP works on input data X
with properties P(X) and with global state C with properties P(C) at time moment ¢ with
properties P(t). The global results of the work of system S can be estimated with the help of
two degrees — for example, a degree of “goodness” g, and a degree of “badness” b, so that
gs. bs € [0,1]and g +bg <1. It is suitable to define that the truth-value of P(¢) is

V(P(t))=<gsbs >.
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The behavior of the system will depend on the values of g and b;. We can determine two
intervals [(x 5o ]e [0,1] and [75,8 s ]e [0,1], so that the system behavior will be:

- passable if g, 2P and bs <8

- insufficient if g Sog and by 28

- allowable if g¢ 205 or by <.

In some particular case, the values of ¢, B, Y and & will be determined by different ways.

. 1
For example, we can assert that the system works surely if g, > 3 > bg.

THEOREM 5: There exists an IFGN3 that is universal for the set of all IFASPs. i.e., that
can represent the functioning and the results of the work of each IFASP.

THEOREM 6: There exists a GN universal for the set of all IFASPs, i.e., that can represent
the functioning and the results of the work of each IFASP.

7. On the Applications of GN, IFGN3, IFGN4, IFASP

Up to now, Generalized nets (ordinary GNs and IFGNs) were applied to modeling of real
processes in the medical diagnosis, chemical engineering, economics, computer architectures and
others (see, e.g. [12, 13, 14, 15, 16, 17]). Already, the possibility for using the GNs for modeling
of Artificial Intelligence objects (e.g., expert systems, neural networks, semantic networks,
genetic algorithms and others) or processes (e.g., of machine leaming, decision making and
others) was discussed (see, e.g., [18, 19, 20, 21, 22, 23, 24, 25, 26]).

In [18] it is shown that the functioning and the results of the work of each production-based
expert system can be represented by a GN. The discussed expert systems can have facts and
rules with priorities, metafacts, temporal fact parameters, the estimations of the truth values of
the hypotheses can be represented in intuitionistic fuzzy forms. There it is shown that there exists
a GN, universal for all expert system from each type, which represents these expert systems.

Also, the processes of machine learning of abstract objects, neural networks, genetic
algorithms, intellectual games, GNs, IFGNS, abstract systems and others, and the results of these
processes can be represented by universal GNs (see [19]).

There are separate attempts for GN-description of the functioning and the results of the
work of neural networks, processes related to pattern and speech recognition and others (see
e.g., [27, 28, 29)).

In [30, 31] some processes related to human body and brain are discussed.

What is common in all these research is the fact that in each of the so constructed GN-
models there are subnets that model the informational processes of the modeled objects. The
GNs from their separate types (ordinary GNs, IFGN1s, etc.) contain static and dynamic elements
as all other types of Petri nets, but for instance of the latter nets, the GN-tokens have
characteristics that can be used for modeling of information, related or generated in/by the
modeled processes. This information can be represented by the respective characteristic
functions associated to the GN-places. They can be:

(a) calculated in the frameworks of the GNss;

(b) obtained from extemal sensors through suitable interface;

(c) obtained from suitable expert or information systems;

(d) determined by specialists;

(e) calculated by external software (e.g., “Mathematica”, “MatLab”, “Maple”, etc).
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Practically, all information that can be calculated in abstract systems can be represented by
GN-token characteristics. The real processes, no matters that they are abstract ones (functioning
of expert systems, machine leaming, human body, etc.) or real ones (chemical plants, medical
diagnosis, economics, etc.), submit to logical conditions that determine the ways of their flowing.

These conditions, especially when they are complex enough, cannot be represented by the
other types of Petri nets and by ordinary systems in the sense of systems theory. The GN-
transition condition predicates can exactly determine the individual logical conditions and
therefore, the GN-models can adequately represent both the functional and the logical sides of
the modeled processes. In addition, we can construct different GN-models at a single or multiple
levels of hierarchy that represent separate parts of the modeled processes. Using the operations
and the operators (and especially the hierarchical ones) over GNs, we can represent in suitable
level of detailing the objects of modeling. For example, if we wish to model a conversation of
two persons by the means of the Artificial Intelligence, we need to use methods from the means
of the pattern and speech recognition, pattern and speech generation; in some cases — translation.
For each of these areas of the Al there are separate mathematical formalisms. They are close, but
different. Therefore, we cannot describe by the means of the Al the complex process of
communication. If we construct GN-models of all mentioned four or five processes, we can
construct a common GN-model that will represent the modeled process in its entirety. This is an
example illustrating the thesis, discussed in [18] that it will be convenient for all areas of the Al
to have GN-interpretations.

