Perl Programming
for Biologists

D. Curtis Jamison

Center for Biomedical Genomics and Informatics
George Mason University

Manassas, Virginia

WILEY-LISS

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2003 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, 978-750-8400, fax 978-750-4470, or on the web at www.copyright.com. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons,
Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, e-mail:
permreq@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information on our other products and services please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Jamison, D. Curtis.

Perl programming for biologists / D. Curtis Jamison.

p- cm.

Includes bibliographical references (p.).

ISBN 0-471-43059-5(Paper)

1. Biology - Data processing. 2. Perl (Computer program language) L.
Title.

QH324.2 .J36 2003

570.28'55133 - dc21

2002152547

Printed in the United States of America.

10987654321

Part I. The Basics
Introduction

Chapter 1. An Introduction to Perl
1.1 The Perl Interpreter
1.2 Your First Perl Program
1.3 How the Perl Interpreter Works
Chapter Summary
For More Information
Exercises

Chapter 2. Variables and Data Types
2.1 Perl Variables
2.2 Scalar Values
2.3 Calculations
2.4 Interpolation and Escapes
2.5 Variable Definition
2.6 Special Variables
Chapter Summary
For More Information
Exercises
Programming Challenges
Chapter 3. Arrays and Hashes
3.1 Arrays
3.3 Array Manipulation
3.3.1 Push and Pop, Shift and Unshift
3.3.2 Splice
3.3.3 Other Useful Array Functions
3.3.4 List and Scalar Context
3.4 Hashes
3.5 Maintaining a Hash

Perl Programming for Biologists, D. Curtis Jamison
ISBN 0-471-43059-5 Copyright © 2003 Wiley-Liss, Inc.

Contents

vi Contents

Chapter Summary

For More Information
Exercises

Programming Challenge

Chapter 4. Control Structures

4.1 Comparisons

4.2 Choices
421 If
4.2.2 Boolean Operators
4.2.3 Else

4.3 Loops
4.3.1 For Loops
4.3.2 Foreach Loops

4.4 Indeterminate Loops
4.4.1 While
4.4.2 Repeat Until

4.5 Loop Exits
4.5.1 Last
4.5.2 Next and Continue
Chapter Summary
Exercises
Programming Challenges

Part II. Intermediate Perl

Chapter 5. Subroutines
5.1 Creating a Subroutine
5.2 Arguments
5.3 Return
5.3.1 Wantarray
5.4 Scope
5.4.1 My
5.5 Passing Arguments with References
5.6 Sort Subroutines
Chapter Summary
For More Information
Exercises
Programming Challenges

Chapter 6. String Manipulation
6.1 Array-Based Character Manipulation
6.2 Regular Expressions
6.2.1 Match
6.2.2 Substitute
6.2.3 Translate

40
40
40
41

43
44
45
45
46
47
49
50
52
54
54
56
57
57
57
59
59
60

61

63
63
64
65
66
67
67
70
71
73
74
74
74

75
75
78
79
81
81

6.3

Chapter 7.
7.1
7.2

7.3

Chapter 8.
8.1
8.2
8.3
8.4

8.5

Contents

Patterns

6.3.1 Atoms

6.3.2 Special Atoms
6.3.3 Quantifiers
6.3.4 Assertions
6.3.5 Alternatives
Chapter Summary

For More Information
Exercises

Programming Challenges

Input and Output
Program Parameters
File I/O
7.2.1 Filehandles
7.2.2 Working with Files
7.2.3 Built-in File Handles
7.2.4 File Safety
7.2.5 The Input Operator
7.2.6 Binary I/0
Interprocess Communications
7.3.1 Processes
7.3.2 Process Pipes
7.3.3 Creating Processes
7.3.4 Monitoring Processes
7.3.5 Implicit Forks
Chapter Summary
For More Information
Exercises
Programming Challenges

Perl Modules and Packages
Modules
Packages
Combining Packages and Modules
Included Modules
8.4.1 CGI
8.4.2 Getopt
8.4.3 Io
8.4.4 File:Path
8.4.5 Strict
The CPAN
8.5.1 Setting Up the CPAN Module
8.5.2 Finding Modules

vii

82
83
83
84
85
85
86
87
87
87

89
89
90
90
91
92
93
94
97
97
98
98
99
100
101
102
102
102
103

105
105
107
109
110
110
110
112
112
113
114
114
115

viii Contents

8.5.3 Installing Modules
8.5.4 Managing Installed Modules
Chapter Summary
For More Information
Exercises
Programming Challenges

Part III. Advanced Perl

Chapter 9. References

9.1
9.2
9.3
9.4

Creating References
ref()

Anonymous Referents
Tables

Chapter Summary
Exercises

Programming Challenge

Chapter 10. Object-Oriented Programming

10.1

10.2

Introduction to Objects
10.1.1 The OOP Approach
10.1.2 Class Design

10.1.3 Inheritance

Perl Objects

10.2.1 Rule Number One
10.2.2 Rule Number Two
10.2.3 Rule Number Three
10.2.4 Methods

10.2.5 Constructors
10.2.6 Accessors

10.2.7 OOP Versus Procedural
Chapter Summary

For More Information
Exercises

Programming Challenges

Chapter 11. Bioperl

11.1
11.2
11.3
11.4
11.5
11.6

Sequences

SeqFeature

Annotation

Sequence 1/0

Cool Tools

Example Bioperl Programs
11.6.1 Primer.pl

11.6.2 Primer3.pm
Chapter Summary

117
119
121
121
121
122

123

125
125
126
127
128
130
130
130

133
133
134
135
136
136
137
137
138
139
141
143
143
145
146
146
146
147
147
149
150
151
152
154
154
156
161

Contents ix

For More Information 161
Exercises 161
Programming Challenges 162
Appendix A. Partial Perl Reference 163
Chapter 3 163
Chapter 4 163
Chapter 5 164
Chapter 6 164
Chapter 7 164
Chapter 8 165
Chapter 9 165
Appendix B. Bioinformatics File Formats 167
GenBank 167
ASN.1 170
EMBL 175
PDB 177
Fasta 181
BLAST 182
ACEDB 183

Index 185

Part I

The Basics

Introduction

Molecular biology is a study in accelerated expectations.

In 1973, the first paper reporting a nucleotide sequence derived directly
from the DNA was reported. During the late 1970s, a graduate student could
earn a Ph.D. and publish multiple papers in Science, Cell, or any number
of respected journals by performing the astonishing task of sequencing a
gene - any gene. By 1982, DNA sequencing had become straightforward enough
that any well-equipped laboratory could clone and sequence a gene, providing
they had a copy of Molecular Cloning: A Laboratory Manual. By 1990, simply
sequencing a gene was considered sufficient for only a master’s degree, and
most journals considered the sequence of a gene to be only the starting point
for a scientific paper. The last sequencing-only paper published was the full
genomic sequence of an organism. By 1995, the majority of journals had
stopped publishing sequence data completely. In 1999, mid-way through the
Human Genome Sequencing Project, approximately 1.5 megabases of human
genomic sequence were being deposited in GenBank monthly, and by the end
of 2001 there were almost 15billion bases of sequence information in the
databases, representing over 13 million sequences.

Bioinformatics, by necessity, is following the same growth curve.

Once a rarified realm, computers in biology have become common place.
Almost every biology lab has some type of computer, and the uses of the
computer range from manuscript preparation to Internet access, from data

Perl Programming for Biologists. D. Curtis Jamison
Copyright O 2003 John Wiley & Sons, Inc. ISBN: 0-471-43059-5 3

4 Introduction

collection to data crunching. And for each of these activities, some form of
bioinformatics is involved.

The field of bioinformatics can be split into two broad fields: computational
biology and analytical bioinformatics. Computational biology encompasses the
formal algorithms and testable hypotheses of biology, encoded into various
programs. Computational biologists often have more in common with people
in the campus computer science department than with those in the biology
department, and usually spend their time thinking about the mathematics
of biology. Computational biology is the source of the bioinformatic tools
like BLAST or FASTA, which are commonly used to analyze the results of
experiments.

If computational biology is about building the tools, analytical bioinformatics
is about using those tools. From sequence retrieval from GenBank to performing
an analysis of variance regression using local statistical software, nearly every
biological researcher does some form of analytical bioinformatics. And just as
DNA sequencing has turned into a Red Queen pursuit, every biology researcher
has to perform more and more analytical bioinformatics to keep up.

Fortunately, keeping up is not as hard as it used to be. The explosion of the
Internet and the use of the World Wide Web (WWW) as a means of accessing
data and tools means that most researchers can keep up simply by updating the
bookmarks file of their favorite browser. In itself, this is no mean feat - Internet
research skills can be tricky to acquire and even trickier to understand how to
use properly. Still, there is a way to go further: one can begin to manipulate the
data returned from conventional programs.

Data manipulation can usually be done in spreadsheets and databases. Indeed,
these two types of programs are indispensable in any laboratory, especially
those quite sophisticated in analytical bioinformatics. But to take the final step
to truly exploit data analysis tools, a researcher needs to understand and be
able to use a scripting language.

A scripting language is similar in most ways to a programming language.
The user writes computer code according to the syntactic conventions of the
language, and then executes the result. However, a scripting language is typically
much easier to learn and utilize than a traditional programming language,
because many of the common functions people use have already been created
and stored. Additionally, most scripting languages are interpreted (turned into
binary computer instructions on the fly) rather than compiled (turned into
binary computer instructions once), so that scripts development is generally
quicker and the scripts themselves are more portable.

Of course, there is always a price to pay for things being easier, and in the case
of scripting languages, the major price is speed. Scripting languages typically
take longer to execute than compiled code. But, except for the most extreme
cases, the trade-off for ease of use over speed is quite acceptable, and might
not even be noticeable on the faster computers available today.

The Perl programming language is probably the most widely used scripting
language in bioinformatics. A large percentage of programs are written in Perl,

Introduction 5

and many bioinformatists cut their programming teeth using Perl. In fact, the
most common advice heard by aspiring bioinformatists is "go learn Perl."

In part, Perl is a popular language because it is less structured than traditional
programming languages. With fewer rules and multiple ways to perform a task,
Perl is a language that allows for fast and easy coding. For the same reasons,
it is an easier language to learn as a first programming language. But the very
ease of using Perl is a bit of a trap: it is quite easy to make simple mistakes that
are difficult to catch.

But there are strong reasons to learn and use Perl. The language was orig-
inally created for parsing files and quickly creating formatted reports. Larry
Wall, the author of Perl, claims the name stands for ‘“Practical Extraction and
Reporting Language” (but he acknowledges that the name could just as easily
stand for “Pathologically Eclectic Rubbish Lister”) and the language is perfect
for rummaging through files looking for a particular pattern of characters, or
for reformatting data tables. The program has a very powerful regular expres-
sion capability for pattern matching, as well as built-in file manipulation and
input/output (I/0) piping mechanisms. These abilities have proven invaluable
for bioinformatics, where we are often looking for motifs within sequences
(pattern-matching) or rearranging one database format into another.

The biggest use of Perl is the quick and dirty creation of small analysis pro-
grams. Nearly every bioinformatist has written a program to parse a nucleotide
sequence into the reverse complement sequence. Similarly, a great many people
use small Perl scripts to read disparate data files and parse the relevant data
into a new format. This usage is so prevalent that the term "glutility" was
coined by Sam Cartinhour for scripts that take the output of one program (like
BLAST, for example) and change it into a form suitable for import into another
program (like ClustalW). Finally, with the advent of the WWW, Perl has become
the language of choice to create Common Gateway Interface (CGI) scripts to
handle form submissions and create compute servers on the WWW.

The purpose of this book is to teach you Perl programming. What sets this
book apart from most Perl language books is 1) the assumption that you've
never had any formal training in programming, and 2) the examples are geared
toward real problems biologists face, so you don’t have to either learn an
entirely new concept to understand the example or wrestle with an example
that is generic and difficult to extrapolate into the real world of the laboratory.

At the conclusion of the book, you should be able to write a script to fix the
clone library prefix that your summer student mistyped on every line of the
spreadsheet, or to scan a Fasta sequence file for every occurrence of an EcoRI
site. Moreover, you’ll be able to write reusable and maintainable scripts so you
don’t have to rewrite the same piece of code over and over. Additionally, you’ll
be able to look at other people’s scripts and adapt them to your own purposes.
After all, to quote Larry Wall, the creator of Perl, “For programmers, laziness is
a virtue.”

1.1

Chapter 1

An Introduction
to Perl

The Perl Interpreter

Computer programs are a set of instructions that tell the computer how to
move electrons around inside. Computers operate in a binary manner, that is,
any given memory spot is either a 0 or a 1. Each spot that can hold a 0 or 1
is known as a bit. The patterns of bits that are passed to the central processor
unit determine exactly what the program does.

The earliest computers were programmed by inputting the patterns of 0’s and
1’s directly by flipping toggle switches. Later, when easier methods of inputting
a program (like punch cards) were invented, people invented mnemonics to
stand in for specific bit patterns and created programs called assemblers to
translate the mnemonic code into a set of binary instructions. Later still, people
created compilers that could understand more complex code than assemblers.
Computer languages proliferated, with arcane languages springing up wherever
there was a specialized need.

Into this landscape of specialized and complex computer programs came
Perl, a generalized language that is relatively simple yet still very powerful.
Perl programs are not compiled into binary code. Rather, they are interpreted
when the program is launched, avoiding the need for a separate compilation
step. Interpreted programs run almost as quickly as compiled programs, but
are much easier to develop and alter.

Perl Programming for Biologists. D. Curtis Jamison
Copyright O 2003 John Wiley & Sons, Inc. ISBN: 0-471-43059-5 7

1.2

8 An Introduction to Perl

Perl programs are often referred to as scripts, because they are loaded into
the Perl interpreter at runtime. The implication of this strategy is that you must
have a Perl installation on your computer: a Perl script without an interpreter is
simply an oddly formatted text file.

Fortunately, Perl interpreters are available for almost every operating system
in existence, and typically come as a standard package under most versions of
Unix (including the new Mac OS X). The latest version of Perl for any computer
and the instructions on how to install it can always be found at the official
Perl website (http://www.perl.org). The actual mechanisms of running Perl
scripts are different for each operating system, so this section (and the book
in general) focuses on generic Unix instructions, and on non-Unix systems your
actual mileage may vary. Also, a general appreciation of how to use the Unix
command line will be useful as you progress through the book.

Your First Perl Program

The best way to learn Perl is by doing it, so without further explanation,
let’s jump into a program. Traditionally, the first program anyone writes in a
language is called "Hello world," where you make the computer print out the
message. Perl allows us to do this using the print function. The simplest form of
the print function takes a single argument and writes it to the standard output
device, which is (usually) the terminal window on our computer screen. So our
script will consist of one simple statement:

print "Hello world!\n";

We’ll use this little program to illustrate how to run a Perl script.

There are two ways to start a Perl script running. In the first method, the Perl
interpreter can be invoked as a normal program from the command line. A text
file containing a Perl script is given to the interpreter as a Unix command line
argument. So, as a first step we need to create a script file. Use your favorite text
editor! to create a file called "hello.pl" that contains the following two lines:

a silly script to output text
print "Hello world!\n";

Note that we included a comment line that explains what the program does.
Although trivial in this example, it is a good idea to put a comment block at
the beginning of every program that identifies what the program does, what
arguments the program takes, who wrote it, and when it was written. This
practice saves lots of time when you have a directory full of Perl scripts and
you're not quite sure which one does what.

I'There is a difference between text editors and word processors. Text editors create files
containing only ASCII characters, whereas word processors embed hidden formatting codes that
will confuse the Perl interpreter.

1.3

How the Perl Interpreter Works 9

Run the program from the Unix command line by invoking Perl with the name
of the file:

% perl hello.pl
Hello world!

The interpreter did exactly what the script asked it to do. It took the Perl
statement, interpreted it, and then executed it. Note that the print statement
only printed out what was between the double quotes: the quotes turn the
phrase "Hello world!\n" into a character string with a line return at the end.
Character strings are covered in more detail in the next chapter.

The most common way to start a Perl script is to make the script self-
executable using the Unix command shell system. First, a special line must be
inserted at the beginning of the script to tell Unix to use the Perl interpreter
to run the script. The line begins with the characters "#!" followed by the
command to start the Perl interpreter. Second, we need change the Unix per-
missions mask associated with the file. Use the chmod command to set the file
to executable (for more information, type "man chmod" at the Unix prompt).
Now the Perl script can be run from the Unix command line by typing the name
of the Perl script (and any command line arguments your program needs).

To make our program easier to use, let’s make this script self-contained. Edit
the hello.pl file and put a line at the beginning that reads "#! /usr/bin/perl"
(substitute the full and proper path to your Perl installation: if you're not sure
where it is, type "which perl" at the command line and Unix will tell you the
path). The entire program file should now look like

#! /usr/bin/perl
a silly script to output text
print "Hello world!\n";

The "#!" combination of characters at the beginning of the script tells Unix that
the code needs to be run by a particular script interpreter, and Unix command
processor takes care of properly invoking the interpreter specified and hands
the rest of the script file off to the interpreter.

Now we need to make the program executable by typing "chmod +x
hello.pl" at the command line. Once the program is marked as executable,
you can run it by simply typing in the file name:

%shello.pl
Hello world!

Congratulations! You're now a Perl programmer. All that’s left now are some
minor details, which we’ll cover in the rest of the book.

How the Perl Interpreter Works

The first thing Perl does with the script is to read it and turn it into a machine-
executable binary (e.g., Perl interprets the script). During this process, Perl

10 An Introduction to Perl

watches for syntax errors, which are places where it can’t make sense of the
script. Usually these are typos or the wrong number of arguments passed to a
subroutine. If errors are found, Perl issues an error statement indicating where
it got confused and why, and then exits to the Unix prompt. Otherwise, Perl
begins to feed instructions to the CPU to run the script.

There are a couple of very nice things that the interpreter does for you when
you run a script. First, it strips out any extra blank spaces and lines that are
found in the code. This allows you to write the script formatted in a manner
that makes it easier to see what is going on. Second, the compiler strips out
any part of a line following the # symbol. The # symbol indicates that the
following text to the end of the line is a comment, allowing you to insert small
pieces of explanation, which is invaluable when you are trying to remember
exactly what a complex section of code does six months or a year after you
wrote it.

The behavior of the Perl interpreter can be controlled using command-line
switches. A command line switch is a minus sign followed by a letter. The
most commonly used command line switch is the - w switch that turns on the
warnings and has Perl issue copious messages about statements that might
cause problems. Switches can be added at the end of the #! line.

The structure of a Perl script is very simple. A script consists of a series
of statements. A statement is a Perl command or function and associated
arguments, and is terminated by a semicolon. In our first program, we had one
statement consisting of the print function and a single argument telling Perl
what to print, with the semicolon at the end. Although most people put one
statement per line, Perl actually doesn’t care and will quite happily interpret
a statement that is spread across multiple lines or concatenated with several
others on one line.

Statements can be grouped into code blocks using the curly braces { and } to
delineate the beginning and the end of the code block, respectively. Code blocks
will become very important in Chapter 4, when we talk about Perl commands
that control whether or not some of our statements get run or not. Code blocks
can also be used to make our program more readable.

There are almost as many styles of writing Perl code as there are Perl pro-
grammers. The choice of what style to follow is strictly up to the programmer,
but some style conventions format code in a logical and readable way so you
or someone else can look at it in the future and easily understand what the
code does without digging through miles of spaghetti. I'll teach by example by
formatting all the example code in the book using a standard format (one that
I require my own students to follow).

Chapter Summary

e Perlis an interpreted scripting language.

e Scripts can be run from the command line or as a self-executable command.

Exercises 11

e A # sign signifies a comment, and hides the rest of the line.

e A statement is always terminated by a semicolon.

For More Information

A quick note on the convention here: Books are given in standard citation form.
The two books listed here, Learning Perl and Programming Perl, are the basic
bibles for Perl programmers, and are valid as entries for all future chapters.

Schwartz, R. L. and Phoenix, T. (2001) Learning Perl, 3@ Ed. O’Reilly and
Associates, Sebastapol, CA (www.oreilly.com).

Wall, L., Christiansen, T. and Orwant, J. (2000) Programming Perl, 39 Ed.
O'Reilly and Associates, Sebastapol, CA (www.oreilly.com).

The Perl documentation is rich and wonderful. The main help program is a
perlscript called perldoc. Giving perldoc an argument will make it page out all
the information it knows on the subject. The relevant perldoc references are
given here, as a line to type at the command line. The first apparently redundant
command given here is a way to get more information about the perldoc script
itself, the second is more information about how Perl works.

perldoc perldoc
perldoc perlrun

Exercises

1. What is the path to your Perl installation?
2. Explain the difference between a compiler and an interpreter.

3. Classify the Perl switches given in the perlrun perldoc into two groups:
those that are useful for running a script from the command line and those
that are useful in the #! line for self-executing scripts (note that some
switches may be useful in both groups). Explain your groupings.

4. When is it useful to make a script self-executable? When is it not necessary?

5. Which of the following lines look like valid Perl script commands, and which
are likely to cause problems?

print "Hello World\n";
print "Helloworld\n";
print "Hello World"\n;
print "Hello World\n"
print "Hello World\n"; #
print #"Hello World\n";
#print "Hello World\n";

2.1

Chapter 2

Variables and Data
Types

Perl Variables

In the early 1980’s George Carlin had a comedy routine about how all he really
needed was a place for his stuff. That sentiment is true for computer programs
as well. It is the job of a programmer to create nice places to store stuff for
the program, where things can easily be put away or retrieved. The stuff for a
program is of course the data, and the nice places are variables.

A variable is a named reference to a memory location. Variables provide an
easy handle for programmers to keep track of data stored in memory. In fact, we
typically don’t know the exact value of what is in a particular memory location,
but rather we know the general type of data that could be stored there.

Perl has three basic types of variables. Scalar variables hold the basic building
blocks of data: numbers and characters. Array variables and hash variables
hold lists, and we’ll discuss these variables in detail in Chapter 3. The three
types are differentiated by the first character in the variable name: ‘$’, ‘@, and
‘%', respectively. Following the type symbol, the name can be practically any
combination of characters and of arbitrary length. Creating a variable is as
simple as making up a variable name and assigning a value to it.

There are some rules associated with creating names. First and foremost, the
second character of a name should be either a letter (A to Z or a to z), a digit
(0 to 9), or an underscore (_). You can create variable names that don’t adhere
to this rule and begin with an obscure punctuation mark like ! or ?, but in this

Perl Programming for Biologists. D. Curtis Jamison
Copyright 0 2003 John Wiley & Sons, Inc. ISBN: 0-471-43059-5 13

2.2

14 Variables and Data Types

Table 2.1 Valid and invalid variable names

Variable Name Comment

$a valid

$apple_g4_computer_counter valid: names can be any length with most alpha
numeric characters

$my invalid variable name invalid: spaces are one type of characters which aren’t
allowed (use underscores)

$my(invalid[variable{name}]) invalid: parens, brackets, and braces are allowed, but
do something different that you might be intending
(see Chapter 3)

$1 through $9 valid: "special" reserved variables

$_ valid: "special" reserved variable

case the variable name is limited to that character only. Most variable names
that consist of a single character have a predefined significance to Perl, and you
should avoid tromping on them (see Section 2.6).

The second variable naming rule says names that have a digit in the second
position can only contain more digits, whereas names with a letter or an
underscore have no restrictions. So if you were to create a variable named $100,
you could not name a related variable $100a. Table 2.1 shows some examples
of valid and invalid variable names.

Finally, it is useful to remember that variable names are case-sensitive. This
means that $cat refers to a different spot of memory than $CAT.

Assigning a value to a variable is even easier than creating a name. All you
have to is write an equation, with the variable name on the left, an = sign, and
the value on the left. The = symbol is often called the assignment operator,
because it is used to assign a value to a variable.

Scalar Values

Perl has two basic types of scalar values: numbers and strings. Both types can
be assigned to a scalar variable.
Numbers are specified in any of the common integer or floating point formats:

Sy = 1; # integer

$x = 3.14; # floating point

$w = 2.75E-6; # scientific/engineering notation
$t = 0377; # octal

$u = Oxffff; # hexadecimal

The integer and floating point examples are standard enough, but the final three
might look a little odd to computer novices. Numbers expressed in scientific
notation are typically written as a floating point number times a power of 10.
So, in a book, you would find the number written out as 2.75 x 10-%. However,
computers don’t understand superscript, and Perl strips out the white spaces, so

Scalar Values 15

2.75 x 107% becomes 2.75 x 10 — 6 and now we can’t tell the difference between
a very small number and an equation directing the computer to subtract 6 from
the product of 2.75 and 10. So the engineering notation was invented simply by
replacing the “x 10” with “E” and putting the power on the same line.

The final two representations are numbers in nondecimal bases that don’t
occur often in bioinformatic programs, but occasionally crop up in compressed
file formats (e.g., ABI trace files are stored in hexadecimal). Octal is base 8,
and hexadecimal is base 16, which are 23 and 24, respectively, and Perl allows
programmers to use those numbers directly.

A string is a group of characters strung together, enclosed by quotation marks
(the quotes can be either single or double quotes, but the choice does make a
difference as we will see shortly). The characters can be any symbol available in
the character set. Additionally, there are some special double character codes
defined for text formatting, of which the two most important ones are "\n",
which is the newline character, and "\t", which is the tab character. We have
already seen the newline character in our hello.pl program.

Recall our program from Chapter 1. In that program, we asked Perl to print
the phrase "Hello world!" for us. The phrase is actually a string, and we can
assign the string to a variable. Furthermore, we can provide that variable to
the print function, just like it was the string itself. So we can take our original
hello.pl file:

#! /usr/bin/perl
a silly script to output text
print "Hello world!\n";

and alter it to contain a variable:

#! /usr/bin/perl

a silly script to output text
$string = "Hello world!\n";
print $string;

When you run the program again, you should see the same result as before:

%shello.pl
Hello world!

There are a few things to note from this example. First, to create and use a
variable we simply create a variable name ($string) and assign a value ("Hello
world!\n") toit. Second, we can now use the new variable as if it were the value
itself; that is, we can pass $string to the print function as if it were the string
itself and Perl understands that we don’t want to print the variable name but
rather the value contained in the $string variable.

Finally, note that the program is executed sequentially, starting at line one
and progressing line by line. First we assign a value to the $string variable, then
we print the value contained in $string. This step-by-step progression through
the script ensures that we can properly prepare all the variables for use (in this
case assigning the value to the variable before we print).

16 Variables and Data Types

Strings are typically used to contain words and sentences. They can also be
used to store things like the character representation of a DNA segment or a
protein. In fact, Perl has extremely powerful string manipulation capabilities
that make it simple to create bioinformatic tools that find motifs, translate
DNA sequences to RNA, or transcribe RNA sequences to protein. The string
manipulation routines are explored in more detail in Chapter 6.

Because numbers and strings are both valid scalar values, it doesn’t matter
to Perl which type of value is stored in the variable. Numbers and strings can
be stored interchangeably in the same variable:

#! /usr/bin/perl
example of scalar values

$var = 29;
$var = "dog";
$var = 5;
$var = "cat";

is a perfectly valid script, since each of the values is a valid scalar value.

In fact, Perl will automatically convert from one type of scalar to another. For
example, if we assign a numeric value to a variable, and then pass that variable
to the print function, the number is converted automatically to a string:

#! /usr/bin/perl
example of scalar values

$var = 29;
print $var;

which will print the same thing as

#! /usr/bin/perl
example of scalar values

$var = "29";
print $var;

Both programs will print a ‘2’ character followed by a ‘9’ character.

Going in the other direction, Perl will attempt to convert a string to a number
when it is used in a context where a number is required. The conversion
proceeds from left to right, and stops as soon as Perl encounters a character
that isn’t part of a number. So, in the following example,

$x = "123";
$y = II500/°II ;
$z = "cows";

each of the variables would be translated as best as possible in a numeric
context. The first, $x would have the value of 123, while the second would have
the value of 50 in a numeric context. The final example $z would end up with a
value of 0 in a numeric context: even though it contains the number 5 the first
character is a ‘c’ that can’t be translated.

2.3

Calculations 17

It is important to note that the attempt at conversion does not change the
original value of the variable. After the code snippet

$number = 29;
$string = "5dog";
$sum = $number+ $string;

is run, the value in $string is still "5dog" even though Perl converted it to the
number 5 temporarily in order to add it to the value stored in $number.

Calculations

Because we have numbers, it would be quite useful to be able to do some
mathematics with them. All the usual arithmetic operators from high school
math are available to be used, and a few others that might be a surprise. Many
of the available operators are listed in Table 2.2.

The mathematical operations are performed in the standard order of prece-
dence that we all learned in grade school. For example, multiplication has a
higher precedence than addition, so it gets done first:

2+3x4

is equal to 24, not 20. To make the equation evaluate to 20, we need to include
parentheses to group together the step(s) we want to do first:

2+3)x4

tells Perl to sum the 2 and 3 first, even though the multiplication has a
higher precedence.

Operators with the same precedence, like add and subtract, get done going
from left to right. However, the cardinal rule to follow is to add parentheses

Table 2.2 Perl operators

++ Autoincrement
—— Autodecrement
Exponentiation
* Multiply

/ Divide

% Modulus

+ Add

- Subtract

cos() Cosine

sin() Sine

sqrt() square root

= Assign

+= assign add

—= assign subtract

18 Variables and Data Types

whenever an equation is getting too tough to follow. That way, the real sense of
what you are trying to do comes through. In many of the following examples,
the parentheses are not strictly necessary, but are added to improve readability.

Most of the operators work on either bare numbers or upon the value stored
in a variable. If the value is a string value that can be converted to a number,
that conversion takes place first. Otherwise, the value is treated as a 0.

The first group of operators works solely upon variables. The autoincre-
ment and autodecrement operators increase and decrease the variable by one,
respectively. So if $a contains the value 1, after the statement

$at++;

$a contains the value 2. The operators can be placed either in front of or
behind the variable, but the placement does make a difference in meaning. If
the operator is placed after the variable, the increment is performed after the
rest of the expression has been evaluated. If placed before the variable, the
increment is performed before evaluation. This will make a big difference later
in the book, when we are evaluating expressions as controls for loops; just store
it away someplace in your gray cells for the moment.

The exponentiation operator takes the left operand and raises it the power of
the right operand. Thus

$j = 2**3; 4 $j =8

means 23.

Perl can handle negative bases and negative exponents. It can also handle
nonintegral exponents if the base is positive. Like most of us, Perl has trouble
with complex and imaginary numbers, and special Perl libraries called modules
need to be installed to deal with them (Chapter 8 explains modules in detail).

The multiplicative and additive operators are exactly what you would expect:
they work on numbers to add, subtract, multiply, and divide. Some people might
not have seen the modulus operator before: it returns the remainder from a
divide operation:

$j = 52%3; #$j = 1

The modulus operator determines the closest whole integer that the number
on the right can generate, and then subtracts it from the number on the left
and returns the result. In the example, the closest multiple of 3 is 51, so the
modulus operator would calculate

52-(17*3)

and would return 1.

There are a number of named unary operators. A unary operator takes a
number and return a calculated value. These also operate pretty much as one
would expect:

$j = sqrt(2); # $j = 1.4142135623731

2.4

Interpolation and Escapes 19

The operand is given to the unary operator by enclosing it in parentheses
immediately following the operator. As we will see in Chapter 5, this is very
similar to the way we pass information to subroutines. In fact, unary operators
can be considered a form of a subroutine.

Finally, the assignment operators put a value into a variable. We have been
using the standard assignment operator all along: it looks like an equal sign
and basically moves the value on the right into the variable on the left. It has
the lowest precedence of any operator, because we want all the math complete
before moving the value in place.

Perl also provides a large number of shortcut assignment operators. These
are used to write things in shorthand. Perl interprets statements written

$var OP = $value

as

$var = $var OP $value
Thus,

$j +=1;

$j = $j +1;

both mean the same thing: add 1 to the value in $j. It is just that the former
way of writing it can be a little clearer and a little quicker in some cases.

Interpolation and Escapes

When working with strings, the type of quotation mark around the string
makes a difference as to how Perl treats it. A string enclosed in double quotes
undergoes a process called interpolation, and anything that Perl recognizes as
a variable gets replaced by the value of that variable. Let’s alter hello.pl once
again to illustrate interpolation:

#! /usr/bin/perl

a silly script to output text

$string = "Hello world!\n";

print "The CONTENT of our variable is $string";

When we run this script, we get the following output:

% hello.pl
The CONTENTS of our variable is Hello world!

20 Variables and Data Types

A string in single quotes is not interpolated, and any character in it is used
exactly as is. Thus, if we wanted to print the name of a variable, we would pass
it as a string encased in single quotes. For example, consider what happens
when we use a single quote in the script:

#! [usr/bin/perl

a silly script to output text

$string = "Hello world!\n";

print ‘The NAME of our variable is $string’;

When we run this script, we get the following output:

% hello.pl
The NAME of our variable is $string%

Because we are not interpolating the output string, we print it exactly as is
without interpolating the $string variable.

One obvious difficulty with variable interpolation is how to embed special
characters into an output. For example, we might want to exactly produce
the line:

Today’s "Blue-Plate Special" costs $5.99.
A simple print statement won't work:

print ’‘Today’s "Blue-Plate Special" costs $5.99.°
produces an error message:

Unmatched ’.

This is because Perl always matches an open quote with the first close quote it
finds, which in this case is the hyphen in Today’s. To deal with this, we can hide
a character from Perl using the backslash character:

print ‘Today\’'s "Blue-Plate Special" costs $5.99.°

produces the requested line.

We refer to characters hidden by a backslash as backslash-escaped characters.
In a single-quoted, noninterpolated string the only character that can be hidden
is a single quote. A backslash in front of any other character is printed as is:

print ’‘Today\’s \"Blue-Plate Special\" costs $5.99.°
produces
Today’s \"Blue-Plate Special\" costs $5.99.

Backslash-escaped characters are much more useful (and necessary) in
double-quoted, interpolated strings. If we change our statement to an
interpolated version:

print "Today\’'s \"Blue-Plate Special\" costs $5.99."

Interpolation and Escapes 21

the backslashes protect the single quote and the double quotes, but we get an
odd result:

Today’s "Blue-Plate Special" costs .99.

The $5 was interpolated as a variable. Because we didn’t define $5 as a variable,
the value of $5 was undef (nothing), and Perl printed nothing. Obviously we
need to backslash-escape any dollar sign we want to print:

print "Today\’s \"Blue-Plate Special\" costs \$5.99."

Another important use for backslash-escaped characters is for special for-
matting characters. If you tried running some of the previous examples, you
might have noticed a minor formatting problem:

haydn 10% Perl example_1
Today’'s "Blue-Plate Special" costs $5.99.haydn 11%

The Unix prompt for the next command appears on the same line as the output
from the script. This is because the print function doesn’t include the code for
a new line. Look back at the Hello world! example script in the first chapter.
At the end of the line, there is a backslash-escaped "n". This is the Unix
convention for new line, which Perl adheres to. So, if we put a "\n" at the end
of our print statement:

print "Today\’s \"Blue-Plate Special\" costs \$5.99.\n"
our output looks much better:

haydn 10% Perl example_1
Today’s "Blue-Plate Special" costs $5.99.
haydn 11%

Perl has several special reserved backslash-escape codes, a partial list of which
is shown in Table 2.3. These codes are very useful for formatting data. Beyond
these codes, applying a backslash-escape to any other character interpolates to
the character.

A special type of interpolation happens to strings enclosed by back ticks
(accent grave). In this case, all the embedded variables are interpolated and the

Table 2.3 Special formatting character escapes

Character Function

\n new line

\t Tab

\u or \U force to upper case (one character or
following characters)

\l or \L force to lower case (one character or

following characters)
\E end \U or \L

2.5

22 Variables and Data Types

string is passed to the system to be executed as a command. The differences
between the three forms of quotations are illustrated in the following script:

#! [usr/bin/perl

script to illustrate interpolation

$var = "1s -1"; # the Unix command to print a directory listing

print ‘$var’;

print "$var";

print "$var’;

Despite the overt similarities, the three print statements produce three

very different results. The first print statement writes out the string exactly
as written:

$var

whereas the second print statement interpolates the string and replaces the
$var variable with the value:

1s -1

The third print statement first interpolates the string, and then passes the
result to the system. In Unix, "1s -1" produces a full directory listing, so our
output might look something like:

total 50448

drwxr-xr-x 2 cjamison user 66 May 21 13:12 Desktop
drwxr-xr-x 2 cjamison user 44 Jun 18 22:41 admin
drwx------ 2 cjamison user 9 May 22 12:44 autosave
drwxr-xr-x 3 cjamison user 24 Jun 18 22:39 courses
drwxr-xr-x 2 cjamison user 27 May 21 13:12 dumpster
darwx------ 2 cjamison user 9 May 21 13:30 nsmail
drwxr-xr-x 3 cjamison user 28 May 22 10:12 projects
drwxr-xr-x 2 cjamison user 4096 May 22 10:15 ted_tmp
drwxr-xr-x 2 cjamison user 74 May 22 10:15 traces

Variable Definition

The act of creating a variable name is separate from the creation of the value.
Until a specific value has been stored in the variable, the variable has a special
value called ‘undef’ (short for undefined). The undef value is different from
zero or the empty string, which are specific values in their own right (a variable
might have a zero value because of a mathematical operation, which is very
different than if it had never had a value put into it).

The defined() function takes a scalar variable and tests to see if the value is
anything other than “‘undef’. If it is, the function returns a true value, otherwise
it returns a false value. The defined() function is usually used in conjunction
with an if clause, which we will explore in Chapter 4.

Occasionally we might need to force a value to go away. To accomplish this
task we use the undef() function, which given a particular variable name places

2.6

Chapter Summary 23

the ‘undef’ value into it. Again, because ‘undef’ is a different value, this is
different than simply assigning zero to the variable:

$var = 1;

defined($var); ## returns a TRUE value
$var = 0;

defined($var); ## returns a TRUE value
undef ($var) ;

defined($var); ## returns a FALSE value

Special Variables

Perl has many predefined special variables that contain default values designed
to make life easier for programmers. Most special variables are a combination
of punctuation marks and obscure characters, and a programmer following the
good coding practice of creating meaning variable names will never accidentally
run into them. But, because all Perl variables can be reassigned, you won’t get
an error message if you accidentally tromp upon one. And because many of the
special variables refer to arcane bits of the Perl language that many people don’t
ever use, debugging the horrible errors that occur from accidentally redefining
one of the special variables is often a difficult job. Therefore, it does pay to be
aware of the special variables just in case. Table 2.4 lists several that we will
use in the coming chapters. For a complete listing see Programming Perl, 34
Ed., by Wall et al.

Chapter Summary

e A variable is a name for a data structure (a place to store data).
e Scalar variable names are prefixed with the $ character.

e Array variable names are prefixed with the @ character.

e Hash variable names are prefixed with the % character.

e Scalars are either numbers or character strings.

e Data type conversion is automatic.

Table 2.4 Special variables

Variable Function

$_ default input and regexp search space
$/ and $\ input and output record separator

3, output field separator

@ARGV array with the command line arguments

for the current script

24

Variables and Data Types

Operators are used to manipulate scalar variables.

Variable interpolation occurs in strings surrounded by double quotes, but
does not occur in strings surrounded by single quotes.

The \ character is a backslash escape that protects a character from interpo-
lation.

For More Information

perldoc perlsyn
perldoc perldata

Exercises

1.

Which of the following are valid Perl variables? Explain what is wrong with
the invalid variable names.

$foo

$foo bar

$foo_bar

$foo%bar
$one_dark_and_stormy_night
$101_dalmations

Which of the following scalar values are strings, and which are numbers?

2
A2
2.3
#2
||2||
121

What is the value of $i after each step of the following script?

$i = 1;

$it++;

$i *= $i;

$i .= $i;

$i = $i/11;

$i = $i . "score and" . $i + 3;

Explain the concept of interpolation.

If $a =1 and $b = 2, what is the type and value of the scalar stored in $c
after each of the following statements?

$c = $a + $b;
$c = $a / $b;
$C = Il$a + $b|l;
$C = Il$a + $b|l;

Programming Challenges 25

Programming Challenges

1.

Create a script that tests your answers for Exercise 3. Try to explain any
discrepancies between your answers and Perl’s answers.

Write a script that calculates the slope and y intercept of the line determined
by the two points (3, 4) and (15, 8). Print the line equation in the familiar
formof "y = mx + b".

Create a script that tests your answers for Exercise 5. Try and explain any
discrepancies between your answers and Perl’s answers.

3.1

Chapter 3

Arrays and Hashes

Scalar values often are insufficient to deal with the data we use every day. For
example, suppose we wanted to write a program that dealt with all the mapped
genes on human chromosome 7, keeping track of the gene names and the
sequence. With what we know so far, it would seem a simple task to create a
variable named with the gene name (a safe proposition, inasmuch as the gene
names on chromosome 7 are likely to be unique) and set the contents of that
variable to a string showing the sequence:

$CFTR = ’'aaaaaaaaaaa...’;

The problem with this simple approach is that there are more than 550 mapped
genes on chromosome 7, so we would have to create 550 variables: one for each
gene. Clearly, that would become unwieldy. Simply initializing the variables
would take a huge amount of space, and if we wanted to do something to each
gene, we would have to write the same statement 550 times, changing only the
variable name for the gene.

