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Preface to the second edition

Since the publication of the first edition we have used it as the basis for several courses.
These include courses for a whole semester on Mathematical Finance in Berlin and
also short courses on special topics such as risk measures given at the Institut Henri
Poincaré in Paris, at the Department of Operations Research at Cornell University, at
the Academia Sinica in Taipei, and at the 8th Symposium on Probability and Stochastic
Processes in Puebla. In the process we have made a large number of minor corrections,
we have discovered many opportunities for simplification and clarification, and we
have also learned more about several topics. As a result, major parts of this book
have been improved or even entirely rewritten. Among them are those on robust
representations of risk measures, arbitrage-free pricing of contingent claims, exotic
derivatives in the CRR model, convergence to Black—Scholes prices, and stability
under pasting with its connections to dynamically consistent coherent risk measures.
In addition, this second edition contains several new sections, including a systematic
discussion of law-invariant risk measures, of concave distortions, and of the relations
between risk measures and Choquet integration.

Itis a pleasure to express our thanks to all students and colleagues whose comments
have helped us to prepare this second edition, in particular to Dirk Becherer, Hans
Biihler, Rose-Anne Dana, Ulrich Horst, Mesrop Janunts, Christoph Kiihn, Maren
Liese, Harald Luschgy, Holger Pint, Philip Protter, Lothar Rogge, Stephan Sturm,
Stefan Weber, Wiebke Wittmii3, and Ching-Tang Wu. Special thanks are due to Peter
Bank and to Yuliya Mishura and Georgiy Shevchenko, our translators for the Russian
edition. Finally, we thank Irene Zimmermann and Manfred Karbe of de Gruyter Verlag
for urging us to write a second edition and for their efficient support.

Berlin, September 2004 Hans Féllmer
Alexander Schied






Preface to the first edition

This book is an introduction to probabilistic methods in Finance. It is intended for
graduate students in mathematics, and it may also be useful for mathematicians in
academia and in the financial industry. Our focus is on stochastic models in discrete
time. This limitation has two immediate benefits. First, the probabilistic machinery
is simpler, and we can discuss right away some of the key problems in the theory
of pricing and hedging of financial derivatives. Second, the paradigm of a complete
financial market, where all derivatives admit a perfect hedge, becomes the exception
rather than the rule. Thus, the discrete-time setting provides a shortcut to some of the
more recent literature on incomplete financial market models.

As a textbook for mathematicians, it is an introduction at an intermediate level,
with special emphasis on martingale methods. Since it does not use the continuous-
time methods of Itd calculus, it needs less preparation than more advanced texts such
as [73], [74], [82], [129], [188]. On the other hand, it is technically more demanding
than textbooks such as [160]: We work on general probability spaces, and so the text
captures the interplay between probability theory and functional analysis which has
been crucial for some of the recent advances in mathematical finance.

The book is based on our notes for first courses in Mathematical Finance which
both of us are teaching in Berlin at Humboldt University and at Technical University.
These courses are designed for students in mathematics with some background in
probability. Sometimes, they are given in parallel to a systematic course on stochastic
processes. At other times, martingale methods in discrete time are developed in the
course, as they are in this book. Usually the course is followed by a second course on
Mathematical Finance in continuous time. There it turns out to be useful that students
are already familiar with some of the key ideas of Mathematical Finance.

The core of this book is the dynamic arbitrage theory in the first chapters of Part II.
When teaching a course, we found it useful to explain some of the main arguments
in the more transparent one-period model before using them in the dynamical setting.
So one approach would be to start immediately in the multi-period framework of
Chapter 5, and to go back to selected sections of Part I as the need arises. As an
alternative, one could first focus on the one-period model, and then move on to Part I1.

We include in Chapter 2 a brief introduction to the mathematical theory of expected
utility, even though this is a classical topic, and there is no shortage of excellent
expositions; see, for instance, [138] which happens to be our favorite. We have three
reasons for including this chapter. Our focus in this book is on incompleteness, and
incompleteness involves, in one form or another, preferences in the face of risk and
uncertainty. We feel that mathematicians working in this area should be aware, at
least to some extent, of the long line of thought which leads from Daniel Bernoulli via
von Neumann—Morgenstern and Savage to some more recent developments which are
motivated by shortcomings of the classical paradigm. This is our first reason. Second,



viii  Preface to the first edition

the analysis of risk measures has emerged as a major topic in mathematical finance,
and this is closely related to a robust version of the Savage theory. Third, but not least,
our experience is that this part of the course was found particularly enjoyable, both by
the students and by ourselves.

We acknowledge our debt and express our thanks to all colleagues who have
contributed, directly or indirectly, through their publications and through informal
discussions, to our understanding of the topics discussed in this book. Ideas and
methods developed by Freddy Delbaen, Darrell Duffie, Nicole El Karoui, David Heath,
Yuri Kabanov, Ioannis Karatzas, Dimitri Kramkov, David Kreps, Stanley Pliska, Chris
Rogers, Steve Ross, Walter Schachermayer, Martin Schweizer, Dieter Sondermann
and Christophe Stricker play a key role in our exposition. We are obliged to many
others; for instance the textbooks [54], [73], [74], [116], and [143] were a great help
when we started to teach courses on the subject.

We are grateful to all those who read parts of the manuscript and made useful
suggestions, in particular to Dirk Becherer, Ulrich Horst, Steffen Kriiger, Irina Penner,
and to Alexander Giese who designed some of the figures. Special thanks are due to
Peter Bank for a large number of constructive comments. We also express our thanks to
Erhan Cinlar, Adam Monahan, and Philip Protter for improving some of the language,
and to the Department of Operations Research and Financial Engineering at Princeton
University for its hospitality during the weeks when we finished the manuscript.

Berlin, June 2002 Hans Follmer
Alexander Schied
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Part I

Mathematical finance in one period






Chapter 1
Arbitrage theory

In this chapter, we study the mathematical structure of a simple one-period model of a
financial market. We consider a finite number of assets. Their initial prices at time t =
0 are known, their future prices attime t = 1 are described as random variables on some
probability space. Trading takes place at time ¢+ = 0. Already in this simple model,
some basic principles of mathematical finance appear very clearly. In Section 1.2, we
single out those models which satisfy a condition of market efficiency: There are no
trading opportunities which yield a profit without any downside risk. The absence
of such arbitrage opportunities is characterized by the existence of an equivalent
martingale measure. Under such a measure, discounted prices have the martingale
property, that is, trading in the assets is the same as playing a fair game. As explained
in Section 1.3, any equivalent martingale measure can be identified with a pricing rule:
It extends the given prices of the primary assets to a larger space of contingent claims,
or financial derivatives, without creating new arbitrage opportunities. In general, there
will be several such extensions. A given contingent claim has a unique price if and only
if it admits a perfect hedge. In our one-period model, this will be the exception rather
than the rule. Thus, we are facing market incompleteness, unless our model satisfies
the very restrictive conditions discussed in Section 1.4. The geometric structure of an
arbitrage-free model is described in Section 1.5.

The one-period market model will be used throughout the first part of this book.
On the one hand, its structure is rich enough to illustrate some of the key ideas of the
field. On the other hand, it will provide an introduction to some of the mathematical
methods which will be used in the dynamic hedging theory of the second part. In fact,
the multi-period situation considered in Chapter 5 can be regarded as a sequence of
one-period models whose initial conditions are contingent on the outcomes of previous
periods. The techniques for dealing with such contingent initial data are introduced
in Section 1.6.

1.1 Assets, portfolios, and arbitrage opportunities

Consider a financial market with d + 1 assets. The assets can consist, for instance,
of equities, bonds, commodities, or currencies. In a simple one-period model, these
assets are priced at the initial time # = O and at the final time ¢+ = 1. We assume that
the i asset is available at time O for a price ¢ > 0. The collection

T = (no,nl,...,nd) ERi—H



4 1 Arbitrage theory

is called a price system. Prices at time 1 are usually not known beforehand at time 0.
In order to model this uncertainty, we fix a probability space (2, ¥, P) and describe
the asset prices at time 1 as non-negative measurable functions

O st ..., 8¢

on (2, ¥) with values in [0, c0). Every w € Q2 corresponds to a particular scenario
of market evolution, and S (w) is the price of the i asset at time 1 if the scenario w
occurs.

However, not all asset prices in a market are necessarily uncertain. Usually there
is a riskless bond which will pay a sure amount at time 1. In our simple model for one
period, such a riskless investment opportunity will be included by assuming that

7%=1 and S%°=1+r

for a constant r, the return of a unit investment into the riskless bond. In most situations
it would be natural to assume r > 0, but for our purposes it is enough to require that
$Y > 0, or equivalently that

r> —1.

In order to distinguish SO from the risky assets Sl, R s , 1t will be convenient to
use the notation _
S=(s%s....8) =9,

and in the same way we will write 7 = (1, 7).
At time ¢t = 0, an investor will choose a portfolio

E=E%8 =% g eRIT

where &' represents the number of shares of the i th asset. The price for buying the
portfolio & equals

d
7T-E= Z el
i=0
At time ¢t = 1, the portfolio will have the value

d
E-S) =) &5 =0+r+&-Sw),
i=0

depending on the scenario @ € 2. Here we assume implicitly that buying and selling
assets does not create extra costs, an assumption which may not be valid for a small
investor but which becomes more realistic for a large financial institution. Note our
convention of writing x - y for the inner product of two vectors x and y in Euclidean
space.

Our definition of a portfolio allows the components £’ to be negative. If €0 < 0,
this corresponds to taking out a loan such that we receive the amount |& Olatr =0
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and pay back the amount (1 + r)|E attimer = 1. If & <Ofori > 1,a quantity of
|€7| shares of the i asset is sold without actually owning them. This corresponds to
a short sale of the asset. In particular, an investor is allowed to take a short position
£' < 0, and to use up the received amount 7’ |£’ | for buying quantities £/ > 0, j # i,
of the other assets. In this case, the price of the portfolio £ = (&0, &) is given by
E-w=0.

Definition 1.1. A portfolio £ € RY*! is called an arbitrage opportunity if T - & < 0
but§ - S >0 P-as.and P[£-5S > 0] > 0.

Intuitively, an arbitrage opportunity is an investment strategy that yields with
positive probability a positive profit and is not exposed to any downside risk. The
existence of such an arbitrage opportunity may be regarded as a market inefficiency
in the sense that certain assets are not priced in a reasonable way. In real-world
markets, arbitrage opportunities are rather hard to find. If such an opportunity would
show up, it would generate a large demand, prices would adjust, and the opportunity
would disappear. Later on, the absence of such arbitrage opportunities will be our
key assumption. Absence of arbitrage implies that S’ vanishes P-a.s. once 7! = 0.
Hence, there is no loss in generality if we assume from now on that

7l >0 fori=1,...,d.

Remark 1.2. Note that the probability measure P enters the definition of an arbitrage
opportunity only through the null sets of P. In particular, the definition can be for-
mulated without any explicit use of probabilities if €2 is countable. In this case there
is no loss of generality in assuming that the underlying probability measure satisfies
P[{w}] > O for every w € . Then an arbitrage opportunity is simply a portfolio &
with 7 - &€ < 0, with £ - S(w) > 0 for all w € 2, and such that £ - S(wg) > O for at
least one wq € 2. <&

The following lemma shows that absence of arbitrage is equivalent to the following
property of the market: Any investment in risky assets which yields with positive
probability a better result than investing the same amount in the risk-free asset must
be open to some downside risk.

Lemma 1.3. The following statements are equivalent.
(a) The market model admits an arbitrage opportunity.

(b) There is a vector & € R? such that

E-S>+r) -7 P-as. and P[E-S> (A +r)é-7]>0.

Proof. To see that (a) implies (b), let £ be an arbitrage opportunity. Then0 > £ -7 =
£9 4+ £ . . Hence,

E-S—(1+rntE-m>&-S+(1+nrng’=¢.5.
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Since £ - § is P-a.s. non-negative and strictly positive with non-vanishing probability,
the same must be true of £ - § — (1 +r)é - .

Next let & be as in (b). We claim that the portfolio (£°, &) with €0 := —£ - 7 is
an arbitrage opportunity. Indeed, £ - 7 = £ 4 £ - w = 0 by definition. Moreover,
&.S=—(1+r)&-m+E&-S,whichis P-a.s. non-negative and strictly positive with
non-vanishing probability. O

1.2 Absence of arbitrage and martingale measures

In this section, we are going to characterize those market models which do not admit
any arbitrage opportunities. Such models will be called arbitrage-free.

Definition 1.4. A probability measure P* is called a risk-neutral measure, or a mar-

tingale measure, if

. Si

71’=E*|: j| i=0,1,...,d. (1.1)
1+7r

Remark 1.5. In (1.1), the price of the i th asset is identified as the expectation of
the discounted payoff under the measure P*. Thus, the pricing formula (1.1) can
be seen as a classical valuation formula which does not take into account any risk
aversion, in contrast to valuations in terms of expected utility which will be discussed
in Section 2.3. This is why a measure P* satisfying (1.1) is called risk-neutral. The
connection to martingales will be made explicit in Section 1.6. <&

The following basic result is sometimes called the “fundamental theorem of asset
pricing” or, in short, FTAP. It characterizes arbitrage-free market models in terms of
the set

& :={ P*| P*is arisk-neutral measure with P* ~ P }

of risk-neutral measures which are equivalent to P. Recall that two probability mea-
sures P* and P are said to be equivalent (P* ~ P)if, for A € &, P*[A] = 0 if
and only if P[A] = 0. This holds if and only if P* has a strictly positive density
d P*/d P with respect to P; see Appendix A.2. An equivalent risk-neutral measure is
also called a pricing measure or an equivalent martingale measure.

Theorem 1.6. A market model is arbitrage-free if and only if  # (. In this case,
there exists a P* € P which has a bounded density dP*/d P.

We show first that the existence of a risk-neutral measure implies the absence of
arbitrage.

Proof of the implication <= of Theorem 1.6. Suppose that there exists a risk-neutral
measure P* € P. Take a portfolio & € R4*! guch that E-S > 0 P-as. and
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E[£-S] > 0. Both properties remain valid if we replace P by the equivalent measure
P*. Hence,

d d i = <
_ o i gi .S
ﬁ-é:Zn’é’:ZE*[ir} =E*[f+r] > 0.
i=0

i=0
Thus, £ cannot be an arbitrage opportunity. O

For the proof of the implication = of Theorem 1.6, it will be convenient to

introduce the random vector Y = (Y1, ..., Y?) of discounted net gains:
. St .
Y' = -, i=1,...,d. (1.2)
1+4+r

With this notation, Lemma 1.3 implies that the absence of arbitrage is equivalent to
the following condition:

For§ e R &£.Y>0P-as. = £-Y =0 P-as. (1.3)

Since Y’ is bounded from below by —m!, the expectation E*[ Y’ ] of Y’ under any
measure P* is well-defined, and so P* is a risk-neutral measure if and only if

E*[Y]=0. (1.4)

Here, E*[ Y ] is a shorthand notation for the d-dimensional vector with components
E*[Y'],i = 1,...,d. The assertion of Theorem 1.6 can now be read as follows:
Condition (1.3) holds if and only if there exists some P* ~ P such that E*[Y ] =0,
and in this case, P* can be chosen such that the density d P*/d P is bounded.

Proof of the implication = of Theorem 1.6. We have to show that (1.3) implies the
existence of some P* &~ P such that (1.4) holds and such that the density d P*/d P is
bounded. We will do this first in the case in which

E[|Y]] < oc.

Let @ denote the convex set of all probability measures Q ~ P with bounded
densities d Q/d P, and denote by Eg[ Y ] the d-dimensional vector with components
Egl Y'],i =1,...,d. Due to our assumption that |Y| € L1(P), all these expecta-
tions are finite. Let

e:={EolY]| Qc@},

and note that C is a convex set in R?: If 01, Qo € @Qand 0 < a < 1, then
Oy =a01+ (1 —a)Qp € @ and

OtEQl[Y]-i-(l —Ot)EQO[Y] = EQO([Y],

which lies in C.
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Our aim is to show that € contains the origin. To this end, we suppose by way of
contradiction that0 ¢ C. Using the “separating hyperplane theorem” in the elementary
form of Proposition A.1, we obtain a vector & € R4 such that E.x>0forallx € C,
and such that & - xo > O for some xg € C. Thus, & satisfies Eg[£ - Y ] > 0 for all
Q € @and Egy[& -Y] > 0 for some Qp € @. Clearly, the latter condition yields
that P[£ - Y > 0] > 0. We claim that the first condition implies that £ - Y is P-a.s.
non-negative. This fact will be a contradiction to our assumption (1.3) and thus will
prove that 0 € C.

To prove the claimthat§ - Y > 0 P-a.s.,let A := {£-Y < 0}, and define functions

1 1
Op = (1_;>IA+;IA‘

We take ¢, as densities for new probability measures Q:

40, 1
dP " Elg.]

“¢@n, n=2,3....
Since 0 < ¢, < 1, it follows that Q, € @, and thus that

0<&-EglY]=

E[E-Yo,].
Elon] [§-Youl

Hence, Lebesgue’s dominated convergence theorem yields that

E[E ’ YI{.;:-Y<0}]

= lim E[£-Y ¢,] > 0.
ntoo
This proves the claim that £ - Y > 0 P-a.s. and completes the proof of Theorem 1.6
incase E[|Y|] < oo.
If Y is not P-integrable, then we simply replace the probability measure P by
a suitable equivalent measure P whose density d P/d P is bounded and for which
E[]Y]|] < oo. For instance, one can define P by

dP c 1 -1
— = forc:=(E .
dP 1+1Y| 1+ Y]

Recall from Remark 1.2 that replacing P with an equivalent probability measure does
not affect the absence of arbitrage opportunities in our market model. Thus, the first
part of this proof yields a risk-neutral measure P* which is equivalent to P and whose
density d P*/d P is bounded. Then P* € &, and

dP* _dpP* dP
dP ~ 4P dP

is bounded. Hence, P* is as desired, and the theorem is proved. O
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Remark 1.7. Our assumption that asset prices are non-negative implies that the com-
ponents of Y are bounded from below. Note however that this assumption was not
needed in our proof. Thus, Theorem 1.6 also holds if we only assume that S is finite-
valued and 7 € R?. In this case, the definition of a risk-neutral measure P* via
(1.1) is meant to include the assumption that S is integrable with respect to P* for
i=1,...,d. <

Example 1.8. Let P be any probability measure on the finite set Q := {wy, ..., oy }
that assigns strictly positive probability p; to each singleton { w; }. Suppose that there
is a single risky asset defined by its price 7 = 7! at time 0 and by the random variable
S = S'. We may assume without loss of generality that the values s; := S(w;) are
distinct and arranged in increasing order: s1 < --- < sy. According to Theorem 1.6,
this model does not admit arbitrage opportunities if and only if

N N
w1+ e (EISUP~Py={ Y sipi|pi >0 Y pi=1} =1,

i=1 i=1

and P* is a risk-neutral measure if and only if the probabilities p} := P*[ {w;} ] solve
the linear equations

s1pl 4+ sypy =n(l+7),
pie P =1

If a solution exists, it will be unique if and only if N = 2, and there will be infinitely
many solutions for N > 2. <&

Remark 1.9. The economic reason for working with the discounted asset prices

X = il ,
1+7r
is that one should distinguish between one unit of a currency (e.g. €) at timet = 0
and one unit at time ¢t = 1. Usually people tend to prefer a certain amount today over
the same amount which is promised to be paid at a later time. Such a preference is
reflected in an interest » > 0 paid by the riskless bond: Only the amount 1/(1 4-r) €
must be invested at time O to obtain 1 € at time 1. This effect is sometimes referred to
as the time value of money. Similarly, the price S? of the i asset is quoted in terms
of € at time 1, while 7 corresponds to time-zero euros. Thus, in order to compare
the two prices 7' and S’, one should first convert them to a common standard. This is
achieved by taking the riskless bond as a numéraire and by considering the discounted
prices in (1.5). <&

i=0,...,d, (1.5)

Remark 1.10. One can choose as numéraire any asset which is strictly positive. For
instance, suppose that 7! > 0 and P[S' > 0] = 1. Then all asset prices can be
expressed in units of the first asset by considering

i

g’

~i

nl
Ti=— and
T
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Clearly, the definition of an arbitrage opportunity is independent of the choice of a
particular numéraire. Thus, an arbitrage-free market model should admit a risk-neutral
measure with respect to the new numeéraire, i.e., a probability measure P* ~ P such
that

.o~ TS
7 =E*[_], i=0,....d
S1
Let us denote by P the set of all such measures P*. Then
dp* st }

= ———— for some P* € P
dpP E*[S1]

F={P
Indeed, if P* lies in the set on the right, then
E*[ St ] E*[S']

~i

i
st al =
and so P* € P. Reversing the roles of » and P then yields the identity of the two
sets. Note that _
PNP =0

as soon as S! is not P-a.s. constant, because Jensen’s inequality then implies that

L:%OZ»EV*[I—f—r] - Nl—i—r
! St E*[S!]
and hence E*[ S'] > E*[S!]forall P* €  and P* € . <

Let o
V:={E-S|&eR]
denote the linear space of all payoffs which can be generated by some portfolio. An

element of 'V will be called an attainable payoff. The portfolio that generates V € V
is in general not unique, but we have the following law of one price.

Lemma 1.11. Suppose that the market model is arbitrage-free and that V € 'V can
be written as V.= § - S = ¢ - § P-a.s. for two different portfolios § and {. Then
T E=T-C.
Proof. We have (£ — ¢) - S = 0 P*-a.s. for any P* € #. Hence,

- T =7 €-0-S

. —_ . = E* == O,

T-E—T-¢ |: 57

due to (1.1). ]
By the preceding lemma, it makes sense to define the price of V € 'V as
a(V)y:=w-&§ ifV=E¢-8§, (1.6)

whenever the market model is arbitrage-free.
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Remark 1.12. Via (1.6), the price system 7 can be regarded as a linear form on the
finite-dimensional vector space V. For any P* € & we have

n(V):E*[ ] Vev.

1+r

Thus, an equivalent risk-neutral measure P* defines a linear extension of 7 onto the
larger space «£!(P*) of P*-integrable random variables. Since this space is usually
infinite-dimensional, one cannot expect that such a pricing measure is in general
unique; see however Section 1.4. <&

We have seen above that, in an arbitrage-free market model, the condition £. $=0
P-a.s. implies that 7 - § = 0. In fact, one may assume without loss of generality that

£.5=0Pas. = E=0, (1.7)

for otherwise we can find i € {0, ..., d} such that & # 0 and represent the i th asset
as a linear combination of the remaining ones:

. 1 o . 1 o

n’:;ZE]nJ and S’:EZSJSJ.
J#i J#

In this sense, the i™ asset is redundant and can be omitted.

Definition 1.13. The market model is called non-redundant if (1.7) holds.

Remark 1.14. In any non-redundant market model, the components of the vector Y
of discounted net gains are linearly independent in the sense that

£.Y=0Pas. —> £=0. (1.8)

Conversely, via (1.3), condition (1.8) implies non-redundance if the market model is
arbitrage-free. <

Definition 1.15. Suppose that the market model is arbitrage-free and that V € 'V is
an attainable payoff such that 7 (V) # 0. Then the return of V is defined by

V—na(V)
(V)

Note that we have already seen the special case of the risk-free return

R(V) :=

SO — 70 0
g
If an attainable payoff V is a linear combination V = Y}, a Vi of non-zero attain-
able payoffs Vi, then

. o (Vi)
R(V) = R(Vy) f =8
(V) ];ﬂk Vo for by = s s
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The coefficient B can be interpreted as the proportion of the investment allocated to
V. As a particular case of the formula above, we have that

d i
T .
R(V) = —— - R(S")

for all non-zero attainable payoffs V = £ - S (recall that we have assumed that all 77/
are strictly positive).

Proposition 1.16. Suppose that the market model is arbitrage-free, and let V € 'V be
an attainable payoff such that = (V) # 0.

(a) Under any risk-neutral measure P*, the expected return of V is equal to the
risk-free return r:
E*[R(V)]=r.

(b) Under any measure Q ~ P such that Eg| IS|1 < oo, the expected return of V
is given by

*

dP
EQ[R(V)]:r—COVQ< ,R(V)),

a0
where P* is an arbitrary risk-neutral measure in & and covg denotes the
covariance with respect to Q.
Proof. (a): Since E*[V | = n(V)(1 + r), we have
E*[V]-n(V)
(V) a
(b): Let P* € & and ¢* := dP*/d Q. Then

E*[R(V)]=

covg (¢*, R(V)) = Egl¢*R(V) ] — Egl¢*]- Eg[ R(V)]
= E*[R(V)]— Eg[R(V)].

Using part (a) yields the assertion. O

Remark 1.17. Let us comment on the extension of the fundamental equivalence in
Theorem 1.6 to market models with an infinity of tradable assets S 0 81, 82, ... We
assume that S° = 1 + r for some r > —1 and that the random vector

S) = (S" (), $S*(®), ...)

takes values in the space £°° of bounded real sequences. This space is a Banach space
with respect to the norm

Ixlloo = sup |x’| forx = (x', x2,...) € £®.
i>1
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A portfolio & = (€9, &) is chosen in such a way that £ = (€1,€2,..)isa sequence
in the space ¢!, i.e., Y2 E {| < co. We assume that the corresponding price system
7 = (n°, 7) satisfies 7 € £ and 70 = 1. Clearly, this model class includes our
model with d + 1 traded assets as a special case.

Our first observation is that the implication <= of Theorem 1.6 remains valid, i.e.,
the existence of a measure P* ~ P with the properties

St .
E*[IISleo] <00 and E|: 1 +r] o

implies the absence of arbitrage opportunities. To this end, suppose that & is a portfolio
strategy such that

£.5>0 P-as. and E[£-S]>0. (1.9)

Then we can replace P in (1.9) by the equivalent measure P*. Hence, & cannot be an
arbitrage opportunity since

_—_OO i s’ _ % gs
E’”_ZSE[1+r}_E[1+r]>O

i=0

Note that interchanging summation and integration is justified by dominated conver-
gence, because

(0]
&% + I1Slloo Y _ 171 € L (P¥).
i=0
The following example shows that the implication = of Theorem 1.6, namely that
absence of arbitrage opportunities implies the existence of a risk-neutral measure, may
no longer be true in an infinite market model. <

Example 1.18. Let Q@ = {1,2,...}, and choose any probability measure P which
assigns strictly positive probability to all singletons {w}. We take r = 0 and define a
price system 7/ = 1, fori =0, 1, .... Prices at time 1 are given by S = 1 and, for
i=1,2,...,by
0 ifw=i,
Sw) =12 fo=i+1,
1 otherwise.

Let us show that this market model is arbitrage-free. To this end, suppose that £ =
(€Y, &) isa portfolio such that § € ¢! and such that £ - S(w) > 0 for each w € Q, but
such that 7 - £ < 0. Considering the case w = 1 yields

0<E-S)=£"+) & =7 F-¢' <&

k=2
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Similarly, forw =i > 1,

It follows that 0 > &' > £2 > ... But this can only be true if all £/ vanish, since we
have assumed that £ € £!. Hence, there are no arbitrage opportunities.

However, there exists no probability measure P* & P such that E*[ ' | = 7/ for
all i. Such a measure P* would have to satisfy

L= E*[S'1=2P*[{i+ 1}]+ > P*[{k}]

k=1
ki i+1

=1+ P*[{i +1}] — P*[{i}]

fori > 1. Thisrelation implies that P*[ {i} ] = P*[{i+1}]foralli > 1, contradicting
the assumption that P* is a probability measure and equivalent to P. <

1.3 Derivative securities

In real financial markets, not only the primary assets are traded. There is also a large
variety of securities whose payoff depends in a non-linear way on the primary assets
§9, 81, ..., 5% and sometimes also on other factors. Such financial instruments are
usually called derivative securities, options, or contingent claims.

Example 1.19. Under a forward contract, one agent agrees to sell to another agent an
asset at time 1 for a price K which is specified at time 0. Thus, the owner of a forward
contract on the i asset gains the difference between the actual market price S’ and
the delivery price K if S is larger than K at time 1. If ' < K, the owner loses
the amount K — S’ to the issuer of the forward contract. Hence, a forward contract
corresponds to the random payoff

cv =5 —K. >

Example 1.20. The owner of a call option on the i asset has the right, but not the
obligation, to buy the i asset at time 1 for a fixed price K, called the strike price.
This corresponds to a payoff of the form

Si— K ifS > K,

Ccall — (Sl _ K)+ — )
0 otherwise.
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Conversely, a put option gives the right, but not the obligation, to sell the asset at time
1 for a strike price K. The corresponding random payoff is given by

K-S ifS <K,

CM = (K - SH" = _
0 otherwise.

Call and put options with the same strike K are related through the formula

Ccall _ Cput — Sl _ K

Hence, if the price 7 (C) of a call option has already been fixed, then the price
7 (CP) of the corresponding put option is determined by linearity through the puz-
call parity

n(ccall) — n(cput) + n,i _

(1.10)
<&

1+r

Example 1.21. An option on the value V = £ - S of a portfolio of several risky assets
is sometimes called a basket or index option. For instance, a basket call would be of
the form (V — K)™. <&

Put and call options can be used as building blocks for a large class of derivatives.

Example 1.22. A straddle is a combination of “at-the-money" put and call options
on a portfolio V =& - §, i.e., on put and call options with strike K = w(V):

C=@(V)=WV)T+V —a(V)" =|V-n(V)|

Thus, the payoff of the straddle increases proportionally to the change of the price of
& between time 0 and time 1. In this sense, a straddle is a bet that the portfolio price
will move, no matter in which direction. <&

Example 1.23. The payoff of a butterfly spread is of the form
C=(K—IVv-rW)",

where K > 0 and where V = & - § is the price of a given portfolio or the value of
a stock index. Clearly, the payoff of the butterfly spread is maximal if V = m (V)
and decreases if the price at time 1 of the portfolio & deviates from its price at time 0.
Thus, the butterfly spread is a bet that the portfolio price will stay close to its present
value. By letting K1 := (V) & K, we can represent C as combinations of call or
put options on V:

C=V-K) =2(V—a(V)"+(V -Kp"
=—(K_-—WT4+2(x(V) =WVt — (K, — V). <&
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Example 1.24. The idea of portfolio insurance is to increase exposure to rising asset
prices, and to reduce exposure to falling prices. This suggests to replace the payoff
V = & . S of a given portfolio by a modified profile #(V), where & is convex and
increasing. Let us first consider the case where V > 0. Then the corresponding
payoff A(V) can be expressed as a combination of investments in bonds, in V it-
self, and in basket call options on V. To see this, recall that convexity implies that
h(x) = h(0) + f(f h'(y) dy for the increasing right-hand derivative i’ := h/, of h;
see Appendix A.1. Note that 4’ can be represented as the distribution function of a
positive Radon measure y on [0, 00): h'(x) = y ([0, x]) for x > 0. Hence, Fubini’s
theorem implies that

X
h(x) = h(0) +/ / y(dz)dy
0 J[0,y]
=h0)+y({0hx + / dyy(dz).
(0,00) H{y|z=<y=x}
Since the inner integral equals (x — z)™, we obtain

h(V) =h(0)+h/(0)V+/ V=2 ydz). (1.11)
(0,00)

The payoff V = £ - § may take negative values if the portfolio & contains also
short positions. In this case, the increasing convex function 2 must be defined on all
of R. Its right-hand derivative 4’ can be represented as

R(y)—h'(x)=y((x,y]), x<y,

for a positive Radon measure ¥ on R. Looking separately at the cases x < 0 and
x > 0, we see that

h(x) = h(0) + h'(0) x + f

x -2V ydz) +/ (z —x)" y(dz).
(0,00)

(—00,0]

Thus, the payoff #(V) can be realized by holding bonds, shares in V, and a mixture
of call and put options on V:

h(V)=h0)+h )V + /

V-2t yd2) +/ (z— V)" yd2).
(0,00)

(—00,0] S
Example 1.25. A reverse convertible bond pays interest which is higher than that
earned by an investment into the riskless bond. But at maturity r = 1, the issuer may
convert the bond into a predetermined number of shares of a given asset S’ instead
of paying the nominal value in cash. The purchase of this contract is equivalent to
the purchase of a standard bond and the sale of a certain put option. More precisely,
suppose that 1 is the price of the reverse convertible bond at t = 0, that its nominal



1.3 Derivative securities 17

value at maturity is 1 + 7, and that it can be copverted into x shares of the i" asset.
This conversion will happen if the asset price S' is below K := (1 +7)/x. Thus, the
payoff of the reverse convertible bond is equal to

14+7—x(K —SHT,

Le., the purchase of this contract is equivalent to a risk-free investment of 1 with
interest 7 and the sale of the put option x(K — S')™ for the price * —r)/(1 +7r). <

Example 1.26. A discount certificate on V = € - S pays off the amount
C=VAK,
where the number K > 0 is often called the cap. Since
C=V—-(V-KT,

buying the discount certificate is the same as purchasing & and selling the basket call
option C4!' := (V — K)™. If the price 7 (C4!") has already been fixed, then the price
of C is given by 7(C) = (V) — m(C™). Hence, the discount certificate is less
expensive than the portfolio & itself, and this explains the name. On the other hand, it
participates in gains of £ only up to the cap K. <

Example 1.27. For an insurance company, it may be desirable to shift some of its
insurance risk to the financial market. As an example of such an alternative risk
transfer, consider a catastrophe bond issued by an insurance company. The interest
paid by this security depends on the occurrence of certain special events. For instance,
the contract may specify that no interest will be paid if more than a given number of
insured cars are damaged by hail on a single day during the lifetime of the contract; as
a compensation for taking this risk, the buyer will be paid an interest above the usual
market rate if this event does not occur. <

Mathematically, it will be convenient to focus on contingent claims whose payoff
is non-negative. Such a contingent claim will be interpreted as a contract which is
sold at time O and which pays a random amount C(w) > 0 at time 1. A derivative
security whose terminal value may also become negative can usually be reduced to a
combination of a non-negative contingent claim and a short position in some of the
primary assets SO s! ..., 89 Forinstance, the terminal value of a reverse convertible
bond is bounded from below so that it can be decomposed into a short position in cash
and into a contract with positive value. From now on, we will work with the following
formal definition of the term “contingent claim”.

Definition 1.28. A contingent claim is a random variable C on the underlying prob-
ability space (€2, ¥, P) such that

0<C <oo P-as.
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A contingent claim C is called a derivative of the primary assets S, ..., S if it is
measurable with respect to the o-field U(SO, R X ) generated by the assets, i.e., if

C=7f(s ..., 8
for a measurable function f on R4+,

So far, we have only fixed the prices 7/ of our primary assets S'. Thus, it is not
clear what the correct price should be for a general contingent claim C. Our main
goal in this section is to identify those possible prices which are compatible with the
given prices in the sense that they do not generate arbitrage. Our approach is based
on the observation that trading C at time 0 for a price 7€ corresponds to introducing
a new asset with the prices

7t i=7¢ and §9=C. (1.12)
Definition 1.29. A real number 7€ > 0 is called an arbitrage-free price of a contin-
gent claim C if the market model extended according to (1.12) is arbitrage-free. The
set of all arbitrage-free prices for C is denoted I[1(C).

In the previous definition, we made the implicit assumption that the introduction
of a contingent claim C as a new asset does not affect the prices of primary assets.
This assumption is reasonable as long as the trading volume of C is small compared
to that of the primary assets. In Section 3.4 we will discuss the equilibrium approach
to asset pricing, where an extension of the market will typically change the prices of
all traded assets.

The following result shows in particular that we can always find an arbitrage-free
price for a given contingent claim C if the initial model is arbitrage-free.

Theorem 1.30. Suppose that the set P of equivalent risk-neutral measures for the
original market model is non-empty. Then the set of arbitrage-free prices of a contin-
gent claim C is non-empty and given by

C
14+r

T(C) = {E*[ MP* € P such that E*[C ] <oo}. (1.13)

Proof. By Theorem 1.6, 7€ is an arbitrage-free price for C if and only if there exists
an equivalent risk-neutral measure P for the market model extended via (1.12), i.e.,

Si
[ j| fori=1,...,d+ 1.
1+r

I

o

In particular, Pis necessarily contained in 4, and we obtain the inclusion C in (1.13).
Conversely, if 7€ = E*[C/(1 + r)] for some P* € &, then this P* is also an
equivalent risk-neutral measure for the extended market model, and so the two sets in
(1.13) are equal.
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_ To show that TT(C) is non-empty, we first fix some measure P ~ P such that
E[C] < oo. For instance, we can take d P = c(1 + C)~'dP, where c is the nor-
malizing constant. Under P, the market model is arbitrage-free. Hence, Theorem 1.6
yields P* € & such that d P*/dP is bounded. In particular, E*[C] < oo and
7€ = E*[C/(1+r)] € TI(C). O

The following theorem provides a dual characterization of the lower and upper
bounds

T(C) :=Inf [1(C) and m,,(C) :=supIl(C),
which are often called arbitrage bounds for C.

Theorem 1.31. In an arbitrage-free market model, the arbitrage bounds of a contin-
gent claim C are given by

. C
m.(C) = inf E*[ ]
P*ep 14r

C
=max{me[0,oo)|5l§eRdwithm+§-Y§1 P-a.s.}
r
and
7., (C) = su E*[ ]
AP( ) P*El?rp 1+V
. d . c
:mm{me[O,oo]‘ElSeR withm+&-Y > T P-a.s.}.
r

Proof. We only prove the identities for the upper arbitrage bound. The ones for the
lower bound are obtained in a similar manner. We take m € [0, co] and & € R? such
thatm +&-Y > C/(1 +r) P-as., and we denote by M the set of all such m. Taking
the expectation with P* € P yieldsm > E*[C/(1 4+ r) ], and we get

C
inf M > sup E*[ ]

Ptep 1;” (1.14)
> sup{ E*[—] ‘ P*e P, E*[C] < OO}= T (C),
1+r

where we have used Theorem 1.30 in the last identity.

Next we show that all inequalities in (1.14) are in fact identities. This is trivial if
7,,(C) = oo. For ,,,(C) < oo, we will show that m > =, ,(C) implies m > inf M.
By definition, 7,,(C) < m < oo requires the existence of an arbitrage opportunity
in the market model extended by w4+ := m and $?t! := C. That is, there is
(€,89) € R such that £ - Y + SdH(C/(l + r) — m) is almost-surely non-
negative and strictly positive with positive probability. Since the original market
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model is arbitrage-free, Sd“ must be non-zero. In fact, we have “;‘d+1 < 0 as taking
expectations with respect to P* € & for which E*[ C ] < oo yields

§d+l<E*|:L] _m> S0,
1+r
and the term in parenthesis is negative since m > m,,,(C). Thus, we may define
¢ = —S/{,—‘d‘H e R? and obtainm + ¢ - Y > C/(1+r) P-a.s.,hence m > inf M.
We now prove that the infimum of M is in fact attained. To this end, we may
assume without loss of generality that inf M < oo and that the market model is non-
redundant in the sense of Definition 1.13. For a sequence m, € M that decreases
towards inf M = m,,,(C), we fix§, € R? such that m,, +&,-Y > C/(1+r) P-almost
surely. If liminf,, |§,| < oo, there exists a subsequence of (§,) that converges to some
£ € R?. Passing to the limit yields T(C)+§&-Y > C/(14r) P-as., which gives
7,.,,(C) € M. But this is already the desired result, since the following argument will

show that the case liminf, |§,| = oo cannot occur. Indeed, after passing to some
subsequence if necessary, n, := &,/|&,| converges to some n € R? with || = 1.
Under the assumption that |§,| — oo, passing to the limit in
Ty (C) C
+n,-Y > ———— P-as.
|€n 1&n|(1 +7)

yields - Y > 0. The absence of arbitrage opportunities thus implies n- Y = 0 P-a.s.,
whence n = 0 by non-redundance of the model. But this contradicts the fact that
Inl = 1. [

Remark 1.32. Theorem 1.31 shows that 7, (C) is the lowest possible price of a
portfolio & with o
E-§S>C P-as.

Such a portfolio is often called a “superhedging strategy” or “superreplication” of C,
and the identities for m,(C) and m,,,(C) obtained in Theorem 1.31 are often called
superhedging duality relations. When using &, the seller of C would be protected
against any possible future claims of the buyer of C. Thus, a natural goal for the seller
would be to finance such a superhedging strategy from the proceeds of C. Conversely,
the objective of the buyer would be to cover the price of C from the sale of a portfolio
7 with
n- §S<C P-as.,

which is possible if and only if 7 - 7 < 7,,(C). Unless C is an attainable payoff,
however, neither objective can be fulfilled by trading C at an arbitrage-free price, as
shown in Corollary 1.34 below. Thus, any arbitrage-free price involves a trade-off
between these two objectives. <&

For a portfolio £ the resulting payoff V = & - S, if positive, may be viewed as
a contingent claim, and in particular as a derivative. Those claims which can be
replicated by a suitable portfolio will play a special role in the sequel.



1.3 Derivative securities 21

Definition 1.33. A contingent claim C is called attainable (replicable, redundant) if
C = £-S P-as. for some &€ € R4, Such a portfolio strategy  is then called a
replicating portfolio for C.

If one can show that a given contingent claim C can be replicated by some portfolio
&, then the problem of determining a price for C has a straightforward solution: The
price of C is unique and equal to the cost £ - 7 of its replication, due to the law of one
price. The following corollary also shows that the attainable contingent claims are in
fact the only ones for which admit a unique arbitrage-free price.

Corollary 1.34. Suppose the market model is arbitrage-free and C is a contingent
claim.

(a) C is attainable if and only if it admits a unique arbitrage-free price.

(b) If C is not attainable, then m,(C) < m,,(C) and
H(C) = (ninf(c)v nsup(c))'

Proof. Clearly |IT1(C)| = 1 if C is attainable, and so assertion (a) is implied by (b).

In order to prove part (b), note first that IT(C) is non-empty and convex due to
the convexity of &. Hence I1(C) is an interval. To show that this interval is open, it
suffices to exclude the possibility that it contains one of its boundary points 7,(C)
and ,,(C). To this end, we use Theorem 1.31 to get £ € R4 such that

7. (C)+&-Y < % P-as.
Since C is not attainable, this inequality cannot be an almost-sure identity. Hence, with
£0:= —(1 +r)m,,(C), the strategy (&9, —£,1) e R 2 s an arbitrage opportunity in
the market model extended by 7¢*! := 7,.(C) and §¢*! := C, so that 7,,,(C) is not
an arbitrage-free price for C. The possibility 7,,,(C) € IT(C) is excluded by a similar
argument. O

Remark 1.35. InTheorem 1.31, the set  of equivalent risk-neutral measures can be
replaced by the set & of risk-neutral measures that are merely absolutely continuous
with respect to P. That is,

1+r], (1.15)

Pep

-t C -
7,,(C) = ianE[—] and 1,,(C) = sup E[
T+r Pep

~

for any contingent claim C. To prove this, note first that > C #, so that we get the
two inequalities “>" and “<" in (1.15). On the other hang, for any P € #, arbitrary
P* e P ande € (0, 1], the measure P} := eP*4(1—¢)P belongs to & and satisfies
EY[C]=¢E*[C]+(1—¢)E[C]. Sending ¢ | 0 yields the converse inequalities. <>
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Remark 1.36. Consider any arbitrage-free market model, and let Cc‘j‘“ = (' - K)*
be a call option on the i asset with strike K > 0. Clearly, C*' < §’ so that

call
E[IC+ }Sni
r

for any P* € . From Jensen’s inequality, we obtain the following lower bound:

y Ccal] . Si K + ; K +
E > | E — =7 — .
14+r 14+r 14+r 1+r

Thus, the following universal bounds hold for any arbitrage-free market model:

N A al al :
1) = T (CM) < 7 (C) < 7. (1.16)
r

For a put option CP"* = (K — S')*, one obtains the universal bounds

(1.17)

1+r 147

K N+

( - ”Z) = (€M) = (C™) <
If - > 0, then the lower bound in (1.16) can be further reduced to 7, (C") >
(" — K)T. Informally, this inequality states that the value of the right to buy the
i asset at = 0 for a price K is strictly less than any arbitrage-free price for C!,
This fact is sometimes expressed by saying that the time value of a call option is
non-negative. The quantity (w! — K)7 is called the intrinsic value of the call option.
Observe that an analogue of this relation usually fails for put options: The left-hand
side of (1.17) can only be bounded by its intrinsic value (K — )T ifr < 0. If the
intrinsic value of a put or call option is positive, then one says that the option is “in the
money". For 7' = K one speaks of an “at-the-money" option. Otherwise, the option
is “out of the money". <

In many situations, the universal arbitrage bounds (1.16) and (1.17) are in fact
attained, as illustrated by the following example.

Example 1.37. Take any market model with a single risky asset S = S! such that
the distribution of S under P is concentrated on {0, 1, ..., } with positive weights.
Without loss of generality, we may assume that S has under P a Poisson distribution
with parameter 1, i.e., S is P-a.s. integer-valued and

6_1
P[Szk]zﬁ fork=0,1,....
If we take r = 0 and m = 1, then P is a risk-neutral measure and the market model
is arbitrage-free. We are going to show that the upper and lower bounds in (1.16)
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are attained for this model by using Remark 1.35. To this end, consider the measure

~

P € &P which is defined by its density

~

dp I
ap = ¢ s=n

We get -
E[S—-K)"]=0-K"=@m@-K)",

so that the lower bound in (1.16) is attained, i.e., we have
ninf((S - K)+) = (7 — K)+-

To see that also the upper bound is sharp, we define

2n(k) = <e— f) T ) + (= Dl-e-T (), k=0.1,...
n

It is straightforward to check that
dP, := g,(S)dP

defines a measure P, € # such that

~ K\™"
EJJ(S—K)T]= (1 - —> :
n
By sending n 1 oo, we see that also the upper bound in (1.16) is attained:
Tw((S— K)T) =

Furthermore, the put-call parity (1.10) shows that the universal bounds (1.17) for put
options are attained as well. <

1.4 Complete market models

Our goal in this section is to characterize the particularly transparent situation in which
all contingent claims are attainable.

Definition 1.38. An arbitrage-free market model is called complete if every contingent
claim is attainable.

In every market model, the following inclusion holds for each P* € #:

V={5.5 | EeRM ) cL(Q,0(5,...,59), P¥)
c Lo, F, P =L%Q, F, P);
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see Appendix A.7 for the definition of L?-spaces. If the market is complete then all of
these inclusions are in fact equalities. In particular, ¥ coincides with o (S 1, s4 )
modulo P-null sets, and every contingent claim coincides P-a.s. with a derivative of
the traded assets. Since the linear space V is finite-dimensional, it follows that the
same must be true of LO(Q, F, P). But this means that the model can be reduced to
a finite number of relevant scenarios. This observation can be made precise by using
the notion of an atom of the probability space (2, ¥, P). Recall that a set A € ¥ is
called an atom of (2, &, P),if P[A] > O and if each B € ¥ with B C A satisfies
either P[B]=0or P[B] = P[A].

Proposition 1.39. Forany p € [0, 0o], the dimension of the linear space L (2, ¥, P)

is given by
dim L (2, ¥, P) (1.18)
= sup {n € N | Apartition A', ..., A" of Qwith A" € ¥ and P[A"] > 0}.

Moreover, n := dim L?(Q2, ¥, P) < oo if and only if there exists a partition of Q
into n atoms of (2, F, P).

Proof. Suppose that there is a partition A!,..., A" of Q such that A’ € F and
Pl Al ] > 0. The corresponding indicator functions IA1 R | 4n can be regarded as
linearly independent vectors in L? := LP(Q2, ¥, P). Thus dim L? > n. Conse-
quently, it suffices to consider only the case in which the right-hand side of (1.18) is a
finite number, ng. If A!, ..., A" isa corresponding partition, then each A is an atom
because otherwise nog would not be maximal. Thus, any Z € L? is P-a.s. constant on

each A’. If we denote the value of Z on A’ by 7/, then

1o
Z = Zzi IA,. P-as.
i=1

Hence, the indicator functions IA1 R | ) form a basis of L?, and this implies
dim L? = ny. O

Theorem 1.40. An arbitrage-free market model is complete if and only if there ex-
ists exactly one risk-neutral probability measure, i.e., if |P| = 1. In this case,
dim LY%Q, F, P) <d + 1.

Proof. 1If the model is complete, then the indicator I, of each set A € F is an
attainable contingent claim. Hence, Corollary 1.34 implies that P*[ A] = E*[I n
is independent of P* € £. Consequently, there is just one risk-neutral probability
measure.

Conversely, suppose that > = {P*}, and let C be a bounded contingent claim, so
that E*[ C ] < oo. Then C has the unique arbitrage-free price E*[ C/(1 4+ r) ], and
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Corollary 1.34 implies that C is attainable. It follows that L°°(€2, ¥, P) is contained
in the linear space 'V of all possible portfolio values. This implies that

dimL>®(Q, F,P) <dimV <d+1.
Hence, we conclude from Proposition 1.39 that (2, ', P) has at most d + 1 atoms.

But then every contingent claim must be bounded and, in turn, attainable. O

Example 1.41. Consider the simple situation where the sample space €2 consists of
two elements wt and w™, and where the measure P is such that

pi=Pl{o"}1€ D).

We assume that there is one single risky asset, which takes at time t = 1 the two values
b and a with the respective probabilities p and 1 — p, where a and b are such that
0<a<b:

S(wh) =b

I=p S(w ) =a

This model does not admit arbitrage if and only if
7(1+7r) e {E[S1|P~P)={pb+(1-Pa|pe©D}=(@b); (119

see also Example 1.8. In this case, the model is also complete: Any risk-neutral
measure P* must satisfy

n(1+r)=E*[S]=p*b+ (1 - pHa,
and this condition uniquely determines the parameter p* = P*[ {1} ] as

y nwl+r)—a
B b—a
Hence |#| = 1, and completeness follows from Theorem 1.40. Alternatively, we can

directly verify completeness by showing that a given contingent claim C is attainable
if (1.19) holds. Observe that the condition

Clw)=&"S%w) +£S(@) =& +7r) +&S(w) forallw e Q

e (0, 1).

is a system of two linear equations for the two real variables £° and £. The solution is
given by

_ Cw") — C(w) and 50 _ C(w )b —C(wha

§ b—a b—-—a)y(l+r)
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Therefore, the unique arbitrage-free price of C is

C(a)"‘).n(l—i—r)—a C(w_).b—n(l—l—r)

O)=7T-£=
) =7-¢ 1+r b—a 1+r b—a

For a call option C = (S — K )T with strike K € [a, b], we have

b—K b—Kya 1
.71’_

(5=~ K)") =3 b—a 1+r

(1.20)

Note that this price is independent of p and increasing in r, while the classical dis-
counted expectation with respect to the “objective” measure P,

E[ Cc ]zp(b—K)
1+r 1+r

’

is decreasing in r and increasing in p.

In this example, one can illustrate how options can be used to modify the risk of a
position. Consider the particular case in which the risky asset can be bought at time
t = 0 for the price ¥ = 100. At time ¢ = 1, the price is either S(w') = b = 120 or
S(w™) = a = 90, both with positive probability. If we invest in the risky asset, the
corresponding returns are given by

R(S)(w") =420% or R(S)(w )= —10%.

Now consider a call option C := (S — K)™ with strike K = 100. Choosing r = 0,
the price of the call option is

20
m(C) = 3 ~ 6.67

from formula (1.20). Hence the return

(S-K)"-=(0)

R(C) =
©) 2O)
on the initial investment 7 (C) equals
20 — n(C
RO ") = 2O _ 4200%
7 (C)
or
RO ) = 2D 1009
w = - = — ,
7(C) ’

according to the outcome of the market at time # = 1. Here we see a dramatic increase
of both profit opportunity and risk; this is sometimes referred to as the leverage effect
of options.
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On the other hand, we could reduce the risk of holding the asset by holding a
combination ~
Ci=K-5T+S

of a put option and the asset itself. This “portfolio insurance” will of course involve an
additional cost. If we choose our parameters as above, then the put-call parity (1.10)
yields that the price of the put option (K — S)* is equal to 20/3. Thus, in order to
hold both § and a put, we must invest the capital 100 4+ 20/3 at time = 0. At time
t = 1, we have an outcome of either 120 or of 100 so that the return of C is given by

R(C)(w") = +12.5% and R(C)(0™) = —6.25%. &

1.5 Geometric characterization of arbitrage-free models

The “fundamental theorem of asset pricing” in the form of Theorem 1.6 states that a
market model is arbitrage-free if and only if the origin is contained in the set

d
My(Y, P) :={EQ[Y] | o~ P, %isbounded, EQ[|Y|]<oo}C]Rd,

where Y = (Y, ..., Y¥)is the random vector of discounted net gains defined in (1.2).
The aim of this section is to give a geometric description of the set M (Y, P) as well
as of the larger set

MY, P):={EglY]| Q~ P, Eg[|Y|] <o0}.
To this end, it will be convenient to work with the distribution
w:=Poy!
of Y with respect to P. That is, 4 is a Borel probability measure on R such that
u(A) = PlY € A] foreach Borel set A C RY,

If v is a Borel probability measure on R such that [ Iylv(dy) < oo, we will call
[ yv(dy) its barycenter.

Lemma 1.42. We have
d
My (Y, P) = My(p) := {/yv(dy) ‘ VA, d—” is bounded,/lylv(dy) < oo},
I

and

mr. )= i={ [ yvan | v [ i <oo).
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Proof. If v ~ pu is a Borel probability measure on R?, then the Radon-Nikodym
derivative of v with respect to . evaluated at the random variable Y defines a probability
measure Q ~ P on (2, ¥):

do . d_v
d—P(a)) = i (Y(a))).

Clearly, Eg[Y ] = fy v(dy). This shows that M(u) € M(Y, P) and Mp(u) C
My (Y, P). ~

Conversely, if Q is a given probability measure on (€2, ) which is equivalent
to P, then the Radon-Nikodym theorem in Appendix A.2 shows that the distribution
¥ := Qo Y~! mustbe equivalent to u, whence M(Y, P) S M(u). Moreover,
it follows from Proposition A.11 that the density dv/du is bounded if dQ/dP is
bounded, and so M (Y, P) C M} (1) also follows. I

By the above lemma, the characterization of the two sets My (Y, P) and M (Y, P)
is reduced to a problem for Borel probability measures on R¢. Here and in the sequel,
we do not need the fact that u is the distribution of the lower bounded random vector Y
of discounted net gains; our results are true for arbitrary u such that f ly| m(dy) < oo;
see also Remark 1.7.

Definition 1.43. The support of a Borel probability measure v on R? is the smallest
closed set A C R? such that v(A) = 0, and it will be denoted by supp v.

The support of a measure v can be obtained as the intersection of all closed sets A
with v(A€) =0, i.e,
suppv = ﬂ A.

A closed
V(A€)=0

We denote by

T'() := conv (supp )
n n

= { Zak)’k ‘ ap >0, Zakzl, Yk € Supp u, nEN}
k=1 k=1

the convex hull of the support of . Thus, I'() is the smallest convex set which
contains supp u; see also Appendix A.1.

Example 1.44. Take d = 1, and consider the measure

1
m=3 (61 +6841).

Clearly, the support of p is equal to {—1, +1} and so I'(x) = [—1, +1]. A measure
v is equivalent to u if and only if

v=oad_1+ (1 —a)dig
for some o € (—1, +1). Hence, My () = M () = (—1, +1). <&
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The previous example gives the correct intuition, namely that one always has the
inclusions

Mp(u) C M) C I'(w).

But while the first inclusion will turn out to be an identity, the second inclusion
is usually strict. Characterizing M () in terms of I'(i) will involve the following
concept:

Definition 1.45. The relative interior of a convex set C C R is the set of all points
x € C such that for all y € C there exists some & > 0 with

x—&(y—x)eC.
The relative interior of C is denoted ri C.

If the convex set C has non-empty topological interior int C, thenri C = int C, and
the elementary properties of the relative interior collected in the following remarks
become obvious. This applies in particular to the set I'() if the non-redundance
condition (1.8) is satisfied. For the general case, proofs of these statements can be
found, for instance, in §6 of [166].

Remark 1.46. Let C be a non-empty convex subset of R?, and consider the affine
hull aff C spanned by C, i.e., the smallest affine set which contains C. If we identify
aff C with some R”, then the relative interior of C is equal to the topological interior
of C, considered as a subset of aff C = R”". In particular, each non-empty convex set
has non-empty relative interior. &

Remark 1.47. Let C be a non-empty convex subset of R? and denote by C its closure.
Then, if x eriC,

ax+ (1—a)yeriC forally e Candallx € (0, 1]. (1.21)

In particular, ri C is convex. Moreover, the operations of taking the closure or the
relative interior of a convex set C are consistent with each other:

nC=rC and 1riC=C. (1.22)
&

After these preparations, we can now state the announced geometric character-
ization of the set Mj (). Note that the proof of this characterization relies on the
“fundamental theorem of asset pricing” in the form of Theorem 1.6.

Theorem 1.48. The set of all barycenters of probability measures v ~  coincides
with the relative interior of the convex hull of the support of . More precisely,

Mp(n) = M(p) =ril'(p).
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Proof. In a first step, we show the inclusion 1i ' () € Mp (). Suppose we are given
m € ri'(u). Let it denote the translated measure

[L(A) := (A +m) for Borel sets A C R?

where A+m = {x +m | x € A}. Then My(x) = Mp(t) — m, and analogous
identities hold for M (&t) and " (). It follows that there is no loss of generality in
assuming that m = 0, i.e., we must show that 0 € My () if 0 € ri ' ().

We claim that O € ri I'(w) implies the following “no-arbitrage” condition:

If& e RY is such that & - y > O for pn-a.e. y,then& - y =0 for pu-a.e. y. (1.23)

If (1.23) is false, then we can find some & € R? such that & - y > 0 for u-a.e. y but
u({y | €-y>38}) > 0forsome § > 0. In this case, the support of u is contained in
the closed set { y | £ - y > 0} but not in the hyperplane { y | £ - y = 0}. We conclude
that &£ - y > 0 for all y € supp u and that there exists at least one y* € supp u such
that & - y* > 0. In particular, y* € T'(u) so that our assumption m = 0 € riI"(n)
implies the existence of some ¢ > 0 such that —ey* € I'(x). Consequently, —ey*
can be represented as a convex combination

_8y*=a1y1++anyn
of certain yy, ..., y, € supp . It follows that
0>—e&-y" =1 -y1+ -+ -y,

in contradiction to our assumption that £ - y > 0 for all y € supp u. Hence, (1.23)
must be true.

Applying the “fundamental theorem of asset pricing” in the form of Theorem 1.6 to
Q :=R4, P := p, and to the random variable Y (y) := y, yields a probability measure
pw* ~ p whose density dpu*/du is bounded and which satisfies [ |y| u*(dy) < oo
and f y u*(dy) = 0. This proves the inclusion ri ['(n) € Mp(u).

Clearly, Mp(n) C M(w). So the theorem will be proved if we can show the
inclusion M () C ril'(u). To this end, suppose by way of contradiction that v ~ u
is such that

/|y|v(dy) <oo and m :=/yv(dy) ¢ril ().

Again, we may assume without loss of generality that m = 0. Applying the separating
hyperplane theorem in the form of Proposition A.1 with C := riI'(u) yields some
£ € RYsuchthat £ -y > Oforall y € ril’(n) and & - y* > 0 for at least one
y* € ril'(in). We deduce from (1.21) that £ - y > 0 holds also for all y € I'(u).
Moreover, & - yo must be strictly positive for at least one yy € supp n. Hence,

£-y>0forp-ae yeR! and u({yl&-y>0})>0. (1.24)
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By the equivalence of w and v, (1.24) is also true for v instead of u, and so

em=t [yvan=[syvan=o
in contradiction to our assumption that m = 0. We conclude that M (u) C ri["'(u). O

Remark 1.49. Note that Theorem 1.48 does not extend to the set
Mww={/www]v«umd/wwww<w}

Already the simple case pu := %(8_1 + 841) serves as a counterexample, because
here M(u) = [—1, +1] whileri["'() = (—1, +1). In this case, we have an identity
between M (n) and I' (). However, also this identity fails in general as can be seen
by considering the normalized Lebesgue measure A on [—1, +1]. For this choice one
finds M(A) = (—1, +1) but T() = [—1, +1]. &

From Theorem 1.48 we obtain the following geometric characterization of the
absence of arbitrage.

Corollary 1.50. Let w be the distribution of the discounted price vector S/(1 +r) of
the risky assets. Then the market model is arbitrage-free if and only if the price system
7 belongs to the relative interior ri I" (1) of the convex hull of the support of .

1.6 Contingent initial data

The idea of hedging contingent claims develops its full power only in a dynamic setting
in which trading may occur at several times. The corresponding discrete-time theory
constitutes the core of these notes and is presented in Chapter 5. The introduction of
additional trading periods requires more sophisticated techniques than those we have
used so far. In this section we will introduce some of these techniques in an extended
version of our previous market model in which initial prices, and hence strategies,
are contingent on scenarios. In this context, we are going to characterize the absence
of arbitrage strategies. The results will be used as building blocks in the multiperiod
setting of Part II; their study can be postponed until Chapter 5.

Suppose that we are given a o-algebra ¥y C F which specifies the information
that is available to an investor at time t = 0. The prices for our d + 1 assets at time
0 will be modelled as non-negative F)-measurable random variables SO, Sé, ey Sg .
Thus, the price system 7 = (7%, 7!, ..., 7¢) of our previous discussion is replaced
by the vector

So=(8,...,59.
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The portfolio £ chosen by an investor at time ¢ = 0 will also depend on the information
available at time 0. Thus, we assume that

E=% .89

is an Fp-measurable random vector. The asset prices observed at time t = 1 will be
denoted by
S =(8,s1,...,80).

They are modelled as non-negative random variables which are measurable with re-
spect to a o-algebra ¥ such that ¥ C 1 C . The o-algebra 7 describes the
information available at time 1, and in this section we can assume that & = £7.

A riskless bond could be included by taking Sg = 1| and by assuming S? to be
Fo-measurable and P-a.s. strictly positive. However, in the sequel it will be sufficient
to assume that 58 is Fp-measurable, S? is F1-measurable, and that

P[S)>0and S} >0]=1 (1.25)
Thus, we can take the 0" asset as numéraire, and we denote by

oS

=—, i=1,...,d,t=0,1,
t St()

the discounted asset prices and by
Y=X;—Xo
the vector of the discounted net gains.

Definition 1.51. An arbitrage opportunity is a portfolio £ such that & - Sy < 0,
£.5,>0P-as.,and P[E-S; >0]>0.

By our assumption (1.25), any arbitrage opportunity £ = (£°, £) satisfies
E-Y>0P-as. and P[£-Y >0]>0. (1.26)

In fact, the existence of a d-dimensional Fy-measurable random vector & with (1.26)
is equivalent to the existence of an arbitrage opportunity. This can be seen as in
Lemma 1.3.
The space of discounted net gains which can be generated by some portfolio is
given by
K:=]e-Y &L, Fo, P;R ).

Here, LO(Q, Fo, P: R4 ) denotes the space of R9-valued random variables which are
P-a.s. finite and £p-measurable modulo the equivalence relation (A.21) of coincidence
up to P-null sets. The spaces L? (L2, %o, P; ]Rd) for p > 0 are defined in the same
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manner. We denote by Lﬁ = Lﬁ(Q, F1, P) the cone of all non-negative elements
in the space L? := LP (2, ¥1, P). With this notation, writing

K N LY = {0}
is shorthand for the absence of arbitrage opportunities. We will denote by
0
K — L

the convex cone of all Z € L which can be written as the difference of some -V € X
and some U € Lg.
The following definition involves the notion of the conditional expectation

EolZ| %01

of a random variable Z with respect to a probability measure Q, given the o -algebra
Fo C F; see Appendix A.2 and the references therein. If Z = (Z 1 ..., Z") is a
random vector, then Eg[ Z | F¢ ] is shorthand for the random vector with components
EolZ! | Fol,i=1,...,n.

Definition 1.52. A probability measure Q satisfying
EQ[Xﬁ] <oo fori=1,...,dandt =0,1

and
Xo=Eol[X1|Fo] Q-as.

is called a risk-neutral measure or martingale measure. We denote by J the set of all
risk-neutral measures P* which are equivalent to P.

Remark 1.53. The definition of a martingale measure Q means that for each asset
i =0,...,d, the discounted price process (X;'),:o,l is a martingale under Q with
respect to the o-fields (#7):—0,1. The systematic discussion of martingales in a multi-
period setting will begin in Section 5.2. The martingale aspect will be crucial for the
theory of dynamic hedging in Part II. &

As the main result of this section, we can now state an extension of the “fundamental
theorem of asset pricing” in Theorem 1.6 to our present setting.

Theorem 1.54. The following conditions are equivalent:
(@) X NLY = {0}
(b) (X —LYNLY ={0}.
(¢) There exists a measure P* € P with a bounded density d P*/d P.

d) P # 0.
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Proof. (d)=(a): Suppose by way of contradiction that there exist both a P* € £ and
some & € LO(Q Fo, P; R?) with non-zero payoff £ - ¥ € K N L0 For large enough
c>0,80 | £l<c }S will be bounded, and the payoff £ . Y W111 still be non-zero

and in KX N L0 . However,
E*[E9.Y=E[£9 EY | %] =

which is the desired contradiction.

(a)<(b): It is obvious that (a) is necessary for (b). In order to prove sufficiency,
suppose that we are given some Z € (K — L9 n LO Then there exists a random
variable U > 0 and a random vector & € LO(Q, Fo, P; R4 ) such that

0<Z=£-Y-U.

This implies that £ - ¥ > U > 0, which, according to condition (a), can only happen
if £ - Y = 0. Hence, also U = 0 and in turn Z = 0.

(b) =(c): This is the difficult part of the proof. The assertion will follow by
combining Lemmas 1.56, 1.57, 1.59, and 1.67. O

Remark 1.55. If Q is discrete, or if there exists a decomposition of 2 in countable
many atoms of (2, o, P), then the martingale measure P* can be constructed by
applying the result of Theorem 1.6 separately on each atom. In the general case, the
idea of patching together conditional martingale measures would involve subtle argu-
ments of measurable selection; see [51]. Here we present a different approach which
is based on separation arguments in L' (P). It is essentially due to W. Schachermayer
[175]; our version uses in addition arguments by Y. Kabanov and C. Stricker [122]. <

We start with the following simple lemma, which takes care of the integrability
condition in Definition 1.52.

Lemma 1.56. For the proof of the implication (b) = (c) in Theorem 1.54, we may
assume without loss of generality that

E[1X;|] <00 fort=0,1. (1.27)

Proof. Define a probability measure P by

dP
dP
where ¢ is chosen such that the right-hand side integrates to 1. Clearly, (1.27) holds
for P. Moreover, condition (b) of Theorem 1. 54 is satisfied by P if and only if 1t is

satisfied by the equivalent measure P. If P* € & is such that the density d P*/d Pis
bounded, then so is the density

= c(1+1Xol + 1X11) "

dP* _dpP* dP
dP ~ 4P dP’
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Therefore, the implication (b) =(c) holds for P if and only if it holds for P. O

From now on, we will always assume (1.27). Our goal is to construct a suitable

Z € L such that
dP*  Z

dP "~ E[Z]

defines an equivalent risk-neutral measure P*. The following simple lemma gives a
criterion for this purpose, involving the convex cone

e:=xK-LYHnLh
Lemma 1.57. Suppose ¢ > 0 and Z € L are such that
E[ZW]<c forallW € C.
Then:
(@) E[ZW]<0forall W € C, i.e., we can take ¢ = 0.
(b) Z >0 P-a.s.
(c) If Z does not vanish P-a.s., then

Qo  z

dP "~ E[Z]

defines a risk-neutral measure Q < P.

Proof. (a): Note that C is a cone, i.e., W € C implies that W € C for all « > 0.
This property excludes the possibility that E[ ZW ] > 0 for some W € C.

(b): C contains the function W := —I{ Z<0)" Hence, by part (a),

E[Z 1=E[ZW]<0O.

(c): Forall & € L®(Q, Fy, P;RY) and « € R we have a& - ¥ € € by our
integrability assumption (1.27). Thus, a similar argument as in the proof of (a) yields
E[Z&-Y]=0. Since £ is bounded, we may conclude that

O0=E[Z&-Y|=E[£-E[ZY | Fo]].
As & is arbitrary, this yields E[ ZY | Fo] = 0 P-almost surely. Proposition A.12 now
implies

1
EolY | Fol=———E[ZY | Fo] =0 -a.s.,
olY | Fol ELZ 70 [ | Fol Q-as

which concludes the proof. O
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In view of the preceding lemma, the construction of risk-neutral measures is re-
duced to the construction of elements of the set

Z:={ZelL®|0<Z<1, P[Z>0]>0, and E[ZW]<O0forall WeC}.

In the following lemma, we will construct such elements by applying a separation
argument suggested by the condition

enLl =10},

which follows from condition (b) of Theorem 1.54. This separation argument needs the
additional assumption that € is closed in L!. Showing that this assumption is indeed
satisfied in our situation will be one of the key steps in our proof; see Lemma 1.67
below.

Lemma 1.58. Assume that C is closed in L' and satisfies @ N L = {0}. Then for
each non-zero F € Lfr there exists some Z € Z such that E{ FZ] > 0.

Proof. Let B := {F'} so that B N C = @, and note that the set C is non-empty, convex
and closed. Thus we may apply the Hahn—Banach separation theorem in the form of
Theorem A.56 to obtain a continuous linear functional £ on L' such that

sup £(W) < £(F).

Wee
Since the dual space of L! can be identified with L*°, there exists some Z € L™
such that £(F) = E[ FZ ] forall F € L'. We may assume without loss of generality
that || Z||coc < 1. By construction, Z satisfies the assumptions of Lemma 1.57, and
so Z € Z. Moreover, E[ FZ] = £(F) > 0 since the constant function W = 0 is
contained in C. O

We will now use an exhaustion argument to conclude that Z contains a strictly
positive element Z* under the assumptions of Lemma 1.58. After normalization, Z*
will serve as the density of our desired risk-neutral measure P* € £.

Lemma 1.59. Under the assumptions of Lemma 1.58, there exists Z* € Z with
Z* >0 P-a.s.

Proof. As a first step, we claim that Z is countably convex: If (ax)ren is a sequence
of non-negative real numbers summing up to 1, and if Z*) € Z for all k, then

o
Z = ZakZ(k) e Z.
k=1

Indeed, for W € C

0.¢]
Y laz®wl < wielL'
k=1
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and so Lebesgue’s dominated convergence theorem implies that

o0
E[ZW ] :ZakE[Z(k)W] <0.
k=1

For the second step, let
c:=sup{P[Z>0]|ZeZ}.
We choose Z™ e Z such that P[ Z"™ > 0] — ¢. Then

o0
Z* = Zz—"z<”> A
n=1

by step one, and

(e8]
(z*>0}={J{z" >o0}.
n=1
Hence P[Z* > 0] = c.
In the final step, we show that ¢ = 1. Then Z* will be as desired. Suppose by way

of contradiction that P[Z* = 0] > 0, so that W := I{ 7=0) i1s a non-zero element of

L}r. Lemma 1.58 yields Z € Z with E{ WZ ] > 0. Hence,
P[{Z >0}Nn{Z*=0}]>0,

and so |
P|:§(Z—|—Z*) >0:| >P[Z*>0]=c,

in contradiction to the maximality of P[Z* > 0]. O

Thus, we have completed the proof of the implication (b) =(c) of Theorem 1.54
up to the requirement that € is closed in L'. Let us pause here in order to state
general versions of two of the arguments we have used so far. The first is known as
the Halmos—Savage theorem. It can be proved by a straightforward modification of
the exhaustion argument used in the proof of Lemma 1.59.

Theorem 1.60. Let @ be a set of probability measures which are all absolutely con-
tinuous with respect to a given measure P. Suppose that @ = P in the sense that
Q[A] = 0forall Q € Q implies that P[A] = 0. Then there exists a countable
subfamily @ C Q which satisfies @ ~ P.

An inspection of Lemmas 1.57, 1.58, and 1.59 shows that the particular structure
of C = (K — LS)F) NL! was only used for part (c) of Lemma 1.57. All other arguments
relied only on the fact that € is a closed convex cone in L' that contains all bounded
negative functions and no non-trivial positive function. Thus, we have in fact proved
the following Kreps—Yan theorem, which was obtained independently in [199] and
[137].
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Theorem 1.61. Suppose C is a closed convex cone in L' satisfying
CD>—-LY and enL)={0}.
Then there exists Z € L*° such that Z > 0 P-a.s. and E{fW Z] <0 forall W € C.

Let us now turn to the closedness of our set C = (K — L(J)r) NL'. The following
example illustrates that we cannot expect C to be closed without assuming the absence
of arbitrage opportunities.

Example 1.62. Let P be the Lebesgue measure on the Borel field #7 of Q2 = [0, 1],
and take o = {¢, 2} and Y (w) = w. This choice clearly violates the no-arbitrage
condition, i.e., we have KX N LS)r =% {0}. The convex set C = (K — LQL) NL'isa
proper subset of L!. More precisely, € does not contain any function F € L' with
F > 1: If we could represent F as £ - Y — U for a non-negative function U, then it
would follow that

E-Y=F4+UZ=1,

which is impossible for any £&. However, as we show next, the closure of C in L!
coincides with the full space L'. In particular, € cannot be closed. Let F € L' be
arbitrary, and observe that

F,:=(F* A n)l[l 0o F~

converges to F in L' as n 4 co. Moreover, each F), belongs to C as

(F* An)I[l - nt.v.

Consequently, F is contained in the L'-closure of C. <&

In the special case Fo = {¢J, Q}, we can directly go on to the proof that C is
closed, using a simplified version of Lemma 1.67 below. In this way, we obtain an
alternative proof of Theorem 1.6. In the general case we need some preparation. Let
us first prove a “randomized” version of the Bolzano—Weierstra3 theorem. It yields a
simple construction of a measurable selection of a convergent subsequence of a given
sequence in LY, Fo, P; RY).

Lemma 1.63. Let (£,) be a sequence in L°%(2, Fo, P; R?) with liminf, |£,| < oco.
Then there exists € € LO(Q, %y, P; R?) and a strictly increasing sequence (oy,) of
Fo-measurable integer-valued random variables such that

&6, () (@) = E(w)  for P-a.e. w € Q.

Proof. Let A(w) := lim inf,, |§, ()|, and define 0,,, := m on the P-null set {A = oo}.
On {A < oo} we let cr{) := 1, and we define Fy-measurable random indices 0,2 by

m

0 . 0 1
o0 = inf{n > o0, ’ el —A]=— 1 m=23....
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We use recursiononi = 1, ..., d to define the i component & I of the limit £ and to

extract a new subsequence o,, of random indices. Let

i:l. . f i, ,
3 lnIPTgal 50;[1

which is already defined if i = 1. This § i can be used in the construction of o/ : Let
o :=1land, form=2,3,...,

o (@) = inf{a,i-l(w \ oy (@) >0, (@) and |, (@) — & ()] < % }

Then o, := o yields the desired sequence of random indices. O]

It may happen that
E-Y=£&(£.Y P-as,

although £ and E are two different portfolios in LO(Q, Fo, P: RY).

Remark 1.64. We could exclude this possibility by the following assumption of non-
redundance:

E.Y=E.Y Pas. = £=E¢ P-as. (1.28)
Under this assumption, we could immediately move on to the final step in Lemma 1.67.

<&

Without assumption (1.28), it will be convenient to have a suitable linear space
N~ of “reference portfolios” which are uniquely determined by their payoff. The
construction of N is the purpose of the following lemma. We will assume that the
spaces L% and L%(Q, Fo, P; R?) are endowed with the topology of convergence in
P-measure, which is generated by the metric d of (A.22).

Lemma 1.65. Define two linear subspaces N and N+ of L°(Q2, %o, P; R?) by
N:={neL%Q, Fo, ;R | 0¥ =0 P-as},

Nt = {g e LY, Fo, P; RY |€-n=0 P-as. foralln € N}.

(a) Both N and N+t are closed in LO(Q2, Fo, P: RY) and, in the following sense,
invariant under the multiplication with scalar functions g € L°(Q, o, P): If
neNandté € N*, then gn € N and gé € N*.

(b) IfE e Nt and&-Y =0 P-a.s., then€ =0,ie., NN N+ = {0}.

(c) Every &€ € L2, o, P; RY) has a unique decomposition € = n + &+, where
neNand&t e Nt
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Remark 1.66. For the proof of this lemma, we will use a projection argument in
Hilbert space. Let us sketch a more probabilistic construction of the decomposition
& = n + &L, Take a regular conditional distribution of ¥ given %y, i.e., a stochastic
kernel K from (2, Fo) to R? such that K (w, A) = P[Y € A | Fo](w) for all Borel
sets A C R? and P-ae. o (see, e.g., §44 of [19]). If one defines §L(a)) as the
orthogonal projection of &£ (w) onto the linear hull L (w) of the support of the measure
K(w, "), then n := & — £+ satisfies - Y = 0 P-as., and any 7 with the same
property must be P-a.s. perpendicular to L(w). However, carrying out the details
of this construction involves certain measurability problems; this is why we use the
projection argument below. <&

Proof. (a): The closedness of N and N follows immediately from the metrizability
of L%, Fo, P; RY) (see Appendix A.7) and the fact that every sequence which
converges in measure has an almost-surely converging subsequence. The invariance
under the multiplication with Fp-measurable scalar functions is obvious.

(b): Suppose that & € N N N1 Then taking n := £ in the definition of N yields
£-&=16]> =0 P-as.

(c): Any given & € LO(Q, %o, P; R?) can be written as

Ew) =t (e +-- + & (w) ey,

where e; denotes the i™ Euclidean unit vector, and where & () is the i™ component
of £(w). Consider ¢; as a constant element of LO(Q, Fo, P; R4 ), and suppose that we
can decompose ¢; as

ei =n; + eil where n; € N and eiL e Nt (1.29)

Since by part (a) both N and N are invariant under the multiplication with Fo-
measurable functions, we can then obtain the desired decomposition of £ by letting

d d
n) =) E@ni@ and & () =) E©We ().

i=1 i=1

Uniqueness of the decomposition follows from N N N L ={0}.

Itremains to construct the decomposition (1.29) of ¢;. The constant ¢; is an element
of the space H := L2(2, Fo, P; RY), which becomes a Hilbert space if endowed with
the natural inner product

(n, &) :=E[n-£1, n, &eL*Q, Fo, P;RY).

Observe that both N N H and N N H are closed subspaces of H, because con-
vergence in H implies convergence in L%, Fy, P; RY). Therefore, we can define
the corresponding orthogonal projections

7 H—> NNH and 7nt:H—> NtNH.
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Thus, letting n; := 7%e;) and el.l := 7+ (e;) will be the desired decomposition (1.29),
once we know that ¢; = 7%(¢;) + 1 (e;). To prove this, we need only show that
¢ = e¢; — m%(¢;) is contained in N+. We assume by way of contradiction that ¢ is
not contained in N N H. Then there exists some n € N such that P[{ - > 0] > 0.
Clearly,

M=k 0 ni<e)

is contained in N N H for each ¢ > 0. But if ¢ is large enough, then 0 < E[7-¢ ] =
(77, £) g, which contradicts the fact that ¢ is by construction orthogonal to N N H. [

After these preparations, we can now complete the proof of Theorem 1.54 by
showing the closedness of € = (K — L(J)r) N L', which is an immediate consequence
of the following lemma. Recall that we have already proved the equivalence of the
conditions (a) and (b) in Theorem 1.54.

Lemma 1.67. If X N LY = {0}, then X — LY is closed in L.

Proof. Suppose W, € (K — Lg) converges in L? to some W as n 1 co. By passing
to a suitable subsequence, we may assume without loss of generality that W,, — W
P-almost surely. We can write W,, =&, -Y — U, for &, € N+tand U, € L(j_.

In a first step, we will prove the assertion given the fact that

liminf |§,] < o0 P-as., (1.30)
ntoo

which will be established afterwards. Assuming (1.30), Lemma 1.63 yields
Fo-measurable integer-valued random variables 07y < o2 < --- and some & €
Lo(a), Fo, P; Rd) such that P-a.s. &, — &. It follows that

Uy, =&, Y — Wy, — &Y —-W=U P-as, (1.31)

sothat W=¢&-Y —U e X — LY.

Let us now show that A := {liminf, |§,| = +o0} satisfies P[ A] = 0 as claimed
in (1.30). Using Lemma 1.63 on ¢, := &,/|&,| yields Fo-measurable integer-valued
random variables 71 < 70 < --- and some ¢ € L%w, %o, P: Rd) such that P-a.s.
¢, — ¢. The convergence of (W,) implies that

UTn W'L’n
01, 22 =1, (60 ¥ - I&,,I> —>1,¢-Y Pas.

Hence, our assumption X N LY = {0} yields (I,¢)-Y = 0. Below we will show that
IAg“ IS Nl, so that
=0 P-as.onA. (1.32)

On the other hand, the fact that |£,| = 1 P-a.s. implies that || = 1 P-a.s., which can
only be consistent with (1.32) if P[A] = 0.
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It remains to show that [,{ € N L. To this end, we first observe that each ¢,
belongs to N since, for each € N,

o0

Z (1= k}|§|€k n=0 P-as.

=1

The closedness of N+ implies ¢ € N+, and A € % yields I,¢e€ N+, O

If in the proof of Lemma 1.67 W,, = &, - Y for all n, then U = 0 in (1.31), and
W = lim, W, is itself contained in J. We thus get the following lemma, which will
be useful in Chapter 5.

Lemma 1.68. Suppose that X N LY. = {0}. Then X is closed in L°.

In fact, it is possible to show that K is always closed in L9 see [193], [175]. But
this stronger result will not be needed here.

As an alternative to the randomized Bolzano—Weierstral3 theorem in Lemma 1.63,
we can use the following variant of Komlos’ principle of subsequences. 1t yields a
convergent sequence of convex combinations of a sequence in LY, Fo, P; RY), and
this will be needed later on. Recall from Appendix A.1 the notion of the convex hull

n n
convA:{Zaix,- )xieA,aizo,Zaizl,neN}
i=1

i=1
of a subset A of a linear space, which in our case will be Lo, Fo, P; RY).

Lemma 1.69. Ler (£,) be a sequence in LY(Q2, Fo, P; R?) such that sup,, &, < o0
P-almost surely. Then there exists a sequence of convex combinations

N, € conv{&,, &41,...}

which converges P-almost surely to some n € LO(Q, Fo, P; ]Rd).

Proof. We can assume without loss of generality that sup, |§,| < 1 P-a.s.; otherwise
we consider the sequence Sn = &,/ sup, |§n| Then (&,) is a bounded sequence
in the Hilbert space H := = LX(Q, Fo, P; R?). Since the closed unit ball in H is
weakly compact, the sequence (£,) has an accumulation point n € H; note that weak
sequential compactness follows from the Banach—Alaoglu theorem in the form of
Theorem A.62 and the fact that the dual H' of the Hilbert space H is isomorphic
to H itself. For each n, the accumulation point 7 belongs to the L?-closure G, of
conv{&,, £,41, ...}, due to the fact that a closed convex set in H is also weakly
closed; see Theorem A.59. Thus, we can find n, € conv{§,, &,+1, ...} such that

2 1
El|n. —nl"] = —.
n

This sequence (1),,) converges P-a.s. to 7. O
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Remark 1.70. The original result by Komlos [133] is more precise: It states that for
any bounded sequence (§,) in LY(Q, F, P; RY) there is a subsequence (&,,) which
satisfies a strong law of large numbers, i.e.,

exists P-almost surely; see also [195]. <&



Chapter 2
Preferences

In a complete financial market model, the price of a contingent claim is determined
by arbitrage arguments, without involving the preferences of economic agents. In an
incomplete model, such claims may carry an intrinsic risk which cannot be hedged
away. In order to determine desirable strategies in view of such risks, the preferences
of an investor should be made explicit, and this is usually done in terms of an expected
utility criterion.

The paradigm of expected utility is the theme of this chapter. We begin with a
general discussion of preference relations on a set X of alternative choices and their
numerical representation by some functional U on X. In the financial context, such
choices can usually be described as payoff profiles. These are defined as functions
X on an underlying set of scenarios with values in some set of payoffs. Thus we are
facing risk or even uncertainty. In the case of risk, a probability measure is given on
the set of scenarios. In this case, we can focus on the resulting payoff distributions.
We are then dealing with preferences on “lotteries”, i.e., on probability measures on
the set of payoffs.

In Sections 2.2 and 2.3 we discuss the conditions — or axioms — under which such
a preference relation on lotteries u can be represented by a functional of the form

/M(X) n(dx),

where u is a utility function on the set of payoffs. This formulation of preferences
on lotteries in terms of expected utility goes back to D. Bernoulli [22]; the axiomatic
theory was initiated by J. von Neumann and O. Morgenstern [155]. Section 2.4 char-
acterizes uniform preference relations which are shared by a given class of functions u.
This involves the general theory of probability measures on product spaces with given
marginals which will be discussed in Section 2.6.

In Section 2.5 we return to the more fundamental level where preferences are
defined on payoff profiles, and where we are facing uncertainty in the sense that no
probability measure is given a priori. L. Savage [174] clarified the conditions under
which such preferences on a space of functions X admit a representation of the form

U(X) = Eglu(X)]

where Q is a “subjective” probability measure on the set of scenarios. We are going to
concentrate on a robust extension of the Savage representation which was introduced
by L. Gilboa and D. Schmeidler [104]. Here the utility functional is of the form

UX) = QHgQ Eglu(X)],
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and it involves a whole class @ of probability measures on the set of scenarios. The
axiomatic approach to the robust Savage representation is closely related to the con-
struction of risk measures, which will be the topic of Chapter 4.

2.1 Preference relations and their numerical representation

Let X be some non-empty set. An element x € X will be interpreted as a possible
choice of an economic agent. If presented with two choices x, y € X, the agent might
prefer one over the other. This will be formalized as follows.

Definition 2.1. A preference order (or preference relation) on X is a binary relation
> with the following two properties.

o Asymmetry: If x > y,then y # x.

* Negative transitivity: If x > y and z € X, then either x > z or z > y or both
must hold.

Negative transitivity states that if a clear preference exists between two choices
x and y, and if a third choice z is added, then there is still a choice which is least
preferable (y if z > y) or most preferable (x if x > 7).

Definition 2.2. A preference order > on X induces a corresponding weak preference
order > defined by
XZYy &= yFa,

and an indifference relation ~ given by
x~y &= x>yandy > x.

Thus, x > y means that either x is preferred to y or there is no clear preference
between the two.

Remark 2.3. Itis easy to check that the asymmetry and the negative transitivity of >
are equivalent to the following two respective properties of >:

(a) Completeness: For all x, y € X, either y > x or x > y or both are true.
(b) Transitivity: If x > y and y > z, then also x > z.

Conversely, any complete and transitive relation > induces a preference order > via
the negation of >, i.e.,
y>=Xx &< Xty

The indifference relation ~ is an equivalence relation, i.e., it is reflexive, symmetric
and transitive. <&
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Definition 2.4. A numerical representation of a preference order > is a function
U : X — R such that
y>=x < U@ > Ux). 2.1

Clearly, (2.1) is equivalent to
yzx &= U@y =UW®).

Note that such a numerical representation U is not unique: If f is any strictly increasing
function, then U (x) := f (U (x)) is again a numerical representation.

Definition 2.5. Let > be a preference relation on X. A subset Z of X is called order
dense if for any pair x, y € X suchthatx > y thereexists some z € Z withx > z > y.

The following theorem characterizes those preference relations for which there
exists a numerical representation.

Theorem 2.6. For the existence of a numerical representation of a preference relation
> it is necessary and sufficient that X contains a countable, order dense subset Z. In
particular, any preference order admits a numerical representation if X is countable.

Proof. Suppose first that we are given a countable order dense subset Z of X. For
x e X,let

Z(x)={z€eZ|z>x} and Zx):={ze€Z|x >z}

The relation x > y implies that Z(x) C Z(y) and Z(x) D Z(y). If the strict relation
x > ¥y holds, then at least one of these inclusions is also strict. To see this, pick
z € Z withx > z > y,sothateither x > z > y or x > z > y. In the first case,
z € Z(x)\Z(y), while z € Z(y)\Z(x) in the second case.

Next, take any strictly positive probability distribution p on Z, and let

U= ) n@— ) n@.

z€Z(x) 7€Z(x)

By the above, U(x) > U(y) if and only if x > y so that U is the desired numerical
representation.

For the proof of the converse assertion take a numerical representation U and let
g denote the countable set

g:=|{la.blla,beQ, a<b, U '(a,b]) #0).

For every interval I € § we can choose some z; € X with U(z;) € I and thus define
the countable set

A={z;|1€g}

At first glance it may seem that A is a good candidate for an order dense set. However,
it may happen that there are x, y € X such that U(x) < U(y) and for which there
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isnoz € X with U(x) < U(z) < U(y). In this case, an order dense set must
contain at least one z with U(z) = U(x) or U(z) = U(y), a condition which cannot
be guaranteed by A.

Let us define the set C of all pairs (x, y) which do not admit any z € A with
Y >z > X:

C={x,»|x,yeX\A, y>xand Az€ Awithy >z > x}.

Then (x, y) € C implies the apparently stronger fact that we cannot find any z € X
such that y > z > x: Otherwise we could find a, b € Q such that

Ux)<a<U(z) <b<U(y),

so I := [a, b] would belong to ¢, and the corresponding z; would be an element of
A with y > z; > x, contradicting the assumption that (x, y) € C.

It follows that all intervals (U x),U (y)) with (x, y) € C are disjoint and non-
empty. Hence, there can be only countably many of them. For each such interval J we
pick now exactly one pair (x”, y/) € C such that U(x”) and U (y”) are the endpoints
of J, and we denote by B the countable set containing all x’ and all y”’.

Finally, we claim that Z := A U B is an order dense subset of X. Indeed, if x,
y € X\Z with y > x, then either there is some z € A such that y > z > x, or
(x,y) € C. In the latter case, there will be some z € B with U(y) = U(z) > U (x)
and, consequently, y > z > x. O

The following example shows that even in a seemingly straightforward situation,
a given preference order may not admit a numerical representation.

Example 2.7. Let > be the usual lexicographical order on X := [0, 1] x [0, 1], i.e.,
(x1,x2) > (y1, »2) if and only if either x; > yj, or if x; = y; and simultaneously
X3 > y2. In order to show that there cannot be a numerical representation for this
preference order, suppose on the contrary that U is such a numerical representation.
Then

da)=U(x, 1) —U(a,0)

is strictly positive for all @ € [0, 1]. Hence,

o 1
[0,1]=U{ae[0,1] ( d(a)>;}.

n=1

Denote A, := {« | d(x) > 1/n}. There must be at least one set A,, having infinitely
many elements, and we can pick an arbitrary number N of elements oy, ..., any € Ay,
such that o] < --- < apy. Since (@41, 0) > (a4, 1), it follows that

1
U(ej11,0) = U(;, 0) > U(ej, 1) = U(e;, 0) = d(e;) > e
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Hence

Uu,1)—-U(,0)
N—-1
=Ul,1)—-U(an,0) + Z[U(aiH,O)—U(oc,-,O)]-i—U(ozl,O)—U(O,O)
i=1
N -1

> .
no

But N can be chosen arbitrarily large while ng remains fixed. Thus U(1, 1) — U (0, 0)
must be infinite, which is impossible. <&

Definition 2.8. Let X be a topological space. A preference relation > is called con-
tinuous if for all x € X

Bx)={yeX|y>x} and Bx):={yeX|x >y} 2.2)
are open subsets of X.

Remark 2.9. Every preference order that admits a continuous numerical representa-
tion is itself continuous. Under some mild conditions on the underlying space X, the
converse statement is also true; see Theorem 2.15 below. &

Example 2.10. The lexicographical order of Example 2.7 is not continuous: If
(x1, x2) € [0, 1] x [0, 1] is given, then

{1 y2) | 1, y2) = (o1, x2) = (1, 11 x [0, 1TU {1} x (x2, 1],
which is typically not an open subset of [0, 1] x [0, 1]. <&

Recall that a topological space X is called a topological Hausdorff space if any
two distinct points in X have disjoint open neighborhoods. In this case, all singletons
{x} are closed. Clearly, every metric space is a topological Hausdorff space.

Proposition 2.11. Let > be a preference order on a topological Hausdorff space X.
Then the following properties are equivalent.

(a) > is continuous.
(b) The set{(x,y) |y >x}isopenin X x X.
(c) Theset {(x,y) |y > x}isclosedin X x X.

Proof. (a) =(b): We have to show that for any pair

(x0,y0) e M :={(x,y) |y >x}

there exist open sets U, V C X such that xg € i] ,yo€ V,andU xV C M. Coisider
first the case in which there exists some z € B(xg) N B(yp) for the notation B (xg)
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and B (yo) introduced in (2.2). Then yg > z > xo, so that U := B(z) and V := B(z)
are open neighborhoods of xo and yop, respectively. Moreover, if x € U and y € V,
theny > z > x,and thus U x V C M.

If B(x0) N B(yo) =¥, welet U := B(yg) and V := B(xg). If (x,y) e U x V,
then yo > x and y > xp by definition. We want to show that y > x in order to
conclude that U x V C M. To this end, suppose that x > y. Then yp > y by negative
transitivity, hence yp > y > xo. But then y € B(xo) N B(yp) # ¥, and we have a
contradiction.

(b) =(c): First note that the mapping ¢ (x, y) := (¥, x) is a homeomorphism of
X x X. Then observe that the set { (x, y) | y > x } is just the complement of the open
setp({ (x, y) [y >x}).

(c) =(a): Since X is a topological Hausdorff space, {x} x X is closed in X x X,
and so is the set

pxXn{x.yly=zxt={x}x{yly=zx}

Hence {y | y > x}is closed in X, and its complement { y | x > y} is open. The
same argument appliesto {y | y > x }. O

Example 2.12. For xy < yg consider the set X, := (—o0, xg] U [yg, 00) endowed
with the usual grder > on R. Then, with the notation introduced in (2.2), B(yg) =
(—00, x0] and B(xg) = [yo, 00). Hence,

B(x0) N B(yo) =
despite yp > xp, a situation we had to consider in the preceding proof. <

Recall that the topological space X is called connected if X cannot be written as
the union of two disjoint and non-empty open sets. Assuming that X is connected
will rule out the situation occurring in Example 2.12.

Proposition 2.13. Let X be a connected topological space with a continuous prefer-
ence order >. Then every dense subset Z of X is also order dense in X. In particular,
there exists a numerical representation of > if X is separable.

Proof. Take x, y € X with y > x, and consider B(x) and B(y) as defined in (2.2).
Since y € B(x)and x € B(y), neither B(x) nor B(y) are empty sets. Moreover,
negative transitivity implies that X = B(x) U B8(y). Hence, the open sets B(x)
and B(y) cannot be disjoint, as X is connected. Thus, the open set Bx)N B(y)
must contain some element z of the dense subset Z, which then satisfies y > z > x.
Therefore Z is an order dense subset of X.

Separability of X means that there exists a countable dense subset Z of X;, which
then is order dense. Hence, the existence of a numerical representation follows from
Theorem 2.6. O
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Remark 2.14. Consider the situation of Example 2.12, where X := (—o00, xo] U
[vo, 00), and suppose that xg and yg are both irrational. Then Z := Q N X is dense
in X, but there exists no z € Z such that yy > z > xo. This example shows that the
assumption of topological connectedness is essential for Proposition 2.13. <

Theorem 2.15. Let X be a topological space which satisfies at least one of the fol-
lowing two properties:

e X has a countable base of open sets.
» X is separable and connected.

Then every continuous preference order on X, admits a continuous numerical repre-
sentation.

For a proof we refer to [57], Propositions 3 and 4. For our purposes, namely for
the proof of the von Neumann—Morgenstern representation in the next section and for
the proof of the robust Savage representation in Section 2.5, the following lemma will
be sufficient.

Lemma 2.16. Let X be a connected metric space with a continuous preference order
>. IfU : X — Risacontinuous function, and if its restriction to some dense subset Z,
is a numerical representation for the restriction of > to Z, then U is also a nhumerical
representation for > on X.

Proof. We have to show that y > x if and only if U(y) > U(x). In order to verify
the “only if” part, take x, y € X with y > x. As in the proof of Proposition 2.13,
we obtain the existence of some zp € Z with y > zo > x. Repeating this argument
yields z(, € Z such that zo > z;, > x. Now we take two sequences (z,) and (z},) in Z
with z, — y and z, — x. By continuity of >, eventually

Zn > 20 > 20 = Zns

and thus
Ul(zn) > U(20) > U(zg) > U(z),).

The continuity of U implies that U (z,) — U(y) and U (z},) — U (x), whence
U(y) = U(zo) > Ul(zg) = U(x).

For the proof of the converse implication, suppose that x, y € X are such that
U(y) > U(x). Since U is continuous,

Ux):={zeX|UR >UKX)}

and
Uy)={zeX|U@ <Uy)}
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are both non-empty open subsets of X. Moreover, U(y) UU(x) = X. Connectedness
of X implies that U(y) NU(x) # #. As above, arepeated application of the preceding
argument yields zo, z;, € Z such that

U(y) > U(zo) > Ulzp) > U(x).

Since Z is a dense subset of X, we can find sequences (z,,) and (z,,) in Z with z, — y
and z, — x as well as with U(z,) > U(zo) and U(z},) < U(z(). Since U is a
numerical representation of > on Z, we have

Zn > 20 > 20 > 2y

Hence, by the continuity of >, neither zg > y nor x > z; can be true, and negative
transitivity yields y > x. O

2.2 Von Neumann-Morgenstern representation

Suppose that each possible choice for our economic agent corresponds to a probability
distribution on a given set of scenarios. Thus, the set X can be identified with a subset
M of the set M (S, 4) of all probability distributions on a measurable space (S, 4). In
the context of the theory of choice, the elements of M are sometimes called /lotteries.
We will assume in the sequel that M is convex. The aim of this section is to characterize
those preference orders > on M which allow for a numerical representation U of the
form

Up) = /u(x)u(dx) forall u € M, (2.3)
where u is a real function on S.

Definition 2.17. A numerical representation U of a preference order > on M is called
a von Neumann—Morgenstern representation if it is of the form (2.3).

Any von Neumann—Morgenstern representation U is affine on M in the sense that
Ulap + (1 —a)v) = al(w) + (1 —a)U(v)

for all u, v € M and a € [0, 1]. It is easy to check that affinity of U implies the
following two properties, or axioms, for a preference order > on M. The first property
says that a preference p > v is preserved in any convex combination, independent of
the context described by another lottery A.

