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Preface

This application-oriented work concerns the design of efficient, robust and
reliable algorithms for the numerical simulation of multiscale phenomena.
To this end, various modern techniques from scattered data modelling, such
as splines over triangulations and radial basis functions, are combined with
customized adaptive strategies, which are developed individually in this work.

The resulting multiresolution methods include thinning algorithms, multi-
level approximation schemes, and meshfree discretizations for transport equa-
tions. The utility of the proposed computational methods is supported by
their wide range of applications, such as image compression, hierarchical sur-
face visualization, and multiscale flow simulation.

Special emphasis is placed on comparisons between the various numerical
algorithms developed in this work and comparable state-of-the-art methods.
To this end, extensive numerical examples, mainly arising from real-world
applications, are provided.

This research monograph is arranged in six chapters:

Introduction,;

Algorithms and Data Structures;

Radial Basis Functions;

Thinning Algorithms;

Multilevel Approximation Schemes;
Meshfree Methods for Transport Equations.

A R e

Chapter 1 provides a preliminary discussion on basic concepts, tools and
principles of multiresolution methods, scattered data modelling, multilevel
methods and adaptive irregular sampling. Relevant algorithms and data
structures, such as triangulation methods, heaps, and quadtrees, are then
introduced in Chapter 2.

Chapter 3 is devoted to radial basis functions, which are well-established
and powerful tools for multivariate interpolation and approximation from
scattered data. Radial basis functions are therefore important basic tools in
scattered data modelling. In fact, various computational methods, which are
developed in this work, essentially rely on radial basis function methods.

In Chapter 3, basic features of scattered data interpolation by radial basis
functions are first explained, before more advanced topics, such as optimal



VIII  Preface

recovery, the uncertainty relation, and optimal point sampling, are addressed.
Moreover, very recent results concerning the approximation order and the
numerical stability of polyharmonic spline interpolation are reviewed, before
least squares approximation by radial basis functions is discussed.

The extensive discussion in Chapter 4 is devoted to recent developments
concerning thinning algorithms with emphasis on their application to terrain
modelling and image compression. In their application to image compression,
adaptive thinning algorithms are combined with least squares approximation
and a customized coding scheme for scattered data. This yields a novel con-
cept for image compression. As confirmed by various numerical examples,
this image compression method often gives better or comparable compres-
sion rates to the well-established wavelet-based compression method SPTHT.

In Chapter 5, various alternative multilevel approximation methods for
bivariate scattered data are discussed. Starting point of this discussion is our
multilevel interpolation scheme of [72], which was the first to combine thin-
ning algorithms with scattered data interpolation by compactly supported
radial basis functions. Recent improvements of the multilevel method of [72]
are discussed in Chapter 5, where a new adaptive domain decomposition
scheme for multilevel approximation is proposed. The performance of the vari-
ous multilevel approximation schemes is compared by using one real-world
model problem concerning hierarchical surface visualization from scattered
terrain data.

Chapter 6 is concerned with meshfree methods for transport equations.
Meshfree methods are recent and modern discretization schemes for partial
differential equations. In contrast to traditional methods, such as finite diffe-
rences (FD), finite volumes (FV), and finite element methods (FEM), mesh-
free methods do not require sophisticated data structures and algorithms for
mesh generation, which is often the most time-consuming part in mesh-based
simulations. Moreover, meshfree methods are very flexible and particularly
useful for modelling multiscale phenomena.

In Chapter 6, a new adaptive meshfree method of characteristics, called
AMMoC, is developed for multiscale flow simulation. The advection scheme
AMDMoC combines an adaptive version of the well-known semi-Lagrangian
method with local meshfree interpolation by radial basis functions. The good
performance of the particle-based method AMMoC for both linear and non-
linear transport problems is shown. This is done by using one model problem
concerning tracer transportation in the artic stratosphere, and the popular
five-spot problem from hydrocarbon reservoir simulation. The latter is con-
cerning two-phase flow in porous media. In this model problem, our meshfree
advection method AMMOoC is compared with two leading commercial reser-
voir simulators, ECLIPSE and FrontSim of Schlumberger.
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1 Introduction

This introductory chapter explains basic principles and concepts of multi-
resolution methods in scattered data modelling, being the theme of this work.
This modern interdisciplinary research field is currently subject to rapid de-
velopment, driven by its wide range of applications in various disciplines of
computational science and engineering, including geometric modelling and vi-
sualization, image and signal processing, and meshfree simulations for model-
ling multiscale phenomena.

The outline of this chapter is as follows. Important features and key tech-
niques of scattered data modelling are explained in Section 1.1, followed by
a discussion on multiresolution methods in Section 1.2. Basic concepts of
multiresolution methods in scattered data modelling include both multilevel
methods, subject of Section 1.3, and adaptive irregular sampling, to be dis-
cussed in Section 1.4. In this introduction, relevant tools and techniques are
briefly addressed, pointers to the literature of related methods are provided,
and a short outline to the following material in this work is given.

1.1 Scattered Data Modelling

Scattered data modelling is concerned with the approximation of mathemati-
cal objects by using samples taken at an unorganized set of discrete points,
a scattered point cloud. The mathematical object may for instance be the
boundary of a solid body, the graph of a scalar field, or the solution of a
partial differential equation.

In all particular cases considered in this work, the mathematical object
is a real-valued function f : R® — R in d real variables, where d > 1 is
the dimension of the Euclidean space R*. Moreover, the point cloud is a
finite set X = {x),...,zn} C R? of pairwise distinct points. In any case,
the modelling relies essentially on information (sample values) carried by
points, and no assumptions concerning the spatial distribution of the points
are made.

One traditional branch of scattered data modelling is scattered data fitting,
where f is to be recovered from a given data vector f|x = (f(z1),..., f(zN))
of function values. This requires selecting a specific approximation scheme,
which computes a suitable function s : R* — R from the given input data f | X
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such that s approximates f reasonably well. One obvious way for doing so is
to consider using scattered data interpolation, in which case the approximant
s is required to satisfy the interpolation conditions 5| x=1f | ¥ 1€

f(zj) = s(zj), for1<j<N.

The function s is in this case referred to as an interpolant to f at X.

The subject of scattered data fitting has been introduced to the approxi-
mation theory community by Schumaker [157] in 1976. Many different ideas
and techniques have been developed since then. Among the most powerful
approximation schemes are splines, including box splines [17] and splines on
triangulations, and the meshfree radial basis functions, which are the subject
of the extensive discussion in Chapter 3.

We remark that basic concepts and requirements of scattered data fitting
are similar to those of irregular sampling in signal and image processing,
although different techniques are used. Irregular sampling is mainly con-
cerned with the complete reconstruction (rather than approximation) of a
band-limited signal from its irregularly sampled values. To this end, irregu-
lar sampling is working with different tools from harmonic analysis in order
to establish a rigorous time-frequency analysis in suitable function spaces.
For a recent account on the state-of-the-art in irregular sampling we recom-
mend the survey [3] by Aldroubi and Gréchenig, see also the earlier papers
[68, 69, 70] by Feichtinger and Grochenig.

Both scattered data fitting and irregular sampling are active research
fields within their main application areas, approximation theory and infor-
mation theory, with significant impact on many different disciplines in science
and engineering. The focus in this work is more on scattered data fitting, with
approaching the subject rather from the viewpoint of numerical approxima-
tion. We remark, however, that tools from scattered data approximation are
also potentially useful for irregular sampling, and vice versa.

The modern concept of scattered data modelling has recently gained much
attention in meshfree discretizations for numerically solving partial differen-
tial equations. In fact, many of the commonly used meshfree discretization
techniques are point-based, where the enhanced flexibility of scattered data
modelling techniques plays a key role, especially when it comes to modelling
multiscale phenomena.

In fluid flow simulation, for instance, meshfree Lagrangian methods are
used in order to numerically integrate the governing transport equations
along streamlines of fluid particles. In this application, each particle is bea-
ring specific physical information, such as concentration, saturation, or mass.
Moreover, the time-dependent modelling process works with a discrete set
X = X(t) of moving particles, which is subject to dynamic changes during
the evolution of the flow.

This is in contrast to the static process of scattered data fitting, where the
point cloud X is fixed. Nevertheless, the coupling of the particle model to con-
tinuous models requires approximation schemes from scattered data fitting.
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Later in this work, adaptive meshfree methods for multiscale flow simulation
are developed, where the coupling between the two models is accomplished.
This is the subject of the extensive discussion in Chapter 6, where radial
basis functions, as introduced in Chapter 3, play a key role.

1.2 Multiresolution Methods

Many different phenomena in natural sciences and engineering exhibit mul-
tiple levels of details. Among the wide range of examples are transport pro-
cesses in fluid flow, where finer details of free turbulences may be due to
irregular vortex motions or the evolution of shock fronts. Another example is
the task of broadcasting signals and images, whose information is composed
of waves of different frequency components.

The modelling of such multiscale phenomena is usually a computationally
challenging task, which requires customized mathematical techniques, multi-
resolution methods, in order to represent the mathematical model at the re-
levant range of scales. The mathematical model needs to reflect the different
levels of details by approximating the mathematical object on multiple diffe-
rent scales, ranging from a coarse representation at a low resolution to a fine
representation at a high resolution.

But the computation and representation of the mathematical model at all
possible scales of action is computationally too expensive, unless the multi-
scale nature of the underlying phenomenon is exploited in a fundamental way.
Therefore, multiscale modelling requires efficient, robust, reliable and accu-
rate numerical algorithms as well as flexible data structures and advanced
techniques from computer programming for the modelling and visualization
of such multiscale phenomena in computer simulations.

Effective multiresolution methods are essentially concerned with balan-
cing the two conflicting requirements of low data size (computational effi-
ciency) and high fidelity (approximation quality), where the goal is to keep
the required computational costs at a given model resolution as small as pos-
sible. Therefore, multiscale modelling is usually concerned with information
reduction, model simplification, and data compression. In fact, one impor-
tant application of multiresolution methods is the progressive transmission
of model objects, such as geometric objects and digital images, across an
information channel, such as the internet.

Let us further discuss this important point by picking one concrete ex-
ample from geometric modelling. In this particular application, a geometric
object, for instance a solid body, may be represented in form of a triangular
mesh. When it comes to fast rendering in a dynamic modelling process, it is
clearly inefficient to display the whole triangular mesh, when the object is far
from the viewer. In contrast to this, when the viewer zooms into local areas
of the object, a more accurate representation of finer details is needed.
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In this case, it is necessary to create a multiresolution model of the object
beforehand by breaking down the original model into a hierarchical sequence
of coarser and coarser versions, the coarsest one providing merely a rough
impression of the original. Since the coarser detail levels contain much less
data, and in particular fewer triangular faces, they can be displayed much
faster than the finer detail levels. This, however, requires advanced techniques
for the purpose of generating, storing, and manipulating geometric models.
For a recent account on multiresolution methods in geometric modelling and
their applications, see the tutorial book [99].

From the mathematical point of view, multiresolution modelling usually
relies on the rigorous multiresolution analysis (MRA), which includes the
theory of wavelets. In fact, wavelets have gained enormous popularity in ap-
plications such as signal and image processing. The mathematical theory of
wavelets is well-understood when working with reqular data sets. In this case,
relatively simple mathematical objects, such as digital images are represented
in form of rectangular grids of wavelet coefficients.

When working with scattered data, however, more general mathematical
methods are necessary in order to establish a multiresolution analysis. In
fact, a mathematical theory concerning multiresolution analysis in scattered
data modelling is hardly developed. This is due to the inherent irregularity
of scattered data that renders standard schemes, such as wavelet techniques
and tensor product schemes, non-applicable.

Among the very few contributions in this research direction are wavelet-
like schemes over nested and non-nested sequences of triangulations 75, 76).
For a comprehensive overview on wavelets and their applications in multires-
olution modelling, we recommend the textbooks [28, 36], and the more recent
tutorial papers [16, 31, 136].

Another way to generate multiresolution models is through subdivision.
Subdivision schemes start off with a coarse mesh and generate finer and finer
meshes according to some local scheme (a mask) and, provided the scheme
is well-chosen, converge to a smooth surface. Much of the ground-breaking
work on subdivision schemes in geometric modelling was done by Catmull
and Clark [27], Doo and Sabin [45], and by Dyn, Gregory, and Levin [56]. We
remark that the theory of subdivision schemes is intimately related to wavelet
techniques, and thus also built on the useful concept of multiresolution analy-
sis. For a very recent account on subdivision schemes in geometric modelling,
we recommend the survey [57] by Dyn and Levin, the tutorial papers [52, 53]
by Dyn, and [143, 144] by Sabin, as well as the short contribution [30] on
applications of nonlinear subdivision to image processing.

There are basically two different concepts for designing multiresolution
methods in scattered data modelling, both of which we utilize in this work.
Firstly, the hierarchical decomposition of the model into several levels of de-
tail leads to multilevel methods, some of whose features are introduced in
Section 1.3. Pragmatic methods, such as thinning algorithms [40, 55, 74],
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were recently developed in order to generate a hierarchical sequence of scat-
tered data by recursive point removals. These rather novel techniques show
great potential in applications, as confirmed by their utility in digital im-
age compression, see Section 4.6, and hierarchical surface visualization, see
Section 5.4.

Secondly, a different approach for designing multiresolution methods is
given by dynamic (one-level) modelling concepts in time-dependent processes,
such as the evolution of fluid flow. In fact, much of this work is devoted to mul-
tiscale flow simulation by meshfree discretization techniques, see Chapter 6.
This requires effective adaption rules, for the local refinement and coarsening
of scattered nodes. Suitable such adaption rules are designed in Section 6.3.
The underlying concept of adaptive irregular sampling is briefly explained in
Section 1.4.

1.3 Multilevel Methods

Multilevel methods are concerned with generating a hierarchy s;,...,s of
approximations to a function f at various different resolutions, ranging from
a coarse approximation to finer and finer approximations.

The coarsest approximation s; reflects the global trend of f, whereas finer

details of f are captured by its subsequent approximations ss,...,sy. Given
a suitable norm || - ||, a decreasing sequence €; > €3 > --- > €, > 0 of model
accuracies

€0 =|f—sel|, for1<¢<L,

is obtained by the different approximations sy to f. In multilevel modelling
schemes, the transition between any coarse approximation, sy_;, and the
consecutive one, sy, is usually done by adding detail information, As,, in
order to obtain the finer approximation

Se=8p_1+Asp, 1<¢<L.

This is called the refinement of the model. Conversely, a transition in the
opposite direction, from fine to coarse, is referred to as coarsening of the
model.

Multilevel decompositions show great potential in applications, such as
the fast rendering, editing and compression of geometric models, their trans-
mission across the internet, computer animation, and scientific visualization
in general. In these application fields, the execution of the transitions, men-
tioned above, need to be fast, since these operations typically need to be
applied in real time during the dynamic modelling.

Multilevel methods in scattered data modelling usually require computing
a hierarchy

XiCXoC---CXp 1 C X=X (1.1)



6 1 Introduction

of nested sequences of the given point set X beforehand. This important task
is referred to as data analysis. The data analysis is a very critical preprocess,
since the performance (in terms of computational costs and approximation
quality) of any multilevel approximation scheme, in the subsequent data syn-
thesis, relies heavily on the quality of the hierarchy in (1.1).

Multilevel methods in scattered data modelling are dating back to [72],
where the main ingredients of the multiresolution modelling are thinning
algorithms (in the data analysis) and radial basis functions (in the data syn-
thesis). Recent developments [96, 98] concerning multilevel approximation
schemes are discussed in Chapter 5, whereas thinning algorithms are subject
of Chapter 4, and radial basis functions are covered in Chapter 3.

1.4 Adaptive Irregular Sampling

In contrast to multilevel methods, adaptive irregular sampling leads to mul-
tiresolution models, where the multiple range of scales is incorporated in
merely one single data level. The basic idea of adaptive irregular sampling is
to use a large sampling rate (of large data density) in regions of high frequen-
cies, whereas small sampling rates (of small data density) are considered in
regions of low frequencies.

In this case, the resolution of the model varies adaptively in {2, the domain
of interest. More precisely, the model accuracy

€U = Hf - S”Uv

in a local neighbourhood U = U(z) C 2 around any x € {2 depends on
the local behaviour of the model object f in the vicinity around z. This
alternative multiresolution concept breaks down the global approximation
problem into several local ones, and so the modelling is accomplished by
using local approximation schemes. In this case, the terms high resolution
versus low resolution depend on the different accuracy requirements in the
different subregions of the domain 2. High accuracy, and thus high resolution,
in a local subregion U C {2 is necessary, whenever the mathematical object
f is subject to strong variations in U. This is, for instance, required near
discontinuities of f. In contrast to this, in subregions U where f is smooth,
the model usually requires a much lower accuracy, and thus a lower resolution.

In scattered data modelling, adaptive irregular sampling leads to varying
densities in the set X C {2 of current sample points. This concept is typically
used for modelling time-dependent processes, such as in fluid flow simulation,
where the points in X correspond to a set of moving fluid particles. In this
case, the point set X and samples values f | « may be given initially at time
t = 0, but the modelling usually relies on adaptive modifications of X = X (t)
during the simulation. This in turn requires effective adaption rules for the
dynamic modification of the points in X. Details on these and related aspects
are treated in Chapter 6.
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Much of the following discussion in this work relies on standard tools from
computational geometry, approximation theory, and computer programming.
For the reader’s convenience, relevant material concerning required algo-
rithms and data structures is composed in this chapter, which helps to keep
this work widely self-contained. Moreover, notational preparations are done,
and various useful auxiliary results are given.

This chapter first provides a general discussion on triangulation methods
in Section 2.1, before Delaunay triangulations and their dual graphs, Voronoi
diagrams, are introduced in the subsequent Sections 2.2 and 2.3. Then, Sec-
tion 2.4 gives an introduction to data-dependent triangulations, which are
useful methods for approximating bivariate functions from scattered data.
Several available swapping criteria, which are required for the construction
of data-dependent triangulations, are discussed in Section 2.4. Finally, Sec-
tion 2.5 is concerned with the efficient implementation of priority queues by
using the data structure heap, and Section 2.5 is devoted to domain decom-
position by using the data structure gquadtree.

2.1 Triangulation Methods

Triangulation methods are important ingredients in finite element methods
(FEM), numerical approximation, computer-aided geometric design (CAGD),
and various other application fields. For a discussion concerning triangula-
tions in CAGD and in approximation theory, see [159, 160]. In these particular
applications, a triangulation is typically used for partitioning a planar domain
2 C R?. The partitioning is then in turn used for building approximation
spaces, splines on triangulations, comprising piecewise polynomial functions.

Especially in bivariate scattered data modelling, splines on triangulations
are powerful tools for the interpolation and approximation of surfaces. But
before we proceed with this discussion, let us first give a formal definition for
the term triangulation.
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Definition 1. A triangulation of a discrete point set X = {z1,...,xn} is
a collection Tx = {T}reTy of triangles in the plane, such that the following
conditions hold.

(a) the vertexr set of Tx is X;

(b) any pair of two distinct triangles in Tx intersect at most at one common
verter or along one common edge;

(c) the conver hull [X] of X coincides with the area covered by the union of
the triangles in Tx.

We say that a collection T = {T'}reT of triangles is a triangulation of
a connected set 2 C R?, iff property (b) holds and 2 is the union of the
triangles in T .

Figure 2.1 shows a possible triangulation of a scattered point set of size
| X| = 20. Note that for every discrete point set X comprising at least three
points there always exists a triangulation Tx. The triangulation 7x may,
however, not be unique. In accordance with the above definition, a triangu-
lation can also be regarded as a planar graph, whose nodes are the vertices of
the triangles, and whose edges provide the connectivities in the graph [134].
Thus, the basic entities in a triangulation are triangles, edges, and nodes
(vertices).

Fig. 2.1. A triangulation of a point set X of size | X| = 20.

By the classical Fuler formula [134], we have, for any triangulation T,

the relationship
N,—N.+N; =1 (2.1)

for its number NV; of triangles, N, of edges, and N = N, of vertices. Moreover,
with letting N® the number of boundary points in 7, we obtain the formulae
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N,=2N - N’_-2
N,=3N-N®-3

for the number of triangles and edges in 7.
We associate with any triangulation 7 of {2 the finite element space

S(T={feCc®): f|T linear; for all T € T}, (2.2)

the linear function space comprising all continuous (real-valued) functions
on {2, whose restriction on any triangle in 7 is linear. In approximation
theory, S(7T) is usually called the space of linear splines on 7. Note that the
dimension of S(7) is N. A cardinal basis for S(7") is given by the Courant
elements uy,...,uny € S(T) satisfying u;(zx) = &k, for all 1 < j,k < N,
where z; denotes the k-th vertex in 7.

Now suppose we are given real function values f1, ..., fx, sampled from
an unknown function f at the vertex set X = {z1,...,zn5} of 7. Then, the
interpolation problem

s(zg) = fr, forl<k <N,

has a unique solution s in S(7°), which can be expressed as

N
s = Z fiu;.
J=1

The function s is sald to be the piecewise linear interpolant to f over the
triangulation 7. We make use of the notation L(f, 7} = s in order to express
the dependency of s on the triangulation 7 and the values of f at X.

We remark that S(7) = S9(7T) is the simplest instance of the family of
bivariate splines,

Si(T)={feC () : fl,eP foralTeT}, forg>r>0,

containing all functions on {2 which are globally of smoothness C”, and whose
restriction on any T' € 7 is an element of Pg +1, the linear space of all bivariate
polynomials of order at most ¢ + 1 (and thus of degree at most ¢). Hence,
S4(T) consists of piecewise polynomial functions on 2.

Bivariate splines provide powerful and stable methods for scattered data
fitting. These classical techniques are, however, not in the focus of this work.
Therefore, we do not dwell on explaining further details on this wide research
field. Instead of this, we prefer to recommend the recent tutorial [178] for an
up-to-date account on the theory of bivariate splines and their applications.

2.2 Delaunay Triangulations

Apart from trivial cases, there are many different triangulations of a given
planar point set X. Let us first look at the simple example, where the set
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X = {z1,%3,13,z4} comprises merely four points. Furthermore, we assume
that the four points in X are the vertices of a strictly convex quadrilateral Q,
i.e.,, @ is convex and no three points of its vertex set X are co-linear, see
Figure 2.2. For brevity, we use from now on the term conver quadrilateral
rather than strictly convex quadrilateral.

Fig. 2.2. A strictly convex quadrilateral Q.

There are obviously two different ways for splitting Q into two triangles,
yielding two different triangulations 7 and 7 of X, as shown in Figure 2.3.
We denote by e the diagonal edge in 7', and by € the diagonal edge in 7.

Fig. 2.3. Two triangulations of a convex quadrilateral, 7 (left) and 7 (right).

When it comes to choosing between 7 and 7, there are several good
reasons which would favour 7, the left one in Figure 2.3. These mathematical
reasons rely on error estimates from finite element methods on triangulations,
depending on the largest diameter in the triangulation [18, 81, 158]. This
suggests that one should avoid long thin triangles, as occurring in 7, the
right one in Figure 2.3. We remark at this point that there are also good
mathematical reasons in favour of using long thin triangles. Details on this
are explained in Section 2.4.

But if we wish to avoid long and thin triangles, this requires keeping the
smallest angle in the triangulation as large as possible. According to this
criterion, a triangulation 7 is better than 7', T > T, iff the minimal angle

a(T) = min {onmin(T) : T € T} (2.3)
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in 7 is larger than the minimal angle a(7) in 7, where amin(T) in (2.3)
denotes the minimal angle of a triangle T'. In the situation of Figure 2.3, we
have o(T) = 27.47° and o(T) = 19.98°. Therefore, T is better than 7.

In situations where the four points in X are co-circular, i.e., they lie on
the circumference of a circle, it is easy to show that neither of the two possible
triangulations of Q, 7 or 7, is better than the other. In this case, they are
said to be equally good, T = T.

If, however, the points in X are not co-circular, then one triangulation,
either 7 or 7, must be better than the other. This is confirmed by the
following lemma due to Lawson [109], which provides an alternative criterion,
the Delaunay criterion, for checking this.

Lemma 1. Let Q be a conver quadrilateral whose four vertices are not co-
circular. Furthermore, let T, T denote the two possible triangulations of Q.
Then, T is better than T, iff for each of the two triangles in T its circum-
circle does not contain any point from the vertex set X of Q in its interior.
Otherwise, T is better than T .

If T is better or equally as good as 7, T > T, then the quadrilateral Q
is said to be optimally triangulated by 7. In this case, we also say that 7
is an optimal triangulation for Q, or, more briefly, we say that the edge e
in T is optimal. In the following discussion, it is convenient to say that any
interior edge, whose two adjacent triangles form a non-conver quadrilateral,
is optimal.

Note that any convex quadrilateral Q, which is not optimally triangulated,
can be transferred into an optimally triangulated one by an edge swap. In this
case, the current triangulation, say T, of Q is replaced by the other possible
triangulation of Q, 7. In other words, the current (non-optimal) edge e on
the diagonal of Q is swapped for the edge € on the opposite diagonal of Q.
The edge €, and so the triangulation T of Q, is in this case optimal.

Now let us return to the general situation, where the triangulation may
comprise arbitrarily many vertices. After the above discussion we are in a
position to introduce Delaunay triangulations [134].

Definition 2. TheDelaunay triangulation Dx of a discrete planar point
set X is a triangulation of X, such that the circumcircle for each of its
triangles does not contain any point from X in its interior.

Figure 2.4 shows an example for the Delaunay triangulation of a point
set of size | X| = 20. We remark that the Delaunay triangulation Dy of X is
unique, provided that no four points in X are co-circular [134]. Note that by
the above definition, any interior edge in a Delaunay triangulation is optimal,
i.e.,, any convex quadrilateral Q in Dx satisfies the Delaunay criterion, and
so Q is optimally triangulated.

Moreover, one can show that the Delaunay triangulation Dx of a point
set X maximizes the minimal angle among all possible triangulations of X,
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see [159]. In this sense, Delaunay triangulations are (globally) optimal trian-
gulations.

Fig. 2.4. The Delaunay triangulation of a point set comprising 20 points.

Considerable effort has gone into the design of algorithms for the con-
struction of Delaunay triangulations. There are basically three different ap-
proaches, yielding the three Algorithms 1, 2 and 3 below, each of which
relies on the Delaunay criterion in Lawson’s Lemma 1. In fact, the first Al-
gorithm 1 is based on the local optimization procedure (LOP) due to Lawson,
Algorithm 4 in Section 2.4.

Algorithm 1 (Post optimize).
Construct an initial triangulation. Then iteratively go through the list of con-
vex quadrilaterals and make edge swaps for non-optimal edges.

Algorithm 2 (Iteratively build).

Start with one triangle (with vertices in X ) and add one point from X at a
time, making sure that at each step every convex quadrilateral in the current
triangulation is optimally triangulated.

Algorithm 3 (Divide and conquer).
Recursively divide the data points up into pieces, find a Delaunay triangula-
tion for each piece, and then merge these triangulations.

It can be shown that every triangulation algorithm requires at least
O(N log(N)) operations, where N is the number of points in the set to be tri-
angulated [159]. As to the computational costs required for the above three
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algorithms, the Algorithm 3 (divide and conquer) has optimal complexity,
O(N log(N)), whereas the other two, Algorithm 1 and 2 cost O(N?) in the
worst case scenario, but O(N log(N)) in average.

2.3 Voronoi Diagrams

For any Delaunay triangulation, there is a dual graph, called the Voronoi
diagram. Before we explain this duality relation, which has been observed
by Delaunay [39] in 1934, let us make a few general remarks concerning
Voronoi diagrams. Voronoi diagrams (and thus Delaunay triangulations) are
well-suited for solving closest point problems on a given point set X, such as
the question: on given point y, which point in X is closest to y?

In fact, the Voronoi diagram of a point set X consist of Voronoi tiles,
each of which being associated with one point x in X. The Voronoi tile of
z contains all points which are at least as close to x as to any other point
in X. Voronoi diagrams, also referred to as Dirichlet, Thiessen, or Voronos
tessellations, have a variety of important applications in biology, computer-
aided design, geography, and many other fields.

For the subsequent discussion in this work, it is convenient to formulate
the duality relation between Voronoi diagrams and Delaunay triangulations
in general dimension d. Suppose X C R? is a finite point set in R¢. Then, for
any x € X, the point set

Vale) = {ye RY : [y - 2] =r_nin||y—f||} 2%
FeX

is said to be the Voronoi tile of x, and the collection {Vx (z)}zex of Voronoi
tiles is called the Voronoi diagram of X. Here, || - || is the Euclidean norm
on R?¢. Note that the Voronoi diagram yields a partitioning of the Euclidean
space,

Rd = U Vx(.’E)

TEX

Moreover, each Voronoi tile Vx(z) is a non-empty, closed and convex
polyhedron, whose vertices are called Voronoi points. Two different Voronoi
tiles Vx(x) and Vx(y) are either disjoint or they share a common face, in
which case the points £ € X and y € X are said to be Voronoi neighbours.

By connecting all possible Voronoi neighbours, we obtain a graph whose
vertex set is X. This graph defines a simplicial decomposition Dx of the
convex hull [X], provided that no d + 2 points in X are co-spherical. The
latter means that no d + 2 points in X lie on the (d — 1)-dimensional surface
of a sphere S C R?. Let us from now on assume this property, which helps us
to omit lengthy and tedious but inconsequential technical details concerning
degenerate cases.
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The simplicial decomposition Dx of X is said to be the Delaunay triangu-
lation of X . In the special case of two dimensions, Dy is the planar Delaunay
triangulation, as introduced in the previous Section 2.2. Thus, there are two
alternative (and equivalent) definitions for a Delaunay triangulation in two
dimensions, one given by Definition 2, and the other by regarding the dual
graph of the Voronoi diagram. Figure 2.5 shows a Voronoi diagram, the dual
one of the Delaunay triangulation in Figure 2.4.

Fig. 2.5. The Voronoi diagram of a point set comprising 20 points.

Likewise, an alternative and equivalent definition for the Delaunay trian-
gulation in arbitrary dimension can be obtained by the generalization of the
Delaunay criterion in the previous section.

Definition 3. The Delaunay triangulation Dx of a discrete point set
X C R? is a simplicial decomposition, whose vertex set is X and such that
the circumsphere of each of its simplices does not contain any point from X
in its interior.

The triangulation Dx of X is unique (provided that no d + 2 points in X
are co-spherical). Moreover, each center point of a circumsphere in a simplex
of Dx is a Voronoi point. Note that the Euclidean distance function dx
associated with X, and defined by

dx(y) = min lly — =zl|, (2.4)

has local maxima at the Voronoi points, where || - || is the Euclidean norm
on R%.
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We close this section by remarking that for any z € X, all of its nearest
points from X \ z are Voronoi neighbours of z. In other words, each vertex
z € X in the Delaunay triangulation Dx of X is connected with all of its
nearest vertices. In particular, a closest point pair z,y € X satisfying

||:L‘ - y” = dX\z(x) = dX\y(y)

is connected by an edge in Dx . Hence, the task of localizing such a closest pair
of points boils down to locating the shortest edge in Dx. We make advantage
of this important property later in this work.

2.4 Data-Dependent Triangulations

Now let us return to planar triangulations. It has for long time been widely
accepted that when it comes to fitting bivariate scattered data by splines on
triangulations, the Delaunay triangulation of the data points is the best one
to use, because it avoids long thin triangles. The argumentation is based on
available error bounds for finite element approximations, depending on the
largest diameter in the triangulation [18, 81, 158].

For interpolation by linear splines, however, it was first numerically shown
in [58, 59, 60] by Dyn, Levin and Rippa, and later proven in [140] by Rippa,
that long and thin triangles can improve the approximation quality of the
resulting piecewise linear interpolant. This is also confirmed in [137] for C!
piecewise cubic elements on triangulations.

The approach in [58, 59, 60] (see also the review [61]) is based on the
concept of data-dependent triangulations, triangulations whose construction
essentially depends on the function values of the underlying function f to
be approximated. Note that this is in contrast to Delaunay triangulations,
whose construction depends only on the locations of the points in X, but not
on the function values of f at X, see the Algorithms 1, 2, and 3 in Section 2.2.

Starting point for the construction of any data-dependent triangulation
(DDT) is the selection of one specific optimality criterion for convex quadri-
laterals, like the Delaunay criterion in Delaunay triangulations. In fact, the
construction of data-dependent triangulations is done by using the Algo-
rithm 1 in Section 2.2, but by working with different criteria (other than the
Delaunay criterion) for swapping edges.

Any such (data-dependent) swapping criterion assigns a cost value c(e)
to each interior edge e of a triangulation. This value can be viewed as the
energy of the edge e. When it comes to choosing between the two different
triangulations 7 and T of any convex quadrilateral Q (see Figure 2.3), the
cost values c(e) and c(é) of the two interior edges e,é of 7 and T are com-
pared. In the situation of Delaunay triangulations, the cost function may be
given by c(e) = 1/a(T), the reciprocal value of the minimal angle in 7.

If c(e) < c(é), then T is better than 7, T > T. Moreover, if c(e) = c(e),
then the two triangulations 7 and T are equally good, 7 = 7. Finally, if



16 2 Algorithms and Data Structures

T is better than or as good as 7, T > 7, then the edge e is said to be
optimal. Vice versa, if 7 > T, then the edge € is said to be optimal. Again,
any interior edge of a non-convezr quadrilateral is said to be optimal.

Now the overall quality of any triangulation 7 can be measured by using
the cost values of its interior edges, ej,...,ey,, which yields the cost vector
c(T) = (c(er),-..,c(en))T € R™ of the triangulation 7. This allows us to
compare two different triangulations (of one fixed point set X), Tx and Tx,
by using their cost vectors ¢(Tx) and ¢(Tx). Recall from Euler’s formula (2.1)
that the number of interior edges in Tx and Tx, and thus the length of their
cost vectors, are equal. Now if ||c(Tx)|| < |lc(Tx)||, for some norm || - || on
R™, then the triangulation Tx is said to be better than or as good as Ty,
Tx > Tx. This leads us to the following definition for optimal triangulations.

Definition 4. A triangulation Ty of a finite point set X is said to be
optimal , iff T¥ > Tx holds for every triangulation Tx of X.

Note that for any finite point set X there is always one optimal trian-
gulation 7* of X, which may possibly be not unique though. Although it
would be desirable to construct, on any given point set X, an optimal trian-
gulation Ty, the computational costs for the required global optimization is
in general too expensive. Therefore, we prefer to work with locally optimal
triangulations, whose construction is much cheaper.

Definition 5. A triangulation is said to be locally optimal , iff all of its
intertor edges are optimal.

Note that every optimal triangulation is also locally optimal. Indeed, sup-
pose 7* is an optimal triangulation, which is not locally optimal. Then there
is at least one interior edge e in 7*, which is not optimal. Thus, by swap-
ping e, the triangulation 7* is transferred into a triangulation 7, such that
¢(T) < ¢(T*), which is in contradiction to the optimality of 7*.

Now let us turn to the construction of locally optimal triangulations.
Having computed any initial triangulation 7 of a given point set X, e.g. its
Delaunay triangulation 7o = Dy, a locally optimal (data-dependent) triangu-
lation can be constructed by iteratively swapping non-optimal edges. This is
the aforementioned local optimization procedure (LOP) due to Lawson [110].

Algorithm 4 (Local Optimization Procedure).

INPUT: A finite point set X C R?, and function values flx.

(1) Construct an initial triangulation To of X, and let T = To.

(2) WHILE (T is not locally optimal) DO
(2a) Locate a non-optimal edge e in T ;
(2b) Swap the edge e, and so obtain the modified triangulation T ;
(2¢) LetT=T.

OUTPUT: A locally optimal triangulation T .
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Note that this LOP terminates after finitely many edge swaps. Indeed,
since the input point set X is assumed to be finite, and each edge swap
strictly reduces the non-negative energy c(7) of the current triangulation T,
this process must terminate after finitely many steps.

In the remainder of this section, we discuss various useful swapping criteria
for the construction of data-dependent triangulations, although we do not
utilize all of them in the following of this work.

One important point for the construction of a DDT is shape-preservation.
If, for instance, f is convex, the resulting piecewise linear interpolation
L(f,T) over the resulting triangulation 7 should preserve this property, i.e.,
L(f,T) should also be convex, in which case T is said to be a convez tri-
angulation. The desired convexity property for 7 can always be achieved
by using the following swapping criterion, suggested by Mulansky [125], in
combination with Lawson’s local optimization procedure, Algorithm 4.

Criterion 1 (Convexity).

Let Q be a conver quadrilateral, and let T and T denote the two different tri-
angulations of Q. Then, the diagonal edge e of T is optimal, iff the piecewise
linear interpolant L(f,T) is convez.

