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Preface

This book was written for an introductory one-semester or two-quarter course
in probability and statistics for students in engineering and applied sciences. No
previous knowledge of probability or statistics is presumed but a good under-
standing of calculus is a prerequisite for the material.

The development of this book was guided by a number of considerations
observed over many years of teaching courses in this subject area, including the
following:.As an introductory course, a sound and rigorous treatment of the basic

principles is imperative for a proper understanding of the subject matter
and for confidence in applying these principles to practical problem solving.
A student, depending upon his or her major field of study, will no doubt
pursue advanced work in this area in one or more of the many possible
directions. How well is he or she prepared to do this strongly depends on
his or her mastery of the fundamentals.. It is important that the student develop an early appreciation for applica-
tions. Demonstrations of the utility of this material in nonsuperficial applica-
tions not only sustain student interest but also provide the student with
stimulation to delve more deeply into the fundamentals..Most of the students in engineering and applied sciences can only devote one
semester or two quarters to a course of this nature in their programs.
Recognizing that the coverage is time limited, it is important that the material
be self-contained, representing a reasonably complete and applicable body of
knowledge.

The choice of the contents for this book is in line with the foregoing
observations. The major objective is to give a careful presentation of the
fundamentals in probability and statistics, the concept of probabilistic model-
ing, and the process of model selection, verification, and analysis. In this text,
definitions and theorems are carefully stated and topics rigorously treated
but care is taken not to become entangled in excessive mathematical details.
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Practical examples are emphasized; they are purposely selected from many
different fields and not slanted toward any particular applied area. The same
objective is observed in making up the exercises at the back of each chapter.

Because of the self-imposed criterion of writing a comprehensive text and
presenting it within a limited time frame, there is a tight continuity from one
topic to the next. Some flexibility exists in Chapters 6 and 7 that include
discussions on more specialized distributions used in practice. For example,
extreme-value distributions may be bypassed, if it is deemed necessary, without
serious loss of continuity. Also, Chapter 11 on linear models may be deferred to
a follow-up course if time does not allow its full coverage.

It is a pleasure to acknowledge the substantial help I received from students
in my courses over many years and from my colleagues and friends. Their
constructive comments on preliminary versions of this book led to many
improvements. My sincere thanks go to Mrs. Carmella Gosden, who efficiently
typed several drafts of this book. As in all my undertakings, my wife, Dottie,
cared about this project and gave me her loving support for which I am deeply
grateful.

T.T. Soong
Buffalo, New York

xiv Preface
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Introduction

At present, almost all undergraduate curricula in engineering and applied
sciences contain at least one basic course in probability and statistical inference.
The recognition of this need for introducing the ideas of probability theory in
a wide variety of scientific fields today reflects in part some of the profound
changes in science and engineering education over the past 25 years.

One of the most significant is the greater emphasis that has been placed upon
complexity and precision. A scientist now recognizes the importance of study-
ing scientific phenomena having complex interrelations among their compon-
ents; these components are often not only mechanical or electrical parts but
also ‘soft-science’ in nature, such as those stemming from behavioral and social
sciences. The design of a comprehensive transportation system, for example,
requires a good understanding of technological aspects of the problem as well
as of the behavior patterns of the user, land-use regulations, environmental
requirements, pricing policies, and so on.

Moreover, precision is stressed – precision in describing interrelationships
among factors involved in a scientific phenomenon and precision in predicting
its behavior. This, coupled with increasing complexity in the problems we face,
leads to the recognition that a great deal of uncertainty and variability are
inevitably present in problem formulation, and one of the mathematical tools
that is effective in dealing with them is probability and statistics.

Probabilistic ideas are used in a wide variety of scientific investigations
involving randomness. Randomness is an empirical phenomenon characterized
by the property that the quantities in which we are interested do not have
a predictable outcome under a given set of circumstances, but instead there is
a statistical regularity associated with different possible outcomes. Loosely
speaking, statistical regularity means that, in observing outcomes of an exper-
iment a large number of times (say n), the ratio m/n, where m is the number of
observed occurrences of a specific outcome, tends to a unique limit as n
becomes large. For example, the outcome of flipping a coin is not predictable
but there is statistical regularity in that the ratio m/n approaches 1

2
for either
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heads or tails. Random phenomena in scientific areas abound: noise in radio
signals, intensity of wind gusts, mechanical vibration due to atmospheric dis-
turbances, Brownian motion of particles in a liquid, number of telephone calls
made by a given population, length of queues at a ticket counter, choice of
transportation modes by a group of individuals, and countless others. It is not
inaccurate to say that randomness is present in any realistic conceptual model
of a real-world phenomenon.

1.1 ORGANIZATION OF TEXT

This book is concerned with the development of basic principles in constructing
probability models and the subsequent analysis of these models. As in other
scientific modeling procedures, the basic cycle of this undertaking consists of
a number of fundamental steps; these are schematically presented in Figure 1.1.
A basic understanding of probability theory and random variables is central to
the whole modeling process as they provide the required mathematical machin-
ery with which the modeling process is carried out and consequences deduced.
The step from B to C in Figure 1.1 is the induction step by which the structure
of the model is formed from factual observations of the scientific phenomenon
under study. Model verification and parameter estimation (E) on the basis of
observed data (D) fall within the framework of statistical inference. A model

B: Factual observations
and nature of scientific

phenomenon

D: Observed data

F: Model analysis and deduction

E: Model verification and parameter estimation

C: Construction of model structure

A: Probability and random variables

Figure 1.1 Basic cycle of probabilistic modeling and analysis

2 Fundamentals of Probability and Statistics for Engineers
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may be rejected at this stage as a result of inadequate inductive reasoning or
insufficient or deficient data. A reexamination of factual observations or add-
itional data may be required here. Finally, model analysis and deduction are
made to yield desired answers upon model substantiation.

In line with this outline of the basic steps, the book is divided into two parts.
Part A (Chapters 2–7) addresses probability fundamentals involved in steps
A ! C, B ! C, and E ! F (Figure 1.1). Chapters 2–5 provide these funda-
mentals, which constitute the foundation of all subsequent development. Some
important probability distributions are introduced in Chapters 6 and 7. The
nature and applications of these distributions are discussed. An understanding
of the situations in which these distributions arise enables us to choose an
appropriate distribution, or model, for a scientific phenomenon.

Part B (Chapters 8–11) is concerned principally with step D ! E (Figure 1.1),
the statistical inference portion of the text. Starting with data and data repre-
sentation in Chapter 8, parameter estimation techniques are carefully developed
in Chapter 9, followed by a detailed discussion in Chapter 10 of a number of
selected statistical tests that are useful for the purpose of model verification. In
Chapter 11, the tools developed in Chapters 9 and 10 for parameter estimation
and model verification are applied to the study of linear regression models, a very
useful class of models encountered in science and engineering.

The topics covered in Part B are somewhat selective, but much of the
foundation in statistical inference is laid. This foundation should help the
reader to pursue further studies in related and more advanced areas.

1.2 PROBABILITY TABLES AND COMPUTER SOFTWARE

The application of the materials in this book to practical problems will require
calculations of various probabilities and statistical functions, which can be time
consuming. To facilitate these calculations, some of the probability tables are
provided in Appendix A. It should be pointed out, however, that a large
number of computer software packages and spreadsheets are now available
that provide this information as well as perform a host of other statistical
calculations. As an example, some statistical functions available in Microsoft�

ExcelTM 2000 are listed in Appendix B.

1.3 PREREQUISITES

The material presented in this book is calculus-based. The mathematical pre-
requisite for a course using this book is a good understanding of differential
and integral calculus, including partial differentiation and multidimensional
integrals. Familiarity in linear algebra, vectors, and matrices is also required.

Introduction 3
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Part A

Probability and Random Variables
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2

Basic Probability Concepts

The mathematical theory of probability gives us the basic tools for constructing
and analyzing mathematical models for random phenomena. In studying a
random phenomenon, we are dealing with an experiment of which the outcome
is not predictable in advance. Experiments of this type that immediately come
to mind are those arising in games of chance. In fact, the earliest development
of probability theory in the fifteenth and sixteenth centuries was motivated by
problems of this type (for example, see Todhunter, 1949).

In science and engineering, random phenomena describe a wide variety of
situations. By and large, they can be grouped into two broad classes. The first
class deals with physical or natural phenomena involving uncertainties. Uncer-
tainty enters into problem formulation through complexity, through our lack
of understanding of all the causes and effects, and through lack of information.
Consider, for example, weather prediction. Information obtained from satellite
tracking and other meteorological information simply is not sufficient to permit
a reliable prediction of what weather condition will prevail in days ahead. It is
therefore easily understandable that weather reports on radio and television are
made in probabilistic terms.

The second class of problems widely studied by means of probabilistic
models concerns those exhibiting variability. Consider, for example, a problem
in traffic flow where an engineer wishes to know the number of vehicles cross-
ing a certain point on a road within a specified interval of time. This number
varies unpredictably from one interval to another, and this variability reflects
variable driver behavior and is inherent in the problem. This property forces us
to adopt a probabilistic point of view, and probability theory provides a
powerful tool for analyzing problems of this type.

It is safe to say that uncertainty and variability are present in our modeling of
all real phenomena, and it is only natural to see that probabilistic modeling and
analysis occupy a central place in the study of a wide variety of topics in science
and engineering. There is no doubt that we will see an increasing reliance on the
use of probabilistic formulations in most scientific disciplines in the future.

Fundamentals of Probability and Statistics for Engineers T.T. Soong  2004 John Wiley & Sons, Ltd
ISBNs: 0-470-86813-9 (HB) 0-470-86814-7 (PB)
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2.1 ELEMENTS OF SET THEORY

Our interest in the study of a random phenomenon is in the statements we can
make concerning the events that can occur. Events and combinations of events
thus play a central role in probability theory. The mathematics of events is
closely tied to the theory of sets, and we give in this section some of its basic
concepts and algebraic operations.

A set is a collection of objects possessing some common properties. These
objects are called elements of the set and they can be of any kind with any
specified properties. We may consider, for example, a set of numbers, a set of
mathematical functions, a set of persons, or a set of a mixture of things. Capital
letters , , , , , . . . shall be used to denote sets, and lower-case letters

, , , , . . . to denote their elements. A set is thus described by its elements.
Notationally, we can write, for example,

which means that set has as its elements integers 1 through 6. If set contains
two elements, success and failure, it can be described by

where and are chosen to represent success and failure, respectively. For a set
consisting of all nonnegative real numbers, a convenient description is

We shall use the convention

to mean ‘element belongs to set ’.
A set containing no elements is called an empty or null set and is denoted by .

We distinguish between sets containing a finite number of elements and those
having an infinite number. They are called, respectively, finite sets and infinite
sets. An infinite set is called enumerable or countable if all of its elements can be
arranged in such a way that there is a one-to-one correspondence between them
and all positive integers; thus, a set containing all positive integers 1, 2, . . . is a
simple example of an enumerable set. A nonenumerable or uncountable set is one
where the above-mentioned one-to-one correspondence cannot be established. A
simple example of a nonenumerable set is the set C described above.

If every element of a set A  is also an element of a set B, the set A  is called
a subset of B  and this is represented symbolically by

8 Fundamentals of Probability and Statistics for Engineers
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Example 2.1. Let and Then since every
element of is also an element of . This relationship can also be presented
graphically by using a Venn diagram, as shown in Figure 2.1. The set
occupies the interior of the larger circle and the shaded area in the figure.

It is clear that an empty set is a subset of any set. When both and
, set is then equal to , and we write

We now give meaning to a particular set we shall call space. In our develop-
ment, we consider only sets that are subsets of a fixed (nonempty) set. This
‘largest’ set containing all elements of all the sets under consideration is called
space and is denoted by the symbol S .

Consider a subset A  in S . The set of all elements in S  that are not elements of
A  is called the complement  of A , and we denote it by A . A Venn diagram
showing A  and A  is given in F igure 2.2 in which space S  is shown as a rectangle
and A is the shaded area. We note here that the following relations clearly hold:

2.1.1 SET OPERATIONS

Let us now consider some algebraic operations of sets A, B, C , . . . that are
subsets of space S .

The union or sum  of A  and B, denoted by , is the set of all elements
belonging to A  or B  or both.

B

A

Figure 2.1 Venn diagram for

AS A

Figure 2. 2 A and A

Basic Probability Concepts 9
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The intersection or product of A  and B, written as A   B, or simply AB , is the
set of all elements that are common to A  and B.

In terms of Venn diagrams, results of the above operations are shown in
Figures 2.3(a) and 2.3(b) as sets having shaded areas.

If AB   , sets A  and B  contain no common elements, and we call A  and B
disjoint. The symbol ‘ ’ shall be reserved to denote the union of two disjoint
sets when it is advantageous to do so.

Ex ample 2. 2. Let A  be the set of all men and B consist of all men and women
over 18 years of age. Then the set A B  consists of all men as well as all women
over 18 years of age. The elements of A  B are all men over 18 years of age.

Example 2.3. Let S be the space consisting of a real-line segment from 0 to 10
and let A  and B  be sets of the real-line segments from 1–7 and 3–9 respectively.
Line segments belonging to and B are indicated in Figure 2.4.
Let us note here that, by definition, a set and its complement are always disjoint.

The definitions of union and intersection can be directly generalized to those
involving any arbitrary number (finite or countably infinite) of sets. Thus, the set

A
B

(a) A  B

A
B

(b) A  B

Figure 2. 3 (a) Union and (b) intersection of sets A  and B

A

A

A  B

A  B

B

B

0 2 4 6 8 10

Figure 2.4 Sets defined in Example 2.3

10 Fundamentals of Probability and Statistics for Engineers

�

� �



�

∪ ∩

�

� � �� � � �� �

�! � �) � � � � �� �
��
$�!

�$ �)�9�

∪

∩

�

TLFeBOOK



stands for the set of all elements belonging to one or more of the sets A j ,
j  1, 2, . . . , n. The intersection

is the set of all elements common to all A j, j  1, 2, . . . , n.  The  sets
A j, j 1, 2, . . . , n, are disjoint if

Using Venn diagrams or analytical procedures, it is easy to verify that union
and intersection operations are associative, commutative, and distributive; that is,

Clearly, we also have

Moreover, the following useful relations hold, all of which can be easily verified
using Venn diagrams:

Basic Probability Concepts 11
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The second relation in Equations (2.10) gives the union of two sets in terms
of the union of two disjoint sets. As we will see, this representation is useful in
probability calculations. The last two relations in Equations (2.10) are referred
to as DeMorgan’s laws.

2. 2 S AM P L E S P A CE AN D P RO BA BILIT Y M E AS U RE

In probability theory, we are concerned with an experiment with an outcome
depending on chance, which is called a random experiment. It is assumed that all
possible distinct outcomes of a random experiment are known and that they are
elements of a fundamental set known as the sample space. Each possible out-
come is called a sample point, and an event is generally referred to as a subset of
the sample space having one or more sample points as its elements.

It is important to point out that, for a given random experiment, the
associated sample space is not unique and its construction depends upon the
point of view adopted as well as the questions to be answered. For example,
100 resistors are being manufactured by an industrial firm. Their values,
owing to inherent inaccuracies in the manufacturing and measurement pro-
cesses, may range from 99 to 101 . A measurement taken of a resistor is a
random experiment for which the possible outcomes can be defined in a variety
of ways depending upon the purpose for performing such an experiment. On

is considered acceptable, and unacceptable otherwise, it is adequate to define
the sample space as one consisting of two elements: ‘acceptable’ and ‘unaccept-
able’. On the other hand, from the viewpoint of another user, possible

, 99.5–100 , 100–100.5 , and
100.5–101 . The sample space in this case has four sample points. F inally, if
each possible reading is a possible outcome, the sample space is now a real line
from 99 to 101 on the ohm scale; there is an uncountably infinite number of
sample points, and the sample space is a nonenumerable set.

To illustrate that a sample space is not fixed by the action of performing the
experiment but by the point of view adopted by the observer, consider an
energy negotiation between the United States and another country. From the
point of view of the US government, success and failure may be looked on as
the only possible outcomes. To the consumer, however, a set of more direct
possible outcomes may consist of price increases and decreases for gasoline
purchases.

The description of sample space, sample points, and events shows that they
fit nicely into the framework of set theory, a framework within which the
analysis of outcomes of a random experiment can be performed. All relations
between outcomes or events in probability theory can be described by sets and
set  operations.  Consider  a  space  S  of  elements  a, b, c, . . . ,  and  with  subsets
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A , B , C , . . . .  Some  of  these  corresponding sets and probability meanings are
given in Table 2.1. As Table 2.1 shows, the empty set is considered an
impossible event since no possible outcome is an element of the empty set.
Also, by ‘occurrence of an event’ we mean that the observed outcome is an
element of that set. For example, event is said to occur if and only if the
observed outcome is an element of or or both.

Example 2.4. Consider an experiment of counting the number of left-turning
cars at an intersection in a group of 100 cars. The possible outcomes (possible
numbers of left-turning cars) are 0, 1, 2, . . . , 100. Then, the sample space S is

. Each element of S  is a sample point or a possible out-
come. The subset is the event that there are 50 or fewer
cars turning left. The subset is the event that between 40
and 60 (inclusive) cars take left turns. The set is the event of 60 or fewer
cars turning left. The set is the event that the number of left-turning cars
is between 40 and 50 (inclusive). Let Events A  and C are
mutually exclusive since they cannot occur simultaneously. Hence, disjoint sets
are mutually exclusive events in probability theory.

2.2.1 AXIOMS OF PROBABILITY

We now introduce the notion of a probability function. Given a random experi-
ment, a finite number P(A) is assigned to every event A  in the sample space S  of
all possible events. The number P(A ) is a function of set A  and is assumed to
be defined for all sets in S . It is thus a set function, and P(A)  is called the
probability measure of A  or simply the probability of A . It is assumed to have the
following properties (axioms of probability):

Table 2.1 Corresponding statements in set theory and probability

Set theory Probability theory
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Axiom 1: P(A)  0 (nonnegative).
Axiom 2: P(S) 1 (normed).
Axiom 3: for a countable collection of mutually exclusive events A 1, A 2, . . . in S ,

These three axioms define a countably additive and nonnegative set function
P(A), A S . As we shall see, they constitute a sufficient set of postulates from
which all useful properties of the probability function can be derived. Let us
give below some of these important properties.

F irst, P( ) 0. Since S  and are disjoint, we see from Axiom 3 that

It then follows from Axiom 2 that

or

Second, if A  C , then P(A)  P(C). Since A  C , one can write

where B  is a subset of C and disjoint with A . Axiom 3 then gives

Since P(B) 0 as required by Axiom 1, we have the desired result.
Third, given two arbitrary events A  and B, we have

In order to show this, let us write A  B  in terms of the union of two
mutually exclusive events. From the second relation in Equations (2.10),
we write
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Hence, using Axiom 3,

Furthermore, we note

Hence, again using Axiom 3,

or

Substitution of this equation into Equation (2.13) yields Equation (2.12).
Equation (2.12) can also be verified by inspecting the Venn diagram in Figure

2.5. The sum P(A)  P(B) counts twice the events belonging to the shaded
area AB . Hence, in computing P(A  B), the probability associated with
one AB  must be subtracted from P(A) P(B), giving Equation (2.12) (see
Figure 2.5).

The important result given by Equation (2.12) can be immediately general-
ized to the union of three or more events. Using the same procedure, we can
show that, for arbitrary events A, B, and C,

A

B

Figure 2.5 Venn diagram for derivation of Equation (2.12)
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and, in the case of n events,

where Aj , j 1, 2, . . . , n, are arbitrary events.

Example 2.5. Let us go back to Example 2.4 and assume that probabilities
P(A), P(B), and P(C) are known. We wish to compute P(A  B) and P(A  C).

Probability P(A C), the probability of having either 50 or fewer cars turn-
ing left or between 80 to 100 cars turning left, is simply P(A) P(C). This
follows from Axiom 3, since A  and C are mutually exclusive. However,
P(A  B), the probability of having 60 or fewer cars turning left, is found from

The information ine this probability
and we need the additional information, P(AB) , which is the probability of
having between 40 and 50 cars turning left.

With the statement of three axioms of probability, we have completed the
mathematical description of a random experiment. It consists of three funda-
mental constituents: a  sample space S , a  collection  of events A, B, . . . , and  the
probability function P. These three quantities constitute a probability space
associated with a random experiment.

2.2.2 ASSIGNMENT OF PROBABILITY

The axioms of probability define the properties of a probability measure, which are
consistent with our intuitive notions. However, they do not guide us in assigning
probabilities to various events. For problems in applied sciences, a natural way to
assign the probability of an event is through the observation of relative frequency.
Assuming that a random experiment is performed a large number of times, say n,
then for any event A  let nA  be the number of occurrences of A  in the n trials and
define the ratio nA /n as the relative frequency of A . Under stable or statistical
regularity conditions, it is expected that this ratio will tend to a unique limit as n
becomes large. This limiting value of the relative frequency clearly possesses the
properties required of the probability measure and is a natural candidate for
the probability of A . This interpretation is used, for example, in saying that the
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probability of ‘heads’ in flipping a coin is 1/2. The relative frequency approach to
probability assignment is objective and consistent with the axioms stated in Section
2.2.1 and is one commonly adopted in science and engineering.

Another common but more subjective approach to probability assignment is
that of relative likelihood. When it is not feasible or is impossible to perform an
experiment a large number of times, the probability of an event may be assigned
as a result of subjective judgement. The statement ‘there is a 40% probability of
rain tomorrow’ is an example in this interpretation, where the number 0.4 is
assigned on the basis of available information and professional judgement.

In most problems considered in this book, probabilities of some simple but
basic events are generally assigned by using either of the two approaches. Other
probabilities of interest are then derived through the theory of probability.
Example 2.5 gives a simple illustration of this procedure where the probabilities
of interest, P(A  B) and P(A  C), are derived upon assigning probabilities to
simple events A, B, and C.

2.3 STATISTICAL INDEPENDENCE

Let us pose the following question: given individual probabilities P(A) and P(B)
of two events A  and B, what is P(AB) , the probability that both A  and B  will
occur? Upon little reflection, it is not difficult to see that the knowledge of P(A)
and P(B) is not sufficient to determine P(AB) in general. This is so because
P(AB) deals with joint behavior of the two events whereas P(A) and P(B) are
probabilities associated with individual events and do not yield information on
their joint behavior. Let us then consider a special case in which the occurrence
or nonoccurrence of one does not affect the occurrence or nonoccurrence of the
other. In this situation events A  and B are called statistically independent or
simply independent and it is formalized by Definition 2.1.

D ef inition 2. 1. Two events A  and B are said to be independent if and only if

To show that this definition is consistent with our intuitive notion of inde-
pendence, consider the following example.

Ex ample 2. 6. In a large number of trials of a random experiment, let nA  and
nB be, respectively, the numbers of occurrences of two outcomes A  and B, and
let nAB  be the number of times both A  and B  occur. Using the relative frequency
interpretation, the ratios nA /n and nB /n tend to P(A) and P(B), respectively, as n
becomes large. Similarly, nAB/n tends to P(AB). Let us now confine our atten-
tion to only those outcomes in which A  is realized. If A  and B  are independent,
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we expect that the ratio nAB /nA  also tends to P(B) as nA  becomes large. The
independence assumption then leads to the observation that

This then gives

or, in the limit as n becomes large,

which is the definition of independence introduced above.

Example 2.7. In launching a satellite, the probability of an unsuccessful
launch is q. What is the probability that two successive launches are unsuccess-
ful? Assuming that satellite launchings are independent events, the answer to
the above question is simply q2. One can argue that these two events are not
really completely independent, since they are manufactured by using similar
processes and launched by the same launcher. It is thus likely that the failures of
both are attributable to the same source. However, we accept this answer as
reasonable because, on the one hand, the independence assumption is accept-
able since there are a great deal of unknowns involved, any of which can be
made accountable for the failure of a launch. On the other hand, the simplicity
of computing the joint probability makes the independence assumption attract-
ive. In physical problems, therefore, the independence assumption is often
made whenever it is considered to be reasonable.

Care should be exercised in extending the concept of independence to more
than two events. In the case of three events, A1, A 2, and A 3, for example, they
are mutually independent if and only if

and

Equation (2.18) is required because pairwise independence does not generally
lead to mutual independence. Consider, for example, three events A1, A 2, and
A 3 defined by
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where B1, B2, and B3 are mutually exclusive, each occurring with probability 1
4.

It is easy to calculate the following:

We see that Equation (2.17) is satisfied for every j and k  in this case, but
Equation (2.18) is not. In other words, events A 1, A 2, and A 3 are pairwise
independent but they are not mutually independent.

In general, therefore, we have Definition 2.2 for mutual independence of
n events.

D ef inition 2. 2. Events A 1, A 2, . . . , A n are mutually independent if and only if,
with k1, k2, . . . , km being any set of integers such that 1 k1 < k2 . . . <  km n
and m 2, 3, . . . , n,

The total number of equations defined by Equation (2.19) is 2n n 1.

Example 2.8. Problem: a system consisting of five components is in working
order only when each component is functioning (‘good’). Let S i, i  1, . . . , 5, be
the event that the ith component is good and assume P(Si) pi. What is the
probability q that the system fails?

Answer: assuming that the five components perform in an independent
manner, it is easier to determine q through finding the probability of system
success p. We have from the statement of the problem

Equation (2.19) thus gives, due to mutual independence of S1, S 2, . . . , S5,

Hence,
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An expression for q may also be obtained by noting that the system fails if
any one or more of the five components fail, or

where S i is the complement of Si and represents a bad ith component. Clearly,
. Since events 1, . . . , 5, are not mutually exclusive, the

calculation of q with use of Equation (2.22) requires the use of Equation (2.15).
Another approach is to write the unions in Equation (2.22) in terms of unions of
mutually exclusive events so that Axiom 3 (Section 2.2.1) can be directly utilized.
The result is, upon applying the second relation in Equations (2.10),

where the ‘ ’ signs are replaced by ‘ ’ signs on the right-hand side to stress the
fact that they are mutually exclusive events. Axiom 3 then leads to

and, using statistical independence,

Some simple algebra will show that this result reduces to Equation (2.21).

Let us mention here that probability p is called the reliability of the system in
systems engineering.

2.4 CONDITIONAL PROBABILITY

The concept of conditional probability is a very useful one. Given two events A
and B  associated with a random experiment, probability  is defined as
the conditional probability of A , given that B has occurred. Intuitively, this
probability can be interpreted by means of relative frequencies described in
Example 2.6, except that events A  and B  are no longer assumed to be independ-
ent. The number of outcomes where both A  and B  occur is nAB . Hence, given
that event B  has occurred, the relative frequency of A  is then nAB /nB . Thus we
have, in the limit as nB becomes large,

This relationship leads to Definition 2.3.
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D ef inition 2 . 3. The conditional probability of A  given that B  has occurred is
given by

Definition 2.3 is meaningless if P(B) 0.
It is noted that, in the discussion of conditional probabilities, we are dealing

with a contracted sample space in which B  is known to have occurred. In other
words, B  replaces S  as the sample space, and the conditional probability P(A B)
is found as the probability of A  with respect to this new sample space.

In the event that A  and B  are independent, it implies that the occurrence of B
has no effect on the occurrence or nonoccurrence of A . We thus expect

and Equation (2.24) gives

or

which is precisely the definition of independence.
It is also important to point out that conditional probabilities are probabilities

(i.e. they satisfy the three axioms of probability). Using Equation (2.24), we see that
the first axiom is automatically satisfied. For the second axiom we need to show that

This is certainly true, since

As for the third axiom, if A 1, A 2, . . . are mutually exclusive, then A 1B, A 2B, . . .
are also mutually exclusive. Hence,
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and the third axiom holds.
The definition of conditional probability given by Equation (2.24) can be

used not only to compute conditional probabilities but also to compute joint
probabilities, as the following examples show.

Example 2.9. Problem: let us reconsider Example 2.8 and ask the following
question: what is the conditional probability that the first two components are
good given that (a) the first component is good and (b) at least one of the two
is good?

Answer: the event S1S 2 means both are good components, and S 1 S 2 is the
event that at least one of the two is good. Thus, for question (a) and in view of
Equation (2.24),

This result is expected since S1 and S2 are independent. Intuitively, we see that
this question is equivalent to one of computing P(S 2).

For question (b), we have

Example 2.10. Problem: in a game of cards, determine the probability of
drawing, without replacement, two aces in succession.

Answer: let A 1 be the event that the first card drawn is an ace, and similarly
for A 2. We wish to compute P(A 1A 2). From Equation (2.24) we write

Now, and (there are 51 cards left and three of
them are aces). Therefore,
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Equation (2.25) is seen to be useful for finding joint probabilities. Its exten-
sion to more than two events has the form

where P(A i) > 0 for all i. This can be verified by successive applications of
Equation (2.24).

In another direction, let us state a useful theorem relating the probability of
an event to conditional probabilities.

Theorem 2. 1: t heorem of t ot a l probabilit y . Suppose that events B1, B2, . . . ,  and
Bn are mutually exclusive and exhaustive (i.e. S  B1 B2 Bn). Then,
for an arbitrary event A ,

Proof of Theorem 2.1: referring to the Venn diagram in Figure 2.6, we can
clearly write A  as the union of mutually exclusive events AB 1, AB 2, . . . , AB n (i.e.

). Hence,

which gives Equation (2.27) on application of the definition of conditional
probability.

AB1

B1

B2

B3

B5

B4

AB3

AB2 AB4

AB5

S

A

Figure 2.6 Venn diagram associated with total probability
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The utility of this result rests with the fact that the probabilities in the sum
in Equation (2.27) are often more readily obtainable than the probability of A  itself.

Example 2.11. Our interest is in determining the probability that a critical
level of peak flow rate is reached during storms in a storm-sewer system on the
basis of separate meteorological and hydrological measurements.

Let Bi, i 1, 2, 3, be the different levels (low, medium, high) of precipitation
caused by a storm and let 1, 2, denote, respectively, critical and non-
critical levels of peak flow rate. Then probabilities P(Bi) can be estimated from
meteorological records and can be estimated from runoff analysis.
Since B1, B2, and B3 constitute a set of mutually exclusive and exhaustive
events, the desired probability, P(A 1), can be found from

Assume the following information is available:

and that are as shown in Table 2.2. The value of P(A1) is given by

Let us observe that in Table 2.2, the sum of the probabilities in each column is
1.0 by virtue of the conservation of probability. There is, however, no such
requirement for the sum of each row.

A useful result generally referred to as Bayes’ theorem can be derived based
on the definition of conditional probability. Equation (2.24) permits us to write

and

Since we have Theorem 2.2.

Table 2.2 Probabilities for Example 2.11

0.0 0.2 0.6
1.0 0.8 0.4
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Theorem 2. 2: Bay es’ t heorem. Let A  and B  be two arbitrary events with
0 and 0. Then:

Combining this theorem with the total probability theorem we have a useful
consequence:

for any i where events Bj represent a set of mutually exclusive and exhaustive
events.

The simple result given by Equation (2.28) is called Bayes’ theorem after the
English philosopher Thomas Bayes and is useful in the sense that it permits us
to evaluate a posteriori probability in terms of a priori information P (B)
and , as the following examples illustrate.

Example 2.12. Problem: a simple binary communication channel carries
messages by using only two signals, say 0 and 1. We assume that, for a given
binary channel, 40% of the time a 1 is transmitted; the probability that a
transmitted 0 is correctly received is 0.90, and the probability that a transmitted
1 is correctly received is 0.95. Determine (a) the probability of a 1 being
received, and (b) given a 1 is received, the probability that 1 was transmitted.

Answer: let

event that 1 is transmitted
event that 0 is transmitted
event that 1 is received
event that 0 is received

The information given in the problem statement gives us

and these are represented diagrammatically in Figure 2.7.
For part (a) we wish to find P(B). Since A  and A  are mutually exclusive and

exhaustive, it follows from the theorem of total probability [Equation (2.27)]
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that

The probability of interest in part (b) is and this can be found using
Bayes’ theorem [Equation (2.28)]. It is given by:

It is worth mentioning that P(B) in this calculation is found by means of the
total probability theorem. Hence, Equation (2.29) is the one actually used here
in finding In fact, probability P (A) in Equation (2.28) is often more
conveniently found by using the total probability theorem.

Example 2.13. Problem: from Example 2.11, determine the probabil-
ity that a noncritical level of peak flow rate will be caused by a medium-level storm.

Answer: from Equations (2.28) and (2.29) we have

In closing, let us introduce the use of tree diagrams for dealing with more
complicated experiments with ‘limited memory’. Consider again Example 2.12

0.4

0.6

0.95

0.9

0.05

0.1

B

A B

A

Figure 2.7 Probabilities associated with a binary channel, for Example 2.12
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by adding a second stage to the communication channel, with Figure 2.8
showing all the associated probabilities. We wish to determine P(C), the prob-
ability of receiving a 1 at the second stage.

Tree diagrams are useful for determining the behavior of this system when the
system has a ‘one-stage’ memory; that is, when the outcome at the second stage is
dependent only on what has happened at the first stage and not on outcomes at
stages prior to the first. Mathematically, it follows from this property that

The properties described above are commonly referred to as Markovian
properties. Markov processes represent an important class of probabilistic
process that are studied at a more advanced level.

Suppose that Equations (2.30) hold for the system described in Figure 2.8.
The tree diagram gives the flow of conditional probabilities originating from
the source. Starting from the transmitter, the tree diagram for this problem has
the appearance shown in Figure 2.9. The top branch, for example, leads to the
probability of the occurrence of event ABC , which is, according to Equations
(2.26) and (2.30),

The probability of C is then found by summing the probabilities of all events
that end with C. Thus,

0.4

0.6

0.95

0.9 0.9

0.95

0.
1

0.
1

0.05
0.05

A B

B

C

CA

Figure 2.8 A two-stage binary channel
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PROBLEMS

2.1 Let A, B, and C be arbitrary sets. Determine which of the following relations are
correct and which are incorrect:
(a)
(b)
(c)
(d)

ABC

ABC

ABC

ABC

ABC

ABC

ABC

ABCA (0.4)

B (0.95)

C (0.95)

A (0.6)

B (0.9)

C (0.9)

C (0.05)

C (0.1)

C (0.9)

C (0.95)

C (0.05)

C (0.1)

B (0.05)

B (0.1) 

Figure 2.9 A tree diagram
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(e)
(f)

2.2 The second relation in Equations (2.10) expresses the union of two sets as the union
of two disjoint sets (i.e. ). Express in terms of the union
of disjoint sets where A, B, and C are arbitrary sets.

2.3 Verify DeMorgan’s laws, given by the last two equations of Equations (2.10).

2.4 Let Determine
elements of the following sets:
(a)
(b)
(c)
(d)
(e)

(f)
(g)

2.5 Repeat Problem 2.4 if
and

2.6 Draw Venn diagrams of events A  and B  representing the following situations:
(a) A  and B  are arbitrary.
(b) If A  occurs, B  must occur.
(c) If A  occurs, B  cannot occur.
(d) A  and B  are independent.

2.7 Let A, B, and C be arbitrary events. F ind expressions for the events that of A, B, C:
(a) None occurs.
(b) Only A  occurs.
(c) Only one occurs.
(d) At least one occurs.
(e) A  occurs and either B  or C occurs but not both.
(f) B  and C occur, but A  does not occur.
(g) Two or more occur.
(h) At most two occur.
(i) All three occur.

2.8 Events A, B, and C are independent, with
Determine the following probabilities in terms of a, b, and c:
(a)
(b)
(c)
(d)

2.9 An engineering system has two components. Let us define the following events:

A : first component is good; A: first component is defective.
B : second component is good; B: second component is defective:

Describe the following events in terms of A , A , B, and B:
(a) At least one of the components is good.
(b) One is good and one is defective.
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2.10 For the two components described in Problem 2.9, tests have produced the follow-
ing result:

Determine the probability that:
(a) The second component is good.
(b) At least one of the components is good.
(c) The first component is good given that the second is good.
(d) The first component is good given that at most one component is good.

For the two events A and B:
(e) Are they independent? Verify your answer.
(f) Are they mutually exclusive? Verify your answer.

2.11 A satellite can fail for many possible reasons, two of which are computer failure
and engine failure. For a given mission, it is known that:

The probability of engine failure is 0.008.

The probability of computer failure is 0.001.

Given engine failure, the probability of satellite failure is 0.98.

Given computer failure, the probability of satellite failure is 0.45.

Given any other component failure, the probability of satellite failure is zero.

(a) Determine the probability that a satellite fails.
(b) Determine the probability that a satellite fails and is due to engine

failure.
(c) Assume that engines in different satellites perform independently. Given a

satellite has failed as a result of engine failure, what is the probability that
the same will happen to another satellite?

2.12 Verify Equation (2.14).

2.13 Show that, for arbitrary events

This is known as Boole’s inequality.

2.14 A box contains 20 parts, of which 5 are defective. Two parts are drawn at random
from the box. What is the probability that:
(a) Both are good?
(b) Both are defective?
(c) One is good and one is defective?

2.15 An automobile braking device consists of three subsystems, all of which must work
for the device to work. These systems are an electronic system, a hydraulic system,
and a mechanical activator. In braking, the reliabilities (probabilities of success) of
these units are 0.96, 0.95, and 0.95, respectively. Estimate the system reliability
assuming that these subsystems function independently.

Comment : systems of this type can be graphically represented as shown in
Figure 2.10, in which subsystems A  (electronic system), B  (hydraulic system), and
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C (mechanical activator) are arranged in series. Consider the path as the
‘path to success’. A breakdown of any or all of A, B, or C will block the path from
a to b.

2.16 A spacecraft has 1000 components in series. If the required reliability of the
spacecraft is 0.9 and if all components function independently and have the same
reliability, what is the required reliability of each component?

2.17 Automobiles are equipped with redundant braking circuits; their brakes fail only
when all circuits fail. Consider one with two redundant braking circuits, each
having a reliability of 0.95. Determine the system reliability assuming that these
circuits act independently.

Comment : systems of this type are graphically represented as in F igure 2.11, in
which the circuits (A  and B) have a parallel arrangement. The path to success is
broken only when breakdowns of both A  and B  occur.

2.18 On the basis of definitions given in Problems 2.15 and 2.17 for series and parallel
arrangements of system components, determine reliabilities of the systems
described by the block diagrams as follows.
(a) The diagram in Figure 2.12.
(b) The diagram in Figure 2.13.

a b

A

0.96

B

0.95

C

0.95

Figure 2.10 Figure for Problem 2.15

A

B

a b

0.95

0.95

Figure 2.11 Figure for Problem 2.17
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2.19 A rifle is fired at a target. Assuming that the probability of scoring a hit is 0.9 for
each shot and that the shots are independent, compute the probability that, in
order to score a hit:
(a) It takes more than two shots.
(b) The number of shots required is between four and six (inclusive).

2.20 Events A  and B  are mutually exclusive. Can they also be independent? Explain.

2.21 Let
(a) A  and B  are independent?
(b) A  and B  are mutually exclusive?

2.22 Let Is it possible to determine P(A) and P(B)?
Answer the same question if, in addition:
(a) A  and B  are independent.
(b) A  and B  are mutually exclusive.

a b

A

B

C

0.90

0.90

0.85

Figure 2.12 Figure for Problem 2.18(a)

a b

A B

C D

pA

pC pD

pB

Figure 2.13 Figure for Problem 2.18(b)
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2.23 Events A  and B  are mutually exclusive. Determine which of the following relations
are true and which are false:

Repeat the above if events A  and B  are independent.

2.24 On a stretch of highway, the probability of an accident due to human error in any
given minute is 10 5, and the probability of an accident due to mechanical break-
down in any given minute is 10 7. Assuming that these two causes are independent:
(a) Find the probability of the occurrence of an accident on this stretch of highway

during any minute.
(b) In this case, can the above answer be approximated by P(accident due to

human error) P(accident due to mechanical failure)? Explain.
(c) If the events in succeeding minutes are mutually independent, what is the

probability that there will be no accident at this location in a year?

2.25 Rapid transit trains arrive at a given station every five minutes and depart after
stopping at the station for one minute to drop off and pick up passengers. Assum-
ing trains arrive every hour on the hour, what is the probability that a passenger
will be able to board a train immediately if he or she arrives at the station at a
random instant between 7:54 a.m. and 8:06 a.m.?

2.26 A telephone call occurs at random in the interval (0, t). Let T  be its time of
occurrence. Determine, where 0
(a)
(b)

2.27 For a storm-sewer system, estimates of annual maximum flow rates (AMFR) and
their likelihood of occurrence [assuming that a maximum of 12 cfs (cubic feet per
second) is possible] are given as follows:

Event

Event

Event

Determine:
(a) (8 AMFR the probability that the AMFR is between 8 and 10 cfs.
(b) (5 AMFR
(c) (10 AMFR
(d) (8 AMFR
(e) (5 AMFR

2.28 At a major and minor street intersection, one finds that, out of every 100 gaps on
the major street, 65 are acceptable, that is, large enough for a car arriving on the
minor street to cross. When a vehicle arrives on the minor street:
(a) What is the probability that the first gap is not an acceptable one?
(b) What is the probability that the first two gaps are both unacceptable?
(c) The first car has crossed the intersection. What is the probability that the

second will be able to cross at the very next gap?
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2.29 A machine part may be selected from any of three manufacturers with probabilities
The probabilities that it will function properly

during a specified period of time are 0.2, 0.3, and 0.4, respectively, for the three
manufacturers. Determine the probability that a randomly chosen machine part
will function properly for the specified time period.

2.30 Consider the possible failure of a transportation system to meet demand during
rush hour.
(a) Determine the probability that the system will fail if the probabilities shown in

Table 2.3 are known.

(b) If system failure was observed, find the probability that a ‘medium’ demand
level was its cause.

2.31 A cancer diagnostic test is 95% accurate both on those who have cancer and on
those who do not. If 0.005 of the population actually does have cancer, compute
the probability that a particular individual has cancer, given that the test indicates
he or she has cancer.

2.32 A quality control record panel of transistors gives the results shown in Table 2.4
when classified by manufacturer and quality.

Let one transistor be selected at random. What is the probability of it being:
(a) From manufacturer A and with acceptable quality?
(b) Acceptable given that it is from manufacturer C?
(c) From manufacturer B given that it is marginal?

2.33 Verify Equation (2.26) for three events.

2.34 In an elementary study of synchronized traffic lights, consider a simple four-light
system. Suppose that each light is red for 30 seconds of a 50-second cycle, and suppose

and

Table 2.3 Probabilities of demand levels and of system
failures for the given demand level, for Problem 2.30

Demand level P(level) P(system failure level)

Low 0.6 0
Medium 0.3 0.1
High 0.1 0.5

Table 2.4 Quality control results, for Problem 2.32

Manufacturer Quality

Acceptable Marginal Unacceptable Total

A 128 10 2 140
B 97 5 3 105
C 110 5 5 120
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for j 1, 2, 3, where Sj is the event that a driver is stopped by the jth light. We
assume a ‘one-light’ memory for the system. By means of the tree diagram,
determine the probability that a driver:
(a) Will be delayed by all four lights.
(b) Will not be delayed by any of the four lights.
(c) Will be delayed by at most one light.
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3

Random Variables and Probability
Distributions

We have mentioned that our interest in the study of a random phenomenon is in the
statements we can make concerning the events that can occur, and these statements
are made based on probabilities assigned to simple outcomes. Basic concepts have
been developed in Chapter 2, but a systematic and unified procedure is needed to
facilitate making these statements, which can be quite complex. One of the immedi-
ate steps that can be taken in this unifying attempt is to require that each of the
possible outcomes of a random experiment be represented by a real number. In this
way, when the experiment is performed, each outcome is identified by its assigned
real number rather than by its physical description. For example, when the possible
outcomes of a random experiment consist of success and failure, we arbitrarily assign
the number one to the event ‘success’ and the number zero to the event ‘failure’. The
associated sample space has now 1, 0 as its sample points instead of success and
failure, and the statement ‘the outcome is 1’ means ‘the outcome is success’.

This procedure not only permits us to replace a sample space of arbitrary
elements by a new sample space having only real numbers as its elements but
also enables us to use arithmetic means for probability calculations. Further-
more, most problems in science and engineering deal with quantitative meas-
ures. Consequently, sample spaces associated with many random experiments
of interest are already themselves sets of real numbers. The real-number assign-
ment procedure is thus a natural unifying agent. On this basis, we may intro-
duce a variable , which is used to represent real numbers, the values of which
are determined by the outcomes of a random experiment. This leads to the
notion of a random variable, which is defined more precisely below.

3.1 RANDOM VARIABLES

Consider a random experiment to which the outcomes are elements of sample
space in the underlying probability space. In order to construct a model for
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a random variable, we assume that it is possible to assign a real number
for each outcome s following a certain set of rules. We see that the ‘number’

is really a real-valued point function  defined over the domain of the basic
probability space (see Definition 3.1).

Definition 3.1. The point function is called a if (a) it is a
finite real-valued function defined on the sample space of a random experiment
for which the probability function is defined, and (b) for every real number , the
set is an event. The relation takes every element in of
the probability space onto a point on the real lin

Notationally, the dependence of random variable on will be omitted
for convenience.

The second condition stated in Definition 3.1 is the so-called ‘measurability
condition’. It ensures that it is meaningful to consider the probability of event

for every or, more generally, the probability of any finite or countably
infinite combination of such events.

To see more clearly the role a random variable plays in the study of a random
phenomenon, consider again the simple example where the possible outcomes
of a random experiment are success and failure. Let us again assign number one
to the event success and zero to failure. If is the random variable associated
with this experiment, then takes on two possible values: 1 and 0. Moreover,
the following statements are equivalent:. The outcome is success.. The outcome is 1..

The random variable is called a random variable if it is defined
over a sample space having a finite or a countably infinite number of sample
points. In this case, random variable takes on discrete values, and it is
possible to enumerate all the values it may assume. In the case of a sample
space having an uncountably infinite number of sample points, the associated
random variable is called a random variable, with its values dis-
tributed over one or more continuous intervals on the real line. We make this
distinction because they require different probability assignment consider-
ations. Both types of random variables are important in science and engineering
and we shall see ample evidence of this in the subsequent chapters.

In the following, all random variables will be written in capital letters,
, . . . . The value that a random variable can assume will be denoted

by corresponding lower-case letters such as , or , . . . .
We will have many occasions to consider a sequence of random variables

In these cases we assume that they are defined on the same
probability space. The random variables will then map every
element of in the probability space onto a point in the -dimensional
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Euclidian space . We note here that an analysis involving random variables
is equivalent to considering a having the random variables as
its components. The notion of a random vector will be used frequently in what
follows, and we will denote them by bold capital letters X, Y , Z , . . . .

3.2 PROBABILITY DISTRIBUTIONS

The behavior of a random variable is characterized by its probability distribu-
tion, that is, by the way probabilities are distributed over the values it assumes.
A probability distribution function and a probability mass function are two
ways to characterize this distribution for a discrete random variable. They are
equivalent in the sense that the knowledge of either one completely specifies
the random variable. The corresponding functions for a continuous random
variable are the probability distribution function, defined in the same way as in
the case of a discrete random variable, and the probability density function.
The definitions of these functions now follow.

Given a random experiment with its associated random variable and given a
real number , let us consider the probability of the event
simply, This probability is clearly dependent on the assigned value
The function

is defined as the (PDF), or simply the
, of . In Equation (3.1), subscript identifies the random vari-

able. This subscript is sometimes omitted when there is no risk of confusion.
Let us repeat that is simply the probability of an event occurring,
the event being This observation ties what we do here with the devel-
opment of Chapter 2.

The PDF is thus the probability that will assume a value lying in a subset
of the subset being point and all points lying to the ‘left’ of . As
increases, the subset covers more of the real line, and the value of PDF
increases until it reaches 1. The PDF of a random variable thus accumulates
probability as increases, and the name (CDF)
is also used for this function.

In view of the definition and the discussion above, we give below some of the
important properties possessed by a PDF.
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. It exists for discrete and continuous random variables and has values between
0 and 1.. It is a nonnegative, continuous-to-the-left, and nondecreasing function of the
real variable Moreover, we have

. If and are two real numbers such that , then

This relation is a direct result of the identity

We see from Equation (3.3) that the probability of having a value in an
arbitrary interval can be represented by the difference between two values of
the PDF. Generalizing, probabilities associated with any sets of intervals are
derivable from the PDF.

Example 3.1. Let a discrete random variable assume values 1, 1, 2, and 3,
with probabilities 1

4,
1
8,

1
8, and 1

2, respectively. We then have

This function is plotted in Figure 3.1. It is typical of PDFs associated with
discrete random variables, increasing from 0 to 1 in a ‘staircase’ fashion.

A continuous random variable assumes a nonenumerable number of values
over the real line. Hence, the probability of a continuous random variable
assuming any particular value is zero and therefore no discrete jumps are
possible for its PDF. A typical PDF for continuous random variables is
shown in Figure 3.2. It has no jumps or discontinuities as in the case of the
discrete random variable. The probability of having a value in a given
interval is found by using Equation (3.3), and it makes sense to speak only of
this kind of probability for continuous random variables. For example, in
Figure 3.2.

Clearly, for any .
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3.2.2 PROBABILITY MASS FUNCTION FOR DISCRETE RANDOM
VARIABLES

Let be a discrete random variable that assumes at most a countably infinite
number of values 1 2, . . . with nonzero probabilities. If we denote

1, 2, . . ., then, clearly,

1
8

–2 –1 0 1 2 3
x

1

1
2

FX(x)

Figure 3.1 Probability distribution function of for Example 3.1

0.2

1.0

–1 0 1

FX(x)

x

Figure 3.2 Probability distribution function of a continuous random variable
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Definition 3.2. The function

is defined as the (pmf) of . Again, the subscript is
used to identify the associated random variable.

For the random variable defined in Example 3.1, the pmf is zero everywhere
except at 1, 2, . . . , and has the appearance shown in Figure 3.3.

This is a typical shape of pmf for a discrete random variable. Since
0 for any for continuous random variables, it does not exist in

the case of the continuous random variable. We also observe that, like
the specification of completely characterizes random variable ; further-
more, these two functions are simply related by:

(assuming . . ).
The upper limit for the sum in Equation (3.7) means that the sum is taken

over all satisfying Hence, we see that the PDF and pmf of a discrete
random variable contain the same information; each one is recoverable from
the other.

0 1 2 3 4–2 –1

1

1

2

8

pX(x)

x

Figure 3.3 Probability mass function of for the random variable defined
in Example 3.1
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One can also give PDF and pmf a useful physical interpretation. In terms of
the distribution of one unit of mass over the real line the PDF of
a random variable at can be interpreted as the total mass associated
with point and all points lying to the left of . The pmf, in contrast, shows
the distribution of this unit of mass over the real line; it is distributed at discrete
points with the amount of mass equal to 1, 2, . . . .

Example 3.2. A discrete distribution arising in a large number of physical
models is the Much more will be said of this important
distribution in Chapter 6 but, at present, let us use it as an illustration for
graphing the PDF and pmf of a discrete random variable.

A discrete random variable has a binomial distribution when

where and are two parameters of the distribution, being a positive integer,
and 0 1. The binomial coefficient

is defined by

The pmf and PDF of for 10 and 0 2 are plotted in Figure 3.4.

0 2 4 6 8 10

0.1

0.2

0.3

0.4

pX(x)

x
0 2 4 6 8 10

1.0

0.8

0.6

0.4

0.2

FX(x)

x

(a) (b)

Figure 3.4 (a) Probability mass function, ( ), and (b) probability distribution
function, ( ), for the discrete random variable described in Example 3.2
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3.2.3 PROBABILITY DENSITY FUNCTION FOR CONTINUOUS
RANDOM VARIABLES

For a continuous random variable , its PDF, is a continuous function
of and the derivative

exists for all The function is called the (pdf),
or simply the , of .(1)

Since is monotone nondecreasing, we clearly have

0 for all

Additional properties of can be derived easily from Equation (3.10);
these include

and

An example of pdfs has the shape shown in Figure 3.5. As indicated by
Equations (3.13), the total area under the curve is unity and the shaded area
from to gives the probability We again observe that the
knowledge of either pdf or PDF completely characterizes a continuous random
variable. The pdf does not exist for a discrete random variable since its
associated PDF has discrete jumps and is not differentiable at these points of
discontinuity.

Using the mass distribution analogy, the pdf of a continuous random variable
plays exactly the same role as the pmf of a discrete random variable. The

1 Note the use of upper-case and lower-case letters, PDF and pdf, to represent the distribution and
density functions, respectively.
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function can be interpreted as the mass density (mass per unit length).
There are no masses attached to discrete points as in the discrete random
variable case. The use of the term is therefore appropriate here
for

Example 3.3. A random variable for which the density function has the
form > 0):

is said to be We can easily check that all the condi-
tions given by Equations (3.11)–(3.13) are satisfied. The pdf is presented
graphically in Figure 3.6(a), and the associated PDF is shown in Figure 3.6(b).
The functional form of the PDF as obtained from Equation (3.12) is

x
a b

fX(x)

Figure 3.5 A probability density function,

fX(x)

x

a

0 1

(a)

FX(x)

0
x

1

(b)

Figure 3.6 (a) Probability density function, and (b) probability distribution
function, for random variable in Example 3.3
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Let us compute some of the probabilities using The probability
(0 1) is numerically equal to the area under from 0 to

1, as shown in Figure 3.6(a). It is given by

The probability is obtained by computing the area under to the
right of 3. Hence,

The same probabilities can be obtained from by taking appropriate
differences, giving:

Let us note that there is no numerical difference between (0 1) and
(0 1) for continuous random variables, since ( 0) 0.