Fortunately, one of the philosophies of Perl is that laziness is a virtue. Two
special types of variables exist to help manage long lists of items. Arrays and
hashes make life easier, and are indispensable tools for the Perl programmer.

Arrays

A list is a simple concept. It is an ordered set of values. So if we wrote down all
the mapped chromosome 7 genes starting from 7p22 and continuing on through

Perl Programming for Biologists. D. Curtis Jamison
Copyright O 2003 John Wiley & Sons, Inc. ISBN: 0-471-43059-5 o7

28 Arrays and Hashes

736, we’d have an ordered list. To make life simple, let’s concentrate on 7q31.2
and list the five mapped genes in order: CAPZA2, TFEC, CFTR, LOC51691, and
LOC56311. In fact, the list we just wrote is almost the perfect definition of a
Perl list. All we have to do is indicate the string boundaries, add parentheses,
and lose the English grammar:

('CAPZA2', 'TFEC’, 'CFTR’, ‘LOC51691’, ‘LOC56311")

The exact definition of a Perl list is a set of comma separated values enclosed
in parentheses.

You can store a list in a special variable called an array. Array variable names
are prefixed with an "@" symbol and follow the same rules as scalar variable
names. Arrays can be created by assigning a list to an array variable:

@genes = ('CAPZA2', 'TFEC', 'CFTR’, 'LOC51691', 'LOC56311");

The above line creates a nice little basket called @genes that we can use to carry
around any number of gene names. Better, the values remain sorted and in
order, so if we want to pull out the fourth gene, all we have to do is ask.

First though, let’s look at the basket more closely. Figure 3.1 shows a picture
of what that basket might look like. The first thing to note is that there is a
unique numbered slot for each gene. The numbering keeps the items in the
array in order. The second and most critical thing to note is that the first slot
is numbered with a zero. The reason for this is historical, but the thing to
remember is that real programmers count from zero.

We can access a value in the array by using the slot number as an index.
Simply put the index number of the slot you want into square brackets, and
append that to the end of the variable name (this process is called indexing into
the array). Of course, now the variable is referring to a scalar value, so you have
to use the $ symbol in front of the variable name, rather than the @ symbol:

print $genes[3]; # prints out LOC51691

Because each slot contains a scalar value, that means we can use each slot just
like a scalar, and we can do anything to that slot that we can do with any other
scalar. We can send it to the print function, or we can assign a new value to it.
We can even use it in calculations.

One of the best things about Perl arrays is that they are dynamic: Slots are
created on the fly. So, instead of creating the array with a single list, we can
simply assign values into the proper slots and Perl takes care of creating the

0 CAPZA2

1 TFEC

2 CFTR

3 LOC51691
4 LOC56311

Figure 3.1 An array holding gene names

Arrays 29

array. Thus
@genes = ('CAPzZA2', 'TFEC’, 'CFTR’, 'LOC51691’', 'LOC56311");
and

$genes[0] = ’'CAPZA2';

$genes[1] = 'TFEC’;
$genes[2] = 'CFTR’;
$genes[3] = 'LOC51691";
$genes[4] = 'LOC56311';

both create an identical array. Even better, Perl doesn’t care what order we fill
the slots, so

$genes[0] = 'CAPZA2’;
$genes[2] = 'CFTR’;
$genes[3] = 'LOC51691"';
$genes[4] = 'LOC56311';
$genes[1] = 'TFEC’;

also creates an identical array. All three example produce an array that looks
exactly like the picture in Figure 3.1.

In Perl, lists and arrays are almost interchangeable. Not only can we assign a
list directly into an array, we can also assign an array back to a list of variables.
In the latter operation, the first variable gets the value of the first slot, the
second gets the second, and so on, until Perl runs out of either array slots or
list variables. Thus

($a, $b, $c) = @genes;

sets $a, $b and $c to ‘CAPZA?2’, ‘TFEC’, and ‘CFTR’, respectively, and ignores the
rest of the entries in the array. Similarly,

($a, $b, $c, $d, %e, $f, $g) = @genes;

sets the values of the first five variables to the corresponding values in the
array, and leaves $f and $g empty.

One tricky point to remember when dealing with lists is that Perl flattens lists
when it interpolates them. So if you have a list within a list, or a list of arrays,
the lists and arrays inside are treated as if each item was listed separately. Thus
the list

("A", @genes, 'B")
and the list
("A", "CAPZA2’', 'TFEC’, 'CFTR’, ’'LOC51691’, ’'L0OC56311’, 'B’)

are identical. The trap novice Perl users sometimes fall into is trying to assign
two lists into two arrays with a shortcut:

(@genes, @seqs) = (('TFEC’, 'CTRF'),
("atggctag’, 'atagactaga’));

3.3
3.3.1

30 Arrays and Hashes

doesn’t work like one might hope, assigning the gene names in the first list into
@genes and the sequences in the second list into @seqs. Instead, even though
the parentheses match up and it looks like it should work, the list on the right
is flattened into a single list, and assigned into the @genes array, while the @seqs
array remains empty.

Array Manipulation
Push and Pop, Shift and Unshift

When working with an array, we often don’t know all the elements we want to
store in the array ahead of time. Again, this is easy to deal with because Perl
has dynamic arrays. We can add items to the end of the array with the push()
function, and to the front of the array with the shift() function. The functions
are very straightforward:

push (ARRAY, LIST)
unshift (ARRAY, LIST)

The push() function takes whatever items are in the list and appends them to
the array, increasing the size of the array. So if we wanted to add the first five
mapped genes in 7q31.31 we’d say

push(@genes, 'KCND2’, 'NET-2’, 'ING3’,’FLJ21986', 'WNT16’);

and we’d get an array that looks like the one shown in Figure 3.2.

The unshift() function works in a similar way, but instead of appending the
list, it inserts the list at the front of the array, shifting the existing entries over
as many slots as needed. So, if we wanted to go the other direction and add the
genes in 7q31.1 to the original @genes array, we would say

unshift(@genes, 'GPR85’,’DKFZP586B2022','CAV2’, CAV1’);

and we would have the array shown in Figure 3.3. Note that the indices have
adjusted themselves, and CAPZA?2 is now at index 4 rather than 0. This is a

CAPZA2
TFEC
CFTR
LOC51691
LOC56311
KCND2
NET-2
ING3
FLJ21986
WNT16

O |0 || [s WD |—= O

Figure 3.2 The array after values have been pushed onto it

3.3.2

Array Manipulation 31

GPR85
DKFZP586B2022
CAV2

CAV1

CAPZA2

TFEC

CFTR

LOC51691
LOC56311

O[R[N |k W | —= O

Figure 3.3 New values shifted into the array from Figure 3.1.

0 TFEC
1 CFTR
2 LOC51691
3 LOC56311

Figure 3.4 The shifted array

feature of all array functions that insert or delete items at the front or middle
of the array, and it guarantees that the order of the items in the list always
remains the same.

Perl also has functions for removing items from the array. The pop() function
removes the last item from the list, shortening it by one, and the shift() function
removes the first item from the list, moving all entries over before shortening
it by one. So, going back to the original array shown in Figure 3.1, we note that
the CAPZA?2 gene is actually not in 7q31.2, so we can shift it out of the array

shift(@genes);

and end up with the array shown in Figure 3.4.

Obviously, the push(), pop(), shift(), and unshift() functions make a rather
awkward method of maintaining a list. The real power of these functions is
that they return a value, which can be assigned to another variable. The value
returned is the scalar that was in the slot that was popped or unshifted. So if
we instead wrote

$first._gene = shift(@genes);

the @genes array still looks like Figure 3.4, while the $first_gene variable contains
the string ‘CAPZA?2’. We can make use of these functions to chew through arrays
of indeterminate length.

Splice

The most useful function for dealing with an array is the splice() function.
The splice() function is the workhorse function for maintaining the entries in

32 Arrays and Hashes

an array. Elements can be added and removed from the list, with the added
advantage that the insertion or deletion can take place anywhere with the array,
so if we want to remove a gene from the middle of our gene list we can do so
quickly and easily.

Like many Perl functions, the splice() function has several incarnations and
can be used in multiple ways to work with entries at both ends and in the
middle of the array. The basic function looks like

splice (ARRAY, OFFSET, LENGTH, LIST)

The splice function takes an ARRAY, moves to the OFFSET slot, removes LENGTH
entries, and replaces them with the entries from the LIST. The LENGTH and LIST
are optional parameters, and the presence or absence of these two parameters
determines the behavior of splice.

Let’s examine the full behavior first. In our gene list, we can replace the entries
for TFEC and CFTR with entries for four other genes:

splice(@genes, 1, 2, 'PAR3’, 'NRP1’, 'FLJ13031’, "EPC1’);

Figure 3.5 illustrates the change in our array, which looks like a chromosomal
translocation. The two genes from chromosome 7 are pushed out of the array,
and the four new genes from chromosome 10 are put into their place. Note
that the replaced genes aren’t simply discarded, they are returned as an array
we can capture and use later. This form of splice also works well if we want to
insert some entries without deleting any first. We simply set the LENGTH to O:

splice(@genes, 1, 0, 'PAR3’, 'NRP1’, 'FLJ13031’, "EPC1’);

and we have the four chromosome 10 genes inserted in front of the gene in
slot 1 while deleting zero existing, as shown in Figure 3.6.

If we leave out the replacement list from the arguments, we can delete entries
from the array without adding any new items. In essence, we are giving the
splice function a zero-length list of items to replace our specified items:

splice(@genes, 1, 2);

removes TFEC and CFTR from our original chromosome 7 array as shown in
Figure 3.7.

Finally, splice can be used to truncate the array by leaving out both the length
and the replacement list. When you do this, Perl assumes the length to delete is

CAPZA2
PAR3
NRP1
FLJ13031
EPC1
LOC51691
LOC56311

AWk |W || = O

Figure 3.5 Using splice() to create a translocation

3.3.3

Array Manipulation 33

CAPZA2

PAR3

NRP1

FLJ13031

EPC1

TFEC

CFTR

LOC51691

XX AN B [WIND I~ O

LOC56311

Figure 3.6 Using splice to create an insertion

0 CAPZA2
1 LOC51691
2 LOCS56311

Figure 3.7 Using splice to create a deletion

from the offset to the end of the array. Perhaps not the friendliest assumption,

but that’s the way it works, so

splice(@genes, 1);

replaces everything from the number one slot on with a zero-length list.

Other Useful Array Functions

Splice takes care of most of the things you need to do to manage arrays. But
there are a couple other tasks that are so common with arrays that Perl has
some built-in functions that save programmers time and make their programs
run more efficiently. First, the reverse() function takes and array and returns an

array in opposite order:

@inverse = reverse(@genes);

which produces the array in Figure 3.8.
The second common task is to sort an array. The sort() function has two forms.
The first form takes an array and sorts it in standard string comparison order:

@alpha_list = sort(@genes);

0 LOC56311
1 LOC51691
2 CFTR

3 TFEC

4 CAPZA2

Figure 3.8 A reversed array

3.3.4

34 Arrays and Hashes

0 CAPZA2

1 CFTR

2 LOC51691
3 LOC56311
4 TFEC

Figure 3.9 A sorted array

which produces an array sorted in alphabetical order as shown in Figure 3.9.
Again, note that each entry is now associated with a different index, reflecting
the fact that we’ve altered the order.

Sometimes we don’t want to sort strictly alphabetically. For example, maybe
we’d like to sort a list of oligos based upon the length of the sequence. Thus, the
second form of the sort function takes a subroutine as an argument, allowing
the programmer to create a custom sorting algorithm. Sorting subroutines are
covered in depth in Chapter 5.

List and Scalar Context

Perl defines two contexts for all variables to be interpolated under: scalar
context and list context. Basically, this means that if Perl expects a list in a
certain situation it treats whatever it is given in that situation like a list, and
a scalar variable becomes a list with one element. Similarly, when an array is
used in a scalar context, it behaves differently. Exactly how it behaves depends
on the situation. For example, in most languages

$n = @genes;

would produce an error because you were attempting to assign an array to a
scalar. But Perl is a bit smarter than the average language, and when an array is
used in a scalar context, Perl assumes you want the count of items in the array.
So, in a Perl program, the above statement would cause $n to have the value of 5.
Similarly, when you give the print function an array, Perl recognizes that you
probably want to print the contents of each slot of the array, so the statement

print @genes;
produces the output
CAPZA2TFECCFTRLOC51691L0C56311

In this case, however, we’d like to impose a little bit of grammar and structure
to make the line readable. We can do that a couple ways. First, we can simply
put the entire string into double quotes. When Perl interpolates an array, it
realizes that you probably want a string representation, so it separates each
element with spaces:

print "@genes \n";

Array Manipulation 35

produces
CAPZA2 TFEC CFTR LOC51691 LOC56311

We can provide even more structure using the join() function, which takes a list
and returns a string, with each element of the list separated by a user-specified
string. The function looks like

join(STRING, LIST)

where STRING is the value used to separate each element of the LIST. So, to
separate each element of our list with a comma and a space, we’d write a line
like

print join(', ', (@genes, "\n"));
which would produce
CAPZA2, TFEC, CFTR, LOC51691, LOC56311,

Note that we created a list of our array and the "\n" character. Remember that
when used in a list, the array gets flattened into the rest of the list. Therefore,
when we joined the list, the "\n" got joined in at the end, giving the extra
comma at the end of the list.

To avoid getting the extra comma, we need to first note the arguments to
the join function look a lot like a list themselves. In fact, when arguments are
passed to a function or a subroutine, they are passed as a list. If we omit the
parentheses surrounding the join function, the function works fine because the
arguments are interpreted in the list context:

$string1 join(',’, (@genes, "\n"));
$string2 = join ",", @genes, "\n";
print $stringf;

print $string2;

produces two identical output lines.

Similarly, the print function we have been using to print out strings takes a
list of arguments. Until now, we have been providing a list one item long, and
omitting the redundant parentheses. But if we were to supply a list, the print
function would write out each item in the list concatenated together, just like
it did with the @gene array. So with a little judicious editing of the parentheses,
we can create a print statement with two scalars in the argument list: a string
created by the join function, and a new line character:

print join(’',’,(@genes)), "\n";

The join function concatenates the @genes array into a comma-separated string,
and then print statement prints the string concatenated with the new-line
character, getting rid of the annoying extra comma. Note that in this case the
parentheses around the argument list for the join function are required to tell
the join function where its list ends.

36 Arrays and Hashes

Occasionally though, the context you’re using the array in prevents you from
doing exactly what you want to do. For example, what if we wanted to print out
the number of elements in an array? We know that putting a bare array into
a print statement gets us the elements printed out, as does putting the array
into double quotes. And, of course, putting the array into single quotes simply
prints out the variable name. So none of the three statements

print ’"array has’, @genes, 'elements’, "\n";
print "array has @genes elements\n";
print "array has @genes elements\n';

gets us the printout we desire, because we never get @genes into a scalar
context. So one way to get the information would be to take an extra line and
force the issue:

$gene_count = @array;
print "array has $gene_count elements\n";

which outputs
array has 5 elements

Another way would be to use the scalar() function, which forces an expression
to be interpolated in a scalar context. So we could have written

print ’"array has’, scalar(@genes), ’‘elements’, "\n";

and gotten the same result by forcing the @genes array to be interpreted in the
scalar context.

One of the most beautiful aspects of Perl is that there are many ways of doing
things, and there is no single "right answer" when approaching a problem. We
have also seen that most of the common issues programmers face have already
been anticipated. Thus, it should come as no surprise that there is another,
simpler way to get the count of an array.

We always know the beginning index of an array, because under normal
conditions all arrays begin at 0. But it is often quite useful to know the final
index of an array, perhaps to look at the final value without removing it using
pop(). So a special array syntax exists to get the last index: replace the @ symbol
with $# in the variable name and you access a predefined variable that came
into existence along with your array. The $# variable contains the scalar value
of the final index.

So $#genes contains the value 4, which is the final index in the array. Adding
1 to the $# value gives a count of how many slots are in the array. Thus, we can
write our code to be a little more compact:

print "array has ', $#genes+1, ‘elements’, "\n";
which outputs the same answer as the other methods:

array has 5 elements

3.4

Hashes 37

Hashes

Now that we know about arrays, let’s revisit the original problem. Remember
we have a list of gene names and their associated sequences, and we want to
store them in our Perl program. We could create one array for gene names and
a second array for the sequences:

$genes[0] = 'CAPZA2';

$seqs[0] = 'ATGTGGTG...'; #sequence for CAPZA2
$genes[1] = 'TFEC';

$seqs[1] = 'ATGTGGTG...'; #sequence for TFEC
$genes[2] = 'CFTR’;

$seqs[2] = 'ATGTGGTG...'; #sequence for CFTR
$genes[3] = 'LOC51691";

$seqs[3] = 'ATGTGGTG...’'; #sequence for LOC51691
$genes[4] = 'LOC56311"';

$seqs[4] = 'ATGTGGTG...’'; #sequence for LOC56311

With parallel arrays, we can now get the sequence associated with a gene name
simply by using the same index to access both arrays. For example, if we
wanted to print a sequence in something approximating a FASTA file format?
(see Appendix B) we could write code like:

print "> $genes[0] \n$seqs[0]\n";

This technique works well as long as we're extremely careful to keep the two
arrays in register. If we apply the pop() function to @genes, we must apply the
pop() function to @seqs. If we don’t, then suddenly we have more sequences than
names. Worse, if we were to accidentally pop() one array and shift() another, the
remaining sequences would no longer match to the right gene names.

Fortunately, there is a data structure implemented in Perl that takes care of
a lot of these problems. A hash is a special kind of array that uses strings for
naming the array slots rather than numbers. The string that names a slot is
called the key, and the item in the slot is called the value. Together, these two
entities make up a key-value pair, and a hash is a structure that associates the
key and value together for storage and later retrieval.

Hashes are named by prefixing the variable name with the % symbol. Other-
wise, the normal naming conventions apply. Hashes can be initialized by a list,
similar to the list used for an ordinary array, but in this case the list is arranged
into alternating key-value pairs:

%ssequences = ('CAPzA2’', 'ATGTGGTG...',
"TFEC’', 'ATGTGGTG...',
"CFTR’,'ATGTGGTG. ..,
"LOC51691', 'ATGTGGTG...',
"LOC56311", 'ATGTGGTG...’');

2This only approximates the FASTA file format, since the entire sequence is printed on a single
line.

3.5

38 Arrays and Hashes

CAPZA2 ATGTGGTG
TFEC ATGTGGTG
CFTR ATGTGGTG
LOC51691 ATGTGGTG
LOC56311 ATGTGGTG

Figure 3.10 An hash for sequences

This function produces a hash that looks something like the one shown in
Figure 3.10.

Alternately, instead of using a list we can use the hash assignment notation,?
which is an = sign followed by the > sign. Thus we can rewrite our function as

%ssequences = (CAPZA2 =>'ATGTGGTG...',
TFEC =>'ATGTGGTG...",
CFTR =>'ATGTGGTG...",
LOC51691 =>'ATGTGGTG. .. ,
LOC56311 =>'ATGTGGTG...");

Notice that we removed the quotes around the keys. When we use the =>
notation, Perl assumes that the key is going to be a string.

Indexing into the hash is done in a method similar to indexing into a regular
array, except that we use the curly braces { and } instead of brackets, and
you put a string in as the reference. So to print the sequence for CFTR, we
would write

print $sequences{'CFTR’};
and to make a pseudo-Fasta output like we did above, we would write
print "> CFTR \n$sequences{'CFTR’'}\n";

Hashes get their name because the keys are stored in a data structure called
a hash table. Hash table lookups are very fast, so the performance of getting
things in and out of hashes is very good. However, storing the keys in a hash
table means that the key-value pairs are no longer in the same order as we put
them into the hash. Thus hashes are unordered, which is an important fact to
remember when we try and get values back out, because we will probably want
to impose some sort of order.

Maintaining a Hash

Adding new key-value pairs to a hash is simple. Like a normal array, an entry
in a hash can be created by assigning a value into an indexed slot. So, we could
have created %sequences by writing:

3Note that this is a little white lie: there really isn’t a hash assignment notation. The => is actually
a synonym for the comma. So be forewarned, because you may see some really weird code that says
a =>b =>c or something like that. However, it is usually easier to think of it as the hash assignment
notation.

Maintaining a Hash 39

$sequences{’' CAPZA2'} = ’'ATGTGGTG..."';
$sequences{' TFEC'} = ’'ATGTGGTG...’;
$sequences{'CFTR'} = ’'ATGTGGTG...";
$sequences{’'L0C51691'} = 'ATGTGGTG...’;
$sequences{’'L0OC56311'} = 'ATGTGGTG...’;

Deleting entries is a little more tricky. If we simply assign a zero to a slot, the
key still exists (as it should - often we know a gene name without knowing the
sequence). Similarly, if we simply use the undef() function the key is still present:

undef ($sequences{' TFEC'});

leaves us a hash that looks like Figure 3.11, with the "TFEC" key still present in
the hash.

But if we want to remove the entry completely so that no trace of the TFEC
gene remains, we have to do a little more. Perl provides the delete() function to
take care of both the key and value. The delete function removes a variable name
from the namespace, completely expunging it. Obviously, this is a function to
be careful with, but

delete($sequences{' TFEC'});

has the desired effect and makes our hash look like Figure 3.12.

Perl also provides some functions specifically for working with hashes. The
keys() function returns a list of all the keys in the given hash. So, in the case
of the %sequences array, we would get a list of all the gene names. Similarly,
the values() function returns a list of the values, which would be the actual
sequences in %sequences. The lists returned from these functions can be used
in a regular array. For example:

@gene_names = sort(keys(%sequences));

creates an alphabetical list of all the gene names we used as keys, and stores
the list in the @gene_names array.

CAPZA2 ATGTGGTG
TFEC

CFTR ATGTGGTG
LOC51691 ATGTGGTG
LOC56311 ATGTGGTG

Figure 3.11 A null value associated with the TFEC key

CAPZA2 ATGTGGTG
CFTR ATGTGGTG
LOC51691 ATGTGGTG
LOC56311 ATGTGGTG

Figure 3.12 The TFEC key expunged by delete()

40 Arrays and Hashes

Finally, the each() function gives back a two-element list that consists of the
key-value pair for the next element of a hash. When coupled with a while loop,
the each function allows you to iterate over all the key-values pairs in the
hash. Typically, people use an assignment from the each() function to a two
variable list:

($key, $value) = each(%sequences)

We’ll see this in a real example in Chapter 4.

Chapter Summary

e An array is the Perl data type that contains lists.
e Arrays are indexed by numbers beginning from 0.
e Array values are accessed by using the index.

e Arrays are manipulated with the push(), pop(), shift(), unshift(), and splice()
functions.

e Lists can be assigned to arrays, and an array can be assigned to a list of
scalar variables.

o Hashes (hashes) are indexed by strings rather than numbers.

o Hash values are accessed by the index string.

For More Information

perldoc perldata

Exercises

1. For the following array declaration
@myArray = ('A’, 'B’, 'C', ‘D", "E");
what is the value of the following expressions?

$#myArray
length(@myArray)
$myArray[1]

2. What is the difference between a list and an array?

3. A queue is a special type of list that keeps the elements in order and
adds or removes elements only from the ends of the list. Queues can be
simulated with Perl arrays and judicious use of the push, pop, shift, and
unshift operators. Explain which operators you would you to make a FIFO

Programming Challenge 41

queue ("first-in, first-out," like the line at the grocery store checkout), and
which operators you would use to create a LIFO queue ("last-in, first-out,"
like a Pez dispenser).
Which of the following are valid keys for a hash?

"CAPZ’

I -1 2 I

’ $key ’

$key

Hash keys need to be unique. In the following data pairs, indicate which
should be the key and which should be the value.

a. Gene Name b. Genetic Distance
a. Species b. Ecosystem
a. Plate well b. Gene Name
a. Accession b. Gene Name
a. Sequence b. Accession

Programming Challenge

1.

Write a Perl statement that counts the number of entries in a hash.

Chapter 4

Control Structures

Thus far, we have seen how to create scalar, array, and hash variables. Now we
need to perform a task with these variables. To do so, we need to learn about
the control structures available in Perl.

A control structure is a little bit like a function, in that it takes an argument
and does something with it. However, rather than performing a transformation
on the argument, a control structure evaluates the argument for truth and
then executes the statements following depending on whether the argument
evaluates to true or false. Which brings up the age-old question: what is truth?

For programmers, truth is easier to define in terms of what is not truth. In
Perl, there is a short, specific list of false values:

° zero,
o undef,
e an empty string, and

e and empty list.

Any expression that returns a value not in the list is true.

So, the argument for a control structure is some sort of Perl statement that
can be evaluated. Many Perl functions return a value that can be used as the
argument for a control structure: we saw this in the use of the defined() function
in Chapter 2, which returns a false value if the variable is ‘undef’. In fact,
defined() actually returns the undef value. Another way to build an expression
that returns a true or false value is to use the built-in Perl comparison operators.

Perl Programming for Biologists. D. Curtis Jamison
Copyright 0 2003 John Wiley & Sons, Inc. ISBN: 0-471-43059-5 43

4.1

44 Control Structures

Comparisons

Everyone is familiar with comparison operators. These are the symbols we used
in algebra to indicate whether numbers were greater than or less than another.
When we use these in programming, the value on the left is compared to the
value on the right, and a number is returned, either 1 if the assertion is true, or
undef if the assertion is false. Table 4.1 lists the operators available in Perl.

The first thing to note is that the numeric comparison operators look a
little different than we remember. Perl doesn’t use the fancy fonts that text
editors do, so symbols like #, >, and < don’t exist, and we have to use two-
symbol approximations for them. Second, notice that the numeric comparison
for equality is two = symbols. This is because Perl uses the single = symbol as
the assignment operator. The double==symbol keeps straight the difference
between assignments and comparisons. Finally, the signed result equality com-
parison <=> is a useful if somewhat tricky operator. This operator compares
two values, but with a twist. If the two items being compared are equal it returns
false, whereas if the two are not equal the operator returns a 1 if the right item
is larger and a —1 if the left item is larger. Remember that both 1 and -1
qualify as truth for Perl, and the sign simply indicates the direction the truth
is pointing.

The string comparison operators parallel the numeric operators, but instead
of using symbols they use short mnemonics. This is because we need to tell
Perl whether we are using the value as a number or as a string, because Perl
will autoconvert between the two for us, often with unexpected results. For
example, look at what happens when we confuse the numeric signed equality
operator with the string signed equality operator:

$a = 100;
$b = 30;
$c = $a <=> $b; # $c contains a 1
$d = $a cmp $b; # $d contains a -1

The value stored in $c is quite understandable: because 100 is greater than 30,
the value returned is a positive 1. On the other hand, when we compare the

Table 4.1 Perl comparison operators

Numeric String Question
Comparison Comparison

$a==%b $a eq $b Is $a equal to $b?

$a!= $b $ane $b Is $a not equal to $b?

$a > $b $a gt $b Is $a greater than $b?

$a>= $b $a ge $b Is $a greater than or equal to $b?
$a<$b $alt $b Is $a less than $b?

$a<= $b $ale $b Is $a less than or equal to $b?

$a <=>$b $a cmp $b Is $a not equal to $b? (with signed result)

4.2
4.2.1

Choices 45

values as strings, we get the opposite result indicating that “100” is less than
“30”. This is due to the special way that Perl works string comparisons.

When Perl compares two strings, it takes the leftmost character of each string
and compares them. If the two characters are identical, it takes the next two
to the right and compares them, and so on, until it finds a pair of characters
that are not identical. If it reaches the end of both strings without finding any
different characters, then the two string are identical and therefore are equal.

However, as soon as it finds a pair of characters that are different, the two
strings are no longer equal. The metric Perl uses is the character’s position
in the character table. The character table is an ordered list of all possible
characters, rather much like an array. Each character in the list has an index,
and to compare two characters, Perl simply does a numeric comparison of
their indices. Characters further into the table are considered to be greater than
characters earlier in the table. Thus ‘a’ is less than ‘z’, and ‘a’ is less than ‘A’ (Perl
is case-sensitive). So in our example above, when 100 and 30 were compared
as strings, Perl started at the first letter and found that ‘1’ is less than ‘3’ so
therefore the signed equality operator returned a —1.

A special case in string comparisons occurs when two strings are identical at
all positions but one string is longer than another, like “cow’” and “cows”. By
definition, the longer string is considered to be greater. So

"cow" cmp "cows"

returns a —1.

Choices
If

The most fundamental control structure is the if statement. The if statement
is used to protect a block of code that only needs to be executed if a prior
condition is (or isn’t) met. The general format for an if statement is

if (expression) { code block }

The expression in parentheses is the condition we are testing. After the condi-
tional expression is a code block. A code block is a set of instruction statements
grouped together by curly braces. The control statement executes the code
block if the conditional is true.

An if statement is useful to check a variable to make sure it is within
reasonable bounds:

if ($gene_count > $max_genes) {
die "You have too many genes!\n";

}

This piece of code checks for an error condition and invokes the die() function,
which prints out an error statement and exits the program. Error checking

4.2.2

46 Control Structures

can be very important to avoid asking the program to divide by zero or work
on a value that doesn’t exist, tasks that usually result in Perl giving an error
statement and quitting. Typically, this occurs after an operation when you want
to make sure of the results. For example, if we invoke pop() on an empty array
the return value is undef, and we can check that:

$value = pop(@empty.array);
if (! $value) {
die "Popped an empty array\n";

}

This chunk of code, like the one before it, will exit the program with an
appropriate error message if there was nothing in the array. The exclamation
point (often pronounced “not”) is the Boolean negate, and inverses the result.
So, if $value is false, the negation is true.

Thus far, we have used the if statement to deal with single choice errors where
we have aborted the entire program when the error exists. More commonly, we
use the if statement to encapsulate a chunk of code that applies to a specific
condition, and we wish to do a calculation. For example, we might want to round
a map position to two decimal points before continuing with our program:

$truncate = int($position * 100) / 100;
if ($position - $truncate >= .005) {
$truncate += .01;

}
$position = $truncate;

The first line shifts the decimal point two positions to the right, uses the
int() function to turn the value from a floating point into an integer (effectively
chopping off everything after the decimal), then shifts the decimal point back
two places to the left by dividing by 100. This leaves a floating point value that
has been truncated after the second decimal point. The if statement then checks
to see if the third digit after the decimal point is 5 or higher, and rounds the
truncated number upwards if true. The last statement then puts the rounded
value back into the $position variable.

Note that after evaluating an if statement, Perl will either execute or skip the
controlled code block, then will pick up with the very next statement. Control
structures like the if statement are sometimes called branch points, because
they create an alternative code branch to follow.

Boolean Operators

Sometimes more than one condition factors into a decision. For example,
suppose we have some hashes containing information about genes on our map:
%genetic contains genetic map positions and %physical contains the physical
map position of the start code. Each array is indexed by the gene name. Now
we want to check and see if a particular gene has both a genetic and a physical
map position. We could do this by nesting a pair of if statements:

4.2.3

Choices 47

$gene = 'CFTR';
if (defined($genetic{$gene})) {
if (defined($physical{$gene})) {
print "$gene is on both maps\n";
}
}

First we check for a value in %genetic, and if true when then check for a value
in %physical, and if true when then print a message. Although this method
works, Perl provides a cleaner way to do this with Boolean logical operators.
The Boolean AND operation is provided by the && operator, and the Boolean
OR operator is provided by the || operator. These operators tie together a pair
of expressions and then combine their result. The AND operator returns true
if the expressions on both sides evaluate to true, and the OR operator returns
true if either side evaluates to true. Thus we can use a Boolean operator to
rewrite our code using a single if statement:

$gene = 'CFTR';
if (defined($genetic{$gene}) && defined($physical{$gene})) {
print "$gene is on both maps\n";

}

This expression is both cleaner and easier to understand. Plus, an added bonus
is that it will execute faster. It takes a little time to set up a branch, so the fewer
if statements the faster the code runs.

Any number of Boolean operators can be chained together. If we added a
third hash to hold RH map data, we could check and see if the gene is on all
three maps:

$gene = 'CFTR’;
if (defined($genetic{$gene})
&& defined($physical{$gene})
&& defined($rh{$gene}) {
print "$gene is on both maps\n";
}

Note that we took advantage of Perl’s ability to ignore white space to make our
expression a little more readable. Even though the expression is spread across
several lines and several tabs, Perl read through the extraneous white space
until it reached the closing parenthesis.

Like all operators, Boolean operators have a specific precedence, and fit
into the general list of operators. The negate operator ! that we saw in the
previous section has the highest precedence, followed by the && and the ||
operators. There are also synonymous operators ‘not’, ‘and’, and ‘or’ which
have an extremely low precedence.

Else

When making a choice, sometimes you have two different things you wish to
do, depending upon the outcome of the conditional. Maybe we want also want

48 Control Structures

to print a message when the gene is not on both maps. Again, we could use two
if statements

$gene = 'CFTR';
if (defined($genetic{$gene})
&& defined($physical{$gene})) {
print "$gene is on both maps\n";
}
if (! (defined($genetic{$gene})
&& defined($physical{$gene}))) {
print "$gene is not on both maps\n";

}

but that looks a little repetitive. In fact, aside from having to set up a second
branch, the program has to re-evaluate a statement and therefore this construc-
tion is rather wasteful of time. Because Perl programmers abhor wasting time,
it is no surprise that there is a control structure for this common situation.
The else statement follows an if statement, and provides an alternative block
of code to perform when the if statement is false:

if (EXPR) {code block} else {code block}
So we can write our map-checking code as

$gene = 'CFTR';

if (defined($genetic{$gene}) && defined($physical{$gene})) {
print "$gene is on both maps\n";

} else {
print "$gene is not on both maps\n";

}

Perl evaluates the if conditional and either executes the block of code con-
trolled by the if or the block of code controlled by the else, depending on the
value of the condition. After executing one block or the other, Perl skips to the
statement following the else block and continues on.

Perl also provides a control structure to use if there are multiple combinations
of factors and more than two possible choices. The elsif is a hybrid of the else
and the if statement. It gives an else to jump to if the proceeding condition was
false, and a new if expression to evaluate to decide whether to execute the next
block. Any number of elsifs can follow an if, and a string of elsif statements
can be followed by an else to provide a default code block to execute:

if (EXPR) {code block} elsif (EXPR) {code block} else {code block}

Using this construct, we can check to see if our gene can be found on any
combination of maps:

$gene = 'CFTR’;
if (defined($genetic{$gene})
&& defined($physical{$gene})
&& defined($rh{$gene}) {
print "$gene is on all maps\n";

4.3

Loops 49

} elsif (defined($genetic{$gene})
&& defined($physical{$gene})) {
print "$gene is on genetic and physical maps\n";
} elsif (defined($genetic{$gene})
&& defined($rh{$gene})) {
print "$gene is on genetic and RH maps\n";
} elsif (defined($physical{$gene})
&& defined($physical{$gene})) {
print "$gene is on physical and RH maps\n";
} else {
print "$gene is not on multiple maps\n";

}

There are a couple of commonly used shortcuts that are used in Perl. First,
it is fairly common to write an if conditional that is looking for a false value.
We can either write a Boolean negator into the expression like we did before, or
we can use the unless control structure. The unless is used exactly like an if,
except the sense of the test is reversed:

if (! $value) {die "Popped an empty array\n";}
unless ($value) {die "Popped an empty array\n";}

These do exactly the same thing. Neither is particularly superior to the other,
and deciding which one to use is often a stylistic choice designed to make
reading a program easier.

The other shortcut involves the Boolean | operator. Perl is smart enough
to recognize that it only needs to evaluate one side of the || at a time: If the
first side is true then the entire statement is true, so Perl does not bother
to evaluate the right side. Programmers take advantage of this short circuit
and write lines of code that contain alternate statements on either side of the
operator. This is usually used to monitor a Perl function or a subroutine that
must return a true value. For example, almost every program that opens a file
uses a line like:

open(FILE, "filename") || die "Couldn’t open $file\n";

This statement is essentially a bare conditional expression. Perl first evaluates
the left-hand side to see if it is true. If open succeeds in making the file listed
available, it returns a true value and Perl then continues on without bothering
to evaluate the rest of the conditional. However, if open fails and returns false,
then Perl needs to check the right-hand side to see whether it is true, and when
it evaluates the die function it exits the program. We’ll see more about the open
function in Chapter 7.

Loops

When most people figure out how an array works, one of the first obvious things
they want to do with it is to apply a code block to every item in the array. We’ve
already seen how to work with single entries, like printing out the sequence for

4.3.1

50 Control Structures

a gene name, but suppose you wanted to print out the sequence for every gene?
Either you would have to write a code block for each gene name, or you would
have to write a generic code block and figure out a way to apply that code to
every item in the array. Loops allow you to do that.

Every loop has three main parts: an entry condition that starts the loop, a
code block that serves as the body of the loop, and an exit condition. The entry
and exit conditions are important, and are related. Obviously, without a proper
entry condition your program can never enter the loop, and without an exit
condition your program will never exit the loop. A missing or misconceived
exit condition leads to a state known as a continuous loop, where the program
keeps going around and around forever. A classic example of an infinite loop is
the shampoo algorithm:

Lather
Rinse
Repeat

Examine the loop carefully. If you interpret each line literally, you’ll see that
you will never actually finish, because the repeat function sends you back to
the beginning every time.

There are two types of loops: determinate and indeterminate. Determinate
loops carry their exit condition with them from the beginning, and repeat a code
block an exact number of times. Indeterminate loops rely upon code within the
body of the loop to alter the exit condition so the loop can exit.

For Loops
The most basic type of determinant loop is the for loop. This control structure
has the syntax

for (ENTRY; TEST; MODIFICATION) {code block}

The ENTRY expression sets up the entry condition, and the TEST expression
sets up the exit condition. The MODIFICATION expression tells Perl how to
modify the entry condition. When Perl finds a for loop,

e it sets up the entry condition,

e examines the test condition,

e executes the code block if the test is true,
¢ modifies the test condition, and then

e goes back to the test.

Thus

for ($i = 0; $i < 5; $i++) {print "$i\n";}

Loops 51

prints out

A WON—=O

The entry code was to set $i to 0, and the test said $i<5 was true, so Perl
printed 0. Then $i was autoincremented to 1, tested to be less than five, and so
on until the last iteration of the loop set autoincremented $i from 4 to 5, which
caused the test to fail and the loop to exit. Note that if the test fails, the for
loop exits immediately without performing the loop:

for($i = 10; $i < 5; $i++) {print "$i\n";}’

prints out nothing, because the entry condition fails the test and the loop exits
without going into the body.

One cautionary note about the variable used to control the for loop: the
variable joins the namespace of the program. So, after executing the for loop $i
is defined and has the value it had when the loop exited. If we try to print the
value of $i after the loop:

for($i = 0; $i < 5; $i++) {print "$i\n";}
print "$i\n";

we find the output from the code above would be

apsrwON—=O

We can get around this problem by restricting the $i variable to the for loop
using the my command:

for(my $i = 0; $i < 5; $i++) {print "$i\n";}
print "$i\n";

outputs

A WON—=O

The $i inside the for loop is a temporary variable, which only has value inside
the for loop, and outside the for loop it has an undef value (and so prints an
empty string). Because the variable is a temporary variable, it can also save the
value of a variable from getting crunched:

4.3.2

52 Control Structures

$i = 89;
for(my $i = 0; $i < 5; $i++) {print "$i\n";}
print "$i\n";

prints out

1

3
4
89

The my command has saved the value of the $i outside the loop. The my
command affects the scope of the $i variable, a subject we will cover in more
depth in Chapter 5.

For loops are very useful for iterating over the items in an array. For example,
we can use a for loop to print out each value in the @genes array from
Chapter 3. Remember there were five genes names in the array, so the for loop
would look like:

for ($i = 0; $i < 5; $i++) {print $genes[$i], "\n";}
and would produce the output:

CAPZA2
TFEC
CFTR
LOC51691
LOC56311

(of course, we could have accomplished the same thing with
print join("\n", @genes);

but that’s beside the point).
A slightly more general variant of this example is

for ($i = 0; $i <= $#genes; $i++) {print $genes[$i], "\n";}

This code variant produces the exact same output as before, but now we are
testing to see if the value of $i is less than or equal to the last index in @genes.
This allows us to print the contents of the array no matter how large the array
is, even if we don’t know the exact number of items. Note that even though we
don’t know how big the array really is, the for loop is still determinant because
it will execute exactly $#genes times, and Perl knows what the value of $#genes
is even if we don’t.

Foreach Loops

In fact, the use of a for loop for iterating over each item in an array is so
common, that Perl has a special shortcut for loop specifically for this task, the
foreach loop:

Loops 53

foreach $VAR (@ARRAY) {code block}

The foreach loop takes each value in @ARRAY, places it into $VAR, and
executes the code block. It exits when there are no more elements in the array.
So we could write our code like so:

foreach $gene (@genes) {print "$gene\n";}

which is just as effective, and probably even more readable than the other
variants.