Definition 2.18. A preference relation > on M satisfies the independence axiom if,
for all u, v € M, the relation u > v implies

o+ (1 —a)A>av+ (1 —a)r
forallL € M and all @ € (0, 1].
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The independence axiom is also called the substitution axiom. It can be illustrated
by introducing a compound lottery, which represents the distribution o + (1 — o)A
as a two-step procedure. First, we sample either lottery w or A with probability « and
1 — «, respectively. Then the lottery drawn in this first step is realized. Clearly, this
is equivalent to playing directly the lottery oot + (1 — ar)A. With probability 1 — «,
the distribution X is drawn and in this case there is no difference to the compound
lottery where v is replaced by p. The only difference occurs when p is drawn, and
this happens with probability . Thus, if & > v then it seems reasonable to prefer the
compound lottery with p over the one with v.

Definition 2.19. A preference relation > on M satisfies the Archimedean axiom if for
any triple > A > v there are «, 8 € (0, 1) such that

o+ 1 —a)yy>=A>=Bu+1-,3)v.

The Archimedean axiom derives its name from its similarity to the Archimedean
principle in real analysis: For every small ¢ > 0 and each large x, there is some
n € N such that n ¢ > x. Sometimes it is also called the continuity axiom, because
it can act as a substitute for the continuity of > in a suitable topology on M. More
precisely, suppose that M is endowed with a topology for which convex combinations
are continuous curves, i.e., ¢t + (1 — o)v convergestovorpasa | Oora 1 1,
respectively. Then continuity of our preference order > in this topology automatically
implies the Archimedean axiom.

Remark 2.20. Asanaxiom for consistent behavior in the face of risk, the Archimedean
axiom is less intuitive than the independence axiom. Consider the following three de-
terministic distributions: v yields 1000 €, A yields 10 €, and w is the lottery where one
dies for sure. Even for small o € (0, 1) it is not clear that someone would prefer the
gamble ou 4 (1 — a)v, which involves the probability o of dying, over the conserva-
tive 10 € yielded by A. Note, however, that most people would not hesitate to drive a
car for a distance of 50 km in order to receive a premium of 1000 €, even though this
might involve the risk of a deadly accident. <

Our first goal is to show that the Archimedean axiom and the independence axiom
imply the existence of an affine numerical representation.

Theorem 2.21. Suppose that > is a preference relation on M satisfying both the
Archimedean and the independence axiom. Then there exists an affine numerical
representation U of >=. Moreover, U is unique up to positive affine transformations,
i.e., any other affine numerical representation U with these properties is of the form
U=aU+bforsomea > 0andb € R.

In two important cases, such an affine numerical representation will already be of
von Neumann—Morgenstern form. This is the content of the following two corollaries,
which we state before proving Theorem 2.21. For the first corollary, we need the notion
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of a simple probability distribution. This is a probability measure © on S which can be
written as a finite convex combination of Dirac masses, i.e., there exist xi, ..., xy € S
and o1, ...,ay € (0, 1] such that

N
w= Zai(Sxi.

i=1

Corollary 2.22. Suppose that M is the set of all simple probability distributions on S
and that > is a preference order on M that satisfies both the Archimedean and the in-
dependence axiom. Then there exists a von Neumann—Morgenstern representation U .
Moreover, both U and u are unique up to positive affine transformations.

Proof. Let U be an affine numerical representation, which exists by Theorem 2.21. We
define u(x) := U(8,), forx € S. If u € M is of the form pu = a1y, + - + andxy,
then affinity of U implies

N
U =) aiU@Gy) = /M(X)M(dX)-
i=1

This is the desired von Neumann—Morgenstern representation. O

Onafinite set S, every probability measure is simple. Thus, we obtain the following
result as a special case.

Corollary 2.23. Suppose that M is the set of all probability distributions on a finite
set S and that > is a preference order on M that satisfies both the Archimedean and the
independence axiom. Then there exists a von Neumann—Morgenstern representation,
and it is unique up to positive affine transformations.

For the proof of Theorem 2.21, we need the following auxiliary lemma. Its first as-
sertion states that taking convex combination is monotone with respect to a preference
order > satisfying our two axioms. Its second part can be regarded as an “intermediate
value theorem” for straight lines in M, and (c) is the analogue of the independence
axiom for the indifference relation ~.

Lemma 2.24. Under the assumptions of Theorem 2.21, the following assertions are
true.

@ If u > v, then a — ap + (1 — a)v is strictly increasing with respect to >.
More precisely, Bu+ (1 — v =au+ (1 —a)vfor0 <a < p <1.

®) If w > vand u = X > v, then there exists a unique a € [0, 1] with . ~
opn+ (1 —a)v.

© Ifu~v,thenap+(1—a)r ~av+{1—a)rforalla € [0, 1]andall A € M.
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Proof. (a): Let A := Bu + (1 — B)v. The independence axiom implies that 1 >
Bv + (1 — B)v = v. Hence, for y := a/B,
Bu+ A —-Bv=>0—-p)rA+yr>U0—plv+yr=au+ 1 —a).

(b): Part (a) guarantees that « is unique if it exists. To show existence, we need
only to consider the case it > A > v, for otherwise we can take eithero = Ooro = 1.
The natural candidate is
a:=sup{y € [0, 1]|A>yu+1—-y)}

If A ~ ap + (1 — @)v is not true, then one of the following two possibilities must
occur:
A=apu+{1—a)y, or A<au+(1—o). 2.4)

In the first case, we apply the Archimedean axiom to obtain some 8 € (0, 1) such that
o Blap+ 0 —aw ]+ = fu=yu+ 1 -y 2.5)

fory = 1 - 81 — a). Since y > «, it follows from the definition of « that
yu + (I — y)v > A, which contradicts (2.5). If the second case in (2.4) occurs, the
Archimedean axiom yields some 8 € (0, 1) such that

,B(a,u—i-(l —a)v)+(1 — By =Bau+ (1 —Ba)v > A. (2.6)
Clearly Ba < «, so that the definition of « yields some y € (Bo, ] with A >
y i+ (1 — y)v. Part (a) and the fact that o < y imply that
Azypn+ A=y > pap+ A= pav,
which contradicts (2.6).
(c): We must exclude both of the following two possibilities

op+ 1 —a)h>av+ (1 —a)h and av+ (1 —a)A >au+ (1 —ao)r. (2.7)

To this end, we may assume that there exists some p € M with p % p ~ v; otherwise
the result is trivial. Let us assume that p > u ~ v; the case in which u ~ v > p
is similar. Suppose that the first possibility in (2.7) would occur. The independence
axiom yields

po+ A —=pv>=prv+d—-Bv=v~pu
for all 8 € (0, 1). Therefore,

a[Bo+ (1 =Bw]+ A —a)r>au+ (1 —a)r forallpe(0,1). (2.8)

Using our assumption that the first possibilities in (2.7) is occurring, we obtain from
part (b) aunique y € (0, 1) such that, for any fixed S,

ap+ (L —a)r~y(e[po+A =]+ A —a)r)+ A —y)av+ 1 —a)]

=a[Byp+ (1= Byw]+ A —a)r
=oau+ (1 —a)A,
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where we have used (2.8) for B replaced by By in the last step. This is a contradiction.
The second possibility in (2.7) is excluded by an analogous argument. 0

Proof of Theorem 2.21. For the construction of U, we first fix two lotteries A and p
with A > p and define

MO, p) ={peM|r=pn>=pl

the assertion is trivial if no such pair A > p exists. If u € M(X, p), part (b) of
Lemma 2.24 yields a unique @ € [0, 1] such that © ~ oA + (1 — ) p, and we put
U () := «. To prove that U is a numerical representation of > on M (A, p), we must
show that for v, u € M(X, p) we have U(u) > U (v) if and only if u > v. To prove
sufficiency, we apply part (a) of Lemma 2.24 to conclude that

p~Uwr+(1=U@w)p = Ui+ (1=UW®)p ~v,

Hence 1 > v. Conversely, if i > v then the preceding arguments already imply that
we cannot have U(v) > U (u). Thus, it suffices to rule out the case U(u) = U(v).
Butif U(u) = U (v), then the definition of U yields u ~ v, which contradicts p > v.
We conclude that U is indeed a numerical representation of > restricted to M (A, p).

Letus now show that M (X, p) isaconvex set. Take i, v € M(A, p) anda € [0, 1].
Then

A=ar+ (1 —a)y=au+ 1 —a)y,

using the independence axiom to handle the cases A > v and A > u, and part (c)
of Lemma 2.24 for A ~ v and for A ~ pu. By the same argument it follows that
apn + (1 —a)v > p, which implies the convexity of the set M (A, p).

Therefore, U(ap + (1 — a)v) is well defined; we proceed to show that it equals
aU(u) 4+ (1 —a)U (v). To this end, we apply part (c) of Lemma 2.24 twice:

ap+ 1=y ~a(Ui+(1-Uw)p)+ 1A —a)(UmAr+(1—-UW)p)
=[aU(W+ A - U+ [1—aUw) — (1 —a)UW)]p.

The definition of U and the uniqueness in part (b) of Lemma 2.24 imply that
Ulp+ (1 —a)y) =aUp)+ 1 —a)U((v).

So U is indeed an affine numerical representation of > on M (A, p).

In a further step, we now show that the affine numerical representation U on
M (A, p) is unique up to positive affine transformations. So let U be another affine
numerical representation of > on M (A, p), and define

_Uw-U(p

U = = 7
W= T~ T

n € M, p).
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"l:hen Uisa positive affine transformatAion of U ,and U (p) = 0 = U(p) as well as
U() =1 =U(}). Hence, affinity of U and the definition of U imply

U(w) =U(Uwr+(1=U@w)p) =UT0) + (1 - Uw)T(p) =Uw)

forall x € M(x, p). Thus U = U.

Finally, we have to show that U can be extended as a numerical representation
to the full space M. To this end, we first take A, 5 € M such that M(A, ) D
M (A, p). By the arguments in the first part of this proof, there exists an affine numerical
representation U of = on M(A 0), and we may assume that U (A) =1 and U (p) =
0; otherwise we apply a positive affine transformation to_ U. By the previous step
of the proof, U coincides with U on M(X, p), and so U~ is the unique consistent
extension of U. Since each lottery belongs to some set M (A, ), the affine numerical
representation U can be uniquely extended to all of M. O

Remark 2.25. In the proof of the preceding theorem, we did not use the fact that the
elements of M are probability measures. All that was needed was convexity of the set
M, the Archimedean, and the independence axiom. Yet, even the concept of convexity
can be generalized by introducing the notion of a mixture space; see, e.g., [138], [84],
or [112]. <&

Let us now return to the problem of constructing a von Neumann—Morgenstern
representation for preference relations on distributions. If M is the set of all probability
measures on a finite set S, any affine numerical representation is already of this form, as
we saw in the proof of Corollary 2.23. However, the situation becomes more involved
if we take an infinite set S. In fact, the following examples show that in this case a
von Neumann—Morgenstern representation may not exist.

Example 2.26. Let M be the set of probability measures i on S := {1,2,...} for
which U(u) := lim SUPf 400 k (k) is finite. Clearly, U is affine and induces a prefer-
ence order on M which satisfies both the Archimedean and the independence axiom.
However, U obviously does not admit a von Neumann—Morgenstern representation.

<

Example 2.27. Let M be set the of all Borel probability measures on S = [0, 1], and
denote by A the Lebesgue measure on S. According to the Lebesgue decomposition
theorem, which is recalled in Theorem A.13, every i € M can be decomposed as

M= s + Ha,

where i is singular with respect to A, and u, is absolutely continuous. We define a
function U : M — [0, 1] by

Up) = /xua(dX).
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It is easily seen that U is an affine function on M. Hence, U induces a preference
order > on M which satisfies both the Archimedean and the independence axioms.
But > cannot have a von Neumann—Morgenstern representation: Since U (§,) = 0
for all x, the only possible choice for u in (2.3) would be u = 0. So the preference
relation would be trivial in the sense that u ~ A for all © € M, in contradiction for
instance to U (L) = % and U(cS%) =0. <&

One way to obtain a von Neumann—Morgenstern representation is to assume ad-
ditional continuity properties of >, where continuity is understood in the sense of
Definition 2.8. As we have already remarked, the Archimedean axiom holds automat-
ically if taking convex combinations is continuous for the topology on M. This is
indeed the case for the weak topology on the set M (S, 4) of all probability measures
on a separable metric space S, endowed with the o-field 8 of Borel sets. The space S
will be fixed for the rest of this section, and we will simply write M1 (S) = M (S, ).

Theorem 2.28. Let M = M(S) be the space of all probability measures on S
endowed with the weak topology, and let > be a continuous preference order on M
satisfying the independence axiom. Then there exists a von Neumann—Morgenstern
representation

U(p) =/M(X)M(dX)

for which the functionu : S — R is bounded and continuous. Moreover, U and u are
unique up to positive affine transformations.

Proof. Let M, denote the set of all simple probability distributions on S. Since
continuity of > implies the Archimedean axiom, we deduce from Corollary 2.22 that
> restricted to M has a von Neumann—Morgenstern representation.

Let us show that the function u in this representation is bounded. For instance, if
u is not bounded from above, then there are xg, x1, ... € S such that u(xg) < u(xy)
and u(x,) > n. Now let

1 1
o ( \/ﬁ)"ﬁﬁ"”

Clearly, ;t, — 6y, weakly asn 1 oo. The continuity of > together with the assumption
that 8, > 8y, imply that 8y, > u, for all large n. However, U (u,) > J/n for all n,
in contradiction to 8y, > (y.

Suppose that the function u is not continuous. Then there exists some x € S and a
sequence (x,),eN C S suchthat x,, — x butu(x,) / u(x). By taking a subsequence
if necessary, we can assume that u(x,) converges to some number a # u(x). Suppose
that u(x) —a =: ¢ > 0. Then there exists some m such that |u(x,) —a| < &/3 for all
n>m. Let u := %(SX +6y,). Foralln > m

2¢e 1 e
UGSy =a+e>a+ 3> 5(u(x) +u(xm) =UW) >a+ 3> U8y,
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Therefore §, > u > 8y, , although 6, converges weakly to d,, in contradiction to the
continuity of >. The case u(x) < a is excluded in the same manner.
Let us finally show that

U(p) = /u(x) u(dx) foru e M

defines a numerical representation of > on all of M. Since u is bounded and con-
tinuous, U is continuous with respect to the weak topology on M. Moreover, Theo-
rem A.37 states that M is a dense subset of the connected metrizable space M. So
the proof is completed by an application of Lemma 2.16. O

The scope of the preceding theorem is limited insofar as it involves only bounded
functions u. This will not be flexible enough for our purposes. In the next section,
for instance, we will consider risk-averse preferences which are defined in terms of
concave functions u on the space S = R. Such a function cannot be bounded unless
it is constant. Thus, we must relax the conditions of the previous theorem. We will
present two approaches. In our first approach, we fix some point xo € S and denote by
B, (x¢) the closed metric ball of radius r around xo. The space of boundedly supported
measures on S is given by

Mp(S) == ] M1 (B, (x0))

r>0

= {,u e M(S) | ;L(F,(xo)) = 1 for some r > O}.
Clearly, this definition does not depend on the particular choice of xg.

Corollary 2.29. Let > be a preference order on Mp(S) whose restriction to each
space M (Br(xo)) is continuous with respect to the weak topology. If > satisfies the
independence axiom, then there exists a von Neumann—Morgenstern representation

U(p) :/u(x),u(dx)

with a continuous function u : S — R. Moreover, U and u are unique up to positive
affine transformations.

Proof. Theorem 2.28 yields a von Neumann—Morgenstern representation of the re-
striction of > to M (B (x0)) in terms of some continuous function u, : B, (xo) — R.
The uniqueness part of the theorem implies that the restriction of u, to some smaller
ball B, (xp) must be a equal to u,/ up to a positive affine transformation. Thus, it is
possible to find a unique continuous extension u : § — R of u,» which defines a von
Neumann—Morgenstern representation of > on each set M (Er (xo)). Ll

Our second variant of Theorem 2.28 includes measures with unbounded support,
but we need stronger continuity assumptions. Let iy be a continuous function with
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values in [1, co) on the separable metric space S. We use i as a gauge function and
define

HOES PREFION fw(xwdx) <ool.
A suitable space of continuous test functions for measures in cMi// (S) is provided by
Cy(S) = {f €eCS) |dc: |fx)| <c-y¥(x)forallx e S}.

These test functions can now be used to define a topology on ,Mip(S) in precisely
the same way one uses the set of bounded continuous function to define the weak
topology: A sequence (u,) in M 1//(S ) converges to some i € M 1//(S ) if and only if

/fd,u,,,—>/fdu forall f € Cy(S).

To be rigorous, one should first define a neighborhood base for the topology and
then check that this topology is metrizable, so that it suffices indeed to consider the
convergence of sequences; the reader will find all necessary details in Appendix A.6.
We will call this topology the ¥-weak topology on M;//(S). If we take the trivial
case ¥ = 1, Cy (S) consists of all bounded continuous functions, and we recover the
standard weak topology on M 11 (S) = M1(S). However, by taking ¥ as some non-
bounded function, we can also include von Neumann—Morgenstern representations in
terms of unbounded functions u. The following theorem is a version of Theorem 2.28
for the yr-weak topology. Its proof is analogous to that of Theorem 2.28, and we leave
it to the reader to fill in the details.

Theorem 2.30. Let > be a preference order on M YI(S ) that is continuous in the -
weak topology and satisfies the independence axiom. Then there exists a numerical
representation U of von Neumann—Morgenstern form

U(p) =/M(X)M(dX)

with a function u € Cy(S). Moreover, U and u are unique up to positive affine
transformations.

Remark 2.31. Instead of making topological assumptions on >, one can introduce,
in addition to the Archimedean and the independence axiom, the so-called sure-thing
principle: For u,v € M and A € & such that u(A) = 1:

by >vforalx e A — pu>v,

and
v>dforallx e A — v>pu.

This axiom, together with a couple of technical assumptions, guarantees the existence
of a von Neumann—Morgenstern representation; see [84]. Conversely, it is easy to
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see that the sure-thing principle is automatically implied by the existence of a von
Neumann—Morgenstern representation. Note that the sure-thing principle is violated
in both Examples 2.26 and 2.27. <

So far, we have presented the classical theory of expected utility, starting with the
independence axiom and the Archimedean axiom. However, it is well known that in
reality people may not behave according to this paradigm.

Example 2.32 (Allais Paradox). The so-called Allais paradox questions the descrip-
tive aspect of expected utility by considering the following lotteries. Lottery

v1 = 0.33 82500 + 0.66 52400 + 0.01 §g

yields 2500 € with a probability of 0.33, 2400 € with probability 0.66, and draws a
blank with the remaining probability of 0.01. Lottery

M1 = 62400

yields 2400 € for sure. When asked, most people prefer the sure amount —even though
lottery vy has the larger expected value, namely 2409 €.
Next, consider the following two lotteries o and v;:

w2 = 0.34 83400 +0.6686¢9 and vy := 0.33 82500 + 0.67 &p.

Here people tend to prefer the slightly riskier lottery v, over u,, in accordance with
the expectations of v, and o, which are 825 € and 816 €, respectively.

This observation is due to M. Allais [4]. It was confirmed by D. Kahnemann and
A. Tversky [123] in empirical tests where 82 % of interviewees preferred (| over
v1 while 83 % chose v, rather than w,. This means that at least 65 % chose both
w1 > vy and v2 > po. As pointed out by M. Allais, this simultaneous choice leads
to a “paradox” in the sense that it is inconsistent with the von Neumann—Morgen-
stern paradigm. More precisely, any preference relation > for which @, > v and
vy > W are both valid violates the independence axiom, as we will show now. If the
independence axiom were satisfied, then necessarily

o+ —a)yyy=avi+ {1 —a)vy = avy + (1 —a)ur
forall ¢ € (0, 1). By taking « = 1/2 we would arrive at

1 1
5(#«1 +v2) > 5(”1 + 2)

which is a contradiction to the fact that

1 1
E(Ml + 1) = E(Vl + 12).

Therefore, the independence axiom was violated by at least 65 % of the people who
were interviewed. This effectis empirical evidence against the von Neumann—Morgen-
stern theory as a descriptive theory. Even from a normative point of view, there are
good reasons to go beyond our present setting, and this will be done in Section 2.5.
In particular, we will take a second look at the Allais paradox in Remark 2.74. <&
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2.3 Expected utility

In this section, we focus on individual financial assets under the assumption that their
payoff distributions at a fixed time are known, and without any regard to hedging
opportunities in the context of a financial market model. Such asset distributions may
be viewed as lotteries with monetary outcomes in some interval S C R. Thus, we
take M as a fixed set of Borel probability measures on S. In this setting, we discuss
the paradigm of expected utility in its standard form, where the function u appearing
in the von Neumann—Morgenstern representation has additional properties suggested
by the monetary interpretation. We introduce risk aversion and certainty equivalents,
and illustrate these notions with a number of examples.

Throughout this section, we assume that M is convex and contains all point masses
8y for x € S. We assume also that each u € M has a well-defined expectation

m(u) = /xu(dx) e R.

Remark 2.33. For an asset whose (discounted) random payoff has a known distri-
bution w, the expected value m(u) is often called the fair price of the asset. For
an insurance contract where p is the distribution of payments to be received by the
insured party in dependence of some random damage within a given period, the ex-
pected value m(w) is also called the fair premium. Typically, actual asset prices and
actual insurance premiums will be different from these values. In many situations,
such differences can be explained within the conceptual framework of expected utility,
and in particular in terms of risk aversion. <

Definition 2.34. A preference relation > on M is called monotone if
x >y implies 8y > §y.
The preference relation is called risk averse if for p € M

Sm(uy > 1 unless ;L = Sp(p)-

It is easy to characterize these properties within the class of preference relations
which admit a von Neumann—Morgenstern representation.

Proposition 2.35. Suppose the preference relation > has a von Neumann—Morgen-
stern representation

U(w) = / udp.
Then:
(a) > is monotone if and only if u is strictly increasing.

(b) > is risk averse if and only if u is strictly concave.
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Proof. (a): Monotonicity is equivalent to
u(x) =U() > U(Sy) =u(y) forx > y.
(b): If > is risk-averse, then
Saxt+(1—a)y > @dx + (I —a)dy
holds for all distinct x, y € S and @ € (0, 1). Hence,
u(ax + - a)y) >oulx)+ (1 —a)u(y),

i.e., u is strictly concave. Conversely, if u is strictly concave, then Jensen’s inequality
implies risk aversion:

UGnn) = u( f xu(dX)) > / u(x) p(dx) = U (u)
with equality if and only if ©t = 8, (,). O

Remark 2.36. In view of the monetary interpretation of the state space S, it is natural
to assume that the preference relation > is monotone. The assumption of risk aversion
is more debatable, at least from a descriptive point of view. In fact, there is considerable
empirical evidence that agents tend to switch between risk aversion and risk seeking
behavior, depending on the context. In particular, they may be risk averse after prior
gains, and they may become risk seeking if they see an opportunity to compensate
prior losses. Tversky and Kahneman [194] propose to describe such a behavioral
pattern by a function u of the form

(x — o) for x > c,
u(x) =
—X(c—x)Y forx <c,

where c is a given benchmark level, and their experiments suggest parameter values
A around 2 and y slightly less than 1. Nevertheless, one can insist on risk aversion
from a normative point of view, and this is the approach we will take for the purposes
in this book. <&

Definition 2.37. A function u : § — R is called a utility function if it is strictly
concave, strictly increasing, and continuous on S.

Any increasing concave function # : S — R is necessarily continuous on every
interval (a, b] C S; see Proposition A.4. Hence, the condition of continuity in the
preceding definition is only relevant if S contains its lower boundary point. Note that
any utility function u(x) decreases at least linearly as x | inf S. Therefore, # cannot
be bounded from below unless inf S > —oo.
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From now on, we will consider a fixed preference relation > on M which admits
an expected utility representation, that is, a von Neumann—Morgenstern representation

U(u)=fudu

in terms of a utility function # : § — R. The intermediate value theorem applied
to the strictly increasing continuous function u yields for any u € M a unique real
number ¢(u) for which

u(e(w) = Up) = f udp. 2.9)

It follows that
30(#) ~ M,

i.e., there is indifference between the lottery n and the sure amount of money c(u).

Definition 2.38. The certainty equivalent of the lottery u € M is defined as the
number c(u) of (2.9), and

p(p) :=m(u) —c(pn)

is called the risk premium of .

Risk aversion implies via Jensen’s inequality that c¢(u) < m(u), and

c(p) < m(p) — n# 5m(u)-

In particular, the risk premium p(u) is strictly positive as soon as the distribution ©
carries any risk.

Remark 2.39. The certainty equivalent c(i) can be viewed as an upper bound for
any price of u which would be acceptable to an economic agent with utility function
u. Thus, the fair price m () must be reduced at least by the risk premium p(u) if
one wants the agent to buy the asset distribution p. Alternatively, suppose that the
agent holds an asset with distribution w. Then the risk premium may be viewed as the
amount that the agent would be ready to pay for replacing the asset by its expected
value m(u). <&

Example 2.40 (“St. Petersburg Paradox”). Consider the lottery

o0
=y 278
n=1

which may be viewed as the payoff distribution of the following game. A fair coin
is tossed until a head appears. If the head appears on the n™ toss, the payoff will
be 2"~1 €. Up to the early 18" century, it was commonly accepted that the price
of a lottery should be computed as the fair price, i.e., as the expected value m(u).
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In the present example, the fair price is given by m(u) = oo, but it is hard to find
someone who is ready to pay even 20 €. In view of this “paradox”, posed by Nicholas
Bernoulliin 1713, Gabriel Cramer and Daniel Bernoulli [22] independently introduced
the idea of determining the actual price as a certainty equivalent with respect to a utility
function. For the two utility functions

u(x) =+/x and wus(x) =logx

proposed, respectively, by G. Cramer and by D. Bernoulli, these certainty equivalents
are given by

cl(w)=(2-+v2)7~291 and c(u) =2,

and this is within the range of prices people are usually ready to pay. Note, however,
that for any utility function which is unbounded from above we could modify the
payoff in such a way that the paradox reappears. For example, we could replace
the payoff 2" by u~!(2") for n > 1000, so that Judp = +oo. The choice of a
bounded utility function would remove this difficulty, but would create others; see the
discussion on pp. 69-72. <

Given the preference order > on M, we can now try to determine those distribu-
tions in M which are maximal with respect to >. As a first illustration, consider the
following simple optimization problem. Let X be an integrable random variable on
some probability space (2, ¥, P) with non-degenerate distribution . We assume
that X is bounded from below by some number ¢ in the interior of S. Which is the
best mix

X =10-MX+ X

of the risky payoff X and the certain amount c, that also belongs to the interior of S?
If we evaluate X, by its expected utility E[ u(X},) ] and denote by u, the distribution
of X, under P, then we are looking for a maximum of the function f on [0, 1] defined
by

fQ) =U) = fudm.
Since f is strictly concave, it attains its maximum in a unique point A* € [0, 1].
Proposition 2.41. (a) We have A* = 1 if E[ X ] < c,and A* > 0ifc = c(u).
(b) Ifu is differentiable, then
V=1 <= E[X]=c

and
- E[Xu' (X)]

A=0 .
= CCTE ]



2.3 Expected utility 65

Proof. (a): Jensen’s inequality yields that
fO) =u(E[X]) =u((l —ME[X]+Ac),

with equality if and only if A = 1. It follows that A* = 1 if the right-hand side is
increasing in A, i.e., if E[ X ] < c.
Strict concavity of u implies

fG) =z E[(1 = Mu(X) + du(e) ]
= (1 = Mu(e(w) + ruo),
with equality if and only if A € {0, 1}. The right-hand side is increasing in A if
¢ > c(u), and this implies A* > 0.

(b): Clearly, we have A* = 0 if and only if the right-hand derivative f| of f
satisfies f (0) < 0; see Appendix A.1 for the definition of f} and f’. Note that the
difference quotients

w(X;) —u(X)  u(X,) — u(X)
A X —X

(e —X)
are P-a.s. bounded by
u(anc)e—X| e L1(P)
and that they converge to
w (X)(c—X)" —u (X)(c—X)~
as A | 0. By Lebesgue’s theorem, this implies
F10) = E[u/ (X)(c — X)T 1 — E[u’_(X)(c — X)7I.

If u is differentiable, or if the countable set { x | u/_ (x) # u’_(x) } has u-measure 0,
then we can conclude

f10) = E[«'(X)(c — X) ],
ie., f1(0) <0 if and only if

E[ Xu'(X)]
c < —————.
Elu'(X)]

In the same way, we obtain
L) =u (E[(X =) 1=\ (E[(X —)" ].
If u is differentiable at ¢, then we can conclude
L) =u'(c)(c— E[X]).
This implies f/ (1) < 0, and hence A* < 1, if and only if E[ X ] > c. O
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Remark 2.42. Note that for a differentiable utility function u we have

() > e = ELLOX ] 2.10)
E[u(X)]
Indeed, concavity of u € C!(R) implies
E[u(X)1+ E[u«'(X)(c = X)] = u(c),
hence E[u/(X)(c — X)] > 0 forc = c(n). &

Example 2.43 (Demand for a risky asset). Let S = S! be a risky asset with price
7 = m!. Given an initial wealth w, an agent with utility function # € C! can invest a
fraction (1 — A)w into the asset and the remaining part Aw into a risk-free bond with
interest rate r. The resulting payoff is

(1—-MNw
Xy=—S—nm)+rw-r
T

The preceding proposition implies that there will be no investment into the risky asset

if and only if
]
E <.
1+r

In other words, the price of the risky asset must be below its expected discounted
payoff in order to attract any risk averse investor, and in that case it will indeed be
optimal for the investor to invest at least some amount. Instead of the simple linear
profiles X, the investor may wish to consider alternative forms of investment. For
example, this may involve derivatives such as max(S, K) = K + (S — K)™ for some
threshold K. In order to discuss such non-linear payoff profiles, we need an extended
formulation of the optimization problem; see Section 3.3 below. <&

Example 2.44 (Demand for insurance). Suppose an agent with utility function u €
C! considers taking at least some partial insurance against a random loss Y, with
0<Y <wand P[Y # E[Y]] > 0, where w is a given initial wealth. If insurance
of AY is available at the insurance premium Az, the resulting final payoff is given by

Xy =w—Y4+A2(Y—-m)=0-Nw-=Y)+ AMw — ).

By Proposition 2.41, full insurance is optimal if and only if 7 < E[Y ]. In reality,
however, the insurance premium 7 will exceed the “fair premium” E[Y ]. In this
case, it will be optimal to insure only a fraction A*Y of the loss, with A* € [0, 1). This
fraction will be strictly positive as long as

ElYW'w-¥)]  Elw-Y'(w-¥)]
S Eww-v) ¥ Elu'(w—7Y)]
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Since the right-hand side is strictly larger than E[Y ] due to (2.10), risk aversion
may create a demand for insurance even if the insurance premium r lies above the
“fair” price E[Y]. As in the previous example, the agent may wish to consider
alternative forms of insurance such as a stop-loss contract whose payoff has the non-
linear structure (Y — K)™ of a call option. <&

Letus take another look at the risk premium p (1) of alottery . For an approximate
calculation, we consider the Taylor expansion of a sufficiently smooth utility function
u(x)atx = c(u) around m := m(u), and we assume that u has finite variance var ().
On the one hand,

u(c(w) ~ um) +u'(m)(c(u) —m) = u(m) —u'(m)p ().

On the other hand,
u(e() = / u(x) u(dx)
= / [m) + ' (m) (x — m) + %u”(m)(x —m)? +r(0)] u(dx)
~ u(m) + %u”(m) var(),

where r(x) denotes the remainder term in the Taylor expansion of u. It follows that

4

> YO = %a(m) var(u). @.11)

p(p) ~ —
Thus, o(m (1)) is the factor by which an economic agent with utility function u weighs
the risk, measured by %Var(u), in order to determine the risk premium he or she is
ready to pay.

Definition 2.45. Suppose that u is a twice continuously differentiable utility function

on S. Then
u//(x)

u'(x)

is called the Arrow—Pratt coefficient of absolute risk aversion of u at level x.

a(x) = —

Example 2.46. The following classes of utility functions u and their corresponding
coefficients of risk aversion are standard examples.

(a) Constant absolute risk aversion (CARA): «(x) equals some constant & > 0.
Since a(x) = —(logu’)’(x), it follows that u(x) = a —b-e~**. Using an affine
transformation, # can be normalized to

ux) =1—e %,
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(b) Hyperbolic absolute risk aversion (HARA): «(x) = (1—y)/xon S = (0, c0)
for some y < 1. Up to affine transformations, we have

u(x) =logx fory =0,
1

u(x) = —x¥ fory #0.
Y

Sometimes, these functions are also called CRRA utility functions, because their
“relative risk aversion" x« (x) is constant. Of course, these utility functions can
be shifted to any interval S = (a, o0o). The “risk-neutral” case y = 1 would
correspond to an affine utility function u. <&

Proposition 2.47. Suppose that u and i are two utility functions on S which are twice
continuously differentiable, and that a and A are the corresponding Arrow—Pratt
coefficients of absolute risk aversion. Then the following conditions are equivalent.

(a) a(x) > ax) forallx € S.
(b) u = F o U for a strictly increasing concave function F.

(c) The respective risk premiums p and p associated with u and U satisfy p(u) >
o) forall p € M.

Proof. (a)=>(b): Since u is strictly increasing, we may define its inverse function,
w. Then F () := u(w(t)) is clearly increasing, twice differentiable, and satisfies
u = F oi. For showing that F is concave and strictly increasing we calculate the first
two derivatives of w:

/ 1 14 ~ 1
==, W =aw): =
u'(w) "(w)?
Now we can calculate the first two derivatives of F':
u'(w)

>0

F =u(w) v ==
u'(w)
and
F = u//(w)(w/)2 + u/(w)w//
_ W) g 2.12
= oyt EW — @] (2.12)
<0.
This proves that F' is concave and strictly increasing.
(b) =(c): Jensen’s inequality implies that the respective certainty equivalents ¢ (i)
and ¢(u) satisfy

u(c(u)):/udu:/Foﬁdu (2.13)

< F(/ﬁdu> = F(u(¢(w)) = u(c(p)).



2.3 Expected utility 69

Hence, p(u) = m(u) — c(u) > m(u) —c(u) = p(w).

(c) =(a): If condition (a) is false, there exists an open interval O C S such that
a(x) > a(x) forall x € O. Let 0 := #(0), and denote again by w the inverse
of ii. Then the function F(t) = u(w(t)) will be strictly convex in the open interval
9] by (2.12). Thus, if p is a measure with support in O, the inequality in (2.13) is
reversed and is even strict — unless u is concentrated at a single point. It follows that
o(uw) < p(w), which contradicts condition (c). O

In view of the underlying axioms, the paradigm of expected utility has a certain
plausibility on a normative level, i.e., as a guideline of rational behavior in the face
of risk. But this guideline should be applied with care: If pushed too far, it may lead
to unplausible conclusions. In the remaining part of this section we discuss some
of these issues. From now on, we assume that S is unbounded from above, so that
w+x € Sforany x € S and w > 0. So far, we have implicitly assumed that the
preference relation > on lotteries reflects the views of an economic agent in a given set
of conditions, including a fixed level w > 0 of the agent’s initial wealth. In particular,
the utility function may vary as the level of wealth changes, and so it should really
be indexed by w. Usually one assumes that u,, is obtained by simply shifting a fixed
utility function u to the level w, i.e., uy, (x) := u(w + x). Thus, a lottery u is declined
at a given level of wealth w if and only if

/u(w + x) u(dx) < u(w).

Let us now return to the situation of Proposition 2.41 when p is the distribution of an
integrable random variable X on (2, ¥, P), which is bounded from below by some
number « in the interior of S. We view X as the net payoff of some financial bet, and
we assume that the bet is favorable in the sense that

m(u)=E[X]>0.

Remark 2.48. Even though the favorable bet X might be declined at a given level
w due to risk aversion, it follows from Proposition 2.41 that it would be optimal to
accept the bet at some smaller scale, i.e., there is some y* > 0 such that

Elu(w+y*X)] > u(w).

On the other hand, it follows from Lemma 2.50 below that the given bet X becomes
acceptable at a sufficiently high level of wealth whenever the utility function is un-
bounded from above. <

Sometimes it is assumed that some favorable bet is declined at every level of
wealth. The assumption that such a bet exists is not as innocent as it may look. In fact
it has rather drastic consequences. In particular, we are going to see that it rules out
all utility functions in Example 2.46 except for the class of exponential utilities.
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Example 2.49. For any exponential utility function u(x) = 1 — e~“* with constant
risk aversion o > 0, the induced preference order on lotteries does not at all depend
on the initial wealth w. To see this, note that

/u(w—i—x) uldx) < /u(w + x)v(dx)

is equivalent to

/e‘” u(dx) > /e“x v(dx). <&

Let us now show that the rejection of some favorable bet p at every wealth level
w leads to a not quite plausible conclusion: At high levels of wealth, the agent would
reject a bet v with huge potential gain even though the potential loss is just a negligible
fraction of the initial wealth.

Lemma 2.50. [fthe favorable bet 1 is rejected at any level of wealth, then the utility
function u is bounded from above, and there exists A > 0 such that the bet

1
Vvi= 5(87/1 + 8c0)
is rejected at any level of wealth.

Proof. We have assumed that X is bounded from below, i.e., ; is concentrated on
[a, c0) for some a < 0, where a is in the interior of S. Moreover, we can choose
b > 0 such that

7(B) := (B Nla. bl) + 85(B) - u((b. o))

is still favorable. Since u is increasing, we have

/u(w +x) p(dx) < /u(w +x) u(dx) < u(w)

for any w > 0, i.e., also the lottery /I is rejected at any level of wealth. It follows that
/ [u(w +x) —u(w) | fi(dx) </ [w(w) —u(w +x) | Z(dx).
[0,b] [a,0)

Let us assume for simplicity that u is differentiable; the general case requires only
minor modifications. Then the previous inequality implies

W (w+bymT (@) <u'(w+aym™ (),
where

m* (%) 1=/ x p(dx) >/ (=x) a(dx) =:m™ (),
[0.b]

[a,0]
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due to the fact that t is favorable. Thus,

Ww+b) me(@) _
Ww=la) ~ mTG)

y <1

for any w, hence
' (x +n(lal + b)) < y"u'(x)
for any x in the interior of S. This exponential decay of the derivative implies
u(o0) = limyyou(x) < 00. More precisely, if A := n(la| + b) for some n,
then
S x+(k+1)A

(o) ~ut) =y | W' () dy

k=0 v x+kA

= Z/ u'(z+ (k+1)A)dz
k=0 x—A

< ZV(HD" /x u'(z)dz
k=0 x—A

__r Cur —

=1 i (u(x) u(x A)).

Take n such that y" < 1/2. Then we obtain

u(oo) —u(x) <ulx) —ulx —A),
i.e.,
1
E(u(oo) +ulx — A)) < u(x)
for all x suchthat x — A € S. O

Example 2.51. For an exponential utility function u(x) = 1 —e %", the bet v defined
in the preceding lemma is rejected at any level of wealth as soon as A > é log2. <

Suppose now that the lottery u € M is played not only once but n times in a row.
For instance, one can think of an insurance company selling identical policies to a large
number of individual customers. More precisely, let (€2, ¥, P) be a probability space
supporting a sequence X1, X», ... of independent random variables with common
distribution 1. The value of X; will be interpreted as the outcome of the i drawing
of the lottery p. The accumulated payoff of n successive independent repetitions of
the financial bet X is given by

n
Zy = in,
i=l1

and we assume that this accumulated payoff takes values in S; this is the case if, e.g.,
S = [0, 00).
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Remark 2.52. It may happen that an agent refuses the single favorable bet X at
any level of wealth but feels tempted by a sufficiently large series Xy, ..., X, of
independent repetitions of the same bet. It is true that, by the weak law of large
numbers, the probability

P[Z, <0] =P[%zn:x,~ <m(,u)—8:|
i=1

(for ¢ := m(u)) of incurring a cumulative loss at the end of the series converges to 0
as n 1 oo. Nevertheless, the decision of accepting n repetitions is not consistent with
the decision to reject the single bet at any wealth level w. In fact, for Wy := w + Z;
we obtain

E[u(Wp)]= E[ Elu(W,—1+ X») | X1, ..., Xp11]
- E[ [ ww +x>u<dx)}
< E[u(Wy-D] < <u(w),
i.e., the bet described by Z;, should be rejected as well. <&

Let us denote by w,, the distribution of the accumulated payoff Z,. The lottery .,
has the mean m (u, ) = n-m(w), the certainty equivalent c(u,,), and the associated risk
premium p(u,) = n-m(u) — c(u,). We are interested in the asymptotic behavior of
these quantities for large n. Kolmogorov’s law of large numbers states that the average
outcome %Zn converges P-a.s. to the constant m(u). Therefore, one might guess that
a similar averaging effect occurs on the level of the relative certainty equivalents

. c(in)
Cp =
n
and of the relative risk premiums
P (tn)
Pn = =m(u) — cp.

Does ¢, converge to m(u), and is there a successive reduction of the relative risk
premiums p, as n grows to infinity? Applying our heuristic (2.11) to the present
situation yields

1 1
pu N o a(m(pn)) var(i,) = 5 a(n - m(w)) var(u).
Thus, one should expect that p,, tends to zero only if the Arrow—Pratt coefficient o (x)
becomes arbitrarily small as x becomes large, i.e., if the utility function is decreasingly
risk averse. This guess is confirmed by the following two examples.



2.3 Expected utility 73

Example 2.53. Suppose that u(x) = 1 — e~ ** is a CARA utility function with con-
stant risk aversion o > 0 and assume that w is such that f e * nu(dx) < oo. Then,
with the notation introduced above,

n

/e_“x tn(dx) = E[ l_[e_o’x" ] = </ e ,u(a’x))n.

i=1

Hence, the certainty equivalent of w,, is given by

c(fun) = —g IOg/ e ™ pudx) =n-c().

It follows that ¢, and pj, are independent of n. In particular, the relative risk premiums
are not reduced if the lottery is drawn more than once. <&

The second example displays a different behavior. It shows that for HARA utility
functions the relative risk premiums will indeed decrease to 0. In particular, the lottery
U, will become attractive for large enough n as soon as the price of the single lottery
W is less than m ().

Example 2.54. Suppose that x is a non-degenerate lottery concentrated on (0, 00),
and that u is a HARA utility function of index y € [0, 1). If y > Othenu(x) = %xV

and c¢(u,) = E[(Z,)”1'7, hence

vy
Ccp = ¢(htn) = E|: <lZn> } <m(u).

n n

If y = 0 then u(x) = log x, and the relative certainty equivalent satisfies

1
logc, = logc(u,) —logn = E[log (—Zn> :|
n

e =£]u(12,)]

for any y € [0, 1). By symmetry,

Thus, we have

1
——Zpy1 = E[ Xy | Zy41] fork=1,...,n+1;
n+1

see part IT of §20 in [19]. It follows that

1 1
—Z =F| -Z
n+ 1 n+1 |:l’l n

Znit ] (2.14)
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Since u is strictly concave and since p is non-degenerate, we get

u(ens1) = E[M(E[ 22| 2 m
el e[u(12)] 2]

= u(cn)7

i.e., the relative certainty equivalents are strictly increasing and the relative risk pre-
miums p, are strictly decreasing. By Kolmogorov’s law of large numbers,

1
—Z, — m(u) P-as. (2.15)
n

Thus, by Fatou’s lemma (we assume for simplicity that p is concentrated on [g, c0)
for some ¢ > 0if y = 0),

liminf u(c,) > E[liminfu(lzn>} = u(m(u)),

ntoo ntoo n
hence

lim ¢, =m(u) and lim p, =0.
ntoo ntoo

Suppose that the price of u is given by € (c(p,), m (M))- Atinitial wealth w = 0,
the agent would decline a single bet. But, in contrast to the situation in Remark 2.52, a
series of n repetitions of the same bet would now become attractive for large enough n,
since ¢(u,) = nc, > nw for

n>nog:=min{k eN|c, >m} < o0. &

Remark 2.55. The identity (2.14) can also be written as

1 1
—Z =FE|-Z
n+1 n+1 |:I’l n

An+1] = E[ X1 | Any1]

where A, +1 = 0(Zu+1, Zu+2, . ..). This means that the stochastic process rllZn,
n=1,2...,1s areverse martingale. In particular, Kolmogorov’s law of large num-
bers (2.15) can be regarded as a special case of the convergence theorem for reverse
martingales; see part II of §20 in [19]. <&

2.4 Uniform preferences

So far, we have considered preference relations on distributions defined in terms of
a fixed utility function u. In this section, we focus on the question whether one



2.4 Uniform preferences 75

distribution is preferred over another, regardless of the choice of a particular utility
function.

For simplicity, we take S = R as the set of possible payoffs. Let M be the set of
all u € Mj(R) with well-defined and finite expectation

m(u) = /xu(dX).

Recall from Definition 2.37 that a utility function on R is a strictly concave and strictly
increasing function u : R — R. Since each concave function u is dominated by an
affine function, the existence of m () implies the existence of the integral f udu as
an extended real number in [—00, 00).

Definition 2.56. Let v and u be lotteries in M. We say that the lottery w is uniformly
preferred over v and we write
M %m' v

if
/ udu > / udv for all utility functions u.

Thus, i = v holds if and only if every risk-averse agent will prefer u over v,
regardless of which utility function the agent is actually using. In this sense, u = v
expresses a uniform preference for p over v. Sometimes, = is also called second
order stochastic dominance; the notion of first order stochastic dominance will be
introduced in Definition 2.69.

Remark 2.57. The binary relation = is a partial order on M, i.e., =  satisfies the
following three properties:

* Reflexivity: = forall u € M.

s Transitivity: w = vand v = Aimply u = A

uni uni

o Antisymmetry: u = vand v = @ imply p = v.

ni

The first two properties are obvious, the third is derived in Remark 2.59. Moreover,
= . 1s monotone and risk-averse in the sense that

ini

8y =, 6xfory>x, and &y =, uforall u € M.

Note, however, that = | is nor a weak preference relation in the sense of Definition 2.2,
since it is not complete, see Remark 2.3. <&

In the following theorem, we will give a number of equivalent formulations of the
statement p >=  v. One of them needs the notion of a stochastic kernel on R. This is
a mapping

0:R— M;(R)

such that x — Q(x, A) is measurable for each fixed Borel set A C R. See Ap-
pendix A.3 for the notion of a quantile function, which will be used in condition (e).



76 2 Preferences

Theorem 2.58. For any pair (1, v € M the following conditions are equivalent.

(@ pu=, v

(b) f fdu > / f dv for all increasing concave functions f.
(c) Forallc € R
[0 uan = [ =07 v,

(d) If Fy, and F, denote the distribution functions of u and v, then

C C
f Fu(x)dx < / F,(x)dx forallc e R.

—00 —o0

(e) If g, and q, are quantile functions for p and v, then

t t
/ qu(s)dSZ/ gv(s)ds for0 <t <1.
0 0

(f) There exists a probability space (2, ¥, P) with random variables X, and X,
having respective distributions p and v such that

E[X,|X,]1<X, P-as.

(g) There exists a stochastic kernel Q(x,dy) on R such that Q(x,-) € M and
m(Q(x,-)) < x for all x and such that v = uQ, where uQ denotes the
measure

nQ(A) = / O(x, A) u(dx) for Borel sets A C R.
Below we will show the following implications between the conditions of the
theorem:
() &= () <= (c) = (b) <= () &= (g) = @). (2.16)

The difficult part is the proof that (b) implies (f). It will be deferred to Section 2.6,
where we will prove a multidimensional variant of this result; cf. Theorem 2.93.

Proof of (2.16). (e)<(d): This follows from Lemma A.22.
(d)<(c): By Fubini’s theorem,

/ F,(y)dy = / ‘/(‘ ]M(dz) iy
oo e,
N /,/I{ZSYSC} dy n(dz)

= /(C — 2" udz).
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(c)<>(b): Condition (b) implies (c) because f(x) := —(c — x)T is concave and
increasing. In order to prove the converse assertion, we take an increasing concave
function f andleth := — f. Then h is convex and decreasing, and its increasing right-
hand derivative 2" := h/, canbe regarded as a “distribution function” of a non-negative
Radon measure y on R,

K (b) = h'(a) + y((a,b]) fora < b;

see Appendix A.1. Asin (1.11):
b =) =) 6 -x)+ [ =0Ty forx <b
(—00,0]

Using #’(b) < 0, Fubini’s theorem, and condition (c), we obtain that

/ hdu=h(b)—h’(b)/(b—x)+u(dx)+ / /(z—x>+u(dx>y(dz)

(—o00,b] (—o00,b]

< h(b) — ' (b) /(b -0 vdx) + / /(Z — )" v(dx) y(d2)

(—00,b]
= / hdv.
(—00,b]

Taking b 1 oo yields [ fdu > [ fdv.

(a)<>(b): That (b) implies (a) is obvious. For the proof of the converse implication,
choose any utility function ug for which both f updu and f ugdv are finite. For
instance, one can take

) x—e241 ifx <0,
uplx) .=
0 Jitli—1 ifx>0.

Then, for f concave and increasing and for @ € [0, 1),

g (x) = af(x) + (I — a)uo(x)

is a utility function. Hence,

/fdu:lim/uaduZlim/uadv=/fdv.
atl atl

(f) =(g): By considering the joint distribution of X, and X,,, we may reduce our
setting to the situation in which @ = R? and where X » and X, are the respective
projections on the first and second coordinates, i.e., for w = (x,y) € Q = R? we
have X, (w) = x and X, (w) = y. Let Q(x, dy) be a regular conditional distribution
of X, given X, i.e., a stochastic kernel on R such that

PX, e Al X, )(0) = QX (@), A)
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for all Borel sets A € R and for P-a.e. w € Q2 (see, e.g., Theorem 44.3 of [19] for an
existence proof). Clearly, v = p Q. Condition (f) implies that

X, (@) > E[X, | X, () = /y 0(X,(w),dy) for P-ae. w € Q.

Hence, Q satisfies
/y O(x,dy) <x forpu-ae. x.

By modifying Q on a w-null set (e.g., by putting Q(x, -) := §, there), this inequality
can be achieved for all x € R.

(g) =(a): Let u be a utility function. Jensen’s inequality applied to the measure
0O (x, dy) implies

/u(y) Q(x,dy) <u(m(Q(x,"))) < u(x).

/udv=//u(y)Q(x,dy)u(dX)S/udu,

completing the proof of the set of implications (2.16). O

Hence,

Remark 2.59. Letus note some consequences of the preceding theorem. First, taking
in condition (b) the increasing concave function f(x) = x yields

m(p) = m) if p s, v,

i.e., the expectation m(-) is increasing with respect to 3= ..
Next, suppose that © and v are such that

/(c — )" puldx) = /(c —x)Tv(dx) forallc.

Then we have both o *= v and v 3= = u, and condition (d) of the theorem implies that

uni

the respective distribution functions satisfy

c c
/ F,(x)dx = / F,(x)dx forallc.
—o0 —00

Differentiating with respect to ¢ gives the identity 4 = v, i.e., a measure ;. € M is
uniquely determined by the integrals [(c — x)™ u(dx) for all ¢ € R. In particular,
%=, 1s antisymmetric. <&

The following proposition characterizes the partial order = = considered on the
set of all normal distributions N (m, 0'2). Recall that the standard normal distribution
N (0, 1) is defined by its density function

42
e 2 xeR.

1
p(x) = N
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The corresponding distribution function is usually denoted
X
P(x) = / p(»dy, xeR.
—00

More generally, the normal distribution N (m, 02) with mean m € R and variance
o2 > 01is given by the density function

1 (x —m)?

V2mo? 202

Proposition 2.60. For two normal distributions, we have N (m, ) = N(@m, 52) if
and only if both m > m and o> < &2 hold.

), x € R.

Proof. In order to prove necessity, note that N (m, 02) =. N (m, 52) implies that
e—am-‘raznz/Z _ /e—ozx N(m,az)(dx) < /e—ax N(%’al)(dx) _ e—aﬁ-‘raz?fz/Z'

Hence, for o > 0,
N )
m——o0”->m-— —oo",
2 2
which gives m > m by letting o |, 0 and 0% < &2 for a 1 o0.
We show sufficiency first in the case m = m = 0. Note that the distribution
function of N (0, 02) is given by ®(x /o). Since ¢’ (x) = —x¢@(x),

X\ —x c
(p(—) . —zdx = go(—) > 0.

o/ o o
Note that interchanging differentiation and integration is justified by dominated con-
vergence. Thus, we have shown that o +— ff oo P(x/0) dx is strictly increasing for
all ¢, and N (0, o2) = N, 52) follows from part (d) of Theorem 2.58.

Now we turn to the case of arbitrary expectations m and m. Let u be a utility
function. Then

c

wl oGa=

oo oo

/udN(m,az) = fu(m +x) N0, 0%)(dx) > /u(n“i+x)1v(o,az)(dx),

because m > m. Since x — u(m + x) is again a utility function, we obtain from the
preceding step of the proof that

/u(ﬁi—l—x)N(O, o) (dx) > /u(n~1+x)N(0, 52)(dx) = /udN(n“i,82),

~N(m, 52) follows. 0O

ni

and N (m, o?) =
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Remark 2.61. Let us indicate an alternative proof for the sufficiency part of Proposi-
tion 2.60 that uses condition (g) instead of (d) in Theorem 2.58. To this end, we define
a stochastic kernel by Q(x, ) := N(x + m — m, &%), where 6% := 2 — 02 > 0.
Then m(Q(x, ) =x +m —m < x and

N@m,o0%)Q =N@m,oc)« N —m,6%) = Nim+m —m,c>+62) = N(m, 52,
where * denotes convolution. Hence, N (m, 0'2) =. N (m, 52) follows. <&

The following corollary investigates the relation 3= . v for lotteries with the same
expectation. A multidimensional version of this result will be given in Corollary 2.94
below.

Corollary 2.62. For all 1, v € M the following conditions are equivalent.

(@ =, vandm(u) = m(v).

(b) / fdu > / f dv for all (not necessarily increasing) concave functions f.

(©) m(u) = m(v) and/(x — o) udx) < /(x —o)" v(dx) for all c € R.

(d) There exists a probability space (2, ¥, P) with random variables X, and X,
having respective distributions u and v such that

E[X,|X,]1=X, P-as.

(e) There exists a “mean-preserving spread” Q, i.e., a stochastic kernel on R such
that m(Q(x, -)) = x forall x € S, such thatv = uQ.

Proof. (a)=(e): Condition (g) of Theorem 2.58 yields a stochastic kernel Q such
that v = uQ and m(Q(x, -)) < x. Due to the assumption m(u) = m(v), Q must
satisfy m(Q(x, -)) = x at least for u-a.e. x. By modifying Q on the p-null set where
m(Q(x, -)) < x (e.g. by putting Q(x, -) := §, there), we obtain a kernel as needed
for condition (e).

(e) =(b): Since

/f(y) Q(x,dy) < f(m(Q(x,)) = f(x)

by Jensen’s inequality, we obtain

/de=//f(y)Q(x,dy)M(dX)S/fdu-

(b) =(c): Just take the concave functions f(x) = —(x —¢)™, and f(x) = x.
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(c) =(a): Note that
/(x — o)t u(dx) = / x u(dx) —c—l—c,u((—oo,c]).
(c,00)

The existence of m(u) implies that cu((—oo, c]) — 0 as ¢ | —oo. Hence, we
deduce from the second condition in (c) that m(©) < m(v), i.e., the two expectations
are in fact identical. Now we can apply the following “put-call parity” (compare also
(1.10))

/(C — )" pu(dx) = ¢ —m(p) + /(x — o) p(dx)

to see that our condition (c) implies the third condition of Theorem 2.58 and, thus,
HoR V-

(d)<(a): Condition (d) implies both m () = m(v) and condition (f) of Theo-
rem 2.58, and this implies our condition (a). Conversely, assume that (a) holds. Then
Theorem 2.58 provides random variables X, and X, having the respective distribu-
tions p and v such that E[ X, | X, ] < X,,. Since X, and X, have the same mean,
this inequality must in fact be an almost-sure equality, and we obtain condition (d). [J

Let us denote by

var(p) = / (x = m(w) p(dx) = f X% p(dx) — m(u)* € [0, 0]

the variance of a lottery u € M.

Remark 2.63. If u and v are two lotteries in M such that m () = m(v) and u = v,

then var(u) < var(v). This follows immediately by taking the concave function
fx):= —x2 in condition (b) of Corollary 2.62. <&

In the financial context, comparisons of portfolios with known payoff distributions
often use a mean-variance approach based on the relation

w=v <= m(u)>m()and var(u) < var(v).

For normal distributions ¢ and v, we have seen that the relation © = v is equivalent
to u = v. Beyond this special case, the equivalence typically fails as illustrated by
the following example and by Proposition 2.67 below.

Example 2.64. Let x be the uniform distribution on the interval [—1, 1], so that
m(pu) = 0and var(u) = 1/3. For v we take v = p§_1,2 + (1 — p)d>. With the choice
of p =4/5 we obtain m(v) = 0 and 1 = var(v) > var(u). However,

11_6=/(_%—x)+u(dx>>/(—%—x)+v(dx>=o,

so i = v does not hold. <
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Remark 2.65. Let u and v be two lotteries in M. We will write 1 3= v if
/ fdu > / fdv forall concave functions f on R. (2.17)

Note that u >=_ v implies that m () = m(v), because both f(x) = x and f(x) = —x
are concave. Corollary 2.62 shows that = coincides with our uniform partial order
=, if we compare two measures which have the same mean. The partial order =
is sometimes called concave stochastic order. It was proposed in [170] and [171] to
express the view that p is less risky than v. The inverse relation p >~ v defined by

/fdu > / fdv forall convex functions f on R (2.18)

is sometimes called balayage order or convex stochastic order. <
The following class of asset distributions is widely used in Finance.

Definition 2.66. A real-valued random variable Y on some probability space (2, ¥, P)
is called log-normally distributed with parameters « € Rand o > 0 if it can be written
as

Y =exp(a + 0 X), (2.19)

where X has a standard normal law N (0, 1).

Clearly, any log-normally distributed random variable Y on (2, ¥, P) takes
P-a.s. strictly positive values. Recall from above the standard notations ¢ and &
for the density and the distribution function of the standard normal law N (0, 1). We
obtain from (2.19) the distribution function

1 —
P[Y§y]=®<M>, 0<y<oo,
o
and the density
. 1 logy —« I 220

of the log-normally distributed random variable Y. Its p™ moment is given by the
formula

1
E[YP]=exp (pa + 3 p202>.
In particular, the law p of Y has the expectation
1,
m(u) = E[Y] =exp(oz—|—§o )

and the variance
var(u) = exp (2o + 02)(€XP(02) —1).
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Proposition 2.67. Let v and [i be two log-normal distributions with parameters
(o, 0) and (a,0), respectively. Then w = [t holds if and only ifcr2 < 52 and
a+30? >a + 152

Proof. First suppose that 02 < &2 and m(u) > m(iX). We define a kernel Q(x, -)
as the law of x - exp(A + BZ) where Z is a standard normal random variable. Now
suppose that p is represented by (2.19) with X independent of Z, and let f denote a
bounded measurable function. It follows that

/ fd(RQ) = E[f (e . HHP7)] = E[ (XU,

where
oX+BZ

Vo?+ p?
is also N (0, 1)-distributed. Thus, nQ is a log-normal distribution with parameters

(@ + A, /o2 + B2). Bytaking B := +/ 32 — o2 and A := & — o, we can represent [l
as 1 = uQ. With this parameter choice,

~ ~ 1 2 B
k:a—a:logm(,u)—logm(u)—E(a -0 )5—7.
We have thus m(Q(x, -)) < x forall x, and so u = i follows from condition (g) of

Theorem 2.58.

As to the converse implication, the inequality m (i) > m(2) is already clear. To
prove 0> < 52, letv := pwolog™! and ¥ := T o log™! so that v = N(a, c?)
and V = N(@,52). For ¢ > 0 we define the concave increasing function f,(x) :=
log(e +x). If u is a concave increasing function on R, the function u o f; is a concave
and increasing function on [0, co), which can be extended to a concave increasing

function v, on the full real line. Therefore,

=1i >1i = v. 2.21
/udv glilgfvedﬂ_glil(’)l/l)gdﬂ /udv ( )

Consequently, v %= 7 and Proposition 2.60 yields 0% < 52. O

Remark 2.68. The inequality (2.21) shows that if v = N(a, 62), 7 = N (&, &%) and
w and zt denote the images of v and ¥ under the map x — e*, then u = i implies
v = V. However, the converse implication “v = vV = pu = " fails, as can be
seen by increasing ¢ until m (X)) > m(uw). 2

Because of its relation to the analysis of the Black—Scholes formula for option
prices, we will now sketch a second proof of Proposition 2.67.
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Second proof of Proposition 2.67. Let

o2
Yino :=m-exp (O‘X — 7)

for a standard normally distributed random variable X. Then

log £ + 10-2
E[ (Vo —0)t | =md(dy) —c @) withds = ——< 27
o

see Example 5.57 in Chapter 5. Calculating the derivative of this expectation with
respect to o > 0, one finds that

d d
gE[(Ym,g —ot]= E(m D(dy) — cP(d-)) = xp(dy) > 0,

see (5.35) in Chapter 5. The law p,, - of Yy, » satisfies m(iy, o) = m forall o > 0.
Condition (c) of Corollary 2.62 implies that (i,  is decreasing in o > 0 with respect
to ’= . and hence also with respect to ’=_, i.e., o =, Mm,5 if and only if o < o.

For two different expectations m and 71, simply use the monotonicity of the function
u(y) := (y — ¢)™ to conclude

/ud,um,o = E[u(m -exp(o X —02/2))]
> E[u(i - exp(a X — 0?/2)) ]

Z

—

udpps,
provided thatm > m and0 < 0 < 3. O

The partial order >=  was defined in terms of integrals against increasing concave
functions. By taking the larger class of all concave functions as integrands, we arrived
at the partial order =  defined by (2.17) and characterized in Corollary 2.62. In
the remainder of this section, we will briefly discuss the partial order of stochastic
dominance, which is induced by increasing instead of concave functions:

Definition 2.69. Let i and v be two arbitrary probability measures on R. We say that
w stochastically dominates v and we write p >= v if

/ fdu > / fdv for all bounded increasing functions f € C(R).

Stochastic dominance is sometimes also called first order stochastic dominance.
It is indeed a partial order on M (R): Reflexivity and transitivity are obvious, and
antisymmetry follows, e.g., from the equivalence (a)<-(b) below. As will be shown by
the following theorem, the relation p = v means that the distribution  is “higher”
than the distribution v. In our one-dimensional situation, we can provide a complete
proof of this fact by using elementary properties of distribution functions. The general
version of this result, given in Theorem 2.95, will require different techniques.
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Theorem 2.70. For i, v € M (R) the following conditions are equivalent.

(a) M >/_mon v.

(b) The distribution functions of u and v satisfy F, (x) < F,(x) for all x.

(¢) Any pair of quantile functions for u and v satisfies q,(t) > q,(t) for a.e.
te0,1).

(d) There exists a probability space (2, ¥, P) with random variables X, and X,
with distributions p and v such that X,, > X, P-a.s.

(e) There exists a stochastic kernel Q(x,dy) on R such that Q(x, (—oo, x]) =1
and such that v = u Q.

In particular, v = v implies |1 = v.

ini

Proof. (a) =(b): Note that F,(x) = u((—oo, x]) can be written as

Fux)=1- /I(x,oo) () u(dy).

It is easy to construct a sequence of increasing continuous functions with values in
[0, 1] which increase to I (x.00) for each x. Hence,

/ Lt 00 () 1(dy) = / Ly ooy M) =1 = F,(x).

(b)<(c): This follows from the definition of a quantile function and from Lemma
A.17.

(c)=(d): Let (2, ¥, P) be a probability space supporting a random variable U
with a uniform distribution on (0, 1). Then X, := ¢, (U) and X, := ¢, (U) satisfy
X, = X, P-almost surely. Moreover, it follows from Lemma A.19 that they have the
distributions p and v.

(d) =(e): This is proved as in Theorem 2.58 by using regular conditional distri-
butions.

(e) =(a): Condition (e) implies that x > y for Q(x, -)-a.e. y. Hence, if f is
bounded and increasing, then

/f(y) Q(x,dy) S/f(X) Q(x,dy) = f(x).

/de=//f(y)Q(x,dy)u(dx) §/fdu-

Finally, due to the equivalence (a) < (b) above and the equivalence (a) < (d) in
Theorem 2.58, u »= v implies u = v. [

Therefore,

non
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Remark 2.71. It is clear from conditions (d) or (e) of Theorem 2.70 that the set of
bounded, increasing, and continuous functions in Definition 2.69 can be replaced by
the set of all increasing functions for which the two integrals make sense. Thus,
w =, v forpu,v e Mimplies u = v, and in particular m(u) > m(v). Moreover,
condition (d) shows that u = v together with m(u) = m(v) implies u = v. <&

2.5 Robust preferences on asset profiles

In this section, we discuss the structure of preferences for assets on a more funda-
mental level. Instead of assuming that the distributions of assets are known and that
preferences are defined on a set of probability measures, we will take as our basic
objects the assets themselves. An asset will be viewed as a function which associates
real-valued payoffs to possible scenarios. More precisely, X, will denote a set of
bounded measurable functions X on some measurable set (2, ). We emphasize that
no a priori probability measure is given on (2, ). In other words, we are facing
uncertainty instead of risk.

We assume that X is endowed with a preference relation >. In view of the financial
interpretation, it is natural to assume that > is monotone in the sense that

Y>X ifY(w) > X(w)forallw € Q.

Under a suitable condition of continuity, we could apply the results of Section 2.1 to
obtain a numerical representation of >. L. J. Savage introduced a set of additional
axioms which guarantee there is a numerical representation of the special form

UX) = Eglu(X)] = /u(X(a))) O(dw) forall X € X (2.22)

where Q is a probability measure on (€2, #) and u is a function on R. The measure
Q specifies the subjective view of the probabilities of events which is implicit in the
preference relation >. Note that the function # : R — R is determined by restricting
U to the class of constant functions on (€2, ¥). Clearly, the monotonicity of > is
equivalent to the condition that # is an increasing function.

Definition 2.72. A numerical representation of the form (2.22) will be called a Savage
representation of the preference relation >.

Remark 2.73. Let j1p x denote the distribution of X under the subjective measure
Q. Clearly, the preference order > on X given by (2.22) induces a preference order
on

Mo = {ngx | X €X)

with von Neumann—Morgenstern representation

Uoluo.x) 1= UX) = Eolut)1 = [ udio.x.
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i.e.,
Up(u) = /u(x) u(dx) forp e Mop.

On this level, Section 2.3 specifies the conditions on Uy which guarantee that u is a
(strictly concave and strictly increasing) utility function. <

Remark 2.74. Even if an economic agent with preferences > would accept the view
that scenarios w € 2 are generated in accordance to a given objective probability
measure P on (€2, ), the preference order > on X may be such that the subjective
measure Q appearing in the Savage representation (2.22) is different from the objective
measure P. Suppose, forexample, that P is Lebesgue measure restrictedto 2 = [0, 1],
and that X is the space of bounded right-continuous increasing functions on [0, 1].
Let wp, x denote the distribution of X under P. By Lemma A.19, every probability
measure on R with bounded support is of the form pp x for some X € X, i.e.,

Mp(R) ={upx | X e X}

Suppose the agent agrees that, objectively, X € X can be identified with the lottery
1p.x, so that the preference relation on X could be viewed as a preference relation
on Mj(R) with numerical representation

U*(up,x) = U(X).

This does not imply that U* satisfies the assumptions of Section 2.2; in particular, the
preference relation on Mj(IR) may violate the independence axiom. In fact, the agent
might take a pessimistic view and distort P by putting more emphasis on unfavorable
scenarios. For example, the agent could replace P by the subjective measure

0 :=ady+(1—a)P

for some o € (0, 1) and specify preferences by a Savage representation in terms of u
and Q. In this case,

U*(up,x) = Eglu(X)] = /udMQ,X
= au(X(0) + (1 —a)Ep[u(X)]
= au(X(0)) + (1 —a)/udup,x.
Note that X (0) = €(up,x) for

£(p) := inf(supp p) = sup { aelR| M((—oo, a)) =0 },

where supp w is the support of . Hence, replacing P by Q corresponds to a non-linear
distortion on the level of lotteries: u = up x is distorted to the lottery u* = o x
given by

w=adpp + (1 —a)u,
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and the preference relation on lotteries has the numerical representation

U*(w) = /M(X) n*(dx) for p € Mp(R).

Let us now show that such a subjective distortion of objective lotteries provides a
possible explanation of the Allais paradox. Consider the lotteries p; and v;,i = 1, 2,
described in Example 2.32. Clearly,

pi=wp1 and vi =ady+ (I — )i,
while
wy=ady+ (1 —a)pur and v =ad + (I — o).

For the particular choice u(x) = x we have U*(v2) > U*(u2), and for ¢ > 9/2409
we obtain U*(w1) > U*(vy), in accordance with the observed preferences v, > up
and w1 > vy described in Example 2.32.

For a systematic discussion of preferences described in terms of a subjective distor-
tion of lotteries we refer to [131]. In Section 4.6, we will discuss the role of distortions
in the context of risk measures, and in particular the connection to Yaari’s “dual theory
of choice under risk” [198]. <&

Even in its general form (2.22), however, the paradigm of expected utility has a
limited scope as illustrated by the following example.

Example 2.75 (Ellsberg paradox). You are faced with a choice between two urns,
each containing 100 balls which are either red or black. In the first urn, the proportion
p of red balls is know; assume, e.g., p = 0.49. In the second urn, the proportion p is
unknown. Suppose that you get 1000 € if you draw a red ball and 0 € otherwise. In this
case, most people would choose the first urn. Naturally, they make the same choice if
you get 1000 € for drawing a black ball and 0 € for a red one. But this behavior is not
compatible with the paradigm of expected utility: For any subjective probability p of
drawing a red ball in the second urn, the first choice would imply p > p, the second
would yield 1 — p > 1 — p, and this is a contradiction. <&

For this reason, we are going to make one further conceptual step beyond the
Savage representation before we start to prove a representation theorem for preferences
on X. Instead of a single measure Q, let us consider a whole class @ of measures
on (€2, ). Our aim is to characterize those preference relations on X, which admit a
representation of the form

U(X) = Qir;lzg Eolu(X)]. (2.23)

This may be viewed as a robust version of the paradigm of expected utility: The
agent has in mind a whole collection of possible probabilistic views of the given set
of scenarios and takes a worst-case approach in evaluating the expected utility of a
given payoff.
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It will be convenient to extend the discussion to the following framework where
payoffs can be lotteries. Let X denote the space of all bounded measurable functions
on (2, ¥). We are going to embed X into a certain space X of functions X on (€2, )
with values in the convex set

Mp(R) ={pn e MiR) | u(—c,c]) =1 forsomec >0}

of boundedly supported Borel probability measures on R. More precisely, X is defined
as the convex set of all those stochastic kernels X (w, dy) from (2, ) to R for which
there exists a constant ¢ > 0 such that

)~((w, [—c, c]) =1 forallw e Q.
The space X can be embedded into X by virtue of the mapping
X35 X+— 8y € X. (2.24)

In this way, X can be identified with the set of all X € X for which the measure
X(w, -) is a Dirac measure. A preference order on X defined by (2.23) clearly extends
to X by

U(X) = inf / / u(y) X (@, dy) Q(dw) = inf Eg[#(X)] (2.25)
Qeq Qc@
where U is the affine function on M (R) defined by
u(p) = /udu, e Mp(R).

Remark 2.76. Restricting the preference order > on X obtained from (2.25) to the
constant maps X (w) = u for u € Mj(R), we obtain a preference order on My (R),
and on this level we know how to characterize risk aversion by the property that u is
strictly concave. <

Example 2.77. Let us show how the Ellsberg paradox fits into our extended setting,
and how it can be resolved by a suitable choice of the set @. For Q = {0, 1} define

Xo(®) := pSiooo + (1 — p)o,  Xi1(w) := (1 — p)8ioo0 + P 8o,

and _
Zi(w) = 81000 - I{l}(w) +do - I{l—i}(w)’ i=0,1.

Take
Q:={gsi+(1—g)ola<qg=<b}

with [a, b] C [0, 1]. For any increasing function u, the functional

U(X) = Q“;fg Eol#(X)]
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satisfies o o
UX;))>U(Z), i=0,1,

assoonasa < p < b, in accordance with the preferences described in Example 2.75.

<&

Let us now formulate those properties of a preference order > on the convex set
%X which are crucial for a representation of the form (2.25). For X Y € X and
a € (0, 1), (2.25) implies

U@X +(1-a)Y) = inf (a Eolu(X)1+ (1 —a) Eglu(Y) )
>aUX)+ 1 —-a)U(®Y).

In contrast to the Savage case @ = {Q} Wwe can no longer expect equality, except for
the case of certainty Y (w) = p. If X ~ Y then U (X ) = U (Y ), and the lower bound
reduces to U (X) = U (Y). Thus, > satisfies the following two properties:

Uncertainty aversion: If X , Y € X are such that X ~ ¥ , then
aX+ (1 —a)Y =X foralla € [0,1].
Certainty independence: For ?, Y e DNC, 7= w € Mp(R), and o € (0, 1] we have
X>Y = oaX+(U-a)Z=a¥V+1—-a)Z.

Remark 2.78. In order to motivate the term “uncertainty aversion”, consider the sit-
uation of the preceding example. Suppose that an agent is indifferent between the
choices ZO and Z;, which both involve the same kind of uncertainty. For « € (0, 1),
the convex combination Y = aZo + (1 - a)Z 1, which is weakly preferred to both
Zo and Z 1 in the case of uncertainty aversion, takes the form

~ o 81000 + (1 —a)dp forw =1,

Y(w) =

ady+ (1 —a)dipoo forw =0,

i.e., uncertainty is reduced in favor of risk. For « = 1/2, the resulting lottery Y (w) =
%(81000 + 8p) is independent of the scenario w, i.e., uncertainty is completely replaced
by risk. <

Remark 2.79. The axiom of “certainty independence” extends the independence ax-
iom for preferences on lotteries to our present setting, but only under the restriction
that one of the two contingent lotteries X and Y is certain, i.e., does not depend on
the scenario w € 2. Without this restriction, the extended independence axiom would
lead to the Savage representation in its original form (2.22). There are good reasons
for not requiring full independence forall Z € X. Asanexample, take 2 = {0, 1} and
define X(w) = §,, Y (w) = §1—w, and Z =X. An agent may prefer X over Y, thus
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expressing the implicit view that scenario 1 is somewhat more likely than scenario 0.
At the same time, the agent may like the idea of hedging against the occurrence of
scenario 0, and this could mean that the certain lottery

1~ ~
E(Y Z)()z—(50+81)

is preferred over the contingent lottery

1, ~ ~
S(X+Z)0=X0),

thus violating the independence assumption in its unrestricted form. In general, the
role of Z as a hedge against scenarios unfavorable for Y requires that Y and Z are not
comonotone, i.e.,

Tw,neQ: Y =YW, Z) < Z®). (2.26)

Thus, the wish to hedge would still be compatible with the following enforcement of
certainty independence, called

e comonotonic independence: For )N(, 17, 7 IS X and o € (0, 1]
X>Y = aX+(U-a)Z>a¥+(—-a)Z.
whenever Y and Z are comonotone in the sense that (2.26) does not occur. <>

From now on, we assume that > is a given preference order on X. The set M;(R)
will be regarded as a subset of X by identifying a constant function Z = p with its
value € Mp(R). We assume that > possesses the following properties:

e Uncertainty aversion.
 Certainty independence.

e Monotonicity: If Y (w) = X (w) for all w € 2, then Y > X. Moreover, > is
compatible with the usual order on R, i.e., 8, > &, if and only if y > x.

. Contznmly The following analogue of the Archimedean axiom holds on X: If
X Z € X are such that Z > ¥ > X then there are «, 8 € (0, 1) with

aZ+(1-a)X =Y = BZ+(1-B)X.

Moreover, for all ¢ > 0 the restriction of > to M([—c, c]) is continuous with
respect to the weak topology.

Let us denote by
My =My p(R2,F)
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the class of all set functions Q : & — [0, 1] which are normalized to Q[ Q2] = 1
and which are finitely additive, i.e., Q[A U B] = Q[ A]+ Q[ B] for all disjoint
A, B € ¥. By Eg[ X ] we denote the integral of X with respect to Q € My s; see
Appendix A.6. With M (£2, ) we denote the o-additive members of M ¢, that is,
the class of all probability measures on (€2, ).

Theorem 2.80. Consider a preference order > on X satisfying the four properties
listed above.

(a) There exists a strictly increasing function u € C(R) and a convex set @ C
My, (82, F) such that

ﬁ()?) = énelg EQ|: /u(x) i(., dx)}

is a nhumerical representation of >. Moreover, u is unique up to positive affine trans-
formations. _

(b) If the induced preference order > on X;, viewed as a subset of X as in (2.24),
satisfies the following additional continuity property

X>Yand X, /' X — X,>Y foralllargen, (2.27)

then the set functions in @ are in fact probability measures, i.e., each Q € @ is
o-additive. In this case, the induced preference order on X has the robust Savage
representation

UX) = IQIIElIélz Eolu(X)] forX e X

with @ C M (2, F).

Remark 2.81. Even without its axiomatic foundation, the robust Savage representa-
tion is highly plausible as it stands, since it may be viewed as a worst-case approach
to the problem of model uncertainty. This aspect will be of particular relevance in our
discussion of risk measures in Chapter 4. <

The proof of Theorem 2.80 needs some preparation.

When restricted to My (R), viewed as a subset of X , the axiom of certainty inde-
pendence is just the independence axiom of the von Neumann—Morgenstern theory.
Thus, the preference relation > on M (R) satisfies the assumptions of Corollary 2.29,
and we obtain the existence of a continuous function u : R — R such that

u(p) = /M(X)M(dX) (2.28)

is a numerical representation of > on the set Mp(R). Moreover, u is unique up
to positive affine transformations. The second part of our monotonicity assumption
implies that u is strictly increasing. Without loss of generality, we assume u(0) = 0
and u(1) = 1.
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Remark 2.82. In view of the representation (2.28), it follows as in (2.9) that any
uw € Mp(R) admits a unique certainty equivalent c() € R for which

M~ Be(u).-

Thus, if X € X is defined for X € X as X (») := c()N((a))), then the first part of our
monotonicity assumption yields _
X ~ by, (2.29)

and so the preference relation > on X is uniquely determined by its restriction to XG.

<&

Lemma 2.83. There exists a unique extension U of the functional u in (2.28) as a
numerical representation of > on X.

Proof. For X € X let ¢ > 0 be such that )N((a), [—c, c]) = 1forall w € Q. Then
HG_e) <u(X(@) <@, forallow e Q,
and our monotonicity assumption implies that
Se =X =6,
We will show below that there exists a unique « € [0, 1] such that
X~ —a)_c+as. (2.30)
Once this has been achieved, the only possible choice for U ()? ) is
UX) :=((1 —)d_c +ade) = (1 — a)i(5-c) + aBl(Sc).

This definition of U provides a numerical representation of > on X.
The proof of the existence of a unique & € [0, 1] with (2.30) is similar to the proof
of Lemma 2.24. Uniqueness follows from the monotonicity

B>a = (1—PB)_c+ B8 = (1 —a)d_c+ade, (2.31)

which is an immediate consequence of the von Neumann—Morgenstern representation.
Now we let _
a:=sup{y €[0,1]1] X = (1 —y)d_+ 7y}

We have to exclude the two following cases:

X = (1 —a)d_¢ + s, (2.32)
(1 —a)s_o +ad, = X. (2.33)

In the case (2.32), our continuity axiom yields some 8 € (0, 1) for which

X>Bl(l—a)d e+ adc 1+ (1= B)s = (1 — y)s_c + yd.
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where y = Ba + (1 — B) > «, in contradiction to the definition of «.
If (2.33) holds, then the same argument as above yields 8 € (0, 1) with

Bade + (1 — Ba)d_e = X.
By our definition of « there must be some y € (Ba, o) with
X = (1= y)8-c+ 8 = Bade + (1 — Ba)s_,

where the second relation follows from (2.31). This, however, is a contradiction. []

Via the embedding (2.24), Lemma 2.83 induces a numerical representation U of
> on X given by _
UX) :=U(éx). (2.34)

The following proposition clarifies the properties of the functional U and provides the
key to a robust Savage representation of the preference order > on X.

Proposition 2.84. Given u of (2.28) and the numerical representation U on X con-
structed via Lemma 2.83 and (2.34), there exists a unique functional J : X — R such
that

UX) = J(u(X)) forall X € X, (2.35)

and such that the following four properties are satisfied:
* Monotonicity: If Y (w) > X(w) for all , then J(Y) > J(X).
 Concavity: If » € [0, 1] then J(AX +A=10Y)=AJ(X)+ (1 =1JX).
* Positive homogeneity: J(AX) = AJ(X) for A > 0.
» Cash invariance: J(X +z) = J(X) + z for all z € R.

Moreover, any functional J with these four properties is Lipschitz continuous on X
with respect to the supremum norm || - ||, i.e.,

[JX)—J@)| < IX=Y| forallX,Y € X.

Proof. Denote by X, the space of all X € X which take values in the range u(R) of
u. Clearly, X, coincides with the range of the non-linear transformation X > X >
u(X). Note that this transformation is bijective since u is strictly increasing due to
our assumption of monotonicity. Thus, J is well-defined on X, via (2.35). We show
next that this J has the four properties of the assertion.

Monotonicity is obvious. For positive homogeneity on X;,,, it suffices to show that
J(X) = AJ(X) for X € X, and 1 € (0, 1]. Let Xo € X be such that u(Xo) = X.
We define Z € X by

~

Z = A8x, + (1 — ).
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By (2.29), Z ~ 87 where Z is given by

Z(w) = c(AMxo(w) + (1 — 1)&)
= u~ (Au(Xo(@)) + (1 — Mu(0))
=u"" (Au(Xo())).

where we have used our convention u(0) = 0. It follows that u(Z) = Au(Xp) = 1 X,
and so o
JAX) =UZ)=U(2Z). (2.36)

As in (2.30), one can find v € Mp(R) such that v ~ §x,. Certainty independence
implies that ~
Z = Mx,+ (1 =218 ~ Av + (1 — A)dp.
Hence, o
UZ) =u(iv+ (1 =218y = ru(v) = AU (X)) = LJ(X).

This shows that J is positively homogeneous on X,,.

Since the range of u is an interval, we can extend J from X, to all of X by positive
homogeneity, and this extension, again denoted J, is also monotone and positively
homogeneous.

Let us now show that J is cash invariant. First note that

Ju@) _ w6 _,

ulx)  ulx)
for any x such that u(x) # 0. Now take X € X and z € R. By positive homogeneity,
we may assume without loss of generality that 2X € X, and 2z € u(R). Then there

are Xg € X such that 2X = u(Xp) as well as zg9, xo € R with 2z = u(z9) and
2J(X) = u(xp). Note that §x, ~ 8x,. Thus, certainty independence yields

J(1) =

~ 1 1
Z = E(SXO + 8z,) ™~ E(Sxo + 8z) =1 1.
On the one hand, it follows that
~ o~ 1 1
UZ)=Uw) = EM(XO) + iu(Zo) =J(X) +z.
On the other hand, the same reasoning which lead to (2.36) shows that
U(Z)=J(X +2).

As to concavity, we need only show that J(%X + %Y) > %J(X) + %J(Y) for
X, Y € X,, by positive homogeneity. Let Xg, Yo € X be such that X = u(X) and
Y =u(Yp). If J(X) = J(Y), then éx, ~ Jy,, and uncertainty aversion gives

~ 1

Z .= 5(8)(0 + 5YO) b 8)(0’
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which by the same arguments as above yields
~ ~ 1 1 1
U@Z)=J\3X+3Y zja)=50@3+an
The case in which J(X) > J(Y) can be reduced to the previous one by letting

z:= J(X)— J(Y), and by replacing Y by Y, := Y + z. Cash invariance then implies
that

Hix+ Yo loos(ix i Ly
2573 2° T\ Ty

> S (J(X) + I (YD)

| — N —

1
S0 +IW) + 5z

Now we show the Lipschitz continuity of J. If X, Y € Xthen X <Y+ | X —Y|,
and so J(X) < J(Y) + || X — Y|, by monotonicity and cash invariance. Reversing
the roles of X and Y yields

(X)) —JM)| =X =Y. [

Letus now show that a function with the four properties established in the preceding
proposition can be represented in terms of a family of set functions in the class M1 f.

Proposition 2.85. A functional J : X — R is monotone, concave, positively homo-
geneous, and cash invariant if and only if there exists a set @ C My, such that

J(X)=inf Eg[X], X eX.
Qeq
Moreover, the set @ can always be chosen to be convex and such that the infimum
above is attained, i.e.,
J(X)=min Eg[X], X e X.
Qeq
Proof. The necessity of the four properties is obvious. Conversely, we will construct

for any X € X a finitely additive set function Qx such that J(X) = Eg,[ X ] and
J(Y) < EgylY]forall Y € X. Then

J(Y) = min Eg[Y] forallY € X 2.37)
0€Qo
where Q¢ := { Qx | X € X }. Clearly, (2.37) remains true if we replace @¢ by its

convex hull @ := conv @y.
To construct Q x for a given X € X, we define three convex sets in X by

B ={YeX|JY)>1)},
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X
Cr={YeX|Y<1}, and Cr:=3YeX | Y <—— .
J(X)

The convexity of C; and G, implies that the convex hull of their union is given by
C:=conv(CiUC) ={aYi+(1—a)Y2|Y; €Canda € [0, 1]}.
Since Y € Cisofthe foom Y = aY; + (1 — )Y forsome ¥; € G; and « € [0, 1],
JY)<Je+(Q—-—a))=a+ (1 —-a)J(Yr) <1,

and so B and C are disjoint. Let X be endowed with the supremum norm ||Y| :=
sup,cq |Y (w)|. Then €1, and hence C, contains the unit ball in X. In particular, C
has non-empty interior. Thus, we may apply the separation argument in the form of
Theorem A.54, which yields a non-zero continuous linear functional £ on X such that

c:=supl(Y) < inf £(Z).
YeC ZeB

Since C contains the unit ball, ¢ must be strictly positive, and there is no loss of
generality in assuming ¢ = 1. In particular, £(1) < 1 as 1 € €. On the other hand,
any constant b > 1 is contained in 8, and so

(1) =lim &) > ¢ = 1.
(D blfrll()—c

Hence, ¢(1) = 1.
If A e F thenl ac € C1 C @, which implies that

L) =6 =€, ) >1—-1=0.

By Theorem A.50 there exists a finitely additive set function Qx € My, r(£2, F) such
that £(Y) = Ep,[Y ] forany ¥ € X.

It remains to show that Eg,[Y ] > J(Y) forall Y € X, with equality for ¥ = X.
By the cash invariance of J, we need only consider the case in which J(Y) > 0. Then

Y, = Y + ! €SB
TTTIw) a7
and Y, — Y/J(Y) uniformly, whence

EgxlY]

J(Y)
On the other hand, X/J (X) € G, C C yields the inequality
Eox[X]

J(X)

=1lim Eg,[Y,]> 1.
ntoo

<c=1. O

We are now ready to complete the proof of the main result in this section.
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Proof of Theorem 2.80. (a): By Remark 2.82, it suffices to consider the induced
preference relation > on X once the function # has been determined. According
to Lemma 2.83 and the two Propositions 2.84 and 2.85, there exists a convex set
@ C My, r such that
U(X) =min Eg[u(X)]
Qeq

is a numerical representation of > on X.. This proves the first part of the assertion.

(b): The assumption (2.27) appliedto X = 1 and Y = b < 1 gives that any
sequence with X,, 1 is such that X, > b for large enough n. We claim that
this implies that U(X,) / u(l) = 1. Otherwise, U(X,) would increase to some
number @ < 1. Since u is continuous and strictly increasing, we may take b such that
a <u(b) < 1. Butthen U(X,) > U(b) = u(b) > a for large enough n, which is a
contradiction.

In particular, we obtain that for any increasing sequence A, € ¥ such that
Un An =Q

Jim pig 041 = lm U, ) =1

But this means that each Q € @ satisfies lim, Q[ A, ] = 1, which is equivalent to the
o-additivity of Q. 0

The continuity assumption (2.27), required for all X,, € X, is actually quite strong.
In a topological setting, our discussion of risk measures in Chapter 4 will imply the
following version of the representation theorem.

Proposition 2.86. Consider a preference order > as in Theorem 2.80. Suppose that Q
is a Polish space with Borel field ¥ and that (2.27) holds if X,, and X are continuous.
Then there exists a class of probability measures @ C M1(S2, F) such that the induced
preference order on X has the robust Savage representation

UX) = gig Eglu(X)]1 for continuous X € X.
€

Proof. As in the proof of Theorem 2.80, the continuity property of > implies the
corresponding continuity property of U, and hence of the functional J in (2.35). The
result follows by combining Proposition 2.84, which reduces the representation of U
to a representation of J, with Proposition 4.25 applied to the coherent risk measure
p=—J. ]

Finally, we consider an alternative setting where we fix in advance a reference mea-
sure P on (2, ). In this context, X will be identified with the space L>°(2, ¥, P),
and the representation of preferences will involve measures which are absolutely con-
tinuous with respect to P. Note, however, that this passage from measurable functions
to equivalence classes of random variables in L*° (2, , P), and from arbitrary proba-
bility measures to absolutely continuous measures, involves a certain loss of robustness
in the face of model uncertainty.
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Theorem 2.87. Let > be a preference relation as in Theorem 2.80, and assume that
X ~Y whenever X =Y P-a.s.
(a) There exists a robust Savage representation of the form

UX) = fnf Eg[u(X)], X e X,

where @ consists of probability measures on (2, ) which are absolutely continuous
with respect to P, if and only if > satisfies the following condition of continuity from
above:

Y>Xand X, \{ X P-as. — Y > X, P-as. foralllargen.
(b) There exists a representation of the form

U(X) = min Eg[u(X)], X eX,

where @ consists of probability measures on (2, ) which are absolutely continuous
with respect to P, if and only if > satisfies the following condition of continuity from
below:

X>YandX, /X P-as. — X, >Y P-as. foralllargen.

Proof. As in the proof of Theorem 2.80, the continuity property of > implies the
corresponding continuity property of U, and hence of the functional J in (2.35). The
results follow by combining Proposition 2.84, which reduces the representation of U
to arepresentation of J, with Corollary 4.34 and Corollary 4.35 applied to the coherent
risk measure p := —J. O

2.6 Probability measures with given marginals

In this section, we study the construction of probability measures with given marginals.
In particular, this will yield the missing implication in the characterization of uniform
preference in Theorem 2.58, but the results in this section are of independent interest.
We focus on the following basic question: Suppose w1 and p, are two probability
measures on S, and A is a convex set of probability measures on S x S; when does A
contain some it which has @ and @y as marginals?

The answer to this question will be given in a general topological setting. Let S be
a Polish space, and let us fix a continuous function v on S with values in [1, 00). As
in Section 2.2 and in Appendix A.6, we use V as a gauge function in order to define
the space of measures

M (S)i={ e M) | fw<x)u(dx><oo}
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and the space of continuous test functions

Cy(S):={feC® |3c: |f&)| <c-¥(x)forallx € S}.

The -weak topology on M }0 (S) is the coarsest topology such that

M (S) 5 ffd,u

is a continuous mapping for all f € Cy (S); see Appendix A.6 for details. On the
product space S x S, we take the gauge function

vx,y) =9+ v,

and define the corresponding set M?(S x S), which will be endowed with the y-weak
topology.

Theorem 2.88. Suppose that A C M?(S x 8§) is convex and closed in the y-weak

topology, and that |11, o are probability measures in QM;// (S). Then there exists some
€ A with marginal distributions (1 and .y if and only if

/fl du1+/f2d,u2 = ASUE/ (/i) + f2(0)) Mdx,dy)  forall fi, f» € Cy(S).

Theorem 2.88 is due to V. Strassen [191]. Its proof boils down to an application of
the Hahn—Banach theorem; the difficult part consists in specifying the right topological

setting. First, let us investigate the relations between Mi/f (S x 8§)and M}lj (S). To this
end, we define mappings

mie MU x8) > M), i=1.2
that yield the i marginal distribution of a measure A € =M?(S x §):
[ facn = [ reraxdy wa [ raon = [ roraaxan.
forall f € Cy(9S).

Lemma 2.89. 7w and my are continuous and affine mappings from M?(S x S) to
MV (S).

Proof. Suppose that A, converges to A in M?(S x S). For f € Cy(S) let ?(x, y) =
f(x). Clearly, fe Cﬁ(S x S), and thus

[ racin = [Far — [Far= [ racn.

Therefore, 771 is continuous, and the same is true of 5. Affinity is obvious. O
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Now, let us consider the linear space
E:={au—pv|uveM/s), apecR)

spanned by M;/'(S). For p = o — Bv € E the integral f f dp against a function
f € Cy(S) is well-defined and given by

[rap=a[ran-p[rav

In particular, p — f fdp is linear functional on E, so we can regard Cy (S) as a
subset of the algebraic dual E* of E. Note that [ fdp = [ fdp forall f € Cy(S)
implies p = p, i.e., Cy (S) separates the points of E. We endow E with the coarsest
topology o (E, Cy,(S5)) for which all maps

Espe [ fdp fecyo)

are continuous; see Definition A.57. With this topology, E becomes a locally convex
topological vector space.

Lemma 2.90. Under the above assumptions, QMT (S) is a closed convex subset of E,
and the relative topology of the embedding coincides with the r-weak topology.

Proof. The sets of the form

n
Uetpi oo = (e B | | [ ido = [ siap] <)

i=1
withp € E,n €N, f; € Cy(S),and & > 0 form a base of the topology o (E, Cy(S5)).
Thus, if U C E is open, then every point © € U N MI{/(S) possesses some neigh-
borhood U, (u; f1, ..., fn) CU. ButUg(u; f1, ..., fu) N M;l'(S) is an open neigh-
borhood of u in the y-weak topology. Hence, U N eM}”(S) is open in the yr-weak
topology. Similarly, one shows that every open set V C MY/(S) is of the form
V=UNnM '1// (S) for some open subset U of E. This shows that the relative topology
e/\/{;/I(S) N U(E, CI/,(S)) coincides with the yr-weak topology.

Moreover, ,Mip (S) is an intersection of closed subsets of E:

M}”(S):{pem/ldp:l}m N {peE|/fdpzo}.

F€Cy (5)
f=0

Therefore, ,Mip(S) is closed in E. O
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Next, let E? denote the product space E x E. We endow E? with the product
topology for which the sets U x V with U, V € o (E, Cy(S)) form a neighborhood
base. Clearly, E? is a locally convex topological vector space.

Lemma 2.91. Every continuous linear functional £ on E? is of the form

f(pl,p2)=/f1d/)1+/f2dpz
for some f1, f» € Cy(S).

Proof. By linearity, £ is of the form £(p1, p2) = £1(p1) + €2(p2), where £1(p1) =
£(p1, 0) and £2(p2) := £(0, p2). By continuity of ¢, the set

Vi=0((-1D)

is open in E? and contains the point (0, 0). Hence, there are two open neighborhoods
Ui, Uy C E such that (0,0) € Uy x Uy C V. Therefore,

0eU ¢ '((-1,1) fori=12,

i.e., 0 is an interior point of Ei_l ((—=1,1)). It follows that the ¢; are continuous at 0,
which in view of their linearity implies continuity everywhere on E. Finally, we may
conclude from Proposition A.58 that each ¢; is of the form £; (p) = f fi dp; for some
fi € Cy(9S). O

The proof of the following lemma uses the characterization of compact sets for
the yr-weak topology that is stated in Corollary A.46. It is here that we need our
assumption that S is Polish.

Lemma 2.92. If A is a closed convex subset of M 1/_/ (S x 8), then
Hp = {(mA, mA) | A e A}

is a closed convex subset of E*.

Proof. Tt is enough to show that Hy is closed in MY ($)2 := MY (S) x MV (),
because Lemma 2.90 implies that the relative topology induced by E? on QM;//(S)2
coincides with the product topology for the y-weak topology. This is a metric topology
by Corollary A.44. So let (u,, v,) € Hp, n € N, be a sequence converging to
some (u,v) € M}”(S)2 in the product topology. Since both sequences (i4;)neN
and (v,),en are relatively compact for the yr-weak topology, Corollary A.46 yields
functions ¢; : S — [1,00], i = 1, 2, such that sets of the form K,i = {¢p; < ky},
k € N, are relatively compact in S and such that

sup/¢1dun+sup/¢2dvn < 0.

neN neN
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For_each n, there exists A, € A such that 71\, = u, and mA, = v,. Hence, if we
let ¢ (x, y) := ¢1(x) + ¢2(y), then

sup/@d)\n :sup(/qﬁ]dun—l-/qﬁzdvn) < 00.
neN neN

Moreover, we claim that each set { ¢ < ky} is relatively compact in S x S. To prove
this claim, let /; € N be such that

Then, since ¥ > 1,
—_ J— 1 2 1 2
{¢ =k} C K X K40y Y Kir4ay) % K s

and the right-hand side is a relatively compact set in § x S. It follows from Corollary
A.46 that the sequence (A,),en is relatively compact for the 1/-weak topology. Any
accumulation point A of this sequence belongs to the closed set A. Moreover, A has
marginal distributions p and v, since the projections 7r; are continuous according to
Lemma 2.89. Hence (i, v) € Hj. O

Proof of Theorem 2.88. Let w1, uy € eM;p(S) be given. Since Hp is closed and
convex in E2 by Lemma 2.92, we may apply Theorem A.56 with B := { (11, i2) }
and C := Hx: We conclude that (1, n2) ¢ Hy if and only if there exists a linear
functional £ on E2 such that

L(my, m2) > sup  £(vy, v2) = sup £(mw1A, o).
(v1,v2)€HA rEA

Applying Lemma 2.91 to £ completes the assertion. O

We will now use Theorem 2.88 to deduce the remaining implication of The-
orem 2.58. We consider here a more general, d-dimensional setting. Let x =
(xl, R xd) and y = (yl, R yd) be two d-dimensional vectors. We will say that
x < yifx’ <yl foralli. A function on R is called increasing, if it is increasing
with respect to the partial order <.

Theorem 2.93. Suppose v and w> are Borel probability measures on RY with
f |x|ui(dx) < oo fori = 1,2. Then the following assertions are equivalent.

(a) / fdur > f f duos for all increasing concave functions f on RY.

(b) There exists a probability space (2, ¥, P) with random variables X| and X»
having distributions [v1 and |12, respectively, such that

E[X> | X1]1<X; P-as.
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(c) There exists a kernel Q(x, dy) on R such that

/Rd)’Q(X,dy) <x forallx e RY

and such that py = 1 Q.