The example shows the fact that GNs can be used as a suitable means for modeling of
information processes. The fact that the items of information can be fuzzy is represented by the
means of GNs, IFGNIs and IFGN3s. If we would like to interpret the information of a
continued “brook”, then we can use IFGN2s and [FGN4s.
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Abstract. In this paper, we propose a new dynamical fuzzy system with linguistic
information feedback. Instead of crisp system output, the delayed conclusion fuzzy
membership function in the consequence is fed back locally with adjustable feedback
parameters in order to overcome the static mapping drawback of conventional fuzzy
systems. We give a detailed description of the corresponding structure and algorithm.
Our novel scheme has the advantage of inherent dynamics, and is therefore well suited
for handling temporal problems like dynamical system identification, prediction,
control, and filtering. Simulation experiments have been carried out to demonstrate its
effectiveness.

1. Introduction

Due to its great flexibility in coping with ill-defined processes, fuzzy logic theory has
found numerous successful applications in industrial engineering, e.g., pattern recognition
[1], process automation [2], and fault diagnosis [3]. Generally, a fuzzy logic-based system
with embedded linguistic knowledge maps an input data (feature) vector into a scalar
(conclusion) output [4]. Most fuzzy systems applied in practice are static. In other words,
they lack the internal dynamics, and can thus only realize nonlinear but non-dynamic input-
output mappings. This disadvantage hinders their wider employment in such areas as
dynamical system modeling, prediction, filtering, and control. In order to introduce
advantageous dynamics into regular fuzzy systems, we propose a new kind of dynamical
fuzzy model with linguistic information feedback in this paper. The goal of the present paper
is to introduce the idea of linguistic information feedback and illustrate the principal
characteristics of the corresponding dynamic fuzzy system.

Our paper is organized as follows: necessary background knowledge of classic fuzzy
logic systems is first presented in Section 2. In the following section, we discuss two
conventional recurrent fuzzy systems with crisp output feedback and local memory nodes,
respectively. Next we introduce our linguistic information feedback-based fuzzy system in
Section 4. Both the structure and algorithm of this dynamical fuzzy system are then presented
in details. Computer simulations are made to illustrate its characteristics in Section 5. Finally
in Section 6, a conclusion and some remarks are given.

2. Fuzzy Logic-based Systems

The basic knowledge of fuzzy systems is provided in this section. In general, a fuzzy
logic-based system consists of four essential components [5]: a fuzzification interface, a
fuzzy rule base, an inference engine, and a defuzzification interface, as shown in Fig. 1. The
fuzzification interface converts crisp inputs into corresponding fuzzy values. It is well known
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that linguistic variable [6] is a core concept in fuzzy logic theory, and it takes fuzzy variables
as its values. A linguistic variable can be represented by a quintuple {x, Rx), U, G, M}, in
which x is the name of the variable; 7(x) is the term set of x, i.e., the set of names of linguistic
values of x with each value being a fuzzy number defined in U—universe of discourse; G is a
syntactic rule for generating the names of the values of x; and M is a semantic rule for
associating each value with its meaning. Actually, a fuzzy number is a normal and convex
fuzzy set in U. It can be characterized by a membership function p ., which usually takes
values within the interval of [0, 1]:

U —[0,1]. 1)

Thus, a fuzzy set F in U may be described as a group of ordered pairs of a generic
element u and its grade of membership function p, (u):

F={u,pF(u)}, uel. )
Fuzzification | Inference o | Defuzzification
—_— > X >
Interface Engine Interf: .
Crisp Fuzzy ﬁ Fuzzy nieriace Cnisp
Input Input Output Output
Rules
Fuzzy Rule
Base

Figure |. Basic architecture of a fuzzy logic system.

The fuzzy rule base is a collection of embedded fuzzy rules that are normally expressed
by the statements of /F-THEN. The inference engine is the kemnel of fuzzy systems. It has the
capability of performing human-like decision-making, and inferring conclusion output by
employing a fuzzy implication operation, such as the well-known Max-Min operator [6].
Since the output of fuzzy reasoning is usually 2 membership function, in most cases, the
defuzzification interface is needed to extract a crisp value best representing the possibility
distribution of the inferred fuzzy action for driving external plants. There are three commonly
applied defuzzification methods in engineering: the Max Criterion, Centroid of Area (COA),
and Mean of Maximum (MOM). More details of the working principles and performance
comparisons of these defuzzification strategies can be found in {5].