Even better, the foreach loop in conjunction with the keys() function gives us
an easy way to iterate over a hash. Remember that keys() gives back a list of
the index values, so we could access each element of the %sequence hash from
Chapter 3 and write out a FASTA-like sequence for every sequence:

foreach $key (keys(%ssequences)) {
print ">$key \n$sequences{$key}\n\n";
}

would produce

>CAPZA2
ATGTGGTG. ..

>TFEC
ATGTGGTG. . .

>CFTR
ATGTGGTG. . .

>L0C51691
ATGTGGTG. ..

>L0C56311
ATGTGGTG. ..

which is, essentially, a FASTA library (except that the sequences are printed out
on a single line).

The foreach loop is also very useful for inverting a hash. Sometimes it is
useful to extract data from a hash based upon the value rather than the key. For
example, remember the %genetic array, which is keyed by the gene name and
contains the genetic map position. Rather than asking what position is a gene
at, we might want to know which genes are at a particular position. We could
iterate across the array, checking to see if the current key is at the position
we’re interested in:

@genelist = ();
foreach $gene (keys(%sgenetic)) {
if ($genetic{$gene} eq '7p32’') {
push(@genelist, $gene);
}

}
print join(", ", @genelist, "\n");

4.4

4.4.1

54 Control Structures

Because there may be multiple genes at any particular genetic position, we
capture the genes in a temporary array and then print out the array. Although
this method works, the code would need to be run every time we wanted to
ask this particular question, and we would have to run through the entire array
multiple times. It would be better to be able to create the inverted array once,
then we could query it multiple times much more quickly:

foreach $gene (keys(%sgenetic)) {
$position = $genetic{$gene};
if ($inv_genetic{$position}) {
@tmp = ($inv_genetic{$position});
} else {
@tmp = ();
}
push(@tmp, $gene);
$inv_genetic{$genetic{$gene}} = join(",", @tmp);
}

This code creates a second hash. The key for %inv_genetic is the position,
which is the value in %genetic, and the value is a string that contains the gene
names separated by commas (which looks a lot like a list, and in fact can be
interpolated into one). So this foreach loop takes each gene name from the
array returned by the keys function, then creates a temporary holding variable
called $position. We then check to see whether we already created a string for
that particular position. If we have, we interpolate the string into a temporary
array, and if we haven’t we create a blank temporary array. Then we push the
gene name onto our array, and finally we turn the array back into a string using
the join function, inserting the string into the inverted secondary array.

The new inverted array allows us to either query with a specific position, or
we could iterate over the entire inverted array and print out the string of gene
names by position:

foreach $pos (keys(%sinv_genetic)) {

print "$pos: $inv_genetic{$posi\n";
}

which would produce a output that looked something like

7910: genel,gene5
7q11: gene7,gened
7p32: gene8,gene2,gened4,geneb

Indeterminate Loops
While

Often we find a situation where neither we nor Perl know in advance how many
times a loop will need to execute. For example, if we are reading lines from a

Indeterminate Loops 55

file, we may not know exactly how many lines there are. This is where the while
loop comes in handy. The while loop control structure looks like

while (TEST) {code block}

The while loop executes the code block as long as the TEST expression evaluates
as true. A very simple example of a while loop is

$i = 0;

while ($i < 50) {
print "$i\n";
$it++;

}

The entry condition is set outside the loop. When entering the loop, Perl first
evaluates the test expression, and then if true, executes the code block. Perl
then checks the test again and decides whether to execute the block again or to
exit the loop and continue on. In this example, the loop will print out the digits
0 through 49.

Now, we could have written the while loop as a determinate loop:

for ($i = 0; $i < 50; $i++) {
print "$i\n";

}
Viewed this way, the three parts of the loop can be seen clearly: The entry
condition of $i=0, the test of $i<50, and the modification of $i++. The major
difference between the two versions is the layout. In the for loop, all three parts
are integral to the control structure, but the while loop relies upon code before
or within the code block. As it turns out, every determinate loop can be written
as an indeterminate loop. For example,

for ($i = 0; $i <= $#genes; $i++) {print $genes[$i], "\n";}
can be rewritten as

$i = 0;

while ($i <= S$#genes) {
print $genes[$i], "\n";
$it++;

}
and even a foreach loop for a hash

foreach $key (keys(%sequences)) {
print "> $key \n$sequences{$key}\n\n";
}

can be written in a while loop (with the help of the each() function from
Chapter 3):

while ((%key, $seq) = each(%sequences)) {
print "> $key \n$seq\n\n";
1

which produces the exact same output.

4.4.2

56 Control Structures

So if we can write any for loop as a while loop, why do we need a for loop? It
turns out the for loop is much more efficient for Perl to translate into machine
language, and so for loops run a bit faster than while loops. But there are often
cases where the while loop is unavoidable.

For example, let’s look at the case of the %inv_genetic hash. Remember, this
array is set up so that the keys are map positions and the values are a list of
genes. From this array we output a report that listed map position and gene
list. Now, suppose we wanted to write the report for the first 50 or so genes.
That means we need to write out the lists while keeping track of how many
gene names we've written. Because we don’t know ahead of time how many
gene names there are per line, we have to use a while loop:

$count = 0;
@indices = sort(keys(%inv_genetic));
$index = 0;

while ($count < 50) {
print "$indices[$index]: $inv_genetic{$indices[$index]}\n";
@tmp = ($inv_genetic{$indices[$index]});
$count += $#tmp + 1;
$index++;

}

First, we create the test variable $count and set it to 0. Then we make an array
of the indices for %inv_genetics, sorting it so they will be in order, and we also
create the $index variable, which we will use to keep our place in the array. Now
we can start our while loop, setting the test condition to be 50 or fewer. We
then print a line of our report. Next, we interpolate the gene name string into
a temporary array so we can count how many gene names we just printed out
and add them to our total in $count. Finally, we increment $index so we can get
the next key.

Repeat Until

Because looping across a set of statements is a common task in Perl, a special
loop control structure just for that purpose. The logic behind the repeat-until
loop is similar to that of the while:

$count = 0;
@indices = sort(keys(%inv_genetic));
$index = 0;
repeat {
print "$indices[$index]: $inv_genetic{$indices[$index]}\n";
@tmp = ($inv_genetic{$indices[$index]});
$count += $#tmp + 1;
$index++;
} until ($count < 50);

performs the exact same task as the while loop. The difference between the loops
is mainly cosmetic, with the code block up front and the conditional expression

4.5

4.5.1

4.5.2

Loop Exits 57

trailing. Some people prefer to use the repeat-until construct because it makes
the code read more like English.

Loop Exits

One issue that is important in complex loops is the manner in which you handle
errors. Sometimes a situation arises where continuing with the current code
block is either unnecessary or undesirable. Perl provides a few functions that
can be used to control loops from inside the code block.

Last

Often a situation arises where an error condition makes continuing in the loop
will lead to grave problems. In some cases, you might wish to go ahead and exit
the entire program using the die() function, but that is not always necessary
(and certainly not particularly friendly). If you just want to get out of the
loop and continue the program, the last() function will cause the loop to exit
prematurely.

For example, in the previous while loop we forgot to make sure we actually
had 50 gene names to iterate over. If we don’t have 50 entries, the while loop
will try to access slots even though $index is beyond the last index, and Perl
will generate a series of undefined values. So, we can check and then exit the
loop if we need to:

$count = 0;
@indices = sort(keys(%inv_genetic));
$index = 0;

while ($count < 50) {
if ($index > $#indices) {last;}
print "$indices[$index]: $inv_genetic{$indices[$index]I}\n";
@tmp = $inv_genetic{$indices[$index]};
$count += $#tmp + 1;
$index++;

}

The if statement checks to see whether the $index is greater than the last index
in @indices, and if so the last() function immediately skips to the next statement
after the loop.

Next and Continue

Other times, you might just want to skip a single iteration of a loop. In this
case, the next function is used to advance to the next iteration of the loop.
For example, if you only wanted to print out a FASTA file for gene names that
started with the letter "c", you could write”

58 Control Structures

foreach $key (keys(%ssequences)) {
if (! ($key gt 'C’ &% $key 1t 'D’)) {next;}
print "> $key \n$sequences{$key}\n\n";

}

In a for and foreach loop, the next operator automatically performs the
modification of the loop condition. However, in a while loop the modification is
usually internal to the code block (some test expressions are self-modifying, like
the each() function). If the next statement is encountered before the modification
to the loop control, then you’ve created an infinite loop:

$i = 1;
while ($i < 50) {
if (! $i%2) {next;}
print "$i\n";
$it++;
}
which is an attempt to print out only the odd numbers from 1 to 50. But if
you walk through the loop, you'll see that when $i = 2, the if statement is true
and then next skips to the end of the loop, not executing anything in between,
including the autoincrement of $i. Thus, $i will always stay at 2, and the loop
will never exit. To get around this, you can use the optional continue statement:

while (TEST) {code block} continue {code block}

The code within the continue block is executed every time the loop is run,
immediately after the termination of the loop code block no matter how the
end of the code block was reached. So the safe way to deal with while loops that
have next statements is to place the modification code in a continue block:

$i=1;
while ($i < 50) {
if (! $i%2) {next;}

print "$i\n";
}
continue {
$it++;

}

The last(), next(), and continue() functions can also be used independently of
loops. A bare code block is the moral equivalent of a loop that executes once,
so within that code block we can control the execution of that code block by
jumping out of the block when we need to:

$gene = ‘CFTR’;
{
if ($genetic{$gene} && $physical{$gene} && $rh{$gene}) {
print "$gene is on all maps\n";
last;
}
if ($genetic{$gene} && $physical{$gene}) {
print "$gene is on genetic and physical maps\n";

Exercises 59

last;

}

if ($genetic{$gene} && $rh{$gene}) {
print "$gene is on genetic and RH maps\n";
last;

}

if ($physical{$gene} && $physical{$gene}) {
print "$gene is on physical and RH maps\n";
last;

}
print "$gene is not on multiple maps\n";

}

Finally, in some circumstances you may wish to go back and repeat the entire
loop without modifying the loop control variable. The redo() function skips
back up to the top of a for loop without evaluating the modification expression,
thereby giving you a chance to try the loop over again. The redo function is
illustrated in real use in Chapter 5.

Chapter Summary

o Comparison operators return Boolean values.
e A code block is a set of Perl statements enclosed in curly braces.
o The if, elsif, and else are used for conditional execution of a code block.

e For loops are determinate loops that execute a code block a set number
of times.

o Foreach loops iterate over an array.

e While loops are indeterminate loops that execute a code block until a
condition changes.

e Last, next, and continue add finer control to loop code structures.

Exercises

1. What type of loop would you use for each situation?

a. printing an unknown number of sequences in a FASTA library
b. incrementing each value of an array

C. incrementing a counter

d. listing all the values in an array

2. One of the many mantras of Perl programming is “There’s more than
one way to do it.” Come up with as many ways as you can to create an
indeterminate loop that executes at least once.

60

3.

Control Structures

Do the following statements evaluate to true or false?

a. 1

b. 0&&1

c. 01

d. 45

e. 45-45

f. 45/45

g. 45==45

h. 45 <=> 45

Explain the difference between determinate and indeterminate loops.

Differentiate between prematurely exiting a loop with the next and the
last functions.

Programming Challenges

1.

A control structure that many languages have that is not explicitly provided
in Perl is the case (or switch) statement:

switch (Variable) {
case(Condition1): {code block 1}
case(condition2): {code block 2}

}

Write a case statement emulator.
Write a determinate loop that prints out all the values in the %genetic hash.

Write an indeterminate loop that prints out all the values in the %genetic
hash.

Part II

Intermediate Perl

5.1

Chapter 5

Subroutines

As your programs become more and more complex, you’ll find yourself repeat-
ing the same chunk of code in multiple places within the same program. For
example, you might end up computing the square root of several numbers in
several different places when you're writing a statistical program that does an
analysis of variance calculation on your data.

Fortunately, Perl has anticipated that and provided the sqrt() function, which
can be used over and over. However, Perl is a relatively generic language, and not
all instances where it would be useful to have a dedicated function have been
anticipated. Therefore, Perl provides the subroutine as a generic mechanism to
write reusable functions specific to your application.

Creating a Subroutine

A subroutine is a named code block that performs a specific task. The code
block is set off by the keyword sub followed by the name and the code block:

sub NAME {code block}

The contents of the subroutine code block are not evaluated until the subroutine
is invoked, so the subroutine can be placed anywhere in the script. However, it
is common practice to place all the subroutines at the end of the file, after the
end of the main script.

Subroutines are invoked by using either the & operator or by writing the name
of the subroutine followed by the argument list. The latter is the preferred

Perl Programming for Biologists. D. Curtis Jamison
Copyright 0 2003 John Wiley & Sons, Inc. ISBN: 0-471-43059-5 63

5.2

64 Subroutines

method. Simply write
NAME () ;

in your script, and the code block within subroutine NAME will be evaluated.
So, for example, we might write a subroutine to print out a random sequence,
40bp long. We would write:

sub RandomSeq ({
for ($i = 0; $i < 40; $i++) {
$base = int(rand(4));
if ($base == 0) {print "a"; next;}
if ($base == 1) {print "c"; next;}
if ($base == 2) {print "t"; next;}
if ($base == 3) {print "g"; next;}
}
print "\n";
}
(The rand(EXPR) function returns a floating point number between 0 and the
value of the EXPR, and the int() function turns it into and integer). Now, in the
main program every time we used the statement

RandomSeq() ;

the program would print a 40-base long sequence. Note that as a matter of
convention, the name of the subroutine is descriptive of what it does, and
the first letter of every word is capitalized. This convention varies, with some
people preferring all capital letters, and some people not caring. It really is a
matter of personal preference, and this is the way I prefer.

Arguments

As useful as the ability to create simple subroutines like RandomSeq might be,
the real power of Perl functions is the ability to pass values to them and have a
value returned. We’d like our user-defined subroutines to have the same power.
Thus, as you might expect, a subroutine can take and return values.

Values passed to a subroutine are called arguments. Arguments are passed to
a subroutine by placing them in a list following the subroutine call. Perl takes
the list and creates a temporary array called @. which can be accessed from
within the subroutine. For example, we can modify the RandomSeq subroutine
to print a variable length sequence:

sub RandomSeq {
$length = $ [0];

for ($i = 0; $i < $length; $i++) {
$base = int(rand(4));
if ($base == 0) {print "a"; next;}
if ($base == 1) {print "c"; next;}

if ($base == 2) {print "t"; next;}

5.3

Return 65

if ($base == 3) {print "g"; next;}
}
print "\n";

}

and we then invoke it like so:
RandomSeq(30) ;

Now our subroutine is a little more flexible. The first thing we do is retrieve
the value for how long the sequence should be. Because the arguments are
passed in using the @_ array, the $_[0] slot contains the first value passed to the
subroutine. The next step is to use that value to control a for loop to print out
the specified number of bases.

A few more tweaks will make our subroutine complete (and illustrate a couple
other points):

sub RandomSeq {
$length = shift | 40;
for ($1 = 0; $i < $length; $i++) {
unless ($i%70) {print "\n"};
$base = int(rand(4));

if ($base == 0) {print "a"; next;}
if ($base == 1) {print "c"; next;}
if ($base == 2) {print "t"; next;}
if ($base == 3) {print "g"; next;}

Lrint "\n";
}
First, notice how the script gets the length. We've used the shift operator and
a short-circuit | operator to choose what value we use for length. Note that
we didn’t specify an array for the shift() operator. Because passing arguments
to subroutines is such a common practice, the default array the shift operator
uses @_in a subroutine.

As for the short-circuit, remember that the || operator first evaluates the
expression on the left, and quits if it is nonzero. So, if shift returns a value we
will use that, otherwise the | operator uses 40. We now have defined a default
value for our sequence length: if we invoke RandomSeq without a value the
subroutine uses the default value of 40.

Finally, we added a line that checks to see whether our array counter is
divisible by 70, meaning that we have printed out 70 characters. Because 70
characters is the default line length for a FASTA file, we put a new line in and
g0 on to print the next character.

Return

Now we have a relatively useful subroutine for printing out random sequences,
but what if we wanted a random sequence for use within the main body of

5.3.1

66 Subroutines

our program? For that we would have to use the return() function. The return()
function takes an argument and passes it back to the main program, where
it can be assigned to a variable. If we wanted to use our subroutine in an
assignment expression like

$mySeq = RandomSeq(80);
we could do it by making a few minor changes to our subroutine

sub RandomSeq ({

$length = shift || 40;

$retval = "";

for ($i = 0; $i < $length; $i++) {
$base = int(rand(4));
if ($base == 0) {$retval .= "a"; next;}
if ($base == 1) {$retval .= "c"; next;}
if ($base == 2) {$retval .= "t"; next;}
if ($base == 3) {$retval .= "g"; next;}
redo;

}

return $retval;
}

First, we've added a new variable called $retval, which we will use to hold a
string containing our sequence as we generate it. Next, we replaced the print
statements with the string append operator .= which adds the character string
on the right to the end of the string on the left. We also did away with the lines
that printed out the line returns. Finally, at the end of the subroutine we added
the return statement, which causes Perl to pass back the value in $retval to
the program.

Strictly speaking, using the return() function is not absolutely necessary.
Without a return() statement, Perl uses the value of the last expression evaluated
as the return value. So we could simply have written

$retval;

as the last line of the subroutine and allowed Perl to return that value for
us. Some programmers prefer this abbreviated mechanism, because using the
return function has a little more overhead in time and efficiency. However,
while you'll see that usage in some scripts, using an explicit return function
makes the code a little more readable and is worth the minor overhead costs to
improve the readability of your program.

Wantarray

The return value of a subroutine is evaluated in the correct context as an array
or scalar. This means that you typically don’t have to worry about the return
value too much, unless you want the subroutine to return specifically different
things in the different contexts. The wantarray() function returns a Boolean

5.4

5.4.1

Scope 67

value TRUE if the subroutine was called in an array context and FALSE if it was
called in a scalar context:

if (wantarray) {

return @arrayResult;
} else {

return $scalarResult;

}

Scope

Variables in Perl default to being global. That is, after a variable is created it
can be used anywhere in the script. To Perl, it doesn’t really matter where a
variable was created, or where it is being used. However, it often matters to
the programmer.

For example, if we used our RandomSeq() subroutine, we could write code
that accessed the internal variables:

$mySeq = RandomSeq(30);
print $retval;

which would print out the sequence we created and stored in $retval.

Things are even more dicey going in the opposite direction. If a variable is
created before the subroutine is called, the variable is visible and usable inside
the subroutine. Any changes to the variable inside the subroutine are reflected
outside the subroutine. So

$length = 500;

print "before subroutine, length is $length\n";
$mySeq = RandomSeq;

print "after subroutine, length is $length\n";

produces the output

before subroutine, length is 500
after subroutine, length is 40

because we used the length variable inside the RandomSeq subroutine, and it
changed the value of $length. If we were using $length for something important
in the outer code block, we’d have a small problem.

My

Variables that are visible throughout the program are called global variables.
Usually global variables are undesirable, because they can lead to subtle errors
and bugs in the program. Perl allows you to circumvent global variable defi-
nitions by the use of the my() command. Putting the word my in front of a
variable restricts the use of the variable to the current code block (and embed-
ded) code blocks, while making it invisible to the rest of the program, including

68 Subroutines

any subroutines called from the current code block. So

{
my $length = 500;
print "before subroutine, length is $length\n";
$mySeq = RandomSeq;
print "after subroutine, length is $length\n";
}

produces

before subroutine, length is 500
after subroutine, length is 500

Note that we put in the curly braces to ensure that the my statement falls within
a code block.

While this works, it is actually a better idea to put the my command into
the subroutine:

sub RandomSeq {

my $length = shift | 40;

my $retval = "";

for (my $i = 0; $i < $length; $i++) {
my $base = int(rand(4));
if ($base == 0) {$retval .= "a"; next;}
if ($base == 1) {$retval .= "c"; next;}
if ($base == 2) {$retval .= "t"; next;}
if ($base == 3) {$retval .= "g"; next;}
redo;

}
return $retval;

}

That way, it doesn’t matter if the outside world uses the same variable names
as found inside the subroutine, because the my command limits the scope of
any subroutine variables to inside the subroutine itself.

It typically is a good idea to use code blocks and the my command liberally in
all your subroutines. This will not only protect you from making errors in your
own code, but it will protect your variables from unruly subroutines you might
access in other people’s modules. The structure I like to use in my large-scale
Perl programs is

#!/path/to/Perl
opening comments go here

any global variables go here

{
main code block goes here

}

any subroutines go here

Scope 69

So, the file I've been using for the subroutine example looks like
#!/usr/bin/perl

program to illustrate subroutines
cjamison@gmu.edu
20July2001

use strict;

{
my $length = 500;
print "before subroutine, length is $length\n";
my $mySeq = RandomSeq;
print "after subroutine, length is $length\n";
}

sub RandomSeq {

my $length = shift | 40;

my $retval = "";

for (my $i = 0; $i < $length; $i++) {
my $base = int(rand(4));
if ($base == 0) {$retval .= "a"; next;}
if ($base == 1) {$retval .= "c"; next;}
if ($base == 2) {$retval .= "t"; next;}
if ($base == 3) {$retval .= "g"; next;}

}
return $retval;

}

The opening comments provide a quick commentary on what the code is
supposed to do, who wrote it, and when. Any later code modifications would
warrant a few lines about the changes. The use strict is a directive that loads the
strict Perl module (see Chapter 8) that warns you when you use global variables
or otherwise deviate from good Perl coding practices. Finally, any subroutines
are placed after the main code block.

Although this version of our program has no global variables, it does illustrate
a situation where one could prove useful. Global variables should be used for
values that keep cropping up and are needed by every subroutine. Generally,
these values are constants like pi or the four nucleotides. For example, we could
rewrite our random sequence program to use a global array to hold the values
of the nucleotides:

#!/usr/bin/perl

program to illustrate subroutines
cjamison@gmu.edu

20July2001

@nucleotides = (‘a’,'c’,'g’','t’");

5.5

70 Subroutines

MAIN: {
my $length = 500;
print "before subroutine, length is $length\n";
my $mySeq = RandomSeq;
print "after subroutine, length is $length\n";
}

sub RandomSeq {

my $length = shift || 40;
my $retval = "";
for (my $i = 0; $i < $length; $i++)

{
my $base = $nucleotides[int(rand(4))];
if (!$base) {redo;}
$retval .= $base;
}

return $retval;
}

The advantage of using a global variable in this case is that we can alter
the nucleotide array and have the change available to the entire program. So
if we were to change the ‘t’ to a ‘u’, we will have changed the program from
creating a DNA sequence to an RNA sequence. While admittedly in this simple
example the maintenance cost-savings of this approach is minimal because
we only use the nucleotide array in one place, imagine the savings if we had
several dozen subroutines, all of which needed to deal with the nucleotide
array. Instead of having to find a myriad of places where we used a ‘t’, we now
change one line and it propagates through the code. This approach is called
generic programming, and we’ll see more of it in Chapter 10 when we talk about
object-oriented programming.

Passing Arguments with References

One difficulty with using subroutines is passing arrays. Subroutine arguments
are passed as lists, and when Perl sees array variable names in a list context it
flattens them out into a list. For example, if we were to write:

@array1 ("a", 'b", 'c’);

@array2 ('d", 'e", '"f");

arrayroutine(@arrayi, @array2);

the two arrays would get flattened into a single list
(lal, Ibl, ICI, ldl, Iel, lfl)

and our array routine would have no idea how to separate them into the two
original lists. Although we could add scalars at the beginning of each array
telling the array routine how to separate the arrays, the subroutine becomes
more complex at the beginning as it tries to read the variables:

5.6

Sort Subroutines 71

@arrayl = (‘a’, 'b’, 'c’);
@array2 = (‘d’, ‘e, 'f');
arrayroutine($#array1, @arrayl, $#array2, @array2);

sub arrayroutine {

$lastindex = shift;

for ($i = 0; $i <= $lastindex; $i++) {
my $array1[$i] = shift;

}

$lastindex = shift;

for ($1i = 0; $i <= $lastindex; $i++) {
my $array2[$i] = shift;

}

Although this works, we’re limited to knowing exactly how many arrays are
being passed, and generalizing the array reading method will be even more
complex. Fortunately, there is a simpler way. We can create a reference to the
array to pass to the routine. We do this by prepending the \ symbol to the array
name and passing the reference to the subroutine. References are actually a
special scalar data type, and so inside the subroutine we need to convert them
back into local arrays. We would write:

@arrayl = (‘a’, 'b’, 'c’);
@array2 = (‘d’, 'e’, 'f');
arrayroutine(@arrayi, @array2);

sub arrayroutine {
my ($ref1, $ref2) = @;
@al = @{$refi};
@a2 = @{$ref2};
now use @al and @a2 normally...

We’ll see more of references in Chapter 9.

Sort Subroutines

The sort function that we used in Chapter 3 is a very interesting function. There
we used the function put a list in order:

@alpha_list = sort(@genes);

which took the list in @ genes and returned a list sorted in alphabetical order.
However, it was also noted that there was another form of the command,
which took a user-defined subroutine to replace the standard alphabetical
sorting routine.

The sort function works by taking two values in the list, comparing them, and
then swapping them according to the signed comparison result. Specifically,
the first value is placed in the $a variable, and the second is placed in the $b
variable, and then the two variables are passed to the specified subroutine. If

72 Subroutines

the value returned by the sorting subroutine is positive, the sort routine will
swap the value of $a and $b, then return them to the array.

The default sorting behavior is to sort lexically, that is, using a straight string
comparison like we would get using the cmp operator to compare two strings.
In fact, the cmp operator is exactly what sort uses. The default behavior for
sorting is exactly as if we had written

$a cmp $b

as a conditional expression. The cmp operator returns a positive value only if
$a is greater than $b, and so the two values will be switched.

We can change the behavior of sort by providing a conditional to compare $a
and $b in a manner that duplicates the way we want sort to behave. We place
the conditional in a code block between the sort keyword and the argument list:

sort {conditional} (list)

So we can duplicate the default behavior of sort by writing
sort {$a cmp $b} (list)

or, to illustrate with our earlier example, we could write
@alpha.list = sort {$a cmp $b} (@genes);

and the list in @alpha_list will be the same as before (sorted in alphabeti-
cal order).

Let’s suppose we wanted to sort in reverse alphabetical order. That is, we
want to swap the two values if the second value is greater. To do so, we simply
have to reverse our conditional and return a positive number when $b is greater
than $a:

@rev_alpha_list = sort {$b cmp $a} (@genes);

Swapping the $a and $b variables simply reverses the meaning of the compari-
son, and thus results in a list in reverse alphabetical order.

We are not restricted to using the signed string comparison operator in our
comparisons. Remember the idea of sorting a list of oligos by their length from
Chapter 3. We can’t do so using the default lexical search

@oligos = ('ATGCGTTG’', 'GTAGG’, 'TAGATGGATTC’,
"ATTGA’, ’'CAGGATG');

@sorted = sort @oligos;
print join("\n", @sorted), "\n";

which simply prints the oligos sorted lexically by base:

ATGCGTTG
ATTGA
CAGGATG
GTAGG
TAGATGGATTC

Chapter Summary 73

However, we can insert a comparison that is based upon the length of the oligo,
using the length function to calculate the length of the string:

@oligos = (’'ATGCGTTG’, 'GTAGG’, ’'TAGATGGATTC',
'ATTGA’, 'CAGGATG');

@sorted = sort {length($a) <=> length($b)} @oligos;
print join("\n", @sorted), "\n";

Note that because the length is a number, we use the numeric signed equality
operator. Now the sort routine uses the length to produce the sorted list:

GTAGG
ATTGA
CAGGATG
ATGCGTTG
TAGATGGATTC

The search code can be arbitrarily complex. The only limitation is that it has
to return a positive value when the two values need to be swapped. But if the
code gets too complex, the readability of the code can suffer. Thus there is a
third form of sort that accepts the name of a subroutine in place of the code
block. To use this form, we simply create a subroutine that returns the results
of the comparison:

@oligos = (’'ATGCGTTG’, 'GTAGG’, ’'TAGATGGATTC’,
'ATTGA’, 'CAGGATG');

@sorted = sort bylLength @oligos;
print join("\n", @sorted), "\n";

sub byLength {
return (length($a) <=> length($b))
}

returns the same length-sorted list as before, but now it is immediately clear
that we are sorting the list by length. The sorting subroutine is not passed any
variables: $a and $b are created globally for it. However, this means that any
accidental changes to $a or $b will be reflected in the values in list being sorted.
Because changing the values as you sort the list is generally a bad idea, if your
sort subroutine is very complex and performs calculations that could change
the values, you should copy the values from $a and $b into variables that are
locally scoped with the my command.

Chapter Summary

¢ A subroutine is a named block of code that can be used in multiple places.
¢ Subroutine arguments are passed via the @_ array.

e Subroutine results are passed back via the return() function.

74 Subroutines

o The wantarray() function checks whether the subroutine was used in an
array context.

¢ The my command restricts the scope of variables.

For More Information

perldoc perlfunc
perldoc perlsub

Exercises

1. What is the difference between a Perl function and a Perl subroutine?

2. Passing an array to a subroutine expands the array into a list, which then
gets assigned to the @_ variable. Give at least two ways of passing both an
array and several scalars to a subroutine.

3. What is variable scope, and why is it important for subroutines?

Programming Challenges

1. Write a subroutine that multiplies an array of integers by a scalar value.

2. Write a subroutine that takes a hash and inverts the key-value pairs. (Hint:
Hashes get flattened into a list of alternating key value pairs.)

3. Using one of the methods you defined in exercise 2, write a subroutine that
multiplies every value of an array by a scalar.

4. Write a sorting subroutine that sorts oligos based upon their GC content.

9:28 pm, 6/14/05

Administrator
v

6.1

Chapter 6

String Manipulation

The most useful aspect of Perl is the string manipulation capabilities built into
the language. Perl provides both simple array-based character manipulation
commands and mind-bogglingly powerful regular expression pattern matching
and string manipulation commands. Together, these commands allow the pro-
grammer to search and transform strings with incredible ease, and is one of the
primary reasons to choose Perl as a programming language.

Array-Based Character Manipulation

As their name implies, the array-based character manipulation commands treat
a string as if it were an array of single characters. This is the model used by
many other languages such as C and Fortran. An array-based view of a DNA
sequence would look like Figure 6.1. Each slot of the array contains a single
letter of the sequence, and the sequence can be manipulated using the indices
associated with each letter.

Of course, strings are scalars, and the indices associated with each letter
are an artificial external construct based the value of the string rather than
an inherent characteristic of the data structure. Therefore, we need to use
specialized commands to utilize the imaginary indices.

To get the index associated with a substring, we use the eponymous index()
command:

index (STRING, SUBSTRING, POSITION)

Perl Programming for Biologists. D. Curtis Jamison
Copyright 0 2003 John Wiley & Sons, Inc. ISBN: 0-471-43059-5 75

76 String Manipulation

Figure 6.1 An array of characters

which takes the STRING and searches for the SUBSTRING starting from the
specified POSITION. A good example of how to use the index command is the
process of searching a long sequence for a start codon:

$seqStart = index($sequence, 'ATG’);

In this example, we are looking through the string contained in $sequence for
a string of letters corresponding to ‘ATG’. The default value for the starting
position is the beginning of the string, so we can safely leave it out. The number
that ends up in $seqStart is the index of the character at the start of the match.

We can use the index and the POSITION variable to look through a genomic
sequence for all start codons:

$position = 0;

while (($position = index($sequence, 'ATG', $position)) >= 0) {
push(@seqStart, $position);
$position++;

}

The expression controlling the while loop is true when there is an ATG in the
sequence downstream of $position: index() returns —1 otherwise. The control
expression also modifies $position to be the next index of ATG, which we push
onto an array of start positions. Finally, we push our search start position ahead
by one so we don’t keeping finding the same ATG over and over again. Note
that we start $position at 0: remember that strings are like arrays in that their
numbering system begins at O.

The index() command searches left to right. To search right to left, the com-
pletely analogous rindex is used to look for start codons in the reverse strand:

$position = length($sequence);

while (($position = rindex($sequence, 'CAT’, $position)) >= 0) {
push(@seqStart, $position);
$position--;

}

In this code, there are three changes. First, we are using rindex() to search from
right to left so we autodecrement the position. We also reverse complemented
our search string, changing it from ‘ATG’ to ‘CAT’. And finally, we used the
length() command to give us the starting position (the far right end).

Array-Based Character Manipulation 77

Often we want to extract a portion of a string. We can create a new string by
excising a chunk from an existing string using the substr() command:

substr(STRING, START, LENGTH)

The substr() command returns a new string excised from STRING, beginning
at START and running for LENGTH characters. If START is negative, substr
begins counting from the end of STRING. So, if we wanted to store the first 60
nucleotides following the start codons in our genomic sequence, we could write

$position = 0;

while (($position = index($sequence, ‘ATG’, $position)) >= 0) {
push(@seqs, substr($sequence, $position, 60));
$position++;

}

If the sum of the START and LENGTH arguments is greater then the length
of the original, the new string will run from START to the end of the original
sequence. Similarly, if the LENGTH argument is omitted, the default length
is from the position specified by the START argument to the end of the
original sequence.

The substr() command is relatively versatile. It can also be used to splice
characters into a string by placing it on the left side of the assignment:

$string = "my short string";
substr($string, 3, 0) = "not so ";
print $string, "\n";

results in
my not so short string

The string on the right has been inserted into $string, which grows in response.
The substr() command has started at position 3 and replaced the substring of
length O with the string on the right. In addition to inserting, we can actually
replace portions:

substr($string, 3, 5) = "long and convoluted example";
replaces the word "short" in the original string and results in
my long and convoluted example string

The substr() command can be used to append or prepend strings by using
a start index of 0 or length(), respectively, and then using a 0 for the length
argument. A simpler and faster way to do so is to use the concatenation oper-
ator, which is the . symbol. This operator takes the strings on either side and
creates a single string by appending the string on the right to the string on
the left:

$newstring = "new" . "string";

6.2

78 String Manipulation

We have already seen this operator in action with the concatenation assign-
ment operator:

$retval .= $base;
which is the short-hand equivalent of
$retval = $retval . $base;

There are two major caveats to remember when working with array-based
character operators. First, there is a special Perl variable defined that can alter
the numbering system of the character indices. Certain misguided program-
mers, in an attempt to make Perl act more like inferior programming languages,
will change the value of the starting index so that the Perl commands work
more like the ones they are used to. In general, this qualifies as a very bad
idea, and if you come across code that has done this, it is best to throw it away
and start all over again because you can’t be sure of what other atrocities the
programmer has committed.

The second caveat is much more likely to rear up and bite unsuspecting
novice programmers. Perl (and computers in general) treat all characters as
equal, whether or not the character is seen when it is sent to the printer. Thus,
a newline character "\n" counts as a character when querying the length of a
string. So does a space or a tab character.

Typically, one runs into newlines when reading text from a file. Because this
is a very common problem, Perl has the chomp() command:

chomp ($VAR)
chomp (LIST)
chomp

The chomp command removes the character at the end of the string if it
matches the character stored in the special variable $/ (known as the record
input separator, it is set to "\n" by default). If chomp is given a LIST, it removes
the trailing $/ character string from each string in the list. The default variable
that chomp works on is the $_ variable, which we will see in great detail next. A
multipurpose variable, $_is the default target for all text operations, including
character-based methods, regular expression searches, and file input.

Regular Expressions

As powerful as the array-based character manipulation commands are, they
pale in comparison to the regular expression operators. These operators per-
form pattern matching using regular expressions, and can be used to search,
substitute, and transform strings of any length. Regular expressions can be
daunting, because they often look like they were composed by a random short-
circuit from the keyboard, but once you get the hang of them they become
almost second nature, and they serve as one of the key foundations of Perl
programming.

6.2.1

Regular Expressions 79

There are only four regular expression operators. They are

[m]/PATTERN/[g][i][0]
s/PATTERN/PATTERN]/[gl[i][e][0]
tr/PATTERNLIST/PATTERNLIST/[c][d][S]
y/PATTERNLIST/PATTERNLIST/[c][d][s]

These operators look a little odd, because they were inherited from other
programming languages, and have retained their old-fashioned appearance, but
they work exactly like any of the comparison operators and functions: they take
arguments, perform a task, and return a value.

The m operator is the match operator. It looks for the PATTERN in a string.
The s operator is the substitute operator, and it finds the first PATTERN
and replaces it with the second PATTERN. Finally, the tr and y operators are
synonymous, taking a PATTERN from the first PATTERNLIST and replacing it
with the corresponding PATTERN from the second PATTERNLIST.

Both the return value and the behavior of each operator can be modified by
one or more optional switches:

[c]omplement

[d]elete

[e]valuate

[g]lobal

[i]nsensitive to case

[o]lnly evaluate once
[slqueeze multiple characters

In practice, the g and i switches are typically the most useful, and the others
are very rarely seen. And, of course, the return value is modified by whether
you are using the regular expression operator in a scalar or an array context.

By default, the regular expression operators use the $_ variable to get the
string value to work with. Because $_ is the default variable for reading from
files and any other operation that produces a string value, the default is typically
quite useful. For example:

if (m/ATG/) {print "Start codon found\n";}

looks at the string in $_ and returns true or false. However, the string we want
to search in often isn’t in the $_ variable. Rather than assigning the string into
the $_variable, we can make the match operators use a different variable as the
target string by using the =~ operator:

$mySeq = RandomSeq(250);
if ($mySeq =~ m/ATG/) {print "Start codon found\n";}

In practice, your code will almost always be clearer to understand if you
assign the target string into a variable and use the =~ operator.

Match

The match operator will return a 1 if it is used in a scalar context (such as a loop
conditional). Thus, in the example above, when we looked through the string in

80 String Manipulation

$mySeq, the match operator returned either a true or a false value depending
on if it found any start codons.

On the other hand, we might want to know how many start codons are in the
sequence. To do this, we can take advantage of the fact that when the match
operator is used in an array context with the [g]lobal option, it will return an
array of the pattern matches:

$mySeq = RandomSeq(250) ;
@starts = $mySeq =~ m/ATG/g;
print "sequence has" . $#starts . "start codons\n";

While the second line looks rather strange, it really is not very difficult to
understand. The trick is that the =~ operator and the match operator have a
higher precedence than the assignment operator. Thus, the expression on the
left side of the assignment operator is evaluated first, with the [g]lobal option
causing the match operator to find all the occurrences of "ATG" in $mySeq, and
then creating a list out of them because of the array context. Then we simply
use the $# notation to count how many items are in the @starts array.

The regular expression operators will only produce a list if the [g]lobal switch
is used in an array context. If the operator is used in a scalar context, the
operators will only return 1 or the undef value. Similarly, even if the operator is
used in an array context, it will only return 1 or the undef value if the [g]lobal
option has been omitted. In the latter case, we get an array of length one that
contains either a 1 or the undef value as the first value.

The match operator is used so commonly that Perl has given us a shortcut.
It turns out the leading m is optional, and any pattern between two forward
slashes tells Perl to perform the match. Thus we could have written our start
codon matching code as

@starts = $mySeq =~ /ATG/gQ;

and gotten the same result. Most Perl programmers will omit the m.

However, there is a downside to the shortcut. If there are forward slashes in
the pattern you are trying to match (like a Unix directory path, for example),
they will interfere with the regular expression. To get around this, you can use
any pair of nonalphanumeric characters as the pattern delimiters along with
the m:

m#/usr/local/bin#

will match any line containing the Unix path to a particular directory.

If the pattern contains a pattern that looks like it might contain a variable, Perl
attempts to interpolate the variable to create the pattern. So we can make our
matching pattern easier to change (at the cost of some clarity and performance)
by setting a variable to contain the search string:

$mySeq = RandomSeq(250) ;

$myStart = "ATG";

push (@starts, $mySeq =~ /$myStart/g);

print "sequence has" . $#starts . "start codons\n";

6.2.2

6.2.3

Regular Expressions 81

In addition to the [g]lobal switch, the match operator also accepts the
[imsensitive, which makes all matches in a case-insensitive manner, and the
[olnce switch, which causes any variable interpolation within the pattern to
occur only once, which can save much time in loops.

Substitute

The substitute operator is useful for performing large-scale search and replace-
ment. For example, we might want to change our DNA sequence to an
RNA sequence:

$mySeq = RandomSeq(250);
$mySeq =~ s/T/U/g;

This code tells Perl to take the string and replace every T with a U. Like the
match operator, we can specify that the substitution take place [g]lobally. We
can also use the i and the o switch with the same meanings as before.

A new switch for the substitute operator is the [e]valuate switch. This tells
Perl that the replacement pattern is an expression, and the expression should
be evaluated before the replacement. To illustrate, we can make our DNA to
RNA transcription code a little more complex:

$newCodon = ‘U’;
$mySeq = RandomSeq(250) ;
$mySeq =~ s/T/$newCodon/eg;

Note that when using options, it doesn’t matter in what order they appear.

Translate

Perl has two translation operators: tr and y. The two are exactly equivalent, and
the reasons for having both lie back in the prehistory of Perl and the language
sed, from which many of the regular expression syntax derives. For new Perl
programmers the tr operator is easier and more sensible to remember.