Note that for convex data, there is always at least one triangulation of a
convex quadrilateral Q, T or 7, which is convex. In case of constant data,
both triangulations are convex. In this case, L(f,T) = L(f,T), and so they
are equally good, 7 = T. Mulansky [125] gave also an expression for a cor-
responding cost functional, which shows that for conver f the LOP outputs
after finitely many swaps a convez triangulation T satisfying

L(f,Tx) £ L(f,Tx),

pointwise on {2 = [X], for all triangulations Tx of X. Moreover, L(f, Tx) is
in this case the best approzimation of f among all piecewise linear functions
over the triangulations of X, i.e., the inequality

|f(x) = L(f, Tx)(2)| < |f(z) = L(f, Tx)(z)|, forallzefn,  (25)

holds for every triangulation Tx of X. So in this sense, convex triangulations
are (globally) optimal.

Several other useful data-dependent swapping criteria are proposed in
[58, 59, 60] by Dyn, Levin and Rippa. Each of these swapping criteria is
well-motivated by using reasonable assumptions on (a) the smoothness of
the underlying function f, (b) possible variational properties of f, and (c)
specific criteria based on the resulting approximation error. This yields three
different classes of swapping criteria for data-dependent triangulations.

(a) Nearly C! criteria,
(b) Variational criteria;
(c) Minimal error criteria.

Various useful swapping criteria are discussed in the remainder of this section.
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Nearly C! Criteria (NC1). For a variety of different test cases it is shown
in [58, 59, 60] that data-dependent triangulations, which are producing long
and thin triangles can significantly improve the approximation quality of the
resulting piecewise linear interpolation. In particular, Rippa proves in [140]
that long thin triangles are well-suited for approximating a smooth surface f
with a preferred direction, i.e., f haslarge second-order directional derivatives
in one direction, compared with other directions. In this case, the long side
of the triangles should point into the directions of small curvature.

Since f is smooth, and so f does not oscillate too much between the data
points, the construction of data-dependent swapping criteria which prefer
smooth transitions between triangles across common edges is recommended.
In this case, a suitable swapping criterion measures the discontinuity of first
order derivatives across interior edges. Among several criteria which were
proposed in [58, 59, 60], two turned out to perform particularly well in terms
of their resulting approximation behaviour, angle between normals (ABN)
and jump of normal derivatives (JND).

In order to define the required cost functions of ABN and JND, we need to
make some notational preparations. Let e denote an interior edge in a convex
quadrilateral Q, and let Ty and T denote the two triangles in the resulting
triangulation 7 of Q, i.e., T} and T» share the common edge e. Moreover,
let the piecewise linear function L(f,T) of f on T be composed by the two
linear functions

P(z,y) =aiz+biy+ca and Py(z,y) = az + by + c2,
where P, is corresponding to T3, and P, is corresponding to T%.

Criterion 2 (Angle Between Normals, ABN).
The angle 8. between the two normal vectors

1
ng, = —Fj—4———"- (aiabia _I)Ta Z = 1727

vai+b+1

of the two planes P, and P, is given by the expression

nT-ng ayas + biby +1

cos(fe) = = .
 nallz - lnzllz — /(a? + 62 + 1)(ad + 62 + 1)

The ABN cost function is then given by c(e) = 6.

Note that the criterion ABN basically measures the angle between the
normals of two planes in R®. Therefore, the criterion ABN is also well-defined
for surface triangulations of point sets in R3. In this case, the piecewise linear
surface is no longer a bivariate function. Such surfaces do typically appear in
solid modelling, for instance.
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Criterion 3 (Jump of Normal Derivatives, JND).
The jump in the normal derivatives of Py and Py across the edge e is measured
by

j(e) = Inz(ar — a2) + ny(by — b2)],
where n = (ng,ny)T € R? is a unit vector that is orthogonal to the direction
of the edge e. In this case, the JND cost function is given by c(e) = j(e).

Variational Criteria. Suppose that the unknown function f can be charac-
terized by a variational property of the form

I(f) = min I(g)

where I : F — R is an energy functional on a suitable function space F,
comprising f and all piecewise linear functions over triangulations. In this
case, it makes sense to select a criterion which yields a triangulation 7 of
X, whose corresponding piecewise linear approximation L(f,7) € F to f
minimizes the energy I(L(f, 7)) among all other triangulations of X.

One example for such a variational criterion is given by the minimal rough-
ness criterion, whose energy functional is the Sobolev semi-norm

I(f) = |flaa

on 2 = [X], and so F is the Sobolev space H;({2). For any triangulation 7
of X, the roughness of s = L(f,7T) € S(T) is in this case given by

|3|%2,1 = Z |3|%1,1,

TeT
where for any triangle T' € T, and with letting x = (£,7n) € 2,

M%=A@+@am.

Interestingly enough, due to Rippa [139] the (data-independent) Delaunay
triangulation Dx minimizes the roughness among all triangulations of X, i.e.,

|L(f, Dx)lea < IL(f, Tx)|ea (2.6)

holds for all triangulations Tx of X. Therefore, the Delaunay triangulation
is (globally) optimal with respect to this variational criterion.
It is well-known (see e.g. [141]) that the property (2.6) implies that

|f = L(f, Dx)lex < |f = L(f, Tx)|e (2.7)

holds for any triangulation Tx of X, provided that f is a harmonic function,
ie., Af =0, where
2 2
A= 6_ + a_
o0&~ on?
denotes the Laplace operator. So in this case, the piecewise linear interpolant
L(f,Dx) over the Delaunay triangulation Dx of X is the best approximation
of f among all piecewise linear interpolants L(f, Tx).
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Minimal Error Criteria. Given a normed linear function space F com-
prising all piecewise linear functions over triangulations, and a fixed f € F,
the approximation quality of any triangulation 7" can be measured by

In this case, it is desirable to find a best approximation L(f, 7*) satisfying
e(f,T7) <e(f, T)

for all triangulations 7 of X, in which case the triangulation 7* is optimal.
Examples for optimal triangulations of such kind, output by the local op-
timization procedure of Algorithm 4, are convex triangulations, minimizing
the error in (2.5), and Delaunay triangulations, minimizing the error in (2.7).

2.5 Heaps and Priority Queues

A heap is a standard data structure which supports the eflicient sorting of
data objects. The resulting sorting algorithm is called heapsort, dating back
to Williams [173]. Heapsort sorts the objects by using the values of their keys.
The key of an object assigns a unique significance value to the object. The
task of the sorting algorithm is to order the objects by their significances.
The ordering can either be taken in increasing or decreasing order. For the
moment of the discussion in this section we restrict ourselves to decreasing
order, i.e., the most significant object comes first.

A heap is an array A = A(1,...,n) of data objects A(i),7 = 1,...,n, that
can be viewed as a binary tree, see Figure 2.6. Each node of the tree corres-
ponds to a data object A(i) of the array, whose significance value o(A(2))
is stored in A(Z). The root of the tree is A(1). The two children of the root
are the nodes A(2) and A(3), and the root is the parent of these two nodes.
More general, for any admissible index i the two children of the node A(z)
are A(2i) and A(2i + 1), where A(2:) is called the left child and A(2i + 1)
is called the right child of A(i). Conversely, the parent of any node A(%) is
A(|3/2]). Note that every node in the heap, except for the root, has a unique
parent node. But not every node has two children. In fact, a node may have
either two children, one child, or no children. A node without any children is
called a leaf. In the situation of Figure 2.6, the nodes A(5), ..., A(9) are the
leaves of the heap. The tree is completely filled on all levels except possibly
the lowest. But the lowest level is filled from left to right, so that there are
no gaps in the object array A. Hence the height of the tree, being the number
of levels between the root and the leaves, is log,(n) ~ log(n).

The nodes in a heap need to be organized such that for each node A(3)
its significance value is less than or equal the significance value of its parent
A(l2/2]), i.e.,

o(A(@)) < o(A([2/2])), fori>1,
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Fig. 2.6. A heap A = (83,45,31,34,28,5,8,12,20) of length n = 9 and height h = 4.

see Figure 2.6. This property is referred to as the heap condition. Therefore,
according to this condition, the root A(1) is the most significant node. More-
over, every node A(z) in the heap has a larger significance than any node in
the subtree rooted at A(:). Note that the ordering of the data objects in the
heap allows us to quickly retrieve the most significant object, A(1), of the
whole data set. Therefore, the heap data structure is also well-suited for the
efficient implementation of a priority queue.

In this work, we are mainly interested in using heaps for the implemen-
tation of priority queues rather than sorting data objects, although these
two tasks are strongly related to each other. But let us briefly explain our
motivation for using heaps. In the situation of forthcoming applications, the
data objects are points, and so the whole data set corresponds to a point
cloud. We design algorithms which dynamically modify the point cloud by
the removal and insertion of points, one at a time. By each such modification,
the significance values of some of the points are updated. At any time step,
we are interested in efficiently locating the most significant (least significant)
point from the point cloud. To this end, we store the points in a heap, so that
according to the heap condition the most significant (least significant) point
is the root. The dynamic modification of the point cloud requires efficiently
updating the heap with maintaining the heap condition. In the following of
this section, the suitability of the heap data structure for our purposes is
shown. More precisely, we discuss the construction of a heap, explain elemen-
tary operations on heaps, such as the removal and insertion of nodes, and we
analyze the required computational costs, respectively.
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2.5.1 Maintaining the Heap Property

Starting point of the following discussion is the important routine called
heapify, which serves to maintain the heap property. On given array A and
index 7, the routine assumes that the two subtrees rooted at the two children
A(2i) and A(2i + 1) of the node A(:) satisfy the heap condition, whereas
A(i) may have a smaller significance than its children, in which case the
node A(i) violates the heap condition. The function heapify, displayed in
Algorithm 5, manipulates the subtree rooted at A(:), such that the heap
condition is satisfied. This is accomplished by recursively shifting the data
object of the node A(7) downwards in the subtree, by one level per shift, until
the heap condition in the subtree rooted at A(z) is satisfied.

At each step, the most significant among the node A(¢) and its children
(possibly none, one, or two) is determined. If A(z) is the most significant one
(e.g. when A(7) is a leaf), then the subtree rooted at A(:) satisfies the heap
condition. In this case, the routine heapify terminates. Otherwise, one of its
children, the node A(imax), imax € {24,214+ 1}, is the most significant one. In
this case, the data object in A(2) is swapped with the one in A(imax), before
heapify is recursively applied on the subtree rooted at A(imax)- The running
time of heapify on a subtree of size n is O(1), for fixing the largest node at
each step plus one possible swap, times the number of steps. But the number
of steps is bounded above by the height log,(n) of the subtree rooted at A(3).
Therefore, heapify requires O(log(n)) operations in the worst case.

Algorithm 5 (Heapify).

function heapify(4,1i);
£=2i;r=2i4+1;
if (¢ <n) and (A(€) > A(3))
then iy = £;
else tmax = 1;
if (r <n) and (A(r) > A(imax))
then ity = 1;
if (dmax # 1)
then swap A(?) and A(imax);
heapify(A,imax);

2.5.2 Building a Heap

The function heapify can be used for building a heap from any given array A
of size . In order to see this, first note that the nodes A(|n/2| +1),...,A(n)
are the leaves of the tree. The (empty) subtrees of these nodes do trivially
satisfy the heap condition. Now, heapify can be applied bottom-up on the
remaining entries A(¢), ¢ = |[n/2],...,1, in order to convert the array A
into one, whose corresponding binary tree satisfies the heap condition. The
resulting function build-heap is shown in Algorithm 6.
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Algorithm 6 (Build Heap).

function build-heap(A4);
for i = |n/2],...,1
heapify(A4,1);

Now let us discuss the correctness of the routine build-heap. This is
done by induction on i. Observe that prior to the first iteration ¢ = |n/2]
the subtrees rooted at the leaves A(i), i = |n/2] + 1,...,n, satisfy the heap
condition. At each step ¢, the heap condition in the subtree rooted at A(%) is
maintained: Prior to step ¢, the subtrees rooted at the (possibly none, one,
or two) children of the node A(z) satisfy the heap condition by the induction
assumption. After having called the function heapify in the ¢-th iteration,
the subtree rooted at A(¢) also satisfies the heap condition. Therefore, after
the final iteration, i = 1, the tree rooted at A(1) satisfies the heap condition.

The computational costs required for building a heap of size n by using
build-heap can be bounded above by the following simple calculation. This
is the number of O(n) iterations in build-heap times the running time of
heapify. But the running time of heapify can uniformly be bounded above
by O(log(n)) operations. Altogether, the running time of build-heap can
thus be bounded above by O(n log(n)). We remark, however, that the tighter
bound of O(n) can be proven for the computational costs of build-heap,
when tighter bounds on the running time of heapify are used, see e.g. [33],
Section 6.3.

2.5.3 Heapsort

Although we are not mainly interested in sorting data objects, it is useful
to briefly discuss heapsort, Algorithm 7. On given array A = A(1,...,n) of
length n, heapsort starts by applying the function build-heap on A. Due
to the heap condition, the most significant node in A is the root A(1). Now
the idea of heapsort is quite simple: It first exchanges the data object in
the root A(1) with the one in the node A(n). Then, the function heapify is
applied on the root of the subarray A) = A(1,...,n — 1), of length n — 1,
so that the reduced array A(!) satisfies the heap condition. This operation is
called pop. After n— 1 pops, the subarray A(»~1) = A(1) of length 1 contains
the least significant node of the original array A. Moreover, the data objects
in A are sorted in increasing order: o(A(1)) < 0(A(2)) < ... < a(A(n)).
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Algorithm 7 (Heapsort).

function heapsort(A);
build-heap(A);
fori=mn,...,2
swap A(1) and A(Z);
heapify(A(l,...,i—1),1);

It is easy to see that heapsort has running time O(nlog(n)) in the worst
case. Indeed, the initial call to build-heap costs at most O(nlog(n)) time,
and the subsequent n — 1 pops cost at most O(log(n)) time each. Altogether,
heapsort performs, in comparison with other sorting algorithms, remarkably
well, especially in view of its running time in the worst case scenario. For
further details, we refer to the textbook [33].

2.5.4 Implementing a Priority Queue

A priority queue is a data structure for maintaining a set X of data objects
according to their significance values. The set X is subject to modifications by
the insertion and removal of single data objects, and thus the significances of
the data objects are to be updated at run time. Since we are mainly interested
in point sets, we let in the following discussion X = {zy,...,7,} C R denote
a point cloud of size n. Moreover, each point x € X bears a significance value
o(z) € R Now a priority queue needs to be able to return the most significant
point z* € X, satisfying o(z*) = max;ex o(z), at any time. To this end,
the efficient implementation of a priority queue requires the following basic
operations.

e max(X).

Returns the most significant point in X.
e remove(X,1).

Removes the point z; € X from X, i.e.,, X is updated by X = X \ ;.
e insert(X,z).

Inserts a new point x into the set X, i.e., X is updated by X = X U x.
e update(X,i).

Updates the significance value of the point z; € X.

The data structure heap is of enormous utility when it comes to provide
the above functionality. First of all, if we store the points in the (dynamic)
array X (1,...,n) satisfying the heap condition, the routine max, Algorithm 8,
is straightforward and simple to implement at computational costs of merely
O(1) operations.



2.5 Heaps and Priority Queues 25
Algorithm 8 (Max).

function max(X);
return X (1);

Note that each of the remaining three routines, remove, insert, and
update, modify the point set X = {z1,...,2,}, and thus the corresponding
array X = X(1,...,n). Therefore, maintaining a priority queue by using the
data structure heap boils down to maintaining the heap condition. In other
words, the three routines remove, insert, and update need to be imple-
mented such that they maintain the heap condition in the array X. But this
can be accomplished by mainly using the basic routine heapify, Algorithm 5.
The implementation of the three routines update, insert, and remove are
subject of the following discussion.

The function update, Algorithm 9, assumes that the significance value
o(z;) in the ¢-th position X (i) of the input array X = (1,...,n) has just
been changed. Under the assumption that X had satisfied the heap condition
before the update of o(z;), the routine update serves to modify the array X
such that it satisfies the heap condition on output.

Algorithm 9 (Update).

function update(X,1);
heapify(X,i);
while (i > 1) and (X (3) > X ([2/2]))
i=11/2];
heapify(X,1).

As to the correctness of the function update, first note that by the modi-
fication of o(z;) the subtree rooted at X (i) may violate the heap condition.
Indeed, this may happen when the significance value o(z;) is reduced. Due
to our assumption on X, the subtrees of the (possible) children of the node
X (¢) satisfy the heap condition. So by the initial call to heapify(X,:), the
subtree rooted at X (i) satisfies the heap condition. In case the significance
value o(z;) is increased, the subtree of X rooted at the parent X (|i/2]) may
violate the heap condition. In this case, the point in the parent node X (|i/2])
needs to be shifted downwards in the tree by one level, before the modified
node X (|2/2]) must be updated accordingly, and so on. This iterative process
is accomplished by calling heapify in the while loop of the routine update.
At each call of heapify therein, the current parent may be shifted downwards
by at most one level, at O(1) costs. Therefore, the running time of the while
loop in update can be bounded above by O(log(n)), and so can the initial
call to heapify be bounded above by O(log(n)). Altogether, the function
update costs at most O(log(n)) time.
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Algorithm 10 (Remove).

function remove(X,1i);
X() = X(n);
X=X(1,...,n-1);
update(X,1).

We remark that the operation remove(X, 1) is the aforementioned pop of
heapsort. It is easy to see that the output X = X(1,...,n — 1) of remove
satisfies the heap condition, provided that the input X = X (1,...,n) satisfies
the heap condition. Moreover, the computational costs of remove can be
bounded above by O(log(n)) operations.

Algorithm 11 (Insert).

function insert(X,z);
X(n + 1) =y
update(X,n + 1).

The insertion of a new point € X into X by using the routine insert,
Algorithm 11, leads us to an extension of the array X = X (1,...,n) by letting
X(n + 1) = z for new entry X (n + 1) at the (n + 1)-st position in X. But
the extended array X = X(1,...,n+1) may now violate the heap condition.
Indeed, the significance value o(z) of the new point z in X (n + 1) may be
larger than the significance of its parent X (|(n + 1)/2]). The subsequent
call to update(X,n + 1) serves to modify the array X, such that X satisfies
the heap condition on output. The running time of the routine insert is
obviously O(log(n)) in the worst case.

2.6 Quadtrees

A quadtree is a data structure, dating back to Finkel and Bentley [71], which
is suitable for computing decompositions of planar domains by recursive sub-
division. Moreover, a quadtree serves to efficiently solve proximity problems
for scattered data points in the plane. In forthcoming applications, we employ
quadtrees (and their generalization) mainly for such purposes. But before we
proceed, let us first give a formal definition for the term quadtree.

Definition 6. A quadtree is a tree such that each of its nodes has either
no children or four children.

The aim of this section is to explain the utility of the hierarchical data
structure quadtree for the purposes of our applications, especially for multi-
level algorithms and adaptive domain decompositions, to be discussed in
Chapter 5. In the following discussion, we let 2 C R? denote a rectangular
bounded domain, comprising a finite point cloud X C §2. When building
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the quadtree, we initially associate the root of the quadtree with these two
data objects, {2 and X, before each of those objects is recursively split into
subdomains and subsets.

The decomposition of 2 is accomplished by recursively splitting {2 into
smaller rectangular subdomains called cells. Each cell corresponds to a node
in the quadtree. But only the leaves of the quadtree, the leaf cells, may be
split. This is done as follows. When splitting a leaf cell w, four new subcells
weo, W1io,wo1,w11 are created, such that their interior are pairwise disjoint
and their union is w. By this operation, the cell w becomes the parent node
of the four new leaves wgg,w10,wo1, w11, and these four children are attached
to its parent w in the quadtree. In particular, the cell w is no longer a leaf.
Figure 2.7 (left) shows the subdivision of a leaf cell w into four subcells
woo, w10, wo1, w11 of equal area. The update of the subtree, rooted at w, is
also shown in Figure 2.7 (right).
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Fig. 2.7. Splitting a cell w into four subcells woo, w10, wo1,w11.

Likewise, the point cloud X is split by each subdivision of a cell. Any cell
w in the quadtree, initially w = 2, contains a specific portion of X, namely
the points of the intersection X,, = X N w. Hence, when splitting a cell w,
then the points in X, are reattached to the four children wog,wig,wo1, w11,
so that
Xo = Xugo U Xuwgo U Xugy U X, -

Therefore, the whole point set X is the union

x=Jx,
weLl

of the point sets X,, C w, each of which being associated with a leaf w in the
quadtree. We denote the set of the current leaves by L.

Figure 2.8 (top left) shows a rectangular domain {2 C R? containing a
point set X of size |X| = 518. The domain {2 is decomposed into |£| = 28
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leaves. Likewise, the point set X is partitioned into the 28 subsets { X, }uec.
The structure of the quadtree is also shown in Figure 2.8 (bottom), along
with the decomposition of {2 and the partitioning of X (top right).
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Fig. 2.8. A point set X C 2 comprising 518 points (top left); the subdivision of
£2 and partitioning of X (top right); the structure of the corresponding quadtree
(bottom).

The splitting of any single leaf w of the quadtree is done by using the
routine split-cell, Algorithm 12. The function split-cell returns, on
given leaf w, a list {woo,w10,wo1,w11} of new leaves, the four children of
w. Moreover, the points in X, are reattached to the cells wpg, wi0,wo1, w1,
before the quadtree data structure is updated by drawing the connectivities
between w and its new children in the graph of the quadtree.
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Algorithm 12 (Split Cell).

function split-cell(w);
create four cells wog, w10, wWo1, w115
for @ € {woo, w10, wo1, w11}
let X = X, N@;
attach @ to w;
return {woo, w10, wo1,w11};

The recursive construction of the entire quadtree is done by the following
routine build-quadtree, Algorithm 13. The call to build-quadtree(f?2)
serves to build the whole quadtree.

Algorithm 13 (Build Quadtree).

function build-quadtree(w);
if (w is splittable)
{woo,wlo,wm,wu} =split—ce11(w);
for @ € {woo,wlo, wo1 ,U)“}
build-quadtree(w);

In each recursion of build-quadtree, it is first checked whether the input
cell w is splittable. But this requires a splitting criterion for cells. In our ap-
plications, we employ different splitting criteria. In order to make a concrete
example, one criterion depends merely on the size |X,,| of the point set X,,.
In this case, a cell w is referred to as splittable, iff |X,,| > n for a predeter-
mined number n < |X|. So when using this particular splitting criterion, the
quadtree is built such that none of its leaves contains more than n points from
X. For instance, in the situation of Figure 2.8 we chose the value n = 50.

We defer the discussion on other splitting criteria to later in this work. But
let us finally remark that by the selection of any specific splitting criterion,
the domain is essentially split adaptively. Therefore, unlike binary trees of
heaps, the resulting quadtree does not necessarily need to be balanced. But in
practice, the height h of the quadtree is a priori bounded above, and satisfying
h ~log(N), with N being the number of points in X.

2.6.1 Generalizations to Higher Dimensions

In this short subsection, the generalization of quadtrees for higher space di-
mensions d is explained. Moreover, the function split-cell of Algorithm 12
and build-quadtree of Algorithm 13 are extended. For the special case of
three dimensions, d = 3, the data structure is called octtree. In this case, any
node of the octtree has either no children or 2% = 8 children. Moreover, the
underlying domain 2 C R?, a cuboid in R®, is recursively split into smaller
cuboids, eight at each split. The point set X C (2 is split accordingly.
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Now let us turn to the case of a general dimension d.

Definition 7. For any d > 2, a generalized quadtree is a tree such that
each of its nodes has either no children or 2¢ children.

In this general setting, a leaf w, corresponding to a hypercuboid in R?, is

split into 2¢ leaves w;, i = (i1,...,14) € {0,1}¢, of pairwise disjoint interior
and satisfying
w = U Wj.
i€{0,1}4

But this leads us immediately to the following extensions of the two routines
split-cell and build-quadtree.

Algorithm 14 (Split Cell).

function split-cell(w);
create 2% cells w;, i € {0,1}¢;
for & € {w; : i€ {0,1}¢}

let X5 = X0 N@;

attach @ to w;
return {w; : i€ {0,1}9};

Algorithm 15 (Build Quadtree).

function build-quadtree(w),
if (w is splittable)
{wi : i€{0,1}9} =split-cell(w);
for @ € {w; : i€ {0,1}%}
build-quadtree(w);



3 Radial Basis Functions

Radial basis functions are traditional and powerful tools for multivariate
scattered data interpolation. Much of the material presented in this chapter
is essentially needed in the subsequent developments of this work, such as
for the multilevel approximation schemes in Chapter 5, and the meshfree
simulation of transport processes in Chapter 6.

In the following Section 3.1, it is first explained how radial functions
are to be used for scattered data interpolation, and which such functions are
potentially available for this purpose. The latter leads us to a short discussion
on conditionally positive definite (radial) functions, in Section 3.2.

The utility of radial basis function interpolation is further supported by
the discussion in Sections 3.3 and 3.4, where two important optimality proper-
ties of the interpolation scheme are explained, optimal recovery and pointwise
optimality.

Section 3.5 is devoted to error estimates, and Section 3.6 is concerning the
numerical stability of radial basis function interpolation. A short discussion
on one critical aspect of radial basis function interpolation, referred to as the
uncertainty relation, follows in Section 3.7. Loosely speaking, the uncertainty
relation says that none of the commonly used radial basis functions manages
to combine good approximation behaviour with a numerically stable inter-
polation process. This dilemma, discovered by Schaback [146], motivates our
recent investigations concerning optimal point sampling, which is the subject
of our discussion in Section 3.9.

One particular class of radial basis functions, the polyharmonic splines
of Duchon [47], are treated separately in Section 3.8, where our recent re-
sults concerning the approximation order and the numerical stability of local
Lagrange interpolation by polyharmonic splines are reviewed.

The final Section 3.10 of this chapter explains least squares approrimation,
which is in many applications an appropriate alternative to plain interpola-
tion, especially in situations where the given data is contaminated with noise.

For a more comprehensive treatment of radial basis functions, we refer
to the surveys [22, 50, 51, 103, 133, 147, 148], the monograph [23], and the
recent tutorial [97], where also supporting computer exercises are provided.
Further supplementary material and MATLAB software can be downloaded
from the web site www.ma.tum.de/primus2001/radial/.
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3.1 Interpolation

In order to explain multivariate scattered data interpolation by radial basis
functions, suppose a data vector f|X = (f(z1),..., f(zn))T € RN of func-
tion values, sampled from an unknown function f : R® — R at a scattered
finite point set X = {z;,...,znx} C R?, d > 1, is given. Scattered data in-
terpolation requires computing a suitable interpolant s : R — R satisfying
le = f|X, ie.,

s(z;) = f(=;), forall1 <j<N. (3.1)

To this end, the radial basis function interpolation scheme works with a
fixed radial function ¢ : [0,00) — R, and the interpolant s in (3.1) is assumed
to have the form

N
s(x) =) cipllle —z5ll) + p(z),  pE€Py, (3.2)
j=1
where || - || is the Euclidean norm on R?. Moreover, P% denotes the linear

space containing all real-valued polynomials in d variables of degree at most
m — 1, where m = m(¢) is said to be the order of the basis function ¢. We
come back to the dependence between m and ¢ later in Section 3.2. But let
us first give some examples for ¢.

Classical choices for radial basis functions ¢, along with their order m,
are shown in Table 3.1, where for any real argument z € R, the symbol [z]
denotes as usual the smallest integer greater than or equal to . Moreover,
|xz] denotes the largest integer less than or equal to z.

Among the most popular radial basis functions are the polyharmonic
splines, which are discussed more detailed in Section 3.8. This class of ra-
dial basis functions includes the thin plate splines, where ¢(r) = r?log(r)
and m = 2, which are particularly suited for interpolation from planar scat-
tered data. Further commonly used radial basis functions are given by the
Gaussians, ¢(r) = exp(—r?), the multiquadrics, ¢(r) = (1 + r2)1/2 of order
m = 1, and the inverse multiquadrics, ¢(r) = (1 +r2)~/2 where m = 0.
Table 3.1 gives a more general form for the (inverse) multiquadrics and their
corresponding order m.

3.1.1 Compactly Supported Radial Basis Functions

More recent developments [170, 175] have provided a whole family of com-
pactly supported radial basis functions. In this case, we have m = 0 for their
order, and so the polynomial part in (3.2) is omitted. While the radial basis
functions in Table 3.1 can be used in arbitrary space dimension d, the selec-
tion of one suitable compactly supported ¢ depends on d, see Table 3.2. Since
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Table 3.1. Radial basis functions

Radial Basis Function|¢(r) = Parameters Order m
Polyharmonic v v>0,v¢2N [v/2]
Splines r*log(r)| keN k+1
Gaussians exp(—r?) 0
Multiquadrics (1+r?)" v>0,v¢gN [v]
Inverse Multiquadrics (1 + rz)" v<0 0

the dimension d is usually known beforehand, this is no severe restriction, as
shall be established below.

Let us further discuss some basics about compactly supported radial basis
functions. As to Wendland’s functions [170], these are of the form

Dd k> for 0 S T S 17

¢d,k(r) = { (33)

0, forr > 1,

where py 1, is a specific univariate polynomial of degree |d/2]| +3k+1, and so
the support supp(¢g k) of ¢g x : [0,00) = R is normalized to the unit interval
[0, 1]. Moreover, due to Wendland’s construction in [170], the basis function
ba,x has derivatives up to order 2k, i.e., g € C2*(R?). Possible choices for
¢a,x are listed in the following Table 3.2, where the symbol = denotes equality
up to a positive factor, and the truncated power function (-)+ : R = [0,00)
is given by (z)4+ =z, for > 0, and (z)4+ =0, for z < 0.

By their construction, Wendland’s radial basis functions ¢q4, are positive
definite on RY.

Definition 8. A continuous radial function ¢ : [0,00) — R is said to be
positive definite on R?, iff for any finite set X = {xy,...,zn}, X C R?,
of pairwise distinct points the matriz

Ay x = (ﬁb(”x] _‘z‘k”))lgj,ng e RN
is positive definite. We let PDy denote the set of positive definite functions.

Due to the construction in [175], there exists, for any space dimension d,
a positive definite and compactly supported ¢ € PDy of the form (3.3). Re-
markably enough, Wendland showed that any basis function ¢4, constructed
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Table 3.2. Wendland’s compactly supported radial basis functions [170]

Dimension d Radial Basis Function Smoothness C%*

$ro0=(L~1)+ o

d=1 $11=(1-r)33r+1) o2
br12=(1—7r)%(8% 457 +1) ct
$30=(1-7)i o0

4<3 $31 = (L—r)i(4r+1) c?
- #32 = (1 ~7)3(357% + 187 4 3) ct
¢33 = (1 —1)5(32r% + 2512 4+ 8r + 1) o

¢s50 = (1— 1‘)_3+_ ol

d<5’ ds1 = (1—7)5(5r +1) C?
$s2 = (1 —r)L(16r% + 7r + 1) ct

in [170] (such as any in Table 3.2), has minimal degree among all positive
definite functions ¢ € PD, N C%%(R?) of the form (3.3). Moreover, by these
properties, ¢4k in (3.3) is unique up to a positive constant.

3.1.2 Well-Posedness of the Interpolation Problem

Now let us turn to the well-posedness of the interpolation problem (3.1). We
distinguish the case, where m = 0 from the one where m > 0.

First suppose m = 0 for the order of the basis function ¢, such as for the
Gaussians, the inverse multiquadrics (in Table 3.1) and Wendland’s functions
(in Table 3.2). In this case, the interpolant s in (3.2) has the form

N
s(z) =) _ ¢ o(llz - zl). (34)
j=1

By requiring the NV interpolation conditions in (3.1), the computation of
the unknown coefficients ¢ = (ci,...,cn)?T € RY of s in (3.4) amounts to
solving the linear equation system

A¢>‘X'C:f’X. (35)

Recall that according to Definition 8, the matrix Ay x in (3.5) is guaran-
teed to be positive definite, provided that ¢ € PDy. In this case, the system
(3.5) has a unique solution. This in turn implies the well-posedness of the
given interpolation problem already.
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Theorem 1. For ¢ € PDy, the interpolation problem (3.1) has a unique
solution s of the form (8.4). 0O

Now let us turn to the case, where m > 0 for the order of ¢. In this
case, the interpolant s in (3.2) contains a nontrivial polynomial part, yielding
g additional degrees of freedom, where q = (m_d”d) is the dimension of
the polynomial space P2 . These additional degrees of freedom are usually

eliminated by requiring the g vanishing moment conditions
N
Z ¢;plx;) =0, for all p € P2. (3.6)
j=1

Altogether, this amounts to solving the linear system

Ag x Px ¢ /

_ [/« : (3.7)

Px 0 d 0
where we let
Px = ((xj)a)lstN;laKm € Rqu, (3-8)

and d = (da)|aj<m € R for the coefficients of the polynomial part in (3.2).
For any point z = (z1,...,%4)7 € R? and multi-index o = (a1, ...,aq) € N,
welet z* =27 -----z5? and || = a1 + ... + aq.

In order to analyze the existence and uniqueness of a solution of (3.7), we
first consider its corresponding homogeneous system

A¢’X-C+Px-d=0, (3.9)
PL.c=0, (3.10)

here split into its interpolation conditions (3.9) and moment conditions (3.10).
If we multiply the equation (3.9) from left with ¢?, and by using the moment
conditions (3.10), we immediately obtain the identity

' Agx-c=0. (3.11)

Now in order to guarantee the existence of a solution to (3.9),(3.10),
we require that the matrix A, x is, for any finite set X = {z1,...,xn} of
interpolation points, positive definite on the linear subspace of R? containing
all vectors ¢ € RV satisfying (3.10). This can be restated as

¢’ Apx-c>0, forall X and ce RV \ {0} with P¥-c=0. (3.12)

Note that the side condition in (3.12) depends, due to the definition of
Px in (3.8), on the order m of the polynomial space PZ,. For m = 0, the side
condition in (3.12) is empty, in which case ¢ is, according to Definition 8,
positive definite. This altogether leads us to the following definition.
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Definition 9. A continuous radial function ¢ : [0,00) — R is said to be
conditionally positive definite of order m on R¢, ¢ € CPDy(m), iff
(8.12) holds for all possible choices of finite point sets X C R%.

As shall be established in the following Section 3.2, for any radial basis
function ¢ in Table 3.1, we either have ¢ € CPDy(m) or —¢ € CPDgy(m),
with the corresponding order m given in the last column of Table 3.1. Note
that for any pair m;,my € Ny with m; < mg, we have the inclusion
CPDy(m;) C CPDy(ms). For any conditionally positive definite ¢, we say
that the minimal m = m(¢) € Ny satisfying (3.12) is the order of ¢. Note
that PDy = CPD(0), and so the order of any positive definite ¢ € PDy, is
Z€ro.

Now let us return to the above discussion concerning the solvability of
the linear system (3.9),(3.10). For ¢ € CPDy(m) (or —¢p € CPDg4(m)),
we conclude ¢ = 0 directly from (3.11), and so (3.9) becomes Px -d = 0.
Therefore, in order to guarantee a unique solution of (3.9),(3.10), it remains
to require the injectivity of the matrix Py . But this property depends on the
geometry of the interpolation points in X. Indeed, note that the matrix Py
is injective, iff for p € P4, the implication

p(zj) =0 for1<j<N = p=0 (3.13)

holds. In this case, any polynomial in P2 can uniquely be reconstructed from
its function values sampled at the points in X. The point set X is then said
to be P2 -unisolvent. Note that the requirement (3.13) for the points in X
is rather weak for small m. Indeed, when m = 0, the condition is empty, for
m =1 it is trivial, and for m = 2 the points in X must not lie on a straight
line.

We summarize the above discussion as follows.

Theorem 2. For ¢ € CPDy(m), the interpolation problem (8.1) has under
constraints (3.6) a unique solution s of the form (3.2), provided that the
interpolation points in X are P4 -unisolvent by satisfying (3.13). 0O

Note that radial basis function interpolation is meshfree. This key prop-
erty of radial basis functions is in contrast to many other methods for scat-
tered data interpolation, such as splines over triangulations. Therefore, radial
basis function interpolation does not require additional data structures and
algorithms for grid generation.

In fact, the implementation of the radial basis function interpolation
scheme is, for well-distributed data sets X of moderate size N, usually a
straightforward task, which requires, merely a few standard methods from
numerical linear algebra. For extremely large and unevenly distributed sets
X, however, a careful preprocessing of the data points X is required. In this
case, multilevel approximation schemes are appropriate tools. Various effec-
tive multilevel approximation methods are constructed in Chapter 5, where
the preprocessing works (partly) with thinning algorithms, to be introduced
in the following Chapter 4.
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3.2 Conditionally Positive Definite Functions

By the discussion in the previous section, radial basis function interpolation
essentially relies on the conditional positive definiteness the chosen basis func-
tion ¢. Indeed, this is one of the key properties of the interpolation scheme.
In this subsection, we discuss two alternative ways for the construction and
characterization of conditionally positive definite functions.