In a fuzzy logic-based system, its behavior is characterized by a set of linguistic rules,
created often from expert knowledge. These IF-THEN fuzzy rules usually have the following
forms (a two-input-single-output case):

IF xis A AND (OR) yis BTHEN z is C,

where x, y, and z are the input and output linguistic variables represented by fuzzy sets,
respectively. The IF and THEN portions of the above fuzzy rules are referred to be the
premise as well as consequent parts of a fuzzy system. Since fuzzy rules are formulated in
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linguistic rather than numerical terms, it is very difficult to acquire them directly from
practical measurement data, although there exists already some preliminary approaches [7].
Typically, operator’s heuristic experience and engineering knowledge play a pivotal role in
the derivation of fuzzy rules. In a word, the design of a typical fuzzy system is quite
subjective, and it depends heavily on the trial and error procedure. However, this particular
feature gives fuzzy systems the advantages of flexibility and robustness, and thus provides
them with effectiveness of handling complex ill-defined processes without much prior
information, where conventional hard computing methods may fail [2].

Normally, according to the forms of their consequence parts, fuzzy logic systems. are
classified into two categories: Mamdani-type [8] and Sugeno-type [9]. In a Mamdani-type
fuzzy system, the conclusion output consists of pure membership functions, i.e., C is a fuzzy
membership function of Gaussian, triangular-, or trapezoidal-shape, etc. The Sugeno-type
fuzzy systems, on the other hand, have explicit function-like consequences. For example, the
consequence part of a Sugeno-type fuzzy system with two inputs and a single output can be
expressed as:

IF xis A AND (OR) yis B THEN z = f(x,y), 3)

where f is a function of input variables x and y . Based on (3), we can see that there is no

fuzziness in the reasoning output of Sugeno-type fuzzy systems. Therefore, the
defuzzification phase in Fig. 1 is not needed here. [s it worth pointing out that neither one of
these two fuzzy systems presented so far to possess any intermal dynamical characteristics.
Next we will discuss some conventional dynamical fuzzy systems with feedback.

3. Conventional Dynamical Fuzzy Systems

It has been proved that like neural networks, fuzzy systems are universal approximators
[10]. In other words, they can approximate any continuous function with an arbitrary degree
of accuracy. Nevertheless, as aforementioned in the previous sections, classical fuzzy logic
systems do not have internal dynamics, and can therefore only realize static input-output
mappings. This disadvantage makes it difficult to employ them in such dynamics-oriented
applications as coping with temporal problems of prediction, control, and filtering.

A straightforward approach to introducing dynamics into conventional fuzzy systems is
feeding the defuzzified (crisp) system output to the input through a unit delay, which is
depicted in Fig. 2 [11] [12]. These recurrent fuzzy systems have been shown to occupy
distinguished dynamical properties over regular static fuzzy models, and they have found
various real-world applications, e.g., long term prediction of time series [11].

However, in such output feedback fuzzy systems, some useful information reflecting the
dynamical behavior is unavoidably lost during the defuzzification procedure. In addition,
with global feedback structures, it is not so easy to analyze and guarantee their stability.

[r———— e ey

! T ! !
] . o | . .
“", Fuzzification |-———» Fuzzy Inference || Defuzzification ‘T—»—T—v--»
i | | |

—>

e

Figure 2. Conventional output feedback fuzzy system.
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It is argued that internal memory units are compulsory for feedforward neural networks
to deal with temporal problems [13]. Inspired by this idea, Lee and Teng proposed a recurrent
fuzzy-neural network model with self-feedback connections [14]. To put it to more details,
weighted outputs of the antecedent membership functions are fed back to their own inputs in
order to construct local closed loops. As a matter of fact, the memory elements can store
temporal information in the input signal, and realize dynamical input-output mappings. In
[14], the performance of this scheme has been verified using challenging tasks of system
identification and adaptive control of nonlinear plants. Unfortunately, like the output
feedback fuzzy systems discussed above, it shares the common shortcoming of crisp
feedback [15]. Different from these conventional dynamical fuzzy systems with greatly
limited crisp signal feedback, we propose a new linguistic information feedback-based
recurrent fuzzy model in the following section.

4. Dynamical Fuzzy Systems with Linguistic Information Feedback
A. Basic Structure
In this section, we introduce a new dynamical fuzzy system with linguistic information

feedback, whose conceptual structure is depicted in Fig. 3. Note that only the Mamdani-type
fuzzy systems are considered here.