Proof. (a)=(b): We will apply Theorem 2.88 with § := R? and with the gauge
functions ¥ (x) := 1+ |x| and ¥ (x, ¥) := ¥ (x) + ¥ (y). We denote by Cp(RY) the
set of bounded and continuous functions on R?. Let

A= {A e MY (RY x RY) | /yf(x)k(dx,dy) < /xf(x)k(dx,dy)}.

feCpRY)

Each single set of the intersection is convex and closed in (M;//(Rd x R?), because
the functions g(x, y) := yf(x) and g(x, y) := xf(x) belong to CJ(Rd x R4) for
f € Cp(S). Therefore, A itself is convex and closed.

Suppose we can show that A contains an element P that has @1 and p; as marginal
distributions. Then we can take  := R? x R? with its Borel o-algebra ¥, and let
X1 and X, denote the canonical projections on the first and the second components,
respectively. By definition, X; will have the distribution p;, and

E[E[X2 | X1 1f(XD) ] = E[X2f (X)) ] < E[ X1 f(X1)] forall f € Cp(RY).
By monotone class arguments, we may thus conclude that
E[X | X1]1< Xy P-as.

so that the assertion will follow.
It remains to prove the existence of P. To this end, we will apply Theorem 2.88
with the set A defined above. Take a pair fi, f> € Cy (R?), and let

fi(x) := inf { g(x) | g is concave, increasing, and dominates fz}.

Then ]72 is concave, increasing, and dominates f>. In fact, fz is the smallest function
with these properties. We have

/fldul+/f2d,u2§/f1du1+fﬁduz

< [+ By
< sup (fi(x) + fz(x)) =:19.
xeRd

We will establish the condition in Theorem 2.88 for our set A by showing that for
r < ro we have

r< SUP/ (f1x) + f2(») A(dx, dy).

reEA
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To this end, let for 7 € R?
N ¥ md
ci={veM®RY) | [ xvdx) <z

and

82(2) :=sup{/f2dv ‘ veAZ}.

Then g» is increasing and g2(z) > f2(z), because §; € A;. Moreover, if v] € A,
and v, € A4, then

avi + (1 —o)vy € Agz +(1—-a)zs

for o € [0, 1]. Therefore, g, is concave, and we conclude that go > fz (recall
that f5 is the smallest increasing and concave function dominating f>). Hence, r <
f1(2) + g2(z) for some z € R, i.e., there exists some v € A, such that the product
measure A := §, ® v satisfies

r< fitz)+ / fadv = / (/1) + f2(3)) Mdx, dy).
ButA =4, ®v € A.
(b) =(c): This follows as in the proof of the implication (f) =(g) of Theorem 2.58
by using regular conditional distributions.

(c)=(a): As in the proof of (g) =(a) of Theorem 2.58, this follows by an appli-
cation of Jensen’s inequality. O

By the same arguments as for Corollary 2.62, we obtain the following result from
Theorem 2.93.

Corollary 2.94. Suppose ju1 and > are Borel probability measures on R such that
f |x|ui(dx) < oo, fori = 1,2. Then the following conditions are equivalent.

(a) /fd,ul > / f dua for all concave functions f on RY.

(b) There exists a probability space (2, &, P) with random variables X1 and X»
having distributions [ and [y, respectively, such that

E[X, | X1]1=X1 P-as.
(c) There exists a kernel Q(x, dy) on R? such that

/y O(x,dy)=x forallx e R?

(i.e., Q is a mean-preserving spread) and such that py = 1 Q.
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We conclude this section with a generalization of Theorem 2.70. Let S be a
Polish space which is endowed with a preference order >. We will assume that > is
continuous in the sense of Definition 2.8. A function on S will be called increasing if
it is increasing with respect to >.

Theorem 2.95. For two Borel probability measures (11 and iy on S, the following
conditions are equivalent.

(a) / fdu > / f dua for all bounded, increasing, and measurable functions f
onS.

(b) There exists a probability space (2, ¥, P) with random variables X| and X»
having distributions |1 and o, respectively, such that X1 > X, P-a.s.

(c) There exists a kernel Q on S such that uy = 1 Q and
O(x, {ylx=y})=1 forallx €S.

Proof. (a) =(b): We will apply Theorem 2.88 with the gauge function ¥y = 1, so that
M ;// (S) is just the space M1 (S) of all Borel probability measures on S with the usual
weak topology. Then 1 = 2 which is equivalent to taking v/ := 1. Let

M ={(x,y)eSxS|x>y}

This set M is closed in S x S by Proposition 2.11. Hence, the portmanteau theorem
in the form of Theorem A.38 implies that the convex set

A={rLeMSxS)|A(M) =1}
is closed in M (S x S). For f2 € Cp(S), let
Fx) = sup{ () | x = y).

Then ]?i is bounded, increasing, and dominates f>. Therefore, if f1 € Cp(S),

/fldlu+/fzd/L2§/f1d,u1+/fsz2

s/m+EmM
5wyﬁm+ﬁu»

= sup (f1(x) + f2(1)).
Xzy
If x > y, then the product measure A := §, ® Jy is contained in A, and so

sup (f1(x) + f2(y)) = Sup/ (f1i(x) + f2() M(dx, dy).

xzy reEA
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Hence, all assumptions of Theorem 2.88 are satisfied, and we conclude that there
exists a probability measure P € A with marginals p1 and pp. Taking 2 := S x S
and X; as the projection on the i coordinate finishes the proof of (a) =(b).

(b) =(c) follows as in the proof of Theorem 2.58 by using regular conditional
distributions.

(c) =(a) is proved as the corresponding implication of Theorem 2.70. O



Chapter 3
Optimality and equilibrium

Consider an investor whose preferences can be expressed in terms of expected utility.
In Section 3.1, we discuss the problem of constructing a portfolio which maximizes
the expected utility of the resulting payoff. The existence of an optimal solution is
equivalent to the absence of arbitrage opportunities. This leads to an alternative proof
of the “fundamental theorem of asset pricing”, and to a specific choice of an equivalent
martingale measure defined in terms of marginal utility. Section 3.2 contains a detailed
case study describing the interplay between exponential utility and relative entropy.
In Section 3.3, the optimization problem is formulated for general contingent claims.
Typically, optimal profiles will be non-linear functions of a given market portfolio, and
this is one source of the demand for financial derivatives. Section 3.4 introduces the
idea of market equilibrium. Prices of risky assets will no longer be given in advance;
they will be derived as equilibrium prices in a microeconomic setting, where different
agents demand contingent claims in accordance with their preferences and with their
budget constraints.

3.1 Portfolio optimization and the absence of arbitrage

Let us consider the one-period market model of Section 1.1 in which d + 1 assets are
priced at time O and at time 1. Prices at time O are given by the price system

T = (710, ) = (710, 711, R nd) € Rffrl,
prices at time 1 are modeled by the price vector
S=(5%98=(s%s, ..., 8%

consisting of non-negative random variables S’ defined on some probability space
(2, F, P). The 0™ asset models a riskless bond, and so we assume that

7°=1 and =1+~
for some constant » > —1. At time ¢t = 0, an investor chooses a portfolio
E=¢"o=0¢"¢" .. §)er™

where £/ represents the amount of shares of the i™ asset. Such a portfolio £ requires
an initial investment 7 - £ and yields at time 1 the random payoff £ - S.
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Consider a risk-averse economic agent whose preferences are described in terms
of a utility function #, and who wishes to invest a given amount w into the financial
market. Recall from Definition 2.37 that a real-valued function # is called a utility
function if it is continuous, strictly increasing, and strictly concave. A rational choice
of the investor’s portfolio € = (£, &) will be based on the expected utility

E[uE-9)] (3.1)
of the payoff - S at time 1, where the portfolio & satisfies the budget constraint
7T-E<w. 3.2)

Thus, the problem is to maximize the expected utility (3.1) among all portfolios
& e RI*! which satisfy the budget constraint (3.2). Here we make the implicit
assumption that the payoff £ - S is P-a.s. contained in the domain of definition of the
utility function .

In a first step, we remove the constraint (3.2) by considering instead of (3.1) the
expected utility of the discounted net gain

|
Y]

—T-E=E-Y

—

+

~

earned by a portfolio £ = (£ 0 £). Here Y is the d-dimensional random vector with
components
) Si .
Y' = -7, i=1,...,d.
14+r

For any portfolio & with 77 - £ < w, adding the > risk-free investment w — 77 - & would
lead to the strictly better portfolio (§ O4w—7-€, &). Thus, we can focus on portfolios
& which satisfy 7 - £ = w, and then the payoff is an affine function of the discounted
net gain:

E-S=04+r)E-Y+w).

Moreover, for any £ € R? there exists a unique numéraire component £° € R such
that the portfolio & := (€9, &) satisfies 7 - € = w.
Let u denote the following transformation of our original utility function u:

u(y) = u((1+r)(y+w)).

Note that u is again a utility function, and that CARA and (shifted) HARA utility
functions are transformed into utility functions in the same class.

Clearly, the original constrained utility maximization problem is equivalent to the
unconstrained problem of maximizing the expected utility E[u(§ - Y) ] among all
£ € R? such that £ - Y is contained in the domain D of u.
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Assumption 3.1. We assume one of the following two cases:

(a) D =R. In this case, we will admit all portfolios € € R, but we assume that u
is bounded from above.

(b) D = [a, o0) for some a < 0. In this case, we only consider portfolios which
satisfy the constraint
E-Y>a P-as,

and we assume that the expected utility generated by such portfolios is finite,
ie.,
E[u-Y)] <oo forall€ e RY withé -Y > a P-a.s.

Remark 3.2. Part (a) of this assumption is clearly satisfied in the case of an exponen-
tial utility function u(x) = 1 — e~ **. Domains of the form D = [a, c0) appear, for
example, in the case of (shifted) HARA utility functions u(x) = log(x — b) forb < a
and u(x) = l()c —c¢)Y forc <aand 0 < y < 1. The integrability assumption in (b)
holds if E[|Y|] < oo, because any concave function is bounded above by an affine
function. <&

In order to simplify notations, let us denote by
$(D):={6e€R?|&-Y € D P-as.}

the set of admissible portfolios for D. Clearly, (D) = R? if D = R. Our aim is
to find some £* € §(D) which is optimal in the sense that it maximizes the expected
utility E[u(& -Y) ] among all § € 8(D). In this case, £* will be an optimal investment
strategy into the risky assets. Complementing & * with a suitable numéraire component
£9 yields a portfolio & = (£°, £*) which maximizes the expected utility E[%(E - 5) ]
under the budget constraint 77 - & = w. Our first result in this section will relate the
existence of such an optimal portfolio to the absence of arbitrage opportunities.

Theorem 3.3. Suppose that the utility function u : D — R satisfies Assumption 3.1.
Then there exists a maximizer of the expected utility

Elu-Y)], &ed(D),

if and only if the market model is arbitrage-free. Moreover, there exists at most one
maximizer if the market model is non-redundant in the sense of Definition 1.13.

Proof. The uniqueness part of the assertion follows immediately from the strict con-
cavity of the function & — E[u(& - Y)] for non-redundant market models. As to
existence, we may assume without loss of generality that our model is non-redundant.
If the non-redundance condition (1.8) does not hold, then we define a linear space
N C R? by

N:={n€Rd |n-Y =0 P-as.}.
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Clearly, Y takes P-a.s. values in the orthogonal complement N of N. Moreover,
the no-arbitrage condition (1.3) holds for all & € R if and only if it is satisfied for
all £ € N+. By identifying N with some R”, we arrive at a situation in which the
non-redundance condition (1.8) is satisfied and where we may apply our result for
non-redundant market models.

If the model admits arbitrage opportunities, then a maximizer £ * of the expected
utility E[u(§ - Y)] cannot exist: Adding to £* some non-zero n € R? for which
n-Y > 0 P-as., which exists by Lemma 1.3, would yield a contradiction to the
optimality of £*, because then

E[u*-Y)] < E[u("+n) - V)]

From now on, we assume that the market model is arbitrage-free. Let us first
consider the case in which D = [a, oo) for some a € (—o0,0). Then (D) is
compact. In order to prove this claim, suppose by way of contradiction that (£,) is a
diverging sequence in 4 (D). By choosing a subsequence if necessary, we may assume
that i, := &,/|&,| converges to some unit vector 1 € R4, Clearly,

n~Y=lim§" > 1

> lim =0 P-as.,
ntoo [§p| T ntoo [&]

and so non-redundance implies that 77 := (—m - 1, 1) is an arbitrage-opportunity.
In the next step, we show that our assumptions guarantee the continuity of the
function
8(D)> & — E[u(€-Y)],

which, in view of the compactness of §(D), will imply the existence of a maximizer of
the expected utility. To this end, it suffices to construct an integrable random variable
which dominates u(§ - Y) for all £ € 8(D). Define n € R4 by

.= 0V max & < oo.
7 565(D)E

Then,n-S > & - S for & € 8(D), and hence

- S - S
=é —7r~§§n —0A min 7-£&.
1+r 1+r £'e$(D)

§-Y

Note that 17 - Y is bounded below by —m - n and that there exists some o € (0, 1] such
that o - n < |a|. Hence an € 4(D), and our assumptions imply E[u(an -Y)] <
oo. Applying Lemma 3.4 below first with b := «m - n and then with b := —0 A
min‘;&/eg(D) - f/ shows that

-S
E[u<)7 —0A min 71-“;")]<oo.
147 &'ec8(D)

This concludes the proof of the theorem in case D = [a, 00).
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Let us now turn to the case of a utility function on D = R which is bounded from
above. We will reduce the assertion to a general existence criterion for minimizers of
lower semicontinuous convex functions on R, given in Lemma 3.5 below. It will be
applied to the convex function 2(§) := —E[u(€ - Y) ]. We must show that 4 is lower
semicontinuous. Take a sequence ()N In R4 converging to some &. By part (a) of
Assumption 3.1, the random variables —u (&, - Y) are uniformly bounded below, and
so we may apply Fatou’s lemma:

lirr%infh(én) = lirr%inf E[—u(y-Y)] = E[—u(§ -Y)] = h(§).

Thus, /4 is lower semicontinuous.

By our non-redundance assumption, # is strictly convex and admits at most one
minimizer. We claim that the absence of arbitrage opportunities is equivalent to the
following condition:

lim A(a &) = 400 for all non-zero & € RY, (3.3)
atoo

This is just the condition (3.4) required in Lemma 3.5. It follows from (1.3) and
(1.8) that a non-redundant market model is arbitrage-free if and only if each non-zero
£ € R? satisfies P[£ - Y < 0] > 0. Since the utility function u is strictly increasing
and concave, the set {£ - Y < 0} can be described as

(6¥ <0} ={Jimu(g V) = —00) for & € RY.

The probability of the right-hand set is strictly positive if and only if

liTm E[u(at -Y)] = —oo,

because u is bounded from above. This observation proves that the absence of arbitrage
opportunities is equivalent to the condition (3.3) and completes the proof. O

Lemma34. If D = [a,00), b < |a], 0 < « < 1, and X is a non-negative random
variable, then
Elu(@X —b)] <oo = E[u(X)] < oo.

Proof. As in (A.1) in the proof of Proposition A.4, we obtain that

u(X) —u(0) - u(a@X) —u(0) - u(@X —b) — u(—b)
X-0 - aX —0 -~ aX-—-b—(-D)

Multiplying by X shows that u(X) can be dominated by a multiple of u(aeX — b)
plus some constant. O
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Lemma 3.5. Suppose h : R — R U {400} is a convex and lower semicontinuous
function with h(0) < oo. Then h attains its infimum provided that

liTm h(a §) = +oo  for all non-zero & € R?. (3.4)
aToo

Moreover, if h is strictly convex on {h < oo}, then also the converse implication holds:
the existence of a minimizer implies (3.4).

Proof. First suppose that (3.4) holds. We will show below that the “level sets”
{x | h(x) < ¢} of h are bounded — hence compact — for ¢ > infh. Once the
compactness of the level sets is established, it follows that the set

{(x eRY | h(x) =infh} = ﬂ {(x eRY | h(x) <c}
c>inf h

of minimizers of A is non-empty as an intersection of decreasing and non-empty
compact sets.

Suppose ¢ > inf & is such that the level set { < ¢} is not compact, and take
a sequence (x,) in {h < c} such that |x,] — oo. By passing to a subsequence if
necessary, we may assume that x;, /| x, | converges to some non-zero &. For any o > 0,

h(af) < liminfh<oz An ) — nminfh(ixn + (1 — )0)
ntoo |2 | ntoo |xn | % |

51iminf( ¢ c—|—(1— ¢ )h(O))
ntoo |xn| |xn|

= h(0).

Thus, we arrive at a contradiction to condition (3.4). This completes the proof of the
existence of a minimizer under assumption (3.4).
In order to prove the converse implication, suppose that the strictly convex function
h has a minimizer x™* but that there exists a non-zero & € R4 violating (3.4), i.e., there
exists a sequence (o),cN and some ¢ < oo such that o, 1 oo but h(a,€) < c for
all n. Let
Xp = Apx™ 4 (1 — An)ayé

where 1, is such that |x* — x,| = 1, which is possible for all large enough n. By
the compactness of the Euclidean unit sphere centered in x*, we may assume that x,,
converges to some x. Then necessarily |[x — x*| = 1. As «,& diverges, we must have
that A, — 1. By using our assumption that (o, &) is bounded, we obtain

h(x) < lin%inf h(x,) < liTm (Anh(x*) + 1 - kn)h(ané)) = h(x™).

Hence, x is another minimizer of /& besides x*, contradicting the strict convexity of 4.
Thus, (3.4) must hold if the strictly convex function 4 takes on its infimum. I
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Remark 3.6. Note that the proof of Theorem 3.3 under Assumption 3.1 (a) did not
use the fact that the components of Y are bounded from below. The result remains
true for arbitrary Y. <

We turn now to a characterization of the solution £* of our utility maximization
problem for continuously differentiable utility functions.

Proposition 3.7. Let u be a continuously differentiable utility function on D such that
E[u(& - Y)] is finite for all £ € 8(D). Suppose that £* is a solution of the utility
maximization problem, and that one of the following two sets of conditions is satisfied:

* u is defined on D = R and is bounded from above.
» u is defined on D = [a, 00), and £* is an interior point of (D).

Then
W(E* Y)Y e LY(P),

and the following “first-order condition” holds:

E[u(E*-Y)Y]=0. (3.5)

Proof. For & € 8(D) and ¢ € (0, 1]let & := e& + (1 — ¢)&*, and define
u(és-Y)—u(é”*-Y)_

&

Ag =

The concavity of u implies that A, > As for ¢ < §, and so
Ae Ju'(EF-Y)E—-E")-Y ase 0.

Note that our assumptions imply that u(£-Y) € £ (P) forall £ € 8(D). In particular,
we have A; € £!(P), so that monotone convergence and the optimality of £* yield
that

0>E[A:] /E[WE"-Y)(E—E")-Y] ase 0. (3.6)

In particular, the expectation on the right-hand side of (3.6) is finite.
Both sets of assumptions imply that £* is an interior point of (D). Hence, we
deduce from (3.6) by letting n := & — £* that

E(u'G"-Y)n-Y]=0

for all 5 in a small ball centered in the origin of R?. Replacing by —n shows that
the expectation must vanish. O

Remark 3.8. Let us comment on the assumption that the optimal £* is an interior
point of 8(D):
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(a) Ifthe non-redundance condition (1.8) is not satisfied, then either each or none of
the solutions to the utility maximization problem is contained in the interior of
4 (D). This can be seen by using the reduction argument given at the beginning
of the proof of Theorem 3.3.

(b) Note that £ - Y is bounded below by —x - £ in case £ has only non-negative
components. Thus, the interior of 4(D) is always non-empty.

(c) As shown by the following example, the optimal £* need not be contained in the
interior of 4(D) and, in this case, the first-order condition (3.5) will generally
fail. <

Example 3.9. Take » = 0, and let S! be integrable but unbounded. We choose
D = [a, 00) witha := —71, and we assume that P[S! < ¢] > O forall ¢ > 0.
Then 8(D) = [0,1]. If 0 < E[S'] < 7! then Example 2.43 shows that the optimal
investment is given by £* = 0, and so £* lies in the boundary of (D). Thus, if u is
sufficiently smooth,

E[W/'E* - Y)Y =4 () (E[S'1-7=") <O.

The intuitive reason for this failure of the first-order condition is that taking a short
position in the asset would be optimal as soon as E[ S 11 < 7!, This choice, however,
is ruled out by the constraint £ € $(D). <&

Proposition 3.7 yields a formula for the density of a particular equivalent risk-
neutral measure. Recall that P* is risk-neutral if and only if E*[Y ] = 0.

Corollary 3.10. Suppose that the market model is arbitrage-free and that the as-
sumptions of Proposition 3.7 are satisfied for a utility function u : D — R and an
associated maximizer £* of the expected utility E{u(& - Y)]. Then

dP*  W(E*-Y)
dP  E[uW(£*-Y)]

defines an equivalent risk neutral measure.

(3.7)

Proof. Proposition 3.7 states that u’(§* - Y)Y is integrable with respect to P and that its
expectation vanishes. Hence, we may conclude that P* is an equivalent risk-neutral
measure if we can show that P* is well-defined by (3.7), i.e., if u/(§* - Y) € L1 (P).
Let

u'(a) for D = [a, 00),

c:=sup{u(x) | x € Dand x| < |§7]} < {u’(—lé*l) for D =R,

which is finite by our assumption that u is continuously differentiable on all of D.
Thus,
/ /

and the right-hand side has a finite expectation. O
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Remark 3.11. Corollary 3.10 yields an independent and constructive proof of the
“fundamental theorem of asset pricing” in the form of Theorem 1.6: Suppose that the
model is arbitrage-free. If Y is P-a.s. bounded, then so is u(¢* - Y), and the measure
P* of (3.7) is an equivalent risk-neutral measure with a bounded density d P*/d P. If
Y is unbounded, then we may consider the bounded random vector

~ Y
Y i=—,
1+ 1|Y]
which also satisfies the no-arbitrage condition (1.3). Let E* be a maximizer of the

expected utility E[ u(& - Y ) ]. Then an equivalent risk-neutral measure P* is defined
through the bounded density

dP* W (E5-Y)
=c- ,
dpP 1+ Y|
where c is an appropriate normalizing constant. <

Example 3.12. Consider the exponential utility function

ux)=1—e**

with constant absolute risk aversion @ > 0. The requirement that E[ u (& - Y) ] is finite
is equivalent to the condition

E[es‘y] < oo forallé e RY,

If £* is a maximizer of the expected utility, then the density of the equivalent risk
neutral measure P* in (3.7) takes the particular form

dP* e—as *y

dP  E[e V]

In fact, P* is independent of & since &* maximizes the expected utility 1 — E[ e ~%5Y ]
if and only if A* := —a&™ is a minimizer of the moment generating function

Z() = E[&Y], A eRY,

of Y. In Corollary 3.25 below, the measure P* will be characterized by the fact that
it minimizes the relative entropy with respect to P among the risk-neutral measures
in &; see Definition 3.20 below. <&

3.2 Exponential utility and relative entropy

In this section we give a more detailed study of the problem of portfolio optimization
with respect to a CARA utility function

ux)=1—e
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for « > 0. As in the previous Section 3.1, the problem is to maximize the expected
utility
Elu¢-Y)]

of the discounted net gain £ - Y earned by an investment into risky assets. The key
assumption for this problem is that

E[u(t-Y)]> —oco forall &€ € RY. (3.8)

Recall from Example 3.12 that the maximization of E[u(§ - Y)] is reduced to the
minimization of the moment generating function

Z(\) :=E[*Y], 1 eRY,

which does not depend on the risk aversion «. The key assumption (3.8) is equivalent
to the condition that
Z(x) <oo forall» e RY. (3.9)

Throughout this section, we will always assume that (3.9) holds. But we will not need
the assumption that Y is bounded from below (which in our financial market model
follows from assuming that asset prices are non-negative); all results remain true for
general random vectors Y; see also Remarks 1.7 and 3.6.

Lemma 3.13. The condition (3.9) is equivalent to

E[e*"] < 00 forall @ > 0.

Proof. Clearly, the condition in the statement of the lemma implies (3.9). To prove
the converse assertion, take a constant ¢ > 0 such that |x| < ¢ Zle |x| for x € R4.
By Holder’s inequality,

d d
E[e] < E[ exp (ozcz |Y"|)] <[] Ereeea 1y,
i=1 i=1
In orde;r to show that the ;" factor on the right is finite, take A € R4 such that A! = acd
and A/ = 0 for j # i. With this choice,

E[e*dY'1] < E[*Y 14+ E[e 7 ],

which is finite by (3.9). O

Definition 3.14. The exponential family of P with respect to Y is the set of measures
(Pil2eR’)

defined via
dP; and

dP ~— Z()’
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Example 3.15. Suppose that the risky asset S has under P a Poisson distribution
with parameter o > 0, i.e., S! takes values in {0, 1, ...} and satisfies

k

p[Slzk]:e—“%, k=0,1,....

Then (3.9) is satisfied for ¥ := S! — 71 and S! has under P, a Poisson distribution
with parameter e*«. Hence, the exponential family of P generates the family of all
Poisson distributions. <&

Example 3.16. Let Y have a standard normal distribution N (0, 1). Then (3.9) is
satisfied, and the distribution of Y under P;, is equal to the normal distribution N (A, 1)
with mean A and variance 1. <

Remark 3.17. Two parameters A and A’ in RY determine the same element in the
exponential family of P if and only if (A — 1”) - ¥ = 0 P-almost surely. It follows
that the mapping

A Py

is injective provided that the non-redundance condition holds in the form

E-Y=0P-as. — £&=0. (3.10)
<

In the sequel, we will be interested in the barycenters of the members of the
exponential family of P with respect to Y. We denote

m) = E;,[Y]= %E[Ye“/], A e R

The next lemma shows that m()A) can be obtained as the gradient of the logarithmic
moment generating function.

Lemma 3.18. Z is a smooth function on R¢, and the gradient of log Z at A is the
expectation of Y under Pj:

(Vlog Z)(A) = Ex[Y ] =m().

Moreover, the Hessian of log Z at A equals the covariance matrix (cov p, (Y iyl )i, j
of Y under the measure P;:

2

Sy 108200 = covp, (V. Y)) = B[YYT ] = B[V IE Y],

In particular, log Z is convex.
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Proof. Observe that

derx
O

= x| M <exp[(1+ D) - |x]].

Hence, Lemma 3.13 and Lebesgue’s dominated convergence theorem justify the in-
terchanging of differentiation and integration (see the “differentiation lemma” in [20],
§16, for details). O

The following corollary summarizes the results we have obtained so far. Recall
from Section 1.5 the notion of the convex hull I'(v) of the support of a measure v on
R? and the definition of the relative interior ri C of a convex set C.

Corollary 3.19. Denote by u := P o Y™\ the distribution of Y under P. Then the
function

Atr— A-mg—logZ(})
takes on its maximum if and only if mq is contained in the relative interior of the convex
hull of the support of , i.e., if and only if

mo € ril"(w).
In this case, any maximizer \* satisfies
mo =m(*) = E;«[Y].

In particular, the set {m(X) | A € R4} coincides with tiT' (). Moreover, if the
non-redundance condition (3.10) holds, then there exists at most one maximizer \*.

Proof. Taking Y=Y - mo reduces the problem to the situation where mg = 0.
Applying Theorem 3.3 with the utility function #(z) = 1—e~* shows that the existence
of a maximizer A* of —logZ is equivalent to the absence of arbitrage opportunities.
Corollary 3.10 states that m(1*) = 0 and that O belongs to My, (1), where My (1) was
defined in Lemma 1.42. An application of Theorem 1.48 completes the proof. O

It will turn out that the maximization problem of the previous corollary is closely
related to the following concept.

Definition 3.20. The relative entropy of a probability measure Q with respect to P is
defined as J 4
E —Qlog—Q if 0 < P,
H(Q|P) := dp dP
400 otherwise.
Remark 3.21. Jensen’s inequality applied to the strictly convex function h(x) =

x log x yields

_ dg _
H(Q|P)_E[h<d—P)] > h(l) =0, (3.11)

with equality if and only if Q = P. <
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Example 3.22. Let 2 be a finite set and F be its power set. Every probability Q on
(2, ) is absolutely continuous with respect to the uniform distribution P. Let us
denote Q(w) := Q[ {w}]. Clearly,

H@H=ZQMM%Q=ZQ@MQ@HMM

weR (a)) weR

The quantity
H(Q):=— ) Q(w)log Q(w)

we

is usually called the entropy of Q. Observe that H(P) = log |€2], so that
H(Q|P)=H(P) — H(Q).

Since the left-hand side is non-negative by (3.11), the uniform distribution P has
maximal entropy among all probability distributions on (2, ¥). <

Example 3.23. Let © = N(m, 0?) denote the normal distribution with mean m and
variance o2 on R. Then, for i = N (1, 52)

dﬁ( ) o (x—ﬁ)z_'_(x—m)2
—(x) = <exp| — ,
du 7 P 252 2672
and hence
HE ) 1 | o2 1+02 +1 m—im\> o
=z 108 = — =5 = .
sk 2 g02 52 2 o

The following result shows that P is the unique minimizer of the relative entropy
H(Q|P) among all probability measures Q with Eg[Y | = E,[Y ].

Theorem 3.24. Let mqg := m(Py,) for some given Ao € R?. Then, for any probability
measure Q on (2, F) such that Eg[Y | = my,

H(Q|P) = H(Py,|P) = Ao - mo — log Z(Ao),
and equality holds if and only if Q = Py,. Moreover, Ao maximizes the function
A-mo —log Z(A)
over all A € R,

Proof. Let Q be a probability measure on (€2, ¥) such that Eg[ Y | = mg. We show
first that for all A € R?

H(Q|P) = H(Q|P,) + A -mo —log Z(A). (3.12)
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To this end, note that both sides of (3.12) are infinite if Q &« P. Otherwise

dQ dQ dp, _dQ 7
dP ~ dP, dP ~ dP, Z())’

and taking logarithms and integrating with respect to Q yields (3.12).
Since H(Q|P,) > 0 according to (3.11), we get from (3.12) that

H(Q|P) > A -mo—logZ(A) (3.13)

for all A € R9 and all measures O such that Eg[Y | = mg. Moreover, equality holds
in (3.13) if and only if H(Q|P,) = 0, which is equivalent to Q = P,. In this case, A
must be such that m (L) = mg. In particular, for any such A

H(P,|P) = A-mg — log Z(L).

Thus, Ao maximizes the right-hand side of (3.13), and P, minimizes the relative
entropy on the set

Mo:={Q [ Eg[Y]=mo}.

But the relative entropy H(Q|P) is a strictly convex functional of Q, and so it can
have at most one minimizer in the convex set My. Thus, any A with m(X) = mg
induces the same measure Pj,. O

Taking mo = 0 in the preceding theorem yields a special equivalent risk-neutral
measure in our financial market model, namely the entropy-minimizing risk neutral
measure. Sometimes it is also called the Esscher transform of P. Recall our assump-
tion (3.9).

Corollary 3.25. Suppose the market model is arbitrage-free. Then there exists a
unique equivalent risk-neutral measure P* € P which minimizes the relative entropy
H(P|P) overall P € . The density of P* is of the form

dpP* Y

dP _ E[e" Y]

where \* denotes a minimizer of the moment generating function E[ ¢*Y ] of Y.
Proof. This follows immediately from Corollary 3.19 and Theorem 3.24. O

By combining Theorem 3.24 with Remark 3.17, we obtain the following corollary.
It clarifies the question of uniqueness in the representation of points in the relative
interior of I'(P o Y ~!) as barycenters of the exponential family.

Corollary 3.26. [f the non-redundance condition (3.10) holds, then
A+ m(A)

is a bijective mapping from R toriT'(P o Y™1).
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Remark 3.27. It follows from Corollary 3.19 and Theorem 3.24 that for all m €
rif(PoY™!)
min  H(Q|P) = max[A -m — log Z(})]. (3.14)
EplY ]=m reRd

Here, the right-hand side is the Fenchel-Legendre transform of the convex function
log Z evaluated at m € RY. <&

The following theorem shows that the variational principle (3.14) remains true for
all m € R?, if we replace “min” and “max” by “inf” and “sup”.

Theorem 3.28. For m € R4

inf  H(Q|P)= sup[\-m —logZ(\)].
EqlY1=m JeRd

The proof of this theorem relies on the following two general lemmas.

Lemma 3.29. For any probability measure Q,
H(QIP)=  sup  (EqlZ]-logE[e”])
ZeLX(Q,F,P) (3.15)
— V4 V4 1
=sup{Eg[Z]—logE[e” ]| e € £'(P)}.
The second supremum is attained by Z := log 3—% if O < P.

Proof. We first show > in (3.15). To this end, we may assume that H(Q|P) < oo.
For Z with ¢Z € L£!(P) let PZ be defined by

dPZ_ ez
dP  E[eZ]
Then P is equivalent to P and
I a0 1 a0 +1 dp?
0g — = log — + log ——.
&ap = °%apz T % p

Integrating with respect to Q gives
H(Q|P) = H(Q|P?) + Eol Z] —log E[¢” ].

Since H(Q|P%) > 0 by (3.11), we have proved that H(Q|P) is larger than or equal
to both suprema on the right of (3.15).

To prove the reverse inequality, consider first the case Q « P. Take Z, := nl,
where A is such that Q[ A] > Oand P[A] = 0. Then, as n 1 oo,

EglZy]1—logE[e?1=n-Q[A] —> oo = H(Q|P).
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Now suppose that Q < P with density ¢ = dQ/dP. Then Z := log ¢ satisfies
e? € L1(P) and
H(Q|P) = EglZ]—log E[¢”].

For the first identity we need an approximation argument. Let Z, = (—n)V (log ¢) An.
We split the expectation E[ e% ] according to the two sets {¢ > 1} and {¢ < 1}. Using
monotone convergence for the first integral and dominated convergence for the second
yields

E[e’"] — E[%] = 1.

Since x logx > —1/e, we have ¢Z, > —1/e uniformly in n, and Fatou’s lemma
yields

liminf Eg[ Z, ] = liminf E[9Z, ] > E[¢logg]= H(Q|P).
ntoo ntoo

Putting both facts together shows

lin%inf (Egl Zy1—logE[e?"]) > H(Q|P),
nToo
and the inequality < in (3.15) follows. O

Remark 3.30. The preceding lemma shows that the relative entropy is monotone with
respect to an increase of the underlying o-algebra: Let P and Q be two probability
measures on a measurable space (2, ), and denote by H (Q| P) their relative entropy.
Suppose that Fq is a o-field such that £y C ¥ and denote by Hy(Q|P) the relative
entropy of Q with respect to P considered as probability measures on the smaller
space (2, Fy). Then the relation L>*(2, Fo, P) C LX(R2, F, P) implies

Ho(Q|P) < H(Q|P);
in general this inequality is strict. <

Lemma 3.31. Forall o > 0, the set
Dy =]l (Q F.P)|l9=0, El[p]l=1, E[plogp] <a}
is weakly sequentially compact in L' (Q, ¥, P).
Proof. Let LP := LP(2, &, P). The set of all P-densities,
Di={pel'l9=0, Elp]=1},

is clearly convex and closed in L!. Hence, this set is also weakly closed in L' by
Theorem A.59. Moreover, Lemma 3.29 states that for ¢ € O

Elplogg] = ZsuLpOo (E[ng] —logE[eZ]).
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In particular,
¢ = Elglogy]

is a weakly lower semicontinuous functional on £, and so &, is weakly closed. In
addition, ®,, is bounded in L' and uniformly integrable, due to the criterion of de
la Vallée Poussin; see, e.g., Lemma 3 in §6 of Chapter II of [187]. Applying the
Dunford—Pettis theorem and the Eberlein—Smulian theorem as stated in Appendix A.7
concludes the proof. O

Proof of Theorem 3.28. In view of Theorem 3.24 and inequality (3.13) (whose proof
extends to all m € R?), it remains to prove that

inf  H(Q|P) < sup[A-m —logZ(X)] (3.16)
EglY]=m AreR

for those m which do not belong to ri (), where u := P o Y~!. The right-hand side
of (3.16) is just the Fenchel-Legendre transform at m of the convex function log Z
and, thus, denoted (log Z)*(m).

First, we consider the case in which m is not contained in the closure T" (1) of the
convex hull of the support of 1. Proposition A.1, the separating hyperplane theorem,
yields some £ € R? such that

§-m>sup(€-x|xeT(u)=sup{§-x|xesuppu}.
By taking A, := né, it follows that

Ap-m—logZ(hy) =n(&-m— sup &-y) — +oo asn 1 oo.
yesupp i

Hence, the right-hand side of (3.16) is infinite if m & T ().
It remains to prove (3.16) for m € F(M)\ ri ' (w) with (log Z)*(m) < oo. Recall
from (1.22) that ri ' () = ri T'(u). Pick some m; € ri (i) and let

e (1-3)
my:=-m+1——|m.
n n

Then m,, € riI"(u) by (1.21). By the convexity of (log Z)*, we have

n —

1
(log Z)*(m))
n

1
lim sup(log Z)*(m,) < lim sup <—(log Z)*(my) +
n

ntoo ntoo

3.17)
= (log Z)* (m).

We also know that to each m,, there corresponds a 1, € R4 such that

my=E,[Y] and H(P,,|P) = (log Z)*(my). (3.18)
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From (3.17) and (3.18) we conclude that

lim sup H (P, | P) = lim sup(log Z)*(m,) < (log Z)*(m) < oo.

ntoo ntoo

In particular, H (Py,|P) is uniformly bounded in n, and Lemma 3.31 implies that —
after passing to a suitable subsequence if necessary — the densities d Py, /d P converge
weakly in L'(Q, F, P) to a density ¢. Let dP, = ¢dP. By the weak lower
semicontinuity of

e > H(QI|P),
dP
which follows from Lemma 3.29, we may conclude that H (P |P) < (log Z)*(m).
The theorem will be proved once we can show that Eo[ Y ] = m. To this end, let
y := sup, (log Z)*(m,), which is a finite non-negative number by (3.17). Taking

2=l gVl

on the right-hand side of (3.15) yields
y > aEkn[ Y] 'I{\lec} ] — log E[exp (a|Y|I{|y|ZC})] for all n < oo.

Note that the rightmost expectation is finite due to condition (3.9) and Lemma 3.13.
By taking « large so that y /o < ¢/2 for some given ¢ > 0, and by choosing ¢ such
that

log E[ exp (a|Y|I{|Y‘ZC}) ] < %,
we obtain that
sup B[] Ty ] < 2
But
E;,[1Y] 'I{\y|<c}] — Eco 7] ’I{|y|<c}]

by the weak convergence of d Py, /d P — d P, /d P, and so taking ¢ | 0 yields

m=1lim E; [Y]= Ex[Y],
ntoo

as desired. O

3.3 Optimal contingent claims
In this section we study the problem of maximizing the expected utility
Elu(X)]

under a given budget constraint in a broader context. The random variables X will
vary in a general convex class X C L%(Q, F, P) of admissible payoff profiles. In
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the setting of our financial market model, this will allow us to explain the demand for
non-linear payoff profiles provided by financial derivatives.

In order to formulate the budget constraint in this general context, we introduce a
linear pricing rule of the form

O(X)=E*[X]=E[¢X]

where P* is a probability measure on (2, ), which is equivalent to P with density
. For a given initial wealth w € R, the corresponding budget set is defined as

B:={XeXNL'(P)|E[X]<w). (3.19)
Our optimization problem can now be stated as follows:
Maximize E[ u(X) ] among all X € 8. (3.20)

Note, however, that we will need some extra conditions which guarantee that the
expectations E[ u#(X) ] make sense and are bounded from above.

Remark 3.32. In general, our optimization problem would not be well posed without
the assumption P* ~ P. Note first that it should be rephrased in terms of a class
X of measurable functions on (2, ¥) since we can no longer pass to equivalence
classes with respect to P. If P is not absolutely continuous with respect to P* then
there exists A € F such that P[A] > 0 and P*[A] = 0. For X e L] (P*) and
¢ > 0, the random variable X=X+ cl, would satisfy E*[X] = E*[X] and

E[u(X)] > E[u(X)]. Similarly, if P* [A] > 0and P[A] = O then

would have the same price as X but higher expected utility. In particular, the expec-
tations in (3.20) would be unbounded in both cases if X is the class of all measurable
functions on (€2, ) and if the function u is not bounded from above. <&

Remark 3.33. If a solution X™* with E[ u(X™)] < oo exists then it is unique, since
B is convex and u is strictly concave. Moreover, if X = LYQ, F,P)or X =
L9r(§2 , P) then X* satisfies

E*Y[X*]=w
since E*[ X*] < w would imply that X := X* 4+ w — E*[ X*] is a strictly better
choice, due to the strict monotonicity of u. &>

Let us first consider the unrestricted case X = L%(Q2, F, P) where any finite ran-
dom variable on (2, F, P) is admissible. The following heuristic argument identifies
a candidate X™ for the maximization of the expected utility. Suppose that a solution
X* exists. For any X € L°°(P) and any A € R,

X =X"+MX - E*[X])
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satisfies the budget constraint E*[ X; ] = w. A formal computation yields

d
0= d—kikzoE[u(XA)]
= E[«/(X")(X — E*[X])]
= E[u'(X")X ]~ E[ XE[u'(X")]¢]
=E[XW (X" —co)]
where ¢ := E[u/(X*)]. The identity
E[Xu'(X*)]=cE[Xg]

for all bounded measurable X implies u’(X*) = c ¢ P-almost surely. Thus, if we
denote by

[:=@u)™!
the inverse function of the strictly decreasing function u’, then X* should be of the

form
X*=1(cy).

We will now formulate a set of assumptions on our utility function # which guar-
antee that X* := I (c ¢) is indeed a maximizer of the expected utility, as suggested by
the preceding argument.

Theorem 3.34. Suppose u : R — R is a continuously differentiable utility function
which is bounded from above, and whose derivative satisfies

lim u'(x) = +o0. (3.21)

J—00
Assume moreover that ¢ > 0 is a constant such that
X*:=1I(cp) e L'(P").

Then X* is the unique maximizer of the expected utility E[ u(X)] among all those
X € LY(P*) for which E*[ X | < E*[ X* 1. In particular, X* solves our optimization
problem (3.20) for X = L%, ¥, P) if ¢ can be chosen such that E*[ X*] = w.

Proof. Uniqueness follows from Remark 3.33. Since u is bounded from above, its
derivative satisfies

lim u/(x) =0,

x7too

in addition to (3.21). Hence, (0, o¢) is contained in the range of u’, and it follows that
I(c ) is P-a.s. well-defined for all ¢ > 0.

To show the optimality of X* = I(c ¢), note that the concavity of u implies that
forany X € L'(P*)

u(X) < u(X") +u' (X)X = X*) =u(X") +cp(X — X*).
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Taking expectations with respect to P yields
Elu(X)] < E[u(X*)]+cE*[X - X"].

Hence, X* is indeed a maximizer in the class { X € L'(P*) | E*[ X ] < E*[ X*]}.
O

Example 3.35. Let u(x) = 1 — ¢~“" be an exponential utility function with constant
absolute risk aversion « > 0. In this case,

1 y
I(y) = ——log —.
o

It follows that

" _ 1 c 1
E*[I(cyp)]=—=log— — —-E[glogy]
o o o
1 1
— ——log & — — - H(P*|P),
o o o

where H(P*|P) denotes the relative entropy of P* with respect to P; see Defini-
tion 3.20. Hence, the utility maximization problem can be solved for any w € R if
and only if the relative entropy H (P*|P) is finite. In this case, the optimal profile is
given by
X = - logy +w + lH(P*IP),
o o
and the maximal value of expected utility is

E[u(X*)]=1—exp (—aw — H(P*|P)),

corresponding to the certainty equivalent
1 *
w+ —H(P"|P).
o

Let us now return to the financial market model considered in Section 3.1, and let P*
be the entropy-minimizing risk-neutral measure constructed in Corollary 3.25. The
density of P* is of the form

e—aé’ Y
where £* € R? denotes a maximizer of the expected utility E[u(§ - Y) ]; see Exam-
ple 3.12. In this case, the optimal profile takes the form

'

*

e
Al

X*=&Y+w= ,
d 147

i.e., X* is the discounted payoff of the portfolio £ = (69, &%), where 0 = w —£* .
is determined by the budget constraint § - @ = w. Thus, the optimal profile is given
by a linear profile in the given primary assets S, ..., S¢: No derivatives are needed
at this point. <



3.3 Optimal contingent claims 129

In most situations it will be natural to restrict the discussion to payoff profiles which
are non-negative. For the rest of this section we will make this restriction, and so the
utility function # may be defined only on [0, 0o0). In several applications we will also
use an upper bound given by an F -measurable random variable W : Q@ — [0, o0].
We include the case W = +oo and define the convex class of admissible payoff
profiles as

X:={XeL’P)|0<X <W P-as.}

Thus, our goal is to maximize the expected utility E[ #(X) ] among all X € 8 where
the budget set B is defined in terms of X and P* as in (3.19), i.e.,

B={XeL'(P)|0<X<W P-as. and EX[X]<w]}.
We first formulate a general existence result:

Proposition 3.36. Let u be any utility function on [0, 00), and suppose that W is
P-a.s. finite and satisfies E{u(W)] < oco. Then there exists a unique X* € B which
maximizes the expected utility E[ u(X) ] among all X € 8.

Proof. Take a sequence (X,) in 8 with E*[ X,,] < w and such that E[u(X,)]
converges to the supremum of the expected utility. Since sup, |X,| < W < oo
P-almost surely, we obtain from Lemma 1.69 a sequence

%n e conv{ X,,, Xp+1, ...}

of convex combinations which converge almost-surely to some X. Clearly, every X,
is contained in B. Fatou’s lemma implies

E[X] gliﬂng*[%“n] <w,

and so X € B. Each X, can be written as Z;"Zl a;’an. for indices n; > n and
coefficients al." > 0 summing up to 1. Hence,

m
u(Xn) = Y alu(Xy,),
i=1

and it follows that _
E[u(X,)] = inf E[u(Xp)].

By dominated convergence,

E[u(X)] = lim E[u(Xn)],

and the right-hand side is equal to the supremum of the expected utility. O
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Remark 3.37. The argument used to prove the preceding proposition works just as
well in the following general setting. Let U : 8 — R be a concave functional on a
set B of random variables defined on a probability space (2, ', P) and with values
in R". Assume that

* B is convex and closed under P-a.s. convergence,

» There exists a random variable W € L(J)r(Q, F, P) with |Xi| <W < oo P-as.

foreach X = (X',..., X") € B,
e sup U(X) < oo,
XeB

U is upper semicontinuous with respect to P-a.s. convergence.

Then there exists an X* € B which maximizes U on 8B, and X* is unique if U is
strictly concave. As a special case, this includes the utility functionals

U(X) = inf Eglu(X)],
Qeq

appearing in a robust Savage representation of preferences on n-dimensional asset
profiles, where u is a utility function on R"” and @ is a set of probability measures
equivalent to P; see Section 2.5. <

We turn now to a characterization of the optimal profile X* in terms of the inverse
of the derivative u’ of u in case where u is continuously differentiable on (0, 00). Let

a:=1limu'(x)>0 and b:=u'(0+4)=limu'(x) < +o0.
paee) x}0

We define
I : (a,b) — (0, c0).

as the continuous, bijective, and strictly decreasing inverse function of u’ on (a, b),
and we extend I to the full half axis [0, oo] by setting

0 fory > b,

(3.22)
400 fory <a.

I"(y) = {

With this convention, I : [0, co] — [0, oo] is continuous.

Remark 3.38. If u is a utility function defined on all of R, the function I is the
inverse of the restriction of u’ to [0, 00). Thus, I is simply the positive part of
the function I = (u’)~!. For instance, in the case of an exponential utility function
u(x) =1—e*,wehavea =0,b = «, and

| )

Ity = (—log 1) = (1), y=o. (3.23)
07 o

<&
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Theorem 3.39. Assume that X* € B is of the form
X*=It(cp) AW

for some constant ¢ > 0 such that E*[ X* ] = w. If E{u(X*)] < oo then X* is the
unique maximizer of the expected utility E[u(X) ] among all X € 8B.

Proof. In a first step, we consider the function

v(y,w) := sup (u(x) — xy) (3.24)
0<x<W(w)

defined for y € R and w € Q. Clearly, for each w with W(w) < oo the supremum
above is attained in a unique point x*(y) € [0, W(w)], which satisfies

() =0 << u'(x)<y foralxe (O, W(a))),
=W << &) >y forallx € (0, W(w)).

Moreover, y = u/(x*(y)) if x*(y) is an interior point of the interval [0, W(w)]. It
follows that
) =17() A W(w),

or
X*=x"(cp) on{W < oo} (3.25)

If W(w) = +o0, then the supremum in (3.24) is not attained if and only if
u'(x) > y for all x € (0,00). By our convention (3.22), this holds if and only if
y < a and hence I (y) = +oo. But our assumptions on X* imply that I *(c ¢) < 0o
P-a.s. on {W = oo}, and hence that

X*=x*(cep) P-as.on{W = co}. (3.26)
Putting (3.24), (3.25), and (3.26) together yields
u(X*) — X*cp =v(cp,-) P-as.
Applied to an arbitrary X € 8B, this shows that
u(X*) —cpX* >u(X) —cepX P-as.
Taking expectations gives
Elu(X*)]1> E[u(X)]1+c- E*[ X" = X1> E[u(X)].

Hence, X* maximizes the expected utility on 8. Uniqueness follows from Re-
mark 3.33. O

In the following examples, we study the application of the preceding theorem to
CARA and HARA utility functions. For simplicity we consider only the case W = oc.
The extension to a non-trivial bound W is straightforward.
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Example 3.40. For an exponential utility function u(x) = 1 —e~%* we have by (3.23)

oo =~ o(10g(22)) = Sn(22),

o y \a

where h(x) = (x logx)™. Since & is bounded by e~ !, itfollows that o It (y @) belongs
to L1 (P) for all y > 0. Thus,

1 ye
g0) =BT o)) =~ E[h(2F) ]
y o
decreases continuously from 400 to 0 as y increases from 0 to oo, and there exists a
unique ¢ with g(c) = w. The corresponding profile

X*:=1I"(co)

maximizes the expected utility E[u(X) ] among all X > 0. Let us now return to
the special situation of the financial market model of Section 3.1, and take P* as the
entropy-minimizing risk-neutral measure of Corollary 3.25. Then the optimal profile
X* takes the form

X* =Y - KT,

where £* is the maximizer of the expected utility E[u (& - Y) ], and where K is given
by
1 1 . 1 1
K=—log — —logE[e™"Y 1= —log & + —H(P*|P).
o o o o o o

Note that X* is a linear combination of the primary assets only in the case where
&* .Y > K P-almost surely. In general, X* is a basket call option on the attainable
asset w + (1 +r)é* - Y € V with strike price w + (1 + r)K. Thus, a demand for
derivatives appears. <&

Example 3.41. If u isa HARA utility function of index y € [0, 1) thenu’(x) = xvV 1
hence

S
-y

I =y

and
1 1

IT(yp)=y 77 .¢ 7.

<

In the logarithmic case y = 0, we assume that the relative entropy H(P|P*) of P
with respect to P* is finite. Then

L. W dP
X'=—=w
) dP*

is the unique maximizer, and the maximal value of expected utility is

El[log X*] =logw + H(P|P¥).



3.3 Optimal contingent claims 133

Ify € (0,1) and
1
Ely" ™ =B ] <o
then the unique optimal profile is given by

Y 1

Y =1 -

X =w (B[ T ) e T
and the maximal value of expected utility is equal to

Y 1—y

1 _r
Elu(x")] = —w"(E[¢"™ ]) o

The following corollary gives a simple condition on W which guarantees the
existence of the maximizer X* in Theorem 3.39.

Corollary 3.42. If E[u(W)] < ococandif 0 < w < E*¥[ W] < 00, then there exists
a unique constant ¢ > 0 such that

X*=IT(cp) AW

satisfies E*[ X*] = w. In particular, X* is the unique maximizer of the expected
utility E[u(X) ] among all X € 8.

Proof. For any 8 € (0, 00),
y= It AB

is a continuous decreasing function with limy4, ITO)AB=0and IT(y)) AB=p
for all y < u’(B). Hence, dominated convergence implies that the function

g = E I (yo) AW,
is continuous and decreasing with

lim g(y) =0 <w < E*¥[ W] =limg(y).
ytoo y40

Moreover, g is even strictly decreasing on {y | 0 < g(y) < E*[W]}. Hence,
there exists a unique ¢ with g(c¢) = w, and Theorem 3.39 yields the optimality of the
corresponding X*. O

Let us now extend the discussion to the case where preferences themselves are
uncertain. This additional uncertainty can be modelled by incorporating the choice of
a utility function into the description of possible scenarios; for an axiomatic discussion
see [130]. More precisely, we assume that preferences are described by a measurable
function u on [0, co) x €2 such that u(-, w) is a utility function on [0, co) which is
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continuously differentiable on (0, 00). For each w € €, the inverse of u'(-, w) is
extended as above to a function

IT(, w): [0, 00] —> [0, c0].

Using exactly the same arguments as above, we obtain the following extension of
Corollary 3.42 to the case of random preferences:

Corollary 3.43. IfE[u(W, )] < occandif 0 < w < E*[ W] < 00, then there exists
a unique constant ¢ > 0 such that

X*(w): = I+(c<p(a)), w) A W(w)

is the unique maximizer of the expected utility

Efu(X,)]= /M(X(w),w) P(dw)

among all X € B.

So far, we have discussed the structure of asset profiles which are optimal with
respect to a fixed utility function u. Let us now introduce an optimization problem
with respect to the uniform order = = as discussed in Section 2.4. The partial order = .
can be viewed as a reflexive and transitive relation on the space of financial positions

X :=LL(Q F,P)
by letting

&= E[u(X)]> E[u(Y)] for all utility functions u, '

where ux and py denote the distributions of X and Y under P. Note that X =
Y = X if and only if X and Y have the same distribution; see Remark 2.59. Thus,
the relation = . is antisymmetric on the level of distributions but not on the level of
financial positions.

Let us now fix a position Xg € X such that E*[ Xo] < oo, and let us try to
minimize the cost among all positions X € X which are uniformly at least as attractive
as Xo:

Minimize E*[ X ] among all X = = Xo.

ni

In order to describe the minimal cost and the minimizing profile, let us denote by Fj,
and F, the distribution functions and by g, and gx, quantile functions of ¢ and Xq;
see Appendix A.3.

Theorem 3.44. For any X € X such that X = Xo,

1
E*[X]=> /0 G (1 = ) qx,(s) ds. (3.28)
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The lower bound is attained by X* = f(¢), where f is the decreasing function on
[0, co) defined by
F) = qx,(1 — Fyp(x))

if x is a continuity point of F,, and by
1 F(p (x)

F(p(x) - Fga(x_) Fyp(x—)

fx) = qxo(1 —1)dt

otherwise.

The proof will use the following lemma, which yields another characterization of
the relation 3= .

Lemma 3.45. For two probability measures p and v on R, the following conditions
are equivalent:

@ n=,
(b) For all decreasing functions h : (0, 1) — [0, 00),

1 1
/ h()qu(t) dt = / h(t)gy (1) dt, (3.29)
0 0

where q,, and q, are quantile functions of u and v.
(c) The relation (3.29) holds for all bounded decreasing functions h : (0,1) —
[0, 00).

Proof. The relation p >= v is equivalent to

ni

y y
/ qu@)dt > / qy(t)dt forally €0, 1];
0 0
see Theorem 2.58. The implication (c) =-(a) thus follows by taking 7 = I 011" For the
proof of (a) =(b), we may assume without loss of generality that 4 is left continuous.

Then there exists a positive Radon measure n on (0, 1] such that i(r) = n([t, 1]).
Fubini’s theorem yields

1 1 y
/ h(t) g (1) dit = f / 4 (1) di n(dy)
0 0 0
1 y
2/ / qv(t)dt n(dy)
0 0

1
=/ h(t) gy (t) dt. O
0
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Proof of Theorem 3.44. Using the first Hardy—Littlewood inequality in Theorem A.24,
we see that

1
E*[X]=E[X¢p] 2/0 qy(1 — 1) gx (1) dt,

where gx is a quantile function for X. Taking h(¢) := ¢, (1 —1) and using Lemma 3.45
thus yields (3.28).

Let us now turn to the identification of the optimal profile. Note that the function
f defined in the assertion satisfies

fay) = Exlglqy] (3.30)

where g is defined by g(¢) = gx,(1 —1), and where E, [ - | g, ] denotes the conditional
expectation with respect to g, under the Lebesgue measure A on (0, 1). Let us show
that X* = f(¢) satisfies X* = = X(. Indeed, for any utility function u

1
ELux) ) = E[u(f@)] = [ u(rigp)as
1 1
= [ Culan = 0)ar= [ ulax o) ar

= E[u(Xo) ],

where we have applied Lemma A.19 and Jensen’s inequality for conditional expecta-
tions. Moreover, X* attains the lower bound in (3.28):

1
E'[X*1=E[f(pol= /0 fgp®) qp(1) dr

1 1
=/O qxo(1 — 1) qu(1) dt =/O gx0(t) qo(1 — 1) dt,
due to (3.30). I

Remark 3.46. The solution X* has the same expectation under P as Xo. Indeed,
(3.30) shows that

1 1
E[X*]:E[f((p)]:/o f(q(p(t))dtz/o qx,(1 —0)dt = E[Xo]. <

Remark 3.47. The lower bound in (3.28) may be viewed as a “reservation price” for
Xp in the following sense. Let X be a financial position, and let X be any class of
financial positions such that X € X is available at price 7 (X). For a given relation >
on X U {Xo},

mr(Xo) =inf{xn(X) | X e X, X = Xo}

is called the reservation price of X¢ with respect to X, 7, and >.
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If X is the space of constants with w(c) = c, and if the relation > is of von
Neumann—Morgenstern type with some utility function u, then g (Xo) reduces to the
certainty equivalent of X with respect to u; see (2.9).

In the context of the optimization problem (3.20), where

X > Xo 1= E[u(X)]= E[u(Xo)],

the reservation price is given by E*[ X* ], where X™* is the utility maximizer in the
budget set defined by w := E*[ X ].

In the context of the financial market model of Chapter 1, we can take X as the
space V of attainable claims with

V>Xy:<< V=>XgP-as.

and 7(V) = & -7 for V. = £ - S. In this case, the reservation price wr(Xo) coincides
with the upper bound 7,,,(X() of the arbitrage-free prices for Xg; see Theorem 1.31. <

3.4 Microeconomic equilibrium

The aim of this section is to provide a brief introduction to the theory of market
equilibrium. Prices of assets will no longer be given in advance. Instead, they will
be derived from “first principles” in a microeconomic setting where different agents
demand asset profiles in accordance with their preferences and with their budget
constraints. These budget constraints are determined by a given price system. The
role of equilibrium prices consists in adjusting the constraints in such a way that the
resulting overall demand is matched by the overall supply of assets.

Consider a finite set 4 of economic agents and a convex set X; C L@, ¥, P)of
admissible claims. At time t = 0, each agent a € »4 has an initial endowment whose
discounted payoff at time ¢ = 1 is described by an admissible claim

W, e X, ac€on.

W::ZWa

ach

The aggregated claim

is also called the market portfolio. Agents may want to exchange their initial endow-
ment W, against some other admissible claim X, € X. This could lead to a new
allocation (X,)4e.4 if the resulting total demand matches the overall supply:

Definition 3.48. A collection (X;)qe4 C X iscalled afeasible allocation if it satisfies
the market clearing condition

Z X, =W P-as. (3.31)
ach
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The budget constraints will be determined by a linear pricing rule of the form
(X)) =E[pX], XeX,

where @ is a price density, i.e., an integrable function on (€2, #) suchthatp > 0 P-a.s.
and E[|W,|¢] < oo for all a € A. To any such ¢ we can associate a normalized
price measure P¥ ~ P with density g E[ ¢ 17!

Remark 3.49. In the context of our one-period model of a financial market with
d risky assets St ..., 5% and a risk-free asset S® = 1 + r, P? is a risk-neutral
measure if the pricing rule ® is consistent with the given price vector 7 = (7°, 1),
where 70 = 1. In this section, the pricing rule will be derived as an equilibrium
price measure, given the agents’ preferences and endowments. In particular, this will
amount to an endogenous derivation of the price vector 7. In a situation where the
structure of the equilibrium is already partially known in the sense that it is consistent
with the given price vector 7, the construction of a microeconomic equilibrium yields
a specific choice of a martingale measure P*, i.e., of a specific extension of 7 from
the space V of attainable payoffs to a larger space of admissible claims. <

The preferences of agent a € 4 are described by a utility function u,. Given the
price density ¢, an agent a € + may want to exchange the endowment W, for an
admissible claim X}, which maximizes the expected utility

Eluq(X) 1
among all X in the agent’s budget set

Bi(p):={X e X|E[¢X]=<E[pW.]}
={X e X|E’[X]<E’[W4l}.

In this case, we will say that X{ solves the utility maximization problem of agenta € A
with respect to the price density ¢. The key problem is whether ¢ can be chosen in
such a way that the requested profiles X{;, a € », form a feasible allocation.

Definition 3.50. A price density ¢* together with a feasible allocation (X})sc.4 is
called an Arrow—Debreu equilibrium if each X solves the utility maximization prob-
lem of agent a € 4 with respect to ¢*.

Thus, the price density ¢* appearing in an Arrow—Debreu equilibrium decentralizes
the crucial problem of implementing the global feasibility constraint (3.31). This
is achieved by adjusting the budget sets in such a way that the resulting demands
respect the market clearing condition, even though the individual demand is determined
without any regard to this global constraint.

Example 3.51. Assume that each agent a € + has an exponential utility function
with parameter o, > 0, and let us consider the unconstrained case

x=L%Q, F, P).
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In this case, there is a unique equilibrium, and it is easy to describe it explicitly. For
a given pricing measure P* ~ P such that W, € L'(P*) for all a € +, the utility
maximization problem for agent a € #4 can be solved if and only if H(P*|P) < oo,
and in this case the optimal demand is given by

1 1
Xy =——logp* +w,; + —H(P*|P)
oy oy

where
w, = E* [ W, 1;

see Example 3.35. The market clearing condition (3.31) takes the form
1 % * 1 *
W =—=logg*+ Y wi+—H(P*|P)
« achA o

where « is defined via

1 1
—= Z —. (3.32)

o
ach ¢

Thus, a normalized equilibrium price density must have the form

e—aW

¢ = W, (3.33)

and this shows uniqueness. As to existence, let us assume that
E[[Wale ®Y ] <00, ac€;

this condition is satisfied if, e.g., the random variables W, are bounded from below.
Define P* ~ P via (3.33). Then

H(P*|P) = —a EX[W]—logE[e ®" ] < 0,

and the optimal profile for agent a € +A with respect to the pricing measure P* takes
the form

X: = w!+ —(W— E*[W]). (3.34)
a
Since
> wi=Ef W],
acA

the allocation (X})sc.4 is feasible, and so we have constructed an Arrow—Debreu
equilibrium. Thus, the agents share the market portfolio in a linear way, and in
inverse proportion to their risk aversion.
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Let us now return to our financial market model of Section 3.1. We assume that
the initial endowment of agent a € 4 is given by a portfolio 1, € R4+ 50 that the
discounted payoff at time t = 1 is

ﬁa'g

= , ac€ah.
1+r

Wa

In this case, the market portfolio is given by W =7 - §/(1 + r) with 77 := Yalla =
(no, n). The optimal claim for agent a € 4 in (3.34) takes the form

P S
Xa: o T+ —n- _r_ﬂ' s

where m = (1, ) and

. Si
! =E"‘|:1+ :| fori =1,...,d.
r

Thus, we could have formulated the equilibrium problem within the smaller space
X = 'V of attainable payoffs, and the resulting equilibrium allocation would have been
the same. In particular, the extension of X from ‘V to the general space L°(Q, ¥, P)
of admissible claims does not create a demand for derivatives in our present example.

<&
From now on we assume that the set of admissible claims is given by
X =L9(Q,F, P),

and that the preferences of agent a € A are described by a utility function u, :
[0, co) — R which is continuously differentiable on (0, co). In particular, the initial
endowments W, are assumed to be non-negative. Moreover, we assume

P[W,>0]#0 foralla € .

and
E[W] < o0. (3.35)

A function ¢ € L! (2, ¥, P) such that ¢ > 0 P-a.s. is a price density if
E[pW] < o0;

note that this condition is satisfied as soon as ¢ is bounded, due to our assumption
(3.35). Given a price density ¢, each agent faces exactly the optimization problem
discussed in Section 3.3 in terms of the price measure P¥ ~ P. Thus, if (X})ac4
is an equilibrium allocation with respect to the price density ¢*, feasibility implies
0 < X} < W, and so it follows as in the proof of Corollary 3.42 that

XE =1 (cag®), ac A, (3.36)
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with positive constants ¢, > 0. Note that the market clearing condition

W= X = Y 1w

acAh ach

will determine ¢* as a decreasing function of W, and thus the optimal profiles X will
be increasing functions of W.

Before we discuss the existence of an Arrow—Debreu equilibrium, let us first illus-
trate the structure of such equilibria by the following simple examples. In particular,
they show that an equilibrium allocation will typically involve non-linear derivatives
of the market portfolio W.

Example 3.52. Let us consider the constrained version of the preceding example
where agents a € + have exponential utility functions with parameters o, > 0.
Define

w:=sup{c| W >c P-as.} >0,

and let P* be the measure defined via (3.33). For any agent a € #4 such that

wi = B[ W, = ai(E*[W]—w), (3.37)

a

the unrestricted optimal profile

X: = w} + —(W - E*[W])
(o7
satisfies X > 0 P-a.s. Thus, if all agents satisfy the requirement (3.37) then the
unrestricted equilibrium computed in Example 3.51 is a forteriori an Arrow—Debreu
equilibrium in our present context. In this case, there is no need for non-linear deriva-
tives of the market portfolio.

If some agents do not satisfy the requirement (3.37) then the situation becomes
more involved, and the equilibrium allocation will need derivatives such as call options.
Let us illustrate this effect in the simple setting where there are only two agents
a € A = {1, 2}. Suppose that agent 1 satisfies condition (3.37), while agent 2 does
not. For ¢ > 0, we define the measure P¢ & P in terms of the density

— e W on{W <},
VA

1
— e on (W > c},
Z>
where « is given by (3.32), and where the constants Z and Z; are determined by the
continuity condition
log Z, —logZ) = c(a; — @)
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and by the normalization E[¢°] = 1. Note that P = P* with P* as in (3.33).
Consider the equation

o c + c c

— E (W —=0)T]=w;:=E [W>]. (3.38)
o
Both sides are continuous in c¢. As c¢ increases from 0 to 400, the left-hand
side decreases from O% E*[W] to 0, while w; goes from w(z) < g—z E*[W] to
E®°[ W5 ] > 0. Thus, there exists a solution ¢ of (3.38). Let us now check that

Xi= 2 (W—0)F, XSi=W - X
2%)

defines an equilibrium allocation with respect to the pricing measure P¢. Clearly, X{
and X are non-negative and satisfy X{ + X5 = W. The budget condition for agent 2
is satisfied due to (3.38), and this implies the budget condition

E[X{]1=E[W]—w;5=w{
for agent 1. Both are optimal since
Xg =1 (ha ¢°)
with
AMi=0a1Z; and Ay = arZre*c.

Thus, agent 2 demands o% shares of a call option on the market portfolio W with strike
¢, agent 1 demands the remaining part of W, and so the market is cleared.

In the general case of a finite set + of agents, the equilibrium price measure P has
the following structure. There are levels 0 :=cp < --- <cy = ocowithl < N < |A|
such that the price density ¢ is given by

1

¢=—e PV on{Welc1,cl)
Zi
fori =1,..., N, where
1\—-1
Bi == ( Z a_) )
aEA; a
and where 4A; (i = 1,..., N) are the increasing sets of agents which are active at

the i layer in the sense that X, > 0 on {W € (¢j—1, c,-]}. At each layer (c;—1, ¢;],
the active agents are sharing the market portfolio in inverse proportions to their risk
aversion. Thus, the optimal profile X of any agent a € 4 is given by an increasing
piecewise linear function in W, and thus it can be implemented by a linear combination
of call options with strikes c¢;. More precisely, an agent a € 4; takes f; /«, shares of
the spread

W—ci)t =W —-c)F,

i.e., the agent goes long on a call option with strike ¢; 1 and short on a call option with
strike c;. &
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Example 3.53. Assume that all agents a € 4 have preferences described by HARA
utility functions so that

1
LFy)=y Tn, ach

with 0 < y, < 1. For a given price density ¢, the optimal claims take the form

_ 1
Xa =1 (cap) =bap T (3.39)

with constants b, > 0. If y, = y for all @ € 4, then the market clearing condition

(3.31) implies
W = Z Xq = (Zba>§0_ﬁ»

acA ach

i.e., the equilibrium price density ¢* takes the form

* __ l y—1
¢ == W,
where Z is the normalizing constant, and so the agents demand linear shares of the
market portfolio W. If risk aversion varies among the agents then the structure of the
equilibrium becomes more complex, and it will involve non-linear derivatives of the
market portfolio. Let us number the agents sothat A = {1, ..., n}andy; > --- > y,.
Condition (3.39) implies

X; =d; XPi
with some constants d;, and where
. 1 - Vn
Bi =
L=y
satisfies 81 > --- > B, = 1 with at least one strict inequality. Thus, each X; is a

convex increasing function of X,. In equilibrium, X, is a concave function of W
determined by the condition

n
de xXb=w, (3.40)
i=1

and the price density ¢* takes the form

L m—t
p* = Z ) (LI
As an illustration, we consider the special case “Bernoulli vs. Cramer”, where
A = {1,2} with u;(x) = /x and uz(x) = logx, ie., y1 = % and y» = 0; see
Example 2.40. The solutions of (3.40) can be parameterized with ¢ > 0 such that

X5 =2c(VW +c— ) €10, W]
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and
X{=W-X5.

The corresponding price density takes the form

L1 1
YT Z0 UWre— e

where Z(c) is the normalizing constant. Now assume that w1 e LY(P), and let
P denote the measure with density W~ (E[ W~! ])_1. As ¢ increases from 0
to oo, E[ X5 ] increases continuously from 0 to E°°[ W |, while E“[ W> ] goes con-
tinuously from E[W2] > 0to EX[W,] < E®[ W ]; here we use our assumption
that P[ W, > 0] #£ O for all a € 4. Thus, there is a ¢ € (0, c0) such that

E[X5]1=E[W:],

and this implies that the budget constraint is satisfied for both agents. With this choice
of the parameter ¢, (X{, X5) is an equilibrium allocation with respect to the pricing
measure P¢: Agent 2 demands the concave profile X5, agent 1 demands the convex
profile X¢, both in accordance with their budget constraints, and the market is cleared.

<&

Let us now return to our general setting, and let us prove the existence of an
Arrow—Debreu equilibrium. Consider the following condition:

w
limsupx u/,(x) < 0o and E[u; (—) :| <00, a€ . (3.41)
x40 | A

Remark 3.54. Condition (3.41) is clearly satisfied if

u, (0) := h?é u,(x) <oo, ach. (3.42)
X

Butitalso includes HARA utility functions u, with parameter y, € [0, 1) if we assume
E[W" '] <00, acah,
in addition to our assumption E[ W ] < oo. &

Theorem 3.55. Under assumptions (3.35) and (3.41), there exists an Arrow—-Debreu
equilibrium.

In a first step, we are going to show that an equilibrium allocation maximizes a
suitable weighted average

UMNX) =) ha El1a(Xa)]

acA
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of the individual utility functionals over all feasible allocations X = (X;)ses. The
weights are non-negative, and without loss of generality we can assume that they are
normalized so that the vector A := (A4)4e4 belongs to the convex compact set

A={)\e[0,1]”" | Z,\azl}.

ach

In a second step, we will use a fixed-point argument to obtain a weight vector and a
corresponding price density such that the maximizing allocation satisfies the individual
budget constraints.

Definition 3.56. A feasible allocation (X;),c4 is called A-efficient for A € A if it
maximizes U* over all feasible allocations.

In view of (3.36), part (b) of the following lemma shows that the equilibrium

allocation (X)) 4e . in an Arrow—Debreu equilibrium is A-efficient for the vector A =

(c- c;l)ae,A,, where ¢! := a c;l. Thus, the existence proof for an Arrow—Debreu

equilibrium is reduced to the construction of a suitable vector A* € A.
Lemma 3.57. (a) For any A € A there exists a unique A-efficient allocation (Xf;)aeﬂ.

(b) A feasible allocation (Xg)qen is A-efficient if and only if it satisfies the first
order conditions

dau,(Xa) <@, withequality on {X, > 0} (3.43)

with respect to some price density ¢. In this case, (Xg)aen coincides with
(X 2)%,,‘,, and the price density can be chosen as

@t = max Aa tl (X1 (3.44)

(c) Foreacha € A, X:} maximizes E[uy,(X) ] over all X € X such that

E[¢* X] < E[¢" X}].

Proof. (a): Existence and uniqueness follow from the general argument in Remark 3.37
applied to the set 8B of all feasible allocations and to the functional U*. Note that

UM(X) < max E[ug,(W)]
acA

for any feasible allocation, and that the right-hand side is finite due to our assumption
(3.35). Moreover, by dominated convergence, U” is indeed continuous on B with
respect to P-a.s. convergence.
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(b): Letus first show sufficiency. If X = (X,),e.4 1s afeasible allocation satisfying
the first order conditions, and ¥ = (Y;)4c.4 is another feasible allocation then

UMX) = U*(Y) = Y 2aElua(Xa) = ta(Ya) ]

ach
> Y raElu,(Xa)(Xa = Ya) ]
aceAh
=Elo( L x-2n)|=0

aeh

using concavity of u, in the second step and the first order conditions in the third.

This shows that X is A-efficient.

Turning to necessity, consider the A-efficient allocation (Xé)aeA for A € A and
another feasible allocation (X;)4es. Fore € (0,1], let Y7 1= eX, + (1 — s)Xﬁ.

Since (Y?)qex is feasible, A-efficiency of (X g)aeA yields

1 ey _ A
02 =% ha Elua(Y)) —ua(Xg) ]

aceh
> LS A B0 — X))
€ aeAh
= > haELu, (YD) (X — X2)1.
acA

(3.45)

Let us first assume (3.42); in part (d) of the proof we show how to modify the
argument under condition (3.41). Using dominated convergence and (3.42), we may

let & | O in the above inequality to conclude
Y El¢iX.1< ) Elg)X}1< El¢"W],
ach aeh

where
Qr = haul, (XD,

Note that ¢* is a price density since by (3.42)
0 < ¢* <max{Au,(0) | a €A} < oo.

Take a feasible allocation (X,),c.4 such that

X i, =

ach

for example, we can enumerate 4 := {1, ..., ||} and take X, := WI{

T (w) :=min{a | ¢*(w) = ¢*(w) }.

(3.46)

(3.47)

T=a) where



3.4 Microeconomic equilibrium 147

In view of (3.46), we see that

Y Elg) X;1=El¢" W]. (3.48)
ach

This implies (pfl“ = ¢* on {X 2 > 0}, which is equivalent to the first order condition
(3.43) with respect to ¢*.

(c): In order to show optimality of X Z} we may assume without loss of generality
that P[ X 2 > 0] > 0, and hence %, > 0. Thus, the first order condition with respect
to ¢* takes the form

Xo =170 '¢h),

due to our convention (3.22). By Corollary 3.42, X* solves the optimization problem
for agent a € 4 under the constraint

E[¢* X]1< E[¢" X}].

(d): If (3.42) is replaced by (3.41), then we first need an additional argument in
order to pass from (3.45) to (3.46). Note first that by Fatou’s lemma,

lim inf D MELul,(Y)) Xa12= ) ha lim inf £[ u (YE) X4
ach acA

> Y haELug (X)) X .
ach

On the other hand, since

K :=max sup xu,(x) < oo
acA O<x<l

by (3.41), we have xu, (x) < k + xu, (1) <« (1 4 x) for all x > 0. This implies
W (X)Xe <V :=x(1+W)eL(P), (3.49)

and also
w,(YH X: <ul, (1—e) X))Xh <1 —o)7 'V,

since Y > (1 — &) X2. Thus, dominated convergence implies
E[u,(Y$) X)1— E[u,(X;)X,1, €10,

and this concludes the proof of (3.46).
By (3.49), we have

o XM= ul (XM XM e LY(P).

Hence E[ ¢* W ] < oo follows by taking in (3.46) a feasible allocation (X )4e.4 Which
is as in (3.47). We furthermore get (3.48), which yields as in part (b) the first order
conditions (3.43).
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It remains to show that ¢* is integrable in order to conclude that ¢* is a price
density. Our assumption (3.41) implies

w
F = " — ) e LY(P), 3.50
Eneai?”“(mJ SEm (320

and so it is enough to show that F > ¢*. Since X é =1If ((pA /Aa), feasibility and
Aq < 1 imply
W < I-‘r A < + A
< D15 @ < AImax 1 ("),
acA
hence

+/ A
FEpmealp @)
o (I (") = ¢* on {max 17 (") = 154"} O

After these preliminaries, we are now in a position to prove the existence of an
Arrow—Debreu equilibrium. Note that for each A € A the A-efficient allocation
(X 2)116 4 and the price density ¢* would form an Arrow—Debreu equilibrium if

E[¢*W,1=E[¢"X}] foralla € A. (3.51)

If this is not the case, then we can replace A by the vector g(1) = (ga (k))a A defined
by
. 1 A A
8a(A) == 2g + m -Elo" (W, — Xa)]’

where V is given by (3.49). Note that g(A) € A: Since the first order conditions
(3.43) together with (3.49) imply

E[¢" X2 =2 E[u,(X}) X211 <2, E[ V],

we have g,(A) > 0, and ) _, g,(2) = 1 follows by feasibility. Thus, we increase
the weights of agents which were allocated less than they could afford. Clearly, any
fixed point of the map g : A — A will satisfy condition (3.51) and thus yield an
Arrow—Debreu equilibrium.

Proof of Theorem 3.55. (a): The set A is convex and compact. Thus, the existence of
a fixed point of the map g : A — A follows from Brouwer’s fixed point theorem as
soon as we can verify that g is continuous; see, for instance, Corollary 16.52 in [2]
for a proof of Brouwer’s fixed point theorem. Suppose that the sequence (1,,) C A
converges to A € A. In part (c) we show that X,, := X* and ¢, := ¢* converge
P-a.s. to X* and ¢*, respectively. We will show next that we may apply the dominated
convergence theorem, so that

lim E[g, W, 1= E[¢" W, ]
ntoo
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and
lim E[g, X, 1 = E[¢" X*]
ntoo

and this will prove the continuity of g. To verify the assumptions of the dominated
convergence theorem, note that

Waon <Wo, <WF,
where F is as in (3.50). Moreover,

WF < |AIF I, + maxul (1) - W e LY(P).
ach

W<lAl}

Thus, ¢, W, and ¢, X,, are bounded by WF € L! (P).
(b): By our convention (3.22), the map f : A x [0, co] — [0, oo] defined by

fOu =) 170"y
ach

is continuous. If we fix A € A, then the function f (X, -) is continuous on [0, co] and
strictly decreasing on (a(X), b(A)) where

a(x) :=max lim Ay u,(x) >0 and b(A) = maxi,u,(0+) < 4o0.
aeA x10oo aeA

Moreover, f(A,y) = oo for y < a(}) and f(A,y) = 0 for y > b(A). Hence, for
each w € (0, co) there exists exactly one solution y* € (a(1), b(1)) of the equation

fOuyh =w.

Recall that [0, co] can be regarded as a compact topological space. To see that y*
depends continuously on A € A, take a sequence A, — A and a subsequence (A;,)

such that the solutions y;, = y’x”k of f(An,,y) = w converge to some limit yo, €
[a(}), b(A)]. By continuity of f,

f()"7 yOO) = 11m f()"nkv yk) =w,
k1 oo

and S0 Yoo must coincide with y*.
(c): Recall that
X =10, "eh (3.52)

for any a € 4. By feasibility,
W=) Xi=[0.¢Y.
acA

Thus, ¢’ converges P-a.s. to ¢* as A, — A due to part (b), and so X* converges P-
a.s. to X* due to (3.52). This completes the proof in (a) that the map g is continuous.
O
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Remark 3.58. In order to simplify the exposition, we have restricted the discussion
of equilibrium prices to contingent claims with payoff at time t = 1. We have argued
in terms of discounted payoffs, and so we have implicitly assumed that the interest
rate r has already been fixed. From an economic point of view, also the interest rate
should be determined by an equilibrium argument. This requires an intertemporal
extension of our setting, which distinguishes between deterministic payoffs y at time
t = 0 and nominal contingent payoffs Y at time # = 1. Thus, we replace X = L(J)r by
the space
Y={Y=0.Y)|yel0,00),YeLf}

A pricing rule is given by a linear functional on Y of the form
DY) :=¢o-y+ElpY]

where g € (0, co) and ¢ is a price density as before. Any such price system specifies
an interest rate for transferring income from time + = 0 to time ¢t = 1. Indeed,
comparing the forward price c - E[ ¢ ] for the fixed amount c to be delivered at time 1
with the spot price ¢ - ¢y for the amount ¢ made available at time 0, we see that the
implicit interest rate is given by

Elo]
o

I1+7r=

If we describe the preferences of agent a € #4 by a utility functional of the form
Ua(Y) = tta,0(y) + Elua1(Y)]

with smooth utility functions u, o and u,, 1, then we can show along the lines of the
preceding discussion that an Arrow—Debreu equilibrium exists in this extended setting.
Thus, we obtain an equilibrium allocation (72)5;5 4 and an equilibrium price system
P* = ((p(’)k, ¢*) such that each 7: maximizes the functional U, in the agent’s budget
set determined by an initial endowment in Y and by the pricing rule 3 . In particular,
we have then specified an equilibrium interest rate »*. Normalizing the price system
to g5 = 1 and defining P* as a probability measure with density ¢*/E[ ¢* ], we see
that the price at time ¢t = 0 of a contingent claim with nominal payoff ¥ > 0 at time
t = 1 is given as the expectation
g
1+r*

of the discounted claim with respect to the measure P*. <

Let us now extend the discussion to situations where agents are heterogeneous not
only in their utility functions but also in their expectations. Thus, we assume that the
preferences of agent a € 4 are described by a Savage functional of the form

Us(X) = EQa[ua(X) 1,
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where Q, is a probability measure on (€2, ¥) which is equivalent to P. In addition
to our assumption

limsupx u),(x) <00, a€ A, (3.53)
xJ0
we assume that
W
Eg,[W]<oo and Eg,| u, Al <00, act€dwh, (3.54)

As before, a feasible allocation (X}),e.4 together with a price density ¢* is called
an Arrow—Debreu equilibrium if each X maximizes the functional U, on the budget
set of agent a € 4, which is determined by ¢*.

Theorem 3.59. Under assumptions (3.35), (3.53), and (3.54), there exists an Arrow—
Debreu equilibrium.

Proof. For any A € A, the general argument of Remark 3.37 yields the existence of
a A-efficient allocation (X é)ae 4, 1.e., of a feasible allocation which maximizes the
functional

UMX) ==Y haUa(Xa)
acAh

over all feasible allocations X = (X;)aes. Since
Ua(X3) = Elgaua(X}) 1,

(X L’})ae,,‘,can be viewed as a A-efficient allocation in the model where agents have
random utility functions of the form

’Iza(x’ ) = ug(x) pq(w),

while their expectations are homogeneous and given by P. In view of Corollary 3.43,
it follows as before that X* satisfies the first order conditions

Xt =170 07 et ae A,

a

with
" = max Aq uy (X7) @a,
ach

and that X* satisfies
Ua(Xg) = Eltta(Ya) @a1Z Ua(Ya)

for all Y, in the budget set of agent a € 4. The remaining arguments are essentially
the same as in the proof of Theorem 3.55. O



Chapter 4
Monetary measures of risk

In this chapter, we discuss the problem of quantifying the risk of a financial position.
As in Chapter 2, such a position will be described by the corresponding payoff profile,
that is, by a real-valued function X on some set of possible scenarios. In a probabilistic
model, specified by a probability measure on scenarios, we could focus on the resulting
distribution of X and try to measure the risk in terms of moments or quantiles. Note
that a classical measure of risk such as the variance does not capture a basic asymmetry
in the financial interpretation of X: Here it is the downside risk that matters. This
asymmetry is taken into account by measures such as Value at Risk which are based
on quantiles for the lower tail of the distribution, see Section 4.4 below. Value at Risk,
however, fails to satisfy some natural consistency requirements. Such observations
have motivated the systematic investigation of measures of risk that satisfy certain
basic axioms.

From the point of view of an investor, we could simply turn around the discussion
of Chapter 2 and measure the risk of a position X in terms of the loss functional

LX) = -U(X).

Here U is a utility functional representing a given preference relation > on financial
positions. Assuming robust preferences, we are led to the notion of robust shortfall
risk defined by
L(X) = sup Ep[£(—=X)],
Qe@

where £(x) := —u(—x) is a convex increasing loss function and @ is a class of
probability measures. The results of Section 2.5 show how such loss functionals can
be characterized in terms of convexity and monotonicity properties of the preference
relation. In particular, a financial position could be viewed as being acceptable if the
robust shortfall risk of X does not exceed a given bound.

From the point of view of a supervising agency, however, a specific monetary
purpose comes into play. In this perspective a risk measure is viewed as a capital
requirement: We are looking for the minimal amount of capital which, if added to the
position and invested in a risk-free manner, makes the position acceptable. This mon-
etary interpretation is captured by an additional axiom of cash invariance. Together
with convexity and monotonicity, it singles out the class of convex measures of risk.
These measures can be represented in the form

p(X) = sup (Eol—X1-a(Q)),

where « is a penalty function defined on probability measures on 2. Under the
additional condition of positive homogeneity, we obtain the class of coherent risk
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measures. Here we are back to the situation in Proposition 2.85, and the representation
takes the form
p(X) = sup Eg[ —X1],
Qe@

where @ is some class of probability measures on €2.

The axiomatic approach to such monetary risk measures was initiated by P. Artzner,
F. Delbaen, J. Eber, and D. Heath [11], and it will be developed in the first three
sections. In Section 4.4 we discuss some coherent risk measures related to Value
at Risk. These risk measures only involve the distribution of a position under a
given probability measure. In Section 4.5 we characterize the class of convex risk
measures which share this property of law-invariance. Section 4.6 discusses the role
of concave distortions, and in Section 4.7 the resulting risk measures are characterized
by a property of comonotonicity. In Section 4.8 we discuss measures of risk which
arise naturally in the context of a financial market model. In Section 4.9 we analyze
the structure of monetary measures of risk which are induced by our notion of robust
shortfall risk.

4.1 Risk measures and their acceptance sets

Let ©2 be a fixed set of scenarios. A financial position is described by a mapping
X : Q@ — R where X (w) is the discounted net worth of the position at the end of
the trading period if the scenario w € 2 is realized. Our aim is to quantify the risk of
X by some number p(X), where X belongs to a given class X of financial positions.
Throughout this section, X will be a linear space of bounded functions containing the
constants. We do not assume that a probability measure is given on €.

Definition 4.1. A mapping p : X — R is called a monetary measure of risk if it
satisfies the following conditions for all X, Y € X.

e Monotonicity: If X <Y, then p(X) > p(Y).
e Cash invariance: If m € R, then p(X +m) = p(X) — m.

The financial meaning of monotonicity is clear: The downside risk of a position
is reduced if the payoff profile is increased. Cash invariance is also called translation
invariance. It is motivated by the interpretation of p(X) as a capital requirement,
i.e., p(X) is the amount which should be added to the position X in order to make
it acceptable from the point of view of a supervising agency. Thus, if the amount m
is added to the position and invested in a risk-free manner, the capital requirement is
reduced by the same amount. In particular, cash invariance implies

p(X + p(X)) =0, “4.1)
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and
p(m)=p0)—m forallm e R.

For most purposes it would be no loss of generality to assume that a given monetary
risk measure satisfies the condition of

» Normalization: p(0) = 0.
In some situations, however, it will be convenient not to insist on normalization.

Remark 4.2. We are using the convention that X describes the worth of a financial
position after discounting. For instance, the discounting factor can be chosen as
1/(14r) where r is the return of a risk-free investment. Instead of measuring the risk
of the discounted position X, one could consider directly the nominal worth

X=(14nX.
The corresponding risk measure p (55 ) := p(X) is again monotone. Cash invariance
is replaced by the following property:
P(X + (1 +rm) = p(X) —m, 4.2)

i.e., therisk is reduced by m if an additional amount m is invested in a risk-free manner.
Conversely, any p : X — R which is monotone and satisfies (4.2) defines a monetary
measure of risk via p(X) := p((1 + r)X). &
Lemma 4.3. Any monetary measure of risk p is Lipschitz continuous with respect to
the supremum norm || - ||:

lp(X) —p(M)] = IX =Y.

Proof. Clearly, X <Y+ || X —Y|,andso p(Y) — || X — Y| < p(X) by monotonicity
and cash invariance. Reversing the roles of X and Y yields the assertion. g

From now on we concentrate on monetary measures of risk which have an addi-
tional convexity property.

Definition 4.4. A monetary risk measure p : X, — R is called a convex measure of
risk if it satisfies

e Convexity: p(AX + (1 —A)Y) <Ap(X)+ (1 —A)p(Y),for0 <A < 1.

Consider the collection of possible future outcomes that can be generated with the
resources available to an investor: One investment strategy leads to X, while a second
strategy leads to Y. If one diversifies, spending only the fraction A of the resources on
the first possibility and using the remaining part for the second alternative, one obtains
AX 4+ (1 —A)Y. Thus, the axiom of convexity gives a precise meaning to the idea that
diversification should not increase the risk. If p is convex and normalized, then

p(AX) < Aip(X) forO<A =<1,
p(AX) > Ap(X) fori > 1.
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Definition 4.5. A convex measure of risk p is called a coherent risk measure if it
satisfies
 Positive Homogeneity: If A > 0, then p(AX) = Ap(X).

If a monetary measure of risk p is positively homogeneous, then it is normalized,
i.e., p(0) = 0. Under the assumption of positive homogeneity, convexity is equivalent
to

o Subadditivity: p(X +7Y) < p(X) + p(Y).

This property allows to decentralize the task of managing the risk arising from a
collection of different positions: If separate risk limits are given to different “desks”,
then the risk of the aggregate position is bounded by the sum of the individual risk
limits.

In many situations, however, risk may grow in a non-linear way as the size of the
position increases. For this reason we will not insist on positive homogeneity. Instead,
our focus will be on convex measures of risk.

A monetary measure of risk p induces the class

Ap =X € X | p(X) <0)

of positions which are acceptable in the sense that they do not require additional capital.
The class #, will be called the acceptance set of p. The following two propositions
summarize the relations between monetary measures of risk and their acceptance sets.

Proposition 4.6. Suppose that p is a monetary measure of risk with acceptance set
A = Ay,

(a) oA is non-empty, and satisfies the following two conditions:
inf{meR|meA}>—oc0. 4.3)
Xeh YeX,Y>X = Ycoah 4.4)
Moreover, A has the following closure property: For X € AandY € X,
{A e[0, 1] AX+(A—-MNY e A } is closed in [0, 1]. 4.5)
(b) p can be recovered from A:
pX)=inflmeR|m+X e A} (4.6)
(c) p is a convex risk measure if and only if A is convex.

(d) p is positively homogeneous if and only if A is a cone. In particular, p is
coherent if and only if A is a convex cone.
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Proof. The first two properties in (a) are straightforward. As to (4.5), the function
A+ p(AX + (1 — A)Y) is continuous by Lemma 4.3. Hence, the set of A € [0, 1]
such that p(AX 4+ (1 — A)Y) < O is closed.

(b): Cash invariance implies that for X € X,

inf{meR|m+XeA,}=inflmeR|pm+X) <0}
=inf{meR|p(X)<m}
= p(X).
(c): A is clearly convex if p is a convex measure of risk. The converse will follow
from Proposition 4.7 together with (4.8).

(d): Clearly, positive homogeneity of p implies that 4 is a cone. The converse
follows as in (c). O

Conversely, one can take a given class 4 C X of acceptable positions as the
primary object. For a position X € X, we can then define the capital requirement as
the minimal amount m for which m + X becomes acceptable:

pAX) =inf{meR | m+Xe A} “4.7)
Note that, with this notation, (4.6) takes the form

PA, = P- (4.8)

Proposition 4.7. Assume that A is a non-empty subset of X; which satisfies (4.3) and
(4.4). Then the functional p 4 has the following properties:

(a) pux is a monetary measure of risk.
(b) If A is a convex set, then p 4 is a convex measure of risk.

(c) If Aisacone,then py is positively homogeneous. In particular, p 4 is a coherent
measure of risk if A is a convex cone.

(d) A is a subset of A, . If A satisfies the closure property (4.5) then A = A, .

Proof. (a): It is straightforward to verify that p4 satisfies cash invariance and mono-
tonicity. We show next that p 4 takes only finite values. To this end, fix some Y in the
non-empty set 4. For X € X given, there exists a finite number m withm + X > Y,
because X and Y are both bounded. Then

PAX) —m = pyupm+ X) < ps(Y) <0,

and hence p4(X) < m < oo. Note that (4.3) is equivalent to p4(0) > —oo. To
show that p4(X) > —oo for arbitrary X € X, we take m’ such that X + m’ < 0 and
conclude by monotonicity and cash invariance that p4(X) > p4(0) +m’ > —oo0.
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(b): Suppose that X1, X, € X andthatm, my, € Raresuchthatm; +X; € A. If
A € [0, 1], then the convexity of »A implies that A(m1 + X1) + (1 — A)(my + X3) € A.
Thus, by the cash invariance of p 4,

0> pa(Aimi 4+ X1) + (1 — 1) (m2 + X2))
= pA(AX1 + (1 =V X2) — (Am1 + (1 = Mm),

and the convexity of p4 follows.

(c): As in the proof of convexity, we obtain that p4(AX) < Ap4(X) for A > 0 if
s is a cone. To prove the converse inequality, let m < p4(X). Thenm + X ¢ +A and
hence Am + A X ¢ A for L > 0. Thus Am < p4(AX), and (c) follows.

(d): The inclusion 4 C A, , is obvious. Now assume that -+ satisfies (4.5). We
have to show that X ¢ «A implies that p4(X) > 0. To this end, take m > || X| =
sup,, | X (w)|. By assumption, there exists an ¢ € (0, 1) suchthat em 4 (1 —e)X ¢ A.
Thus,

0<palem+(1—eX)=pas((l —e)X)—em.

Since p4 is a monetary measure of risk, Lemma 4.3 shows that
lpa((1 =) X) — pa(X)] < e |1 XII.

Hence,
pAX) = pa(d—e)X) —e|X]| = & (m—||X]]) > 0. O

In the following examples, we take X as the linear space of all bounded measurable
functions on some measurable space (2, ¥), and we denote by M| = M (2, F) the
class of all probability measures on (€2, ¥).

Example 4.8. Consider the worst-case risk measure pmax defined by

Pmax(X) = — inf X(w) forall X € X.
weR

The value pmax (X) is the least upper bound for the potential loss which can occur in
any scenario. The corresponding acceptance set +4 is given by the convex cone of all
non-negative functions in X. Thus, pmax is a coherent measure of risk. It is the most
conservative measure of risk in the sense that any normalized monetary risk measure
p on X satisfies

p(X) < p(inf X(@)) = pumax(X).
we2
Note that ppax can be represented in the form

Pmax(X) = sup Eg[—X ], 4.9)
Qeq

where @ is the class M of all probability measures on (€2, ). <
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Example 4.9. Let @ be a set of probability measures on (€2, ), and consider a
mapping y : @ — R with sup, y(Q) < oo, which specifies for each 0 € @ some
“floor” y (Q). Suppose that a position X is acceptable if

EolX]1>y(Q) forall Q € Q.

The set 4 of such positions satisfies (4.3) and (4.4), and it is convex. Thus, the
associated monetary risk measure p = p 4 is convex, and it takes the form

p(X) = sup(y(Q) — Eg[ X ]).
Qeq

Alternatively, we can write

p(X) = sup (Eol—X1—a(Q)), (4.10)
QeM

where the penalty function a : M; — (—00, 00] is defined by a(Q) = —y(Q)
for Q € @ and a(Q) = o0 otherwise. Note that p is a coherent risk measure if
y(Q)=0forall Q € Q. &

Example 4.10. Consider a utility function « on R, a probability measure Q € M,
and fix some threshold ¢ € R. Let us call a position X acceptable if its certainty
equivalent is at least ¢, i.e., if its expected utility Eg[u(X) | is bounded from below
by u(c). Clearly, the set

A={X e X | Eglu(X)]=u()}.

is non-empty, convex, and satisfies (4.3) and (4.4). Thus, p4 is a convex measure of
risk. As an obvious robust extension, we can define acceptability in terms of a whole
class @ of probability measures on (2, ), i.e.,

A= [V1X € X | Eolu(X)]= ulco)),
0eq

with constants ¢ such that sup,q co < 00. The corresponding risk measures will
be studied in more detail in Section 4.9. <

Example 4.11. Suppose now that we have specified a probabilistic model, i.e., a
probability measure P on (€2, ). In this context, a position X is often considered to
be acceptable if the probability of a loss is bounded by a given level A € (0, 1), i.e., if

P[X <0] <A
The corresponding monetary risk measure V@R, , defined by

V@R, (X) =inf{m e R| P[m+ X <0] <A},
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is called Value at Risk at level A. Note that it is well defined on the space £°(Q, ¥, P)
of all random variables which are P-a.s. finite, and that

V@R, (X) = E[—-X ]+ ® (1 — Mo (X), 4.11)

if X is a Gaussian random variable with variance o2(X) and ®~! denotes the inverse
of the distribution function ® of N (0, 1). Clearly, V@R, is positively homogeneous,
but in general it is not convex, as shown by Example 4.41 below. In Section 4.4, Value
at Risk will be discussed in detail. In particular, we will study some closely related
coherent and convex measures of risk. &>

Example 4.12. As in the preceding example, we fix a probability measure P on
(€2, ). For an asset with payoffX e L2 =L2Q, F,P), price 7 (X), and variance
2(X ) # 0, the Sharpe ratio is defined as

E[X]-7(X)(1+r) E[X]
o (X) Co(X)’

where X := X (A4+r~1— 71(? ) is the corresponding discounted net worth. Suppose
that we find the position X acceptable if the Sharpe ratio is bounded from below by
some constant ¢ > 0. The resulting functional p, on £2 defined by (4.7) for the class

Ao ={X e L2E[X]>c-0(X)}

is given by
pe(X) = E[=X]+c-0(X).