One technique, dating back to Micchelli [121], works with completely
monotone functions. The other alternative relies on generalized Fourier trans-
forms [91]. We do not intend to discuss these two different techniques in all
details. Instead of this, we briefly review relevant results. For a more com-
prehensive discussion concerning conditionally positive definite functions, we
refer to the recent survey [153].

Completely Monotone Functions.

Definition 10. A function ¥ € C*°(0,00) is called completely monotone
on (0,00), iff

(-Dff(r) >0, £=0,1,2,...,
holds for all r € (0, 00).

Micchelli provides in [121] a sufficient criterion for ¢ € CPDg4(m), which
generalizes an earlier result by Schoenberg [155, 156] for positive definite
radial functions. Micchelli also conjectured the necessity of this criterion. This
was finally shown by Guo, Hu and Sun in [82]. We summarize the relevant
results from [82, 121, 155, 156] by

Theorem 3. Let ¢ : [0,00) = R be a continuous radial function. Moreover,

let ¢, = o(y/%). Suppose ¢y = (—l)mgb(\}") is well-defined and ¢, is not
constant. Then, the following two statements are equivalent.

(a) ¢ € CPDy(m) for alld > 1;
(b) ¢m is completely monotone on (0,00). 0O

Now, by using Theorem 3, it is easy to show for any ¢ in Table 3.1 that
either ¢ or —¢ is conditionally positive definite of order m, with m given
in the last column of Table 3.1. Note, however, that the characterization in
Theorem 3 applies to radial functions only. Moreover, it excludes the con-
struction of compactly supported radial basis functions. The latter is due to
the Bernstein-Widder theorem [13] (see also [172]) which says that any func-
tion 4 : [0,00) — R is completely monotone on (0, 00), if and only if it has a
Laplace-Stieltjes-type representation of the form

oo
v) = [ exp(-rs) du(s)
0
where p is monotonically increasing with fooo du(s) < co. Hence, in this case

¥ has no zero, and so any ¥ = ¢, in (b) of Theorem 3 cannot be compactly
supported.
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Generalized Fourier Transforms. A different technique for the character-
ization and construction of (not necessarily radial) functions ¢ € CPDgy(m),
including compactly supported ones, is using (generalized) Fourier trans-
forms, see the recent survey [153, Section 4] (which basically relies on the
results in [91]). We do not explain generalized Fourier transforms here, but
rather refer to the textbooks 78, 79], where a comprehensive treatment of
the relevant technical background is provided.

For the purposes in this subsection, it is sufficient to say that any radial
basis function ¢ in Table 3.1 has a radial (generalized) Fourier transform
# € C(0,00) satisfying the following two properties.

e &(|| - ||) is L;-integrable around infinity, i.e.,
[ Joti|do <o, (3.14)
R\ B, (0)

e &(||-||) has at most an algebraic singularity of order s, € Ny at the origin,
such that

[ el aell do < o, (3.19)
B;(0)

holds, with sg € Ny being minimal in (3.15).

Table 3.3 shows the (generalized) Fourier transforms of the radial basis
functions in Table 3.1, along with their order so, where = means equality
up to a constant factor, and where K denotes the modified Bessel function,
see [1] for properties of K. Note that all functions ¢ in Table 3.1 are positive
on (0, 00).

We remark that if ¢ has a Fourier transform ¢ € L1 (R?) in the classical
sense, satisfying

(ol = | olel) exp(—ia™) dz,

then this classical Fourier transform ¢ coincides with the generalized Fourier
transform of ¢. Examples are given by the Gaussians, the inverse multi-
quadrics, and Wendland’s compactly supported radial basis functions. In this
case, we have sg = 0 for the order of q§

Now let us turn straight to the characterization of conditionally positive
definite functions by generalized Fourier transforms. This particular charac-
terization relies on the identity

2
dw, (3.16)

N ~
> cendlia; —ail) = 2m)¢ [ dlu)

N
Z c; exp(—iz] w)
k=1 =1

which can be established [91] for any ¢ satisfying (3.14) and (3.15), provided
that the symbol function
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Table 3.3. Generalized Fourier transforms of radial basis functions

Radial Basis Function | ¢(r) = P(s) = Order s
Polyharmonic rY g—d-v lv] +1
Splines r2* log(r) | g-d-2k 2k + 1
Gaussians exp(—r?) | exp(—s%/4) 0
Multiquadrics (1+73)" | Kajoyu(s)- s™@/24) 2] + 1
Inverse Multiquadrics | (1+ %) | Kajagu(8)- s~ (d/24v) 0

N
ocx(w) = ch exp(—ix?w) (3.17)

has a zero at the origin of order at least m = [s9/2]. Note that the latter can
be guaranteed by requiring the moment conditions (3.6) with m = [s9/2].

Theorem 4. A continuous radial function ¢ : [0,00) = R is conditionally
positive definite on R?, if ¢ has a continuous non-negative generalized Fourier
transform ¢ # 0 satisfying (3.14) and (3.15). In this case, m = [so/2] is the
order of ¢ € CPDgy(m).

Proof. Let ¢ satisfy (3.14) and (3.15), and suppose (3.6) with m = [s0/2],
so that the identity (3.16) holds. By the non-negativity of ¢, the quadratic

form
N

T Apx-c= > cyeed(llz; — zl])

7,k=1

appearing in the left hand side of (3.16), is non-negative. Hence it remains to
show that cT~A¢, x -¢ vanishes, if and only if ¢ = 0. In order to see this, suppose
that ¢ - Ay x - ¢, and thus the right hand side in (3.16), vanishes. In this
case, the symbol function o, x in (3.17) must vanish on an open subset of R?
with nonempty interior. But then, due to the analyticity of o, x, this implies
that the symbol function vanishes identically on R?, i.e., oc,x = 0. Since the
points in X are pairwise distinct, and so the exponennals exp(— iz Tyw) are
linearly independent, the latter is true, if and only if c=0. O
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3.3 Optimal Recovery

In this section, the suitability of radial basis functions for optimal recovery
is shown. To this end, we follow along the lines of the variational theory
by Madych and Nelson [114, 115, 116]. Due to Madych and Nelson, every
conditionally positive definite function ¢ € CPDy(m) is associated with a
native function space Fy, being equipped with a semi-norm |[-|4, such that the
corresponding interpolation scheme (as discussed in Section 3.1) is optimal
in Fy. More precisely, for any f € Fg and X = {x1,...,zn}, the (unique)
interpolant s¢ x of the form (3.2), with sf x |x = f|x, lies in the native space
Fg, and it satisfies

lsgxle < |flg, for f € Fy. (3.18)

In other words, the interpolant sy x minimizes the energy |- |4 among all
interpolants g € Fy satisfying g[ x=1 [ «- This property of the interpolation
scheme is referred to as optimal recovery in the sense of Micchelli, Rivlin, and
Winograd [122].

We remark that the results in [114, 115, 116] are not necessarily restricted
to radial functions ¢ € CPDg(m). In fact, the following construction of Fy
merely relies on the conditional positive definiteness of ¢. Nevertheless, in
order to avoid unnecessary detours, we keep on using the assumption that
¢ € CPDgy(m) is radial.

In order to see that ¢ provides an optimal interpolation scheme, let us
first rewrite the form of the interpolant s in (3.2). Recall that for any linear

combination
A= Ab, (3.19)
zeX

of translates of the Dirac §-functional, the expression

Axd =) Ao(|| - ~ll)

zeX

is the convolution product between A and ¢. Therefore, any s in (3.2) has the

form
sxp=A*x¢+p, A€ Ly,,pePy, (3.20)

where
E#l:{,\: E /\151:XCRd,|X|<oo,/\|,Pd:0}
=

contains all finite linear combinations of the form (3.19) which are vanishing
on P%. Now all possible interpolants of the above form (3.20) constitute a
linear space

R¢ = {S,\,p T AE ﬁ,’l;l,p S an},

which is referred to as the recovery space associated with ¢.
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Note that the dual space £} is an inner product space with
Mg =Auxe), forall \,pe Lt (3.21)
That this is an inner product is due to the identity

A @) = A(p'o(- —y)) = N p'é(z - y)

and the conditional positive definiteness of ¢. As an immediate consequence,
Ry is equipped with the semi-inner product

(SaprSug)e = (A m)g, foralh\pe £,ln,p,q € ’P,‘fl. (3.22)

This leads us to the Madych-Nelson space
Fo={rvo:reLi} PP, (3.23)

where £ denotes the topological closure of £L.

In the remainder of this section, it is shown that F4 constitutes an optimal
recovery space for the interpolation process explained in Section 3.1, i.e.,
(3.18) holds for any function f € F4. The starting point for doing so is the
following result proven in the seminal paper [115] by Madych and Nelson.

Theorem 5. Let ¢ € CPDgy(m). Then, Fy satisfies the following three con-
ditions.

(a) the null space of the semi-norm |- |4 is P3;
(b) the factor space Fy/PZ is a Hilbert space;
(¢) (A6, f)g = A(f) for all f € Fy and A € LX.

As shown in [115], the above properties (a)-(c) uniquely determine the
function space F4 among all subspaces of C(R?, R).

Note that the above property (c) holds for all f € Ry and A € L.
Indeed, by combining (3.22) with (3.21), we obtain for any f = s,, € Ry
the identity

(A% b5u)s = (Mg = Al §) = A(sg)  for all A € L.

By continuity, we obtain (c) for all f € F4. As to the proofs of (a) and (b),
we refer the reader to [115].

Now, the validity of property (c) in Theorem 5 leads us to the desired
optimality (in the sense of (3.18)) of the radial basis function recovery scheme.

Theorem 6. Let ¢ € CPDgy(m). Then, the Pythagoras theorem
IF15 = lsslg + | F = 513 (3.24)

holds for all f € Fy.
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Proof. Note that for sy = A*x ¢ +p € Ry,
(sf,9)p =0 for all g with A(g) =0 (3.25)
holds by statement (c) of Theorem 5. But this implies
(g f = 87)p =0, (3.26)

i.e., sf is the orthogonal projection of f € Fy4 onto R¢. This immediately
implies (3.24) which completes our proof. O

We finally remark that, due to [115], an alternative representation for F
is given by

Fp = {f € C(RY) : [A(f)] < CtlMllg for all A € £ with Cf > o} . (3.27)

Hence, the Madych-Nelson space Fy is the largest linear space on which

functionals from £L are continuous, see [93] for details. For a recent account
on native spaces of radial functions, we refer to the papers [149, 150].

3.4 Pointwise Optimality

In this section, another optimality property of the radial basis function in-
terpolation scheme is discussed, cf. [176].

3.4.1 Lagrange Representation of the Interpolant

In the following discussion of this section, it is convenient to work with the
Lagrange representation

N

srx(z) =Y N (@)f(xy) (3.28)

7=1

of the interpolant s = s; x in (3.2), where the Lagrange basis functions
A1(z),. .., An(z) satisfy
1, forj =k,
A (z) = 1<j,k<N, (3.29)
0, forj#k

and so s|X = f|X
For a fixed point z € R?, the vectors

AMz) = (M(@), .. Av@)T €RY  and  p(z) = (w1 (2),. .., pe(z))” € RY

are the unique solution of the linear system
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A¢,X Px] ) [/\(.’L‘):I _ [R‘p’x(.’l,‘):l ’ (330)
PY 0] |u@ 5(x)

where R¢,x (x) = (¢(||.’L‘—.’L‘]”))1Sjs1v € RN and S(.’L‘) = (-Ta)la|<m € R?. We
abbreviate the linear system (3.30) as

A -v(z) = b(z)

Az) Ry, x(x)
,um=l ],uw=[¢ .

() S(z)
This allows us to combine the two alternative representations for s in
(3.28) and (3.2) by

by letting

Ay x Px
A=
P 0

s(z) =< /\(1:),f|X >

=< v(z), fx >
=< A7l b)), fx > (3.31)
=< b(x),A7l- fx >
=< b(z),b >,
where < -,- > denotes the inner product of the Euclidean space R?, and

where we let

f c
fx = [ |X] eRY*Y and b= [d € RN+a
0

for the right hand side and the solution of the linear system (3.7).

3.4.2 Pointwise Error Bounds

In this subsection, we derive for a fixed z € R? bounds for the pointwise error
& (f) = |f(z) — sgx(2)]. (3.32)

Note that €, (f) = 0 for all z € R?, provided that f € P4 . Indeed, since the

interpolation scheme reconstructs polynomials from P2, we have

N
p(z) =Y A (z)p(z;), forallpe PL. (3.33)

1=1
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Thus,
N

€2 =0 — > A (x)0z, € L.
7=1
By using part (c) of Theorem 5, (3.32) can be rewritten as

lez ()] = I(€z * &, f)gl

and therefore by using the Cauchy-Schwarz inequality we obtain the pointwise
error bound

[f(z) = s,x (@) < |flo - llezlly- (3.34)
Note that this bound is sharp, with equality in (3.34) being attained by the
function
N
f=exd=o(l ~zl) = DM@l - —z;).
=1

Now, the norm of the error functional €, can be expressed as

N N
llezl3 = ¢(0)=2> " M (@)g(llz—z, 1)+ Y Ay (@) Ak (@)(llzs —ll). (3.35)
=1 2,k=1
The resulting function 7y x(z) = ||ez||y is referred to as the power func-

tion of the interpolation scheme. The following theorem gives us four useful
alternative representations for the power function.

Theorem 7. The power function my x = ||€z||l¢ can be expressed as follows.
(a) 75 x(z) = ¢(0) — 2AT(2) Ry, x (z) + AT(2) - Ag,x - A(z);

(b) “i,x(x) =2@)T - Agzux - Mz), where XT(x) = (-1, Mi(z), ..., An(2));
(c) 73 x(2) = $(0) — AT (2) Ry x (x) — 47T (2)S(2);

(d)
Ay x Px

M) 1"
] | P 0

n(z)

) 3 Azx)
Ty x (%) = ¢(0) — :
()

Proof. Note that the representation in (a) follows directly from (3.35). More-
over, (a) immediately implies (b) by using the identity
#(0) R({,x(x)} [ -1 ]

X@)" - gz Na) = [2147@] | 7 A)
¢, X T ¢, X r

= ¢(0) — 2AT () Ry x (z) + AT (2)Ag x A(z).
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As to (c), expanding (3.30) gives us
Ag, x M) + Pxp(z) = Ry, x ()
P{A(z) = S(z)
and therefore
AT(z) - Ag,x - Mz) = AT (2) Ry x (2) — uT (2)S(2),
which, by using the representation (a), implies (c). Finally, rewriting (c) as

R¢,X(fv)]
S(z)

NOIN

5 x(2) = $(0) — [

w(z)
gives us, by using (3.30), the representation (d). O
Corollary 1. For ¢ € PDy, the power function my x can be bounded by
0 < 75 x(z) < $(0). (3.36)
Proof. The representation (c) in Theorem 7 yields
72 x(2) = $(0) — AT (2) Ag x A(2)

for the special case ¢ € PDy. But in this case, m = 0, the matrix Ay x is
positive definite and this gives us the upper bound on wi’ x in (3.36). Since
ﬂi’ x is non-negative, this completes our proof. O

Next, we consider minimizing the error norm w4 x = 7y »,x by variation
of the coefficients A = A(z) € RV in (3.28), and under constraints (3.33).
This leads us to the quadratic optimization problem

/\rél]lig}v T2ax = min, (¢(0) — 2XT Ry x(z) + AT - Ag x - A)

with linear side conditions
PIX = S(x).

A solution \* € RY of this minimization problem satisfies
Ap x A" + Pxp* = Ry x(x)
PIX* = S(z),
with the Lagrange-multipliers p* € R?. Note that this is the linear system

(3.30) whose unique solution A\* = A(z) = (A1 (z),...,An(2)) € RY is given
by the cardinal functions satisfying (3.29). Altogether, we obtain



46 3 Radial Basis Functions

Theorem 8. Let X = {z1,...,zn} C R? and ¢ € CPDy(m). Then, the
interpolant s x in (3.28) satisfying (3.33) is, for any fired x € R?, the unique
minimizer of the pointwise error bound (3.34) among all quasi-interpolants
of the form

N -~
s(@) =D _X(@)f (),

satisfying

>t

i(z)p(z;), for all p € PY. o

N
p(z) = Z

3.5 Error Estimates

In the following discussion, available bounds on the error ||f — s; x|/ (2)
are provided, where 2 C R? is a bounded and open domain comprising X,
i.e., X C 2. Moreover, it is assumed that 2 C R® satisfies an interior cone
condition.

Definition 11. The domain 2 C R? is said to satisfy an interior cone
condition, iff there exists an angle 8 and a radius p > 0, such that for every
x € (2 there exists a unit vector £ = &(x) satisfying

C(z,€,0,0) = {z+ty : y e R, lyll = 1,57 > cos(9),t € [0,0]} C 2,
i.e., the cone C(x,&,0, 9) is entirely contained in (2.

Let us first discuss pointwise error estimates. Available bounds on the
error (3.32), for z € {2, are proven in [115, 116, 176]. These pointwise error
estimates rely on upper bounds on the power function’s value 7y x(z). Such
bounds depend on the local fill distance

h = d
0. x ()  ax x (¥)

of X around z, where B,(z) = {y : ||y — || < o}, denotes the closed ball
around z of radius g. Moreover, recall from (2.4), that

= mi — 3.3
dx (y) = min [y — =]l (3.37)
is the Euclidean distance between the point y and the point set X.
Now, for all commonly used radial basis functions, particularly for those

listed in Table 3.1, available pointwise error estimates have the form

73 x(2) < C - Fy(hg,x(2)), (3.38)
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where F, : [0,00) — [0,00) is a monotonically increasing function with
F4(0) = 0, depending merely on ¢. For any radial basis function ¢ in Ta-
ble 3.1, its corresponding Fy (see also [148]) is listed in Table 3.4, where the
symbol = stands for equality up to a positive constant.
Note that (3.38) yields in combination with (3.34) the pointwise error
bound
|£(@) = 55.x @) < C-[flg - F, > (hox ().

It can be shown that these pointwise error bounds carry over to uniform
bounds in the domain 2, which leads us to error estimates depending on the
fill distance

hx,g = I;lea!)?(dx(y) (339)
of X in 2, i.e.,
If = spxllLo2) SC-Iflg- F;m(hx,n) (3.40)

for every f € Fy. For further details, we refer to [148, 152].

3.6 Numerical Stability

Now let us turn to the numerical stability of radial basis function interpola-
tion. As explained in [151], the numerical stability of the linear system (3.7)
is dominated by the spectral condition number of the matrix Ay x in (3.7).
Since Ay x is, due to (3.12), positive definite on the kernel ker(P¥) C RV,
there are positive eigenvalues omax and omin of Ay x satisfying

Omaxllcl® > cT - Ag x -¢> ominllc|?, for all c € RN with Pfc=0.

Now the condition of the linear system (3.7) is given by the ratio Gmax/0min-
Hence, for the sake of numerical stability, one wants to keep this ratio
small. But this requires both upper bounds on ¢« and lower bounds
On Omin. While small upper bounds on op,,x are readily available for any
¢ € CPDy(m), see [151], it turns out that small values of opy, typically
spoil the stability of the interpolation. The latter is also supported by nu-
merical experiments.

Therefore, the discussion in the literature [6, 7, 127, 128, 146, 151] on the
numerical stability of radial basis function interpolation is focusing on lower
bounds for the smallest eigenvalue op;,. The resulting estimates have the
form

' Agx - ¢ > Ominllel® > Gylax)llell?, (3.41)

for all ¢ € ker(PY), where

gx = mindy\g (z)
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is the separation distance of the point set X. Moreover, G : [0, 00) — [0, c0)
is a monotonically increasing function with G(0) = 0. The form of the cor-
responding functions G4, belonging to the radial basis functions in Table 3.1,
are listed in Table 3.4, see [148] for more details.

Table 3.4. Radial basis functions: convergence rates and condition numbers

Radial Basis Function o(r) = Fy(h) = Gy(g) =
Polyharmonic r h¥ q’

Splines 7% log(r) h** g
Gaussians exp(—rz) exp(—a/h) exp(—B/q%)

(Inverse) Multiquadrics| (1+ 1"2)"/2 exp(—a/h) | ¢"exp(—B/q)

In summary, the numerical stability is one critical aspect of radial basis
function interpolation. In fact, the numerical stability may become a severe
problem in relevant applications, where the distribution of the points in X is
very heterogeneous, or where the data set X is extremely large. In situations
of large data, multilevel approximation schemes are appropriate tools. In
the discussion of Chapter 5, we propose various efficient multilevel schemes,
which widely help to avoid such stability problems. As regards the numerical
stability in situations where the data set X is rather small, we propose a
preconditioning of the system (3.7) for the special case of polyharmonic spline
interpolation. This is done in Subsection 3.8.3.

But let us first review a more general discussion concerning radial basis
function interpolation, known as the uncertainty principle, which explains
the conflict between numerical stability and good approximation behaviour.

3.7 Uncertainty Principle

As observed by Schaback [146], there is no commonly used radial basis func-
tion which combines good approximation behaviour with a small condition
number of the collocation matrix in (3.7). This dilemma is in [146] referred
to as the uncertainty relation of radial basis function interpolation. This phe-
nomenon has extensively been explained in the survey [148].

In order to combine the results of the previous two Sections 3.5 and 3.6,
first note that both the approximation quality and the stability of radial basis
function interpolation relies, by the values of ¢x and hx o, on the geometry
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of the interpolation points in X. On the one hand, for the sake of numerical
stability, the separation distance ¢x should be not too small. This is due to
the lower bound

Omin > G¢(Qx) >0

in (3.41) on the smallest eigenvalue opi,. On the other hand, for the sake of
good approximation quality, it is desired to keep the fill distance hx ¢ small.
This is due to the upper bound in (3.40) on the error ||f — 57 x|z ()
However, it is obviously not possible to minimize hx  and to maximize
gx at the same time. In fact, due to Theorem 14 in Section 3.9, the relation

2(d+1
gx < (—d_) ~hx,0 (3.42)

holds for any (admissible) point set X C R? and any space dimension d. This
observation already explains why we cannot combine small upper bounds
Fy(hx,@) on ||f — s5,x||L..(2) in (3.40) with large lower bounds G4(gx) on
Omin in (341)

The following arguments, due to [146], serve to bridge the gap between
pointwise error bounds and bounds on eigenvalues. On the one hand, by
part (b) of Theorem 7, we obtain for any z € {2 the error bound

my x (@) = Mz)T - Agoux - Ma) < Fy(ho x (z)).
On the other hand, we have
X@)T - Agaux - Xz) > Golgsux) - IN@)I?
= Go(gux) - (1+ A @)II)
> Gy(¢zux)-
Altogether, this implies
Gazux) < Fy(hpx(z), foranyaz e 0, (3.43)

which shows that for small arguments gxuz; ~ h & h, x(z) in (3.43) one
cannot have a small error bound Fy (h) without obtaining a small lower bound
G4 (h) on the smallest eigenvalue.

3.8 Polyharmonic Splines

In this section, details on the polyharmonic splines, see Table 3.1, often also
referred to as surface splines, are explained. The utility of polyharmonic
splines for multivariate interpolation was established by Duchon [46, 47, 48].
In order to discuss the particular setting of Duchon, let us be more specific
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about the choice of the basis function ¢. According to [46, 47, 48], we assume
from now the form

) r?k=dlog(r), for d even,
Pak(r) =
o r2k—d, for d odd,

for the polyharmonic splines, where k is required to satisfy 2k > d. According
to Table 3.1 (last column), the order of ¢qx is m = k — [d/2] + 1.

Recall that the inclusion CPDg(m;) C CPDg(mz), for m; < mo, allows
us to also work with any order greater than m. In order to comply with
Duchon’s setting, we replace the minimal choice m = k—[d/2] +1by k > m.
Therefore, we let from now m = k for the order of ¢gx € CPDg4(m). We
come back with an explanation concerning this particular choice for m in
Subsection 3.8.1.

With using m = k, the resulting interpolant in (3.2) has the form

N

s(x) =Y cpar(llz —z5l) + D daz™. (3.44)

j=1 |a|<k

We remark that the polyharmonic spline ¢g4 x is the fundamental solution
of the k-th iterated Laplacian, i.e.,

A a(llzll) = cbs.

For instance, for d = k = 2, the thin plate spline ¢ 2(r) = r2log(r) solves
the biharmonic equation

AAgs o (||z]]) = bz,

and in this case, the interpolant s in (3.44) has the form

N
s(z) =) ¢jllz — 251 log(llz — z5I) + dy + do€ + dan, (3.45)

=1

where we let £ and 7 denote the two coordinates of z = (§,1)7 € R?.
Finally, we remark that for the univariate case, d = 1, the polyharmonic
spline ¢, = r?*~1 k > 1, coincides with the natural spline of order 2k.

3.8.1 Optimal Recovery in Beppo Levi Spaces

Recall the discussion in Section 3.3 concerning optimal recovery of radial basis
function interpolation in native function spaces. In this subsection, we intro-
duce Beppo Levi spaces, being the optimal recovery spaces of polyharmonic
spline interpolation.



3.8 Polyharmonic Splines 51

Due to fundamental results in the seminal papers [46, 47, 48] of Duchon
and [117, 118, 119] of Meinguet, for a fixed finite point set X C R¢, an
interpolant s in (3.44) minimizes the energy

k k k!
|l re) = /Rd > (a) (D*f)? dx, (a) S Ee— (3.46)

la|=k
among all functions f of the Beppo Levi space
BL¥(R?) = {f € C(R?) : D*f € L*(R?) for all |a| = k} C C(R?)

satisfying f | x = s| x- So the Beppo Levi space BLk(]Rd) is equipped with
the semi-norm | - |gpxr4), Whose kernel is the polynomial space Pg. The
latter explains why we use order m = k rather than the minimal choice
m = k—[d/2] +1. In this case, the Beppo Levi space BL*(R?) is the optimal
recovery space Fy for the polyharmonic splines ¢4 1. Note that BLF(R?) is
the Sobolev space H*(R?).

When working with thin plate splines, ¢2 2(r) = r?log(r), in two dimen-
sions we have

62 2 82 2 82 2
e = . (a—gﬁ) 2 (ﬁ) +(?97{£'> dedy,  for f € BLY(R?).

Note that the semi-norm | - |gp2(g2) is the bending energy of a thin plate
of infinite extent, and this explains the naming of thin plate splines.

3.8.2 Approximation Order

In this subsection, we prove approximation orders for local Lagrange interpo-
lation by polyharmonic splines. But let us first recall approximation orders
for the global case from the discussion in Section 3.5. To this end, we review
available bounds on the L.-error || f — sy x||1_. () on a bounded domain 2.
For further technical details on the error analysis, we refer to [152].

Global Approximation Order. Starting point for the discussion in [152]
is an algebraic decay condition

Yllwl| =470 < g(l|wl) < ollwl| 7475, for [|w]] = oo, (3.47)

around infinity on the (generalized) Fourier transform ¢ of ¢ € CPDy(m)
in R¢, where 0 < 7, < 72 in (3.47) are suitable constants and so, > 0 is
the order of the decay. For the polyharmonic spline ¢4, the algebraic decay
condition (3.47) is satisfied with sec = 2k — d.
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Due to [176], the power function 74 x can, with assuming (3.47), for any
¢ € CPDg(m), uniformly be bounded above by

g, x(x) < C- h}","r/f, for all z € 2,

provided that the domain (2 satisfies an interior cone condition. This leads
us directly to the desired result concerning the (global) approximation order
of scattered data interpolation by polyharmonic splines.

Theorem 9. Let 2 be a bounded and open domain satisfying an interior
cone condition. Then, there exist constants hg,C, such that for any finite
point set X C {2 satisfying hx o < ho and any function f € BLk(Rd) the
error bound
k—d/2
If = sllze(2) £ C- |flBLr®ayhx o

holds, where s is the unique polyharmonic spline interpolant in (8.44), using
bak, satisfying s| . = f| -

Hence, in this sense, the global approximation order for interpolation by
using the polyharmonic spline ¢4 is p = k — d/2 with respect to the Beppo
Levi space BL*(R?).

Local Approximation Order. In the following discussion of this subsec-
tion, we analyze the approximation order of local polyharmonic spline inter-
polation. We remark that this analysis, in combination with the subsequent
investigation concerning the stability of local polyharmonic spline interpo-
lation, is of primary interest for applications in multiscale flow simulation,
which is the subject of the discussion in Section 6.4 of Chapter 6.

As regards the local approximation order, we consider solving, for some
fixed point zo € R? and any h > 0, the scaled interpolation problem

fxo + hx;) = s"(xo + hay), 1<i<mn, (3.48)

where X = {z1,...,2,} C Reis a P,‘f-unisolvent point set of moderate size,
i.e., n is small. Moreover, s” denotes the unique polyharmonic spline inter-
polant of the form

s"(hz) =Y cfgar(lhz — hzy|l) + Y dh(ha)® (3.49)

j=1 |la|<k
satisfying (3.48). The discussion in this subsection is dominated by the fol-
lowing definition.

Definition 12. Let s* denote the polyharmonic spline interpolant, using
ba k, satisfying (3.48). We say that the approximation order of local poly-
harmonic spline interpolation at xo € R? and with respect to the function
space F is p, iff for any f € F the asymptotic bound

|f(zo + hx) — s"(xo + hx)| = O(KP), h—0,
holds for any = € R%, and any finite Pg-unisolvent point set X C Re.
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For the sake of notational simplicity, we let from now z¢ = 0, which is, due
to the shift-invariance of the interpolation scheme, without loss of generality.

Note that the coefficients c* = (cf,...,c!)T € R*,d" = (d?)a)<x € R
of the interpolant s” in (3.49) are solving the linear system

ch f|
dh] = [ (’)‘Xl , (3.50)

Ah = (¢d,k(||hxi - hxj”)lfi,]Sn e ]Ran’

Ap Py
PT 0

where we let

P, = ((hxi)a)lﬁiﬁndakk € R*X,
f|hX = (f(hzi))i1<i<n € R™.
We abbreviate the above linear system (3.50) as
An 6" = fu, (3.51)

i.e., for notational brevity, we let

h
b = [c ] , and fp= [”hxl .
d" 0

Recall from the discussion in Section 3.4 that any interpolant s” satisfying
(3.48) has a Lagrange-type representation of the form

Ap Py

Ay =
Pl 0

s"(hz) = > A2 (hx) f(has), (3.52)
=1
corresponding to the one in (3.28), where
> Al(hz)p(ha;) = p(hz), for all p € P, (3.53)
1=1

due to the reconstruction of polynomials in Pg.

Moreover, for z € R?, the vector \*(hz) = (A!(hz),...,\2(hz))T € R
is, together with p”(hz) = (uh(ht))a<x € R?, the unique solution of the
linear system

M2 (hz) Ry, (hz)
: - : (3.54)
" (h) Sh(hz)

Ap P
PTr 0
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where
Ra(h2) = ($ax(lhz — h;lD), g, € R
Sn(he) = ((h2))jarc1 € Y.
It is convenient to abbreviate the system (3.54) as

Ay, - v (hz) = by (hx),

h(hg) M (hx) b (ha) —
, V'(hz) = [ph(hx)]’ n(hz) =

Starting with the Lagrange representation of s* in (3.52), we obtain

ie., we let

Ap Py

Ay =
PT 0

Rh(hx)}
Su(hz) |

sh(hz) = < M (ha), f|, 5 >

< vh(hx), fr >

=< A;' -by(ha), fr > (3.55)
< by(hz), A" - fr >

= < by (hx),br >,

see the identity (3.31). This in particular combines the two alternative rep-
resentations for s” in (3.52) and (3.49).

The following lemma, proven in [102], plays a key role in the following
discussion. It states that the Lagrange basis of the polyharmonic spline in-
terpolation scheme is invariant under uniform scalings. As established in the
recap of the proof from [102] below, this result mainly relies on the (general-
ized) homogeneity of ¢g4 .

Lemma 2. For any h > 0, let \*(hx) be the solution in (3.54). Then,
M(hz) = A (), for every x € R?.

Proof. For fixed X = {z1,...,2,} C R?, and any h > 0, let

¢X = {Zc da k(|| - —hz,|) +p : pGPg,Zc?q(x]) =0 for alqu'Pg}

J=1

denote the recovery space of all possible polyharmonic spline interpolants of
the form (3.49) satisfying (3.48).
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In what follows, we show that ng x 1s a scaled version of R‘II,, x» S0 that
RE x ={on(s) : s€RY x}, (3.56)

where the dilatation operator oy, is given by o, (s) = s(-/h). This then implies
that, due to the unicity of the interpolation in either space, Rg x Or R<li>, X
their Lagrange basis functions must coincide by satisfying A\* = o, (\!), as
stated above.

In order to show that ’Rg x = oh(R}p, x ), we distinguish the special case
where d is even from the one where d is odd. If the space dimension d is odd,
then R} y = on(R} x) follows immediately from the homogeneity of ¢4,

where ¢d,k, (hT’) = h2k_d¢d,k (7‘)
Now suppose that d is even. In this case we have

pak(hr) = h* 7% (¢4 (r) + 1% log(h)) .

Therefore, any function s" € R . has, for some p € P, the form

sh(hz) = K74 | > " ehoy i (Ilz — ;) + log(h)g(z) | + p(=),

=1

where we let

n
g(x) =Y chllz — =z,
=1

In order to see that s" is contained in 04 (R} x), it remains to show that the
degree of the polynomial ¢ is at most k — 1. To this end, we rewrite ¢ as

n n
g@)="c" S cap (@)= Y capra® ). ciz,)P,
j=1

i=1  |al+|8l=2k—d la+18=2k~d

for some coefficients ¢, g € R with |a| + |8] = 2k — d. Due to the vanishing
moment conditions

Z c;’p(hxj) =0, for all p € ’P,‘ci,

Jj=1

for the coefficients c?,...,c?, this implies that the degree of ¢ is at most
2k —d—k = k—d < k. Therefore, s" € 04(R}, x), and so R? « C on(R} ).
The inclusion R} x C o ! (ng x) can be proven accordingly.

Altogether, we find that 'Rg x = ah('qub, x) for any d, which completes
our proof. O
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Now let us draw important conclusions on the approximation order of local
polyharmonic spline interpolation with respect to C*. To this end, regard for
f € C* any z € R and h > 0, the k-th order Taylor polynomial

1
Tine() = D —D*f(ha)(y — ha)* (3.57)

le|<k

of f around hz. By using
1

— Th AN il 1’ L a :
f(hz) =T}y, (hai) — > — D% f(ha)(hwi — hz)®,  forall 1 <4<,
0<|a|<k
in combination with (3.52) and (3.53), we obtain the identity
fha) = s"(ha) = Y A (ha) [Tfpy(has) = f(hai)] -

=1

Now due to Lemma 2, the Lebesgue constant

n n
A= i'i‘é; |A"(ha)| = ; |AL (@)
is bounded, locally around the origin o = 0, and therefore we can conclude
|f(hz) — s"(hz)| = O(K*), h — 0.
Altogether, this yields the following result.

Theorem 10. The approzimation order of local polyharmonic spline inter-
polation, using ¢4, with respect to C* isp=k. O

We remark that the above Theorem 10 generalizes a previous result in [84]
concerning the local approximation order of thin plate spline interpolation in
the plane.

Corollary 2. The approzimation order of local thin plate spline interpola-
tion, using ¢22 = r2log(r), with respect to C% isp=2. O

3.8.3 Numerical Stability

This subsection is devoted to the construction of a numerically stable algo-
rithm for the evaluation of polyharmonic spline interpolants. Recall that the
stability of an algorithm always depends on the conditioning of the given
problem. For a more general discussion on the relevant principles and con-
cepts from error analysis, especially the condition number of a given problem
versus the stability of a numerical algorithm, we recommend the textbook [87].
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In order to briefly explain the conditioning of polyharmonic spline inter-
polation, let 2 C R* denote a compact domain comprising X = {xy,...,Zn},
i.e., X C {2, the P{-unisolvent set of interpolation points. Now recall that the
condition number of an interpolation operator Z : C(2) — C(2), 2 C R?,
w.r.t. the Loo-norm || - || (), is the smallest number k., satisfying

IZflc(2) € Koo IfllLciey  for all f e C(£2).

Thus, ko is the operator norm of Z w.r.t. the norm || - ||z_ (o). In the
situation of polyharmonic spline interpolation, the interpolation operator
ok : C(£2) - C(12), returns, for any given argument f € C(f2) the polyhar-
monic spline interpolant Z, x(f) = sy € C(2) of the form (3.44) satisfying
s f’ x=1r | - The following result is useful for the subsequent discussion on
the stability of local interpolation by polyharmonic splines.

Theorem 11. The condition number ko, of interpolation by polyharmonic
splines is given by the Lebesgue constant

A2, X) = r;leagz A ()] (3.58)

Proof. For f € C(2), let f|x be given, and let sy = Z, ;(f) € C(§2) denote
the interpolant of the form (3.44) satisfying f | x =8 f| - Using the Lagrange-

type representation
n

sp(z) = Z Ai(z) f(=:)

of sy, we obtain
WZakfllLo (o) = lIsfllLe(o) < ngz A(@)] - | f(x:)| < A2, X) | fllL )
=1

for all f € C(£2), and therefore ko, < A(£2, X).