3.2.4 MIXED-TYPE DISTRIBUTION

There are situations in which one encounters a random variable that is partially
discrete and partially continuous. The PDF given in Figure 3.7 represents such

1

0

FX(x)

x

Figure 3.7 A mixed-type probability distribution function,
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a case in which random variable X  is continuously distributed over the real line
except at X  0, where P(X  0) is a positive quantity. This situation may arise
when, for example, random variable X  represents the waiting time of a customer
at a ticket counter. Let X  be the time interval from time of arrival at the ticket
counter to the time being served. It is reasonable to expect that X  will assume
values over the interval X  0. At X  0, however, there is a finite probability of
not having to wait at all, giving rise to the situation depicted in Figure 3.7.

Strictly speaking, neither a pmf nor a pdf exists for a random variable of the
mixed type. We can, however, still use them separately for different portions of
the distribution, for computational purposes. Let f X  (x ) be the pdf for the
continuous portion of the distribution. It can be used for calculating probabil-
ities in the positive range of x  values for this example. We observe that the total
area under the pdf curve is no longer 1 but is equal to 1 P(X  0).

Example 3.4. Problem: since it is more economical to limit long-distance
telephone calls to three minutes or less, the PDF of X  – the duration in minutes
of long-distance calls – may be of the form

Determine the probability that X  is (a) more than two minutes and (b) between
two and six minutes.

Answer: the PDF of X  is plotted in F igure 3.8, showing that X  has a mixed-
type distribution. The desired probabilities can be found from the PDF as
before. Hence, for part (a),

x
3

FX(x)

1– e–½

1– e–1

1

Figure 3. 8 Probability distribution function, FX  (x ), of X , as described in Example 3.4
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For part (b),

F igure 3.9 shows pX  (x ) for the discrete portion and f X  (x ) for the continuous
portion of X . They are given by:

and

;

Note again that the area under f X  (x ) is no longer one but is

To obtain P(X   2) and P(2  X  6), both the discrete and continuous
portions come into play, and we have, for part (a),

x3

pX(x)

fX(x)

3 x

1—2e

1—3
1—3e
1—6e

(a) (b)

Figure 3. 9 (a) Partial probability mass function, pX  (x ), and (b) partial probability
density function, f X  (x ), of X , as described in Example 3.4
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and, for part (b),

These results are, of course, the same as those obtained earlier using the PDF.

3.3 TWO OR MORE RANDOM VARIABLES

In many cases it is more natural to describe the outcome of a random experi-
ment by two or more numerical numbers simultaneously. For example, the
characterization of both weight and height in a given population, the study of
temperature and pressure variations in a physical experiment, and the distribu-
tion of monthly temperature readings in a given region over a given year. In
these situations, two or more random variables are considered jointly and the
description of their joint behavior is our concern.

Let us first consider the case of two random variables X  and Y . We proceed
analogously to the single random variable case in defining their joint prob-
ability distributions. We note that random variables X  and Y  can also be
considered as components of a two-dimensional random vector, say Z. Joint
probability distributions associated with two random variables are sometimes
called bivariate distributions.

As we shall see, extensions to cases involving more than two random vari-
ables, or multivariate distributions, are straightforward.

3.3.1 JOINT PROBABILITY DISTRIBUTION FUNCTION

The joint probability distribution function (JPDF) of random variables X and Y ,
denoted by FXY  (x , y), is defined by

for all x  and y. It is the probability of the intersection of two events; random
variables X  and Y  thus induce a probability distribution over a two-dimensional
Euclidean plane.
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Using again the mass distribution analogy, let one unit of mass be distributed
over the (x , y) plane in such a way that the mass in any given region R  is equal
to the probability that X  and Y  take values in R . Then JPDF F XY  (x, y)
represents the total mass in the quadrant to the left and below the point
(x , y), inclusive of the boundaries. In the case where both X  and Y  are discrete,
all the mass is concentrated at a finite or countably infinite number of points in
the (x , y) plane as point masses. When both are continuous, the mass is
distributed continuously over the (x , y) plane.

It is clear from the definition that FXY  (x , y) is nonnegative, nondecreasing in
x  and y, and continuous to the left with respect to x  and y. The following
properties are also a direct consequence of the definition:

For example, the third relation above follows from the fact that the joint event
is the same as the event since is a sure event.

Hence,

Similarly, we can show that, for any x 1, x 2, y1, and y2 such that x 1 < x2 and
y1 < y2, the probability  is given in terms of
FXY  (x , y) by

which shows that all probability calculations involving random variables X  and
Y  can be made with the knowledge of their JPDF.

Finally, we note that the last two equations in Equations (3.17) show that
distribution functions of individual random variables are directly derivable
from their joint distribution function. The converse, of course, is not true. In
the context of several random variables, these individual distribution functions
are called marginal distribution functions. For example, FX (x ) is the marginal
distribution function of X .

The general shape of FXY  (x , y) can be visualized from the properties given in
Equations (3.17). In the case where X  and Y  are discrete, it has the appearance of
a corner of an irregular staircase, something like that shown in Figure 3.10. It rises
from zero to the height of one in the direction moving from the third quadrant to the
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first quadrant. When both X  and Y  are continuous, FXY  (x , y) becomes a smooth
surface with the same features. It is a staircase type in one direction and smooth in
the other if one of the random variables is discrete and the other continuous.

The joint probability distribution function of more than two random vari-
ables is defined in a similar fashion. Consider n random variables
X 1, X 2, . . . , Xn. Their JPDF is defined by

These random variables induce a probability distribution in an n-dimensional
Euclidean space. One can deduce immediately its properties in parallel to those
noted in Equations (3.17) and (3.18) for the two-random-variable case.

As we have mentioned previously, a finite number of random variables
X j, j 1, 2, . . . n, may be regarded as the components of an n-dimensional
random vector X. The JPDF of X is identical to that given above but it can
be written in a more compact form, namely, FX  ( x), where x is the vector, with
components x 1, x 2, . . . , x n.

3.3.2 JOINT PROBABILITY MASS FUNCTION

The joint probability mass function (jpmf ) is another, and more direct, charac-
terization of the joint behavior of two or more random variables when they are

FXY(x,y)
y

x

Figure 3. 10 A joint probability distribution function of X  and Y , FXY  (x ,y), when X  and
Y  are discrete
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discrete. Let X  and Y  be two discrete random variables that assume at most
a countably infinite number of value pairs (x i, yj), i, j 1, 2, . . ., with nonzero
probabilities. The jpmf of X  and Y  is defined by

for all x  and y. It is zero everywhere except at points (x i, yj), i, j  1, 2, . . .,
where it takes values equal to the joint probability P(X  x i Y  yj). We
observe the following properties, which are direct extensions of those noted in
Equations (3.4), (3.6), and (3.7) for the single-random-variable case:

where pX  (x ) and pY  (y) are now called marginal probability mass functions. We
also have

Example 3.5. Problem: consider a simplified version of a two-dimensional
‘random walk’ problem. We imagine a particle that moves in a plane in unit
steps starting from the origin. Each step is one unit in the positive direction, with
probability p along the x  axis and probability q ( p q 1) along the y  axis. We
further assume that each step is taken independently of the others. What is the
probability distribution of the position of this particle after five steps?

Answer: since the position is conveniently represented by two coordinates,
we wish to establish pXY (x , y) where random variable X represents the x
coordinate of the position after five steps and where Y  represents the y  coord-
inate. It is clear that jpmf pXY  (x , y) is zero everywhere except at those points
satisfying x  y  5 and x , y  0. Invoking the independence of events of
taking successive steps, it follows from Section 3.3 that pXY  (5, 0), the probabil-
ity of the particle being at (5, 0) after five steps, is the product of probabilities of
taking five successive steps in the positive x direction. Hence
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For  pXY  (4, 1), there are five distinct ways of reaching that position (4 steps in
the x  direction and 1 in y; 3 in the x  direction, 1 in y, and 1 in the x  direction;
and so on), each with a probability of p4q. We thus have

Similarly, other nonvanishing values of pXY  (x , y) are easily calculated to be

The jpmf pXY  (x , y) is graphically presented in F igure 3.11 for p 0 4 and
q 0 6. It is easy to check that the sum of pXY  (x , y) over all x and y is 1, as
required by the second of Equations (3.21).

Let us note that the marginal probability mass functions of X  and Y are,
following the last two expressions in Equations (3.21),

pXY(x,y)

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5

1

2

3

4

5

x

y

Figure 3. 11 The joint probability mass function, pXY  (x ,y), for Example 3.5, with
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and

These are marginal pmfs of X  and Y .
The joint probability distribution function FXY  (x , y) can also be constructed,

by using Equation (3.22). Rather than showing it in three-dimensional form,
Figure 3.12 gives this function by indicating its value in each of the dividing
regions. One should also note that the arrays of indicated numbers beyond
y  5 are values associated with the marginal distribution function FX  (x ).
Similarly, FY  (y) takes those values situated beyond x  5. These observations
are also indicated on the graph.

The knowledge of the joint probability mass function permits us to make all
probability calculations of interest. The probability of any event being realized
involving X  and Y  is found by determining the pairs of values of X  and Y  that
give rise to this event and then simply summing over the values of pXY  (x , y) for
all such pairs. In Example 3.5, suppose we wish to determine the probability of
X  > Y ; it is given by

FX(x)

FXY(x,y)

FY(y)

x

y

1

10.07776

0.33696

0.68256

0.91296

0.98976

3 5

1

3

0.01024

0.08920

0.31744

0.66304

0.92224

5
0.2592

0.6048
0.8352

0.9120

0.3456
0.5760

0.2304

0.0768
0.3072

0.6528

Zero

Zero

Zero

Figure 3. 12 The joint probability distribution function, FXY  (x ,y), for Example 3.5,
with p  and q 
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Example 3.6. Let us discuss again Example 2.11 in the context of random
variables. Let X  be the random variable representing precipitation levels, with
values 1, 2, and 3 indicating low, medium, and high, respectively. The random
variable Y  will be used for the peak flow rate, with the value 1 when it is critical
and 2 when noncritical. The information given in Example 2.11 defines jpmf
pXY  (x , y), the values of which are tabulated in Table 3.1.

In order to determine the probability of reaching the critical level of peak
flow rate, for example, we simply sum over all pXY  (x , y) satisfying y 1,
regardless of x values. Hence, we have

The definition of jpmf for more than two random variables is a direct extension
of that for the two-random-variable case. Consider n random variables
X 1, X 2, . . . , Xn. Their jpmf is defined by

which is the probability of the intersection of n events. Its properties and
utilities follow directly from our discussion in the two-random-variable case.
Again, a more compact form for the jpmf is pX  (x) where X  is an n-dimensional
random vector with components X 1, X 2, . . . , X n.

3.3.3 JOINT PROBABILITY DENSITY FUNCTION

As in the case of single random variables, probability density functions become
appropriate when the random variables are continuous. The joint probability

Table 3.1 Joint probability mass function for low, medium, and high precipitation
levels (x  1, 2, and 3, respectively) and critical and noncritical peak flow rates ( y  1

and 2, respectively), for Example 3.6

y x

1 2 3

1 0.0 0.06 0.12
2 0.5 0.24 0.08
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density function (jpdf) of two random variables, X  and Y , is defined by the
partial derivative

Since FXY  (x , y) is monotone nondecreasing in both x  and y, f XY  (x , y) is
nonnegative for all x  and y. We also see from Equation (3.24) that

Moreover, with x 1 < x 2, and y1 < y2,

The jpdf f XY  (x , y) defines a surface over the (x , y) plane. As indicated by
Equation (3.26), the probability that random variables X and Y fall within a
certain region R  is equal to the volume under the surface of f XY  (x , y) and
bounded by that region. This is illustrated in Figure 3.13.

fXY(x, y)

x

y

R

Figure 3. 13 A joint probability density function, f XY  (x ,y)
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We also note the following important properties:

Equation (3.27) follows from Equation (3.25) by letting and
this shows that the total volume under the f XY  (x , y) surface is unity. To give
a derivation of Equation (3.28), we know that

Differentiating the above with respect to x gives the desired result immediately.
The density functions f X  (x ) and f Y  (y) in Equations (3.28) and (3.29) are now
called the marginal density functions of X  and Y , respectively.

Example 3.7. Problem: a boy and a girl plan to meet at a certain place between
9 a.m. and 10 a.m., each not waiting more than 10 minutes for the other. If all
times of arrival within the hour are equally likely for each person, and if their
times of arrival are independent, find the probability that they will meet.

Answer: for a single continuous random variable X  that takes all values over
an interval a to b with equal likelihood, the distribution is called a uniform
distribution and its density function f X (x ) has the form

The height of f X  (x ) over the interval (a, b) must be 1/(b a) in order that the
area is 1 below the curve (see Figure 3.14). For a two-dimensional case as
described in this example, the joint density function of two independent uni-
formly distributed random variables is a flat surface within prescribed bounds.
The volume under the surface is unity.

Let the boy arrive at X  minutes past 9 a.m. and the girl arrive at Y  minutes past
9 a.m. The jpdf f XY  (x , y) thus takes the form shown in Figure 3.15 and is given by
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The probability we are seeking is thus the volume under this surface over an
appropriate region R . For this problem, the region R  is given by

and is shown in F igure 3.16 in the (x , y) plane.
The volume of interest can be found by inspection in this simple case.

Dividing R  into three regions as shown, we have

P(they will meet) P X  Y  10

a b
x

fX(x)

1
b – a

Figure 3. 14 A uniform density function, f X  (x )

fXY(x,y) y

0 60

60

3600

x

1

Figure 3. 15 The joint probability density function f XY  (x ,y), for Example 3.7
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Note that, for a more complicated jpdf, one needs to carry out the volume
integral for volume calculations.

As an exercise, let us determine the joint probability distribution function
and the marginal density functions of random variables X  and Y  defined in
Example 3.7.

The JPDF of X  and Y  is obtained from Equation (3.25). It is clear that

Within the region (0, 0) (x , y) (60, 60), we have

For marginal density functions, Equations (3.28) and (3.29) give us

y

x
60

60

0 10

R

10

y – x = 10

x – y = 10

Figure 3. 16 Region R in Example 3.7
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Similarly,

Both random variables are thus uniformly distributed over the interval (0, 60).

Ex ample 3. 8. In structural reliability studies, the resistance Y  of a structural
element and the force X  applied to it are generally regarded as random vari-
ables. The probability of failure, pf , is defined by P(Y  X ). Suppose that the
jpdf of X  and Y  is specified to be

where a and b are known positive constants, we wish to determine pf .
The probability pf is determined from

where R is the region satisfying Y X . Since X and Y take only positive values,
the region R is that shown in F igure 3.17. Hence,

R

x = y

x

y

Figure 3. 17 Region R in Example 3.8
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In closing this section, let us note that generalization to the case of many
random variables is again straightforward. The joint distribution function of n
random variables X 1, X 2, . . . , X n, or  X, is given, by Equation (3.19), as

The corresponding joint density function, denoted by fX  ( x), is then

if the indicated partial derivatives exist. Various properties possessed by these
functions can be readily inferred from those indicated for the two-random-
variable case.

3.4 CONDITIONAL DISTRIBUTION AND INDEPENDENCE

The important concepts of conditional probability and independence intro-
duced in Sections 2.2 and 2.4 play equally important roles in the context of
random variables. The conditional distribution function of a random variable X ,
given that another random variable Y  has taken a value y, is defined by

Similarly, when random variable X is discrete, the definition of conditional mass
function of X given Y y is

Using the definition of conditional probability given by Equation (2.24),
we have

or
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which is expected. It gives the relationship between the joint jpmf and the
conditional mass function. As we will see in Example 3.9, it is sometimes more
convenient to derive joint mass functions by using Equation (3.35), as condi-
tional mass functions are more readily available.

If random variables X  and Y  are independent, then the definition of inde-
pendence, Equation (2.16), implies

and Equation (3.35) becomes

Thus, when, and only when, random variables X  and Y  are independent, their
jpmf is the product of the marginal mass functions.

Let X  be a continuous random variable. A consistent definition of the
conditional density function of X given Y  is the derivative of
its corresponding conditional distribution function. Hence,

where FXY  (x y) is defined in Equation (3.33). To see what this definition leads
to, let us consider

In terms of jpdf f XY  (x , y), it is given by

By setting nd and by taking the limit
Equation (3.40) reduces to

provided that f Y  (y)  0.
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Now we see that Equation (3.38) leads to

which is in a form identical to that of Equation (3.35) for the mass functions – a
satisfying result. We should add here that this relationship between the condi-
tional density function and the joint density function is obtained at the expense
of Equation (3.33) for FXY  (x y). We say ‘at the expense of’ because the defin-
ition given to FXY  (x y) does not lead to a convenient relationship between
FXY  (x y) and FXY  (x , y), that is,

This inconvenience, however, is not a severe penalty as we deal with density
functions and mass functions more often.

When random variables X  and Y  are independent, FXY  (x y) FX  (x ) and, as
seen from Equation (3.42),

and

which shows again that the joint density function is equal to the product of the
associated marginal density functions when X  and Y  are independent.

F inally, let us note that, when random variables X  and Y  are discrete,

and, in the case of a continuous random variable,

Comparison of these equations with Equations (3.7) and (3.12) reveals they are
identical to those relating these functions for X alone.

Extensions of the above results to the case of more than two random vari-
ables are again straightforward. Starting from
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[see Equation (2.26)], for three events A , B, and C, we have, in the case of three
random variables X, Y , and Z ,

Hence, for the general case of n random variables, X 1, X 2, . . . , Xn, or  X, we can
write

In the event that these random variables are mutually independent, Equations
(3.49) become

Example 3.9. To show that joint mass functions are sometimes more easily
found by finding first the conditional mass functions, let us consider a traffic
problem as described below.

Problem: a group of n cars enters an intersection from the south. Through
prior observations, it is estimated that each car has the probability p of turning
east, probability q of turning west, and probability r of going straight on
( p q r 1). Assume that drivers behave independently and let X  be the
number of cars turning east and Y  the number turning west. Determine the
jpmf pXY  (x , y).

Answer: since

we proceed by determining pXY  (x y) and pY (y). The marginal mass function
pY  (y) is found in a way very similar to that in the random walk situation
described in Example 3.5. Each car has two alternatives: turning west, and
not turning west. By enumeration, we can show that it has a binomial distribu-
tion (to be more fully justified in Chapter 6)
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Consider now the conditional mass function pXY  (x y). With Y  y having
happened, the situation is again similar to that for determining pY  (y) except
that the number of cars available for taking possible eastward turns is now
n y; also, here, the probabilities p and r need to be renormalized so that they
sum to 1. Hence, pXY  (x y) takes the form

Finally, we have pXY  (x , y) as the product of the two expressions given by
Equations (3.51) and (3.52). The ranges of values for x  and y  are x  0, 1, . . . ,
n  y, and  y  0, 1, . . . , n.

Note that pXY  (x , y) has a rather complicated expression that could not have
been derived easily in a direct way. This also points out the need to exercise care
in determining the limits of validity for x and y.

Ex ample 3. 10. Problem: resistors are designed to have a resistance R  of
50 2 . Owing to imprecision in the manufacturing process, the actual density
function of R has the form shown by the solid curve in F igure 3.18. Determine
the density function of R  after screening – that is, after all the resistors having
resistances beyond the 48–52 range are rejected.

Answer: we are interested in the conditional density function, f R (r A), where
A  is the event . This is not the usual conditional density function
but it can be found from the basic definition of conditional probability.

We start by considering

48 50 52

fR

fR(r \A)

fR(r)

r

Figure 3. 18 The actual, f R (r), and conditional, f R (r A), for Example 3.10
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However,

Hence,

where

is a constant.
The desired f R (r A) is then obtained from the above by differentiation. We

obtain

It can be seen from Figure 3.18 (dashed line) that the effect of screening is
essentially a truncation of the tails of the distribution beyond the allowable
limits. This is accompanied by an adjustment within the limits by a multi-
plicative factor 1/c so that the area under the curve is again equal to 1.

FURTHER READING AND COMMENTS

We discussed in Section 3.3 the determination of (unique) marginal distributions from a
knowledge of joint distributions. It should be noted here that the knowledge of marginal
distributions does not in general lead to a unique joint distribution. The following reference
shows that all joint distributions having a specified set of marginals can be obtained by
repeated applications of the so-called transformation to the product of the marginals:

Becker, P.W., 1970, ‘‘A Note on Joint Densities which have the Same Set of Marginal
Densities’’, in Proc. International Symp. Information  Theory , Elsevier Scientific Pub-
lishers, The Netherlands.
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PROBLEMS

3.1 For each of the functions given below, determine constant a so that it possesses all
the properties of a probability distribution function (PDF). Determine, in each case,
its associated probability density function (pdf ) or probability mass function (pmf)
if it exists and sketch all functions.
(a) Case 1:

(b) Case 2:

(c) Case 3:

(d) Case 4:

(e) Case 5:

(f) Case 6:

(g) Case 7:

3.2 For each part of Problem 3.1, determine:
(a) P(X  6);
(b) P( 1

2 < X 7).
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3.3 For pX  (x ) and f X  (x ) in F igure 3.19(a) and 3.19(b) respectively, sketch roughly in
scale the corresponding PDF FX  (x ) and show on all graphs the procedure for
finding P(2 < X  < 4).

3.4 For each part, find the corresponding PDF for random variable X .
(a) Case 1:

(b) Case 2:

(c) Case 3:

3.5 The pdf of X  is shown in F igure 3.20.
(a) Determine the value of a.
(b) Graph FX  (x ) approximately.
(c) Determine P(X  2).
(d) Determine P(X  2 X  1).

3.6 The life X , in hours, of a certain kind of electronic component has a pdf given by

Determine the probability that a component will survive 150 hours of operation.

(a)

1 2 3

0.6

0.2

x

p
X

(x)

(b)

fX(x)

4

x

Figure 3. 19 The probability mass function, pX  (x), and probability density function,
f X  (x), for Problem 3.3
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3.7 Let T  denote the life (in months) of a light bulb and let

(a) Plot f T (t) against t.
(b) Derive FT (t) and plot FT (t) against t.
(c) Determine using f T (t), the probability that the light bulb will last at least 15

months.
(d) Determine, using FT (t), the probability that the light bulb will last at least 15

months.
(e) A light bulb has already lasted 15 months. What is the probability that it will

survive another month?

3.8 The time, in minutes, required for a student to travel from home to a morning
class is uniformly distributed between 20 and 25. If the student leaves home
promptly at 7:38 a.m., what is the probability that the student will not be late for
class at 8:00 a.m.?

3.9 In constructing the bridge shown in Figure 3.21, an engineer is concerned with
forces acting on the end supports caused by a randomly applied concentrated load
P, the term ‘randomly applied’ meaning that the probability of the load lying in any
region is proportional only to the length of that region. Suppose that the bridge has
a span 2b. Determine the PDF and pdf of random variable X , which is the distance
from the load to the nearest edge support. Sketch these functions.

fX(x)

a

–3 3
x

Figure 3. 20 The probability density function, f X  (x), for Problem 3.5

2b

P

Figure 3.21 Diagram of the bridge, for Problem 3.9
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3.10 Fire can erupt at random at any point along a stretch of forest AB. The fire
station is located as shown in Figure 3.22. Determine the PDF and pdf of
X , representing the distance between the fire and the fire station. Sketch these
functions.

3.11 Pollutant concentrations caused by a pollution source can be modeled by the pdf
(a > 0):

where R  is the distance from the source. Determine the radius within which 95% of
the pollutant is contained.

3.12 As an example of a mixed probability distribution, consider the following problem:
a particle is at rest at the origin (x  0) at time t 0. At a randomly selected time
uniformly distributed over the interval 0 < t < 1, the particle is suddenly given a
velocity v  in the positive x  direction.
(a) Show that X , the particle position at t(0 < t < 1), has the PDF shown in F igure

3.23.
(b) Calculate the probability that the particle is at least v/3 away from the origin at

Fire station

a

A B

a
d

b

Figure 3.22 Position of the fire station and stretch of forest, AB, for Problem 3.10

FX(x)

FX(x) = 1 – t + —x

t
x

1

1– t

Figure 3. 23 The probability distribution function, FX  (x ), for Problem 3.12
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3.13 For each of the joint probability mass functions (jpmf), pXY  (x , y), or joint prob-
ability density functions (jpdf), f XY  (x , y), given below (cases 1–4), determine:
(a) the marginal mass or density functions,
(b) whether the random variables are independent.

(i) Case 1

(ii) Case 2:

(iii) Case 3

(iv) Case 4

3.14 Suppose X  and Y  have jpmf

(a) Determine marginal pmfs of X and Y .
(b) Determine P(X 1).
(c) Determine P(2X Y ).

3.15 Let X 1, X 2, and X 3 be independent random variables, each taking values 1 with
probabilities 1/2. Define random variables Y1, Y2, and Y3 by

Show that any two of these new random variables are independent but that Y 1, Y 2,
and Y3 are not independent.

3.16 The random variables X  and Y  are distributed according to the jpdf given by
Case 2, in Problem 3.13(ii). Determine:
(a)
(b)
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3.17 Let random variable X  denote the time of failure in years of a system for which the
PDF is FX  (x ). In terms of FX  (x ), determine the probability

which is the conditional distribution function of X  given that the system did not fail
up to 100 years.

3.18 The pdf of random variable X  is

Determine P(X > b X < b/2) with  1 < b < 0.

3.19 Using the joint probability distribution given in Example 3.5 for random variables
X  and Y , determine:
(a) P(X  > 3).
(b) P(0 Y  < 3).
(c) P(X  > 3 Y  2).

3.20 Let

(a) What must be the value of k?
(b) Determine the marginal pdfs of X  and Y .
(c) Are X  and Y  statistically independent? Why?

3.21 A commuter is accustomed to leaving home between 7:30 a.m and 8:00 a.m., the drive
to the station taking between 20 and 30 minutes. It is assumed that departure time and
travel time for the trip are independent random variables, uniformly distributed over
their respective intervals. There are two trains the commuter can take; the first leaves
at 8:05 a.m. and takes 30 minutes for the trip, and the second leaves at 8:25 a.m. and
takes 35 minutes. What is the probability that the commuter misses both trains?

3.22 The distance X  (in miles) from a nuclear plant to the epicenter of potential earth-
quakes within 50 miles is distributed according to

and the magnitude Y  of potential earthquakes of scales 5 to 9 is distributed
according to
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Assume that X  and Y  are independent. Determine P(X  25  Y  > 8), the prob-
ability that the next earthquake within 50 miles will have a magnitude greater than
8 and that its epicenter will lie within 25 miles of the nuclear plant.

3.23 Let random variables X  and Y  be independent and uniformly distributed in the
square (0, 0) < (X , Y ) < (1, 1). Determine the probability that XY  < 1/2.

3.24 In splashdown maneuvers, spacecrafts often miss the target because of guidance
inaccuracies, atmospheric disturbances, and other error sources. Taking the origin
of the coordinates as the designed point of impact, the X  and Y  coordinates of the
actual impact point are random, with marginal density functions

Assume that the random variables are independent. Show that the probability
of a splashdown lying within a circle of radius a centered at the origin
is 1

3.25 Let X1, X2, . . . , X n be independent and identically distributed random variables,
each with PDF FX  (x ). Show that

The above are examples of extreme-value distributions. They are of considerable
practical importance and will be discussed in Section 7.6.

3.26 In studies of social mobility, assume that social classes can be ordered from 1
(professional) to 7 (unskilled). Let random variable X k denote the class order of the
k th generation. Then, for a given region, the following information is given:
(i) The pmf of X0 is described by

(ii) The conditional probabilities and for
every k are given in Table 3.2.

Table 3. 2  for Problem 3.26

i j

1 2 3 4 5 6 7

1 0.388 0.107 0.035 0.021 0.009 0.000 0.000
2 0.146 0.267 0.101 0.039 0.024 0.013 0.008
3 0.202 0.227 0.188 0.112 0.075 0.041 0.036
4 0.062 0.120 0.191 0.212 0.123 0.088 0.083
5 0.140 0.206 0.357 0.430 0.473 0.391 0.364
6 0.047 0.053 0.067 0.124 0.171 0.312 0.235
7 0.015 0.020 0.061 0.062 0.125 0.155 0.274
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(iii) The outcome at the (k 1)th generation is dependent only on the class order
at the k th generation and not on any generation prior to it; that is,

Determine
(a) The pmf of X 3.
(b) The jpmf of X 3 and X 4.
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4

Expectations and Moments

While a probability distribution [FX  (x ), pX  (x ), or f X (x )] contains a complete
description of a random variable X , it is often of interest to seek a set of simple
numbers that gives the random variable some of its dominant features. These
numbers include moments of various orders associated with X . Let us first
provide a general definition (Definition 4.1).

D ef inition 4. 1. Let g(X ) be a real-valued function of a random variable X .
The mathematical expectation, or simply expectation, of g(X ), denoted by

is defined by

if X  is discrete, where x 1, x 2, . . . are possible values assumed by X .
When the range of i extends from 1 to infinity, the sum in Equation (4.1)

exists if it converges absolutely; that is,

The symbol is regarded here and in the sequel as the expectation operator.
If random variable X  is continuous, the expectation  is defined by

if the improper integral is absolutely convergent, that is,
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Let us note some basic properties associated with the expectation operator.
For any constant c and any functions g(X ) and h(X ) for which expectations
exist, we have

These relations follow directly from the definition of For example,

as given by the third of Equations (4.3). The proof is similar when X  is discrete.

4. 1 M O M EN TS O F A S I N GLE RAN D O M VAR IABLE

Let g(X ) X n, n 1, 2, . . .; the expectation E X n , when it exists, is called the
nth moment of X . It is denoted by n and is given by

4.1.1 MEAN, MEDIAN, AND MODE

One of the most important moments is 1, the first moment. Using the mass
analogy for the probability distribution, the first moment may be regarded as
the center of mass of its distribution. It is thus the average value of random
variable X  and certainly reveals one of the most important characteristics of its
distribution. The first moment of X  is synonymously called the mean, expecta-
tion, or average value of X . A common notation for it is mX  or simply m.
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Example 4.1. Problem: From Example 3.9 (page 64), determine the average
number of cars turning west in a group of n cars.

Answer: we wish to determine the mean of Y  for which the mass
function is [from Equation (3.51)]

Equation (4.4) then gives

The sum in this expressions is simply the sum of binomial probabilities and
hence equals one. Therefore,

which has a numerical value since n and q are known constants.

Ex ample 4. 2. Problem: the waiting time X  (in minutes) of a customer waiting
to be served at a ticket counter has the density function

Determine the average waiting time.
Answer: referring to Equation (4.5), we have, using integration by parts,

Example 4.3. Problem: from Example 3.10 (pages 65), find the average
resistance of the resistors after screening.
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Answer: the average value required in this example is a conditional mean of R
given the event A . Although no formal definition is given, it should be clear that
the desired average is obtained from

This integral can be evaluated when f R (r) is specified.

Two other quantities in common usage that also give a measure of centrality
of a random variable are its median and mode.

A median of X  is any point that divides the mass of the distribution into two
equal parts; that is, x 0 is a median of X  if

The mean of X  may not exist, but there exists at least one median.
In comparison with the mean, the median is sometimes preferred as a

measure of central tendency when a distribution is skewed, particularly where
there are a small number of extreme values in the distribution. For example, we
speak of median income as a good central measure of personal income for a
population. This is a better average because the median is not as sensitive to
a small number of extremely high incomes or extremely low incomes as is
the mean.

Ex ample 4. 4. Let T  be the time between emissions of particles by a radio-
active atom. It is well established that T  is a random variable and that it obeys
an exponential distribution; that is,

where is a positive constant. The random variable T is called the lifetime of
the atom, and a common average measure of this lifetime is called the half-life,
which is defined as the median of T . Thus, the half-life, is found from

or
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Let us note that the mean life, is given by

A point x i such that

where is an arbitrarily small positive quantity, is called a mode of X . A mode is
thus a value of X  corresponding to a peak in its mass function or density
function. The term unimodal distribution refers to a probability distribution
possessing a unique mode.

To give a comparison of these three measures of centrality of a random
variable, F igure 4.1 shows their relative positions in three different situations. It
is clear that the mean, the median, and the mode coincide when a unimodal
distribution is symmetric.

4.1.2 CENTRAL MOMENTS, VARIANCE, AND STANDARD
DEVIATION

Besides the mean, the next most important moment is the variance, which
measures the dispersion or spread of random variable X  about its mean. Its
definition will follow a general definition of central moments (see Definition 4.2).

D ef inition 4. 2. The central moments of random variable X  are the moments of
X  with respect to its mean. Hence, the nth central moment of X , n, is defined as

The variance of X is the second central moment, 2, commonly denoted by
or simply 2 or var(X ). It is the most common measure of dispersion of
a distribution about its mean. Large values of 2

X imply a large spread in
the distribution of X  about its mean. Conversely, small values imply a sharp
concentration of the mass of distribution in the neighborhood of the mean. This is
illustrated in Figure 4.2 in which two density functions are shown with the same
mean but different variances. When 2

X 0, the whole mass of the distribution is
concentrated at the mean. In this extreme case, X  mX  with probability 1.
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An important relation between the variance and simple moments is

This can be shown by making use of Equations (4.3). We get

fX(x)

Mode
Median

Mean(a)

fX(x)

Mode
Median
Mean

(b)

fX (x)

Mode

Median

Mean(c)

x

x

x

Figure 4.1 Relative positions of the mean, median, and mode for three distributions:
(a) positively shewed; (b) symmetrical; and (c) negatively shewed
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We note two other properties of the variance of a random variable X  which
can be similarly verified. They are:

where c is any constant.
It is further noted from Equations (4.6) and (4.7) that, since each term in the

sum in Equation (4.6) and the integrand in Equation (4.7) are nonnegative, the
variance of a random variable is always nonnegative. The positive square root

is called the standard deviation of X . An advantage of using X  rather than 2
X

as a measure of dispersion is that it has the same unit as the mean. It can
therefore be compared with the mean on the same scale to gain some measure
of the degree of spread of the distribution. A dimensionless number that
characterizes dispersion relative to the mean which also facilitates comparison
among random variables of different units is the coefficient of variation, vX  ,
defined by

Ex ample 4. 5. Let us determine the variance of Y  defined in Example 4.1.
Using Equation (4.8), we may write

fX(x)

1

x

Figure 4.2 Density functions with different variances, , and 2
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Now,

and

Proceeding as in Example (4.1),

Thus,

and

Ex ample 4. 6. We again use Equation (4.8) to determine the variance of X
defined in Example 4.2. The second moment of X  is, on integrating by parts,

Hence,

Example 4.7. Problem: owing to inherent manufacturing and scaling inaccura-
cies, the tape measures manufactured by a certain company have a standard
deviation of 0.03 feet for a three-foot tape measure. What is a reasonable
estimate of the standard deviation associated with three-yard tape measures
made by the same manufacturer?
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Answer: for this problem, it is reasonable to expect that errors introduced in
the making of a three-foot tape measure again are accountable for inaccuracies
in the three-yard tape measures. It is then reasonable to assume that the
coefficient of variation is constant for tape measures of all lengths
manufactured by this company. Thus

and the standard deviation for a three-yard tape measures is
feet.

This example illustrates the fact that the coefficient of variation is often
used as a measure of quality for products of different sizes or different weights.
In the concrete industry, for example, the quality in terms of concrete strength
is specified by a coefficient of variation, which is a constant for all mean
strengths.

Central moments of higher order reveal additional features of a distribution.
The coefficient of skewness, defined by

gives a measure of the symmetry of a distribution. It is positive when a uni-
modal distribution has a dominant tail on the right. The opposite arrangement
produces a negative 1. It is zero when a distribution is symmetrical about the
mean. In fact, a symmetrical distribution about the mean implies that all odd-
order central moments vanish.

The degree of flattening of a distribution near its peaks can be measured by
the coefficient of excess, defined by

A positive 2 implies a sharp peak in the neighborhood of a mode in a unimodal
distribution, whereas a negative 2 implies, as a rule, a flattened peak. The
significance of the number 3 in Equation (4.12) will be discussed in Section 7.2,
when the normal distribution is introduced.

4.1.3 CONDITIONAL EXPECTATION

We conclude this section by introducing a useful relation involving conditional
expectation. Let us denote by that function of random variable Y  for
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which the value at Hence, is itself a random
variable, and one of its very useful properties is that

If Y  is a discrete random variable taking on values y1, y2, . . . ,  the above states
that

and

if Y  is continuous.
To establish the relation given by Equation (4.13), let us show that Equation

(4.14) is true when both X  and Y  are discrete. Starting from the right-hand side
of Equation (4.14), we have

Since, from Equation (2.24),

we have

and the desired result is obtained.
The usefulness of Equation (4.13) is analogous to what we found in using the

theorem of total probability discussed in Section 2.4 (see Theorem 2.1, page 23).
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It states that, in order to determine it can be found by taking a weighted
average of the conditional expectation of X  given each of these terms is
weighted by probability

Example 4.8. Problem: the survival of a motorist stranded in a snowstorm
depends on which of the three directions the motorist chooses to walk. The first
road leads to safety after one hour of travel, the second leads to safety after
three hours of travel, but the third will circle back to the original spot after two
hours. Determine the average time to safety if the motorist is equally likely to
choose any one of the roads.

Answer: let Y  1, 2, and 3 be the events that the motorist chooses the first,
second and third road, respectively. Then 1, 2, 3. Let X
be the time to safety, in hours. We have:

Now,

Hence

or

Let us remark that the third relation in Equations (4.16) is obtained by noting
that, if the motorist chooses the third road, then it takes two hours to find that
he or she is back to the starting point and the problem is as before. Hence, the
motorist’s expected additional time to safety is just The result is thus

We further remark that problems of this type would require much
more work were other approaches to be used.
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4.2 CHEBYSHEV INEQUALITY

In the discussion of expectations and moments, there are two aspects to be
considered in applications. The first is that of calculating moments of various
orders of a random variable knowing its distribution, and the second is con-
cerned with making statements about the behavior of a random variable when
only some of its moments are available. The second aspect arises in numerous
practical situations in which available information leads only to estimates of
some simple moments of a random variable.

The knowledge of mean and variance of a random variable, although very
useful, is not sufficient to determine its distribution and therefore does not
permit us to give answers to such questions as ‘What is However, as
is shown in Theorem 4.1, it is possible to establish some probability bounds
knowing only the mean and variance.

Theorem 4. 1: the Chebyshev inequality states that

for any k > 0.

Proof: from the definition we have

Expression (4.17) follows. The proof is similar when X  is discrete

Example 4.9. In Example 4.7, for three-foot tape measures, we can write
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or

In words, the probability of a three-foot tape measure being in error less than
or equal to 0 06 feet is at least 0.75. Various probability bounds can be found
by assigning different values to k .

The complete generality with which the Chebyshev inequality is derived
suggests that the bounds given by Equation (4.17) can be quite conservative.
This is indeed true. Sharper bounds can be achieved if more is known about the
distribution.

4.3 MOMENTS OF TWO OR MORE RANDOM VARIABLES

Let g(X , Y ) be a real-valued function of two random variables X  and Y . Its
expectation is defined by

if the indicated sums or integrals exist.
In a completely analogous way, the joint moments nm of X  and Y  are given

by, if they exist,

They are computed from Equation (4.18) or (4.19) by letting g(X , Y )
Similarly, the joint central moments of X  and Y , when they exist, are

given by

They are computed from Equation (4.18) or (4.19) by letting

Some of the most important moments in the two-random-variable case are
clearly the individual means and variances of X  and Y . In the notation used
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here, the means of X  and Y  are, respectively, 10 and 01. Using Equation
(4.19), for example, we obtain:

where f X (x ) is the marginal density function of X . We thus see that the result is
identical to that in the single-random-variable case.

This observation is, of course, also true for the individual variances. They are,
respectively, 20 and 02, and can be found from Equation (4.21) with appropriate
substitutions for n and m. As in the single-random-variable case, we also have

or

4.3.1 COVARIANCE AND CORRELATION COEFFICIENT

The first and simplest joint moment of X  and Y  that gives some measure of
their interdependence is It is called the covar-
iance of X  and Y . Let us first note some of its properties.

Property 4.1: the covariance is related to nm by

Proof of Property 4.1: Property 4.1 is obtained by expanding
and then taking the expectation of each term. We have:

P roperty 4. 2: let the correlation coefficient of X  and Y  be defined by

88 Fundamentals of Probability and Statistics for Engineers

� �

�%, � ���� �
� �

��

� �

��
�� �& ��� ������ �

� �

��
�

� �

��
� �& ��� ������

�
� �

��
�� �������

	 	

	', � �', � �'%, 
'� � �', � �'
�

	,' � �,' � �',% 
'& � �,' � �'
&

��
� �$�''�

	%% � ���� � �� ��& � �& ���

�

	%% � �%% � �%,�,% � �%% � ���& � �$�'5�

�� � �� ��& � �& �

	%% � ���� � ����& � �&�� � ���& � �& � � ��& 	 ���&�
� ���&� � �& ���� � ����&� 	 ���&

� �%% � �%,�,% � �%,�,% 	 �%,�,%

� �%% � �%,�,%�


 � 	%%

�	',	,'�%�'
� 	%%


�
&
� �$�'$�

 ��
� �
� 
 %�

TLFeBOOK



P roof of P ropert y 4. 2: to show Property 4.2, let t and u be any real quantities
and form

Since the expectation of a nonnegative function of X  and Y  must be non-
negative, (t, u) is a nonnegative quadratic form in t and u, and we must
have

which gives the desired result.
The normalization of the covariance through Equation (4.24) renders a

useful substitute for 11. Furthermore, the correlation coefficient is dimension-
less and independent of the origin, that is, for any constants a1, a2, b1, and b2

with a1 > 0 and a2 > 0, we can easily verify that

P ropert y 4. 3. If X  and Y  are independent, then

P roof of P ropert y 4. 3: let X  and Y  be continuous; their joint moment 11 is
found from

If X  and Y  are independent, we see from Equation (3.45) that

and

Equations (4.23) and (4.24) then show that similar result
can be obtained for two independent discrete random variables.
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This result leads immediately to an important generalization. Consider a
function of X  and Y  in the form g(X )h(Y ) for which an expectation exists.
Then, if X  and Y  are independent,

When the correlation coefficient of two random variables vanishes, we say
they are uncorrelated. It should be carefully pointed out that what we have
shown is that independence implies zero correlation. The converse, however, is
not true. This point is more fully discussed in what follows.

The covariance or the correlation coefficient is of great importance in the
analysis of two random variables. It is a measure of their linear interdependence
in the sense that its value is a measure of accuracy with which one random
variable can be approximated by a linear function of the other. In order to see
this, let us consider the problem of approximating a random variable X  by a
linear function of a second random variable Y , aY  b, where a and b are
chosen so that the mean-square error e, defined by

is minimized. Upon taking partial derivatives of e with respect to a and b and
setting them to zero, straightforward calculations show that this minimum is
attained when

and

Substituting these values into Equation (4.29) then gives
minimum mean-square error. We thus see that an exact fit in the mean-square
sense is achieved when , and the linear approximation is the worst when

0. More specifically, when 1, the random variables X  and Y  are said
to be positively perfectly correlated in the sense that the values they assume fall
on a straight line with positive slope; they are negatively perfectly correlated
when and their values form a straight line with negative slope. These
two extreme cases are illustrated in Figure 4.3. The value of decreases as
scatter about these lines increases.

Let us again stress the fact that the correlation coefficient measures only the
linear interdependence between two random variables. It is by no means a
general measure of interdependence between X  and Y . Thus,  does not
imply independence of the random variables. In fact, Example 4.10 shows, the
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correlation coefficient can vanish when the values of one random variable are
completely determined by the values of another.

Example 4.10. Problem: determine the correlation coefficient of random
variables X  and Y  when X  takes values 1 and 2, each with probability 1/4,
and

d
thei

clearly, Y  assumes values 1 and 4, each with probability 1/2, and
their jr joint mass function is given by:

The means and second moment 11 are given by

Hence,

y

x

Figure 4.3 An illustration of perfect correlation,
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and, from Equations (4.23) and (4.24),

This is a simple example showing that X  and Y  are uncorrelated but they are
completely dependent on each other in a nonlinear way.

4.3.2 SCHWARZ INEQUALITY

In Section 4.3.1, an inequality given by Equation (4.25) was established in the
process of proving that

We can also show, following a similar procedure, that

Equations (4.30) and (4.31) are referred to as the Schwarz inequality. We point
them out here because they are useful in a number of situations involving
moments in subsequent chapters.

4.3.3 THE CASE OF THREE OR MORE RANDOM VARIABLES

The expectation of a function g(X 1, X 2, . . . , X n) of n random variables
X 1, X 2, . . . , X n is defined in an analogous manner. Following Equations (4.18)
and (4.19) for the two-random-variable case, we have

where pX 1...Xn
and f X1...X n

are, respectively, the joint mass function and joint
density function of the associated random variables.

The important moments associated with n random variables are still the
individual means, individual variances, and pairwise covariances. Let X be
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the random column vector with components X 1, . . . , Xn, and let the means of
X 1, . . . , Xn be represented by the vector mX . A convenient representation of
their variances and covariances is the covariance matrix, , defined by

where the superscript T  denotes the matrix transpose. The n n matrix  has
a structure in which the diagonal elements are the variances and in which the
nondiagonal elements are covariances. Specifically, it is given by

In the above ‘var’ reads ‘variance of ’ and ‘cov’ reads ‘covariance of ’. Since
the covariance matrix is always symmetrical.

In closing, let us state (in Theorem 4.2) without proof an important result
which is a direct extension of Equation (4.28).

Theorem 4. 2: if X 1, X 2, . . . , Xn are mutually independent, then

where gj(X j) is an arbitrary function of X j. It is assumed, of course, that all
indicated expectations exist.

4.4 MOMENTS OF SUMS OF RANDOM VARIABLES

Let X 1, X 2, . . . , Xn be n random variables. Their sum is also a random variable.
In this section, we are interested in the moments of this sum in terms of
those associated with 1, 2, . . . , n. These relations find applications
in a large number of derivations to follow and in a variety of physical
situations.

Consider

Let mj and 2
j denote the respective mean and variance of Xj . Results 4.1–4.3

are some of the important results concerning the mean and variance of Y .
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Verifications of these results are carried out for the case where X 1, . . . , X n are
continuous. The same procedures can be used when they are discrete.

Result 4.1: the mean of the sum is the sum of the means; that is,

Proof of Result 4.1: to establish Result 4.1, consider

The first integral in the final expression can be immediately integrated with
respect to x 2, x 3, . . . , x n, yielding f 

1 
(x 1), the marginal density function of X 1.

Similarly, the (n 1)-fold integration with respect to x 1, x 3, . . . , x n in the second
integral gives f X2 

(x 2), and so on. Hence, the foregoing reduces to

Combining Result 4.1 with some basic properties of the expectation we
obtain some useful generalizations. For example, in view of the second of
Equations (4.3), we obtain Result 4.2.

Result 4.2: if

where a1, a2, . . . , an are constants, then

Result 4. 3: let X 1, . . . , Xn be mutually independent random variables. Then
the variance of the sum is the sum of the variances; that is,
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Let us verify Result 4.3 for n 2. The proof for the case of n random
variables follows at once by mathematical induction. Consider

We know from Equation (4.38) that

Subtracting mY  from Y , and (m1 m2) from (X 1 X 2) yields

and

The covariance cov(X 1, X 2) vanishes, since X 1 and X 2 are independent [see
Equation (4.27)], thus the desired result is obtained.

Again, many generalizations are possible. For example, if Z  is given by
Equation (4.39), we have, following the second of Equations (4.9),

Let us again emphasize that, whereas Equation (4.38) is valid for any set of
random variables X 1, . . . X n, Equation (4.41), pertaining to the variance, holds
only under the independence assumption. Removal of the condition of inde-
pendence would, as seen from the proof, add covariance terms to the right-
hand side of Equation (4.41). It would then have the form
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Ex ample 4. 11. Problem: an inspection is made of a group of n television
picture tubes. If each passes the inspection with probability p and fails with
probability q (p q 1), calculate the average number of tubes in n tubes that
pass the inspection.

Answer: this problem may be easily solved if we introduce a random variable
X j to represent the outcome of the jth inspection and define

if the jth tube passes inspection;

if the jth tube does not pass inspection.

Then random variable Y , defined by

has the desired property that its value is the total number of tubes passing the
inspection. The mean of X j is

Therefore, as seen from Equation (4.38), the desired average number is given by

We can also calculate the variance of Y . If X 1, . . . , X n are assumed to be
independent, the variance of X j is given by

Equation (4.41) then gives

Ex ample 4. 12. Problem: let X 1, . . . , X n be a set of mutually independent
random variables with a common distribution, each having mean m. Show
that, for every and as n

Note: this is a statement of the law of large numbers. The random variable Y  n
can be interpreted as an average of n independently observed random variables
from the same distribution. Equation (4.44) then states that the probability that
this average will differ from the mean by greater than an arbitrarily prescribed
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tends to zero. In other words, random variable Y/n approaches the true mean
with probability 1.

Answer: to proceed with the proof of Equation (4.44), we first note that, if
is the variance of each X j, it follows from Equation (4.41) that

According to the Chebyshev inequality, given by Expression (4.17), for every
0, we have

For the left-hand side is less than which tends to zero as
n . This establishes the proof.

Note that this proof requires the existence of 2. This is not necessary but
more work is required without this restriction.

Among many of its uses, statistical sampling is an example in which the law of
large numbers plays an important role. Suppose that in a group of m families
there are mj number of families with exactly j children ( j 0, 1, . . . , and
m0 m1 . . . m). For a family chosen at random, the number of children is
a random variable that assumes the value r with probability pr mr/m. A sample
of n families among this group represents n observed independent random
variables X 1, . . . , X n, with the same distribution. The quantity (X 1 X n)/n
is the sample average, and the law of large numbers then states that, for
sufficiently large samples, the sample average is likely to be close to

the mean of the population.

Ex ample 4. 13. The random variable Y /n in Example 4.12 is also called the
sample mean associated with random variables X 1, . . . , Xn and is denoted by X .
In Example 4.12, if the coefficient of variation for each X i is v, the coefficient of
variation vX of X  is easily derived from Equations (4.38) and (4.41) to be

Equation (4.45) is the basis for the law of  by Schr ödinger, which states that
the laws of physics are accurate within a probable relative error of the order of

where n is the number of molecules that cooperate in a physical process.
Basically, what Equation (4.45) suggests is that, if the action of each molecule
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exhibits a random variation measured by v, then a physical process resulting
from additive actions of n molecules will possess a random variation measured
by It decreases as n increases. Since n is generally very large in the
workings of physical processes, this result leads to the conjecture that the laws
of physics can be exact laws despite local disorder.

4.5 CHARACTERISTIC FUNCTIONS

The expectation of a random variable X  is defined as the characteristic
function of X . Denoted by X  (t), it is given by

where t is an arbitrary real-valued parameter and j 1. The characteristic
function is thus the expectation of a complex function and is generally complex
valued. Since

the sum and the integral in Equations (4.46) and (4.47) exist and therefore X (t)
always exists. Furthermore, we note

where the asterisk denotes the complex conjugate. The first two properties are
self-evident. The third relation follows from the observation that, since
f X  (x ) 0,

The proof is the same as that for discrete random variables.
We single this expectation out for discussion because it possesses a number of

important properties that make it a powerful tool in random-variable analysis
and probabilistic modeling.
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One of the important uses of characteristic functions is in the determination of
the moments of a random variable. Expanding X  (t) as a MacLaurin series, we
see that (suppressing the subscript X  for convenience)

where the primes denote derivatives. The coefficients of this power series are,
from Equation (4.47),

Thus,

The same results are obtained when X  is discrete.
Equation (4.51) shows that moments of all orders, if they exist, are contained

in the expansion of (t), and these moments can be found from (t) through
differentiation. Specifically, Equations (4.50) give

Ex ample 4. 14. Problem: determine (t), the mean, and the variance of a
random variable X  if it has the binomial distribution

Expectations and Moments 99

��,� �
� �

��
� ������ � %�

���,� � ���	�
�	

����
	�,

�
� �

��
D�� ������ � D�%�

��
�

�����,� � ����	�
�	�

����
	�,

�
� �

��
D���� ������ � D����

����������������
���������������

�$�:,�

��	� � %	
��
��%

� D	����

��
� �$�:%�

�

��	� � ��,� 	 ���,�	 	 ����,� 	'

'
	 � � � 	 �����,� 	�

��
	 � � � � �$�$6�

� �

�� � D�������,�� � � %� '� � � � � �$�:'�

�

���'� �
�

'

� �
�'�%� ����' � ' � ,� %� � � � � ��

4.5.1 GENERATION OF  MOMENTS

TLFeBOOK



Answer: according to Equation (4.46),

Using Equation (4.52), we have

and

The results for the mean and variance are the same as those obtained in
Examples 4.1 and 4.5.