Itis cash invariant and positively homogeneous, and it is convex since o ( - ) is a convex
functional on £2. But Pc 18 not a monetary risk measure, because it is not monotone.
Indeed, if X = eZ and Z is a random variable with normal distribution N (0, o2), then
X > 0 but

pe(X) = —eo 2 + ce® ?\eo? — 1

becomes positive for large enough o. Note, however, that (4.11) shows that p.(X)
coincides with V@R, (X) if X is Gaussian and if c = ®~!1(1 —1) with0 < A < 1/2.
Thus, both p. and V@R, have all the properties of a coherent risk measure if restricted
to a Gaussian subspace X of L2, i.e, alinear space consisting of normally distributed
random variables. But neither p. nor V@R, can be coherent on the full space L2,
since the existence of normal random variables on (€2, &, P) implies that X will also
contain random variables as considered in Example 4.41. <

Example 4.13. Let ¢ : ¥ — [0, 1] be any set function which is normalized and
monotone in the sense that ¢(J)) = 0, c(2) = 1, and ¢(A) < ¢(B) if A C B. For
instance, ¢ can be given by c(A) := ¥ (P[ A]) for some probability measure P and
an increasing function v : [0, 1] — [0, 1] such that ¥(0) = 0 and ¥ (1) = 1. The
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Choquet integral of a bounded measurable function X > 0 with respect to c is defined

as
[e.¢]
/Xdc ::/ c(X > x)dx.
0

If ¢ is a probability measure, Fubini’s theorem implies that [ X dc coincides with the
usual integral. In the general case, the Choquet integral is a nonlinear functional of X,
but we still have [AX dc =1 [ Xdc and [(X +m)dc = [ X dc + m for constants
A,m > 0. If X € X is arbitrary, we take m € R such that X +m > 0 and get

0 o)
/(X—}—m)dc—m:f (c(X>x)—1)dx—|—/ c(X > x)dx.
—m 0

The right-hand side is independent of m > — inf X, and so it makes sense to extend
the definition of the Choquet integral by putting

0 [e'e)
/Xdc::/ (c(X>x)—1)dx+f c(X > x)dx
0

—00

for all X € X. It follows that
/AXdc:A/Xdc and /(X+m)dc=/Xdc+m

for all A > 0 and m € R. Moreover, we have
/chZ/Xdc forY > X.

Thus, the Choquet integral of the loss,

p(X) = /(—X)dc,

is a positively homogeneous monetary risk measure on X. In Section 4.7, we will
characterize these risk measures in terms of a property called “comonotonicity”. We
will also show that p is convex, and hence coherent, if and only if ¢ is submodular or
2-alternating, i.e.,

c(ANB)+c(AUB) <c(A)+c(B) forA,Be F.
In this case, p admits the representation

p(X) = max Eg[=X1], (4.12)

where @ is the core of ¢, defined as the class of all finitely additive and normalized set
functions Q : ¥ — [0, 1] such that Q[ A] < c(A) for all A € F; see Theorem 4.88.
<

In the next two sections, we are going to show how representations of the form
(4.9), (4.12), or (4.10) for coherent or convex risk measures arise in a systematic
manner.
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4.2 Robust representation of convex risk measures

In this section, we consider the situation where X consists of all bounded measurable
functions on the measurable space (€2, #). Recall that X is a Banach space if endowed
with the supremum norm || - ||. As in Section 2.5, we denote by M| := M (2, F) the
set of all probability measures on (€2, ) and by M 5 := M, (2, F) the set of all
finitely additive set functions Q : & — [0, 1] which are normalized to Q[ 2] = 1.
By Ep[ X ] we denote the integral of X with respectto Q € M1, r; see Appendix A.6.
We do not assume that a probability measure on (€2, ¥) is given a priori.

If p is a coherent measure of risk on X, then we are in the context of Proposi-
tion 2.85, i.e., the functional J defined by J (X) := —p(X) satisfies the four properties
listed in Proposition 2.84. Hence, we have the following result:

Proposition 4.14. A functional p : XX — R is a coherent measure of risk if and only
if there exists a subset @ of M such that

p(X)=sup Eg[-X], X e€X. (4.13)
Qe@

Moreover, @ can be chosen as a convex set for which the supremum in (4.13) is
attained.

Our first goal in this section is to obtain an analogue of this result for convex
measures of risk. Applied to a coherent measure of risk, it will yield an alternative
proof of Proposition 4.14, which does not depend on the discussion in Chapter 2, and
it will provide a description of the maximal set @ in (4.13). Our second goal will be
to obtain criteria which guarantee that a measure of risk can be represented in terms
of o-additive probability measures.

Leta : My, s — R U {+00} be any functional such that

inf o eR.
o (Q)

For each O € M,y the functional X +— Egp[—X] — a(Q) is convex, monotone,
and cash invariant on X, and these three properties are preserved when taking the
supremum over Q € My . Hence,

p(X)i= sup (Eol—-X1-a(Q)) (4.14)
QeMy,f

defines a convex measure of risk on X such that
0) =— inf «(Q).
P QeMy s

The functional « will be called a penalty function for p on M1, and we will say that
p is represented by oo on M .
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Theorem 4.15. Any convex measure of risk p on X is of the form

p(X) = max (Egl—X]—oamin(Q)), X € X, (4.15)
QeMy,y

where the penalty function oy, is given by

amin(Q) := sup Eg[—X] for Q € M y.
Xe,

Moreover, amin is the minimal penalty function which represents p, i.e., any penalty
function a for which (4.14) holds satisfies a(Q) > amin(Q) for all Q € My ;.

Proof. In a first step, we show that

p(X)>= sup (Egl—X]—omin(Q)) forall X € X.
QeMy f

To this end, recall that X" := p(X) + X € 4, by (4.1). Thus, forall Q € M;
omin(Q) > Egl—X'1=Eg[—X1— p(X).

From here, our claim follows.
For X given, we will now construct some Qx € M, s such that

p(X) = Egy[—X ] — amin(Qx),

which, in view of the previous step, will prove our representation (4.15). By cash
invariance it suffices to prove this for X € X with p(X) = 0. Moreover, we may
assume without loss of generality that p(0) = 0. Then X is not contained in the
nonempty convex set

B:={YeX|p¥)<O0}.

Since B is open is open due to Lemma 4.3, we may apply the separation argument in
the form of Theorem A.54. It yields a non-zero continuous linear functional £ on X
such that
£(X) < inf €(Y) =: b.
Ye8B

We claim that £(Y) > 0 if ¥ > 0. Monotonicity and cash invariance of p imply
that 1 + AY € 8B for any A > 0. Hence,

e(X) < €1+ 1Y) = £(1) + 2L(Y) forall A > 0,

which could not be true if £(Y) < 0.

Our next claim is that £(1) > 0. Since ¢ does not vanish identically, there must
be some Y such that 0 < £(Y) = £(Y") — £(Y ™). We may assume without loss of
generality that ||Y|| < 1. Positivity of £ implies £(Y*) > 0 and £(1 — Y*) > 0.
Hence £(1) = £(1 —YT)+ ¢ 1) > 0.
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By the two preceding steps and Theorem A.50, we conclude that there exists some
Ox € My, s such that

£y)
EQX[Y]zW forallY € X.
Note that B8 C ), and so
b
omin(Qx) = sup Egy[—Y] = sup Egy[-Y]=———.
YeA, YesB £(1)

On the other hand, Y +¢ € 8B forany ¥ € +, and each ¢ > 0. This shows that
omin(Qx) is in fact equal to —b/£(1). It follows that

1
Eoy[—X]—omin(Qx) = — (b — £(X)) = 0 = p(X).
£(1)

Thus, Qx is as desired, and the proof of the representation (4.15) is complete.
Finally, let o be any penalty function for p. Then, forall Q € M;, rand X € X

p(X) =z Eo[ =X ]—a(Q),

and hence
@(Q) = sup (Egl—X1— p(X))
XeX
> sup (Eol—X1-p(X)) (4.16)
XeA,
> omin(Q).
Thus, « dominates omin. ]

Remark 4.16. (a) If we take o = oy in (4.16), then all inequalities in (4.16) must
be identities. Thus, we obtain an alternative formula for the minimal penalty
function amin:

omin(Q) = sup (Egl —X1— p(X)). (4.17)
XeX
(b) Note that oy is convex and lower semicontinuous for the total variation dis-
tance on M s as defined in Definition A.49, since it is the supremum of affine
continuous functions on M f.

(c) Suppose p is defined via p := p,4 for a given acceptance set A C X5. Then A
determines otmin:

amin(Q) = sup Eg[ —X ] forall Q € M ¢.
XeA

This follows from the fact that X € A implies e + X € A, foralle > 0. <
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Remark 4.17. Equation (4.17) shows that the penalty function o, corresponds to
the Fenchel-Legendre transform, or conjugate function, of the convex function p on
the Banach space X.. More precisely,

amin(Q) = p* (L), (4.18)
where p* : X’ — R U {+00} is defined on the dual X’ of X by

p*() = sup (£(X) — p(X)),
XeX

and where £p € X' is given by £o(X) = Eg[ —X]for Q € My, r. This suggests
an alternative proof of Theorem 4.15. First note that, by Theorem A.50, X’ can
be identified with the space ba := ba(<2, ) of finitely additive set functions with
finite total variation. Moreover, p is lower semicontinuous with respect to the weak
topology o (X, X'), since any set {p < c} is convex, strongly closed due to Lemma4.3,
and hence weakly closed by Theorem A.59. Thus, the general duality theorem for
conjugate functions as stated in Theorem A.61 yields

P =p
where p** denotes the conjugate function of p*, i.e.,

p(X) = sup (LX) = p*(©)). (4.19)

In a second step, using the arguments in the second part of the proof of Theorem
4.15, we can now check that monotonicity and cash invariance of p imply that £ < 0
and £(1) = —1 for any £ € X' = ba such that p*(¢) < oco. Identifying —¢ with
0O € My, s and using equation (4.18), we see that (4.19) reduces to the representation

p(X)= sup (Eg[—X]— amin(Q)).
QeMy ¢

Moreover, the supremum is actually attained: M s is weak™ compact in X' = ba
due to the Banach—Alaoglu theorem stated in Theorem A.62, and so the upper semi-
continuous functional Q — Eg[ —X | — amin(Q) attains its maximum on M; r. <

The representation

p(X)=sup Eg[—X], X eX, (4.20)
Qeq

of a coherent measure of risk p via some set @ C M ¢ is a particular case of the
representation theorem for convex measures of risk, since it corresponds to the penalty
function

0 ifQge@

+o00 otherwise.

a(Q) = {

The following corollary shows that the minimal penalty function of a coherent measure
of risk is always of this type.
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Corollary 4.18. The minimal penalty function amin of a coherent measure of risk p
takes only the values 0 and +oc. In particular,

p(X)= max Eg[—-X], XelX,
Qeamax

for the convex set
@Qmax :={0 € c/\'{l,f | omin(Q) =0},
and @Qmax is the largest set for which a representation of the form (4.20) holds.

Proof. Recall from Proposition 4.6 that the acceptance set 4, of a coherent measure
of risk is a cone. Thus, the minimal penalty function satisfies

amin(Q) = sup Eg[—X]= sup Eg[—AX]=Aonin(Q)
Xeh, rAXeA,

forall Q € My s and A > 0. Hence, am;y can take only the values 0 and +o0. Ll

The penalty function « arising in the representation (4.14) is not unique, and it is
often convenient to represent a convex measure of risk by a penalty function that is not
the minimal one. For instance, the minimal penalty function may be finite for certain
finitely additive set functions while another « is concentrated only on probability
measures as in the case of Example 4.8. Another situation of this type occurs for risk
measures which are constructed as the supremum of a family of convex measures of
risk:

Proposition 4.19. Suppose that for every i in some index set I we are given a convex
measure of risk p; on X with associated penalty function o;. If sup;c; pi (0) < 00
then
p(X) = S_U?Pi(x), X e X,
IAS]

is a convex measure of risk that can be represented with the penalty function

a(Q) = }Igai(Q), Qe My.

Proof. The condition p(0) = sup;; p; (0) < oo implies that p takes only finite values.
Moreover,

p(X)=sup sup (Egl—X]—0ai(Q))
iel QeMy ¢

= sup (EQ[—X]—i_nfOli(Q)),
QeM, s iel

and the assertion follows. O

In the sequel, we are particularly interested in those convex measures of risk
which admit a representation in terms of o -additive probability measures. Such arisk
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measure p can be represented by a penalty function o which is infinite outside the set
My = M(R2, F):

p(X) = sup (Eol—X1-a(Q)). (4.21)
QeM

In this case, one can no longer expect that the supremum above is attained. This is
illustrated by Example 4.8 if X does not take on its infimum.

A representation (4.21) in terms of probability measures is closely related to certain
continuity properties of p. We first examine a necessary condition of “continuity from
above”.

Lemma 4.20. A convex measure of risk p which admits a representation (4.21) on
M is continuous from above in the sense that

Xa NX = p(Xp) /S p(X). (4.22)

Moreover, continuity from above is equivalent to lower semicontinuity with respect to
bounded pointwise convergence: If (X,,) is a bounded sequence in X, which converges
pointwise to X € X, then
o(X) < liminf p(X,). (4.23)
ntoo

Proof. First we show (4.23) under the assumption that p has a representation in terms
of probability measures. Dominated convergence implies that Eg[ X, ] — Eg[ X ]
for each Q € M;. Hence,

p(X) = sup (lim Eg[—X,]—a(Q))
QeM; ntoo

<liminf sup (Eg[—X,]—a(Q))
ntoo QeM;

= lim inf p(X}).
ntoo

In order to show the equivalence of (4.23) and (4.22), let us first assume (4.23). By
monotonicity, p(X,) < p(X) foreach n if X,, \( X, and so p(X,) /" p(X) follows.

Now we assume continuity from above. Let (X;) be a bounded sequence in X
which converges pointwise to X. Define Y,, := sup,,~,, X, € X. Then Y,, decreases
P-as. to X. Since p(X,,) = p(Y,) by monotonicity,?:ondition (4.22) yields that

liminf p(X;) > lim p(Y,) = p(X). [
ntoo ntoo

The following proposition gives a strong sufficient condition which guarantees
that any penalty function for p is concentrated on the set M7 of probability measures.
This condition is “continuity from below” rather than from above; we will see a class
of examples in Section 4.9.
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Proposition 4.21. Let p be a convex measure of risk which is continuous from below
in the sense that

Xn /X = pXn) \pX),
and suppose that « is any penalty function on M s representing p. Then a is con-
centrated on the class M of probability measures, i.e.,

a(Q) <oo = Qiso-additive.

Proof. Recall that Q is o-additive if and only if Q[ A,] / 1 for any increasing
sequence of events A, € ¥ such that |, A, = Q. Thus, the assertion is implied by
Lemma 4.22 below if we take X, :=1, . ]

Lemma 4.22. Let p be a convex measure of risk on X5 which is represented by the
penalty function o on My ¢, and consider the level sets

Ao :={0eM |la(Q) <c}, forc>—-p0)= inf «a(Q).
QeMy

For any sequence (X;) in X such that 0 < X,, < 1, the following two conditions are
equivalent:

(@) p(AXy,) — p(A) foreach » > 1.

(b) inf Eg[X,]—> 1forallc > —p(0).
Q€.
Proof. (a) =(b): In a first step, we show that for all Y € X

inf Eg[Y]>

AY
LA PO Al 0. (4.24)
QeA, A

Indeed, since « represents p, we have for Q € A,
cza(Q)= Eg[—-AY ] — p(AY),

and dividing by —A yields (4.24).
Now consider a sequence (X,) which satisfies (a). Then (4.24) shows that for all
A>1

AX 0
liminf inf Eol X, ]3> — lim <t 23X et o)
ntoo QeA. ntoo N —)\

Taking A 1 oo and assuming X,, < 1 proves (b).
(b) =(a): Clearly, for all n

p(A) < p(AXp) = sup (Eg[—2X,]1—a(Q)).
QeMy, s
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Since Eg[ —A X, ] < 0forall Q, only those Q can contribute to the supremum on the
right-hand side for which

a(@)=l—-pR)=14+21-p0) =c.

Hence, for all n
p(G-Xp) = sup (Egl—1X,1—a(Q)).
Q€A
But condition (b) implies that Eg[ —A X, | converges to —A uniformly in Q € A,
and so (a) follows. O]

Remark 4.23. Let p be a convex measure of risk which is continuous from below.
Then p is also continuous from above, as can be seen by combining Proposition 4.21
and Lemma 4.20. Thus, a straightforward argument yields that p(X,) — p(X)
whenever (X;,) is a bounded sequence in X which converges pointwise to X. <&

Example 4.24. Let us consider a utility function # on R, a probability measure
0 € M(R2, F), and fix some threshold ¢ € R. As in Example 4.10, we suppose
that a position X is acceptable if its expected utility Eg[ #(X) ] is bounded from below
by u(c). Alternatively, we can introduce the convex increasing loss function
£(x) = —u(—x) and define the convex set of acceptable positions

A={XeX|Eplt(=X)]<x0},

where xg := —u(c). Let p := py4 denote the convex measure of risk induced by .
In Section 4.9, we will show that p is continuous from below, and we will derive a
formula for its minimal penalty function. <

Let us now continue the discussion in a topological setting. More precisely, we
will assume for the rest of this section that €2 is a separable metric space and that F is
the o -field of Borel sets. As before, X is the linear space of all bounded measurable
functions on (2, ¥). We denote by C,(£2) the subspace of bounded continuous
functions on €2, and we focus on the representation of convex risk measures viewed
as functionals on Cj(£2).

Proposition 4.25. Let p be a convex measure of risk on X such that

p(Xn) \y p(A) for any sequence (X)) in Cp(S2) that increases to a constant » > 0.
(4.25)
Then there exists a penalty function o on M1 such that

p(X) = Qné% (Eol—X1—a(Q)) for X € Cp(Q). (4.26)

In fact, one can take

@(Q) = inf { amin(0) | El-1= Eql-]0n Co() }. (4.27)
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Proof. Let amin be the minimal penalty function of p on M/ ¢. We show that for
any é with amin(é) < o0 there exists Q € M such that EQ[X] = Eg[ X ] for all
X € Cp(R2). Take a sequence (Y;) in Cp(€2) which increases to some Y € Cp(£2),
and choose § > 0 such that X,, := 1+44§(Y, —Y) > O forall n. Clearly, (X,,) satisfies
condition (a) of Lemma 4.22, and so Eé[ X, 1—1,1ie.,

EglY,] /7 E5lY 1.

This continuity property of the linear functional £ gl-1on C »(2) implies, via the
Daniell-Stone representation theorem as stated in Appendix A.6, that it coincides on
Cjp(€2) with the integral with respect to a o -additive measure Q. Taking « as in (4.27)
gives the result. 0

Remark 4.26. If Q2 is compact then any convex risk measure admits a representation
(4.26) on the space Cp(2) = C(2). In order to see that condition (4.25) is verified,
recall Dini’s lemma: On a compact set, a sequence of continuous functions X, in-
creasing to a continuous function X converges even uniformly. Indeed, the compact
sets K, := {X, > X — ¢} satisfy (), K, = ¥, hence K, = @ for some ng. Since p
is Lipschitz continuous on C(£2) by Lemma 4.3, it satisfies condition (4.25).
Alternatively, we could argue as in Remark 4.17 and apply the general duality
theorem for the Fenchel-Legendre transform to the convex functional p on the Banach
space C(£2). Just note that any continuous functional £ on C(£2) which is positive and
normalized is of the form £(X) = Eg[ X | for some probability measure Q € Mj;
see Theorem A.47. <&

Definition 4.27. A convex risk measure p on X is called tight if there exists an
increasing sequence K1 C K» C --- of compact subsets of 2 such that

p(Alg ) — p(d) foralli > 1.
Note that every convex measure of risk is tight if € is compact.

Proposition 4.28. Suppose that the convex risk measure p on X is tight. Then (4.25)
holds and the conclusion of Proposition 4.25 is valid. Moreover, if Q2 is a Polish space
and « is a penalty function on My such that

p(X) = QSH}; (Eol=X1—a(Q)) for X € Cp(%),

then the level sets A, = { Q € M1 |a(Q) < c} are relatively compact for the weak
topology on M.

Proof. Firstwe show (4.25). Suppose X, € Cp(2) aresuchthat X,, / A > 0. We may
assume without loss of generality that p is normalized. Convexity and normalization
guarantee that condition (4.25) holds for all A > 0 as soon as it holds for all A > ¢
where c is an arbitrary constant larger than 1. Hence, the cash invariance of p implies
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that there is no loss of generality in assuming X,, > 0 for all n. We must show that
p(Xn) < p(X) + 2¢ eventually, where we take ¢ € (0, A — 1).
By assumption, there exists a compact set K such that

p((h=e) ) < p(h—e) e = p(h) +2e.

By Dini’s lemma as recalled in Remark 4.26, there exists some no € N such that
A —¢e < X, on Ky for all n > ng. Finally, monotonicity implies

p(Xn) < p((h— o)y ) < p(1) +2e.

To prove the relative compactness of A., we will show that for any ¢ > 0 there
exists a compact set K, C €2 such that for all ¢ > —p(0)

inf O[K:]=1—¢(c+p0)+1D).
Q€A

The relative compactness of A, will then be an immediate consequence of Prohorov’s
characterization of weakly compact sets in M, as stated in Theorem A.41. We fix a
countable dense set {w1, w2, ...} C 2 and a complete metric § which generates the
topology of 2. For r > 0 we define continuous functions A’ on € by

) A
Al((w) =1 M

The function A} is dominated by the indicator function of the closed metric ball
B () :={weQ|8w,w)<r}.

Let
X, (w) := max A} (w).
1<n

Clearly, X, is continuous and satisfies 0 < X < 1 aswellas X], 7 1 forn 1 oo.
According to (4.24), we have forall A > 0

_ctp(xy)

n
Jnf 0] ,-L_JlBr(wi)] = inf EglX}]= .

Now we take Ax := 2¥/e and ry := 1/k. The first part of this proof and (4.25) yield
the existence of n; € N such that

p(MX)E) < pO) + 1= =M + 1,
and thus

N
— c+1 _
sup Q[ ﬂQ\Brk(wi)] <— =2 c+1.
QeAc - Ak
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We let

00 Nk
K, := ﬂ U B, ().
k=1i=1
Then, for each Q € A,

oo ng

oIk 1=1-0[ [JN B, ]
k=1i=1
>1-Y 27 e+
k=1
—1—e(c+1).

The reader may notice that K is closed, totally bounded and, hence, compact. A short
proof of this fact goes as follows: Let (x;) be a sequence in K;. We must show that
(xj) has a convergent subsequence. Since K is covered by E,k (1), ..., Erk (wn,)
for each k, there exists some iy < nj such that infinitely many x; are contained in
Erk (w;;). A diagonalization argument yields a single subsequence (x;) which for
each k is contained in some E,k (wj). Thus, (x;/) is a Cauchy sequence with respect
to the complete metric § and, hence, converging to some element w € 2. O

Remark 4.29. Note that the representation (4.26) does not necessarily extend from
Cp(R2) to the space X of all bounded measurable functions. Suppose in fact that Q2
is compact but not finite, so that condition (4.25) holds as explained in Remark 4.26.
There is a finitely additive Qg € M s which does not belong to My; see Exam-
ple A.52. The proof of Proposition 4.25 shows that there is some Q € M such that the
coherent risk measure p defined by p(X) := Eg,[ —X ] coincides with E é[ —X ] for
X € Cp(2). But p does not admit a representation of the form

p(X)= sup (Eg[—X1—a(Q)) forall X € X.
QeM

In fact, this would imply
a(Q) = Eg)[X]—Ep[X]
for O € M and any X € X, hence «(Q) = oo forany Q € M;. <&

4.3 Convex risk measures on L

For the rest of this chapter, we fix a probability measure P on (2, ¥) and consider
risk measures p such that

p(X)=pk) ifX =Y P-as. (4.28)

Note that only the nullsets of P will matter in this section.
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Lemma 4.30. Let p be a convex measure of risk that satisfies (4.28) and which
is represented by a penalty function o as in (4.14). Then a(Q) = 400 for any
0 € My, r(2, F) which is not absolutely continuous with respect to P.

Proof. If Q € M1 r(€2, ) is not absolutely continuous with respect to P, then there
exists A € ¥ such that Q[ A] > O but P[A] = 0. Take any X € +A,, and define
Xn =X —nl,. Then p(X,) = p(X), i.e., X, is again contained in /,. Hence,

a(Q) = amin(Q) = Eg[ =X, ] = Ego[-X]+nQ[A] — o0

asn 4| oo. O

In view of (4.28), we can identify X with the Banach space L™ := L>*(Q2, ¥, P).
Let us denote by
Mi(P) == M(2, F, P)

the set of all probability measures on (€2, ) which are absolutely continuous with
respect to P. The following theorem characterizes those convex risk measures on L
that can be represented by a penalty function concentrated on probability measures,
and hence on M (P), due to Lemma 4.30.

Theorem 4.31. Suppose p : L°° — Ris a convex measure of risk. Then the following
conditions are equivalent.

(a) p can be represented by some penalty function on M1 (P).

(b) p can be represented by the restriction of the minimal penalty function omin to
Mi(P):

p(X)= sup (Eol—X]—omin(Q)), X e€L®. (4.29)
QeM;(P)

(c) p is continuous from above: If X, \\ X P-a.s. then p(X,) /' p(X).

(d) p has the “Fatou property” : For any bounded sequence (X,) which converges
P-a.s. to some X,
p(X) < liminf p(X,).
ntoo
(e) p is lower semicontinuous for the weak* topology o (L>°, L1).

(f) The acceptance set A, of p is weak® closed in L*°, i.e., A, is closed with
respect to the topology o (L>°, L1).

Proof. (f) =(b): We fix some X € X and let

m=sup (Eol-X]-amin(Q)). (430)
QeM(P)
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In view of Theorem 4.15, we need to show that m > p(X) or, equivalently, that
m + X € 4A,. Suppose by way of contradiction that m + X ¢ +,. Since the non-
empty convex set 4, is weak™ closed by assumption, we may apply Theorem A.56 in
the locally convex space (L, o (L™, L')) with € := A, and B = {m + X}. We
obtain a continuous linear functional £ on (L°°, o(L*°, L)) such that

B = Yin#{ LY)>Ltm+ X) =1y > —00. 4.31)

By Proposition A.58, £ isof the form £(Y) = E[ Y Z Jforsome Z € L'. Infact, Z > 0.
To show this, fix ¥ > 0 and note that p(AY) < p(0) for A > 0, by monotonicity.
Hence AY + p(0) € A, forall A > 0. It follows that

—00 <y < £(AY 4 p(0)) = M(Y) + £(p(0)).

Taking A 1 oo yields that £(Y) > 0 and in turn that Z > 0. Moreover, P[Z > 0] > 0
since £ is non-zero. Thus,
dQo Zz

dP = E[Z]
defines a probability measure Qg € M (P). By (4.31), we see that

B
min = E Y] ==
emin(Qo) = sup ool E[Z]
However,
V4 X
EglX14+m=tX _ v B amin(00),

= < =
E[Z] E[Z] E[Z]

in contradiction to (4.30). Hence, m+ X must be contained in 4 ,, and thus m > p(X).

(b) =(a) is obvious, and (a) =(c)<>(d) follows as in Lemma 4.20, replacing point-
wise convergence by P-a.s. convergence.

(c) =(e): We have to show that C := {p < c} is weak™® closed for ¢ € R. To
thisend, let G, ;= CN{X € L™ | | X|lco < r}forr > 0. If (X,) is a sequence
in @, converging in L' to some random variable X, then there is a subsequence that
converges P-a.s., and the Fatou property of p implies that X € C,. Hence, G, is
closed in L', and Lemma A.64 implies that C := {p < c} is weak™ closed.

(e) =(f) is obvious. O

Definition 4.32. A convex measure of risk p on L™ is called sensitive with respect
to P if

p(—=X) > p(0)
forall X € LY such that P[X > 0] > 0.
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Sensitivity is also called relevance.

The theorem shows that any convex measure of risk of L°° that is continuous
from above arises in the following manner. We consider any probabilistic model
Q € M (P), but these models are taken more or less seriously as described by the
penalty function. Thus, the value p(X) is computed as the worst case, over all models
Q € M (P), of the expected loss Eg[ —X |, but reduced by «(Q). In the following
example, the given model P is the one which is taken most seriously, and the penalty
function «(Q) is proportional to the deviation of Q from P, measured by the relative
entropy.

Example 4.33. Consider the penalty function « : M (P) — (0, oo] defined by

1
=—-H P),
a(Q) 5 (Q|P)

where 8 > 0 is a given constant and

H(Q|P):EQ[logj—IQJ]

is the relative entropy of O € M;(P) with respect to P; see Definition 3.20. The
corresponding entropic risk measure p is given by

1
p(X)= sup (Eol—X]1—-—-H(Q|P)).
QeMl(P)< © B )

The variational principle for the relative entropy as stated in Lemma 3.29 shows that
EQ[_X]_EH(Q|P)§BIOgE[€ 1,

and the upper bound is attained by the measure with the density e #X /E[ =X ).
Thus, the entropic risk measure takes the form

o(X) = %log E[e PX].

In particular, p is sensitive with respect to P. Note that ¢ is in fact the minimal penalty
function representing p, since Lemma 3.29 implies

1 1
min(Q) = Egl-X1— ZlogEle PX]) = —H(QIP).
anin(Q) = sup (Eql =X 1~ log E[e""¥1) = ZH(QIP)

A financial interpretation of the entropic risk measure in terms of shortfall risk will be
discussed in Example 4.105. <

Theorem 4.31 takes the following form for coherent measures of risk; the proof is
the same as the one for Corollary 4.18.
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Corollary 4.34. A coherent measure of risk on L°° can be represented by a set @ C
M1 (P) if and only if the equivalent conditions of Theorem 4.31 are satisfied. In this
case, the maximal representing subset of M1(P) is given by

Qmax :=1{ 0 € Mi(P) | omin(Q) =0}.
Moreover, p is sensitive if and only if Qnax & P in the sense that for any A € F
P[A]=0 <<= Q[A]=0 forall Q € Qmnax.

Let us also state a characterization of those coherent measures of risk on L° which
are continuous from below.

Corollary 4.35. For a coherent measure of risk p on L™ the following properties are
equivalent:

(a) p is continuous from below: X,, /' X —> p(X;) \{ p(X).

(b) There exists a set @ C M (P) representing p such that the supremum is at-
tained:
p(X) =max Eg[—X] forall X € X.
Qeq@

(c) There exists a set @ C M (P) representing p such that the set of densities

@::{Z—IQJ | QE(Q}

is weakly compact in L'(Q, ¥, P).

Proof. (c) =(a): This follows from Dini’s lemma; see Remark 4.26.

(a) =(b) follows from Corollary 4.18 and Proposition 4.21.

(b) =(c): Without loss of generality, we can assume that D is weakly closed in
L'. For any X € L*, the continuous linear functional Jy on L' defined by

Jx(Z) = E[XZ]

attains its infimum on £. According to James’ theorem as stated in Appendix A.7,
this implies weak compactness of D. O

We now give examples of coherent measures of risk which will be studied in more
detail in Section 4.4.

Example 4.36. In our present context, where we require condition (4.28), the worst-
case risk measure takes the form

Pmax (X) := —essinf X = inf{m eR|X+m=>0 P-as. }
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One can easily check that ppax is coherent and satisfies the Fatou property. Moreover,
the acceptance set of pmax is equal to the positive cone L5 in L°°, and this implies
dmin(Q) = 0 for any Q € M (P). Thus,

Pmax(X) = sup EQ[_X]'
QeM(P)

Note however that the supremum on the right cannot be replaced by a maximum in
case (2, F, P) cannot be reduced to a finite model. Indeed, let X € L be such that
X does not attain its essential infimum. Then there can be no Q € M (P) such that
Eg[X] =essinf X = —pnax(X). In this case, the preceding corollary shows that
Pmax 1S Not continuous from below. &

Example 4.37. Let @, be the class of all O € M;(P) whose density dQ/dP is
bounded by 1/A for some fixed parameter A € (0, 1). The corresponding coherent
risk measure

AV@R; (X) := sup Eg[—X] (4.32)

0€Q,

will be called the Average Value at Risk at level A. This terminology will become
clear in Section 4.4, which contains a detailed study of AV@R,,. Note that the set of
densities d Q /d P for Q € Q;, is weakly closed in L. Moreover, it is weakly compact
due to the Dunford—Pettis theorem; see Theorem A.67. Thus, the supremum in (4.32)
is actually attained. An explicit construction of the maximizing measure will be given
in the proof of Theorem 4.47. <

Example 4.38. We take for @ the class of all conditional distributions P[- | A ] such
that A € ¥ has P[ A] > A for some fixed level A € (0, 1). The coherent measure of
risk induced by @,

WCE;(X) :=sup{ E[-X | A]| Ae F, P[A]> A}, (4.33)

is called the worst conditional expectation at level A. We will show in Section 4.4
that it coincides with the Average Value at Risk of Example 4.37 if the underlying
probability space is rich enough. <

Remark 4.39. In analogy to Remark 4.17, the implication (e) =>(a) in the Repre-
sentation Theorem 4.31 can be viewed as a special case of the general duality in
Theorem A.61 for the Fenchel-Legendre transform of the convex function p on L°°,
combined with the properties of a monetary risk measure. From this general point of
view, it is now clear how to state representation theorems for convex risk measures on
the Banach spaces L? (2, ¥, P) for 1 < p < oco. More precisely, let g € (1, co] be
such that % + é =1, and define

dg
sipy={oe Mi(P)| T e L7 I
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A convex risk measure p on L? is of the form

p(X)= sup (Eg[—X]—a(Q))
QeM{(P)

if and only if it is lower semicontinuous on L7, i.e., the Fatou property holds in the
form

X,— XinLl? = pX)< lin%inf,o(Xn). &
nToo

4.4 Value at Risk

A common approach to the problem of measuring the risk of a financial position X
consists in specifying a quantile of the distribution of X under the given probability
measure P. For A € (0, 1), a A-quantile of a random variable X on (2, &, P) is any
real number g with the property

P[X<gl=% and P[X <qg]=<2a,
and the set of all A-quantiles of X is an interval [gy (1), q; (A)], where
gx (@) =sup{x | P[X <x]<t}=inf{x | P[X <x] =1}
is the lower and
gy =inf{x | P[X <x]>t}=sup{x | P[X <x] <t}

is the upper quantile function of X; see Appendix A.3. In this section, we will focus
on the properties of q;g (A), viewed as a functional on a space of financial positions X.

Definition 4.40. Fix some level A € (0, 1). For a financial position X, we define its
Value at Risk at level A as

V@R, (X) = —qi(}) =q_y(1 —A) =inf{m | PIX +m <01 <A}. (4.34)

In financial terms, V@R, (X) is the smallest amount of capital which, if added to
X and invested in the risk-free asset, keeps the probability of a negative outcome below
the level L. However, Value at Risk only controls the probability of a loss; it does not
capture the size of such a loss if it occurs. Clearly, V@R, is a monetary measure of
risk on X = L°, which is positively homogeneous. The following example shows
that the acceptance set of V@R, is typically not convex, and so V@R, is not a convex
measure of risk. Thus, V@R, may penalize diversification instead of encouraging it.
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Example 4.41. Consider an investment into two defaultable corporate bonds, each
with return 7 > r, where r > 0 is the return on a riskless investment. The discounted
net gain of an investment w > 0 in the i™ bond is given by

—w in case of default,
X; = ~
w(r —r
Q otherwise.
1+r

If a default of the first bond occurs with probability p < A, then

w(7 —r)
Pl X1 = =522 < 0] = PI1 bond defaults | = p < .
1+r
Hence, ~
w(r —r)
V@R, (X)) = ——— <0.
2 (X1) T+ r <

This means that the position X is acceptable in the sense that is does not carry a
positive Value at Risk, regardless of the possible loss of the entire investment w.

Diversifying the portfolio by investing the amount w /2 into each of the two bonds
leads to the position Y := (X + X»)/2. Let us assume that the two bonds default
independently of each other, each of them with probability p. For realistic 7, the
probability that Y is negative is equal to the probability that at least one of the two
bonds defaults: P[Y < 0] = p(2 — p). If, for instance, p = 0.009 and 1 = 0.01
then we have p < A < p(2 — p), hence

ver, vy =2 (1= ="

(1) = 2 < 1+ r>'

Typically, this value is close to one half of the invested capital w. In particular, the
acceptance set of V@R, is not convex. This example also shows that V@R may
strongly discourage diversification: It penalizes quite drastically the increase of the
probability that something goes wrong, without rewarding the significant reduction
of the expected loss conditional on the event of default. Thus, optimizing a portfolio
with respect to V@R, may lead to a concentration of the portfolio in one single asset
with a sufficiently small default probability, but with an exposure to large losses. <>

In the remainder of this section, we will focus on monetary measures of risk which,
in contrast to V@R, are convex or even coherent on X := L°. In particular, we are
looking for convex risk measures which come close to V@R,,. A first guess might
be that one should take the smallest convex measure of risk, continuous from above,
which dominates V@R, . However, since V@R, itself is not convex, the following
proposition shows that such a smallest V@R, -dominating convex measure of risk
does not exist.

Proposition 4.42. For each X € X and each A € (0, 1),

V@R, (X) = min { p(X) | p is convex, continuous from above, and > V@R, }
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Proof. Letq := —V@R)(X) = q;{(k) sothat P[X < q] < A. If A € F satisfies
P[A] > A, then P[AN{X > g} ] > 0. Thus, we may define a measure Q 4 by

Qa:=P[-|AN{X = q}]

It follows that Eg,[ =X | < —q = V@R, (X).
Let @ :={Qa | P[A] > A}, and use this set to define a coherent measure of
risk p via

p(Y) := sup Eg[—Y 1.
Qeq@

Then p(X) < V@R;(X). Hence, the assertion will follow if we can show that
p(Y) > V@R, (Y)foreachY € X. Lete > Oandtake A :={Y < — V@R, (Y)+¢}.
Clearly P[A] > X,and so Q4 € @. Moreover, Q4[ A] = 1, and we obtain

p(Y) = Eg,[~Y] > V@R, (Y) —e.

Since ¢ > 0 is arbitrary, the result follows. O

For the rest of this section, we concentrate on the following risk measure which
is defined in terms of Value at Risk, but does satisfy the axioms of a coherent risk
measure.

Definition 4.43. The Average Value at Risk at level ). € (0, 1] of a position X € X is
given by

1 A
AV@R, (X) = X/ V@R, (X)dy.
0

Sometimes, the Average Value at Risk is also called the “ Conditional Value at Risk”
or the “expected shortfall”, and one writes CV@R,; (X) or E S, (X). These terms are
motivated by formulas (4.37) and (4.35) below, but they are potentially misleading:
“Conditional Value at Risk” might also be used to denote the Value at Risk with
respect to a conditional distribution, and “expected shortfall” might be understood as
the expectation of the shortfall X~. For these reasons, we prefer the term Average
Value at Risk. Note that

1 A
AV@R(X) = — / gx (1) dt
0

by (4.34). In particular, the definition of AV@R, (X) makes sense for any X €
L! (2, F, P) and we have, in view of Lemma A.19,

1
AV@R;(X) = — / gy dt = E[-X].
0
Remark 4.44. Theorem 2.58 shows that the partial order = . on probability measures
on R with finite mean can be characterized in terms of Average Value at Risk:
Hi=. v << AV@R,(X,) < AV@R,;(X,) foralli € (0,1],

uni

where X, and X, are random variables with distributions p and v. <&
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Remark 4.45. For X € L, we have

lxi?(% V@R, (X) = —essinf X =inf{m | P[X +m <0] <0}.

Hence, it makes sense to define
AV@Ry(X) := V@Ry(X) := —essinf X,

which is the worst-case risk measure on L introduced in Example 4.36. Recall that
it is continuous from above but in general not from below. <

Lemma 4.46. For A € (0, 1) and any ,-quantile q of X,
1 I L. +
AV@R, (X)=-E[(¢q—X)"1—g=— inf (E[(r — X) ] —Ar). (435)
A A reR
Proof. Let gx be a quantile function with gx(A) = g. By Lemma A.19,

1 N 1! N 1 [*
XE[(q—X) l—q = 3 (@—gx®)"dt—q = _X/ gx(t)dt = AV@R, (X).
0 0

This proves the first identity. The second one follows from Lemma A.22. O

Theorem 4.47. For 1 € (0, 1], AV@R,, is a coherent measure of risk which is con-
tinuous from below. It has the representation

AV@R;(X) = max Eg[—X], X e X, (4.36)
Qe

where @), is the set of all probability measures Q < P whose densityd Q /d P is P-a.s.
bounded by 1/)\. Moreover, @), is equal to the maximal set @pnax of Corollary 4.34.

Proof. Since @) = { P}, the assertion is obvious for A = 1. For 0 < A < 1, consider
the coherent risk measure p) (X) := SUPpeq, Eol—X ] First we assume that we are

given some X < O. We define a measure P ~ PbydP/dP X/E[ X ]. Then
E[-X]
A

pr(X) = sup{E[¢]1|0<¢ <1, E[p]=1}.

Clearly, the condition E[¢ ] = A on the right can be replaced by E[¢ ] < A. Thus,
we can apply the Neyman—Pearson lemma in the form of Theorem A.30 and conclude
that the supremum is attained by

90 =lixg) +olix_y
for a A-quantile ¢ of X and some « € [0, 1] for which E[ ¢g ] = A. Hence,

E[-X
pr(X) = [/\ ]

~ 1
Elgol = —E[=Xgo],
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Since d Qg = A~ 'y d P defines a probability measure in @;, we conclude that

o (X) = 32%%1 Eg[—X]1=Eg,[—X]
1
= X(E[—X; X <ql—qr+qP[X <q])

1
= XE[(q -X)"1—¢
— AV@R; (X),

where we have used (4.35) in the last step. This proves (4.36) for X < 0. For arbitrary
X € L®°, we use the cash invariance of both p; and AV@R,;.
It remains to prove that @, is the maximal set of Corollary 4.34. To this end, we
show that
sup (Eg[ —X]— AV@R; (X)) = 400
XeX
for Q ¢ @,. We denote by ¢ the density dQ/dP. There exist A’ € (0, 1) and
k > 1/)" suchthat P[¢ Ak > 1/)'] > 0. For ¢ > 0 define X(© € X by
(© .— _
X = —c(p A k)I{gazl/)J}'
Since
PIX© <01=P|p>~ | < <2
[ < ] - (p — P i < )

we have V@R, (X©) = 0, and (4.35) yields that
AV@R, (XO) = 2E[-X© = SEl g Ak o> -
Y y =

On the other hand,

. 1 c 1
EQ[—X(‘)]=c-E[<p'<pAk; wzp} > FE[wAk; wz;]

Thus, the difference between Eg[ —X © ] and AV@R, (X'©) becomes arbitrarily
large as ¢ 1 oo. 0

Remark 4.48. The proof shows that for A € (0, 1) the maximum in (4.36) is attained
by the measure Q¢ € @;, whose density is given by

dQo 1
77 = 5 Uxeg Tl

where ¢ is a A-quantile of X, and where « is defined as
0 if P[ X=¢q]=0,

K=112—-P[X <q]

therwise.
PIX=q] otherwise o
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Corollary 4.49. Forall X € X,

AV@R, (X) > WCE; (X)
> E[-X | =X > V@R, (X)] (4.37)
> V@R (X),

where WCE,, is the coherent risk measure defined in (4.33). Moreover, the first two
inequalities are in fact identities if

P[X<q¢ X)]=n1, (4.38)
which is the case if X has a continuous distribution.

Proof. If P[ A] > X, then the density P[- | A ] with respect to P is bounded by 1/A.
Therefore, Theorem 4.47 implies that AV@R;, dominates WCE,,_. Since

P[-X > V@R,(X) —¢] > A,

we have
WCE;(X) > E[-X | =X > V@R, (X) — ¢ ],

and the second inequality follows by taking the limit ¢ | 0. Moreover, (4.35) shows
that

AV@R;(X) = E[-X | —X > V@R, (X) ]
as soon as (4.38) holds. ]

Remark 4.50. We will see in Corollary 4.62 that the two coherent risk measures
AV @R, and WCE,, coincide if the underlying probability space is rich enough. If this
is not the case, then the first inequality in (4.37) may be strict for some X; see [1].
Moreover, the functional

E[-X|—-X = V@R, (X)]

does not define a convex measure of risk. Hence, the second inequality in (4.37)
cannot reduce to an identity in general. <

Remark 4.51. We have seen in Proposition 4.42 that there is no smallest convex risk
measure dominating V@R,;,. But if we restrict our attention to the class of convex
risk measures that dominate V@R, and only depend on the distribution of a random
variable, then the situation is different. In fact, we will see in Theorem 4.61 that
AV @R, is the smallest risk measure in this class, provided that the underlying prob-
ability space is rich enough. In this sense, Average Value at Risk can be regarded as
the best conservative approximation to Value at Risk. <
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4.5 Law-invariant risk measures

Clearly, V@R, and AV @R, only involve the distribution of a position under the given
probability measure P. In this section we study the class of all risk measures which
share this property of law-invariance.

Definition 4.52. A monetary measure of risk p on X = L*(Q, F, P) is called
law-invariant if p(X) = p(Y) whenever X and Y have the same distribution under P.

Throughout this section, we assume that the probability space (€2, #, P) is rich
enough in the sense that it supports a random variable with a continuous distribution.
This condition is satisfied if and only if (2, ¥, P) is atomless; see Proposition A.27.

Remark 4.53. Any law-invariant monetary risk measure p is monotone with respect
to the partial order »= introduced in Definition 2.69. More precisely,

on

'LL >f;non v == IO(X/L) S IO(XU)a

if X, and X, are random variables with distributions u and v. To prove this, let g,
and g, be quantile functions for 4 and v and take a random variable U with a uniform
distribution on (0, 1). Then Xu =q,U) =2 qu(U) = X by Theorem 2.70, and
X and X have the same distribution as X, and X, by Lemma A.19. Hence, law-
invariance and monotonicity of p imply ,o(X,,J) = ,o(XM) < ,o(Xv) = p(Xy). &

We can now formulate our first structure theorem for law-invariant convex risk
measures.

Theorem 4.54. Let p be a convex measure of risk and suppose that p is continuous
fromabove. Then p is law-invariant if and only if its minimal penalty function amin (Q)

depends only on the law of g = Z—g under P when Q € M1(P). In this case, p has
the representation

1
p00= s ([ aex g ®)dt - amn(©)).
QeM(P) 0
and the minimal penalty function satisfies
1
amin(Q) = sup / q*X(t)QQOQ (t)dt
0

Xeh (4.39)

1
= sup ( /0 4-x (Do (1) = P(X)).

XeL>®

For the proof, we will need the following lemma.
Lemma 4.55. For X € L® and Y € L',
1
/ gx()qy(t)dt = sup E[XY],
0 X~X

where X ~ X indicates that X is a random variable with the same law as X .
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Proof. The upper Hardy-Littlewood inequality in Theorem A.24 yields “>". To prove
the reverse inequality, let us first assume that Y has a continuous distribution. Then
Lemma A.21 implies that U := Fy(Y) has a uniform distribution and that P-a.s.
Y =gy (U). Since X := gx(U) ~ X by Lemma A.19, we obtain

N 1
E[XY]=E[qx(U)gy(U)] = /0 gx (t)qy (1) dt,

and hence “<”.

In the general case, let D be the set of all y such that P[Y = y] > 0 and take
a random variable Z € Lfr with a continuous distribution. Such a random variable
exists due to Proposition A.27. We claim that the law of

1
Yo=Y+ =Zlyep

is continuous. Indeed, for any y,
PlY,=y]=PlY =y, Y¢D]+ZP[Y:x, Z=n(y—x)]=0.
xeD

Thus, U, := Fy, (Y,) has a uniform distribution on (0, 1), and X,, := gx(U,) has the
same distribution as X. By adding a suitable constant to X, we may assume without
loss of generality that X > 0. Since ¥, > Y we have gy, > gy a.e., and it follows
from the first part of the proof that

1 1
/ qgx(t)qy (@) dt < liminf/ qx(t)qy, () dt
0 ntoo Jo

= lim inf sup E[)?Yn]
ntoo X~x

= sup E[ XY,
X~X

where the last identity follows from the fact that
~ ~ 1
|E[XY,]— E[XY]| < ;”ZHIHXHOO,

forall X ~ X. O

Ploof of Theorem 4.54. Suppose first that p is law-invariant. Then X € +, implies
that X € A, for all X ~ X. Hence,

1
min(Q) = sup E[—Xgo|= sup sup E[—X¢pp]= SUP / q-x(t)qe, (1) dt,
XeA, XeA, X~X XeA, JO
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where we have used Lemma 4.55 in the last step. It follows that opin (Q) depends
only on the law of ¢g. In order to check the second identity in (4.39), note that
X := X + p(X) belongs to A, for any X € L™ and that g_x — p(X) is a quantile
function for —X.

Cofgversely, let us assume that armin (Q) depends only on the law of ¢g. Let us
write Q ~ Q to indicate that ¢ and ¢ o have the same law. Then Lemma 4.55 yields

p)= sup (Egl=X]—amin(Q))
QeM(P)

= sup sup (E[—X(pé] —amin(Q)>
QeMi(P) i~

1
= sup </0 Q—X(t)qWQ () dt _amin(Q)>- O

QeM(P)

Example 4.56. Let u : R — R be an increasing concave function, and suppose that
a position X € L is acceptable if E[u(X)] > ¢, where c is a given constant in the
interior of u(IR). We have seen in Example 4.10 that the corresponding acceptance set
induces a convex risk measure p. Clearly, p is law-invariant, and it will be shown in
Proposition 4.104 that p is continuous from below and, hence, from above. Moreover,
the corresponding minimal penalty function can be computed as

1
Amin(Q) = }{2{) X (XO + /0

1

(1 - gpy (1) dt),

where

£ (y) = suﬂg (xy + u(—x)) = suﬁ (xy — E(x))

is the Fenchel-Legendre transform of the convex increasing loss function £(x) :=
—u(—x); see Theorem 4.106. &

The following theorem clarifies the crucial role of the risk measures AV@R,: they
can be viewed as the building blocks for law-invariant convex measures of risk on L*°.
Recall that we assume that (2, #, P) is atomless.

Theorem 4.57. A convex measure of risk p is law-invariant and continuous from
above if and only if

p0= s ([ AVORCO (@) ~ frni). 440)
peMi(0,1]) *J(0,1]

where

Bmin() = sup / AV@R, (X) u(dr).
Xeh, J0.1]
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Proof. Clearly, the right-hand side of (4.40) defines a law-invariant convex risk mea-
sure that is continuous from above. Conversely, let p be law-invariant and continuous
from above. We will show that for O € M (P) there exists ameasure i € M ((0, 1])
such that

1
/ 4-x(qy () di = / AV@R,(X) u(ds),
0 0,1]

where ¢ 1= g9 = 2—%. Then the assertion will follow from Theorem 4.54. Since
q-x() = V@R _(X) and g, (t) = q(j(t) forae. t € (0,1),

1 1
/0 4-x(Dqy(t) di = /0 V@R, (X)g;} (1 —1)dr.

Since q;{ is increasing and right-continuous, we can write q(;r (t) = v((1 —¢,1]) for
some positive locally finite measure v on (0, 1]. Moreover, the measure © given by
u(dt) =t v(dt) is a probability measure on (0, 1]:

1 1
f tv(dt):/ v((s, 1])ds:/ gy (s)ds =E[¢] = 1.
0,1] 0 0

Thus,

1 1 1
/ q-x(t)qe(r) dt =f V@R, (X) — pu(ds)dt
0 0 @13

=/ 1/3 V@R, (X)dt u(ds) 4.41)
0,11 $ Jo

= / AV@R;(X) u(ds).
0,1]

Conversely, for any probability measure © on (0, 1], the function g defined by ¢ (¢) :=
f (—1.1] s~ u(ds) can be viewed as the quantile function of the density ¢ := ¢ (U)
of a measure Q € M (P), where U has a uniform distribution on (0, 1). Altogether,
we obtain a one-to-one correspondence between laws of densities ¢ and probability
measures p on (0, 1]. ]

Theorem 4.57 takes the following form for coherent measures of risk.

Corollary 4.58. A coherent risk measure p is continuous from above and law-invariant
if and only if
p(X) = sup / AV@R;.(X) u(dAr)
peM J(0,1]
for some set M C M1((0, 1]).
Randomness of a position is reduced in terms of P if we replace the position by

its conditional expectation with respect to some o -algebra § C F. Such a reduction
of randomness is reflected by a convex risk measure if it is law-invariant:
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Corollary 4.59. Assume that p is a convex risk measure which is continuous from
above and law-invariant. Then p is monotone with respect to the binary relation = .
introduced in (3.27):

Y, X = p(Y) < p(X),

forY, X € X. In particular,
p(ELX141) < p(X),

for X € X and any o-algebra § C ¥, and
p(ELX1) = p(0) — E[X] < p(X).

Proof. The first inequality follows from Theorem 4.57 combined with Remark 4.44.
The second inequality is a special case of the first one, since E[ X | ] *=, X according
to Theorem 2.58. The third follows from the second by taking § = {4, Q}. O

Recall from Theorem 2.70 that u = v implies u > v. Thus, the preceding

conclusion for convex risk measures is stronger than the one of Remark 4.53 for
monetary risk measures.

Remark 4.60. If 1 C §» C --- C ¥ are o-algebras, then
P(ELX|Gn1) — p(ELX|§oo]) asn 1 oo,

where p is as in Corollary 4.59 and G, = O(Un 9,1) Indeed, Doob’s martin-
gale convergence theorem (see, e.g., Theorem 19.1 in [19]) states that E[ X | G, ] —
E[X| %] P-as. asn 1 oo. Hence, the Fatou property and Corollary 4.59 show
that

/O(E[X|goo]) = p(I}ITToE[XW’"])
SIiH%infp(E[Xlgn])

< p(E[X | §oo ). o

In contrast to Proposition 4.42, the following theorem shows that AV@R,, is the
best conservative approximation to V@R, in the class of all law-invariant convex
measures of risk which are continuous from above.

Theorem 4.61. AV@R,, is the smallest law-invariant convex measure of risk which

is continuous from above and dominates V@R,,.

Proof. That AV@R,_dominates V@R, was already stated in (4.37). Suppose now that
p is another law-invariant convex risk measure which dominates V@R, and which is
continuous from above. We must show that for a given X € X

p(X) > AV@R, (X). (4.42)
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Takee > 0,andlet A :={—X > V@R, (X) — ¢} and
Y:=E[X|XI, . 1=X -1, +E[X|A]-I,.

Since Y > q;(r()\)—i—e > FE[X | A]lon A°,weget P[Y < E[X | A]] = 0. On the
other hand, P[Y < E[X | A]] = P[A] > A, and this implies that V@R, (Y) =
E[—X | A]. Since p dominates V@R,;, we have p(Y) > E[ —X | A]. Thus,

p(X) = p(Y) =E[-X | -X > V@R\(X) —¢],
by Corollary 4.59. Taking ¢ | 0 yields
p(X) = E[-X | =X = V@R, (X) ].

If the distribution of X is continuous, Corollary 4.49 states that the conditional expec-
tation on the right equals AV@R, (X), and we obtain (4.42). If the distribution of X
is not continuous, we denote by D the set of all points x such that P[ X = x] > 0
and take any bounded random variable Z > 0 with a continuous distribution. Such a
random variable exists due to Proposition A.27. We have seen in the proof of Lemma
455 that X,, .= X + rl—lZI{ XeD) has a continuous distribution. Moreover, X,, de-
creases to X. The inequality (4.42) holds for each X, and extends to X by continuity
from above. O

Corollary 4.62. AV@R, and WCE,, coincide under our assumption that the proba-
bility space is atomless.

Proof. We know from Corollary 4.49 that WCE, (X) = AV@R,;(X) if X has a
continuous distribution. Repeating the approximation argument at the end of the
preceding proof yields WCE, (X) = AV@R, (X) for each X € X. O

4.6 Concave distortions

Let us now have a closer look at the coherent risk measures
op(X) = / AV@R; (X) u(dar), (4.43)

which appear in the Representation Theorem 4.57 for law-invariant convex risk mea-
sures. We are going to characterize these risk measures p,, in two ways, first as Choquet
integrals with respect to some concave distortion of the underlying probability measure
P, and then, in the next section, by a property of comonotonicity.

Again, we will assume throughout this section that the underlying probability
space (2, ¥, P) is atomless. Since AV@R, is coherent, continuous from below,
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and law-invariant, any mixture p,, for some probability measure 1 on (0, 1] has the
same properties. According to Remark 4.45, we may set AV@Ry(X) = —essinf X
so that we can extend the definition (4.43) to probability measures © on the closed
interval [0, 1]. However, p,, will only be continuous from above and not from below
if ©({0}) > 0, because AV@Ry is not continuous from below.

Our first goal is to show that p, (X) can be identified with the Choquet integral
of the loss —X with respect to the set function cy, (A) := ¥ (P[ A]), where ¥ is the
concave function defined in the following lemma. Choquet integrals were introduced
in Remark ??. Recall that every concave function 1 admits a right-continuous right-
hand derivative er; see Proposition A.4.

Lemma 4.63. The identity
0] =/ sT'us), 0<t<l, (4.44)
t.11

defines a one-to-one correspondence between probability measures |1 on [0, 1] and
increasing concave functions ¥ : [0,1] — [0, 1] with ¥ (0) = 0 and (1) = 1.
Moreover, we have ¥ (0+) = u({0}).

Proof. Suppose first that p is given and i is defined by ¥ (1) = 1 and (4.44). Then
¥ is concave and increasing on (0, 1]. Moreover,

1 1 1
1—w<0+>=/ 1//(t)dt=/ —/ L _g<py df n(ds) = n((0, 1)) = L.
0 0,115 Jo -

Hence, we may set 1 (0) := 0 and obtain an increasing concave function on [0, 1].

Conversely, if ¥ is given, then 1//ﬁr () is a decreasing right-continuous function on
(0, 1) and can be written as WLF (t) = v((¢, 1]) for some locally finite positive measure
v on (0, 1]. We first define p on (0, 1] by u(dt) = t v(dt). Then (4.44) holds and, by
Fubini’s theorem,

1
u((0,11)=// I,_yvds)dt=1-y0+) <L
0 0,1]

Hence, setting 1 ({0}) := 1 (0+) defines a probability measure p on [0, 1]. ]

Theorem 4.64. For a probability measure  on [0, 1], let { be the concave function
defined in Lemma 4.63. Then, for X € X,

1
pu(=X) = ¥ (0+)AV@Ry(—X) +/o gxY'(1 =1 dt

0 o0
=/ (w(P[X>x])—1)dx+/ Y(P[X > x])dx.
0

—00
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Proof. Using the fact that V@R, (—X) = g (1 — A), we get as in (4.41) that

1
/ AV@R; (—X) pn(dr) :/ gx(OY'(1 —1)dt.
(0,1] 0

Hence, we obtain the first identity. For the second one, we will first assume X > 0.
Then

o
+ _ —
qgx (@) =sup{x >0 Fx(x) <1} _/0 I{Fx(x)st} dx,

where FYy is the distribution function of X. Using Fubini’s theorem, we obtain

1 00 1
/0 gx(OY' (1 —1)dt 2/0 /0 I{Fx(x)ﬁ_t}lﬁ/(t) dt dx
= /OO Y (l — Fx(x))dx — ¢ (0+4)esssup X,
0

since ny Y@ dt = (Y(y) — ¢(0+))I{y>0}. This proves the second identity for
X > 0, since ¥ (0+) = n({0}) and esssupX = AV@Ry(—X). If X € L™ is
arbitrary, we consider X + C, where C := —essinf X. The cash invariance of p,
yields

C+pu(—X)=f Y(P[X >x—C]dx
0
0 [e'e)
=/ 1//(P[X>x])dx+/ Y(P[X > x1)dx
—-C 0

0 )
=C+/ (w(P[X>x])—1)dx+/ Y(PIX >x]ydx. T
0

—00

Example 4.65. Clearly, the risk measure AV@R,, is itself of the form p, where
u = 8. For A > 0, the corresponding concave distortion function is given by

1//(t):<§)/\1:%(t/\)»).

Thus, we obtain yet another representation of AV@R;:

(o.¢]

1
AV@RM—X):X/ P[X >x]AXrdx forX elLZ. <&
0

Corollary 4.66. If 1({0}) = 0 in Theorem 4.64, then

1
pu(X) = _/o gx (p(1)) dt,

where @ is an inverse function of ¥, taken in the sense of Definition A.14.
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Proof. Due to Lemma A.15, the distribution of ¢ under the Lebesgue measure has the
distribution function v and hence the density v/’. Therefore

1 1 |
/0 gx (@(1)) dt :[o axOY' (1) dt = —/0 g-x(1 =)y’ dt,

where we have used Lemma A.23 in the last step. An application of Theorem 4.64
concludes the proof. O

Let us continue with a brief discussion of the set function ¢y, (A) = W (P[A]).

Definition 4.67. Let : [0, 1] — [0, 1] be an increasing function such that ¥ (0) = 0
and ¥ (1) = 1. The set function

cy(A) =¥ (P[A]), AeF,

is called the distortion of the probability measure P with respect to the distortion
function .

Definition 4.68. A set function ¢ : £ — [0, 1] is called monotone if
c(A) <c(B) forACB

and normalized if
c(@) =0 and c¢(R2)=1.

A monotone set function is called submodular or 2-alternating if
c(AUB)+4+c(ANB) <c(A) + c(B).
Clearly, any distortion ¢y, is normalized and monotone.

Proposition 4.69. Let ¢y, be the distortion of P with respect to the distortion function
Y. If ¥ is concave, then cy is submodular. Moreover, if the underlying probability
space is atomless, then also the converse implication holds.

Proof. Suppose first that ¢ is concave. Take A, B € ¥ with P[A] < P[B]. We
must show that ¢ := ¢y, satisfies

c(A) —c(ANB) > c(AUB) —c(B).
This is trivial if r = 0, where
r:=P[A]-—P[ANB]=P[AUB]—- P[B].
For r > 0 the concavity of v yields via (A.1) that

c(A) —c(ANB) - c(AUB) —c(B)
P[A]-—P[ANB] ~ P[AUB]—-P[B]
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Multiplying both sides with r gives the result.

Now suppose that ¢ = ¢y, is submodular and assume that (2, ¥, P) is atomless.
We have to show that ¥ (y) > (V¥ (x) + ¥(z))/2 whenever 0 < x < z < 1 and
y = (x 4+ z)/2. To this end, we will construct two sets A, B C £ suchthat P[A] =
P[B] =y, PIANB] = x, and P[AU B] = z. Submodularity then gives
Y (x) + ¥ (z) <2 (y) and in turn the concavity of .

In order to construct the two sets A and B, take a random variable U with a uniform
distribution on [0, 1], which exists by Proposition A.27. Then

A={0<U<y} and B:={z—y<U<z}

are as desired. O

Let us now recall the notion of a Choquet integral, which was introduced in Ex-
ample 4.13.

Definition 4.70. Let ¢ : ¥ — [0, 1] be any set function which is normalized and
monotone. The Choquet integral of a bounded measurable function X on (2, )
with respect to c¢ is defined as

0 o0
/Xdc :=/ (c(X > x) — l)dx—i—/ c(X > x)dx.
—00 0

Note that the Choquet integral coincides with the usual integral as soon as c is a
o -additive probability measure; see also Lemma 4.91 below.

With this definition, Theorem 4.64 allows us to identify the risk measure p,, as the
Choquet integral of the loss with respect to a concave distortion ¢y, of the underlying
probability measure P:

Corollary 4.71. For a probability measure u on [0, 1], let r be the concave distortion
function defined in Lemma 4.63, and let cy, denote the distortion of P with respect
to . Then, for X € L,

pu(X) = / (=X)dey.

Combining Corollary 4.71 with Theorem 4.57, we obtain the following character-
ization of law-invariant convex risk measures in terms of concave distortions:

Corollary 4.72. A convex risk measure p is law-invariant and continuous from above
if and only if

p(0) =sup ([ (X0 dey = (D).
v

where the supremum is taken over the class of all concave distortion functions W and

Ymin(¥) 1= sup /(—X)dcw.

XeA,
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As another consequence of Theorem 4.64, we obtain an explicit description of the
maximal representing set @, C M (P) for the coherent risk measure p,.

Theorem 4.73. Let i be a probability measure on [0, 1], and let r be the correspond-
ing concave function defined in Lemma 4.63. Then p,, can be represented as

pu(X) = sup Eg[—X1],
0@,

where the set @, is given by

1
Q, = { Q € M{(P) |(p = Z_IQJ satisfies / qgp(s)ds <y(1—1)fort € (0,1) }

t

Moreover, Q,, is the maximal subset of M1(P) that represents p,,.

Proof. The risk measure p,, is coherent and continuous from above. By Corollary 4.34,
it can be represented by taking the supremum of expectations over the set @pax =
{O € M{(P)|amin(Q) = 0}. Using (4.39) and Theorem 4.64, we see that a measure
Q € M (P) with density ¢ = d Q/d P belongs to @,y if and only if

1
/ qx(s)qu(s)ds < py(—X)
0 (4.45)

1
= ¥ (0+)AV@Ry(—X) +/ gx(OY'(1 = s)ds
0

for all X € L°°. For constant random variables X = r, we have gy = |
so we obtain

(1] &€ and

1 1
/ qp(s)ds < ¥ (0+) +f Yl —s)ds=y(1—1)
t t

forallr € (0, 1). Hence @max C @,. Forthe proof of the converse inclusion, we show
that the density ¢ of a fixed measure Q € @, satisfies (4.45) for any given X € L.
To this end, let v be the positive finite measure on [0, 1] such that q;g (s) = v(0, s].
Using Fubini’s theorem and the definition of @, we get

1 1
/ qx(s)qe(s)ds = / / gy (s)ds v(dt)
0 [0,1] J¢

< V(1 —1)v(dr)

[0.1]

1
= ¥ (0+)v([0, 1D +/ ¥'(1 —S)/ v(dr)ds,
0 [0,s]

which coincides with the right-hand side of (4.45). I
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Corollary 4.74. In the context of Theorem 4.73, the following conditions are equiv-
alent.

(a) py is continuous from below.

(®) n({0}h =0.

(©) pu(X) = max Eg[—X] forall X € L*™.
0eq,

If these equivalent conditions are satisfied, then the maximum in (c) is attained by
the measure Qx € @, with density dQx/dP = f(X), where f is the decreasing
function defined by
) =9 (Fx(x))
if x is a continuity point of Fx, and by
Fx(x)

1
= "(t)d
7 Fx(x) = Fx(x=) JFryx-) v

otherwise. Moreover, with ) denoting the Lebesgue measure on (0, 1),

Q= { Q< P|Po (;l—g)_l = ho () } (4.46)

Proof. The equivalence of conditions (a) and (c) has already been proved in Corol-
lary 4.35. If (b) holds, then p, is continuous from below, due to Theorem 4.47
and monotone convergence. Let us now show that condition (a) is not satisfied if
8 := u({0}) > 0. In this case, we can write

pu =8AV@Ry + (1 — 8)p,

where " := u(-|(0, 17). Then p,, is continuous from below since 1’ ({0}) = 0, but
AV @Ry is not, and so p,, does not satisfy (a); see Remark 4.45.

Let us now prove the remaining assertions. Since ¥ (0+) = u({0}) = 0, a
measure Q with density ¢ = dQ/d P belongs to @, if and only if ftl qp(s)ds <

ftl Y’ (1 —s)ds forall z. Since /(1 —r) is a quantile function for the law of ¥" under
A, part (e) of Theorem 2.58 implies (4.46). The problem of identifying the maximizing
measure Qy is hence equivalent to minimizing E[ ¢ X | under the constraint that ¢
is a density function such that P o ¢! =, Ao (Y )~1. Let us first assume that
X > 0. Then it follows from Theorem 3.44 that f(X) minimizes E[ Y X ] among
allY e Lj_ such that P o Y~! = A o (y¥/)~!. Moreover, Remark 3.46 shows that

E[f(X)] = /01 ¥'(t)dt = 1, and so px := f(X) > 0 is the density of an optimal
probability measure Qx € @,. If X is not positive, then we may take a constant
¢ such that X 4+ ¢ > 0 and apply the preceding argument. The formula for f then
follows from the fact that Fx.(X + ¢) = Fx(X). I
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Remark 4.75. Aslong as we are interested in a law-invariant risk assessment, we can
represent a financial position X € L by its distribution function Fy or, equivalently,
by the function

Gx(t)=1—Fx(@)=P[X >1t]

If we only consider positions X with values in [0, 1] then their proxies Gx vary in
the class of right-continuous decreasing functions G on [0, 1] such that G(1) = 0 and
G(0) < 1. Due to Theorem 4.64, a law-invariant coherent risk measure p,, induces a
functional U on the class of proxies via

1
U(Gx) := pu(=X) =/0 v (Gx (1)) dt.

Since 1 is increasing and concave, the functional U has the form of a von Neumann—
Morgenstern utility functional on the probability space given by Lebesgue measure on
the unit interval [0, 1]. As such, it can be characterized by the axioms in Section 2.3,
and this is the approach taken in Yaari’s “dual theory of choice” [198]. More generally,
we can introduce a utility function # on [0, 1] with #(0) = 0 and consider the functional

1
U(Gx) 1=/0 U (Gx (1)) du(r)

introduced by Quiggin [161]. For u(x) = x this reduces to the “dual theory”, for
Y (x) = x we recover the classical utility functionals

1
U(GX):/O Gx(t)du(r)

1
:—/ u(t) dGx (1)
0
= E[u(X)]

discussed in Section 2.3. <&

4.7 Comonotonic risk measures

In many situations, the risk of a combined position X + Y will be strictly lower than
the sum of the individual risks, because one position serves as a hedge against adverse
changes in the other position. If, on the other hand, there is no way for X to work
as a hedge for Y then we may want the risk simply to add up. In order to make
this idea precise, we introduce the notion of comonotonicity. Our main goal in this
section is to characterize the class of all convex risk measures that share this property
of comonotonicity.

As in the first two sections of this chapter, we will denote by X the linear space
of all bounded measurable functions on the measurable space (2, ¥).
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Definition 4.76. Two measurable functions X and Y on (2, ¥) are called comonotone
if
(X (@) — X(@")(Y(w) = Y(«) =0 forall (w, o) € Qx Q. (4.47)

A monetary measure of risk p on X is called comonotonic if
p(X+7Y)=pX)+ p(Y)
whenever X, Y € X are comonotone.
Lemma 4.77. If p is a comonotonic monetary risk measure on X, then p is positively

homogeneous.

Proof. Note that (X, X) is a comonotone pair. Hence p(2X) = 2p(X). An iteration
of this argument yields p(rX) = rp(X) for all rational numbers r > 0. Positive
homogeneity now follows from the Lipschitz continuity of p; see Lemma 4.3. O

We will see below that every comonotonic monetary risk measure on X arises as
the Choquet integral with respect to a certain set function on (€2, ). In the sequel,
c: ¥ — [0, 1] will always denote a set function that is normalized and monotone; see
Definition 4.68. Unless otherwise mentioned, we will not assume that ¢ enjoys any
additivity properties. Recall from Definition 4.70 that the Choquet integral of X € X
with respect to ¢ is defined as

0 )
/Xdc:/ (c(X>x)—1)dx—|—/ c(X > x)dx.
00 0

The proof of the following proposition was already given in Example 4.13.

Proposition 4.78. The Choquet integral of the loss,

p(X) = /(—X)dc,

is a monetary risk measure on X which is positively homogeneous.

Definition 4.79. Let X be a measurable function on (2, ). An inverse function
rx : (0,1) — R of the increasing function Gx(x) := 1 — ¢(X > x), taken in the
sense of Definition A.14, is called a quantile function for X with respect to c.

If ¢ is a probability measure, then Gx(x) = c¢(X < x). Hence, the preceding
definition extends the notion of a quantile function given in Definition A.20. The
following proposition yields an alternative representation of the Choquet integral in
terms of quantile functions with respect to c.

Proposition 4.80. Let rx be a quantile function with respect to ¢ for X € X. Then

1
/Xdc:/ rx(t)dt.
0
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Proof. Wehave [(X+m)dc = [ X dc+m, and one easily checks thatry_,, = rx+m
a.e. for all m € R and each quantile function ry,, of X + m. Thus, we may assume
without loss of generality that X > 0. In this case, Remark A.16 and Lemma A.15
imply that the largest quantile function r; is given by

o]
ry () =sup{x = 0|Gx(x) <t} =/0 LGy oy=n 4%

Since ry = r;g a.e. on (0, 1), Fubini’s theorem implies

1 1 00
/Orx(t)dz=f0f0 LGy ryr) AX d1

=/ (1 —-Gx(x))dx
0

:/Xdc. O

The preceding proposition yields the following generalization of Corollary 4.66
when applied to a continuous distortion of a probability measure as defined in Defini-
tion 4.67.

Corollary 4.81. Let ¢y (A) = Y (P[ A)) be the distortion of the probability measure
P with respect to the continuous distortion function . If ¢ is an inverse function for
the increasing function \ in the sense of Definition A.14, then the Choquet integral
with respect to cy, satisfies

1
/Xdc,/, :-/0 qx(l—w(t))dt,

where qx is a quantile function for X € X, taken with respect to P.

Proof. Due to the continuity of ¥, we have ¥(a) < t if and only if a < @™ (¢) =
inf{x | ¥ (x) > t}. Thus, we can compute the lower quantile function of X with respect
to cy:
ry (@) =inf{x e R|1 —cy (X > x) > 1}

=inf{x eR|Y(P[X >x]) <1-—1}

=inf{x e R|P[X >x] <" (1 —1)}

=qx(1—@"(1—1)).
Next note that ¢t (t) = ¢(t) for a.e. t. Moreover, ¢ has the continuous distribution

function v under the Lebesgue measure, and so we can replace g, by the arbitrary
quantile function gy. O
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Theorem 4.82. A monetary risk measure p on X is comonotonic if and only if there
exists a normalized monotone set function c on (2, ) such that

p(X) = /(—X)dc, X € X.

In this case, c is given by c(A) = p(=1,).

The preceding theorem implies in view of Corollary 4.71 that all mixtures

pu = / AV@R; ju(d>)
[0.1]

are comonotonic. We will see in Theorem 4.87 below that these are in fact all convex
risk measures that are law-invariant and comonotonic. The proof of Theorem 4.82
requires a further analysis of comonotone random variables.

Lemma 4.83. Two measurable functions X and Y on (2, ¥) are comonotone if and
only if there exists a third measurable function Z on (2, ¥) and increasing functions
fand g on R such that X = f(Z) and Y = g(Z).

Proof. Clearly, X := f(Z) and Y := g(Z) are comonotone for given Z, f, and g.
Conversely, suppose that X and Y are comonotone and define Z by Z := X + Y.
We show that 7 := Z(w) has a unique decomposition as 7 = x + y, where (x, y) =
(X (o), Y(@')) for some o’ € Q. Having established this, we can put f(z) := x
and g(z) := y. The existence of the decomposition as z = x + y follows by taking
x := X(w) and y := Y (w), so it remains to show that these are the only possible
values x and y. To this end, let us suppose that X (w) + ¥ (w) = z = X (') + Y (&)
for some o’ € Q. Then

X(@) = X (@) =—(Y(0) - Y (),

and comonotonicity implies that this expression vanishes. Hence x = X (') and
y =Y ().

Next, we check that both f and g are increasing functions on Z(£2). So let us
suppose that

X(w1) +Y(w1) =21 =22 = X(w2) + Y(02).
This implies
X(w1) — X(@) < —(Y(@1) — Y(2)).

Comonotonicity thus yields that X (w1) — X (w2) < 0and Y (w1) — Y (w2) < 0, whence
f(z1) < f(z2) and g(z1) < g(z2). Thus, f and g are increasing on Z(S2), and it is
straightforward to extend them to increasing functions defined on R. O

Lemma 4.84. If X, Y € X is a pair of comonotone functions, and rx, ry, rx1y are
quantile functions with respect to c, then

rx4+y (@) =rx(@) +ry(t) forae.t.
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Proof. Write X = f(Z) and Y = g(Z) as in Lemma 4.83. The same argument as
in the proof of Lemma A.23 shows that f(rz) and g(rz) are quantile functions for
X and Y under c if rz is a quantile function for Z. An identical argument applied to
the increasing function # := f + g shows that h(rz) = f(rz) + g(rz) is a quantile
function for X 4 Y. The assertion now follows from the fact that all quantile functions
of a random variable coincide almost everywhere, due to Lemma A.15. O

Remark 4.85. Applied to the special case of quantile function with respect to a prob-
ability measure, the preceding lemma yields that V@R, and AV@R, are comono-
tonic. <

Proof of Theorem 4.82. We already know from Proposition 4.78 that the Choquet
integral of the loss is a monetary risk measure. Comonotonicity follows by combining
Proposition 4.80 with Lemma 4.84.

Conversely, suppose now that p is comonotonic. Then p is coherent according to
Lemma 4.77. Thus, we obtain a normalized monotone set function by letting c(A) :=
p(=1,). Moreover, p.(X) := f (—X) dc is a comonotonic monetary risk measure on
X that coincides with p on indicator functions: p(—I,) = ¢(A) = p.(—1,). Let us
now show that p and p. coincide on simple random variables of the form

n
X'::E:lxﬂAi, x, €R, A; € F.
i=1
Since these random variables are dense in L°°, Lemma 4.3 will then imply that p = p,.
In order to show that p.(X) = p(X) for X as above, we may assume without loss of
generality thatx; > xp > --- > x,, and thatthe sets A; are disjoint. By cash invariance,
we may also assume X > 0, i.e., x;, > 0. Thus, we can write X = Z?:l biIB,- , where

b :=x; —xiyx1 >0, x,41 :=0,and B; := U};zl Ay. Note that b;1, and kaBk is

a pair of comonotone functions. Hence, also Zi‘:ll bil, and byl B, are comonotone,
. . - 1
and we get inductively

n n
p(=X) =) bip(=T) =D bipe(=Iy) = pe(=X). m
i=1 i=1
Remark 4.86. The argument at the end of the preceding proof shows that the Choquet
integral of a simple random variable

n
X:Zx,-IA’_ withx; > -+ > x, > x,41 :=0
i=1

can be computed as
n n
/Xdc =Y (i —xi)e(B) = ) _xi(c(Bi) = c(Bio)).
i=1 i=l1

where By := ) and B; := Ufc:lAkforizl,...,n. <
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So far, we have shown that comonotonic monetary risk measures can be identified
with Choquet integrals of normalized monotone set functions. Our next goal is to
characterize those set functions that induce risk measures with the additional property
of convexity. To this end, we will first consider law-invariant risk measures. The
following result shows that the risk measures AV@R; may be viewed as the extreme
points in the convex class of all law-invariant convex risk measures on L° that are
comonotonic.

Theorem 4.87. On an atomless probability space, the class of risk measures

pu(X) = /AV@RA(X)M(d)»), w € Mi([0, 1]),

is precisely the class of all law-invariant convex risk measures on L® that are comono-
tonic. In particular, any convex measure of risk that is law-invariant and comonotonic
is also coherent and continuous from above.

Proof. Comonotonicity of p, follows from Corollary 4.71 and Theorem 4.82. Con-
versely, let us assume that p is a law-invariant convex measure of risk that is also
comonotonic. By Theorem 4.82, p(X) = f(—X) dc for c(A) = p(=1,). The
law-invariance of p implies that c(A) is a function of the probability P[ A], i.e.,
there exists an increasing function i on [0, 1] such that ¥ (0) = 0, ¥(1) = 1, and
c(A) =y (P[A]. Note thatl, ,andl, . is a pair of comonotone functions for all
A, B € ¥. Hence, comonotonicity and subadditivity of p imply

c(ANB) +c(AUB) = p(~T, )+ p(=1, ) = (=145 =1, p)
=p(-1, —1,) (4.48)
< c(A) +c(B).

Proposition 4.69 thus implies that ¥ is concave. Corollary 4.71 finally shows that the
Choquet integral with respect to ¢ can be identified with a risk measure p,, where p
is obtained from 1 via Lemma 4.63. O

Now we turn to the characterization of a/l comonotonic convex risk measures
on X. Recall that, for a positively homogeneous monetary risk measure, convexity is
equivalent to subadditivity. Also recall that My ¢ := M ¢(€2, F) denotes the set of
all finitely additive normalized set functions Q : ¥ — [0, 1], and that Eg[ X ] denotes
the integral of X € X with respectto Q € M|, r, as constructed in Theorem A.50.

Theorem 4.88. For the Choquet integral with respect to a normalized monotone set
function c, the following conditions are equivalent.

@ p(X):= f(—X) dc is a convex risk measure on X.

b) p(X) := f(—X) dc is a coherent risk measure on X.
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(¢) For Q. :={Q e My s | Q[A] < c(A) forall A € F},
/Xdc: max Eg[ X ] for X € X.
Q€.

(d) The set function c is submodular.
In this case, Q. is equal to the maximal representing set @max for p.

Before giving the proof of this theorem, let us state the following corollary, which
gives a complete characterization of all comonotonic convex risk measures, and a
remark concerning the set €@ in part (c), which is usually called the core of c.

Corollary 4.89. A convex risk measure on X is comonotonic if and only if it arises
as the Choquet integral of the loss with respect to a submodular, normalized, and
monotone set function c. In this case, c is given by c(A) = p(=1,), and p has the
representation
X)=max Epo[—X],
p(X) max ol—X1]

where Q. = {Q € My 5| Q[A] < c(A) forall A € ¥} is equal to the maximal
representing set @max.

Proof. Theorems 4.82 and 4.88 state that p(X) := f (—X)dc is a comonotonic
coherent risk measure, which can be represented as in the assertion, as soon as c is a
submodular, normalized, and monotone set function. Conversely, any comonotonic
convex risk measure p is coherent and arises as the Choquet integral of c(A) :=
p(=1,), due to Theorem 4.82. Theorem 4.88 then gives the submodularity of ¢.  [J

Remark 4.90. Let ¢ be a normalized monotone submodular set function. Theo-
rem 4.88 implies in particular that the core @, of ¢ is non-empty. Moreover, ¢ can be
recovered from @,:

c(A) = max Q[A] forall A e F.
0eQc

If ¢ has the additional continuity property that c(A,) — 0 for any decreasing sequence
(A,) of events such that (), A, = ¢, then this property is shared by any Q € @, and it
follows that Q is o -additive. Thus, the corresponding coherent risk measure p(X) =
J(=X)dc admits a representation in terms of o-additive probability measures. It
follows by Lemma 4.20 that p is continuous from above. <&

The proof of Theorem 4.88 requires some preparations. The assertion of the
following lemma is not entirely obvious, since Fubini’s theorem may fail if Q € M, ¢
is not o -additive.

Lemma 4.91. For X € X and Q € M r,theintegral Eg| X |is equal to the Choquet
integral [ X dQ.
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Proof. It is enough to prove the result for X > 0. Suppose first that X = Y /| x;1
is as in Remark 4.86. Then

/XdQ =) (% —xi+1)Q[ U Ak] = xiQ[Ail=Eq[X].
i=1 k=1 i=1

The result for general X € X follows by approximating X uniformly with X,, which
take only finitely many values, and by using the Lipschitz continuity of both Eg[ -]
and [ - d Q with respect to the supremum norm. O

A;

Lemma 4.92. Let Ay, ..., A, be a partition of 2 into disjoint measurable sets, and
suppose that the normalized monotone set function c is submodular. Let Q be the
probability measure on ¥o := o (Ay, ..., A,) with weights

k
Ol Ar]:=c(Bx) — c(Bk—1) for By := @ and By := U Aj, k>1. (4.49)
j=1

Then [ X dc > Eg[ X for all bounded Fo-measurable X = Y _i_, x;1, , and equal-
ity holds if the values of X are arranged in decreasing order: x| > --- > x,.

Proof. Clearly, it suffices to consider only the case X > 0. Then Remark 4.86 implies
f X dc = Eg[ X ] as soon as the values of X are arranged in decreasing order.

Now we prove f Xdc > Eg[ X ] for arbitrary Fo-measurable X. To this end,
note that any permutation o of {1, ..., n} induces a probability measure Q, on Fy
by applying the definition of Q to the re-labeled partition Ag (1) ..., Agm). If o isa
permutation such that x4 (1) > -+ > X5 (), then we have f Xdc=FEp,[X], and so
the assertion will follow if we can prove that Eg [ X | > Ep[ X ]. To this end, it is
enough to show that Eg [ X | > Eg[ X | if T is the transposition of two indices i and
i + 1 which are such that x; < x;1, because o can be represented as a finite product
of such transpositions.

Note next that

Eg [ X]-EglX]=xi(Q:[Ai -0l Ai D+xit1(Q:[ Ai1]1-Q[ Ai41]D. (4.50)
To compute the probabilities Q[ Ag ], let us introduce
k
By =¥ and B[ := UAT(f)’ k=1,...,n.
j=1
Then B = By for k # i. Hence,

Q:[Ai 1+ Q:[Ait1]1= Q:[Ari) 1+ Q[ Ay ] = c(Bfy ) — c(B{_))

4.51)
=c(Bit1) —c(Bi—1) = Q[ A; |+ Q[ Ai11 ]
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Moreover, Bf N B; = B;_1, Bf U B; = Biy1, and hence ¢(B;_1) + ¢(Bi+1) <
c(B]) + ¢(B;), due to the submodularity of c. Thus,

O[Ait1]1=c(Biy1) —c(Bi) < c(B]) —c(B/_)) = Q:[ Az (] = Q<[ Ai1].

Using (4.50), (4.51), and our assumption x; < x;41 thusyields Eg [ X] > Eg[ X ].
O

Proof of Theorem 4.88. (a)<(b): According to Proposition 4.78, the property of
positive homogeneity is shared by all Choquet integrals, and the implication (b) = (a)
is obvious.

(b) = (c): By Corollary 4.18, p(—X) = maxgec@,,, Eol X 1, where Q € M, ¢
belongs to @nax if and only if

EolX]1<p(=X) = / Xdc forall X € X. (4.52)

We will now show that this set @nax coincides with the set @.. If O € @pnax then,
in particular, Q[ A] < fIA dc =c(A) forall A € F. Hence Q € @.. Conversely,
suppose Q € @.. If X > 0 then

/Xdc:/ c(X>x)de/ O[X >x]dx =Eg[X],
0 0

where we have used Lemma 4.91. Cash invariance yields (4.52).

(c) = (b) is obvious.

(b) = (d): This follows precisely as in (4.48).

(d) = (a): We have to show that the Choquet integral is subadditive. By Lemma
4.3, it is again enough to prove this for random variables which only take finitely many

values. Thus, let Ay, ..., A, be a partition of 2 into finitely many disjoint measurable
sets. Let us write X = ) ; xil, .Y = D yily s and let us assume that the indices
i = 1,...,n are arranged such that x; + y; > --- > x, + y,. Then the probability

measure Q constructed in Lemma 4.92 is such that
/(X—|—Y)dc= EglX+Y]=Eg[X]+Eg[Y] =< /Xdc—i—/ch.

But this is the required subadditivity of the Choquet integral. 0

4.8 Measures of risk in a financial market

In this section, we will consider risk measures which arise in the financial market
model of Section 1.1. In this model, d + 1 assets are priced at times t = 0 and t = 1.
Prices at time 1 are modelled as non-negative random variables 0 st ..., 5% on
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some probability space (2, &, P), with SO = 1 + r. Prices at time 0 are given by
avectorw = (1, m), withm = (nl, R rrd). The discounted net gain of a trading
strategy £ = (£0, &) is given by £ - ¥, where the random vector Y = (Y, ..., Y9) is
defined by
. St .
Y = —a' fori=1,...,d.
14+r

As in the previous two sections, risk measures will be defined on the space
L% = L°®°(R2, ¥, P). A financial position X can be viewed as riskless if X > 0
or, more generally, if X can be hedged without additional costs, i.e., if there exists a
trading strategy £ = (€9, &) such that 7 - € = 0 and

.S
14+r

urr|

X+

=X+£&.-Y>0 P-as. (4.53)

Thus, we define the following set of acceptable positions in L°°:
Agi={X eL®|IE R withX +£-Y >0 P-as.}.

Proposition 4.93. Suppose that inf{m € R? |m € A} > —o0. Then py := p Ao 1S a
coherent measure of risk. Moreover, pg is sensitive in the sense of Definition 4.32 if and
only if the market model is arbitrage-free. In this case, py is continuous from above
and can be represented in terms of the set P of equivalent risk-neutral measures:

po(X) = sup E*[-X]. (4.54)

Prep

Proof. The fact that pg is a coherent measure of risk follows from Proposition 4.7. If
the model is arbitrage-free, then Theorem 1.31 yields the representation (4.54), and it
follows that pq is sensitive and continuous from above.

Conversely, suppose that pg is sensitive, but the market model admits an arbitrage
opportunity. Then there are £ € R and ¢ > 0 such that 0 < £ - Y P-as. and
A :={&-Y > ¢} satisfies P[A] > 0. It follows that & - ¥ — glA >0, i.e., —elA is
acceptable. However, the sensitivity of pg implies that

po(—¢el,) =epo(=1,) > po(0) =0,

where we have used the coherence of pg, which follows from fact that A is a cone.
Thus, we arrive at a contradiction. ]

There are several reasons why it may make sense to allow in (4.53) only strategies
£ that belong to a proper subset § of the class R? of all strategies. For instance,
if the resources available to an investor are limited, only those strategies should be
considered for which the initial investment in risky assets is below a certain amount.
Such a restriction corresponds to an upper bound on £ - w. There may be other
constraints. For instance, short sales constraints are lower bounds on the number of
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shares in the portfolio. In view of market illiquidity, the investor may also wish to
avoid holding too many shares of one single asset, since the market capacity may not
suffice to resell the shares. Such constraints will be taken into account by assuming
throughout the remainder of this section that § has the following properties:

* 0e3s.
» & is convex.
e Each & € 4§ is admissible in the sense that £ - Y is P-a.s. bounded from below.

Under these conditions, the set
A =X eL®|IEcSwithX +£-Y >0 P-as.} (4.55)

is non-empty, convex, and contains all X € X which dominate some Z € #A%.
Moreover, we will assume from now on that

inf{m e R |m e A%} > —co. (4.56)
Proposition 4.7 then guarantees that the induced risk measure
03(X) := pus(X) =inf{m € R|m + X € A%}

is a convex risk measure on L°°. Note that (4.56) holds, in particular, if 4 does not
contain arbitrage opportunities in the sense that § - Y > 0 P-a.s. for & € 4 implies
Pl[E-Y=0]=1.

Remark 4.94. Admissibility of portfolios is a serious restriction; in particular, it pre-
vents unhedged short sales of any unbounded asset. Note, however, that it is consistent
with our notion of acceptability for bounded claims in (4.55), since X + £ -Y > 0
implies £ - Y > —|| X]. <

Two questions arise: When is ,oJ continuous from above, and thus admits a rep-
resentation (4.29) in terms of probability measures? And, if such a representation
exists, how can we identify the minimal penalty function O‘ém on M1(P)? Inthe case
8 = R?, both questions were addressed in Proposition 4.93. For general $, only the
second question has a straightforward answer, which will be given in Proposition 4.96.
As can be seen from the proof of Proposition 4.93, an analysis of the first question
requires an extension of the arbitrage theory in Chapter 1 for the case of portfolio
constraints. Such a theory will be developed in Chapter 9 in a more general dynamic
setting, and we will address both questions for the corresponding risk measures in
Corollary 9.30. This result implies the following theorem for the simple one-period
model of the present section:

Theorem 4.95. In addition to the above assumptions, suppose that the market model
is non-redundant in the sense of Definition 1.13 and that 8 is a closed subset of RY.
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Then p? is sensitive if and only if 8 contains no arbitrage opportunities. In this case,

03 is continuous from above and admits the representation
p*(X)= sup (Egol—X1-supEgl&-Y]). (4.57)
QeM(P) Ees

In the following proposition, we will explain the specific form of the penalty func-
tion in (4.57). This result will not require the additional assumptions of Theorem 4.95.

Proposition 4.96. For Q € M;(P), the minimal penalty function aiin of p? is given
by
Opin(Q) = sup Eg[[§ - Y ].
Eed
In particular, p? can be represented as in (4.57) if p* is continuous from above and,
especially, if 8 does not contain arbitrage opportunities.

Proof. Fix Q € M(P). Clearly, the expectation Eg[§ - Y ] is well defined for each
£ € & by admissibility. If X € A%, there exists 7 € § such that —X < 5-Y P-almost
surely. Thus,
Eol-X]<Egln-Y1=< EUI;EQ[é Y]
€

for any Q € M (P). Hence, the definition of the minimal penalty function yields

ali (0) <supEgl£-Y1.
Ees

To prove the converse inequality, take & € 8. Note that X := —((§ - Y) A k) is
bounded since & is admissible. Moreover,
Xk+$ ‘Y = (%_ . Y_k)I{S-YZk} = 0,

so that X; € A5, Hence,
apin(Q) = Egl —Xi 1= Eg[ (£ - Y) AK],

3. (Q) > Egl £ - Y] by monotone convergence. O

and so o,

Remark 4.97. Suppose that § is a cone. Then the acceptance set /4 is also a cone, and

'05 is a coherent measure of risk. If ,05 is continuous from above, then Corollary 4.34

yields the representation

p?(X)= sup Eg[—X]
Qe@?

max

in terms of the non-empty set @3 = {Q € M (P) | alflin(Q) = 0}. It follows from

max

Proposition 4.96 that for Q € M (P)

Q€ @3, ifandonlyif Eg[£-Y] <Oforall£ € 4.
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If p? is sensitive then the set 8 cannot contain any arbitrage opportunities, and @3

contains the set J of all equivalent martingale measures whenever such measures
exist. More precisely, @3, can be described as the set of absolutely continuous
supermartingale measures with respect to 4; this will be discussed in more detail in

the dynamical setting of Chapter 9. <

Let us now relax the condition of acceptability in (4.55). We no longer insist
that the final outcome of an acceptable position, suitably hedged, should always be
non-negative. Instead, we only require that the hedged position is acceptable in terms
of a given convex risk measure p4 with acceptance set +. Thus, we define

A={XelL®|IEc8 AcAwithX+£ Y >APas.}. (4.58)
Clearly, A C A and hence
PA =P I= Py
From now on, we assume that
p > —00,

which implies our assumption (4.56) for AS.
Proposition 4.98. The minimal penalty function @iy for p is given by

Umin(Q) = aéin(Q) + amin(Q),

where aéin is the minimal penalty function for p*, and ouyin is the minimal penalty

function for p .

Proof. We claim that
A={X*+A X cA’ Acal (4.59)

If X € ., then there exists A € 4 and & € & such that X + £ - ¥ > A. Therefore

X3 =X — A e A’ Conversely, if X% € A% then X? +£&-.Y > 0forsomeé € 4.

Hence, for any A € A,WegetX5 +A+E-Y>XeAie, X =X +AcaA.
In view of (4.59), we have

min(Q) = sup Eg[ —X]

XeA
= sup sup EQ[—Xg—A]
X3eAs AcA
= a3, (0) + amin(Q). O

For the rest of this section, we consider the following case study, which is based
on [36]. Let us fix a finite class

C‘2(:’:{Q17”'7Ql’l}
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of equivalent probability measures Q; ~ P such that |Y| € L'(Q;); as in [36], we
call the measures in @ valuation measures. Define the sets

B8:={XeL’| Eg[X]existsandis >0,i=1,...,n} (4.60)

and
Bo:={XeB|Eg[X]=0fori=1,...,n}.

Note that
BoN LY = {0}, (4.61)

since X =0 P-a.s. assoonas X > 0 P-a.s. and Eg,[ X | = 0, due to the equivalence
Qi ~ P.
As the initial acceptance set, we take the convex cone

A= BNL® (4.62)

The corresponding set /4 of positions which become acceptable if combined with a
suitable hedge is defined as in (4.58):

A={XeL® |3t cR'WithX +&-Y e B}

Let us now introduce the following stronger version of the no-arbitrage condition
K N LY = {0}, where X :={£-Y | £ eRY}):

KNB=KnNBy. (4.63)

In other words, there is no portfolio & € R such that the result satisfies the valuation
inequalities in (4.60) and is strictly favorable in the sense that at least one of the
inequalities is strict.

Note that (4.63) implies the absence of arbitrage opportunities:

KNLY =XNBNLY, =XNByNLY = {0},

where we have used (4.61) and 8 N LS)r = L(?r Thus, (4.63) implies, in particular, the
existence of an equivalent martingale measure, i.e.,  # . The following proposition
may be viewed as an extension of the “fundamental theorem of asset pricing”. Let us

denote by
n n
R::{ZkiQi | )»,'>0, Z)»i:1}
i=1 i=l1

the class of all “representative” models for the class Qo, i.e., all mixtures such that
each Q € @g appears with a positive weight.
Proposition 4.99. The following two properties are equivalent:

(a) XNB=KNBg.

(b) PNR #£0.
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Proof. (b)=(a): ForV € X N8B and R € R, we have Eg[V ] > 0. If we can
choose R € N R then we get Eg[ V] = 0, hence V € By.
(a) =(b): Consider the convex set

C:={Eg[Y]|Re R} CR?;

we have to show that C contains the origin. If this is not the case then there exists
£ € R? such that
E- x>0 forxeC, (4.64)

and
£.-x*>0 forsomex™ € C;

see Proposition A.1. Define V := £ - Y € K. Condition (4.64) implies
Er[V]>0 forallR € R,

hence V € K N B. Let R* € R be such that x* = Eg«[Y]. Then V satisfies
Ep<[Y]> 0,hence V ¢ K N By, in contradiction to our assumption (a). ]

We can now state a representation theorem for the coherent risk measure p corre-
sponding to the convex cone +. It is a special case of Theorem 4.102 which will be
proved below.

Theorem 4.100. Under assumption (4.63), the coherent risk measure p := p j cor-
responding to the acceptance set A is given by

)= sup E[-X].
P*ePNR

Let us now introduce a second finite set @; C M (P) of probability measures
Q < P with |Y] € £1(Q); as in [36], we call them stress test measures. In addition
to the valuation inequalities in (4.60), we require that an admissible position passes a
stress test specified by a “floor”

y(Q) <0 foreach Q € @;.
Thus, the convex cone # in (4.62) is reduced to the convex set
AL i=ANB =L°N(BNB),

where
B :={XeL| Eg[X]=y(Q)forQeq}

Let
Ai={Xel®|ItecR!'WithX+£-Y € BN B}

denote the resulting acceptance set for positions combined with a suitable hedge.
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Remark 4.101. The analogue
KN (BNB) =KNBy (4.65)

of our condition (4.63) looks weaker, but it is in fact equivalent to (4.63). Indeed, for
X € KX N B wecan find ¢ > 0 such that X := ¢X satisfies the additional constraints

Eo[X1]1=y(Q) forQ € @.