In order to see that koo > A(f2, X), suppose that the maximum of A(£2, X)
in (3.58) is attained at z* € f2. Moreover, let g € C(§2) denote any function
satisfying g(z;) = sign(A;(2z*)), for all 1 <14 < n, and ||g||z.(e) = 1. Then,
we obtain

IZak9llL i) > (Zaxg) ( Z/\ )g(z:) = Z |Xi(z A(2, X)

and thus || Za kgL (2) > A($2, X)||gllL.. () But this implies A(£2, X) < Koo-
Altogether, ko = A(£2, X), which completes our proof. O

Theorem 11, in combination with Lemma 2 of the previous Subsec-
tion 3.8.2, immediately yields the following important result concerning the
stability of interpolation by polyharmonic splines.
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Theorem 12. The absolute condition number of polyharmonic spline inter-
polation is invariant under rotations, translations and uniform scalings.

Proof. Interpolation by polyharmonic splines is invariant under rotations and
translations. It is easy to see that this property carries over to the absolute
condition number. In order to see that koo = keo(f2,X) is also invariant
under uniform scalings, let 2" = {hx : z € 2} and X* = {hx : T € X}.
Then, we obtain

A(RM, XM = M (hz) = A(z) = A2, X
(2", X" hgleagh;,(x) gleag; (z) = A(2, X)

which shows that ke (2%, X") = keo(2,X). O

Now let us turn to the construction of a numerically stable algorithm
for evaluating the polyharmonic spline interpolant s" satisfying (3.48). To
this end, we require that the given interpolation problem (3.48) is well-
conditioned. Note that according to Theorem 12, this requirement depends
on the geometry of the interpolation points X w.r.t. the center o, but not
on the scale h.

However, the spectral condition number of the matrix Ay in (3.51) de-
pends on h. The following rescaling can be viewed as a simple way of pre-
conditioning the matrix Ay for very small h. In order to evaluate the poly-
harmonic spline interpolant s” satisfying (3.48), we prefer to work with the
representation

sh(hx) =< by(z), AT fr >, (3.59)

which immediately follows from the identity (3.55) and the scale-invariance
of the Lagrange basis, Lemma 2. Due to (3.59) we can evaluate s" at hx by

solving the linear system
Ai-b=f (3.60)

The solution b € R**9 in (3.60) then yields the coefficients of s"(hz) w.r.t.
the basis functions in by (z).

By working with the representation (3.59) for s* instead of the one in
(3.49), we can avoid solving the linear system (3.51). This is useful inso-
far as the linear system (3.51) is ill-conditioned for very small h, but well-
conditioned for sufficiently large h. The latter relies on earlier results due to
Narcowich and Ward [128], where it is shown that the spectral norm of the
matrix A;l is bounded above by a monotonically decreasing function of the
separation distance gpx of the point set hX = {hz,,..., hz,}. This in turns
implies that one should, for the sake of numerical stability, avoid solving the
system (3.51) directly for very small h, see Section 3.6. For further details on
this, we refer to [128] and the more general discussion provided by the recent
paper [151] of Schaback.
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3.9 Optimal Point Sampling

This section concerns the construction and characterization of point sets X,
whose uniformity px,o = gx/hx,q is, for a compact domain 2 C R?, max-
imal. Our motivation for the following discussion is mainly given by the un-
certainty relation of Section 3.7. In fact, the results in Section 3.7 suggest
to consider the variation of the points in X for the purpose of improving
the performance of radial basis function interpolation in terms of numerical
stability and approximation quality. This requires balancing the two quan-
tities gx and hx, o, such that gx is large and hx ¢ is small, see the discus-
sion around (3.42). This explains why we want to maximize the uniformity
px.2 = gx/hx,o. Note that neither hx o nor ¢x depends on the selected
basis function ¢. Nonetheless their values contribute, for all commonly used
radial basis functions, significantly to the method’s performance [95].

The following theorem provides one useful isoperimetric property of reg-
ular simplices. Recall that a simplex is said to be regular, iff all of its edge
lengths are equal. Hence, for the special case d = 2, a regular simplex is an
equilateral triangle.

Theorem 13. Let T denote a nondegenerate d-dimensional simplex, Vr the
set of its d+1 wvertices, and rr the radius of its circumsphere St. Furthermore
let

d

Jd - m

Then we have
qvy S TT/Jd

where equality holds if and only if T is a reqular simplex. O

The above theorem is a well-known result from discrete computational
geometry proven by Rankin [138] in the context of spherical codes (see also
[32, Chapter 1, Section 2.6]). The notation J, for the reciprocal value of the
uniformity pv,  a, of a regular d-simplex A, is dedicated to H. Jung [105]
(see [24, Chapter 2, Section 11]).

In the following discussion we assume for any point set X that the domain
{2 contains at least one Voronoi vertex of X, i.e., 2N Vx is non-empty, where
we let Vx denote the set of Voronoi points of X (see Section 2.3 of Chapter 2).
In this case, the set X is said to be admissible, and we collect all such finite
point sets in

X={X={x1,...,zy} CR* : 2N Vx not empty }.

We say that X is optimally distributed in £2, iff X maximizes the unifor-
mity px, among all point sets Y € X’ by satisfying

PX,2 = Sup pvy,@.
Yex
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The following theorem provides an upper bound on the uniformity for
point sets in A'.

Theorem 14. Let X € X. Then, the uniformity of X in 2 can be bounded
above by
px. < J7°

Proof. Let Dx be the Delaunay triangulation of the point set X. Then, the
shortest distance between two distinct points from X is given by the length
of the shortest edge in Dx, so that ¢x = minrep, gv;. holds. Moreover, we
have
h = d > d = . 3.61
X, = max x(y) > JJnax x(v) ;g%}i T (3.61)
cr

By using Theorem 13 we find

X minrepy qv; _
px.o =X < €0x WVr o pay Mo o g1, (3.62)
hx o maxXreoy T Te€EDx T
’ cref e €02

which completes our proof. O

The construction of optimally distributed point sets relies on the following
necessary condition.

Theorem 15. Let X € X be an optimally distributed set in {2 by satisfying
PX.Q = Jd_l. Then, every simplex T € Dx whose circumsphere’s center cr
lies in {2 is regular.

Proof. From (3.61) we conclude hx o > rr, and therefore, like in (3.62), we
obtain

px.e < qvpfrr < I
But then, px,o = J;' particularly implies gy, /rr = J;!. According to
Theorem 13, the simplex T is then regular. O

The above result suggests using regular simplices for the construction of
optimally distributed point sets. We further discuss this by providing the
following observation.

Theorem 16. Let X be a finite point set, such that every simplex of its
Delaunay triangulation Dyx is reqular. Then, the set X is optimally distributed
in its convez hull [ X].

Proof. Without loss of generality let the edge lengths of the simplices be
normalized, such that gr = 1 holds for every T' € Dx. Under this assumption
and by using

hyy,r=Jg foreveryT € Dx

we find for 2 = conv(X) the identity

h = maxd = max maxd = max h =J
X,0 = max x(v) Jhax may x (y) fmax hypr = Ja

which, in combination with Theorem 14, completes our proof. O
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For the special case of two dimensions, where J; ' = /3, optimal point
sets can be constructed by using the hezagonal lattice

Hy = {jur +kvy : j, k€ Z} CR?,

which is spanned by v; = (1,0) and v, = (1/2,v/3/2).

] [ ] 9 (] ] ® [ ]

Fig. 3.1. An optimal point set X C [0, 1]? satisfying px,0 = V3.

Figure 3.1 shows one example for a planar point set X C A which is op-
timal in the unit square 12 = [0, 1] by satisfying px o = v/3. Further details
on the construction of such point sets are explained in [95], where more-
over numerical results concerning the performance of radial basis function
interpolation are provided.

3.10 Least Squares Approximation

This final section is devoted to least squares approzimation, an alternative ap-
proach for scattered data fitting other than plain interpolation. Least squares
approximation makes sense especially in situations where the given data is
contaminated with noise.
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For the purpose of explaining this particular approximation scheme, let
a finite point set X = {z1,...,zy} C R? and data values f|x be given.
Moreover, suppose Y = {y1,...,yn} is a subset of X, Y C X, whose size
|Y| = n is much smaller than the size |[X| = N of X, ie, n < N. As to
the construction of a suitable subset Y, this can be accomplished by using
scattered data filtering, a selection scheme which is explained in Section 4.4
of the following Chapter 4.

For the discussion in this section, our aim is to reconstruct the unknown
function f from its function values f | « Dby solving the linear least squares
problem

N
ain S ls(en) — f@ol, (3.63)
k=1

where for fixed ¢ € CPDg(m), the recovery space Ry y = R}b’y, see (3.56),
is given by

Roy =< > cidlll-—yil) +p: pe PLS cjaly;) = 0 for all g € PE,

=1 =1

Note that the form of any s € Ry is similar to that of the interpolant in
(3.2). But due to the small size of Y (relative to X ), the number of coefficients
of s is only n+g¢, which is much smaller than the number of coefficients of any
interpolant in (3.2), i.e.,, n + ¢ < N + g. Therefore, the above approximation
problem (3.63) has a much smaller complexity than the interpolation problem
(3.1).

Strictly speaking, the above optimization problem (3.63) is a linear least
squares problem with linear equality constraints. This is due to the vanishing
moment conditions, the linear constraints on c;,...,c, in the definition of
R,y In the following of this section, we show that the problem (3.63) has
always a unique solution s* € Ry y, provided that Y is P2 -unisolvent, see
the definition in (3.13). This result is stated in Theorem 17 below.

But let us first make some preparations. The unique solution s* of (3.63)
is referred to as the best approximation of f w.r.t. the data f | « (in the sense
of least squares). Moreover, the expression

N 1/2
serf;gfy (s = D)l = 115" = Pl = (Z |s* (k) — f(xk)|2) (3.64)

k=1

is called the least squares error. The solution s* can be computed by using
standard techniques from numerical linear algebra [14, 111].

In order to explain the relevant details on the least squares approximation
scheme, we assume, without loss of generality, that the points in X are or-
dered, such that the points from Y C X come first, i.e., yp = zx, 1 < k < n,
and welet Z =X \Y.
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Moreover, we use the abbreviation
A xy = (d(llzx = yjll) 1grsm € RYX™

In particular, Ay x x = Ay, x. Finally, recall the definition of Py € RV*9 in
(3.8). The matrices Py € R**? and Pz € RIN=™)%4 are defined accordingly.

Theorem 17. Let ¢ € CPDy(m). Suppose Y is a P -unisolvent subset of
X,Y C X. Then, the constrained linear least squares problem (3.63) has a
unique solution.

Proof. The linear least squares problem (3.63) can be rewritten as

Py c=0

where b = [T, dT)T € R™9, ¢ = (c1,...,cn)T € R* and d = (da)jaj<m € R7,
is the coefficient vector of

s(@) =Y cidlllz—yil) + D daz® € Rpy.
1=1

|a|<m
Moreover, the entries of the matrix
B = [A¢,X,Y|PX] € RNX(n+q)

are the point evaluations of the basis functions ¢(|| - —y;l|), 1 < j < n, and
z%, |a| < m, at the points in X, respectively. Now note that the constraints
PI'c = 0in (3.65) can be expanded as Cb = 0, where

C = [PE|0] € Rex(nta),

According to [111, Chapter 20, Theorem 20.9], the problem (3.65) has a
solution provided that the matrix C has full rank ¢. Moreover, under the
assumption rank(C) = ¢ a solution of (3.65) is unique, if and only if the
augmented matrix

_[C] ¢ v+ x(ta)
D= B eR
has full rank, i.e., rank(D) = n + ¢q. But by splitting the matrix D as

[ PY 0
D = Ad,yy Py
| Ag,z,y Pz

and by using Theorem 2, we immediately see that rank(D) = n + ¢. Finally,
C has full rank due to the injectivity of Py which is a direct consequence
from our assumption on Y. 0O
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Solving (3.65) by direct elimination requires according to [111] a parti-

tioning of
_ [ Ci|Cy
D= |:B1 Bz] (3.66)

with C; € R?%9, Cy € R?*™ B; € RV*? B, € RV*" and

by
b= i)
where b; € R?,b, € R™.

Without loss of generality, we assume that C; is nonsingular which is
equivalent to requiring that the set Y; = {y1,...,y,} C Y is P2 -unisolvent.
Since Y itself is assumed to be P -unisolvent, it follows that Y must contain
a P2 -unisolvent subset of size gq.

Due to the given constraints Cb = 0, we find that b; = —Cl_lcgbz, and
therefore by using (3.66) we have

||Bb—f|x|l = ||B2by —f|X||

with By = By — B\ Cy 1C,. Consequently, the computation of the solution
of (3.65) can be reduced to solving the unconstrained linear least squares
problem

in, || Bzbs — Flill (3.67)

A practical way for computing the solution of (3.67) and thus of (3.65)
dates back to Bjgrck and Golub [15] (see also [111, Chapter 21]). The starting
point in [15] is a decomposition of C' = QlT[él,C"z], where (; € RI*? is
orthogonal and C; € R9%? is upper triangular. Using the identity

By = By — (B1C{")(@1C2) = By — Bi Gy,

the computation of Bg requires solving the triangular system B\C; = B for
the determination of B, € RN x4 For solving (3.67) it remains to decompose
the matrix B, € RV*™ by finding an orthogonal matrix Q, € RV*¥ such

that )
A _ | B2l Nx(n+1
Q2[B2|flx]_|i—0—'—g7:l€R x( )’

where By € R™™™ is upper triangular, and ¢, € R*, g, € R¥Y~". The com-
putation of the solution b of (3.65) can then be accomplished by solving the
two triangular systems

Babs = g1

Clbl = —C'sz

one after the other.
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We finally remark that the least squares error in (3.64) can obviously be
bounded from above by using the available pointwise error estimates of the
interpolation scheme, as discussed in Section 3.5. Indeed, this is due to the
following simple observation, where sy y € Ry y denotes the interpolant to
f at Y satisfying sy y|, = f|,-

N
(5™ = )17 =D Is™(@x) — flaw)|?
k;l
<Y Isgv (mx) = flax))?
k=1

N
D7 Ispy (@) = flax))?

k=n+1

S CHfE D Fylhey(2)).

z2€Z

This immediately leads us to the bound

(5" = NP < (N =n)-C|fI5 - Folhoy,z)

on the least squares error, where h, y,z = max,cz h,,y (2).



4 Thinning Algorithms

Thinning algorithms are greedy point removal schemes for scattered data,
where the points are recursively removed according to some specific removal
criterion. This yields a hierarchy of the input data, which is used for building a
multiresolution approximation of a model object, a mathematical function. In
general, thinning algorithms are therefore useful tools for model simplification
and data reduction.

This chapter concerns the construction and efficient implementation of
thinning algorithms for the special case of bivariate scattered data, with em-
phasis on specific applications. We basically distinguish between two different
types of thinning algorithms, non-adaptive thinning and adaptive thinning.
Non-adaptive thinning only depends on the point locations of the input pla-
nar point set, whereas in adaptive thinning also function values, sampled at
the input points, are used for the point removal.

Adaptive thinning is used in combination with linear splines over Delau-
nay triangulations, in order to create a multiresolution approximation of the
sampled bivariate function. In contrast to adaptive thinning, non-adaptive
thinning typically generates a hierarchy of uniformly distributed subsets from
the input data. Such data hierarchies, generated by non-adaptive thinning,
are used in the next Chapter 5 for the purpose of multilevel interpolation by
radial basis functions.

This chapter reviews our previous and current work on thinning algo-
rithms as follows. Section 4.1 first provides a preliminary discussion on thin-
ning algorithms and related concepts, before a generic formulation of thinning
is given in Section 4.2. Section 4.3 is then devoted to non-adaptive thin-
ning [74]. This is through Section 4.4 followed by a discussion on progressive
scattered data filtering [101], which is a combination of non-adaptive thinning
and a postprocessing local optimization procedure, termed ezchange.

Then, in Section 4.5, adaptive thinning algorithms [55] are developed. The
utility of adaptive thinning is shown for two different applications, terrain
modelling and image compression [40, 42]. Image compression is discussed in
detail in Section 4.6, where also the important issue of efficient coding [41]
is addressed. The construction in Section 4.6 yields a complete image com-
pression scheme, which is shown to be competitive to the well-established
wavelet-based compression scheme SPIHT.
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4.1 Preliminary Remarks

Conceptually, thinning is a simple approach to generating a multiresolution
representation of a triangulated set of points in the plane. The idea of thin-
ning is to recursively remove points, one by one, retriangulating at each step
the reduced point set. In [74], where the term thinning is introduced, seve-
ral different strategies, thinning algorithms, for point removal are suggested.
These thinning algorithms tend to favour well-distributed planar point sets.

Provided one always uses Delaunay triangulations, the only change in the
topology at each point removal is local. Indeed, at any step one merely needs
to fill the whole left by the point removal, i.e., by the removal of its adjacent
triangles. This is done by the retriangulation of the cell C(y) of the removed
(vertex) point y, see Figure 4.1. Recall that the cell C(y) of a vertex y in
a triangulation 7y is the union of all triangles in 7y which contain y as a
vertex.

(a) (b)

Fig. 4.1. Removal of the node y, and retriangulation of its cell C(y). The five
triangles of the cell C(y) in (a) are replaced by the three triangles in (b).

Yet it seems that for reducing the approximation error, especially when
working with piecewise linear interpolation over triangulated subsets, a bet-
ter strategy, instead of using Delaunay triangulations, would be that of
data-dependent triangulations, as discussed in Section 2.4. But one should
note that, when working with data-dependent triangulations, the topological
changes required for decremental triangulation are not guaranteed to be local.
This may lead to an increased computational overhead during the thinning.

In this chapter, we are concerned with both non-adaptive thinning [74],
and adaptive thinning [55]. In contrast to non-adaptive thinning, adaptive
thinning does also take the function values at the 2D points into account.
For an up-to-date survey on adaptive thinning, we refer to [40].

The idea of thinning triangulated scattered data is not new. Thinning
is only one of several mesh simplification methods, which are more com-
monly referred to as mesh decimation or mesh simplification in the literature.
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Heckbert and Garland [86] give an extensive survey of simplification meth-
ods both for terrain models (triangulated scattered data in the plane) and
free form models (manifold surfaces represented by 3D triangle meshes). Spe-
cific mesh decimation algorithms, other than thinning, include techniques like
edge-collapse, half-edge collapse, and vertex collapse. For a recent tutorial on
these methods, see the paper [80] by Gotsman, Gumhold, and Kobbelt.

We remark that there exist further alternative methods for generating
hierarchical triangulations. One common concept is given by insertion algo-
rithms, where points are successively added to a coarse triangulation. There-
fore, insertion can be viewed as the inverse of thinning. Both techniques, thin-
ning and insertion, essentially require careful management of the data struc-
ture needed to represent a hierarchical sequence of triangulations, termed
maulti-triangulation. For a recent account on the state-of-the-art in this field,
we recommend the tutorial paper [38] by De Floriani and Magillo.

4.2 Generic Formulation

In the following discussion of this chapter, X C R? denotes a finite scattered
point set of size | X| = N < oco. A generic formulation of thinning on X is
given by the following algorithm, where n is the number of removal steps.

Algorithm 16 (Thinning).
INPUT: X with | X|=N, andn € {1,...,N -1},

(1) Let Xy = X;

(2) FOREk=1,...,n
(2a) Locate a removable point £ € Xn_kt1;
(2b) Let XN—kr = XN_k+1 \ z;

OUTPUT: Xy_, C X, of size | Xn_n| =N —n.

In order to select a specific thinning strategy, it remains to give a definition
for a removable point in step (2a) of the Algorithm 16. But this should
depend on the specific requirements of the underlying application.

On this occasion, we remark that we consider applying adaptive thinning,
in combination with linear splines over Delaunay triangulations, to two differ-
ent applications, terrain modelling (Subsection 4.5.5) and image compression
(Section 4.6). By the different requirements of these two applications, cus-
tomized removal criteria, for step (2a) of Algorithm 16, need to be developed.
The construction of suitable adaptive anticipated error measures, on which
the different removal criteria rely, is done in Subsection 4.5.4, for terrain
modelling, and in Subsection 4.6.2, for image compression.

Note that during the performance of the above thinning algorithm a nested
sequence

XN-n CXN-n1 C-CXy 1 CXn=X (4.1)
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of subsets of X is computed. This yields also an ordering of the points in X.
Indeed, note that two consecutive sets Xny_r C Xn_gt1, 1 < k < n,in (4.1)
differ about only one point. This difference is the point zx = Xn_k+1 \ XNk
which is removed in the k-th step in (2b) of the thinning algorithm.

For the subsequent discussion, it is convenient to associate with any thin-
ning algorithm a thinning operator T. The operation of T on any non-empty
subset Y C X, is defined by T(Y) = Y \ y for one unique y € Y, so by
the action of T on Y, the point y is removed from Y. Therefore, any sub-
set Xn_, output by Algorithm 16 can be written as Xy_, = T"(X), where
T™ = To---oT denotes the n-fold composition of T'. Hence, the data hierarchy
(4.1) can be expressed as

T"(X)cT Y X)C - CcT(X)cTUX) = X, (4.2)

where T° denotes the identity.
In our applications, we use nested sequences of the above form (4.2) in
order to construct a coarser data hierarchy

XNeny 1 CXNonp_, C  CXNpp, CXNopy, CX (4.3)

comprising L data levels, where ny,...,ny_1 is a strictly increasing sequence
of breakpoints. Note that the data hierarchy in (4.3) already yields a multireso-
lution representation for the given set X . But the selection of the breakpoints
therein requires care. Details on this will be deferred to later in this chapter.

4.3 Non-Adaptive Thinning

Non-adaptive thinning concerns the construction of an entire sequence
XN-n CXN-pnp1C-CXNy1CXn=X (4.4)

of nested subsets, with increasing sizes |Xy_,| = N ~ n, such that for each
Y = Xn_, C X its covering radius

Ty.x = max dy () (4.5)

on X is small, where
dy (z) = min lly — Il

denotes the Euclidean distance between the point z € X and the subset Y C
X, see (2.4). The progressive construction of such a sequence is accomplished
by using one greedy thinning operator T, so that each of the subsets Xy _,
in (4.4) can be written as Xy_n = Tx(XNn_n+1), i.e., Xn_n = TI(X), for
1 <n < N —1, and thus satisfies | Xy_n| = N — n.
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4.3.1 The k-center Problem

Before we proceed with explaining details on non-adaptive thinning, which
is the subject of most of this section, let us first make a few preliminary
remarks. Observe that for the above purpose one ideally wants to pick, for
any n, one subset Y = X% _ C X, with (small) size |X%_, | = N —n, which
is optimal by minimizing the covering radius ry,x among all subsets Y C X
of equal size, so that

* .

[ Y = min r . 4.

n T TXY X min  ry,x (4.6)
Y |=N—-n

The problem of finding an algorithm which outputs for any possible input
pair (X,n), 1 <n < |X|, such an optimal subset X% _ satisfying (4.6) is one
particular instance of the k-center problem. In the more general d-dimensional
setting, the norm || - || may be replaced by any arbitrary metric on R?.

But the k-center problem is, due to Kariv and Hakimi [107], NP-hard.
Moreover, the problem of finding an a-approzimation algorithm, a > 1, for
the k-center problem which outputs for any input pair (X,n), 1 <n < |X]|,
asubset Xy_, C X of size | Xn_n| = N — n satisfying

Xy X SO-Th (4.7)

is for any @ < 2 NP-complete. Hochbaum and Shmoys [89] were the first to
provide a 2-approximation algorithm (i.e., @ = 2) for the k-center problem,
which is best possible unless P=NP. For a comprehensive discussion on the
k-center problem we refer to the textbook [88, Section 9.4.1] and the survey
paper [164], where the Hochbaum-Shmoys algorithm is explained.

In contrast to the situation in the k-center problem, non-adaptive thinning
does not work with a beforehand selection for N — n, the size of the output
XN_n C X. Instead of this, the algorithms picks one good subset Xny_n
at run time, by selecting one suitable breakpoint n = n; in (4.3). For the
purpose of controlling the covering radius rx,_, x, this selection relies on
adaptive bounds of the form

TXnonsX S OXpy_ X T (4.8)

where axy_, x = rxy_. x/0on denotes the quality index of Xn_n, and the
numbers o, solely depend on the distribution of the points in X . The adaptive
bounds in (4.8) are proven in the following Subsection 4.3.2.

Note that the upper bound onrx,_, x in (4.8) looks similar to the one in
(4.7). However, while ax,_, x in (4.8) depends on both X and Xy_, C X,
the universal constant « in (4.7) does not even depend on X. In fact, the
sequence of numbers «ax, _, x, recorded at run time, helps us to control the
relative deviation

*

"XN-n X ~Tn

*
TTL

<axy_..x—1, (4.9)
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between any current covering radius rx, _. x and the optimal value . Note
that the bound (4.9) follows directly from (4.8).

Whenever ax, _., x is close to one, this then indicates that the set Xny_p,
is close to one optimal set of equal size | Xy_,| = N —n. In our applications
in [94, 96], this turns out to be a useful criterion for the selection of good
subsets from X.

The numerical results in Subsection 4.4.4 show how greedy (non-adaptive)
thinning, to be explained in Subsection 4.3.3, and the related scattered data
filtering, being subject of Section 4.4, performs in comparison with possible
a-approximation algorithms for the k-center problem.

4.3.2 Adaptive Bounds on the Covering Radii

In this section, adaptive bounds on the covering radius ry x, forany ¥ C X,
are proven. To this end, assume without loss of generality that the points in
X = {x1,...,xn} are ordered such that their significances

o(z) = dx\.(z), forzeX, (4.10)
are increasing, i.e.,
o(x1) < o(32) < -+ < olan). (4.11)

Note that for any x € X its significance o(z) in (4.10) is the Euclidean
distance to its nearest neighbour in X. Hence, according to the above as-
sumption (4.11) on the ordering of the points in X, the value o(z;) yields
the minimal distance between two points in X. In fact, since this minimum
is attained by at least two points in X, we have o(x1) = o(x2).

For notational simplicity, we let o, = o(z,) for 1 < n < N. Moreover,
forany Y C X of size |[Y| = N —n, we let Z = X \Y denote the difference
set, whose size is then |Z| = n. Starting point of the subsequent discussion is
the following lower bound on the covering radius ry,x for Y C X.

Theorem 18. For any Y C X of size |Y| = N — n the inequality
on < Ty x (4.12)
holds.
Proof. Since for any z € Z = X \ 'Y the inequality
dx\z(z) > dx\,(2) = 0(2)
holds, we conclude

TY.X =Tx\z,x = max dx\z(z) = max dx\z(z) 2 max o(z). (4.13)
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By our assumption (4.11) on the ordering of the points in X and by
|Z| = n, it follows that

max a(z) > o(zn) = 0on

which completes, by using (4.13), our proof. O

Note that the above inequality (4.12) holds in particular for any optimal
set X3 _, C X of size | X{_,| = N —n satisfying rx;, __ x = r7, which yields
on <1k forn=1,...,N — 1. This immediately implies

ry,x =Qy,x -0n S0y, x " Ty,

where we let ay,x = ry x/on. This is the adaptive upper bound (4.8) stated
in the previous Subsection 4.3.1. In summary, we draw the following conclu-
sion from Theorem 18.

Corollary 3. For any Y C X of size |Y| = N — n the inequalities
on<r; <ryx <ayx-r, (4.14)
hold, where ay x =ryx /o, > 1. O

In situations where the optimal value 7 is known, the following observa-
tion may help to construct an optimal subset by using the initial significances
of the points in X.

Theorem 19. Suppose Y C X is an optimal subset of size |Y| = N —n.
Then, this implies 0(z) <1} forallz€ Z =X \Y.

Proof. Note that every point z € Z satisfies
o(z) =dx\.(2) <dx\z(2) = dy(2) <ryx. (4.15)

Moreover, since Y is optimal, we have ry x = r%. This in combination with
(4.15) implies o(z) < r}; for every z € Z, as stated. O

Note that the above characterization implies that any optimal Y* C X
of size N — n is necessarily a superset of X \ {z € X : o(z) <r}}. We come
back to this point in Subsection 4.3.4.

4.3.3 Greedy Thinning

Greedy algorithms are known as efficient and effective methods of dynamic
programming for solving optimization problems. Greedy algorithms typically
go through a sequence of steps, where for each step a choice is made that
looks best at the moment. For a general introduction to greedy algorithms
we recommend the textbook [33, Chapter 16].

In our particular situation, a greedy thinning algorithm is one where at
each step one point is removed, such that the resulting covering radius is min-
imal among all other possible point removals. This leads us to the following
definition for a removable point in step (2a) of Algorithm 16.
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Definition 13. For any Y C X with |Y| > 2, a point y* € Y is said to be
removable from Y, iff y* minimizes the covering radius ry\, x among all
points in Y, i.e.,

Ty\y+.x = Minr .

Y\y*, X veY Y\y,X

We remark that this definition for a removable point is different from
those used in [72, 74, 96], where a removable point is one which minimizes
the distance to its nearest neighbour in the current subset Y. In contrast
to this, the removal criterion of Definition 13 depends also on the points in
Z = X \'Y which have already been removed in previous steps. This idea is
also favourably used in the recent paper [55].

At first sight, the task of locating a removable point may look costly. The
computation can, however, be facilitated by using the following characteriza-
tion for removable points, which works with Voronoi diagrams. To this end,
recall from the discussion in Section 2.3 that for any finite point set ¥ and
y € Y the convex polyhedron

Vy(y) = {z e R : dy(2) = |lz - ylI}

denotes the Voronoi tile of y w.r.t. Y, comprising all points in the plane
whose nearest neighbour in Y is y.

Theorem 20. LetY C X with |Y| > 2. Every point y € Y which minimizes
the local covering radius

r(Y) = ry\y,XnVy (v) (4.16)
among all points in'Y is removable from Y .

Proof. Let Z = X \'Y. Note that

Ty\y,X = zgl%y dY\y(Z)

= max ax d , d ,d
m (ze;my) (@), max  d(?) YW’)

d d d .
max (ZE.?\’?/’Y‘@) y(Z),ze%%(y) y\y(2), Y\y(y)>

Since dy\y(z) > dy(z) for all z € Z N Vy (y), this implies

z€ZNVy

Ty\y,X = max (maxdy(z), max dy\y(Z),dy\y(y)) .
2€Z (v)
Moreover, since

max( max dY\y(z)de\y(y)> = dy\y(2) = Ty \y,xNVy ()

max
2€ZNVy (y) z€(ZNVy (y))Vy
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and ry, x = max,cz dy(z), we obtain
Ty\y,x = max (ry,x,r(y)) . (4.17)

Therefore, ry\, x < ry\3x, whenever r(y) < r(§) for any y,§ € Y, which
completes our proof. O

4.3.4 Localization of Optimal Subsets

In this subsection, one useful (theoretical) property of greedy thinning is
discussed. This is concerning the localization of optimal subsets during the
thinning process. To this end, we use the notation T}*(X) C X for a sub-
set output by greedy thinning after n point removals. In particular, we have
|TH(X)] = N — n for the size of T*(X), and so by Corollary 3 in Subsec-
tion 4.3.2 we obtain for any n € {1,...,N — 1} the adaptive bounds

On <7p < Tra(x),x S QrR(X),X "Th

for the covering radius of 7;*(X) on X, where arn(x),x = rrr(x),x/0n > 1.

Now, if arn(x),x = 1, this then would directly imply that the subset
TP(X) is optimal with satisfying r7n(x) x = on = r;,. For instance, at the
first point removal (i.e., when n = 1) greedy thinning returns the optimal
subset T.(X) = X'\z*, with z* being some removable point from X, satisfying

T, (X),X = TX\z*,X = dX\z'(I*) =o(z*) = a1

But for general n (and general X), it is not true that ¢, coincides with
TTs(x),x - This leads us to the following definition.

Definition 14. For given X of size |X| = N, an indexn, 1 <n < N, is
said to be an optimal breakpoint for X, iff there is one Y C X of size
Y| = N —n satisfying ry,x = op.

Hence, for any input X, n = 1 is always an optimal breakpoint. Indeed,
in this case Y = T,(X) satisfies ry, x = ;. But in general, i.e,, for n > 1, it
is not necessarily true that n is an optimal breakpoint for X. Nevertheless,
whenever any n is an optimal breakpoint for X, we can show that the subset
TP X) C X generated by greedy thinning is the unigque optimum satisfying
T} X) = op, provided that o, < oy ;.

Theorem 21. Suppose n is an optimal breakpoint for X. If o, < 0py1, then
the subset

Xn_n=X\{z1,...,2n} C X

is optimal by satisfying rx;,  x = on. Moreover, X},_, is the unique min-
imizer of the covering radius ry,x among all subsets Y C X of equal size
Y|=N—n.
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Proof. Since n is an optimal breakpoint in X, there is at least one optimal
subset Y C X of size |Y| = N — n satisfying ry x = op. Let Z = X \ Y.
Then, due to Theorem 19, this implies

o(z) <o, (4.18)

for every z € Z. But since ¢, < op41 and by (4.11), the condition (4.18) is
only satisfied by the points in the set X, = {z1,...,z,}, and so Z C X,,.
But |Z]| = |X,| = n, and therefore Z = X,,, which impliesY = X \ X,,. O

Corollary 4. Suppose n is an optimal breakpoint for X, and op, < Opy1.
Then, the subset T?(X) C X output by greedy thinning is optimal by satisfy-
ing rra(x)y = on. Moreover, T'(X) is the unique minimizer of the covering
radius ry, x among all subsets Y C X of equal size |Y| =N —n.

Proof. Due to the above Theorem 21, we need to show that T"(X) = X\ X,
where X, = {z1,...,2,}. We prove this by induction. Since rx\; x = ()
and due to the assumption ¢, < 0,41, greedy thinning removes one point
from X, in its first step, i.e., Tu(X) = X \ z* for some z* € X,,.

Now suppose, for any 1 < k < n, that T*(X) = X\ Z holds with Z C X,,.
Then, on the one hand, for every z € X, \ Z C X,, we have

TTH(X)\2z,X = TX\(ZUz),X S TX\X,,Y = On. (4.19)
Indeed, this is due to the monotonicity of the covering radius, i.e.,
ryx <ryx, forallV,Y with¥ CY C X. (4.20)
On the other hand, for every z € X \ X,, = {zy41,...,Zn} we have
drr(x)\e(T) = dx\z)\2(Z) > dx\2(2) = 0(2) > 0n,
and so r7k(x)\g,x > 0. This in combination with (4.19) shows that
TTR(X)\2,X < TTH(X)\z,x» foralze X,\Z,ze X\ X,.
Therefore, greedy thinning removes one point from X, \ Z C X,, in its next
step. After n removals, we have T?*(X) = X \ X,, as desired. 0O
4.3.5 Implementation of Greedy Thinning

Now let us turn to the important point of efficiently implementing greedy
thinning algorithms. To this end, recall the Definition 13 for a removable
point, and the characterization in Theorem 20. The latter says that a point
y* € Y, which minimizes the local covering radius r(y) among all points in
Y C X, is removable from Y.

Following along the lines of the discussion in the previous papers [74, 55],
during the performance of the greedy thinning algorithm, the points of the
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current set Y are stored in a heap. Recall that a heap is a binary tree which
can be used for the maintenance of a priority queue (see Section 2.5 for
details). Each node y € Y in the heap bears its local covering radius r(y) in
(4.16) as its significance value.

The nodes in the heap are sorted, such that the significance of a node
is smaller than the significances of its two children. Hence, due to the heap
condition, the root of the heap contains a least significant node, and thus a
removable point. Therefore, the removal of a removable point in steps (2a)
and (2b) of the thinning Algorithm 16 can be performed by popping the root
of the heap by using the function remove, Algorithm 10 in Subsection 2.5.4.
Recall that building the initial heap costs O(N log N) operations, where N =
| X| is the size of the input point set X . Likewise, building the initial Voronoi
diagram of X costs O(N log N) operations. But each point removal requires
also a subsequent update of both the employed data structures, the heap and
the Voronoi diagram, and the significance values of the nodes in the heap.

More precise, the following steps are performed when removing one re-
movable point by greedy thinning.

(T1) Pop the root y* from the heap and update the heap.

(T2) Remove y* from the Voronoi diagram. Update the Voronoi diagram in
order to obtain the Voronoi diagram of the point set Y \ y*.

(T3) Let Y =Y \y* andso Z = Z U y".

(T4) Update the local covering radii of the Voronoi neighbours of y* in Y,
whose Voronoi tiles were changed by the update in step (T2). Update
the positions of these points in the heap.