The tr operator takes the characters in the first pattern and replaces them
with the characters in the second pattern. The first character in the matching
pattern list is replaced with the first character in the replacement pattern
list, the second with the second, and so forth. This is very different from the
substitute operator, which assumes that the entire matching pattern is to be
replaced with the entire replacement pattern.

A perfect example of using the translate function is to reverse complement
a sequence:

$mySeq = RandomSeq(250);
$mySeq =~ tr/ACTG/TGAC/;
$revcomp = reverse($mySeq);

6.3

82 String Manipulation

Using the reverse function on a string returns a reversed string, analogous to
using reverse on an array that contained a single letter in each slot.

Also, note that we did not use the [g]lobal option. The tr operator always acts
globally. There are three switches that can be used with the tr operator. The
[clomplement switch inverses the search list, interpreting the list as containing
every possible character except those listed in the search list. Thus

tr/ACTG/ /c;

replaces every character that is not an A, C, G, or T with a space, which could be
a very useful device for cleaning uncertainty characters out of a sequence. Note
that the replacement list is shorter than the search list: in cases like this Perl
reuses the last character in the replacement list. Be careful not to confuse the
[c]lomplement option with the biological meaning of nucleic acid complement.
Another switch is the [s]queeze option, which will compress a run of replace-
ment characters into a single character. Thus, if you have a sequence like

ACTGGTAXXXXXXXATAGGXXTGAT
the command
tr/ACTG/ /cs;
would result in the string
ACTGGTA ATAGG TGAT

The tr operator returns a scalar value stating how many replacements were
made. If we had assigned the last tr command to a scalar, the variable would
have contained 9 as the number of x’s we replaced. We can make use of this to
count symbols if we make the replacement list the same as the search list:

$hydrophobic = tr/TFY/TFY/;

would count the number of hydrophobic residues in a protein sequence with-
out actually altering the sequence. Because this is a common task, as we would
expect, Perl provides a shortcut to reduce our typing. Leaving out the replace-
ment list causes the search list to be replicated as the replacement list, so we
could have written our residue counter as

$hydrophobic = tr/TFY//;

with no change in meaning. Which brings us to our last switch, the [d]elete
switch, which causes any matches to be removed completely:

tr/ACTG//cd;

causes all the uncertainty codes in our first example to be removed completely.

Patterns

Thus far, we’ve begged off a bit on the question of exactly what a pattern is. A
pattern is composed of a set of atoms, quantifiers, and assertions. Atoms are

6.3.1

6.3.2

Patterns 83

the individual characters that make up the pattern, quantifiers are phrases that
control how many atoms are seen, and assertions control where the atoms are
found. Together, the three aspects of patterns make for an incredibly rich and
powerful language.

Atoms

We've seen some examples of patterns that are simple character strings. The
character string represents a series of atoms, which are the basic single char-
acter matching substrate. For example, when searching for the start codon, we
created a pattern of three atoms: A, T, and G. The regular expression operator
then looked for those three atoms in the specified order.

Any character that Perl recognizes can be used as an atom. That includes
letters, numbers, and spaces. Each character matches itself once, unless it is
quantified. Characters protected with a backslash match that character, with
the following exceptions:

o \c followed by a character matches the corresponding control character. For
example, \cD matches the Control-D character;

o \x followed by a two-digit hexadecimal number matches the character having
that hexadecimal value;

e \0 used as a two- or three-digit octal value matches the character with that
octal value;

e \n matches a newline;

e \r matches a return;

o \f matches a form feed,
e \tmatches a tab;

o \d, \D, \w, \W, \s, \S match special character classes defined below.

Special Atoms

Certain characters and combinations of characters create special complex
atoms. Complex atoms can be combined with quantifiers and assertions just
like regular atoms. The only trick is that if you want to match on one of
these special characters rather than using it as a complex atom, you have to
backslash-escape the character.

A . matches any character except the \n character. So the pattern

A.G

6.3.3

84 String Manipulation

matches ATG, ACG, AAG, and AGG, as well as any other triplet of letters that
starts with A and ends with G. You can restrict the atom by giving a list of
characters in square brackets:

A[ATCG]G

will match only valid nucleotide triplets and ignores any triplets that have
nonvalid DNA characters.

A hyphen between two characters in square brackets specifies a range of
characters to look for. So

[0-9]

would match any digit in that range. Similarly,
[a-Z]

matches any lowercase letter, and
[a-ZA-Z]

matches any letter no matter what case it is. A ~ at the front of the list negates
the class:

["a-z]

matches any character that is not a lowercase letter.
Some ranges are so useful that Perl defines some backslash-escaped charac-
ters that match a specific class

o \d matches any digit, the same as [0-9]

¢ \D matches any nondigit, the same as ["0-9]

e \w matches any alphanumeric character, the same as [0-9a-zA-Z]

¢ \W matches any nonalphanumeric character, the same as [~ 0-9a-zA-Z]
o \s matches any white-space character, the same as [\t\n\r\f]

¢ \S matches any non-white-space character, the same as [\~ \t\n\r\f]

Note that \w is not equivalent to \S, and \W is not equivalent to \s. This is
because there are symbol and control characters that won’t match the \w or \s
atom, but will match the \W and \S atom.

Quantifiers

Atoms can be quantified, meaning that a specific number of the atoms must be
present. Quantifiers are placed directly behind the atom they are quantifying.
The general syntax is

x5y}

6.3.4

6.3.5

Patterns 85

where x and y are numbers. The quantifier indicates the atom must be matched
at least x times but not more than y times. Thus

A{100, 200}

would match runs of at least 100 and no more than 200 A’s (the definition of
valid polyadenylations) in a file of mRNA sequences.
Leaving the second argument undefined

{x,}

means the math must occur at least x times, but there is no upper limit.
Providing only the first argument

{x}

means the match must occur exactly x times. Note the difference between the
two is the presence of the comma: with a comma the second argument is
undefined, whereas without it the second argument is deleted.

Not surprisingly, Perl has several special case quantifier symbols defined for
commonly used quantifiers:

e *matches 0 or more times, same as {0,}
e -+ matches 1 or more times, same as {1,}

o ?matches 0 or 1 times, same as {0,1}

Assertions

Finally, the regular expression language is rounded out by four assertions that
control where the matches are located. The = symbol matches the beginning
of the string, the $ symbol matches the end of the string, a \b matches at a
word boundary, and a \B matches at a nonword boundary. Note that the ~ and
the $ have other meanings as well, and it is important to check the context of
the symbol:

$seq =~ /"[AUCG]*A{100, 200}$/
is a way to validate that $seq contains a mRNA sequence, whereas
$seq =~ /["AUCG]*A{100, 200}$/

makes sure there are no A, U, C, or G characters in the match, which more than
likely is not what the programmer intended.

Alternatives

Often we run across situations where multiple patterns are valid. For example,
if we wanted to look for start codons in bacteria, we should take into account

86 String Manipulation

the fact that some species have alternative start codons. We could look twice
(or more) using the Boolean OR operator:

if (($seq =~ /AUG/) | ($seq =~ /AGG/)) {...}

but that is somewhat unwieldy. Perl allows us to collapse the alternatives into
a single regular expression by using the | symbol (half an OR):

if ($seq =~ /(AUG)|(AGG)/) {...}

Any number of alternatives can be separated by the | symbol. Alternatives
are evaluated left to right and the evaluation stops on the first positive match,
much like the | command.

The parentheses serve to consolidate individual atoms into a single larger
atom. This is useful if we want to more create complex matching schemes.
For example, we might want to look for CAG expansion repeats in our
DNA sequence:

/ ((CAG)+)/

The parentheses also have another beneficial side effect. They can be used
to extract the last string that matched the expression inside the parentheses.
Each pair of parentheses associated with either a + or a * is assigned a number,
going from left to right, and a variable consisting of the $ and the assigned
number of the parentheses is created to contain the match. Thus, if we used
our expression for real, $1 would contain the first CAG expansion matched in
the sequence:

my $rna = 'UAAGACGUCAGCAGCAGCAGCAGAAAAGCAGCAGAAA' ;
if ($rna =~ /((CAG)+)/) {

print "The first expansion is $1 \n";
}

which will produce:
The first expansion is CAGCAGCAGCAGCAG

The numbered variables aren’t the only ones created by the regular expression
operator. The $ variable contains the entire matched string, whereas $* and $-
return everything before and after the match respectively. These variables are
scoped to the block that contains the regular expression, so that they cannot be
accessed or are changed back to their original status after the block is finished.
These variables are undefined if a match is not found.

Chapter Summary

e Array-based character manipulation treats a character string like an array
of characters.

o Exact string matches can be found using the index() and rindex() commands.

Programming Challenges 87

Substrings can be extracted using the substr() command.

Regular expressions use pattern matching to manipulate strings.

The m operator finds pattern matches.

The s operator substitutes a string for a pattern.

The tr and y operators translate one pattern list into another pattern list.
The $_ variable is the default target for regular expression operators.

The =~ operator causes the regular expression operator to act upon the
string in the variable on the left.

For More Information

perldoc perlfunc
perldoc perlre

Exercises

92 I S T R

Write a subroutine that performs the same function as the chop() command.
Compare and contrast Prosite motifs to Perl regular expressions.
Write a regular expression that will find GAG repeat expansions.
Write a regular expression that represents prokaryotic translation start sites.

Give examples of when to use the array-based character manipulation
commands versus the regular expression commands.

Write a subroutine that duplicates the function of the regular expression
s/// operator using array-based character manipulation commands. Take
into account wild-cards and identifiers.

Programming Challenges

1.

A common use of Perl is to read a tab- or space-delimited file into an array,
and then manipulate the results. For example, many microarray programs
leave the data in Excel spreadsheets that can be exported to tab-delimited
text files:

Number Name chi1_Ratio ch1_Percent ch2_Ratio
ch2_Percent

1 Mouse_actin_beta 1 43.366182 1.305944
56.633818

2 cytochrome_P450._2b9 1 60.364437 0.656605

39.635563

88 String Manipulation

3 thrombomodulin 1 51.152543 0.954937
48.847457

4 cytokine_inducible protein 1 50.155169
0.993812 49.844831

5 Glvr-1_mRNA_complete_cds 1 46.36159
1.156958 53.63841

6 PDE1A2 1 47 .743435 1.094529 52.256565

7 Fas-associated_factor_1 1 46.01072 1.173407
53.98928

Write a program that parses the information out of files with this format
and print out the gene names and fold-differences in descending order.

2. Write a program that splices out introns from a sequence.

3. Write a program that translates an RNA sequence to a protein sequence,
keeping track of codon usage.

7.1

Chapter 7
Input and Output

Programs with encoded values are necessarily of limited value due their inflexi-
ble nature. For example, when we defined the arrays of genes and map positions
in Chapter 3, we put the values of the genes and map positions directly into
the program, a process known as hard-coding. Hard-coding data values limits
the flexibility and utility of the program. Although such programs are often
sufficient, a much better approach would be the ability to input the information
the program needs at the time we run the program, so the same code can
be used over and over again in different situations with different data (e.g., a
chromosome 6 gene list rather than a chromosome 7 gene list).

Perl provides two mechanisms for getting information into programs. In the
simplest case, we can pass parameters and arguments to the program. In a more
complex case, we can use filehandles to read and write information to and from
files. Program parameters work well for simple, short arguments than can easily
be typed on the command line, whereas filehandles work better when the data
sets are large. Typically, both methods are used, using a program parameter to
specify a file name for a filehandle.

Program Parameters

Parameters can be passed to a Perl script in a manner similar to that used to pass
arguments to a subroutine. On the Unix command line, a list of space-separated
values follows the Perl script name:

haydn 2% myscript.pl argl arg2 arg3

which gives three arguments into the program.

Perl Programming for Biologists. D. Curtis Jamison
Copyright 0 2003 John Wiley & Sons, Inc. ISBN: 0-471-43059-5 89

7.2
7.2.1

90 Input and Output

Inside the Perl script, we need to deal with converting the parameters into
variables we can use. Fortunately, Perl does most of the work for us by creating
a special array variable called @QARGV (the name derives from C, and stands for
ARGument Values). The @QARGV array contains the command line parameters
converted from a list to an array.

The @ARGV array can be treated like a normal array. Thus $ARGVI[0] is the
first parameter, and $#ARGYV is the index of the last parameter passed into the
program. It is useful to check the latter and make sure that the proper number
of variables have been passed into the program:

unless ($#ARGV == 2) {
die "usage: $1 argl arg2 arg3\n";
}

Thus, if we tried to run myscript with only two arguments, the program would
issue a gentle reminder:

haydn 3% myscript.pl argil arg2
usage: myscript.pl argl arg2 arg3
haydn 4%

Because @ARGV is a normal array, we can assign it directly to a variable list:
($vart, $var2, $var3) = @ARGV;

Sometimes we don’t know exactly how many parameters will be passed from
the command line. In that case, we can use the shift() command like we did in
the subroutines. In fact, in the main block of the program, @QARGV, is the default
target of the shift() command, so we don’t have to specify it as an argument:

while ($value = shift) {
process value
}

Command line argument processing can be greatly facilitated by using the
Getopt Perl module, now part of the standard Perl distribution (see Chapter 8).

File I/0
Filehandles

Getting large amounts data in and out of a program can sometimes be a
challenge. Most programs need some sort of input to get the data to start with,
and every program needs to output results. The Perl input and output (I/0)
commands make getting information in and out relatively easy.

We have seen the basic Perl output operator, the print command, several
times thus far. The operation seems pretty simple: print takes a string and
writes it out on the screen. Although this is essentially correct, there is one
more level of complexity that makes the print statement incredibly powerful.

7.2.2

File I/O 91

All Perl I/0 takes place using an data structure called a filehandle. The name
is pretty much descriptive of the function, which is to provide a handle that we
use to gain access to a file. In practice, a filehandle is simply a name that has
been associated with a particular file using the open() command:

open(filehandle, filename)

The filehandle is just an unquoted string like INPUT or FILE. Although it is not
required, most Perl programmers put filehandles in all capital letters to make
them readily distinguishable from the rest of the program code. The filename
is a string containing the name of the file, including whatever directory path
information is needed for Perl to find the input file. At the front of the name is
a symbol indicating how we wish to open the file: a < symbol opens the file for
reading, the > file opens the file for writing (wiping out the previous contents,
if any), and >> open the file for appending. Adding a + symbol in front of
the > or < symbol opens the file for both reading and writing.

Working with Files

The difference between opening a file for writing and opening a file for append-
ing must be emphasized. If a file opened for writing already exists, the contents
of that file are replaced with the output of the program. Appending, on the
other hand, simply adds the program output to the end of the file. If the file
doesn’t exist, open will create the file (in either mode). So, if we had a file that
looked like

haydn 7% more text.txt
the quick red fox

haydn 8%
the code

open (APPEND, ">>text.txt");
print APPEND "jumped over\n";

would result in the file

haydn 8% more text.txt
the quick red fox
jumped over

haydn 9%
whereas

open (WRITE, ">text.txt");
print WRITE "the lazy brown dog\n";

changes the file to

7.2.3

92 Input and Output

haydn 9% more text.txt
the lazy brown dog

haydn 10%

Note how the print statement changed. The print statement actually takes two
arguments, a filehandle and the string:

print FILEHANDLE string

Built-in Filehandles

Perl defines several default filehandles. STDIN, STDOUT, and STDERR are con-
nected to the Unix sources of the same name. STDIN is usually the keyboard,
STDOUT and STDERR are usually the terminal. These can be changed in the
Unix operating system. The print command defaults to using the STDOUT, so

print "mystring\n";
and
print STDOUT "mystring\n";

are equivalent commands.

If both STDOUT and STDERR are usually the terminal, what is the difference
between them? The major difference between STDOUT and STDERR lies on the
Unix command line. Unix allows you to redirect the output of a program to a
file (or to another program):

haydn 10% test.pl > output.txt

The output from test.pl will now be placed into the output.txt file. However,
what actually gets redirected is the STDOUT filehandle. The STDERR file handle
still points to the terminal. Thus, if we wanted to print out some warning
messages but not place them into the actual output, we’d write those messages
to the STDERR filehandle:

if ($errorCondition == 3) {
print STDERR "Warning: Non-fatal error code 3 encountered\n";

}

which places our warning on the screen rather than in output.txt.

It is possible to redirect the default filehandles by using them in an open
statement. However, doing so isn’t necessarily recommended both for practical
and aesthetic reasons. However, if you have an overwhelming desire to do
so, remember to preserve the original filehandles by opening them to dummy
filehandles, and then restore them when you're done.

Typically, once you're done using a file you want to remember to clean up
after yourself. The close() command takes care of shutting down filehandles in
a consistent manner:

7.2.4

File I/O 93

close FILEHANDLE

Perl will take care of shutting down filehandles when the program exits, so this
step is not actually mandatory. However, shutting files after your done with
them will reduce the overhead of your program and also help protect your
files in the unlikely event of a water landing (or the more likely event of a
system crash).

File Safety

Reading or writing to an undefined filehandle will at best result in an undefined
value. Itis usually a good idea to check and make sure the file you are attempting
to open is really opened before you try to use the contents of that file. The
open command returns true if it successfully opens a file, and false if you try
to open a nonexistent file to read from, or if the file you want to write to cannot
be opened.

Most people embed the open command in a conditional statement:

unless (open(INPUT, "<myfile")) {
die "Cannot open myfile\n";
}

or, more commonly (and succinctly):
open(INPUT, "<myfile") || die "cannot open myfile\n";

Both pieces of code have the same effect: if the file can’t be opened, the program
will call the die command, which prints the warning string on STDERR. In the
second form, we are again taking advantage of the shortcut evaluation of the
| operator: if the file opens successfully, the left side will evaluate to true and
Perl will continue on without bothering to evaluate the right side. Thus, the die
command will only be evaluated if the open command fails.

Another way to check the condition of a file is to use Perl’s built-in file test
operators. These operators take a file name or a string and tests the file to see
if a particular aspect of the file is true. The form of the file tests operators is
a - followed by a character. Most operators return either true or false, but some,
like the size operator, return a value. Table 7.1 summarizes some of the more
commonly used file tests.

Generally, the file test operators give the programmer a finer control over the
error messages and potential fixes. For example, in a program that is used by
many people, we might want to check that an important file is readable by the
person, and do something different if it is not:

unless (-r $settingFile) {
print STDERR "Can’t read settings file, using defaults\n";
set variables

}

The —r file test operators looks to see if the person who is running the program
has sufficient permissions to read the file in $settingFile

94 Input and Output

Table 7.1 File test operators

operator test

—r file is readable

-w file is writeable

—X file is executable

—e file exists

—s file size (in bytes)

—f file is a plain file

—d file is a directory

-T file is a text file

-B file is a binary file

-M time since last file
modification (in
days)

—A time since last file

access (in days)

7.2.5 The Input Operator

Once we have a filehandle to a data source, we can then use it to read or write.
The Perl input operator is a filehandle flanked by the < and > symbol:

<FILEHANDLE>

The input operator reads a single line from the data source linked to the
filehandle and returns TRUE if successful and FALSE otherwise. The entire line,
including the "\n" is placed in the default input variable $_. Typically, the input
operator is used in a while loop to read through a file line by line:

open (INPUT, "<sequences.fa") | die "Couldn’t open file\n";
while (<INPUT>) {
print $_;
}
close INPUT;

has the effect of printing out every line of the sequences.fa file onto the screen.

Using the $_variable is handy, because it is also the default regular expression
target. We don’t have to do anything fancy to use a regular expression search
on the input. For example, if we wanted to only print out genes identified with
humans, we might write

open (INPUT, "<sequences.fa") | die "Couldn’t open file\n";
while (<INPUT>) {

if (/sapiens/) {print $.};
}

close INPUT;
The default filehandle for the input operator is STDIN. Thus

while (<>) { ... }

File I/O 95

reads a line from STDIN, which is typically the keyboard, but can also be a Unix
pipe established at the command line:

haydn 19% grep MDR1 sequences.fa | program.pl

This command runs the Unix grep command, telling it to find every line
containing MDR1 in the sequences.fa file, and then sends each line to the Perl
program at the other end of the pipe, where the lines can be read from the
STDIN filehandle.

Even better, the Perl is smart about how it connects the STDIN and program
parameters. If we try to read from STDIN, Perl looks at the parameters left
in @QARGV and treats them like files to be opened for reading. For example, if
program.pl contains the simple script:

#! /usr/bin/perl

while (<>) {
print $_;
$lines++;

}
print "$lines processed\n";

we could invoke it like so:
haydn 19% program.pl sequences.fa

and the script would proceed to print read from the file sequences.fa and print
out lines.

Only parameters that remain in the @QARGV array are treated in this manner.
If we have shifted a parameter out, then it is no longer available to be treated
as a file. If there is more than one parameter remaining, they are all treated
as files, opened sequentially for reading. So, a real example of how we might
use this is a script called motifs.pl that takes a motif string and any number of
sequence files:

#! /usr/bin/perl
Program to scan for a motif in Fasta files

$motif = shift;

while (<>) {
if (/$motif/) {
print $_;
}
}

The program shifts the first parameter out of the array to use as the search
string, then loops through all the remaining parameters, opening the file and
scanning through for the motif and printing any line that contains it. We could
invoke the program like

% perl motif.pl ATG nr.fa rodent.fa primate.fa

96 Input and Output

to have Perl search the specified three files for possible start codons, or, we
could rely upon the Unix wild-card expansion facility

% perl motif.pl ATG *.fa

to have Perl look through any Fasta files in our directory.

Perl is flexible about what constitutes a line of input. In actuality, Perl does
not read in lines per se, but instead reads in "records." The default record
separator is the newline character, "\n", which just happens to correspond to
a single line of text in a file, but we can change that behavior. The chunk of
text Perl treats as an input record is controlled by the special variable $/, which
contains a string that is used as the input record separator. We can change $/
to suit our own needs:

open (INPUT, "<embl.txt") | die "Couldn’t open file\n";
$/ = II||II;
while (<INPUT>) {

if (/sapiens/) {print $};

}
close INPUT;

The EMBL file format separates individual records with double vertical bars
(see Appendix B). By setting the $/ to "||", we effectively read the entire record,
new lines and all, into the $_variable. We can then look through the entire record
to match "sapiens", which we then print out. The fact that the line returns are
included in the sting actually saves us from having to worry about formatting.

Speaking of formatting, note that the input record separator is included as
the last characters in the string. Often, this is inconvenient. For example, if we
are reading a Fasta file into a variable in order to search it for start codons,
the following simple approach of appending all the lines into a single variable
won’t work:

open (INPUT, "<seq.fa") || die "Couldn’t open file\n";
while (<INPUT>) {
$seq .= $;
}
close INPUT;

if ($seq =~ /AUG/) {
print "Start codon found\n";
}

We will miss some matches if the start codon is split across two lines, because
the newline character is actually part of the string:

. . .AGGCAAGUAAGGAU\nGAAGCACUUAGGCA. ..

so we need to modify our code to remove the newlines. We can use the
chomp() operator to remove the last character before we append it to our
sequence string:

open (INPUT, "<seq.fa") || die "Couldn’t open file\n";
while (<INPUT>) {

7.2.6

7.3

Interprocess Communications 97

chomp;
$seq .= $_;
}
close INPUT;
if ($seq =~ /AUG/) {
print "Start codon found\n";
}

Note that this is such a common task that the chomp operator defaults to using
the $_ variable, like all other string match and manipulation commands.

The line output command is the familiar print operator. As we saw when
talking about the standard filehandles, the print command actually is

print FILEHANDLE string

The FILEHANDLE can be any filehandle that is opened appropriately for output.

Binary I/0

Occasionally, you might want to read from files that are not line-based text files.
Certain types of data, like BLAST data files and ABI sequencer files are not text
based but are actually binary files made up of 0’s and 1’s. As such, they don’t
actually have specific lines, because lines are a character-based text file nicety.
Binary files also contain lots of unprintable characters. Perl provides the read()
command to read binary data:

read (FILEHANDLE, SCALAR, LENGTH, OFFSET)

Read takes LENGTH bytes of data from the FILEHANDLE and places them into
SCALAR. OFFSET indicates where to begin, and the function returns the actual
number of bytes read into SCALAR. A typical binary read statement would look
something like

$position += read(INPUT, $buffer, 256, $position)

and it would be embedded in a while loop that iterated over the file, doing
something with the data that is placed in $buffer.

In practice, the read() command (and other associated raw binary file manip-
ulators) should be left to people who are into pretty heavy Perl wizardry.

Interprocess Communications

Sometimes the data we want doesn’t reside in a nice text file. Rather, the
information is being generated by another program, and we want our program
to extract the information on the fly. Perl provides several good resources for
getting information on the fly from active sources.

7.3.1

7.3.2

98 Input and Output

Processes

In computer parlance, when a program has loaded code into memory and is
executing it becomes known as a process (or, alternately, as a thread). In modern
computers, several processes can be (and usually are) running at the same time.
Under the Unix operating system, you can get a list of active processes using
the ps command:

haydn 3% ps -ef

UID PID PPID
cjamison 8022 8007
cjamison 3822 3775
cjamison 8084 8059
cjamison 8213 8209
cjamison 8227 8213

STIME TTY TIME CMD
00:47:38 ? 0:10 netscape
Aug 06 pts/0 14:01 xemacs
00:17:58 pts/1 0:00 -tcsh
03:31:17 pts/2 0:00 -tcsh
03:31:34 pts/2 0:00ps -ef

[eNeoNeolNoNoNel

The partial listing of processes running on my machine shows that there were
two command shells (tcsh), one copy of xemacs, and one copy of netscape. At
any one time, there can be hundreds of processes running on a moderately
busy computer.

The computer keeps track of processes by their process ID (PID), which
is a unique number attached to the process when it is created. In a true
multiprocess environment, processes can create other processes in a procedure
called spawning. When a process spawns a new process, the original process is
called the parent and the new one is called the child. Child processes usually
keep track of their parent processes so they can report back. In the list above,
the ps command has a PID of 8227, and a parent PPID of 8213. Looking back
up the list, we see that one of the tcsh shells has a PID of 8213, showing that
the ps process was spawned by that shell.

Process Pipes

The most common use of process pipes is to get information from a system
command. For example, we might want to get a list of all the files in the
current directory. For this, we can simply use the backtick (or grave accent)
quotation marks to interpolate our string into a system command like we saw
in Chapter 2. We can take the output and assign it to a variable:

$dir = '1s -lag’;
print $dir;

This code will store the entire output from the ls command into the $dir
variable, which we then print out:

drwxrwxrwx 28 cjamison staff 908 May 26 13:08 .
drwxrwxrwx 20 cjamison staff 636 May 19 12:17 ..
-rw-r--r-- 1 cjamison staff 119 May 19 13:56 genes.txt
-rw-r--r-- 1 cjamison staff 123 May 19 16:56 hello.pl

7.3.3

Interprocess Communications 99

-rw-r--r-- 1 cjamison staff 127 May 19 16:52 hello.pl~
-PW-r--pr-- 1 cjamison staff 446 May 25 18:24 mop.pl
-rw-r--r-- 1 cjamison staff 447 May 25 18:23 mop.pl~
-rw-r--r-- 1 cjamison staff 227 May 24 17:36 refsub.pl
-PW-r--r-- 1 cjamison staff 185 May 24 17:33 refsub.pl~
-rW-r--r-- 1 cjamison staff 123 May 19 16:56 trash.txt

Getting results from the system via the interpolation of a command string is
straightforward, but limited. For example, we might be interested only in the
Perl scripts that have a.pl extension, and so we would want to filter the output
of the Is command line-by-line.

A special type of Perl file handle exists to communicate with the computer
operating system. These are commonly called pipes, because they pipe data
from one process to another. Typically in Perl programs, the item on the other
end of the pipe is a system command that we want to get information either
to or from, so rather than giving the open() command a file name, we give it
a system command. We use the | symbol to tell Perl the filehandle is a pipe,
and we differentiate which direction the data is flowing by at which end of the
system command we place it. If we place the | in front of the command, data
flows from Perl to the command, whereas if we place it at the end, data flows
from the command to Perl. Thus

open (DIR, "ls -lag|");
while (<DIR>) {
if (/\.pl$/) {
print $_;
}
}

creates a pipe with data flowing from the Is command into Perl. The while loop
then reads from the pipe, checking to see if the line we just read contains the.pl
extension at the end of the line before printing the file name. The output

-rW-r--r-- 1 cjamison staff 123 May 19 16:56 hello.pl
-rw-r--r-- 1 cjamison staff 446 May 25 18:24 mop.pl
-PW-r--r-- 1 cjamison staff 227 May 24 17:36 refsub.pl

shows that indeed we have now filtered our Is command to list only the Perl
scripts in the directory.

We can read and write to pipes just like any other filehandle, bearing in mind
that there is an active program at the other end of the pipe, and the response
of the program is sensitive to how fast the program runs.

Creating Processes

Perl allows us to create child processes within our program. We do this when
we need to have an autonomous process occurring outside the main process,
like when we want to wait for input, or to repeat a loop until interrupted by a
keystroke. The command we use is the fork() command. The fork() command

7.3.4

100 Input and Output

creates a second process, loading in a second copy of the code to serve as the
child. Execution of the code in both processes continues from the statement
that contained the fork() command.

We can tell the difference between the parent and the child process by the
value returned by the fork() command. In the parent process, fork returns the
PID of the child, while to the child it returns a 0 (if the fork fails, the command
returns a undefined value). The value returned is usually used to determine
what code is executed by the two processes.

$pid = fork;

if ($pid) {
parent code goes here
child PID is in $pid

} elsif ($pid == 0) {
#child code goes here
exit;

} else {

die "fork failed.";
}

The fork code is actually quite simple. First, we execute the fork, storing
the return value in $pid, and then we use that value to conditionally control
the execution. If the value is a number (thus registering as TRUE in a Boolean
context), we know that this is the parent process. If the value is equal to 0,
we know that we are in the child process. If the value is undefined, we have
encountered some sort of error. Note that we explicitly placed an exit command
at the end of the child code. This is to prevent the child from continuing on and
executing any parental code that follows the conditional.

Monitoring Processes

The parent can use the PID returned from fork to monitor the child process. The
child process (or any Perl program) can get the parent PID using the getppid()
command. We can use the PIDs to control the timing of our processes. For
example, our parent process might need to make sure the child has finished
before proceeding. For this we can use the wait commands. There are two
different commands:

wait
waitpid(PID, FLAGS)

Both commands do similar things: they wait until a process is finished before
allowing the program to continue. The wait() command simply stops the pro-
gram until a child process dies, then returns the PID of the deceased process.
But because the wait() command doesn’t care exactly which child process has
died, it is safer to use the waitpid() command that monitors a specific PID, and
returns true when the process dies. Both commands return a —1 if there are no
child processes.

7.3.5

Interprocess Communications 101

Both wait() and waitpid() wait an unspecified amount of time, which is fine if
your child process is unlikely to hang. But if there is a chance for an infinite
loop, or if you want to simply keep track of a process for a specified time period,
then waiting for a process to exit itself is insufficient. The kill() command allows
you to execute processes that have gone on too long.

kill (SIGNAL, PID_LIST)

The signals for the Perl kill() command are the same as those for the Unix kill
command (see the man page for kill), and can either be the integer or the string
representation. The PID_LIST is a list of valid PIDs to kill. So, if we wanted our
child process to run exactly five minutes, we could write

if ($pid = fork) {
sleep 300;
kill (9, $pid);
} else {
do something for about five minutes

}

Implicit Forks

Some Perl commands perform an implicit fork, spawning their own processes
and then waiting for the response. We have already seen an example of this
when we opened a filehandle as a pipe:

open(GREP, "grep MDR1 fastalib|");
while (<GREP>) ({
if (/human/i) {
print $. "\n";
}

1
close GREP;

In this case, a child process was created and associated with the GREP filehandle
using the open() command. We read lines from that filehandle, printing out any
that contain the word human, until the GREP filehandle indicates it is done, then
we use the close() command to clean up the filehandle. The close() command
is always polite: it will wait until the process attached to pipe indicates it is
finished before it closes the filehandle.

In the GREP example we were running another program on the computer. We
can accomplish a similar task using the system() command:

system "cp library.fa library.back";

We use the system() command if we don’t care so much about getting the output
of the program, because there is no connection between the process and the
Perl I/0 filehandles. Like the open() command, the system() performs an implicit
fork and waits for the program to finish.

102 Input and Output

Finally, we can get the program output back as a string if we use the back
tick operators:

$lines = ’‘grep mouse fastalib';

places the output from the grep program into $lines. The back tick operators
also allow for variable interpolation, so we can write:

$lines = ’‘grep $keyword fastalib’;

Chapter Summary

e Program parameters typed on the command line can be read from the
@ARGYV array.

¢ A filehandle is a data structure that names an input or output pipe.

e STDIN is the default input filehandle.

o STDOUT and STDERR are the default output filehandles.

¢ A filehandle can be attached to a file using the open() command.

¢ A filehandle is detached from a file using the close() command.

e The input operator <> reads from STDIN (or a specified filehandle) and puts
the input record into the $_ variable.

e Process pipes, back tick quotes, and the system function allow Perl programs
to communicate to programs

For More Information

perldoc perlopentut

Exercises

1. Define the term I/O pipe.

2. What is the relationship of STDIN, STDOUT, and STDERR to the normal Unix
input and output devices?

3. How can you ensure that the user supplied the proper number of parame-
ters?

Programming Challenges 103

Programming Challenges

1.

Write a program that reads in a text file and prints out the first 20 lines to
the screen. (Hint: You will need to use @QARGV to get the file name). For extra
credit, make your program accept any number of file names and iterate
through them.

Write a program that reads a GenBank file from disk and outputs a Fasta
formatted file (see Appendix B for file formats).

8.1

Chapter 8

Perl Modules and
Packages

As we write more and more programs, we often find ourselves using the same
subroutines over and over. For example, a program to predict primer pairs and
a program to look for open reading frames both need a subroutine to reverse
complement the input file. It would be nice to be able to have a generic library
code that we can include in our programs, so all that we have to do is to call
the subroutine and not have to worry about copying the subroutine from one
program to another.

Modules

Fortunately, Perl has just exactly that mechanism. A Perl module is simply a
text file containing Perl code. The file is placed in a special directory, and then
named with a .pm extension. Code from the module can be brought into the
current program with the use statement:

use module dir::module;

and instantly all the code within the module is available for use. This includes
any variables and subroutines written there.

So, suppose we wanted to create a Perl module that contained some useful
sequence manipulation subroutines. We would create a file called "SequenceR-
outines.pm" and put our subroutines into it. For now, we have two:

Perl Programming for Biologists. D. Curtis Jamison
Copyright O 2003 John Wiley & Sons, Inc. ISBN: 0-471-43059-5 105

106 Perl Modules and Packages

generate a random DNA sequence
sub RandomSeq ({
@nucleotides = (‘a’,'c’,’'9g’','t");
my $length = shift | 40;
my $retval = "";
for (my $i = 0; $i < $length; $i++) {
my $base = $nucleotides[int(rand(4))];
$retval .= $base;

}
return $retval;

}

reverse complement a DNA sequence
sub ReverseComplement {
my $seq = shift;
my $retval = reverse($seq);
$retval ~= tr/actg/tgac/g;
return $retval;
1

1

Note the bare 1 at the end of the file. This is not a misprint. The use command
looks at the last line in the module for a TRUE value, which indicates that the
module loaded correctly. The bare 1 signals the use command that it has indeed
reached the end of the module and can proceed with the program.

After we have created the file, we either have to put it into the proper directory
for Perl, or we have to tell Perl how to find it. It is useful to know where Perl is
looking for modules, which we can find out using the —V switch. Simply type

% perl —V

and Perl responds with a description of how it is configured. At or near the end,
there is a line that says @INC and is followed by a list of directory paths:

@INC:
/System/Library/Perl/darwin
/System/Library/Perl
/Library/Perl/darwin
/Library/Perl
/Library/Perl
/Network/Library/Perl/darwin
/Network/Library/Perl
/Network/Library/Perl

is what it looks like under Mac OS X. The @INC list is all the directories where
Perl is looking for modules. If you have sufficient user privileges, you can put
your Perl module in one of these directories. However, most of us don’t have
permission, so we have to figure out another way to deal with it.

First, note that the . directory is part of the directory list. The . directory is
simply Unix shorthand for the current directory. So your programs will always

8.2

Packages 107

look in the current directory for .pm files. However, that creates a problem if
you try to run a program that uses a .pm file from another directory. The easiest
way to deal with the problem is to simply put our .pm file into a logical place,
and then push the new path onto the @INC array:

push (@QINC, "/usr/home/cjamison/perlib");

tells Perl to look in my perlib directory for any modules it can’t find elsewhere.
Now we can utilize the subroutines in the SequenceRoutines.pm file simply
by including the file in our program:

push (@QINC, "/usr/home/cjamison/perlib");

use SequenceRoutines;
$forward = RandomSeq(80);
$reverse = ReverseComplement($forward);

After the use statement, the two subroutines in SequenceRoutine.pm are avail-
able to our program exactly as if they had been written in the same file.
For simple libraries this is fine. However, there are situations that can create
complications.

The primary complication is the potential for two subroutines that share a
name. For example, consider a situation where we’ve been using the SequenceR-
outines.pm library for a while in various programs, and we decide that the
library module really needs to have GCContent() routine, since we've written
it for four or five of our programs. So we create the routine in SequenceRou-
tines.pm. But now, the previous programs where we have written a GCContent()
subroutine have two identically named subroutines: one that was written in
the main program file, and one that was included by the use command. When
GCContent() is used, there is no guarantee which version we will get. Fortu-
nately, Perl has a way around this problem, but to use it effectively we need a
little background first.

Packages

In Chapter 1, we learned that when the interpreter starts up, it sets aside a table
in memory that keeps track of the names of all the variables and subroutines.
This table is called the name table, and all the entries within the name table
constitute the namespace of the program. When a new variable or a new
subroutine is created, the name is placed into the name table with a pointer
to the memory location where the value or the code is stored. If the name has
been seen before, Perl fetches the value out of the memory location, or stores a
new value in the memory location.

Perl allows us to create and use multiple namespaces. The package command
switches between namespaces, creating new ones as required. The syntax is

package mypackage;

108 Perl Modules and Packages

and all variables and subroutines that appear after the package name are in the
mypackage namespace.

As a simple example, consider the ReverseComplement() subroutine. The code
works well for DNA, but we might want a version that works with RNA. One
way to do this is to create separate namespaces for DNA and RNA, each with a
ReverseComplement() subroutine:

package DNA Utilities;

DNA nucleotides
@nucleotides = (‘a’, ‘c’, 't', 'g’);

sub ReverseComplement {
my $seq = shift;
my $retval = reverse($seq);
$retval ~= tr/actg/tgac/g;
return $retval;

}

package RNA Utilities;

#RNA nucleotides
@nucleotides = (‘a’, ‘c’, ‘u’, 'g');

sub ReverseComplement {
my $seq = shift;
my $retval = reverse($seq);
$retval ~= tr/acug/ugac/g;
return $retval;

}

F

When this code is executed, Perl creates a namespace called "DNA_Utilities"
and puts an array called "nucleotides" and a subroutine called "ReverseC-
omplement" into it. At the second package command, Perl creates another
namespace called "RNA_Utilities" and places an array called "nucleotides"
and a subroutine called "ReverseComplement" into it. Even though they have
similar names, the two arrays and two subroutines are distinct and different
because they are in different namespaces. We can use either version of Rever-
seComplement() simply by the use of qualified names, which simply means we
join the namespace to the front of the name with a pair of colons. Thus we
can write:

$DNA Seq = "AATGAATGGCTAGCTTAGGCTAGGTTCCCATGATGG";
$RNA_Seq = "AAUGAAUGGCUAGCUUAGGCUAGGUUCCCAUGAUGG";
$DNA RevSeq = DNA Utilities::ReverseComplement ($DNA Seq) ;
$RNA_RevSeq = RNAUtilities::ReverseComplement ($RNA_Seq) ;

which is a completely distinctive way to access the subroutines.
Because ReverseComplement() is a subroutine, we don’t use a variable prefix
when we refer to it. But we still need to use them for ordinary variables. Because

8.3

Combining Packages and Modules 109

the namespace is a qualifier for the name, the variable prefix still goes in the
very front. So, to use the arrays, we would write

print (@DNA_Utilities::nucleotides);
or

print (@RNA_Utilities::nucleotides);

Combining Packages and Modules

Typically, packages have a one-to-one relationship with modules. That is, pack-
ages are organized into modules with one package per module. Almost every
Perl module begins with a package command, so when we include a module
with the use statement we are creating a new namespace.

To make our life easier (and to help prevent collisions), the convention is
to name the package and module with the same name. Thus, for our original
utility module, because we stored it in the SequenceRoutines.pm module, we
would create a namespace called SequenceRoutines:

package SequenceRoutines;
@nucleotides = (‘a’,'c’,'g’,'t’);

sub RandomSeq ({
my $length = shift || 40;
my $retval = "";
for (my $i = 0; $i < $length; $i++) {
my $base $nucleotides[int(rand(4))];
$retval .= $base;

}
return $retval;

}

sub ReverseComplement {
my $seq = shift;
my $retval = reverse($seq);
$retval ~= tr/actg/tgac/g;
return $retval;

}

1
and to use it our programs would look like
use SequenceRoutines;

$forward = SequenceRoutines::RandomSeq(80);
$reverse = SequenceRoutines::ReverseComplement($forward);

Although a bit wordier, it is much clearer where the subroutines are coming
from without any ambiguity about what namespace they are using.