Ex ample 4. 15. Problem: repeat the above when X  is exponentially distributed
with density function

Answer: the characteristic function X  (t) in this case is

The moments are

which agree with the moment calculations carried out in Examples 4.2 and 4.6.
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Another useful expansion is the power series representation of the logarithm
of the characteristic function; that is,

where coefficients n are again obtained from

The relations between coefficients n and moments n can be established by
forming the exponential of log X (t), expanding this in a power series of jt, and
equating coefficients to those of corresponding powers in Equation (4.51). We
obtain

It is seen that 1 is the mean, 2 is the variance, and 3 is the third central
moment. The higher order n are related to the moments of the same order or
lower, but in a more complex way. Coefficients n are called cumulants of X
and, with a knowledge of these cumulants, we may obtain the moments and
central moments.

4.5.2 INVERSION FORMULAE

Another important use of characteristic functions follows from the inversion
formulae to be developed below.

Consider first a continuous random variable X . We observe that Equation
(4.47) also defines X  (t) as the inverse Fourier transform of f X (x). The other
half of the Fourier transform pair is

This inversion formula shows that knowledge of the characteristic function
specifies the distribution of X . Furthermore, it follows from the theory of
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Fourier transforms that f X  (x) is uniquely determined from Equation (4.58);
that is, no two distinct density functions can have the same characteristic
function.

This property of the characteristic function provides us with an alternative
way of arriving at the distribution of a random variable. In many physical
problems, it is often more convenient to determine the density function of a
random variable by first determining its characteristic function and then per-
forming the Fourier transform as indicated by Equation (4.58). Furthermore,
we shall see that the characteristic function has properties that render it
particularly useful for determining the distribution of a sum of independent
random variables.

The inversion formula of Equation (4.58) follows immediately from the
theory of Fourier transforms, but it is of interest to give a derivation of this
equation from a probabilistic point of view.

Proof of Equation (4.58): an integration formula that can be found in any
table of integrals is

This leads to

because the function (1 cos at t is an odd function of t so that its integral
over a symmetric range vanishes. Upon replacing a by X  x  in Equation
(4.60), we have

For a fixed value of x , Equation (4.61) is a function of random variable X , and
it may be regarded as defining a new random variable Y . The random variable
Y  is seen to be discrete, taking on values 1, 1

2, and 0 with probabilities
P(X  < x ), P(X  x ), and P(X  > x ), respectively. The mean of Y  is thus equal to
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However, notice that, since X  is continuous, P(X  x ) 0 if x  is a point of
continuity in the distribution of X . Hence, using Equation (4.47),

The above defines the probability distribution function of X . Its derivative
gives the inversion formula

and we have Equation (4.58), as desired.

The inversion formula when X  is a discrete random variable is

A proof of this relation can be constructed along the same lines as that given
above for the continuous case.

Proof of Equation (4.64): first note the standard integration formula:

Replacing a by X  x  and taking the limit as we have a new random
variable Y , defined by

The mean of Y  is given by
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and therefore

which gives the desired inversion formula.

In summary, the transform pairs given by Equations (4.46), (4.47), (4.58),
and (4.64) are collected and presented below for easy reference. For a contin-
uous random variable X ,

and, for a discrete random variable X ,

Of the two sets, Equations (4.68) for the continuous case are more important in
terms of applicability. As we shall see in Chapter 5, probability mass functions
for discrete random variables can be found directly without resorting to their
characteristic functions.

As we have mentioned before, the characteristic function is particularly
useful for the study of a sum of independent random variables. In this connec-
tion, let us state the following important theorem, (Theorem 4.3).

Theorem 4.3: The characteristic function of a sum of independent random
variables is equal to the product of the characteristic functions of the individual
random variables.

Proof of Theorem 4.3: Let
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Then, by definition,

Since X 1, X 2, . . . , Xn are mutually independent, Equation (4.36) leads to

We thus have

which was to be proved.

In Section (4.4), we obtained moments of a sum of random variables;
Equation (4.71), coupled with the inversion formula in Equation (4.58) or
Equation (4.64), enables us to determine the distribution of a sum of random
variables from the knowledge of the distributions of X j, j 1, 2, . . . , n, provided
that they are mutually independent.

Ex ample 4. 16. Problem: let X 1 and X 2 be two independent random variables,
both having an exponential distribution with parameter a, and let

Determine the distribution of Y .
Answer: the characteristic function of an exponentially distributed random

variable was obtained in Example 4.15. From Equation (4.54), we have

According to Equation (4.71), the characteristic function of Y  is simply

Hence, the density function of Y  is, as seen from the inversion formula of
Equations (4.68),
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The distribution given by Equation (4.72) is called a gamma distribution,
which will be discussed extensively in Section 7.4.

Example 4.17. In 1827, Robert Brown, an English botanist, noticed that small
particles of matter from plants undergo erratic movements when suspended in
fluids. It was soon discovered that the erratic motion was caused by impacts on
the particles by the molecules of the fluid in which they were suspended. This
phenomenon, which can also be observed in gases, is called Brownian motion.
The explanation of Brownian motion was one of the major successes of statistical
mechanics. In this example, we study Brownian motion in an elementary way by
using one-dimensional random walk as an adequate mathematical model.

Consider a particle taking steps on a straight line. It moves either one step to
the right with probability p, or one step to the left with probability

The steps are always of unit length, positive to the right and
negative to the left, and they are taken independently. We wish to determine the
probability mass function of its position after n steps.

Let X i be the random variable associated with the ith step and define

Then random variable Y , defined by

gives the position of the particle after n steps. It is clear that Y  takes integer
values between and n.

To determine pY  (k),    we first find its characteristic function. The
characteristic function of each X i is

It then follows from Equation (4.71) that, in view of independence,

Let us rewrite it as
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Letting k  2i n, we get

Comparing Equation (4.76) with the definition in Equation (4.46) yields the
mass function

Note that, if n is even, k  must also be even, and, if n is odd k  must be odd.
Considerable importance is attached to the symmetric case in which k  n,

and In order to consider this special case, we need to use Stirling’s
formula, which states that, for large n,

Substituting this approximation into Equation (4.77) gives

A further simplification results when the length of each step is small. Assuming
that r steps occur in a unit time (i.e. n ) and letting a be the length of each
step, then, as n becomes large, random variable Y  approaches a continuous
random variable, and we can show that Equation (4.79) becomes

where . On letting

we have

The probability density function given above belongs to a Gaussian or normal
random variable. This result is an illustration of the central limit theorem, to be
discussed in Section 7.2.
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Our derivation of Equation 4.81 has been purely analytical. In his theory of
Brownian motion, Einstein also obtained this result with

where R  is the universal gas constant, T  is the absolute temperature, N  is
Avogadro’s number, and f  is the coefficient of friction which, for liquid or
gas at ordinary pressure, can be expressed in terms of its viscosity and particle
size. Perrin, a French physicist, was awarded the Nobel Prize in 1926 for his
success in determining, from experiment, Avogadro’s number.

4.5.3 JOINT CHARACTERISTIC FUNCTIONS

The concept of characteristic functions also finds usefulness in the case of two
or more random variables. The development below is concerned with contin-
uous random variables only, but the principal results are equally valid in the
case of discrete random variables. We also eliminate a bulk of the derivations
involved since they follow closely those developed for the single-random-
variable case.

The joint characteristic function of two random variables X  and Y ,
is defined by

where t and s are two arbitrary real variables. This function always exists and
some of its properties are noted below that are similar to those noted for
Equations (4.48) corresponding to the single-random-variable case:

Furthermore, it is easy to verify that joint characteristic function
related to marginal characteristic functions
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If random variables X  and Y  are independent, then we also have

To show the above, we simply substitute f X (x )f  (y) for f X Y  (x , y) in Equation
(4.83). The double integral on the right-hand side separates, and we have

and we have the desired result.
Analogous to the one-random-variable case, joint characteristic function

X Y  (t, s) is often called on to determine joint density function f X Y  (x , y) of X
and Y  and their joint moments. The density function f X Y  (x , y) is uniquely
determined in terms of X Y  (t, s) by the two-dimensional Fourier transform

and moments if they exist, are related to XY  (t, s) by

The MacLaurin series expansion of XY  (t, s) thus takes the form

The above development can be generalized to the case of more than two
random variables in an obvious manner.

Example 4.18. Let us consider again the Brownian motion problem discussed
in Example 4.17, and form two random variables
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They are, respectively, the position of the particle after 2n steps and its position
after 3n steps relative to where it was after n steps. We wish to determine the
joint probability density function (jpdf) fX Y  (x , y) of random variables

and

for large values of n.
For the simple case of p q 1

2, the characteristic function of each X k is [see
Equation (4.74)]

and, following Equation (4.83), the joint characteristic function of X and Y is

where (t) is given by Equation (4.91). The last expression in Equation (4.92) is
obtained based on the fact that the Xk , k  1, 2, . . . , 3n, are mutually independ-
ent. It should be clear that X  and Y  are not independent, however.

We are now in the position to obtain f XY  (x , y) from Equation (4.92) by using
the inverse formula given by Equation (4.87). F irst, however, some simplifica-
tions are in order. As n becomes large,
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Hence, as n

Now, substituting Equation (4.94) into Equation (4.87) gives

which can be evaluated following a change of variables defined by

The result is

The above is an example of a bivariate normal distribution, to be discussed in
Section 7.2.3.

Incidentally, the joint moments of X  and Y  can be readily found by means of
Equation (4.88). For large n, the means of X  and Y , 10 and 01, are

Similarly, the second moments are
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FURTHER READING AND COMMENTS

As mentioned in Section 4.2, the Chebyshev inequality can be improved upon if some
additional distribution features of a random variable are known beyond its first two
moments. Some generalizations can be found in:

Mallows, C.L., 1956, ‘Generalizations of Tchebycheff’s Inequalities’, J. Royal Statistical
Societies, Series B 18 139–176.

In many introductory texts, the discussion of characteristic functions of random
variables is bypassed in favor of moment-generating functions. The moment-generating
function M X  (t) of a random variable X  is defined by

In comparison with characteristic functions, the use of M X  (t) is simpler since it avoids
computations involving complex numbers and it generates moments of X  in a similar
fashion. However, there are two disadvantages in using M X  (t). The first is that it
may not exist for all values of t whereas X  (t) always exists. In addition, powerful
inversion formulae associated with characteristic functions no longer exist for moment-
generating functions. For a discussion of the moment-generating function, see, for
example:

Meyer, P.L., 1970, Introductory Probability and Statistical Applications, 2nd edn,
Addison-Wesley, Reading, Mas, pp. 210–217.

PROBLEMS

4.1 For each of the probability distribution functions (PDFs) given in Problem 3.1
(Page 67), determine the mean and variance, if they exist, of its associated random
variable.

4.2 For each of the probability density functions (pdfs) given in Problem 3.4, determine
the mean and variance, if they exist, of its associated random variable.

4.3 According to the PDF given in Example 3.4 (page 47), determine the average
duration of a long-distance telephone call.

4.4 It is found that resistance of aircraft structural parts, R , in a nondimensionalized
form, follows the distribution
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random variable representing distance of the hit from the center. Suppose that the
pdf of R  is

Compute the mean score of each shot.

4.6 A random variable X  has the exponential distribution

Determine:
(a) The value of a.
(b) The mean and variance of X .
(c) The mean and variance of Y  (X /2) 1.

4.7 Let the mean and variance of X  be m and 2, respectively. For what values of a and b
does random variable Y , equal to aX b, have mean 0 and variance 1?

4.8 Suppose that your waiting time (in minutes) for a bus in the morning is uniformly
distributed over (0, 5), whereas your waiting time in the evening is distributed as
shown in Figure 4.4. These waiting times are assumed to be independent for any
given day and from day to day.
(a) If you take the bus each morning and evening for five days, what is the mean of

your total waiting time?
(b) What is the variance of your total five-day waiting time?
(c) What are the mean and variance of the difference between morning and evening

waiting times on a given day?
(d) What are the mean and variance of the difference between total morning wait-

ing time and total evening waiting time for five days?

fT(t )

0 10
t

Figure 4.4 Density function of evening waiting times, for Problem 4.8
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4.9 The diameter of an electronic cable, say X , is random, with pdf

(a) What is the mean value of the diameter?
(b) What is the mean value of the cross-sectional area,

4.10 Suppose that a random variable X  is distributed (arbitrarily) over the interval

Show that:
(a) mX  is bounded by the same limits;

(b)

4.11 Show that, given a random variable X , P(X  mX  ) 1 if 2
X 0.

4.12 The waiting time T  of a customer at an airline ticket counter can be characterized
by a mixed distribution function (see Figure 4.5):

Determine:
(a) The average waiting time of an arrival,
(b) The average waiting time for an arrival given that a wait is required,

4.13 For the commuter described in Problem 3.21 (page 72), assuming that he or she
makes one of the trains, what is the average arrival time at the destination?

4.14 A trapped miner has to choose one of two directions to find safety. If the miner
goes to the right, then he will return to his original position after 3 minutes. If he
goes to the left, he will with probability 1/3 reach safety and with probability 2/3
return to his original position after 5 minutes of traveling. Assuming that he is at all

FT (t )

1

p

t

Figure 4. 5 Distribution function, FT (t), of waiting times, for Problem 4.12
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times equally likely to choose either direction, determine the average time interval
(in minutes) that the miner will be trapped.

4.15 Show that:

4.16 Let random variable X  be uniformly distributed over interval 0  Deter-
mine a lower bound for using the Chebyshev inequality and
compare it with the exact value of this probability.

4.17 For random variable X  defined in Problem 4.16, plot as a func-
tion of h and compare it with its lower bound as determined by the Chebyshev
inequality. Show that the lower bound becomes a better approximation of

becomes large.

4.18 Let a random variable X  take only nonnegative values; show that, for any a > 0,

This is known as Markov’s inequality.

4.19 The yearly snowfall of a given region is a random variable with mean equal to 70
inches.
(a) What can be said about the probability that this year’s snowfall will be

between 55 and 85 inches?
(b) Can your answer be improved if, in addition, the standard deviation is known

to be 10 inches?

4.20 The number X  of airplanes arriving at an airport during a given period of time is
distributed according to

Use the Chebyshev inequality to determine a lower bound for probability
during this period of time.

4.21 For each joint distribution given in Problem 3.13 (page 71), determine mX  , mY  , 2
X  ,

2
Y  , and  X Y  of random variables X  and Y .

4.22 In the circuit shown in F igure 4.6, the resistance R  is random and uniformly

+

–
V

r0

R

i

Figure 4.6 Circuit diagram for Problem 4.22
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(a) Determine mV  and 2
V  of voltage V, which is given by

(b) Determine the correlation coefficient of R  and V .

4.23 Let the jpdf of X  and Y  be given by

Determine the mean of Z , equal to (X 2 Y 2)1/2.

4.27 In a simple frame structure such as the one shown in Figure 4.7, the total hor-
izontal displacement of top storey Y  is the sum of the displacements of individual
storeys X 1 and X 2. Assume that X1 and X2 are independent and let mX 1 , mX2 , 

2
X 1

,
and 2

X2
be their respective means and variances.

(a) F ind the mean and variance of Y .
(b) F ind the correlation coefficient between X 2 and Y . Discuss the result if

1
.

4.28 Let X 1, . . . , X n be a set of independent random variables, each of which has a
probability density function (pdf) of the form

Determine the mean and variance of Y , where
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4.30 Determine the characteristic function corresponding to each of the PDFs given in
Problem 3.1(a)–3.1(e) (page 67). Use it to generate the first two moments and
compare them with results obtained in Problem 4.1. [Let a 2 in part (e).]

4.31 We have shown that characteristic function X (t) of random variable X  facilitates
the determination of the moments of X . Another function M X  (t), defined by

and called the moment-generating function of X , can also be used to obtain
moments of X . Derive the relationships between M X (t) and the moments of X .

4.32 Let

where X1, X 2, . . . , X n are mutually independent. Show that

X2

X1

Y

Figure 4.7 Frame structure, for Problem 4.27

Expectations and Moments 117

$�'6 "�� �%��'� � � � ��� �� �
����
��
� ��
�	� ��������� �
� ��� 
'/ �
� 	/ �� ���
���������� �����
�� �
� ����� ��
���� �	��
� 	� �/ � "�� 
' �
� 	 ��
	�� ���
�	�����	
��
� (��
������ �	� &� !���� & � �% 	 �' 	 � � � 	 ���
��� +�	! ���� 
' � 
'% 	 
'' 	 � � � 	 
'�� �
� 	 � 	% 	 	' 	 � � � 	 	��
��� +�	! ���� ���� �������� ��	����� �	�� 
	� ����� �	 ��� �	����&	���� 	� ������&

	���� ��
���� �	��
���

�
�

���	� � ���	���

& � �%�% 	 �'�' 	 � � � 	 ����

�& �	� � ��%
��%	���'

��'	� � � ����
���	��

TLFeBOOK



TLFeBOOK



5

Functions of Random Variables

The basic topic to be discussed in this chapter is one of determining the relation-
ship between probability distributions of two random variables X  and Y  when
they are related by Y  g(X ). The functional form of g(X ) is given and determin-
istic. Generalizing to the case of many random variables, we are interested in the
determination of the joint probability distribution of Y j, j 1, 2, . . . , m, which is
functionally dependent on X k , k 1, 2, . . . , n, according to

when the joint probabilistic behavior of X k , k  1, 2, . . . , n, is known.
Some problems of this type (i.e. transformations of random variables) have

been addressed in several places in Chapter 4. For example, Example 4.11 con-
siders transformation Y  X 1 Xn, and Example 4.18 deals with the trans-
formation of 3n random variables (X 1, X 2, . . . , X 3n) to two random variables
(X0, Y0) defined by Equations (4.90). In science and engineering, most phenomena
are based on functional relationships in which one or more dependent variables
are expressed in terms of one or more independent variables. For example, force is
a function of cross-sectional area and stress, distance traveled over a time interval
is a function of the velocity, and so on. The techniques presented in this chapter
thus permit us to determine the probabilistic behavior of random variables that
are functionally dependent on some others with known probabilistic properties.

In what follows, transformations of random variables are treated in a systemat-
ic manner. In Equation (5.1), we are basically interested in the joint distributions
and joint moments of Y 1, . . . , Y m given appropriate information on X 1, . . . , Xn.

5.1 FUNCTIONS OF ONE RANDOM VARIABLE

Consider first a simple transformation involving only one random variable, and let
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where g(X ) is assumed to be a continuous function of X . Given the probability
distribution of X  in terms of its probability distribution function (PDF),
probability mass function (pmf ) or probability density function (pdf ), we
are interested in the corresponding distribution for Y  and its moment
properties.

5.1.1 PROBABILITY DISTRIBUTION

Given the probability distribution of X , the quantity Y , being a function of X  as
defined by Equation (5.2), is thus also a random variable. Let RX be the range
space associated with random variable X , defined as the set of all possible
values assumed by X , and let RY  be the corresponding range space associated
with Y . A basic procedure of determining the probability distribution of Y
consists of the steps developed below.

For any outcome such as X  x , it follows from Equation (5.2) that
Y  y  g(x ). As shown schematically in F igure 5.1, Equation (5.2) defines a
mapping of values in range space R X  into corresponding values in range space
R Y  . Probabilities associated with each point (in the case of discrete random
variable X ) or with each region (in the case of continuous random variable X ) in
R X  are carried over to the corresponding point or region in RY  . The probability
distribution of Y  is determined on completing this transfer process for every
point or every region of nonzero probability in R X . Note that many-to-one
transformations are possible, as also shown in Figure 5.1. The procedure of
determining the probability distribution of Y  is thus critically dependent on the
functional form of g in Equation (5.2).

X = x3

X = x2

X = x1

X = x

RY

RX

Y = y = g(x1) = g(x2) = g(x3)

Y = y = g(x)

Figure 5. 1 Transformation y g (x)
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5.1.1.1 Discrete Random Variables

Let us first dispose of the case when X  is a discrete random variable, since it
requires only simple point-to-point mapping. Suppose that the possible values
taken by X  can be enumerated as x 1, x 2, . . ..  Equation  (5.2)  shows  that  the
corresponding possible values of Y  may be enumerated as y1 g(x 1), y2

g(x 2), . . . . Let the pmf of X  be given by

The pmf of y is simply determined as

Ex ample 5. 1. Problem: the pmf of a random variable X  is given as

Determine the pmf of Y  if Y  is related to X  by Y  2X  1.
Answer: the corresponding values of Y  are: g( 1) 2( 1) 1 1;

g(0) 1; g(1) 3; and g(2) 5. Hence, the pmf of Y  is given by

Ex ample 5. 2. Problem: for the same X  as given in Example 5.1, determine the
pmf of Y  if Y  2X 2 1.

Answer: in this case, the corresponding values of Y  are: g( 1) 2( 1)2

1 3; g(0) 1; g(1) 3; and g(2) 9, resulting in
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5.1.1.2 Continuous Random Variables

A more frequently encountered case arises when X  is continuous with known PDF,
FX (x ), or pdf, f X  (x ). To carry out the mapping steps as outlined at the beginning
of this section, care must be exercised in choosing appropriate corresponding
regions in range spaces R X  and RY  , this mapping being governed by the transform-
ation Y g(X ). Thus, the degree of complexity in determining the probability
distribution of Y  is a function of complexity in the transformation g(X ).

Let us start by considering a simple relationship

The transformation y g(x ) is presented graphically in F igure 5.2. Consider
the PDF of Y , FY  (y); it is defined by

The region defined by Y y in the range space R Y  covers the heavier portion
of the transformation curve, as shown in Figure 5.2, which, in the range space
R X , corresponds to the region g(X ) y, or X  g 1(y), where

y

y

y = 2x + 1

x

x = g–1(y) =
y – 1

2

Figure 5.2 Transformation defined by Equation (5.5)
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is the inverse function of g(x ), or the solution for x  in Equation (5.5) in terms of
y. Hence,

Equation (5.7) gives the relationship between the PDF of X  and that of Y , our
desired result.

The relationship between the pdfs of X and Y  are obtained by differentiating
both sides of Equation (5.7) with respect to y. We have:

It is clear that Equations (5.7) and (5.8) hold not only for the particular
transformation given by Equation (5.5) but for all continuous g(x ) that are strictly
monotonic increasing functions of x , that is, g(x 2) >  g(x 1) whenever x 2 > x 1.

Consider now a slightly different situation in which the transformation is
given by

Starting again with FY  (y) P(Y  y), and reasoning as before, the region
Y  y  in the range space R Y  is now mapped into the region X  > g 1(y), as
indicated in Figure 5.3. Hence, we have in this case

y

y

y = –2x + 1

x

x = g–1(y) =
1 – y

2

Figure 5.3 Transformation defined by Equation (5.9)
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In comparison with Equation (5.7), Equation (5.10) yields a different relation-
ship between the PDFs of X and Y owing to a different g(X ).

The relationship between the pdfs of X and Y for this case is again obtained
by differentiating both sides of Equation (5.10) with respect to y, giving

Again, we observe that Equations (5.10) and (5.11) hold for all continuous g(x )
that are strictly monotonic decreasing functions of x , that is g(x 2) <  g(x 1)
whenever x 2 > x 1.

Since the derivative dg 1(y)/dy in Equation (5.8) is always positive – as g(x ) is
strictly monotonic increasing – and it is always negative in Equation (5.11) – as
g(x ) is strictly monotonic decreasing – the results expressed by these two
equations can be combined to arrive at Theorem 5.1.

Theorem 5. 1. Let X  be a continuous random variable and Y  g(X ) where
g(X ) is continuous in X  and strictly monotone. Then

where denotes the absolute value of u.

Ex ample 5. 3. Problem: the pdf of X  is given by (Cauchy distribution):

Determine the pdf of Y  where

Answer: the transformation given by Equation (5.14) is strictly monotone.
Equation (5.12) thus applies and we have

and
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Following Equation (5.12), the result is

It is valid over the entire range as it is in correspondence with the
range defined in the range space R X .

Example 5.4. Problem: the angle of a pendulum as measured from the
vertical is a random variable uniformly distributed over the interval

Determine the pdf of Y , the horizontal distance, as shown
in Figure 5.4.

Answer: the transformation equation in this case is

where

As shown in Figure 5.5, Equation (5.16) is monotone within the range
Hence, Equation (5.12) again applies and we have

Y

1

Figure 5.4 Pendulum, in Example 5.4
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and

The pdf of Y  is thus given by

The range space R Y  corresponding to  is  The
pdf given above is thus valid for the whole range of y. The random variable Y
has the so-called Cauchy distribution and is plotted in Figure 5.6.

Ex ample 5. 5. Problem: the resistance R  in the circuit shown in F igure 5.7 is
random and has a triangular distribution, as shown in Figure 5.8. With a
constant current i 0 1 A and a constant resistance r0 100 ; determine the
pdf of voltage V .

Answer: the relationship between V  and R  is

Figure 5.5 Transformation defined by Equation (5.16)
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0.4

0.2

–2 2 4
y

fY(y)

–4

Figure 5. 6 Probability density function, f Y  (y) in Example 5.4

r0

i
V R 

+

–

Figure 5.7 Circuit for Example 5.5

fR(r )

0.1

11090
r(ohms)

Figure 5. 8 Distribution, f R (r), in Example 5.5
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and

The range 90  110 corresponds to 19 v  21 in the range space R V  . It is
clear that f V (v) is zero outside the interval 19 v  21. In this interval, since
Equation (5.19) represents a strictly monotonic function, we obtain by means
of Equation (5.12),

where

and

We thus have

and

The pdf of V  is plotted in F igure 5.9.

f
V

(v)

1

2119
v(volts)

Figure 5. 9 Density function f V  (v), in Example 5.5

128 Fundamentals of Probability and Statistics for Engineers

� ���� �
/�//$��
 ./�� 	�� ./ � � � ""/�

/� ����������

�
�$�#/�

� � � � �
� �

� )�*� � � ���
"�*�	 ��
"�*�
�*

����
����� ". � * � #"�

�
"�*� � 
"// � "/*�

��
"�*�
�*

� "/�

� )�*� � /�//$�
"// � "/*
 ./��"/�
� /�$�*
 ".�� 	�� ". � * � #"

� )�*� � /� ����������

TLFeBOOK



In the examples given above, it is easy to verify that all density functions
obtained satisfy the required properties.

Let us now turn our attention to a more general case where function
Y  g(X ) is not necessarily strictly monotonic. Two examples are given in
Figures 5.10 and 5.11. In Figure 5.10, the monotonic property of the transform-
ation holds for y  < y1, and y > y2, and Equation (5.12) can be used to
determine the pdf of Y  in these intervals of y. For y1 y , however, we
must start from the beginning and consider FY (y) P(Y y). The region
defined by Y  y  in the range space R Y covers the heavier portions of the
function y  g(x ), as shown in F igure 5.10. Thus:

where are roots for x  of function
( ) in terms of .

As before, the relationship between the pdfs of X  and Y  is found by differ-
entiating Equation (5.21) with respect to y. It is given by

x1 = g1 (y)

y = g(x)

x2 = g2 (y) x3 = g3 (y)

y2

y

y

x

y1

–1 –1 –1

Figure 5. 10 An example of nonmonotonic function y  g (x )
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Since derivative dg 1
2 (y) dy  is negative whereas the others are positive,

Equation (5.22) takes the convenient form

Figure 5.11 represents the transformation y  sin x; this equation has an infinite
(but countable) number of roots, x 1 g 1

1 (y), x 2 g 1
2 (y), . . . , for any y in the

interval 1 y  1. Following the procedure outlined above, an equation similar
to Equation (5.21) (but with an infinite number of terms) can be established for
FY  (y) and, as seen from Equation (5.23), the pdf of Y  now has the form

It is clear from Figure 5.11 that f Y  (y) 0 elsewhere.
A general pattern now emerges when function Y  g(X ) is nonmonotonic.

Equations (5.23) and (5.24) lead to Theorem 5.2.

Theorem 5. 2: Let X  be a continuous random variable and Y  g(X ), where
g(X ) is continuous in X , and y  g(x ) admits at most a countable number of
roots x 1 g 1

1 (y), x 2 g 1
2 (y), . . . . Then:

y

x

y

1

–1

Figure 5. 11 An example of nonmonotonic function y  g(x )
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where r is the number of roots for x  of equation y  g(x ). Clearly, Equation
(5.12) is contained in this theorem as a special case (r 1).

Example 5.6. Problem: in Example 5.4, let random variable now be uni-
formly distributed over the interval . Determine the pdf of
Y t an .

Answer: the pdf of is now

and the relevant portion of the transformation equation is plotted in
Figure 5.12. For each y, the two roots 1 and 2 of y  tan are (see F igure
5.12)

y

y

Figure 5. 12 Transformation y  tan
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For all y, Equation (5.25) yields

a result identical to the solution for Example 5.4 [see Equation (5.18)].

Ex ample 5 . 7. Problem: determine the pdf of Y  X 2 where X  is normally
distributed according to

As shown in F igure 5.13, fY (y) 0 for y  < 0 since the transformation
equation has no real roots in this range. For y  0, the two roots of

2

y

y = x2

y

x

Figure 5. 13 Transformation y  x 2
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Hence, using Equation (5.25),

or

This is the so-called 2 distribution, to be discussed in more detail in Section
7.4.2.

Example 5.8. Problem: a random voltage 1 having a uniform distribution
over interval 90 V V1 110 V is put into a nonlinear device (a limiter), as
shown in Figure 5.14. Determine the probability distribution of the output
voltage V 2.

Answer: the relationship between 1 and 2 is, as seen from Figure 5.14,

95 105

2 (volts)

1 (volts)

1

2 = g( 1)

Figure 5.14 Transformation defined by Equation (5.29)
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where

The theorems stated in this section do not apply in this case to the portions
v1 < 95 V and v1 > 105 V because infinite and noncountable number of roots
for v1 exist in these regions. However, we deduce immediately from Figure 5.14
that

For the middle portion, Equation (5.7) leads to

Now,

We thus have

The PDF, FV 2 (v2), is shown in F igure 5.15, an example of a mixed distribution.

5.1.2 MOMENTS

Having developed methods of determining the probability distribution of
Y g(X ), it is a straightforward matter to calculate all the desired moments
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of Y  if they exist. However, this procedure – the determination of moments of Y
on finding the probability law of Y  – is cumbersome and unnecessary if only the
moments of Y  are of interest.

A more expedient and direct way of finding the moments of Y  g(X ), given
the probability law of X , is to express moments of Y  as expectations of
appropriate functions of X ; they can then be evaluated directly within the
probability domain of X . In fact, all the ‘machinery’ for proceeding along this
line is contained in Equations (4.1) and (4.2).

Let Y  g(X ) and assume that all desired moments of Y  exist. The nth
moment of Y  can be expressed as

It follows from Equations (4.1) and (4.2) that, in terms of the pmf or pdf of X ,

An alternative approach is to determine the characteristic function of Y  from
which all moments of Y  can be generated through differentiation. As we see
from the definition [Equations (4.46) and (4.47)], the characteristic function of
Y  can be expressed by

1

3
4

1
4

ˇ2

FV 2
( ˇ̌2)

1

Figure 5. 15 Distribution FV2 (v2) in Example 5.8
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Upon evaluating Y (t), the moments of Y are given by [Equation (4.52)]:

Ex ample 5. 9. Problem: a random variable X  is discrete and its pmf is given in
Example 5.1. Determine the mean and variance of Y where Y  2X  1.

Answer: using the first of Equations (5.31), we obtain

and

Following the second approach, let us use the method of characteristic func-
tions described by Equations (5.32) and (5.33). The characteristic function of Y  is

and we have
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As expected, these answers agree with the results obtained earlier [Equations
(5.34) and (5.35)].

Let us again remark that the procedures described above do not require
knowledge of fY  (y). One can determine fY  (y) before moment calculations but it
is less expedient when only moments of Y  are desired. Another remark to be
made is that, since the transformation is linear (Y  2X  1) in this case, only
the first two moments of X  are needed in finding the first two moments of Y ,
that is,

as seen from Equations (5.34) and (5.35). When the transformation is nonlinear,
however, moments of X  of different orders will be needed, as shown below.

Ex ample 5. 10. Problem: from Example 5.7, determine the mean and variance
of Y  X 2. The mean of Y  is, in terms of f X (x ),

and the second moment of Y is given by

Thus,

In this case, complete knowledge of f X  (x ) is not needed but we to need to
know the second and fourth moments of X .

5.2 FUNCTIONS OF TWO OR MORE RANDOM VARIABLES

In this section, we extend earlier results to a more general case. The random
variable Y  is now a function of n jointly distributed random variables,
X 1, X 2, . . . , Xn. Formulae will be developed for the corresponding distribution
for Y .

As in the single random variable case, the case in which X 1, X 2, . . . ,  and  X n

are discrete random variables presents no problem and we will demonstrate this
by way of an example (Example 5.13). Our basic interest here lies in the

Functions of Random Variables 137

� �

���� � ��#� � "� � #���� � "�

���#� � ���#� � "�#� � (���#� � (���� � "�

�

���� � ���#� � "

�#��"�#

� �


�
(#�
(

#�#�( � "� �$�,8�

���#� � ���(� � "

�#��"�#

� �


�
((�
(

#�#�( � ,� �$�,+�

	#
� � ���#� 
 �#��� � , 
 " � #� �$�,.�

TLFeBOOK



determination of the distribution Y  when all X j, j 1, 2, . . . , n, are continuous
random variables. Consider the transformation

where the joint distribution of X 1, X 2, . . . , and X n is assumed to be specified in
term of their joint probability density function (jpdf), f X 1...Xn 

(x 1, . . . , x n), or
their joint probability distribution function (JPDF), FX1...X n (x 1, . . . , x n). In a
more compact notation, they can be written as f X ( x) and FX ( x), respectively,
where X is an n-dimensional random vector with components X1, X 2, . . . , Xn.

The starting point of the derivation is the same as in the single-random-
variable case; that is, we consider FY  (y) P(Y  y). In terms of X, this
probability is equal to P[g( X ) y]. Thus:

The final expression in the above represents the JPDF of X for which the

X

where the limits of the integrals are determined by an n-dimensional region Rn

within which g( x) y is satisfied. In view of Equations (5.41) and (5.42), the
PDF of Y , FY  (y), can be determined by evaluating the n-dimensional integral in
Equation (5.42). The crucial step in this derivation is clearly the identification
of Rn, which must be carried out on a problem-to-problem basis. As n becomes
large, this can present a formidable obstacle.

The procedure outlined above can be best demonstrated through examples.

Ex ample 5. 11. Problem: let Y  X 1X 2. Determine the pdf of Y  in terms of
f X 1X2 

(x 1, x 2).
Answer: from Equations (5.41) and (5.42), we have

The equation x 1x 2 y  is graphed in F igure 5.16 in which the shaded area
represents R 2, or x 1x 2 y. The limits of the double integral can thus be
determined and Equation (5.43) becomes
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Substituting f X1X 2 
(x 1, x 2) into Equation (5.44) enables us to determine FY  (y)

and, on differentiating with respect to y, gives f Y  (y).
For the special case where X1 and X 2 are independent, we have

and Equation (5.44) simplifies to

x1x2 = y

x1

x2

R 2

Figure 5. 16 Region R2, in Example 5.11
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As a numerical example, suppose that X 1 and X 2 are independent and

The pdf of Y  is, following Equation (5.45),

In the above, the integration limits are determined from the fact that f X1 
(x 1)

and f X2 
(x 2) are nonzero in intervals 0 x 1 1, and 0 x 2 2. With the

argument of f X1 
(x 1) replaced by y/x 2 in the integral, we have 0 y/x 2 1,

and 0 x 2 2, which are equivalent to y x 2 2. Also, range 0 y 2 for
the nonzero portion of f Y  (y) is determined from the fact that, since y  x 1x 2,
intervals 0 x 1 1, and 0 x 2 2 directly give 0 y 2.

F inally, Equation (5.46) gives

This is shown graphically in Figure 5.17. It is an easy exercise to show that

Ex ample 5. 12. Problem: let Y  X 1/X 2 where X 1 and X 2 are independent and
identically distributed according to

and similarly for X 2. Determine f Y  (y).
Answer: it follows from Equations (5.41) and (5.42) that
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The region R 2 for positive values of x 1 and x 2 is shown as the shaded area in
Figure 5.18. Hence,

y

fY (y)

0 1

1

2

2

Figure 5. 17 Probability density function, f Y  (y), in Example 5.11

x1

x2
— = y

R2

x2

x1

Figure 5. 18 Region R 2 in Example 5.12
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For independent X 1 and X 2,

The pdf of Y  is thus given by, on differentiating Equation (5.49) with respect
to y,

and, on substituting Equation (5.48) into Equation (5.50), it takes the form

Again, it is easy to check that

Example 5.13. To show that it is elementary to obtain solutions to problems
discussed in this section when X 1, X 2, . . . ,  and  X n are discrete, consider again
Y X 1/X 2 given that X 1 and X 2 are discrete and their joint probability mass
function (jpmf) pX1X 2 

(x 1, x 2) is tabulated in Table 5.1. In this case, the pmf of Y
is easily determined by assignment of probabilities pX 1X 2 

(x 1, x 2) to the corres-
ponding values of y x1/x 2. Thus, we obtain:
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Example 5.14. Problem: in structural reliability studies, the probability of
failure q is defined by

where R  and S  represent, respectively, structural resistance and applied force.
Let R  and S  be independent random variables taking only positive values.
Determine q in terms of the probability distributions associated with R and S .

Answer: let Y  R/S . Probability q can be expressed by

Identifying R  and S  with X 1 and X 2, respectively, in Example 5.12, it follows
from Equation (5.49) that

Ex ample 5. 15. Problem: determine FY  (y) in terms of f X 1X2 
(x 1, x2) when

1 2).
Answer: now,

where region R 2 is shown in F igure 5.19. Thus

Table 5.1 Joint probability mass
function, pX 1X2 

(x 1, x 2), in Example 5.13

x 2 x 1

1 2 3

1 0.04 0.06 0.12
2 0.5 0.24 0.04
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which is the desired solution. If random variables X 1 and X 2 are independent,
straightforward differentiation shows that

Let us note here that the results given above can be obtained following a
different, and more direct, procedure. Note that the event [min (X1, X 2

equivalent to the event (X 1 2 y). Hence,

Since

we have

If X 1 and X 2 are independent, we have

and

x2

x1
y

y

R 2

Figure 5. 19 Region R2 in Example 5.15
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We have not given examples in which functions of more than two random
variables are involved. Although more complicated problems can be formu-
lated in a similar fashion, it is in general more difficult to identify appropriate
regions R n required by Equation (5.42), and the integrals are, of course, more
difficult to carry out. In principle, however, no intrinsic difficulties present
themselves in cases of functions of more than two random variables.

5.2.1 SUMS OF RANDOM VARIABLES

One of the most important transformations we encounter is a sum of random
variables. It has been discussed in Chapter 4 in the context of characteristic
functions. In fact, the technique of characteristic functions remains to be the
most powerful technique for sums of independent random variables.

In this section, the procedure presented in the above is used to give an
alternate method of attack.

Consider the sum

It suffices to determine f Y (y) for n 2. The result for this case can then be
applied successively to give the probability distribution of a sum of any number
of random variables. For Y  X 1 X 2, Equations (5.41) and (5.42) give

and, as seen from Figure 5.20,

Upon differentiating with respect to y  we obtain

When X 1 and X 2 are independent, the above result further reduces to

Integrals of the form given above arise often in practice. It is called convolution
of the functions f X1 

(x 1) and f X 2 
(x 2).
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Considerable importance is attached to the results expressed by Equations
(5.54) and (5.55) because sums of random variables occur frequently in prac-
tical situations. By way of recognizing this fact, Equation (5.55) is repeated now
as Theorem 5.3.

Theorem 5. 3. Let Y  X 1 X 2, and let X 1 and X 2 be independent and con-
tinuous random variables. Then the pdf of Y  is the convolution of the pdfs
associated with X 1 and X 2; that is,

Repeated applications of this formula determine f Y  (y) when Y  is a sum of
any number of independent random variables.

Ex ample 5. 16. Problem: determine f Y (y) of Y  X 1 X 2 when X 1 and X 2 are
independent and identically distributed according to

and similarly for X 2.
Answer: Equation (5.56) in this case leads to

x2

x1

x1 + x2 = y

y

y

R2

Figure 5. 20 Region R 2: x 1 x 2 y
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where the integration limits are determined from the requirements y x2 > 0,
and x2 > 0. The result is

Let us note that this problem has also been solved in Example 4.16, by means of
characteristic functions. It is to be stressed again that the method of character-
istic functions is another powerful technique for dealing with sums of independ-
ent random variables. In fact, when the number of random variables involved
in a sum is large, the method of characteristic function is preferred since there is
no need to consider only two at a time as required by Equation (5.56).

Ex ample 5. 17. Problem: the random variables X 1 and X 2 are independent
and uniformly distributed in intervals 0 x 1 1, and 0 x 2 2. Determine
the pdf of Y  X 1 X 2.

Answer: the convolution of f X1 
(x 1) 1, 0 x 1 1, and f X 2 

(x 2) 1/2,
0 x 2 2, results in

In the above, the limits of the integrals are determined from the requirements
0 y x 2 1, and 0 x 2 2. The shape of f Y  (y) is that of a trapezoid, as
shown in Figure 5.21.

5.3 m FUNCTIONS OF n RANDOM VARIABLES

We now consider the general transformation given by Equation (5.1), that is,
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The problem is to obtain the joint probability distribution of random variables
Y j, j 1, 2, . . . , m, which arise as functions of n jointly distributed random
variables X k , k  1, . . . , n. As before, we are primarily concerned with the case
in which X 1, . . . , X n are continuous random variables.

In order to develop pertinent formulae, the case of m  n is first considered.
We will see that the results obtained for this case encompass situations in which
m <  n .

Let X and Y be two n-dimensional random vectors with components
(X 1, . . . , Xn) and (Y 1, . . . , Y n), respectively. A vector equation representing
Equation (5.60) is

where vector g( X ) has as components g1(X ), g2( X ), . . . gn(X ). We first consider
the case in which functions gj in g are continuous with respect to each of their
arguments, have continuous partial derivatives, and define one-to-one
mappings. It then follows that inverse functions g 1

j of g 1, defined by

exist and are unique. They also have continuous partial derivatives.
In order to determine fY ( y) in terms of fX (x), we observe that, if a closed

region R n
X in the range space of X is mapped into a closed region R n

Y in the
range space of Y under transformation g, the conservation of probability gives

1 2 30

1
2

fY (y)

y

Figure 5. 21 Probability density function, f Y  (y), in Example 5.17
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where the integrals represent n-fold integrals with respect to the components of
x and y, respectively. Following the usual rule of change of variables in multiple
integrals, we can write (for example, see Courant, 1937):

where J is the Jacobian of the transformation, defined as the determinant

As a point of clarification, let us note that the vertical lines in Equation (5.65)
denote determinant and those in Equation (5.64) represent absolute value.

Equations (5.63) and (5.64) then lead to the desired formula:

This result is stated as Theorem 5.4.

Theorem 5.4. For the transformation given by Equation (5.61) where X is a
continuous random vector and g is continuous with continuous partial deriva-
tives and defines a one-to-one mapping, the jpdf of Y, f Y(y), is given by

where J is defined by Equation (5.65).

It is of interest to note that Equation (5.67) is an extension of Equation
(5.12), which is for the special case of n 1. Similarly, an extension is also
possible of Equation (5.24) for the n 1 case when the transformation admits
more than one root. Reasoning as we have done in deriving Equation (5.24), we
have Theorem 5.5.

Theorem 5.5. In Theorem 5.4, suppose transformation y g(x) admits at
most a countable number of roots x1 g 1

1 (y), x2 g 1
2 (y), . . . . Then
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where r is the number of solutions for x of equation y g( x), and Jj is
defined by

In the above, gj1, gj2, . . . , and  gjn are components of gj.

As we mentioned earlier, the results presented above can also be applied to
the case in which the dimension of Y is smaller than that of X. Consider the
transformation represented in Equation (5.60) in which m  < n. In order to use
the formulae developed above, we first augment the m-dimensional random
vector Y by another (n m) – dimensional random vector Z. The vector Z can
be constructed as a simple function of X in the form

where h satisfies conditions of continuity and continuity in partial derivatives.
On combining Equations (5.60) and (5.70), we have now an n-random-variable
to n-random-variable transformation, and the jpdf of Y and Z can be obtained
by means of Equation (5.67) or Equation (5.68). The jpdf of Y alone is then
found through integration with respect to the components of Z.

Ex ample 5. 18. Problem: let random variables X 1 and X 2 be independent and
identically and normally distributed according to

and similarly for X 2. Determine the jpdf of Y 1 X 1 X 2, and Y 2 X 1 X 2.
Answer: Equation (5.67) applies in this case. The solutions of x 1 and x 2 in

terms of y1 and y2 are

The Jacobian in this case takes the form
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Hence, Equation (5.67) leads to

It is of interest to note that the result given by Equation (5.72) can be written as

where

implying that, although Y 1 and Y 2 are both functions of X1 and X 2, they are
independent and identically and normally distributed.

Ex ample 5. 19. Problem: for the same distributions assigned to X 1 and X 2 in
Example 5.18, determine the jpdf of Y 1 (X 2

1 X 2
2 )

1/2 and Y 2 X 1/X 2.
Answer: let us first note that Y 1 takes values only in the positive range.

Hence,

For  y1 0, the transformation y g(x) admits two solutions. They are:

and
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Equation (5.68) now applies and we have

where

On substituting Equations (5.75) and (5.76) into Equation (5.74), we have

We note that the result can again be expressed as the product of fY 1 (y1) and
f Y 2 

(y2), with

Thus random variables Y 1 and Y 2 are again independent in this case where Y 1

has the so-called Raleigh distribution and Y 2 is Cauchy distributed. We remark
that the factor (1/ ) is assigned to f Y 2 

(y2) to make the area under each pdf
equal to 1.

Ex ample 5. 20. Let us determine the pdf of Y  considered in Example 5.11 by
using the formulae developed in this section. The transformation is
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In order to conform with conditions stated in this section, we augment Equa-
tion (5.78) by some simple transformation such as

The random variables Y  and Z  now play the role of Y 1 and Y2 in Equation
(5.67) and we have

where

Using specific forms of f X1 
(x 1) and f X2 

(x 2) given in Example (5.11), Equation
(5.80) becomes

Finally, pdf fY  (y) is found by performing integration of Equation (5.81) with
respect to z:

This result agrees with that given in Equation (5.47) in Example 5.11.
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PROBLEMS

5.1 Determine the Probability distribution function (PDF) of Y  3X  1 if
(a) Case 1:

(b) Case 2:

5.2 Temperature C measured in degrees Celsius is related to temperature X  in degrees
Fahrenheit by C 5(X  32)/9. Determine the probability density function (pdf) of
C if X  is random and is distributed uniformly in the interval (86, 95).

5.3 The random variable X  has a triangular distribution as shown in F igure 5.22.
Determine the pdf of Y  3X  2.

5.4 Determine FY  (y) in terms of FX  (x ) if Y  X 1/2, where FX  (x ) 0, x < 0.

5.5 A random variable Y  has a ‘log-normal’ distribution if it is related to X  by Y  eX,
where X  is normally distributed according to

Determine the pdf of Y  for m  0 and 1.

1

1–1
x

fX(x)

Figure 5. 22 Distribution of X , for Problem 5.3
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5.6 The following arises in the study of earthquake-resistant design. If X  is the magni-
tude of an earthquake and Y  is ground-motion intensity at distance c from the
earthquake, X  and Y  may be related by

If X  has the distribution

(a) Show that the PDF of Y , FY  (y), is

(b) What is f Y  (y)?

5.7 The risk R  of an accident for a vehicle traveling at a ‘constant’ speed V  is given by

where a, b, and c are positive constants. Suppose that speed V  of a class of vehicles is
random and is uniformly distributed between v1 and v2. Determine the pdf of R  if (a)

are such that c (v1 v2)/2.

5.8 Let Y  g(X ), with X  uniformly distributed over the interval a x  b. Suppose
that the inverse function X g 1(Y ) is a single-valued function of Y  in the interval
g(a) y  g(b). Show that the pdf of Y  is

where g (x ) dg(x )/dx .

5.9 A rectangular plate of area a is situated in a flow stream at an angle measured from
the streamline, as shown in Figure 5.23. Assuming that is uniformly distributed
from 0 to /2, determine the pdf of the projected area perpendicular to the stream.

Flow

Projected area

Plate with area a

Figure 5.23 Plate in flow stream, for Problem 5.9
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5.10 At a given location, the PDF of annual wind speed, V , in miles per hour is found
to be

The wind force W  exerted on structures is proportional to V 2. Let W  aV 2.
(a) Determine the pdf of W  and its mean and variance by using fW (w).
(b) Determine the mean and variance of W  directly from the knowledge of FV  (v).

5.11 An electrical device called a full-wave rectifier transforms input X  to the device, to
output Y according to Y X  . If input X  has a pdf of the form

(a) Determine the pdf of Y and its mean and variance using fY  (y).
(b) Determine the mean and variance of Y  directly from the knowledge of f X  (x ).

5.12 An electrical device gives output Y  in terms of input X  according to

Is random variable Y  continuous or discrete? Determine its probability distribution
in terms of the pdf of X .

5.13 The kinetic energy of a particle with mass m and velocity V is given by

Suppose that m  is deterministic and V  is random with pdf given by

Determine the pdf of X .

5.14 The radius R  of a sphere is known to be distributed uniformly in the range
0 0 and (b) of its

volume.

5.15 A resistor to be used as a component in a simple electrical circuit is randomly
chosen from a stock for which resistance R  has the pdf
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Suppose that voltage source v in the circuit is a deterministic constant.
(a) F ind the pdf of current I, where I v/R , passing through the circuit.
(b) F ind the pdf of power W , where W  I 2R , dissipated in the resistor.

5.16 The independent random variables X 1 and X 2 are uniformly and identically
distributed, with pdfs

and similarly for X2. Let Y  X1 X 2.
(a) Determine the pdf of Y  by using Equation (5.56).
(b) Determine the pdf of Y  by using the method of characteristic functions devel-

oped in Section 4.5.

5.17 Two random variables, T1 and T 2, are independent and exponentially distributed
according to

(a) Determine the pdf of T  T 1 T 2.
(b) Determine mT and

5.18 A discrete random variable X  has a binomial distribution with parameters (n, p). Its
probability mass function (pmf) has the form

Show that, if X 1 and X 2 are independent and have binomial distributions with
parameters (n1, p) and (n2, p), respectively, the sum Y  X1 X2 has a binomial
distribution with parameters (n1 n2, p).

5.19 Consider the sum of two independent random variables X 1 and X 2 where X 1 is
discrete, taking values a and b with probabilities P(X 1 a) p, and P(X 1 b)
q (p q 1), and X2 is continuous with pdf fX2 (x 2).
(a) Show that Y  X1 X2 is a continuous random variable with pdf

where f Y 1
(y) and f Y 2 

(y) are, respectively, the pdfs of Y1 a X 2, and Y 2 b X2
at y.
(b) Plot f Y  (y) by letting a 0, b 1, p 1

3 , q 2
3, and
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5.20 Consider a system with a parallel arrangement, as shown in F igure 5.24, and let A
be the primary component and B  its redundant mate (backup component). The
operating lives of A  and B  are denoted by T 1 and T 2, respectively, and they follow
the exponential distributions

Let the life of the system be denoted by T . Then T  T 1 T 2 if the redundant part
comes into operation only when the primary component fails (so-called ‘cold
redundancy’) and T  max (T 1, T 2) if the redundant part is kept in a ready condi-
tion at all times so that delay is minimized in the event of changeover from the
primary component to its redundant mate (so-called ‘hot redundancy’).
(a) Let T C T 1 T 2, and T H max (T 1, T 2). Determine their respective prob-

ability density functions.
(b) Suppose that we wish to maximize the probability P(T t) for some t. Which

type of redundancy is preferred?

5.21 Consider a system with components arranged in series, as shown in Figure 5.25,
and let T 1 and T 2 be independent random variables, representing the operating
lives of A and B, for which the pdfs are given in Problem 5.20. Determine the pdf of
system life T min (T 1, T 2). Generalize to the case of n components in series.

5.22 At a taxi stand, the number X 1 of taxis arriving during some time interval has a
Poisson distribution with pmf given by

A

B

Figure 5.24 Parallel arrangement of components A and B, for Problem 5.20

A B

Figure 5.25 Components A and B arranged in series, for Problem 5.21
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where is a constant. Suppose that demand X 2 at this location during the same
time interval has the same distribution as X1 and is independent of X1. Determine
the pdf of Y  X2 X1 where Y  represents the excess of taxis in this time interval
(positive and negative).