Since X| € KX N B N By, condition (4.65) implies X| € K N By, hence X = %Xl €
K N By, since K N By is a cone. <&

Letus now identify the convex measure of risk p induced by the convex acceptance
set +4 . Define

Ri={ Y M0 0 | M) 20 Y a@=1|>R

Qeq Q€@

as the convex hull of @ := @y U @1, and define

y(R) =Y MQ)¥(Q)

Qeq

for R = ZQ AQ)0Q € R with y(Q) := 0 for Q € Q.

Theorem 4.102. Under assumption (4.63), the convex risk measure p; induced by
the acceptance set A is given by

p1(X)= sup (E'[-X]+y(PY)), (4.66)
P*ePNRy

i.e., py is determined by the penalty function

400 for Q ¢ P N Ry,

M= 0) froernR..

Proof. Let p* denote the convex risk measure defined by the right-hand side of (4.66),
and let A* denote the corresponding acceptance set:
A* =X e L® | E*[X] > y(P") forall P* € PN R }.

It is enough to show A* :_Al. .
(a): In order to show A1 C A*, take X € 41 and P* € & N R;. There exists
£ eR%and A| € A suchthat X + & - Y > Aj. Thus,

EY[X+&-Y]=E[A1]=y(P),
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dueto P* € Ry. Since E*[£ - Y] =0dueto P* € £, we obtain E*[ X ] > y(P%),
hence X € A*.

(b): In order to show A* C /4, we take X € A* and assume that X ¢ 4. This
means that the vector x* = (x7, ..., x}) with components

xf i =Eg[X]1—y(Q))

does not belong to the convex cone

.....

where @ = Qo U @1 = {01, ..., On} with N > n. In part (c) of this proof we will
show that € is closed. Thus, there exists A € RY such that
A-x* <inf A-x; (4.67)
xeC
see Proposition A.1. Since C D Rﬁ, we obtain A; > Ofori =1,..., N, and we may

assume ) ; A; = 1 since A # 0. Define

N
R = Z)»,’Qi (S le.

i=1

Since C contains the linear space of vectors (E o[V ])l.:1
implies

v With V € X, (4.67)

.....

Er[V]=0 forV e X,

hence R € &#. Moreover, the right-hand side of (4.67) must be zero, and the condition
A - x* < 0 translates into
ER[X ] <y(R),

contradicting our assumption X € A*.
(c): It remains to show that € is closed. For £ € R? we define y(&) as the vector
in RV with coordinates y; (§) = E 0;[& - Y ]. Any x € C admits a representation

x=y(¢)+z

with z eRﬁ and £ € Nl,where
N:={neR!|Egln - Y]1=0fori=1,...,N},

and
N*t:=|geR?|¢-n=0forallne N }.

Take a sequence
Xp=yE&n) +zn, n=12,...,
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with &, € N-tandz, € Rﬁ, such that x; converges to x € RN If lim inf, |&,| < oo,
then we may assume, passing to a subsequence if necessary, that &, converges to
£ € RY. Inthiscase, z, must converge tosome z € RY, and wehave x = y(£)+z € C.
Let us now show that the case lim, |§,| = oo is in fact excluded. In that case,
oy = (1 + |§n|)_l converges to 0, and the vectors ¢, = «,&, stay bounded. Thus,
we may assume that ¢, converges to { € N-. This implies

. . N
y() = r}lTr;lo y(&n) = —l}lTr;loanzn € —RY.

Since { € N+ and |¢| = lim,, |¢,| = 1, we obtain y(¢) # 0. Thus, the inequality

Eg[(=0)-Y]=—yi({) =0

holds for all i and is strict for some i, in contradiction to our assumption (4.63). [

4.9 Shortfall risk

In this section, we will establish a connection between convex measures of risk and
the expected utility theory of Chapter 2.

Suppose that arisk-averse investor assesses the downside risk of a financial position
X € X by taking the expected utility E[u(—X )] derived from the shortfall X,
or by considering the expected utility E[u(X) ] of the position itself. If the focus
is on the downside risk, then it is natural to change the sign and to replace u by the
function £(x) := —u(—x). Then £ is a strictly convex and increasing function, and
the maximization of expected utility is equivalent to minimizing the expected loss
E[£(—X)] or the shortfall risk E[ £(X ™) ]. In order to unify the discussion of both
cases, we do not insist on strict convexity. In particular, £ may vanish on (—oo, 0],
and in this case the shortfall risk takes the form

E[£(X7)] = E[£(=X)].

Definition 4.103. A function £ : R — R is called a loss function if it is increasing
and not identically constant.

In this section, we will only consider convex loss functions. Let us return to the
setting where we consider risk measures defined on the class X of all bounded mea-
surable functions on some given measurable space (€2, ). First, we fix a probability
measure P on (€2, ). For a given convex loss function £ and an interior point xq in
the range of £, we define the following acceptance set:

A={XeX|E[L-X)]<x)} (4.68)
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Proposition 4.104. The acceptance set A defines a convex measure of risk p := p
which is continuous from below. Moreover, the minimal penalty function oy for p
is concentrated on M1(P), and p can be represented in the form

p(X)= max (Egl—X]— amin(Q)). (4.69)
QeM(P)
Proof. Clearly, the convex set + satisfies the first two properties of Proposition 4.6

(a), and so p is a convex measure of risk. We have to show that p is continuous from
below. Note first that

p(X)=inf{m e R | E[£(—m — X)] < xo }
is the unique solution to the equation
E[4(—z—X)] = xo0. (4.70)

Indeed, that p(X) solves (4.70) follows by dominated convergence, since the finite
convex function £ is continuous. The solution is unique, since ¢ is strictly increasing
on (£~ 1(xg) — €, 00) for some ¢ > 0.

Suppose now that (X)) is a sequence in X which increases pointwise to some
X € X.. Then p(X,) decreases to some finite limit R. Using the continuity of £ and
dominated convergence, it follows that

E[L(=p(Xn) — Xp)] — E[L(=R - X)].

But each of the approximating expectations equals xg, and so R is a solution to (4.70).
Hence R = p(X), and this proves continuity from below. Since p satisfies (4.28), the
representation (4.69) follows from Proposition 4.21 and Lemma 4.30. O

Let us now compute the minimal penalty function oy .

Example 4.105. For an exponential loss function £(x) = e#*, the minimal penalty
function can be described in terms of relative entropy, and the resulting risk measure
coincides, up to an additive constant, with the entropic risk measure introduced in
Example 4.33. In fact,

p(X) =inf {m e R| E[e Pt < x} = %(log E[e %] —logx).

In this special case, the general formula (4.17) for api, reduces to the variational
formula for the relative entropy H (Q|P) of Q with respect to P:

min(Q) = sup (EQ[—X] — llogE[e_ﬁX ]) — log_xo
XeX B B
1

ﬁ(H(QIP) —log xo) ;
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see Lemma 3.29. Thus, the representation (4.69) of p is equivalent to the following
dual variational identity:

1ogE[eX]=Q%?EP)(EQ[X]—H(QW))- <&

In general, the minimal penalty function oy on M1 (P) can be expressed in terms
of the Fenchel-Legendre transform or conjugate function £* of the convex function £
defined by

£*(z) == sup (zx — £(x)).
xeR
Theorem 4.106. For any convex loss function £, the minimal penalty function in the
representation (4.69) is given by
(Q) =i f1 + E| ¢* AdQ Q € M (P) 4.71)
i = inf — — , . .
#min 0 A\ dP :

To prepare the proof of Theorem 4.106, we summarize some properties of the
functions ¢ and £* as stated in Appendix A.1. First note that £* is a proper convex
function, i.e., it is convex and takes some finite value. We denote by J := (E*)’+ its
right-continuous derivative. Then, for x, z € R,

x7 < L(x) +£*(z) withequality if x = J(2). 4.72)

Lemma 4.107. Let (£,,) be a sequence of convex loss functions which decreases point-
wise to the convex loss function . Then the corresponding conjugate functions €
increase pointwise to £*.

Proof. It follows immediately from the definition of the Fenchel-Legendre transform
that each £, is dominated by £*, and that £ (z) increases to some limit €3 (z). We
have to prove that £, = £*.

The function z — £} (z) is a lower semicontinuous convex function as the in-
creasing limit of such functions. Moreover, £% is a proper convex function, since it
is dominated by the proper convex function £*. Consider the conjugate function £}
of £%,. Clearly, £5* > ¢, since £}, < £* and since £** = { by Proposition A.6. On
the other hand, we have by a similar argument that £> < ¢, for each n. By taking
n 4 oo, this shows £%} = ¢, which in turn gives £}, = £*. O

Lemma 4.108. The functions £ and £* have the following properties.
(a) £*(0) = —infycr £(x) and £*(z) > —£(0) for all 7.
(b) There exists some z1 € [0, 0o) such that

£*(z) = sup (xz — £(x)) forz>z.

x>0

In particular, £* is increasing on 71, 00).
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(2

Z

©

—> oo asz 1 oo.

Proof. Part (a) is obvious.

(b): Let N := {z € R | £*(z) = —£(0) }. We show in a first step that N # (.
Note that convexity of ¢ implies that the set S of all z with zx < £(x) — £(0) for all
x € R is non-empty. For z € S we clearly have £*(z) < —£(0). On the other hand,
€*(z) = —£(0) by (a).

Now we take z; := sup N. Itis clear that z; > 0. If z > z; and x < 0, then

xz —(x) < xz1 — £(x) < £7(z1) = —4(0),

where the last inequality follows from the lower semicontinuity of £*. But £*(z) >
—~£(0), hence
sup (xz — £(x)) < €*(2).

x<0
(c): Forz > z1,
0*(2)/z = sup (x — £(x)/2)

x>0
by (b). Hence
K*
(2) S,
Z
where x; := sup{x | £(x) < z}. Since £ is convex, increasing, and takes only finite
values, we have x, — oo as z 1 oo. O

Proof of Theorem 4.106. Fix Q € M(P), and denote by ¢ := dQ/d P its density.
First, we show that it suffices to prove the claim for xg > £(0). Otherwise we can find
some a € R such that £(—a) < xp, since xo was assumed to be an interior point of
L(R). Let £(x) := £(x — a), and

A={XeX|ELU-X)]<ux}.
Then,;(:{X—a | X € A}, and hence

sup EQ[—)N(] =sup Eg[—X]+a. 4.73)
XeA XeA

The convex loss function ¢ satisfies the requirement 0 (0) < x0. So if the assertion is
established in this case, we find that

- 1 ~ 1
sup Eg[—X 1= inf —(xo + E[£*(A¢)]) = inf —(xo + E[£*(A@)]) +a;
XeA 2>0 A A>0 A

here we have used the fact that the Fenchel-Legendre transform 7% of € satisfies
£*(z) = £*(z) + az. Together with (4.73), this proves that the reduction to the case
£(0) < xg is indeed justified.
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For any A > 0 and X € +, (4.72) implies

1 1
—X¢=-(=X09) = X(E(—X) + 5 (1)).

Hence, for any A > 0
1

omin(Q) = ;upA (E[ﬁ( X) 1+ E[*(p)]) < X( 0+ E[£* (1))
Thus, it remains to prove that
1
min(Q) = inf X(Xo + E[£*(9)]) (4.74)

in case where anin(Q) < oco. This will be done first under the following extra
conditions:

There exists k € R such that £(x) = inf £ for all x < «. 4.75)
£* is finite on (0, 00). (4.76)
J is continuous on (0, c0). 4.77)

Note that these assumptions imply that £*(0) < oo and that J (0+) > «. Moreover,
J (z) increases to +00 as z 1 00, and hence so does £(J(z)). Since

0*(z) = —€(0) > —xo forall z, (4.78)
it follows from (4.72) that
lim £(J — lim (£(J £* =limzJ(z) =0.
lim (J(2) —x0 < zlfg( (J(2) + £*(2)) lim 2 (2)

These facts and the continuity of J imply that for large enough n there exists some
An > 0 such that

[ (J()"l’l(p)l {p=<n} )] = X0.
Let us define
X" = —J )y
Then X" is bounded and belongs to +. Hence, it follows from (4.72) and (4.78) that

amin(Q) = Eg[ —X"]
1

= _E[ J()Lnﬁo)()\nﬁp)]

{p=<n}

= EL(X + 0 000) T, ]

1
= —(x0 =€) - Plo > n]+ E[£ G, ])

n
_ Yo~ E(O)‘
= —)‘n
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Since we assumed that opin (Q) < 00, the decreasing limit Ao, of A, must be strictly
positive. The fact that £* is bounded from below allows us to apply Fatou’s lemma:

1
omin(Q) = lim inf = (x0 —£(0) - PLg > n ]+ E[£* )], ., ])

1 *
> r(xo + E[£*(hoo9) 1)

This proves (4.74) under the assumptions (4.75), (4.76), and (4.77).

If (4.75) and (4.76) hold, but J is not continuous, then we can approximate the
upper semicontinuous function J from above with an increasing continuous function
J on [0, co) such that

() = (0 + fo Ty dy

satisfies _
(z) < € (2) < € ((1 +6)z) forz > 0.

Let { := £** denote the Fenchel-Legendre transform of £*. Since 0** = ¢ by
Proposition A.6, it follows that

5(1%) < T(x) < £(x).

Therefore,
A={XeX|ElX)]T<x)C|{0+aX|XecA)=A.

Since we already know that the assertion holds for Z we get that

o1 «f ,4Q 1 ~ (. dQ

= sup Eg[—X]
XeA

< sup Eg[—X]
XeA,

= (1 + &)amin(Q).

By letting ¢ | 0, we obtain (4.74).

Finally, we remove conditions (4.75) and (4.76). If £*(z) = +oo for some z,
then z must be an upper bound for the slope of £. So we will approximate £ by a
sequence (£,) of convex loss functions whose slope is unbounded. Simultaneously,
we can handle the case where £ does not take on its infimum. To this end, we choose
a sequence k, | inf £ such that x,, < £(0) < xo. We can define, for instance,

1 +
Ly(x) = L(x) V Kk, + ;(ex - DT,
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Then ¢,, decreases pointwise to £. Each loss function ¢, satisfies (4.75) and (4.76).
Hence, for any ¢ > 0 there are A, such that

1
00 > omin(Q) > o (Q) > A—S(XO + E[€;(A,9)]) —e foreachn,

n

where o (Q) is the penalty function arising from ¢,. Note that £; 7 £* by
Lemma 4.107. Our assumption omin(Q) < 00, the fact that

inf £ (z) > —€,(0) = —£(0) > —xo,
zeR

and part (c) of Lemma 4.108 show that the sequence (A{),en must be bounded away
from zero and from infinity. Therefore, we may assume that A! converges to some
Af € (0, 00). Using again the fact that £} (z) > —£(0) uniformly in n and z, Fatou’s
lemma yields

1 1
omin(Q) +& = “,f,f;gglf )\—S(XO +E[6;(9)]) = A—S(XO +E[ A 9) ).

n

This completes the proof of the theorem. 0

Example 4.109. Take

Lyr ifx >0,
£(x) =17 -
0 otherwise,

where p > 1. Then

l.g
) = 2 itz =0,
+o00 otherwise,

where ¢ = p/(p — 1) is the usual dual coefficient. We may apply Theorem 4.106 for
any xo > 0. Let Q € M (P) with density ¢ := dQ/dP. Clearly, onin(Q) = 400 if
@ ¢ L1(2, F, P). Otherwise, the infimum in (4.71) is attained for

1/q
_ PXo
AQ‘(EW]) '

Hence, we can identify amin (Q) for any Q < P as

al (Q) = (pxo)'/7 - E[ (@)q ]l/q.

dpP

Taking the limit p | 1, we obtain the case £(x) = x* where we measure the risk in
terms of the expected shortfall. Here we have

o

rin(Q) = xq -

g
dP

HOO
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Together with Proposition 4.19, Theorem 4.106 yields the following result for risk
measures which are defined in terms of a robust notion of bounded shortfall risk. Here
it is convenient to define £*(00) := oco.

Corollary 4.110. Suppose that @ is a family of probability measures on (2, ¥), and
that €, £*, and xo are as in Theorem 4.106. We define a set of acceptable positions by

A={XeX|Ep[(=X)]<xoforall P €@}.

Then the corresponding convex risk measure can be represented in terms of the penalty
function

1 d
(0) = irg)x(xo +int Ep[ﬁ*(kd—g) ]) 0 € M@, 7).

where dQ/dP is the density appearing in the Lebesgue decomposition of Q with
respect to P as in Theorem A.13.

Example 4.111. In the case of Example 4.105, the corresponding robust problem in
Corollary 4.110 leads to the following entropy minimization problem: For a given Q
and a set @ of probability measures, find

Inf H(Q|P).

Note that this problem is different from the standard problem of minimizing H (Q|P)
with respect to the first variable Q as it appears in Section 3.2. <

Example 4.112. Take xo = 0 in (4.68) and £(x) := x. Then

0 ifz=1,
t(2) = .
400 otherwise.
Therefore, «(Q) = coif Q # P, and p(X) = E[—X]. If @ is a set of probability
measures, the “robust” risk measure p of Corollary 4.110 is coherent, and it is given
by

p(X) = sup Ep[—X]. <&
Pe@
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Dynamic hedging






Chapter 5
Dynamic arbitrage theory

In this chapter we develop a dynamic version of the arbitrage theory of Chapter 1.
Here we will work in a multiperiod setting, where the stochastic price fluctuation of
a financial asset is described as a stochastic process in discrete time. Portfolios will
be successively readjusted, taking into account the information available at each time.
Market efficiency requires that such dynamic trading strategies do not create arbitrage
opportunities. In Section 5.2 we show that an arbitrage-free model is characterized
by the existence of an equivalent martingale measure. Under such a measure, the
discounted price processes of the traded assets are martingales, that is, they have the
mathematical structure of a fair game. In Section 5.3 we introduce European con-
tingent claims. These are financial instruments whose payoff at the expiration date
depends on the behavior of the underlying primary assets, and possibly on other fac-
tors. We discuss the problem of pricing such contingent claims in a manner which
does not create new arbitrage opportunities. The pricing problem is closely related to
the problem of hedging a given claim by using a dynamic trading strategy based on
the primary assets. An ideal situation occurs if any contingent claim can be perfectly
replicated by the final outcome of such a strategy. In such a complete model, the
equivalent martingale measure P* is unique, and derivatives are priced in a canon-
ical manner by taking the expectation of the discounted payoff with respect to the
measure P*. Section 5.5 contains a simple case study for completeness, the binomial
model introduced by Cox, Ross, and Rubinstein. In this context, it is possible to obtain
explicit pricing formulas for a number of exotic options, as explained in Section 5.6.
In Section 5.7 we pass to the limiting diffusion model of geometric Brownian motion.
Using a suitable version of the central limit theorem, we are led to the general Black—
Scholes formula for European contingent claims and to explicit pricing formulas for
some exotic options such as the up-and-in call.

The general structure of complete models is described in Section 5.4. There it will
become clear that completeness is the exception rather than the rule: Typical market
models in discrete time are incomplete.

5.1 The multi-period market model

Throughout this chapter, we consider a market model in which d + 1 assets are priced
at times r = 0, 1,..., T. The price of the i asset at time 7 is modelled as a non-
negative random variable Sj on a given probability space (2, ¥, P). The random
vector S; = (SO, Sy = (S9, Stl, e, S,d) is assumed to be measurable with respect



224 5 Dynamic arbitrage theory
to a o-algebra F; C F. One should think of ¥; as the class of all events which are
observable up to time ¢. Thus, it is natural to assume that

FoCcF C---C Fr. (5.1

Definition 5.1. A family (#;);—0
tion. In this case, (2, F, (£1)i—0

r of o-algebras satisfying (5.1) is called a filtra-
T, P) is also called a filtered probability space.

.....

.....

To simplify the presentation, we will assume that
Fo=1{0,Q2} and ¥F = Fr. 5.2)

Let (E, &) be a measurable space. A stochastic process with state space (E, §) is
given by a family of E-valued random variables on (€2, #, P) indexed by time. In
our context, the typical parameter sets will be {0, ..., T} or {1, ..., T}, and the state
space will be some Euclidean space.

Definition 5.2. Let (2, ¥, P) be a probability space and (¥;);—o,....r be a filtration.

(a) A stochastic process ¥ = (¥;);=0
filtration (7 ):=0

,,,,,

.....

.....

Note that in our definition predictable processes start at + = 1 while adapted
processes are also defined at + = 0. In particular, the asset prices S = (S;)r=0,...T
form an adapted stochastic process with values in R4t

Definition 5.3. A trading strategy is a predictable R?*!-valued process & = (¢°, &) =
(Szoigtls--‘vstd)t=l ..... T-

The value Sti of a trading strategy & corresponds to the quantity of shares of the

i asset held during the ™ trading period between ¢ — 1 and . Thus, é}f St’;1 is the

amount invested into the i" asset at time # — 1, while &/ S! is the resulting value at
time 7. The total value of the portfolio &, at time t — 1 is

d
Et -Si-1 = Zétl -1
i=0
By time ¢, the value of the portfolio £, has changed to
d
S =) &Sl
i=0

The predictability of & expresses the fact that investments must be allocated at the
beginning of each trading period, without anticipating future price increments.



5.1 The multi-period market model 225

Definition 5.4. A trading strategy £ is called self-financing if
£&-S;=&.,,-S fort=1,....,T —1. (5.3)

Intuitively, (5.3) means that the portfolio is always rearranged in such a way that its
present value is preserved. It follows that the accumulated gains and losses resulting
from the asset price fluctuations are the only source of variations of the portfolio value:

Evt Syt — &S =&11 (Sip1 — So). (5.4)

Infact, a trading strategy is self-financing if and only if (5.4) holds fort =1, ..., T—1.
It follows through summation over (5.4) that

t
E S =& -So+) E (Sk—Si1) fort=1,....T.
k=1

Here, the constant £, - Sy can be interpreted as the initial investment for the purchase
of the portfolio &.

Example 5.5. Often it is assumed that the 0 asset plays the role of a locally riskless
bond. In this case, one takes Sg = 1 and one lets S,O evolve according to a spot rate
r; > 0: At time ¢, an investment x made at time ¢ — 1 yields the payoff x(1 + r;).
Thus, a unit investment at time 0 produces the value

t
s0 = l_[(l + rg)
k=1

at time 7. An investment in S is “locally riskless” if the spot rate r, is known before-
hand at time # — 1. This idea can be made precise by assuming that the process r is
predictable. <&

Without assuming predictability as in the preceding example, we assume from
now on that

S,O >0 P-as. forallz.

This assumption allows us to use the 0™ asset as a numéraire and to form the discounted
price processes
. Si
X;:=—, t=0,....,T,i=0,....d.
Si

Then X? =1,and X; = (X!, ..., Xfl) expresses the value of the remaining assets in
units of the numéraire. As explained in Remark 1.9, discounting allows comparison
of asset prices which are quoted at different times.
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T associated with a

.....

Definition 5.6. Ihe (discounted) value process V. = (V;)=o
trading strategy & is given by

Vo:=&,-Xo and V,:=%,-X, fort=1,...,T.

The gains process associated with £ is defined as

!
Go:=0 and G,:=) & (Xx—Xg_1) fort=1,...T.
k=1

Clearly,

S?

so V; can be interpreted as the portfolio value at the end of the ™ trading period
expressed in units of the numéraire asset. The gains process

t
Gr=) & (Xx—Xk1)

k=1

reflects, in terms of the numéraire, the net gains which have accumulated through the
trading strategy & up to time ¢. For a self-financing trading strategy £, the identity

t
S, = -So+ ) & (Sk—Sk-1) (5.5)
k=1

remains true if all relevant quantities are computed in units of the numéraire. This is
the content of the following simple proposition.

Proposition 5.7. For a trading strategy & the following conditions are equivalent:
(@) & is self-financing.
)& X =&, - X, fort=1,...,T — 1.
t
(© Vi=Vo+G =& KXo+ & (X = Xe—1) forallt.
k=1

Proof. By dividing both sides of (5.3) by S,0 it is seen that condition (b) is a reformu-
lation of Definition 5.4. Moreover, (b) holds if and only if

§t+1 ‘YIH - Et 'YI = gz-i-l : (YH-I _Yt) = ft-i—l : (XI—H - X;)

fort = 1,...,T — 1, and this identity is equivalent to (c). O



5.2 Arbitrage opportunities and martingale measures 227

Remark 5.8. The numéraire component of a self-financing trading strategy £ satisfies

£, &0 =~ —&) - X, forr=1,...,T—1. (5.6)

Since
£) = Vo — & - Xo, (5.7)

the entire process £ is determined by the initial investment Vy and the d-dimensional
process &. Consequently, if a constant Vjy and an arbitrary d-dimensional predictable
process & are given, then we can use (5.7) and (5.6) as the definition of a predictable
process £°, and this construction yields a self-financing trading strategy & := (£°, &).
In dealing with self-financing strategies £, it is thus sufficient to focus on the initial
investment Vj and the d-dimensional processes X and &. <

Remark 5.9. Different economic agents investing into the same market may choose
different numéraires. For example, consider the following simple market model in
which prices are quoted in euros (€) as the domestic currency. Let S° be a locally
riskless €-bond with the predictable spot rate process 7', i.e.,

t
st =TTa+r,
k=1

and let S' describe the price of a locally riskless investment into US dollars ($). Since
the price of this $-bond is quoted in €, the asset § I is modeled as

t
St =U-[]a+r.
k=1

where r! is the spot rate for a $-investment, and U, denotes the price of 1$ in terms
of €, i.e., U, is the exchange rate of the $ versus the €. While it may be natural for
European investors to take S¥ as their numéraire, it may be reasonable for an American
investor to choose S'. This simple example explains why it may be relevant to check
which concepts and results of our theory are invariant under a change of numéraire;
see, e.g., the discussion at the end of Section 5.2. <&

5.2 Arbitrage opportunities and martingale measures

Intuitively, an arbitrage opportunity is an investment strategy that yields a positive
profit with positive probability but without any downside risk.

Definition 5.10. A self-financing trading strategy is called an arbitrage opportunity
if its value process V satisfies

Vo<0, Vyr>0 P-as., and P[Vyr>0]>0.
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The existence of such an arbitrage opportunity may be regarded as a market in-
efficiency in the sense that certain assets are not priced in a reasonable way. In this
section, we will characterize those market models which do not allow for arbitrage
opportunities. Such models will be called arbitrage-free. The following proposition
shows that the market model is arbitrage-free if and only if there are no arbitrage
opportunities for each single trading period. Later on, this fact will allow us to apply
the results of Section 1.6 to our multi-period model.

Proposition 5.11. The market model admits an arbitrage opportunity if and only if
there existt € {1,...,T}andn € LY9Q, Fioy, P; ]Rd) such that

n-(X; —X,—1) >0 P-as.,and P[n-(X; —X;—1) >0]>0. (5.8)
Proof. To prove necessity, take an arbitrage opportunity £ = (£°, &) with value process

V, and let
t:=min{k| Vi >0 P-as,and P[V; >0]>0]}.

Then ¢t < T by assumption, and either V;_; = 0 P-a.s. or P[V,_] < 0] > 0. In the
first case, it follows that

& - X —Xe—)=Vi = V1=V, P-as.

Thus, n := & satisfies (5.8). In the second case, we let n := & I{V,_1<O}‘ Then 7 is
F;_1-measurable, and
n- (Xl - Xt—l) = (‘/t - Vt_l)I{Vt7|<0} = _‘/t—l I{V,,1<O}'

The expression on the right-hand side is non-negative and strictly positive with a
positive probability, so (5.8) holds.

Now we prove sufficiency. For ¢ and 7 as in (b), define a d-dimensional predictable
process & by

n ifs=t,
& =

|0 otherwise.

Via (5.7) and (5.6), £ uniquely defines a self-financing trading strategy £ = (£9, &)
with initial investment Vo = 0. Since the corresponding value process satisfies
Vr =n-(X; — X;—1), the strategy & is an arbitrage opportunity. O

Definition 5.12. A stochastic process M = (M;);—o,...,7 on a filtered probability
space (2, F, (¥;), Q) is called amartingale if M is adapted, satisfies Eg[ |M;|] < oo
for all ¢, and if

My =Eg[M; | 5] forO<s=<t<T. (5.9

A martingale can be regarded as the mathematical formalization of a “fair game™:
For each time s and for each horizon ¢ > s, the conditional expectation of the future
gain M; — M is zero, given the information available at s.
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Remark 5.13. Clearly, (5.9) is equivalent to the following condition:
M; =Eg[Miy1| F1 forO0<t<T-—1.

Taking t = T in (5.9), we see that, in our context of a finite time horizon, a process
M is a martingale if and only if it arises as a sequence of successive conditional
expectations Eg[ F | ;] for some F € LY, Fr, Q). Consider, for example, the
density process

40

Z = ,
dQ s

t=0,...,T,
of a probability measure é that is absolutely continuous with respect to Q. It follows
from Proposition A.11 that Z, = Eg[ Z | ¥; ], so that Z is a martingale. &

Whether or not a given process M is a martingale depends on the underlying
probability measure Q. If we wish to emphasize the dependence of the martingale
property of M on a particular measure Q, we will say that M is a Q-martingale or
that M is a martingale under the measure Q.

Definition 5.14. A probability measure Q on (€2, F7) is called a martingale measure
if the discounted price process X is a (d-dimensional) Q-martingale, i.e.,

Ego[X!1<oo and X! =Ep[X!|%], 0<s<t<T,i=1,...,d.

A martingale measure P* is called an equivalent martingale measure if it is equivalent
to the original measure P on F7. The set of all equivalent martingale measures is
denoted by .

The following result is a version of Doob’s fundamental “systems theorem” for
martingales. It states that a fair game admits no realistic gambling system which
produces a positive expected gain. Here, Y~ denotes the negative part —Y A 0O of a
random variable Y.

Theorem 5.15. For a probability measure Q, the following conditions are equivalent.
(a) Q is a martingale measure.

(b) I_f & = (&9, &) is self-financing and & is bounded, then the value process V of
& is a Q-martingale.

() If€ = (&9, &) is self-financing and its value process V satisfies Eg[ V] < 00,
then V is a Q-martingale.

(d) If € = (&9, &) is self-financing and its value process V satisfies Vr > 0 Q-a.s.,
then EQ[ Vrl=W.
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Proof. (a)=(b): Let V be the value process of a self-financing trading strategy
£ = (&9, &) such that |£] is bounded by a constant c. Then

t
Vil < Vol + ) e(1Xkl + | Xi—1l).
k=1

Since each | X | belongs to L1(0), we have Egl|Vi]] < co. Moreover, for0 <t <
T —1,

EolVig1 | Fi1=Eg[ Vi + &1 - (Xip1 — X0) | 71 ]
=Vi+&+1-Eol Xe1 — Xo | F]
=V,

where we have used that &, is #;-measurable and bounded.
(b) = (c): We will show the following implication:

IfEg[V, ] <oothen Eg[ V| Fi—1] = Vi1. (5.10)
Since Eg[ V; ] < oo by assumption, we will then get
EglVi_ 1= EQ[EolVr | Fr-11" ] < EqlV; 1 < 0,

due to Jensen’s inequality for conditional expectations. Repeating this argument will
yield Eg[V, ] < cocand Eg[ V; | F,-1] = V;_1 forallz. Since Vj is a finite constant,
we will also get Eg[ Vi ] = Vp, which together with the fact that Eg[V,” ] < o0
implies V; € £!(Q) for all . Thus, the martingale property of V will follow.

To prove (5.10), note first that Eg[ V; | F;_1 |is well defined due to our assumption

EglV, ] < co. Next, let @ = ¢ Lie<q) fora > 0. Then Y (X, = X,-1) s
(@)

a martingale increment by condition (b). In particular, & - (X; — X;_1) € L1(0)
and Eg[ £ - (X, — X,_1) | F,_1] = 0. Hence,

EolVi | Fioi 1 oy = EQl Vil oy | Fiot 1= EQI&” - (X0 — X;1) | Fia ]

= EQ[Vt I{|g,\5a} - t(a) Xy — Xi—1) | fc’z—l]
=Eo[ Vi1 Tyg g | Fi-1]
=Vi-t Ly, <o

By sending a 1 0o, we obtain (5.10).
(c)= (d): By (5.2), every Q-martingale M satisfies

My = Eg[Mr | Fol = Eg[M7].

(d) = (a): To prove that X f e L1(Q) for given i and ¢, consider the deterministic
process & defined by *;‘S" = I{s<t} and &/ := 0 for j # i. By Remark 5.8, £ can be
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complemented with a predictable process § O such that &€ = (£, £) is a self-financing
strategy with initial investment Vo = X{,. The corresponding value process satisfies

T
Vr=Vot+ ) & (X;— X, 1) =X >0.

s=1

From (d) we get ‘ ‘
EQ[X;]zEQ[VT]: V():X(l), (5.11)

which yields X; € £'(Q). , .
Condition (a) will follow if we can show that Eg[ X;; A] = Eg[X;_,; A] for
givent,i,and A € ;. To this end, we define a d-dimensional predictable process 7

by nf; = I{s<t} + IACI{S:l} and ] := 0 for j # i. As above, we take a predictable
process n° such that 7 = (1°, n) is a self-financing strategy with initial investment

Vo = Xé. Its terminal value is given by

T
Vr=Vo+ Y - Xy — Xs1) = X{1,. + X] 11, >0,

s=1

Using (d) yields
Xh=Vo=EglVr1=EglX!; A1+ Eo[X_,; Al.

By comparing this identity with (5.11), we conclude that E o [XI: Al = Eg [Xf_1 ; Al
O

Remark 5.16. (a) Suppose that the “objective” measure P is itself a martingale mea-
sure, so that the fluctuation of prices may be viewed as a fair game. In this case, the
preceding proposition shows that there are no realistic self-financing strategies which
would generate a positive expected gain. Thus, the assumption P € P is a strong
version of the so-called efficient market hypothesis. For a market model containing
a locally risk-less bond, this strong hypothesis would imply that risk-averse investors
would not be attracted towards investing into the risky assets if their expectations are
consistent with P; see Example 2.43.

(b) The strong assumption P € & implies, in particular, that there is no arbitrage
opportunity, i.e., no self-financing strategy with positive expected gain and without
any downside risk. Indeed, Theorem 5.15 implies that the value process of any self-
financing strategy with Vy < 0 and V7 > O satisfies E[ V7 ] = Vp, hence V7 =0 P-
almost surely. The assumption that the market model is arbitrage-free may be viewed
as a much milder and hence more flexible form of the efficient market hypothesis. <

We can now state the following dynamic version of the “fundamental theorem of
asset pricing”, which relates the absence of arbitrage opportunities to the existence of
equivalent martingale measures.
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Theorem 5.17. The market model is arbitrage-free if and only if the set P of all
equivalent martingale measures is non-empty. In this case, there exists a P* € P
with bounded density d P*/d P.

Proof. Suppose first that there exists an equivalent martingale measure P*. Then it
follows as in Remark 5.16 (b) that the market model in which the probability measure
P is replaced by P* is arbitrage-free. Since the notion of an arbitrage opportunity
depends on the underlying measure only through its null sets and since these are
common for the two equivalent measures P and P*, it follows that also the original
market model is arbitrage-free.

Let us turn to the proof of the converse assertion. For ¢ € {1, ..., T}, we define

Kio={n- X, = X;1) | neL(Q, F_t, P;RY }. (5.12)
By Proposition 5.11, the market model is arbitrage-free if and only if
KN LYL(Q, F7, P) = {0} (5.13)

holds for all . Note that (5.13) depends on the measure P only through its null sets.

Condition (5.13) allows us to apply Theorem 1.54 to the 1! trading period. For
t = T we obtain a probability measure Pr =~ P which has a bounded density d Pr/d P
and which satisfies

Er[Xr—Xr_1 | Fr11=0.

Now suppose that we already have a probability measure 13,+1 ~ P with a bounded
density d P;11/d P such that

Epi[ Xp — Xe—1 | Fee11=0 forr+1<k<T. (5.14)

The equivalence of Pt+1 and P implies that (5.13) also holds with P replaced by P,_H
Applying Theorem 1.54 to the ¢ trading perlod ylelds a probability measure Pt with
a bounded ¥;-measurable density Z; :=d P, /d Pt+1 > 0 such that

EdX: — X1 | F-11=0.
Clearly, P is equivalent to P and has a bounded density, since

dP,  dP, dPy,
dP  gp,, dP

is the product of two bounded densitigs. Moreover, ift+1 <k < T, Proposition A.12
and the #;-measurability of Z; = d P;/d P;+1 imply
Ei[ (Xe = Xi-1)Z1 | Fat]
Et+1[Zt | Tk—l]
= Err1[ Xk — Xp—1 | Fi—11
=0.

ElXy—Xp_1 | Fii]=
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Hence, (5.14) carries over from 13,“ to F, We can repeat this recursion until finally
P* := P yields the desired equivalent martingale measure. O

Clearly, the absence of arbitrage in the market is independent of the choice of the
numéraire, while the set & of equivalent martingale measures generally does depend
on the numéraire. In order to investigate the structure of this dependence, suppose
that the first asset S! is P-a.s. strictly positive, so that it can serve as an alternative
numéraire. The price process discounted by S! is denoted by

so 52 Sfd)—S’OY

Aol Ty T T - 7 5 t=0,...,T.
st st) st

Y, =@l vl ... vd) = (

Let £ be the set of equivalent martingale measures for Y. Then P # () if and only
it # # , according to Theorem 5.17 and the fact that the existence of arbitrage
opportunities is independent of the choice of the numéraire.

Proposition 5.18. The two sets P and P are related via the identity

~ (=, dP* X}
?:{P*’ =—€fors0meP*e{P}.
XO

dP*
Proof. The process X/ Xé is a P*-martingale for any P* € #. In particular,
E*[ XIT/X(I)] = 1, and the formula
dP* X}
dpP* X}

defines a probability measure P* which is equivalent to P. Moreover, by Proposi-
tion A.12,
EYY | F]= —7 E[Y:- X[ 5]

CEF[X, | F]

@ —

~

Hence, P*isan equivalent martingale measure for Y, and it follows that

~ ~.  dP* X} i}
JPD{P ‘ *=—1f0rsomeP eJP}.
dP X

Reversing the roles of X and Y yields the identity of the two sets. O
Remark 5.19. Unless X IT 1s P-a.s. constant, the two sets & and P satisfy
PNP =0

This can be proved as in Remark 1.10. <
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5.3 European contingent claims

A key topic of mathematical finance is the analysis of derivative securities or contingent
claims, i.e., of certain assets whose payoff depends on the behavior of the primary
assets SO, S 1, R s and, in some cases, also on other factors.

Definition 5.20. A non-negative random variable C on (2, 7, P) is called a Eu-
ropean contingent claim. A European contingent claim C is called a derivative of
the underlying assets S, S, ..., §¢ if C is measurable with respect to the o -algebra
generated by the price process (S) 1=0,...T-

A European contingent claim has the interpretation of an asset which yields at
time 7 the amount C(w), depending on the scenario w of the market evolution. T is
called the expiration date or the maturity of C. Of course, maturities prior to the final
trading period T of our model are also possible, but unless it is otherwise mentioned,
we will assume that our European contingent claims expire at 7. In Chapter 6, we will
meet another class of derivative securities, the so-called American contingent claims.
As long as there is no risk of confusion between European and American contingent
claims, we will use the term “contingent claim” to refer to a European contingent
claim.

Example 5.21. The owner of a European call option has the right, but not the obli-
gation, to buy an asset at time T for a fixed price K, called the strike price. This
corresponds to a contingent claim of the form

Ccall — (S% _ K)+

Conversely, a European put option gives the right, but not the obligation, to sell the
asset at time 7 for a strike price K. This corresponds to the contingent claim

Cp“t:(K—S;w)Jr, S
Example 5.22. The payoff of an Asian option depends on the average price

. 1 .
Sév = m ZS;

teT

of the underlying asset during a predetermined set of periods T C {0,...,T}. For
instance, an average price call with strike K corresponds to the contingent claim

Csl = (8h, - K
and an average price put has the payoff
Ch = (K — Si)™.

Average price options can be used, for instance, to secure regular cash streams against
exchange rate fluctuations. For example, assume that an economic agent receives at
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each time ¢ € T a fixed amount of a foreign currency with exchange rates S'. In
this case, an average price put option may be an efficient instrument for securing the
incoming cash stream against the risk of unfavorable exchange rates.

An average strike call corresponds to the contingent claim

Sy — S
while an average strike put pays off the amount
(St — ST,

An average strike put can be used, for example, to secure the risk from selling at time T
a quantity of an asset which was bought at successive times over the period T. <&

Example 5.23. The payoff of a barrier option depends on whether the price of the
underlying asset reaches a certain level before maturity. Most barrier options are
either knock-out or knock-in options. A knock-in option pays off only if the barrier B
is reached. The simplest example is a digital option

‘ 1 if max S' > B,
cdie .— 0<t<T

0 otherwise,

which has a unit payoff if the price processes reaches a given upper barrier B > Sé.
Another example is the down-and-in put with strike price K and lower barrier B < Sé
which pays off
K —Si)T if min S < B,
cht .= ( r) o<i<T '~
d&i .
otherwise.

A knock-out barrier option has a zero payoff once the price of the underlying asset
reaches the predetermined barrier. For instance, an up-and-out call corresponds to the
contingent claim

(St — K)* if max S! < B,

Ccall . 0<t<T
u&o ‘T .
otherwise;
see Figure 5.1. Down-and-out and up-and-in options are defined analogously. <&

Example 5.24. Using a lookback option, one can trade the underlying asset at the
maximal or minimal price that occurred during the life of the option. A lookback call
has the payoff
Si. — min S,
0<t<T

while a lookback put corresponds to the contingent claim

max S; — Sp. &
0<t<T
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T

Figure 5.1. In one scenario, the payoff of the up-and-out call becomes zero because the stock
price hits the barrier B before time T'. In the other scenario, the payoff is given by (S — K)T.

The discounted value of a contingent claim C when using the numéraire S° is
given by
C

H:=—.
S7

We will call H the discounted European claim or just the discounted claim associated
with C. Inthe remainder of this text, “ H”” will be the generic notation for the discounted
payoff of any type of contingent claim.

The reader may wonder why we work simultaneously with the notions of a con-
tingent claim and a discounted claim. From a purely mathematical point of view,
there would be no loss of generality in assuming that the numéraire asset is identically
equal to one. In fact, the entire theory to be developed in Part II can be seen as a
discrete-time “stochastic analysis” for the d-dimensional process X = (X Lo xd
and its “stochastic integrals”

t
D & (X — Xi)

k=1

of predictable d-dimensional processes £. However, some of the economic intuition
would be lost if we would limit the discussion to this level. For instance, we have
already seen the economic relevance of the particular choice of the numéraire, even
though this choice may be irrelevant from the mathematician’s point of view. As acom-
promise between the mathematician’s preference for conciseness and the economist’s
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concern for keeping track explicitly of economically relevant quantities, we develop
the mathematics on the level of discounted prices, but we will continue to discuss
definitions and results in terms of undiscounted prices whenever it seems appropriate.
From now on, we will assume that our market model is arbitrage-free or, equiva-
lently, that
P £0.

Definition 5.25. A contingent claim C is called attainable (replicable, redundant) if
there exists a self-financing trading strategy & whose terminal portfolio value coincides
with C, i.e.,

C=E&;-Sr P-as.

Such a trading strategy & is called a replicating strategy for C.

Clearly, a contingent claim C is attainable if and only if the corresponding dis-
counted claim H = C/ Sg is of the form

T
H=Er - Xr=Vr=Vo+) & (X — Xi_1),

t=1

for a self-financing trading strategy & = (£°, &) with value process V. In this case,
we will say that the discounted claim H is attainable, and we will call £ a replicating
strategy for H. The following theorem yields the surprising result that an attainable
discounted claim is automatically integrable with respect to every equivalent mar-
tingale measure. Note, however, that integrability may not hold for an attainable
contingent claim prior to discounting.

Theorem 5.26. Any attainable discounted claim H is integrable with respect to each
equivalent martingale measure, i.e.,

E*[H] < oo forall P* € P.
Moreover, for each P* € P the value process of any replicating strategy satisfies
Vi=E*[H| ¥/ P-as. fort=0,...,T.

In particular, V is a non-negative P*-martingale.

Proof. This follows from Vr = H > 0 and the systems theorem in the form of
Theorem 5.15. O

Remark 5.27. The identity
Vi=E*[H|¥%] t=0,...,T,

appearing in Theorem 5.26 has two remarkable implications. Since its right-hand side
is independent of the particular replicating strategy, all such strategies must have the
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same value process. Moreover, the left-hand side does not depend on the choice of
P* € £. Hence, V; is a version of the conditional expectation E*[ H | ¥; ] for every
P* € ». In particular, E*[ H ] is the same for all P* € £. &

Remark 5.28. When applied to an attainable contingent claim C prior to discounting,
Theorem 5.26 states that
- = C
0
& -8 =SzE*|:S_O

)?,:I r=0,....T.
T

P-as. for all P* € £ and for every replicating strategy £. In particular, the initial
investment which is needed for a replication of C is given by

- C
51‘50=58E*[_0}' ¢
ST

Let us now turn to the problem of pricing a contingent claim. Consider first a
discounted claim H which is attainable. Then the (discounted) initial investment

& -Xo=Vo=E*[H] (5.15)

needed for the replication of H can be interpreted as the unique (discounted) “fair
price” of H. In fact, a different price for H would create an arbitrage opportunity.
For instance, if H could be sold at time O for a price 7 which is higher than (5.15),
then selling H and buying the replicating portfolio & yields the profit

ﬁ—gl'Y0>0

at time 0, although the terminal portfolio value V7 = £ - X1 suffices for settling the
claim H at maturity 7. In order to make this idea precise, let us formalize the idea of
an “arbitrage-free price” of a general discounted claim H.

Definition 5.29. A real number 7 > 0 is called an arbitrage-free price of a dis-
counted claim H, if there exists an adapted stochastic process X¢*! such that

Xg+1 = nH,
X' >0 forr=1,...,T —1,and (5.16)
Xc;-i—l —H,

and such that the enlarged market model with price process (X 0 xt ..., x4 x d+1)

is arbitrage-free. The set of all arbitrage-free prices of H is denoted by IT(H). The
lower and upper bounds of I1(H) are denoted by

m(H) :=inf [1(H) and m,,(H) :=supll(H).
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Thus, an arbitrage-free price 77 of a discounted claim H is by definition a price at
which H can be traded at time O without introducing arbitrage opportunities into the
market model: If H is sold for 7z, then neither buyer nor seller can find an investment
strategy which both eliminates all the risk and yields an opportunity to make a positive
profit. Our aim in this section is to characterize the set of all arbitrage-free prices of
a discounted claim H.

Note that an arbitrage-free price ' is quoted in units of the numéraire asset. The
amount that corresponds to 7 7 in terms of currency units prior to discounting is equal
to

C._ OH
b1 07T

and 7€ is an (undiscounted) arbitrage-free price of the contingent claim C := SgH .

Theorem 5.30. The set of arbitrage-free prices of a discounted claim H is non-empty
and given by

N(H)={E[H]| P*€Pand E*[H] < ¢ }. (5.17)
Moreover, the lower and upper bounds of T1(H) are given by

ww(H) = inf E*[H] and 7., (H)= sup E*[H].
Prep Prep

Proof. By Theorem 5.17, 7 is an arbitrage-free price for H if and only if we can
find an equivalent martingale measure P for the market model extended via (5.16).
P must satisfy

X = E[X} | F] fort=0,...,Tandi=1,...,d+1.

In particular, P belongs to & and satisfies 77 = E [ H ]. Thus, we obtain the inclusion
Cin (5.17).
Conversely, if 71 = E*[ H | for some P* € £, then we can define the stochastic
process
X = E*[H | %], t=0,....T

which satisfies all the requirements of (5.16). Moreover, the same measure P* is
clearly an equivalent martingale measure for the extended market model, which hence
is arbitrage-free. Thus, we obtain the identity of the two sets in (5.17).

To show that IT(H) is non-empty, we first fix some measure P ~ P such that
E[ H ] < oo. For instance, we can take dP = c(1+ H)~'d P, where c is the normal-
izing constant. Under P, the market model is arbitrage-free. Hence, Theorem 5.17
yields P* € & such that d P*/d P is bounded. In particular, E*[ H ] < oo and hence
E*[H]eIl(H).

The formula for m,(H) follows immediately from (5.17) and the fact that
IT(H) # . The one for ,,,(H) needs an additional argument. Suppose that P> € P
is such that E°°[ H] = oo. We must show that for any ¢ > 0 there exists some
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m € TI(H) with m > c. To this end, let n be such that 7 := E*°[H An] > c, and
define

X = E®[HAn| %], t=0,...,T.

Then P°° is an equivalent martingale measure for the extended market model
(X9, ..., X4, X%y, which hence is arbitrage-free. Applying the already estab-
lished fact that the set of arbitrage-free prices of any contingent claim is nonempty
to the extended market model yields an equivalent martingale measure P* for
(X0, ..., x4, x4y such that E*[H] < oo. Since P* is also a martingale
measure for the original market model, the first part of this proof implies that
7 := E*[ H] € T1(H). Finally, note that

m=E[H]>E [HAn]l=E X1 =xt" =7 >c.

Hence, the formula for m,,,(H) is proved. Ll

up
Example 5.31. In an arbitrage-free market model, we consider a European call op-
tion C*' = (S1 — K)* with strike K > 0 and with maturity 7. We assume that the
numéraire S° is the predictable price process of a locally riskless bond as in Exam-
ple5.5. Then S is increasing in # and satisfies S = 1. Forany P* € #, Theorem 5.30
yields an arbitrage-free price 7 of C*!! which is given by

Ccall K +
{410 §))
ST ST

Due to the convexity of the function x — x* = x Vv 0 and our assumptions on S°,
7 can be bounded below as follows:

. KT\ KT\*
ngduZ(E*[XlT_S_O}> Z(Sé_E*[S_O]> 2(5‘6_[()+,
T T

In financial language, this fact is usually expressed by saying that the value of the
option is higher than its “intrinsic value” (Sé — K)T, i.e., the payoff if the option were
exercised immediately. The difference of the price 7! of an option and its intrinsic
value is often called the “time-value” of the European call option; see Figure 5.2. <

Example 5.32. For a European put option CP"* = (K — S})Jr, the situation is more
complicated. If we consider the same situation as in Example 5.31, then the analogue
of (5.31) fails unless the numéraire S is constant. In fact, as a consequence of the
put-call parity, the “time value” of a put option whose intrinsic value is large (i.e., the
option is “in the money”) usually becomes negative; see Figure 5.3. <&



5.3 European contingent claims 241

K sl

Figure 5.2. The typical price of a call option as a function of Sé is always above the option’s
intrinsic value (S(l) —K)T.

1
K s}

Figure 5.3. The typical price of a European put option as a function of Sé compared to the
option’s intrinsic value (K — Sé)"'.

Our next aim is to characterize the structure of the set of arbitrage-free prices of a
discounted claim H. It follows from Theorem 5.30 that every arbitrage-free price
of H must lie between the two numbers

Tw(H) = inf E*[H] and n,,(H)= sup E*[H].

P*ep Prep

We also know that m,(H) and m,,,(H) are equal if H is attainable. The following
theorem shows that also the converse implication holds, i.e., H is attainable if and
Only if Trinf(H) = Trsup(H)'
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Theorem 5.33. Let H be a discounted claim.

(a) If H is attainable, then the set T1(H) of arbitrage-free prices for H consists of
the single element Vi, where V is the value process of any replicating strategy
for H.

(b) If H is not attainable, then m,«(H) < m,,(H) and
M(H) = (m.(H), 7,,(H)).

Proof. The first assertion follows from Remark 5.27 and Theorem 5.30.
To prove (b), note first that

M(H)={E*[H]| P*e P, EX[H] < 00}

is an interval because  is a convex set. We will show that IT(H) is open by construct-
ing for any 7 € I1(H) two arbitrage-free prices 7 and 7 for H such that7w < 7w < 7.
To this end, take P* € & such that 7 = E*[ H ]. We will first construct an equivalent
martingale measure P € # such that E [H]> E*[H]. Let

U :=E*[H| %], t=0,...,T,

so that
T
H=Uo+ ) (U~ Us-1).
=1
Since H is not attainable, there must be some ¢ € {1, ..., T} such that Uy — U;_| ¢

J; N L'(P*), where
Ki={n X, —X;-1) | neL%Q, F_1. P;RY }.

By Lemma 1.68, K, N L'(P*) is a closed linear subspace of LY, F, P¥).
Therefore, Theorem A.56 applied with B := {U; — U;_1} and C := K; N L'(P*)
yields some Z € L*°(2, F;, P*) such that

sup {E¥[W Z1| W e X, NLY(P"} < E[(U; — U;—1) Z] < oo.
From the linearity of K; N L'(P*) we deduce that
EX¥{WZ]=0 foral W e X, NLY(P"), (5.18)

and hence that
E*[(U; —U;—1)Z]>0. (5.19)

There is no loss of generality in assuming that |Z| < 1/3, so that

Z:=14+Z—E*Z|F_1]
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can be taken as the density d P /d P* = Z of a new probability measure P ~ P. Since
Z is F;-measurable, the expectation of H under P satisfies

E[H]=E*[HZ]
= E*[H1+ E*[E*[H | F1Z] - E*[E*[H | Hi 1 E*[Z | Fi1]]
=E*[H]+ E*[U;Z]— E*[U;—1 Z]
> E*[H],

where we have used (5.19) in the last step. On the other hand, E [H] < %E *TH] <

co. Thus, # := E[ H ] will yield the desired arbitrage-free price larger than 7 if we
have P € 2.

Let us prove that P e P. Fork > t, the Fi-measurability of Z and Proposi-
tion A.12 yield that

E[ Xy —Xi_1 | Fio1 1= E*[ X5 — Xi_1 | Fi11=0.

ForkA = t, (5.18) yields E*[(X; — X;—1)Z | Fi1—1] = 0. Thus, it follows from
E*[Z | F:_1]1 =1 that

E[X,— X,—1 | Fim1]
=E* (X, = XimD)(1 = E*[Z | F-)) | Fimr |+ EX (X — Xi—DZ | Fioi ]
=0.
Finally, if k < ¢ then P* and P coincide on F%. Hence
E[Xp — Xp—1 | Fic1]= E*[ X — Xp—1 | Fio11=0,

and we may conclude that Pep.
It remains to construct another equivalent martingale measure P such that

#:=E[H]<E*[H]=m. (5.20)
But this is simply achieved by letting

dp dP

dP* " dP*

El

which defines a probability measure P ~ P, because the density d P /d P* is bounded
above by 5/3 and below by 1/3. P € & is then obvious as is (5.20). 0

Remark 5.34. So far, we have assumed that a contingent claim is settled at the termi-
nal time T'. A natural way of dealing with an ¥7,-measurable payoff Cp > 0 maturing
at some time Ty < T is to apply our results to the corresponding discounted claim

Co

Hy := —
0
ST,
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in the market model with the restricted time horizon Ty. Clearly, this restricted model
is arbitrage-free. An alternative approach is to invest the payoff Cq at time Ty into the
numéraire asset S°. At time 7, this yields the contingent claim

SO
C:=Co—-
ST0
whose discounted claim
_ C Co
ST STO

is formally identical to Hy. Moreover, our results can be directly applied to H. It is
intuitively clear that these two approaches for determining the arbitrage-free prices of
Co should be equivalent. A formal proof must show that the set [1(H) is equal to the
set

MI(Ho) := { E§[ Hol| Py € Poand EG[Ho | < 00 }

of arbitrage-free prices of Hp in the market model whose time horizon is 7p. Here,
#o denotes the set of measures P on (2, F7,) which are equivalent to P on F7, and
which are martingale measures for the restricted price process (X;);=o,..., 7, Clearly,
each P* € & defines an element of Jy by restricting P* to the o-algebra ¥7,. In fact,
Proposition 5.35 below shows that every element in & arises in this way. Thus, the
two sets of arbitrage-free prices for H and Hy coincide, i.e.,

[T(H) = I1(Ho)
It follows, in particular, that Hy is attainable if and only if H is attainable. <&

Proposition 5.35. Consider the situation described in Remark 5.34 and let P§ € P
be given. Then there exists some P* € P whose restriction to Fr, is equal to Py .

Proof. Let P e Pbe arbitrary, and denote by Z7, the density of P with respect to
the restriction of P to the o-algebra ¥7,. Then Z7, is F7,-measurable, and

A

dP* := Z7,dP

defines a probability measure on & . Clearly, P* is equivalent to P and to P, and it
coincides with P on ¥7;. To check that P* € &, it suffices to show that X; — X,
is a martingale increment under P* for t > Tj. For these ¢, the density Zz, is #;_1-
measurable, so Proposition A.12 implies that

EX X, — X, | Fia]=E[X,— X, | Fi1=0. [

Example 5.36. Letus consider the situation of Example 5.31, where the numéraire S0
is a locally riskless bond. Remark 5.34 allows us to compare the arbitrage-free prices
of two European call options Cp = (S}0 — K)"T and C = (S} — K)™ with the same
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strikes and underlyings but with different maturities 7o < 7. As in Example 5.31, we
get that for P* € P

0 +
E*[% | ?TO} > LO(S}O - KE*[S—f)O f"TOD (5.21)
St ST St
Co
> -
u— 0 .
S0

Hence, if P* is used to calculate arbitrage-free prices for Cp and C, the resulting price
of Cy is lower than the price of C:

Lyl ]
0 | — 0 |’
ST ST()
This argument suggests that the price of a European call option should be an increasing
function of the maturity. <&

5.4 Complete markets

We have seen in Theorem 5.33 that any attainable claim in an arbitrage-free market
model has a unique arbitrage-free price. Thus, the situation becomes particularly
transparent if all contingent claims are attainable.

Definition 5.37. An arbitrage-free market model is called complete if every contingent
claim is attainable.

Complete market models are precisely those models in which every contingent
claim has a unique and unambiguous arbitrage-free price. However, in discrete time,
only a very limited class of models enjoys this property. The following characterization
of market completeness is sometimes called the “second fundamental theorem of asset
pricing”’.

Theorem 5.38. An arbitrage-free market model is complete if and only if there exists
exactly one equivalent martingale measure. In this case, the number of atoms in
(2, F7, P) is bounded above by (d + DT.

Proof. If the model is complete, then H :=1 n for A € F7 is an attainable discounted
claim. It follows from the results of Section 5.3 that the mapping P* — E*[H] =
P*[ A]is constant over the set &. Hence, there can be only one equivalent martingale
measure.

Conversely, if || = 1, then the set [1(H) of arbitrage-free prices of every dis-
counted claim H has exactly one element. Hence, Theorem 5.33 implies that H is
attainable.
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To prove the second assertion, note first that the asserted bound on the number of
atoms in 7 holds for T = 1 by Theorem 1.40 and Proposition 1.39. We proceed
by induction on 7. Suppose that the assertion holds for 7 — 1. By assumption, any
bounded F7-measurable random variable H > 0 can be written as

H=Vr_1+& (Xr—Xr_1),

where both V7_1 and &7 are £7_-measurable and hence constant on each atom A of
(R, Fr_1, P). It follows that the dimension of the linear space L*° (2, 7, P[-|A])
is less than or equal to d + 1. Thus, Proposition 1.39 implies that (2, 7, P[ - |A])
has at most d + 1 atoms. Applying the induction hypothesis concludes the proof. [

Below we state additional characterizations of market completeness. Denote by
@ the set of all martingale measures in the sense of Definition 5.14. Then both & and
@ are convex sets. Recall that an element of a convex set is called an extreme point
of this set if it cannot be written as a non-trivial convex combination of members of
this set.

Property (d) in the following theorem is usually called the predictable represen-
tation property, or the martingale representation property, of the P*-martingale X.

Theorem 5.39. For P* € P the following conditions are equivalent:
(a) # ={P*}.
(b) P* is an extreme point of P
(¢c) P*is an extreme point of @.

(d) Every P*-martingale M can be represented as a “stochastic integral” of a
d-dimensional predictable process & :

t
M; =M0—|—Z§k~(Xk—Xk_1) fort=0,...,T.
k=1

Proof. (a)=(c): If P* can be written as P* =« Q| + (1 — a)Q» fora € (0, 1) and
01, 02 € @, then Q| and Q> are both absolutely continuous with respect to P*. By
defining

1
P; = E(Qi + P, i=1,2,

we thus obtain two martingale measures P} and P, which are equivalent to P*. Hence,
P = P, = P*and, in turn, Q1 = Q, = P*.

(¢c) =(b): This is obvious since & C Q.

(b) =(a): Suppose that there exists a P € ® which is different from P*. We
will show below that in this case P can be chosen such that the density d P/dP* is
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bounded by some constant ¢ > 0. Then, if ¢ > 0 is less than 1/c,

dp 1+
= £—¢

dp* dP*
defines another measure P’ € & different from P*. Moreover, P* can be represented
as the convex combination

€ 1

P+ —P
1+¢ 1+e¢

P =

which contradicts condition (b). Hence, P* must be the unique equivalent martingale
measure.

It remains to prove the existence of P € % with a bounded density d P /d P*
if’ there exists some P € & which is different from P*. Then there exists a set
A € F7 suchthat P*[ A] # P[ A]. We enlarge our market model by introducing the
additional asset _

X .= Pl[A|F], t=0,...,T,

and we take P* instead of P as our reference measure. By definition, P is an equiv-
alent martingale measure for (X", 0 x!, , X4, X4+1) Hence, the extended market
model is arbitrage-free, and Theorem 5 17 guarantees the existence of an equivalent
martingale measure P such that the density dP /d P* is bounded. Moreover, P must
be different from P*, since P* is not a martingale measure for X¢*1:

X{t = PlA] # P*[A] = E[ X4,

(a) =(d): The terminal value M7 of a P*-martingale M can be decomposed into
the difference of its positive and negative parts:

Mr =M} — M.

M;f and M can be regarded as two discounted claims, which are attainable by
Theorem 5.38. Hence, there exist two d-dimensional predictable process £ ™ and &~
such that

T
M7=V + ) & (X —Xi1) Pras.
k=1

for two non-negative constants VOJr and V. Since the value processes
t
VE =V 4 8 (X — Xie)
k=1
are P*-martingales by Theorem 5.26, we get that

M, =E*[M}f —M; | 1=V -V .
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This proves that the desired representation of M holds in terms of the d-dimensional
predictable process & := £ — &7,

(d) =(a): Applying our assumption to the martingale M; := P*[ A | #; ] shows
that H =1, is an attainable contingent claim. Hence, it follows from the results of
Section 5.3 that the mapping P* +— P*[ A] is constant over the set #. Thus, there
can be only one equivalent martingale measure. O

5.5 The binomial model

A complete financial market model with only one risky asset must have a binary tree
structure, as we have seen in Theorem 5.38. Under an additional homogeneity assump-
tion, this reduces to the following particularly simple model, which was introduced
by Cox, Ross, and Rubinstein in [42]. It involves the riskless bond
Q=1 +r', r=0,...,T,
with 7 > —1 and one risky asset ! = §, whose return
Sy — Si—
R, = 2t r—1
Si—1

in the M trading period can only take two possible values a, b € R such that
—l<a<b.

Thus, the stock price jumps from S;_1 either to the higher value S; = S;_1(1 + b) or
to the lower value S; = S;_1(1 4 a@). In this context, we are going to derive explicit
formulas for the arbitrage-free prices and replicating strategies of various contingent
claims.

Let us construct the model on the sample space
Q= {~L+} ={o=01....yp) [y € (=1, +1} }.

Denote by
Yi(w) :=y; forw=(y1,...,yr) (5.22)

™ coordinate, and let

the projection on the

Ri(@) = a 1 —Y(w) T b 1+ Y (w) _ e %fYt(a)) = -1,
2 2 b ifY;(w)=++1.

The price process of the risky asset is modeled as

t
S = So [[(1 + Ra).
k=1
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where the initial value Sy > 0 is a given constant. The discounted price process takes
the form
L1+ Ry

_ 14+r "

X, = S S,
t = —n — 0
s9 h

As filtration we take

Fr=0(80,....8%)=0(Xp,...,Xs), t=0,...,T.
Note that £y = {{J, Q}, and

Fi=oly,.... Y1) =0(Ry,...,R;) fort=1,...,T,

F = Fr coincides with the power set of 2. Let us fix any probability measure P on
(€2, F) such that
Pl{w}] >0 forallw € Q. (5.23)

Such a model will be called a binomial model or a CRR model. The following theorem
characterizes those parameter values a, b, r for which the model is arbitrage-free.

Theorem 5.40. The CRR model is arbitrage-free if and only if a < r < b. In this
case, the CRR model is complete, and there is a unique martingale measure P*. The
martingale measure is characterized by the fact that the random variables Ry, . .., Rt
are independent under P* with common distribution

PR =bl=p*=—"2 +=1,...,T.

Proof. A measure Q on (€2, ¥) is a martingale measure if and only if the discounted
price process is a martingale under Q, i.e.,

1+ Rty ‘

x,=EQ[X,+1|m=XzEQ[ e

}7] Q-a.s.
for all + < T — 1. This identity is equivalent to the equation
r=EglR1 | Fil=b-Q[Ry1=b|Fl+a-(1-Q[Rw1=b|F]),

i.e., to the condition

O[Ris1=b | Filw) = p* = 2;“ for Q-ae. w € Q.
—a
But this holds if and only if the random variables Ry, ..., Rt are independent under
Q with common distribution Q[ R, = b] = p*. In particular, there can be at most
one martingale measure for X.
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If the market model is arbitrage-free, then there exists an equivalent martingale
measure P*. The condition P* ~ P implies

p*=P [Ri=ble(01),

which holds if and only ifa < r < b.
Conversely, if @ < r < b then we can define a measure P* ~ P on (2, ¥) by

P {w}]:= (-1 =pHT* >0

where k denotes the number of occurrences of +1 in w = (y1, ..., yr). Under P*,
Y1, ..., Yr,and hence Ry, ..., Ry, are independent random variables with common
distribution P*[Y; = 1] = P*[ R, = b] = p*, and so P* is an equivalent martingale
measure. ]

From now on, we consider only CRR models which are arbitrage-free, and we
denote by P* the unique equivalent martingale measure.

Remark 5.41. Note that the unique martingale measure P*, and hence the valuation of
any contingent claim, is completely independent of the initial choice of the “objective”
measure P within the class of measures satisfying (5.23). <

Let us now turn to the problem of pricing and hedging a given contingent claim C.
The discounted claim H = C/ Sg can be written as

H =h(S,...,S7)
for a suitable function 4.
Proposition 5.42. The value process
Vi=E*[H| %], t=0,...,T,
of a replicating strategy for H is of the form
Vi(@) = v (S0, Si (@), . .., Si()),

where the function v, is given by

S Sr_
vt(xo,...,x,):E*|:h<x0,...,x,,x,—1,...,x, a t>:| (5.24)

Proof. Clearly,

V= B n(So.S1... 58 S s ST ‘SL‘, .
S, S,
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Each quotient S;1/S; is independent of #; and has under P* the same distribution as

SY s
— = 1+ Ry).
o [Ja+ro
k=1
Hence (5.24) follows from the standard properties of conditional expectations. 0

Since V is characterized by the recursion
Vri=H and V,=E"[Viq|FH] t=T-1,...,0,

we obtain a recursive formula for the functions v; defined in (5.24):

UT(XO, AR ] xT) = h('xo7 AR ] xT)’ (5-25)
Ul(x()v .- 'axl) = P* : vl+1(x0’ .. -axl‘axli;) + (1 - P*) : U[+1(X0, .- 'axlsxl‘&)a
where

G:=1+a and b:=1+b.

Example 5.43. If H = h(St) depends only on the terminal value S7 of the stock
price, then V; depends only on the value S; of the current stock price:

Vi(w) = v (St (a))).

Moreover, the formula (5.24) for v; reduces to an expectation with respect to the
binomial distribution with parameter p*:

T—t

v (xy) = Zh(xt&T_t_k l;k) (T B t> (p*)k(l _ p*)T—t—k‘

k=0 k

In particular, the unique arbitrage-free price of H is given by
d T
w(H) =vo(So0) = Y _h(Spa"™* b")( k)(p*)"(l -pH'
k=0

Forh(x) = (x —K)t/(1+r)T orh(x) = (K —x)*/(1+r)T, we obtain explicit for-
mulas for the arbitrage-free prices of European call or put options with strike price K.
For instance, the price of H*" := (S — K)* /(1 + )T is given by

T
wn | STk 7k ot T\, kg s T—k
T(H") = a7 k§=0 (Soa” ~*b* — K) <k>(p (1= pH' k. &



252 5 Dynamic arbitrage theory

Example 5.44. Denote by

M, =max S;,, 0<t<T,
0<s<t

the running maximum of S, and consider a discounted claim with payoff H =
h(St, Mr). For instance, H can be an up-and-in or up-and-out barrier option or
a lookback put. Then the value process of H is of the form

Vi = v (8, My),

St— Mr_
U,(xt,mt)=E*|:h<x,£,m,\/(xt T t))]
So So

This follows from (5.24) or directly from the fact that

where

Su
MT:Mt\/ Stmax_,
t<u<T S;
where max; <, <r S,/S; is independent of #; and has the same law as M1 _; /Sy under
P*. The same argument works for options that depend on the minimum of the stock
price such as lookback calls or down-and-in barrier options.
For an Asian option depending on the average price

1
Sav 1= 0 ZS,

teT
during a predetermined set of periods T C {0, ..., T}, one introduces the process
AZ‘ = Z Ss.
seT, s<t

Using a similar argument as above, one shows that the value process V; of the Asian
option is a function of S;, A;, and . &>

Let us now derive a formula for the hedging strategy £ = (£, £) of our discounted
claim H = h(So, ..., ST).

Proposition 5.45. The hedging strategy is given by
St(w) = AI(SO? Sl(w)s L) Sf*l(a)))’

where

(X0, + s Xi—1, X—1 D) — v (X0, -+ ., X¢—1, Xg—1 @)
Ar(x0, .o xi—1) = (L+r) = — .
Xi—1b — x;—1a
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Proof. For each w = (y1, ..., y7), & must satisfy
& (w)(Xi (@) — Xi—1(@) = Vi(w) — Vi—1(®). (5.26)

In this equation, the random variables &;, X;_1, and V;_1 depend only on the first# — 1
components of w. For a fixed ¢, let us define @™ and w™ by

oF =1 yien L Yt ).
Plugging @™ and @™ into (5.26) shows
£(0) - (Xi—1(@ b1+ 1) = X,_1(0) = Vi(0) = Vim1(w)
&) - (Xim1@a(l+1)7" = Xi1(@) = Vi) = Vimi ().
Solving for & (w) and using our formula (5.25) for V;, we obtain

Vi(wt) — Vi(w™) _
X;—1(w)(b — &)

(@) =(147) Ar(So, Si@), ..., Sici(@). O

Remark 5.46. The term A; may be viewed as a discrete “derivative” of the value
function v; with respect to the possible stock price changes. In financial language,
a hedging strategy based on a derivative of the value process is often called a Delta
hedge. <

Remark 5.47. Let H = h(St) be a discounted claim which depends on the terminal
value of S by way of an increasing function A. For instance, & can be the discounted
payoff function i (x) = (x — K)*/(1 + )T of a European call option. Then

v (x) = E*[h(x ST—¢/S0) ]
is also increasing in x, and so the hedging strategy satisfies

Ut(St—l(w) l;) - Ut(St—l(w) CAZ) =0
S1@b—Sa@a

E(w)=(1+7r)

In other words, the hedging strategy for H does not involve short sales of the risky
asset. <&

5.6 Exotic derivatives

The recursion formula (5.25) can be used for the numeric computation of the value
process of any contingent claim. For the value processes of certain exotic derivatives
which depend on the maximum of the stock price, it is even possible to obtain simple
closed-form solutions if we make the additional assumption that

1
é’

a=
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where @ = 1 +a and b = 1 + b. In this case, the price process of the risky asset is of
the form .
Si(@) = Sob™

where, for Y} as in (5.22),
Zo:=0 and Z;:=Y1+ ---+Y;, t=1,...,T.

Let [P denote the uniform distribution

P[{w}] L1 eQ
wl]=—= , W .

€2
Under the measure P, the random variables Y; are independent with common distri-
butionP[Y; = +1] = % Thus, the stochastic process Z becomes a standard random
walk under P. Therefore,

t
2_t< ) if # + k is even,
P[Z, =k]= Lk

0 otherwise.

(5.27)

The following lemma is the key to numerous explicit results on the distribution of
Z under the measure P; see, e.g., Chapter III of [83]. For its statement, it will be
convenient to assume that the random walk Z is defined up to time T + 1; this can
always be achieved by enlarging our probability space (€2, ¥). We denote by

M; := max Z;
0<s<t

the running maximum of Z.

Lemma 5.48 (Reflection principle). For all k € N andl € Ny,
P[Mr >kand Zy =k — 1| =P[Zr =k +1],

and

k+1+1
IP’[MT:kandZT:k—l]zz;_—_:;]P’[ZTH =14+k+1].

Proof. Let
t(w) :=inf{t >0 | Z;(w) =k} AT.
Forw = (y1, ..., yr) € Q we define ¢ (w) by ¢ (w) = w if T(w) = T and by
(@) = (Y1, -+ Ye(@)s —Ye(@)+1s---» —T)

otherwise, i.e., if the level k is reached before the deadline 7. Intuitively, the two

0. 0T coincide up to 7 (w), but from then
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Figure 5.4. The reflection principle.

on the latter path is obtained by reflecting the original one on the horizontal axis at

level k; see Figure 5.4.

Let Ax ; denote the set of all w € €2 such that Z7(w) = k — [ and M1 > k. Then

¢ is a bijection from A ; to the set

{MTzkandZT =k—|—l},

which coincides with {Z7 = k 4 [}, due to our assumption / > 0. Hence, the uniform
distribution [P must assign the same probability to Ax; and {Z7 = k 4 [}, and we

obtain our first formula.

The second formula is trivial in case T + k + [ is not even. Otherwise, we let

Jj = (T 4k +1)/2 and apply (5.27) together with part one of this lemma:

P[MT =k; ZT =k—l]

=P[Mr>ki Zr =k —1]-P[Mr >k+1; Zp =k —1]

=P[Zy =k+1]-PlZr=k+1+2]

()1

:2T(T+1> 2j+1-T

’

j+1) T+1

and this expression is equal to the right-hand side of our second formula.
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Formula (5.27) changes as follows if we replace the uniform distribution P by our
martingale measure P*, described in Theorem 5.40:

t — t
(P*)%k(l — p*)tZk(ﬂ> if t + k is even,
2

0 otherwise.

P Z, =k]=

Let us now show how the reflection principle carries over to P*.

Lemma 5.49 (Reflection principle for P*). For all k € N and [ € Ny,
1— p*

*

1
P M2k Zr =k —1] = (L) PrLZr =k +1]

p oy
(72) Prizr =k =11,

and

P [My =k, Zr =k —1]
1 1—p"\ k+1+1
_.( )

P Zry1=1+k+1]

p* p* T +1
1 Nk k141

Proof. We show first that the density of P* with respect to IP is given by
dP*
dP

Indeed, P* puts the weight

P {w} 1= (pH (1 — pHT*

to each w = (y1, ..., yr) € Q which contains exactly k components with y; = +1.
But for such an w we have Z7 (w) = k — (T — k) = 2k — T, and our formula follows.
From the density formula, we get

T-Zr
2 .

T+Zy
=2 (pH 77 (1-pH

P [Mr >kand Zy =k —1 |
=27 (p") " (1= p) T B[ My > kand Zp =k —1].

Applying the reflection principle and using again the density formula, we see that the
probability term on the right is equal to

T+k+l

P[Zr =k+11=2""(p") " "2 (1= p"~ 2 P Zr =k+1],

which gives the first identity. The proof of the remaining ones is analogous. O
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Example 5.50 (Up-and-in call option). Consider an up-and-in call option of the form

L | sr=K* it max s, > B,
Ciai = O=t=T

otherwise,

where B > Sy V K denotes a given barrier, and where K > 0 is the strike price. Our
aim is to compute the arbitrage-free price

1

Clearly,

call] __ _ +.
B[] = E'5r - K" o 5. = 5]

=E*[(Sr — K)"; St = B]+ E*[(Sr — K)"; max S, > B, St < B].
0<t<T
The first expectation on the right can be computed explicitly in terms of the binomial
distribution. Thus, it remains to compute the second expectation, which we denote
by I. To this end, we may assume without loss of generality that B lies within the
range of possible asset prices, i.e., there exists some & € N such that B = Sol;k . Then,
by Lemma 5.49,

1= E*(Sr—K)*": My >k, Zr =k—1]
I>1
=D (S =K P My =k, Zp =k —1]

>1

=3 (st — K)%%)kp*[zf — —k—1]
>1

* k A N ~
- <lf—p*> DS (Sob ™+ — Ryt P Zp = —k —1]
>1

() (Y et 5 <5)

where S\ 2
K =Kb2*= K<—0> .
B

Hence, we obtain the formula

1
7(Cai) = W<E*[(ST — K)*: St = B]

*

+ (1 fp*)k<S£;)2E*[(ST - E)+; St < B])
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Both expectations on the right now only involve the binomial distribution with param-
eters p* and T. They can be computed as in Example 5.43, and so we get the explicit
formula

1 R T
T(CHD) = ——F [ D S = KT (pH (A = p)” (T ~ n)

- T
(1+4+r) v
P ko B\2 d SohT—2n Josat o Unde! *\1 T
+(1_p*) (S—O) 3 Sob™ P — Kyt (pH)T (1 - p¥) (T_n)},
n=n+1
where ny is the largest integer n such that T — 2n > k. <

Example 5.51 (Up-and-out call option). Consider an up-and-out call option of the
form

if max S; > B,
Ccall — 0<t<T
u&o + .
St — K) otherwise,

where K > 0 is the strike price and B > Sg V K is an upper barrier for the stock price.
As in the preceding example, we assume that B = Sy(1 + b)* for some k € N. Let

Ccall = (Sy — K)+
denote the corresponding “plain vanilla call”, whose arbitrage-free price is given by

1
ﬂ(ccall) — mE*[(ST _ K)+]

Since C*' = ¢l + ceall| we get from Example 5.50 that

r(Cit) = (™) - ()
1

= m[E*[(ST - K)*; St < B]

*

a (1 fp*)k<S£;>2E*[(ST ~ Kt sr < B]}

where K = K Sg /B?. These expectations can be computed as in Example 5.50. <

Similarly, one obtains pricing formulas for barrier options with a lower stock
price barrier such as down-and-out put options or down-and-in calls. In the following
example, we compute the price of a lookback put option. Lookback call options are
handled in the same manner.

Example 5.52 (Lookback put option). A lookback put option corresponds to the con-
tingent claim

C™ := max S; — S7;
max 0<t<T t T,
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see Example 5.24. In the CRR model, the discounted arbitrage-free price of chlis

given by
) 1 *
7 (o) = T £ ma, St ] = S

The expectation of the maximum can be computed as

T
E*[ orintafxTSt] = S0y _bF P [ My =k]

Lemma 5.49 yields

P*[MTzk]=ZP*[MT=k, Zr =k —1]

>0
1 * kk+1+1
= (+2) S Pt e = 1 -k -]
l>01—p* 1 —p* T+1

_ ! (p*)klE*[z CZpal < —1—k]
=T\ ) T T+1; Z141 < .

Thus, we arrive at the formula

So

put _ .
(G + 8 = T T T+ D)

max

T 1
k(P * )

: E - E*[=Zry1s Zryr = —1—k].

k=0

As before, one can give explicit formulas for the expectations occurring on the right. <

5.7 Convergence to the Black—Scholes price

In practice, a huge number of trading periods may occur between the current time
t = 0 and the maturity T of a European contingent claim. Thus, the computation
of option prices in terms of some martingale measure may become rather elaborate.
On the other hand, one can hope that the pricing formulas in discrete time converge
to a transparent limit as the number of intermediate trading periods grows larger and
larger. In this section, we will formulate conditions under which such a convergence
occurs.

Throughout this section, 7 will not denote the number of trading periods in a fixed
discrete-time market model but rather a physical date. The time interval [0, T'] will be
divided into N equidistant time steps %, ZWT, e, %,
to the kM trading period of an arbitrage-free market model. For simplicity, we will

and the date ]% will correspond
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assume that each market model contains a riskless bond and just one risky asset. In
the N™ approximation, the risky asset will be denoted by S™, and the riskless bond
will be defined by a constant interest rate ry > —1.

The question is whether the prices of contingent claims in the approximating
market models converge as N tends to infinity. Since the terminal values of the
riskless bonds should converge, we assume that

lim (14+ry)Y =¢'7,
Ntoo

where r is a finite constant. This condition is in fact equivalent to the following one:

Iim Nry =rT.
N1too
Let us now consider the risky assets. We assume that the initial prices S(()N) do not
depend on N, i.e., S(gN) = §p for some constant Sop > 0. The prices SIEN) are random

variables on some probability space (Qy, FN), Py), where Py is a risk-neutral
measure for each approximating market model, i.e., the discounted price process

s
M= Tk k=0,...,N
k . (1—|—rN)k’ LRI ) I
is a Py -martingale with respect to the filtration ?'k(N) = O’(SEN), .. (N)) Our

remaining conditions will be stated in terms of the returns

() )
S =8
(N) . k k—1 _
Rk .—T, k—l,...,N.

Sk

(N) )
R™M, ... R

First, we assume that, for each N, the random variables are indepen-

dent under Py, and satisfy
—l<ay<R" <By, k=1,...,N,
for constants « )y and 8y such that

lim ay = lim By =0.
Ntoo N*too

Second, we assume that the variances var y (R,EN)) under PI’\‘, are such that

1
vary ( R() —>U € (0, 00).

Mz

k=1

The following result can be regarded as a multiplicative version of the central limit
theorem.
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Theorem 5.53. Under the above assumptions, the distributions of S/(VN) under Py
converge weakly to the log-normal distribution with parameters log So +rT — % o?T
and o~/T, i.e., to the distribution of

1
St := Soexp <a Wr + (r — 502> T), (5.28)
where Wt has a centered normal law N (0, T') with variance T .

Proof. We may assume without loss of generality that So = 1. Consider the Taylor
expansion

log(1 +x) = x — %xz + p(x) x2 (5.29)
where the remainder term p is such that
o) =8, p) for—1 <a=x=p,
and where §(«, 8) — O for a, B — 0. Applied to

N
s™ =TT (1+&M),
k=1
this yields
Y 1 (V)2
o2 50 = 37 (R — L (R + .
k=1
where

N
|AN| < San. Bn) Y (RV)
k=1

Since Py, is a martingale measure, we have E [ R,(CN) ] = ry, and it follows that

N
N
EX[ANI] < 8@y, Bn) Y (vary (R(Y) +13) — 0.
k=1
In particular, Ay — 0 in probability, and the corresponding laws converge weakly
to the Dirac measure §p. Slutsky’s theorem, as stated in Appendix A.6, asserts that it
suffices to show that the distributions of

N

Zy =Y (R - R(N) Z r™

k=1

converge weakly to the normal law N(rT — %O’ZT, o2T). To this end, we will check
that the conditions of the central limit theorem in the form of Theorem A.36 are
satisfied.
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Note that

(N) 1
max |Y < — 0
1<k<XN { | YN+ ZVN

for yn := |ay| V |BN|, and that
1 1
E;;,[ZN]erN—E(a[%,T+Nr12V) —>rT—§azT.

Finally,
vary(Zy) — o’ T,

since for p > 2

N N
> ER[IRYV]] Z [(RM)] — o.
k=1 k=1
Thus, the conditions of Theorem A.36 are satisfied. O

Remark 5.54. The assumption of independent returns in Theorem 5.53 can be re-
laxed. Instead of Theorem A.36, we can apply a central limit theorem for martingales
under suitable assumptions on the behavior of the conditional variances

vary (R | Fi—1);
for details see, e.g., Section 9.3 of [39]. <&

Example 5.55. Suppose the approximating model in the N™ stage is a CRR model

with interest rate
rT
ryN = —,
N
and with returns R,(CN), which can take the two possible values ay and by; see Sec-

tion 5.5. We assume that

CAZN=1+aN=€_aVT/N and Z;N=1+bN=€UVT/N

for some given o > 0. Since

«/NrN — 0, \/NGN — —aﬁ, x/ﬁbN —oT asN 1 oo, (5.30)

we have ay < ry < by for large enough N. Theorem 5.40 yields that the N th model
is arbitrage-free and admits a unique equivalent martingale measure Py;. The measure
Py, is characterized by

'y —an

(N) *
Pyl R, =by] =: = ,
N[ N] PN by — an
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and we obtain from (5.30) that

lim p% !
1 = —.
Ntoo PN 2

Moreover, Ey [ R,EN) ] = rn, and we get

N
Zvar;v (R,({N)) = N(P;‘vb]zv +0 - P}kv)alzv - 712\7) — o’T
k=1

as N 1 oo. Hence, the assumptions of Theorem 5.53 are satisfied. <

Let us consider a derivative which is defined in terms of a function f > 0 of
the risky asset’s terminal value. In each approximating model, this corresponds to a
contingent claim

c™ = f(syV).

Corollary 5.56. If f is bounded and continuous, the arbitrage-free prices of C™)
calculated under Py, converge to a discounted expectation with respect to a log-normal
distribution, which is often called the Black—Scholes price. More precisely,

lim E* c “TE* £(Sp)]
1m e EE———— =e
Ntoo M| (1 +ry)VN ! 531
e T o JTy+rT—02T)2 2/ 3D
= 7= | (oY) dy,
—00

where St has the form (5.28) under P*.

This convergence result applies in particular to the choice f(x) = (K — x)™
corresponding to a European put option with strike K. Since the put-call parity

T - T =Syt K
N[U+WW}_ 4(LHmN} O U+ ryN

holds for each N, the convergence (5.31) is also true for a European call option with
the unbounded payoff profile f(x) = (x — K)™.

Example 5.57 (Black—Scholes formula for the price of a call option). The limit of
the arbitrage-free prices of C N) = (SI(VN) — K)™T is given by v(Sp, T), where

v(x,T) = efrT /oo (xeaﬁerrT—gZT/z . K)+e,y2/2 dy.
—00

The integrand on the right vanishes for
log & — e
.92k +(r = 30?)

=: —d_ ,T =: —d_.
y= o TT (x,T)
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Let us also define
log = + (r + %GZ)T
dy =di(x,T):=d_(x,T) +oT = —X
T oNT

El

and let us denote by ®(z) = (2n)~! ff e 22 g y the distribution function of the

standard normal distribution. Then

X +o0 V)2
v(x, T) = —— / e~ OOV 2 gy — e TTK (1 — d(—d_)),
V2 J-a_ ( )
and we arrive at the Black—Scholes formula for the price of a European call option
with strike K and maturity 7'
v(x, T) =xod+(x,T)) — e_’TK(IJ(d_(x, T)). (5.32)

See Figure 5.5 for the plot of the function v(x, t). <
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Figure 5.5. The Black—Scholes price v(x, t) of a European call option (S7 — K)™ plotted as a
function of the initial spot price x = Sp and the time to maturity ¢.

Remark 5.58. For fixed x and T, the Black—Scholes price of a European call option
increases to the upper arbitrage bound x as o 1 co. In the limit ¢ | 0, we obtain the
lower arbitrage bound (x — e "7 K)*; see Remark 1.36. <&

The following proposition gives a criterion for the convergence (5.31) in case f is

not necessarily bounded and continuous. It applies in particular to f(x) = (x — K)™,
and so we get an alternative proof for the convergence of call option prices to the

Black—Scholes price.
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Proposition 5.59. Let f : (0,00) — R be measurable, continuous a.e., and such
that | f(x)| < ¢ (1 4+ x)? for some c > 0and 0 < q < 2. Then

EX[£(Sy")] — E*[f D).
where St has the form (5.28) under P*.

Proof. Let us note first that by the Taylor expansion (5.29)

N
logE?{,[(S(N) = 1_[ vary ( 1+R(N))+EN[1+R(N)])

N
Z VarN R(N)) + (1 4+rn) )

<onyT+2Nry+Nry+T ) (vary (RIEN))+2|rN|+r12V)2

M=

k=1

for a finite constant ¢. Thus,

sup Ex [ (SI(\,N))Z] < 00.
N

With this property established, the assertion follows immediately from Theorem 5.53
and the Corollaries A.45 and A.46, but we also give the following more elementary
proof. To this end, we may assume that ¢ > 0, and we define p :=2/q > 1. Then

N N)\2
sup E§ [ [F(SV )P ] <er sup Ex [ (1 + Sy)" ] < oo,
and the assertion follows from Lemma 5.60 below. O
Lemma 5.60. Suppose (un)neN is a sequence of probability measures on R con-

verging weakly to . If f is a measurable and p-a.e. continuous function on R such
that

c:= sup/lflpdpLN<oo for some p > 1,

NeN
/fduN N ffdu-

Proof. We may assume without loss of generality that f > 0. Then f; := f Akisa
bounded and p-a.e. continuous function for each k > 0. Clearly,

then

ffduN=/fkduN+/(f—k)+duN.
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Due to part (e) of the portmanteau theorem in the form of Theorem A.38, the first
integral on the right converges to f Jrdpnas N 1 oo. Let us consider the second term
on the right:

1
[ —ordun = [ gauy < [ du
(f>k) kP

kp—1’

uniformly in N. Hence,

[fkduz lim /fkduNfliminf/fd,uN
Ntoo

Slimsup/fduzv <ffkdﬂ+—

N1too
Letting k 1 oo, we have [ fydu 7 [ f du, and convergence follows. O

Let us now continue the discussion of the Black—Scholes price of a European call
option where f(x) = (x — K)™. We are particularly interested how it depends on the
various model parameters. The dependence on the spot price Sy = x can be analyzed
via the x-derivatives of the function v(¢, x) appearing in the Black—Scholes formula
(5.32). The first derivative

3
A, 1) 1= 2=v(x, 1) = O(dy(x, 1))

is called the option’s Delta; see Figure 5.6. In analogy to the formula for the hedging
strategy in the binomial model obtained in Proposition (5.45), A(x, t) determines the
“Delta hedging portfolio” needed for a replication of the call option in continuous
time, as explained in (5.37) below.

The Gamma of the call option is given by

3 32
I'x,t) := 8—A(x 1) = v(x 1) = (d+(x,t))

1
xoA/t

see Figure 5.7. Here ¢(x) = ®'(x) = ¥ /2 /~/27 stands as usual for the density
of the standard normal distribution. Large Gamma values occur in regions where the
Delta changes rapidly, corresponding to the need for frequent readjustments of the
Delta hedging portfolio. Note that I" is always strictly positive. It follows that v(x, )
is a strictly convex function of its first argument.
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Figure 5.6. The Delta A(x, t) of the Black—Scholes price of a European call option.

Figure 5.7. The option’s Gamma I"(x, t).

Remark 5.61. On the one hand, 0 < A(x, ¢) < 1 implies that

|U(.X,', t) - U(y’ t)l S |x - Y|

v(z, 1) —v(y,t) - v(y,t) —v(0,1) _ v(y, 1)
zZ—y y—0 y
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Thus, the fotal change of the option values is always less than a corresponding change
in the asset prices. On the other hand, the strict convexity of x — v(x, t) together
with (A.1) yields thatfort > Oand z > y
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and hence
U(Z,t) _v(yvt) - —Yy

v(y, 1) y

Similarly, one obtains
v ) —v.h X —y
v(y, 1) y
for x < y. Thus, the relative change of option prices is larger in absolute value than
the relative change of asset values. This fact can be interpreted as the leverage effect
for call options; see also Example 1.41. <&

Another important parameter is the Theta

O 1) = (1) = ~2
X, t) = —vx,t) = —=

ot N
see Figure 5.8. The fact ® > 0 corresponds to our general observation, made in Ex-
ample 5.36, that arbitrage-free prices of European call options are typically increasing
functions of the maturity.

(p(d+(x, t)) + Kr e_rtqD(d_(x, t)) ;

Figure 5.8. The Theta ®(x, 7).

Note that, for # > 0, the parameters A, I', and ® are related by the equation
1
Ox,1) =rx A(x, 1) + 502x2 C(x, 1) —rv(x,1).

Thus, for (x,t) € (0,00) x (0, 00), the function v solves the partial differential
equation

dv v 1, , 0%
— =rXx — 4 —0°x* — —rv, (5.33)
ot ox 2 0x2
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often called the Black—Scholes equation. Since
v(x, 1) — f(x) =@ —K)* ast |0, (5.34)

v(x, t) is a solution of the Cauchy problem defined via (5.33) and (5.34). This fact is
not limited to call options, it remains valid for all reasonable payoff profiles f.

Proposition 5.62. Let f be a continuous function on (0, 00) such that | f(x)| <
c(1 4+ x)? for some c, p > 0, and define

e—rl
2w

where S; = xexp(cW; + rt — a2t/2) and W; has law N(0, t) under P*. Then
u solves the Cauchy problem defined by the Black—Scholes equation (5.33) and the
initial condition lim; o u(x,t) = f(x), locally uniformly in x.

ux, 1) :=e "E*[f(S)]=

/OO f(xeax/fy+rt702t/2)efy2/2 dy,
—0Q0

Proof. By using the formula (2.20) for the density of a log-normally distributed random
variable, we obtain

N (™1 logy —rt +02t/2 —logx
E [f(Sz)]—/O ¥ — ) sy,

where ¢(x) = e=¥/2 /~/2m. The validity of (5.33) can now be checked by differen-
tiating under the integral. The initial condition is verified via Lebesgue’s theorem. [

Recall that the Black—Scholes price v(Sg, 7)) was obtained as the expectation of
the discounted payoff e "7 (S — K)*+ under the measure P*. Thus, at a first glance,
it may come as a surprise that the Rho of the option,

o(x,t) = aa—rv(x, 1) =Kte " ®(d_(x,1)),

is strictly positive, i.e., the price is increasing in r; see Figure 5.9. Note, however, that
the measure P* depends itself on the interest rate r, since E*[e™" TSr1=3Sy. Ina
simple one-period model, we have already seen this effect in Example 1.41.

The parameter o is called the volatility. As we have seen, the Black—Scholes price
of a European call option is an increasing function of the volatility, and this is reflected
in the strict positivity of

9
V(x,t) = a—av(x,t) = xv/to(dy(x,1)); (5.35)

see Figure 5.10. The function 'V is often called the Vega of the call option price, and
the functions A, I', ®, o, and 'V are usually called the Greeks (although “vega” does
not correspond to a letter of the Greek alphabet).
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Figure 5.9. The Rho o(x, t) of a call option.
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Figure 5.10. The Vega V(x, t).

Let us conclude this section with some informal comments on the dynamic picture
behind the convergence result in Theorem 5.53 and the pricing formulas in Exam-
ple 5.57 and Proposition 5.59. The constant r is viewed as the interest rate of a
riskfree savings account

S0=¢", 0<r<T.

The prices of the risky asset in each discrete-time model are considered as a continuous
process SV = (St(N))0<t<T,

defined as :S';(N) = S,EN) at the dates t = %, and by
linear interpolation in between. Theorem 5.53 shows that the distributions of E,(N)
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converge for each fixed ¢ weakly to the distribution of

S, = Soexp (a W, + (r - %02)t>, (5.36)

where W; has a centered normal distribution with variance 7. In fact, one can prove
convergence in the much stronger sense of a functional central limit theorem:
The laws of the processes SN ), considered as C[0, T]-valued random variables on
(Qy, FN, Py), converge weakly to the law of a geometric Brownian motion S =
(St)o<t<r, where each S; is of the form (5.36), and where the process W = (W;)o<;<T
is a standard Brownian motion or Wiener process. A Wiener process is characterized
by the following properties:

e Wo = 0 almost surely,
e t — W, is continuous,

 foreachsequence 0 =1y < t; < --- < t, = T, the increments
Wy =Wy oo, Wy, = W,
are independent and have normal distributions N (0, t; — t;_1);

see, e.g., [129]. This multiplicative version of a functional central limit theorem fol-
lows as above if we replace the classical central limit theorem by Donsker’s invariance
principle; for details see, e.g., [73].

Geometric Brownian motion is the classical reference model in continuous-time
mathematical finance. In order to describe the model more explicitly, we denote by
W = (W;)o<:<T the coordinate process on the canonical path space 2 = C[0, T,
defined by W;(w) = w(t), and furthermore by (¥;)o</<7 the filtration given by
Fi = o(Ws; s < t). There is exactly one probability measure P on (2, ¥7) such
that W is a Wiener process under PP, and it is called the Wiener measure. Let us now
model the price process of a risky asset as a geometric Brownian motion § defined by
(5.36). The discounted price process

is a martingale under P, since
E[ X, | Fs]= XSE[eU(W,—WS)—(;Z(t—s)/Z] = X,

for 0 < s <t < T. In fact, P is the only probability measure equivalent to P with
that property.

As in discrete time, uniqueness of the equivalent martingale measure implies com-
pleteness of the model. Let us sketch the construction of the replicating strategy for a
given European option with reasonable payoff profile f(S7), for example a call option
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with strike K. At time ¢ the price of the asset is S; (@), the remaining time to maturity
is T — ¢, and the discounted price of the option is given by

Vi(w) = e "u(Si(w), T —1),

where u is the function defined in Proposition 5.62. Tlle process V = (Vi)o</<T can
be viewed as the value process of the trading strategy & = (£°, £) defined by

£ =NAS,T—1), E=e"ulS,T—1)—&X,, (5.37)

where A = du/0dx is the option’s Delta. Indeed, if we view & as the number of shares
in the risky asset S and £° as the number of shares in the riskfree savings account
89 = ¢, then the value of the resulting portfolio in units of the numéraire is given by

Vt=é§t'Xt+€zoZe_rt(ét'5t+§to'sto)'

The strategy replicates the option since

S
Vi = lime " u(s, T — 1) = 7 f(sp) = L5 .
1T s0

due to Proposition 5.62. Moreover, its initial cost is given by the Black—Scholes price

—rT 00

A/ 27'[ —00

It remains to show that the strategy is self-financing in the sense that changes in
the portfolio value are only due to price changes in the underlying assets and do not
require any additional capital. To this end, we use [t6’s formula

Vo=u(So, T) =e ""E[ f(S7)] =

f(xe(rﬁy—i-rT—(rzT/Z)e—yz/Z dy.