8.4

8.4.1

8.4.2

110 Perl Modules and Packages

Included Modules

Several incredibly useful modules are already included in the standard Perl
distribution. These modules are ones that proved to be so wildly popular that
everyone was downloading and installing them. So to save wear and tear on the
CPAN servers, these modules are included right from the start.

CGI

Perl is often used to write scripts that process hypertext forms on the WWW.
These scripts make use of a protocol called the Common Gateway Interface, or
CGI. The CGL.pm module by Lincoln Stein makes it easy to both programmati-
cally create and parse HTML fill-out forms.

CGI.pm contains methods that provide shortcuts to produce HTML pages that
range from simple static displays to complex forms with cookies, style sheets,
and frames. Additionally, the module has methods for retrieving data from
forms and populating Perl variables with the data.

Getopt

The usual method of passing arguments to Perl programs as a list of strings on
the command line is fine for most programs. However, we often find that the
simple protocol becomes inadequate. For example, consider a program that will
take accession numbers from different databases and fetch the sequence record.
How can we programmatically tell which database the accession numbers
belong to?

One method might be to require the user to type in the name of the database
as an argument:

haydn%>getSequence.pl GenBank AC000123

We can achieve the same effect without a lot of extra typing by implementing
single-character switches

haydn%>getSequence.pl -G AC000123

Switches can also serve as Boolean markers to control our program. We can
improve our getSequence.pl script by adding the ability to reverse complement
the sequence if we see the - R switch. So, in our hypothetical program, typing

haydns%>getSequence.pl -G AC000123 -R

will return the reverse complement of our sequence.
Regular Unix commands also use switches (e.g., Is -lag), so our getSequence.pl
program will look a lot like other commands. But we do have to be careful,

Included Modules 111

because in Unix the order of the switches doesn’t matter, so we have to be able
to process

haydn%>getSequence.pl -R -G AC000123
as well as
haydn%>getSequence.pl -RG AC000123

the latter being an example of switch clustering. Clearly, performing this task
will take fancy processing of the @QARGV array.

Fortunately, the Getopt distribution makes dealing with command line switches
straightforward. You simply tell Getopt what switches to look for, and the sub-
routine will parse @RARGV removing any switches and setting variables.

Getopt consists of two modules: Long.pm and Std.pm. The Std.pm module is
simpler and will take care of 90% of your needs. Std.pm contains the getopts()
command, which takes a string that tells it which single characters to look for
as switches. A character followed by a colon means that there is an argument
to go with the switch. For each switch it finds, the getopts() command sets the
variable $opt_*, where the * is replaced by the switch, and the value of the $opt_*
variable is either 1 or is the value passed.

Thus, to implement our example, we simply write a main code that looks like

#!/usr/local/bin/perl

use Getopts::Std;
use SequenceRoutines;

getopts(‘RG:S:P’);
if ($optG) {
$seq = getGenBank($opt-G);

}
elsif ($opt-S) {
$seq = getSwissProt($opt.S);

}
elsif ($optP) {

$seq = getPBD($opt P);
}

if ($opt.R) {
reverseComplement ($seq);
}

The program consists of a series of tests to see if a particular $opt_* variable
is set, and, if it is, we perform whatever task is controlled by that variable,
either retrieving a sequence from the database or reverse complementing the
sequence. Note the actual subroutines for fetching the sequence have been left
out of the example, but we would probably use the BioPerl database routines.

8.4.3

8.4.4

112 Perl Modules and Packages

10

There are six modules that are part of the 10 package: 10::Handle, 10::Seekable,
I0:File, 10::Pipe, 10::Socket, and 10::Dir. Each of these modules provides an
object-oriented interface to the Perl IO routines. Although not overly useful for
small scripts, these modules are invaluable when writing larger object-oriented
programs, because they help create an object orientation for our entire program.

File::Path

The File::Path module provides an easy way to create and manage directories
from within a Perl program. For example, seqfiles.pl is a script for a sequencing
project that automatically creates a directory structure for use with the phred,
phrap, and consed programs and transfers the sequencer files into it. To do
this, we use the mkpath subroutine:

#! /usr/bin/perl
Move sequence files to a specific directory

use File::Path;

$basedir = ‘/local/data/sequencing/’;

$project = shift;

$filedir = shift;

$chromat_dir = $basedir . $project . "/chromat.dir";

$edit dir = $basedir . $project . "/edit dir";

mkpath ($chromat_dir);
mkpath ($edit._dir);

system "mv $filedir/* $chromat_dir";

The script first brings in the File::Path module, which gives us access to the
mkpath subroutine. Then it sets an absolute path to the standard sequence
data directory, gets the project name, and gets the directory name for the
chromatographs. Then it builds the necessary file names for the phred/phrap
programs by concatenating the base directory name, the project name, and the
name of the required phred/phrap directories. Next it creates the directories
using the mkpath subroutine, and then it moves the files into the appropriate
directory using the system command. We invoke the script like

%seqfiles.pl MDR /local/incoming

and moments later all the files that were in /local/incoming are moved to
/local/data/sequencing/MDR/chromat_dir.

The mkpath routine will create all the needed directories leading up to and
including the specified one. Thus if /local/data/sequencing didn’t exist, the

8.4.5

Included Modules 113

mkpath subroutine would create it. The subroutine returns a list of all the
directories it creates.

Strict

The strict module is used to check your code to make sure that you have not
accidentally used unsafe constructs. For example, strict makes sure that all
variables are either scoped using the my command or use fully qualified names.
The use of a global variable causes the script to fail.

Currently, the module will enforce rules about variables, references, and
subroutines. You simply put

use strict;

at the beginning of your program and Perl will force you to write perfect code.

Often, the strict module is too strict. For example, the code in seqfiles.pl
would cause strict to be upset about the fact that none of the variables were
scoped with the my command. However, because the script is so small and
simple there really wasn’t a big need to be strict about global variables. So,
when you include the strict module, you can tell it what you want to be strict
about. You simply include a string with the use command:

use strict "subs";

which causes the module to be strict only about how we use subroutines.
Similarly, "vars" makes strict worry only about variables, and "refs" makes
it worry only about references.

Another way to deal with strict is to specifically turn one aspect of strict off
with the "no strict" command. For example, in seqfiles.pl we might want to
only turn off the variable checking, so we would rewrite our code to look like:

#! /[usr/bin/perl
Move sequence files to a specific directory

use strict;
no strict "vars";
use File::Path;

$basedir = ‘/local/data/sequencing/’;
$project shift;
$filedir = shift;

$chromat._dir = $basedir . $project . "/chromat.dir";
$edit_dir = $basedir . $project . "/edit._dir";

mkpath($chromat_dir);
mkpath ($edit_dir);

system "mv $filedir/* $chromat._dir";

8.5

8.5.1

114 Perl Modules and Packages

Now the program will run just fine with the global variables, while still being
strict about the references and the subroutines.

In general, if you are writing a large Perl program with many subroutines and
modules, it is a good idea to use strict.

The CPAN

The included modules barely scratch the surface of available modules. Literally
hundreds of useful modules are available to Perl programmers. The problem
comes from knowing where to find information about available modules, and
which ones to choose.

Fortunately, we don’t have to hunt all over the Web to find modules.
Most are collected for us in the CPAN: the Comprehensive Perl Archive
Network. We can connect to the CPAN at http://www.cpan.org and either
browse or search through all the contributed modules there. Then, if we
like it, we can download a module and install it in our Perl modules direc-
tory. Most modules come with a very detailed set of instructions on how to
install them.

Although browsing the CPAN using a Web browser is straightforward, the
standard Perl distribution contains a module that makes life much easier. The
CPAN.pm module allows us to download and install new modules. Additionally,
we can use CPAN.pm to manage our installed modules (i.e., if we’re fortunate
enough to have a Unix computer, as CPAN.pm doesn’t work under Windows or
MacOS 9).

Setting Up the CPAN Module

Because CPAN.pm is part of the standard Perl distribution, we can simply begin
using it. To launch the interactive CPAN shell, we run Perl in the interactive
mode, using the -M switch to load the CPAN module and the -e switch to run
the shell subroutine:

[haydn:~] cjamison% perl -MCPAN -e shell
cpan shell -- CPAN exploration and modules installation (v1.52)
cpan>

The CPAN shell is now running. If you have never run the CPAN before, the
shell program will create a .cpan subdirectory in your home directory, and then
try to configure the setting needed to successfully use the program. The first
question CPAN asks you is:

Are you ready for manual configuration? [yes]

8.5.2

The CPAN 115

If you desire, you can answer “no” to this question, in which case the script will
attempt to automatically figure out the configuration. However, the autoconfig
function is less than perfect, and it typically fails to fully configure properly
(often failing to find key programs that really are present). It is better to answer
“yes” and run the configuration program manually.

For each configuration question, the script makes a best guess and places it
in square brackets at the end of the question. This is the default value, which
you can accept simply by hitting return. If the default value is wrong, or if you
just want to change it, you simply type in the new value. For example, the config
script asks for the location of certain important programs:

Where is your gzip program? [/usr/bin/gzip]
Where is your tar program? [/usr/bin/tar]
Warning: unzip not found in PATH

Where is your unzip program? [] /usr/bin/gunzip
Warning: make not found in PATH

Where is your make program? [] /usr/sbin/make

The first two needed programs, gzip and tar, were found by the script with
no problem. Hitting return sufficed to enter these two programs into the
configuration file. However, the unzip and make programs weren’t found, so
the default was left blank and I had to type in the values (a nonstandard
unzip program and a make program in an odd place found through the which
command). Obviously, you need to be relatively familiar with your Unix system
when running the config script.

The config also asks you to choose one or more CPAN FTP mirror sites. The
CPAN module will download a list of CPAN mirror sites and shows them to you
in a numbered list. Choose a few sites that are relatively close and type the
numbers one at a time at the prompt. When you have entered several, hit return
without entering a number and the script will proceed.

During the course of the installation, the CPAN script will make a few
suggestions to you about upgrading your installation. These are typically good
suggestions to follow. Make a note of the suggestions as they come up, and
install the recommended upgrades when possible.

After the installation script is finished, it will commit the configuration to
a special file called MyConfig.pm, which is buried deep in your .cpan direc-
tory. This file will be loaded from now on whenever you run the CPAN
module, and the install script won’t run again. You now should be at the
cpan> prompt.

Finding Modules
The most important command to remember when running the CPAN shell

interactively is the ? command. Typing the question mark at the cpan> prompt
will cause a detailed help screen to show up:

116 Perl Modules and Packages

cpan> ?

Display Information

a authors

b string display bundles

d or info distributions

m /regex/ about modules

i or anything of above
r none reinstall recommendations

u uninstalled distributions

Download, Test, Make, Install...

get download

make make (implies get)

test modules, make test (implies make)
install dists, bundles make install (implies test)
clean make clean

look open subshell in these dists’
directories

readme display these dists’ README
files
Other

h,? display this menu ! perl-code eval a
perl command

o conf [opt] set and query options q quit
the cpan shell

reload cpan load CPAN.pm again reload index load
newer indices

autobundle Snapshot force cmd
unconditionally do cmd

cpan>

This screen lists all the commands that the CPAN shell script understands.
The commands fall into three general categories: information, installation, and
management. We will consider each set of commands in turn.

The information commands allow you to search out modules based upon
things like the author’s name or the name of the module. The information
commands will accept either a string or a regular expression.

We can find out information about bundles, distributions, and modules using
the b, d, and m commands, respectively. Bundles are sets of modules that
are required for the proper installation and running of a particular module.
For example,

cpan> b BioPerl
Trying with "/usr/bin/ncftp -c" to get

ftp://ftp.perl.org/pub/CPAN/authors/id/C/CR/CRAFFI/Bundle-BioPerl-
1.00.tar.gz

8.5.3

The CPAN 117

Bundle-BioPerl-1.00
Bundle-BioPerl-1.00/BioPerl.pm
Bundle-BioPerl-1.00/Makefile.PL
Bundle-BioPerl-1.00/Changes
Bundle-BioPerl-1.00/README
Bundle-BioPerl-1.00/MANIFEST
Bundle id = Bundle::BioPerl
CPAN_USERID CRAFFI (Chris Dagdigian <dag@sonsorol.org>)
CPAN_VERSION 1.00
CPAN_FILE C/CR/CRAFFI/Bundle-BioPerl-1.00.tar.gz

MANPAGE Bundle::BioPerl - A bundle to install
external CPAN modules used by BioPerl
CONTAINS Bundle::LWP, File::Temp, IO::Scalar,

I0::String, HTTP::Request::Common, HTTP::Status,

LWP: :UserAgent, URI::Escape, XML::Parser,

XML: :Parser::PerlSAX, XML::Writer, XML::Node
INST_FILE /Users/cjamison/.cpan/Bundle/BioPerl.pm
INST_VERSION 1.00

cpan>

is a list of modules required for BioPerl.
Distributions are a complete set of related modules. For example, the CGI
distribution is made up of six modules, as seen in the information query:

cpan> d /CGI.pm-2.80/
Distribution id = L/LD/LDS/CGI.pm-2.80.tar.gz
CONTAINSMODS CGI::Carp CGI::Fast CGI::Cookie CGI::Push
CGI::Util CGI
CPAN_USERID LDS (Lincoln D. Stein <lstein@cshl.org>)

cpan>

The i command looks for any information it can find about the search string.
It will bring back a list of all authors, bundles, distributions, and modules that
match the string. Once you find the items you are interested in, you can get
more information about them using the a, b, d, or m command. Be prepared for
some rather long lists though: if your search term is too generic, you can get
back several screens worth of listing.

When you first run an information request, the CPAN shell goes out to the
CPAN site you specified and fetches back several index files, which it places in
your.cpan directory. All searches are run against the local copy of the index
files unless you request information from a file that has not yet been cached.
If you suspect that something has changed since you last connected, you can
use the reload command, which forces the CPAN shell to go out and refresh the
cache files.

Installing Modules

The installation commands in the CPAN shell are extremely straightforward. All
of the commands work with modules, distributions, or bundles. Although all

118 Perl Modules and Packages

the commands accept either strings or regular expressions, it is better to use
the full string name to avoid any confusion of multiple modules.

The get command goes out and fetches items from the CPAN mirror you
specified. The make command runs commands to create the Perl module,
compiling any special external programs required. The test command will run a
script supplied with the module that checks the functionality of the module to
make sure it was created properly. Finally, the install command places the new
module(s) into the proper Perl directory.

These four commands form a nice flow: To have a working Perl module you
must first get it, then make it, test it, and finally install it. Moreover, you can’t
take these steps out of order. You must first get a module before you can make
it. So the CPAN shell assumes that the act of issuing the commands for the later
steps implies that you want to perform the earlier steps. Thus, if you want to
install a newer version of the CGI module, you simply ask the CPAN shell to
install it and everything flows from there:

cpan> install CGI

Running install for module CGI

Running make for L/LD/LDS/CGI.pm-2.80.tar.gz
Fetching with LWP:

ftp://ftp.dc.aleron.net/pub/CPAN/authors/id/L/LD/LDS/CGI.pm-
2.80.tar.gz

CPAN: MD5 loaded ok

Fetching with LWP:

ftp://ftp.dc.aleron.net/pub/CPAN/authors/id/L/LD/LDS/CHECKSUMS

Checksum for

/usr/local/lib/perl5/CPAN/sources/authors/id/L/LD/LDS/CGI.pm-
2.80.tar.gz

ok

Scanning cache /usr/local/lib/perl5/CPAN/build for sizes

X CGI.pm-2.80/t/1lib/Test/Simple.pm, 12739bytes, 25 blocks

x CGI.pm-2.80/cgi-lib_porting.html, 8714bytes, 18 blocks
CPAN.pm: Going to build L/LD/LDS/CGI.pm-2.80.tar.gz

Checking if your kit is complete...
Looks good

Writing Makefile for CGI

cp CGI/Push.pm blib/lib/CGI/Push.pm

cp CGI.pm blib/1ib/CGI.pm
/sbin/make -- OK
Running make test
PERL_DL_NONLAZY =1 /usr/bin/perl -Iblib/arch -Iblib/lib
-I/usr/local/lib/perl5/5.6.1/IP30-irix
-I/usr/local/lib/perl5/5.6.1
-e ‘use Test::Harness qw(&runtests $verbose); $verbose =0;
runtests

8.5.4

The CPAN 119

@ARGV;’ t/*.t
t/apache............ ok

t/util...... ..ot ok

All tests successful, 8 subtests skipped.

Files =12, Tests =315, 6 wallclock secs (4.36 cusr + 0.60 csys
= 4.96 CPU)
/sbin/make test -- OK

Running make install

Installing /usr/local/lib/perl5/5.6.1/CGI.pm

Installing /usr/local/lib/perl5/5.6.1/CGI/Cookie.pm
Writing /usr/local/lib/perl5/5.6.1/IP30-irix/auto/CGI/.packlist
Appending installation info to
/usr/local/lib/perl5/5.6.1/IP30-irix/perllocal.pod

/sbin/make install -- OK

cpan>

Because install implies test and test implies make, the CPAN shell first tries
to make the CGI programs. But make implies get, so before going on with the
make program the CPAN shell issues the command to get the CGI distribution
we specified. After the get command successfully fetches the file, the make
command resumes. When the make command successfully finishes, the test
command takes over. When the test command finishes, we now have returned
to the install command, and the install command places the CGL.pm modules
into our module directory.

The clean command will take care of removing the old distributions files.
Once you have installed a module or distribution, you can save a lot of disk
space by wiping out all the intermediate files.

cpan> clean B/BI/BIRNEY/bioperl-0.05.1.tar.gz
Running make clean

The install commands work with your local module directory. Perl doesn’t
really care where modules are stored, so you can put them locally in your own
directory and use them in your script from there via the @INC list. However,
this has the effect of hard-coding your specific module path into your script,
thereby reducing the portability.

Often it is better to install the modules into the main Perl module directory.
This has the advantage that the modules are globally available and you no longer
have to worry about altering the @INC list. The downside is that if you don’t have
the proper access permissions, you will have to bribe the system administrator
to install the packages you want (fortunately, system administrators have a
notorious weakness for chocolate chip cookies).

Managing Installed Modules

The r command asks the CPAN script to look through your installed packages
and make recommendations about modules that might need to be updated. The

120 Perl Modules and Packages

list that is returned contains the name of the module, the version installed on
your computer, and the latest version in the CPAN:

cpan> r

Package namespace installed latest in CPAN file

AutolLoader 5.57 5.58
G/GS/GSAR/perl-5.6.1.tar.gz

CGI 2.56 2.80
L/LD/LDS/CGI.pm-2.80.tar.gz

CGI::Pretty 1.03 1.05
L/LD/LDS/CGI.pm-2.77.tar.gz

CPAN 1.52 1.59
A/AN/ANDK/CPAN-1.59.tar.gz

DB_File 1.72 1.802
P/PM/PMQS/DB_File-1.802.tar.gz

ExtUtils: :Embed 1.01 1.2505
D/DO/DOUGM/ExtUtils-Embed-1.14.tar.gz

File: :Spec 0.8 0.82
R/RB/RBS/File-Spec-0.82.tar.gz

Getopt::Long 2.23 2.26
J/JV/JV/Getopt-Long-2.26.tar.gz

Math::BigFloat undef 1.27
T/TE/TELS/Math-BigInt-1.49.tar.gz

Net::Ping 2.02 2.11
B/BB/BBB/Net-Ping-2.11.tar.gz

Pod: :Checker 1.098 1.2
B/BR/BRADAPP/PodParser-1.18.tar.gz

Pod: :Man 1.02 1.32
R/RR/RRA/podlators-1.20.tar.gz

Term: :Cap undef 1.07
J/JS/JSTOWE/Term-Cap-1.07.tar.gz

Test 1.13 1.20
M/MS/MSCHWERN/Test-1.20.tar.gz

Test::Harness 1.1604 2.01
M/MS/MSCHWERN/Test-Harness-2.01.tar.gz

Text::Soundex 1.0 2.20
M/MA/MARKM/Text-Soundex-2.20.tar.gz

Text::Wrap 98.11290 2001.092

M/MU/MUIR/modules/Text-Tabs+Wrap-2001.0929.tar.gz
1 installed module has a version number of O
84 installed modules have no parseable version number

cpan>

Based upon this list, it looks like the Perl installation on my laptop needs quite
a bit of maintenance. On the other hand, many of the outdated packages aren’t
too troubling (like Net::Ping) and with others I'm happy with the version that
is installed (like CGI and DB_File) because they're working fine and the newer
versions don’t contain any must-have features. Ultimately, you will have to
decide which modules are the most important and useful for your own tasks.
There are a couple caveats about using the r command. First, the modules that
are out of date are often in the original Perl distribution. Without having root

Exercises 121

permission, you can’t update those packages. Second, you should be aware that
updated packages can be incompatible with earlier versions. If you follow good
object-oriented Perl programming techniques, your scripts should be relatively
insulated from changes in the inner workings of modules, but be aware that
reinstalling a newer version of a module might break an older piece of code.
Finally, be aware that updating some modules might trigger a reinstall of Perl
itself! The best advice when using the CPAN is to be conservative.

Chapter Summary

Perl modules are reusable code libraries.

Modules are included into a program with the use() command.
Module files must end with a positive statement (usually a bare 1).
Packages keep the namespaces straight.

The package() command creates a new namespace.

Fully qualified names consist of the package name and the variable or
subroutine name concatenated with a pair of colons.

Packages typically have a one-to-one relationship with modules.
Modules already exist for many common Perl programming tasks.

Some modules come preinstalled. Other modules can be fetched from
the CPAN.

For More Information

perldoc perlmod
perldoc perlmodlib
perldoc CGI.pm
perldoc Getopt/Std.pm
perldoc CPAN.pm
www.cpan.org

Exercises

vl W N

What is the difference between a module and a package?

Make a list of other routines might be useful in SequenceRoutines.
How many packages can exist in a program?

Explain what is meant by a fully qualified name.

What modules are included in your Perl installation?

122 Perl Modules and Packages

6. Use the CPAN to answer the following:

a. What is the latest version of BioPerl?

b. Who is the author of GetOpts?

c. How many modules have the word "math" in their name?
d. How up to date is your Perl installation?

7. Explain the difference between a module and a bundle.

Programming Challenges

1. Expand SequenceRoutine.pm to include the routines you listed in exercise.

2. Use CGLpm to create and process an input form for a hypothetical Smith-
Waterman search program. The search program is invoked from the Unix
system by the following command:

sw [-g <gap-penalty>][-m <matrix_name>] [-r] <file_name>

(r is a simple flag to invoke repeat masking) and it returns a plain text file
for the results.

3. Use text fields and whatever other HTML widgets you might need to create
the input form. Return the output as unformatted plain text.

Part 111
Advanced Perl

9.1

Chapter 9

References

In Chapter 5, we saw that we could not pass more than one array to a subroutine,
because Perl flattens the arrays into a single list. The answer was to use a
special construct called a reference. Perl references are similar to the concept of
pointers in other languages. A reference is simply a scalar that refers to another
variable, be that variable a scalar, an array, or a hash. References not only make
it possible to pass multiple arrays (and hashes) to a subroutine, but it makes
possible complex data structures like arrays of arrays.

Creating References

The mechanism for creating a reference to any variable is simple. References
are created by using a backslash in front of the variable prefix.

$scalarRef = \$scalar;
$arrayRef = \@array;
$hashRef = \%hash;

The scalar variable now holds a reference to the original variable, which is now
called the referent.

To get the value of the referent, we have to dereference the variable that
contains the reference. We do that by prefixing another $ to the reference.

$scalar = 1;
$sRef = \$scalar; #reference to a scalar
print $$sRef; #prints 1

Perl Programming for Biologists. D. Curtis Jamison
Copyright O 2003 John Wiley & Sons, Inc. ISBN: 0-471-43059-5 1 25

9.2

126 References

The double dollar sign tells the Perl interpreter to dereference the value
stored in $sRef back into a scalar value. Dereferencing an array reference is
similar, but we have to make sure that we are specifically asking for an array:

@ar\r\ay = (Ilall, Ilbll, IICII);
$aRef = \@array; #reference to an array
print @$aRef #prints abc

We use a similar syntax to dereference a hash back from a hash reference:

$hRef = \%hash; #reference to a hash
print %$hRef; #prints the hash

Once a reference has been dereferenced, we can treat it just like the standard
type. For example, we can assign the contents of an array reference to
another array:

@newArray = @$aRef;

However, if we have a reference to an array, we don’t have to copy it back into
another array to get at a specific value in the referenced array. That would be
wasteful. Instead, Perl allows us to access information inside the dereferenced
array just like any other array by replacing the @ with a $ and adding an index.
However, the precedence rules force us to add some grouping brackets around
the hash reference:

print $$aRef[0]; f#fwrong: prints
print ${$aRef}[0]; #right: prints a

Because the dereferencing syntax can get confusing, Perl gives us a shortcut
called the arrow operator. The arrow operator is a minus sign followed by a
greater-than sign (which looks like an arrow), and it takes a reference on the left
side and an array index on the right. This tells Perl to dereference the reference
and fetch the value indicated by the index:

print $aRef=>[0]; #right: prints a

It is helpful to think of the arrow operator as meaning “what the reference
points to.”

Values inside a hash reference can also be accessed using the arrow operator.
In this case, we put the hash index on the right:

print $href=>{"key"};

ref()

Because references all are scalars, it is often useful to be able to ask what type
the referent was. We can do this using the ref command

ref ($reference)

9.3

Anonymous Referents 127

The ref function returns a string telling us what the type of referent the
reference refers to. The string is the name of the type in all capital letters like
"SCALAR, " "ARRAY, " or "HASH." If we pass ref() a scalar by mistake, then the
string value is undefined. The ref function is also called when we try to print a
reference. Thus, the code

print $aRef . "\n";
prints out
ARRAY (0xd8e0)

which is simply the return value from the ref function with the memory location
of the referent appended.

Because a reference is simply a scalar, we can pass the reference to a subrou-
tine and the copy of the reference will still point at the referent:

@myArray = (‘a’, ‘b’, ‘c’);
$arrayRef = \@myArray;
print $arrayRef . "\n";
&mySub ($arrayRef);

sub mySub {

$newRef = shift;

print "subroutine" . $newRef . "\n";
}

When we execute this code, we get the following output:

perl refer.pl
ARRAY (0xd95c)
subroutine ARRAY (0xd95c)

The fact that the appended memory location is the same tells us we are
dealing with the same array in both the subroutine and the main program.
If we had a copy, the two numbers would be different. Thus we can be sure
that any changes we make to the array in the subroutine will show up in the
main program.

Anonymous Referents

Perl allows us to create a reference to an array or a hash directly, without
going through the step of actually creating the array or hash first. Arrays (and
hashes) created this way are called anonymous arrays and are useful for passing
reference to subroutines.

We can create an anonymous array reference by using a list-style initialization,
replacing the parentheses with square brackets, and assigning directly into the
reference scalar:

$aRef = [1, 2, 3];

9.4

128 References

which has exactly the same effect as

@array = (1, 2, 3);
$aRef = \@array;

but takes fewer lines (and some people think it looks better also). The square
brackets tell Perl that we want an anonymous array, and so it returns a reference
rather than a list. Similarly, we can create an anonymous hash by enclosing the
hash list in curly braces rather than parentheses:

$hRef = {gold=>1, silver=>2, bronze=>3};
is equivalent to writing

%shash =
$hRef =

(gold=>1, silver=>2, bronze=>3);
%shash;

No matter how the hash reference is created, we can access the content by
using the arrow operator:

print "The gold goes to number $hRef=>{gold}";

will find the value associated with the "gold" key in our anonymous hash.
As we will see in the next chapter, anonymous hashes are especially useful
for writing object-oriented Perl.

Tables

Another major use for an anonymous reference is to create multidimensional
tables. For example, let’s revisit the sequence list we used to create a hash
table in Chapter 3. There we were first saving a list of gene names in an array.
But, typically, we want to store many data items describing the same gene. For
example, we might have the gene name, a GenBank ID, information about where
the GenBank record came from, and a size for the coding region. We want to
use this data to create a table that looks like Figure 9.1.

We can create the table using an array of arrays. First, we will create an array
for each of the five rows. Each of the row arrays will contain the four names we
want to store:

Gene Name GenBank ID Source Size (bp)
CAPZA2 XM_004969 predicted 2337
TFEC NM_012252 mRNA 1805
CFTR M28668 mRNA 6129
LOC51691 NM_016200 mRNA 537
LOC56311 XM_004978 predicted 1063

Figure 9.1 A table of gene data

Tables 129

@arrayl = (’'CAPZA2’,’XM.004969', predicted’,’'2337');
@array2 = ('TFEC’,’NM.012252’,’mRNA’,’1805');
@array3 = (’'CFTR’,’M28668', mRNA’,’6129");

@array4 = (’'LOC51691’,’NM.016200", mRNA’,’537");

@arrayb5 = ('LOC56311',’'XM_004978’', 'predicted’,’1063’);
Next, we create another array to hold references to each of the five arrays:
@aliases = (\@arrayl, \@array2, \@array3, \@array4, \@array5);

Now the @aliases array contains references to the arrays that hold all the data.
Pictorially, we might think of the table looking like Figure 9.2.

With that picture in mind, it is relatively easy to see how we can get at the
data stored in the table. If we look at a specific entry in the @aliases array, say
the item at index 2, we get back the reference to the array we stored there which
for index 2 is the array that contains the information for the CTRF gene. We
can then follow the reference and look at a specific index (like index 1) in the
second array to find the alias stored there:

$row = $aliases[2];
$GBID = $row->[1];

@aliases

@arrayl

\@array1

v

XM_004969

predicted

4l

\@array4

\@array5 2337

@array2
TFEC

mRNA

<

@array5 @arra\y4 @array3

LOCS6311 | LOC51691 | CFTR (
| XM_004978 | | NM_016200 | | M28668 |
predicted | mRNA (mRNA (
| 1063 (| 537 (| 6129 (

Figure 9.2 An array of array references

130 References

or, in one fell swoop:

$GBID = $aliases[2]=>[1];
or, even more simply

$GBID = $aliases[2][1];

and, because tables like this are so common, Perl will assume the arrow operator
when it comes across a pair of array indices together.

The creation of a specific named array to represent each row might get a
little tedious, especially if we want to include an entry for all 2771 genes on
chromosome 7. It is even more onerous if we realize that we aren’t ever going
to use those array variables again. But we can simplify our lives (and our code)
greatly by making use of anonymous arrays when we build our table:

@aliases = (['CAPZA2’',’'XM.004969', 'predicted’,’'2337'],
['TFEC’,’NM.012252' ,'mRNA’,'1805'],
['CFTR’,"'M28668' ,"mRNA’,'6129'],
["'LOC51691','NM_016200' , 'mRNA’,’'537'1],
['LOC56311’,'XM_004978' , ' predicted’, 1063'1]);

Chapter Summary

e A reference is Perl’s version of a pointer.
o References are created using the \ in front of a valid variable name.
e The ref() command tells use what type of variable the referent is.

¢ Anonymous array references can be created using the square brackets [|
instead of parentheses to enclose the list.

o Anonymous references to hashes can be created using the curly braces { }
instead of parentheses.

Exercises

1. Why are anonymous referents important?
2. Explain the relationship between a reference and a referent.

3. Which of the following expression properly dereferences the third value in
the array reference?

a. $aref[?]
b. $$aref[2]
c. ${$aref)[2]
d. ${Saref[2]}

Programming Challenge 131

e. S$aref->(2)
f. S$aref->[2]
g. $aref->{2)

Programming Challenge

1. Create a table using the microarray data parser created in Programming
Challenge 6.1.

10.1

Chapter 10

Object-Oriented
Programming

Introduction to Objects

There are two major paradigms for writing computer code. Thus far, the
example code presented has followed the procedural programming paradigm.
Our variables have been defined at the beginning, our code has been arranged
in functions and subroutines, and the program flow has been more or less
linear. In many regards, the code we have seen looks much like a recipe or a
laboratory protocol. In essence, our code has been organized into a single file
with a structure that looks like Figure 10.1.

The second programming paradigm is object-oriented programming (OOP).
In OOP, the variables and code are encapsulated into logical groupings called
classes. The organization of an OOP design looks more like Figure 10.2. Note
that the code is split across multiple files. Each file represents a class, and all
the code within a class has a common purpose.

® variable declarations
® main program
e functions and subroutines

Figure 10.1 Procedural code layout

Perl Programming for Biologists. D. Curtis Jamison
Copyright O 2003 John Wiley & Sons, Inc. ISBN: 0-471-43059-5 133

10.1.1

134 Object-Oriented Programming

® main code

e class 1 ® class 2
— variables — variables
— methods — methods

Figure 10.2 Object-oriented code layout

Both the procedural and object-oriented design approaches to writing pro-
grams are valid, and the approach to choose depends upon preference. Procedu-
ral code is typically used for short programs because the design phase is much
simpler and shorter when compared with the complex design considerations for
creating object-oriented programs. However, the simplicity of the procedural
approach is lost when programs reach too large of a size, and for these larger
programs OOP has a definite advantage of being easier to maintain and modify.
In the end, the amount of code to write is roughly the same, the only difference
is the organization of the program.

The OOP Approach

The OOP approach attempts to model a system as a set of interacting objects.
The objects group and organize the behaviors of the complex systems. If we view
object-oriented design as an organizational issue, the design principles become
language independent: we can write object-oriented code in any language, just
like we can write procedural code in any language. We just have to have the
right state of mind.

The first step in getting into the right state of mind is to understand what con-
stitutes an object. An object is comprised of attributes and actions. Attributes
are the things that describe the object (which we store in variables). Actions are
the tasks the object can do (which are encapsulated in chunks of code called
methods). Together, the attributes and actions create a unique object.

The object-oriented approach to programming is an attempt to duplicate the
way things interact in the real-world. For example, we can use OOP to model
a real world object like a flower by writing a flower class that contains all the
important information and features associated with being a flower. We would
create variables to hold attributes like color, flower shape, numbers of petals,
and so forth. We would also write methods that contained code to interact with
those variables to model processes that change our flower object in specific
ways, like wilting. Best of all, if we write the class code correctly, we can use our
class to represent multiple types of flowers, because all flowers have a color,
and all flowers wilt.

10.1.2

Introduction to Objects 135

When we write object-oriented code, we try to reflect the structure of an
object in the code. Attributes and actions are grouped together into structures
known as classes. Class variables contain the attributes, and class methods
contain the actions. The code in a class is a description of the form an object
should take.

It is important not to confuse classes and objects. The class is the general
description, and the object is the actual occurrence, or instance, of the class. A
single class can describe many different objects. For example, we might write a
class that describes the attributes and actions associated with a fruit. Later, we
can create instances of the fruit class with different attributes and we will have
objects representing an apple, an orange, and a pear. Similarly, dogs, cats, and
cows are instances of the animal class, and the vehicle class can be instanced
with car, boat, and train objects.

Class Design

When we design a class, there are three steps we need to follow. In order, we
need to

1. decide what types of objects make up the system to be modeled;
2. determine which objects belong together; and

3. describe the common components of each group of objects.

When we finish this process, each description constitutes a class. For example,
we can go to the botany department and make a list of all the types of plants
we see there. These might include such things as:

o sunflowers

e orange trees
o oak trees

e TOSEsS

e wheat

e (COIn

Examining the list, we see that there are some items that we can group
together:

e sunflowers, roses
e orange trees, apple trees

o wheat, grass

We then describe the common elements within these groups, and we end up
with three classes: the flower class, the tree class, and the grass class. Note

10.1.3

10.2

136 Object-Oriented Programming

that the grouping we have here is not the only possible grouping, nor even a
scientifically correct one (roses may be closer to trees than sunflowers on a
cladogram), but instead represents how we want to model the data.

When we describe a class, we look for attributes and actions that are common
to all members of the class. Thus, for the flower class, we can create variables for
color, number of petals, number of leaves, and so forth. With enough variables,
we can fully describe both a rose and a sunflower within the same class.

For methods, we look for active processes that alter those variables. For
example, all flowers eventually wilt. The wilting process involves losing petals
and leaves, and changing the color of the flowers. All these actions can be encap-
sulated into methods: dropPetals(), dropLeaves(), changeColor(). The whole wilt
process can then be written as an aggregation of other methods:

wilt() {
dropPetals(random());
dropLeaves(random());
changeColor("black");
}

Building methods by aggregation is an example of code reuse, and is the chief
advantage of the OOP methodology. The complexity of the larger methods are
reduced, and the smaller methods can be reused by many methods. The short,
simple methods are easier to understand and maintain.

Inheritance

Another mechanism of code reuse is inheritance. Quite often, two distinct
classes might share some common characteristics. For example, our Flower
class would probably share many similarities to the Tree or Grass class. We
can save time and energy by abstracting the generalities into a base class (say
the Plant class), and then building upon that foundation using inheritance to
create subclasses.

In many ways, the relationship between superclasses and subclasses is sim-
ilar to the relationship in taxonomy. As you move from the kingdom (Plantea)
down through genus and species (Toxicodendron radicans), you are adding
characteristics that distinguish members of that taxonomic level from others,
while retaining the characteristics of the higher level. Anthophytes and gym-
nosperms still share the common characteristics of all spermatophytes, even
though they have characteristics that differentiate the two groups. Similarly,
the methods and attributes of the superclass are inherited by all the derived
subclasses, even though they might have different features that separate them
as distinct classes.

Perl Objects

Even though Perl is not typically considered an object-oriented language, it is
still possible to write object-oriented Perl code. There are some rudimentary

10.2.1

10.2.2

Perl Objects 137

object-oriented functions, but mainly we adhere to a set of rules and conventions
that allow us to write object-oriented code. These rules and conventions can
be broken, but to do so simply creates a piece of code that is less useful and
harder to maintain.

There are three rules to writing object-oriented Perl, as defined by Larry
Wall (the creator of Perl). In order to write or use Perl objects we need to
remember that

1. classes are packages,
2. methods are subroutines, and

3. objects are blessed referents.

Rule Number One

This rule simply says that when we are creating our object-oriented Perl code,
we keep all the information for a particular class inside a package. As we saw in
Chapter 8, packages group similar subroutines together for inclusion in a larger
program, and they also serve to create distinct namespaces within a program.
Many aspects of packages are quite similar to classes, so we can equate a
package with a class. The package name becomes the name of the class.

For example, suppose we want to take the SequenceRoutines.pm module we
created in Chapter 8 and rewrite it into object-oriented Perl. The first step would
be to create a file and create a package. The package name will be the class
name, and the class name should define the type of objects the class defines.
Therefore, we will call our class "Sequence" because that is what the class
will contain

package Sequence;

Equating a class with a package also implies that each class is in a separate
module, and therefore in a separate file. Again, this corresponds well with the
paradigm of object-oriented programming, making it easier to maintain our
code. Thus we should call our file "Sequence.pm."

Rule Number Two

Rule two is also straightforward. It means that the code we write for methods
is simply arranged into subroutines, and we call the subroutine when we want
to invoke a method. Because the subroutines are grouped together in packages,
if we equate a package with a class, by extension we equate the package sub-
routines with the class methods. In practice, this approach approximates the
object-oriented approach quite well. Remember that a package creates a names-
pace, and a subroutine within that package is distinct from any subroutines in
other packages, even if they appear to have the same name.

10.2.3

138 Object-Oriented Programming

We already know two methods we want to use, RandomSeq and ReverseCom-
plement. So we create subroutines with those names.

sub RandomSeq {
code for RandomSeq
}

sub ReverseComplement {
code for ReverseComplement

}

There are some minor changes that we will have to make to the actual code of
the methods, because of some of the implications of rule three. Thus, we will
leave the body of the methods empty for the moment.

Rule Number Three

Blessing a referent is the actual trick to creating object-oriented Perl code.
The referent is some sort of data structure (usually a hash) that contains data
of a specific sort. The bless command marks the referent as belonging to a
particular class or package. After the referent has been blessed, we can use it’s
reference to access any of it’s data and any of the methods of the class it has
been blessed into.

The structure of the bless command is quite simple. It takes two arguments,
a reference and a string containing the package name

bless($reference, "package_name")

The command attaches an invisible flag to the data structure referred to by the
reference. That flag contains the string for the package name, and indicates that
the data structure belongs to the specified package, and has all the rights and
privileges of a member.

So, to create an object of our Sequence class, we would simply create a
reference to a data structure that contains our sequence information, and
invoke bless() on it:

$seqRef = \%seq;
bless $seqRef, "Sequence";

Now, not only can we use $seqRef as a reference to get to the data stored in the
%seq hash, we can also use it to invoke the methods we declared as part of the
"Sequence" package:

$seqRef=>RandomSeq() ;
$seqRef=>ReverseComplement();

Once we have blessed a referent into a class, Perl understands that the arrow
operator followed by a subroutine refers to a class method.