5.23 Determine the pdf of Y  where X 1 and X 2 are independent random
variables with respective pdfs f X 1 

(x 1) and f X 2 
(x 2).

5.24 The light intensity I at a given point X  distance away from a light source is
2

of C and X  are given by

and C and X  are independent.

5.25 Let X1 and X 2 be independent and identically distributed according to

and similarly for X 2. By means of techniques developed in Section 5.2, determine
the pdf of Y , where Y  (X 2

1 X 2
2 )1/2. Check your answer with the result obtained

in Example 5.19. (Hint: use polar coordinates to carry out integration.)

5.26 Extend the result of Problem 5.25 to the case of three independent and identically
distributed random variables, that is, Y (X 2

1 X 2
2 X 2

3 )1/2. (Hint: use spherical
coordinates to carry out integration.)

5.27 The joint probability density function (jpdf) of random variables X 1, X 2, and X3
takes the form

Find the pdf of Y X1 X 2 X 3.

5.28 The pdfs of two independent random variables X 1 and X 2 are
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Determine the jpdf of Y 1 and Y 2, defined by

and show that they are independent.

5.29 The jpdf of X  and Y  is given by

Determine the jpdf of R and and their respective marginal pdfs where
R ( 2 Y 2)1/2 is the vector length and tan 1 (Y/X ) is the phase angle. Are
R  and independent?

5.30 Show that an alternate formula for Equation (5.67) is

where

is evaluated at x g 1(y). Similar alternate forms hold for Equations (5.12), (5.24)
and (5.68).
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6

Some Important Discrete
Distributions

This chapter deals with some distributions of discrete random variables that are
important as models of scientific phenomena. The nature and applications of
these distributions are discussed. An understanding of the situations in which
these random variables arise enables us to choose an appropriate distribution
for a scientific phenomenon under consideration. Thus, this chapter is also
concerned with the induction step discussed in Chapter 1, by which a model
is chosen on the basis of factual understanding of the physical phenomenon
under study (step B to C in Figure 1.1).

Some important distributions of continuous random variables will be studied
in Chapter 7.

6.1 BERNOULLI TRIALS

A large number of practical situations can be described by the repeated per-
formance of a random experiment of the following basic nature: a sequence
of trials is performed so that (a) for each trial, there are only two possible
outcomes, say, success and failure; (b) the probabilities of the occurrence of
these outcomes remain the same throughout the trials; and (c) the trials are
carried out independently. Trials performed under these conditions are called
Bernoulli trials. Despite of the simplicity of the situation, mathematical models
arising from this basic random experiment have wide applicability. In fact,
we have encountered Bernoulli trials in the random walk problems described
in Examples 3.5 (page 52) and 4.17 (page 106) and also in the traffic problem
examined in Example 3.9 (page 64). More examples will be given in the
sections to follow.

Let us denote event ‘success’ by S , and event ‘failure’ by F. Also, let P(S) p,
and P(F) q, where p q 1. Possible outcomes resulting from performing
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a sequence of Bernoulli trials can be symbolically represented by

..

.

and, owing to independence, the probabilities of these possible outcomes are
easily computed. For example,

A number of these possible outcomes with their associated probabilities are
of practical interest. We introduce three important distributions in this connection.

6.1.1 BINOMIAL DISTRIBUTION

The probability distribution of a random variable X  representing the number of
successes in a sequence of n Bernoulli trials, regardless of the order in which they
occur, is frequently of considerable interest. It is clear that X  is a discrete random
variable, assuming values 0, 1, 2, . . . , n. In order to determine its probability mass
function, consider pX  (k), the probability of having exactly k successes in n trials.
This event can occur in as many ways as k letters S can be placed in n boxes.
Now, we have n choices for the position of the first S , n 1 choices for the
second S , . . . , and, finally, n k  1 choices for the position of the kth S . The
total number of possible arrangements is thus n(n 1) . . . (n k 1). However,
as no distinction is made of the Ss that are in the occupied positions, we must
divide the number obtained above by the number of ways in which k  Ss can be
arranged in k  boxes, that is, k(k  1) . . . 1 k!. Hence, the number of ways in
which k successes can happen in n trials is

and the probability associated with each is Hence, we have

162 Fundamentals of Probability and Statistics for Engineers

��

�
��� � � �




�
��


� � � ��


����

�
 � � �

� � ����������
���
�������
� � � ���
���
�
� ������ � � � ���

�
� �

� � �

� �

���� �� � � � ��� '� ��
'�

� ��

'���� '�� � �0���

�'���'�

�&�'� �
�

'

� �
�'���'� ' � /� �� -� � � � � �� �0�-�

TLFeBOOK



where

is the binomial coefficient in the binomial theorem

In view of its similarity in appearance to the terms of the binomial theorem,
the distribution defined by Equation (6.2) is called the binomial distribution.
It has two parameters, namely, n and p. Owing to the popularity of this
distribution, a random variable X  having a binomial distribution is often
denoted by B(n, p).

The shape of a binomial distribution is determined by the values assigned
to its two parameters, n and p. In general, n is given as a part of the problem
statement and p must be estimated from observations.

A plot of probability mass function (pmf), pX (k), has been shown in Example
3.2 (page 43) for n 10 and p 0.2. The peak of the distribution will shift to
the right as p increases, reaching a symmetrical distribution when p 0.5. More
insight into the behavior of pX (k) can be gained by taking the ratio

We see from Equation (6.5) that is greater than when
and is smaller when Accordingly, if we define integer

k by

the value of pX (k) increases monotonically and attains its maximum value when
k  k  , then decreases monotonically. If (n 1)p happens to be an integer, the
maximum value takes place at both pX  (k 1) and pX  (k ). The integer k is
thus a mode of this distribution and is often referred to as ‘the most probable
number of successes’.

Because of its wide usage, pmf pX  (k) is widely tabulated as a function of
n and p. Table A.1 in Appendix A gives its values for n 2, 3, . . . , 10, and
p 0.01, 0.05, . . . , 0.50. Let us note that probability tables for the binomial
and other commonly used distributions are now widely available in a number
of computer software packages, and even on some calculators. For example,
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function BINOMDIST in Microsoft ExcelTM 2000 gives individual binomial
probabilities given by Equation (6.2). Other statistical functions available in
ExcelTM 2000 are listed in Appendix B.

The calculation of pX (k) in Equation (6.2) is cumbersome as n becomes large.
An approximate way of determining pX (k) for large n has been discussed in
Example 4.17 (page 106) by means of Stirling’s formula [Equation (4.78)].
Poisson approximation to the binomial distribution, to be discussed in Section
6.3.2, also facilitates probability calculations when n becomes large.

The probability distribution function (PDF), FX  (x ), for a binomial distribu-
tion is also widely tabulated. It is given by

where m  is the largest integer less than or equal to x .
Other important properties of the binomial distribution have been derived in

Example 4.1 (page 77), Example 4.5 (page 81), and Example 4.14 (page 99).
Without giving details, we have, respectively, for the characteristic function,
mean, and variance,

The fact that the mean of X  is np suggests that parameter p can be estimated based
on the average value of the observed data. This procedure is used in Examples 6.2.
We mention, however, that this parameter estimation problem needs to be exam-
ined much more rigorously, and its systematic treatment will be taken up in Part B.

Let us remark here that another formulation leading to the binomial distri-
bution is to define random variable 1, 2, . . . , n, to represent the outcome
of the jth Bernoulli trial. If we let

0 if jth trial is a failure,
1 if jth trial is a success,

then the sum

gives the number of successes in n trials. By definition, X 1, . . . ,  and  X n are
independent random variables.
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The moments and distribution of X  can be easily found by using Equation
(6.10). Since

it follows from Equation (4.38) that

which is in agreement with the corresponding expression in Equations (6.8).
Similarly, its variance, characteristic function, and pmf are easily found follow-
ing our discussion in Section 4.4 concerning sums of independent random
variables.

We have seen binomial distributions in Example 3.5 (page 52), Example 3.9
(page 64), and Example 4.11 (page 96). Its applications in other areas are
further illustrated by the following additional examples.

Example 6.1. Problem: a homeowner has just installed 20 light bulbs in a new
home. Suppose that each has a probability 0.2 of functioning more than three
months. What is the probability that at least five of these function more than
three months? What is the average number of bulbs the homeowner has to
replace in three months?

Answer: it is reasonable to assume that the light bulbs perform indepen-
dently. If X  is the number of bulbs functioning more than three months
(success), it has a binomial distribution with 20 and The answer
to the first question is thus given by

The average number of replacements is

Example 6.2. Suppose that three telephone users use the same number and
that we are interested in estimating the probability that more than one will use
it at the same time. If independence of telephone habit is assumed, the prob-
ability of exactly k persons requiring use of the telephone at the same time is
given by the mass function pX (k) associated with the binomial distribution. Let
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it be given that, on average, a telephone user is on the phone 5 minutes per
hour; an estimate of p is

The solution to this problem is given by

Ex ample 6. 3. Problem: let X 1 and X 2 be two independent random variables,
both having binomial distributions with parameters (n1, p) and  (n2, p), respect-
ively, and let Determine the distribution of random variable Y .

Answer: the characteristic functions of X 1 and X 2 are, according to the first
of Equations (6.8),

In view of Equation (4.71), the characteristic function of Y  is simply the
product of and Thus,

By inspection, it is the characteristic function corresponding to a binomial
distribution with parameters Hence, we have

Generalizing the answer to Example 6.3, we have the following important
result as stated in Theorem 6.1.

Theorem 6.1: The binomial distribution generates itself under addition of
independent random variables with the same p.

Ex ample 6 . 4. Problem: if random variables X  and Y  are independent binomial
distributed random variables with parameters (n1, p) and  (n2, p), determine the
conditional probability mass function of X  given that
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Answer: for k min (n1, m), we have

where we have used the result given in Example 6.3 that X  Y  is binomially
distributed with parameters (n1 n2, p).

The distribution given by Equation (6.12) is known as the hypergeometric
distribution. It arises as distributions in such cases as the number of black balls
that are chosen when a sample of m  balls is randomly selected from a lot of
n items having n1 black balls and n2 white balls ( ). Let random
variable Z be this number. We have, from Equation (6.12), on replacing n2

by n n1,

6.1.2 GEOMETRIC DISTRIBUTION

Another event of interest arising from Bernoulli trials is the number of trials to
(and including) the first occurrence of success. If X  is used to represent this
number, it is a discrete random variable with possible integer values ranging
from one to infinity. Its pmf is easily computed to be

This distribution is known as the geometric distribution with parameter p,
where the name stems from its similarity to the familiar terms in geometric
progression. A plot of pX (k) is given in F igure 6.1.
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The corresponding probability distribution function is

where m  is the largest integer less than or equal to x . The mean and variance of
X  can be found as follows:

In the above, the interchange of summation and differentiation is allowed
because 1. Following the same procedure, the variance has the form

Example 6.5. Problem: a driver is eagerly eyeing a precious parking space
some distance down the street. There are five cars in front of the driver, each of
which having a probability 0.2 of taking the space. What is the probability that
the car immediately ahead will enter the parking space?

Answer: for this problem, we have a geometric distribution and need to
evaluate for and Thus,

. . .

p
X

(k)

p

qp

q2p

k
1 2 3 4 5 6 7

Figure 6.1 Geometric distribution
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which may seem much smaller than what we experience in similar situa-
tions.

Example 6.6. Problem: assume that the probability of a specimen failing
during a given experiment is 0.1. What is the probability that it will take more
than three specimens to have one surviving the experiment?

Answer: let X  denote the number of trials required for the first specimen
to survive. It then has a geometric distribution with p 0.9. The desired
probability is

Example 6.7. Problem: let the probability of occurrence of a flood of magni-
tude greater than a critical magnitude in any given year be 0.01. Assuming that
floods occur independently, determine , the average return period. The
average return period, or simply return period, is defined as the average number
of years between floods for which the magnitude is greater than the critical
magnitude.

Answer: it is clear that N  is a random variable with a geometric distribution
and 01. The return period is then

The critical magnitude which gives rise to 100 years is often referred to
as the ‘100-year flood’.

6.1.3 NEGATIVE BINOMIAL DISTRIBUTION

A natural generalization of the geometric distribution is the distribution of
random variable X  representing the number of Bernoulli trials necessary for the
rth success to occur, where r is a given positive integer.

In order to determine pX (k) for this case, let A  be the event that the first k  1
trials yield exactly r 1 successes, regardless of their order, and B  the event that
a success turns up at the k th trial. Then, owing to independence,

Now, P(A ) obeys a binomial distribution with parameters k  1 and r 1, or
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and P(B) is simply

Substituting Equations (6.19) and (6.20) into Equation (6.18) results in

We note that, as expected, it reduces to the geometric distribution when r 1.
The distribution defined by Equation (6.21) is known as the negative binomial,
or Pascal, distribution with parameters r and p. It is often denoted by NB(r, p).

A useful variant of this distribution is obtained if we let The ran-
dom variable Y  is the number of Bernoulli trials beyond r needed for the realiza-
tion of the rth success, or it can be interpreted as the number of failures before
the rth success.

The probability mass function of is obtained from Equation (6.21)
upon replacing k  by m  r. Thus,

We see that random variable Y  has the convenient property that the range of
m begins at zero rather than r for values associated with X .

Recalling a more general definition of the binomial coefficient

for any real a and any positive integer j, direct evaluation shows that the
binomial coefficient in Equation (6.22) can be written in the form

Hence,

170 Fundamentals of Probability and Statistics for Engineers

���� � �� �0�-/�

�&�'� �
'� �

�� �

� �
���'�� � ' � �� �� �� � � � � �0�-��

�

* � & � ��

* � �* ��"�

�

�* ��� �
�� �� �

�� �

� �
����

� �� �� �

�

� �
���� � � � /� �� -� � � � �

�0�--�




)

� �
� 
�
� �� � � � �
� ) � ��

)�
� �0�-+�

�� �� �

�

� �
� ����� ��

�

� �
� �0�-.�

�* ��� �
��
�

� �
������� � � � /� �� -� � � � � �0�-,�

TLFeBOOK



which is the reason for the name ‘negative binomial distribution’.
The mean and variance of random variable X  can be determined either by

following the standard procedure or by noting that X  can be represented by

where X j is the number of trials between the (j 1)th and (including) the jth
successes. These random variables are mutually independent, each having the
geometric distribution with mean 1 and variance . Therefore, the mean
and variance of sum X  are, respectively, according to Equations (4.38) and (4.41),

Since , the corresponding moments of Y  are

Example 6.8. Problem: a curbside parking facility has a capacity for three
cars. Determine the probability that it will be full within 10 minutes. It is
estimated that 6 cars will pass this parking space within the timespan and, on
average, 80% of all cars will want to park there.

Answer: the desired probability is simply the probability that the number of
trials to the third success (taking the parking space) is less than or equal to 6. If
X  is this number, it has a negative binomial distribution with r 3 and p 0.8.
Using Equation (6.21), we have

Let us note that an alternative way of arriving at this answer is to sum the
probabilities of having 3, 4, 5, and 6 successes in 6 Bernoulli trials using the
binomial distribution. This observation leads to a general relationship between
binomial and negative binomial distributions. Stated in general terms, if X1 is
B(n, p) and X 2 is NB(r, p), then
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Example 6.9. The negative binomial distribution is widely used in waiting-
time problems. Consider, for example, a car waiting on a ramp to merge into
freeway traffic. Suppose that it is 5th in line to merge and that the gaps between
cars on the freeway are such that there is a probability of 0.4 that they are
large enough for merging. Then, if X  is the waiting time before merging for
this particular vehicle measured in terms of number of freeway gaps, it has
a negative binomial distribution with 5 and 0.4. The mean waiting time
is, as seen from Equation (6.27),

6.2 MULTINOMIAL DISTRIBUTION

Bernoulli trials can be generalized in several directions. A useful generalization
is to relax the requirement that there be only two possible outcomes for each
trial. Let there be r possible outcomes for each trial, denoted by E1, E2, . . . , Er,
and let and A typical outcome of
n trials is a succession of symbols such as:

If we let random variable represent the number of Ei in a
sequence of n trials, the joint probability mass function (jpmf) of X 1, X 2, . . . , X r,
is given by

where 0, 1, 2, . . . , 1, 2, . . . , r, and

Proof for Equation 6.30: we want to show that the coefficient in Equation
(6.30) is equal to the number of ways of placing k1 letters E1, k2 letters E2, . . .,
and kr letters Er in n boxes. This can be easily verified by writing

The first binomial coefficient is the number of ways of placing k1 letters E1

in n boxes; the second is the number of ways of placing k2 letters E2 in the
remaining unoccupied boxes; and so on.
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The formula given by Equation (6.30) is an important higher-dimensional
joint probability distribution. It is called the multinomial distribution because
it has the form of the general term in the multinomial expansion of

We note that Equation (6.30) reduces to the binomial
distribution when 2 and with and

Since each Xi defined above has a binomial distribution with parameters n
and pi, we have

and it can be shown that the covariance is given by

Example 6.10. Problem: income levels are classified as low, medium, and high in
a study of incomes of a given population. If, on average, 10% of the population
belongs to the low-income group and 20% belongs to the high-income group, what
is the probability that, of the 10 persons studied, 3 will be in the low-income group
and the remaining 7 will be in the medium-income group? What is the marginal
distribution of the number of persons (out of 10) at the low-income level?

Answer: let X 1 be the number of low-income persons in the group of 10
persons, X 2 be the number of medium-income persons, and X 3 be the number
of high-income persons. Then X 1, X 2, and X 3 have a multinomial distribution
with and

Thus

The marginal distribution of X 1 is binomial with and

We remark that, while the single-random-variable marginal distributions
are binomial, since X 1, X 2, . . .,  and  X r are not independent, the multinomial
distribution is not a product of binomial distributions.

6.3 POISSON DISTRIBUTION

In this section we wish to consider a distribution that is used in a wide variety
of physical situations. It is used in mathematical models for describing, in a
specific interval of time, such events as the emission of particles from a
radioactive substance, passenger arrivals at an airline terminal, the distribution
of dust particles reaching a certain space, car arrivals at an intersection, and
many other similar phenomena.
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To fix ideas in the following development, let us consider the problem of
passenger arrivals at a bus terminal during a specified time interval. We shall
use the notation X (0, t) to represent the number of arrivals during time interval
[0, t), where the notation [ ) denotes a left-closed and right-open interval; it is a
discrete random variable taking possible values 0, 1, 2, . . . , whose distribution
clearly depends on t. For clarity, its pmf is written as

to show its explicit dependence on t. Note that this is different from our
standard notation for a pmf.

To study this problem, we make the following basic assumptions:

Assumption 1: the random variables
are mutually independent, that is, the numbers of passen-

ger arrivals in nonoverlapping time intervals are independent of each other.

Assumption 2: for sufficiently small

where stands for functions such that

This assumption says that, for a sufficiently small the probability of
having exactly one arrival is proportional to the length of The parameter

in Equation (6.34) is called the average density or mean rate of arrival for
reasons that will soon be made clear. For simplicity, it is assumed to be a
constant in this discussion; however, there is no difficulty in allowing it to
vary with time.

Assumption 3: for sufficiently small

This condition implies that the probability of having two or more arrivals
during a sufficiently small interval is negligible.
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It follows from Equations (6.34) and (6.36) that

In order to determine probability mass function based on the
assumptions stated above, let us first consider Figure 6.2 shows two
nonoverlapping intervals, [0, t) and In order that there are no
arrivals in the total interval we must have no arrivals in both
subintervals. Owing to the independence of arrivals in nonoverlapping inter-
vals, we thus can write

Rearranging Equation (6.38) and dividing both sides by gives

Upon letting we obtain the differential equation

Its solution satisfying the initial condition 1 is

The determination of p1(0, t) is similar. We first observe that one arrival in
can be accomplished only by having no arrival in subinterval [0, t)

and one arrival in or one arrival in [0, t) and no arrival in
Hence we have

0 t t + t

No arrival No arrival

Figure 6.2 Interval [0,
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Substituting Equations (6.34), (6.37), and (6.40) into Equation (6.41) and
letting we obtain

which yields

Continuing in this way we find, for the general term,

Equation (6.44) gives the pmf of X (0, t), the number of arrivals during
time interval [0, t) subject to the assumptions stated above. It is called the
Poisson distribution, with parameters and t. However, since and t appear in
Equation (6.44) as a product, t, it can be replaced by a single parameter ,

and so we can also write

The mean of is given by

Similarly, we can show that

It is seen from Equation (6.46) that parameter is equal to the average
number of arrivals per unit interval of time; the name ‘mean rate of arrival’ for

, as mentioned earlier, is thus justified. In determining the value of this
parameter in a given problem, it can be estimated from observations by
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where m is the observed number of arrivals in n unit time intervals. Similarly,
since represents the average number of arrivals in time interval [0, t).

Also it is seen from Equation (6.47) that, as expected, the variance, as well
as the mean, increases as the mean rate increases. The Poisson distribution for
several values of is shown in Figure 6.3. In general, if we examine the ratio of

and as we did for the binomial distribution, it shows that
increases monotonically and then decreases monotonically as k

increases, reaching its maximum when k  is the largest integer not exceeding t.

Example 6.11. Problem: traffic load in the design of a pavement system is
an important consideration. Vehicles arrive at some point on the pavement in

0.6

0.4

0.2

0 k k

k

pk (0,t )

p
k
(0,t )

pk (0,t )

0

0.2

0.4

0 2 4 6 8 10 12

0

0.2

0.1

0.3

(a) (b)

(c)

0 1 2 3 4 5 60 1 2 3 4 5

Figure 6.3 Poisson distribution for several values of
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a random manner both in space (amplitude and velocity) and in time (arrival
rate). Considering the time aspect alone, observations are made at 30-second
intervals as shown in Table 6.1.

Suppose that the rate of 10 vehicles per minute is the level of critical traffic
load. Determine the probability that this critical level is reached or exceeded.

Let X (0, t) be the number of vehicles per minute passing some point on the
pavement. It can be assumed that all conditions for a Poisson distribution are
satisfied in this case. The pmf of X (0, t) is thus given by Equation (6.44). From
the data, the average number of vehicles per 30 seconds is

Hence, an estimate of is 2.08(2) The desired probability is, then,

The calculations involved in Example 6.11 are tedious. Because of its wide
applicability, the Poisson distribution for different values of is tabulated
in the literature. Table A.2 in Appendix A gives its mass function for values
of ranging from 0.1 to 10. Figure 6.4 is also convenient for determining

Table 6.1 Observed frequencies (number of
observations) of 0, 1, 2, . . . vehicles arriving in a
30-second interval (for Example 6.11)

No. of vehicles per 30 s Frequency

0 18
1 32
2 28
3 20
4 13
5 7
6 0
7 1
8 1

9 0

Total 120
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the PDF associated with a Poisson–distributed random variable. The answer
to Example 6.11, for example, can easily be read off from Figure 6.4. We
mention again that a large number of computer software packages are
available to produce these probabilities. For example, function POISSON in
Microsoft ExcelTM 2000 gives the Poisson probabilities given by Equation
(6.44) (see Appendix B).

Ex ample 6. 12. Problem: let X 1 and X 2 be two independent random variables,
both having Poisson distributions with parameters 1 and 2, respectively, and
let Determine the distribution of Y .

Answer: we proceed by determining first the characteristic functions of X 1

and X 2. They are

and

Owing to independence, the characteristic function of is simply the
product of and [see Equation (4.71)]. Hence,

By inspection, it is the characteristic function corresponding to a Poisson
distribution with parameter Its pmf is thus

As in the case of the binomial distribution, this result leads to the following
important theorem, Theorem 6.2.

Theorem 6.2: the Poisson distribution generates itself under addition of
independent random variables.

Ex ample 6. 13. Problem: suppose that the probability of an insect laying r
eggs is 0, 1, . . ., and that the probability of an egg developing is p.
Assuming mutual independence of individual developing processes, show that
the probability of a total of k survivors is
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Answer: let X  be the number of eggs laid by the insect, and Y  be the number
of eggs developed. Then, given X  r, the distribution of Y  is binomial with
parameters r and p. Thus,

Now, using the total probability theorem, Theorem 2.1 [Equation (2.27)],

If we let Equation (6.49) becomes

An important observation can be made based on this result. It implies that, if
a random variable X  is Poisson distributed with parameter , then a random
variable Y , which is derived from X  by selecting only with probability p each
of the items counted by X , is also Poisson distributed with parameter p . Other
examples of the application of this result include situations in which Y  is the
number of disaster-level hurricanes when X  is the total number of hurricanes
occurring in a given year, or Y is the number of passengers not being able to board
a given flight, owing to overbooking, when X  is the number of passenger arrivals.

6.3.1 SPATIAL DISTRIBUTIONS

The Poisson distribution has been derived based on arrivals developing in time,
but the same argument applies to distribution of points in space. Consider the
distribution of flaws in a material. The number of flaws in a given volume has
a Poisson distribution if Assumptions 1–3 are valid, with time intervals replaced by
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volumes, and if it is reasonable to assume that the probability of finding k  flaws in
any region depends only on the volume and not on the shape of the region.

Other physical situations in which the Poisson distribution is used include
bacteria counts on a Petri plate, the distribution of airplane-spread fertilizers
in a field, and the distribution of industrial pollutants in a given region.

Example 6.14. A good example of this application is the study carried out by
Clark (1946) concerning the distribution of flying-bomb hits in one part of London
during World War 2. The area is divided into 576 small areas of 0.25 km2 each.
In Table 6.2, the number of areas with exactly k  hits is recorded and
is compared with the predicted number based on a Poisson distribution, with

number of total hits per number of areas 537/576 0.932. We see an
excellent agreement between the predicted and observed results.

6.3.2 THE POISSON APPROXIMATION TO THE BINOMIAL
DISTRIBUTION

Let X  be a random variable having the binomial distribution with

Consider the case when 0, in such a way that remains
fixed. We note that is the mean of X , which is assumed to remain constant. Then,

As , the factorials n! and (n k)! appearing in the binomial coefficient
can be approximated by using the Stirling’s formula [Equation (4.78)]. We also
note that

Using these relationships in Equation (6.52) then gives, after some manipulation,

Table 6.2 Comparison of the observed and theoretical
distributions of flying-bomb hits, for Example 6.14

0 1 2 3 4 5

229 211 93 35 7 1
226.7 211.4 98.5 30.6 7.1 1.6
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This Poisson approximation to the binomial distribution can be used to advan-
tage from the point of view of computational labor. It also establishes the fact
that a close relationship exists between these two important distributions.

Example 6.15. Problem: suppose that the probability of a transistor manu-
factured by a certain firm being defective is 0.015. What is the probability that
there is no defective transistor in a batch of 100?

Answer: let X  be the number of defective transistors in 100. The desired
probability is

Since n is large and p is small in this case, the Poisson approximation is
appropriate and we obtain

which is very close to the exact answer. In practice, the Poisson approximation
is frequently used when n > 10, and p < 0:1.

Example 6.16. Problem: in oil exploration, the probability of an oil strike
in the North Sea is 1 in 500 drillings. What is the probability of having exactly
3 oil-producing wells in 1000 explorations?

Answer: in this case, n 1000, and p 1/500 0.002, and the Poisson
approximation is appropriate. Using Equation (6.54), we have
and the desired probability is

3
23e 2

3!
0.18.

The examples above demonstrate that the Poisson distribution finds applica-
tions in problems where the probability of an event occurring is small. For this
reason, it is often referred to as the distribution of rare events.

6.4 SUMMARY

We have introduced in this chapter several discrete distributions that are used
extensively in science and engineering. Table 6.3 summarizes some of the
important properties associated with these distributions, for easy reference.
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Binomial and Poisson distributions are widely tabulated in the literature. Additional
references in which these tables can be found are:

Arkin, H., and Colton, R. 1963, Tables for Statisticians, 2nd eds, Barnes and Noble,
New York.

Beyer, W.H., 1966, Handbook of Tables for Probability and Statistics, Chemical Rubber
Co., Cleveland, OH.
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Haight, F .A., 1967, Handbook of the Poisson Distribution, John Wiley & Sons Inc.,

New York.
Hald, A., 1952, Statistical Tables and Formulas, John Wiley & Sons Inc., New York.
Molina, E.C., 1949, Poisson’s Exponential Binomial Limit, Von Nostrand, New York.
National Bureau of Standards, 1949, Tables of the Binomial Probability Distributions:

Applied Mathematics Series 6, US Government Printing Office, Washington, DC.
Owen, D., 1962, Handbook of Statistical Tables, Addison-Wesley, Reading, MA.
Pearson, E.S., and Harley, H.O. (eds), 1954, Biometrika Tables for Statisticians, Volume 1,
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Table 6.3 Summary of discrete distributions

Distribution Probability mass function Parameters Mean Variance

Binomial

Hypergeometric

Geometric

Negative binomial
(Pascal)

Multinomial

Poisson
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PROBLEMS

6.1 The random variable X  has a binomial distribution with parameters (n, p). Using the
formulation given by Equation (6.10), derive its probability mass function (pmf),
mean, and variance and compare them with results given in Equations (6.2) and
(6.8). (Hint: see Example 4.18, page 109).

6.2 Let X  be the number of defective parts produced on a certain production line. It is
known that, for a given lot, X  is binomial, with mean equal to 240, and variance
48. Determine the pmf of X  and the probability that none of the parts is defective
in this lot.

6.3 An experiment is repeated 5 times. Assuming that the probability of an experiment
being successful is 0.75 and assuming independence of experimental outcomes:
(a) What is the probability that all five experiments will be successful?
(b) How many experiments are expected to succeed on average?

6.4 Suppose that the probability is 0.2 that the air pollution level in a given region will
be in the unsafe range. What is the probability that the level will be unsafe 7 days in
a 30-day month? What is the average number of ‘unsafe’ days in a 30-day month?

6.5 An airline estimates that 5% of the people making reservations on a certain flight
will not show up. Consequently, their policy is to sell 84 tickets for a flight that can
only hold 80 passengers. What is the probability that there will be a seat available
for every passenger that shows up? What is the average number of no-shows?

6.6 Assuming that each child has probability 0.51 of being a boy:
(a) Find the probability that a family of four children will have (i) exactly one boy,

(ii) exactly one girl, (iii) at least one boy, and (iv) at least one girl.
(b) Find the number of children a couple should have in order that the probability

of their having at least two boys will be greater than 0.75.

6.7 Suppose there are five customers served by a telephone exchange and that each
customer may demand one line or none in any given minute. The probability of
demanding one line is 0.25 for each customer, and the demands are independent.
(a) What is the probability distribution function of X , a random variable repre-

senting the number of lines required in any given minute?
(b) If the exchange has three lines, what is the probability that the customers will

all be satisfied?

6.8 A park-by-permit-only facility has m parking spaces. A total of parking
permits are issued, and each permit holder has a probability p of using the facility
in a given period.
(a) Determine the probability that a permit holder will be denied a parking space

in the given time period.
(b) Determine the expected number of people turned away in the given time period.

6.9 For the hypergeometric distribution given by Equation (6.13), show that as
it approaches the binomial distribution with parameters m  and that is,

and thus that the hypergeometric distribution can be approximated by a binomial
distribution as
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6.10 A manufacturing firm receives a lot of 100 parts, of which 5 are defective. Suppose
that the firm accepts all 100 parts if and only if no defective ones are found in a
sample of 10 parts randomly selected for inspection. Determine the probability that
this lot will be accepted.

6.11 A shipment of 10 boxes of meat contains 2 boxes of contaminated goods. An
inspector randomly selects 4 boxes; let Z  be the number of boxes of contaminated
meat among the selected 4 boxes.
(a) What is the pmf of Z ?
(b) What is the probability that at least one of the four boxes is contaminated?
(c) How many boxes must be selected so that the probability of having at last one

contaminated box is larger than 0.75?

6.12 In a sequence of Bernoulli trials with probability p of success, determine the
probability that r successes will occur before s failures.

6.13 Cars arrive independently at an intersection. Assuming that, on average, 25% of
the cars turn left and that the left-turn lane has a capacity for 5 cars, what is the
probability that capacity is reached in the left-turn lane when 10 cars are delayed by
a red signal?

6.14 Suppose that n independent steps must be taken in the sterilization procedure for
a biological experiment, each of which has a probability p of success. If a failure
in any of the n steps would cause contamination, what is the probability of
contamination if and

6.15 An experiment is repeated in a civil engineering laboratory. The outcomes of these
experiments are considered independent, and the probability of an experiment
being successful is 0.7.
(a) What is the probability that no more than 6 attempts are necessary to produce

3 successful experiments?
(b) What is the average number of failures before 3 successful experiments occur?
(c) Suppose one needs 3 consecutive  successful experiments. What is the prob-

ability that exactly 6 attempts are necessary?

6.16 The definition of the 100-year flood is given in Example 6.7.
(a) Determine the probability that exactly one flood equaling or exceeding the

100-year flood will occur in a 100-year period.
(b) Determine the probability that one or more floods equaling or exceeding the

100-year flood will occur in a 100-year period.

6.17 A shipment of electronic parts is sampled by testing items sequentially until the first
defective part is found. If 10 or more parts are tested before the first defective part
is found, the shipment is accepted as meeting specifications.
(a) Determine the probability that the shipment will be accepted if it contains 10%

defective parts.
(b) How many items need to be sampled if it is desired that a shipment with 25%

defective parts be rejected with probability of at least 0.75?

6.18 Cars enter an interchange from the south. On average, 40% want to go west, 10%
east, and 50% straight on (north). Of 8 cars entering the interchange:
(a) Determine the joint probability mass function (jpmf) of X1 (cars westbound),

X2 (cars eastbound), and X 3 (cars going straight on).
(b) Determine the probability that half will go west and half will go east.
(c) Determine the probability that more than half will go west.
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6.19 For Example 6.10, determine the jpmf of X 1 and X 2. Determine the probability
that, of the 10 persons studied, fewer than 2 persons will be in the low-income
group and fewer than 3 persons will be in the middle-income group.

6.20 The following describes a simplified countdown procedure for launching 3 space
vehicles from 2 pads:

Two vehicles are erected simultaneously on two pads and the countdown pro-
ceeds on one vehicle.
When the countdown has been successfully completed on the first vehicle, the
countdown is initiated on the second vehicle, the following day.
Simultaneously, the vacated pad is immediately cleaned and prepared for the
third vehicle. There is a (fixed) period of r days delay after the launching before
the same pad may be utilized for a second launch attempt (the turnaround time).
After the third vehicle is erected on the vacated pad, the countdown procedure is
not initiated until the day after the second vehicle is launched.
Each vehicle is independent of, and identical to, the others. On any single
countdown attempt there is a probability p of a successful completion and a
probability q (q 1 p) of failure. Any failure results in the termination of that
countdown attempt and a new attempt is made the following day. That is, any
failure leads to a one-day delay. It is assumed that a successful countdown
attempt can be completed in one day.
The failure to complete a countdown does not affect subsequent attempts in any way;
that is, the trials are independent from day to day as well as from vehicle to vehicle.

Let X  be the number of days until the third successful countdown. Show that the
pmf of X  is given by:

6.21 Derive the variance of a Poisson-distributed random variable X  as given by
Equation (6.47).

6.22 Show that, for the Poisson distribution, increases monotonically and then
decreases monotonically as k  increases, reaching its maximum when k is the largest
integer not exceeding

6.23 At a certain plant, accidents have been occurring at an average rate of 1 every 2
months. Assume that the accidents occur independently.
(a) What is the average number of accidents per year?
(b) What is the probability of there being no accidents in a given month?

6.24 Assume that the number of traffic accidents in New York State during a 4-day
memorial day weekend is Poisson-distributed with parameter 3.25 per day. Deter-
mine the probability that the number of accidents is less than 10 in this 4-day period.

6.25 A radioactive source is observed during 7 time intervals, each interval being 10
seconds in duration. The number of particles emitted during each period is
counted. Suppose that the number of particles emitted, say X , during each
observed period has an average rate of 0.5 particles per second.
(a) What is the probability that 4 or more particles are emitted in each interval?
(b) What is the probability that in at least 1 of 7 time intervals, 4 or more particles

are emitted?
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6.26 Each air traffic controller at an airport is given the responsibility of monitoring at
most 20 takeoffs and landings per hour. During a given period, the average rate of
takeoffs and landings is 1 every 2 minutes. Assuming Poisson arrivals and depar-
tures, determine the probability that 2 controllers will be needed in this time
period.

6.27 The number of vehicles crossing a certain point on a highway during a unit time
period has a Poisson distribution with parameter . A traffic counter is used to
record this number but, owing to limited capacity, it registers the maximum
number of 30 whenever the count equals or exceeds 30. Determine the pmf of Y
if Y  is the number of vehicles recorded by the counter.

6.28 As an application of the Poisson approximation to the binomial distribution,
estimate the probability that in a class of 200 students exactly 20 will have birth-
days on any given day.

6.29 A book of 500 pages contains on average 1 misprint per page. Estimate the
probability that:
(a) A given page contains at least 1 misprint.
(b) At least 3 pages will contain at least 1 misprint.

6.30 Earthquakes are registered at an average frequency of 250 per year in a given
region. Suppose that the probability is 0.09 that any earthquake will have a
magnitude greater than 5 on the Richter scale. Assuming independent occurrences
of earthquakes, determine the pmf of X , the number of earthquakes greater than 5
on the Richter scale per year.

6.31 Let X  be the number of accidents in which a driver is involved in t years. In
proposing a distribution for X , the ‘accident likelihood’ varies from driver to
driver and is considered as a random variable. Suppose that the conditional pmf

is given by the Poisson distribution,

and suppose that the probability density function (pdf) of is of the form
(a, b > 0)

elsewhere,

where is the gamma function, defined by

Show that the pmf of X  has a negative binomial distribution in the form
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6.32 Suppose that , the mean rate of arrival, in the Poisson distribution is time-
dependent and is given by

Determine pmf the probability of exactly k arrivals in the time interval
[0, t). [Note that differential equations such as Equations (6.39) and (6.42) now
have time-dependent coefficients.]

6.33 Derive the jpmf of two Poisson random variables X 1 and X2, where X 1 X (0, t1),
and with the same mean rate of arrival . Determine prob-
ability This is the probability that the numbers of arrivals
in intervals [0, t1) and [0, t2) are both equal to or less than the average arrivals in
their respective intervals.
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7

Some Important Continuous
Distributions

Let us turn our attention to some important continuous probability distribu-
tions. Physical quantities such as time, length, area, temperature, pressure, load,
intensity, etc., when they need to be described probabilistically, are modeled by
continuous random variables. A number of important continuous distributions
are introduced in this chapter and, as in Chapter 6, we are also concerned with
the nature and applications of these distributions in science and engineering.

7.1 UNIFORM DISTRIBUTION

A continuous random variable X  has a uniform distribution over an interval a to
b(b > a) if it is equally likely to take on any value in this interval. The probability
density function (pdf) of X is constant over interval (a, b) and has the form

As we see from Figure 7.1(a), it is constant over (a, b), and the height must be
1/(b a) in order that the area under the density function is unity.

The probability distribution function (PDF) is, on integrating Equation (7.1),

Fundamentals of  Probability  and Statistics for Engineers T. T. Soong  2004 John Wiley & Sons, Ltd
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which is graphically presented in Figure 7.1(b).
The mean, mX , and variance, , of X  are easily found to be

The uniform distribution is one of the simplest distributions and is com-
monly used in situations where there is no reason to give unequal likelihoods to
possible ranges assumed by the random variable over a given interval. For
example, the arrival time of a flight might be considered uniformly distributed
over a certain time interval, or the distribution of the distance from the location
of live loads on a bridge to an end support might be adequately represented by
a uniform distribution over the bridge span. Let us also comment that one often
assigns a uniform distribution to a specific random variable simply because of
a lack of information, beyond knowing the range of values it spans.

Example 7.1. Problem: owing to unpredictable traffic situations, the time
required by a certain student to travel from her home to her morning class
is uniformly distributed between 22 and 30 minutes. If she leaves home at pre-
cisely 7.35 a.m., what is the probability that she will not be late for class, which
begins promptly at 8:00 a.m.?

Answer: let X  be the class arrival time of the student in minutes after 8:00 a.m.
It then has a uniform distribution given by

fX(x)

a

(a) (b)

1

b
x x

b – a

FX(x)

a

1

b

Figure 7. 1 (a) The probability density function, f X  (x ), and (b) the probability
distribution function, FX  (x ), of X
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We are interested in the probability P( 3 X  0). As seen from Figure 7.2, it
is clear that this probability is equal to the ratio of the shaded area and the unit
total area. Hence,

It is also clear that, owing to uniformity in the distribution, the solution can
be found simply by taking the ratio of the length from 3 to 0 to the total length
of the distribution interval. Stated in general terms, if a random variable X  is
uniformly distributed over an interval A , then the probability of X  taking
values in a subinterval B is given by

7.1.1 BIVARIATE UNIFORM DISTRIBUTION

Let random variable X  be uniformly distributed over an interval (a1, b1), and let
random variable Y  be uniformly distributed over an interval (a2, b2). Further-
more, let us assume that they are independent. Then, the joint probability
density function of X  and Y  is simply

fX(x)

x
–3 0 5

1
8
—

Figure 7. 2 Probability density function, f X  (x ), of X , in Example 7.1
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It takes the shape of a flat surface bounded by (a1, b1) along the x  axis and
(a2, b2) along the y axis. We have seen an application of this bivariate uniform
distribution in Example 3.7 (page 57). Indeed, Example 3.7 gives a typical
situation in which the distribution given by Equation (7.5) is conveniently
applied. Let us give one more example.

Example 7.2. Problem: a warehouse receives merchandise and fills a specific
order for the same merchandise in any given day. Suppose that it receives
merchandise with equal likelihood during equal intervals of time over the
eight-hour working day and likewise for the order to be filled. (a) What is the
probability that the order will arrive after the merchandise is received and (b)
what is the probability that the order will arrive within two hours after the
receipt of merchandise?

Answer: let X  be the time of receipt of merchandise expressed as a fraction of
an eight-hour working day, and let Y  be the time of receipt of the order
similarly expressed. Then

and similarly for f Y  (y). The joint probability density function (jpdf) of X  and Y
is, assuming independence,

and is shown in Figure 7.3.

fXY(x,y)

y

x

1

1

1

Figure 7. 3 Joint probability density function, f XY  (x ,y), of X  and Y  in Example 7.2
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To answer the first question, in part (a), we integrate f XY  (x , y) over an
appropriate region in the (x , y) plane satisfying y  x . Since f XY  (x , y) is a
constant over (0, 0) (x , y) (1, 1), this is the same as taking the ratio of the
area satisfying y  x  to the total area bounded by (0, 0) (x , y) (1, 1), which
is unity. As seen from Figure 7.4(a), we have

We proceed the same way in answering the second question, in part (b). It is
easy to see that the appropriate region for this part is the shaded area B, as
shown in F igure 7.4(b). The desired probability is, after dividing area B into the
two subregions as shown,

P X  Y  X
1
4

shaded area B

1
4

3
4

1
2

1
4

1
4

7
32

We see from Example 7.2 that calculations of various probabilities of interest
in this situation involve taking ratios of appropriate areas. If random variables
X  and Y  are independent and uniformly distributed over a region A , then the
probability of X  and Y  taking values in a subregion B  is given by

(a) (b)

y

x
0 1

1

A

x
0 1

1

y

B

1
4—

Figure 7. 4 (a) Region A  and (b) region B  in the (x ,y) plane in Example 7.2
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It is noteworthy that, if the independence assumption is removed, the jpdf
of two uniformly distributed random variables will not take the simple form
as given by Equation 7.5. In the extreme case when X  and Y  are perfectly
correlated, the jpdf of X  and Y  degenerates from a surface into a line over the
(x , y) plane. For example, let X  and Y  be uniformly and identically distributed
over the interval (0, 1) and let X  Y . Then the jpdf and X  and Y  has the form

which is graphically presented in Figure 7.5. More detailed discussions on correl-
ated and uniformly distributed random variables can be found in Kramer (1940).

7.2 GAUSSIAN OR NORMAL DISTRIBUTION

The most important probability distribution in theory as well as in application
is the Gaussian or normal distribution. A random variable X  is Gaussian or
normal if its pdf f X  (x ) is of the form

where m and are two parameters, with  0. Our choice of these particular
symbols for the parameters will become clear presently.

fXY (x, y)

1
1

1
x

y

2

Figure 7. 5 Joint probability density function, f XY  (x ,y), of X  and Y , given by Equation (7.8)
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Its corresponding PDF is

which cannot be expressed in closed form analytically but can be numerically
evaluated for any x .

The pdf and PDF expressed by Equations (7.9) and (7.10), respectively, are
graphed in F igures 7.6(a) and 7.6(b), respectively, for m 0 and 1. The

0.399

– 4 – 3 – 2 – 1 0 1 2 3 4
x

fX(x)

FX(x)

1

– 4 – 3 – 2 – 1 0 1 2 3 4
x

(a)

(b)

Figure 7. 6 (a) Probability density function, f X  (x ), and (b) probability distribution
function, FX  (x ), of X  for m  0 and 1

Some Important Continuous Distributions 197

����� �
&

�,��&�,�

� �

��
�8� ������,

,�,


 �
��� �� � � � �� �(�&'�

� � �

� � �

TLFeBOOK



graph of f X  (x ) in this particular case is the well-known bell-shaped curve,
symmetrical about the origin [Figure 7.6(a)].

Let us determine the mean and variance of X . By definition, the mean of X ,
,  is  given  by

which yields

Similarly, we can show that

We thus see that the two parameters m  and in the probability distribution
are, respectively, the mean and standard derivation of X . This observation
justifies our choice of these special symbols for them and it also points out
an important property of the normal distribution – that is, the knowledge of
its mean and variance completely characterizes a normal distribution. Since the
normal distribution will be referred to frequently in our discussion, it is some-
times represented by the simple notation N( , 2). Thus, for example,
X : N(0, 9) implies that X  has the pdf given by Equation (7.9) with m  0 and

3.
Higher-order moments of X  also take simple forms and can be derived in

a straightforward fashion. Let us first state that, following the definition of
characteristic functions discussed in Section 4.5, the characteristic function of a
normal random variable X  is

The moments of X  of any order can now be found from the above through
differentiation. Expressed in terms of central moments, the use of Equation
(4.52) gives us
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Let us note in passing that 2, the coefficient of excess, defined by Equation
(4.12), for a normal distribution is zero. Hence, it is used as the reference
distribution for 2.

7.2.1 THE CENTRAL LIMIT THEOREM

The great practical importance associated with the normal distribution
stems from the powerful central limit theorem stated below (Theorem 7.1).
Instead of giving the theorem in its entire generality, it serves our
purposes quite well by stating a more restricted version attributable to
Lindberg (1922).

Theorem 7.1: the central limit theorem. Let be a sequence of mutually
independent and identically distributed random variables with means m  and
variances 2. Let

and let the normalized random variable Z  be defined as

Then the probability distribution function of Z , FZ (z), converges to N (0, 1) as
for every fixed z.

Proof of Theorem 7.1: We first remark that, following our discussion in
Section 4.4 on moments of sums of random variables, random variable Y
defined by Equation (7.14) has mean nm  and standard deviation n1/2 . Hence,
Z  is simply the standardized random variable Y  with zero mean and unit
standard deviation. In terms of characteristic functions X (t) of random vari-
ables Xj, the characteristic function of Y  is simply

Consequently, Z  possesses the characteristic function
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Expanding in a MacLaurin series as indicated by Equation (4.49), we
can write

In the last step we have used the elementary identity

for any real c.
Comparing the result given by Equation (7.18) with the form of the char-

acteristic function of a normal random variable given by Equation (7.12), we
see that Z (t) approaches the characteristic function of the zero-mean, unit-
variance normal distribution. The proof is thus complete.

As we mentioned earlier, this result is a somewhat restrictive version of the
central limit theorem. It can be extended in several directions, including cases
in which Y  is a sum of dependent as well as nonidentically distributed random
variables.

The central limit theorem describes a very general class of random phenom-
ena for which distributions can be approximated by the normal distribution. In
words, when the randomness in a physical phenomenon is the cumulation of
many small additive random effects, it tends to a normal distribution irres-
pective of the distributions of individual effects. For example, the gasoline
consumption of all automobiles of a particular brand, supposedly manufac-
tured under identical processes, differs from one automobile to another. This
randomness stems from a wide variety of sources, including, among other
things: inherent inaccuracies in manufacturing processes, nonuniformities in
materials used, differences in weight and other specifications, difference in
gasoline quality, and different driver behavior. If one accepts the fact that each
of these differences contribute to the randomness in gasoline consumption,
the central limit theorem tells us that it tends to a normal distribution. By
the same reasoning, temperature variations in a room, readout errors asso-
ciated with an instrument, target errors of a certain weapon, and so on can also
be reasonably approximated by normal distributions.

Let us also mention that, in view of the central limit theorem, our result in
Example 4.17 (page 106) concerning a one-dimensional random walk should be
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of no surprise. As the number of steps increases, it is expected that position of the
particle becomes normally distributed in the limit.

7.2.2 PROBABILITY TABULATIONS

Owing to its importance, we are often called upon to evaluate probabilities
associated with a normal random variable X : N (m, 2), such as

However, as we commented earlier, the integral given above cannot be evaluated
by analytical means and is generally performed numerically. For convenience,
tables are provided that enable us to determine probabilities such as the one
expressed by Equation (7.20).

The tabulation of the PDF for the normal distribution with m  0 and 1
is given in Appendix A, Table A.3. A random variable with distribution N(0, 1)
is called a standardized normal random variable, and we shall denote it by U.
Table A.3 gives FU (u) for points in the right half of the distribution only (i.e.
for u 0). The corresponding values for u < 0 are obtained from the symmetry
property of the standardized normal distribution [see Figure 7.6(a)] by the
relationship

First, Table A.3 in conjunction with Equation (7.21) can be used to determine
P(a  U b) for any a and b. Consider, for example,  It is
given by

The value of FU (2 5) is found from Table A.3 to be 0.9938; FU ( 1 5) is equal to
with as seen from Table A.3. Thus

More importantly, Table A.3 and Equation (7.21) are also sufficient for
determining probabilities associated with normal random variables with arbi-
trary means and variances. To do this, let us first state Theorem 7.2.
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Theorem 7. 2: Let X  be a normal random variable with distribution N(m, 2).
Then (X  m  is the standardized normal random variable with distribution
N(0, 1), or

Proof of Theorem 7.2: the characteristic function of random variable
is

From Equation (7.12) we have

Hence,

The result given above takes the form of with 0 and 1, and the
proof is complete.

Theorem 7.2 implies that

The value of the right-hand side can now be found from Table A.3, with the aid
of Equation (7.21) if necessary.

As has been noted, probabilities provided by Table A.3 can also be obtained
from a number of computer software packages such as Microsoft ExcelTM

2000 (see Appendix B).

Example 7.3. Problem: owing to many independent error sources, the length
of a manufactured machine part is normally distributed with m  11 cm and

0 2 cm. If specifications require that the length be between 10.6 cm
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and 11.2 cm, what proportion of the manufactured parts will be rejected on
average?

Answer: If X  is used to denote the part length in centimeters, it is reasonable
to assume that it is distributed according to N(11, 0.04). Thus, on average, the
proportion of acceptable parts is From Equation (7.25),
and using Table A.3, we have

The desired answer is then which gives 0.1815.
The use of the normal distribution in Example 7.3 raises an immediate

concern. Normal random variables assume values in positive and negative
ranges, whereas the length of a machine part as well as many other physical
quantities cannot take negative values. However, from a modeling point of
view, it is a commonly accepted practice that normal random variables are valid
representations for nonnegative quantities in as much as probability P(X  < 0)
is sufficiently small. In Example 7.3, for example, this probability is

Ex ample 7. 4. Let us compute  where X  is distrib-
uted N(m, 2). It follows from Equations (7.21) and (7.25) that

We note that the result in Example 7.4 is independent of m  and and is a
function only of k . Thus, the probability that X  takes values within k standard
deviations about its expected value depends only on k  and is given by Equation
(7.26). It is seen from Table A.3 that 68.3%, 95.5%, and 99.7% of the area
under a normal density function are located, respectively, in the ranges
m , m 2 , and m 3 . This is illustrated in F igures 7.7(a)–7.7(c).
For example, the chances are about 99.7% that a randomly selected
sample from a normal distribution is within the range of m  3 [F igure
7.7(c)].
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68.3%
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0
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m

(a)
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0.1
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fX(x)
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(b)
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0.2

0.1

0
m

(c)

x
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m – 2

m – 3

m + 2
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Figure 7. 7 The Area under the normal density function within the range (a) m  , (b)
m 2 , and (c) m 3
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7.2.3 MULTIVARIATE NORMAL DISTRIBUTION

Consider two random variables X and Y . They are said to be jointly normal if
their joint density function takes the form

Equation (7.27) describes the bivariate normal distribution. There are five param-
eters associated with it: mX  , mY  , X  (greater than 0), Y  (greater than 0), and

A typical plot of this joint density function is given in Figure 7.8.

x y

fXY (x,y)

Figure 7. 8 Bivariate normal distribution with mX  mY  0 and  X Y
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Let us determine the marginal density function of random variable X . It is
given by, following straightforward calculations,

Thus, random variable X  by itself has a normal distribution N(mX  , 2
X ).