102F OF

oF
dF(W;, 1) = —(W,, 1) dW, (-_ o
(Wi, 1) ax(z) r + 23x2+8t

)(Wt, 1 dt

for a smooth function F, see, e.g., [129] or, for a strictly pathwise approach, [87].
Applied to the function F(x,1) = exp(ox + rt — o’t/2), it shows that the price
process S satisfies the stochastic differential equation

dS; =o0S8;dW; +rS; dt. (5.38)

Thus, the infinitesimal return d S; / S; is the sum of the safe return r dt and an additional
noise term with zero expectation under P*. The strength of the noise is measured by
the volatility parameter o. Similarly, we obtain

dXt =O'Xtth =€_rt(dSt —rSt dt) (539)
Applying Itd’s formula to the function

F(x,t) = e "u(exp(x +rt —o%t/2), T — 1)
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and using (5.38), we obtain

av, = e (s 0y ds, + e_”(la - Pu ru)(s, 1) dt.
ax 2 dx2 3t '
The Black—Scholes partial differential equation (5.33) shows that the term in paren-
thesis is equal to —r S;du/dx, and we obtain from (5.39) that

0
v, = 8—”<St,t)dxt =& dX,.
X

More precisely,
t
Vi=W +/ %_s dXs,
0

where the integral with respect to X is defined as an /16 integral, i.e., as the limit of
non-anticipating Riemann sums

Z SI,' (XZ‘,'Jr] - Xt,’)

tieD,, t;<t

along an increasing sequence (D)) of partitions of the interval [0, T']; see, e.g., [87].
Thus, the Itd integral can be interpreted in financial terms as the cumulative net gain
generated by dynamic hedging in the discounted risky asset as described by the hedging
strategy £. This fact is an analogue of property (c) in Proposition 5.7, and in this sense
& = (&9, £) is aself-financing trading strategy in continuous time. Similarly, we obtain
the following continuous-time analogue of (5.5), which describes the undiscounted
value of the portfolio as a result of dynamic trading both in the undiscounted risky
asset and the riskfree asset:

t t
eV, = V0+/0 gydser/o £0ds?.

Perfect replication also works for exotic options C(S) defined by reasonable func-
tionals C on the path space C[0, T'], due to a general representation theorem for such
functionals as It6 integrals of the underlying Brownian motion W or, via (5.39), of
the process X. Weak convergence on path space implies, in analogy to Proposition
5.62, that the arbitrage-free prices of the options C(S™)), computed as discounted
expectations under the measure Py, converge to the discounted expectation

e "TE[C(S)]

under the Wiener measure P.

On the other hand, the discussion in Section 5.6 suggests that the prices of certain
exotic contingent claims, such as barrier options, can be computed in closed form as
the Black—Scholes price for some corresponding payoff profile of the form f(Sr).
This is illustrated by the following example, where the price of an up-and-in call is
computed in terms of the distribution of the terminal stock price under the equivalent
martingale measure.
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Example 5.63 (Black—Scholes price of an up-and-in call option). Consider an up-
and-in call option

" St — K)t if max S; > B,
Co(s) = osi=T
otherwise,

where B > Sp V K denotes a given barrier, and where K > 0 is the strike price. As
approximating models we choose the CRR models of Example 5.55. That is, we have

interest rates
rT

r =
NN

and parameters ay and by defined by
ay =1+apy = e VTN and by =1+ by = VTN
for some given o > 0. Applying the formula obtained in Example 5.50 yields
EN[CiGE™)]
=Ey[Sy -k sV = B]

A kn s By \2 ~
F(P )T (50) EaLsy - Rt sy < 8],
1 —py S0

where By and Ky are given by

and where
k {“/Nl BW
N=|—=log—
oNT g50

is the smallest integer k such that B < 505]1‘\,. Then we have

- - S\ 2
By \\ B and KN/’K=K<E).

Since f(x) = (x — K )+I{ is continuous a.e., we obtain

x>B}
ES[SWY — Kt s > B] — E[ (St — K)™; Sr = B],
due to Proposition 5.59. Combining the preceding argument with the fact that

PilKy <SSV <K]1—0
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also gives the convergence of the second expectation:
EG[SY — K™ s\ < B] — E[(Sr — K); 57 < B].
Next we note that for constants ¢, d > 0

! 11 cx?24+1—ed¥ 2c J
im—-log——m——— = — —d,
x10 x & ed* — 1 — cx? d

due to I’Hopital’s rule. From this fact, one deduces that

(2 ()
1 - py So ‘

Thus, we may conclude that the arbitrage-free prices

1

T BN CRE™)]

in the N approximating model converge to

T (E[ (Sr— Kyt Sr < B]+ (SE)"%HE[(ST — Bt S < B]).
0

The expectations occurring in this formula are integrals with respect to a log-normal
distribution and can be explicitly computed as in Example 5.57. Moreover, our limit
is in fact equal to the Black—Scholes price of the up-and-in call option: The functional
Call(.) is continuous in each path in C[0, T] whose maximum is different from
the value B, and one can show that these paths have full measure for the law of §
under P. Hence, C4!(-) is continuous P o S~!-a.e., and the functional version of
Proposition 5.59 yields

EX[CEE™ ] — E[CE®) ],
so that our limiting price must coincide with the discounted expectation on the right. <
Remark 5.64. Let us assume, more generally, that the price process S is defined by
Sy = Soe? Vit 0<t<T,

for some o € R. Applying It6’s formula as in (5.38), we see that S is governed by the
stochastic differential equation

dS[ = OS[ dW[ + bS[ dt
withd = o + %02. The discounted price process is given by

X, = SoeJW,+(a—r)t — Soe"Wr*—"zt/Z
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with W = W, + At for A = (b — r)/o. The process W* is a Wiener process under
the measure P* ~ P defined by the density

ar* _ oMW —12T/2
dP ’

In fact, P* is the unique equivalent martingale measure for X. We can now repeat the
arguments above to conclude that the cost of perfect replication for a contingent claim
C(S) is given by

e"TEF[C(S) 1. &

Even in the context of simple diffusion models such as geometric Brownian motion,
however, completeness is lost as soon as the future behavior of the volatility parameter
o is unknown. If, for instance, volatility itself is modeled as a stochastic process, we
are facing incompleteness. Thus, the problems of pricing and hedging in discrete-
time incomplete markets as discussed in this book reappear in continuous time. Other
versions of the invariance principle may lead to other classes of continuous-time
models with discontinuous paths, for instance to geometric Poisson or Lévy processes.
Discontinuity of paths is another important source of incompleteness. In fact, this has
already been illustrated in this book, since discrete-time models can be regarded as
stochastic processes in continuous time, where jumps occur at predictable dates.



Chapter 6

American contingent claims

So far, we have studied European contingent claims whose payoff is due at a fixed
maturity date. In the case of American options, the buyer can claim the payoff at any
time up to the expiration of the contract.

First, we take the point of view of the seller, whose aim is to hedge against all pos-
sible claims of the buyer. In Section 6.1, this problem is solved under the assumption
of market completeness, using the Snell envelope of the contingent claim. The buyer
tries to choose the best date for exercising the claim, contingent on the information
available up to that time. Since future prices are usually unknown, a formulation of
this problem will typically involve subjective preferences. If preferences are expressed
in terms of expected utility, the choice of the best exercise date amounts to solving
an optimal stopping problem. In the special case of a complete market model, any
exercise strategy which maximizes the expected payoff under the unique equivalent
martingale measure turns out to be optimal even in an almost sure sense.

In Section 6.3, we characterize the set of all arbitrage-free prices of an American
contingent claim in an incomplete market model. This involves a lower Snell envelope
of the claim, which is analyzed in Section 6.5, using the fact that the class of equivalent
martingale measures is stable under pasting. This notion of stability under pasting
is discussed in Section 6.4 in a general context, and in Section 6.5 we explain its
connection with the time-consistency of dynamic risk measures. The results on lower
Snell envelopes can also be regarded as a solution to the buyer’s optimal stopping
problem in the case where preferences are described by robust Savage functionals.
Moreover, these results will be used in the theory of superhedging of Chapter 7.

6.1 Hedging strategies for the seller

We start this section by introducing the Doob decomposition of an adapted process
and the notion of a supermartingale.

Proposition 6.1. Let Q be a probability measure on (2, ¥r), and suppose that Y
is an adapted process such that Y; € £1(Q) for all t. Then there exists a unique
decomposition

Y=M-A, (6.1)

where M is a Q-martingale and A is a process such that Ay = 0 and (A;)i=1,..T
is predictable. The decomposition (6.1) is called the Doob decomposition of Y with
respect to the probability measure Q.



278 6 American contingent claims

Proof. Define A by
A[—At_] = —EQ[Y[—Yt_l |fr:;_1] fort=1,...,T. (62)

Then A is predictable and M, := Y; + A, is a Q-martingale. Clearly, any process A
with the required properties must satisfy (6.2), so the uniqueness of the decomposition
follows. O

Definition 6.2. Let Q be a probability measure on (€2, #7) and suppose that Y is an
adapted process such that ¥; € L1(Q) for all t. Denote by Y = M — A the Doob
decomposition of Y.

(a) Y is called a Q-supermartingale if A is increasing.
(b) Y is called a Q-submartingale if A is decreasing.

Clearly, a process is a martingale if and only if it is both a supermartingale and a
submartingale, i.e., if and only if A = 0. The following result gives equivalent char-
acterizations of the supermartingale property of a process Y. Its proof is elementary
and left to the reader.

Proposition 6.3. Let Y be an adapted process with Y, € L1(Q) for all t. Then the
following conditions are equivalent:

(a) Y is a Q-supermartingale.

(b) Yo = Eg[Y: | Fs] for0<s <t <T.

© Y- = EglY: | Frmrl fort=1,...,T.
(d) =Y is a Q-submartingale.

‘We now return to the market model introduced in Section 5.1. An American option,
or American contingent claim, corresponds to a contract which is issued at time 0 and
which obliges the seller to pay a certain amount C; > 0 if the buyer decides at time
7 to exercise the option. The choice of the exercise time 7 is entirely up to the buyer,
except that the claim is automatically exercised at the “expiration date” of the claim.
The American contingent claim can be exercised only once: It becomes invalid as soon
as the payoff has been claimed by the buyer. This concept is formalized as follows:

Definition 6.4. An American contingent claim is a non-negative adapted process
C = (Cy)t=o,..., 7 on the filtered space (2, (¥1):=0,....T)-

.....

For each ¢, the random variable C; is interpreted as the payoff of the American
contingent claim if the claim is exercised at time 7. The time horizon T plays the role
of the expiration date of the claim. The possible exercise times for C are not limited to
fixed deterministic times ¢ € {0...., T }; the buyer may exercise the claim in a way
which depends on the scenario w € Q2 of the market evolution.
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Definition 6.5. An exercise strategy for an American contingent claim C is an
Fr-measurable random variable 7 taking values in {0, ..., T }. The payoff obtained
by using t is equal to

Cr(w) :=Cr)(w), we.

Example 6.6. An American put option on the i™ asset and with strike K > 0 pays
the amount ‘
M= (K —SpTt

if it is exercised at time ¢. The payoff at time ¢ of the corresponding American call
option is given by '
= (S - K)*.

Clearly, the American call option is “out of the money” (i.e., has zero payoff) if
the corresponding American put is “in the money” (i.e., has non-zero payoff). It
is therefore a priori clear that the respective owners of CP* and C*! will usually
exercise their claims at different times. In particular, there will be no put-call parity
for American options. <

Similarly, one defines American versions of most options mentioned in the exam-
ples of Section 5.3. Clearly, the value of an American option is at least as high as the
value of the corresponding European option with maturity 7.

Remark 6.7. It should be emphasized that the concept of American contingent claims
can be regarded as a generalization of European contingent claims: If CF is a European
contingent claim, then we can define a corresponding American claim C4 by

0 ift <T
cA = ’ 6.3
! CE ift=T. (6:3)
<
Example 6.8. A Bermuda option can be exercised by its buyer at each time of a
predetermined subset T C {0, ..., T'}. For instance, a Bermuda call option pays the
amount (§; — K )t if it is exercised at some time ¢ € T. Thus, a Bermuda option
is a financial instrument “between” an American option with T = {0, ..., T} and a

European option with T = {T'}, just as Bermuda lies between America and Europe;
hence the name “Bermuda option”. A Bermuda option can be regarded as a particular

American option C that pays the amount C; = 0 for ¢ ¢ T. <
The process
G
Ht:_o, t=0,...,T,
Si

of discounted payoffs of C will be called the discounted American claim associated
with C. As far as the mathematical theory is concerned, the discounted American
claim H will be the primary object. For certain examples it will be helpful to keep
track of the numéraire and, thus, of the payoffs C; prior to discounting.



280 6 American contingent claims

In this section, we will analyze the theory of hedging American claims in a complete
market model. We will therefore assume throughout this section that the set & of
equivalent martingale measures consists of one single element P*:

P ={P*).

Under this assumption, we will construct a suitable trading strategy that permits the
seller of an American claim to hedge against the buyer’s discounted claim H;. Let us
first try to characterize the minimal amount of capital U, which will be needed at time
t € {0, ..., T}. Since the choice of the exercise time 7 is entirely up to the buyer, the
seller must be prepared to pay at any time ¢ the current payoff H; of the option. This
amounts to the condition U, > H;. Moreover, the amount U, must suffice to cover
the purchase of the hedging portfolio for the possible payoffs H, for u > ¢. Since the
latter condition is void at maturity, we require

Ur = Hr.

At time T — 1, our first requirement on Ur_; reads Ur_; > Hr_;. The second
requirement states that the amount Ur_; must suffice for hedging the claim Hr in
case the option is not exercised before time 7. Due to our assumption of market
completeness, the latter amount equals

E*[Hr | Fr—11=E*[Ur | Fr-11.

Thus,
Ur—1:=Hr_1 vV E*[Ur | Fr_1]

is the minimal amount that fulfills both requirements. Iterating this argument leads to
the following recursive scheme for U;:

Ur = Hy, Uy :=H VE*[Uy | %] fort=T-1,...,0. (6.4)

Definition 6.9. The process U’ " := U defined by the recursion (6.4) is called the
Snell envelope of the process H with respect to the measure P*.

Example 6.10. Let HZ be a discounted European claim. Then the Snell envelope
with respect to P* of the discounted American claim H A associated with HE via (6.3)
satisfies

Ul = E*[H} | F 1= E[HE | 7.

t

Thus, U is equal to the value process of a replicating strategy for HE. <&

Clearly, a Snell envelope U< can be defined for any probability measure Q on
(2, F7) and for any adapted process H that satisfies the following integrability con-
dition:

H e LY(Q) fort=0,...,T. (6.5)
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In our finite-time setting, this condition is equivalent to

EQ[ rtrlsa%|H,|] < 0.

For later applications, the following proposition is stated for a general measure Q.

Proposition 6.11. Let H be an adapted process such that (6.5) holds. Then the Snell
envelope U2 of H with respect to Q is the smallest Q-supermartingale domznatmg H
IfU is another Q-supermartingale such that Ut > H; Q-a.s. forallt, then U, > U
Q-a.s. for all t.

Proof. Ttfollows immediately from the definition of U2 that U2 | > Eg[ U2 | F1—1 ]
so that U € is indeed a supermartingale. If U is another supermartingale dominating
H, then U r>Hr=U TQ We now proceed by backward induction on z. If we already
know that lNJ, > UtQ, then

Ui—1 = EglU | Fi—112 EglUL | Fi_1 1.
Adding our assumption l~]t_1 > H;_ yields that
U1 = Hio v EglUS | Fim11=U2,,
and the result follows. O

Proposition 6.11 illustrates how the seller can (super-) hedge a discounted Amer-
ican claim H by using the Doob decomposition

ul =M, — A, t=0,...,T,

of the Snell envelope U” " with respect to P*. Then M is a P*-martingale, A is
increasing, and (A;);=1,....7 is predictable. Since we assume the completeness of the
market model, Theorem 5.39 yields the representation of the martingale M as the
“stochastic integral” of a suitable d-dimensional predictable process &:

t
My =UJ" +> & (X —Xeep), t=0,....T. (6.6)
k=1

It follows that
M; > UtP > H, forallzt.

By adding a numéraire component £° such that & = (£, £) becomes a self-financing
trading strategy with initial investment U(f) ", we obtain a (super-) hedge for H, namely
a self-financing trading strategy whose value process V satisfies

Vi, > H, forallzt. (6.7)
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Thus, UL " may be viewed as the resulting capital at each time 7 if we use the self-
financing strategy &, combined with a refunding scheme where we withdraw suc-
cessively the amounts defined by the increments of A. In fact, UIP " is the minimal
investment at time ¢ for which one can purchase a hedging strategy such that (6.7)
holds. This follows from our next result.

Theorem 6.12. Let H be a discounted American claim with Snell envelope U* " Then
there exists a d-dimensional predictable process & such that

u
Ul + Z & - (Xx — Xp—1) = H, forallu>1t. (6.8)
k=t+1

Moreover, any F;-measurable random variable ﬁt which, for some predictable &,
satisfies (6.8) in place of UtP " is such that

~ *
U >U P*as.

Thus, UIP " is the minimal amount of capital which is necessary to hedge H from time t
up to maturity.

Proof. Clearly, u P* satisfies (6.8) for & as in (6.6). Now suppose that ﬁ, is F;-
measurable, that £ is predictable, and that

u
V, =0, + > & Xk — X)) = Hy, forallu > 1.
k=t+1

We show V,, > U,f * for all u > t by backward induction. Vy > Hr = Uf " holds
by assumption, so assume V, 1 > UMP :1 for some u. Since our market model is
complete, Theorem 5.38 implies that £ is bounded. Hence, we get

E*[Vius1 = Vi | Ful = E*[Eup1 - Xug1 — Xu) | Fu1=0 P-as.
It follows that

Vi=E*[Vau1 | Ful= H, vV EXLUL | F1= UL O

6.2 Stopping strategies for the buyer

In this section, we take the point of view of the buyer of an American contingent
claim. Thus, our aim is to optimize the exercise strategy. It is natural to assume that
the decision to exercise the claim at a particular time ¢ depends only on the market
information which is available at . This constraint can be formulated as follows:
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Definition 6.13. A function 7 : Q — {0,1,...,T}U {+o00} is called a stopping
timeif {t =t} e FHfort =0,...,T.

In particular, the constant function T = ¢ is a stopping time for fixedt € {0, ..., T}.

Remark 6.14. A functiont : 2 — {0,1,..., T }U {400} is a stopping time if and
only if {t <t} € F; for each . Moreover, if T and o are two stopping times, then
the following functions are also stopping times:

TAo, Vo, (T+o0o)AT.
The proof is easy and left to the reader. <

Example 6.15. A typical example of a non-trivial stopping time is the first time at
which an adapted process Y exceeds a certain level c:

T(w) :=inf{t > 0| Y;(w) > c}.

In fact,
!
r<n=Jtnzcter
s=0
fort = 0, ..., T. This example also illustrates the role of the value +oo in Defini-
tion 6.13: We have t(w) = 400 if, for this particular w, the criterion that triggers t
isnot met forany ¢t € {0, ..., T }. <&

Definition 6.16. For any stochastic process Y and each stopping time T we denote by
YT the process stopped in t:

Y () = Yirr(w) (@) forw e Qandforallr € {0,...,T}.

It follows from the definition of a stopping time that Y'* is an adapted process if ¥
is. Informally, the following basic theorem states that a martingale cannot be turned
into a favorable game by using a clever stopping strategy. This result is often called
Doob’s stopping theorem or the optional sampling theorem. Recall that we assume
Fo = {9, 2}.

Theorem 6.17. Let M be an adapted process such that M, € £'(Q) for eacht. Then
the following conditions are equivalent:

(@) M is a Q-martingale.
(b) For any stopping time t the stopped process M is a Q-martingale.

(©) Egl M: a1 1= My for any stopping time t.
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Proof. (a) =(b): Note that
tf-l—l - Mtr = (Ml+l - Mt)I{T>t}-

Since {t > t} € F;, we obtain that

Eol M}, — M{ | Fi1= EqlMiy1— M, | F1-1_, =0.

T>t}

(b) =(c): This follows simply from the fact that the expectation of M} is constant
int.
(c) =(a): We need to show that if 1 < T, then
EglMr; A]l=Eg[M;; A] (6.9)

for each A € ¥;. Fix such an A and define a stopping time 7 as

We obtain that

Mo = EglMrpr 1= Egl My; A1+ EolMr; A°].
Using the constant stopping time 7 instead of 7 yields that

Mo = Eg[Mr1=Eg[Mr; A1+ Eo[M7; A°].

Subtracting the latter identity from the previous one yields (6.9). O

Corollary 6.18. Let U be an adapted process such that U; € LY(Q) for eacht. Then
the following conditions are equivalent:

(a) U is a Q-supermartingale.
(b) For any stopping time t, the stopped process U" is a Q-supermartingale.
Proof. If U = M — A is the Doob decomposition of U, then one checks that
Ur=M" - AT (6.10)

is the Doob decomposition of U*. This observation and Theorem 6.17 yield the
equivalence of (a) and (b). ]

Let us return to the problem of finding an optimal exercise time t for a discounted
American claim H. We assume that the buyer chooses the possible exercise times
from the set

7 := {7 | tisastopping time with t < T }
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of all stopping times which do not take the value +0o0. Assume that the aim of the
buyer is to choose a payoff from the class { H; | T € 7 } which is optimal in the sense
that it has maximal expectation. Thus, the problem is:

Maximize E[ H; ] among all T € 7. (6.11)

The analysis of the optimal stopping problem (6.11) does not require any properties
of the underlying market model, not even the absence of arbitrage. We may also drop
the positivity assumption on H: All we have to assume is that H is an adapted process
which satisfies

H, € LY, F, P) forallr. (6.12)

This relaxed assumption will be useful in Chapter 9, and it allows us to include
the interpretation of the optimal stopping problem in terms of the following utility
maximization problem:

Remark 6.19. Suppose the buyer uses a preference relationon X := {H; | t € T }
which can be represented in terms of a Savage representation

U(Hy) = Eg[u(H)]

where Q is a probability measure on (€2, ), and u is a measurable or continuous
function; see Section 2.5. Then a natural goal is to maximize the utility U (H;)
among all T € 7. This is equivalent to the optimal stopping problem (6.11) for the
transformed process H; := u(H;), and with respect to the measure Q instead of P.
This utility maximization problem is covered by the discussion in this section as long
as H, € L£1(Q) for all . In Remark 6.51 we will discuss the problem of maximizing
the more general utility functionals which appear in a robust Savage representation.

<&

Under the assumption (6.12), we can construct the Snell envelope U := U” of H
with respect to P, i.e., U is defined via the recursive formula

Ur:=Hr and U;:=H;VE[Up |F], t=T-1,...,0.
Let us define a stopping time Ty, by
Tmin ;= min{¢t >0 | U, = H; }.

Note that Ty < T since Ur = Hr. As we will see in the following theorem, i,
maximizes the expectation of H; among all 7 € 7. In other words, Ty, is a solution
to our optimal stopping problem (6.11). Similarly, we let

tr(rfi)n :=min{u >t | U, = H,},
which is a member of the set

T ={teT |t>t}
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Theorem 6.20. The Snell envelope U of H satisfies

Ui =E[H o | £z 1 =-esssup E[ H; | %]

min TeT;
In particular,
Up=E[Hy,,, ] =sup E[ H; ].
teT

Proof. Since U is a supermartingale under P, Corollary 6.18 shows that for T € 7;
U= E[U | :1= E[H | F1].

Therefore,
U; > esssup E[ H; | #1].
teT;
Hence, the theorem will be proved if we can show that U; = E| HT@ | #; 1, which is

min

in turn implied by the identity

Uy=E[U | #1] (6.13)

min

In order to prove (6.13), let U") denote the stopped process

Ux(t) =U,, 0,

min

and fix some s between ¢t and 7. Then U; > H, on {rrgi)n

{Tr(nti)n > s}

> s}. Hence, P-a.s. on

UP = Uy = HyV E[Usy1 | F5 1= E[Uys1 | F 1= E[UY), | 1.

On the set {'L'Igi)n < s} one has Us(ﬁzl = Ufgi)n = Us(t), hence Us(t) = E[Us(fz1 | F5 1.
Thus, U is a martingale from time ¢ on:
u® =E[UY) | F1 foralls e {r,t+1,...,T).
It follows that
E[U0 | Fi]=ELUS | F11=U;" = U..
This proves the claim (6.13). Ll

Definition 6.21. A stopping time * € T is called optimal (with respect to P) if

E[H+]=sup E[ H; ].

teT
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In particular, Ty is an optimal stopping time in the sense of this definition. The
following result implies that 7y, is in fact the minimal optimal stopping time.

Proposition 6.22. A stopping time v € T is optimal if and only if H; = U; P-a.s.,
and if the stopped process U is a martingale. In particular, any optimal stopping
time T satisfies T > Tpin.

Proof. Firstnote that T € T is optimal if it satisfies the two conditions of the assertion,
because then Theorem 6.20 implies that

sup E[Ho 1= Uy = E[U7 1= E[U: ] = E[ H; ].
oeT
For the converse implication, we apply the assumption of optimality, the fact that
H; < Uy, and the stopping theorem for supermartingales to obtain that

Uo = E[H:] = E[U: ] =< U,

so that all inequalities are in fact equalities. It follows in particular that H;, = U,
P-almost surely. Moreover, the identity E[ U, ] = Uy implies that the stopped process
U" is a supermartingale with constant expectation Uy, and hence is a martingale. [J

In general, there can be many different optimal stopping times. The largest optimal
stopping time admits an explicit description: It is the first time before T for which the
Snell envelope U loses the martingale property:

tmax == inf {1 20| E[Ur1 = U | Fi ] # 0} AT
=inf{t >0| A4 Z0}AT.

Here, A denotes the increasing process obtained from the Doob decomposition of U
under P.

Theorem 6.23. The stopping time Tmax Is the largest optimal stopping time. Moreover,
a stopping time t is optimal if and only if P-a.s. T < tmax and U; = H:.

Proof. Let U = M — A be the Doob decomposition of U. Recall from (6.10) that
U®™ = M* — A" is the Doob decomposition of U* for any stopping time t. Thus, U*
is a martingale if and only if A; = 0, because A is increasing. Therefore, U" is a
martingale if and only if T < T, and so the second part of the assertion follows from
Proposition 6.22. Itremains to prove that T,y itself is optimal, i.e., that U, = Hx,,, -
This is clear on the set { Tyax = T }. Onthe set { tmax = ¢ } fort < T one has A, = 0
and A;4+1 > 0. Hence,

E[Us1 — U | Fi1= —(Arp1 — A) = —Ar1 <0 on {Timax = 1).

Thus, U; > E[U;41 | ] and the definition of the Snell envelope yields that U, =
HyV E[Ut1 | F 1= Hyon{tmax =1} O
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Let us now return to our complete financial market model, where H; is the dis-
counted payoff of an American contingent claim. Thus, an optimal stopping strategy
for H maximizes the expected payoff E[ H; ]. But a stopping time turns out to be the
best choice even in a pathwise sense, provided that it is optimal with respect to the
unique equivalent martingale measure P* in a complete market model. In order to
explain this fact, let us first recall from Section 6.1 the construction of a perfect hedge
of H from the seller’s perspective. Let

v =m—A

denote the Doob decomposition of the Snell envelope UP” of H with respect to P*.
Since P* is the unique equivalent martingale measure in our model, the martingale M
has the representation

t
Mz:U({J*_Fng.(Xk—Xk_l), t=0,...,T,
k=1

for a d-dimensional predictable process &. Clearly, M is equal to the value process of
the self-financing strategy constructed from £ and the initial investment U(f *. Since
M dominates H, this yields a perfect hedge of H from the perspective of the seller: If
the buyer exercises the option at some stopping time 7, then the seller makes a profit
M, — H; > 0. The following corollary states that the buyer can in fact meet the
value of the seller’s hedging portfolio, and that this happens if and only if the option
is exercised at an optimal stopping time with respect to P*. In this sense, U({) " can be
regarded as the unique arbitrage-free price of the discounted American claim H.

Corollary 6.24. With the above notation,

T
H, <M, =Ul" + Zsk - (Xg — Xx—1), P*-as. forallt €T,
k=1

and equality holds P*-almost surely if and only if T is optimal with respect to P*.
Proof. At time t,

H <UL =M, — A, < M.
Moreover, by Theorem 6.23, both H; = UTP “and A; = 0 hold P*-a.s. if and only if

7 is optimal with respect to P*. O

Let us now compare a discounted American claim H to the corresponding dis-
counted European claim Hr, i.e., to the contract which is obtained from H by restrict-
ing the exercise time to be 7. In particular, we are interested in the relation between
American and European put or call options. Let

Vii=E"[Hr | %]
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denote the amount needed at time ¢ to hedge Hr. Since our market model is complete,
V; can also be regarded as the unique arbitrage-free price of the discounted claim Hr
at time . From the seller’s perspective, UtP ) plays a similar role for the American
option. Itisintuitively clear that an American claim should be more expensive than the
corresponding European one. This is made mathematically precise in the following
statement.

Proposition 6.25. With the above notation, UIP > for all t. Moreover, if V
dominates H, then UF *and V coincide.

Proof. The first statement follows immediately from the supermartingale property of
Uur:

U = ELUL | 1= E*[Hr | F11= V.
Next, if the P*-martingale V dominates H, then it also dominates the corresponding
Snell envelope U”" by Proposition 6.11. Thus V and U must coincide. O

Remark 6.26. The situation in which V dominates H occurs, in particular, when the
process H is a P*-submartingale. This happens, for instance, if H is obtained by
applying a convex function f : R? — [0, oo) to the discounted price process X.
Indeed, in this case, Jensen’s inequality for conditional expectations implies that

E*[ f(Xey) | F 1= f(E* [ Xis1 | 1) = F(X0). &

Example 6.27. The discounted payoff of an American call option Cf! = (S,l - K)*
is given by
1 1K "
HY={X, — =] .
= (- 5)
Under the hypothesis that S is increasing in ¢, (5.21) states that

E*[HS | 71> H™ P*as. fort=0,...,T — L.

t

In other words, H*" is a submartingale, and the Snell envelope U of H* coincides

with the value process
K "
v=e{(5-§) 1]
T

of the corresponding European call option with maturity 7. In particular, we have
U({J " =V, ie., the unique arbitrage-free price of the American call option is equal to
its European counterpart. Moreover, Theorem 6.23 implies that the maximal optimal
stopping time with respect to P* is given by tmax = 7. This suggests that, in a
complete model, an American call should not be exercised before maturity. <
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Example 6.28. For an American put option C,put := (K — /)" the situation is differ-
ent, because the argument in (5.21) fails unless S is decreasing. If S is an increasing
bond, then the time value

(K —ShHt

W, =S E*|: 5
ST

| E] — (K - sH*
of a European put (K — S})Jr typically becomes negative at a certain time #, corre-
sponding to an early exercise premium —W;; see Figure 5.3. Thus, the early exercise
premium is the surplus which an owner of the American put option would have over
the value of the European put (K — S})*.

The relation between the price of a put option and its intrinsic value can be illus-
trated in the context of the CRR model. With the notation of Section 5.5, the price
process of the risky asset S; = Sl1 can be written as

t
S, =SoA; for A;:= ]_[(1 + Rp)
k=1

and with the constant So > 0. Recall that the returns Ry can take only two possible
values a and b with —1 < a < b, and that the market model is arbitrage-free if and
only if the riskless interest rate r satisfies a < r < b. In this case, the model is
complete, and the unique equivalent martingale measure P* is characterized by the

fact that it makes R, ..., R7 independent with common distribution
PR =b]=p'=_—2 (6.14)
b—a
Let N
K —xA
(x) := sup E*|: u}
teT (I+r)"

denote the price of CP" regarded as a function of x := Sy. Clearly, 7 (x) is a convex
and decreasing function in x. Let us assume that » > 0 and that the parameter a is
strictly negative. A trivial situation occurs if the option is “far out of the money” in

the sense that
K

> ___
= aral

because then S, = xA, > K for all ¢, and the payoff of CP" is always zero. In

particular, 7 (x) = 0. If
K

< -
= arnT
then S; = xA; < K for all ¢, and hence

* K _ _
o= (¢ ] =) =

(6.15)
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In this case, the price of the American put option is equal to its intrinsic value (K —x)™
attime t = 0, and an optimal strategy for the owner would simply consist in exercising
the option immediately, i.e., there is no demand for the option in the regime (6.15).
Now consider the case K
K<x<—
1+a)T
of a put option which is “at the money” or “not too far out of the money”. For large
enough ¢t > 0, the probability P*[ CP " > 0] of a non-zero payoff is strictly positive,
while the intrinsic value (K — x)T vanishes. It follows that the price 7 (x) is strictly
higher than the intrinsic value, and so it is not optimal for the buyer to exercise the
option immediately.
Summarizing our observations, we can say that there exists a value x* with

K *
—  _<x*<K
(1 +b)7 -
such that
7(x) = (K —x)" forx < x*,
7(x) > (K —x)" forx* <x < K/(14+a)T, and
T(x)=0 forx > K/(1+a)T;
see Figure 6.1. <
K So

Figure 6.1. The price of an American put option as a function of Sy compared to the option’s
intrinsic value (K — Sp)t.

Remark 6.29. In the context of an arbitrage-free CRR model, we consider a dis-
counted American claim H whose payoff is determined by a function of time and of
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the current spot price, i.e.,
Hl‘ = hl‘(Sl‘) for all z.

Clearly, this setting includes American call and put options as special cases. By using
the same arguments as in the derivation of (5.25), we get that the Snell envelope U? '
of H is of the form

Ul =u (), t=0,....T,

where the functions u, are determined by the recursion
ur(x) =hr(x) and u(x) =h@)V (1 b) p* +urp1 (xa) (1= p*).

Here p* is defined as in (6.14), and the parameters a and b are givenbya = 1 + a and
b =1+ b. Thus, the space [0, T'] x [0, co) can be decomposed into the two regions

Re=1{,x) [us(x) > hi(x)} and Ry = {1, x) | u;(x) = hi(x) },

and the minimal optimal stopping time tyj, can be described as the first exit time of
the space time process (¢, S;) from the continuation region R or, equivalently, as the
first entrance time into the stopping region R;:

Tmin = min{z > 0 [ (£, S;) ¢ Rc} =min{r = 0 [ (z, S;) € R }. ¢

6.3 Arbitrage-free prices

In this section, we drop the condition of market completeness, and we develop the
notion of an arbitrage-free price m for a discounted American claim H in a general
incomplete framework. The basic idea consists in reducing the problem to the deter-
mination of the arbitrage-free price for the payoff H; which arises from H by fixing
the exercise strategy t. The following remark explains that H; can be treated like the
discounted payoff of a European contingent claim, whose set of arbitrage-free prices
is given by

N(H,)={E*[H:1| P*€ P, E*¥[H;] < }. (6.16)

Remark 6.30. As observed in Remark 5.34, a discounted payoff ﬁ, which is received
at time # < T can be regarded as a discounted European claim H HE maturing at 7.
HE is obtained from H; by investing at time ¢ the payoff 59 H, into the numéraire,
i.e., by buying H, shares of the 0" asset, and by considering the discounted terminal
value of this investment:

~ 1 ~ ~
HE=S—0(39H,)=H,.
T
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In the case of our discounted American claim H which is payed off at the random
time 7, we can either apply this argument to each payoff

ﬁ[::HrI :H[I

{r=t}
or directly use a stopping time version of this argument. We conclude that H; can

be regarded as a discounted European claim, whose arbitrage-free prices are given by
(6.16). <&

Now suppose that H is offered at time r = O for a price # > 0. From the buyer’s
point of view there should be at least one exercise strategy T such that the proposed
price 7 is not too high in the sense that 7 < 7’ for some 7’ € I1(H;). From the seller’s
point of view the situation looks different: There should be no exercise strategy t’
such that the proposed price 7 is too low in the sense that 7 < 7" forall 7’ € TT(Hy).
By adding the assumption that the buyer only uses stopping times in exercising the
option, we obtain the following formal definition.

{r=}’

Definition 6.31. A real number 7 is called an arbitrage-free price of a discounted
American claim H if the following two conditions are satisfied.

» The price & is not too high in the sense that there exists some v € 7 and
' € TI(H;) such that 7 < 7’.

* The price 7 is not too low in the sense that there exists no t/ € T such that
m < n' forall ' € TI(H,).

The set of all arbitrage-free prices of H is denoted IT(H), and we define
mw(H) :=inf [1(H) and m,,(H) :=supll(H).

Recall from Remark 6.7 that every discounted European claim H £ can be regarded
as a discounted American claim H* whose payoff is zero if H is exercised before T,
and whose payoff at T equals H . Clearly, the two sets [T(H £) and IT(H*) coincide,
and so the two Definitions 5.29 and 6.31 are consistent with each other.

Remark 6.32. It follows from the definition that any arbitrage-free price w for H
must be an arbitrage-free price for some H;. Hence, (6.16) implies that 7 = E*[ H; ]
for some P* € #. Similarly, we obtain from the second condition in Definition 6.31
that 7 > inf pxcp E*[ H; ] for all T € 7. It follows that

sup inf E*[H;]<m <sup sup E*[H,;] forallw € [1(H). (6.17)
teT P*eP T€T P*eP
In particular,
sup E*[ H; ]
el
is the unique arbitrage-free price of H if P* is the unique equivalent martingale
measure in a complete market model, and so Definition 6.31 is consistent with the
results of the Section 6.1 and 6.2. <&



294 6 American contingent claims

Our main goal in this section is to characterize the set [1(H ), and to identify the
upper and lower bounds in (6.17) with the quantities 7,,(H) and m,(H). We will
work under the simplifying assumption that

H, € £'(P*) for all  and each P* € P. (6.18)
Note that (6.18) implies the condition

inf sup E*[ H; ] < oo.

P*eP teT
For each P* € & we denote by UP " the corresponding Snell envelope of H, i.e.,
UtP* =esssup E*[ H, | F; 1.
TeT;
With this notation, the right-hand bound in (6.17) can be written as
sup sup E*[H;]= sup sup E*[ H; ] = sup U(f*.
teT P*epP P*eP 1T P*ep
In fact, a similar relation also holds for the lower bound in (6.17):
sup inf E*[H,]= inf sup E*[H,]= inf Ul (6.19)
el P*epP P*eP teT P*ep
The proof that the above interchange of infimum and supremum is indeed justified

under assumption (6.18) is postponed to the next section; see Theorem 6.47.

Theorem 6.33. Under condition (6.18), the set of arbitrage-free prices for H is a real
interval with endpoints

7.(H) = inf sup E*[ H; ] = sup inf E*[ H;]
P*ep teT €T P*eP
and
7u(H) = sup sup E*[ H; ] = sup sup E*[ H.].
P*ep teT €T P*eP
Moreover, T1(H) either consists of one single point or does not contain its upper
endpoint m,,(H).

Proof. Let t* be a stopping time which is optimal with respectto agiven P* € &#. Then
UOP* = E*[ Hex] = suppcq E*[ Hy ], and consequently U(f* € T[I(H). Together
with the a priori bounds (6.17), we obtain the inclusions

(Ul | P* e ) C I(H) C [a, b], (6.20)
where

a:=sup inf E*[H;] and b:=sup sup E*[H;].

TeT P*eP teT P*epP
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Moreover, the minimax identity (6.19) shows that

a= inf sup E*[H;]= inf U(f)* and b= sup U(f)*.
PreP teT prep Prep
Together with (6.20), this yields the identification of ,:(H) and 7,,,(H) as a and b.
Now we claim that { U(f) : | P* € & }isaninterval, which, in view of the preceding
step, will prove that IT(H) is also an interval. Take Py, P; € & and define P, € &
by Py :=aP; + (1 —a)P for 0 < o < 1. By Theorem 6.20, f () := U, is the
supremum of the affine functions

oa— EyH]=aE[H ]+ (1 —a)Eo[H;], T€T.

Thus, f is convex and lower semicontinuous on [0, 1], hence continuous; see part (a)
of Proposition A.4. Since & is convex, this proves our claim.

Itremains to exclude the possibility that b belongs to [T(H) incasea < b. Suppose
by way of contradiction that b € TI(H). Then there exist T € 7 and P € 2 such that

E[H:1=b=sup sup E*[ H, .

teT P*epP

In particular, P attains the supremum of E*[ H; ] for P* € #. Theorem 5.33 im-
plies that the discounted European claim H; is attainable and that E*[ H; ] is in fact
independent of P* € . Hence,

b=E[H;]= inf E*[H;]<sup inf E*[H,],
P*eP P*ep

teT

and we end up with the contradiction b < a. Thus, b cannot belong to IT(H). O

Comparing the previous result with Theorem 5.33, one might wonder whether
[1(H) contains its lower bound if m,,(H) < m,,(H). At a first glance, it may come
as a surprise that both cases

7. (H) € II(H) and 7, (H) ¢ I1(H)
can occur, as is illustrated by the following simple example.

Example 6.34. Consider a complete market model with 7 = 2, defined on some
probability space (29, o, Po). This model will be enlarged by adding two external
states o™ and w ™, i.e., we define Q := Qo x {w', ™} and

1
P[{(wp, )} ] := 5 Pol{@o} ], @o € Q0.

The enlarged financial market model will then be incomplete, and the corresponding
set & of equivalent martingale measures is given by

?:{P;|O<p<1},
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where P;‘ is determined by P[f[ Qo x {w*} ] = p. Consider the discounted American
claim H defined as

2 ifw= ),
Hy=0, H =1, and H(w) = ne (“’0""_)
0 ifw= (a)o’ w )

Clearly, 7o = 2 is an optimal stopping time for P; if p > %, while 7; = 1 is optimal
for p < % Hence,
I(H) =[1,2),

and the lower bound 7,,(H) = 1 is an arbitrage-free price for H. Now consider the
discounted American claim H defined by ﬁ, = H; fort = 0, 2 and by ﬁl =0. In
this case, we have _

I(H) = (0,2). <

Theorem 6.33 suggests that an American claim A which admits a unique arbitrage-
free price should be attainable in an appropriate sense. Corollary 6.24, our hedging
resultin the case of acomplete market, suggests the following definition of attainability.

Definition 6.35. A discounted American claim H is called attainable if there exists
a stopping time T € 7 and a self-financing trading strategy & whose value process V
satisfies P-a.s.

V, > H, forallt,and V; = H;.

The trading strategy £ is called a hedging strategy for H.

If H is attainable, then a hedging strategy protects the seller not only against those
claims H; which arise from stopping times 7. The seller is on the safe side even if the
buyer would have full knowledge of future prices and would exercise H at an arbitrary
Fr-measurable random time o . For instance, the buyer even could choose ¢ such that

H, = max H;.
0<t<T

In fact, we will see in Remark 7.12 that H is attainable in the sense of Definition 6.35
ifand only if V; > H, forall t and V,, = H, for some ¥7-measurable random time o.

If the market model is complete, then every American claim H is attainable.
Moreover, Theorem 6.12 and Corollary 6.24 imply that the minimal initial investment
needed for the purchase of a hedging strategy for H is equal to the unique arbitrage-
free price of H. In a general market model, every attainable discounted American
claim H satisfies our integrability condition (6.18) and has a unique arbitrage-free
price which is equal to the initial investment of a hedging strategy for H. This follows
from Theorem 5.26. In fact, the converse implication is also true:

Theorem 6.36. For a discounted American claim H satisfying (6.18), the following
conditions are equivalent:
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(a) H is attainable.
(b) H admits a unique arbitrage-free price w(H), i.e., [1(H) = {w (H)}.
(¢) 7w (H) € II(H).

Moreover, if H is attainable, then w (H) is equal to the initial investment of any hedging
strategy for H.

The equivalence of (b) and (c) is an immediate consequence of Theorem 6.33.
The remainder of the proof of Theorem 6.36 is postponed to Remark 7.10 because it
requires the technique of superhedging, which will be introduced in Section 7.

6.4 Stability under pasting

In this section we define the pasting of two equivalent probability measures at a given
stopping time. This operation will play an important role in the analysis of lower
and upper Snell envelopes as developed in Section 6.5. In particular, we will prepare
for the proof of the minimax identity (6.17), which was used in the characterization
of arbitrage-free prices of an American contingent claim. Let us start with a few
preparations.

Definition 6.37. Let t be a stopping time. The o -algebra of events which are observ-
able up to time 7 is defined as

Fe={AeF|ANn{r <t} e F forallt}.
It is straightforward to check that 7 is indeed a o -algebra and that
Fe={AeF|An{t =1} € Fforalls}.

In particular, #; coincides with &; if T = t. Moreover, if ¢ is a stopping time with
o(w) < t(w) for all w € 2, then F; C F;.

The following result is an addendum to Doob’s stopping theorem; see Theo-
rem 6.17:

Proposition 6.38. For an adapted process M in L1(Q) the following conditions are
equivalent:

(a) M is a Q-martingale.

(b) EglM: | F5 1= Mo forall T € T and all stopping times o.
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Proof. (a) =(b): Take aset A € F, and let us write
Eo[M:; Al=Eg[M:; ANt <o} ]|+ Eg[M:; AN{t >0o}].

Condition (b) will follow if we may replace M; by M, in the rightmost expectation.
To this end, note that

ANfo=tIN{t>o}=AN{o =t} N{t >t} € F.
Thus, since the stopped process M* is a martingale by Theorem 6.17,

T
EQ[MT; AN{t >a}] :ZEQ[M;; ANn{o=t}N{r >0}]
t=0

T
=Y Eo[M[; An{o =1}N{r > 0}]
t=0

= EQ[MU; AN{r > 0}].

(b) =(a): This follows by takingt =rtando =5 <1t. O
Example 6.39. Let Z be the density process of a probability measure é that is abso-
lutely continuous with respect to Q; see Remark 5.13. If o is a stopping time, then
we have O < Q on ¥, and Propositions A.11 and 6.38 show that the corresponding
density is given by ~

dQ
@fLT:EQ[ZTI%]:ZTm- %

We have also the following extension of Theorem 6.20. It provides the solution to
the optimal stopping problem posed at any stopping time t < 7.
Proposition 6.40. Let H be an adaptedprocessin L1(Q, F, Q), and definefort € T
TG ={ceT |o>1}.
Then the Snell envelope U2 of H satisfies Q-a.s.
UE =esssup Egl Hy | %71,

oET;
and the essential supremum is attained for
aéfir)l :=min{r > 71 | H; = U,Q }.
Proof. Tt is not difficult to reduce the assertion to Theorem 6.20 by using the identity
EolHs | F11=EglHs | ;1 Q-as.on{t =t}, (6.21)

which is proved by checking the defining properties of the conditional expectation. []
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Definition 6.41. Let O and Q; be two equivalent probability measures and take
o € T . The probability measure

O[A]l:=Eg [0:[A|F]]. Ae¥r,
is called the pasting of Q1 and Qz ino.

The monotone convergence theorem for conditional expectations guarantees that
Q is indeed a probability measure and that

E5lY1=Eqg[EglY|%1]
for all F7-measurable Y > 0. Note that é coincides with Q1 on ¥, i.e.,
Eé[ Y]|=Egp,[Y] forall F;-measurable Y > 0.
Lemma 6.42. For Q1 ~ Q», their pasting ino € T is equivalent to Q1 and satisfies

dQ  Zr
dQl N ZO‘

’

where Z is the density process of Q2 with respect to Q1.
Proof. ForY > 0,
E5lY1=Eqg[EQlY|%:1]
- EQl[ZiUEQI[YZT | %o 1]

ZT
=EQl[z—Y]’
o

where we have used the martingale property of Z and the fact that Z, > 0 Q;-almost
surely. The equivalence of Q and Q; follows from Z7 > 0 Q1-almost surely. O

Lemma 6.43. For Q| ~ Q», let é be their pasting in o € T . Then, for all stopping
times Tt and Fr-measurable Y > 0,

EGLY | F1=Eq,[EY | Four 1|1 72 |-
Proof. If ¢ > 0 is F;-measurable, then (pI{T <o) is F5 N Fr-measurable. Hence,

EjlYp; 1 <0l = Eg[EQlY|Fle;t<0]

Eg[Eg [EolY|F:11F: o t <0 ]
Ej[Eg [EglY %115 ot <o),
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where we have used the fact that é coincides with Q| on ;. On the other hand,

E5lYe; 1 >0] = Eg[Eg[EqlY|Flo|Fs]t>0]
= Eé[EQz[Y|$}]ga;r>o].

It follows that

EGlY | F:1=EQ[EQlY | Fo 11 F |1 gy + E,[ Y | F2 11

<0 {t>o}’

and this coincides with the right-hand side of the asserted identity. O

Definition 6.44. A set @ of equivalent probability measures on (€2, F) is called stable
if, for any Q1, Q2 € @ and o € T, also their pasting in ¢ is contained in @.

The condition of stability in the preceding definition is sometimes also called fork
convexity, m-stability, or stability under pasting. For the purposes of this book, the
most important example of a stable set is the class & of all equivalent martingale
measures, but in Section 6.5 we will also discuss the connection between stable sets
and dynamic risk measures.

Proposition 6.45. P is stable.

Proof. Take P;, P, € P and denote by P their pasting a given 0 € 7. Doob’s
stopping theorem in the form of Proposition 6.38 and Lemma 6.43 applied with
Y := X} > 0and v = s yield that

ElX, | F1=E[El X, | Fous]1 | F]=Eil Xovs | F1=X,.

It follows in particular that each component X' is in £! (P) since E[ X = Xf) < 09,
concluding the proof of P € . 0

6.5 Lower and upper Snell envelopes

Our main goal in this section is to provide a proof of the minimax identity (6.19),
that was used in the characterization of the set of arbitrage-free prices of an American
contingent claim. The techniques and results which we develop here will help to
characterize the time-consistency of dynamic coherent risk measures and they will
also be needed in Chapter 7. Moreover, they can be interpreted in terms of an optimal
stopping problem for general utility functionals which appear in a robust Savage
representation of preferences on payoff profiles. Let us now fix a set @ of equivalent
probability measures and an adapted process H such that

H,; € c\CI(Q) for all r and each Q € @.
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Recall that this condition implies

inf sup Eg[ H; ] = inf UOQ < 00,
Q€@ el Q€@

where U € denotes the Snell envelope of H with respectto Q € @. Let us also assume
that
@ is stable.

Definition 6.46. The lower Snell envelope of H is defined as

U,i := essinf U,Q =essinfesssup Eg[ H; | 7], t=0,...,T.
Q€@ Qe@ rt€eT;

The upper Snell envelope of H is defined as

U,T 1= ess sup UtQ =esssupesssup Eg[ H; | ¥ 1, t=0,...,T.
Qe teT; Q€@

bl

We will first study the lower Snell envelope. The following “minimax theorem’
states that the essential infimum and the essential supremum occurring in the definition
of U' may be interchanged if @ is stable. Applied at # = 0 and combined with
Proposition 6.45, this gives the identity (6.19), which was used in our characterization
of the arbitrage-free prices of H.

Theorem 6.47. The lower Snell envelope of H satisfies

U} = esssupessinf Eg[ Hy | %1 for eacht. (6.22)

TeT; Qeq

In particular,

Uy = inf sup Egl H, ] = sup inf Egl H, .
QeQteT €T Q@

The inequality > in (6.22) is obvious. Its converse is an immediate consequence
of the next theorem, which solves the following optimal stopping problem that is
formulated with respect to the nonadditive expectation operator infgeq Egl - I:

maximize inf Eg[ H;]amongallt € T .
Qeq

Theorem 6.48. Define a stopping time t, € T; by
T :=min{u > 1 | Uj =H,}.

Then, P-a.s.,
U} =essinf Eg[ Hy, | 1. (6.23)
Qeq

In particular,
sup inf Eg[ H; ] = inf Eg[ Hgy]=Uj.
Q

€T Qe@ Qe
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For the proof of Theorem 6.48, we need some preparations.

Lemma 6.49. Suppose that we are given Q1, Q2 € @, a stopping time T € T, and a
set B € ;. Let Q € @Q be the pasting of Q1 and Q- in the stopping time

o= ‘L’IB + TIBC.
Then the Snell envelopes associated with these three measures are related as follows:
v =021, +U2'1,  P-as. (6.24)
Proof. With Proposition 6.40 and its notation, we have

UL = esssup EjlH,| F1.

PETT
To compute the conditional expectation on the right, note first that

Eg)[ Hy | Fovel = EQ,[ Hp | 115 + Hplye.
Hence, Lemma 6.43 yields that
EGLHy | Fr1=EQ,[Hy | F: 115 + Eg,[Hp | 7 11 ..
Moreover, whenever p1, p2» € 77, then
pi=pi1lg+p21,

is also a stopping time in J7. Thus,

UtQ =esssup Eg,[ H, | ?T]IB +esssup Eg,[H, | F7 11

BC 9
PETL PET:

and (6.24) follows. ]

Lemma 6.50. For any Q € Q and t € T there exist Qr € @ such that Qrx = Q on
Fr and )
ULk N essinf Ul =U}t.
Qe
Similarly, there exist 0% € @ such that Q¥ = Q on F; and

UTQk /" esssup UIQ =: UTT.
Qca

Proof. For Q1, 02 € @, B := {U2! > U2}, take 0 € @ as in Lemma 6.49. Then

ve=v2 1, +U2 -1, =U2" rU2. (6.25)
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Moreover, if Q1 = Q on ¥ then also é = Q on F;. Hence, the set
o:={U2|0ec@and 0 =0Qon%)

is such that U# = essinf ®. Moreover, (6.25) implies that ® is directed downwards,
and the second part of Theorem A.32 states the existence of the desired sequence
(Qk) C @. The proof for the essential supremum is analogous. O

Proof of Theorem 6.48. To prove (6.23), observe first that U,Q > Eg[ Hy, | % ] for
each Q € @, so that > holds in (6.23). For the proof of the converse inequality, note
that

7; < min{u ztIUMQ=HM}=: rtQ for O € Q.
It was shown in Theorem 6.20 that rtQ is the minimal optimal stopping time after time
¢t and with respect to Q. It was also shown in the proof of Theorem 6.20 that the

stopped process (U Q)TfQ is a Q-martingale from time ¢ on. In particular,
UP = EolUZ | %] forall Q € Q. (6.26)

Let us now fix some Q € @. Lemma 6.50 yields Qx € @ with Oy = Q on ¥,
such that ng decreases to U,it . We obtain

EQ[Hf,lszQ[U,{|m=EQ[lyTrgOU,‘;’k|ﬂ]
= lim Eg[UZ* | 1= lim Eo,[U2* | F;
ler;lo olU | #41] leTo ol LUZ | F1]

= lim U2 > U}
ktoo
Here we have used the facts that H, < U2 < UZ' and Eo[|UZ'|] =

Eo,l |U$ "1 < oo together with dominated convergence in the third step, the fact
that O = Q on ¥7, D ¥; in the fourth, and (6.26) in the fifth identity. I

Remark 6.51. Suppose the buyer of an American option uses a utility functional of
the form

inf Eolu(2)],

where @ is a set of probability measures and u is a measurable function. This may be
viewed as a robust Savage representation of a preference relation on discounted asset
payoffs; see Section 2.5. Thus, the aim of the buyer is to maximize the utility

Qirgg2 Eglu(Hy) ]

of the discounted payoff H; among all stopping times t € 7. This generalized
utility maximization problem can be solved with the results developed in this section,
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provided that the set @ is a stable set of equivalent probability measures. Indeed,
assume

ﬁt =u(H;) € £1(Q) for all r and each Q € @,

and let U< be the Snell envelope of I-Nlt with respect to Q € @. Theorem 6.48 states
that the generalized optimal stopping problem is solved by the stopping time

t* :=min{r > 0 | essinf UZ = H, },
Qe@

i.e.,
inf sup Eqlu(Hy) 1= Uy = inf Eglu(Hy)]. <
Qeq

Q€@ teT

Let us now turn to the analysis of the upper Snell envelope

Uf 1= ess sup UtQ =esssupesssup Eg[ H; | %1, t=0,...,T.
Qe@ el Qe@

In order to simplify the presentation, we will assume from now on that

sup Eg[|H;|] < oo forallt.
Qeq

This condition implies that

UOT = sup UOQ < sup sup Eg[|H;|] < co.
0ec@ TeT Qe

Our main result on upper Snell envelopes states that, for stable sets @, the upper
Snell envelope U satisfies a recursive scheme that is similar to the one for ordinary
Snell envelopes. In contrast to (6.4), however, it involves the nonadditive conditional
expectation operators ess supg E ol-1# 1

Theorem 6.52. U" satisfies the following recursive scheme:

Ul = Hr and U} = H, v esssupEg[U} | | %], 1=T—1...,0. (6.27)
Qe@

Proof. The definition of the Snell envelope U € implies that

U,T = esssup U,Q = H; vVesssup Eg| Ugrl | 1. (6.28)
0eQ Qe@

Next, we fix O € @ and denote by @;11(Q) the set of all Q € @ which coincide
with Q on F;4;. According to Lemma 6.50, there are ok e @;+1(Q) such that
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z+1 /’ t+1 The fact that EQ[|UI+1|] = EQ1[|U+1|] < 0o combined with
monotone convergence for conditional expectations shows that

esssupEQ[U 4 | F: 1 >esssupEQ[U 1 | F 1
Qeq Qeq

= esssup esssup EQ[U+1 | F1

Q ‘
Q€@ 0€11(Q) (6.29)

> esssupliminf Eg[U | Fi
Qec@ ktoo H

= esssup EQ[U:Jrl | 1.
Qeq

In particular, all inequalities are in fact identities. Together with (6.28) we obtain the
recursive scheme for U™. O

The following result shows that the nonadditive conditional expectation operators
esssupy Egl-| ;] associated with a stable set @ enjoy a consistency property that
is similar to the martingale property for ordinary conditional expectations.

Theorem 6.53. Let @ be a set of equivalent probability measures and

VtT =esssupEp[H | F], t=0,...,T,
Qe@

for some Fr-measurable H > 0 such that VOT < 00. If @ is stable then

VC,T = esssupEQ[VTT | Fo]1 foro,t €T witho <.
Qe@

If, in addition, @ is convex and the set of densities {dQ/dP | Q € @} is closed in
LY (P) for some equivalent reference measure P, then also the following converse
implication holds: if for all t € T and H € L*°(P),

sup Eg[H ] = sup EQ[esssupEQ/[Hlﬁ’j ]] (6.30)
Qc@ Q€@ Q'e
then @ is stable.

Remark 6.54. Note that, for H as in the theoremand t € T

T
V] = esssup Eg[ H | % 11
=0 2€@
T
= Zess sup Eg[ H | ¢ ]I{T:t}
=0 9€@

=esssup Eg[ H | ¥7 ],
Qe@

{r=t}

where we have used (6.21) in the second identity. <



306 6 American contingent claims

Proof of Theorem 6.53. By Remark 6.54,

V] =esssup Eg[ H | F, | =esssup Eg[ Egl H | F: 1] % |.
Qeq Qe@

The proof that the right-hand side is equal to esssupycq Eol V,T | 5 ] is done by

first noting that V71 is equal to the upper Snell envelope of the process H; given by
Hy = H and H; = 0 fort < T. Then the same argument as in (6.29) applies. All
one has to do is to replace r + 1 by t.

To prove the converse implication, let us assume by way of contradiction that the
pasting Q of some measures Q1, 0> € @ in a stopping time T € 7 does not belong
to @. By the Hahn—Banach theorem, there exists some H € L°°(P) such that

sup Eg[ H ] <E§[H]. (6.31)
Qeq

Using the definition of é and our assumption (6.30), we obtain
EglH|=Eq,[Eg,[H|%: 1]
< EQI[ esssup Eg/[ H | ?}]]
Q'e@

< sup EQ[ esssupEQ/[HIfF}]]

Qeq 0'cq
= sup Eg[ H ],
Qe@
in contradiction to (6.31). I

Let us conclude this section by pointing out the connection between stability under
pasting and the time-consistency of dynamic coherent risk measures. Let

p(Y):=sup Eg[—-Y], Y e L®(P),
Qeq

be a coherent risk measure on L°°(P) defined in terms of a set @ of probability
measures equivalent to P. In the context of a dynamic financial market model, it is
natural to update the initial risk assessment at later times ¢ > 0. If one continues to
use @ as a basis to compute the risk but takes into account the available information,
one is led to consider the conditional risk measures

pi(Y)=esssupEg[—-Y |F ], t=0,...,T. (6.32)
Qeq

The sequence py ..., pr can be regarded as a dynamic coherent risk measure. Often,
such a dynamic risk measure is called time-consistent or dynamically consistent if

ps(=p:(Y)) = ps(Y) forO<s=<r=<T. (6.33)



6.5 Lower and upper Snell envelopes 307

Corollary 6.55. Let @ be a set of equivalent probability measures. The dynamic risk
measure py, . . ., pt arising from @ via (6.32) is time-consistent as soon as @ is stable.
Conversely, stability of @ is necessary if time-consistency is required also for stopping
times and if @ coincides with Qu,x, the maximal representing subset of M (P) for p.

Proof. This follows from Theorem 6.53, since

d
{d_g|Q€@max}= ﬂ {(PGLL_(PHE[QOX]ZO, E[(p]:]}
Xen,

is convex and closed in L!(P). I
If one requires time-consistency only in the weak form (6.33), one can show by

using the arguments in this section that it is necessary and sufficient for @ to be stable
under pasting in stopping times that take at most one value different from 7.



Chapter 7
Superhedging

The idea of superhedging is to find a self-financing trading strategy with minimal initial
investment which covers any possible future obligation resulting from the sale of a
contingent claim. If the contingent claim is not attainable, the proof of the existence
of such a “superhedging strategy” requires new techniques, and in particular a new
uniform version of the Doob decomposition. We will develop this theory for general
American contingent claims. In doing so, we will also obtain new results for European
contingent claims. In the first three sections of this chapter, we assume that our market
model is arbitrage-free or, equivalently, that the set of equivalent martingale measures
satisfies

P £ 0.

In the final Section 7.4, we discuss liquid options in a setting where no probabilistic
model is fixed a priori. Such options may be used for the construction of specific
martingale measures, and also for the purpose of hedging illiquid exotic derivatives.

7.1 & -supermartingales
In this section, H denotes a discounted American claim with

sup E*[H;] < oo forallz. (7.1)

Prep

Our aim in this chapter is to find the minimal amount of capital U; that will be needed
at time ¢ in order to purchase a self-financing trading strategy whose value process
satisfies V,, > H, for all u > t. In analogy to our derivation of the recursive scheme
(6.4), we will now heuristically derive a formula for U;. At time T, the minimal
amount needed is clearly given by

Ur = Hr.

At time T — 1, a first requirement is to have Ur_1 > Hr_;. Moreover, the amount
Ur_1 must suffice to purchase an #7_1-measurable portfolio £ such that&4 - X7 >
H7 almost surely. An informal application of Theorem 1.31, conditional on £7_1,
shows that

Ur—y >esssup E*[Hr | Fr_1 1.

Predp
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Hence, the minimal amount Ur_1 is equal to the maximum of Hr_ and this essential
supremum. An iteration of this argument yields the recursive scheme

Ur =Hy and U; = H; Vesssup E*[U;y1 | F ]
Pep
fort =T —1,...,0. By combining Proposition 6.45 and Theorem 6.52, we can
identify U as the upper Snell envelope

UtT = esssup UtP* = esssupesssup E*[ H; | ;]

P*ep TeT; PxepP

of H with respect to the stable set #, where U” " denotes the Snell envelope of H
with respect to P*. In the first three sections of this chapter, we will in particular give
a rigorous version of the heuristic argument above.

Note first that condition (7.1) implies that

7w (H) = sup U({’* = sup sup E*[H;] < oo,
P*ep P*eP teT
where we have used the identification of the upper bound =, (H) of the arbitrage-free
prices of H given in Theorem 6.33. It will turn out that the following definition applies
to the upper Snell envelope if we choose @ = P.

Definition 7.1. Suppose that @ is anon-empty set of probability measures on (2, ¥7).
An adapted process is called a @-supermartingale if it is a supermartingale with respect
to each QO € @. Analogously, we define the notions of a @-submartingale and of a
@-martingale.

In Theorem 5.26, we have already encountered an example of a J-martingale,
namely the value process of the replicating strategy of an attainable discounted Euro-
pean claim.

Theorem 7.2. The upper Snell envelope U of H is the smallest P-supermartingale
that dominates H.

Proof. For each P* € P the recursive scheme (6.27) implies that P*-a.s.
Ul = B v EFUL I B = ENUL L FL

Since UOT is a finite constant due to our integrability assumption (7.1), induction on

t shows that UtT is integrable with respect to each P* € # and hence is a &-super-
martingale dominating H.

If U is another P -supermartingale which dominates H, then ﬁT > Hr =U ;

Moreover, if l7,+1 >U !

e for some ¢, then

U = H v EUpsi | F1= HVETUL, | F1.
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Thus,
U, > H, \/esssupE*[UtTJrl | % 1= U,T,
P*ep
and backward induction shows that U dominates U . O

For European claims, Theorem 7.2 takes the following form.
Corollary 7.3. Let HE be a discounted European claim such that

sup E*[HE ] < o0.

Prep

Then
v i=esssup EXLHE | 71, t=0,...,T,

P*ep
is the smallest P-supermartingale whose terminal value dominates HE .

Remark 7.4. Note that the proof of Theorem 7.2 did not use any special properties
of the set #. Thus, if @ is an arbitrary set of equivalent probability measures, the
process U defined by the recursion

Ur=Hy and U, = H;VvesssupEg[Uy1|F]
Qe@

is the smallest @-supermartingale dominating the adapted process H. <&

7.2 Uniform Doob decomposition

The aim of this section is to give a complete characterization of all non-negative
& -supermartingales. It will turn out that an integrable and non-negative process U is a
& -supermartingale if and only if it can be written as the difference of a #-martingale
N and an increasing adapted process B satisfying Bg = 0. This decomposition
may be viewed as a uniform version of the Doob decomposition since it involves
simultaneously the whole class #. It will turn out that the J-martingale N has a
special structure: It can be written as a “stochastic integral” of the underlying process
X, which defines the class #. On the other hand, the increasing process B is only
adapted, not predictable as in the Doob decomposition with respect to a single measure.

Theorem 7.5. For an adapted, non-negative process U, the following two statements
are equivalent.

(a) U is a P-supermartingale.
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(b) There exists an adapted increasing process B with By = 0 and a d-dimensional
predictable process & such that

t
U =U+ Y & Xy —Xs-1) — B P-as. forallt.
k=1

Proof. First, we prove the easier implication (b) =(a). Fix P* € £ and note that

T
Vri=Uo+ Y & (Xx — Xx—1) = Ur > 0.
k=1

Hence, V is a #-martingale by Theorem 5.15. It follows that U; € £ (P*) for all z.
Moreover, for P* € P

EX[Up1 | F1=E* [ Vi1 = Byt | 1 < Vi — B = Uy,

and so U is a J-supermartingale.

The proof of the implication (a) =(b) is similar to the proof of Theorem 5.33. We
must show that for any given ¢t € {1, ..., T}, there exist & € LO(Q, Fi_1, P; Rd)
and R; € LY(Q, %, P) such that

Ut - Ut,1 = gt : (Xt - thl) - Rt-
This condition can be written as
Uy — U1 € X — L9(Q, 5. P),

where K is as in (5.12). There is no loss of generality in assuming that P is itself
a martingale measure. In this case, U; — U;_1 is contained in LY(Q, %, P) by the
definition of a J?-supermartingale. Assume that

U= U1 ¢ Ci= (K, — LY(Q, F1, P)) N L' (P).

Since our model is arbitrage-free, Lemma 1.67 implies that C is closed in LYQ, %, P ).
Hence, Theorem A.56 implies the existence of some Z € L°°(2, ¥;, P) such that

a:=sup E[ZW] < E[Z(U; —U;_1)] =:6 < o0. (7.2)
wee

Infact, wehave o = Osince C is a cone containing the constant function 0. Lemma 1.57
implies that such a random variable Z must be non-negative and must satisfy

E[(X; =X Z | F1-1]1=0. (7.3)

In fact, we can always modify Z such that it is bounded below by some ¢ > 0 and
still satisfies (7.2). To see this, note first that every W € C is dominated by a term of
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the form & - (X; — X,_1). Hence, our assumption P € &, the integrability of W, and
an application of Fatou’s lemma as yield that

E[W]<El& (X, - X,—p] <liminf E[L, _ & (X, —Xi—D]=0.
ctoo =

Thus, if we let Z¢ := ¢ + Z, then Z¢ also satisfies E[ Z* W] < Oforall W € C. If
we chose ¢ small enough, then E[ Z¢ (U; — U,_1) ] is still larger than 0; i.e., Z¢ also
satisfies (7.2) and in turn (7.3). Therefore, we may assume from now on that our Z
with (7.2) is bounded below by some constant ¢ > 0.
Let
Zi1=E[Z]| F-1],

and define a new measure P ~ P by
AP Z
dP "~ Zi_y

We claim glat PeP. To prove this, note first that X € L! (F) for all k, because the
density d P /d P is bounded. Next, let

Pk = 7

t—1

’ﬂ} k=0,.. . .T.

If k # t, then @1 = ¢g; this is clear for k > ¢, and for k < ¢ it follows from
E[Z| F_—
(pk=E|: [Z ]| % 1]’?](]:1'
Zi
Thus, for k # ¢
~ 1
E[ Xk — Xk—1 | Fr—11= o E[ (Xk — Xk—1) @k | Fi—1]
= E[ Xk — Xk—1 | Fi—11
=0.
If kK = ¢, then (7.3) yields that

~ 1
E[ Xk — Xp—1 | Fx—11= Z E[(X; =X Z ]| F-1]1=0.

t—1

Hence P eNJP. -
Since P € P, wehave E[U; — U;_1 | F:—1] < 0, and we get

0> E[E[U; —Ui—y | Fi11Zi-1 ]
= E[(U; — Us—1) Zy—1]
= E[(U; —U—1) Z ]
=4.

This, however, contradicts the fact that § > 0. O
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Remark 7.6. The decomposition in part (b) of Theorem 7.5 is sometimes called the
optional decomposition of the #-supermartingale U. The existence of such a de-
composition was first proved by El Karoui and Quenez [80] and D. Kramkov [135]
in a continuous-time framework where B is an “optional” process; this explains the
terminology. <&

7.3 Superhedging of American and European claims

Let H be a discounted American claim such that

sup E*[H;] < oo forallt,
Pre®

which is equivalent to the condition that the upper bound of the arbitrage-free prices
of H is finite:
7w(H) = sup sup E*[ H; ] < o0.
P*eP 1T
Our aim in this section is to construct self-financing trading strategies such that the
seller of H stays on the safe side in the sense that the corresponding portfolio value is
always above H.

Definition 7.7. Any self-financing trading strategy & whose value process V satisfies
V; > H; P-as. forall ¢

is called a superhedging strategy for H.

Sometimes, a superhedging strategy is also called a superreplication strategy.
According to Definition 6.35, H is attainable if and only if there exist t € 7 and a
superhedging strategy whose value process satisfies V; = H; P-almost surely.

Lemma 7.8. If H is not attainable, then the value process V of any superhedging
strategy satisfies
P[V; > H; forallt] > 0.

Proof. We introduce the stopping time
t:=inf{tr>0| H =V, }.

Then P[t = oo] = P[V; > H; forall t]. Suppose that P[t = oo] = 0. In this
case, V; = H; P-a.s sothat we arrive at the contradiction that H must be an attainable
American claim. O

Let us now turn to the question whether superhedging strategies exist. In Sec-
tion 6.1, we have already seen how one can use the Doob decomposition of the Snell
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envelope UP" of H together with the martingale representation of Theorem 5.39 in
order to obtain a superhedging strategy for the price U({’ ", where P* denotes the unique
equivalent martingale measure in a complete market model. We have also seen that
U(f) " is the minimal amount for which such a superhedging strategy is available, and
that U(f " is the unique arbitrage-free price of H. The same is true of any attainable
American claim in an incomplete market model.

In the context of a non-attainable American claim H in an incomplete financial
market model, the P*-Snell envelope will be replaced with the upper Snell envelope
U" of H. The uniform Doob decomposition will take over the roles played by the
usual Doob decomposition and the martingale representation theorem. Since U1 is a
P -supermartingale by Theorem 7.2, the uniform Doob decomposition states that U
takes the form

t
Ul =UJ + > & (Xs = Xso) — By (7.4)
s=1

> H;

for some predictable process § and some increasing process B. Thus, the self-financing
trading strategy £ = (£°, &) defined by £ and the initial capital

£ -Xo=U] = m.,(H)

is a superhedging strategy for H. Moreover, if~‘7 is the value process of any super-
hedging strategy, then Lemma 7.8 implies that Vo > E*[ H; ] for all T € 7 and each
P* € &. In particular, Vj is larger than any arbitrage-free price for H, and it follows
that Vo > m,,,(H). Thus, we have proved:

up

Corollary 7.9. There exists a superhedging strategy with initial investment m,,(H),
and this is the minimal amount needed to implement a superhedging strategy.

We will call 7,,,(H) the cost of superhedging of H. Sometimes, a superhedging
strategy is also called a superreplication strategy, and one says that m,,,(H) is the cost
of superreplication or the upper hedging price of H. Recall, however, that 7r,,(H) is
typically not an arbitrage-free price for H. In particular, the seller cannot expect to
receive the amount m,,,(H) for selling H.

On the other hand, the process B in the decomposition (7.4) can be interpreted
as a refunding scheme: Using the superhedging strategy &, the seller may withdraw
successively the amounts defined by the increments of B. With this capital flow, the
hedging portfolio at time ¢ has the value U IT > H,. Thus, the seller is on the safe side
at no matter when the buyer decides to exercise the option. As we are going to show
in Theorem 7.13 below, this procedure is optimal in the sense that, if started at any
time ¢, it requires a minimal amount of capital.

Remark 7.10. Suppose 7,,,(H) belongs to the set [1(H) of arbitrage-free prices for
H. By Theorem 6.33, this holds if and only if =, (H) is the only element of IT(H).
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In this case, the definition of IT(H) yields a stopping time T € 7 and some P* €
such that

mw(H) = E*[ Hr ].

Now let V be the value process of a superhedging strategy bought at Vo = =,,(H). It
follows that E*[ V; | = m,,,(H). Hence, V; = H; P-a.s.,sothat H is attainable in the
sense of Definition 6.35. This observation completes the proof of Theorem 6.36. <

Remark 7.11. If the American claim H is not attainable, then m,,(H) is not an
arbitrage-free price of H. Thus, one may expect the existence of arbitrage oppor-
tunities if H would be traded at the price =,,,(H). Indeed, selling H for m,,,(H) and
buying a superhedging strategy & creates such an arbitrage opportunity: The balance
att = Ois zero, but Lemma 7.8 implies that the value process V of £ cannot be reached
by any exercise strategy o, i.e., we always have

Vo >H, and P[V, > H;]>0. (7.5)

Note that (7.5) is not limited to exercise strategies which are stopping times but holds

for arbitrary F7-measurable random times o : Q — {0,..., T}. In other words,
7., (H) is too expensive even if the buyer of H would have full information about the
future price evolution. <&

Remark 7.12. The argument of Remark 7.11 implies that an American claim H is at-
tainable if and only if there exists an £7-measurable randomtimeo : Q — {0, ..., T}
such that H, = V,;, where V the value process of a superhedging strategy. In other
words, the notion of attainability of American claims does not need the restriction to
stopping times. <

We already know that m,,,(H) is the smallest amount for which one can buy a su-
perhedging strategy at time 0. The following “superhedging duality theorem” extends

this result to times 7 > 0. To this end, denote by u,T (H) the set of all #;-measurable
random variables U; > 0 for which there exists a d-dimensional predictable process
& such that

u
U+ Y & (Xe—Xg—1) = Hy forallu >t P-as. (7.6)
k=t+1

Theorem 7.13. The upper Snell envelope U,T of H is the minimal element of ‘uf (H).
More precisely:

@ U e Ul (H),

(b) U,T = essinf ‘L(,T(H).
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Proof. Assertion (a) follows immediately from the uniform Doob decomposition of the
P-supermartingale U . As to part (b), we clearly get UtT > essinf ‘uf(H ) from (a).
For the proof of the converse inequality, take U e ‘L{tT (H) and choose a predictable
process E for which (7.6) holds. We must show that the set B := { U,T < ﬁt } satisfies
P[B]=1. Let

A

Ut = U[T/\ﬁtzUtT'IB+ﬁt'IBc~

Then ljt < U,T, and our claim will follow if we can show that U,T < (7,. Let &
denote the predictable process obtained from the uniform Doob decomposition of the
P -supermartingale U, and define

£ = & ifs <1,
YU e 1y +E T, ifs >t

With this choice, U, satisfies (7.6), i.e., U; € U/ (H). Let

N
Ve i=Ugd + > &k - (X — Xi1)-
k=1

Then \75 > lA]ST for all s < ¢. In particular \7t > 0,, and hence VT > Hr, which
implies that V is a 2-martingale; see Theorem 5.26. Hence, Doob’s stopping theorem
implies

U,T =esssupesssup E*[ H; | 1]

P*eP teT;

T
sesssupesssupE*[U,—i- Z E - (Xx — Xi—1) | 3‘?]

P*eP 1T k=t+1

= lA] ts
which concludes the proof. O

We now take the point of view of the buyer of the American claim H. The buyer
allocates an initial investment 77 to purchase H, and then receives the amount H, > 0.
The objective is to find an exercise strategy and a self-financing trading strategy 7
with initial investment —s, such that the portfolio value is covered by the payoff of
the claim. In other words, find T € 7 and a self-financing trading strategy with value
process V such that Vy = —m and V; + H; > 0. As shown below, the maximal i for
which this is possible is equal to

mw(H) = sup inf E*[H;]= inf sup E*[H,]=Uy,

Te] P*eP P*eP teT
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where

Uﬁ = essinf UtP*

Preyp

=essinfesssup E*[ H; | ;]
P*e®P teT;

=esssupessinf E*[ H; | ;]

ted; Prep

is the lower Snell envelope of H with respect to the stable set /. More generally,
we will consider the buyer’s problem for arbitrary + > 0. To this end, denote by

‘l,{,i (H) the set of all ¥;-measurable random variables U + > 0 for which there exists
a d-dimensional predictable process 77 and a stopping time o € J; such that

o
U — Z Nk - (Xx — Xk—1) < H, P-as.
k=t+1

Theorem 7.14. Uﬁ is the maximal element of ‘l,l,¢ (H). More precisely:
(@) U} € U/ (),
I _ |
(b) U =esssup U; (H).

Proof. (a): Let € be a superhedging strategy for H with initial investment 7,,,(H),
and denote by V the value process of £. The main idea of the proof is to use that
Vi — H; > 0 can be regarded as a new discounted American claim, to which we
can apply Theorem 7.13. However, we must take care of the basic asymmetry of
the hedging problem for American options: The seller of H must hedge against all
possible exercise strategies, while the buyer must find only one suitable stopping time.
It will turn out that a suitable stopping time is given by 7, := inf{u > 7 | U — H,}.
With this choice, let us define a modified discounted American claim H by

mzm—myg u=0,...,T.

u=r;}’
Clearly ﬁo < ﬁ,t for all o € 77. It follows that
€SS sup ess sup E*[ H, | ;] = esssup E*[I-?T, | F 1
o€eT; P*ep Pxep
=V, —essinf E*[ Hy, | %]
Preyp
=V, - U},

where we have used that V is a #-martingale in the second and Theorem 6.48 in
the third step. Thus, V; — Uf is equal to the upper Snell envelope UT of H at
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time 7. Let £ be the d-dimensional predictable process obtained from the uniform
Doob decomposition of U T. Then, due to part (a) of Theorem 7.13,

u
ViU + Y B (= X)) = Hy= (Vg — Hy) 1, forallu > 1.
k=t+1

Thus, n := E — & is as desired.
(b): Part (a) implies the inequality < in (b). To prove its converse, take 17, € ‘l,{,i ,
a d-dimensional predictable process 7, and o € 7; such that

o
U — > - (Xg—X¢1) <H;  Peas.

k=t+1
We will show below that
o
E[ 3 Wi k= Xen | F | =0 forall P* e 2. (1.7)

k=t+1

Given this fact, we obtain that

U, < E*[Hy | F;] < esssup E*[ H, | %;]

€T

for all P* € . Taking the essential infimum over P* € # thus yields U, < Uti and
in turn (b).
To prove (7.7), let

N
Gs :=Torpty O Lpaoy - Xe = Xeo1), s=0,...,T.
k=t+1

Then Gr > U, — Hy > —H, € £'(P*) for all P*, and Theorem 5.15 implies that
G is a P-martingale. Hence (7.7) follows. I

We conclude this section by stating explicitly the corresponding results for Eu-
ropean claims. Recall from Remark 6.7 that every discounted European claim HZ
can be regarded as the discounted American claim. Therefore, the results we have
obtained so far include the corresponding “European” counterparts as special cases.

Corollary 7.15. For any discounted European claim HE such that

sup E*[HE ] < o0,

P*ep
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there exist two d-dimensional predictable processes & and n such that P-a.s.

T
esssup EX L HE | F 1+ ) & (Xi — Xim1) = HE, (7.8)
P*ep k=t+1

T
essinf EX{H | 1= > me+ (Xe — Xam1) < HE. (7.9)
prer k=t+1

Remark 7.16. For t = 0, (7.8) takes the form

T

sup EX[H" 1+ ) & (Xe — Xpo1) = HE P-ass.
PrepP k=1

Thus, the self-financing trading strategy & arising from & and the initial investment
&, - X0 = suppscp E*[ HE ] allows the seller to cover all possible obligations
without any downside risk. Similarly, (7.9) yields an interpretation of the self-
financing trading strategy 7 which arises from 7 and the initial investment 77, - Xo =
—inf prep E*[ HE ]. The latter quantity corresponds to the largest loan the buyer can
take out and still be sure that, by using the trading strategy 7, this debt will be covered
by the payoff HE. <&

Remark 7.17. Let H be a discounted European claim such that

sup E¥[HE ] < o0.
Pep

Suppose that P e 2 is such that E[ H]l=mn,(H). Ifé = (£, &) isa superhedging
strategy for H, then

T
H:=E[H]+Y & (Xi — Xi1)
k=1

satisfies H > H > 0. Hence, H is an attainable discounted claim, and it follows from
Theorem 5.26 that L A
E[H]=E[H].

This shows that H and H are identical and that H is attainable. We have thus obtained
another proof of Theorem 5.33. <&

As the last result in this section, we formulate the following “superhedging duality
theorem”, which states that the bounds in (7.8) and (7.9) are optimal.

Corollary 7.18. Suppose that HE is a discounted European claim with

sup EX[HE ] < .

Predp
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Denote by ‘MIT (HE) the set of all F; measurable random variables ﬁt for which there
exists a d-dimensional predictable process & such that

T
ﬁ; + Z Ek (X — X)) = HE P-as.
k=t+1

Then
esssup E*[ HE | # ] = essinf ‘L(,T(HE).
P*ep
By ‘Uf (HE) we denote the set of all ¥, measurable random variables ﬁ, for which
there exists a d-dimensional predictable process 1 such that

T
U= D k- (Xi = Xe-) < HP Pas.
k=t+1

Then

e;sinfE*[HE | F 1= esssup‘uti(HE).
*eP

Remark 7.19. Define 4 as the set of financial positions Z € L*°(2, ¥, P) which
are acceptable in the sense that there exists a d-dimensional predictable process & such
that

T
Z+) & (Xe—Xp-1) 20 Peas.
k=1

As in Section 4.8, this set + induces a coherent measure of risk p on L*°(Q2, 7, P):
p(Z)y=inf{meR|m+ZeA}, ZelL®Q,Fr,P).
Corollary 7.18 implies that p can be represented as

p(Z) = sup E*[-Z].

Pep
We therefore obtain a multiperiod version of Proposition 4.93. <

Remark 7.20. Often, the superhedging strategy in a given incomplete model can be
identified as the perfect hedge in an associated “extremal” model. As an example,
consider a one-period model with d discounted risky assets given by bounded random
variables X!, ..., X¢. Denote by w the distribution of X = (Xt ..., Xd) and by
' (1) the convex hull of the support of . The closure K := I'(u) of I'() is convex
and compact. We know from Section 1.5 that the model is arbitrage-free if and only if
the price system 7 = (!, ..., %) is contained in the relative interior of I'(n), and
the equivalent martingale measures can be identified with the measures p* ~ p with
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barycenter 7. Consider a derivative H = h(X) given by a convex function . on K.
The cost of superhedging is given by

sup/hdu* = inf { a(7r) | o affine on K, & > h p-as. },
wr

which is a special case of the duality result of Theorem 1.31. Since {« > A} is convex
and closed, the condition (e > h) = 1 implies @« > h on K. Denote by M () the
class of all probability measures on K with barycenter . For any affine function «
with o > h on K, and for any [t € M () we have

/hdﬁf/adﬁ:a(n).

h(r) = sup /hdﬁ (7.10)
feM(r)

Thus,

where we define for f € C(K)
fi= inf{a | o affine on K, o > f,u,—a.s.}.

The supremum in (7.10) is attained since M (7r) is weakly compact. More precisely,
it is attained by any measure i € M () on K which is maximal with respect to the
balayage order =, defined for measures on K as in (2.18); see Théoreme X. 41 in
[65]. But such a maximal measure is supported by the set of extreme points of the
convex compact set K, i.e., by the Choquet boundary of K. This follows from a
general integral representation theorem of Choquet; see, e.g., Théoréme X. 43 of [65].
In our finite-dimensional setting, /& can in fact be chosen to have a support consisting
of at most d 4 1 points, due to a theorem of Carathéodory and the representation of
K as the convex hull of its extreme points; see [166], Theorems 17.1 and 18.5. But
this means that [t can be identified with a complete model, due to Proposition 1.39.
Thus, the cost of superhedging h(r) can be identified with the canonical price

ﬁ::/hdﬂ

of the derivative H, computed in the complete model fi. Note that /1 sits on the Choquet
boundary of K = T'(u), but typically it will no longer be equivalent or absolutely
continuous with respect to the original measure . As a simple illustration, consider
a one-period model with one risky asset X!. If X! is bounded, then the distribution
wof X ! has bounded support, and I' (1) is of the form [a, b]. In this case, the cost of
superhedging H = h(X") for a convex function 4 is given by the price

p*h(b) + (1 — pHh(a),

computed in the binary model in which X! takes only the values a and b, and where
p* € (0, 1) is determined by

b+ (1 —pHa=n'. &
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The following example illustrates that a superhedging strategy is typically too
expensive from a practical point of view. However, we will see in Chapter 8 how
superhedging strategies can be used in order to construct other hedging strategies
which are efficient in terms of cost and shortfall risk.

Example 7.21. Consider a simple one-period model where S 11 has under P a Poisson
distribution and where S° = 1. Let H := (511 — K)* be a call option with strike
K > 0. We have seen in Example 1.37 that m,(H) and m,,(H) coincide with the
universal arbitrage bounds of Remark 1.36:

(So — K)" = mu(H) and 7, (H) = S;.

Thus, the superhedging strategy for the seller consists in the trivial hedge of buying
the asset at time 0, while the corresponding strategy for the buyer is a short-sale of the
asset in case the option is in the money, i.e., if Sé > K. &

7.4 Superhedging with liquid options

In practice, some derivatives such as put or call options are traded so frequently that
their prices are quoted just like those of the primary assets. The prices of such liquid
options can be regarded as an additional source of information on the expectations of
the market as to the future evolution of asset prices. This information can be exploited
in various ways. First, it serves to single out those martingale measures P* which
are compatible with the observed options prices, in the sense that the observed prices
coincide with the expectations of the discounted payoff under P*. Second, liquid
options may be used as instruments for hedging more exotic options.

Our aim in this section is to illustrate these ideas in a simple setting. Assume that
there is only one risky asset S' such that Sé is a positive constant, and that S is a
riskless bond with interest rate » = 0. Thus, the discounted price process of the risky
assetis given by X; = Szl > 0fort =0, ..., T. Asthe underlying space of scenarios,
we use the product space

Q:=0,00)T.

We define X, (w) = x; for v = (x1,...,x7) € €2, and denote by F; the o-algebra
generated by X, ..., X;; note that Fy = {#J, Q}. No probability measure P is given
a priori. Let us now introduce a linear space X of Fr-measurable functions as the
smallest linear space such that the following conditions are satisfied:

(a) 1 e X.
(b) (X — X5 1, e XforO<s<t<TandAceZF.

© X, —K)feXforK>0andt=1,...,T.
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The functions in the space X will be interpreted as (discounted) payoffs of liquid
derivatives. The constant 1 in (a) corresponds to a unit investment into the riskless
bond. The function X; — X; in (b) corresponds to the payoff of a forward contract on
the risky asset, issued at time s for the price X and expiring at time ¢. The decision
to buy such a forward contract at time s may depend on the market situation at time s;
this is taken into account by allowing for payoffs (X; — X;) I, with A € ¥;. Linearity
of X together with conditions (a) and (b) implies that

X, € X forallz.

Finally, condition (c) states that call options with any possible strike and any maturity
up to time 7 can be used as liquid securities.

Suppose that a linear pricing rule ® is given on X. The value ®(Y) will be
interpreted as the market price of the liquid security ¥ € X. The price of a liquid call
option with strike K and maturity ¢ will be denoted by

Ci(K) = o((X; — K)*).

Assumption 7.22. We assume that ® : XX — R is a linear functional which satisfies
the following conditions.

(@) (1) =1.

(b) @(¥Y)>0if Y >0.

© ®((X; —X\)I,)=0forall0<s <t <TandA € F.
(d) C/(K)=2((X; — K)") > 0as K 1 oo forall 1.

The first two conditions must clearly be satisfied if the pricing rule ® shall not
create arbitrage opportunities. Condition (c) states that X is the fair price for a forward
contract issued at time s. This condition is quite natural in view of Theorem 5.30.
In our present setting, it can also be justified by the following simple replication
argument. At time s, take out a loan X (w) and use it for buying the asset. At time ¢,
the asset is worth X;(w) and the loan must be paid back, which results in a balance
X;(w) — Xs(w). Since this investment strategy requires zero initial capital, the price
of the corresponding payoff should also be zero. The continuity condition (d) is also
quite natural.

Our first goal is to show that any such pricing rule ® is compatible with the
paradigm that arbitrage-free prices can be identified as expectations with respect to
some martingale measure for X. More precisely, we are going to construct a martingale
measure P* suchthat ®(Y) = E*[ Y Jforall Y € X. On the one hand, this will imply
regularity properties of ®. On the other hand, this will yield an extension of our pricing
rule ® to a larger space of payoffs including path-dependent exotic options. As a first
step in this direction, we have the following result.
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Lemma 7.23. For eacht, there exists a unique probability measure (1, on [0, 00) such
that for all K > 0

Ci(K) = &((X, — K)*) = / (x — KT p1,(dx).

In particular, iy has the mean
/xut(dx) = Xo.

Proof. Since K + (X, — K)™ is convex and decreasing, linearity and positivity of
@ imply that the function ¢ (K) := ®((X; — K)*) is convex and decreasing as well.
Hence, there exists a decreasing right-continuous function f : [0, o0) — [0, c0) such
that

K
Ci(K) = Ci(0) —/0 fx)dx

K
ZXo—/ Fx)dx.
0

i.e., — f(K) is equal to the right-hand derivative of C;(K) at K. Our fourth condition
on O yields

/OO fx)dx = Xo,
0

so that f(x) N\ 0 as x 1 co. Hence, there exists a positive measure p; on (0, co)
such that

f(x) = i ((x, 00)) forx > 0.

Fubini’s theorem implies

/ xuz(dx)=/ FO)dy = Xo
(0,00) 0

and

K
C(K):Xo—/ / I u:(dx)dy
i 0 Jo.00) {y<x} 1
= / (x — K)* i (d).
(0,00)

It remains to show that u; can be extended to a probability measure on [0, c0),
i.e., we must show that 1, ((O, oo)) < 1. To this end, we will use the “put-call parity”

Ci(K) = Xo — K + ®((K — X)),
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which follows from our assumptions on ®. Thus,

K
D((K — XT) 2/0 g(x)dx,

where g(x) = 1 — f(x). Since K <I>((K — X,)*) is increasing, g must be
non-negative, and we obtain 1 > f(0) = ut((O, oo)). Ll

The following lemma shows that the measures u; constructed in Lemma 7.23 are
related to each other by the balayage order = ,, defined by

Wi, v = / fdu > / fdv for all convex functions f

for probability measures with finite expectation; see Remark 2.65.

Lemma 7.24. The map t — ; is increasing with respect to the balayage order 5
Wit =, M forallt.

Proof. Note that

Xipr = K0T = Xt = XD Ly gy — (Xi = K)T
= (X41 — K)+ - (Xt+l - K)+ I{X,>K}
> 0.
Since the price of the forward contract (X;+1 —X;) 1 (X,>K) vanishes under our pricing

rule &, we must have that for all K > 0

/(x — K)" pgr (dx) — /(x — K)* i (dx)

= Cr11(K) — G(K)
> 0.

An application of Corollary 2.62 concludes the proof. O

Let us introduce the class
qu;.={P* € M(2, F) | E*[Y]:@(Y)forallYeDC}

of all probability measures P* on (2, ) which coincide with ® on X. Note that for
any P* € Py,

E*[(X; — X)1,1=0 fors <tand A € %;,

so that P consists of martingale measures for X. Our first main result in this section
can be regarded as a version of the “fundamental theorem of asset pricing” without an
a priori measure P.
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Theorem 7.25. Under Assumption 7.22, the class P¢ is non-empty. Moreover, there
exists P* € Pg with the Markov property: For 0 < s <t < T and each bounded
measurable function f,

E [ fXD) | F1=ETfX) | Xs 1.

Proof. Since ;41 =, M, Corollary 2.62 yields the existence of stochastic kernel
Q41 suchthat [y Q;11(x,dy) = x and ;41 = s Q1. Let us define

PPr=u11®0:® - 0r,

i.e., for each measurable set A C Q = [0, co)”

P*[A] =/,u1(dx1)/ Qz(xl,dxz)--./QT(XT—l,de)IA(xl,xz,~--,xT).

Clearly, u; is the law of X, under P*. In particular, all call options are priced correctly
by calculating their expectation with respect to P*. Then one checks that

E*[ f(Xi11) | 3“7]=/f(y) Qi1 (Xe, dy) =E*[ f(Xey) | X1 Paas. (7.11)

The first identity above implies E*[ X;+1 — X; | &1 = 0. In particular, P* is
a martingale measure, and the expectation of (X; — X;) 1 4 vanishes for s < t and
A € F;. Itfollowsthat E*[ Y] = ®(Y) forall Y € X. Finally, an induction argument
applied to (7.11) yields the Markov property. O

So far, we have assumed that our space X of liquidly traded derivatives contains
call options with all possible strike prices and maturities. From now on, we will
simplify our setting by assuming that only call options with maturity 7 are liquidly
traded. Thus, we replace X by the smaller space X7 which is defined as the linear
hull of the constants, of all forward contracts

(XI_XS)IAS 0§S<t§T7AE‘{F-:S‘7

and of all call options
(XT - K)+7 K > 05

with maturity 7. The observed market prices of derivatives in X are as before
modeled by a linear pricing rule

CD]“IX]"—)R.

We assume that &7 satisfies Assumption 7.22 in the sense that condition (d) is only
required for t = T':

(d) Cr(K) :=@7r((Xr —K)T) > Oas K 1 oo.
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By
Po, = [ P* € Mi(Q, F) | EX[Y] = O7(Y)forall Y € X7 }

we denote the class of all probability measures P* on (€2, ) which coincide with &7
on X 1. As before, it follows from condition (c) of Assumption 7.22 thatany P* € Po,
will be a martingale measure for the price process X. Obviously, any linear pricing
rule ® which is defined on the full space X and which satisfies Assumption 7.22 can
be restricted to X7, and this restriction satisfies the above assumptions. Thus, we
have Po, D Pop # 0.

Proposition 7.26. Under the above assumptions, Po, is non-empty.

Proof. Let ur be the measure constructed in Lemma 7.23 from the call prices with
maturity 7. Now consider the measure P on (€2, ¥) defined as

~

Pi=8x,® - ®8x, ® ur,

ie., undeLﬁ we have X; = X P-as. fort < T, and the law of X7 is ur. Clearly,
we have P € Po,. O]

A measure P* € P, can be regarded as an extension of the pricing rule ®7 to
the larger space L] (P*), and the expectation E*[ H ] of some European claim H > 0
can be regarded as an arbitrage-free price for H. Our aim is to obtain upper and
lower bounds for E*[ H ] which hold simultaneously for all P* € £Pg. We will derive
such bounds for various exotic options; this will amount to the construction of certain
superhedging strategies in terms of liquid securities.

As a first example, we consider the following digital option

. 1 if max X; > B
Hdig .— 0<t<T

0 otherwise,

which has a unit payoff if the price processes reaches a given upper barrier B > Xj.
If we denote by

tg:=inf{r > 0| X; > B}

the first hitting time of the barrier B, then the payoff of the digital option can also be
described as

dig __
H™ =1 1)

For simplicity, we will assume from now on that

Cr(B) >0,

so that in particular pr ((B, oo)) > 0.
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Theorem 7.27. The following upper bound on the arbitrage-free prices of the digital
option holds:

. K
max E*[ Hdlg] — CT( )

n . (7.12)
P*ePor 0<k<B B — K

Proof. For 0 < K < B, we have X;; > B. Hence,

Xr—K)7" | Xy —Xr
{3<T} = PB_K B— K (=T}

HY =1

Taking expectations with respect to some P* € o, yields

. Cr(K) 1
* dig * _
ELH™] < 1t o E* [ (Xe, = X1,

tp=<T} 1

Since P* is amartingale measure, the stopping theorem in the form of Proposition 6.38
implies

ENXr Ly, oy 1= B Xy Ly oy -
This shows that

) Cr(K
sup E*[HY] < inf r( ).
P*ePo, o<k< B =K

The proof will be completed by Lemmas 7.28 and 7.29 below. O

Lemma 7.28. Ifwe let

Cr(K)
0<K<B B — K

Ai=1-—

€ (0,1),

then the infimum on the right-hand side is attained in K if and only if K belongs to
the set of A-quantiles for ur, i.e., if and only if
pr ([0, K)) < A < ur ([0, K.

In particular, it is attained in

K*:=inf { K | ur ([0, K]) > A }.

Proof. The convex function Cr has left- and right-hand derivatives
(Cr)_(K)=—pr([K,00)) and (Cr),(K)=—ur((K,00));

see also Proposition A.4. Thus, the function g(K) := C7(K)/(B— K ) has aminimum
in K if and only if its left- and right-hand derivatives satisfy

g (K)<0 and g\ (K)>0.

By computing g’ and g/, , one sees that these two conditions are equivalent to the
requirement that K is a A-quantile for p7; see Lemma A.15. O
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Lemma 7.29. There exists a martingale measure P € § Po, such that

Cr(K)

131'<T=m1n .
ltp =T 0<k<B B — K

Moreover, P can be taken such that
tg=T—-1 and X3 =B P-a.s.on {tg < T}

and
(X7 >K*}C{tg <T}C{Xr>K*} modulo P-nullsets,

where K* is as in Lemma 7.28.