Thus far we’ve avoided stating exactly what sort of data structure we're going
to bless. In the Sequence example, we've used an associative array, but bless()

10.2.4

Perl Objects 139

will accept any reference, and so our referent can be any data structure: arrays,
type-globs, even scalars. However, a hash reference is by far the most common
structure used.

The biggest advantage to using an associative array is the built-in data
identifiers. Remember when we access a hash reference, we use the key to get
to the value:

$seqRef=>{name}

which returns whatever value is associated with the "name" key. Thus, a data
structure using a hash has a built-in data identifier, as long as we are careful to
make the names meaningful.

Since we are going to use a hash, we need to decide what data items we are
going to keep track of for our sequence objects. This is an important decision,
because we want to be sure to track everything the methods in our class might
need access to, since an object is supposed to be self-contained. To keep things
simple, we’ll only track three attributes: the GenBank ID, the name, and the
sequence. So now we can expand our code to include setting the data

%seq = (_.id=> "", _name=> "CTRF", _seq=> "ATTGG...");
$seqRef = \%seq;
bless $seqRef, "Sequence";

Note that we have used an underscore in front of each key. This is purely
a stylistic convention. The underscore serves to remind us that the keys are
internal to the blessed data structure.

Recall that in Chapter 9 we explored methods of making our code more
efficient using references to anonymous arrays. The same issues apply to
making objects: we don’t want to have to create a named array for every object
we're going to bless into the Sequence class. Again, we can simplify our object
code by using anonymous hashes

$seqRef = {id=> "", _name=> "CTRF", _seq=> "ATTGG..."};
bless $seqRef, "Sequence";

Now that we have our data structure defined, we can go back and look at our
methods and define exactly how they should work and what they should do.
The definitions become the interface to our class, and control how a user of
our class will interact with it. Any reasonable (or even unreasonable) set of
definitions is allowed, as long as we make sure the rules are available for our
users to understand.

Methods

Back in Chapter 8 we created a package of subroutines for sequence analysis.
One of those routines created a random sequence (perhaps to use to test a new
search comparison algorithm). The original RandomSeq subroutine returned
a random sequence that was then stored in a variable. In the object-oriented

140 Object-Oriented Programming

world, it is reasonable to expect that the user wants the current sequence object
to contain a random sequence. So our method will replace the current object
attributes with a random sequence. We will still look for a length and default to
40 if it is unspecified.

To turn our procedural subroutine into a class method, we rewrite our code
so it looks something like this:

sub RandomSeq {
@nucleotides = ('a’, ‘c’, '9’', 't');
my $self = shift;
my $length = shift || 40;
$self=>{ id} = "0000";
$self=>{ name} = "Random Sequence";
$self=>{seq} = "";
for (my $i = 0; $i < $length; $it++) {
my $base = $nucleotides[int(rand(4))];
$self=>{_seq} .= $base;
}
1

Compare the object-oriented code shown here with the procedural code from
Chapter 8. The very first change we note is that there is a mysterious extra
parameter that wasn’t specified in our user interface that is getting shifted off
the argument list. The name of the variable we are shifting it into, and the way
that we are using it later in the code, give us clues to what this variable is.
It appears to be a reference to the current Sequence object. But where did it
come from?

Actually, Perl put it there for us. Whenever we use an object to invoke a class
method, Perl prepends a reference to the current object into the argument list.
That way, our class methods know what object called them. After the shift
operation, $self becomes another reference to the hash we blessed in $seqRef,
and we can manipulate the data in the hash. Thus, when we adjust the value
pointed to by $self->{_id} we are really adjusting the value in $seqRef->{_id}.

In fact, the lines altering _id and mname are the next difference between
the SequenceRoutines subroutine and the Sequence method. Although the two
attributes are not specifically the sequence, we still want to alter them to reflect
the change we are going to make in the sequence. An object needs to be treated
rather holistically, and the id and name are as much of a part of the object as
the actual sequence.

Finally, we alter the sequence itself. We write the new sequence directly into
the data structure using the seq key, and we no longer worry about returning a
value. The object value is changes when we finish writing into $self->{seq}.

The ReverseComplement subroutine changes similarly. However, in this case,
we decide that we would rather return a new object containing the reverse
complement of the sequence stored in the current object. We can write the new
method as follows:

sub ReverseComplement {
$self = shift;

10.2.5

Perl Objects 141

my S%rev;
$rev{_id} = "000";
$rev{_name} = $self->{_name} . "reverse complement";

Srev{_seq} = reverse($self->{_seq});
$rev{ seq} ~= tr/actg/tgac/g;
return bless \%rev, ref($self);

}

Again, the first thing in our argument list is a reference to the current object.
We use that reference to gain access to the attributes of the current object. We
create a new associative array to hold the details of the reverse complemented
sequence object. Finally, we return a reference to a blessed Sequence object.
Note that we used the ref command, giving it $self as an argument. The ref()
command returns the type of the referent, and when given an object reference
it returns the name of the class the object belongs to. In this case, the string
would be "Sequence" because that is the name of the class.
Now our users can write

bless $seqRef, "Sequence";
$revSeqRef = $seqRef->ReverseComplement();

and create a new sequence object and its complement.

Constructors

An issue with using bless() is that it will happily bless any data structure into
any class. Thus, someone with evil intentions could actually write a piece of
code that looked like

$carRef = {_make=> "Pontiac", _model=> "Firebird",
_engine=> "V8"};
bless $carRef, "Sequence";

Obviously this would create a problem when we go to invoke the ReverseCom-
plement method. Even if there is a defined object that is the reverse complement
of a Firebird (a Yugo perhaps), the method would fail because the code in the
Sequence::ReverseComplement() method is going to be looking for the _seq
attribute that the car data structure doesn’t have. And, while an evil user would
deserve what they got, we also have to worry about our users who might
make an honest mistake by forgetting to initialize a variable or by accidentally
blessing a DNA object into a RNA class.

One way to avoid confusion and make life easier for people using your class is
to provide a constructor. A constructor is a method that instantiates an object
by creating the data structure, blessing the data structure into the class, and
returning a reference to the new object. By convention, this method is called
new().

We would write the new() method for the Sequence class simply by encap-
sulating the object creation code we’ve already seen into a new() method.

142 Object-Oriented Programming

The user will then create a Sequence by invoking the new() method with the
appropriate arguments:

$seqRef = Sequence::new("Sequence", "", "CTRF", "ATTGG...");

and then use it as a normal Sequence object. The code for the new method will
look something like this:

sub new {
my ($class, $id, $name, $seq) = @
my $ref = {_id=>$id, _name=>$name, _seq=>$seq};
return bless $ref, $class;

}

The code is very straightforward. We simply put the arguments into the right
place in our hash, and then we bless the hash into a Sequence object. Note that
the string "Sequence" is the first argument to our constructor, and we use that
string as the class name argument to the bless command. This is another one of
the Perl object-oriented programming conventions. We don’t have to do it this
way, but it makes our constructor work better, especially when the constructor
is called using the arrow notation

$seqRef = Sequence->new("", "CTRF", "ATTGG...");

Notice the difference between the module-like invocation of the new method
using the double colons and the more object-oriented version with arrow
operator. In the latter instance, the arrow automatically places the name of the
package as the first argument, similar to when it prepended the reference to the
current object in the argument list to a normal class method. Using the arrow
operator and building constructors makes using the class a little easier.

A class can have multiple constructors. By strict definition, any method that
returns a newly blessed object is a constructor, so in fact our ReverseCom-
plement method is actually a constructor. Similarly, we might decide it makes
more sense to have RandomSeq be a constructor as well:

sub newRandomSequence {
my $class = shift;
my $length = shift || 40;

my %self;
$self->{_id} = "0000";
$self->{ name} = "Random Sequence";

$self->{seq} = "";

for (my $i = 0; $i < $length; $i++) {
my $base = $nucleotides[int(rand(4))];
$self->{_seq} .= $base;

}
return bless \%self, $class;

}

So now rather than creating a new Sequence object and overwriting it with a
random sequence, we can create it directly:

$rSeq = Sequence->newRandomSequence(70);

10.2.6

10.2.7

Perl Objects 143

Accessors

Earlier, we noted that when we create a hash to store attributes, it is customary
to put an underscore in front of the hash key to remind us that they are internal
to the blessed data structure. Although we can write code that uses those
internal variables directly, it is usually better to provide methods that set or
return the value of the attribute. This way we can preserve the internal integrity
of the object data structure, and we can also hide the internal workings of
our class.

Methods that access the data in an object are not surprisingly called data
accessors. By convention, a class supplies an accessor for every attribute that
can be set by the user of that class. Accessors can be used to fetch the value of
the attribute, set a new value, or both. Usually, the accessor is named so that it
is clear what attribute is being manipulated.

Our sequence class has three attributes, so we want to create accessors that
will return the value of each of the accessors. The accessor for the id attribute
might look something like:

sub ID {
my $self = shift;
return $self=>{_id};
}

The accessor is simplicity itself. We shift the reference to the object off the
argument list, and then use the argument to access the value stored in the
hash keyed by the string _id. Now to print the ID of the sequence, we would
simply write

print $seqObj=>ID;

The accessors for the other attributes would be similar.

OOP Versus Procedural

As a final note, let’s pull together the complete Sequence.pm class file and
compare it with the SequenceRoutines.pm module from Chapter 8:

package Sequence;
my @nucleotides = (‘a’, ‘c’, ‘g', 't’);

sub new {
$ref = {{id=>$_[1], name=>$_[2], seq=>$_[3]};
return bless $ref, $.[0];

}

sub newRandomSequence {
my $class = shift;
my $length = shift || 40;

144 Object-Oriented Programming

my %self
$self=>{ id} = "0000";
$self=>{ name} = "Random Sequence";

$self=>{seq} = "";

for (my $i = 0; $i < $length; $i++) {
my $base = $nucleotides[int(rand(4))];
$self=>{_seq} .= $base;

1

return bless \%self, $class;

}

sub ReverseComplement {
my $self = shift;

my S%rev;
$rev{_id} = "000";
$rev{_name} = $self=>{_name} . "reverse complement";

$rev{_seq} = reverse($self=>{_seq});
$rev{_seq} ~= tr/actg/tgac/g;
return bless \%rev, ref($self);

}

sub ID {
my $self = shift;
return $self=>{_id};
}

sub Name {
my $self = shift;
return $self=>{_name};
}

sub Sequence {
my $self = shift;
return $self=>{_seq};
}

13

The amount of code in the two files is about the same, although Sequence.pm
has a little more due to the constructor, the accessors, and the extra lines
needed to maintain the entire object. However, the real savings comes in
the main code, where our use of object-oriented programming makes our
code much easier to understand. For example, imagine a simple program that
creates a random sequence, complements it, and then prints out a Fasta library
containing both sequences.

Using Sequence.pm our code looks like

use Sequence;

$forward=>newRandomSequence(80) ;
$reverse = $forward=>ReverseComplement();

print ">" . $forward=>ID . $forward=>Name . "\n";

Chapter Summary 145

print $forward=>Sequence . "\n";
print ">" . $reverse=>ID . $reverse=>Name . "\n";
print $reverse=>Sequence . "\n";

whereas the same program using SequenceRoutine.pm would look like

use SequenceRoutine;

$forwardSeq = RandomSeq(80);

$forwardID = "000";

$forwardName = "Random Sequence';

$reverseSeq = ReverseComplement ($forwardSeq) ;
$reverseID = "000";

$reverseName = "RandomSeq reverse complement";
print ">" . $forwardID . $forwardName . "\n";
print $forwardSeq . "\n";
print ">" . $ReverselID . $reverseName . "\n";
print $reverseSeq . "\n";

Both programs perform the same task and produce the exact same output.
But the object-oriented version uses less code, and is cleaner when handling the
data (using two variables rather than six). The object-oriented code would be
even cleaner if we applied more advanced object-oriented techniques like data
access methods and keyed constructors.

In the long run, using object-orientated program techniques over procedural
programming techniques is largely a matter of preference. Typically, object-
oriented techniques are adopted when creating large programs that are going
to be used for long periods of time, whereas the procedural is quicker and
easier for which to write short, quick programs. Object-oriented programming
also gives us the huge advantage of being able to use class libraries like Bioperl,
which we will see in the next chapter.

Chapter Summary

e Object-oriented programming attempts to model a system as a set of inter-
acting objects.

e A class is a general description (or code).

e An object is a specific instance of a class.

o Attributes are the data that describes an object.

e Actions are the methods an object can perform.

e Subclasses inherit from superclasses, and extend the capabilities of the class.

e Perl classes are packages.

e Perl methods are subroutines.

e Perl objects are blessed referents.

146 Object-Oriented Programming

For More Information

Conway, D. (1999) Object Oriented Perl. Manning, Greenwich, UK.

perldoc perlobj

Exercises

1. Explain whenitis better to write object-oriented code rather than procedural.
2. Explain the difference between a class and an object.

3. Design a sequence class. Include in the description the attributes and
methods needed.

4. Why do we create a new() function for all our classes?
What is the arrow operator?

6. Of the following list, what would be a class and what would be an object?
Justify your answers.

a. tiger

b. tree

c. ponderosa pine
d. gene

e. CTRF

Programming Challenges

1. Implement the sequence class from Exercise 3, above.

2. Write a Perl class that keeps track of the full taxonomy and the common
names of animal species.

11.1

Chapter 11
Bioperl

Every bioinformaticist who has been in the business for any length of time
has a directory on their computer containing Perl scripts representing tools for
various computational tasks. If you were to catalog the programs, you would
find many that fall into a specific subset of tasks, and that the same task
has been solved in a myriad of different ways. It has been said that every
bioinformaticist has written a program to reverse complement Fasta files at
least once, and most of us have written it two or three times.

Fortunately for the bioinformaticist, there is Bioperl. Bioperl is a collection
of modules that facilitates the development of bioinformatics applications. The
software is maintained by a dedicated group of bioinformatic programmers
who generously donate their time and energy. The latest information about the
project can be found at the www.Bioperl.org Web site.

Bioperl is strongly object oriented. Each module represents a class complete
with constructors, data accessors, and methods. Including the Bioperl modules
gives access to many bioinformatic classes, including classes for modeling
sequences and alignments, communicating with databases, and with other
programs. Figure 11.1 lists the major components of Bioperl.

Sequences

The main classes that most of Bioperl revolves around are the sequence manip-
ulation classes. There are several sequence classes that are available for use,
depending upon the desired goals of you program. For example, the Large-
Seq class is specialized for maintaining genomic-sized (>100Mb sequences)

Perl Programming for Biologists. D. Curtis Jamison
Copyright O 2003 John Wiley & Sons, Inc. ISBN: 0-471-43059-5 147

148 Bioperl

Category Di“;,}zgg{:‘ or Comment
Sequences Bio/Seq.pm main sequence storage class
Bio/Seq/ specialized sequence storage classes
Bio/SeqFeature/ sequence features classes
Bio/SeqlO/ sequence file format converters
Bio/LiveSeq/ sequence that changes over time
Bio/Annotation.pm sequence database links and literature references
Bio/Variation/ sequence polymorphisms
Alignments Bio/SimpleAlign.pm sequence alignment tool
Bio/AlignlO/ aligned sequence file format converters
Database Bio/DB/ remote database communication protocols
conneetivity Bio/Index/ local database access tools
Tools Bio/Tools bioinformatic algorithms

Figure 11.1 Select Bioperl modules and distributions

whereas the LiveSeq class is geared toward storing sequences that have fea-
tures that change over time. However, the default, general purpose sequence
representation is Seq.

A Seq object is very straightforward to create. We simply call the new method,
supplying several keys value pairs representing the sequence data:

$seq = Bio::Seq->new(-seq => 'ATCGT',
-desc => ’'Sample sequence’,
-display_id => ‘something’,
-accession_number => 'GB_ID’,
-moltype => ‘dna’);

First, note that all the keys start with a -, which indicates they are parame-
ter names for arguments to the Bio:Seq module (this is patterned after the
Unix command line options convention). The key names are pretty much self-
explanatory about what type of information the value encodes. The only one
that is even mildly tricky is the moltype, which can be ‘dna’, ‘rna’, or ‘protein’.
All values are supplied as string values.

Once a Seq object is created, we have many possible methods we might
perform with it. For example,

print as a fasta file
print ‘> ' . $seq->accession_number() . * '
$seq=>desc() . "\n";
for ($i = 0; $i" < length; $i+=70) {
print $seq=>subseq($i, $i+70) . "\n";
}

which we can print out a Fasta file with little muss and fuss. The first print
statement creates the Fasta defline, using the accession_number() method and
the desc() methods to get the database accession number and the molecule
description. Note that we don’t have to remember that the description is stored

11.2

SeqFeature 149

in a hash keyed by the string "-desc" because the desc() method remembers
that for us: this type of method is known as a data accessor method because it
accesses the data for us.

Next we have a for loop that iterates over the sequence, printing out 70
bases per line. The 70 bases are extracted from the sequence using the subseq()
method. The method is similar to the substr() command in that it extracts a
subsequence from the main sequence, but the supplied variables are the start
and endpoint.

We can also automatically convert sequences:

$protSeq = $seg=>translate();

translates a nucleic sequence object into a protein sequence object. The behavior
of the translate() method can be controlled by a variety of variables, including
specifying the frame and codon translation tables.

SegFeature

If we consider a sequence, we note that there are always subsequences of
greater importance than other subsequences. For example, an ALU repeat or a
promoter region might be more interesting to us than the entire sequence. Most
of the large biology databases have recognized this, and for most entries the
databases provide some form of annotation.

For example, in the GenBank record for the working draft sequence NT_007930
we find the following section:

FEATURES Location/Qualifiers

source 1..5669875
/organism="Homo sapiens"
/db_xref="taxon:9606"
/chromosome="7"

STS 33..234
/standard_name="D7S3100"
/db_xref="UniSTS:186668"

gene 151..5576
/gene="MUC3B"
/db_xref="LocusID:57876"
/db_xref="MIM:605633"

(plus a lot more entries). This is the feature table, and it tells us exactly what
biologically relevant features exist in the sequence record, along with their
positions. For example, we see there is an STS found within the sequence:
D7S3100 can be found between bases 33 and 234 of this sequence entry.
Obviously, it would be worthwhile to be able to navigate through these entries.
The SegFeature module provides just such a mechanism. When we get a Seq
object from a database, we also get a list of the features stored in a list within
that Seq object. We can access those features via the Seq::top_SegFeatures() or
the Seq:all_segfeatures() methods, both of which return a list of SeqFeature

11.3

150 Bioperl

references. We can then iterate through the list, examining the features for one
aspect or another:

my @features = $mySeq=>all_seqfeatures();
foreach $feature (@features) ({

//do something with the features
1

All features have a start and a stop position, defined relative to the parent
sequence. The start and stop are retrieved from the SeqFeature using the start()
and end() methods respectively. So, if we pretend that $feature contains the
feature description for the D7S3100 STS defined above, $feature=>start() would
return 33, and $feature=>end() would return 234.

The feature table works on the idea of tags. A tag is closely related to a key,
in that a feature is made up of tag-value pairs that describe the feature. The
primary tag is the keyword used by GenBank to describe the overall feature:
STS, gene, etc. The secondary tags begin with a / and are separated from
the associated value by an equal sign. Going back to our D7S3100 example,
the primary tag would be "STS", while there are two secondary tags called
"standard_name" and "db_xref."

We access the tags through a couple of methods. The primary_tag() method
returns the primary tag, while the all_tags() returns a list containing the sec-
ondary tags. We can use that list to get the values associated with the tag using
the each_tag_value() method:

foreach $tag ($feat->all tags()) {
print "Feature has tag ", $tag, "with values, ",
join(‘ ¢,$feat->each tag value($tag)), "\n";

}

Note that the each_tag_value() method also returns a list, because a tag can have
more than one value (as seen by the multiple db_xref tags in the gene feature).

Annotation

One special type of sequence feature is an annotation. Annotations are brief
descriptions that convey some biological information about the sequence. For
example, we might want to link our sequence to some experimental data we
found during a literature search. The Bio::Annotation provides exactly such
a facility.

An annotation object can contain four types of data: a brief description,
comments, links to other objects, and references to literature. The description
is a standard text string. Comments, DBLinks, and References are classes with
the Bio::Annotation hierarchy.

We use the new method to create an annotation:

my $ann = Bio::Annotation=>new(’-description’="text’);

11.4

Sequence 1I/0 151

The new method only accepts the description. Comments, DBLinks, and
References need to be added using the add_Comment(), add_DBLink(), and
add_Reference() methods, respectively. The description text should be a single,
brief line of text. Use the Comment attribute to add longer comments:

$ann=>add_Comment (Bio: :Annotation::Comment=>
new(‘-text’ =>‘commenti’));

We use the Comment::new() method with a string to create a long comment
(perhaps about the experimental method used or the abstract of the new paper).
We can add as many Comments as we like to the Annotation.

Similarly, weuse the DBLink::new() method to create anew external database link
(using "-database" and "-primary_id" to initialize the name of the database
and the UID, respectively) and the Reference::new() method to create a literature
reference (using " -authors", "-title", "-location",and "-start" to initial-
ize the authorlist, the article title, the journal, and the page number, respectively).

For example. we could create a new annotation like this:

my $DBLink = Bio::Annotation::DBLink=>new(
-database => "PubMed",
-primary_id => "11099254");
my $1Ref = Bio::Annotation::Reference=>new(
-authors => "Jamison DC, Thomas JW, Green ED.",
-title => "ComboScreen facilitates the multiplex
hybridization-based screening of high-density clone
arrays.",
-location => "Bioinformatics 2000 Aug;16(8)",
-start => 678);
my $comment = Bio::Annotation::Comment=>new(
-text => "abstract in PubMed");
my $ann = BioAnnotation=>new(
-description => "ComboScreen paper");

Sequence I/0

While the Bio::Seq class is powerful, just using the class by itself may not be
the best answer for most programs. We probably don’t want to hard-code our
sequences into our scripts, creating new features and annotations by hand.
Instead, we will probably want to read the Seq objects in from database files
that we have downloaded from a database. Bioperl provides us with a set of
SeqlO objects that save us from having to create code to ingest and parse
databases into our programs. SeqlO classes exist for all the major database
formats, including GenBank, EMBL, Fasta, and PIR.

The SeqlO object also takes care of writing data in a specific format. For
example, to reformat a file containing EMBL records into a file of Fasta records,
we could write

$in = Bio::SeqlO=>new(-file => "inputfile",
-format => "EMBL');

152 Bioperl

$out = Bio::SeqlO=>new(-file => ">outputfile",
-format => ’‘Fasta’);
while (my $seq = $in=>next_seq()) {
$out=>write_seq($seq);
}

The first two lines set up the input and output filters. The filenames are strings
with the same conventions as arguments to the open command, which in fact
they are. The format argument contains a string specifying the format the
SeqlO object will read or write. The next_seq() command is used to iterate over
the EMBL sequence records in the input file, whereas the write_seq() command
outputs each EMBL record as a Fasta record.

The object returned by the next seq() command is a Seq object. Thus, we can
use the Seq object read from the file just like any other Seq object.

As useful as SeqlO is, more often than not we are interested in getting only a
single sequence from a database. The Bio::DB modules save us from having to
manually download sequences. These modules will communicate with remote
databases like GenBank or SwissProt to fetch sequence records across the
Internet and turn them into Seq objects that we can use in our programs:

use Bio::Seq;
use Bio::DB::GenBank;

$gb = new Bio::DB::GenBank();
while (shift @ARGV) {

$seqs{$.} = $gb=>get_Seq.by id($.);
1

This code creates a hash (%seqs), which contains a bunch of Seq objects, keyed
by id (which we conveniently read in from the command line using the @RARGV
array). The get_Seq_by_id() method takes care of establishing a communications
channel to GenBank, requesting a specific record, and then converting the
record into a Seq object. We can improve upon our code by using the batch
fetch mode:

use Bio::Seq;
use Bio::DB::GenBank;

$gb = new Bio::DB::GenBank();

$seqio = $gb=>get_Stream_by_batch(@ARGV);

while ($seq = $seqio=>next_seq()) {
$seqs{$seq=>display_id} = $seq;

1

This code does the exact same thing (creates a hash of Bio::Seq objects keyed
by id), except the sequences are gotten all at once rather than one at a time.
We still create the DB::GenBank object, but instead of individual Seq objects we
fetch a SeqlO object using the get_Stream_by_batch() method. We then iterate
through the SeqlO object using the next_seq() method. This code is tremendously
more efficient than the previous example, because we only open a channel to
GenBank once.

11.5

Cool Tools 153

Cool Tools

Bioperl contains many algorithms that can be invoked within your program.
These utilities are contained in the Tools distribution. For example, the
Tools::SeqStats class computes many useful descriptive statistics about
sequences, including the molecular weight and residue occurrence counts.
Similarly, Tools::RestrictionEnzyme will find all the restriction sites in a
sequence.

Using the Tools modules simply requires instancing a new Tools object with
a Seq object as the argument:

use Bio::Seq;
use Bio::DB::GenBank;
use Bio::Tools:0ddCodes

$gb = new Bio::DB::GenBank();
$seqio = $gb=>get_Stream_by_batch(@ARGV);
while ($seq = $seqio=>next_seq()) {
$code = Bio::Tools::0ddCodes=>new($seq);
print $seq=>id . "\n";
print $seq=>seq . "\n";
print $code=>charge() . "\n\n";
}

The OddCodes class computes things like hydropathy and charge for a protein
sequence. After we fetch a batch of Seq objects, we iterate over them creating a
new OddCodes object. Then we print out the sequence id, the sequence, and the
charge for each residue. The first entry in out output would look something like:

sequenceid
ACDEFGH
NNAANNC

In addition to utilities, the Tools distribution includes modules for parsing
output from search tools like BLAST and HMMER. The parsers are generally used
when creating automated annotation pipelines. For example, to parse through
the results of a BLAST search we would write:

use Bio::Seq;
use Bio::Tools::BPlite;

$resFile = shift;
$rep = Bio::Tools::BPlite(-fh => $resFile);
$rep=>query;
while (my $hit = $rep=>nextSbjct()) {
$hit=>name;
while (my $hsp = $hit=>nextHSP()) {
$hsp=>score();
}
}

11.6

11.6.1

154 Bioperl

The BLAST results file is passed to the script through the @QARGV array, and
a new BLAST parser is created using the name of the result file. The query()
method digests the report and creates a list of BLAST hits, which we then iterate
over. The next_Sbjct() method gives a BLAST hit object that contains a list of
BLAST HSP objects, which we can again iterate over, retrieving the score for
all HSPs.

Example Bioperl Programs

To conclude our exploration of Bioperl, the following program is presented as an
example of using Perl and Bioperl in a real laboratory environment. The program
was written to support the required informatics for a sequencing lab. The desire
was to quickly generate primer pair candidates for use in STS mapping.

Primer.pl

This program was written to support the required informatics for a sequencing
lab. The desire was to quickly generate primer pair candidates for use in STS
mapping. We use Bioperl modules to fetch the sequences from GenBank.

#! /usr/bin/perl

#

primers.pl

#

Reads a list of accession numbers from the command line,

fetches the sequences from GenBank, and then generates a

set of primers somewhere in the first 500 bases. We show a
preference for coding regions if we can manage it.

#

13Nov1998

DCJ

import required modules
use strict;

use Bio::Seq;

use Bio::DB::GenBank;

use Primer3;

set up variables
my %sequences;

my $key;

my $feature;

Fetch sequences from GenBank, keyed by accession

my $gbConnect = new Bio::DB::GenBank();

my $seql0 = $gbConnect=>get_Stream_by_acc(@ARGV);

while (my $tempSeq = $seqlO=>next_seq()) {
$sequences{$tempSeq=>display_id} = $tempSeq;

Example Bioperl Programs 155

}

iterate over sequences
foreach $key (keys(%sequences)) {

set arbitrary start point
my $start = 50;
my @features = $sequences{$key}=>top_SeqFeatures();

try to start in CDS if we can
foreach $feature (@features) {
if ($feature=>primary_tag eq ‘CDS’) {
if ($feature=>start() < 400) {
$start = $feature=>start();

1
last;

}
}

#search for primers
my $primer = Primer3=>new($key,
$sequences{$key}=>subseq($start, $start + 500));
print "$key\nLeft\t\t\tRight\t\t\tLength\tPenalty\n";
while ($primer=>getNextPair()) {
if (($primer=>penalty() < 9) && ($primer=>productGC() <
60)) {
print $primer=>leftOligo()."\t"
$primer=>right0ligo() . "\t" .
$primer=>productLength(). "\t"
$primer=>penalty(). "\n";
}
}

print "\n";
}

After the comment block that explains what the program is used for, and
any assumptions we’'ve made, the first few lines of code import the modules
we are going to use. The strict module makes sure our code is written to a
good standard, and the Bio::Seq and Bio::DB::GenBank provide storage for the
sequences and connection to GenBank, respectively. Finally, we use a special
module called Primer3, which provides a connection and interface to the Primer3
software. We will examine this module closely in the next section.

The next few lines of the program declare some variables. Because we are
using strict, we need to make sure that all our variables are scoped to the local
namespace. If we weren’t using strict, we could simply have let these variables
autovivify as globals.

Next we use the Bio:DB::GenBank module to fetch the sequences. First we
set up a new connection to GenBank, then we send the entire argument list to
the GenBank server to fetch the sequences in batch mode. The sequences
are brought back in a Bio::SeqlO object, which we iterate over using the
next_seq() method.

11.6.2

156 Bioperl

For each sequence, we first figure out the leftmost position allowable for the
primer. The arbitrary start point is 50, just to make sure we are well inside the
sequence. We get the feature table from the sequence object, and iterate over
the features looking for the first CDS. If we find it with 400 bp of the sequence
start, we use that, otherwise we stick with the arbitrary 50 bp start.

Finally, we do the primer search and print out the results. Here we create a
new Primer3 object by giving the constructor a 500 bp subsequence. We will see
how in the next chapter, but for now accept that the Primer3 constructor runs
the primer3 program and returns an object containing several primer pairs,
which we can iterate over using the getNextPair() method. We iterate over the
primer pairs, printing out our report:

% primers.pl AC013798

AC013798

Left Right Length Penalty
CCTCCTGGACAACCTGTGTT TGAAGTCAGGGGACATAGGG 280 0.0823
CCTCCTGGACAACCTGTGTT AGGCCAGTAGACTGGGTGTG 298 0.1758
CCTCCTGGACAACCTGTGTT GGTGTGAAGTCAGGGGACAT 284 0.1852
TTCCCGCATCTCTTAGCAGT AGGCCAGTAGACTGGGTGTG 209 0.1962
CTTCCCGCATCTCTTAGCAG GACACTAGTGGCAAGGAGGC 226 0.2362

Most of the primers.pl program is extremely simple. The real guts and power
of the program lie in the classes and the methods we call. The next section
examines the Primer3 module, which is similar to many Bioperl modules.

Primer3.pm

The Primer3 module is a Perl class that interfaces with the Primer3 program
(a C program that runs under Unix). Although not a Bioperl module, it con-
tains similar design parameters and would be very simple to turn into a
Bioperl module.

#
Primers.pm

Simplified class for primers3.
options not implemented (using defaults) and others are
hard-coded. This is not a generic primer3 interface!!!

#
#
#
#
Retrieves and manages primer3 output. Note: many primer3
#
#
#
13Nov1998

DCJ

package Primer3;

import a few modules
use FileHandle;
use IPC::0pen3;

Example Bioperl Programs

non-standard defaults: For any options not in

this list, we use the generic primer3 default

values.

my $primer3_prog = ’/usr/local/bin/primer3’;

my %definitions = (PRIMER_PRODUCT_SIZE_RANGE =>"200-450");

Constructor

sub new {

setup variables
my ($class, $name, $seq) = @_;
my S%results;

create BoulderIO command stream
my $command ="PRIMER_SEQUENCE_ID =$name\nSEQUENCE =$seq\n";

my $arg;

foreach $arg (keys(%definitions)) {
$command .= "$arg=$definitions{$argj\n";

}

$command .= "=\n";

send command to primer3 program

my ($read, $write) = (FileHandle=>new, FileHandle=>new);
my $pid = open3($write, $read, $read, "$primer3_prog");
print $write $command;

$write=>close;

read results from primer3 into hash
while ($. = $read=>getline) {
chomp;
my ($key, $value) = split("=");
$results{$key} = $value;
1

return bless(\%results, $class);

}

Iterator: Set index to next primer pair
sub getNextPair {
my $self = shift;
if (exists $self=>{_CURRENT}) {
already counting
$self=>{ CURRENT}++;
if ($self=>{ CURRENT} <= $self=>count()) {
valid primer pair
return 1;
} else {
we’ve run out of primer pairs
return 0;
1
} else {
initialize counter
if ($self=>count()) {
we have primers to iterate over
$self=>{ CURRENT} = 0;
return 1;

157

158

Bioperl

} else {
we have no primers to work on
return 0O;
}
}

—_

Note for accessors: The first primer pair is officially
primer pair 0. Each attribute in the hash is named with
the primer pair number appended (or embedded) in the name
EXCEPT for primer pair 0. Thus PRIMER_PAIR_PENALTY is
the penalty for the first pair, PRIMER_PAIR_PENALTY.1 is
the the second, and so forth. This leads to the odd little
if statement to append the underscore and number to every
primer pair key except the first one.

oW W W I W W

Accessor: Number of primer pairs
sub count {

my $self = shift;

return int(keys(%{$self})/20 - 1);
}

Method: Calculate GC content of product
sub productGC {
my $self = shift;

find the start position of the current left primer
my ($leftKey) = "PRIMER_LEFT";
if ($self=>{ CURRENT}) {
$leftKey .= "_$self=>{ CURRENT}";
}

create substring for product

my ($start) = split(‘,’, $self=>{$leftKey});

my $length = $self=>productLength();

my $prodSeq = substr($self=>{SEQUENCE}, $start, $length);

calculate GC percentage rounded to two decimal places
my $GC = $prodSeq =~ tr/GC/GC/;
return int(($GC/$length)*10000)/100;

!

Accessor: Penalty
sub penalty {
my $self = shift;
create hash key for current pair
my $key = "PRIMER_PAIR_PENALTY";
if ($self=>{_CURRENT}) {
$key .= "_$self=>{_CURRENT}";
}
return $self=>{$key};
}

Accessor: product length

Example Bioperl Programs 159

sub productLength {
my $self = shift;

create hash key for current primer pair
my $key = "PRIMER_PRODUCT_SIZE";
if ($self=>{ CURRENT}) {

$key .= "_$self=>{_CURRENT}";

}
return $self=>{$key};

}

Accessor: left oligo
sub leftOligo {
my $self = shift;

create hash key for current primer pair
my $key = "PRIMER LEFT";
if ($self=>{_CURRENT}) ({

$key .= "_$self=>{_ CURRENT}";

1
$key .= "_SEQUENCE";

return $self=>{$key};
}

Accessor: right oligo
sub rightOligo {
my $self = shift;

create hash key for current primer pair
my $key = "PRIMER RIGHT";
if ($self=>{_CURRENT}) {
$key .= " _$self=>{ CURRENT}";
;key .= "_SEQUENCE";
return $self=>{$key};
\

The first step in creating a new module is to declare the name of the module
using the package command. We then import a couple modules, FileHandle and
IPC::Open3. Finally, to finish the setup, we define a pair of package variables:
the $primer3_prog is the fully qualified program name (meaning it has the full
Unix path), and %definitions is a hash that contains values for the primer3
parameters that we wish to use. Aside from redefining the product size, our
program will use the default values associated with primer3.

The rest of the Primer3.pm file consists of subroutines that make up the
methods of the class. The first subroutine is new(), which serves as a constructor
for the Primer3 object.

The constructor is relatively simplistic, taking only two arguments: the
sequence name and the sequence string. The first thing the constructor does
is to shift those arguments (along with the Perl-supplied class name) into local
variables. We also define a hash to hold our program results.

160 Bioperl

Next, we create the command we will supply to the Primer3 program. The
command has a unique structure based upon the BoulderIO format, which
consists of a keyword followed by an equal sign and the value associated with
the keyword. We represent the command as a string containing the keywords
and values, appending the arguments from the %definitions hash (which we
have cleverly designed to hold the parameter values indexed by the actual
parameter keyword).

The next section is the only part of our module that isn’t immediately recog-
nizable, because we have used an uncommon extension to the Perl language.
The open3 command is from the IPC::Open3 module, and it allows us to safely
open a program pipe for both reading and writing, something the standard
open command won’t do. The exact use of open3 is detailed in the perlipc
section of the perldocs; suffice it here to say that the open3 creates reading and
writing filehandles to the command supplied. We can then print our command
to the filehandle referenced by $write and read the results from the filehandle
referenced by $read. The results are also returned in BoulderIO format, so we
simply have to split the incoming lines on the equal sign to get key-value pairs
for our results hash. Blessing a reference to the hash into our class gives us the
return value for our constructor.

The getNextPair() method is a special type of method called an iterator. An
iterator assumes that you have a list of values and want to step through them
sequentially. However, rather than returning a value, the iterator keeps track of
which primer pair we are currently working with, and returns a true value if it
can advance to a new primer pair. So if we were working on the second primer
pair, after we make a call to getNextPair() we would be working with the third
primer pair.

The way we keep track of which primer pair we are working on is simple. We
keep a value in our hash (keyed by the index string "_CURRENT") that contains
an integer. The integer corresponds to the current primer pair, and to advance
to the next primer pair we increment current. There are two special cases to
watch for: when we are done iterating, and when we haven’t started iterating
yet. The first situation is easy, we simply check our incremented _.CURRENT
value against the count of primers, returning a 0 if we've incremented past
the last one. The second situation is also easy to look for because, before we
begin iterating, the _.CURRENT key-value doesn’t exist. The only tricky part is
that in the Primer3 output the primer pairs are numbered from 0, so we set the
_CURRENT value to 0. Now all our accessors can use the value associated with
_CURRENT to find the right value to return.

At the beginning of the accessor methods, there is a rather lengthy comment
about the nature of the Primer3 output. This comment helps orient future
maintainers of the module, alerting them to look for some special code. In
general, it is always a good idea to document the structure of any files you are
reading, just in case the structure of the file changes and breaks your code.

The first accessor is a method we saw used in the getNextPair() method. The
count method returns the number of primer pairs returned from the Primer3

Exercises 161

program. To get the count, we count the number of keys and divide by 20,
because there are 20 lines of output per primer pair. There are also a few lines
extra, so we turn the result into an integer, and then we subtract one to make
the counter start from zero. This somewhat arcane formula was determined
empirically by examining the output of the primer3 program.

The next method calculates the CG content of the product defined by the
current primer pair. First, we build a key to get the value associated with the
PRIMER_LEFT tag, appended an underscore and the primer number if needed,
as detailed in the comment that started the accessor section. Then we extract
the position information from the string. We also get the length of the product
through another accessor. Then we create a temporary string by extracting
the substring that represents the product from the string that represents the
sequence. Finally, we count the number of Gs and Cs using the tr operator,
and perform a calculation that returns the percentage CG rounded to two
decimal places.

The remaining accessors (Penalty, productLength, leftOligo, and rightOligo)
all follow the same pattern. First, the proper key is constructed, appending
or embedding the proper index number from the .CURRENT value, and then
returning the value associated with the key.

Chapter Summary

e Bioperl contains much of the code needed for bioinformatics programming.

For More Information

www.Bioperl.org
perldoc perlipc

Exercises
1. From the Bioperl documentation, explain the difference between the various
sequence classes.

2. Which Bioperl modules might you use in a program to

a. perform a SNP search
b. create a phylogenetic tree
c. translate genomic sequences from GenBank into a Fasta library

3. What other applications might you use Primer3.pm for?

162 Bioperl

Programming Challenges

1. Write a script for any of the programs listed in Exercise 2.

2. Write a script using Bioperl that will accept any number of accession
numbers to be fetched from GenBank and output the residue-by-residue
hydropathy for each. Some considerations:

e some sequences might be nucleic;

e the hydropathy string should be intercalated with the sequence string,
not exceeding 70 characters per line;

¢ hint: you've seen 95% of the script in the examples.

3. Turn Primer3.pm into a real Bioperl module. Make allowances for the need
to change the parameters, and create all the required accessors.

Appendix A

Partial Perl
Reference

This is a partial listing of Perl functions and keywords used in this book. For a
complete listing, see Wall or perldoc perlfunc.