Similar calculations show that Y  is also normal with distribution N(mY  , 2
Y  ),

and is the correlation coefficient of X  and Y . We thus see that
the five parameters contained in the bivariate density function f XY  (x , y) repre-
sent five important moments associated with the random variables. This also
leads us to observe that the bivariate normal distribution is completely char-
acterized by the first-order and second-order joint moments of X  and Y .

Another interesting and important property associated with jointly normally
distributed random variables is noted in Theorem 7.3.

Theorem 7.3: Zero correlation implies independence when the random vari-
ables are jointly normal.

Proof of Theorem 7.3: let 0 in Equation (7.27). We easily get

which is the desired result. It should be stressed again, as in Section 4.3.1, that
this property is not shared by random variables in general.

We have the multivariate normal distribution when the case of two random
variables is extended to that involving n random variables. For compactness,
vector–matrix notation is used in the following.

Consider a sequence of n random variables, X 1, X 2, . . . , X n. They are said to
be jointly normal if the associated joint density function has the form

where mT s the
n n covariance matrix of X with [see Equations (4.34) and (4.35)]:
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The superscripts T and 1 denote, respectively, matrix transpose and matrix
inverse. Again, we see that a joint normal distribution is completely specified
by the first-order and second-order joint moments.

It is instructive to derive the joint characteristic function associated with X.
As seen from Section 4.5.3, it is defined by

which gives, on substituting Equation (7.30) into Equation (7.32),

where tT [t1 t2 tn].
Joint moments of X can be obtained by differentiating joint characteristic

function X(t) with respect to t and setting t 0. The expectation
for example, is given by

It is clear that, since joint moments of the first-order and second-order
completely specify the joint normal distribution, these moments also determine
joint moments of orders higher than 2. We can show that, in the case when
random variables X1, X 2, , Xn have zero means, all odd-order moments of
these random variables vanish, and, for n even,

The sum above is taken over all possible combinations of n/2 pairs of the
n random variables. The number of terms in the summation is (1)(3)(5)
(n 3)(n 1).

7.2.4 SUMS OF NORMAL RANDOM VARIABLES

We have seen through discussions and examples that sums of random variables
arise in a number of problem formulations. In the case of normal random
variables, we have the following important result (Theorem 7.4).
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Theorem 7. 4: let X 1, X 2, . . . , X n be n jointly normally distributed random
variables (not necessarily independent). Then random variable Y , where

is normally distributed, where and are constants.

Proof of Theorem 7.4: for convenience, the proof will be given by assuming
that all Xj , j 1, 2, . . . , n, have zero means. For this case, the mean of Y  is
clearly zero and its variance is, as seen from Equation (4.43),

where ij cov(X i, X j).
Since X j are normally distributed, their joint characteristic function is given

by Equation (7.33), which is

The characteristic function of Y  is

which is the characteristic function associated with a normal random variable.
Hence Y  is also a normal random variable.

A further generalization of the above result is given in Theorem 7.5, which
we shall state without proof.

The orem 7 . 5 : let X 1, X 2, . . . ,  and X n be n normally distributed random variables
(not necessarily independent). Then random variables Y 1, Y 2,  . . . ,  and Y m , where

are themselves jointly normally distributed.
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7.3 LOGNORMAL DISTRIBUTION

We have seen that normal distributions arise from sums of many random
actions. Consider now another common phenomenon which is the resultant
of many multiplicative random effects. An example of multiplicative phenom-
ena is in fatigue studies of materials where internal material damage at a given
stage of loading is a random proportion of damage at the previous stage. In
biology, the distribution of the size of an organism is another example for
which growth is subject to many small impulses, each of which is proportional
to the momentary size. Other examples include the size distribution of particles
under impact or impulsive forces, the life distribution of mechanical compon-
ents, the distribution of personal incomes due to annual adjustments, and other
similar phenomena.

Let us consider

We are interested in the distribution of Y  as n becomes large, when random
variables X j, j 1, 2, . . . , n, can take only positive values.

If we take logarithms of both sides, Equation (7.41) becomes

The random variable ln Y  is seen as a sum of random variables ln X 1, ln X 2, . . . ,
and ln X n. It thus follows from the central limit theorem that ln Y  tends to
a normal distribution as The probability distribution of Y  is thus
determined from

where X  is a normal random variable.

D ef inition 7. 1. Let X  be N(mX , 2
X  ). The random variable Y  as determined

from Equation (7.43) is said to have a lognormal distribution.
The pdf of Y  is easy to determine. Since Equation (7.43) gives Y  as a

monotonic function of X , Equation (5.12) immediately gives

Equation (7.44) shows that Y  has a one-sided distribution (i.e. it takes values
only in the positive range of y). This property makes it attractive for physical
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quantities that are restricted to having only positive values. In addition, f Y  (y)
takes many different shapes for different values of mX  and X  ( x > 0). As seen
from Figure 7.9, the pdf of Y  is skewed to the right, this characteristic becoming
more pronounced as X  increases.

It is noted that parameters mX  and X  appearing in the pdf of Y  are the
mean and standard deviation of X , or ln Y , but not of Y . To obtain a more
natural pair of parameters for f Y  (y), we observe that, if medians of X and Y  are
denoted by X  and Y  , respectively, the definition of the median of a random
variable gives

or

Since, owing to the symmetry of the normal distribution,

we can write

0 2 4 6 8
0.0

0.5

1.0

1.5

y

2
X =0.1

2
X =0.3

2
X =1.0

fY(y)

Figure 7. 9 Lognormal distribution, f Y  (y), with mX  0, for several values of 2
X
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Now, writing the pdf of Y  can be written in the form

The mean and standard deviation of Y  can be found either through direct
integration by using f Y  (y) or by using the relationship given by Equation (7.43)
together with f X  (x ). In terms of Y  and ln Y  , they take the forms

7.3.1 PROBABILITY TABULATIONS

Because of the close ties that exist between the normal distribution and the
lognormal distribution through Equation (7.43), probability calculations
involving a lognormal distributed random variable can be carried out with
the aid of probability tables provided for normal random variables as shown
below.

Consider the probability distribution function of Y . We have

Now, since the mean of X  is ln Y  and its variance is 2
ln Y  , we have:

Since FU (u) is tabulated, Equation (7.50) can be used for probability calcula-
tions associated with Y  with the aid of the normal probability table.

Ex ample 7. 5. Problem: the annual maximum runoff Y  of a certain river can
be modeled by a lognormal distribution. Suppose that the observed mean and
standard deviation of Y  are mY  300 cfs and Y  200 cfs. Determine the
probability P(Y  > 400 cfs).

Answer: using Equations (7.48), parameters Y  and ln Y  are solutions of the
equations
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resulting in

The desired answer is, using Equation (7.50) and Table A.3,

where

Hence,

7.4 GAMMA AND RELATED DISTRIBUTIONS

The gamma distribution describes another class of useful one-sided distribu-
tions. The pdf associated with the gamma distribution is

where ( ) is the well-known gamma function:
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which is widely tabulated, and

when is a positive integer.
The parameters associated with the gamma distribution are and ; both

are taken to be positive. Since the gamma distribution is one-sided, physical
quantities that can take values only in, say, the positive range are frequently
modeled by it. Furthermore, it serves as a useful model because of its versatility
in the sense that a wide variety of shapes to the gamma density function can be
obtained by varying the values of and . This is illustrated in Figures 7.10(a)
and 7.10(b) which show plots of Equation (7.52) for several values of and .
We notice from these figures that determines the shape of the distribution and
is thus a shape parameter whereas is a scale parameter for the distribution. In
general, the gamma density function is unimodal, with its peak at x  0 for

and at for
As we will verify in Section 7.4.1.1, it can also be shown that the gamma

distribution is an appropriate model for time required for a total of exactly
Poisson arrivals. Because of the wide applicability of Poisson arrivals, the

gamma distribution also finds numerous applications.
The distribution function of random variable X  having a gamma distribution is

In the above, ( , u) is the incomplete gamma function,

which is also widely tabulated.
The mean and variance of a gamma-distributed random variable X  take quite

simple forms. After carrying out the necessary integration, we obtain

A number of important distributions are special cases of the gamma distribu-
tion. Two of these are discussed below in more detail.
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x
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0.5

1.0
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2.0

fX(x)

(a)

6.0
0.0

0.5

1.0

1.5

2.0

fX(x)

x

(b)

0.0 1.5 3.0 4.5

0.0 1.5 3.0 4.5

Figure 7.10 Gamma distribution with: (a) 3 and 5, 3, and 1, and
(b) 1 and 0 5, 1, and 3
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7.4.1 EXPONENTIAL DISTRIBUTION

When 1, the gamma density function given by Equation (7.52) reduces to
the exponential form

where is the parameter of the distribution. Its associated PDF, mean,
and variance are obtained from Equations (7.55) and (7.57) by setting 1.
They are

and

Among many of its applications, two broad classes stand out. F irst, we will
show that the exponential distribution describes interarrival time when arrivals
obey the Poisson distribution. It also plays a central role in reliability, where the
exponential distribution is one of the most important failure laws.

7.4.1.1 Interarrival Time

There is a very close tie between the Poisson and exponential distributions. Let
random variable X (0, t) be the number of arrivals in the time interval [0, t) and
assume that it is Poisson distributed. Our interest now is in the time between
two successive arrivals, which is, of course, also a random variable. Let this
interarrival time be denoted by T . Its probability distribution function, FT (t),
is, by definition,

In terms of X (0, t), the event T > t is equivalent to the event that there
are no arrivals during time interval [0, t), or X (0, t) 0. Hence, since
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as given by Equation (6.40), we have

Comparing this expression with Equation (7.59), we can establish the result
that the interarrival time between Poisson arrivals has an exponential distribu-
tion; the parameter in the distribution of T  is the mean arrival rate associated
with Poisson arrivals.

Example 7.6. Problem: referring to Example 6.11 (page 177), determine the
probability that the headway (spacing measured in time) between arriving
vehicles is at least 2 minutes. Also, compute the mean headway.

Answer: in Example 6.11, the parameter was estimated to be 4.16 vehicles
per minute. Hence, if T  is the headway in minutes, we have

The mean headway is

Since interarrival times for Poisson arrivals are independent, the time required
for a total of n Poisson arrivals is a sum of n independent and exponentially
distributed random variables. Let T j, j 1, 2, . . . , n, be the interarrival time
between the (j 1)th and jth arrivals. The time required for a total of n arrivals,
denoted by X n, is

where T j, j 1, 2, . . . , n, are independent and exponentially distributed with the
same parameter . In Example 4.16 (page 105), we showed that X n has a
gamma distribution with 2 when n 2. The same procedure immediately
shows that, for general n, X n is gamma-distributed with n. Thus, as stated,
the gamma distribution is appropriate for describing the time required for a
total of Poisson arrivals.

Example 7.7. Problem: ferries depart for trips across a river as soon as nine
vehicles are driven aboard. It is observed that vehicles arrive independently at
an average rate of 6 per hour. Determine the probability that the time between
trips will be less than 1 hour.

Answer: from our earlier discussion, the time between trips follows a gamma
distribution with 9 and 6. Hence, let X  be the time between trips in
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hours; its density function and distribution function are given by Equations
(7.52) and (7.55). The desired result is, using Equation (7.55),

Now, (9) 8!, and the incomplete gamma function (9, 6) can be obtained by
table lookup. We obtain:

An alternative computational procedure for determining P(X  1) inExample
7.7 can be found by noting from Equation (7.63) that random variable X  can be
represented by a sum of independent random variables. Hence, according to
the central limit theorem, its distribution approaches that of a normal random
variable when is large. Thus, provided that is large, computations such as
that required in Example 7.7 can be carried out by using Table A.3 for normal
random variables. Let us again consider Example 7.7. Approximating X  by
a normal random variable, the desired probability is [see Equation (7.25)]

where U is the standardized normal random variable. The mean and standard
deviation of X  are, using Equations (7.57),

and

Hence, with the aid of Table A.3,

which is quite close to the answer obtained in Example 7.7.
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7.4.1.2 Reliability and Exponential Failure Law

One can infer from our discussion on interarrival time that many analogous
situations can be treated by applying the exponential distribution. In reliability
studies, the time to failure for a physical component or a system is expected to
be exponentially distributed if the unit fails as soon as some single event, such
as malfunction of a component, occurs, assuming such events happen indepen-
dently. In order to gain more insight into failure processes, let us introduce
some basic notions in reliability.

Let random variable T  be the time to failure of a component or system. It is
useful to consider a function that gives the probability of failure during a
small time increment, assuming that no failure occurred before that time. This
function, denoted by h(t), is called the hazard function or failure rate and is
defined by

which gives

In reliability studies, a hazard function appropriate for many phenomena
takes the so-called ‘bathtub curve’, shown in Figure 7.11. The initial portion of
the curve represents ‘infant mortality’, attributable to component defects and
manufacturing imperfections. The relatively constant portion of the h(t) curve
represents the in-usage period in which failure is largely a result of chance
failure. Wear-out failure near the end of component life is shown as the

h (t )

t1 t2
t

Figure 7.11 Typical shape of a hazard function
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increasing portion of the h(t) curve. System reliability can be optimized by
initial ‘burn-in’ until time t1 to avoid premature failure and by part replacement
at time t2 to avoid wear out.

We can now show that the exponential failure law is appropriate during the
‘in-usage’ period of a system’s normal life. Substituting

and

into Equation (7.65), we immediately have

We see from the above that parameter in the exponential distribution plays
the role of a (constant) failure rate.

We have seen in Example 7.7 that the gamma distribution is appropriate
to describe the time required for a total of arrivals. In the context of
failure laws, the gamma distribution can be thought of as a generalization of
the exponential failure law for systems that fail as soon as exactly events
fail, assuming events take place according to the Poisson law. Thus, the
gamma distribution is appropriate as a time-to-failure model for systems
having one operating unit and 1 standby units; these standby units go
into operation sequentially, and each one has an exponential time-to-failure
distribution.

7.4.2 CHI-SQUARED DISTRIBUTION

Another important special case of the gamma distribution is the chi-squared
( 2) distribution, obtained by setting 1/2 and n/2 in Equation (7.52),
where n is a positive integer. The 2 distribution thus contains one parameter,
n, with pdf of the form
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The parameter n is generally referred to as the degrees of freedom. The utility of
this distribution arises from the fact that a sum of the squares of n independent
standardized normal random variables has a 2 distribution with n degrees of
freedom; that is, if U1, U2, . . . ,  and  Un are independent and distributed as
N(0, 1), the sum

has a 2 distribution with n degrees of freedom. One can verify this statement
by determining the characteristic function of each U 2

j (see Example 5.7, page
132) and using the method of characteristic functions as discussed in Section 4.5
for sums of independent random variables.

Because of this relationship, the 2 distribution is one of our main tools in
the area of statistical inference and hypothesis testing. These applications are
detailed in Chapter 10.

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

fX(x)

n = 1

n = 2

n = 4

n = 6

x

Figure 7.12 The 2 distribution for n 1, n 2, n 4, and n 6
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The pdf f X  (x ) in Equation (7.67) is plotted in F igure 7.12 for several values
of n. It is shown that, as n increases, the shape of f X (x ) becomes more
symmetric. In view of Equation (7.68), since X  can be expressed as a sum of
identically distributed random variables, we expect that the 2 distribution
approaches a normal distribution as n  on the basis of the central limit
theorem.

The mean and variance of random variable X  having a 2 distribution are
easily obtained from Equation (7.57) as

7.5 BETA AND RELATED DISTRIBUTIONS

Whereas the lognormal and gamma distributions provide a diversity of one-
sided probability distributions, the beta distribution is rich in providing varied
probability distributions over a finite interval. The beta distribution is char-
acterized by the density function

where parameters and take only positive values. The coefficient of f X (x ),
can be represented by where

is known as the beta function, hence the name for the distribution given by
Equation (7.70).

The parameters and are both shape parameters; different combinations
of their values permit the density function to take on a wide variety of shapes.
When the distribution is unimodal, with its peak at

It becomes U-shaped when it is J-shaped when
and and it takes the shape of an inverted J when and
Finally, as a special case, the uniform distribution over interval (0,1) results
when 1. Some of these possible shapes are displayed in Figures 7.13(a)
and 7.13(b).
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Figure 7.13 Beta distribution with: (a) and
and (b) combinations of values of such that 8
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The mean and variance of a beta-distributed random variable X  are, follow-
ing straightforward integrations,

Because of its versatility as a distribution over a finite interval, the beta
distribution is used to represent a large number of physical quantities for which
values are restricted to an identifiable interval. Some of the areas of application
are tolerance limits, quality control, and reliability.

An interesting situation in which the beta distribution arises is as follows.
Suppose a random phenomenon Y  can be observed independently n times and,
after these n independent observations are ranked in order of increasing mag-
nitude, let yr and be the values of the rth smallest and sth largest
observations, respectively. If random variable X  is used to denote the propor-
tion of the original Y  taking values between yr and  it can be shown that
X  follows a beta distribution with 1, and that is.

This result can be found in Wilks (1942). We will not prove this result but we
will use it in the next section, in Example 7.8.

7.5.1 PROBABILITY TABULATIONS

The probability distribution function associated with the beta distribution is

which can be integrated directly. It also has the form of an incomplete beta
function for which values for given values of and can be found from
mathematical tables. The incomplete beta function is usually denoted by
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Ix ( , ). If we write FX (x ) with parameters and in the form F(   ), the
correspondence between Ix ( , ) and F(  ) is determined as follows. If

, then

If then

Another method of evaluating FX (x ) in Equation (7.74) is to note the
similarity in form between f X (x ) and pY  (k) of a binomial random variable Y
for the case where and are positive integers. We see from Equation
(6.2) that

Also, f X  (x ) in Equation (7.70) with and being positive integers takes the
form

and we easily establish the relationship

where pY  (k) is evaluated at with and For
example, the value of f X  (0 5) with  and  is numerically equal to
2pY  (1) with n 1, and p 0 5; here pY  (1) can be found from Equation (7.77)
or from Table A.1 for binomial random variables.

Similarly, the relationship between FX (x ) and FY  (k) can be established. It
takes the form

with and The PDF FY  (y) for a binomial
random variable Y  is also widely tabulated and it can be used to advantage
here for evaluating FX (x ) associated with the beta distribution.

Example 7.8. Problem: in order to establish quality limits for a manufactured
item, 10 independent samples are taken at random and the quality limits are
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established by using the lowest and highest sample values. What is the prob-
ability that at least 50% of the manufactured items will fail within these limits?

Answer: let X  be the proportion of items taking values within the established
limits. Its pdf thus takes the form of Equation (7.73), with n 10, r 1, and

Hence, and

The desired probability is

According to Equation (7.80), the value of FX (0 50) can be found from

where Y is binomial and k  1 8, n 2 9, and p 0 50.
Using Table A.1, we find that

Equations (7.81) and (7.82) yield

7.5.2 GENERALIZED BETA DISTRIBUTION

The beta distribution can be easily generalized from one restricted to unit
interval (0, 1) to one covering an arbitrary interval (a, b). Let Y  be such
a generalized beta random variable. It is clear that the desired transforma-
tion is

where X  is beta-distributed according to Equation (7.70). Equation (7.85)
represents a monotonic transformation from X  and Y  and the procedure

Some Important Continuous Distributions 225

� �

 � &�

� � &' � & � & � & � 6� � � & � & � ,�

� ���� �
��&&�

��6���,� �
4�& � ���

� &'�

4�
�4�& � ���  �� ' � � � &�

� '� ����������

��� � '�9'� � & � ��� � '�9'� � & � ���'�9'�� �(�4&�

�

���'�9'� � & � �& �/�� �(�4,�

� �� � � �� � � � � �

�&�4� � & � 3& �6� � & � '�'', � '�664� �(�45�

��� � '�9'� � & � ���'�9'� � & � & � �&�4� � '�664� �(�4-�

& � ��� 
�� � 
� �(�49�

TLFeBOOK



developed in Chapter 5 can be applied to determine the pdf of Y  in a straight-
forward manner. Following Equation (5.12), we have

7.6 EXTREME-VALUE DISTRIBUTIONS

A structural engineer, concerned with the safety of a structure, is often inter-
ested in the maximum load and maximum  stress in structural members. In
reliability studies, the distribution of the life of a system having n components
in series (where the system fails if any component fails) is a function of the
minimum time to failure of these components, whereas for a system with a
parallel arrangement (where the system fails when all components fail) it is
determined by the distribution of maximum time to failure. These examples
point to our frequent concern with distributions of maximum or minimum
values of a number of random variables.

To fix ideas, let Xj, j 1, 2, . . . , n, denote the jth gust velocity of n gusts
occurring in a year, and let Y n denote the annual maximum gust velocity. We
are interested in the probability distribution of Y n in terms of those of Xj. In the
following development, attention is given to the case where random variables
X j, j 1, 2, . . . , n, are independent and identically distributed with PDF FX (x )
and pdf f X (x ) or pmf pX  (x ). Furthermore, asymptotic results for  are
our primary concern. For the wind-gust example given above, these conditions
are not unreasonable in determining the distribution of annual maximum gust
velocity. We will also determine, under the same conditions, the minimum Z n

of random variables X 1, X 2, . . . ,  and  Xn, which is also of interest in practical
applications.

The random variables Y n and Z n are defined by

The PDF of Y n is
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Assuming independence, we have

and, if each FXj (y) FX (y), the result is

The pdf of Y n can be easily derived from the above. When the Xj are contin-
uous, it has the form

The PDF of Z n is determined in a similar fashion. In this case,

When the X j are independent and identically distributed, the foregoing gives

If random variables X j are continuous, the pdf of Z n is

The next step in our development is to determine the forms of FY n (y) and
FZ n (z) as expressed by Equations (7.89) and (7.91) as Since the initial
distribution FX (x ) of each Xj is sometimes unavailable, we wish to examine
whether Equations (7.89) and (7.91) lead to unique distributions for FY n (y) and
FZ n (z), respectively, independent of the form of FX (x ). This is not unlike
looking for results similar to the powerful ones we obtained for the normal
and lognormal distributions via the central limit theorem.

Although the distribution functions FY n (y) and FZ n (z) become increasingly
insensitive to exact distributional features of X j as no unique results
can be obtained that are completely independent of the form of FX (x ). Some
features of the distribution function FX (x ) are important and, in what follows,
the asymptotic forms of FY n (y) and FZ n (z) are classified into three types based
on general features in the distribution tails of X j. Type I is sometimes referred
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to as Gumbel’s extreme value distribution, and included in Type III is the
important Weibull distribution.

7.6.1 TYPE-I ASYMPTOTIC DISTRIBUTIONS OF EXTREME
VALUES

Consider first the Type-I asymptotic distribution of maximum values. It is the
limiting distribution of Y n (as ) from an initial distribution F X (x ) of
which the right tail is unbounded and is of an exponential type; that is, FX (x )
approaches 1 at least as fast as an exponential distribution. For this case, we
can express FX (x ) in the form

where g(x ) is an increasing function of x . A number of important distributions
fall into this category, such as the normal, lognormal, and gamma distributions.

Let

We have the following important result (Theorem 7.6).

Theorem 7. 6: let random variables X1, X 2, . . .,  and  X n be independent and
identically distributed with the same PDF FX  (x ). If FX  (x ) is of the form given
by Equation (7.93), we have

where and u are two parameters of the distribution.

Proof of Theorem 7.6: we shall only sketch the proof here; see Gumbel (1958)
for a more comprehensive and rigorous treatment.

Let us first define a quantity un, known as the characteristic value of Y n, by

It is thus the value of X j, j  1, 2, . . . , n,  at  which  P (Xj un) 1 1/n. As n
becomes large, FX (un) approaches unity, or, un is in the extreme right-hand tail
of the distribution. It can also be shown that un is the mode of Y n, which can
be verified, in the case of X j being continuous, by taking the derivative of f Y n

(y)
in Equation (7.90) with respect to y  and setting it to zero.
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If FX (x ) takes the form given by Equation (7.93), we have

or

Now, consider FY n (y) defined by Equation (7.89). In view of Equation (7.93),
it takes the form

In the above, we have introduced into the equation the factor exp [g(un)]/n,
which is unity, as shown by Equation (7.97).

Since un is the mode or the ‘most likely’ value of Y n, function g(y) in
Equation (7.98) can be expanded in powers of (y  un) in the form

where n dg(y)/dy  is evaluated at y  un. It is positive, as g(y) is an increasing
function of y. Retaining only up to the linear term in Equation (7.99) and
substituting it into Equation (7.98), we obtain

in which n and un are functions only of n and not of y. Using the identity

for any real c, Equation (7.100) tends, as n   , to

which was to be proved. In arriving at Equation (7.101), we have assumed that
as n , FY n (y) converges to FY (y) as Yn converges to Y in some probabilistic
sense.
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The mean and variance associated with the Type-I maximum-value distribu-
tion can be obtained through integration using Equation (7.90). We have noted
that u is the mode of the distribution, that is, the value of y at which f Y (y) is
maximum. The mean of Y  is

where

It is seen from the above that u and are, respectively, the location and scale
parameters of the distribution. It is interesting to note that the skewness
coefficient, defined by Equation (4.11), in this case is

which is independent of and u. This result indicates that the Type-I
maximum-value distribution has a fixed shape with a dominant tail to the right.
A typical shape for f Y  (y) is shown in F igure 7.14.

The Type-I asymptotic distribution for minimum values is the limiting
distribution of Z n in Equation (7.91) as n from an initial distribution
FX (x ) of which the left tail is unbounded and is of exponential type as it decreases
to zero on the left. An example of FX  (x ) that belongs to this class is the normal
distribution.

The distribution of Z n as n can be derived by means of procedures
given above for Y n through use of a symmetrical argument. Without giving
details, if we let

y

fY(y )

Figure 7.14 Typical plot of a Type-I maximum-value distribution
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the PDF of Z  can be shown to have the form

where and u are again the two parameters of the distribution.
It is seen that Type-I asymptotic distributions for maximum and minimum

values are mirror images of each other. The mode of Z is u, and its mean,
variance, and skewness coefficients are, respectively,

For probability calculations, values for probability distribution functions
FY  (y) and FZ (z) over various ranges of y  and z  are available in, for example,
Microsoft Excel 2000 (see Appendix B).

Ex ample 7. 9. Problem: the maximum daily gasoline demand Y  during the
month of May at a given locality follows the Type-I asymptotic maximum-
value distribution, with mY  2 and  Y  1, measured in thousands of gallons.
Determine (a) the probability that the demand will exceed 4000 gallons in
any day during the month of May, and (b) the daily supply level that for 95%
of the time will not be exceeded by demand in any given day.

Answer: it follows from Equations (7.102) and (7.103) that parameters and
u are determined from

For part (a), the solution is

For part (b), we need to determine y  such that
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or

Taking logarithms of Equation (7.107) twice, we obtain

that is, the required supply level is 3867 gallons.

Example 7.10. Problem: consider the problem of estimating floods in the
design of dams. Let yT denote the maximum flood associated with return
period T . Determine the relationship between yT and T  if the maximum river
flow follows the Type-I maximum-value distribution. Recall from Example 6.7
(page 169) that the return period T is defined as the average number of years
between floods for which the magnitude is greater than yT .

Answer: assuming that floods occur independently, the number of years
between floods with magnitudes greater than yT assumes a geometric distribu-
tion. Thus

Now, from Equation (7.101),

where b (yT u). The substitution of Equation (7.109) into Equation
(7.108) gives the required relationship.

For  values  of  yT where FY  (yT ) 1, an approximation can be made by
noting from Equation (7.109) that

Since FY  (yT ) is close to 1, we retain only the first term in the foregoing
expansion and obtain

Equation (7.108) thus gives the approximate relationship
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where u is the scale factor and the value of u describes the characteristics of
a river; it varies from 1.5 for violent rivers to 10 for stable or mild rivers.

In closing, let us remark again that the Type-I maximum-value distribution
is valid for initial distributions of such practical importance as normal, lognor-
mal, and gamma distributions. It thus has wide applicability and is sometimes
simply called the extreme value distribution.

7.6.2 TYPE-II ASYMPTOTIC DISTRIBUTIONS OF EXTREME
VALUES

The Type-II asymptotic distribution of maximum values arises as the limiting
distribution of Y n as n from an initial distribution of the Pareto type, that
is, the PDF FX (x ) of each Xj is limited on the left at zero and its right tail is
unbounded and approaches one according to

For this class, the asymptotic distribution of Y n, FY  (y), as n takes the
form

Let us note that, with FX (x ) given by Equation (7.111), each Xj has moments
only up to order r, where r is the largest integer less than k . If k  > 1, the mean of
Y is

and, if k  > 2, the variance has the form

The derivation of FY  (y) given by Equation (7.112) follows in broad outline
that given for the Type-I maximum-value asymptotic distribution and will not
be presented here. It has been used as a model in meteorology and hydrology
(Gumbel, 1958).

A close relationship exists between the Type-I and Type-II asymptotic
maximum-value distributions. Let Y I and Y II denote, respectively, these random
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variables. It can be verified, using the techniques of transformations of random
variables, that they are related by

where parameters and u in FY I (y) are related to parameters k  and v in FY II (y) by

When they are continuous, their pdfs obey the relationship

The Type-II asymptotic distribution of minimum values arises under analogous
conditions. With PDF FX (x ) limited on the right at zero and approaching zero
on the left in a manner analogous to Equation (7.111), we have

However, it has not been found as useful as its counterparts in Type I and Type III
as in practice the required initial distributions are not frequently encountered.

7.6.3 TYPE-III ASYMPTOTIC DISTRIBUTIONS OF EXTREME
VALUES

Since the Type-III maximum-value asymptotic distribution is of limited prac-
tical interest, only the minimum-value distribution will be discussed here.

The Type-III minimum-value asymptotic distribution is the limiting distribu-
tion of Z n as n for an initial distribution FX  (x ) in, which the left tail
increases from zero near x in the manner

This class of distributions is bounded on the left at The gamma distri-
bution is such a distribution with 0.

Again bypassing derivations, we can show the asymptotic distribution for the
minimum value to be
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and, if it is continuous,

The mean and variance of Z  are

We have seen in Section 7.4.1 that the exponential distribution is used as a
failure law in reliability studies, which corresponds to a constant hazard func-
tion [see Equations (7.64) and (7.66)]. The distribution given by Equations
(7.120) and (7.121) is frequently used as a generalized time-to-failure model
for cases in which the hazard function varies with time. One can show that the
hazard function

is capable of assuming a wide variety of shapes, and its associated probability
density function for T, the time to failure, is given by

It is the so-called Weibull distribution,  after Weibull, who first obtained it,
heuristically (Weibull, 1939). Clearly, Equation (7.124) is a special case of
Equation (7.121), with 0.

The relationship between Type-III and Type-I minimum-value asymptotic
distributions can also be established. Let Z I and Z III be the random variables
having, respectively, Type-I and Type-III asymptotic distributions of minimum
values. Then

with u ln (w  ), and k . If they are continuous, the relationship between
their pdfs is
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One final remark to be made is that asymptotic distributions of maximum and
minimum values from the same initial distribution may not be of the same type.
For example, for a gamma initial distribution, its asymptotic maximum-value
distribution is of Type I whereas the minimum-value distribution falls into Type
III. With reference to system time-to-failure models, a system having n components
in series with independent gamma life distributions for its components will have a
time-to-failure distribution belonging to the Type-III asymptotic minimum-value
distribution as n becomes large. The corresponding model for a system having n
components in parallel is the Type-I asymptotic maximum-value distribution.

7.7 SUMMARY

As in Chapter 6, it is useful to summarize the important properties associated
with some of the important continuous distributions discussed in this chapter.
These are given in Table 7.1.
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FURTHER READING AND COMMENTS

As we mentioned in Section 7.2.1, the central limit theorem as stated may be generalized
in several directions. Extensions since the 1920s include cases in which random variable
Y  in Equation (7.14) is a sum of dependent and not necessarily identically distributed
random variables. See, for example, the following two references:

Loéve, M., 1955, Probability Theory, Van Nostrand, New York.
Parzen, E., 1960, Modern Probability Theory and its Applications, John Wiley & Sons

Inc., New York.

Extensive probability tables exist in addition to those given in Appendix A. Prob-
ability tables for lognormal, gamma, beta, chi-squared, and extreme-value distributions
can be found in some of the references cited in Chapter 6. In particular, the following
references are helpful:
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Arkin, H., and Colton, R.1963, Tablesfor Statisticians, 2nd edn., Barnes and Noble, New York.
Beyer, W.H., 1996, Handbook of Tables for Probability and Statistics, Chemical Rubber

Co., Cleveland, OH.
Hald, A., 1952, Statistical Tables and Formulas, John Wiley & Sons Inc. New York.
Owen, D., 1962, Handbook of Statistical Tables, Addision-Wesley, Reading,
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Cambridge University Press, Cambridge, England.

Additional useful references include:

Aitchison, J., and Brown, J.A.C., 1957, The Log-normal Distribution, Cambridge
University Press, Cambridge, England.

Harter, H.L., 1964, New Tables of the Incomplete Gamma Function Ratio and of Per-
centage Points of the Chi-square and Beta Distributions, Aerospace Laboratory; US
Government Printing office, Washington, DC.

National Bureau of Standards, 1954, Tables of the Bivariate Normal Distribution and
Related Functions: Applied Mathematics Series 50, US Government Printing office,
Washington, DC.

PROBLEMS

7.1 The random variables X  and Y  are independent and uniformly distributed in
interval (0.1). Determine the probability that their product XY  is less than 1/2.

7.2 The characteristic function (CF) of a random variable X  uniformly distributed in the
interval ( 1, 1) is

(a) F ind the CF of Y , that is uniformly distributed in interval ( a, a).
(b) F ind the CF of Y  if it is uniformly distributed in interval (a, a b).

7.3 A machine component consisting of a rod-and-sleeve assembly is shown in Figure
7.15. Owing to machining inaccuracies, the inside diameter of the sleeve is uniformly
distributed in the interval (1.98 cm, 2.02 cm), and the rod diameter is also uniformly
distributed in the interval (1.95 cm, 2.00 cm). Assuming independence of these two
distributions, find the probability that:
(a) The rod diameter is smaller than the sleeve diameter.
(b) There is at least a 0.01 cm clearance between the rod and the sleeve.

Sleeve

Rod

Figure 7.15 Rod and sleeve arrangement, for Problem 7.3
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7.4 Repeat Problem 7.3 if the distribution of the rod diameter remains uniform but
that of the sleeve inside diameter is N(2 cm, 0004 cm2).

7.5 The first mention of the normal distribution was made in the work of de Moivre in
1733 as one method of approximating probabilities of a binomial distribution when
n is large. Show that this approximation is valid and give an example showing
results of this approximation.

7.6 If the distribution of temperature T of a given volume of gas is N(400, 1600),
measured in degrees Fahrenheit, find:
(a) f T (450);
(b) P(T 450);
(c) P( T mT  20);
(d) P( T mT  20 T 300).

7.7 If X  is a random variable and distributed as N(m, 2), show that

7.8 Let random variable X  and Y  be identically and normally distributed. Show that
random variables X  Y  and X  Y  are independent.

7.9 Suppose that the useful lives measured in hours of two electronic devices, say T 1
and T 2, have distributions N(40, 36) and N(45, 9), respectively. If the electronic
device is to be used for a 45-hour period, which is to be preferred? Which is
preferred if it is to be used for a 48-hour period?

7.10 Verify Equation (7.13) for normal random variables.

7.11 Let random variables X 1, X 2, . . . , Xn be jointly normal with zero means. Show that

E X 1X2X 3

Generalize the results above and verify Equation (7.35).

7.12 Two rods, for which the lengths are independently, identically, and normally
distributed random variables with means 4 inches and variances 0.02 square inches,
are placed end to end.
(a) What is the distribution of the total length?
(b) What is the probability that the total length will be between 7.9 inches and 8.1

inches?

7.13 Let random variables X 1, X2, and X3 be independent and distributed according
to N(0, 1), N(1, 1), and N(2, 1), respectively. Determine probability P(X 1 X 2
X3 > 1).

7.14 A rope with 100 strands supports a weight of 2100 pounds. If the breaking strength
of each strand is random, with mean equal to 20 pounds and standard deviation 4
pounds, and if the breaking strength of the rope is the sum of the independent
breaking strengths of its strands, determine the probability that the rope will not
fail under the load. (Assume there is no individual strand breakage before rope
failure.)
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7.15 If X1, X2, . . . , X n are independent random variables, all having distribution N(m, 2),
determine the conditions that must be imposed on c1, c2, . . . , cn such that the sum

Y c 1X 1 c2X 2 cnX n

is also N(m, 2). Can all cs be positive?

7.16 Let U be the standardized normal random variable, and define X  U . Then, X
is called the folded standardized normal random variable. Determine f X  (x ).

7.17 The Cauchy distribution has the form

(a) Show that it arises from the ratio X1/X 2, where X 1 and X 2 are independent and
distributed as N(0, 2).

(b) Show that the moments of X  do not exist.

7.18 Let X 1 and X 2 be independent normal random variables, both with mean 0 and
standard deviation 1. Prove that:

Y arctan
X2

X1

is uniformly distributed from to .

7.19 Verify Equations (7.48) for the lognormal distribution.

7.20 The lognormal distribution is found to be a good model for strains in structural
members caused by wind loads. Let the strain be represented by X , with mX  1
and 2

X 09.
(a) Determine the probability P(X  > 1 2).
(b) If stress Y  in a structural member is related to the strain by Y  a bX , with

b > 0, determine f Y  (y) and mY  .

7.21 Arrivals at a rural entrance booth to the New York State Thruway are considered
to be Poisson distributed with a mean arrival rate of 20 vehicles per hour. The time
to process an arrival is approximately exponentially distributed with a mean time of
one min.
(a) What percentage of the time is the tollbooth operator free to work on opera-

tional reports?
(b) How many cars are expected to be waiting to be processed, on average, per hour?
(c) What is the average time a driver waits in line before paying the toll?
(d) Whenever the average number of waiting vehicles reaches 5, a second tollbooth

will be opened. How much will the average hourly rate of arrivals have to
increase to require the addition of a second operator?

7.22 The life of a power transmission tower is exponentially distributed, with mean life
25 years. If three towers, operated independently, are being erected at the same
time, what is the probability that at least 2 will still stand after 35 years?

7.23 For a gamma-distributed random variable, show that:
(a) Its mean and variance are those given by Equation (7.57).
(b) It has a positive skewness.
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7.24 Show that, if is a positive integer, the probability distribution function (PDF) of
a gamma-distributed random variable X  can be written as

Recognize that the terms in the sum take the form of the Poisson mass function and
therefore can be calculated with the aid of probability tables for Poisson distribu-
tions.

7.25 The system shown in Figure 7.16 has three redundant components, A–C. Let their
operating lives (in hours) be denoted by T 1, T 2, and T 3, respectively. If the
redundant parts come into operation only when the online component fails (cold
redundancy), then the operating life of the system, T , is T  T 1 T 2 T 3.
Let T 1, T 2, and T 3 be independent random variables, each distributed as

Determine the probability that the system will operate at least 300 hours.

7.26 We showed in Section 7.4.1 that an exponential failure law leads to a constant
failure rate. Show that the converse is also true; that is, if h(t) as defined by
Equation (7.65) is a constant then the time to failure T  is exponentially distributed.

7.27 A shifted exponential distribution is defined as an exponential distribution shifted
to the right by an amount a; that is, if random variable X  has an exponential
distribution with

random variable Y  has a shifted exponential distribution if f Y  (y) has the same
shape as f X  (x ) but its nonzero portion starts at point a rather than zero. Determine
the relationship between X  and Y  and probability density function (pdf) f Y  (y).
What are the mean and variance of Y ?

A

B

C

Figure 7.16 System of components, for Problem 7.25
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7.28 Let random variable X  be 2-distributed with parameter . Show that the limiting
distribution of

as is N(0, 1).

7.29 Let X1, X2, . . . , X n be independent random variables with common PDF FX  (x )
and pdf f X  (x ). Equations (7.89) and (7.91) give, respectively, the PDFs of their
maximum and minimum values. Let X (j) be the random variable denoting the
jth-smallest value of X 1, X 2, . . . , Xn. Show that the PDF of X (j) has the form

7.30 Ten points are distributed uniformly and independently in interval (0, 1). F ind:
(a) The probability that the point lying farthest to the right is to the left of 3/4.
(b) The probability that the point lying next farthest to the right is to the right of 1/2.

7.31 Let the number of arrivals in a time interval obey the distribution given in Problem
6.32, which corresponds to a Poisson-type distribution with a time-dependent
mean rate of arrival. Show that the pdf of time between arrivals is given by

As we see from Equation (7.124), it is the Weibull distribution.

7.32 A multiple-member structure in a parallel arrangement, as shown in Figure 7.17,
supports a load s. It is assumed that all members share the load equally, that their
resistances are random and identically distributed with common PDF FR (r), and
that they act independently. If a member fails when the load it supports exceeds
its resistance, show that the probability that failure will occur to n k members
among n initially existing members is

and

where
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7.33 What is the probability sought in Problem 7.32 if the load is also a random variable
S  with pdf f S (s)?

7.34 Let n 3 in Problem 7.32. Determine the probabilities of failure in zero, one, two,
and three members in Problem 7.32 if R  follows a uniform distribution over
interval (80, 100), and s 270. Is partial failure (one-member or two-member
failure) possible in this case?

7.35 To show that, as a time-to-failure model, the Weibull distribution corresponds to
a wide variety of shapes of the hazard function, graph the hazard function in Equation
(7.123) and the corresponding Weibull distribution in Equation (7.124) for the follow-
ing combinations of parameter values: k 0 5, 1, 2, and 3; and w 1 and 2.

7.36 The ranges of n independent test flights of a supersonic aircraft are assumed to be
identically distributed with PDF FX  (x ) and pdf f X  (x ). If range span is defined as the
distance between the maximum and minimum ranges of these n values, determine
the pdf of the range span in terms of FX  (x ) or f X  (x ). Expressing it mathematically,
the pdf of interest is that of S , where

with

and

Note that random variables Y  and Z  are not independent.

s

s

1 2 . . . . n

Figure 7.17 Structure under load s, for Problem 7.32
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8

Observed Data and Graphical
Representation

Referring to Figure 1.1 in Chapter 1, we are concerned in this and subsequent
chapters with step D E of the basic cycle in probabilistic modeling, that is,
parameter estimation and model verification on the basis of observed data. In
Chapters 6 and 7, our major concern has been the selection of an appropriate
model (probability distribution) to represent a physical or natural phenom-
enon based on our understanding of its underlying properties. In order to
specify the model completely, however, it is required that the parameters in the
distribution be assigned. We now consider this problem of parameter estima-
tion using available data. Included in this discussion are techniques for asses-
sing the reasonableness of a selected model and the problem of selecting a
model from among a number of contending distributions when no single one
is preferred on the basis of the underlying physical characteristics of a given
phenomenon.

Let us emphasize at the outset that, owing to the probabilistic nature of the
situation, the problem of parameter estimation is precisely that – an estima-
tion problem. A sequence of observations, say n in number, is a sample of
observed values of the underlying random variable. If we were to repeat the
sequence of n observations, the random nature of the experiment should
produce a different sample of observed values. Any reasonable rule for
extracting parameter estimates from a set of n observations will thus give
different estimates for different sets of observations. In other words, no single
sequence of observations, finite in number, can be expected to yield true
parameter values. What we are basically interested in, therefore, is to obtain
relevant information about the distribution parameters by actually observing
the underlying random phenomenon and using these observed numerical
values in a systematic way.

Fundamentals of Probability and Statistics for Engineers T.T. Soong  2004 John Wiley & Sons, Ltd
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8.1 HISTOGRAM AND FREQUENCY DIAGRAMS

Given a set of independent observations x 1, x 2, . . ., and  x n of a random variable
X , a useful first step is to organize and present them properly so that they can
be easily interpreted and evaluated. When there are a large number of observed
data, a histogram is an excellent graphical representation of the data, facilitating
(a) an evaluation of adequacy of the assumed model, (b) estimation of percentiles
of the distribution, and (c) estimation of the distribution parameters.

Let us consider, for example, a chemical process that is producing batches of
a desired material; 200 observed values of the percentage yield, X , representing
a relatively large sample size, are given in Table 8.1 (Hill, 1975). The sample
values vary from 64 to 76. Dividing this range into 12 equal intervals and
plotting the total number of observed yields in each interval as the height of
a rectangle over the interval results in the histogram as shown in Figure 8.1.
A frequency diagram is obtained if the ordinate of the histogram is divided by
the total number of observations, 200 in this case, and by the interval width
(which happens to be one in this example). We see that the histogram or
the frequency diagram gives an immediate impression of the range, relative
frequency, and scatter associated with the observed data.

In the case of a discrete random variable, the histogram and frequency diagram as
obtained from observed data take the shape of a bar chart as opposed to connected
rectangles in the continuous case. Consider, for example, the distribution of the
number of accidents per driver during a six-year time span in California. The data
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Figure 8.1 Histogram and frequency diagram for percentage yield
(data source: Hill, 1975)
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given in Table 8.2 are six-year accident records of 7842 California drivers (Burg,
1967, 1968). Based upon this set of observations, the histogram has the form given
in Figure 8.2. The frequency diagram is obtained in this case simply by dividing
the ordinate of the histogram by the total number of observations, which is 7842.

Table 8.1 Chemical yield data (data source: Hill, 1975)

Batch no. Yield
(%)

Batch no. Yield
(%)

Batch no. Yield
(%)

Batch no. Yield
(%)

Batch no. Yield
(%)

1 68.4 41 68.7 81 68.5 121 73.3 161 70.5
2 69.1 42 69.1 82 71.4 122 75.8 162 68.8
3 71.0 43 69.3 83 68.9 123 70.4 163 72.9
4 69.3 44 69.4 84 67.6 124 69.0 164 69.0
5 72.9 45 71.1 85 72.2 125 72.2 165 68.1
6 72.5 46 69.4 86 69.0 126 69.8 166 67.7
7 71.1 47 75.6 87 69.4 127 68.3 167 67.1
8 68.6 48 70.1 88 73.0 128 68.4 168 68.1
9 70.6 49 69.0 89 71.9 129 70.0 169 71.7

10 70.9 50 71.8 90 70.7 130 70.9 170 69.0
11 68.7 51 70.1 91 67.0 131 72.6 171 72.0
12 69.5 52 64.7 92 71.1 132 70.1 172 71.5
13 72.6 53 68.2 93 71.8 133 68.9 173 74.9
14 70.5 54 71.3 94 67.3 134 64.6 174 78.7
15 68.5 55 71.6 95 71.9 135 72.5 175 69.0
16 71.0 56 70.1 96 70.3 136 73.5 176 70.8
17 74.4 57 71.8 97 70.0 137 68.6 177 70.0
18 68.8 58 72.5 98 70.3 138 68.6 178 70.3
19 72.4 59 71.1 99 72.9 139 64.7 179 67.5
20 69.2 60 67.1 100 68.5 140 65.9 180 71.7
21 69.5 61 70.6 101 69.8 141 69.3 181 74.0
22 69.8 62 68.0 102 67.9 142 70.3 182 67.6
23 70.3 63 69.1 103 69.8 143 70.7 183 71.1
24 69.0 64 71.7 104 66.5 144 65.7 184 64.6
25 66.4 65 72.2 105 67.5 145 71.1 185 74.0
26 72.3 66 69.7 106 71.0 146 70.4 186 67.9
27 74.4 67 68.3 107 72.8 147 69.2 187 68.5
28 69.2 68 68.7 108 68.1 148 73.7 188 73.4
29 71.0 69 73.1 109 73.6 149 68.5 189 70.4
30 66.5 70 69.0 110 68.0 150 68.5 190 70.7
31 69.2 71 69.8 111 69.6 151 70.7 191 71.6
32 69.0 72 69.6 112 70.6 152 72.3 192 66.9
33 69.4 73 70.2 113 70.0 153 71.4 193 72.6
34 71.5 74 68.4 114 68.5 154 69.2 194 72.2
35 68.0 75 68.7 115 68.0 155 73.9 195 69.1
36 68.2 76 72.0 116 70.0 156 70.2 196 71.3
37 71.1 77 71.9 117 69.2 157 69.6 197 67.9
38 72.0 78 74.1 118 70.3 158 71.6 198 66.1
39 68.3 79 69.3 119 67.2 159 69.7 199 70.8
40 70.6 80 69.0 120 70.7 160 71.2 200 69.5
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Returning now to the chemical yield example, the frequency diagram as
shown in Figure 8.1 has the familiar properties of a probability density function
(pdf). Hence, probabilities associated with various events can be estimated. For
example, the probability of a batch having less than 68% yield can be read off
from the frequency diagram by summing over the areas to the left of 68%,

having yields greater than us
remember, however, these are probabilities calculated based on the observed
data. A different set of data obtained from the same chemical process would
in general lead to a different frequency diagram and hence different values for
these probabilities. Consequently, they are, at best, estimates of probabilities
P(X  < 68) and P(X  > 72) associated with the underlying random variable X .

A remark on the choice of the number of intervals for plotting the histograms
and frequency diagrams is in order. For this example, the choice of 12 intervals is
convenient on account of the range of values spanned by the observations and of
the fact that the resulting resolution is adequate for calculations of probabilities
carried out earlier. In Figure 8.3, a histogram is constructed using 4 intervals
instead of 12 for the same example. It is easy to see that it projects quite a different,
and less accurate, visual impression of data behavior. It is thus important to
choose the number of intervals consistent with the information one wishes to
extract from the mathematical model. As a practical guide, Sturges (1926) suggests
that an approximate value for the number of intervals, k, be determined from

where n is the sample size.
From the modeling point of view, it is reasonable to select a normal distribution

as the probabilistic model for percentage yield X  by observing that its random vari-
ations are the resultant of numerous independent random sources in the chem-
ical manufacturing process. Whether or not this is a reasonable selection can be

Table 8.2 Six-year accident record for 7842
California drivers (data source: Burg, 1967, 1968)

Number of accidents Number of drivers

0 5147
1 1859
2 595
3 167
4 54
5 14
> 5 6

Total 7842

250 Fundamentals of Probability and Statistics for Engineers

giving 0.13 (0 02 0 01 0 025 0 075). Similarly, the probability of a batch
72% is 0.18 (0 105 0 035 0 03 0 01). Let
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Figure 8.2 Histogram from six-year accident data (data source: Burg, 1967, 1968)
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Figure 8.3 Histogram for percentage yield with four intervals (data source: Hill, 1975)
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evaluated in a subjective way by using the frequency diagram given in Figure 8.1.
The normal density function with mean 70 and variance 4 is superimposed on the
frequency diagram in Figure 8.1, which shows a reasonable match. Based on this
normal distribution, we can calculate the probabilities given above, giving a further
assessment of the adequacy of the model. For example, with the aid of Table A.3,

which compares with 0.13 with use of the frequency diagram.
In the above, the choice of 70 and 4, respectively, as estimates of the mean

and variance of X  is made by observing that the mean of the distribution should
be close to the arithmetic mean of the sample, that is,

and the variance can be approximated by

which gives the arithmetic average of the squares of sample values with respect
to their arithmetic mean.

Let us emphasize that our use of Equations (8.2) and (8.3) is guided largely
by intuition. It is clear that we need to address the problem of estimating the param-
eter values in an objective and more systematic fashion. In addition, procedures
need to be developed that permit us to assess the adequacy of the normal model
chosen for this example. These are subjects of discussion in the chapters to follow.
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PROBLEMS

8.1 It has been shown that the frequency diagram gives a graphical representation of the
probability density function. Use the data given in Table 8.1 and construct a diagram
that approximates the probability distribution function of percentage yield X .

8.2 In parts (a)–(l) below, observations or sample values of size n are given for a random
phenomenon.
(i) If not already given, plot the histogram and frequency diagram associated with

the designated random variable X .
(ii) Based on the shape of these diagrams and on your understanding of the

underlying physical situation, suggest one probability distribution (normal,
Poisson, gamma, etc.) that may be appropriate for X . Estimate parameter
value(s) by means of Equations (8.2) and (8.3) and, for the purposes of
comparison, plot the proposed probability density function (pdf) or probabil-
ity mass function (pmf) and superimpose it on the frequency diagram.

(a) X  is the maximum annual flood flow of the Feather River at Oroville, CA.
Data given in Table 8.3 are records of maximum flood flows in 1000 cfs for
the years 1902 to 1960 (source: Benjamin and Cornell, 1970).

(b) X  is the number of accidents per driver during a six-year time span in
California. Data are given in Table 8.2 for 7842 drivers.