In addition, during the performance of greedy thinning, each z € Z is
attached to a Voronoi tile containing z. Thus in step (T2), by the removal
of y*, the points in Z N Vy (y*) and y* itself need to be reattached to new
Voronoi tiles Vy\,+(-) of Voronoi neighbours of y*. These (re)attachments
facilitate the required updates of the local covering radii in step (T4).

We remark that the updates in the above steps (T2) and (T4) require
merely local operations on the Voronoi diagram. In fact, each of these two
steps cost O(1) operations, provided that we have |Z N Vy (y*)| = O(1) for
the number of points in Z that need to be reattached to new Voronoi tiles.
Moreover, each update on the heap (in steps (T1) and (T4)) costs at most
O(log N) operations, where |Y| = N — n is the number of nodes in the heap
(see Subsection 2.5.4). Altogether, this shows that each removal step of greedy
thinning costs at most O(log N) operations, provided that |Z N Vy (y*)| =
o(1).

But in fact, under the assumption that the |Z| = n points in Z are uni-
formly distributed over the N — n Voronoi tiles, we have |Z N Vy (y*)| =~
n/(N — n) for the number of points in Z N Vy (y*). Therefore, the number
of operations in each of the steps (T2) and (T4) are of order n/(N — n).
By summing up the computational costs for (T1)-(T4) over N — 1 point
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removals, this shows that the total costs for generating the entire data hier-
archy in (4.4) by using greedy thinning are at most O(N log(N)). In summary,
we obtain the following result concerning the computational costs of greedy
thinning.

Theorem 22. The performance of the thinning Algorithm 16, by using the
removal criterion of Definition 13, and according to the steps (T1)-(T4)
requires at most O(N log N) operations. 0O

4.4 Scattered Data Filtering

Scattered data filtering is a progressive data reduction scheme for scattered
data. The scheme is a combination of greedy thinning and a postprocessing
local optimization procedure, termed ezchange, to be explained in the fol-
lowing Subsection 4.4.1. The overall aim of applying (progressive) scattered
data filtering on X is to generate a sequence {Xn_n}, of subsets of X such
that the covering radii rx, _, x are small. This is achieved by requiring that
every subset Xy_, C X is locally optimal in X.

Definition 15. Let Y C X and Z = X \Y C X. The set Y is said to be
locally optimal in X, iff there is no pair (y,z) € Y X Z of points satisfying

TY,X > T(V\y)uz,X- (4.21)
A point pair (y,z) € Y x Z satisfying (4.21) is said to be exchangeable .

Hence, if Y C X is locally optimal in X, then the covering radius ry x of
Y on X cannot be reduced by any single exchange between a point y € Y and
a point z in the difference set Z = X \ Y. Note that every globally optimal
subset X}, satisfying rxs  x =y, is also locally optimal.

Now the idea of progressive scattered data filtering is to reduce, for any
subset Y = T7(X) output by greedy thinning, its covering radius ry,x on X
by iteratively swapping point pairs between Y and Z = X \ Y. The latter is
the exchange algorithm, Algorithm 17 in Subsection 4.4.1.

4.4.1 Exchange

Exchange outputs, on any given subset ¥ C X and superset X, a locally
optimal subset Y* C X of equal size, i.e., |Y*| = |Y|. This is accomplished,
according to the following exchange algorithm, by iteratively swapping ex-
changeable point pairs between Y and the difference set Z = X \ Y.
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Algorithm 17 (Exchange).
INPUT: Y C X;

(1) Let Z =X \Y;

(2) WHILE (Y not locally optimal in X)
(2a) Locate an exchangeable pair (y,2) €Y x Z;
(2b) LetY =(Y\y)Uzand Z =(Z\ 2)Uy;

"OUTPUT: Y C X, locally optimal in X.

Note that the exchange algorithm terminates after finitely many steps.
Indeed, this is because the set X is assumed to be finite, and each exchange
in step (2b) strictly reduces the current (non-negative) covering radius ry, x.
By construction, the output set ¥ C X is then locally optimal. A charac-
terization of exchangeable point pairs is provided in Subsection 4.4.2. This
yields useful criteria for the efficient localization of such point pairs.

We associate the exchange Algorithm 17 with an exchange operator E,
which returns on any given argument Y C X a locally optimal subset E(Y') C
X of equal size |[E(Y)| = |Y|. Hence, E is a projector onto the set of locally
optimal subsets in X.

Moreover, by the composition of a greedy thinning operator T, and the
exchange operator E, we obtain a sequence F = {F,}, of filter operators,
where F,, = E o T". This already yields, as desired, by Xn_—n = Fn(Z) a
sequence { X y_n}n of locally optimal subsets with decreasing size |Xy_n| =
N —n (at increasing n). But in contrast to the data hierarchy in (4.4), the
sets X _p do not necessarily form a nested sequence of subsets.

Nevertheless, note that this progressive scattered data filtering scheme
can be applied recursively in order to generate a data hierarchy of the form
(4.3), and such that the covering radii TXNon, Xn-n,_, of two consecutive
subsets Xy _n, C Xn_n,_,, 1 <j < L, are small. This is done by using the
recursion

XN—n, = FAn, (XN—n,_l )7

forj =1,2,...,L—1, where we let ng = 0 and An, = n; —n;_;. In fact, this
construction is useful for various multilevel approximation schemes, which
are discussed in the following Chapter 5.

4.4.2 Characterization of Exchangeable Point Pairs

This subsection is devoted to the characterization of exchangeable point pairs,
which includes important computational aspects concerning the efficient im-
plementation of the exchange Algorithm 17. To this end, useful criteria for
an efficient localization of exchangeable point pairs are proven. Theorem 23
gives a necessary and sufficient characterization for exchangeable point pairs,
whereas the Corollaries 5 and 6 provide sufficient criteria, which are useful
for the efficient implementation of step (2a) of the exchange Algorithm 17.
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For the moment of the discussion in this subsection, Y C X denotes a
fixed subset of X and we let Z = X \ Y. Moreover,

Z*={z€Z :dy(z) =ryx} (4.22)

stands for the set of all z € Z where the maximum ry x is attained. The
following theorem yields a necessary and sufficient condition for exchange-
able point pairs. The subsequent two corollaries provide sufficient conditions,
which are useful for the purpose of quickly locating exchangeable points.

Theorem 23. A point pair (§,2) € Y x Z is exchangeable, if and only if all
of the following three statements are true.

(a) ry x > dyyus(z) forall z € Z*;
(b) ry,x > diy\guz(9);
(c) ry,x > diy\guz(2) for all 2 € Z N0 Vy (§).

Before we give a rigorous proof of this theorem below, let us pause to make
some remarks concerning the plausibility of the three conditions (a),(b), and
(c). To this end, recall that the aim of the exchange between § and % is to
(strictly) reduce the current covering radius ry,x. The three requirements
(a),(b), and (c) in Theorem 23 are interpreted individually as follows.

(a) By the insertion of Z into Y, the maximum ry,x must be (strictly) re-
duced. This requires that Z is for any z € Z* the nearest point in the set
Y U 2, with satisfying dyy;(z) = ||2 — 2|| < ry,x for all z € Z*.

(b) By the removal of §j from Y, the distance between ¢ and its nearest point
in the modified set (Y \ §) U Z must not be greater or equal than the
current covering radius ry,x. Otherwise, ry x won’t be reduced, it may
even be increased.

(c) Note that the distance between any point z € Z, lying in the Voronoi
tile Vy(§) of §, and the set Y is ||z — §||. Therefore, for every point
z € Z N Vy(9), the distance to its nearest point in the modified set
(Y \ §) U Z is to be updated after the removal of § from Y. Hence, the
distance between every such point z € Z N Vy (§) and the modified set
(Y \ 9) U 2 must not be greater or equal than the current covering radius
ry,x. Otherwise, ry, x won’t be reduced, it may even be increased.

Proof of Theorem 23. Suppose all of the three statements (a),(b), and (c) are
true. Note that condition (a), together with the definition for Z*, implies

ry,x > dyusz(z) forall z € Z. (4.23)
Moreover, for any z € Z \ Vy () we have dy (z) = dy\4(z), and therefore

dYUg(z) = d(y\g)ug(z) for all z € Z \ Vy (:l))
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This, in combination with statement (c) and (4.23), implies
ry,x > d(y\@)ui(z) for all z € Z. (4.24)
By combining (4.24) with condition (b), we find

Ty,x > max ( max d(Y\Q)Ué(Z), d(Y\g)ué@))
z2E€EZ\%
— deyon s
LR (v\g)uz(2)
= max diy\g)us(T)
= T(Y\§)uz,X>
in which case the pair (g, ) is, according to Definition 15, exchangeable.

As to the converse, suppose the pair (§,2) € Y x Z is exchangeable, i.e.,
Ty,X > T(y\g)us,x- Lhis implies
rvx > max dy\gu(z) 2 max dy\goa(e) = maxdego(e), (4.25)
and therefore
s > N
Ty,x > max diy\gyuz(2) 2 max dyuz(z),

which shows that in this case statement (a) holds. Finally, note that (4.25)
immediately implies the statements (b) and (c), which completes our proof.
]

Corollary 5. Let 2 € Z satisfy condition (a) of Theorem 23. Moreover, let
9 €Y satisfy r(§) < ry x. Then, the pair (§,2) € Y x Z is exchangeable.

Proof. Recall the expression r(§) = ry\y xnvy(g) in (4.16) for the local cov-
ering radius of g, which yields

o donl ). don (s
7(§) = max (Zega‘}f(g) y\§(2)s y\y(y)>

> diyvyays divvayus(9) | .
> max (ZE%%(Q) (v\g)uz(2), (Y\y)Uz(y))

Therefore, the assumption ry x > r(§) directly implies that the pair (g, 2)
satisfies the conditions (b) and (¢) in Theorem 23. In combination with the
other assumption on Z, all of the three conditions (a), (b), and (c) in Theo-
rem 23 are satisfied by (g, Z). Therefore, the point pair (7, Z) is exchangeable.
O

In many situations, the set Z* contains merely one point z*. In this case,
the point z* € Z* C Z is potentially a good candidate for an exchange,
since it satisfies the condition (a) in Theorem 23. This observation yields,
by using the criterion in Corollary 5, the following sufficient condition for an
exchangeable pair.
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Corollary 6. Let z* € Z satisfy dy(z*) > dy(z) for all z € Z \ 2*. Then,
for § €Y, the pair (§,2*) €Y x Z is exchangeable, if they satisfy

dy (z*) > r(g). (4.26)
Proof. Note that the first assumption on z* implies
ry,x = dy(z*) > dy(z) > dyu,-(2), forall z€ Z.

Hence, the point z* satisfies the condition (a) of Theorem 23. Moreover, by
the other assumption in (4.26), we obtain ry,x = dy (2*) > r(§). But in this
case, the point pair (g, z*) is, due to Corollary 5, exchangeable. 0O

4.4.3 Implementation of the Exchange Algorithm

In our implementation of the exchange Algorithm 17 we have, for the sake
of simplicity, merely used the sufficient criterion of Corollary 6 for locating
exchangeable point pairs. This can be done very efficiently as follows.

Recall the discussion concerning the efficient implementation of greedy
thinning in Subsection 4.3.5. As explained in Subsection 4.3.5, greedy thin-
ning works with a heap for maintaining removable points. In this heap, which
we call the Y-heap, the significance of a node y € Y is given by the value r(y)
of its current local covering radius. We use this heap also for the exchange
algorithm.

Moreover, during the performance of the exchange algorithm we use an-
other heap, called the Z-heap, where the points of the current set Z = X \Y
are stored. The priority of a node z € Z in the Z-heap is given by its dis-
tance dy(z) to the set Y. The nodes in the Z-heap are ordered such that
the significance of a node is greater than the significances of its two children.
Hence, the root of the Z-heap contains a point z* from the set Z*, so that
dy (Z*) =Ty X-

We remark that the Z-heap may either be built immediately before the
performance of the exchange algorithm, or it may be maintained during the
performance of the greedy thinning algorithm. In either case, building the
Z-heap costs at most O(N log N) operations. We can explain this as follows.
First note that the abovementioned attachments of the points in Z = X \ Y
to corresponding Voronoi tiles (see Subsection 4.3.5) can be used in order
to facilitate this. Indeed, by these attachments the significance dy (z) of any
z € ZN Vy(y) is already given by the Euclidean distance between z and
y € Y. Now since the number |Z]| of points in Z is at most N, and each
insertion into the Z-heap costs at most O(log N) operations, this altogether
shows that we require at most O(N log N) operations for building the initial
Z-heap.

Now let us return to the performance of the steps (2a) and (2b) of the
exchange Algorithm 17. In order to locate an exchangeable pair in (2a),
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we compare the significance r(y*) of the point y* (the point in the root of
the Y~heap) with the significance dy (2*) of z* (the point in the root of the
Z-heap). If r(y*) < dy(z*) and Z* = {z*}, then the pair (y*,2*) € Y x Z is,
due to Corollary 6, exchangeable. Step (2b) of the exchange Algorithm 17 is
then accomplished as follows.

(E1) Remove y* from Y by applying greedy thinning on Y. To this end,
perform the steps (T1)-(T4), described in Subsection 4.3.5.

(E2) Pop the root z* from the Z~heap and update the Z-heap.

(E3) Add the point z* to the Voronoi diagram of the set Y ! in order to
obtain the Voronoi diagram of the set ¥ U 2*.

(E4) Update the local covering radii of those points in Y, whose Voronoi tiles
were modified by the insertion of z* in step (E3). Update the positions
of these points in the Y-heap.

(E5) Update the significances dy (z) of those points in Z, whose surrounding
Voronoi tile was deleted by the removal of y* in step (T2) or by the
insertion of z* in step (E3). Reattach these points to new Voronoi tiles,
and update their positions in the Z-heap.

(E6) Let Y =Y Uz*andso Z = Z \ z*.

(E7) Compute the local covering radius r(z*) of z*, and insert z* into the
Y-heap.

(E8) Compute the significance dy (y*) of y*, and insert y* into the Z-heap.

Now let us turn to the computational costs required for one exchange step
of the exchange Algorithm 17. As explained above, step (2a) requires only
O(1) operations, when working with the two heaps, Y-heap and Z-heap.
The performance of one step (2b), as described by the above instructions
(E1)-(E8), can be done in at most O(log N) operations, provided that each
Voronoi tile contains O(1) points from Z. We tacitly act on this reasonable
assumption from now. In this case, the required updates of the local cover-
ing radii in steps (E1), (E4), and (E7) cost only O(1) time. Likewise, the
updates of the significances in steps (E5) and (E8) cost O(1) time. Finally,
each update in either of the two heaps in steps (E1),(E2),(E4),(E5),(E7),
and (E8) costs at most O(log N) time.

Theorem 24. One exchange step of the exchange Algorithm 17, by perform-
ing the instructions (E1)-(E8), requires at most O(log N) operations. 0O

We finally remark that we have no (non-trivial) upper bound on the num-
ber ng of exchange steps (required in the exchange Algorithm 17). But in all
of our numerical experiments we observed that ng is always much smaller
than the size of the input point set X, i.e., ng < N = | X|. We summarize the
above results concerning the computational costs of scattered data filtering
by combining the Theorems 22 and 24.

! Note that at this stage y* has already been removed from Y by step (T3).
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Theorem 25. For any finite point set X of size N = |X|, and 1 <n < N,
the construction of the subset Xy, = E o TFM(X) by n steps of the greedy
thinning Algorithm 16 followed by ng steps of the exchange Algorithm 17
requires at most O(N log N) + O(nglog N) operations. 0O

4.4.4 Numerical Examples

We have implemented the proposed scattered data filtering scheme in two
dimensions, d = 2. For the purpose of locating exchangeable point pairs, in
step (2a) of Algorithm 17, we decided to merely work with the sufficient
criterion in Corollary 6, as explained in the previous section. Moreover, our
implementation does not remove extremal points from X. This is desirable
insofar as this serves to guarantee that the convex hull [Y] of any current
subset Y C X coincides with the convex hull [X] of the input point set X.

Initially, on given input set X, the significance o(z) in (4.10) is computed
for every point z € X. Then, the occurring significances (but not the points!)
are sorted in increasing order, so that we obtain the sequence

n<op<...<an,

which is required for recording the quality indices ax,_,.,x = rxy_.,x/0n,
where Xy_p = EoTHMX) or Xy_n = TP*(X), at run time. Note that this
preprocess costs only at most O(N log N) operations [33], where N = |X]| is
the size of X.

The filtering scheme was applied on two different types of scattered data,

o clustered data from terrain modelling (Figure 4.2 (a));
e track data from marine seismic data analysis (Figure 4.5 (a)).

The numerical results on these two examples are discussed in the following
of this subsection, one after the other.

Terrain Data. Figure 4.2 (a) shows a scattered data sample of a terrain
around Gjgvik, Norway, comprising N = 7928 data points. Note that the
sampling density is subject to strong variation. In fact, the data is rather
sparse in flat regions of the terrain, whereas a higher sampling rate around
steep gradients of the terrain’s surface leads to clusters.

For the purpose of graphical illustration, Figure 4.2 shows also the three
different subsets (b) Foo00(X), (C) Fy000(X), and (d) FG()()()(X), which were
generated by using the proposed filtering scheme. The resulting covering radii
and the quality indices of T?*(X) and F,,(X), n = 2000, 4000, 6000, are shown
in Table 4.1. Moreover, Table 4.1 shows the CPU seconds u(7") which were
required for computing the subsets T7(X) from X by greedy thinning, and
the CPU seconds u(FE) for the postprocessing exchange of point pairs. There-
fore, the sum u(F') = u(T') + u(E) of these values are the total costs, in terms
of CPU seconds, for computing the subsets Xy_, = Fy(X) from X. The
numbers ng of exchange steps are also shown in Table 4.1.
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Fig. 4.2. Gjgvik. (a) The input data set X comprising 7928 points, and the

subsets (b) X2000 of size 5928, (c) Xso00 of size 3928, and (d) Xeooo of size 1928,
generated by scattered data filtering.

Table 4.1. Scattered data filtering on Gjgvik

n|res (x),x |7 Fax),x [078 (x),x |0 R (), [(T) [u(E) | ne
2000 3.0321[ 2.9744] 1.3972] 1.3706] 1.86| 0.21| 71
4000|| 5.2241| 4.6643| 1.6462] 1.4698| 2.84| 1.18]409
6000| 23.9569| 7.9306| 5.4281| 1.7969| 3.74| 0.81[381

For further illustration, we have recordered the results in Table 4.1 for
all possible n. The following Figures 4.3 and 4.4 reflect the results of the
entire numerical experiment. The graphs of the resulting covering radii
TTr(X),X TF.(X),X and the quality indices QT (X), X AF, (X),X> 100 < n <
7391, are displayed in Figure 4.3. Figure 4.3 (a) shows also the graph of the
initial significances o,. Recall that o,, < r} by Theorem 18, i.e., the value o,
is a lower bound for the optimal value ..

We remark that for large values of n the deviation between o, and the
optimal value r}, is typically very large. For n = N — 1, for instance, we
find r}y_, = 516.264 for the optimal covering radius, but on_; = 22.581 for
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the penultimate significance value. This observation partly explains why the
quality indices of arn(x),x and ap,(x),x in Figure 4.3 (b) are so rapidly
growing for large n.

. oF,(0.X) o (T7(X).X)

«(T200,X) 36|
25 l
| \
o, 1 ofF (X).X)

6000 8000 7000 8000

1000 2000 3000 4000 5000 8000 7000 5000 ) 1000 2000 3000

(a) (b)

Fig. 4.3. Gjgvik. (a) The covering radii r7n(x),x,7F, (x)x, and the significances
On. (b) The quality indices arn(X),X and QaFp,(X),X-

Fig. 4.4. Gjgvik. (a) CPU seconds u(Fy) required for computing F,(X), and
u(T) for computing T7*(X); (b) number of exchange steps.

Nevertheless, for n < 6435, we found a(F,(X),X) < 2 and moreover,
a(Fr(X),X) < az = V2+ V3 ~ 1.9319 for n < 6327. We mention the
latter because for the special case of the Euclidean norm, the best possi-
ble constant in (4.7) is @ = a2. In other words, there is for o < az no
a-approximation algorithm for the k-center problem, when using the Eu-
clidean norm, unless P=NP. This result is due to Feder and Greene [67] (see
also [164, Section 4]).
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In conclusion, the numerical results reflected by Figure 4.3 illustrate the
good performance of the proposed filtering scheme, especially in comparison
with possible a-approximation algorithms for the k-center-problem. The re-
quired seconds of CPU time and the number of exchange steps for computing
the sets Xn_, = F,(X) from T7(X) are displayed Figures 4.4 (a) and (b).
Not surprisingly, we found that the CPU seconds u(E) for the exchange are
roughly proportional to the number ng of exchange steps.

Track Data. In our second numerical experiment, we considered using one
example from marine seismic data analysis. In this case, the spatial distri-
bution of the sampled data is organized along tracks, since these data are
acquired from ships. Figure 4.5 (a) shows such a seismic data set which was
taken in a region of the North Sea. This data set, here referred to as NorthSea,
comprises N = 9758 data points.

Fig. 4.5. NorthSea. (a) The input data set comprising 9758 points, and the subsets
(b) Xs7es of size 3993, (c) Xegos of size 2850, and (d) Xs112 of size 1646, generated
by scattered data filtering.

We have recorded the covering radii, rr»(x),x and rg, (x),x, and the qual-
ity indices, arp(x),x and ag, (x),x, for all possible n. Figure 4.6 (a) displays
the graphs of rrn(x), x and 7, (x),x along with that of the significances oy,
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whereas the graphs of ar»(x) x and ap,(x),x, 1 < n < 8300, are shown
in Figure 4.6 (b). Moreover, we have also recorded the elapsed CPU time
required for computing F,,(X) and T7*(X), see Figure 4.7 (a), as well as the
number ng of exchange steps, which are required for computing F,(X) from
TrMX), see Figure 4.7 (b).

(TI(X).X)

. HT(X),X) )
* \ ’ aEIZ

f(F (X).X) wpf\\ l/(\

_] alF (X),X)

1000 2000 300 4000 000 0000 7000 8000 1000 2000 3000 4000 5000 6000 7000 6000

Fig. 4.6. NorthSea. The graphs of (a) the covering radii 71y (x),x,7F, (x),x and
the significances oy; (b) the quality indices arn (x),x and o, (x),x-

© 1000 2000 3000 4000 5000 6000 7000 8000  S000 10000 © 1000 2000 3000 4000 5000 6000 7000 6000 5000 10000

(2) (b)

Fig. 4.7. NorthSea. (a) CPU seconds u(F») required for computing F,(X), and
w(TT) for computing T7*(X); (b) number of exchange steps.

We remark that both greedy thinning and the proposed scattered data
filtering scheme perform very well on this data set. This is confirmed by the
numerical results concerning the behaviour of the quality indices arn(x) x
and ap, (x),x, see Figure 4.6 (b). Indeed, the values apn(x) x and afp, (x),x
are very close to the best possible value @ = 1 in the range 1083 < n < 5472,
where we find .
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1.00155 £ ara(x),x < 1.00279, for all 1083 < n < 5472.

The quality index ap,(x),x continues to be very close to o = 1 beyond
n = 5472, where we find

1.00135 < ap, (x)x < 1.00272,  for all 1083 < n < 5765.

Moreover, we have ap, (x),x < a2z = V2+ V3 for every n < 6032, and
arp, (x),x <2 for every n < 6908.

The subsets Fi765(X ) and Fggos (X ) are shown in Figures 4.5 (b) and (c),
along with the subset Fgi;2(X), which is displayed in Figure 4.5 (d).

Finally, let us spend a few remarks concerning the results in Figure 4.6.

Firstly, note from Figure 4.6 (a) that the significance values o, are almost
constant for n > 1083, where we find 12.3987 = 01983 < 0, < oy = 12.5005
for all 1083 < n < N. This is due to the (almost) constant sampling rate of
the data acquisition along the track lines. In fact, the smaller significances
on, for n < 1082, are attained at sample points near intersections between
different track lines.

Secondly, observe from Figure 4.6 (a) the step-like behaviour of the cov-
ering radii 77» (x),x and rg, (x),x- For the purpose of explaining the jumps in
the graph of rr» (x) x, let us for the moment assume that the data contains
only one track line, with a constant sampling rate. In this case, the data
points are uniformly distributed along one straight line, so that our discus-
sion boils down to greedy thinning on univariate data. But greedy thinning
on (uniformly distributed) univariate data is already well-understood [54]. In
this case, greedy thinning generates equidistributed subsets of points. To this
end, in the beginning the algorithm prefers to remove intermediate points,
each of whose left and right neighbour have not been removed by the al-
gorithm, yet. Note that the covering radius is then constant. But the point
removal leads, after sufficiently many steps, to a situation where the algo-
rithm must remove a point, say y*, in its next step, whose left and right
neighbour have already been removed in previous steps. Now by the removal
of y*, the resulting covering radius will be doubled, which leads to the first
jump in the graph of the covering radii. By recursion, the covering radius is
kept constant for a while, before the next jump occurs at one later removal,
and so on.

Now let us return to the situation of the data set NorthSea, which incor-
porates several track lines. Note that the interferences between the different
track lines are rather small. In this case, the recursive point removal by greedy
thinning on the separate track lines can widely be done simultaneously. This
in turn explains the jumps in the graph of the covering radii rr=(x) x by
following along the lines of the above arguments for the univariate case. Note
that the postprocessing exchange algorithm can only delay, but not avoid,
the jumps of the resulting covering radii of rr, (x) x. This also explains the
step-like behaviour of the graph rr, (x) x in Figure 4.6 (a).
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Thirdly, given the almost constant significances o, and the jumps in the
graphs of rra (x) x and 7, (x),x, the resulting quality indices arn(x) x and
ar,(x),x are clearly also subject to jumps by definition, see Figure 4.6 (b).
Moreover, we remark that for large n, the differences between the significances
o and the optimal covering radii r}(X) are very large, see Figure 4.6 (a).
For n = N — 1, for instance, we find r},_, = 2652.46 for the optimal cov-
ering radius, but oy_; = 12.5004. In this case, albeit the adaptive bound
in (4.14) is no longer a useful criterion for the subset selection (see the cor-
responding discussion immediately after Corollary 3), the proposed filtering
scheme continues to generate subsets, whose sample points are uniformly dis-
tributed along the track lines. One example is given by the subset Fgji2(X)
in Figure 4.5 (d), whose quality index is ap,,,(x),x = 3.0012.

4.5 Adaptive Thinning

Adaptive thinning is concerned with the approximation of a bivariate func-
tion from scattered data by piecewise linear functions over triangulated sub-
sets. To this end, the adaptive thinning process generates subsets of most
significant points, such that the corresponding hierarchy of piecewise linear
interpolants over triangulations of these subsets approximate progressively
the function values sampled at the original scattered points. Moreover, the
resulting approximation errors are required to be small relative to the num-
ber of points in the subsets, so that the error of approximation gradually
increases with the reduction in the number of points in the subsets.

This is accomplished by using Algorithm 16, and by working with various
specific data-dependent criteria for the point removal in step (2a) of Algo-
rithm 16. For the purpose of motivating these adaptive removal criteria, let
X C R? be a finite planar point set and let f : RZ — R denote an unknown
function, whose function values f [ x» taken at the points in X, are given.

The aim of adaptive thinning is the construction of subsets Y C X, such
that each piecewise linear interpolant L(f, Ty ) (over a suitable triangulation
Ty of V), satisfying

L(fa TY)(y) = f(y)v for all Y € Y7

is close to the given function values f|, in RV.
In order to establish this, we require that, for some norm || - || on R", the
approzimation error

n(Y, X) = IL(F Tv) |5 — flxl (4.27)

is small. Note that n(Y, X) depends also on both the input values f'x and
on the selected triangulation method, but for notational simplicity we omit
this. We remark that we mostly work with the Delaunay triangulation Dy
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of Y. In situations of convex data, however, we also use the data-dependent
convex triangulation. This is done in Subsection 4.5.2.

Further note that the expression n(Y, X)) in (4.27) makes only sense, if
the convex hull [Y] of Y C X coincides with the convex hull [X] of X. In this
case, the linear spline interpolant L(f, 7y) is well-defined on [X]. We ensure
this property, [Y] = [X], by not removing extremal points from X.

As to the selection of a suitable norm ||-|| in (4.27), this essentially should
depend on the underlying application. For the choice of the discrete ¢-norm,
for instance, the approximation error n(Y, X') becomes

oo, X) = max | (£, T ) (&) - £ (2)], (4.28)

whereas for the discrete £>-norm, we obtain

(Y, X) = \/ S ILU TG - f@)R. (4.29)

zeX

In either case, the most natural greedy removal criterion, for step (2a) of
the thinning Algorithm 16, is the following one.

Definition 16. (Removal Criterion AT)
ForY C X, a point y* €Y is said to be removable from Y, iff it satisfies

n(Y'\y" X) = minn(¥ \ y, X).

We refer to the adaptive thinning algorithm, resulting from this particular
removal criterion, in step (2a) of Algorithm 16, as AT.

Let us make a few remarks on the idea of this particular definition of a
removable point. When using the above removal criterion AT, we assign to
each current point y € Y an anticipated error

e(y) =n(Y \ 'y, X), (4.30)

which is actually incurred by the removal of y. Similar to the case of non-
adaptive thinning, we interpret the value e(y) as the significance of the point y
in the current subset Y. A point y* whose removal gives the least anticipated
error e(y*) is considered as least significant in the current situation, and so
it is removed from Y.

Unlike in non-adaptive greedy thinning, whose removal criterion is given
by the local covering radius r(y) in (4.16), the adaptive thinning criterion,
given by the anticipated error e(y) in (4.30), depends on both the given
function values f | and the selected triangulation method 7y .

In the following of this chapter, we propose different removal criteria,
which are adapted to terrain modelling and to image compression. Let us
briefly explain the differences between these two applications. In terrain mod-
elling, it is of primary importance to keep the mazimal deviation 1« (Y, X)
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between the linear spline interpolant L(f, Dy) and the given point samples
f| x as small as possible. This is in contrast to applications in image com-
pression, where the quality measure relies on the mean square error

75 (Y, X) = n3 (Y, X)/N. (4.31)

We develop two classes of customized adaptive thinning criteria. Those for
terrain modelling, suggested in the following Subsections 4.5.1 and 4.5.4, work
with the error measure 7. in (4.28), whereas the anticipated error measures
for image compression, in Subsection 4.6.2, rely on the discrete £2-error 7o in
(4.29). Accordingly, we denote by AT, the adaptive thinning algorithm AT
which works with the ¢.,-norm, whereas AT is the basic algorithm AT for
the choice of the ¢>-norm.

4.5.1 A First Anticipated Error for Terrain Modelling

In this subsection, we propose one removal criterion, AT1, whose anticipated
error can, unlike AT, be computed locally. This helps to reduce the required
computational costs of the resulting thinning algorithm, in comparison with
AT, . Later in Subsection 4.5.4, we suggest two alternative removal criteria,
AT?2 and AT3, which are also based on local computations. A comparison
concerning the performance of the algorithms AT1, AT2 and AT3, is given
in Subsection 4.5.5.

The removal criterion AT1 measures the anticipated error of a point y
only in its cell C(y),

e1(y) = 1o (Y \ y, X NC(y)). (4.32)

Recall that the cell C(y) of y is the union of all triangles in Ty which contain
y as a vertex, see Figure 4.1.

The anticipated error measure e; (y) leads us to the following definition
for a removable point in step (2a) of Algorithm 16.

Definition 17. (Removal Criterion AT1)
ForY C X, a point y* € Y is said to be removable from Y, iff it satisfies

e1(y”) = Lrg)r} e1(y).

Now note that since

e(y) = max (N (Y \ y, X NC(¥)), 100 (Y \ y, X \ C(¥)))
= max (el(y)a TIOO(Y \y1 X \ C(y))) ) (433)

for any y € Y, we obtain the inequality
ei(y) <e(y), forallyey,

which gives us a relation for the removal criteria of AT, and AT1.
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But we remark that the adaptive thinning algorithm AT, is not equi-
valent to AT1. This is confirmed by the following counter-example.

Ezample 1. (AT _ # AT1)
Consider the eight data points, X = {zi,...,2s} and function values f | x
given as follows.

i 1] 2| 3 4| 5| 6| 7| 8

flx;) 5 -1 0 -3 0 -1.1 2.5 0
In this case, the extremal points of X are x;,z7 and g, so that only the five
points x;, ¢ = 2,...,6, can be removed. It is easy to see that both AT, and

AT1 remove the point 3 = (3,0) first, and then they remove z5 = (5,0). In
the third step, however, the algorithm AT1 removes zg = (6, 0), whereas the
algorithm AT removes z4 = (4,0).

Let us close this subsection by making a few remarks, mainly concerning
comparisons between non-adaptive thinning algorithm of Section 4.3 and the
adaptive thinning algorithm AT1 of this subsection.

First note the correspondence between the two removal criteria for non-
adaptive thinning and adaptive thinning, namely the local covering radius
r(y) in (4.16), and the anticipated error e;(y). Both criteria measure the
resulting error, incurred by the removal of a point y, in the local neighbour-
hood of y. This helps, in either case, to reduce the computational costs of the
resulting thinning algorithm.

In non-adaptive thinning, ‘the link between the minimization of the local
covering radius r(y) and the minimization of the resulting covering radius
Ty\y,x is established in Theorem 20. The key observation there is the equality
Ty\y,x = max (ry,x,r(y)).

But in adaptive thinning, a corresponding link between the minimization
of the local anticipated error e;(y) of AT1 and the minimization of the
(global) actual error e(y) of AT in (4.30) is missing. In fact, as shown in
the above counter-example, the adaptive thinning algorithms AT, and AT1
are not equivalent.

We can, however, prove the equivalence of AT, and AT1 for the special
case of convex data, when working with convex triangulations. This is the
result of Theorem 26 in the following Subsection 4.5.2.

Finally, in case the Delaunay triangulation Dy is used, it is yet possible to
use the anticipated error e(y) as the criterion for the point removal instead of
the anticipated error e;(y) without reducing the computational complexity,
at additional computational overhead though. Details on this are discussed
in Subsection 4.5.3.
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4.5.2 Adaptive Thinning of Convex Data

In this subsection, we discuss the adaptive thinning algorithm AT1 for the
special case where f is a convex function. Clearly, when adaptive thinning
is applied on convex data, a natural choice for the triangulation Ty is also
a convex one. Therefore, throughout this subsection, we work with convex
triangulations. In this case, the resulting adaptive thinning algorithm is iden-
tical to AT1 of the previous subsection, except that we always triangulate
with a convex triangulation.

Let us briefly recall some important properties of convex triangulations.
It has been established in [35] and [161] that if f is any convex function,
there is a triangulation Ty of Y, for which the piecewise linear interpolant
L(f,Ty) is convex. This convex triangulation 7y of Y is unique if no four
data points (y, f(y)), v € Y, lie in a plane, and the interpolant L(f,7y)
is unique in any case. As shown in [26], decremental convex triangulation
requires only retriangulating the corresponding cell C(y), when removing
a vertex y from the convex triangulation. This is similar to the Delaunay
triangulation, and so this helps to keep the computational costs, required for
the thinning algorithm, small.

It is easy to see that the convex interpolant L(f, Ty) lies above f, point-
wise,

f(x) < L(f,Ty)(z), forallze€ [X] (4.34)

Since the interpolant L(f, 7y ) itself is a convex function, the above in-
equality (4.34) directly implies

L(f, Ty)(@) < L(f, Tr\y)(z), forall z € [X], (4.35)

for every y € Y. Hence, when removing any node y € Y from the current
triangulation 7y, the resulting piecewise linear interpolant L(f,Ty\,) lies
pointwise above the previous L(f,7y). This is similar to the monotonicity
Ty\y,x < Ty,x for the covering radii in (4.20).

Now recall the anticipated error e; (y) of AT1 in (4.32). The above prop-
erty (4.35) of convex triangulations implies

e1(y) > (Y, X NC(y)), forallyeV.

This in turn, together with (4.33), immediately yields for any y € Y the
identity
e(y) = max (e1(y), neo (¥, X)) - (4.36)

Note that (4.36) is corresponding to the equality (4.17), appearing as the
key observation in the proof of Theorem 20. Likewise, the above identity
(4.36) shows that the adaptive thinning algorithm AT1, when applied to
convex data, minimizes the actual approximation error e(y) at each removal,
and so in this case the two adaptive thinning algorithms AT, and AT1 are
equivalent.
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Theorem 26. (AT __ = AT1)

Suppose f is convex, and let for any subset Y C X, Ty denote the convez
triangulation of Y. Then, any removable point y* € Y, according to the
removal criterion AT1, minimizes the actual approzimation error e(y) of
AT, among all points in Y, 1.e.,

e(y’) = min e(y).
Proof. The above observation (4.36) yields the implication
a() <ea(d = ey <e®d), forally, g €Y,
and so we have e(y*) < e(y) for all y € Y, which completes our proof. O

But we can establish another similarity between non-adaptive thinning of
Section 4.3 and the adaptive thinning algorithm AT1 for the special case of
convex data. This similarity is concerning adaptive bounds on the approxi-
mation error 7. (Y, X) during the performance of AT1. More precisely, we
intend to show that the adaptive bounds on the covering radii, proven in The-
orem 18 and Corollary 3 of Subsection 4.3.2, directly carry over to adaptive
bounds on the approximation error 7. (Y, X).