Figure 3. Structure of dynamical fuzzy system with linguistic information feedback.

It is clearly visible in Fig. 3 that instead of the defuzzified system output, the one-step
delayed fuzzy output membership function in the consequence part is fed back as a whole to
construct a local recurrent loop. Since this membership function is the final conclusion of our
fuzzy system, it indeed has some practical /inguistic meaning, such as an inferred fuzzy
control action. In practical simulations, the membership function can be first ‘sampled’ in a
discrete universe of discourse and then stored as a vector. To allow more degrees of freedom
in our system, we introduce three variable coefficients, o , B , and v, in the feedback loop.
In fact, o and P are considered as shifting and scaling parameters, which can adjust the
center location and height of the feedback membership function, respectively. y is, on the
other hand, a concentration/dilation parameter. Suppose p ,(y) is the concluded membership
function, the transformed feedback membership functions, p',(y), pi(»), and pi(»),
using these three parameters can be described as follows:
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M) = g,y +o) (4)

131 =B, () (35)
and

(V) =, ()" (6)

The above four fuzzy membership functions when o =-0.2, B =0.7, and y =10 are
shown 1n Fig. 4 (a), (b), (c), and (d), respectively. With the joint contribution of o , 8 , and
v . the actual feedback membership function is

1) =B, (v + )] ™

An illustrative diagram of our fuzzy information feedback scheme is given in Fig. 5.
More precisely, let a(k), B(k), and y (k) be the three adaptive feedback coefficients at

iteration £ . p(');”)(_v) is defined as the fuzzy output of our system at & +1. Like in (6), we

have
/’:kr(y):/lni)b'+a(k)]’ 8
i) = B, (v) )
and
(1} I y(k)
Hin(¥) = [ﬂm(Y)] (10)

We denote p[/“”( y) as the inference output directly from embedded reasoning rules in

this recurrent fuzzy system, i.e., before feedback, at step & +1. If the max T-conorm is used
for aggregation of individual fuzzy rule outputs [4], the resulting conclusion output p(ﬁ,*,)(_y}

1s obtained:

gl () = max{uD (), w1} (1)
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Figure 4. (a) Fuzzy output membership function | ,(y) .
(b) Fuzzy feedback membership function () with o = —0.2 (shifted).
(c) Fuzzy feedback membership function p’(y) with B = 0.7 (scaled).
(d) Fuzzy feedback membership function pt(y) with ¥ =10 (concentrated).

s Faaliack efenii

Inference Output Before Feedback Final System Output

wha () B ()

Figure 5. Diagram of fuzzy information feedback scheme
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The defuzzification approach has to be applied to acquire a final crisp output from
Wi (). Suppose z,,,, is the defuzzified output of our fuzzy system, and we get:

2 = DEFUZZ{pf, (1)) a2)

where DEFUZZ{ } is a defuzzification operator, as mentioned in Section 2. In a
representative identification or prediction problem, if we denote z(,,,, as the desired output

of this dynamical fuzzy system at iteration k +1, the following approximation error to be
minimized is defined:

1/, A
Eu»m = ‘2‘(2(’1”1) _Z(lm)) . (13)

However, due to the inherent strong nonlinearity of our linguistic information feedback
as well as the defuzzification phase, it is difficult to derive a closed-form learning algorithm
for coefficients a(k), P(k), and y (k) with regard to the minimization of E,, . Hence,

some general-purpose algorithmic optimization method, such as a genetic algorithm (GA)
[16], could be applied to optimize them in the first place. We emphasize that o , B, and y
can be intuitively considered as ‘gains’ in the feedback loop of the dynamical fuzzy system,
which makes it possible to utilize a priori knowledge to choose appropriate initial values for
them. The actual tuning procedure is realized, on the other hand, using an algorithmic
learning approach.

B. Structure Extension

As a matter of fact, the idea of linguistic information feedback in fuzzy systems presented
above can be generalized to the individual fuzzy rules as well as higher order cases, as shown
in Figs. 6 and 7, respectively. In Fig. 6, m is the number of fuzzy rules, each of which has a
local linguistic feedback. Totally, there are 3xm adaptive parameters, 1.e.,
{a, (k). B,(k), 7, (k) ay (k), B, (k), y,(k), -, a, (k), ﬂm(k),ym(k)}, for these fuzzy rules. From
the adaptation point of view, mor