(c) X  is the time gap in seconds between cars on a stretch of highway. Table 8.4
gives measurements of time gaps in seconds between successive vehicles at
a given location (n 100).

(d) X  is the sum of two successive gaps in Part (c) above.
(e) X  is the number of vehicles arriving per minute at a toll booth on New York

State Thruway. Measurements of 105 one-minute arrivals are given in
Table 8.5.

(f) X  is the number of five-minute arrivals in Part (e) above.
(g) X  is the amount of yearly snowfall in inches in Buffalo, NY. Given in Table 8.6

are recorded snowfalls in inches from 1909 to 2002.
(h) X  is the peak combustion pressure in kPa per cycle. In spark ignition

engines, cylinder pressure during combustion varies from cycle to cycle.
The histogram of peak combustion pressure in kPa is shown in Figure 8.4
for 280 samples (source: Chen and Krieger, 1976).
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(i) X 1, X 2, and X 3 are annual premiums paid by low-risk, medium-risk, and
high-risk drivers. The frequency diagram for each group is given in Figure 8.5.
(simulated results, over 50 years, are from Ferreira, 1974).

(j) X  is the number of blemishes in a certain type of image tube for television,
58 data points are used for construction of the histogram shown in Figure 8.6.
(source: Link, 1972).

(k) X  is the difference between observed and computed urinary digitoxin
excretion, in micrograms per day. In a study of metabolism of digitoxin
to digoxin in patients, long-term studies of urinary digitoxin excretion were
carried out on four patients. A histogram of the difference between

Table 8.3 Maximum flood flows (in 1000 cfs), 1902–60 (source:
Benjamin and Cornell, 1970).

Year Flood Year Flood Year Flood

1902 42 1922 36 1942 110
1903 102 1923 22 1943 108
1904 118 1924 42 1944 25
1905 81 1925 64 1945 60
1906 128 1926 56 1946 54
1907 230 1927 94 1947 46
1908 16 1928 185 1948 37
1909 140 1929 14 1949 17
1910 31 1930 80 1950 46
1911 75 1931 12 1951 92
1912 16 1932 23 1952 13
1913 17 1933 9 1953 59
1914 122 1934 20 1954 113
1915 81 1935 59 1955 55
1916 42 1936 85 1956 203
1917 80 1937 19 1957 83
1918 28 1938 185 1958 102
1919 66 1939 8 1959 35
1920 23 1940 152 1960 135
1921 62 1941 84

Table 8.4 Time gaps between vehicles (in seconds)

4.1 3.5 2.2 2.7 2.7 4.1 3.4 1.8 3.1 2.1
2.1 1.7 2.3 3.0 4.1 3.2 2.2 2.3 1.5 1.1
2.5 4.7 1.8 4.8 1.8 4.0 4.9 3.1 5.7 5.7
3.1 2.0 2.9 5.9 2.1 3.0 4.4 2.1 2.6 2.7
3.2 2.5 1.7 2.0 2.7 1.2 9.0 1.8 2.1 5.4
2.1 3.8 4.5 3.3 2.1 2.1 7.1 4.7 3.1 1.7
2.2 3.1 1.7 3.1 2.3 8.1 5.7 2.2 4.0 2.7
1.5 1.7 4.0 6.4 1.5 2.2 1.2 5.1 2.7 2.4
1.7 1.2 2.7 7.0 3.9 5.2 2.7 3.5 2.9 1.2
1.5 2.7 2.9 4.1 3.1 1.9 4.8 4.0 3.0 2.7
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Table 8.5 Arrivals per minute at a New York State Thruway toll booth

9 9 11 15 6 11 9 6 11 8 10
3 9 8 5 7 15 7 14 6 6 16
6 8 10 6 10 11 9 7 7 11 10
3 8 4 7 15 6 7 7 8 7 5

13 12 11 10 8 14 3 15 13 5 7
12 7 10 4 16 7 11 11 13 10
9 10 11 6 6 8 9 5 5 5

11 6 7 9 5 12 12 4 13 4
12 16 10 14 15 16 10 8 10 6
18 13 6 9 4 13 14 6 10 10

Table 8.6 Annual snowfall, in inches, in Buffalo, NY, 1909–2002

Year Snowfall Year Snowfall Year Snowfall

1909–1910 126.4 1939–1940 77.8 1969–1970 120.5
1910–1911 82.4 1940–1941 79.3 1970–1971 97.0
1911–1912 78.1 1941–1942 89.6 1971–1972 109.9
1912–1913 51.1 1942–1943 85.5 1972–1973 78.8
1913–1914 90.9 1943–1944 58.0 1973–1974 88.7
1914–1915 76.2 1944–1945 120.7 1974–1975 95.6
1915–1916 104.5 1945–1946 110.5 1975–1976 82.5
1916–1917 87.4 1946–1947 65.4 1976–1977 199.4
1917–1918 110.5 1947–1948 39.9 1977–1978 154.3
1918–1919 25.0 1948–1949 40.1 1978–1979 97.3
1919–1920 69.3 1949–1950 88.7 1979–1980 68.4
1920–1921 53.5 1950–1951 71.4 1980–1981 60.9
1921–1922 39.8 1951–1952 83.0 1981–1982 112.4
1922–1923 63.6 1952–1953 55.9 1982–1983 52.4
1923–1924 46.7 1953–1954 89.9 1983–1984 132.5
1924–1925 72.9 1954–1955 84.6 1984–1985 107.2
1925–1926 74.6 1955–1956 105.2 1985–1986 114.7
1926–1927 83.6 1956–1957 113.7 1986–1987 67.5
1927–1928 80.7 1957–1958 124.7 1987–1988 56.4
1928–1929 60.3 1958–1959 114.5 1988–1989 67.4
1929–1930 79.0 1959–1960 115.6 1989–1990 93.7
1930–1931 74.4 1960–1961 102.4 1990–1991 57.5
1931–1932 49.6 1961–1962 101.4 1991–1992 92.8
1932–1933 54.7 1962–1963 89.8 1992–1993 93.2
1933–1934 71.8 1963–1964 71.5 1993–1994 112.7
1934–1935 49.1 1964–1965 70.9 1994–1995 74.6
1935–1936 103.9 1965–1966 98.3 1995–1996 141.4
1936–1937 51.6 1966–1967 55.5 1996–1997 97.6
1937–1938 82.4 1967–1968 66.1 1997–1998 75.6
1938–1939 83.6 1968–1969 78.4 1998–1999 100.5

1999–2000 63.6
2000–2001 158.7
2001–2002 132.4
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observed and computed urinary digitoxin excretion in micrograms per day
is given in F igure 8.7 (n 100) (source: Jelliffe et al., 1970).

(l) X  is the live load in pounds per square feet (psf) in warehouses. The
histogram in Figure 8.8 represents 220 measurements of live loads on
different floors of a warehouse over bays of areas of approximately 400
square feet (source: Dunham, 1952).
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9

Parameter Estimation

Suppose that a probabilistic model, represented by probability density function
(pdf) f (x ), has been chosen for a physical or natural phenomenon for which
parameters 1, 2, . . . are to be estimated from independently observed data
x 1, x 2, . . . , x n. Let us consider for a moment a single parameter for simplicity
and write f (x ; ) to mean a specified probability distribution where is the unknown
parameter to be estimated. The parameter estimation problem is then one of
determining an appropriate function of x 1, x 2, . . . , x n, say h(x 1, x 2, . . . , x n), which
gives the ‘best’ estimate of . In order to develop systematic estimation procedures,
we need to make more precise the terms that were defined rather loosely in the
preceding chapter and introduce some new concepts needed for this development.

9.1 SAMPLES AND STATISTICS

Given an independent data set x 1, x 2, . . . , x n, let

be an estimate of parameter . In order to ascertain its general properties, it is
recognized that, if the experiment that yielded the data set were to be repeated,
we would obtain different values for x 1, x 2, . . . , x n. The function h(x 1, x 2, . . . , x n)
when applied to the new data set would yield a different value for . We thus see
that estimate is itself a random variable possessing a probability distribution,
which depends both on the functional form defined by h and on the distribution
of the underlying random variable X . The appropriate representation of is thus

where X 1, X 2, . . . , Xn are random variables, representing a sample from random
variable X , which is referred to in this context as the population. In practically

Fundamentals of Probability and Statistics for Engineers T.T. Soong  2004 John Wiley & Sons, Ltd
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all applications, we shall assume that sample X 1, X 2, . . . , X n possesses the
following properties:

Property 1: X 1, X 2, . . . , Xn are independent.
Property 2:  for all x , j 1, 2, . . . , n.

The random variables X 1, . . . , X n satisfying these conditions are called a random
sample of size n. The word ‘random’ in this definition is usually omitted for the
sake of brevity. If X  is a random variable of the discrete type with probability
mass function (pmf) pX (x ), then for each j.

A specific set of observed values (x 1, x 2, . . . , x n) is a set of sample values
assumed by the sample. The problem of parameter estimation is one class in
the broader topic of statistical inference in which our object is to make infer-
ences about various aspects of the underlying population distribution on the
basis of observed sample values. For the purpose of clarification, the interre-
lationships among X , (X 1, X 2, . . . , Xn), and (x 1, x 2, . . . , x n) are schematically
shown in Figure 9.1.

Let us note that the properties of a sample as given above imply that certain
conditions are imposed on the manner in which observed data are obtained.
Each datum point must be observed from the population independently and
under identical conditions. In sampling a population of percentage yield, as
discussed in Chapter 8, for example, one would avoid taking adjacent batches if
correlation between them is to be expected.

A statistic is any function of a given sample X 1, X 2, . . . , Xn that does not
depend on the unknown parameter. The function h(X 1, X 2, . . . , Xn) in Equation
(9.2) is thus a statistic for which the value can be determined once the sample
values have been observed. It is important to note that a statistic, being a function
of random variables, is a random variable. When used to estimate a distribution
parameter, its statistical properties, such as mean, variance, and distribution, give
information concerning the quality of this particular estimation procedure. Cer-
tain statistics play an important role in statistical estimation theory; these include
sample mean, sample variance, order statistics, and other sample moments. Some
properties of these important statistics are discussed below.

X

X1 X2 Xn

x1 x2 xn

(sample)

(population)

(sample values)

Figure 9.1 Population, sample, and sample values
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9.1.1 SAMPLE MEAN

The statistic

is called the sample mean of population X . Let the population mean and
variance be, respectively,

The mean and variance of X , the sample mean, are easily found to be

and, owing to independence,

which is inversely proportional to sample size n. As n increases, the variance of X
decreases and the distribution of X  becomes sharply peaked at . Hence,
it is intuitively clear that statistic X  provides a good procedure for estimating
population mean m. This is another statement of the law of large numbers that
was discussed in Example 4.12 (page 96) and Example 4.13 (page 97).

Since X  is a sum of independent random variables, its distribution can also be
determined either by the use of techniques developed in Chapter 5 or by means of
the method of characteristic functions given in Section 4.5. We further observe
that, on the basis of the central limit theorem (Section 7.2.1), sample mean X
approaches a normal distribution as . More precisely, random variable

approaches N(0, 1) as

Parameter Estimation 261

� � �

�

��
���

�� �'�6�

���� � ��
������ � ���

�
�'�,�

���� � �

�

��
���

����� � �

�
���� � �� �'�=�

������ � ���� ����� � � �

�

��
���

��� ���
� ��

��
�

�	



� �

��
����� � ��

�
�

�'�5�

���� � �

�� �

�� ��� �

����

� ���

�� ��

TLFeBOOK



9.1.2 SAMPLE VARIANCE

The statistic

is called the sample variance of population X . The mean of S 2 can be found by
expanding the squares in the sum and taking termwise expectations. We first
write Equation (9.7) as

Taking termwise expectations and noting mutual independence, we have

where m and 2 are defined in Equations (9.4). We remark at this point that the
reason for using 1/(n 1) rather than 1/n in Equation (9.7) is to make the mean
of S 2 equal to 2. As we shall see in the next section, this is a desirable property
for S 2 if it is to be used to estimate 2, the true variance of X .

The variance of S 2 is found from

var

Upon expanding the right-hand side and carrying out expectations term by
term, we find that

where 4 is the fourth central moment of X ; that is,

Equation (9.10) shows again that the variance of S 2 is an inverse function of n.
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In principle, the distribution of S 2 can be derived with use of techniques
advanced in Chapter 5. It is, however, a tedious process because of the complex
nature of the expression for S 2 as defined by Equation (9.7). For the case in
which population X  is distributed according to N(m, 2), we have the following
result (Theorem 9.1).

Theorem 9. 1: Let S 2 be the sample variance of size n from normal population
N(m, 2), then (n 1)S 2/ 2 has a chi-squared ( 2) distribution with (n 1)
degrees of freedom.

Proof of Theorem 9.1: the chi-squared distribution is given in Section 7.4.2.
In order to sketch a proof for this theorem, let us note from Section 7.4.2 that
random variable Y ,

has a chi-squared distribution of n degrees of freedom since each term in the
sum is a squared normal random variable and is independent of other random
variables in the sum. Now, we can show that the difference between Y  and

is

Since the right-hand side of Equation (9.13) is a random variable having a chi-
squared distribution with one degree of freedom, Equation (9.13) leads to the
result that (n 1)S 2/ 2 is chi-squared distributed with (n 1) degrees of freedom
provided that independence exists between (n 1)S 2/ 2 and

The proof of this independence is not given here but can be found in more
advanced texts (e.g. Anderson and Bancroft, 1952).

9.1.3 SAMPLE MOMENTS

The k th sample moment is
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Following similar procedures as given above, we can show that

where k is the k th moment of population X .

9.1.4 ORDER STATISTICS

A sample X 1, X 2, . . . , Xn can be ranked in order of increasing numerical mag-
nitude. Let X (1), X (2), . . . , X (n) be such a rearranged sample, where X (1) is the
smallest and X (n) the largest. Then X (k) is called the kth-order statistic. Extreme
values X (1) and X (n) are of particular importance in applications, and their
properties have been discussed in Section 7.6.

In terms of the probability distribution function (PDF) of population X ,
FX (x ), it follows from Equations (7.89) and (7.91) that the PDFs of X (1) and
X (n) are

If X  is continuous, the pdfs of X (1) and X (n) are of the form [see Equations (7.90)
and (7.92)]

The means and variances of order statistics can be obtained through integration,
but they are not expressible as simple functions of the moments of population X .

9.2 QUALITY CRITERIA FOR ESTIMATES

We are now in a position to propose a number of criteria under which the
quality of an estimate can be evaluated. These criteria define generally desirable
properties for an estimate to have as well as provide a guide by which the
quality of one estimate can be compared with that of another.
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Before proceeding, a remark is in order regarding the notation to be used. As seen
in Equation (9.2), our objective in parameter estimation is to determine a statistic

which gives a good estimate of parameter . This statistic will be called an
estimator for , for which properties, such as mean, variance, or distribution,
provide a measure of quality of this estimator. Once we have observed sample
values x 1, x 2, . . . , x n, the observed estimator,

has a numerical value and will be called an estimate of parameter .

9.2.1 UNBIASEDNESS

An estimator is said to be an unbiased estimator for if

for all . This is clearly a desirable property for , which states that, on average,
we expect to be close to true parameter value . Let us note here that the
requirement of unbiasedness may lead to other undesirable consequences.
Hence, the overall quality of an estimator does not rest on any single criterion
but on a set of criteria.

We have studied two statistics, X and S 2, in Sections 9.1.1 and 9.1.2. It is seen
from Equations (9.5) and (9.8) that, if X and S 2 are used as estimators for the
population mean m  and population variance 2, respectively, they are unbiased
estimators. This nice property for S 2 suggests that the sample variance defined
by Equation (9.7) is preferred over the more natural choice obtained by repla-
cing 1/(n 1) by 1/n in Equation (9.7). Indeed, if we let

its mean is

and estimator S 2 has a bias indicated by the coefficient (n 1)/n.
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9.2.2 MINIMUM VARIANCE

It seems natural that, if h(X 1, X 2, . . . , X n) is to qualify as a good estimator
for , not only its mean should be close to true value but also there should be a
good probability that any of its observed values will be close to . This can be
achieved by selecting a statistic in such a way that not only is unbiased but
also its variance is as small as possible. Hence, the second desirable property is
one of minimum variance.

D efinition 9. 1. let be an unbiased estimator for . It is an unbiased
minimum-variance estimator for if, for all other unbiased estimators of
from the same sample,

for all .
Given two unbiased estimators for a given parameter, the one with smaller

variance is preferred because smaller variance implies that observed values of
the estimator tend to be closer to its mean, the true parameter value.

Example 9.1. Problem: we have seen that X  obtained from a sample of size n
is an unbiased estimator for population mean m. Does the quality of X improve
as n increases?

Answer: we easily see from Equation (9.5) that the mean of X  is independent
of the sample size; it thus remains unbiased as n increases. Its variance, on the
other hand, as given by Equation (9.6) is

which decreases as n increases. Thus, based on the minimum variance criterion,
the quality of X  as an estimator for m improves as n increases.

Ex ample 9. 2. Part 1. Problem: based on a fixed sample size n, is X  the best
estimator for m  in terms of unbiasedness and minimum variance?

Approach: in order to answer this question, it is necessary to show that the
variance of X  as given by Equation (9.25) is the smallest among all unbiased
estimators that can be constructed from the sample. This is certainly difficult to
do. However, a powerful theorem (Theorem 9.2) shows that it is possible to
determine the minimum achievable variance of any unbiased estimator
obtained from a given sample. This lower bound on the variance thus permits
us to answer questions such as the one just posed.
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Theorem 9. 2: the Cramér– R a o ineq ua lit y. Let X 1, X 2, . . . , Xn denote a sample
of size n from a population X  with pdf f (x ; ), where is the unknown param-
eter, and let h(X 1, X 2, . . . , Xn) be an unbiased estimator for . Then, the
variance of satisfies the inequality

if the indicated expectation and differentiation exist. An analogous result with
p(X ; ) replacing f (X ; ) is obtained when X  is discrete.

Proof of Theorem 9.2: the joint probability density function (jpdf) of X 1, X 2, . . . ,
and Xn is, because of their mutual independence, The
mean of statistic is

and, since is unbiased, it gives

Another relation we need is the identity:

Upon differentiating both sides of each of Equations (9.27) and (9.28) with
respect to , we have
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Let us define a new random variable Y  by

Equation (9.30) shows that

Moreover, since Y  is a sum of n independent random variables, each with mean
zero and variance the variance of Y  is the sum of the n
variances and has the form

Now, it follows from Equation (9.29) that

Recall that

or

As a consequence of property 2 1, we finally have

or, using Equation (9.32),

The proof is now complete.

In the above, we have assumed that differentiation with respect to under an
integral or sum sign are permissible. Equation (9.26) gives a lower bound on the
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variance of any unbiased estimator and it expresses a fundamental limitation
on the accuracy with which a parameter can be estimated. We also note that
this lower bound is, in general, a function of , the true parameter value.

Several remarks in connection with the Cramér–Rao lower bound (CRLB)
are now in order.

Remark 1: the expectation in Equation (9.26) is equivalent to
, or

This alternate expression offers computational advantages in some cases.

Remark 2: the result given by Equation (9.26) can be extended easily to
multiple parameter cases. Let 1, 2, . . ., and be the unknown
parameters in which are to be estimated on the basis of a
sample of size n. In vector notation, we can write

with corresponding vector unbiased estimator

Following similar steps in the derivation of Equation (9.26), we can show that
the Cramér–Rao inequality for multiple parameters is of the form

where 1 is the inverse of matrix for which the elements are

Equation (9.39) implies that

where is the jjth element of 1.

Remark 3: the CRLB can be transformed easily under a transformation of
the parameter. Suppose that, instead of , parameter is of interest,
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which is a one-to-one transformation and differentiable with respect to ;
then,

CRLB for var

where is an unbiased estimator for .

Remark 4: given an unbiased estimator for parameter , the ratio of its
CRLB to its variance is called the efficiency  of . The efficiency of any
unbiased estimator is thus always less than or equal to 1. An unbiased
estimator with efficiency equal to 1 is said to be efficient . We must point
out, however, that efficient estimators exist only under certain conditions.

We are finally in the position to answer the question posed in Example 9.2.

Example 9.2. part 2. Answer: first, we note that, in order to apply the CRLB,
pdf f (x ; ) of population X  must be known. Suppose that f (x ; m) for this
example is N(m, 2). We have

and

Thus,

Equation (9.26) then shows that the CRLB for the variance of any unbiased
estimator for m  is 2/n. Since the variance of X is  2/n, it has the minimum
variance among all unbiased estimators for m  when population X  is distributed
normally.

Ex ample 9. 3. Problem: consider a population X  having a normal distribution
N(0, 2) where 2 is an unknown parameter to be estimated from a sample of
size n > 1. (a) Determine the CRLB for the variance of any unbiased estimator
for 2. (b) Is sample variance S 2 an efficient estimator for 2?
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Answer: let us denote 2 by . Then,

and

Hence, according to Equation (9.36), the CRLB for the variance of any
unbiased estimator for is 2 2/n.

For  S 2, it has been shown in Section 9.1.2 that it is an unbiased estimator for
and that its variance is [see Equation (9.10)]

since when X is normally distributed. The efficiency of S 2, denoted by
e(S 2), is thus

)
We see that the sample variance is not an efficient estimator for in this
case. It is, however, asymptotically efficient in the sense that e(S 2  1  as
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Example 9.4. Problem: determine the CRLB for the variance of any unbiased
estimator for in the lognormal distribution

Answer: we have

It thus follows from Equation (9.36) that the CRLB is 2 2/n.

Before going to the next criterion, it is worth mentioning again that, although
unbiasedness as well as small variance is desirable it does not mean that we should
discard all biased estimators as inferior. Consider two estimators for a parameter ,

1 and 2, the pdfs of which are depicted in Figure 9.2(a). Although 2 is biased,
because of its smaller variance, the probability of an observed value of 2 being
closer to the true value can well be higher than that associated with an observed
value of 1. Hence, one can argue convincingly that 2 is the better estimator of
the two. A more dramatic situation is shown in Figure 9.2(b). Clearly, based on a
particular sample of size n, an observed value of 2 will likely be closer to the true
value than that of 1 even though 1 is again unbiased. It is worthwhile for us to
reiterate our remark advanced in Section 9.2.1 – that the quality of an estimator
does not rest on any single criterion but on a combination of criteria.

Example 9.5. To illustrate the point that unbiasedness can be outweighed by
other considerations, consider the problem of estimating parameter in the
binomial distribution

Let us propose two estimators, 1 and 2, for given by
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where X  is the sample mean based on a sample of size n. The choice of 1 is
intuitively obvious since , and the choice of 2 is based on a prior
probability argument that is not our concern at this point.

Since

and

we have

and

We see from the above that, although 2 is a biased estimator, its variance is
smaller than that of 1, particularly when n is of a moderate value. This is

(a) (b)

Figure 9.2 Probability density functions of 1 and 2
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a valid reason for choosing 2 as a better estimator, compared with 1, for ,
in certain cases.

9.2.3 CONSISTENCY

An estimator is said to be a consistent estimator for if, as sample size n
increases,

for all 0. The consistency condition states that estimator converges in the
sense above to the true value as sample size increases. It is thus a large-sample
concept and is a good quality for an estimator to have.

Ex ample 9. 6. Problem: show that estimator S 2 in Example 9.3 is a consistent
estimator for 2.

Answer: using the Chebyshev inequality defined in Section 4.2, we
can write

We have shown that and var Hence,

Thus S 2 is a consistent estimator for 2.

Example 9.6 gives an expedient procedure for checking whether an estimator
is consistent. We shall state this procedure as a theorem below (Theorem 9.3). It
is important to note that this theorem gives a sufficient , but not necessary,
condition for consistency.

Theorem 9. 3: Let be an estimator for based on a sample of size n.
Then, if

estimator is a consistent estimator for .
The proof of Theorem 9.3 is essentially given in Example 9.6 and will not be

repeated here.
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9.2.4 SUFFICIENCY

Let X 1, X 2, . . . , Xn be a sample of a population X  the distribution of which
depends on unknown parameter . If ) is a statistic such
that, for any other statistic

the conditional distribution of Z , given that Y y does not depend on , then=
Y is called a sufficient statistic for . If also , then Y  is said to be a
sufficient estimator for .

In words, the definition for sufficiency states that, if Y  is a sufficient statistic
for , all sample information concerning is contained in Y . A sufficient
statistic is thus of interest in that if it can be found for a parameter then an
estimator based on this statistic is able to make use of all the information that
the sample contains regarding the value of the unknown parameter. Moreover,
an important property of a sufficient estimator is that, starting with any
unbiased estimator of a parameter that is not a function of the sufficient
estimator, it is possible to find an unbiased estimator based on the sufficient
statistic that has a variance smaller than that of the initial estimator. Sufficient
estimators thus have variances that are smaller than any other unbiased esti-
mators that do not depend on sufficient statistics.

If a sufficient statistic for a parameter exists, Theorem 9.4, stated here
without proof, provides an easy way of finding it.

Theorem 9. 4: Fisher – N ey ma n f a ct o riz a t io n crit erio n. Let

be a statistic based on a sample of size n. Then Y  is a sufficient statistic for
if and only if the joint probability density function of X 1, X 2, . . . ,  and

can be factorized in the form

If X  is discrete, we have

The sufficiency of the factorization criterion was first pointed out by Fisher
(1922). Neyman (1935) showed that it is also necessary.

Parameter Estimation 275

� ( � �������� � � � ���

2 � �������� � � � �����

�
� ��(� � �

�

� �

�

�

( � �������� � � � ����

�
��� �� ��� �� � � � �� ��� ���

��
���

������ �� � ��	����� � � � � ���� �
������ � � � � ���� �'�,'�

��
���

	���� � �� � ��	����� � � � � ���� �
������ � � � � ���� �'�=+�

TLFeBOOK



The foregoing results can be extended to the multiple parameter case. Let
be the parameter vector. Then Y 1 h1(X 1, . . . , Xn), . . . ,
m, is a set of sufficient statistics for  if and only if

where hT A similar expression holds when X  is discrete.

Example 9.7. Let us show that statistic X  is a sufficient statistic for in
Example 9.5. In this case,

We see that the joint probability mass function (jpmf) is a function of and
. If we let

the jpmf of X 1, . . . , and  X n takes the form given by Equation (9.50), with

and

In this example,

is thus a sufficient statistic for . We have seen in Example 9.5 that both 1 and
2, where 1 X , and 2 are based on this sufficient

statistic. Furthermore, 1, being unbiased, is a sufficient estimator for .

Ex ample 9. 8. Suppose X 1, X 2, . . . , and X n are a sample taken from a Poisson
distribution; that is,
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where is the unknown parameter. We have

which can be factorized in the form of Equation (9.50) by letting

and

It is seen that

is a sufficient statistic for .

9.3 METHODS OF ESTIMATION

Based on the estimation criteria defined in Section 9.2, some estimation tech-
niques that yield ‘good’, and sometimes ‘best’, estimates of distribution param-
eters are now developed.

Two approaches to the parameter estimation problem are discussed in what
follows: point estimation and interval estimation. In point estimation, we use
certain prescribed methods to arrive at a value for as a function of the
observed data that we accept as a ‘good’ estimate of – good in terms of
unbiasedness, minimum variance, etc., as defined by the estimation criteria.

In many scientific studies it is more useful to obtain information about a
parameter beyond a single number as its estimate. Interval estimation is a
procedure by which bounds on the parameter value are obtained that not only
give information on the numerical value of the parameter but also give an
indication of the level of confidence one can place on the possible numerical
value of the parameter on the basis of a sample. Point estimation will be
discussed first, followed by the development of methods of interval estimation.

9.3.1 POINT ESTIMATION

We now proceed to present two general methods of finding point estimators for
distribution parameters on the basis of a sample from a population.
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9.3.1.1 Method of Moments

The oldest systematic method of point estimation was proposed by Pearson
(1894) and was extensively used by him and his co-workers. It was neglected for
a number of years because of its general lack of optimum properties and
because of the popularity and universal appeal associated with the method of
maximum likelihood, to be discussed in Section 9.3.1.2. The moment method,
however, appears to be regaining its acceptance, primarily because of its
expediency in terms of computational labor and the fact that it can be improved
upon easily in certain cases.

The method of moments is simple in concept. Consider a selected probability
density function for which parameters j,  j  1, 2, . . . , m, are
to be estimated based on sample X 1, X 2, . . . , Xn of X . The theoretical or popu-
lation moments of X  are

They are, in general, functions of the unknown parameters; that is,

However, sample moments of various orders can be found from the sample by
[see Equation (9.14)]

The method of moments suggests that, in order to determine estimators 1, . . . ,
and m from the sample, we equate a sufficient number of sample moments to
the corresponding population moments. By establishing and solving as many
resulting moment equations as there are parameters to be estimated, estimators
for the parameter are obtained. Hence, the procedure for determining

1, 2, . . . , and  m consists of the following steps:

Step 1: let

These yield m  moment equations in m  unknowns

Step 2: solve for j , j 1, . . . , m, from this system of equations. These are
called the moment estimators for 1, . . . , and  m .
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Let us remark that it is not necessary to consider m  consecutive  moment
equations as indicated by Equations (9.58); any convenient set of m equations that
lead to the solution for 1, . . . , m, is sufficient. Lower-order moment equa-
tions are preferred, however, since they require less manipulation of observed data.

An attractive feature of the method of moments is that the moment equations
are straightforward to establish, and there is seldom any difficulty in solving
them. However, a shortcoming is that such desirable properties as unbiasedness
or efficiency are not generally guaranteed for estimators so obtained.

However, consistency of moment estimators can be established under general
conditions. In order to show this, let us consider a single parameter whose
moment estimator satisfies the moment equation

for some i. The solution of Equation (9.59) for  can be represented by
(M i), for which the Taylor’s expansion about gives=

where superscript (k) denotes the k th derivative with respect to M i. Upon
performing successive differentiations of Equation (9.59) with respect to M i,
Equation (9.60) becomes

The bias and variance of can be found by taking the expectation of
Equation (9.61) and the expectation of the square of Equation (9.61), respect-
ively. Up to the order of 1/n, we find

Assuming that all the indicated moments and their derivatives exist, Equations
(9.62) show that
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and

and hence is consistent.

Example 9.9. Problem: let us select the normal distribution as a model for the
percentage yield discussed in Chapter 8; that is,

Estimate parameters and , based on the 200 sample values given,
in Table 8.1, page 249.

Answer: following the method of moments, we need two moment equations,
and the most convenient ones are obviously

and

Now,

Hence, the first of these moment equations gives

The properties of this estimator have already been discussed in Example 9.2. It
is unbiased and has minimum variance among all unbiased estimators for m.
We see that the method of moments produces desirable results in this case.

The second moment equation gives

or

This, as we have shown, is a biased estimator for 2.
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Estimates based on the sample values given
by Table 8.1 are, following Equations (9.64) and (9.65),

where x j, j 1, 2, . . . , 200, are sample values given in Table 8.1.

Example 9.10. Problem: consider the binomial distribution

Estimate parameter p based on a sample of size n.
Answer: the method of moments suggests that we determine the estimator for

by equating 1 to M 1 X .  Since

we have

The mean of is

Hence it is an unbiased estimator. Its variance is given by

It is easy to derive the CRLB for this case and show that defined by Equation
(9.67) is also efficient.

Example 9.11. Problem: a set of 214 observed gaps in traffic on a section of
Arroyo Seco Freeway is given in Table 9.1. If the exponential density function

is proposed for the gap, determine parameter from the data.
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Answer: in this case,

and, following the method of moments, the simplest estimator, , for is
obtained from

Hence, the desired estimate is

Let us note that, although X  is an unbiased estimator for 1, the estimator
for obtained above is not unbiased since

Table 9.1 Observed traffic gaps on Arroyo Seco Freeway,
for Example 9.11 (Source: Gerlough, 1955)

Gap length (s) Gaps (No.) Gap length (s) Gaps (No.)

0–1 18 16–17 6
1–2 25 17–18 4
2–3 21 18–19 3
3–4 13 19–20 3
4–5 11 20–21 1
5–6 15 21–22 1
6–7 16 22–23 1
7–8 12 23–24 0
8–9 11 24–25 1
9–10 11 25–26 0

10–11 8 26–27 1
11–12 12 27–28 1
12–13 6 28–29 1
13–14 3 29–30 2
14–15 3 30–31 1
15–16 3
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Ex ample 9. 12. Suppose that population X  has a uniform distribution over the
range (0, ) and we wish to estimate parameter from a sample of size n.

The density function of X  is

and the first moment is

It follows from the method of moments that, on letting we obtain

Upon little reflection, the validity of this estimator is somewhat questionable
because, by definition, all values assumed by X  are supposed to lie within
interval (0, ). However, we see from Equation (9.75) that it is possible that
some of the samples are greater than . Intuitively, a better estimator might be

where X (n) is the nth-order statistic. As we will see, this would be the outcome
following the method of maximum likelihood, to be discussed in the next
section.

Since the method of moments requires only i, the moments of population X ,
the knowledge of its pdf is not necessary. This advantage is demonstrated in
Example 9.13.

Ex ample 9. 13. Problem: consider measuring the length r of an object with use
of a sensing instrument. Owing to inherent inaccuracies in the instrument, what
is actually measured is X , as shown in F igure 9.3, where X1 and X 2 are
identically and normally distributed with mean zero and unknown variance

2. Determine a moment estimator for r2 on the basis of a sample of size
n from X .

Answer: now, random variable X  is

The pdf of X  with unknown parameters and 2 can be found by using
techniques developed in Chapter 5. It is, however, unnecessary here since some
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moments of X  can be directly generated from Equation (9.77). We remark that,
although an estimator for 2 is not required, it is nevertheless an unknown
parameter and must be considered together with . In the applied literature, an
unknown parameter for which the value is of no interest is sometimes referred
to as a nuisance parameter.

Two moment equations are needed in this case. However, we see from
Equation (9.77) that the odd-order moments of X  are quite complicated. For
simplicity, the second-order and fourth-order moment equations will be used.
We easily obtain from Equation (9.77)

The two moment equations are

Solving for , we have

Incidentally, a moment estimator for 2, if needed, is obtained from Equa-
tions (9.79) to be

Combined Moment Estimators. Let us take another look at Example 9.11 for
the purpose of motivating the following development. In this example, an
estimator for has been obtained by using the first-order moment equation.
Based on the same sample, one can obtain additional moment estimators for

by using higher-order moment equations. For example, since , the
second-order moment equation,

X
X2

X1r

Figure 9. 3 Measurement X , for Example 9.13
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produces a moment estimator for in the form

Although this estimator may be inferior to 1/X  in terms of the quality criteria
we have established, an interesting question arises: given two or more moment
estimators, can they be combined to yield an estimator superior to any of the
individual moment estimators?

In what follows, we consider a combined moment estimator derived from an
optimal linear combination of a set of moment estimators. Let (1), (2), . . . ,

be p moment estimators for the same parameter . We seek a combined
estimator in the form

where coefficients w1, . . .,  and  wp are to be chosen in such a way that it is
unbiased if 1, 2, . . . , p, are unbiased and the variance of is minimized.

The unbiasedness condition requires that

We thus wish to determine coefficients wj by minimizing

subject to Equation (9.84).

Equations (9.84) and (9.85) can be written in the vector–matrix form

and

where
In order to minimize Equation (9.87) subject to Equation (9.86), we consider
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where is the Lagrange multiplier. Taking the first variation of Equation (9.88)
and setting it to zero we obtain

as a condition of extreme. Since δw and δwT are arbitrary, we require that

and either of these two relations gives

The constraint Equation (9.86) is now used to determine . It implies that

or

Hence, we have from Equations (9.90) and (9.91)

The variance of is

in view of Equation (9.92).
Several attractive features are possessed by For example, we can show

that its variance is smaller than or equal to that of any of the simple moment
estimators 1, 2, . . . , p, and furthermore (see Soong, 1969),

if p q.

Example 9.14. Consider the problem of estimating parameter in the log-
normal distribution

from a sample of size n.
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Three moment estimators for , and (3) – can be found by means
of establishing and solving the first three moment equations. Let 2 be the
combined moment estimator of (1) and (2), and let 3 be the combined
estimator of all three. As we have obtained the CRLB for the variance of any
unbiased estimator for in Example 9.4, the efficiency of each of the above
estimators can be calculated. F igure 9.4 shows these efficiencies as n   . As
we can see, a significant increase in efficiency can result by means of combining
even a small number of moment estimators.

9.3.1.2 Method of Maximum Likelihood

First introduced by Fischer in 1922, the method of maximum likelihood has
become the most important general method of estimation from a theoretical
point of view. Its greatest appeal stems from the fact that some very general
properties associated with this procedure can be derived and, in the case of
large samples, they are optimal properties in terms of the criteria set forth in
Section 9.2.
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Figure 9.4 Efficiencies of estimators in Example 9.14 as
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Let f (x ; ) be the density function of population X  where, for simplicity, is
the only parameter to be estimated from a set of sample values x 1, x 2, . . . , x n.
The joint density function of the corresponding sample X 1, X 2, . . . , X n has the
form

We define the likelihood function L of a set of n sample values from the
population by

In the case when X  is discrete, we write

When the sample values are given, likelihood function L  becomes a function
of a single variable . The estimation procedure for based on the method of
maximum likelihood consists of choosing, as an estimate of , the particular
value of that maximizes L . The maximum of L ( ) occurs in most cases at the
value of where dL ( )/d is zero. Hence, in a large number of cases, the
maximum likelihood estimate (MLE)  of based on sample values x 1, x 2, . . . ,
and x n can be determined from

As we see from Equations (9.96) and (9.97), function L  is in the form of a
product of many functions of . Since L  is always nonnegative and attains its
maximum for the same value of  as ln L , it is generally easier to obtain MLE

by solving

because ln L  is in the form of a sum rather than a product.
Equation (9.99) is referred to as the likelihood equation. The desired solution

is one where root is a function of x j, j  1, 2, . . . , n, if such a root exists. When
several roots of Equation (9.99) exist, the MLE is the root corresponding to the
global maximum of L or ln L .
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To see that this procedure is plausible, we observe that the quantity

is the probability that sample X1, X 2, . . . , X n takes values in the region defined
by ( ). Given the sample values, this probability
gives a measure of likelihood that they are from the population. By choosing
a value of that maximizes L , or ln L , we in fact say that we prefer the value of

that makes as probable as possible the event that the sample values indeed
come from the population.

The extension to the case of several parameters is straightforward. In the case
of m  parameters, the likelihood function becomes

and the MLEs of 1, . . . , m, are obtained by solving simultaneously the
system of likelihood equations

A discussion of some of the important properties associated with a maximum
likelihood estimator is now in order. Let us represent the solution of the like-
lihood equation, Equation (9.99), by

The maximum likelihood estimator for is then

The universal appeal enjoyed by maximum likelihood estimators stems from
the optimal properties they possess when the sample size becomes large. Under
mild regularity conditions imposed on the pdf or pmf of population X , two
notable properties are given below, without proof.

P ropert y 9. 1: consist ency and asy mpt ot ic efficiency. Let   be the maximum
likelihood estimator for in pdf f (x ; ) on the basis of a sample of size n. Then,
as

and
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Analogous results are obtained when population X  is discrete. Furthermore,
the distribution of tends to a normal distribution as n becomes large.

This important result shows that MLE is consistent. Since the variance
given by Equation (9.104) is equal to the Cramér–Rao lower bound, it is
efficient as n becomes large, or asymptotically efficient. The fact that MLE
is normally distributed as n is also of considerable practical interest as
probability statements can be made regarding any observed value of a max-
imum likelihood estimator as n becomes large.

Let us remark, however, these important properties are large-sample proper-
ties. Unfortunately, very little can be said in the case of a small sample size; it
may be biased and nonefficient. This lack of reasonable small-sample proper-
ties can be explained in part by the fact that maximum likelihood estimation is
based on finding the mode of a distribution by attempting to select the true
parameter value. Estimators, in contrast, are generally designed to approach
the true value rather than to produce an exact hit. Modes are therefore not as
desirable as the mean or median when the sample size is small.

Property 9.2: invariance property. It can be shown that, if is the MLE of ,
then the MLE of a function of , say g( ), is g(  ), where g( ) is assumed to
represent a one-to-one transformation and be differentiable with respect to .

This important invariance property implies that, for example, if is the
MLE of the standard deviation in a distribution, then the MLE of the
variance

Let us also make an observation on the solution procedure for solving like-
lihood equations. Although it is fairly simple to establish Equation (9.99) or
Equations (9.100), they are frequently highly nonlinear in the unknown estimates,
and close-form solutions for the MLE are sometimes difficult, if not impossible,
to achieve. In many cases, iterations or numerical schemes are necessary.

Example 9.15. Let us consider Example 9.9 again and determine the MLEs of
m and  2. The logarithm of the likelihood function is

Let and , as before; the likelihood equations are,
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Solving the above equations simultaneously, the MLEs of m  and 2 are found
to be

and

The maximum likelihood estimators for m  and 2 are, therefore,

which coincide with their moment estimators in this case. Although 2 is
biased, consistency and asymptotic efficiency for both 1 and 2 can be easily
verified.

Example 9.16. Let us determine the MLE of considered in Example 9.12.
Now,

The likelihood function becomes

A plot of L  is given in F igure 9.5. However, we note from the condition
associated with Equation (9.108) that all sample values x i must be smaller than
or equal to , implying that only the portion of the curve to the right of
max (x 1, . . . , x n) is applicable. Hence, the maximum of L  occurs at

max (x 1, x 2, . . . , x n), or, the MLE for is
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and the maximum likelihood estimator for is

This estimator is seen to be different from that obtained by using the moment
method [Equation (9.75)] and, as we already commented in Example 9.12, it is
a more logical choice.

Let us also note that we did not obtain Equation (9.109) by solving the
likelihood equation. The likelihood equation does not apply in this case as the
maximum of L  occurs at the boundary and the derivative is not zero there.

It is instructive to study some of the properties of given by Equation
(9.110). The pdf of is given by [see Equation (9.19)]

With fX (x ) given by Equation (9.107) and

we have

L

Max(x1, . . . , xn)

Figure 9. 5 Likelihood function, L ( ), for Example 9.16
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The mean and variance of are

We see that is biased but consistent.

Ex ample 9. 17. Let us now determine the MLE of r2 in Example 9.13. To
carry out this estimation procedure, it is now necessary to determine the pdf of
X  given by Equation (9.77). Applying techniques developed in Chapter 5, we
can show that X  is characterized by the Rice distribution with pdf given by (see
Benedict and Soong, 1967)

where I0 is the modified zeroth-order Bessel function of the first kind.
Given a sample of size n from population X , the likelihood function takes the

form

The MLEs of and and satisfy the likelihood equations

which, upon simplifying, can be written as

and

Parameter Estimation 293

��

����� �
� �

+

��������� �
�

�� �
�� �'���,�

������� �
� �

+

�� �

�� �
�

� ��

�������� �
�

��� ������ ��

� �
��� �'���=�

��

� �

����� �� ��� �
�

��
%+

�����

��

� �
�)� � �

� � �

���

� �
� �
� � � +�

+� ����������

���
�� �'���5�

! �
��
���

������ �� ���� �'���3�

� ��� �� ���

� ��!

���
� +� ���

� ��!

� ���
� +� �'���4�

�

������

��
���

��%�����
%+����

� � � +� �'���'�

��� � �

�

�

�

��
���

��
� � ��

� �
� �'���+�

�

TLFeBOOK



where I1 is the modified first-order Bessel function of the first kind, and

As we can see, although likelihood equations can be established, they are
complicated functions of and and we must resort to numerical means for
their solutions. As we have pointed out earlier, this difficulty is often encoun-
tered when using the method of maximum likelihood. Indeed, Example 9.13
shows that the method of moments offers considerable computational advan-
tage in this case.

The variances of the maximum likelihood estimators for and can be
obtained, in principle, from Equations (9.119) and (9.120). We can also show
that their variances can be larger than those associated with the moment
estimators obtained in Example 9.13 for moderate sample sizes (see Benedict
and Soong, 1967). This observation serves to remind us again that, although
maximum likelihood estimators possess optimal asymptotic properties, they
may perform poorly when the sample size is small.

9.3.2 INTERVAL ESTIMATION

We now examine another approach to the problem of parameter estimation. As
stated in the introductory text of Section 9.3, the interval estimation provides,
on the basis of a sample from a population, not only information on the
parameter values to be estimated, but also an indication of the level of con-
fidence that can be placed on possible numerical values of the parameters.
Before developing the theory of interval estimation, an example will be used
to demonstrate that a method that appears to be almost intuitively obvious
could lead to conceptual difficulties.

Suppose that five sample values –3, 2, 1.5, 0.5, and 2.1 – are observed from a
normal distribution having an unknown mean m  and a known variance
From Example 9.15, we see that the MLE of m  is the sample mean X  and thus

Our additional task is to determine the upper and lower limits of an interval
such that, with a specified level of confidence, the true mean m will lie in this
interval.

The maximum likelihood estimator for m is X , which, being a sum of
normal random variables, is normal with mean m  and variance
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The standardized random variable U, defined by

is then N(0, 1) and it has pdf

Suppose we specify that the probability of U being in interval ( u1, u1) is equal
to 0.95. From Table A.3 we find that u1 1.96 and

or, on substituting Equation (9.123) into Equation (9.125),

and, using Equation (9.122), the observed interval is

Equation (9.127) gives the desired result but it must be interpreted carefully.
The mean m, although unknown, is nevertheless deterministic; and it either lies
in an interval or it does not. However, we see from Equation (9.126) that the
interval is a function of statistic X . Hence, the proper way to interpret Equa-
tions (9.126) and (9.127) is that the probability of the random interval
(X  2.63, X  2.63) covering the distribution’s true mean m  is 0.95, and Equa-
tion (9.127) gives the observed interval based upon the given sample values.

Let us place the concept illustrated by the example above in a more general
and precise setting, through Definition 9.2.

D ef inition 9. 2. Suppose that a sample X 1, X 2, . . . , X n is drawn from a popula-
tion having pdf  being the parameter to be estimated. Further suppose
that L 1(X 1, . . . , X n) and L 2(X 1, . . . , Xn) are two statistics such that L 1 < L 2 with
probability 1. The interval (L 1, L 2) is called a [100(1 )]% confidence interval
for if L 1 and L 2 can be selected such that

Limits L 1 and L 2 are called, respectively, the lower and upper confidence limits
for , and 1 is called the confidence coefficient. The value of 1 is
generally taken as 0.90, 0.95, 0.99, and 0.999.
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We now make several remarks concerning the foregoing definition.

Remark 1: as we see from Equation (9.126), confidence limits are functions of
a given sample. The confidence interval thus will generally vary in position
and width from sample to sample.
Remark 2: for a given sample, confidence limits are not unique. In other
words, many pairs of statistics L 1 and L 2 exist that satisfy Equation (9.128).
For example, in addition to the pair ( 1.96, 1.96), there are many other pairs
of values (not symmetric about zero) that could give the probability 0.95 in
Equation (9.125). However, it is easy to see that this particular pair gives the
minimum-width interval.
Remark 3: in view of the above, it is thus desirable to define a set of quality
criteria for interval estimators so that the ‘best’ interval can be obtained.
Intuitively, the ‘best’ interval is the shortest interval. Moreover, since interval
width L L 2 L 1 is a random variable, we may like to choose ‘minimum
expected interval width’ as a good criterion. Unfortunately, there may not
exist statistics L 1 and L 2 that give rise to an expected interval width that is
minimum for all values of .
Remark 4: just as in point estimation, sufficient statistics also play an
important role in interval estimation, as Theorem 9.5 demonstrates.

Theorem 9 . 5: let L 1 and L 2 be two statistics based on a sample X 1, . . . , Xn

from a population X  with pdf f (x ; ) such that Let
be a sufficient statistic. Then there exist two functions R 1

and R 2 of Y  such that and such that two interval
widths L  L 2 L 1 and have the same distribution.

This theorem shows that, if a minimum interval width exists, it can be
obtained by using functions of sufficient statistics as confidence limits.

The construction of confidence intervals for some important cases will be carried
out in the following sections. The method consists essentially of finding an appro-
priate random variable for which values can be calculated on the basis of observed
sample values and the parameter value but for which the distribution does not
depend on the parameter. More general methods for obtaining confidence inter-
vals are discussed in Mood (1950, chapter 11) and Wilks (1962, chapter 12).

9.3.2.1 Confidence Interval for m in N(m 2) with Known 2

The confidence interval given by Equation (9.126) is designed to estimate the
mean of a normal population with known variance. In general terms, the
procedure shows that we first determine a (symmetric) interval in U to achieve
a confidence coefficient of 1 . Writing u /2 for the value of U above which
the area under fU (u) is /2, that is,  (see F igure 9.6), we have
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Hence, using the transformation given by Equation (9.123), we have the general
result

This result can also be used to estimate means of nonnormal populations with
known variances if the sample size is large enough to justify use of the central
limit theorem.

It is noteworthy that, in this case, the position of the interval is a function of
X  and therefore is a function of the sample. The width of the interval, in
contrast, is a function only of sample size n, being inversely proportional to n1/2.

The [100(1 )] % confidence interval for m given in Equation (9.130) also
provides an estimate of the accuracy of our point estimator X  for m. As we see
from Figure 9.7, the true mean m  lies within the indicated interval with
[100(1 )] % confidence. Since X  is at the center of the interval, the distance

fU (u)

1–

Figure 9. 6 [100(1 )]% confidence limits for U

d

X
— m

Figure 9.7 Error in point estimator X for m
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between X  and m  can be at most equal to one-half of the interval width. We
thus have the result given in Theorem 9.6.

Theorem 9.6: let X  be an estimator for m. Then, with [100(1 )]% con-
fidence, the error of using this estimator for m  is less than

u /2

n1/2

Ex ample 9. 18. Problem: let population X  be normally distributed with
known variance 2. If X  is used as an estimator for mean m, determine the
sample size n needed so that the estimation error will be less than a specified
amount with [100(1 )] % confidence.

Answer: using the theorem given above, the minimum sample size n must
satisfy

Hence, the solution for n is

9.3.2.2 Confidence Interval for m in N(m 2) with Unknown 2

The difference between this problem and the preceding one is that, since is not
known, we can no longer use

as the random variable for confidence limit calculations regarding mean m. Let
us then use sample variance S 2 as an unbiased estimator for 2 and consider the
random variable

The random variable Y  is now a function of random variables X  and S . In
order to determine its distribution, we first state Theorem 9.7.

Theo re m 9 . 7 : Student ’s t-dist ribut ion. Consider a random variable T  defined by
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If U is N(0, 1), V  is 2-distributed with n degrees of freedom, and U and V  are
independent, then the pdf of T  has the form

This distribution is known as Student’s t-distribution with n degrees of freedom;
it is named after W.S. Gosset, who used the pseudonym ‘Student’ in his
research publications.

Proof of Theorem 9.7: the proof is straightforward following methods given
in Chapter 5. Sine U and V  are independent, their jpdf is

Consider the transformation from U and V  to T  and V . The method discussed
in Section 5.3 leads to

where

and the Jacobian is

The substitution of Equations (9.135), (9.137), and (9.138) into Equation
(9.136) gives the jpdf fTV (t, v) of T  and V . The pdf of T  as given by Equation
(9.134) is obtained by integrating fTV (t, v) with respect to v.

It is seen from Equation (9.134) that the t-distribution is symmetrical about
the origin. As n increases, it approaches that of a standardized normal random
variable.
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Returning to random variable Y  defined by Equation (9.132), let

and

Then

where U is clearly distributed according to N(0, 1). We also see from Section
9.1.2 that (n 1)S 2/ 2 has the chi-squared distribution with (n 1) degrees of
freedom. Furthermore, although we will not verify it here, it can be shown that
X and S 2 are independent. In accordance with Theorem 9.7, random variable Y
thus has a t-distribution with (n 1) degrees of freedom.

The random variable Y  can now be used to establish confidence intervals for
mean m. We note that the value of Y  depends on the unknown mean m, but its
distribution does not.

The t-distribution is tabulated in Table A.4 in Appendix A. Let tn, /2 be the
value such that

with n representing the number of degrees of freedom (see F igure 9.8). We have
the result

Upon substituting Equation (9.132) into Equation
confidence interval for mean m is thus given by

Since both X  and S  are functions of the sample, both the position and the width
of the confidence interval given above will vary from sample to sample.
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Example 9.19. Problem: let us assume that the annual snowfall in the Buffalo
area is normally distributed. Using the snowfall record from 1970–79 as given
in Problem 8.2(g) (Table 8.6, page 257), determine a 95% confidence interval
for mean m.

Answer: for this example, the observed sample mean is

and the observed sample variance is

Using Table A.4, we find that Substituting all the values given
above into Equation (9.141) gives

It is clear that this interval would be different if we had incorporated more
observations into our calculations or if we had chosen a different set of yearly
snowfall data.