But this requires some notational preparations. For any z € X, we denote
by

0(x) = neo(X \ 2, X) = |L(f, Tx\o(z) — f(2)]

the significance of x in X. We assume, without loss of generality, that the
points in X are ordered, such that their significances are in increasing order,
ie.,
o(z1) <o(w2) < -+ <o(zn),
and we let o, = 0(z,), 1 <n < N, for notational brevity. Finally, we denote
by
T, = min 7e(Y, X).
[Y|=N—-n

the least approximation error, which can be attained by a subset Y C X of
size |Y| = N —n.

The result of the following theorem helps us, during the performance of
AT1, to control, for any current subset ¥ C X of size |Y| = N — n, the

relative deviation .
Moo (Y7 X) —Tn

M

between the current approximation error 7. (Y, X) and the optimal value 7.
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Theorem 27. Suppose f is convez, and let for any subsetY C X, Ty denote
the conver triangulation of Y. Then, for any subsetY C X of size|Y| = N—n
the inequalities

on <1y S Meo(Y, X) < aco(Y, X) -y, (4.37)
hold, where 0o (Y, X) = 1o (Y, X)/opn > 1.

The key point in the following proof is the monotonicity of the error
Noo (Y, X) in (4.35), which is similar to the monotonicity ry\, x < ry,x for
the covering radii in (4.20). This observation allows us to widely follow along
the lines of the arguments in the proof of Theorem 18, Subsection 4.3.2.

Proof. Let for any Y C X of size |[Y| = N —n, denote by Z = X \Y C X the
difference set between X and Y of size |Z| = n. By the monotonicity (4.35),
we have for any z € Z the inequality

\L(f, Tx\z)(2) = f(2)] 2 |L(f, Tx\2)(2) — f(2)| = o(2),
which implies
Noo (Y, X) = nOO(X \ Z,X)
= max|L(f, Tx\z)(z) — f(z)|
= max|L(f, Tx\z)(2) — f(2)|
> max o(z).
Now by our assumption on the ordering of the points in X, and by |Z| = n,

we have
maxao(z) > olz =0
zeZ ( ) ( ) ’

which altogether shows that the inequality
On < Moo (Y, X)

holds, see the corresponding result of Theorem 18. But this immediately
implies the inequalities (4.37), see Corollary 3. O

4.5.3 Implementation of Adaptive Thinning

In this subsection, we discuss various computational aspects concerning the
efficient implementation of the adaptive thinning algorithms AT1 and AT .
Moreover, we analyze the complexity of these algorithms. Let us first discuss
the implementation of AT1.

To this end, we work with decremental Delaunay triangulations, although
the following analysis for AT1 can also be established for the case of convex
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triangulations, in combination with convex data. In fact, we mainly rely on
that after each removal step, the required update on the topology of the sub-
sequent triangulation is local. Recall that for either Delaunay triangulations
or convex triangulations, this update is done by the (local) retriangulation of
the removed point’s cell.

The adaptive thinning algorithm AT1 requires initially computing the
Delaunay triangulation Dy of the input point set X. As explained at the end
of Section 2.2, this can be done in O(N log N) operations, where N = | X|. In
addition, like in non-adaptive thinning, we store the nodes of Dx in a heap,
called Y-heap, where the significance value of any node =z € X is given by its
anticipated error e; (z).

The nodes in the Y-heap are sorted, such that the significance of any node
is smaller than the significances of its two children. Hence, due to the heap
condition, the root of the Y-heap contains a least significant node, and thus
a removable point, according to the removal criterion of AT1. Building the
initial Y-heap costs J(N log N) operations.

As regards the thinning process itself, we assume that throughout the
performance of AT1, the number of triangles in any cell C(y) of Dy, y €
Y C X, is bounded above by a small constant, i.e., is O(1). Now suppose that
Y C X is the current subset of size |Y'| = N —n, which is computed by AT1
after n removals. Then, the steps (2a),(2b) of the thinning Algorithm 16,
combined with the removal criterion of AT1, are performed as follows.

(T1) Pop the root y* from the Y-heap and update the Y-heap.

(T2) Remove the node y* from the triangulation Dy and compute Dy
by retriangulating the céll C(y*).

(T3) Attach each point z € X N C(y*) which has previously been removed,
in particular y* itself, to a new triangle in the retriangulated cell C(y*),
which contains z.

(T4) For each neighbouring vertex y of y* in Dy, update its anticipated
error e;(y) and its position in the Y-heap.

According to step (T3), each of the points in Z N C(y*), Z = X \Y,
which was removed in a previous step, and the currently removed point y* is
reattached to a new triangle in Dy\,.. Like in non-adaptive thinning, these
(re)attachments facilitate the computation and maintenance of the antici-
pated errors e; (y) of the points in Y, that have not been removed yet.

As regards the computational costs, step (T1) requires at most O(log N)
operations, step ('T2) requires O(1), and step (T4) requires at most O(log N)
operations. As regards step (T3), we assume that the current number of tri-
angles is proportional to N — n and so, provided that the n removed points
in X \ 'Y are uniformly distributed over these triangles, the number of oper-
ations in step (T3) is of the order of n/(N — n) for the n-th step of AT1.
Therefore, summing the costs of steps (T1) to (T4) for all n, we find that
the total cost for the performance of the adaptive thinning algorithm AT1
is O(Nlog N).
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Now let us turn to AT,. The algorithm AT, can, like AT1, also be im-
plemented at complexity O(N log N). But this requires one additional heap,
besides the Y-heap. This second heap, called the T-heap, consists of the cur-
rent triangles in Dy, where for any triangle T' € Dy, its priority o(T’) is given
by the approximation error

a(T) = (Y, X NT).

The triangles in the T-heap are ordered such that the root of the
T-heap points to a triangle T* whose approximation error is largest, i.e.,
o(T*) = maxpep, o(T). Now from (4.33), it is easy to see that there must
be a removable point, according to the removal criterion AT.,, among y*
and the three vertices of the triangle T™.

As to the complexity of AT, note that we have to maintain both the
T-heap and the Y-heap during the performance of AT,. Our estimates show
that the number of required operations in the modified step (T4) is signif-
icantly increased. Nevertheless, the adaptive thinning algorithm AT, still
requires only O(N log N) operations, but with a much larger constant than
AT1.

We summarize the discussion of this subsection as follows.

Theorem 28. The performance of the thinning Algorithm 16, in combina-
tion with either the adaptive removal criterion AT1 or with AT, and ac-
cording to the steps (T1)-(T4), requires at most O(N log N) operations. O

4.5.4 Two Alternative Anticipated Errors for Terrain Modelling

In this subsection, we propose two possible simplifications of the adaptive
thinning algorithm AT1, the adaptive thinning algorithms AT2 and AT3.
Both alternative removal criteria are locally computable. While the removal
criterion of AT2 works, like AT1, with (local) retriangulations of Delaunay
cells, the other alternative, AT3, does not require such local retriangulations.
In fact, the removal criterion of AT3 is much simpler, and the adaptive thin-
ning algorithm AT3 is much faster than AT2 and AT1. This is supported
by the numerical examples in the following Subsection 4.5.5, where the per-
formance of the three different adaptive thinning algorithms, AT1, AT2 and
ATS3, is compared.

Let us first explain the adaptive thinning algorithm AT2. In order to
further reduce the required computational costs of AT1, the removal criterion
AT2 depends only on the sample values f IY of the points in the current
subset Y C X. This is in contrast to both AT, and AT1, each of which
depends on points in X that were removed in previous steps.

The anticipated error of AT2 is, for any y € Y, given by

e2(y) = no(Y \ 33 Y).
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Note that this expression can be rewritten as

e2(y) = LY \ y; /)(y) = F(¥)l-

Definition 18. (Removal Criterion AT2)
ForY C X, a point y* € Y is said to be removable from Y, iff it satisfies

e2(y*) = mine .
2(y") min 2(y)

As to the other alternative adaptive thinning algorithm, AT3, this one
does not only ignore the points which were removed in previous steps. Unlike
AT1 and AT2, the algorithm AT3 does also avoid temporary local retrian-
gulations of cells when updating current anticipated errors.

Instead of this, the anticipated error of AT3 works with directional antici-
pated errors at the current points, in a certain sample of directions. In order
to further explain this particular error measure, let y € Y denote a node
in the Delaunay triangulation Dy of the current subset Y C X. For each
neighbouring vertex z of y in Dy we consider the unique point p lying at the
intersection of the boundary of C(y) and the straight line passing through z
and y (other than z itself). Such a point exists, since C(y) is a star-shaped

polygon.

y4

y4

TN
Avd
Z
3
Fig. 4.8. Directional triangle of z.

The point p is either a vertex of the cell’s boundary dC(y) or a point
on one of its sides. In either case, p lies on at least one edge of 9C(y).
Let us denote such an edge by [z2, 23]; see Figure 4.8. Then the triangle
T, = [z, 22, 23], with vertices in Y \ y, contains y. We call T, a directional
triangle of y. We then let

e3(y) = |L(f, T2)(y) — f(y)|

be the (unique) directional anticipated error of y in the direction z —y, where
L(f,T,) is the linear function which interpolates f at the vertices of T,. Now,
we let
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— z
es(y) = max e3(y)

for the anticipated error of the adaptive thinning algorithm AT3, where V,
is the set of all neighbouring vertices of y in Dy.

Definition 19. (Removal Criterion AT3)
ForY C X, a point y* €Y 1is said to be removable from Y, iff it satisfies

e3(y”) = gg{} e3(y).

We remark that the complexity of the two alternative adaptive thinning
algorithms, AT2 and AT3, is O(N log(N)). This can easily be verified by
following along the lines of the arguments in the previous Subsection 4.5.3.
But for the sake of brevity, we refrain from doing so here.

4.5.5 Adaptive Thinning of Terrain Data

We have implemented the thinning algorithms AT1, AT2, and AT3 together
with one earlier version of the non-adaptive thinning algorithm in Section 4.3,
called NAT, which is developed in our previous paper [74]. Recall that any
non-adaptive thinning algorithm, such as N AT, ignores the given samples
f ' X and so it usually favours evenly distributed subsets Y C X.

In this section we compare the performance of these four algorithms in
terms of both approximation quality and computational cost. To this end, we
have considered using one specific example from terrain modelling. The cor-
responding data set, Hurrungane, contains N=23092 data points. Each data
point is of the form (z, f(x)), where f(x) denotes the terrain’s height value
sampled at the location = € R%. This data set is displayed in Figure 4.9 (a)
(2D view) and in Figure 4.9 (b) (3D view).

(b)
Fig. 4.9. Hurrungane: 2D view (a) and 3D view (b).
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Fig. 4.10. Thinned Hurrungane with 1092 points, 2D view, by using (a) NAT
and (b) AT1.
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Fig. 4.11. Thinned Hurrungane with 1092 points, 3D view, by using (a) NAT
and (b) AT1.

For all four thinning algorithms, we have recorded both the required
seconds of CPU time (without considering the computational costs re-
quired for building the initial Delaunay triangulation Dx and the Y-heap)
and the sequence of approximation errors 7(Y, X) after the removal of
n = 1000, 2000, .. .,22000 points. Not surprisingly, we found that NAT is
the fastest method but also the worst one in terms of its approximation er-
ror. For example, for n = 22000 the algorithm AT1 takes 247.53 seconds
of CPU time, whereas NAT takes only 11.37 seconds. On the other hand,
we obtain in this particular example 7., (Y, X) = 278.61 for NAT, but only
Moo (Y, X) = 30.09 when using AT1. The two corresponding triangulations
Dy output by NAT and AT1 are displayed in Figure 4.10 (a) and (b) (2D
view), and in Figure 4.11 (a) and (b) (3D view).
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Fig. 4.12. Hurrungane: comparison between NAT (dash-dot line), AT1 (solid),
AT2 (dashed), and AT3 (dotted), approximation error (a) and seconds of CPU
time (b).
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Fig. 4.13. Hurrungane: comparison between AT1 (solid line), AT2 (dashed), and
AT3 (dotted), approximation error {(a) and seconds of CPU time (b).

In Figure 4.12 (a) and in Figure 4.13 (a) the approximation error as a
function of the number of removed points is plotted for the different thinning
algorithms. In Figure 4.12 (b) and in Figure 4.13 (b) the corresponding
seconds of CPU time are displayed.

The graphs show that, with respect to approximation error, the three
adaptive thinning algorithms AT1, AT2, and AT3 are much better than
NAT. Among the three adaptive thinning algorithms, AT1 is the best, fol-
lowed by AT3, and lastly AT2. Note that by definition AT3 can only be
inferior to AT2 after one removal. In the numerical examples AT3 has con-
tinued to be inferior for about 50 removal steps, after which its approximation
error is smaller than that of AT2.
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As to the computational costs for the adaptive thinning algorithms, AT3
is the fastest, and AT1 the slowest, see Figure 4.12 (b) and Figure 4.13 (b)
Our conclusion is that AT1 is our recommended thinning algorithm. But if
computational time is a critical issue, AT3 is a good alternative.

4.6 Adaptive Thinning in Digital Image Compression

4.6.1 Basic Concepts

Digital image compression has recently gained enormous popularity in a
variety of applications. This is especially due to the rapid development of
multimedia technologies. Digital image compression is concerned with the
conversion of digital image data into a bitstream. The required information
reduction and efficient coding of digital images are essential for fast trans-
mission across an information channel, such as the internet. For the sake of
transmission speed, the length of the bitstream message is required to be as
short as possible, while maintaining a reasonable quality of the image. For a
comprehensive introduction to image compression and coding, we recommend
the textbook [167].

Any compression scheme is mainly concerned with the following sequence
of tasks.

(1) Data reduction;

(2) Encoding of the reduced data at the sender;

(3) Transmission of the encoded data from the sender to the receiver;
(4) Decoding of the transmitted data at the receiver;

(5) Data reconstruction.

Many of the well-established methods in digital image compression, in-
cluding JPEG2000 [167] and SPIHT [145], are based on wavelets and related
techniques. For a comprehensive introduction to image compression by us-
ing wavelets, we refer to the survey [37]. Tensor product wavelets provide, in
combination with well-adapted compression methods, high compression rates
while maintaining most of the visual features of the image. At low bit rates,
however, such methods typically fail to capture certain characteristic features
of the image, such as sharp edges. This is mainly due to high oscillations
around discontinuities which leads to undesired visual artifacts. Therefore,
current research is focussing on the modelling of sharp edges. Recent work
on this includes nonlinear decomposition techniques [29, 30, 112].

This section proposes an alternative concept for lossy compression of dig-
ital image data, by using adaptive thinning methods in combination with
scattered data coding. Adaptive thinning, when applied on a digital image,
leads to a reduction of the original data, step (1). This is accomplished by
recursively deleting pixels of the image, so that adaptive thinning returns a
scattered subset of most significant pixels. These most significant pixels are
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then used in step (5) for the reconstruction of the given image. We remark
that adaptive thinning provides a class of data-dependent filtering operators.
In contrast to data-independent filtering methods, the data-dependent ap-
proach taken here copes very well with the visual perception of the image.
This is supported by the numerical results in Subsection 4.6.6. Further details
concerning the application of adaptive thinning on digital images, especially
the relevant background for the steps (1) and (5), are explained in the fol-
lowing Subection 4.6.3.

The performance of the intermediate steps (2)-(4) requires an efficient
scheme for scattered data coding. This is in order to encode and decode the
most significant pixels. To this end, we have designed a customized scattered
data coding scheme, which serves to convert the most significant pixels into
a bitstream message, to be transmitted in step (3). This coding scheme is
subject of the discussion in Subsection 4.6.4.

We remark that the resulting compression algorithm, proposed in this
section, incorporates a flexible representation of the gridded image data by
using a scattered set of most significant pixels. This, in combination with the
customized scattered data coding scheme, allows us to capture sharp edges
and related image features reasonably well, at small coding costs and at small
computational costs. The latter is supported by the analysis concerning the
complexity of the compression and decompression, which is done in Subec-
tion 4.6.5. Finally, the good performance of the proposed compression scheme
is confirmed by numerical examples in Section 4.6.6, where we compare our
method with the well-established wavelet-based image compression algorithm
SPIHT.

4.6.2 Anticipated Errors for Image Compression

In this subsection, we propose two different removal criteria for image com-
pression, called AT, and ATZ. Each of these two removal criteria works
with the square error n2 of the discrete f2-norm in (4.29). The basic dif-
ference between AT, and AT% is that AT, is a greedy one-point removal
scheme, whereas AT?Z is a greedy two-point removal scheme. In other words,
the algorithm ATZ removes, unlike ATz, a (removable) pair of two current
points at each step (2a) of the thinning Algorithm 16. In this sense, AT% not
as short-sighted as AT5, which leads, in all our test cases below, to signifi-
cant improvements concerning the performance of the resulting compression
scheme.

Now let us first motivate the construction of ATz and AT3. A well-known
quality measure for the evaluation of image compression schemes is the Peak
Signal to Noise Ratio (PSNR) in (4.41), see the discussion in the following
Subsection 4.6.3. It is sufficient for the moment to say that the PSNR is an
equivalent reciprocal measure to the mean square error
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B X) = 3 3 1L, Dy)(@) - f@). (4.39)

zeX

The aim of adaptive thinning, when applied to image compression, is to
keep the mean square error as small as possible. This is accomplished by
using adaptive thinning algorithms, which generate subsets Y C X in (4.1),
whose square error

B(Y;X) =Y |L(f, Dy) () - f(2)]*

zeX

is, among all subsets of equal size, small. Therefore, we prefer to work with
the discrete £5-norm 7, rather than with any other possible norm in (4.27).

Let us first discuss the adaptive thinning algorithm AT2, whose antici-
pated error is given by

e(y) =ni(Y \y; X), foryeY.

By the additivity of #2 and by the observations X = (X \ C(y))U(X N C(y)),
and n3(Y \ y; X \ C(y)) = 53 (Y; X \ C(y)), for any y € Y, we get

Y \y:X) =Y \y; X\ C®)+n Y \y; X NC(y))
=n(Y;X\CWw) +m(Y \y; XN C(y))
=n3(V; X)+ni(Y \y; XN C(y) —n3(Y; X NC(y)).

Hence, for any Y C X, the minimization of n2(Y \ y; X) is equivalent to
minimizing the difference

es(y) =m (Y \y; XNCy) —n3(Y; XNC(y),  foryey,
where C(y) is the cell of y in Dy.

Definition 20. (Removal Criterion AT3)
ForY C X, a point y* €Y is said to be removable from Y, iff it satisfies

es(y*) = mineg(y).
s(y") = mines(y)

Next we propose another removal criterion, AT2, which requires more
computational time than AT, but is more effective. The algorithm AT3
works with the greedy removal of two points at one step of adaptive thinning.

For any point pair y1,y, € Y, the adaptive error measure AT is given
by

e(y1,y2) = (Y \ {y1, 42} X) — 3 (Y; X), fory,,y2 €Y. (4.39)

Note that the removal in AT?Z is either done by the removal of the edge
[v1,y2] from the triangulation Dy, and the subsequent retriangulation of
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C(y1) U C(y2), provided that the points y;,y2 € Y are connected by an
edge in Dy, or otherwise by two consecutive greedy removals according to
the removal criterion AT2. To see the latter, suppose that the two points
Y1,Y2 € Y are not connected by an edge in Dy. In this case, the two cells
C(y1) and C(y2) have no common triangle, and therefore

Y \y2, X) =03 (Y, X) = 3 (Y \ {w, 12}, X) — 03 (Y \ w1, X),
which implies

e(yr,y2) = M3 (Y \ {y1, 52}, X) - m3 (Y, X)
=3 (Y \ {y1,92}, X) = 15(Y \ 91, X) + 05 (Y \ 1, X) = 75(Y, X)
= (Y \y2, X) =3 (Y, X) + 3 (Y \ g1, X) — n3(Y, X)
= es(y2) +es(y1)-

This shows that the anticipated error of AT3 can be simplified as

e(y1,y2) = es(y1) + es(y2), (4.40)

if y1,y2 € Y are not connected by an edge in Dy.

We remark that the simpler representation (4.40) for the error measure of
AT? helps to reduce the computational costs required for the maintenance of
the significance values e(y1,y2). Indeed, this merely requires maintaining the
significances es(y), ¥ € Y, in a priority queue, in combination with another
priority queue for the edges in Dy, where their significances, given by the
error measure e(-, ) in (4.39), are stored.

Definition 21. (Removal Criterion AT3)
ForY C X, a point pair yj,y5 € Y is said to be removable from Y, iff it
satisfies
e(y1,y3) = min_e(y,y2).
y1,42€Y

4.6.3 Adaptive Thinning in Image Reduction and Reconstruction

This section explains how we use adaptive thinning for the data reduction
step (1) and the subsequent reconstruction in step (5). To this end, we work
with the two adaptive thinning algorithms AT, and AT3 of the previous
subsection. But let us first explain some details concerning the representation
of digital images, before we discuss the application of adaptive thinning to
digital images.

A digital image is a rectangular grid of pizels. Each pixel bears a color
value or greyscale luminance. For the sake of simplicity, we restrict the fol-
lowing discussion to greyscale images. The image can be viewed as a matrix
F = (f(i,7)); ;» whose entries f(¢,7) are the luminance values at the pixels.
The pixel positions (4, 7) are pairs of non-negative integers 7 and j, whose



4.6 Adaptive Thinning in Digital Image Compression 107

range is often of the form [0..27 — 1] x [0..27 — 1], for some positive integers
p, ¢, where we let [0..n] = [0,n] N Z for any non-negative integer n € Z. In
this case, the size of the matrix F' is 2P x 2%. Likewise, the entries f(z,j)
in F are non-negative integers whose range is typically [0..2" — 1], for some
positive integer r. In the examples of the test images below, we work with
256 greyscale luminances in [0..255], so that in this case r = 8.

Adaptive thinning, when applied to digital images, recursively deletes
pixels using the thinning Algorithm 16, in combination with the adaptive
removal criteria AT2 or AT32 of Section 4.6.2. In other words, the pixel posi-
tions form the initial point set X on which the adaptive thinning algorithm
is applied. At any step of the algorithm, a removable pizel (point) is removed
from the image. The output of adaptive thinning is a set ¥ C X of pixels
combined with their corresponding luminances Fy .

However, due to the regular distribution of pixel positions X, the De-
launay triangulations of X, and of its subsets Y C X might be non-unique.
To avoid this ambiguity, we apply a small perturbation to the pixels X and
apply the thinning algorithm to the perturbed pixels.

A well-known quality measure for the evaluation of image compression
schemes is the Peak Signal to Noise Ratio (PSNR),

PSNR = 10 * lo ( 2’ x 2 ) (4.41)

S\RVix)) '
which is an equivalent measure to the reciprocal of the mean square error
72(Y; X) in (4.38).

The PSNR is expressed in dB (decibels). Good image compressions typi-
cally have PSNR values of 30 dB or more [167] for the reconstructed image.
The popularity of PSNR as a measure of image distortion derives partly from
the ease with which it may be calculated, and partly from the tractability
of linear optimization problems involving squared error metrics. More appro-
priate measures of visual distortion are discussed in [167].

As a postprocess to the thinning, we further minimize the mean square
error by least squares approrimation [14]. More precisely, we compute
from the output set Y and the values F' the unique best l2-approzimation
L*(F,Dy) € S(Dy) satisfying

3 LR Dy)G5) - fG )= min Y [s(i,5) - £G,5) (4.42)
(ii)eX €Sy (s ex

Such a unique solution exists since Y C X. The compressed information to

be transferred consists of the output set Y and the corresponding optimized
luminances {f*(l,]) = L*(F’ DY)(,La]) : (7',.7) € Y}

Following along the lines of our papers [41, 42], we apply a uniform quan-

tization to these optimized luminances. This yields the quantized symbols

Q(f*(4,7)), (4,3) € Y, corresponding to the quantized luminance values

f@,3) = f*(3,7), for all (3,5) € Y. The set {(z,7,Q(f*(z,7))) : (4,5) € Y} is
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coded by using the customized scattered data coding scheme of the following
Subsection 4.6.4.

At the receiver, the reconstruction of the image F', step (5), is then ac-
complished as follows. The unique Delaunay triangulation Dy of the pixel
positions Y is computed at the decoder, using the same perturbation rules
applied previously at the encoder. This defines, in combination with the
decoded luminance values Fy = {f(i,5) : (i,5) € Y}, the unique linear
spline L(Fy,Dy) € S(Dy) satisfying L(Fy,Dy)(i,57) = f(i,j) for every
(1,7) € Y. Finally, the reconstruction of the image is given by the image
matrix F = (L(Fy, DY)(iaj))(i,j)eX-

4.6.4 Scattered Data Coding

In this section, we explain how the construction of the bitstream in step (2)
is done. This is concerning the coding of the most significant pixels in Y. The
bitstream will contain the elements of the set {(¢,7,Q(f*(i,7))) : (z,7) € Y}.
Since we work with (unique) Delaunay triangulations, no connectivity coding
is required. This helps us to keep the bitstream short. Before we explain
details on our coding scheme, let us make some remarks.

First of all, note that the uncompressed code for these data (without
using quantization) would consist of a header containing the dimension of
the image matrix F', followed by the corresponding most significant pixel
positions (¢,5) € Y and luminance values f*(¢,5) € [0..2" — 1]. Thus, when
sending uncompressed data, the total coding costs (without the costs for the
header) are (2p + r) x |Y| bits, where |Y| is the number of most significant
pixels. This naive way of coding is too costly. In order to reduce the coding
costs, we take advantage of the statistical data distribution.

We remark that classical wavelet methods usually consider the complete
set of coefficients and decide, according to some suitable threshold, whether
a value is significant or not. Then, sophisticated techniques take advantage of
the dependencies between the locations and the magnitudes of significant co-
efficients. This is done by clustering the non-significant coefficients (zerotrees
[145]), or by using contezt-based arithmetic coding [166].

. Our coding strategy exhibits some similarities to this. Indeed, the selected
pixel positions in Y are classified as most significant, whereas the remaining
pixels are regarded as non-significant. On the other hand, the values f*(¢, )
of the most significant pixels are not proportional to their significances. This
requires taking into account the local correlations between the most signifi-
cant pixels (3, 4, f*(¢,7)), (5,j) € Y.

Moreover, we apply a uniform gquantization on the luminance values
f*(4,7), yielding quantized symbols Q(f*(3,7)) for all (7,7) € Y, where the
quantization step depends on a specific target rate. This reduces the range of
the luminance values, from previously [0..2" —1] to [0..2° —1] for the quantized
symbols, where s < r. Now the pixels (positions and quantized symbols) can
be viewed as a set of tridimensional points (z, j, k) € 2, where we let
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2=100..27 - 1] x [0.27 — 1] x [0..2° — 1]

denote the bounding cell of the data, containing m = |Y| pixels. For any
such data point (7,7,k) € §2, we have k = Q(f*(¢,7)) and (z,j) € Y. This
data representation can also be viewed as a binary tridimensional matrix
M = (mijx)i jk, of dimension 2P-by-2P-by-2°, whose entries are given by

L f1 i (i) €Y and k= Q(F (G, 9)),
“k =10, otherwise.

In what follows, we propose an efficient coding scheme for the sparse ma-
trix M. Note that for coding M, it is sufficient to localize the nonzero entries
of M, the fill-ins of M. To this end, we work with a hierarchical subdivision
of cells. Initially, the bounding cell {2 is split into eight subcells. When split-
ting {2, the number of pixels in the resulting subcells are progressively coded.
Initially, we code m = |{2]|, the total number of pixels in the bounding cell
2. Since these are at most 2P x 2P pixels, the coding of m requires 2p bits,
yielding the first 2p bits in the bitstream. Then, the splitting of {2 is done in
three stages as follows, see Figure 4.14.

& . 0., 0, 0, 0
QS“ S2SE
Q+SW Q+SE
Qo | e
(@ (b) ©

Fig. 4.14. Splitting of the cell {2 into eight subcells in three stages.

In the first stage, {2 is split into the two subcells

Qw =[0.2P71 — 1] x [0..27 — 1] x [0..2° — 1],
Qg =[2P"1.27 — 1] x [0.27 — 1] x [0..2° — 1]

of equal size across the i-azis (Figure 4.14 (a)). The number my = |2w| of
pixels contained in the cell 2y is coded. These are at most m = |f2| pixels.
Therefore, for coding the number mw we need [log,(m + 1)] bits. Since the
number mg = |2g| of pixels in g is given by mg = m — my,, we do not
code mg.

In the second stage, each of the two subcells 2y and f2g is split across
the opposite j-azis (see Figure 4.14 (b), yielding the four subcells
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Qsw =[0.2P71 —1] x [0.2771 — 1] x [0..2° — 1],
Onw = [0.2P71 — 1] x [2P71..27 — 1] x [0..2° — 1],
Qsp =[2771.2°2 — 1] x [0..277 — 1] x [0..2° — 1],
Onp=[2P"1.2P — 1] x [2P71..2P — 1] x [0..2° — 1].

The two numbers msw = |2sw| and msg = |f2sg| are coded one after
the other. Since the cell 25y contains at most my = |2w| pixels, we need
[log,(mw + 1)] bits for coding mgw. Likewise, coding the number mgg
requires [log,(mg+1)] bits. The two numbers myw and my g do not need to
be coded. Indeed, this is because myw = mw —msw and myg = mg—mgg,
i.e., the numbers myw and my g follow from the previous information in the

bitstream.

In the third stage, each of the four subcells Q2sw, 2nw, 2sE, and 2nE
is split across the k-azis (see Figure 4.14 (c)), each into two halves of equal
size, which yields the eight subcells

5y =[0.2771 = 1] x [0.2P7! — 1] x [0..2°7" — 1],
Qyw =[0.2771 — 1] x 277127 — 1] x [0..2°7! — 1],
5 =[2P71.27 — 1] x [0.2°7! — 1] x [0..2°7" — 1],
Qyp =212 =1 x 2?7127 - 1] x [0..2°7! — 1],
2%y =[0.2P71 = 1] x [0.277" — 1] x [2571..2° — 1],
Qfw =1[0.2771 — 1] x [2P71.2P — 1] x [2°71.2° — 1],
Qg =[2""122 - 1] x [0.2°7 1 — 1] x [2571..2° — 1],
Qhp=[2r12P — 1] x 277127 — 1] x [2°71..2° — 1],

whose union is 2. The four numbers mgy, = |25y |, myw = [2ywl, Mg =
|25p|, and my g = |12y | are coded.
Altogether, by splitting the bounding cell 2 into eight subcells, the se-
quence
mw |msw |mse | Mgy | myw |msg|myp

of seven numbers is coded. This requires

[logy(m + 1)] + [logy(mw + 1)] + [logy(me +1)]
+[logy(msw + 1)] + [logy(mnw + 1)]
+[logy(msg + 1)] + [logy(mye +1)]

bits in total, to be appended to the bitstream. The hierarchical structure of
this coding scheme is shown in Figure 4.15.

This splitting (including the updates in the bitstream) is then recursively
applied to those subcells which are not empty. A cell w C {2 is said to be
empty, iff it contains no pixel, and thus |w| = 0. On the most elementary
recursion level, we encounter cells of the form w = [21, 24+ 1] x[25, 25 +1] x [k],
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m

Fig. 4.15. Splitting of the domain 2 into eight subdomains 25, 25w, 255, 2y g»
Q¢ 2% w, 245, 2F 5. The numbers m, mw, msw, msE, Mgy, Myw, Msg My g
(whose nodes are marked by e) are coded.

provided that s < p. Such atomic cells are not split. This is in order to save
additional costs in terms of bits. Instead of this, the coding of the pixels in
atomic cells is accomplished as follows.

We merely discuss the coding of the atomic cell w = [0,1] x [0,1] x [0],
all the other atomic cases are treated in an analogous manner. Note that the
atom w = [0, 1] x [0, 1] x [0] may contain zero, one, two, three or four pixels. In
case w contains either four or zero pixels, no additional information (in terms
of coding costs) is required. If w contains exactly one pixel, then its position
(¢,7) € {0,1} x {0,1} is coded by using two bits, one for the index ¢ and one
for the index j. Likewise, if w contains three pixels, then the other position
in w (which contains no pixel) is coded by using two bits. In the remaining
case, where w contains exactly two pixels, there are six different possibilities
for the distribution of the two pixels in w. These six different cases are coded
according to the Huffman code (1,1),(1,0),(0,0,1),(0,0,0),(0,1,1),(0,1,0),
see Figure 4.16.

This requires only 2/6 x 2 bits + 4/6 x 3 bits = 8/3 bits in average,
provided that the probabilities for each of the six cases are equal. This is
cheaper than coding each of the two pixels separately, which would require
2 x 2 bits = 4 bits.

4.6.5 Computational Complexity

In this subsection, we analyze the computational complexity of the proposed
image compression scheme. To this end, we determine the computational
costs required for the performance of the steps (1),(2),(4), and (5) at the
outset in Subsection 4.6.1. Recall that step (1) is done by using adaptive
thinning. But the complexity of the adaptive thinning is already discussed
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(1,0) (0,0,0) (0,1,0)

(1,1 (0,0,1) (0,1,1)

Fig. 4.16. Coding of the atomic domain 2 = [0..1] x [0..1] x [0] with two pixels, cor-
responding to the six different codes (1,1),(1,0),(0,0,1),(0,0,0),(0,1,1),(0,1,0).

in Subsection 4.5.3. Recall from Subsection 4.5.3 that we require only at
most O(N log(N)) operations for the removal of n pixels from a number of
N = 2P x 2P pixels, when using any of the thinning algorithms AT1, AT2, or
ATS3. It is straightforward to establish the same complexity O(N log(N)) for
the adaptive thinning algorithms AT, and ATZ, by following along the lines
of the analysis in Subsection 4.5.3. In order to avoid unnecessary detours,
however, we prefer to refrain from doing so here.

Instead, let us proceed by turning to the complexity of step (5). In this
step, the Delaunay triangulation Dy is first constructed from the m = N —n
most significant pixel positions, before the corresponding piecewise linear
function L(Y; Fy) is used in order to compute the n luminance values at the
deleted pixel positions. Recall that building the Delaunay triangulation Dy
costs O(mlog(m)) operations [134]. The subsequent reconstruction of the n
luminance values costs O(n) operations, which is O(N) for large n.

As to the remaining two steps, (2) and (4), note that these are symmetric.
In fact, the asymptotic complexity of the encoding in step (2) is the same as
the asymptotic complexity of the decoding in step (4).

Therefore, we restrict ourselves to the analysis of the computational costs
required for the performance of the encoding. To this end, recall from Sub-
section 4.6.4 that step (2) relies on the recursive splitting of the bounding
cell £2, containing m = |§2| pixels. Therefore, we need to determine the com-
putational costs required for the construction of the entire octtree-like data
structure. Now note that the initial splitting of {2 into the two subcells 2
and 2 costs m operations in the first stage. Indeed, these m operations
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are required for counting the number my, of pixels in 2. But the subse-
quent splitting of 2w and f2g in the second stage costs also m operations,
namely my for splitting 2y and mg for splitting 2g, and so altogether
mw + mg = m. By recursion, the splitting at each level ¢ costs exactly m
operations. Now since the tree comprises 2p + s = log,(N) + s levels, this
leads to m x (log,(N) + 3) = O(mlog(N)) operations for the performance of
step (2).
Altogether, this shows that we require asymptotically at most

O(N log(N)) + O(mlog(N)) = O(N log(N))
operations for the compression, in steps (1) and (2), and only at most
O(mlog(N)) + O(mlog(m)) + O(N) = O(mlog(N)) + O(N)

operations for the decompression in steps (4) and (5).

4.6.6 Adaptive Thinning versus SPIHT

Now let us turn to the evaluation of adaptive thinning in image compression.
In this subsection, we apply the adaptive thinning algorithms AT2 and ATZ.
We work with greyscale values of the luminances f(i, 5} in [0..255], i.e., r = 8.
In the test examples below, we use the quantization step 8, so that [0..31] is
the range of the quantized symbols Q(f*(3,j)), (¢,7) € Y.

We compare the performance of our compression scheme with that of the
wavelet-based compression scheme Set Partitioning Into Hierarchical Trees
(SPIHT) [145]. We remark that the good compression rate of SPIHT is, at
low bit rates, comparable with that of the powerful method EBCOT [166],
which is the basis algorithm of the standard JPEG2000 [167].