Chapter 3

Functions for arrays

pop
push
shift
unshift

Removes and returns the last value in an array
Puts a new value at the end of the array
Removes and returns the first value in an array
Puts a new value at the front of the array

Functions for list data

join
reverse
sort

Turns a list into a string
Reverses the order of a list
Rearranges a list into a new order

Functions for hashes

delete
exists
keys

values

Completely deletes a key-value pair
Return true if a key exists

Returns the keys in a list

Returns the values in a list

Perl Programming for Biologists. D. Curtis Jamison
Copyright O 2003 John Wiley & Sons, Inc. ISBN: 0-471-43059-5 163

164 Partial Perl Reference

Chapter 4

Keywords related to control flow

last Stop executing the loop immediately

next Go to the next iteration of the loop immediately
redo Do the same iteration of the loop over again
Chapter 5

Keywords related to scoping

my Restrict a variable to the local scope

Keywords related to subroutines

return Return a value from a subroutine

sub Define a subroutine

wantarray Check whether a subroutine is being used in a scalar or an array
context

Chapter 6

Functions for strings

chomp Removes the record-separator character (usually "\n") from the
end of a string

index Returns the location of the first occurrence of a substring
within a larger string

length Returns the length of a string

m// Regular expression match operator

reverse Reverses a string

rindex Same as index, but start from the right

s/// Regular expression substitution operator

split Breaks a string into a list at the specified characters

substr Returns a specified substring from with a larger string

tr/// Translation operator

v/// Translation operator

Chapter 9

165

Chapter 7

Input and output functions

die Prints a string and exits the program
print Prints a string

Functions for filehandles, files, or directories

close Disconnects a file handle from a file or process
open Connects a file or process to a file handle
Chapter 8

Keywords related to Perl modules

package Create a name for a module

use Read a module into the program

Chapter 9

Keywords related to classes

bless Make an array into an object of a particular class

ref Returns the type of a reference

Appendix B

Bioinformatics File
Formats

The world of bioinformatics is extreme in the number of competing and non-
interchangeable formats, all invented to represent the same or highly similar
data. Definitions for data interchange conventions like CORBA and XML are
therefore frightfully large, because they attempt to take into account all the
various nuances and templates covered by the competing data formats.

This appendix presents several of the more popular and stable data formats,
with samples suitable to be used in writing parsers for data munging. However,
this is a snapshot, current of the writing, and may not accurately reflect the
current state of the format. For that reason, wherever possible, a primary source
has been cited.

GenBank

The GenBank format is a standardized informational format. It was developed
by the National Center for Biotechnology Information, the National Library of
Medicine, and the National Institutes of Health, and is the standard display
format for the GenBank databases. The format consists of a set of nested
keyword identifiers and free-text entries. GenBank records are delimited by a
pair of forward slashes // on a single line.

The GenBank format is designed to be human readable and convey both
bibliographic and feature information about a sequence. While the format is
parsable, the information is also available in the ASN.1 format.

Perl Programming for Biologists. D. Curtis Jamison
Copyright O 2003 John Wiley & Sons, Inc. ISBN: 0-471-43059-5 167

168

Bioinformatics File Formats

LOCUS
DEFINITION

ACCESSION
VERSION
KEYWORDS
SOURCE
ORGANISM

REFERENCE
AUTHORS

TITLE

JOURNAL
MEDLINE
REFERENCE
AUTHORS

TITLE
JOURNAL
REFERENCE
AUTHORS
TITLE
JOURNAL

COMMENT
FEATURES
source

gene

CDS

CFA315401 4934 bp mRNA MAM 02-AUG-2001
Canis familiaris mRNA for multidrug resistance protein 2 (mrp2
gene), transcript variant 1.

AJ315401

AJ315401.1 GI:15130909

alternative splicing; mrp2 gene; multidrug resistance protein 2.
dog.

Canis familiaris

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Carnivora; Fissipedia; Canidae; Canis.

1 (bases 1 to 4934)

Conrad,S., Viertelhaus,A., Orzechowski,A., Hoogstraate,J.,
Gjellan,K., Schrenk,D. and Kauffmann,H.M.

Sequencing and tissue distribution of the canine MRP2 gene compared
with MRP1 and MDR1

Toxicology. 156 (2-3), 81-91 (2001)

21108656

2

(bases 1 to 4934)

Conrad,S., Racky,J., Orzechowski,A., Hoogstraate,J., Gjellan,K.,
Kauffmann,H.M. and Schrenk,D.

Transcript variants of the canine MRP2 gene

Unpublished

3

(bases 1 to 4934)

Kauffmann,H.M.

Direct Submission

Submitted (23-JUL-2001) Kauffmann H.M., Food Chemistry
/Environmental Toxicology, University of Kaiserslautern,
Erwin-Schroedinger-Strasse 56, D-67663 Kaiserslautern, GERMANY
related sequence Y18220.

Location/Qualifiers

1..4934

/organism="Canis familiaris"

/db_xref="taxon:9615"

/tissue_type="Liver"

3..4637

/gene="mrp2"

3..4637

/gene="mrp2"

/function="drug conjugate transporter"

/note="alternative splicing"

/codon_start=1

/evidence=experimental

/product="multidrug resistance protein 2"
/protein_id="CAC48162.1"

/db_xref="GI:15130910"
/translation="MLEKFCNSTFWNSSFLDSPEADLPLCFEQTVLVWIPLGFLWLLA
PWQLLHVYRTKIKRSSITKLYLAKQVLVGFLLILAAIELVLVLTEDSGEATVPAIRYT
NPSLYLGTWLLVLLIQYSRRWCVQKDSWFLSLFWILSILCGSFQFQTLIRTLLKDSNS
NLAYSCLFFIGYALQILVLILSAFSEKDASSNNPSFTASFLSSITFSWYDSIVMKGYK
QPLTLEDVWDVDEQITTKALVSKFEKYMVEELQKARKTLQKQQQRNTQGKSGERLHDL
NKNQSQSQDILVLEEVKKKKKKSGTTEKFPKSWLVKSLFKTFYVILLKSFLLKLVFDL
LTFLNPQLLKLLISFANDPDMYVWTGYFYSVLFFVVALIQSLCLQSYFQMCFMLGVNV
RTTIMASIYKKALTLSNQARKQYTIGETVNLMSVDAQKLMDVTNFIHLLWSNVLQIAL
SIYFLWAELGPSILAGVGVMILLIPVNGLLASKSRAIQVKNMKNKDKRLKIMNEILSG
IKILKYFAWEPSFKNQVHELRKKELKNLLTFGQMQSVMVFLLYLTPVLVSVITFSVYT
LVDSNNVLDAEKAFTSITLFNILRFPLSMLPMVISSLLQASVSRERLEKYLGGDDLDT
SAIRRDSSSDKAVQFSEASFTWDRDSEATIRDVNLEIMPGLMVAVVGTVGSGKSSLMS
AMLGEMEDVHGHITIKGTIAYVPQQSWIQNGTIKDNILFGSELDEKRYQQVLEACALL
PDLEVLPGGDLAEIGEKGINLSGGQKQRISLARATYQNSDIYVLDDPLSAVDAHVGRH
IFNKVLGPNGLLKGKTRLLVTHSIHFLPQVDEIVVLGNGTILEKGSYNTLLAKKGLFA
KILKAFTKQTGPEGEATVNEDSEEDDDCGLMPSVEEIPEEVASLTMKRENSLHRTLSR
SSRSRSRHQKSLRNSLKTRNVNTLKEEEEPVKGQKLIKKEFIQTGKVKFSIYLKYLRA
IGWYLIFLIIFAYVINSVAYIGSNLWLSAWTNDSKAFNGTNYPASQRDMRIGVYGVLG
LAQGVFVLMANLLSAHGSTHASNILHRQLLNNILQAPMSFFDTTPTGRIVNRFAGDIS
TVDDTLPQSLRSWILCFLGIVSTLVMICTATPVFIIVIIPLSIIYVSIQIFYVATSRQ

BASE COUNT
ORIGIN

’

61
121
181
241
301
361
421
481
541
601
661
721
781
841
901
961
1021
1081
1141
1201
1261
1321
1381
1441
1501
1561
1621
1681
1741
1801
1861
1921
1981
2041
2101
2161
2221
2281
2341
2401
2461
2521
2581
2641
2701
2761
2821
2881
2941
3001
3061
3121
3181
3241
3301
3361

1320 a

tcatgctgga
aagcggacct
tttggctect
ctataaccaa
ccatagagct
gatacaccaa
gcaggcgatg
tactctgtgg
ctaacttggc
tcctatcage
ttctgagtag
ctctgacact
gcaagtttga
agcaacagag
agagtcaaag
ggaccacaga
tcatactctt
ctcagctget
ggtatttcta
gctactttca
tatacaagaa
cagtgaacct
tgctgtggte
gaccctccat
ttgcctctaa
agatcatgaa
cattcaaaaa
ggcagatgca
tcacgtttte
tcacctccat
tctceteact
atgacttaga
cagaggcctc
agattatgcc
tgatgtcage
ccatagccta
tttttggatc
taccagactt
atcttagtgg
acatctatgt
tcaataaggt
atagcattca
tggagaaggg
aggcattcac
aagatgatga
tgaccatgaa
gcagacatca
aggaggagga
aggtgaagtt
tcatcatttt
gtgcttggac
acatgagaat
caaatctctt
taaacaacat
tgaacaggtt
gctggatatt
cagtgttcat

LKRLDSVTRSPIYSHFSETVSGLSVIRAFEHQQRFLKHNEVGIDTNQKCVFSWIVSNR
WLAVRLELIGNLIVFFSSLMMVIYKATLSGDTVGFVLSNALNITQTLNWLVRMTSEIE
TNIVAVERINEYIKVENEAPWVTDKRPPPGWPSKGEIRFNNYQVRYRPELDLVLRGIT
CDIRSMEKIGVVGRTGAGKSSLTNGLFRILEAAGGQIIIDGVDIASIGLHDLREKLTI
IPQDPILFSGSLRMNLDPFNHYSDGE IWKALELAHLKTFVAGLQLGLSHEVAEAGDNL
SIGORQLLCLARALLRKSKILIMDEATAAVDLETDHLIQMTIQREFSHCTTITIAHRL

GenBank

HTIMDSDKIIVLDNGKIVEYGSPQELLRNSGPFYLMAKEAGIENVNSTSF"

1135 ¢ 1150 ¢ 1329 t

gaagttctgc aactctacgt tttggaactc
gccactttgt tttgagcaaa ctgttctggt
ggccecttgg cagettctte atgtgtatag
actctacctt gctaagcagg tgcttgttgg
ggtccttgta ctcacagaag actctggaga
tccaagcctt tacctgggca catggctcct
gtgtgtacag aaggattctt ggttcctgtc
tagtttccaa tttcagactc tgatccggac
ttactcctge ctgttcttca tcggetatge
attttcagaa aaagatgcct cctcaaataa
cattacgttt agttggtatg acagcattgt
ggaagatgtg tgggatgttg atgaacagat
aaaatatatg gtagaagagc tgcagaaggc
gaacacccag gggaagtctg gagaaaggct
ccaagatatc cttgttctgg aagaagttaa
aaagtttccc aagtcctggt tggtcaagag
gaaatcattc ctactgaagc tggtgtttga
gaagttgctg atctcctttg caaatgaccc
ttcggteete ttetttgttg tggetctcat
aatgtgcttc atgttgggtg taaacgtacg
ggcgetgace ctttccaacc aggccaggaa
gatgtctgtg gatgctcaga agctcatgga
aaatgttctc cagattgctt tatctatcta
cttagcaggt gttggggtga tgatactcct
gagtagagct attcaggtaa aaaatatgaa
tgaaattctc agtgggatca agatcctgaa
ccaagtccac gaacttcgga agaaagagct
gtctgtaatg gtgtttctct tatacttaac
agtttacact ctggtggaca gcaataatgt
caccctcttc aatatcctge getttccect
gctccaggec agegtttcca gagaacgect
cacatccgcc attcgacgtg acagcagttc
cttcacctgg gaccgggact cggaagccac
aggccttatg gtggetgtgg tgggcactgt
catgctggga gaaatggaag atgtccatgg
cgtcccacag caatcctgga ttcagaatgg
cgagttggat gaaaagagat accagcaggt
ggaagtgctg ccgggaggag acctggctga
gggtcagaag cagcggatta gcctggccag
tctggatgac cccctgtcag ctgtggatge
cttgggtccc aatggcctat tgaaaggcaa
ctttcttcce caagtggatg agattgtggt
atcctacaac actctgctgg ccaagaaagg
aaaacagacg ggtcctgaag gagaggccac
ctgtgggetg atgcccagtg tggaggaaat
aagagagaac agccttcatc gaacacttag
gaaatcccta agaaactctt tgaaaacccg
accagtgaaa ggacaaaaac taattaagaa
ctccatctac ctgaagtacc tacgagcaat
tgcctatgtg atcaattctg tggcttatat
caatgactct aaagccttta atggcactaa
tggcgtctat ggagttctgg gattagctca
gagtgcccat ggttccaccc atgcatcaaa
ccttcaagca cccatgagtt tttttgacac
tgctggtgat atttccacag tggatgacac
gtgtttcctg ggaatagtca gcactcttgt
catcgtcatc attcctctta gcattattta

ttcattcettg
gtggattccc
gaccaagatc
gtttcttett
agccacagtc
ggttttgetg
tctattcetgg
actcttaaag
actacagatc
tccatcattce
tatgaaaggc
tacaaccaag
cagaaagacc
gcatgacttg
aaagaaaaaa
tctcttcaaa
ccttctcacg
agacatgtat
ccagtctctc
gacaaccatc
gcagtacacc
tgtgaccaac
cttcctgtgg
aattccagtt
gaataaagac
atattttgcc
caagaacctg
tceggtettg
tttggatgca
aagcatgctc
ggaaaagtac
tgacaaagct
aatccgagat
aggctctggg
gcacatcacc
caccataaag
gctagaagcc
gattggagag
agctacctat
tcatgtggga
gactcgtctc
tctggggaat
attgtttgcet
agtcaatgag
ccctgaggaa
tcgecagttcce
gaatgtgaac
ggaattcata
aggatggtat
tggatccaac
ctatccagcc
aggtgtgttt
catccttcac
aacacccaca
cctccceccaa
catgatctgc
tgtgtctatt

gatagcccag
ttgggtttce
aagagatctt
attctagcag
cccgecatta
atccaataca
attctctcaa
gacagcaatt
ctggtcctga
acggcctceat
tacaagcaac
gcactggtca
ctccagaaac
aacaagaatc
aagaagtctg
actttctatg
ttcctgaatce
gtgtggactg
tgccttcaga
atggcttcca
attggagaaa
ttcattcatc
gcagagctgg
aatgggctac
aaacgtttaa
tgggaacctt
ctgaccttcg
gtgtctgtga
gagaaggcat
cccatggtaa
ttgggagggg
gtgcagttct
gtgaacctgg
aagtcttcct
atcaagggca
gacaacatcc
tgtgccctee
aagggtataa
cagaattcag
agacatattt
ttggttacac
ggcaccatct
aagattctga
gacagtgaag
gtggcctect
aggtccagga
actctgaagg
caaactggaa
ttgatattce
ctctggcetca
tctcagaggg
gtgctcatgg
aggcaactgc
ggtcggattg
tccttgegea
acggccactc
cagatatttt

169

170 Bioinformatics File Formats

3421
3481
3541
3601
3661
3721
3781
3841
3901
3961
4021
4081
4141
4201
4261
4321
4381
4441
4501
4561
4621
4681
4741
4801
4861
4921

/1

ASN.1

The ASN.1 format for biological sequence information was also developed by
the NCBI, and is closer to the native search and storage format. ASN.1 represents
the data in a flexible hierarchical nested structure, which is straightforward to
parse. Parsers for ASN.1 exist in many languages, including Perl and C. More
information and a full description of the NCBI ASN.1 specification can be found

atgtggctac
ctcacttcag
gatttctgaa
ttgtctccaa
tttcatccct
ttctgtccaa
aaatagagac
aggcaccctg
ggtttaacaa
cttgtgatat
catccttgac
atggggtaga
cccaggatcc
actcagatgg
gcctgcaact
agaggcagct
atgaggccac
gggagttctc
gtgacaagat
tgctgagaaa
acagcacatc
tatttttttg
tgttatatce
tatctcctte
ctcctgettt
tttaatttat

ttccecgecag
tgagacagtg
acacaatgaa
cagatggcett
gatgatggtt
tgcacttaat
caacattgtg
ggtgactgat
ctaccaagtg
taggagcatg
aaatggcctc
tattgcttce
catcctgttc
ggagatttgg
ggggttgtee
actgtgcectg
tgctgeggtg
ccactgcacg
aatagtccta
ttcgggececce
gttctgacag
tgagagatac
agctacagcg
atacttacct
tcattttagt
gtga

ctgaaacgtc
tcaggtttgt
gtggggattg
gcagttcgtc
atttataaag
atcacacaga
gctgttgaaa
aagagacctc
cggtaccgge
gagaagattg
ttcagaatcc
attgggetcc
tctggaagec
aaggccttgg
cacgaagtgg
gccagggctce
gacctagaga
actatcacca
gacaatggga
ttttatttga
taggtcccat
tacacagaag
gaccaccccce
tcccagagat
tttactactt

tagactctgt
ccgtcatecg
acaccaacca
tggagctgat
ctaccctaag
ccctgaactg
gaataaatga
cccecaggttg
ctgaactgga
gtgtggtggg
tagaggctgce
atgacctccg
tgaggatgaa
agctggetca
cagaggctgg
tgcttcggaa
ccgatcacct
ttgctcacag
agattgtaga
tggccaaaga
gggctgaaaa
tttgtaaaat
aatcttgett
aactaacctg
ggtatgtacc

caccagatcc
tgcctttgag
gaaatgtgtc
tgggaacttg
tggagacact
gctagtgagg
atacataaaa
gcccagcaaa
tcttgtactg
cagaacagga
aggtggtcag
agaaaaattg
tctagaccct
cctcaaaaca
tgacaacctt
atccaagatt
catccagatg
gctacacacc
gtatggcage
agctggcatt
aggactataa
atacattttt
tgatgatccc
aattttgtga
cttaaacaag

at www.ncbi.nlm.nih.gov/Sitemap/Summary/asnl.html.

Seq-entry :

level 1

= set {

3

class nuc-prot ,

descr {

comment "related sequence Y18220" ,
update-date
std {
year 2001 ,
month 8 ,
day 2 } ,

pub {

pub {
sub {

authors
names
std {

{

na

—

affil

me
name {

last "Kauffmann" ,
initials "H.M." } } } ,

ccaatttact
catcagcaga
ttttcctgga
attgtcttet
gtgggctttg
atgacgtcag
gtggaaaatg
ggggagattce
agagggatca
gctgggaagt
atcatcattg
accatcatcc
tttaaccact
tttgtggctg
agcatagggc
ctgatcatgg
accatccaaa
atcatggaca
cctcaagaac
gaaaatgtga
gatcattcct
gaagaaggat
acttcaattt
taatgatatc
atataccttt

ASN.1

str "Kauffmann H.M., Food Chemistry /Environmental Toxicology,
University of Kaiserslautern, Erwin-Schroedinger-Strasse 56, D-67663
Kaiserslautern, GERMANY" } ,
medium other
date
std {
year 2001 ,
month 7 ,
day 23 } } } } ,
pub {
pub {
muid 21108656 ,
article {
title {
name "Sequencing and tissue distribution of the canine MRP2 gene
compared with MRP1 and MDR1." } ,

authors {
names
std {
{
name
name {
last "Conrad" ,
initials "S." } } ,
{
name
name {
last "Viertelhaus" ,
initials "A." } } ,
{
name
name {
last "Orzechowski" ,
initials "A." } } ,
{
name
name {
last "Hoogstraate" ,
initials "J." } } ,
{
name
name {
last "Gjellan"
initials "K." } } ,
{
name
name {
last "Schrenk"
initials "D." } } ,
{
name
name {
last "Kauffmann" ,
initials "H.M." } } } ,
affil

str "Food Chemistry/Environmental Toxicology, University of
Kaiserslautern, Erwin-Schroedinger-Strasse 52, D-67663 Kaiserslautern,
Germany." } ,
from
journal {
title {
name "Toxicology." ,
iso-jta "Toxicology"
ml-jta "Toxicology" ,
issn "0300-483X"
jta "VWR" } ,

171

172 Bioinformatics File Formats

imp {
date
std {
year 2001 ,
month 1 ,
day 2 } ,
volume "156"
issue "2-3" ,
pages "81-91" ,
language "eng" } } ,
ids {
pubmed 11164610 ,
medline 21108656 } } } } ,

pub {
pub {
gen
cit "Unpublished"
authors {
names
std {
{
name
name {
last "Conrad"
initials "S." } } ,
{
name
name {
last "Racky"
initials "J." } } ,
{
name
name {
last "Orzechowski" ,
initials "A." } } ,
{
name
name {
last "Hoogstraate"
initials "J." } } ,
{
name
name {
last "Gjellan"
initials "K." } } ,
{
name
name {
last "Kauffmann" ,
initials "H.M." } } ,
{
name
name {
last "Schrenk"
initials "D." }} })},
title "Transcript variants of the canine MRP2 gene" } } } ,
source {
org {

taxname "Canis familiaris" ,
common "dog" ,
db {
{
db "taxon" ,
tag
id 9615 } } ,

orgname {

ASN.1 173

name
binomial {
genus "Canis"
species "familiaris" } ,
lineage "Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
Euteleostomi; Mammalia; Eutheria; Carnivora; Fissipedia; Canidae; Canis" ,
gcode 1 ,
mgcode 2 ,
div "MAM" } } ,
subtype {
{
subtype tissue-type ,
name "Liver" } } 1} ,
create-date
std {
year 2001 ,
month 8 ,
day 2 } } ,
seq-set {
seq {
id {
embl {
name "CFA315401"
accession "AJ315401"
version 1} ,
gi 15130909 } ,
descr {
title "Canis familiaris mRNA for multidrug resistance protein 2 (mrp2
gene), transcript variant 1"
molinfo {
biomol mRNA } ,
embl {
div mam ,
creation-date
std {
year 2001 ,
month 8 ,
day 2 } ,
update-date
std {
year 2001 ,
month 8 ,
day 2 } ,
keywords {
"alternative splicing"
"mrp2 gene" ,
"multidrug resistance protein 2" } } } ,
inst {
repr raw ,
mol rna ,
length 4934 ,
seq-data
ncbi2na ‘D39E882F790771BFE81DF4F7E8C95209A17947FBFE2407BDEBBA3D5FABF
5FE9D7A55FA49F7D3BB328508D088DF730501DC5F9C24AE7EFABF7DF3DC9253227AD7EC744821D
E882512D5653C8C450D425FC5EA44E9D7AFFOE350C49298EBBB120A3DFAF5EDDCF7A3DDDOC77BA
CBF50FD21DE35A11DF028490F707E9F1D797BDF4DA7391C48D7AD78D73493FD20023975D030D4D
3D1A5D3F78B24F1BF2FACE124FBCE029C424177847A08EEEA3BE38123C414291EB490BF800CCEB
2089E482948085752012412281152A82DE880A79387E0420D22D02508CD7EF7A082F002000082D
EA144802FD50B5EBEB422DDF401FDCED31DF80D3D71EO09EBBF85F746F5E0D749E782F9E375FE40
E15213B3BBA1EACFDCF6B5DF7FBEE9DD352DDDESF489C7F40EE7D3BEAEC06C68414D3A7D4CC420
AB7857F505294A092C453E8804B8178EDEEBE748274EBEE141F4F4DE7BADO3BDD48F9FCDCDC7D7
BA9227A857537C92BBEABSE31D70F52FO0EA71F97708B2273D2B000CE08302101BF0234E0E03DD2
EA34235E033FE5EA05F4F40050B5181F68202274205E785F6A48E4B7BOEBBF77CC7C1D6B7EBB7B
8D1BFD2FC477AE8490C3BFE8E488293D17534577D0CD799FD570939D54EBODD7479D4A526FD488
197A00B1FA8AA387C844D653D86E124BDE1027B92F748A5D7D17A85A87682510D623B817A23CES
297CEBA7BAEA47B29DEAOB7D7E3B494E7A880E823B53A91345342A45325C6D512435E8F483A453

174

Bioinformatics File Formats

0284135FFE8D62FA3802231492B9C825EE575C521 FAOBIESA8A217A788FA220AB3037CBAAB4824
9A3C97A5227173483D21373BDEBE155ED27BA39D3BA82133FD0OC2B7EAD50E973E0290876DDFAF 1
1324F47F7D542E8E23EEBDEA83A4537E882A35C411DE7A5080A3EFE708F78293D100486AD78288
A512D0E284B8208E387BA9E3952EE8A03578A0BA5D7E14E00888125F4D811F2D92F52B52892134
80D5C201DFE005683B811DE0A28A2814B80A1001C3C20A0F4C407A02B82F75371782C5C624328E
B3F8CF5D34FFESCEE343DEE9F33E8D4177A74B9FA143877025FC3A47073525DD22A13883E9B73A
2F7A8F2742BBBFBOD3A40DDF8B953AF515393404D7D129079C04135F42454E2FFFE1104544ADA3
EEO4AFE7AE33F512E8E115D550D7E649E8CFBBF5EA0CB491DFB4E3791A51D4BBD34DB4D3D77C93
CFCEEDCF48CFF3BA71F56527806DC877B4523550FC7747D2E212ED2BFB5B4D6E5SFE24D2488FDEO
110EOBAA3E1141480EEDFF5E8FB75048E9F92F6DES9E3EAO07E3EDF7FD3578E3AF3F302715C2E88
47BA9FEF7B50E47C3344485781E9CB8A386D203221413EE9EF808303831300BA00E2915EAE1E30
885D552BE95240AA23DAFC107142E6B169781E8DFB1E22A347EE33CA24E8823EBBAEA481289EAQ
B4D7E103A5DF4835C8A792BAD234D3E3AAC8CFOF53EA75385D62003E14D3554A354D7BDDE825E2
8EODC857FC1471D23AA23FA0A5FA27A745D004FEE9E97907AAFB5460BA48A7AE105F24CA922927
1EE5E94A9DE7DA03508F78D3A38A51E79AE85C8858D174D48E14D40A8BDD51E461CD14F9D129C4
4534E84B84230CB5C843A823EC8B3A495D081E7880F6A55FF3F8E940827A4F803B81244DBDE12C
AD53A9E00287308D3D7CFFFEE2231C4482FEC03313FF820A3EF33527126851550DF9FE38D51F43
FCDD7D31F17D52230705E0FFB8C38CD75E7FD3FCBFC71FACEC57C0423317FFC3F3B80°H } ,
annot {
{
data
ftable {
{
data
gene {
locus "mrp2" } ,
location
int {
from 2 ,
to 4636 ,
id
gi 15130909 } } } } }),
seq {
id {
embl {
accession "CAC48162"
version 1} ,
gi 15130910 } ,
descr {
molinfo {
biomol peptide } } ,
inst {
repr raw ,
mol aa ,
length 1544 ,
seq-data
nchbieaa "MLEKFCNSTFWNSSFLDSPEADLPLCFEQTVLVWIPLGFLWLLAPWQLLHVYRTKIKRS
SITKLYLAKQVLVGFLLILAAIELVLVLTEDSGEATVPAIRYTNPSLYLGTWLLVLLIQYSRRWCVQKDSWFLSLFWI
LSILCGSFQFQTLIRTLLKDSNSNLAYSCLFFIGYALQILVLILSAFSEKDASSNNPSFTASFLSSITFSWYDSIVMK
GYKQPLTLEDVWDVDEQITTKALVSKFEKYMVEELQKARKTLQKQQQRNTQGKSGERLHDLNKNQSQSQDILVLEEVK
KKKKKSGTTEKFPKSWLVKSLFKTFYVILLKSFLLKLVFDLLTFLNPQLLKLLISFANDPDMYVWTGYFYSVLFFVVA
LIQSLCLQSYFQMCFMLGVNVRTTIMASIYKKALTLSNQARKQYTIGETVNLMSVDAQKLMDVTNFIHLLWSNVLQIA
LSIYFLWAELGPSILAGVGVMILLIPVNGLLASKSRAIQVKNMKNKDKRLKIMNEILSGIKILKYFAWEPSFKNQVHE
LRKKELKNLLTFGQMQSVMVFLLYLTPVLVSVITFSVYTLVDSNNVLDAEKAFTSITLFNILRFPLSMLPMVISSLLQ
ASVSRERLEKYLGGDDLDTSAIRRDSSSDKAVQFSEASFTWDRDSEATIRDVNLEIMPGLMVAVVGTVGSGKSSLMSA
MLGEMEDVHGHITIKGTIAYVPQQSWIQNGTIKDNILFGSELDEKRYQQVLEACALLPDLEVLPGGDLAEIGEKGINL
SGGQKQRISLARATYQNSDIYVLDDPLSAVDAHVGRHIFNKVLGPNGLLKGKTRLLVTHSIHFLPQVDEIVVLGNGTI
LEKGSYNTLLAKKGLFAKILKAFTKQTGPEGEATVNEDSEEDDDCGLMPSVEEIPEEVASLTMKRENSLHRTLSRSSR
SRSRHQKSLRNSLKTRNVNTLKEEEEPVKGQKLIKKEFIQTGKVKFSIYLKYLRAIGWYLIFLIIFAYVINSVAYIGS
NLWLSAWTNDSKAFNGTNYPASQRDMRIGVYGVLGLAQGVFVLMANLLSAHGSTHASNILHRQLLNNILQAPMSFFDT
TPTGRIVNRFAGDISTVDDTLPQSLRSWILCFLGIVSTLVMICTATPVFIIVIIPLSIIYVSIQIFYVATSRQLKRLD
SVTRSPIYSHFSETVSGLSVIRAFEHQQRFLKHNEVGIDTNQKCVFSWIVSNRWLAVRLELIGNLIVFFSSLMMVIYK
ATLSGDTVGFVLSNALNITQTLNWLVRMTSEIETNIVAVERINEYIKVENEAPWVTDKRPPPGWPSKGEIRFNNYQVR
YRPELDLVLRGITCDIRSMEKIGVVGRTGAGKSSLTNGLFRILEAAGGQIIIDGVDIASIGLHDLREKLTIIPQDPIL
FSGSLRMNLDPFNHYSDGE IWKALELAHLKTFVAGLQLGLSHEVAEAGDNLSIGQRQLLCLARALLRKSKILIMDEAT
AAVDLETDHLIQMTIQREFSHCTTITIAHRLHTIMDSDKIIVLDNGKIVEYGSPQELLRNSGPFYLMAKEAGIENVNS

EMBL 175

TSF" } ,
annot {
{
data
ftable {
{
data
prot {
name {
"multidrug resistance protein 2" } ,
activity {
"drug conjugate transporter" } } ,
location
whole
gi 15130910 } } } } } 1},
annot {
{
data
ftable {
{
data
cdregion {
frame one ,
code {
id1y}),
comment "alternative splicing" ,
product
whole
gi 15130910 ,
location
int {
from 2 ,
to 4636 ,
id
gi 15130909 } ,
exp-ev experimental } } } } }

EMBL

The EMBL format was developed by the EBI, and is used by several major
databases including EMBL and SwissProt. Like the GenBank format, this is
a human readable informational format and is not geared toward parsing,
however, the structure is more regular than that of GenBank, and thus is
potentially easier to deal with programmatically.

The EMBL format is line-based and consists of a two-letter code followed
by three spaces. The information string begins at character six, and continues
up to 80 characters. Each line in the record must have a two-letter identifier,
including blank lines, with the exception of the sequence section.

The sequence section begins with a sequence header, denoted by a line
containing the two-letter code SQ. The header contains information about the
sequence composition. The sequence header is followed by a set of sequence
lines. The code for a sequence line is two spaces, so in effect the first letter
of each sequence line is at position six. Each sequence line can contain up to
60 sequence characters, grouped into six groups of 10 characters, each group
separated by a space. A numeric indication of how many characters of the
sequence have been included finishes the line right justified to position 80.

176 Bioinformatics File Formats

An EMBL record is finished by the two letter code // (similar to the Gen-
Bank delimiter).

A complete guide to the EMBL format, including all possible two letter codes,
canbe found at www.ebi.ac.uk/embl/Documentation/User_manual/format.html

ID TRBG361 standard; RNA; PLN; 1859 BP.

XX
AC X56734; S46826;
XX

SV X56734.1

XX

DT 12-SEP-1991 (Rel. 29, Created)
DT 15-MAR-1999 (Rel. 59, Last updated, Version 9)

XX

DE Trifolium repens mRNA for non-cyanogenic beta-glucosidase
XX

KW beta-glucosidase.

XX

0s Trifolium repens (white clover)

oC Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;

0C euphyllophytes; Spermatophyta; Magnoliophyta; eudicotyledons; Rosidae;
oc Fabales; Fabaceae; Papilionoideae; Trifolium.

XX

RN [5]

RP 1-1859

RA Oxtoby E., Dunn M.A., Pancoro A., Hughes M.A.;

RT "Nucleotide and derived amino acid sequence of the cyanogenic

RT beta-glucosidase (linamarase) from white clover (Trifolium repens L.).";
RL Plant Mol. Biol. 17:209-219(1991).

XX
RN [6]

RP 1-1859

RA Hughes M.A.;
RT

H
RL Submitted (19-NOV-1990) to the EMBL/GenBank/DDBJ databases.
RL M.A. Hughes, UNIVERSITY OF NEWCASTLE UPON TYNE, MEDICAL SCHOOL, NEW
RL CASTLE UPON TYNE, NE2 4HH, UK
XX
DR AGIS; X56734; 17-SEP-1999.
DR MENDEL; 11000; TRIrp;1162;1.
DR SWISS-PROT; P26204; BGLS_TRIRP.

XX

FH Key Location/Qualifiers

FH

FT source 1..1859

FT /organism="Trifolium repens"

FT /db_xref="taxon:3899"

FT /tissue_type="leaves"

FT /clone_lib="1lambda gt10"

FT /clone="TRE361"

FT CcDS 14..1495

FT /db_xref="MENDEL:11000"

FT /db_xref="SWISS-PROT:P26204"

FT /note="non-cyanogenic"

FT /EC_number="3.2.1.21"

FT /product="beta-glucosidase"

FT /protein_id="CAA40058.1"

FT /translation="MDFIVAIFALFVISSFTITSTNAVEASTLLDIGNLSRSSFPRGFI
FT FGAGSSAYQFEGAVNEGGRGPSIWDTFTHKYPEKIRDGSNADITVDQYHRYKEDVGIMK
FT DANMDSYRFSISWPRILPKGKLSGGINHEGIKYYNNLINELLANGIQPFVTLFHWDLPQ
FT VLEDEYGGFLNSGVINDFRDYTDLCFKEFGDRVRYWSTLNEPWVFSNSGYALGTNAPGR
FT CSASNVAKPGDSGTGPYIVTHNQILAHAEAVHVYKTKYQAYQKGKIGITLVSNWLMPLD

FT DNSIPDIKAAERSLDFQFGLFMEQLTTGDYSKSMRRIVKNRLPKFSKFESSLVNGSFDF

PDB 177

FT IGINYYSSSYISNAPSHGNAKPSYSTNPMTNISFEKHGIPLGPRAASIWIYVYPYMFIQ

FT EDFEIFCYILKINITILQFSITENGMNEFNDATLPVEEALLNTYRIDYYYRHLYYIRSA

FT IRAGSNVKGFYAWSFLDCNEWFAGFTVRFGLNFVD"

FT mRNA 1..1859

FT /evidence=EXPERIMENTAL

XX

SQ Sequence 1859 BP; 609 A; 314 C; 355 G; 581 T; 0 other;
aaacaaacca aatatggatt ttattgtagc catatttgct ctgtttgtta ttagctcatt 60
cacaattact tccacaaatg cagttgaagc ttctactctt cttgacatag gtaacctgag 120
tcggagcagt tttcctcgtg gettcatctt tggtgctgga tcttcagcat accaatttga 180
aggtgcagta aacgaaggcg gtagaggacc aagtatttgg gataccttca cccataaata 240
tccagaaaaa ataagggatg gaagcaatgc agacatcacg gttgaccaat atcaccgcta 300
caaggaagat gttgggatta tgaaggatca aaatatggat tcgtatagat tctcaatctc 360
ttggccaaga atactcccaa agggaaagtt gagcggaggc ataaatcacg aaggaatcaa 420
atattacaac aaccttatca acgaactatt ggctaacggt atacaaccat ttgtaactct 480
ttttcattgg gatcttcccc aagtcttaga agatgagtat ggtggtttct taaactccgg 540
tgtaataaat gattttcgag actatacgga tctttgcttc aaggaatttg gagatagagt 600
gaggtattgg agtactctaa atgagccatg ggtgtttagc aattctggat atgcactagg 660
aacaaatgca ccaggtcgat gttcggcctc caacgtggcc aagcctggtg attctggaac 720
aggaccttat atagttacac acaatcaaat tcttgctcat gcagaagctg tacatgtgta 780
taagactaaa taccaggcat atcaaaaggg aaagataggc ataacgttgg tatctaactg 840
gttaatgcca cttgatgata atagcatacc agatataaag gctgccgaga gatcacttga 900
cttccaattt ggattgttta tggaacaatt aacaacagga gattattcta agagcatgcg 960
gcgtatagtt aaaaaccgat tacctaagtt ctcaaaattc gaatcaagcc tagtgaatgg 1020
ttcatttgat tttattggta taaactatta ctcttctagt tatattagca atgccccttc 1080
acatggcaat gccaaaccca gttactcaac aaatcctatg accaatattt catttgaaaa 1140
acatgggata cccttaggtc caagggctgc ttcaatttgg atatatgttt atccatatat 1200
gtttatccaa gaggacttcg agatcttttg ttacatatta aaaataaata taacaatcct 1260
gcaattttca atcactgaaa atggtatgaa tgaattcaac gatgcaacac ttccagtaga 1320
agaagctctt ttgaatactt acagaattga ttactattac cgtcacttat actacattcg 1380
ttctgcaatc agggctggct caaatgtgaa gggtttttac gcatggtcat ttttggactg 1440
taatgaatgg tttgcaggct ttactgttcg ttttggatta aactttgtag attagaaaga 1500
tggattaaaa aggtacccta agctttctgc ccaatggtac aagaactttc tcaaaagaaa 1560
ctagctagta ttattaaaag aactttgtag tagattacag tacatcgttt gaagttgagt 1620
tggtgcacct aattaaataa aagaggttac tcttaacata tttttaggcc attcgttgtg 1680
aagttgttag gctgttattt ctattatact atgttgtagt aataagtgca ttgttgtacc 1740
agaagctatg atcataacta taggttgatc cttcatgtat cagtttgatg ttgagaatac 1800
tttgaattaa aagtcttttt ttattttttt aaaaaaaaaa aaaaaaaaaa aaaaaaaaa 1859

/1

PDB

The Protein Data Bank contains information regarding the three-dimensional
structure of proteins. A PDB record consists of 12 sections that range from
descriptive titles and remarks to structure descriptions, including the atomic
coordinates.

Positions 1 through 6 of each line contains a line identifier. Positions 9 and
10 is the continuation marker, and positions 11 through 70 are the actual
data, formatted according to the line identifier. Line identifiers must be in a
particular order.

Each PDB record ends with a line containing the line identifier END.

A comprehensive guide to the PDB file format is at www.rcsb.org/pdb/docs/
format/pdbguide?2.2/guide2.2_frame.html

(Note: Several pages of similar lines have been cut out of the REMARK, ATOM,
and HETATM sections in the interest of space.)

178 Bioinformatics File Formats

HEADER OXYGEN STORAGE/TRANSPORT 13-DEC-99 1DM1
TITLE 2.0 A CRYSTAL STRUCTURE OF THE DOUBLE MUTANT H(E7)V, T(E10)
TITLE 2 R OF MYOGLOBIN FROM APLYSIA LIMACINA

COMPND MOL.ID: 1;

COMPND 2 MOLECULE: MYOGLOBIN;

COMPND 3 CHAIN: A;

COMPND 4 ENGINEERED: YES;

COMPND 5 MUTATION: YES

SOURCE MOL.ID: 1;

SOURCE 2 ORGANISM SCIENTIFIC: APLYSIA LIMACINA;

SOURCE 3 ORGANISM_COMMON: SLUG SEA HARE;

SOURCE 4 EXPRESSION.SYSTEM: ESCHERICHIA COLI;

SOURCE 5 EXPRESSION.SYSTEM_COMMON: BACTERIA

KEYWDS GLOBIN FOLD

EXPDTA X-RAY DIFFRACTION

AUTHOR L.FEDERICI,C.SAVINO,R.MUSTO,C.TRAVAGLINI-ALLOCATELLI,
AUTHOR 2 F.CUTRUZZOLA,M.BRUNORI

REVDAT 1 21-JUN-00 1DM1 O

JRNL AUTH L.FEDERICI,C.SAVINO,R.MUSTO,
JRNL AUTH 2 C.TRAVAGLINI-ALLOCATELLI,F.CUTRUZZOLA,M.BRUNORI
JRNL TITL ENGINEERING HIS(E7) AFFECTS THE CONTROL OF HEME
JRNL TITL 2 REACTIVITY IN APLYSIA LIMACINA MYOGLOBIN
JRNL REF BIOCHEM.BIOPHYS.RES.COMM. V. 269 58 2000
JRNL REFN ASTM BBRCA9 US ISSN 0006-291X

REMARK 1

REMARK 2

REMARK 2 RESOLUTION. 1.99 ANGSTROMS.

REMARK 3

REMARK 3 REFINEMENT.

REMARK 3 PROGRAM : REFMAC

REMARK 3 AUTHORS : MURSHUDOV, VAGIN, DODSON

REMARK 3

REMARK 3 DATA USED IN REFINEMENT.