1–

22

fT (t )

t
–tn, / 2 tn, / 2

Figure 9. 8 [100(1 )]% confidence limits for T with n degrees of freedom
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9.3.2.3 Confidence Interval for 2 in N(m 2)

An unbiased point estimator for population variance 2 is S 2. For the con-
struction of confidence intervals for 2, let us use the random variable

which has been shown in Section 9.1.2 to have a chi-squared distribution with
(n 1) degrees of freedom. Letting be the value such that

 with n degrees of freedom, we can write (see F igure 9.9)

which gives, upon substituting Equation (9.142) for D,

Let us note that the [100(1 )]% confidence interval for 2 as defined by
Equation (9.144) is not the minimum-width interval on the basis of a given
sample. As we see in Figure 9.9, a shift to the left, leaving area to the left
and area to the right under the fD(d) curve, where  is an appropriate
amount, will result in a smaller confidence interval. This is because the width
needed at the left to give an increase of in the area is less than the correspond-
ing width eliminated at the right. The minimum interval width for a given

d

fD (d )

1–

2 2

n,1– ( / 2) n, / 2
2 2

Figure 9. 9 [100(1 )]% confidence limits for D with n degrees of freedom
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number of degrees of freedom can be determined by interpolation from tabu-
lated values of the PDF of the chi-squared distribution.

Table A.5 in Appendix A gives selected values of 2
n, for various values of n

and . For convenience, Equation (9.144) is commonly used for constructing
two-sided confidence intervals for 2 of a normal population. If a one-sided
confidence interval is desired, it is then given by (see Figure 9.10)

Example 9.20. Consider Example 9.19 again; let us determine both two-sided
and one-sided 95% confidence intervals for 2.

As seen from Example 9.19, the observed sample variance s2, is

The values of are obtained from Table A.5 to be as
follows:

Equations (9.144) and (9.145) thus lead to, with n 10 and 0.05,

fD (d)

1–

d

n,
2

Figure 9. 10 One-sided [100(1 )]% confidence limit for D with n degrees of freedom
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and

9.3.2.4 Confidence Interval for a Proportion

Consider now the construction of confidence intervals for p in the binomial
distribution

In the above, parameter p represents the proportion in a binomial experiment.
Given a sample of size n from population X , we see from Example 9.10 that an
unbiased and efficient estimator for p is X . For large n, random variable X is
approximately normal with mean p and variance

Defining

random variable U tends to N(0, 1) as n becomes large. In terms of U, we have
the same situation as in Section 9.3.2.1 and Equation (9.129) gives

The substitution of Equation (9.146) into Equation (9.147) gives

In order to determine confidence limits for p, we need to solve for p satisfying
the equation

or, equivalently
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Upon transposing the right-hand side, we have

In Equation (9.150), the left-hand side defines a parabola, as shown in Figure
9.11, and two roots L 1 and L 2 of Equation (9.150) with the equal sign define the
interval within which the parabola is negative. Hence, solving the quadratic
equation defined by Equation (9.150), we have

For large n, they can be approximated by

An approximate [100(1 )]% confidence interval for p is thus given by, for
large n,

1
p

L2L1

g(p)

Figure 9.11 Parabola defined by Equation (9.150)
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In this approximation, sample mean X  is at the center of the interval for
which the width is a function of the sample and the sample size.

Example 9.21. Problem: in a random sample of 500 persons in the city of Los
Angeles it was found that 372 did not approve of US energy policy. Determine
a 95% confidence interval for p, the actual proportion of the Los Angeles
population registering disapproval.

Answer: in this example, n 500, 0.05, and the observed sample mean is
x 372/500 0.74. Table A.3 gives Substituting these values
into Equation (9.153) then yields

REFERENCES

Anderson, R.L., and Bancroft, T.A., 1952, Statistical Theory in Research, McGraw-Hill,
New York.

Benedict, T.R., and Soong, T.T., 1967, ‘‘The Joint Estimation of Signal and Noise from
the Sum Envelope’’, IEEE Trans. Information Theory, IT-13 447–454.

Fisher, R.A., 1922, ‘‘On the Mathematical Foundation of Theoretical Statistics’’, Phil.
Trans. Roy. Soc. London, Ser. A 222 309–368.

Gerlough, D.L., 1955, ‘‘The Use of Poisson Distribution in Traffic’’, in Poisson and
Traffic, The Eno Foundation for Highway Traffic Control, Saugatuk, CT.

Mood, A.M., 1950, Introduction to the Theory of Statistics, McGraw-Hill, New York.
Neyman, J., 1935, ‘‘Su un Teorema Concernente le Cosiddeti Statistiche Sufficienti’’,

Giorn. Inst. Ital. Atturi. 6 320–334.
Pearson, K., 1894, ‘‘Contributions to the Mathematical Theory of Evolution’’, Phil.

Trans. Roy. Soc. London, Ser. A 185 71–78.
Soong, T.T., 1969, ‘‘An Extension of the Moment Method in Statistical Estimation’’,

SIAM J. Appl. Math. 17 560–568.
Wilks, S.S., 1962, Mathematical Statistics, John Wiley & Sons Inc., New York.

FURTHER READING AND COMMENTS

The Cramér–Rao inequality is named after two well-known statisticians, H. Cramér and
C.R. Rao, who independently established this result in the following references. How-
ever, this inequality was first stated by Fisher in 1922 (see the Reference section). In fact,
much of the foundation of parameter estimation and statistical inference in general, such
as concepts of consistency, efficiency, and sufficiency, was laid down by Fisher in a series
of publications, given below.

Cramér, H., 1946, Mathematical Methods of Statistics, Princeton University Press,
Princeton, NJ.

Fisher, R.A., 1924, ‘‘On a Distribution Yielding the Error Functions of Several Well-
known Statistics’’, Proc. Int. Math. Congress, Vol. II, Toronto, 805–813.

306 Fundamentals of Probability and Statistics for Engineers

� � �
� � 
+�+�= � ��'5�

��+�3, � +�+, � 	 � +�3, � +�+,� � ��+�3+ � 	 � +�34� � +�'=�

TLFeBOOK



Fisher, R.A., 1925, Statistical Methods for Research Workers, 14th edn, Hafner, New
York, (1st edn, 1925).

F isher, R.A., 1925, ‘‘Theory of Statistical Estimation’’, Proc. Camb. Phil. Soc. 22 700–
725.

Rao, C.R., 1945, ‘‘Information and Accuracy Attainable in the Estimation of Statistical
Parameters’’, Bull. Calcutta Math. Soc. 37 81–91.

PROBLEMS

The following notations and abbreviations are used in some statements of the problems:

X sample mean
x  observed sample mean
S 2 sample variance
s2 observed sample variance
CRLB Cramér-Rao lower bound
ME moment estimator, or moment estimate
MLE maximum likelihood estimator, or maximum likelihood estimate
pdf probability density function
pmf probability mass function

9.1 In order to make enrollment projections, a survey is made of numbers of children in
100 families in a school district; the result is given in Table 9.2. Determine x , the
observed sample mean, and s2, the observed sample variance, on the basis of these
100 sample values.

9.2 Verify that the variance of sample variance S 2 as defined by Equation (9.7) is given
by Equation (9.10).

9.3 Verify that the mean and variance of k th sample moment M k as defined by Equation
(9.14) are given by Equations (9.15).

9.4 Let X 1, X 2, . . . , X10 be a sample of size 10 from the standardized normal distribution
N(0, 1). Determine probability P(X  1).

9.5 Let X 1, X 2, . . . , X 10 be a sample of size 10 from a uniformly distributed random
variable in interval (0, 1).

Table 9.2 Data for Problem 9.1

Children (No.) Families (No.)

0 21
1 24
2 30
3 16
4 4
5 4
6 0
7 1

n 100
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(a) Determine the pdfs of X (1) and X (10).
(b) Find the probabilities
(c) Determine

9.6 A sample of size n is taken from a population X  with pdf

Determine the probability density function of statistic X . (Hint: use the method of
characteristic functions discussed in Chapter 4.)

9.7 Two samples X 1 and X 2 are taken from an exponential random variable X  with
unknown parameter ; that is,

We propose two estimators for in the forms

In terms of unbiasedness and minimum variance, which one is the better of the two?

9.8 Let X1 and X2 be a sample of size 2 from a population X  with mean m  and variance
2.

(a) Two estimators for m  are proposed to be

Which is the better estimator?
(b) Consider an estimator for m  in the form

Determine value a that gives the best estimator in this form.

9.9 It is known that a certain proportion, say p, of manufactured parts is defective.
From a supply of parts, n are chosen at random and are tested. Define the readings
(sample X 1, X 2, . . . , Xn) to be 1 if good and 0 if defective. Then, a good estimator for

is,
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(a) Is unbiased?
(b) Is consistent?
(c) Show that an MLE of p.

9.10 Let X  be a random variable with mean m  and variance 2, and let X 1, X 2, . . . , X n be
independent samples of X . Suppose an estimator for is found from the formula

Is an unbiased estimator? Verify your answer.

9.11 The geometrical mean is proposed as an estimator for the unknown
median of a lognormally distributed random variable X . Is it unbiased? Is it
unbiased as

9.12 Let X 1, X 2, X 3 be a sample of size three from a uniform distribution for which the pdf is

Suppose that aX (1) and bX (3) are proposed as two possible estimators for .
(a) Determine a and b such that these estimators are unbiased.
(b) Which one is the better of the two? In the above, X (j) is the jth-order statistic.

9.13 Let X1, . . . , X n be a sample from a population whose k th moment
exists. Show that the k th sample moment

is a consistent estimator for

9.14 Let be the parameter to be estimated in each of the distributions given below. For
each case, determine the CRLB for the variance of any unbiased estimator for .

(a)

(b)

(c)

(d)

9.15 Determine the CRLB for the variances of which are, respectively,
unbiased estimators for m  and 2 in the normal distribution N(m, 2).

9.16 The method of moments is based on equating the k th sample moment M k to the
k th population moment k ; that is

(a) Verify Equations (9.15).
(b) Show that M k is a consistent estimator for k .
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9.17 Using the maximum likelihood method and the moment method, determine the
respective estimators of and compare their asymptotic variances for the
following two cases:
(a) Case 1:

(b) Case 2:

9.18 Consider each distribution in Problem 9.14.
(a) Determine an ME for on the basis of a sample of size n by using the first-

order moment equation. Determine its asymptotic efficiency (i.e. its efficiency
as ). (Hint: use the second of Equations (9.62) for the asymptotic
variance of ME.)

(b) Determine the MLE for .

9.19 The number of transistor failures in an electronic computer may be considered as a
random variable.
(a) Let X  be the number of transistor failures per hour. What is an appropriate

distribution for X? Explain your answer.
(b) The numbers of transistor failures per hour for 96 hours are recorded in Table

9.3. Estimate the parameter(s) of the distribution for X  based on these data by
using the method of maximum likelihood.

(c) A certain computation requires 20 hours of computing time. Use this model
and find the probability that this computation can be completed without a
computer breakdown (a breakdown occurs when two or more transistors fail).

9.20 Electronic components are tested for reliability. Let p be the probability of an
electronic component being successful and 1 p be the probability of component
failure. If X  is the number of trials at which the first failure occurs, then it has the
geometric distribution

Table 9.3 Data for Problem 9.19

Hourly failures (No.) Hours (No.)

0 59
1 27
2 9
3 1
> 3 0

Total 96
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Suppose that a sample X1, . . . , X n is taken from population X , each X j consisting of
testing X j components when the first failure occurs.
(a) Determine the MLE of p.
(b) Determine the MLE of P(X  > 9), the probability that the component will not

fail in nine trials. Note:

9.21 The pdf of a population X  is given by

Based on a sample of size n:
(a) Determine the MLE and ME for .
(b) Which one of the two is the better estimator?

9.22 Assume that X  has a shifted exponential distribution, with

On the basis of a sample of size n from X , determine the MLE and ME for a.

9.23 Let X1, X2, . . . , X n be a sample of size n from a uniform distribution

Show that every statistic h(X 1, . . . , X n) satisfying

is an MLE for , where X (j) is the jth-order statistic. Determine an MLE for when
the observed sample values are (1.5, 1.4, 2.1, 2.0, 1.9, 2.0, 2.3), with n 7.

9.24 Using the 214 measurements given in Example 9.11 (see Table 9.1), determine the
MLE for in the exponential distribution given by Equation (9.70).

9.25 Let us assume that random variable X  in Problem 8.2(j) is Poisson distributed.
Using the 58 sample values given (see Figure 8.6), determine the MLE and ME for
the mean number of blemishes.

9.26 The time-to-failure T  of a certain device has a shifted exponential distribution;
that is,
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Let T 1, T 2, . . . , T n be a sample from T .
(a) Determine the MLE and ME for respectively) assuming t0 is

known.
(b) Determine the MLE and ME for t0 (T̂OML and T̂OME, respectively) assuming

is known.
(c) Determine the MLEs and MEs for both and t0 assuming both are unknown.

9.27 If X1, X2, . . . , X n is a sample from the gamma distribution; that is,

show that:
(a) If r is known and is the parameter to be estimated, both the MLE and ME

for are
(b) If both r and are to be estimated, then the method of moments and the

method of maximum likelihood lead to different estimators for r and . (It is
not necessary to determine these estimators.)

9.28 Consider the Buffalo yearly snowfall data, given in Problem 8.2(g) (see Table 8.6)
and assume that a normal distribution is appropriate.
(a) Find estimates for the parameters by means of the moment method and the

method of maximum likelihood.
(b) Estimate from the model the probability of having another blizzard of 1977

[P(X  > 199.4)].

9.29 Recorded annual flow Y  (in cfs) of a river at a given point are 141, 146, 166, 209, 228,
234, 260, 278, 319, 351, 383, 500, 522, 589, 696, 833, 888, 1173, 1200, 1258, 1340,
1390, 1420, 1423, 1443, 1561, 1650, 1810, 2004, 2013, 2016, 2080, 2090, 2143, 2185,
2316, 2582, 3050, 3186, 3222, 3660, 3799, 3824, 4099, and 6634. Assuming that Y
follows a lognormal distribution, determine the MLEs of the distribution parameters.

9.30 Let X 1 and X2 be a sample of size 2 from a uniform distribution with pdf

Determine constant c so that the interval

is a [100(1 )]% confidence interval for .

9.31 The fuel consumption of a certain type of vehicle is approximately normal, with
standard deviation 3 miles per gallon. If a sample of 64 vehicles has an average fuel
consumption of 16 miles per gallon:
(a) Determine a 95% confidence interval for the mean fuel consumption of all

vehicles of this type.
(b) With 95% confidence, what is the possible error if the mean fuel consumption

is taken to be 16 miles per gallon?
(c) How large a sample is needed if we wish to be 95% confident that the mean will

be within 0.5 miles per gallon of the true mean?
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9.32 A total of 93 yearly Buffalo snowfall measurements are given in Problem 8.2(g)
(see Table 8.6, page 255). Assume that it is approximately normal with standard
deviation 26 inches. Determine 95% confidence intervals for the mean using
measurements of (a) 1909 to 1939, (b) 1909 to 1959, (c) 1909 to 1979, and (d) 1909
to 1999. Display these intervals graphically.

9.33 Let X 1 and X 2 be independent sample means from two normal populations
N(m1, 2

1) and N(m2, 2
2), respectively. If 2

1 and 2
2 are known, show that a

[100(1 )]% confidence interval for m1 m2 is

where n1 and n2 are, respectively, the sample sizes from N(m1, 2
2) and N(m2, 2

2),
and u /2 is the value of standardized normal random variable U such that

9.34 Let us assume that random variable X  in Problem 8.2(e) has a Poisson distribution
with pmf

Use the sample values of X  given in Problem 8.2(e) (see Table 8.5, page 255)
and:
(a) Determine MLE for .
(b) Determine a 95% confidence interval for using asymptotic properties of

MLE .

9.35 Assume that the lifespan of US males is normally distributed with unknown
mean m  and unknown variance 2. A sample of 30 mortality histories of US males
shows that

Determine the observed values of 95% confidence intervals for m  and 2.

9.36 The life of light bulbs manufactured in a certain plant can be assumed to be
normally distributed. A sample of 15 light bulbs gives the observed sample mean
x 1100 hours and the observed sample standard deviation s 50 hours.
(a) Determine a 95% confidence interval for the average life.
(b) Determine two-sided and one-sided 95% confidence intervals for its

variance.

9.37 A total of 12 of 100 manufactured items examined are found to be defective.
(a) Find a 99% confidence interval for the proportion of defective items in the

manufacturing process.
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(b) With 99% confidence, what is the possible error if the proportion is estimated
to be 12/100 0.12?

9.38 In a public opinion poll such as the one described in Example 9.21, determine the
minimum sample size needed for the poll so that with 95% confidence the sample
means will be within 0.05 of the true proportion. [Hint: use the fact that
X (1 X ) 1/4 in Equation (9.153).]
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10

Model Verification

The parameter estimation procedures developed in Chapter 9 presume a dis-
tribution for the population. The validity of the model-building process based
on this approach thus hinges on the substantiability of the hypothesized dis-
tribution. Indeed, if the hypothesized distribution is off the mark, the resulting
probabilistic model with parameters estimated by any, however elegant, proced-
ure would, at best, still give a poor representation of the underlying physical or
natural phenomenon.

In this chapter, we wish to develop methods of testing or verifying a hypothe-
sized distribution for a population on the basis of a sample taken from the
population. Some aspects of this problem were addressed in Chapter 8, in
which, by means of histograms and frequency diagrams, a graphical compar-
ison between the hypothesized distribution and observed data was made. In the
chemical yield example, for instance, a comparison between the shape of a
normal distribution and the frequency diagram constructed from the data, as
shown in Figure 8.1, suggested that the normal model is reasonable in that case.

However, the graphical procedure described above is clearly subjective and
nonquantitative. On a more objective and quantitative basis, the problem of
model verification on the basis of sample information falls within the frame-
work of testing of hypotheses. Some basic concepts in this area of statistical
inference are now introduced.

10.1 PRELIMINARIES

In our development, statistical hypotheses concern functional forms of the
assumed distributions; these distributions may be specified completely with
prespecified values for their parameters or they may be specified with para-
meters yet to be estimated from the sample.

Let X 1, X 2, . . . , Xn be an independent sample of size n from a population X
with a hypothesized probability density function (pdf) f (x ; ) or probability
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mass function (pmf) p(x ; ), where  may be specified or unspecified. We denote
by hypothesis H  the hypothesis that the sample represents n values of a random
variable with pdf f (x ; ) or p(x ; ). This hypothesis is called a simple hypothesis
when the underlying distribution is completely specified; that is, the parameter
values are specified together with the functional form of the pdf or the pmf;
otherwise, it is a composite hypothesis. To construct a criterion for hypotheses
testing, it is necessary that an alternative hypothesis be established against
which hypothesis H can be tested. An example of an alternative hypothesis is
simply another hypothesized distribution, or, as another example, hypothesis
H can be tested against the alternative hypothesis that hypothesis H is not true.
In our applications, the latter choice is considered more practical and we shall
in general deal with the task of either accepting or rejecting hypothesis H on
the basis of a sample from the population.

10.1.1 TYPE-I AND TYPE-II ERRORS

As in parameter estimation, errors or risks are inherent in deciding whether a
hypothesis H should be accepted or rejected on the basis of sample information.
Tests for hypotheses testing are therefore generally compared in terms of the
probabilities of errors that might be committed. There are basically two types
of errors that are likely to be made – namely, reject H when in fact H is true or,
alternatively, accept H when in fact H is false. We formalize the above with
Definition 10.1.

D efinition 10. 1. in testing hypothesis H , a Type-I error is committed when H
is rejected when in fact H is true; a Type-II error is committed when H is
accepted when in fact H is false.

In hypotheses testing, an important consideration in constructing statistical
tests is thus to control, insofar as possible, the probabilities of making these
errors. Let us note that, for a given test, an evaluation of Type-I errors can be
made when hypothesis H is given, that is, when a hypothesized distribution is
specified. In contrast, the specification of an alternative hypothesis dictates
Type-II error probabilities. In our problem, the alternative hypothesis is simply
that hypothesis H is not true. The fact that the class of alternatives is so large
makes it difficult to use Type-II errors as a criterion. In what follows, methods
of hypotheses testing are discussed based on Type-I errors only.

10.2 CHI-SQUARED GOODNESS-OF-FIT TEST

As mentioned above, the problem to be addressed is one of testing hypothesis H
that specifies the probability distribution for a population X  compared with the
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alternative that the probability distribution of X  is not of the stated type on the
basis of a sample of size n from population X . One of the most popular and most
versatile tests devised for this purpose is the chi-squared ( 2) goodness-of-fit
test introduced by Pearson (1900).

10.2.1 THE CASE OF KNOWN PARAMETERS

Let us first assume that the hypothesized distribution is completely specified
with no unknown parameters. In order to test hypothesis H , some statistic
h(X 1, X 2, . . . , X n) of the sample is required that gives a measure of deviation of
the observed distribution as constructed from the sample from the hypothe-
sized distribution.

In the 2 test, the statistic used is related to, roughly speaking, the difference
between the frequency diagram constructed from the sample and a correspond-
ing diagram constructed from the hypothesized distribution. Let the range
space of X  be divided into k  mutually exclusive intervals A1, A 2, . . . ,  and  A k ,
and let N i be the number of X j falling into Ai, i 1, 2, . . . , k . Then, the observed
probabilities P(Ai) are given by

The theoretical probabilities P(Ai) can be obtained from the hypothesized
population distribution. Let us denote these by

A logical choice of a statistic giving a measure of deviation is

which is a natural least-square type deviation measure. Pearson (1900) showed
that, if we take coefficient c n/pi, the statistic defined by Expression (10.3)
has particularly simple properties. Hence, we choose as our deviation measure
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Let us note that D is a statistic since it is a function of Ni, which are, in turn,
functions of sample X 1, . . . , Xn. The distribution of statistic D is given in
Theorem 10.1, attributable to Pearson (1900).

Theorem 10. 1: assuming that hypothesis H is true, the distribution of D
defined by Equation (10.4) approaches a chi-squared distribution with (k 1)
degrees of freedom as n . Its pdf is given by [see Equation (7.67)]

Note that this distribution is independent of the hypothesized distribution.

Proof of Theorem 10.1: The complete proof, which can be found in Cram er
(1946) and in other advanced texts in statistics, will not be attempted here. To
demonstrate its plausibility, we only sketch the proof for the k 2 case.

For k  2, random variable D is

Now, recalling that N1 is the number of, say, successes in n trials, with p1 being
the probability of success, it is a binomial random variable with
and var if hypothesis H is true. As n increases, we have seen
in Chapter 7 that N1 approaches a normal distribution by virtue of the central
limit theorem (Section 7.2.1). Hence, the distribution of random variable U,
defined by

approaches N(0, 1) as n . Since
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following Equation (10.6), random variable D thus approaches a chi-squared
distribution with one degree of freedom, and the proof is complete for k  2.
The proof for an arbitrary k proceeds in a similar fashion.

By means of Theorem 10.1, a test of hypothesis H considered above can be
constructed based on the assignment of a probability of Type-I error. Suppose
that we wish to achieve a Type-I error probability of . The 2 test suggests
that hypothesis H is rejected whenever

and is accepted otherwise, where d is the sample value of D based on sample
values x i, i  1, . . . , n, and 2

, takes the value such that (see Figure 10.1)

Since D has a Chi-squared distribution with (k  1) degrees of freedom for
large n, an approximate value for can be found from Table A.5 in
Appendix A for the 2 distribution when is specified.

The probability of a Type-I error is referred to as the significance level in this
context. As seen from Figure 10.1, it represents the area under f D(d) to the right
of . Letting 0 05, for example, the criterion given by Equation (10.7)
implies that we reject hypothesis H whenever deviation measure d as calculated
from a given set of sample values falls within the 5% region. In other words, we
expect to reject H about 5% of the time when in fact H is true. Which significance
level should be adopted in a given situation will, of course, depend on the

d

fD(d)

1–

Figure 10.1 Chi-squared distribution with (k 1) degrees of freedom
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particular case involved. In practice, common values for are 0.001, 0.01, and
0.05; a value of between 5% and 1% is regarded as almost significant;  a value
between 1% and 0.1% as significant; and a value below 0.1% as highly significant.

Let us now give a step-by-step procedure for carrying out the 2 test when
the distribution of a population X  is completely specified.. Step 1: divide range space X into k mutually exclusive and numerically

convenient intervals A i, i  1, 2, . . . , k . Let ni be the number of sample values
falling into Ai. As a rule, if the number of sample values in any A i is less than
5, combine interval Ai with either Ai 1 or A i 1.. Step 2: compute theoretical probabilities P(A i) pi, i  1, 2, . . . , k , by means
of the hypothesized distribution.. Step 3: construct d as given by Equation (10.7).. Step 4: choose a value of and determine from Table A.5 for the 2

distribution of (k  1) degrees of freedom the value of 2
k 1, .. Step 5: reject hypothesis H if d 2

k 1, . Otherwise, accept H .

Ex ample 10. 1. Problem: 300 light bulbs are tested for their burning time t (in
hours), and the result is shown in Table 10.1. Suppose that random burning
time T  is postulated to be exponentially distributed with mean burning time
1/ 200 hours; that is, 0 005, per hour, and

Test this hypothesis by using the 2 test at the 5% significance level.
Answer: the necessary steps in carrying out the 2 test are indicated in Table 10.2.

The first column gives intervals Ai, which are chosen in this case to be the
intervals of t given in Table 10.1. The theoretical probabilities P(A i) pi in the
third column are easily calculated by using Equation (10.8). For example,

Table 10.1 Sample values for
Example 10.1

Burning time, t Number

t < 100 121
100 t < 200 78
200 t < 300 43
300 t 58

n 300
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For convenience, the theoretical numbers of occurrences as predicted by the
model are given in the fourth column of Table 10.2, which, when compared
with the value in the second column, give a measure of goodness of fit of the
model to the data. Column 5 (n2

i /npi) is included in order to facilitate the
calculation of d. Thus, from Equation (10.7) we have

Now, k  4. From Table A.5 for the 2 distribution with three degrees of
freedom, we find

Since d 2 , we accept at the 5% significance level the hypothesis that the
observed data represent a sample from an exponential distribution with

Example 10.2. Problem: a six-year accident record of 7842 California drivers
is given in Table 8.2. On the basis of these sample values, test the hypothesis
that X , the number of accidents in six years per driver, is Poisson-distributed
with mean rate 0 08 per year at the 1% significance level.

Answer: since X  is discrete, a natural choice of intervals A i is those centered
around the discrete values, as indicated in the first column of Table 10.3. Note
that interval x  > 5 would be combined with 4 < x 5 if number n7 were less
than 5.

The hypothesized distribution for X  is

Table 10.2 Table for 2 test for Example 10.1

Interval, Ai ni pi npi n2
i /npi

t < 100 121 0.39 117 125.1
100 t < 200 78 0.24 72 84.5
200 t < 300 43 0.15 45 41.1
300 t 58 0.22 66 51.0

300 1.00 300 301.7

Note:  ni, observed number of occurrences; pi,
theoretical P(A i).
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We thus have

These values are indicated in the third column of Table 10.3.
Column 5 of Table 10.3 gives

With k 7, the value of 2
k 1,

2 is found from Table A.5 to be

2

Since d 2
6, 01, the hypothesis is rejected at the 1% significance level.

10.2.2 THE CASE OF ESTIMATED PARAMETERS

Let us now consider a more common situation in which parameters in the
hypothesized distribution also need to be estimated from the data.

A natural procedure for a goodness-of-fit test in this case is first to estimate
the parameters by using one of the methods developed in Chapter 9 and then to
follow the 2 test for known parameters, already discussed in Section 7.2.1. In

Table 10.3 Table for 2 test for Example 10.2

x 0 5147 0.6188 4853 5459
0 < x 1 1859 0.2970 2329 1484
1 < x 2 595 0.0713 559 633
2 < x 3 167 0.0114 89 313
3 < x 4 54 0.0013 10 292
4 < x 5 14 0.0001 1 196
5 < x 6 0.0001 1 36

7842 1.0 7842 8413

N ote:  ni,  observed number of occurrences;  pi ,
theoretical P(A i).
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doing so, however, a complication arises in that theoretical probabilities pi

defined by Equation (10.2) are, being functions of the distribution parameters,
functions of the sample. The statistic D now takes the form

where is an estimator for pi and is thus a statistic. We see that D is now
a much more complicated function of X 1, X 2, . . . , X n. The important question
to be answered is: what is the new distribution of D?

The problem of determining the limiting distribution of D in this situation
was first considered by Fisher (1922, 1924), who showed that, as n , the
distribution of D needs to be modified, and the modification obviously depends
on the method of parameter estimation used. Fortunately, for a class of
important methods of estimation, such as the maximum likelihood method,
the modification required is a simple one, namely, statistic D still approaches a
chi-squared distribution as n but now with (k  r 1) degrees of free-
dom, where r is the number of parameters in the hypothesized distribution to be
estimated. In other words, it is only necessary to reduce the number of degrees
of freedom in the limiting distribution defined by Equation (10.5) by one for
each parameter estimated from the sample.

We can now state a step-by-step procedure for the case in which r parameters
in the distribution are to be estimated from the data.. Step 1: divide range space X  into k  mutually exclusive and numerically con-

venient intervals Ai, i  1, . . . , k . Let  ni be the number of sample values fall-
ing into A i. As a rule, if the number of sample values in any A i is less than 5,
combine interval A i with either A i 1 or A i 1.. Step 2: estimate the r parameters by the method of maximum likelihood from
the data.. Step 3: compute theoretical probabilities P(A i) pi, i  1, . . . , k , by means of
the hypothesized distribution with estimated parameter values.. Step 4: construct d as given by Equation (10.7).. Step 5: choose a value of and determine from Table A.5 for the 2

distribution of (k  r 1) degrees of freedom the value of 2
k r 1, . It is

assumed, of course, that k  r 1 > 0.. Step 6: reject hypothesis H if d 2
k r 1, . Otherwise, accept H .

Example 10.3. Problem: vehicle arrivals at a toll gate on the New York State
Thruway were recorded. The vehicle counts at one-minute intervals were taken
for 106 minutes and are given in Table 10.4. On the basis of these observations,
determine whether a Poisson distribution is appropriate for X , the number of
arrivals per minute, at the 5% significance level.
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Answer: the hypothesized distribution is

where parameter needs to be estimated from the data. Thus, r 1.
To proceed, we first determine appropriate intervals A i such that ni 5 for

all i; these are shown in the first column of Table 10.5. Hence, k 11.
The maximum likelihood estimate for is given by

The substitution of this value for parameter in Equation (10.11) permits us to
calculate probabilities P(A i) pi. For example,

Table 10.4 One-minute arrivals, for Example 10.3

Vehicles per minute (No.) Number of occurrences

0 0
1 0
2 1
3 3
4 5
5 7
6 13
7 12
8 8
9 9

10 13
11 10
12 5
13 6
14 4
15 5
16 4
17 0
18 1

n 106
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These theoretical probabilities are given in the third column of Table 10.5.
From column 5 of Table 10.5, we obtain

Table A.5 with 0:05 and k r 1 9 degrees of freedom gives

Since d the hypothesized distribution with 9 09 is accepted at
the 5% significance level.

Example 10.4. Problem: based upon the snowfall data given in Problem 8.2(g)
from 1909 to 1979, test the hypothesis that the Buffalo yearly snowfall can be
modeled by a normal distribution at 5% significance level.

Answer: for this problem, the assumed distribution for X , the Buffalo yearly
snowfall, measured in inches, is N(m, 2) where m  and 2 must be estimated
from the data. Since the maximum likelihood estimator for m  and 2 are

respectively, we have

Table 10.5 Table for 2 test for Example 10.3

0 x < 5 9 0.052 5.51 14.70
5 x < 6 7 0.058 6.15 7.97
6 x < 7 13 0.088 9.33 18.11
7 x < 8 12 0.115 12.19 11.81
8 x < 9 8 0.131 13.89 4.61
9 x < 10 9 0.132 13.99 5.79
10 x < 11 13 0.120 12.72 13.29
11 x < 12 10 0.099 10.49 9.53
12 x < 13 5 0.075 7.95 3.14
13 x < 14 6 0.054 5.72 6.29
14 x 14 0.076 8.06 24.32

106 1.0 106 119.56
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With intervals A i defined as shown in the first column of Table 10.6, theoretical
probabilities P(A i) now can be calculated with the aid of Table A.3. For
example, the first two of these probabilities are

The information given above allows us to construct Table 10.6. Hence,
we have

The number of degrees of freedom in this case is k  r 1 6 2 1 3.
Table A.5 thus gives

Since d 2 normal distribution N(83 6, 777 4) is acceptable at the 5%
significance level.

Before leaving this section, let us remark again that statistic D in the 2 test is
2-distributed only when n . It is thus a large sample test. As a rule, n  50

is considered satisfactory for fulfilling the large-sample requirement.

Table 10.6 Table for 2 test for Example 10.4

x 56 13 0.161 11.27 15.00
56 < x 72 10 0.178 12.46 8.03
72 < x 88 20 0.224 15.68 25.51
88 < x 104 13 0.205 14.35 11.78
104 < x 120 8 0.136 9.52 6.72
120 < x 6 0.096 6.72 5.36

70 1.0 70 72.40

326 Fundamentals of Probability and Statistics for Engineers

��"&� � ��� 
 B8� � � / 
 B8� "9�8�����������
777�0

�
� �

� �/��/���/�

� &� �/�/���/� � &� /�"9"� � /�&8&�

��",� � ��B8 � � 
 7,� � ���/���/ � / 
 �/�0&8�

� 	&� �/�/�0&8�
 � 	&� �/�/���/�


� /�99�� /�&8& � /�&7"�

� �
�,

��&

�,�
���

� � � 7,�0/� 7/ � ,�0/�

� � � � � �

�,9� /�/B � 7�"&B�

� �

�
� � �

�
������� "� �� �� ��� �,� ?���












�

3, 0 05

�

. .

TLFeBOOK



10.3 KOLMOGOROV–SMIRNOV TEST

The so-called Kolmogorov–Smirnov goodness-of-fit test,  referred to as the
test in the rest of this chapter, is based on a statistic that measures the deviation
of the observed cumulative histogram from the hypothesized cumulative dis-
tribution function.

Given a set of sample values x 1, x 2, . . . , x n observed from a population X , a
cumulative histogram can be constructed by (a) arranging the sample values in
increasing order of magnitude, denoted here by x (1), x (2), . . . , x (n), (b) determin-
ing the observed distribution function of X  at x (1), x (2), . . . ,  denoted  by

. . . , from relations and (c) connecting the values
of F0[x (i)] by straight-line segments.

The test statistic to be used in this case is

where X (i) is the ith-order statistic of the sample. Statistic D2 thus measures the
maximum of absolute values of the n differences between observed probability
distribution function (PDF) and hypothesized PDF evaluated for the observed
samples. In the case where parameters in the hypothesized distribution must be
estimated, the values for FX  [X (i)] are obtained by using estimated parameter
values.

While the distribution of D2 is difficult to obtain analytically, its distribution
function at various values can be computed numerically and tabulated. It can be
shown that the probability distribution of D2 is independent of the hypothesized
distribution and is a function only of n, the sample size (e.g. see Massey, 1951).

The execution of the K–S test now follows that of the 2 test. At a specified
significance level, the operating rule is to reject hypothesis H if d2 > cn, ;

otherwise, accept H . Here, d2 is the sample value of D2, and the value of cn, is
defined by

The values of cn, for and 0.10 are given in Table A.6 in
Appendix A as functions of n.

It is instructive to note the important differences between this test and the 2

test. Whereas the 2 test is a large-sample test, the K–S test is valid for all values
of n. Furthermore, the K–S test utilizes sample values in their unaltered and
unaggregated form, whereas data lumping is necessary in the execution of the

2 test. On the negative side, the K–S test is strictly valid only for continuous
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distributions. We also remark that the values of cn, given in Table A.6 are based
on a completely specified hypothesized distribution. When the parameter values
must be estimated, no rigorous method of adjustment is available. In these cases,
it can be stated only that the values of cn, should be somewhat reduced.

The step-by-step procedure for executing the K–S test is now outlined as
follows:. Step 1: rearrange sample values x 1, x 2, . . . , x n in increasing order of magni-

tude and label them x (1), x (2), . . . , x (n).. Step 2: determine observed distribution function F0(x ) at each x (i) by using
F0[x (i)] i/n.. Step 3: determine the theoretical distribution function FX  (x ) at each x (i) by
using the hypothesized distribution. Parameters of the distribution are esti-
mated from the data if necessary..Step 4: form the differences.Step 5: calculate

The determination of this maximum value requires enumeration of n quan-
tities. This labor can be somewhat reduced by plotting F 0(x) and F X (x) as
functions of x and noting the location of the maximum by inspection..Step 6: choose a value of and determine from Table A.6 the value of. Step 7: reject hypothesis H if d2 Otherwise, accept H .

Example 10.5. Problem: 10 measurements of the tensile strength of one type
of engineering material are made. In dimensionless forms, they are 30.1, 30.5,
28.7, 31.6, 32.5, 29.0, 27.4, 29.1, 33.5, and 31.0. On the basis of this data set, test
the hypothesis that the tensile strength follows a normal distribution at the 5%
significance level.

Answer: a reordering of the data yields
33 5. The determination of F0(x (i)) is straightforward. We have, for example,

With regard to the theoretical distribution function, estimates of the mean and
variance are first obtained from
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The values of FX [x (i)

X . For example, with the aid of Table A.3 for standardized normal random
variable U, we have

and so on.
In order to determine d2, it is constructive to plot F0(x ) and FX (x ) as

functions of x , as shown in F igure 10.2. It is clearly seen from the figure that
the maximum of the differences between F0(x) and FX (x ) occurs at x  x (4)

With 0 05 and n 10, Table A.6 gives

F 0(x) F X(x)

1.0

0.8

0.6

0.4

0.2

0
27 29 31 33

x

F
0

(x
),

F
X

(x
)

Figure 10. 2 F0(x ) and FX  (x ) in Example 10.5.
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Since d2 < c
nificance level.

Let us remark that, since the parameter values were also estimated from the
data, it is more appropriate to compare d2 with a value somewhat smaller than
0.41. In view of the fact that the value of d2 is well below 0.41, we are safe in
making the conclusion given above.
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FURTHER READING AND COMMENTS

We have been rather selective in our choice of topics in this chapter. A number
of important areas in hypotheses testing are not included, but they can be found
in more complete texts devoted to statistical inference, such as the following:

Lehmann, E.L., 1959, Testing Statistical Hypotheses, John Wiley & Sons Inc. New York.

PROBLEMS

10.1 In the 2 test, is a hypothesized distribution more likely to be accepted at
than at

10.2 To test whether or not a coin is fair, it is tossed 100 times with the following
outcome: heads 41 times, and tails 59 times. Is it fair on the basis of these tosses at
the 5% significance level?

10.3 Based upon telephone numbers listed on a typical page of a telephone directory,
test the hypothesis that the last digit of the telephone numbers is equally likely to be
any number from 0 to 9 at the 5% significance level.

10.4 The daily output of a production line is normally distributed with mean m  8000
items and standard deviation 1000 items. A second production line is set up,
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and 100 daily output readings are taken, as shown in Table 10.7. On the basis of
this sample, does the second production line behave in the same statistical manner
as the first? Use

10.5 In a given plant, a sample of a given number of production items was taken from
each of the five production lines; the number of defective items was recorded, as
shown in Table 10.8. Test the hypothesis that the proportion of defects is constant
from one production line to another. Use

10.6 We have rejected in Example 10.2 the Poisson distribution with
basis of accident data at the 1% significance level. At the same :
(a) Would a Poisson distribution with estimated from the data be acceptable?
(b) Would a negative binomial distribution be more appropriate?

10.7 The data on the number of arrivals of cars at an intersection in 360 10 s intervals
are as shown in Table 10.9.
Three models are proposed:
model 1:

Table 10.7 Production-line data for Problem 10.4

Daily output interval Number of occurrences

< 4 000 3
4 000–5 000 3
5 000–6 000 7
6 000–7 000 16
7 000–8 000 27
8 000–9 000 22
9 000–10 000 11
10 000–11 000 8
11 000–12 000 2
> 12 000 1

n 100

Table 10.8 Production-line data for Problem 10.5

Production line Number of defects

1 11
2 13
3 9
4 12
5 8
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model 2:

where is estimated from the data;

model 3:

where k  and p are estimated from the data.

(a) Use the 2 test; are these models acceptable at the 5% significance level?
(b) In you opinion, which is a better model? Explain your answer.
Note: for model 3,

10.8 Car pooling is encouraged in a city. A survey of 321 passenger vehicles coming into
the city gives the car occupancy profile shown in Table 10.10. Suggest a probabil-
istic model for X , the number of passengers per vehicle, and test your hypothesized
distribution at

Table 10.9 Arrival of cars at intersection, for Problem 10.7

Cars per interval Number of observations

0 139
1 128
2 55
3 25
4 13

n 360

Table 10.10 Car occupancy (number of passengers
per vehicle, excluding the driver), for Problem 10.8

Occupancy Vehicles (No.)

0 224
1 47
2 31
3 16

4 3

n 321
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10.9 Problem 8.2(c) gives 100 measurements of time gaps (see Table 8.4). On the basis
of these data, postulate a likely distribution for X  and test your hypothesis at the
5% significance level.

10.10 Consider the data given in Problem 8.2(d) for the sum of two consecutive time
gaps. Postulate a likely distribution for X  and test your hypothesis at the 5%
significance level.

10.11 Problem 8.2(e) gives data for one-minute vehicle arrivals (see Table 8.5). Postulate
a likely distribution for X  and test your hypothesis at the 5% significance level.

10.12 Problem 8.2(h) gives a histogram for X , the peak combustion pressure (see F igure
8.4). On the basis of these data, postulate a likely distribution for X  and test your
hypothesis at the 5% significance level.

10.13 Suppose that the number of drivers sampled is 200. Based on the histogram given
in Problem 8.2(i) (see F igure 8.5), postulate a likely distribution for X 1 and test
your hypothesis at the 1% significance level.

10.14 Problem 8.2(j) gives a histogram for X , the number of blemishes in television tubes
(see F igure 8.6). On the basis of this sample, postulate a likely distribution for X
and test your hypothesis at the 5% significance level.

10.15 A total of 24 readings of the annual sediment load (in 106 tons) in the Colorado
River at the Grand Canyon are (arranged in increasing order of magnitude) 49,
50, 50, 66, 70, 75, 84, 85, 98, 118, 122, 135, 143, 146, 157, 172, 177, 190, 225, 235,
265, 270, 400, 480. Using the Kolmogorov–Smirnov test at the 5% significance
level, test the hypothesis that the annual sediment load follows a lognormal
distribution (data are taken from Beard, 1962).

10.16 For the snowfall data given in Problem 8.2(g) (see Table 8.6), use the Kolmo-
gorov–Smirnov test and test the normal distribution hypothesis on the basis of
snowfall data from 1909–2002.
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11

Linear Models and Linear
Regression

The tools developed in Chapters 9 and 10 for parameter estimation and model
verification are applied in this chapter to a very useful class of models encoun-
tered in science and engineering. A commonly occurring situation is one in
which a random quantity, Y , is a function of one or more independent (and
deterministic) variables x1, x 2, . . . ,  and  x m . For example, wind load (Y ) acting
on a structure is a function of height (x ); the intensity (Y ) of strong motion
earthquakes is dependent on the distance from the epicenter (x ); housing price
(Y ) is a function of location (x 1) and age (x 2); and chemical yield (Y) may be
related to temperature (x 1), pressure (x 2), and acid content (x3).

Given a sample of Y  values with their associated values of x i, i 1, 2, . . . , m,
we are interested in estimating on the basis of this sample the relationship
between Y  and the independent variables x 1, x 2, . . . ,  and  x m . In what follows,
we concentrate on some simple cases of the broadly defined problem stated
above.

11.1 SIMPLE LINEAR REGRESSION

We assume in this section that random variable Y is a function of only one
independent variable and that their relationship is linear. By a linear relation-
ship we mean that the mean of Y , E  Y  , is known to be a linear function of x ,
that is,

The two constants, intercept and slope , are unknown and are to be
estimated from a sample of Y values with their associated values of x. Note
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that E Y  is a function x . In any single experiment, x  will assume a certain
value x i and the mean of Y  will take the value

Random variable Y  is, of course, itself a function of x . If we define a random
variable E by

we can write

where E has mean 0 and variance 2, which is identical to the variance of Y . The
value of 2 is not known in general but it is assumed to be a constant and not
a function of x .

Equation (11.4) is a standard expression of a simple linear regression model.
The unknown parameters and are called regression coefficients, and random
variable E represents the deviation of Y  about its mean. As with simple models
discussed in Chapters 9 and 10, simple linear regression analysis is concerned
with estimation of the regression parameters, the quality of these estimators,
and model verification on the basis of the sample. We note that, instead of
a simple sample such as Y 1, Y 2, . . . , Y n as in previous cases, our sample in the
present context takes the form of pairs (x 1, Y 1), (x 2, Y 2), . . . , (x n, Y n). For each
value x i assigned to x , Y i is an independent observation from population Y
defined by Equation (11.4). Hence, (x i, Y i), i  1, 2, . . . , n,  may  be  considered
as a sample from random variable Y  for given values x 1, x 2, . . . ,  and  x n of x ;
these x values need not all be distinct but, in order to estimate both and ,
we will see that we must have at least two distinct values of x  represented in
the sample.

11.1.1 LEAST SQUARES METHOD OF ESTIMATION

As one approach to point estimation of regression parameters and , the
method of least squares suggests that their estimates, and , be chosen so
that the sum of the squared differences between observed sample values
yi and the estimated expected value of Y , is minimized. Let us
write
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The least-square estimates and , respectively, of and are found by
minimizing

In the above, the sample-value pairs are (x 1, y1), (x 2, y2), . . . , (x n, yn), and
ei, i 1, 2, . . . , n, are called the residuals. F igure 11.1 gives a graphical presen-
tation of this procedure. We see that the residuals are the vertical distances
between the observed values of Y , yi, and the least-square estimate of
true regression line x .

The estimates and are easily found based on the least-square procedure.
The results are stated below as Theorem 11.1.

Theorem 11.1: consider the simple linear regression model defined by
Equation (11.4). Let (x 1, y1), (x 2, y2), . . . , (x n, yn) be observed sample values of Y
with associated values of x . Then the least-square estimates of and are

(xi , yi)

ei

Estimated regression line:

True regression line:

y

x

Figure 11.1 The least squares method of estimation
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where

and

Proof of Theorem 11.1: estimates and are found by taking partial
derivatives of Q given by Equation (11.6) with respect to and , setting these
derivatives to zero and solving for and Hence, we have

Upon simplifying and setting the above equations to zero, we have the so-called
normal equations:

Their solutions are easily found to be those given by Equations (11.7) and
(11.8).

To ensure that these solutions correspond to the minimum of the sum of
squared residuals, we need to verify that

and
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at and Elementary calculations show that

and

The proof of this theorem is thus complete. Note that D would be zero if all
x i take the same value. Hence, at least two distinct x i values are needed for the
determination of and

It is instructive at this point to restate the foregoing results by using a more
compact vector–matrix notation. As we will see, results in vector–matrix form
facilitate calculations. Also, they permit easy generalizations when we consider
more general regression models.

In terms of observed sample values (x 1, y1), (x 2, y2), . . . , (x n, yn), we have a
system of observed regression equations

Let

and let

Equations (11.11) can be represented by the vector–matrix equation

The sum of squared residuals given by Equation (11.6) is now
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The least-square estimate of is found by minimizing Q. Applying the
variational principle discussed in Section 9.3.1.1, we have

Setting the solution for is obtained from normal equation

or

which gives

In the above, the inverse of matrix CTC exists if there are at least two distinct
values of x i represented in the sample.

We can easily check that Equation (11.15) is identical to Equations (11.7)
and (11.8) by noting that

and

340 Fundamentals of Probability and Statistics for Engineers

�! ��!

�� � ����(���� (�� � ��� (���(��
� �%���(���� (���

�� � �! ��

(���� (��� � �� �����1�

(�(�� � (���

�� � �(�(���(��� �����<�

(�( �
� � 
 
 
 �

�� �% 
 
 
 ��

� � � ��

� �%

��
� ��

�

� ��

�
�����

�
				
 �

� ��

��

�
���
�%�

�
�

�

�

(�� �
� � 
 
 
 �

�� �% 
 
 
 ��

� � ��

�%

��
�

��

�
�����

�
				
 �

��
�
���
����

�
�

�

�

�� � �(�(���(�� �
� ��

��

�
���
�%�

�
�

�


�� ��
�

���
����

�
�

�



�
��


�
���
���� � ���

� � 
�
���
�%� � ��%

� ���
�


�
���
���� � ���

� � 
�
���
�%� � ��%

� ���

�
����

�
			


�
�� ���


�
���

��� � ����� � ��
� � 
�

���
��� � ��%

� ���

�
��

�
	
�

TLFeBOOK



Ex ample 11. 1. Problem: it is expected that the average percentage yield, Y ,
from a chemical process is linearly related to the process temperature, x , in C.
Determine the least-square regression line for E Y  on the basis of 10 observa-
tions given in Table 11.1.

Answer: in view of Equations (11.7) and (11.8), we need the following
quantities:

The substitution of these values into Equations (11.7) and (11.8) gives

The estimated regression line together with observed sample values is shown
in Figure 11.2.

It is noteworthy that regression relationships are valid only for the range
of x  values represented by the data. Thus, the estimated regression line in
Example 11.1 holds only for temperatures between 45 C and 90 C. Extrapolation
of the result beyond this range can be misleading and is not valid in general.

Another word of caution has to do with the basic linear assumption between
E Y  and x . Linear regression analysis such as the one performed in Example
11.1 is based on the assumption that the true relationship between E Y  and
x  is linear. Indeed, if the underlying relationship is nonlinear or nonexistent,

Table 11. 1 Percentage yield, yi, with process temperature, x i, for Example 11.1

i

1 2 3 4 5 6 7 8 9 10

x ( C) 45 50 55 60 65 70 75 80 85 90
y  43 45 48 51 55 57 59 63 66 68
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linear regression produces meaningless results even if a straight line appears
to provide a good fit to the data.

11.1.2 PROPERTIES OF LEAST-SQUARE ESTIMATORS

The properties of the estimators for regression coefficients and can be
determined in a straightforward fashion following the vector–matrix expression

and
following the method of least squares, and let

We see from Equation (11.15) that

where

and Y j , j 1, 2, . . . , n, are independent and identically distributed according to
Equation (11.4). Thus, if we write

70

60

50

40
40 50 60 70 80 90

y

x

y = 17.03 + 0.57x

Figure 11.2 Estimated regression line and observed data for Example 11.1
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then E is a zero-mean random vector with covariance matrix 2I , I being
the n n identity matrix.

The mean and variance of estimator are now easily determined. In view of
Equations (11.17) and (11.19), we have

for and , respectively, are unbiased.
The covariance matrix associated with is given by, as seen from Equation

(11.17),

But cov Y 2I ; we thus have

The diagonal elements of the matrix in Equation (11.21) give the variances of
. In terms of the elements of C, we can write

It is seen that these variances decrease as sample size n increases, according to 1/n.
Thus, it follows from our discussion in Chapter 9 that these estimators are consistent –

reduced by selecting the x i in such a way that the denominator of Equation (11.23) is
maximized; this can be accomplished by spreading the x i as far apart as possible. In
Example 11.1, for example, assuming that we are free to choose the values of x i, the
quality of is improved if one-half of the x  readings are taken at one extreme of the
temperature range and the other half at the other extreme. However, the sampling
strategy for minimizing var( ) for a fixed n is to make x  as close to zero as possible.

Are the variances given by Equations (11.22) and (11.23) minimum variances
associated with any unbiased estimators for and ? An answer to this import-
ant question can be found by comparing the results given by Equations (11.22)
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and (11.23) with the Cram r–Rao lower bounds defined in Section 9.2.2. In
order to evaluate these lower bounds, a probability distribution of Y  must be
made available. Without this knowledge, however, we can still show, in Theorem
11.2, that the least squares technique leads to linear unbiased minimum-variance
estimators for and ; that is, among all unbiased estimators which are linear
in Y , least-square estimators have minimum variance.

Theorem 11.2: let random variable Y be defined by Equation (11.4). Given
a sample (x 1, Y 1), (x 2, Y 2), . . . , (x n, Y n) of Y  with its associated x  values, least-

given by Equation (11.17) are minimum variance
linear unbiased estimators for and , respectively.

Proof of Theorem 11.2: the proof of this important theorem is sketched
below with use of vector–matrix notation.

Consider a linear unbiased estimator of the form

We thus wish to prove that G 0 if * is to be minimum variance.
The unbiasedness requirement leads to, in view of Equation (11.19),

Consider now the covariance matrix

Upon using Equations (11.19), (11.24), and (11.25) and expanding the covari-
ance, we have

Now, in order to minimize the variances associated with the components of ,
we must minimize each diagonal element of GGT. Since the iith diagonal
element of GGT is given by

where gij is the ijth element of G, we must have

and we obtain
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This completes the proof. The theorem stated above is a special case of the
Gauss–Markov theorem.