In order to compare our compression scheme with SPTHT, we use several
different test images. In each test case, the compression rate, measured in bits
per pizel (bpp), is fixed. The quality of the resulting reconstruction is then
evaluated by the comparison of the differences in PSNR.

Geometric Test Images. We first consider two artificial test images,
Chessboard and Reflex, each of small size 128 x 128 (p = ¢ = 7). These two
geometric test images are displayed in Figure 4.17 (a) and Figure 4.18 (a).

The purpose of this preliminary discussion is two-fold. Firstly, we wish
to demonstrate the good performance of adaptive thinning for texture-free
images with sharp edges. Secondly, we demonstrate that the greedy two-point
removal strategy of AT32 is superior to the greedy one-point removal strategy
of AT, and we provide a few arguments to explain it.

A first comparison between SPIHT, AT, and AT% is done by using the
test image Chessboard in Figure 4.17 (a). In this example, we considered
selecting the 299 most significant pixels by using ATZ and AT, respectively.
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(e) (f)

Fig. 4.17. Chessboard. (a) Original image of size 128 x 128. Reconstruction at
0.23 bpp by (b) SPIHT with PSNR 18.57 db, (¢) AT2 with PSNR 15.24 db, (d)
AT?% with PSNR 45.15 db. The Delaunay triangulations of the 299 most significant
pixels output by adaptive thinning are shown in (e) for ATz and in (f) for ATZ.

In Figure 4.17, the Delaunay triangulations of the 299 most significant pixel
positions, together with the resulting reconstructed images, are shown.
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The algorithm AT?Z selects an optimal subset Y of 299 most significant
pixels, so that the least squares error in (4.42) is zero, namely L(F, Dy )(z,7) =
f(i,7) for all (z,5) € X. Only by the quantization of the luminance values,
the resulting mean square error for the reconstructed image F is slightly
increased to 72(Y; X) = 2.002, which corresponds to a PSNR of 45.15 dB.
The almost exact reconstruction of the original image Chessboard, provided
by AT?2, is shown in Figure 4.17 (d).

In contrast, SPIHT leads to an inferior PSNR of only 18.57 dB, and the
algorithm AT, leads to a PSNR of 15.24 dB. Moreover, the quality of their
resulting reconstruction is rather poor, see Figure 4.17 (b) for the reconstruc-
tion of SPIHT and Figure 4.17 (c) for AT2. We have recorded the results of
this example, along with those of the following test cases, in Table 4.2.

We can explain the superiority of AT2 over AT, for the test case
Chessboard as follows. First of all, the algorithm AT?2 looks two removal
steps ahead, whereas AT, looks only one step ahead. Therefore, the algo-
rithm AT2 allows the removal of edges [y1,y2] € Dy, whose corresponding
anticipated error e(y:,y2) is small, even if the anticipated errors e(y;) and
e(y2) may be large. This is typically the case for pixels y;,y. with an edge
[v1, 2], crossing the boundary between two squares of the chessboard in a
nearly perpendicular direction, away from the corners.

In this case, the algorithm AT?2 removes the non-significant edge [y1,y2] €
Dy, whereas the algorithm AT is too short-sighted to make such removals,
and so AT prefers to keep both y; and y,. This leads to an early removal
of pixels near the corners of the chessboard squares, see Figure 4.17 (e). In
contrast, the algorithm AT2 manages to keep pixels near the corners, see
Figure 4.17 (f).

Now let us turn to the other geometric test image, Reflex, displayed in
Figure 4.18 (a). In this test case, we fix the compression rate to 0.251 bpp.
The resulting reconstruction from AT?2 is, in comparison with that of SPIHT,
displayed in Figure 4.18 (b),(d). Our method AT% yields the PSNR value
42.86 dB, whereas SPIHT provides the inferior PSNR value 30.42 dB. Hence,
with respect to this quality measure, our method is much better. Moreover,
the reconstruction by ATZ2 provides also a superior visual quality to that of
the reconstructed image by SPIHT, see Figures 4.18 (b),(d). Indeed, AT2
manages to localize the sharp edges of the test image Reflex. Moreover, it
avoids undesired oscillations around the edges, unlike SPIHT. This is due
to the well-adapted distribution of the 384 most significant pixels, whose
Delaunay triangulation is displayed in Figure 4.18 (c).
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(c) (d)

Fig. 4.18. Reflex. (a) Original image of size 128 x 128. Reconstruction at 0.251 bpp
by (b) SPIHT with PSNR 30.42 db, (d) AT3 with PSNR 42.86 db. The Delaunay
triangulations of the 384 most significant pixels output by AT is shown in (c).

Three Popular Test Cases of Real Images. We considered also applying
the adaptive thinning algorithms ATz and ATZ2 on three different popular
test cases from image processing, Fruits,Peppers and Lena, which are also
used as standard test cases in the textbook [167]. The original images, each
of size 512 x 512, are displayed in Figures 4.21, 4.24, and 4.27.

Not surprisingly, we found that the algorithm ATZ is superior to the
algorithm ATS5. It is remarkable that the algorithm AT% is, at low bitrates,
quite competitive with SPIHT. This is confirmed by the results in Figure 4.19,
where the PSNR as a function of the compression rate (in bits per pixel)
is plotted for the three different compression algorithms, SPIHT, AT, and
ATZ.

In the following discussion on the wvisual quality of the reconstruction, we
focus on the comparison between SPIHT and AT%. For each of the three
test images, the different PSNR values are shown in Table 4.2. Note that the
PSNR obtained by AT?2 is slightly larger than that obtained by SPIHT for
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the two test cases Fruits and Peppers, but slightly inferior for the test case
Lena.

Now let us turn to the visual quality of the reconstructions. The recon-
struction by SPIHT and AT?Z, respectively, is shown in the Figures 4.23, 4.26,
and 4.29.

The set Y of most significant pixel positions, along with its Delaunay
triangulation Dy, are displayed in Figure 4.20. Note that by the distribution
of the most significant points, the main features of the images, such as sharp
edges and silhouettes, are captured very well, see Figures 4.22,4.25, and 4.28.
Moreover, the compression scheme AT2 manages to denoise the test image
Fruits quite successfully, in contrast to SPIHT.

On balance, in terms of the visual quality of the reconstructions of Fruits,
Peppers, and Lena, we believe that our compression method AT?2 is just as
good as SPIHT. This is widely supported by the results in Table 4.2 and
Figure 4.19.

Table 4.2. Comparison between SPIHT, ATZ, and AT,

PSNR
Test Case bpp SPIHT AT? AT,
Chessboard 0.230 18.57 45.15 15.24
Reflex 0.251 30.42 42.86 41.73
Fruits 0.185 32.33 32.37 31.85
Peppers 0.158 32.07 32.30 31.80
Lena 0.154 32.26 31.50 30.98
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Fig. 4.19. Comparison between SPTHT, ATz and AT3 at low bitrates for the test
images (a) Fruits, (b) Peppers, and (c) Lena.
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Fig. 4.21. Fruits. Original image of size 512 x 512.

4044 most significant pixels selected by ATZ.

Fig. 4.22. Fruits.
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(b)

Fig. 4.23. Fruits. Reconstruction at 0.185 bpp by (a) SPTHT with PSNR 32.33 db
and (b) AT3 with PSNR 32.37 db.
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Fig. 4.25. Peppers. 3244 most significant pixels selected by AT3.
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(b)

Fig. 4.26. Peppers. Reconstruction at 0.158 bpp by (a) SPIHT with
PSNR 32.07 db and (b) AT3 with PSNR 32.30 db.
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Fig. 4.28. Lena. 3244 most significant pixels selected by AT3.
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Fig. 4.29. Lena. Reconstruction at 0.154 bpp by (a) SPIHT with PSNR 32.26 db
and (b) AT% with PSNR 31.50 db.



5 Multilevel Approximation Schemes

Multilevel approximation schemes are concerned with the construction of a
hierarchical representation of a model object, a mathematical function, at
various different resolutions. This chapter first reviews our recent and cur-
rent research on multilevel approximation from scattered data, before special
empbhasis is placed on their application to hierarchical surface visualization.

Starting point of the discussion in this chapter is our multilevel interpola-
tion scheme of [72], which was the first to combine thinning algorithms with
scattered data interpolation by compactly supported radial basis functions.
As confirmed by the extensive numerical examples in [73], the multilevel in-
terpolation scheme of [72] is very efficient and stable. Moreover, its utility in
real-world model problems and industrial applications, such as in geometric
modelling and subsurface recovery from seismic data, is demonstrated in [73].
We remark that the multilevel concept of [72] is utilized, further discussed,
and (partly) analyzed in related papers [63, 64, 65, 66, 126, 171].

Various improvements of the multilevel interpolation scheme of [72] are
introduced in [96], where it is shown that the performance of the multilevel
interpolation heavily relies on the required preprocessing data analysis, which
is in [72] done by using non-adaptive thinning, see Section 4.3. The improve-
ments in [96] are basically achieved by replacing non-adaptive thinning with
scattered data filtering, see Section 4.4, in the performance of the preprocess.

Just very recently, the multilevel concept of [72, 96] was further improved
in our paper [98], where we combine adaptive domain decomposition and
data clustering with stable local polyharmonic spline interpolation, see Sub-
section 3.8.3. This yields enhanced flexibility, when it comes to combining
the required data analysis with the data synthesis.

In the following Section 5.1, a generic formulation for multilevel scattered
data approximation is provided, which unifies the various muitilevel schemes
mentioned above. Section 5.2 is then devoted to multilevel interpolation, as
suggested in [72], and further developed in [96], before the recent multilevel
approximation scheme of [98] is explained in Section 5.3. In Section 5.4, the
behaviour of the different multilevel approximation schemes is evaluated and
compared by using one model problem from hierarchical surface visualization.
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5.1 Generic Formulation

Starting point for any multilevel approximation scheme, discussed in this
chapter, is the construction of a data hierarchy of the form

XiCXoC---CXp1C X=X (5.1)
from given sample values f|, = (f(z1),..., f(zn))T € RY taken from an
unknown function f:R? — R at aset X = {z),...,z5} C R? of scattered

locations. The above data hierarchy (5.1) may, for instance, be constructed
a priori by using one of the thinning algorithms, as discussed in the previ-
ous chapter. An alternative construction technique is working with adaptive
domain decomposition, as discussed later in this chapter. In either case, this
construction process is referred to as the data analysis.

Now the basic idea of multilevel approximation is to first approximate f
from the samples f I X, taken at the coarsest level by computing an approxi-
mation s; which captures the global trend of the function f. In the subsequent
steps of the multilevel scheme, a sequence sy,..., s of gradually finer rep-
resentations for f is constructed by computing a sequence As,...,Asp of
approximations to the residual of the previous level. More precise, at each
level ¢, 1 < ¢ < L, the approximation Asy to the residual (f — s,— 1)| Xe yields

by s¢ = s¢—1 + Asy a finer representation for f (compared with the coarser
one, s¢_1, of the previous level).

Altogether, the construction of the multiresolution representation for f,
called the data synthesis, is accomplished by using the following algorithm.

Algorithm 18 (Multilevel Approximation).

(1) Let so =0;

(2) FOR{=1,...,L
(2a) Compute approzimation Asy to the data (f — Sg_l)ixe,'
(2b) Let sp = s¢—1 + Asy;

OUTPUT: Sequence of approzimations sy,...,sp to f.

Especially in situations where the number |X| = N of sample points
is extremely large and the sampling density in the point set X is subject
to strong variations, multilevel scattered data approximation schemes, are
appropriate tools. This is mainly because, due to its heterogeneity, such data
sets naturally incorporate multiple resolutions. Therefore, when it comes to
the data modelling, it makes sense to select a multiresolution method, such
as Algorithm 18, in order to represent the function f at different resolutions.

In order to determine a specific multilevel approximation scheme from Al-
gorithm 18, it remains to specify a particular approximation scheme, yielding
asequence Sy, ..., Sy, of approximation spaces, so that at any level ¢ the func-
tion As,, computed in step (2a) of Algorithm 18, is an element of S,.
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In order to make concrete examples, the approximation scheme in could,
for instance, employ piecewise linear interpolation over triangulations. In this
case, it makes sense to select, at level ¢, the space S; = S?(7;), being the
linear finite elements over a fixed triangulation 7, of X,.

One could also work with least squares approximation or plain interpola-
tion by using radial basis functions, as explained in the Sections 3.1 and 3.10.
In either case, it makes sense to select finite-dimensional linear approximation
spaces of the form

St =Sy x, =span{ge(l|l- —zl)) : 7€ X3P PL,, 1<L<L, (52)

each of whose major part is spanned by the X,-translates of a specific radial
basis function ¢, € CPDgy(my), see the form of the recovery space Ry y in
Section 3.10.

5.2 Multilevel Interpolation

In this section, we discuss multilevel interpolation, as first proposed in the
paper [72]. The scheme utilizes radial basis function interpolation, and so
it works with approximation spaces Sy, ..., St of the form (5.2). We remark
that, despite that the data hierarchy of the points in (5.1) is nested, these ap-
proximation spaces are not necessarily nested. This is in contrast to wavelets,
whose theory of multiresolution analysis (MRA), essentially relies on the nest-
edness of consecutive wavelet spaces. The construction of such wavelet spaces
is based on the refinement of the wavelet (basis) function. Due to the lack
of such refinement equations, radial basis functions do not work with nested
approximation spaces.

Now let us first formulate the multilevel interpolation algorithm, before
its major ingredients are discussed below.

Algorithm 19 (Multilevel Interpolation).
INPUT: Data hierarchy X, C --- C X1 = X, and function values fl)('

(1) Let sp =0;

(2) FOR?¢=1,...,L
(2a) Compute interpolant As, € Sy satisfying (f — Sg_l)|
(2b) Let sg = s¢—1 + Asy;

OUTPUT: Sequence of interpolants sy, ...,sy to f.

Xe = A5f|x,7'

The basic idea of this multilevel interpolation scheme is to first capture a
global trend of the function f (corresponding to low frequencies of f) at the
initial level ¢ = 1, before finer details (corresponding to higher frequencies
of f) are gradually added by local updates in the subsequent step (2b). The
resulting interpolants si,...,s; provide a sequence of representations for f
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at L different resolutions. To this end, in the above multilevel interpolation
scheme, the following L interpolation problems are to be solved one after the

other.
f|X1 = A81|X1’

(f_31)|X2 = As2|X27

(5.3)
(f —s1-1)|x, = Asi|y, -
Note that every function s, in (5.3) matches f at the subset Xy, i.e.,
flx, = sely, forall1<e<L. (5.4)

As to the selection of the radial basis functions ¢ of the approximation
spaces Sy, 1 < £ < L, our recommendation is to work with polyharmonic
splines at level one, where ¢ = 1. This is due to the useful variational principle
for polyharmonic splines (as discussed more detailed in Section 3.8), ensuring
a good global approximation behaviour of the resulting surface spline. Hence,
the initial interpolant s; to f in (5.3) has the form

s1= Y coa(ll-—zl) +ps, (5.5)

T€ X1

with py : R — R being a polynomial of order at most k, cf. the represen-
tation for a polyharmonic spline interpolant in (3.44). Recall from the dis-
cussion in Section 3.8 of Chapter 3 that polyharmonic spline interpolation,
using @q,k, reproduces any element from the linear space Pg, comprising all
d-variate polynomials of order at most k, provided that the points in X, are
Pg-unisolvent. Hence, when working with the thin plate splines in the plane,
where d = k = 2 and thus ¢2 5 = r2log(r), the interpolation scheme repro-
duces linear polynomials, provided that the points in X; do not all lie on a
straight line.

It is easy to see that this reproduction property carries over to the mul-
tilevel interpolation scheme of Algorithm 19. Indeed, in this case, we obtain,
for any polynomial f € P{, the identity s; = As; = f when solving the
initial interpolation problem at the coarsest level, cf. the first line in (5.3).
But this implies that all subsequent interpolants As,, 2 < ¢ < L, in (5.3)
vanish identically. Let us make a note of this simple but useful observation
in a separate remark.

Remark 1. The multilevel interpolation scheme of Algorithm 19 reproduces
any polynomial from Pg, provided that the interpolation scheme utilized at
its initial level reproduces polynomials from Pg.

As to the interpolation at the remaining levels 2 < ¢ < L, we prefer to
work with compactly supported radial basis functions, with using different
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scales at different levels. In this case, for a fixed compactly supported radial
basis function ¢ with support radius r = 1 (see the selection in Table 3.2 on
page 34), we let ¢, = ¢(-/0) for ¢ > 0, and so any interpolant As, (used at
level £) in (5.3) has the form

Ase =Y cado(ll-—2ll), 2<E<L, (5.6)
TEX,

where the support radii g; are a monotonically decreasing sequence of positive
numbers, i.e., g2 > 03 > ... > o, > 0.

Note that the resulting multilevel interpolation scheme performs, at any
level £, 2 < ¢ < L, in step (2b) of Algorithm 19 merely a local update on the
previous coarser interpolant s,_, yielding the finer interpolant s, to f. In
order to ensure that these updates make sense, each support radius g, should
depend on the density of the set Xy, 2 < ¢ < L, in the domain 2. We can
explain this as follows.

On the one hand, the choice of the support radius g, allows us to steer the
approximation quality of the update at level £. For the sake of approximation
quality, it is desirable to work a large support radius g¢. On the other hand,
these updates should be local, and therefore we wish to keep the support
radius gy reasonably small. Moreover, a small g, increases the sparsity of
the arising (symmetric and positive definite) collocation matrix A4, x,, and
thus leads to a stable interpolation process. In fact, this is the dilemma of
the uncertainty principle for radial basis functions, which is discussed more
detailed in Section 3.7 of Chapter 3.

Now in order to be able to balance these conflicting requirements, the ap-
proximation quality and the stability (sparsity of A4, x,) of the interpolation
process, it is recommended to let the support radius g, be proportional to
the fill distance hx,  of the point set X, in the domain 2. This recommen-
dation is based on our previous experience with multilevel interpolation by
(compactly supported) radial basis functions in many different applications.
E.g., in the situation of the small model problem in [72], we let g = 5%hx,, 0.

But the performance of this particular multilevel interpolation scheme
does not solely depend on the choice of the support radii. In fact, the per-
formance of the multilevel scheme relies heavily on the choice of the data
hierarchy in (5.1). Therefore, considerable effort has gone into the design of
algorithms for the construction of suitable data hierarchies of the form (5.1)
[74, 96, 101]. These constructions rely mainly on thinning algorithms as well
as on customized schemes for progressive scattered data filtering, as discussed
in the previous Chapter 4.

The final Section 5.4 of this chapter is devoted to numerical comparisons
concerning the performance of the multilevel interpolation scheme of this
section, when working with different techniques for constructing the data
hierarchy (5.1).
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5.3 Adaptive Multilevel Approximation

In this section, a recent multilevel approximation scheme [98] is proposed. The
scheme relies on an adaptive domain decomposition strategy using quadtree
techniques (and their higher-dimensional generalizations), as explained in
Section 2.6 of Chapter 2. It is shown in the numerical examples in Sec-
tion 5.4 that this method achieves an improvement on the approximation
quality of the well-established multilevel interpolation schemes of the previ-
ous Section 5.2 at the coarser levels.

In contrast to the multilevel scheme in Section 5.2, we drop the restriction
of requiring the sets in (5.1) to be subsets of the given points X. Instead of
this, although we work with a data hierarchy of the form

cicCyc---CcCp,CCy, (5.7)

the sets C; in (5.7) do not necessarily need to be subsets of X. The locations
of the points in the subsets Cy, £ > 1, are constructed, such that each point
in Cy represents a certain cluster in X. This essentially amounts to working
with multilevel approrimation rather than multilevel interpolation. In this
new setting, each subset Xy, used the interpolation step (2a) of Algorithm 19,
is replaced by a corresponding set C, in (5.7). Moreover, in contrast to the
situation in Algorithm 19, these sets C, are not given beforehand, but they
are adaptively constructed during the performance of this more sophisticated
multilevel scheme, given by the following Algorithm 20.

Algorithm 20 (Adaptive Multilevel Approximation).

INPUT: Point set X, function values f | X

(1) Let s = 0;
(2) Construct the set Cy;
(3) Approzimate f at Cy, and so obtain the data f|Cl;
(4) FOR (=1,2,...
(4a) Compute interpolant As, € Sy satisfying (f — 35—1)|C, = Ase|cl;
(4b) Let sy = sp—1 + Asy;
(4c) Construct the set Cyy1 satisfying Cy C Cpyn;
(4d) Approzimate f — sg at Cot1, and so obtain the data (f — s’)lcl+1f

OUTPUT: Sequence of approzimations s,,...,sy to f.

The construction of the data hierarchy (5.7) during the above Algo-
rithm 20 is the subject of most of the following discussion in this section.
Be it sufficient for the moment to say that the construction of the coarsest
set C in step (2) depends merely on the spatial distribution of the points
in the given set X, but not on the sample values in f | x- In contrast to this,
the construction of any subsequent subset Cy..; in step (4c) does essentially
depend on the approximation behaviour of the current approximation s, ob-
tained in step (4b). Details on the construction of the initial set C; and the
subsequent sets Cyy1, £ > 1, are explained below.
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5.3.1 Adaptive Domain Decomposition

In this subsection, the construction of the sets in (5.7) is explained.

Let 2 C R? be a bounding boz for X, ie., £2 is a hypercuboid in R?
containing the point set X. In what follows, we intend to decompose {2 into
a collection {w}uer of smaller cells of different sizes and satisfying

N=Jw. (5.8)

weL

This yields by letting X,, = X Nw, for w € L, a partition {X, },ec of X into
accordingly many point clusters.

The decomposition of {2 (and thus the partition of X) will be computed
by recursively splitting the cells, with {2 being the initial cell. This is done
by using the data structure quadiree (and its higher-dimensional generaliza-
tions), as explained in Section 2.6. Each cell corresponds to a leaf in the
(generalized) quadtree, and so initially, the cell {2 is contained in the root
of the quadtree. The decision on the splitting of a single cell will be made
according to two different customized splitting criteria, to be explained be-
low. The cells are always split uniformly by using the function split-cell
of Algorithm 14 in Subsection 2.6.1, respectively Algorithm 12 in Section 2.6
for the special case of two dimensions. The splitting of a 2D cell w is shown
in Figure 2.7 on page 27. Note that one could also consider non-uniform
splittings of w, but we want to avoid long and thin cells.

Splitting of Cells at the Coarsest Level. Initially, the cells are split ac-
cording to the spatial distribution of the points in X. Our aim is to construct
the coarsest set C} in (5.7). To this end, a decomposition (5.8) of {2 is com-
puted, such that the number | X, | of points in each resulting point cluster
X, is not greater than a predetermined number n < |X{ = N.

Definition 22. Let n be given. We say that a cell w € L is splittable, iff
the size | X,| of X, is greater than n, i.e., | X,| > n.

Having specified the definition for a splittable cell, the recursive domain
decomposition of {2 is performed by applying the function build-quadtree,
Algorithm 15 in Subsection 2.6.1 (respectively Algorithm 13 in Section 2.6
for the special case of two dimensions), on {2.

Note that the call build-quadtree({?), Algorithm 15, returns a partition
{Xw}wer of X, where each cluster X, contains not more than n points.
Figure 5.1 shows an example, where this algorithm was applied on the data
set Hurrungane (displayed in Figure 4.9, page 100). In this case, where d = 2,
we have | X| = 23092 and 2 = [437000, 442000] x [6812000, 6817000]. For the
decision concerning the splitting of a cell, the value n = 60 was selected. In
this case, the function build-quadtree computes a decomposition of {2 into
841 cells, shown in Figure 5.1 (a). Now this decomposition is used in order
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to define the coarsest set Cy in (5.7). To this end, we let for any cell w € £
the point z,, denote its center of gravity. We define the initial set C; by the

union
Ci ={z, : we€ L and X, not empty } (5.9)

of all cell centers whose cells are not empty, and so any z,, € C; represents
the point cluster X,, C X. In the situation of our example in Figure 5.1, one
cell is empty. Therefore, the resulting set C;, displayed in Figure 5.1 (b),
comprises |C1| = 840 cell centers.

Fig. 5.1. Hurrungane. (a) Partitioning of the domain {2 into 841 cells {w}uer;
(b) the centers z., of non-empty cells w, yielding the subset C of size |C1| = 840.

Note that the points in C; do not have any function values, yet. To this
end, in step (3) of Algorithm 20, we assign to each z, € C; a cell average
value s,(x,) of f on w, where s, denotes a polyharmonic spline interpolant
of the form (3.44) satisfying

sw(z) = f(x), for all z € X,,. (5.10)

Having computed these cell average values, the interpolation in step (4a) of
Algorithm 20 is, at the initial level, where £ = 1, well-defined.

But we need to make a few comments concerning the numerical stabil-
ity of this local polyharmonic spline interpolation. We first remark that the
interpolation problem (5.10) is ill-posed, whenever the point set X, is not
unisolvent with respect to the polynomials P{. In this situation, for the sake
of numerical stability, we prefer to take the mean value

1
su(Ty) = TXo| zez;w f(z)

for the cell average, rather than solving (5.10) by polyharmonic spline inter-
polation.
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Moreover, we remark that the linear system resulting from (5.10) may
be ill-conditioned, even if the interpolation problem (5.10) is itself well-
conditioned. To be more precise, due to Narcowich and Ward [128], the spec-
tral condition number of the resulting coefficient matrix is bounded above by
a monotonically decreasing function of the interpolation points’ separation
distance

gx, = min [z -yl

z,¥€EXw
z#y

see the discussion in Section 3.6. This in turn implies that one should, for
the sake of numerical stability, avoid solving the linear system resulting from
(5.10) directly in situations where the minimal distance qx_, between two
points in X,, is small. For further details on this, see [128] and the more
general discussion in [151].

However, recall that in Subsection 3.8.3 a numerically stable algorithm
for the evaluation of the interpolant s, in (5.10) is offered, see also [102].
The algorithm works with a rescaling of the interpolation points X, so that
their separation distance ¢x_ increases, and thus it provides a simple way of
preconditioning of the linear system resulting from (5.10).

Now let us return to the discussion of multilevel approximation. Having
computed the cell average values s, (x,), the interpolation on C; by As; at
the first level, £ = 1, in step (4a) of the adaptive multilevel Algorithm 20 is
well-defined.

Adaptive Splitting of Cells at Finer Levels. Now let us turn to the
construction of the subsequent point sets C¢y1, £ > 1, of the finer levels in
step (4c) of Algorithm 20. The construction of any point set C¢y; depends
on the approximation quality of the current representation s, of f at the
previous level ¢.

More precise, the approximation quality of s, is locally evaluated by com-
puting the residual error

T = IaX |f(z) = se(z)] (5.11)

for every current cell w € L. Whenever X, happens to be the empty set, we
let n, = 0. It is convenient to collect all current cells in L,.

Given the error indications {n, }wer,, further cells will be split, by using
the function split-cell as follows. First, the cells are sorted according to
their errors 7,,. Then, for a predetermined number m = m,, we split the m
cells whose errors are largest. By these m splits, we obtain m * 2¢ new cells,
and thus m * 2¢ new cell centers z,,. The union £y, = {w}wer contains the
current cells, so in particular L4, comprises all new cells.

We define the subsequent center set Cpy; by the union

Coy1 =Co U {zw 1 w€ Ly \ £L¢ and X, not empty }
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of the previous center set Cy and the centers of the new non-empty cells. So
we obtain the next set Cy41 in step (4c) of Algorithm 20, which comprises
the previous one Cy by construction, i.e., it satisfies Cy C Cy41, as desired.

It remains to assign function values to the new centers in Cyyq \ Cy¢ (note
that the centers in Cy have values!). This is done in a similar way as for the
initial center set C'.

We first compute, for each new non-empty cell w € L4\ Ly, the polyhar-
monic spline interpolant s, of the form (3.44) satisfying (f — s¢) | x, = sw’ X,
before we assign the cell average value s, (z,) to the cell center z,, € Cpy1.

If, however, for any cell w € L4, its corresponding point set X, fails to
be PgZ-unisolvent, we assign the mean value

Su () = |X|Z(f (=)

TEX,

to the cell center z,, instead.

Having assigned a value to each z,, € Cy41 \ Cy, the interpolation in step
(4a) of Algorithm 20 is, at the next level £+ 1, well-defined. Indeed, note that
the values for the centers at the previous set Cy have already been computed
at level £. They are given by the values Sg’ Co So for the points in Cy we have

(f - se)lcl = 0 in step (4a) of Algorithm 20, when £ = ¢+ 1.

5.4 Hierarchical Surface Visualization

In this section, the performance of the different multilevel approximation
schemes in this chapter is evaluated and compared. We considered involving
three different methods. The first two methods, SDF and AT1, work with
multilevel interpolation, Algorithm 19 of Section 5.2, but they use two differ-
ent strategies for constructing the data hierarchy in (5.1). These two different
strategies are scattered data filtering, SDF (see Section 4.4), and adaptive
thinning, AT1 (see Section 4.5). The other method is the adaptive multilevel
approximation scheme, AMA, Algorithm 20 of Section 5.3.

5.4.1 Hurrungane — A Test Case from Terrain Modelling

In our numerical examples, we decided to work with one real-world data
set from terrain modelling. This particular data set, called Hurrungane, is
displayed in Figure 4.9 on page 100. The data is a sample of height values
{f(z)}zex taken at | X| = 23092 distinct geographic locations of a Norwegian
mountain area. The area is 2 = [437000, 442000] x [6812000,6817000] C R?,
where the samples were collected, and so d = 2 in this case. The minimum
height of this data set is mingex f(z) = 1100 meters, and the maximum
height is max,;c x f(z) = 2400 meters above sea-level.
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5.4.2 Numerical Results and Comparisons

Now let us compare the performance of the adaptive multilevel approximation
scheme in Section 5.3, AMA, against the other two, multilevel interpolation
using scattered data filtering, SDF, and multilevel interpolation using the
adaptive thinning algorithm AT1 of Section 4.5. For the purpose of illustra-
tion, it is sufficient to work with merely two sublevels, i.e., L = 2 in (5.1)
(when working with SDF, AT1), and in (5.7) (when working with AMA).

For the coarser set C}, to be used in the scheme AMA, we selected the
set which is displayed in Figure 5.1 (b). This set comprises n; = |Cy| = 840
cell centers, whose corresponding cells are shown in Figure 5.1 (a). In order
to obtain the finer set Cs in (5.7), we split m = 419 of these cells according
to the magnitude of their cell error in (5.11). This yields 4 x 419 = 1676 new
cells, and thus 1676 new cell centers. But we found that 21 of these 1676 new
cells were empty. Recall that the coarse set Cs is the union of the points in
Cy and the centers of the non-empty new cells. Therefore, the size of Cs is
ny = 840 + 1655 = 2495. The two nested sets C; and C> are displayed in
Figure 5.2 (a) and (b).

For the purpose of comparing the method AMA with SDF and ATI,
we have also generated two pairs of nested subsets, XJ ¢ Xf, X{ ¢ X3,
of equal sizes, i.e., |X{| = |X{}| = 840 and |X{| = |X3'| = 2495. The sets
XF, XF to be used by SDF, were generated by scattered data filtering (see
Section 4.4), whereas the sets X!, X' were output by the adaptive thinning
algorithm AT1 (see Subsection 4.5.4). The four sets X, X X{, X3 are
shown in Figure 5.2 (c)-(f).

Now the three different pairs of subsets C; C Co, X{ ¢ XF, X{ c X4
were used in order to compute three corresponding pairs of interpolants s;, so
by Algorithm 19 (for SDF, AT1) and Algorithm 20 (for AMA). Recall that
s1 in (5.5) is the thin plate spline interpolant to the data at C; (when using
the method AMA), X[ (when using SDF), and X{' (when using AT1).
Moreover, s; = s1 + Asy, where Asq, of the form (5.6), is the interpolant of
the resulting residual error f—s; at Ca, X&', or X3!. In either case, we selected
02 = 250.0 for the support radius of the compactly supported radial basis
function ¢y, in (5.6), where we let ¢(r) = (1 — r)3 (4r + 1), see Table 3.2 on
page 34. For details on compactly supported radial basis functions, we refer
to the discussion in Subsection 3.1.1 of Chapter 3, and the paper [170].
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Fig. 5.3. Hurrungane. Surfaces of the coarse representation, si, and the fine re-
presentation, sz, generated by the method AMA, (a) and (b), the method SDF,
(c) and (d), and the method AT1, (e) and (f).
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The approximation quality of the three different methods AMA, SDF,
and AT1 was evaluated by recording the Lo.-error and the discrete Ly-error,

e = max |f(z) = se(2)],

"o = \/ T D@ - s

IEX

at both levels £ = 1,2. Table 5.1 reflects our numerical results. Moreover,
each of the resulting surface representations of Hurrungane, the coarser s;
and the finer s,, are displayed in Figure 5.3.

Table 5.1. Approximation quality of the methods AMA, SDF, and AT1

Method| mi| o] w"| na| ef ud| n?
AMA 840 | 152.404 | 21.957 2495 | 250.0 77.682 | 11.550
SDF 840 | 226.030 | 31.863 2495 | 250.0 [ 134.069 | 16.164
AT1 840 | 341.381 | 33.998 2495 | 250.0 | 229.369 | 23.156

Given the numerical results in Table 5.1, the method AMA is the best,
followed by SDF and AT1. We remark that the method SDF is very similar
to the one proposed in [72]. Indeed, the method in [72] works with a data
hierarchy (5.1) of uniformly distributed subsets. This results in a fairly good
behaviour of the initial approximation s, for SDF, see Figure 5.3 (c). In con-
trast to this, the method AT1 works with unevenly distributed subsets, which
leads to undesirable overshoots of s; near the clusters in X{! (corresponding
to the ridges of the mountains, see Figure 5.2 (e) and Figure 5.3 (e)). This
explains why the method AT1 is inferior to SDF at level £ = 1, with a much
larger L,-error nf,o) than SDF. The poor approximation quality of AT1 at
the initial level cannot be recovered by the subsequent interpolant s3, see
Figure 5.3 (f). Indeed, the method AT1 continues to be inferior to SDF at
level £ = 2. This is also supported by the numerical results in [96].

In conclusion, the performance of multilevel interpolation relies heavily on
the data hierarchy (5.1). Moreover, as also shown in [96], the approximation
quality of the initial interpolant s; has a strong effect on the approximation
quality of subsequent interpolants. Now note that the approximation quality
of the method AMA is, when compared with SDF and AT1, much better
at the initia.l level. Indeed, the method AMA reduces the approximation er-
rors 1700 and 17( ) of the method SDF by approximately a third. This is due
to the well-balanced distribution of the points in the coarse set Cp, see Fig-
ure 5.2 (a). The distribution of the points in C; is not as clustered as in the
set X{1, see Figure 5.2 (e). This helps to avoid the abovementioned overshoots
of the initial interpolant s, see Figure 5.3 (a). The method AMA continues
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to be superior to both SDF and AT1 at the coarse level £ = 2. This com-
plies with our above explanation concerning the corresponding comparison
between SDF and AT1.

In summary, the new adaptive multilevel approximation scheme of Sec-
tion 5.3 yields a good alternative to the multilevel interpolation scheme of
Section 5.2. The good performance of the method AMA is mainly due to
the sophisticated construction of the subsets C; and C3. On the one hand,
unlike SDF, this construction is data-dependent. On the other hand, in con-
trast to AT1, dense clusters are widely avoided, and this helps to damp down
possible overshoots of the interpolants s, £ = 1,2.



6 Meshfree Methods for Transport Equations

Meshfree methods are recent and modern discretization techniques for nu-
merically solving partial differential equations (PDEs). In contrast to the
well-established traditional methods, such as finite differences (FD), finite
volumes (FV), and finite element methods (FEM), meshfree methods do not
require sophisticated algorithms and data structures for maintaining a grid,
which is often the most time consuming task in mesh-based simulations.

Moreover, meshfree methods provide flexible, robust and reliable dis-
cretizations, which are particularly suited for multiscale simulation. Con-
sequently, meshfree discretizations have recently gained much attention in
many different applications from computational sciences and engineering, as
well as in numerical analysis. Among a few others, the currently most promi-
nent meshfree discretization techniques are smoothed particle hydrodynamics
(SPH) [123], the partition of unity method (PUM) [5, 120], and radial basis
functions (RBF), see Chapter 3.

In this chapter, a novel adaptive meshfree method of (backward) charac-
teristics, AMMOoC, for multiscale simulation of tranport pocesses is pro-
posed. The method AMMoC combines an adaptive Lagrangian particle
method with local scattered data interpolation by polyharmonic splines. The
adaption strategy is built on customized rules for the refinement and coarse-
ning of current nodes, each at a time corresponding to one flow particle. The
required adaption rules are constructed by using available results concerning
local error estimates and numerical stability of polyharmonic spline interpo-
lation, as discussed in Section 3.8 of Chapter 3.