Proof. Let A be as in Lemma 7.28, and let

q(t) :=q, (1) =inf { K | u7 ([0, K1) > 1}
be the lower quantile function for 11; see A.3. We take an auxiliary probability space
Q. F, P) supportmg a random variable U which is unlformly distributed on (0, 1).
By Lemma A.19, X 1 := q(U) has distribution p7 under P. Let y be such that
Xo=yA+ B(1 —1).
Since B > Xy we have 0 < y < X(. We define )~(T_1 by

inl =yl + BI1

{U<A) (U2}

andweletX, =Xofor0<r<T-2.
We now prove that X is a martingale with respect to its natural filtration ?} =

O'(X(), ...,Xt). To this end, note first that fT_z = {0, Q}, and hence
E[Xr_i | Fr2l=E[Xr_11=Xo=Xr_2.
Furthermore, since K* = g (1),
E[Xr; Xr-1=Bl=E[Xr; U > ]
=E[(Xr —K»T1+K*P[U > A]
=Cr(KH+K*(1—-21)
=1-AMDB-KH+K*(1-2)
—B-P[Xr_1=B].
Hence,
E[Xr; Xr—-1=y1=E[Xr]1— E[X7; Xr—1 = B]
—Xo—B-P[X7_1=B]
=y P[Xro1=v]
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It follows that o ~ o ~ ~
E[Xr | Fral=E[X7 | X7-1]=X71_1,

and so X is indeed a martingale.
As the next step, we note that

{Xr > ByC{Xr > K*)
C{U>x)={(Xr_1=B)
C{U=xr}yC{Xr>K*),

where we have used the fact that K *~= q()). Hence, if we denote by Tp := inf{s >
0| X; > B} the first time at which X hits the barrier B, then

{(Xr>K*}c|{Tp<T)={Xr_1=B)C(Xr>K"}

Hence, (g < T} = (T = T — 1} = {X7_1 = B},

F[?B<T]=ﬁ[§T_1=B]:1_)\’= min CT(K)’
- 0<k<B B — K

and the distribution P of X under P is as desired. L]

Remark 7.30. The inequality

Hdig< (XT_K)+ XTB_XTI
- B-K B—K (=T}

appearing in the proof of Theorem 7.27 can be interpreted in terms of a suitable
superhedging strategy for the claim H%2 by using call options and forward contracts:
Attime r = 0, we buy (B — K)~! call options with strike K, and at the first time when
the price process passes the barrier B, we sell forward (B — K)~! shares of the asset.
This strategy will be optimal if the strike price K is such that it realizes the minimum
on the right-hand side of (7.12). By virtue of Lemma 7.28, such an optimal strike
price can be identified as the Value at Risk at level 1 — A of a short position —X7 in
the asset. <

Let us now derive bounds on the arbitrage-free prices of barrier call options. More
precisely, we will consider an up-and-in call option

(X7 — K)t if max X; > B,
Hal .= 0<t<T
il
0 otherwise,

and the corresponding up-and-out call

(Xr — K)t if max X, < B,
et =

0 otherwise.
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If the barrier B is below the strike price K, then the up-and-in call is identical to a
“plain vanilla call” (X7 — K)™, and the payoff of the up-and-out call is zero. Thus,
we assume from now on that

K < B.

Recall that K* denotes the minimizer of the function ¢ — Cr(c)/(B — c¢) as con-
structed in Lemma 7.28.

Theorem 7.31. For an up-and-in call option,
Cr(K) fK* <K,
max E*[Hl::gll] B—K

Prep * 1
o7 = Cr(K") fK*> K.

Proof. For any ¢ with K < ¢ < B,

B —
Hgl < - (XT—c)++B—(XTB—XT)I, <1}

Indeed, on {X7 < K} oron {trg > T} the payoff of H&! is zero, and the right-
hand side is non-negative. On { X7 > ¢, tp < T}, both sides are equal, and on
{c > Xr > K, tp < T} we may have a strict inequality The expectation of the
right-hand side under a martingale measure P* € Pg, is equal to

B— _
. 7o CT (),
due to the stopping theorem. The minimum of this upper bound over all ¢ € [K, B)
is attained in ¢ = K v K*, which shows < in the assertion.

Finally, let P be the martingale measure constructed in Lemma 7.29. If K* < K
then

_K
CT(c) + 7 E [(Xey = X)) ] =

Xr =K', gy =X = K" P-as.,
and so E[ HS!'] = Cr(K). If K* > K then P-ass.

B—-—K % + K* — I call
B_K* (XT - K ) —B K* (B XT) {tp<T} Hu&i~
Taking expectations with respect to P concludes the proof. O
Remark 7.32. The inequality
B—-K c—K
1l +
HSELI = _c (XT - C) + ﬁ (X‘EB - XT) I{TBST}

appearing in the preceding proof can be interpreted as a superhedging strategy for the
up-and-in call with liquid derivatives: At time ¢t = 0, we purchase (B — K)/(B — ¢)
call options with strike ¢, and at the first time when the stock price passes the barrier B,
we sell forward (¢ — K) /(B — c) shares of the asset. This strategy will be optimal for
c=K*VK. <
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We now turn to the analysis of the up-and-out call option

Hijo = (X1 = K)* 1,

wp>T}

Theorem 7.33. For an up-and-out call,

max E*[HSGY | = Cr(K) — Cr(B) — (B — K) ur([B, 00)).

P*ePop
Proof. Clearly,

Hgo < (X7 — K)F Ly, -n
=Xr—-K)Y"—Xr—-B)*"—(B-— KLy, p-

Taking expectations yields < in the assertion.
Now consider the measure P on (2, ¥) defined as

Pi=68x,® - ®8x, ® ur,

(7.13)

i.e., under P we have X = Xo P-as. fort < T, and the law of X7 is ur. Clearly

P € Pp,,and (7.13) is P-a.s. an identity.
Using the identity
(X7 — K)" = Hig, + Higl,
we get the following lower bounds as an immediate corollary.

Corollary 7.34. We have

min  E*[ Hygi | = Cr(B) + (B — K) ur([B, 00)),

P*ePy,
and
0 ifK* <K,

min E* Hcall — B _ K
PR, E U= e - = Cr(K") ifK* > K.

O



Chapter 8
Efficient hedging

In an incomplete financial market model, a contingent claim typically will not admit
a perfect hedge. Superhedging provides a method for staying on the safe side, but the
required cost is usually too high both from a theoretical and from a practical point of
view. It is thus natural to relax the requirements.

As a first preliminary step, we consider strategies of quantile hedging which stay
on the safe side with high probability. In other words, we maximize the probability
for staying on the safe side under a given cost constraint. The main idea consists
in reducing the construction of such strategies for a given claim H to a problem of
superhedging for a modified claim H, which is the solution to a static optimization
problem of Neyman—Pearson type. Typically, H will have the form of a knock-out
option, that is, H = H -1,. At this stage, we only focus on the probability that a
shortfall occurs; we do not take into account the size of the shortfall if it does occur.

In Section 8.2 we take a more comprehensive view of the downside risk. Our
discussion of risk measures in Section 4.8 suggests to quantify the downside risk in
terms of an acceptance set for suitably hedged positions. If acceptability is defined
in terms of shortfall risk as in Section 4.9, we are led to the problem of constructing
efficient strategies which minimize the shortfall risk under a given cost constraint.
As in the case of quantile hedging, this problem can be decomposed into a static
optimization problem and the construction of a superhedging strategy for a modified
payoff profile H.

8.1 Quantile hedging

Let H be a discounted European claim in an arbitrage-free market model such that

u(H) = sup E*[H] < oo.
P*ep
We saw in Corollary 7.15 that there exists a self-financing trading strategy whose value
process V1 satisfies
VYT > H P-as.

By using such a superhedging strategy, the seller of H can cover almost any possible
obligation which may arise from the sale of H and thus eliminate completely the
corresponding risk. The smallest amount for which such a superhedging strategy is
available is given by m,,,(H). This cost will often be too high from a practical point of
view, as illustrated by Example 7.21. Furthermore, if H is not attainable then ,,(H),
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viewed as a price for H, is too high from a theoretical point of view since it would
permit arbitrage. Even if H is attainable, a complete elimination of risk by using a
replicating strategy for H would consume the entire proceeds from the sale of H, and
any opportunity of making a profit would be lost along with the risk.

Let us therefore suppose that the seller is unwilling to put up the initial amount
of capital required by a superhedge and is ready to accept some risk. What is the
optimal partial hedge which can be achieved with a given smaller amount of capital?
In order to make this question precise, we need a criterion expressing the seller’s
attitude towards risk. Several of such criteria will be studied in the following sections.
In this section, our aim is to construct a strategy which maximizes the probability of a
successful hedge given a constraint on the initial cost.

More precisely, let us fix an initial amount

v < m,,(H).

We are looking for a self-financing trading strategy whose value process maximizes
the probability
P[Vr = H]

among all those strategies whose initial investment Vj is bounded by v and which
respect the bounds V; > 0 fort = 0,...,T. In view of Theorem 5.26, the second
restriction amounts to admissibility in the following sense:

Definition 8.1. A self-financing trading strategy is called an admissible strategy if its
value process satisfies Vr > 0.

The problem of quantile hedging consists in constructing an admissible strategy
&* such that its value process V* satisfies

PlV)>H]=maxP[V; > H | (8.1)

where the maximum is taken over all value processes V of admissible strategies subject
to the constraint

Vo <. (8.2)

Note that this problem would not be well posed if considered without the constraint
of admissibility.

Let us emphasize that the idea of quantile hedging corresponds to a Value at Risk
criterion, and that it invites the same criticism: Only the probability of a shortfall is
taken into account, not the size of the loss if a shortfall occurs. This exclusive focus
on the shortfall probability may be reasonable in cases where a loss is to be avoided
by any means. But for most applications, other optimality criteria as considered in
the next section will usually be more appropriate from an economic point of view. In
view of the mathematical techniques, however, some key ideas already appear quite
clearly in our present context.
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Let us first consider the particularly transparent situation of a complete market
model before passing to the general incomplete case. The set

{Vr > H}

will be called the success set associated with the value process V of an admissible
strategy. As a first step, we reduce our problem to the construction of a success set of
maximal probability.

Proposition 8.2. Let P* denote the unique equivalent martingale measure in a com-
plete market model, and assume that A* € F7 maximizes the probability P[ A]among
all sets A € F7 satisfying the constraint

E*[H-1,]<v. 8.3)
Then the replicating strategy £* of the knock-out option
*
H":=H-1,.
solves the optimization problem defined by (8.1) and (8.2), and A* coincides up to

P-null sets with the success set of £*.

Proof. As a first step, let V be the value process of any admissible strategy such that
Vo < v. We denote by A := {Vr > H} the corresponding success set. Admissibility
yields that Vr > H -1,. Moreover, the results of Section 5.3 imply that V' is a
P*-martingale. Hence, we obtain that

E*[H-1,]<E*[Vr]=Vy <v.
Therefore, A fulfills the constraint (8.3) and it follows that
P[A] < P[A*].

As a second step, we consider the trading strategy £* and its value process V*.
Clearly, £* is admissible, and its success set satisfies

(Vi=H}={H 1, > H)}2 A"
On the other hand, the first part of the proof yields that
P[V;>H]<P[A"].

It follows that the two sets A* and { V. > H } coincide up to P-null sets. In particular,
&* is an optimal strategy. 0

Our next goal is the construction of the optimal success set A*, whose existence
was assumed in Proposition 8.2. This problem is solved by using the Neyman—Pearson
lemma. To this end, we introduce the measure Q* given by

dao* H

i T EHT (8.4)
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The constraint (8.3) can be written as

Q'[Al<a = E*[”H]. (8.5)

Thus, an optimal success set must maximize the probability P[ A ] under the constraint
Q*[ A] < a. We denote by d P/d Q* the generalized density of P with respect to Q*
in the sense of the Lebesgue decomposition as constructed in Theorem A.13. Thus,
we may define the level

dpP
c*:=inf{c20 ‘ Q*[dQ*>c-E*[H]:|§Ot , (8.6)
and the set
P dP
*::{dQ*>c*-E*[H]}:{dP*>c*-H ) 8.7)

Proposition 8.3. If the set A* in (8.7) satisfies
Q' [A" ] =a,
then A* maximizes the probability P[ A] over all A € Fr satisfying the constraint
E*[H-1,]<v.

Proof. The condition E*[ H-1,] < visequivalentto O*[A] <a = Q*[ A*]. Thus,
the particular form of the set A* in (8.7) and the Neyman—Pearson lemma in the form
of Proposition A.28 imply that P[A] < P[ A*]. O

By combining the two Propositions 8.2 and 8.3, we obtain the following result.

Corollary 8.4. Denote by P* the unique equivalent martingale measure in a complete
market model, and assume that the set A* of (8.7) satisfies

Q" [A*] =«

Then the optimal strategy solving (8.1) and (8.2) is given by the replicating strategy
of the knock-out option H* = H -1 ...

Our solution to the optimization problem (8.1) and (8.2) still relies on the assump-
tion that the set A* of (8.7) satisfies Q*[ A* ] = «. This condition is clearly satisfied

it dP
P =c*-H|=0.
dP*

However, it may not in general be possible to find any set A whose Q*-probability
is exactly «. In such a situation, the Neyman—Pearson theory suggests replacing the
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indicator function I, of the “critical region” A* by a randomized test, i.c., by an
Fr-measurable [0, 1]-valued function ¥r. Let R denote the class of all randomized
tests, and consider the following optimization problem:

E[y*]=max{E[Y]| ¥ € Rand Eg<[¢ ]| < a },

where Q* is the measure defined in (8.4) and @« = v/E*[ H] as in (8.5). The gener-
alized Neyman—Pearson lemma in the form of Theorem A.30 states that the solution
is given by

) (8.8)

where ¢* is defined through (8.6) and y is chosen such that Eg«[¢* ] = «, i.e.,

a—Q*[;}i >c*-H]

O [ 4= H]

. [ dp
y = in case P

7P =c*‘H:|;£().

Definition 8.5. Let V be the value process of an admissible strategy &. The success
ratio of & is defined as the randomized test

Vr
Yy = I{VTEH} + F ’ I{VT<H}'

Note that the set { ¢y = 1} coincides with the success set { Vo > H} of V. In
the extended version of our original problem, we are now looking for a strategy which
maximizes the expected success ratio E[ ¢y ] under the measure P under the cost
constraint Vy < v:

Theorem 8.6. Suppose that P* is the unique equivalent martingale measure in a
complete market model. Let * be given by (8.8), and denote by £* a replicating
strategy for the discounted claim H* = H - y*. Then the success ratio yry+ of £*
maximizes the expected success ratio E[ ¥y | among all admissible strategies with
initial investment Vy < v. Moreover, the optimal success ratio Yy+ is P-a.s. equal

to Y.

We do not prove this theorem here, as it is a special case of Theorem 8.7 below
and its proof is similar to the one of Corollary 8.4, once the optimal randomized test
¥* has been determined by the generalized Neyman—Pearson lemma. Note that the

condition
dP
P =c* H|=0
dP*

implies that ¥* =1 4+ With A* as in (8.7), so in this case the strategy £* reduces to
the one described in Corollary 8.4.



338 8 Efficient hedging

Now we turn to the general case of an arbitrage-free but possibly incomplete market
model, i.e., we no longer assume that the set  of equivalent martingale measures
consists of a single element, but we assume only that

P £D.

In this setting, our aim is to find an admissible strategy whose success ratio Yy =
satisfies

E[Yy«]=max E[ ¢y ], (8.9)

where the maximum on the right-hand side is taken over all admissible strategies
whose initial investment satisfies the constraint

Vo <. (8.10)
Theorem 8.7. There exists a randomized test * such that

sup E*[H -¢y* ] =, (8.11)

Prep
and which maximizes E[ Y | among all € R subject to the constraints
E*[H -y <v forall P* € P. (8.12)
Moreover, the superhedging strategy for the modified claim
H*=H-y*
with initial investment w,,,(H™) solves the problem (8.9) and (8.10).

Proof. Denote by Ry the set of all Y € R which satisfy the constraints (8.12), and
take a sequence ¥, € R such that

E[Y,]— sup E[¥] asn 1 oo.
YeRo

Lemma 1.69 yields a sequence gf convex combigations J,, e conv{¥,, Yut1, ...}
converging P-a.s. to a function ¥ € R. Clearly, ¥, € R for each n. Hence, Fatou’s
lemma yields that

E*[HY ] flin%infE*[len] <v forall P* € P,
nToo

and it follows that J € Ro. Moreover,

E[¥]=lim E[¥,]= lim E[y,,] = sup E[V¥],
ntoo ntoo Y EeR)

so Y¥* := i is the desired maximizer.
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We must also show that (8.11) holds. To this end, note first that P[ y* = 1] = 1is
impossible due to our assumption v < 7,,,(H). Hence, if supp«cp E*[ H - ¥*] < v,
then we can find some & > 0 such that ¥, := ¢+ (1 —&)y™ € Ry, and the expectation
E[ v, ] must be strictly larger than E[ ¢ * ]. This, however, contradicts the maximality
of E[y*].

Now let & be any admissible strategy whose value process V satisfies Vo < v. If
Yy denotes the corresponding success ratio, then

H-yy=HAVr <Vr.
The & -martingale property of V yields that for all P* € £,
E'[H -yv]<E*[Vr]=Vy<v. (8.13)
Therefore, ¥y is contained in R and it follows that

E[yv]=<E[y"] (8.14)

Consider the superhedging strategy &* of H* = H -y* and denote by V* its value
process. Clearly, £* is an admissible strategy. Moreover,

Vo =n,(H*) = sup E*[H-y*]=v.

P*ep
Thus, (8.14) yields that ¢ry« satisfies
E[Yy«]1< E[Y"]. (8.15)
On the other hand, V; dominates H*, so
H-Yyy«+=HAV;>HANH"=H-y"

Therefore, ¥y« dominates ¢* on the set { H > 0}. Moreover, any success ratio is
equal to one on { H = 0}, and we obtain that {ry+ > * P-almost surely. According
to (8.15), this can only happen if the two randomized tests {y+ and ¢* coincide
P-almost everywhere. This proves that £* solves the hedging problem (8.9) and
(8.10). O

8.2 Hedging with minimal shortfall risk

Our starting point in this section is the same as in the previous one: At time 7', an
investor must pay the discounted random amount H > 0. A complete elimination of
the corresponding risk would involve the cost

7.,(H) = sup E*[H]

P*ep



340 8 Efficient hedging

of superhedging H, but the investor is only willing to put up a smaller amount
v € (0, m,,(H)).

This means that the investor is ready to take some risk: Any “partial” hedging strategy
whose value process V satisfies the capital constraint Vy < v will generate a non-trivial
shortfall

(H-vp)t.

In the previous section, we constructed trading strategies which minimize the shortfall
probability
P[Vr < H]

among the class of trading strategies whose initial investment is bounded by v, and
which are admissible in the sense of Definition 8.1, i.e., their terminal value Vr is
non-negative. In this section, we assess the shortfall in terms of a loss function, i.e.,
an increasing function £ : R — R which is not identically constant. We assume
furthermore that

£(x)=0forx <0 and E[{(H)] < o0.

A particular role will be played by convex loss functions, which correspond to risk
aversion in view of the shortfall; compare the discussion in Section 4.9.

Definition 8.8. Given a loss function ¢ satisfying the above assumptions, the shortfall
risk of an admissible strategy with value process V is defined as the expectation

E[¢H - V)| =E[¢(H-Vr)T)]
of the shortfall weighted by the loss function £.

Our aim is to minimize the shortfall risk among all admissible strategies satisfying
the capital constraint Vyp < v. Alternatively, we could minimize the cost under a
given bound on the shortfall risk. In other words, the problem consists in constructing
strategies which are efficient with respect to the trade-off between cost and shortfall
risk. This generalizes our discussion of quantile hedging in the previous Section 8.1,
which corresponds to a minimization of the shortfall risk with respect to the non-convex
loss function

00 =T o) ().

Remark 8.9. Recall our discussion of risk measures in Chapter 4. From this point of
view, it is natural to quantify the downside risk in terms of an acceptance set 4 for
hedged positions. As in Section 4.8, we denote by 4 the class of all positions X such
that there exists an admissible strategy £ with value process V such that

Vo=0 and X+ Vyr>A P-as.
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for some A € 4. Thus, the downside risk of the position —H takes the form
p(—H)=inf{m e R |m — H € A}.
Suppose that the acceptance set + is defined in terms of shortfall risk, i.e.,
A={XeL®|E[LX)]=<x0},

where £ is a convex loss function and xg is a given threshold. Then p(—H) is the
smallest amount m such that there exists an admissible strategy £ whose value process
V satisfies Vo = m and

E[¢((H—Vp)T)] < xo.

For a given m, we are thus led to the problem of finding a strategy £ which minimizes
the shortfall risk under the cost constraint Vo < m. In this way, the problem of
quantifying the downside risk of a contingent claim is reduced to the construction of
efficient hedging strategies as discussed in this section. <&

As in the preceding section, the construction of the optimal hedging strategy is
carried out in two steps. The first one is to solve the “static” problem of minimizing

E[{(H-Y)]
among all F7-measurable random variables ¥ > 0 which satisfy the constraints
sup E*[Y] <wv.
Prep

If Y* solves this problem, then so does Y := HAY* Hence, we may assume that
0 < Y* < H or, equivalently, that Y* = H * for some randomized test *, which
belongs to the set R of all £7-measurable random variables with values in [0, 1]. Thus,
the static problem can be reformulated as follows: Find a randomized test ¥* € R
which minimizes the “shortfall risk”

E[¢(HO—v))] (8.16)
among all Y € R subject to the constraints
E*(Hy]<v forall P* € L. (8.17)

The next step is to fit the terminal value V7 of an admissible strategy to the
optimal profile H ¥ *. It turns out that this step can be carried out without any further
assumptions on our loss function £. Thus, we assume at this point that the optimal 1 *
of step one is granted, and we construct the corresponding optimal strategy.

Theorem 8.10. Givena @ndomized test y* which minimizes (8.16) subject to (8.17),
a superhedging strategy £* for the modified discounted claim

H*:=Hvy*

with initial investment t,,,(H*) has minimal shortfall risk among all admissible strate-
gies & which satisfy the capital constraint €1 - X9 < v.
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Proof. The proof extends the last argument in the proof of Theorem 8.7. As a first
step, we take any admissible strategy & such that the corresponding value process V
satisfies the capital constraint V) < v. Denote by

Vr
W=lyom 5 Tveem

the corresponding success ratio. It follows as in (8.13) that iy satisfies the constraints
E*[Hyy] <v forall P* € 2.

Thus, the optimality of ¥* implies the following lower bound on the shortfall risk
of &:
E[¢(H-Vr)|=E[¢(H1—vyv))] = E[¢(HA—v))].

In the second step, we consider the admissible strategy &£* and its value process
V*. On the one hand,

Vo = mw(H") = sup E*[HYy*] <v,

Prep
so £* satisfies the capital constraint. Hence, the first part of the proof yields
E[¢(H—-V;)]|=E[¢(HO —yv+))] = E[¢(H(1 —y))]. (8.18)
On the other hand, V} > H* = H *, and therefore
Yy > Y* P-as.

Hence, the inequality in (8.18) is in fact an equality, and the assertion follows. O

Let us now return to the static problem defined by (8.16) and (8.17). We start by
considering the special case of risk aversion in view of the shortfall.

Proposition 8.11. [f the loss function £ is convex, then there exists a randomized test
Y* € R which minimizes the shortfall risk

E[e(H(1- )]
among all W € R subject to the constraints

E*[Hy ) <v forall P* e P. (8.19)
If € is strictly convex on [0, 00), then ¥* is uniquely determined on {H > 0}.

Proof. The proof is similar to the one of Proposition 3.36. Let R denote the set of
all randomized tests which satisfy the constraints (8.19). Take i, € R such that
E[¢( H(1—1,))] converges to the infimum of the shortfall risk, and use Lemma 1.69
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to select convex combinations ¥, € conv{y,, ¥n+1, ...} which converge P-a.s. to
some ¥ € R. Since £ is continuous and increasing, Fatou’s lemma implies that

E[¢(HO—))] < lim inf E[¢(HO—yn)] = At E[¢(HO-y))].

where we have used the convexity of £ to conclude that E[¢( H(1 — %,) )] tends to
the same limit as E[¢( H(1 — yr,))].
Fatou’s lemma also yields that for all P* € &

E*[H ¢ ] <liminf E*[ H ¥, ] < v.
ntoo

Hence 12 € Ro, and we conclude that ¢* = J is the desired minimizer. The
uniqueness part is obvious. O

Remark 8.12. The proof shows that the analogous existence result holds if we use a
robust version of the shortfall risk defined as

sup Eg[¢(H(1—v))].
Qeq

where @ is a class of equivalent probability measures; see also Remark 3.37. <

Combining Proposition 8.11 and Theorem 8.10 yields existence and uniqueness
of an optimal hedging strategy under risk aversion in a general arbitrage-free market
model.

Corollary 8.13. Assume that the loss function £ is strictly convex on [0, 00). Then
there exists an admissible strategy which is optimal in the sense that it minimizes
the shortfall risk among all admissible strategies & subject to the capital constraint
£ - X < v. Moreover, any optimal strategy requires the exact initial investment v,
and its success ratio is P-a.s. equal to

v 'I{H>0} + I{H:O}’
where Y* denotes the solution of the static problem constructed in Proposition 8.11.

Proof. The existence of an optimal strategy follows by combining Proposition 8.11
and Theorem 8.10. Strict convexity of £ implies that ¢ * is P-a.s. unique on {H > 0}.
Since £ is strictly increasing on [0, 00), ¥* and the success ratio ¥y« of any optimal
strategy &* must coincide P-a.s. on {H > 0}. On {H = 0}, the success ratio Yy« is
equal to 1 by definition.

Since ¢ is strictly increasing on [0, 00), we must have that

sup EX[Hy™*] = v,

P*ep
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for otherwise we could find some ¢ > 0 such that ¥, := ¢ + (1 — &)¥* would also
satisfy the constraints (8.17). Since we have assumed that v < 7,,(H ), the constraints
(8.17) imply that ¥* # 1 and hence that

E[¢(H(1 =) <E[¢(H1—-vy"))].

This, however, contradicts the optimality of ¥*.
Since the value process V* of an optimal strategy is a J-martingale, and since

Vi>Hyy«=Hy",
we conclude from the above that

v>Vy = sup E*[Vf]> sup EX[HY"]=v.

P*ep P*ep

Thus, Vj is equal to v. O

Beyond the general existence statement of Proposition 8.11, it is possible to obtain
an explicit formula for the optimal solution of the static problem if the market model
is complete. Recall that we assume that the loss function £(x) vanishes for x < 0. In
addition, we will also assume that

£ is strictly convex and continuously differentiable on (0, 00).

Then the derivative £’ of £ is strictly increasing on (0, 00). Let J denote the inverse
function of ¢’ defined on the range of ¢/, i.e., on the interval (a, b) where a :=
lim, o €/(x) and b := lim 400 ¢/ (x). Weextend J toafunction J* : [0, co] — [0, o0]
by setting

400 fory > b,

JT () =

0 fory <a.

From now on, we assume also that
P ={P"},

i.e., P* is the unique equivalent martingale measure in a complete market model. Its
density will be denoted by
« . ar”

=g
Theorem 8.14. Under the above assumptions, the solution of the static optimization
problem of Proposition 8.11 is given by

Z

AN

=1 i Al P-as.on{H >0},

where the constant c is determined by the condition E*[ H y*] = v.
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Proof. The problem is of the same type as those considered in Section 3.3. It can in
fact be reduced to Corollary 3.43 by considering the random utility function

ulx,w) = —€(Hw)—x), 0<x<H(W).

Just note that the shortfall risk E[£(H — Y) ] coincides with the negative expected
utility —E[u(Y, -) ] for any profile Y such that 0 < Y < H. Moreover, since our
market model is complete, it has a finite structure by Theorem 5.38, and so all inte-
grability conditions are automatically satisfied. Thus, Corollary 3.43 states that the
optimal profile H* := Y* which maximizes the expected utility E[ u(Y, -) ] under the
constraints 0 <Y < H and E*[ Y ] < v is given by

H* (@) = I (c¢* (@), ©) A H(w) = (H() — J T (cp* )"
Dividing by H yields the formula for the optimal randomized test *. O

Corollary 8.15. In the situation of Theorem 8.14, suppose that the objective proba-
bility measure P is equal to the martingale measure P*. Then the modified discounted
claim takes the simple form

H*=Hvy*=(H - J* ()"

Example 8.16. Consider the discounted payoff H of a European call option
(S; — K)T with strike K under the assumption that the numéraire SO is a risk-
less bond, i.e., that S? = (1 + r)" for a certain constant » > 0. If the assumptions
of Corollary 8.15 hold, then the modified profile H* is the discounted value of the

European call option struck at K := K + J¥(c*) - (1 + N7 ie.,
s =B

(1+nT - ©

Example 8.17. Consider an exponential loss function £(x) = (e** — 1) for some
o > 0. In this case,

1 y +
J*(y)=<alog5> , y=>0,

and the optimal profile is given by

1 *\
H*:H—<—1ogc¢) AH. &
o o
Example 8.18. If ¢ is the particular loss function

xP
lx)=—, x=0,
p
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for some p > 1, then the problem is to minimize a lower partial moment of the
difference Vy — H. Theorem 8.14 implies that it is optimal to hedge the modified
claim

Hyr=H—(c, ¢H"/" D AH (8.20)

where the constant ¢, is determined by E*[ H ¥, ] = v. <

Let us now consider the limit p 1 oo in (8.20), corresponding to ever increasing
risk aversion with respect to large losses.

Proposition 8.19. Let us consider the loss functions
)4

L ="- x>0,
p

for p > 1. As p 1 oo, the modified claims H v, of (8.20) converge P-a.s. and in

LY (P*) to the discounted claim
(H — Coo)+

where the constant coo is determined by
E*[(H —cso)T 1= 0. (8.21)
Proof. Let vy (p) be shorthand for 1/(p — 1) and note that

(@HYP) — 1 P-as. as p 1 oo.

Hence, if (p,) is a sequence for which cZn(p n) converges to some ¢ € [0, 0o], then

lim Hyy =H—-CAH=(H-2)".

ntoo
Hence,
E*[Hyy 1 — E*[(H-0)"1.
Since each term on the left-hand side equals v, we must have
E'[((H-O)"]=v,

which determines ¢ uniquely as the constant ¢y of (8.21). O

Example 8.20. If the discounted claim H in Proposition 8.19 is the discounted payoff
of a call option with strike K, and the numéraire is a riskless bond as in Example 8.16,
then the limiting profile lim o0 H w;‘ is equal to the discounted call with the higher

strike price K + ¢oo S(T). <&

In the remainder of this section, we consider loss functions which are not convex
but which correspond to risk neutrality and to risk-seeking preferences. Let us first
consider the risk-neutral case.
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Example 8.21. In the case of risk neutrality, the loss function is given by
L(x) =x forx > 0.
Thus, the task is to minimize the expected shortfall
E[(H—Vp)"]

under the capital constraint Vy < v. Let P* be the unique equivalent martingale
measure in a complete market model. Then the static problem corresponding to
Proposition 8.11 is to maximize the expectation

E[H Y]
under the constraint that ¢ € R satisfies
EY[HYy]<v.

For simplicity, we assume P[ H > 0] = 1. Then we can define two equivalent
measures Q and Q* by
a0 H d do* H

= an = .
dP E[H] dP* E*[H]

The problem then becomes the hypothesis testing problem of maximizing Eg[ v |
under the side condition

v
E o+ <uo:= .
el sa=
Since the density d Q /d Q* is proportional to the inverse of the density ¢* = d P*/d P,
Theorem A.30 implies that the optimal test takes the form

Ui =1 TV I

1= Yo <e {p*=c1}

where the constant ¢ is given by
c =sup{ceR| E*YH; 9" <c] < v},
and where the constant y is chosen such that E*[ H ¢/{ ] = v. <

Assume now that the shortfall risk is assessed by an investor who, instead of being
risk-averse, is in fact inclined to take risk. In our context, this corresponds to a loss
function which is concave on [0, co) rather than convex. It is not difficult to generalize
Theorem 8.14 so that it covers this situation. Here we limit ourselves to the following
explicit case study.
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Example 8.22. Consider the loss function
q

()=, x>0,
q

for some ¢ € (0, 1). In order to solve our static optimization problem, one could
apply the results and techniques of Section 3.3. Here we will use an approach based
on the Neyman—Pearson lemma. Note first that for ¥ € R

CH( =) =1 —y)? - &(H) > €(H) — ¢ - L(H).
Hence, we get a lower bound on the “shortfall risk” of v:
E[¢(H(1—v))] = E[¢(H)]| — E[v - £(H) ]. (8.22)

The problem of finding a minimizer of the right-hand side is equivalent to maximiz-
ing the expectation Eg[ v ] under the constraint that Eg«[ ¢ ] < v/E*[ H ] for the
measures Q and Q* defined via

do H1 d do* H
P — an e —
dP E[HY] dP* E*[H]

if we assume again P[ H > 0] = 1. As in Example 8.21, we then conclude that the
optimal test must be of the form

I{1>c;;<p*H1*‘/} +y- I{1=c;<p*H1*‘/}' (8.23)
for certain constants cZ and y. Under the simplifying assumption that
P[l=clp*H'™1]=0, (8.24)
the formula (8.23) reduces to
1 on{l>clp*H!4},
* = q 8.25
Ve 0 otherwise. (8.25)

By taking Y = wq* we obtain an identity in (8.22), and so Iﬁ; must be a minimizer for
E[£(H(1 — )) ] under the constraint that E*[ H v | < v. &

In our last result of this section, we recover the knock-out option

H- I{1>cg;-H<p*}’
which was obtained as the solution to the problem of quantile hedging by taking the
limit ¢ | O in (8.25). Intuitively, decreasing g corresponds to an increasing appetite
for risk in view of the shortfall.
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Proposition 8.23. Let us assume for simplicity that (8.24) holds for all g € (0, 1),
that P H > 0] = 1, and that there exists a unique constant cg such that

B[ 1y ] =0 826)

Then the solutions wq* of (8.25) converge P-a.s. to the solution
*
vy = I{1>cg-H¢*}
of the corresponding problem of quantile hedging as constructed in Proposition 8.3.

Proof. Take any sequence g;, | 0such that (c;‘n y!/(1=42) converges to some ¢ € [0, 0o].
Then
. .
Y}ITI?O Vo, = Yiszm gy
Hence,
* * *
E*[HY; 1 — E [H - LR ]-
Since we assumed (8.24) for all g € (0, 1), the left-hand terms are all equal to v, and
it follows from (8.26) that ¢ = ¢y~ This establishes the desired convergence. I



Chapter 9
Hedging under constraints

So far, we have focussed on frictionless market models, where asset transactions can
be carried out with no limitation. In this chapter, we study the impact of market
imperfections generated by convex trading constraints. Thus, we develop the theory
of dynamic hedging under the condition that only trading strategies from a given
class 4 may be used. In Section 9.1 we characterize those market models for which
4 does not contain arbitrage opportunities. Then we take a direct approach to the
superhedging duality for American options. To this end, we first derive a uniform
Doob decomposition under constraints in Section 9.2. The appropriate upper Snell
envelopes are analyzed in Section 9.3. In Section 9.4 we derive a superhedging duality
under constraints, and we explain its role in the analysis of convex risk measures in a
financial market model.

9.1 Absence of arbitrage opportunities

In practice, it may be reasonable to restrict the class of trading strategies which are
admissible for hedging purposes. As discussed in Section 4.8, there may be upper
bounds on the capital invested into risky assets, or upper and lower bounds on the
number of shares of an asset. Here we model such portfolio constraints by a set 4 of
d-dimensional predictable processes, viewed as admissible investment strategies into
risky assets. Throughout this chapter, we will assume that 4 satisfies the following
conditions:

(a) 0 € 3.

(b) 4 is predictably convex: If &, n € 4§ and h is a predictable process with
0 < h < 1, then the process

hié&+Q—hy)n,, t=1,...,T,
belongs to 4.
(c) Foreacht € {1,..., T}, the set
$=1{& 188}
is closed in LO(Q,?}_l, P;Rd).
(d) Forallt, & € 4, implies £* € 4.



9.1 Absence of arbitrage opportunities 351

In order to explain condition (d), let us recall from Lemma 1.65 that each & €
LO(Q, Fi_1, P; RY ) can be uniquely decomposed as

& =n+ Sf‘, where n; € N; and EtJ‘ € N,J‘,
and where
Ny ={meL%Q, Fi_1, P;RY) | n; - (X, — X,—1) =0 P-as. |,

Nt =1{& eL%Q, F_1, P;RY) | & -1, = 0 P-as. forally, € N, }.

Remark 9.1. Under condition (d), we may replace &, -(X; — X;_1) by S}-(Xt —X;_1),
and £ - (X, — X,—1) = 0 P-a.s. implies £ = 0. Note that condition (d) holds if
the price increments satisfy the following non-redundance condition: For all t €
{1,...,T}yand & € L%Q, F_1, P; RY),

& - Xy —Xi—1)=0P-as. — & =0 P-as. 9.1
<

Example 9.2. Foreach let C; be a closed convex subset of R? such that 0 € C,. Take
4 as the class of all d-dimensional predictable processes & such that & € C; P-a.s.
for all ¢. If the non-redundance condition (9.1) holds, then 4§ satisfies conditions (a)
through (d). This case includes short sales constraints and restrictions on the size of
a long position. <

Example 9.3. Let a, b be two constants such that —oo < a < 0 < b < oo, and take
4 as the set of all d-dimensional predictable processes such that

af%‘,-Xt_lfb P-a.s.fort=1,...,T.

This class 4 corresponds to constraints on the capital invested into risky assets. If
we assume that the non-redundance condition (9.1) holds, then 4 satisfies conditions
(a) through (d). More generally, instead of the two constants a and b, one can take
dynamic margins defined via two predictable processes (a;) and (b;). <&

Let 4 denote the set of all self-financing trading strategies £ = (£, &) which arise
from an investment strategy & € 4, i.e.,

8 ={&=(£"¢)|&isself-financing and £ € 4 }.

In this section, our goal is to characterize the absence of arbitrage opportunities in §.
The existence of an equivalent martingale measure P* € P is clearly sufficient. A
condition which is both necessary and sufficient will involve a larger class 5 D P.
In order to introduce this condition, we need some preparation.
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Definition 9.4. An adapted stochastic process Z on (2, ¥, (¥;), Q) is called a local
Q-martingale if there exists a sequence of stopping times (t,),en C 7 such that
7, /' T Q-as., and such that the stopped processes Z™ are Q-martingales. The
sequence (T,),eN is called a localizing sequence for Z. In the same way, we define
local supermartingales and local submartingales.

Remark 9.5. If Q is a martingale measure for the discounted price process X, then
the value process V of each self-financing trading strategy &€ = (£°, &) is a local
Q-martingale. To prove this, one can take the sequence

T, :=inf{t20||§,+1| >n}/\T
as a localizing sequence. With this choice, |&;| < n on {t, > t}, and the increments
V[T” - Vtrjl :I{‘L’nZl} & - (Xy —Xe—), t=1,...,T,
of the stopped process V™ are Q-integrable and satisfy

EolV/"=V™ | F_1]1= Lo onb-EolXi = Xi1 [ F1-11=0. <&

The following proposition is a generalization of an argument which we have already
used in the proof of Theorem 5.26. Throughout this chapter, we will assume that
Fo=1{¥,Q}and F5 = F.

Proposition 9.6. A local Q-supermartingale Z whose negative part Z; is integrable
foreacht € {1,...,T}is a Q-supermartingale.

Proof. Let (1,,) be a localizing sequence. Then

T
zpi ==y z7 e LY.

s=0

In view of lim, Z;" = Z,, Fatou’s lemma for conditional expectations implies that

Q-a.s.
EolZ, | Fi-1] <liminf Eg[ Z[" | F—1 ] <liminf Z" | = Z,_;.
ntoo ntoo

We get in particular that Eg[ Z; ] < Zp < oo. Thus Z; € £L1(0), and the assertion
follows. O

Definition 9.7. By s we denote the class of all probability measures P ~ P such
that _
X, e L'(P) forallt, 9.2)

and such that the value process of any trading strategy in § is a local P -supermartingale.
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Remark 9.8. If § contains all self-financing trading strategies £ = (£°, &) with
bounded &, then Py coincides with the class & of all equivalent martingale mea-
sures. To prove this, let P € Py, and note that the value process V' of any such Eisa
P-supermartingale by (9.2) and by Proposition 9.6. The same applies to the strategy
—E, so V is in fact a P-martingale, and Theorem 5.15 shows that P is a martingale
measure for X. <

The following result extends the “fundamental theorem of asset pricing” to our
present setting; see Theorem 5.17.

Theorem 9.9. There are no arbitrage opportunities in 8 if and only if P is non-
empty. In this case, there exists a measure P € Pg which has a bounded density
dP/dP.

We will first show that the condition &5 7 () implies the absence of arbitrage
opportunities in 4:

Proof of sufficiency. Suppose P is a measure in Ps, and V is the value process of
a trading strategy in 8 such that V7 > 0 P-almost surely. Combining Lemma 9.10
below with Proposition 9.6 shows that V is a P-supermartingale. Hence Vo > E[ V7 ],
so V cannot be the value process of an arbitrage opportunity. 0

Lemma 9.10. Suppose that Ps # () and that 'V is the value process of a trading
strategy in 8 such that Vr > 0 P-almost surely. Then V; > 0 P-a.s. for all t.

Proof. The assertion will be proved by backward induction on 7. We have Vr > 0
by assumption, so let us assume that V; > 0 P-a.s. for some ¢. For £ = (SO, £&)e s

with value process V, we let %-S(C) =& I{Iés 1<c} for ¢ > 0 and for all s. Then the value
process V(© of £© is a ﬁ—supermartingale for any fixed Pe &Ps. Furthermore,

= Vil e — & (X0 = X1

> =5 (X = Xio1)

=V - v

Viet Le <o)

The last term on the right belongs to &£ ! (If5 ), so we may take the conditional expectation
E[-| #—1] on both sides of the inequality. We get

Vi Te o = ELVE = VO 1 F12 0 Paas.

{1&=<c
By letting ¢ 1 oo, we obtain V;_; > 0. O

Let us now prepare for the proof that the condition #5 # @ is necessary. First we
show that the absence of arbitrage opportunities in 4 is equivalent to the absence of
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arbitrage opportunities in each of the embedded one-period models, i.e., to the non-
existence of &; € 4; such that & - (X; — X;_1) amounts to a non-trivial positive gain.
This observation will allow us to apply the techniques of Section 1.6. Let us denote

8% :={& € § | £ is bounded }.
Similarly, we define
8% = (5| £ €82} =8 NL™Q, Fo1. PR,
Lemma 9.11. The following conditions are equivalent:

(a) There exists an arbitrage opportunity in 8.

(b) There existt € {1,...,T}and & € &; such that

Et'(Xt_Xl—l) EOP-G.S., and P[‘sl"(Xt_Xt—l) >O] > 0. (93)
(c) Thereexistt € {1,..., T} and & € 87° which satisfies (9.3).
Proof. The proof is essentially the same as the one of Proposition 5.11. O
In order to apply the results of Section 1.6, we introduce the convex sets
K=& X = Xim) | & € 8.},

fort € {1,...,T}. Lemma 9.11 shows that 4 contains no arbitrage opportunities if
and only if the condition

X2 nLY = {0 (9.4)

holds forall r € {1,..., T}.

Lemma 9.12. Condition (9.4) implies that JC;‘ — L3_(§2, F:, P) is a closed convex

subset of L°(Q2, %, P).

Proof. The proof is essentially the same as the one of Lemma 1.67. Only the following
additional observation is required: If (§") is sequence in 4§, and if o and o are two
Fi_1-measurable random variables such that 0 < o < 1 and o is integer-valued, then

¢ = a&? € 4;. Indeed, predictable convexity of § implies that

n
k
@) Tyt €4
k=1

for each n, and the closedness of $; in LY(2, F;_1, P; Rd) yields

o]
t=a) I, 8 €3
k=1
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From now on, we will assume that
E[|Xs]] < oo foralls. 9.5)

For the purpose of proving Theorem 9.9, this can be assumed without loss of generality:
If (9.5) does not hold, then we replace P by an equivalent measure P’ which has a
bounded density d P’ /d P and for which the price process X is integrable. For instance,
we can take

dP' =c exp[— XT:|XS|]dP,
s=1

where ¢ denotes the normalizing constant. If there exist a measure P ~ P’ such that
each value process for a strategy in 4 is a local P-supermartingale and such that the
density d P/d P’ is bounded, then P € Py, and the density d P/d P is bounded as
well.

Lemma 9.13. If 8 contains no arbitrage opportunities, then for eacht € {1, ..., T}
there exists some Z; € L*°(2, F;, P) such that Z, > 0 P-a.s. and such that

E[Z & (X —Xi—1)1<0 forallé € 8. (9.6)

Proof. Consider the positive cone
R:={rE|E€$, 1>0}

generated by 4. Accordingly, we define the cones R, R, and K ;ﬂ Clearly, R does
not contain arbitrage opportunities if and only if 4§ is arbitrage-free. Hence, for each ¢

XN LR, F1, P) = {0} ©.7)
by Lemma 9.11. Thus, Lemma 9.12 implies that each
el = (xF - 1% Fr, P)NnL!

is a closed convex cone in L! which contains —L9r (2, %, P). Furthermore, it follows
from (9.7) that C’;ﬂ N L?F = {0}, so G,‘R satisfies the assumptions of the Kreps—
Yan theorem, which is stated in Theorem 1.61. We conclude that there exist Z; €
L°(Q, F;, P) such that P[Z; > 0] = 1, and such that E[Z, W] < O for each
W e G;ﬂ. Asé& - (X — X)) € Gt‘ﬂ for each & € 8°°, Z, has property (9.6). O

Now we can complete the proof of Theorem 9.9 by showing that the absence of
arbitrage opportunities in 4 implies the existence of a measure P that belongs to the
class &5 and has a bounded density d P /d P.

Proof of necessity in Theorem 9.9. Suppose that § does not contain arbitrage opportu-
nities. We are going to construct the desired measure P via backward recursion. First
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we consider the case t = T. Take a bounded randop variable Z7 > 0 as constructed
in Lemma 9.13, and define a probability measure Py by

dPr Zr

dP ~ E[Zr]

Clearly, lgT is equivalent to P, and X; € L1 (FT) for all 1. We claim that
Erlér- (Xr = Xr-D) | Fr-11<0 forall€ € 8. 9-8)
To prove this claim, consider the family
® = { Erlér- (Xr — X7-0) | Fro1 11§ € 87}
Foré,g € 8%, let
A= {Erl&r - (Xt — X7-1) | Fr-1)1> Er[&r - (X7 — X7-1) | Fro11},
and define &’ by &/ = 0 fort < T and
& o= Erl, +E71 .
The predictable convexity of 4 implies that £’ € $°°. Furthermore, we have

Er[&) - (X7 — X7-1) | Fr-1]
= Erlér - (Xt — Xr_1) | Fro1 1V Erlér - (Xr — Xr_1) | Fr1 1.

Hence, the family & is directed upwards in the sense of Theorem A.32. By virtue
of that theorem, ess sup @ is the increasing limit of a sequence in ®. By monotone
convergence, we get

ET[esssupET[fT (X7 = X)) | Fro11]
Eeg>

= sup Er[Erl[ér - (X7 — Xr—1) | Fr-11]

fed™ (9.9)
= E Xy — X7 Z

E[Z7] sseljzgo [&r - (X7 7-1)Z7]
S 07

where we have used (9.6) in the last step. Since 4 contains 0, it follows that

esssup Er[&r - (X7 — X7_1) | Fr_11=0 Pr-as.,
Ees>

which yields our claim (9.8).
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Now we apply the previous argument inductively: Suppose we already have a
probability measure P41 & P with a bounded density d P;y1/d P such that

Ei[1Xs]1 <00 foralls,
and such that
Erp1l& - Xk — Xp—1) | Fie1 1 <0 P-as. fork >+ land & € 8°.  (9.10)

Then we may apply Lemma 9.13 with P replaced by P,+1 and we get some strictly
positive Z, € L®°(R2, F;, P,+1) satisfying (9.6) with P4 in place of P. We now
proceed as in the first step by defining a probability measure P, ~ P41 = P as
ar Z
dPiyy EnlZ]

Then P, has bounded densities with respect to both P,+1 and P. In particular,
Et[ |Xs|] < oo for all s. Moreover, the ¥;-measurability of d P, /d Pt+1 implies
that (9.10) is satisfied for Pt replacing P,H Repeating the arguments that led to (9.8)
yields ~

Ell& - (X —Xi—1) | Fi-11<0 forallé € 8%.

After T steps, we arrive at the desired measure P = P, € Py. O

9.2 Uniform Doob decomposition

The goal of this section is to characterize those non-negative adapted processes U
which can be decomposed as

t

Ur=Up+ Y & (Xx— Xx-1) — By, (9.11)
k=1

where the predictable d-dimensional process & belongs to 8, and where B is an adapted
and increasing process such that Bg = 0. In the unconstrained case where 4§ consists
of all strategies, we have seen in Section 7.2 that such a decomposition exists if and
only if U is a supermartingale under each equivalent martingale measure P* € £. In
our present context, a first guess might be that the role of P is now played by &, 8- Since
each value process of a strategy in 4§ is a local P- supermartmgale for each P € & Ps,
any process U which has a decomposition (9.11) is also a local P- -supermartingale for
Peg Ps. Thus, one might suspect that the latter property would also be sufficient for
the existence of a decomposition (9.11). This, however, is not the case, as is illustrated
by the following simple example.
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Example 9.14. Consider a one-period market model with the riskless bond SO =
S0 1 and with one rlsky asset S'. We assume that S, = 1 and that S, ! takes the
values S} (w™) = 2 and S} (0") = son Q= {w" a)+} We choose any measure
P on Q Wthh as51gns p0s1t1ve mass to both a)Jr and w—. If welet § = [0, 1],
then a measure P belongs to Pg if and only if P[{ 1] e (0, %] Thus, for any
positive initial value Uy, the process defined by Uy (w™) := 0 and U (w™) := 2Upisa
Ps-supermartingale. If U can be decomposed according to (9.11), then we must be
able to write

2Up = Ui(wh) = Up + £ - (S (@h) — Sy (™)) — Bi(w™)

for some Bj(w") > 0. This requirement is equivalent to Uy < &/2. Hence the
decomposition (9.11) fails for Uy > 1/2. <

The reason for the failure of the decomposition (9.11) for certain Jg-supermar-
tingales is that &4 does not reflect the full structure of §; the definition of # depends
only on the cone

{AE|XA>0,&€4)

generated by 4. In the approach we are going to present here, the structure of § will
be reflected by a stochastic process which we associate to any measure Q < P:

Definition 9.15. For a measure Q <« P, the upper variation process for 4 is the
increasing process A€ defined by

§:=0 and A% —A7: =esssup Eie1 - (Eol Xit | F1 - X1)]
(S

fort =0,...,T — 1. By @4 we denote the set of all Q &~ P such that
EolA?] < o0

and such that
Eol|Xi11—X¢|| 1 <00 P-as. forall ¢.

Clearly, the upper variation process of any measure Q ~ P satisfies
AL, — AP = ess sup [641 - (Eol Xiq1 | F11— X)),
e [o°]

where 8°° are the bounded processes in 4. Hence for Q € @4 and § € 8, the
condition Eg[ | X:+1 — X¢| | ¥ ] < oo guarantees that

&1 - (EQ[XH-I | Fi1—X:) = Eglé&s1 - (Xeg1 — X)) | F1,
and it follows that

AL, — AL —esssup Eglés1 - (Xip1 — X) | Fi1 for Qe @s.  (9.12)

Eed>®
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In particular, we have
AP =0 for P e 5, (9.13)

which implies the inclusion
P C Pg CAy. 9.14)

Proposition 9.16. If Q € Qg, and V is the value process of a trading strategy in 8,
then V. — A is a local Q-supermartingale.

Proof. Let V be the value process of & = (€9, &) € 8. Denote by 1, (w) the first time
t at which
&r1(@)| >n or Eo[|Xi11— X/l | F |(@) > n.

If such a ¢ does not exist, let 7,,(w) := T. Then 7, is a stopping time. Since
VI = Vi < Ty lEl - 1 X — Xl € £1(Q),
V™ belongs to £ (Q), and
Eol Vi =V | Fil=1_ . &1 (Eol Xep1 | Fil— Xo)
< (A9, — @A
This proves that V7 — (A2)™ is a Q-supermartingale. O

Let us identify the class @ s in some special cases.

Remark 9.17. If 8 consists of all bounded predictable processes & with non-negative
components, then @ 3 = $P5. To prove this, take Q € @5, and note first that A2 =0,
due to (9.12) and the fact that & is a cone. Thus, value processes of strategies in & are
local Q-supermartingales by Proposition 9.16. By taking & € 4 such that & = 1 and
g/ = 0for j # i, we get that X' is a local Q-supermartingale, and Proposition 9.6
implies that X’ is a Q-supermartingale. In particular, X ; is Q-integrable, and we
conclude Q € Ps. <&

Remark 9.18. If 8 consists of all bounded predictable processes &, then @5 = P.
This follows by combining Remarks 9.8 and 9.17. <

Example 9.19. Suppose our market model contains just one risky asset, and 4 consists
of all predictable processes & such that

a; <& <b; P-as. forallt,
where a and b are two given predictable processes with

—0o<a <0<bh <00 P-as.
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If we assume in addition that E[ | X;11—X;| | £ ] > 0 P-a.s., then the non-redundance
condition (9.1) holds, and 4 satisfies the assumptions (a) through (d) stated at the
beginning of this chapter. If Q =~ P is any probability measure such that

Eo[IXi41— X/ | F1] <00 P-as. forallt, (9.15)
then

esssup Egl&41 - (Xi1 — X)) | F1]
Eeg>®

= b1 (Eol Xi11 — X/ | J’t}])Jr —arp1 (Egl Xip1 — X/ | F11)°
< oo P-as.

Hence, @ s consists of all measures Q ~ P with (9.15). <&

We now state the uniform Doob decomposition under constraints, which is the
main result of this section.

Theorem 9.20. Suppose that Py is non-empty. Then for any adapted process U with
Ur > 0 P-a.s., the following conditions are equivalent.

(a) U — A9 is a Q-supermartingale for every Q € Q3.

(b) There exists & € 8 and an adapted increasing process B such that By = 0 and

t
U =U+ Y & Xy —Xs-1) — B P-as. forallt.
k=1

Proof. (b) =(a): Fix Q € @4. According to Proposition 9.16, the process

t
M2 :=Uo+ > & (X — Xp—1) — AL
k=1

is a local Q-supermartingale. Since M? + A? > Ur > 0 P-as., we get from

Lemma 9.10 that the negative part of M,Q is bounded below by —AtQ e £1(0). So
M€ is a Q-supermartingale by Proposition 9.6. Since

M2 > M2 — Br =Ur — A% > —A¢  P-as,

and since B is increasing, each B; belongs to LYQ),and M —B=U—A%isa
Q-supermartingale.

(a) =(b): We must show that for any given t € {1,..., T} there exist some
& € 4§ and a non-negative random variable R; playing the role of B; — B;_1 such that
U —U—1 =& Xy — Xy—1) — Ry, 1e.,

U —U~—1 e X} —LY(Q, 7, P),
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where
K =1{& X, —X;_1) | £ €8}

The formulation of this problem does not change if we switch from P to any equivalent

probability measure, so we can assume without loss of generality that P € £5. In

this case A” = 0, and U is a P-supermartingale. In particular, Uy € L'(P) for all s.
We assume by way of contradiction that

U= U1 ¢ 6 = (X} - L@, 7, P))nL'(P). (9.16)

Recall that we have proved in Lemma 9.12 that G is a closed convex subset of
LY(Q, %, P). The Hahn—Banach separation theorem, Theorem A.56, now implies
the existence of a random variable Z € L*° (2, ;, P) such that

a:= sup E[ZW] < E[Z(U;,—-U;—1)] =: B < o0. 9.17)
We@f‘

Note that the function —AI, belongs to € for all A > 0. Thus

Z <0}
0<(-ME[Z], o]=@

for every A > 0, and it follows that Z > 0 P-almost surely.

In fact, we can always modify Z such that it is bounded below by some ¢ > 0 and
still satisfies (9.17). To see this, note first that every W € Gf‘ is dominated by some
& -(Xy— X)) € J{f with integrable negative part. Therefore

ELW] < Elg - (X = X)) < liminf E[& - (X = XDl -y ] <0,

where we have used our assumption that P € P5. If welet Z¢¥ .= ¢ 1+ (1 —¢)Z,
then Z°¢ still satisfies E[Z* W] < O for all W € 6,5, and for ¢ small enough, the
expectation E[ Z¢ (U, — U,—1)] is still larger than «. So Z? also satisfies (9.17).
Therefore, we may assume from now on that our Z with (9.17) is bounded below by
some constant £ > 0.

For the next step, let Z,_y := E[Z | ;—1 ] and

dQ  Z
dP " Z, '

Since this density is bounded and since P € Pg, we get
Eg[IXy — Xe—1l | Fs—1] <00 P-as. foralls. (9.18)
Moreover, it is not difficult to check that

EQ[&S'(XS_XS—I) | Fs—1]1 = E[& - (Xs—X5-1) | Fs—1]1 <0 fors #1; (9.19)
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see the proof of Theorem 7.5 for details. We now consider the case s = . As we have
seen in the proof of Theorem 9.9, the family

{Eolé& - (Xi = X;—1) | Fi1 116 € 8}
is directed upwards. Therefore, we may conclude as in (9.9) that
Eol Zi— eSESeS;lpEQ[St (Xe = Xi—) | Fimr 1]
= ?;I;E[St (X —Xi—1) Z] (9.20)

<a.

Since Z;—1 > ¢, (9.20) implies that

™| R

Eg[Af — A2 ] =Eg] esssup Eol ;- (Xi = Xio1) | Fic 1] <

By (9.19) we may conclude that Eg| AJQ ] < a/e,and so (9.18) yields Q € Q5.

As a final step, we show that U — A¥ cannot be a Q-supermartingale, thus leading
our assumption (9.16) to a contradiction with our hypothesis (a). To this end, we use
again (9.20):

Eo[Zi—1 EolU, — Ui—1 | F1-11]
=EolZi1 (U —U;1) ]
=E[ZWU -U~_)D]=58
> o

> Eg| Zim 55 Sup Eglé& - (X; — Xi—1) | Fim1]]

= Eo[Zi—1 (A2 — A2 )]
Thus, we cannot have
_ 0 40
EolU — U1 | i1 1 = A7 — A7, P-as,

so U — A2 cannot be a Q-supermartingale, in contradiction to our hypothesis (a). []

9.3 Upper Snell envelopes

From now on, we assume that § does not contain arbitrage opportunities, which is
equivalent to the condition #5 # (. Let H be a discounted American claim. Our
goal is to construct a superhedging strategy for H that belongs to our class § of
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admissible strategies. The uniform Doob decomposition suggests that we should
find an adapted process U > H such that U — A is a Q-supermartingale for each
0 € @j. If we consider only one such Q, then the minimal process U which satisfies
these requirements is given by U2 + A<, where

UL =esssupEglH, — A2 | %] 1=0,...,T, 9.21)

T€T;
is the Snell envelope of H — A€ with respect to Q. Thus, one may guess that

ess sup(ﬁtQ + AtQ), t=0,...,T,
Q€@

is the minimal process U which dominates H and for which U — A¢ is a Q-
supermartingale for each Q € @ . Let us assume that

sup ﬁOQ = sup sup Eg[ H, — A2] < o0.
[SOF Qe el

Note that this condition holds if H is bounded.

Definition 9.21. The process

U = esssup (A,Q + ﬁ,Q)
0eQsy

=esssup(A,Q+esssupEQ[H, — A2 | F1), t=0,...,T,

Qely TeT;
will be called the upper @ g-Snell envelope of H.

The main result of this section confirms our guess that Ut is the process we are
looking for.

Theorem 9.22. The upper @ g-Snell envelope of H is the smallest process U > H
such that U — A9 is a Q-supermartingale for each Q € Q3.

For a European claim, we have the following additional result.

Proposition 9.23. For a discounted European claim H* with

sup Eg[ HE — A2 ] < oo,
ey

the upper @ g-Snell envelope takes the form

ﬁ,T:esssup(EQ[HE—AgI?}]—FA,Q), t=0,...,T.
0eQy
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Proposition 9.23 will follow from Lemma 9.28 below. The next result provides a
scheme for the recursive calculation of U t. It will be used in the proof of Theorem 9.22.

Proposition 9.24. For fixed Qg € Q5 let Q;(Qo) denote the set of all Q € Qg which
coincide with Qg on F;. Then Ut satisfies the following recursion formula:

U — A2 = (H, — A2 v esssup EglU
0€@:(Qo)

z+1 ,Q+1|?z], t=0,...,T —1.

The proofs of this proposition and of Theorem 9.22 will be given at the end of this
section. Letusrecall the following concepts from Section 6.4. The pasting of two prob-
ability measures Q1 &~ Qs inastoppingtimetr € 7 = {o | o is a stopping time < T }
is the probability measure

OlAl=Eg [Q[A|F]]. AcF.
It was shown in Lemma 6.43 that, for all stopping times o and ¥7-measurable Y > 0,
ELY | Fol=EQ,[ ElY | Fruo 1| Fo |- (9.22)

Recall also that a set @ of equivalent probability measures on (€2, ¥) is called stable
if for any pair Q1, Q2 € @ and all T € T the corresponding pasting also belongs
to @. A technical inconvenience arises from the fact that our set @5 may not be
stable. We must introduce a further condition on t which guarantees that the pasting
of 01, Q2 € @5 in T also belongs to @ 5.

Lemma 9.25. For v € T, the pasting Q of OQ1, Q2 € @y in T satisfies
EGlIXip1 — Xil | F1] <00 P-as,
and its upper variation process is given by

A8 = A%+ (A% — A2 1

{r<t}
Moreover, we have Q € @ g under the condition that there exists € > 0 such that

a0
dQl F

Proof. The identity (9.22) yields

>eas. onf{t <T} (9.23)

E5lIXer1=Xe| | Fr 1= Eq [ Xep1=Xe| | F Wy FE QLI Xr1=Xe| | F2 11

{r=<t}

and each of the two conditional expectations is finite almost surely.

Now we will compute the upper variation process A of é As above, (9.22)
yields

Eé[gt (X1 —X) | F]

= Eg,[& (X1 — X | By + Egul& - (Xip1 — X0 | BN,
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Taking the essential supremum over & € 47° gives

AL, — A% =2, - Al

Q Q
+1 t+1 } + (Az+21 — AT

T>t {r=<t}’

and from this our formula for A,Q follows.
In a final step, we show that Q belongs to @ under condition (9.23). We must

show that Eé[ A? ] < oo. Let Z; denote the density of O, with respectto Q1 on %;.
Then, by our formula for A Q,

E5lAS]1=E5LA2 + AP — A22]
= Eq[A%' + Eg,[ A7 — A | 521

1
< Eq AR 1+ Eq,| - Eq\[(A$* = 49 71 | #1]

T

1
< Eg,[A9']+ - Eg,[ A,
which is finite for Q1, Q> € Q3. O

Lemma 9.26. Suppose we are given Q1, Q2 € Qs, a stopping time T € T, and a set
B € F; such thatdQ2/dQ1|s, > € a.s. on B. Let Q be the pasting of Q1 and Q3 in
the stopping time

o= rIB + TIBL,.

Then é € Qg, and the Snell envelopes associated with these three measures by (9.21)
are related as follows:

U2 + A% = (U2 + A%) -1, + (U2 +A2) -1, P-as, (9.24)

Proof. We have dQ>/dQ1|#, > €, hence é € @4 follows from Lemma 9.25. Let

p be a stopping time in the set 77 of all stopping times > t. The formula for AQ in
Lemma 9.25 yields

0 _ 50 0 0 0 0
Ay =A7 + (A — AZDL, + (A2 — AP,
Moreover, (9.22) implies that
EGLY | Fel=EQ[Y | F: g + Eg,[ Y| ¥ 11
for all random variables Y such that all conditional expectations make sense. Hence,
E5lH, — A | #: 1+ A2
= (Eg,[Hy — A2 | F: 1+ A2) L. + (Eg,[ H, — A2 | F 14+ A22) 1,
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Whenever pi, p2 are stopping times in 77, then p := py 1. + p2 15 is also a stopping
time in J7. Conversely, every p € J7 can be written in that way for stopping times
p1 and py. Thus, taking the essential supremum over all p; and p; and applying
Proposition 6.38 yields (9.24). O

In fact, we have A2 = A2 in (9.24), as we will have A2* = A2? in the following
lemma.

Lemma 9.27. For any Qg € Q3,7 € T, and § > 0, there exist a set As € F; such
that Qo[ As 1> 1 — 8 and measures Qy € Qg such that Q; = Qo on F; and

5er + Aer /Y e(szs Zup(ﬁrQ =+ A‘L'Q) = ﬁg P-a.s. on AS
€6ly

Proof. By Theorem A.32 and its proof, there exists a sequence (Q?l) C @4 such that

. NQO Q() ~
lim max (Us " + A7") = Ul P-as.
koo n<k
We will recursively define measures QO € @ s and sets Alg € F7 such that Alg - A’g_l,
Qol A§]1>1—(1—-27)8, and

~ ~ N0 0
U2 4 A% = max (U2 + AZ")  P-as. on AL,

By letting As := () Alg , this will imply the first part of the assertion. We start this
recursion in k = 0 by taking Q¢ and Ag = Q.

For Qy given, the equivalence of Q; and Qg 41 implies that there exists some
& > 0 such that the set

D::{%
dQx

satisfies Qo[ D] > 1 —27**+Vs. Thus, A§T! := AK N D satisfies Qo[ A5™' ] >
1 — (1 —2~®+D)s. We now define a set

Zs}e?}
Fr

. ~Q2+l Q2+l 170k ()
B.:{U, AT S J% 4 AL }mD,

and consider the pasting Q41 of Oy and Qg 41 inthe stopping time o := 7, +T1,..
By Lemma 9.26, Qx4 € @4 and

GO 4 A% = ([0 4 A2 .1, 4 (T2 4 aZ) 1, Poas
T T - T T B¢ T T B e
~ ~ 00 0
= (UZ2F + AZF) v (UTQ"Jrl + ATQH') P-as. on D
~00 0
= max (UTQ” + A,Q") P-a.s. on A§+1.

n<k+1
I
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Now we can proceed to proving the main results in this section.
Proof of Proposition 9.24. For Qg € Qg andt € {¢,..., T}, @;(Qo) denotes the set
of all O € @5 which coincide with Q¢ on ¥;. By Lemma 9.27 and by the definition
of U2 as the Snell envelope of H — A9,

U — A2 = esssup U2

0€@;(Qo)
= esssup ((H; — AQ)\/EQ[U+1 | 71
0€@;(Qo)
= (H, — AQO)V €ss sup EQ[ +1 | % 1.
0€@,(Qo)
Since ﬁtQ < UtTJrl grl’ we get

Ul — A2 < (H, — A2 ) v esssup EolU
0€@:(Qo)

t+1 tQ_H | Ft 1. (9.25)

For the proof of the converse inequality, let us fix an arbitrary Q € @,(Qg). For
any 6 > 0, Lemma 9.27 yields a set A3 € ?t+1 with measure Q[ As] > 1 — 6 and
Ok € Q4+1(Q) such that Ut%l SU z+1 [H P-ass. on Ag. Since Qy coincides

with Q on ¥;41, we have P-a.s. on Ag

EolU], - t+1|?}]_hmEQ[U+l|$}]_ 11mEQk[U+l|f,]

<limsupUZ* < esssup U,Q

koo 0€@:11(Q)
=< esssup ﬁ,Q = (7,T - AtQ
00 (Q)
— (’jtT _ Ath

By taking § | O and by recalling ﬁ,T > H;, we arrive at the converse of the inequal-
ity (9.25). O

Proof of Theorem 9.22. Since Qg € @g is obviously contained in @;(Qo), the
recursion formula of Proposition 9.24 yields
— A2 > (H, — A2 v Eg,l U

— A2 | Fil= EglUL, — A2 | 721,

t+1 t+1

Le., U, U — A0 isindeed a Qo-supermartingale for each Qg € @ 5. We also know that
U ot dominates H.

Let U be any process which dominates H and for which U — A¢ is a Q-
supermartingale for each Q € @g. For fixed Q, the Q-supermartingale U — A€
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dominates H — A and hence also U2, since U is the smallest Q-supermartingale
dominating H — A€ by Proposition 6.11. It follows that

U; > esssup (IZQ + A,Q) = ﬁ,T P-as. forall ¢. O
Qe

Proposition 9.23 we will be implied by taking t* = T in the following lemma.

Lemma 9.28. Let H be a discounted American claim whose payoff is zero if it is not
exercised at a given stopping time t* € T, i.e., H/(w) = 0 if t # t™(w). Then its
upper @ g-Snell envelope is given by

~

Ul =1 . esssup(Egl Hp — A% | F14+ A2), 1=0,...,T.
Qe

{t*>1}

Proof. By definition,

U = esssupesssup (Egl H; — A2 | 7,1+ AP).

tel;  QeQg

Since each process A€ is increasing, it is clearly optimal to take ¢ = f on {T* < ¢}.
Hence,

~ 4 0 onf{t* <t}
" |H, on{t*=1).
So we have to show that choosing t = t* is optimal on {t* > ¢}. If 0 € Ty isa
stopping time with P[0 > t*] > 0, then t := o A 7* is as least as good as o, since
each process A€ is increasing. So it remains to exclude the case that there exists a
stopping time o € 7; witho < ™ on {t* > t} and P[o < t*] > 0, such that o
yields a strictly better result than 7*. In this case, there exists some Q1 € @4 such
that

Eo\[Hy — A2V | F11+ AL" > esssup (Egl Hes — A | F114+ A2)  (9.26)
Qe

with strictly positive probability on {t* > ¢}. Take any P e Pgand e > 0, and define

e .
Fo

Now let Q° be the pasting Q; and P in the stopping time ol B, T TT,.. Accord-

. { dP
e =\ T4
dQ

ing to Lemmas 9.25 and 9.26, Q° € @g, and its upper variation process satisfies
A2 = A2 and AZ = AZ" as well as

P-as. on {t* > t}.

0" _ 40
An = Agl +AZ 1,
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By using our assumption that H, < H.+, we get
A o [ _ 0f | ~ 0° _
Eg [Hy — AZ7' | Ft 1+ A7 S Ege[Hex — AL | F 1+ A P-a.s. on B;.

By letting ¢ | 0, the P-measure of B, becomes arbitrarily close to 1, and we arrive at
a contradiction to (9.26). ]

9.4 Superhedging and risk measures
Let H be a discounted American claim such that

53: sup ﬁOQ= sup sup Eg[ H; — A2 ] < oo.
0c@y Qe@g teT

Our aim in this section is to construct superhedging strategies for H which belong to
our set 8 of admissible trading strategies. Recall that a superhedging strategy for H
is any self-financing trading strategy whose value process dominates H. If applied
with r = 0, the following theorem shows that (70T is the minimal amount for which a
superhedging strategy is available.

Denote by u,T (H) the set of all ¥;-measurable random variables U; > 0 for which
there exists some 1 € 4 such that

u
U+ Y - (Xe— Xgop) = H, forallu >t P-as. (9.27)
k=t+1

Theorem 9.29. The upper @g-Snell envelope [7,T of H is the minimal element of
‘Ll,T (H). More precisely,

@ U e Ul ),
(b) U = essinf U (H).

Proof. The uniform Doob decomposition in Section 9.2 combined with Theorem 9.22
yields an increasing adapted process B and some & € 4 such that

u
Ul =0+ > & (Xx—Xio)+ B — B, P-as. foru>1.
k=t+1

So the fact that U dominates H proves (a).
As to part (b), we first get U,T > essinf ‘M,T(H ) from (a). For the proof of the
converse inequality, take U; € ‘L(,T (H) and choose a predictable process n € 4 for
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which (9.27) holds. We must show that the set B := { ﬁf < U, } satisfies P[B] = 1.
Let ) - -
U=0l nU =0 15+ U, 1.

Then 0t < [7;, and our claim will follow if we can show that U,T < 0,. Let &
denote the predictable process obtained from the uniform Doob decomposition of the
P -supermartingale U, and define

£ = & ifs <1,
eI gL ifs >t

With this choice, £ € § by predictable convexity, and U, satisfies (9.27), i.c.,
U, € U (H). Let

N
Vs = U] + Y & (X — Xi).
k=1
Then VS > H; > O for all s, and so V-AQisa Q-supermartingale for each Q € @
by Propositions 9.16 and 9.6. Hence,

l~/f =esssupesssup Eg[ H; — A,Q + A,Q | 1

Qely T€T;

T
< esssupEQ[Ut + Z E - (X — Xp—1) — A2 + AL | 5’:]
0.1 k=r+1

< U,.

This proves ﬁ; < essinf ﬂj (H). O

For European claims, the upper @ g-Snell envelope takes the form

U' =esssup (Eol HE — A | 71+ 48), 1=0,...,T.
ey

By taking ¢ = 0, it follows that

Ul = sup (EolHE1— Eg[ A%)) (9.28)
0@y

is the smallest initial investment which suffices for superhedging the claim HE. In
fact, the formula above can be regarded as a special case of the representation theorem
for convex measures of risk in our financial market model. This will be explained next.
Let us take L™ := L®°(2, F, P) as the space of all financial positions. A position
Y e L™ will be regarded as acceptable if it can be hedged with a strategy in § at no
additional cost. Thus, we introduce the acceptance set

T
A5 ::{YGLOO EECEE Y—I—ZS,-(XI—X,_1)20P—a.s.}.

=1
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Due to the convexity of 4, this set A% is convex, and under the mild condition
inf(m e R |m e A%} > —oo0, (9.29)
A% induces a convex measure of risk p? := p 48 Via
P2y :=inflmeR| m+Y eA®);

see Section 4.1. Note that condition (9.29) holds in particular if 4 does not contain
arbitrage opportunities. In this case, we have in fact

p*(0) =inf{m eR |m e A*} =0,
i.e., p? is normalized. The main results of this chapter can be restated in terms of p*:
Corollary 9.30. The following conditions are equivalent:
(a) p? is sensitive.
(b) & contains no arbitrage opportunities.
(c) Ps #0.
If these equivalent conditions hold, then

oY) = qug (Eol-Y 11— EQ[A$ 1), YeL™. (9.30)
€6y

In other words, p* can be represented in terms of the penalty function

EolA?] if Qe ay,
+00 otherwise.

a(Q) =

Proof. That (a) implies (b) is obvious. The equivalence between (b) and (c) was shown
in Theorem 9.9. Since both sides of (9.30) are cash invariant, it suffices to prove (9.30)
for Y < 0. But then the representation for p? is just a special case of the superhedging
duality (9.28). Finally, (9.30) and (c) imply that p3(X) > SUPFe g, E[ —X ], and the
sensitivity of p? follows. O



Chapter 10
Minimizing the hedging error

In this chapter, we present an alternative approach to the problem of hedging in an
incomplete market model. Instead of controlling the downside risk, we simply aim at
minimizing the quadratic hedging error. We begin with a local version of the minimiza-
tion problem, which may be viewed as a sequential regression procedure. Its solution
involves an orthogonal decomposition of a given contingent claim; this extends a
classical decomposition theorem for martingales known as the Kunita—Watanabe de-
composition. Often, the value process generated by a locally risk-minimizing strategy
can be described as the martingale of conditional expectations of the given contin-
gent claim for a special choice of an equivalent martingale measure. Such “minimal”
martingale measures will be studied in Section 10.2. In Section 10.3, we investigate
the connection between local risk minimization and the problem of variance-optimal
hedging where one tries to minimize the global quadratic hedging error. The local and
the global versions coincide if the underlying measure is itself a martingale measure.

10.1 Local quadratic risk

In this section, we no longer restrict our discussion to strategies which are self-
financing. Instead, we admit the possibility that the value of a position is readjusted
at the end of each period by an additional investment in the numéraire asset. This
means that, in addition to the initial investment at time ¢ = 0, we allow for a cash
flow throughout the trading periods up to the final time 7'. In particular, it will now
be possible to replicate any given European claim, simply by matching the difference
between the payoff of the claim and the value generated by the preceding strategy with
a final transfer at time 7.

Definition 10.1. A generalized trading strategy is a pair of two stochastic process
(€9, &) such that £0 = (Sto),:ow,T is adapted, and such that £ = (&)=, .7 isa

.....

d-dimensional predictable process. The (discounted) value process V of (& 0 &) is
defined as
Vo = S(()) and V; = E,O—I—ét - X; fort > 1.

For such a generalized trading strategy (£°, ), the gains and losses accumulated
up to time ¢ by investing into the risky assets are given by the sum

t
D & (X — Xio).

k=1



10.1 Local quadratic risk 373

The value process V takes the form

t
Vo=&)+& -Xo and Vz=V0+ZEk'(Xk—Xk—1), t=1,...,T,
k=1

if and only if & = (S,O, &)i=1,..7 1s a self-financing trading strategy with initial
investment V = 58 = S? + & - Xo. In this case, (éto)tzl T is a predictable process.
In general, however, the difference

.....

t
Vi— Y & Xk — Xio1)

k=1

is now non-trivial, and it can be interpreted as the cumulative cost up to time ¢. This
motivates the following definition.

Definition 10.2. The gains process G of a generalized trading strategy (£°, £) is given
by
t
Go:=0 and G, :=Zsk-(xk—xk_1), t=1,...,T.
k=1

The cost process C of (€7, &) is defined by the difference
Cl::Vl‘_Gl7 ZZO,...,T,
of the value process V and the gains process G.

In this and in the following sections, we will measure the risk of a strategy in terms
of quadratic criteria for the hedging error, based on the “objective” measure P. Our
aim will be to minimize such criteria within the class of those generalized strategies
(€9, &) which replicate a given discounted European claim H in the sense that their
value process satisfies

Vr=H P-as.

The claim H will be fixed for the remainder of this section. As usual we assume that
the o-field ¥y is trivial, i.e., Fo = {/J, }. In contrast to the previous sections of Part
II, however, our approach does not exclude a priori the existence of arbitrage opportu-
nities, even though the interesting cases will be those in which there exist equivalent
martingale measures. Since our approach is based on L2-techniques, another set of
hypotheses is needed:

Assumption 10.3. Throughout this section, we assume that the discounted claim H
and the discounted price process X of the risky assets are both square-integrable with
respect to the objective measure P:

(a) H € L2(Q, Fr, P) =: L2(P).
() X; € L2(Q, F1, P;RY) for all t.
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In addition to these assumptions, the quadratic optimality criteria we have in mind
require the following integrability conditions for strategies.

Definition 10.4. An £2-admissible strategy for H is a generalized trading strategy
(€9, &) whose value process V satisfies

Vr = H P-as. and V; € £2(P) for each 7,
and whose gains process G is such that
G; € £2(P) for each ¢.

We can now introduce the local version of a quadratic criterion for the hedging
error of an J£2-admissible strategy.

Definition 10.5. The local risk process of an £2-admissible strategy (£°, £) is the
process

R, &) := E[(Cry1 —C)* | F), t=0,....,T—1.

An £2-admissible strategy (é 0, é ) is called a locally risk-minimizing strategy if, for
all ¢,
R*(E% &) < R™(E%5) Pas.

for each £2-admissible strategy (£°, £) whose value process satisfies V; | = étoﬂ +
§rv1 - Xe1 = Vigr.

Remark 10.6. The reason for fixing the value V;;| = 17t+ 1 in the preceding def-
inition becomes clear when we try to construct a locally risk- mlmmlzmg strategy
(EO E) backwards in time. At time 7', we want to construct ST 1 ST, ST 1, ET as

a minimizer for the local risk Rl;’c 1 &7, 0. £). Since the terminal value of every £L2-
admissible strategy must be equal to H, this minimization requires the side condition
éT +ér-Xr=H = VT As we will see in the proof of Theorem 10.9 below, mini-

mality of Rl;’i & 0, &) completely determines ST and ET and VT_1, but one is still free
to choose égfl and é‘T_l among all ngl, &Er_1 with 5271 +ér_1 - X1 = VT_l.
In the next step, it is therefore natural to minimize RlT"‘iz (SO, &) under the condition

that V7_1 is equal to the value VT_l obtained from the preceding step. Moreover, the
problem will now be of the same type as the previous one. <

Although locally risk-minimizing strategies are generally not self-financing, it will
turn out that they are “self-financing on average” in the following sense:

Definition 10.7. An £?-admissible strategy is called mean self-financing if its cost
process C is a P-martingale, i.e., if

E[Ciy1—Ci | F]1=0 P-as. forallr.
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In order to formulate conditions for the existence of a locally risk-minimizing
strategy, let us first introduce some notation. The conditional covariance of two
random variables W and Z with respect to P is defined as

cov(W, Z | F1):=E[WZ| 5 ]1-E[W|FH]E[Z] F]

provided that the conditional expectations and their difference make sense. Similarly,
we define the conditional variance of W under P:

var(W | %) = E[W? | 1 - E[W | £ 1?
=cov(W, W | F).

Definition 10.8. Two adapted processes U and Y are called strongly orthogonal with
respect to P if the conditional covariances

COV(UI-‘rl_UZa Yl+1_Yl|Jr:})a t:Oa-~'7T_1’
are well-defined and vanish P-almost surely.

When we consider the strong orthogonality of two processes U and Y in the
sequel, then usually one of them will be a P-martingale. In this case, their conditional
covariance reduces to

coV(Urt1 = U, Yit = Yo | F1) = E[ (Uit = UD(Ye1 = Y) | F2 .

After these preparations, we are now ready to state our first result, namely the following
characterization of locally risk-minimizing strategies.

Theorem 10.9. An £2-admissible strategy is locally risk-minimizing if and only if it
is mean self-financing and its cost process is strongly orthogonal to X .

Proof. The local risk process of any £2-admissible strategy (£€°, &) can be expressed
as a sum of two non-negative terms:

R(E% &) =var(Cip1 — C, | F1) + E[Crp1 — Cr | F2 1%

Since the conditional variance does not change if we add ¥;-measurable random
variables to its argument, the first term on the right-hand side takes the form

var(Cip1 — Cr | F7) = var (Vigr — &1 - Xe1 — X0) | 7). (10.1)
The second term satisfies
2
E[Cit1—C | F P = (ElVig1 | F1l1 = &1 - E[ X1 — X | 1= V1), (10.2)

In a second step, we fix ¢ and V;11, and we consider &1 and V; as parameters.
Our purpose is to derive necessary conditions for the minimality of R}OC (€9, &) with
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respect to variations of &1 and V;. To this end, note first that it is possible to change
the parameters éto and &; in such a way that V; takes any given value, that the modified
strategy is still an £2-admissible strategy for H, and that the values of & and
Vi4+1 remain unchanged. In particular, the value in (10.1) is not affected by such a
modification, and so it is necessary for the optimality of R (€9, £) that V; minimizes
(10.2). This is the case if and only if

Vi=E[Vis1 | Bl =&+ E[ Xe41 — Xo | F2 1. (10.3)

The value of (10.1) is independent of V; and a quadratic form in terms of the
Fi-measurable random vector &;41. Thus, (10.1) is minimal if and only if & solves
the linear equation

0=cov(Vig1 — &1+ (Xip1 — X)), Xep1 — X/ | 7). (10.4)
Note that (10.3) is equivalent to
E[Ci1 —C | F]= E[Vt—H = &1 (X1 — Xo) | j:t] -V, =0.
Moreover, given (10.3), the condition (10.4) holds if and only if
E[(Crs1 = C)(Xi11 = X)) | F1] =0

where we have used the fact that the conditional covariance in (10.4) is not changed by
subtracting the #;-measurable random variable V; from the first argument. Backward
induction on ¢ concludes the proof. 0

The previous proof provides a recipe for a recursive construction of a locally
risk-minimizing strategy: If V;, | is already given, minimize

E[(Cri1 = CO* 1 F: ] = E[ (Virs — (Vi + &1 - Ko — X)) | #]

with respect to V; and &41. This is just a conditional version of the standard problem
of determining the linear regression of V;1 on the increment X, — X;. Let us now
consider the case

d=1,

where our market model contains just one risky asset. Then the following recursive
scheme yields formally an explicit solution:

VT = H,
. cov( Viel, Xev1 — Xo | F1)
it = . .I{UM#O}, (10.5)

Ol
Vii=E[Vip | F ] =841 E[ Xep1 — Xo | F ]



10.1 Local quadratic risk 377

Here o2

P is a shorthand notation for the conditional variance

ofyy = var(Xep1 — X, | F7).

Defining éto =V, — & - X;, we obtain a generalized trading strategy (€0, &) whose
terminal portfolio value Vr coincides with H. However, an extra condition is needed
to conclude that this strategy is indeed £2-admissible.

Proposition 10.10. Consider a market model with a single risky asset and assume
that there exists a constant C such that

(E[X: — Xi1 | Fia 1)} < C-0}  P-as. forallt. (10.6)

Then the recursion (10.5) defines a locally risk-minimizing str ategy (&7, £0 S ). Moreover,
any. other locally risk-minimizing strategy coincides with (SO S) up to modifications
of S, on the set {at = 0}

Proof. We have to show that (éo, é ) is £2-admissible. To this end, observe that the
recursion (10.5) and the condition (10.6) imply that

E[E- X, —Xi-))]

cov( Vi, X; — Xi1 | Fio1)? 2
= CE[(X, — X, Fi 11
|: 0,4 [( t t 1) | t 1] {a,z;éO}
cov( Vi, Xi — Xo—1 | Fi1)?
5(1+C)-E[ vV X = S Il)}
O

<(1+C)-E[ var(V; | Fi-D) ]

The last expectation is finite if Vt is square-integrable. In this case, é, (X —Xi—1) €
L£2(P) and in turn \7,_1 € £2(P). Hence, £2—admissibility of (é‘o, é) follows by
backward induction. The claim that (é 0, é ) is locally risk-minimizing as well as the
uniqueness assertion follow immediately from the construction. O

Remark 10.11. The predictable process

i(E[xs—XHml])z’ T
1 var( Xy — X1 | F5-1)
is called the mean-variance trade-off process of X, and condition (10.6) is known
as the assumption of bounded mean-variance trade-off. Intuitively, it states that the
forecast E[ X; — X;—1 | #7—1] of the price increment X; — X,_ is of the same order
as the corresponding standard deviation oy. <
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Remark 10.12. The assumption of bounded mean-variance trade-off is equivalent to
the existence of some § < 1 such that

(E[X; — Xi—1 | F1 ])2 <8 -E[(X;— X,—1)? | Fi_11 P-as. forallz. (10.7)

Indeed, with oy = E[ X; — X;—1 | #—1 ], the assumption of bounded mean-variance
trade-off is equivalent to

of < C(E[(X; — Xi—1)* | Ficr ] — o),
which is seen to be equivalent to (10.7) by choosing § = C/(1 + C). <&

Example 10.13. Let us consider a market model consisting of a single risky asset S
and a riskless bond
SO=a+n', r=0,...,T,

with constant return » > —1. We assume that Sé = 1, and that the returns

Sl—Sl
Roi=—"—+"1 t=1..T,
Si-i

of the risky asset are independent and identically distributed random variables in
£2(P). Under these assumptions, the discounted price process X, defined by

t
1 4+ Ry
Xt:H 1+r, t=0,...,T,

is square-integrable. Denoting by 7 the mean of R, and by &2 its variance, we get

~

ElX, =X, 1 | Fl=X_, 2—7"
t t—1 t—11= t—1 1+I"’
52
var(X, — X,—1 | Fim1) = X2 - ——.
' =142

Thus, the condition of bounded mean-variance trade-off holds without any further as-
sumptions, and a locally risk-minimizing strategy exists. Moreover, P is a martingale
measure if and only if m = r. <

Let us return to our general market model with an arbitrary number of risky assets
X =& x.

The following result characterizes the existence of locally risk-minimizing strategies
in terms of a decomposition of the claim H.
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Corollary 10.14. There exists a locally risk-minimizing strategy if and only if H
admits a decomposition

T
H=c+) & (X, —X, )+ Lr Pas, (10.8)
=1
where c is a constant, & is a d-dimensional predictable process such that
& - (X; — Xi—1) € LX(P) forallt,

and where L is a square integrable P-martingale which is strongly orthogonal to X
and satlsﬁes Lo = 0. In this case, the locally rlsk-mmzmlzmg strategy (€7, £0 5 ) is given
by 5 & and by the adapted process & £0 defined via 50 = cand

t
P=ct Y b X=X+ Li—& X 1=1,....T.

Moreover, the decomposition (10.8) is unique in the sense that the constant ¢ and the
martingale L are uniquely determined.

Proof. It (é 0, é) is a given locally risk-minimizing strategy with cost process C, then
L =C —Cpisa square-integrable P-martingale which is strongly orthogonal to
X by Theorem 10.9. Hence, we obtain a decomposition (10.8). Conversely, if such a
decomposition exists, then the strategy (&Y, £0 5 ) has the cost process C=c+L,and
Theorem 10.9 implies that (§ £0 ¢ &) is locally risk-minimizing.

To show that L is uniquely determined, suppose that there exists another decom-

position of H in terms of C, }E, and L. Then

t
Ni=c—ChLi—Li=Yy (&) X;—X;-1)
s=1
is a square-integrable P-martingale which is strongly orthogonal to X and which can
be represented as a ““stochastic integral” with respect to X . Strong orthogonality means
that

=E[E—&) - Xi — X—) (X — Xi—1) | Foet .
Multiplying this identity with E, — &, gives

—E[(E-&)- X, = Xi—D)* | Fit ],

and so Ny — N—1 = (Et = &) - (X; — Xi—1) = 0 P-almost surely. In view of
Lo=Lo=0,wethusget L = L andinturn ¢ = c. O

A decomposition of the form (10.8) will be called the orthogonal decomposition
of the contingent claim H with respect to the process X. If X is itself a P-martingale,
then the orthogonal decomposition reduces to the Kunita—Watanabe decomposition,
which we will explain next. To this end, we will need some preparation.
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Lemma 10.15. For two square-integrable martingales M and N, the following two
conditions are equivalent:

(@) M and N are strongly orthogonal.

(b) The product M N is a martingale.

Proof. The martingale property of M and N gives
E[(Miy1 = M)(Nip1 — No) | 11 = E[ M1 Nyt | F1 1 — Mi Ny,

and this expression vanishes if and only if M N is a martingale. O

Let #2 denote the space of all square-integrable P-martingales. Via the iden-
tity My = E[M7 | #], each M € F¢?2 can be identified with its terminal value
My € L£2(P). With the standard identification of random variables which coincide
P-a.s., #? becomes a Hilbert space isomorphic to L?(P), if endowed with the inner
product

(M,N)yp := E{MrNy1, M,N e #>.

Recall from Definition 6.16 that, for a stopping time t, the stopped process M7 is
defined as
M :=Mn, t=0,...,T.

Definition 10.16. A subspace § of #? is called stable if M® € 8 for each M € §
and every stopping time 7.

Proposition 10.17. For a stable subspace 8 of #* and for L € #> with Lo = 0, the
following conditions are equivalent.

(a) L is orthogonalto 4, i.e.,
(L, M) =0 forall M e 8.
(b) L is strongly orthogonal to 8, i.e., for each M € &
E[(Li+1 — L)(Myp1 — M) | F:1=0 P-as. forallt.

(c) The product LM is a martingale for each M € 4.

Proof. The equivalence of (b) and (c) follows from Lemma 10.15. To prove (a)<(c),
we will show that LM is a martingale for fixed M € 4 if and only if (L, M") 42 =0
for all stopping times T < 7. By the stopping theorem in the form of Proposition 6.38,

(L,M%) g = E[LTM;] = E[L:M;].

Using the fact that LoMo = 0 and applying the stopping theorem in the form of
Theorem 6.17, we conclude that (L, M7) 52 = O for all stopping times v < T if and
only if LM is a martingale. O
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After these preparations, we can now state the existence theorem for the discrete-
time version of the Kunita—Watanabe decomposition.

Theorem 10.18. [f the process X is a square-integrable martingale under P, then
every martingale M € 32 is of the form

t
Mi=Mo+ Y & (Xy— Xo 1)+ Ly

s=1

where £ is a d-dimensional predictable process such that & - (X, — X,;_1) € L2(P) for
each t,and where L is a square-integrable P-martingale which is strongly orthogonal
to X and satisfies Lo = 0. Moreover, this decomposition is unique in the sense that L
is uniquely determined.

Proof. Denote by X the set of all d-dimensional predictable processes & such that
& - (X, — X;_1) € L2(P) for each t, and denote by

t
Gi(§) =) & (Xs—X,1), t=0,....T,

s=1

the “stochastic integral” of & € X with respect to X. Since for £ € X the process
G (&) is a square-integrable P-martingale, the set § of all those martingales can be
regarded as a linear subspace of the Hilbert space #7. In fact, § is a closed subspace
of #2. To prove this claim, note that the martingale property of G (&) implies that

T
(G(6). G®) o = E[(G1®)* ] =D E[ (& - (X — Xi=1)’ ].
t=1

Thus, if £ is such that G(§™) is a Cauchy sequence in 2, then ét(n) (X=X
is a Cauchy sequence in L>(P) for each . Since P is a martingale measure, we
may apply Lemma 1.68 to conclude that any limit point of E,(") - (Xy — X¢—1) is of
the form & - (X; — X,_1) for some & € L%(Q, F,_1, P; R?). Hence, G is closed
in #2. Moreover, § is stable. Indeed, if § € X and 7 is a stopping time, then
Gine(§) = G (§) where

~

ES ::SS'I{‘EES}’ S=1,...,T.
Furthermore, we haveg € X since

E[(& - X — Xi-))’] < E[(& - (X; — X;—1))*] < oo.

Since § is closed, the orthogonal projection N of M — My onto § is well-defined by
standard Hilbert space techniques. The martingale N belongs to §, and the difference
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L := M — My — N is orthogonal to §. By Proposition 10.17, L is strongly orthogonal
to § and hence strongly orthogonal to X. Therefore, M = My + N + L is the desired
decomposition of M. The uniqueness of L follows as in the proof of Corollary 10.14.

O

Remark 10.19. In dimension d = 1, the assumption of bounded mean-variance
trade-off (10.6) is clearly satisfied if X is a square-integrable P-martingale. Com-
bining Proposition 10.10 with Corollary 10.14 then yields an alternative proof of
Theorem 10.18. Moreover, the recursion (10.5) identifies the predictable process &
appearing in the Kunita—Watanabe decomposition of a martingale M:

5 _ E[(Mt - Mt—l)(Xt - Xz—l) | Fr-1]
=

-1 _ 2 . <&
E[ (X, — X;_1)2 | Fo1] {E[ (X —Xr—1)*|Fr—1 ]#0}

10.2 Minimal martingale measures

If P is itself a martingale measure, Theorem 10.18 combined with Corollary 10.14
yields immediately a solution to our original problem of constructing locally risk-
minimizing strategies:

Corollary 10.20. If P is a martingale measure, then there exists a locally risk-
minimizing strategy. Moreover, this strategy is unique in the sense that its value
process V is uniquely determined as

V,=E[H|F], t=0,...,T, (10.9)
and that its cost process is given by
é[z‘,}()'i‘Lt, IZO,...,T,

where L is the strongly orthogonal P-martingale arising in the Kunita—Watanabe
decomposition of V.

The identity (10.9) allows for a time-consistent interpretation of V, asan arbitrage-
free price for H at time ¢. In the general case in which X is not a martingale under
P, one may ask whether there exists an equivalent martingale measure P such that
the value process Vofa locally risk-minimizing strategy can be obtained in a similar
manner as the martingale

E[H|%], t=0,...,T. (10.10)

Definition 10.21. An equivalent martingale measure P € 9 is called a minimal mar-

tingale measure if
()]
El|— < 00,
dP
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and if every P-martingale M € #? which is strongly orthogonal to X is also a
P-martingale.

The following result shows that a minimal martingale measure provides the desired
representation (10.10) — if such a minimal martingale measure exists.

Theorem 10.22. [f P is a minimal martingale measure, and if V is the value process
of a locally risk-minimizing strategy, then

Vi=E[H|F] t=0,...,T.
Proof. Denote by

T
H=c+) & (X~ X)) + L7

t=1

an orthogonal decomposition of H as in Corollary 10.14. Then Vis given by

t
Vi=c+ ) & (X —Xs1) + Ly

s=1

The process L is a ﬁ—martingale, because it is a square-integrable P-martingale
strongly orthogonal to g( . Moreover, & - (X; — Xs_1) € L£'(P), because both
& - (Xy — X5—1) and d P /d P are square-integrable with respect to P. It follows that

Visa ﬁ-martingale. In view of VT = H, the assertion follows. O

Our next goal is to derive a characterization of a minimal martingale measure and
to use it in order to obtain criteria for its existence. To this end, we have to analyze the
effect of an equivalent change of measure on the structure of martingales. The results
we will obtain in this direction are of independent interest, and their continuous-time
analogues have a wide range of applications in stochastic analysis.

Lemma 10.23. Let Pbhea probability measure equivalent to P. An adapted process
M is a P-martingale if and only if the process
dP

MWEP— z},::anqn
dP

is a P-martingale.

Proof. Let us denote

Observe that AA/L e L! (13) if and only if 1\7It Z, e~£1 (P). Moreover, the process Z
is P-a.s. strictly positive by the equivalence of P and P. Hence, Proposition A.12
yields that o ~

Zi - E[Miy1 | Ft 1= E[Mi1Zi+1 | F1 1,
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and it follows that E[ M1 | % 1 = M, if and only if E[ M;+1Zi1 | F:1 = M, Z,.
O

The following representation (10.12) of the density process may be viewed as the
discrete-time version of the Doléans—Dade stochastic exponential in continuous-time
stochastic calculus.

Proposition 10.24. If Pisa probability measure equivalent to P, then there exists a
P-martingale A such that

Ao=1 and A1 — Ay >—1 P-as. forallt, (10.11)

and such that the martingale

] i | t=0,....T
t dP I3 B — Y, ) )
can be represented as
t
zZ =[Ja+A— A1), t=0,....T. (10.12)
s=1

Conversely, if A is a P-martingale with (10.11) and such that (10.12) defines a
P-martingale Z, then _
dP := ZT dP

defines a probability measure P~ P.

Proof. For P~P given, define A by Ag = 1 and

Ziy1 — 2y

t=0,...,T —1.
Z

At+1 = At +
Clearly, (10.12) holds with this choice of A. In particular, A satisfies (10.11), because
the equivalence of P and P implies that Z; is P-a.s. strictly positive for all 7.
In the next step, we show by induction on 7 that A, € £ (P). For ¢ = 0 this holds
by definition. Suppose that A, € £!'(P). Since Z is non-negative, the conditional
expectation of Z;1/Z; is well-defined and satisfies P-a.s.

E Zf“‘jf _ L Rz F1=1
Zt t _Zt t+1 t1— 1.