Another interesting comparison is that between the least-square estimators
for and and their maximum likelihood estimators with an assigned dis-
tribution for random variable Y . It is left as an exercise to show that the
maximum likelihood estimators for and are identical to their least-square
counterparts under the added assumption that Y  is normally distributed.

11.1.3 UNBIASED ESTIMATOR FOR 2

As we have shown, the method of least squares does not lead to an estimator
for variance 2 of Y , which is in general also an unknown quantity in linear
regression models. In order to propose an estimator for 2, an intuitive choice is

where coefficient k is to be chosen so that   is unbiased. In order to carry out
the expectation of , we note that [see Equation (11.7)]

Hence, it follows that

since [see Equation (11.8)]

Upon taking expectations term by term, we can show that
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Hence, 2 is unbiased with k  1/(n 2), giving

or, in view of Equation (11.30),

Example 11.2. Problem: use the results given in Example 11.1 and determine
an unbiased estimate for 2.

Answer: we have found in Example 11.1 that

In addition, we easily obtain

Equation (11.33) thus gives

Example 11.3. Problem: an experiment on lung tissue elasticity as a function
of lung expansion properties is performed, and the measurements given in
Table 11.2 are those of the tissue’s Young’s modulus (Y ), in g cm 2, at varying
values of lung expansion in terms of stress (x ), in g cm 2. Assuming that E Y
is linearly related to x and that 2

Y
2 (a constant), determine the least-square

estimates of the regression coefficients and an unbiased estimate of 2.

Table 11.2 Young’s modulus, y (g cm 2), with stress, x (g cm 2), for Example 11.3

x 2 2.5 3 5 7 9 10 12 15 16 17 18 19 20
y 9.1 19.2 18.0 31.3 40.9 32.0 54.3 49.1 73.0 91.0 79.0 68.0 110.5 130.8

346 Fundamentals of Probability and Statistics for Engineers

�� � �

��% � �

�� %

��
���

��� � � ��� �+���	%� ����*%�

��% � �

�� %

��
���

��� � ��% � �+%
��
���

��� � ��%
� �

� ����**�

�

��
���

��� � ��% � %�7%�<�

�� � ��<5�

��
���

��� � ��% � 76��<�

��% � �

6
�76��<� ���<5�%�%�7%�<�	

� ��*��

�
� � �

� � �
�

� �

TLFeBOOK



Answer: in this case, we have n 14. The quantities of interest are

The substitution of these values into Equations (11.7), (11.8), and (11.33) gives

The estimated regression line together with the data are shown in Figure 11.3.
The estimated standard deviation is 13 g cm 2, and the
1 -band is also shown in the figure.

11.1.4 CONFIDENCE INTERVALS FOR REGRESSION
COEFFICIENTS

In addition to point estimators for the slope and intercept in linear regression, it
is also easy to construct confidence intervals for them and for x , the mean
of Y , under certain distributional assumptions. In what follows, let us assume
that Y  is normally distributed according to N( x , 2). Since estimators

and x  are linear functions of the sample of Y , they are also normal
random variables. Let us note that, when sample size n is large, and

are expected to follow normal distributions as a consequence of the
central limit theorem (Section 7.2.1), no matter how Y  is distributed.

We follow our development in Section 9.3.2 in establishing the desired
confidence limits. Based on our experience in Section 9.3.2, the following are
not difficult to verify:
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.Result i: let 2 be the unbiased estimator for 2 as defined by Equation
(11.33), and let

It follows from the results given in Section 9.3.2.3 that D is a 2-distributed
random variable with (n 2) degrees of freedom..Result ii: consider random variables
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Figure 11.3 Estimated regression line and observed data, for Example 11.3
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and

where, as seen from Equations (11.20), (11.22), and (11.23), and are,

2 estimated by 2. The derivation
given in Section 9.3.2.2 shows that each of these random variables has a
t-distribution with (n 2) degrees of freedom.. Result iii: estimator for the mean of Y is normally distributed with
mean x  and variance

Hence, again following the derivation given in Section 9.3.2.2, random variable

is also t-distributed with (n 2) degrees of freedom.

Based on the results presented above, we can now easily establish confidence
limits for all the parameters of interest. The results given below are a direct
consequence of the development in Section 9.3.2..Result 1: a [100(1 )]% confidence interval for is determined by [see

Equation (9.141)]
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.Result 2: a [100(1 )% confidence interval for is determined by [see
Equation (9.141)]

.Result 3: a [100(1 )]% confidence interval for E Y  x is deter-
mined by [see Equation (9.141)]

.Result 4: a two-sided [100(1 )% confidence interval for 2 is determined
by [see Equation (9.144)]

If a one-sided confidence interval for 2 is desired, it is given by [see Equation
(9.145)]

A number of observations can be made regarding these confidence intervals. In
each case, both the position and the width of the interval will vary from sample
to sample. In addition, the confidence interval for x is shown to be a
function of x . If one plots the observed values of L 1 and L 2 they form a
confidence band about the estimated regression line, as shown in F igure 11.4.
Equation (11.41) clearly shows that the narrowest point of the band occurs at
x x ; it becomes broader as x  moves away from x in either direction.

Ex ample 11. 4. Problem: in Example 11.3, assuming that Y  is normally
distributed, determine a 95% confidence band for
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Answer: equation (11.41) gives the desired confidence limits, with n 14,

The observed confidence limits are thus given by

This result is shown graphically in Figure 11.5.

11.1.5 SIGNIFICANCE TESTS

Following the results given above, tests of hypotheses about the values of and
can be carried out based upon the approach discussed in Chapter 10. Let us

demonstrate the underlying ideas by testing hypothesis H 0: 0 against
hypothesis H1 0, where 0 is some specified value.

y

x

x+ ^^

(x)l2

(x)l1

x+E(y) = 

x

^ ^

–

–

Figure 11.4 Confidence band for
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Using as the test statistic, we have shown in Section 11.1.4 that the random
variable defined by Equation (11.36) has a t-distribution with n 2 degrees of
freedom. Suppose we wish to achieve a Type-I error probability of . We would
reject H0 if exceeds (see Figure 11.6)
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Figure 11. 5 The 95% confidence band for E Y  for Example 11.4
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Similarly, significance tests about the value of can be easily carried out with
use of as the test statistic.

An important special case of the above is the test of H0: 0 against
H1: 0. This particular situation corresponds essentially to the significance
test of linear regression. Accepting H 0 is equivalent to concluding that there is
no reason to accept a linear relationship between E Y  and x at a specified
significance level . In many cases, this may indicate the lack of a causal
relationship between E Y  and independent variable x .

Example 11.5. Problem: it is speculated that the starting salary of a clerk is a
function of the clerk’s height. Assume that salary (Y ) is normally distributed and
its mean is linearly related to height (x ); use the data given in Table 11.3 to test
the assumption that E Y  and x are linearly related at the 5% significance level.

Answer: in this case, we wish to test H 0: 0 against H1 0, with  0:05.
From the data in Table 11.3, we have

According to Equation (11.44), we have

Table 11. 3 Salary, y (in $10 000), with height, x (in feet),
for Example 11.5

x 5.7 5.7 5.7 5.7 6.1 6.1 6.1 6.1
y 2.25 2.10 1.90 1.95 2.40 1.95 2.10 2.25
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Since 0. That is, we conclude that the data do not
indicate a linear relationship between E Y  and x ; the probability that we are
wrong in accepting H0 is 0.05.

In closing, let us remark that we are often called on to perform tests of
simultaneous hypotheses. For example, one may wish to test H0: 0 and

1 against H1: 0 or 1 or both. Such tests involve both estimators

multiple linear regression, to be discussed in the next section. Such tests
customarily involve F-distributed test statistics, and we will not pursue them
here. A general treatment of simultaneous hypotheses testing can be found in
Rao (1965), for example.

11.2 MULTIPLE LINEAR REGRESSION

The vector–matrix approach proposed in the preceding section provides a smooth
transition from simple linear regression to linear regression involving more than
one independent variable. In multiple linear regression, the model takes the form

Again, we assume that the variance of Y  is 2 and is independent of x 1, x 2, . . . , and
x m . As in simple linear regression, we are interested in estimating (m  1) regres-
sion coefficients 0, 1, . . . , and m, obtaining certain interval estimates, and testing
hypotheses about these parameters on the basis of a sample of Y  values with their
associated values of (x 1, x 2, . . . , x m). Let us note that our sample of size n in this
case takes the form of arrays (x 11, x 21, . . . , x m1, Y 1), (x 12, x 22, . . . , x m2, Y 2), . . . ,
(x 1n, x 2n, . . . , x mn , Y n). For each set of values x ki , k 1, 2, . . . , m, of x i, Y i is an
independent observation from population Y  defined by

As before, E is the random error, with mean 0 and variance 2.

11.2.1 LEAST SQUARES METHOD OF ESTIMATION

To estimate the regression coefficients, the method of least squares will again be
employed. Given observed sample-value sets (x 1i, x 2i, . . . , x mi , yi), i  1, 2, . . . , n,
the system of observed regression equations in this case takes the form
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If we let

and

Equation (11.47) can be represented by vector–matrix equation:

Comparing Equation (11.48) with Equation (11.12) in simple linear regression,
we see that the observed regression equations in both cases are identical except
that the C matrix is now an n (m 1) matrix and is an (m 1)-dimensional
vector. Keeping this dimension difference in mind, the results obtained in the
case of simple linear regression based on Equation (11.12) again hold in the
multiple linear regression case. Thus, without further derivation, we have for
the solution of least-square estimates of [see Equation (11.15)]

The existence of matrix inverse (CTC) 1 requires that there are at least (m  1)
distinct sets of values of (x 1i, x 2i, . . . , x mi ) represented in the sample. It is noted
that CTC is a (m 1) (m 1) symmetric matrix.

Ex ample 11. 6. Problem: the average monthly electric power consumption (Y )
at a certain manufacturing plant is considered to be linearly dependent on the
average ambient temperature (x 1) and the number of working days in a month
(x 2). Consider the one-year monthly data given in Table 11.4. Determine the
least-square estimates of the associated linear regression coefficients.

Table 11. 4 Average monthly power consumption y  (in thousands of kwh), with
number of working days in the month, x 2, and average ambient temperature, x1, (in  F)

for Example 11.6

x 1 20 26 41 55 60 67 75 79 70 55 45 33
x 2 23 21 24 25 24 26 25 25 24 25 25 23
y 210 206 260 244 271 285 270 265 234 241 258 230
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Answer: in this case, C is a 12 3 matrix and

We thus have, upon finding the inverse of CTC by using either matrix inversion
formulae or readily available matrix inversion computer programs,

or

The estimated regression equation based on the data is thus

Since Equation (11.48) is identical to its counterpart in the case of simple linear
regression, much of the results obtained therein concerning properties of least-
square estimators, confidence intervals, and hypotheses testing can be dupli-
cated here with, of course, due regard to the new definitions for matrix C and
vector .

Let us write estimator for in the form

We see immediately that

Hence, least-square estimator is again unbiased. It also follows from Equa-

356 Fundamentals of Probability and Statistics for Engineers

tion (11.21) that the covariance matrix for is given by

�

(�( �
�% 7%7 %��

7%7 *7� 557 �<� **7

%�� �<� **7 5� �%6

�
��

�
	
�

(�� �
%� �51

�<�� ���

5%� �77

�
��

�
	
�

�� � �(�(���(�� �
�**�61

��*�
���6�

�

��� � �**�61� ��� � ��*�� ��* � ���6��

����� � ��� � ����� � ��%�%

� �**�61� ��*��� � ���6��%�

�
�� �

�� � �(�(���(�� � ����<��

����� � �(�(���(����� � �� ����<��

��
��

������� � �%�(�(���� ����<%�

�
�

�



�

TLFeBOOK



Confidence intervals for the regression parameters in this case can also be
established following similar procedures employed in the case of simple linear
regression. Concerning hypotheses testing, it was mentioned in Section 11.1.5
that testing of simultaneous hypotheses is more appropriate in multiple linear
regression, and that we will not pursue it here.

11.3 OTHER REGRESSION MODELS

In science and engineering, one often finds it necessary to consider regression
models that are nonlinear in the independent variables. Common examples of
this class of models include

Polynomial models such as Equation (11.53) or Equation (11.55) are still
linear regression models in that they are linear in the unknown parameters

0, 1, 2, . . . , [etc. Hence, they can be estimated by using multiple linear
regression techniques. Indeed, let x1 x , and x 2 x 2 in Equation (11.53), it
takes the form of a multiple linear regression model with two independent
variables and can thus be analyzed as such. Similar equivalence can be estab-
lished between Equation (11.55) and a multiple linear regression model with
five independent variables.

Consider the exponential model given by Equation (11.54). Taking logar-
ithms of both sides, we have

In terms of random variable ln Y , Equation (11.57) represents a linear regres-
sion equation with regression coefficients ln 0 and 1. Linear regression tech-
niques again apply in this case. Equation (11.56), however, cannot be conveniently
put into a linear regression form.

Ex ample 11. 7. Problem: on average, the rate of population increase (Y ) asso-
ciated with a given city varies with x , the number of years after 1970. Assuming that

compute the least-square estimates for 0, 1, and 2 based on the data pre-
sented in Table 11.5.
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Answer: let x 1 x , x 2 x 2, and let

The least-square estimate for is given by Equation (11.49), with

and

Thus

or

Table 11. 5 Population increase, y, with
number of years after 1970, x , for Example 11.7

x  0 1 2 3 4 5
y(%) 1.03 1.32 1.57 1.75 1.83 2.33
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Let us note in this example that, since x 2 x 2
1, matrix C is constrained in that

its elements in the third column are the squared values of their corresponding
elements in the second column. It needs to be cautioned that, for high-order
polynomial regression models, constraints of this type may render matrix CTC
ill-conditioned and lead to matrix-inversion difficulties.
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PROBLEMS

11.1 A special case of simple linear regression is given by

Determine:
(a) The least-square estimator ;
(b) The mean and variance of
(c) An unbiased estimator for 2, the variance of Y .

11.2 In simple linear regression, show that the maximum likelihood estimators for and
are identical to their least-square estimators when Y  is normally distributed.

11.3 Determine the maximum likelihood estimator for variance 2 of Y  in simple linear
regression assuming that Y  is normally distributed. Is it a biased estimator?

11.4 Since data quality is generally not uniform among data points, it is sometimes
desirable to estimate the regression coefficients by minimizing the sum of weighted
squared residuals; that is, and in simple linear regression are found by minimizing
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where wi are assigned weights. In vector–matrix notation, show that estimates
and now take the form

where

11.5 (a) In simple linear regression [Equation (11.4)]. use vector–matrix notation and
show that the unbiased estimator for 2 given by Equation (11.33) can be
written in the form

(b) In multiple linear regression [Equation (11.46)], show that an unbiased esti-
mator for 2 is given by

11.6 Given the data in Table 11.6:

(a) Determine the least-square estimates of and in the linear regression
equation

(b) Determine an unbiased estimate of 2, the variance of Y .
(c) Estimate E Y  at x 5.
(d) Determine a 95% confidence interval for .
(e) Determine a 95% confidence band for x .

11.7 In transportation studies, it is assumed that, on average, peak vehicle noise level
(Y ) is linearly related to the logarithm of vehicle speed (v). Some measurements
taken for a class of light vehicles are given in Table 11.7. Assuming that

Table 11.6 Data for Problem 11.6

x 0 1 2 3 4 5 6 7 8 9
y 3.2 3.1 3.9 4.7 4.3 4.4 4.8 5.3 5.9 6.0
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determine the estimated regression line for Y  as a function of log10 v.

11.8 An experimental study of nasal deposition of particles was carried out and
showed a linear relationship between E Y  and ln d2f , where Y  is the fraction
of particles of aerodynamic diameter, d (in mm), that is deposited in the nose
during an inhalation of f (l min 1). Consider the data given in Table 11.8 (four
readings are taken at each value of ln d2f ). Estimate the regression parameters in
the linear regression equation

and estimate 2, the variance of Y .

11.9 For a study of the stress–strain history of soft biological tissues, experimental
results relating dynamic moduli of aorta (D) to stress frequency ( ) are given in
Table 11.9.
(a) Assuming that E D , and , estimate regression coefficients

and .
(b) Determine a one-sided 95% confidence interval for the variance of D.
(c) Test if the slope estimate is significantly different from zero at the 5%

significance level.

11.10 Given the data in Table 11.10
(a) Determine the least-square estimates of , and 2 assuming that

Table 11. 7 Noise level, y (in dB) with vehicle
speed, v (in km h 1), for Problem 11.7

v 20 30 40 50 60 70 80 90 100
y 55 63 68 70 72 78 74 76 79

Table 11. 8 Fraction of particles inhaled of diameter d (in mm), with ln d2f
(f is inhalation, in min 1), for Problem 11.8

ln d2f 1.6 1.7 2.0 2.8 3.0 3.0 3.6

y 0.39 0.41 0.42 0.61 0.83 0.79 0.98
0.30 0.28 0.34 0.51 0.79 0.69 0.88
0.21 0.20 0.22 0.47 0.70 0.63 0.87
0.12 0.10 0.18 0.39 0.61 0.59 0.83

Table 11.9 The dynamic modulus of aorta, d (normalized) with frequency,
(in Hz), for Problem 11.9

1 2 3 4 5 6 7 8 9 10
1.60 1.51 1.40 1.57 1.60 1.59 1.80 1.59 1.82 1.59
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(b) Estimate

11.11 In Problem 11.7, when vehicle weight is taken into account, we have the multiple
linear regression equation

where w is vehicle unladen weight in Mg. Use the data given in Table 11.11 and
estimate the regression parameters in this case.

11.12 Given the data in Table 11.12:

(a) Determine the least-square estimates of 0, 1, and 2 assuming that

(b) Estimate

11.13 A large number of socioeconomic variables are important to account for mortal-
ity rate. Assuming a multiple linear regression model, one version of the model for
mortality rate (Y ) is expressed by

where

x 1 mean annual precipitation in inches,
x 2 education in terms of median school years completed for those over 25 years

old
x 3 percentage of area population that is nonwhite,
x 4 relative pollution potential of SO2 (sulfur dioxide).

Table 11.10 Data for Problem 11.10

x 1 1 1 1 1 2 2 3 3
x 2 1 2 3 4 5 6 7 8
y 2.0 3.1 4.8 4.9 5.4 6.8 6.9 7.5

Table 11.11 Noise level, y (in dB), with vehicle weight (unladen,
in Mg) and vehicle speed (in km h 1), for Problem 11.11

v 20 40 60 80 100 120
w 1.0 1.0 1.7 3.0 1.0 0.7
y 54 59 78 91 78 67

Table 11.12 Data for Problem 11.12

x 0 1 2 3 4 5 6 7
y 3.2 2.8 5.1 7.3 7.6 5.9 4.1 1.8
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Some available data are presented in Table 11.13. Determine the least-square
estimate of the regression parameters.

Table 11.13 Data for Problem 11.13

x 1 13 11 21 30 35 27 27 40
x 2 9 10.5 11 10 9 12.3 9 9
x 3 1.5 7 21 27 30 6 27 33
x 4 4 21 64 67 17 28 82 101
y 795 841 820 1050 1010 970 980 1090
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Appendix A: Tables

A.1 BINOMIAL MASS FUNCTION

Table A.1 Binomial mass function: a table of

n k  p

0.01 0.05 0.10 0.15 0.20 0.25 0.30 1
3 0.35 0.40 0.45 0.49 0.50

2 0 0.9801 0.9025 0.8100 0.7225 0.6400 0.5625 0.4900 0.4444 0.4225 0.3600 0.3025 0.2601 0.2500

1 0.0198 0.0950 0.1800 0.2550 0.3200 0.3750 0.4200 0.4444 0.4550 0.4800 0.4950 0.4998 0.5000

2 0.0001 0.0025 0.0100 0.0225 0.0400 0.0625 0.0900 0.1111 0.1225 0.1600 0.2025 0.2401 0.2500

3 0 0.9703 0.8574 0.7290 0.6141 0.5120 0.4219 0.3430 0.2963 0.2746 0.2160 0.1664 0.1327 0.1250

1 0.0294 0.1354 0.2430 0.3251 0.3840 0.4219 0.4410 0.4444 0.4436 0.4320 0.4084 0.3823 0.3750

2 0.0003 0.0071 0.0270 0.0574 0.0960 0.1406 0.1890 0.2222 0.2389 0.2880 0.3341 0.3674 0.3750

3 0.0000 0.0001 0.0010 0.0034 0.0080 0.0156 0.0270 0.0370 0.0429 0.0640 0.0911 0.1176 0.1250

4 0 0.9606 0.8145 0.6561 0.5220 0.4096 0.3164 0.2401 0.1975 0.1785 0.1296 0.0915 0.0677 0.0625

1 0.0388 0.1715 0.2916 0.3685 0.4096 0.4219 0.4116 0.3951 0.3845 0.3456 0.2995 0.2600 0.2500

2 0.0006 0.0135 0.0486 0.0975 0.1536 0.2109 0.2646 0.2963 0.3105 0.3456 0.3675 0.3747 0.3750

3 0.0000 0.0005 0.0036 0.0115 0.0256 0.0469 0.0756 0.0988 0.1115 0.1536 0.2005 0.2400 0.2500

4 0.0000 0.0000 0.0001 0.0005 0.0016 0.0039 0.0081 0.0123 0.0150 0.0256 0.0410 0.0576 0.0625

5 0 0.9510 0.7738 0.5905 0.4437 0.3277 0.2373 0.1681 0.1317 0.1160 0.0778 0.0503 0.0345 0.0312

1 0.0480 0.2036 0.3280 0.3915 0.4096 0.3955 0.3602 0.3292 0.3124 0.2592 0.2059 0.1657 0.1562

2 0.0010 0.0214 0.0729 0.1382 0.2048 0.2637 0.3087 0.3292 0.3364 0.3456 0.3369 0.3185 0.3125

3 0.0000 0.0011 0.0081 0.0244 0.0512 0.0879 0.1323 0.1646 0.1811 0.2304 0.2757 0.3060 0.3125

4 0.0000 0.0000 0.0004 0.0022 0.0064 0.0146 0.0284 0.0412 0.0488 0.0768 0.1128 0.1470 0.1562

5 0.0000 0.0000 0.0000 0.0001 0.0003 0.0010 0.0024 0.0041 0.0053 0.0102 0.0185 0.0283 0.0312

6 0 0.9415 0.7351 0.5314 0.3771 0.2621 0.1780 0.1176 0.0878 0.0754 0.0467 0.0277 0.0176 0.0156

1 0.0571 0.2321 0.3543 0.3993 0.3932 0.3560 0.3025 0.2634 0.2437 0.1866 0.1359 0.1014 0.0938

2 0.0014 0.0305 0.0984 0.1762 0.2458 0.2966 0.3241 0.3292 0.3280 0.3110 0.2780 0.2437 0.2344

3 0.0000 0.0021 0.0146 0.0415 0.0819 0.1318 0.1852 0.2195 0.2355 0.2765 0.3032 0.3121 0.3125
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Table A.1 Continued

n k  p

0.01 0.05 0.10 0.15 0.20 0.25 0.30 1
3 0.35 0.40 0.45 0.49 0.50

4 0.0000 0.0001 0.0012 0.0055 0.0154 0.0330 0.0595 0.0823 0.0951 0.1382 0.1861 0.2249 0.2344

5 0.0000 0.0000 0.0001 0.0004 0.0015 0.0044 0.0102 0.0165 0.0205 0.0369 0.0609 0.0864 0.0938

6 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0007 0.0014 0.0018 0.0041 0.0083 0.0139 0.0156

7 0 0.9321 0.6983 0.4783 0.3206 0.2097 0.1335 0.0824 0.0585 0.0490 0.0280 0.0152 0.0090 0.0078

1 0.0659 0.2573 0.3720 0.3960 0.3670 0.3115 0.2471 0.2048 0.1848 0.1306 0.0872 0.0603 0.0547

2 0.0020 0.0406 0.1240 0.2097 0.2753 0.3115 0.3177 0.3073 0.2985 0.2613 0.2140 0.1740 0.1641

3 0.0000 0.0036 0.0230 0.0617 0.1147 0.1730 0.2269 0.2561 0.2679 0.2903 0.2918 0.2786 0.2734

4 0.0000 0.0002 0.0026 0.0109 0.0287 0.0577 0.0972 0.1280 0.1442 0.1935 0.2388 0.2676 0.2734

5 0.0000 0.0000 0.0002 0.0012 0.0043 0.0115 0.0250 0.0384 0.0466 0.0774 0.1172 0.1543 0.1641

6 0.0000 0.0000 0.0000 0.0001 0.0004 0.0013 0.0036 0.0064 0.0084 0.0172 0.0320 0.0494 0.0547

7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0005 0.0006 0.0016 0.0037 0.0068 0.0078

8 0 0.9227 0.6634 0.4305 0.2725 0.1678 0.1001 0.0576 0.0390 0.0319 0.0168 0.0084 0.0046 0.0039

1 0.0746 0.2793 0.3826 0.3847 0.3355 0.2670 0.1977 0.1561 0.1373 0.0896 0.0548 0.0352 0.0312

2 0.0026 0.0515 0.1488 0.2376 0.2936 0.3115 0.2965 0.2731 0.2587 0.2090 0.1569 0.1183 0.1094

3 0.0001 0.0054 0.0331 0.0839 0.1468 0.2076 0.2541 0.2731 0.2786 0.2787 0.2568 0.2273 0.2188

4 0.0000 0.0004 0.0046 0.0185 0.0459 0.0865 0.1361 0.1707 0.1875 0.2322 0.2627 0.2730 0.2734

5 0.0000 0.0000 0.0004 0.0026 0.0092 0.0231 0.0467 0.0683 0.0808 0.1239 0.1719 0.2098 0.2188

6 0.0000 0.0000 0.0000 0.0002 0.0011 0.0038 0.0100 0.0171 0.0217 0.0413 0.0703 0.1008 0.1094

7 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0012 0.0024 0.0033 0.0079 0.0164 0.0277 0.0312

8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0002 0.0007 0.0017 0.0033 0.0039

9 0 0.9135 0.6302 0.3874 0.2316 0.1342 0.0751 0.0404 0.0260 0.0207 0.0101 0.0046 0.0023 0.0020

1 0.0830 0.2985 0.3874 0.3679 0.3020 0.2253 0.1556 0.1171 0.1004 0.0605 0.0339 0.0202 0.0176

2 0.0034 0.0629 0.1722 0.2597 0.3020 0.3003 0.2668 0.2341 0.2162 0.1612 0.1110 0.0776 0.0703

3 0.0001 0.0077 0.0446 0.1069 0.1762 0.2336 0.2668 0.2731 0.2716 0.2508 0.2119 0.1739 0.1641

4 0.0000 0.0006 0.0074 0.0283 0.0661 0.1168 0.1715 0.2048 0.2194 0.2508 0.2600 0.2506 0.2461

5 0.0000 0.0000 0.0008 0.0050 0.0165 0.0389 0.0735 0.1024 0.1181 0.1672 0.2128 0.2408 0.2461

6 0.0000 0.0000 0.0001 0.0006 0.0028 0.0087 0.0210 0.0341 0.0424 0.0743 0.1160 0.1542 0.1641

7 0.0000 0.0000 0.0000 0.0000 0.0003 0.0012 0.0039 0.0073 0.0098 0.0212 0.0407 0.0635 0.0703

8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0009 0.0013 0.0035 0.0083 0.0153 0.0176

9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0008 0.0016 0.0020

10 0 0.9044 0.5987 0.3487 0.1969 0.1074 0.0563 0.0282 0.0173 0.0135 0.0060 0.0025 0.0012 0.0010

1 0.0914 0.3151 0.3874 0.3474 0.2684 0.1877 0.1211 0.0867 0.0725 0.0403 0.0207 0.0114 0.0098

2 0.0042 0.0746 0.1937 0.2759 0.3020 0.2816 0.2335 0.1951 0.1757 0.1209 0.0736 0.0495 0.0439

3 0.0001 0.0105 0.0574 0.1298 0.2013 0.2503 0.2668 0.2601 0.2522 0.2150 0.1665 0.1267 0.1172

4 0.0000 0.0010 0.0112 0.0401 0.0881 0.1460 0.2001 0.2276 0.2377 0.2508 0.2384 0.2130 0.2051

5 0.0000 0.0001 0.0015 0.0085 0.0264 0.0584 0.1029 0.1366 0.1536 0.2007 0.2340 0.2456 0.2461

6 0.0000 0.0000 0.0001 0.0012 0.0055 0.0162 0.0368 0.0569 0.0689 0.1115 0.1596 0.1966 0.2051

7 0.0000 0.0000 0.0000 0.0001 0.0008 0.0031 0.0090 0.0163 0.0212 0.0425 0.0746 0.1080 0.1172

8 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0014 0.0030 0.0043 0.0106 0.0229 0.0389 0.0439

9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0005 0.0016 0.0042 0.0083 0.0098

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0008 0.0010

From Parzen, E., 1960, Modern Probability Theory and Its Applications, John Wiley & Sons, with permission.
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A.2 POISSON MASS FUNCTION

Table A.2 Poisson mass function: a table of

k

0 1 2 3 4 5 6 7 8 9 10 11 12

0.1 0.9048 0.0905 0.0045 0.0002 0.0000

0.2 0.8187 0.1637 0.0164 0.0011 0.0001 0.0000

0.3 0.7408 0.2222 0.0333 0.0033 0.0002 0.0000

0.4 0.6703 0.2681 0.0536 0.0072 0.0007 0.0001 0.0000

0.5 0.6065 0.3033 0.0758 0.0126 0.0016 0.0002 0.0000

0.6 0.5488 0.3293 0.0988 0.0198 0.0030 0.0004 0.0000

0.7 0.4966 0.3476 0.1217 0.0284 0.0050 0.0007 0.0001 0.0000

0.8 0.4493 0.3595 0.1438 0.0383 0.0077 0.0012 0.0002 0.0000

0.9 0.4066 0.3659 0.1647 0.0494 0.0111 0.0020 0.0003 0.0000

1.0 0.3679 0.3679 0.1839 0.0613 0.0153 0.0031 0.0005 0.0001 0.0000

1.1 0.3329 0.3662 0.2014 0.0738 0.0203 0.0045 0.0008 0.0001 0.0000

1.2 0.3012 0.3614 0.2169 0.0867 0.0260 0.0062 0.0012 0.0002 0.0000

1.3 0.2725 0.3543 0.2303 0.0998 0.0324 0.0084 0.0018 0.0003 0.0001 0.0000

1.4 0.2466 0.3452 0.2417 0.1128 0.0395 0.0111 0.0026 0.0005 0.0001 0.0000

1.5 0.2231 0.3347 0.2510 0.1255 0.0471 0.0141 0.0035 0.0008 0.0001 0.0000

1.6 0.2019 0.3230 0.2584 0.1378 0.0551 0.0176 0.0047 0.0011 0.0002 0.0000

1.7 0.1827 0.3106 0.2640 0.1496 0.0636 0.0216 0.0061 0.0015 0.0003 0.0001 0.0000

1.8 0.1653 0.2975 0.2678 0.1607 0.0723 0.0260 0.0078 0.0020 0.0005 0.0001 0.0000

1.9 0.1496 0.2842 0.2700 0.1710 0.0812 0.0309 0.0098 0.0027 0.0006 0.0001 0.0000

2.0 0.1353 0.2707 0.2707 0.1804 0.0902 0.0361 0.0120 0.0034 0.0009 0.0002 0.0000

2.2 0.1108 0.2438 0.2681 0.1966 0.1082 0.0476 0.0174 0.0055 0.0015 0.0004 0.0001 0.0000

2.4 0.0907 0.2177 0.2613 0.2090 0.1254 0.0602 0.0241 0.0083 0.0025 0.0007 0.0002 0.0000

2.6 0.0743 0.1931 0.2510 0.2176 0.1414 0.0735 0.0319 0.0118 0.0038 0.0011 0.0003 0.0001 0.0000

2.8 0.0608 0.1703 0.2384 0.2225 0.1557 0.0872 0.0407 0.0163 0.0057 0.0018 0.0005 0.0001 0.0000

3.0 0.0498 0.1494 0.2240 0.2240 0.1680 0.1008 0.0504 0.0216 0.0081 0.0027 0.0008 0.0002 0.0001

3.2 0.0408 0.1304 0.2087 0.2226 0.1781 0.1140 0.0608 0.0278 0.0111 0.0040 0.0013 0.0004 0.0001

3.4 0.0334 0.1135 0.1929 0.2186 0.1858 0.1264 0.0716 0.0348 0.0148 0.0056 0.0019 0.0006 0.0002

3.6 0.0273 0.0984 0.1771 0.2125 0.1912 0.1377 0.0826 0.0425 0.0191 0.0076 0.0028 0.0009 0.0003

3.8 0.0224 0.0850 0.1615 0.2046 0.1944 0.1477 0.0936 0.0508 0.0241 0.0102 0.0039 0.0013 0.0004

4.0 0.0183 0.0733 0.1465 0.1954 0.1954 0.1563 0.1042 0.0595 0.0298 0.0132 0.0053 0.0019 0.0006

5.0 0.0067 0.0337 0.0842 0.1404 0.1755 0.1755 0.1462 0.1044 0.0653 0.0363 0.0181 0.0082 0.0034

6.0 0.0025 0.0149 0.0446 0.0892 0.1339 0.1606 0.1606 0.1377 0.1033 0.0688 0.0413 0.0225 0.0113

7.0 0.0009 0.0064 0.0223 0.0521 0.0912 0.1277 0.1490 0.1490 0.1304 0.1014 0.0710 0.0452 0.0264

8.0 0.0003 0.0027 0.0107 0.0286 0.0573 0.0916 0.1221 0.1396 0.1396 0.1241 0.0993 0.0722 0.0481

9.0 0.0001 0.0011 0.0050 0.0150 0.0337 0.0607 0.0911 0.1171 0.1318 0.1318 0.1186 0.0970 0.0728

10.0 0.0000 0.0005 0.0023 0.0076 0.0189 0.0378 0.0631 0.0901 0.1126 0.1251 0.1251 0.1137 0.0948
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Table A.2 Continued

k

13 14 15 16 17 18 19 20 21 22 23 24

5.0 0.0013 0.0005 0.0002

6.0 0.0052 0.0022 0.0009 0.0003 0.0001

7.0 0.0142 0.0071 0.0033 0.0014 0.0006 0.0002 0.0001

8.0 0.0296 0.0169 0.0090 0.0045 0.0021 0.0009 0.0004 0.0002 0.0001

9.0 0.0504 0.0324 0.0194 0.0109 0.0058 0.0029 0.0014 0.0006 0.0003 0.0001

10.0 0.0729 0.0521 0.0347 0.0217 0.0128 0.0071 0.0037 0.0019 0.0009 0.0004 0.0002 0.0001

From Parzen, E., 1960, Modern Probability and Its Applications, John Wiley & Sons, with permission.
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A.3 STANDARDIZED NORMAL DISTRIBUTION FUNCTION

Table A.3 Standardized normal distribution function: a table of

u 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5733

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9482 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.8874 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

From Parzen, E., 1960, Modern Probability and Its Applications, John Wiley & Sons, with permission.
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A.4 STUDENT’S t DISTRIBUTION WITH n DEGREES OF FREEDOM

Table A. 4 Student’s distribution with n degrees of
Freedom: a table of

to 0.10, 1, 2, . . .

n

0.10 0.05 0.025 0.01 0.005

1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.979
25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756

1.282 1.645 1.960 2.326 2.576

From Fisher, R.A., 1925, Statistical Methods for Research Workers,

14th edn, Hafner Press. Reproduced by permission of The University of

Adelaide, Australia.
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A. 5 CH I-S Q U A RED D IS TR IBU TIO N WITH n DEGREES OF FREED OM

Table A. 5 Chi-squared distribution with n degrees of freedom: a table of in

n

0.995 0.99 0.975 0.95 0.05 0.025 0.01 0.005

1 0.04393 0.03157 0.03982 0.02393 3.841 5.024 6.635 7.879
2 0.0100 0.0201 0.0506 0.103 5.991 7.378 9.210 10.597
3 0.717 0.115 0.216 0.352 7.815 9.348 11.346 12.838
4 0.207 0.297 0.484 0.711 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 11.070 12.832 15.086 16.750

6 0.676 0.872 1.237 1.635 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 18.307 20.483 23.209 25.188

11 2.603 3.053 3.816 4.575 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 22.362 24.736 27.688 29.819
14 4.075 4.660 5.628 6.571 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 24.996 27.488 30.578 32.801

16 5.142 5.812 6.908 7.962 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8.672 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 30.144 32.852 36.191 38.582
20 7.434 8.260 9.591 10.851 31.410 34.170 37.566 39.997

21 8.034 8.897 10.283 11.591 32.671 35.479 38.932 41.401
22 8.643 9.542 10.982 12.338 33.924 36.781 40.289 42.796
23 9.260 10.196 11.689 13.091 35.172 38.076 41.638 44.181
24 9.886 10.856 12.401 13.848 36.415 39.364 42.980 45.558
25 10.520 11.524 13.120 14.611 37.652 40.646 44.314 46.928

26 11.160 12.198 13.844 15.379 38.885 41.923 45.642 48.290
27 11.808 12.879 14.573 16.151 40.113 43.194 46.963 49.645
28 12.461 13.565 15.308 16.928 41.337 44.461 48.278 50.993
29 13.121 14.256 16.047 17.708 42.557 45.722 49.588 52.336
30 13.787 14.953 16.791 18.493 43.773 46.979 50.892 53.672

From Pearson, E.S. and Hartley, H.O., 1954, Biometrika Tables for Statisticians, Volume 1, Cambridge

University Press, with permission.
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A.6 D2 DISTRIBUTION WITH SAMPLE SIZE n

Table A.6 D2 distribution with sample size n: a table of cn, in
5,10, . . .

n

0.10 0.05 0.01

5 0.51 0.56 0.67
10 0.37 0.41 0.49
15 0.30 0.34 0.40
20 0.26 0.29 0.35
25 0.24 0.26 0.32
30 0.22 0.24 0.29
40 0.19 0.21 0.25

Large n 
1.22 1.36 1.63

From Lindgren, B.W., 1962, Statistical Theory, Macmillan, with permission.
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Appendix B: Computer Software

A large number of computer software packages and spreadsheets are now
available that can be used to generate probabilities such as those provided in
Tables A.1–A.6 as well as to perform other statistical calculations. For exam-
ple, some statistical functions available in Microsoft1 ExcelTM 2000 are listed
below, which can be used to carry out many probability calculations and to do
many exercises in the text.

AVEDEV: gives the average of the absolute deviations of data points from
their mean

AVERAGE: gives the average of its arguments
AVERAGEA: gives the average of its arguments, including numbers, text, and

logical values
BETADIST: gives the beta probability distribution function
BETAINV: gives the inverse of the beta probability distribution function
BINOMDIST: gives the individual term binomial probability
CHIDIST: gives the one-tailed probability of the Chi-squared distribution
CHIINV: gives the inverse of the one-tailed probability of the Chi-squared

distribution
CHITEST: gives the test for independence
CONFIDENCE: gives the confidence interval for a population mean
CORREL: gives the correlation coefficient between two data sets
COUNT: counts how many numbers are in the list of arguments
COUNTA: counts how many values are in the list of arguments
COVAR: gives covariance, the average of the products of paired deviations
CRITBINOM: gives the smallest value for which the binomial distribution

function is less than or equal to the criterion value
DEVSQ: gives the sum of squares of deviations
EXPONDIST: gives the exponential distribution
FORECAST: gives a value along a linear trend
FREQUENCY: gives a frequency distribution as a vertical array

Fundamentals of Probability and Statistics for Engineers T.T. Soong� 2004 John Wiley & Sons, Ltd

ISBNs: 0-470-86813-9 (HB) 0-470-86814-7 (PB)
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GAMMADIST: gives the gamma distribution
GAMMAINV: gives the inverse of the gamma distribution function
GAMMALN: gives the natural logarithm of the gamma function
GEOMEAN: gives the geometric mean
GROWTH: gives values along an exponential trend
HYPGEOMDIST: gives the hypergeometric distribution
INTERCEPT: gives the intercept of the linear regression line
KURT: gives the kurtosis of a data set
LARGE: gives the kth largest value in a data set
LINEST: gives the parameters of a linear trend
LOGEST: gives the parameters of an exponential trend
LOGINV: gives the inverse of the lognormal distribution
LOGNORMDIST: gives the lognormal distribution function
MAX: gives the maximum value in a list of arguments
MAXA: gives the maximum value in a list of arguments, including numbers,

text, and logical values
MEDIAN: gives the median of the given numbers
MIN: gives the minimum value in a list of arguments
MINA: gives the smallest value in a list of arguments, including numbers, text,

and logical values
MODE: gives the most common value in a data set
NEGBINOMDIST: gives the negative binomial distribution
NORMDIST: gives the normal distribution function
NORMINV: gives the inverse of the normal distribution function
NORMSDIST: gives the standardized normal distribution function
NORMSINV: gives the inverse of the standardized normal distribution function
PERCENTILE: gives the kth percentile of values in a range
PERCENTRANK: gives the percentage rank of a value in a data set
PERMUT: gives the number of permutations for a given number of objects
POISSON: gives the Poisson distribution
PROB: gives the probability that values in a range are between two limits
QUARTILE: gives the quartile of a data set
RANK: gives the rank of a number in a list of numbers
SKEW: gives the skewness of a distribution
SLOPE: gives the slope of the linear regression line
SMALL: gives the kth smallest value in a data set
STANDARDIZE: gives a normalized value
STDEV: estimates standard deviation based on a sample
STDEVA: estimates standard deviation based on a sample, including numbers,

text, and logical values
STDEVP: calculates standard deviation based on the entire population
STDEVPA: calculates standard deviation based on the entire population,

including numbers, text, and logical values

376 Fundamentals of Probability and Statistics for Engineers
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STEYX: gives the standard error of the predicted y value for each x in the
regression

TDIST: gives the Student’s t-distribution
TINV: gives the inverse of the Student’s t-distribution
TREND: gives values along a linear trend
TRIMMEAN: gives the mean of the interior of a data set
TTEST: gives the probability associated with a Student’s t-test
VAR: estimates variance based on a sample
VARA: estimates variance based on a sample, including numbers, text, and

logical values
VARP: calculates variance based on the entire population
VARPA: calculates variance based on the entire population, including num-

bers, text, and logical values
WEIBULL: gives the Weibull distribution
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Appendix C: Answers to Selected
Problems

CHAPTER 2

2.1 (a) Incorrect, (b) Correct, (c) Correct, (d) Correct, (e) Correct,
(f) Correct

2.4 (a
(e)

2.7 (a)
(e)
(i)

2.9 (a)
2.11 (a) 0.00829, (b) 0.00784, (c) 0.00829
2.14 (a) 0.553, (b) 0.053, (c) 0.395
2.16 0.9999
2.18 (a) 0.8865, (b)
2.20 No
2.22 No, (a) 0.5, (b) Impossible
2.23 Under condition of mutual exclusiveness: (a) false, (b) true,

(c) false, (d) true, (e) false
Under condition of independence: (a) true, (b) false, (c) false,
(d) false, (e) true

2.24 (a) Approximately 10 5, (b) Yes, (c) 0.00499

2.26 (a)

2.28 (a) 0.35, (b) 0.1225, (c) 0.65
2.30 (a) 0.08, (b) 0.375
2.32 (a) 0.351, (b) 0.917, (c) 0.25
2.34 (a) 0.002, (b) 0.086, (c) 0.4904

Fundamentals of Probability and Statistics for Engineers T.T. Soong  2004 John Wiley & Sons, Ltd
ISBNs: 0-470-86813-9 (HB) 0-470-86814-7 (PB)
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CHAPTER 3

3.1 (a)

(c)
(e)

(g) neither pdf nor pmf exists
3.2 (a)

(b)
3.4 (a)

(b)

(c)

3.11
3.12
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3.17
3.19
3.22
3.26

i j

1 2 3 4 5 6 7

1 0.006 0.004 0.003 0.003 0.004 0.000 0.000
2 0.002 0.009 0.008 0.005 0.010 0.002 0.001
3 0.003 0.008 0.015 0.014 0.031 0.008 0.005
4 0.001 0.004 0.015 0.027 0.051 0.017 0.011
5 0.002 0.007 0.029 0.054 0.196 0.075 0.050
6 0.001 0.002 0.005 0.015 0.071 0.060 0.032
7 0.000 0.001 0.005 0.008 0.052 0.030 0.038

CHAPTER 4

4.1

4.6
4.12
4.14
4.16

4.19
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4.20

4.25
4.27

4.28
4.30

CHAPTER 5

5.1 (a)

(b)

5.3

5.5

5.9
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5.27

5.29

and are independent

CHAPTER 6

6.3
6.5

6.8

6.10

6.12

6.14
6.17
6.26
6.28
6.30

6.32
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CHAPTER 7

7.1 0.847
7.3 (a) 0.9, (b) 0.775
7.6 (a) 4.566 10 3, (b) 0.8944, (c) 0.383, (d) 0.385
7.9 X 2 is preferred in both cases
7.14 0.0062
7.20 (a) 0.221

(b)

7.22 0.153
7.30 (a) 0.056, (b) 0.989
7.34 0.125, 0, 0, 0.875. No partial failure is possible
7.36

CHAPTER 8

8.2 (a) (i) Type-1 asymptotic maximum-value distribution is suggested
(ii) 0.025, 46.92

(d) (i) Gamma is suggested, (ii)
(f) (i) Poisson is suggested, (ii)
(h) (i) Normal is suggested, (ii)
(j) (i) Poisson is suggested, (ii)
(i) (i) Lognormal is suggested, (ii)

CHAPTER 9

9.1 1.75, 27.96
9.5 (a)

(c) 0.091, 0.91
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9.7
9.11
9.14
9.15

9.20

9.22
9.24
9.26

9.30
9.32
9.34
9.36
9.38

CHAPTER 10

10.1 More likely to be accepted at
10.3 Hypothesis is accepted
10.5 Hypothesis is accepted
10.8 Poisson hypothesis is rejected
10.10 Gamma hypothesis is accepted
10.12 Normal hypothesis is accepted
10.14 Poisson hypothesis is accepted
10.16 Hypothesis is accepted

CHAPTER 11

11.1 (a)
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(b)

(c)

11.3

11.7
11.9

11.11
11.13
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Subject Index

Average value,  see  M ean
Axioms of probability, 13–14

Bayes’s theorem, 24–25
Bernoulli trials, 161
Beta distribution, 221–226, 237

generalized, 225–226
mean, 223, 237
variance, 223, 237

Bias, 265
Binomial distribution, 43, 162, 182–183

characteristic function, 164
mean, 164, 184
Poisson approximation, 182–183
table, 365–366
variance, 164, 184

Boole’s inequality, 30
Brownian motion, 106

Cauchy distribution, 126
Central limit theorem, 199–201
Characteristic function, 98

joint, 108
Chebyshev inequality, 86–87
Chi-squared distribution, 219–221, 236

mean, 221, 236
table, 371
variance, 221, 236

Chi-squared text, 316
Coefficient of excess, 83
Coefficient of skewness, 83
Coefficient of variation, 81
Computer software, 3, 375–377
Confidence interval, 295, 296, 298, 302
Confidence limit, 347
Consistency, 274
Correlation, 88–90

perfect, 90
zero, 90

Correlation coefficient, 88–89
Covariance, 88

matrix, 93
Cramér–Rao inequality, 267–270

lower bound (CRLB), 269
Cumulant, 101
Cumula tive dist  ribution function see

Probability distribution function

D2 distribution, 327
table, 372

De Morgan’s laws, 11–12
D ensit  y  function see  Probabilit y d en sit y

function
D ist  ribution function, see  Probabilit y

distribution function

Efficiency, 270
asymptotic, 271

Error, 316
type I, 316
type II, 316

Estimate, 264
Estimator, 265

consistent, 274
efficient, 270,271
sufficient, 275
unbiased minimum-variance, 266

Event, 12
Excel 2000, 3
Expectation, 75–76

conditional, 83–85
mathematical, 75
operator, 75

Exponential distribution, 45, 78, 215–219,
236

mean, 215, 236
variance, 215, 236

Exponential failure law, 218
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Extreme-value distribution, 226,
type I, 228, 237
type II, 233, 237
type III, 234, 237

F a  ilure rate,  see  H a  za rd function
Fisher–Neyman factorization criterion, 275
Frequency diagram, 248
Function of random variables, 119, 137

moments, 134
probability distributions, 120

Gamma distribution, 212–215, 236
mean, 213, 236
variance, 213, 236

Gaus–Markov theorem, 345
G a ussian dist  ribution,  see  N ormal

distribution
Geometric distribution, 167, 184

mean, 168, 184
variance, 168, 184

Gumbel’s extreme value, 228
distribution, 228

Hazard function, 218
Histogram, 248

cumulative, 327
Hypergeometric distribution, 167, 184

mean, 184
variance, 184

H ypothesis t  esting,  see Test of  hypothesis

Independence, 19–20
mutual, 18

Interarrival time, 215

Jacobian, 149

Kolmogorov–Smirnov test, 327

Law of large numbers, 96
Least-square estimator, 354–355

covariance, 356
linear unbiased minimum variance, 344
mean, 355
variance, 355

Likelihood equation, 288
Likelihood function, 288
Linear regression, 335

multiple, 354
other models, 357
simple, 335
variance, 343

Lognormal distribution, 209–212, 236
mean, 211, 236
variance, 211, 236

MacLaurin series, 99
Markovian property, 27
Markov’s inequality, 115
M a ss function, see Probabilit y m a s s f u n ct io n
Maximum likelihood estimate, 288
Maximum likelihood estimator, 288–289

consistency, 289
efficiency, 289
invariance property, 290

Mean, 76–77
conditional, 84

Median, 76
Mode, 78
Moment, 76, 78

central, 79
joint, 87
joint central, 87

Moment estimate, 278
Moment estimator (ME), 278–280

combined, 284
consistency, 279

Moment-generating function, 112, 117
Multinomial distribution, 172, 184

covariance, 173
mean, 173, 184
variance, 173, 184

Mutual exclusiveness, 13

Negative binomial distribution, 169, 184
mean, 171, 184
variance, 171, 184

Normal distribution, 107, 196–199, 236
bivariate, 111
characteristic function, 198
mean, 198, 236
multivariate, 205
standardized, 201
table, 369
variance, 198, 236

Normal equation, 338
Nuisance parameter, 284

Parameter estimation, 259
interval estimation, 294–295
maximum likelihood method, 287
moment method, 278
point estimation, 277
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Pascal dist  ribution,  see  N egative binomia l
distribution

Poisson distribution, 173–176, 184
mean, 176, 184
table, 367
variance, 176, 184

Population, 259
Probability, 13

assignment, 16, 17
conditional, 20–21
function, 13
measure, 13

Probability density function (pdf), 44–46
conditional, 62–63
joint (jpdf), 49–51
marginal, 57

Probabilitydistribution function (PDF), 39–41
bivariate, 49
conditional, 61
joint (JPDF), 49–51
marginal, 50
mixed-type, 46

Probability mass function (pmf), 41, 43
conditional, 61
joint (jpmf), 51–55
marginal, 52

Random experiment, 12
R a ndom sa mple,  see  Sa mple
Random variable, 37–39

continuous, 38
discrete, 38
function of, 120
sum of, 145

Random vector
Random walk, 52
Range space, 120
Regression coefficient, 336

confidence interval, 347
least-square estimate, 344
test of hypothesis, 316

Relative likelihood, 16–17
Reliability, 60, 218
Residual, 337
Return period, 169

Sample, 259
size, 260
value, 260

Sample mean, 97, 261
mean, 261
variance, 261

Sample moment, 263–264
Sample point, 12
Sample space, 12
Sample variance, 262–263

mean, 262
variance, 262

Schwarz inequality, 92
Set, 8–12

complement of, 9
countable (enumerable), 8
disjoint, 10
element, 8
empty, 9
finite, 8
infinite, 8
subset of, 8
uncountable (nonenumerable), 8

Set operation, 9–12
difference, 10
intersection (product), 10
union (sum), 9

Significance level, 319
Spreadsheet, 3
Standard deviation, 79–81
Statistic, 260

sufficient, 275
St atistica l  independence,  see

Independence
Sterling’s formula, 107
St u d en t ’s t - d ist r ib u t io n , 298–299

table, 370
Sum of random variables, 93,

145–146
characteristic function, 104–105
moment, 94
probability distribution, 106, 146

Test of hypothesis, 316
Total probability theorem, 23
Tree diagram, 27–28

Unbiasedness, 265
Uniform distribution, 57, 189, 236

bivariate, 193
mean, 192, 236
variance, 192, 236

Unimodal distribution, 79

Variance, 79, 82
Venn diagram, 9

Weibull distribution, 235
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