The outline of this chapter is as follows. In the following Section 6.1, a
short discussion on transport equations is provided, before the basic ingredi-
ents of our method AMMoC are explained in Section 6.2. The construction
of adaption rules is discussed in Section 6.3. Finally, Section 6.4 is devoted
to numerical simulation of various multiscale phenomena in flow modelling.

The model problems discussed in Section 6.4 comprise tracer transporta-
tion over the artic, Burgers equation, and two-phase fluid flow in porous
medium. The latter is done by using the five-spot problem, a popular model
problem from hydrocarbon reservoir simulation, where AMMoC is shown
to be competitive with two leading commercial reservoir simulators, ECLIPSE
and FrontSim of Schlumberger.
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6.1 Transport Equations

Many physical phenomena in transport processes are described by time-
dependent hyperbolic conservation laws. Their governing equations have the
form

ou

5 +Vfu)=0 (6.1)
where for some domain 2 C R, d > 1, and a compact time interval I = [0, T},
T > 0, the unknown function u : I x {2 — R corresponds to a physical
quantity, such as saturation or concentration density. Moreover, the function
fw) = (fi(u),..., fa(u))T in (6.1) denotes the flur tensor.

In this chapter, we consider numerically solving (6.1) on given initial

conditions
u(0,z) = ug(z), forze 2=R%, (6.2)

where we assume that the solution u of the resulting initial value problem
has compact support in 7 x R?. The latter serves to avoid considering explicit
boundary conditions.

In situations where the flux tensor f is a linear function, i.e.,

flu) =v-u, (6.3)
we obtain the linear advection equation

Ju
SV Tu=0 (6.4)

provided that the given velocity field
v =v(t,z), tel, ze N,

is divergence-free, i.e.,
d
. 8Vj
divv = 3z =0
.
j=1 "7

This special case of (6.1) is also often referred to as passive advection.
In this case, the scalar solution u is constant along the streamlines of (flow)
particles, and the shapes of these streamlines are entirely and uniquely de-
termined by the velocity field v.

In previous work [10], an adaptive meshfree method for solving linear
advection equations of the above form is proposed. The method in [10] is a
combination of an adaptive version of the semi-Lagrangian method (SLM)
and the meshfree radial basis function interpolation (RBF). The resulting ad-
vection scheme is then in [11] used for the simulation of tracer transportation
in the arctic stratosphere. Selected details on this challenging model problem
are explained later in this chapter, see Subsection 6.4.1.
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The semi-Lagrangian method, used in [10], traces the path of flow parti-
cles along the trajectories of their streamlines. Therefore, the scheme in [10] is
essentially a method of characteristics (MoC), see [34, 83] for an overview. In-
deed, the characteristic curves of the equation (6.4) coincide with the stream-
lines of flow particles, and the meshfree SLM in [10, 11] captures the flow
of a discrete set of particles along their characteristic curves. This is accom-
plished by computing backward trajectories for a finite set of current particles
(nodes) at each time step, whereas the node set is adaptively modified during
the simulation. The applications of the scheme in [10] are, however, restricted
to linear transport problems with governing equations of the form (6.4).

In this chapter, the advection scheme of [10] is extended in the following
section, so that an adaptive meshfree method of (backward) characteristics,
called AMMOoC, is obtained, which also covers the numerical treatment of
nonlinear equations of the form (6.1). To this end, we follow along the lines
of our previous work [12]. We remark that the nonlinear case is much more
complicated than the linear one, and thus any possible generalization of the
SLM in [10] requires care. Indeed, in contrast to the linear case, a nonlinear
flux function f usually leads to discontinuities in the solution u, shocks, as ob-
served in many relevant applications, such as fluid and gas dynamics. In such
situations, the classical MoC becomes unwieldy or impossible, as the evolu-
tion of the flow along the characteristic curves is typically very complicated,
or characteristic curves may even be undefined (see [49, Subsection 6.3.1] for
a discussion on these and related phenomena).

Now in order to be able to model the behaviour of the solution with
respect to shock formation and shock propagation we work with a vanishing
viscosity approach, yielding the modified advection-diffusion equation

a—u+Vf(u) =¢- Au, (6.5)

ot
where the parameter € > 0 is referred to as the diffusion coefficient. In this
way, the solution u of the hyperbolic equation (6.1) is approximated arbitrarily
well by the solution of the modified parabolic equation (6.5), provided that the
parameter € is sufficiently small. This modification is a standard stabilization
technique for nonlinear equations, dating back to Burgers [25], who utilized
a flux function of the form

fluw) = %u2 -7, (6.6)

with some flow direction r € R?, for modelling free turbulences in fluid dy-
namics. The resulting Burgers equation is nowadays a popular standard test
case for nonlinear transport equations. We come back to this test case in
Subsection 6.4.2.
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Later, in Subsection 6.4.3, we consider solving the Buckley-Leverett equa-
tion, whose non-convez flux function has the form

U2

—uz—i-u(l—u)?.r (6.7)

flu) =
The Buckley-Leverett equation models the saturation of a two-phase flow in
a porous medium with neglecting gravitational forces or capillary effects. In
this case, the value of u in (6.7) is the ratio of the two different fluid’s viscosi-
ties. This model problem is typically encountered in oil reservoir modelling.
Details are explained in Subsection 6.4.3.

6.2 Meshfree Method of Characteristics

Let us first explain the semi-Lagrangian method (SLM), as used in [10], for

solving the passive advection equation (6.4), before we discuss its genera-

lization, the method of (backward) characteristics (MoC), later in this sec-

tion. For a more comprehensive discussion on the SLM and its applications

in meteorology, we refer to the survey [165] and the textbook [124, Section 7].
The SLM integrates the Lagrangian form

du

— =0 6.8

i (6.8)
of the linear advection equation (6.4) along trajectories. Therefore, the start-
ing point of the SLM is the discretization

u(t +7,8) —u(t,z™)
- =

0, £ € (),

of (6.8), where t € I is the current time, 7 > 0 the time step size, and
z~ = 27 (£€) denotes the upstream point of any £. The point £~ is the unique
location of that particle at time ¢, which by traversing along its trajectory
arrives at € at time t + 7, see Figure 6.1. In particular, u(t + 7,£) = u(t,z 7).

In order to numerically solve (6.4), the meshfree advection scheme in [10]
works with a finite discrete set = C {2 of current nodes, each of whose
elements £ € = corresponds, at time t, to one flow particle. At each time
step t = t + 7, new values u(t + 7,&), £ € =, are computed from the current
values u(t,£), £ € =. This is done by using the following semi-Lagrangian
advection scheme, Algorithm 21. Initially, at time ¢t = 0, the nodes in = are
randomly distributed in {2, and the values u(0,&), £ € =, are given by the
initial condition (6.2).

We remark that computing the upstream point £~ of any node £ € =
amounts to solving the ordinary differential equation (ODE)

T = j—f =v(t,x) (6.9)
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Fig. 6.1. The point z~ = #T7¢ is the upstream point of the node £ € =.

on initial condition z(t + 7) = &, so that z(t) = z~.
Adopting some standard notation from dynamic systems, we can express
the upstream point z~ of £ as

z” = ehiTE, (6.10)

where 47 : 2 — 2 denotes the continuous evolution of the (backward)
flow of (6.9). An equivalent formulation for (6.10) is given by £ = *+7ig~,
since $'*7! is the inverse of $44+7.

Now since the solution u of (6.4) is constant along the trajectories of
the flow particles, we have u(t,z7) = u(t + 7,£), and so the desired values
u(t + 1,€), £ € £, may immediately be obtained from the upstream point
values u(t,z7). But in general, neither the ezact location of ™, nor the value
u(t,z7) is known.

Therefore, during the performance of the flow simulation, this requires
first computing an approximation % to the upstream point z~ = ®5t+7¢ for
each £ € Z. It is convenient to express the approximation Z to z~ as

F = !pt,t+7'§
’

where U5+ 1 (2 — (2 is the discrete evolution of the flow, corresponding to
the continuous evolution #%**7 in (6.10) [44]. The operator ¥*t*+" is given
by any specific numerical method for solving the above ODE (6.9).

Having computed Z, the value u(t, Z) is then determined from the current
values {u(t,€)}ecz by local interpolation. Altogether, the above discussion
leads us to the following algorithm concerning the advection step ¢t — t + 7
of the semi-Lagrangian method.
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Algorithm 21 (Semi-Lagrangian Advection).
INPUT: Node set =, values {u(t,€)}ec=, and time step size 7;
FOR each £ € 5 DO

(1) Compute the upstream point approzimation ¥ = PHT7¢;
(2) Determine the value u(t,Z) by local interpolation,
(3) Advect by letting u(t + 7,£) = u(t, &),

OUTPUT: Values u(t + 7,&) for all £ € =.

The implementation of the two steps, (1) and (2), in Algorithm 21, de-
serves some further comments. Let us first turn to step (1). Recall that this
requires solving, for any current node £ € =, the initial value problem (6.9).
This end end, we follow along the lines of the seminal paper of Robert [142]
(see also [165] and [124, equation (7.66a)]), where it is recommended to em-
ploy a recursion of the form

,Bk+1 =7"V(t+7'/2,§—,8k/2) (611)

in order to obtain after merely a few iterations a sufficiently accurate linear
approximation 3 € R? of the trajectory arriving at £, and so then let

z= g - ﬁv
see Figure 6.2.
. . [ ] x"-' [ ]
X_ L]
. . .

Fig. 6.2. The point & = ¥H**7¢ is an approximation to z~ = ®“**7¢ being the
upstream point of £ € =.
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As regards step (2), the local interpolation around any upstream point
approximation Z is done by using polyharmonic splines, see Section 3.8. To
be more precise, the values of u(t,-) at a set N = N(Z) C Z of current
nodes in the neighbourhood of # are used in order to solve the interpolation

problem
s(v) = u(t,v), forallveN,

where s is the polyharmonic spline interpolant of the form (3.44). The ap-
proximation of u(t, Z), required in step (2), is then obtained by s(Z) =~ u(t, #).

We remark that semi-Lagrangian advection, Algorithm 21, is uncondition-
ally stable, provided that the local interpolation is stable. This is in contrast
to Eulerian schemes, which, for the sake of stability, typically work with very
small time steps [113]. For a concise analysis concerning the convergence and
stability of semi-Lagrangian methods, we refer to the paper [62] by Falcone
and Ferretti.

Now let us turn to the nonlinear case (where the flux function f is non-
linear). In this case, we are concerned with solving the advection-diffusion
equation (6.5). Similar to the linear case, this leads us to the discretization

u(t+7,8) —ult,z7)

= eAu(t,z7) (6.12)

of its corresponding Lagrangian form

where 4t = g—“t‘ + V f(u) is the material derivative.

As in the linear case, we integrate the Lagrangian form of the equation
(6.5) along streamlines of flow particles, characteristic curves. Therefore, hav-
ing computed, for any current node £ € =, an approximation & = ¥%*+7£ to
the upstream point 2~ = $5t+7¢, the desired approximation to u(t + 7,£) is

then given by
u(t +7,€) = u(t, %) + 7 - eAu(t, ), for £ € E. (6.13)

However, note that in contrast to passive advection, the characteristic curves
of the equation (6.5) depend also on u. In particular, the advection velocity

v = %}z depends on w. In order to compute the velocity
V(t+7/2,6 - Br/2)

at intermediate time t + 7/2, as required in the iteration (6.11), we employ
the linear extrapolation

v(t+2.)= V() -5 vt —7,, (6.14)
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where, again, we use polyharmonic spline interpolation for computing the
values of v(t,-),v(t — 7,-) on the right hand side in (6.14) from the available
values {v(t,€)}¢c= and {v(t — 7,£)}¢c= at the nodes. Initially, for obtaining
the required values of u(r,-) from the given initial conditions (6.2), we use a
generalized two-level Lax-Friedrich scheme on Z° = =7,

Altogether, this leads us to the following algorithm, method of (backward)

characteristics (MoC), for the advection step ¢t — ¢+ 7 in the nonlinear case.

Algorithm 22 (Method of Characteristics).
INPUT: Nodes =, values {u(t,{)}ecz, time step 7, diffusion coefficient €;
FOR each £ € E DO

(1) Compute the upstream point approzimation ¥ = ¥H+7¢;
(2) Determine the values u(t,Z) and Au(t,Z) by local interpolation;
(3) Advect by letting u(t + 7,£) = u(t, Z) + 7 - eAu(t, 7);

OUTPUT: The values u(t + 7,£) for all £ € =, at time t + 7.

Step (2) of Algorithm 22 deserves a comment concerning the interpolation
of the value Au(t,Z). Similar as in Algorithm 21, we work with local inter-
polation by polyharmonic splines, but with a smoother basis function. For
instance, note that in two dimensions the Laplacian of the thin plate spline
#2,2(r) = r?log(r) (and thus the Laplacian of the resulting interpolant) has
a singularity at zero. In this case, we prefer to work with the smoother ba-
sis function ¢ 3(r) = r*log(r), whose Laplacian A¢s 3(||z||) is well-defined
everywhere. Further details on this are explained in [12].

6.3 Adaption Rules

Having computed the values u(t + 7,£), for all £ € =, via (6.13), the current
node set £ = = (at time t) is modified by the removal (coarsening), and the
insertion (refinement) of nodes, yielding a new node set = = =7 (at time
t + 7). The adaption of the nodes relies on a customized a posteriori error
indicator, to be explained in the following of this section, see also [11].

Error Indication. An effective strategy for the adaptive modification of
the nodes requires well-motivated refinement and coarsening rules as well as a
customized error indicator. We understand the error indicator n : = — [0, 00)
as a function of the current node set = = Z? (at time t) which assigns a
significance value n(€) to each node £ € =. The value n(£) is required to
reflect the local approximation quality of the interpolation around £ € =.
The significances n(€), £ € =, are then used in order to flag single nodes
£ € Z as to be refined or to be coarsened according to the following criteria.
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Definition 23. Let n* = maxecz1(§), and Ocrs, brer be two threshold values
satisfying 0 < Oers < Orer < 1. We say that a node £ € = is to be refined,
iff n(€) > brer - n*, and £ is to be coarsened, iff P(&) < burs - 1*.

Note that a node £ cannot be refined and be coarsened at the same time;
in fact, it may neither be refined nor be coarsened.

Now let us turn to the definition of the error indicator . To this end,
we follow along the lines of our previous paper [84], where a scheme for the
detection of discontinuities of a surface, fault lines, from scattered data was
developed. We let

(&) = [u(§) — s(é)l,

where s = sy denotes the polyharmonic spline interpolant, which matches
the values of u = u(t,-) at a neighbouring set N' = N (£) C £\ ¢ of current
nodes, i.e., s(v) = u(v) for all ¥ € N. In our numerical examples for bivariate
data, where d = 2, we work with local thin plate spline interpolation. Recall
that this particular interpolation scheme reconstructs linear polynomials. In
this case, the value 5(£) vanishes whenever u is linear around £. Moreover,
the indicator n(£) is small whenever the local reproduction quality of the in-
terpolant s is good. In contrast to this, a high value of n(£) typically indicates
that u is subject to strong variation locally around &.

Coarsening and Refinement. In order to balance the approximation qual-
ity of the model against the required computational complexity we insert new
nodes into regions where the value of 7 is high (refinement), whereas we re-
move nodes from = in regions where the value of 7 is small (coarsening).
To avoid additional computational overhead and complicated data struc-
tures, effective adaption rules are required to be as simple as possible. In
particular, these rules ought to be given by local operations on the current
node set =. The following coarsening rule is in fact very simple and, in com-
bination with the refinement, it turned out to be very effective as well.

—

Coarsening. A node £ € = is coarsened by its removal from the current
node set =, i.e., = is modified by replacing = with = \ £.

As to the refinement rules, these are constructed on the basis of available
local error estimates for polyharmonic spline interpolation. Recall from Sub-
section 3.8.2 that for any z € (2, the pointwise error |u(z) — s(z)| between (a
sufficiently smooth) function u = u(t,-) and the polyharmonic spline inter-
polant s = sy satisfying s| N = u| , can be bounded above by an estimate
of the form

fu(z) = s(2)] < C - hyy 5" (=), (6.15)

where C' > 0 is a constant depending on u, and (for some radius ¢ > 0)

hno(z) = sup da(y)
ly—zll<e

is the local fill distance of N around z.
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v®)

Fig. 6.3. Refinement of the node . The Voronoi points (¢) are inserted.

Now, in the refinement of any node £ € =, the desired reduction of the
local error (6.15) around ¢ is accomplished by reducing the distance function
dy = minyen || - —v|| in a local neighbourhood of £. This in turn is done
as follows. Recall the discussion on Voronoi diagrams in Section 2.3. The
Voronoi tile

Ve(§) ={y e R : d=(y) = |ly — ¢|I} c R?

of £ w.r.t. the point set = is a convex polyhedron whose vertices, called
Voronoi points, form a finite point set V¢ in the neighbourhood of £. Figure 6.3
shows the Voronoi tile V=(¢) of a node £ along with the set V¢ of its Voronoi
points.

Now observe that for any ¢ € N, the distance function dys is convex on
V=(€). Moreover, the function dy has local maxima at the Voronoi points
in Ve. Altogether, this gives rise to define the local refinement of nodes as
follows.

Refinement. A node £ € = is refined by the insertion of its Voronoi points
into the current node set =, i.e., = is modified by replacing = with = U V.

6.4 Multiscale Flow Simulation

The combination of either the semi-Lagrangian advection, Algorithm 21, or
the method of (backward) characteristics, Algorithm 22, with both the mesh-
free local polyharmonic spline interpolation and the customized adaption
rules, as developed in the previous Section 6.3, provides a flexible, robust
and reliable discretization scheme for both linear and nonlinear transport
equations. We refer to the resulting advection scheme as Adaptive Meshfree
Method of Characteristics, in short AMMoC. The good performance of
AMDMoC is in this section shown by using the following model problems, all
of which are essentially requiring multiscale simulation.
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The test case of the following Subsection 6.4.1, concerning passive ad-
vection, is also considered in our previous work [11], and the Diploma the-
sis [132] of Pohn, where special emphasis is placed on implementation. In
this test case, AMMOoC combines Algorithm 21 with the adaption rules of
Section 6.3. Then, in the remaining two subsections, nonlinear test cases are
considered. In Subsection 6.4.2, we consider solving Burgers equation, and
Subsection 6.4.3 concerns the modelling of two-phase flow in porous media,
see also [12] and the related PhD thesis [106] of Kaser. In this case, AMMoC
combines Algorithm 22 with the adaption rules of Section 6.3.

6.4.1 Tracer Advection over the Arctic

This first test case scenario is concerning the simulation of tracer transporta-
tion in the arctic stratosphere. Let us briefly provide some background infor-
mation on this challenging application. When investigating ozone depletion
over the arctic, one interesting question is whether air masses with low ozone
concentration are advected into southern regions. For the purpose of illustra-
tion, we merely work with a simplified advection model. Simplified, mainly
because no realistic initial tracer concentration is assumed, and moreover no
chemical reactions are included in the model. Nevertheless, we work with a
realistic wind field, leading to quite typical filamentations of the tracer cloud,
as corresponding to previous airborne observations [19].

The wind data, giving the velocity field v in (6.4), were taken from the
high-resolution regional climate model (HIRHAM) [43]. HIRHAM resolves the
arctic region with a horizontal resolution of 0.5°. It is forced at the lateral
and lower boundaries by ECMWF reanalysis data. We consider the transport
of a passive tracer at 73.4 hPa in the vortex. This corresponds to an altitude
of 18 km. The wind field reproduces the situation in January 1990.

Since stratospheric motion is thought to be constrained largely within
horizontal layers, we use a two-dimensional horizontal transport scheme
here. The wind data is represented in the corresponding two-dimensional co-
ordinates of the horizontal layers in the three-dimensional HIRHAM model.
The wind field v at initial time is shown in Figure 6.4 (a), and the initial
tracer distribution ug for the advection experiment is shown in Figure 6.4 (b).

We remark that this application originated from the investigations in [9],
where the formation of small-scale filaments is shown by using an adaptive
tracer transport model. The simulation in [9] works with triangular meshes,
thus it is mesh-based. For more details on this particular mesh-based method,
including aspects concerning its parallelization, we refer to the paper [8] by
Behrens.

Figure 6.5 shows a comparison between our meshfree method AMMoC
and the mesh-based adaptive SLM [8] of Behrens, each recorded at day 15
of the simulation. Note that both simulations capture the fine filamentation
of the tracer very well. The corresponding node distribution of the meshfree
simulation by AMMOoC is shown in Figure 6.6.
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Fig. 6.4. Tracer advection over the artic. (a) Wind field v at initial time; (b) initial
tracer distribution uo. Continental outlines are given for orientation (Greenland in

the lower left part).
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(b)

Fig. 6.5. Tracer advection over the artic. Comparison between (a) the mesh-based
method [8] and (b) our meshfree method AMMOoC by using two snapshots, each
recorded at day 15 of the simulation.
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Fig. 6.6. Tracer advection over the artic. Node distribution of the meshfree simula-
tion by AMMOoC at day 15. Pink colour indicates nodes with tracer concentration
above 0.2.

6.4.2 Burgers Equation — A Nonlinear Standard Test

The viscous Burgers equation
Ou
ot

introduced in [25] as a mathematical model of free turbulence in fluid dy-
namics, is nowadays a popular standard test case, mainly for the following
two reasons.

+uVu-r =¢€- Ay, (6.16)

(1) Burgers equation contains the simplest form of a nonlinear advection
term u - Vu simulating the physical phenomenon of wave motion;

(2) Burgers equation is typically used as a test case for the modelling of shock
waves. The nonlinear flux tensor (6.6) leads, in the hyperbolic equation
(6.1), to shocks. As soon as the shock front occurs, there is no classical so-
lution of the equation (6.1), and its weak solution becomes discontinuous.
The modified parabolic equation (6.16) has for ¢ > 0 a smooth solution u.
which approximates (for sufficiently small €) the shock front propagation
arbitrarily well.

We use Burgers equation (6.16) as a preliminary test case for our adaptive
meshfree advection scheme AMMOoC, before we turn to a more difficult
nonlinear transport problem in the following subsection.
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In this subsection, we consider solving Burgers equation (6.16) in combi-
nation with the compactly supported initial condition

- 2
exp (”—I“_Ic—”,cjlff) for ||z — || < R,

0 otherwise,

U()((L‘) =

where R = 0.25, ¢ = (—0.25,—0.25), and we let the unit square 2 = [0, 1]*
be the computational domain. This test case is also used in [77]. Figure 6.7
shows the initial condition, and the flow field r = (1,1)7, yielding a flow
along the diagonal in 2.
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X 05" 05 *
(2) (b)

Fig. 6.7. Burgers equation. (a) Initial condition uo and (b) flow field.
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Fig. 6.8. Burgers equation. Initial node set =° comprising |Z°| = 2670 nodes.
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Initially, uo is sampled at a set = of |=| = 1000 randomly chosen points in
the unit square {2 = [0, 1]?. The construction of the initial node set =° C {2 is
then accomplished by applying the adaption rules of the previous Section 6.3
on the scattered point set =, where we let 6,5 = 0.001 and 8, = 0.05 for the
relative threshold values, required for the node adaption, see Definition 23
in Section 6.3. The resulting initial node set =°, of size |Z°| = 2670, is
displayed in Figure 6.8. Observe that the adaptive distribution of the nodes
in =Z° manages to localize the support of the initial condition ug very well,
see Figure 6.7 (a).

During the simulation, we work with a constant time step size 7 = 0.004,
and we let I = [0,3007]. Moreover, we let ¢ = 0.0015 for the diffusion coeffi-
cient, required in Algorithm 22.

A plot of the solution u at three different times, t199 = 1007, t200 = 2007,
and t3gp = 3007, is shown in Figure 6.10, along with the corresponding node
set, of size |Z| = 1256 at time t = t1q0, |=| = 1387 at time t = ta99, and
|Z| = 1383 at time ¢ = t300. The graph of the number of nodes as a function
of time is shown in Figure 6.9.

2800 T T T T T

number of nodes

1200 L L L L
0 50 100 150 200 250 300

time step ©

Fig. 6.9. Burgers equation. Number of nodes during the simulation.

Observe that the adaptive node distribution, shown in Figure 6.10, con-
tinues to localize the support of the solution u very effectively. This helps,
on the one hand, to reduce the resulting computational costs. On the other
hand, the shock front propagation is well-resolved by the high node density
around the shock, see Figure 6.10. Altogether, the adaptive node distribution
manages to capture the evolution of the flow very effectively. This supports
the utility of the customized adaption rules.
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Fig. 6.10. Burgers equation. Evolution of the solution u at three different time
steps, tioo = 1007, t200 = 2007, and t300 = 3007 (left column), and the correspond-
ing node distribution (right column).
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6.4.3 Two-Phase Flow in a Porous Medium

This subsection is concerned with the simulation of two-phase flow within a
porous medium. Two-phase flow problems are typically encountered in ap-
plications from oil reservoir modelling, where multiscale methods for the nu-
merical simulation of oil recovery processes are required. One widely used
standard technique from oil recovery is waterflooding. In this case, a wet-
ting fluid, say water, is injected through an injection well into a hydrocarbon
reservoir in order to displace a non-wetting fluid, say oil, within a porous
medium, so that the non-wetting fluid (oil) can be withdrawn through one
or several production wells at the boundary of the reservoir.

The two-phase flow of two immiscible, incompressible fluids through a
homogeneous porous medium in the absence of capillary pressure and grav-
itational effects is described by the following three equations (see the text-
books [4, 130, 154], and the related discussion in [163]):

The Buckley-Leverett equation [20]

0
a—?-l—v-Vf(u)zO, (6.17)

with the fractional flow function

2

== 1
f(u) uw? + p(l —u)?’ (6.18)
the incompressibility relation
V-v=0 (619)
and Darcy’s law
v =—-M(u)Vp. (6.20)

The solution u of (6.17), (6.19), (6.20) is the saturation of the wetting
fluid (water) in the non-wetting fluid (oil). Hence, the value u(t,z) is, at a
point = and at a time ¢, the fraction of available volume filled with water,
and so u = 1 means pure water, and u = 0 means pure oil. Moreover, the
function v = v(¢,z) denotes the total velocity, which is, according to the
incompressibility relation (6.19) required to be divergence-free. Finally, the
function p = p(¢,z) in (6.20) denotes the pressure, and the total mobility

M) =u2+p-(1—u)?,

in (6.20) depends on the permeability of the medium and on the ratio p of the
viscosity of the wetting fluid (water) to that of the non-wetting fluid (oil).

We remark that the incompressibility relation (6.19) together with Darcy’s
law (6.20) form an elliptic equation. The Buckley-Leverett equation (6.17) is
a hyperbolic equation, which develops discontinuities in the solution u, even
for smooth initial conditions.
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The Five-Spot Problem. In order to illustrate the good performance of
our adaptive meshfree advection scheme, AMMOoC, we consider using one
popular test case scenario from hydrocarbon reservoir modelling, termed the
five-spot problem.

The following instance of the five-spot problem may be summarized as
follows. The computational domain 2 = [-0.5,0.5]? is corresponding to a
bounded reservoir. Initially, the pores of the reservoir are saturated with
non-wetting fluid (oil, u = 0), before wetting fluid (water, u = 1) is injected
through one injection well, placed at the center o = (0,0) of 2. During the
simulation, the non-wetting fluid (oil) is displaced by the wetting fluid (water)
towards the four corner points

¢ ={(~0.5,-0.5), (—0.5,0.5), (0.5, —-0.5), (0.5,0.5)}

of the domain £2.
Therefore, the five-spot problem requires solving the equations (6.17),(6.19).
(6.20) on £2, in combination with the initial condition

1 for ||z —o| <R,
up(z) =

0  otherwise,

(6.21)

where we let R = 0.02 for the radius of the injection well at the center o € £2.
Our aim in this subsection, however, is to merely solve the Buckley-

Leverett equation
ou

E+V-Vf(u)=0,

with f being the fractional flow function in (6.18), with respect to the initial
condition (6.21). To this end, we work with the following two simplifications
of the five-spot problem.

Firstly, following along the lines of Albright [2], we assume unit mobility,
M =1, so that the set (6.19), (6.20) of elliptic equations uncouples from the
hyperbolic Buckley-Leverett equation (6.17).

Secondly, we work with a stationary pressure field, p(z) = p(-, z), given
by

p(z) = Zlog(”x —c||) —log(||]x —o]]), forallze 2,tel, (6.22)
ceC

which yields the stationary velocity field
v =-Vp, (6.23)

on the relation (6.20), and with the assumption M = 1. It is easy to see that
the velocity field v is in this case divergence-free, i.e., v in (6.23) satisfies the
incompressibility relation (6.19).

Figure 6.11 shows the contour lines of the pressure field p together with
the resulting streamlines of the velocity field v and the velocity vectors.
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Fig. 6.11. Five-spot problem. (a) Contours of the pressure field, (c) streamlines
of the velocity field, and (e) velocity vectors in £2 = [—0.5,0.5]%. The corresponding
plots of these data in the top left quarter [—0,5,0] x [0, 0.5] are shown in (b), (d),
and (f).
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As shall be supported by the subsequent numerical comparisons between
AMMOoC and two commercial reservoir simulators, ECLIPSE and FrontSim,
the above taken simplifications for the five-spot problem are quite reasonable.
In particular, note that the velocity field p in (6.22) has singularities at the
four corners in C and at the center o, leading to a high velocity v near the
five wells, but small velocity between the wells.

Numerical Results. According to the discussion on AMMoC in the previ-
ous Section 6.2, we consider numerically solving the viscous Buckley-Leverett
equation

0
3—’; +v-Vf(u)=e Au, (6.24)
rather than the hyperbolic (6.17), in combination with the initial condition

(6.21).

Recall that this modification of (6.17) is required in order to model the
propagation of the shock front, which is occurring at the interface between the
two fluids, water and oil. We remark that the nature and location of the shock
front between the two interfaces is of primary importance in the relevant
application, oil reservoir simulation. So is for instance the breakthrough time,
the time required for the wetting fluid to arrive at the production well, of
particular interest. Therefore, the accurate approximation of the shock front
requires particular care. We accomplish this by the adaptive distribution of
the nodes during the simulation.

Now let us turn to our numerical results, provided by AMMOoC. In our
simulation, we decided to select a constant time step size 7 = 5- 1075, and
the simulation comprises 2100 time steps, so that I = [0,21007]. Moreover,
we let € = 0.015 for the diffusion coefficient in (6.24), and 6., = 0.005 and
0rer = 0.05 for the relative threshold values, required for the node adaption,
see Definition 23 in Section 6.3. Finally, we selected the value p = 0.5 for
the viscosity ratio of water and oil, appearing in the fractional flow function
(6.18).

Figure 6.12 displays the water saturation u during the simulation at six
different times, t = to, t = t120,t = t240, t = t360, t = t480, and t = tgoo, where
u is evaluated at a fixed cartesian mesh comprising 100 x 100 rectangular cells.
The corresponding color code for the water saturation is shown at the right
margin of Figure 6.12, respectively.

Note that the shock front, at the interface between the non-wetting fluid
(oil, v = 0) and the wetting fluid (water, u = 1), is moving from the center
towards the four corner points of the computational domain (2. This way,
the non-wetting fluid (oil) is effectively displaced by the wetting fluid (water)
into the four production wells, as expected.
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Fig. 6.12. Five-spot problem. Solution obtained by AMMOoC. The color plots
indicate the water saturation u during the simulation at six different times, (a)
= to, (b) t = t120, (c) t = t240, (d) t = tse0, (e) t = taso, and (f) t = teoo0-
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Fig. 6.13. Five-spot problem. Adaptive node distribution during the simulation by
AMDMoC at six different times, (a) £ = to, (b) t = ta20, (c) t = tsao, (d) t = t1260,
(e) t = tieso, and (f) t = t2100-
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Just before the breakthrough, when the shock front arrives at the produc-
tion wells, an increased velocity can be observed around the four production
wells, see the transition between the time step ¢t = t450, Figure 6.12 (e) and
t = teoo, Figure 6.12 (f). This sucking effect is due to the singularities of the
pressure field p at the corners in C.

The distribution of the nodes, corresponding to the six different times,
t = to, t = t120, t = t240, t = t360, t = t480, and t = t600, is displayed in
Figure 6.13. Due to the adaptive distribution of the nodes, the shock front
propagation of the solution u is captured very well. This helps to reduce
the required computational costs while maintaining the accuracy, due to a
higher resolution around the shock front. The effective distribution of the
nodes around the shock supports the utility of the adaption rules, proposed
in Section 6.3, yet once more.

Comparison with ECLIPSE and FrontSim. Let us finally compare the re-
sults of our simulation by AMMOoC with two different commercial reservoir
simulators, ECLIPSE and FrontSim. Both ECLIPSE and FrontSim are licensed
and supported by GeoQuest, the software division of Schlumberger Informa-
tion Solutions (SIS), an operating unit of Schlumberger Oil Field Services.
We remark that ECLIPSE and FrontSim, used by the majority of reservoir
simulations groups in oil industry, are regarded as the industry standard in
reservoir simulation.

ECLIPSE is reservoir simulation software, which works with first order
finite differences. In contrast, the multiphase simulator FrontSim is based
on a front tracking scheme. Each of these two simulators solves the coupled
system of equations (6.17),(6.19),(6.20). In particular, unlike in our model
simplification, the pressure field p is updated at each time step.

The latter requires, due to Darcy’s law (6.20), the maintenance of the
total velocity v, which also appears in the flow equation (6.17). However,
our simplifications taken in the previous subsection, are quite reasonable for
the special case of the five-sport problem. In particular, the variation of the
pressure field can be neglected. This is supported by the following numerical
results, where our advection scheme AMMOoC is compared with ECLIPSE
and FrontSim.

Figure 6.15 shows the water saturation obtained from the simulator
ECLIPSE at six different times. Note that the evolution of the saturation
u, especially the location and the propagation of the shock front, is compa-
rable with our scheme AMMOoC, see Figure 6.12. However, note that the
resolution of the shock front (at the interface of the two fluids) obtained by
our scheme AMMOoC in Figure 6.12 is much sharper than the shock front
obtained by ECLIPSE in Figure 6.15.

As regards the corresponding results obtained by the simulator FrontSim,
these are displayed in Figure 6.16. Note that FrontSim widely avoids numerical
diffusion around the shock front, and so the interface between the two fluids
is resolved very sharply.
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For the purpose of further comparison, we considered recording the water
saturation u at time ¢t = t;960, for each of the three different simulation meth-
ods, ECLIPSE, FrontSim, and AMMoC. Figure 6.14 shows the three different
profiles of the saturation u(¢;260, -) across the half diagonal of 2, drawn from
the center o = (0,0) to the corner point (0.5,0.5). For better orientation,
the dashed line in Figure 6.14 shows the expected height of the shock front,
which can be computed analytically by Welge’s tangent method [169).

Note that the three different methods lead to similar saturation profiles.
Moreover, each method captures the expected height of the shock front fairly
well. When it comes to accurately resolving the shock front, the method
FrontSim is the best, followed by our meshfree scheme AMMOoC and lastly
ECLIPSE. This is not very surprising insofar as FrontSim relies on front track-
ing, a technique which is well-known for its small numerical diffusion.

Since the method ECLIPSE is only of first order, ECLIPSE is inferior to
both AMMoC and FrontSim, due to enhanced numerical diffusion around
the shock front. Our meshfree advection scheme AMMOoC, of second or-
der, reduces (compared with ECLIPSE) the numerical diffusion, mainly due
to the effective adaptive node distribution. Moreover, the saturation profile
obtained by our meshfree method AMMoC is fairly close that of FrontSim,
see Figure 6.14.

Altogether, we feel that our meshfree method AMMOoC is, as regards its
performance concerning the five-spot problem, quite competitive.
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Fig. 6.14. Five-spot problem. Comparison between ECLIPSE, FrontSim, and our
meshfree advection scheme AMMoC. The saturation profiles are, at time ¢ = t1260,
compared along the half diagonal from the center o = (0,0) to the corner point
(0.5,0.5). The values on the axis of abscissae correspond to the distance d from o.



168 6 Meshfree Methods for Transport Equations

05

o, g
2
H
H
3y
*
(b)
08
%, £
3
3
3
H
&3 ) 0s “3s o [
b b
(© (d)
° * | e
T2, %, g I
3
3 0
P .
‘
e
“3s ° [} 3 ) o8
l' X'

(e) ()

Fig. 6.15. Five-spot problem. Solution obtained by ECLIPSE. The color plots indi-
cate the water saturation u during the simulation at six different times, (a) t = to,
(b) t = tazo, (€) t = tsao, (d) t = ti260, (€) t = t16s0, and (f) ¢t = t2100-
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Fig. 6.16. Five-spot problem. Solution obtained by FrontSim. The color plots indi-
cate the water saturation u during the simulation at six different times, (a) t = to,
(b) t = ta20, (C) t = tsao0, (d) t = ti1260, (e) t = ti6s0, and (f) t = t2100-
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