It follows that Z; 1 /Z; € L1(P) and in turn that

z
A1 =Ar— 1+ ’Z—“ e L1(P).

t
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Now it is easy to derive the martingale property of A: Since Z; is strictly positive,
we may divide both sides of the equation E[ Z; 11 | ;] = Z; by Z;, and we arrive at
E[ A1 — A | F11=0.

As for the second assertion, it is clear that E[ Z; ] = Zo = 1 for all ¢, provided
that A is a P-martingale such that (10.11) holds and such that (10.12) defines a strictly
positive P-martingale Z. O

The following theorem shows how a martingale M is affected by an equivalent
change of the underlying probability measure P. Typically, M will no longer be a mar-
tingale under the new measure P, and so a non-trivial predictable process (A;);=1,...T
will appear in the Doob decomposition

M=M+A

of M under P. Alternatively, —A may be viewed as the predictable process arising in
the Doob decomposition of the P-martingale M under the measure P. The following
result, a discrete-time version of the Girsanov formula, describes A in terms of the
martingale A arising in the representation (10.12) of the successive densities.

Theorem 10.25. Let P and P be two equivalent probability measures, and let A de-
note the P-martingale arising in the representation (10.12) of the successive densities

Z; = E[dF/dP | F 1. If]\? isa ﬁ-martingale such that ]\7, € £1(P)f0r all t, then

t
My =M+ E[(Ay — A1) (M; — M_y) | Fi ]

s=1

is a P-martingale.

Proof. Note first that

~ ~ 1
(At - At—l)(Mt - Mt—l) = 7

t—1

(Zi(M; — M, 1)) — (M; — M,_1). (10.13)
According to Lemma 10.23, Z; (Il7[t — 1\7,_ 1) is a martingale increment, and hence
belongs to LI(P). If we let

T, =inf{t | Z, <1/n}ANT, n=2,3,...,

it follows that - -
(Ar = A)(M; = M), € L1(P).

In particular, the conditional expectations appearing in the statement of the theorem
are P-a.s. well-defined. Moreover, the identity (10.13) implies that P-a.s. on {t, > ¢}

E[M, — M;_y | F._1]

T, >t

1 ~ o~ -~
=7 E[Z/(M; = M;—1) | Fi1 | = EL(Ar = Apm))(M; — My—1) | Fi1 ]

t—

1
= —E[(Ar = M) (My — My—1) | Fimy -
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Thus, we have identified the Doob decomposition of M under P. O

The preceding theorem allows us to characterize those equivalent measures P* ~ P
which are martingale measures. Let

X=Y+B (10.14)

denote the Doob decomposition of X under P, where Y is a d-dimensional
P-martingale, and (B;);—1,... 7 is a d-dimensional predictable process.

.....

Corollary 10.26. Let P* ~ P be such that E*[|X,|] < oo for each t, and denote by
A the P-martingale arising in the representation (10.12) of the successive densities
Z; = E[dP*/dP | ). Then P* is an equivalent martingale measure if and only if
the predictable process B in the Doob decomposition (10.14) satisfies

t
Bi=—Y E[(As— A )Yy — Y1) | Fii]
s=1

t
== E[(As = A )Xy = X)) | Fit ]
s=1

P-as. fort=1,...,T.

Proof. If P* is an equivalent martingale measure, then our formula for B is an
immediate consequence of Theorem 10.25. For the proof of the converse direction,
we denote by

X=Y"+B*
the Doob decomposition of X under P*. Then Y* is a P*-martingale. Using Theo-
rem 10.25, we see that Y* := Y* 4+ B* is a P-martingale where

t
By =) E[(Ay— A (Y] =Y} ) | £ ] =—B.

s=1

On the other hand, Y = X — B = Y* + (B* — B) is a P-martingale. It follows that
the Doob decomposition of Y* under P is given by Y* = Y + (B — B*). Hence,

Y+(B—-BY)=Y*=Y*—B*=Y*+B.

The uniqueness of the Doob decomposition implies B* = 0, so X is a P*-martingale.
O

We can now return to our initial task of characterizing a minimal martingale mea-
sure.
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Theorem 10.27. Let P € P be an equivalent martingale measure whose density
dP /d P is square-integrable. Then P is a minimal martingale measure if and only
if the P-martingale A of (10.12) admits a representation as a “stochastic integral”
with respect to the P-martingale Y arising in the Doob decomposition of X :

t
At=1+ZAS~(YS—YS_1), t=0,...,T, (10.15)

s=1
for some d-dimensional predictable process A.
Proof. To prove sufficiency of (10.15), we have to show that if M € H? is strongly

orthogonal to X, then M is a P-martingale. By Lemma 10.23 this follows if we can
show that M Z is a P-martingale where

dP
Z, = E —’}7 .
aP

Clearly, M, Z; € L1(P) since M and Z are both square-integrable.
For the next step, we introduce the stopping times

T, :=inf{t20| |At+1|>n}.

By stopping the martingale A at t,,, we obtain the P-martingale A™. Since X is
square-integrable, an application of Jensen’s inequality yields that E[ |Y;|*] < oo for
all 7. In particular, M A™ is integrable. Furthermore, Lemma 10.15 shows that the
strong orthogonality of M and Y implies that MY is a d-dimensional P-martingale.
Hence,
E[ My (A7 — A7) | Fi]
=Ty Mt (ELMi1 Y1 | F ] = E[ Mg | F11Y,) = 0.

Noting that
t
zi" = [Ta+Aay —afy.
s=1

and that Z™ is square-integrable, we conclude that
E[MZ] ) | Fil=ZPE[ My (L + AT — A | F | = 2" M,.
Thus, Z™ M is a P-martingale for each n. By Doob’s stopping theorem, the process
(Z™"M)™ = (ZM)™

is also a P-martingale. Since 7, /' T P-a.s. and

T
\M[LZ0 | < Z |M,Z| € L(P),
s=0
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we may apply the dominated convergence theorem for conditional expectations to
obtain the desired martingale property of M Z:

E[M;41Zy1 | 1= lim E[ M/} Z]"
ntoo

Fil=lim M"Z" = M, Z,.
t+1 t+1| f] 100 t t t£t

Thus, P is a minimal martingale measure.
For the proof of the converse assertion of the theorem, denote by

t
Zi=1+) no-(Ys =YD+ L

s=1

the Kunita—Watanabe decomposition of the density process Z with respect to the
measure P and the square-integrable martingale Y, as explained in Theorem 10.18.
The process L is a square-integrable P-martingale strongly orthogonal to Y, and hence
to X. Thus, the assumption that P is a minimal martingale measure implies that L is
also a P-martingale. Applying Lemma 10.23, it follows that

t
LiZi=Li+L Y ns-(Ys—Yo) + L7

s=1

is a P-martingale. According to Lemma 10.15, the strong orthogonality of L and Y
yields that

t
LY ns - (Ys = Yo1)
s=1

is a P-martingale; recall that n; - (Y — Y5_1) € L2(P) for all s. But then (Ltz) must
also be a martingale. In particular, the expectation of Lt2 is independent of ¢ and so

E[L}1=L5=0

from which we get that L vanishes P-almost surely. Hence, Z is equal to the “stochas-
tic integral” of n with respect to Y, and we conclude that

Zimi—Z 1
Ap1— Ay = T = 7m+1 (Y1 — 1),
t t

so that (10.15) holds with A; :==n;/Z;_1. I
Corollary 10.28. There exists at most one minimal martingale measure.
Proof. Let P and P’ be two minimal martingale measures, and denote the martingales

in the representation (10.12) by A and A’, respectively. On the one hand, it follows
from Corollary 10.26 that the martingale N := A — A’ is strongly orthogonal to Y. On
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the other hand, Theorem 10.27 implies that N admits a representation as a “stochastic
integral” with respect to the P-martingale Y:

t

Ny=D (s =21) (Y =Yoop), 1=0....T.

s=1

Let 7, ;= inf{t | |Ary1 — A;HI > n}, so that N™ is in £2(P). Then it follows as
in the proof of Corollary 10.14 that N™ vanishes P-almost surely. Hence the densities
of P and P’ coincide. O

Recall that, for d = 1, we denote by
of =var(X; — X;1 | Fi_1)
the conditional variance of the increments of X.

Corollary 10.29. In dimension d = 1, the following two conditions are implied by
the existence of a minimal martingale measure P :

(a) The predictable process A arising in the representation formula (10.15) is of the
form
_ —E[X =X | Fra ]

A =
0[2

P-a.s. on{a} #0}. (10.16)

(b) Foreacht, P-a.s. on {at2 # 0},
(X: — X¢—1) - E[X; — Xo—1 | Ficr 1 < ELX: — X)) | Fir 1.

Proof. (a): Denote by X = Y + B the Doob decomposition of X with respect to P.
According to Corollary 10.26, the P-martingale A arising in the representation (10.12)
of the density d P /d P must satisfy

Bi—Bi_1=—E[(Ai —A)DY = Yio) | Fioa .
Using thato? = E[ (Y, —Y,—1)* | F;—1]andthat B, — B,y = E[ X, — X,—1 | Fi—1]
yields our formula for A;.
(b): By Proposition 10.24, the P-martingale A must be such that
A —AN_1=X -, — Y1) >—1 P-as. forall ¢.

Given (a), this condition is equivalent to (b). O

Note that condition (b) of Corollary 10.29 is rather restrictive as it imposes
an almost-sure bound on the £;-measurable increment X; — X;_; in terms of
Fi_1-measurable quantities.
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Theorem 10.30. Consider a market model with a single risky asset satisfying condi-
tion (b) of Corollary 10.29 and the assumption

(E[Xi — X,—1 | Fi11)> < C -0, P-as. forallt > 1,

of bounded mean-variance trade-off. Then there exists a unique minimal martingale
measure P whose density dP /dP = Zr is given via (10.16), (10.15), and (10.12).

Proof. Denote by X = Y + B the Doob decomposition of X under P. For A; defined
via (10.16), the assumption of bounded mean-variance trade-off yields that

E[(:- (¥, —Y-))’ | Fimi ] <C  P-as. (10.17)

Hence, A; defined according to (10.15) is a square-integrable P-martingale. As ob-
served in the second part of the proof of Corollary 10.29, its condition (b) holds if and
only if A, — A;—1 > —1 for all ¢, so that Z defined by

t

t
Zi=[Ja+A = A =[](1+ A (¥ = ¥51))

s=1 s=1

is P-a.s. strictly positive. Moreover, the bound (10.17) guarantees that Z is a square-
integrable P-martingale. We may thus conclude from Proposition 10.24 that Z is
the density process of a probability measure P~ P witha square-integrable density
dP/dP. In particular, X, is P-integrable for all 7. Our choice of A implies that

E[(Ar— AV —Yio) | Fio | = —E[Xi — X1 | Fioa ]
= —(B; — Bi_1).

and so P is an equivalent martingale measure by Corollary 10.26. Finally, The-
orem 10.27 states that P is a minimal martingale measure, while uniqueness was
already established in Corollary 10.28. O

Example 10.31. Let us consider again the market model of Example 10.13 with in-
dependent and identically distributed returns R, € £2(P). We have seen that the
condition of bounded mean-variance trade-off is satisfied without further assump-
tions. Let m := E[R; ] and &2 := var(R;). A short calculation using the formulas
for E[ X; — X;—1 | F—1] and var( X; — X;—1 | F:—1) obtained in Example 10.13
shows that the crucial condition (b) of Corollary 10.29 is equivalent to

(M —r)Ry <>+ @i —r) P-as. (10.18)

Hence, (10.18) is equivalent to the existence of the minimal martingale measure. For
m > r the condition (10.18) is an upper bound on R, while we obtain a lower bound
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form < r. Inthe case m = r, the measure P is itself the minimal martingale measure,
and the condition (10.18) is void. If the distribution of R; is given, and if

a<R;<b P-as.

for certain constants a > —1 and b < 00, then (10.18) is satisfied for all r in a certain
neighborhood of 7. <

Remark 10.32. The purpose of condition (b) of Corollary 10.29 is to ensure that the
density Z defined via

t

Z =[] +xr- ¥ -Y)

s=1

is strictly positive. In cases where this condition is violated, Z may still be a square-
integrable P-martingale and can be regarded as the density of a signed measure

dP = Z7 dP,

which shares some properties with the minimal martingale measure of Definition 10.21;
see, e.g., [186]. <&

In the remainder of this section, we consider briefly another quadratic criterion for
the risk of an £2-admissible strategy.

Definition 10.33. The remaining conditional risk of an £>-admissible strategy (£°, &)
with cost process C is given by the process

RE™ME®, &) = E[(Cr —C)* | F), 1=0,...,T.
We say that an £2-admissible strategy (£°, £) minimizes the remaining conditional
risk if
RE™MES, &) < RE™(n°, ) P-as.

for all # and for each £2-admissible strategy (n°, n) which coincides with (£°, &) up
to time ¢.

The next result shows that minimizing the remaining conditional risk for a mar-
tingale measure is the same as minimizing the local risk. In this case, Corollary 10.20
yields formulas for the value process and the cost process of a minimizing strategy.

Proposition 10.34. For P € P, an L£2-admissible strategy minimizes the remaining
conditional risk if and only if it is locally risk minimizing.
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Proof. Let (éo, é ) be a locally risk-minimizing strategy, which exists by Corol-
lary 10.20, and write V and C for its value and cost processes. Take another £2-
admissible strategy (n°, ) whose value and cost processes are denoted by V and C.
Since VT = H = Vr, the cost process C satisfies

T
Cr—Cr=Vr=Vi— Y m Xk — Xx1)
k=t+1

T
=Vi—Vi+ > G —m) Xi— X))+ Cr = Ci.
k=t+1

Since X and C are strongly orthogonal martingales, the remaining conditional risk of
(n°, n) satisfies

RE™ (1%, 1)

T
==V + E[ 3 G- X = Xen? | F )+ ELCr =GP 7,
k=t+1

and this expression is minimal if and only if V; = f/; and n; = ék forall k >t + 1
P-almost surely. O

In general, however, an £2-admissible strategy minimizing the remaining condi-
tional risk does not exist, as will be shown in the following Section 10.3.

10.3 Variance-optimal hedging

Let H € £L2(P) be a square-integrable discounted claim. Throughout this section,
we assume that the discounted price process X of the risky asset is square-integrable
with respect to P:

E[|Xt|2] < oo forallt.

As in the previous section, there is no need to exclude the existence of arbitrage
opportunities, even though the cases of interest will of course be arbitrage-free.

Informally, the problem of variance-minimal hedging is to minimize the quadratic
hedging error defined as the squared L?(P)-distance

| H — Vr I3 = E[(H — Vr)*]

between H and the terminal value of the value process V of a self-financing trading
strategy.
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Remark 10.35. Mean-variance hedging is closely related to the discussion in the pre-
ceding sections, where we considered the problems of minimizing the local conditional
risk or the remaining conditional risk within the class of L£2-admissible strategies for
H. To see this, let (£°, &) be an £2-admissible strategy for H in the sense of Defini-
tion 10.4, and denote by V, G, and C the resulting value, gains, and cost processes.
The quantity

R(EY, &) := E[(Cr — Co)? ]

may be called the “global quadratic risk” of (&9, £). It coincides with the initial value
of the process Ry™(§ 0 &) of the remaining conditional risk introduced in Defini-
tion 10.33. Note that

R, &) = E[(H — Vo — Gr)?]

is independent of the values of the numéraire component £° at the timesr =1, ..., T.
Thus, the global quadratic risk of the generalized trading strategy (£°, £) coincides
with the quadratic hedging error

E[(H - V7)*]

where V is the value process of the self-financing trading strategy arising from the
d-dimensional predictable process £ and the initial investment Vy = Vg = 58. <

Let us rephrase the problem of mean-variance hedging in a form which can be
interpreted both within the class of self-financing trading strategies and within the
context of Section 10.1. For a d-dimensional predictable process & we denote by
G (&) the gains process

t
Gi&)=) & (Xs— X)), t=0,...,T,

s=1
associated with &. Let us introduce the class
8= {“g‘ | £ is predictable and G, (&) € L2(P) for all 1 }

Definition 10.36. A pair (V, £*) where V; € R and £* € & is called a variance-
optimal strategy for the discounted claim H if

2 2
E[(H-Vy—Gr") |<E[(H-Vo—Gr®)"]
forall Vo e Rand all £ € §.
Our first result identifies a variance-optimal strategy in the case P € &.

Proposition 10.37. Assume that P € P, and let (é 0 é ) be a locally risk-mininziziizg
£L2-admissible strategy as constructed in Corollary 10.20. Then (V, £*) := (58 ,E)
is a variance-optimal strategy.
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Proof. Recall from Remark 10.35 that if (£°, &) is an £2-admissible strategy for H
with value process V, then the expression

E[(H=Vo—Gr®)’]

is equal to the initial value R;™ (& 0 £) of the remaining conditional risk process of
(€9, £). But according to Proposition 10.34, Ry™ is minimized by (é 0, é ). ]

The general case where X is not a P-martingale will be studied under the simpli-
fying assumption that the market model contains only one risky asset. We will first
derive a general existence result, and then determine an explicit solution in a special
setting. The key idea for showing the existence of a variance-optimal strategy is to
minimize the functional

§5&— E[(H-Vo—Gr®)’],

first for fixed Vj, and then to vary the parameter V(. The first step will be accomplished
by projecting H — V onto the space of “stochastic integrals”

Gr={Gr® |Ees}

Clearly, G 7 is a linear subspace of L?(P). Thus, we can obtain the optimal £ = £(V))
by using the orthogonal projection of H — Vp on . as soon as we know that §7 is
closed in L2(P). In order to formulate a criterion for the closedness on 4T, we denote
by

ol =var(X; — X,_1 | Fi_1), t=1,...,T,

the conditional variance, and by
o =E[X; =Xy | F1], t=1,...,T,
the conditional mean of the increments of X.

Proposition 10.38. Suppose that d = 1, and assume the condition of bounded mean-
variance trade-off
a} <C-o0} P-as. forallt. (10.19)

Then G is a closed linear subspace of L2(P).

Proof. Let X = M + A be the Doob decomposition of X into a P-martingale M and
a process A such that Ao = 0 and (A;);—1,.. 7 is predictable. Since

o7 =var(Xr — X7-1 | Fr—1) = E[ (M7 — Mr_1)* | Fr_1 ],
we getforé& € 4

E[Gr&)?] = E[(Gr-1®) +&r - (X1 — Xr_1)]
=E[(Gr-1(6) +&r - (A7 — AT—I))z] + E[(&7 - (M7 — MT—I))Z] (10.20)
> E[“;‘% o2 ]
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Suppose now that £” is a sequence in 4 such that G (£") converges in L2(P) to some
Y. Applying the inequality (10.20) to Gr(§") — Gr(§™) = G7(§" — &™), we find
that ¢" := &7 - o7 is a Cauchy sequence in L?(P). Denote ¢ := lim, ¢", and let

¢

r‘;‘_T = I{GT>0} ;

By using our assumption (10.19), we obtain

E[ (&} - (X7 — X7_1) — &7 - (X7 — XTfl))2]

=E[ (¢} —&r)* - E[(X7 — X7-D* | Fr-11]
E[ (&} — &) (of +o7) ]
(14 C) E[ (}or — £ror)*]
=(1+C)E[(¢" — ¢)*].

IA

Since the latter term converges to 0, it follows that
Gro1¢E") =GrE") =& - Xr —Xr—1) — Y —é7- (X7 — X7_1)

in L2(P). A backward iteration of this argument yields a predictable process & € §
such that Y = Gr (). Hence, §7 is closed in L2(P). I

Theorem 10.39. Indimensiond = 1, the condition (10.19) of bounded mean-variance
trade-off guarantees the existence of a variance-optimal strategy (Vf, &*). Such a
strategy is P-a.s. unique up to modifications of & on {o; = 0}.

Proof. Let p : L*(P) — Gr denote the orthogonal projection onto the closed
subspace Gr of the Hilbert space L>(P), i.e., p : L>(P) — §r is a linear operator
such that
E[(Y — p(1))*] = min E[(v = 2)?] (10.21)
T

forall Y € L*(P).
For any Vy € R we choose some &£(Vj) € 4§ such that GT(S(VO)) = p(H — Wy).
The identity (10.21) shows that £(V() minimizes the functional

E[(H - Vo - Gr®)’]
among all £ € 4. Note that
Vo > Gr(5(Vo)) = p(H — Vo) = p(H) — Vo - p(1)

is an affine mapping. Hence,

E[(H = Vo — Gr(E(V))’]
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is a quadratic function of Vj and there exists a minimizer V(. For any Vp € R and
& € 4§ we clearly have

E[(H - Vo — Gr(®)’] = E[(H - Vo — Gr(:(V))’]
> E[(H - V§ - Gr(E(V)))’):

Hence (Vi &%) := (V. £(V}))) is a variance-optimal strategy. Uniqueness follows
from (10.20) and an induction argument. I

Under the additional assumption that

2

o . C
—5 is deterministic for each ¢ (10.22)
O;

(here we use the convention g := 0), the variance-optimal strategy (§*, V) can be

determined explicitly. It turns out that (§*, V{J') is closely related to the locally risk-

minimizing strategy (", £0 é ) for the discounted claim H. Recall from Proposition 10.10
that (§7, £0 S ) and its value process V are determined by the following recursion:

Vr=H
— cov(Vigt, Xev1 — Xo | 1)
+1 = 2 " Horp1£0p

01
=E[Viq1 | F] =& - E[Xi1 — Xi | F ]

the numéraire component éo is given by é;‘to =V, - ét - X

Theorem 10.40. Under condition (10.22), Vy := \70 and

~ (677

gt* = sl +

s(Viei = Vo— G (9)., t=1,....T,
“t +‘7t

defines a variance-optimal strategy (§*, V). Moreover,
E[ (H Vo + GrE* ) ZV: (Ct ét—l)z]»

where C denotes the cost process of ( é 0 é ), and y; is given by

T 2

Vﬁ:n%

k=ri1 Ok T %
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Proof. We prove the assertion by induction on 7. For 7 = 1 the problem is just a
particular case of Proposition 10.10, which yields &} = 51 and V' = Vo.
For T > 1 we use the orthogonal decomposition

T
H=Vr=Vo+) & X;—Xi-) +Cr — Co, (10.23)
t=1

of the discounted claim H as constructed in Corollary 10.14. Suppose that the assertion
is proved for 7 — 1. Let us consider the minimization of

gr > E[(Vr — Vr_1 —&r - (X7 — Xr_1)’], (10.24)

where Vr_; is any randAom variable in £2(Q2, Fr_1, P). By (10.23) and Theo-
rem 10.9, we may write Vr as

Vr =Vr_1+ér - (Xr — Xr—D) + Cr — Cr_y,
where C is a P-martingale strongly orthogonal to X. Thus,
- 2
E[(Vr — Vr—1 —ér - (X7 — X7-1))7]
A 2 A A 2
=E[ (Vi1 — V1 + (ér —é7) - (X7 — Xr—1) + Cr — Cr—1)"].

The expectation conditional on #7_1 of the integrand on the right-hand side is equal
to

(Vr—1 = Vr_)* +2(Vr_1 = Vr_1)(ér —&7) - ar

A N R (10.25)
+ (67 —ér)*(0F +o3) + E[(Cr — Cr—1)* | Fr—1].
This expression is minimized by
ar
Er(Vro) =ér+ ——— p (Vr—1 = Vr_p), (10.26)
aT +o

which must also be the minimizer in (10.24). The minimal value in (10.25) is given
by

~ 1 N N
(Vi1 = Vi)’ ——— + E[(Cr — Cr_1)* | Fr-1]-
1 +az/of
Using our assumption (10.22) that a% / o% is constant, we can compute the expectation
of the latter expression, and we arrive at the following identity:

E[(Vr = Voo —&r(Vr—) - (X7 — XT—1))2]
N 2 N N (10.27)
_ _ 21, 97 _ 2
= E[(VT—I Vr_1) ] —a% +a% + E[(CT Cr-1) ]
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So far, we have not specified V7_;. Let us now consider the minimization of

E[(Vr — Vr—1 — &r(Vr—1) - (X1 — XT—I))z]

with respect to Vr_1, when Vr_q is of the form Vy_1 = Vo + Gr_1(§) for§ € 4
and Vyp € R. According to our identity (10.27), this problem is equivalent to the
minimization of

Vo, &) — E[(Hr—1 — Vo + GT—1(€))2],

where Hy_; := Vr_|. By the induction hypotheses, this problem is solved by Vi
and (§/);=1,...7—1 as defined in the assertion. Inserting our formula (10.26) for
Er (VO* +Gr_1(& *)) completes the induction argument. O

Remark 10.41. The martingale property of c implies
E[(Cr —Co)*]= D> E[(C/—Ci)? ]
t=1

IfC E= é’o andif y; < 1, then E| (é T— (A?o)2 ] must be strictly larger than the minimal
global risk

T
E[(H—(V§ +GrEN) ] = wn-E[(C - C-1)?]. &
t=1

Remark 10.42. If follows from Theorem 10.40 as well as from the preceding remark
that the component é of a variance-optimal strategy (é 0, é ) will differ from the corre-
sponding £* of a locally risk-minimizing strategy, if «; does not vanish for all 7, i.e.,
if P is not a martingale measure. This explains why there may be no strategy which
minimizes the remaining conditional risk in the sense of Definition 10.33: For the
minimality of

RE™E%, &) = E[(Cr — Co)* | = E[(H — &) — Gr(§))* ]
we need that &£ = &£*, while the minimality of
wm @°,8) = E[(Cr — Cr—n)? | Fr—1 | = R¥, (6% 8)

requires £ = éT. Hence, the two minimality requirements are in general incom-
patible. <



Appendix

A.1 Convexity

This section contains a few basic facts on convex functions and on convex sets in
Euclidean space. Denote by
x| :== /X - Xx

the Euclidean norm of x € R”.

Proposition A.1. Suppose that © C R" is a non-empty convex set with O ¢ C. Then
there exists n € R" withn - x > 0 for all x € C, and with n - xy > 0 for at least one
x0 € C. Moreover, if inf yce |x| > 0, then one can find n € R" withinfycen-x > 0.

Proof. First we consider_the case in which in&cee |x] > 0. This infimum is attained
by some y in the closure C of C. Since the set C is also convex, |y +o(x —y) 1> > |y|2
foreach x € C and all @ € [0, 1]. Thus

2ay-(x—y)+a2|x—y|220.

Fora | Oweobtainy -x > y -y > 0, and so we can take 1 := y.
Now let € be any non-empty convex subset of R” such that 0 ¢ C. In a first step,

we will show that C is a proper subset of R”. To thisend, let {ey, . .., ex} be a maximal
collection of linearly independent vectors in C. Then each x € C can be expressed as
a linear combination of ey, ..., e;. We claim that

k
Z = —Zei
i=1

is not contained in €. We assume by way of contradiction that z € €. Then there are
Zn € C converging to z. If we write z, = Zle )\fle,-, then z, — z is equivalent to
the convergence A, — —1 for all i. It follows that for some ng € N all coefficients
X;O are strictly negative. Let

1 A
= —1 TNE and «; := —1 TNE
Zi:l no Zi:l no

Then the «;’s are non-negative and sum up to 1. Thus, the convexity of € implies that

o - forj=1,... k.

0= apzp, +a1e1 +--- +arer € C,

which is a contradiction. Hence, z is not contained in C.
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Now we are in a position to prove the existence of a separating 7 in the case in
which 0O is a boundary point of C, and thus infyce |x| = 0. We may assume without
loss of generality that the linear hull of C is the full space R". Since we already
know that C is not dense in R”, we may choose a sequence (z,,) C R”" such that
infyee |x — zm| > 0 and z,;, — 0. Then G, := C — z,, satisfies infyce, x| > O,
and the first part of the proof yields corresponding vectors 7,,. We may assume that
[nm| = 1 for all m. By compactness of the (n — 1)-dimensional unit sphere, there
exists a convergent subsequence (7,,,) with limit , which satisfies

77'X=1}iT111077mk 'X=]}in;1077mk-(x—ka) >0

for all x € C. Since 7 is also a unit vector and C is not contained in a proper linear
subspace of R”, the case 1 - x = 0 for all x € C cannot occur, and so there must be
some xg € C with n - xo > 0. I

Definition A.2. Let A be any subset of a linear space E. The convex hull of A is
defined as

n n
conVA:{Zaixi’xieA,aizo,Zaizl,neN}.
i=1 i=1

It is straightforward to check that conv A is the smallest convex set containing A.
Let us now turn to convex functions on R.

Definition A.3. A function f : R — R U {400} is called a proper convex function if
f(x) < oo for some x € R and if

fleax+ (1 —a)y) <a f(x)+1—a) fQ)

forx,y € Rand @ € [0, 1]. The effective domain of f, denoted by dom f, consists
of all x € R such that f(x) < oo.

Clearly, the effective domain of a proper convex function f is a real interval
S = dom f. If considered as a function f : § — R, the function f is convex in
the usual sense. Conversely, any convex function f : S — R defined on some non-
empty interval § may be viewed as a proper convex function defined by f(x) := +o00
for x € R\S. The following proposition summarizes continuity and differentiability
properties of a proper convex function on its effective domain.

Proposition A.4. Let f be a proper convex function, and denote by D the interior of
dom f.

(a) f is upper semicontinuous on dom f and locally Lipschitz continuous on D.

(b) f admits left- and right-hand derivatives

L) ;f(y) and 71 = tim LT

fLy) =1l
x 1y =Yy

1y X —

ateach'y € D. Both f and f! are increasing functions and satisfy f < f..
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(¢) The right-hand derivative f is right-continuous, the left-hand derivative f' is
left-continuous.

(d) f isdifferentiable a.e. in D, and for any xo € D
0= e+ [ fiody= e+ [ simdy. xeD.
X0 X0

Proof. We first prove part (b). For x, y,z € D withx <y < z, we take o € (0, 1)
such that y = @z + (1 — «)x. Using the convexity of f, one gets

SO =fx _fRQ-f&) _f@-fO)

y—x Z—X z—Yy

(A.1)

Thus, the difference quotient
f@) = fO»
X =y

is an increasing function of x, which shows the existence of the left- and right-hand
derivatives. Moreover, we get f (y) < fi(y) < f/(2) fory < z.

(a): Let z € dom f, and take a sequence (x,) C dom f such that x, — z.
Without loss of generality, we may assume that x, | z or x, 1 z. In either case,
Xp = 8p x1 + (1 — 8,)z, where 8, | 0. Convexity of f yields

limsup f (x,) < limsup (8, f(x1) + (1 —8,) f(2)) = f(2),

ntoo ntoo

and so f is upper semicontinuous. To prove local Lipschitz continuity, take a < x <
y < b such that [a, b] C D. We get from part (b) that

f@) = fy)
X —

fi@) = fi(x) < < fL(y) < f1 ).

Hence, f is Lipschitz continuous on [a, b] with Lipschitz constant L := | f| (a)| V
LfL (D).

(c): Continuity of f shows that for x < z

f@&—f&) _ lim f@ - > lim sup f7 (¥).
7—X yix =Yy yix

Taking z | x yields f{ (x) > limsup, . fi(y). Since f} is increasing, we must in
fact have f jr y)—f jr(x) as y | x. In the same way, one shows left-continuity of f” .

(d): Since the function f is Lipschitz continuous, it is absolutely continuous. By
Lebesgue’s differentiation theorem, f is hence a.e. differentiable and equal to the
integral of its derivative, which is equal to f” (x) = f| (x) fora.e. x € D. O
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Definition A.5. The Fenchel-Legendre transform of a function f : R — R U {400}
is defined as
[Ty =sup(yx — f(x), yeR.
xeR

If f % 400, then f* is a convex and lower semicontinuous as the supremum of
the affine functions y — yx — f(x). In particular, f* is a proper convex function
which is continuous on its effective domain. If f is itself a proper convex function,
then f* is also called the conjugate function of f.

Proposition A.6. Let f be a proper convex function.

(a) Forallx,y e R,
xy < f(x)+ () (A.2)

with equality if x belongs to the interior of dom f and if y € [/ (x), fi(x)].

(b) If f is lower semicontinuous, then f** = f,i.e.,

fx)=sup(xy— f*(»), xekR.
yeR

Proof. (a): The inequality (A.2) is obvious. Now suppose that xo belongs to the
interior of dom f. Proposition A.4 yields f(x) > f(xo) + fL(x0)(x — xp) for all
x in the interior of dom f and, by upper semi-continuity, for all x € R. Hence,
f(x) = f(x0) + yo(x — xo) whenever yo € [f’ (xo0), f}(x0)]. This shows that
xyo— f(x) <xpyo— f(xp) forall x € R, i.e.,

x0 Yo — f(x0) = sup (x yo — f(x)) = f*(30).
xeR
(b): We first show the following auxiliary claim: If 8 < f(xp), then there exists
an affine function 4 such that h(xg) = B and h(x) < f(x) for all x. For the proof of
this claim let
C:={(x,a) eR?| f(x) <a).

C is usually called the epigraph of f. Lower semicontinuity of f implies that C is
closed. The point (xg, 8) does not belong to C, and Proposition A.1 thus yields some
n = (1, n2) € R? such that

inf (mx+mfx)=>86:= inf (mx 4+ na) > nixo + mp.
xedom f (x,a)eC

If f(x0) < oo, we get nixo+ n2.f (x0) > nixo+ n2B8. Hence 1y > 0, and one checks
that

h(x) = =1 (x = x0) + f
n2

is as desired. If f(xo) = oo and 12 > 0, then the same definition works. Now
assume that f(xg) = oo and 1, = 0. Letting h(x) := § — n1x we have h(xg) > 0



A.2 Absolutely continuous probability measures 403

and h(x) < 0 for x € dom f. Since f is proper, the first step of the proof of our
claim allows us to construct an affine function g with g < f. If g(xo) > B, then
h = g+ B — g(xo) is as desired. Otherwise, we let h(x) := g(x) + Aﬁ(x) for
A= (B — g(x0))/ Z(xo). This concludes the proof of our auxiliary claim.

Now we can prove part (b) of the assertion. It is clear from the definition that
f > f**. Suppose there exists a point xg such that f(xg) > f**(xg). Take B strictly
between f**(xg) and f(xp). By the auxiliary claim, there exists an affine function
h < f such that h(xg) = B. Let us write 2(x) = yox + «. Then it follows that
f*(y9) < —a and hence

F*(x0) = yoxo — f*(y0) > h(xo) = B,

which is a contradiction. L]

A.2 Absolutely continuous probability measures

Suppose that P and Q are two probability measures on a measurable space (2, ).

Definition A.7. Q is said to be absolutely continuous with respect to P on the
o-algebra ¥, and we write Q < P,ifforall A € F,

P[A]=0 == Q[A]=0.

If both Q « P and P « Q hold, we will say that Q and P are equivalent, and we
will write Q =~ P.

The following characterization of absolute continuity is known as the Radon—
Nikodym theorem:

Theorem A.8 (Radon—-Nikodym). Q is absolutely continuous with respect to P on
F if and only if there exists an F -measurable function ¢ > 0 such that

/ FdQ = / FodP forall ¥-measurable functions F > 0. (A.3)

Proof. See, e.g., §17 of [20]. O

The function ¢ is called the density or Radon—Nikodym derivative of Q withrespect

to P, and we will write
a9 _
7p = ®.

Clearly, the Radon—Nikodym derivative is uniquely determined through (A.3).
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Corollary A9. If Q < P on &, then

0~pP «— 2_gp
~ dP> -a.s.

In this case, the density of P with respect to Q is given by

dP_<dQ)_1
do ~ \drP)

Proof. Suppose that 0 < P, let ¢ := dQ/dP. Take an ¥ -measurable function

F > 0. Then
/FdQ: ngdP:/ Fdo.
{p>0} {p>0}

In particular, Q[ ¢ = 0] = 0. Replacing F with Fp~! yields

/F(p_ldQ: Fo~l'do = Fo lodP.

{p>0} {p>0}
Note that the term on the right-hand side equals [ F dP for all F if and only if
P[ ¢ = 0] = 0. This proves the result. O

Remark A.10. Let us stress that absolute continuity depends on the underlying o-
field ¥. For example, let P be the Lebesgue measure on 2 := [0, 1). Then every
probability measure Q is absolutely continuous with respect to P on a o -algebra ¥
which is generated by finitely many intervals [a;_1, a;) with0 =ap < a; < --- <
a, = 1. However, if we take for & the Borel o-algebra on €2, then for instance a
Dirac point mass Q = é is clearly not absolutely continuous with respect to P on ¥ .

<&

While the preceding example shows that, in general, absolute continuity is not
preserved under an enlargement of the underlying o-algebra, the next proposition
states that it is safe to take smaller o-algebras. This proposition involves the notion
of a conditional expectation

E[F| %0l

of an ¥ -measurable function F > 0 with respect to a probability measure P and a
o-algebra ¥y C F. Recall that E[ F | ¢ ] may be defined as the P-a.s. unique
Fo-measurable random variable Fy such that

E[F; Agl=E[Fy; Ag] forall Ay € Fo; (A4)
see, e.g., § 15 of [19]. Note also our shorthand convention of writing

E[F; Ao]:=E[FI, ]
Clearly, we can replace in (A.4) the class of all indicator functions of sets in ¥y by
the class of all bounded Fp-measurable functions or by the class of all non-negative

Fo-measurable functions.
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Proposition A.11. Suppose that Q and P are two probability measures on the mea-
surable space (2, ) and that Q <K P on F with density ¢. If F¢ is a o-algebra
contained in ¥, then Q <K P on ¥y, and the corresponding density is given by

dQ

75|, =ElelFol Pas.

Fo

Proof. Q < P on ¥y follows immediately from the definition of absolute continuity.
Since ¢ is the density on ¥ 2 Fy, it follows for A € ¥ that

Q[A]=/¢dP=/E[¢|?o]dP-
A A

Therefore the Fy-measurable random variable E[¢ | Fo] must coincide with the
density on Fy. O

Now we prove a formula for computing a conditional expectation Eg[ F | ¥o]
under ameasure Q in terms of conditional expectations with respect to another measure
P with Q <« P.

Proposition A.12. Suppose that Q < P on F with density ¢, and that ¥o C F is

another o-algebra. Then, for any ¥ -measurable F > 0,

1
EolF | Fol= m'E[F¢’ | Fol Q-as.

Proof. Suppose that Go > 0 is Fo-measurable. Then
EolGoF1=E[GoFpl=E[Go-E[F¢|F1]

Let ¢o := E[p | Fo]. Proposition A.11 implies that ¢y > 0 Q-almost surely. Hence,
we may assume that Go = 0 P-a.s. on {¢o = 0}, and Corollary A.9 yields

E[GO-E[F<p|J~“0]]=EQ[G0- E[F¢|$'0]].

1
Ele| %0l
This proves the assertion. O

If neither Q < P nor P <« Q holds, one can use the following Lebesgue decom-
position of P with respect to Q.
Theorem A.13. For any two probability measures Q and P on (2, ), there exists
aset N € F with Q[ N] = 0 and a F-measurable function ¢ > 0 such that
P[A] = P[AﬂN]—i—/ wdQ forallAe ¥F.
A

One writes

dP e on N¢,

dQ " |+oco onN.
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Proof. Let R = %(Q + P). Then both Q and P are absolutely continuous with
respect to R with respective densities d Q/dR and d P /dR. Let

do
N=1—=0;.
|7 =]
Then Q[ N | = 0. We define

-1

dP d_P d_Q OnNC’
E3=¢1= dR dR

+o0 on N.

Then, for £ -measurable f > 0,

/fdP:/NfdP+/chj—II:dR

-1
=/fdP+ fd—P<Q> dQ
N Ne

dR dR
= [ rar+ [ soa0.
N
where we have used the fact that Q[ N ] = 0 in the last step. O

A.3 Quantile functions

Suppose that F' : (a, b) — Ris an increasing function which is not necessarily strictly
increasing. Let
c:=limF(x) and d:=1lim F(x).
xla xtb
Definition A.14. A function g : (¢, d) — (a, b) is called an inverse function for F if
F(q(s)—) <s< F(q(s)—l—) forall s € (c, d).
The functions
g (s):=sup{x eR| F(x) <s} and ¢T(s):=inf{x eR| F(x) > s}

are called the left- and right-continuous inverse functions.

The following lemma explains the reason for calling ¢~ and ¢ the left- and
right-continuous inverse functions of F.
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Lemma A.15. A function q : (¢, d) — (a, b) is an inverse function for F if and only
if
g (s) <q(s) <qT(s) foralls e (c,d).

In particular, g~ and q are inverse functions. Moreover, q~ is left-continuous,
q™ is right-continuous, and every inverse function q is increasing and satisfies
q(s—=) = g (s) and q(s+) = q*(s) for all s € (c,d). In particular, any two
inverse functions coincide a.e. on (c, d).

Proof- We have ¢~ < g™, and any inverse function ¢ satisfies g~ < ¢ < g™, due to
the definitions of ¢~ and g*. Hence, the first part of the assertion follows if we can
show that F(¢gT(s)—) <s < F(q (s)+) forall s. But x < g™ (s) implies F(x) <s
and y > ¢~ (s) implies F(y) > s, which gives the result.

Next, the set { x | F/(x) > s } is the union of the sets { x | F(x) > s +¢ } fore < 0,
and so g™ is right-continuous. An analogous argument shows the left-continuity of
g~. Itis clear that both g~ and ¢ are increasing, so that the second part of the
assertion follows. O

Remark A.16. The left- and right-continuous inverse functions can also be repre-
sented as

g (s)=inf{xeR| F(x)>s} and q+(s) =sup{x e R| F(x) <s}.

To see this, note first that ¢~ (s) is clearly dominated by the infimum on the right.
On the other hand, y > ¢~ (s) implies F(y) > s, and we get ¢~ (s) > inf{x € R |
F(x) > s }. The proof for g is analogous. <

Lemma A.17. Let g be an inverse function for F. Then F is an inverse function for q.
In particular,

F(x+) =inf{s € (c,d) | g(s) > x} forxwith F(x) <d. (A.5)
Proof. If s > F(x) then g(s) > g~ (s) > x, and hence g(F(x)+) > x. Conversely,

s < F(x) implies g(s) < gt (s) < x, and thus ¢(F(x)—) < x. This proves that F is
an inverse function for g. O

Remark A.18. By defining ¢(d) := b we can extend (A.5) to
F(x+) =inf{s € (c,d] | q(s) > x} forallx € (a, b). <&
From now on we will assume that
F : R — [0, 1] is increasing and right-continuous

and that F is normalized in the sense that ¢ = 0 and d = 1. This assumption always
holds if F is the distribution function of a random variable X on some probability
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space (2, F, P), i.e., F is given by F(x) = P[X < x]. The following lemma
shows in particular that also the converse is true: any normalized increasing right-
continuous functions F : R — [0, 1] is the distribution function of some random
variable. By considering the laws of random variables, we also obtain the one-to-one
correspondence F(x) = u((—o0, x]) between all Borel probability measures ¢ on R
and all normalized increasing right-continuous functions F : R — [0, 1].

Lemma A.19. Let U be a random variable on a probability space (2, ¥, P) with a
uniform distribution on (0, 1), i.e., PI{U < s]=sforalls € (0, 1). If q is an inverse
function of a normalized increasing right-continuous function F : R — [0, 1], then

X(w) := q(U(a)))
has the distribution function F .
Proof. Firstnote that any inverse function for F is measurable because it coincides with
the measurable function ¢ outside the countable set {s € (0, 1) g~ (s) < gt (s) }.

Since g(F(x)—) < x, we have g(s) < x for s < F(x). Moreover, Lemma A.17
shows that g(s) < x implies F(x) > F(q(s)) = F(gq(s)+) > s. It follows that

(0. F(x)) S {s €(0.1) | g(s) =x} S (0, F(x)].
Hence,
F(x)=P[U € (0, F(x))] = P[U € {slq(s) <x}]
<P[U € (0, F)]] = F(x).
The assertion now follows from the identity P[U € {s | ¢(s) < x}] = P[X <x].0O

Definition A.20. An inverse function ¢ : (0, 1) — R of a distribution function F is
called a quantile function. That is, g is a function with

F(q(s)—) <s< F(q(s)) foralls € (0, 1).
The left- and rightcontinuous inverses,
g (s)=sup{fx eR|F(x) <s} and g (s)=inf{x eR| F(x) > s},
are called the lower and upper quantile functions.

We will often use the generic notation Fy for the distribution function of a random
variable X. When the emphasis is on the law p of X, we will also write F,,. In
the same manner, we will write gx or g, for the corresponding quantile functions.
The value gx (1) of a quantile function at a given level A € (0, 1) is often called a
A-quantile of X.

The following result complements Lemma A.19. It implies that a probability space
supports a random variable with uniform distribution on (0, 1) if and only if it supports
any non-constant random variable X with a continuous distribution.
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Lemma A.21. Let X be a random variable with a continuous distribution function
Fx and with quantile function qx. Then U := Fx(X) is uniformly distributed on
0, 1), and X = gx(U) P-almost surely.

Proof. Let (5, F, lg) be a probability space that supports a random variable U with a
uniform distribution on (0, 1). Then X := =9 x (U) has the same distribution as X due
to Lemma A.19. Hence, Fx(X) and Fy (X ) also have the same dlstrlbutlon On the
other hand, if Fy is continuous, then Fy (qx (s)) = s and thus FX(X)

To show that X = gx (U) P-a.s., note first that g T(F(@r)) > t and hence qX(U)
qx T(U) = X P-almostsurely. Nowlet f : R — (0, 1) be astrictly increasing function.
Since gx (U) and X have the same law, we have E[ f(gx(U))] = E[ f(X) ] and get
Plgx(U) > X]=0. Ll

The following lemma uses the concept of the Fenchel-Legendre transform of a
convex function as introduced in Definition A.5.

Lemma A.22. Let X be a random variable with distribution function Fx and quantile
function qx such that E[|X|] < oo. Then the Fenchel-Legendre transform of the
convex function

V(x) = / Fx(z)dz = E[(x = X)"]

—0o0

is given by
/y
gx(@®)dt f0<y=1,
W*(y) = sup(xy — ¥(x)) = { Jo
xeR 400 otherwise.

Moreover, for 0 <y < 1, the supremum above is attained in x if and only if x is a
y-quantile of X.

Proof. Note first that, by Fubini’s theorem and Lemma A.19,

X 1
v = E| / Liyer 42] = ELG = )T ] = /0 (x—gx)tdr.  (A6)

It follows that W*(y) = +oo for y < 0, ¥*(0) = —inf, ¥ (x) = 0,

1 1
(1) = sup(x — W () = lim / x—(x —gx)tdr = / gx (1) dt,
XToo O 0

xeR

and W*(y) = oo for y > 1. To prove our formula for 0 < y < 1, note that the
right-hand and left-hand derivatives of the concave function f(x) = xy — W(x) are
given by f1 (x) =y — Fx(x) and f’ (x) = y — Fx(x—). A point x is a maximizer of
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fif fL(x) <0and f’ (x) > 0, which is equivalent to x being a y-quantile. Taking
x = gx(y) and using (A.6) gives

y y
‘I/(X)=/ (x—qx(t))dt=xy—/ qx (1) dt,
0 0
and our formula follows. O

Lemma A.23. If X = f(Y) for an increasing function f and qy is a quantile function
for Y, then f(qy(t)) is a quantile function for X. In particular,

ax () = qr) () = f(gy (@) forae. t e (0,1),

for any quantile function qx of X.
If f is decreasing, then f(qy (1 — t)) is a quantile function for X. In particular,

gx() =qr)(t) = f(gr(1 =1)) forae. t e (0,1).
Proof. If f is decreasing, then g (¢) := f(qy (1 — t)) satisfies

Fx(@®) =P[f(¥) < f(gr(1 —1) ]
> PlY >qy(1—1)]

>t
=z PlY >qy(1-1)]
> Fx(q(1)—),

since Fy(qy(l —t)—) < 1 —1t < Fy(qy(l — t)) by definition. Hence ¢g(t) =

f(gy(l —t)) is a quantile function. A similar argument applies to an increasing
function f. O

The following theorem is a version of the Hardy-Littlewood inequalities. They
estimate the expectation E[ XY ] in terms of quantile functions gx and gy.

Theorem A.24. Let X and Y be two random variables on (2, ¥, P) with quantile
functions qx and qy. Then,

i 1
/0 gx(1 —=s)qy(s)ds < E[XY ] =< /(; qx(s)qy (s) ds,

provided that all integrals are well defined. If X = f(Y) and the lower (upper) bound
is finite, then the lower (upper) bound is attained if and only if f can be chosen as a
decreasing (increasing) function.
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Proof. We first prove the result for X, Y > 0. By Fubini’s theorem,

o0 o
E[XY]=E / | dx/ Ly dy
[0 {X>x} o =y ]
o0 o0
:/ / P[X >x,Y > yldxdy.
0 0
Since
P[X>)c,Y>y]Z(P[X>)c]—P[Y§y])+

1
:/0 Lk <) Hs<1- ey 95

and since ~
+ry _
QZ(S)—SUP{XZ()' FZ(X)SS}—/(; I{Fz(x)fs} dx

for any random variable Z > 0, another application of Fubini’s theorem yields

1 1
E[XY]=> / qax (1 —s)qy (s)ds =/ gx(1 —s)qy(s)ds.
0 0
In the same way, the upper estimate follows from the inequality
P[X>x,Y>y]<P[X>x]AP[Y >y]

1
= /0 Lrvw=a i m=g 45

For X = f(Y),

1
E[XY]=E[f()Y]= /0 f(qy®)qy (1) dr, A7)

due to Lemma A.19, and so Lemma A.23 implies that the upper and lower bounds are
attained for increasing and decreasing functions, respectively.
Conversely, assume that X = f(Y), and that the upper bound is attained and finite:

1
E[f(Y)Y] =/0 gx(D)qy (1) dr < oo. (A.8)

Our aim is to show that

~

X=fX)=f() P-as,
where f is the increasing function on [0, co) defined by

) = gx(Fy(x))
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if x is a continuity point of Fy, and by

~ 1 Fy (x)

= d
T = o G Jye, KON

otherwise. Note that ~
flgy) = Eilqgx | gy 1, (A.9)

where E,[-|qgy ] denotes the conditional expectation with respect to gy under the
Lebesgue measure A on (0, 1). Hence, (A.8) takes the form

1

1 ~
00 > fo flgy®)qy @) dt = /0 flgr(®)gy @) dt, (A.10)

where we have used Lemma A.19. Let v denote the distribution of Y. By introducing
the positive measures diu = f dv and dfit = f dv, (A.10) can be written as

/0 M([y,OO))dy=/xu«(dX) =fXﬁ(dX) =_/0 p(ly,00)dy.  (A.11)

On the other hand, with g denoting the increasing function I
Littlewood inequality, Lemma A.23, and (A.9) yield

[y.00)° the upper Hardy—

u(ly,o0)) =E[g(¥)f(Y)]

1
< /0 qg(v)(Dgx () dt

~

1
=/0 glgy(®) f(qv (1)) dt
= 1i([y, 00)).

In view of (A.11), we obtain i = /&, hence f = fv-a.s. and X = f(Y) P-almost
surely. An analogous argument applies to the lower bound, and the proof for X, Y > 0
is concluded.

The result for general X and Y is reduced to the case of non-negative random
variables by separately considering the positive and negative parts of X and Y:

E[XY]=E[X'YT)1—E[X'Y ]—E[X YT]+E[X Y]
1 1
< +(7 +()dt — + (7 (1 —1)dt
1 1
_fo QX(1—1)4Y+(l)df+/0 qax-(gy- (1) dt,

where we have used the upper Hardy—Littlewood inequality on the positive terms
and the lower one on the negative terms. Since gz+(t) = (qz(¢))" and g-(t) =
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(gz(1 — 1))~ for all random variables due to Lemma A.23, one checks that the right-
hand side of (A.12) is equal to fol gx (t)qy (t) dt, and we obtain the general form of
the upper Hardy-Littlewood inequality. The same argument also works for the lower
one.

Now suppose that X = f(Y). We first note that (A.7) still holds, and so Lemma
A.23 implies that the upper and lower bounds are attained for increasing and decreasing
functions, respectively. Conversely, let us assume that the upper Hardy—Littlewood
inequality is an identity. Then all four inequalities used in (A.12) must also be equal-
ities. Using the fact that XY™ = f(Y )Y and XY~ = f(—Y )Y, the assertion
is reduced to the case of non-negative random variables, and one checks that f can
be chosen as an increasing function. The same argument applies if the lower Hardy—
Littlewood inequality is attained. O

Remark A.25. Forindicator functions of two sets A and B in ¥, the Hardy—Littlewood
inequalities reduce to the elementary inequalities

(P[A]+P[B]—1)+§P[AﬂB]§P[A]/\P[B]; (A.13)

note that these estimates were used in the preceding proof. Applied to the sets {X < x}
and {Y < y}, where X and Y are random variables with distribution functions Fy and
Fy and joint distribution function Fy y defined by Fx y(x,y) = P[X <x, Y <y],
they take the form

(Fx(x) + Fy(y) = 1)" < Fxy(x,y) < Fx(X) A Fr(y). (A.14)

The estimates (A.13) and (A.14) are often called Fréchet bounds, and the Hardy—
Littlewood inequalities provide their natural extension from sets to random variables. <

Definition A.26. A probability space (€2, .¥, P) is called atomless if it contains no
atoms. That is, there is no set A € ¥ such that P[A] > O and P[B] = 0 or
P[B]= P[A] whenever B € ¥ is a subset of A.

Proposition A.27. For any probability space, the following conditions are equivalent.
(a) (2, F, P) is atomless.

(b) There exists an i.i.d. sequence X1, X2, ... of random variables with Bernoulli
distribution

1
P[Xlzl]:P[X1=0]=§.

(c) Forany pu € Mi(R) there existi.i.d. random variables Y1, Yo, ... with common
distribution (.

(d) (2, F, P) supports a random variable with a continuous distribution.
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Proof. (a)=-(b): We need the following intuitive fact from measure theory: If
(2, F, P) is atomless, then for every A € ¥ and all § with 0 < § < P[ A] there
exists a measurable set B C A such that P[ B ] = §; see Theorem 9.51 of [2]. Thus,
we may take a set A € ¥ such that P[A] = 1/2 and define X; := 1 on A and
X1 :=0o0n A°. Now suppose that X1, ..., X, have already been constructed. Then

P Xi=x1,...,. X, =x,]=27"

for all xy, ..., x, € {0, 1}, and this property is equivalent to X1, ..., X, being inde-
pendent with the desired symmetric Bernoulli distribution. Forall xq, ..., x, € {0, 1}
we may choose a set

BcC{Xi=x1,..., X, =x,}

such that P[ B] = 2~ "+ and define Xu+1:=1on Band X, := 0on B°. Clearly,

the collection X1, ..., X+ is again i.i.d. with a symmetric Bernoulli distribution.
(b) =(c): By relabeling the sequence X, X»,..., we may obtain a double-

indexed sequence (X;, ;);, jen of independent Bernoulli-distributed random variables.

If we let
o0
U= 2"Xin.
n=1

then it is straightforward to check that U; has a uniform distribution. Let g be a quantile
function for . Lemma A.19 shows that the i.i.d. sequence Y; := q(U;),i = 1,2, ...,
has common distribution .

The proofs of the implications (c) =(d) and (d) =(a) are straightforward. O

A.4 The Neyman-Pearson lemma

Suppose that P and Q are two probability measures on (€2, ), and denote by

dP
P[A]:P[AﬂN]-i—/AEdQ, AeF,

the Lebesgue decomposition of P with respect to Q as in Theorem A.13. For fixed

c >0, we let
AV =1 — >y,
dQ

where we make use of the convention that d P/d Q = oo on N.

Proposition A.28 (Neyman—Pearson lemma). IfA € F issuchthat Q[ A] < 0[A°],
then P[A] < P[A?].
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Proof. Let F := IA0 —IA. Then F > 0on N,and F - (dP/dQ — c¢) > 0. Hence

P[AY]— P[A] :/FdP

—/ FdP+/F-d—PdQ
Y, dQ

zc/FdQ

=c(Q[A] - Q[A]).

This proves the proposition. O

Remark A.29. In statistical test theory, A” is interpreted as the likelihood quotient
test of the null hypothesis Q against the alternative hypothesis P: If the outcome w
of a statistical experiment is in A, then the null hypothesis is rejected. There are two
possible kinds of error which can occur in such a test. A fype 1 error occurs if the
null hypotheses is rejected despite the fact that Q is the “true” probability. Similarly,
a type 2 error occurs when the null hypothesis is not rejected, although Q is not
the “true” probability. The probability of a type 1 error is given by Q[ A°]. This
quantity is usually called the size or the significance level of the statistical test A°.
A type 2 error occurs with probability P[ (A?)¢]. The complementary probability
P[A1=1- P (AO)C ] is called the power of the test AY. In this setting, the set A
of Proposition A.28 can be regarded as another statistical test to which our likelihood
quotient test is compared. The proposition can thus be restated as follows: A likelihood
quotient test has maximal power on its significance level. <&

Indicator functions of sets take only the values 0 and 1. We now generalize
Proposition A.28 by considering ¥ -measurable functions ¥ : Q — [0, 1]; let R
denote the set of all such functions.

Theorem A.30. Let IT := %(P + Q), and define the density ¢ := dP/d Q as above.

(a) Take ¢ > 0, and suppose that ¥° € R satisfies T-a.s.

1 on{p>c},
Y = (A.15)
0 on{p<c}.

Then, for any ¥ € R,

/wdQS/deQ — /deffwodP. (A.16)
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(b) For any ag € (0,1) there is some ¥° € R of the form (A.15) such that
f vOdQ = ay. More precisely, if ¢ is an (1 — ag)-quantile of ¢ under Q,
we can define ¥° by

v =1 + kel

— He>c} p=c}’

where k is defined as

0 fOlep=c]=0,

k:i=qap— Qle >c]
Olg =c]

otherwise.

(c) Any 0 € R satisfying (A.16) is of the form (A.15) for some ¢ > 0.

Proof. (a): Take F := ° — ¢ and repeat the proof of Proposition A.28.
(b): Let F denote the distribution function of ¢ under Q. Then Q[¢ > c¢] =
1—F(c) <agand

Olp =cl=F(c) - Fc-)
>F()— 14w
—ag—Qlg > cl.

Hence 0 < k < 1 and ¥” belongs to RR. The fact that i ¥0dQ = «y is obvious.
(c): Suppose that ¥ * satisfies

/wdefw*dQ - /wdpsfw*dp.

The cases in which «g := f ¥v*dQ equals O or 1 are trivial. For 0 < ag < 1, we
can take y¥° as in part (b). Then g = [¥*dQ = [¥°dQ. One also has that
[¥*dP = [¢"dP, as can be seen by applying (A.16) to both * and ¥ with
reversed roles. Hence, for f := y0 — ¢* and N = {9 = oo},

OszdP—c/fdQ:/NfdP—l—/f-(w—c)dQ.

But (A.15) implies that both f > 0 P-a.s. on N, and f - (¢ —c¢) > 0 Q-a.s. Hence
f vanishes IT-a.s. on {¢ # c}. O

Remark A.31. In the context of Remark A.29, an element i of R is interpreted as a
randomized statistical test: If w is the outcome of a statistical experiment and p :=
¥ (w), then the null hypothesis is rejected with probability p, i.e., after performing
an independent random coin toss with success probability p. Significance level and
power of arandomized test are defined as above, and a test of the form (A.15) is called
a generalized likelihood quotient test. Thus, the general Neyman—Pearson lemma in
the form of Theorem A.30 can be stated as follows: A randomized test has maximal
power on its significance level, if and only if it is a generalized likelihood quotient
test. <
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A.S The essential supremum of a family of random variables

In this section, we discuss the essential supremum of an arbitrary family ® of random
variables on a given probability space (2, ', P). Consider first the case in which the
set @ is countable. Then ¢*(w) := Sup,cq ¢ (w) will also be arandom variable, i.e., p*
is measurable. Measurability of the pointwise supremum, however, is not guaranteed
if @ is uncountable. Even if the pointwise supremum is measurable, it may not be
the right concept, when we focus on almost sure properties. This can be illustrated by
taking P as the Lebesgue measure on €2 := [0, 1] and & := {I{x} | 0 < x < 1}. Then
Supyeq ¢(x) = 1 whereas ¢ = 0 P-a.s. for each single ¢ € ®. This suggests the
following notion of an essential supremum defined in terms of almost sure inequalities.

Theorem A.32. Let ® be any set of random variables on (2, ¥, P).
(a) There exists a random variable ¢* such that

¢* > ¢ P-as. forall p € ®. (A.17)

Moreover, ¢* is almost surely unique in the following sense: Any other random vari-
able r with property (A.17) satisfies ¥ > @™ P-almost surely.

(b) Suppose that @ is directed upwards, i.e., for ¢, @ € ® there exists € ® with
¥ > @ Vv @. Then there exists an increasing sequence @1 < @2 < --- in ® such that
@* = lim, @, P-almost surely.

Definition A.33. The random variable ¢* in Theorem A.32 is called the essential
supremum of ® with respect to P, and we write

esssup & = esssup ¢ := ¢*.
ped

The essential infimum of ® with respect to P is defined as

essinf ® = essinf ¢ := — ess sup(—¢).
ped ped

Proof of Theorem A.32. Without loss of generality, we may assume that each ¢ € ®
takes values in [0, 1]; otherwise we may consider ® := { fo¢p | ¢ € ®} with
f : R — [0, 1] strictly increasing.

If W C P is countable, let py (@) := sup,cy ¢(w). Then gy is measurable. We
claim that the upper bound

c:=sup{E[oy ]| ¥ C P countable }

is attained by some countable ¥* C ®. To see this, take ¥, with E[ ¢y, ] — ¢ and
let W* :=J, W,,. Then W* is countable and E[ py+ ] = c.

We now show that ¢* := @y satisfies (A.17). Suppose that (A.17) does not hold.
Then there exists ¢ € ® such that P[ ¢ > ¢*] > 0. Hence ¥’ := W* U {¢]} satisfies

Eloy ] > Elpy+]=c,
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in contradiction to the definition of ¢. Furthermore, if ¥ is any other random variable
satisfying (A.17), then obviously ¢ > ¢*.

Finally, the construction shows that ¢y+ can be approximated by an increasing
sequence if W is directed upwards. 0

Remark A.34. For a given random variable X let ® be the set of all constants ¢ such
that P[ X > ¢] > 0. The number

esssup X := esssup @

1s the smallest constant ¢ < —+o00 such that X < ¢ P-a.s. and called the essential
supremum of X with respect to P. The essential infimum of X is defined as

essinf X := esssup(—X). <

A.6 Spaces of measures

Let S be a topological space. S is called metrizable if there exists a metric d on S
which generates the topology of S. That is, the open d-balls

B.(x):={yeS|dx,y)<e}, xe€S8,¢>0,

form a base for the topology of S in the sense that a set U C S is open if and only if it
can be written as a union of such d-balls. A convenient feature of metrizable spaces
is that their topological properties can be characterized via convergent sequences.
For instance, a subset A of the metrizable space S is closed if and only if for every
convergent sequence in A its limit point is also contained in A. Moreover, a function
f S — Riscontinuous at y € S if and only if f(y,) converges to f(y) for every
sequence (y,) converging to y. We write

Cp(S)

for the set of all bounded and continuous functions on S.

The metrizable space S is called separable if there exists a countable dense subset
{x1,x2,...}of S. In this case, the Borel o-algebra 4§ of S is generated by the open
d-balls B.(x) with radii ¢ > 0, ¢ € Q, and centered in x € {x1, x2,...}. In what
follows, we will always assume that S is separable and metrizable. If, moreover, the
metric d can be chosen to be complete, i.e., if every Cauchy sequence with respect to
d converges to some point in S, then S is called a Polish space. Clearly, R with the
Euclidean distance is a complete and separable metric space, hence a Polish space.

Let us denote by

M(S) := M(S, 8)
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the set of all non-negative finite measures on (S, §). Every u € M(S) is of the
form u = o v for some factor ¢ € [0, c0) and some probability measure v on the
measurable space (S, §). The space of all probability measures on (S, 4) is denoted
by

Mi(S) = M1 (S, 8).

Definition A.35. The weak topology on M(S) is the coarsest topology for which all
mappings

M(S) 5 > /fdu, F e Chs),

are continuous.

It follows from this definition that the sets

n

Ue(its fiv- s ) :=ﬂ{veM(S)\(/ﬁdu—/ﬁdu‘q} (A.18)

i=1

for u € M(S),e > 0,n € N, and fi,..., f € Cp(S) form a base for the weak
topology on M(S); for details see, e.g., Section 2.13 of [2]. Since the constant
function 1 is continuous,

Mi($) = | 1 e M) | M(S)=/1du=1}

is a closed subset of M(S). A well-known example for weak convergence of proba-
bility measures is the classical central limit theorem; the following version is needed
in Section 5.7.

Theorem A.36. Suppose that for each N € N we are given N independent random
variables YI(N), e, YIE,N) on (Qy, Fn, Pn) which satisfy the following conditions:

e There are constants yy such that yy — 0 and |Y, k(N)I < yn Pn-a.s.

N

. ZEN[Y,((N)] — m.
k=1
N

. Z vary (Y k(N)) —> o2, where var N denotes the variance with respect to Py .
k=1

Then the distributions of
N
Zy=y vV, N=1.2,...,
k=1

converge weakly to the normal distribution with mean m and variance o .
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Proof. See, for instance, the corollary to Theorem 7.1.2 of [40]. O

The following theorem allows us to examine the weak topology in terms of weakly
converging sequences of measures.

Theorem A.37. The space M(S) is separable and metrizable for the weak topology.
If S is Polish, then so is M(S). Moreover, if Sy is a dense subset of S, then the set

n
{Z“i5Xi | o € QT x,-eSo,neN}
i=1

of simple measures on So with rational weights is dense in M(S) for the weak topology.

Proof. In most textbooks on measure theory, the previous result is proved for M (S)
instead of M (S); see, e.g., Theorem 14.12 of [2]. The general case requires only
minor modifications. It is treated in full generality in Chapter IX, §5, of [27]. O

The following characterization of weak convergence in M (S) is known as the
“portmanteau theorem”.

Theorem A.38. For any sequence |4, (41, U2, ... of measures in M(S), the following
conditions are equivalent:

(a) The sequence (jun)neN converges weakly to L.
(®) wn(S) = u(S) and

lim sup ., (A) < u(A) for every closed set A C S.

ntoo

(©) un(S) = n(S) and

lin%inf un(U) = w(U) for every opensetU C S.
nToo

(d) u,(B) — w(B) for every Borel set B whose boundary 0 B is not charged by
in the sense that u(0B) = 0.

(e) f fdu, - f f du for every bounded measurable function f which is p-a.e.
continuous.

® [ fdun — [ fdu for every bounded and uniformly continuous function f .

Proof. The result is proved for M (S) in [2], Theorem 14.3. The general case requires
only minor modifications; see Chapter IX of [27]. O
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Remark A.39. It follows from the portmanteau theorem that, on § = R, weak con-
vergence of i, to u is equivalent to the condition

Fx—) < lin% inf F,;(x) < limsup Fj,(x) < F(x)
nToo

ntoo

for the corresponding distribution functions (F;) and F, or to the pointwise conver-
gence of F,(x) to F(x) in any continuity point of F. It is also equivalent to the
condition

g, (1) < liminf g, (1) < limsup g, (1) < q,\ (t)
ntoo

ntoo

for any choice of the quantile functions ¢, of ., or to the pointwise convergence of
qn(t) to qJ (t) in any continuity point of q;[. <

The next theorem can be regarded as a stability result for weak convergence.

Theorem A.40 (Slutsky). Suppose that,forn € N, X,, and Y,, are real-valued random
variables on (2, F,, P,) such that the laws of X,, converge weakly to the law of X,
and the laws of Y,, converge weakly to 8, for some y € R. Then:

(a) The laws of X,, + Y,, converge weakly to the law of X + y.

(b) The laws of X, - Y, converge weakly to the law of X - y.
Proof. See, for instance, Section 8.1 of [39]. O

We turn now to the fundamental characterization of the relative compact subsets
of M(S) known as Prohorov’s theorem.

Theorem A.41 (Prohorov). Let S be a Polish space. A subset M of M(S) is relatively
compact for the weak topology if and only if

sup u(S) < oo
neM

and if M is tight, i.e., if for every ¢ > 0 there exists a compact subset K of S such that

sup (K€) <e.
neM

In particular, M1(S) is weakly compact if S is a compact metric space.

Proof. For a proof in the context of probability measures, see for instance Theorem 1
in §1I1.2 of [187]. The general case requires only minor modifications; see Chapter IX
of [27]. O
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Example A.42. Take for S the positive half axis [0, co) and define

n—1 1
Up = do+ —6, and pu := do,
n n

where §, denotes the Dirac point mass in x € S, i.e., §x(A) = I, (x). Clearly,

/fd,un—>/fdu for all f € Cp(S)

so that u, converges weakly to ;. However, if we take the continuous but unbounded
function f(x) = x, then [ f du, = 1 for all n so that

i [ =1# [ ran o

The preceding example shows that the weak topology is not an appropriate topol-
ogy for ensuring the convergence of integrals against unbounded test functions. Let
us introduce a suitable transformation of the weak topology which will allow us to
deal with certain classes of unbounded functions.

We fix a continuous function

Y S [1,00)
which will serve as a gauge function, and we denote by
Cy(S)

the linear space of all continuous functions f on S for which there exists a constant ¢
such that
[f(xX)| <c-¥(x) forallx € S.

Furthermore, we denote by
MY (S)

the set of all measures ;& € M(S) such that f Ydpu < oo.

Definition A.43. The y-weak topology on MY (S) is the coarsest topology for which
all mappings

MY (S) > p > /fdu, f€Cy(S),
are continuous.

Since the gauge function i takes values in [1, 00), every bounded continuous
function f belongs to Cy (). It follows that all mappings

M (S) 5 ffdu, F e Cys),
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are continuous. In particular, the set
M () = {1 eMV(S) | us) =1}

of all Borel probability measures in MY (S) is closed for the 1/-weak topology.
As in the case of the weak topology, it follows that the sets

U;//(/L;fl,...,fn) ::n{veMv’(S)\‘/ﬁdv—/ﬁdu‘<8}

i=1

foru e MY (S),e > 0,n €N, and Sf1s -+, fn € Cy(S) form a base for the vr-weak
topology on MY (S).
Let us define a mapping

W M(S) — MY(S)

by
1
AV (p) = Jd“’ e M(S).

Clearly, W is a bijective mapping between the two sets M (S) and MY (S). Moreover,
if we apply W to an open neighborhood for the weak topology as in (A.18), we get

W(Ue (s fro-eos f) = U (WG A1, .., fudh).

Since fy € Cy (S) for each bounded and continuous function f, and since every
function in Cy (S) arises in this way, we conclude that a subset U of M (S) is weakly
open if and only if W(U) is open for the yr-weak topology. Hence, W is a homeomor-
phism. This observation allows us to translate statements for the weak topology into
results for the {-weak topology:

Corollary A.44. For separable and metrizable S, the space MV (S) is separable and
metrizable for the r-weak topology. If S is Polish, then so is MY (S). Moreover, if So
is a dense subset of S, then the set

n
{Zairsxi | ai € QT, xieSo,neN}
i=1

of simple measures on Sy with rational weights is dense in MY (S) for the y-weak
topology.

The preceding corollary implies in particular that it suffices to consider yr-weakly
converging sequences when studying the {r-weak topology. The following corollary
is implied by the portmanteau theorem.
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Corollary A.45. A sequence (i)nen in MY (S) converges yr-weakly to ju if and only

if
/fdﬂn—>/fdﬂ

for every measurable function f which is -a.e. continuous and for which exists a
constant ¢ such that | f| < ¢ - ¥ p-almost everywhere.

Prohorov’s theorem translates as follows to our present setting:

Corollary A.46. Let S be a Polish space and M be a subset of MV (S). The following
conditions are equivalent:

(a) M is relatively compact for the -weak topology.
(b) We have
sup / vdu < oo,

neM

and for every € > 0 there exists a compact subset K of S such that

sup vdu <e.
neM JK¢

(c) There exists a measurable function ¢ : S — [1, oo] such that each set
{xeS|¢(x)<ny(x)}, neNlN,

is relatively compact in S, and such that

sup/gbd,u<oo.

neM

Proof. (a)<(b): This follows immediately from Theorem A.41 and the fact that W is
a homeomorphism.

(b) =(c): Take an increasing sequence K| C K, C --- of compact sets in S such
that

supf V<2,
neM J KS

n

and define ¢ by

P =Y @)+ ) T (DY)

n=1

Then {¢ < ny} C K,,. Moreover,

sup | ¢dp < sup fl//d,lL+1 < 00.
neM neM
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(c) =(b): Since {¢p < ¥} is relatively compact, we have that

ci=sup{y(x) | x €8, p(x) =¥ (x)} < o0,

and hence

sup/Wd,uf(l—l—c) sup/¢du<oo.

neM neM

Moreover, for n > ¢! SUp e m f ¢ du, the relatively compact set K := {¢ < ny}
satisfies

1
sup Ydp < — sup pdu <e,
uweM JK¢ n uem JKE

and so condition (b) is satisfied. ]

We turn now to the task of identifying a linear functional on a space of functions
as the integral with respect to a suitable measure.

Theorem A.47 (Riesz). Let Q2 be a compact metric space and suppose that I is a
linear functional on C(R2) that is non-negative in the sense that f > 0 everywhere on
Q implies [ (f) = 0. Then there exists a unique positive Borel measure (1 on 2 such
that

I(f)=/fdu forall f € C(Q).

To state a general version of the preceding theorem, we need the notion of a vector
lattice of real-valued functions on an arbitrary set 2. This is a linear space /£ that
is stable under the operation of taking the pointwise maximum: for f, g € £ also
f Vg € L. One example is the space of all bounded measurable functions on (€2, ).
Another one is the space Cp(2) of all bounded continuous functions on a separable
metric space 2. In this case, the o -algebra o (L) generated by £ coincides with the
Borel o-algebra of the underlying metric space. Note that Theorem A.47 is implied
by the following result, together with Dini’s lemma as recalled in Remark 4.26.

Theorem A.48 (Daniell-Stone). Let I be a linear functional on a vector lattice L of
functions on Q such that the following conditions hold:

(a) I is non-negative in the sense that f > 0 everywhere on Q2 implies 1 (f) > 0.
(b) If (fn) is a sequence in L such that f, \, 0, then I(f;) \ 0.

Then there exists a unique positive measure | on the measurable space (Q, cr(£))
such that

I(f):/fdu forall f e L.
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Proof. See, e.g., Theorem 4.5.2 of [72] or Satz 40.5 in [18]. O

Without the continuity assumption (b), the preceding result takes a different form,
as we will discuss now.

Definition A.49. Let (2, ¥) be a measurable space. A mapping u© : F — R is
called a finitely additive set function if u(¥) = 0, and if for any finite collection
Ay, ..., Ay € F of mutually disjoint sets

M(CJAi) =Y .
i=1 i=1

We denote by M s := My, r(£2, F) the set of all those finitely additive set functions
u : F — [0, 1] which are normalized to ;£ (€2) = 1. The total variation of a finitely
additive set function u is defined as

n
ltllvar == sup{ Zl,u(Ai)l | Ay, ..., Ay disjoint sets in F, n € N}.

i=1

The space of all finitely additive measures ;« whose total variation is finite is denoted
by ba (2, F).

We will now give a brief outline of the integration theory with respect to a measure
W € ba := ba(2, ¥); for details we refer to Chapter III in [76]. The space X of
all bounded measurable functions on (€2, ¥) is a Banach space if endowed with the
supremum norm,

|F|l := sup |F(®)|, F € X.
weR

Let X denote the linear subspace of all finitely valued step functions which can be
represented in the form
n
F= Z ail,
i=1

for some n € N, ¢; € R, and disjoint sets Ay, ..., A, € F. For this F we define

f Fdup .= Zai w(A;),

i=1

and one can check that this definition is independent of the particular representation
of F. Moreover,

| [ Fau| <uF0- (A.19)

Since X;o is dense in X with respect to || - ||, this inequality allows us to define
the integral on the full space X as the extension of the continuous linear functional
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Xo> F+— f Fdpu. Clearly, M,y is contained in ba, and we will denote the integral
of a function F' € X with respect to Q € My ¢ by

Eol F] ::/FdQ.
Theorem A.50. The integral
Z(F):/Fd,u, F e X,

defines a one-to-one correspondence between continuous linear functionals £ on X
and finitely additive set functions u € ba.

Proof. By definition of the integral and by (A.19), it is clear that any u € ba defines a
continuous linear functional on X. Conversely, if a continuous linear functional £ is
given, then we can define a finitely additive set function © on (€2, ) by

w(A) = td,), Ac¥F.

If L > Oissuchthat £(F) < L for || F|| <1, then ||it|lvar < L, and so u € ba. One

then checks that the integral with respect to u coincides with £ on Xg. Since X is
dense in X, we see that [ Fdu and £(F) coincide for all F € X. O

Remark A.51. Theorem A.50 yields in particular a one-to-one correspondence be-
tween set functions Q € M s and continuous linear functionals £ on X such that
£(1) =1and £(X) > 0for X > 0. <&

Example A.52. Clearly, the set M1, r coincides with the set M| := M (2, ) of all
o -additive probability measures if (€2, ¥) can be reduced to a finite set, in the sense
that ¥ is generated by a finite partition of 2. Otherwise, M1, r is strictly larger than
M. Suppose in fact that there are infinitely many disjoint sets A, A3, ... € ¥, take
wy, € A, and define

1 n
(X)) = ;ZX(a)i), n=12,...
i=1

The continuous linear functionals £, on X belong to the unit ball By in the dual Banach
space X'. By Theorem A.62, there exists a cluster point £ of (£,). For any X € X
there is a subsequence (ny) such that £,, (X) — £(X). This implies that £(X) > 0
for X > 0 and £(1) = 1. Hence, Theorem A.50 allows us to write £(X) = Ep[ X |
for some Q € My r. But Q is not o-additive, since Q[ A, ] = Z(IAn) = 0 and

o[U, A ] =1 &
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A.7 Some functional analysis

Numerous arguments in this book involve infinite-dimensional vector spaces. Typical
examples are the spaces L?” for 0 < p < oo, which we will introduce below. To this
end, we first take p € (0, oc] and denote by L7 (2, ¥, P) the set of all ¥ -measurable
functions Z on (2, ¥, P) such that || Z]|, < oo, where

E[|Z|P]YP, if0 < p < oo,
1Z], = (A.20)
inf{c>0]|P[|Z]| >c]=0}, ifp=oo.

Let us also introduce the space c50(52, F, P), defined as the set of all P-a.s. finite
random variables. If no ambiguity with respect to o -algebra and measure can arise, we
may sometimes write L7 (P) or just L7 instead of L7 (2, ¥, P). For p € [0, 0co], the
space L? (2, ¥, P), or just L?, is obtained from L7 by identifying random variables
which coincide up to a P-null set. Thus, L? consists of all equivalence classes with
respect to the equivalence relation

~ ~

Z~Z7Z & Z=7 Pas. (A.21)

If p € [1, oo] then the vector space L? is a Banach space with respect to the norm
- Il defined in (A.20), i.e., every Cauchy sequence with respectto || - ||, converges to
some element in L?. In principle, one should distinguish between a random variable
Z € L? and its associated equivalence class [Z] € L?, of which Z is a representative
element. In order to keep things simple, we will follow the usual convention of
identifying Z with its equivalence class, i.e., we will just write Z € L?.

On the space L, we use the topology of convergence in P-measure. This topology
is generated by the metric

d(X,Y) =E[|X-Y|A1l], X,YGLO. (A.22)
Note, however, that d is not a norm.

Definition A.53. A linear space E which carries a topology is called a topological
vector space if every singleton {x} for x € E is a closed set, and if the vector space
operations are continuous in the following sense:

x, ) —x+y
is a continuous mapping from E x E into E, and

(a, x) —> ax

is a continuous mapping from R x FE into E.
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Clearly, every Banach space is a topological vector space. The following resultis a
generalization of the separation argument in Proposition A.1 to an infinite-dimensional
setting.

Theorem A.54. In a topological vector space E, any two disjoint convex sets B and
C, one of which has an interior point, can be separated by a non-zero continuous
linear functional £ on E, i.e.,

L(x) <{l(y) forallx e Candall y € B. (A.23)
Proof. See [76], Theorem V.2.8. O

If one wishes to strictly separate two convex sets by a linear functional in the sense
that one has a strict inequality in (A.23), then one needs additional conditions both on
the convex sets and on the underlying space E.

Definition A.55. A topological vector space E is called a locally convex space if its
topology has a base consisting of convex sets.

If E is a Banach space with norm || - ||, then the open balls
{yeElly—xll<r}, xe€E, r>Q0,

form by definition a base for the topology of E. Since such balls are convex sets,
any Banach space is locally convex. The space LO($2, £, P) with the topology of
convergence in P-measure, however, is not locally convex if (2, ¥, P) has no atoms;
see, e.g., Theorem 12.41 of [2].

The following theorem is one variant of the classical Hahn—Banach theorem on
the existence of “separating hyperplanes”.

Theorem A.56 (Hahn—Banach). Suppose that 8 and C are two non-empty, disjoint,
and convex subsets of a locally convex space E. Then, if B is compact and C is closed,
there exists a continuous linear functional £ on E such that

sup £(x) < inf £(y).
xeC yeB

Proof. See, for instance, [178], p. 65, or [76], Theorem V.2.10. O

One corollary of the preceding result is that, on a locally convex space E, the
collection
E' :={¢: E — R £is continuous and linear }

separates the points of E, i.e., for any two distinct points x, y € E there exists some
¢ € E' such that £(x) # £(y). The space E’ is called the dual or the dual space of E.
For instance, if p € [1, 0o) it is well-known that the dual of L? (<2, ¥, P) is given by
L1(Q2, ¥, P), where % + % = 1. The following definition describes a natural way in
which locally convex topologies often arise.
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Definition A.57. Let E be linear space, and suppose that F is a linear class of linear
functionals on E which separates the points of E. The F-fopology on E, denoted by
o (E, F), is the topology on E which is obtained by taking as a base all sets of the
form

{yeE|lti(y) =i <r,i=1,...,n},

where n € N, x € E, ¢; € F,and r > 0. If E already carries a locally convex
topology, then the E’-topology o (E, E’) is called the weak topology on E.

If E isinfinite-dimensional, then E is typically not metrizable in the F-topology. In
this case, it may not suffice to consider converging sequences when making topological
assertions; see, however, Theorem A.65 below. The following proposition summarizes
a few elementary properties of the F-topology.

Proposition A.58. Consider the situation of the preceding definition. Then:
(a) E is alocally convex space for the F-topology.

(b) The F-topology is the coarsest topology on E for which every £ € F is contin-
uous.

(¢) The dual of E for the F-topology is equal to F.
Proof. See, e.g., Section V.3 of [76]. O

Theorem A.59. Suppose that E is a locally convex space and that C is a convex subset
of E. Then C is weakly closed if and only if C is closed in the original topology of E.

Proof. If the convex set C is closed in the original topology then, by Theorem A.56,
it is the intersection of the halfspaces H = {¢ < ¢} such that H D €, and thus closed
in the weak topology o (E, E’). The converse is clear. O

For a given locally convex space E we can turn things around and consider E as
a set of linear functionals on the dual space E’ by letting x(£) := £(x) for £ € E’ and
x € E. The E-topology o (E’, E) obtained in this way is called the weak™* ropology
on E’. According to part (¢) of Proposition A.58, E is then the topological dual of
(E', o (E’, E)). For example, the Banach space L>* := L*°(Q, ¥, P) is the dual of
L', but the converse is generally not true. However, L! becomes the dual of L if
we endow L with the weak™* topology o (L™, L1).

The mutual duality between E and E’ allows us to state a general version of part (b)
of Proposition A.6. As in the one-dimensional situation of Definition A.3, a convex
function f : E — R U {400} is called a proper convex function if f(x) < oo for
some x € R.

Definition A.60. The Fenchel-Legendre transform of a function f : E — RU{+o0}
is the function f* on E’ defined by

FX(0) = sup (£(x) — f(x)).

xekE
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If f # +o00, then f* is a proper convex and lower semicontinuous function as the
supremum of affine functions. If f is itself a proper convex function, then f* is also
called the conjugate function of f.

Theorem A.61. Let f be a proper convex function on a locally convex space E. If f
is lower semicontinuous with respect to o (E, E'), then f = f**.

It is straightforward to adapt the proof we gave in the one-dimensional case of
Proposition A.6 to the infinite-dimensional situation of Theorem A.61; all one has
to do is to replace the separating hyperplane lemma by the Hahn—Banach separation
theorem in the form of Theorem A.56.

One of the reasons for considering the weak topology on a Banach space or, more
generally, on a locally convex space is that typically more sets are compact for the
weak topology than for the original topology. The following result shows that the
unit ball in the dual of a Banach space is weak* compact. Here we use the fact that a
Banach space (E, | - || g) defines the following norm on its dual E’:

||z := sup £(x), L€E.

xllg<1

Theorem A.62 (Banach—Alaoglu). Let E be a Banach space with dual E'. Then
{x € E'| |x|lgr <r}isweak® compact for everyr > 0.

Proof. See, e.g., Theorem IV.21 in [164]. O

Theorem A.63 (Krein—-Smulian). Let E be a Banach space and suppose that C is a
convex subset of the dual space E'. Then C is weak* closed if and only if

CN{xeE [|xllg <r}

is weak* closed for each r > 0.
Proof. See Theorem V.5.7 in [76]. I

The preceding theorem implies the following characterization of weak™ closed sets
in L°°,
Lemma A.64. A convex subset C of L™ is weak™ closed if for every r > 0
Cri=CN{XeLl®X]lc =1}

is closed in L.

Proof. Since G, is convex and closed in L', it is weakly closed in L' by Theorem A.59.
Since the natural injection

(L®, (L™, L") — (L', o (L', L))
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is continuous, G, is o (L%, L)-closed in L®. Thus, € is weak* closed due to the
Krein—Smulian theorem. [

Finally, we state a few fundamental results on weakly compact sets.

Theorem A.65 (Eberlein-Smulian). For any subset A of a Banach space E, the fol-
lowing conditions are equivalent:

(a) A is weakly sequentially compact, i.e., any sequence in A has a subsequence
which converges weakly in E.

(b) A is weakly relatively compact, i.e., the weak closure of A is weakly compact.
Proof. See [76], Theorem V.6.1. I

Theorem A.66 (James). In a Banach space E, a bounded and weakly closed convex
subset A is weakly compact if and only if every continuous linear functional attains
its supremum on A.

Proof. See, for instance, [86]. O

The following result characterizes the weakly relatively compact subsets of the
Banach space L' := LY(Q, #, P). It implies, in particular, that a set of the form
{feL'||f] <g)withgiven g € L' is weakly compact in L'.

Theorem A.67 (Dunford—Pettis). A subset A of L' is weakly relatively compact if
and only if it is bounded and uniformly integrable.

Proof. See, e.g., Theorem IV.8.9 or Corollary IV.8.11 in [76]. O



Notes

In these notes, we do not make any attempt to give a systematic account of all the
sources which have been relevant for the development of the field. We simply mention
a number of references which had a direct influence on our decisions how to present
the topics discussed in this book. A more comprehensive list of references can be
found, e.g., in [129].

Chapter 1: The proof of Theorem 1.6 is based on Dalang, Morton, and Willinger [51].
Remark 1.17 and Example 1.18 are taken from Schachermayer [175]. Section 1.6
is mainly based on [175], with the exception of Lemma 1.63, which is taken from
Kabanov and Stricker [122]. Our proof of Lemma 1.67 combines ideas from [122]
with the original argument in [175], as suggested to us by Irina Penner. For a historical
overview of the development of arbitrage pricing and for an outlook to continuous-time
developments, we refer to Schachermayer [177]. For some mathematical connections
between superhedging of call options as discussed in Section 1.3 and bounds on stop-
loss premiums in insurance see Chapter 5 of Goovaerts et al. [105].

Chapter 2: The results on the structure of preferences developed in this chapter are,
to a large extent, standard topics in mathematical economics. We refer to textbooks
on expected utility theory such as Fishburn [84], [85], Kreps [138], or Savage [174],
and to the survey articles in [10], [17]. The ideas and results of Section 2.1 go back to
classical references such as Debreu [57], Eilenberg [78], Milgram [151], and Rader
[163]. The theory of affine numerical representations in Section 2.2 was initiated by
von Neumann and Morgenstern [155] and further developed by Herstein and Milnor
[112]. The drastic consequences of the assumption that a favorable bet is rejected at
any level of wealth, as explained in Lemma 2.50, were stressed by Rabin [162]. The
discussion of the partial orders = , »= , and = in Sections 2.4 and 2.6 has a long
history. A first version of Theorem 2.58 is already contained in Hardy, Littlewood, and
Polya [107]. A complete treatment was given by Strassen [191]; this paper is also the
source for Section 2.6. The economic interpretation of Theorem 2.58 was developed by
Rothschild and Stiglitz [170], [171]. The analysis of robust preferences in Section 2.5
is mainly based on the ideas of Savage [174], Anscombe and Aumann [5], and Gilboa
and Schmeidler [104]. See Gilboa [103] for an alternative axiomatic approach to
the characterization in part (b) of Theorem 2.80, and [131] for a survey of related
developments. In the context of robust statistics, a special case of Proposition 2.85
appears in Huber [114].

Chapter 3: Given a preference relation of von Neumann—Morgenstern type, the
analysis of optimal portfolios in Section 3.1 or, more generally, of optimal asset profiles
in Section 3.3 is a standard exercise, both in microeconomic theory and in convex
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optimization. Section 3.1 shows that the existence of a solution is equivalent to the
absence to arbitrage; here we follow Rogers [168]. In the special case of exponential
utility, the construction of the optimal portfolio is equivalent to the minimization of
relative entropy as discussed in Section 3.2. This may be viewed as the financial
interpretation of general results on entropy minimization in Csiszar [43], [44]. The
methods for characterizing optimal asset profiles in Section 3.3 in terms of “first-order
conditions” are well-known; see, for example, [79] or [129], where they are developed
in greater generality. The optimization problem in Theorem 3.44, which is formulated
in terms of the partial order ;= = and involves the Hardy—Littlewood inequalities of
Theorem A.24, is less standard. Our discussion is based on Dybvig [77], Jouini and
Kallal [120] and on a proof of Dana and Meilijson, and we are obliged to Rose-
Anne Dana for introducing us to this topic; see [53] for further developments. As
to the existence of Arrow—Debreu equilibria discussed in Section 3.4, we refer to the
classical version in Debreu [56] and to the survey articles in [10]. In our financial
context, equilibrium allocations do no longer involve commodity bundles in Euclidean
space as in [56] but asset profiles described by random variables on a probability space.
This formulation of the equilibrium problem goes back to Borch [26], where it was
motivated by the problem of risk exchange in a reinsurance market. The systematic
analysis of the equilibrium problem in an infinite-dimensional setting was developed
by Bewley, Mas-Colell, and others; see [23] and, for example, [147], [148], [3].
In our introductory approach, the existence proof is reduced to an application of
Brouwer’s fixed point theorem. Here we benefitted from discussions with Peter Bank;
see also Dana [52]. Examples 3.51 and Example 3.52 are based on Biihlmann [31];
see also [32]. As mentioned in Remark 3.58, the equilibrium discussion of interest
rates requires an intertemporal setting; for a systematic discussion see, e.g., Duffie
[73] and, in a different conceptual framework, Bank and Riedel [16].

Chapter 4: The axiomatic approach to coherent measures of risk and their acceptance
sets was initiated by Artzner, Delbaen, Eber, and Heath [11], and most results of
Section 4.1 are based on this seminal paper. The extension to convex measures of risk
was given independently by Heath [110], Heath and Ku [111], Féllmer and Schied
[93], and Frittelli and Rosazza Gianin [100]. The robust representation theorems in
Section 4.2 are taken from [94]; the discussion of convex risk measures on a space
of continuous functions corrects an error in [94] and in the first edition of this book;
see also Kritschmer [134] for a further analysis. The representation theory on L™ as
presented in Section 4.3 was developed by Delbaen [58], [59]; for the connection to
the general duality theory as explained in Remarks 4.17 and 4.39 see [58], [59], [100],
[101]. Among the results on Value at Risk and its various modifications in Section 4.4,
Proposition 4.42 and Theorem 4.61 are taken from [11] and [58]. Average Value at Risk
isdiscussed, e.g., by Acerbi and Tasche [1], Delbaen [58], and Rockafellar and Uryasev
[167]. Remark 4.44 was pointed out to us by Ruszczynski; see [157]. The notation
V@R is taken from Pflug and Ruszczynski [158]. The representations of law-invariant
risk measures given in Section 4.5 were first obtained in the coherent case by Kusuoka
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[141]; see also Kunze [140] and Frittelli and Rosazza Gianin [101] for the extension
to the general convex case. Theorem 4.64 in Section 4.6 was first proved in [141]. The
representations of the core of a concave distortion in Theorem 4.73 and Corollary 4.74
are due to Carlier and Dana [34]. See also [35] for further applications. The study
of Choquet integrals with respect to general set functions as used in Section 4.7 was
started by Choquet [38]. The connections with coherent risk measures were observed
by Delbaen [58], [59]. The two directions in Theorem 4.82 are due to Dellacherie
[64] and Schmeidler [182], respectively. The proof via Lemma 4.83, which we give
here, is taken from Denneberg [67]. Theorem 4.87 is due to Kusuoka [141]. The
equivalence between (b) and (d) in Theorem 4.88 was first proved in [38], item (c)
was added in [182]. The proof given here is based on [67]. The first part of Section 4.8
is based on [93], the second on Carr, Geman, and Madan [36]. Section 4.9 is taken
from [93]. Theorem 4.106 is an extension of a classical result for Orlicz spaces; see
Krasnoselskii and Rutickii [136]. For some mathematical connections between risk
measures and premium principles in insurance see, e.g., Denneberg [68] and Wang
and Dhaene [196]. Market equilibria in terms of risk measures are studied in Heath
and Ku [111].

Chapter 5: Martingales in Finance have a long history; see, e.g., Samuelson [172].
In the context of dynamic arbitrage theory, martingales and martingale measures are
playing a central role, both in discrete and continuous time; for a historical overview
we refer again to Schachermayer [177]. The first four sections of this chapter are
based on Harrison and Kreps [108], Kreps [137], Harrison and Pliska [109], Dalang,
Morton, and Willinger [51], Stricker [193], Schachermayer [175], Jacka [117], Rogers
[168], Ansel and Stricker [9], and Kabanov and Kramkov [121]. The binomial model
of Section 5.5 was introduced by Cox, Ross, and Rubinstein in [42]. Geometric
Brownian motion, which appears in Section 5.7 as the diffusion limit of binomial
models, was proposed since the late 1950s by Samuelson and others as a model
for price fluctuations in continuous time, following the re-discovery of the linear
Brownian motion model of Bachelier [15]; see Samuelson [173] and Cootner [41].
The corresponding dynamic theory of arbitrage pricing in continuous time goes back
to Black and Scholes [24] and Merton [150]. A Black—Scholes type formula for option
pricing appears in Sprenkle [190] in an ad hoc manner, without the arbitrage argument
introduced by Black and Scholes. The approximation of Black—Scholes prices for
various options by arbitrage-free prices in binomial models goes back to Cox, Ross,
and Rubinstein [42]. A functional version of Theorem 5.53, based on Donsker’s
invariance principle, can be found in [73].

Chapter 6: The dynamic arbitrage theory for American options begins with Ben-
soussan [21] and Karatzas [124]. A survey is given in Myeni [154]. The theory of
optimal stopping problems as presented in Sections 6.1 and 6.2 was initiated by Snell
[189]; see [156] for a systematic introduction. Stability under pasting as discussed in
Section 6.4 has appeared under several names in various contexts; see Delbaen [60]
for a number of references and for an extension to continuous time. Our discussion
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of upper and lower Snell envelopes in Section 6.5 uses ideas from Karatzas and Kou
[127] and standard techniques from dynamic programming. The application to the
time consistency of dynamic coherent risk measures recovers results by Artzner et al.
[12], [13], [14] and Riedel [165]; see also Delbaen [60].

Chapter 7: Optional decompositions, or uniform Doob decompositions as we call
them, and the resulting construction of superhedging strategies were first obtained
by El Karoui and Quenez [80] in a jump-diffusion model. In a general semimartin-
gale setting, the theory was developed by Kramkov [135] and Follmer and Kabanov
[89]. From a mathematical point of view, the existence of martingale measures with
marginals determined by given option prices in Theorem 7.25 is a corollary of Strassen
[191]; continuous-time analoga were proved by Doob [70] and Kellerer [132]. For
the economic interpretation, see, e.g., Breeden and Litzenberger [28]. The results on
superhedging of exotic derivatives by means of plain vanilla options stated in Theo-
rems 7.27,7.31,7.33, and Corollary 7.34 are due to Hobson [113] and Brown, Hobson,
and Rogers [29]; they are related to martingale inequalities of Dubins and Gilat [71].

Chapter 8: The analysis of quantile hedging was triggered by a talk of D. Heath
in March 1995 at the Isaac Newton Institute on the results in Kulldorf [139], where
an optimization problem for Brownian motion with drift is reduced to the Neyman—
Pearson lemma. Section 8.1 is based on Follmer and Leukert [91]; see also Karatzas
[125], Cvitanic and Spivak [50], Cvitanic and Karatzas [49], and Browne [30]. The
results in Section 8.2 on minimizing the shortfall risk are taken from F6llmer and
Leukert [92]; see also Leukert [145], Cvitanic and Karatzas [48], Cvitanic [45], and
Pham [159].

Chapter 9: In continuous-time models, dynamic arbitrage pricing with portfolio
constraints was considered by Cvitanic and Karatzas [46], [47]. In a discrete-time
model with convex constraints, absence of arbitrage was characterized by Carrassus,
Pham, and Touzi [33]. In a general semimartingale setting, Follmer and Kramkov
[90] proved a uniform Doob decomposition and superhedging duality theorems for a
predictably convex set of admissible trading strategies and for American contingent
claims; see also Karatzas and Kou [127].

Chapter 10: The idea of quadratic risk minimization for hedging strategies goes back
to Follmer and Sondermann [97], where the optimality criterion was formulated with
respect to a martingale measure. Extensions to the general case and the construc-
tion of minimal martingale measures were developed by Follmer and Schweizer [96]
and Schweizer; see, e.g., [183], [184]. Our exposition also uses arguments from
Follmer and Schweizer [95], Schil [179], and Li and Xia [146]. Variance-optimal
hedging was introduced by Duffie and Richardson [75] and further developed by
Schweizer and others; the discrete-time theory as presented in Section 10.3 is based
on Schweizer [185]. Melnikov and Nechaev [149] give an explicit formula for a
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variance-optimal strategy without condition (10.22); in fact, they show that their for-
mula always defines a variance-optimal strategy if one does not insist on the square-
integrability of the gains process at intermediate times. For a survey on related results,
we refer to [186].
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