REMARK 3 RESOLUTION RANGE HIGH (ANGSTROMS) : 1.99
REMARK 3 RESOLUTION RANGE LOW (ANGSTROMS) : 59.8
REMARK 3 DATA CUTOFF (SIGMA(F)) : 2.000
REMARK 3 COMPLETENESS FOR RANGE (%) & 97.7
REMARK 3 NUMBER OF REFLECTIONS : 18677
REMARK 3

REMARK 3 FIT TO DATA USED IN REFINEMENT.

REMARK 3 CROSS-VALIDATION METHOD : NULL

REMARK 3 FREE R VALUE TEST SET SELECTION : RANDOM
REMARK 3 R VALUE (WORKING + TEST SET) : NULL

REMARK 3 R VALUE (WORKING SET) : 0.189
REMARK 3 FREE R VALUE : 0.216
REMARK 3 FREE R VALUE TEST SET SIZE (%) : NULL

REMARK 3 FREE R VALUE TEST SET COUNT : 953

REMARK 3

REMARK 3 NUMBER OF NON-HYDROGEN ATOMS USED IN REFINEMENT.
REMARK 3 PROTEIN ATOMS : 1079

REMARK 3 NUCLEIC ACID ATOMS 1 0

REMARK 3 HETEROGEN ATOMS : 43

REMARK 3 SOLVENT ATOMS 1 77

REMARK 3

REMARK 3 B VALUES.

REMARK 3 FROM WILSON PLOT (A**2) : 29.81
REMARK 3 MEAN B VALUE (OVERALL, A**2) : NULL
REMARK 3 OVERALL ANISOTROPIC B VALUE.

REMARK 3 B11 (A**2) : NULL

REMARK 3 B22 (A**2) : NULL

REMARK 3 B33 (A**2) : NULL

REMARK 3 B12 (A**2) : NULL

REMARK 3 B13 (A**2) : NULL

REMARK 3 B23 (A**2) : NULL

REMARK 3

REMARK 3 ESTIMATED OVERALL COORDINATE ERROR.

PDB 179

REMARK 3 ESU BASED ON R VALUE (A): NULL
REMARK 3 ESU BASED ON FREE R VALUE (A): NULL
REMARK 3 ESU BASED ON MAXIMUM LIKELIHOOD (A): NULL
REMARK 3 ESU FOR B VALUES BASED ON MAXIMUM LIKELIHOOD (A**2): NULL
REMARK 3

DBREF 1DM1 A 1 146 SWS P02210 GLB_APLLI 1 146

SEQADV 1DM1 ASN A 22 SWS P02210 ASP 22 CONFLICT
SEQADV 1DM1 HIS A 63 SWS P02210 VAL 63 ENGINEERED
SEQADV 1DM1 THR A 66 SWS P02210 ARG 66 ENGINEERED
SEQADV 1DM1 ASN A 80 SWS P02210 ASP 80 CONFLICT

SEQRES 1 A 146 SER LEU SER ALA ALA GLU ALA ASP LEU ALA GLY LYS SER

SEQRES 2 A 146 TRP ALA PRO VAL PHE ALA ASN LYS ASN ALA ASN GLY ASP

SEQRES 3 A 146 ALA PHE LEU VAL ALA LEU PHE GLU LYS PHE PRO ASP SER

SEQRES 4 A 146 ALA ASN PHE PHE ALA ASP PHE LYS GLY LYS SER VAL ALA

SEQRES 5 A 146 ASP ILE LYS ALA SER PRO LYS LEU ARG ASP HIS SER SER

SEQRES 6 A 146 THR ILE PHE THR ARG LEU ASN GLU PHE VAL ASN ASN ALA

SEQRES 7 A 146 ALA ASN ALA GLY LYS MET SER ALA MET LEU SER GLN PHE

SEQRES 8 A 146 ALA LYS GLU HIS VAL GLY PHE GLY VAL GLY SER ALA GLN

SEQRES 9 A 146 PHE GLU ASN VAL ARG SER MET PHE PRO GLY PHE VAL ALA

SEQRES 10 A 146 SER VAL ALA ALA PRO PRO ALA GLY ALA ASP ALA ALA TRP

SEQRES 11 A 146 THR LYS LEU PHE GLY LEU ILE ILE ASP ALA LEU LYS ALA

SEQRES 12 A 146 ALA GLY LYS

HET HEM A 148 43

HETNAM HEM PROTOPORPHYRIN IX CONTAINING FE

HETSYN HEM HEME

FORMUL 2 HEM C34 H32 N4 04 FE1

FORMUL 3 HOH *77(H2 01)

HELIX 1 1 SER A 3 ALA A 15 1 13
HELIX 2 2 TRP A 14 ASN A 20 1 7
HELIX 3 3ASNA 20 PHEA 36 1 17
HELIX 4 4 PROA 37 PHEA 43 5 7
HELIX 5 5 SERA 50 SERA 57 1 8
HELIX 6 6 PROA 58 ASNA 77 1 20
HELIX 7 7 ASNA 80 PHEA 98 1 19
HELIX 8 8 GLY A 101 ALA A 120 1 20
HELIX 9 9 GLY A 125 ALA A 144 1 20
LINK NE2 HIS A 95 FE HEM A 148

CRYST1 89.730 89.730 92.080 90.00 90.00 120.00 H 3 9

ORIGX1 1.000000 0.000000 0.000000 0.00000

ORIGX2 0.000000 1.000000 0.000000 0.00000

ORIGX3 0.000000 0.000000 1.000000 0.00000

SCALE1 0.011140 0.006430 0.000000 0.00000

SCALE2 0.000000 0.012870 0.000000 0.00000

SCALE3 0.000000 0.000000 0.010860 0.00000

ATOM 1 N SER A 1 -15.388 34.621 9.714 1.00 36.31 N
ATOM 2 CA SER A 1 -16.267 33.765 10.549 1.00 34.51 C
ATOM 3 C SER A 1 -17.315 34.569 11.280 1.00 31.49 C
ATOM 4 0 SER A 1 -17.405 35.778 11.189 1.00 31.79 0
ATOM 5 CB SER A 1 -15.355 33.015 11.504 1.00 38.50 C
ATOM 6 0G SER A 1 -14.809 34.027 12.355 1.00 41.88 0
ATOM 1060 N ALA A 143 -12.491 36.859 -3.851 1.00 51.73 N
ATOM 1061 CA ALA A 143 -11.080 36.602 -3.643 1.00 53.40 C
ATOM 1062 C ALA A 143 -10.604 35.525 -4.583 1.00 54.69 C
ATOM 1063 0 ALA A 143 -9.452 35.598 -4.993 1.00 55.80 0
ATOM 1064 CB ALA A 143 -10.791 36.265 -2.201 1.00 52.67 C
ATOM 1065 N ALA A 144 -11.377 34.516 -4.946 1.00 55.40 N
ATOM 1066 CA ALA A 144 -10.926 33.479 -5.842 1.00 55.53 C
ATOM 1067 C ALA A 144 -11.133 33.784 -7.312 1.00 56.70 C
ATOM 1068 0 ALA A 144 -10.857 32.896 -8.103 1.00 56.62 0
ATOM 1069 CB ALA A 144 -11.552 32.143 -5.496 1.00 55.24 C
ATOM 1070 N GLY A 145 -11.530 34.962 -7.724 1.00 59.00 N
ATOM 1071 CA GLY A 145 -11.669 35.308 -9.105 1.00 61.97 C
ATOM 1072 C GLY A 145 -12.911 36.008 -9.579 1.00 63.99 C
ATOM 1073 0 GLY A 145 -12.830 36.905 -10.431 1.00 65.00 0

180

Bioinformatics File Formats

ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
TER
HETATM
HETATM
HETATM
HETATM
HETATM
HETATM
HETATM
HETATM
HETATM
HETATM
HETATM
HETATM
HETATM
HETATM
HETATM
HETATM
HETATM
HETATM
HETATM
HETATM
HETATM
HETATM
HETATM
HETATM
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT
CONECT

1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092

1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200

721
1081
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112

[eNeoNoNeoNoNoNoNoNoNoNoNa)

1081

721
1113
1087
1090
1101
1109
1081
1082
1087
1088
1083
1089
1088
1092
1093
1094
1094
1081
1083
1098
1099
1084
1099
1100
1103
1081
1084
1106
1107
1085
1107
1108
1111

LYS
LYS
LYS
LYS
LYS
LYS
LYS
HEM
HEM
HEM
HEM
HEM
HEM
HEM
HEM
HEM
HEM
HEM
HEM

HOH
HOH
HOH
HOH
HOH
HOH
HOH
HOH
HOH
HOH
HOH
HOH

1086

1117
1098
1106
1114
1087
1086
1089
1090
1086

1093
1094
1095

1098
1097
1100
1101
1097

1104

1106
1105
1108
1109
1105

1112

>>>>>2>>>>2>>>>>>>>>>

146
146
146
146
146
146
146
148
148
148
148
148
148
148
148
148
148
148
148

66
67
68
69
70
71
72
73
74
75
76
77

1097

1090
1088
1092
1091
1089

1096

1101
1099
1102
1103
1100

1109
1107
1110
1111
1108

1105

-14.
.322
-16.
-17.
-15.
-16.

-22.
.582
.512
-24.
-23.
-22.
.620
.006
.247

-21
-22

-21
-21
-21

-22.
-20.
-20.

-14.
-42.
-32.
-36.
.164
-25.
-27.
-32.
-29.
-40.
-42.
-33.

091

395
330
891
548

928

868
566
280

038
780
188

548
832
642
051

116
237
897
880
689
031
064

.629
.222
.239
.043
.393
.081

.481
.644
.374
.059
.524
.848
.819
.953
.431
.606
.820
.696

.539
.949
.212
.706
.981
.344
.868
.306
.703
.090
.123
.126

-9.
-9.
-8.
.641
-10.

-8.

-5.
-6.
.023
-4.
-8.
-4.
-5.
.149
-2.
-3.
.594

-2

-4

-1

-4,

-9.
-6.
19.
.812
18.
12.
17.
-0.
.080
.181
-6.
.339

11

-17

099
559
483

706
007

217
456

010
437
410
091

933
062

558

033
968
553

542
468
991
328

241

—_ = A a A

UG QA G G A G I G T G G ('Y

G G QA G T G G QY

ocoooocoo=z

[sNoNoNoNoNoR-NeoNoNoNeoN |

[eNeoNoNeoNoNoNoNoNoNoNoNal

Fasta 181

CONECT 1113 1081 1114 1117
CONECT 1114 1085 1113 1115
CONECT 1115 1114 1116 1118
CONECT 1116 1115 1117 1119
CONECT 1117 1082 1113 1116
CONECT 1118 1115

CONECT 1119 1116 1120
CONECT 1120 1119 1121
CONECT 1121 1120 1122 1123
CONECT 1122 1121

CONECT 1123 1121

MASTER 267 0 1 9 0 0 0 6 1199 1 45 12
END

Fasta

The Fasta file format is the standard format for interchanging simple sequence
data. A Fasta record consists of a header line and the sequence. The header, also
known as the defline, begins with the > symbol and contains information about
the sequence. The sequence is in a multiline format, 70 characters per line.

Any number of Fasta records can be placed in a single file. No special record
separator is defined: the > symbol at the beginning of a defline indicates the
start of a new record. A file with multiple Fasta records is also referred to as
a Fasta library. Sequence types (protein, DNA, or RNA) should not be mixed in
Fasta libraries.

Typically, Fasta records have .fa as a file extension. Fasta libraries have .falib
as a file extension.

>Canis familiaris mRNA for multidrug resistance protein 2 (mrp2 gene)

TCATGCTGGAGAAGTTCTGCAACTCTACGTTTTGGAACTCTTCATTCTTGGATAGCCCAGAAGCGGACCT
GCCACTTTGTTTTGAGCAAACTGTTCTGGTGTGGATTCCCTTGGGTTTCCTTTGGCTCCTGGCCCCTTGG
CAGCTTCTTCATGTGTATAGGACCAAGATCAAGAGATCTTCTATAACCAAACTCTACCTTGCTAAGCAGG
TGCTTGTTGGGTTTCTTCTTATTCTAGCAGCCATAGAGCTGGTCCTTGTACTCACAGAAGACTCTGGAGA
AGCCACAGTCCCCGCCATTAGATACACCAATCCAAGCCTTTACCTGGGCACATGGCTCCTGGTTTTGCTG
ATCCAATACAGCAGGCGATGGTGTGTACAGAAGGATTCTTGGTTCCTGTCTCTATTCTGGATTCTCTCAA
TACTCTGTGGTAGTTTCCAATTTCAGACTCTGATCCGGACACTCTTAAAGGACAGCAATTCTAACTTGGC
TTACTCCTGCCTGTTCTTCATCGGCTATGCACTACAGATCCTGGTCCTGATCCTATCAGCATTTTCAGAA
AAAGATGCCTCCTCAAATAATCCATCATTCACGGCCTCATTTCTGAGTAGCATTACGTTTAGTTGGTATG
ACAGCATTGTTATGAAAGGCTACAAGCAACCTCTGACACTGGAAGATGTGTGGGATGTTGATGAACAGAT
TACAACCAAGGCACTGGTCAGCAAGTTTGAAAAATATATGGTAGAAGAGCTGCAGAAGGCCAGAAAGACC
CTCCAGAAACAGCAACAGAGGAACACCCAGGGGAAGTCTGGAGAAAGGCTGCATGACTTGAACAAGAATC
AGAGTCAAAGCCAAGATATCCTTGTTCTGGAAGAAGT TAAAAAGAAAAAAAAGAAGTCTGGGACCACAGA
AAAGTTTCCCAAGTCCTGGTTGGTCAAGAGTCTCTTCAAAACTTTCTATGTCATACTCTTGAAATCATTC
CTACTGAAGCTGGTGTTTGACCTTCTCACGTTCCTGAATCCTCAGCTGCTGAAGTTGCTGATCTCCTTTG
CAAATGACCCAGACATGTATGTGTGGACTGGGTATTTCTATTCGGTCCTCTTCTTTGTTGTGGCTCTCAT
CCAGTCTCTCTGCCTTCAGAGCTACTTTCAAATGTGCTTCATGTTGGGTGTAAACGTACGGACAACCATC
ATGGCTTCCATATACAAGAAGGCGCTGACCCTTTCCAACCAGGCCAGGAAGCAGTACACCATTGGAGAAA
CAGTGAACCTGATGTCTGTGGATGCTCAGAAGCTCATGGATGTGACCAACTTCATTCATCTGCTGTGGTC
AAATGTTCTCCAGATTGCTTTATCTATCTACTTCCTGTGGGCAGAGCTGGGACCCTCCATCTTAGCAGGT
GTTGGGGTGATGATACTCCTAATTCCAGTTAATGGGCTACTTGCCTCTAAGAGTAGAGCTATTCAGGTAA
AAAATATGAAGAATAAAGACAAACGTTTAAAGATCATGAATGAAATTCTCAGTGGGATCAAGATCCTGAA
ATATTTTGCCTGGGAACCTTCATTCAAAAACCAAGTCCACGAACTTCGGAAGAAAGAGCTCAAGAACCTG
CTGACCTTCGGGCAGATGCAGTCTGTAATGGTGTTTCTCTTATACTTAACTCCGGTCTTGGTGTCTGTGA
TCACGTTTTCAGTTTACACTCTGGTGGACAGCAATAATGTTTTGGATGCAGAGAAGGCATTCACCTCCAT

182 Bioinformatics File Formats

CACCCTCTTCAATATCCTGCGCTTTCCCCTAAGCATGCTCCCCATGGTAATCTCCTCACTGCTCCAGGCC
AGCGTTTCCAGAGAACGCCTGGAAAAGTACTTGGGAGGGGATGACTTAGACACATCCGCCATTCGACGTG
ACAGCAGTTCTGACAAAGCTGTGCAGTTCTCAGAGGCCTCCTTCACCTGGGACCGGGACTCGGAAGCCAC
AATCCGAGATGTGAACCTGGAGATTATGCCAGGCCTTATGGTGGCTGTGGTGGGCACTGTAGGCTCTGGG
AAGTCTTCCTTGATGTCAGCCATGCTGGGAGAAATGGAAGATGTCCATGGGCACATCACCATCAAGGGCA
CCATAGCCTACGTCCCACAGCAATCCTGGATTCAGAATGGCACCATAAAGGACAACATCCTTTTTGGATC
CGAGTTGGATGAAAAGAGATACCAGCAGGTGCTAGAAGCCTGTGCCCTCCTACCAGACTTGGAAGTGCTG
CCGGGAGGAGACCTGGCTGAGATTGGAGAGAAGGGTATAAATCTTAGTGGGGGTCAGAAGCAGCGGATTA
GCCTGGCCAGAGCTACCTATCAGAATTCAGACATCTATGTTCTGGATGACCCCCTGTCAGCTGTGGATGC
TCATGTGGGAAGACATATTTTCAATAAGGTCTTGGGTCCCAATGGCCTATTGAAAGGCAAGACTCGTCTC
TTGGTTACACATAGCATTCACTTTCTTCCCCAAGTGGATGAGATTGTGGTTCTGGGGAATGGCACCATCT
TGGAGAAGGGATCCTACAACACTCTGCTGGCCAAGAAAGGATTGTTTGCTAAGATTCTGAAGGCATTCAC
AAAACAGACGGGTCCTGAAGGAGAGGCCACAGTCAATGAGGACAGTGAAGAAGATGATGACTGTGGGCTG
ATGCCCAGTGTGGAGGAAATCCCTGAGGAAGTGGCCTCCTTGACCATGAAAAGAGAGAACAGCCTTCATC
GAACACTTAGTCGCAGTTCCAGGTCCAGGAGCAGACATCAGAAATCCCTAAGAAACTCTTTGAAAACCCG
GAATGTGAACACTCTGAAGGAGGAGGAGGAACCAGTGAAAGGACAAAAACTAATTAAGAAGGAATTCATA
CAAACTGGAAAGGTGAAGTTCTCCATCTACCTGAAGTACCTACGAGCAATAGGATGGTATTTGATATTCC
TCATCATTTTTGCCTATGTGATCAATTCTGTGGCTTATATTGGATCCAACCTCTGGCTCAGTGCTTGGAC
CAATGACTCTAAAGCCTTTAATGGCACTAACTATCCAGCCTCTCAGAGGGACATGAGAATTGGCGTCTAT
GGAGTTCTGGGATTAGCTCAAGGTGTGTTTGTGCTCATGGCAAATCTCTTGAGTGCCCATGGTTCCACCC
ATGCATCAAACATCCTTCACAGGCAACTGCTAAACAACATCCTTCAAGCACCCATGAGTTTTTTTGACAC
AACACCCACAGGTCGGATTGTGAACAGGTTTGCTGGTGATATTTCCACAGTGGATGACACCCTCCCCCAA
TCCTTGCGCAGCTGGATATTGTGTTTCCTGGGAATAGTCAGCACTCTTGTCATGATCTGCACGGCCACTC
CAGTGTTCATCATCGTCATCATTCCTCTTAGCATTATTTATGTGTCTATTCAGATATTTTATGTGGCTAC
TTCCCGCCAGCTGAAACGTCTAGACTCTGTCACCAGATCCCCAATTTACTCTCACTTCAGTGAGACAGTG
TCAGGTTTGTCCGTCATCCGTGCCTTTGAGCATCAGCAGAGATTTCTGAAACACAATGAAGTGGGGATTG
ACACCAACCAGAAATGTGTCTTTTCCTGGATTGTCTCCAACAGATGGCTTGCAGTTCGTCTGGAGCTGAT
TGGGAACTTGATTGTCTTCTTTTCATCCCTGATGATGGTTATTTATAAAGCTACCCTAAGTGGAGACACT
GTGGGCTTTGTTCTGTCCAATGCACTTAATATCACACAGACCCTGAACTGGCTAGTGAGGATGACGTCAG
AAATAGAGACCAACATTGTGGCTGTTGAAAGAATAAATGAATACATAAAAGTGGAAAATGAGGCACCCTG
GGTGACTGATAAGAGACCTCCCCCAGGTTGGCCCAGCAAAGGGGAGATTCGGTTTAACAACTACCAAGTG
CGGTACCGGCCTGAACTGGATCTTGTACTGAGAGGGATCACTTGTGATATTAGGAGCATGGAGAAGATTG
GTGTGGTGGGCAGAACAGGAGCTGGGAAGTCATCCTTGACAAATGGCCTCTTCAGAATCCTAGAGGCTGC
AGGTGGTCAGATCATCATTGATGGGGTAGATATTGCTTCCATTGGGCTCCATGACCTCCGAGAAAAATTG
ACCATCATCCCCCAGGATCCCATCCTGTTCTCTGGAAGCCTGAGGATGAATCTAGACCCTTTTAACCACT
ACTCAGATGGGGAGATTTGGAAGGCCTTGGAGCTGGCTCACCTCAAAACATTTGTGGCTGGCCTGCAACT
GGGGTTGTCCCACGAAGTGGCAGAGGCTGGTGACAACCTTAGCATAGGGCAGAGGCAGCTACTGTGCCTG
GCCAGGGCTCTGCTTCGGAAATCCAAGATTCTGATCATGGATGAGGCCACTGCTGCGGTGGACCTAGAGA
CCGATCACCTCATCCAGATGACCATCCAAAGGGAGTTCTCCCACTGCACGACTATCACCATTGCTCACAG
GCTACACACCATCATGGACAGTGACAAGATAATAGTCCTAGACAATGGGAAGATTGTAGAGTATGGCAGC
CCTCAAGAACTGCTGAGAAATTCGGGCCCCTTTTATTTGATGGCCAAAGAAGCTGGCATTGAAAATGTGA
ACAGCACATCGTTCTGACAGTAGGTCCCATGGGCTGAAAAAGGACTATAAGATCATTCCTTATTTTTTTG
TGAGAGATACTACACAGAAGTTTGTAAAATATACATTTTTGAAGAAGGATTGTTATATCCAGCTACAGCG
GACCACCCCCAATCTTGCTTTGATGATCCCACTTCAATTTTATCTCCTTCATACTTACCTTCCCAGAGAT
AACTAACCTGAATTTTGTGATAATGATATCCTCCTGCTTTTCATTTTAGTTTTACTACTTGGTATGTACC
CTTAAACAAGATATACCTTTTTTAATTTATGTGA

BLAST

The BLAST sequence alignment programs were developed to quickly search
sequence databases. These programs use several specially formatted files as
a search library. A nucleotide search library consists of an index file with the
extension. nhr, and two binary files with the extension .nin and .nsq. A protein
library consists of the analogous files with extensions .phr, .pin, and .psq.

ACEDB 183

BLAST libraries are typically produced from Fasta libraries using the formatdb
program, available from NCBI. The index file contains the deflines and pointers
to the compressed sequences in the binary files.

It is probably worth emphasizing again (from the NCBI formatdb documenta-
tion) the following:

DISCLAIMER: The internal structure of the BLAST databases is subject to
change with little or no notice. The readdb API should be used to extract data
from the BLAST databases. Readdb is part of the NCBI toolkit (ftp://ftp.nchi.
nih.gov/toolbox/nchi_tools/), readdb.h contains a list of supported func-
tion calls.

ACEDB

The ACEBD genome informatics system stores and displays multiple types of
genomic data. The data schema is customizable, and the data model is closely
integrated into the operation of the system. Data is stored in a set of structured
binary files, and the data model specifies a tree for each object class based upon
tag-value pairs. The value may either be a specified data type, a sub-tag, or a
pointer to another object class.

Data is imported and exported through text files called ace files (from the
file extension.ace). The data model is responsible for parsing the text in an
ace file to and from the binary file. This renders any ace file parser to be fully
dependent upon the model file. Several parsers exist to translate ace files to
and from other formats.

Data can also be extracted from ACEDB programmatically using programs
like tace and perlace. These programs create a functional interface that respond
to ace queries without the overhead of using the X-Windows GUI More
detailed information can be found in the ACEDB documentation library at
www.acedb.org.

<ace file> ::= <object update>

<object update> NL NL <ace file>

<object update> ::= <class name> <name>
| <class name> <name> NL <data lines>
| -D <class name> <name> /* Delete */

| -R <class name> <name> <pame> /* Remame */
| -A <class name> <name> <name> /[* Alias */

<data lines> ::= <data line>
| <data line> NL <data lines>

<data line> ::= <path>
| -D <path> /* Deletion */
| -T <path> /* Tops within column, not in 1.8 */
| -R <datum> <path> /* Substitution, not in 1.8 */

184 Bioinformatics File Formats

<path> ::= <simple path>
| <simple path> # <path>

H
<simple path> ::= <tag>
| <tag> <data list>

H
<data list> ::= <datum>
| <datum> <data list>

H

<tag> ::= /* string starting with a letter or a digit
and containing letters, digits or.’ */
5
<class name> ::= /* string starting with a letter or a digit
and containing letters, digits or.’ */

<datum> ::= /* string containing letters, digits or.’ */
| * /* arbitrary printable string protected by double quotes */ "

H

Accession number method, Bioperl
program, sequence classes, 154-155
Accessors, object-oriented programming
in Perl, 149
ACEBD file format, 189-190
Additive operator, Perl programming,
18-19
Algorithms
Bioperl program, 159-160
software engineering requirements,
124-125
Alternatives, string manipulation, 85-86
AND operator
control structures, 47
subroutine creation, 63-64
An if statement, control structures, 49
Annotations, Bioperl program, 156-157
Anonymous references
creation protocols, 133-134
tables, 134-136
Argument list
getopt command, 110-111
subroutine creation, 63-65
Array variables
anonymous references, 133-136
applications, 27-30
character manipulation, 75-78
foreach loops, 52-54
functions and keywords, 169
indeterminate loops, while statement,
55-56
input operators, 95-97
for loops, 52
manipulation, 30-36
list and scalar context, 34-36
push, pop, shift, unshift, 30-31
reverse/inverse, 33-34
sorting, 33-34
splice, 31-33

Perl Programming for Biologists. D. Curtis Jamison
Copyright O 2003 John Wiley & Sons, Inc. ISBN: 0-471-43059-5

Index

Perl programming, 13-14
reference creation, 131-132
subroutines, passing arrays, 70-71
Arrow operator, reference creation,
131-132
ASN.1 file format, 176-181
Assertions, string patterns, 85
Assignment operators
Perl variables, 14
variable valuation, 19
Atoms, string patterns, 83
Autodecrement operators, 17-19
Autoincrement operators, 17-19

Backslash-escaped characters,
interpolation and escapes, 20-22
Binary 1/0, Perl input/output (I/0)
commands, 97
Bioinformatics
file formats
ACEBD system, 189-190
ASN.1 format, 176-181
BLAST format, 188-189
EMBL format, 181-183
Fasta format, 187-188
GenBank, 173-176
PDB format, 183-187
historical background, 1-2
Bioperl program
annotation, 156-157
sample programs, 160-167
SegFeature module, 155-156
sequence I/0, 157-158
sequences, 153-155
tools, 159-160
BLAST
Bioperl program tools and, 159-160
file format, 188-189
historical background, 2-3

185

186 Index

Blessed referents, object-oriented
programming, 144-147
Boolean operators
control structures, 46-47
else statements, 49
getopt command, 110-111
Built-in filehandles, input/output (I/0)
commands, 92-93

Case sensitivity, Perl variables, 14
Character manipulation
array-based, 75-78
atoms, 83
Child processes
creation, input/output (I/0) commands,
99-100
implicit forks, 101-102
monitoring, 100-101
Chomp command
array-based character manipulation, 78
input operators, 96-97
Class design
keywords for, 171
object-oriented programming, 141-142
Clean command, CPAN module
installation, 119
Close command, implicit forks, 101-102
ClustalW program, 3
Code blocks
indeterminate loops, while statement,
55
loop exits, next and continue functions,
57-59
loops, 50
Perl interpreter, 10
subroutine creation, 63-64
my command, 68-70
Command-line switches, Perl
programming, 10
Comment block, Perl programming, 8-9
Comment::new method, Bioperl program
annotations, 157
Common Gateway Interface (CGI)
modules, 110
Perl applications, 3
Comparison operators
applications, 44-45
sort subroutines, 71-73
Complex atoms, string patterns, 83-84
Comprehensive Perl Archive Network. See
CPAN module
Computational biology, historical
background, 1-2
Constructors

Bioperl program, Primer3.Pm module,
165-167
object-oriented programming in Perl,
146-147
Continue block, loop exits, 58-59
Control structures
basic properties, 43
Boolean operators, 46-47
comparison operators, 44-45
else statement, 47-49
if statement, 45-46
loops, 49-59
exits, 57-59
foreach loops, 52-54
indeterminate loops, 54-57
last function, 57
for loops, 50-52
next and continue functions, 57-59
repeat until loops, 56-57
while loop, 54-56
CPAN module, 114-121
installation, 117-119
launching protocol, 114-115
location, 115-117

Data accessors, object-oriented
programming, 149

DBLinks method, Bioperl program
annotations, 157

Defined function, variable definition,
22-23

Deletions
hashes, 39-40
splice function for, 32-33

Desc method, Bioperl program, sequence
classes, 154-155

Design criteria, software engineering,
125-127

Determinate loops, basic properties, 50

Die function, control structures, if
statement, 45-46

Each function, hashes, 40
Else statement, control structures, 47-49
Elsif statement, control structures, 47-49
EMBL file format

basic properties, 181-183

input operators, 96-97
Entry conditions

indeterminate loops, while statement,

55
loops, 50
for loops, 50-52

Errors
control structures, if statement, 45-46
loop exits, last function, 57
Escapes, Perl programming, 19-22
Executable programs, Perl programming, 9
Exit condition
indeterminate loops, while statement,
55-56
loops, 50-52, 57-59
last function, 57
next and continue statements, 57-59
Exponentiation operator, Perl
programming, 17-19

False values, list in Perl programming, 43
Fasta program
file format, 187-188
hashes, 38-40
historical background, 2
Filehandles
built-in filehandles, 92-93
input operator, 94-97
input/output (I/0O) commands, 90-91
safety, 93-94
File management
bioinformatics file formats
ACEBD system, 189-190
ASN.1 format, 176-181
BLAST format, 188-189
EMBL format, 181-183
Fasta format, 187-188
GenBank, 173-176
PDB format, 183-187
input/output (I/0) commands, 91-92
Perl modules, 105-107
File::Path module, basic properties,
112-113
File test operators, input/output (I/0)
commands, 93-94
Floating point format, numbers notation,
14-17
Flowcharting, software engineering,
125-127
Foreach loops
control structures, 52-54
next operator, 58-59
Fork commands
implicit forks, 101-102
process creation, 99-100
For loops
control structures, 50-52
next operator, 58-59
Formatting
backslash-escaped characters, 21-22

Index 187

bioinformatics file formats
ACEBD system, 189-190
ASN.1 format, 176-181
BLAST format, 188-189
EMBL format, 181-183
Fasta format, 187-188
GenBank, 173-176
PDB format, 183-187

GenBank file format, 173-176

Get command, CPAN module installation,
118-119

GetNextPair method, Bioperl program,
Primer3.Pm module, 166-167

Getopt command, Perl module, 110-111

Global scope
keywords for, 170
Perl subroutines, 67-70

“Glutility” scripts, 3

Grammar, array list and scalar context,
34-36

Hash variables
anonymous references, 132-134
applications, 37-38
Bioperl program, Primer3.Pm module,
165-167
foreach loops, 53-54
indeterminate loops, while statement,
56
maintenance, 38-40
object-oriented programming, 144-149
Perl programming, 13-14
ref command, 132-133
reference creation, 131-132
Hidden characters, interpolation and
escapes, 20-22

If statement
loop exits, 57
Perl control structure, 45-46
Implementation protocols, software
engineering, 127
Implicit forks, input/output (I/0)
commands, 101-102
Indeterminate loops
basic properties, 50
repeat until statement, 56-57
while statements, 54-56
Index command, array-based character
manipulation, 75-78
Infinite loops, next operator, 58-59
Information commands, CPAN module
location, 115-117

188 Index

Inheritance mechanism, object-oriented
programming, 142
Input operator
input/output (I/0O) commands, 94-97
software engineering requirements,
124-125
Input/output (I/0) commands
Bioperl program, sequence
input/output, 157-158
built-in filehandles, 92-93
filehandles, 90-91
file safety, 93-94
file writing and appending, 91-92
functions table, 171
interprocess communications, 97-102
implicit forks, 101-102
process creation, 99-100
process identification, 98
process monitoring, 100-101
process pipes, 98-99
Per]l modules for, 112
Perl script parameters, 89-90
Insertions, splice function for, 32-33
Install command, CPAN module
installation, 118-119
Integer format, numbers notation, 14-17
Interpolation
lists flattened with, 29-30
Perl programming, 19-22
Interprocess communications,
input/output (I/0) commands, 97-102
child process creation, 99-100
implicit forks, 101-102
monitoring, 100-101
process identification, 98
process pipes, 98-99
Iterators, Bioperl program, 166-167

Join function, array list and scalar context,
35-36

Keys function, hashes, 39-40
Key-value pairs, hashes, 38-40
Kill command, process monitoring, 101

Last function, loop exits, 57-59
Length parameters, array splicing, 32-33
List context
array-based character manipulation, 78
array manipulation, 34-36
Lists
arrays vs., 27-30
splice function and, 32-33

Long.pm module, getopt command, 111
Loops
Bioperl program, 155
keywords for, 170
Perl control structures, 49-59
exits, 57-59
foreach loops, 52-54
indeterminate loops, 54-57
last function, 57
for loops, 50-52
next and continue functions, 57-59
repeat until loops, 56-57
while loop, 54-56

Make command, CPAN module
installation, 118-119
Management protocols, CPAN module
installation, 119-121
Match operator, string manipulation,
79-81
Mathematical operators, Perl
programming, 17-19
Mkpath subroutine, File::Path module,
112-113
Modification expression, for loops, 50-52
Modules (Perl)
basic properties, 105-107
CGI module, 110
CPAN module, 114-117
file:xpath module, 112-113
getopt module, 110-111
installation commands, 117-119
10 package, 112
management protocols, 119-121
strict module, 113-114
Bioperl program
Primer.Pl, Bioperl program sample,
161-162
Primer3.Pm module, 162-167
SegFeature module, 155-156
sequence classes, 153-155
keywords for, 171
Modulus operator, Perl programming,
18-19
Molecular biology, historical background,
1
Monitoring processes, input/output (I/0)
commands, 100-101
Multidimensional tables, anonymous
references, 134-136
Multiple patterns, string manipulation,
85-86
Multiplication operator, Perl
programming, 17-19

My command
global variables, subroutines, 67-70
for loops, 51-52

MyConfig.pm, CPAN module, 115

Namespace
combined module/package, 109
for loops, 51-52
Perl packages, 107-109
Naming rules, Perl variables, 13-14
Negate operator, control structures, 47
Negative bases and exponents, Perl
programming, 18-19
Next operator, loop exits, 58-59
No strict command, strict module,
113-114
Nucleotide sequencing, historical
background, 1
Numbers
comparison operators, 44-45
mathematical operators, 17-19
scalar values, 14-17

Object-oriented programming (OOP)
basic layout for, 140
basic principles, 139-141
class design, 141-142
inheritance mechanism, 142
Perl code for, 142-151
accessors, 149
constructors, 147-148
methods and protocols, 145-147
package rules, 143
referent blessing, 144-145
subroutine rules, 143-144
vs. procedural programming, 149-151
Objects, attributes and actions, 140
OddCodes tools, Bioperl program,
159-160
Open command, implicit forks, 101-102
Open3 command, Bioperl program,
Primer3.Pm module, 166-167
OR operator
control structures, 47
string patterns, 86
Output operator
filehandles, 90-91
software engineering requirements,
124-125

Packages
combined module/package, 109
object-oriented programming in Perl
and, 143

Index 189

Perl modules, 107-109
Parameters, Perl script, 89-90
Parent processes, creation, input/output
(I/0) commands, 99-100
Passing arrays, Perl subroutines, 70-71
Patterns, string manipulation, 82-86
alternatives, 85-86
assertions, 85
atoms, 83
quantifiers, 84-85
special atoms, 83-84
PDB (Protein Data Bank) file format,
183-187
Perl programming language
Bioperl
annotation, 156-157
sample programs, 160-167
SegFeature module, 155-156
sequence I/0, 157-158
sequences, 153-155
tools, 159-160
combined packages and modules, 109
functions and keywords, 169-171
historical background, 3
interpreters, 7-10
modules, 105-107
CGI module, 110
CPAN module, 114-117
file:xpath module, 112-113
getopt module, 110-111
installation commands, 117-119
10 package, 112
management protocols, 119-121
strict module, 113-114
object-oriented programming (OOP),
142-151
accessors, 149
constructors, 147-148
methods and protocols, 145-147
package rules, 143
referent blessing, 144-145
subroutine rules, 143-144
packages, 107-109
sample program, 8-9
scripting applications, 2-3
variables characteristics, 13-14
Pipes, input/output (I/0) commands,
98-99
Pop function
array manipulation, 30-31
control structures, if statement, 46
hashes, 38-40
Position variable, array-based character
manipulation, 76-78

190 Index

Primer.Pl, Bioperl program sample,
160-162

Primer3.Pm module, Bioperl program,
162-167

Print function, array list and scalar
context, 34-36

Procedural programming paradigm,
139-140
basic layout for, 139-140
vs. object-oriented programming (OOP),

149-151

Process identification (PID)
input/output (I/0) commands, 98
monitoring commands, 100-101

Process pipes, input/output (I/0)
commands, 98-99

Programming language, vs. scripting
language, 2

Pseudocoding, software engineering, 127

Push function, array manipulation, 30-31

Quantifiers, string patterns, 84-85
Quotations, interpolation and escapes,
20-22

Rand(EXPR) function, subroutine creation,
64

RandomSeq command, object-oriented
programming, 144-147

R command, CPAN module installation,
119-121

Redo function, loop exits, 59

Ref command, reference creation,
132-133

References
anonymous referents, 133-134
Bioperl program annotations, 157
creation mechanisms, 131-132
ref command, 132-133
subroutine passing arrays, 71
tables, 134-136

Referents
anonymous referents, 133-134
object-oriented programming in Perl,

144-145

value of, 131-132

Regular expression operators, string
manipulation, 78-82

Repeat until statement, indeterminate
loops, 56-57

Return function, subroutine creation,
65-66

ReverseComplement subroutine
object-oriented programming, 144
Perl packages, 108-109

Reverse function, array manipulation,
33-34

Safety procedures, file safety, 93-94
Scalar variables
array manipulation, 34-36, 75-78
numbers and strings, 14-17
Perl programming, 13-14
ref command, 133
reference creation, 131-132
Scripting language
Perl interpreter, 8-10
strengths and drawbacks, 2
Self-contained scripts, Perl programming,
9
SegFeature module, Bioperl program,
155-156
Sequence classes, Bioperl program,
153-155
Sequence input/output, Bioperl program,
157-158
Sequential execution, string variables,
15-16
Shampoo algorithm, loops, 50
Shift function
array manipulation, 30-31
subroutine creation, 65
Slot numbers, array variables, 28-30
Software engineering
design criteria, 125-127
implementation procedures, 127
planning overview, 123-124
program requirements, 124-125
Sort function
array manipulation, 33-34
subroutines, 71-73
Special atoms, string patterns, 83-84
Special variables, Perl programming, 23
Splice function, array manipulation,
31-33
STDIN filehandle
as built-in command, 92-93
input operator, 94-97
Std.pm module, getopt command, 111
Strict module, basic properties, 113-114
Strings
array interpolations, 34-36
comparison operators, 44-45
functions table, 170
interpolation, 19-22
manipulation

alternatives, 85-86
array-based characters, 75-78
assertions, 85
atoms, 83
match operator, 79-81
patterns, 82-86
quantifiers, 84-85
regular expressions, 78-82
special atoms, 83-84
substitute operator, 81
translation operators, 81-82
scalar values, 14-17
Subroutines
arguments, 64-65
creation guidelines, 63-64
global scope, 67-70
my command, 67-70
object-oriented programming in Perl,
143-147
passing arrays, references, 70-71
Perl modules, 106-107
return function, 65-66
sort function, 71-73
wantarray function, 66-67
Substitute operator, string manipulation,
79, 81
Substr command, array-based character
manipulation, 77-78
Syntax errors, Perl programming, 10
System command, implicit forks, 101-102

Tags, Bioperl program, 156
Test command, CPAN module installation,
118-119

Index 191

Test condition
indeterminate loops, while statement,
55
for loops, 50-52
Text editors, Perl programming, 8-9
Tools classes, Bioperl program, 159-160
Translation operators, string
manipulation, 79, 81-82

Unary operators, 18-19

Undef value, variables, 22-23

Unix instructions
getopt command, 110-111
Perl programming, 8-9

Unshift function, array manipulation,
30-31

Values function, hashes, 39-40

Variables
array variables, 27-30
control structures, if statement, 45-46
definition, 22-23
global variables, subroutines, 67-70
Perl programming, 13-14
special variables, 23

Wait commands, process monitoring,
100-101

Wantarray function, subroutine creation,
66-67

Websites, Perl programming, 8

While statement
indeterminate loops, 54-56
next operator, 58-59

